A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.
Vol. XXVIII.--No. 8.]
NEW YORK, FEBRUARY 22, 1873.

THE SNAP FLASK

We are not aware to whom is due the credit of the invention of the useful contrivance which our artist has so graphically depicted in the hands of the brawny workman in the engraving. It is simple, handy, as we shall presently show and, withal, a convenience which iron founders, or more especially molders in green sand, can ill afford to be without We have therefore prepared the accompanying illustration, and to make matters more clear, we add a few words of description, in the hope that the suggestion may prove of practical value to those who are unacquainted with its uses, construction, and merits.
'The snap flask, as it is commonly termed, is commonly termed, nary two part flask in having i-ts portions hinged together by a butt at one corner and closed by a latch at the corner diagonally opposite. It is without those troublesome cross pieces which are always half charred, generally of the wrong shape and in the wrong place, nor are wrong place, nor are
its various parts filled its various parts filicd with numberless bristling rusty nails. Its intcrior sides, being smoothly scooped out, hold the firmly rammod sand during the removal of the cope.
In constructing small moldings, the flask is best located on a rude table, so that in using his two wooden hand rammers (such as are represented in the cut) to pack the sand home, the molder can home, the molder can work is fini. Afterthe work is finishedin the ordinary way, it only remains to unlatch the corner and swing the flask when it is ready for immediate re-use. The sand mold is removed from the table to the floor and weighted with a plate of cast iron, made with lifting ears on two sides and pierced with a square aperture in the center, aperture
poured.
wred.
We think there are few workmen who will not agree with us in the opinion that, after a hard day's work, it is no slight labor to shake out, fit together, and pile up in the yard a score or more of small flasks, and that any contrivance which, like that above described, will save them such toil is well worthy of their attention and employment.

Practical Notes on the Steam Engine.

The comparison of the different systems of construction of steam engines, old and new, says Dingler's Polytechnis ches Journal, with reference to the speed of the piston, steam pressure, duration of admission of steam to the cylinder, and the regular and even motion of the machine, shows that the rapidity of the piston and the pressure of steam augments with the duration of expansion. The following classification then may be established: 1st. Low pressure engines which work with but a feeble or low tension of steam (35 to 40 pounds per square inch) with a small speed of piston and without or nearly without expansion: under these conditions the motion is regular but the expenses of setting up and keeping in repair are large. This system is represented by Watts old beam engine. 2. Engines which work quicker than the preceding, but still with a moderate speed, the steam pressure and expansion remaining as above. Mction irregular. Expense of establishing light, but of repairs, heavy. To this category belong what are termed good ordi-
nary machines. 3. Engines of which the pistons move moderately quickly, of which the steam works at a medium pressure and in which steam is admitted to the cyave a sufficiently regular motion and their cost of establishment and repair is relatively low. They are usually constructed with a single horizontal cylinder and are in very extended with a single horizontal cylinder and are in very extended
use. 4. Engines which work with the same rapidity and use. 4. Engines which work with the same rapidity and
pressure as to the preceding system but with large expan-
ently quite as much. Even the fifth was considerably stained. From this it follows that the collodion film, as or dinarily used, absorbs only a fractional part of the rays that can affect it. Could it be made to absorb the whole, its sen sitiveness would be correspondingly increased.

Sounds of the Body.

At a recent meeting of the Clinical Society of London, Dr Poore exhibited an adaptation of a well known philosophical experiment to med ical purposes. A pa tient with a remark bly loud aortic regur gitant murmur, ac companied by intense thrill, was made to lie on lis back upon a common mahogany table. Dr. Poore then took an ordinary walking stick, placing it ing stick, placing it vertically upon the sternum at the level of the third costal cartilages, and upon the upper end he poised the sounding board of a guitar, with the ori fice downwards. When this arrangement was completed, and after complete silence had been obtained, the murmur became distinctly audible to the bystanders. Dr. Poore remarked that he regarded the case merely as a clinical curiosity. His apparatus was very rough, but it served to exhibit a novel application of acoustic principles, and probably, with a specially constructed and more delicate instrument, it would bo possible to render the sounds and murmurs of the heart audible for the purposes of clinical demonstration. Sounds and probes with sounding probes at one end were used in some of the clinical lecture theaters in Germany ; and Dr. Poore exhibited an iron probe with a circular sounding board at its

MOLDING WITH THE SNAP FLASK.
sion, very usually provided with a specially devised cylinder Motion irregular. More expensive than the englnes in the preceding paragraph. To this category belong the Woolf compound engines, which have two cylinders placed side by side, in a horizontal position but not on the same plane. With these four classes of machines, the above results have been determined and confirmed by long experience. One more system remains to be noticed: 5. The engines which work with high velocity, high pressure and great expansion. These are regular in motion and low in first cost and expense of repairs. But little experience has been had with these machines. It is considered, however, that they possess a decided advantage in having speed together with a horizontal position. They may be advantageously substituted for the old forms of cumbrous and slow beam engines.

Absorption of Light by Photo Film

Professor J. W. Draper says: The silver compounds of collodion absorb the radiations falling on them, which are capable of producing a photographic effect. Yet sensitive as it is, collodion is very far from having its maximum sensitiveness, as is shown by the following experiment, which is of no small interest to photographers: I took five dry collodion plates, prepared by what is known as the tannin f ; and having made a pile of them, I caused the rays as fame to pass through them all at the same time. impressed, and the second, which had been behind it, appar-
extremity, by means
of which all vibrations communicated to the probe were greatly intensified.
Mr. De Morgan remarked that Dr. Corfe had suggested the converse of this. He demonstrated that, when a person placed his head on the chest, the sound of his voice, when speaking, was affected by the condition of the patient's chest. Dr. Anstie remarked that Mr. Brooke used to demonstrate stone in the bladder to his class at the Westminster Hospital by means of a sounding board attached to the staff.
The application of this well known phenomenon of the transmission of sound to the diagnosis of chest diseases may possibly lead to a material improvement upon the stethoscope. A walking stick is, of course, not the most suitable connecting rod for conducting the sound.

Tomatoes in Iron Pots.-There are a thousand and one things I would like to know (and probably shall, in time, unless I have to learn how to vote); but this I do know, thai tomatoes must not be cooked in au iron pot. Some beneficient housekeeper, following in the footsteps of the illustrious "scrapple" maker, gives a recipe in last week's Rural for a cheap soup, in which she directs the ingredients to be puttin an iron pot. I sometimes, at good tables, taste tomatoes which have been made bitter by this process. If the intention is to medicate them, the result will satisfy the de-sign.-Rural Yorker. [It might be added that vegetables ameled or otherwise coated internally.]

Srientifir Ammaican.

MUNN \& CO., Editors and Proprietors. NO. 37 PUBLISHED WEEKLY $A T$ REW YORK. o. d. MUNN.
A. e. beach.

\section*{T以 \boldsymbol{F} RIE}
 ne copy, one year
 Clve antzs $\left\{\begin{array}{l}\text { Ten conies, one year, each } 8250 \\ \text { Over ten copies, same raie, each }\end{array}\right.$
 8309 150 8500

voL. XXVIII., No. 8. [New Series.] Twenty-eighth Year
NEW YORK, SATURDAY, FEBRUARY $22,1873$.

anNoAl REPORT OF THE COMMISSIONER OF patents.

The annual report of the Commissioner of Patents to Con ress, for 1872, has just been sent in, from which it appear that the affairs of the Patent Office are in good order and flourishing condition. 3,090 caveats were filed last year, be ing a slight dectease over the previous year. 18,246 applica tions for patents were made, of which 13,590 were granted. A slight increase in the number of patents granted is shown and a considerable dacrease in the number of applications made, which the Commissioner explains in a curious way. Th decrease of applications and increase of the number of patents granted, is due, he says, to the circulation of the office publi cations, giving to inventors, manufacturers, and attorneys re liable information as to what inventions are already patented thereby securing better applications but fewer in number.
Now, if this is so, if the effect of the office publications has been thus quickly and noticeably, during the first year, to re duce the number of applications, and yet to increase the number of patents granted, may we not expect similar results, in greater ratio, a few years hence, when the aforesaid pub lications are more extensively circulated? Let us look at the results for the next five years, allowing that the ratio re mains only the same:-Number of applications made in 1871 , 19,472 ; in $1872,18,246$; decrease, 1,226 . Number of patent granted in 1871, 13,033; number granted in 1872, 13,590 increase, 557.-Allowing the same ratio each year for the next five years, we should have the following results for the year 1878:-Number of applications made, 12,160, and num ber of applications granted, 16,375. Evidently it will no do to carry forward the Commissioner's deductions.
A much more probable explanation for the discrepancies in the figures for 1871 and 1872 would be this :
In 1871 the Office was overcrowded with business and delays ensued, and the examiners doubtless rejected many cases for the first time which, on revision in 1872, they de cided to allow. The falling off of 1,226 applications in 1872 is probably due to the discouraging effects up
oflcial delays during the year preceding
Patent Office have been increased during expenses of the Patent Offce have been increased during 1872 ; but we ar satisfied that the money has been well spent in providing rocm, and in reproducing copies of back patents.
The various official publications of diagrams, claims bound volumes of reduced copies, and full size copies of patents have been admirably produced, and reflect the high est credit upon the Commissioner. This department of pub lication has become one of the most important branches of labor at the Patent Office, and is of inestimable value to the country. The publication of a general Index to the patents, and a Digest of the inventions, are highly important work which ought to be proceeded with, and we hope that Con ress will give to the Commissioner the necessary authority. The Commissioner recommends that a law to authorize th extension of patents granted subsequent to 1861 should be nacted. We trust it may be.
In urging Congress to adopt his scheme for the "reorgani zation" of the Patent Office, the Commissioner makes the fol lowing statement:-"After careful and extended enquiry, I am convinced that considerably more than one half of the capital employed in manufacturing in the United States is thus invested because of the security to specialties obtained from patents." "For this reason," he says, " the demand for better examinations and more care as to the wording of spe cifications and claims before issuing patents or rejectlyg ap plications, is increasing every day. The business of the O fice is being done under a plan of organization adopted in
its infancy-a plan adequate to its wants at that time, bu which has been outgrown by its enormous increase of busi ness." The italics are ours.
The Commissioner's plan for "reorganization" is simply to place a set of nine bosses over the present examiners, to be called "chiefs of division," who are to supervise the work of the examiners and decide whether their decisions are to and, and eprecate the addition of any new forms and ceremonies, with their attendant delays, red tapeism and expenses, to the
business of obtaining patents. We prefer the infantile sysbusiness of obtaining patents. We prefer the infantile sys
tem as it now exists, which works so well, gives such gene al satisfaction, and affords such ample securities that, accor ding to the Commissioner's own showing, it now employ ne half of all the capital invested in manufacturing in the United States.
It is a good old adage: "Let well enough alone." It would be hard to find a system that works better than the present and we say, let it alone. The simpler the forms and the mor prompt the official action in the grant of patents, the mor will the inventive genius of the country be fostered an encouraged.

A BLOW TO THE TRADES' UNIONS.

The last volume of the Massachusetts Law Reports con ains the ruling of Chief Justice Chapman, in a case which nvolves the question of whether trade organizations hav any right to exact fines, or use other means of extortion to
compel employers to accede to their demands. The plaintiff, compel employers to accede to their demands. The plaintiff Mr. John Carew, had contracted to supply a certain quantity of hewn stone; certain members of a society called the Journeyman Freestone Cutters' Association of Boston obtained from him the sum, or fine, as they called it, of $\$ 500$, by threatening to deprive him of laborers necessary to him for he fulfilment of his contract, and by actually inducing ome of his employees to leave. The action was brought only $\$ 500$ but any damage to his business caused by the acts of the conspirators. Chief Justice Chapman says, in his opinion: "The acts alleged and proved in this case are pe culiarly offensive to the principles which prevail in this country; and if such practices could enjoy impunity, they would tend to establish a tyranny of irresponsible persons over labor and mechanical business which would be extreme y injurious to both.'
There is not an emplyyer or a right minded workman in he country who will not rejoice at the placing upon recor of so clear, resolute and unequivocal a condemnation of the whole system of trades' unionism as it is now practiced. On or two such decisions in this State are greatly needed, and woula do more to prevent such uprisings as that of last sum mer than years of discussion between the contending parties We have plenty of laws on our statute books militatin gainst conspiracy; and, if none of them cover such cases a that above cited, let some of the employers who suffered by he great strike see that the proper steps be taken to have sitable enactments framed by the Legislature, that will effectually remedy all existing evils.

THE VIENNA EXPOSITION

The buildings of the Vienna Exposition are now completed and in readiness for the reception of the articles to be exhib ted. Several changes have, we learn, been made in the gen ral plan. The center space of thie Palace of Industry, instea f being divided up, has been converted into one colossa otunda, the largest roofed building in existence, measurin $26 \frac{1}{2}$ feet in diameter and 300 feet in hight. The iron work of he roof weighs 40,000 tuns, and it may be imagined that it re uired no small effort of engineering skill to raise this eno mous load to a hight of nearly 300 feet. The work was accom plished by 240 men in three months. The central structur is iron, covered with an outer coating of masonry connecte with the interior by girders. Some idea of the dimensions of the vast fabric may be gained from the fact that a regi ment of infantry numbering 1,400 men could conveniently be paraded on the architectural cornice which runs round the inside where the roof joins the columns.
The materials of which the buildings are composed ar mainly iron, wood and glass, but the walls, where not clear toried, are filled in with brick. The outward decorations which are very imposing and of a solidity apparently suff cient to last for ages are made of canvas steeped in fluid laster of Paris and hardened in molds. With admirabl aste, a blue texture of jute spangled with golden ornament has been selected as a wall covering, which contrasts agree ably with the dark red of the supporting columns.
The machinery hall is a simple brick building with no pre tension to architectural display. The motive powers, cranes, oilers and engines are all themselves exhibits. All engine under seventy-five horse power and cranes lifting less than welve tuns are excluded. Borsig's engine factory in Berlin, which turned out its two thousandth locomotive for the Paris Exposition, in 1867, will exhibit its three thousandth in Vienna
The supplementary structures will consist of edifices fo hold the excess of exhibits not finding visitors, and annexes to leries. The Austrian Empor is to have a magnif fitted up pavilion, and it is stated that the French and Ger man buildings will vie with it in grandeur. Krupp, of cas teel renown, will stock a special edifice with his own inven tions, and the New Free Press boldly aspires to out-do the London Times, whose machinery was last year exhibited in London, by erecting a pavilion of its own. One space of 1,600 ratus and appliances.

Danger from fire is put almost beyond the reach of possi bility. There is a large basin of water in the grounds, filled conveniently from the adjoining Danube, which might at any onstruct convert the whole area into a lake. Thition thereto fire engines and hydrants are provided in sufficient num bers to inundate every gallery in the buildings.

THE SCIENCE RECORD FOR 1873.

Jn reply to various enquiries we would state that Science Record for 1873 is now almost through the press and will be issued either next week or the we. k after, when all to whom copies are due will be immediately supplied. A large edition has been ordered. It is a handsome octavo volume of six hundred pages, illustrated with many engravings. The Engineering department contains views of several of the most important railway bridges in this country, the great Suspen sion Bridge between New York and Brooklyn, Steam Street Cars, improvements in engines, injectors, mills, and machin ery of all descriptions.
The department of Geography contains illustrations from the Yellowstone region, showing the wonderful pools, hot springs and other extraordinary formations, which are among the wonders of the world.
The department of Biography is rich in portraiture, containing steel and wood engravings of distinguished men of science, including Professor Joseph Henry, Professor Tyn dall, Professor Dana, Professor Peirce, Professor Bunsen, Professor Kirchhoff and Professor Morse. The portrait of the latter is engraved from a painting from life taken some years ago, soon after Professor Morse had completed the first line of telegraph, between Baltimore and Washington, when he was in the vigor of his life.
The book is one of interest and value for lovers of pro ressive, practical science. The advertisement on anothe page shows the general scope of the contents.

THREE FEARFUL BOILER EXPLOSIONS IN ONE DAY Three terrible boiler explosions have recently occurred on the same day, February 3d, one resulting in the death of nineteen persons and the wounding of nearly two score more. One of these explosions took place at Pittsburgh, Pa. another at Syracuse, N. Y., and the third near Norristown, Pa. To an esteemed correspondent, Mr. W. B. Le Van, of Philadelphia, we are indebted for the accompanying dia grams and details of the casualty at the rolling mill of Messrs. J. Wood \& Bro. at Conshohocken, near Norristown Pa., which destroyed about one half of the establishment The exploded boiler was 18 feet long and $4 \frac{1}{2}$ feet in diameter and had been in constant use in the mill for twenty year It had two flues, each 18 inches in diameter, which, with th shell, were originally of No. 4 iron, calculated to withstand 80 pounds working pressure to the square inch. At the rup tured point, the iron had become but three sixteenths of an inch in thickness, and was besides much crystalized. When the explosion took place a portion of the boiler was hurled end first, across a canal and a railway track into a building known as the Albion Print Works. There it encountered girder of an arched doorway, shattered it (with the adjacen wall) and finally lodged in a large iron kier, used for steam

ing pieces of muslin, in the manner shown in our diagram Two boys were engaged within the kier, distributing the
warp for bleaching, both of whom were instantly killed warp for bleaching, both of whom were instantly killed. The kier was 8 feet wide and 12 feet high.
Ten minutes before the accident the steam gage showed a pressure of 53 pounds. The close flattening together of the flues indicates that they collapsed from force externally ap plied. There is little doubt as to the cause of the disaster The boiler was simply used up, and the thinness of the iron and the clean, smooth rupture show that it had become in adequate to withstand the required pressure. Eleven per ons were killed outright and a similar number, more or les badly wounded. The responsibility of this awful disaste ppears to rest upon the proprietors, and forms another link in the long chain of similar horrors due to a negligence of easonable precautions for the safety of human life.
The Pittsburgh explosion occurred in the extensive Ameri can Iron Works of Messrs. Jones \& Laughlins. These works are among the largest in the country, covering fifteen acres of ground and employing three thousand workmen. It is here that the celebrated cold rolled shafting is made. The explosion involved a battery of four boilers located in the central part of the numerous workshops. The spike and nail
factories together with the sheet mill were demolished, at loss of some $\$ 75,000$ and seven persons killed and thirty wounded. The boilers had been five years in use. It is stated that the iron was good and that the gages showed plenty of water just before the accident. Portions of metal were thrown for distances of three blocks, crashing through the roofs of neighboring buildings.
Among the incidents of the disaster, it is mentioned that Mrs. Clarke, wife of one of the employees, hearing the noise of the explosion, fell upon her knees and commenced to pray; while in the attitude of supplication, a piece of the boiler weighing 700 pounds struck the house, and went crushing through the room on the line where her head would have been had she remainad standing. Another mass of the boiler iron, weighing nearly eighty pounds, went lumbering through the air for a distance of 200 yards, and, descending upon a door of a bakery on Carson Street, crashed through it as it might through a house of straw, and fell upon the middle of the floor. Fortunately, however, though much destruction of property was occasioned, no loss of life here ensued. A blacksmith, named Jacob Broonsinger, who was working in a shop in the vicinity of the explosion, had been standing at a certain place fixing a horseshoe. He the shoe on when an immense piece of iron, weighing fully 200 pounds, came crashing through the roof, and fell on the spot where he had been standing a moment before.
We trust that some of our engineering correspondents will send us diagrams and particulars of these boilers for publication.
The third explosion to which we have alluded took place at Geddes' rolling mill, in Syracuse, N. Y. In the latter case, one workman was killed and seven injured. The
boiler was new and considered in prime condition. The buildings and machinery were damaged to the extent of $\$ 5,000$.

matthew f. madiy.

Matthew Fontaine Maury, formerly an officer in the United States Navy, afterwards of the Coufederate Navy, died recently at his residence at Lexingtọn, Virginia, aged 67. He was formerly superintendent of the Government Hydrographic Office, where he elaborated investigations in regard to winds and ocean currents. The discovery of the telegraphic ocean plateau and the indication of good whaling ground is attributed to him. At the time of his death, he
was Professor of Physics in the Virginia Military Institute.

