
a WeEkly Journal 0f Practical information, art, science, Mechanics, CHEMISTRY, and Mantfactures.
Vol. XXVIII.--No. 13.$]$
NEW YORK, MARCH 29, 1873.

IMPROVED STONE QUARRYING MACHINE.

The largely increasing demand for stone for building purposes calls for the introduction of labor-saving devices which, while increasing the supply, will tend to lower its cost of production. To this class belongs the machine which we herewith illustrate, and which is extensively used for channelling or cutting stone in various quarries throughout the country.

It is a double gang machine, and is represented mounted upon its track on the bed of the quarry. The frame which supports the boiler engine, and other machinery, consists of one piece of forged iron, thereby gaining great strength and durability. The principal portions of the device to which it is necessary to call attention in detail are the cutters, the mechanism which actuates them, and also the connections which render the machine render the machine locomotive. The engine is of sir horse power. Through the interposition of suitable appliances the piston rod imparts mo. tion to the crank face plate, A. This, in turn, by means of a swivel stirrup applied to its wrist pin (not shown) moves the upper arm, B, of a bifurcated or compound lever, which is pivoted to the frame at C. Ar. rangements are prorangements are provided by which the throw of this arm can be shortened and, as will be seen, the movement of the cutters regulated. D and E are springs of rubber, or other elastic medium, arranged above the arm, B, and between it and the lower arm, F. A clamp passes around these passes around these springs, as shown,
and serves to adjust and serves to adjust thein, and also to connect the two portions of the lever. The free end of the arm, F, actuates the gang of chisels on its side of the machine. The latter consist of five bars of steel, pointed at their lower ends and clamped together by head and foot clamps or guide blocks, with the lower of which, G, the lever arm, F, connects. Of the five, two chisels, I I, have diagonal cutconnects. Of the five, two chisels, I I, have diagonal cut-
ting edges, and three, the middle, H. and two outer ones, ting edges, and three, the middle, H. and two outer ones,
have their edges transverse. The middle chisel, H, extends have their edges transverse. The middle chisel, H, extends
the lowest, and all together form a stepped arrangement the lowest, and all together form a stepped arrangement
each way from the center. By this device it will be seen that when the machine is moving ahead the two forward and middle cutters operate; on a retrograde motion being assumed the two rear chisels, in connection with that in the center, do the work.
The bars are from seven to fourteen feet in length, according to the depth it is required to penetrate, and are supported by standards arranged on each side of the frames. At their upper ends, on one side, they are serrated to match corresponding serrations in the head clamps, for the purpose of preventing any displacement of the cutters while in use. J is a worm on the main shaft, and actuates the toothed wheel, K. The axle of the latter extends diagonally downwards to the rear of the machine where it terminates in a bevel pinion which, by the lever, M, may be thrown into ac-
tion with either of two adjoining bevel wheels-part of one of wisich is shown at L -on the axle of the rear trucks. It will be readily understood that the motion thus communicated serves to turn the axle either backward or forward, according to with which wheel the pinicn is caused to ongage. When the machine is required to be stationary, the pinion is so placed in reference to the wheels that neither is moved. N is a hand lever which communjeates with suita ble mechanism which serves to lock the pinion in whatever position it may be situated. O 0 are winches from the bar

WARDWELL'S STONE QUARRYING MACHINE

 els of which chains are led, as shown; over pulleys, and \mid this branch of the establishment is 1,000 tuns of rail per re connected with the cutter bars. Their object is to afford means of withdrawing the latter from deep channels. Themechanism for driving the gang of chisels on the opposite side of the machine is of course the same as that already described.
From one to two hundred blows per minute can be deliv red with each gang of cutters, and the penetration, we are informed, will be about three fourths of an inch each time he apparatus is passed over a given surface. The channels of any desired length. It may be noted, as an important ad vantage claimed, that their sides, as made by the chisels, ar quite as true and as even as a sawn surface. so that the machine serves the double purpose of dressing as well as quarrying. The track can be made in sections to extend any de ired distance.
The general The general use of this invention in the marble quarrie
of Rutland, Vt., during the past seven years has fully de
monstrated its efficiency. It is stated to have averaged from monstrated its efficiency. It is stated to have averaged from
50 to 100 feet of channel a day during the quarrying sea50 to 100 feet of channel a day during the quarrying
son, thereby performing the labor of from 50 to 75 men.
Several patents have been granted upon its different portions and improvements thereon. Geo. J. Wardwell is the patentee. Further information may be obtained by addressing the Steam Stone Cutter Company, Rutland, Vt.

The Works of the Joliet Iron and steel Company This establishmenut occupies an area of some one hundred acres on the Chicago and Alton Railroad, at Joliet, Ill., and is one of the largest of its class in the United States. There are two blast furnaces of a ca pacity of 1,400 tuns of ig iron per week which, together with the hot blast stoves, boiler, and engine house, casting house etc., occupy a struc ture 420 by 240 feet in dimensious. Twelve boilers and four large engines are here em ployed. The wate works, situated to the north of the furnaces contain a boiler and two steam pumps ca pable of throwing 1,600 gallons per minut each. In the buildings devoted to the processes of coke making and coal washing, are 25 brick ovens of the mos improved form, and also two washers with ertensive machinery Twenty-five tuns of coke and one hundred and fiftytunsof washed and fiftytuns of washe slack are produced dai ly. The fire brick works occupy a system of buildings 400 fee long, fitted with grind ing and molding appa ratus, boiler, engine kilns, etc., and are ca pable of making 3,000 , 000 bricks per year
The Bessemer plan has a capacity of 700 tuns of ingots tuns of ingors pe week. Two five tun converters are used The new steel rail mil occupies one of the largest edifices. The steel rail train is divided into three stands of short rolls, so as to insure great strength. There are six Siemens furnaces of the larges class, and a blooming engine and blooming week. The iron rail mill is provided with an artesian well and, besides other machinery, has eight heating furnaces and a three foot horizontal engine with a 28 tun twenty foot fly wheel. Six hundred tuns of rail per week are here manu factured. The puddle mill has nine double puddling and one double heating furnace, and produces two hundred and fifty tuns of muck bar per week. The shops are of sufficient capacity to keep in repair all these works, and also a second Bessemer plant and merchant mill, if required

A Patent Ofster.-Where will the genius of the American inventor end? A down east journal informs us that a Maine man is about to apply for a patent for an articial oyster, made out of flour paste, tapioca, salt and water The inventor places these in second hand oyster shells which are carefully glued around the edges; and when a which are carefully glued around the edges; and when a
half intoxicated customer calls for a dozen raw on the half es half intoxicated cusiomer calls for a doz
shell, he gets them fresh from the shop.

Erientifir Ammericam.

MUNN \& CO., Editors and Proprietors. PUBLisKBD wEEELY $A T$

NO. 37 PARK ROW. NEW YORK

o. D. MUNN.
A. e. beach.

One copy. one yeer One cory. alx mon

VOL. XXVII!., No. 13. [New Series.] Thoenty vïg thl Year. NEW YORK, SATURDAY, MARCH 29, 1973.

EXPLOBIONS DUE TO LOW WATER.

In our issue of March 8, we published an erticle in which we exhibited the fallacy of the popular ideas relating to the consequences of low water in steam boilers, and showed how collapsc, even, might occur as a result of this condition. We related a case, as described by a correspondent, in which collapse actially took place. We explained ihe manner in which explosions might, under some circumstances occur, and, in conclusion, summed up our argument in the statement that overheated surfaces, where low water had occurred, might produce eithei explosion or collapse, or might cause
no dange:ous result, according to the peculiar circumstances no dangesous result, according to the peculiar circumstances of the individual case. The question of a correspondent leads us to take up the special case of explosions caused by the in.rease of pressure which nay be producid, in some cases, by the injection of feed water upon overheated surfacee.
In the article above referred to, we showed the poseilility of cold feed water, entering a boiler filled with steam, producing the condensation of that steam and tha consequent collapse of the boiler. Should, in any case, the feed water be too w̄arm to produce instantaneous condensation, or should it be evaporated so rapidly as to supply fresh steam faster than condensation cou'd take place, an increase of pressure would : ccur which might produce, and probably in many cases has produced, the explosion of the boiler.
Let us suppose, as an extreme case, a plain cylindrical boil er, of 42 inches diameter and 30 feet length, to have hecome completely emptied, by some accident, and thea to have a supply of water forced in under the conditions last described. We may easily calculate what pressure of steam will be produced, if th:e feed water were boiling and the plates red hot, - cinditions most favorable to increase of pressure. Such a boiler, if of quarter inch plate, would weigh not far from one and a half gross tuns. If the fire line were at the middle line of the boiler, about 1,800 pounds of iron might become red hot, were the boiler to become empty. Nine pounds o red hot iron wers proved, by Professor Johnson and the Com mitter of the Frand Institute in investigation of this sub one pound of water. Seventeen Lundred pounds of iron one pound of water. Seventeen tundred pounds of iron
might therefore evaporate $\frac{1800}{9} 工 200$ pounds of water, under most favorable circumstances. This weight cf water, occu pying the full caiacity of the boiler, 290 cubic fest, would produce a pressure of abjut 300 pounds per square inch. In one actual experiment by the Committee of the Franklin Institute. the pressure ros: above 200 pounds per square inch, when it overcame the resisting power of a portion of the
boiler, and they were unable to determine the maximum boiler, and they were unable to determine the maximum limit.
The case which we have supposed would, evidently, be likely to ,roduce explosion, were the pressure not relieved by the safety valve; but it must b.s remembered that this is the extreme case, and one likely to be seldom met with. It will rarely happen that cine half a boiler will be thus heated to a red heat, and that it will yield its surplus heat to heated and rapidly injected feed water; and even then it is only when the safely valve is inoperative that the pressure can reach the indicated figure. Suppose a boiler of the locomo-
tive type to have its crown slieet similarly overheated, while tive type to have its crown sheet similarly overheated, while
a heavy pressure still exists within it, say 120 pounds. By a heavy pressure still exists within it, say 120 . pounds. By similar calculation we can readily determine the increase of pressure. The crown sleet being, say 1 feet s uare and $\frac{8}{8}$ inch thick. and the boiler containing 100 cubic feet of capacity above the then exist:ng water line, the pressure, if unre-
lieved by the safety valve, would, in this exampie, rise to
nearly 800 pounds per square inch, except for one very im nearly 800 pounds per square inch, except for one very im
portant circomstance: that is, that saturated steam already portant circumstanco: that is, that saturated steam already
orioting would, as shown by experiment, be condensed by oristing would, as shown by experiment, be cond incressure and, thus yielding before the newly developed vapor, the result would be that the pressure would really be but very slightly increased. It is far more likely that, in this case, the overheated crown sheet
would yield from simple weskness, and that an explosion would yield from simple weakness, and that an explosion
would result in tba manner, as has actually occurred under our own observation.
Our readers will be very likely to agree with us, we think, when we draw the conclusion that the statement that " wate coming in contact with red hot iron creates a gas ten time as explosive as the best gunpowder" requires some modification. Learning more precisely in what manner deficiency of water produces danger, those among them who have steam boilers under their charge will be able to act more intelligently in avoiding such risk.

INJUSTICE TO WORKHEN.

It is always the case among antagonistic parties that there are a few on either side who rush to extremes and, by their precipitate and ill advised measures, neutralize such satisfac tory adjustment of the question in dispute as might be effected through the efforts of the more cautious and conservative majority. We havegiven a multiplicity of instances of the imprudent proceedings of trade associations, and have repeatedly condemned the coercive system which these societies have seen fit to adopt in order to compel the support of disaffected working men. From the following docament, however, which we have recently received from a correspondent, it appears that the extremists are not all arrayed on the side of the unions. The Joliet Iron and Steel Company is one of the largest establishments of its class in lllinois, as will be seen from the description printed in another column.

RECEIPT AND CONTRACT.

Rocetved of Jolitet Iron and steel Company, the full amount due me a per pas roll for services rendered sald company during the menth of January, 1878.
And for the conolderation of the above mentioned, I do hereby agree that
sald company shall not be liable to me (nor my helra, executors admint sald company shall not be liable to me (nor my heirs, executors, administra-
tors, or other porsonis who may be dependent upon me for support in case tors, or other porrons who may be dependent apon me for support in case
of my death) for any damage or accldent resulting or occurring to me while In its employ, whether caused by the negiligence or carelessness of any of the offlcers or employoes of sald company, or from any other cause whatsoever. And that eald company shall
me from its employ without notice.
me from its employ withoat notice.
Further, that I will continue in the employ of sald company from month to month at the current rate pald by sald company for the class or sind of work done by me, and not leave the employ of asid company or refase to perform my dally daties without fourteen (14) days aotice in writingof such intention to the saperintendent, foreman, or the perscin under whose orders
I am employed, previous to the time of leaving or falling to perform my dally daties.
Comply with the conditiong aforesald, I do further agree that in case I fall to earned by me conditions last aforesald, that I will forfeit all money to comply with the terms of this contract.

Witneas.

Although it is possible that this contract may be legally valid under the statutes of Illinois, we doubt whether its terms would receive a rigid interpretation from any court or be enforced through any jury. It is plainly inequitable inasmuch as it gives to the employer rights which it denies to the employee, and places the latter in a position in which his means of support may be at any moment taken from him without warning, and without leaving him any mode of redress. That this power nay be so used as to cause great
hardship is clearly obvious, while the system of requiring men not only to give their time and labor, but to bind themselves by such oppressive obligations, for the simple and sin gle consideration of their already faithfully earned wages, ceems to us wrongful and highly unjust. "The laborer i worthy of his hire," and although employers have a perfect right to regulate the quantity, quality, and manner of performing his work, they should not take advantags of the necessity which impels a man to tuil for the existence of himself and his family, to impose upon him extreme conditions which, were he iess dependent, he would unhesitatingly refuse
We cannot too atrongly protest against the adoption of such a method of governing workmen as the above would signify, and we would earnestly adrise its discontinuance. It is on such proceedings as this that the harangues of the leaders of etrikes and labor uprisings find a substantial baeis, which lends to their argaments a weight with men who
otherwise would fail to be moved by them. The doubtful benefit, which perhaps may accrue to a single establishment is a hundredfold outbalanced by the obstacles thus thrown in the way of those who are striving to reach a fair and equitable adjustment of the question of labor reform.
It seems to us that the coercion in this case is as eviden and in every respect as much to be condemned as that exer cised in the contrary direction by the unions. Indeed, if employers adopt this coarse, with their restrictions on one hand and those of his society on the other,

PROPOBED NEW PATENT LAW IN ENGLAND.

A committee of London patent agents has prepared bill for a new patent law, the passage of which through Parliament is proposed. It is a sort of a patent hash aving been made up, apparently, by means of scissors and paste, its components being derived, in small items,
from the patent laws of various countries. It provides the from the patent laws of various countries. It provides that
the present set of supernumerary officise, the "Lords and the present set of supernumerary officisls, the "Lords and
Commissioners," shall still remain in office, to draw their Commissioners," shall still remain in offce, to draw their To this gallant body, a corps of six new members are to be added, with ealaries varying from $\$ 7,500$ to $\$ 10,000$ eech.

Some items are then taken from the American law. Ex minars are to be appointed, all cases are to be exam ined as to novelty, and rejections made when the examine thinks proper. This officer may summon the applicant and compel him to make such amendments as he may require. The present burdensome patent fees are to be retained, while another section provides that the patentee shall be compelled to grant licenses for the use of his invention, on such term as the examining committee may think proper; and they may also vary or cancel licenses. Issues of infringement are to be determined by a judge, without a jury, who may call in examiners, if he desires, to assist him. Items from the Austrian and continental systems are introduced, requir ing that the invention shall be worked within a specific time or the patent rendered invalid
The grant of patents to the first applicant, whether inven tor or introducer, as at present provided, is prohibited, and patentsare only to be granted to the inventor or his authorized agent.
The last mentioned clause is the only really sensible improvement that the bill contains. The effect of the other provisions will be to place difficulties and troubles in the way of inventors, without conferring benefit on anybody. We are surprised at the stupidity which this proposed bill exhibits.
What is needed for the encouragement of the useful arts England, and in every other country, is :
First, the publication in cheap and popular form of the drawings and specifications of all patented inventions, so that the people may become fully informed as to what is do ing or has been done in the arts.
Second, the reduction of the fees and the forms for ob taining patents, so that the masses of the people, who are poor, but among whom the real thinkers and inventors are to be found, may readily secure patents for their new ideas. Third, the placing of the entire control of the patent, from he day of its issue to the close of its term, in the hands of the inventor, to be his property, to be used as he thinks proper subject to no compulsion or other official interference.
Nearly all of the changes proposed in this bill are steps in a backward direction, not an advance in keeping with the spirit of the age. The present British law is immeasurably superior to this one now proposed. Indeed the existing law is admirable in nearly every respect and works admirably. Almost the only change it needs is a reduction of the enor mous patent fees it now requires, and the limitation of the issue of patents to inventors only.

PREUDO SCLENCE.

We have before referred to the fact that mere reasoning not based on sufficient observation of Nature, almost al ways leads to false conclusions and baseless theories, that this was the main fault of the ancient philosophers, and is still the fault of that class of moderns who labor under the seriousdisadvantage of deficient mental training; we have also asserted that docility to Nature's teachings and a liberal amount of resignation of our own speculative faculties are the real means to come to the knowledge of the truth. Even some of the most eminent men have erred in this way, and are lasting monuments of warning against mere speculation; one such is no less a personage than the famous German philosopher Emanuel Kant, who risked himself on the field of mechanics so far as to write a volume on dynamics, or rather, on a false imaginary theory of motion, which he calls dynamics. We will only point out a few of his errors
Kant had evidently never been instructed in regard to the resistarce of motion by friction, and he was ignorant of the fact that all motion, once imparted, would continue in the same direction as long as it was not prevented by other causes, of which friction is the most common and, on the surface of our earth, the permanent cause which finally arrests all motion. Having no conception of this, but imagining that force must bs a metaphysical immaterial thing which can be communicated to matter, he distinguishes two kinds of force, living force (vis viva) and dead force (vis mortis), and he illustrates these two forces by the following experiment: "When a book lays on the table," he says, "and I push it forward with my hand so slowly that it stops mov ing as soon as the contact of my hand ceases, I give it only a dead force; but when moving it with such violence that it continues its motion after the contact of the force-giving hand has ceased, I give it a living force. So a heavy box or trunk, dragged over the floor, is moved by a dead force, but a stone thrown by hand is moved by a living force." Hé considers that a body, when moving it without contact of a moving force, possesses the force viva, the living force; and the conclusions he further arrives at, being based on such false premises, are, of course, totally at fault and contrary to experience and even, we dare say, tc common sense.
If Kant had discussed this matter with a good physicist of his time, and obtained some information on the subject of friction, and absorbed this information, in place of exclusively indulging in his own fanciful and groundless speculation, he would never have published his volume on dy. namics, which must injure him in the eyes of all impartial investigators. It shows how superficial a thinker Kant was after all; it raises the suspicion that if he was not more cor rect in his metaphysical reasonings than in his plain physics, he does not deserve the confidence of his readers, and his conclusions may go for naught.
Another illustration of a similar nature is Gaethe, who in the latter years of his life had a notion to study optics, and wrote a volume on light and colors, in which he proves that he had not the least capability of making experiments, and nas still more deficient in his powers of observation. His conclusions are almost all false; he is perhaps worse than

Kant, and his book is nothing but a confession of deficien judgment in regard to experiments and defective training his education being, as is well known, exclusively literary.
As there is no more useful labor than opening the eyes people to the truth and rooting out their prejudices, we consider it a necessary and progressive step to tear away a portion of the halo which surrounds certain names, and which has almost become to mankind sacred, owing to the habit men have of regarding their heroes as superior in all respects to the ordinary run of humanity.

LENS FIRES.

Dr. H. C. Bolton, of Columbia College, New York city, tates that on a recent occasion, at 9 A. M., on entering his laboratory he found a wooden table on fire, ignition having been occasioned by the rays of the morning sun, which fell upon a glass spherical flask containing water. The flask served as a lens which concentrated the rays and set fire to the wood. The author also alludes to the statement of Lacflled with water to be used in kindling fires; while Pliny fled the flesh of sick persons. As to the latter one Mr Baring he flesh of sick persons. As to the latter, ene Mr. Barnes, of Connecticut, took a patent in this country some five years
ago for the use of lenses for the purpose suggested by ago fo
Pliny.
In respect to fires occasioned by lenses, doubtless there are many examples. It is well known that vessels at sea have been set on fire by the bullseye glasses used to admit light to between docks. These glasses were formerly made convex on one side, thus forming powerful lenses. In consequence of the loss of property and danger their use has been discontinued, and thick plates sides, have been generally substituted.
Captain Scoresby and Dr. Kane used to astonish the natives of the polar regions by taking blocks of clear ice and cutting them into the form of lenses, with which they in stantly kindled fires.

CORIOUS EFFECT OF GIGHT ON SELEVIUM.

Selenium is a substance that resembles and is allied to sulphur. It is found in connection with some natural deposits of sulphur, init it more commonly occurs in combination with metals, forming selenides. Selenium is less combustible than sulphur, burns with a blue flame, and emits a putrid horse-radish odor
Mr. Willoughby Smith has been making a series of electrical experiments with selenium, and, at a recent meeting of the Society of Telegraph Engineers, London, he made known the following remarkable results:
The sticks of selenium were connected with platinum wire and hermetically sealed in glass tubes. The electrical wire and hermetically sealed in glass tubes. The electrical
resistance of scme of the sticks was very great, otliers much resistance of scme of the sticks was very great, others much
less, and he was at a loss to account for this lack of conless, and he was at a loss to account for this lack of con-
stancy, until, after various trials, he found that it was due stancy, until, after various trials, he found that it was due
to the action of light. When the sticks of selenium were shut up in a box so as to exclude light, the electrical resistance was highest and remained constant; but when the cover was withdrawn and light was allowed to fall on the sticks the electrical resistance diminished 15 to 100 per cent, ac cording to the intensity of the light. The shading of the selenium by means of glass plates of different colors showed that the conductivity was altered in proportion to the interception of the light. These are very singular observations, and may lead to new and useful discoveries concerning the qualities of other substances, and the manner in which ligh qualities of other substance

THE SIPHON REOORDING I'ELEGRAPH INSTRUEEFT.

