a Weekly journal 0f practical information, art, SCIENCE, mechanics, Chemistry. and manufactures.

NEW YORK, SEPTEMBER 14, 1872.

$\underset{\text { [IN ADVANCE.] }}{\text { \$3 }} \underset{\text { per Annum }}{ }$

IMPROVED STEAM TRAP.

In the many processes of manufactures, etc., where steam is employed as a heating agent, the removal of the water of condensation from the pipes of the heating apparatus as fast as it accumulates, without, at the same time, wasting steam, is an object of the most desirable character. Devices of va rious forms have been designed for its accomplishment, among which brass expansion tubes and copper floats have occupied a prominent y osition. The former, however, are rendered inoperative upon becoming slightly coated with deposit, and allow the steam to pass off with the water; while the float, which is likely to become filled with water, has proved unreliable in giving suf ficient power to work the neces sary mechanism. The steam trap now illustrated was de signed to obviate the many diff culties experienced in using the ordinary traps, by providing machine of simple construction machessing the positive power pade to its efficient opera adequate to its efficient operaMr. R. Berryman, of Hartford Conn., whose feed water heate was lately illustrated in these columns. It is shown in per spective in Fig. 1, and in section in Fig. 2 of our engravings.

The supply pipe, A, conveys to the trap the condensed wa ter from whatever steam ap paratus it may thereby be con nected with. B is a bucket which is suspended from one end of the lever shown. This lever is fastened to a rock shaft or spin dle, one end of which extend through the stuffing box shown more particularly in Fig 1. To the outer end of the rock shaft is attached the lever C which
control
controls, by the connecting mechanism represented, the valve in the discharge pipe, D , through which the condensed water is conveyed to any desired place. The bucket, B , is partially counterbalanced by the weight seen on the lever, C, so that, when the trap fills with water and the bucket loses weight by being submerged therein, the weight on the lever, C , falls, depresses the lever, opens thereby the valve in the pipe, D , and allows the contained water to be discharged. These conditions are represented in Fig. 1.
When the condensed water falls to about half the hight of the trap casing, the bucket regains sufficient weight to raise the weighted lever, and thereby close the valve. When the valve is closed, at least six inches of water still covers the mouth of the discharge pipe, so that loss of steam is entirely prevented. The operation, as described, is repeated when ever the drip raises the water in the trap to the required hight.

The power exerted by the ordinary float is equal to the weight of water it displaces, or, in other words, to the weight of the material composing it. This cannot, of course, be great, as otherwise the float would either sink or have to be made of inconveniently large dimensions. The power derived from the bucket used, as described in this trap, is equal to the soldd contents of the bucket in weight of water; that is to say, if the submerged bucket measures one cubic foot, the puil exerted by it, on withd rawal of the water, would equal $62 \frac{1}{2}$ pounds. The inventor claims that this construction renders the trap as sensitive in its action as a pair of scales. It adapts itself to all conditions, either discharging a very small volume or throwing a solid pipe full as occasion rtquires ; when sufficient water is supplied by condensation, it stands on a balance and discharges a constant stream. It is further claimed that the facilities for repair are unsur passed on account of the easy access to the valve. The cock seen at the top of the trap is to permit the expulsion of air.
Fig. 3 represents a modification of the apparatus, in which it is used to feed the condensed water back to the boiler without the intervention of pumps. E is a cylinder which is connected with the water space of the boiler by a pipe from its bottom, which pipe has the check valve shown opening outwardly from the cylinder. The inlet or drip pipe from the steam coils is connected, by the branch pipes at F, with the trap and with the cylinder, E, as shown. Each of these branch pipes is provided with the check valve represented, opening inwards. The pipe, G, connects the steam space of the boiler with the cylinder, and a valve in G is opened or closed by the trap lever, as indicated. The trap is connected
the cylinder and its pipe in the manner delineated. The operation is as follows: As the water flows in from the coils, the check valves at F open and allow it to fill both the cylinders and the trap to equal hights until the bucket in the trap is sufficiently submerged to allow its weighted lever to fall and open the valve in the pipe, G. The check valves at F then close, and the water in the trap is held there until the water in the cylinder, E , has been discharged into the boiler and has fallen to the lower mouth of the upper pipe leading from th 'trap to the cylinder. The steam then ascends this pipe, and the water in the trap flows out through the lower ne until the bucket falls and shuts off steam.
The water of condensation then again flows through the

BERRYMAN'S STEAM TRAP

check valves, and the operation is continued. The lat ter modification, the inventor states, can be used econ omically only where the feed water is not heated to a temperature to which it can and ought to be raised by the ex haust. Where this occurs, there are usually pumps of some kind in use, so that the trap in Figs. 1 and 2 can be used. Bu where there is no engine, and direct steam is used for dry

ing or heating purposes, the condensed water may be re tu ned to the boiler with advantage by the latter device, which operates well with any number of coils, which may stuated either above or below the water line.
The Berryman Manufacturing Company, of Hartford, Cann.
are the manufacturers, and further information may be ob tained of J. B. Davis \& Co., of the same city.

Prehistoric Museum.

The interesting collection of ethnology and prehistoric remains, bequeathed by the late Mr. Henry Ghristie, is now arranged in the museum, 103 Victoria street, Westminster London, admission to which is by ticket, available only on Fridays, from ten to four. The tickets are obtained at the British Museum itself on any of the open days, on applica tion. The collection (in four rooms) contains prehistoric re mains of Europe, Asia, and Africa. The flint implements beautifully and symmetrically arranged, and you can observe even from that period, the ad vance from the rudely chipped celt to its more polished suc cessor. Daggers, spear heads saws, arrow heads, beside celts chisels, and gouges, are here all represented. Some from San represmam Nom Hoxne, Suffolk the Y, Holds, the Irish wolds, the Irish celt, axe, and hammer hads peculiar type. Most interest ing, too, are the remains from the caves of Dordogne, France consisting chiefly of the anima remains of the mammoth, hye na, reindeer, and horse, some o the bones of the former having the figure of the animal itsel engraved on them; of flint and worked bone implements, ar row heads and scrapers, barbed spear heads for fishing, and or naments of foasil shels, with nameles from the she is, with of the horse. These form of the horse. These form th most valuable part of the col lection. In conrast with them is the ethnographical collection (modern races), and notably in this are the Esquimaux, ex hibiting, in the chipped arrow heads and scrapers of siliceous
materials, harpoon heads, and bone needles, their identity materials, harpoon heads, and bone needles, their identity
with their prehistoric prototypes. Of special interest are the with their prehistoric prototypes. Of special interest are the
objects from ancient Mexico-sculpture, pottery of different kinds, arrow heads, etc., the most remarkable among which being a masked formed out of a human skull, coated entirely with a mosaic work of turquoise and obsidian. The eyes are made of iron pyrites, very highly polished, so as to resemble small convex mirrors; the teeth of a white stone, the mouth being made to open ; the mask is furnished with straps, so as to be worn. Here are, also, ancient earthen pipes in the form of animals, from the mounds of Ohio, North America, which bring to mind the buried cities of the northern continent, a subject long the wonder of the historic student. In these divisions the ethnologist may study the manners, customs, and dress of the different races of man, shown in their war implements, articles of dress and domestic use, their musical instruments, etc., through tribes from the north west coast of America, the Asiatic Islands, China, Japan, North and Cen tral Africa, the Polynesian group, all exhibiting the charac teristics of the various races. To be brought face to face with the remnants of a vast antiquity excites in the mind of the spectator a deep and thrilling interest, as he sees in these rude emergencies of almost primitive man the gradual de velopment into higher and still higher types of civilization. -Science Gossip.

Sand Paper.
The American Builder gives the following method of making sand paper of superior quality, at almost a nominal cost. The device fur making sand paper is simple, and at hand to any one who has occasion to use the paper. A quantity of ordinary window glass is taken-that having a green color is said to be best-and pounded fine, after which it is poured through one or more sieves of different degrees of fineness to secure the glass for coarse or fine paper. Then any tough paper is covered evenly with glue, having about one third more water than is generaily employed for wood work The glass is sifted upon the paper, allowed a a day or two in which to become fixed in the glue, when the refuse glass is shaken off, and the paper is fit for use. This sand paper costs little, and is better than that ordinarily bought, in which sand is frequently mingled with the glass.
In California they make "metallic tubular wheelbarrows," which are entirely of iron, stronger and lighter than the wooden ones, and much more durable withal.

WRITING FLUIDS.

Beyond the act of dipping a pen into an ink bottle, and lifting out a portion of the ink for the purpose of committing our thoughts to paper, we are unacquainted with the composition or mode of production of this useful material.
In a paper read by Mr. Archibald Paterson, before the Glasgow Chemists' and Druggists' Association, Glasgow, the various substances used in writing were treated on, as well
as the processes by way ach writing tluids are produced. He as the processes by watach writing tluids are produced. He said:
The writing fluids o the present day are the result of our commercial requirements, and are altogether unlike, in com position and properties, the ink of the ancients. They wrote; but their ink was what we should term a varnish or paint, being composed of carbon in very fine division, say either ivory or lamp black, held in suspension by any drying oil which was most approved of, or mixed with glue after the manner of Chinese ink, which requires to be dissolved in water before being used. The ingredients were combined by being rubbed together between stones, as we see painters of the present day grinding their paints. We are even told that the pleasing process of grinding was in schools placed as a punishment on the most indolent; or, failing this, the poorer scholars were pressed with the honorable task of keeping the school in ink. There can be no doubt that the carbon contained in these inks, and which is well known to possess peculiar properties of durability, is the cause of the fresh and black appearance which many ancient manuscripts retain, even after several centuries, while those written by our grandfathers fifty or sixty years ago have in many cases almost disappeared. Even the best modern ink in that time shows decided symptoms of old age.
From the care t:ken in the formation of the letters in the ancient manuscripts, it is very evident they were not written in a hurry; neither indeed could they be, seeing that the pens used ware amall brushes, and the ink itself a varnish.
To produce a good modern ink, we must bear in mind certain qualifications, namely, a good ink ought to be so thin as to flow freely from the pen; it should be so thick as not to spread or blur on the paper, and it should possess sufficient depth of color to retain its blackness for many years.

Much of the permaneacy of even an A1 ink depends on the material upon which it is written, for if we write on pa per which has been bleached with chlorine and the gas imperfectly removed, it has a most deleterious effect on the beauty and durability of the writing.
Concerning the composition of ink: When we look at the usual source, namely, galls, one would at first imagine that gallic acid wrought a mostimportant part in its manufacture, but such is not the case. The galls are used in the process, not because they are rich in gallic acid, which they are not although it is from them we obtain most of the gallic acid of commerce, but because they contain a high percentage of tannic acid.
The proportions which appear most suitable, and upon which most dependence can be placed, are-bruised galls, one pound; to this add one gallon of boiling water, and one third of the weight of the galls, namely, five ounces and a third, of sulphate of iron in solution; also three ounces of gum arabic previously dissolved, and a few bruised cloves or a few drops of creosote or carbolic acid dissolved in methylated spirit. It is better to allow the galls to macerate for twenty-four hours, then to strain the infusion, and add the o her ingredients.
I cannot do better at this part of the subject than offer you a formula used and recommended by that eminent chemist, the late Dr. Penny, of Anderson's University, in Glasgow.
Take of bruised galls twelve ounces, macerate for a week is one gallon of cold water, then add six ounces of sulphate of iron in solution, also six ounces of mucilage of gum arabic, a ad five or six drops of creosote.
The learned doctor has here taken advantage of a fact well known to chemists-namely, that tannic acid is more soluble in cold than in hot water-hence the cold maceration is prescribed, which I believe is pretty generally employed by first class ink manufactures.
The celebrated blue-black ink prepared by Messrs. Duncan, Flockhart, and Company, is said to be made by the process of cold maceration. A formula, said to be theirs, of which the following is a copy, was printed and circulated some years ago by an English gentleman. It explains the pro coss more fully:

RECIPE FOR PREPARING BLUE-black WRITING ink,
(Which also serves well for Copying Ine.)

Blue Aleppo galls (free from insect perforation) Bruised cloves
Purified sulphate of iron
Pure sulphuric acid (by measure)
Sulphate of indigo (in the form of a thinnish
paste, and which should be neutral, or near
Place the galls, when bruised, with the cloves in a fifty ounce bottle, pour upon them the water, and digest, often daily shaking for a forinight. Then filter through paper in another fifty ounce bottle. Get out, also, the refuse of the galls, and wring out of it the remaining liquor through a etrong clean linen or cotton cloth into the filter, in order that as little as possible may be lost. Next put in the iron, dis solve completely, and filter through paper. Then the acid and agitate brisbly. Lastly the indigo, and thoroughly mix by shaking. Pass the whole through paper. Just filter out of one bottle into the other till the operation has been completed
a a lerge scale, this fine ink may be mads by percolation
as Duncan, Flockhart, and Company and others in Edin burgh do it, the above being said to be their recipe.
The weights used are avoirdupois, and the measures used re apothecaries' measures.
Note.-No gum or sugar is proper, and on no account must the acid be omit ed. When intended for copying, $5 \frac{1}{2}$ ounces galls is the quantity.
You will observe that there are several peculiarities about this writing fluid, namely :-First, the cold process is used. Second, the want of gum. Third, the use of sulphate of in digo, which is a solvent for the black precipitate, the tannogallate of iron; hence the gum arabic is not required, as it is only used to suspend this precipitate. Fourth, the defiis only used to suspend this precipitate. Fourth, the defi-
ciency of iron, which may be accounted for by the pure prociency of iron, which may be accounted for by the pure pro-
tosulphate being used, which cannot contain, or should not contain, any oxide, so that all the iron is free to combine with contain, any oxide, so that all the iron is free to combine with
the tannin. Fifth, the use of free sulphuric acid, which is generally looked upon as detrimental to writing fluids, but which must be introduced here for some purpose, of which I m as yet ignorant.
Thus far I have only spoken of high-class inks, but it fre quently occurs that an article is required to be sold at a cheaper rate than that wholly made from galls; and the vegetable world gives us an ample range of materials to select from, many of which contain tannin in fair quantity.
In this case other ingredients may be substituted instead of part of the galls; thus we often see logwood substituted, and catechu, sumach, and oak bark may be used for the same purpose. Many other substances, such as elm wood, elder, chestnut, beech, willow, plum, cherry, and poplar, all contain a certain amount of astringent properties, but none of them aro to be compared to galls, and are not likely to supersede them in the manufacture of ink so long as galls can be bad for anything like a fair price
Let us now glance at the properties of the various ingredi nts used in the process. If we use an excess of galls, we simply throw away money, and render the ink more liable to mold. If we use an excess of iron, the galls being insuffi cient to decompose it, the characteristic color of its oxide is soon shown by the writing becoming brown. The use of an excess of gum causes the ink to clog the pens, and the writing to be wanting in fluency. About twenty five years ago an nk named Japan ink was very much in use; it produced a beautiful glossy appearance when written, but clogged the pen so much that it soon fell into disuse; its defect was too much gum. The water should be as soft as possible-that is, it should contain no lime or other earthy matter; hence rain water, or, better, distilled water, is frequently prescribed in recipes for making ink. The cheapest ink which has hitherto been introduced is one composed of a saturated solution of logwood obtained by boiling twenty.two pounds of logwood in a sufficiency of water to produce, after being strained, fourteen gallons of liquor; to this decoction one
pound (avoirdupois) of yellow chromate of potash (not bipound (avoirdupois) of yellow chromate of potash (not bi-
chromate) is added in solu ion; the proportions are one thousand parts of solution to one of chromate; the change of color is not an immediate one, but gradually becomes darker. The experiment may be tried, on the small scale, by using logwood, a quarter of a pound boiled in water to produce two pints, to which, when strained, add twenty grains of chromate of potash in solution.
We will now glance at the composition of " writing fluids" used for special purposes; thus we know that writing which is intended to be copied is written with ink containing either gum. sugar, treacle, glycerin, or some such substance which causes the writing to retain moisture, so that a copy of it may be produced even after the original writing has become dry, by being simply damped and pressed
The following formula requires no press, but may be co ied by placing a damp sheet of copying paper on the writing intended to be copied; above this sheet of copying paper a sheet of ordinary writing paper must be placed, and then pressed with a paper knife.
copying ink.
Mix-Thirty grains of extract of logwood; seven grains of crystal soda; half an ource of water. Boil till dissolved; then, while stirring well, add thirty grains of glycerin, one grain of chromate of potash, previously dissolved, and four grains of powdered gum arabic.
indestructible ink for deeds, etc.
Dissolve twenty-five grains of powder gum copal in two hundred grains of lavender oil, by the aid of a gentle heat faen add two and a half grains of lamp black, and half a grain of powdered indigo.
Another for the same purpose.
In eighteen ounces of water, boil shellac, two ounces, and borax, one ounce; when cold, filter and mix with one ounce of gum arabic dissolved in two ounces of water, to which add powdered indigo and lamp black as much as may be required.

RED INK
commonly prepared by boiling brazil wood, two ounces, in hirty-two ounces of water, to which add, after the decoction as been strained, half an ounce of chleride of tin, and one dram of powdered gum a abic; then evapozate to sixteen luid ounces. Or:
Dissolve carmine, one dram in half a dram of liq. am monia fort. (sp. gr. 880), then dissolve twenty grains of powdered gum arabic in three ounces of water, which add to the dissolved carmine.
blue ink
may be prepared by dissolving two or three ounces of sulphate of indigo in a gallon of water; or by rubbing together one ounce of oxaiic acid, ard two ounces of fine Prussian blue, to which add one quart of boiling water.

INK POWDER
may be prepared by mixing-Powdered galls, four ounces; powdered sulphate of iron, one ounce; powdered gum arabic one ounce; powdered white sugar, half an ounce; powdered cloves, one dram.
To these proportions add of water one quart, and macerate for an hour or two.
Note.-The quantity of sulphate of iron is small because it has been dried, and has thus lost the weight of water evaporated.

ink in cakes

may be prepared by evaporating good ink to dryness in shal low dishes, but the best results are obtained by dissolving Chinese ink in water.
marking ink.
This substance is so well known that little may be said on the subject. The process is founded on the chemical fact that, by applying heat to a salt of silver in combination with other ingredients, the writing becomes immediately, and should remain, permanently black; the formula of Professor Redwood is a good one
Dissolve separately-nitrate of silver, one ounce; crystal carbonate of soda, one and a half ounces; mix the solution, and collect the precipitate on a filter; wash well, then introduce the moist precipitate into a mortar, and add eight scru ples of tartaric acid; triturate till effervescence ceases; then add of liq. ammonia fort. a sufficient quantity to dissolve the tartrate of silver, to which add four fluid drams of archil, four drams of powdered white sugar, and twelve drams of powdered gum arabic, and make up to six fluid ounces, if required, with distilled water.

CRIMSON MARKING ink
is prepared by adding six grains of carmine to the liquor ammonia of the above formula, but it soon loses its crimson color, and becomes, like other marking inks, a black color.
In conclusion, I cannot lay aside this subject without re ferring to the beauty, brilliancy, and variety of color pro duced from aniline, whereby we can procure any shade from the most brilliant scarlet to the most sombre black; and should we at any time be deprived of ink from the present sources, we may rest content that so long as our coal fields yield their sparkling riches, so long may we, without fear look forward to an unlimited supply of our writing fluids.

Mysterious Influences.

Persons sometimes feel remarkably well-the appetite is vigorous, eating is a joy, digestion vigorous, sleep sound, with an alacrity of body and an exbilaration of spirits which altogether throw a charm over life that makes us pleased with everybody and everything. Next week, to morrow, in an hour, a marvelous change comes over the spirit of the dream; the sunshine has gone, clouds portend, darknes covers the face of the great deep, and the whole man, body and soul, wilts away like a flower without water in midsum mer.
When the weather is cool and clear and bracing, the at mosphere is full of electricity; when it is sultry and moist and without sunshine, it holds but a small amount of elec tricity, comparatively speaking, and we have to give up what little we have, moisture being a good conductor; thus, in giving up, instead of receiving more, as we would from the cool, pure air, the change is too great, and the whole man languishes. Many become uneasy under these circumstances; "they can't account for it;" they imagine that evil is impending and resort at once to tonics and stimulants. The tonics only increase the appetite, without imparting any additional power to work up the additional food, thus giving the system more work to do, instead of less. Stimulants seem to give more strength; they wake up the circulation, but it is only temporarily, and unless a new supply is soon taken, the system runs further down than it would have done without the stimulant: hence it is in a worse condition than if none had been taken. The better course would be to rest, take nothing but cooling fruits and berries and melons, and some acid drink when thirsty, adding, if desired some cold bread and butter; the very next morning will bring a welcome change.-Hall's Journal of Health.

Slate Quarrying and Manufacture in America.

