A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

IMPROVED SELF-ACTING FIRE TANK
The alarming frequency of fires within the last few months has a wakeneil an unusual interest and provoked a deal of newspaper discussion as to the best means for the prevention and extinguishment of contlagrations. The lesson of the Buston fire is one that has often been pointed out, but seldom heeded, namely, that when a fire has reached a certain stage, it gets beyond the control of any apparatus whatever, and takes, for the most part, its own course. Any improvement in our present systems should be in the direction of a greater promptitnde in extinguishing incipient fires before they reach the dangerous stage.
The point aimed a in the construction of a!paratus heretofore hias been the projec. ion of the largest pos tion of the largest pos
sible bulk of wate ible bulk of wate upon the fire. The esult has been an enormous increase i the item of water da mage, without a pro portionate gain in the celerity of action which is the real cle ment of success at fires.
Considerable atten tion has been given within the last few years, to the perfec ting of devices which should take ad vantage of the extinguishing properties of carbonic acid gas. This mate rial seemed to promise the condensed powe requisite to portability in the transportation, with the utmost expe dition in generating pressure and manipu lation, while possess ing the additional r commendation o quenching fire with out water damar Coupled with these Coupled with these advantages, there reemed to be a cer tainty of action and marvelous power over
flame, unattainable by any other known me thod.
The only system in which this principle has been made practical is that in which chemical action is used, not only to im pregnate the stream with the desired ex tinguishing quality tinguishing quality, and in which water is and to diselve the used to dissolve the chemicals, to hold the gasin mechanical com lination, and to give momentuin to the projected stream.
The small machines called "extinguishers," which combine the points enumera-
ted, have made a splendid record, and in scores of instances have put out fires that were apparently out of all proportion to the mans used. The limit of the extinguisher is in its capacity. As the operator must carry on his back the engine, hose and material, the weight is restricted to 85 lbs . and the stream to a diameter of one eighth of an inch and a duration of perhaps five minutes. The principle was perfect, but its full development seemed to call for a continu ous stream oi such volume as would control a fire in the more advanced stages. The first practical success in this di rection is found in the street engine of the Babcock Fire Ex tinguisher Company. The engine is constructed with two copper tanks of a capacity of 120 gallons, tested to a pressure of 500 lbs ., and mounted on whieels. The hose is connected
rom the nozzle. On arriving at a fire, a pressure of 200 lbs. the purchase of four more. At Holyoke, Mass., the engine is raised in ten seconds, and so ready is the manipulation extinguished 13 fires, out of the 19 that have occurred in the that the stream is on the fire in less than a minute. This last two years, before the steamers could get a stream on. celerity of action is due not merely to the instantaneous generation of pressure, but to the fact that no suction hose has be connected, and no leading hose laid, preparatory' to playing. The result of this promptitude, together with the marvelous extinguishing power of the stream, is, in a large

THE BABCOCK sELF-ACTING FIRE TANK.
in ten; discovered in the earliest stage, and the fate of the building is usually decided by the action of the first five minutes.
Thus far the engine has been introduced into the depart Thts of some fifty cities and towns, and has already mad history such as no other apparatus has ever approached At Chicago the engine puts out fifty per cent of the fire within its range, without the aid of the steamers. The may or, in a late communication to the fire commissioners, recom mends the purchase of fourteen more of these engines for the department, at a cost of $\$ 2,000$ each. At Boston the sin the department two weeks, during which time it has put out cock is opened. The agitator, I, is facilitate the dissolving of the sods in re-charging. The practical working is admirably illustrated by the picture in the background, and will be comprehended at once. The plan is virtually the same as was lately presented before the Polytechnic Association, by Mr. D. J. Tapley, where it at tracted much attention.
The peculiar advantage of this form is that it gives an instantaneous stream of a sufficient volume to control any fire that can be built in an ordinary interior. In theaters and churches it will throw a stream to the highest part of the ceiling, and even from the roof a stream can bt used to protect from fires in adjoining buildings. The power of the tanks is sufficient to force a stream through 800 feet of per
pendicular pipe, or any length of horizontal hose or pipe. The stream seems to possess the wonderful property of clearing a room of smoke almost instantly, though filled to suffocation. The gas also seems to interpose a wall of non conducting vapor between the hoseman and the fire, which protects him from the heat. In fact, experience is developing every day new advantages for this system.

Strientifir ©

MUNN \& CO., Editors and Proprietors. póblished weekly at

O. D. MUNN.	A. E. beach.
T以及ME.	
$\xrightarrow[\substack{\text { One copy, one year } \\ \text { One copy, } \\ \text { six months }}]{ }$	
ctos uts Sov $_{\text {ree }}$	cien ${ }_{\text {che }}^{\text {82, ench }}$

VOL. XXVIII., No. 10. [New Series.] Twenty-eighth Year.
NEW YORK, SATURDAY, MARCH 8, 1873.

HONOR TO WHOY HONOR IS DUE.

There is a large figure on a house in Center Street, New York city, which at most hours of the day may be seen vigorously ergaged in turning a crank. Pedestrians on the *roet jostle each other while and thers in the cars stretch their necks to obtain a clearer view. The residents of that locality seem to take it as a matter of course and attend to their affairs as if nothing uncommon was going on; but the mystery still remains unsolved. We have caused an investigation to be made and have learned that, instead of the man turning the crank, it is the crank that turns the man. And upon this fact we wish to found a few practical observations.
The sturdy figure, making itself very conspicuous before the world and attracting all the notice it can, may stand for the lucky appropriator of other men's discoveries. It very frequently happens that the man who discovered the principle upon which an invention is founded, and which is, in fact, the engine that moves the whole apparatus, is forgotten; but the noisy speculator who runs about the streets and gets up stock companies and makes a fortune, and, in the minds of many persons, is entitled to all the glory, is really little more than the lay figure moved, by an invisible crank, by a pewer discovered after years of toil and study by some unknown and forgotten personage. The man who reaps the fame and money is turned by the crank which, in his conceit, he fancies he moves himself. Giving honor to whom honor is due is a very rare occurrence. Mankind looks at results the fountain head of success. There is nothing so successful as success; and under the glow of tiiumph and the applause of men, the money maker accepts the public testimonials, goes to all the grand dinnens, has his portrait painted for some public institution, and finally claims the whole credit of a grand enterprise. There is no doubt that the men who furnish the capital and push inventions to practical use are entitled to a fair share of crenit for what they have done; but they cannot be accused of unselfishness in the matter or of acting upon purely patriotic motives. "Rich fields and pastures new" are all that this class of persons demand; and f the dividends are all right, they ought to keep quiet. What shall we say for the silent worker who discovers a great principle from which springs a grand progeny of inventions? The misfortune is that we frequently lose sight of such a benefactor. Just as the sources of the Nile are
hardly yet known to the world, while in the plains it becomes a grand river and flows through numerous mouths into the sea, so with the fountain head of discoveries: we often fail to trace the precise source, but in the results we have a mighty river of applications, known to the whole workl. The rill which has its rise among the snows and rocks of the mountains finally flows quietly past smiling meadows and the haunts of men; and while it sings its pastoral, we forget the iee and snow and beetling crags whence it had its origin.
Professor Tyndall in his eloquent plea for original research has in mind the devoted band of workers who, in poverty and reproach, in the chill atmosphere of neglect, often amidst
 are the p. and louas of our present civilization. He cau-
toned us to protect and foster all such persons, and he proved the sincerity of his noti 4 and the strength of his interest by leaving in the hauds o trustees all the net earnings of
his laborions lecturing tour in the United States, for the support of nee

ure sciezce.

Any one who is willing to accept a career of this kind must be imbued with the true missionary spirit and not be actuated by anticipations of reward or desire for fame. Sonner or later, true honor may be accorded to the person to whom it is due; but this is rather the exception than the rule, and he who keeps public opinion before him as the spring for action will ask for bread and receive a stone. It is rare indeed that any great discovery has been made when sought with a view to immediate practical results. Nearly all of the grand principles upon which are based the leading applications of the age were discovered and worked out by men who never thought for a moment of the possibility of applying them. It would almost appear to be with original discovery as with humility : the moment it looks upon itself, it is gone. Let us giance at a few of the leading discoreries modern times, and see if this statement be not true.
The doctrine of the correlation of forces-that force is not lost any nore than matter-which in its importance is not lost any nore than matter-which in its importance is not
inferior to the discovery of the law of gravitation, was first inferior to the discovery of the law of gravitation, was first
enunciated in a modest paper by Dr. Mayer, a practising physician in a small city in Germany. He could not possibly have foreseen the results that are likely to grow out of this law. Newton's analysis of solar light, Volta's battery and Oersted's electro-magnetism are further illustrations of discoveries which have grown out of a search for truth and not
for fame. Although scientific writers have gives due credit to these illustrious men, it cannot be denied that those who have made the applications have run away with popular favor and have gained all the prosperity. The great engines, propelled by the forces which were made known to us by crank that a name for enterprise which they scarcely deserve. It would aid very much if the real benefactors could have due credit in their lifetime. There is little else that they desire, and sympathy and praise costs nothing, while it is often rich in the fruit that it may help to bring to maturity.
Professor Tyndall has set us a noble example of unselfish liberality. He had every right to carry with him to his home all the money that had been cheerfully given by those who were instructed and enchanted by his lectures; but instead of doing, so he prefers to hand it back for the benefit of those who gave it, and in aid of the common cause of scientific learning in which the whole world takes an interest. This is an example worthy of imitation. The trustees who have charge of the Tyndall fund will no doubt be glad to have the amountincreased as largely as our wealthy citizens may derire. They cannot have too much money for the promotion or origipal research, and it is equally certain that no investiga vain. Let us unden correct scientific reasoning can be made in knowing full well that they will swell to torrents and ultimately flow gently through the valleys until they empty into the common ocean of human wants. And we must not for get that every grand result had its origin in some apparently nsignificant fact, which, by accretion 3 and accumulations becomes important and finally culminates in a suecessfu application. Keep the fountains of discovery pure an bright, give honor to those who deserve it, and the streamis of knowledge will not dry up and the world will not want for inventions.
\triangle NOVEL TRACTION ENGINE FOR RAPID TRANSIT
The interest, with which all plans leading to the accomplishment of a suitable system of rapid transit in this and other large citios is regarded, has been the means of calling orth many inventions designed to meet the existing need. An engraving of a novel apparatus of this class was pubished in the Scientific American on page 118 of our last volume, under the heading of ' Lamm's Fireless Locomotive." One of these novel locomotives has lately been put
in practical operation in cur neighboring city of Brooklyn, in practical operation in cur neighboring city of Brooklyn
with very flattering and interesting results. The machine consists of a strongly made cylindrical reser voir, enclosed in a very thick clothing of felt and other ma teriai to prevent loss of heat by radiation. Connected with the reservoir is a steam engine which actuates the axle of the driving wheels. Before starting the reservoir is charged with very highly heated water from a stationary steam boiler, the heat being such that a high steam pressure is generated in the reservoir. As this pressure is relieved by the exit of the steam into the engine, a portion of the water in the reser oir is converted into steam by the heat with which it is surcharged. Thisconversion, continues until the temperature of the water falls to 212°, and the machine can therefore be operated during the interval until nearly that point is eached.
The experiments, which we witnessed, consisted in charging the reservoir of the machine with hot water having a emperature of 360°, which yielded a° steam pressure of 145 pounds per square inch, and then running the locomotive for a distance of six miles, on the track of the Coney Island Railway. During the first half of the journey, which was accomplished in 15 minutes, the pressure fell to 90 pounds; and at the expiration of the trip, which occupied 33 minutes, the gage showed but 65 pounds, the ratecf diminution being much more rapid under high pressure than when the same had become lowered. The speed attained was twelve miles per hour, the burden being a single six tun car for 35 passengers; we were assured, however, that the same time had been made with two carriages contsining seventy persons. In actual use it is proposed to locate, at the termini or other
points of the line, a sufficient number of atationary boilers
from which the locomotive may be charged or its power renewed when exhausted.
From the results of the trials and those that have been deduced from the successful operation of the device in New Orleans and elsewhere, we are inclined to think the invention one of considerable utility. It is perfectly safe, because the steam pressure can never increase but is always steadiy lowering. Being without a fire, it is free from many of the defects of the dummy. Of course there is no smoke, while the noise of the exhausi is scarcely perceptible. Its speed and tractile power are, as practically proved, sufficient or ordinary purposes; the cost of construction is not great, and as regards economy, its use can probably be made less costly than that of horses. We noted especially that the moion was regular and easily governed or stopped by the engineer, and that the radiation of heat, which, it might be magined, would rapidly take place from the reservoir in cold weather, was almost completely prevented by the thick surrounding casings. We are of opinion that the invention is worthy of thorough investigation from parties interested in street railroads. We should think it well adapted for the elevated railroad on Greenwich Street, New York, and for transferring freight from the steam terminus of the Hudson River and New York and New Haven railroads at 42d street down to their freight stations in the heart of the city; while or the underground railway lately organized in Brooklyn, and for the Broadway underground railway in this city, it may prove to be " just the thing."

EXPLOSIONS PRODUCED BY HIGH MUSICAL TONES.

The greater number of explosive agents contain nitrogen, which retains, with a very weak affinity, the element required for the combustion of the other ingredients; it resembles a spring which, when once set free, unwinds itself totally and suddenly. The starting of this spring is, in the case of gunpowder, gun cotton, etc., the heat-giving spark; with percussion powders, nitro-glycerin, etc., simply a shock is sufficient, while it has been discovered recently that there are substances which can be exploded by merely a sound of high pitch; such is the iodide of imidogen, easily made by placing pulverized iodine in liquid ammonia. In order to explain the reaction, we will state that there are three compounds of nitrogen and hydrogen: NH_{3}, ammonia, NH_{2}, amidngen, and N H , imidogen. The two latter are only formed in combination when one or two atoms of hydrogen are displaced by a third substance; so, when placing iodine n ammonia, two atoms of hydrogen combine with the iodine to form hydro-iodic acid, which dissolves a portion of iodine, forming a brown solution; while another portion of the iodine combines with the remaining NH^{H}, in which two atoms of H are displaced by iodine, and NH_{3} becomes NHI_{2}; this forms a black powder, which is left as residue; when, after 15 minutes reaction, the brown liquid ammonia solution is poured off. The eposit is then filtered to free it from excess of ammonia; and, while wet, the filtering paper is divided into small pieces and dried separately, in order that any accidental explosion may not involve the whole mass. There are other methods of making this compound. According to Mitscherlich, the iodine is dissolved in aqua regia and precipitated with an excess of ammonia, by which operation all the iodine is changed into NHI_{2}. According to Serullas, a satufated solution of iodine in alcohol is mixed with an excess of ammonia; then water is addea, as long as it produces a precipitation of a black powder, which is again NHI_{2}. In this last form of preparation it is less explosive and less dangerous; while, if prepared by one of the former methods, the least pressure or friction causes the dry powder to explode, and it is a laboratory trick to distribute small particles of it while wet, on the floor of a room or hall; if, after drying, the people walk over it, a fusillade of small explosions is heard from under their feet
The experiments to explode such powders by the rapid vibration of a high musical tone, were recently made by Champion and Pellet, and we have described them on page 20 of this volume. They form a valuable addition to the lecture room experiments.
The bromide of imidogen, produced by pouring bromino into ammonia, explodes much more easily, and, even at a distance, by any sharp noise; it is much more dangerous by passing chlorine gas through liquid ammonia, is a liquid oily substance, and perhsps the most dangerous combination in existence. A single drop will explode most violently, on being merely touched with a greasy solid body. Berzelius ives a list of the bodies, upon the mere contact with which this formidable compound explodes. Undoubtedly it will go off by the vibration of the air produced by tones, but experments in this direction are still wanting.

POWER RANIWAY BRAEES.

The Honorable Mr. King lately introduced in the House, of Representatives a bill to compel all railway companies to provide their cars with power brakes, so arranged that the engineer may, at any moment, apply power to the wheels of every car on the train. Penalties are provided against companies who fail to employ the device mentioned. The introduction of the bill was followed by an interesting speech by Mr. King, who presented many useful facts concerning railways, and railway brakes in particular, from which we take the following:

- Power brakes, operated from the locomotive, are a very old invention, although they were never adopted by any railroad company in the United States urtil about three or four

ears ago

The Creamer brake is operated by the engineer, in cas only of an emergency, by pulling a com estending the whe
length of the train. This releases the brakes, which are wound up after the fashion of an alarm clock. The hand brakes are used at all ordinary stoppings, the spring power being reserved only for an emergency.
The electric brake of Olmstead has been in use upon one train on the Erie railroad for some time, and works well.
The steam brake has a continuous line of pipe from the locomotive to the last car in the train; under the center of every car is a common steam-tight cylinder and piston; a branch from the long line of pipe communicates with the turns a stopcock, the steam rushes like lightning through the train, cinters the cylinders, and pushes the pistons outward, train, 'nters
and thus applies the brakes to the wheels of every car in the rain. The air brake is the same thing, except that air does rain. The air brake is the
the work instead of steam.
To show the state of the art, and that the material exist by which this bill can be carried into effect, tables are ap pended to these remarks showing the names of inventors and the dates of their patents obtained both in England and the United States. The first power brake patent granted in this country was in 1847, and the total number granted up to the close of last year was fifty-nine. More patents on power brakes were granted in 1872 than from the organiza tion of our Patent Office to the close of 1871, which strikingly illustrates the rivalry of the inventive genius of this country.
In England, from 1840 to 1866, there were patented twen-ty-two electric brakes; from 1835 to 1865 , twenty hydrostatic brakes; thirty pneumatic brakes from 1838 to 1866, and fifty-four steam brakes from the year 1836 to 1866.
Henry Miller's steam brake, patented in 1855, was tried on a train of cars at Detroit, about that year, in the presence of several distinguished people; and a very interesting printed report of its operation and trial at that time may be found in
the file containing his original application for a patent in the the file containing his original application for a patent in the
United States. But, for the fruits of his genius developed almost twenty years ago, it is to be regretted that he never received either honor or competent reward.
Seven companies for the manufacture of power brakes have been organized in the United States since 1869. And of the 444 railroads in the United States and Canada, more than one sixth of them have already been equipped with power brakes operated by the engineers.
On the ('hicago and Northwestern railroad, by means of these brakes, a train of six cars, going at the rate of thirty going forty miles an hour, was stopped in 18 seconds, in 370 going forty miles an hour, was stopped in 18 seconds, in 370
feet, or in less than one half the length of this Capitol build feet, or in less than one half the length of this Capitol build
ing. The time in which to stop is the all-important considing. The time in which to stop is the all-important consid
eration. It surely would take three minutes to stop a train eration. It surely would take three minutes to stop a train
going at this speed with the ordinary hand brakes. A minute in railroading is a very important matter.'
Mr. King is hardly correct here. With handbrakes, pro perly and promptly applicd, the train can be stopped a quickly as by the power brake. At a speed of thirty-thre miles an hour a train can be stopped by hand brakes within a distance of 57 yards. At a speed of sixty-three miles an hour, within a space of 273 yards.

COLLAPSE FROM LOW WATER IN STEAM BOILERS

A correspondent writes from Phelps, N. Y. to tell us of a somewhat remarkable and very interesting instance of a peculiar effect which may follow the overheating of a steam boiler in consequence of a deficiency of water. The case fur nishes us an excellent text for remarks on the subject of "low water." A copper still, which had been in use, was,
by some oversight, completely emptied while the fire was by some oversight, completely emptied while the fire was
allowed to burn with undiminished intensity. It, as a nat ural consequence, quickly becamered hot. While in this con dition a quantity of cold liquid was run into it, when i instantly collapsed, being completely crushed in by the press ure of the atmosphere acting upon its exterior.
Our correspondent asks us to explain this, to him, most mysterious occurrence. Probably a very large majority of our most experienced and most intelligent engineers, if asked what effect should be anticipated in such a case, would and that there would be imminent danger of an explosion, occur. This case, however, is described by one of our read ers, who gives us his name, and we cannot doubt the authen ticity of the narrative. We can readily imagine, furthermore, how such an action might take place. A closed vesse used as a still, having pipes of small diameter for inlet and outlet, would, when the contents were drained off in the manner described, be left dry, but filled with highly heated aqueous vapor at atmospheric pressure. When the cold
liquid was allowed to re-enter, this vapor would be likely liquid was allowed to re-enter, this vapor would be likely
instantly to condense, and before the atmosphere could enter through the contracted openings in sufficient quantity to equilibrate the pressure on the exterior, collapse might occur. This we presume to have been the case in the instance considered, and we have here another reminder of the falsity of the idea, formerly so prevalent and which is by no means yet extirpated from the minds of some of even the most intelligent men having eharge of steam boilers, that " low water" must inevitably produce an explosion, and even that t is the principal cause of explosions.
Sixty years ago a crucial experiment was unintentionally ricd by the then well known Captain Bunker, who com manded John Stevens' steamboat, Phœnix, the craft which is celebrated as having been the first steam vessel to make a tr.p in the open sea. In the year 1812, jnst before the mom. orable trip from this port to Philadelphia, which the venturesome captain made with young Robert I. Stevens, the
boat was lying one night at the wharf, when, by some carelessness, the boiler became completely emptied of water
On discovering this unpleasant state of affairs, Captain Bunker at once, as he testifies in the report of the Secretary of the Treasury, December 12, 1838, turned on the feed water A crackling noise and some leakage, due to unequal contraction, were the only noticeable consequences. The same authority tells of a similar occurrence of which he was a witness which had no more serious results. Many such instances are known to have taken place, and the Franklin Institute of Philadelphia and individual experimenters have furnished ample evidence that, with low steam pressure, it is by no means certain, or even probable, that an explosion must be means certain, or even probable, that an explosion must be
consequent upon a deficiency of water in the steam boiler. This prevalent theory, which was, as we have seen, disproved even before it had become a tradilion, is too often made a scapegoat for those guilty of carelessness or recklessness in quite other directions.
It cannot, however, be too earnestly impressed upon those having charge of steam boilers that, although the majority of explosions are due to either ignorance or recklessness in working boilers too weak to bear the pressure to which they are subjected, low water may, and sometimes does, produce explosions. Iron heated to a red heat loses a large proportion of its strength, and at a white heat retains, practically, no cohesive force. A boiler under steam, therefore, if its heating surfaces become uncovered where liable to be overheated, will be apt to lose strength, as this overheating progresses until, at last too weak to sustain the usual pressure an explosion takes place. It is thus that such disasters usually occur, and not, probably, in consequence of pumping cold water into empty but overheated boilers.

Where a boiler still contains some water below the line of verheated surface, the introduction of additional water may, in rare cases, by suddenly cooling a part having, a moment before, a very high temperature, produce new strains that may precipitate a catastrophe; since, in such cases the boiler cannot become, in effect, a condenser, as in the example which prompted this article. The additional quantity of steam generated under such circumstances may also result similariy. Low water may, therefore, produce either explo sion or collapse, or it may cause no dangerous result, accord ing to the peculiar circumstances of the case.