Perhaps the most valuable inventions in connection with submarine telegraphy have been made by Professor William Thomson. Durin ${ }^{\text {S }}$ the laying of the Atlantic cable, the services of Thomson's reflecting galvanometer were most valuable, but lately he has succeeded in perfecting a recording in strument which is worthy of description. The insurument
in question is in use at Duxbury, operating through the French Atlantic cable. It is available for recording a posi tive and a negative current upon a strip of paper in the long and short siguals of which the Morse alphabet is composed The difficulty of producing such a recorder as this has been due to the difficulty of obtaining marks from a very light body in rapid motion without impeding that motion. To ef fect this, the inventor connects (either by direct attachment or by stretched thread or fiber), to the body moved by the re ceived current, a light marking needle or tube, from the end of which ink or other fluid is spirted upon paper. The sig nals which are to be recorded give rise to motions of the marking end which are parallel to the plane of the paper, while the paper is drawn along its own plane and in a direct perpendicular to the line of the motions caused by signals. Sir William Thomson employs for the marking needle, by preference, a capillary tube, or a bristle dipping at one end into a stationary reservoir of ink or other fluid; and he causes such fluid to be spirted or drawn from the opposite
end of the tube by means of an electric force, or by means of end of the tube by means of an electric force, or by means of
rapid vibrations maintained in the needle or in the paper, in rapid vibrations maintained in the needle or in the paper, in
a direct perpendicular to the plane of the paper. These vibrations may be maintained mechanically or pneumatically as by the agency of sound, so that the paper receives ink by a succession of fine contacts, bet ween each of which the tube
or bristle is quite free to move. When the electric method or bristle is quite free to move. When the electric method
is used, the puper is drawn over a metal plate electrified, say, positively, the capillary tube being electrified negatively; and a powarful difference (potential) is maintained between the tube and the metal plate, such as would tend to cause a sue
cession of sparks to pass between them and which, under the circumstances, produce a fine stream of ink, or a successio of fine dots, spirted from the tube on to the paper, leaving record of the position of the tube at each instant and draw ing a continuous line on the paper, without impeding by fric tion the motion of the tube as directed by the receiving in strument. It has been found most convenient to allow the paper to move in a vertical plane, and to use a small glass siphon with its short leg dipping in the ink and its long leg pointing obliquely downward at the paper and close to it. The receiving instrument used in connection with this marking apparatus is a peculiar arrangement in which the received current passes through a very light coil of a small numbe of fine wires. Part of this coil is placed in a powerful magnetic field produced by permanent magnets or by elect o magnets, which set with great force upon the coil when the current passes through it. The coil is kept stiff without any complete framework or bobbin, by the use of stiff pieces or booms, drawn asunder by threads or strong fibers stretched to fixed points and serving to support the coil while giving it the requisite freedom to move and the needful stability. The message recorded by the ingenious apparatus appears like a continuous line; but when examined closely, it is found to be made up of a series of ink dots. The line made in a longitudinal direction corresponds to spaces in the Morse alphabet made by heading the current; and the to and fro trans verse lines, which may be long or short as the cable current varies in strength, accomplish the same purpose as the dot lines made by the Morse pen. Thus the swinging motion of a delicate coil is perfectly recorded with minimum expenditure of force. Sir William Thomson has accomplished what has been hitherto deemed an impossibility.

THE VIENNA EXHIBITION.

On Saturday, March 15, General Van Buren, with his family, left for Vienna to take charge of the United States Depart ment of the great exhibition. The appropriation by Congress of $\$ 200,000$ and two vessels for the free transportation of merchandise has enabled the Commissioner to collect a large number of articles for the great show, notwithstanding the unprotective nature of the Austrian patent laws. Most of the exhibitors are manufacturers whose wares are well known here, and whose inventions have been so long in public use that the patent laws of no foreign country would probably afford them protection.
Had the Austrian Government amended their patent laws so as to afford the protection that ihe word "patent" implies, a le rger number of our more recent and important inventions would have found place in the American department. If our part of the show does not compare favorably with other
nations, it should be ascribed to the unwillingness of Amer nations, it should be ascribed to the unwillingness of Amer-
ican inventors to trust their novelties to Austria's tender ican inve
mercies.
The ship Supply completed her cargo and sailed ior Trieste fortnight ago, and the ship Guard will sail, with the last o the goods for the exhibition, on March 20. Both are sailing vessels, and it is therefore uncertain when they will reach their destination : in season, however, it is hoped, to permit their freight to reach Vienna before the opening of the exhibition May 1st. About the same ciass of articles will be found in the American wing of the Austrian show as is seen year after year at the Fair of the American Institute. Among the most prominent are sewing machines of great variety, the contributions of the Singer Sewing Machine Company alone amounting to one hundred cases. Then there are knitting machines, scroll saws, wood working machines, windmills, pumps, steam engines, water wheels,
safes, pianos, school furniture, etc., besides ores, bales of safes, pianos, school furniture, etc., besides ores, bales of
cotton, hemp and other products from various parts of the country, r. presenting the growth and industries of the ections from which they come.
On the main floor of the American department will be shown, in actual operation, shoemaking, bucket, brush, and nail making machines, stone breaking tools, flax cleaning machinery, rock drills, circular looms, machines for making pipe elbows, boot heeling machines, and numerous kinds of wood working machines. General Newton has sent a perfect model of the engineering works now carried on under his direction at Hallett's Point, and the United States Lighthouse Board has forwarded their best specimens o lighthouse larterns, and the Navy Department their new im proved apparatus for hoisting and lowering buats.
About seven hundred exhibitors have space assigned to them, and some who were unprepared to send by the gov-
ernment ships will forward their goods at their own expense ernment ships will forward their goods at their own expense
by steamer. Commissioner Van Buren has been untiring in steamer. Commissioner Van Buren has been untiring in that the American department of the Vienna exhibition wil be creditable to the nation.

THE DETROIT BIVER TUNAELS

We regret to learn that work upon this great enterprise has been indefinitely suspended, for lack ot funds, and the expected union of Canada and the United Ststes, by the onds of an underground railway, is for the present aban oned. This is a great pity, especially as much work ha ready been done. The original plan contemplated the Michigan Central Railway, at Detroit, Mich., by means of two independent circular tunnels of masonry, each 15 feet in di ameter, executed by borings under the bed of the river. Eac unnel was to have been 8,568 feet in length.
The preliminary work consisted in drifting a small tunne feet in diameter, intended as a drain for the two large works, and it is upon this small tunnel that considerable
labor has been expended. Headings were made on both
sides of the river, and, up to a recent date when orders were given to stop, these headings had been carried 1,70) feet in all, or 1,220 feet on the American side and 480 feet on the Canadian side.
Mr. D. D. McBean, Superintendent of the woiks, has published, in a recent number of the Detroit Post, an interesting review of the practical operations so far as they were carried, showing that the works might be easily completed if the money were forthcoming. We hope that an improvement in the exchequers of the companies concerned will enable them hereafter to proceed with the works and bring them to completion.

SCIENTIFIC AND PRACTICAL INFORMATION.

bleaching by turpentine.
It is well known that turpentine generates ozone, and the fact has been used for bleaching purposes. The turpentine is vioiently whipped by dashers and the ozone is blown from the generator into the vat containing the paper stock or other goods to be bleached. How far this operation is successful we do not know, and only throw out the suggestion for some one to give it a trial and report the result.
hardening burned steel.
For hardening the steel points of tools of boring machines, etc., when burnt, J. Jossi proposes the following method: 10 parts of tallow, 2 parts horn filings, 1 part sal ammoniac, 10 parts of tallow, 2 parts horn filings, 1 part sal ammoniac,
1 part pulverized charcoal, and 1 part soda are mixed together and placed with a piece of wood on the parts to be hardened, and placed with a piece of wood on the parts to be hardened,
after they have been exposed to a cherry-red heat. The mixafter they have been exposed to a cherry-red heat. The mix-
ture dries undor the influence of the heat, and the steel parts may then be hardened again in the usual manner
artificial milk for calves.
Successful experiments have been made in raising calves by means of a soup or milk prepared according to the recipe of Baron Liebig, which is as follows:
Seven pints of water and three and a half pints of milk are boiled with 10 ounces of wheat flour to an ordinary pap; are boiled with 10 ounces of wheat flour to an ordinary pap;
three and a half more pints of milk are then added, with an ounce and a quarter of a potash solution consisting of two parts of bicarbonate of potash dissolved in 11 parts of water. The same quantity of bruised malt as of wheat flour is added to the hot pap, which is well stirred and allowed to settle for half an hour near the stove or other warm place, when it is boiled again and filtered through suitable gauze.
The calves are fed for about 6 weeks on pure milk, and gradually they are allowed less, some of the substitute being added. At last they are given about 7 quarts of artificial milk per day and no pure milk. After three monthes, only one half of this quantity is given, half a pound of linseed cake being added; in the fall some boiled potatoes are mixed in. The calves gain about two pounds in weight per day. A calf which was weaned on February 22 gained on an average $3 \cdot 12$ pounds per day. Should calves dislike to take the milk of the cow, the substitute is given immediate'y. No disadvantageous effects of feeding with this milk were ob served. Disrrhœea did not occur at all. The milk was also applied to the raising of pigs, and was in their case useful in the cure of diarrhœa, which so often fatally attacks them

NEW METHOD OF CLEANING GLASSWARE.
Dr. Walz sends us the following correct description of his new method of cleaning glassware, published on page 151 of our current volume: The vessel to be cleaned is filled, or, if large, rinsed with a moderately dilute solution of potassium permanganate, the contact of the liquid being prolonged till a film of hydrated manganic oxide has been deposited; the solution is then poured away, and the glass vessel rinsed with some strong hydrochloric acid. Chlorine is then formed but not enough to cause inconvenience; and acting in the nascent state on the organic matters, it speedily converts them into substitution products, which are soluble in the slight ex cess of acid or water

PREBENCE OF BILVER IN SUBNITRATE OF BISMUTH M. Ch. Ekin observes that this preparation often contain ilver, of which, however, no notice is taken in most work on pharmacy. Having tested it for the purpose of detecting silver compound (subchloride), he found some samples of噱 3.9 to 6.5 per cent of ride of silver; and in other samples he found metallic silver but in small quantity.

TIHCHER'S REMAREABLE OBSERVATIONS CONCERIING THE SUN.

The great English philosopher Isaac Newton, and, in fact all the astronomers from the middle ages down to the end of the last century, had a much more correct idea of the nature of the sun than was the case with William Herschel and his followers, who, in order to keep step with the current of public opinion of their time (which favored a plurality of inhabited worlds), tried to prove not only all the planets but even tho sun itself inhabitable, at any cost, even at the expense of common sense. For that purpose Herschel in rented the phosphorescent cool atmosphere which, from its under surface, gave only sufficient light and comfortable heat to the inhabitants on the solar surface, but from its up er surface projected radiations which, at a distance of ove $\mathbf{2 , 0 0 0}, 000$ miles, could develope, with the help of our at mosphere, the burning heat of our tropical zones. Notwith standing that the idea was absurd in the extreme, and with out any foundation on analogous facts positively known about the properties of matter and of heat, it was accepted on the authority of the oder Herschel, who (when we render him impartial justice) must be considered as only a suc cessful telercope maker, and a very poor philosopher. This absurd doctrine about the nature of the sun is, even now-a-
days, not expunged from our arhool books on astroamy
many of which still contain the following sentence: "The sun is a dark body surrounded by a luminous atmosphere." Thanks to the revelations of the spectroscope, we know now that Isaac Newton was perfectly right when he estima of temperature of the solar statements, we, with our most intense fires, cannot form any adequate coaception of the same.
As a proof of the correctness of our assertion as to the opinions in regard to the nature of the sun, during the century preceding Newton, we publish herewith a reproduction of an engraving made more than two hundred years ago in a cosmographic work, written in Latin by Father A. Kircher, and published in Amsterdam, Holland, where a translation of this book into the Dutch language appeared in 1682 . It consiats of two folio volumes, and is illustrated by many woodcuts and engravings on copperplate. The work is, as all works of that time were, a curious mixture of truth and untruth, filling the reader, in succession, with admiration at the patience and sound judgment of the author and then with surprise at his credulity in recording evident errors as positive facts. The article on the sun, explanatory of the engraving which we reproduce, is one of the remarkable instances in which the author is on the side of the truth, and he even anticipates the modern ideas resulting from discoveries of two centuries later. We can only give an abbreviated translation as, like all old writings, it is too long winded for readers of the 19th century. He says, in substance:
" The great and good Architect of the universe, has given us an image of His Divinity in a body which causes all life, motion, and being, the sun, which (as a soul or mind of the universe) is, in the material world, the visible representative
of the invisible God; by it He created light and order out of April, 1625, wherefore I have judged it appropriate to add darkness and chaos, and revealed to man the majesty of the invisible power to which he owes his very existence."
" Notwithstanding that we see the sun daily, we must be amazed at its beauty, and notwithstanding that it is given to no man to obtain a correct knowledge of its nature, the question arises: What does that glowing substance consist of? To this I answer that the sun is a fiery body.condensed from a heavenly vapor, out of which heat and light flow off to all things, as out of an inexhaustible fountain of fire; which heat and light, combined with the seeds of the earth, produce the wonderful variety of things which we daily see here below. The sun, then, is a sphere, rough and uneven, consisting partially of liquid and solid matter, which would appear incredible, if it had not been proved by the very excellent magnifying spyglasses, invented for the in spection of the stars. If such a glass is attached to the hole in a blind of a dark room, and turned toward the sun, an mage of the same may be thrown on a white sheet; it wil be seen that the surface of the sun is uneven, has shadows and lights, and is rough like the waves of an ocean, and that it varies and is not today as it was yesterday. All of which has been described by the celebrated scheinerus Sometimes also large spots, some of them dark, and some ight, are seen, which last several days, sometimes disappear and reappear again after some days; these spots are especial ly seen at certain positions of the stars. All who have ever seen the large crucibles for the melting of metals, and noticed the surface of the white hot metal and the motions on its surface. can form a better idea of the appearance of the ariace of the sun, whence sometimes smoke arises, as
ere a picture of what I saw. That these images of shadow and facule belong to the solar surface is evident from com mon reason. We must then conclude that the sun is a he rugeneous fiery region, where changing spots, smok ϵ and rbules arise from the surface, now boilingup, then again dis or all the who fill furthe in mon hese wonders of the sun will, without doubt, easily under tand the origin of the comets."
" In order that the sun should better give its wonderful power to the other heavenly bodies, the Architect of Nature made it turn around on its axis, as recently demonstrated by the astrono mers; while the earth is provided with a vapor region made from the evaporations from our earth, the rising of which moderates the too great heat of the sun, so as to give us a moderate amount.
We will not follow our author, the Reverend Father Kircher, any further, but only remark that his picture show the dark sun spots, and the facula, marked A; the poles and quator are also indicated, by the Latin names; while how ver, the most remarkable of all are the protuberances arked L M N OPQRST. It is not a little noticeable tha e introduced them in the picture nearly two hundred and fify years before the instruments, which proved their rea xistence beyond a doubt, were invented. On the whole w onsider this picture as a very remarkable production fo hat time, in which even an attempt had been made to repre ent the so called willow leaf appearance of thesolar surface, a discovery of modern astronomers, the production of which so old a record of observation is, to say the least, a re markable coincidence.

APPEARANCE OF THE SUN AS DRAWN BY FATHER KIRCHER IN 1682

Corresprondence.

Distinguishing Fibers in Mixed Goods.

To the Editor of the Scientific American
Unquestionably the microscope is the best means of accom plishing the purpose of your correspondent, described on page 161 of this volume; it is the simplest, quickest, easiest and surest. All and each of the fibers named in the article are constructed-built up, so to speak-in different manners, so distinct from each other that a moderate magnifying power, say 400 diameters, of a decently good instrument will show at once what they are. Any one with a very little skill in manipulation can obtain the result. The differences have been described and figured in the books, but there is no need of books. Every one can obtain genuine fibers of either kind with almost less trouble than referring to a book, for comparison with those found in the fabric, and the original comparison is of far more value than the authority of a picture. No chemical test is known to distinguish flax from cotton fiber, but their difference in the microscope may be seen at a glance. Jute fiber has more resemblance to flax, but can be distinguished with a little more study. The materials of paper may also be ascertained, in part at least, by the microscope; for example, your number dated March 15, is printed on paper containg no cotton or linen; it is mostly wood fiber with "pitted" and "scalariform" ducts, not peculiar to any kind of wood, with possibly fibers of manilla, espa
ramie, of which I have not the means of comparison
amie, of which I have not the means of comparison. But the min ase tain fabric in use purporting to be made entirely of cows hair. The question came up: Is there any sheep wool in it? This could not be answered. For, while the bulk of each is easily distinguished, there are some hairs from each animal that cannot be known from the other. In this case, so far as is known, chemistry is equally powerless.
Boston, Mass.
Charles Stodder.

Bursting Strains of Cylindrical Bollers.

To the Editor of the Scientific American
In the discussion of the boiler question in your issue of February 22, Mr. Creuzbaur is trying to show that there is no force tending to tear the shell at $\mathbf{X X}$ (in the diagram), except a vertical one, so long as the points remain the same distance apart, etc. Now they would not long remain the same distance apart, if something did not hold them there; and the very force which would spread them is what makes the extra strain that he overlooks.
But in all the diagrams the matter is placed in a false light. In a boiler the force is acting in all directions from center to circumference, where it is changed to the direction of the circumference. It evidently bears some relation to the force acting in the former direction. Now let us see what that relation is. The force acting from center to circumference tends to enlarge the diameter, and the shell or circumference resists that enlargement. As I said in a former communication, to enlarge the diameter 1 , the circumference must be enlarged $3 \cdot 1416$; therefore the whole pressure in the ring (any width) is to that tending to separate the iron at any and every point as $3 \cdot 1416$ is to 1 ; for we cannot ignore the very foundation law of mechanics, that what we gain in velocity we lose in power, and vice versá.
I think if any one has the desire to try an experiment and make known the results, it might be of much benefit to many, and perhaps lessen the number of boiler explosions. I inclose a rough plan of an apparatus which would if properly nade. I think, sive the true rosult.

The dimensions I give are, of course, not arbitrary ; a machine of much larger dimensions would reduce the friction to a minimum, and give more accurate results.
In Fig. 1 (elevation), $a a$ are two metal disks, say a little more than 7 inches in diameter, faced true and smooth in the inside for about $1 \frac{1}{2}$ inches from the outer edge; they are held 1 inch apart by three thimbles and bolts, as shown. B is a gas pipe 1 inch in diameter, with a line of holes at one end a convenient length for the pipe would be about $27 \frac{8}{4}$ inches to the first hole, which is the hight corresponding to 1 lb . of water. C is a feed pipe for filling B with water, which enters at the side to do away with the impact that would arise if the water entered the top of the pipe. D is a light meta strap or band, 1 inch wide and a little more than 22 inches long, bent into a ring, with two small lugs soldered on near each end, so that, when they are brought together the ends will overlap a little, making the ring 22 inches in circumfer-
ence. These are to be held together by a nicely made double lever or tongs, Fig. 3. The tongs are to gripe the lugs close to the band, as shown. Let the two ends of the levers be proportioned as 1 to 7; putin a spring index between the long ends. as shown; screw it up to 1 lb ., then the other end will be brought together with a force of 7 lbs . The levers with the index can be suspended from the feed pipe. The band, D, must be nicely fitted between the disks, so that it will move without friction, and a slight leak will not affect the result. The thimbles should be set near the inside of the band, so as to keep it in place. Now let water flow out o the feed pipe and fill the pipe, B, up to the first hole; and, if my theory be right, a little above that will move the index By carrying the pipes high enough, or by re-adjusting the index, the true relation can be ascertained. C. P. Evered. Montgomery city, Mo.

The Ocean Tides as a Prime Motor

To the Editor of the Scientific American:
In an article on page 64 of the current volume of the Screntific American, "The ocean tides as a prime motor," you describe the enormous power of the tides, adding the remark that to utilize it constitutes a problem for the engiremark that to utilize it constitutes a problem for the engi-
neers of the future. I wish to communicate to you two methods to accomplish said purpose, which have been in troduced and have, in some degree, been deemed aaticfactory. 'The first is as follows (sec Fig. 1):

The tide lifts the fioat, A, from which power is transmit ed by means of the beam, B, pivoted on vertical standards, C , to the building or pillar, D. The power may be applied irectly or, as has been proposed by some engineers, trans erred to strong spiral springs, which may be secured in place and carried to the required situation for use at a distance
A nother method is the following (Fig. 2): A pond is buil near the coast and is connected by a canal with the sea. An undersho water wheel is placed in the canal. The rising tide will turn the lower part of the wheel toward the pond, the falling tide towards the sea because the level of the sea was higher than the pond in the firs place, and lower in the second. This ecessitates a peculiar construction of the wheel, as the paddles have o be placed radially, and a gear for reversing the direction of the pow r is required. To avoid this,' th

ollowing construction

 the pond and the sea and the wheel wa placed in a third one connecting the two oth ers. The mill was erect ed on the islands formed by the canals. Four sluices, two for cluices, two for each
canal, were built, the sluices of buil, the sluices of one opening owards the inside those of the other to
wards the outside. Th flood tide opened the sluice, A, at one end, holding it open and it closed the other end and enter the pond through the lateral canal and sluice, B. moving the undershot wheel in the direction from the first to the second canal.
The ebb tide returned by opening sluice A, passing in the same direction through the connecting canal and through B to the ocean, turning the water wheel in the same manner as the flood tide did. This system requires only four well acting locks, which may be easily obtained by construct ing a proportionately large pond. E. \& E. S. Edward ing a proportionately
Dresden, Germany.

