a WEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

Vol, XXVII.--No. 23.

IMPROVED STEAM STREET CARS.

The long continuance of the pestilence which has made such sad havoc among the horses has demonstrated conclusively that inventions are needed for public conveyances, by the use of which we may become independent of equine la bor. Among the difficulties, to be overcome in the applica tion of steam to street car traction, is the propulsion of the vehicle around the sharp curves necessarily incident to the narrow streets of large cities; it is more particularly this obstacle which is claimed to be surmounted by the peculiar arrangement of machinery in the device herewith illustrated.

NEW YORK, DECEMBER 7, 1872.
the car frame, the latter being reinforced at the points of contact by a metal wear plate. The steam cylinder is not shown, but the piston rod is seen at the left of the engrav ing, communicating, by means of the crosshead in the guides with the connecting rod which, with the parallel rod, actu ates the driving wheels in the usual manner. It 'is clear from the above that the truck, and with it the boiler and engine, can freely turn, with the friction rollers of the outer tran sient ring, while the trunnions, F F, permit of the adaptation of the machinery to any angle of grade.
In Fig. 1, a somewhat different form of engine is exhibi-
toward the education of popular taste, besides affording to art ists and all workers in decorative art the most faultless mod els for imitation.

How to Clear Muddy Water.

Experiments have been made in Australia with the view of finding means of clearing the muddy waters of reservoirs. The purest waters are, as a rule, those in which mud and or ganic matter remain longest in suspension. Water stood in a bottle in the laboratory for more than six months without depositing the clay held in suspension. The soluble matter

ROBINSON'S IMPROVED STEAM STREET CAR.

Briefly, the invention consists in making the boiler act as a transient bolt and, with the engine, to turn with the truck as the latter adapts itself to bends of the rails, so that the power is always applied in the most effective manner.
Fig. 1 shows a general view of the completed car, and by referring to the elevation and horizontal plan, Figs. 2 and 3 , referring to the elevationg detailed description will be readily understood: A is the upright boiler, constructed so as to have a large heating surface, resting on and firmly secured to the truck frame, B. Above the lower portion of the boiler, and above the fire box, is affixed an inner transient ring, C , shown more

clearly in Fig. 3. D is the outer transient ring in which are placed eight metallic cylindrical rollers, $E E$, held with their axes vertical. These project beyond the inner surface of the ring, D , and impinge upon the inner transient ring, C , so as to admit of the rotation of the former around the latter. Two trunnions, F F, on either side serve to support the ring, D, and at the same time allow it to freely oscillate in the bearings on the car frame, G. H, Fig. 2, is one of the ordinary car rolls, secured to the truck frame and sustaining
ted, designed to present fewer working parts, and conse almost centrally between the driving wheels, their piston rods connecting with the la-ter directly by mean s of the slot ed guide pieces. The driving wheels communicate with the guide pieces by their crank pins, which are receivd and work in the longitudinal slots. At the rear of the supporting frame is placed a condensing apparatus, which is used in connection with the engine.
The cars may be constructed of any dimensions to accommodate a required number of passengers. The advantages claimed are simplicity, compactness, strength, utility, and cheapness. Hard coal, it is stated, may be used as fuel at an expense of one third less than that of employing horses.
We are informed that the invention has been in successfu peration on the Portland and Gorham Railroad for some time past. It i cover by three distinct pate Further in past. It is covered by three distinct pa ormation may be obtained by addr Co., care of the Sanborn Machine Company, No. 78 Duane street, New York city.

The Metropolitan Museum of Art.
There at last is a fair prospect of the prmanent establishment in this city of a museum similar to the South Kensing ton museum in London: a collection of works of art, original and copies, free to the study and inspection of the public A site for the building has been obtained, on the corner of 9th street and Fifth avenue. In addition to the fine paintings which have been placed in the present temporary gallery, duplicates of the best specimens of the splendid collection in the above mentioned English museum are to be added. We also learn that the celebrated collection of antiquities made by General Di Cesnola, our late consul at Cyprus, has been purchased. It is believed that these Phonician relics are the first that have been discovered of that early maritime people and the various specimens will materially aid specialists and antiquaries in furnishing clearer pictures of Eastern life and manners, three thousand years ago.
A central building will first be erected, to which additions will be made as they are required. In the main part there will be four galleries, each ninety-five feet long and lighted rom above. The ground floor will be an open court sur rounded by gardens and fountains and affording ample room or the statuary vases and monuments.
We note with much pleasure the enterprise with which this plan has been advanced Museums such as this go far
was chiefly chloride and carbonate of sodium, and was present in only small quantity. Another water stood for three months with like results. Both waters contained more clayey than organic matter, and were rendered clear by an addition of chloride of calcium. One part of this salt in 1,000 of water cleared it in less than an hour; 1 part in 2,500 of water, in five hours; 1 part in 5,000, in six hours; 1 part in 10,000, in twenty-four hours. When, however, the water contained more organic matter than inorganic or clayey matter in suspension, the calcium salt did not act so readily, but was aided by an addition of lime; as little as two grains of quick lime cleared a gallon of water in twelve hours. Three or four

grains of alum or chloride of aluminum answered the same purpose; but there are many objections to the use of alumina salts.

Look to your Journal Boxes.-A block of grain warehouses, including a large elevator, were destroyed by fire in Brooklyn, N. Y., November 20 The fire is supposed to have been cause d by the over-heating of a journal box from friction. Loss, half a million of dollars.

Srientifir cosmmiam.

MUNN, \& CO., Editors and Proprietors. published weekly at

NO. 37 PARK ROW. NEW YORK

One copy, one year $\boldsymbol{F} \boldsymbol{R} \mathbf{M I} \mathbf{S}$

to be had at all the news depots.

vol. XXVII., No. 23. [New Series.] Twenty-eighth Year.
NEW YORK, SATURDAY, DECEMBER 7, 1872.
Contents.
(Illustrated articles are marked with an asterisk.)

OUR FIVE RUNBRED THOUSAND DOLLAR COMMISSIONER TO VIENNA.

Another communication from the United States Commissioner to the Vienna Exposition, designed as a refutation of the facts presented in our editorial of last week, will be found elsewhere in this issue. It is devoted to the pointing out of certain errors in our article; and exception is first taken to a circular mentioned therein. After quoting the words of the publication, our correspondent makes the positive assertion that it never issued from his office 'nor does it purport to be." We have but one comment to make upon this remarkable statement, which is that General Van Buren has evidently not taken the trouble to read the document in question; if he had, he could not with truth publish such a denial. The circular comes apparently from the Advisory Committee of Group 13-a body supposed to be appointed by the Commissioner-and concludes with these words: " Manufacturers of machinery will address T. B. Van Buren, Commissioner of the United States, 51 Chambers street, or the undersigned" (Professor Thurston, of the Stevens Institute). So far as our perceptive faculties extend this seems to come from General Van Buren; and even were his name omitted, the fact of Professor Thurston-who, by the way, is to be addressed only in the alternative-being his agent renders the Commissioner legally responsible for such official emanations.
"In all my statements upon the subject," our correspondent continues, "I have endeavored to give a careful and true account of what has been done," etc. Then we must sympathize with the General in the unfortunate fail preceding the words above quoted, he makes, innocently we are sure, assertions which are wholly without foundation, and oin which he further enlarges in the succeeding paragraphs of his letter. We are informed : First, that the Austrian government has made concessions. Second, that a valuable trade mark treaty has been effected, which is strong evidence of Austrian good will. And third, that exhibitors in the Vienna Exposition are protected by a certificate which operates as a full patent.
What the "concessions" are we have yet to discover. As for the trade mark treaty-which, in connection with everything else relating in any way to Austria, seems to be regarded by the Commissioner through rose-tinted spectacles of the deepest hue-being any proof of Austrian good will or affection for this country, is sheer nonsense. The pro-
visions of our law on the subject of international trade visions of our law on the subject of international trade marks make the matter one of simple reciprocity; that is, we guarantee to protect the trade marks of a foreign nation if that nation will in return engage to do the same by us. The offer is open to the world. Large numbers of Austrian manufacturers export goods to. the United States, and they want protection here for their marks; consequently it was to Austria's direct interest to take advantage of the treaty, and she did so.

As to that exposition certificate, we have repeated again and again, and proved our assertions beyond all peradventure by the best, evidence, that it does not ensure one iota more of security against the infringement or piracy of inven. tors. It is simply an enactment, as a Vienna correspondent of the New York Herald truly states, 'to allow inventors to bring their inventions to the Exposition and exhibit them and take a patent under the old law before the 31st day of December," after the show is concluded. It is manifestly not a patent, nor can we see how any one can trace in it the remotest resemblance to such; it may be refused by the Director General to any inventor or exhibitor without appeal ; and it merely places the limit of the timeduring which an invention may be introduced into Austria without being patented at one year. It does not modify the obnoxious laws, nor is
it anything beyond a decoy to deceive persons who, like the Commissioner, are inexperienced in Austrian patent law practice. These facts seem perfectly self-evident, and we cannot understand by what course of logic General Van Buren expects to persuade himself or a
with reasoning faculties to the contrary
Our correspondent remarks that the opposition of a portion of the press, which by the way includes three of the New York dailies beside ourselves, will postpone or prevent the success of his endeavors in Washington. We hasten to say that such is precisely our intention, just so long as he persists in manœuvring to obtain any such exorbitant sum as half a million of dollars, the greater portion of which, according to his own showing, will be needed to pay his expenses and those of his assistants in Vienna. Now, in regard to these assistants: General Van Buren flatly denies that he has sixty-five sub-commissioners, or whatever they may be termed, or even one fifth of that number. The General should not rely so implicitly upon his memory. We have before us a circular: date November 15, 1872 : signature T. B. Van Buren: contents, a description of the importance of the Exposition and a list of an advisory committee (of which the Hon. S. B. Ruggles is Chairman) composed of thirty gentlemen. Thirty is more than one fifth of sixty-five. The last mentioned number, let us explain, we specified under the impression that there were but thirteen gentlemen in the above mentioned advisory committee, coupled with the assurance of a tioned advisory committee, coupled with the assurance of
member of said body that each person appointed four assistants, which made up a sum total of sixty-five. Now, however, it appears there are twenty-eight advisers, not including the chairman and secretary; consequently, instead of there being sixty-five officials, there are now one hundred and forty-three. Was the above described circular published by General Van Buren or by an irresponsible somebody? Or is it a forgery? Or were we grossly deceived by the gentleman who informed us that the Commissioner not only appointed but requested him to serve on the advisory committee? Or does our corrdond it the repudiate the whole thus disposing of our "error"" the General proceds Afte thus disposing of our "error," the General proceeds to ob serve that the few persons he has appointed are scattered about the large cities distributing programmes, etc. We were not aware that New York had lost so many of hev prominen citizens, or that such gentlemen had undertaken agencies for the Vienna Exposition ; for we recognize very nearly all of the thirty advisers as well known residents of the metropolis.
The Commissioner closes his communication with the sug gestion for the government to pay all the bills generally, and especially, of course, the expenses of a certain number of commissioners-said number, we naturally infer, is thirty. Now, as there is no earthly reason why one set of volunteer Now, as there is no earthly reason why one set of volunteer
employees should be paid and not another, the hundred and odd assistants will doubtless expect to come in for a share of the spoils; so that the half a million of dollars will go but a short distance, and the unfortunate exhibitors in the end bid fair to be of very secondary consideration.

ASTRONOMICAL NOTES

Under this heading, we publish in another column a variety of interesting astronomical information furnished for our readers by Professsor Maria Mitchell, Astronomer of for our readers by Professsor Maria Mitchell, Astronomer of
Vassar College. From these notes, it appears that the surface of the sun has for some time past exhibited the presence of large numbers of dark spots, the movement of which across the great luminary attracts the attention of observers.
These spots may now be seen through an ordinary opera glass, care being taken of course to protect the eyes by the interposition of proper colored media.
The precise character of these sun spots is still unsettled Although to the eye of man they appear as dark or black bodies, it is certain that they are in reality very luminous; but they are less luminous than the surrounding portions of the sun's surface, and hence they appear dark to the eye, just as the most brilliant gas light appears black when interposed between the eye and the sun. The prevailing opinion based upon the spectrum observation, is that the spots are com posed of thick luminous masses or clouds of gases of various substances, among which are found iron, calcium, barium magnesium, sodium, hydrogen, aqueous vapor. Some ob servers think the spots have a semi-fluid consistency, while Zöllner regards them as a kind of slag or scoria.
The positions and appearances of various heavenly bodies, o be seen on these clear winter evenings, as mentioned by our correspondent, will be read with general interest.

A REMARKABLE TEST PLATE.

One of the devices used by microscopists to test the cor rectness and power of their lenses consists of a glass plate, upon which lines of exceeding fineness are engraved by the diamond. For this purpose a small ruling machine is used, all the parts whereof must be made with unusual nicety. In Europe the test plates made by M. Nobert, of Prussia, have long been celebrated for the fineness of their ruling, and in his country those of Mr. L. M. Rutherford, of New York city. The expense of the best Nobert plates has been $\$ 100$ each, and the finest rulings heretofore done have been 120,000 lines to the inch. There are few microscopists who have ever been able to see or resolve the lines of these plates
owing to the difficulty of properly lighting the plate. Dr. Woodward, of the United States Army, is among those who have succeeded in doing so. He has not only seen them but has photographed the lines.
Professor F. A. P. Barnard, President of Columbia College, in this city, has lately received from Nobert a new test plate
surpasses in the fineness of its ruling anything heretofore produced. It is a slip of glass $3 \frac{1}{2}$ inches long and $1 \frac{1}{4}$ inches broad, in the center of which the unassisted eye may discover what appears to be a mark perhaps the fiftieth of an inch in width. But when placed under the microscope this mark is found to be composed of a great number of parallel lines. The plate, in fact, contains twenty test bands, that is to say, twenty series of lines. Each series contains such a number of lines as will occupy or more than occupy the field of view of the microscope. The fineness of each band or series varies from a ratio of three thousand lines per square inch up to two hundred and forty thousand lines per square inch; this last band contains double the number of fines ever before ruled on a test plate. Nobert is said to have remarked, on sending this plate, that if the microscopist, on seeing these lines, found that they were not sufficiently fine, he would engage to rule a still finer plate. When Professor Barnard succeeds in seeing them, doubtless he will let us know.

ITALIAN INDUSTRIAL PROGRESS.

With the exception of 10,000 tuns of refined sulphur derived from the Roman mines, all of that material obtained from Italy comes from Sicily, and is exported in a crude state. The total value of the sulphur is nearly $\$ 5,200,000$ not including the export duty of two dollars per tun, which is paid by foreign buyers. There are about 19,000 workmen engaged in this industry, 5,000 miners and 14,000 operatives employed in transportation, refining, etc. The carrying of the sulphur from the mines to ports of embarkation furnish es labor for 20,000 additional workmen.
The iron drawn from Italy and the articles made therefrom represent annually a value of $\$ 4,000,000$. The production of the founderies does not exceed 22,000 tuns. The total product is but one fifth of the entire amount consumed in the country.
Lead and zinc are derived almost exclusively from Sardinia. Their extraction requires 10,000 workmen, and quantities to the value of $\$ 2,400,000$ are produced. The lead ore is argentiferous but the silver is found in extremely small amounts. The zinels exported to Belgium and England. The quantity obtained yearly reaches 60,000 tuns.

THE FAIR OF THE AMERICAN INSTITUTE.

The American Institute Fair formally closed on the 20th of November last. Mr. N. C. Ely, Chairman of the Board of Managers, delivered the concluding address, stating that the Exhibition had been on the whole successful, though at one period its receipts were seriously impaired by the stoppage of public travel through the horse disease. The usual congratulatory remarks to managers and exhibitors were pronounced, after which such premiums as had been awarded were published. Medals of special award were lavishly dis tributed on almost every prominent article in the Fair. Several recommendations, we learn, have been made for the Grand Medal of Honor, but no award of this distinction has as yet been made. As compared with previous exhibitions, the Fair has been fully up to the standard in the variety of entries and important inventions presented, though it was hardly expected that such would be the case, owing to the excitement of the lateelections directing public attention into ther channels.
As there still remain a few articles of merit to be noiced, most of which were recent additions to the Fair, we give brief descriptions of those which seemed to us most in teresting.

Electric clocks

were exhibited in various styles by Messrs. Himmer and Au tenrieth, 371 Pearl street, New York. The chief obstacle which inventors of electric clocks have heretofore had to encounter is the inequality of the electric current, which even from the most constant battery varied with the condition of metals, temperature, strength of solutions, etc. To avoid his difficulty, Mr. Himmer conceived the ingenious idea of combining the constant action of a weight with the electric current, so that, in his own words, "in place of driving the pendulum by the direct action of the electric current, when passed over helices of wires and charged by magnetic attrac tion, a little weight, of not more than half a grain, is used which, by its descent, drives the pendulum, and which, after every oscillation, is lifted up to its former position by the electromagnetic power of the battery."
The clock is in fact wound up after every oscillation, the battery lifting up the weight a distance of only some quarter of an inch. As the latter is very light, an extremely small electric power is wanted to accomplish this labor For this purpose Mr. Himmer has invented the constant battery de scribed in a recent number of this journal. Another advan tage of the application of electricity to clocks is the possibil ty of moving the hands of any number of clocks through the oscillations of a single pendulum. This is effected by attaching, to the arbor of the second hand of the clock, a notched cam or break circuit, whereby, once during every re volution of the arbor or at any interval desired, connection is established and broken with any number of other clock works.

THE : WOODBURY BRUSH MACHINE,

one of the most remarkable and ingenious inventions that has ever come under our notice, has been exhibited in actual operation. This device was fully explained in a recent num ber of our journal; its operation consists in inserting the the bristles in solid brush backs in such a way that it is impossible to remove them. During the tesis made before the judges, the machine made tooth brushes and coarse scrubining brushes with equal facility, placing the bristles in ebony,
ivory, and wood with wonderful accuracy. It received the highest praises in the official report of the experiments, and well merits, if it does not receive, the best award in the gift of the Institute.

He CHAMPION SPRING MATTRESS,

manufactured by Messrs. F. C. Beach \& Co., 141 Duane street, New York, deserves notice as one of the best of the many entered for exhibition. It is composed wholly of metal, no wooden slats or frames being used. It is therefore very durabie. Heìicall steel springs are used, so connected as to make a perfectly elastic soft and level bed. This mattress is remarkably light, its largest size weighing but twenty-five pounds, and it rolls up like a blanket, is easily moved and transported. Just the thing for housekeepers. The springs are inlaid with a waterproof fire enamel so that the bed is serviceable in any climate.
the sawyer plaiting machine
will doubtless prove a valuable invention to manufacturers of shirts and similar garments made with numerous plaits. The device consists of two cylinders, in the lower one of which a heated iron bar is placed. As the cloth is passed between, a sharp steel blade is caused to rise and form a plait or fold of any desired width, which is smoothed perfectly flat by the action of the rollers.

the american wood paneling machine

is a novelty that cuts panels in hard or soft wood with remarkable accuracy. The board to be operated upon is placed on a table, which is so arranged as to be easily movable in any direction. On the plank, by a simple means of adjustment, are attached pieces which give shape to the panel and which guide the cutting instrument. The latter works vertically and its operating blade resembles an auger point, only constructed somewhat on the principle of solid cutters for sash molding; so that, when caused to revolve and pressed down upon the board, which is moved under it, it cuts a molded groove. By allowing the instrument to remove certain portions of the wood, either a raised or a sunk panel smoothing the work by hand in the ordinary manner.

NEW PLAN FOR A LOCAL FIRE DEPARTMENT.

The town of Easthampton, Mass., has an excellent plan for a local fire department, which may be advantageously copied by communities who cannot raise funds sufficient to introduce regular water works, or do not desire to maintain steam fire engines in connection with a reservoir. In the above mentioned town, the Valley Machine Company, there doing business, are building a large bucket plunger steam pump with a capacity for discharging 500 gallons per minute, from which pipes have been laid through the streets, connecting with hydrants placed at suitable distances apart. These pipes are always kept full of water by means of a small auxiliary pump, and in addition to their fire purpose serve to supply the hotel of the place. The large pump, which, we may here add, was invented and patented by William Wright, for many years master mechanic in the Woodruff \& Beach Iron Works at Hartford, Conn., is to be connected with a boiler in one of the manufacturing establishments of the town, where steam is always kept up, so that a stream of water can be obtained in a moment, in case of fire, by merely coupling the hose to a hydrant.

The citizens of Easthampton, in lieu of devoting a large sum yearly to the maintenance of a fire department, in addition to defraying the expense of the above described machine, set aside an amount annually for the extension of the pipes, so that each year a broader area is protected.

SCIENTIFIC AND MECHANICAL POSSIBILITIES.

Gas wells in various localities indicate that immense deposits of coal oil and petroleum exist in the earth, which may be at great depths; and New England may yet count it among her treasures, and large and enduringdeposits, which few now dream of, be found. We may burn it for fuel as well as for illumination; by its use steam boats may cross the ocean, and locomotives fly by its aid. We are just beginning to learn the power of this new servant that man has awakened from the sleep of ages. The country also abounds in limestone, sandstone and bituminous shales, which, by scientific and mechanical aid, may afford
ending supply of this wonderful material.

And notwithstanding the seemingly advanced state of the means of transportation, it is inadequate to the present wants of man. Steamboats and railroads do not even meet the wants of our own country. New England and the Middle States want Western and Southern products; and, vice vers \hat{a}, the West and South want Eastern products at cheaper rates. Can the possibility of aerial navigation be doubted ? Every year is bringing us nearer to the practical solution of this great problem.
If a light motive power is required, science may yet discover a cheap method of separating aluminum from our clay, some of which contains as much as 30 lbs . of this most wonderful material to the tun. This metal is three
times stronger than steel and as light as chalk. On the very surface of the earth, we daily walk over a material from which the machinery for a motive power may be constructed of about one tenth the weight of iron or steel. In the oxygen of the atmosphere is abundant fuel which may yet be used to rarify the air for a motive power; other powers also exist in Nature, which will, no doubt, yet become the servants of man. One discovery opens vast and expansive avenues, leading to unexplored regions where munificent creative
Nature hold in store rich treasures which the scientific hand Nature hold in store rich treasur
may drag from her dark arcana.

He who engages his mind, his time, or his fortune in the development of scientific means for bringing forth from Nature's rich stores that which will add to the enjoyment, happiness and comfort of man is entitled to the greatest
honors that can possibly be bestowed by an appreciative honors t
J. E. E.

TIC STORM
 EUROPE.

On October 14 and 15 last, a brilliant aurora borealis was observed in Paris. At Brest, at 10 h .34 m . on the evening of the 14th, the magnetic storm burst. M. Sureau, who was at the time closely watching the needle of the galvanometer, which was gently oscillating between 2 and 3 degrees, saw it leap suddenly to 25 degrees. All the working apparatus was suddenly attacked, and all the sounding machinery instantly set in motion, making a deafening noise, while the electro magnets were strongly excited. It was also remarked that the currents acting on the telegraphic wires of Brest were directed from west to east. During October 16, 17 and 18 , the disturbances in the telegraphs became general throughout France and probably through the greater part of Europe. The telegraphic service in France was thrown into complete disorder, necessitating the forwarding of the telegrams for Italy through the mails. These perturbations, which lasted three days, were, says Les Mondes, of a totally different character from those of the 14 th and 15 th of the same month They were -nothing more than instantaneous contacts, derangements analogous to those produced by mixing the wires; there were no longer the prolonged contacts and wel defined waves which accompanied the polar auroras.
With the disturbances throughout nearly the whole of
Europe appeared violent storms with thunder and lightning, which, in connection with a great barometric depression in Spain and in the southwestern portions of the continent, together with an exceptionally chilly temperature, have been remarked as extraordinary cosmic phenomena.