THE PROPORED INTRODUCTION OF WATER METERS

The city authorities of Brooklyn are manifesting some ap prehension regarding the enormous waste of water in that city. That a vast and unnecessary drain is thus made upon the supply is fully evidenced by the fact that the amount now used averages fifty gallons per day for every individua of the population, and it is in view of the circumstanee that city of the reservoirs, now $40,000,000$ gallons, and necessitate the incurring of heavy additional indebtedness of the city that the municipal government is seriously considering the introduction of water meters. It is estimated that the expense of these appliances, extending their use into families, would be about $\$ 1,000,000$. and the yearly cost for repairs some $\$ 100,000$. All manufacturing establishments in Brooklyn are metered at the present time, and are paying at the rate of
two cents per hundred gallons. We notice that the Commissioner of City Works makes eference to the fact that numbers of the water meters now in use have cost with their connections from $\$ 50$ to $\$ 70$ each This sum, he justly believes, is unnecessarily high, and con The subject of introder in New York ha also been discussed for some time, and will eventually be adopted. It would be well for inventors to turn their at tention to this matter, as there will be a large market opened for cheap and efficient forms of water meters one of these days.

THE INTERNATIONAL METRIC COMMMIBSION AND IT

The commission formed of delegates from thirty nation which met in Paris and was charged with the determination f uniform standards of weights and measures based on the French metric system has recently closed its joint labors The countries represented were Belgium, Switzerland, Italy Spain, Portugal, Prussia, Greece, Turkey, the Spanish-Amer can republics, and English India, in which the French sys em is already in use; Austria, where it has been adopted since January 1st of this year, and England and the United States, which, without rendering the use of the metric stand
ard obligatory, have admitted its legal employment in con ard obligatory, have admitted its legal employment in con ection with the older method.
The Commission devoted its labor to the most exact exam nation of the standard in the French archives. The mode was a platinum bar of one meter in length from end to end It remained to determine whether the shocks to which it ba! been suimitted during its repeated use in verifying othe molecular construction, had not slightly altered its length, nd whether its faces were absolutely true
M. Fizeau, by a series of accurate investigations, showed that, while rules of iron and copper have varied in their con struction in courselof time, no similar property exists in iridia ted platinum, which is analogous to the metal composing the
bar in question; nor does this alloy ever vary in dilatability This point was therefore first established. Attention wa next directed to the extremities of the standard. Micro filament of cobweb almost in contact with the polished sur
face, it was found that the latter was regular and had suf fered no change. On the faces, the microscope showed among the circular lines, which proved the work to have been done by the processes of the lapidary, one apparently differing from those around it. In order to discover whether this facet had had any influence on the length of the meter, which it was necessary to be sure of to the one ten-thousandth fraction of a thousandth part, a very delicate microscope was constructed; and in order to measure this infinitesimal distance, the dust forming the globulous silica of the geysers of Iceland, and composed of little spheres perfectly regular to the hundredth of a millimeter indiameter, was employed. Through such accurate means as we have outlined, the length of the bar was determined not to have changed
The Commission then decided that to constitute the inter national meter, of which a copy should be sent to the government of each nation represented, the meter in the French ment of each nation represented, the meter in the French
archives should be reproduced in exact fac simile, and made archives should be reproduced in exact fac simile, and made
of iridiated platinum, that is, platinum containing one tenth of iridiated platinum, that is, platinum containing one tenth
part iridium, with a margin of two per cent more or less of part iridium, with a margin of two per cent more or less of
the latter metal. The standard will be constructed as a line the latter metal. The standard will be constructed as a line
one meter long traced on a rule of 102 hundredths of a meter one meter
in length.
Investigations similar to those already detailed led the commissicn to adopt, for the type measure of weight, the kilogramme of the archives in its actual state. This standard will also be of iridiated platinum and a fac simile of the old one. The copies will be executed by the French section of the commission with the assistance of a permanent committee, who will minutely follow all operations to their completion and final verification by the conference.

THE SEWING MACHINE MONOPOLY

To the Editor of the Scientific American:
Heaven bless you for opposing the reissue of patents to the great sewing machine combination! In our little hamlet of only a score of laborers' cottages, there are three cases which are eloquent petitions against it. In one, a soldier's widow with one crippled foot patiently uses the other to earn the exorbitant price of $\$ 87$ which her Wheeler and Wilson has cost her. In another, a sad eyed young mother, deserted by a cruel husband, is at work by the week to pay the same price for a machine, assisted by her noble young brother of twelve years, for her wages alone are not equal to making the required monthly payments and clothing herself and child. In the third, is a young girl who has fini shed paying for her machine by daily labor in carrying off brick and making flower pots in a pottery which is the nucleus of our little cluster of humble homes. That her eyes were bright and her smile ever cheerful while earning the machine which was to assist in doing the sewing in her father's large family is no reason why she should spend weeks of toil in adding money to the purse of a millionaire.
These cases are not exceptional; there are thousands even These cases are not exceptional; there are thousands even
worse all over the land, and in using your powerful influenc against this grinding, pitiless monopoly, you take a position n the foremost ranks of philanthropists.

Carbon Cliff, Ill.

The above is a fair sample of the results of the work of the monopoly known as the Sewing Machine Combination, the future existence of which depends upon the grant of new patent extensions by Congress. It is, as our correspondent demonstrates, from poer women that the greater portio of the profits are made.
We earnestly hope that Congress will refuse to entertain the extension. Poor people will then be able to buy sewing machines at reusonable rates
The Springfield Republican says: "The sewing machine ring is made up of the two Howe companies, the Willcox \& Gibbs and the Wheeler \& Wilson, Grover \& Baker and Singer. The first three are all controlled by Mr. Stockwell the new king of Wall Street, President of the Pacific Mail, Atlantic and Pacific, Samana Bay, etc. The ring are reported to have pocled up nearly half a million dollars to carry through a renewal of one of their representative patents. But it is a bad year for jobs at Washington. The members are becoming painfully virtuous or, rather, terribly scared. One of the sewing machine makers out of the ring predict hat, if the monopoly doesn't succeed in extending thei apiece within a year." The Troy Times adds: "We suspeet apiece within a year." The Troy Iimes adds: "We suspeet All machines will not soon sell for a dozen dollars each
All the best machines cost more than that. But there is no All the best machines cost more than that. But there is no
sort of doubt that the most approved sewing machines might be sold, with reasonable profit, for $\$ 20$ to $\$ 25$. It is one of the heaviest taxes now imposed on the industry of the country, to lift the price of sewing machines by royalty from $\$ 30$ to $\$ 60$ or $\$ 65$. We believe that nothing short of bribery will carry the proposed extension, of the patents about ex piring, through Congress. Let the people watch their repre sentatives upon this question.

THE ANNEXATION OF BROOKLYN TO NEW YORE.
The consolidation of Brooklyn and New York under a sin gle municipality is being discussed in both cities. The union would prove of material advantage, as the business relations
of Brooklyn are so closely connected with those of New York that it appears essential that both should be under the same government. The annexation of Brooklyn would probably be but the precursor of the absorptionof other suburbs with in the State into the corporate limits of the metropolis, th us giving to New York that vast increase in area, wealth and population to which, as the oatgrowth of her prosperity, sbtu is justly entitled.

Regibtering tell tale clook.

This is an apparatus for checking a watchman on his rounds. Fig. 1 is a front elevation, and Fig. 2 a vertical aection. A vertical revolving drum is placed in the center and is driven by the mechanism of the clock. To it is attached a sheet of paper divided perpendicularly into hours, and, by means of horizontal intersecting lines, into as many divisions, counted vertically, as there are localities to be visited. Each vertical division has a marker actuated by an electro-magnet placed on elther side of the cylinder. The wires are led through the back of the clock to the different stations, a each of which is a knob which must be pressed at the time of the visit. A circuit is thus completed, the armature of the electro-magnet attracted, and a vibrating motion imparted to the marker, the point of which impresses a dot on the paper through the medium of a piece of carbonized rib bon. If, says Engineering, the watchman fails to visit any point on time, the cylinder in the interval will be carried on, so that a blank space will appear on the sheet and thus prove the neglect. Fresh paper can be substituted when required. The clock is placed beyond the reach of the watch. man, and inspection in the morning reveals the fact as to whether he has been negligent or punctual in his rounds.

Camphor Wood.

Mr. J. Meldrum, Managing Director of the Johore Steam Saw Mills Company, at Johore, India, hore Steam Saw Mills Company, at Johore, India, forwards to us various interesting particulars re-
garding the use of camphor wood, which, he garding the use of camphor wood, which, he
states, may be applied to all purposes for which states, may be applied to all purposes for which
teak is used. The camphor tree belongs to the teak is used. The camphor tree belongs to the
order guttifera, and grows without cultivation in order guttifera, and grows without cultivation in the woods near the sea coast. It is frequently
found upwards of 15 feet in circumference, and found upwards of 15 feet in circumference, and high in proportion. For carpenters work the durable, and not liable to be injured by insects;
and it retains a pleasant and agreeable smell. It is especially suitable for shipbuilding and for the construction of wharves and jetties, as it is not destroyed by sea worms. Piles of this wood, in a comparatively good state of pre
servation, exist on the site of the old town of Johore, which servation, exist on the site of the old town
was abandoned upwards of 100 years ago
was abandoned upwards of 100 years ago
Our correspondent forwards a detailed report of tests made of this material, as regards strength, weight, etc. The breaking strain of a piece 3 feet long by $1 \frac{1}{2}$ inches broad, and $1 \frac{1}{4}$ inches wide, was 1,344 pounds. Its weight is 70 pounds per cubic foot. Large saw mills have been erect ed in Johore for the purpose of preparing this valuable timber for exportation.

IMPROVEMENT IN BAFETY VALVES.

Our engraving shows an arrangement of spring loaded safety valves for marine boilers, designed by Messrs. Pollit and Wigzell, of Sowerby Bridge, England, and lately applied by them on board a steamship which they are fitting with engines. It will be seen from the illustrations, says Eingineering, that the valves are of the ordinary form, and are fitted with the usual lifting gear; but on the top of the valve box are fixed two cylindrical casings, each containing a helical spring which bears upon a disk carried by the spindle of the corresponding valve. The lower ends of these spring casings are kept air and water tight by india rubber disks secured as shown, while at the upper end, each casing is fitted with a cap secured by a bolt and padlock, this cap preventing the spring from being tam pered with. The valves are quite free, and can be turned round by the two flat places formed on the spindles just above the valve box cover. The ar rangement is a very simple one, and the plan of
protecting the spring by means of an india rusber disk, which closes the mouth of the spring case, and at the same time does not interfere with the play of the valve, is, we believe, norel.

The Hoosac Tunnel Mineral Water Large pockets of water have been opened at the west heading of Hoosac Tunnel during the past week, keeping the miners completely drenched More than a year ago it was discovered that the water at the west end possessed medical proper ties, so that the workmen have avoided using it as a drink, choosing to be provided from a clea spring nearer the shaft and next to the mule stables. One tumblerful of this water proves an active cathartic; it leaves the skin soft and pliable when ap
plied for washing without soap. A plentiful deposit of plied for washing without soap. A plentiful deposit of a soft substance is found in the crevices of the rocks, and
when dried is an impalpable powder. Since the gushing when dried is an impalpable powder. Since the gushing
out of this water in such quantities, it is proposed to have an analysis of it, and to make some further experiments to ascertain its virtues.

The Oreeping Rall question.

A correspondent, J. S., suggests that one rail of a track may be extended beyond the other by the trainsin one direc tion being the heavier, as coal trains, which are loaded from the pits and empty when returning, usually are. But as this fact would apparently affect both rails of the track, J.
S. says that a diurnal side strain, produced by the rotation of the earth, would cause trains in both directions to press on one rail more than on the other, on a single track. C. T. and others have also written their opinions, and they attribute the phenomenon to the motion of the earth. But none of them recognize the fact that this is the first instance of the
kind on record, and that the two rails of a track are not suf-

REGISTERING TELL-TALE CLOCK

ficiently far apart for any such cause to lengthen one and not the other.

A Singular Rallway Aceldent
Recently, on the Hudson River Railroad, at Yonkers, N Y., a freight train came in collision at the depot with an engine which was on a side track. The engineer of this en gine jumped off just previous to this collision, having, as he says, shut off steam. No sooner had the collision occurred than off started the said engine northerly, with no one on board. It soon acquired a fearful velocity and at the next station, three miles distant, plunged into the rear car of a passenger train standing at Hastings depot, and made sad havoc. The car was split half open, telescoped upon the next car, etc. Two persons were mortally hurt, and others injured. The engineer of the runaway engine says that the

IMPROVED SAFETY VALVE

seems more probable that the gear was reversed by the en gineer and steam let on before he jumped off. The collision was due to the non-observance of the danger signals by the engineer of the freight train.
A GOOD trade is always a comforting companion to trave with, a something that a man can fall back upon in time of need, and yet it does not preclude him from entering upon some profession, if his inclinations or genius develope the proper capacity. In fact, our most successful business men in almost every capacity are from the workshops and farms
THe best linseed oil is yellow, transparent, and compara tively sweet scented, and has a flavor resembling that of the
cucumber.

The Imperial German Admiralty recently decided to build hree armor-clad vessels, the Grosser Kurfüst, the Friedrich der Grosse, and the. Borussia; the two former are being built at the Imperial docks of Wilhelmshaven and Kiel whilst the latter vessel, the Borussia, has been ordered of the Vulcan Engineering company, at Bredow, near Stettin.
ithe Borussia is an armored-turret ocean-going ship, and has a length between perpendiculars of 308 feet $6 \frac{8}{4}$ inches, the greatest length being 318 feet and 2 inches, with a breadth of 53 feet and $6 \frac{1}{2}$ inches, and a depth of 34 feet 10 inches, from upper deck to keel. The displacement of the vessel, completely armed and fitted, will amount to 6,748 tuns. The draft of water in sea-going order has been fixed at 23 feet 8 inches amidships. An armored casement surrounds the two turrets, which project 6 feet 2 inches above the upper deck; this casemate is separated from the fore and aft part of the vessel by armored transverse bulkheads, whilst these parts are pro tected only between wind and water by an ar mored belt reaching from about 6 feet 2 inches below water up to the battery deck.
The ,turrets, the port sills of which,are 13 feet 54 inches above the water line, will be armed each with two $10 \cdot 23$ inch naval guns of the newest construction, and are to be moved either by separate engines placed between the decks, or by manual power. Besides the four guns in the two urrets, both in the forecastle and in the stern a 6.69 inch gun will be placed. The funnel is ituated between the two turrets, and is thus pro tected, by the latter and the armor plates of the casemate, to the hight of the turrets, against the enemy's fire
The bow forgings, with the spur in two pieces connected by a joint plate, will weigh about 18 tuns, whilst the stern post, which, welded toether with the rudder post, forms a large frame, will have a weight of about 30 tuns.
The arrangement of the connection between the various parts of the Borussia will give her a great strength with compratively small weight of hull. She will be con a comparatith a double and watertight bottom.
During action the chief protection will be offered to the essel by the armor, which rests with its lower edge pon the armor framing about 6 feet below the full load water line; the thickness of the armor will be $18 \cdot 50$ inches. The arm, plates at the water line are $9 \cdot 25$ inches thick below the water line 7.28 inches, and above water 8.26 inches; these thicknesses decrease towards the ends to $4 \cdot 13$ inches. Before the fastening of the armor plates, the inner skin is covered with a backing of teak about 10.23 inches thick, but varying with the thickness of the plates; angle irons are used for fastening this layer of teak to the outer skin. The armor plates are fastened by means of strong bolts $2 \frac{1}{2}$ inches diameter with conical heads fitting exactly in corresponding holes of the plates. The nuts of the bolts of the armor plates ar provided with double washers, between which \& proved of rubber is placed in order to preven thickness of as far as possible the tearing off of the bolt head when the armor plates are struck by shot. The armored cross wath of teak $8 \cdot 26$ inches thick.
The two turrets, each of 26 feet 9 inches diame ter, will be constructed of plates and angle irons they extend, as already stated, from 6 feet 2 inche above the upper deck to the battery deck, and are covered with armor at the parts only exposed above the upper deck. The plates of these tur rets are $8 \cdot 26$ inches thick, with the exception o those through which the porthole for the gun are cut, and which have a thickness of $10 \cdot 23$ inches the backing of teak in the turrets is only 8.26 inches thick.
The following are the weights of material used for the hull of the vessel, the masts, and the turrets

the
It is expected that the
unched during this month.

treet Architectural Lawe of Paris.

The hight of the facade of buildings on the public streets of Paris is deternoined by the width of the streets. This hight.measured from the sidewalk and taken in every case in the center of the facade cannot exceed, including entablature, all stone and all construction pertaining to the front wall, the following ules, namely: 38 feet in hight for streets less than 26 fee wide; 48 feet in hight for streets 26 to 32 feet in width 58 feet for streets exceeding 32 feet in width; and fo boulevards, and streets exceeding 65 feet in width, the municipal authorities shall be able, for the sake of propor tion and harmony in the lines of construction, to permi the hight to be carried to a maximum of 65 feet, upon condition that in no case shall the building have more han five full stories above the first story. The outline of the roof on the street front shall not project beyond a of the roof on the street front shall not project beyond a
line drawn at an angle of 45° from the cornice of the facade.

March 8, 1873.]

§゙itutific Amunicau.

ETILWELL'S LIIE EXTRACTING HEATER AND FILTER.

The object of the invention, which we illustrato herewith, is to remove all foreign substances which produce scale from feed water before it enters the boiler, so that the water is supplied to the generator in a perfectly pure condition. The operation of the heater will be readily understood by reference to the sectional cut. The escape steam coming from the engine is divided and enters the apparatus in two from the engine is divided and enters The cold water as it flows in a thin sheet over the edges of the overflow box, dashes it into spray, and sets free the earthy salts held in solution, which are deposited upon the shelves. The lower current of steam enters beneath and meets the descending water as it passes from shelf to shelf, completing the work of thoroughly boiling the water. The water in passing over the large area of surface contained in the shelves deposits upon them all that portion of the salts held in solution that will crystal ize. It then descends to the bottom of the heater and up through the filtering material contained in the chamber, c, which relieves it contained in the chamber, c, which relieves it
of all mud, sand, and other impurities, the water leaving the heater, at J, boiling hot and pure. The docr, H, is held in place by rabbeted bars and can be taken off in a moment and the shelves all drawn out, thus giving ready access to every inch of the heater, and rendering its cleaning a short and easy task.

The device is claimed to be an established success, over 3,000 being now at work. We are informed that it has been fully tested over a period of nine years, and that it is guaranteed by its makers to completely prevent incrustation. It is considered especial. ly suitable for use in southern and western sections of the country, where the water is almost uniformly impure. Several patents have been granted upon this invention, the latest of which is dated August 3d, 1869. Further particulars may be obtained by addressing the Stilwell \& Bierce Manufactur ing Company, Dayton, Ohio.

LOCAL BOILER INBPECTION.

In our paper for February 22, a correspondent, Mr. T. Leon Chester, asserts that the State law for boiler inspection has been repealed. But notwithstanding the repeal, some of the deputies, so our correspondent alleges, are going about in Westchester county, inspecting boilers and demanding six dollars for such inspection. Is it not a fraud, he asks, to make manufacturers, brewers, etc., pay for inspection under
law which is not in existence?
Mr. John Worthington, who is the deputy inspector for the tenth Congressional district, which embraces West chester, Rockland and Putnam counties, calls our attentio to the fact that Mr. Chester has made a gross mistake. The law has not been repealed but is still in force, and Mr. Wor thington is regularly engaged in the discharge of his duties as inspector, which we have reason to believe are faithfully and skillfully performed. Of course no one who knows Mr Worthington would for a moment suppose him capable of being a party to the practice of a fraud. We think that our correspondent was very culpable in not looking to see whe her the law had been repealed before making so positive an assertion in respect thereto, and in casting an aspersion upon the inspector of the district. It appears that a bill was intro uced into one of the branches of the legislature looking to a repeal, but the bill failed to pass.

\triangle NOVEL FORY OF REY.

The key represented in our illustration is composed of fou pieces of metal so combined as to form a perfect device, and to be used in any lock constructed with reference to its pe culiar form. The bow or handle is attached to a stem which slides freely in a sheath. Pivoted to the latter by a rivet is the curved piece, \mathbf{A}, while the similar piece, \mathbf{B}, is secured in

like manner to the stem. Both pieces are connected together by a pin, and form a movable bit, which is thrown out orin as the handle of the key is pushed from or drawn toward the operator. By this means, when the bolt of the lock is properly constructed, it will not be necessary to turn the key at all to unlock the door, as the bolt is forced back simply by an inward pressure of the key bow. This novel device is he invention of Mr. Addison A. Stuart, of Cedar Rapids, Iowa.

The Western Union Telegraph Company has purchased the control of the telegraph cable between Florida and Cuba.

A Varlety Manufactory.

In the city of Buffalo, N. Y., there is a large manufactory devoted to the construction of a remarkable variety of use ful and curious machines and novelties. We allude to that of Mr. Parr, whose labor saving machines, tool chests, car penters' and gardeners' implements, mathematical and art ists' appliances, and a great variety of other articles are described more fully in our advertising columns. In addition to the above, he has recently added to his stock small sta-

STILLWELI'S LIME EXTRACTING HEATER AND FILTER

BELF-LIGHTING SIGNAL LANTERN.

In 1871 we described a signal lamp, invented by Holmes, which, on immersion in water, was self-lighting, and produced a brilliant illumination. Its principle rests upon the use of phosphide of calcium which, in contact with the water, developes spontaneously combustible phosphureted hydrogen gas. A German engineer has recently been expezimenting with this lamp. A long tin tube, firmly closed, in which were contained 900 grains of phosphide of calcium, was kept afloat upon the water by being fastened to a piece of board Before put ing it into the water the bottom of the tube ting itint the water of the of the tabe wa the upper point cist 00 that ont and the upper point cut off so that, on the entrance of the water, the self-lighting phosphureted hydrogen gas was developed. A flame, four or six inches broed and 24 inches high, lighted up the steamboat and pilot boat, which had gone out four miles on the sea with a party to witness the experiments, so brilliantly that the ves sels and men upon them were distinctly visible from the lighthouse at that distance. In a tolerably heavy swell the flame wa preserved for three quarters of an hour and appeared at the distance of one or $t w$ miles like a strong signal fire. In the immediate vicinity for a distance yards, the light was strong enough to allow of any work being done. For pilot and wrecking service, this signal fire can be highly recommended
The preparation of the phosphide of cal cium can be accomplished as follows: In the lower part of a narrow deep crucible, a hole is drilled for the reception of the neck of a flask, which is luted into the aperture; quantity of dry phosphorus is placed in the flask, and the crucible is filled with quick lime broken into fragments of about the size of a hazel nut; a lid is then luted upo the top of the crucible Time having bee given for the luting to become dry, the up per part of the crucible is raised to a red
ionary, marine, locomotive, and fire engines, and steam boats; also all the various implements used in fabricating Sorrento work, which has become quite a fashionable em ployment among amateurs and ladies of industrious and mechanical proclivities. Boxes of assorted chemicals, with directions for performing amusing and instructive experi ments, are among Mr. Parr's latest novelties. One of th arger boxes contains some 150 different chemicals, making quite an extensive portable laboratory for simple experi ments. To enumerate and describe all of the articles of utility and novelty madeand sold at this manufactory would occupy several columns of newspaper space. We would rec mmend parties to send 25 cents to Mr. George Parr, Buffalo, N. Y., and obtain a copy of his illustrated catalogue. They will find it entertaining, even if they do not wish any of his goods.