Psychic Force on the Slate

To the Editor of the Scientific American
I wish to invite the attention of scientific men to the phe omenon called spiritualism, as it has lately been developed here. Although somewhat ridiculous, yet it is wonderful and if intelligent people will investigate it thoroughly, and discover the source of the mysterious power which som mediums possess, they will confer a boon upon mankind. I am not credulous, I do not believe it to be spirits, but I am at a loss to explain it. I will describe the apparatus so tha all may experiment, but I understand that the medium pow or is possessed by but few; yet the reader of this, or perhap ome of his friends, may possess the power. Try it.
Cover a table with some fabric that will exclude the light from underneath, as it seems that darkness is necessary to success. Then provide an ordinary school slate with a lot of
short pencils. Place a chair so that you can hold the slate under the table. Take the slate in one hand, hold it by the frame horizontally under the table. After having placed a piece of pencil on the slate, be sure the curtain is down to exclude the light. If you possess the medium power it will soon make itself evident by raps, or you will hear the piec of pencil fall on the floor, somctimes striking the table vio lently. When the pencil falls, replace it with another. If there is any demonstration, ask if there is a spirit present; if so, make it known by rapping on the slate. Three taps signi fy "yes;" two, "no"" one, "don't know." If the answer is yes, ask if it can write. If yes, then ask any question you wish and an answer will be written on the bottom of the slate the pencil falls as soon as it has done writing. Youcan dis tinctly hear it writing dotting the i's and crossing the t's. have seen the above performance and have been allowed to have seen the above performance and have been allowed to on the part of the medium. I have held his arm just below on elbow, where I could detect the slightest movement of the elbow, where I could detect the slightest movement of
the fingers, and could discover none except when the pencils would fly violently off; then there was a slight twitch of on of the muscles, but I cannot see any possible way for that to be fraud. We guarded against everything in the way o fraud. Place a piece of pencil on a slate and hold it horizon tally in one hand and try to throw it upwards without much frort.
Now the problem is: how is the writing done? If you have never seen this mystery, I advise you to do so and sat isfy yourself before you express an opinion. The whole thing is ridiculous, I must confess, but the charm is the mystery, and the wonderful writing is in different styles of penmanship. If a lady spirit writes, the writing is peculi arly correct, punctuated, etc. Each individual spirit writes in its own peculiar hand writing, differing from others as we in its own peculiar hand writing, conerif continue this commu mortals differ in our writing. I could continue this commu
nication to some length, but my object is not to relate my experiments but to have others experiment for themselves. Chattanooga, Tenn.
S. C. Dodge.

The Recent Boller Explosion at Conshohocken. To the Editor of the Scientific American:
In your issue of March 8, 1873, Messrs. I. Wood \& Brother, of Conshohocken, Pa., publish a communication in which they seem to feel aggrieved that I should have spoken freely regard ing the lamentable loss of life by the explosion of their boiler It is of course exceedingly unpleasant to state the truth about matter of this kind. I know that Messrs. Wood are exceed ingly honorable men and would in ne wise be guilty of doing ought that would imperil the lives of their fellow citizens or their employees. My motive was not to make an attack upon Messrs. Wood, or to accuse them of culpable carelessness, or o speak of them disrespectfully. It was only to call atten tion to the circumstances under which this boiler exploded n order that men who employ similar means and appliance for power might not do as they have done.
In their communication to your paper, they claim that the boiler was good because it was old, and that it had had steam on it and been in use since 1854 , a period of nearly 20 years I do not think that a boiler is, like wine, improved by age My experience tells me that no boiler should ever be in us ore than ten years.
Messrs. Wood state that there was no steam gage attached to the boiler, it having been shut off for repairs. I do not think there is a mechanical engineer in the civilized world who would expect that a boiler nearly 20 years of age, with no steam gage upon it, would indicate pressure to the eye o the man attending it. I do not think that any cultivated engineer of experience could be found who would not mos emphatically say that there was danger that the boiler of th essis. Wood would explode. W. Barnet le Van Philadelphia, Pa.

The Power or Compound: Levers

To the Editor of the Scientific American:
I would like to know what force one pourd at the end of he lever, C, would exert on an object between the stationa ry block, B, and the sliding head, A, when the arms, D and , are nearly straight, or are exerting their greatest force The lever, C, is 48 inches; the fulcrum is at (i, and the con

necting arm is 6 inches long. 'The arms, D and E, are, 2 inch es long, and E is stationary at F, on the bed plate, H, and D is connected at I with the sliding head, A.

Morenci, Mich.

Remares by the Editor:-The relation of the effor exerted to the resistance which can be overcome, varies with every change of position of the lever, up to a power which would break down any machine built of inelastic materials. See our reply to A. B., in the Scientific American of March 8, 1873.

Ignition by Superheated Steam.
To the Editor of the Scientific American:
In my communication published in your paper of February I endeavored to lay before your readers some facts in re gard to the use of superheated steam and its relation to fires.

I attempted to give a faithful statement of all the facts bearing upon that subject, and I am glad to see any corrections or additions which may be made to the same. The further light Mr. Miller (in your issue of the 8th instant) throws upon the subject is worth consideration. He points out that the lagging was well saturated with linseed oil, and that even some oil from greasy waste may have reached the felting. The engine had run for nearly a year, certainly for some weeks, with about the same quantity of oil in its lagging and felting, with no signs of fire or smoke, while six hours with the Miller boiler sufficed to set it on fire. The steam pipe of which Mr. Miller speaks was wound with yarn and felting, and covered with whitewashed canvas as far as the engine room, say within 18 or 20 feet of the throttle valves. Within the engine room it was first covered with a thickness of felting, and over that were the pine rios to which the lag. ging was fastened; while, about the engine, the pine ribs were in contact with the metal. It is also to be observed that the close covering of a symmetrical pipe would prevent any circulation of air about the felting, while the lagging about the throttle valves was quite imperfect, especially at the bottom. Whether superheated steam, rather than ordinary saturated steam, caused this fire or even had anything to do with it is what we are endeavoring to discover. The conditions were in all probability the same, and what those conditions were I have endeavored to state; I have studious ly avoided doing more than that.
And here it seems to me that Mr. Miller ought to have rested. Why he should pull the subject out of its legitimate bearings, I can hardly understand. If he chooses to set forth in your columns the superiority of his boiler over others, or the value of superheated steam, I can have no objection thereto, but I do protest against his using a report not his own, without the consent or knowledge of its owners, to further that object. Those experiments, Mr. Editor, were incomplete. The Miller boiler was in use but six hours, and other considerations inad led us to refrain from publishing the report in order that the engineering and manufacturing community might not be misled by partial reports. Whenever we can speak intelligently and sincerely of the superior ity of the Millar boiler, we shall gladly do so; but the report which Mr. Miller sent you has but little value in decidin that question.
Providence Water Works
a. F. Nagle,

Tine Nebular Theory and an Inquiry into the Reason of Kepler's Harmonic Law.
io the Editor of the Scientific American
Having long been an interested reader of your valuable journal, and for many years devoted to astronomical study I would beg a small space in your columns, in order to give what I think may be some reasons for a belief in the relations which may exist between what is known as the nebular theory and one of the laws of Kepler, known as his third, or harmonic, law.
In considering the nebular theory we are led to presume that the sun, as a gaseous body, may at one time have ex tended even beyond the present bounds of the orbit of the planet Neptune; and that other planets revolving far beyond his orbit, as yet undiscovered by our present telescopes, may have been first thrown off from the solar nebula during the earlier births in the family of our solar system. Be this as it may, we are acquainted with a sufficient number of the members of that family to answer our present purpose. According to the nebular theory, the solar system, includin \boldsymbol{y} the sun, planets, planetoids and comets, originally existed in one body in a gaseous state, similar to the planetary nebula and extending at least beyond the orbit of Neptune, and per haps much further, if we take into account some of the co mets of long period. This gaseous body must have been very highly heated in order to maintain the more refractory sub stances in such gaseous condition. And, judging from our present knowledge, a portion of this heat would be subject to a continual diminution from the radiation of heat in space. A necessary consequence of this loss of heat would be a cor responding contraction of the gaseous body, and an acceleration in the axial rotation. And as the exterior, or outlying, portions of this gas would be more mobile, less under the influence of gravitation, and would less readily obey the tendency to accelerated rotation, a condition would eventually arise in which the tangential or centripetal force would become equal to the central or gravitating force. This condition once attained and the contraction of the central raass still and possessing the tangential motion of the equatorial por tion of the por tion of the remaindar of the mass, would start out on its
orbit in the same direction and continue to revrolve around orbit in the same direction and continue to revr,
such remaining around
mass as a planet. This planet, still remainsuch remaining mass as a planet. This planet, still remain
ing in Ω gaseous state, would be subject to the same condiing in a gaseous as the parent mass; receiving an axial rotation, taking upon itself the form of an oblate spheroid, obeying the law of gravitation, parting with a portion of its heat, undergoing contraction, and increasing in its axial velocity, until finally this same planet would, in a similar manner, give birth to a secondary planet, or satellite. This process would continue in both solar and planetary masses, so long as their external portions should be sufficiently mobile and the force of gravity overcome by the tangeatial force. Astronomical science contributes much evidence tending to show that our whole solar system has thus been evolved from matter once in a nebulous condition.
At first sight, the ring of Saturn might appear to form an exception to the above theory; but if we consider that, in that case the ouinjing enveloping portion, when detached,
that planet's equator; and thus continue to remain unbroken, subject, perhaps, at some future time, to beagain subdivided
into innumerable small satellites. What gives additional strength to this theory is the fact that these planets and eat ellites continue to move in an orbit around the equator of their parent, or very nearly so, and that is precisely the place, owing to the greater tangential force and the smaller amount
of gravitation, from which such detachments should be exof gravitation, from which such detachments should be expected to take place.
In seeking for a sufficient reason for the existence of Kep ler's Larmonic law, we have only to consider that it will be evident that, after the solar mass had parted with its loose outlying portion, it would be likely to be some time before it would again have contracted sufficiently to repeat the operation, especially if these detachments were assisted by some eruptive force, such as we find to be still existing in the sun. The contraction might be tolerably uniform, but the detachments being in masses, would only take place a t so many successive stages. At each of these stages the tangential velocity would be greater than at the preceding
stage, precisely as these orbital velocity of the planets and stage, precisely as these orbital velocity of the planets and
satellites increases in a certain ratio as they are near to the sun. We may note also in passing that these orbital velocitie are in proportion to the masses and distances of their respectve primaries.
Consideriag that there has been the same constant relation between solar matter and the forces (to which it has been subject from the earliest to the present condition of the sun throwing off these detached masses at different stages of con traction, at tolerably related intervals, and at decreasing dis tances from the center of the mass: can there be any difficulty in accounting for the existence of Kepler's harmoni thrown off any other planet after Mercury, or Vulcan, it thrown off any other planet after Mercury, or Vulcan, if
any such planet exists? To this itmay be replied, that, as the any such planet exists? To this itmay be replied, that, as the
central mass continued to contract, its density would concentral mass continued to contract, its density would con-
tinue to increase, a time would arrive when the tangentinue to increase, a time would arrive when the tangen
tial and truptive forces combined would be insufficient to overcome the central or gravitating force, and, consequently, no more matter would be thrown off. Astronomers believe that that time arrived long ago, perhaps millions of years. The spectroscope reveals the fact that the planetary bodie are composed of the same elements as the sun itself. Astron omrars now generally believe that our moon has lost nearly all of its radiant heat. As her mass is only about one eightieth of that of the earth, it is no wonder that she should have cooled so much faster than our globe has. The masses of Jupiter and Saturn also, being much great , waccoun or their cooling more slowly than the earth, and retaining to iving light to their satellites in addition to that which the latter derive from the sun. This condition of those planets latter derive from the sun. This condition of those planets
will also account for the change of form which they have will also account for the change of form which they have
been seen to undergo, which could not happen were they as dense and as rigid as the earth now is. The later discoverie in astronomical science appear to contribute more and more evidence tending to confirm the nebular theory.
I know not whether it is yet an ascartained fact that the un is still contracting from loss of raliant heat, but I firmly believe that, if not, it will be demonstrated in the future when sufficient time has elapsed to make a comparison be with the sun's distance and apparent dia
To conche elements at another epoch.
forestine in th future, to engage the highest intellects, and to command th calculation.
E. H. Price, M. D. Tamaroa, Tamaroa, Ill .

The Duplex T'olegraph Instrument.

To the Editor of the Scientific American:
In page 65 of the current volume of your esteemed paper, find an article on the duplex telegraph instrument in Eng land. You claim, in the artic ee, this invention as an Amer can one of some years standing. I take the liberty to bring
to your notice the fact that Messrs. Siemens \& Holske, teleyour notice the fact that Messrs. Siemens \& Holske, tele
graph engineers of Berlin, obtained in 1849 an English pat ent on the simultaneous teleyraphing of a large number of despatches by means of combined wires. They improved that method in 1856 in such a manner that replies could also be sent, by which the method became practically important The simultaneous telegraphing in one direction was not so much of a success.
In the summer of 1854, Professor Edland, of Stockholm took up the same subject, and obtained the same result indipendently of Siemens and Holske, telegraphing (in August 1856) by his system between Stockholm and Upsala. In January, 1855, the line Stockholm-Gothenburg was worked on his system (see Poggendorf's "Annris of Chemistry and Physical Science," vol. xcviii, pp. 115 and 632).
I hope that you will accord a space in your paper to the indication of the priority of a German invention.
Dresden, Germany. Ernest Schurmann.

Fog Trumpet Signa

My object in writing this is to present an idea for consider ation in relation to the fog trumpet. It is a very useful in trument to the mariner in warning him of contiguity to land when other means fail; but though it has a voice (and oud one) it has no speech, and this I propose to add
Sounds of ascertained duration may be learned and be nderstood to represent tine alphabet; our telegraph opera
tors read by sound. You will at once see that I am indebte tors read by sound. You will at once see that I am indebted
alphabet, as everybody knows, is represented by dots and dashes. I propose to use figures instead of ietters, the fig ure 1 for the dot and the figure 2 for the dash, and make the combination as follows, which can be altered to any extent $1,2,11,12,21,22,111,112,121,122,211,212,221,222$ $1111,1112,1121,1122,1211,1212,1221,1222,2111,2112,2121$ 2122. The last number in this series is - - - and, if so arranged, will stand for z . The next thing is to apply to the trumpeta mechanical arrangement cont.olling the motive power that is used in the vibration of the trumpet's tongue. his will be no difficulty.
The objert of this is to spell out the name of the locality for the information of vessels within hearing, Cape Race for example; the second word would be quite enough to let mariners know their position. There should also be power to use this valve by the keeper $f r$ the purpose of com nunicating with a ship at sea, and when this is done, the alphabet being known and a trumpet provided in every ship, communic tion between ship and shore and between ships a sea, in fog or in the night, would be greatly facilitated. I am inclined to believe that the steam whistle in steamer would answer the purpose, alsc that two telegraphic opera tors of experience could communicate intelligibly with each other at a distance by this means. I do not seek gain in this but only to benefit humanity at large. Brace.
St. John's, Newfoundland

Uncontrollable Fires

To the Editor of the Scientific American:
The article of P. H. Vander Weyde in the Scientific American of January 6, 1872, on the "Latent Heat of Dis ociation," explains in part why great fires are so uncontrol able. It is there stated that, when steam is heated to 5072 Fah., it is decomposed into a mixture of oxygen and hydrogen ases, and about 8,000 units of heat are made lp.tent ; and when the gases again unite, which they will do when cooled by contact with colder substances down to a point below 5072°, the 8,000 units of heat will again become sensible, the procass being analogous to that by which 962 units of heat re made latent when water is evaporated, the same amoun of heat being again made sensible when the steam is con ensed.
In great fires there is always a great quantity of water in he burning materials, and the heat is doubtless above 5072° The result would be that the mixed gases would be driven ut of the fire and would recombine as soon as sufficiently cooled, exposing any building or other object upon which hey mightstrike to the heat of an oxyhydrogen flame. Oshkosh, Wis.

Samuel P. Gary.

Action of Glycerin on Strychnia.

To the Editor of the Scientific American:
I notice, on page 57 of your current volume, that P. Bert has found a remarkable property in carbolic acid, namely, hat it will dissolve strychnia, and he recommends it as a est for that alkaloid. In last November, I had occasion to use strychnia with a solution of carbolic acid in its own weight of glycerin. I used one grain of strychnia in half an ounce of the solution. The mixture was clear; but after tanding three or four days, the weather being cold, it looked creamy, and on the top there was a stratum of a reddish brown color of a quarter of an inch thick, which I attribute to "sulphoglyceric acid," as the alkaloid was a sulphate By an examination with the microscope l find it to crystalize n long slender crystaline needles, somewhat like the barbs on a wheat ear, being tied together and branching out at an angle of about 80
I have not used carbolic acid as a test for strychnia, nor have I seen it so used, but I should be glad if this should awaken more research in regard to the feasibility of its being used for that purpose. Clarence Owen.
Bloomington, Ill.

The million Dollar Telescope

To the Eiditor of the Scicntific American:
I fully concur in the idea advanced in the Scientific Amer ICAN, by F. H. R., with regard to the million dollar telescope and you may count on me for at least three shares, and very likely, if I see it is to be a success, five shares. If times ar hard, I will also be one of those to attend a meeting to help on this grand enterprise. If you see fit, make use of this in ny way to agitate the subject.

Stock Holder.
Central american Volcanoes.-A correspondent in Salvador, in Central America, under date of December 8, writes to the Panama Record as follows:-The volcano which is some leagues distant from the town of Santana, has dried up a lake which for 500 years or so existed at the base of the craters; but although vast quantities of steam are jected, and the trees lining the inside of the crater are corched up and withered, as also are those to a limited dis tance near the top on the outside, no ejection of lava has ye taken place. The volcano of Isaleo, which was active until quite recently, now shows no sign of life ; and the supposition is that some strata which cut off the communication be tween the two volcanoes have burst through or fallen in and so changed the channel of the fire.

A correspondent, T. M.,"says: Cet your eoiled paper col lars into strips for tapers. They burn slowly and are not easily extinguisLed.
Post Offices were first established in France in 1464; in Post Offices were first established
England in 1581; in Germany in 1641.

the strengty of timber

The strength of a piece of timber depends upon the part of the tree from which it is taken. Up to a certain age, the heart of the tree is the best; after that period, it begins to fail gradually. The worst part of a tres is the sap wood, which is next the bark. It is softer than the other parts of the wood, and is liable to premature decay. The deleterious component of the sapwood is absorbed if the tree is al lowed to grow for a longer period, and in time the old sapwood becomes proper timber fiber similar to heart wood. Hence, the goodness of a tree, for timber purposes, depends on the age at which the tree was cut down. When young, the heart wood is the best; at maturity, with the exception of the sap wood, the trunk is equally geod throughout; and when the tree is allowed to grow too long, the heart wood is the first to show symptoms of weakness, and deteriorates gradually.
The best timber is secured by felling the tree at. the age of maturity, which depends on its nature as well as on the soil and climate. The ash, beech, elm, and fir, are generally considered at their best when of 70 or 80 years' growth, and the oak is seldom at its best in less time than 100 years; but much depends on surrounding circumstances. As a rule. trees f 'iould not be cut before arriving at maturity, because there $i_{:}$; then too much sap wood, and the durability of the timber is much inferior to that of trees felled after they Lave arrived at their full development.
The strength of many woods is doubled by the process of seasoning, hence it is very thriftless to use timber in a green state, as it is not only weak, but it is exposed to continual change of buik,form, and stability. After timber is cut, and before it is properly seasoned, the outside is found to crack and to split more than the inside of the mass, because it is more exposed to the desiccating effect of the surrounding at mosphere; but, as the outside dries, the air gradually finds its way to the interior. If timber is cat by the saw when green, and allowed to season or dry in a gradual manner, it is found to be the most durable. In the arts, however, artificial drying is often resorted to, as in the case of gun
stocks. These are putinto a desiccating chamber, where a stocks. These are put into a desiccating chamber, where a
current of air at 90° or 100° is passed over them, at such a current of air at 90° or 100° is passed over them, at such a
rate as to change the whole volume of air in the chamber every three minutes, and it is found that a year of seasoning may thus be saved. The walnut wood is as good, after this process, as if the seasoning had been accomplished by time and exposure, and works more smoothly under the cutting instruments of the stock machinery
Wood will always warp after a fresh surface has been exposed, and will likewise change its form by the presence of any moisture, either from that contained in the atmosphere or from wetting the surface. The effect of moisture on dry wood is to cause the tubular fibers to swell; hence it is that, if a plank or board is wetted upon one side, the fibers there will be distended, and the plank, in consequence, must bend. The amount of the shrinkage of timber in length, when seasoring, is so inconsiderable that it may in practice be disregarded. But the shrinkage in transverse directions is much greater, and presents some peculiarities which can only be explained by examining the structure of the wood, as resulting from its mode of growth.
Mahogany is a beautiful, close grained wood, but is used not so much on account of its strength, but more frequently because of its non-liability to shrink, warp, or twist, and from the peculiar property of taking a firm hold of glue. In the last respect it is superior to any other wood. Mahogany differs greatly in regard to its closeness, hardness, strength and beauty. That from Honduras, called " bay wood," is much inf rior to that called "Spanish" mahogany, which
comes from the West Indies; the former is much used in the comes from the West Indies; the former is much used in the construction of light textile machinery, but chiefly on account of its cheapness; and the latter is used for furniture or for other ornamental purposes. As regards strength, this wood is inferior to oak in all respects, and its great charac teristic defect is unsuitability for exposure to the weather or indeed, for any purpose where it is made alternately wet
and dry. When so subjected, it rapidly decays, and loses all and dry. When so subjected, it rapidly decays, and loses all its good qualities.
Oak, taken as a whole, is one of the strongest and most durable of woods, and is especially adapted for exposure to the weather of a damp climate, and is indeed suitable for almost every purpose where the properties of strength, stiff Its, and toughness, combined with endurance, are required ment for the staves of casks, for treenails,for carriage wheels ment for the staves of casks, for treenails,for carriage wheels,
and for all such purposes requiring lightness and strength in combination, it is equally useful. From time immemorial it was esteemed the best timber for heavy roofs, and the condi tion in which some of these grand old roofs have reached our era fully attests the wisdom of the selection.

Clacking and Over-Reaching in Horses.