AN OLD FRIEND GONE

The London Mechanics' Magazine, after an existence of fifty years, has, as a distinctive publication, disappeared from public view. It has recently been incorporated with a new weekly periodical, of more pretentious form and larger
dimensions, entitled Iron, the Journal of Science, dimensions, entitled Iron, T
We shall greatly miss the familiar face and the regular visits of our excellent cotemporary, which flourished for nearly a generation before the Scientific American was conceived. The assurances that the new comer, which is to stand in its place, will be more sprightly and occupy a wider field have, for us, no comfort. For over twenty-five years the Mechanics' Magazine has been to us a valued friend and
counselor in things scientific, and we deeply regret the excounselor in things scientific, and we deeply regr
igencies that have compelled its final suspension.
We have before us, as we write, the first number of the Mechanics' Magazine, which is graced by a prospectus commencing as follows

- Fellow Countrymen :-Almost every class of people in this enlightened country has now a journal or magazine, which attends to its peculiar interests," etc. It then goes on to say that no publication has yet appeared suited for mechanics and artisans. "But the publishers now. undertake such a work under the title of the Mechanics' Magazine, which shall be so cheap that all may buy, and of such value
that no one ought to be without it." The price was fixed at that no one ought to be without it." The price was fixed at
3d. per copy. It was printed in book form, sixteen pages in 3d. per copy. It was printed in book form, sixteen pages in
each issue, and published weekly. The first number was each issue, and published weekly. The first number was
issued on Saturday, August 30,1823 . How vast has been issued on Saturday, August 30, 1823 . How vast ha
The front page of the first number of our venerable cotem-
porary was adorned by a portrait of James Watt, who had porary was adorned by a portrait of James Watt, who had
then been buried four years. An excellent biographical then been buried four years. An excellent biographical sketch of the great inventor then follows. The diving bell is next described and illustrated. Then comes a picture of a
man flying in the air, with mechanical wings. A list of the new patents granted during the preceding month is then given, six in number, one of which was issued to Steven Fairbanks, of the United States of America, for certain ímprovements in locks. How to boil potatoes, and choose a carpet, are explained; also an old wife's notions about tea and teapots. How to detect cotton mixed with wool; How to avoid the effects of foul air in wells, and How a philoso pher was outwitted, are explained. The latter states that a
little girl came to a learned doctor who was busy in his little girl came to a learned doctor who was busy in his
study, and asked for some fire. [This was before the day of study, and asked for some fire. [This was before the day of
matches.] She had nothing wherewith to carry the coals, and the doctor started to fetch something for that purpose. But the little girl, stooping down, scooped some ashes on one hand and placed thereon with the other some live embers and departed. The astonished doctor threw down his books, saying: " with a
Jacob Perkins, the American inventor, was at that time in London, and some of his inventions attracted greatattention. Among others noticed in an early number of the Mechanics' Magazine was a steam engine and generator, worked at what
was then considered an enormous, a fearful pressure, namely 75 pounds to the inch. His assertions that such engines could be safely worked, and with greater economy, were scarcely credited by the scientific people, notwithstanding that he had a ten horse power engine in actual operation.
The successful removal of a brick house to a considerable
distance back from the street, in Maiden Lane, forms the subdistance back from the street, in Maiden Lane, forms the subject of a letter from New York. The job was done by a Mr highly praised
Brunel's device for tunneling under the Thames is also illustrated and described. and notice is made of the fact that Sir Humphrey Davy had just discovered the application to mechanism of a certain gas, fifteen times heavier than air, which will produce a power fully equal to that of steam. The great obstacle to the immediate use and introduction o the gas is stated to be the difficulty of confining it. But Sir Humphrey expected to be able to overcome the obstacle.
In the number for January 3, 1823, a correspondent, who
is so far in advance of the age that he does not venture to is so far in advance of the age that he does not venture to give his name, but signs himself T. G., gives drawings and descriptions of a locomotive engine, cars and railway. His article is entitled " Proposition for a General Iron Railway, with Steam Engines, to Supersede the Necessity of Horses in all Public Vehicles." He says:-" The intention of the present scheme is to introduce a more economical and expeditious mode of conveyance than is now in use, for vehicles of every kind, whether employed in the transport of persons or merchandise. It is proposed to supersede entirely the necessity of horse power in all public wagons, stage and mail coaches, post chaises, etc., and to employ in its stead the more potent agency of steam. A careful examination of the
drawings now presented to the public, as a plan of a general drawings now presented to the public, as a plan of a general
iron railway, will, it is hoped, clearly demonstrate the ease, safety, and celerity with which vehicles of every denomination, for the conveyance of goods and persons, may be pro pelled by mechanic power. The six parallel railways which extend the whole length of our inner plate, form a general iron railway, which might run in a direct line from London to Edinburgh, and from London to Falmouth." This proposed railway had three tracks with devices for the lateral transfer of the cars from one track to the other. Each rail was provided with cogs, set below the face of the rail, and cogged wheels on the locomotive were made to mesh with the rail cogs ; the engine and train were thus propelled. It had not then been ascertained that the adhesion of the wheels on the smooth faces of the rails would be sufficient, without the use of cog teeth.

DEPARTURE OF PROFESSOR TYNDALL.

We have before us Professor Tyndall's parting words to his many friends in the United States, delivered at a dinne recently given in his honor by many prominent citizens of New York. Through all the lightness characteristic of a post-prandial speech, we recognize the same earnest efforts in behalf of original research, the same powerful appeal to all classes of educated men to aid in the cultivation of science, that were so eloquently maintained in the able discourses now familiar to us all.
It is difficult to take exception to arguments emanating rom so distinguished a source, but, while concurring in the belief that men who are willing to devote their lives to the advancement of our scientific knowledge should be support ed, free from other cares, we do not fully acquiesce in the opinion that original research would be very materially for warded by the establishment of an institute on the same basis as the Royal Institution of Great Britain. Records of the past point to the fact that successful discoverers in the great field of science have toiled, not with costly accessories or assisted by abundant means, but have carried out their la bors after struggling against the most adverse of circumstances and with the humblest aids.
We are led to infer from the remarks of the learned au thor that he regards' with a shadow of dissatisfaction the po sition he has taken upon the lyceum stage. He says " look jealously upon the man who is fond of wandering from his rue vocation to appear on public platforms. Now and then the discoverer, when he has anything important to tell, may appear with benefit to himself and the world, but as a gene-
ral rule he must leave the work of public lecturing to others. If our premise be correct, Professor Tyndall, with character istic modesty, underrates the magnitude of the service he has rendered to science by his public lectures. Great as he is as an investigator, and valuable as the discoveries attained through his instrumentality are, we consider that as a teacher, as an apostle of science sent to awaken a new interest in its truths, in the minds of others, he fulfils his true mis sion; and that, had he secluded himself as he suggests the inquirer into Nature should do, the value of his contributions to our knowledge published by other means would fal far short of the benefits he has already conferred by his matchless elucidation of truths already known.
Did our space permit, we should be glad to present the whole of Professor Tyndall's admirable speech. As it is, we cannot refrain from quoting the following lines, addressed to those who apply themselves to science as a voca-
tion. After alluding to his mode of life and study in Germany, he says:

For a good portion of the time I rose an hour and a half earlier, working by lamplight at the differential calculus when the world was slumbering round me. And I risked this breach in my pursuits and this expenditure of time and money, not because I had any definite prospect of material profit in view, but because I thought the cultivation of the entertained the sure and certain hope that, armed with
knowledge, one can successfully fight one's way through the world. It is with the view of giving others the chance that
I then enjoyed that I propose to devote the surplus of the money which you have so generously poured in upon me to the education of young philosophers in Germany. ought not, for their sake, to omit one additional motive by which I was upheld at the time here referred to-that was a sense of duty. Every young man of high aims must, think, have a spice of this principle within him. There ar sure to be hours in his life when his outlook will be dark, his work difficult, and his intellectual future uncertain Over such periods, when the stimulus of success is absent he must be carried by his sense of duty. It may not be so quick an incentive as glory, but it is a nobler one, and gives quick an incentive as glory, but it is a nobler one, and gives a tone to character which glory cannot impart. That un
flinching devotion to work, without which no real eminence flinching devotion to work, without which no real eminence
in science is now attainable, implies the writing at certain in science is now attainable, implies the writing at certain
certain times of the stern resolve upon the student's characcertain times of the stern resolve upon the student's charac
ter: 'I work not because I like to work, but because I ought ter: 'I work not because I like to work, but because I ough
to work.' In science, however, love and duty are sure to be rendered identical in the end.'
We feel assured that the regrets expressed by our parting guest at the circumstances which necessitate his early fare well will be shared by all. That he has succeeded in arou sing a new interest in science among us is unmistakable; and that by his personal presence he has, if such be possible, in creased the respect and admiration we had formed for him through his writings, is equally true. He carries away with him the expression of our cordial goodwill, coupled with the sincere hope that his return to our shores will be delayed to no distant day.

AN ELECTRICAL TOWER.

Mr. William H. Ward, of Auburn, N. Y., has suggested an electrical tower for accumulating natural electricity fo telegraphic purposes. The structure which is to be placed on high mountain peaks or other elevated stations is to be made in three sections. The lower portion is a mere shell contain ing a door. Above this and insulated from it by a diar. hragm is the middle part in which are openings or windows having slats pivoted in them, so that,by means of raising.or lowering rods suitably connected to such shutters, the openings may be shut or opened. A projecting roof extends over the win dows, serving to protect them from the weather and also for receiving the aerial electricity which may be drawn from it by wires for land line purposes. Above this roof is anothe insulating dia hragm. The highest portion of the tower is insulating dia hragm. The highest portion of the tower is and connected with the rods acting upon the shutters that and connected with the rods acting upon the shutters that the revolution of the vane by the wind will open the wind-
ward and close the leeward slats. The wind therefores ward and close the leeward slats. The wind therefores
assists in driving an aerial current of electricity into the insulated middle portion of the tower, which current passe upwardly through the upper portion of the tower and ou through the ventilator, thus forming a draft by means of which the electrical current is forced out at the vane. In sulated wires leading from the top portion of the tower allow a supply of electricity to be drawn therefrom.
By the use of the aerial electricity which surrounds the earth in the upper strata of the atmosphere, the invento considers that artificial batteries may be entirely dispensed with, and a circuit formed merely by connecting the aeria current with the earth current. For instance, to bring Buenos Ayres, in South America, in direct connection with New York the following plan would be pursued: one elec trical tower is erected on Pike's Peak or any other suitabl high mountain in North America, and another similar tower on some suitable peak of the Andes in South America. Th former would, by means of land lines, be connected directly with Denver, which place is again connected with all the prominent cities of the States. In a similar manner the southern tower is connected by land lines with prominen cities viá Quito. New York telegraphs to the tower on Pike's Peak, and, the operator having connected the land line with the aerial current, the signals are transmitted through the aerial current to the town in South America, and thence-the land li
Quito and Buenos Ayres

A Velocipede Race.

A fifty mile race on bicycle velocipedes recently took place at Wolverhampton, Eng., between two experienced riders Moore and Johnson. Moore, the smaller man of the two agreed to allow his opponent an advantage of two miles in the fifty. The first fourteen miles were run in 59 minutes and 23 seconds, the advantage being in favor of Moore. At the end of the twentieth mile the race seemed to be over, as Johnson was evidently suffering from having repeatedly to force his high wheel with short crank up hill against the wind. Moore, on the other hand, with small wheel and long crank, had nodifficulty in making the ascent. On the twenty seventh mile, Moore passed Johnson for the sixth time, who could now scarcely move his vehicle up the short hill, and, on the twenty-eighth mile, Johnson gave up the race. Moore on the twenty-eighth mile, Johnson gave up the race. Moore
finished the remainder alone, making the fifty miles in three finished the remainder alone, making the fifty miles in three
hours 56 minutes and 40 seconds, and running the last mile hours 56 minutes and 40 seconds, and running the last mile
quite as quickly as the first. At starting, in view of the quite as quickly as the first. At starting, in view of the
odds given to Johnson, bets of three to one were offered that odds given to Johnson, be
he would come off victor.

The Leyden jar was discovered by Von Kleist in 1745 Chemical decomposition by voltaic electricity, was discovered by Nicholson and Carlisle, London, in 1800.

The hight of thunder clouds from the earth has been ob erved, in India, to be from three to five miles.
fLOATING STATION FOR FLOATING FIRE ENGINES. We herewith illustrate a floating station or dock for float ing fire engines, which has been designed and lately patented by Mr. William H. Maw, and which is being introduced by Messrs. Merryweather \& Sons, a firm who have been remarkably successful in the construction of small floating fire engines of the class which the station is especially designed to accommodate
The object of the arrangement we illustrate is to afford shelter and protection to floating fire engines, and to enable
being placed in telegraphic communication with the land sta tions, they enable the floats to be brought into action without any delay. 4. They afford better accommodation for the men than can be given in the present large floats, while they also afford ample stowage for coals and stores.
ion Dollar Telescope.

The Proposed Million Dollar Teleseope.
 Some of our correspondents are determined to push this in

matter. W. L. L. says that the people of the United States
temp This evaporator is no untried experiment, but can be seen n daily use at the works of the Rahway Glue Manufactur ng Company, Rahway, N. J. The company claim to hav evaporated 600 gallons an hour, and they invite all interested to visit the factory and see for themselves the actual work ing.
This evaporator is adapted for sugar, salt, dyes, wood and bark extracts, etc. For further information, address the sole

FLOATING STATION FOR FLOATING FIRE ENGINES.

floating fire engine vessels of comparatively small dimensions to be employed to greater advantage than is possible under ordinary circumstances. For this purpose it is proposed, by Mr. W. H. Maw, that the floating fire engine, when not at work, should be kept in readiness, under cover, within a suitable floating station or dock, which is permanently moored in the required situation, and may be placed in telegraphic communication with the shore and other fire stations of the district in which the floating station is situated. The floating station is constructed so as to carry firemen's quarters, coal and other stores, and apparatus for containing supplies of water, heated or otherwise, in readiness for feeding the boiler of the floating fire engine.
The floating station is constructed with two hulls connected together below the water level by cross girders as well as by a roof overhead the hulls being placed sufficiently far apart to accommodate the steamers between them. The cross girders must, of ccurse, be sufficiently immersed to clear the keel of the floating fire encine under all circumstances, unless it be desired that the floating fire engine or engines should be capable of leaving the dock at one end only, in which case some of the girders may be placed at a higher level.
In the cases of some harbors where vessels, lying at moorings, are liable to have their bottoms rapidly coated or fouled by marine vegetation, or otherwise injured by constant immersion, the floating fire engine station or dock is constructed to keep the floating fire engine out of the water, for which purpose the hull of the station is built in compartments divided from each other by suitable watertight partitions, some of these compartments being capable of heving water admitted into them. These capable or are such size that when colled filled with water, they will cause the draft of the floating station or dock to be increased by an amount exceeding the draft of the floating fire engine, and the cross girders connecting the two sides of the floating station at the bottom are formed with cradles capable of supporting the float without injury, and so placed that, when the hull of the station is thus deeply immersed, there shall be sufficient water over them to allow of the floating fire engine entering the dock. When the float has been thus brought into position, the water is pumped out of the compartments by connecting the latter to the suction pipes of the pumps carried by the float, the dock rising as the water is thus pumped out, and carrying the float with it. On the float being required for service, water is at once admitted to the compartments above referred to, and the dock sufficiently immersed to allow the vessel to float off the cradle.

The construction of the station will be readily understood from the engraving, which we take from Engineering.
The floating fire engine stations are designed to obtain the following advantages: 1 . They enable a small and handy class of floating fire engines to be used in the most effectual manner, by placing them at all times under the immediate attendance of their crews. 2. They afford complete protection for the floating fire engines, both from the effects of the weather and from chance damage from passing vessels. 3. By
y one of our readers should contribute to the o.ject, and an ppeal for assistance be made to Cougress. He concurs with previous writer that a charge for the use of such an instru ment would amply remuncrate the investors, and he offer $\$ 25$ to help make a veginning. By similar liberality among all classes, the necessary funds could be raised; but the help of Congress to any such object should not be expected. There is no personal greed to satisfy, as there is in such cases as the Vienna exhibition, and no adventurer who wil "lobby" the scheme through the two Houscs; so the tele scope must be constructed, if at all, by public spirit shown in voluntary contributions.

MPROVED EVAPORATOR

This machine meets one of the great requirements of the age, namely, a process of evaporation which, combining sim-

BADOUX'S RAPID EVAPORATOR

plicity with cheapness, is within the reach of all; and as no mechanical knowledge is needed to run it, it is peculiarly adapted to out-of-town factories, plantations, etc.
The evaporater is a strong wheel with hollow shaft, rims and coils. 1 represents the feed pipe for introducing hot air or live or exhaust steam, which, meeting a check in the shaft, passes up through the arms into the rim, and is there distributed through the coils. 2 represents the discharge pipe for the air or condensed steam, which can be again utilized for heating feeding boilers, etc.

The tank can be made of wood or metal, and to hold such quantity as is desired. The wheel is rotated by hand, horse or steam power, and it is said that it does not whip or froth the liquid, but lifts and evaporates it from the surface When started, it can be left to do its work alone, the
gents, the Rahway Glue Manufacturing Company, P. O. Bo 351, Rahway, N. J.

The silk Worm in Japan.

The Italian silkworm breeder, Chiapello, who was lately nabled to travel in Japan, and visit the silk districts of Bo hio, seldom entered by Europeans, publishes some interest ing particulars in the Monitcur dcs Soics. Chiapello wa greatly surprised by the almost complete want of mulberry trees All mulberry plantations in that silk-producing pro vince are hedges formed along irrigation canals, from twenty to twenty-five inches distant from each other; the single bushes are separated by a distance of froin fifteen to seven teen inches. Great care is taken in properly manuring and watering these bushes till the fifth year. The Japanese con sider the leaves from bushes four or five years old the best food for worms which are preserved for propagation food for worms which are preserved for propagation,
especially for those coming from the region watered by the rivers F'squama and Sirostaz. Besides the by the rivers F squama and Sirostaz. Besides the
usual manure for the land generally, they give to usual manure for the land generally, they give to
each bush, from time to time, a few spoonfuls of each bush, from time to time, a few spoonfuls of
finer compost, especially one prepared from a fish guano. The color of the eggs is said to be influenced by the kind of manure used ; the latter, as well as the degree of manuring, is also stated to affect the produce.
This extreme care as to the food of the silkworm is a striking feature in the silkworm culture of the Japanese, which contrasts sharply with the care lessness practiced in this respect by European growcrs. The same care is observed in choosing animals for propagation, and a peculiar method is employed for selecting the strongest, consisting in temporari ly exposing the cocoons to the influence of cold ly exposing the cocoons to the influence of cold other characteristic in Japanese silkworm breeding other characteristic in Japanese silkworm breeding
is that twice the room is given to each worm which is that twice the room is given to each worm which
is allowed for it in Europe. The detection of diseased animals is also worthy of notice. If a red dish point appears on the head, the worm is killed Some districts have for centuries been famous for the excellence of their silkworms, and their eggs are largely used in Japan for propagation.

congevity of Elephants.

It is stated by Sir Henry Stisted, who had a com mand in India during the Sepoy rebellion, in 1857 , hat some of the elephants employed by him had inscriptions upon their trunks showing their capture by the British forces at the celebrated battle of Plassy, nearly ono hundred years previous. Pliny quotes Aristotle to the effec that elephants live from 200 to 300 years. In a vegetable eeding quadruped, says Mr. Buckland, the duration of the eeth offers a fair criterion by which to judge of the probable extent of life, and we think that Sir Everard Home is the phy siologist who has observed that the teeth of the deer and sheep are worn in much less than fifteen years; those of the ox tribe in about twenty years; those in the horse in about fort or fifty years; while those of the elephant will last for a cen tury. The longevity of the last mentioned animal must be herefore, in all probability, very considerable, although fal ing far short of the ancient estimate.

IMPROVED PAIL PUMP.

Our engraving shows a little pump introduced by Messrs. A. Paget \& Co., of Loughborough, England. The apparatus is placed on a light cast iron stand, to which the bucket, holding five gallons, is bolted. A perforated screen covers one end of the passage in the cast iron stand, which, as shown, forms the inlet to the pump; the other end is closed with a flap valve.
The pump consists of an elastic circular chamber, the sides of which are made of rubber, while the top and bottom are formed of cast iron plates, wlth an opening and valve in each. The form and dimensions of the air vessel are clearly shown in the engraving, as well as the position of the outlet and connection with the hose. Cast in a piece with the lower

part of the air vessel is a bracket terminating in a pedal. A spiral spring, attached at one end to the top of the bucket and at the other to the pedal, by a short length of cord, serves to keep the pedal always in its normal position
The alternate pressure of the foot upon the pedal, and the contraction of the spiral spring when that pressure is relieved, compress and distend the elastic or bellows-like chamber, actuating the inlet and outlet valves and forcing the water into the air chamber and thence through the outlet. The whole apparatus, complete, weighs twenty pounds, and with it a jet of water can be easily discharged to a hight of from 30 to 35 feet, at the rate of two and one quarter gallons a minute. If desired, the jet may be distributed in spray, by the spreader shown in the illustration.

NOVEL AND CHEAP RAILWAYS IN PORTUGAL.
The question of working tramways by means of locomo tive engines and light rolling stock is at present in course of receiving a practical solution in the kingdom of Portugal, where two lines of considerable length are now being made. One line runs from Lisbon to Cintra, a dis tance of 17 miles, whilst the route of the other is from Lis bon to Torres Vedras, about 60 miles. 'The first line is nearly completed, whilst the works of the second have progressed for about two thirds of its length. Both the tramways and the rolling stock, however, are of peculiar construction, says Engineering, and neither a railway nor an ordinary tramway, nor the two combined, will afford even an approximate idea of the principle adopted on these lines. The tramway consists of a central 42 lbs. rail of the Vignoles section, flanked on either side at a distance of about 20 inches with timber longitudinal sleepers, the three being secured to traverse sleepecs, which are also of timber. Upon this triple

line run engines and carriages having one pair of broad wheels placed central to their length, and running on the timber sleepers, and at either end a bogle frame carrying for the engine two, and for the carriages one, double flanged wheel, placed centrally to the width of the carriage and working on the iron rail. In the locomotive the pair of broad wheels are the drivers, the small central wheels acting as guides. In the carriages, however, the exact reverse of
this arrangement is observed, the bearing being taken by the bogie wheels, whilst the outer broad wheels act simply as guides. They are allowed a very wide margin of vertica play by means of American springs made with an india rubber core surrounded by a spiral steel spring. The bogie wheels are also carried by six springs of the same character. The carriages, in fact, are therefore, it will be seen, steadied and prevented from overturning laterally by the outer wheels. The gage of the line is determined by the outer wheels, which are 4 feet 2 inches from center to center of tyres, the longitudinal timber on which they run being of sufficient width to carry the engine wheels, which are 14 inches broad, the breadth of those on the carriages being $\frac{1}{2}$ inches.
The engines have 11 inch cylinders, and weigh when empty little more than eleven tuns, and loaded, 13 tuns 5 cwt ., the tanks carrying 200 gallons of water. The locomotives are fitted with an ingenious hydraulic arrangement, by means of which the body of the engine is preserved in a horizontal position when it is either asending or descending an incline, so that the tubes are not uncovered by the water, the level of which is indicated outside. The power of each of the engines already made has been tested up to 300 tuns, which has been drawn by them on the level. The carriages are of three classes, those of the first class carry 16 passengers, the second class 20, and the third class 24. The carriages are 14 feet 6 inches long, and are divided down the center by a partition extending just above the heads of the passengers when seated, so that a means of communication is left open. when seated, so that a means of communication is left open
The passengers enter the carriages from the sides, and are The passengers enter the carriages from the sides, and are
seated back to back. There are also first and second class seated back to back. There are also first and second class
composite carriages which carry 18 passengers; for mercomposite carriages which carry 18 passengers
chandise, substantial goods wagons are provided.
In order to test the system a strip of land hass been obtained in Epping Forest, at Buckhurst Hill, where a piece of tram way road, 1,710 feet long, has been laid, with a short siding at right angles to it . The junction between the main length and the siding is formed by a curve 39 feet 4 inches radius, laid at an incline of 1 in 17. The main line-if we mayso term it-is on an incline for nearly its whole length, the steepest gradient being 1 in $18 \frac{\pi}{2}$ and the average in 22!. Up and down this line and round these curves, a number of runs were made, both with full and empty carriages, at good speeds and with perfect success, at the rate of about 20 miles an hour, starting and stopping included. This corresponds with the results of a great number of runs which had previously been made over the same road, time being accurately taken. The system has been developed to its present degree of perfection by Mr. F. H. Trevethick, the engineer to the Lisbon Tramways Company, who has bestowed the greatest care upon every detail of construction ; and we fee sure that under his care the system has been developed to the utmost, whilst the commercial success of the enterprise appears to be guaranteed by the large amount of both pas senger and goods traffic between the localities which the trannways will connect.

