

A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

GREAT TELESCOPES.

Only eighty miles to the moon, or, rather, the human eye, to all intents and purposes, is brought within the above distance to our attendant satellite, through the annihilation of 160,000 miles of space by the immense refracting telescope represented in our illustration. Its magnifying power, in other words, is 3,000 times, and as the eye naturally receives a beam of light one fifth of an inch in diameter, this instru. ment, gathering from the surface of its twentyfive inch object glass, will have an illuminating power 15,625 times greater. That is, it will convey that number of times more light into the eye.

The object glass, now the largest in the world, was recently made in England. It is by far the most difficult part of the apparatus to construct, for it must be without blemish, strice or wavy lines, of absolutely uniform density, and perfectly pellucid. To produce so large a lens, the labor is immense, for, with the increase of power, every defect is proportionately magnified. Even after the glass is cast, its grinding to exact curves and the application of the polish is a scarcely less formidable work.

The tube of this telescope is of steel, of strength sufficient to prevent the possibility of flexure under the great weight which it has to carry. A zinc tube within serves to cut off any currents of warm air which would disturb the cone of light. The instrument is mounted on a pillar, twentynine feet high, on which it is adjusted with the nicest precision. Suitable clockwork serves to carry it around in following any heavenly body which is under observation. The entire instru ment weighs nine tuns.

Thie next largest telescope is located in the observatory in Chicago. It was made by Mr. Alvan Clark, and its object glass is eighteen and a half inches in diameter. The two next in size, having objectives three inches smaller, are of German manufacture and are located at Cambridge, Mass., and Pulkowa, Russia.
Though the instrument we illustrate is now the largest in existence, it will not long remain so. The Messrs. Clark, of Cambridgeport, Mass., have, for some time past, been engaged in grinding a twenty-seven inch lens for our Government, which, when complete, is to cost $\$ 50,000$. The telescope in which it will be placed will, in all probability, be located on some elevated position, or in the astronomical station to be established by the United States Coast Survey Bureau, on the Sierra Nevadamoluntains. It will be situated at a hight of from seven to ten thousand feet above the sea level, in an atmosphere of great purity and comparatively free from clouds. This great instrument will doubtless allow of observations which will add greatly to our knowledge of physical astronomy
Perhaps it may be the fortune of our readers at some future period to learn of the construction of the million dollar telescope, to be built under government auspices, the erection of which we recently advocated in these columns In such n case, instead of being eighty miles from the moon, as we now virtually are, we should reduce that distance to four or five miles. The magnitude of the results which could thus be obtained can hardly be conceived; but the question of the existence of human or other beings in the moon, which, from the times of that veracious scientist, Baron Munchausen, to the present day, has distarbed the mental equilibrium of sensational would-be astronomers, might at least be definitely settled through the convincing agency of direct optical proof.

Novel Fire Alarm.
Mr. N. M. Booth, Secretary and Superintendent of the Ohio River Telegraph Company, at Evansville, Ind., has lately put a novel fire telegraph and steam signal apparatus into operation in that city.
The telegraph is so arranged that, when the circuit is closed, it pulls the support from under a lever. The lever, being an extension of the handle to a cock, falls and swings back and forth, letting on the steam and cutting it off as it continues to swing. When oscillation ceases, the whistle gives a prolonged scream until the lever is replaced ready for another alarm. This line is only a part of Major Booth's invention, being intended as a signal to the engineers \rightarrow put on extra water pressure in the water pipes when a fire

pleted each month, and to each must be given a name by which it may known loy the producers and pipe companies, names or resort to those that seem odd. Should the same name be used more than once, much confusion and annoyance would be the result, and many times mistakes would be made that it would be next to impossible ever to correct. We find one man, who evidently thinks much of the game of "Game," "Seven Up"" wells "High," "Low," " Jack," "Game," "Seven Up," etc. Another man thinks more of uch things as "Race Course", while "Reliable" and 'Prosperity" and "Calamity" figure very conspicuously with "Faith," " Hope," and " Charity." Not far arry, and beneath the "Maple Shade," another, with " Wili Cat," 'Black Sheep," and " Devil’s Ridge," closely fills máre
background, and we might go on indefinitely, but we for-
occurs. On a recent trial a police officer turned the alarm key, when instantly the steam whistle tooted out five or six puffs and then settled down to a long shriek.
the actual rise required is only 84° Fahr., and po meation into a minute calculas heat a compression of the air, it may be mentioned rodue result of such a calculation that the surplus heat so due to the compression, and that by introducing a mass of ir at each stroke, equal to about one and one third the mass of feed water employed, the whole heat, necessary for raising by 84° Fahr. the temperature of the air and water, may ng by 84° Fahr. the temperature of the air and water, may
be obtained by compression of the air alone, to the great henbe obtained by compression of the
efit of the efficiency of the steam.
The above example appears to be sufficient to show that it is worth while, in what have lately been called aëro-steam engines, to carry experiment further than has hitherto been done in the direction of the introduction of large quantities of compressed air.

NEW BUILDINGS IN MADRAS FOR THE REVENUE

 BOARD OFFICES.The Revenue Board Buildings in Madras, India, of which we append an illustration, stands adjacent to the old palace of the Nawabs of the Carnatic. The latter structure, which is now used as a college, is constructed in the mixed HindooMahomedan style so common in the south of India, and the general effect of the exterior (which is colored dark red and white) is more pleasing than that of many buildings subsequently erected by Anglo-Indians. The Government found it necessary to mate extensive alterations and additions and ther the by the desire of the Govern
works have been carried works have been carried
out so as to assimilate the out so as to assimilate the
Revenue Board buildings Revenue Board buildings
with the older adjacent structure. Mr. Chisholm, the Government architect, while keeping to the gen cral lines of the old struc ture, has taken his detail nd many form from detail nd many form pure ypes of the style, and su perior materials have en-
abled him to adopt a much lighter form of construc tion. When the offices have been completed, the outlay will scarcely be felt, as the amount of rent now paid by Government for privat offices represents capital finces represents capital equal to
The material is the fine chunam of that coast, a well known and beautiful building stone.
The building finds favor in the locality; both Europeans and natives seem to take a general interest in ts progress, and Lord Na ior in lecture deliva pier, in a lecture delivere makes the following aliusion to it:
'The Government has endeavored, with the ad vice of an accomplished architect, to exhibit in the mprovements at the Reve nue Board an example of the adoption of the Mus ulman tyle to conmo ulman style Mr Chisho aneous use. M st to dis laimend condemn the ma terial which has been forced upon him by necessities to which we are still subject ed, but his design will be a practical demonstratión of the views which I have here advocated. He ha paid the first tribute to the genius of the past; he has set the first example of a revival in native art which I hope will not remain un appreciated and unfruit ful.'

The Practical Man.

The practical man derides

 those who bring forward new inventions, and calls hem schemers No doubt whatever they do scheme and well it is for the country that there are men whe: do so-it also may be true that the majority of the : schemes prove abortive; but it must be recollected that the whole progress of f art and manufacture has depended and will depend $!$ upon successful discoveries which, in their incepies which, in their incep-tion, were and will b3 tion, were and will b3; were those discoveries that have been and will be unfruitful; but the successful disco eries, because they are successful, are taken out of the cate gory of schemes when years of untiring application on the part of the inventors have, so to speak, thrust them down the throat of the unwilling practical man. Take the instance of Mr. Bessemer, who was leset for years by difficulties of detail in his great scheme of improvement in the manufacture of steel. As long as he was beset the pactical men chorused: "He is a schemer; he is one of the schemers; it is a scheme." Supposing that these practical difficulties had beaten Mr. Bessemer, and they had not been overcome to this day? The practica! man would have derided him still as a
schemer, although the theory and groundwork of his inven tion would have been as true under these circumstances as it now is. Fortunately for the world, and leappily for him, he was able to overcome these most vexatious hindrances and make his invention that which itis. No one now dares to apply the term "schemer" to Mr. Bessemer, or "scheme" to his invention, but it is as true now that he is a schemer and his invention a scheme, as it would have been had he failed up to the present to conquer the minor difficulties. It
is a species of profanation to suggest, but it as true, that Watt, Stephenson, Faraday, and almost every other name

The Teeth--Treatment of Exposed Pulp
While we are not always and under all circumstances in avor of capping'exposed pulps, says Dr. G. W. Klump, in Dental Cosmos, we believe that, when it is desirable, a large majority of teeth so conditioned may be treated and restored o health.
Our first effort is to remove all decay and foreign matter from over and around the pulp without injuring the pulp it elf; next prepare a piece of punk of suitable size, moist and odyne, and after drying out the cavity carefully, place the punk over the exposed pulp and seal it up with cotton and sandarac, being cautious not to use too much cotton so as to cause a pressure on the pulp when the cotton swells. We let this remain in the tooth one, two, or three days, as the case may be, with special directions to the patient to come in, without re gard to the appoint. ment, at the first ap proach of pain. We regard this last injunction as highly necessary in the proper treat ment of an inflamed pulp. If we can, by this means, keep an exposed pulp ten days or even a week without giving any pain, we consider the case one favorable for capping with oxychloride.
We now remove any decay that may yet reA main along the edges r^{2} of the cavity, and inar for a few moments only, a pledget of cotton with carbolic acid We then prepare an other pledget of cotton zaistened with glycerole of thymol, and af of ter removing the for-
mer pledget, place this in the cavity and again seal up, say from five to ten minutes. In the meantime we take as A much of the oxychloride and liquid as we
expect to use, placing expect to use, placing
them on a glass slide a near each other. We select an excavator of
proper shape and size, and roll some cotton 소 a around it tightly, forming a kind of cotton probe. Having a botthe of collodion on hand, we now, by any means preferable pro tect the cavity from the fluids of the mouth, re move the cotton with the thymol, dry out the cavity, and, with cotton saturated with collodion, give the entire cavity a coating. We now mix oxychloride to proper consistency, and introduce to the orifice of the cavity with spatula or flat burnishers, and with the cotton probe press to its proper place; keep it dry ten or fifteen minutes, then give it a coating with sandarac or wax, or, what is better, seal up with cotten and sandarac, and let it so remain ten days or two weeks. If the tooth the development that has taken place within the last century \mid during this time remains perfectly comfortable, it may now in all the luxuries, the comforts, even the bare necessities be filled over the capping with the permanent filling. anxiety to both patient and operator, is by this means either entirely removed or so slight that it forms no important objection to capping and aswe would naturally infer is much cis to severe pain follows the operation. We have capped very many in this way, and they have, with few exceptions, proved successful in every respect.

The emine professor tyndall On Light John Tyndall, has fish scientist and investigator, Professor York audience, and in two masterly discoures has York audience, and in two masterly discourses has opened series of lectures on the subject of "Light." Fainiliar as we are with the admirable works of this learned author, we
naturally expected an able and entertaining disquisition on the prolific subject he had selected; but we confess we were unprepared for so excellent, clear and scholarly an elucidation of the most elementary principles of physics. He fairly placed light in a new light, and by his simple explanation o theory and splendid execution of experiments illuminated with the brilliancy of his genius even the dazzling rays from which he drew such treasures of learning and thought.
It is a matter of regret to us that the pressure upon our columns and the rapid sequence of Professor Tyndall's lectures prevent our giving them verbatim; but the most in teresting and striking portions will be carefully selected and presented as fully as our space will admit. An allusion to the favor with which his books were received in this coun try, and the circumstances which brought about his visit t the United States, constituted the introductory remarks of the opening discourse. After briefly glancing at the birth of science and in a few words tracing its progress to the time of Newton, the lecturer entered upon his subject prope at its very beginning: The ancients, he said, satisfied them selves that light moved in straight lines; they also knew that these lines, or rays of light, were reflected from polished surfaces and that the angle of incidence was equal to the angle of reflection. This knowledge constitutes our starting point. To the source of light to be employed dur ing the experiments attention was asked, and after alluding to the generation of heat and light by combustion, Professo Tyndall brought together coke points, which being attached to the poles of a small voltaic battery, glowed with a whit heat. Whence comes this heat? Suppose, in the first in stance, when the thick wire was employed, that we had per mitted the action to continue till one hundred grains of zinc were consumed, the amount of heat generated in the battery would be capable of accurate numerical expression. Let the action now continue with this thin wire glowing until one hundred grains of zinc are consumed. Would the amount of heat generated in the battery be the same as before? No, it would be less by the precise amount generated in the thin wire outside the battcry. In fact, by adding the internal heat to the external, we obtain for the combustion of one hundred grains of zinc a total which never varies. Here continued the speaker, we have an illustration of the con stant law that in physical nature we have incessant substi tution, but never creation.
Professor Tyndall then added some further remarks re garding the electric light, saying that it would constitute the mode of illumination for experimental purposes, and noting the fact that, during the intense glow of the carbon, the eye failed to see the coke points whence the light issued. This he stated, is due to the spherical aberration of the organ, o in other words, that the circumferential and central rays have not the same focus. To illustrate by means of a lens, the carbon points in the lantern were projected on the screen The image was faint and nearly obliterated by a halo of light by which it was surrounded. A similar effect is produced in the eye, the blur of light upon the retina being suf ficient to destroy the definition of the retinal image of the carbons.

The theoretical defects of the eye were alluded to-its opacity, want of symmetry, lack of achromatism and absolute blindness in part-which, said the speaker, caused an eminent German philosopher to say that, if any optician sent him an instrument so full of faults, he would return it with the severest censure. Referring to the

PROPAGATION OF LIGHT,

its rectilineal nature may be shown by the simple experi ment of allowing the rays to pass through a minute orifice into a darkened chamber, where external objects will be projected reversed upon a screen. Every straight ray proceeding from the object stamps its color upon the screen, and the sum of all the rays form an image of the object, which is seen inverted because the rays cross each other in the aper ture. To explain this fact, the lecturer made a small per foration in a sheet of tinfoil stretched before the light in his lantern. A single reversed, though blurred, image of the carbon points appeared on tho screen. A second aper ture produced another image, several orifices a number of images, until if the foil be removed altogether all these bright figures run together and combine to form the circle of clear light.
dernation of law of light.
The law that the angle of incidence is equal to the angle of reflection was experimentally iliustrated by the simple apparatus shown in Fig. 1

A straight lath is placed as an index perpendicular to a small mirror, A, capable of rotation. The beam of light from the lantern is received upon the glass and reflected back along its line of incidence. The index being turned the mirror turns with it, and at each side of the former the incident and the reflected beams are seen tracking themselves through the dust of the room. This device enables us also to illus.
trate the law that, when a mirror rotates, the angularvelocity of the beam reflecting from it is twice that of a reflecting mirror. That is, referring to our engraving, that while the mirror B passes from the perpendicular to its represented position of an angle of 45°, the beams diverge to a right angle or 90°. This is shown by mere inspection from the osition of the index
Passing to the subject of

refraction,

Professor Tyndall gave a short historical sketch, of the course of inquiry into the phenomenon from the year 1,100 , by Alhazen, an Arabian philosopher, to the first discovery of the principle by Willebord Snell in 1621 . The bending of the ray in passing from a thin to a dense medium was admira bly illustrated by the apparatus shown in Fig. 2,

the lecturer observing that he preferred to produce direct opical proof rather than ask the audience to believe facts from chalk lines on the black-board. A circular vessel with it two sides of clear glass is partially filled with colored or tur bid water; A is a movable inclined mirror which may be placed at any point on the periphery of the circle, so as to re flect a beam of light from the lantern either perpendicularly to the surface of the water or obliquely, as represented Striking the liquid perpendicularly to its surface, the course of the ray is shown in a bright vertical line in the water, so that it is unrefracted. Meanwhile the beam passes unseen hrough the air above the water. Laughingly observing that he was not addicted to the small vice of smoking, Pro fessor Tyndall lit a cigar and puffed the smoke into the space B, when the track of the ray became clearly apparent. Mov ing the mirror A to the position shown in the cut, the beam was caused to strike the liquid obliquely, when refraction was clearly produced as represented. Snell's discovery that the quotient (the index of refraction), obtained by dividing the sine of the angle of incidence by the sine of the angle of refraction, was always a constant quantity for the same me dium, whatever the obliquity of the rays may be, was then graphically described and referred to as one of the corner tones of optical science. This was applied by Descartes to the

EXPLANATION OF THE RAINBOW.

The bow is seen when the back is turned toward the sun Draw a straight line through the spectator's eye and the sun the bow is always seen at the same angular distance from this line. This was the great difficulty. Why should the ow be always, and at all parts, forty-one degrees distant from this line? Taking a pen and calculating the track of every ray through a rain drop, Descartes found that at one particular angle the rays emerged from the drop almos parallel to each other, being thus enabled to preserve thei ntensity through long atmospheric distance; at all othe angles the rays quitted the drop divergent, and through this divergence became practically lost to the eye. The particu ar angle here referred to was the foregoing angle of forty one degrees, which observation had proved to be invariably that of the rainbow.
Newton's experiment with the prism was then described and served to introduce the subject of the

PHENOMENA OF COLOR.
Various well known experiments were made in the analysis
and synthesis of light, proving that the colors of a spectrum may be squeezed or blended together by the aid of a lens that an image of the carbon points, whence the light issues may be built up from the colors of the spectrum, and that, in virtue of the persistence of luminous impressions upon the retina, the prismatic colors may be mixed together in the ey itself, the impression of whiteness being the result.

DISPERSION

is the drawing out of a white line into a spectrum. Newton supposed that refraction and dispersion were inseparable, but Dollond showed that, by combining two different kinds of glass colors could be extinguished still leaving a residue of refraction, and he employed this residue in the construction of achromatic lenses. This point was illustrated by throwing a beam through a prism of water and marking with pointer the position of the spectrum on the screen; then, by adding a prism of glass, a white image was produced, which compared with the point noted, was still considerably refract ed. The refraction and dispersion of bisulphide of carbon, as compared with water, was alluded to in order to show the great extent and richness of color of the spectra of the forme substance.

WHAT IS COLOR?

Natural bodies have showered upon them, in the white light of the sun, the sum total of all possible colors, and their action is limited to the sifting and appropriating from this total the colors which really belong to them and rejecting those which do not. The portion rejected gives them their hue. But what is black? Throwing a brilliant spectrum upon the screen, the lecturer placed a piece of black ribbon in succession in the different colors. It quenched all, and consequently blackness is the result of the absorption of the constituents of solar light. Taking a second piece of ribbon he held it in the red portion of the spectrum; it appeared as reached the green, when it appeared of a vivid shade of that
color. Therefore the ribbon absorbs all the red and yellow light and offers mere darkness to the eye; while it rejects the green and blue shades, appearing of itis proper hue. The ame was similarly shown with a red ribbon, which absorbed the green color and rejected the red. Why is it that on ooking at objects through a red glass, all are tinged with hat hue? This was answered by passing the dispersed rays through such a colored glass, when the spectrum showed nothing but the red, all other tints being quenched. A blue glass allowed blue, indigo, violet and green rays to pass, and a yellow glass permitted only the transmission of green, yellow, orange and red. Λ very beautiful experiment was made with a solution of permanganate of potash, which is a very exquisite purple and unlike the pure tone of that tint in the spectrum. Passing the light through the prism of that liquid, it was found that not only the purple but the red rays were allowed to pass, so that by the mixture of these colors the unusually bcautiful shade was obtained.

LUE AND YELLOW DO NOT MAKE GREEN
but white, as they are complementary colors. Why is it then that by mixing chrome yellow and Prussian blue we obtain green pigment? It was shown in the course of the above experiments that a blue glass permits not only the blue of the spectrum to pass through it but a portion of the adjacent green. A yellow glass, though cutting off the blue, also allows the passage of the green. This may be expressed as ollows, representing the colors by their initials, those ab orbed being in italics, thus: Blue glass, $R, O, Y, \mathrm{G}, \mathrm{B}, \mathrm{I}, \mathrm{V}$ ellow glass, $\mathrm{R}, \mathrm{O}, \mathrm{Y}, \mathrm{G}, B, I, V$. Now combine both glass; together they destroy every color but the green which s experiment proved, appeared singly on the screen. Con sequently the blue and yellow powders when mixed together absorb all other colors and appear to the eye as of the only color to which both are transparent. The blending of blue nd yellow light to make white will be explained in a subse quent lecture. In conclusion, said Professor Tyndall, we may profitably glance back on the web of relations which hese experiments reveal to us. We have, in the first place, in solar light an agent of exceeding complexity, composed of nnumerable constituents, refrangible in different degrees. We find, secondly, the atoms and molecules of bodies gifted with the power of sifting solar light in the most various ways, and producing by this sifting the colors observed in nature and art. To do this they must possess a molecular structure commensurate in complexity with that of light itself. Thirdy, we have the human eye and brain so organized as to be able to take in and distinguish the multitude of impressions thus generated.