\triangle NEW BOTTLE STOPPER

Mr. William Morgenstein, of New York city, is the paten ee of the ingenious device, for closing the mouths of bottles

represented herewith. The stopper is made of india rubber, cork, or other elastic material. Around its upper portion a recess or groove is cut, as at A, so that when the head, B, of the stopper is pushed through a hole in the supporting plate C , the latter, engaging in the recess, firmly retains the stop per in place. The wire represented is passed through an ey on the plate and made into two loops, opposite to each other to one of which is attached a cam-shaped catch. The latte presses over a raised lip on the plate, C, holds the same down and thus securely closes the bottle. By forcing the catch back, the supporting plate is released and the stopper can be readily withdrawn.

What Our Friends Think of the Scientific American. An esteemed correspondent, writing from Mound City, Ill. sends us a variety of useful items and says: "I send thes items partly to gain instruction, and partly to instruct others you will read them and glve place to such as are worthy to do in the like to run any risk of doing without a single num ber, because this paper helps me to support my family. True it does not bring greenbacks tacked to its edges, or family groceries in its folds; but by carefully reading the valuable and control the machinery with which I earn my livelihood."
hea of the crucible is raised to a red it with ignited as quickly as possible by surrounding wh been filled charcoal, the lower part of the furnace hav ing been filled with cold charcoal to prevent the heat from
reaching the phosphorus too rapidly; the phosphorus be omes gradually volatilized as the heat reaches it.
If the heat be too high, the phosphorus distils over without combining with the calcium. The phosphide of cal ciam, when procured in this manner, forms an anhydrou mass of a dull red color, hard enough to strike fire with tcel; it experiences no change in dry air or in oxygen a he ordinary temperature. At a high temperature it become partially decomposed by oxygen, chlorine, or hydrochloric acid; in a moist atmosphere it slakes, emits phosphureted hydrogen, and crumbles to a brown powder. The phosphid calcino inits ingulated form is decomposed when thrown into water; phosphuretted hydrogen gas is evolved, which takes fire spontaneously. It is necessary to keep the prepa ration in hermetically closed vessels. Where the phosphid is required to be attached to life preservers or signal buoys, it can be inclosed in tubes which are stoppered with some salt that will dissolve off in contact with water. In case o a man overboard in the night, his position could be detected by the employment of floating grenades of phosphide of calcium thrown from the ship.
It has been stated that, by fusing magnesium filings and phosphorus together, a compound results which can be em ployed as a substitute for the phosphide of calcium in the evolution of phosphureted hydrogen gas. As magnesium can now be procured in considerable quantity, this method may be worthy of a trial.

COMBINED BLACEING BRUSH, BOX, AND HOLDER
This device is especially adapted to the needs of travelers, as it enables two blacking brushes and box of blackingto be towed in very small compass, without danger of soiling any article which may be near them. The handle of an or.

dinary brush is made into a case, in which are cut two circular mortises, one of which receives the box of blacking and the other the bristle portion of the dip brush. The handle of the latter closes the recess, forms a cover, and is secured in place by the two buttons shown. The dip brush is reverible, and fits on either of the circular mortises. To Mr. E. W. Woodruff, of Washington, D. C., is due the credit of this useful little invention.

The rate of telegraphing between this country and Europe ast of May, next, to 75 cents per word.

Citureypoudetce.

The Recent Boller Explosions.

To the Editor of the Scientific Amucrican:
We notice, in your issue of February 22, an article on boiler explosions at Conshohocken, Pittsburgh, and elsewhere. The information in regard to our lamentable catas trophe appears to come from Mr. Le Van, of Philadelphia, and as we know you well enough to believe that you do no wish to misrepresent or injure any one by a false report, we give you the facts in the case: The boiler was ordered and made in 1853, and was put in use in 1854. It was of the best charcoal flanged iron, the shell being of the thicknes: of No. 2 wire gage, and the flues were $\frac{1}{t}$ inch thick. The boiler was 54 inches in diameter, 18 feet long; the flues were 16 inches in diameter, and not 18 inches; the shell is fully inch now, and the flues are very little under the origina thickness. The quality of the iron has been pronounced, after testing since the explosion, to be very superior, and not poor and crystallized. It will bend or flange either when hot or cold, without showing the smallest frac ture, and it will stand a tensile strain of $70,000 \mathrm{lbs}$. to the square inch, which is 20 per cent stronger than ordinary shell or cylinder iron, now used for boilers, is. Your in formant also says: "It exploded whilst the steam gage showed only 53 lbs." The fact is that there was no steam gage attached to the boiler, as it was shut off from the rest, having been stopped for repairs. The engineer, who had liad charge for 10 years, was under the impression that the steam was not high enough to open the valve to equalize with the other boilers, as it was not blowing off at the safety valve; and he was preparing to open it when the explo sion took place. The boilers that were at work at the time were carrying 70 lbs. as indicated by the steam gage. We cannot see how Mr. Le Van arrives at the conclusion that the boiler exploded at a pressure of 53 lbs ., or how he or any one could say it was 53 or 153 or more. Who can tell whether the safety valve was stuck or not, or how much pressure was on it, or what was the real cause? We would give a good deal to know. We are under the impression that this boiler would have carried 150 lbs. pressure without ex ploding, and, from the terrible results shown, it must from some cause have had more on it. The manner of firing and starting in this case was the same as had been followed for 20 years, without a single accident or the loss of a single life. It really seems unaccountable to us. Many flying reports and rumors have been put in circulation by the report ers of some of our sensational newspapers, who catch at every thing without knowing anything about the facts. It would be foolish in any man to suppose that we would risk our lives, the lives of our workmen and our property by running a boiler that there was the least reason to ansafe
J. Wood \& Brothers.

Philadelphia, P

Ignition by Steam Pipes-

To the Editor of the Scientific American
In your issue of February 8, you publish a communication from A. F. Nagle, Mechanical Engineer of the Providence Wa terworks, which, although true in every fact stated, does me great injustice by not stating all the facts; and it must lead to the conclusion that the Miller boiler is dangerous, as it will set buildings on fire when other steam generators would be perfectly safe. I would therefore request the insertion of this communication as an act of justice, as well as for the further light it may throw on the question of superheated steam. The pumping engines at the Providence Waterworks, as Mr. Nagle states, are covered with felting and blach walnut lagging; this lagging has been repeatedly saturated with linseed oil, rubbed down till it had acquired a fine finish. The engine is one of Worthington's compound cylinder engines, in which two cylinders are placed horizontally side by side; the steam chest is situated between the two cylinders and above the same; and the lagging generally, conforming to the cylindrical shape of the engine, forms here a square box with a level top. In this top was a trap door; and in the square box, below this door, the fire originated. The en gines were new, the lagging was new and had not yet reached the perfect finish which the engineer expected to see on it when it would be more thoroughly saturated with oil and rubbed down. The level top of the steam chest and the joints of the door certainly facilitated the admission of oil to the felting; and when you consider that this felting was over
the level surface of the steam chest (where the effect of hcat would be greatest) and that this level surface was a convenient place for a temporary deposit of oily waste when wiping up the engine, it is evident that here spontaneous conibustion would be most likely to take place. That the higher temperature of the steam from the Miller boiler may have facili tated the ignition, I am ready to concede, but must object to the inference that it caused the ignition of the felting. The steam generated in the Miller boiler, before reaching the steam chest, had to ascend the main steam pipe four fee thence, pass on a level through the said main over the tubu lar boilers (some sirty feet), and then descend 8 or 10 feet to the steam chest. The whole length of this pipe is felted and well lagged, and the temperature of the steam in this pipe must, of necessity, be greater than in the steam chest, being from 8 to 10 feet higher, and from 40 to 80 feet nearer the source of heat; and yet this steam chest, with every provision for spontaneous combustion and every probability of a lower temperature than the steam main, is the place where the fire

originated.

But unfortunately, to most of your readers, the ugly fact still remains, that the steam of the Miller boiler was super-
heated beyond the temperature at which saturated steam would have been at this pressure; and this is the diticul part of my defense. You, Mr. Editor, and most of you readers, are aware that I have frequently, in your columns, expressed my conviction that the amount of water, passing hrough a steam boiler per pound of coal burned, is no crit an to its value as an economic generator of steam. W o not want to evaporate water; we want to get the larges mount of power from the smallest amount of coal, and it well known fact that the motor in which the difference of emperature between the inlet and exhaust is greatest pro-
duces the most economical power. The Miller boiler erected duces the most economical power. The Miller boiler erected
at the Providence Waterworks was specially constructed to test the question whether it is, in reality, economical to gen erate steam on my system, in which the water is progres-
sively exposed to increasing temperatures antil made into sively exposed to increasing temperatures until made into
steam, this steam, dried and superheated, instead of being steam, this steam, dried and superheated, instead of being stored up in large steam domes, being at once sent to the en gine to do its work. The lifting of a certain quantity o water from a given level to another higher one being the ost perfect and satisfactory test, I spent a large amount o money, besides time, care and labor, to settle this importan as to the manufacturing community the engineering as wel ublish the results of this trial, sent herewith; and rour readers will see if the test proves that dry and even superreaders will see if the test proves that dry and even super-
heated steam is economical. If asbestos be used instead of fet, no danger from fire need be anticipated. In conclusion, let me say that many of our largest establishments are using steam generated by the Miller boilers; and a Corliss engine vill cut off at 65 lbs. when using this steam, but will not cut off with 85 lbs. using ordinary steam, doing the same work These boilers have been in use for two years and over, vary ing in power from 75 to 500 horse power; and in no case hav they suffered from the high temperature, nor have any fire ver been caused in any of the establishments using them.
Whether the burning of the lagging in this case wa caused by the steam or by spontaneous combustion, I leav to the intelligence of your readers to decide; whether dry team is a desideratum, the trial must establish.

Joseph A. Miller, C. E.
 Date.

DETY BY CORNIBA RULI.

Water evaporated per minute, pound.............:
Work done perib.of waterevaporated, $\neq 0$ oot pound
Volume swett th
Resetatance, ITHe.
Work done per
ough per minute cublc feet.
Not

 Calculated Presisi
Presare in man
Correction ford
Pressure tin

be. per squaire foot

onpan

Net area of plunger in square feet.
Averake len gth of stroze, feet....

Remaprs by the Editor - When we publid
Remariss by the Editor.- When we published the let or of Mr. Nagle, we stated in our comments that the com bustion which he attributed to the steam pipes was probably
duc to the presence of oil, either in the wood casing or the due to the presence of oil, either in the wood casing or the
felting. Mr. Miller's statement confirms our supposition, and conclusively shows that the case is properly to be classed among examples of spontaneous combustion due to the pre sence of oil in combustible materials.
We do not think that any of our readers would be apt to regard Mr Nagle's letter as in any sense damaging to Mr. Miller's boiler. If so, any such idea will be removed from their minds on examining the very full and satisfactory report of the boiler trials, which Mr. Miller gives above

Sulphite of Lime in Cider.

To the Eaitor of the Scientific American:
Your correspondent, William A. Barnes, on page 4 of the cuerent volume, says that if I will study the chemical effect of sulphite of lime, I will see that it has no disposition to appropriate the oxygen already combined. If I understand the philosophy of breathing, free oxygen is absorbed by the
blood in its passage through the lungs, which afterwards, blood in its passage through the lungs, which afterwards,
while passing through the capillaries and other blood vessels in all parts of the body, combines chemically with fatty and
other combustible matter, producing heat and carbonic acid Or, in other words, the oxygen absorbed through the lungs supports the combustion that furnishes the animal heat, a the same time burning out from the blood certain waste products which would prove injurious were it not for this means of purification. As most substances, after being digested in he atomach, are carried by the lacteals to the blood vessels, I thought the sulphite might rob the blood of a portion of ts free oxygen, but from an experiment that I have since made, I think that it does not do this to any considerable extent, if at all.
So much for theory; now I will give my experience. Las all, I procured a pound of sulphite of lime in three packets, marked with the name of a well known chemist, and said t contain the proper quantity for one barrel. I treated severa allons of new cider with the quantity of the sulphit ndicated by the directions. It did keep the cider from etting sour, but it in a great measure destroyed the flavo of the cider, beside imparting a disagreeable taste of its own After exposing some of the cider in an open tub for about ix weeks, it has nearly lost the taste of sulphite of lime but has not in my opinion half the flavor that it had when new. The sulphite was marked neutral, and it did not change litmus paper. A mouse, fed on dough made of (ira ham flour with one part of the sulphite to three or four of lour, died in about thirty-six hours ; and on a repetition of his experiment, another mouse died in about the same lengt f time, while a third mouse in another cage fed on a simi arly prepared mixture of sulphate of lime remained healthy I attempted to test the excrement of one of the mice fo tarch, to find if the sulphite interfered with digestion but found that the sulphite would mask any reaction with odine, even after the addition of boiled starch. And on further experiment, I found that the sulbhite would in tantly destroy the blue color of iodide of starch. C'an you xplain this reaction?

Henry A. Sprague.
Charlotte, Maine.
Remares fy the Editor.-Where an excess of sulphite f lime is used, some of it dissolves and imparts a disagreea ble flavor, and may prove dangerous. If pure sulphite i aken in proper proportions, it prevents fermentation by ab sorbing free oxygen, and is changed to the sulphate, which settles to the bottom. The blue iodide of starch wa bleached by the sulphurous acid of the sulphite; and to pre vent this, only minute quantities must be taken. The sam reaction takes place when we liberate iodine from iodide of potassium by means of chlorine. The blue color will disap pear in an excess of chlorine. The experiments of our cor respondent seem to show that sulphite of lime is fatal to lower animals and to indicate the necessity of using no mor to keep cider sweet than will be at once converted to sul phate.

A8TRONOMICAL NOTES

Observatopy of Vasar College
For the computations in the following notes (which giv only approximate places), I am indebted to students.

Mercury

On the 1st of March Mercury rises at 7 A. M. and sets a h. $20 \mathrm{~m} . \mathrm{P}$. M. On the 31 st it rises at $5 \mathrm{~h} .53 \mathrm{n} . \mathrm{A}$. M., and sets at $7 \mathrm{~h} .12 \mathrm{~m} . \mathrm{P}$. M.
According to the American Nautical Almanac, Mercury has its greatest elongation on the 18 th. It souths at tha time an hour after noon, and should be visible after sunset Venus.
On the 1 st Venus rises at 8 h .12 m . A. M., and sets at 9 h 48m. P. M. On the 31st it rises at 6 h . 57 m ., and sets a 9h. 57 m .
According to the American Nautical Almanse, its great est brilliancy is on the 29th of March

Mars.

Mars rises on the 1st a little before 11 P. M., and set a little after $9 \mathrm{~A} . \mathrm{M}$. On the 31st it rises at 9 h .5 m P. M., and sets at 7 h .20 m . A. M.

Mars has become more conspicuous from its increasing diameter, and is a very noticeable object in the early morn ing.
The star Antares, which resembles Mars in its reddish light, is well seen at the same time, east of Mars some 24° and south of it (when on the meridian) about 13° on the 1st of March.

Jupiter.

Jupiter rises on the 1 st of March at 4 h .16 m . P. M., and sets at 6 h .6 m . A. M. On the 31st it rises at 2 P. M., and sets at 4 in the morning.
On the evening of February 4th, the fourth satellite of Ju piter was seen to pass across the disk of the planet. Be ing between the earth and the planet, it seemed to be pro jected upon the planet, as a grayish brown spot, not quit circular in shape; as it left the planet's disk, it seemed or more than three minutes, to hang upon the limb.
The third satellite, at about its greatest distance from Ju piter, showed, through the large telescope, a disk irregular in shape and hazy in outline.
The broad central belt of Jupiter was slightly reddish.
Saturn.
Saturn is increasing in apparent size. It rises on the 1 s Saturn is increasing in apparent size. It rises on the 1 st
t 4 h .44 m . A. M., and sets a little after 2 P . M. On the 31 st it rises at about 10 m . before 3 A . M., and sets a little af ter noon.

Uranus.

Uranus rises at $2 \mathrm{~h} .23 \mathrm{~m} . \mathrm{P}$. M. on the 1 st , and sets about A. M. On the 31st it rises 20 minutes after noon, and
sets about 3 A. M.
Neptune rises at 8 h .26 m . A. M. on the 1 st , and sets at 9 h .23 m . P. M. On the 31 st it rises at 6 h . 30m. A. M., and sets at $7 \mathrm{~h} . \mathbf{3 0 m}$. P. M.

Sun Spots.
About February 18, a long chain-like group of spots could be seen on the sun. Although some of themhave already passed the center of the disk, the last of the group may be seen for some days.

sCIENTIFIC AND PRACTICAL INFORMATION.

iron yellow and iron green pigments.

It is desirable to have yellow and green pigments free from lead and arsenic, as both of these metals are the occasion of much mischief. An iron yellow, called siderin yel looc, has been introduced to the trade: it is prepared by add ing a saturated solution of bichromate of potash to neutral chloride of iron. A bright yellow precipitate forms, which, after thorough washing, proves to be a basic chromate of iron of a fixed chemical composition. This pigment, known as siderin yellow, can be used as a water color, also with drying oil, and, when combined with soluble glass, makes a fine yellow cement that sets rapidly and is insoluble in water.
If siderin yellow be mixed with ultramarine blue, fine green results, which can be also mixed with soluble glass, and could be substituted for the dangerous arsenic green in many arts. In the preparation of iron yellow, the following are the proportions to be taken : 433 parts of weight of crystallized chloride of iron, in which there are 325 parts anhydrous chloride, require for complete decomposition 1,473 parts bichromate of potash. After mixing and boil. ing the aqueous solutions of the above salts, 378 parts by weight of basic chromate of iron, siderin yellow, is precipitated. There remain in solution 1,049 parts chloro-chromate of potash and 389 parts yellow chromate of potash.

protecting petroledm from fire.

Charles A. Jordery of Paris has discovered that a small quantity of soap wort (saponaria officinalis) । owder produces in combination with petroleum an emulsion of the consistency of lard or, rather, thick glue. This mixture flows with difficulty, and does not infiltrate into the fissures of leaky vessels. When ignited, it burns with a weak flame, easily extinguished and having no resemblance to the fierce detlagration of the light oils in their ordinary state. A small quantity of an aqueous extract of the powder is necessary, to which about thirty times its volume of petroleum is added little by little, and continually stirred. The result is very much the same as mixing salad dressing, the oil gradually thickening until a pasty mass is oltained. In this condition it is suggested that petroleum may be stored for any length of time or transported long distances with little danger from fire.
To regain the oil in its limpid condition it is only necessary to add a few drops of carbolic acid, or a somewhat
larger quantity of crystallized acetic acid. The reaction takes place instanily, and in a very short time the petroleum appears pure and clear with all its properties intact floating above the soap wort extract. It is stated that the augmentation of the price of the oil chrough the use of this process would not exceed one quarter of a cent per quart.
This saponine process for giving to petroleum the consistency of thick gum was patented in the United States May 7, 1872, No. 126,55\%. The specimen we have seen resembles 1872, No. 126,552 . The specimen we have seen resembles
closely the paste employed by bill posters, and could be closely the paste employed by bill posters, and could be
transported in ordinary wooden tubs, and would sot be like transported in ordinary wooden tubs, and would not be like
ly to take fire unless exposed to great heat; but the cost of ly to take fire unless exposed to great heat; but the cost of
treating petroleum on a large scale in this way would put treating petroleum on a large scale in this way would put
the article on a par with sperm oil or paraffin. In fact, we should think that parafin candles would be more economical than the patent oil. The whole thing is too much like combising butter with lime, to be subsequently set afloat by sulphuric acid after it reaches the city. Neither process is feasible on a large scale.

uses of bisulphide of carion.

From a new work of Dr Rudolph Wagner, "Die Chemische Fuhrik-Industrie," we extract the following: Until 1850. the only technical application of bisulphide of carbon consisted in vulcanizing and dissolving caoutchouc. Since that time, however, this substance has been applied to a good many purposes. 1. For the complete extraction of fat from bones for the preparation of bone black. Ten or twelve per cent of fat can be obtained. 2. For the extraction of oil from seeds and olives; large quantities of olive oil, rape oil, linseed oil, hempseed oil, palm oil, and cotton seed oil are obtained in this manner. 3. For the extraction of sulphur from sulphurous earth (according to Moussu) and of phur from sulphurous earth (according to Moussu) and of bitumen from bituminous rocks. 4. For separating fat
from wool, woolen tissucs, and rags from machine shops, by from wool, woolen tissues, and rags from machine shops, by
Seyferth's patent. 5. For the extraction of the soluble prinples of spices, according to the process of Bonière of Rouen, France. 6. For the manufacture of yellow prussiate of potash aceording to Gélis, and of sulphocyanide of ammonium for the fabrication of the toys called Pharoah's serpents. 7. Forthe preparation of the Fenian or liquid fire, a solution of phosphorus in bisulphide of carbon, with which projectiles for riffed guns are filled. 8. In silver plating a small quantity of bisulphide of carbon is added to the silver bath, so that a brilliant deposit may at once be effected. 9. For killing rats, mice, moths, ground worms, and other vermin. 10. As a motor for steam engines; all systems of stean engines, with or without expansion, can be run with bisul engines, with or without expansion, can beils at 115° Fah

The construction requires no essential alteration, but, since bisulphide of carbon dissolves fat and oil with ease, water must be used for lubricating.

ENAMELING PUMP CYLINDERE

Cast iron cylinders can be enameled in the following man ner, according to Amtmann: To separate the graphite, they are laid for twc or three hours in an acid bath, and then well washed off with water and brushes. A mass, consist ing of 34 parts quartz, 15 parts borax, and 2 parts carbonate of soda is then uniformly spread on; the pipes are then heated for ten minutes in a muffe of a semicircular cros section of the width of 36 incher, and 9 feet in length. They are then withdrawn, cooled, and coated uniformly with a glazing composition consisting of 34 parts felspar, 19 parts quartz, 24 parts borax, 16 parts oxide of tin, 4 parts fluor spar, 9 parts carbonate of soda, and 3 parts niter. The nass is prepared by melting the materials together in a cru cible and then grinding them in a mill, with the addition o water. After the cylinders have been covered with the glaz ing, they are heated in a muffle to a white heat for twenty minutes, whereupon they are withdrawn and coated with coal tar before they are quite cold. In practice, they have been subjected to a pressure, and showed no cracks, proving hat the combination of the materials was thorough and complete. At
unsuccessful.