Coutcegududeute.

Finding the Length of Belts.

To the Editor of the Scientific American:

Your correspondent, J. B. Doolittle, gives a very nearly correct plan for finding the length of pieces to be put in o taken out of belting. I wish to know the best plan for find ing the length of the entire belt. I send you a sketch of mine which is nearly correct enough, as I have proven both

by practice and by laying down the full size on a floor. It is calculated, as you see, by similar triangles, but I want shorter way if there is one. A Sawyer. Chester county, Pa .

Polar Mutation.

To the Editor of the Scientific American
Mr. J. Arnett, C. E., in the Scientific American of January 25, accounts for the terrestrial changes in past ages (which have been made manifest by the geological survey of Ohio) by polar mutation, or, in other words, by supposing a change of position of the earth's axis with respect to its surface.
We learn, from a study of celestial mechanics, that the earth's axis is continually changing its position with respect to a fixed point in space; but we have no evidence that it i changing, or ever has changed, its position with respect to the surface of the earth. On the contrary, it may be demonstrated that such polar mutation could not result from any known cause. Laplace says; "The momentary axis of the earth coincides with its third principal axis, and its poles of rotation always correspond very nearly to the same point of its surface." (See Mécanique Céleste, volume ii., page 859.)
Before assuming that polar mutations are the cause of ob served physical changes in the structure of the earth, it should be shown that such polar mutations are mechanically possible. But this can only be done by assuming some external, accidental, and transitory force about which we know absolutely nothing.
Des Moines, Iowa.
J. E. Hendricks

A Marine Camel

To the Editor of the Scientific American
I send you a plan for a marine camel, as suggested by the article by Mr. C. W. Stewart, in the Scientific American of January 18, 1873, for carrying full laden vessels acros he bar at the mouth of the Mississippi river
The back of this marine camel may be partly, or the whole of its entire length, submerged; each end would have to be submerged to a depth sufficient to allow the vessel to float into, and out of, a receiver, already mounted upon the track. The entire weight, when out of water, would be pivoted on the crown of the prism, this prism being composed of wood and stone, and the crest surmounted by a huge iron rail of

circular form, running the entire length of the prism. The equilibrium of the load is to be preserved by means of two revolving flanges for each burthen wheel; the flanges are to lap on the central wheel, and extend down each side of the prism to its base. This locks the carriage to the prism, so hat the action of the waves could in no way interfere or dis place the carriage from the prism.
I submit this plan for a marine camel, first, because it form admits of extending to any dimensions, without neces sitating changes in carriage; and, secondly, because the form is the best calculated to withstand the action of the element and to give the greatest amount of strength, vertically and laterally, with the least amount of material; and, thirdly, no long axles are used, and, moreover, the strain and motion imparted to the vessel while in transit would be something imilar to that when riding upon the waves. E. CREW, Inventor and Patentee of Prismatic Railway.
Opelika, Ala.

Iron Supports to Brick Arches,

To the Editor of the Scientific American
I want to build an arch of brick, of 16 feet span, 20 feet length, and 9 inches thickness, with a rise or crown of about 3 feet. The walls on which it rests are light, and I want to support it with iron cross rods at spring of arch. Of what strength should the rods be, and how many will I need? Is there any rule to compute the outward strain of arches?
Millville, N. J. A. E. B.
Remarks by the Editor.-If the arch has only its owi weight to carry, it will need four tie rods of one inch diame ter, one placed at 30 inches from each end of the arch, and the other two at equal distances between. At each spring ing of the arch there should be a skewback laid upon the wall to commence the arch upon, and the tie rods should pass through these skewbacks (see engraving), the axis of

he rod passing through the center oi the depth of the arch at the face of the skewback. This skewback may be made of cast iron, the plates one inch thick, the angle brackets set a each end and at every 30 inchesin the 20 feet. One of these brackets will occur at each rod, and is to have the hole for the rod pass through it, the metal being swelled out around the rod so as to afford a flat bearing for the head and nut of the rod. If the arch is to be levelled up with sand, concrete or other filling, or is to carry any other load, then the rods should be larger.

There is a rule for finding the horizontal thrust of arches but it is too complicated for insertion here in all its gener lity. For this particular case, however, the following rule approximates near enough for all practical purposes :
Approximate rule: Multiply the cubical contents in fee of the semi-arch, by the weight per cubic foot of the brick work and by the horizontal distance in feet of the center of gravity of the semi-arch from the springing, and divide the product by 7,000 times the hight in feet from the springing to the top of the arch at the crown, and the quotient will be the area in inches of the cross section of the tie rod. Thi area should be the area of the rod at its smallest part, fo example, the bottom of the thread of the screw at the end.
Algebraically, the rule may be stated thus

$\mathrm{A}=\frac{a t l 20 s}{7000 h}$

where $\mathrm{A}=$ area of the cross section of the tie rod, $a=$ length in feet of semi-arch from springing to crown; $t=$ the thick ness in feet of the arch; $l=$ the length in feet along the wall, supported by one rod; $w=$ the weight in lbs. per cubic foot of the brick work; $s=$ the distance in feet horizontally from the springing to a vertical line dropped from the center of gravity of the semi-arch; and $h=$ the vertical hight in fee from the springing to the top of the arch at the crown.
Applying this rule to the case in hand, the values are a follows: $a=9$ approximately, $t=\frac{8}{4}, l=5, w=110, s=3 \frac{1}{2}$ ap proximately, and $k=3 \frac{3}{4}$. Hence

$$
\mathrm{A}=\frac{9 \times \frac{8}{4} \times 5 \times 110 \times 3 \frac{1}{2}}{7,000 \times 3 \frac{9}{4}}=0.495
$$

This is the area of the cross section of the tie rod, the diameter of which is about 0.795 inch. This is the diameter at the bottom of the thread of the screw. Hence the diamcter of the rod before the screw is cut ought to be about one inch.

The rule here given is based upon the conditions that the arch is not required to carry any load, the metal used is to be of fair average quality, and the work well done. The cast skewbacks may be made in two lengths of 10 feet each for each wall, and bolted together endwise by bolts through ears or lugs.

The Mount Auburn Incline Railway of Cincinnati.
To the Editor of the Scientific American:
Few quick transit railway enterprises have been so productive in final results as the Cincinnati inclined railway, which is known as the Mount Auburn Incline Railway of Cincinnati. It was commenced on May 11, 1872, and its construction is due to the skill and energy of a few of Cincinnati's best citizens, such as G. A. Smith, Stacy Hill and James Dougherty. It should be described to show the West Hobo ken and Hudson City people that, had they a few such men they would never put up with the slow, tedious, and danger ous transportation, by which they now travel and will travel till a horse railway is laid direct from the ferry to Palisade
Avenue, running straight across the flats and then ascending Avenue, running straight across the flats and then ascending
the hill, not by the hundred steps but by an inclined railway the hill, not by the hundred steps but by an inclined railway
at an angle of forty-five degrees, or even steeper. at an angle of forty-five degrees, or even steeper.
Heretofore all the communication between the city of Cincinnati and Mount Auburn has been by a roundabout way by horse cars or by a rather more direct route by stage, both more tiresome, for it was necessary to employ four horses to a stage, and the car was obliged to stop several times to rest the exhausted beasts. And when, in the winter time, the roads are covered with ice, it was the next thing to impossible to get up at all. Under such circumstances, it was not, per haps, a brilliant idea to conceive the plan of an incline railway. But, when carried into practical operation as we fin
it to-day, it is a credit to its designers. Theincline, which is situated at the head of Main Street, is 857 feet 6 inches from bumper to bumper, and there are two grades; from the bottom up about two hundred feet the ascent is 32 feet in 100 , and the rest of the grade is about 26 feet in 100 , making about 275 feet rise on the whole line. At the top of the incline is situated all the machinery for working the cars. This machinery, which is quite extensive, was designed and built by John Cooper and Co., of Mount Vernon, O. There are 2 two flue boilers, about 47 inches diameter by 22 feet long, arranged to work together or singly. These are stationed abcut twenty feet from the head of the incline, and further on, in the rear of the boilers, are placed two engines of 30 horse power each. The engines are connected together at quarters on the same shaft, with a pinion between them which works into the wooden cogs of the elevating drum.
This drum is about ten feet in diameter and about eight feet in length on each side of the cogs. These cogs are about 3 or $3 \frac{1}{2}$ inches pitch, and are stepped, or staggered, so that, when the engines are running up to full speed, there is not the least jar or jerk to the car or to any part of the machinery. At the head of the incline, there is a very ingenious automatic brake for stopping the cars should one of the hoisting ropes break. If it would not take up so much space I would describe it more minutely; but I will only say now
that it is considered perfect in its working and has beautifully stood the tests to which it has been put.
There are two cars, one going up while the other goes down, and nearly balancing each other. To each car there is attached two ropes of $1 \frac{1}{2}$ inches steel wire; one is used for the hoist rope, while the other merely runs idly over the safety wheel and is only brought into play if the hoist rope breaks on either one of the cars. Directly over the safety apparatus the engineer has his room; and from this position he can see the entire length of the incline. From this room the whole working machinery is operated by one man standing in full view of the cars and track. To his right he has his reverse lever which works the links on the engines 60 feet to the rear of him, and to his left he has his throtile lever, which is connected with the throttle valves on the en gines by long light rods running on rollers or sheaves; and with his right foot he controls the brake on the elevating drum, by which he is enabled to bring the cars up easily against the bumpers. It is surprising to see how easily the ngineer can stop the car without causing any bumping. have seen him stop the cars time after time, so easily and at the same time so quickly that it seemed as if it would be mpossible to draw a sheet of paper through between the ncline. In the end of the car and those at the a telltale to sliow the exact motion of the engines while running, and also a long lever attached to the aforesaid safety brake. This is used only in case of accident, to enable the engineer to have full control of every part of the machinery, although, I have already stated, the safety brake is automatic i its operation; but the lever makes the brake doubly safe which is of great importance where so many people are con stantly going up and down.
There was a little timidity felt at first by some who were obliged to go up the hill and had for many years used the stage coach, but it did not take long for them to banish al fear. The cars can easily carry sixty passengers in a load and at one time last summer, during the hot season, they carried nine thousand people in the course of six hours. One feature of the road is the accommodation; the managers will run up a car for one passenger as willingly as for sixty. Their system of signals by bells is perfect. The time aken in making a trip from top to bottom is about thirty five seconds, which is found to be much better than fiftee minutes by the stage or horse cars, especially when the hermometer stands at 25° below zero. There is some tal of erecting two more incline railways in the spring, for the
accommodation of people in other parts of the city, for they accommodation of people in other parts of the city, for they
will go back upon the ligh land to live, railway or not. The will go back upon the high land to live, railway or not. The
builders of the machinery which is already running will probably be consulted in relation to the new roads, for thei experience on the first incline has brought out a great many points which will give an immense advantage, not to them nly, but to the company putting up the road.
Mount Vernon, 0.
0. C. Woolson.

To the Editor of the Scientific American:

The following view of the turbine may be interesting to many of your readers:
It is believed that the final solution of that hardworked problem, as to how the water propels the turbine, relates imply to time, thus; Moving water is a strict observer of tme; it falls, flows, curves, bends, etc., in a certain time Man demands that the turbine shall make certain tim (speed), discharging the water at a certain time; but he for ets that the water, and not he, fixes the time in which it rill be moving as demanded; hence,

"Nature, and not man, "Has fixed the law, the

As the above only specifies that nature, not man, fixes the ssues, the information given falls short of practical value but this is as intended, leaving to others to fix, philosophi cally or experimentally, the exact point. The question would be simply this ; As the greatest attainable pressure of he head water upon the buckets, as the propelling force, is desirable, how long or through what distance can this pressure be allowed to act before it will have deflected the water from its forward motion to that proper for the dis harge, as here, of course, is the point for the issue?
Fair Grove, Mo.
J. B. Reyman.

Rekarks by the Editor:-We suspect that our reader ment than in confidence in the facts deduced from exper ingenious and interesting. In the present case, experiment as well determined the laws governing the action of turbines, and our correspondent will be better satisfied with the work of Weisbach, Rankine and other authorities than with his own.

A Meteor in Nova Scotia.

To the Editor of the Scientific American:
A very brilliant meteor was observed here on January 25, bout 7 P. M., and the circumstances are worthy of note.
About the time mentioned, I was walking along the stree hen suddenly my attention was arrested by a very bright ght, which illuminated the surrounding scene, at the sam I beheld a meteor of large size moving along the sky. In a ew seconds from the time I first observed it, an explosion occurred and fragments of the meteor, of varied colors, were cattered in all directions about the sky.
I have on many occasions observed meteors of rare bril liancy and great magnitude, but I do not remember any ac ompanied by such rare phenomena.
Halifax, N. S.

To the Editor of the Scientific American:

It is to be regretted that this subject is still being discussed in your widely read journal as a matter still in doubt; and that the authority of Professor Henry and other "eminent scientists, both of England and this country," is claimed as as endorsing the fallacy still adhered to by Mr. Bakewell. He claims that, in a boiler B, of a diameter 1, and with an internal collective pressure represented by 3.14 acting upon its whole circumference, the half circumference $\mathbf{X}, \mathbf{Y}, \mathbf{X}$, measuring $1 \cdot 57$, would represent the measure of force tending to separate the upper half of the boiler from the lower half at X, X. On page 83 in the Scientific American of February 8, Mr. Bakewell gives an illustrated intended proof f his proposition, which is as hopeless of being conclusive s that of the student, who, with diploma in his pocket and brimfull of science, returned to his doting parents, and, siting down to a cosy supper of which two birds formed a main dish, to illustrate his learning, remarked: "I will prove to you that these two doves are three." "Glad of that, my son, mother and I will take these two; you take the third." The student's chance for the third was not a bit worse than Mr. Bakewell's for the extra force he claims as tending to burst boiler. I hope I may be more fortunate in giving a con vincing illustration.
The half circle $\mathbf{X}, \mathbf{Y}, \mathbf{X}$, being divided into, say, eight parts, each arc, a or d, would have a pressure upon it of $1 \frac{5}{8}$? . To

use two different illustrations, let the pressure upon area a, a, a, a, be represented by the four dotted radial lines b, b, b, b, bisecting the arcs centrally. The vertically acting forces will then be represented by the vertical lines c^{1}, c^{2}, c^{4}; and no other vertical forces can be shown to exist. Thus the vertical pressure tending to tear the boiler at \mathbf{X} is to the pressure upon the \pm circle X, Y, as the sum of the
lines $c^{1}, c^{2}, c^{3}, c^{4}$, is to the sum of the radial lines b, b, b, b. lines $c^{1}, c^{2}, c^{3}, c^{4}$, is to the sum of the radial lines b, b, b, b.
or as 1 to 1.57 , nearly, (the result is as 1 to 1.562 , the approximation becoming closer as the number of subdivisions a, a, is increased). Or, taking the left hand illustration, the pressure upon each arc d, d, d, d, being $1 \frac{53}{8}$, the resultant vertical pressures will be $e^{1}, e^{2}, e^{3}, e^{4}$, which equal radius \mathbf{Y}, \mathbf{Z}, and are, when added up, $\frac{1}{2}$; while the horizontal forces are represented by the lines f, f, f, f, equal to radius \mathbf{X}; \mathbf{Z}, or to a force of $\frac{1}{2}$, which tends to tear the boiler at \mathbf{Y}. Let the question be examined in still another way. Suppose the upper half circumference removed, and a rectangular shell put in its place, or a straight plate across along the diameer \mathbf{X}, \mathbf{X}; what then becomes of the tearing pressure at \mathbf{X}, \mathbf{X}, claimed to be measured by 1.57 ? And yet it is a fundamenal law which cannot be questioned that the tearing pressure at \mathbf{X}, X, so long as these points remain the same distance apart, is the same, no matter what the configuration of the vessel above it may be, whether it be spread out to thrice the width of \mathbf{X}, X, or thrice as high, convex, concave, undulating or any other shape whatsoever.
As a fruit of this deplorable delusion, a patent has already been issued upon a convex or concave piston, claiming, upon his theory, to obtain greater pressure than can be obtained by a usual piston. In calculating the power of an engine pon this theory, the transverse section of the cylinder ceases ogovern the estimate, and the degree of convexity of the heory, in the abstract, may deceive ; but when applied and heory, in the abstract, may deceive, but when applied, and upon, its absurdity becomes so glaring that any further argument must surely seem superfluous. If Mr. Bakewell will carefully read over again Professor Henry's letter (and others) probably he will find that, while endorsing the proposition that the collective pressure upon the half circumfer ence is 1.57 , he did not necessarily mean that the tearing pressure, at \mathbf{X}, \mathbf{X}, is equal to that pressure. Let us have that letter. If it indisputably endorses Mr. Bakewell's theory, I can only exclaim "To err is human-even among the mighty!" But if so, Professor Henry will not hesitate to make the correction
Williamsburgh, N. Y.
Robert Creuzbaur.

Cooling and Heating our Houses.

To the Editor of the Scientific American

In regard to the plans and remarks of Mr. Dodge in your issue of February 1, 1873, I desire to make an explanation in defense of my suggestions in your issue of October 14, 1872, to which my abbreviated name "Egbud" was subscribed and to describe my inventions for simplifying the heating and cooling of our dwellings.
Mr. Dodge says that: "Unless the air in the building was
at a higher temperature than that outside, the current would
be from the house through the tunnel and chimney. In 'pealed on February 3, 1871, and there is no such law now in warm weather, the air would be heated in ourdwellings, and existence; but some of the deputies have been working unit is also in winter heated by fuel; so that if the space in the tunnel or pipes is corresponding to the size of the dwelling, either in breadth or length, it must draw in the outer air, which becomes modified and purified by the earth. Oxygen is left free to sustain life and produce combustion, and the direction of the air current is natural, as the escapes in building are higher than the air chimney. In mining shafts, of few feet depth, the modifying influence of the earth is sensibly felt; and among our large class of miners, who inhale the air changed by underground currents, many diseases are unknown. My invention for the action of earth on air for cities is both simple and cheap. It is to make an excavation like a ground cistern, close by the house, if necessary, and then take clay pipes, with joints to fit, and lay them from the bottom connecting passage in a square, one upon each other. An outer and inner square is desirable, up to the earth's surface; then fill up the space with earth and connect to a chimney of sufficient hight to be above impure surface air. An iron box, filled with wooden flues, or two such, can be used, and any length of air passage can be obtained. For heating purposes, the air would be of genial warmth when coming in contact with the heater, and would save a large per cent of fuel; and as the heater need not be at a high heat, the life sustaining particles would not be destroyed. It is only where the air is impure through some cause that dampness is required to renew vigor.
Of course, action and reaction produce change and purifi cation; but how shall we seek and produce it, by costly heating and steam apparatus with fans, or by Earth's laboratory, in conjunction with Nature's regular laws?
Mr. Dodge and the engineers of our government buildings would find much expense saved by modifying the air as decribed, before forcing it to its destination.
Budd's Lake, N. J. Enos Goble Budd.

To the Editor of the Scientific American:

I notice, in an article under the above heading, on page 64 of your current volume, some strictures upon the debate in the House of Representatives, at Washington, upon the Department of Agriculture. Allow me to thank you, in behalf of myself and thousands of other farmers all over the country, for thus speaking a good word for us. I am glad hat Mr. S. S. Cox belongs to New York and not to the State of Maine, for the honor of which latter I have a sensitive regard.
Cudgel, soundly, Mr. Cox and any one else who exhibits so unmistakably his Darwinian relationship, not to the monkey, but to a certain long eared quadruped whose stolidity is proverbial. Belabor him well; but yet I fear that as little good will come to him from your lusty blows as would come if they were aimed at his four-footed cousin. We take a kind of malicious pleasure in seeing the chastisement adminis tered, just because it is aimed at culpable ignorance.
When the farmer sees the crops over which he has spent his time and energies, his fruit, grain, vegetables, cotton, grass, everything, damaged, in his own fields or otheis, to grass, everything, damaged, in his own fields or othe $\because s$, to
the extent of millions of dollars annually it does not matter the extent of millions of dollars annually it does not matter
whether the destroyers have the proportions of elephants whether the destroyers have the proportions of elephants
or of microscopic insects. Very gladly and hopefully he or of microscopic insects. Very gladly and hopefully he
looks to the scientific men of the land to show how the enemy can be restrained and the crops saved. Let the "bug hunters" be sustained and encouraged, for our insect foes are many and alarmingly destructive.
Thus much to you, Mr. Editor, to let you know that your efforts are noticed and appreciated by farmers as well as by hose engaged in purely scientific pursuits.
Naples, Me.
Samuel F. Perley.