FRESH GRAPES IN WINTER

Parties still having grapes n their vines at the end of ctober or the beginning of November can keep them resh and juicy by observing he following method: When he first frost comes on, cut he grapes with a considerable tem, having one or two knots below and one above the grape (see engraving). The upper end of the stem is to be covered with beeswax to pre vent the escape of the circu lating juices. After the grape
 thus prepared, remove all bad berries from the bunch, and place the stem in a bottle of water, having a layer of charcoal at the bottom, which ends to keep the water clean; then close the bottle with a cork letting the stem pass through the center, and cover the op with beeswax. Grapes prepared in this manner will be sure to keep fresh and juicy all winter.

Daheim.
A Composite Counterfit $\$ 500$ Note.
The ingenuity of counterfeiters is well illustrated by the ollowing recent development at Washington:
There was received, a few days ago, at the Treasury of the United States, a note purporting to be a United State's legal ender note of the denomination of $\$ 500$. It is composed o parts of different genuine notes of various denominations. The center is a part of a one hundred, with the "one" taken out in the center and upper border, and a " five" neatly in serted. The left hand lower end contains a portrait of Andrew Jackson trom a five dollar note, and the righ hand lower end a vignette from a ten. The scroll work containing the figures 500 , has been taken from a national bank note. The back of the note is from a ten dollar United States note, the "ten" having been cut out and replaced by he "ovals" from the back of a five. Although this note is not calculated to deceive bankers and brokers, it would be not calculated to deceive bankers and brokers, it would be much money, as the engraving is all genuine. Fortunately its general appearance has no resemblance to the note of the denomination of which it purports to be a genuine issue

The Boston Globe says: "Our friend Potts read some where that electric sparks could be evolver from a cat by taking it into a dark room and rubbing its back. He made the experiment, and was surprised to hear a loud yell, and to feel something clawing across his face. Then he missed the cat. Mr. Potts is now uncertain whether he was struck by lightning evolved from the cat's back, or whether she be came unduly excited as he stroked her, and stroked back again; but he is certain that, when he undertakes to procure electricity again from a cat, he will first soothe her witle a shot gun."

Correspondence.

[For the soientifie amprican.] astronomical notes.

Observatory of Vassar college.
For the items of meteorological observations, for nearly all relating to meteors, and for some of the computations, in the following notes, I am indebted to students.
The places of the planets are given approximately only, the aim being to furnish to everyday readers such information as will enabie them to recognize the principal planets.

Meteors.

'The evening of November 27 was marked by an unusual number of meteors. The period which includes the last week of November and the first of December is known to be one in which meteors are frequently seen, but there was no reason to locate the maximum of this period on any particular evening. At 5 h .15 m ., before the daylight was over and when the sky was so much overcast by thin clouds that very few stars could be seen, a brilliant meteor, starting from the zenith, passed toward the west leaving a bright yellow train.
At 5 h .40 m . another, so brilliant that it attracted the attention of a student who was not near a window, passed from a point near the pole star to the horizon. Before 6 P. M. so many had been seen that, as soon as it could be arrunged, a systematic look-out was instituted. Two students began at 6 h .20 m . to keep a record. They were aided, af ter half an hour, by three others, and the count was kept up until 8 h .45 m ., when it became cloudy.
From 6 h . 20 m . to 7 P. M., more than 200 were seen. The frequency diminished after 7 P. M., but, in the 2 h .20 m . during which the watch was kept up, 795 were recorded. It is not an easy task to trace the course of meteors in the few seconds of their apparition, but an effort was made to determine the radiant point. The constellations Cassiopeia and Perseus were named by the observers, but the greater number must have radiated from the latter
More than ordinary interest is felt in the meteors of this period because they are supposed to be connected with Biea's comet.
The evenings of December 7, 10, and 11 have also been reported to me (by students) as the dates of remarkably bright meteors.

Position:; of Planets for January, 1873.

Mercury.

Mercury rises on the 1 st at 5 h . 45 m ., comes to meridian, or souths, at 10 h .27 m . in the forenoon, and sets at near 3 P. M. It is at its greatest elongation on the 5th. January 31 , Mercury rises at 6 h .40 m ., comes to meridian about half past eleven and sets at nes. 4 P. M.

Venus.
January 1, Venus rises a few minutes before 10 A. M., comes to meridian, or souths, at 2 h .55 m ., and sets near 8 P. M.

January 31, Venus is nearly in the celestial equator; it rises at nine in the morning, comes to meridian a little after 3 P . M., and sets at 9 in the evening.

Mars.
Mars is still very small, but its ruddy light makes it easily known. When it souths on the 1 st, it is 4° above $\Delta p i c a$, the star being east of the planet. Mars rises on the 1st about $1 \mathrm{~A} . \mathrm{M}$. On the 31st it rises soon after midnight, comes to meridian at 5 h .26 m ., and sets at about 11 A . M.

Jupiter.
Jupiter rises before 9 P. M. on the 1st, souths at 3 h . 30 m . A. M., and sets about $10 \mathrm{~A} . \mathrm{M}$.

On the 30 th Jupiter rises at 6 h . 24 m ., comes to meridian at 1 h . 22 m . on the morning of the 31 st , and sets about 8 A. M.

All through the month Jupiter increases in apparent size, and its position becomes more and more favorable for observers. On the 31st, at 1 h .22 m ., it has, in the latitude of f Vassar College, an altitude of more than 61°
The Nautical Almanac gives the time of the eclipses of the satellites, and according to that, the 3rd satellite, which is the largest, passes into the shadow of Jupiter, or is eclipsed, on the 1 st at $6 \mathrm{~h} .42 \mathrm{~m} .7 \cdot 5 \mathrm{~s}$. (Washington time) and reappears at 10 h . 15 m .38 .5 s . A-glass of very small magnifying power will show this phenomenon at places above whose horizon Jupiter has riscn.
On the 1st, Jupiter is east of the bright star Regulus, in Leo, and they will b^{n} ve nearly the same altitude when on the meridian. On the 31st they will be nearer together in right ascension, and further apart in declination.

Saturn
Saturn has been ay parently very near to Venus, during the first half of Dec?mber, especially on the 4th. It set on the first at half pa ${ }^{\omega t}$ five, having passed meridian 10 min utes before one.
On the 31st, Saturr rises before the sun and sets before 4 P. M., coming to merdian before the sun.

Uranus.

January 1. Uranue comes to meridian at 1 h .45 m . A. M. sets about 9 A. M., an rises at about $6 \frac{1}{2}$ P. M. It is among the small stars of $C a^{m}$ cer
January 31. It comfs to meridian at 11 h .38 m ., having risen 20 minutes after 4 P . M.

This planet, unlike he others, requires a large telescope. It souths on the 1 st at. 6 h .42 m . at an altitude of (in this lat itude) of $55^{\circ} 50^{\prime}$.

On the 31 st, it rises in the morning, c
ore 5 P. M., and sets at about 11 P. M.

Meteorology.

Observatory, Vassar Colleqe.
thebmomeiter and barometer from november 15 to november 30.
Highest thermometer at the time of recording was at 2 P. M., November 25 .

The highest wind was from the southwest, on November 30 at 2 P. M. There was no rain.

DECEMbER 1 to December 15.

Highest thermometer at the time of recording was
at 2 P. M., December 27 .

The highest wind was from the northwest December 10, at 2 P. M. Fall of rain very slight.

The Unknown Planet Actually Seen.

To the Editor of the Seientific American:
In your issue of December 14, I see a statement, which I saw before in N.ture, that Mr. J. R. Hind, the astronomer, was demonstrating that there was a probability that a planet is situated between Mercury and the sun. As I do not know Professor Hind's address, nor the facts upen which he bases his opinion, I address you in hopes that the statement I make will, by this means, fall under his eye. I do not know whether it vill add to his store of knowledge, but it is a fact vital to his theory. In the latter half of September, 1859I cannot now fix the exact date, though it may have been about the 20 th-I saw the planet pass over the disk of the sun. I first saw it about 9 o'clock, my attention being called to it by some boys who were looking at the sun through smoked glass. It was then on the eastern limb, and its apparent diameter was about $21 / 4$ inches. It took it about two hours to pass over the sun. As it is impossible for any of the known interior planets to pass over the sun in the month of September, it must have been an unknown planet. I communicated this fact to the naval professors in 1869, recommunicated this fact to the naval professors in 1869, re-
questing that search be made for this interior planet at the questing that search be made for this interior pla
Hoping that this fact may be of service to Professor Hind, I make this statement through your valuable paper
St. Louis, Mo.
John H. Tice.

Sulphite of Lime in Cider.

To the Editor of the Scientific American:
I wish to give my experience in the use of sulphite of lime in cider:
One writer thinks it may be injurious to the health; if he will study the chemical effects of its use, he will see that it has no disposition to appropriate the oxygen already combined, but prevents further combination, its own appetite for oxygen being stronger than that of the cider. There is, possibly, an electrical action besides, as the sulphite does not chemically combine with the cider; being insoluble, or very slightly soluble, it sinks to the bottom as so much sand. What the effect would be on the blood I do not know; but I should think, as the blood was vitalized in the lungs, if it should come in contact with sulphite in the stomach, no harm would be done, especially as a very doubtful quantity is ever taken into the stomach.
The greatest danger would arise from an impure article; if the lime used was impure, especially if magnesia was present, it would have the effect of Epsom salts, as I have known in several instances. If the sulphite is not neutral, it will spoil the cider. It had better be acid than the opposite, as free lime kills the life of the cider. This can be ascertained from the taste; if it has a caustic taste, discard it. It should have, very little flavor, and nothing that is in the least unpleasant; it ought to taste very much like wheat least u
flour.
During the years 1861, '62, and '63, I made large quantities of it; I had a boy to help me, and in the season for it, about two months each year, there were few days in which he did not eat enough for a common forty gallon cask, and many days much more. I never knew of its doing him any harm, unless, perhaps, it stopped his working as much as he could without it.

Bridgeport, Conn.

Remaris by the Editor:-The use of sulphites to prevent the fermentation of liquors was early suggested by Liebig, and has long been practiced in Europe and this country. At first the sulphite of soda was employed, but so much alkali in the wines was found to be deleterious, and recourse was had to sulphite of lime. This latter salt, when pure and neutral, contains, in 100 parts, 41 parts of sulphurous acid. The sulphurous acid absorbs the oxygen and thus stops fermentation. Sulphate of lime, or gypsum, is formed, which settles in an insoluble paste to the bottom and thus imparts no taste to the liquid. There is very little cider in the market which has not been kept sweet by the use of sulphite of lime; and as this salt has long been recommended, there appears to be no objection to its use.
Doctor Pitha, of Vienna, it is stated, has just received a fee of 100,000 florins $(\$ 50,000)$ on the recovery of the young Baron Todesco, the only son of a millionaire. The case entailed an attendance of about two months, and the patient remained entirely unconscious during 23 days. Professor Pitha's assistant also received a large sum of money.

Rocky Mountain Geological Expiorations. In October last a party, under the lead of Professor O. C. Marsh, of Yale College, started from New Haven for the purpose of procuring fossils in the almost unknown region near the Rocky Mountains. Several expeditions have been made in former years by Professor Marsh and scientific made in former years by Professor Marsh and scientific
students, and they have resulted in some important discovstudents, and they have resulted in some important discov
eries of fossil remains, which have shed a good deal of light eries of fossil remains, which have shed a good deal of light
upon the ancient animal inhabitation of the continent, a well as given some important hints as to its geological formation.
The October party went out with the intention of continuing these researches. They have lately arrived home in good health, satisfied with the successful results of the expedition.
At Fort Wallace they were joined by a military escort consisting of Lieutenant Pope and eight soldiers, army wagons, sisting of Lieutenant Pope and eight soldiers, army wagons,
and mules for riding. The whole party had a competent guide, Edward S. Lane. They started from Fort Wallace and proceeded down the Smoky Hill Fork, and in this neighborhood camped out for twenty-five days. In this region there were immense quantities of buffaloes, and the party shot while camping, about fifty of them. One herd was seen which it was estimated numbered about fifteen thousand. There were also great quantities of deer and antelope. The time of the party was spent mainly in discovering fossils, and quite a lot of valuable saurians, pterodactyls and birds were found. Of the first two classes, there was an especially good collection obtained, and there were also some valuable bird fossils found. The largest bird fossil, Profes valuable bird fossils found. The largest bird fossil, Profes-
sor Marsh said, stood fully six feet high. A large number of fossil fish were found, not valuable enough to pick up. The daily life of the party was something as follows: They usually arose at from seven to eight o'clock, and, after looking after their mules, prepared breakfast, which consisted generally of buffalo meat, sometimes deer and prairie hens. They were obliged to depend upon the government for such supplies as tea, coffee, flour, etc., obtaining them at whole sale government price. After breakfast the party generally started for the cañons and spent the rest of the day in dili gent search for fossils, not returning to the camp till supper time. On the prarie they were thoroughly armed, each one carrying a rifle, revolver, knife and cartridge belt. The eve ning was generally spent in arranging the collection of fos sils found during the day, under Professor Marsh's direction. The party slept at night in the regular Sibley tent, heated with the Sibley stove. At Cheyenne they found the thermometer standing at fifteen degrees below zero, and very naturally did not care to do much outdoor work in such an atmosphere. Water was all frozen up, and the most bitter winter weather was experienced. From Cheyenne they took a southeasterly direction to Crow Creek in Colorado. Here they camped seven days and explored the country toward the Rocky Mountains. At this point Pike's Peak was in sight. The explorations were not very successful, except near the camp where they found one or two cañons full of bones. There were found some rhinoceros' teeth, as well as bones of various rodents, and fossil turtles in plenty.

Plowing.

A correspondent, W. W. of Evanstown, Wyoming Territory, states that a plo:v 32 feet long, 11 feet wide, and 12 tory, states that a plo:v 32 feet long, 11 feet wide, and 12
feet high, plus 58 feet for trucks and platform, is well proportioned; and a weight of 50 tuns is enough. But, he says "the first side drift it strikes, it will throw something (think it will be the rail). The rail we use here is 4 inches high plus $3 \frac{8}{4}$ inches wide, and some of the old pine ties are two feet apart and spiked with a smooth spike. I have shoveled snow in the same drift as John Chinaman. He told me: 'Irishman all same as Hong Kong man, no count to keep track clear of snow when it drifts 40 knots an hour, snow plow and locomotive on larbert side' (topsy turvy)." "I see," continues W. W., " no better method for clearing away snow than the one the aboriginal American used before the pale face borrowed his corn."

Be Cheerful. - "Be cheerful," says the man who is easy in his circumstances, missing no loved face at the table, nor by the hearth. But does he ever consider how hard it may be to be cheerful when the heart aches, and the cupboard is empty, and there are little fresh graves in the churchyard, and friends are few and indifferent, and even God, for the tíme being, seems to have forgotten us, so desoGod, for the inme being, seems to have forgotten us, so deso-
late is our lot? How difficult for one man to understand anlate is our lot? How difficult for one man to understand an-
other in such different circumstances! How easy to say other in such different circumstances! How easy to say
"Be cheerful!" How hard he would find it to practice, were he stripped of all life's brightness !
\triangle New Galvanic Battery.-Gaiffe's new galvanic battery consists of a vessel in which are contained a plate of lead and a plate of zinc. The lead reaches to the bottom, while the zinc is but half as long. The bottom of the vessel is covered with a layer of red oxide of lead, and the exciting fluid is water containing 10 per cent of sal ammoniac. The electro-motive power of this battery is estimated at one third of that of a Bupsen cell. Its internal resistance is very slight and it is said to be very constant. It has the merit of cheapness.
a Pecullar Locomotive.-A new locomative, named the Anthracite, which has been placed on the Albany and Susquehanna Railroad, has six driving wheels and carries its water above ihe boiler. A tender is thus dispensed with. The firing apparatus is stated to be so arranged that the fires last all day without replenishing, and the furnaces only require damping once a week.

EARLY TRACES OF MEN

When quarrymen uncovered slabs of Connecticut sand stone, bearing impressions exactly like bird tracks, geologists reasonably inferred that, at the time the rock was forming and was as yet but wet sand, there existed gigantic birds or bird-like animals, which strode along these ancient sea shore much as beach birds do along the shores of to-day. The fact that traces of birds had never been found before in strata so ancient, much less the popular theory that, birds were of later creation, did not invalidate the inference; one positive fact, as is well known, outvalues any amount of negative asser tion, and the old theory had to give way.
When workmen, digging a canal near Stockholm, came upon a buried hearth with charcoal on it, exactly like those which uncivilized people now make and use, the natural in ference was that some one of more than brute intelligence had lived there before the overlying earth was deposited. Had the hearth been slightly buried, say six feet below the surface, there would have been no question of its artificial origin; it would have been accounted the work of man as
surely as if a human skeleton had been found lying beside it. surely as if a human skeleton had been found lying beside it.
Should the inference be considered less legitimate because Should the inference be considered less legitimate because there happened to be sixty feet of earth above the hearth? True, that accumulation of erratic blocks and sand and sea shells gave unmistakable evidence of great geological changes
since the hearth was last used-glacial action, submergence of the land and its subsequent elevation,-all involving long periods of time; but that told not so much against the testimony of the hearth as against the belief that man was of more recent creation.
Now that such witnesses have been multiplied to an almost infinite number, forming a continuous chain from the earliest historictimes far back into the tertiary period, the evidence is overwhelming; the "alleged" antiquity of man, as it is styled by those who have never investigated the matter, passes from the domain of hypothesis into the region of demonstrated fact. The vista of human antiquity opened up by these surprising discoveries is indeed vast, so vast that even those who have most patiently followed them and assisted in their development are overwhelmed with the thought of it. No wonder, then, that those to whom it comes as a sudden revelation should flatly refuse to admit its reality. As Mr. Evans remarks in the closing paragraph of his magnificent work on the ancient stone implements, weapons and ornaments of Great Britain, "it is impossible not to sympathize with those who, from sheer inability to carry their vision so far back into the dim past, and from unconsciousness of the cogency of other (than the fossils described in the work above mentioned) and distinct evidence as to the remoteness of the origin of the human race, are unwilling to believe in so vast an antiquity for man as must of necessity be conceded by those who
have fully and fairly weighed the facts which modern discoveries have unrolled before their eyes." Yet while we sympathize with the natural incredulity of those who lack the basis of intelligent judgment, we need not imitate their unreasoning assurance in contradicting the deductions of science while refusing to examine either the ground of their own convicticns or the evidence of the different convictions of others.
The geological proofs of the antiquity of man, to which Mr. Evans all $\because d e s$, are of threefold character :