An important improvement has been effected in the manu acture of caustic soda by the introduction of a blast of ai through the melted mass. The caustic soda, as prepared from from soda ash by means of lime, is contaminated with carbonate of soda, cyanides, and sulphur compounds; the lat ter are particularly deleterious in sumerous operations, and much attention has been bestowed upon getting rid of them Formerly some saltpeter was added to the lye and the sul phide of sodium was oxidized to Glauber salts, which was less objectionable, but the process is expensive and the result not satisfactory. W. Hebig, of Gera, Germany, has modfied the operation by blowing air through the fused soda, by which the sulphides are oxidized and the cyanides decomosed. The operation is conducted as follows: The soda ye is evaporated in iron kettles, and a point is reached at which the cyanogen and ammonia compounds are decomposed and graphite swims on the top. Finally the contents of the kettle are heated to redness and melted to a thin liquid; while in this condition, a current of air is passed through. Graphite floats on the top which is sometimes saved but owing to its crystalline texture, is not adapted to paint or pencils and is often burned up as useless. The air blast is made so strong as to keep the mass in agitation, and is con tinued until all of the sulphur is oxidized. The operation is then suspended, the air tube is removed, and the soda poured off the sediment and allowed to solidify. A good product is secured in this way more cheaply than by the saltpeter process. The graphite obtained as an incidental product is quite crucibles.

Inquiries have been made for a good oil test, and all sorts of nostrums of the " magic," " lightning," and other brands are to be found in the market. It is not easy to find a simple test that will prove decisive on all occasions, but an approximation can easily be made. A convenient test to those bout a factory or workshop is the nitrate of mercury. To prepare this reagent, dissolve metallic mercury in an excess of nitric acid ; after all the mercury is dissol ved, evaporate the iquid over a water bath to sirupy consistence and add a lit te nitric acid, and store in a glass stoppered bottle. The ni rate of mercury must not be permitted t s, come in contac with the skin or clothes, as it will stain and destroy both. Pure standard samples of oil should be kept on hand for making comparative tests. Take onenpart of the nitrate of mercury and three parts of oil and pour them into a test tube; prorect the thumb with a piece of india rubber, and shake well and notice the appearance of a specimen of pure oil as compared with a sample suspected to contain impuritics. We can in this way soon learn by experience how to detect a poor article. After making the observation with the nitrate mercury alone, add a few drops of oil of vitriol and note he changes. Some persons use watch glasses, into which hey put 10 or 15 drops of oil, and test with bisulphide of carbon, oil of vitriol, chloride of zinc, and chloride of tin. The oil test usually sold under a variety of names is the ni trate of mercury prepared as above
a horse by the paint on a crilb.
According to a communication of Professor Bollinger, of Zurich, Switzerland, a hitherto healthy Wallachian horse, of five years age, was subjected to veterinary treatment on ac count of a slight nasal catarrh. To effect a cure he was fed with boiled barley, which was given him in a painted castiron crib. Soon, however, he lost his appetite, became very feverish, and got a violent diarrhcea, which, in spite of all the medicines administered, could not be alleviated; and he died nine days after the feeding in said crib. A post mortem ex-
amination showed small discharges of blood into the lungs, amination showed small discharges of blood into the lungs, a considerable swelling and fatty degeneration of the liver, and catarrhalinflammation of the intestines. No abscesses, however, were found in the latter. In general, the dissection phosphorus, arssion that the animal had died from either ination of the milt, the liver, and of the contents of stomaeh and bowels was undertaken, in all of which small quantities lead were discovered. The oil paint, moreover, yielded sulphate of lead and chromate of lead in abundance. It was
of a blackish green color, and adhered to the iron in a loose lamellar condition. There was no sure indication of arsenic antimony, zine or barytes. From the results of the examina tion, there is no doubt that the animal, being fed with the boiled barley, had taken large quantities of the lead in the oil paint of the crib.
regeneration of bone black of sugar refineries.
Eisfeldt and Thumb have introduced for this purpose ex haustion with ammonia, in place of the heating process hith erto employed. The animal carbon or bone black is firs subjected to fermentation or boiling with soda; and, after being washed, it is placed jn an ircn cylinder with a perfora ted bottom, and boiled therein, with ammonia of two per cent, by the introduction of steam. This operation is re peated thrice, each time for an hour, until a sample of the ye, on being evaporated and heated with soda lye, yiclds no color. The ammoniacal vapors are condensed in the cooling worms and re-conveyed into the treating cylinder. This rocess is said to cost one third less than the ordinary one The ammonia dissolves not only the organic substances, but also the gypsum and caustic lime, so that there will be muel less muriatic acid required to keep the amount of lime con stant. The waste of the carbon is greatly decreased, and much which otherwise would be consumed by combustion is saved.

The Resources of Bichmond, Va.

A correspondent, A. S., says that Richmond, whose name, but a few years since, was on every tongue, being made fam ous by the active part she took in the late bloody struggle is now an example worthy to be followed by any sister city and more especially by those who stood by her in days of yore. Here swords have been turned into plowshares, and scarcely had the cannon ceased its deadly firing when the hammer and anvil struck their sweeter notes, and have made Richmond what she is, and have placed her where she is, vith but few visible traces of the war.
This grand old city, capital of the State which has produced intellect, unsurpassed in the world, to represent her in Congress and elsewhere, when brains, honesty and virtuc were the noblest traits of man, stands, as Rome does, on seven hills; but unlike Rome's ragged crage, her hills are beautiful terrene waves whose slopes are just adequate to afford the most perfect drainage, as the least fall of water cleanses her streets as a swept floor. Her climate is always comparatively mild, and she is noted for her salubrious situation, and many spend much time here seeking the greatest arthly boon, health.
The picturesque river James, whose current rushes madly ver the rapids above, along half the length of Richmond, here settles into deep water, affording unlimited and unequalled water power, with a clear course to the sea for the largest vessels. Indeed, Nature seems to have spent some time in nestling here all the requisites for a manufacturing and shipping town, and to-day Richmond presents to the capitalist and mechanic inducements scarcely to be found elsewhere. Alrcady have her manufacturers won for themselves high praise as to the quality and quantity of their wares. And while much capability lies dormant, the day is not far distant when she will laugh at the rivalry of her sister cities. The blaze of the furnace and the clash of the miner's pick are now aeen and heard in her great storehouse, the valley of Virginia, where lie inexhaustible supplies of conomic minerals: that is to say, of minerals in common ase in the mechanicarts. And on January 30, 1873, the Chesapeake and Ohio railroad trains made the first through passage to the Ohio, and will in future transport to Richmond the heretofore untouched supplies of gold from the belt of Louisa, the roofing slates of Albemarle, the kaolin of Augusta, hydraulic cement and marble from Reckbridge, besides iron, limestone, coal of all kinds, granite, marl. copper, fire clay, salt and products of the soil lying along three hundred miles of this road.
Indeed, a new era has just opened upon Richmond. Labor is cheap and plentiful, but capital she much needs, as her merchants, reduced by the war, cannot enter much into the new undertakings which should and will soon adorn $h \in r$. But let capitalists consider her offers and invest here, where eventually the continent will look for many of its supplies.

Philadelphla Academy or Natural Sctence

The Academy now possesses more than 6,000 minerals, 700 ocks, 65,000 fossils. 70,000 species of plants, 1,000 specie:: of zoophytes, 2,000 species of crustaceans, 500 species of myriapods rund arachnidians, 25,000 species of insects, 20,000 species of shell-bearing molluscs, 2,000 species of fishes, 800 species of reptiles, 21,000 birds, with the nests of 200 and the eggs of 1,500 species, 1,000 mammals, and nearly 900 skeletons and pieces of osteology. Most of the species are presented by four or five specimens, so that, including the archæological and ethnological cabinets, space is required now for the arrangement of not less than 400,000 objects, as well as for the accommodation of a library of more than 22,500 volumes. A new building to cost half a million is now in process of erection.

Absafing Lead Ores.-Previous to reducing the galena or other lead ore to the metallic state, A. Mascazzini converts the lead present in the ore into sulphate, by igniting it in a porcelain crucible with sulphate of ammonia, after which the ore is treated in the usual manner. The flux preferred by the author is that recommended by Plattner, consisting of 13 parts of carbonate of potassa; 10 of dry carbonate of soda; 5 of previously fused borax; and five of well dried starch.

INSTRUMENT FOR MEASURING FIBERS.

J. BoLm communicates to the Industrie Blatter particulars of an instrument invented by him for measuring the diameture. The method of cutting across the fiber cannot be relied on, as it is almost impossible to make the cut perfectly vertical, and the slightest deviation towards obliquity will give an erroneous result. A better mode is to stretch the fiber to get rid of the kinks, and to turn it on its axis, as it were, under a microscope, so that the variations in its diamoter may be distinctly observed, and measured with the micrometer; its whole length, also, should be passed under the object glass. For this purpose, an ingenious little instrument has been constructed by Mr . Bohm, of which we give an illustration. The inventor states that it not only has answered all the purposes for which he designed it, but has been useful in ways that he did not expect. It was found, for instance, that a was found, for instance, that a
hair ordinarily appeared to be hair ordinarily appeared to be
unequally thick in various parts unequally thick in various parts
of its length; this was owing to of its length; this was owing to
the long and short diameters of its oval section coming alternately under the vision, and the cause of the appearance was at once revealed by theinstrument. And, again, the uniform decrease in the diameter of a hair towards its point, and the irregularity and inequality of fibers of wool from sick sheep, have been rendered visible. It has been found, too, that swellings and knots in otherwise straight fibers are produced by overstretching in the instrument, and the value of the arrangement for untwisting the fibers was here shown, for the knots began to uncurl the moment one end of the fiber was turned.
In the engraving, $a a$ are two columns, provided with the tweezers, b and c, which can be turned independently of each other. The object to be examined is fastened into these tweezers. It is ev.
ident that the hai
must be attached exactly to the points, for otherwise, by turning both tweezers uni formly, an eccentri rotation of the fiber would be the re sult. The manipu lation is facilitate by gumming each end of the object be tween two pieces of stiff paper, which can be easily adjusted between the two jaws, by sliding to and fro until the fiber is exactly in the center in the center. This being the case, th hairis stretched by turning the screw d. On the support, F, there is a scale, by which the degree of tension over the whole length is indicated. When stretched, a glass plate, carried by $g g$, is laid under it. It is necessary that the object to be examined lie flat on the glass, and that it is not strained over its ends, which would be the case if the points of the tweezers were lower than the upper surface of the object-supporting glass. To this end, the two adjusting screws, $h h$, are provided, which press the steel support, $g g$, downwards or upwards, as desired. The object being adjusted, it is immersed in glycerin, and covered from the air. The instrument is now placed under the microscope by fastening it on the table thereof. The screw, i, must previously be tuined down, sufficiently to be conveniently slid under the

Fig. 3

stage of the microscope; and if the instrument is properly placed under the field of view, i is screwed on. The object is first examined with a low magnifying power (if not perfectly stretched, this msy be done now); then the untwisting may be proceeded with by turning the tweezers in opposite directions. In order that the object may be viewed in its whole length, the instrument is made to slide to and fro; it rests with its sliding bed, K K , on bed, L. By turning the screw head, d, towards the left, the whole instrument fol-
lows in that direction, and oice versa. If it is seen, on exam ining the object in its whole length, that the fiber is straight, rod, M, is engaged, by carefully turning the screw, n, until the two driving disks, o o, are in gear with the heads, $b c$, of the tweezers. This being the case, the latter may be turned uniformly around on their common axis, and the object may be thus examined on all sides. The head, b, of the left tweezer is divided on its outer surface into six equal parts; the pointer, 8 , works them.
The instrument described is adapted not only for wool, but for other animal or vegetable fibers ; and in many manu facturing operations, such an implement will be found use

INSTRUMENT FOR MEASURING FIBERS.

ful. The adjustability of all its parts in every direction wil particularly recommend it to experts and investigators, and, as our engraving shows, it is a very neat and elegant tool, made with all the finish necessary to insure accurate working and to facilitate minute observation.

EKERSON'S DIAYOND STONE SAW.
The use of diamonds or carbons for the drilling and dress
Fig. 1

|EMERSON'S DIAMOND STONE SAW

ing of stone has suggested their employment for sawing the same material. It is for the latter purpose that the inven tion herewith illustrated is designed.
Our engravings afford a very clear idea of the device, rendering detailed explanation unnecessary. Fig. 1 gives an edge view of a saw in its full size. Fig. 2 is a section in perspective. Fig. 3 represents the diamond holder, of which A exhibits the appearance of a side, B a perspective view, and C D and E the different shapes of diamonds used. The solid steel holders are made adjustable and interchangeable in the saw. It is claimed that, in griping the diamond, they hold its jagged shape imbedded with such firmness they hold its jagged shape imbedded will such fimness hat the work loose. The mode of confining the holders, it is also asserted, does not in any way tend to chain or buckle the blade or affect its proper working
The device is equally applicable to circular and reciprocating saws, and is, without doubt, an important and valuable improvement. It is now owned by Messrs. Emerson, Ford \& Co., of Beaver Falls, Pa., from whom further information may be obtained, and was patented April 25, 1871, by Mr. J. E. Emerson, the inventor of inserted-tooth saws for lumber.

TOOTHACHE.-A new remedy consists in the employment of injections introduced into the gum near the diseased tonth. Dr. Dop has tried these injections in about one hundred cases. In twenty cases $\mathrm{h} \boldsymbol{\mathrm { c }}$ made use of morphia, which succeeded very well, but only for a time. Chloroform was far more successful, and is now exclusively used by Dr. Dop. It was eminently successful in 62 cases out of eighty. The injection is made with the small syringe commonly used in France for subcutaneous injections. Only two drops
are put in at a time. The needle is introduced gradually, and must remain in situ a few seconds. On withdrawing it, pressure must be exerted on the gum with the finger. In by far the greater number of cases, one injection is quite enough to stop the toothache.

Preparation of Light Drying Varnish.

Twenty-five pounds of pure linseed oil are poured into an nameled iron pot, which holds about forty pounds weight he pot is then placed on a moderately strong charcoal fire, nd the linseed oil heated for about half an hour to the boilng point. In the meantime four ounces of pure oxide of manganese are to be rubbed down in linseed oil. This mass is then put into a small vessel provided with a spout, and poured in drops into the boiling linseed oil, while being gen tly stirred with a wocden spatula
During the rising and effervescence of the heated oil, the dropping in of the manganese preparation must stop.

As soon as the oil has settled the dropping in is continued to the last. The vessel is washed out with linseed oil, which is poured into the boiling oil. The varnish is now boiled slowly for an hour but if a stronger or more quicklydrying varnish is desired, it shouid be boiled for half an hour or an hour longer.
The finished varnish is then re moved from the fire, covered with a clean plate, and left to rest for about twenty-four hours, then carefully poured off into clean vessels. The sediment and other residue are generally used for or dinary ground colors.
The pure linseed oil varnish poured into glass bottles can be perfectly bleached by selecting a suitable spot where the sunlight and moonlight penetrate Accord ing to Dr . Gromann, monlight bleaches quicker than sun light. The clear bleached linseed oil varnish is used only for the finest white oil and lac colors, and for dissolving the copal lacs, as well as a drying medium for all fine oil colors.

NEW METHOD OF ATTACHING HANDLES TO SAWS,
Mr. James E. Emerson, of Beaver Falls, Pa., has recently devised an ingenious means of attaching saws in their han des, an engraving of which we here with present.
The invention consists in an irregular y shaped cam bolt the body of which is a little longe from the shoulder than the combined thickness of the wings attached to the handle socke and the saw blade inserted between them, in order that the clamping cam may have a hold upon the outside of one of said wings. This projection in creases in thickness rom the end. As the bolt is turned in one direction, i forces that wing of the socket toward the shoulder of the thumb bolt and clamp the saw blade firmly between the wings. At the same time the enlarged diameter of the body, in turning, is hard against the side of the hole through the saw blade, forcing the latter endwise against the rivets. By this means a solid end bearing for the blade is obtained. The bolt can enter

the orifices in the wings and saw blade in but one 'ray, so that no mistake can be made by not placing it in its proper position.
Mr. Emerson is also the inventor of the diamond stone saw illustrated and described on this page, as well as of many other improvements in saws and sawing machinery. For further particulars address Emerson, Ford \& Co., Beaver Falls, Pa .

THE NEW PARLIAMENT HOUBE IN BERLIN.

Our illustration represents the proposed Parliament House in Berlin, the design of which is the work of Mr. L. Bohnstedt, of Gotha, and was selected from the plans of a large number of competitors. The building is intended to be of a monumental character, and will be richly provided, outside and intside, with sculptures and paintings. It is diviside and intside, with sculptures and paintings. It is divi-
ded into two parts, the substructure (the basement and ground floor being treated as one mass) and the main story. ground floor being treated as one mass) and the main story.
The latter will contain the chamber offices of the high govThe latter will contain t
ernment officials, the official residence of the President of the Parliament, together with the necessary committee rooms, halls, etc. The chamber, by the large surface it occupies, its hight and dome, is characterized, even in the exterior, as top and the exterior, as top and chief part of the whole
edifice. The two main edifice. The two main courtyards within are connected with elaborate gateways with the adjacent streets. All the rooms are covered with vaults between iron gírders.
The rich sculpture work on the exterior of the structure required simplicity in the architectural work and its groups. The main entrance, leading up to the principal story, is the principal story, is the prominent part of the west front, formedike a triumphal arch, and crowned with a bronze senting Germany, the North and the South guiding the steeds of her victory car. Sculptures on both sides of the central entrance bring to mind the deeds of 1812,1815 , and 1870 and 1871. The inside of the hall is decorated with large semicircular fresco pictures. The open balcony or colonnade is provided with historical bas-reliefs, and on the balustrade
in front of the columns in front of the columns
with staiues of worthy with staiues of worthy
men. The parapet is intended to show the arms of the chief places or provinces, executed or provinces,
in colored mosaics. in colored mosaics. scriptions are enlaced in the walls.
Corresponding to the exterior, the architec ture of the interior is treated so as to allow a rich decoration, principally with pictures. The walls of the cham ber above the floor of the galleries show panels in dark colored marbles and projecting pillars bearing large mar ble statues representing the German proyinces The vaults there aredeThe vaults there arede naments on a gold naments on a gold ground. The chamber is lighted by a rich sky light, the upper part o its dome being con structed of metal and
glass.
The design, as a whole, is of great architectural beauty, and the false theatrical effect generally gained in such buildings, by ereeting unsuitably high towers or vast useless domes, is notably absent.

How to Clean Greany Vessels.

At a recent meeting of the Lyceum of Natural History, Dr. Walz suggested a method for cleaning greasy beakers and photographic glass plates, which must at once commend itself to all practical chemists and photographic aperators. He takes a dilute solution of permanganate of potash (kept on hand in a large stock bottle), to which a few drops of hy drochloric acid are added when used; and he pours in enoug to wet the sides of the vessel to be cleaned. The greasy im
purities are at once oxidized and removed. The method is preferable to the employment of bichromate of potash and sulphuric acid. The permanganate of potash solution can be saved and used repeatedly until, by the exhaustion of its oxidizing power, it ceases to act.

Incendiary Rats.
Not long ago a four story brick building, occupied by a Not in dealer in teas and coffees, in Vesey street, New York, was

A Good Year for Iron Workere
The direct connection between the use of iron and the adof vances of civilization gives a generalinterest to a review the iron industry at the present prosperous time. High prices having ruled at home and abroad, the production of iron in this country has been greatly stimulated the past year. Since the war and the change in the relations of labor in the Southern States, the tendency in that section to the development varied industrial resources h as added largely to the iron producing area. The chief difficulty has always been in re apect to the means of ransportation; and the growth of our railroad system, greater last year than ever before, has been more than ever directed toward internal improvement-to speak specifically, toward developing coal and iron industries. This was true last year of many States, but chiefly of souri, Indiana, and Misouri, Indiana, and Michigan, if the proportion of new railroads to those previously exist ing be made the basis of estimate. But many of these new enterprises are scarcely yet completed, and the produc tion of last year affords but little indication of the work that has been actually begun. We may expect, for various reasons, a great increase in the production of iron during the present year The demand for it has very largely increased. It never was so largely used as now for archi tectural purposes, and the recent experience of the danger of great fires will increase its use in place of wood. The public is even inclined to the belief that iron fronts are safer against fire than stone; the fact being that safety de pends less upon mate rial than on construc tion. It will give an idea of the extent to which specialties in in dustries are carried to mention that there is near this city a large manufacturing establishment which confines itself to making the iron work of gas houses The demand for rails increases with the in creasing growth of rail roads. There are also many circumstances to occasion a large supply of iron, aside from the stimulus of high prices. We have many inven tions to dispense with costly labor. The me thod in use by our roll ing mills turns out one third more rails to a set of rolls than that em ployed abroed. The Danks puddling machine, which has just gone into use, is des tined to dispense with the services of the pud dler and very the pud hastens as very greatl ens the operations tha produce wrought iron. midnight on Sunday night, and originated between the The discovery of coal that can be used without preliminary ceiling of the first floor and the flooring above. The space conversion into coke provides another means of saving time above the fire, on second floor, was covered with a large and labor. Great improvements have also been made in the quantity of coffee in bags; upon removing this, and cutting American process for manufacturing Bessemer steel, so tha away the floor, it was found that rats had made a nept upon the works already existing turn aut considerably more fails the ghrder, using oily waste dragged from the engine room than formerly, and several new works of great capacity are in the basement, and this had ignited spontaneously. Had this evidence been destroyed, it would have been an impossibility to arrive at any positive conclusion regarding the rigin of the fire, The stock was large and the insurance very heary, and, had the fire proved disastrous and th origin been unexplained, suspicion might have been cast by the uncharitable upon some person connected with the es
tablishment.
rojected or have come recently into operation. The iro makers reasonably anticipate a busy and prosperous year. Neer York Tribune.
U. Gayou comes to the conclusion that the main oause of he decomposition of eggs is the presence of small arganisms which must have formed in the egge while in the oriducts of the fowl.