Vermont is distinguished as the headquarters in this coun try for the best and most extensive deposits of slates, and the region known as Lake S. Catherine is remarkable for its in exhaustible quarries of argillaceous slate, the commercial value of which is just beginning to be appreciated. From the rude Fairbaven school slates, for cyphering and drawing portraits of the master, this hardened clay has risen to an economical importance that puts it into competition with the choicest marbles. The quarries do not run several hundred feet deep like those of Wales, and are consequently worked with greater facility. Large blocks are blasted out and split with wedges, then raised with derricks, and separated into smaller slabs by deftly directed blows from a wooden beetle. The roofing slate is wet in order to facilitate splitting, the thinly laminated formation rendering the process an easy one with the chisel. It is not expedient to take from the quarry more than can be readily eplit, as the slate splits more freely when fresh, although it is said that frost will restore the splitting property.
The thickest slabs are readily sawn and planed by ma chinery. Large, handsome flagstones are prepared by simply sawing. Moldings and other decorative pieces are shaped with tools. A great impetus has been given to the slate trade by the demand which the Chicago fire has created, especially for roofing and tiling. The slate companies interchange pro.
ducts with the marble companies, for interspersing white marble with dark slate for floors. Slate is rapidy taking the place of marble for interior decoration; but so long as our
extensive forests remain, we shall not need to substitute it extensive forests remain, we shall not need to substitute it
for wood, as the English do. With us it is still a luxury rather than an economy.
For oriamental purposes, the slate, after being properly cut and trimmed, is scoured with pumice stone, then rubbed with powdered pumice stone, and polished with felt. It is now ready to be transformed into marble. The slabs having been prepared, and painted with the groundwork color, they are ready to dip. A vat is at hand, containing water, and we cannot say what else. A man dips a small brush in oil col ors, and sprinkles it on the surface; then he fans the water with a palm leaf, and draws the brush through it several times. The oil mixed paint spreads on the surface of the water, like the veining in marble, and the slab being gently raised against it rectives the impression. A mere change of ground work and colors gives the varieties of marble-Egyp tian, Spanish, Galway, Pyrenese, etc. The most elaborate work, as for altar pieces, chessboards, and borders, is done by hand. After the application of colors, successive bakings and polishings finish the work. This marbleized slate is quite elegant, possessing sixteen times the strength of marble, and scarcely distinguishable from it. The imitation of marble in slate is employed for coffins, caskets, table tops, mantels, bil liard beds, lamp stands, and innumerable domestic and orna mental uses. The best workmen here are from Wales, having learned the business in the immense quarries of Carnarvonshire. They are sober, industrious, moral people, provident for the future, noticeably fraternal among themselves, kind, and generous toward all. They take Saturday afternoons for holidays, and make up their hours during the rest of the week. These slates are not inferior in quality to those of Wales. The quarries are comparatively shallow, but more easily worked, and they are too numerous and extensive to be exhausted by a single generation.
The New York Tribune, from which we gather the above particulars, says the Vermont and neighboring slate trade is still in its infancy.

Gas Lighting by Electricity.

A new patent apparatus for the instantaneous lighting or A new patent apparaus for the instantaneous lighting or at Preston, Engiand, and is thus described in the Engineer: "The apparatus constituting the invention looks like a moderate sized globular inkstand of glass, surmounted by a tube of the same material, with a metallic top; and by screwing off the burner, it can be very easily attached to any lamp, chandelier, pipe, or ordinary gas jet. The base or globular portion is filled with a deep red colored liquid-a simple chemical mixture, with no combustible properties, almost without smell, and so cheap that three pennyworth of it will serve one lamp for twelve months. Over this liquid and within the glass tube, there is a plate of zinc, along with a piece of graphite or gas coal, and, between those and a thin coiled platinum wire fixed over the cap of the general vessel into which a gas burner is inserted, galvanic communication is obtained. A pipe, to be screwed to that up which the ordinary gas supply flows, runs through the base of the vessel to about the center of the surmounting tube; pressure brought to bear upon the gas in this pipe causes, by small collateral openings, a simuitaneous depression upon the chemical solution which occupies a lower level in two side tubes; the gas occupies the vacuum caused by the dieplaced liquid, and then ascends to a chamber in connection with the burner; while the displaced liquid is pressed into two side tubes effecting contact with the zinc and graphite, gene rating galvanic activity, which is communicated to the platinum wire, and excites the catalytic power of the wire, which, when exposed to the ascending jet of gas, results in immediate, almost instantaneous, ignition. Each lamp re quires one of these appliances; but, as stated, they are sominal. The apparatus is virtually self acting; it requires 2ominal. The apparatus is virtually self acting; it requires no skilled hands to euperintend its operations; it may be at
tached by a novice; it may be replenished at any ordinary tached by a novice; if may be replenished at any ordinary
chemist's ehop for a few pence per year; it needs nothing but chemist's ehop for a few pence per year; it needs nothing but
fixing, and then being subjected to the simple action of gas fixing, and

The idea of attaching a separate galvavic battery to each gas burner, for the purpose of jgniting and extinguishing the gas, may be novel, but certainly it is complicated. The
method now extensively in use in this country is much bet. method now extensiv
ter, and is as follows:
A galvanic battery is placed in the cellar, attic, or other convenient portion of the building, from which wires extend to the gas meter, and also to each gas burner, over the orifice of every one of which a fine platinum wire is ar ranged

In connection with the battery and wires, two or more tele graph keys or buttons are employed, placed wherever con venience requires. By touching one of the keys, the electric current is made to operate a magnet and lever which is at tached to the gas cock, whereby the latter is turned and the
gas either let on or shut off. By touching the other key, the electrical current is made to pass through the several plati num wires on the burners, thereby almost instantly heating the platinum up to a nearly white heat and igniting the gas. It is a pretty sight to witness the sudden ignition of the jets of a large chandelier in this way. This plan of lighting, first practically applied by Professor Samuel Gardner, is employed for lighting the great dome and other apartments of Booth's Theater, New York, and in fact hundreds of build-
ings, public and private, in various parts of the country are electrically lighted in this manper, and the suct
system will now make its employment general.

The Albany Iron Works.

Forty years ago, the amount of finished iron yearly pro duced in the city of Troy was spoken of in the journals of duced in the city of Troy was spoken of in the journals of
the day as "the unprecedented quantity of twenty-four the day as "the unprecedented quantity of twenty-four
hundred tuns." At the present time, the manufactures of a hundred tuns." At the present time, the manufactures of a
single establishment located in the same city annually exceed single establishment located in the same city annually exceed
seventeen thousand tuns; thus adding another and striking seventeen thousand tuns; thus adding another and striking
proof of the immensely rapid growth of our industrial enproof of
The Albany Iron Works, owned by Messrs E. Corning \& Co. one of the largest manufactories of its kind in the country Its buildings, which are substantially built of brick, are seven in number, exclusive of store houses, etc., and consist of steam mill, water mill, forges, spike, rivet and nail factories, and machine and pattern shops. The dimensions of the largest, the steam mill, are 350 by 155 feet.
The rivet and spike factory is one of the most interesting portions of the works. A number of ponderous machines are at work in the middle of the apartment, while at short distances apart along its sides are heating furnaces. Into these are placed the bundles of rods from which the spikes and rivets are to be made, and there brought to a red heat. They are then drawn out, one at a time, and their ends placed within the jaws of the machines. With almost magical rapidity, one hammer working horizontally forms the head, another with two or three blows sharpens the point, and lastly the jaws bite off from the bar the finished spike, which falls into its receptacle below. Rivets are made in a similar manner. This factory produces $68,000 \mathrm{kegs}$ of railroad spikes, $11,000 \mathrm{kegs}$ of boat and ship spikes, and $16,000 \mathrm{kegs}$ of rivets annually.
The machines in the nail factory, 40 in number, manufac ture $75,000 \mathrm{kegs}$ of nails per year. The process of making the nails, like that of spikes, is accomplished entirely by a simple and ingeniously devised apparatus. A workman is seated before each machine; at his side is a heap of strips of iron of a width equal to the required length of the nail. Picking up one piece of iron at a time with his pincers, he places its extremity in the machine. Here a bit is cut off and pressed and hammered into shape in almost the twink ling of an eye, while a continuous stream of finished nails pours into the box beneath. In this factory are also the nut and bolt machines, great punches which penetrate the heavy pieces of iron as if they were dough, besides complicated
though ingenious apparatus for cutting screw threads, finishthough ingenious apparatus for cutting screw threads, finish ing bolts, etc., the whole yearly
$18,000 \mathrm{kegs}$ of nuts and bolts

The water mill is a spacious building containing furnaces, rolls and other machines for the manipulation of iron Power is here supplied by an immense overshot water wheel of 150 horse power; water is also used to run the machines in the spike and nail factories, by means of a 150 horse power turbine wheel. In an apartment adjoining the main building, a large and newly completed horse shoe machine is being erected.
The steam mill and forges are huge edifices filled with a busy crowd and fairly deafening with an overpowering din Here are six steam engines with an aggregate capacity of 700 horse power; besides a ponderous six tun steam hammer There are also two squeezers, fifty puddling and heating furnaces, several merchant trains, and four cementation furnaces. In the manufacture of car axles, which is largely carried on, two powerful helve hammers are used. The
number of men and boys employed is seven hundred. In number of men and boys employed is seven hundred. In addition to the products already alluded to, for information concerning which we are indebted to Mr. J. Keyes Paige, of the works, the establishment sends to the market, yearly some 16,000 axles, 500,000 fish bars and about 1,000 tuns o safe and cultivator steel.

Specialties of some Tanning Materials,
Beech bark.-The tannin yielded by this bark makes white but inferior leather, and is used only in places where ak is scarce
Birch bark.-For tanning Russia leather, the inner bark much used, especially on account of the brown oil which It yields, 10 which this leather owes its smell and durability. Catechu.-This material produces leather, which, according to Professor H. Dussauce, "is very permeable to water, light and spongy, hard, and of a dark, reddish fawn color. The characteristic deposit, from oak bark and a few other Divi divi-LLeather prepared by this substance is very por us, and sometimes tinged brown, unless the air be excluded in the process of tanning.
Hemlock bark, in union with oak bark, is supposed to produce the best leather. Hemlock alone produces leather inferior to that prepared with oak bark, and besides, imparts to it a red color. In America, it is largely used as a substi ate for the bark of the oak
Lombardy poplar imparts a fragrant smell to the leather imilar to that of Russia leather.
Valonia.-Leather prepared by this substance is harder Wd less permeable to water than that made with oak hark. Willow bark (Salix alba) is remarkable for its astringent taste. Leathers made from kid and lamb skins owe their greeable smell to this bark, with which they are tanned. From experiments made in the tanning of calf skin with oak bark, divi divi, and catechu, in Germany, and published and the Technologist, it appears that oak bark and divi divi were shown to be the best. and that divi divi can be com
pared with the oak. The report states " the use of catechu as a dry matter in the tanning of skins is inadmissible The porous and thin texture of the leather thus manufactured is a poor guarantee against dampness, and permits of little duration.
"For the expense, there is little difference between oak bark and divi divi. Divi divi, it is true, is more costly; but as it possesses six times as much tannin as oak bark, the alance will be rather in favor of the latter
Trials were also made with green Buenos Ayres hides, and the result was about the same as above. The divi divi i superior to catechu, and can be compared to the oak in many respec is, but it requires more care in its use on a large scale while the operation is one third shorter."

Liability of Telegraph Companies.

An important legal decision was announced at the last erm of the law court in this district, which settles the law in this State as to the liability of telegraph companies to their employers in case of failure to transmit or delive messages. As the case (George W. True et als. against In ternational Telegraph Company) is of novel impression in ou courts and of interest to the public, we give a brief state ment of the facts. In 1870, George W. True \& Co, of this city, sent a dispatch to their correspondents in Baltimore accepting an offer of a cargo of corn at a given price and freight. The offer had been made by telegraph the same day and the reply was sent on a "night blank" of the Inter national Telegraph line at the usual night rates. The dis atch, on account of the carelessness of some operator on the ine west of Boston, was not duly forwarded, and True \& Co. failed to secure the cargo of corn. As the market pric of corn and freights advanced immediately, they were obliged to buy other corn to meet the wants of their busines at a price largely in advance of that offered. A claim wa immediately preferred against the telegraph company fo the damage resulting from their failure to promptly transmi the message to its destination, which was resisted by the company on the ground that one of the conditions printed on their "night blanks," subject to which the message wa s \in nt, was that the telegraph company should not be liable in case of failure to deliver the message, to an amount greater than the sum paid for its transmission-in this case, forty eight cents. Suit was therefore brought to recove special damages; the case was argued July, 1870, and ha been under consideration two years; the court has now rendered a decision in which the claim of the plaintiffs i ustained in full.
The ground of the decision was that, although telegraph companies may establish reasonable rules for the conduct of their business, they cannot by printed notices on their blank relieve themselves from the liability which the law imposes on them from motives of public policy; that the courts are to determine in the last resort whether the rules and limita tions prescribed by the company are reasonable, and that the condition set up in defense in this case was not binding upon the plaintiffs, as it attempted to relieve the telegraph company from all liability (beyond the amount paid for the message) whether arising from carelessness, accident or wilful default of the company and its servants. The measure of damage was declared to be the difference between the price of the cargo offered and of that bought to supply its place, with the additional freight.-Portland (Me.) Press.

Magnetism.

The French Academy of Sciences has received a paper from M. J. Jamin, in which he shows that magnetism may be con densed, just like electricity. Having, for some special pur poses, had a large horseshoe magnet made, consisting of ten laminæ of perfectly homogeneous steel, each weighing ten kilogrammes, he suspended it to a hook attached to a strong beam, and, having wound copper wire around each of the legs, which were turned downwards, he put the latter into com munication with a battery of fifty Bunsen's elements, by which means the horseshoe might be magnetised either pos itively or negatively, at pleasure. The variations were indi cated by a small horizontal needle, situated in the plane of the poles. There was, further, a series of iron plates, which could be separately applied to each of the laminæ. Before attaching any of the latter, the electric current was driven through the apparatus for a few minutes and then interrupt ed, whereby the magnet acquired its first degree of satura tion, marked by a certain deviation of the needle. One of the iron plates (usually"called "contacts") was then put on and it supported a weight of 140 kilogrammer. A second trial was now made; and the current having passed through again for a few seconds, it was found that the horseshoe would support 300 kilogrammes, instead of 140 . The number of contacts being now increased to five, which together, in the natural state, supported 120 kilogrammes, it was found, after the passage of the current, that they could support the enormous weight of 680 kilogrammes, which they did for the space of a full week. No sooner, however, were th contacts taken off than the horse hoe returned to its uscal permanent strength of 140 kilogrammes. This leads to show that magnetism may be condensed like electricity for a skort period.

On the Spectra of SUlphur.-In the spectrum obtained in a closed Pluecker tube with the spark, says G. Salet, thir ty two bands were measured. In the blue flame seen when hydrogen, made with sulphuric acid, strikes against a cold surface, the blueness of which is due to sulphur, twenty five bands were measured, eleven of which coincided with the former. The vapor of sulphur at a low red heat, examined by transmitted light, gave six bands.
double turbine waiter wheel.
Fig. 1 of our engravings gives a perspective view, and Fig 2, a detail vertical section of what. is known as the "Eclipse" double turbine water wheel. We will at once proceed to de-
of which are now in successful operation in the United States, Mexico, and Japan.
Patented March 24, 1868, and July 26, 1870. and a patent on mprovements has just been allowed.
For further information, address the Stillwell \& Bierce Man-
passes up through the brace, B, the crossbar, C, and the beam A, where it is secured by a nut. The pivot of this standard passes through the brace, B, and into the central hole in the metallic bar, F. This peculiar connection of the centra standard with the other parts is shown enlarged in Fig. 3. I

DOUBLE TURBINE WATER WHEEL.
scribe its construction, and point out the advantages claimed for tine same.
The wheel, A, Fig. 2, is composed of two tiers of buckets, as shown in the engraving, arranged alternately between three plates of different degrees of inclination, and which have an inward and downward discharge. It is cast in one piece and without cores, thus insuring great strength. It will be noticed that the interior of the wheel is somewhat of a conical form, by which construction a free vent for both tiers of buckets is provided. The cylinder, which supports the bridge tree, and the outer chute case are both comprised in one casting, shown at B. This cylinder and chute case are more fully represented in Fig. 1, from which the form of the outer chutes will readily be understood. The inside register gate, C , is also cast in one piece, with fixed water ways corresponding with the chutes in the outer case. The two combined form one duplex chute. This gate, C, hangs upon the outer case by one bearing only, as shown, and is moved, for the purposes of admitting and shutting off the water, by means of a segment and the pinion, D. By its operation an equal delivery of the water on to all parts of the wheel is secured; neither the direction of the current, nor the angle formed by the steam and the face of the bucket is ever changed, nor is the veIocity of the water checked. The top of the wheel case, also a single casting, extends over the register gate, and is fastened by set screws to the outer chute case. This arrangement protects the gate from vertical pressure and renders the movement of it very easy. It may readily be operated by a governor. Facility of access to the wheel in case of accidents is also afforded, as by simply removing the set screws the top becomes detached and the wheel can be taken out of the case without disturbing the latter. It will be noticed that the pinion and segment by which the gate is operated are completely housed, so that they are protected from breakage by foreign substances getting between the teeth. The arrows in Fig. 2 indicate the course of the water through the outer chutes, the course of the wain the chutes of the register gate, and the upper and lower buckets of the wheel. A pedestal, with stuffing box and followers as represented, surmounts the wheel case and is fastened thereto by set screws. The arrangement, as shown, of the spider or bridge, by which the step for the wheel shaft is held, the hub of the wheel, and the stuffing box, is claimed to be such as to secure perfect steadiness of motion with the least possible friction and great strength and durability.
In the manufacture of this wheel, every part of the whee and case is fitted up by machinery to standard gages, so that all parts can be readily duplicated. These parts are few in number and of great strength, while there is an entire absence of rings, bolts, bars, or traps of atiy kind which would be liable to derangement or breakage. Great general supe riority, therefore, is claimed for these wheels, a large number
ufacturing Company, Dayton, Ohio, by whom the wheess are their works for testing each whael before delivery

ADJUSTABLE PLOW

The improved plow, which forms the subject of our illus tration, is the invention of Glover G. Foreman, of Stockton, Georgia, and was patented through the Scientific American Patent Agency, June 18, 1872. By means of a simple and ingenious device, it is rendered adjustable so as to be set to make the furrows various distances apart, without ever throwing the plows out of parallel.
Fig. 1 is a perspective view of the plow; A is the beam, B is a brace, ataached to the beam as shown; C is a crossbar and D is a semicircular metallic bar pierced with holes as represented. The plows, which may be of any desired kind, are secured by sockets and pins to the standard, E. The for ward parts of the upper ends of these standards extend up. ward in the form of bolts, and the rear parts of the same are

FOREMAN'S ADJUSTABLE PLOW.
provided with upright pivots, in the manner shown in Fig 3. Fig. 2 shows the under side of the plow frame. The bolts of the two outside standards pass through the crossbar, C and through the ends of the curved bar, D, where they are ecured by nuts. The rear pivots of these two standards en r holes formed to receive them in \& small metallic bar, F , hich extends along the under side of C, is clearly in Figs. 2 and 3. The bolt of the central standard
will readily be seen therefrom that the standard is thereb securely fixed in position, while the crossbar, C , is free to move around its bolt when loosened, and the metallic bar, F , around its pivot. By the construction described the paralle ism of the three plows is not affected by the angle at which the crossbar, C , is placed to the beam, A , as will be seen by inspecting Fig. 2
The adjustment of the plows, to work closer together o further apart, is readily effected by loosening the nuts of the tandard bolts, and by bolting the semicircular bar, D, through the proper hole to the rear end of the beam, A. By tighten ing up the standard bolts again, everything is made secur for work.
Further information may be obtained by communicating with the inventor at the foregoing address.

old and New ldeas in Astronomy.

Theories have been advocated respecting the celestial bodies during the last few years, which, new though they seem, and new as the evidence certainly is on which they have been based, will yet be found in germ, and sometime sufficiently well developed, in the works of form astronomers. The theory that the clobes of saturn and Jupiter are heat on a advanced by Buffon and was advan by bai ly. The theory that the sun was surrounded by a perpetual aurora was advocated by Sir W. Her schel. Mairan and the elder Cassini held that there is a connection between the frequency of sun spots and the occurrence of terrestrial auroras. Cassini also held the theory that the zodiacal light (which, by the way, astronomers would do well to call simply the zodiacal) is caused by multitude of minute cosmical bodies traveling round the sun. The younger Cassini believed the rings of Saturn to be formed of multitudes of discrete sa tellites, as the sands on the sea shore for multitude. The theory of star drift was not indistinct ly hinted at by the elder Herschel, while the theo ry of star systems subordinate to thegalaxy was uggested by Lambert and strongly supported by Michell-Michell, that most unfortunate of scien tific thinkers, who mathematically demonstrated the existence of binary star systems, the credit of which discovery adds to the already sufficien fame of Sir W. Herschel-Michell, who devised and constructed the very machine for weighing the earth, the credit of whose invention all our text books award to Cavendish
We might cite other instances, but these will suffice to how with what good reason the students of astronomy in our day might say with Shakspeare:
"If there be nothing new, but that which is
Hath been bafore, how are our brains ne
Which laboring for invention bear nmis,
Tne second nur hen of a former child !
Three Texas gentlemen have made arrangements for inclosing 145,000 acres of land in one body for pasturage.

the carpenter bee.

The name " carpenter bee" has been given to several species of solitary bees who construct their habitations and nests by working in wo d, after the manner of the mason bees in earth. The habits of these insects are comparatively well known, but they are not the less interesting.
They usually select posts and the wood work of houses which have become soft from commencing to decay, as their field of operations. The violet colored species, which forms the subject of our illustration, makes her nest by gnawing out small pieces of the wood, which she carries to a short distance and drops for future use, after which she returns by a circuitous route, as if to conceal its location. The direction of the tun nel made by the insect is oblique for some distance, and then perpendicular in the axis of the wood, as shown in our engraving (for which we are in debted to the Journal of the Farm), in which the interior of the nest is exposed to view. The entrance hole above is placed at such an angle that the rain cannot enter the perpenaicular tube. The opening immediately under the lowest cell serves as an outlet from which the fully developed insect emer ges. The tunnel is divided into cells which are separated from each other by partitions made of the chips and dust cemented together. Some other cies employ clay for making these par cies employ clay for making these par titions. At the bottom of the cell is placed an egg, and over it a paste composed of the pollen of flowers mixed with honey, which becomes the food of the larva when hatched. In a sim ilar manner are completed sometimes as many as ten or twelve cells, one above the other, and then she closes the principal entrance by a sawdust covering, such as the partitions are made of.
Several weeks are occupied in these labors, and the eggs are deposited at considerable intervals. It is therefore evident that the first deposited egg will have become a perfect insect before the last one has passed the grub state, and in order to enable the young to escape as they mature, lateral openings must exist in each cell.
Where sufficient bulk of wood is worked in, sometimes three or four such excavations as described ar made.