The association of human bones with the bones of extinct animals, under conditions which prove them to be of equal age.
2. The signs of human action on the bones of extinct animals: the breaking of them to extract the marrow, after the manner of existing savages; the shaping and polishing of them for use and ornament; and more instructive still, the tracing on them of the outlines of mammoths and other animals now extinct or driven by change of climate to distant parts of the earth.
3. The discovery of wrought stone implements, weapons and ornaments under undisturbed strata demonstrably belonging to periods reaching as far back as the pliocene period, if not farther.
Detailed descriptions of these evidences, which are as mar velous in number as in variety and interest, may be found in the elaborate works of Lyell, Lubbock, Wilson, Evans and other English scholars, as well as in numerous French and German writings; or the evidences themselves may be
studied in situ, and in numerous rich collections of archæogeological specimens, by any one disposed to do so. The purposes of this article admit but the briefest mention of a few of the most ancient of these traces of early man.
First, for our own country. Perhaps the oldest skull yet discovered is the one found in the pliocene strata of Cable Mountain, California. Having no companion in its almost incredible antiquity, it was natural at the time of its discovery for men to ridicule the age accorded it, and to takerefuge in the assertion that it never camefrom the place alleged, or, if it did, it musthave come there by irregular means. But when many corroborating evidences of human existence
during the pliocene period are found, as they have been, in during the pliocene period are found, as they have been, in
the same strata under conditions which satisfy careful geol ogists that the strata had not previously been disturbed, the astonishing character of the testimony is not sufficient ground for flatly rejecting it. More recently, similar fossil evidences of perhaps a still earlier presence of man on our Pacific coast have been discovered. At a meeting of the San Francisco Society with a number of perforated implements of serpentine, which had been taken from stratified rock near the summit of the coast range, 1700 feet above the sea. They were
found, embedded in argillaceous shales, in digging away the side of a hill cor the foundation of a house, and, says Dr,

Blake, were "evidently fashioned by the hand of man or mer proposes to suspend an entire saloon, after the fashion of ome animal capable of using its anterior extremities so as a lamp or compass, in gimballs. As there is in every vessel, to fashion objects to meet its wants, and apparently possessed of sufficient intelligence to use lines or nets for catching fish; as it would seem that these instruments must have been used as sinkers." Dr. Blake pronounces the rock in which these interesting specimens of primitive manufacture were discovered, to be of an age not later than the pliocene period; while Professor Whitney, the State Geologist, is of opinion that it is still more ancient. Anyhow, man appears to have antedated the ur,heaval of the coast range and the attendant geological changes; a remoteness in time which attendant geological changes; a remoteness in time which
makes the fossil skeleton found at Natchez and New makes the fossil skeleton found at Natchez and New
Orleans, and the human fragments under the Florida canals, seem comparatively modern. Yet at that distant period man had existed long enough to overspread a considerable portion of the earth, if not the whole of it, since traces of such primeval men have been found wherever they have been diligently sought for.
Scarcely a decade has passed since geologists began to admit the possibility of finding traces of men in glacial or preglacial strata; yet already human bones or anquestiono,ble evidences of human handiwork have been found in the deposits of those early times, in connection with the remains of supposed prehuman animals, in England, Scandinavia, Belgium, France, Spain, Italy, Germany, India, Australia, and South America, as well as in our own country; and the more carefully the search has been conducted, the farther back the history of man has been pushed into the distant past. Every inch of the ground has been fought over, the firm conviction of the early investigators that man could not
be so old a creature causing them to receive every discovery with downright disfavor. Such an upturning of all the recognized foundations of history seemed of necessity to involve some hidden error. But it did not. The facts are so numerous and intelligible that the most skeptical enquirers have been convinced, and now not a few of them hold high rank among the authorities of the young science of archæogeology. Among these is the venerable Sir Charles Lyell, whose cain tion is not less remarkable than his courage. After study ing some of the earlier discoveries of human fossils, he admitted their preglacial origin and thought we might expect to find the remains of man in the pliocene strata. Writing after the discovery of such pliocene remains, Sir John Lubbock set the time of the first beginning of the human race as far back as the miocene, or middle tertiary period; while Alfred Wallace carries the date still farther back, into the eocene period; this, however, on theoretical grounds, since the traces of men earlier than the pliocene period are few and somewhat questionable. In what is said to be miocene
strata near Pontlevoy, France, a M. Bourgeois has found numerous wrought flints in a stratum containing the remains of a long extinct animal allied to the rhinoceros, and beneath a bed which contains the mastodon, the dinotherium and the rhinoceros. Similar evidences of man's presence and skil have been found in the miocene beds of Aurillac, with the remains of animals long since extinct; and at Pouancé, an other observer, M. Delaunay, has discovered a bone of a herbivorous cetacean of the miocene period, which bears the marks of cutting instruments, such as must have been made when the bone was in a green condition. Doubtless these
faint foreshadowings of man's presence in the middle tertiary will be strengthened by future discoveries, as the first evi dence of his existence in the later tertiary and quarternary periods have been.
The time required for all the geological changes which have taken place since man demonstrably entered upon the limit lately set to his history has been overpassed and hi dominion extended perhaps farther beyond it than it is back of the present. "We of the present generation," says Sir Charles Lyell, " when called upon to make grants of thous ands of centuries in order to explain the events of what is
called the modern period, shrink naturally at first from making what seems so lavish an expenditure of past time.' Yet, however much the imagination may take alarm at the immensity of such periods, the sternest reason declares them to be necessary unless we stand ready to deny the orderly
sequence of events. The same sort of evidence which prove the existence of man on earth six thousand years ago proves his presence here as many thousand centuries.

BESSEMER'S ANTI-SEA-SICK SHIP.

The channel which separates England from France has, from time immemorial, been a bugbear to the traveling pubic of both countries. Innumerable are the books that have been written depicting the miseries of the passage from Do-
ver to Calais, and equally multifarious are the proposals and plans published, having for their object to connect the two shores, and so not only abolish the wretched steamers now
in use, but save the travelerfrom the discomforts of sea sickin use, but save the travelerfrom the discomforts of sea sick-
ness and exposure to the weather. As near as we are able to discover, no less than thirty schemes have been advanced, including submarine tunnels, tubes laid on the bed of the channel, submerged roadways, embankments from coast to coast, steam packets of especial constraction with improved harborage, and, lastly, a vast bridge which should span the ing as they do, not only a consummate engineering skill, but the expenditure of at the least of a hundred million dollars, are but dim visions of the future. At present Mr. Henry Bessemer, well known for his invaluable improvements in the manufacture of steel, steps forward with a saloon vessel, constructed on a principle which has already been applied to
furniture, berths, and even state rooms, In short, Mr. Besse-
when pitching or rolling, a neutral axis, on a point coinci-
dent with this axis Mr. Bessemer intends to hang his apartdent
The first point to overcome was the mobility of the load. A passenger could not be expected to sit perfectly still in a fixed position during the voyage, while, on the other hand, were he to move or promenade, the equilibrium of the apparatus would be lost. The inventor, finding, therefore, that he could not prevent motion by his means of suspensiol. concluded he could arrest it the moment it began. To this end he designed a salson-the description of which we find in the London Times- 70 feet in length, 30 feet in width, in the London Times- 70 feet in length, 30 feet in width,
and 20 feet in hight, carrying on the top a promenade deck and 20 feet in hight, carrying on the top a promenade deck
at a hight of seven feet above the ordinary deck of the vesat a hight of seven feet above the ordinary deck of the ves
sel. The points of suspension of this saloon will be in sel. The points of suspension of this saloon will be in
line with the keel of the vessel and coincident with the neu tral axis of the ship when rolling. The saloon will be well lighted and ventilated, and will be fitted at each end witl rooms for passengers. The governing power consists of a set of powerful hydraulic apparatus connected on the under side of the flooring, and so arranged that, as the vessel rolls to either side, the pressure or resistance afforded by the water is instantly brought into play and utilized in checking the motion. The device is controlled by a pair of very sensitive equilibrium valves actuated by a hand lever. At this lever stands a steersman who, with a curved spirit level before him, watches the slightest indication of the rolling of the vessel, and in an instant suppresses the tendency of the saloon to follow the motion of the ship.
The difficulty of pitching is overcome by increasing the length of the vessel so as to insure longitudinal stability. The principle of the saloon is, in fact, carried out in a ves sel designed by Mr..E. J. Reed, for the channel passage She will be 350 feet long, with 65 feet beam over her paddle boxes, and 7 feet 6 inches draft of water. The saloon will be placed amidships, in the position generally occupied by the engines. The latter will be of 750 horse power, nomi nal, and are expected to drive the vessel twenty knots per hour. The ship will be double-ended so as to enable them to enter and quit existing harbors, and at each extremity will be provided a very low free board, so that she may cut the waves instead of rising to them.
In order to demonstrate the feasibility of his scheme. Mr. Bessemer has constructed a large working model on the grounds of his residence. The arrangement consists of a wenty foot length of the hull of a vessel of twenty foot beam sunk in a brick pit and carried on a longitudinal axis. In the ship is a saloon suspended as above described, and con nected with it is a curved spiritlevel, with a graduated scale and pointer, the latter of which the stecrsman always keeps at the zero point. An oscillatory motion is given to the huli by a small engine connected to it with suitable gearing. This motion amounts to 14° each way, representing a total roll of 28° with ten oscillations per minute, but notwithstandir.g this the cabin does not indicate a deviation of more than from 1° to $1_{\frac{1}{2}}{ }^{\circ}$ from the horizontal. Mr. Bessemer considers his idea but the germ of whatmay be thought out, and frank ly admits that some other brain than his own may push on the work he has initiated.
We hardly think the plan will prove successful, aud are convinced that Mr. Bessemer will find the short chopping sea of the channel, seemingly striking a vessel on all sides at once, far different from the regular oscillations produced in his model. Moreover, unless there is some mistake in the figures as we extract them irom the Times, it seems impossible that a vessel 350 feet long should not pitch in a very decided manner. We have crossed the channel repeatedly in a ship 320 feet long, and in rough weather have experienced pitching by no means light. Again, if simple pitching and olling were a vessel's only motion, the apparatus might an wer, but such is not the case, unless, perhaps, in the long heavy and regular swells of the Atiantic. A chorping sea, which is, par excellence, that found in the channe' in rough weather, produces a spiral, so to speak, movement of the ship, calculated to vanquish the strongest siomach, while the sometimes unaccountabie angles taken by the decks cannot, we believe, be avoided by any device based on Mr Bessemer's principle.

The London journals state that that interesting young stranger, the hippopotamus recently born in the Zoölogica Gardens, is being brought up entirely by hand. Like children generally, he is giving considerable trouble to his keep-
ers, As aninstance of his juvenile precocity, it is mentioned ers, As aninstance of his juvenile precocity, it is mentioned
that he can already remain under water twice as long as his mother.

IT has been decided to pierce the tunnel of St. Gothard, in Switzerland, by means of lithofracteur; 25 tuns of this ex plosive body have just been purchased by the engineers i.? charge of the work. Some idea of the extent of the undertaking and the exceptional hardness of the rock to be tre versed may be formed from the fact that at least 1,500 tun of lithof racteur will be the total amount required.

A foung. Briton lately won a beton spiders, in the follow ing ingenious manner: He wagered that a spider which $h \in$ would produce would cross a plate quicker than a spider to be produced by a friend. Each spider was to have its own plate. His opponent's spider, however, on being started, would not stir, whilst its rival ran with immense speed. The bet was consequently lost; and the loser soon found out the reason why: his friend had a hot plate.

PRIME'S WASH BOLLER.

The inventor of this device proposes to furuish an improved and more effective circulation of the steam and water among the clothes by means of appliances which prevent the contents of the boiler from packing around, and so closing the orifices in its sides. Theillustration shows parts of the apparatus broken away, with sectional views of other portions, and affords a clear idea of the interior arrangements.

A is the wash boiler, which may be of any suitable design. B is the receptacle beneath for the soap and water. C C are chambers or channels closed at the top and connecting with the interior of the apparatus by means of the orifices, D. The spiral springs shown are so arranged as to fit over the ends of short tubes around tho perforations, within the boiler, and to extend through and smong the clothes. $\mathrm{E} E$ are wing valves open. ing downwards as far as the guard, F, and protected from being choked, by the clothes above, by the guard, G. These valves are hinged to a plate, H, which may be readily removed for cleaning the heating chamber.
By means of the spiral springs, channels are afforded which admit of a free escape and circulation of the steam and water passing from the heating chamber, B, through the conductors, C, The springs may be cither used separately, being placed in and removed from the boiler with the garments or they may be attached to nozzles, as shown, or directly to the walls.
The various portions of this device are casily accessible for cleansing or repairs, and the apparatus is claimed by its inventor to thoroughly meet all practical requirements.
Patented through the Scientific American Patent Agency, Nov. 12, 1872. For further information regarding agencies, sale of machines and territory, address Geo. M. Prime, Eldorado, Ark.

Litmus Paper.

When the physician and pharmacist buy litmus paper, says Dr. Squibb, they generally make the same mistake that the photographer does, and demand that it shall be deep in color, that the blue shall be very blue, and the red very red. This is wrong in principle and in practice, particularly for physicians' uses, where slight traces of alkalinity or acidity are often important, and the palest instead of the deepest paper should always be selected. To prepare good litmus paper, the following formula may be useful: Take of good litmus, in fine powder, 1 part; water, 4 parts; alcohol, 1 part, all by weight
Put these ingredients into a bottle, and shake the mixture occasionally during 24 hours; allow the sediment to settle out completely, and decant as much as possible of the clear liquid into another vessel; then put the same quantity of water and alcohol upon the sediment, shake again and, when again well settled, pour off the clear liquid for use in diluting the first portion of liquid, or for dissolving a fresh partion of litmus. Separate about one fourth part of the first clear liquid, and add to the remainder dilute sulphuric ecid until it becomes of a purple tint, or gives a purplish blue color to a slip of white paper; then add about one half of the separated fourth part of the solution, and if this should entirely restore the original pure blue color, again add diluted acid until a purplish tint is again obtained; then add the remaining eighth part of the original solution to restore the pure blue color, or, which is more delicate as a test for acidity, a very faintly purple blue color; then dilute this solution either with water, or with the second liquid from the litmus sediment, until a slip of neutral white paper dipped into it has a palc blue or pale purplish blue color. Here it is necessary to remember that this paper when dry is many shades paler than when wet, and the dilution should be made accordingly. The solution making red litmus paper will not bear the same amount of dilution as that for the blue, and must be made of the proper purplish red color by the addition of dilute acid before dilution. The solutions so made will keep almost indefinitely, and may be passed on from one process to the next. The paper should be made from pure rag stock-not from bleached wood nor strawshould be quite white, and above all, must be quite neutral, and show no red spots or blotches when moistened with the blue solution. French or German filtering paper commonly answers well if of good quality. This is cut into convenient size, the larger the better, because there is less waste, and held by two corners, which corners are to be kept dry; it is to be skillfully laid on the surface of the solution, first one side and then the other, then drained, and hung over clean glass tubes to dry. The vessel to hold the solution for dipping should be larger than the sheet of paper, and shallow. The sheets when dry are laid together, and the edges trimmed off all round. They are tien cut into sheets 3 to 4 inches wide and 12 to 18 inches long, according to the size of the paper used What is sold as " a sheet of litmus paper" should never be less than 4 inches by 12 , or 3 by 18 . Such a sheet cut lengthwise through the middle gives a strip which, when cut crosswise into strips a quarter or three cightiv of an inch wide, is of a convenient size and form for use. The sheets, one paler and one deeper of the se.me color, if desired, should be rolled up together in a tight roll, slipped into a test tube and corked. In corked test tubes they keep unchanged for an indefinite time, while the test tubes when empty and corks are always worth their cost to those who use litmus paper.

In this form of sheets, however, the paper is not so con-
venient for the physician as when cut into strips 1 to 2 inches long and a quarter of an inch wide; and the writer finds that about 100 of such strips, put up in a wide mouth tube vial, corked and properly labeled, is a most convenient and popular form for physicians' use. One such vial of each color put up together forms a pair which no physician should be without. And most physicians will buy them if they can get them. These convenient little strips may be shaken out of the vial as wanted for use, but as the fingers, should,
by rights, never touch any other strip than the one taken,
signed to be closed in winter and opened in summer, and B, by which access may be had to the honey receptacles. Be tween the floor and the shutter there is about one quarter of an inch of space left in order to insure a supply of freshair. The floor is movable. Fastened longitudinally in the inte rior are cleats, C C, Fig. 2, which support the hive in place. The legs are provided with inverted cups or flares to prevent he ascent of mice, etc.
The hive proper is arranged with perpendicular sides. The bottom consists of two inclined portions, D and E; D, the front, has a sliding cover whereby the size of the bee aperture may be regulated, and is provided with a small notch at F for ventilation when closed The rear portion, E , is hinged to the hive, its forward inclined part constituting a lighting board for the bees. G, Figs. 2 and 3, is the diaphragm dividing the breeding from the honey chamber. It is pierced, as shown more clearly in Fig. 3, with two rectangular orifices in the center, which communicate with similar holes in the bottom of the honey boxes, H. The inventor has found, through long experieace in the management of bees, that the eggs of the bee moth are always deposited around the corners of the hive. In order to remove these nuisances, and so to protect the bees from their ravages, he provides the four corner orifices, I I, in the diaphragm, G, which, whenever necessary, he scrapes with the instrument shown in Fig. 4, thus detaching the cocoons; after which, by means of a small swab, he covers such portions with a strong solution of brine, also applying the same liquid to the bottom of the hive. This operation require but a few minutes, and may be accomplished with out moving the hive or disturbing the bees. The corner orifices, when not thus used, are covered with wire gauze. The upper part of the hive is closed with a movable lid, K, and front, L, which should not be left in position except when feeding a late swarm that have not secured sufficient honey for their maintenance.
Fig. 1 represents the device arranged for summer use, that is, with doors open and lid of hive removed. In winter time these portions are all closed, and the two inch space between the hive and walls of the house is packed with straw so as to secure warmth.
The inventor claims that the apparatus, with proper man agement; willprevent the vitality of the eggs being destroyed by cold, obviate the foul brood caused by chill and dampness (leaving a black and decomposed mass liable to kill the entire colony), and lead to early swarms and an akundance of honey. The device is simple and durable, and is well worthy the attention of bee keepers throughout the country.
Patented September 10, 1872. For further particulars re garding sale of entire right, etc.. address the inventor, Mr. Peter Brown, Taylorville, Ill.

Telegraphic Experiment.
Mr. Highton describes in the Chemical News the following experiment: On November 4, the cable from Dover to Boulogne was broken by a ship's anchor, about 5 miles from Dover. By the kind permission and co-operation of Mr. Bourdeaux, the engineer of the Submarine Telegraph company I placed my instrument (shown lately to the Society of Arts) between the end of the broken cable at Dover and the water pipes of the town. To our surprise we could distinctly read every message to and from Ostend, Calais, and Dover, on the Dover and Ostend and Dover and Calais cables. The explanation was as follows: Part of the electrical current which went to earth at the Dover water pipes went on to a second earth formed by the end of the broken cable, and in its passage made signals on the instrument. Thus the enormous fault formed by the Dover water pipes was not suffi cient to prevent a perceptible current of electricity passing on to the broken end of the Dover and Boulogne cable.
We also asked the French operator at Boulogne to send a current through the broken cable, and got a feeble result; but as we were not able, without special authorization from the French Government, to get him to put on such batteries and instruments at Boulogne as were necessary, and the remain ing cables were fully occupied with messages, we did not follow out this portion of the experiment.
Atmospheric Submarine Postal Communication between France and England.-E. Martin describes a modified plan, which consists in the use of a narrow tube through which simply microscopic photograms containing the dispatches, produced upon collodion, are to be transmitted. It appears that this method of operating was first used during the late siege of Paris, and has now been improved upon. The execution of these microscopic photo grams can be conducted by day or at night by the aid of the electric light. The tube through which these light pellicules are to be transmitted need only be some few centimeters in diameter. The motion is imparted by compressed air.

American Iron.-The Philadelphia North American says: " Certainly, if a country so limited in extent as Great Britain should dominate the iron trade of the world, as she has long done, we can, with our immense wealth of iron and coal and our fast accumulating capital, do that much. Twenty years hence, if we are true to ourselves in the meantime, the American iron product will reach eight or ten millions per year, and we may even be able by that time to export a tun of iron for every bale of cotton. The era of cotton and wheat in American commerce has been a great one. But the era of iron now dawning upon us is destined to be far greater."

Frientifir बhmmitam.