STEAM TRACTION.

Professor R. W. Thurston, of the Stevens Institute, de livered recently an interesting address before the Polytechnic branch of the American Institute. He showed conclu sively that for heavy truckage on common roads and streets, the steam traction engine may be used with an economy of seventy-five per cent over the cost of employing horses. In other words, steam carts can be employed at only one fourth of the present expense of horse carts. During the subse quent conversation, the subject of steam street cars and carts was talked over, and one of the members expressed the opinion that the reason why horses were frightened at the teamers was because the animals were superstitious. They saw the machines were without horses, and instan
sumed that the movement was the work of the devil.

GOIENTIFIC AND PRACTICAL INFORMATION.

THE ELLIS VAPOR ENGINE

A correspondent signing himself "Diameter," takes ex ception to a sentence in the letter signed J. A. H. E., on page heory our current volume, in which the writer says: The thereby ut heat is converted into power in an engine, an the experiments of Mr. Ellis fully show." J. A. H. E.'s pen must have slipped a little here. The Ellis engine is inended to save some of the heat that would otherwise be wasted. The difference of pressure-that is, of the heat-
between the steam in the first cylinder and the bisulphide vapor in the second is a measure of the work done in the first cylinder, and the abstracted heat is converted into work. But as long as any heat remains in the vapor, more work can be obtained from it; and when all the heat is gone, no more work can be obtained. There is nothing in the Ellis engine to combat the theory of the convertibility of
forces, and we do not think J. A. H. E. would maintain that there is.
drying and coloring natural flowers
When blue or violet flowers are exposed to the smoke of a lighted pipe or cigar, a very surprising change of color takes place, the flowers becoming a magnificent green resembling Schweinfurt green, without any injury being done to the form of the flowers; and the deeper the original color, the darker is the green. Candy tuft (Iberis umbellata) and night violet (Hesperis matronalis) take an especially beautiful color. This phenomenon is caused by the small quantity of ammonia present in tobacco smoke, which converts blue and violet into green in the same manner as solutions of the alkalies do. The smoke blown from-the mouth will not produce the same effect, because the ammonia is absorbed by the saliva of the mouth. Unfortunately this beautiful appearance does not last long; the flowers which have been exposed to the slightly increased temperature of the burning cigar wilt and become of a dirty yellowish brown color. The experiment is much more satisfactory when weak ammoniacal gas is used. To do this, insert the flower in the tube of a glass funnel in such a manner that the rim of the funnel projects an inch above the flower. A few drops of ammonia are dropped on a plate, and the funnel containing the flower is inverted over it; in a few minutes the most beautiful change of color takes place. Nearly all blue, violet, and light carmine flowers are changed to a magnificent Schweinfurt green. Dark carmine red pinks are colored black, the carmine flowers of Lichnis coronata become dark violet, while all white flowers turn sulphur-yellow. Variegated flowers show the most striking changes of color, the white petals turning yelfuchbias with white calices are treated with ammonia, the
calix becomes yellow, and the red part, green and blue. After the change of color has taken place, put the flowers at once into iresh water, and they will retain their beautiful colors from two to four hours, according to the amount of ammonia taken up. Gradually, however, their former colors re turn, the green leaves passing through blue to the original color, without wilting. Lovers of flowers can in this way produce, as it were by magic, a flora which does not exist in Nature.
Iit the ammonia be allowed to act on the flowers for one or two hours, they acquire a permanent dirty chamois color, without wilting or losing shape, even when dried. Asters, whicich have no odor, acquire a sweet aromatic odor as soon as saturated with ammonia.
To give blue, violet, or red asters a beautiful red color, so that they can be dried to be used in winter for wreaths, it has heretofore been customary to immerse them in, or sprinkle them with, dilute nitric acid. This method did not produce very perfect flowers, because the wax in the petals of the flower prevented the acid attacking them equally. This produces irregularity in color, and when dry the form of the flower is also irregular, so that many of them are wasted, being unfit for use. These disadvantages are overcome by using hydrochloric acid vapors. Any wooden box can be used for the purpose. The box should first be provided with strings on which to hang the asters, and a piece of glass inserted on opposite sides of the box to watch the change of color. Then suspend the asters by pairs or double pairs, with the stems tied together, and in such a manner that the flowers hang down. On the bottom of the box are placed one or two plates of ordinary hydrochloric acid, ac cording to the size of the box and number of flowers, and the box is closed. Small flowers are evenly colored in two hours, larger ones require four to six hours exposure to the acid. Red̉ and blue asters become carmine red without in jury to their form. It is necessary to examine the box from time to time, and to remove the flowers as soon as the change of color is completed
After being removed from the box, the flowers are suspend ed in a similar manner in an airy but shaded room to dry When dry, they are preserved in a dark dry place.
PURIFICATION OF DRINKING WATER.

Some time in 1871, Dr. Bischoff, Jr., took out an English patent for removing organic matter from drinking water by using a filter of spongy iron prepared by heating hydrated oxide of iron with carbon. This iron sponge not only purifies the vilest sewage water from organic matter, but also precipitates any copper present. It has, however, been found to possess this disadvantage, that the water so purified contains so much iron that it soon turns brown, and the iron separates in a copious precipitate in the form of the hydrated oxide of iron. This threatens to limit the usefulness of the discovery.
soldering tron and steel.
Dr. Sieburger publishes the following methods for soldering iron and steel:
If large and thick pieces of iron and steel are to be joined, sheet copper or brass is placed between the perfectly clean
surfaces to be united, which are then tightly wired together. surfaces to be united, which are then tightly wired together.
The joint is covered with wet clay free from sand, and dried The joint is covered with wet clay free from sand, and dried slowly near the fire. When the mud is dry, the joint is heated by a blast to a white heat and cooled, suddenly if iron, slowly if steel. When brass is used, it requires less heat, of course, than copper.
For objects of moderate size, hard brass solder is made by fusing together 8 parts of brass and 1 part tin. Soft brass solder is composed of 6 parts brass, 1 part zinc, and 1 part for
For soldering small iron or steel articles, a hard silver solder composed of equal parts of fine silver and malleable brass is used, the mass being protected by borax. Soft silver older differs from this only in the addition of $\frac{1}{16}$ part tin. Very fine and delicate articles are soldered either with pure gold or a gold solder composed of 1 part gold, 2 parts silver, 3 parts copper.

A CHEAP Fireproof safe.
A correspondent sends us a suggestion for a cheap fireproof safe, which he proposes to construct as follows: "Sink well, six or eight feet deep, in the basement, and place in it a round or square boiler tube which should rise a little above the surface. In this tube place another, a little smaller and shorter, so that there will be space (at least two inches all round) between the two. Close the inner tube with a watertight door packed with a soft rubber ring, and let water fill the space and flow over the inner tube. Let there be an inch pipe from the bottom of the inner tube, leading under the walls of the building and rising out of the ground. The external end of the pipe will serve to admit air to the inner tube, and should be covered to prevent the admission of dust. Let a waste pipe lead from the top of the outer tube and arrange a cock so that the water over the door of the in ner tube may be drawn off. Fix two guide rods to the inner tube, and let an elevator with shelves pass up and down the rods, to lower your books into the well. The elevator when loaded can be counterbalanced with a weight. When you have placed your books on the shelves and lowered them into the well, close the door and let the water flow in till the whole is covered. As long as there is water in the outer tube, the inner one cannot become hotter than 212°. It will be easy to arrange so that the water can be turned on or let off without descending to the basement."
The steam canal boat Success, built on Captain Goodwin's plan, illustrated not long ago in the Scientific AmerICAN, lately arrived in this city from Buffalo, after a profitarCAN, lately arrived in this city from Buf

IMPROVED STEAM ENGINE.

The steam engine of which we present an illustration is built for the purpose of being carried far from machine shops and skillful engineers; and the manufacturers have spared no pains or expense to get up an engine that will lessen the care of the engineer, and reduce the liability of derangement to the lowest figure
The parts most exposed to wear are made of steel and bronze, and the balance, of the best hammered and cast iron. All the wearing parts are made very large, so as to present a large amount of surface to do the work.
It is a plain straightforward horizontal steam engine, with out independent cut off, the introduction of which would complicate the engine and render it more likely to get out of order. But those which have been in use have exhibited an economy in the use of steam that many of the more complicated independent cut off engines cannot excel.
An idler rock arm is put in between the eccentric rod and the valve steam, so as to allow the engine to be run at a high rate of speed, and avoid all springing which so seriously interferes with the motions of the valve on high speed engines as commonly built.
The fly wheel with wrought iron arms is acknowledged to be the cheapest in construction and has the greatest proportion of its weight in the rim just where it is most effective. The defect of those heretofore made has been that they were not stiff enough sidewise. This fault Messrs. Snyder Brothers have overcome by spreading the arms or spokes apart (sidewise) at the hub, so as to brace against each other.
The second difficulty in ordinary wheels is the shrinking of the cast iron away from the arms and leaving them loose. This they have also overcome, and the arms of their wheels are solidly welded to the rim and hub; or, when preferred, they put a pulley fly wheel on their engines.
The piston is self-packing and the manufacturers state that it requires no care. One of them, $22^{\prime \prime}$ diameter, has, they state, been running in a saw mill for six years without repairs or care, and the interior of the cylinder to-day is as bright and smooth as a looking glass.
These engines are built to run at a high rate of speed, so as to develop as great an amount of power at as small a cost as possible; and to render this speed admissible, every part is finished with the greatest accuracy and made of the very is finished with the greatest accuracy and made of the very
best material. For further particulars address Snyder best material. For further particul
Brothers, Williamsport, Pennsylvania.

LATHE CENTER GRINDER.

It is a common practice to leave the revolving or " live" centers of turning lathes soft, in which condition they are exceedingly liable to bend or indent and, by producing imperfect work, cause serious defects in the turned portions of machinery. The device herewith illustrated is designed to grind the lathe centers after they are hardened, by means of a Union emery wheel placed in an ingenious appliance readily affixed to the lathe. The cut shows the invention in position, A being the grinding wheel, which it will be seen can be placed in the tool post and as easily adjusted to its work as an ordinary turning tool. It is guided by the handle shown, and is actuated by the belt passing over the idlers and receiving motion from the cone pulley.

The simplicity of this device, its ready The simplicity of this device, its ready
adjustability, and the facility with which it may bis applied to engine lathes of all the various sizes and styles, will render it a useful and convenient addition to every workshop. An operative of ordinary skill can with its aid, it is claimed, true a pair of centers after they have been shaped and hardened in from two to four minutes and so perfectly that not the slightest variation can be detected. For further particulars address the Union Stone Company, No. 93 Liberty street, New York city, and 16 Exchange street, Boston, Mass.
Kid Skins and Kid Glove Making in England.
When dried, the skins feel hard and brittle, and have to undergo the process of staking (the nextstage) to render them again elastic. This is done, says The Leisure Hour, by means of a semi-circular smooth edged iron plate fixed upright on the top of a stout piece of timber, across which the workman draws the skin, first in one direction and then in the opposite, manipulating it well with both hands until it is soft and elastic. It is then passed on to the parer, who shaves it to a like substance all over by fixing one half of the skin under a strong cord round an ash pole, grasping the loose end with his left hand, and carefully shaving it with his right by means of a circular knife of quoit-like shape and extraordinary keenness, removing the skin, reversing it on his pole, and shaving the other half in like manner, when, after a little polishing or stoning off, and padding down, it is finished. We may here remark that at every stage the work is inspected by a competent foreman before it is passed on to that which follows. The skins are now removed to another room, where they are examined and sorted for cutting into such kinds of
gloves as they are best fitted for in quality, size, substance
etc. ; they are thence sent to the cutter (in lots, generally, of etc.; they are thence sent to the cutter (in lots, generally, of
from four to five dozen) with full instructions for his guidance respecting every skin. The cutter, taking one skin at a time, stretches it to the fullest extent, and cuts it up by measure into plain oblong pieces of the required size, which he submits to be stamped while stretched out, as a proof of his correctness in measuring and marking, before finishing them off in the form he is required to give them. From the cutter these oblong pieces, called "tranks," are sent to the puncher, who, taking two or three pairs at a time, and placing them on the knife to which they correspond in size and shape (being so numbered by the cutter), puts them under a press, when the numbered by the cutter), puts them under a press, when the
form of the glove is instantaneously produced, with all the

SNYDER BROTHERS' STEAM ENGINE.

necessary slits and openings, button holes, gussets, etc., for enabling the sewer to put them together. The thumbs and the forgettes or fourchettes, the pieces put between the fingers, are punched separately. The "tranks" now go to the
trimmer, who, with a very fine cutting pair of scissors, retrimmer, who, with a very fine cutting pair of scissors, removes any little roughness that may have been left in the punching, after which they are supposed to be finished, though they have yet to be again closely examined, so as to correct any faults and prevent any defective pieces being sent out to the sewer. Having passed this examination they are handed to boys, who fold each pair with its complement of thumbs, forgettes, and other pieces inside, and put them up into half dozen or dozen packets, each packet with full instructions for making, written on the band; the sewing materials are then added to each packet; and after being duly entered out, they are taken by traveling clerks to the various sewing stations throughout the county of Worcester, and into parts
of Warwickshire, Oxford, Hereford, Gloucester, Devon, and of Warwickshire, Oxford, Hereford, Gloucester, Devon, and
Somerset. Each clerk will take out daily the number of

LATHE CENTER GRINDER.
dozens required for his particular station, and bring home made goods to a like extent, the quantity varying with the population of the different localities. All these goods when brought in from the makers have yet to receive the last finish, that is, the " topping," button and button holing, etc., and this is done by hands in the city of Worcester, within easy reach of the manufactory. The gloves are now completed but they must still be "dressed," or put into straight and attractive form; they are then subjected to their final examination by an expert and, when passed by him, have the firm's name stamped inside one glove of each pair;after which, being neatly made up, banded in half dozens, and put into small boxes or cases, they are labeled and sent off to the London warehouse, whence they are distributed to every part of the kingdom, the colonies, America, etc. Messrs. Dent and Co. now employ nearly seven hundred hands with in the walls of their manufactory, and about five thousand sewing people, etc., outside.
without.

Shell Mounds on the California Coast.
San Pablo is about fifteen miles from Oakland, and lies almost due north, and the road follows the beach. When within three miles of the town we came to a shell mound, says a correspondent of the St. Louis Globe, rising up from the plain to almost the dignity of a hill, and which is now covered with a growth of shrubbery. There is no telllng when or by whom that mound was raised, but it is almost a mile long and half a mile wide.
Fragments of pottery made of red earth, not to be obtained anywhere in this State, are found on the surface and near the top; and about two years ago Mr. McHenry, the owner of the land, dug a trench, and at a depth of twenty feet, sixty feet in from the west, near the base, found numerous skeletons of Indians of all sizes, and some bones of dogs and birds; and many implements of stone. One baby had been rolled in a monstrously long piece of red silk, like the mummies, and had been covered with a coating of a sort of asphaltum. Mr. McHenry also found in other parts of the hill evidences enough to show that this mound was a burying place for some extinct tribe of Indians, as the skulls are different from all others known in some particulars.
Where the red silk came from would puzzle any one to know, as this must have been a primitive race, judging by the rude implements and utensils. All the skeletons were in a sitting posture, with their faces turned northward. The shells that form this mound are oyster, clam and mussel shells, all having been exposed to the action of fire, and nearly all broken fine. Very rarely are entire shells found. The same kind of mounds, though not so large, are found near San Mateo, on the San Francisco side. They are all near the shores of the bay, and have been made of shells of the oysters and mussels that the Indians used as food, and which they evidently roasted to open.

The Horse Distemper.

By the account of an observer who has recently come from New York, we are confirmed in our impression says the Field, of London, that the disease among horses in America is identical with the well known influenza or distemper of horses in this country. Three horses said to be affected with the epizoötic have just been landed in Liverpool from New York, and we are informed that two of the three are in good health; the other has only a slight cough. It appears that the animals manifested the usual symptoms-loss of appetite, nasal discharge, cough, and sore throat-at the commencement of the disease, but rapidly improved under simple treatment, and at the termination of the voyage two
of them had quite recovered.
Influenza exists, we understand, among horses in Liverpool, and certainly also in London, although not to any remarkable extent. Cases of the disease came under our notice several weeks ago. In the event, therefore, of the affection assuming the epizoötic form, it will not be necessary to trace its origin to importation of horses from America. The Irish Government issued an order on November 5, prohibiting the landing at any port in Ireland of a "horse, mare, gelding, foal filly, ass, mule, or jennet from or which, at any time after the 30th day of September, has been in any part of America."
No legislative action has been taken by our Government in the matter, nor under all the circumstances does it appear t8 be necessary to interfere with the very limited imsary to interfere with the very limited im-
portation of American horses into this counporta
try. try.
Influenza, like epizoötics in general, only spreads rapidly and extensively when the conditions are favorable; the occurrence of a few cases every spring and autumn excites no attention.

Sea Sickness in the Horse.

It would be a happy incident for the poor It would be a happy incident for the poor
animal if it could always relieve itself by vomiting. Alas! it cannot; this relief is quite exceptional. The sufferings of a sea sick horse are intense. The stomach tries to relieve itself, dry retchings follow, and reach such a climax that the blood is driven into the head and into the brain, and finally the poor animal succumbs to apoplexy and dies in great torture.

New Process of Bleaching Animal Textile Fabrics. MM. Samal and Berouson have recently patented, says the Chronique de l'Industrie, a new method of bleaching animal textile fabrics by means of a feeble solution of the sulphurets of sodium and potassium. These products act in a remarka ble manner in removing the gum in preparing silk and in scouring wool. In practice, in the first case, the bath should be boiling; in the second, the temperature of the alkaline sulphuret should not exceed $50^{\circ} \mathrm{C}$. The more difficult it may be to remove the gum and prepare the silk, the less the solution should be sulphuretted; in someinstances the proto sulphuret may be employed.
The inventors have also used in the same manner the aluminates of soda and potash.

rom
 TRANSMISSION OF MOTION.

A Lecture delivered by Coleman Sellers, at the Stevens Institute of Tech nology, Hoboken, N. J., February 19th, 1872. NUMBER IV.
When very long lines of shafting are constructed of smal or comparatively small diameter, such lines are liable to some irregularities in speed, owing to the torsion or twisting of the shaft as power is taken from it in more or less irregular manner. Shafts driving looms may at one time be under the strain of driving all the looms belted from them, but as some looms are stopped the strain on the shaft becomes relaxed, and the torsional strain drives some part of the line ahead, and again retards it when the looms are started up. This irregularity is in some cases a matter of serious consideration, as in the instance of driving weaving machinery. The looms are provided with delicate stop motion, whereby the breaking of a thread knocks off the belt shaft and stops the loom. An irregular driving motion is apt to cause the looms to knock off, as it is called, and hence the stopping of one or more may cause others near them to stop also. This may in a measure be arrested by providing fly wheels at intervals on the line shaft, so heavy in their rim as to act as a constant retardant and storer of power, which power is given back upon any reaction on the shaft, and thus the strain is equalized. I mention this, as at the present time it is occupying the thoughts of prominent millwrights, and the relative advantage and disadvantage of light and heavy shafts is being discussed and is influencing the practice-of modern mill construction
I have mentioned the method of uniting bars of round iron so as to make long lines of shafting, in considering the theory of the coupling. I have given you an insight into the principles involyed in a-drccessful bearing for the shafts to revolve in, and I have dwelt a little on the shafts as regards size and velocity. I will now call your attention to the pulleys or band wheels. See Fig. 18. The best belts or bands used on these wheels are of leather, kept in good con-

Fig. 18.

dition by the judicious use of oil. Belts of leather are made of single thickness of leather for some purposes, and of two or more thicknesses for the endurance of harder strains. In general, main driving belts are made double thickness, and belts for transmission of power to machines, with some ex ceptions, are made single thickness. The terms double and single belts have come to be applied to leather bands in the trade, while India rubber belts, now quite extensively used, and often to advantage, have their grades indicated by one ply, two ply, three ply, etc., as indicating their thickness. It is of the utmost importance, for considerations of economy in running as well as first cost, that pulleys should be made as light as is consistent with strength. Pulleys that are to sustain the weight of double belts must be made heavier and stronger than those that are to sustain the weight of single belts; and the use to which the pulley is to be applied must influence its proportions. In the early practice of making cast iron pulleys, it was believed necessary that the arms should be made something like the letter S on the plane of the pulley. The idea was that they would be less likely to break from shrinking strains in the casting. It is quite evident, however, that a straight arm, such as one in the samples shown you (see Fig. 18), representing a straight line from the center to the circumference, will take the least metal; and I can state as a fact, after very long experience, that pulleys made with straight arms are the strongest, with equal proportions, provided proper precaution be taken in selecting the iron to be used in making, and regulating the conditions of cooling. The straight armed pulley can be made with the least possible metal and the greatest possible strength for the metal. Its form is the best able to transmit the peculiar strains brought to bear upon it, and at the same time it is the most pleasing form to the eye. In machinery, as in Nature, fitness to intended purposes has much to do with our ideas of beauty. The arms should be oval, so as to present the least resistance to the air in running, and they should be as light as is possible to make them, consistent with strength. This is of the utmost importance, as the weight of the pulleys on the line shafting often is very great, and this metal must revolve with the shafts, and its revolution costs in proportion to its weight. This cost of rotating the mass of metal is a constant cost irrespective of the work done, hence the need of carefully considering the weight and its reduction to the minimum. Pulleys should be turned truly round, and they should be cylindrical only in the case of belts having to be shifted sideways on their face; for stationary belts the pulleys should be made higher in the cen-
ter, the curvature of the face being, say, $\frac{1}{8}$ in. per foot. In trade, pulleys for stationary belts are termed "high," for shifting belts "straight," on the face. They should be also very carefully balanced. This may be done by turning the rim outside and inside, or it may be done by attaching a mass of iron to the lightest side of the pulley. The former practice holds with large driving pulleys, the latter with the smaller pulleys on the line. Large driving pulleys, when over 3 feet diameter, should always be carefully fitted to the shaft, and be held from turning by a key fitting sideways, never bearing top and bottom. . Very large pulleys, say for belts 12 inches wide and over, should be forced in the proper place in the shaft by a forcing press, in the same manner as I place in the shaft by a forcing press, in the same manner as I
stated car wheels are fitted to their axles. The various transmitting pulleys on the line may be so bored as to slide on to their respective shafts and be held by set screws. Pulleys are now made in most large machine shops of so many sizes that they present the readiest means of regulating the speed of the machinery. Some establishments are filled
with patterns varying by $f^{\prime \prime}$ in diameter for smaller sizes, with patterns varying by $1^{\prime \prime}$ in diameter for smaller sizes, say under $12^{\prime \prime}$, then by $\frac{1}{2} \mathrm{in}$. up to $18^{\prime \prime}$ or $20^{\prime \prime}$, and after that by one inch up to 3 feet, and by two inches up to 6 feet in iameter. This variety answers all the purposes of Pulleys made smooth on their faces transmit more power than when rough, and are less destructive to the belts used upon them. The power that can be transinitted by a leather belt running on'a smooth cast iron pulley is dependent upon the strain of the belt upon the extent of surface of pulley encompassed by the belt, and the direction that the belt is led to and from the pulleys; but a very safe approximate rule is to assume that every 1,000 feet of motion per minute of each inch in width will transmit one horse power with a single belt. This can be doubled by the use of double belts, but with more severe strain upon the journals. The subject of relative sizes and widths of pulleys, and the various conditions of belt direction, would in itself be enough to fill an hour's lecture, so I cannot enlarge upon it to the extent I would like.