Tea, Coffee, Cocoa. and Alcohol We extract from the British Medical Journal the conclusions of a French physician, Dr. Angel Marvaud, who has been experimenting on the physiologi cal and therapeutical effects of coffee tea, cocoa, matè or guaranà (Paraguay tea), and alcohol, which he classes to gether as aliments of economy, or anti waste foods. He considers their influence on nutrition from two points of view : as stimulants to the nervous system, as anti-waste foods or anti-assimilators. Alcohol acts directly on the sensory apparatus of the spinal cord, and indirectly on the motor apparatus. Cocoa acts directly on the motor appara us, which it excites in the same manner as strychn ne. Coffee, tea, and matè act principally on the brain. Alcohol and cocoa excite the exercise of the muscles; coffee, tea, and matè, the exercise of thought. Further, by lessening the waste of the tissues, counteracting organic oxidation, and diminishing loss by means of the secretions, they all act as aliments of economy. In this way is explained their action in stimulating to work in the evening, in partly supplying the want of solid food, and in moderating vital combustion. Hence ari ses their increasing consumption, and their more general use as articles of daily régime; hence, too, their utility in alimentation, and their important place in hygiene. The a first place, the excitement of the nervous system which they cause is liable to be followed by fatigue, weakness, and even inertia. In the second place, by their interference with ana reduction of the processes-indispensably necessary to lifeof combination, transmutation, and decomposition, they may cause arrest, suspension, or even complete suppression of
the nutritive changes in the cellular elements, and the nutritive changes in the cellular elements, and may produce as results, torpor, atony, fatty degenetation, and necrobiosis of the tissues. Thus are explained alcoholism, coffeei gm , theinism, and cocoaism.

Fences.

Two thousand millions of dollars is the estimated amount of money invested in fences in this country, which is nearly equal to the total amount of the national debt on which interest is paid, and about the same as the estimated value of all the farm animals in the United States. For every dollar invested in live stock, another dollar is required for the con struction of defenses to resist their attacks on farm production. Experiment has proved that at least half this expense is unnecessary. Wherever it has been tried, wherever farm animals are restrained, and their owners are placed under
(fence) bonds for the good behavior of their restless depend ents, the system is regarded with general and growing satisfaction ; capital is released from unprofitable investment and made available for farm improvement, soiling is encouraged, the manurial resources of stock husbanded, and the way prepared for larger production and higher profit. Even where a herd law of some sort has not been enacted, the tendency is strong, as many correspondents assert, toward the reduction of the amount of fencing; as repairs are needed, division fences are taken down and the material used to keep outside fences in repair; fields are almost everywhere becoming larger; in the younger States, a single field often answers all requirements, and sometimes a single inclosure em-

THE CARPENTER BEE

braces within its bounds many farms. The entire town of Greeley, in Colorado, with its suburbs for gardens and small market farms, is surrounded with a single fence, the cattle being excluded and kept outsid $=$ upon the illimitable plains. It is possible to dispense with fencing to the value of one thousand million dollars, and the advantages of the change would greatly overbalance the inconvenience of it. Let the farmers discuss the subject in the light of actual experiment, rather than under the influence of ancient prejudice, and their views will soon coincide with their true interests. $-A g$ ricultural Report.

SIMPLE APPARATUS FOR OUT-DOOR SKETCHING

Provide a small table with drawer. Mount two grooved movable uprights at one end, with glass between the grooves. Place an upright with a small eye hole, at the opposite end of the table, as shown in the engraving. Wash the glass with a thin solution of gum arabic and rock candy (20 parts of gum to 1 of candy). When the glaes is dry, it is ready for use.
un gum

Look through the small hole to get the object or landscape ubtended by the glass, and with a soft Paris Conté crayon outline the subject on the prepared surface; remove the glass and lay it over your sketch; if you require the outline, you should have a second plate of glass, and trace over it the reverse way with charcoal, then lay your paper on, and a little gentle rubbing will transfer the outline.

PAPER BOATS-HOW MADE.

The paper boat is a comparatively new invention, and fo racing purposes is the most formidable rival of the mahogan and other wooden boats. The process of construction for the paper boats is as follows: A wooden model of the exact size of the required boat is first made from the lines of drawing previously determined upon. This is built of layers of pine fastened together in a solid mass, and its surface is made per fectly smooth. Suitable rabbets are cut to receive the keel son, the two inwales and the dead wood, which, being fitted therein, are worked off even with the surface of the model and covered with adhesive material so as to be attached firm ly to the akin. For covering, two kinds of paper are used, that made from the best manilla, and that prepared from pure unbleached linen stock, the sheets being the full length of the model. If manilla is used, the first sheet is dam ped, laid smoothly on the model, and securely fastened in place by tacking it to certain rough strips attached to its upper face. A layer of adhesive varnish is then applied, and the shee laid on, this process being continued un til a sufficiently thick covering is ob tained. If linen paper be used, but one sheet is employed, of such weight and dimensions (generally from $\frac{1}{20}$ to $\frac{3}{8}$ of an inch) as will, when dry, give just the required thickness of skin. The model with its enveloping coat of paper, is now removed to thedrying room where at 2 heat of 150°, the wrinkles in the paper shortly disappear, and the sub stance hardens in the required shape The paper is next covered with boiled oil and turpentine and then with shel lac varnish, after which it is passed to the nter carpeto put in the frame in the nsual manner. The decks are then attached and the iron and brass work complete the fabric.
From examinations made of both wooden and paper boats, of all manner of varying shapes, sizes and workman ship, we are of opinion that the pape shells have a decided advantage. They are both strong and stiff. Their skin is not, as is the case with wood, twisted into an unnatural position from which it is ready at any time to spring. They are thoroughly impervious to water and cannot become soaked; they are 30 per cent lighter than wood, their lines are equally fine, and they are easily and readily repaired.

IMPROVED SHOPS.

At a recent visit to the Littlefield Stove Works in Albany, N. Y., we no ticed several features which might be advantageously introduced in many of the smallest founderies and manufacto ries. The buildings, which cover an area of 98,000 square feet, are constructed of wooden frames covered entirely feet, are constructed of wooden frames covered entirely with sheed iron. They are lathed and plastered on the inside, and, as we are informed by the proprietor, answer costing far less.
Throughout the works, the utmost care has been taken of the health of the workmen. The buildings with one excep tion are but one story in hight. They are admirably ventilated and lighted with windows placed at a distance of every few feet. There is no hoisting of heavy castings into lofts, etc., material entering the molder's hands in its crude state and passing from room to room on the same level until it leaves the last apartment, perfectly finished.
By means of a tank in the main building an abundance of spring water is distributed throughout the foundery. The blast furnace and molding room is separate from the other buildings, so that all the dirt there made is kept within prescribed limits. The floor of the latter apartment is inclined and thoroughly drained, so that no dampness, a common defect in such places and a fruitful source of disease, can possibly exist.
The grounds around the buildings are tastefully laid out in paths and grass piats, and are as neatly kept as if belong ing to a private residence. The center of the space between the buildings is occupied by a tasteful fountain and pond. Another addition, which should be supplied in every similar establishment, is a large swimming bath, to which the hands are constantly allowed access. Fresh water is obtained from a neighboring creek. In winter time, steam pipes are used to heat the bath to a comfortable temperature. Two hundred hands are employed, turning out some 12,000 stoves yearly.

Modification of the Bunsen Battery.-It consigts in placing a solution of sulphate of zinc in the porous jars, and pure water in the compartment where the zinc is. The solution of the sulphate of zinc is maintained to saturation point by placing in it a certain quantity of that salt. The current is not very powerful, but it lasts a long while-a month if desired, and the expense is trifling.

Contespandence.

The Editors are not responsible for the opinions expressed by thetr Corre spondents.

Healing and Cooling our Dwellings.--. What is ling our Dwellin
Wanted.
Scientific American:
To the Editor of the Scientific American:
It has long been to me a source of wonder that better pro. vision has not been made for heating and cooling our dwell ings. Undoubtedly hot water is best, steam next, and hot air furnaces last, in order of healthfulness, as heaters. The expense and liability of the two first to get out of order render them poorly adapted for use in private dwellings. In large establishments, such as hotels and factories, where a person can be kept to attend to them, they answer tolerably dwelling with them, and then they require much more fuel dwelling with them, and then they require much more fuel
and attention than a hot air furnace, it is obvious that they and attention than a hot air furnace, it is obvious that they
cannot come into general use, and hence we must depend on cannot come
the furnace.
Now, there are three serious defects in hot air furnaces, which ought to be, and can be, easily remedied.

* First. They leak gas. As is well known, the poisonous gases produced by combustion will permeate cast iron when heated to a certain degree. Besides, no matter how well the joints of a cast iron furnace may be fitted and cemented when set up, the subsequent expansion, contraction, and warping the gas, which, mingling with the heated air, renders it nox ious and unfit to breathe.
Second. Their heating surfaces are too small. As a result of this, in order to heat the air sufficiently hot to warm the rooms, the metal of the furnace has to be heated almost, and frequently quite, red hot; and this again greatly vitiates", the
air, as has been frequently explained by Tyndall and other air, as has been frequently explained by Tyndall a
scientists, and as we all know by actual experience.
scientists, and as we all know by actual experience.
Third. They do not contain a sufficient quantit
Third. They do not contain a sufficient quantity of air. The small quantity used necessitates heating it altogether too
hot. It would be far better to use more air and heat it less, as by so doing it would be less vitiated, and the larger the quantity used, the more thoroughly and frequently would the volume of air in the room be changed, and hence be kept much more nearly pure.

The remedies for these evils are plain. First, furnaces should be made entirely of wrought iron, above the fire pot at least. Second, they should be riveted together, and the points made gas tight, the same as a boiler. Third, the heat ing surface should be made at least double the present size, and then a larger supply of air furnished. If this were done, and plenty of water supplied for moistening the air by evap oration, hot air furnaces would be rendered far more com plete and as healthful as open fires, the rooms, of course, being provided with ventilating flues and registers. It may be that somebody makes furnaces in this way now; but, after examining all I can find and corresponding with manufactu-
rers, I am unable to find such. I have found one pattern in Philadelphia that is of wrought iron, with gastight joints: but it has not sufficient heating surface, and is made with the old-fashioned fire chamber, instead of being provided with a magazine or base burning arrangement, and consequently requires more constant attention. The man who will suppiy the public with a hot air furnace, such as above indicated, will not only find a large sale for it, but will prove him self a public benefactor. If there is such a man in the United States, I want to find him.

COOLING OUR DWELLINGS.

For years it has seemed to me that it is just as possible and as reasonable for us to cool our houses mechanicaliy as to leat them mechanically. After having experimented on the matter for some years, I am now perfectly satisfied of its feasibility, and that, sooner or later, it will be done. All that is required is to cool a volume or current of air, and force it into our rooms. This can be done very easily. The manner am now building, I am having placed in the walls tin tubes of not less than two inches diameter, extending from the basement all the way up to the topmost story, these tubes having an opening connecting with all the rooms on the several stories, with an arrangement for opening or closing them at pleasure. At the bottom they are connected with a rotary blower operated by a small hydraulic engine, to be fed by the service pipe from the water main that supplies the house. By this means I propose to force into any or all of my rooms a supply of air at any time desired; and this air is to be
cooled by any suitable means. It may be passed through a cooled by any suitable means. It may be passed through a
chamber or tubes surrounded with ice or any cooling mixture, and may also be made to pass through a water jet or spray, which will also aid to cool as well as moisten it in a very dry dusty time. If one desires to be luxurious, the water spray may be perfumed, and made to impart its fragrance to the inflowing air; and, as suggested by a friend at my oxygen may be provided and forced in with the air, thus elevating the spirits of the company, instead of resorting to the deleterious plan of using champagne and similar liquids for that purpose.

The air should not be taken from the basement nor from near the surface of the earth, especially in summer nights, the time when it is most needed in this latitude, for the reason that all malaria are near the surface at night

To supply the fan with air, a tuba of proper size should be arranged with its upper opening near the top of the house, but not over the roof, because in that case it would receive
the air heated by radiation from the roof. Air thus taken from above the surface would also be more free from dust
and impurities, except when in the vicinity of chimneys o factories; and it should be located as far as possible from
these, to avoid taking the impure or noxious gases emanating these, to av
therefrom.
Since writing the above, my attention has been called to an extract from a communication to the Nation on this sub ject of cooling our dwellings. The correspondent proposes to force air into the rooma through tubes, and to cool the air by passing it through small tubes in a box packed with mos r other loose material kept wet by water dripping on it with a current of air forced through the mose also to cause aporation and thus reduce its temperature. He propose use a large but light bellows to supply the air for th ooms and the cooler, and to operate it by clockwork drive
ay a weight, to be wound up by a horse onca a day or a week by a weight, to be
as the case may be.
There are several practical objections to this plan. In th There are several practical objections to this plan. In the
first place, no clockwork can be made with sufficient power forst place, no clockwork can be made with sufficient powe
to operate a bellows of suitable size for any great length of to operate a bellows of suitable size for any great length of
time. I have built two machines of this kind, and the extime. I have built two machines of this kind,
periments have atisfied me fully on this point.
To furnish a suitable supply of air, more power will be required than to run a sewing machine. A motor must be used to force in the air, and for this purpose there is nothing equal to the hydraulic engine. As stated in a recent article in the Scientific american, hydraulic motors are the best adapt ed of any for all such purposes. All cities and large towns are now provided with public waterworks, by means of which they can be-operated, and during the night there is alway plenty of water, even if not during the daytime.
It has occurred to me that the ether machines recently devised for making ice may be used for cooling the air, especi ally às they may be made much smaller and cheaper, when used for this purpose, as a much less degree of cold will be required; and on this point I should be gratified to obtain in formation. Of course it would depend upon the cost of the apparatus and the amount of power required ; and as to these I am not posted
But that it is as practicable to cool our houses mechan: cally, as to warm them, I have not a doubt; and it wil be done. It is only a question of time and expense, which latter need not be great. A person can stand the heat of the day far better, provided he can secure sound and refreshing sleep at night, and by this means it can be done. It is a disgrace to our civilization that we are compelled to toss about these hot sultry nights, and arise in the morning as weary and exhausted as when we retire at night; and equally so that we should be compelled to fry, stew, and roast in our cells of rooms and offices by day. It is high time there was a reform in this respect, and for one I am determined to
W.C.D.

Wesh
 Washington, D. C.

American Inventions in the Vienna Exposition of $18 \% 3$.
 To the Editor of the Scientific American:

I have read, with much regret, an article in your issue of the 31st ult., intended to discourage American inventors from taking any part in the Iaternational Exhibition at Vienna, on the ground that "it is not possible for Americans to compete with Europeans in filling orders for manufactured goods, because the continental manufacturers can do the work much cheaper," and kecause "our best patterns would be copied without benefit or reward," etc. I think a little reflection will convince you that the view you have expressed is not a very liberal or comprehensive one. A very large portion of our people have come from the German Empire, and thousands more are yearly coming. An opportunity, such as this exhibition will afford to multitudes, to become acquainted with our machinery and inventions will certainly be appreciated by them, and, it appears to me, will more than remunerate t
Austria.
But is it true that none can be sold there? Labor-saving machines of American invention and manufacture are now in operation in different parts of the Austrian empire, not in great numbers, it is true; but still the fact remains that they have found a footing there, and are commended by their superiority.
A remarkable interest in our machinery is growing hroughout all the Austrian empire and in the surrounding countries; especially are the Hungarians full of admiration for the skill and industry of our people, and I venture the opinion that no part of the Great Exposition will pro
great a source of attraction as the American machinery.
great a source of attraction as the American machinery.
As to the "piracy of inventions," I am glad to have it
my power to show you that your apprehensions are groundless.
By section 38 of the general regulations, which I have heretofore sent you, it is stated that "The chief manager has taken the necessary steps that the objects exhibited may, from the time of their arrival on the exhibition grounds until taken away, enjoy the benefit of the laws existing in Austria for the protection against piracy of inventions and Detailefor instance, of the patent and registration la ... digns, photogulations will be published. "Reproduction (d signs, photographs, dc.) of objects exhibited are only
if the exhibitor and the chief manager consent to it."
By a communication just received from a well known and ery cstimable American citizen now in Vienna, I learn "tha a law was lately passed by both houses of the Austrian Par-
liament for the protection of foreign objects on exhibition against piracy of inventions and designs. Every foreign exhibitor can apply for a certificate, which secures to him the priority for obtaining an Austrian patent for his article, and such certificate will be issued free of charge."
"Moreover," says the carrespondent, "I hear from Mr Kirch, an American citizen, representing in this city the arge manufacturing interest of Wheeler \& Wilson in Ne York, that the Austrian government, in a correspondenc with the American legation, is showing a disposition to con cede to Americans (in deviation from the existing regulations for patents) the right to import from the United States their articles patented in Austria, without losing their patent,when not manufacturing there." Thus the Austrian governmen doing all in its power to favor us.
I think you will agree with me that no fears need be en tertained of extended piracy under these liberal provisions; and I am very certain that, feeling so assured, the Scien tief-American will throw its influence in favor of a larg and creditable American representation at the exhibition.
You are also misinformed in regard to the number who re applying to me for space.
I have quite a large number of applicants, including many of our leading manufacturers, and the number is increasing daily.
That Congress made no appropriation is unfortunate; but he opposition of any pcrtion of our press is to me a much greater misfortune. Congress, it is generally believed, will remedy its action in December; but the opposition of the press now will render my gratuitous and laborious efforts on behalf of our industrial interests very difficult, if not entirel useless.

Thos. B. Van Buren,
U. S. Commissioner to International Exposition, Vienna, 1873.

Force of Falling Bodies.
To the Editor of the Scientific American:
I see, in an article on page 131 of your paper, that Mr . John W. Nystrom acknowledges himself to be "one of those pretenders" who think that they "understand perfectly the subject" of measuring the force of a falling body by taking as unit of measurement, the mere weight of matter without motion. I desire here to say to him and to all those inter ested in the important question of measuring forces, in con sideration that force must be distinguished from mere weight, that weight is merely a measure for an amount of matter, for a meremass, and for nothing elee; such weight, of course, is caused by gravitation, and thus can exert pres of course, is caused by gravitation, and thus can exert pres-
sure, but as long as the weight does not produce motion, there is no force generated ; therefore strictly speaking gravitation is no force, notwithstanding the conventional way of speaking no force, notwithstanding the conventional way of speaking
of the force of gravitation; however, gravitation can beget of the force of gravitation; however, gravitation can beget
force, and only does so in case it is allowed to produce mo tion. According to the modern conception of force, it is no something immaterial, independent of matter, but absolutely nothing but matter in motion. This motion may be hidden, molecular, when the force manifests itself as heat, electricity etc., or the motion may be in the masses, when the force is directly measurable loy two elements, the mass and the veloc ity. Accepting the customary symbols for these two differ ent elements, the different degrees of force are expressed by the formulæ $v \times m$ and $v^{2} \times m$, which are both correct accord ing to circumstances. In the case of the effect of a blow produced by a falling body, for instance, the driving in of a nail, the identical case represented on page 131, the latter formula, corresponding with the theory of the vis viva (see any textbook on mechanics), must be applied. This is the any textbook on mechanics), must be applied. This is the
first point in which the formulæ of Mr. Nystrom are faulty as they are based on the lever, and thus not on the square of the velocity or space, but on the simple velocity $: v \times m$.
The result of this law of the vis viva is that, where gravita tion increases or decreases, and with it the velocity of the falling body, the force of the blow will increase or decrease as the square of the gravitation, while the weight of the body will only increase or decrease in the simple ratio of the gravitation. Mr. Nystrom's figure and formulæ fail to take any account of this whatsoever.
But let us consider the expressions $v \times m$ and $v^{2} \times m$ theoretically. It is evident that they have no value at all as soon as either of the quantities v or m becomes immeasurably small or disappears. Let, for instance, in the function $v \times m$ or $v^{2} \times m, m$ become $=0$; then we have $v \times 0=0$ and $v^{2} \times 0=0$ which conform to practical experience, because a blow with a mass equivalent to nothing must necessarily amount to nothing. Let, inversely, v be $=0$ and we have
$0 \times m=0$ and $0^{2} \times m=0$,
again equivalent to nothing; a mathematical proof that a mere mass without velocity (motion) cannot possibly be reck oned equivalent to any force; and we see here the great mis take, thus far made by the authors of many textbooks, in speaking of a force of, say, 100 pounds, or a tun.
The cause of this error is mainly to be found in the fact that a mere weight by its pressure will in some cases pro-
duce results similar to that of a force or blow. If, however duce results similar to that of a force or blow. If, however, we attempt to measure force (matter in motion) by mere weight (matter in rest), we must continually fail and obtain
 mass with mere weight or pressure produced by a stationary body, is the cause of fifty per cent of the attempts, continually being made by the half educated, to find perpetual motion.
Now for a few practical illustrations: With a comparatively light hammer, we may easily drive a nail into a brick wall; if we try to do it by mere pressure, we shall crush the nail. or, to take Mr. Nystrom's own illustration, we can drive a nail into a board by the blow produced by dropping the head of a hammer on it from a suitable hight,directed by guiding pieces, as in a pile driver; but tak a similar nail, place it on the same board, attach the lever of proper length and hang the hammer head at the end of the lever, following practically the figure on page 131, and see if the nail will penetrate
at all. If Mr. Nystrom had tried the experiment, he surely would never bave taken the trouble to illustrate and publish is explanation
The blow or percussion gives to a mass a shock, transmit ted through it with the same velocity as a wave of soun would travel in that same mass; when the blow is violent and there is somewhere a want of continuity, or lack of strength which prevents the wave from pursuing its course, its power
will be expended there in crushing the material This is the will be expended there in crushing the material. This is the case in driving a nail. The motion will not be communicated to the board, but the force will be expended in crushing and cutting the fibers of the wood under the nail, so as to allow it to enter, while a weight or pressure plac3d on the nail will have plenty of time to communicate itself to the whole board. A striking illustration of this may be had when balancing a heavy board on its center; it is then possible to drive a well pointed nail with a smart blow deep in the board without moving the latter, while the same nail with a weight on top will scarcely make a mark on its surface, but will move the whole board. A pistol ball may be fired through a door without moving it on its hinges, which latter may be done by the slightest pressure of the finger. Scores of other familiar examples may be adduced, all proving the immense difference between force and mere pressure, and it is only to be wondered at and at the same time deplored that still so much confusion prevails in regard to this all important subject.
P. H. Vander Weyde.