Science and Theology.

To the Editor of the Scientific American:
Your excellent article entitled "Can buildings be set on fire by steam pipes '"' leads me to lay before you the following deductions, based upon the acknowledgment of water being emblematical of the God of Heaven in life and power, etc.

1. The life of God, having been manifested to the world for its salvation, not for destruction, He will never permit the destructive element of fire to originate in any of the natural emblems of His spiritual existence, one of which is steam produced from pure water.
2. The life of God, being eternal, precludes the idea of man ever being allowed to consume water, its representative, consequently it will never take a place in the economy of nature for illuminating purposes.
3. The omnipotence of God being indisputable, man has a legitimate field from which to develop power, the basis of which is pure water

Valleyfield, Pa .
James Hally.
P. S. Your reply to A. J. S., anent "perpetual motion," is very good indeed. The living God alone gives life. So far, a mere man never has, and never will create it, or its equivalent, perpetual motion.
J. H.

To the Editor of the Scientific American:

Seeing in a recent issue of the Scientific American an account of a specimen of boiler inspection, I would inform your correspondent that the party claiming to be an inspector is a fraud and an impostor. There was a law for the inspection of steam boilers, which called for one chief inspector (Mr. John B. Leverick, under Governor Hoffman), and one deputy in each congressional district outside of the po-
lice district, to inspect steam boilers. But that law was re- er the old law in Westchester county up to a few months such inspection. Is it not a fraud on manufacturers, brew ers, etc., to make them pay for the inspection of their boil ers under a law which is not in existence?
t. Leon Chester, Consulting Engineer.

No. 201 Varick street, New York city.

ENGINEERING NOTES.

In a paper upon "Rail Economy," C. P. Sandberg, C. E., of London, gives the following regarding

RON RAILS

The American demand for English rails, of say 500,000 tuns yearly, is unlikely to diminish soon. The late increased expense of iron adds to the cost of railroad construction, and tends to reduce the quality of rails. Welsh rails were often imperfect in weld; now they are sometimes also brittle. In the Cleveland district, rail making has greatly improved, chiefly by the increased application of fettling in the puddling furnaces. Still the buyers must guard against lamination and brittleness, by tests for strength and wear, applied before the rails are laid. Rails made of suitable iron, with proper section, will not break in winter; in Scandinavia, with ${ }^{\text {fa }}$ climate more severe than in America, no accident has occurred from broken rails, though cross sleepers are exclusively used. But a very small portion of the iron rails shipped to America will stand the proper tests.
No late improvement promises so much to perfect iron rail making as mechanical puddling. By means of the Danks and Spencer appliances, more rails can be made at a reduced cost and of a better quality.

steel rails.

The demand during the past year has been so great for steel rails that they can hardly be obtained at any price: the sup ply is limited by the lack of ore free from sulphur and phosphorus, and recourse has been had to extensive mines in Spain. It is hoped that America will supply herself with steel rails, and import only those of iron required for new lines or light traffic. There is a scarcity of suitable ore for the Bessemer process throughout Europe, except in Sweden, where the recently discovered coal will render the ores more available.
The Siemens-Martin process of steel making (superior to the Bessemer in requiring a less pure ore), has thus far produced so little that it can hardly be called a source of supply in the great market.
Steel rails are now so well made that they rarely break, except when the flange is punched, and this should be done only while the metal is hot, or the notch drilled and then slotted, Although a steel rail is generally thrice as strong as an iron one, when punched or the flange is cracked the iron may be the stronger. The steel is made as soft as possible, say with one third per cent of carbon; for not by hardness, but by homogeneity, is it superior to iron. Usually a steel rail will carry one fifth more dead load than an iron one; hence, for the same traffic, the steel rail, in comparison with the iron, should not be reduced in weight more than 20 per the ir

Buyers should require each rail to be permanently marked to indicate date, maker's name, and quality, that subsequent use may determine which manufacture is best

traffic capacity.

The amount of wear or life of a rail is usually expressed in tuns passed over it before rejection; properly the speed of travel should be taken into account, and $220,000,000$ speed tuns is a fair expression of the endurance of extra iron rails. The average life of iron rails in England for ordinary traffic is about 10 years; in and near London it is 2 years or less; on the continent, f.om 12 to 15 years; and in Sweden, with less traffic than in England, from 15 to 18 years.
The weight passed over good iron rails before rejection, has been found to average $10,000,000$ tuns; this may be taken to represent the life of extra iron rails, and six times that, the life of good 56 pound steel rails. On the London and North Western line, steel rails have lasted 20 times as long as iron, and on the Metropolitan Railway, with the greatest traffic in the world, where iron would not have lasted six months, steel will stand from three to four years.
Equally important with the weight of a rail, is a proper section. In England the double-headed rails are still generally used, and elsewhere in Europe the flat bottomed pattern, as also in America. A specially bad section is the Erie 61 pound rail, which could be replaced by a 45 pound rail, well proportioned.
The late Professor Rankine says that the weight of the rails per yard should equal 15 times the greatest load on the locomotive drivers in tuns. Perdonet, in France, takes 12 in place of 15 ; the writer, by adopting a section which permits a fishjoint stronger than the others in general use to be made, takes 10 and less; thus for a 60 pound rail, the weight on drivers is put at 64 tuns.
Fish plates of steel will enable rails to carry from 15 to 20 per cent
section.
The Philadelphia and Reading Railroad, on rails made with great care by the company, prefers not to exceed 4 tuns on a 64 pound rail, and the rail section has been gradually increased to counteract wear and tear from even this medium load.
On the Erie Railway, $5_{\frac{4}{10}}$ tuns weight on drivers has been
found too great for best 70 pound iron rails, and, with a speed
for heavy freight trains of 15 miles per hour, should not exceed $4 \frac{1}{2}$ tuns.
Meriments on the resistance of stones to crushing. Mr. C. B. Richards, C. E., has recently experimented upon various kinds of American building stones worked into 1 inch and $1 \frac{1}{2}$ inch cubes, with flat and smooth faces.
The specimens were crushed between the plane faces of two hardened steel hemispheres, the curved portions of which were seated in corresponding cavities of steel blocks, fixed in the machine. Single thicknesses of lace leather were interposed between the stones and metal surfaces; thus the pressure was uniformly distributed; it was in all cases applied to the faces of the cubes parallel to the natural bed of the stone, and carefully increased to rupture by pouring shot into the hollow weight by which the strain was caused. Sixteen specimens of granite from 6 quarries gave from 8,620 to 15,622 pounds, minimum, 9,838 to 18,778 pounds meximum strength. Fourteen specimens of sandstone from 3 quarries gave 5,806 pounds minimum, and 8,956 to 10,928 pounds, maximum strength. And 10 specimens of white marble from 3 quarries gave from 3,905 to 12,917 minimum and 5,976 to 13,972 pounds, maximum strength. Each was a 1 inch cube. The sjecimens failed by breaking into slender prisms and pyramids with axes normal to the pressure.

In a paper upon

rock drilling,
it is stated that a percussive steam drill, with 3 inch cylinder and 6 inch stroke, making 300 to 375 strokes per minute will drill in the coarse gneiss rock common to New York Island, $3 \frac{5}{8}$ inch holes at the rate of 3 inches, 18 inch holes at the rate $4 \frac{1}{2}$ inches, and 1 inch holes at the rate of 5 inches, per minute. the character and position of neutral axes as seen by POLARIZED LIGHT.
Mr. Louis Nickerson, C. E., states that the results of experments made by him show that the neutral axis is a flexible line, truly parallel to the top and bottom sides of a rectangular beam, and passing through the center of gravity or it sections oniy when the load is evenly distributed from end to end, or when the beam is infinitely long; and that when there is a local pressure, the neutral axis is more or less governed in its direction and form, by the strain passing from the point of local pressure towards the point of support. The same writer says that in tests made upon columns which changed their forms under pressure, a series of extended rings or periodic waves appeared uniformly separated after the columns had assumed permanent form. He considers that hollow columns if sufficiently under stress within elastic limits may be greatly strengthened by bands placed where these waves would otherwise occur. It is inferred that one third additional material will thus double the strength of the column.

There is in course of construction at Woodward's Gardens, San Francisco, a salt water aquarium of modest dimensions, yet designed to be complete in all its parts. The aquarium will be mainly under the surface of the ground, in order to secure an even temperature. There are fifteen tanks in all, one of which is for fresh water specimens. The tanks vary in size from 300 to 1,000 gallons capacity, the largest containing eight thousand pounds of water. Several of the tanks are fitted up with sea worn rocks, some obtained at the Cliff house, and some at Santa Cruz. There will be room for marine plants, shells, corals, etc. It is the intention to obtain deep sea animals and other rare denizens of the deep, with a live shark or two, a devil fish, etc.

Manufacture of Electrical Apparatus.-The Sie menses have extensive works in Berlin, in St. Petersburg in London, in Vienna, in Dresden, and in Titlis. The Berlin establishment, it appears, employs 550 workmen, and sent out in the first half of last year the following apparatus: 700 electro-magnetic and 1,750 magneto-electric pointer, 12;060 Morse writer, 12,497 railway bell signaling, and 231 Hughe' type printer. That is only one example of the way American inventions are copied on the continent. The firm (Sie mens and Halshe), now consisting of Ernst and his brothers William and Charles, celebrated in October last their twenty. fifth anniversary, when a sum of $\$ 40,000$ was set apart as a pension fund for the workmen.
M. Fouque describes a visit he paid to the Azores in 1867, having been attracted by news of a volcanic eruption taking place in the sea, near Terceira. This had spentitself before he arrived, but he went to the scene in a boat, and bottled some of the gas from a part where the water was in a state of ebullition. He found it to contain chiefly hydrogen and compounds of hydrogen. The Azores are, in formation, a true type of marine volcanic regions.

Progress of Hoosac Tunnel to February 1, 1873.Extensions of headings in January, 297 feet; opened from east end, westward, 13,340 feet; opened from west end, eastward, 8,859 feet. Total length opened, 22,199 feet Length remaining to be opened, 2,832 feet, being 192 feet more than half a mile.

The consignment of half a million of salmon eggs from Germany, heretoforenoticed by us, has arrived at New York in good condition and is considered important. In England some extensive importations of salmon eggs from Norway have lately been made.

The dip or inclination of the magnetic needle was discovered in 1576 by Robert Norman, an optician of London. He first constructed the dipping needle.

IMPROVED ROAD SCRAPER

The invention herewith illustrated is a convenient machine, The invention herewith illustrated is a convenient machine,
recently patented, for scraping and leveling roads. It is especially suitable for removing the weeds and small obstructions on the carriage ways of cemeteries, public parks, gar dens, etc., and, being actuated by horse pow er, will doubtless be found an efficient and valuable substitute for the slow and tediou work of the hand shovel hoe

The apparatus is mounted, as shown, up on four wheels, the axles of which are con nected together by the longitudinal brace A A. At B are a number of peculiarl shaped bars through eyes formed in the end of which the forward axle, C pases. The of wish the the the bars extend back the rear of the machine and their extremities are bent down so a to form an obtuse angle resembling a culti vator tooth. D is the rear axle cast with number of pendent partition pieces, E E which serve to keep the bars at a uniform distance apart. Attached by suitable standards to and above the rear axle is the rock shaft, F, the ends of which are bent to form arms, one of which is shown at G. To thes arms, by rods, H , are fastened a transvers bar, not represented, which passes under the bars, B. In the socket on the rock shaft, F is placed a lever, I, which is worked by the person using the machine
When the device is in use, the ends of the scrapers rest upon the ground. The scrap ing teeth, il should be noticed, cover the en tire surface, notwithstanding the bars, B are separated by the partitions, E. As the machine is drawn along these scrapers tear up all grass or weeds, leaving the ground level and clean. In case, however, an ob struction is met, the bar, striking the same will be raised by the contact and, having fre movement, being only held by the forwar axle acting as a pivot, will pass over the obstacle, and drop again by its own gravity to its former position.
The bars, B, are of varying lengths, and are arranged so that their rear ends form nearly a right angle. The pieces, J J , are a number of weights so arranged as to slide along the upper edges of these bars, and are
held in any desired position by set serews. to give increased pressure to the scrapers at the ends of the bars when the machine is used on hard ground, and their effect is of course augmented or diminished as they are moved toward or away from the scraping portion.
The lever, I, being turned, operates the rock shaft, G, which, by the mechanism above described, raises the trans verse bar, and with it the bars, B. By this means the man walking behind can throw the scrapers into or out of action at pleasure. At tached to the lever is a hooked rod which catching in a projection on the rear axle, holds the lever down, and thereby keps the ban the la whe tranporting the machine from place to place.
The advantages of this device, as a labor saving invention, are sufficiently obvious to need no further description. It seems to be an implement in every way efficient and adapted to the wants of gardeners and those having private roadways to keep in order.
Patented through the Scientific American Patent Agency, October 8, 1872. For further particulars address the inventor, Michael M. Brunner, Superintendent, Rosedale Cemetery, Orange, N. J.

AUTOMATIC CAR COUPLING. Win
The principel objection which holds good against a large proportion of the automatic cal couplings that have been devised is a want of simplicity, a multiplicity of parts which by their expensive construction and difficulty in operation under disadvantageous circumstances, neutralize the advantages of the invention. The apparatus which we herewith illustrate, is the least complicated arrangement of its kind that has come under our notice, and, from an inspection of the working model, we are inclined to consider the claims of its inventor, as to its effectiveness, well founded
In general appearance it is very similar to the device in ordinary use. The mode of connection is the common link either straight or, if adapted for cars of different hights, goose-necked, and a simple pin. Fig. 1 shows the device at tached to two freight cars, and in Fig. 2 it is represented in section. The bumper may be divided into any suitable nuinber of compartments. In the present case it is divided into two by the partition, A. At the rear of the hole, in this partition, through which the coupling pin passes, is formed a recess, B, in which the end of the pin rests, as shown, and is thereby supported while the cars are being run together. C is a bent lever pivoted within the bumper at the rear of the partition, A. When the end of the coupling pin is placed in the recess, B, it pushes the upper arm of this lever back, swinging the lower arm forward. As the cars meet, the link enters the bottom compartment of the bumper, strikes against the lower arm of the lever, pushing it back, thereby causing the upper arm to move forward, strike against the pin, and

NORTHROP'S AUTOMATIC CAR COUPLING
it can be readily attached to old cars on which the commo coupling is used.

Patented through the Scientific American Patent Agency June 11, 1872. Further information may be obtained by ad dressing the inventor, Mr. Samuel G. Jorthrop, Wilming
ton, N. C. ton, N. C.
push it out of the recess. The pin then naturally drops into
ts slot and through the link.
Fig. 1 is more especially designed to show the position of the device just before coupling, and also to indicate that the

According to the Art Journal, the appearance of tortoise hell may be given to horn by brushing it over with a paste made of two parts of lime, one part of litharge, and a little soda lye, which is allowed to dry. This is the same as th Indian hair dye, and acts by forming sul phuret of lead with the sulphur contained in the albumen of the horn, producing dark spots, which contrast with the bright er color of the horn. Artificial tortoise shell is made by melting gelatin with va rious metallic salts. The greatest comb rounufactory in the world is in aberdeon manufacthin There are thirty-sixfurnaces on the work for preparing horns and tortoiseshell fo the combs, and no less than 120 iron screw presses worked by steam. Forty year ago ladies' back combs-which were larger than ladies' bonnets are now-were made in England and the United States for the Spanish Peninsula and South American markets. They were often a couple of feet wide, encircling two thirds of the head, and from six inches to one foo high on the back, the top being wrough in open work; to these the Spanish ladie attached their veils. As much of the work was done by hand and with the saw and the polishing was entirely manual the prices were high, averaging $\$ 15$ to $\$ 20$. Tortoiseshell was much used to de corate furniture by the Romans. Accord ing to Pliny, Carvillus Pollio was the first to apply tortoiseshell to ornamental pur poses. The fashion for this style of de coration increased; and in the days of Au gustus, the patricians ornamented thei doors and the columns of their room with this substance. At one time tor toiseshell was used for making watch cases, but the art seems to have fallen in to desuctude, although the results of at tempts to resuscitate it were shown at the London Exhibition last year.

Precautions in Using Gas Machines

 The following suggestions, for the as machines in which light and int mable hydrocarbon rom the instructions to insurance acents recently issued by the New York Board of Fire UnderwritersThe vault or house in which the gas is manufactured shoul be at least twenty-five feet distant from the main building Stop cocks should be placed on both the gas and air pipe near the machine in the vault; also on the gas pipe near the place where it enters the building, and on the air pipe nea the air pump, when the pump is in the cella or building. The vent pipe and filling pip must be so arranged that one cannot le opened without opening both. All the main gas pipe leading to the premises lighted should have an inclination toward the gas machine so a to return all the condensation that may tak place in the pipes. The latter should be thor ughly tested before the gas is turned on The vent should be open and the air pum hut off while filling the machine with fluid. Never allow a light to be used in or near gas house or vault. No barrels containing gasolin or other fluid, or from which gasolin has recently been emptied (yet full of vapor) should be allowed to be kept in any cellar barn, shed, or outbuilding where other pro perty is stored, or where there is a liability to use a fire or a light. Great caution shoul be exercised in the selection of a trustworthy apparatus, and that a competent person le sent to put it up. There are many machine in the market made of poor material and in the cheapest possible manner, the manufac turers of which, by false re mata make large profits. Never allow a machine to be placed in the cellar of a dwelling, as it is apt to greatly endanger the lives and property of the occupants.

Norweglan Narrow Gage Rallways.

Another link in the narrow gage railway system of Nor way has been completed, in the Christiania-Drammen line which was opened on the 7th of October last. This railway is 32 miles in length, and is connected at Drammen with the 3 feet 6 inch line, running to Handsfjorden, 56 miles in length, and with it making a continuous line 88 miles long besides the branch to the silver mines at Rougsberg, 17 miles, opened in 1872, and another to the Lake of Krödem 16 miles. Owing to the exceptional difficulties in con struction, the Christiania-Drammen Railway has been the most expensive of all the narrow cage lincs yet built in Nor way. The total cost for the 32 miles was $\$ 35,000$. For the way. The total cost for the 32 miles was $\$ 35,000$. For the
whole of its length, the line runs through a most beautiful whole of its length, the line runs through a most beautifu and picturesque country, and will comm
yearly increasing tourist passenger traffic.

Professor Cornwall, of Columbia College, N. Y., has by means of the spectroscope, detected a notable amount of indium in various samples of zinc blende from New Hamp shire and other States.

RAILWAY TIMBER BRIDGE.

Our engraving illustrates a timber bridge, constructed to carry the Southern Railway of Canada over Kettle Creek, at St. Thomas, Ontario. The work not only is an excellent example of type construction, but is remarkable for the rapidity with which it was completed. Its extreme length is 1,366 feet, divided into 736 feet of trestle work and 630 feet of house trussing; the latter is made up of 14 spans, resting upon timber piers. The extreme hight of the structure is 92 feet. There were used in its construction 1,070,672 feet of timber, board measure, 4,600 lineal feet of piling, about 35 tuns of wrought and 37 tuns of cast iron. on the 20 th September, 1871 , ond empleted the 13th 1 , and completed the 18 February, 18 a pess than five months, and part of which lay in the severe season. Messrs. Dunn, Holmes, and Moore were the contractors, Mr. M. Courtright being the president of the railway, and Mr. M. N. Finney the engineer-in-chief.Engineering.

Frcnch Prizes.

French Prizes.
The Société
d'Encouragement pour l'Industrie Na mionale, of Paris, has pubtionale, of Paris, has pub-
lished the programme of lished the programme of
premiums and medals, to be premiums and medals, to be
awarded between the years awarded betwe
1873 and $18 \% 8$.
1873 and 1878 .
The 2,000 franc prize (1873) for a steam launch 40 or 45 feet long working at 9 knots an hour in still water, and carrying sufficient fuel for 12 hours, working at maximum speed.
A prize of 3,000 francs (1876) for a steam engine of from 25 to 100 horse power, burning as a maximum in full work 700 grammes of coal per horse power per hour, weighing less than 300 kilogrammes (660 pounds), and costing from $\$ 60$ to $\$ 100$ per horse power. During trials the competitors will be at liberty to make use of any kind of fuel and system of generation which they prefer.
A prize of 1,000 francs (1873) for the best domestic engine, designed with the special object of assisting home work in towns
A prize of 4,000 francs A prize of 4,000 francs
(1873) for progress made in the process of the spinning. This prize will be awarded to the manufacturer who shall, on a production of more tian 20,000 francs' worth of yarn, effect an economy of 15 per cent on the power employed, and a degree of fineness exceeding 150,000 feet per pound for the flax, and 20,000 feet for the hemp.
A prize of 2,000 francs (1874) for preparing fibers, hitherto subjected to carding.