Crartegyondente.

spondents.

Bursting Strain of Cylindrical Boilers.

To the Editor of the Scientific American:

I generally get the Scientific American every week, but do not always have time to read all the articles contained in it. In looking over your number of October 19, 1872, a few days since, I observed an article, which I had not before seen, on cylindrical boilers: and as the conclusions at which your correspondent arrives seem to me to be very erroneous and calculated to mislead, I wish to offer a few remarks on what I think culated to mislead, I wish to offer a few remarks on what I think
may be regarded as the true solution of the question. He states that the force tending to disrupt a cylindrical vessel by internal pressure is not as the diameter, but as the circumference; that is to say; with a boiler 20 inches in diameter, with an internal pressure of one pound per square inch, the strain upon the shell would not be 20 pounds for every inch of its length, but $20 \times 1.57=31 \cdot 4$ pounds.

The process of reasoning by which he arrives at this conclusion is not stated; but it appears to have been given in some former articles. Let us then examine this question by the old fundamental law of the composition and resolution of forces, and see what is the answer which it gives to us. Let us for the sake of illustration suppose the circumfer-
ence to be divided into a number of planes or chords of arcs.

he amount of force exerted upon each of these planes will evidently be in proportion to its length; any two of the
forces may therefore be resolved into one, and that force $w^{\text {ill }}$ e exactly equal to the chord of the arc inclosed by both the planes.
Thus A B represents two chords of equal lengths, and the dotted lines, e e, the direction of the force exerted upon them. Mark off a and b equal in length to A and B, and complete the parallelogram abfg; and by the resolution of forces, the diagonal C of the parallelogram will equal the sum of the forces, and that will be equal to the length of the chord C. We have now found that the sum of the two forces on A and B is equal to the force on the chord, C , of the sum of the two arcs which they inclose. By taking another arc of the same length as C, we can in the same manner reduce these forces also to one, which will be equal to the chord of an arc twice the length of the arc enclosed by C. We can proceed in this manner until we have resolved all the forces into two inclosing arcs of 90° each; and these finally resolved into one will be found to be exactly equal to the diameter. Again, we shall find if we analyze theseforces by the same rule that the strain on the shell of the boiler is the same on every part of the circumference, and that that strain is equal to the force due to the radius or half diameter. Take for instance the semicircle shown in the annexed diagram, in which the chord A rep-

resents the amount of force exerted upon the arc of 90° which it encloses, and the line B, the direction of the force and (being of the same length) also its amount. This force, B, will be held in equilibrium by the two forces represented by the lines C and D, each of which is equal to the radius.
Now take any other portion of the circle, and, by applying to it the same rule, we shall obtain the same result. Take any portion of the circumference as the arc, a d. Join the two extremities of the arc by the chord line,B,and from the extrem-

ities draw also the two tangents, T T. From the intersection of the tangent lines, mark off the line, C, equal to the length of the chord. B, and this line will represent the direction and force of pressure acting upon the arc a a.
From the end of the line, C, draw thelines, D D, parallel to the tangent lines, T T, which complete a parallelogram of which C is the diagonal, and which therefore holds in equilibrium the forces represented by the tangent lines $\mathrm{T} T$, which tremities of the arc by the chord line B, and from the extremlines are equal to the radius of the circle. Any arc of the circle, greater or less, will give the same result. Thus we have a ready method of ascertaining the strain upon parts of boilers which are curvilinear in form, as we have only to find what would be the radius of the circle of which such curve forms a part; and that will give the amount of strain it endures.
S. S.

New York city.
Prevention of Fires.

To the Editor of the Scientific American:

The Boston calamity, like that of Chicago, will doubtless bring out a vast number of suggestions, some wise and some otherwise.
It seems to be agreed that the fire in this case originated from the steam engine used to operate the elevator; and the flames, being drawn up the elevator shaft, were at once communicated to the Mansard roofs, which were of wood and beyond the reach of the fire engines.
This has called forth a vast deal of denunciation of the Mansard roof, which is all very well, so long as people will build them of tinder, and out of the reach of engines. But it seems to me that people, in their anxiety to condemn these roofs, have overlooked a much more important matter, and buildings, in the reckless manner that is now practiced in all
cities. Had it not been for the steam engine there would cities. Had it not been for the steam engine there would
have been no fire; and it seems to me that it would be much more reasonable to condemn their use than to pitch into Mansard roofs so vigorously.
The amount of property and life annually destroyed in this country, by the use of steam engines, in the compactly built and settled portions of our cities is frightful. Now all this may be prevented by the substitution of either water or air engines for the steam engines. We have both, that are as perfect as steam engines and of are course perfectly safe. True, there is not provision for their use as yet, but that can soon be remedied. Let it once be settled, by law, that no steam engine shall be permitted in any thickly settled portion of a city, and provision will soon be made for the others, both water and air. As to water engines, they the others, both water and air. As to water engines, they
can be and are now used to a considerable extent, by simply can be and are now used to a considerable extent, by simply
connecting them to the city water pipes. Of course, the supply of water is not sufficient at present for their general adoption, simply because no such idea was contemplated when the water works were established, and no provision has been made for them. It is, however, a very simple matter to do this; and if there was a demand for it, created by prohibiting the use of steam engines, the supply would soon be furnished. Take, for instance, New York, Boston, Chicago, or any other large city; how easy it would be to lay water pipes for this special purpose, and force water through them by pumps! Sea water would do for this purpose, and the engine for pumping it could be located at any convenient point along the wharf. The water, after being used for the purpose of operating the engines, could then be used to sprinkle the streets, clean the gutters, slush the sewers, and for many other purposes, and thus improve the sanitary condition, while at the same time lesisening the demand on the regular water supply for such purposes, which in most cities is fast becoming deficient. . There is no doubt that it would pay for any city to increase its water supply for the express purpose of furnishing power, charging a reasonable price for it. It is cheaper than steam power as at present used, and is infinitely safer. In those towns and cities where the Holly system has been adopted, all that is required is to increase the pumping capacity, as the present pipes will answer. If it were intended at the outset to do this, it would be better to increase the size of the pipes, or perhaps have a separate set for that special purpose.
Compressed air may be used in the same manner, but not so well, because it is far more difficult to confine, as it will escape where steam will not; and it is far more difìcult to keep the air pumps in working order. One advantage of the air would be better ventilation of shops and buildings, as the escape air might be utilized for this purpose; but I doubt whether it would be of as much use, in a sanitary. point of view, as the water.
It seems to me that if "an ounce of preventive is worth more than a pound of cure," this is a remedy well worth our notice. I have no doubt the time will come, when we shall have power conveyed, all through our principal cities, for manufacturing and shop purposes in this way, more especially for all the lighter kinds of work, elevators included; but to effect it, the use of steam must be prohibited.

Washington, D, C.
W. C. Dodge.

The Vienna Exhibition

To the Editor of the Scientific American:
In the presumption that you desire to be correct in your statement of facts in connection with the American department of the Exhibition, will you permit me to point out certain errors in your editorial of November 30?
You say that "In a widely distributed circular issued from General Van Buren's offce, we find the following remarkable statement: The Austrian government is exceedingly desirous that the United States shall be well represented, and makes extraordinary concessions to American manufacturers. The Austrian patent law is practically abrogated for the six months following, and inventors are protected by a special ordinance against piracy of their inventions." Now, sir, the circular from which you have taken this extract I find, upon enquiry, was published by Professor Thurston, of the Stevens Institute, at Hoboken, and bears his name and address in full. It was never issued from this office, nor does it purport to be.

The expressions commented on are perhaps a little stronger than may be warranted, and yet it remains true that concessions have been made and that patents are granted without cost to exhibitors, to be in force during the Exhibition and
for two months afterwards. In all my statements upon the subject, I have endeavored to give a careful and true account of what had been done for the protection of our inventors and of what I was striving to accomplish. I have never hesitated to say that the policy of the patent laws of most European countries was piracy and not protection, but I have claimed that the disposition of the Austrian authorities in connection with the proposed Exhibition was to modify existing statutes, so as to protect inventions sent to Vienna from this country.
In referring to the treaty upon trade marks, I have never claimed any connection with it, but have spoken of it as being a step in advance and as evidencing a more liberal spirit. So, too, with the law which permits an exhibitor to take out without cost a certificate which operates for the time as a full patent. I admit, and have always done so, that these are not sufficient, that the obnoxious feature of the Austrian patent law, which compels the manufacture of the article in Austria within one year from date of patent, remains. And I have striven to obtain a treaty removing or modifying that provision, not "by simply sending a draft
to Washington," as you allege, but by months of correspond-
ence with the proper authorities of both countries and by visiting Washington to urge speedy action. And I have faith to believe that favorable results may be looked for; but I must be pardoned for judging that the violentopposition of some portions of our press and threats of ruining the prospects of our American department at the Exhibition-if they have any effect-will serve to postpone or prevent the success of my endeavors.
You say again that I have appointed sixty-five assistant commissioners. By what authority, may I ask, is this statement made? Not one fifth of that number have yet been appointed; and they are scattered about in some of the larger cities of the Union, and are engaged in distributing programmes of instruction, giving explanations and receiving and forwarding applications for space, etc.
In regard to an appropriation, I propose to ask that the expenses of a certain number of commissioners be paid, not to exceed a limited sum; and that these commissioners shall give their time and labor to the duties of their positions. A proportion of this commission will be conrposed of some of our most distinguished scientific men, who will thoroughly examine and report upon all parts of the Exhibition.
I propose also that the Government shall bear the expense of receiving, storing, shipping, freightage, and placing all goods sent to the Exhibition and returning them, of fitting up the American department, of the rental of space, of the construction of a model school building, of the necessary office wor and rental in this city, and all the absolutely necessary attend ant expenses. If this is refused, of course the Exhibition, so
far as we are concerned, will fail, in which failure I shall be but little more concerned than any other citizen; but as a citizen, I should deeply regret such a disgrace produced by such causes.

Thos. B. Van Buren,
United States Commissioner for the Vienna Exposition of 1873.

ASTRONOMICAL NOTES

Observatory of Vassar College.
[For the items of meteorological and astronomical observation and for some of the computations in the accompanying notes, I am indebted to students.
The times of rising and setting of the planets are for the latitude of Vassar College, and are approximate only, no account having been taken of refraction or dip of the horizon, the aim being to furnish to everyday readers the means of recognizing the planets, and of following them in their apparent daily motion from east to west.-M. M.]
The following notes are from the records of the Obser atory of Vassar College, from November 1 to 15, 1872 :

THERMOMETER AND BAROMETER.

The highest wind was from the northwest, November 12, The high
$9 \mathrm{P} . \mathrm{M}$.

SUN spots.

The spots on the sun have been very numerous, and some of them very large. On November 5, five groups were seen by the aid of a glass of low power. One of these groups was very much extended across the disk. On the 7th, this had stretched along for more than half a diameter, and, on the 10th, was easily seen with the eye (protected, as it always should be, by smoked glass). On the 11 th it seemed to reach its maximum; on the 16th, it was still to be seen, although the sun's motion on its axis had carried it nearly out of sight. Even with a low magnifying power, more than thirty individual spots could be counted in this remarkable group. They must have been formed rapidly, as the record of November 4 makes no mention of unusual agitation. At this date (November 16), spots of good size are coming on, and will probably be seen for some twelve days.

occultation.

November 10, at 7 h .55 m .38 .9 s . the moon occulted, or seemed to pass over, the star 30 Piscium, a star of the 5th magnitude. As the moon was not full, its dark limb seemed to approach the star, which disappeared instantaneously as they met.

POSITIONS OF PLANETS FOR DECEMBER, 1872. MERCURY.
Mercury passes the meridian, or souths, at 1 h .20 m . December 1, and at 10 h .27 m . on December, 31. On the 1st of the month it sets after the sun, about a quarter before six, and on the last of the month it rises before the sun, a little before 6 A . M .

venus

Venus (at this time, November 16, so brilliant in the southSt, -sets on Decemb
mars.
Mars is very small, but can easily be known by its ruddy light. It rises December 1, about half past one in the morn ing, and keeps nearly the path of the celestial equator, seting about half past one in the afternoon. On December 31
Mars is much further south, bring 4° north of the bright star

Jupiter, the most interesting of all the planets, rises at this time (November 16) about midnight; it is becoming more and more favorably situated for observation, and on December 1 will rise a quarter before eleven, and on the 31 st, before nine in the evening.
The best time for observing any planet is when it souths Jupiter souths, or comes to meridian, in the early morning hours all through December, but it is in northern declination, and in this latitude has a good elevation some hours before meridian passage. By the last of December, it can be well seen in the evening. It is in the constellation $L e o$, between rho and gamma Leonis, nearer to rho.

JPITER's SATELLITE

The four moons of Jupiter can be seen with a glass of low power, and their transits, occultations and eclipses, which oc curvery frequently, render the observations of this planet intensely interesting. The shadow of the largest of these moons will be thrown upon the face of the planet after midnight on the 21st, appearing generally as a round, black spot. The 4 th satellite, which is next to the 3 rd in size, will be eclipsed on the 24th and will emerge from the shadow of Jupiter at 11 h .47 m .48 s ., Washington time.
Seen in large telescopes, the belts of Jupiter are con tinually changing, and are, some reddish and mottled by dark and white spots, some dusky and broken into irregular stripes.
saturn,
Saturn is no longer well situated for observation. It is mong the stars of Sagittarius, and sets at 7 h .11 m . on De cember 1, and at 5 h .29 m . on the 31st. Its ring can be seen with a glass of low power.

Uranus is in the constellation Cancer. It rises on the 1st about 8:30, P. M., and is well situated for observation. An about 8:30, P. M., and is well situated for observation. An
ordinarily good telescope will show its disk. It comes to ordinarily good telescope will show its disk. It comes
meridian at 3 h .50 m . on December 1 st , and 1 h .49 m . on December 31,

NEPTUNE.

Neptune is in good position, but a very good glass is needed to show it to be a planet. It rises on December 1 at 2 h . 19 m ., comes to meridian, or souths, before 9 P. M. (8h 19 m ., comes to meridian, or sout
46 m .), and sets a little after $3 \mathrm{~A} . \mathrm{M}$.

The Gribat Pumping Engine in Chicago
An immense pumping engine has lately been completed and successfully operated in Chicago. It is of 1,200 horse power, and consists of two machines connected by a single shaft. The two steam cylinders are each 70 inches in inter nal diameter and allow a 20 feet stroke of piston. The steam chests are provided with double puppet-balanced valves, and the unhooking gear is arranged so that both engines may be controlled at the front of either. The flywheel is 25 feet in diameter and weighs 33 tuns. With the exception of the great machine at Haarlem, Holland of which the diameter of the cylinder is 12 feet and stroke 10 feet, there is probably no larger pump in existence.
During the past year Chicago has laid nearly 20 miles of water pipe; which is more than has ever been placed in water pipe; which is more than

Chinese Arithmetic.

The Chinese have a most ingenious method of reckoning by the aid of the fingers, performing all the operations of addition, subtraction, multiplication, and division, with num bers from 1 up to 100,000 . Every finger of the left hand represents nine figures, as follows:-The little finger repre sents units, the ring finger tens, the middle finger hundreds, the forefinger thousands, the thumb tens of thousands When the three joints of each finger are touched from the palm towards the tip they count one, two, and three of each of the denominations as above named. Four, five, and six are counted on the back of the finger joints in the same way; seven, eight, and nine are counted on the right side of the joints from the palm to the tip. The forefinger of the right hand is used as a pointer. Thus, $1,2,3,4$ would be indi cated by first touching the joint of the forefinger; next the the hand on the inside; next the middle joint of the middle finger on the inside; next the end joint of the ring finger on the inside; and finally the joint of the little finger next the hand on the outside. The reader will be able to make further examples for himself.

Action of the Brain.

M. Fournié communicates to Les Mondes the following interesting experiment on the cerebro-spinal nervous system of animals. He says: "I wished to determine a process which would permit me to injure any portion of the brain without destroying life. With this view I made a small hole in the skull of a living animal by means of the instrument used in surgery for osseous sutures; then across this hole I introduced the needle of a hypodermic syringe (séringue Pravaz) and, at the point of the brain I wished to destroy, I injected a caustic solution, chloride of zinc colored blue. The part touched by the fluid wass injured; consequently it ceased to fulfil its functions. After the subject had reposed, I noted the symptoms presented for some twenty-four hours and then killed the animal. I discovered readily the injured part by the induration of the tissues and the blue coloration. The experiments show plainly that simple perception resides in the optic couches (couches optiques), that distinct perception and memory require the integrity of the cortical periphery, and that the lesion of the circumvolutions is not accom panied by paralysis of the members but only by weakening." The author proposes to extend these experiments with a view of arriving at further important resultes.

NVENTIONS AND SUGGESTIONS FOR THE PREVENTION OF FIRES.
Next to saying "I told you so" there is no mental effort which conveys more unalloyed pleasure to the human race than to calmly suggest and expatiate upon means by which calamities might have been avoided, after such misfortunes have taken place. The recent fire in Boston gives rise to many instances of this fact, and the daily journals are filled with editorials and communications, some conveying excellent ideas worthy of careful attention, others suggesting plans as ridiculous and impossible as can well be imagined. The Chicago fire, though a severe lesson, served but to interrupt our sleep of fancied security; the Boston conflagration has been the means of a thorough arousing of the whole nation; and, as a result, plans innumerable for the avoid. ance of similar disasters are being devised.
A number of these suggestions, some found drifting about in the columns of periodicals, others obtained directly from their criginators, we have gathered together; and below we briffly give their general details.
A word at the outset as to roofs, and in particular the Mansard, which, like Mrs. O'Leary's cow in Chicago, has been the special object of public malediction. The blame been the special object of public malediction. The blame
should not be placed on the architectural design-no one will deny that the roof is handsome and that its ornate pavilions are a great improvement over the squat coverings of former times-the fault lies in bad material and worse construction; flat roofs, if made of thin beams, protected by a single sheeting of tin or slate, would be exactly as unsafe. That we can build proper roofs on the French plan is amply evidenced by the one in process of construction on the new Staats Zeitung building and on the Masonic Temple in this city. A mere glance at the massive iron beams and stone window casings of these edifices will remove all doubts of the structures being dangerous.

The main objection to the Mansard is its hight from the ground, but if we provide a proper supply of water and suitable means of forcing it where it is needed, this can be overcome.
Like Chicago, Boston has demonstrated the value of brick over every other building material, as a fireproof substance, and consequently many of the plans suggested are based on the construction of brick walls.
A daily contemporary editorially says that parapet walls should be placed between the houses, eight or ten feet high and pierced with a few apertures so arranged as to admit a free play of hose pipe. These partitions are designed not free play of hose pipe. These partitions are designed not
only to check the advance of the flames but also as barricades only to check the advance of the flames but a
behind which the firemen can obtain shelter.
A recent invention consists in building two immense walls
of solid brick masonry intersecting in the center of every of solid brick masonry intersecting in the center of every block. At the point of intersection the partitions are highest, their upper edges sloping off to the corners of the building. The idea is to confine the fire to one quarter of the square and so preventits spread.
Another proposition is to carry the walls of a building three feet up above a flat roof, forming a reservoir which is to be flooded with water from below by a force pump.
One of the best plans is that derived from the French, and consists in making all partitions and floors of solid plaster and iron.

A scientific contemporary advocates the construction of partitions analogous to sectional iron boilers. Iron enclosed water spaces are suggested, not to be over one inch in thickness and subjected to a hydraulic pressure of three or four feet head. The sections are to be flooded in case of fire.
Various plans are published having in view increased water facilities. It is proposed to carry river water through the streets in large mains, from which pipes are to extend through the houses and above the roofs, having suitable hose connections in every story, by which, the water being under pressure, a thorough flooding can in a short time be effected.
Another idea is to erect reservoirs on elevated positions into which salt water is to be pumped and distributed by pipes throughout the city.
A very similar device is to build towers along the ridge that forms the backbone of Manhattan Island, and supply fresh water drawn from the Hudson river some distance from its mouth.
In Chicago wells are suggested, which, communicating with the river, are to be sunk at suitable points and an increased quantity of water thus obtained.

Another design, for utilizing salt water, is to locate a powerful pumping engine in every fire district, which, in connection with a large standing pipe, is to maintain such a constant pressure at every hydrant as to obviate the necessity of fire engines.
One excellent idea is the pressing of the ferry boats into service, placing them under the orders of the Chief Engineer and requiring them to carry donkey engines of uniform power, with hose nozzles regulated to a standard gauge. In case of fire, the vessels are to congregate at som
and act in concert in forcing water into the city
Additional mains from the Croton reservoir are suggested, by which the supply is to be economized by forbidding tapping except in certain localities.
A well known engineer considers it practicable to force salt water, in time of emergency, through the regular fresh water pipes, which he would have constructed of double their present size.
One of the best devices for the application of water is that published some time since, in this journal, consisting in a large number of perforated pipes extending entirely through the building. By merely turning a cock, thousands of fine
streams are thrown in every room.

A recent invention on this principle consists in permanent y affixing a perforated pipe at the summit of the roof, allowing the water to run
side of the building.
A further improvement is a portable system of perforated tubes, which can be readily laid along a roof or rested on supports within the building and thence connected with the engines. This plan has the advantage that the firemen can thoroughly drench buildings even at their highest portions, whichotherwise they would be unable to approach on account of the heat.
We have encountered two ingeniously ridiculous ideas. The first is the proposition that our fire department be provided with rolls of thick woolen blankets, sufficient to sur round a block of houses. With these the fire is to be smothered by hand, while the cloth is kept wet by the engines The second inventive genius thinks that a woolen veil, saturated with water and placed between a fierce conflagratio and threatened buildings, will instantly avert all danger.
From all the plans, ideas and suggestions above enume
ated, and from the experience we have so dearly earned, a few general conclusions may be safely drawn. Of these the chief is that a city to be fireproof needs both properly constructed buildings and a thoroughly efficient water supply. No matter how well organized a fire department may be; if the houses are built of inflammable material, disasters greater or less must ensue. And on the other hand, even if edifices be never so well constructed, if the wate supply and its mode of application be not as nearly perfect as can be, similar consequences will follow. In the construction of fireproof buildings, brick should be preferred. Walls should.be thick and solid. Avoid hollow partitions and floors of wood or lath and plaster. Employ iron beams and either solid plaster or surfaces of plaster packed with nonconducting and noninflammable material within. Provide double iron sliding shutters to all windows. Place iron trap doors on the elevator shaft at every story, and thus be able to cut off the immense draft it produces. Introduce a reli able system of perforated pipes or similar devices for sending water throughout the structure, and provide hand fir
extinguishers ready for immediate use. Ftinguishers ready for immediate use.
For high buildings of
For the high buildings of large cities, steam fire engines have been proved inefficient. Therefore an additional sup ply of water must be provided, drawn from the rivers, kept under constant pressure capable of throwing the highest n cessary stream. The water supply should be so introduced as to be available as furnishing power for elevators, supplying small manufacturers and others, thus enabling them to dispense with steam apparatus and its attendant dangers.'
Blowing up buildings with gunpowder is a last resort and should never be left in such unskillful hands as it was at Bosten. Fire must be fought by men practised in the war are, and never delegated to the inexperienced, however willing.
Lastly, in every city in the country is needed a well consid ered code of municipal regulations in regard to precautions of every kind against fire, enforced by heavy and severe pen alties, and in addition, a rigid and efficient system of inspec-
tion to see that such regulations are fully observed. tion to see that such regulations are fully observed.