MUNN; \& CO., Editors and Proprietors. poblished weekly a
NO., 3フ:PARK ROW. NEW YORK:
o. D. MUNN.
A. E. BEACH.

ne copy, one year

 to be had at all the news depots.

VOL. XXVIII., No. 1. [New Series.] Thoenty-eighth Year

NEW YORK, SATURDAY, JANUARY 4, 1873.

Contents. (Illustrated articles are marked with an asterisk.)	
Atr and steam englnes	${ }_{10}{ }^{1}$ Patents, recent American
	5 Planetactuaily ${ }^{\text {ele }}$ en
ronomic	
hive, impro	
iness and persona	Revenue Board Buildings, Mad-
	Rocky Mountain geological expio.
Fire alarm, a novel.:	
*Grapes in winter,fresh............	
us pap	
Men subscribers, to	${ }_{5}{ }^{\text {S }}$ Teethay
cow exposition	7 Telegraphic experiment.............
Navy,our	${ }^{*}$
the	Tyndain as a money maker, Pro-
Oil wells, nan	Tyndall on iligh
ent business in Cong	
tent decisions, recent.	Wash boiler, Improv

Bindina.-Subscribers wishing their volumes of the Screntific american bound can have them neatly done at this office.-Price $\mathbf{\$ 1 . 5 0}$.

OUR NAVY.

The Secretary of the Navy has, each year since the commencement of the first term of President Grant, earnestly ondeavored to impress upon Congress and upon the country the vital necessity of preserving the efficiency of our diminutive navy. Congress has, at last, taken up the matter and is considering the advisability of authorizing the construction of a number of new vessels of war
There can be no doubt, in the mind of any thoughtful citizen, that the United States requires a navy, and that it will require one so long as we have commercial relations with foreign countries, so long as we are liable to become involved in war with other maritime nations, and so long as a large share of the great work of exploring distant parts of the globe can be best and most economically performed under the auspices of our navy department.
How large and of what character, this navy of ours should be, is not so easily decided. We must, certainly, have a number of cruising vessels to do the work which falls to our navy in time of peace, and this work may be done by ships of comparatively light armament, of full sail power, and of ood speed under steam: by such vessels, it can be done of ficiently.
We believe that there is not a vessel in our navy which possesses all of the requisites of such a class of ships. The " Wampanoag" class had the speed, the sail power, and the necessary armament, but were originally defective in their machinery, and are now generally worthless in consequence of the decay and weakness of their hulls. It is to make good our deficiency here, we presume, that the Secretary of the Navy proposes building ten new vessels. They are evidently urgently needed, and it is to be hoped that they will be built and built quickly. In justice to the Department, to Congress, and to the people who pay for them, it is to be hoped that they will, when completed, embody the very latest and best modern practice. They should have iron hulls; est and best modern practice. They should have iron hulls; armament that shall not be rendered inefficient by deference to the hobbies of any enthusiastic inventor or of any single man. The plans should be invariably endorsed by properly constituted boards, who should be authorized and required, aiso, to consult experts, of generally recognized standing, in relation to all plans. Such a course would protect the navy department from malicious or ignorant misrepresentation and abuse.
We learn from the annual reports of the secretaries of our navy, commencing as far back as the administration of Gideon Welles, that our iron-clad navy, originally created under the pressing exigencies of civil war, and, as a matter of course, to some extent defective in design and hurriedly constructed, has become as worthless as the first class of ships. The Dictator is the most formidable of our iron-clads; but even the Dictator is of slow speed as compared with more recently built foreign vessels, has far less invulnerable armor, and is equally inefficient in her armament. Once the most powerful and formidable of iron-clads, she is, to-day, comparatively weak. This vessel, and others of our iron-clads, should not be allowed to become utterly worthless for want of proper care; but we question seriously the policy of building a new iron-clad fleet to compete with that of England, of Prussia, or even of Splin. We are by no means certain that the day of iron-clads has not already passed, and that the perection of our various systems of using torpedoes for both attack and defence may not have already rendered us independent of such terribly expensive engines of war.

A new fleet of effective iron-clads, if built, should consist of not less than twenty vessels, each capable of meeting successfully the strongest foreign-built iron-clads, and would cost thirty millions of dollars.
Süch a fleet might defend our shores and might successfully contend with all existing iron-clads, but it could not prevent the destruction of our limited commerce by fleets of fast, lightly-armed cruisers, and it could not enter or seriously thre
Abroad, the unarmored, lightly armed and fast vessels, which it is now proposed to build, could best destroy an enemy's commerce, and would easily avoid heavily armed cruising iron-clads, since the latter must always, of necessity, be ing iron-clads, since the latter must always, of n
At home, we are already safe against attack, thanks to the intelligence and energy of the torpedo corps of both arm and navy.
The exigencies of our late civil war gave rise to these now well organized and effective organizations.
It would be impolitic to make public the results of their unremitting and very fruitful labors. The only suggestion that need be made is that, to still further increase their efficiency, the best talent of the naval engineer corps should be better utilized in this now vitally important work than it has yet been.
In brief, we may state that, in the event of our becoming involved in war with the most formidable of foreign powers, our harbors would be at once rendered inaccessible to the most formidable fighting machines yet put afloat, and this, too, at comparatively slight expense. Were all the fleets of the world to attack New York harbor, not one vessel would be likely to pass the Narrows. A fleet lying off the coast would be unsafe during the day and could be scattered or destroyed during a single night.
A worthy successor of Farragut would find means of detroying easily the most powerful of an enemy's fleet with the resources which are now made available by our torpedo corps.
We have fixed torpedoes that may be made to explode when struck by an enemy's ship, others that may be exploded from secure stations far away at any instant desired, others that may be rendered harmless when our vessels are passing among them and which may be then made to destroy any pursuing vessel that may attempt to pass them: and we have torpedo vessels that can be sent out without a single human being on board to attack a fleet anchored off the shore, and, directed from the shore, they will approach and explode a charge of powder under any vessel that it may be desired that they should destroy.
We may rely upon our torpedo corps, with confidence, to defend our shores and harbors against the world.
Let us have our cruisers, therefore; but let us hesitate before commencing to build iron-clads. We may find that the expenditure of many millions, in attempting to rival other nations, may be saved us by the comparatively inexpensive operations of well organized torpedo corps, and by the application of the wonderful ingenuity of our inventors to the perfection of floating and sub-aqueous torpedoes and torpedo ships.
The inventive minds of some of our readers will find here an interesting field in which to labor, and they may accomplish results of value to the nation while attacking a problem which, nearly a century ago, gave Hopkinson the text for his humorous poem, " The Battle of the Kegs," and with which Bushnell and Fulton made creditable progress at very early period in the history of our country.

THE MOSCOW EXPOSITION.

The great Russian Exposition at Moscow was recently closed, and, according to a correspondent of the Engineer, the United States were extensively represented in the mechani cal department; not, however, by goods sent directly from this country, but by machinery made in Austria, Prussia, Belgium, Russia and other countries, copied from American patterns, the products of American genius, protection for which by patents in the countries specified is practically denied to our citizens. At this exposition, the show of American sewing machines supplied from Germany was quite large. The correspondent says:-"If that benefactor of mankind, the ingenious Howe himself, could have appeared in the flesh and visited the Exposition, I think he would have been highly gratified, for the pet offspring of his genius, in some form or other, is continually to be met with, it being more difficult to say where it is not than where it is."
The entire motive power of the exhibition seems to have been furnished by the American Corliss steam engines, examples of which were supplied by several German manufac turers. Indeed, so many of these engines were to be seen in the exhibition that the correspondent is led to ask: "I won der if the inventor reaps any advantage from this patent in Germany?"
This is only one of hundreds of examples of the way in which the Germans, especially the Prussians and Austrians, appropriate the best improvements of English and American inventors.
Our Commissioner, General Van Buren, in his endeavor to procure a large appropriation from Congress to be wasted in Vienna, is endeavoring to satisfy the members that unless the money is granted the United States will not be duly represented at the coming Vienna show. But Congress need not give itself any apprehension on that score. The ingenuity of America will be well represented in all the mechan ical departments, by the pirating manufacturers of Austria and Germany. No nation in the world will have its mechanical ideas so largely represented at Vienna as the United
tates; but our countrymen will not specially profit thereby But to return to the Moscow affair:
Among harvesters, the Johnson American Self-raking Reaper is specially mentioned. As to steam fire engines, the first prize has been, as stated to have been, awarded to an American machine.
The display of war material was quite large, some very ancient and curious pieces, of Russian origin, being exhib ited. Among these were queer shaped revolving mitrailleurs, having from twenty-four to forty-four barrels, five feet long and three quarter inch bore. These were made in the time of Peter the Great, but were discarded by him as impracticable. A brass rifled cannon was shown, which was cast in 1615-a hundred and fifty years nearly before the idea of rifling guns was known in England. A rifled arquebuse made in 1661, several breech-loaders, and a revolving gun of the seventeenth century were also on exhibition.

A SLIPPED ECCENTRIC AND WHAT CAME OF IT.
A correspondent in Connecticut, who writes to announce the sending of an excellent list of subscribers to the ScIEN fific American, shows how our paper has practically benfitted him and his employers as follows:
"I have taken the Scientific American for nine years. When I first commenced to run a steam saw mill, I worked by the day as sawyer. One day the eccentric slipped on the shaft, and the engine, of course, stopped. The proprietor being away, we were in a bad fix. The fireman did not know how to set it again, and, practically, I knew nothing bout it myself; but I recollected reading in your paper the rule for such an engine (a common slide valve one). So I tried my hand and succeeded, the engine doing better work, with less fuel, making a gain of three cords of slabs in ten days.' To the practical workman the regular reading of the ScIENTIFIC AMERICAN is unquestionably of great value. It in sensibly educates the mind of the reader and, if he is a workman, renders him more intelligent, more skillful and more useful to his employer. It is the custom in some es. tablishments for employers to present their workmen on the return of each new year with a year's subscription to the Scientific American. Proprietors find themselves abund antly repaid in the greater industry and superior work which their men give back in return for such attentions. Those who have not already done so should remember that now is the time to register subscriptions to our paper. This is the first number for 1873.

Send in the names as fast as possible.

PROFESSOR TYNDALI AS A MONEY MAKER.

During the evening of Professor Tyndall's first lecture in this city, while he was busy in exhibiting the wonderful qualities of light at the Cooper Institute, a thief struck a light in the Professor's room at the Brevoort Hotel and car ied off $\$ 200$ in gold from the Tyndall trunk. But that, after all, is a small item when we consider that the Professor is bagging about ten thousand dollars a week from his lec tures, one of which he gives every other night.
If other scientific lecturers would bestow as much personal attention upon the preparation of their public appearances as does Professor Tyndall, it is probable that the demand for their services might be increased. There is never any hitch or break in the experiments, illustrations or speaking of Dr . Tyndall. The day preceding each lecture is devoted to a careful rehearsal of the experiments that are to be produced, and his assistants are drilled in the manipulation of the apparatus by their leader with the same care that the leader of paratus by their leader with the same care that the
an orchestra bestows in the rchearsal of his music.
Work and watchfulness are the keys to Professor Tyn. dall's experimental success as a lecturer.

THE VIENNA SHOW IN CONGRESS.

After a somewhat lengthy debate, a bill appropriating the sum of $\$ 100,000$ to defray the expenses of American representation in the Vienna Exhibition has passed the House of Representatives and has been forwarded to the Senate for its concurrence. In addition, two naval vessels have been designated for transport duty, to carry pianos, sewing machines, buggies and other goods of exhibitors to Trieste, Austria. Space forbids our entering into any resume of the discussion in the House. The bill was introduced by Mr. Banks of Massachusetts, and the opposition was led by Mr. Shellabarger, of Ohio. The latter gentleman made an able argument against the grant of the appropriation until the Austrian patent laws should be so modified as to protect American inventors; but the bill passed without this proviso, so that it now remains for the Senate to determine whether we shall allow this golden opportunity of testifying to the world our condemnation of these unjust and oppressive regulations o escape.
The amendment offered by Mr. Shellabarger, although it is a step in the right direction, hardly, in our opinion, covers the entire requirements of the situation. What we need and insist upon is not a protection merely for the limited dura. tion of the show, but a permanent guarantee, ratified in solemn treaty obligation that the rights of our citizens in Austria, in respect to their inventions, shall be upheld the same as are the rights of Austrians in this country.
We earnestly trust that an amendment framed in this view will be introduced and favorably considered in the Senate. It is but a simple act of justice, it works no hardship to any one, 'and secures to us advantages that are inestimable. We have repeatedly shown that, in other continental countries, patent laws exist as oppressive as those of Austria. The latter nation is deeply anxious to procure a full representation of American genius, and, were such an amendment en. acted, there is little doubt but that the objectionable features
in the Austrian statutes would be repealed. This done, we should have gained an entering wedge toward ameliorating the similar laws of other countries, and eventually we should succeed in obtaining for our countrymen as full privileges in Europe as in the United States.
Our representatives, in advocating the appropriation, seem to look no further than the so-called protective certificate to be granted to exhibitors. It should bedistinctly understood that the certificate simply purports to afford protection for a year; that is, it saves the inventor from the loss of his right to a patent during the period of the Exhibition. There is nothing to prevent an Austrian from gaining all possible knowledge regarding an idea, completing every preparation,
and at the end of the specified time putting all he has thus and at the end of the specified time putting all he has thus
accquired into practical execution. We have shown that notling can be accomplished by bringing infringement suits, and that to this piracy there is no check. The certificate therefore merely permits the inventor to delay his application for a patent one year, and leaves him precisely where he
would be in the beginning, did it not eaist. He must accordwouid be in the beginning, did it not exist. He must accord-
ingly then manufacture within the succeeding twelve months precisely in correspondence to his drawings, etc., and comply with sundry other similar regulations, or his patent, if he gets oue, is null. On the other hand, an Austrian coming to the United States with a new invention may, by our law, make, sell and exhibit it all over the country for two years, and at the end thereof obtain a patent for seventeen years giving hiru complete and exclusive property in his device. He is wat compelled to work his invention within any specified period, but is at liberty to do precisely as he pleases
his patent, which remains good for the term granted.
It is but little appreciated in this country to what an im mense extent Americau inventions are manufactured abroad, and what vast benefits the people of Europe reap from our ideas. The continent is full of devices of American origin, and every new improvement of value is immediately adopted there, pirated and manufactured to the exclusion of the American inventor. The scientific publications of the continent are full of extracts from American patents, which they issue, with engravings, of all our latest and best improvements, which are promptly put in use. Of the dozen or more steam engine exhibitors from Austria, Prussia, Russia, Belgium, and other countries in the late Moscow Exhibition, nearly every one displayed Corliss engines of their own manufacture, made after the patierns used in Providence, R. I. ; the entire steam power of the exhibition was supplied by these engines. In Russia, Prussia, Belgium, and Ausria, the McCormick reaper, Howe sewing machns, Hotch kiss' projectiles, Colt's revolvers, Hoe's and Bullock's steam presses, Danks' puddlers, Westinghouse's railway brakes and hundreds of other American designs are well known, and many of them used; and without doubt large numbers of our best inventions of the most recent dates will be found among the entries of foreign manufacturing houses in this Vienna show.
We should have been glad had the motion in the House to strike out the appropriation altogether prevailed. Not that we do not appreciate the value of the Exposition, or fail to believe that, in the words of a contemporary, we " ought to join in all peaceful measures which belong to international cour tesy and promote mutual goodwill," but simply to publish to the world that the United States failed to take part in the Austrian Exposition, because Austria has refused to do jnstice to American inventors. This it is yetin our power to do, and the amendment that we advocate should be so worded as to deny the payment of the appropriation until the Secretary of State receive official notification of the alteration of Aus trian laws.
Our leading position among industrial nations, our wor!dwide renown as a people of transcendent inventive genius and our unexampled progress in civilization during the past century are due in great part to the stimulation and encour agement which our laws give to the inventor, teaching him to study new arts and processes, to develope new ideas and m the end to turn the results of his thought and labor into substantial profit. Is it not evident that the stimulus, thus afrorded, would be infinitely increased could we make a
world, instead of a country, the market for our productions? world, instead of a country, the market for our productions?
cian it be controverted that the direct advantages to our people wou id be invaluable, did they possess an exclusive and guaranteed property in their own original ideas in foreign countries? Or is not the fact plainly manifest that, were such rights secured to the United States and other people forced to come hither for the most useful improvements in science and art. we should placeall other nations under contribution, In view of such benefits, the acquirement of which is so easily begun, it seems impossible that our legislators will neglect se plain a duty as to secure for the country the advantage which is now within their grasp.

SUNDAY RAILWAY TRAINS.

A few weers ago we pullished a paragraph, copied from a reliable source, to the erfect that the Brotherhood of Locomotive Enginecrs, in their recent St. Louis convention, had passed a resolution having in view the entire stoppage of railway trains on Surday. We commented on such action a
unwise, showing that while we were as decidedly in favor o the general rost from labur, on the part of engineers, of one day in seven, as anyboay courd be, still we considered it to be a matter of public necerssty that certain trains should be run on the Sabbath.
The New York Daily Trinness, in commenting upon our remarks, says:
"Is it not strange that the shaibilime amenican should
be in antagonism to this Brotherhood of Locomotive Engineers, which recently passed resolutions in St. Louis in opposition to the running of Sunday railroad trains? The Scr entific American believes in running them for mails, pas sengers, and freight as a necessity. The Brotherhood believes in no such necessity; but that the running on Sunday is a breach of the divine command and an infraction of public morals. We are glad that the Brotherhood are not afraid to speak their minds in favor of all classes connected with rail roads having the rest of the Sabbath. Right is might and must prevail."
The Wituess, if it wishes to give reliable testimony upon this subject, should inform itself better before attempting to speak. The Scientific American did not urge the running of freight trains on Sunday, but spoke of the necessity of running a limited number of trains for the transit of th mails and the carriage of such passengers as from necessity had occasion to trayel on that day. The Scientific Amer can further alleged that it was no more sinful to travel in case of necessity on a railroad, which was a public road, on Sunday and in a railway car, than to ride on an errand of necessity in an ordinary buggy on a common road on the Sabbath.
The Witness is also mistaken as to the objects of the Brotherhood. We have received a letter from Mr. Charles Wilson, G. C. E., of the Brotherhood, from which it appears that the engineers do not seek to stop all trains on Sunday, but only the unnecessary trains. He states that on some roads more traffic is run on Sunday than on any other day of the week, and it is to prevent this and cause the Sunday trains to be restricted to such as are actually necessary that the Brotherhood have resolved.
In this laudable endeavor the Brotherhood well know that they may count upon the aid of the Scientific American, and to this end we will thank them to give us the names of the roads and their controlling officers who impose in the manner stated by Mr. Wilson upon their engineers.
Inasmuch as the Brotherhood di believe with us, as represented by Mr. Wilson, that the running of certain trains on Sunday is necessary, the Witness' fervid puff of the piety
of the Brotherhood, as relates to the breach of the Divine of the Brotherhood, as relates to the breach of the Divine
command and the infraction of public morals, is entirely wasted.

THE NEW YEAR.

The present number of the Scientific American is the first for the new year of 1873, and we would remind those of our readers who have not already done so that their subscriptions should be at once renewed. This will prevent interruption in the regular coming of their papers, and save them the risk of losing any numbers. One of our subscribers says that he regards the loss of a single number of the Scientific American like time lost in the prime of life. Send in your subscriptions as fast as possible. Terms, $\$ 3$ a year. One copy of the Scientific American for one year and on
$\$ 4.50$.
$\$ 4.50$.
Som
Some idea of the interesting and valuable character of the Science Record may be gleaned by reference to the general statement of contents published in our advertising columns. It will be noticed that every department of science is to be represented. Among the biographical illustrations several fine steel plate engravings are given, among which are portraits of Professor Henry, af the Smithsonian Insti-
tute; Professor Pierce, of the Coast Survey; Professor Dana of Yale; portraits of Professor Morse, as he appeared in the prime of life, soon after the completion of the first telegraph line, of Professor Tyndall, who is now lecturing here, and other distinguished men of science.