A prize of 3,000 francs A prize of 3,000 francs
for a file cutting machine. The cutting tool of this machine to have a form mathematically true, to act without shock, and not to be lia ble to excessive repairs. The cost and maintenance-of this machine, itsproduction, and therdriving power required must be such that the re sults obtained offer sensible advantages over those ob tained by hand work.

A prize of 5,000 francs
(1873 to 1875) for a practical and cheap means of dressing (1874) for the manufacture of good photographic paper, the millstones, so as to remove the existing dangers of this industry. This prize was founded by subscriptions made in La Ferté-sous-Jouarre
In the chemical arts, prizes are proposed for the wholesale manufacture of oxygen and nitrogen, the utilization of waste materials, the production of graphite suitable for pencils, for treatise on steel, based on certain experiments and having for its object improvement in the steel manufacture, and, lastly, for a process capable of disinfecting and clarifying,
promptly and efficiently, the water of sewers, etc. Other prizes will be awarded for an electro-magnetic machine, for asystem of heating houses and apartments, with constant circulation; for a process of meat preserving, for drying
wood, for an industrial application of the spectral analysis, etc.
Anong the agricultural prizes we may mention one of 6,000 francs for steam culture, and one for the best means of distributing powdered manure.
In the section of the Beaux Arts there are two entries, one
 other (1873) for a process to produce photographic electrotypes which may be printed from in a common press, and used instead of wood engravings.

Cement for Leather. - Ten parts of carbon disulphide and one part oil of turpentine are mixed, and as much gutta percha added as will readily dissolve. The surfaces of leathr must be freed, with a hot iron, from fat, and the parts once joined should be well pressed until they are firmly united.

RAILWAY PROGRESS IN 1872

The Chicago Railway Review publishes carefully compiled tatistics, showing the rapid progress that has been made in the construction of railways in the United States since the opening of the first 23 miles of the Baltimore and Ohio road in 1830. From the various portions of the statement show ing the advancemade in the past year, we extract the following interesting facts.
The number of miles added to all railways in 1872 was 7,925 . It is estimated that at least 10,000 miles more of road are under construction and will be completed before the close of 1873. Progres was made on 353 roads. In Illinois $837 \frac{1}{2}$ miles, a distance greater than any oth er State, were finished. The total number of miles in that State on which work was done aggregated $1,401 \frac{1}{2}$, the labor being dis tributed over 28 railroads. In New York construction was carried on over 1,338 miles, on 32 roads. The longest disiance finished on any one line was on the Atcheson,Topeka, and San ta Fé road, in Kansas, 360 miles being laid during the past year. The progres in the States, Territories and Provinces is as fol lows estimating on tho lows, num. and in course of construc tion: Alabama, 299; Ar kansas, 316: California 560 ; Colorado, 317; Cana da, 675; Connecticut, 53 Dakota, 65; Florida, $8 \pm$; Georgia, 138; Illinois, $140 \frac{1}{2}$ Indiana, 394; Iowa, 913 Kansas, 773; Kentucky 463 ; Louisiana, 106 ; Maine 42; Massachusetts, 165 Maryland, 418; Michigan 625 ; Minnesota, 942; Mis sissippi, 173 ; Missouri, 584 Nebraska, 233; New Hamp shire, 162 ${ }^{9}$; New Jerscy 791; New York, 1,338. North Carolina, 266; Ohio 754番; Oregon, 136; Penn sylvania, 7324; Tennessee 346 ;Texas, 637; Utah, 123 Vermont, 120; Virginia 421; Wisconsin, 797. The aggregate tunnage of the roads has increased to nearly $200,000,000$ annual ly. The increase in earn ings has averaged about25 per cent a year since. 1851

The past year will be es pecially noted as dating the beginning of the oper ation of narrow gage road in the United States, a members of the railwa system for general busi ness. In the latter part of 1871, the first section of the Denver and Rio Grande road was completcd and opened- 66 miles from Denver to Colorado Spring -and it was maintained in efficient and economica operation during a winter of unprecedented severity In the mountain regions Colorado the mavimum pay, hat payng at 36inches, and this ha been adopted for the moun tain extensions of the Col orado Centralfrom Golden City, the terminus of the 4 feet $8 \frac{1}{2}$ inch gage line of the company. In Utah, also, the 36 inch gage is an accomplished fact. From Salt Lake City starts the Utah Southern, already ompleted (31 miles), con (1874) for the manufacture of good photographic paper, the necting with the American Fork road, completed 17 miles;
the Utal 17 mile for 25 miles. The for 25 miles. Thas been built and opened for 50 miles. More important than the lines above named
will be the opening of the Cairo and St. Louis road, extend will be the opening of the Cairo and St. Louis road, extend ing over 150 miles, midway between the Illinois Central and the Mississippi river. From this road, the narrow gage sys-
tem in the South may be said to derive almost its chief imtem in the South may be said to derive almost its chief im portance. A project is also on foot for the construction of a line from St. Louis into the heart of the Nouth, east of the

Mississippi, the object of which is to bring the iron cre o Tennessee and the coal of Illinois together at a point favor able for manufacture. It is also understood that the narrow
gage road, viâ Ripley, Tenn., to Mississippi city on the Gulf, will form a Cairo and St. Louis connection by way of Paris This road has already 25 miles in operation. It should be added that a road is proposed to connect St. Louis with Kan sas City and Leavenworth. An air line, narrow gage, is also proposed between St. Louis and the Atlantic seaboard. The total number of miles of narrow gage road completed and begun during the past year is 617 .

COFFEE.

Mr. R. P. Hewitt, of this city, has recently published a well written and instructive volume, entitled "Coffee, it History and its Uses," from the pages of which we cull the following interesting facts:

THE COFFEE PLANT

is, in its native state, an evergreen shrub, having oval, shining, sharp pointed leaves, white, fragrant five-cleft clustered corollas, with projecting anthers and oblong, pulpy berries, which are at first of a bright red color but afterwards become purple. The flowers, which resemble those of the jessamine, fade very soon and are replaced by a kind of fruit not unlike a cherry, which contains a ycllow fluid enveloping two small seeds or berries, convex upon one side, flat and furrowed on the other. These seeds are of a horny or cartilagenous nature; they are glued together, each being surrounded with a peculiar coriaceous membrane. The period of flowering does not last more than two days. The seeds are known to be ripe when the berries have a dark red color

reparation of the bean.

When the fruit is gathered, it is measured and thrown into a loft. Within twenty-four hours, it is submitted to the action of the pulping machinery. The pulped berries remain for a day and a night in process of fermentation, when the mucilaginous matter is washed off. In an hour or so the coffee is removed for curing. This is effected by spreading the beans in a thin layer exposed to the sun which, in a short time, absorbs all the water, leaving the coffee fit for housing. Milling is the next process. Here the berries are placed in a wooden trough and the parchment and silver skins dislodged by the friction of a large roller. The coffee is then passed through a fanner or winnowing machine, whence it emerges perfectly clean. Sizing and hand picking follow; and lastly, the produce is packed and forwarded to the markets.
consumption of 'The various kinds of coffee. In the United States, Brazilian coffee is consumed in the greatest quantitifis, nearly $300,000,000$ pounds being used in the year 1871. The Java berry is next in popularity, finding its principal markets in this country and in Holland. This variety of coffee improves by age. Old Government Java owes its fine flavor to the evaporation of the caffeic acid, which is the principle that imparts that harsh, bitter, and astringent taste which cannot be disguised. Coffee is also exported to this country, from Maracaibo, La Guayra, Ceylon, San Domingo and other West India islands, Central America and Mexico.

METHODS OF MAKING COFFEE.

The roasting of coffee in the best manner requires great icety, siace much of the quality of the beverage depends upon the operation. It is usually roasted in a hollow cylinder made of perforated sheet iron, which is kept turning over a brisk fire. When the coffee has assumed a deep cinnamon color and an oily appearance, and the peculiar fragrance is perceived to be sufficiently strong, it should be taken from the fire, well shaken and permitted to cool. Not more than half a pound at once should be roasted for domes
tic use, and the cylinder should never be above one third filled. This operation and the subsequent grinding of the filled. This operation and the subsequent grinding of the for use. The French, who are celebrated for their coffee making, use various kinds in combination, such as Java, Mocha, Rio and Maracaibo. These coffees are so delicately and in such due proportions mixed as to produce a bouquet of aromatic flavors. With respect to quantity at least one ounce of coffee should be used to make three ordinary sized cupfulls. The coffee pot should be first warmed, and the water poured over the coffee. Whatever is used for clearing, white of eggs, isinglass, etc., should be dissolved before mixing.
There are about one hundred and seventy-five patents in existence for coffee pots. The best form known is one which distils the coffee, never allowing it to boil. By this process the infusion does not become black, bitter or stale, and can be served at any time, with all the aroma of the bean. adulterations.
The means resorted to for detecting adulterations in coffee are of three kinds, namely, certain physical characters and appearances presented by adulterated samples, the microscope, and chemistry. The first means consist in noticing whether the sample in the mass cakes or coheres, whether it
floats in water or not, and the color of the infusion. If the floats in water or not, and the color of the infusion. If the
ground coffee cakes in the paper in which it is folded, or when pressed between the fingers, there is good reason for believing that it is adulterated, most probably with chicory. If, when a few pinches of the suspected coffee are placed upon water in a wine glass, part floats and part sinks, there is reason to believe that it contains chicory, roasted corn or analogous substances. The coffee does not imbibe the water but floats on the surface, while the other materials absorb the water, and gradually subside to the bottom. Again, if
added, quickly becomes deeply colored, it is an evidence of the presence of some roasted vegetable substance or burnt sugar. If, when a few grains be spread upon a piece of glass
and moistened with a few drops of water, soft particles like and moistened with a few drops of water, soft particles like
bread crumbs can be picked out with a needle, this is anoth. er proof of adulteration. Chicory communicates a reddish brown tint to water, which pure coffee scarcely tinges. The same substance may be readily detected under the microscope by the size, form and ready separation of the cells of the cellular tissue, by the presence and abundanc eof the dotted ducts and spiral vessels. Roasted corn can be similarly recognized by the peculiar character of the stareh grains. Tincture of iodine instantly tells the presence of grains. Tincture of iodine instantly tells the presence
corn or beans by tinging the cold decoction a blue color.

Sorn or beans by tinging the cold decoction a blue color.
So-called rye coffee should never be used. Apart from it inferior flavor, it has been found that a single mouthful of wholesome bread contains more nourishment than a dozen cups of a beverage made from roasted rye.

Phosphorescent Mixtures.

Phosphorescent tubes have been sold in France and Ger many for several years, but the method of their preparation has not been divulged. Dr. Seelhorst, of Nuremburg, has been experimenting on the subject, and very considerately makes public the best way to secure mixtures that will afford all the colors of the rainbow and are capable of use in imi tations of flowers, insects, and objects of natural history After the powders are prepared, they can be sti red into melted paraffin; and by means of a brush, any pattern or de-
sign may be put upon glass. By protecting the glass in a sign may be put upon glass. By protecting the glass in a
frame, the powder will retain the property of glowing for a year or more. The putting of phosphorescent mixtures upon glass in the form of flowers is capable of very beautiful
application, and is one that has not been very extensively practised. With proper care and study, a landscape could be drawn on glass which, after exposure to sunlight, would shine in the dark and form a picture of considerable duration. The use of the paraffin is to protect the powders from the action of moisture and prevent decomposition. As a general rule, it is better to hermetically seal the mixtures in flat bottles, when they will retain their good properties for years. The following colors can be obtained very readily:
Green.-Hyposulphite of strontia, heated for 15 minutes over a Berzelius lamp and for five minutes over a blast lamp until it is fused, yields a yellowish green color after exposure to sunlight. The same color can be obtained by taking equal parts of carbonate of strontia and lac sulphuris, heat gently
for 5 minutes, then strongly for 25 minutes over a Bunsen burner, and finally five minutes over a blast. It is granular and yields id fine green color, darker than the preceding.
Blue.-Sulphate of strontia is prepared by precipitating with sulphuric acid from chloride of strontium the precipitate is dried, heated in a current of hydrogen gas, then over a Bunsen burner for 10 minutes and for 15 to 20 minutes over a blast lamp. The product sometimes yields a yellow
phosphorescent light, and when this is the case, it is necessary to give it another turn over the blast lamp.
Yellow.-Sulphate of baryta 6 parts, charcoal 1 part fused over a blast lamp, at first afforded no light, but after fused over a blast lamp, at first affors
24 hours gave an orange yellow light.
It may not be generally known that magnesium light will suffice to bring out all the effects of phosphorescence nearly as well as sunlight.

Pasteur's Method for Preserving Wine.
A great deal has been said and written about Pasteur's wine heating process, and it has been difficult to determine what value to put upon the testimony of those who have
tried it. Professor Neubauer, of Wiesbaden, publishes a tried it. Professor Neubauer, of Wiesbaden, publishes a
note of some experiments, conducted by himself, which denote of some experiments, conducted by himself, which deserve to be read with attention. He says that the tannic acid and extractive stuff of red wine precipitate most of the is heated it doestituency of the wine, so that when the wise ments, he carefully corked the wine and covered the corks with parchment paper, and warmed the bottles over a water bath, for half an hour, from 60° to $65^{\circ} \mathrm{C}$. Bottles of wine of the same sort, heated and in natural condition, properly labelled, were stored in his cellar; and, on the occasion of the meeting of a club in Wiesbaden, numerous specimens were produced for trial. It was unanimously resolved at this
meeting: "That the wine which had been heated was far meeting: "That the wine which had been heated was far
superior, in odor, taste and ripeness, to the specimens taken from the cask." This decision of impartial witnesses, known to be good judges of wine, created such a sensation among wine growers that they immediately formed a company to
purchase the necessary heating apparatus of the French purchase the necessary heating apparatus of the French
manufacturers. The wine is in this way rapidly prepared for the market. It will bear transportation to warm climates, as was proved at the opening of the Suez Canal, on which occasion Pasteur's wine was preferred to all others. White wines have not been so thoroughly tested, and it is a ques. tion whether they are so much improved by heating as the clarets. Our American wine manufacturers ought to repea these experiments.

A society has been formed in England under the title of the National Health Society, which is to have for its object to help every man and woman, rich and poor, to know for himself, and to carry out practically around him, the best
conditions of healthy living. The steps at present proposed are the holding of monthly meetings for the reading of papers; the establishing of classes for instruction in various
branches of sanitary science; the delivery of free popular branches of sanitary science; the delivery of free popular
lect ures; and the formation of a reference library and an information office.

Freaks of Electricity.

Mr. C. N. Simmons, electrician of the Western Union Telegraph Company, communicates to the Chicago Inter-Ocean the following account of the electrical phenom ena which accompanied the great storm of January 7th and 8th: The disturb-
ances were first noticed on the wires in central Iowa. The ances were first noticed on the wires in central Iowa. The
lines leading west were rendered useless for the transmislines leading west were rendered useless for the transmis-
sion of messages, owing to an incessant discharge of electricity, increasing in intensity until it would leap from one strap of the switch board to another, across the intervening space and then, in a luminous stream, to the ground plate of the lightning arrester. Another singular fact observed was that, on some routes where a number of wires occupied the same poles, one wire alone was highly charged or so affected that to work it was an impossibility, while all the others were entirely free from any external influence. In some cases, the wire occupying the top of the pole would apparently receive the whole charge; in others, the bottom wire would be af fected, and in a few cases the charge was equally distributed among all the wires In the Chicago office, the effect was similar to that observed in Iowa, and every observation confirmed the opinion that the center line of the storm was due east from Des Moines, Iowa, to Detroit,Mich., narrowing in its limits north and south as it approached the latter place where it arrived on the evening of the 8th ult., and rapidly subsided. A high wind varying from twenty-five to twenty eight miles per hour accompanied the storm.
At the eastern slope of the Rocky Mountains, a similar phenomenon has been frequently witnessed upon a wire running north and south, but rarely on an east and west wire Mr. Simmons ascribes it to the fact that, under the theory that the earth is charged with electricity negative to the at that the earth is charged with electricity negative to the at-
mosphere, there must be a point where discharge occurs or mosphere, there must be a point where discharge occurs or
neutralization takes place. At points where the relative huneutralization takes place. At points where the relative hu-
midity of the air is very great, this is doubtless ever silently going on: but during seasons of intense cold, when the ai is necessarily dry, the combination is evidently rendered more difficult and the tension thereby greatly augmented If under these circumstances, good conductors such as telegraph wires are interposed, they would certainly assist in car rying a good part of the atmospheric charge to a point where the electrical tension was far less. What the electrical condition of the telegraph wires on the same pole was, to render one more susceptible than another to this inductive influence, or why wires running in other directions than east and west should not have been similarly affected, are problems yet unsolved. A recurrent storm, it is hoped, will afford an opportunity for more extended and accurate observations.

Electrotyping and Light

We recently published an engraving and description of the new magneto-electric machine devised by M. Gramme It consists briefly of a circular electro-magnet with poles con secutively turned before the magnetic poles of a magnet and the currents collected in a plane perpendicular to the poles. Without entering into any more extended explanation of the invention than that already published, as above indicated we have now to note the results obtained in electrotypy and the production of light through the agency of this ma chine. M. Gramme states, in Les Mondes, that, at a rapidity of 275 turns, the instrument caused 8,101 grains of silver to be deposited in one hour, at 300 turns, 9,317 grains, and at 325 turns, 10,395 grains in a similar period. This last speed was too great, producing a heating of the coils which, if it had been continued, would have injured the machine
A much larger apparatus was used for the production of light. Its hight was 4 feet and its weight about one tun. The wire rolled on the electro magnets weighed 667 pounds and that of the three coils used, 195 pounds. With 300 re volutions per minute, expending about 4 horse power, M Gramme obtained a light equal to that of 900 carcel burners, a more intense artificial illumination than has ever hereto fore been produced by electro-magnetic agency. The calorific effects at the same speed of 300 turns were remarkabie A copper wire of 28 lines and one of iron of 52 lines in thick ness, both 39 feet in length, were made red hot. The sam iron wire in a length of 8 feet was completely melted.

Blue Color of the sky.

M. Collas, of Paris, comments in Les Mondes of December 12 , on M. A. Lallemande's paper on the blue color of the atmosphere, in which it was attributed to a change of re frangibility due to a partial absorption of the chemical or ultra violet rays. In 1870 M . Collas, in an article in Le.s Mondes, attributed the blue color of the Lake of Geneva and other waters to the quantity of silex held in solution, which is brought down by the tributary streams from the strata through which they pass. Numerous observations since have induced him to believe that the blue color of all the water of the globe is due to the same cause. The air everywhere always contains more or less of moisture due to evaporation from the water of the earth; the water thus evapora ted always contains a greater or less quantity of extremely fine insoluble particles. Silex, says M. Collas, is one of the most common insoluble substances in nature, and, through evaporation, performs the same function in the blue sky that he believes it does in the blue waters of the earth. He believes his theory is confirmed by the intense blue of south
ern skies, where evaporation is so much greater than in the colder north.

The Berlin Geographical Society has opened subscriptions for the contemplated Congo expedition. Dr. Güssfield, the glacier explorer, who is to be the leader of the enterprise has himself contributed nearly $\$ 5000$,and there is every pros pect that the full amount necessary will be forthcoming.

PATENT OFFICE DECISIONS

tablet for cloci front ornamentation.-sAMURL b. jerome.-APprai

Improved Compound for Cure of Toothache.
Francis J. Oswald, New York city.-This compound for the cure or ache consists of essence of bergamot, essence of citron, essence of lavender Improved Whinferree and Trace
Robert R. R. Ste wart, River Vale, Ind.-This invention has for its object
o avold injury to field plants by the projecting ends of singletrees or wit detrees of agricultural machines. The invention consists in so construe ing the whiffetrees or singletrees that the traees when attached thereto vill be fush with their end

Improved Fruit Crate.
Humphrey Humphreys and Eugene w. Humphreys, Sallsbury, Md.-The bject of this Invention is to provide practical and economical means for
ansporting berries and other tender frutt in small boxes or baskets whch are packed Into crates. The tnvention oconisist In combuntIn gand constricttng the parts of a crate so that the contents of the baske are kept cool by
the alr, which freely circulates through the open.crate and around and over the air, whtch
the baskets.

Improved Music Leat Turner.
 means of pedals, and without necessitating the use of the hands for that purpose. The invention consistst in the arrangement and connection with each other of a serles of vibrating arms by witch the mustc 1s turned and
held in any desired position. Thin rods connect with pedals, so that the held in any desired position. Thin rods connect with pedalis, so that the
player may, by means of sald pedals, cause the vibrating frames or arms to eswung in elther direction, thus attaining full control over the music, Which may be swung back and forward at pleasure.
Improved Refrizerator.
Willuam M. Baker, Fortville, Ind.-Thls invention relates to a new conof the ice water in the preservation of the contents and in obtaining a draft
 water pasasages, whlch cause the air that enters the refrigerator to become
cooled and remain dry, and the water to cool the arr pasages and sides of cooled and remain
the refrigerator.
IIproved Band Tuck for Grain Binders.
John Beall, Defiance, 0 . This invention consists of a strck of wood or John seall, Denance, o.-This invention consists of a strce of wood or from the wrist by a atrap, and from a thumb sack a little in advance of
where it is suspended from the wrist In sucha manner that it will not inter. Where it is suspended from the wrist in sucha manner that it will not Inter.
fere with the legitimate operations of the hand in forming, applylug, and fere with the legttimate operations of the hand in forming, applying, a
twisting the band, but will be ready at hand for grasping quickly to tuck the twist under and save the tucking or fit by the fingers, which 18 very try-
Ing to them. The thumb sack is secured on the thumb by the wrist band of he tucker, which goes through the upper end of the sack for that purpose
Improved Thread Waxing Attachment for Sewing Machines.
Clay E. Lewis, York, Pa.-The invention consist in a heater, arranged for eating the horn and waxing attachment. Wittl an attachment of this charby the wax becoming too hard by long standing, as is the case when large by the wax becoming too hard by long standing, as
bobtins of waxed throad are prepared beforehand.
This ingenious ilttle device is the Invention of Mr. Perry A. Burgees, This ingenious little device is the invention of Mr. Perry A. Burgees,
of Butier. Mo., and is an Improvement on the simple and well known

method of fy catechng, by covering a tumbler
with a plece of read covere with molasees
on tis under side, and plerceed with a hose in
on 1 ts under ide, and plerece with a hole in
the middale. The present contrivance is a the made. The present contrivance is a
flanged disk of tin wood or orther sultable material with a centrral hole and an interior recess underneath Alled with goft leather, felt
or other absorbent substance: It 1 t p paced on or other absorbent substance. It As placed on
a tumbler, the vessel belng previously
 unsuspecting fiy enters the central hole, but on reachingt he object of his desire meets, with
deatruction by tumbling off into the eoap suds

 nted through the Scientific American Paten Agency, April 30 , 1872. For further particulars see advertising page 124 .