What is Slate, and how was it Formed?
That slate may have been once mud is made probable by the simple fact that it can be turned into mud again. If you grind up slate, and then analyze it, you will find its mineral constituents to be exactly those of a very fine, rich, and tenacious clay. Wherever the top of the slate beds and the soil upon it is laid bare, the black layers of slate may be seen gradually melting, if I may use the word (says the Rev. Charles Kingsley in "Town Geology"), under the influence of rain and frost, into a rich tenacious clay, which is now not black like its parent slate, but red, from the oxidation of the iron which it contains. But, granting this, how did the
first change take place? It must be allowed at starting that first change take place? It must be allowed at starting that time enough has elapsed, and events enough have happened, since our supposed mud began first to become slate, to allow of many and strange transformations. For these slates are known world; and beds of rocks, save one series, in the the beds in which the slates are found, the better-that is, the beds in which the slates are found, the better-that is,
the more perfectly elaborate-is the slate. The best slates the more perfectly elaborate-is the slate. The best slates
of Snowdon (I must confine myself to the districts which I know personally) are found in the so-called "Cambrian" beds. Below these beds but one series of beds is as yet known in the world, called the "Laurentian." They, occur, the Adirondack mountains of New York; but their representatives in Europe are, as far as known, only to be found in the northrest highlands of Scotland and in the island of Lewis, which consists entirely of them, And it is to be remembered, as a proof of their inconceivable antiquity, that
they have been upheaved and shifted long before the Camthey have been upheaved and shifted long before the Cam-
brian rocks were laid down "unconformably" on their worn and broken edges.

Mechanism.

How much the people of England owe to the development of mechanistic germs, says Dr. Rigg in a recent lecture, may be inferred from the statement that if the work of machinery on this little island home of ours for one day had to be accomplished by single human power, the population of the
whole globe would hardly suffice to do it. Where such stupendous results are evolved, many minds must have contributed to the common stock; and if what those who are competent to form an opinion tell us be true, namely, that man, in this nineteenth century of the Christian era, is in mental and physical power as he was nineteen centuries before that era commenced, then the conclusion is obvious, that he who
ter to our comforts and our wants, must investigate the contrivances that have been already made.
Investigation should never be dormant; and yet it does sleep, and soundly too, until a "strike" or a " lock out" reminds society that machines and not men are in all respects best adapted to do much of the work now slowly and sloven y produced by manual labor. They do it, too, with an accuracy, a perfection, and a speed which the direct application of human skill seldom attains. In the bodily frame is mechanism for various purposes; in the machine, for one purpose only. "Strikes" and "lock-outs" often bear unexpected results in the introduction of mechanical contrivances which, in time, extinguish particular classes of manual labor. An inventive turn of mind is, and always has been, common to a very large portion of mankind. Such minds are prone in this century, as doubtless they were in former ones, to live in isolation from that which is without. Hence whatever seems to originate in themselves is regarded by hem as a novelty, and therefore, as such, is concluded to be of value. Many a day, many a night, and many a fortune have been expended on contrivances and experiments which generations long past had emphatically pronounced to be deusions and snares. A sure remedy for this is in the study of that which has been done. It has often fallen to my lot to try to disabuse an inventor of the idea that a specific suggestion had in it either originality, novelty, or utility. The very kindest attempt to do this is as thankless an office as a man can undertake. In placing, therefore, before you a mul tiplicity of illustrations, it has been in the hope that they may be suggestive of further inquiry.

[From the Quarterly Review.] THE CONSCIOUSNESS OF. DOGS.

Adog feels anger precisely as we do, and after provocation is sometimes vindictive and sometimes placable, according to his individual character. He is susceptible of hatred of the bitterest kind. He is so excruciatingly jealous, that his life becomes a burden in the presence of a favored rival. His envy continually leads him to eat what he does not want least nother animal should take it, and to illustrate the fable of the dog in the manger. Gluttony holds out to him temptations under which even his honesty sometimes succumbs; but, on the other hand, from drunkenness he is nobly emancipated. A dog mentioned by the Rev. Thomas Jackson (" Our Dumb Companions"), having been once made so drunk with malt liquor that he was unable to walk up stairs, ever after declined to taste the pernicious beverage, and growled and snarled at the sight of a pewter pot. Again, as to love, Don Juan was a cold and unenterprising character compared to a dog; and as to maternal affection, the mother dog feels it with heroic passion, starving herself to death rather than forsake her offspring. Gratitude may be almost said to be a dog's leading principle, supplying first the spring of allegiance to his master, and ever after reconcifing him, with true magnan imity, to take evil from the hand from which he has accepted good. Regret and grief he feels so deeply that they often break his heart. Fear is a passion which dogs exhibit with singular variation, some breeds and individuals being very timorous, and others perfect models of courage, the latter characteristics and fortitude seeming to be more character istically canine. A greyhound has been known, after breaking his thigh, to run on till the course was concluded. As to hope, no one can observe the dog watching for his master's step, as in Landseer's picture of " Expectation," without admitting that he knows the sentiment as well as we. Pride in a successful chase may be witnessed in every dog, and even felt in the quickened heartbeats of a greyhound when caressed and praised. That dogs have personal vanity appears from the fact that they are so manifestly dejected and demor alized when dirty and ragged by long exposure; and recover their self-respect immediately on being washed and combed Chivalry and magnanimity may nearly always be calculated upon in dogs, and wife-beating is an offence to which the four-footed beast never descends. The stories are endless of big dogs generously overlooking the insults of small curs, or taking theminto water and giving them a good ducking as a punishment for their impertinence, and then helping them mercifully back to land. Sense of property, bifurcating into both covetousness and avarice, is common to all dogs. The kennel, rug, collar, water basin, or bone once devoted to his use, no dog can see transferred to another without indignation. Frequently he " corets his neighbor's house," and attempts to ensconce himself in it surreptitiously ; and almost univer-
sally he covets his neighbor's bone, and purloins it, if he dare. Even from avarice he cannot be wholly exonerated, observing his propensity to bury his treasures. Shame, after transgressing any of the arbitrary rules imposed on him, a dog displays with ludicrous simplicity; but of the deeper sense of violated modesty which in human beings accompanies the commission of sin, the dog evidently knows nothing whatever. Humor, so far as it can proceed without language, the dog catches readily from a humorous master, and also the enjoyment of such games as he can understand. As a baby crows with glee at "bo-peep," so a dog barks with delight at "go-fetch." Make-believe runs and false starts, romps and ticklings, throwing a ball for him to catch on the grass, or a stick to fish out of a lake, all supply him with pheasures perfectly analogous in their nature to that which boys and men find in blind-man's-buff and prisoner's base,lordly cricket, and lady-like croguet. Lastly, faith in a beloved superior is perhaps the most beautiful and affecting of all the attributes of dog.

HOW MONEY IS MADE

The most interesting of all the public works in Washington is always closed to the public. It is that of making money, carried on in the upper stories of the Treasury Building. A rigid rule excludes all visitors from this bureau of the Treasury Department. The rule is an eminently reasonable one. Millions of dollars in notes, currency, and bonds, are here undergoing a process of manufacture. It is true that precautions might be taken to prevent light-fingered gentry from carrying off any of this valuable stock; but this is not enough. No rule can prevent employees fromabstractingsomething from the immense.piles of money if the public are admitted. To prevent the possibility of such abstraction, no workman or workwoman is allowed to leave the room in which he or she works until the money or stock has been counted, and all that has been brought in through the day is found to be safely there, or to be duly accounted for. If anything is missing, no one can leave the room till an investigation is had and the $=0$ ffender is found. But if a score of visitors have passed through the room, an opportunity is left to the suspected person to lay the theft off upon the visitors, and even to employ a visitor as an accomplice in the theft. For the last two or three years, ther three years, therefore, no one has been allowed in that part of the Treasury building in which the manufacture of money is carried on, without a permit from the Secretary of the Treasury himself. The Government, however, is glad to have the public know what it is doing, and how it performs its duties. Therefore, through the courtesy of the Chief Clerk of the Treasury Department, a representative of the press was recently permitted to visit the mechanical establishment of our money-making institution. His description, accompanying the annexed engravings, we copy from the Christian Weekly.

To obtain accurate information as to the manufacture of currency and postage stamps, it is not enough merely to sisit the Treasury Department; three great printing establishments combine in the manufacture of every bank bill issued by the United States-the Treasury Department, the American Bank Note Company, and the National Bank Note Company. Through the kindness of Mr. J. Macdonough, the superintendent of the latter company, the writer had the opportunity of spending half a day in their manufacturing establishment, which occupies the whole of the upper floors of the Cooper Institute. Many of our illustrations are taken from sketches made there; and the whole article embodies, though necessarily in a very brief form, the results of observation in both visits. Although we are chiefly concerned in the description of the manner in which American money is made, our observation took a wider scope. In more senses than one America makes money for the whole world. Though the United States. Treasury Department only prints for the

United States Government, the two bank note companies print not only for our own banks, but also for foreign coun tries. The National Bank Note Company were, at the time of our visit; printing bonds and paper money for Japan; the South American Republics, and several European governments. Indeed, New York city may be almost said to be the ter of the manufacture of paper money for the world
The printing of money in its various forms is a much rger and more
revenue stamps of various kinds and of all values, from one cent upwards. The extent to which this latter business of stamp printing is carried on is indicated by the single fact that the National Bank Note Company, which prints all the postage stamps for the United States, prints $500,000,000$ in a year, and sometimes sends off as many as $13,000,000$ in a single day-a large wagon load. The reader will hardly expect to get a clear and comprehensive view of these complicated operations in an article confined within two prog of a newspaper; if he does he will be apt to be disappointed.

The circumstance which gives to this manufactory its pecu liar character and its peculiar interest is a singular one; it is the fact that all over the country are shrewd men, and often men of large resources and extensive capital, whoare watching for the opportunity to imitate the legitimate paper money. The utmost skill and the most elaborate system of precautions ale necessary to produce an article which private coining cannot successfully imitate. It is this skill which gives to the manufacture of money a character quite differ a character quite different from that of any other branch of me chanicalindustry. Nor is less precaution taken to prevent the many hundreds who are engaged in the various processes from abstracting any of the money for their own use. The first precaution ers imagine. There are, first, the bonds of various descrip- is in the manufacture of the paper itself.
tions and denominations, which serve in commercial circles in lieu of money ; second, the bills which are issued directly by the United States Treasury, and which embody a promise to pay on demand, at the Treasury, to the bearer; third, the fractional currency of ten, twenty, twenty-five, and fifty cent pieces, all of which are printed for the United States, for no bank ever issues fractional currency; fourth, the na-

tional currency, that is, the notes issued by banks and redeema ble by them, butsecured by a deposit of United States bonds in the Treasury Department. There are four kinds of money, each of which is, in turn; divided into various denominations, each one having its own peculiar design. Besides these forms of money, there are other forms of paper value which are in

If the reader is so fortunate as to have a fresh piece of fractional currency in his pocket, a ten cent or twenty-five cent piece, and will take it out and examine it, he will detec what at first sight appear to be imperfections in the paper on which it is printed. It is full of little specks and shreds of what seems like colored silk. But if he attempts to pick these shreds off, he finds that they are in the texture of the paper itself, and cannot be got off without tearing the paper to pieces. This is the first precaution against counteríeiting. All the money made by the United States Government is printed on this peculiar paper. It is made only at one mill, in the vicinity of Philadelphia. It is a penal offence for any other manufactory to make it. It cannot be made without large and heavy machinery. All the paper on which United States money is printed is manufactured at this one mill. The machine, by means of an automatic register, keeps an account of every sheet of paper manufactured. For every sheet which this tell-tale instrument declares has been made, the proprietors of thismill must account to the United States Government, so that none of the paper can get into the maiket except by the United States authority. If the reader find his fractional currency, or his United States note, printed on this paper, he has one evidence of the genuineness, and one which the counterfeiters find it very difficult to copy. They avoid the difficulty by so soiling their bills that this feature or rather the absence of it, is no longer discernible. Many persons imagine that a well worn bill is certainly gen uine. This is a mistake. The appearance of being well worn

HARDENING THE DIES

is one easily counterfeited. The national cur rency, that is, the bills which are issued by the national banks and not by the United States Government, are not printed on this paper.
The next step in the manufacture of money is the printing. If the reader will examine with care a United States bank note, that is, one which embodies a promise to pay, not by a bank, but directly by the United States Government, he will observe that the back is printed in green, which gives to it its title of greenback, while the front, besides the figure and the pictures and the red stamp, which com bine to cover the surface pretty effectually has upon its groundwork a tint, also of green

The paper when it comes from the man ufactory goes to one of the bank note com panies of New York, which prints the green back; the sheet so printed is then sent to an other bank note company, which prints a gree tint upon the face of the note; and the hal printed note is then forwarded to Washing ton, where the process is completer by prin ing the pictures, the number, the denomina tion, the signatures, the words, and the red stamp. The company which receives the pa per from the mill gives a recespt for the pa per received, which is the voucher of the mil owner to the United States. That company must then turn over to the other company notes equivalent to the full amount of paper received, and must account to the Government for any that are mutilated in the process of printing; and the second company, which gives, in tern; a receipt for the incomplete bank notes, must give to the Government as much as it has received from its associates in in the work. Thus, if there were a fraudu lent workman in either company he could not defraud the Government without 9 , confederate in the other company, and both must have a third confederate in the Treasury Department. In short, it would seern to be impossible to foist upon the market any money manufactured for the Government, which it has not duly receiverl and got the value for, without a gigantic conspiracy, involving not only the Treasury Department itself, but also the two greatest bank note engraving corporations in the United States, and probably in the world. Not even a dishonest Secretary of the Treasury has it in his power to defraud the Government by manufacturing money for his own use.
${ }_{-}$© The bill having now passed through three hands-the pa; per manufacturer and the two bank note engravers-comes into the Treasury Department, where it undergoes the third series of operations, to still guard against the counterfeiters. nor the quer er the bill be a United States bill printed by the United States er the bill be a United States bill printed by the United States
Treasury, or a national bank note printed by the National or the American Bank Note Company. One description, therefore, must suffice for toth.
The first safeguard in these printing operations against counterfeitirg is the portrait. There are no artists in their profession suparior to those who are employed in the designing and engraving of bsunk notes. By the side of these genuine artists the counterfeiters are blunderers. In a good bill the portrait is always the accurate likeness. To secure it, a daguerreotype is first obtained. This gives a picture on a metallic plate. The features are theu drawn lightly on the plate with a sharp-pointed instrument by an artist, who follows accurately the outlines of the portrait. From this outline an impression is printed. The operation of printing, from what is little more than the scratch of a pin, is a delicate one, as may be well imagined. The impression thus obtained is transferred by a chemical process to a steel plate, which is covered with a preparation of wax, the better to receive the impression. The artist then has before him a steel plate covered with wax, on which the outlines of the portrajit which he is to engrave have been mechanically trensferred from the sun's own painting. These outlines are then traced on the steel beneath by a sharp tool; the wax is removed, and the face is still presented in outline on the steel. The shading is then completed by the workman, who, to accomplish his task successfully, must possess at once the artistic skill of a draftsman and the mechanical skill of a perfect engraver.
This work of engraving is one which requires the utmost accuracy of eye and steadiness of touch. Both in the Treasury and in the bank note company's buildings, there is a large room devoted to the engravers, whose eyes are carefully screened from the light, which is skillfully adjusted to their work by large muslin curtains which surround each workman on three sides. On our visit to the Treasury Department our lady companion asked an old man, who was busily engaged with the engraver's tools, if his work was not very injurious to the eyes. "I have been at work at it these fifty years," said he, "for I am over seventy years old, and you can judge for yourself;" saying which, he pushed his glasses up from his eyebrows, and turned on her a pair of eyes as brightand clear as one often sees beneath the brows of eighteen The work of engraving even a single bank note

THE TRANSFERRING PRESS AND ROLLER DIE
plate requires very diverse kinds of skill. One artist has su ess with portraits, another with buildings, a third with let graves an entire note; several different artists are alway employed to each bill. The processes by which their various operations are combined in one constitute, perhaps, the most

PACKAGE OF NATIONAL BANK NOTES.
curious and interesting of all the various operations in the manufacture of paper currency; but we despair of explaining that process, even aided as we are by the pencil of the artist. We shall make the attempt, but we assure the reader

POSTAGE STAMP DEPOSITORY.
successful we may be in describing it, without careful attention on his part. The possibility of the feat, we can give it no other name, al most passes our belief, although we have seen it performed. After the design of a bank note is fixed upon, it is given out in separate pieces to separate artists. There lies before us, as we now write, a two dollar treasury note; on it is a picture of Jefferson, a picture of the Capitol at Washington, the printed lettering, "United States will pay to bearer two dollars." the signatures, John Allison, F. E. Spinner, the large figure 2 in one corner, and a great quantity of twos printed in very fine lettering all around the margin, and moreover an elaborate orna mentation in various parts of the bill. One man probably engraved the portrait of Jefferson on one piece of steel; another workman, at a sepa rate desk, engraved, on a separate picce of steel, the printed letters; a third the sirnatures; oth ers the view of the Capitol building, and still others engraved the small letters on its margin, while still another probably engraved the large figure 2, and one or two more did the ornamen tal work. Each of these bits or pictures and lettering was engraved, the reader will under stand, on a separate piece of steel. Sometimes as many as thirty steel plates are combined in a single note. It is the process by which this combination is effected that is so extraordinary
The reader must not imagine steel to be neces sarily a hard piece of metal. Hard and softare but relative terms, and the steel of the engrave is made hard or soft, according to his desire Steel rollers are prepared. They are softer than the steel plates on which the separate frag ments of the bank note lines are engraved by the separate artists. By a powerful pressur the various pictures which the artists have en graved are impressed on these steel rollers. They take the impression much as subsequently the bank note itself take the impression, or as a piece of wax would take it. The work of the artist is, of course, reversed, and the picture, or rather the fragment of the picture, appears on the roller in a legible form, as it will subsequently appear on the note The artist now has his bank note still in fragments, that is, in separate pieces, but on separate rollers instead of on flat plates. These rollers are now hardened by the action of fire and thus prepared for the next process. It is the process of transferring. Our artist gives to the reader a picture of the transferring machine. In this machine a llat plate of sof steel is placed, the roller containing some fragment; the portrait, for example, is adjusted by the workman in it proper place over and upon the steel plate, and a pressure of from fifteen to twenty tuns is brought to bear upon it. Thi pressure transfers the portrait to the steel plate below. The roller is then taken out and the next roller put in its place This is adjusted so as to bring it in its proper place, and the pressure is again applied. The roller itself is moved gently back and forth by the hand of the operator so as to distribut the pressure equally on all parts of the picture. Thus one roller after another is introduced, the operator depending on his skill of eye and hand to adjust perfectly the various frag. ments of the complete design to each other until the whole bank note is impressed upon the soft steel plate. The skil and accuracy required in the operation are almost beyond conception. The most powerful magnifying glass brough to bear upon the bank bill fails to show where the various parts of the completed picture have been joined
This plate is now to be prepared for the press by bein hardened. For this purpose it is taken to the fur ace and there immersed in a fireproof box contain ing carbon, and plunged into the furnace. When the requisite heat has been obtained, it is taken out and dipped quickly into oil or brine, or transferred to a vise, which screws its surface hard upon a plate of lead, where it is left to cool. This operation is one requiring the utmost judgment, skill, and dexterity The heat must be of just the required amount, ne ther too much nor too little, and when the heated plate is ready to be taken from the fire it must be transferred so instantly from the carbon box to the plate of lead or liquid that the air shall have no op portunity to perceptibly cool its surface. This an nealing being completed, the plate is ready for the printer
We ought not to pass by the engraver's opera tions without mentioning the geometric lathe. The reader will observe, on many of the national bank notes, and on almost all of the United States bank notes, a series of very intricate and involved lines, running to and fro in involutions which defy imita tion. In the bank note before us, as we write, the figure 2 is printed on a background formed by these snaky lines. This is done by means of the geome tric lathe, an instrument which, by a singular combi nation of wheels, can be set to marking out almos any conceivable combination of curved lines. The number of combinations is practically without limit The machine is an expensive one, and can only be made by machinery; the counterfeiters are supposed not to possess one, and they are not able to imitate successfully its work. To the casual observer, the portrait is the best test of a counterfeit bill; to the detective, the lathe work under a magnifying glass affords the final test.

We have left but a word to speak of the printing process. This does not differ very widely from other printing processes, except in being done wholly by hand. Two persons operate the press together. The first inks the plate and so prepares it for the press, adjusts it in its place, and by a turn of the wheel applies the pressure; a second cleans the plate off and prepares it for a second printing. This is done, first, by wiping off the remaining ink with a cloth, and then polishing the plate with whiting, rubbed on with the palm of the hand. Long experience has demonstrated that there is no such polisher as the human hand; but it gets fearfully dirty in the operation. In Washington a register, analogous to that attached to an ordinary gas meter, is connected with every machine, which thus registers every impression taken. This register is locked and the key is in the possession of the superintendent, who thus has a means of proving that no money has been abstracted from the printing room. In the printing room at the Treasury Departmenteighty of these presses are in simultaneous operation; in one of the print
rooms of the National Bank Note Company of New York there were one hundred and sixteen. The men are paid by the piece, and work with marvelous rapidity, and the room presents a very striking picture of busy activity. It can hardly be credited, but it is the fact, that the wiping of the plate by the hand sensibly wears away the steel, and the difference in value of different workmen is measured by the skill with which they succeed in polishing the surface with the least wear-producing the greatest cleanliness and the least attrition of the plate
The money is now substantially ready for the market. It only remains to print upon it the seal of the United Statesa red stamp, which is affixed to all bills, whether issued by the United States or the National banks, and is aldays printed at the Treasury Department-to add the number, which is changed with every printing by an ingenious contrivance, which our space does not permit ús to describe but which gives to eyery note its own number-and finally to divide the notes, which are printed six or eight on a single sheet and must be separated, an operation which is done in Washington by an ordinary bookbinder's cutting machine but which requires the greatest skill in its manipulation, in order not to mutilate any portion of it. The money is then packed in boxes; if printed by a private bank note company it is sent to Washington to receive the Government stamp if in the Treasury Department, it is sent down to the Treas urer, where it is stowed away in vaults, ready for use. Just before our visit to the Treasury Department there had been a careful counting of the money in the vaults. It amounted to $\$ 1,038,000,000$: or, if the reader gets no very clear idea from figures expressed in billions, and we confess we do not, be may get a better conception from the statement that comprised ten cords of paper money.
There are some of the products of the press room which however, never get to the Treasurer. These are the mutilated and imperfect bills. Along with these are bonds and bills worn out by long use and sent to the Treasury to be redeemed. These are carried to a furnace room a few rods from the main Treasury building, and there, in the presence of a committee appointed to witness their destruction, they are burned, the smoke being forced through water to prevent any part of the charred paper from being carried off and picked up for future presentation.