Common as are these two faults, they are frequently mis understood. An over-reach is looked upon as an unavoidable accident, and clacking is treated by irrational alterations of the hind feet shoes. We couple them together because they present some common features. Both consist of inter ference with the fr, some temporary defect in the action, and both can be pre
vented by altering the form of shoe. Clacking or, as it is vented by altering the form of shoe. Clacking or, as it is
sometimes called "forging" is the name given to the sound sometimes called "forging" is the name given to the sound
produced by the hind shoe striking the fore one in progresproduced by the hind shoe striking the fore one in progres-
sion. It is usually heard at the trot, and seldom noticed in adult horses. It is most common in young horses out of condition and especially noticeable when they are tired. The
noise is produced by the hind shoe striking the under surface of the fore one just behind the toe, not at the heels. When the blow has been repeated so as to leave an impression, the marks are found on the inner edge of the fore shoe. This is important, as it shows us that the length of the shoe is not at fault, and it suggests the removal of the part where striking occurs. Removal of this edge is equivalent to mak ing a shoe concave instead of flat on the ground surface, and such a shoe is found to effectually prevent a recurrence of the objectionable noise. The ordinary hunting shoe, especially the narrow one made in a " cress," is the best possible form. For harness horses, where more substance is required for wear, the ordivary shoe seated on the outside instead of the inside is usually sufficient. A case may be met with in which this alteration is not effective. We must then alter which this alteration is not effective. We must then alter
the hind shoes, making them square at the toe, with two the hind shoes, making them square at the toe, with two
clips-one on either side-and set back a little on the foot. clips-one on either side-and set back a little on the foot.
The wall at the toe should not be rasped off, but allowed to The wall at the toe should not be rasped off, but allowed to
protrude a little. Too often the hind shoes are the first to sufprotrude a little. Too often the hind shoes are the first to suf-
fer alteration, sometimes of a very objegctionable kind ; for instance, we have seen the toe of a hind shoe made diamond shaped and prominent, so as to come in contact with the sole of the forefoot instead of the shoe. This is a most irrational and somewhat dangerous expedient. It leaves the offending part of the fore shoe untouched, and favors the infliction of injury to the foot. Even when the hind shoe is only made short and placed back on the foot, there is a risk of the horn at the toe being unduly worn, and there is a shortening of the leverage of the foot which must more or less affect the powers of progression.
If a horse " clacks," rest contented at first with altering the fore shoes as we have described; improve his
ride him up to the bit, but not past his pace.
"Over-reaching" is an injury to the heel of the fore foot. It is sometimes merely a bruise, but more often a lacerated wound, a small round portion of skin being left hanging, nearly detached from the heel. The offending part of the hind shoe is its inner circumference or edge, so that the injury must be caused by the hind foot being in the heel, and the skin caught as the foot is retracted. The inner edge at the toe of a hind shoe becomes very sharp after a few days wear, and will cut like a knife. As in "clacking," the indication for prevention is to remove the offending edge. This cannot be thoroughly done with the file, but when the shoe is hot, the edge behind the toe can be cut out with the "fuller" so as to leave the shoe concave. As over-reaching is an accident peculiar to the gallop, it is well always to shoe hunters so as to guard against the occurrence. The neatest and best hind shoe for a hunter is made, like the fore ne, in a "cress," and presents a concave ground surface Whended edge
When a heel is injured, it is always well to try and save he piece of skin. It should not be cut off until it is certain that it will not reunite to the issues beneath. One good fomenting on reaching the stable is enough; after that use the simplest water dressing, and under no circumstances use poultices, which only increase the chances of a slough
and retard the healing process. Should healing seem slow apply a mild stimulant, such as a piece of lint wet with a mixture of carbolic acid, one part, to glycerin, twenty parts.

The Decay or Wood

Wood, being vegetable matter, is of course liable to decay but how to turn it to the best account with this known at tribute to contend with may be worth inquiry. The closer the grain and the heavier the wood, the less liability there to decay; but for building purposes, as at present carried , light and open grained woods must be used. We cannot in these times of excessive competition, go back to the old
oak timbered and floored houses of our ancestors. It would, however, pay landlords to build solid, substantial houses and let them ever. at the present scale of rental. For in tance, in digging away the foundations of the Savoy Palace, built upwards of six centuries ago the oak piles were found perfectly sound, as was the planking which covered the pile heads. But houses are built on a very different principle now, namely, to sell again, and perhaps again, before the permanent owner invests in them, and then a coat o paint and a judicious use of putty cover all imperfections. The flooring boards, being kept in sheds, present quite the quays. Putting on one side the question of expense the practice of matting up the end of the piles, as practiced in the north of England, cannot be recommended. It cer tainly preserves the fresh appearance of the wood, and makes it appear as if just discharged from the ohip; but it impedes the free circulation of air, and anything that doee
that is strictly to be avoided. Better by far have the wood that is strictly to be avoided. Better by far have the wood
shaken at the ends than sweating inside, with here and there places where the penknife blade sinks in with hardly any pressure.
The decay of wood arises from internal and not externa moisture; hence the danger of shakes, as they admit it fen to the very centre; and so long as free evaporation is vory ab, decay will not very readily set in. It would be erior of a house, but it is certain that a piece of wood painted on both sides will not last nearly so long as one not painted at all. The reason is evident. The paint effectually coses all the pores and prevents the evaporation of th moisture, which even the best seasoned plank will contain,
and hence decay sooner sets in, in one shape or other. For he same reason wood painted on one side only will las longer than that painted on two sides. Thus in an old
building, the wainscot, doors, windows, etc. will be found to
be affected when the staircases will be sound, because never painted. The old houses in the quaint city of Chester prove the truth of this. Some years ago, a Liverpool builder who had some contracts there told the writer that the numerous exposed beams were generally sound, and they are all unpainted, but the inside work had apparently been renewed. The best that can be done, under all circumstances, is to give a coat of paint before leaving the workshop, and this is generally done, at least in the large establishments.-Build ing Neros.

Glacier lifotion.

' In making some experiments on the freezing of water," says Mr. John Aitken, in Nature, "it was noticed that, after the same water had been melted and frozen a number of times, it generally burst the tube in which it was frozen.' This phenomenon the author considers to be the germ of glacier motion, and he believes that the ice which has only been frozen once has more air in it than that which has been frozen and melted a number of times; as each succeeding freezing deprived the ice of a quantity of air or some other gases. The natural conclusion seems to be that ice with air in it is a viscous substance, adapting itself to the shape of a containing vessel, though pure ice does not.
In the detailed account of the experiments, we find that rods of snow ice, made in close imitation to the material composing glaciers, bent much more easily, when supported at the ends and acted upon by a weight suspended at the middle, than others made from ice from pure water. Smal rods of snow ice, 2 inches in diameter, could be greatly dis torted, but when it was attempted to bend them around a small cylinder, by the time the circle was half turned they broke, even under a pressure which they easily bore in the beginning. It was found that the bending of the ice had beginning. It was found that the bending of the ice had glaciers, which rendered the beams weaker on account of the cohesion of their particles along, the planes of lamination rendered lees. Hence, further experiment proved that, if a small portion of the circle was bent at a time and the pres sure then removed, the particles evidently rearranged themselves; and by continuing the process, a ring of ice was pro duced from a perfectly straight beam. It is believed that these conditions of alternate rest and pressure, are, in all probability, those which exist in glaciers. After pressure has acted on one part of the glacier, bending takes place, so relieving the ice at that part from the pressure, which comes to bear on another portion of the glacier; and before the pressure again comes to bear on the first part, its strength and viscosity have been resolved by rest.
There are other causes which may assist in producing giacier motion; these are briefly enumerated by the author as follows: The sliding of the ice over its channel, this being assisted by melting of the ice where its rests on its bed; the melting point of the ice, in contact with obstacles, being lowered by the pressure of the mass behind; the melting in the body of the glaeier, part of the water finding its way to the channel under the ice and part being refrozen; the crevasses in the glacier (due to the fracture of the ice) enabling large masses to move into different positions more easily than if the ice were solid; and lastly, the old dilatatio theory, which accounts for some of the pressure which causes motion.

Improved Paper Bag Machine

The paper bag machine invented by Miss M. E. Towne, of Holyoke, Mass., and recently manufactured for the invento by the Ames Company, is deserving of a more minute de scription than it has heretofore received. It is a handsomely ornamented structure about 10 feet long and $3 \frac{1}{2}$ feet high The paper enters the machine from a roll, and is at firot placed around a form, which can be adjusted so that a bag can be made of any width desired. The paper is worked along by a feeder, and the first process is to paste the bag length ise, which is done by a thin wheel rolling upon it, th wheel passing through paste in a dish slightly elevated from he machine. The paper then passes under a knife worked up and down by what is termed a continuous motion and stop motion, and a tucker catches the paper, holding it in position while it is being cut off. There are two small folders which work from each side of the machine, folding the bottom of the bag in the required form, and side arm to bring the paste to the center and paste the bottom of the bag. The bag then passes through a revolving press, which securely fastens the parts already pasted. The last tucker has an up and down motion, and places the last fold on the bottom of the bag, which is pasted by two more side pasters. The bag then pesses through two more revolving wheels and is dropped completed.

Asbestos.

There are very extenofive deposits of this important min eral within the limits of the United States, that found on the eastern slope of the Green Mountains and of the Adirondacks /being of the best quality for fineness and tensile strength. The fiber of New York and Vermont asbesto varies in length from two to forty inches and resembles unbleached flax, when found near the surface, but when taken at a greater depth, it is pure white, and very strong and tlexible. It is found also, in considerable quantities in the Tyrol, in Hungary, Corsica, and Wales.
Mercurial ointment is said to be one of the best materials known for preventing rust on gun barrels. It should be rubbed in thoroughly, both outside and inside, and well ried off, so as to leave but little on the surface. The quick silver forms a thin film which protects the metal from mois ture. The article may be obtained at any drug store.

new valie gearing for steam engines.

The invention herewith illustrated is designed as an im provement upon the mechanism generally employed in con nection with the common or single slide valve in steam en gines. It is proposed to so move the single valve by retard ing and increasing its motion that the steam can be cut of at any point of stroke desired, and yet keep the port open a the exhaust end until the stroke of the piston is nearly com pleted. At this moment, the motion of the valve is quick ened, throwing the other exhaust port wide open, almost in stantly relieving the engine of exhaust steam. It is claimed that, by this means, a wider average port is obtained in given time, or while the piston is moving a given distance and that the cutting off is ef fected with a quicker motion han can be obtained by two eccentrics.
The desired object is, in thi case, accomplished by mean of the elliptical toothed gear ing, A B, in our illustration, the wheel, B, being connected as shown with the valve. It will be observed that the va ried motion is obtained as each oothed gear alternates from a large wheel to a pinion, twice in each revolution of the en gine. Bylengtheningor short ening the crank on the smal haft, the valve is practicall hortened or lengthened, and hus adapted to cut off at the hus adapted to ofr at the esin por The ext compression or too early ex aust of steam when used ex
pansively (due to the relativ tationary position of the eccentric to the engine crank) is here claimed to be avoided, and the necessity of a cut off a the back of the valve (moved by an additional eccentric, thereby involving a loss of power) is also obviated. This gear can be fitted to any engine of the slide valve pattern in use.
Patented October 15, 18i2. Further information may be btained by addressing the inventor, Mr. William S. Bacon, Sulphur Springs, Crawford county, Ohio.

IIN SAW FILING MACHINE

We illustrate herewith a recently invented gin saw filing machine which, it is claimed, will fit and work well upon any form of cotton gin. A is the frame of the machine, and B the driving wheel, to which he hand crank is applied. (is a wheel acted upon by B and D is a pinion under the latter. E is a crank on the axl of said pinion. F is the up right, with its brace attached to the upper and lower part o the frame, A. G is a smal pinion which works in the ho rizontal cog wheel, H , on the pright shaft, which is place an angle of forty five de rees, so that the feed wheel, may stand prisely he pitch of the tisely with pith of the teeth. Thi haftis held between the part, , as an the edge, the un der lip of which is turned down so as to catch the nex ooth at every revolution, there by acting as feeder to the files. By suitably proportioning the above described parts, the file are arranged to have six stroke o each revolution of the driv ng wheel, B, and feed wheel I At the front of the machin Alace M , wo small wheels at the nd of whichrest on cylinder of the wood cylader of the saws whe apparas is at work. a similarly arranged rea On these parts, the whol weight of the machine is borne when it is adjusted to the saw. The front rest, M, is lowered or elevated by two screws in the slots. The rear rest. N, is depressed by the screw, 0 , and elevated by the spring, P $Q Q$ are the hinges, and $R R$ movable plates attached thereto \mathbf{S} are the file plates, $\mathbf{T} \mathbf{T}$ movable or sliding spring plates, and U U file holders;.V V are slides which serve to move he rear end of the file plates in or out from the center, thu giving the files a deeper or shallower cut on the teeth. The files are of the ordinary description used in handsaws, and are inserted in the file holders with the side screw against them aud the top screw brought down upon their shanks, hus firmly securing them in their places.
In operation, the machine is set so as to allow the saw to come between the two halves of the frame and rest between
the front wheels until the feed wheel, I; engages in the teeth The frontand rear rests are then regulated to take the whole weight, and so that the feed wheel has the precise range of the teeth. The movable plates are next adjusted until the files also have the range of the teeth, when they are firmly secured. The machine being steadied with the left hand, the crank of the driving wheel, B, is rapidly turned with the right hand, when the filing will proceed with great rapidity The under file works upon the right side of the teeth and ravels about ten teeth in advance of the top file, which operates on the left side. The operator stands with the
fres. And in any inland city, where there is a flow of water n iron tube might be arranged to catch the stream and tur it into an upright tube. The water would bedriven upwar by its own momentum, and a head would thus be created varying in hight as the velocity of the stream, which could be used at discretion.

Observations on the Duration and Multiple Character of Lightning Flashes.
Arago has classified the different forms of lightning under three heads: 1st, linear zig-zag flashes; 2d, flashes appearin as a broadly diffused light (sheet lightning, heat lightning), and lastly, the rarely occurring dis charges which are seen as slow ly moving balls of fire. The firs form is due to the production in the atmosphere of a gigantic elec tric spark, and the majority of physicists and meteorolngists suppose that flashes of the se cond form are due to the sam cause, their light being see either by transmission throug or reflection from the clouds.
Professor O. N. Rood, of lumbia College, communicates t the Journal of Science and Art an interesting paper detailing ob servations made by him on th nature of lightning flashes. Th apparatus used was a small trai of toothed wheels, driven by pring so that it should be cap ble of rotating a circular paste board disk which was provided with four open was mining lig and form with thes of the second form with this rotatio
bints of the teeth toward him. The inventor claims tha this device performs the work with neatness, uniformity and lightning speed. He says that by its use a fifty saw gin can be filed within three hours.
Patented through the Scientific American Patent Agency, December 31, 1872. For further particulars address the in ventor, Mr. Lewis M. Asbill, Charlotte, Columbia, and Au gusta Railroad, Ridge Spring, S. (

Red Codar Hedges.
A correspondent, J. E. R., says that there is no timber fo hedges comparable to the red cedar. It will do well in any soil with a little care at first. It is long lived, and grows soilwith a little care at first. It is long lived, and grows
very rapidly. To propagate it, gather the seed when ripe

ASBILL'S GIN SAW FILING MACHINE.

and prepare the ground as for drilling garden seeds. Plan the seed three quarters of an inch deep, slightly manuring the soil to force the growth at the start. The seed is abun dant in Maryland, and our correspondent believes it will be valuable in many States where hedge trees are becomin scarce.

ea Water for Extinguishing Fires, etc

 A correspondent, J. P., suggests that, in cities on the se board, large rafts might be arranged to rise by the power of he tides, and, in falling, be used to run light machinery and to force up sea water for washing streets and putting outsiderable number of isolated and apparently instantaneou electric discharges, the interval between the components be ing so small that they constituted a continuous act.
From the observations made, Professor Rood conclude that the nature of the lightning discharge is more complicated than has been supposed; it is usually, if not always multiple in character, and the duration of the isolated con stituents varies very much, ranging from intervals of time shorter than one sixteen-hundredth of a second up to other t leat as area a re, the components of a single flash.
In the examination of the spectrum of lightning by Dr . Vogel, a number of lines wer identified as also occurring in the spectrum of the electric spark in the ordinary atmo sphere, but what is remarka ble; it was found that some times the spectra consisted of bright lines on a dark ground while at others bright line were traced on a less brigh ontinuous spectrum and final y, sometimes a continuou pectrum destitute of lines wa btained The discharges we rincipally of sheet lightning ref ighting ressor Rood considers tha he continuous spectra desti the longed constituents above eferred to; and the occurrence of bright lines on a less bright round, he refers to case where instantaneous and pro onged constituents were no iced by himself, the norma pectrum of bright lines on dark ground being produced by flashes more nearly instan aneous. It is also believed hat zig-zag, heat, and shee ightning are really identical being in point of fact due to he same cause, but viewed un der different conditions.
For the study of lightning lashes, the author recommend black or gray opaque dis bout 3.9 inches in diameter ith one open sector. Th best form for the shortest and ongest durations is that of square, with sides of from 0.27 to 0.39 inch; for examining he multiple character of flashes, simply a long narrow sec or of 1° or 2° is preferable. A spring rotation apparatus may be used, so as to admit of rotations up to 20 or 30 pe second.

ACID in white lead may be detected by putting a smal portion of the lead in a cup, pouring a little warm wate ver it, and stirring the lead in the water. Then add a few rops of a solution of iodide of potassium ; and if the lead acid, or contains acetate of lead, the water will turn yel

THe coffer gardens of arabia. ${ }^{2}$ down a thousand feet beneath; and then, jumping into a give place to thickly wooded escarpments; vegetation creeps Coffee is still cultivated in "Araby the blest," the coffee loaded car which comes swiftly by, we begin the descent. down into the gorge and throws a network of beauty and gardens there being on terraces which reach an elevation of The speed is great, but there is no fear-inspiring rush, no about 3,000 feet. The soil is kept moist by means of smal blur of objects hurtling past. We look out into the valley; artificial canals, which are made to irrigate the whole by the water falling from the the water falling from the
upper to the lower terraces. upper to the lower terraces.
The trees here are planted so The trees here are planted so
close together that the thick close together that the thick
foliage shelters their roots foliage shelters their roots
from the tropical heat of the sun.
Our engraving represents
the famous coffee hills of the famous coffee hills of
Yemen, in Arabia, where Niebuhr states the berry was first cultivated after it was brought from Abyssinia by the Arabs, and where the ripened fruit, it is said, has a flavor and fragrance which it is impossible to transplant. For ages before its use plant. For ages before its use
among the western nations, among the western nations,
coffee was raised on these coffee was raised on these
hills. The fruit begins to ripen in February; and when the seeds are prepared, they are conveyed to the city of Beit al Fakih, where part goes to Mocha and the rest to Eu ropean markets.

It has been computed that
the annual consumption of coffee is $1,000,000,000$ pounds : and that, with the exception of bread, sugar, and tea, there is no product of more general consumption than this invaluable bean. When we consider how universally coffee is used as an article of diet throughout Turkey, Egypt, Arabia, Persia, and parts of India, besides the more moderate but equal ly general consumption in Europe and America, we shall find it difficult to overrate its importance, as vast multitudes of persons are engaged in its cultivation, transportation, and preparation for use in many quarters of the globe.

THE RALSTON INCLINED RAILWAY

At the head of the Lycoming Creek valley, near Balston, in Pennsylvania, is the inclined railway to the McIntyrecoal mines, which serves to carry the coal from the pits to the railroad at the foot of the mountain. The lower terminusis

to a depression under the track inside the shed. T ce starter informs us that it is where the bumper goes in to let the car pass on, and just then, an empty car being hauled up from the siding, he pulls a signal wire communicating with the other end of the road. The stout wire cable in the middle of the track begins to move, and a heavy wedge-shaped mass of timber comes up from the cavity, broad end first, strikes the car with a shock that sends it some feet up the slope, and stops it on its return. It saves the trouble of hooking and unhooking the cable, we are told, and is much safer. When it arrives at the bottom of the slope, a spring changes the gage of the wheels; it then runs along a narrow track into the hole, and the car passes over.
At the invitation of the starter, we enter the empty car. The signal is given, and before our equilibrium is recovered from the jerk that nearly upsets us, we are rushing up the slope. The cable sliding over the rollers produces a whirring sound that makes our fierce motion seem all the fiercer, while the steepness of the descent and the absence of visible motive power combine to highten the effect of the ride. The mountain seems to grow beneath and above us, as the valley rrpands and deepens below. We stop on the verge to look

THE COFFEE GARDENS OF ARABIA.
it rises slowly as we descend, and that is all. Notuntil we shoot through the shed and out upon the level, do we realiz that our motion has been particularly rapid or peculiar.

THE BRIDAL VEIL, HAVANA GLEN, N. Y.
There are no portions of the country which offer greater attraction to the lover of the beautiful and the picturesque

than the so called "glens," situate near the towns of Wat ins and Havana, at the head of Seneca Lake. in New York State. These nalural formations are cañons eroded from the rock by the action of water, and form a succession of ravines
and gorges which, from their great extent, produce scenes of remarkable variety and grandeur. At times the bare cliffs grace, festooning the sides of precipitous rock.
Our engraving represents one of the most interesting spots in the Havana glen, from a point where the strange geo logical formation is best ap parent. The rock is moderate ly shaly, and has a strongly marked system of rectangu lar joints, dividing the cliffs into square towers and but tresses. When a portion of the precipice falls, it does not leave a jagged face but a mu ral surface, as smooth and even as a well built wall, giv ing the sides of the cañon an appearance of grand simplicity. The eroding current fol lows the lines of division, rig zagging at right angles rathe than curving after the han curving after the 1 It of ora hardly It seems hardly credible that such a vast gorge as that represented could be cut by the slender stream which showers a mist of spray, like the film of a bridal veil, over its cliffs. But there is no sign of fissure at the bottom of the glen, and a deep pond is
there, which must, at som time, have been beneath high falls, the constant action o which hewed for it a basin in the rock. This pool begins at the foreground of our engraving, from which an idea may be obtained of the great ravine which the constant abrasion of the cascade-continuing perhaps for ages-has gradually worn away. The record of its work is but faint, for the frost has destroyed the water marks by breaking up the shale; and although the solid rock above would retain the imprint, the fragments at the bottom of the gorge show that it eventually becomes undermined and, toppling over, buries the marks out of sight.