Improved Machine for Twisting Oakum.
Lewis Howard and Charles Howard, Watkins, N.Y.-The invention consists
in combining a rotary tube, a spring fingered tube, guldes and drawing rolls in combining a rotary tube, a spring fingered tube, guldes and drawing rolls
so as to twist and shape crude tow into ropes. By the use of this improvement the material is twisted with great rapidity and nicety, effecting also much saving in manual labor.

Improved Cultivator.
Tmpproved Cumes Sherrill, Harrisburg, Oregon.-This invention has for its object to
Jarnish an improved seed sower and cultivator. The wheels revolve upon the axles of the axle tree, to which the stationary frame is attached. The tongue is attached to the frame and may be placed at the center of
said frame or toward one side, as may be desired, according to the number of horses to be used abreast. To the forward part or angle of a triangular frame, the draft clevis is attached. The frame consists of a number of par-
allel bars of offferent lengths, connected by cross bars,and is so arranged that the carriage may be drawn from it. The plow beams are of different lengths our longer and three shorter, arranged alternately. The forward ends of he plow beams are placed between the rear ends of the parallel bars of the
frame, and are prevented from having any lateral play while allowing the rear parts of the sald beams to have a free vertical movement. The seed bex 18 attached to the frame directly over the axle. In the bottom of the
seed box is formed a series of holes, which are arranged directly over the seed box is formed a series of holes, which are arranged directly over the
plow beams, so that the seed in falling may strike upon sald beams and be thoroughly scattered. A shaft extends longitudinally through the seed box
and revolves in bearings in the ends of the said box. Upon the projecting end of the sihaft is placed a small gear wheel, which is connected with said shaft by a tongue and groove or other sultable means, so that it may carry
the sald shaft with it in its revolution, but may sllde freely upon the sald the sald shaft with it in its revolution, but may sllde freely upon the sald
shaft to be thrown Into and out of gear with a large gear wheel when deshaft to be thrown into and out of gear with a large gear wheel when de sired. A rod passes through a keeper attached to the rear side of the see
box near its end. The outer end of the rod is bent forward, and is forked to receive the gear wheel and serve as a clutch for moving the saldgear wheel into and out of gear. The sald gear wheel may be removed from the shaft When the dropping device is not required to be used. A sliding plate is
placed upon the under side of the bottom of the seed box, and is slotted longitudinally beneath each discharge opening. By adjusting the according as less or more seed is required to be sown. The depth to which the plows enter the ground may also be limited by bars, and the forwa
ends of the plow beams may be raised and lowered as may be desired.

Improved Crimping and Fluting Machine.
Robert Werner, Hoboken, N. J.-This inventling relates to a new machine
for producting a futed and crimped fabric, substantlally like that for which design patent was granted on the 29th day of November, 1870, from mooth and fat woven fabric; and the invention consists, princlpally, the fabric is held back, and thereby formed into V -shaped, but more or less irregular, lateral waves or crinkles, whereby the stated and desired effect is produced. This finger is made to bear against a platform over which the rabricis passed to the fluting rollers, or directly against one of the rollers, as may be desired. The invention also consists in a new arrangement and
connection, with said fluting rollers, of a device tor holding the fiuted cabricit in contact with the same while the crinkled portion of the fabric it being elevated and puffed up by a projecting rib or stationary plate. Improved Caster for Furniture.
Cevedra B. Sheldon, New York clty.-This invention relates to the con-
structlon of casters for planos, household furniture, and other purposes and consists in a cup or block, which is enclosed by the shell of the caster
and with an annular groove adapted to recelve and confine a series of balls,
whose function ts to bear upon the main ball or roller and thus reduce fric.

Marion McKay, Topeka, Kansas.-This Invention her.
uce a double register, in which one side will ion has for its object to proso connecting the game immediately preceding. The invention consists in movable bar, and in combining it with projecting pins on the point count ingshaft and with a vibrating frame, so that whenever the point counting index on one side has completed a revolution the game counting pawl on the
other side will be thrown out of gear, not to operate at the end of the same other side will be thrown out of gear, not to operate at the end of the same
game. All possible confusion is thus prevented, and none but the winning game. All possible co
Improved Railway Snow Plow.
Samuel W. Hemenway, Lansing, Iowa.- This invention consists of fan bowers with suction and discharge pipes, combined with the scraper sides, having holes to allow the snow to be conducted into the suction pipes, to
be taken up by the air blasts and discharged over the side of the way, all in over the bank at the side.
Improved Excavator.
Samuel B.AIger, Oswego, N. Y.-This invention has for its object to fur-
ish an improved excavator or self dumping cart, which shall be so constructed as to ratse the dirt and discharge it into the cart. The wheels are made with deep rims, to the inner sides of which are attached the buckets
or elevators which recelve or take up the dirt and discharge it into the box. The elevators are made with hinged bottoms which are held in place by springs, so that, should the elevatorsstrike a stone, the hinged backs may yield and the elevator pass.on without belng broken. The box is made in the form of a hollow cylinder with a portion cut away, and is rigidly at tached to the axle. The buckets or excavators are made with open inner above the open part of the said box, when the dirt falls into the box Levers are soarranged upon the axle that, when the box is in position to recelve the dirt, they may project forward along the outer side of the forward part of the arms of the draft ball, so that they may be secured in place, holding he box in posilion the whe has been drawn to the place where the dirt is to be dumped, the locking
pins are removed. As the cart is started forward, the wheels in their revolution carry the levers and the box with them, dumping the dirt. When the Wheels have made half a revolution, and the open side of the box is direct-
ed downward, it is held inverted until the dirt has all passed out. The pins are then removed, when the welth the dirt has an pass the into their former position.

Conveyor and Separator for Coal Breaking Machines.
Rufus A. Wilder, Cressona, Pa.-This invention relates to a new maching for conveying coal from one breaking machine to another in reducing it to different sizes, and for taking out any required size or sizes between the
breakers while so conveying the coal; also, for distributing the different breakers while so conveying the coal; aliso, for distributing the different
inds of coal to the several chutes or pockets that hold it. The invention consists, principally, in the arrangement © f an endless rotary wire screcn screen, of a notched or slotted separator, which will remove any desired grade from the
to the other.
Improved Hose Coupling.
Thew Orleans, La., and Frank Jeffers, Pawtucket, R.I.and band nut. The connection at the opposite end is similar, but the tube isseparatefrom the coupling and inserted in the hose. This tube is taper ing, and the hose is compressed upon it by means of the ring, which is drawn
up on to the hose by the band nut. This nut screws into the coupling and draws the ring by means of the shoulders on its inner surface. The inner surface of the ring is formed with projecting beads. The two parts are
coupled together by means of a loose band made in two semicircles con nected and fastened together by tubular caps. On the inner surface of this band is a projecting rib or flange. Longitudinal slots are made in the part of the coupling which cuts through the groove which recelves the rib. The
rib dtself has openings at two points to correspond with these slots. The parts of the coupling are merely clapped together, and the band is turned then the band is turned, which completes the operation.

Improved Car Coupling.
Charles Gallagher, Taunton, Mass.-This invention has for its object to he cars automatically as they are run shalibe so constructed as to couple coupled from the platform, top, or side of the cars ; and it consists in the ooks, made with curved inner ends provided with cofled springs and cord

Improved Sash Holder,
msterdam, N. Y. West Galway, assignor to himself and Frank F. Carnduff, olders con, N. F.-This invention is an improvement in the class of sash mediately arranged spring. By sultable construction any attempt to ralse the window sash from any position in which it may be will cause an upper wheel to be pressed against the casing with a pressure increasing with a way any attempt to lower the window will cause a lower wheel to hug the casing. A spring holds both wheels in a position to operate if there is any ward the casing, allowing the sash to be moved up or down freely.
Improved Boring Machine.
James W. Shaw, Wenona, Mich.-This invention relates to a new machine or boring holes in the ends of logs and other pieces of long timber, in or der to make themup into rafts, which is done by stringing chains through
them. The machine is secured upon two or more logs, which form a float解 the auger. At each end of the float is a curved iron rod which connects the
logs, in order to keepthem in place. The machine is placed in position and the floating logs to be boredare run ude machine, turned one quarte over, and secured thus by means of dogs, one of which is attached to the
fioat, and the other, a double one, attached to the machine, directly in fron of the auger, and driven into the end of the log to be bored. While the auge is bengg turned
crank handle.

Treatise on books and PUBLICATIONS

Treatise on the Theory of the Construction of
Bridges and Roofs. By De Volson Wood Prosor Mathematics and Mechanics in the Stevens Institute of Technology. Illustrated. New York: John Wiley \& Son, Publishers, 15 Astor Place.
This book contains the substance of the lectures delivered by Professo Wood, upon trussed bridges and roofs, before the senior class in the UnI
versity of Michigan. The well known reputation of the author is a sufficlent suarantee of the excellence of the work and its rellability as a text book upon the subject to which it ts devoted.
Mrssrs. Brigas \& Brother, seed diealers of Rochester, N. Y.,publish a very recelved. Besides a catalogue of seeds, the book contains several finely finished chromos of fiowers, together with much useful information on horticultural subjects. The four issues fo 1873 are offered at the low price of 25 cents f
parties ordering seeds to the value of $\$ 1.25$.

Inventions Patented in England by Americans. TComplled from the Commissioners of Patents' Journal.]
From January 11 to January 16, 1873 , inclu
Rollinge Mbtals, mtc.-C. H. Perkins, Providence, R. I.
School Desk and Seat.-A. H. Andrews, Chi
Spining Machinery.-J. W. Wattles, Mass.
stove Piprs, Elbows, stc.-A. G. Myers, New York city.

Wusimess and zetronat.

Business Agency in Boston wanted, by an
 states. Adaress "King," P. O. Box 1268, Bos ton, पase.
Piano has jast paterted a nerw panoforte hammer, shich he he
belleves to be the beest invention of the stind ever in. vented. See ontice of the Invention In another column

 $\underset{\text { Boston Gear's Improved Balanced Jig Saw, }}{\text { Bat }}$ Five different sizes of Gatling Guns are now
manufactured at Colt's Armory, Hart tord, Conn. The larger sizes have a range of over two milles. These arms Machinist Wanted-To erect work outside by letter to Watte, Campbeel \& Co., Newark, N. J. See advertisement of Brady \& Logan, p. 124. Water Front, also Stores or Lots to Rent,
Delaney St., E. R1ver. Andrews Bro. 414 Water St., N. Y^{\prime}. Covering for Boilers and Pipes. The not tost
economical and durable artcle in use. Took irst prize at Amertcan Instrtute Farr. Van Tuyl Manufacturing at A merican Instlute Fair. Van
Company, 5 F
The Berryman Manuf. Co. make a specialty.
of the ecoromy and safety in working stean Bollers.. . B. Davis \& Co., Hart ford, Conn. Manufacturer and
Indispensable to every Mand
Machlints - Boston Journal of Commerce ; send for a
 by water power, at a lumber landung, with a proittable
run of trade. For partculars, address 8 . o. Box No. 2 , Buy Stean Engines and Boilers of Gear,
Boston, Mass. Mining, Wrecking, Pumping, Drainage, or
Irrigating Machnnery, or Bale or rent. See advertisement, Andrew's Patent, insice page.
Needle and Clock Machinery of every de-
scription of the most Improved styles. Hewdey Bro's, scription or the
Wolcottrille, ct
 Hammer Dies and Heads, strong and durable, cast to order by Pittslurgh Stecl Casting Co. All For $2,4,6 \& 8$ H.P. Engines, address Twiss Peck's Patent Drop Press. Milo Peck \& Co.,
New Haven, Conn.
Diamond Carbon, of all sizes and shapes, fur.
nished for prilling rock, sawing stone, and turning emery

A Suerior Printing Telegraph Instrument
Athe Selde Patent, for private and short In nestaw rded
 use "1-18 offered for sale by the Mercht's M'r'g and Con-
struction Cor, 50 Broad St., New York. P. O . Box 6885 . Iron Roofing. Scott \& Co., Cincinnati, Ohio Shafting and Pulleys a specialty. Small or-
ders illed on as good terms as large. D. Frisble $\&$ Co., New Haven, Conn.
Hydraulic Presses and Jacks, new and sec-
ond band. E. Lyon, 470 Grand Street, New York. For Wait's Improved TurbineWater Wheels,
Improved Mulay, Gang, and Circular Saw Mills, Paper
 Circular Saw Mills, with Lane's Patent Sets;
more than 1220 in operation. Send for descriptive pammore than 1230 in operation. Send for descriptive pam.
phlet and price list. Lane, Pltkin \& Brock, Montpe. Harmint.
Mear Wheelsts-Price Lor Models, Price Lismall 'Treols free ; Chucks and Drills, Price List free. Goodnow \& Wightman, 23 Cornhill, Boston, Mass.
All Fruit-can Tools, Ferracute, Bridgeton,N.J. English Patent-The Proprietors of the
Heall $\&$ Cisco Centrifugal Pump" (rrumphant at the

 Co., Bald winsville,N.
Read the article on "' The Machinists," now
belng published in the Boston Journal of Commerce.
 B. P. Co., Box 797, PIttsburgh, Pa.
Scale in Boilers. I will Remove and prevent
Scale in any Steam Boolter, or make no charge. send for crrcular. Geo. W. W. Ord, Plllladelphena, Pa.
 Ing Gauges-Engine Counters, Rate Gauges, and Test
Pumps. All klnds fine brass work done by The Recording Boynton's Lightning. Saws.
s50 challenge. wifl cut five times as fast as an ax. An A
 Absolutely, the lest protection against Fire
-Babcook Extinguisher. F. W. Farwell, sceretary, 007 Broad way, New York.
Stel Casting " Pottern," from ten libs.
upward, can be forged and tempereal. Addreess Collins * Co., No. 212 Water St., N.

The Berryman SteamTrapexcels lallothers. Co., Harttord, Conn.
All Blacksmith Shops need a Holding Vise
to upset bolts by hand. For such address J. R. Abbe,

way, N. Y.,. or Box 1809.
For Steam Fire Engines,address R. J. Gould,

W.D. Andrews \& Bro.41 Waterst.N. .

Always right side up-The Olmsted Oiler,
enlarged and improved. sold evervwhere.

Belting as is Belting- Best Philadelphia
aak Tanne.. c. W. Arys, 001 and 335 Cherry Street, Phil-
 for 1lthograpp, etc.
The Berryman Heater and Regulator for steam Bollers-No one using Steam
be without them. I. B. Davis \& Co.

1.-S. E. P. asks for simple directions for 2.-T. G. S. asks for a formula for prepar
ing unalterabie irup of todide of fron.
3.-H. M. H. asks how to make and apply a 4.-T. C. M. asks how to gild on marble, so
that occastonal washngs will on tinure the gldidng? 5.-F.S.S. asks how to give tempered steel
spectacle frames that beautitule even blue color, tyen to fine Eny1sh steel spectacles. Should the frames be 6.-S. F.S. asks: How can a barn be venti-
lated so that it will not
smcll strong? It $1822 \times x$ of cet on the floor, 10 feet to the upper floor, and 17% feet from
 lime, but it takes too much and does not have the de ired effect.
 that is not permanent, that is, one which will disappear
on the application of soap and water, ammon ia, or some
8.-E. F. wants a rule for rating or calcula8. -E. F. Wants arule for rating or calcula-
tung the hors power of steam botles, nud the ressure
per square tuch a boller of any gren dimensions and thlckness of tron is expected to bear.
$\underset{\text { wenty-four tuches wide, which requires the greatest }}{\text { 9.-W. H. Pas }}$
 cut just 1 thnches each, one
10.-L. F. S. asks: Why is it that some manall competition, maintatn such excessively hign prices or thicir productions, preferring. as it seems, to sell per reduce thetr prices
11-J. J. J. C. asks what material he should
use ora double scull boat msde for spece and durabillwaterproof aliso alrproof? If not, what should I I use
nit
12.-R. asks what is the cheapest and quickor what material should a klln $1 \mathbf{1 x}$ xwx 6 feet be construct. ed? How should dit be heated bo as to give at emperature
of $115 \mathrm{~F}^{\mathrm{F}}$ Fan. and to season the staves In 4 da ys? I do not
13.-J. F. P. asks: How can I work alumito roll or be drawn into wire? After repeated trials of
melttng together 10 parts aluminum and 30 parts solled copper, I have falled; ; tip pours and sttcks to the crucibl 14.-N. H. says: I would like to
14.-N. H. says: I would like to turn some
 tnches dameter. What is the best wood for that pur-
pose? Shall I work it green or dry?
If worked green, pose S Shall work it greee or dry? If worked green
how shanl treat It to keep it from splttting? What 18
 one plece frrt, before hollowing them out? Are there
tools that will cut in this way several bowls out of one tools that will cut in thls way several bowls out of one
plece concentrically, or does that not pay? Which are

15--A. H. says : At the back of my house sa brok, which for many rods pases over a a gravelly
bee ; and In some seasons of the year It drics up. Dur. Ing the night time nnd on very cloudy days, there may be quite atream of water; but when the sun appears,
the water disappearss ; and, agata when the sun disap. pears, the water comes agand. There are several theorpes
aboutt, but what are the facts or true cause? 2 . A
 and allowed the water to settle down. The end of the handle, or lever, rested on a board of the well curb. On
a very cold morning the lever was found broken between its fulcrum and the plston rod, near the former, leaving pounds welght tatached to the pliston rod, but thrown entirely over it and hang ting on the opposite side from
that on which it would naturally have fallen. It t s easy to understand how the pump conld have become frozen
up,and how a sound bar of tron, one tinch by one and one haif inches, could be broken; but how that welght of
Iron could be ralsed and thrown over, 18 a question. The board of the curb could have nothng to do with it, and It does not seem posible that the tee and frost in the
pump barrel could affect it in that manner. The elastctel ty of the cast iron seems to have caused tit; but will some
one who can, kIndly furntha a solut lon ?