New York city.

To Detect Sulphuric Acid in Vinegar

To the Editor of the Scientific American:
A few words further in relation to this matter: I never supposed, before, that such an article as that on page 132 of your journal could emanate from the apparently very erudite Dr. Vander Weyde. The process which he denounces as a "gross piece of stupidity" is, to an intelligent, chemist obviously a most excellent method of effecting the desired end; although, it is true, it is somewhat complicated. The process which he proposes is utterly worthless for detecting free sulphuric acid, for any sulphates that may be accidentally present will give precisely the same reaction; these must be gotten rid of, and the evaporation of the vinegar and subse quent extraction with alcohol, as directed in the process which the Doctor so strongly objects to, effects this perfectly, because all sulphates, being totally insoluble in alcohol, are left behind, while the free sulphuric acid is taken up. This alcoholic solution is mixed with water, the alcohol evapo rated, and the aqueous solution thus obtained is ready to be tested with barium chloride. The Doctor says the alcohol is added "to destroy the acetic acid by changing it into the volatile acetic ether." This is certainly not so, for the presence of the acetic acid, as he admits, does not interfere with the test; and if it did, the evaporation of the vinegar to the consistence of an extract would volatilize all the acetic acid contained in it. I am sorry the Doctor has thus shown his defective knowledge of chemistry, and if he will be advised by a young pharmacist, he will hesitate next time before at tempting to throw discredit upon a journal so ably conducted as is the American Journal of Pharmacy.
I will close with a process for detecting the fraud, which is a good one and simple, though not original: Boil a few grains of starch with an ounce or two of the suspected vine gar, for a few minutes in a glass vessel; when it has become cold, add a drop of tincture of iodine. If the vinegar contains no sulphuric acid, a beautiful blue color will be produced by the reaction of the iodine on the starch. Bat if a small quantity of sulphuric acid be present, no color will be developed, for the acid will have changed the starch to dex trin, which is not colored by iodine.

Washington, D. C.

Charles Le R. Sayre.

Detection of Sulphuric Acld in Vinegar. To the Editor of the Scientific American:
In the comments of Dr. Vander Weyde in regard to the detection of sulphuric acid in vinegar, the learned Dr. over looked the main point, that is, the detection of the sulphuric acid and not the ealts of sulphates in the vinegar. A great many samples of vinegar which are sold in the market contain small traces of sulphate of lime from the materials which are used in the manufacture, and this small amount will give a precipitate with solution of barium; but it can not be called an adulteration as it gives no acidity to the vinegar.
The adulteration of vinegar is done with sulphuric acid and to detect such free sulphuric acid the test in the Ameri can Journal of Phurmacy is based on strict science. The treatment with alcohol will precipitate the sulphate of lime and the addition of chloride of barium to the filtered solu
tion will show any adulteration with free sulphuric acid.

Francis Schleicher, Chemist.
Hoboken, N. J.
Test for Sulphuric actd in Vinegar
To the Editor of the Scientific American:
Professor P. H. Vander Weyde, in his strictures on the tedious process, has evidently made a mistake. All that he says applies to acetic acid, but not to vinegar.
Acetic acid (being prepared by dist llation) contains neither sulppates nor anything else but acetic acid and water. Vin egar (being prepared from cider, beer, or wine) must always
contain extractive matter and earthy salts (generally sulcontain extractive matter and earthy salto (generally sul-
phates). If prepared from diluted alcohol (quick process). in which there is common water, it always contains sul phates. Hence, by adding a solution of chloride of barium to vinegar (made by whatever processs), a cloudiness will al
ways be produced. In order to detect the sulphuric acid in vinegar, we have either to follow the above method with al cohol, or to distil a small quantity and test the distillate with solution of chloride of barium. A third method is to evaporata the vinegar over sugar, on a water bath, till dry;
if the residue turns brown or blackens, then the vinegar in question contains free sulphuric acid. of course, if the vinegar is of a brown color (as cider vinegar usually is), then he third method is unreliable.
H. M. Wilder. Philadelphia, Pa .

The Risk of Buildings from Fire

Captain Shaw, of the London Fire Brigade, has published a little book, under the title of "Fire Surveys," which, if well studied and acted on by those engaged in the construcion and the guarding of buildings, will, says the Builder, save life and property in time to come. If it were desired that we should point out its main purpose, we should say it was to enforce the truth, which has only recently dawned upon legislators and constructors, that iron and stone are not fireproof materials; stone is absolutely inadmissible for stairs, or to support weights internally, and no structure can properly be called fireproof, the ultimate strength of which depenăs on any metal.
In the whole range of building materials, the writer maintains, there is perhaps none so unsuited for resisting fire as that most commonly in use-stone. It is true that, if embedded in cement or in thoroughly good moriar of lime and bedded in cement or in horoughy good heat gradually ap-
sand, it will resist for a considerable time heat sand, it will resist for a considerable time heat gradually ap-
plied; but even in such a case it will become calcined, and plied; but even in such a case it will become calcined, and
will crumble to so great an extent as to be unable to carry a will crumble to so great an extent as to be unable to carry a
load afterwards. In the case of any sudden change of temload afterwards. In the case of any sudden change of tem-
peratiure, either from cold to heat or from heat to cold, it cracks instantly without notice, not only leaving a passage for smoke and flame, but in many instances causing the wall to fall. Stone may, however, be used with a certain amount of safety for external walls, but even for this purpose it is very much inferior to bricks.
Walls should be constructed in such a manner as not to separate easily, either from defects in the foundation, irregularity of the loads placed on them, vibration, shocks, or other causes. A wall built of hard bricks laid in sound mortar or cement, and properly bonded, is perhaps the soundest of all for general purposes; but even such a wall is likely to an emergency, if not firmly bonded into a cross wall.
Bond timber in walls is dangerous, as we have long taught and should not be allowed. When it rots or burns, there is a tendency in the walls to crack. Hoop iron forms a much better bond, and is free from the drawbacks attending the use of wood. Lean-to buildings are dangerous if there are windows in the wall above them. Weather-bogrding causes two dangers-one of taking fire from without, the other of conveying fire through the windows. Wherever iron is
used, it must be allowed sufficient play for its elasticity, and used, it must be allowed sufficient play for its elasticity, and also for the expansion and contraction which it underg unceasingly in consequence of changes of temperature.
Walls may be destroyed by buckling outwards from a thrust, or inwards after the falling of the floora, by inherent weakness, absence of proper ties, and in a variety of other ways; but the principal cause of their "tumbling about," to use a fireman's expression, is undoubtedly, in almost all cases, the want of a proper foundation. The weights carried by different parts of the same wall frequently vary very con siderably, and if the ground underneath be all of the same ture beyond a common foundation is absolutely necessary for buildings liable to be heavily or irregularly loaded. The buildings liable to be heavily or irregularly loaded. The
neglect of this precaution has frequently been the cause of neglect of this
heavy losses.
Copings, balconies, cornices, or other projections should never be constructed of stone, as this material is certain to fall down at an early stage of a fire, and is likely to kill both persons endeavoring to escape and those coming to render aid. Wherever such projections are placed, and whatever well supported from the inside, and should be of a weight in proper proportion to the strangth and tenacity of the inter nal supports. Cornices and other projections of the same ind are very dangerous when the internal supports are ally fastened to the walls are of no use when the flames are oming out of the windows underneath. This is a point very much neglected in many large buildings, but it is one very much neglected in many large buildings, bu
of paramount importance in connection with fires.
No fireman of large experience has ever seen a stone staircase escape when subjected to much heat; and this ke ng the case, it would seem to bo most desirable that there should be introduced a prohibition of the use of stone as a material for lobbies, corridors, passages, landings, or stairs except where it is supported throughout and not overhang ing in any part. We repeat that the use of stone is mos dangerous for this purpose, except when it is supporte throughout.

sCiEmtific and practical information.

a new artificial marble.

Imitative marble, made by a new process, has recently been introduced in London by Signor Raccotti. In forming the labs, he commences by laying the veins of color upon a plate of glass, the veins being threads of silk saturated with dyes of the required hues. A semi-liquid cement is then sprinkled pon the glass to the thickness of an eighth of an inch, and is left on the glass to absorb the dye from the silk, the fibers
of which are then removed. Cement is added till the slab is of which are then removed. Cement is added till the slab is
of the desired thickness, and twelve hours is sufficient time
or it to become dry enough for the polisher. Its cost is in England about one tenth that of real marble; in this country, the saving would be still greater, especialiy in large slabs, Two slabs, each five feat square, were recently made in less than three quarters of an hour.
preservation of hops.
It has been found in Bavaria that hopscan be preserved by packing them in a tight barrel between ice. No perceptible change took place in hops wh.ch were so packed for a period of seven months.

THE SUNFLOWER

A contemporary calls attention to the important uses to which the sunflower can be put. It will grow almost anywhere, and the growing plant and its flowers are well known absorbents of foul and miasmatic air. It is very productive of seed, yielding fifty bushels to the acre, which contain fifty gallons of easily expressed oil. The oil is readily burnt in lamps, and gives a clear white light; it can be used as a vehicle for paint, and is excellent for the soapmaker's use. The seeds can also be fed to poultry in winter with advantage. The stalks, which are large and coarse fibered, yield, on burning, a large proportion of potash; but a still more valuable product, a fiber of great strength and smoothness, can be obtained from them by "retting," as is done with the stalks of flax.
mercurial ointment.
M. Lucien Lebeuf prepares this by taking: Ether, 4 grammes, benzoin, 20 grammes, oil of sweet almonds, 5 grammes, and then mixing, dissolving, and filtering. He adds the mixture to 1 kilogramme mercury, and puts the whole in a glass stoppered jar of five or six times the capacity required by the compound. By shaking briskly and occasionally remoring the stopper, the ether will be eliminated, and ultimately the mercury will be reduced to a fine powder. Then the supernatant liquid should be decanted, and the jar shaken vigorously till the mass becomes of an unctuous consistency. The more agitation is used to thoroughly subdivide the mercury, the easier will be the completion of the process, which is effected by taking 920 grammes lard and 80 grammes wax, melting them together in a mild heat, and, when cold, triturating a part with the divided mercury. The bottle should be rinsed out, from time to time, with the decanted tincture which should be added to the contents of the mortar. If suf ficiently triturated, the ether will be entirely evaporated and the mercury extinguished. The remainder of the lard and wax should then be added, and the whole triturated for twenty minutes.

killing rats.

There are many ways of disestablishing rats besides the short and ready methods of poisons or traps, which we find described in a foreign contemporary.
First, there is the old French plan; this is followed chiefly in Paris by men who make it a special business. They take a deep tub with water on the bottom, and a little elevation in the middle like an island, on which is only pläce for just one rat to sit. The top is covered and has a large balanced valve, opening downward; on the middle of this valve a piece of fried pork or cheese is fixed, and when a rat walks on it to get the cheese, the valve goes down, drops the rat in the water, and moves back in position. A road is made from a rat hole to the top of the tub, by means of a piece of board rubbed with cheese, so as to make the walk attractive for the rats. In the course of a single night some ten, twenty or even more rats may go down, and if the island was no there, they would be found almost all alive in the morning quietly swimming round; but the provision of the little island saves the trouble of killing them, because their egotistic instinct of self preservation causes them to fight for the exclusive possession of the island, on which in the morning the strongest rat is found in solitary possession, all th others being killed and drowned around him.
Secondly, we come to the New York plan. The floor near the rat hole is covered with a thin layer of moist caustic potassa. When the rats walk on this, it makes their feet sore; these they lick with their tongues, which makes their mouths sore; and the result is that they shun this locality, not alone, but appear to tell all the rats in the neighborhood about it, and eventually the house is entirely abandoned by them, notwithstanding the houses around may be teeming with rats.
Thirdly, we have the Dutch method, a very cunning device, but probably difficult to experiment about. A number of rats are left to themselves in a very large trap or cage, with no food whatever; their craving hunger will cause them to fight, and the weakest will be eaten by the strongest. After a short time the fight is renewed, and the next weakest is the next victim, and so it goes on until one strong rat is left. When this one has eaten the last remains of any of the thers, it is set loose; the animal has now acquired such taste for rat flesh, that he is the terror of ratdom, going round seeking what rat he may devour. In an incredibly hort time the premises are abandoned by all other rat which will not come back before this cannibal rat has left or has died.

steam gages.

A test of steam gages was made recently at the show yard of the Royal (British) Agricultural Society, at Cardiff. Sistyfour gages made by different manufacturers were subjected othe tests. Out of these, sisteen were correct; sixteen aried one pound from the true pressure; seventsen, two pounds; six, three pounds; three, four pounds; four, five pounds; and two, seven pounds. If so great a difference was shown in the gages made for exhibition, what must it be in those made for ordinary sale? The Railroad Gazett asks: Who will try the experiment on American gages?

albany steam trap.

In using steam for heating purposes, where all or any por tion of the heating apparatus is situated below the water level in the boiler, it is necessary to use a device of some kind for getting rid of the water of condensation as fast as it is formed, as otherwise it backs up in the pipes and stops radiation. In apparatus heretofore contrived for the purpose, water at a high temperature has been allowed to run to waste, excepting where it was sought to return it to the boilor, in which case it was necessary to trap it into a tank and thence, after considerable loss of heat, to force it back into the boiler by the aid of a pump.
The object of the in vention now illustrated vention now illustrated
is to keep the heating is to keep the heating
apparatus free from waapparatus free from wa-
ter and to effect the reter and to effect the re-
storation of the water storation of the water to the boller at a temperature only a few degrees lower than that of the steam itself, by the automatic operation of a simple trap, unaided by pumps or other means. This trap is represented in the accompanying engraving, and its construction will no doubt be readily underdoubt be readily understood from the same and the following explana-
tion; premising that the three connectins pipes three connecting pipes which are broken apart
in the engraving are, in in the engraving are, in
reality, extended suffreality, extended suffi-
ciently far horizontally to give them elasticity enough to allow the ap paratus to operate easily.

It consists essentially of a hollow globe, supported by one end of a lever and counterbalanced by a weight at the other. The topmost pipe is connected with the steam space of the boiler, and is opened and closed to the globe by the automatic weighted valve seen on the top of the same. The larger pipe beneath supplies the globe or trap with the condensed valve opening inward. The pip. It is provided with a check valve opening inward. The pipe at the bottom connects the globe with the water space of the boiler, and is furnished with a check valve opening outward. The operation is as follows: When the globe gets filled with a certain weight of the condensed water, it overbalances the weight at the other end of the lever, and descends. In descending, it moves the mechanism of the steam valve sufficiently to shifc the center of gravity of the attached weight beyond its supporting point, which causes the ball to fall and open the steam valve. The steam pressure closes the check valve in the supply pipe, and allows the water in the trap to flow into the boiler through the bottom pipe, whose check valve opens to let it pass. When the globe has lost sufficient weight through the escape of the water, it is raised again by the weighted lever, and the steam valve is shut by the operation of its attendant mechanism. The con densed water is again admitted by the opening of the check valve in the sup. ply pipe, and the operation is repeated continuously.
The steam valve apparatus is so nicely adjusted that the machine cannot, by any possibility, rest on a center; the valve must always be fully opened or closely shut. An air valve is also attached to the globe, by which the air is expelled.
The inventor estimates that the use of this trap secures a saving of certainly not less than ten per cent over any ther method of returning water of condensation to the boiler, where the coils are below the water level. Where the coils are all above the water line, and the return is made by "direct circulation," a large saving is still effected by using the trap, as its action is such as to force a continual circulation without intermission, and thereby to keep the coils nearly up to boiler heat all the time. He claims, as a consequence, that a given space may be heated o a given temperature with one fourth less pipe, by this method, than by any other
The invention, which was patented by Mr. James H. Blessing, Feb. 13, 1872, has been in satisfactory practical opera tion in a variety of manufacturing and other establishmenta for the past year.
For further information, Townsend \& Blessing, care of Townsend \& Jackson, Albany, N. Y., may be addressed

A science teaches us to know; an art, to do. In art, truth is a means; in science, it is the end.

Lessons from a Brick

An Austrian savant has discovered, by means of a micros cope, in a brick taken from the pyramid of Dashour, many anteresting particulars connected with the life of the ancien Egyptians. The brick itself is made of mud of the Nile chopped straw, and sand, thus confirming what the Bible and Herodotus had handed down to us as to the Egyptian method of brick-making. Besides these materials, the microscope has brought other things to light-the débris of river shells, of fish, and of insects, seed of wild and cultivated flowers, corn and barley, the field pea, and the common flax, cultivated probably both for food and textile purposes, and the rad ish, with many others known to science. There were also

BLESSING'S STEAM TRAP AND FEED,

manufactured products, such as fragments of tiles and pottery, and
wool.

RAILWAY RAIL JOINT.

The importance of keeping the upper surfaces of railroad rails at their joinsd ends in the same plane, so that neither shall rise above or fall below the other, and also of furnishing adequate support for the heads of the rails forming the joint, is so well known and has been so often commented on by us as to render a further discussion of the subject in this place unnecessary. The intention of the invention now illustrated is to furnish a joint or support by the use of which both the objects referred to are fully accomplished, and, at

STELL'S RAILWAY RAIL JOINT

use.

Our engraving gives a view of the ends of two rails joined by this device, a cross section of the rail and coupling being shown in detail. A is a box which may be made either of cast or wrought iron, the latter being preferable, and of a width sufficient to receive the base of the rail. The length may be as desired; when used to extend over more than one tie, it should be about 18 inches, and the box should be made thick enough to firmly support the rails and prevent any great deflection from the weight of passing trains; when the joint is made upon a single tie only, the length may be reduced to about 8 inches. When the rail ends are placed in the box, the fish bars, B, are inserted between the box and
the rail, in the manner shown. It will be seen that thei form is such as to fill upsnugly the spaces between the rai and the siles of the box, and that their upwardly projecting parts fit nearly against the under surface of the heads of the rails. They thus form a support for the rail heads through out the entire length of the bar and preserve the ends, par ticularly, from being battered down. In order to hold the parts together securely and in proper position, bolts, as shown in the engraving, are passed through the box, the fish bars, and the web of the rail, and are fastened by keys, as repre sented. The rails are slotted where the bolts pass through so as to allow for the expansion and contraction consequen on changes of temperature. Round bolts with nuts may be used if preferred though the squar bolts are less expen sive, and where key are used the parts can be tightened at any time by driving them They are prevented working out by bend ing down their smal ends.
It is claimed that there is no possibili ty, by this construc tion, of the joint get ting loose, and that it secures all the advan tages belonging to a smooth, continuou rail; for which rea sons the liability of injury to either rails or rolling stock is very much reduced The fastening admits of easy and economic application to rails now joined by the or dinary fish bar.
The invention was patented May 28,1872 by J. W. Stell, of Gon zales, Texas, of whom

further information may be obtained.

Gasolene, Naphtha, and Benzine more Dangerous than Gunpowder
Professor C. F. Chandler, in the American Chemist, says:It is not possible to make gasolene, naphtha, or benzin safe by any addition that can be made to it. Nor is any oil safe that can be set on fire at the ordinary temperature of the air.
Special lamps, some of them of very elegant design, have been introduced for burning the liquid gas (naphtha). They are all provided with a reservoir for the dangerous fluid, and burner by which it is vaporized and burns like gas.
The apathy of the public in regard to this matter is beyond my comprehension. These facts are well known in almost every community, and yet, though it is now twelve or thirteen years since this class of oils came into general use, we have as yet no adequate legislation fo the protection of life or property. Nothing but the most stringent laws, making it a State prison offence to mix naphtha and illuminating oil, or to sell any product of petroleum, as an illuminating oil or fluid to be used in lamps or to be burned except in air gas machines, that will evolve an in flammable vapor below 100° Fah., or, bet ter, 110° Fah., will be effectual in remedy ing the evil. In case of an accident from the cale of oil below the standard, the selltr should be compelled to pay all dam age to property, and, if a life is sacrificed, should be punished for manslaughter. It should be made extremely hazardous to sell such oils.
Naphtha, under whatever name it pass es, is, in one respect, more dangerous than gunpowder. Gunpowder never explodes unless fire is brought to it. Naphtha, on the other hand, sends out its inflammable vapor and brings the fire from a distance, Gunpowder is thus a passive agent, while naphtha is an active one ; and when intro duced under the treacherous digguise of safe oil, it is not to be wondered that frightful accidents occur.
In this connection the "vapor stoves" demand some con sideration. These stoves are supplied with naphtha (sold under various names) from a reservoir at one side, the supply being regulated by a stop cock. The naphtha flows into a tube or chamber, which is maintained at a high temperature by the combustion; here it is vaporized to escape through suitable orifices and burn. These stoves are arranged for cook ing, as well as for heating apartments.
These contrivances are all, witiout exception, highly dangerous. They are all supplied with benzine or naphtha, which is always liable to take fire and to produce explosive vapors.
A keg of gunpowder in a building is not as dangerous as one of these stoves.

Sriontific Ammitam.

MUNN \& CO., Editors and Proprietors. PUBLISHED WEEKLY AT
NO. 37 PARK ROW, NEW YORK o. D. MUNN.
A. e. beach.

 ne copy, six months

 3300 150 2500 850

OL. XXVII., No. 11. [New SEries.] Twenty-seventh Year NEW YORK, SATURDAY, SEPTEMBER 14, 1872.

TERRESTRIAL MAGNETISM

Its infuence upon the compass needle. The supposed iron islands of the sun and their
upon the magnetic currents of the earth.