THE HIXSON BEEHIVE

Our engraving represents a new form of hive which, it is claimed, combines improved arrangements for permitting the examination of the bees and comb frames, and also for utilizing the animal heat of the insects for warming the honey and boxes. The construction is such that the objectionable space between the frames and sides of the hive,

which in winter affords passage for currents of cold air and in summor becomes choked with wax, is avoided.
The parts of the floor, A, are at right angles, and incline upon and from the center. In the removable sides, B, are openings, one of which is shown closed by the door, C. The side, D, and that facing it are composed of narrow vertical boards, E, all of which. with the exception of the middle one, are detachable. Each board is as wide as the distance from center to center of the comb frames, F, and is provided with a rib, G, on the inside, to fit into the space between said frames. By this means, a side is obtained which, while sufficiently light, is readily removable, piece by piece, when it is desired to inspect the interior of the hive. The sides are held together by the cap, H, and bars, I ; and the boards, E, are further secured by metal platesarranged in their upper extremities, not shown in the illustration. The comb frames, F, conform in shape to the angle of the floor, slight ly above which they are supported by stud pins. By similar means they are separated from each other, the interstices
thus formed giving accose to the bees. J is the honey board receiving the square honey box, K, within the space occupied by the bees, so that it will be warmed in cold weathes
by their natural heat. Entrance to the latter is afforded through the holes, L.
It is claimed that all the advantages of movable comb hives are here combined without the attendant defects. Ready access to the combs, when it is necessary to pry them straight, is gained by removing one or more of the detachable boards an operation which, it is clear, will not disturb the bees a much as if the whole side were, as is usually the case, dis placed. There are eight separate comb frames, each one o which, with its comb and bees, may be lifted out and trans ported to another hive without exposing the insects in ad joining portions except at the place of division. The inven tor further states that the hive can be opened and closed wichGut killing a single bee or causing a drop of honey to run, and that it has been proved excellently adapted for pur poses of artificial swarming, dividing, equalizing, and other apicultural operations.
Patented through the Scientific American Patent Agency September 24, 1872. For further information address Messrs, Sixson \& Co., Gallipolis, Ohio.

New Relation between Heat and Electricity,
Mr. Frederick Guthrie, in the Chemical Newos, states that it is found that the reaction between an electrified body and a neighboring neutral one, whereby the electricity in the neutral body is inductively decomposed and attraction produced, undergoes a modification when the neutral body is considerably heated. Under many circumstances, the electrified body is rapidly and completely discharged, a fact proved to depend upon the temperature of the discharging body and its distance from the electrified one and the nature (+ or -) of the latter's electricity. The discharging power of a hot body diminishes with its distance and increases with its temperature. It also depends on the quality and not the quantity of heat radiated from it to the electrified body. It is necessary for the discharge that heat of intensity pass to the electrified body from a neutral body within inductive range. It is shown that various flames, both earth-connected
and isolated, have an exceedingly great power of dischargand isolated, have an exceedingly great power of discharg-
ing both kinds of electricity. As hot iron shows a preferential power of discharging - over + electricity, so itis found that white hot but isolated iron refuses to be charged with either + or - electricity. As the iron cools, it acquires first the power of receiving - and afterwards of receiving + . While white hot iron, in contact with an electrified body prevents that body from retaining a charge of either kind of electricity, as it cools, it permits a + charge to be recing
and subsequently a -one. A suggestion is made as to the existence of an artificial coercitive force, the presence of which, together with its diminution by heat, would explain much of the above.

Alcohol, Whiskey, Brandy, Wine and Ale Dr. Willard Parker, of this city, one of our oldest and most prominent physicians, in a recent address made the following statement concerning the effects of alcohol upon the human system:
For many years I was connected with the care of inebriates and paid particular attention to the character of those in my charge, and I have arrived at the conclusion that drunkenness is a disease. A man so affected cannot control his appetite, and must have drink regularly, and will have it at all hazards. A healthy man can refrain from drinking, but a diseased man cannot; and these men so addicted readily admit that. Men suffering from the disease have been cured and they will with tears in their eyes promise to abstain, ye on passing a liquor store they cannot help themselves, and will go in and have their whiskey. Now the question arises :
What can be done? How shall we go to work? Society has What can be done? How shall we go to work? Society has
beeuall the time trying to show what the use of alcohol makes beenall the time trying to show what the use of alcohol makes
us do, and many will reply it makes them feel good, and us do, and many will reply it makes them feel good, and
some will say it makes them crazy, drives them to desperation and to fight. Now let us drop that mode, and ask what does alcohol do to me, and not what it makes me do. That is the great starting point. We have to teach the people what alcohol does to them, and how it acts on them. It is as poisonous as arsenic or belladonna, and produces its deadly effect on those who use it; but then it is used in an adulterated state. Whiskey is a poison, but some believe and have is a mistake. Alcohol is poison, and the purer it is the more deadly is it in its effect, and if I were going to partake of it I would prefer that which is adulterated. With regard to ales and beer, it is believed that they are harmless, but with the presence of alcohol there is always danger. Those who partake of it become drowsy, and those who drink wines be come stupid. In lager beer there is 3 or 4 per cent of atco-
hol, in ale 7 or 8 per cent; wine contans 23 , gin 51 per cent, hol, in ale 7 or 8 per cent; wine contans 23 , gin 51 per cent,
and branay 53 per cent of alcohol. Even in cider there is 2 or 3 per cent of the poison present.

Ignition by Superheated Steam.

A correspondent, J. H., Jr., says that an engineer asserts positively that ignition can take place from steam pipes. He spoke of three instances where he knew it to be a fact Shavings were set on fire, so that they blazed, at three different times. I told him I thought there must have been oil or other combustible matter mixed with them. He said
there was nothing of the kind, nothing but dry pine shavings. there was nothing of the kind, nothing but dry
The shavings were piled up against the pipes.

Professor E. S. Breidenbaugh, of Yale College, shows, by recent analysis, the very exhausting nature of tobacco crops in respect to soils. It appears that for every 1,000 pounds of tobacco grown, 102 pounds of the most valuable ash constituents of the soil are carried away.

Dr. William Roberts states that the results of over 300 experiments performed byhim support. the conclusion that the ungi monads and acteria, which make their appearance in boiled organic mixtures, are not due to spontaneous evolution, but arise exclusively under the influence of pre-existing germs
or ferments introduced from without. This method of exor ferments introduced from without. This method of ex-
perimenting consisted in ex posing organic solutions and perimenting consisted in ex posing organic solutions and
mistures to a boilingheat in glass flasks, the necks of which had been previously plugged with cotton wool. The fluid o mixture in the flask may be exposed afterwards to the ful influence of light, warmth, and air; and yet it remains perectly barren. As evaporation takes place, no organic growth makes its appearance for even years; but if the plug of cot ton wool be withdrawn for a few minutes or a single drop of any natural water, however pure or well filtered, ber duced, then all is changed. In a few days the clear dew covers its surface and soon half fills the flask.
A plug of cotton wool acts as an absolutely impervious filter to the solid particles of the atmosphere, while it perfilter to the solid particles of the atmosphere, while it per mits a free passage to the gaseous constituents. It is con-
sidered impossible to doubt that the biogenic power of the sidered impossible to doubt that the biogenic power of the
atmosphere resides in its dust, and not in its gaseous ingredients; but as to whether it be a specific germ or ferment, or what its nature is, no sufficient evidence has yet been ad duced.

Death of Proressor Torrey.

John Torrey, a most eminent botanist, died on March 10, Columbia College, of which institution he had long held the botanical professorship. His first contribution to science as a catalogue of the plants growing within 30 miles o New York city; this was published in 1817, and was followed by the "Flora of the Northern United States" in 1824. His learning was extensive and varied. In 1824 he was
Professor of Chemistry at West Point, and he afterward held similar appointment at the College of Physicians and Sur eons in this city. He was also chief of the Assay Office in he United States Sub Treasury. He was stricken by pneumonia at the age of 80 years. Columbia College is largely his debtor for his eminent services as a teacher, and for his fostering care of her interests.

Death of Professor sedgwick.

The eminent veteran geologist, Adam Sedgwick, died on anuary 27, at Trinity College, Cambridge, England, at the age of 87 years. His contributions to the literature of his favorite science were exceedingly numerous and valuable, and make up a large amount of work even for a career so lengthened. He was elected to a fellowship of his college in 1810, and had won for himself a name in science while the youth Roderick Murchison was fighting battles in Spain. His services to the world of knowledge are everywhere known
and valued. By his care and, to a great degree, through his generosity the collections of rocks and fossils under his charge at Cambridge have become the most complete of any now open to the student.

Extinguishing Fires by Vapors.

In our description of the Babcock self acting tank, pub lished on page 143 of the current volume, it is pointed out hat "the gas seems to interpose a wall of non-conducting vapor between the hoseman and the fire, which protects him rom the heat." A correspondent, W. M., refers to Professor Tyndali's work, " Heat Considered as a Mode of Motion," in which the fact is stated that the arresting power of carbonic oxide to heat rays compares with the similar resistance of he air to such rays as 750 to 1 ; and carbonic acid compares to air as 752 to 1 . The apparent wall of vapor is, therefore a scientific fact.

A bill was recently passed in Congress authorizing the President to cause such experiments to be made and such in formation to be collected as in his opinion may be useful and important to guard against the bursting of steam boilers, and requesting him to communicate the same to Congress. The sum of $\$ 100,000$ is appropriated for the purposes of the act.

Dr. D. T. Shumway, in a recent paper read before the Massachusetts Dental Society, advocates the use of ivory points, instead of steel, in packing gold fillings. The advantages claimed for the use of the ivory are that the gold adapts itself to its podition, and the filling wears better.

A couple of immense wire ropes, each between three and four miles long, have just been completed by Messis. J. and E. Wright, of the Universe Worizs, Birmingham, Eng. One of these ropes, intended for the Wapping tunnel of ihe London and Northwestern Railway, at Liverpool, is six thousand yards in length, $5 \frac{1}{2}$ inches in circumference, and is composed of six strands having ten wires in each. The wire is wound round a hempen core. The weight of the rope is
34 tuns. The second rope is for the Cowlan's tunnel, a 34 tuns. The second rope is for the Cowlan's tunnel, at
Glasgow, is five thousand yards long, and weighs 25 tuns.

Inventions Patented in England by Americans.
Compiled from the Commissioners of Patents' Journal.]
Froce February 18 to February 19, 1878, Inclualve.
intringe Tool.-H. E. Forrest, Bostor,
Governoz.-R. W.Gardner. Quincy,
Il.
Journal box.-J. A. Montgomerg, Millburn, N. J.
Loox.-S. T. Thomas, GHIford, N. H.

Ferent Gurctican aud foreign eqatents.

 riese, in a saturat od solution of chlorate of potish for thirty minutes, mor dissolved in water. The charcoal is then dried and then Immersed in a a at urated solution of resin in ordinary petroleum ofl. This solution is prepare by heating the petroleum to a temperature of from 180° to 200° Fahrenhelt, and putting into it reain antil no more will be dissoived. The charcoal then dried in any convenient manner untll the petroleum is evapora led
The petroleum dissolves or cats the resin and carries it into the pores of the charcoal, where it is left when the petroleum evaporates. The reatn readlly set on fire by a match or plece of lighted paper, and the heat thus
produced decorposes the chlorate and nitrate, and sets free large quant! oxyged decuport of oxygen to support combustion, thua produc
the coal or wood fuel quickly and effectually.

Improved Window Shade.
Edward E. Johnson, Painesville, Ohin.-This invention has for its objec mproved blinds shall be so constructed that any desired part of the windo may be uncovered to admit the light. The invention conolists in section ormed in the body of the main blind or shade in such a way that the sald ections may be rolled ap from their lower ends, or the bind and section y be rolled up together

Improved Millstone Balance.
, Chebanse, Ill. - The Importance of
George W. Wilson, Chebanse, III.-The Importance of heving the running nvention it is accomplished bymeansof a metallicriveted band and a serite of adjustable grooved or ribbed metallic welghts. The band is made by reting together the ends of a plece of band metal. It is made larger in lameter than the stone, so that the weights may be inserted. The band is ghtened around the stone by the welghts. The latter are somewhat tape onform somewhat to the clrcle of the stone and the band. The outer o onvex sides of the weights are grooved or ribbed, which prevents them rom working out of their places. They may be placed in any part of th n:l, as may be required to balaze the stone.

Improved Scissors. Bay, Wis.-The object

John A. Correa, Green Bay, Wis.-The object of this invention is to pro IIde means for securing the blades of sclisors or shears together, so tha
they may be adjusted at pleasure to work tightly or loosely without the use of a screw or nut; and it consists in one or more cam wheels working in combination with the fulcrum pin. When the wheel is turned, an Inclined plane bears againgt the upper edge of a slot and draws the pin upward an e blades together.
Jokn Cuff, Emery, Ohio.-This invention has for its object to furnish an mproved machine for marking the gronnd in cross-row for planting corn, by crossing the field in only one direction. The axle is made of such a length
hat the wheels may be at the distance apart required for the rows, so that he tracks of the wheels may mark the places for the rows in one direction. The wheels are rigldy a tached to the axle so that they will revolve exact y together at a distance apart equal to the desired distance apart of the ills of corn. The cross blocks upon the two wheels are exactly in line wit ach other, so that the corresponding blocks of the two wheels may strike
he ground at the same time and thus mark the cross rows. Arms are made of such a length that, when swung down into, or nearly into, a vertical po itton, the wheels will be ralsed fromthe ground, so that the machine can be conventently turned or moved from place to place. By this construction, by moving a lever forward the wheels will be allowed to come in contac with the ground, and by moving the sald lever rearward the wheels will be alsed

Improved Scraping Instrument.
Van Ness Daris, Stoneham, Mass,, asigniorto himselfand Frank A. Davis, of same place.-The oblect of this invention ts to furnish a tool or imple
ent for scraplng kitchen utensils, and cleaning deposits of burned gravy or other sedimentary deposits from the corners or angles,and also to be use ange cleaning; and it consists in a simple

Improved Tool Holder.

Levi L. Lamb, Cheisea, Mass.-This invention consists of a box handle fo
containing the tools and holding them for use, compritelng a box and cover which are plvoted together near the end for holding the tools for use, so ae to open by bwinging the cover in the plane of the top of the box and close by a reverse movement. The box and cover have each a jaw, bet ween whic
the dovetall shaped heads of the tools will be fecured, to be held for use hhe dovetall shaped heads of the tools will be cecured, to be held for use
when the box handle lis closed, and opened to release the tools when the When the box handie is closed, and opened to release the toul in use 18 re
handle ts opened. By the same operation by which the tol handle is opened. By the same operation by which the tool to
leased to be taken out, the box is opened to recelve the tool to be change ana allow of taking out another, thus economizing labor and time. A spring catch is used to fasten the box closed.

Improved Beer Cooler.
John Chandless, New York city.-This Iuvention rela tes to a new apparatu or cooling ale, and has for its object not to destroy the vitailty of the ale while coollng it. A box or tank, of suittable size, is arranged to contain Ice and water, andso eretn, its upper end projecting above the top and terminating in a funne or enlargement. The lower end of the plpe extends through a side or the bottom of the refrigerator, and has a cock whereby it can be closed or
opened. Betng surrounded by ice water the pipe is necessarily cool, and opened. Betng surrounded by ice water the pipe is in
will serve to cool whatever liquor may flow through it.

Improved Cnitivator.
Willam T. Parker, Verona, Mise.-Two "scutic" plows are framed togeth de pleces of the frame are jointed to cross pleces so that they can vibrat to allow the plows which are gulded by handles to be brought toward o from the row, as may be demanded by the condition of it. The two side of the frame are prevented from shifting forward or behind each other by saitable means. A vertical bar, rigldyly connected to the side plece, risea
from each, to considerable hight near the center, and, belng connected by the crose bars loosely jointed to it, asolsts in keeping the frame in proper shap
whlle allowtag the plows to be fiorated. The rear sapport for the shaft to elongated vertically to allow the hight. of the choppers to be regulatod to

Willam T. Jenks, Toledo, Oproved Key Ring. as to its main portion, of one plece of metal, bent into a clicular form, with its ends nearly mueting, and, as to its supplementary part, of a pivoted clasp, which its in a depression formed by notching said ends, so that it will per-
fecily colnclde with the inner and outer edges of the ring, and thua form ecily coinclde with the inner a

Improved Seed Planter.
Thomas C. Garilington, La Fayette, Ala.-The improvement in this invention consists in the use of stirrers, which are made ilise augers, to the shafts of which are attached fingers, which are male of the same curve as the volve. To the upper ends of the shafts is attached gearing, so that the tirrers may be drive by the machine.

Improved Wash Boiler Attachment.
Hart, Salado, Texas.-This invention has for to
Richard B. Hart, Salado, Texas.-This invention has for its object to furnish an improved steam washing device. In using the machine, the clothes o be washed are arranged loosely upon a false bottom around tabes. As
the water begring to boil, tie hot water and steam are guided by funnels Into the tubes, up which they are forced into the horizontal plpe and are projected through small pipes apc a the clothes. The water passes down
through the latter, carrying the dirt with it, through the ho es in the false through the latter, carrying the dirt with it, through the ho es in the false
bottom and through the holes in the rime of the funnels back into sald funnels, and thus the circulation is continued until the clothes are clean.
Improved Stove Grate.
John R. Stone. Round Grovs, Kansas.-The grate is suspended at one end
by a yoke extending down through the top plate und having notches above the plate to be engaged by vibrating buttons, the ends of which swing into and out of the notches, as required for shifting the yoke high or low. Near
the other end it is mounted on the end of a crooked lever, extending hrough a hie tn the side of the fire box, which serves as the fulcrom of the lever. Outside of the fire box is a pawl, pivoted to the lever a short dis.
tance from the side of the fire pot, and engaging with the notches in the lever. Outside of the fire bor is a pawi, plvoted to the lever a short dis-
tance from the slde of the fire pot, and engaging with the notches in the
stove side plate above tize lever. By shifting this pawl from one to another stove side plate above tiee lever. By shifting this pa
of the notches, the grate can be raised or lowered.
Improved Harness Maker's Gage.
o furnish improved means for cutting leather and similar matention is strips ; and it consists in the screw for moving the head and handle of the gage. A slotted bolt is made to silde on the gage bar, the end of which
enters one of a number of holes in the whetl when the gage head is adjusted, enters one of a number or holes in the wheti when the gage head is adjusted,
and thereby holds the screw and head stationary. This bolt is confned to he under side of the bar by means of a slot and screw and the box through which the bolt passes.
Improved Car Coupling.
Casper S. BIgler, Harrisburg, Pa.-This invention has for its object to furnish an improved car coupling which will enable the attendant to couple
the cars after they have been run toget..er, and to uncouple them while unthe cars after they have been run toget..er, and to uncouple them while un-
der strain, so that the attendant may be in no danger while couplingand under strain, bo that the attendant may be in no danger while coupling and un-
coupling the cars. The draw hook is connected with the body of the car in the ordioary manner, and should be of such a length that of the carin the ordinary manner, and should be of such a length that there may be a
space of an inch and a half, more or less, between the hooks of adjacent
cars when thetr bumpers are in contact. cars when their bumpers are in contact. In the body of the hook is formed a long slot, through whicn passes one end of the link which is dropped over
the hook of the adjacent car to effect the coupling. A pin passes down the hook of the adjacent car to effect the coupling. A pln passes down
through the slotted bedy of the hook and through the link to sustain the draft strain. The lower part of the pin, againat which the link rests when sustaining the draft strain, is made tapering. T.ee upper part of the pin may have a screw thread cut upon it, so that it may be moved in and out by
turning it. The taper of the pin enables it to be readlly drawn out even When the coupling is under strain, so that the link may be Blipped forwar and cars. Thts construction also prevents the cars from becoming accident ally uncoupled, as the link will not rise over the hook of the adjacent car when it can sllp back in the slot.

Improved Process of Polishing Wood.
Christian Seebach, New York city.-This invention consists in the appli cation to wood surtaces, which are to be pollished with shellac and varnish
of a prellminary coating formed of plaster, paint, and turpentine. The in of a prellminary coating formed of plaster, paint, and turpentine. The in
vention thus provides a means of closing the pores of wood reparatory to polishing. For a first coat, paint mixed with plaster of Paris and turpentine is laid on and smothed down with a rag. When dry, a coat of shellac is applied, which, after belng
with varnish and polished.
Improvement in Propnlsion of Cars.
Raphacl De Leflit, Brooklyn, N. Y.-This invention relates to a new Iven trick; and consiats in making the track of jointed aectione whice ar plvoted to supports In such manner thit, by alternately inclining the several
sections tn opposite directions, the load supported on the track will be caused to travel from one section to the other until it arrives at Its desti-
nation. nation.
Improved Animal Trap.
Emille Achilles Cordefro Da Silva, New York clty.-The object of thit animals, but to make a $\operatorname{tr} p$ whlch shall be self-setting, and consequently always ready; and it consitsts in a box, of oblong or other form, a portiou
of the top of which is pivoted to the sides, and nearly balanced on its plvots with an inclosure or bait chamber above sald top, and with one or more in Improved Bale Tie.
Peter K. Dederick, Albany, N. Y.-The essential 1
Peter K. Dederick, Albany, N. Y.-The essential feature of this invention lo a metal tie piece for the fagtening of a wire band, so contrived that the band hy securing it between sald plate and one or both of the tant portion

Improved Eccentric Fasteniug for Boxes, etc.
William Youngblood, Brooklyn, N. Y., asignor to Rosabelle Youngblood, of same place.-This invention consists of a circular disk or button catch,
of metal or any other suitable substance, plvoted at its center to the side or top of the box or other thing to be fastened, and having a circular groove in the face fronting the box arranged eccentrically to the pivot, so that the hook or hasp of the box cover which drops into it through a radial notch
will be pulled down and fasten the cover down tight when the catch it turned. The sal

Improved Medical Compound. Vide a remedy for
compound composed of prunes, oll of cedar, chloride of sodum, sal nite and juniper berries. These substances are thoroughly mixed together b adding cold water and combining them so that the salts named will perme
ate the whole mase.

Improved Gas Lishting Torch.

ment in gas Hghtiug torches, and consists of a tube provided with perforations and a cup shaped end and attached to a staff, so as to conduct a stream of gas
from the burner to the wick of a lamp or taper which is attached to said
staff.

Improved Hat and Coat Hook.

Charles G. Cole, Bennington, V --This invention relates to a new hook fo clothes or other purposes, which is made of one single plece of wire or ban
of metal, and which has fastening points formed at its ends, so that it can be secured in wood without any cther fastening device, rendering the cost of manufacture very mall.
Edward A. Tuttle, williamsbarg, $\begin{aligned} & \text { Improved Y. Ywing, } \\ & \text { Invention has for its object }\end{aligned}$ to furnish an improved swing for children, which shall be so constructed
that the seat of the swing, throughout the whole extent of tite vibration, -ocidental fall from the swing.