Grindstones not Extinct.
Some persons may be impressed with the idea that the turning lathe and modern emery wheel have entirely super seded the grindstone; but it appears from a statement from
J. O. Mitchell, an extensive grindstone dealer in Philadel phia, that such is not the fact. He says that, at the Baldwin works, no less than 6 grindstones, of 2 tuns weight each, are kept constantly running on locomotive work; not only are all the rough castings ground, but 41 of the working parts of an engine are finished in this way. Grindstones are also used for finishing pulleys, which are caused to revolve against the stone, running rapidly in an opposite direction this grinds down the face of the pulley very fast and perfectly true, and at less cost than turning in a lathe

Professor Agassiz defends his rejection of the Darwinian theory of evolution on the ground that "his opponents are presenting views on scientific principles which are not even based on real observation; that they have not shown evolution, or the power of evolution, in the present day, and hence are not entitled to assume it in the past." He further characterizes the theory as a " mire of mere assertion."
Preservation by Cold.-Professor Boussingault states that a quantity of beef tea, having been submitted some eight years ago to a temperature of -20° for several hours, has remained in perfectly good condition up to the present time. Sugar cane juice was at the same time subjected to this treatment, and was found to be in excellent condition. Both substances had of course been kept in closed vessels.

PATENT OFFICE DECIBIONS.

 DECIBIONS OF THE OOURTS.

United Staten Circuit Court-o-District of Maseachu-

The Admin
he Administration of Justice under Military and
Martial Law. By Charles M. Clode Martial Law. By Charles M. Clode, of the Inner Tem-
ple, Barrister at Law. London : John Murray, Albemarle ple, Barrister at 1 aw. London: John Murray, Albemarle
Street. New York: Scribner, Welford and Armstrong, 654 Broadway. Price $\$ 6$.
The author of this work has for many years been the legal adviser of the
Brilish War Department, and has published several works on cognate subjects. The book now before us is an exhaustive treatise on the relation between milltary and clvil authority, and on the constitutional considerations involved in the arbitrary administration of aftaire neoessarily resorted
to in time of war.

Inventions Patented in England by American
[Complled from the Comintsiliners of Patents, Journal.]
Inventions Patented in England by Amerit
[Complled from the Comintsioners of Patents, Journal.]
animal Trap.-R. E. Dietz, New York city
вооt Sewing Maching.-L. R. Blake, Fort Wayne, Ind. Brerch Loading Fire Ary.- J. Broughton, Brookilyn, N. Y
Carbonic Oxide, etc.-L. Stevens, Wabhtgeton, D. C. Cloters Whingir, etc.-S. G. Corllis, New York city. Drisbing Millstongs.-S. Dean, La Crobee, Wis. Firmpzoof Safe.-J. W. Warren, Onelda, N. I. Figz Alabi, etc.-A. F. Johnson, Parkville, N. Y.
Fibeproof Vadut.-J. W. Warner, Onelda, N. Y. Fibeproof Vadut.-J. W. Warner, Oneld
Hinez, sto.-F. W. Nichols, Lyun, Mass.

toroing Liquide by Steny.-W. Bardon, Brooklyn, N. Y

 Laxp.-R. Hitchcock, et al., Watertown, N. Y.toorere aprakatus.-K. G. Wells (of Now York city), London, Eng. LOOI WABHER.-J. Purdie, Buifalo, N. Y.
Maitiva stril.-T. H. Alexander, Wabhington, D. C.

Rrfbigrbatob.-s. B. Martin, J. M. Beath, San Francleco, Cal
hifling Gun barkils.-G. Berdan, New York city.
Scouring Wibe, ito.-G. Broom head, Paterson, N. J. scouring Wibz, zto.-G. Broomhead, Paterson,
Sifing Shovil.-G. W.Dean, New York city.
PinNing Machinzay.- H. T. Potter, J. G. Lam Torpzdo LaUnchis.-H. J. Smith, Boston, Masg.

United Statem Circuit Conrt-o-District of Maine.
 A titl q ity.-Before Shepley, CIrcult Judge.-Decided December, 1872.]

NEW BOOKS AND PUBLICATION8.

Mysteries of tie Voice and tie Ear. By Professor
O. N. Rood, of Columbia College, N. Y. C. C. Chatfield
\& Co., 460 Chapel Street, New Haven, Conn. A neatly gotten up editlon of Professor Rood's excellent lecture. The
pamphlet forms No. 10 of the well known "University Series" which the above named pubishers have been iseuing for some time past.
Tife Practical Magazine; an Illustrated Cyclopedia of Osgood \& Cows, Inventions, etc. London. James R. copy ; $\$ 10$ per annum.
We have before referred to this mammoth English monthly, and have and Interesting matter with which its pages are replete. The printing is far above the level of our ordinary Induatrial monthlies, and the fllustrations, ence throughout. We welcome the new comer in the field of industria urn:llism. and cordially wish for it every success.
We are in recelpt of the Febraary number of the Propur's Montilly of elght engravings, some of them belng very beantiful. The two famed poems, the " Wonderful One Horse Stay" (O. W. Holmes) and the "Barefoot
Boy" (Whittier), are both Hlluatrated in this attractive number ple's Monthly" la a pure, wholesome, and atractive home paper, "Pell deserves a generous western support. Charles McKnight, publisher, a rin Avence, Muburgh, Pa. Pice th.co a year.
Proceedings of the American Pharmaceutical Asso-
ciation ai the Twentieth Annual Meeting held in Cleveland, Ohio, September, 187i. Philadelphia: Sherman

This volume is of interest and importance to the pharmaceutical profes Ion, and many of the papers contained thereln are of permanent vulue, conThe Chicago Railway Revizw makes its appearance in quarto form, Iways interesting.
George P. Rowell \& Co's Gazetteer, containing a Statement of the Industries, Characteristics, Population, and
Location of All Towns in the United States and British America, in which Newspapers are published.
This well complied work will be useful to all who want to adver
\qquad \mathbf{Y}, N

(lty), Lo

\qquad


```
rwich, Conn.
``` Norwic

\section*{}

\section*{Improved Cotton Press.
lany,}

Peter K. Dederlick, Alibany, N. Y. CThis Inveutlon consists of a press so
ontrived that the bale sa sacked at the tintrived that the bale to sacked at the same time it is pressed, by naving
tine pred esck gathered on the open end of a short pressing case, or on a holder of any kind, in connection with the pressing devices, so that the pressing and filing are accomplished elmultaneously. This invention also
consitats of a movable press head against which the pressing is accomplished and which recedes from the follower as the pressing progresses under the the mesaure of the compression
Improved Mechanical Movement.
Charles W. Carr, Paoia, Kansas.- inis invention conists of a cam with two opposite or nearly opposite polnts across the axis and fronting the face. It is arranged in such manner that while the tappets or leaves act upon one toe the other is clear uf them, and pice versa. Each toe is alter
natelyacted upon, one belng driven one way and the other the natelyacted upon, one belag driven one way and the oner the other way to one revolution of the cam. The contrivance is designed more particularly for operating the cutter bars of mowing machines and harvesters, bu \(t\) is applicable to other machines.

Improved Cover for Pitcher.
Walter Bradley, Providence, R. I. The object of this invention is to pro
vide means for keepling pitchers or cups for containing milk water strup, or other substance closed when not in actual use, and it conalsta in a cove which leautomatie in its action.

\section*{Improved Door Check.}

Alexander Hanna, Dover, Ky.-This invention consists of a double hooked plate plvoted to a bracket projecting from the base or mop board, hoth so arranged as to recelve the edge of the door between them when it swings dock and to swing back a ilttle with it and drop into a notch, by which the ing shut. The invention also consists in having this bracket jointed toge ther near the breast plate toswing up and be supported out of the way of

Feeding Oureen for
George s. Cooper, Baraboo, Wia.-This invention consistis in the arrange ment of the shoe of a bran duster, the same having a perforate and limperfo
rate portloc, or spring supports, to be actuated In a forward and buckwa rd direction by an eccentric on the duster shaft, the sald spring supports and the actuating apparatus belngarranged to allow the shoe to be adjustcd vertically elther at one or both ends.

Improved Railroad Rail Joint.
James M. Clem, Opellika, Ala.-This in vention consists of a fat pln or bolt with a slot nearit throngh the polint, which is used In place of the ordinary screw bolt to fasten the Ash or jolnt plates, the bolt belng fastened by a key
and spring washer Instead of the ordinary nuts and fastentags therefor, the key having a notch in the outer edge, so that a shoulder above and below the bolt becomes locked when the key te driven In, so that it cannot work the bolt
loose.

Improved Spool Box.
Jullus C.Bohn, Centralla, rli.-This invention consists of a small box with adapted for dividing the inner space into narrow spaces of different widths, sultable for contulning several spools lying end to end, so as to roll when the thread is palled. One side of the bor, parallel with the rows of spools, has a number of no ches in the upper edge, hirlagh widn hireads from the apools may be drawn as required for use, the ends belug left hanglig
out sumflelently to afford a hold for pulling out when thread is wanted.

Improved Screw Propeller.
McKendrie F. Miller and Landon N.Miler, propellers, and consists in making the blade concavo-convex, with polnted extensions on the inner sides, and adapted to be arranged some dis. tance from shart andin planes obilque or spiral thereto. By this construcaxts of motion.

\section*{Frank C.schumimproved Music Portfolio}

Frank C. Schumann, New York clty.-This invention has for its object to
earnish an Improved portfolio for sheet muatc, which shall be soconstructed as to adapt it for use as a rack for supporting a plece of mustc while being
used, aud it consista in the comblnation of a bracket with the an ordinary portfollo.

Improved Street Car Conpling.
relates to a new and useful Imprevement in cars for atreet rallways, and consists in the construc-
tion and arrangement of the draw pln and extension thereof, the draw head, and the keeper and spring. The pin is at all times under the control of the driver, ordinary manner. The shoulder stop above and below the keeper, with the spring on the opposite side, retaine the pin in its proper positton whether it is up or down.
Improved Angling Reel.
Charles L. Noe, Bergen Polnt, N. J.-This inventlon consists of a fan regu-
lator with gearing connectug it with the recl gear comblned with the reel, lator with gearing connectung it with the recl gear comblned with the reel,
to prevent It from overrunning the line by its momentum when the hook is cast.
Combined Horse Rake and Tedder.
Geo. L. Ives, Rome, N.Y.-This invention consitst of a hay ent to the truck of a hay rake for which a pateut was granted to the actach nventor August 13, 1872, No. 130,451. Sald attachment Includes a shuft (with wiveled in the rear ends of arms, whose forward ends are jointed to tue wheeled truck shaft, and also to an Intermediate frame, which latter is it may de made to alternate, in practical use. with a common wire rake atachment, which the truck is other wise constructed to carry and operate.

Machine for Sharpening Gin Saws.
Jasper M. Balley, Meridlan, Miss.-This Invention has for its object to furnish an improved, machine for sharpening gin sawe while on their shaft.
The invention conalista in constructing a tie holder having a turned up end, which is connected by a link with the crank of a drive wheel, so as to give a

Improved Hand Planter.
sidney 8. Stuits, Cedar Blafte, top for carrying in the hand of the operator walking along the ground. In the bottom of the grain box is a grooved plece, in which a curved droppling nox under a brush into the tube through which it falls to the jawa. The lattermake the hole in the ground by the staff belng forced down, and they are opened by swinging the upper end of the staff forward so that the foot strikes the ground to arrest the forward movement of a
lever, which carries one jaw. A spring throws the lever and sllde forward lever, which carrles one jaw. A apring throws the lever and silde forward
and closes the jaws when the planter is ralsed out of the ground after one and closes the Jaws when the planter is ralsed out of the ground after one
Improved Rocking Chair Fan.
Alois Nisileand Jose? Schoberl, eew York city.-This invention relates
to a new manner of connecting a rocking chair with a fan, mo that the latter may be rotated alterantely in opposite directions by the osclliating motion one of the chair rockers, and in its connection with an endiess cord which passes over a pulley on the spindie of the rotary fan. The lever rests with
its weighted end upon the floor, and remalng thereon; and, consequently, its weighted end upon the fioor, and remains thereon; and, consequently,
as the chatr is rocked, the relative positions of the rocker and ever will be changed, and the cord, which passes over the friction roller hung on the
rocker, will be drawn over the roller and pulley, so as to rotate the latter and revolve the fan.
 Improved animal trap, which shall be eo conatructed that the anlmal can
not have his foot thrown from the trap th springing ti, and so arranged that the antmal can not draw his leg out of the faws of the trap by eating of hit their tinner sides, and in to tomed apon the Bankik of the balt pan to catch upon the Jaw in setting the trap.
 Invention consists In the construction and arrangement of a log ohute with a doublc gate ntinged together. It tia arranged upon the bottom of the way
between the ilde pleces with a water rpace under it, to which a pasage is provided from the head of the chute to admit water under the hinged gate in order to regulate the hight of the dam, which the hinged gate constitutes
when rated by the water below tit. Therelo a pasage tolet the water encape from under the hinged gate when the dam is to be lowered. The tinvention hasalready been tn operation, a chute having been erected with a allde 1 1so the surface of the water 40 feet, making a total dibtance of 215 feet. The

 tally on to the water, preventitg their submersion. These operationa are
regulated by the amount on water let into the enilde by the gate, and the
tiventor

\section*{Improved Bedstead Fastening}

Joseph F. Mancha, RLidely, Md. -The invention has for its object to fur
nital an tmproved fastentig for bedteade which shall hold the parts of the bedstead securely and shall enable the bedatead to be easlly put together and taken apart. The Invention consitats in I a fastenting, formed of the
casting for the post having a slot formed in its closed lower end, and shoul ders formed upon the upper ends of the sides of tits open apper end. The top castung for the side rall has shoulders formed upon tis side edges, an
 comes upon il
the fastentig.
 Folk, Brookiyn, \(X\). Y. Y.This invention relates to lubricating bolaters for
 centrul perforations and tangental plates or lips for coo.operating with an inverted eontcal or tapered tube eecured to the epladile to canse the lubri,
cant to malintain a constant clrculation, not only from the reesrvolr dcwn ward untll the same is empty but subsequently in contact with p portion o the splndie.
Thomas B. Patten, West Ampesbury, Mases.-This invention relates to that class of buzgles in which the top ti supported upon ared datadards above
 to the buggy budy or top. The plates have two holes for both the bolts of a
stand standard, and the bolts betng of square or other shape at the head are adapted
for belng turned by a wrech. Thie mode of tastenlng the standards to the

\section*{Improved Land Roller.}

John Wooiridge, Dean's Corners, Ill. - This tivention has for its object to
 or draft and more readilly turned than rollers constructed in the ordinary manner. And it considet in the cross bar with which the rollers are con-
nected, made in two parts and connected with the tongue. \(1 t\) conatita, see. nected, made in two parts and conected with the tongue. It conasta, sec.
ondly, til the mode of holding the rolls so that they will hnve a coaventent lateral end movement, and II In mode of of construction for locking and un-
ocking automatically the two sections of connecting bar. Improved Band Saw Gang.

 Which they may be applled. These saws are constructed either whot
without teth, to adapt them for sawing elther wood, marble or tone. Ludolph A. Fullgratt, New York cetty. This inventio tng box formed, as to tite sides orr cobyt, of wood, and as to to tos top and bot tom, of paper, thus constututing g new article of of manatacture, cheaper and
lighter than other boxes of tuc claes and Improved Weather Threshold.
Blioombburg, Pe. The Invento relate
John W. Kramer, Sliomsburg, Pa.- The Invention relates to tmprovemente on the door strip for which United States Leters Patent numbered 10, sss
were granted to the same tiventor Auguas 5 o, 1880 . The preeent Invention
 In the slde of the door case, by means of whic
inore perfect manner when the door ts anut.

\section*{Improved Forseshoe Na II Machine
Keeseviile, N. Y.-This}

 hammers, he clatms to make the device perrorm nearly double the usual
Apparatus to be used in connection with Coal Car Elevators.
Phllip H. Lumey, wiconisco, Pa.-The inventhon Phillp H. Lamey, Wiconisco, Pa.-The invention relates to car elevator
but more particularly to such as are employed in tranaferring coal from the bottom of mince up a a lope and to a landing, from whence \(i t\) tis discharged
 In punhers arranged in the car to carry it forward to the beginnting of the slope arter the mules have been removed; in a truckarranged in a plt below
the level of the car track to work the puaher; In making a lo the level of the car track to work the puaher; in making a longltudtan
channel through the maddie of the truck, to allow the rope to play vertically

 TIstiug track up which the pubher is moved to take tits proper poitlition
against the bumpers ot cars ; in plvoting the rising track which oringa the pusher into proper positlon bentind bumpers of car, to the end of the upper
tracks, and ullowing it to take itts position on tue lower track, so as to rise

 Improved Lifing Jack.
, south New Berlin, N. Y. - Tr
S. Spencer Eccleston, South New Berinn, N. Y.-This invention relates to anith a pawi operated by a rod extending to the handie portion thereor; and
 tever and the lever for holding the paml engaged with the toothed rack ot the rear end of the leere, however long satd lever may be, thus allowing
he lever to be made of any required length to obtasin any deaired leverage Improved Hat Stretching Machine.
Samuel prove the hat stretchliggapparatus which Is deecribed In the patent of Ru-
 jaw for hat etretchers having a curved convexty on itt working face, an may be atretched from the tip downward.

John Y. Marke, Rochestur, Pa.-Thnts Invention re used for Igniting ires ; and conalitst in puiverized cannee coal, melted resin, derces and and
 the composition is spread out whilite it is in a s semt- -uita state, and cut int pleces of sultahle size for use. The are kindier thas prepared emits no dor, and may be kept tin any part of the house

Improved Rallroad Track.
Daniel S.T Tuthill, Newburg h, N. Y.-This Invention consitats of a short rai alongstde of the matn ralls at the Jotnts, elther tnside or outstde of the two
rallo of the track, and wheels adapted to transfer the welght of the cars or the principal portion of it to these short ralls while pasasing the jolnts of the main ralls, to avold the pounding and jarring due to the springing of the nds of the ralls as the wheels pass over them.

Improved Tng Fastening.
Jonathan Turley, Mitchell, Ind.-The invention consists in a mode of con ecting the traces and whiffetree by which horses draw a vehicle, plow, o ultivator, so that no outer profeetion can come in contact with anothe
boject and catch therefnto. Near the rear end of the trace to applied an uitable hook. The whiftetree is provided with an end sleeve and loop having their front edges in the same vertical plane. The sLap hooks beling placed in the eyes, the trace presents a smooth outside, and its rear end
projects backwardly a little beyond the end of swingle tree. By this arprojects backwardly a iltle beyond the end of swingle tree. By this ar
rangement it is impossible that the end of swingle tree or of the snap hook

\section*{Improved Spindle Step for Spinning Machine.} olk, Brookiyn, N. Y.-The invention is an improvement in lubricating de vices for splndles of splinning frames, and has reference to the construction
the case or holder for the splndle step. The step is placel in an oll reser of the case or holder for the spindle step. The step is placecl in an oll reser
vorr or shell. The step box is made from a solid plece of metal, bored vorf or shell. - The step box ts made from a solld plece of metal, bored
out for the tep of the spindle and for the passage of the ofl. The ofl ti punching, against which the tabe of the ofl can will strike instead of striking the spindle. Holes are bored from the top of the step box to a polnt a uitle below the bottom of the spindle orifice connecting with a small hole
bored to the center of the spindle orince. Thc step of the spladie is beveled bored to the center of the spindle orince. The step of the spindle is beveled
to an angle of about forty-ave degrees, so that the ofl which is forced up nd of the small hole readily sproir may contaln more or less oll; it ma be filled to near the orifice, so that the step of the spindle will always run in
oll. The top of the oll reservolr is turned in around the spindle so as to ex oll. The top of the oll reservoir is turned in around the spindle so as to ex
clude lint and dust. The step box ts connned in the bottom of the shell and the latter is conilined in the rall, so as to correspond in position with the

\section*{Improved Baking Pan.}

Ahts Excelstor Rosentin City, N. J rial. It consists of an ordinary oven pan for baking bread, roasting meate and other articles of food, the princtpal novelty belng in a convex cover
which its tightly over the pan, and by its convexity forms a vapor chamber bove the food. The cover is provided with a sultable fastentng by which it meat or other food is placed in the pan and deposited in the oven, the va porsarising therefrom are confned, and the cooking is carried on at a low ternperature, which is essential to good cooking. Our experience is that
food placed in this device is well cooked and Improved in flavor. It ought ood placed in this device is well cooked and improved in flavor. It ough
o have a place in every household, for it is a valuable additton to the uten o have a place in e
ill of the kitchen.
Improvement in Feeding Sheets of Paper to Printing Presess
By S. Schotidd, Providence, R. I., and Charles E. Baker, Mi. Clair, Ne J.These inventions consist in pressingupon the top sheet of a plle of paper with a non-penetrating point or instrument whifle the sheet is belng moved,
so as to cauge the Instrument to tear through the sheet and retain a silght chlp under the point, the friction between the top and second sheets being thereafter Insumficlent to move the second sheet from under the pressing
polnt, practically holding the second sheet, through the first, whlle it (the frst sheet) Is being removed. The removal of the top sheet, after this pracess of separating it from the second one, is accomplished in various ways,
according to the nature of the presing points, which are made differentl according to the nature of the pressing points, which are made differently
for different machines on which the paper is to be used. These inventions, if diff erent machines on which the paper is to be used. These invention,
if practically successful, will materially simpilfy the buesiness of print if practically successful, will materially simplify the business of phich the carelessness and incompetency of the hands emplas
Improved Piano Agraice.
Charles F. Chickering, New York city. The invention consists in dispens Ing with the bridge which Is uaually placed back of the agraffe, and furnish Improved Track Lifter.
Aug. K. Arnot, Morristown, Tenn.-The foot plece or base of this imple, Jacks, is formed of end to adapt it to be thrust beneath the ralls of a track. The lever is plvoted between the two parts, and a pawlis plvoted to the verticul standard to adapt it to engage with ratchet teeth formed on the handile or power end of
the lever. The implement is light, strong, and efflctent, saving much and

Improved Ditching Machine.
verating to form a drain or ditch by compression, a wedge-shaped ram, rame, which recelves a progressive movement at the end of each stroke by devices actuated through
repetition of the stroke.

Improved Rotary Steam Engine. Ining, with the piston wheel of a rotary steam engine, a series of rotary
valves that are brought by platons into such a position as to admit steam and act as an abutinent thereto while actuated by cams on the platon whee cut off steam at any desired point.

Improved Constrnction of Books.
John C. Bonnell, Burlington, Iowa.-The invention consists in making a
lank book with one full folio, whlle the rest are cot out, and in milling the Jank book with one full form
vacant
Much difficulty has been heretofore expertenced in in
Much difflculty has been heretofore experienced in the production of secure mode of fastening the oover. In the transport of so weighty an ar icle as buttcr, everything about the package must be very strong; and it must be tightly closed, otherwlse the butter will be exposed to damage
the fastenings must be simple and strong, or they will soon become disorthe fastenings must be simple and strong, or they will soon become disor-
dered and useless. These difflcultes are all overcome in the improved rasteningsand butter pails made under Decker's and Westcot's patents, by
the Orange County Pall Company, 19 Readestreet, New York, who are now supplying the market with a rellable and excellent article.