The most wonderful thing concerning these operations remains to be told-the accuracy with which they are conducted. A single sentence from the report of Mr. George B. McCartee, chief of the Bureau of Engraving and Printing, sums up the results of this painstaking care: "It affords me great pleasure to state that, in the engraving, printing, and finishing of $\$ 890,483,995$, notes, bonds, and other securities, and $104,140,286$ stamps during the year (1871), not one note or sheet of paper has been lost to the government.'

The Cat Show at The Crystal Palace.
There can be very little question as to when the first animal show occurred. According to Archbishop Usher's calculation, it was in the year 2349 B . C., and the place where it was held was Noah's Ark. It lasted for at least nine months, says Land and Water, and must have been a hard time for Noah and his family if the antediluvian animals wanted anything like the attention that their descendants get in these days at the Regent's Park. How they fed the carnivo$r a$ at all, and how they stowed away enough green food or hay for the graminivora, is an interesting subject of inquiry which J. must pass over for to-day. Further on in history there were grand beast shows at Rome. Sulla exhibited 100
lions, Scaurus a hippopotamus and five crocodiles, Pompey lions, Scaurus a hippopotamus and five crocodiles, Pompey
600 lions and twenty elephants, Julius Cæsar several giraffes, 600 lions and twenty elephants, Julius Cæsar several giraffes,
Augustus a snake fifty cubits long, Trajan 11,000 animals in all, and Probus 1,000 ostriches, among other live luxuries. In all these cases the enjoyment of the Roman citizens, who were the principal witnesses of the show, was hightened by the death of the curious beasts which had cost their exhibitors so much money and trouble; and the same strange prinple wass adhered to later in history, when the Smithfield Club, so lately as in 1798, took to exhibiting fat cattle, which were killed by the butcher instead of killing each other. It was not till 1838 that the Royal Agricultural Society hit on the brilliant idea that an animal need not be killed because it had been exhibited, and as soon as mercy prevailed over sacrifice he system became popular.
The fourth cat show, which lately closed its doors, was an improvement, both as to the quality and the number of en tries, on any previous. The arrangements were very good and the comfort of the animals so strictly studied that they
suffered as little as possible from their confinement, and only lifted up their sweet voices occasionally. But five days in
is no matter ing very wer of wonder that some of the prisoners were look haps variety of color was the most striking feature of the show. White and black, tabby and tortoiseshell, and their various combinations, are familiar to all of us, buthere in addition were mouse color, whity brown, bright reddish yellow, pale grey, pug dog brown, a greenish grey, like a Scotch hare and other strange shades, causing the visitors to play desperate havoc with the tenth commandment. Cats and kit tens all told, and without including certain interlopers in the way of puppies and birds which were in the cages with the cats, there must have been about four hundred animals in the show, the largest and finest being No. 257, a mon strous tabby tallow cask of a cat, with a splendid skin weighing nearly twenty-two pounds, and superior in all espects to the well known "Museum Street Jack," the heavy weight clampion of previous shows, who never quite eached twenty pounds in weight. Perhaps the handsomes cat exhibited was No. 281, a magnificent bran doré from Paris, "Fritz" by name, only two yeaps old, and with a face like an eagle owl's, beautiful to the last degree, and capable of looking exquisitely savage on very slight grounds Most cats are self-satisfied enough, but "Fritz" was ab surdedly consequential, and held his dainty little nose in he air with the look of an opera prima donna obliged to sing in a barn.

Erratum.

In our article entitled "'Scientific and Mechanical Possi bilities," on page 329 of the current volume, it is stated that 'it is not within the possibility of mechanism to bore 4,00 feet more." It should read: "Is it not," etc.

Cross Breeding of Fishes.-Mr. B. Hanson, of Stavan ger, in Norway, has, according to a correspondent of the Lon don Athenceum, accomplished a novel feat in pisciculture by producing a new hybrid species, a cross between Salmo alpi nus and Salmo eriox, the former species spawning four week before the latter. Mr. Hanson's manner of bringing together the spawning maturity of the two species is ingenious. When Salmo alpinus has been spawning for some time, Mr. Han son secured a female fish in an interesting condition, and im prisoned her in a perfectly dark tank, where he left her alone In a like manner Mr. Hanson, as soon as possible, secured the sire of the first couple of Salmoeriox he found in mature condition for spawning, and put him under a similar arrest, and kept a close watch over both until the time of the sire came. In this manner Mr. Hanson has succeded in rearing, with only a loss of one per cent, in his spawning boxes (sup plied from a subterranean well which flows with a uniform temperature of $+5_{\frac{1}{2}}{ }^{\circ}$ Reaumur all the year round) a new spe cies, which attains full development in four years, and is re markable for its exceeding vigor and wildness in water, and its palatableness on the table. Mr. Hanson entertains san guine hopes of this species becoming self-productive in cours of time, contrary to all experience of hybrid fish, because he has already caught in his pond several individuals with roe in them."

Daneerous Diets.-The failure of the potato crop in Eng and is likely, from what we read, to bring about an epidemic of scurvy, unless the public can be better informed of the requirements of an antiscorbutic diet. The fact, therefore cannot be too widely made known that pease pudding, har icot beans, and boiled rice, which have been suggested in the journals as substitutes for potatoes, will not prevent the occurrence of scurvy. In the absence of the potato, an excellent antiscorbutic, fresh green vegetables or fruits will be requisite, or the health will certainly fail, even though fresh meat be taken. Amongst the vegetable material which may be used, the Lancet states, are the various forms of cabbage, lettuce, oranges, lemons, onions, mustard and cress, dande lion, and sorrel. The experience of the crews of vessels on long voyages has shown, over and over again, the useless ness of the pea and bean tribe in preventing scurvy.

Velocity of Ninerpounder Shot.-Experiments have recently been made to determine the velocity of the nine pounder shot when fired with various charges of powder From the nine-pounder gun of 8 cwt., with $3 \frac{1}{2}$ lbs. of rifle large grain powder, a velocity of about $1,500 \mathrm{ft}$. per second was registered, the gun being quite uninjured. In order to obtain these results on service a stronger carriage is required, and will probably shortly be made. The carriage on which Sir J. Whitworth's new gun was fired on the sands at Southport has endured the strain of the heavy charges exceedingly well.
Air was compressed by Professor Tyndall, by means of a column of water 260 feet high, to one eighth of its original volume (120 lbs . to the square inch) and then allowed to scape. As it rushed out, it expanded so violently and caused such an intense cold that the moisture in the room was congealed in a shower of snow, while the pipe from which the air issued became bearded with icicles.

Science is studied by the observation of facts. But observation is not easy. It requires more memory and a further perspective than most men possess. Experiment, too, is necessary, which is a series of questions put to Nature, and no witness can be found more difficult to examine.

Manufacture of Letter Envelopes.-One establishment in New York city, that we know of, is now turning out nine hundred thousand letter envelopes daily.
decisions by the commissioner of patents.

Horse Rake Patent.

Cailista E. Cox, Executrix.--Eatension.

In the matter of the application of Calista E . Cox, executrix
 i813, for improvement in horse rakes, granted Deember 3 ,
is0. Extension granted for seven years from June 8,1872 .

Preserving Hops.
Bates vs.
SEEEER \& E Bovi.
Interference.

Appeal from the Baard of Examiners.in-Chief in the matter

the interference between the application of Beniamin Bates and the patent of Seeger \& Boyd for an improvement in | reserving hops. |
| :--- |
| To park |

To pack goods of various kinds in bottles or cases made airtight, in order to preserve their contents more effectually monopolized under a patent.
Thacher, Acting Commissioner :
The patent was granted to Seeger \& Boyd, December 12 1871, application therefor having been filed the 20 th of Octoer preceding.
The application of Bates was filed January 13, 1872.
The patent contains two claims. The first is in interfe , and is as follows, viz
pulverized and incased in airtight packages, as and for or purpose set forth.
The gist of the invention is the airtight package. Neithe party claims here the article itself, and, in fact, there is proo I can find nothing whatever thatitute of novelty.
I can find nothing whatever patentable in what Bates has
done. Covered cans and boxes, and corked bottles, are the done. Covered cans and boxes, and corked bottles, are the most common devices in the world for securely keeping
solids and liquids of every description. There is no more reason for granting a patent for a bottle or can of ground hops than of ground pepper, ground spice, or any of ground erized substance.
It will undoubtedly be said that objections of this nature apply with equal force to what is called an invention in the patent of Seeger \& Boyd. I freely admit it. Why such a patent should ever have been allowed is beyond my compre bottles, and packages of every description from time imme morial, and for the purpose of preserving their contents in their original condition. The result in this case is precisely what every one would have expected; there is no new dis covery whatever. Not even special skill is required to prac tice the wonderful art described; much less is there the leas demand for the exercise of inventive genius. A mere child can
put ground hops into a bottle and cover the cork with sealing wax.
The grant of such patents, for what is utterly unworthy to
be called invention, is a fraud upon the public, and is to be condemned in the strongest terms.
Unfortunately, the patent of Seeger \& Boyd is beyond the control of the Commissioner, and it therefore becomes nece ary to formally pass upon the question of priority.
Judgment on this point must be given in favo
Judgmen
patentees.

Lead Pencil Eraser

Appeal from the Board of Examiners-in-Chief in the mat D. Hovey, Joserh Illfelder Peen the applications of Samue and T. H. Muller for letters patent for an improvement in eraser attachments to lead pencils.
Thacher, Acting Commissioner
The inventor of a short paper sleeve, which serves only to connect an India rubber eraser to a pencil, and does not cove the rubber so as to protect it and make it iirm, is entitled to
a patent for what he has invented only, and not for such a one as would embrace the latter feature.
Notwithstanding the patent thus allowed, a subsequent inentor of a paper sleeve, made long enough to cover and pro ect the rubber and strengthen the connection, may have patent for it.
Where there is reason to doubt whether the only invention to which the successful party in an interference is found to be entitled is new, his application should be referred back to The testimony in interference cases sho as to conform to the preliminary statement of the construed ducing it; and such as is inconsistent with it should be disre-
garded. back no further than the time when specimens embodying it
are shown, on satisfactory evidence, to have reached this are show
Judgment in favor of Hufeland.

DECISIONS OF THE COURTS.

United States Circuit Court, District of Connecticut. Russell and Erfin Manufacturing Company vs. Mal-
LORY et al. acturing Company against Mallory, Wheeler \& Co., under 1867, for "improvement in reversible locks and latches."

Before Judges Woodruff and Shipman.
defensed not Set Up in the Answer--Combinations-AbANDDNMENT-ESTOPPEL-
versible Locks and Latches.
If Webb's reversible latch was new and useful it was pat entable, and his patent is not to be held invalid because he only claims the latch when used in an outercase containing also lock mechanism-and this even though there be no relation The statute secures to the inve
The statute secures to the inventor an interval of two years by putting it into use and on sale, without being thereby bar by putting it into use and on sale, without being thereby bar
red of his patent; and it necessarily follows that, from the mere lapse of the period mentioned, no presumption of abandonment can arise.
When by express enactment an inventor may have two years of trial in the public markets, putting his invention in use and on sale, and yet be entitled to a patent, there is no
reason for concluding that he may not also have the like reason for concluding that he may not also have the like
period at least within which to offer his right as an inventor to others-submit the invention to that test of its usefulness and value-and yet be entitled to his patent.
Where it appeared that, during a period of delay in applying for a patent, the first inventor had asserted a continuous claim as such, and a purpose to secure a patent on his invention, and had shown some, though inadequate, appreciation of its value, although another meanwhile had made the same
invention and put it on sale: Held; that there was no abaridon.
ment of the invention by the first party, eithe
experiment or by a surrender of it to the public.
experiment or by a surrender of it to the public.
ishes and declares his purpose to procure a patent the cher ishes and declares his purpose to procure a patent therefor,
and exhibits it to those who, being engaged in the manufacture of articles of a similar character, are competent to judge of its value, in the hope that they may purchase, he himself being in no situation to engage in manufacturing, he is not estopped to assert a right to the invention and to claim a
patent because his application is not made until nearly two patent because hid
years have elapsed.
Apart from the question of abandonment, the mere fact that, prior to the application for the patent, some one has obtained knowledge of the invention and placed the thing
invented on sale, whether innocently or fraudulently, does invented on sale, whether
not cut off the prior right.
As between the first inventor and the prior manufacturer no equity can be urged in favor of the latter, except that the former cannot
The circumstance that such prior manufacturer is also an original inventor, and believes himself to be the first inventor,
does not affect the question. He is in no better situation than does not affect the question. He is in no better situation than one who ignorantly and i.
tion is open to the public.
Infringement was admitted. The defenses urged at the hearing were non-patentability of subject matter, lack of
priority of inventorship, abandonment of the invention, and estoppel, as is fully set forth in the opinion of the Court. Patent sustained.
B. F. Thurston and C. . . Mitchell, for complainants.

Supreme Court of the United States.

$\underset{\text { Lamp Patent. }}{\text { Lat }}$
In equity. Appeal from the Circuit Court of the United tates for the District of Maryland.
Mr. JUSTICE BRADLEY delivered the opinion of the Coart: William Carlton and the Bridgep ort Brass Company, as assignees of Christian Reichmann, fil ed their bill in equity in
the court below to restrain the defendant, maker of the Comet lurner, from infringing a patent for an improvement in lamps, granted to Reiccmanann on the 2 Tsst of September, 1858, and reissued to Carlton and one Merrill on the 11th of August,
1868 . The lamp as patented to Reichmann was one of a large 1868. The lamp as patented to Reichmann was one of a a arge number of attempts made about that time to utilize petroleum and its various products for purposes of illumination. sluggish oils were unfitted for the use of so volatile and dangerous a substance. In them the flame was set close to the lamp, and the tube holding the wick was projected downward into the oil, so that the heat of the flame might be communicated thereto in order to render it susceptible to the capillary attraction of the wick. Such an arrangement as this with petroleum would have produced a speedy explosion. This article required that the flame should be elevated as far as
possible above the lamp, and that the metallic wick-tube should not communicate any heat to the fluid. This was one object to be attained in the burners required for the use of henew illuminator. Another was some contrivance for con-
centrating a current of air upon the flame itself so as to consume as perfectly as possible all the rapidly escaping volatile gases, both as a saving of light and as a preventive of the disagreeable odors which they would otherwise diffuse. Two well known burners are conceded to have been in use on his claims-the Vienna burner and Stuber's burner. These flat wick-tube, the ratchet wheel attached thereto (but covered and not exposed as in Reichmann's), and a slotted dome above the wick for the flame to pass through, and a chimney.
But the dome was not supported by slender arms, as in Reich. But the dome was not supported by slender arms, as in Reich-
mann's, but was connected with a gallery which supported mann's, but was connected with a gallery which supported
the chimney and surrounded the wick tube and dome, and rested on the lamp or cap below, so that all the light of the flame below the dome was inclosed and lost, and could not issue out, as in Reichmann's burner. The Stuber burner, in-
vented by John Stuber in 1856 and made in considerable quantities in thatand the following years at Utica, New York, was an improvement on the Vienna burner in this, that the gallery was so low as to leave a considerable open space
under the dome for the reflected light to pass out in a downunder the dome for the reflected light to pass out in a down-
ward direction, and the dome was supported by slender arms ward direction, and the dome was supported by slender arms; fitted on to the wick tube. It differed, therefore, from Reichmann's in these respects: The chimney was supported on supported by arms attached to this gallery, instead of arms attached to a sleeve on the wick tube. Therefore, with these
burners before us, all the invention we can discover in Reich. burners before us, all the invention we can discover in Reichmann's burner is the peculiar mode of supporting his dome tube, and the elevation of the chimney on the outer edge of tube and the elevation of the chimney on the outer edge
the dome. The latter peculiarity, as we have seen, is a defe which rendered the burner nearly useless.
We are constrained to hold, therefore, that the Comet
burner is not an infringement of Reichmann's original patent burner is not an infringement of Reichmann's original patent
or of the invention which is exhibited in his original specifior of the
cation.
It is proper next to inquire as to the bearing of the reissue patent on the question in litigation between the parties. The that it was obtained illegally, wrongfully, and by false pretenses, and because it seeks to claim things of which Reichmann was not the original and first inventor. Secondly, that the original patent itself was void because the only thing in it which Reichmann had any pretense of inventing was anticipated by a man by the name of Michael H. Collins as
early as 1843 . early as 1843
er of Reichmann substantially as was done in the original patent, being interspersed, however, with observations as to the uses and objects of particular parts, evidently borrowed from subsequent experience and events. The single claim of the original patent is expanded into seven distinct claims.
If they mean anything more than the claim in the original If they mean anything more than the claim in the original
patent, they are orid. Being identical with that, they are patent, they are void. Being identical with that, they are
needessly multiplied, and by exhibiting a seeming of claims to which Reichmann was not entitled, they are calculated to confuse and mislead. We think it proper to reiterate ourdis approbation of these ingenious attempts to expand a simple
invention of a distinct device into an all-embracing claim calculated by its wide generalizations and ambiguous language to discourage further invention in the same depart-
ment of Yndustry and to cover antecedent inventions. With out deciding that a repetition of substantially the same claim in diffent words wil vitiate a patent, we hold that, where a

nebulous claims, is calcu

Our conclusion, therefore, is that the Comet burner is infringement of Reichmann's reissued patent so far as tha patent is valid.
J. H. B. Latrobe and B. R. Curtis for appellants.
C. F. Blake and $C . M$. Keller for appellee.
,
United States Circuit Court, Eastern District of Pennsylvania

Adamson vs. Dedrick.

McKennan, Circuit Judge
This was a suit in equity, brought by William Adamson against Charles H . Dedrick, under the provisions of section 58
of the Patent Act of 1870, for the purpose of setting aside certain letters patent granted to the defendant June 18, 1872 , patent granted to complainant January 31 inve
The invention, as set forth in deferdant's pa
its object the economizing of time, labor and material had manufacture of the soles and heels of boots and shoes, and it consisted in cutting, from the raw hide, pieces approximately of the form required and applying the tanning process to these pieces alone. There was thus saved the additional time, labo and material that otherwise would have been required in
tanning the "waste pieces;" the cuttings being in the con tanning the "waste pieces;", the cuttings, being in the con-
dition of rawhide and not of tanned leather, were valuable for glue and other purposes, and it was claimed that the soles and heels produced were of better quality.
The complainant's patent was for precisely the same invention, except that he did not limit himself in the applica-
tion of this process to the manufacture of boots and shoes: tion of this process to
his claim being for-
"Cutting from raw or untanned hides or skins, or parts of the same, pieces of the size or about the size and form re quired for useful articles of tanned leather, and tanning the untanned hides, as and for the purpose herein set forth."
The bill was filed on the e heth day of July, 1872 , and the
writ of subpoena issued thereupon was duly served upon the Writ of sukpoena issued thereupon was duly served upon the defendant; but the defisndant failed to enter an appearance, عnnd thereupon-namely, on the 17th day of October, 1872-
the Court, upon motion of C. Howson, Esq., counsel for complainant, granted a decree declaring said patent of Dedrick plainant, granted a decree declaring saly
wholly invalid, inoperative, and void.

Guard Plates for stoves.

McKennan, Circuit Judge
A guard plate for stoves, consisting of a series of projecting or deflecting shields, united by ornamental tracery, and so arranged as both to conceal he fire pot an essentially differen in form, operation, and effect from a fender consisting of a series of hollow frustums of cones so arranged that the hot air passes obliquely upward and outward from the stove. That the effects claimed to be produced by the patented in vention are produced to a useful and valuable extent, an in-
ference from the public reco This was a suit in equity brought by merits. This was a suit in equity, brought by David Stuart and Enos S. Shantz and Oliver B. Keeley, trading as Shantz Keeley, for an alleged infringement of certain letters patent for guard plates for stoves granted to complainants, as as-
signees of David Stuart and Alexander Wemyss, on the 18th say of May, 1868 .
ds the defendan
As the defendants sought to justify their infringement by setting up a license under a patent granted to W. L. McDowell, April 28, 1863, which was earlier than the date of the inven
tion by Stuart and Wemyss, the validity patent was directly called in question. The case was thu patent was directly called in question. McDe case was thus with that covered by complainants' patent.
Patent sustained.
C. Honoson
C. Hovoson and F. Sheppard, for complainants.
Hrank Wolfe, for defendants

Frank Wolfe, for defendants.

A Perpetual Motion.

A correspondent, Mr. H. R. Birdsall, of Green, New York, sends us a description of a perpetual motion, constructed by an adventurer, which worked so well that he succeeded in obtaining sums of money ($\$ 2,500, \$ 1,800$ and others) from various simpletons, and then left "to secure his Europea patents. He has not returned, and a visit to his deserted apartment has revealed a hole in the wall and certain sur reptitious mechanism by which the perpetual motion was driven. The beautiful device which elicited the subscrip tions of the inhabitants of Chenango county was a self-mov ing pump, and, actuated by some concealed clock springs, it was the delight and wonder of the vicinity.

NEW BOOKS AND PUBLICATIONS.

Encyclopedia of Practical Receipts and Processes,
containing 6,400 Receipts, embracing Thorough Informa
tion, in plain language, applicable to almost every possi-
ble Industrial and Domestic Requirement. By William B. Dick. Price $\$ 5$. New York : Dick \& Fitz $\begin{aligned} & \text { erald. }\end{aligned}$

This is a handsome volume of practical information, partly original and
partly collected from the best and most trustworthy sources. Many direc tions for processes, originally published in cur columns, are here collate and compared with other information on the respective subjects. The mation therein contained; and an investigation of the contents of this encyclopedia has impressed us most favorably as to the value of the pro is a well goten u v. book, and is worthy of a place in the library of any home workshop, factury or laboratory.
Inventions Patented in England by Americans.
[Compiled from the Commissioners of Patents' Journal.]
Boor Heri.-J. R. Ryerson, Malne.
Citar Mabing Machine.-G. W. Tanner (of Providence, R.I.), London, En Cotring Screws.-J. M. Carpenter, Pawtucket, R. I.
Eizcrric Torcai-W. W. Batchelder, New

 Paprr File, extc.-W. A. Amberg, Chicago, IIl. Prston VALVE.-T. Critchlow, Bald win, Pa.
Stram Geviriator.-J. M. Hicks, New York city.
Sbbireard Pump.-A. J. Reynolda (of White Plaing, N. Y.), London, Eng. Thlegraphing apparatus.-D. Craig, New York city
Umbrilla, etc.-A. \& I. Herzb
Vrsk.-T. Hall, Florence, Mass.

Facts for the Ladies, - Mary J. Clock, New York, has used her Wheeler Wilson Lock-stitch Machine ifteen years, averaging, for the irst ive ears, more than 4500 , making boyss suits and gg ger
mprovements and Woodss Lock-Stitch Rlpper.