The compass or magnetic needle does not ordinarily poin to the true north, but varies to the east or west, in differen parts of the globe. This variation is called the declination of the needle. The declination varies slightly with the different seasons, also with the hours of the day, and forms the subject of scientific observations, made in magnetic observatories expressly built for this purpose in different parts of the world; other magnetic observations are made in regard to the amount of inclination from the horizontal line, called the dip of the needle, which strongly increases when approaching the magnetic poles of the earth, until, on the poles themselves, the needle stands in a vertical position. The line surrounding the earth between the tropics, where the needle is horizontal, is called the magnetic equator; north of this line, the north pole dips; south of it, the south pole dips, until it reaches its maximum dip of 90° or a vertical position, at 74° south latitude and 140° longitude east of Greenwich where the magnetic south pole is situated.
Another element of observation is added also, that of magnetic intensity.
This may be measured by the velocity of oscillation of the compass needle when disturbed from its natural position. It is founded on the same principle as the measuring of the is founded on the same principle as the measuring of the
intensity of gravitation in different parts of the earth by the intensity of gravitation in different parts of the earth by the
pendulum; where the gravitation is stronger, as is the case at pendulum; where the gravitation is stronger, as is the case at
the poles, the same pendulum oscillates faster; where gravitation is less, as at the equator, the same pendulum oscillates slower. It is so with the compass needle; where the mag netic attraction is greater, as is the case near the magnetic poles of the earth, the needle will oscillate faster; where this attraction is less, as at the equator, the same needle oscillates slower.
influence of heat and cold upon the magnetic NEEDLE.
As heat diminishes the magnetism of the needle itself, this has influence on the results, and must be brought into account in the same way as is done in regard to the pendulum which becomes longer, and therefore oscillates slower, by rise in temperature. For this reason, well constructed mag netic observatories, like that at Toronto, Canada, are entirely under ground, in vaults where the temperature can be kep equal the whole year round.
This decrease of magnetic power by heat may be observed on any compass needle; it oscillates slower when heated, be fore coming to rest, than when cold. So that heat produces the same result as bringing the needle into a locality where the earth's magnetism is weaker, and vice versa. Cooling the needle produces the same result as bringing it into a locality where the earth's magnetic intensity is greater.
aCtion of the compass in a balloon.
If we rise in a balloon to a distance from the earth gravita tion will become less and the pendulum oscllate slower; ter restrial magnetisa also becomes less, and therefore the com pass needle should oscillate slower. This might be reasonably expected, and therefore a great surprise was experienced when it was fuund that the experiments in France, in the be ginning of this century, did not verify this expectation. The compass needle was found to oscillate about as fast at a hight of 15,000 feet as near the earth's surface. But the correction had been overlooked; at that hight the temperature was so much lower than at the earth's surface that it had increased the magnetic intensity of the compass needle itself about in he same degree as the distance from the earth's surface had decreased the earth's attraction. Therefore, when this cor-
rection for temperature was applied, or the needle tested on the earth's surface at the same low temperature as was observed in the upper regions, it was decidedly found that
the earth's magnetism decreased with the distance from its the earth's magnetis
surface, as expected.

EFFECT OF EARTHQUAKES UPON THE COMPASA

Besides the periodical changes described, the compass needle is subject to irregular motions, caused by earthquakes or volcanic eruptions, of which the effect on the needle will manifest itself over large tracts of country, a thousand or more miles in extent, and always everywhere at exactly the same instant; according to the theory of electric currents as cause of the earth's magnetism, this is easily explained, as such violent disturbances in the crust must necessarily also disturb the currents passing through the same.
EFFECT OF the aUrora borealis upon the compass.
Another disturber of the compass needle is the aurora orealis, and this is a deciding proof that this phenomenon is due to electric currents, which, running north and south through the upper rarefied and therefore conducting strata of our atmosphere, of course give a tendericy to the needle to deviate to the east or west, as it is thenaff ucted by two sets of currents, the stronger steady subterranean current running east and west and causing it to point north and south, and the weaker unsteady auroral current in the upper regions run ning north andsouth and attempting to deviate it east and west. He ELECTRICITY OF THUNDERSTORMS AND THE COMPASS. The electricity of thunderstorms has been found not to have any effect on the compass, except when the compass itself was struck and its magnetism reversed, or when a ves sel was struck and its iron acquired so much magnetism a to affect the correct indications of the compasses on board.

EFFECT OF SUN SPOTS UPON THE COMPASS,
A most striking fact, however, is the relation of the sun spots on the declination of the needle. It is found that, during periods when the sun shows a great number of spots, the variations of the needle are greatest ; and even that at the appearance of a very large spot, the needle was affected at different places of the earth's surface at the same instant. Two explanations may be given for this surprising phenomnon. The first is that the revolving east and west electric currents in the earth's crust, which are the cause of the earth's magnetism, are caused by the solar radiation of heat before which the earth revolves east and west, and thus must be affected by any change in the solar surface by which this radiation of heat is modified. The second is that the sun contains enormous quantities of iron, which, in the ordinary condition of liquidity and gaseousness, are at so high a tem perature as to be beyond the magnetic influence; we know namely, that white hot iron or steel loses all magnetism, and cannot be affected by any magnet.

ISLANDS OF SOLID IRON ON THE SUN
If, now, on the solar surface a spot appears, it is probably a solid island in a liquid ocean; and if this i,land contains as much iron as the rest of the solar body, which is probable nd is several hundred times larger than our whole earth, which is certain, it would be quite reasonable to expect that the sudden formation of such a mass, accessible to magneti influences, would make itself at once felt here on earth
the atmaction of gravitation and magnetic attrac
TION INSTANTANEOUSLY TRANSMITTED.
Astronomy proves, indeed, that the attraction of gravitation does not require time for its transmission, but is transmitted at once through any distance; this appears to be the case also with the magnetic attraction, which in fact is probably only special modification of the general law of gravitating attrac ion, which is as wonderful as magnetism; but gravitation is o familiar to us all, from our childhood upward, we take it a matter of course, while magnetic attraction excites sur prise, especially among the ignorant, simply because it is t them a new fact, with which they are unfamiliar.
SUBSTANCES ACTING MECHANICALLY TO PREVENT
THE FORMATION OF SCALE IN BOILERS.
Besides the substances which act chemically, like soda ash, chloride of barium, carbonate of ammonia, extract of oak bark, etc., to prevent the formation of scale in boilers, act either by retaining them in suspension, or by rendering adhesion dif ficult. To these latter belong the various paints, about which we shall speat further on Professor Bolley lat professor of applied chemistry at the Polytechnic school at urich, Switzerland, has investigated this subject, and we find in his report much valuable information. Saw dust rom mahogany, as well as from coniferous trees, has been used with success. The former acts also chemically, as wel as mecbanically, owing to the tannic acid it contains. This acid combines with the lime, forming tannate of lime, which deposits itself as a slimy body, without adhering to the wall f the boiler. The saw dust from pise and other similar woods possesses only a mechanical action. Both, however re soon reduced to a slime, and are thus objectionable for the reason that they are easily thrown by priming between the valves and the packings of the piston, and interfere seiously with their operation.
Clay free from sand has been proposed by a Frenchman M. Chaix, and has been found to answer well; boilers, in which it was used, were found free from scale two or three months afterward. Still, its use has been discontinued, ow ghe that the valve surfaces and the interior of ic steam cylinders have been found scratched and covered with dirt.

Scrap iron acts not on the sides, but merely on the bottom, hich is often much worn by its uss.
Among others, starch and sugary substances have been applied. Potatoes have been in use for a long time for the the purpose in question. The starch, of which they mainly consist, is soon converted into dextrin or starch gum, whereby the water becomes viscid. Molasses acts in the same manner, as observed by M. Guinon in Lyons (F rance) and confirmed by Guimet; and both these gentlemen state that for a boiler of $17 \frac{1}{2}$ feet length and $8 \frac{1}{2}$ feet diameter, 10 lbs. of molasses was amply sufficient to completely prevent the formation of scale for two months. Formerly it was necessary to remove the scale every month from this boiler. Guimet uses six pounds of starch sirup every month in a boiler of eight horse power, with the best success. Steam is kept up in the boiler in question for fourteen hours a day. To the same eries of substances belong also dye wood extracts, since they yield glucose when acted upon for some time by hot water. This substance produces the same effects as sugary iquids. Bran and succory root, both of which contain starch, belong to this class. Payen recommends to add to the water n a boiler producing 600 lbs. of steam daily, per month, 9 lbs. masked potatoes, 3 lbs . molasses, $\frac{1}{5} \mathrm{lb}$. dye wood extracf, or, instead of the last named, 3 lbs . of bran. As dye wood extracts contain tannic acid, they will also act chemically, hence the small amount recommended. It may well be supposed that all slimy substances, or such that are rendered slimy, continuously prevent the deposit of the mineral because their smallest particles serve as points of agglomera tion for the minute crystals, and thus render their aggregation and accumulation impossible. But there is one grave objection to the application of all slimy substances. In boil ers of somewhat complicated construction, they collect upon parts where the water boils least, adhering there readily to the boiler; and since the water attains through then a high. er specific gravity and produces scum, they are readily thrown into the steam pipes and engine cylinders. In spacious and imple boilers, they may, however, render good service.
Fatty bodies and tar serve to diminish adhesion. Sperma. ceti oil alone, according to Bedford, gives good results. It has been recommended to cover the tubes and parts exposed o the fire with a mixture of 3 lbs graphite powder and 18 lbs. molten tallow. Newton communicated a recipe for a mass, which is said to adhere still better. It consists of 8 parts tallow or lard, which is first mixed with 8 parts fine graphite (olu mbago) and then well kneaded with one part fine charcoal powder, while warm. When it is to be applied, the mass is rubbed together with oil or gas tar. In applying hese proposed remedies, it is not to be overlooked that, although only amall quantities of fat and tar are rendered volatile by the steam, they may at times become troublesome. Some deny their efficiency entirely, maintaining that scale is ormed wherever surfaces are directly exposed to the fire; but others say that this scale is more easily detached. There is here 2 large and highly remunerative field for inventors, and we hope it will not long remain unexplored.

THE STAR SIRIUS.

The apparent orbit of Sirius, the "dog star," to whose ascendancy the heat of the summer months and the prevalence of hydrophobia at this season have from time imme. morial been attributed, is at the present time so near to that of the sun that the star is invisible to us. But although ab. sent from our nightly field of stellar observation, we are coninually reminded, by the thermometer and otherwise, of the supposed influence of this body; and a few considerations of its peculiarities will not, therefore, be out of place.
Of the enormous distance of Sirius and the other stars, no adequate conception can be formed; but here statistics come to our aid. It has been demonstrated that, if our sun were removed to the distance of the nearest so called fixed star, it would assume the apparent size of a star of the socond mag. nituce. But Sirius is many times as far from our earth as the nearest fixed star, and its immense separation may be formulatel by stating that it is $1,375,000$ times the radius of the earth's orbit away from our planet. This radius equals $92,400,000 \mathrm{milrs}$, and the result of the calculation astounds us with its magnitude, and leads us to still further astonish. ment at the distance of the multitudinous bodies of the nebule which, when congregated millions together, scarcely suffice, in some instances, to render the aggregation visible to the unaided eve.
Such is the enormous mass of the star Sirius that it has requently been supposed to be the center of the universe, as far as our powers of research can reach. It is certainly possible that our whole solar system is revolving around this bright particular star, but its obviously increasing distance points out the deduction that the orbit of the system is an ccentric one, and that its center is still traveling away from hat part of the heavens with which we are familiar. Of the rate at which Sirius is leaving us behind, it is sufficient to ive the results of the best astronomical observation. Mr. Huggins, whose discoveries with the spectroscope have done much to make us familiar with the enormous powers of that invaluable instrument, has found by watching the hydrogen ine given by this star that its displacement equals $\frac{1}{2} \frac{1}{50}$ of an nch towards the red end of the spectrum, and he deduces from this fact that the refrangibility of the light of Sirius is much diminished, as the red are the least refrangible of all the colored rays, and this is a complete proof that Sirius is receding from the earth. Then the question arises: At what rate is this retrograde motion taking place? Computation from the spectrum gives it at about $41 \frac{1}{2}$ miles per second; but at the time in question, the earth was, by its own revo ution, receding from Sirius at the rate of 12 miles per second, and the motion of our whole solar system accounts for an
additional 5 miles per second. This reduces Sirius' retrograde speed to about $24 \frac{1}{2}$ miles per second. Further modifying this figure by the result of Sirius' transverse motion, we arrive a 29 miles per second, or $900,000,000$ miles per year.
What result does this enormous increase of distance have upon this star, so well known to as in the wintry heavens Sirius is the fiery red Sothis of the Egyptians, and Seneca described it as being redder than Mars. But in these days it shines with a perfectly white light, and it was so even in the days of the Danish astronomer Tycho Brahe. Its rapid recession is thus causing a constantly varying change in its color. Whether any further mutation in its aspect will take place during the lives of our now living observers, it would perhaps be presumptuous to predict; and as to what color it will next assume, we have no guide. At its present rate of travel, it will take 20,000 years to double its distance, and a it is now a star of the first magnitude, almost an infinity of time must elapse before it is no longer accessible to the in struments of modern astronomers.
However, we must believe the effect of the ascendancy of the dog star to be a mere superstition. The concurrence o this event with the hat weather of summer is a mere coincidence, and dogs are effected by rabies and men by sun strcke without regard to the position of Sirius in the heavens. Indeed, the so called dog days, according to the almanac, are over before the star rises with the sun, and thus are twenty days too early to be justified by the theory that caused the ancients to describe them as the caniculares There is no doubt, therefore, that the effects of summer hea will continue long after the power of Sirius in our skies is considerably diminished; and the dog days must certainly be considered as a curious tradition, only important so far as it throws light on the condition of learning among the ancients.

RENEWED ACTIVITY AT THE PATENT OFFICE..--RE POINTMENTS AND PROMOTIONS.

The increasing business of the Patent Office has for some time past rendered the old system of classification of the in ventions inadequate, and has occasioned much delay in the business of exsmination. As a remedy for this state of things, the Commissioner of Patents has very wisely decided to institute an entirely new classification, introducing a large number of subdivisions, which will greatly add to the conve nience of all who are connected with the department. For merly, the inventions were divided into twenty-one classes each of which was managed by one principal examiner and one afsistant. Under the new organization, which went into operation on the 15th ult., the inventions are formed into
twenty-two grand divisions, at the head of which is a prin-twenty-two grand divisions, at the head of which is a prin-
cipal examiner. These divisions are separated into one huncipal examiner. These divisions are separated into one hun-
dred and fifty classes, or subdivisions, administered by some sixty principal and assistant examiners. The work of re-arranging the drawings and documents of the establishment, in accordance with this new organization, is now going on at the Patent Office, and as soon as it is completed, we may expect to ses a marked improvement in the general working of the bureau. Every case will be promptly examined and decided, the tedious delays now too often experienced will be avoided, every part of the business of the establishment being carried on with ease and regularity.
The following gentlemen, who have held positions as sec ond assistant examiners, have been promoted, on merit, to be first assistant examiners:-C. W. Forbes, O. C. Fox, C. W. Chapman, and H. Seymour.
The following have been appointed second assistant exam-iners:-J. A. Brown, J. B. Church, and R. G. Dyrenforth Ed. H. Knight, formerly editor of the Patent Office Gazette, has been appointed a principal examiner and placed in
charge of the classification, indexing, and official publicacharge
Professor H. H. Botes, formerly in charge of division B of Agriculture, has been assigned to duty in charge of the class of Civil Engineering, to fill the vacancy caused by the promotion of General Ellis Spear to be one of the Examiners-in-chief.
Major J. C. Woodward has been placed in charge of a new class formed out of the division of the classes of Civil Engineering and Land Conveyance.

AN ASTRONOMICAL ROBBERY.

We regret to learn that the Allegheny Observatory, Pittsburgh, Pa. has suffered a serious loss by the depredations of thieves, who recestly broke into the dome room in the night time, unscrewed and carried off the object glass of the great equatorial telescope. This lens was the most desirable piece of property in the establishment, its value being $\$ 4,000$. Nothing else was stolen; it is therefore evident that the rob bers knew what they were about. This lens was one of rare we believe, in the United States. It was made by the late Henry Fitz of this city. The loss of the lens is keenly felt by Professor Langley as it of course renders the telescope useless. It is probable that the robber will hold the precious glass in concealment, hoping for the offer of a handsome re ward for its return. This is the only way in which the thief
can hope to realize from it any considerable amount. On can hope to realize from it any considerable amount. On
page 34 of our last volume will be found a large engraving of the splexdid instrument from which this lens was stolen, with the various appurterances, such as spectioscopes, micrometers, eye pieces, galvanometers, operating meckanism, etc.
The interior of the observatory appears to have been well supplied with electrical instruments; but unfortunately the
simple burglar alarm was not included. This singular rob
bery will, we trust, be of useful effect to the managers of other institutions where valuable instruments are employed,
by inducing them to place electric alarm wires in connection by inducing them to place electric alarm wires in connection
with the doors and windows. We presume this will be done at the Allegheny Observatory now that the lens is gone

THE NEWARK INDUSTRIAL EXPOSITION

The first Exposition of Newark manufactures, which for the past two weeks has been in progress in that city, is not only creditable to the enterprise of the gentlemen through whose exertions it was called into existence, but it is especi ally noteworthy from the fact of its being the first exhibition of the purely local industries of any particular city or town hat has taken place in this country.
It is perhaps hardly fair to draw conclusions, as to what the exhibition will be towards its close, from its incomplete con dition at present. Several parties who doubted the final suc cess of the undertaking have been tardy in sending in their coods, so that many vexatious delays have been necessitated in the different departments.
The building in which the fair is held is the Skating Rink of the city, to which additions have been made, so that the entire edifice now covers an area of some 50,000 square feet On entering, the visitor is confronted by a handsome foun ain, profusely surrounded with exotics and tropical plants ranged in excellent taste. On either side of the door a fi ad lemon tree in full bearing produce, by their thick fol i age, a pleasing and unique effect. In the middle of the hal a large Matthews soda water fountain of white marble (and
not a Newark manufacture, by the way) serves as a central not a Newark manufacture, by the way) serves as a central
ornament. From the arched roof, a number of flags hanging ornament. From the arched roof, a number of flags hanging
from transverse ropes complete the interior embellishments. from transverse ropes complete the interior embellishments. It is, of course, impossible in the space allotted to mention
all the exhibitors whose manufactures are to be found on the various tables, so that we are obliged to omit reference to many whose goods doubtless deserve extended notice. In the Rink proper, Mr. A. F. Conery exhibits a finely arranged selection of brushes of various kinds. Those for painting purposes are constructed on an improved method, whereby the handles are freed from the common defect of shrinking Harness, hardware, and fittings occupy several cases and ta bles, making a dazzling display of gold and silver ornamen-
tation. The Hedenberg Works contribute a case of tools of tation. The Hedenberg W orks contribute a case of tools of
different descriptions and an assortment of "Diamond" saws. The Newark Tea Tray Company fill a large compartment with their products. This corporation manufactures an im mense number of japanned tin and iron articles, and supplies not only a local but a large foreign trade. By a peculiar process, the japan is so attached to the metal that it is prevented from peeling or cracking off, no matter how severe the usage to which the article is put. The cutlery establishments of R. Heinisch, Furness, Bannister \& Co., and others, exhibit several cases of elaborately made knives, shears, etc. Durand \& Co., manufacturing jewelers, contribute a magnificent show of jewelry valued at a fabulous sum. In the center of the case, surrounded by ornaments of every description, is a circular box of some two or three inches in diameter filled with uperb diamonds, which produce a dazzling effect.
There are the usual articles which somehow creep into every fair, made after much labor with the most inappropriate tools. This time they are a baby carriage and card table, constructed of over a thousand bits of wood by some patient individual, aided solely by a shoe knife. We have but one comment to make on such work, and that is that it only evi dences a great amount of time and labor totally wasted, which might have been applied to useful and productive results.
In the rear of the apartment are some handsome pieces of furniture by local makers, and a design in plaster, finely conceived and executed, for a Firemen's Monument, by E. J. Kisling. We shall look with some interest for further products of this artist. Charles Cooper \& Co. exhibit specimens of chemicals manufactured at their factory, and the Passaic Carbon Works present samples of ground bone and other artificial fertilizers. To the left of the main building is a large room containing carriages of different patterns and some excellent specimens of beveled, bent, and cut glass. This department is not complete at present.
The machinery department on the opposite side of the Rink will doubtless be better filled when the Exposition has been longer in progress. At the present time, we notice three of the well known Baxter engines and a large horizontal forty horse power engine, made by Watts, Campbell \& Co., which
is to furnish motive power to other machinery. A Bailey \& is to furnish motive power to other machinery. A Bailey \&
Burnet steam pump is at work raising water from a small tank for about three feet and then sending it back again thereby making considerable show, but proving absolutely nothing as to its merits. Other machines lie scattered around in picturesque disorder, on which we make no comment as, besides being already familiar to our readera, they are not in proper condition to pass judgment upon. A few Thomas Gay \& Son. The Oraton Paint Works contribut samples of zinc and lead paint, and Blanchard Brothers \& Lamb, John Young, and other firms, several cases of patent and enameled leather, cloth, etc.
In the art department, above the main Rink, a collection of paintings is on exhibition. A few pleasing works, occupy ing by no means the most prominent places, brighten up the display which is otherwise below mediocrity. In architec tural drawings, we notice especially some excellent designs for the proposed Roman Catholic cathedral in Newark, and also plans of inexpensive country residences, which display
considerable taste. The photographs are ordinarily good. Altogether the Exposition, for the inception of which cre dit is due to Mr. Holbrook, its present Secretary, and Mr.

Tombs, of the Newark Evening Courier, has set a worthy ex ample, which deserves to be followed by other manufactur ing communities.

Letter from professor h. h. thurston.

The great iron mines of Michigan.-Magnetic and hematite ores.-Their characteristics and values.-Evidences of ancient earthquakes.-Method of mining and shipping the cient earthquakes.-Method of mining and shipping
ores.-Climate, scenery, and attractions of Marquette.