Improved Packing for Piston Rode, etc
Katzenstenn, New York city.-This invention relate
hents of the packing described in letters patent No. 105,462, and dated July 19, 1870. The object of the present invention is to tnsure the proper adjust from the packing box. The invention consists in forming the cut rings with spaces between the ends of their several sections, and also in providing
them with screw sockets to permit the application of merew rodsfor the insertion and removal of the ringa.

Improved Sheep Holder.
Semuel Tucker, Wabash City, Ind. - The object of this invention is to pro Ide conventent means for holding sheep while they are betng sheared; an it consists in a rame or holder attached to the table or bench, so con
structed that the legs of the sheep are secured by clamp bars conining the
sheep on tis side in a nomane manner convententfor the shearer

Improved Lock for Sewing Machines.
Edward L. Gaplord, BrIdgeport, Conn.- This invention has for its object to furnish an improved sewing machine lock which shall bc so constructe as to require no second hole in the striker plate to recelve a steady pin to
prevent the case from sllding upon the table; and it consista in the combl natio
lock.

Improved Universal Joint Couvling. Henry b. Whitehead, Holly Springs, Mise.-This invention consists in the use of hemispherical gears forming the contifuous ends of two shaits,
which are hung in sleeves, and the combination therewith of slotted, plvot ed stde plates or links and adjuating screws, all sultably arranged to permit
the shaftsto be set at an angle to each other, and yet perantt their rotary movement at sald angle in like manner as when the same are in alignment.
Improved Combined Blind Opener and Slat Regalator.
Adin Ball, Mulford, Mass,, assignor to himself andCharles P. Nelson, of same place.-This invention has for its object to furnish improved fixture or window blinds which shail be so constructed that the blind may be opened and closed to any desired extent without raising the sash, which
will hold the bilind securely in any position into which it may be adjusted
Improved Device for Feeding Stoves.
Bernard Connelly, Williamsburgh, N. Y.-This Inventlon has for its objec of furnish an improved coal scuttle, so constructed that the coal may be in-
roduced into the stove in such a way as to prevent the escape of gas. The upper part of the body or the scuttie is made in the form of an inverte frustum of a cone, and its lower part is made in the forin of a cylinder and
of such a size as to enter the hole in the top of the stove. The cylindrical part of the body is provided with an outwardly projecting tiange, to res apon the top of the stove and support the scuttle. The cover of the scuttle
is made in two unequal parts. The smaller part ts made fast to the eupper edge of the body, and to its edge is hinged the edge of the larger part. The
bottom of the scuttle is made in two parts, which may be equal in size. One bottom or the scuttie is made in two parts, which may be equailin size. One
part of the bottom is stationary, is placed in an inclined position, and it edge ts secured to the body. To the lower edge of the stationary part of the bottom, is hinged the edge of the other part in such a way that the sald hinged part niay be swung above and below a horizontal position. To the
hinged part or the bottom, near its outer or frec edge, is secared the end of hinged part or the bottom, near its outer or free edge, is secured the end of
a chain which passes ap through a hole in the stationary part of the cover, ing accidentally drawn through. The hinged part of the bottom is supported in a horizontal posititon by pasaing a pin through a link in the chain above the stationary part of the cover. In feeding the stove, the cover it
removed from the hole in the top of the stove, and the cylindrical part o the scuttle is inserted in sald hole. The locking pin ts then withdrawn from the scuttle is inserted in sald hole. The locking pin is then wit
the chain which allows the hinged part of the bottom to drop.

Improved Coffiee Pot.
Edward Heinson Huch, Brunswick, Germany.-This invention consists in the arrangement of a pot whioh to set over a lamp, or over a gas flame, snd closed air.tight oy means of a cover, the rim or flange of which dips down
into water contained in a deep trough that is formed around the pot. The IId of the pot is connected with the regulator of the lamp or gas flame When steam is generated within the pot, the lid commences to rise, and, act eam ceses to be gen it cted with -rhis pot has an inner vessel itting closely within it at the upper part, and
this inner vessel has a perforatod bottom, covered with fclt, flannel, or sim liar material, on which the coree reta forated bottom of the tnner vessel, nearly to the bottom of the pot. When pipe into the upper vessel, and over the coffee. The water then comes in contact with the idd. The lid ts made to enter and descend some distance
into the inner vessel. When thd water rises up to the Id, the lid floats. Belng thus lifted, by means of apparatus connected with it, it extinguifhe the fame beneath. The steam in the lower part of the pot condenses as
the pot becomes cooler, and the vacuum so tormed causes the water to de scend through the coffee, and the infuition to then ready to be drawn of for

\section*{Jamproved Sabler, New Welding Machine.}
acilitating the operation of welding tubes, more espectally designed for he tubes of steam bollers, which have failed at thetr ends and been re ersed. With this apparatus it is claimed that one man only is required,
and he alone can weld a tube in much less time and in a more perfect and workmanilike manner. The tube to be welded is heated in the forge, rest ing on a bracket of the forge and on a lower dle. The end of the tube is ex-
panded and, the plece of tube belng inserted previously, when a welding panded and, the plece of tube betng inserted previously, when a welding
heat is obtained the tube and plece attached are sllpped along the die so heat is obtained the tube and plece attached are silpped along the die so
that a ball silpped on or formed on the rod will be directly. under the joint. pplied to the shank of ralse the upper die from the tube sllghtly, so that the tube may be readily

Improved Refrigerator for Preserving Butter, etc.
George b. Roirer, oxfora, Oilo.- This invencin conith or a refrigera onductingsubstance. The interior is nade in three compartments in the dide one of which the ice ts placed. The othera are made of larger dit mensions and contaln metal pans on which arc flanges which hold them in The sides and oitoms of the pang aithin the wails of the comparited with strengthening ribs. Three or more pans will be placed in a chamber. one above another, sha it is pans belng preferred. To divide the butter in small packages, in whic full. They have a series of ventllating holes in the sides, a ittle below th
top, for the cold air to enter, while the warm air escapes over the top.
Improved Pavement.
arnish an Improved pavement for sidewalks. Iron plates arc formed of sulta ble size, aud with cells in their upper sides to receive wooden blocks The partitions between the cclls should be made to make the cells tapcring,
so that the wooden blocks may be drlven into them. The plates are made with downwardly projecting fanges upon thelr side edges, and with down wardly projecting cross fanges, and are also strengthened by brace or sta rods. The sections are secured to each other by bolts passing through the side fanges, rubber or other elastic packing being interposed bet ween them
of sufffclent thickness to enable the sections to expand and contract with of sufflctent thickness to enable the sections to expand and contract with changes of temperature without breaking them or loosenling or weakening
the pavement, and always keeplng a water-tight joint. The pores of the waterfrom soaking in.

Improved Device for Making Cigarettes.
Hugo Gerike, Berilin, Prusia, assignor to Bruno Garrass, B6̈hlen, Ger many.- This invention relates to a new machine for iling cigarettes with
out toucning the tobacco with the ingers, and which can be used by mok ers to make their own cigarettes, and aiso by manufacturers. The inven tion consists chlefly in the use of a spiral tobacco feed, arranged to rotat withi The tobacco receptacle belug filled with tobacco, ordinary clgarette wrap.
pers are next prepared, large enough to pass easily over a amall cyllnder. The length of the wrappers mast be the leagti of the cylinder incluasive of cylinder, an easy operation, as the over the stopper and down over the cylinder, an easy operation, as the otopper is somewhat coniform. The
pouch is next taken hold of near the bottom with the left hand and pressed Bl'ghtly. A haudle or crank to next turned with the right hand toward the right. This causes a spiralblade to be revolved and to screw tobacco into
the tube against the stopper. The tobacco in fact is forcel ont of the tube and rases the stopper to which the paper wrapper adheres. Thai the it is automatcally detached from the tube to make room for another. Dur ing the motion the wrapper is gulded by a needle.

\section*{3usimess aud 2ersoual.}

For Milling Machines, see advertisement of
Branard Milling Machine Company. The best Patere Letters now before the pubile are manuractured by S. E. Adamson, No. 5 Dey
St., N.Y. Clty. Send Stamp for Catalogue and Prtce List. Chucks-Our Chucks are of the very best
materal \(\&\) workmanahp. Fairman \(\&\) Co., Balttmore, Md. Screw and Drop Presses, Fruit Can Dies and We have a Packing Box Factory in Michi.
 For Sale-The Patent of the Sliding. Sup-
port Patent No. 212,6683, for Steel Spring Lamp
Chimney Cleaner. Price only 81,000 L. Granger, Patentce, Armada, Mlch.
Walter an good machinist, with small capital, to engage In manufucturing and renalrs. Nearest
ghop 18 miles; only shop in county. or wril sell-all new. shop 18 miles ; only shop in co
Ladd \(\&\) Parker, Elmore, onlo.
Buy Improved Car Machinery of Gear, Bos\(\underset{\text { For Sale-An established munufacturing }}{\text { (wod working) bustines, in one of the best section of }}\)
 virgIna, ril.
Wanted-The address of every intelligent
reader of the scuevtiric Axrions to whou will be
 Tay, New York.
The Safety Valve-Buy B. M. Johnson's
Safety Valve Guide. Any persoon can iearn allthey wish Safete Valve Guide. Any-Bay Berson can leari allt thens wish
of the Sarety Valve. Price 81.50 , post pald. Addrcse Box Indispensable to every Manufacturer and
Machirsts
Machinists' grindstones, Mitchell, Phila Pulleys ground cheaper and better than
urung. sultable grts by Mitchell, Philadelpha. Wanted-A partner to help introduce the
best Hay Stacker and Carrier ever Invented ; Baves back.
 Operates like a sewing machine engine-
Ageuts wanted for steam engline models. E. P . Ryder, 19 Ann St., New York.
Wanted-Agents to travel and sell "Still
wells Pat. Ume Extracting Heater," and "Ecllppe Tur Dine Water wheel," on commisesion. Liberal Inducements to good parties.
Company, Dayton, onio.
Small Printing Press Wanted-C. S. BenBuy Gear's Improved Car Boring Machine,
Boston, Mase.

 ral Foundry business, Archttectural Iron Work and Ma-

 Panlladelphla, Pa.
Wanted-An experienced manufacturer of
Door Locks and light hardware, wth fio,00 captal, to
 lty. D. H. Priest \& Co., 3 Tremont Row, Boston, Mass. J.R.Abbe, Manchester, N.H., sells Bolt Vises. Millstone Dressing Diamond Machine-

 price list. Lane, Pltkin \& Brock, Montpe. phlet and price
iner, vermont.
We wish ti correspond with some party who
understands bleachng and reanning olls. Any one who can bleach a dark, mixed oll, so as to make tt a clearmer-
 Pawtucket, R.I.
To Purchase-A large amount of Second
Hand Mancinery
Any partues having Engine Lathes,
 Cana1 Street, chicago, ill.
Peckers Patent Drop Press. For circulars, mddress the eo
Haven. Conn.
For 8, \(10,12 \& 15\) horse Steam Engines, with Tree Pruners and Saw Mill Tools, improve-
ments. send for circulard. G.A.Prescott,Sandy Hill, N.Y. Five different sizes of Gatling Guns are now
manufactured at Colt's \(\Lambda\) rmory, Hartford, Conn. The
 Fire Clay and Limestone Mills, which wear
onger than any others made, cast to order by.Plttsburgh Castlng Co., Pittsburgh, Pa. All work warranted.
The Berryman Manuf. Co. make a specialty.
of the economy and asety in working steam Bollers. 1 . B. Davis \& Co., Hurtrora, Conn.
Carpenters-For Sale, a Sash Factory, run by water power, at a lumber landing, with a proitable
run or trade. For partuculars, , address
t. O. Box No. Charlestown, Jefferson County, West Virgina.
For \(2,4,6 \& 8\) H. H . Engines, address The Berryman Heater and Regulator for
steam Bollers-No one using Steam Bollers can aford to Needte and Clock Machinery of every de-
Neription of the most Improved styleg. Hendey Bro's,
 Shafting and Pulleys a specialty. Small or
dors niten on an ood terma as large. D. Fribble \& Co.
New Haven, Conn.

All Fruit-can Tools,Ferracute,Bridgeton,N.J.
- English Patent-The Proprietors of the recent Falra, , having their hands funl at homed will sell
 O., Baldarineville, N. Y

Read the article on "The Machinists," now
eeng publibbed th the Boston Journal of Commerce American Boiler Powder, for certainty, safe

Williamson's Road Steamer and Steam Plow
wth rubber Trise. Addreses D. D. Williamson, 2 Broad
way, N. Y., or Bor 1809.
For Steam Fire Engines, address R. J. Gould, Brow's. Coalyard Quarry \& Contractors' Ap
paratus or holating and conveylig material by Iron cable, W.D. Andrcwa \(\&\) Bro. 1414 Wuter st.N. Y

Always right side up-The Olmsted Oiler, For Solid Wrought-iron Beams, etc., see ad Miningh, ect. recking, Pumping, Drainge, or Irigating Machnnery, or balle or rent. See advertisement, Gauges, for Locomotives, Steam, Vacuum,
AIr, and Testing porposec-Time and Automatic Re. cording Gauges-Engtne Counters, Rate Gauged,and Test
 Hydraulic Presses and Jacks, new and sec
ond \(\mathbf{~ i a n d . ~}\) Machinists-Price List of fmall 'Tools free
Gear Wheels for Models, Price List free ; chucks an
 Boynoon's. Lightning Saws. The genuine
son challenge. will cut dive times as tast as an ax. A six foot crose cut and buck saw, sc. E. M. Boynton, 80
Absolutely the best protection against Fire
-Babcock Extinguliber. F . w. Farwell, secretary, 407 - Babcock, Nomgurher
Broadwas, New York.

Steel Castings " To Pattern," from ten lbs.
upward, can be torged and tempered. Address Collns The Berryman Steam Trapexcels all others Co, Harttord, Conn. For best Presses, Dies and Fruit Can Tools,
Bllse \(\&\) Willame, 18 to 1 vop Plymouth St., Brooklyn, N. Covering for Boilers and Pipes. The most
economical and durable artcle in in use. Took trat prize at Amertcan Institute Falr. Van Tuu,
Company, 228 Water Street, New York.
A Superior Printing Telegraph Instrument
(the Selden Patent), for private ana shortlines-aw arded the Frrat Premlum ((silver Medal) at Clnctinatil Expo

\section*{ \\ fed sealling wax gays: How can I make good}
2.-T. E. B. afks: How can I remove clink-
ors irom the inside of a stove?
3.-E. R. asks what is the best way of re-
suscitating a person apparently drowned?
4.-W. T. H. gays: Please let me know iook like silver, and how 1 t t made and applied.
5.-T. G. asks: Will some one give full di6 or 8 tnches in dameter for cutting slots in rough cast-
ings?
6.-P. asks for the modus operandi of proucling "Greclan
nish for the same.
7.-J. M. asks for a method of treating old oil palntinge, which have been almost obltiterated by rrequent and bad varnibinng; aliso for the beat way or
treating a palnting on panel of which the wood ti cracked.
8.-G. E. H. claims to have a process for
tining cast iron, whlen he has tried with success bott
 of the most value?
9.- E. H. asks: What is proper speed per
minute for a common wood turning lathe, and also for a circular saw from 8 to 12 inches in diameter? What is the best method of
wood cuttung tools?
10-P. P. has often observed such birds as eagies, hawke, anc turkey buzzards, and wishes to know
how they can grrate and ascend by a aptral course with. out any motion or thelr wing gand tallig. As a phenome.
non utterly at variance with the laws of gravitation, Investigation.
 of the heel of the fore feet. I have been trytng many
wass to cure tit, and I wish to know if there 18 any cerwass to cure the and I Itsh to kno
tain remedy, and what tis the cause.
12.-L. says: I have a house organ which feders when lees than halif the thatrument is tin use. The reservorif tor wind it three feet ilit tnches by three
feet rising twenty-two Inchee, witn two feeders of the Yeet, riling twenty- - two Inches, with two feeders of the
usual conatructlon. Can any correapondent tell the Its remedy?
13.-W. H. says: Is there such a society as we can get a copy or the constitution and bye laws? If
Bo, where titt, and what 18 its name? 14--S. W. P. asks: What system of phono-

15--A. S. G. Bays: I recently saw a receipt
 glue eoztng in this ether for nearly three weeks, and
find no solution ; the glue hae become leathery with find no solution; the glue has become leathery, with no
narther conage. Can yeu tell me anythlug practical
about thla
14.-A. K. asks: Are there any power looms
or warng ascring out of the Mextcan "istie,"
ond ma chnneryfor transforming that tber Into the necessary
thread, in extence
 \(t\) threads used for \(\operatorname{sea} k\) king are \(t w o\) cord and \(x\) tinch dlam
 how all made by hand, and I would like to know ir an
where any simple machnery, to make such coarse fab where any simple,
ris o be had.

\section*{}
G. S. T. says: My mouth is full of you raise! You are at the pinnacle of wisdom, and are eve
easdy to impart instruction to your subscribers. Pleas ell me (1) how I shall prepare a black board upon the at suca room? I have read and racked my brain with task. 2: Which arrangement of a stove plpe is the bet er, a straight slanting or a perpendicular and then
horizontal one? Which would secure the best draft? Should the chlmney be contracted at the top or a inttle enlarged, and should it be closed just below where
the plpe enters itt? \({ }^{\text {a }}\). Am I right in belleving tha it impoas rult jar or bottle green glass. 4. How long before the onited States mail will remove my anxiety by bringting Thc editorial countenance is suffused with blushes as the compliments of our gushing correspondent become fully comprehended. 1. Send for the preparations of the dea ers in Bilicate slate; or mix shellac varnish with any silg ghe
y gritty material aud lay on rapldly with a brush. 2 . Tic ewer the bends the better. Make the chimneystralgh It does not pay to attempt a deviation from the uniform sectional area. S. Some glass, espectally that contain-
ing iron oxide or the oxide of lead in considerable quanitles, it Isstated by President Morton and other author without iron or lead in excess, is the best non-conduct Ing glass. Good non-conductors, such as are used in in better than any glass. 4. "For ways that are dark and riciss that are vain" commend us to some of the agent
of the Post Offlce department. Do uct despair, howeve J. M. W. says:
position of printers' ink, both black and in colors a also the composition of inking rollers? 2. Can you tell me Whether, in stuming animais, the natural eyes are eve bination of lamp black and oll; the best tsobtained from the smoke of naphtha and bofled linseed oll. The roller
are made of glue and molases. 2. Apply to some repu are made of glue and molasses. 2. Apply to some repu-
table taxidermist. We have many enquirles of thle nay watching our advertising columns.
G. W. K. asks for some idea of the first Aboat 850 irst cost for apparatus, and 50 cents to \(\$ 1\) an
A. B. S. says: I have a dispute with a friend o mine with regard to a plece of rubber. My mend
maintains that it is devulcanized, "that the mere trac of sulphur that it contains is not in chemical union with
the rubber, that the qualty of the rubber is not injured and that it in in a suitable coadition for manufacturing ized or only slightly so, that its quality is injured, and that it is not in a condition to be worked into rubbe rabrics. We refer the matter to you, and upon your de cision rest three year's subscription the the scientric
AxEBICAN. Answer: To dectde this question, an analy ts would be necessary, and our time is too nuch occuE. R. S. asks: 1. By what means can ordiary writing ink be given that intense, shining glos of the desks at school, made in the ordinary way of glass days, it is found to have this gloss, I suppose the zinc must produce some chemical action in union with the actd in the ink. 2. Can you inform me in what way a
letter should be addressed to the Emperor oo Ruassala, and how it should be sent? Answers: A ine gloss copylng, the following is a good recipe: Mix thirty grains of extract of log wood, beven grains of crysta
soda, and half an ounce of water. Boll till dissolved oda, and hais an ounce or water. Boll
then, whlle stirlng well, add thirty grains of glycertin one grain bichromate of potash previously dissolved,
and four grains of powdered gum arablc. 2. \(\Lambda\) letter sent by mall addressed to the Emperor of Rusia, S
Petersburg, would reach its destination if prepald.
J. M. asks how to treat oiled walnut wood
o poils it without varntshlng. Answer: The directions given on page 72 of our volume XXVI. will no doubt
L. F. A. L., of Cal. The only metallic subof fron. It is an old idea to propel vessals by means of of boats, flled with cork or inflated by atr as you pro pose, is also very old.
W. H. W. asks: Will shrinking a cast steel
tre of ordinary thickness on the circumference of a cast iron locomotive driver affect the central hole of the la er? Answer: We presume not. Ask the skilliul ral
B. N. C. Would like to know if there is a ule for cutting patterns, such as tin and sheet Hon
workers use. Answer: Study the " Sheet Metal Work P. J. C. sends a mineral specimen found im-
edded in limestone, and asks what it ls. Answer: The
J. J. C. comments on our reply to J. H., who
asked now the outside wheel of a locomotive orcar on a curve keeps pace with the inside wheel, on account of Che distance to travel being greater, both wheels betng
fant on the axle. Our answer was: "With wheels equalsize, having cylindrical bearing surfaces, one or
both must slip on the rall. The wheels of the cara on ralliroads a re coned to avold the difflculty, their dameter on the outer edge of their bearing or tread belng
less than that of the portion of the tread next the fange In turnlng a curve the wheels ride toward the outer rail and thus, to some extent, if not wholly, this tendency to silp is prevented." J.J.C. says:I olaim that ooning of the
wheel is more of a damage than a beaent in rounding orre, forthis reason: The wheels, belng in pasrs of equal dlameter, will roll the flange of the outer wheel har
agalingt the outer rall and set so tight to the head of the
rallthat the wheel on theinnerside, merely touchntngthe
topportton of the rall, wllolly, beling the easiero the two Any one can demonstrate the fact by the experiment of aking one wheel of 30 inehes and another of 29 inche uameter, and keyling them on to an arie. Then move circle; but take two pairs of such wheels and construc a car truck, the wheels belng fastened as truck wheel are. Now push this truck forward over a smooth sur
face, and it will be found upon examination that the mall wheels have sllppind the large ones that small wheels have slipped and the large ones have trav
eled in a stralght line. This proposition will convince any mechanic that the coning of car wheels is a damage
ather than a benent to the safety of traveling on th rather than a beneat to the safety of traveling on the
rall. Answer: Ourcorrespondent's experiments confrm ally our former statements.
C. C. says to J. D. W., who asked of what should be made: I have a good cyllinder that I cast in a
mold made of plne wood. Take a block of the length out wish your cylnder lo nake some small pleces of wood to the shape and stz ou want your ports to be and fasten them into each end of the core, and in your exhaust to the bottom of
the mold. Cover the ends and side and pour in your
C. T. says, in answer to T. C. M. who asked
or directions for gilding on marble, porcelain, etc.: use, for sizing, equal parts of elastic copal varnish and
fatty linseed oll silghtly diluted with turpentine. Th tme required to produce the requisite "tack" is abou hours. Barbers shaving mugs have been treated quire repeated washing and rough usage, it may be well
S. L. D. replies to S. T. W., who asked how o transfer engravings on glass: First coat the glass
with a varnish composed of balsam of fir diluted with turpentine, then press the engraving on smoothly and evenly, , entig careful to remove all air bubbles; let it
otandforabout 24 hours, then dampen the back suff tandforabout 24 hours, then dampen the back suff dently toallow the paper to be rubbed off by the forefl varnish again. When dry, it is preferable to put a yello paper on the back of it, next the varnish, which add
H. A. B. says: I am taking the position o engineer in a steam saw mill, and there is a dispute, be-
tween myself and the man who is bullding the furnace, as to the proper place for the wall to strike the boller (s abuar one); he contends that the wall should strike the it should strike the boller a little below the lower wate strike the boller that it is dangerous to have the wer: Our correspondent is right. No part of the steam pace should be ert exposed to the action of the ho reduced in temperature, nearly to that oo the steam treif and far below the temperature at which fron eptibly weaker than when cold.
C. M. S. asks: How can I calculate the ef
ective hieating surface of an upright cyllidrical boller with horizontal water tubes arranged across the fre Chamber? Answer: Determine it by measuring th
total area of all surfaces exposed to the directly or ind rectly communicated heat of the furnace gases, and pro
B. M. P., who asks for the best thing to re
nove scale from steam bollers, should read our adver lining columns and espectally the answers to corresponcases are constantly being published.
R. O. B. asks: How can I collect small par-
teles of lead from dross and ashes cheaply? ofl anwers very well, but it ts too costly.s. Answer: Fuse the
F. H. asks: Can a valve which has sufficient mit steam correctly when the crank is upon elther cen ter, and shut ofr the steam when the piston has trav
eled an equal distance from elther end of the stroke? nnswer: No. The obllquity of the connecting rod wil
J. F. B. says: Knowing that strange and ingular freazs of steam engines are interesing to you,
will tell you of one in our place, that puzzled us for ome time. The cylinder is 14 inches bore by 36 inche troke, with a common silde valve, using steam the About two weeks ago, she commenced by making a
strange crackilng notse in the cylinder, increasing untll ring it seemed as if she would break everything to pleces.
Steam poured from every joint that, at other times, was ght, and she slowed down in speed unt11 she scarcel in pleces. But the moment steam was shut off, if onl for an instant, she would start up sgain all right, and
the trouble would probably not occur again for one o two hours. At some times it would be moresevere than others. Everything seemed to get loose during the dif-
Aculty, and all the keys would have to be set up after ach occurrencc. I took off the cyllinder head, found the she was as bad as ever. The two bollers are 42 irches in diameter and 26 feet long, having two 13 inch fues in The diffleulty arises from excessive priming,we presume damage if the trouble is not remedied.
J. P. S. says: How many inches does the contain? Answer: The atandard United States bushe Is that which contalns \(2150-4\) cubtc inches, when leve
full ; when heaped up to standard hight, 6 Inches, it con rains about 2,700 cublc inches. Usually 28 bushels ar N. L. 'T. asks: Why is it that the shadows
cast by an object from two different lights, as those of cast by an object from two different lights, as those or
the moon and of a candle, on a white surface are of differ ect is placed The difrerence is most distinct when the The colors of the lights belng different, they togethe wiluminate a all of the white surface, not the shadow.
which is compounded of both. The shadow are each illuminated by the light from only one of the
two sources, and each therefore differs in tint from the sene
C. D. R. \& \& Co., say: We have a \(12 \times 20\) inch
plain slide ralve engine, cutting offat abeut \(\%\) stroke and running at 80 revolutions. Would it beeconomy to speed pore to revolutions with the same valve? Answer: more power is required than the engtne can now devel
ope, it would be proper to speed up as proposed. If the
bollers are reliable at higher pressure, bollers are reliable at higher presaure, carry Ave pound at the greater speed. Watch the crank pin and other
journals. They may heat at a higher
 your current volume），but I do not know whether on
（or ordinary use）should be 6 Inchcs or 38 inches length of longest stick．Can the statlonary or plvoted end be fastened to the table with anawl or screw？Ca
the casters be dispenzed with？What is the plece pro ecting to the left between \(C\) and \(F\) ，from \(D\) ，for？Why is it jonted differently at \(F\) than at \(E, D\) and \(B\) ，and how 8 inches to 30 inches in total length．In a rourc from ratus，an awl will answer to plvot the fixed jolnt．Th casters are used to reducc friction，but may be dispense
with．The arrangement of jolnts is a matter of indif
and crence．In making the copy，say，three quarters the atch，in the sketch，projects．
G．N．A．says：I wish to know how the red want to light a large room without incurring any dan er．Answer：It is al ways better to apply to a pyro－ echnist for colored lights，as there is danger in prepar to attempt to make them．
W．K．asks：Which is the best acid or of paper？Answer：The best solvent for paper iber
W．R．J．says：The powder I enclose is the osing it to bellme \(I\) a pplled the test for water．Su ith no indications．The same kind of water is used in boiler here and causcs some trouble by the deposit． ny substance（except glasa）that will allow be made of It must be transparent．Could a solution of gelatiu be made to serve the purpose by the addition of any ma erial？Answers：The enclosed powder was chlefly ter．The water is evilently impregusted organic ma oap bubbles of considerable size and strength can be made by mixing glyccrin in soap and iesting from time
to time until the proper proportions are obtained． J．J．IR．asks：Do purc wood ashes contain
minerai uatter？ anclents that the potash of plants was produced from
the alr during combustion，but as soon as this alkall was discovered in rocks，it was readily traced to plants and shown to be a necessary constitucnt of all vegetables． It makes no difference how pure wood ashes may be；
they necessarlly contaln mineral matter，chictly com－ poed of carbonate or pota⿱日一