Gutimes and qexmat.

The Chargefor Insertion under this head is One Dollar a Line. If lhe Notice. exceed Four Lines, One Dollar and a Half per Line will be charged.

Patent for Sale, through agents or otherwise. Article for do mestic use, of universal application, made by wood-workers. Already tested and of undoubted value. Owner has not
Useful \& Ornamental, Box 3374, P. O., New York.
For Sale, two Patents. Address H. S. Ball, Spartanburg, S.C Wanted-A responsible party to manufacture a patent spoel holder for Sewing Machines. Machinists who would like to make a con tract for the above,
A., P. O., New York.
Dobson's Patent Scroll Saws make 1100 strokes per uinute. Satisfaction guaranteed. John B. Schenck’s Sons, 118 Liberty St., N. Y. Permanent Photograph Printing, just what is wanted by Man ufacturers. Send for Clrcular to Amer. Pho
St. Philadelphia, Pa. John Carbutt, Sup't.
Valuable Patent Right for Sale. The amusing Toy Attach ment for Planos, illustrated in Scientific American, October 28th, 187 Address G. L. Wild \& Bro., 420 11th St., Washington, D. C.
Boston Fire! Goodnow \& Wightman, 23 Cornhill, were not burned out, and are ready to fill all orders for Tools and Materials. Cat號 irst Class Steam and Vacuum Gauges, Engine Registers Reording Gauges. New Yorksteam Gauge Co.,, Cortandt st.,N.Y ater Front for Factories, Rope-walks, Lumber-yards, \&c.Lots for Sale or Lease. Blocks of lots on Newtown Creek, near East Apply to S. R. Schieffelin, No. 15 East 26th St., New York.
Water Wheel Regulators-warranted, or no sale. Address ucket, R.
Soluble Glass, Water Glass, Liquid Quartz, Silicates of Soda and Potash for Concrete Cements, Fire and Waterproofng, man
by L. \& J. W. Feuchtwanger, Chemists, 55 Cedar St., New York.
Oxide of Manganese, highest tesst, from our own mines, for Steel manufacturing, Patent Dryer, Paints and Glass, at lowest prices, B L. \& J. W. Feuchtwanger, 55 Cedar St., New York.

Nickel Salts, double Sulph. and Ammonia, especially manu factured for Nickel Plating, by L. \& J. W. Feuchtwanger, Chemists, 5 Cedar St., New York.
Dickinson's Patent Shaped Diamond Carbon Points and Ad justable Holder for dressing emery wheels, grindstones, etc. See Scientific American, July 24 and Nov. 20 , 1869. 64 Nassau St., New York.
Wanted--A Small New or Second Hand Iron Planer for light ork. Apply to J.H. Killey \& Co., Hamilton, Ont.
Four Brick Machines, Combined with Steam Power (Winn patent), makes 40 M . per day, for sale at a bargain.
turers, John Cooper and Co., Mount Vernon, Ohio.
Absolutely the best protection against Fire-Babcock Extin guisher. F. W. Farwell, Secretary, 407 Broadway, New York
Hydraulic Jacks and Presses-Second Hand Plug Tobacco Machinery. Address E. Lyon, 470 Grand St., New York
Steel Castinss " To Pattern," from ten pounds upward, can be forged and tempered. Address Collins \& Co., No. 212 Water St., N. Y. Heydrick's Traction Engine and Steam Plow, capable of as cending grades of 1 foot in 3 with perfect ease. The Patent Right fo
the Southern States for sale. Address w.H.H.Heydrick, Chestnut
The Berryman. Steam Trap excels all others. The best is always the cheapest. Address I. B. Davis \& Co., Hartford, Conn.
Wanted-Copper, Brass, Tea Lead, and Turnings from all parts of the United States and Canada. Duplaine \& Reeves, 760 South
The Berryman Heater and Regulator for Steam Boilers-No one using Steam Boilers can afford to be without them. I. B. Davis \& Co
T. R. Bailey \& Vail, Lockport, N. Y., Manf. Gauge Lathes.
Windmills: Get the best. A.P.Brown \& Co., 61 Park Place,N.Y The Berryman Manuf. Co. make a specialty of the economy and safety in working Stearn Boilers. I. B. Davis \& Co., Hartford, Conn.
Williamson's Road Steamer and Steam Plow, with Rubber Tres.Address D. D. Williamson, 32 Broadway, N. Y., or Box 1809.
Peck's Patent Drop Press. For circulars, address the sole manufacturers, Milo, Peck \& Co., New Haven, Conn.
Belting as is Belting-Best Philadelphia Oak Tanned. C. W. Arny, 301 and 303 Chery
Boynton's Lightning Saws. The genuine $\$ 500$ challenge Will cut five times as fast as an ax. A six foot cross cut and buck saw, $\$$ For Steam Fire Engines, address R. G. Gould, Newark, N. J. Brown's Coalyard Quarry \& Contractors'Apparatus for hoisting and conveying material by iron cable. W.D. Andrews \& Bro. 114 Water st.N. Y. or Solid Wrought-iron Beams, etc., see advertis
All kinds of Presses and Dies. Bliss \& Williams, successors Mining, Wrecking, Pumping, Drainage, or Irrigating Machinery, for sale or rent. See advertisement, Andrew's Patent, inside page. Presses,Dies \& all can tools.Ferracute Mch.Wks;Bridgeton,N.J Also 2 -Spindle axial Drills,for Castors, Screw and Trunk Pulleys, \&c.
Gear Wheels for Models. Illustrated Price List free. Also Materials of all kinds, Goodnow \& Wightman, 23 Cornhill, Boston, Mass. Machinists ; Illustrated Catalogue of all kinds of small Tools and Materials sent free. Goodnow \& Wightman, 23 Cornhill, Boston, Mass.
Gatling guns, that fire 400 shots per minute, with a range of over 1,000 yards and which weigh only 125 pounds, are now being made a Colt's Armory, Hartford, Conn.
Perfection-Patent Ears for Elliptic Spring Heads. Address A New Machine for boring Pulleys, Gears, Spiders, etc. etc. Winans' Boiler Powder, 11 Wall St., New York. Certain cure

Nolecy ieuticis

[We herevoith presesent a series of inquiries embracing a variety af topics of recater or less general interest. The questions are simple, it is true, but wo

 reater or less general interest. The questions are simple, it is true,prefer to elicit tractical answerss from our readers.1
1.-Will some one please inform me how small birds are 2.-Why do steam boiler plates crystallize over the fire, hile feeding the furnace in front has a tendency to harden the iron? - B.F. M., of Ohio.
3.-How can I removestains of blood or oil from the feath rs of stuffed birds?-W.R.F
4.-What properties are essential or indispensable in a soil or clay for making good brick?-H. C.
5.-Will some one give me directions to make a telescope for my rifle? The distance between the center of dovetall on front end and for $m y r i f l e ? ~ T h e ~ d i s t a n c e ~ b e t w e e n ~ t h e ~ c e . ~$
6.-If a tube of 36 inches hight from its base, and an inch in diameter and graduated in a hundred parts, stands at zero in still water, how high will the water rise in the tube if
running at the rate of 12 miles an hour?-s.
7.-What articles are used and what is the proportion of each, in the composition of the white powder used for stamping with per
forated patterns for braiding and embroidery? What is the paper or parchforated patterns for bralding and embroidery? What is the paper or parch
ment used for making perforated patterns? What kind of machine is used or perforating?-J. M.
8.-I recently made a Leyden jar, by coating a two quart candy jar in the usual manner. I could not charge it; and when I insulated outer coating. I tried another jar of the same kind, with a similar result. Is it possible that the electricity could pass through the glass, and is some glass permeable by electricity? I have other jars which work well.-N. E.F. 0. 1,500 ibs. and running at a velocity of 180 revolutions per minute will the least amount of power grind a given amount of grain in an hour,
and what is the proportioned amountof resistance to the power at 12 inches, and what is the proportioned amount of resistance to the power
18 inches, and 24 inches respectively from the center?-G. B. R.
10.-Will some one tell me if there is anything which will move fly specks and other soils from gilt picture frames without also re moving the gold? Is there any way of cleaning the light bronze gas fixtures
without injuring the bronze? Can white window shades be done up with without injuring the bronze? Can white window sh
the same gloss and stiffness as when new?-F. E. V.E.

SPECIAL N OTL.-This column is designed for the general interest and in struction of our readers, not for gratuitous replies to questions of a
purely business or personal nature. We woill publish such inquiries, purely business or personal nature. We will publish such inquiries,
however, when paid for as advertisements at $\$ 1 \cdot 50$ a line, under the head of "'Business and Personal."
C. T. W., of N. Y., will find good recipes for preventing rust on and browning gun barrels on pages 154 and 266 of our volume XXVI. of volume XXV. A Subscriber will find directions for building an ice house on page 130 of our volume XXV.
Will you or any one inform me if there is any method by which magnetism can be permanently retained in a plece of steel: or, in other words, is there any such thing as permanent magnetism; and at the
same time mention, if it can be done, where I could get steel so magnet-ized?-J. P. Answer: Any magnetized plece of steel will retain its mag. ized?-J.p. Answer: Any magnetized plece of steel will retain tis mag.
netism permanently. Any philosophical instrument maker will do the work for you. You can do the work yourself byrubbing the plece of steel with one of the poles of a common horseshoe magnet,
F. O. B., of IIl., says: I would like to enquire whether air compressed into a vessel andallowed to cool to the temperature of the surwhen cooled, into another vessel, it will lower in temperature to correspond to a reduction in temperature. Answer: Yes. Compressed warm air is
reduced in pressure by cooling. Within certain Hmits of temperature and reduced in pressure by cooling. Within certain limits of temperature and pressure, air expands $1-491$ of its volume forevery degree of Fahr., of in
creased temperature and contracts accordingly by cooling. Contraction of volume of course reduces the pressure. Alr under compression, when allowed to escape, is by its expansion reduced in temperature.
W. P. H. sends a diagram of a method of spacing a horizontal line into equal divisions, thinking that it is a new and quick method. By
J. H. S.-The mineral you send is calcite or carbonate of lime, imilar to coarse granular marble.
F. D. H. asks: How can I prepare bladders to be used as gas D. G. N., of Ark., will find the best method to run a 12 horse power engine to saw logs to be as follows : Belt direct from a six foo
balance wheel to the saw pulley, which should be of 18 inches diameter balance wheel to the saw pulley, which should be of 18 inches diameter;
govern the steam by a butterfly valve by hand, shutting off steam just as govern the steam by a butterfly valve by hand, shutting off steam just as
the saw gets out the log; drill a b/inch hole in the valve, which will just keep the engine moving, feed $1 / 2$ to 1 inch at each revolution of the saw kep the engine moving, feed $/ 2$ to inch at each revolution of the saw
and let it run as fast as the engine will carry it. I once sawed 5,000 feet per day, for 40 working days in succession, In this manner. But he must
have a good foundation, as the engine will run 250 revolutions at times, have a good foundation, as the engine will run 250 revolutions at times,
with a 4 foot saw. We burned the saw dust as fast as made, but we had a with a 4 foot saw. We burned the saw dust as fast as made, but we had a
30 horse power boiler to an 8 inch cylinder engine, using steam at 80 lbs
We We also d
of Conn.
What is the reason that the old fashioned long stroke engines are all laid by, in places where they use stationary engines?-H. R. H. An-
swer: The reason why the high speed engines are preferred is because they swer: The reason why the high speed engines are preferred is because they
develope more power from the same quantity of fuel, than the old fashioned develope more power from the same quantity of fuel, than the old fashioned
engines. The theory is that the piston and rod, cross head and other reciprocating parts, if they have a high speed, act upon the principle of the fly wheel, absorbing the force of the steam at the commencement, and giving It at the end of the stroke. The practical effect is to do a way with the une
qual steam pressure experienced in ordinary engines, securing in lieu there qual steam pressure experienced in ordinary engines, securing in lieu there-
of a uniform rotative pressure on the crank. The strain on each dead of a uniform rotative pressure on the crank. The strain on each dead
center is avoided in the high speed engine, and a uniform smoothness of running is attained. In a competitive trialin Eng land not long ago, of two engines with cyllnders of the same size, using the same weight of steam per horse power per hour, the high speed engine de
more horse power than its low speeded competitor.

At what angle should a drill, to go the quickest speed through cast fron, be made? Will the same angle be the best for drilling wrought
 iron and steel?-C. E. G. Answer: Hor cast ron the catung eage of the
drill should be on an angle of twenty to twenty-five degrees; for wrought
tron the drill should de shaprer. The cutting angle to be weed ts yaried iron the drill shoulan be sharper. The cutting angle to be used is varied
with the qualty of the metal. Geometrical Problem.-To J. S. E., query 7, page 298.-

Let $\mathrm{A}, \mathrm{B}, \mathrm{C}$, be any triangle, the siles of which being known, the angles
may be found tin the usual manner. From g , the center of gravity , draw mat y e found in the e sual manner. From g, the center of gravity, draw
mines bisecting the angles. Let x, y, z, be the centers of the circles. From Hines bisecting the angles. Let x, y, z, , be the centers of the circles. From
\mathbf{x}, y, and z , let fall upon the sides AB , BC, CA, the perpendiculars, xc, yf x, y, and z, let fall upon the sides $A B$,
$y d, z a, z b$, xe. Join $x y, y x, z x$. Then,
$\left.\mathrm{Ac}=\mathrm{cx} \operatorname{tang} \cdot \frac{\mathrm{A}}{2}, \mathrm{cf}=(\mathrm{yx})^{2}-(\mathrm{cx}-\mathrm{fy})^{2}\right)^{1 / 2}, \mathrm{fB}=\mathrm{yf} \operatorname{tang} \cdot \frac{\mathrm{B}}{2}$. Substituting these values 1 n equation 1 , we have an equation in which the side A Bis glven in terms of the perpendiculars cx, yf. In like manner
from cquations 2 and 3 will result equations giving the values of BC and and CA in terms of dy, az and $z \mathrm{~b}$, xe. From these the value of Ax , By and Cz are easily obtained. J. S.E. can solve the problem thus indicated, taking
of Ind.
M.S. of Va.-The mineral you send is asbestos. We believe the market is rather overstocked with the article at present.
What is the best way to rid a cistern of worms? The water is used for cooking purposes, and the worms are a source of great annoy-
ance.-A READER. Answer: Tell us how your cistern is supplied and lo-ance.-A Reader. Answer: Tell us how your cistern
cated, and what sort of worms you are troubled with.
Will you please inform me if there is an apparatus for producing light from electricity to take the place of gas?-G, E. B. Answer Yes. The electric light is extensively used in England for lighthouses;
but in this country it is not employed very much. The lecture rooms of but in this country it is not employed very much. The lecture rooms of
some of the colleges have them. The electric light is expensive as compared with gas.
Has there ever been laid in this country a roadway pavement of the Scrimshaw or Abbott's concrete patent (or any other coal tar pave-
ment) which has proved a success?-R. E.M. Answer. Yes. Such roads, ment) which has proved a success?-R.E.M. Answer. Yes. Such road
properly made, are excellent. You will see examples of them in New Fork and Brooklyn. They are used quite extensively in the latter city, Can your correspondent E. H., or some one else, tell me how to make good cider? I especially want directions for treatment after the cider leaves the press, and for preservingit by bottling or other
means.-J. W. B. Answer: By placing a little of Professor Horsford's means--J. W. B. Answer: By placing a little of Professor Horsford's
neutral sulphite of lime in the barrel, you can at once arrest fermentation neutral sulphite of lime in the barrel, you can at once arrest fermentation
at any point you wish, and keep your cider sweet for any desired length at any po.
of time.
lease give me the figures for finding the capacity of a boiler which is 15 feet long, 4 feet diameter, and contains 30 four inch flues, and also the number of gallons of its capacity. Also the name and composi-
tion of the enclosed specimen of rock (ratherpoor) which was sent to me from some part of Baltimore county, Maryland.-I. P. H. Answer: The contents of the boiller, space occupied by flues deducted, will be about 975 gallons. To compute the volume of a cylinder multiply the area of base
by the length. To compute the area of a circlemultiply half the circumby the length. To compute the area of a circle multiply half the circum-
ference by half the diameter. The What is carboline gas? In what manner is it produced, a how is it used ?-A. S. Answer. We do not know of any such gas.
C. C. A., of Cleveland, asks: What galvanic battery is the best for all
your city.
W. R. H., of Ill., says :-We are preparing to build a church house in our vicinity forty-four feet long. What should be its width and hight to render it easy and agreeable both to the speaker and hea And 20 feet more to the ridge. Lath and plaster on the under side of
the rafters, making your celling the same pitch as your roof with

out any arch to the cciling; then break it up by showing the princi-
pal trusses (three in number) extending across the roof. It is best to pal trusses (three in number) extending across the roof. It is best to
make these simply to consist of the two rafters and a shorthammer beam make these simply to consist of the two rafters and a short hammer beam
at bottom on each side, and, in the absence of buttresses, connect these at bottom on each side, and, At the center of each tie, rod, bring a rod
by a 1 it inch fron tie rod. At
down from the ridge to support the chandeliers, with an ornament at the intersection of the two.
How can I cheaply obscure the window glass, to make it appear like ground glass?-L. Answer : Use a ball of putty and dab the glass. W. P. says:-I send you a specimen of mineral; will you please say what it is, and its value? Answer: The incrustation
stone is iron pyrites, of no value unless found in largequantities Can I coat a small part of a tin roof, that is leaky, with any thing to keep out the water for a few months, and if so, wha
swer: Cover the cracks with rags dipped in melted asphaltum.
want to make a marine aquarium. Can I compound a sea water that will do ?-L. Answer: Probably not. But you can try. Ordinary sea water contains elght or nine different salt
nium. For quantities, consultanygood chemistry

Will you or some of your many readers inform me the origin and nature of the smoke of Indian summer? Also, is there a paper devoted exclusively to poetry ; if so, where is it published?-W. S. H. In the fall in some localitles, with of leaves, brush wood, and grasses loads the air, in the atmosphere for some time. The ordinary blue haze, seen in the distance, is supposed to be due in part to the presence of minute particles
of matter floatling in the air, and in part to watery vapor suspended in the air.-We believe there is no paper published that is wholly devoted to poetry. But such a publicationmight be made a success, especially if it were wholly produced in verse. Such a paper would be in journalism G. P. says:-Will you please inform me what is the fastest rugning time (well authenticated) ever made on any rallroad in this coun-
-try or in Europe? Answer: One of the fastest railway train records in his country is that of the Ocel relief train, carrying men which ran from Worcester, Mass., to Boston, November 10, 1872, duringthe ecent conflagration. Distance 44 miles; time of run 45 minutes, being at probable that portions of the distance orere $56 / 3 / 2$ miles per hour at a considerable faster probable that portions of the distance were made at a considerable faster
rate of speed than the above, and other portions at less speed. A velocity of sixty miles an hour is often obtained on first class rallways on straight portions of the track.
A. D. B. says:-The reservoir at the top of my house receives the water from Wenham Pond. My plumber declares that it would not be
safe to apply a ball cock to the supply pipe, as he fears that the pipe would safe to apply a ball cock to the supply pipe, as he fears that the pipe would
not stand the pressure. Does it not have to bear just as great a pressure with the arrangement the plumber has put in, namely, a cock in the lower the reserver is opened by hand, and closed when a telltaleppipes with the hight of the supply. If your house reservoir, supplied by cock, as stated, is 34 feet above the ground, the greatest pressure in your water pipes, at the surface of the ground, will not exceed 15 lbs. to the square inch. If Wenham Pond is 340 feet above your ground, then thepipe leading through
your house up to the ball and cock at the reservoir would have to resist a pressure of nearly 150 lbs . to the square inch. So great a pressure in a dwelling house is not destrable, as the pipes, unless made of unusual strength, are likely to leak and do mischief. It is to avoid risk of leakage
under high pressure, and consequent damage, that your plumber has put under high pressure, and
in the cock down stairs.
H. A. H. G., of S. C., says:-I enclose you a specimen of something, I don't know what; it is found tolerably plentiful a few miles from
this place. You will do me a favor by answering what you think it is. this place. You will do me a favor by answering what you think it is. To F. A. S., query 17, page 314.-Get the regular transfer pictures, then cover the picture with a slight coating of varnish; let it
stand 10 or 15 minutes, put your picture on the glass or wood. rubbing it stand 10 or 15 minutes, put your picture on the glass or wood. rubbing it gently so that the air is all pressed out, let it "set" a few minutes; then
sponge it off nicely with water, taking care to let your paper get thorsponge it off nicely with water, taking care to let your paper get thor-
ougly wet, then raise the paper gently ; when dry, varnish with flnishing varnish.-A.A. O., of Iowa.
In answer to your correspondent from Tennessee, mentioned in your editorial on page 295, I will say that there are moments when a quantity of water is instantly converted into steam. If much steam escapes, the disturbance in the boiler mixes the water and steam, so that the
water becomes instantly ever as is frequently seen on trying the gage cocks. I believe this is the cause
of many explosions.-F.B.C., of N. Y.
W. E. F., query 2, page 298, will find the following mixture to be the best lasting and cheapest wash paint for the preservation of
shingles: Take two pecks of the best unslaked lime; slake it with boiling shingles: Take two pecks of the best unslaked lime; slake it with boiling
water, keeping it covered during the process. Strain the liquid through a water, keeping it covered during the process. Strain the liquid through a
fine sieve, and add to it one peck of salt dissolved in warm water, three pounds rice flour, bofled to a thin paste, stirred in boiling hot, one half pound powdered whiting, and one pound glue, well soaked and dissolved in a water bath. Add five gallons of hot water to the whole mixture and let it stand a few days; heat and apply it while hot.-F. S. B., of Me.
P., query 11, page 249 , should use pulverized alum and saltpeter, in about equal parts, as a substitute for arsenic. By experience 1
find oakum superiorto cotton or hemp in stuffing, as the tar it contains tends much to the preservation of the skin.-W. R. F., of Mass.
To J. W. S., query 13, page 314.-Silk is generally used, and is, I believe, the best material.-F. S. B., of Me.
J. F. S., query 29, page 314, can make litmus paper by taking oz. Iitmus, 5 ozs. alcohol, 5 ozs. water. Put them in a ten ounce bottle, and shake them occasionaly during ive or six days, when a deep blue
tincture will be obtained. Pour off the clear fluid into another bottle. To prepare the paper, pour a little in a plate, pass blotting paper through
it in sheets, and hang it up to dry. This is for the acid test. For alkalies, it in sheets, and hang it up to dry. This is for the acid test. For alkalies,
take some litmus paper, pass it through weak vinegar, hang it up and let take some litmus paper, pass it through weak vinegar, hang it up and let
it dry. This is a very delicate test. Another test paper can be made by it dry. This is a very delicate test. Another test paper can be made by
taking 1 oz. powdered turmeric wood, 5 oz alcohol, 5 oz . water; prepared

Under this heading we shall publish nent home and foreign patents.