RAPID TRANSIT IN NEW Yu

The New York Times does not look with favor upon the proposition to use steam upon the street cars, in lieu of o accident withoun that there would be increased rabily thinks that the only way to realize fast traveling in the city is by means of tracks removed from the surface. The two ends of the metropolis are now twelve miles apart, and the people suffer great inconvenience for a lack of quick means f communication. The discussion of the various plans by which this may be best effected is a matter of interest, not only to New Yorkers, but to the people of all large cities.
Nothing so stimulates business, gives value to property, and Nothing so stimulates business, gives value to property, and
promotes the comfort of city life, as prompt and safe modes promotes the comfor
It is only by an elevated or an underground railway that apid transit can be realized in New York. The relative cost of these roads is about the same, namely, from one million to one million five hundred thousand dollars per mile. The elevated road is ineritably an obstruction, in whatever street it is built, for it is simply an immense bridge, which no one wants before his doors. On the other hand the underground railway is entirely out of sight, does not interfere with the streets, and disturbs no one. In London a shopkeeper in one
of the main streets was asked by an American where the of the main streets was asked by an American where the
underground railroad passed. He said he did not exactly know, but he believed it was on the next street back, a block distant from his premises. But the truth was, the railway n question passed directly in front of ihe man's door, forty feet below the surface of the grơnd; and the shopzeeper, who had moved in subsequent to the building of the road, was not aware of the fact, although three hundred trains a day were regularly passing. It has been aflirmed by experienced engineers in this city that a single omnibus, clattering
and makes more noise on each trip than would all the trains of an underground railway during an entire day, if built on that street. Well'made cars slide along very smoothly over properly constructed track
One and a half millions of dollars a mile is an immense cost for a city railway, and to insure its pecuniary success the first essential is to locate its route where its cars and accommodations will be constantly under the public eye, readiy accessible to the largest portion of the population. Such was the er, before the Parliamentary Committee in respect to the London underground railways. It is evident that the route under Broadway in this city is the natural and proper line for such a road.
A variety of charters have been granted for steam roads in this city; but their routes are faulty, and none have been built, save the post railway on Greenwich street, which is far away from Broadway, and has proved a bad bargain to its original stockholders. They have not only lost their charter, butevery cent of their originalinvestments, amount ng, it is said, to over one million of dollars in cash.
Another grand scheme was the Viaduct or elevated railway, the charter for which was granted to the notorious Sweeny \& Co. The routes proposed were on side streets, east and west of Broadway. Although five millions of dollars were to be taken from the city treasury to help tho scheme, still such was its enormously expensive character, so defective the route, and so greatly was it disapproved by the public, that it was impossible for the corporation to pro cure subscriptions enough to start the thing.
Three other charters were granted last year, one to Mr Vanderbilt for an underground road on Fourth avenue, east of Broadway, another to Mr . Gilbert for an elevated railway to run on a side street either east or west of Broadway, ac cording as certain commissioners may determine; and an other to Mr. Swain for a double road, with both elevated and undergrousiu tiacks, to run on the side stre is west of Broadway. - There seems to be no great abstacle to the pio curins charters for New York railways. The grand differ y is to secure in right route.
Of the various plans for fast railwaye in this city, that of the Beach Pneumatic Transit Company for an atmospheric railway under Broadway, has been the most carefully examined and the most widely approved by the public. It has been shown that, for a cost of about one million dollars per mile, a double track railway can be built from the City Hall to Harlem which, with certain lateral branches, will give to our citizens the luxury of rapid transit all through the county. At the inception of this enterprise, the trustees of the corporation caused the most careful investigations to be made in respect to route and the method of building, and the unanimous conclusion was that the Broadway route was not only the most economical for construction, but afforded pro mise of accommodating a larger number of people than an: ther line that could be selected.
Great pains were taken to accumulate reliable evidence Nearly all on the leading architects in New York were con sulted in the matter, especially those who had had occasion to erect important buildings on the above thoroughiare With an almost unanimous voice they joined in certifying that the railway could be built and operated on Broadway on the plan proposed by the company, without any moiestic tion of or injurious effect upon adjoining buildings. The advice of the most eminent and experienced civil engineers was also taken, among whom were A. W. Craven, Esq., C. E. George S. Greene, Esq., C. E., Major General J. F. Barnard U. S. Engineers, General Charles K. Graham, C. E., all of whom, after personal examination, certified in the most $!$ n qualified terms that the work proposed by the compais. could be executed and the railway worked without injury to adjacent property.
The advice of prominent English engineers was also taken upon the subject, among whom were Mr. F. E. Cooper, oi the London Underground Railway, and Charles Douglas Fox, Esq., C. E., the well known railway constructor and engineer of London; all of whom fully coincided with our own engineers and architects. Mr. Fox did not merely write upon the subject, but had come to this country and made a per sonal examination of the route.
To illustrate the matter still further, and remove every lingering prejudice against the work that might exist in the minds of property owners, the company determined to con struct a short working section of railway under Broadway This they were enabled to do under the provisions of their original charter, which gives them the right to place pneu natictubes under the streets for carrying freight and par cels. The company accordingly secured premises in the lower part of the large marble building at the corner of Broadway and Warren street, and, having constructed a novel boring machine, set it to work to excavate a railway tunnel down Broadway, below the foundations of the buildings, under the water pipes, sewers and gas pipes, without ings, under the water pipes, sewers and gas pipes, withou
disturbing the surface of the street, and with all the omnibuses, trucks, and the enormous traffic of the street going on directly over the heads of their worlmen. So carefully, expeditiously, and successfully was this work executed that the entire section of the tunnel, which is between nine and ten feet in diameter, from Warren street down Broadway to Murray street, was almost completed and the track laid be fore the newspaper reporters or the public were informed that anything of the kind was in progress. The work was then finished up, a large blowing enging put in, a handsome passenger. car placed on the track, and the railroad set in opcration. Ail this was done at an outlay of about a quarter of a million dollars. The admirable working of this short of a million dollars. The admirable working of this short
railway has been before descriked in our co'mans. It will
be sufficient to say that, by means of the blowing machine, a current of air is impelled through the tunnel, and that it drives against one end of the car, carrying it along, just as the wind acting upon the sail of a vessel gives it motion. The car, on reaching the lower end of the tunnel, actuates a telegraph signal, the air current is reversed, and the car is driven back. Thus back and forth, indefinitely, the car is moved by atmospheric pressure, while the constant driving of the air current through the tunnel maintains a pure at. mosphere and perfect ventilation. The car carries twentytwo passengers, moves with but little noise, and there is no gas, smoke, dust, or cinders to interfere with one's comfort. Many thousands of our citizens have enjoyed the ride under Broadway in the pneumatic car, and this method of traveling is not only well known here, but is highly appreciated. The works of the Transit Company on Broadway form one of the most interesting attractions in New York. For city pur-
poses, this system of car propulsion is admirable. The exposes, this system of car propulsion is admirable. The ex-
pense of its maintenance is estimated to be somewhat higher than the locomotive; but the pneumatic plan is so decidedly superior, in point of comfort and health to passen gers, that the trustees had no hesitation in giving it preference. Its adoption was also recommended by the London engineers, where, as our readers will remember, there is a smaller pneumatic railway of between two and three miles in length, which has been worked successfully for several years past. Several miles of other small pneumatic tubes are also now in use in London for the transmission of tele graph messages between important points.
After the Transit Company had, at the great expense mentioned, completed their working section of road under Broadway, they applied to the State legislature for an amendment to their charter, authorizing them to carry passengers and proceed with the work. The members of the legislature visited the city, inspected the works, rode in the car and became thoroughly satisfied of the excellence of the plans. Both branches of the legislature, by very large majorities, passed the bill, and it was sent to the Governor, Hoffman, for approval. The notorious Sweeny \& Co. were then in the zenith of their power, and the Governor was the pliant tool of their wishes. At their solicitation, he vetoed
the bill and then promptly gave his approval to the abortion the bill and then promptly gave his approval to the abortion
known as the Viaduct bill, of which the public disapproved, and in which Peter B. Sweeny and his immediate confed erates figured as chief incorporators. Last year the legisla ture again passed the Beach Transit bill by increased major ities in both houses, but Governor Hoffman repeated his veto. A new governor, General John A. Dix, a man of much higher capacity, takes his seat in the gubernatorial chair on the 1st of January, and the many friends of this excellent enterprise believe that he will be glad to give it his approval In brief, then, the actual condition of the rapid transit busi ness in New York is this: The only plan and route that fully meets the wants of the people that has been thoroughly examined, approved and endorsed by property owners along the route on which it passes and by the general voice of the public, is that of the Beach Pneumatic Transit Company. At a heavy expense this Company has already begun the work, and stands ready to prosecute it with the greatest vigor as soon as the necessary authority of law is granted. No good reason exists why that authority should be withheld. It is a shame that the Company should be delayed and hindered in carrying forward this important enterprise in which so many of our leading citizens are interested, and by which the public convenience will be so greatly promoted. The Company will urge their petition before the new legislature, and, it is to be hoped, will this time succeed.

To Mail Subscribers

The regular receipt of the Scientific American by mail is sufficient evidence to old subscribers that the time for which they prepaid has not expired.
To new subscribers, the regular receipt of the paper is an acknowledgment that their money has been received at the office of publication. It is a rule of the publishers to discontinue the paper when the time is up for which it is prepaid.

WORE has been commenced on a new railway tunnel through the rocks of Jersey Hights, at Weehauken, N. J:, on the Hudson River, opposite New York. The tunnel is to be fifty feet wide, about a mile in length, and will have four railway tracks.

A CORRESPONDENT, writing for some missing back num bers, says that the loss of any copies of the Scientific American is like lost time in the prime of life.

Science differs from learning in being prophetic; whereas learning is a mere matter of the memory.
patent office decisions.
Patent Wrench.
 Legertr. Commissioner:

Legartt, Commissioner:

$\underset{\text { For the mark. }}{\text { Trader }}$

for harvisters.

Saw Mill Carriage
 A reheartng in acase or interferencee wrill only be.gral ing of mertis on on would entitle a mover to a new trial an anit at law.

 I have no donbt, aftcr an examination of auth orities, thatin a parallel casenew trial would be unhesitatingly re fused before the courts, anditinust be

DECISIONS OF THE COURTS
United States Circuit Court, District of Massachusetts. Copytight.

upreme Court of the United States Steam Engine Patent.

Facts for the Ladies. - Miss Ellen Corbett, Brooklyn, N. P., has used her Wheeler \& Wilson Lock-Stltch Machine since 1858, doing the entire sew-
ing for thirteen adults; it is as easily used as a hand needle. A No. 2 needle ing for thirteen adults; it
did all the sewing for 10 years; ; it has paid for itself many times over. and they would not go back to hand-sewing for ten times its cost. See the new Improvements and Woods' Lock.Stitch Ripper.

Thusimes aud tersomat.

The Charge for Insertion under this head is One Dollar a Line. If the Notic
exceed Four Lines. One Dollar and a Ealf per Line will be charged.
" Minton \& Co.'s Tiles," by appointment, Gilbert Elliot \& Co., Sole Agents, No. 11 Clinton Place, 8th St., New York.
Gear Wheels for Models. Illustrated Price List free. Also
Millstone Dresser, J. B. Harris Patent, but little used, in per fect order, for 845. Shoemaker \& Carter, Rush, Susq Co., Pa.

Lyman's Gear Chart. 50 c. E. Lyman, C. E., New Haven, Conn Spur and Bevel Wheels and Spindles, of great durability, cast to order by Pittsburgh Steel Casting Co. All work warranted.
Wanted-(200) Two hundred pounds Load Stone or magnetic Iron ore-must be best quality. Address James Foster, Jr., \& Co., Optlclans, Cincinnati, Ohio.
English Patent-The Proprietors of the " Heald \& Cisco Centrifugal Pump" (triumphant at the recent Fairs), having their hands full at home. will sell their Patentfor Great Britain. Just obtained. A great chance To Inventors-Wanted, by a responsible Philadelphia firm the right to manufacture, on royalty or otherwise, some useful invention in Iron. Address, giving description of article, Artizan, West Philadel phia P.O., Pa.
Wanted-A situation as an apprentice in a machine shop. Address H. J. Scott, Fletcher, Vt.
For the best Presses and Dies and all Fruit Can Tools, apply to Bliss \& Williams, 118 to 120 Plymouth St., Brooklyn.
Wanted to purchase six large Windmills. Parties who are in a position to make estimates for same, will pleaseaddress W. R. Grace \& Co., 47 Exchange Place, P. O. Box 5383.
Wanted-A new or second hand steam or tilt hammer, adapted for welding or forming scrap and puddled iron balls or blooms. Tilt ham.
mer must be operated by belt easily and economically. Address W ., Box 1971, P. O., New York.
Painters and grainers now do their best graining quickly with perforated Metallic Graining Tools. Address J. J. Callow, Cleveland, Ohio Wanted-An energetic, competent man as foreman in Handle Factory. Wolverine, Niles, Mich.
For Sale-One Iron Planer with tools and attachments, used only three months : planes 8 ft , long, 3 ft . sq. J. R. Abbe, Manchester,N.H. American Boiler Powder, for certainty, safety, and sheapness, "The Standard ant1-Incrustant." Am. B. P. Co.,Box 797, Pit "burgh, Pa. For Circular of Surface Planers and Patent Mitre .Jovetailing Machines, send to A. Davis, Lowell, Mase.
Langdon Adjustable Mitre Box, with 18, 20, 22 or 24 inch Back Saw. Address D. C. Rogers. Treasurer, Northampton, Mass. Scale in Boilers. I will Remove and prevent Scale in any Steam Boller, or make no charge. Send forcircular. Geo.W.Lord, Phlladelpha,Pa. Flour Barrel Machinery Wanted-The best Crozier and Chamferlng Machine-A Machine to Shave flat hoops-A Labor-saving Truss Ma chine-The most practical form to set barrels up.
skilled labor. Address P. O. Box 2533 . Buffalo, N. Y.
Sewing Machine Needle Machinery, Groovers, Reducers,Wire Cutters, \&c. \&c. Hendey Brc's, Wolcottville, Conn.
Gauges, for Locomotives, Steam, Vacuum, Air, and Testing purposes-Time and Automatic Recording Gauges-Engine Counters, Rate
Gauges, and Test Pumps. All kinds fine brasswork done by The Recording Gauges, and Test Pumps. Alkinds ine brasswork
Steam Gauge Company, 91 Liberty Street, New York,
Steam Engines, Boilers and Pumps, Locomotives and CarsNew and Second Hand. Dulles \& Co., 424 Walnut St., Philadelphia, Pa.
Ross Bro's Paint and (Grain Mills, Williamsburgh, N. Y. Dobson's Patent Scroll Saws make 1100 strokes per minute. Satisfaction guaranteed. John B. Schenck's Sons, 118 Liberty St., N. Y. The Berryman Manuf. Co. make a specialty of the economy nd safety in working Steam Boliers. 1. B. Davis \&Co., Hartford, Conn. Davis Recording Gauges. New York Steam Gauge Co.,46 Cortlandt St.,N.Y Peck's Patent Drop Press. For circulars, address the sole manufacturers, Milo, Peck \& Co., New Haven, Conn.
Dickinson's Patent Shaped Diamond Carbon Points and Ad justable Holder for dressing emery wheels, grindstones, etc. See Scientif
For Steel and Iron Set Screws, send to Reynolds \& Co. for Price List, New Haven, Ct.
Four Brick Machines, Combined with Steam Power (Winn's Address the manufac turers, Johan Cooper and Co., Mount Vernon, Ohic
Absolutely the best protection against Fire-Babcock Extingulsher. F'. W. Farwell, Secretary, 407 Broadway, New York.
Hydraulic Jacks and Presses-Second Hand Plug Tobacco Machinery. Address E. Lyon, 470 Grand St., New York.
Steel Castinyss "To Pattern," from ten pounds upward, can beforged and tempered. Address Collins \& Co., No. 212 Water St.. N. Y. Heydrick's Traction Engine and Steam Plow, capable of as cending grades of 1 foot in 3 with perfect ease. For circular and infor mation Address W.H.H.Heydrick,Chestnut Hill,Phila.
The Berryman Steam Trap excels all others. The best is always the cheapest. Address I. B. Davis \& Co., Hartford, Conn. T. R. Bailey \& Vail, Lockport, N. Y., Manf. Gauge Lathes. Williamson's Road Steamer and Steam Plow, with Rubber Tires.Address D. D. Williamson, 32 Broadway, N. Y., or Box 1809,
Belting as is Belting-Best Philadelphia Oak Tanned. C. W Arny 301 and 303 Cherry Street, Philadelphia, Pa
Boynton's Lightning Saws. The genuine $\$ 500$ challenge Will cut five times as fast as an ax. A six foot cross cut and b
E. M. Boynton, 80 Beekman Street, New York, Sole Proprietor.
For Steam Fire Engines, address R. J Gould, Newark, N J. Brown's Coalyard Quarry \& Contractors'Apparatus for hoisting and convegingmaterial by froncable. W.D.Andrews \& Bro.414 Waterst.N. Y For Solid Wrought-iron Beams, etc., see advertisement. Ad dress Union Iron Mills, Pittsburgh, Pa.., for lithograph, etc.
Mining, Wrecking, Pumping, Drainage, or Irrigating Machinery, for sale or rent. See advertisement, Andrew's Patent, inside page. Presses,Dies \& all can tools.Ferracute Mch.Wks,Bridgeton,N.J Machinists ; Illustrated Catalogue of all kinds of small Tools and Materlals sent free. Goodnow \& Wightman, 23 Cornhill, Boston, Mass Gatling guns, that fire 400 shots per minute, with a range of over 1,000 yards, and which weigh only 125 pounds, are now being made a Colt's A. . Hattord, Conn
A New Machine for boring Pulleys, Gears, Spiders, etc. etc. No limit to capacity. T. R. Balley \& Vall Lockport, N. Y.
The Berryman Heater and Regulator for Steam Boilers-No

Natectivitit

[We herevoith present a series of inquiries embracing a variety of topics of greater or less general interest. The questions are
prefer to elicit practical answers from our readers.]
1.-How can I do silver plating on carriage work with foil?
2.-How is canvas prepared for painting pictures on ?-J. c. J.
3.-Will some one tell me how horn is cleared or made transparent?-A. J.
4.-Will some one please inform me how shot guns are loaded so as to throw the shot closely?-A. J.
5.-Is there anything that will remove the taste of kerosene from a cask? ?-z.
6.-Can you inform me how to take the oil out of cotton ste in the quickest and cheapest manner?-J. C. W.
7.-Can you give a recipe for making paste to stick to bright tin without first roughing the tin; a paste that will not peel off?-B W. \& Co.
8.-What is the best size to use for gilding the engraved unes on or
W. H.C.
9.-Whatis the best and cheapest process for gilding pic ture frames, and how can I obtain the high polish or gloss on certain parts
of the gilt surface?
10.-What is the best means of cutting brass stencil plates with actd, and what is the proper material with which to cover the portions of the plate that are to be protected? J. J. C.
11.-Is i. possible to take ink stains from dressed stone? One of the fil ast buildings in our city has been defaced by the use of writing
fluid and some kind of syringe, in the hand of some spitefal unknown.-w. flutd an
D. g.
12.-How is the pearl work put on the many sided part of is the material obtained, and in what part of the world is it produced, and what is the process ?-C. D.
13.-Will some one tell me how thin, crooked ornamental patterns are made, such as stove patterns, column capitals, etc.? And how
are small castings made to have the appearance of bronze or copper, by are small castings made t .
14.-I have a lead cistern which leaks; the plumber says it is caused by the action of the water on the lead. It is supplied from a
well, and the water is not very hard. Do you know of any cement or paint well, and the water is not very hard. Do you know of any cement or
which will stop the leaks and prevent any further corrosion?-B. F.
15.-Does wood, after it has been thoroughly kiln dried and treated with a non-absorbent of moisture, shrink and swell with variations
in temperature, as iron, brass, zinc, and pipe metal do, and to what extent, In temperature, as iron, brass, zinc, and pipe metal do, and to what extent,
taking iron as the unit? What is the best non-absorbent to use to give a
hard and glossy inish? Would liquid glass answer the purpose?-A. A. D.
16.-I am building a cedar skiff and am desirous of making it as light as possible. Is there any preparation that I can use in the
riace of paint and ofl that willbe as good and weigh less?-J.H.R.
17.-What can I use for a light in a dark lantern for night hunting that wil
oils?-J. H. R.
18.-Carrthere be telescopic sights adjusted to a rifle barrel that would be of use in night hunting, at a moderate cost?-J. H. R.
10,-I want a substance like glue, mucilage, or varnish with which I ean give oak wood one or two coats, to keep it from burning,
or else make it burn very slowly. I want to mix up liquid fron with it. I or else make it burn very slowly. I want to mix up iqquid iron
don't mind if the wood burns, so that it burns slowly.-W.
20.-How can I make a fireboard for a grate front?, I have inished one, but it is wrinkled and full of folds. How ean I stretch the cloth
on the frame, and how can I paste the paper on the cloth so that it will on the frame, and how can
stretched smooth?-C. R.
21.-Will some one give a rule for laying out for dovetail_ ing on a bevel, say for a hopper for a grist mill, or the corners of a carriage
seat? Ifind very few mechanics who understand it.-T.
22.-I have a steam engine, cylinder of $1 \frac{1}{2}$ inches diameter, 3 inches stroke, which I wish to use for running a sewing machine, and perhaps some other small affairs about the house. How can I bulld a boller for 25 pounds pressure? Can I make one to go on a cooking stove, or would it be better to set a boflerinto a common cylinder atove,or to makea boller and furnace separate from any stove? What thickness of iron and how:large
should be the safety valve, and what should be the length of arm and the should be the safety valve, and
amount of the welght?-J. E. S .