Negadnee, Mich., July 24, 1872.
From Marquette, the Peninsular railroad runs its trains to Escamaba, on Green Bay, and the Marquette and Outonagon railroad runs through all the towns of the iron range, as far as now opened, to Champion, a distance of about thirty miles. This latter road will probably be extended as new mines are pened, and will finally connect the iron with the copper re gions, terminating at L'Anse or at Outonagon. This is a busy road, its loaded ore trains and empty cars going into Marquette and returning up the road as frequently as time and a single track will permit. As on the Reading railroad of Pennsylvania, the loaded trains are, on this road, almost car ried to tide water by their own weight, so uniform and heavy are the down grades. The road is well managed and I was told, had paid dividends from the beginning. Its re pair shops are exceptionally well arranged. The road strikes the iron range at Negaunee, a village about tweive miles south of Marquette, and then follows its course, passing through the several mining towns, nearly to the shore o Lake Michigammi, and is already laid out to new mines to be opened in that beautiful and prospectively wealthy district. I have made Negaunee my headquarters while exploring this part of the country, and have usually been able to make my excursions to the several mines and to return during the same day.
This iron range, although at present only worked along: the line of completed railroad, over a distance of about twenty miles, has been explored and found to promise excel lent workings throughout a tract of country a hundred miles long and four or five miles in breadth. The Menominee is long and four or five miles in breadth. The Menominee is
another range which crosses this, the intersection being at Lake Michigammi, and, although less completely prospected, Lake Michigammi, and, although less completely prospected,
is known to be equally, if not more, extensive and rich in is known to be equally, if not more, extensive and rich in
the best of ores. Copper and lead have also been found in these districts and, at one point, gold has been detected. The whole of this part of the country is, in fact, filled with min eral deposits whose extent and value will probably be not fully determined for many years, notwithstanding the fact that capital is now rapidly supplying the means for explora tion and development. The ores of iron are generally found in hills like the Iron Mountain of Missouri, and, in some places, all of the visible rocks and pebbles are composed of pure rich iron ores; and stripping off a few feet of earth or a thin layer of quartzite reveals ore deposits everywhere along the range. The extent and richness as well as, in places, the variety of these deposits are wonderful.
mAGNETIC AND HEMATITE ORES.
The ores vary in character in different districts, and sometimes in different parts of the same district. At one point, the beautiful crystalline magnetic black oxide, somewhat resembling the Lake Champlain ores, is obtained, of which seven tenths is metallic iron. At another point, in the same mine not unfrequently, the ore is heavy, black, brilliantly glistening and equally rich; this is the specular red hematite, called red hematite because, when rubbed, its mark is bright red. Other mines yield a crumbling brown earthy material which one, who had only known the other forms, would hardly suppose to be an iron ore; this is brown hematite, yielding a brown streak when scratched. Some of these soft hematites contain manganese, a most valuable constituent where the ore is intended to be reduced for Bessemer metal. Others contain quantities of lime, an essential mate. rial in the blast furnace, where it forms a glass or "slag" with the silica and other impurities of the ore and carries them away, leaving the melted metal, purified, in the hearth of the furnace. I doubt if, in any other part of the world, there can be found such extent and variety of valuable ore deposits.
Tle ores exported from the district are principally of the 66 per cent of metallic iron.

EVIDENCES OF ANCIENT EARTHRUAKES.
The ores sometimes lie in tolerably regular beds, but more frequently in very irregular masses. The impression acquired by examining the Jackson mine particularly is that, in some geological period of long ago, this part of the country was agitated by a terrible earthquake, and that, amorg the cracks and ragged chasms of the disrupted and shattered rocks, these vast deposits were gradually precipitated from an aqueous solution by some, as yet unknown, chemical proat the rand Cors was brecimen of ore of the miner's "pick", flowed a quantity of water which had probably been imprisfowed a quant age when the ore first arranged itself in minute oned ages ago when the ore first arranged itself in minute
crystals to form the chamber. At another place, a water crystals to form the chamber. At another place, a water
worn quartz pebble was found enclosed in the mass of dense worn quartz pebble was found enclosed in the mass of dense
hematite or specular ore in which the mine was worked. hematite or specular ore in which the mine was worked.
These are both interesting evidences of the aqueous origin of these ores. The former specimen is preserved, with many others from the mineral districts visited, in the cabinets of the Stevens Institute of Technology.

These great deposits of iron ore have been known from a very early period, but it was not until 1846 that the first mine
was opened-the Jackson, here at Negaunee. Now there are about twenty-five mines sending off ore from this Marquette range alone. In 1856, 5,000 tuns were exported annually this year the exports will reach 800,000 tuns, and the quantity mined will nearly reach $1,000,000$ tuns.

METHOD OF MINING
The method adopted in mining is usually that of open working, already described as in operation at the Iron Mountain of Missouri, precisely that adopted in every stone quarry. In one or two mines, the character of the deposit has induced the proprietors to proceed in the regular system of underground working of all deep mines, that which has
been described in the preceding letter from the copper dis been described in the preceding letter from the copper district. At the Jackson mine, nearly all of the ore, which is a specular hematite, is won by quarrying; at the mines at the other, the western, end of the line, a considerable amount of ore is obtained, from deposits of mixed magnetic and specu lar ore extending far down into the rocs, by candle ligh work." The ores are shipped principally from Marquette, ty goes to market by rail. The loading docks at Marquette ty goes to market by rail. The loading docks at Marquette
are well designed and exceedingly convenient. The cars run upon them, drop their loads into "pockets," which, in the upon them, drop their loads into "pockets," which, in the
principal dock of the railroad company, can, altogether, reprincipal dock of the railroad company, can, altogether, re-
ceive 10,000 tuns, and can be discharged in a single day, ceive 10,000 tuns, and can be discharged in a single day,
should a sufficient number of vessels be obtained to receive should a sufficient number of vessels be obtained to receive
so much. The amount shipped per day at Marquette is, just so much. The amount
now, about 3,500 tuns.
From the shipping ports, it is taken to the principal lower lake ports and is thence distributed to all parts of the country between the Alleghanies and the Mississippi and between the lakes and the Ohio.
climate and features of marquette.
This part of the country is just now frequently visited by tourists, who explore the mines, fish in the beautiful clear tourists, who explore the mines, fish in the beautiful clear
streams that abound here or in the lakes, and enjoy themstreams that abound here or in the lakes, and enjoy them-
selves in innumerable ways. Marquette will probably soon selves in innumerable ways. Marquette will probably soon
become a famous watering place, and it has already a large become a famous watering place, and it has already a large
number of annual visitors. The climate here is delightful number of annual visitors. The climate here is delightrul ing out, comfortably wrapped in shawls or overcoats, we can hardly realize that, in New York, you are suffering with heat and that each day has a record of deaths from sunstroke The climate of this region must be a healthy one at all seasons, I should suppose, for a stronger looking people and healthier appearing children are not to be found anywhere, even though they do, occasionally, find the mercury frozen in the bulb of the thermometer during their long cold winter.

It was with great reluctance that I compelled myself to re fuse the many invitations extended to visit parts of the country which I had not found time to explore, and to defer to some subsequent occasion further examination of this wonderfully interesting and most important section of the northtime, permit another and a longer visit.
R. H. T.

Kemmer's Patent System of Fresco Painting. In our issue of June 22d we alluded to the new system of oil fresco painting, invented and recently patented by Mr. Charles T. Kemmer, of Newark, N. J. At thattime we had not seen any of his decorations upon the wall, but, from the description in his patent and the inventor's explanation of the process, we predicted that it was likely to supersede the or dinary mode of frescoing. We have since had an opportu nity of seeing the ceilings and walls of a large hall in the process of decoration, and have examined them since the com pletion; and our good opinion of the invention, as previously xpressed, is more than confirmed
The work done has all the appearance of, and in fact is, elaborate frescsing in oil, and yet is not only more durable but less expensive, equally artistic, and far more readily ac complished. A reference to our issue of the date above referred to will inform our readers of the peculiar manner in which these decorations are prepared, although the method may be briefly stated to be the formation, on a prepared sheet of muslin, of a thick film of paint which is easily removed and readily cemented to the plaster of a ceiling or wall.
As this invention has been proved to be so eminently successful, it carries with it advantages which make it greatly superior to the ordinary method of fresco painting. The use of scaffolding, expensive and cumbrous, in one's apartments for weeks at a stretch is avoided. The decorations can be designed according to order, executed in the shop, brought to the house, and put in place; and instead of the whole building being in confusion for weeks at a time, three or four
days will suffice to complete the job. Moreover, better work days will suffice to complete the job. Moreover, better work
can be done; the artist is not obliged to labor lying on his back or twisting his head into awkward and painful positions -often in the worst of lights.
Interior decoration is carried on principally during the summer months. Necessarily work is plentiful, skilled workmen are difficult to obtain, and expenses are proportiunately great. ' Using the Kemmer process, the labor can be done during the cold weather, when the best of artists are out of employment and can be had at low wages.
The film above alluded to is composed of six coats of the best oil fresco paint, and the gilding is pure gold leaf. Consequently a wall or ceiling may be washed like ordinary paint with somp and water, a proceeding which is impossible with common fresco work. The film, though thin, is elastic and does not crack with the wall, unless very large openings appear, which are generally few and susceptible of easy re-
pair. The most elaborate designs can be prepared for any pair. The most
sized apartments,

We speak thus approvingly of the process of Mr. Kem mer because we believe it to be the best yet invented. The proprietors of the St. Nicholas Hotel in this city have had a parlor decorated after this plan, and other hotels are about to try it. It is stated that a manufactory on a large scale, devoted to this invention, is contemplated. If so, it will inaugurate an entirely new industry and one well worthy of the attention of capitalists and busineas men. Charles T the attention of capibalists and busineas men. Charles T.
Kemmer \& Co., office at 4 Warren street, New York city, or at Bower's boat house, East Newark, N. J. may be addressed at Bower's boat house, East
for any further information.

The] Kitchen Range.

If Satan himself, says the New York Express, had put his wits to work this hot weather to give city mankind a foretaste of his infernal regions, he couid not have constructed a machine more diabolical than the kitchen range, filled with red hot anthracite coal, in a block of city houses, to roast cits there with. Think of it ! you have not only one red hot kitchen range to roast you, but two, on each side of your house, one from your neighbor's kitchen on the right, and the other from the other neighbor's kitchen on the left! There are thus three fires to open their blazes upon you, when the thermometer is near the hundred-and while the salamander cook can stand it, the dwellers above and the sleepers in the chambers, where the fiery flues go, feverishly flit about by day, and groan in heated agony all night
ay, and groan in heated agony all night
Cannot some American genius suppla
Cannot some American genius supplant Satan in this dia bolical invention for cooking? In other climates, where bless fortune, there is no anthracite coal, and where wood weighed by the pound, costs something, all the cooking is done-and as well done as we do it, if not better-with a fiftieth part of the fuel we use; and so in the cooler climates
of Europe, where charcoal is used or bituminous coal, which of Europe, where charcoal is used or bituminous coal, which is not "red hot" lik \rightarrow the anthracite. Are Americans only born to be roasted in summer fires of the kitchen? Is it the glorious privilege of our country to use fifty pounds of fuel to cook with when other nations use but one? Wake up, save us poor summer cits from being carbonized these hot days, or from melting away into grease! The kitchen range will do, as conducted in winter, when the thermometer is down to zero, but never, never in such oummer weather as down to zero, but never, never in such sum
we have been having for twenty days past.
Genius solved this problem long ago by the invention of the gas stove. For summer use, in cities, nothing can be the gas stove. For summer use, in cities, nothing can be
more convenient or economical. Placed upon the kitchen more convenient or economical. Placed upon the kitchen
table, you can broil your steak or chicken in the most admirable manner, boil your coffee, roast your potatoes, bake your biscuits, fry your cakes and heat your flat irons. The range fire with its overpowering heat is rendered quite un necessary. People who make complaints ought to look a rifle beyond their noses before they cry out. People who make the loudest complaints are apt to be those who have no looked beyond their noses.

Busimess and sersmal.

The Charge for Insertion under this head is One Dollar a Line. If the Notices
exceed Four Lines, One Dollar and a Half per Line will be charged.
e paper that meats the eye of manufacturers throughou the United States-Boston Bulletin, 8400 s year. Advertisements 13 C . 8 line
Wanted-The New York Steam Engine Co., Manufacturers of Machinists, and Railway Tools, can give steady employment to a numbe of good machinists used to tool work.
miles from New York, on Erie Railway.
Large lot of Machinery for Sale. See adv. of Geo. Place \& Co
Engine for plowing-I have a traveling engine for plowing and all other draft and stationary parpo se. Hass a new device for overcomirg
hills. Will draw six times its own weight. Light, cheap, durable, and
. dills. Will draw six times its own weight. Light, cheap, durable, anc
effective. Will be on exhibition in Oct. ,at Kalamazoo, Mich. D.C.Pierce Rust's Boiler Plate Hand Punches. S.C.Hills,32 Courtlandtst ircular Saw Arbors, all styles and sizes. Wm. Scott, Bing hamton, N. Y.
or Patent Vertical Portable Engines and Saw Mills, with all late improvements, apply to Grifith and Wedge, Zanesville, Ohio
A first class Machinist and Tool maker, fair Draughtsman wishes a situation. Address Tool Maker, Plainville, Conn
A Chance for a Big Speculation !-A valuable Patent, and Machinery, Stock, \&c., Which cost over $\$ 3,000$, can be bought very cheap
as the parties are out of funds. Address P. O. Box 204, Bellefonte, Pa.
Engine and Speed Lathes of superior quality, with hardened Steel bearings, just finished at the Washburn Shop, connected with the Free Institute, Worcester, Mass.
Brick and Mortar Elevator and Distributor-Patent for Sale. See description in Scr. Americas, July 20, 1972. T. Shanks, Lombard and Sharp Streets, Baltimore, Md.
The Berryman Manf. Co. make a specialty of the economical feeding and safe
Hartford, Conn
The Berryman Heater and Regulator for Steam Boilers-No. one using Steam Boilers can afford to be without them. I. B. Davis \& Co., Harttord, Conn.
rown's Coalyard Quarry \& Contractors' Apparatus for hoistine
or Machinists' Tools and Supplies of every description, adaress Kelly, Howell \& Ludwig, 917 Market Street, Philadelpuia, P
Williamson's Road Steamer and Steam Plow, with Rubber Tires. Address D. D. Williamson. 32 Broadway, N. Y., or Box 1809.
Belting as is Belting-Best Philadelphis Oak Tanned. C. 醉 Arny, 90i and 303 Cherry street, Philadelphla. Pa.
Oo Ascartain where tinere will be a demand for new Machin. ery, mechandes, or manatacturers' sapplies see Manafacturing Newn of
United States in Boston Commercial Bulletlin. Terms 4.00 year.

Large lot of Machinery for Sale. See adv. of Geo. Place \& Co Microscope-Zeutmayer wanted. Address H. F., Box 608, Baltimore, Md.
Stove Pattern Makers, please send address to Thomas Rossre, Bellaire, Ohio
Meat Chopper-The Union Meat Chopper-the Best in the country. For Circulars and Price Lists,address J. Dyer, Elizabethtown,Pa.
For the best Gauge Lathe, address T. R. Bailey \& Vail, Lock port, N . Y .
Models and Patterns of all kinds made in the best manner at lowest prices. Geo. B. Kilbon, 35 Market St., Springfieid, Mass.
Who fits up and furnishes the tools, machinery, and fixtures for factories of shoe lasts, especially polishing and grinding machines?
Offers; with illustrated catalogues and prices, to be addressed to T. v. 786, care of Messrs. Haasenstein \& Vegler, Stuttgart, Germany.
A practical Circular Sawyer wants a Situation in the United States after January 1, 1873. A
tion, Province of Quebec, C. E.
Wanted-Engagement as Manager in a Machine Works by a thorough Practical Engineer and Draughtsman: large experience home
and abroac, designing and constructing Special tools, Steam and genera Machinery. Address "Machinist," care A.D.Haight, 239 Broadway, N. Y
Knitting Machinery-Wanted to superintend the practical working of Improved Knitting Mackines-23 years' experience: England louring Mill near St Louis, Mo for Sale. See
louring Mill near St. Louis, Mo., for Sale. See back page. Steel Castings to pattern, strong and tough. Can be forged and tempered. Address Collins \& Co., 212 Water St., New York.
Wanted-A live man, acquainted with Turbine Wheels, to travel. Address Urbana Machine Works, Urbana, Ohio.
It is better to purchase one of the American Twist Drill Company's Celebrated Patent Emery Grinders than to wish you had. Walrus Leather for Polishing Steel, Brass, and Plated Ware Greene, Tweed \& Co., 18 Park Place, New York
Ashcroft's Original Steam Gauge, best and cheapest in the market. Address E. H. Ashcroft, Sudbury St., Boston, Mass.
Steam Boiler and Pipe Covering-Economy, Safety, and Du rability. Saves from ten to twenty per cent. Chalmers Spence Company
foot East 9 th Street, New York-1202 N. 2d Street, St. Louis. foot East 9th Street, New York-1202 N. 2 a Street, St. Louis.
Ashcroft's Self-Testing Steam Gauge can be tested without removing it from its posit:on.
Brown's Pipe Tongs-Manufactured exclusively by Ashcroft, Sudbury St., Boston, Mass
Dickinson's Patent Shaped Diamond Carbon Points and Ad justable Holder for dressing emery wheels, grindstones, etc. See Scientifl Page's patent Belt Lacing, as made by J. H. \& N. A. Wil liams, Utica, N. Y., is the best and cheapest.
American Boiler Powder Co , Box 797, Pittsburgh, Pa., make the.only safe,sure,and cheap remedy for 'scaly Boilers.' Orders solicited Machinery Paint, all shades. Will dry with a fine gloss as soon as puton. 81 to $\$ 1.50$ per gal. New York City Oil Company, Sol Agents, 116 Maiden Lane.
Whitcher's Pat. Rotary Engine is the simplest, cheapest, and
 and Ma.
Windmills: Get the best. A. P.Brown \& Co.,61 Park Place,N.Y. Boynton's Lightning Saws. The genuine $\$ 500$ challenge E. M. Boynton, 80 Beekman Street, New York, Sole Proprietor. Betterthan the Best-Davis' Patent Recording Steam Gauge Simple and Cheap. New York Steam Gauge Coo, 46 Cortlandt St., N. Y. For Solid Wrought-iron Beams, etc., see advertisement. ad dress Union Iron Mills, Pittsburgh, Pa., for lithograph, etc.
For hand fire engines,address Rumsey \& Co.,Sneca Falls, N.Y.
All kinds of Presses and Dies. Bliss \& Willjams, successor to Mays \& Bliss, 188 to 122 Plymouth st., Brooklyn. Send for Catalogue. Mining, Wrecking, Pumping, Drainage, or Irrigating Machin ery, for sale or rent. See advertisement, Andrew's Patent, Inside page. For Hydraulic Jacks and Presses, New or Second Hand, send for circular to E. Lyon, 470 Grand Street, New York.
For Marble Floor Tile, address G. Barney, Swanton, Vt.
Old Furniture Factory for Sale. A. B., care Jones Scale Works, Binghamton, N. Y
Portable Baths. Address Portable Bath Co., Sag Harbor, N.Y For Steam Fire Engines, address R. J. Gould, Newark, N. J. Peck's Patent Drop Press. For circulars address the sole Presses,Dies\&all can tools. Ferracute MchWks,Bridgeton, N.J Also 2 -Spindle axial Drills, for Castors, Screw and Trunk Pulleys, \&c.
New Pat. Perforated Metallic Graining Tools, do first class work, in less than half the usual time and make
Grainer. Address J. J. Callow, Cleveland, Ohio

Declined.

by the Editcor, but their publication is respect fully declined.
Boiler Explosions.-T. K
Burning Bricks.-J. D.
Carbonic Acid Gas.-L. G. F.
Explosion and Bursting of Steam Boilerg.-A. F. W. N. Laws of Electricity.
Mechanical Forces.-J. W.
Mechanical Power.-H. h.
Mineral Spring.-J. C.
Producers and Consumers.-J. E. S
Proportions of Eingines.-H. A. B.
Spectrum analysis.-W. A. M.
Time.-A. M. T., Jr.
Water from the Depths of the Sea.-M. D. M.
"Young Machinist."-F. B. C.-S.
Notes and Queries.-J. M. E.
nswers to Correspondents.-W: H: P.-M. R.-E. J.--
'H. H. L.—A. H. G.
 amily seming, with no expense for reparrs and only two needles broke

Motagesquarise.

[We present herevesith a series of inquirices embracing a variety of topuss od

1.-Chloroform.-Can any one give a simple method o making chloroform?-C. т. в.
2.-Shade Trees.-What is the best time of year for 2pping oak and hickory trees to make a shade ?-T. C. J.
3.-Action of Mile on Ing Stains.-" To remove from clothing stains of common writing ink, dip the fabric it in weet mill, and 1 ,
will wash white a t next washing." will some one gite the chemstry Will wash
this?
and
4.-Koumiss.-Will any of your readers give a formula for making, or any information respecting, koumiss, or where it may be ob-
5.-Burning Charcoal.-What is the best mode of burnIng charcoal on a small scale, say six or eight bushels at a time? I would struct the cone, and how must I proceed to get charcoal? ?-C. α.
6.-Adhesive Cements.-What is the best paste and pre paration of the same for pasting prints on musilin, as is done in map mount It should be colorless and as nearly insoluble in water as possible.-A. B
7.-Multiplying Gear for Phopeller.-How are the quick revolutions of the screw or a propelier, proacea, as used in tho propulsion of veseels
how? \quad T. and $\mathrm{W} . \mathrm{M}$.
8.-Portable Furnace for melting Iron.-How can eonstruct a a mall portable furnace, suitable for melting smanl quantit
metal at a time, that will produce sulltitent heat to welt tron ?-D.
9.-Rust Joints.-How can conical lathe centers, tha 2ve become fastened in their sockets by rust, be got out?-D. M.
10.-Weight of Water.-How much pressure will ther be on each square inch of the bottom of a hogghead if there are three fee the hogghead? In other words, , ow much pressure will the weight of them
water make on each square inch, taking the atmospheric pressure off from e top of the wat
I1.-Churning Butter.-Why does cream produced from milk of the eame cow, and churned at the same temperature, require two
and oft times more hours at some churnings, and but ifteen minutes a others, before the butter has become sumflicenty colinected or compact to be removed? The butter is visible in small particles afte
12.-Relative Hights of the atlantic and Pacific Oorsass. - Can any of your correspondents inform \mathbf{y} which ocean is the
highest at the isthmus, the Atlantic or the Pacilic? What is the difference? highest at the isthmus, the Atlantic or the Pacific? What 1s the difference?
Has there recently been a survey for a ahip canal between the two oceans? - J. P. w.
13.-Indelible Printing Ink.-Can any of your readers 14.-Transferring Chromos to (tlass.-I have seen in 14.-Transferring Chronos to Glass.- 1 have seen in
England windows beautifully adorned with chromos and other picturee transferrea to the glass, so well done that the effect is inke
class,
Lind glass. In My dining room is a large bay window, the lower hulf of which
I want to embellish in this way, chiefly for the purpose of masking a fence. How can the
of it?
?N. \mathbf{D}.
15.-The "Jawsharf."-Why does the jawsharp (not Jewsharp) give all the notes of the scale, having but one note when held in
the hand ? Is the vibration of the tongue governed by all of the vocal or gans?-B.
16.-Dimensiofs of Boiler.-Please inform me what are the proper dimensions of a horizontal boiler with two fues in it, for running a smal horizontal stationary steam engine. With a four inch stroke.
with a cyllinder of one half inch dasmeter, the drive wheel weighing about thirty pounds? It is used in running a foot lathe.-A. F. B
17.-Phosphorescent Oil.-I have tried the phosphoresent ildt described on page 10 orly phosphorus and olive oili, but 1 only get a faint light on removing the cork,
not sumflient to be of any service. What is the trouble? If inllowed D.