Leather Cutting Tool,-John Sweezy, Elizabethville, Pa.-This invention has for its object to furnish an improved tool for cutting strips of
leather forfly nets and for other uses, which will cut four, more or less, leather for fy nets and for other uses, which will cut four, more or less,
strips at a time, and will cut them equally other irregular piece as from straight pieces, and whether the leather be the thinnest morocco or leather three slxteenths of a n inch thick; and it nation of a spring guard with the knife block and cup block formed on the respective handles of the instrument.
Feed Water Heater.-Nathaniel Jones, Buffalo, N. Y.-This invention relates to the class of feed water heaters consisting, in general terms, of
a series of pans or troughs arranged with a series of heat radiators within a series of pans or troughs arranged with a series of heat radiators within
a case, so that the water in flowing downward falls from the first series of a case, so that the water in flo wing downward falls from the first series of
troughs on to the radiators next below them, and from the radiators on to troughs on to the radiators next below them, and from the radiators on to
the troughs in the next series, thus alternating till the final receptacle is reached. The invention has for its object to furnish a heater in which the water pans and steam and water guides are arranged to secure the speediest utilization of a given amount of heat
pensive construction of the apparatus.
Folding Bedstead.-H. Harrison Hill, Pontiac, Ill.-The invention relates to bedsteads that fold together by having the rails hinged to the head and foot and the slats pivoted to the ralls; and it consists in vertical cleats on the inside ends of rails to strengthen rails and give sufficient thickness for one leaf of hinge.
Lamp Citimney Protector.-Edward Stern and Sigmund Blau, New York
City.-This invention conisists in a lamp chimney protector, consisting of city.-This invention consists in a lamp chimney protector, consisting of
two barspivoted together at one end and provided with hooks at the other, so as to be adapted to use in chimneys of varying size.
Ore Separator.-Johann Friedrich Utsch, of Iserlohn, Germany.-This invention relates to a new self-acting Jig machine, in which separate cham-
bers, having separate discharge openings at varying hights, are arranged for the reception of the several kinds of ore, salts, or other material which are to be separated from one another by virtue of their varying specific gravity.
By having the said chambers so united as to permit a free flow of the ore By having the said chambers so united as to permit a free flow of the ore
from one to another, the process of separation is greatly facilitated, and the separation carried on with greater certainty than in the Jig machines now in use.

Pragring Jick.-John G, Ziegler, Salt River, Mich.-This invention con-
gists of a circular ring or table mounted on a standard by being pivoted to sists of a circular ring or tablemounted on a standard by beting pivoted to
the top of it at one edge, and resting at the opposite edge on braces to Which it is pivoted. Sald braces are swiveled to the the standard so as braces to to
around dit horizontaly and be adjusted yertichly ing up and down on the standard, whereby the sald ring or table, whereo the blocks to which the last is clamped are mounted, can be readily ad justed to any required angle to the horizontal plane. The invention also consists of the attachment of the last-supporting blocks to this ring or table by long slotted plate, which is secured through the table, so that it can turn
freely thereon, the sald sloted plate being capable of shifting endwise long the bolt by which it is secured, which passes through the siot, so that the last can be ogcillated horizontally on the table, and shifted trans
ly thereof to facilltate the adjustment of the work to any position.

Iron Stricturbe.-Joseph D. Duclos, New York city.-This invention for its object to simplify the construction of iron bulldings by dispensing
with the "backing up" or covering of the walls on the inner sides thereof. The invention consists in finishing the cast metal walls of such structure on both sides with panels, ornaments, or otherwise, and in thereby making

 ng the seat and shifting it on a horizontal pivot laterally, also forward and back, and raising and lowering the seat. It also consists in the constructio of such chairs with perforated covers to the seats and backs for ventilation Thus constructed, the seat and back will be kept moderately cool instead of becoming and remaining nnpleasantly heated when in use
Washivg Machine.-William W. Grant, Bloomington, Ill.-This invention
has for itg object to has for its object to furnish an improved washing machine. It consists of a
rectangular suds box, made with a concave bottom and concave vibratory back, so arranged as to swing down to allow the water to flow back into the suds box when a wringer is being used. It contains a corrugated beater
board, actuated by a standard and lever passing through notches in the ․
Buggi Reach.-John w. Reeder, West Manchester, Ohio.-This inven tion has for its object to furnish an improved reach for buggies and othe vehicles, which shall be so constructed that one of the wheels may rise in passing over obstructions without twisting the reach, spitting the head
block, breaking the braces, or straining or otherwise injuring the reach or its connections.
Boor Holder.-David Moritz, Carmansville, and Robert White, Mott books, being intended for children's use while carrying their books to and from school, and for similar purposes. The invention consists in the combination of a spring slide with a perforated guide and with the fastening string, all operating in süch manner that the string drawn through
guide will be clasped and held secured by the action of the spring.
Mode of Propelling Canal Boats.-Joseph Hough, of Buckingham, Pa. and for preventing, to the greatest practicable extent, the lateral disturb ance of the water. The invention consists, first, in the use of a double propeller, composed of two wheels, that revolve in opposite directions but effect the same results by having their wingsinclined in opposite directions. The invention consists, also, in the use, at the sides of the vessel, of laterally adjustable plates, which serve to absorb the lateral disturbance of wa-
ter and thereby prevent all injury to the banks or shores of any water course in which the vessel may be used.
Paint Mill.-Robert J. McGrew, Evansville, Ind., assignor to himself and George W. Shanklin, of same place.-This invention consists in an arrangecalculated to be efficient in performing work and to be self-sharpening Second, it consists in a construction and arrangement of both the grinders, so that they can be readily taken off when worn out and new ones applied
without any unnecessary waste of parts not worn out. Third, it consists in is connected to the hopper to facilitate the removal of the rotating grinder Fourth, it consists of an arrangement of devices for suspending and adjust Ing the rotary grindor.- Fifth, it ondit of na arrangement of grovee tn
the shell to answer the purpose of an ordinary scrape for the discharge of the shell to answer
the ground paint.
Boring Machine.-William C. Freeman, Louisiana, Mo.-This invention consists of one or more gangs of boring tools arranged on a vertically ad-
justable support and provided with driving belts for the tools and apparatus for raising and lowering the tools while in operation, with automatic feeding gear, a hopper, guides, and holder for the stuff to be bored, all arranged
so that the feeder pushes a board from the bottom of the hopper along the guides to the holder over the gangs of boring tools, which then come up and bore the board along one or both ed ges at the same time that the feeder
goes back for another board, and then go down before the feeder comes forgoes back for another board, and then go down before the feeder comes for-
ward again with the next board and ejects the first by the next, and so The hopper, guides, holder, and the tools are adjnstable to boards of different sizes.
Leatere boarding and Graining Machine.-Louls Townsend, Terre
Haute, Ind.-This invention has for its object to furnish an improved ma chine for boarding and graining leather, doing its work quicker and better than it can be done by hand, and with substantially the effect of hand boarding upon the leather. By suitable construction the upper boarding and
graining roller can be raised for the convenient insertion of the leather without disarranging the gearing. The frame is held down to hold the upper roller down upon the lower roller by a spring. Levers are provided, the outer ends of which are connected by a cross bar which serves as a foot lever or treadle for operating said levers. The inner ends of the levers are pivoted to the lower parts of the sliding bars or frame and also to the frame
of the machine. A roller is attached, made somewhat smaller than the of the machine. A roller is attached, made somewhat smaller than the
boarding and graining rollers, so as to enter the space between the forward sides, and hold the leather firmly against them. In using the machine the outer ends of the levers are pressed down, which raises the frame and upper roller end operates another lever to throw back the small roller and blade. The leather is then passed between the rollers and the blade.
and as the levers are released the spring forces the frame and roller and as the levers are released the spring forces the frame and roller
down, which operates the second levers to throw the blade and roller fordown, which operates the second levers to throw the blade and roller for-
ward, the blade folding or doubling the leather, and the small roller holding it firmly against the graining rollers. If, now, the machine is ing it irmly against the graining rollers. If, now, the machine is
started, certain rollers will draw the leather inward and other rollers will draw it outward, while the blade will keep it doubled or folded and pressed in between the graining rollers, the fold of the leather constantly changting
its place, and the same effect belng produced as is produced by hand boardits place, and the same effiect being produced as is
ing and graining, and doing it quicker and better.
Sash balance.-Herman Gross, Hoboken, N. J.-The invention consists in a screw passing through a nut at the meeting rail and spring at one end, sion of the spring tends to turn the screw in the direction to raise the sash with just sufficient power to balance or hold the sash wherever it may be, so that the latter can be moved up or down with but a slight application of
force, the same as when balanced by a cord and weight or other balancing force, the sam
Buggy, farm and Lumbir Wagon.-Chesley Jarnagin, Beans Station, Tenn.-The invention consists in a peculiar mode of arranging the seat so that it will be out of the way of any load that may be carried, and so that the from a faithful attention to his business ; also in a stone body of peculia construction and adaptation; and also in a new mode of graduating the load upon a stone body.
Hay or Grain Rack.-Chesley Jarnagin, Beans Station, Tenn.-The inrests upon a platform of the running gear; in a shield or fender by which all forward movement of the load in going down hill, and all inconvenience from the same to the driver, is entirely prevented; and also in a folding cur ain fastened to sald ter the driver from the effects of the direct rays of the sun.

Manupacture of bromine.-Herman Lerner, Mason City, and Elijah C. Harpold, Hartford City, W. Va.-The invention consists in making the bitter
water pan with a close cover so as to form a boiler, water pan with a close cover so as to form a boner, and in connecting his this boiler with a primary reservoir, which is thereby kept at a proper tem-
perature, and a large proportion of the salt precipitated. It also consists in onnecting the furnace with a secondary reservoir, whereby the latter may be always maintained at the
Cotron Culitivator.-William Brooks, Lexington, Ga.-This invention elates to a cu with fordinary single shovel plow, of a pair of horists in th curved wings, which are attached loosely to the heel of the shovel standar by means of a single fulcrum bolt, to enable sald wings to adjust themselves
o the surface of the ground.
Blind SLat Adjostrr.-Oliver L. Houghton, Holden, Mo.-This invention
consists of a coiled spring connected to one of the slats for turning them up all the slats being connected together with a ratchet disk on the lower slat and a catch pivoted on the lower cross piece of the blind to hold the slate
open; or, instead of the disk and catch, it is proposed in some cases to have he croth a knob har pulling the slats down, and fastening them to pin on the hasp.
Earth Adger.- Joseph Wilson,' Cameron,' Mo., assignor to himself and Lewis A. Bing, of same place.-This invention relates to magers for boring wells, and consists of two semicircular tapering pods, each with a cutting ip and opening, securely riveted or fastened to arms. Securely fastened, by To the upper pair the ends of the arms are jointed, so that the parts of the pod may be separated when the auger is raised and the inclosed earth may be released. The pods are held together in close contact with each other so that they form a round hollow cylinder sufficiently tapering to allow it to
be revolved in the earth with but little friction. When the auger is full it is
. we revolved in the earth with but little friction. When the
withdrawn, the pods are separated, and the earth discharged
Awning Slide.-John Boyle, New York city.-This invention has for its object to furnish an improved awning silde, retaining its position securelg siding block, and the tubular socket to receive the rod.
Drawer Support.-John Baggs, Easton, Md.-The invention relates to rawers generally, and consists in providing them with a support, susceptielative position of a drawer to the frame always readily maintainable. It
ene consists, secondly, in beveling the front division piece between drawera will cease drawer will not rub the veneering and cause it to peel off, bu wardly, and will not contact with it until the drawer is entirely closed. adjustable Chimney Cap.-Patrick H. Carlin, Brooklyn, assignor to him ADJUSA George H. McLaughlin, New York city, -This invention has for it object to produce a metallic chimney cap or covering for the tops of chimneys in place of the blue stone or other stone or brick caps heretofore used and thereby to increase the strength and durability of chimneys, and reduce he possibility of their crumbling to pieces. The invention consists in the and adjustable cross pieces to ft
Cooking Vessel or Boiler.-William Y. Thomson, Oyster Bay, n. Y.This invention has for its object to furnish an improved cover for kettle
and other cooking vessels, which shall be so constructed that the liquid con and other cooking vessels, whiched off without danger of spilling the solid contents of the vessel or scalding the hands of the operator. Upon the upper part of the opposite sides of the inner surface of the vessel, and directly pposite the lugs, are attached shoulders or flanges upon which the cove rests. To the inner side of the vessel are attached lugs or pins to keep the coverin place upon the shoulders. The cover is made in the form of two semi-
circular disks, hinged to each other at their straight edges. To the midd part of one of the semicircular disks is attached the handle by which the cover is handled. In the other semicircular part of the cover are formed number of perforations, through which the water flows out when the kettle is inclined. The perforated part of the caver in cowowd with effap, hingoud
to the said semicircular dish, so that it may be pushed out by the outfowing liquid. Suitable means are provided so that, by turning the cover one quar the vessel, the said vessel is inclined by means of the handle, upon the lowe ends of the arms of which are formed straight hooks which enter slots in the ugs formed upon the lower part of the sald kettie. This construction enales the hanle being burned or heated.
Corn Plowand Marker.-George W. Meixell, Hecktown, Pa.-Thisinven tion has for its object to furnish an improved machine for furrowing the ground for planting and cultivating. The two beams, to which the standard positions by the cross bars, which are secured to the upper sides of the beams so that the plows may be conveniently adjusted wider apart or closer together, as circumstances may require. The rear end of the tongue, which is loosely bolted to the center of the central cross bar, passes through a seeper, which is so formed as to allow the sald tongue to have a vertical but no lateral movement. This construction relieves the horses' necks from having to support any weight, and at the same time teaves the plows free to
follow the surface of the ground. The depth at which the plows work in the ground is regulated by the gage wheels, which may be readily adjusted. The handles may be inclined, to allow the plowman, while guiding the plows, to
walk at the side of the row of plants being cultivated. By sultable construction, the marter ar torn frome asses back and forth across the field, working equally well at either side

Machine for Polishing Marble and Wood.-John C. Mateer, Kanka kee, Ill.-This invention has for its object to furnish an improved machine for polishing marble and wood, and which may also be used for operating justing itself to the surface to be operated upon ; and it consists in a vertica shaft, revolving in bearings attached to sultable supports. Upon the uppe driving belt. A frame is arranged, to the rear ends of the top and bottom bars of which are attached bearings in which the shaft revolves, so that the sald frame may be supported by the sald shaft. This shaft, by means of a
belt, imparts motion to a second shaft attached to the frame. From the selt, imparts motion to a second shaft attached to the frame. From the
second shaft extends another frame, at the end of which is a third shaft, to the lower extremity of which the rubber is fastened and so arranged as to adjust itself to the surface to be operated upon. The swinging frames can
be conveniently raised and lowered to adjust them to the thickness of the material to be operated upon.
Steam Road Roller.-Thomas Aveling, Rochester, England.-The object of this invention is to construct a light and efficient steam road roller with horizontal boiler. To this end, the construction of the roller is so modifled as to avoid the necessity for the heavy framing heretofore employed. In carrying out the invention, the general arrangement of the ordinary trac-
tion engine is adopted, converting the driving wheels into rollers, and the space left by these rollers is covered by a pair of front rollers, which serv also as steering wheels. These rollers are made conical or "dished," in order
that, on the ground line, they may be close together, while at and their axle there is space for a vertical shaft standing up from their axle, and Which serves as a front support for the boller. This support is so connected
to the shell of the horizontal boiler as to allow of its receiving a to the shell of the horizontal boiler as to allow of its receiving a slight late-
ral (as well as an axial) motion, which lateral motion is required to permit of the rollers adjusting themselves to their work. The front rollers are mounted loosely on a dead axle to which is bolted the lower end of the vertical shaft or support. To the extremities of this axle a horizontal forked or saddle plece is attached to recelve and act as a guide for the steering chain. The chain passes rearward to a chain wheel, by turning which the ateering of the rollers will be effected, their axle belng free to swivel and
oscillate with the vertical support attached thereto. Mr. Aveling has done more towards developing improvements in this line of invention than any
ther person. Aveling \& Porter manufacture the machines in England, and
H. W.C.Oastler, 43 Exchange Place, New York city, is the agent r. W. C. Oastler, 43 Exchange Place, New York city, is the agent for this
country. Bridge-George E. Harding, New York city.-The invention consists in stiff upper chord of metal or wood, preferably arranged panels, and rigidly ouble ribbed arch, braced and counterbraced in suitable panels, and rigidly counterbraced with vertical tension rods connecting the upper and lowe chords.
[OFFICIAL.]
Index of Inventions
For which Letters Patent of the United States were granted.
For the week ending November 5, 1872, and each bearing that date.

SCHEDULE OF PATENT FEES:

On each Caveat.....
On fling each application fora P.
On issuing each original Patent.
On issuing each originalPatent...
On appeal to Examiners-In-Chief.
On appeal to Commissioner of Patents
On application for Extension of Patent
On granting the Extension
On fling a Disclaime
n an application for Design (three and a half years)
On an application for Design (seven years)..
on an application for Design (fourteen years)
Animal matter, treating, M. J.Stein..
Auger bit, R. A. Whitmore
Auger, earth, T. C. Harris.
Auger, earth, T. C. Harris.....
Bearings, etc., alloy or metallic compound for, C. Adams.
Bed bottom, spring, R. W. McIntyre
Bed bottom, spring, H. E. Maker
Bee hive, W. B. Arndt.........
Bird cage hook, D. McArtis
Bit brace, Q. S. Backus.
Boards, machine for slitting, A. T. Nich
Boot and shoe insole, G. H. Whitaker.
Boot and shoe shank, Gordon and Dow
Boot and shoe uppers and soles, machine for uniting, G. McKay Boot and shoe counter, G. W.Day.
Bridge, H. C. Russell.............
Bridge, iron truss, T. C.Clarke
Button, sleeve, Harrington and Cooke
Can for shipping oil, etc., H. G. Porter
Car coupling, Neisch and Hirner.
Car couping, J. S. Ingram.
Car, dumping, J. R. Dubois
Car, dumping, J. R. Duboi
Car spring, L. vote.
Car spring, rubber, A. H. King.
ars, connecting and disconnecting differently gaged. C. D. Tisdale.
athe dog, Cliff and Haynes
Letter box, A. T. Slaclafre...
Mast coat, Perkins and Stetso
Mechanical escapement, E. C. Hopping
Carriages, top support for, H. J. Lingenfelter
Chair, w. W. Haupt.
Chair and bed, combined, J. H.
Churn dasher, A. W. McClure
Clothes frame, H. T. Field.
Clothes wringer, Vose and Eva
Coffee huller, T. T. Woodruff
Commode, W. Prangley
Cooling mash, apparatus for, A............
Corn sheller, hand, G. C. Ballard.........
Corset spring, s. . . Barnes, (reissue)
Coupling, drill rod
Coupling, drill rod, W. H. Downing....
Cover, terra cotta grave, C. c. w
Crib, child's, J. Batley.
Cupboard catch, J. Ot
Cultivator, W. Brooks
.
Cultivator, G. Jessup.
Curtain fixture, B. Lando
Curtain fixture, L . c. Prin
Curtain fixture, L. C. Prindle, (reissue)
Earth closet, H . Clark.
Elevator, ice, W. Eighmi
Elevator, steam water, w. E. Prall.............
Engine
Engines, spark arresterfor Harris.
Eyelets, machine for ming Buckland
Fastening, nut and bolt, A. C. Smith
Feather renovator, C. Kendall.........
Ferrule for brooms, screw, M. W. Dillingham
Fertilizers, treating animal matters for, Hogel and Edward
Fire kindler, W. H. Thomas.
Fire arms, breech loading, W. M. Storm
Fly catcher, J. Olson........
Fuel, apparatus
Fuel, apparatus for preparing artificial, W. H. and E. Cory........
Furnace for annealing plow shares, etc., W. M. Watson, (reissue)
Garbage box, M. Bacharach.
Gas heater, E.
Gate, J. Curry
Grain drill, C. E. Patric.
Harness, shaft and thill tug for, W. H. Duval
Harrow, L. L. Willson.
Harrow, S. J. Newell.
Harvester rake, W. T.Smith
Heel, S. A. Brackett....
Heel stiffeners, machine
Hinge, blind, D. Bull.
Horse, hobby, W. E. and J. A. Crandall.
Hook and lid lifter, tipping, W. E.
Horse collars, pad for, T. Neẅ bold
Horse powers, track sprinkler for, W. Brown.
Hydrocarbon, apparatus for burning, I. Kendrick.
Hydrocarbon liquids,
Hydrocad ing W. H. Burr
Jack, lifting, A. Dom.
Lamp, H. B. Wellman, (re.i......
Lamp, argand, H. W. Hayden
Lamp bracket, Young and F
Lamp chipney,
H. Andes....

 .$\$ 30$ $\xrightarrow{132,873}$ 132,873
132,883
1838 132,883
132,859
122,752
1232 132,752
132,744
132,728 132,728
132,844

132787 | 132,787 |
| :--- |
| 132,846 | 132,791

132,70
13,854
132,881 132,854
13,881
132,719
122847 132,719
132,877
132,813
132,794
13260 132,813
132,794
132,80
132,803 132,803
132,761
132,888
132,852 132,852
132,83
13,818
132,825
 132,879
132,756
132,878
13239
 132,882
1328865
5, 131 5,131
13,744
132,333

Medical compound, H . Themel.