Improved Hat and Coat Guard
Sumner N. Robolns, New York city.-The object of thi apply to the publica device by the use of which the annoying change o carrying off of hats, overcoats, satchels, etc., may be effectually prevente The Invention consists of two U shaped metal hooks, which are connuct by a anain lock to be placed around any fixed body, euch as overcoats, satchels, umbrellas, or other objects.

Improved Valve for Gas Regulators
Jonn C. Sarsield, New York city.-This invention has tor its object to fur nish an improved self-acting valve for regulating the pressure and flow of gas as it passes from the meter to the burners, to cause each burner to glv the proper amount of light, however many or few burners may be burning,
and it consists in a tubular chamber, designed to be connected with the gas plpe leading from the meters to the burners. The chamber consists of two parts which are screwed together. The fianged end of a tube has a screw hread cut upon its onter surface to screw into a screw thread cut in the iner surface of the mouth of the main part of the tubular chamber. The ole through the flanged end of the tube is closed with a valve, which restian stem passes through a gulde hole in an arm formed in the cap part of the tubularchamber. The other end of the valve stem passes into the tube and has one end of a colled wire spring attached to 1 t . The other end of the of the open end of the tube. In the edge of the open end of the tube edge of the open end of the tube. In the edge of the open end of the tube, mid deeper and wider than the first notches, so that. by raising the cross bar out of the latter. It may be changed in Its position and thus change the tension of spring.
Device for Converting Circular into Reciprocating Motion.
Luther Dame, Newburyport, Mass.-The Luther Dame, New buryport, Mass.-The object of this invention is to eon works without Jar or noise, producing only a very slight degree of friction It consists of a hollow cylinder with a longitudinal slot, into which a cylin drical core is closely fitted, gliding therefn by means of a bolt connected with the core and running in the slot, applied eccentrically to a face plate is simple, not liable to get out of order, and has but little friction. We think the invention well adapted for driving light machinery. We shat probably present an engraving of it in an eariy number of the Scientific Amprican. Improved Boring Machine. ing machine whereby trees whose sap is to be obtalned to produce a bor of sugar, turpentine, resin, or for other purposed in the manufariture apped; and the invention conslats in applying a rotary tool on auger to novable frame, which can be fed against the tree whlle the auger is betng Seym revolved by hand or other means.
Improved Lantern.
Seymour Hughes, Jersey Clty Hights, N. J.-The object of this invention is to simplify the constructioc of lanterns, and to reduce the expense of ma-
king the same, and of keeping them in repair. The improvement consista constructing the crown or upper metal portion of the antern with a view oo allowing the ready removal and insertion of the glass, which may be mply a common lamp chimney.

Improved Screw Propeller.
Martin M. Wilson, Honey Grove, Texas.-This invention consists in mean or gulding piroted propeller blades so that they can open and close readily
and nulformly. It also consista in a new mode of applying a spring thereto so that the obliquity or resistance of the blades will be automatically grad ated. When the vessel is loaded and the resistance on the blades is in creased and a finer pitch required, the spring will contract in proportion to the resistance, and the pitch will be changed as demanded by the amount o the propeller will have the same effect upon the engine as a marine govern ro regulate its speed. The tension of the spring will be varied as require an adjusting nut. This arrangement of variable blades and a spring io almed to afford a gain or saving of power, and consequently of fuel, unpropeller cumstances, whether the boat is inght or loaded. These variable prop, whether for

Value of Patents, and mow ro obrain rien.

 Practical Hints to Inrentors.ROBABLY no investinent of a small sum of money brings greater return than the expense iccurred in obtaining a patent
even when the invention is but a small one. Larger invention , when the lavention is but a small one. Larger invention Morse, Bigelo.7, Colt, Ericsson, Howe, McCormick, Hoe, and tions, are well known. And there are thossands of others who have realized large sums from theif patents.
of the services of the services of Munir \& Co. during the TWENTT-SIX year her have acted as solicitors and Publishers of the Scirntific Ambrican
and hev stand at the hesdec able of rendering the best service to the inventor, from the experience prac cally obtained while examiners in the Pastrex and ceraper than ais

HOW TO OBTAIN O Pank eearly every letter, describing
some invention $\left.\begin{array}{l}\text { Whtch comes }\end{array}\right\}$ this office some inventio
to this offlce. wer can only be had by presenting a complete application for a patent to
the Commissioner of Patents. An application consists of a Model Draw
Ings, Petition, Oath, and full Specifcation. Various offictal rules and for ings, Petition, Oath, and full Specification. Varions official rules and for-
malities must a so be observed. The efforts of the inventor to do all thit busizess himself sre generally without success. After great perplexty and delay, he is usuali:g glad to seck the ald of persons experienced in patent
business, and have all the work done over again. The best plan is to $\begin{aligned} & \text { ollict1 }\end{aligned}$ business, and have all the work done over again. The best plan is to $\begin{gathered}\text { olicht }\end{gathered}$ proper adrice at the beginning. If the parties consulted are honorable men
the Inventor may sately condide his ideas to them; they will advise whether eedfoin imement is probably

How Can I Rest Secure My Invention?
This is an inquiry which one inventer naturally asks snother, who has had and correct
Construct a neat model, not over a foot in any dimension-smaller if po ible-and send by express, prapaid, addressed to MUNN \& Co., 57 Park Row,
New Tork, together with a description of tis operation and merits. On ew Tork, together with a description of its operation and merits. On re
clipt thereof, they will examfne the tiavention carefully, and advise you sin ceipt hereor, they will
to its patentablity, free of charge. Or, if you have not time, or the mean at hand, to constrnct a model, make as good a pen and ink aketck of the mprovement as possible and send by mall. An answer as to the prospect
of a patent will be recelved, usually, by return of mall. It is sometime best to have a search made at the Paten

Preliminary Examination.

In order to have such search, mage ouc a written description of the inven with the fee of $\$ 5$, by mall, addreesed to MonN \& Co., 57 Park Row, and in due time you will recelve an acknowledgment thereof, followed by a wrttsearch is made with great care, among the models and patents at Washing Reject pres
Rejected cases, or defective papers, remodeled for partles who have made appications for themselves, or through other agents. Terms moderate Monn \& Co., stating particulars.

To Make an Application for a Patent

The applicant for a patent should furntish a model of his invention if susvention be a chemical production, he must furnish samples of the ingredients of which his composition consists. These should be seeurely packed, he inventor's name marked on them, and sent by express, prepaid. Small models, from a distance, can often be sent cheaper by mall. The safeat
way to remit money is by a draft, or postal order, on New York, payable to ihe order of MONN \& Co. Persons who live in remote parts of the country can usually purchase drafts from their merchants on their New York cor respondents.

Caveats.

Persons desiring to file a caveat can have the papers prepared in the short est time, by sending a sketch and description of the tavention. The Govern ment fee for a caveat is 810 . A pamphlet of advice regarding applications
for patents and caveats is furnished gratis, on application by mall. Address MUNN \& Co., 37 Park Row, New York.

Reissues.

A retssue is granted to the original patentee, his heirs, or the asignees of the entire interest, when, by reason of an insuffictent or defectipe specifica thon, the original patent is invalid, provided the error has arisen from Inad-
vertence, accident, or mistake, without any fraudulent or deceptive intenvertence
A pate
A patentee may, at his option, have in his relsauea separate patent for
each distinct part of the invention comprehended in his orisinal application by paying the required tee tn each case, and complyigg with the other re quirements of the law, as in original applications. Address MONN \& Co

Design Patents.

Foreign designers and manufacturers, who send goods to this country rom fabricating or selling the same goods in this mar'iet
A patent for a design may be granted to any person, whether citizen An, for any new and original design for a manufacture. bust, statue, alto
 ent, pattern, or other fabrics; any new and original impression, orna laced on or worked into any arttcle of manufacture.
Design patents are equally as important to citizens as to forelgners. For
full particulars send for pamphlet to Mons \& Co., 57 Park Row, New York

Foreign Patents.

The population of Great Britain is $31,000,000$; of France, $37,00,000$; Bel
tumm $5,000,000$; Austria, $36,000,000$; Prussia, $40,00,1,010$; and Rusis $, 70,000,000$ Patents, $, 000,000 ;$ Austrla, $36,000,000 ;$ Prussia, 40,00 1,000 ; and Russia, $70,000,000$ Now is the time, while business is dull at home, to take advantage $c i f$ thes mmense foretgn fields. Mechanical improvement: of all kinds are alway demand in Europe. There will never be a bettor time than the presen to take patents abroad. We have rellable business cennections with the
principal captals of Europe. A large share of all the patents secured it relgn countries by Americans are obtained through our Agency. Addres Munn \& Co., 57 Park Row, New York. Cliculars with full information on orelgn patents, furnished free

Value of Extended Patents.

Did patentees realize the fact that their inventions are likely to be mor productive of proft during the seven years of istension than the frist full
term for which their patents were granted, we think more would avall thema erm for which their patents were granted, we think more would avall them
elves of the extension privilege. Patents granted prior to 1861 may be ex selves of the extension privilege. Patents granted prior to 1861 may be ex
tended for seven years, for the beneat of the inventor, or of his heirs in case of the decease of the forner, by due application to the Patent Offlce, ninety days before the termination of the patent. The extended time inures t the benefit of the inventor, the assignees wader the irst term having no
rights under the extension, except by special agreement. The Governmen ree for an extension is $\% 100$, and it is necessary tuat good professional servic be obtalned to conduct the business before the Patent offlce. Full informa
tion as to extensions may be had by addresing Mons on

Trademarks.

 states, may register thelr designs and obtatn pro ection. This is very important to manufacturers in this country, and equa ty so to forelgners. For full particulars address Munn \& Co., 57 Park Row New York.
Canadian Patents.

On the first of September, 1872, the new patent law of Canada went inio Corce, and patents are now granted to ctitzens of the United States on the
same favorable terms as to clitizens of the Dominion. In order to apply for a patent in Capada, the applicant must furnish a model, specification and deplicate drawings, substantially the same as in The piling for an American patent.
The patent may be taken out elther for five years (government fee or $\$ 20$) or ten years (government fee 840) or for Afteen vears (government fee 860
The five and ten year patents may be extended to the term of ifteen year The formalities for extension are simple and not expensive. American inventions, even if already patented in this country, can be
patented in Canada provided the American patent is not more than one year
All persons who desire to take out patents in Cauada are requested to mmunicate with Muns \& Co., 77 Park Row, N. Y., who will give promp Copies of Pat ents.
Persons desiring any patent issued from 1836 to November 26, 1867, can be applied with omclal coples at a reasonalle cost, th
Any patent lisued since November 27, 1867, at which time the Patent Offc ammenced printing the drawings and sp A copy of the claims of any patent issued since 1836 will be furnished When ordering coples, please to remit for the same as above, and stat Co., Patent Solicitors, 97 Park Co., Patent Solicitors, 57 Park Row, New York city. dvise them by letter. In all cases, they may expect an honest opince, or to uch consultations, upinions and advice, no charge is made. Write plain o not use penell, nor pale ink be brief.
All business committed to our care, and all consultations, are kept secrea
In all maters pertain
rocuring extensions, drawing aselgnmonts, axdminations into the valldity patents, etc., spectal care and attention is given. For information, an or pamphlets of instruction and advice
Address
MTINN \& CO.,
PUBLISHERS SCIENTIFIC AMERICAN,
37 Park Row, Now York.
OFFICE in

 Buy Boring and Sawing Machines of Gear, If you are obliged to crowd your enginewith work over ite rated capactly, try what the Huntoon Governor will do for you. See Advertisement.
Pugsley, 6 Gold St., N.Y., wants Well Buckets. Thomas's Fluid Tannate of Soda removes
 address N. Spencer Thomas, Elmira, N.Y
For Sale (Cheap)-Engine (8 horse power),
Sticker, and 44 in. Heading Saw. Address Gooodrich,

 Mulateipha, Pa. Improved Variety Moulding
Buy Gear's
Machtine. Ware Roome, Boston. Mase. Shortt's Patent Couplings, Pulleys, Hang.
irs and Shatting a specialty. orders promptiy filled. Agents wanted to sell Territory in the States
of onito ond Michlga,
 Millamsborgh, N. Y. Paint, Ink, \&c. Ross Bro's, For Sale-Pa tent for Stopcock. Will hold
Gasolne without leakage. No Packing or Grinding and Casoline withoul lea arage. No PackIng or Grindtng and
no Leakage, and cheaply made. Address Banta \& Rose, Ho Leakage, and
Springleeld, ohio.
Damper Regulators and Gage Cocks-For
tue best, address Murrill $\&$ Kelzer, Batimore, Md. Wanted to arrange with a pary having
proper faclittee to manuacture a very stoner. Patent Juat I Isued. . Ad
isth Street, Philladelpha, Pa.
All Blacksmith Shops need a Holding Vise
to upeet bolts by hand. J. R. Abbe, Manchester, N. H . Parties desiring Steam Machinery for quar-
ytug stone, address steam stone Catter Coo.,Rutland, Vt. ('abinet Makers' Machinery. T.R.Bailey\&Vail. Painters and Grainers by the thousand do do
their beest graining quickly with Pat. Perrorated Metalic Granting Tools. J.J.Callow, manuf.,Cleveland, Onto
 Over 800 different Style Pumps for Tan-
ners, Paper Mills, aud Fire Purposes.
Rumsey Stave \& Shingle Machinery. T.R.Bailey \&Vail. Steam Boiler and Pipe Covering-EConomy, cent. Chalmera spence Company, foot East toth st., New
Oork-1222 N. 2 d st ork -1222 N. 2 d St., St. Louis, Mo.
Brown's Coliyard Quarry \& Contractors' Ap.
paratus for holating and conveying material by Iron cable, w.D. Andrew \& Bro. 114 Wuter st.N. Y.

The Berryman Heater and Regulator for
Steam Bollers - No one using steam Bollers can aford to
 J.R.Abbe, Manchester, N.H.,sells Bolt Vises. Circular Saw Mills,with Lane's Patent Sets;
nore than 1200 in operation. send for descriptive pam. phlet and price list. Lane, Pitkin \& Brock, Montpe lier, Vermont.
Key Seat C
Key Seat Cutting Machine.T.R.Bailey \& Vail. Tree Pruneras and Saw Mill Tools, improvee.
mente. Send for circulars. G.A.Prescott,Sandy Hili, N.Y. Dickinson's Patent Shaped Diamond Carbon
Points and Adjatable Holder for dressing emery wheels,
 Fi, 1809.64 Nas8au St., N N York.
Five different sizes of Gatling Guns are now
anuufactured at Colts Armory, Hartord, Conn. The
 re tndispenasibe in modern warrare
The Berryman Manuf. Co. make a specialty
it the economy and aatety in working steam Boillera. is. Davis \& Co., Harttord, Conn.
Cauge Lathe for Cabinet and all kinds of han
fies. Shaplng Machine for Wood worting. T. R. Balles © Vall.
Shafting and Pulleys a specialty. Small or
ders alled on as good terme as large. D. Fribbie $₫$ Co., New Haven, Conn.
All Fruit-can Tools,Ferracute,Bridgeton,N.J. $\underset{\text { Newark, N.J.J. }}{\text { Fire Engines, address R. J. Gould, }}$ Always. right side up-The Olmsted Oiler,
enarked and Improved. solde every where.
 tor lithograph, etc.
Peck's Patent Drop Press. Milo Peck $\&$ Co.,
 Hydraulic. Presseg and Jacks, new and sec-
Hnd hand. E. Lyon, 470 Grand Street, New Forks.
 hulladelpha, Pa.
Machinists-Price List of small Tools free;
Gear Wheels for Models, Price List free chacks and Gear Wheels for Models, Price List free; Chncks and
OrIlls, Price Llis free. Goodnow \& Wightman, 23 Cornhill, Boston, Mase.
Spur and Bevel Wheels and Spindles, of
great durabilty, cast to order by Pittebargh steel Cast-
 Co., Harttord, Conn.
Gauges, for Locomotives, Steam, Vacuum,
Ar, and Teeting purposes-TIme and Automatic Re.
 Steam Gauge Company, 91 Liberty street, New York,
Absolutely the best protection against Fire
-Babcock Extinguisher. P. W. Farwell, secretary, 407 Broadway, New York.
For best Preses. Dies and Fruit Can Tools,
Bllse $\&$ Willame, 18 to 120 Plymouth St., Brooklyn, N. Y . Boring Machine for Pulleys-no limit to
capacty.

F. E. C. says: How can I make translucent
cloth for hotbed drames?
E. F. S. asks how to prevent soft metals
W. M. asks: When and where were bolting
machine Arst introduced for bolttng foour?
S. A. L. .asks: What kind of leather is gen-
erally used in making blacksmith's bello
M. C. asks: Can a card bo saturated with
phosphorus and preeserved for use, and will it be fext-
P. R. R. asks: Can any of your readers de-
cribe a process for tempering steel spring by compres-
A. L. asks: What is the best wood to make
nsect cabinets of, and what ti the best form for the
W. H. H. asks: Can you tell me how to gear wheels, etc.?
J. F. A. Wishes to know with what material
ne can coat the liside of tin cans, to prevent ink and ther filuas from betng affed the tin.
E. D. R. asks: What is the best method of
C. M. asks: How can the glue joint bet ween
he back and sides of a violin be undone withoat injuring the instrument or spolling the varnish?
E. B. asks for a recipe for making dextrin
ora substitute for the same, say 50 lbs, at one time. He
W.S. B. asks: What is meant by summer
nd winter strained lard oll? What process does the
C. B. asks if there is any method of tough-
ening or preparing was for fiower makling so that it will not be liable to sirften in warm and harden and crack in
J. D. asks fur a recipe for a waterproof li
quid cement, to he used for putting patches on bags, in he place of thread. It would be very useful to thou-
G. M. D. says: How can I mark or print let-
ters and figures on metal that has been finlshed and ters and figures on metal that has been finished an
plated with sllver? I have seen such work, but canno ell how it is donc
A. P. asks: Will the power of a 10 horse
anginedrive a machine or machinery 100 feet away from thengine as easy as it would 10 feet away? The ma-
chinery is to be dictven by a belt or belts from the line chinery is
shafting.
N. J. J. asks: What kind of fish would be elght feet deep, aind the lake has no visible tnlet nor out let. The water 1 s at all times bright and clear and has a
J. R. says, in regard to R. and W.'s. query
bout the balance wheel: Supposing that w. is right, will he be kind enough to explain the action of the gy-
roscope governor; illustrated and described on page 19 of the governor, ilustrated and described on page
C. E. C. says: (Can some one give instruc.
tions for annealing gold so that it can be conventently worked into rings, drawn into wire, etc., without crack Ing? I am often troubled with gold
scraps, which are \because brittle as cast iron.
J. C. K. asks: What is the best preparation
Por setting the tintmble skein on axles?
que the dregs of paint he:ited over a slow fire to the consistency
of a batter. Is there anything better? In large wagon
ofactore box? D. X. asiks: Is there any work pub-
ithed treating wholly or in part upon electro-magnetic motors? Where can it be obtalned? Is vulcanized rub-
ment
ber or dentist's hard rubber a conductor of electrcity? What isthis enecessary size of a battery to ring a bell? It nust be active for a month.
P. L. says: We use equal parts of first
quality clay and pround brick in the manufacture of our retorts fordistilling phosphoric acti ; and yet they sometimes crack over the heated furnaces. We manufacture
them in a warm room, fire the klln with care, and aubChem in a warm room, ire the kiln with care, and sub
ject all to the same charges, heat of flame, etc. What is the cause of our trouble?
D. H.E. says: I have lost the sliding weight is graduated from 0 to 100 1bs. In half pound notches, and
there are additional welghts, $100,200,300$, and 400 . There 1s a cup at the end to put shot In to keep the balance; but
it has been emptied also, otherwise I could easily put on the platiorm U. S. standard welghts and make my new lead P of the right wetg
to the proper wetght.
H. A. B. asks: What proportion of burnt lie cement? The lime lis to be measured before ellackling,
the clay after grinding. should the clay be burned in very hot fre and how long should it be exposed to the heat? Ufsoft magnesian limestone and Amertcan chalk,
which would make the best lime, and what would be the relative quality of each?
J. R. has read Prof essor Young's lecture on
our present knowledge of the sun, and asks for explanation on the following point: The professor asserts tha contraction of the volume of the sun, equal to 240 fee off. "If we freeze a pall of water, it gives off heat while
it is freezing, but the thermometer will indicate no fall of temperature, untll it is all frozen." The greatest den sity of water is at a temperature of 99° Fah.; and if it
becomes colder, it expands, in contradiction to the fact quoted by Professor Young. How is this?
J. R. asks: What are the limite of expan
sion in an engline provided with an ordinary D valve in ion In an engine provided with an ordinary D valve in
the steam chest? The admission of steam is cut off by plate valve (silding over the opening which admits the in the same way as in an ordinary engine; the plate valve, however, is worked by a crank pin of a whee Which makes twice as many revolutions as the shaft of
he engine. The main valve has $1-16$ of an Inch lead and he engine. The main valve has $1-16$ of an Inch lead and
Sinch outside laps. The steam port and the sald open-
ing are Ψ of an Inch wide and both valves have $2 \Varangle$ inching are x of an inch wide and both valves have 2 y inch
D. F. says: We use what is called a gas pump in our oll well to draw gas up through the large
casing between it and the tubing. What will be the difcasing between it and the tubing. What will be the dir
ference in the amount of vacuum created by a ten Inch
elinder cylinder and by a fourteen inch? They are pisto
pomps. How many lbs. per square inch would the va cuum be for each pump? They would both be acting on
T. K. B. says that polished steel becomes in riking it "I use triking it. "I use soap to coat the steel with, still
does not overcome the diffleulty perfectly. I am tol there is a ilquid for coating steel, while heating it, in
such a manner that the cold air does not strike it. I such a manner that the cold air does not strike it.
would be obliged to you or some of your readers for