18.-Cementina Cold Steel and Melted Iron.-Is there any preparation that can be applied to cold steel so that, when melt cast iron comes ia contact, hey will unite?-A. W. B.
19.-Diurnal Magnetic Variation.-Is there any diurnal variation of the needle on the line of no variation? Here the diurnal variation is from 10 'to 15 , according to temperature, and is greatest aboat
or $3 \mathrm{P} \cdot \mathrm{M}$., the variation being west. Where the variation is east, is 2 or 3 P...., the variation being west. Where the
greater or less in the after part of the day?-T. H .

Ansuvers to Correppondents.

SPECLIAL NOTEE-This column is designed for the general interest and in.
struction of our readers, not for gratuitous replies to questions of a purely business or personal nature. We will publish such inquiries however, when paid for as a
of "'Business and Personal."
ALL reference to back numbers must be by volume and page.
Distance of Lightning Stroke.-H. H. L. Jr., is informed that the error he allades to is caused by the misplace
point. The correct reading is obvious to everybody
Wooden Railways.- We are again asked for further in formation on this subject. We shall be glad to hear from Mr. J. B. Hul ert on the subject
The Ancient Egyptians.-T. C. J., of Tenn., is informed that the Caucasian origin of this people has long been an ascertained
fact. Their language had an afflity to the Hebrew and Arabic tongues, and craniology points out a wide difference between them and the Africans. Herocotus certainly speaks of thee as beting black and woolly
haired; but it is more than probable that, previous to his day, they had haired; but it is more than probable that, previous to his day, they had
largely intermingled with the native races of Africa. That the statelargely intermingled with the native races of Africa. That the state-
ments of the Greek historian are not correct as to the Egyptians in early imes, the thousands of mummies in existence at this day furnish abun.
dant testimons.

Perpetual Motion.-C. A. N., of Tenn., is informed that a Gravity cannot magnetic a altacion cannot be oalied a perpetual motion reaches the center of attraction, the force ceases; and as soon as the ar mature tuches the magnet, the motion is at an end. We are not aware
that any reward for the discovery of perpetual motion was ever offered that any reward for the discovery of perpetual motion was ever offered
by either the United States or rritish government. The impossiblilty of arriving at the result has long been demonstrated; and probably no govarriving at the result has long been demonstrated; and probably no gov
ernment would encourage the ignorant to waste their time on a chimer
Waterproofing Cotton Cloth.-F. C. is informed that we have receentiv publisbed many recipes for this, and havereferred many
of our correspondents to them. See Answers of our correspondents t t.
of our current volume.
Metal Lining in Cast Iron Boxes.-What metal does W A. use. that his IIIngs get in six weeks a play of a sixteenth of an inch Is it Babbitt metal, minus the antimony, mentioned by him in his original
auery? The defect is probably in the metal. If it be hard enough, the plan 111 ustrated by
it 18 all worn a way.
protecting Brick Walls.-Is it practicable to use silicat of soda (liquid plass) for paintiog or coating a brick wall, and then to ren-
der it chemical? I am informed that the idea was suggested in Muspratt "Chemistry." It has been objected that the ealts woild appear on the sarface as an efllorescence, and thus di:Agure the buildidig. Can any on
tell me as to this, and is there any other objection? I believert would form the best possible protection for brick walls, especially against mois ture, which is our great trouble in this latitude.- I . Answer: Muspratt' proposition is to use the sillicate of soda to preserve the oolitic and dolomitc IMestones, which are continually being disintegrated by the eal
pharous acid in the atmosphere of cities, Well burnt brick is is not subje to this influence, and is, as we see in Egypt and Palestine, the least per ishable of all human productions.
. H. M. \& Co., Ala.-The mineral you send is talcose slate and like steatite, to which it is related, it is infusble. When sumflciently compact, it may be worked into fire stoves; one variety is used for hon
lockwiork to raise Water.-B. Smith is referred to us by the editor of the Rural New Yorker for a reply to the following en
quiry: Would a machine constructed on the order of clock work, and run quiry: Would a machine constructed on the order of Clockwork, and rum by a weight. ralise 100 gallons of water, in twenty-four hours, from a wel
25 feet deep, to a point 10 feet above the ground, sald ${ }_{24} 4$ hours without belng wound up more than once? If so, what would be the arrangement of the wheels to do the required work? Answer: Yes, a clockwork machine, driven by a weight, to be wound once in 24 hours,
might easily be made to do the above work. The arrangement of gearin would be similar to the churn drivers, now in common use, which con sist of four cog wheels, rope, and weight. 100 gallons of water weigh 83 feet high in 24 hours. A man could do that work with a pump or buckets in ten minutes; and would be occupied about the same length of time i

Millina Coins.-To C. A., query 4, page 122.-The milling is done by engraving one of the dies in a cavity in the steel, the cavity being of the depth of the thickness of the coin, and having its edges
milled. The pressure of the coining press forces the metal into the milled tim of the die.- D. B., of N.
he Earth's Orbit.-O. F., query 6, page 106, is informed that, owing to the elliptical form of the earth's orbit, that the distance between the ea
D. \mathbf{B}, of F .
.
Power of Enaine.-Query 13, page 153.-W.H. P.'s engine shows by the unaul formula a power of bet ween 9 and 10 horses. But the
percentage of friction is usually large in cylinders of such small dimen. percentage or frction 1 ions and the application of indice in cyind for erable discrepancy between the pressure in the cylinder and that of th

Pecific Gravity.-J. P., query 15, page 153, is informed that there is a greater attraction, that 18. a body will weigh more, at the the poles, and the attraction, accord to the flatiness of the earth a hop oves, and the attraction, according to the law discovered by by
ton, varies inversely as the square of the itstance., D. B., of N. F . ron Rust Stains.-To R., query 1, page 122.-Soak the stained parts in a mixture of sulphuric acid one part, and water two parts, having the mixture pretty hot; then thoroughly wash in clea oot Beer.-To G. W. E., query 3, page 122.-You may adopt the following plan, but must be careful to use an ordinary soda
water copper fountain or other vessel to stand the pressure of the gas water copper fountain or other vessel to stanc the pressure of the gas
To the beer add one ounce and a quarter of bicarbonate of soda and one ounce of tartaric acid to each gallon. The tartaric acid will combine e carbonic acld gas,
pressure as to easils force the effervescing beer up the pipe into the fountain. The tartrate or soda is perfectly harmless, but has asilight aperient property. Each sod 10 ounces of

White Vinegar.-To L. C. M., query 7, page 112.-Cider vinegar may be decolorized by digesting with and niltering through frees burned animal charcoal, as used by sugar refners. Cider vinegar, how but may do well enough for small radish pods, gherking, small peppe but may do well enough for small radish poas, gherking, Bmail peppe
pods, etc. The reason is this: Large cucumbers, etc., already contain large quantity of juice or water; If you add a comparatively weak vinegar, this juice will still further reduce the strength below the point
necessary to preserve from putrefaction. Large and juicy fruit with necessary to preserve from putrefaction. Large and juicy fruit with
strong acid, and small dry fruit with weaker acid will do.-E. H. H., $o t$ stron
Mass.
pontaneous Ignition.-To G. T. R., query 9, page 122.Make a stiff paste, with water, of equal parts of powdered white suga and dry. Have a small bottle hall full of sand, saturated with sulphuric acid. On dipping a prepared match into the acid, you will have a spontaneous flame. Use a little care in trying this.-E. H. H., of Mase
Linseed Oil for Waterproofing.-To B. B. B., query 10 , page 122.- Boil nure lingeed oil in an iron pot over the fire for four or ilv
hours, or untill it has become thick and viscid; towards the close of the operation, set the fumes of the oll on fire for five minutes or so, and put out the flames by pancigsheenron or a barf over he vessel, and so $+x$ cluding the air. Have the vessel abundantiy large, and ifit accidentali,
nnfames, and you want to extinguish it. on no account use a drop of wa ter, but rather throw over the vessel a wetted thick blanket or piece o carpet. or adopt the iron or board plan. Be prepared beforeband for the emergency. When boiled to the proper consistency, spread while hot on
to your fabric. or, if more convenient, allow to cool and dissolve in bento your rabric. or, if more convenient, allow to cool and dissolve in ben Ine to a sultabie attenaation, and apply in successive coars in this yarnish act perfectly for your boat, and the benzine dries very raplaly.E. H . H ., of Mass.
diamonds.-To C. W. P., query 1, page 138.-You will find except diamonds. The value of a diamond is estimated by its color and
density.-H. M. B. of W . V a.
 Under this headiang we shall pubbis.
nent home and foreion patents.
Heating Stove.-Thomas Scantilin, of Evansilile, Ind.-This invention as for its object to furnish an improved heating stove so constructed and
arranged as to otilize the most of the heat contained in the smoke and other products of combustion before allowing them to escape into the chimner and 8.
sired.
 Hill Ivention has for its object to so arrange a safety valve for steam become oostructed, and it consists in providing the valve chamber with esspiral sprtag that acts through the medium of a collar and piston rod to partly hold the piston against the pressure of steam in the boiler.
KEY TAG, WATOH KEx, $\Delta N D$ Kiff
HARPENER.-Our engraving represent
 April2, 1872. Fig. 1 shows the face, and Th. 2, a side or edge view of the same.
The ey mis made of gold or others sult.
able material and is of a convenient. shape to have the name, etc.., of the own. er engraved theren, while it is provided
with a ring for attachment to a bunch of of

 In positionfor use. When not required, it is turned back out of the was ntilit rests aga anst the emall post shown at the apper part of the figures,
si indicited by the dotted lines. In this position no dust or other matte Can enter the tube of the key. The knife sharpening apparatus consists of he two disks seen in the fifures, which lie in a space cat ont of the tag, and Which are pivoted by rivets to ears left tor the parpose, as shown. The dges of the disk are beveled, so that upon drawing a knife across and b ween them, at right angles, their sharp edges remove a small shaving frn which will no doubt prove a desirable addition to the key bunch withou
being in any way cumbrous. Propositions for the purchase of the paten ill be recelved by the inventor, John C. schlarbaum, P. O. B. 245, Virgin ity, Nevada.
Lime Kiln.-Elisha Randall, of Mason City, Iowa.-This inyention con sists of a metal hopper at the bottom of the cupola, with an open bottom
or discharging and a slide for ciosing it; also with a revolving grate, with hand crank above the slide, adapted to pick the pieces of lime apart an acilitate the discharge of it by turning said grate. At a short distanc bove the hopper, there are two freplaces on opposite sides of the cupola rranged and adapted to act quenty on a large surface or the limestone, ss to expedite the burning without overburning any part. And belew the hich the discharged lime is received in a truck, with a box mounted o ournals and designed to be turned bottom side up by gravity for dischar ing.
this stacining apparatus.--Zyrus h. Kirkpatrick, of Sugar Grove, Ind Tacking inention has for its object to furnish an improved apparatus to ration, and it consists in the construction and arrangement of the be in op platform and post, secured to the platform to the upper end of which is voted a crane. To the lower end of the post and to the platform is a wheel to which is and which is designed to serve as a journal for the driv an a leading pole to which the horse's halter is tied

Game.-Robert Patterson, of New Santa Fe, Mo.-This invention relate o a new alph abeticail game to be used by children to make them fully ac
uainted with the appearance and the differences of letters and numerals, he inventon consists in the use of printed tables contaluing rows of let ers or figures and in the employment ot cards or small disks containing imilar letters and figures, but singly, so that such disks or cards may b sed to cover the places on the
Extension Scaffold,-Isaac Noggle, of Butler, Ill.-The object of this and others to raise themselves to their work; and it consists in an staging. It is formed of legs or supports, a rail, and bands by which the parts of each are screwed together, so that they may slide and
the elor gated; and two bands are employed for each leg, one band being ttached to one piece and the other to the other piece. The two parts gether near the top by a screw bolt, and by a link, which later holds egs spread at the bottom, so that they will brace the rail laterally. Th two legs also form a slot at their top ends to receive the rail, and eac part of the rail is recessed on its sides so that the timber will fit into the
slots. The recesses in the rail are cut on an incline, so that the legs stand bracing from the center. There is a spring attached to one part of the leg lipping. The legs may be so adjusted that the rail will stand on a leve on uneven ground.
Equestrian Gymnasiux.-Eliphalet S. Scripture, of Williamsburg, N
. This invention relates to an apparatus on which imaginary horsebact ding, riding in a flying ham mock, swinging on a jerking rope, etc. can b njoyed. The exercises are ooth amusing and dimcult to perform, as they ar consists in an ingenious arrangement of mechanism tor imparting the de-
ired movements to the devices on which the persons taking the exercise ired movements to the devices on which the persons

Machine for the Manufacture of Tobacco.-Elijah Robinson, Charle Robinson, and James E. H. Andrew, Stockport, England.-The invel on consists in the combination of three rolers, the surfaces of which ar ild or made of segmients connected to the stands on which the are given b ollers rotate. The tobacco to be operated upon occupies the central pace between the three rollers, and it is carried through the machine by he lateral to and fro motions given to the rollers or segments. In manufac turing roll or twist tobacco, the filler snd the covering leaves are laid on a
table connected to the machine. The filler is placed in the cover, and they oble connected to the machine. The filler is placed in the cover, and the the tobacco into a roll or twist, which is carifed forward and wound on a bobbin. The bobbin revolves in an open frame, and the guide is traverse and fro to distribute the twist of tobacco on the surface of the bobbin. Frincr.-Isaac N. Lerick, San Antonio, Texas.-In western Texas, where nnce timber is extremely scarce and expensive, a resort to iron as a mate truct an tron fence that in point or cheapness and durability it may be use as a substitute for wood. The post and the brace are made of thin angle iron, and are pivoted together at their top ends. Mortises or oritices ar made through the posts for the rails. The rails are made endless and ar spliced together by button rivets in one part and button holes in the othe by a bar which is pivoted to the brace and hooked on to a button in th
slotting and Seaping Machine.-William h. Warren, of Worcester Mass.-This invention has for its object to combine a shaper and slotter in a single machine, mounted upon one frame, and driven by the same driving device, in such a way that they may both work at the same time, or eithe
separately, as desired; and it consists in the two rams, one moving vertically and the other horizontally, and both mounted upon the same traverse shoe and driven by the same driving device. The inventor claims the orizontal and vertical shapingrams combined with the
crew, and lath shear, as and for the purpose described.
$\xrightarrow[\substack{\text { EvraLass, - Arabella Suas, of Edgewater, N. Y. This invention has for } \\ \text { its object to improve eyeglases in such a manner that the spring conect }}]{ }$
 consists in adapting the pin, on which the glases hook when folded, to pro.
Ject trom either side of the handle or frame, so that the hook on the other frame may be secured to either side $a d$ libitum. This gives sufficient change in the positions of the spring when folded asto prevent its being twisted in one direction only. The pin is made of the usual length, and is fitted loosely through the handie, so that it can be pushed from one side to the other. It is also
Stone Gatrirrir.-Benjamin R. Tupper, of Odessa, Michigan.-This inarms so asto transfer acculiar mode of combining rake teeth and revolving arms so asto transfer stones from the surtace of the ground to an endless
carrier. The lower end of thetruck of the gatherer is armed with strong curved metal teeth, adapted to run under the stones and gather them upon their upper sides. Arms are arranged to revolve on the truck axle and pass between the teeth in such a manner as to force the stones up and alo
them on to the endless carrier, by which they are delivered into a box.
Crlery Collas.- John Simpson, of York, Eng. assignor to himself and
William Blake, of Liverpool, Eng. - This invention relates to a new shidd or collar for celery and ether plants, by the use of which they are kept from unduly expanding, are bleached, and prevented from becoming soiled. The invention consists in making a collar of stout paper perforated with a row of holes and provided at one end with a hook. It is placed around the plant with the hook fitted through one aperture, and allows the plant to the hook to tear its way from the inner gradually to the outer aperture. It protects the plant and holds its branches properly elevated.
Horse Powrr.-Samuel E. Tooly, of Delphi, N. Y.-This invention con-
sists of a horse power for driving crosscut sawing machines and other machinery, in which there is a simple and economical duplicate arrangement for working two crosscut saws, together with a shifting gear for connect ing and disconnecting the saws alternately; by which means one is kept at
work while the other is resting and the log is being adjusted, so that the team and attend $4 n$ are employed the whole time, and the stopping and starting, necessary when only one saw is used, is avoided.
Eligetro-Magnetic Apparatus.-Rudolph Sayer, of New York city.rangement of electric apparatus to be used for medical or other purposes it consists in making the vibrating hammer or armature of gradated form, and in combining with it a vertically adjustable frame which can be se opposite any one of its steps and thereby enlarge or diminish its vibrations. The interval of the electric shocks can be conveniently changed by means
of the adjustable frame $\begin{aligned} & \text { whieh is further connected with an index showing }\end{aligned}$ the degree of motion allowed to the hammer. The invention also consist in a new swivel post, which connects with the conductors from the mag netic coil and sleeve. and with the wires which connect with the patient or with the article to be acted upon. By turning this post the direction of the current through the last named wires can be reversed, and it has metal arm desired manner. There is also a vibrating wire frame, whereby the primary urrent can be used alone whenever desired.
Reri.-Louis Weins, of Rhine, Wis.-This invention relates to a new arposition, according to the purposes for which it is intended. It consists in
a new manner of fitting the shaft through a swivel ring, so that it can, with said ring, be swang into the desired position and there fastened in socket Hot Blast Ovin Pipe. - J. King McLanahan, of Hollidaysburg, Pa.-
This is an mprovement in the mode of casting the upper ends of the This is an improvement in the mode of casting the upper ends of the
diaphragm pipes used in hot air ovens for blast furnaces, so as to dispense with the cemented plugs as heretotore, made and obviate the necessity of cooling down the blast furnace on their burning out. The invention presents, as a new manufacture, a diaphragm pipe with the top cast on solid with the sides or cylindrical parts.
SAW MILL.-James M. Rees, Scott, ohio.-This improvement has forits
object the regulation of the sweep or rake of the object the regulation of the sweep or rake of the saw, which the inventor posts. It is an ingenious invention.
Railroad and Marine Stgnal Lamp.-James F. Veronee, of Charles ton, S. C.-This invention has for its object to improve the construction
of railroad and marine signal lamps so as to make them more convenient and effective in use, by throwing the light stronger and thus forther than amps constructed in the ordinary manner; and it consists in various combinations of cylindrical and fil
lenses and illumilating lamps.
Door Knob Look -C. M. Jordan, of Stillwater, Mich.-This invention provides a door knob spindle, so arranged that when the inner knob is drawn a way from the door, the spindle cannot be turned or moved longi-
tudinally, thus eftectually preventing the door from being opened from the outside. By püshing the inner knob towards the door, the spindle is pu into position to throw the bolt, and can be operated by either knob and the door opened.
Loom.-James Short, of New Brunswick, N. J.--This invention relates to
a positive motion loom with a suitable number ot shitles, one can be used at any one time, all others being held at rest until they are to be used one after another, which permits the weaving of many colored
fabrics on a loom whose length of shuttlemotion is unlimited. An impor fabrics on a loom whose length of shuttle motion is unlimited. An impor-
tant feature of the invention cousists in imparting to the belt such motion and in so connecting it that itcan, after having moved a shuttle in one dithe end whence the former was conveyed; although, if required, the belt may also be moved in the opposite direction either to return the first shut-
tle or to move another on the return stroke. By this motion of the belt in either direction, in connection with a suitable By this motion of the belt in weaver is enabled to take at any one stage of the operation mechanism, the tle from eitner end of the loom for use. Thus, whatever the number on shuttles employed in a fabric and the number of different colored spool they carry, the operator has $p \cup$ wer to use them in suitable suc cession.
There are several other improvements in this machine. Thus there is a cam mechanism for automatically regulating the belt motion on a prede frames are moved to bring the several shuttles into action in the required frames are
succession.
Cotton Skrd Plantri. - William Gessner. of Cape Girardeau, Mo.-This the furrow opening and closing devices that pertain to a cotton plante and its object is to simplify the operations of separating and dropplog the seeds and embedding the same in the soin. It consists principally in providing the double conical drop drum with circular rows of projecting teeth,and back plate extends up to the dium and is notched to admit the teeth. No seed can thus enter the tube except what is just in front of the teeth. The necessary separation of the adhesive cotton seeds is thus effected and waste
of seed prevented. The'invention also consists in two mold boards form of seed prevented. The'invention also consists in two mold boards form-
ing the ridge of a scraper for opening the furrow, and in a roller for closing the
ing it.
Cloth Cutting Machine.-Solomon M. Eiseman, of New York city.This invention furnishes an improved machine for cutting cloth, paper sheets, into any desired form. The cutting knives are operated by mean of a gravitating cutter head so arranged and constructed that. by the fall of the cutter head and knives, several thicknesses or sheets of the material are simultaneously cut. The knives are made of spring' steel or other elas-
tic material, so that thiey take any desired curve. In using the machine the pattern of the piece to be cut is drawn upon the face of the plate. Knives of the proper length are then adjusted to the pattern by means of studs and belts, as many studs betng used as may be required to bring the knives to
and hold them in the proper shape.
heating attachment for Cooking stove.-John Beeler, of Browns Ville, Mo., assignor to himself and Morris Monheim.-This invention has surplus heat of the iatter is utilized for baking. for keeping irons hot, and in other similar purposes. The heater, which is placed on the top of the stove, is made hollow at its sides and top, thereby forming an outer heating compartment and an inner receiving space. The hot gases from the stove are admitted through silides to the heating compartment and are allowed
to escape through a pipe into the stove pipe. When not wanted, it can be to escape th
removed.
Harvistre.-Nathan T. Veatch, Camden, Ill.-This improved reaper machine which can be arranged for use either in reaping or mowing, the change from one form to another being easily made. When the machine is adjusted for use as a reaper, the outer end of a finger bar is supported by a grain wheel, upon the upper end of the standard of which is formed a circu-
lar toothed or notched face, which fits upon a similar faced arm pivoted to the outer end of the said flnger bar. When the machine is to be ad justed for use as a mower, the platforms, reel, grain dividers, and grain wheel are taken off.
Starching Machine.-Uriah W. Carrell, of Belleville, N. J.-This in vention farnishes an improved machine for starching clothes, which is de igned especially for laundry use, for starching the bosoms and cuffs o shirts; it consists principally in arianging two perforated rubbers worke dipped in the starch, and by which the starch is rubbed thoroughly into and through the clothes, and the surplus squeezed out.
Sewing Maciine.-Volney Parks, of Fort Wayne, Ind.-This inventio relates to an improvement in the class of sewing machines in which a holow circular rotating hook is employed to recelve a case adapted to con ain an ordinary thread spool, the arrangement being such as to allow the hook form a loop from the upper thread and carry it completely around tit
pool case or bubbin. In this invention, the rotating hook is provided with rounded peripheral projection or cam surface to adapt it to act upon a ba which is connected with the spool case, arranged within the rotating hook, as to cause the retraction of the case and permit the passage of the up r thread around it.
Vacuom Clothes Washer.-McKewn Johnstone, of Spartanburg, S. C n upper and lower bottom; a pump, and valves in the bottoms; all so ar uppernat a vacuum may be formed under the clothes, which are sup orted on a wire screen above the top of the vacuum chamber, and soap water in the tub forced through the clothes into the vacuum chamber by mospheric pressure when a valve at the top or the chamber is suddenly opened; and so that after washing sufficiently the air may be forced throug
n like manner to dry them. From the vacuum chamber the water may like manner to dry them. From the vacuum chamb as water may b of the water will allow, after which, by the same pump, the foul water scharged from the machine
Railfay Car brage.-James S. Lamar, of Augusta, Ga.-In this im proved car brake apparatus there are a friction wheel and drum on each car, with the brake chain connected to the drum and with toggle-jointe bars and a lever for throwing the friction wheel into gear with the axle for
winding up the drum and putting on the prake; the brakes of all the cars reconnected by a long cord or chain with a drum on the locomotive o ender, which is also actuated by the axle through the medium of a friction
heel, and this friction wheel is, in like manner, thrown into gear by ver and toggle-jointed bars; this lever is operated by the brakeman by cord, rod, or other contrivance provided tor the purpose, and arranged to rranged in a peculiar manner, and works with equal efficiency whethe he car couplings are slack and the cars are close together, or whether the re taut and the train is extended to its greatest length.
Rotary Stram Enginf.-Robert T. P. Allen, Farmdale, Ky.-The object of this invention is to obviate many of the objections to rotary engine aretofore made; it consists in a stationary surrounding casing, in which th steam drum revolves, and in which it is made steam tight by packing
Within the drum is a stationary steam pipe from the boiler; and a variable cot-off surrounds the steam pipe, around which the steam drum revolves The cut-off tube is connected with the governor of the engine by means of an arm, by which it is partially rotated on the steam pipe. Steam ports in he pipe and in the cut-off tube open to steam ways or channels in the steam rum. The steam drum is a round cylinder with two cams which form two
ffsets or pistons on its periphery. The channels discharge the steam hrough these off sets against sliding abutments in the casing. As the drum evolves, the abutments are forced through the casing by the cams so as to
llow the drum to continue its revolution. Springs are attached to the casing at one end and to the abutments at the other, so as to force the abut ments back into the steam space and in contact with the drum, as soon have passed by
Fruit Pigker.-David W. Thompson, St. Joseph, Mo.-The invention re he upper end to receive the fruit, and some means to detach the said rruit rom the branches. The invention consists in the mode of detaching the rutt by one or more traps on the upper edge of the vessel, and in the mod of attaching the handle so that any desired lean or inclination may be given
to the fruit-receiving vessel. Invalid Bedstead. -Henry A. Scott, Winchester, N. H., assignor to him elf and Howard B. Hunt, Athol, Mass.-This invention relates to certain the present inventor April 9 , 1872. Its object is to obtain the transmission of reater power from the operating crank to the vertically adjustable rame, as the direct turning of the original geared cams is frequently to ifficult for persons of little strength. The present invention consists in th ombination, with the geared segments that hold the elevating arms, of a an perating shaft, which is, by worm and worm wheel, connected with the ongitudinal shaft to turn the same. By this transmitting rechanism, the abor of elevating or lowering the invalid can be easily performed.
Look Nut.-Levi Arnold, Belchertown, and James B. Atwood, Palmer Mass.-This invention consists of a nut divided in halves or more pieces in
he lengthwise direction of the bolt, each part having a portion of its extefor surtace constructed in a concentric line and a portion constructed in a eccentric live: with this divided nut is combined a washer with concentric
and eccentric parts in the wall of the hole through it corresponding to the concentric and eccentric parts of the sectional nut; so that, after the nut is crewed home, the washer, when turned so as to torce its eccentr c parts up the eccentric parts of the nut, binds the threads of the nut in the threads of the screw so as to hnld it on the bolt by friction. The eccel tric parts of the washer are turned entirely up on to the concentric parts of the nut, and are ccentric parts of the nut. The wasier is prevented from coming off the nut by a collar on the latter.
Hiad blook for Carriagr.-Frederick Van Patten, Auburn, N. Y., asof this to himself, M. S. Fitch, and E. D. Clapp, of same place. -The object
of thention is to furnish to earriage makers wnat is known as the r-plate or head block in a more perfect furm and at a cheaper rate than it out by machinery to a perfect form, with the bult holes tormed with bossed or raised portions around them so as to secure extra strength. The ends re left unfinished so that they may afterwards be drawn out to proper ength and size.
Slide Valve.-Frederick Glasson, New York city, and William Giliflan, Paters D, N. J. -This invention refers to that class of slide valves used in
team force pumps or other steam engines, which, being actuated by tap ets or stops on moving parcs therein, are required being actuate the tap tar ion with as little lost motion of the tappets as possible, in order to reverse of the valve seat and its fixed point thereof; it consists in the construction latter of a valve of peculiar construction, which is reciprocated by the force
ofthe steam acting beeween it and the said abutment.