U．H．F．says：1．I would like to know if of my hands．I am a machinist and I find it very difficult to get my hands clean．2．I am vcry desirous of lcarning o draw，and I would like to know inc can learn without Answers：1．Use plenty of soap and elbow grease to clean
yourself．2．With dividers，rule and pencll，practics copying the best engravings in the Scientipio ameri－
cas．You will learn to draw in this way in sou pere S．R．asks：What proportion should there
be between the steam port area of a steam engine，and
and the urea of the piston？Also，what should be the rela－
tion between the steam pipe and the cyllinder？Can poppet ralve engines be run at as hidgh a specd as sllde
valve cuglues？Answer：Steam ports are made，in good practice，of from one sixteenth to one tenth the area of plston，according to speed．At very high speeds，poppet valves may not seat themselves promptly，and hence a
umit of speed Is sonuer reached than with silde value engines．
A．B．says：：A mercurial siphon gage has
one leg twenty times the area of the other； be the risc of mercury in the smaller leg per pound pres－ sure？Please give rule．Also a rule to work out the power required to ralse a given welght by differential
blocks．Answer：The difference of level must be，ap－ proximately，two inches per pound．The mercury rising in the smaller leg must be supplied from the larger．This quantity will occupy one twentleth the hight，in the larger leg，that it fills in the smaller．Hence the sum ob－ original level to one twentieth the same distance is equal
to two inches，and the actual risc in smaller leg will therefore be 2.0 of two inches \(=1 \frac{1}{2} \mathrm{i}\) inches．Theexact figure will be \({ }_{30}^{20} \times 2 \cdot 035=1 \cdot 933\) ．The handlest way to determine the relation of the force es an measure the distances moved by each．For example ：If the welght is ralsed 3 inches，while the fall of the tackle is overhauled a distance of freet，the ratio is as 1 to 16 ， Priction not belng considercd．
m．P．says：Take a fly wheel ten fect in di－ （the shell belng \(1 / 2\) inch thlck），and fill the hollow in the rim half full of water．Will the wheel and water great enough to when it is standing still？Answer：It will make no dif ference．

\section*{COMMONICATIONS RECEIVED}

The Editor of the Scientific American acknowledges，with much pleasure，the re ceipt of original papers and contributions upon the following subjects
On the Metal Palladium．By G．J．R．
On the Influence of the Moon on tlie Tides． By W．S．

On the Formation of the Tides．By S．S．G． On Steam Engine Economy．By C．H．C． On the Dredging Machines Used at the Bar of the Mississippi River．By E．B．B．

On Certain Mechanical Enterprises in New k，N．J．By C．B．
On the Passage of the Sun from one Date Another．By H．B．
On Lost Arts．By 0 ．
On Perpetual Motion．By W．D．A On a Substitute for the Crank and on Self Operating Water Wheel．By J．B．S． On Positive and Negative Forces．By E． On the High Prices of Certain Productions． By J．C．C
On the Sidereal Day．By J．H
［OFFICIAL．］
Index of Inventions FOR WHICH
Letters Patent of the United．State were granted for the week ending February 4，1873，
and Each bearing that date．

\section*{Anchor，W．W．Smith．．}

Auger，earth，Beach \＆Hanson Bag traveling Beach \＆Hanson． Bale the，F．Cook．
Bed bottom，C．Pc
Bed，cot，L．B．Morse．Mo．
Bee hive，w．Lehman
Belt，driving，W．1．Colton．
Bett fastening，T．Rudiger．
Bird cage， 0 Lindemann．．．．．．．．．．．．．
Baard，straw or mill，．L．L．Themson Boats，pttchlng，W．H．Richardson．．
Bofler attachment，wash，M．Martin． Boller alarm，Brown \＆Fosket Bolt，E．M．Judd．
Bolts，pointing，o．C．Burdict
Boot and shoe，Rogers \＆Felton ．．．．
Boot lasting machine，c．w．Gllden
Boot lasting machine，C．W．Glldden
Box，bread，A．R．Leecoux
Broom haca，B．C．Cook．．．．．．．．．
Bruches，making，A．C．Estabroo
Buckle，harness tug F．Selfert
Buckle，harness tug，F．Selfert．．．．．．．
Cam grooves，drcesing，Pratt \＆King
Canteen，R．Kelly．．
Car coupping，Fox \＆Howa
Car coupling，J．E．Hitt．．．
Car，
Car axle lubricator，G．A．Brannan．
Car stake supporter，Mastermann \＆Hooper．
Car truck，W．Youmans．．．
Cack，
Car seat，rallroad，W．C．Hufman
Cart，excavating，W．Harles．．
Cement，hydraulic，A．Pfund．
Chccsc，hoop，G．B．Boomer
Cheesc Bkipper cxtractor，
CIgar mold，F．C．Miller
Coth steaming machine，H．S．Gree
Clothes wringer，G．S．Prindic．
Cooking utensil，J．Mansficld
Cotton cleaner，J．Ralston
Cotton gin，O．Murray
Cradle and chair，E．Hambujc
cultivatur，corn，I Emrick
Cupboard，refrigeratlige，J．Po．．．．．．．．．．．
Cupboard and table，B．F．Partruge Curtaln Axture，S．Ker
Curtaln cord tiglitener，H．L．Judu． Dentist＇s tool，I．W．Lyon．
 Digger，potato，Wright \＆Benedict
Ditching machine Ditching machine，R．Starbrick．．
Dowel pina，making，M．Everta． Dowel phas，making，M．Everts．
Drill，ratchet，J．Swank．．．．．．．．．
Drilling machine，E．J．Worcest Earth closet，J．Y．Young． Egg stand and boller，Woods \＆Sherwood．．．．．．．．．．．． Elevating apparatus，Blakley \＆Cahill Elevator，J．H．Blohm
Elevator，G．c．Timpe．
Elevator，coal car，P．H．Lame．．．．．．
Elevator，lock for，G．T．Timp．
Emery，grinding，H．s．Lucas．．．
Englne，reveraling，T．L．Crowley
Englne rellef valve，A．Mayer．．．
Erascr，black board，W．S．Read
Excavator，J．T．Ham．．．．
Fan，automatlc，C．H．Cla
Faucet，compression basin，W．Gordon
Faucet，sclif closing，M．S．Clark．
Feather renovator，S．A
Fre kindler，R．Adams．
Fire arms，breech loading M．．．．．．．．．．．．．．．．．
Firc placees，uning for，A．J．Redway．
Flour bolt，F．Render
Frult bar，H．G．T．\＆A．Smith
Furnace，hot alr，J．Fridley，
Furnace，smoke burning，S．A．For
Gainc apparatus，A．M．Smith．．．．．．．．．．
Gage，harness maker＇s，D．G．Garlock
Gas apparatus，H．H．Wainwrig
Gas apparatus，Marling \＆Nert
Gas retort seraper，L．F．Blair．
Gatc，J．Blinn．
Glass mold，H．Wickkham，Jr．．．．
Goods，washing printed，B．G．Bro
Governor，M．Gally．．．．．．．．．．．
Grain scourer，T．Shiveley．．
Grain scourer，T．Shiveley
Grinding，etc．，machine，A．B．Walter
Harrow，H．Cartwrig
Harrow，C．Smith．．．．．．．．．．．．．．
Harvester，C．Ldren．．．．．．
Harrester，corn，H．M．Car

Harvester catter，Wasson，Power
Harvester fnger bar，c．A．Smith
Harveater binder，etc．，w．R．Lo Harvester bInder，etc．，W．W．Low Hat pressing device，C．M．Oggood．．．．．．．．
Hat presing machine，Hastings \＆Deape Hat bodies，felting，Bowden \＆Sh
Heater，feed water，E．Mojel．．．．．． Hoe，H．R．Barnes． Hotsting apparatus，J．N．B．Bo．．．．．．．．．． oops，cutting and bending，J．Dobbins． Hub，velicle，H．M．DuBota
Hub，vehicle，S．McGee．．
Iec crush cr，Hudner \＆Little．．
Ice machine，Nornan \＆Dletrl
Ice machine，Nornan \＆Dietri
Ice cream freezer，G．GuInot．．．
Ice cream freezer，G．
Inhaler，W．H．Cutler

Ironing apparatus，E．Sumptlo
Jack，ulfting，J．H．Hinton．．．．．．
Jack，carriage paInter＇s，A．．．．．．．．．．．．
Key，folding door，J．Selbcrt．．．
Lock，comblnation，H．Clark．．
oom shuttle，Sawyer \＆Wright．．
Looms，shaping dents of，M．Robliso
Metallic fabric，\(\Lambda\) ．J．Vandegrit
Moccasin，T．Horsey．
Mop，etc．，J．L．Boyd
Mop，etc．，J．L．Lhache，J．H．St
Mower，lawn，S．D．King．
Needle sctter，etc．，A．Johnst
Organ rced，J．R．Perry．．．．．
Ovals，turning，M．T．Boult
Packing case，E．A．Pharo．
Paper box，M．W．Dillingham．．．．．．．．．．．．．．．．
Paper feeding machine，Sclioldeld \(\&\) Boker．
Paper fecding machine，scholficld \＆Baker
Pavement，wood，M．H．Alexand Peg rasp，J．W．Foard．．．
Pencll holder，G．A．Smith．．．．．．
Petrolcum，burning，F．A．Inall Pickets，pölntling，A．B．Corby．．．．．．．．．．．．
Piston rod stufing box，P．W．Fitclards． Planter，corn，A．C．\＆G．F．Burgner． Planter，hand corn，L．H．Richards
Platform，track，w．P．Hallday．．． Plow，wheel，M．Saltley．．．．．．．．．．
Pot，cofee，Grigsby \＆Braselton． Pot，mustard，T．M．Schletcr．．．．．．．
Power，transmitting，J．C．Clinc． Power，transmitting，J．C． Press，cotton， R．Power3．．．．．．．．．．．
Propeller，stcering，J．L．Cathcar
Propeiler，vessel， \(\mathbf{E}\) C．Hubbard．． Propeiler，vessel，E．C．Hubbard
Fump，steam，J．W．Handrcn．．． Rallway sow plow，w．Walk Rallway switch， \(\mathbf{A}\) ．W．Cram．．．．．
Rallway tank feeder，A．Grocha 1iod，HIghtnlng，W．B．Munn．．．．．．．．．．．．．．．．．．．
Ruches，setuqu．ete．，M．\＆S．Roggqnburger Sad fron crimper，J．Hewit
Sas fastener，J．Bisho Saw frame，buck，W．Clemson
S \＆Prescott． Sawng machinc，D．S．Alling．
Sewing machine，J．L．Follett．
Sewing Sewing machine，F．Chichester．．．
Sewing machinc feeder，C．Pariai Sewing machinc wax thread，W．H．Johnson． Shaft bearing，G．M．Ball．．．
Shawl strap，T．R．Iunham Shlngle machine，
Shirt，O．Gowing how casc，Arnold \(\&:\) Merz Silk，twisting，H．A．Chaptu．． Spool stand，ete．，L．F．Ward．．．
Spool machine，J．F． Spoon，fork，ctc．，G．C．Roblnso
Stirrup，ridug，A．J．Herring．．．． stone grinding machine，J．Ftn
Stove damper，J．Willoughby Stove damper，J．Whlloug
Stove grate，S．Duncan．．． Stove top plate，E．H．Wehric Sugar apparatus，S．Dod．．
Table silde，G．Finkbelner Table side，G．Finkbeiner．．．． Telegraph printing，G．Littic（r）
Telegraph circult，T．A．Edison
Tlcket punch，H．W．Hewet．．．． Ticket punch，H．W．Hewet．．．
Tin scraps，ctc．，treating，H．P Tin scraps，ctct．，treating，h．
TIre bender，J．Tomiluson．．． Tobacco curing，J．D．
Tobaco box，ett．，，R
Torch，etc．，P．R Ren．．
Toy block，，H．FFalrbanks
Trap，animal，S．F．Estel． Trap，animal，s．F．Estel
Tube cutter，E．Manuel．
Tube speaking，C．A．Fredcrick
Vehicle wheal， Ventllator，G．R．Barker
Wagon brake，B．Ren Wagon brake，R．Roberts．．．．．．．．．．．．．．．．．．
Watch，winding and setting，c．E．Jacot． Water wheel，turbine，A．W．Yarrell Water wheel bucket，S．L．Denney．．
Wrench heads Wrench heads，making，L．Chapm
Wringing machine，H．Glass（r）．

\section*{APPLICATIONS FOR EXTENSIONS．} Applications have been duly Aled，and arc now pending
for the extension of the following Letters Patent．Hear． ings upon the respective applica
the days hereInafter mentioned：
22，528．－Wrbbing．－J．C．Cooke．April 9， 1873.
23，886．－Cultivator．－M．Alden．April \(23,1873\).
23，893．－EATE Fastrining．－E．Behr．April 23， 183.
23，921．－HARVIBTING MACHENE．－M．G．Habbarid．April 23.
23，924．－MAIL BAG．－T．J．Lamdin．Aprll 23 ， 1873 ．
23，921．－MAIL BAG．－T．J．Lamdin．Aprll 23， 1879.
23，980．－CLoce DIAL．－ S ．E．Root．Apr11 28,1873 ．
28，980．－LaTRE．－C．\＆A．spring．Aprll 23， 1873.

EXTENSIONS GRANTED．
23，001．－ELLABTIC ToY．－L．P．Porter．
22，990．－MoP HEAD．－L．Taylor．
2， \(9,90-\)－Mor HEAD．－L．Taylor．
22，947．－WRENCE．- D．P．Foster．
DESIGNS PATEN．TED．
6，578．－CABD REOLIVER．－G．GII，Taunton，Maba

\section*{CANADIAN PATENTS．}
frficial List of Patents Granted in Canada from December 13，1872，of to and including Febiuary 1， 1873.

\section*{Patents taken by cltizens of the United States are}
（Nore．－Under the new patent law，now in vogue Amertcan cittzens may patent their inventions in Canada on favorable terms．For full particulars，address Munn
Co．，O\＃fle Scientific \(\operatorname{AyRICAN,~sit~Park~Row,~N.~Y.~}\)
Shoe pegglng machine, H. Kuhlman, Ger., Dec. 13.. 1,900 Steam engIne，C．I．evey，U．S．，Dec． 19
Wood for paper，L．Smith，Dec． \(18 . .\). Hose valve，E．A．Day，U．S．，Dec． \(18\).
Nall machine，N．W．Goderich，U．S．，Dec． 18. Stol，A．A．Murphy，Dec． 18 ．．．
Hot alr drum，G．Bolton，Dec． Hot air drum，G．Bolton，Dec．18．．．．．．．．．．．．．．．．．．．．．．．．
Washng machine，G．R．Willett，N．S．Dec．
Wood pulp，R．Harrison，U．S．Dec． \(18\). Sllp keel，etc．，J．Dean，U．S．，Dec． 18.
Track cleancr，A．Day，U．S．，Dec． 18. ． Washing machIne，G．Moorehouse，Dec． 18 ．
Water meter，D．B．Spooner，U．S．，Dec． 18. ． Washing machine， ，Schatzet al．，U．S．；．Dec． 18.
Proplling sleighs，w．Nevers，U．S．，Dec． \(23 . . .\). Bench，R．Blain，Dec．23．．．．
Square，J．Beaudry，Dec． 23
```

B,

```

suot sole, S. Slater, Dec. So..........................
Trimming trees T. Maget,
Burnisher, L. Lote, Dec. \(50 . . .\).
Churn, M. Fisks, U. S., Dec. so..
Comn, S. Steln, U. S., Dec. \(50 .\).

Desk, J. K. O:18, U. S., Dec. 30.........

Balling preas, W. P. Klug. U.S. Jan. 3................ 1,91
Preserviug meat, J. K. Collett, Eng., Jau. 3........ 1,914

Slide valve, H. Fargricve, Jan. 9.............................. 1, 1,9
Bob letgh, J. Maloue, Jan. 9........................... 1,9
Covering bollers, T. Sparham, Jan. 9.............
Bovering bollers, A. Sparthan, J. J. Lyons, Jan.
Beater and filter, J. Armitrong, U. S., Jan. 9.....

Bralacr, etc.. P. L. Sheepler.
Shutte, J. H. Osborne, Jan. 9
Soap, J. Burke, U. S., Jan. 8. .
Shap, J. Burbe, U. S., Jan. S.....
silde valve, E. Falrgrieve, Jan
Sllde valve, H. Fargrieve, Jan. \(101\)
Steam engine, L. Perking, Eng., Jun. 10
Pipe elbow, C. Bolton. Jan.
Car coupler, etc., W. P. . Scott, Jan. 10
Car coupler, elc., W.
Pump, P. Munsinker, Jan. 10......
Car coupling, H. Ellender, Jan.
Car coupling, H. Ellender, Jan. \(10\).
Horsc collar, C. P. Holmes, U. S. Jan. 10
Stand, R. M. Wanzer, Jan. 20..........................
Stove, J. Van B. Carter, J. Dwyer, U. S., Jan. 10.
Stove, J. Van B. Carter, J. Dwyer,
Buckle, H. . Woodruf, Jan. 10. .
Lubricator, E. McCoy, U. S., Jan.
Iron and steel, C. M. Nes, U. S., Jan. 14
Line fastener, O. Denolt, Jan. 14.1
Bit brace, W. A Ives, U.S., Jan. 16
Bit brace, W. A. I Ves, U.S., Jan. 16. .
Saw, M. JInck \&, U. S., Jan. 14........
Balance valve, H. Falrgrieve, Jan.
Balance valve, H. Fairgrieve, Jan. 14.
Marinc engine, L. Perking, Eng., Jan
Wabhlng machine, G.S. Wallicr te al., U. S........... Jan.15.
Washing machine, S. Deveau, S. E. Perking, Jan. 14.
Tubtng, K. M. Arnoldi, Jan. 14...........
Steam heat, W. . Baker, U. S., Jan. 14.