T. P. says: : In your answer to F. E. D. as to
tting ap cones so that the band wwl be equaliy tight on all the palleys, you say that the sum of the dameters of
all the pulleys will be the same. In my experiencel Ind all the pulleys will be the same. In my experience I find
that steps in cones made allthesame will not do. Please ame. This what we thece stated. Read the reply more carefully.
M. J. B. says: Please state which is the
nost perfect book on mineralogy, and where it can be btained. Whatis the price of it? Answer: Get " Dana'
E. A. P. sends a description of parhelia was explained, on page 132 of our current volume, as due
o floating crystals of snow or fce in the air; and the ame explanation would apply in the present case. Th they would have been with the pun nearer the horizon.
A. G. F. says: I have occasion to run a hyWhich runs the pumps. Can I not dispense with the shaftling, place the pumps near the engine and use an en
arged pipe for connecting the pumpo with the cylinde larged pipe for connecting the pumpt with the cy elative increane of size of pipe for 300 feet over the size required for 10 feet? Answer: You can dispense with the shafting and set your pumps near engine, using a
pipe to conduct the water. You need not fncrease the ipe to conduct the water. You need not increase the
size of the pipe. The supply of water is so small that a enlargement of the pipe ts unnecessary for so short istance as 850 feet.
 advantage? 2. Is it best to run a thin and broad belt or
a thick and narrow one? a dit of sumflelent capacty to convey the power of the en-
bine: or would it be better to divide it and run two of half the width each? Answer: 1. One half inch to foot in breadth of face. 2. A thin belt up to a breadth
which will render it unmanageable. 3. That would depend upon the amount of power to be transmitted. For
a thirty horse power engine, we should use a single belt If full width, if certain that it would be kept properi aced or otherwise well secured to take even strain
across its full breadth.
A. T. Z. says: I have a turbine water wheel
16 horse power driving a run of stones. Upon the top of the upright shaft of water wheel was a pinion 16
inches diameter and 2 inches pitch, with Iron teeth, drivIng one of 2 feet diameter with wooden teeth on the
stone spindle, giving proper speed to stones. but makin a jarring notse in the teeth and shaking the bullding. Thinking the pltch too large for the dameter of wheele made, very correctly, new patterns, with 1 ix inche pork and the same diameters as before, but found the drive a run of stoues and work smoothly? If so, what
is the cause of the trouble with mine? Answer: We are nclined to think that your trouble is due to want o proper balance of your turbine. Wheels of the siz
mentioned can no doubt be made to run smoothly.
W. H. M. asks : If a pump of 2 inches dicubtic inches does it draw, and what is the rule for and ang the same? Answer: To And the area of a circle To And the cuble contents of the cylinder, multiply the cubic by the length. In your example $2 \times 2 \times 7854 \times 86=118$ H R. asks: Can you inform me of what ma erials the elastic rollers used on printing presses are made? Answer: Glue and molasses. Increase the quan-
tityor glue to make a stif roller ; you will need this in
M. M. T. asks how glass becomes porous, if
ever is so. Answer: All glase is more or less porous Somecoarse bottle glass is so much so that it will no
J. F. C. says that G. T. P. can make the best
ed sealing wax by mindng 1b. Bhellac, 1 lb. Ventee tur-
H. P. has an aquarium made of a wooden
trame and glase sides, and wanta a cement to make it watertight. Answer: Mix equal quantities of dry white and red leadin
W. E. A. says: I have a plan for taking by which the motion of the vessel is made to perform the duty of the circulating pump now used. Is there, to
 rled
in any carse in such a degree as to lead us to antictpate its general adoption.
C. E. C. asks how to mend rubber boots.
Answer: See page e $e 8$ of our volume $\times \times V$. J. H. W. says: I have seen it stated someware of the occurrence of the severe shocks of earth many theories have been promulgated to account for these phenomena, I have been expecting some of the probable theory upon it. If true, it would indicate, of course, that these disturbances are created upon o commotion (gaseous or otherwise) causing upheaval or the crust, a doctrine still held by many, would be unten able. Answer: The statement that the workmen in dee
mines were unaware of the shocks and undulations tak Ing place on the surface would require the concurrent
testimony of numerous witnesses before any sclentifi hen winy of numerous witnesses before any scientia pens that, owing to great geological faulte and fissures, ricts of country: they remain like islands in the raging sea. This fact has several times been noted, but in such
cases there is no motion elther on the surface or in cases there is no motion etther on the surface or
mines. That there should be wave motion on the sur est degree improbable; on the contrary, animals livin escegree min holes are the first to percelve the shock,
in caves and
and oftengive note of an approaching earthquake by and often give note of
rushing to the surface
J. E. M. asks : Does heat or cold affect the plece of steel would be more rapid towards a strong
magnet than towards a weak oue, provided the same ach? I think that the stronger magnet would stron larger plece of steel than the weaker one; but under the above named conditions, the moverment, of a plece of
steel would be just as rapld towards the weaker as toweird would be Just as rapld towards the weaker as to
wironger one. Am Iftght or wrong? Answer wards the stronger one. Am I frat or wrong? Answer
Alternations of heat and cold, sudden contraction or
expansion, and percussion a re decidedly injurious to the strength of a magnet; and we should say that a power-
ul magnet would attract a given plece of steel toward it more rapldy than a weak one. Better try the exper nent.
F. G. asks: How can I make a good and
cheap electric battery? Answer: You can buy a battery cheaperectric battery? Answer: You can buy a battery
chan make one, but if you wish to try your hand at the business, we can recommend what is
called Dantell's patternas being easy of imitation. Make ourself a copper cup of the capacty of a pint measur the copper cell, put a mixture of elght parts of water and one of oll of vitriol, saturated with blue vitriol, and eather cup. Cast a solld oy wader of zinc and amalgam ite it ; plunge this into the timer leather cup and con
nect it by a copper wire soldered to it with the oute cups. .Several of these cups would constltute a battery. NII learn what further to do
H. R. asks: 1. Is there any glue or substitute for the same that will stand exposure to wet weath-
er? Answer: Take cacutchoue, 15 or 20 grains, chloromastic.
M. H. asks: What is the best way to fasten ing the tinc with a theck cost of white lead; Tet pain ad then use stiff hot glue,
F. W. D. says: Please enumerate the vari which they must be painted upon a circular drsk, of that, When properly revolved, t wil present a white, surface,
Answer: Divide your disk radially into five equal parts, nd paint each of these with the seven colors of the sola pectrum, namely, violet, indigo, blue, green, yellow orange, red. Put these colors on radially. Painta black
bull's eye in the center of the card, and blacken the ct amferential edge. Revolve rapidly, and you will s
$\underset{\text { erving neat is detrimental. Answer: No. }}{\text { F. asks }}$ if the bre
J. H. J. Your plan for steam engine is old
Watercolors are used for theatrical scenes.
A. P. should send his volumes for binding
oo our oflce. Charge, 81.50 per volume.
A. C. asks: I. Who designed and built the
hames tunnel (England)?
2. Who designed and built the Great Eastern? Who launched her? Answers: I Ir Mark Isambard Brunel. 2. Isambard Kingdom Bruncl
on of the former. Built by John Scott Russell \& Co. Z. asks how to preserve natural flowers
With wax. Answer: Take paramn, melt It and dy: the howers in very carefully.
D. F. T. says, in reply to O. K., who asks if twist belf from the driving shaft to spindle: From ex perience, I should say no, unless you use a long bel
Your belt should be 9 or 10 tnches if you want it to do any work. [In our reply to 0. . ., we originally advised
a long 8 inch belt. The figure was by mistake, printed 5 a long 8 inch belt. The figure was by mistake, printed 5
inches. - EDs.] J. B. T. asks for a recipe for bluing gun
barrels. W. T. B. says in answer to D. F. W., whio
asked how to cut a crack in a bell clean, to stop the dis cordancy : I have used a etrcle of common soft Russian tove pipeiron, running at a velocity of 5,000 revolution , ocut teeth in a large saw. I could do it very quickly,
but the under side of the saw was so hard that it ot be fled. It wonld cut the whole hard that it con inch fat file in $11 /$ minutes.
J. W. K. encloses a mineral specimen found are. Answer: The black
shale. The other is \#lint.
B. O. M. asks how to bronze cast iron brack-
ts. Answer : Read Byrne's "Practical Metal Worker's

March 29, 1873.$]$
C. S. asks: Will you please send me the of balloons? I wish to know of what quality of sill, the kInd of varnish, formula for cutting the segments, etc.
If it is feasible, 1 intend to construct a balloon capable of carrying sins. of apparatus, and make concinaal
cord of atmospheric phenomena, with the rife of
captive balloon at an elevation of 3,000 feet. Answer General instruction in regard to form and material, cut ting, varnishing the sillk, with formula for wetght in re
lation to bulk, etc... will be found in the article Aerosta tion in Good and Gregory's "Pantalogia," also, but no
so full, in Voo.. I. Partington's "Phillosophy"; also in article Aerostation in Excyclopedia Londonensis; the
last, perhaps, 1 the best. See also Slmpkin's "Aerial merican publication, and Glaisher's " Up in a Balloon." Albany. Expertments with captive balloons sustan!n! elf recording meteorological instruments would be ful would sweep them awa
W.G. C. asks: Would it take more power
prevent water escaping by a x inch hole at th ottom of a plpe, 6 inches in dlameter and 100 feet high filled with water, than it wnuld require to prevent wate
escaping by a \exists inch hole at the bottom of a plpe, X o an inch in dameter and 100 feet t high, simpllarly filled? or again, would it require a different power to preven
water from escaping from a Ψ hole at the bottom of pipe 100 feet high, and tapering in it its diameler from etng full of water? Answer: The required force woal be the same in each case, as the pressure of a liquid at
an orifce is proportional to the head of water above it, and bears no relation to the size or form of the con M. R. asks: 1. Will a horse pull a heavy 2. Weight of vehicle betng the same, which pulls easier,
a load divided over 4 wheels or over 2 wheels, and why? logd divided over 4 wheels or over 2 wheels, and why?
Answer: 1. . Within ordinary limits,a horse should pall the
 wheels, because in ranalag over wheel distributes the forwar "prizing" Itself and load over it han does the omaller whee
Should the horse be attached d rectly to very large wheels, by
short traces or chains, ther ould be a tendency to raise him from his feet, and thu o prevent the effective appication of his strength, which
might, in extreme cases, more than compensate for the antlcipated gain. 2. On sofl ground, 2 wheels would cut in more than 4, the same load belng carried, and thus
would require more effort. On hard roads, we should expect 2 wheels to do best, as the
and their friction would be avolded
H. B. J. sends a mineral. "I took it from pleces. The specimen was originally larger than an egg. is it copper?" Answer: It is a valuable copper ore,
containing about sixty per cent of copper, the rest befng sulphur and iron.
E. C. D. sends us a stone, and asks what it wer: The specimen is carbonaceous shale, but it doe not promise the existence of cosi in the netghborhoo, slyes no evidence one way or the other, as the same I. P. H. sends us a mineral specimen found n hematite. He asks what it is, and if it will affect the
ron in the blast furnace. Answer: It is an infusible iron in
argilla
slag.
C. G. C. encloses two samples of minerals
and wishes to know what they are called in geology and of what they are composed. Answer: Both specimens
are feldspathic products, the soft, pllable one betng are feldspathic products, the soft, pliable
kaolln, much used in porcelain manufacture.
H. D. asks: 1. What is caustic ammonia What is the cheapest way to manufacture hydrogen ga qua ammonia of the druggist, and costs fromia ten th aqua ammona of the druggist, and costs from ten to tration. It is manufactured by heating quick lime and sal ammonlac together and absorbing the gas in water as it comes off. The cheapest hydrogen upon the whole is made by acting upon scrap iron or zinc by ande sul-
phuric acld. We advise our correspondent to read up on
both these questions in almost any elementary treatise on chemistry.
 igh and containing 97 adopt another plan. We then placed our feed barrel be ow the level of the engine bed, and rant he erhaust in far as heating the water is concerned, but it has the dis advantage or collecting the tallow used for lubricatin
the cylinder; and after passing through the pump, orced into the bofler. We use nelther filter nor mud drum. What would be the best way of cleaning this
grease out of the boller? How would it answer to use lye and convert it into soap, and then blow it off? If this would answer, how mach ought to be used? What would be the best method of cleaning the feed plpes, which are the boller for about 6 weeks more, only. Answer: Try using crude mineral oll for lubrication, as recommended recently by one of our correspondents in this column. If that does not answer, we should use a worm heater.
We should suppose that economizing in the use of talJ. T. B. asks: 1. What is the proper rule
for determining the sectional area for the rim of a fy wheel suitable for any power of engine? 2. What is the
rule for determining the sectional area of a lever cranis of any length, sultable for any given power or pressure
on pliston? 3 . What is the rule for sectional area of an engine bed suitable for any pressure on plston, and any length of crank? Answers: 1 . Answered in article on
fly wheels, on page 177 of this issue of the Scirntifio AMrrican. 2. Multiply the pressure on the crank pin by the distance from the center of pin to point at which the thickness is required and by 17 ; divide the product by
100,000 times the square of the depth in a ine perpendic. ular to both the lines of the shaft and of the crank. The result is the probable thickness of web with which a crank will just break. To be safe, take a pressure on the crank pin at least six times as great as the anticipated pressure. 3. Multiply the area of platon by the steam
essure and divide by 3,000 . The quotient will be the sat allowable sectional cross area of the bed.
C. S. C. sends a mineral specimen and would
like to know tts value and what t may be used for. Anwer : it could be used in maktig brick and coarse po
E. P. C. encloses four mineral specimens examination. Answer: No. 1 is indurated clay. No
ts the same, but purely argillaceous. No. 3 is compac mestone. No 4 is siliceous limestone, containing min ate crystals of pyrites. You have been boring throug the Trenton or Lower Silurian limestone and entere geante or underlyling rocks. If you do not strike wate the moment you reach these, you should give it up. We presume the strata in your region dip southeast ; but
not knowtag their prectise disposition at Wequiock, it not knowlag their precise disposition at Wequitock, it
would be idle to prophecy at this distance. Keep on till out
E. B. asks: 1. If the spectrum of iron shows terrestrial elements? 2. Can it be ascertalned what
particular line the color substance of flowers and leaves particular line the color substance of flowers and leave
will throw in a spectrum, by burning leaves, etc., in a resh state? Answer: 1. It is generally supposed tha s characteristic for each metal. All of the fron lines be ong to fron, the potassium lines to potassium, etc. Th
umber and location vary for eachmetal. There are only terrestrial elements, all told, and iron is one of them.
The absorption bands produced by the colcringmatter of plants have been studited and described by differen suthors. When the leaves are the duced by the mineral constituents of the ashes.
H. N., Jr., asks: What will remove red ink moved by hydrochlorite of soda, which can be parch ased
under the name of " Javelle water." Chlorine water and
$\underset{\text { dechanic'scompanion? }}{\text { J. H. Answer: }}$ See our advertising columns.
H. A. W. says: In this county, Edgecombe
v. C., there are many locations in which accurate sur eying cannot be done in the ordinary way with a com pass, on account of the great variation of the needle
due to local causes. These difflculties are most genera met with in the nelghborhood of marl beds; and
varlation of one half degree in stations but a few yard variation of one hair degree in stations but a few yard
apart is not unusual in attempting to run lines in close proximitty to one of these beds. With only one excep
tion, I have always found marl In locations where t needle was seriously affected. This is a flat sandy counedge. The true explanation of this variation of the needle is of practical 1mportance to the people of this
ection. Marl is of great value as a fertilizer for on section. Marl is of great value as a fertilizer for our
lands; and if tact could be established that the minound in all marl beds in this section, and only ther then much trouble and expense incurred in lboking for marl deposits might be saved by the use of proper instruments. Answer: The devlations of the needle, are som generally to deposits of fron. Any marl that acts on the needie in the manner described mast contain considera-
bie iron, or there may be beds of iron beneath it. It not probable that a "diviner's rod" or any kind of in
strument can be devised for pointing out marl; but in mineral explorations for fron the magnettic needle ha
been successfully employed by Major T. B. Brooks, o Michigan. This explorer, who pas had great experience in the use of the compass, thinks that the thickness of termined by using a dip compass and solving the triangle
thus observed. While the deviations of the ordinary neede compass are so great as to literfere whi the a curate running of lines, the solar compass, Invented by
Colonel Burt and used in all the western surveys, can be W.
W. M. K. says: It is a well known fact that he air, so many produced by the regular vibrations of given note; and the higher the number of vibrations in a
and notes of different degrees of hight and duration, co bned and arranged in certain ways,compose music ; an the organs of hearing are capable of producting various acting on the nervous system, would not the same sults be obtained by electric shocks acting on the ner ment to the vibrations of the air? Has the subject been experimented on, and with what results? Answer: I nerve flaments which traverse the organ and are known ander the name of Schultze's bristles. These slende pldity of rife bullets and render the vibrations fit for reception by the braln. There are 3,000 bristles, each one
of which has its own pitch and is thrown into vibration When the proper note reaches it. It does not follow tha anless sound was produced. Electric shocks are one
thing, sound waves are quite another, and there is probbly no analogy between the
C. E. says: Will some surveyor, civil engi
neer, or astronomer please inform me through your col umns the difference (by actual observation) between of New York? The variation changesfromyear to yea and day to day, and our correspondent can determine in or himself with a theodoite
W. C. A. says: When it is stated that a Inches, thus impressing upon my mind the size of the
book? Answer: Usual $8 v 0$ size is $9 \times x 6$ Inches or a ilttle but it may be a ilttle ttle lerge
G. B. L. asks: 1. Are inserted teetly, for
crcular saws for sawing logs into lumber, better than olld teeth? 2. Can the number of teeth in the saw ber diminished, say to one fourth or one sixth of the num
ber generally used, with good results? 3. When the lower half of a cylindrical boller only is exposed to fr
and the lower water gage ls half the radius above the line of fire surface, is there danger of explosion should
the water fall below the lower gage, unless it falls belo the line or exposure to ire? Ti other words, can wat tances described, the heat belng transmitted to the water line through two or three courses of brick? An wers: 1. Inserted teeth are largely used and, properly 2. We are hoping to obtaln the results of expery work thls point, and are as yet unprepared to give a satisfa
tory answer. . No.
D. M. C. says, in reply to H., whose horses had some experience with corns in horses feet, and
hink the cause is the shoe bearing too hard on the heel Itreat them with the best success by taking a farriter' catting to the quick; then, holding the foot upside down put in a few drops of turpentine, holding it a few min ines to soak In. Then I take oakum soaked in tar an With a stiffheel, so that it will not bear on the heel o the foot. Corns seldom trouble after bel
H. S. T. replies to A. H. S., who enquires een dry saw dust used with every success ; the vermin he best thing that can be used to guard against cold.
$\underset{\text { etal articles a lustrous black coating. The instde bot }}{\text { A. }}$ W. T. says in reply to H. J. H : To give om of a cylindrical iron pot, a boot 181ncheshigh, is covgrate is then put in and the pot fill eated overacokefire. When the bottom of the pot as been heated for ifteen minutes, the coal has bee
oostly converted into coke. The pot is then remove ostly converted into coke. The pot is then remove
rom the fre, and, after standing ten minutes, opened for evaporation and the articles will be found
coated as desired. This coating will stand considerable heat, and disappear at beginning of redness. It 1a adapt
ed for Iron, steel, tinned Iron, brass, zinc and pottery, emallerarticles like hooks and eyes may be coated by eating them, in a sheet iron drum like a coffee roaster
Ith small pleces of coal untll they present the desired pearance.
$\underset{\text { W page } 154 \text { about learning phonography, should go to }}{\text { W. G. W. say }}$ on page 154 about learning phonography, should go to
he fountain head for the surest instruction. The inven ors' ${ }^{\prime}$ own pure and simple system is the easiest to learn,
he most rellable in reporting, and is unmatakably legi ble in every word. His name is Isaac Pltman, Paternos
er Row, London, and his books can be obtained throug ny bookseller. "The system is taught in my nelghborood very successfully, and is betng introduced into the
onfor schools as an eminently useful educational aux B. G. replies to J. S. L., who wants to know
B ump water in the nelghborhood; my plar was the fol owing: Empty the well, suspend (by a string) a coarse nd one or two lumps of charcoal in it. Have the string ong enongh to nearly reach the bottom of the well. In
week or two, take oat the charcoal, throw back the
 he pump ; carry the whood up higher than the pump f reeventllation. If the pump is out of doors, puta "tee" Can cover up his well, and I think he will have no
rouble in getting a drink of good water at home.
$\underset{\text { Who asked }}{\text { W. T. }}$ n. to remove the taste of smut from wheat or remove taste and smell from smatty wheat, dry you broken, will not adhere to thegrain. Then ruu it throug our smatter, and back your bins, and, if the alr does no purify it in a few days, sprinkle on as much watcr as
you need to toughen the hull of the wheat before grind lng, adding
the water.
W. T. B, says, in answer to O. K., who bolt direct from shaft to spindle: I have used the quarsuccessfully. But for $4 \times$ feet stones, I used a twelv, successfully. But for $4 x$ feet stones, I used a twelve
nch belt, which I think small enough for the capacit of that sized stone, namely, 23 bushels wheat or 50 bushels corn per hour. The distauce between shaft and splin-
J. M. says that D. can color his extract o made wby putting 1 ounce pulverized carcuma in one int alconol; mix, and it 18 ready for use, but it become
tronger by standing. Half an ounce of the tincture is
P. A. B. says, in answer to F. C: Heat you end. Dip in cold water one inch, then rub the point on piece of brick or anything that will make it bright. When
N. J. F. says, in reply to P., who asked how ir and common turpentine (both should be colorless) shake well and put away in a warm place for a day or
two, shaking occaelonally. Select a photographic por rait with clear lines and soft shadows, put itinto wat od, can be removed from the card. Wipe the paste o carefully and wash well. Then to each slde and to th top and bottom, paste strips of paper ; the edges should
lap very little. After the paste has drted and the strips adhere frmly to the photograph, place the latter in the center of a frame or stretcher, to which paste the othe onds of the strips of paper. This suspends the photo soft brush dipped in spirits of turpentine, moisten the back of the photograph and immediately pour on the varnish abore described; rub it with the finger over the nire surface of the back and continue to do so till the Then put away to dry where no dust can mark tit. When perfectly dry, prepare a pallet of.onl colors mixed with poppy seed ofl (to prevent drylng too rapldyy). Then on
the back, lay the halr color smoothly over the halr, the esh color amoothly over the entire face, excepting the cyes and lips; over the eyes put pure white, over the the
ips the proper shade of red. Paint the drapery accord When perfectly dry, if cracked, go over sink in drying same colors and shades ; if not cracked, paste (with com mon flour paste) smoothly to a plece of card board; press inseed oll on the tip of the fnger, go over the pictur repare a pallet of colors for the finishing touches. dush on the cheeks, paint the puplis of the eyes the prop r color, put in the light with pure white, deepen the hadows and raise the lights of the hair. Give a few rapery, and you have "a thing of beauty" which will b " joy forever." I neglected to mention that the back ground should be painted on the baek of the plcture and the whole surface of the back covered with color befor
$\underset{\text { making sulphate of nickel: Dissolve metallic nickel in a }}{\text { A. St }}$
glass fask nearly filled with a mixture of 8 parts of wate pply mor or sulphuric actd; set the flask in a sand bath tion has been obtained, which, sfter settlln green sog , should ${ }^{2}$ deanted of in a porcelit ish. Set the dish into a sand bath, apply moderate hea urface of the fuld, until a thin skin is formed on th bith and let it rest undisturbed in a cool place for 24 t. which time crysta will be formed on the sides and bottom of the dish; pou a glass or porcelain funnel provided and put the latte hrough which the last portions of the mother lye mar pass and the crystals dry. Preserve the crystals In a mel cosed glass or stone ware vessel. Sulphate of ntcke y itself, withont being con nbined with other saits, will not make a good plating solution. Another mode of
preparing sulphate of nickel is by dissolving metallic vanic battery.
J. D. H. says: It seems clear to me that the loth may be filled with hot liquids without breaking, of the botiom of the jar and thus obviates that sudde nequal expanion of the parts of the jar which would vessel containing a ilttle water answer the same pu

COMMUNICATIONS RECEIVED.