R. A. R. asks us to $\operatorname{inform~him~why~the~}$
holding a darunthg neede in the mouth while peeling onnons wril prevent the
Ans wer: It won't do it.
J. E. G. sends two mineral specimens and asks what they are. Answer: The spectmens are red
jasper, a stone which takes a fine pollish and is used in stones.
M. B. sends a specimen, which melts readily with ittie loss, and it is suggested that it may be til Answer: It tis a chloride of lead with a mall percentage
of copper, a mineral of rare occurrence in the United T. H. C. asks: What are the ingredients

been added, reduce the heat to a dull rea and then add
he remander of the tin.
G. E. H. says: Please inform me of a pro,
cess to take the mpressions of tree and plant leaves, it
 for future reference. Answer: Impressions can be very
neatly taken, In many cases, by means of the impression paper which is sold by the stationers. In some instance
 duced.
dater
E. N. says: I have heard it stated that one $\left.\begin{array}{l}\text { square foot of heatng surface in a fre box or a boiler } \\ \text { was equal to flve suare feet of fue or tube surface for }\end{array}\right)$ steam purposes. What difference is generally allowed in vertcal and horzzontal tubes for steam purposes? Answer: The estlmates of the power of a ateam boller are
uanaily based upon the total area of heating surface. suare feet of heating surface to the square foot or grate, and water tube bollers are given nearly a propor-
tion of 55 to 1 .
D. M. A. asks: What causes foaming in an
engine botler? Is ist dangerous or apt to cause an exploston of boller? Does steam ever descend under the Fater in a boiler ancl force the water up and then take
ts place? Answer: Foamtug 18 caused by the gener tion of steam more raplaly than it can disengage itself
from the mass or water withn whtch it is formed It may give rise to tnconventence, and even danger, elther bearrying water out of the boller more rapldy than the
feed pump can repplace tit, or by enterling the steam cyl Inder of the engline and creating a labillty to accilent,
when the piston strikea upon it at athe end otits strose breakng crank phn connecting roo or cylinder head.
ber Steam does not get under the water but 1 s somettmes so
rapldy disengaged, at pontst on the heating surface under water, as to almost or quite displace the water.
J. H. L. asks: Will you please inform me (1) hours when under funl steam; and (2) how much 1s a usually
consumed in a trip trom Liverpool to New York and oice versa? 3 . Also state the total tunnage of an ocean steamerIncludng fuel. 4. Also give me the tunna geof the
Great Eastern, and what coal she consumes in 24 hours under full steam. 5. Is steam used all the time In making the trip, or ts asil used part of the time alone, or are
 which, under full power, will burn about 300 tuns in 24 hours. 2. Probably an average of 1000 tuns for the whole
 tumuage of 18,000 and
to her max 1 mum dra
 not far from 15 tuns an hour
she 18
ever under sall alone
R. L. asks:
information respecting the aupupplition of co with any air, as a motor for manufficturling purposes? In other Words: Suppose 1 have a water power withil half or
unarter of a mile of a navigable stream where thave sin
 waterfall, and the sam would it be practicable or economical to use the power of the fall to compress arr, and convey yt by pipe to the
river wheremy logs are?
What 18 ver where my logs are? What is the best sort of pump
orcyllnder for compressing alr, and what diameter of tube would be required, taktng the relation of distance
and horse power into account? What klnd of englne
 Wheel of 24 feet dameter, will I galn power by put ting
up two wheels of 12 feet dameter each, one above the other, and using the water twice, than if I use the water
only once on my 24 feet wheel? of equal strength draw greater welight, by attachhng each one eto a wagn with wheels of only, three feet in
dameter, than one of these horses wwll
attached to wagon that has wheels six feet in diameter? Answers
 sion which our readers have seen described in the back numbers of the Soirsitipic AMRRICN. A Alight line on
Fire rope, travelling at high speed over pulleys of large are rope, ral give a better effect, In such cases, than will any other means of transmission of power to great distances. Find a well Informed mechanical engineer and arger wheer under
ase an overshot rather than a good wre compline wheel to The experiments of Mr. Joseph Coe, at Seaconnet, R. I. have shown a large gatn by the use of whecls slx feet
diameter, approximating that tindtated by the laws of
dit the question not, we think, to the necessarily, of themselves, so heary as to make an 1 m . portant adatiton to the resistance. Under theoretctcal
condittons of merely rollung friction, we should reply to tirs question in the ne
as large as practicable.
G.S. N. asks: In using a light lubricating
oil made from petroleum, to remove the scale in steam biliers, would there be any danger of the gas, that
wouldarisefrom the heated olle exploding? we me tubular boflers in our mill, and they are badly ticrusted with ilime. We asw recommended In y our paper the use
of crude petroleum for removing gesle in bollers. We of crude petroleum for removing saste in botiers. We
put in our bollers two gallons of lubricating oil made put in our bollers two gallons of lubricating oill made
from petroleum, and there was such a gas and smioke made from the burnt oil that we were a arald the gas
would ignite and explode the boflers. If there t 1 no dan wor, we would like to cont thue the use of the oll, for we
get
gind thlnk 1 tit dotng more good than all the anti-ncrustants
we have used before. Answer: No explosion can occur where the vapor 18 unimed with the proper proportion escaptng into the boller or engline room, and we should presume that such escape would not be likely to occur
to a hazardous extent. The boflers themselves are not
J. L. B. asks: Why will not a glass fruit jar hot liquid are pouredinto the j ar? The wet cloth should be a few times folded, and the cloth may be wet with
cold water. The frult orll quids maybe bolling hot ; not one jarin ifty will break, and the operation doesnot see Lo require care. This plan of putting up frult in jars is
ow altogether practiced by those who know the fact nd dit aves the trucuble of heating the jars; and with even thls precautlon a larger percentage will be broken
than by the other unexplained or phenomenal process
trg and will probably afford a valuable plece of hous keeping information to our readers. We presume that asked, when he reads the request in our columns. We should prefer to make an experimental investigation of the subject before presenting our own opinion.
A. S. asks: How does a railway train turn
a sharp curve, where the outer ralls considerably longer than the Inner, all the wheels belng of the same diameter and keyed to axle? And J.H. asks: How the outside wheel side wheel, on account of the distance to travel belng greater, both wheels being fast on the axle ? Answers :
With wheels of equal size and having cyllindrical bearing surfaces, one orboth must sllp on the rall. The wheels of
thecars on rallroads are "coned" toavoid this difflculty, "tread" being less than that of the portion of the tre ext the fiange. In turning a curve, the wheels ride to next the fiange. In turning a curve, the wheels ride to-
ward the outer rall, and thus, to some extent, if not wholly, this tendency to slip is prevented.
R. D. and others who ask for information referred to pages $123,234,250$ of volume XXVII. C. J. McC. asks for directions for dissolving
horn, which he will find on page 91 of our current volume. J. J. O'F. asks: What would be the cost per
spinde (say for loospindles) for all the machincry (power excepted) necessary to manufacture cotton yarn out of
Int cotton? Answer : From $\$ 8.50$ to $\$ 10.50$ per spindle, according to quallty an
W. F. C. S. asks: 1. Suppose a builder of
engines has a contract to bulld an engine for a certain sized machine shop or manufactory; how does he ascer-
tain the size of the engine that will do the work? Suppose there were 20 lathes, 3 planers, 2 drills, a inne of shafting, counter shafts, etc.: how is the number of
horse power required to do the work found? What rule apples to all sized shops? 2. How is the device con-
structed that produces the fast and slow motion on a compound planer, slow while the tool is cutting and fast ophy that a bar, balanced at the middle polnt, would balance in any direction. I have not been able to do so on a pair of druggist's scales. Why ts such a thing stated
when it cannot be practically demonstrated? Answers : 1. There can be no general rule for determining powe
equired to drive machine shops. The kinds of machinery and character of the work are so variable that it requires the exercise of experlenced judgment in each
case. An experienced engine bullder should be able to case. An experienced engine bullder should be able to
tell at once, upon inspection, what power he must cal-

notion of rectprocati

carried by the plece B which is driven by the wheel C by means of the link D E. The center, C, is below the level
of D. As the driving wheel turns, throws the tool for
ward at the proper cutting speed and drawsitback more rapldy in proportion as the wheel C is larger. Anothe dive. \& The propostion theat a bar bot it is more expen sive. 3. The proposition that a bar balanced in the hor-
izontal position will balance in any other is not true ex
cept when it is supported exactly at its center of gravity Bodtes of any shape, supported at thetr centers of gravi , will reman a rest in any position. Take a perfectly wo sides and either cut a notch up to the line or drive a pin through, so that the bar may be supported at the
middle of the line, exactly; the bar will then be in equilibrium in any position. Scales are purposely made with the centers of gravity below the points of suspension, so W. A. G. says: In the packing room of a
dry goods store, the goods coming from the salesroom are lowered by means of a beekman rotary engine (300 revolutions per minute) which is supplied with steam
from a bollerdistant 100 feet diagonally across the packing room; the steam plpe running immediately under
the celling. This pipe seems to conduct the sound of the engine in such a manner that the entry clerks cannot
hear the caller off; on account of the noisc. What coating or covering will prevent the conducting and radia-
tion of this sound in the steam pipe should be covered to prevent Ansser: The
lof heat prevent the annoyance referred to. Try making two or engine, with flanges and thick gum packing. For small
ent E. S. B. asks: 1. What are the relative bollers? 2. What is the best plan for taking the sap from green wood so that it may be worked immediately?
Is it to be bolled or steamed, and how long would it take for a block fourinches square and twelve th length? An-
swers: 1 . The loeomotive form of boller is compact, powerful, and, when properly proportioned to its work, very economical. It is more costly than simpler forms
of bofler and, in consequence of the difficulty of removIng scale from its tubes, cannot be used when the feed
water is lable to produce incrustation. This plain cylinder boiler is of least first cost and easiest to free from otherforms of boiller, intermediate betwcen these, usually share therr advantages and defcets as they more or
less resemble the one or the other. Some of the "secess resemble the one or the other. Some of the "sec-
tonal" bollers have speclal advantages over elther of
the above named, in addition to thetr greater safety. the above named, In addition to thetr greater safety. 2.
Boil four hours, then dry slowly at a temperature not E. J. L. asks: Will you give me a rule for
calculating the pressure on steam boilers, by the lever and wंelght? I have searched several works on the steam engine, but have not found two rules alike for calculating
the pressure on boflers. Answer: E. J. L. will find his question already
simflar request.
A. S. asks: 1 . Where is the point of suspen-
sion in the arms of a regulator? Is it the center of pin Where the arms are suspended or where the line of the
arms would cross in the center? 2. How can I find out he horse power of a boiler of a given size, say 14 feet
long and 5 feet diameter? Answer: 1. The hightof reg ong and 5 feet diameter? Answer: 1 . The hight of reg
ulator for use in estimating the time of revolution ulator for use in estimating the time of revolution 18
measured from the plane in which the balls are to revolve

 he number of cublc feet of water which any fairly de
igned and well set boiler should evaporate per hour. good engine usee about half a cublc foot per horse pow
F. D. R. says that P. L., who asked for ood book on pyrotechny, will find Mortim
W. D. O. says: Suppose a man to be susearth. The attraction of gravitation draws him conand the earth revolves beneath him once in twenty-fou ours. This noon when I come under hlm he asks me January $24 ; "$ I pass along and he asks others the time or day, and they, being under the sun, of course say just the ame. Where is the man to tell him it is twelve o'cloc n Saturday? Even suppose I was the first who told him
t was noon Friday, ought I not to be the first to tell him it is noon Saturday? But five minutes before I come long, a man will tell him it is twelve, noon, Friday, and our stories will not agree, yet both tell the truth. An
swer: Possibly the suspended individual might have an pininon of his own, and belleve it to be Sunday all the We. Whowl advisc our correspondent to walt unt the case actually occurs before giving valuable time to promptly closed by reminding those who take part in it that our ideas of time are relative, having
natural stanclard by which to fix the limits.
F. E. D. asks: How can I find the different pecds and an equal tension of belt? For Instance, I have counter shaft making 170 revolutions per minute, an
want my machine to run 67,100 , and 133 . The large size of the driving conc is to be 12 inches, and the dis ance betwcen centers of cones to be 7 feet. What will have the spceds mathematically correct and also to kecp the belt equallytight on the diff crent speeds. hat the sum of the diameters of the several pairs on which the belt at any time runs shall be the same for stej For open belts, the cones must be enlarg at the middle by an amount which can be determined
hus: Draw the line A B, equal to the circumference of circle whose diameter is the distance bet ween the co

erpendicular to A B, and also the line A C. From draw B D, perpendicular to A $\mathrm{C}_{\text {; }}$, and the distance D C
mea ures the amount by which the middle pair must be enlarged in their radil. Those on either side the middle
T. J. asks: Is there more than one kind of
. plain check valve is so made as to rise and allow the
water to pass through it in one direction, but closes at once when the current sets backward, preventing its re urn. The screw check valve has a stem nitted with hight, allows the valve to act as a check valve, but which may be screwed down, holding the valve in its seat. It
then acts as a check valve. Different makers have difcrent styles of these two classes of valyes.
J. S. L. says: Last winter I dug a well and that covers the well, a hole only large enough for the pipe to work in, say a $11 / 2$ inch hole for a $\frac{1 / 2}{}$ pipe. From
six inches below the rock, I began laying the wall in water lime and continued it to the top; this I did to keep out the worms. Last fall the water from this well go
to smelling badly. I removed the covering stone. Afte pumping it dry, I made it as clcan as I could, fliding but one fish worm. 1 had frequently pumped them up
beforc. Within a few days past it has got to smelling overing the well as what I want to ask 1 s , whether the impure? since I cleaned it out unt11 a few days past, it as ocen very pure, with no smcll whatever. About three hat is, the opposite side of the well from the prity Please tell me of something that will purify it. Answe Free access of airmaykeep the water sweet, by causing
the oxidation of impuritics and thus proventing their decay from surcharging the water with unwholesome matter. If entirely closed at the top, the well would soon become unwholesome, if any organic matter were
to find its way into it, by the putrefaction of such matter, whether animal or vegetable. Thorough cleansing
and a free use of its water, in order that none be allowed to remain long enough to become foul, are the best pre-
ventives of trouble. We should feel very apprchensive ventives of trouble. We should feel very appreheusive one described. Typhoid fever and diseases of that na.
ture are generally ascribed to the use of water or to the breathing of air contaminated with matter arising from

ranged thus. They are of equal capacity and connecte by a pipe a having a cock as shown. In B is itted a tube
b, rising to the hight of a column of water which exert the pressure of one atmosphere at its base, that is, som y driving airinto A ton is "How many volumes of air must be forced in? there is one volumic already prese at a presure tmosphere. To force the last portion of water frcm B it will be necessary to have, at that moment, both ve ing in each case from a perfect vacuum line. Thus ther re now present four volumes, of which one was pres
"Engineer" and some other correspondents man going round a tree on whito there is a squirrel. The we decline to renew it.
G. P. Says: I have a house which has been
truck with ilghtning once, before I had rods put up, and taking the house as a center, it has struck within a radius
of twenty rods, nine times or more within the las Wenty years. Larly exposed. I have stated a fact and belleve sclen should find a satisfactory explanation. Answer: Lightning always takes a path, when passing between the
cloud and the earth, which offers least resistance. In th case mentioned, the point struck may be somew higher than the surrounding locialites, or its sinsings
more motst, or the presence of subterranean springs mineral velns may off cr unusually good routes of trav
to the electricity. F. D. R. says that G. S., who asked for a ce
ment for lamp chimneys, can prepare it by beating com-
I). P. D. says that W. \& Co., who asked apply common flour paste in which about one table spoonf J. S. says in answer to G. W. D., who asked ope than a short one: IImagine that G. W. D. has not put the question properly to elicit the desired inforin lon. If a horse is hitched close to the load and his he were farther off. It gives him more traction and les weite hitched high up on the load he would lose his trae ton and create more friction by pulling down, and woul puil more if he were farther off. Your answer is, I be
leve, correct in regard to the use of mechanical-powe them described
J. G. D. says that II. IC. B., who asks how
oremove paint, etc., shouid take caustic soda or conentrated lye dampen or dissolve, and apply. A reader says: In answer to the article "
Novel Problem," in your issue of February 8, 1873, would say that the creeping of the ralls was caused ollows: The centrifugal force of the end of the train and (caused ly the revolution of the carth), the norther nd of the train would act most on the track, which in train moving sotith would tend to draw the track afte
it, and in moving north to pull the track towards it he revolution of the carth being from west to cast , the reill, thereby and on that rall.
$\underset{\text { A. H. says, in answer to C. H. B., who asked }}{\text { for method of tinning cast iron : I uscd to th boxcs }}$ healing them, then using a flux of alcohol or salt of am monia, and tinning with a common soldering tool or a
copper wirc swab, with melted solder. They were cas copper wirc swab, with melted solder. They wcre cas
iron boxes for stcam cngines and other purposes.
A. F. C. s. says, in reply to H. W., who asked Journal, and you will ind an uneven place which cuts
the boxing and解 boxing and gives too much play
W. H. T. says: The answer to E. E.'s query, it would be an excellent isometrical cubc, but a very which must tend to a point on the horizontal line, at istance from the center of view proportioned to th situation from which the cube is viewed; while the par-
allel sides of an isometrical cube, extended, would bo parallel ad infnitum.
F. D. R. says, in reply to G. W. II. who grains of nitrate of fead in six fluld ounces of water; if the solution is turbid, filter it. Place the solution wher
is is intended that it shall remain, and drop into it 200 gratns of sal ammontac, in long ibrous crystals. The re ult is "Alaska scencry.
J. G. D. replies io
top does not fall when spinning, Ihat the centrifugal E. D. says in reply to C. H. B., who asked cast iron is one of the things that is yet to be found out Any person having a process to tin gray iron and to give It a finish equal to what is known to the trade as C plate good a thing to let lle round loos
$\underset{\text { H. M. W. replies to J. B. B. who asks what }}{\text { H. }}$ ing its appearance: Into a half bucket of soft water put half a pound of sugar of lead. In another half bucket o water, put half a pound alum. Stir till dissolved an till clear and pour of. Put the garments in the liquid f 24 hours, take out and hang up to dry without wringing. W. A. C. says, in reply to C. who aske解 to case harden partor an object: Labor expende way. To harden the face of a steel hammer, I heat the face only at a slow red heat. Then I place it under a
stream of water so that only the face will be wetted hean left in fit will draw the temper to the requirc
W. H. B. sends a mineral specimen, and posed mica schist, it is probably of no value.
J. R. asks for a process of separating lead
from tin. Answer: If the lead and tin are in solution prectpitate the former by sulphuric acti and the latter
with sulphuretted hydrogen ga. In an alloy the lead

COMMUNICATIONS RECEIVED.
The Editor of the Scientific American cknowledges, with much pleasure, the re ceipt of original papers and contributions upon the following subjects:
On the Bursting of Cylindrical Boilers. By
On Perpetual Motion. By B.
On the Creeping Rail Problem. By J. S.
On the Ignition of Wood by Steam Pipes By M. M.
On Fires, their Prevention and Means Saving Life. By W. M. B
On Central Forces. By 'T. W. B.
On the Occurrence of Fires from Superheat-

Index of Inventions

Letters Patent of the United State WERE GRANTED FOR THE WEEK ENDING January 21, 1873,
aND EACH BEARING THAT DATE
[Those marked (r) are retssued patents.]

Bending sheet metal, J. Pearce.

 Billiard cushlon, H. W. CollendBlackboard, T. J. Thorp.........
Blind slat adjuster, w. B. sloa Bilnd opener and regulator, A. Ball. Botler, farmer's, A. B. Nott..........
Boller feeder, steam, J. H. Blesing Boller feeder, steam, J. H. Blessing.
Bofler attachment, wash, H. Bickel. Boller apparatus, steam, \mathbf{E}. Moneuse Boot and shoe, lasting, R. C. Lambsit boot and shoc rivet, P. West. Bottle label, H. Frank Box, packiug, L. A. Brick, reversible curb, E. Linson Broller, W. T. Howard (r).
Brush, J. S. White.
Brush, J. S. White......
Buckle trace, D. Silva an
Buildings, construction of, W. J. Mor
Can, oil dripping, L. R. Boyd.
Candy, medicated, S. B. Colt
Car brake, rallway, L. Stebbbn
Car starter, I. J. Whecler
Car window spring, G. Cornwall Cars, steam colupling for, Mon (r).
Carburter, H. S. Maxim (r). Carbureting air, J. H. Van Hout
Carding machine, tube for, Λ Carriage axle and axle box, R. A. Berryma Chevron, F. S. Johnston
Cigar pressing machine, cle., W. D. Brewc
Cigars, retainer for, w. D. Brewer Clgarettes, making, Hi. Gerike Clsterns, etc., valve for, L. Goudreau.
Clothes dryer, E. . French............ lothes ayy, E.s. Coffin, P. E. Obcr.
Coffln plate, G. B.
Column, wrought
Cooler, milk, S. Spencer
Cork cuttlig machince, T. s. Disi......
Corret, S. D. Drxon
Corset stecl, C. S.
Corset stcel, C. S. Ch
Cradle, L. Hey wood.
radle or crib, folding, M. McNama
Crank movement, II. C. Bradford
Cultivator, C. Billups...
Cultivator, J. H. Pattee.
cultivator, J. H. Pattec
cultivator, rotary, J. W. Miliroy.
Curtaln inxture, G. B. Cowle
Cutlery, table, C. McDonald
dery metal coating for, J. Zimmer
am, seli-acting, H. Werne
Damper regulator, B. Fitts.
Dental drill,automatic, M. I. Gallager.
Dcsk, school, Cox and Fannin
Desk, school, C. H. Presbrey
Diamonds, setting black, T. W. Baxter
Digger, potato, W. H. Wall.
Ditching machine, J.W.
Door check, Λ. Hanna
Doors, gates, etc., sprig for and Roys
Dredge box, T . Smith
Drill tecth, grain, J. D. Welsh
Earth closet, R. S. Willams
Eaves trough hanger, J. P. Abb
Elevator, etc., water, A. W. Cram
Engine, hydro- steam, J. Widmer
Engine condenser, stcam, G. Walcs
Engine, traction, D. W. Kellogg.....
Engine valve gear, J. W. Hack worth
Excavator, F. W. Schultz
FeedIng screen, G.S. Cooper.
Fence, Iron, J. B. Wickersham
File, paper, E. Motz.
File holder, newspaper, w. Bright..
Files, machine for cutting, c. Vogni
Fireproof paper, R. U. Piper.
Fireproof compound, R. U.
Fireproof compound, R. U. Piper...
Flsh bait compound, S. A. Goodman
Forging frows, die for, c.
Fruit box, E. P. Bothwell...
Furnace, hot air, D. B. Montague
Gage, recording steam, D. P. Davis (r)
Gas, purifylng carbonic acld, A. P. Mey
Gasometer or gas holder, J. C. Tiffany
Generator, steam, J. .̌. Baldwl
Graining or J. N. Wamsley...
Harvester, J. F. Setberl
Harvester, J. P. Manny
Harvesters, binder's table for, J. H. Smith.
Hat bodies, stretching, , Etckemey
Heater, feed water, G. Wales.
Heater, water, Λ. Marriott........
Hecels, turning wooden, R. Hubler
Hinge, S. Blngha
Hoe, H. Camp...
Horse collars, etc., lining for, D. Curtis, (r)
Horses din
Horseshoe calk, T. M. Clarke.......
Horseshoe nall machine, J. Mills
Horseshoe nalls, flitishing, H. A. Wills, (r)
Hydrocarbons, burning, E. F. Rogers.:
Hygienic basin and bath E.
Inking pad, J. A. Miles
Jewelry bases, manufacture of,
Jofnt coupling, universal, H. B. Whitehead... Key check, J. J. DeBarr
Knife rest, butter, B. D. Reed
Lamps, safety apparatus for, C. J. Brown.
Lap board, S. Mahan
Lasting machine, c. w. Glidden
Latch, knob, E. Parker.
Lathe, metal turning E.
. 135,15
135,150
5,241
120219
5,241
135,019
135,166
oyster tongs, I. Smith.................
Oyster packing can, L. R. Comstock. Packlng for piston rods, et c., L. K
Panint compound, J. S. Vosscller.
Paper, medicated, C. J. Paper bag machinc, M. Murph
Pavement, wood, J. 0 . Felt Pavement, wood, J. Q. Felt
Pen, writing, R. II. Chinn... Pen, writing, J. Holland..........
Plano sounding board, T. Kater.
Pipe, steam blow, J. s. Anderson Plano sounding boara, .. Kater..
Plpe, steam blow, J.s. Anderson.
Pitching barrels, etc., G. Meyer... Planing machine cutter holder, w. Walkingto Planter, corn, S. Dlxson.... Planter, corn, W. A. Eastin....
Planter, corn, S.and H. Vannu Planter, corn, S.and H. Vannuys...
Poke, animal, . Hinman.......... Pulley, band, C. H. Perking. Pulley block, E. A. Barrett
Pump, steam, W. Arthur.. Pump, steam, W. Arthur.......
Pump, double acting, K. Nolan Pumps, operating shlp's, S. R. Uevercli. Rallway rall joint, J. M. Clem... Rnke, horse hay, II. W. Sabin (r)
Rake, horsechay, H. W. Sabin (Rake, horse hay, II. W. Salth (p)
Rake, horse hay, H. W. Sabin (r)
Raker, etc., hay, F. Marion and N Refrigerator, G. B. Rohrer.
Roller, land, J. Woolrtdge. Rollcr, land, J. Wooirldge......
Bolling shect metal, J. Evans. Sail hank, J. G. Young, Jr.
Sash holder, J. R. Watson. Sash holder, J. R. Watson......
Saw, crroll, Doane and Dobso
Saw fond Saw straightener, J. S. Anderson..
Saw mill, circular, w. A. Campbell Sawing machine, F. C. G. Parr..........
Scraping and loading machinc, D. Mar Screw propeller, , N. A. Patterson........ Sewer inlets, grating for, H. W. Clapp.
Sewfng machine, McLean and Ben nor.. Sewing machine, McLean and Ben nor..
Sewing machine, boot, w. Duchemin... Sewing machine, boot, G. V. Sheffield....
Sewing machinc coiver hook, J. C. Egly.
 Sheep holder, s. Tucker..................
Shocs, fllishling hecls for, i , IIubler.... Sifter, flour, L. S. Nourse (r).
Slate, E. W. Rollerts..........
Soda fountains, draft tube for, … B. Robbins. oldcring tool, W. H. Wight. Spindle bolster, C. F. Wilso
Spludic step, C. F. Wilson.. Sinning mule, self acting, A. Paul. Spirits, ctc., rectifylng, C. W. Ackermann.......... 135,03
Starching machine, L. Sternberger................ 135,17
Stoncr, cherry, D. E. Warner.............. 135,0.0. Stove grate, E. Iicwitt.....................................095,
Stove plpe, w. H. Stephenson...................
Stove leg, J. Q. . . Searle................ Stove pipe damper, R. M. Brecken
Strap, tug, M. Cad well......... Sugar, trcating, A. H. Scyfert Table and bed, offlec, D. Walker. Thill coupling, S. J. Iibble....... Trap, andmal, w.s. J. Wichardson. Tube welding machine, J. Sad
Tuck creaser, S. P. Babcock... Tuck creaser, W. Carpente Turn table, J. Fnright. Vault light, T. Hyatt...........
Vehicle wheel, D.Argenbright Vehicle wheel, J. C. Hurle Wagon body, H a
Washer for nut fastenings, H. P. H
Washing machine, dish, J. Usher..
Washing machine, dish, J. Usher.
Waxed ends, preparing, W. May.
Well packing, J. H. Luthcr......
Well boring machine, J. A. King.
Well tube, point for driven, W. Well tube, point for dr
Windlass, O. liecder.. Wrench, E. A. Cooper....
Yarn, machine for stzing