SPECIAL NOTE.-Tbis column is designedfor the general interest and in

 struction of our readers, not for gratuitous replies to questions of apurely business or personal nature. We wotll publish such inquiries,
however, when paid for as advertisements at $\$ 1-50$ a line, under the head however, when paid for as ad
of "' Business and Personal."
J. B., of N. Y.-Your windmill can, we think, be patented. What is properly the damper in a stove? Is the movable plate next the pipe called the damper, or is the silding plate in the front which
shuts off the air properly the damper? I contend the plate which turns shuts off the alr properly the damper? I contend the plate which turns the valve in front is the damper. The dictionaries are not explicit enough designate the movable plate or dish within or near the smoke flue as the
damper, and the valve in front as the draft regulator. The plate that sends damper, and the valve in front as the draft regulator. The plate that sends
the fire around the oven might be called the oven damper or the oven reg. the fire around the oven might be called the oven damper or the oven reg.
ulator. It makes ittle difference what name you give to mechanical parts provided people understand what you mean when you speak
Have any experiments been made with a sheet iron cylinder, flled with hydrogen or coal gas for the purpose of making an electromagnetic hellx out of it? If not, would you please to give me your opin-
ion, whether such a helix would heat the gas, and cause it to explode, if lon, whether such a helix would heat the gas, and cause it to explode, if
there were a battery of 36 cells attached to 1 t, or whether it would have no ffect on the enclosed cas? The knowledge of whether it would have
any effect on the gas would be a step forward to an Important invention. D. M. B. Answer: Experiments have been made. A sheet iron cylinder
will not act as a helix with such a battery. The gas would not be percep-
tibly affected tibly affected, and would not explode if ft were heated. It requires to be
mixed with oxygen in proportion approaching 2 volumes of hydrogen to mixed with oxygen in proportion ap.
one of oxygen to make it explosive
s metallic antimony a good conductor of electricity for a positive metal in a galvanic battery, and what is its conductivity relative
to silver or copper? What number of copper wire would it take for an electro-magnet 3 inches long with a core of X inch or 1 inch diameter?--C. B. Answer: Owing to the action of the actds, antimony would be a very poor material to use in a galvanic battery. In a thermo or dry batsilver or copper. As to magnet, make your core a little longer, say 6
inches, for the diameter you mention. and use No. 20 cotton or silk cor ered copper wire
M. M. S. asks: Suppose 130 is the larger, and 28 the smaller gear on a lathe, can a screw be cut coarser than sadd gears will cut on
same lathe without larger or smalle gears? Is so, how can it be done? Answer: There can no coarser threa
the use of intermediates on a stud.
t is argued that a person travelling, either eastward or west ward, around the world-say at the equator-would find on arriving at his
starting point that he had elther gained or lost one day of the week. Is starting point that he had elther gained or lost one day of the week. I
this so?-J. R. T., Jr. Answer: Yes. Make a calculation on a terrestrial globe, and you will see for yourself.
S. H. G. says : In the schedule of charges adopted by the Institute of Architects, June 4th, 1866, I find the following: "Drawings as
instruments of service are the property of the instruments of service are the property of the architect." I wish to know
how the architect can recover plans after sach service. Answer: In the same manchirect in can recover plans after such service. Answer: In the same manner in which a person may recover any other property of his,
which may be improperly detained by another,- by due course of law. I have in my possession a stone, something similar, I presume, to diamond. Enclosed is a small plece, which I hope you will give
a thorough examination. It has been tested by several in this place and a thorough examination. It has been tested by severalin this place and Whether itis a diamond or not.-J. M. McN. Answer : The fragment sent
is from a pure, limpld rock crystal; this it is, and nothing more. of no E. B. M., of Tenn.-The crystals are sulphuret of iron o
. H., of N. J.-The specimen you send is shell marl, that is a mixture of clay and lime containing small blvalve shells.
J. A. B.-The mineral you send is chalcedonic quartz, of no ecial value,
W. S. H. says: How can I arrange the exhaust pipe to my engine, so as to get the greatest degree of heat in the water in the tank; And if I use a coll or worm, do I lose any power from back pressure? Also,
what would cause blisters on the bottom of the boller? be considered dangerous with plenty of water in the boller? Answer To get most thorough utilization of the heat of your exhaust steam, lea it into a recelver near the lowest point and carry off such as remains un condensed by a pipe from the top. Sprinkle your feed or other water to
be heated, by a rose fixed in the upper portion of the recelver. The feed be heated, by a rose fixed in the upper portion of the receiver. The feed
will thus be heated to the bolling point if properly arranged. Place your pump so low, or the recelver so high, that there will be a good head of pump so low, or the recelver so high, hiag hore wha be a good head of
water above it, or you will find pumplig hot water a difficult matter. If you must draw and force your feed water with a single pump, you will be compelled to use a worm heater. If well proportioned, it ought to do good work without seriously increasing back pressure. Glve it plenty of surface, and do not make the pipe too small. Large binsters are alway
dangerous.
S. W. H. says: Your decision between R. and W., page 394, In the matter of a balance wheel keyed on dlagonally to the shaft, a
shown in the figure. seems to me unsound. shown in the iggure. seems to me unsound. You admitt that it will alway "thits to turn itself uncile axis coinclaes whr that of the shaft, and say not necessarily produce unsteadiness in the shaft." Now unless the shaf be infinitely inflexible (which was not in the proposition) it must yield to
the unlimited effort to bend it ; and if the shaft does yield it become the unlimitted effort to bend it; and if the shaft does yleld it becomes
crooked, and if crooked a greater welght will be thrown on one side of its crooked, and if crooked a greater weight will be thrown on one side of its
axis than the other. In which case I think you will hardly maintain that axis than the other. In which case I think you will hardly maintain that
its steadiness would not be affected under high motion. If machinists may key on their balance wheels at 45 degrees to thin axes and furnish thafts crooked to any degree without affecting the steadiness of the mo
tion, think that somebody deserves a patent for the discovery. Answer If our correspondent will try the experiment, even with the extreme case supposed by him. he will find our decision confirmed, provided that his bearings are not left loose, if he experiments with a horizontal shaft. Witha
vertical shaft, he may even leave his bearings quite loose and st111 obtain steady motion, unless the driving force act as does gravity in the first example. Cam shafts often illustrate this case, and our correspondent will readlly be able to confirm what has been stated. We shall be glad to publish the result of his experiments should he take sufficient interest in the
subject to make them.
H. B., page 373, Vol. XXVII., wants the working part of rammer or scraper, to work in the ground among gravel. Chilled cast iron able steel can be made, and far cheaper. It can be had in almost any ca wheel foundery where No. 3 cold blast charcoal fron is used. Let H. P. be chilled. If he wants holes in the chilled part, they should be round or val, not square, as a square corner affords a fine starting point for a frac ture. Those holes should be cored. It is very hard to drill chilled cast ron'unless provided with suitable tools.-P. McC., of N. J.
J. W. B., page 362, Vol. XXVII., wishes to know how to make good clder. Take good sound apples (the sweeter the apples, the richer
the cldar; although apples slightly tart make clder of the best flavor) late in the fall, the later the better, before freezing. Early apples and wind falls may do for vinegar, but will not make clicer that will keep any length
of time. Fill the barrel full, put in the cellar, take out the plugand let the of time. Fill the barrel full, put in the cellar, take out the plug and let the at the same time. In this way most of the pomace is thrown out. This however, is not very essential. After the ctder has worked about ten days, take a long sllm bag that, when flled, will go in at the bung hole,
put in about one pound of English mustard for every 30 gallons, and drop put in about one pound of English mustard for every 30 gallons, and drop
into the cider, then cork the barrel air tight and let it stand about three nto the cider, then cork the barrel alr tight and let it stand about dire
weeks, then draw offinto another barrel. Or put back in same barrel after thoroughly cleansing it; see that the barrel is full, then cork tight. Cider treated in this way will remain unchanged until warm spring weather, When it may be bottled for summer use. Cider will gradually get hard if
the barrel is daily drawn from ; in that case bottle when the flavor just the barrel is dally drawn from ; in that case bottle when the filavor just
suits. Sulphtte of lime kills the life of cider and renders it as flavorles sults. Sulphite of lime kills the life of
and worthless as dish water.-E. H. R.
To W. S. H., page 362, Vol. XXVII.-I have seen as smoky days in July as ever Yaw in the fan, and several burning theory will hardly do for July.-E. H. R.
To tin brass pins, etc., the goods are to be cleaned free from oll ; then an earthen pot is to be prepared. First a thin sheet of block tin
is to be put at the bottom, then a steam pipe is to be introduced nearl down to the same; next put a layer of the goods, then a sheet of tin a before, next more goods, and so till it is flled. Then a fll up with water just enough to keep bolling. After whitening, rinse in clear water, and pass through saw dust. In a small way, I have whtened ordinarytinner's ware by covering with tin foil, and boiling over the fire, filling up the water as
it evaporated.-W.A.B.

COMMUNICATIONS RECEIVED.

The Editor of the Scientific American acknowledge with much pleasure, the receipt of original papers and con tributions upon the following subjects:
On Bursting Strains of Boilers. By T. W. B. and E. E.
On a Geometrical Problem. By H. B.
On Vulcanized Rubber and Rubber Belts. By A. E. V. E. On Certain Remarkable Effects of the Solar Rays. By G. R. On Perpetual Motion. By W. J. A.
On the use of Belts for Machinery. By W. G. B.
On the Action of a Balance Wheel placed out of right
ngle on its Shaft.-By H. C. K. ngle on its Shaft.-By H. C. K.
On Scientific and Mechanical Possibilities. By J. E. E.
On Steam Presssure. By F. G. W.

Gerent sumericat and furcign ceatents.

nder this heading we shall publis. nent home and foreign patents.

Spring Bad Botrou.-Henry E. Maker, South Framingham, Mass.-The SPRiNG BED Bornt.-Hs to furnish a spring bottom for beds; and it con-
object of this invention is
sistsin slats resting upon pins which pass loosely through holes in cross ists in slats resting upon pins which pass loosely through holes in crings.
bars. The ends of the pins rest upon wires which connect pairs of springs. The slats are placed longitudinally or at right angles with the cross bars on form to the tenston of the springs and weight on the bed.
Sprine Bed Botton.-John Ralston, Mansfield, ohio.-This invention Spring Bed botrou.-John Ralston, Mansfield, Ohio.-This invention
as forits object to furnish an improved spring bed bottom, and it consists In two sets of slats, upper and lower, held apart by cross bars having be-
tween them splral springs. Sald cross bars as well as the slats are elastic tween them spiral springs. Said cr
and give farther spring to the bed.
Garbage Box.-Moritz Bacharach, of New York city.-This invention reates to a new garbage box, which is to be placed upon the sidewalks near
ane gutters of streets in ctiles and towns, and within which, to some extent the gutters of streets in cities and towns, and within which, to some extent,
the moisture contained in the offal will be separated from the solld matter and ejected into the gutters. The invention consists in making the garbage box with an opening in the top and with a perforated false bottom, and in rranging on Its side a door abore the false bottom and an opening beneath he same.
Fird Watre apparatus for Steam Boilerg.-John W. Youman,
Mobile, Ala.-This invention relates to a new and improved mode of intro obile, Ala.-This invention relates to a new and improved mode of introducing feed water into steam boflers. The feed water pipe passes through
the rear head and extends forward to near the front head of the boller, and returns back to and through the rear head. This pipe is lecated at or near the water line, and near the shell of the boller. The feed water, in passing through and before it reaches the return portion of the pipe, which is perforated, will become heated to near or quite the bolling point, and the sedi-
ment contained therein will be deposited in the pipe, and may be blown off rom time to time through a a mall blew off pipe extending through the rear oflerhead. This perforated tube may be largerin dlameter than the other part, and may be arranged in the bofler so as to be just submerged. In this
position it will serve as a surfaceblow off by shutting off the feed water.
Fenor.-Edward an arrangement of ralls, posts, and braces to form a cheap, strong, and durable, yet easily transported, fence. The corner post consists of fou aprights, connected together by transverse bars, extending outward later-
ally in different directions so as to support the braces. The uprights are also ally in different directions so as to support the braces. The uprights are also
connected together by ralls, upon which the ralls of the fence rest, the end of the ralls being notched and held down by wires. The uprights of the post re placed at a suffictent distance apart to admit the ralls, and allow the fence to be extended at right angles in elther direction. The other posts
aremade in a similar manner, but with two uprights, with braces extending remade in a similar manner, but with two uprights, with braces extending each antecton to keep the fence upright, except that, at properintervalsre added. The fence may be made with any desired number of ralls, and each one may be removed separately, so that a gateway may be made be ween any two postsfor the passage of teams, stock, or for other purposes.
 o a new construction of bed, sofa, and lounge bottom, which is very light racefuland elastic, and at the same time durable and, cheap to make. The vention consists in the arrangement of wire springs, clasps, and a wire o ends formed into hooks. The outer ends of these spritugs are, by the hobks hereon, fastened to screws or pins that project from the upper faces of the end rails. When all the springs have thus been placed, a wire or string is fastened with one end to a pin of an end rall, then carried loosely along the outer sides of pins that project from the side ralls, lald around a pin on the thereon, and so brought back and forth and hooked to the several spring and Anally fastened with its other end substantially as with the first. Al the while the string or cord is left quite slack. Subsequently it is drawn tight by small clasp
proper intervals.
SLop Patl.-Jo
Slop Pail.-John S. Jennings, Brooklyn, N. Y.-This invention consist of a detachable seat for slop palls, also a cover therefor, detachably con
nected with it, the seat being detachably connected to faciltate the clean ing of the palls, which can be done much more readily and thoroughly when the seat is detached than when not so, as they have been heretofore made. Friding Canals.-James G. Brewer, Lone Tree, Nebraska.-This inven lon consists in an improved mode of conducting water from rivers which water to be used as a motive power. The inventor drives piles into the bot tom of the river, or into the sand near the river, so close together as to ex
clude both sand and water, or at least the sand, and inclosing a larger or maller space, according as more or less water is required. The piles form close curb all around the inclosed area except an opening for the canal or race. The water rises through the saad in the curb, which forms the begin ning of the canal, and flows through the sald canal or race to the place Where it is to be used. Should the sand rise with the water, the sand may b sept back by wire screens, which, in this case, will not choke, as the water
ising through the clean sand is free from sediment. This invention enables he water of the Platte, Arkansas, and other similar rivers, to be used fo water power, which heretofore has been impossible.
Mitrens.-John L. Whitten, Essex Junction, Vt.-This invention relates to the construction of mittens made, elther in whole or in part, of leather,
and consists in the mode of cutting the leather, and in the patterns for the arts of the sald mittens.
Midioal Compound.-Herman Themel, Esconawba, Mich.-This invention relates to a new medical compound, which is intended for use against stom
ach diseases in cases of cholera, etc. It is composed of the following ingre dients: bog bean, wormwood, juniper berry, valerian, gentlan, potash : tho emainder, alcohol or alcoholic liquor-such as whisky
Fende.-Harrison McMulifn, Batesville, Ark.-This invention has for its object to furnish an improved fence. It consists of a number of planks rest-
ng above each other and supported by blocks of stone or wood. The low wall thus made is surmounted by crossed stakes and a rider.
Car Couplings.-David Walter, Evansport, Ohio.-This invention consista in a gravitating self-coupling hook, which is raised by the link when it en Lers the buffer, and engages sald link automatically, which sald hook is pro
vided with a rolling or osclllating guard, which falls between the link and the point of the hook whenever the end of the link is thrown upward more than is usual in the ordinary working conditions-as, for instance, when car jumps the track and effects the uncoupling, so that the cars remaining car junps the trsck and effects the uncoupling, so
on the track will not be forced off by one already off.

GRANARY.-Charles T. Moorman, Jr., Jamestown, O.-Thts Invention nas for its object to furrith an improved granary, whicco shall be so constructed
that rats and other vermin cannot get into it, which shall be frm and sold, that rats and other vermin cannot get into it, which shall be frmand bolid,
will not "creel" with welght, wwll protect the grain better and may be
 ported upon posts which are set at an angle of about
are arranged in are arranged dn pairs, the upper ends of the posts of each par betng irmly
secured to each other. Hangling posts are finclined at an angle of about thrty degrees in the opposite drection from the above mentioned posts.
By other and suutable construction the granary By other and sultable construction the graary fis fully protected from rats
and other vermin, as the inclination ${ }^{*}$ the oxvosed parts affords them no and other vermin, as the tnclinat
chance to stand or sit and gnaw.
Earth Avger.-Isaac N. Pyle, Cameron, Mo.-The invention consists arched plates, which are, respectively, attached to the pendent arms of shank. Thns shank is doublc, its upper or stem parts belng hele together by
means of stranss placed means of straps placed around them. A wedge can, from below, be forced
in bet ween the parts of the shank to spread the jaw and plates to a uutable in between the parts of the shank to spread the jaws and plates to a suitable
extent. The plates arc slotted, and are secured to the pendent parts of the extent. The plates are slotted, and are secured to the pendent parts of the
shank. Two ther curved plates are placed between the plates and have
She j aws fiexmy atached to their lower ends, and are only used in sand. The tuting a trap in which the sand bored out will be collected conventent for removal.
Bare PaN.-Richard D. McDonald, Jersey City, N. J.-This Invention
relates to apparatus to be placed in ovens for baking bread or roasting relatees to apparatus to be placed in ovens for bakitig bread or roasting
meats, and anl stmular purposes ; and it consists in the mode of connecting meats, and all stmillar purposes; and it consists in the mode of connecting
 designcd to form, with the lower part, a so as to connfic the gases or steam generated in the oan from the article befng roasted or baked.
Burial Cass.-Colling C. W. Morgan, of Holly Springs, Miss.-This Anven-
tlon relates to connceting the two parts of a burral casket-made of terra tlon relates to connccting the two partso of a burial casket-made of erral
cotta or other sultanle material-by means of cllps or clasps, and to constructing said clips or clasps with handes, thereby dispensing with the
SUBBoiL PLow.-Christlan Myers and William Gummow, of Marysville,
Cal.-The invention consists in the mode of adjusting the subsoll plow, Whereby it can be shifted Independently and also arganging it with the common plow in such a manner as to avod the necessity of the off horse
Walking over the loosened bottom of the furrow or in a very deep furrow, as in subsolling in the common way. It also avolds the trampling or packing of the loosened earth in the bottom of the furrow, common to the ordinary
way. Bracellet.-Wulluam Edge, of Newark, N.J.-This invention has for its object to improve the construction of chain work bracelets, so as to better
adapt them for keeptng their form when worn, while at the same time adapt them for keeping their form when worn, whine at the same time
makting them more beautifu and elegan tn appearance. It consists in a
bracelet formed by turning the dedes of a plece of chain work down over making them more beautiful and elegant in appearance. It consists in a
braceelet formed by turning the cages of a plece of chain work down over the edges of a metallic plate.
Daswres.-John |Bellamy, of New York city,-This Invention consists of
draw ers for men's wear, in which the parts forming the legs are cut by draw ers for men's wear, tn which the parts forming the legs are cut by
novel patterns, the outlines of which are of such form that with tnflexible materlal the legs may fit the wearer tightly and not draw or bind across the knece, as drawe
fortably large.
Fzatier Renofator.-Theodore J. Adams, of Ansonia, Conn.-This inrention has for its object to furnish an improved apparatus for renovating
fcathers, moss, hair, etc. In using the machine, the substance to be renofeathers, moss, hair, etc. In using the machine, the substance to be reno-
vated is placed in an inner cylinder through a door, which is then tightly closed, and steam is admitted through a hollow gudgeon which enters the inner cylinder through the perforations of the wall and a pipe, which insures
the substance being thoroughly acted upon, the steam entering the substance both from the outside and center. When the substance has been saffecently steamed the steam is shut off and the door opened, allowing the
moisture to escape, the heat communicated by the steam being suffcient to molsture to escape, the heat communicated by the steam being sufflient to
evaporate all the motsture and thoroughly dry the substance.
Letter. Box.-Anna T. Sinclaire, of New York city.-This invention has
for its object to construct a letter and newspaper drop box, whose contents for Its object to construct a letter and newspaper drop box, whose contents
will be protected by a false bottom whenever the lid is opened, so that the will be protected by a false bottom whenever the ind is opened, so that the
fraudulent removal of letters or papers is effectually prevented. The in-
vention consists in forming the sald false bottom of two hinged plates that are arranged within the box and connected with the lid, or secured in such manner as to overlap each other when thr 1d is opened, and drop apart
when the same is closed.