The Editor of the Scientific American cknowledges, with much pleasure, the re eipt of original papers and contributions pon the following subjects:
On Our Present Knowledge of the Sun. By G. W. T.

On a Method of Supplying New York City with Salt Water. By J. P.
On the Transplanting of Trees. By A. K. s On Distinguishing Fibers in Mixed Coods. y C. S .
On the Government Works at Hell Gate By M.
On the Collection and Reduction of Photo raphic Wastes, such as Silver and Gold. By L. L.

On Boiler Strains and Perpetual Motions
On the Laundry. By J. K. D
On the C'ause of the Gulf Stream and other cean Currents. By J. P. W
On Positive and Negative Forces. By E. B
On Phonography and Phonotypy. By E B. S .

[OFFICIAL.]

Index of Inventions

FOR WHICH
Letters Patent of the United States were granted for the week ending February 25, 1873
nd each bearing that date
[Those marked (r) are relssued patents.]

Clamp, Jotner's, Goodchild \& Hay
Coffee roaster, A. W. Weybarn...
Compound, fy, J. Baquol.
Cooler, milk, S. F. Cowles
Corn husker, H. 1 . Hall.
Corn husker, O. J. Warren
Corn meal, preparing, L. S. Chichester Corset, T. F. Hamilton.
Cotton opener, etc., W. Cotton opener, etc., W. Noton
Cultvator, H. K . Krleble. Cultivator, K. McKinnon. Cultivator, S. L. Young... Cultivator, hand, L. J. Dawdy..
Curtain fxture, W. A. Wheeld Curtain ixture, W. A. Wheeldon
Cyllinder cock, D. B. Dennison.
Deck light, I. M. Bearse...
Distilling turpentine, etc
Dough, kneading, E. Edwards......
Dovetailing machine, F. D. Green
Dredzer, T. Symonds...
Drill, grain, C. E. Patrie.
Egg carrier, A. H. Bryant, (r)
Egg carrier, W. D. Taber, (r)
Elevator, platform, Parker \& Cook,
Englue, alr, Norman \& Dietrich....
Engine, rotary steam, C. Inman
Engine, vapor, J. F. Haskins...
Fate, etc., rendering, A. .roadnax
Fence, portablerH. M. Dake.............
Fertllizer, J. W. Stubbs
Fire arns, revolving, D. B. Wesson...
Food, srticle of. L. S. \& M. G. Johnso
Food compound, L. S. Chichester.
Food compound, L. S. Chtcheste
Fork and rake, M. M. Wells..
Fuel, manufacture of, M. Rae
Furnace, chloro:tzing. I. M. Phelps
Furnace, damper for, A. C. Warren
Game board, J. C. Armi.
Gate, adjustable, E. M. George
Gun sigit, M. W. Harrington
Gun, arr, P. Giffard...
Hammer, blacksmith's,
Hammer power J , , Cubberle
Harneess pad, Groft \& wilson.
Harrow, revolving, H. Mittendorf
Harrow, sulky, w.
Harrow, sulky, W. C. By
Harvester. J. F. Kiurwill
Harvester. J. F. King
Harvester, Z. Swope
Harvester, W. A. Wood
Harvester cutter, Reed \& Thumpson. Harvester knives, grindling. J. Murphy Hoisting apparatus, c. Clark HoistIng machine, J. Kush worth Hose coupling, H. Lewls.
Hose nozzle, E. A. Day Hose nozzze. E. A. Day Insects, etc., destroying Hemenwa Inkstand filler, M. C. Stebbins. Insulator, J. H. Thomas. Iron, smoothnge, L. L. Mivelar. Iron, eorregating, A. \& J. Reese. Jacks, trammel for 11 ftin Jar, frult, H. C. Gaskill Jar, frutt, E. G. Haller
 Knit ting macilne needle, Platt \& Staubery Labelling machine, \mathbf{c}. W. Greene Lantern, T. A. Davies.... Lardern, magic, P. Dienl., renderiag, J. N. Listing tool, L. R. Blake. Lasting tool, c. w. Glldden Latch, knob, J. M. A. Dew........
Latch for gates, etc., C. Roberts Lath machine, S. B. Rittenhou Lead, sheet, D. G. Batchelde Leather, forming seams in, S. W. Shore Letter box, street, Evert \& Johnson. ogs, device for rolling, T. Emery Lumber, preparing, J. Mulla Manger, automatic, D. A. Townse Mattress frame, wire, J. G. Smith.
Mattress frame, woven wire, D. J. Medical compound M. A. Curtis. Powe Metal, ant1-friction, G.S. Hunt. Milk, etc., cooing, E. D. Gir
Mill, grinding, J. T. Har
Nall plate feed, R. C. Grant
NapkIn holder, etc., D. Ersex
Nut, adjustable, J. Russe
Par r, corer, etc.. app
Pencli, lead, J.Gray
Planing clapboard ,.,...........
Planter, corn, Plerson, Macy \& Moor
Planter, corn, J. D. Smmith
Planter, cotton seed L
Planter, hand, G. Windle
Planter,
Planter, seed, R. Frdday.
Plow. Hunter $\&$ Mitchell.
Plow. Hunter \& Mitche
Plow, J. R. Nichols....
Power, transmitting, D. E. Myer
Privy indicator, w. C. Duftleld.
Pruning shear3, T. Borden
Pump, Norman \& Dietrich.
Pump, steam vacuum, I. P. Tite....
Pump, etc., exhaust, G. H. Randall
Punching machine, s. W. Murray..
Rall jofnt, rallroad, w. R. Clar
Railioad swltch, H. Black.
Railway anow plow, P. A. Smith.
Rallway snow plow, W. H. Van Gle
Riveting tool, B. F. Cobb (r)...
Ruler, etc., W. H. Flanigan.
Saddle tree, gig, J. Bauer..
Safe door lock spindle, R. Young.
Sash fastener, etc., T. Frost....
Sawing machine, H. A. Curren
Screw cutting machine, J. W. Row
Screw de stock, J. J. Gran
Scroll saw, H. Bickford......
Seeder. broadcast, Ogborn
Sewing machine, O. Farrar.
Sewing machine, J. T. Jones....
Sewng machne rufler, Hugg $\$$ stewart
Sewingmachine shuttle, W. H. Thayer....
Sowingmachine ofl cup, L. R. N. Le日lie.
Splining tramelyer, T. Mayor (r)........
. 136,152
135,6292

19629 \begin{tabular}{l}
1156,492

136,29

136,215

\hline

136,215

136,157

\hline
\end{tabular} . 136,194 196,506

136,320
19619 $\begin{array}{r}\text { - } 136,320 \\ \text { 136,173 } \\ 196 \\ \hline\end{array}$
$\begin{array}{r}1136,249 \\ \text {. } 136,254 \\ 136297 \\ \hline\end{array}$

. 136,269
136,220
1

136,220
136,195

136,195
$.136,221$

136,299
$.136,157$

136,144
136236
136236
136,187
.
$.186,260$
.
5,293
5
5

5,296
186,259

1186,259
136,164
136241
1
136,241
$.136,129$
10
W

136,129	Wag
186,217	
136,277	Wag
Wag	
Wa	
186	

136,165	W8
136,502	
W8	
136,y00	W

136,303	
136,304	\mathbf{W}
	\mathbf{W}

136,947
$.136,263$
136,261

136,291
$.135,200$
136,149
\mathbf{W}
136,159
136,35
136,139
13p A
$\begin{array}{cc}\text { 36,139 } & \text { App } \\ \text { forth }\end{array}$
of the following Letters Patent. Hearthe days heretnafter mentloned:
24,200.-GAD Rrocarbon Apparatus.-E.H. Covel. May 14 . 24,227.-CULTIVATOR.-R. M. Melton. May 14. $24,531 .-G$ Gas Rrtort.-W. Beaument. June 11.
 June 18.
25,014.-Cutting Woodrn Warr.-G. R. Hay. July 23.
25,199.-Fridina Paprr.-R. M. Hoe. August 6.

EXTENSIONS GRANTED

23,0in.-Electro-Magnetic Fire alarm.-M.g.Farmer.
DESIGNS PATENTED
6,456.-Otroman.-C. J. Conradt, Baltemore, Md.
6,457.-OtromAN.-J. D. Ladd, New York city. 6,457.-OTtOMAN.-J. D. Ladd, New York city.
6,458.-CGAIR Frame.-E. Seymour, C. E. Shattuck, Clinton, lowa. TRADE MARKS REGISTERED $1,142$.
$1,143$.
1,

 1,166.-CVTLRRY.-N. Joseph, San Franclsco, Ca 1,147.-SALve -G. Long, Keytesville, Mo.
1,148.-BAKING PowDER. 1, 148.-BAKING Powder.-Moody Bros.Indianapolis,Ind, 1,150.-GIN.-W. P. Sanger, New York clty.
1,151--PILE Rempdy.-M. H. Stoner, Skaneateles, N. Y.
1,152.-Printrd Publioations.-D. Williams, N.Y.ecty.
SCHEDULE OF PATENT FEES: On each Caveat....
On each Trade-Mar
On flling each application fora Patent (17........................ On Issulngeach original Patent.
On appeal to Examiners-1n.Chiet On appeal to Examiners-In-Chief...........
On appeal to Commisicner of Patents. On application for Relsaue................. On granting the Extension
On filing a Disclaimer.....................
on an application for Design (3% years).
On an application for Design (7 years)
$\xrightarrow[\text { On an application for Deerign (14 years).... }]{\text { Ontisements. }}$

TWENTY-SEVENTH ANNUAL STATEMENT
of the
Connecticut Mutual

LIFE

Insurance Company,
of hartiford, Conn.

To PoLicy-
For claims by
For claims by
death and
matured en.
$\begin{aligned} & \text { matured en- } \\ & \text { áowments,.. }\end{aligned}$
cowments, ..
$\begin{gathered}\text { nurplus } \\ \text { terned } \\ \text { to }\end{gathered}$
turncd to
Poltey-hold
ers

sur
Ro
k
com
com

to Agents,..
Salaries of 0 .fi-
cers, Clerks,
cers, Clerks,
and all oth-
ers employ-
ed upon Sal-
ed
art
:ner
Print
tion
Ad
Ad
Po
thonery, Rent
Adverte,
Advertising,
Postaze, Ex-

\qquad
TWENTY-SEVENTH ANNUAL
STATEMENT
Connecticut Mutual
LIFE
IDSUIZПC\& Compan],

DERS:

Taxite, and Profit and Lobs, 289,1599	
	\%33,679,061 69
balance, net assets, december Schbdule of Asbets:	81, 1872
Loans upon Real Estate, first Ifen, value,....	.817,652,992 52
Loans upon stocks and bonds, value,.	238,503 28
Premium notes on policles in force..........	8,800,057 92
Cost of lieal Estate owned by the Company,	1,199,972 47
Cost of United States Reglstered Bonds,..	1,680,836 80
Cost of State Bonds,	813,900 00
Cost of Clty Bonds,.	2,186,995 00
Cost of Bank Stork,	80,205-00
Cost of Railroad Stock,	26,000 00
Cash in bank, at Interest,	1,04,,550 58
Cash in Company's c.flice	26,782 23
Bulances due from agents, secured,	39,886 14

ADD:
Interest accrued and due,..

.8975,580 29

Market value
over cost,...
over cost,........................
Net premtums in course of collec-
tion,......................
Net deferred quarterly and semi-
38,012 71

Gross assets:
Lisblitiriss:
Amount required to retasuice
all outstandfng polcter
all outstandfng polifles, net
assuming 4 per cent
All othel liabilitices,......................
$829,050,0000$
747,008
00
Surplus, December 31, 1872,
$\frac{29,597,05300}{85,139,088} 13$

Increase of assets durng 1872.
Ratio of expenses to recelpt.

Policlesin force, Dec. $31,1872,62,868$, InsurIng 8181,996,167 00

JAMES GOODWIN, President.
JACOB L. GREENE, Secretary.
$\mathrm{F}^{\text {OR }}$ SALE-For half the cost-A complete

20 TO. 150 bushels of shelled cold grown PER ACRE.
The Increased yjeld per acce over the old varietles will
pay for the seed 20 time over, beides every farmer that

 TALIUABLE WATRE POWER

The	
PIANO	, mat
	Write for cricular, ind

SCIENCE RECORD

 1873.
Tirn NEW AD SPLENDID Book in now
 1. -CFEMISTRY AND METALLURGY.
2: MECBNNCS AND ENGINERING.
3. - ELECRICTY, LIGHT, HEAT, SOUND

MUNN \& CO., PUBlighers,
$3 y$ Park Row, New York City.
Tar SCIEN TIFIC AMERICAN will be sent one year
and one copp of SCIENCE RECORD FOR 1873, on
recelpt of 84.50 .

PAGES WATER FLAME COAL LIME KILN, with coal or wood. No. 1 Soft White Lime
or Cement, with uee of water. C. D. PAGE, Patentee,
Rochester, N. Y. $\underset{\text { Sent }}{\text { ENT FREE:-Catalogue of }}$ JEWELRT,

BAIRD'S goous

FOR PRACTICAL MEN.) with he adarese. HENRY CAREY BAIRD,
 Dussauce's Works on Chemistry Applied to the Arts.

 Vineneral Treatise on the Manufacture of
 Beets, as Mell at ithe Fairication or Wood vinega,

ONLY 10 CTS. $\begin{gathered}\text { for two nambere of the new } \\ \text { insatrated paper, } \\ \text { MP } \\ \text { OWM }\end{gathered}$ Frrzeip A

 JENNINGS STEAM WASHER.

 WORKING CLASS MALE OR FEMALE,
 THE SELDEN DIRECT-ACTING
 Steam Pamp Is tre bess
Pump made. Pomp mad
Send 10 Send for Cirecliar
and Price List to

 S sw GUMMEERS, , Single and Double Up
 PUNCHING
 MACHINERY, MOSTLY NEW.

[^0]
INVENTORS

MANIJTACTIVEETS
NET YORT EXPOSITIONAND MANTVFACTUNING COMPANY,

Machinery,

Machinists' TOols:
 Cold Rolled Shafting.

Sturtevant Blowers.

size and description, constanty on hand.
121 Chambers \& 10 REGE REAde Streeta, New York.
Pat. Punching Presses
 J. H. WHITTE, Newark, N. J., Manufac

MACHINERY of all kinds, New and Sec
WOOD-WORKING MACHINERY.

Milling Machines.

 ROPIR ROT ATR

 VIENNA EXPOSITIION.

THE AMERICAN SPORTSMAN,
E- For a sample Copy of sald Paper. \&
MASON'S PATPT FRICTION CLUTCHES

W Dited-A MILL PIck \& Steex Tool
 E. M. MAYO'S PATENT BOLT CUTTER. W OOD-WORKING MACHINERY GEN-

Corrugated Irom,

Wend stamp PARTEET AND.

LEFFELIMPROVED DOUOIET

PITTSBURGH, PA.
 1832. SCHENCK'S PATENT. 1871

Planing any Matching

U'JN' SAFETY HoIsting No. 348 BROANTAT, BREFYORE. CO..
Andrew's Patents.

 RISDON'S IMPRONED Turbine Water Wheel

B URDON IRON WORKS.-Manufacturen

RUBBER STAMPS, Seel Lettera, thi, ifitle Gem, PROTECTION AGAINST FIRE. HALL BROTHERS Are prepared to introduce their ${ }^{6}$ System of Sprinklers' ${ }^{\prime \prime}$ into Mills, Factories, \&ec., at short notice. Call and see a practical operation of same at their works,
36 CHARDON STREET,

 PORTABLE STEAM CNGINES, COMBIN

Niagara Steam Pump. CHAS. B. HARDICK,
P. BLAISDELL \& CU.

 PISTON guided from both ends; all working

T Centy Proprietors of C. N. Gooss' patents, ra

CINCINNATI BRASS WORKS-Engineers

Provel

OF THE
SCIENTIFIC AMERICAN.
1'he Best Mechanical Paper in the World? A year's numbers contatn over 800 pages and severa
nundred engravinge or new machtnee ugetal Andred engravings or new machines, useful and nove pronciones.
Tre ScIENTIFIC AMERICAN is devoted to the Inter este of Popular Sclence, the Mechantic Arte, Manufac tures, Inventlons, Agrrculture, Commerce, and the n.
dustrial pursatts generally, and ts valuable and tinatruc. ive not only in the Workshop and Manufactory, but ale To the Mechanic and Manufacturer?

No person engaged in any of the mechanical pursult
ould think of dolng without the Scirntirio Amrar OAN. Every number contains from six to ten engraving of new machines and inventions which cannot be found in any
Chemists, Architects, Milliorights and Farmers The ECIENTIFIC AMERICAN will be found a mos
asefulj-urnal to them. All the new discuveries in the nsefulj-urnal to them. All the new discureries in the
sclence of chemistry are given in tis columns ; and the interests of th 3 nichitect and carpenter are not ove taining to these pursuits being published from week to weet. Useful and practical information pertalning to
the interests of millwrights and millowners will be found pubilished in the Scirntific American, which inform
tion they cannot posibly obtain from any other source subjects in which jlanters and farmers are interested will be found discussed in the Scientipic Amiriican,
many improvements in agricultural iniplements belng illustrated in Its columns.
We are also recililng, every week, the bcst sclentifc lacing in our possitain, France, and Germany; thue chanical sclence and art in these old countries. We tracts, from these journals, of whatcerer we may deem of interest to our readers.

One copy, one year
One copy, six mont
TERMS.
One copy, six ymanths
83.00
1.50
1.00

One copy, four month8 - 1. one copy of engraving, "Men of Progress" . 10.00 One copy of Sclentific Amerlcan for one year, and

The postage on the Sclentinc American is ive cents pe uarter, payable at the office where recelved. Canad
ubscribers must remit, with subscription, 25 cents exta to pay postage.
Address ull iet

MURNN \& 00.

gatertisemente

COMPTONS SURPRRISE 82 Rushels to 8500 will be awarded．as PREMIUMS，to those who

 23 Park Piace．BLISS \＆SONS，New York
 Send for Descriptive Pamphlets，Price Lists，Terms to
Dealers，etc．
 The Tipntoon Governor
 ASPhalte roofing felt．

A WELLL tested article of good thickness

Waltham Watches

 For 1873.

MANAGER WANTEED．

${ }^{1}$ ＂The Farrison Boiler＂．

 $\mathbf{R}^{\text {ANSOM SYPHON CONDENSER perfects }}$

 MACHINERY for grinding

 se made dirfertat the，circuiar，etc．，application
HAREIEON BOILER WORKS． What
Phifs
Philadelpha

New York PLASTER WORKS

M ANUFACTURERS of Calcined and Land Plaster，Marble Dust，Terra Alba，\＆c．\＆c．Ou MORRIS，TASKER \＆CO．， manvafacturers of AMERICAN CHARCOAL IRON
 WROUGHT－IRON TUBES and Fititivas，for gas，sTEAM WATER，AND OIL．

ROBEWOOD，FRENCH WALNOT，SATIN Large and Cholee Stuck Forelgn and Domestic woode，tin

BoITE GUTEJ

TURMBコRMロコN，

COVERING for BOLLERS

AND PIPES．superior quallty．First Prize Am．Institate Falr．VAN TUYL MF＇G Co．， 528 Water St，n．N．

MAGIC LANTERNTS

THE UTICA

STEAM ENGINES，
PORTABLE \＆STATIONARY
＂The begt，Cheapest，Most Durable．

IRON OTEAMSHIP BUILDERS
NEAFIE \＆LEVY，
PENN WORKS，

Valuahle panafacturime Property

Steam \＆Water Gauges．

 For haitigs，ngines，and an ondian or Machnery，Guar

BUPER－BTRAPRRS
 Pyrometers，Fortesting Oena，Botiler
 K

WIRE ROPE．
F OR Inclined Planer，Standing Ship Rigging， THididgee Ferries，stasy，or

Union Stone Co．

PORTLAND CEMENT，
$\mathrm{O}_{\text {F }}^{\mathrm{F}}$ the well known manufacture of John

Amevican Saw Co．

 CIRCUJAR SAWS Patent Perforated Circular，Mill， Cross－cht Saws．

RON PLANEES，ENGINE LATHES

 PETER COOPER＇S Refinad Meats＇Foot Oil， FOR FIRST CLASS MACHINERY．
 I）iammond Pointed STELNI DRIMS．
T EE adoption of new and improved applict ${ }^{\text {a }}$

Boilers \＆Pipes covered fuel．seud for circulars．
Asbestos Felting Co．

TO TUMBMRMEN．

2Y：13 TANLYM OO．

NVENTORS \＆BUILDERS OF SPECIA MACHINERY CONNECTED WITH EMD ERY GRINDING．

The Tanite ©o．，

Bradley＇s Cushioned Hammer

 mber MANF，G CO．，Sytacure，N．Y．

WATER WHEEL

Machinist＇s lools， LUCIUSTA HEAVY PND IMPROVED，

[^0]: E. P. BAUGHS PATENT SECTIONAL MILISS
 The RAILROAD GAZETTE-A Weekly