APPLICATIONS FOR EXTLENSIONS Applications have becenduly iled, and are now pending
or the extension of the following Letters Patent. Hear inss upon the respective appica:
2,370.-ColLARE AND
3,795.- PUMP Box.-F. and J. Stock. April 3,810.-Time Reaulaton.-R. S. Mershon. Aprill 0.
$3,882$. Rooring Cement.-N. A. Dyar. April 9.

EXTENSIONS GRANTED. 2,742.-BED Botтом.-B. F. S. Monroc.
22,787.-STOVE.-P. Dodge.
22,792.-MANUFAGTURING Wooden Troughs.-S.T.Field 22,841.-SADDLe Tree.-S. E. Tompkine et al.
22,802.-Mill for Grinding Cane, etc.-I. A. Hedges. DESIGNS PATENTED
6,342-WOod TyPE.-J. F. Blackman, Brooklyn, N. Y.
6,343
to $6,347$. -Oil Clotis. -J. Hutchison, Newark,N.

And How to Obtain Them.
Practical Bitts to Inventors

\%
ROBABLY no investment of a small sum of money brings a greater return than the
expense incurred in obtaining a patent even When the invention is but a small one. Large
inventions are found to pay correspondingly well. The names of Blanchard,, Morse, Bige ow, Colt, Ericsson, Howe, McCormick, Hoe tunes from their inventions, are well known. realized large sums from their patents. More than Fifty Thousand inventors have availed themselves of the services of MUNN \& Co. during the
TWENTY-SIX years they have acted as solicitors and Publishers of the Scientific American. They stand at
the head in this class of business ; and their large corps of assistants, mostly selected from the ranks of the Patent Office: men capable of rendering the best service
to the inventor, from the experience practically obtained While examiners in the Patent Office: enables MUNN \&
HOW TO OBTAIN

Patents:

 This is theclosing in-
ry letter, describing some in vention which comes to this office. A positive answer can only be had by presenting of Patents. An application consists of a Model, Drawofficial rules and formalities must also be observed. Th efforts of the inventor to do all this business himself are
generally without success. After great perplexity and delay, he is usually glad to seek the ald of persons expe-
fenced in patent business, and have all the work done over again. The best plan is to solicit proper advice at
the beginning. If the parties consulted are honorable men, the inventor may safely confide his ideas to them;
they will advise whether the improvement ts probably patentable, and will give him all the directions needful

How Can I Best Secure. My Invention

 This is an inquiry which one inventor naturally askanother, who has had some experience in obtaining pat ants. His answer generally is as follows, and correct:
Construct a neat model, not over a foot tn any dimen-slon-smaller if possible-and send by express, prepaid,
addressed to MUNN \& Co., 37 Park Row, together with a description of its operation and merits. On receipt
thereof, they will examine the invention carefully, an advise you as to its patentability, free of charge. Or, if
you have not time, or the means at hand, to construct a model, make as good a pen and ink sketch of the tmto the prospect of ε patent will be received, usually, by
return of mall. It is sometimes best to have a search made at the Patent office; such a measure often save Reissues.
A reissue is granted to the original patentee, his heirs,
or the assignees of the entire interest, when, by reason of an insufficient or defective specification, by reason patent is invalid, provided the error has arisen from in advertence, accident, or mi
lent or deceptive intention.
A patentee may, at his option, have in his reissue separate patented for his original application by invention required fee in each case, and complying with the othe equirements of the law, as in original applications.

To Make an Application tor a Patent
The applicant for a patent should furnish a model t may be dispensed cal production, he must furnish samples of the ingred surely packed, the in ventor's name marked on them, lance, can often be sent cheaper by mall. The safest way to remit money is by a draft, or postal order, on who live in remote parts of the country can usually parcorrespondents. Design Patents.
patterns, and thus prevent others from fabricating or selling the same goods in this market. whether citizen or allen, for any new and original design, for a manufacture, bust, statue, alto relievo, or bags relief any new and original design for the printing of woolen,
silk, cotton, or other fabrics, any new and original tm. pressiou. ornament. pattern, print. or picture, to he printed, painted, cast, or otherwi
into any article of manufacture.
Design patents are equally as important to citizens a to foreigners. For full particulars send for pamphlet t Rejected Cases.

Rejected Cases.
Rejected cases, or defective papers, remodeled fo through other agents. Terms moderate. Address MUNN \& Co., stating particulars.

Canadian Patents.
On the first of September, 1872, the new patent law of
Canada went Into force, and patents are now granted to citizens of the United States on the same favorable term
as to citizens of the Dominion. In order to apply for a patent
most furnish a model, specification and duplicate drawinge, substantially the same as in applying for an Amer can patent. ernment fee $\$ 20$), or for ten years (government fee $\$ 10$) or for fifteen years (government fee $\$ 600$. The five and
ten year patents may be extended to the term of filed ten year patents may be extended to the term of fifteen
years. The formalities for extension are simple and not years. The
expensive.
American Inventions, even if already patented in this
country, can be patented in Canada provided the Amer can patent is not more than one year old.
All persons who desire to take out
are requested to communicate with Muss \& in Canada Row, New York, who will give prompt attention to the business and furnish full instruction.
Foreign Patents.
The population of Great Britain is $31,000,000$; of France,
$37,000,000 ;$ Belgium, $5,000,000$; Austria, $36,000,000$; Prussia $37,000,000$; Belgium, $5,000,000$; Austria, $36,000,000$; Prussia,
$40,00,000$,and Russia, $70,00,000$. Patents may be secured by American citizens In all of these countries. Now is the these immense foreign fields. Mechanical improvement of all kinds are always in demand in Europe. There will
never be a better time than the present to take patents principal capitals of Europe. A large share of all the patents secured in foreign countries by Americansare
obtained through our Agency. Address MUN N \& Co., Park Row, New York. CIrculars with full information
Path ind Park Row, New York. CIrcular e
on foreign patents, furnished free

saduertisemiznts.

Purchasers of Saw Mills DONTG BE FRIGHTENED : Having noticed an

, W ATE POWER \& FACTORY BUILD D

 SIMPLE FLY TRAP.-The Simple Fly

CHEAP ENGINES.

What $\} \quad$ Wonderful!!

 OM E WHiTNEY WATER WHEEL, 18 in. $\underset{\text { When }}{\text { OD AND IRON WORKINGMACHIN }}$

WOOD-WORKING MACHINERY.

 ,

 ERIE RAILWAY COMPANY

 GENUINE CHESTER EMERY EMERY CLOTH.
 AMER Lowest prices.
25 Park Place, $\begin{aligned} & \text { HA UGHWOUT \& CO., } \\ & \text { NEW YORK }\end{aligned}$
$\mathbf{N}^{\text {EN }}$ and valuable saw mil

CHUCKS. WE made the fritivemen

Purchasers of Saw Mills

INVENTORS

P ATTRRN \& Branding Lettrrs-SHARP
 Boilers \& Pipes covered

SCIENCE RECORD
1873.

$T_{\text {be }}^{\text {His New AND SPLendid book will }}$

 Every peron who desires to be well informed con cen.

 MUNN \& CO., Publishers, 37 Park Row, New York City.
 SCIENCE RECORD $\overline{\text { FOR } 18 \%, \text { uniform with the }}$ above. Price 82
THE SELDEN DIRECT-ACTING

February 22, 1873 .]

for pracicial mini.

 Valuable Books on Metals and Metal Working.
Bauerman's Metallurgy of Iron. 12 mo . $\$ 2.50$ Blinn's Practical Workshop Companion for
Tin, Sheet Iron and Copperplate workers. 100 illustra
tlons. 12mo.................................50.50 Bell's Chemical Phenomena of Iron Smelting.
 Byrne's Practical Metal Wo................... 86.0
 Guettier's Practical Guide for the Manufacture of Metallic Alloys. Comprising thent Chemica
and Physical Prop erties, Prep aration, Composition and
Uses. 1 Izmo...................................00 Landrin's Treatise on Steel. 12mo....................... Larkin's Practical Brass and Iron Founders Napier's Manual of Electro-Metallurgy. Illus-
trated. 12mo... Overman's Moulders' and Founders' Guide Illustrated. 12mo.
Osborn's Metallurgy of Iron and Steel: Theoretical and Practical, in all 1 Is branches, with special
reference to Amerran Matrial and Procesese. Illus.
trated by numerous large folding plates and wooden gravings. 8v
Iron and and Stowe's New Guide to the Sheet Phillips and Darlington's Records of Mining Percy's Manufacture of Russian Sheet Iron Roseleur's Galvanoplastic Manipulations.
Practical Gulde for the Gold and Siver Electro-plat
 Schinz's Researches on the Action of the Blast
Farnace. Illustrated. 12mo..................... $\$ 4.25$ Strength and other Properties of Metals. Il
lustrated by 25 large steel plates. 4to............ $\$ 10.00$ Tables Showing the Weight of Round, Square, Urbin and Brull's Practical Guide for PudVaile's Galvanized Iron Cornice Workers
 Watson's Practice of American Machinists
and Engineers. Illustrated by 86 engravings. 12mo. $\$ 2.50$ and Engineers. Illustrated by 86 engravings. 12mo. 82.50
Warn's Sheet Metal Workers' Instructor, for Zinc, Sheet Iron, Copper and Thin Plate Workers, with
ingtructions for Boiler Making, \&c. The The above, or ary of my Publications, sent by mall,
free of postage, ant the ubilitation prices
My new and cilared CATALOGUE OF PRACTICAL
 HENRY CAREY BAIRD, 406 INDUSTRIAL PUBLISHER,

An deutfldie Prfinider.

Diefe groke und thätige ©fafie unfrer $\mathfrak{F e}$
 bindung mit $\mathfrak{F a f f i n g t o n ~ u n d ~ b e n ~ e n r o p a i i d e n ~}$ $\mathfrak{b a u p t f a ̈ b t e n , ~ b e f o n d e r e ~ W o r t h c i l e ~ z u r ~ E r l a n ~}$ gung bont ills und ausländijact Patenten bietet.
Seber Erfinder, gleidjviel melduer Mationarität angeborrig, ift סurd bie liberalen $\mathfrak{P a t c n t g e}$ feke ber Brrein:gten Staaten zum Patentidutz fiir Erfindungen beredtigt. $\mathfrak{U n}$ re $\mathfrak{F i r m a}$ ift bereit, geftiikt auf 26jährige Erfabrung, beutide Erfinder jeder 马eit zu beratl)en und zu ntäigen Preijen rafd) und piinftlid) Patente zu erlangen

Die Deutide Scction ift in ben 5anuben fähiger bcutfder $\mathfrak{F n g e n t i e u r e , ~ w e l d e ~ i n ~ b e ~}$ Dffice perfönlid mit Erfindern verfefren werben.
Der ,Scientific American" wirb in feinen Epalten bie bebeutenberen Erfindungen be: \{predent.
Correipondenz erbeten und prompt beant wortct. Bamphlite in deatider Sprade wer ben auf Berlangen franco zugefandt.

ホoreffire:
عatum \&
,Scientific American" Patent Agentur, 37 Batt Mow,
§nieutific

I was the first to introduce to the pubitic the Hubbard
quash, American Turban Squash, Marblehead Mammot and
Cabboae, Mexican Sweet Corn, Phinney's Water-melon
Nad many other This season I have a new and exceedlngly valuable

B URDON IRON WORKS.-Manufacturers B Prespure Enginges, Engines for Water Works, High an TAKER, 10 Froat st., Brooklyn, N. Y. GREAT RADTCTION IN PRTCRS O LATHE COUNT'S PATENT HOLLOW

His expanding Mandril is a first class
ong been needed oy every Machinist.
Send for latest circular
W. LE Count, South
MILLIONS OF ACRES

wradeleraxdaldis

Burlington \& Mo. River R. R. Co
Products will pay for the land and improvements
much within the linit of this generous credit.

 GEO. S. HARRIS,

W ANTED, LOCOTHOTIVE ENGINEER

NEW PATTE RNS.

Machinery,

Machinisist' Toolss

Cold Rolled Shafting.

Sturtevant Blowers.

Pat. Puiching Press

,
5

American.

B

 $\mathrm{R}^{\text {ICHARDSON, MERIAM \& CO. }}$

 \bar{S} HINGLEAND PARDEL MACHINERT.
 PorTA LLE STEAM ENGINES, COMBIN

 Niagara steam Pump. CHAS. B. HARDICK

P. BLAISDELL \& Co.,

Milling Machines.

STANDARD, UNIVERSAL, INDEX, CAM
 FOOT LATHES.-T. Shanks, Baltimore, Md.

Provitum

SCIENTIFIC AMERICAN.
The Best Mechanical Paper in the World A year's numbers contain over 800 pages and several
undred engravings of new machines, useful and novel hundred engravings of new machines, useful and nove processes. ests of Popular Sclence, the Mechanic Arts, Manufac ures, Inventions, Agriculture, Commerce, and the in dustrial pursults generally, and is valuable and instruc
tive not only in the Workshop and Manufactory, but also the Household, the Library, and the Reading Room.

To the Mechanic and Manufacturer!
No person engaged in any of the mechanical pursults CaN. Every number contains from six to ten engravings
Cf new machines and inventions which cannot be found any other publication
Chemists, Architects, Milloorights and Farmrs The ECIENTIFIC AMERICAN wlll be found a most
useful jrurnal to them. All the new discuveries in the clence of chemistry are given in Its columns; and the interests of the architect and carpenter are not over-
looked, all the new inventions and discoverles apper taining to these pursuits being pubilshed from week to week. Useful and practical information pertaining io the interests of millwrights and millowners will be found published in the Scientific Amprican, which informa
tion they cannot possibly obtain from any other source Subjects in which planters and farmers are intereste will be found discussed in the Scientific American many improvements in agricultural iniplements being
Illustrated in its columns. illustrated in its columns.
We are also recelving, every week, the best sclentific
fournals of Great Britain, France, and Germany; thu placing in our possession all that is transpiring in me chanical sclence and art in these old countries. W
shall continue to transfer to our columg coplous shall continue to transfer to our columns coplous ex
tracts, from these journals, of whatever we may deem o nterest to our readers.

MUNN \& CO.,
37 PARK ROW NEW YORK.

to increase their income from means already invested in other less profitable securities, we recommend the Seven-Thirty Gold Bonds of the Northern Pacific Railroad Company as well secured and unusually productive. The bonds are always convertible at Ten per cent. premium (1.10) into the Company's Lands at Market Prices. The rate of interest (seven and three-tenths per cent. gold) is equal now to about $8 \frac{1}{4}$ currency-yielding an in come more than one-third greater than U. S. 5-20s. Gold Checks for the semi-annual interest on the Registered Bonds are malled to the Post-Office address of the owner. All marketable stccks and bonds are received in exchange for Northern Pacifics on most favorable terms.

Jay Cooke \& Co.,
New Yoiri, Piiladelphin, and Washington,
Financial agents Northern Pacifc R. R. Co.,
\triangle bTESIAN WELL boring machin

 read "Business Wanted in Boston," F . 122.

CHAMPION SRRING MATRESS-The

 NEW YORK SAFETY STEAM POWER CO,

Largest Organ Establishmentin the World
J. ESTEY \& GOMPANY,
t' $H E C E L E B R A T E D$
Ester Cottage Organs
 Established 1846.
send for illustrated catalogue.

Reynolds'

A. S. CAMERON \& CO.,

 Steam Pumps, Adapted to erery posall

 STEAM BOILER AND PIPE

 Union Stone Co.,

 $\mathrm{R}^{\text {UNS Send for ircuar. }}$ ANSOM SYPHON CONDENSER perfect

 Send for Shearman's Illustrated Catalogue

BUILDING PAPER!

Always Rediable. STEAM PJMPS.
e by the Valley Machine Co. MIAHOGANY,
ROSE WOOD, RRENG WAND

Tochin in mey for grinding
 IRON, PIANERS, ENGINE LATHES

Biddle Manufacturing $\mathbf{C o}$. "lyons" Patent
Self-Feeding Hand Drill, Punching Press \& Shear.

Are also prepared to turnish light work of any description and in any quantity to order Ali kinds of die forgings promptly attended to. Office and Ware Rooms

Bradley's Cushioned Hammer
胃

"The Harison Boiler".

$\mathrm{G}^{\text {Eorge Page \& Co., Manufacturers }}$ STRAAM EANGINLSS AND BOILERS; SAW MILLS, notit OUTTFITS COMPLETE,

WIREROPE.

JOHNA. ROEBLING'SSONS

American Saw Co.

 CIRCULAR SAWS Patent Perforated Circular, Mill, Cross-cit Saws.
$\mathbf{B}^{\text {EACHSSS Scroll Sawing Machine,Improved }}$

BoL GUTATB

Neafie \& Leevy
PENN WORKS,

THE BAND SAW!
 ISTORY onicin and

HTORY, with rngraving of the OLDEs
R. A. Vervalen's Brick Madines

 ASBESTOS BOILER FELTING

 PETER COOPER'S Refingel Meats' Foot Oil, FOR FIFST CLASS MACHINERY.

Diamond Pointed STEAN DRIDWS

TIIE adoption of new and improved applica

 keep your boilers clean.

ANTI LAMINA

prevents and removes seale in Steam Boilers-aocs no
injure the Iron. In une uver nive years.
J. ALLEN, Patentee,

STYEAM PARTETY COPE\& MAXWEMA AF. 60. HAMILTON,OHIO.

THE TANITE CO.
VENTORS \& BULDERS OF SPECIIL
MACHINERY CONNECTED WITH
MACHINERY CONNECTED
EMERY GRINDING. Solid emery wherl, from 1 in. to 8 feet In dam

 The Tanite Co.,
 AMERICAN Turbine Water Wheel

Machinist's Tools, LUCIUS W. PONX, MANANPRACEDURER
\qquad

MORRIS, TASKER \& CO.,
american charcoal iron
Boiler Tubes.
WROUGHT-IRON TUBES
and fittings, for gas, steam WATER, AND OIL
©r Steam and cas, fitters supplues, Machnery tor
NO. 15 GOLD ST., NEW YORK.