Tar burner, J. Burns, Jan. 16.............................
Shingle machine, G. I. Anderson et al., U.S., Jan
Lubricator, J. S. Eggleston, U. S., Jan. 16........
Lubricator, J. S. Eggleston, U. S
Stovedrum, R. Lough, Jan. 16...
Animal poke, E. F. Benedict, U.
AnImal poke, E. F. Benedict, U. U......
Boot, W. W. Whitcomb, U. S., Jan. 10
Boot, W. W. Whitcomb, U. S., Jan. 16..............
Locomotve englne, L. Perking, Eng., Jan.
Axle and wheels,G.W.Miltmore, et al.,U.S.,Jan. .

Catchng flee, E.L. Goold, J. W.Cuthbertson, Jan. 231 1,
Burnishng card, ctc., E. R. Weston, U. S., Jan. 23.1
Burnishing card, ctc., E. R. Weston, U. S., Jan. 23.1 . 1,
Curtain Ixturc, C.Buckley, L.L.Sawyer, U.S., Jan 22
1,

\section*{VALDE OF PATENTS}

And How to Obtain Them.
Practical Hints to Inventors
ROBABLY no investment of a small sum of money brings a greater return than the exipleuse incurred in obtaintng a patent even
when the anvention is but a mall ine. Large liventions are found to pay correspondingly well. The names of Blanchard, Morse, Bigelow, Colt, Ericeson, Howe, McCormick, Hoe tuncs from their inventions, are well known.
And thereare thousands of others who realized large sums from thetr patents. More than Fifty trocsand inventors have avalled themselves of the serviles of MUNX \& Co. during the
TWENTY-SIX years they have acted as soltctors and TWENTY-SIX years they have acted as solicitors and
Publishers of the Soizmtirio American. They stand at the head in this class of business; and their large corpe of assistants, gostly sclected irom the ranks of the
Patent Office: men capable of rendering the best service Patent Office: men capable of rendering the best service
to the finventor, from the expertence practicallyobtalned whlle examinera in the Patent Offle : enables MUNA \& and CHEAPER than any other rellable agency. HOW T0
 ry letter, describing some invention which comes to this office. \(\Lambda\) poititue answer can only be had by presenting a complete application for a patent to the Commissioner tingo, Pettion, Oath, and fall Specification. Various offecal rules and formalitten must also be observed. The efforts of the inventor to do all this business himself are generally without success. After great perplexity and rienced in patent business, and have all the work done over again. The best plan is to sollctt proper advice at the beginning. If the partles consulted are honorable men, the Inventor may safely conide his ideas to them
they will adrise whether the improvement is probably patentable, and will gire him all the directions ncedful to protect his rights.
How Can I Best Seeure My Invention? This is an inquiry which one inventor naturally asks
another, who has had some expertence in obtainlng patents. His answer generally is as follows, and correct : Construct h neat model, not over a foot in any dimen-elon-smaller if posibile-and send by express, prepaid, description of its operation and merits. On recelpt thereot, they will examine the invention carefally, and advise you as to its patentabillty, free of charge. Or, if you have not time, or the means at hand, to construct a
model, make as good a pen and fink sketch of the 1 m provement as possible and send by maill. An answer as to the prospect of a patent wime be recerived, usually, by
returu of mall. It t sometimes bect to have a search made at the Patent office; such a measure often save
the cost of an application for a patent.
```

Preliminary Examination

```

In order to have such search, make out a written de
scription of the invention, in your own words, and a pencll, or pen and Ink, sketch. Send these, with the fee and in due time you will recetve an acknowledgment thereof, followed by a written report in regard to the patenta bility of your improvement. This spectal search 18 made with great care, among the models and patents at Washington, to asce
To Make an Application for a Patent. The applicant for a patent should furnish a model of his Invention if susceptible of one, although sometimes
it may be dispensed with ; or, if the invention be a chemtcal production, he must furnish samples of the ingredients of which his eompositton consists. These should besecurcly packed, the inventor's name marked on them, and sent by express, prepald. sulall models, from a dis
mace, can otten be sent cheaper by mall. The safest way to remit moncy is by a dratt, or postal order, on
New York, pasable to the order of MUNN \& Co. Persone who live in remote parts of the country can usually pur chase dratts from correspondente.

\section*{Caveats.}

Parsons desiring to de description of the invention. The Government fee fo a caveat is 810 . A pamphlet of advice regarding applica lions for patents and caveats is furnished gratis, on ap
plication by mall. Address MUN \& Co., 77 Park Row plication by mall. Address MUNM
New York.

\footnotetext{
Relssues.
A relssue is granted to the original patentec, his heirs or the nssignees of the entire interest, when, by reason
of an Insufflelent or defective specitication, the origina patent is in vallt, provided the error has arisenfrom in advertence, acilient, or mistake, without any praudu A patentee may, at his option, have in his reissue
separate patent for each diftlict part of the invention comprehended in his originnl application by paying the
 particulare.

Design Patents.
Touelign designers and manufacturers, who send good to this rountry, tuys secure patents here upon thecr new pelling the same goods tu this hers A patenc for a destyn may be gra whether cittizen or allen, for any new and original destran or a mannfacture, bust.statue, alto rellevo, or bas relle anyll, cotton, or other fabrice, any new and orfinal 1 m rrow ol.. ornament. nattern. nrtut. or odeture, to he ato any artele of manufacture.
important to citizens a Muny \& Co., 87 Park Row, New York.
Any penon or arm Tradomicled in the Oattod statoo, of
}
 United States, may register their designs and obtaln procountry, and is very important to manufacturers in this ars address MUNN \& Co., 37 Park Row, New York. Canadian Patents.
On the first of September, 1872, the new patent law of
Canada went into force, and patents are now granted to citizens of the United States on thesame favorable terms as to cltizens of the Dominiou.
In order to apply for a patent in Canada, the applicant
mnst furnish a model, specficition and duplicate nnst furnixh a model, specification and duplicate draw.
inge, substantlally the same as in applytug for an Amert can pa tent
The patent may be taken out either ior five years (government fee 820), or for ten ycars (zovernment fee 810) rior inteen years (goverument fec 860 . The five and
ten year patents may be cxtended to the tern of fitteen years. The formalites for extension are simple and not expensive.
American Inventions, even if already patented in this
country, can be patented in Canads proved can patent is not more than one year old.
All persons who desire to take out patents in canada are requested to communicate with MUNN \& Co., 37 Park
Row, New York, who will glve prompt attention to the ish fullinstruction.
Forelgn Patents.
The population of Great Britain is \(31,000,000\); of France,
\(37,000,000 ;\) Belg \(40,000,000\), and Russia, \(70,00,000\). Patents may be secured by \(\Lambda\) mertcan cittizens in aill of these countrles. Now is the time, when business is dullat home, to take advantage of
these Immense forelgn felds. Mechanical improvements \begin{tabular}{l}
thesc immense forelgn filds. Mechanical improvements \\
of all kinds are always in deemand In Europe. There will \\
\hline
\end{tabular} abrerbe a better time than the present to take patents princtipal capitals of Europe. A large share of all the
patent secured in forelgn countres by Amertcank are
obter pobtalned through our Agency. Address MUNY \& Co., 97
「rork Row, New York. Clrculars with full information ou iorelgn paw York. Clreulars

Rejected Canes.
Rejected cases, or defective papers, remodeled for through other agents. Terms moderate. AddresB M UNN \& Co., stating particulars

MUNN \& CO.a
PUBLISHERS SCIENTIFIC AMERICAN 37 Park Row, New York.
WASHINGTON-Corner F and office in washington-Corner F and 7 th

\section*{Rates of advertising}

Back Page
Inside Page
- 81.00 a line. ine by mecentement as the leter-prese
PAGES WATER FLAME COAL ILIME

W. M. MAYO'S PATENT BOLT CUT for Illuatrated Circular, CInquinnati, Ohlo.
 ©P 2,400 Capital will purchase full
 THE RAILROAD GAZETTE-A weekly
 Mriving Mrachines

ROPER HOT ATR MACHINERY, MOSTLY NEW.

\section*{E. P. BAUGH'S} PATENT SECTIONAL MILLS,

\(\mathbf{W}_{\text {RRY O }}^{\text {OOD ANDIRON WORK ING MACHIN }}\)

Ammericau.

\section*{NASHVILLE andurial Emaiiun \\ THIRD GRAND INDUSTRIAL EXHIBITION MAY 1 st TO \(31 \mathrm{st}, 1893\), \\ Under the augices of the mecianics' and Mantfactrererg' Assoclation, Nashillle board of Trade,
and Tenyesse horti dltural Society, in Spaclous Bulldings, desf/gied and erected for the purpose. \\ From \(A\) int \\ From April, 1 sT TO 30 TII . Open to the Public from MAY 1 int TO \(312 \mathrm{l}, 18 ; 3\).
The various departments have been greatly extende and will embrace the products of the Soil, Forests, Mines: Munuractures and \(A r t\). \\ Ample facilltites for travel and transportation will be precedented attendance of last year. \\ Exhibitors should make Inmediatc application \\ for space. \\ R. PUGH,
Cob. Sec'y \\ WM. STOEKELL, \(\underset{\text { PBEG't. }}{\text { ren }}\) \\ }

CIAVERAC'K COLLEGE and Hudson Riv-
 \(\$ 495 \begin{gathered}\text { Upright } \mathbf{~ E n g t z e ~ a n d T u b u l a r ~ B o i l e r ~ (4) ~ H o r s z ~} \\ \text { Powze, with all Trimmingy-ALso, (10) Hozee }\end{gathered}\) YUS PowRr, wend for circulars. VAEIETY IRON
WORES COMPANY, Cleveland Ohlo. wORES COMPANY, Cleveland, Ohio.
SAW GUMMERS, Single and Double Up

GENUINE CHESTER EMERY. EMERY AMES. EMER CLOTH. E. V. HAUGHWOUT \& CO., A MERRICAAN ROLLEED NUT \& TUBE CO.
 process.
othersmade. Send for clrcular. WM. E. TA NNER, Preat TO THIE WORKING CLASS, Male or fe-

FHESTRARER \& CUH: THE FAVOITE AMERICAN BEECHLOADER Senttoany Sportsman on trial

Largest Grgan Establishment in the World
J. ESTEY \& COMPANY,

THE CEL \& \(B\) RATED
Estey Cottage Organs
 Established 1846.
SEND FOR ILLLUSTRATED CATALOGUE.

CHAMPION SPRING MATTRESS-The

To Electro-Platers. B ATTERIES, HEMICALS, AND MATE-
 T HRNE SPECIMEN COPIES of the AMER-

SCIERCE RECORD

\section*{1873.}

\(T\) TISNEW AND SPLLENDID BOOK is now

\[
1
\]

 MUNN \& CO., Publiehers,
\(3 y\) Park Row

3y Park Row, New York City.
TeE SCIEN TIFIC AMERICAN will be sent one year
and one copy of SCIENCE RE'CORD FOR 1873, on recetpt of \& 450 .
SCIE NCE RECORD FOR 1872, uniforn with the THE SELDEN DIRECT-ACTING

\section*{BAIRD'S goons}
for Practical men.
 cin tade
ilevry carey baird INDUSTRIAL PUBLISHER,
406 WALNT STREET, Phlladelpha Purchasers of Saw Mills

 \(\mathbf{W}^{\text {ATER POWER \& FACTORY BUILD }}\)

WOod-working Machinery.

4

I was the irst to ontroduce to the pubic the Hubbard
Cabange, Mexican sweet corn, Phinney's water-melon,
and many other
\(\mathrm{N} e \mathrm{~W}\) and Valuable Vegetables.

\section*{An deutfohe ©rfinder.}

Diefe große und thätige 『laffe unfrer Be botiferung maden wir befonbers barauf nufmertjant, DaE unfrc firma durd ifre Berbinbung nit \(\mathfrak{Z a f f}\) fington wub dent europaiijden §aiptftioten, bciondere ほortheile zur Erlangung bon ill- und ausländiiden §atenten bietet.
Yeber Erfinber, greciduier meedfer \(\mathfrak{R a t i o n a f i - ~}\) tät angefjörig, ift burd bie liberalen \(\Re_{\text {Batentge }}\) Segc ber Bercin:gten Gtaaten zum Fatentifuut fiir Erfindungen beced)tigt. Unfre §irma if bercit, gefitilkt auf 26 jähtrige ©rfalfrung, beuti|de
 \&recien ra\{d uno piinttlid) झatente zu crlangen.
Die Deutide Section if in ben §linben fähiger ocutidder Yngcriexre, calde in ber Dffice periöllidy mit Erfindern vertehren nerbin.
Der ,.s.vicutic.e American" wiro in feinen Epalten rie bebeutendecren Erfindungen be iprechen.
Correipontecus erbecen und prompt beant rootte. Waimbhlete in ocatider Eprade wer den auf \(\mathfrak{B}\) :riangen franco zugefanct.

Rorefirire:

THE NEW YORK
 CAPITAL, ONE IUUNDRED THOUSAND DOLLARS

E. E. ROBEFTRThent. \(\qquad\) or Secretary PINCKNEY. Treasurer.
Whaligy TURBINE No riags io purchaser Turbine Water Wheel

PATTERN \& BRANDING LETTERS-SHARP,

\section*{MILLIONS OF ACRES} Iomadillinaskalands Burlington \& Mo. River R. R. Co.

 GBO. S. HARRIS, Land Commissioner, Burlington, Iowe wai seen. please say in what paper this advertisement
 grial rajorion in prices

NEW PATTERNS.

\section*{Machinery,}

Machinists' Tools.

Cold Rolled Shafting.

\section*{Sturtevant Blowers.}

Antin
Pat. Punching Presses

J. H. WHITE, Newark, N. J., Manufac
 RUBBER STAMFs, steel Letere, the intie Gem

 FOOT LATHES.-T. Shanks, Baltimore, Md

SCHENCK'S PATENT. 1871 WOOD
 W eod.WORKING MACHINERY GEN-

THE Union Iron Miils, Pittsburgh, P

 FPTM.

INVENTORS' NATIONAL UNION. E. H.
 WOODBURY'S PATENT Planinnq and Matching
 O'TS' safety hoistiva

No. 348 BroATM,
Andrew's Patents.

 D. ANDREWS \& \(A\) ROO.
 mang keamery MOLDNGG, MORTISING MACHINES; BAND SAWS, Planinu \& Matchind

The TRADE WAGON.

A WAGON INTENDED FOR GENERAL PURPOSES sanishcdready to paint and trim. Inquire of your ca emaker, or the on LY manuracturers,
S. N. BROWN \& CO., of DAYTON, OHIO
 slide Rests, Hand Planers, Scroll sows
aperlor to all thers. selling every where
catalogues free. N. H. BALDWIN, Laconla, N.

protection agansst fire. HALL BROTHERS Are prepared to introduce their "System of Sprinklers' \({ }^{\text {into Mills, }}\) Factories, \&ec., at short notice. Call and see a practical operation of. same at their works, 36 CHARDON STREET,

B URER'S WATCHMAN'S TIME DE.

 \(\mathrm{R}^{\text {ICHARDSON, MERIAM \& CO. }}\)

 Siliale AND BABDEL MACHiNERY,
 Portable steam engines combin-

 Niagara Steam Pump. CHAS. B. HARDICE,
P. BLAISDELL \& Cu., \(\mathbf{M}_{\text {MACHINISTER }}\) ANGF FIRST CLASS

Boilers \& Pipes covered
 Asbestos Felting Co.,
-

Molce. U. B. Plano Co., 865 Br adway, N. Y.
CINCINNATI BRASS WORKS-Engineers

\section*{Prosple}

SCIENTIFIC AMERICAN. The Beet Mechanical Paper in the World A year's numbers contain over 800 pages and severa undred engravings of new machinee, useful and novel
nventione, manufacturing establishments, tools, and processes. The scientific american is devoted to the inter tures, Inventions, Agriculture, Cominerce, and the in dustrial pursuite generally, and is valuable and Instruc tive not only in the Workshop and Manufictory, het also
in the Honsehold, the Library, and the Reading Koom.

To the Mechanic and Manufacturer!
No person engaged in any of the mechanical parsuita hould think of dolng without the Scientipic Arris of. new machines andit ventions which cannot be found in any other pubicatio
Chemists, Architects, Millworights and Farmer The SCIENTIFIC AMERICAN wlll be found a mos sclence or chemistry are given in its coluanin; and the intereste of the architect and carpenter and not over looked, all the new inventions and discovecitee apper week. Usefol and practical Information pertaling week. Useful and practical anformation pertlibe found pubilished in the Scientific American, which informa lon they cannot posibly obtain from any other source will be found discussed in the Scientiric Anerician many improvements in agricultural implements betng illustrated in ite columns.
We are also recelving, every week, the best sclentific
ournals of Great Britain, France, and Germany; thus ournals of Great Britain, France, and Germany; thu
placing in our possession all that is tranapiring in me hanical sclence and art in these old countries. We shall continue to transfer to our columns coplous ex racts, from these Journals, of whatever we may decin of TERMS.
One c:opy, one year
One copy, six monthe
83.00
1.50
1.00

One copy, \(81 \times\) monthe
One copy, four monthe
1.00
 One copy of sclentific Amcrican for one year, and ne copy of "Sclence Record," for 1873
Remit by postal order, draft or expres
The postage on the sclentific American is ive centape quarter, payable at the office where recelved. Canadia anbecribers mue.
to pay postage.

\section*{Address all lette
drasta payable to}

RUUNTN \& OO.
87 PNEE 20W, REW YORX.
aduertiserucuts
Advertisemente will be admitted on the page at the rate of
\(\mathbf{8 1 . 0 0}\) per une for cach insertion. Engrotnge may 81.00 per une for cack ineertion. Engroings may
head adverthements at the same rate ver une by meas urement, as the latterpprese.

\section*{MACEINB 8EOP For Sale,}
\(\underset{\text { With or }}{\text { ant }}\)

Bradley's Cushioned Hammer

\section*{BABCOCK \\ Fire Apparatus,} TANEs.
Extinguishers, Engines, Hook and Ladder Trucks, etc. Time Detectors and Alarms. F. W. FARWELL, Skc'r,

407 Broad way, New York-78 Market St., Cnicago. PRINTING ATTACHMENT TO ORGANS
 MAUFACTIURER\&BUILICR Editedby FifiVandeweyde M.D Subscription S2 A Year
4vols S5 5 vols SG
-I IIRN IRIMI. I.I.
SEND FOR SPECIMEN COPY.

SUPBR-FEATHRS
 Pyrometers. fore teatna Orene, Boiler

INVENTORS,

\section*{SEVERY VARIETY COPE \& MAXWELL MFG.CO. HAMILTON,OHIO.}

Neafie \& bevery,
PENN WORKS,

\section*{}

For foesp or ant Roore, in all cllmatea,
ASBESTOS
ROOF
COATING.

\section*{A. S. Cameron \& Co. enginerrs}

Works, foot of East 23d Street, New Yors City.

\section*{STEAN PUNPS.}

Adapted to every Possible Duty.-Send for a Price List.

\({ }^{\text {Amerinican }}\) Turbine Water Mheel

 MORRIS, TASKER \& CO., manufacturers of AMERICAN CHARCOAL IRON
Boley Jubes.
WROUGHT-IRON TUBES and FITTINGS, FOR GAS, STEAM WATER, AND OIL.
男steam and Gas. Fittery' supplies, Machnery to NO. 15 GOLD ST., NEW YORK.

R A. Vervalen's Brick Machines, Made at Hayeratraw, Rockland Co., N. Y. Makitif nine.
MAHOGANY,
ROBE WOOD, FREMCH
WOOD,
HOLNOT,

\section*{BOLT CUTTER HNMA}

M ANUFACTURERS of Callined and Land Plaster, Marble Dust, Terra Alba, \&c.\&c. Our

 PETER COOPER'S Refingel IVeats' Foot Oii, FOR FIRST CLASS MACHINERY.

\section*{Diamond Pointed} STEAN IDRIWS.
THE adoption of new and improved applica

\section*{THEB TANRMY CO.,}

INVENTORS \& BULLDERS OF SPECIAL EME EME GRINDING.
SOLID EMERY WEEELS, from 1 in to 3 foet tn dam

The Tanite Co., NEW YORK SAFETY STEAM POWER CO.
 Union Stone Co.,

Or Planing Pa er Cuting Leather spilting, and al

RON PLANERS RASTHAMPTON, Mase.
 ING CO.. Not Haven, Conn.
Q1 ROTARY,
Gund
Guaranteed to work well. send for Sample and

\(\boldsymbol{T H E} B A N D\) SAW!
HISTORY, with Engravings of

\begin{tabular}{|c|}
\hline \multirow[t]{11}{*}{\begin{tabular}{l}
"The Harrison Boila \\
Scvenyears' service in some of the largest es
ment in New England and elsewhere, with varying from Fifty ro Fifteen Hundred Horse thif improved generator has taken a permanent
the use of stuan.
Fitty Thousand Horse Power bave been made in oneration with a present ateady demand. entirerenewal it cas be made as good as newo at a out and replaced by bimply rewoving the loose b of the orginal setting. It is most difflcult and ex
to take out and replece the ordinary wrought iro which, worcen command a purchaser at any price.
canscar
Harlson Bollers of any ize can be mide in place, the ortting cosilng no most as they can
ordinary wrought fron than that be made direct to the, circuiars, etc., applicatio HARRISON BOILER WORKG
\end{tabular}} \\
\hline \\
\hline
\end{tabular}

\section*{BUILDING PAPER!}

WIRE ROPE.
JOHNA.ROEBLING'SSONS.

 CIRCJUAR SAWS Patent Perforated Circular, Mill, Cmasseiif Sarss

\section*{B. F. STURTHVANT,}

PRESSURE BLOWERS\& EXHAUST FANS SUDBI: \(\qquad\)
\(\mathbf{N O}^{\text {OYES MLL }}\) murnishing works Hurin into

Empire Couplings

Machinist's Tools,

FOR SALE OR RENT-The
F

```