HAND Vise.-Thomas Overton, of Corpus Christ1, Texas.-The object of
this invention is to furnish an implement or tool for the use of mechanics, this invention is to furnish an implement or tool for the use of mechanics,
which can not only be used as a hand vise for holding small articles, but which can not only be used as a hand vise for holding small articles, but
which can be attached to bits or augers for gaging the depth of the hole Which can be attached to bits or augers for gaging the depth of the hole
bored, and also countersinking such hole for screws. A slot is provided in the screw head, for convenience in setting saws.
Folding Box Bed.-Alfred G. Bayles, of New York city.-This inven-
tion has for its object to furnish an improved folding box bed, which, when tion has for its object to furnish an improved folding box bed, which, when folded, will occupy but little space, while at the same time furnishing a
convenient receptacle for clothing and various other articles, and which, when opened out, will furnish a complete bed. The box or body of tice bed is made in two parts which are hinged to each other at one side, and may be
opencd out. The spaces on which the two parts of the mattress rest are made of such a depth that the edges of sald parts may project sumfctently
above the mattress to give space for the bed clothcs, so that when the bed above the mattress to give space for the bed ctothcs, so that when the bed
is made up and the edges of the bed clothes tucked in around the edges of the mattress, the box may be opened and closed without disturbing the
make up of the bed. The adjacent cdges of the two jarts of the box, upon make up of the bed. The adjacent cdges of the two jarts of the box, upon
lts hinged side, are cut away so that they may not Inconvenfence the sleper, the mattress, when the bed is opened out, bulging over sald recessed edges
so as to be continuous. The edges of the part opposite the hinges may be provided with a board, which, when the box is opened, serves as a foo t board to the bed. The bolster, when arranged for use, sis placed upon a
partition, the ends of which rest upon Inclined cleats attached to the box, partition, the ends of which rest upon inclined cleats attached to the box,
and the fnner edge of which is hinged to the edge of the horizontal partition. The part of the box beneath the partitions is divided into three
Machine for Cotting Nail Plates.-Thomas Searle, Pottstown, Pa.-
The invention consists in constructing and combining a feed table, feed rolls and clamp rolls with shcet cutters, so that a pair of tongs may pass
freely and convenicntly nearly up to the cutters, and thereby cause nearly freely and convenicntly nearly up to the cutters, and thereby cause nearly
the whole sheet of metal to be utilized. Secondly, it consists in bringing the frame that holds the feeding mechanism so that it may be turned back from the cutters and allow easy access to them. Thirdly, it consists in eausing the feed rolls to rotate a little after the sheet has reached one or
both of the gages so as to insure that any slight disarrangement which may both of the gages so as to insure that any slight disarrangement which may
have taken place will be remedied and the sheet presented to the knives have taken place will be remedied
Improvement in the art of Dentistry.-Robert Arthur, M. D., Balti-
more, Md.-The invention consigts in more, Md.-The invention consists in a method of separating or spacing
teeth by means of a thin abrading disk, which is rotated between them, and which completes the operation in greatly less time, with much less
pain and annoyance to the patient, and in a far more workmanlike manner. Railway Snow Plow.-Jeromé b. Hulbert and James Anderson, of Hermon, N. Y.-The Invention consists, first, in making the lower part of the
sides of a snow plow vertical, and the upper part of said sides backwardly sloping, so as to cause the snow to rise as it is pushed laterally after passing
the the point, and the less compacted upper portion thereof to be turned over
one side of the track. Secondly, it consists in hinging the sides of a snow plow so as to adapt it to light or heavy snows. Thirdly, it consists in the
mode of combining an open front plow and screw with elevations, drive mechanimm, and air forcing-apparatus for compressing, elevating and dis-
charging snow,

Combined Chatr and Bed.-Jonathan H. Green, of Loulsville, Ky.-This nention consists in a chair composed of a supporting frame having legs, a
seat frame hinged to said frame, and a back frame having arms attached thereto, and hinged to sid rame, and a olded to make bed.
Stram Boiler and Furnaor.-George W. Lascell, Syracuse, N. Y., as-
atgnor to himself and Hugh Robinson, Jersey City, for its object to furnish an improved bofler and furnace for generating steam and for heating and evaporating purposes,which shall be so constructed as to consume the smoke and combustible gases that may be developed
in the combustion of the fuel, and which shall, at the same time, be simple In the combustion of the fuel, and which shall, at the same time, be simple in construction and of greater steam generating, heating, or evaporating
power than bonlers and furnaces constructed in the ordinary manner. The tops of the fire chambers are left open, and the air to support the combustion passes in through the said open tops and passes down through the dead coal to the live coal in the lower part of sald chambers, where the combustion takes place. The smoke and gaseous products of combustion pass
through openings or flues in the side of the lower part of the boller, where through openings or flues in the side of the lower part of the boller, where
they mix with air entering through perforations in the bottom of said boller and are consumed. The perforations in the bottom of sald boller are reguform a water space. The water spaces between the double walls of the fire chambers are connected by pipes, into one of which the water is introduced
from the pump or reservolr. The other end of the pipe from the pump or reservoir. The other end or the pipe, that is broken to
connect with the pump or reservoir, is connected with the space between the double walls of the boller, so that the water, before' passing into the ble walls upon the opposite sides of each fire chamber are connected by pipes which are colled or zigzagged across the inner ends of sald chambers so as to be exposed to the heated products of combustion as they pass from
sald chambers into the interior of the boller. The water space between the sald chambers into the interior of the boller. The water space between the
double walls of the bofler is made wider at the lower than at the upper part to form a contracted well or chamber, into which the smoke and other comduced, and in which they are burned by the ald of the air introduced through the openings in the bottom of the bofler, which openings are regulated by
the damper to introduce exactly the amount of air regulred to effect the the damper to introduce exactly the amount of air required to effect their
thorough combustion. The lower part of a water pipe is colled to form a dome-shaped partition at the top of the contracted part or combustion well, in which the gases are consumed, which dome-shaped coll, in a measure tion. This pipe may pass up into and be combined with the dome or steam products of combustion pucted away through the pipe. The incombustible walled top of the boller, Into the space between the sald top and the bottom of the dome, whence they pass into the space inclosed by the jacket, which
incloses the dome and projects down along the sides of the bofler. The which incloses the jacket is left open, and is surrounded by another jacke jacket, and extends up so as to overlap the lower part of the dome. The
bottom and the top of the second jacket are closed, and the incombustible products of combustion escape from its upper part into the flue.
Car Coupling.-C. S. Flower, of Kickapoo City, Kansas,and C. F. Graves,
Hickory, Iowa.-This invention has for its object to furnish an improved car coupling, which shall be so constructed that it will uncouple automati low the level of the other cars of the track, turn over, or drop down be formed the bumper head, which is attached to the car in the ordinary
manner. The forward part of the bar or head becomes gradually wider, and upon the upper side of its forward enc is formed a strong upwardly project ng flange. for the lower end of the coupling pin to rest against to sustain he draft, and which isoted, toward its rear end, to the bar. Its forward end does cas extend quite to the flange; to its side edges are bolted bars or plates made of wrought iron, and the forward ends of which extend forward to the lange, and are notched upon their lower edges to fit upon sald flange. To and between the forward ends of the bars is swivcled a short bar through Thich the coupling pin passes. By this construction should one or more pivoting bolt, and as soon as the end of the coupling pin has alpped from the end of the flange, the swiveled bar will turn, allowing the coupling link to slip from the coupling pin. By sultable construction, when the cars are n proper position upon the track, a spring holds the block down upon the draw bar, but shoula one or more or the cars drop below the level of the oner cars, the forward end of the block will be raised, compressing the lowing t.
ling pin.
Brici Machine.-Henry B. Ramsey, Rockville, Ind., assignor to A. K. Stark, of same place.-This invention relates to the class of brick machines clay. The lower end of a vertical shaft revolves in the center of the botto earinge attached to the frame. The apper part of the shaft revolves in bearngs attached to the upper part of the frame, and to its upper end is at
tached the sweep or lever by means of which the power is applied. To the shaft within the tank, and at different hights, are attached radial knives or arms by which the clay is worked into proper condition for entering the molds. The lowest knffe revolves near the bottom of the tank and is so formed as to force the clay through an opening in the forward part of the
sadd bottom, made of the size of a brick. An adjustable frame is secured to the frame below the tank to support the molds. The molds are inserted be ower part of the frame work are attached arms which project upward and press against the rear side of the mold last inserted and push it forward be neath the openings into position to receive the clay. By sultable mechan ism the molds may be moved forward twice at each revolution of the shaft. The rock shaft is drawn back to Its place, when the arm is released, by colled or equivalent spring, and it may be operated by hand to move the
Arst mold forward beneath the openings before the machine is started the fllled molds move out upon the frame, they are removed by the off-bear Corn Harvester.-Jacob Bowers, Iola, Kansas.-This invention has for Its object to furnish an improved machine for cutting and shocking corn The whecls, are seccurely attached to the axie, so as to carry the sald axle with them in their revolution. The forward part of the platform is piv
oted at tts rear end to the frame, so that. the forward end ofithe sadd pit may be ratsed and lowered to cut the corn higher or lower, as may be de sired. The forward end of the pivoted part of the platform by suitable means is held in any position int.o which it may be adjusted. To the for Ward end of the plvoted part of the platform are attached two stationary knlves, the inner edges of the forward parts of which incline from each
other, to serve as guldes to bring the stalks into proper postion other, to serve as guldes to bring the stalks into proper position to be cut
by a vibrating cutter, which is pivoted to the platform. The forward part of the side edges of the cutterare made inclined or curved, to adapt it to serve as guides to conduct the stalks into proper position to be cut, and the rear part of the side edges concaved to give them a better hold upon the
stalks while cutting them. The cutter stalks while cutting them. The cutter is vibrated by the advance of the machinc. To the platform are attached two upright frames, between which
the corn stalks, after belng cut, are carried back to the rear part of the tho corn staks, afterbeing cut, are carried back to the rear part of the plat-
form. designed to keep the corn stalks from falling forward while being carried rearward. Proper means are provided to serve as a reel to sweep the top them in, or nearly in, a horizontal position. A further combination of in genions devices removes the corn shock from the platform and sets it on the

Trrra Cotta Grave Cover.-Colinis C. W. Morgan, Holly Springs, Mie -This invention consists of a terra cotta cover for graves, belng in the base resting on the ground around it, the base belng a large projecting Hange with a groove descending from the head to the foot, and forming a water course for conducting the water shed from the cover into a gut
at the foot to prevent it from washing the earth away around its base.

Washing Maching.- John Turner, Oakdale Station, Pa.-This invention
has for its object to furnish an improved washing machine, and it consista in the two closely slotted self-adjusting racks and the vibrating leve resser, slotted at right angles with the racks. The clothes to be washed are divided, and part is placed upon each side of the presser. As the press forced against the rack, the pivots of which enable the sald racks to adjust themselves so that the clothes may be pressed evenly. As the presser retres, the clothes fall back into the water to be again saturated.
Wherl for Vehicle.-Walter D. Howell, Newburgh, N. Y.-The main body of the hub is cast with a closed outer end and with a solid ring flange
for the outer edges of the inner ends of the spokes to rest against. At the for the outer edges of the inner ends or the spo to inner side of the flange is formed a ring groove to recelve the inner ends of
the spokes, the shoulder at the inner side of said groove being made low. The innerends of the spokes are made widest at their extreme ends, and s ring plate is made, somewhat dishing so as to press against the edges of the
aid spokes. Upon the outer side of the plate is formed a circular bead Which fits into pon the outer side of the plate is formed a circular bead, is screwed up to hold the segmental plate securely in place. Putty, with ron fllings mixed into it , may be placed between the plate and the edges of the inner surface of the hub is formed an offset or shoulder, and in the inne surface of the inner end of the hub is cut a serew thread into which screw a tubular nut, and when the hub and nut are screwed together it will be im possible for the wheel to work itself loose or off. By this construction hamber is left between the end of the is designed to be fllled with sponge, and thus to serve as an oil reservoir,
into which oll may be poured.

[OFFICIAL.]

Index of Inventions

For which Letters Patent of the United States

 were granted.For the wenk ending December 3, 1872, and mach bearing that date.

schedule of patent fees:

On each Trade-Mark..
On issuing each app oricitinal Patent.
On appeal to Examiners-In-Chief
On appeal to Comminsionser of Patents.
On application for Reissue........
On application for Reissue.
On application for Extension of Patent .. $\$ 30$
On granting the Extension
On an application for Design (three and a hal...................................... $\$ 10$
On a n application for Design (seven years)... $\$ 350$
On an application for Design (fourteen years)..............

Ash ejector for steam engines, G.P. Hunt.

Auger, hollow, J. Deming.
Auger, hollow, M.L.Ed wards.
Rath, vapor, Estabrook and McDonald
Bed spring, M. M. Murray..................
Blader, temporary, Gaffiney and Williams.
Blackboard, F. G. Johnson..........
Boat-detachtng apparatus, W. M. Woods, Jr.
Boller, kitchen, W. B. scalfe...........................
oiler, kitchen, W. B. Scaffe
Boiler flue scraper, steam, Freeman and Armbruster
Bolts and nuts, cutting screw thre
Boot and shoe rand, J. H. Walker
Boots and shoes, machine for cutting rands for, J. H. Walker.
Buckle halter, A. McGaffey
Burial cases, mold for cement, P. B. Viele
Butter bucket or package, N. L. Burnap..
utton holes, securing, J. Watters...
Can, oll, B. W.Tuttle
Can, sheet metal, J. L. Delany
Car brake, F. M. Chapman....
Car coupling, G. W. McEw
Car coupling, T. P. Clines.
Carpenter's plane Iron, A. N. Cross
Carpet fastener, J. C. Craft.........
Carpet fastener, J. C. Craft...
Carpet stretcher, H. N. Tucke
Carriage spring, A. A. Livingston
Cart, dumping, G. Zoanny.
Cartridge loader,J. S. Warner..
Cement funllur, J. E. Park..
Chair, D. L.
Chair, D. L. Akers....................
Chair, barber's, F. J. Coates.
Chair seat, Bjorkman and Lagergren.
Churn dasher, J. A. Brooks.
Clothes dryer, J. N. Valley, (retssue)
Clothes dryer, W. J. Hadden
Cock, compression, Balley an
Coffere roaster, A. Broman.
Coffee roaster, Dalley and Dougher
Cover, rick, P. M. Brown........
Cultivator and plow, L. R. Wrigh
Curtain fixture, H. B. Gingrich.
Dental tool for separating teeth, R. Arthu
Desk, school, R.A. Thompson
Embossing and compressing machine, hydraulic, J. Roberti....................... Englne, hot air, C. P. Leavitt.
Engine, ash ejector for steam, G.
ngines, valve gearing for steam, J. N. Hackworth
Fence, portable, J. R. Robbins.
Fence, portable, G. McQuisten.
Fire arms, breech loading, w. Richards
Frult jar, N. C. Burnap
urnace for
Furrowing machine, P. Jotter................
Gas tubing, manufacture of flexible, G. L. Burnham Gate, T. D. Taylor
Gate post, portable, W. A. Dillon............
Glass, mold for working, A
Granin dryer, Mey and Dopp.
Grain bagging scoop, G. B. Chafl
Grater, vegetable, J. Keagy.....
Gunpowder, L. and E. Dupont.