Medicated confections, N. Saltabas
Milk cooler, I. Wheeler.
Milk cooler, Bort and Bryan
Mill, fanning, L. L. Willson.
Nails, tip for preventing the ingrowing of toe, E. E. Stedman
Oil can, A. E. Stoessiger.
Oill lubricating, G. W. Gladden
Oil tank, J. Lessler..
Pall and stool combined, milking, M. A. Gree
Paint and package therefor,
Paint and package theref
Paper flle, L. P. Keech..
Pavement, G. H. Chinnoc
Pegging machine, L. D. Wheeler
Pencil, H. T. Cushman.
Pencil case, ornamented, E. S. Johnson, (reissue)
Piano action, S. P. Brooks
Pipe wrench, D. E. Eaton.
Pipe wrench, D. E. Eaton...
Pipe, coating, lead, R. P. Berr
Pitcher holder, B. T. Currier..
Pitchers, spout and lid of, D. Baker, (reissue)
Flanter, corn, A. J. Noe.
Planter, corn, W. J. Wallingford.
Planter, corn, A. Barnes...
NIanter, corn, H. Gortner.
Mlanter, corn, H. Gortner......
Flate lifter, hot, C. L. Merrill.
Flate lifter, hot, C. L. Merrill..
Platform switch, G. M. Guerrero
Plow, J. R. Harris.
Plow, A. B. Smith.
Plow, D. M. Allen.
Plow, D. M. Allen........
Plow cleaner, J. B. Place
Plow, gang J. Lane....
Plow, gang, J. Lane.....
Plow, sulky, C. N. Owen
Potato digger, R. G. Dayto
Printer's composing stick, P. S. Hoe.
Printing ink, J. Kircher.
Pump, T. Foulds, Jr.
Pump, steam, J. V. Yangburn.
Pump, steam vacuum, G. H. Nye
Railway frog, W. Close
Railway frog, W.Close.................
Railway snow plow, Hulbert and An
Railway track clearer, S. W. Emery.
Railway track clearer, s. W.
Rake, horse, Titus and Wood
Rake, horse, Titus and Wo
Roller, pastry, W. C. Peirce
Rollers, wiper for dra wing, J. M. D̄̄nham
Roof, battening, G. W. Robinson.
Sash holder and tightener combined, A. P. Danfield
Saw mill, circular, D. Lane.
Saw mill head block, C. M. Fairbanks
Scrabber and polisher, W. M. Pegram.......
Sceiter and cultivator combined, S. Martin
Sewer basing, E.L. Dyer
Shears, pruning, Moreau and Waldo
Shutter fastener, J. B. Sargent
Sign, G. A. Fall
Sole burnishing machine, A.C. Carey
Splints,machine for making, Skelton and Victor
Stair cover, M. McGeviran..
Staves, machine for crozing
Steam and W. Adamfering, 0 o. Osten
Steam engine valve, G. C. Timpe
Steam buller, w. H. Phelon..
Steam boiler compound for preventing incrustation, Eliis \& Dobso
Steam boilers, feed water apparatus for, J. W. Youman.
Steel, mold and core for casting, w. Kelly
Steel, mold and core for casting, W. Kelly
Stove, cocking, Chamberlain and Crowley.
Stove pipe collar and stopper, W.L. Rydman
Street sweeping machine, T. Craig.
Telegraph key, A. W. Decker..
Thrashing machine, J. Gerdom
Thrashing and hulling machine, J. W. Smith
Toyacco, bunching and pressing, D. Harris
Toy steam fre engine, A. and E. Buckman.
Trunk, H. Dowens...
Umbrella, J. H. Dally
Valve for steam engines, G. C. Timpe.
Vat, cheese, E.
Vise, J. Ridge.
Wagon slafts into poles, connecting, Darley and McLella
Wagons, draft equalizer for, Kendle, Gates, and Orput.
Washer for bolts, D. Cumming,
Washing machine, D. T. Hoffman
Washing machire, W. H. Derosear
Washing machine, J.C. Grannan.
Washing machine, J.C.G
Water wheel, D. C. Wolf
Water supply for cities, system of, B. Holly (reissue) Water supply regulator for water works, B. Holly (reissue)
Watchmaker's lathe and chuck, C. Hopkins
Wheels, manufacture of cast chilled, G. Whitney (reissue) Windmill, G. C. and J. H. Morgan.
Wind wheel, J. J. McDill........
Wind wheel, J. J. McDill.
Wrench, P. L. Gibbs.
Wrenoh, Q. S. Backus
APPLICATIONS FOR EXTENSIONS.
Applications have been duly fled and are now pending for the extension
of the following Letters Patent. Hearings upon the respective applications are appointed for the days herelnafter named 22,890.-Carpet Sweeper.-N. B. Pratt. January $22,1873$. 2,990.-Mop HEAD.-L. Taylor. January 29, 1873.
23,034.-FIRE PLuG.—J. L. Lowry. February 5, 1873.

EXTENSIONS GRANTED.
2,036.-Fruit Preserving Houses.-B. M. Nyce.
2,038.-Preserving Fruit, etc.-B. M. Nyce.
4,784.-Preserving Fruits, etc.-B. M. Nyce.
7, 813.-Horse Rake.-H. W. Sabins.
7,813.-Horse Rake.-H. W. Sabins.
21,924.-Patching Rifle Balls.-L. H. Gibbs.
21,921.-Patchivg Rifle balls.-L. H. Gibbs.
a1,936.-Looomotive Engine Truck.--L. Bissell.
21,95.-CCAR SPRING.-P. G. Gardiner.
21,991.-SAFETY STEAM BoILER.-F. Stebbins.
22,099.-RALLroad Car Wherl.-T. C. Ball.

DESIGNS PATENTED

6,235.-TEA CaN.-J. Britton, Greenpoint, N. Y. 6,236 \& 6,237.-FURNITURE.-D. Denyven, Cambridgeport, Mass 6,238.-Cooring Stove.-A. J. Gilbert, New York city.
6,239.-PERFUMERY Botrie. - F. Storm, Philladelphia, 6,239.-Perfugrer Bottle.- F. Storm, Philadelphi,
6,420-Coorine Stoote.-I. J. Vincent, Pittston, Pa. 6,241.-Cooking Stove.-I. J. Vincent, Pittston, Pa. 6,442-Cooking Stove.-A. C. Williams, Albany, N. Y.
6, 243 - Fire Set Holder.-A. Wunder, New Haven, Co

TRADEMARKS REGISTERED.
48.-Medicine.-T. Boyce, F. McKenzie, San Francisco,
1,049.-Whisky.-F. Chevalier \& Co., San Francisco, Cal.
, $050 .-$ Mustard.

1. H. C. Hudson \& Co., Son Francisco, Cal.
,051-CHAMPDGNE WINE.-Renauld, Franoois \& Co., New York city.
, 02 Brandy.-Renauld Francois \& Co., New York city.

Value of Patents,

and how ro obrain rikil.

Practical Hints to Inventoris.

ROBABLY no investment of a small sum of money brings a greater return than the expense incurred in obtaining a patent even when the invention is but a small one. Larger inventions are found to pay correspondingly well. The names of Blanchard,
Morse, Bigelow, Colt, Ericsson, Howe, McCormick, Hoe, and Morse, Bgelon, Con, En sme, Howe, McCorick, Hoe, and tions, are well known. And there are thousands of others who have realized large sums from their.patents.
More than FIFTY Thousand inventors have availed themselves they have acted as solicitors and Publishers of the Scientific American. They stand at the head in this class of business; and their large corps
of assistants, mostly selected from the ranks of the Patent Offlce: men capabie of rendering the best service to the inventor, from the experience practically obtained while examiners in the Patent Office: enables MUNN \& Co.
to do everything appertaining to patents BETTER and CHEAPER than any to do everything appe
other reliable agency.

H0W T0

This is the closing inquiry in nearly every letter, describing me invention which comes
this office. A positive swer can only be had by presenting a complete application for a patent to the Commissioner of Patents. An application consists cf a Model, Drawmalities must also be observed. The efforts of the inventor to do all this business himself are generally without success. After great perplexity and delay, he is usually glad to seek the aid of persons experienced in patent
business, and have all the work done over again. The best plan is to solicit business, and have all the work done over again. The best plan is to solicit
proper advice at the beginning. If the parties consulted are honorable men, proper advice at the beginning. If the parties consulted are honorabie men,
the inventor may sately confide his ideas to them ; they will advise whether the improvement is probably patentable, and will give him all the directions needful to protect his rights.

How Can L Eest Secure My Invention?

 This is an inquiry which one inventer naturally asks another, who has had some experience in obtaining patents. His answer generaliy is as findand correct: Const sible-and send by express, prepaid, addressed to MUnN \& Co., 37 Park Row New York, together with a description of its operation and merits. On re to its patentability, free of charge. Or, if you have not time, or the means to tts patentability, free of charge. Or, if you have not time, or the means
at hand, to construct a model, make as good a pen and ink sketch of the improvement as possible and send by mail. An answer as to the prospect of a patent will be received, usually, by return of mall. It is sometimes
best to have a searci made at the Patent office; such a measure often saves best to have a searcin made at the Patent

Preliminary Exarnination.

In order to have such search, make ouc a written description of the invention, in your own words, and a pencil, or pen and ink, sketch. Send these,
with the fee of $\$ 5$, by mail, addressed to MUNN \& Co., 37 Park Row, and in due time you will receive an acknowledgment thereof, followed by a written report in regard to the patentability of your improvement. This special search is made with great care, among the models and patents at Washing
ton, to ascertain whether the improvement presented is patentable.

To Make an Application for a Patent.

The applicant for a patent should furnish a model of his invention if susceptible of one, although sometimes it may be dispensed with; or, if the invention be a chemical production, he must furnish samples of the ingred1ents of which his composition consists. These should be securely packed,
the inventor's name marked on them, and sent by express, prepaid. Small the inventor's name marked on them, and sent by express, prepald. Sman
models, from a distance, can often be sent cheaper by mall. The safest way to remit money is by a draft, or postal order, on New York, payable to the order of MUNN \& Co. Persons who live in remote parts of the country
can usually purchase drafts from their merchants on their New York corcan usually pur
respondents.

Caveats.
Persons desiring to file a caveat canhave the papers prepared in the short est time, by sending a sketch and description of the invention. The Govern ment fee for a caveat is $\$ 10$. A pamphlet of advice regarding applications MUNN \& Co., 37 Park Row, New York.

Reissues.

A reissue is granted to the original patentee, his heirs, or the assignees of the entire interest, when, by reason of an insufficient or defective specification, the original patent is invalid, provided the error has arisen from inad-
vertence, accident, or mistake, without any fraudulent or deceptive intenvert.
tion.
each distinct part of the invention comprehended in his original application by paying the required fee in each case, and complying with the other requirements of the law, as in original applications. Address MUNN \& Co.
37 Park Row, for full particulars.

Rejected Cases.

Rejected cases, or defective papers, remodeled for partles who have made applications for themselves, or through
Address MUNN \& Co., stating particulars.

Trademarks.

Any person or firm domiciled in the United States, or any firm or corporation residing in any forelgn country where similar privileges are extended to citizens of the United States, may register their designs and obtain protection. This is very important to manufacturers in this country, and equal
ly so to foreigners. For full particulars address MUNN \& Co., 37 Park Row New York.

Design Patents.
Foreign designers and manufacturers, who send goods to this country may secure patents here upon their new patterns, and thus prevent others from fabricating or selling the same goods in this market.
A patent for a design may be granted to any person, whether cittzen or relievo, or bas relief; any new and original design for the printing of wat en, silk, cotton, or other fabrics; any new and original impression, ornament, pattern, print, or picture, to be printed, painted, cast, or otherwise placed on or worked into any article of manufacture.
Design patents are equally as important to citizens as to foreigners. For

Canadian Patents.

On the first of September, 1872, the new patent law of Canada went into force, and patents are now granted to cittizens of the United States on the

In order to apply for a patent in Canada, the applicant must furnish model, specincation and duplicate drawings, substantially the same as in
applying for an American patent. The patent may be taken out either for five The five and (government fee 240) or ror ten the torm of fiften years. The formalities for extension are simple and not expensive. American inventions, even if already patented in this country, can be paten.
old
All persons who desire to take out patents in Cauada are requested to Row, N. Y who will give prompt

Foreign Patents.

The population of Great Britain is $31,000,000$; of France, $37,000,000$; Bel$8410 \mathrm{~m}, 5,000,000$; Austrla, $36,000,000$; Prussia, $40,000,000$; and Russia, $70,000,000$
Patents may be secured by American citizens in all of these countries. Now is the time, while business is dull at home, to take advantage of these immense foreign fields. Mechanical improvements of all kinds are always in demand in E'urope. There will never be a better time than the present principal capitals of Europe have reliable business connections with the principal capitals of Europe. A large share of all the patents secured in MUNE \& Co., 37 Park Row, New York. Circulars with full information on foreign patents, furnished free.

Value of Extended Patents.

Did patentees realize the fact that their inventions are likely to be more productive of profit during the seven years of extension than the first full selves of the extension privilege. Patents granted prior to 1861 may be extended for seven years, for the benefit of the inventor, or of his heirs in cas of the decease of the former, by due application to the Patent Offlce, ninet days before the termination of the patent. The extended time inures to the benefit of the inventor, the assignees under the first term having no rights under the extension, except by special agreement. The Government
fee for an extension is $\$ 100$, and it is necessary that good professional service be obtained to conduct the business before the Patent Offlce. Full inform tion as to extensions may be had by addressing MUNN \& Co., 37 Park Row.

Copies of Patents.

Persons desiring any patent issued from 1836 to November 26,1867 , can be supplied with offcial copies at a reasonalle cost, the price depending upon
the extent of drawings and length of spectication. Any patent issued since November 27, 1867, at which time the Patent Offlce commenced printing the drawings and spesifications, may be had by remitting to this offlice $\$ 1$.

A cop for $\$ 1$.

When ordering coples, please to remit for the same as above, and state name of patentee, title of invention, and date of patent. Address MUNN有, 37 Park Row, New York city.
Munn \& Co. will be happy to see inventors in person, at their offlce, or to advise them by letter. In all cases, they may expect an honestopinion. For do not use pencil, nor pale ink be brief.
All business committed to our care, and all consultations, are kept secret and strictly consdential.
In all matters pertaining to patents, such as conducting interferences,
procuring extensions, drawing assignments, examinations into procuring extensions, drawing assignments, examinations into the validity
of patents, etc., special care and attention is given. For information, and for pamphlets of instruction and advice

MUNN \& CO.,
PUBLISHERS sCIENTIFIC AMERICAN,
37 Park Row, New York.
office in washington-Corner F and gilh streets, opposite Patent Offlce.

Mivenciu

OF THE

SCIENTIFIC IAMERICAN.

The Best Mechanical Paper in the Worla'!
A year's numbers contain over 900 pages and several hundred engravings
of new machines, useful and novel inventions, manufacturing establishments, tools, and processes.
The SCIENTIFIC AMERICAN is devoted to the interests of Popular Science, the Mechanic Arts, Manufactures, Inventions, Agriculture, Commerce, and the Industrial pursuits generally, and is valuable and instructive
not only in the Workshop and Manufactory, but also in the Household, the Library, and the Reading Room.

To the Mechanic and Manufacturer!
No person engaged in any of the mechanical pursuits should think of doing without the Scientific Amierioan. Every number contains from six in any other publication.

Chemists, Architects, Milluorights and Farmers. The SCIENTIFIC AMERICAN will be found a most useful Journal to Ahem. All the new discoveries in the science of chemistry are given in its
columns; and the interests of the architect and carpenter are not overlooked, all the new inventions and discoveries appertaining to these pursuits being published from week to week. Usieful and practical information pertaining to the interests of millwrights and millowners will be found pubHished in the Scientific American, which information they cannot possibly obtain from any other source. Subjects in which planters and farmers are
interested will.be found discussed in the Scientific American, many im. provements in agricultural implements being illustrated in its columns. We are also recelving, every week, the best scientific journals of Great Britann, France and Germany; thus placing in our possession all that is transpiring in mechanical sclence and art in these old countries. We shall continue to transfer to our columns copious extracts,
of whatever we may deem of interest to our readers.

One copy, one year
One copy, slx months
One copy, four months
One copy of Sclentifict American for one year, and one copy of engrav.
ng, " Men of Progreess,"
ing, "Men of Progrebs
One copy of Scientific American for one year, and one copy of " Sclence
Ren cord," for 1873
Remit by postal order, draft or express.
The postage on the Scientific American is ife cents per quarter, payable at the offlce where received. Canada subscribers must remit, with subscrip. ion, 25 cents extra to pay postag

MUNN \& CO.
3% Park Row, New York,

Adatutisemeuts.

Back Page
Inside Page

- O F ADVERTISING
 $\$ 1.00$ a line.

Inside Page

BAIRD'S goous

For Practical Min.
 anib butice
henry carey baitd, INDUSTRIAL PUBLISHER,
406 WALNUT STREET, Philadelphia

The Weekly Sun.
ONLY $\$ 1$ A Year. 8 Pages. The Best Family Paper.
$\boldsymbol{T h e}$
Besest Arricultural Paper
The Best Political Paper
The Best Story Paper.
The Best Fashion Reports.
The Best Cattle Market
The Best Cattle Market Reports.
The Best General Market Repor
The Best Paper Every Wayorts. THE WEEKLY NE W YORK SUN. Eight
pages, 56 columns. \$1 a year, or less than $\mathbf{2}$ cents a pages, 56 columns. $\$ 1$ a year, or less than 2 cents a
number. Send vour. doluar. Address \quad ALL KINDS OF PISALTICAL
INVENTIONS SOLD
OTIS ".asw wive

 100 YEAR ALMANAC. FOR 50 CENTS

STEAM ENGINES,

PORTABLE \& STATIONARY. "The Best, Cheapest, Most Durable."

 PUNCHING. For the Beat and Chent DROP ${ }^{\text {AND }}$ PR
Iron City and Siberian Iron Works.

 HALL BROTHERS
Are prepared to introduce their "System of Sprinklers, ${ }^{\prime}$ into Mills, Factories, de., at short notice. Call and see a practical operation of same at their works,
36 CHARDON STREET,

Grant's BoltCutten \& Drill Combined

50 MACHINISTR used to first class work

 B B UDON IRON WORKS.-Manuacturers
 CAMPBELL, WHITHER \& C0. 1176 Tremont St., Boston.

gIEVATORS

 baldwin's pat. waterbbalance hievatoi

 The Best Smutter in America,

Buy Barber's Bit brace.
EDWARD H. HOSKIN,
Consulting and anal vitical Chemist,

$\boldsymbol{N E} \boldsymbol{W} \boldsymbol{P} \boldsymbol{A T T E R N S}$.

Foot Lathes \& Power Lathes SPECIALMMACHINERY: MURRAY BACON, 23 Com meree st., Philadelphat

Machinery,

Machinists' Tools:
try, manufactured by
NEW
121 Chambers \&
Cold Rolled Shafting.

Sturtevant Blowers.

Pat. Punching Presses

 Write or f Large Illustrated Deseriptive Price List to

PITTSBURGH, PA.

CHRTSTMAAS BELTLS:

FWHALEN TURBRNE, No rigsi to prochaser
 Niagara Steam Pump. P. BLAISDELL \& Co.,

Milling Machines.

 Foot liathes.-T. Shanks, Baltimore, Md. WOODWORTH PLEANERS
 $\$ 100$ to 250 Rormantit gairat teed suric

T Tre Union Iron Mills Pitssburgh, Pa

 prepared to furnish all izes at terms as favorabie as can
beobtaninedelisewhere. Fordeesciptitivelithographadress
Carnegie, Kloman \& Co, Union IronMills, Pittsburgh, Pa

I AND WHEAT HILLS.

HYDR "PHILADELPHIA"
HIONA LIC JACK. Pispon yuided from both ends; all working

Corrugated Iron,

Andrew's Patents.

Aldithturifile, Durable, and Economical.

FIRST PREMIUM ARADE MARK ARED BP THE AMERICA

Planing and Matching

B CERK SE WATCHMANS TIME DE

 Chorty from me will be dealt wth acordang to aw. $\mathrm{R}^{\text {ICHARESSON, MERIAM \& CO }}$

 $\overline{\text { S }}$ IINGLE AND BARREL MACHHNERT--

RING SPINNING

U.S. Plano Co., 865 Broadway, N. Y

Agents, Read This!

C Hampion sping mattress-The

 pered steel springs, so unted that the pressure is equall
distributed. Esily moved or carced about the house
Can be ilited, turned, or rolled up like a blanket

T OR SALE-The Malleable Iron Works in
 \prod O MANUFACTURERS. - The Family

FORSALE

Steam Engine and Vacrum Pans.

HILL, CLARKE \& CO., ENGINES, BOILERS \& STEAM PUMPS TRON\& WOOD-WOREINGAMACHINERY,
 sContrate soin

 $\mathbf{W}_{\text {end }}^{\text {OOD CARPETING. }}$

Aatertistmentie

AHBAP durable and ilight permanent

 $\underset{M}{\text { MRRLLS DROP HAMMERSSTMw Of }}$ kriver iomet itivirid
Machinist's Tools,

 THE HEALD \&SISCO

 MORRIS, TASKER \& CO.,

ampzican orazcoad roon

Boiler Tubes.
wrought-rion tubes
and fitinis, for gas, steam, WATER, AND OIL.

WIRE ROPE.
JOHNAROEBLINGSSONS,

American Saw Co.

 CIRCJULAR SAWS, Patent Perforated
Circular, Mill, Cross-cult Saws.

 5000 AGENTS WANTED. Samples

B EACH'S Scroll Sawing Machine,Improved
 Malleable Tron,

TO INVENTORS.

The "Consolidated Fruit Jar Company,"

 ${ }^{1}$

FIRST PREMIUM (MEDAL) AWARDED IN 1870, AND ENDORSED BY CERTIFICUTE IN 18\%1, AS
"The BEST ARTICLE IN the MARKET."

The Wheat Field of America !

THE NORTHERN PACIFIC RAILROAD offers for sale its Lands in Central and Western Minnesota, embracing: 1. The best of Wheat Land

 3. Rich Prairie Pasturage and Natural Meadow, watered Grain can be shl Ague is unknown.Grain can be shipped hence by lake to market as
cheaply as from Eastern Iowa or Central Illinois. Cars now run through these Lands from Lake Superior to
Dakota. Price of land close to track, $\$ 4.00$ to $\$ 8.00$ per acre; further a way, \$2.50 to \$4.00. Seyen Years Bonds, now selling at par, received for land at \$1.10. No other unoccupied Lands present such advantages t SOLDIERS un
160 acres FREE near the railroad, by one and two years'
TRANSPORTATION AT REDUCED RATES urnished from all principal points East to purchasers of
Railroad Lands, and to Settlers on Government Homesleads. Purchasers, their wives and children, carried
free over the Northern Pacific Road. Now is the time for Settlers and Colonies to get Ralroad
ernment Homesteads close to the track.
Send for Pamphlet containiug ruminrorn
and copy of New Homestead Law. Address:
LAND DEPARTMENT, NORTHERN' PACIFIC RAIL ROAD, ST. PAUL, MINN.,
OR 23 FIFTH AVENUE, Cor.

MIAHOGANY,

\%

$=-4$

> $\underset{\text { Manufacturing Co., Manufacturers of }}{\text { MCNAB }}$ Manufacturing Co., Manufactu
$B R A S S C O C K S$
> FOR STEAM, Water and gas.
Wrought Iron Pipe and Fitting Illustrated Catalogue and Priee And fist fristing ons.
conplit
cation.

The Beatifíl NATIONAL WIRE MATTRESS.

The ONLY BED MADE HARD OR EASY at WILL.
WOVEN WIRE MATTRESS CO., Hartford, Conn. Sole Manufacturers. SEND FOR A CIRCULAR.

PORTLAND CEMENT,

 O^{F} the well known manufacture of JohSUPER-EIPATERS

AlWavs Relian]o. STHAN PIMNP.

Made by the Valley Machine Co.
EASTHAMPTON, Mass.
A. S. CAMERON \& CO.,

 Steam Pumps; Adapted to every possible
duty.
send for a Price List.

131 WEST SECOND STREET,
MACHIN IS TS ${ }^{\text {S }}$ TOOLS

Union Stone Co.,

PETER COOPER'S

 Refined IVats' Foot oil, FOR FIRST CLASS MACHINERY. The Tanite Co., connected with Emery Grinding.

 Address
Stroudsburg, MANITE CO.,
Tro., Pa.
MEP TANTMP CO,'S
$E M E R Y W H E E L S$ and $E M E R Y$

HE TANITE CO. do not Exhibit or Compete at any Fair in the United
THEE TANTTE CO.S

WOOD WOARTNTH MACHINERY

Diamond Pointed STEAM DRIHSS.

T HE adoption of new and improved applica

 ffactured obstruction. Never need sharpening. Man
THE AMERICAN DIAMOND DRILI Co. covivinivg
 I SAACS CASSIN, Engineer, late Chief En-

 NOTICE TO BRIDGE BUILDERS AND ENGINEERS.
In pursuance of a resolution of the Select and Common
Council of the Cly or Philadelpha, Plans and Estimates
re invited for a bride of not

WATER WHIBL 6000 IN USE. NEW WHEELBOOK 152 PAGES,FOR 1872

 And Experimental Machnery, Metal, or Wood made to I RON PLANERS, ENGINE And other Machntsts'Tools of superiones,