Harrow, A. W. Bohaker.
Holder, work, E. P. Forbes
Horse power, W. Schuyler
Horseshoe, J. Stlckney.
Insect powder, H. S. Danzige
Iron and steel in runways, refining, S. M. Wickersham
Journal box, self-lubricating, w. W. Crane, (retssue).
Kiln for making artificial stone, D. M. Sprogle.
Knife scourer, F. O. Harvey.
Lamp chandelier, R. S. Mains
Lamp, street, F. Schumann
Lathe, H. E. Nickerson.
Leatherstraps, creasing roll for, J. F. Moloney.
Letter box, S. S. Williams.
ever for latches, C. C. Lewis.
Lozenge cutting machine, pre
ubricator, F. R.
Mash tun, C. Stoll
Mill, cider, J. I. White.
Mitten, E. V. Whitaker
Molding bung bushes, apparatus for, J. More
Moldingmachine cutters, machine for shaping, w. H. Brown
Mun, R. M. Selais
tting, T. Searls
Organs, swell for plpe,
Packing, pliston, J. M. Clay
Paper puncturing device, T. F.Corr
Photographic plate holder, w L. Gt
Phipe, molding, J.D. Johnson...
Mlpe molding machine, D. Long
Yipe molding machine, D. Long.
Planing machine, miter, J. Ma
Planter, corn. T. H. Bal
Plow, T.H. Burgess....
Plow, W. H. Conaway
Pot, coffee, M. Hofman
Pot, offee, F.I. 'Tarlton
Pump, actd, L. H. Fisher.
Purifier,middlings, L. Mowry.
Rallroad frog, J. Brahn.
Rallroad track, J. Y. Kepler...
Railroad rallj joint, H. Williams
Roll for condensercards, rub, w. Fergus
Rolling mills, plate and sheet gulde for, J. Mo
Rubber coated buckles, etc.. manufacture of, R. C. Dnnham (retssue)
Rubber to buckles, rings, etc., applyinghard, R. C. Dunham (retssue)
afe, burglar proor, J. Farrel.
Sap spout, C. C. Post (relssu
Saw mill, A.D. Clark..
Saw table gage, P. G. Finn
Saw strainer, scroll, J. Chase
Screw taps, threading, A. and A. E. Goddard
Screw threads on bolts and nuts, machine for cutting, G. Emi
eparator, grain, King and Cronkite.
ewing machine treadle, A. Wilmot
haft coupling, R. W. Benedict.
Ships, construction of, J. Betteley
Shoe and other lacings, metal tip for, W. B.
Shoemaker's lasting pinchers, A. Dufoult
Shoemaker's lasting pinchers, A.
Sidewalk, concrete, L.P. Rogers.
Sidewalk, concrete, L.P.
Spark arrester for locomotives, W. Martien
Spirits, distilling alcoholic, H. Fake
Spoon, mixing, W.s. Clarke.
Stamp canceler, J. E. Thomson
Stamping sheet metal, L. W. Hemp
Stone, hardening artificial, G. Richardson...
Stone, kiln for making artifictal
Stove, base burning, C. O. Westland
Stove pollsh, Iquuld, H. A. Holmes..
Stove feet, shoe for, A. D. Coles........
Telegraph line insulator, H. J. Rogers.
Telegraph line insulator, H. J. Rogers....
Tllooring, hollow
R. Kretscher, (retssue
Tobacco hanger, C. E. Phelps
Tollet bracket, J. s. Fletcher.
Tollet brush, S. Barnes. (retssue)..
Tooth, nail and other brushes, G. A. Scott
Trap, and nall, H. J. Baddeley
Trap, fly, S. Friend.
Trap, fly. S. Frien
Tube, speaking, will and Finck.
Thing, machine for bending, W. T. Farre.
Type, scroll corner, Stephenson, Thompson, and Blak
Valve, balanced, Gardner, Ranson and Martin
Wagon, dumping, C. G. Taft
Wagon, dumping, Williams and Kinney
Wagon spring seat, J. R. Rudulph.
Wagon and carriage brake, J. J. Hartman
Wagon brake, self acting, F. M. Hartma
Wagons, end gate for, w.
Waiter, dumb, L. Carrier.
Wash board blank, B. D. Sanders
Washing machine, Schatz and Zimmerman
Watches, safety hook for, Harris and Imhors
Weaving pile fabrics, J. Shinn.
Weaving chair seats, frame for, Aldrich and Watkins
Wire spring mattress, F. W. Hoffman
APPLICATION FOR EXTENSION.
Application has been duly filed and is now pending for the extension
of the following Letters Patent. Hearing upon the applicationis appofnted
for the day herefnafter named.
for the day herennafter named.
EXTENSIONS GRANTED
22,165.-PUMP.-A. Cooley.
22,64.-CAR SEAT AND SLIEPING Couth.-P. B. Green
22,232--Hosse RaEE.-C. Garver.
22,310.-MACHINE FOB MAEING NUTB:-J. B. Savage.
22,311.-LAMP SHADE SUPPORTER.-W DESIGN PATENTED.
6,281.-NewEL Post.-R. Lowry, Nashville, Tenn TRADEMARKS REGISTERED.
1,075.-MowRR, ETC.-Adrlance, Platt \& Co..Poughkeepsie, N.Y., and N.Y.city. 1,076.-Isinglass.-Cape Ann Istnglass and Glue Company, Rockport, Mass.
1,077.-Cowfrctionery.-H. Chaurant \& Co 1,077.-Confrectionrry.-H. Chaurant \& Co., New Orleans, La.
1,078.-Stgar Cured Hams.-J.Grubb\& Co., CincInnati, 0. 1,0i9.-Dress Triminams.一W. I. Peake, New York city.

Value of Patents,

and How To Obrain rikil

Practical Fints to Inveitors.
ROBABLY no investment of a small sum of money brings greater return than the expense a even when the invention is but a amall one. Larger invention
are found to pay correspondingly well. The names of Blanchard Morse, Bigelow, Colt, Ericsson, Howe, McCormick, Hoe, an others, who have amassed immense fortunes from their Inventions, are well known. And there are thousands of others who have realized large sums from their patents.
More than Fifty Trousand din dentors have avaled themselves of the services of Munn \& Co. during the TWENTY-SIX years They stand at the head in this class of business : and their large corps able of rendering the best service to the inventor, from the experience practically obtained while examiners in the Patent Office: enables MUNN \& Co.
to do everything appertaining to patents betrirr and chraprr than any to do everything app
other rellable agency.
HOW TO
wer canonly be had by presenting a complete application for a patent to
the Commissioner of Patents. An application consists of a Model Drawings, Petition, Oath, and full Specification. Various official rules and for-
malities must a:so be observed. The efforts of the inventor to do all this malities must also be observed. The efforts of the inventor to do all thls
business himself are generally without success. After great perplexity and delay, he is usually glad to seek the aid of persons experienced in patent business, and have all the work done over again. The best plan is to solicit proper advice at the beginning. If the parties consulted are honorable men, the inventor may sately conflde h1s ideas to them; they will advise whether the improvement is pzobably patentable, and will give him all the directions

How Can I Hest Secure My Invention

This is an inquiry which one inventor naturally asks another, who has had

 ome experiConstruct a neat model, not over a foot in any dimension-smaller if pos-sible-and send by express, prepald, addressed to MONN \& Co., 37 Park Row,
New York, together with a description of Its operation and merits. On recefpt thereof, they will examine the invention carefully, and advise you as to its patentability, free of charge. Or, if you have not time, or the means at hand, to construct a model, make as good a pen and ink sketch of the improvement as possible and send by mall. An answer as to the prospect of a patent will be recelved, usually, by return of mall. It is sometimes the cost of an application for a patent.

Preliminary Examination.

In order to have such search, make ouc a written description of the inven tion, in your own words, and a pencll, or pen and ink, sketch. Send these,
with the fee of 85, by mail, addrescad to MUNN \& Co., 37 Park Row, and in due time you will recelve an, acknowledgment thereof, followed by a written report in regard to the patentability of your improvement. This special search is made with great care, among the models and patents at Washing

Rejected Cases.

Rejected cases, or defective papers, remodeled for partles who have made
applications for themselves, or through other agents. Terms' moderate. Address Muws en , stating particulors

To Make an Application for a Patent.
The applicant for a patent should furnish a model of his invention if susvention be a chemical production, he must furnish samples of the ingredi-
vent and ents of which his composition consists. These should be seeurely packed the Inventor's name marked on them, and sent by express, prepald. Small models, from a distance, can often be sent cheaper by mail. The safe way to remit money is by a draft, or postal order, on New York, payable to
the order of MUNN \& Co. Persons who live in remote parts of the country can usually purchase drafts from their merchants on their New York cor respondents.

Caveats.

Persons desiring to fle a caveat can have the papers prepared in the shortment fee for a caveat is $\$ 10$. A pamphlet of adyice regarding applications for patents and caveats is furnished gratis, on application by mail. Address MUNN \& Co., 57 Park Row, New York.

Reissues.

A reissue is granted to the original patentee, his helrs, or the assignees of the entire interest, when, by reason of an insumclentor defectee spec ina vertence, accident, or mistake, without any fraudulent or deceptive inten tion.
A patentee may, at his option, have in his relssue a separate patent for each distinct part of the invention comprehended in his original application byirements of the law, as in original applications. Address MUNN \& Co 37 Park Row, for full particulars.

Trademarks.

Any person or anm domichia in the States, or any firm or co.pora tion residing in any foreign country where similar privileges are extended tocitizens of the United States, may register their dellgse and obtain pro ly so to forelgners. For full particulars address Mons \& Co., 87 Park Row New York ${ }^{-}$

Design Patents.

Foreign designers and manufacturers, who send goods to this country
may secure patents here upon their new patterns, and thus prevent others from fabricating or selling the same goods in this market.
A patent for a design may be granted to any person, whether ctitizen or Hen, Yor any a and relievo, or bas relief; any new and original design for the printing of wool ment, pattern, orint or picture to be printed, painted, cast, or otherwise placed on or worked into any article of manufacture.
Design patents are equally as important to citizens as to foreigners. For

Canadian Patents.

On the first of September, 1872, the new patent law of canada went into force, and patents are now granted to citizens of the United States on the ame favorableterme to to clitent
applyling for an American patent.
The patent may be taKen out elther for five years The flive and ten yearpatents may bs extended years (government fee $\$ 60$). The five and ten year patents may bs extended to the term of fifteen years. Americain inventions, even if already patented in this patented in Canada provided the American patent is not more than one year All persons who desire to take out patents in Canada are requested to commazer Foreign Patents.
The population of Great Britain is $31,000,000$; of France, $37,000,000$; Bel-
Jum, $5,000,000$; Austria, $36,000,000$; Prussia, $40,000,000$; and Puen SHum, 5,000,000; Austria, 36,000,000; Pruss1a, 40,000,000; and Russia, 70,000,000. Patents may be sercured by American citizens in all of these countries imm is the time, while business is dull at home, to take advantage of these in demand in Europe. There will never be a better time than the presest to take patents abroad. We have rellable business cennections with the princtpal capitals of Europe. A large share of all the patents secured in oretgn countries by Americans are obtalned through our Agency. Addres MUNN \& Co., 37 Park Row, New York. Circulars with full information or

Value of Extended Patents.

Did patentees realize the fact that their inventions are likely to be more
productive of profit during the seven years of extension than the first full productive of profit during the seven years of extension than the first full erm for which their patents were granted, we think more would avail then selves of the extension privilege. Patents granted prior to 1861 may be ex
tended for seven years, for the benefit of the inventor, or of his heirs in case of the decease of the former, by clue application to the Patent ofice, ninet days before the termination of the patent. The extended time inures to the benefit of the inventor, the assignees under the first term having no ights under the extension, except by spectal agreement. The Government ee for an extension is $\$ 100$, and it is necessary that good professional service be obtained to conduct the business before the Patent office. Full informa

Copies of Patents.

Persons desiring any patent issued from 1836 to November 26, 1867, can be
upplied with ofllial coples at a reasonalle cost, the price depending upo supplied with ofllicial coples at a reasonalle cost, the price depending upon the extent of drawings and length of specfacation.
Any patent 1s8ued since November 27,1867 , at which time the Patent Office ting to this office $\$ 1$.
A co
for $\$ 1$.
When ordering coples, please to remit for the same as above, and state ame of patentee, title of invention, and date of patent. Address Mun Muns \& C.
advise them by letter. In all cases, they may expect an at their office, or to such consultations, opinions and advice, no charge is made. Write plain do not use pencil, nor pale tnk be brife.
All business committed to our care, and all consultations, are kept secre and strictly confdential.
In all matters
In all matters pertaining to patents, such as conducting interferences
procuring extensions, drawing assignments, examinations into the valdity of patents, etc., special care and attention is given. For information, and or pamphlets of instruction and advice
Address
MUNN \& CO.,
PUBLISHERS SCIENTIFIC AMERICAN,
37 Park Row, New York.
OFFICE IN
Patent Offlce.

RTOPM

of the

SCIENTIFIC AMERICAN The Best Mechanical Paper in the Worla!! A year's numbers contain over 800 pages and several hundred engravings ments, tools, and processes.
The SCIENTIFIC AMERICAN is devoted t the interests of Popular Sclence, the Mechanic Arts, Manufactures, Inventions, Agriculture, Com merce, and the Industrial pursuits generally, and is valuable and Instructive not only in the Workshop and Manufactory, but also in the Household, the

To the Mechanic and Marnufacturer!
No person engaged in any of the mechanical pursuits should think of
doing without the Scibntryic American. Every number contains from six ot ten any other pablication.

Chemists, Architects, Millurights and Farmer.s
The SCIENTIFIC AMERICAN will be found a most useful journal to them. All the new discoveries in the sclence of chemistry are given in it columns; and the interests of the architect and carpenter are not over looked, all the new inventions and discoveries appertaining to these pur uits being pubilshed from week to week. Useful and practical in ormation ished in the Scientific American, which information they cannot possibly obtain from any other source. Subjects in which planters and farmers ar interested will be found discussed in the Scientific American, many improvements in agricultural implements being illustrated in its columns. We are also recetiving, every week, the best scientific Journals of Great
Britain, France and Germany; thus Britain, France and Germany; thus placing in our possession all that is
transpiring in mechanical sclence and art in these old countries. We shall continue to transfer to our columns coplous extracts, from these journals, of whatever we may deem of interest to our readers.
One copy, one year TERMS
One copy, six months
83.00
1.50

One copy, slx months
One copy, fourmonths
One copy of Sclentific American for one year, and one copy of engrav-
ng, "Men of Progress," - 10.0
One copy of Sclentiflc American for one year, and one copy of " Sclence
Record," for 1873
Remit by postal order, draft or express.
The postage on the Sclentific American Is five cents per quarter, payable
the offlee where recelved. Canada subscribers must remit, with subscrip
MUNN \& CO.,
37 Park Row, New York.

Jandary 4, I873.]
冬dvertisements.

Back Page
Inaide Paga
ates of advertising.

baird's goons

For Practical Miri.
 his address. HENRY CAREY BAIRD INDUSTRIAI PUBLISHER,
406 WALNUT STREET, Philadelphat
BRICK PRESSES For fire and red brick ball pais compracroxs

 II PIANO MF'G CO. The finest touch and actio

PIATTINUM

APPARATUS, VESSELS, SHEET,WIRE,\&c LABORATORY AND MANUALACTURING PUUROSRE. No. 25 BOND. MTREET, New York.
Native Platinum, Scrap, etc,. purchased. M ANNING'S BOLT CUTTER, Power
 405 4 Tintight Enginc andubular Boller (4) Horse

Purchasersof Saw Mills

 Our patents oover limprovements in head-blocks gene-
rally, betting devices, dogging devices, tapering devices, of Lane's patents furnished upon reuoeat.
LANE, PITKIN AROCK

AFIRICA

 protection agatisg fire. HALL BROTHERS
Are prepared to introduce their "System of Sprinklers" ${ }^{\text {into Mills, }}$ Factories, dec., at short notice. Call and see a practical operation of stame at their works,

36 CHARDON STREET, BoSTON.

G

 $\underset{\text { Noiselese, Friction }}{\text { Androved, or Geared Hol }}$

 100 YEAR ALMANAC FOR 50 CENTS

WINDOW GARDENING.

Free, Free! SEND F0R A SPECIMEN COPY.

Machinery,

Machinists'

Cold Rolled Shafting.

Sturtevant Blowers.

Pat. Punching Presses

OTIS" ${ }^{\text {SARETY Hostrive }}$

1823. Better than Pictures is the 1873. New The Great American Family Newspaper.
$\$ 3$ A YEAR WITH THE JUBILEE YEAR Book.
SIDNEY E. MORSE \& CO.,
 The

Ing the best Plano Forte. purchas

Wharte for Circular, and menton

is

 $\overline{\text { Write }}$ for L Large IIlustratace Deecriputve Price LIst to

PITTSBURGH, PA.

RING SPINNING

 1832. SCHENCX'S PATENT. 1871. WOODWORTH PLANERS

Send tamp pargigt ind riva p ploons.

B TERK'S WATCHMAN'S TIME DE

 R ICiARRSON, MERIAM \& CO.

 \mathbf{S} Impline AND BARDEL MACHINERY.-
 P ine themerim STEM E EGININESCOMBIN.

 Niagara $\underset{\text { CHAS }}{\boldsymbol{S}} \underset{\text { St HARDICK }}{ } \underset{\text { Pump }}{ }$ CHAS. B. HaRDICR,
P. BLAISDELL \& Co., M MUFACTURERS OF FIRST CLAASB,

Milling Machines.
$\mathbf{S}^{\text {TAATDARD }}$ UNIVERSAL, INDEX, CAM.

WARD'S COUNTEY HOVE, 8 B

 Iron City and Siberian Iron Works. ROGERS $\&$ BURCHFIELD,

CHAMPION SPRING MATTRESS-The

 PUNCHING

WANTHD

50 MACHINISTS used to first class work.

daturtismente
$\$ 1.00$ per winll be admitted on this page a the rate of \$1.00 per line for each inservion. Engrvings mayy
head advertisements at the sama rate ver line by meas.

SCIGNCTERCORD
1873.

 -Risins

 Mlacellanenaus Information pertal a a great varing to the House
hold-with B-MATEERAA MEDCA, THERAPEUTICS, HYGIENE.

- Exhbiting the progresi Medical science In Vari:
ous branches, New Medicinal Preparation, New enting Information.

 tevesting and valuable Book, and should have a place in in
every
Housenold in
 Sent by maill to all parts of the country, on recelpt on
the price. A lberal discount to the trade and to can
vassers. MUNN \& CO., Publishers, $3 y$ Parls Row, New Yors City

The SCIENTIFIC AMERICAN will be sent one yea recetpt of 84 .

EMERYGrindera, Pat'a 1869

A. S. Cameron \& Co.

enaliverrs,

Works. foot of East 23d Street, New York City.

STEANT PUNPS,

Adapted to every Possible Duty.-Send for a Price List

Working Models

MACHINISTS TOOLS NEW PATTERNS.

Cincinnati, Ohio.

THE HEALD \& SISCO

PORTABLE \& STATIONARY. "The Best, Cheapest, Moss DURabliz"

For steep or flat Roofs, in all clymates,
ASBESTOS ROOF COATING. ASBESTOS BOILER FELTING.
 These material are prepared ready for use, and can
be eailly mppled by an one.
ROOFING ROOFLLG AND A SHEATMING FELTS, ASBESTOB
BOARD, ASBETOS PAP R, ASBESTOS, ASPHAF UM, \&c.
Send for Descriptive Pamphlets, Price Lists, Terms to
dealers, etc.

 GILARDOUR'S ATENT WATER AND FIRL
PROOF ROOFING TILES. The BEST ROOFING known, and

ELEVATED WIRE RAILWAY.

MIAHOGANY,

MCNAB \& HARELITN Manuracturing Co, Manaracturer
$B R A S S$
$C O C K S$ For steams Water and gas.
Wrought Iron Pipe and Fitting

Union Stone Co.,

 MORBIS, TASKER \& CO., ambrican charcoal iron Boiler Tubes.

WROUGHT-IRON TUBES

FITTINGS, FOR GAS, STEAM, WATER, AND OIL
 American Saw Co.

 Patent MMvorable Toothe CIRCJLAR SAWS, Patent Perforated
Circular, Mill, Cross-cult Saws.

O WNERS OF PATENTS AND OTHERS

We reerer by permation,

$\frac{\text { Bit } \frac{\mathrm{T}}{\mathrm{T}} \mathrm{V} \text {. Garpenter, Advertising Agent. Address }}{\text { Box }}$ Refinged Ieats' ' Foot Tiil, FOR FIRST CLASS MIACHINERY.
it containg no gro or acid, and is warranted pure and

The Tanite Co.,
 Inventors and Builders of Special Machinery

THEE TANTTE CO.'S $E M E R Y$ WHEELS and $E M E R Y$

 pliso keep these goods.
THETAMITECO. have nJ Agencles in New York or
New England. THE TANITE CO. do not Exhibit or States this Year.
C. SAAC S. CASSIN, Engineer, late Chief En-

Ditinumul- Pointed STEANIDPIDS

THE adoption of new and improved applica
 economy are ack. anowledger unequalie this cficiency antry and
Europe. The Drills ard bullt of varions stzes and pa

 Used either with steam. or compreessed air. Simplepand
durable la construction. Never need sharpentig. Man THEAMERICAN DIAMOND DRILL CO.
 Almaysidiaide. STEAII PTMPS. EASTHAMPTON, Mass.

 R Drills, pand other Machinnists' Tools, of superior qua ion and Price and firess ing. For sale NEW. For Descrip.
NG CO. New Haven, Conn. d\$75 to $\$ 250$ per month, everywinere

 KERP YOUR BOILERS CLEAN.

ANTI LAMINA

prevents and rasioves
fajure the Iron. In use over five years. Machinist's Tools, LUCIXTSAA HEAVY ANDIMPROVED, POND, MANUFACTURER Wareroom, ,9 Libery WIRE ROPE.

JoHNA. ROEBLING'SSONS.

 THE "Scientific American" CHE "Scientific American " is printed with
CHAS.ENEU JOHNSO \& CO.S NN Tenth and
Lombard sti, Philadelphia and 59 Gold st., New York.