[OFFICLAL]
 Index of Inventions
 sor which Letters Patent of the United States were granted
 for the week ending august 13, 1872, and mach

 bearing that datr.Acld, manufacture of sulphuric, D. Jackson............................ 130,432
sbestus, Freating. Rosenthal..

agers, hoisting attachment for the shafts of well, H. H. Russell.

 Baby jumper, J. E. WellsBag holder, L. Crofoot.
bag holder, T. J. Trapp.
Bale tie, wire, D. McComb...
Beams, machine for shearing the ends of, J.............................. ${ }^{130,5}$
edstead, w. E. Briggs............. 130,355 Bedsteads, crib attachment to, F. Ryder
Bee hive, Longgrear and Clart
ee hive, Longgrear and Clark
Bench, wash, w. F. Gilbert............
lacking box holder, R. R. Forrest.
Bolt, door, Cohen, Penn oyer, and Crosby
Boots and shoes, cutter for soles and heels of, s. G. Brown.......................130,43
raids, trimmings, etc., process or making imitation, H. Loewenberg 130,5
Bridge connection, Clark and Bonzano.
Bronzing machine, L. G. Chaput........
Bronzing machine,
rrush, box, and holder, combined blacking, E. W. Woodruff.
ustle, S. and D. L. Smith..........
Calculating machine, E. D. Barbou
Carculating machine, E. D.
Car, dumping, J. M. Goodwin
Carriage fastener., F. O. Cla
Cartridge loader, pocket, G. F. Dutc
Chalk holder, L. S. Woodbury
Chimneys, flue base for, C. F. Rothe
Churn, N. Hospers.
Churn, Christian and Beach
Churn, G. N. Broughton.
CiE r bunching machine, J.
Clothes pounder, M. K. Mo
Crades, H. H. H. Wigge
Cultivator, M. Stoll
Cultivator, M. Stoll ..
Cultivator, $\mathrm{L} . \mathrm{K}$. Tipto
cultivator, .. Marsh
Cultivator, T Poling
Cylinders, machine for cutting teeth on, Dean, Nicholson, and Ame Derrick, hydraulic, D L. Gorman.. Dovetailing machine, P. A. B.
Drag, marine, O. R. Ingersoll..
Drilling machine, rock, J. Cody.......
Drilling machine, rock, D. W. Bricher
Dumping placform, D. A. Well
Egg carrier, w. Bramwell.
levator, w. Livingstone
Elevator, hydraulic power, P. J. Borger
Engines, cur off valve for steam, C. B. Sheller
Engines, slide valve for steam, H. Elliot.
Fabric, knit, H. Boot
Fare box, portable, W. J. Hoope
Fastener, window sash, H. Johnston
Fastener, window sash, C. R What
Filter, driving pump,
Finger exerciser, F. Wenze
Fireplace, M Haughey
Fireplace, M Haughey
Flour packer, C. Zimm
Fluting machine, E. M. Deey
Fork and pick, combined, D. Mater, Jr..................................... 130,517
Gas apparatus, Porter and Lane.. 130........370
Gas retort, J. C. Tiffany.....................................
Gas, manufacture ot illuminating, E. D. McCracken.
Gas, manufacture of illuminating, sc. John and Cartwright......... Gas, manufacture of,T. S. C. Lowe for gene............................... 130 Gas, potton, E. Osgood.
Gin, flue cotton, J. W. Ga
Gin fue cotton, J. W. Gaines
Glass \&lobes, ap.
Governor, w. C. Freeman ...
Governor valve, W. A. Cogswell................................
Governor valves, casting for steam, Cogswell and Judson.
Grinder, apple, C. F. D. Jones, Jr..........
Gun, machine or battery, B. B. Hotchkiss.
Hair picking machine, D. M. Varney
Harrow, H. N. Swift..
Harvester, J. G. Perry
Heel finishing machines, shave and burnisher for, J. L. Joyce. Hinge, H. Hayward.
Hinge for sewing machine tables, S. C. Brinser
Hogs, apparatus for cutting up, w. C. Marshal
Hose carriage, Perrine and Stewart, (relssue].
Hose coupling, Magill and Herb
Insect destroyer.C. D. Pagh...
Iron into steel, apparatus for converting, T. R. Scowder......................................
Jack, lifting, J. J. Stuart.
Jack, lititing, D. Shumusk
Ladder, J. N. Valley......
Ladder, J. N. Valley
Lamp heater for nursery flasks, s. 130, 130,830
Lard, apparatus for cooling, J. Ring..................................... 130,534
Lathe, metal turning, F. W. Pomroy.................................... 130,387
 Medical compound, T. B. Hick....
Medical compound w. A. Smith
Medical compound, Mayon and C
Medical compound, J. W. Gray
Medical compound or bitters. G. W. Brown...
Mill spindes, etc., bush for, R. E. and F. A. H.
Mortar mixer, portable, H. Rosen....
Movement, mechanical, A. B. Hendry
Nozzle and turn pipe, hydraulic, D. L. Gorman..386
Nut, lock, J. S. Kirkpatrick................

Nuts, machine for tapping, Hull and Thomas
Ordnance, firing mechanism for, N. Thompson Ore separator. D. Gross.. Ore separator, T. J. Caub
Oven, dutch, C. Schneid
Oven, dutch, C. Sch
Paper holder, C. H. Barrows.
Paper, apparatus for drying flock or velvet, T. . . . Blanchard..................................
Paper steck, manufacture of, W. P. Arnold...
Pen, C. S. Westcott.
Perlanter, coptra chain, S. Frederic
Planter, cotton seed, E.
Planter, corn, J. L. Leas
Plating and coating metals, E. E. de Lobstein.
Plow, C. C. Lewis..
Plow attachnients, method of making blanks for, O. A. Anthony Potassa, manufacture of bitartrate of, G. Bour
 Press, baling, W. H. Morris..
Pruning shears, J. M. Heath
 Rack, brush, E. F. Ames
Ratting chain toggle, E.
Railroad switch stand, A. W. Cram
Railway switch, D. E. Brockett.
Rake, horse hay, G. L. Ives.
Reamer, R. J. Croacher.
panels, etc., trom, W. P.
Rods and shafting, machine for cold drawing
Rolling mills, appliance for, J. L. Pennock
Roofing made of felt and cement, Eirk and Winsmore, Jr.
Sand papering machine, O. I. Foster.
Sash balance, A. J. Cha
Sash holder, H. Polley
Saw teeth swage, J. Conn
Sawing machine, Dilson......
Scuttle, eoal, w. Hoff mire.
Seed and guano distributor, W. J. West.
Sewing machine, J. H. Brow
Sewing machines, electro motor for, A. T. McClure
Sewing machines, ruffler for, M. T. Moody.
Shafts, apparatus for sinking, H. Sontag.
Sieve body, R. J. Mann...
Sieve, metallic,
Skate fastening, E. L. Fenert
Spice box, J. Sears...
Stamp, hand, A. Bencine
Starching machine, P. O'Thayne (reissue)
Staves, machine for Jointing, L. R. Palmer
Steam trap, D. Diek........
Steam trap, D. Dick
Stove pipe damper, Wasson and Dungan
Telegraph sounder and relay; combined, C. H. Haskins.
Thill coupling, H , D. Whillock
Thill coupling, H. J. Iles.
Ticket and pencil holder J. Hooper.
Tobacco, mannffacture of, R. N. Blackwoo
Tuck creaser, H. W. Fuller.
Type setting machine, A. Corey.
Valve, oscillating steam, H. P. Jones.
Valve, railroad tank, C. W. Chappell.
Vehicles, axle for, M. R. Brown.
vehicles, hub for, c. w. Fillmor
vehicles, spring for, R. Dudley..
Vehicles, wheel for, C
vent, c. o. H. Loeper
Vessels, means for propelling, W. Shepard.
Vessels, grain ceiling for, C. Lazarevitch.
Wagon body, J. D. Pettiti...
Wagon brake, Pavey and Martin
Wagon brake, self-acting, O. Fisk
Wagon sheet and tent, M. M. Fitzgerald
Wagon sheet and tent, M. M. Fitzge
Washing machine, bottle, Werk and Verdin
Water cut off, rain, l. Baltz.
Water cut off, rain, Abercrombie and Miner

DESIGNS PATENTED.

6,020.-Top of burial Casert.- S. Avery, Phœnix, N. Y. $6,021 .-$ Prefume Bottle.-P. Doflein, Philadelphia, Pa. 6,022 and 6.023.-Oil Clotis.- H. Kagy, Philadelphia, P ,025.-STAMP.-C. C. Morgan, Brooklyn, N.

TRADE MARKS REGISTERED.
944.-Razor Strop.-B.F. Badger, Charlestown, Mass 945.-WINE TonIc.-C. W. Benson, Baltimore, Md.
 949-Spool Thread.-Clark Thread Compagy, Newark, N. J. 950-LINIMENT - G. O. Clark, College Point. N. Y.
951.-LACR LEATHRR.-W. Cowpe \& EO.. South Atteborough, Mass. 951.-Lack Leather.-W. Cowpe \& No., South Attle
$932 .-C i g a r s .-G$. Falk \& Brother, New York city. 952.-Cigars.-G. Falk \& Brother, New York city.
953.-Corsets.-Globe Collar Company, New York city. 953.-Corsers.-Glawland, Raphatl \& Co., Philadelphia, Pa
954.-WHISK.- Row 954.-Whisk Y.-Rowland, Raphauld
955. -Cured Meats.-G. Schrauder, Cincinnati, O.
sCHEDULH OF PATENT FEKS:

Nor Cops of Olatm of any Patent trsied woithin 30 yoars.................... $\$ 1$
A sketch from the model or draving, relating to suich portion of a machine
 as the Claim cooers, Trom.
upvoard, but usually at the price above-named.
Ths tull Specififation of any patent issued sincs Nov. 20, 1886 at whi h ttme
the Patent Offce commenced printing them....................... 1 .
 at a reasonable cost, ihe proce depending upon the amount of labor
involved and the number of views.
Full information as no price of dravos.
adaressina.
MUNN \& CO..

APPLICATIONS FOR EXTENSIONS.
Applications have been duly filed, and are now pending, for the extension
fthe following Letters Patent. Hearings upon the respective applications are appointed for the days hereinafter mentioned:
22,489.-Cooiting Range.-G. Chilson. Dec. 18. 1872.
22,104--Refrigerator--A. H. Bartlett. Nov. 6, 1872.
22,166.-Hose Couping.-J. C. Cooke. Nov. 13, 1872.

EXTENSIONS GRANTED.
20,345.-Cutter head and Rest for Irreqular Forms.-J. P. Grosvenor DISCLAIMER.

Value or Extended Patents.

Did patentees reailize the fact that their inventions are likely to be more productive of proft during the seven years of extension than the firs
tull term tor which their patents were granted, we think more would avai themselves of the extension privilege. Patents granted prior to 1861 may bt extended for seven years, tor the beneffit of the inventor,or of his heirs in case of the decease of the former, by due application to the Patent O\#tice, ninets days betore the termination of the patent. The extended time inures tc
the benefit of the inventor, the assignees under the first term having nc tare beneit or the inventor, the assignees under the irst term having n
rights under the extension, except bv special agreement. The Governmen fee for an extenion is $\$ 100$, and it is necessary that good professional service be obtained to conduct the business before the Patent Otflce. Full informe tion as to extensions may be had by addressing

MUNN \& CO. 37 Park Row, N. \mathbf{Y}^{\prime}

> Inventions Patented in England by Americans. [Compiled from the Commissioners of Patents' Journal.] Fom July 23 to August 12,1872 , inclusive.
> adjusting Propeller, efc.-J. M. Dodge Newark, N. J. Bed Botrom.-J. D. Frary. New Britain, Conn.
> Fire Arm, etc.-A. Burgess. O wego, N. Y. Gas Lighting.-E. Myers, New York city.
Ink Eraser.-J. C. De Voy, San Francisco, Ink Eraser. -J. C. De Voy, San Friscisco, Cal.
Lastr Buenner. - T. Silver (of New York city), London, England Lamp Bu zner.-T. Silver (of New York city), London, England.
MAk Na Steel. btc.-J. Henderson (of New York city), Glasgow, Scotland. MAE NG STREL. RTC.-J. Henderson (of New York city),
Nurritious Compound.-J. R. Weed. New York city. Pegging Machine.-W. r. Landfear, Jersey City, N. J.
Phospante or Lime.-C. Morfit (ot Baltimore, Md.), London, England. reed organ.-G. Woods, Cambridgeport, Mass. Refrigerator, -S. B Martin, J. M. Beath, San Francisco, Cal.

Sewing Machine.-S. W. Wardwell, Jr., St. Louis, Mo
Smut Machine, bTC.-S. Howes, A. \& N. Bancock,C.Ewell.Silver Creek,N. Y. Stone Dressing Macilare.-C. Parker, Meriden. Conn. SUbstitute foz Guano- -C. Morfit (of Baltimore, Md.), London. Ergland Telagaraph Instrument. - E A. Calahan (of Brooklyn, N. Y.),London, Eng TURNING Sorews, ETC - F. A. Pratt, Hartford, Conn. WARPING MACHINET.-PP. Wilison, Maynavi, Mass., J. Hut
N. H., G Heyes, T. Entwistle, Accringtoa, England.

FOREIGN PATENTS--A HINT TO PATENTEES

It is generally much better to apply for foreign patents simultaneously With the application in the Onited States. If this cannot be conveniently doneras little time as possible should be lost after the patent is issued, as
the laws in the aws in some foreign countries allow patents to any who frst make the
application, and in this way many inventors are deprived of valid patent for their own inventions. It should also be borne in mind that a patent is issued in England to the first introducer, without regard to the rights of the real inventor; therefore, it is important that all applications should be
entrusted to responsible agentsin this country, who can assure parties that their valuable inventions will not be misappropriated. The population o Great Britain is $31,000,000$; ot France, $40,000,000$; Belgium, $5,000,000$; Austria 88,000,000; Prassia, 25,000,000; German Confederation, 40,000,000; Canada 4,000,000: and Rassia, 70,000,000. Patents may be secured by American citi-
zens in all of these countries. Mechanical improvements of all kind zens in all of these countries. Mechanical improvements of all kinds are
always in demand in Europe. There will never be a better time than the always in demand in Europe. There will never be a better time than the
present to take patents abroad. We have reliable business connections with the principal capitals of Europe. A large share of all the patents seared in foreign countries by mericans are obtained through our Agency Address

MUNN \& CO..
(3y Park Row, N. H.
The new patent law in Canada permits Americans to take patents there favorable terms.

NEW PATENT LAW IN CANADA

By the terms of the new patent law of Canada (taking effect September 1st 1872) patents are to be granted in Canada to American citizens on the mos

The patent may be taken out either for five years (government fee \$20), or for ten years (government fee $\$ 40$) or for fifteen years (government fee $\$ 60$), The five and ten year patents may be extended to the term of fifteen years. The formalities for extension are simple and not expensive.
In order to apply for a patent in Canada, the applicant must furnish model, specification and duplicate drawings, substantially the same as in applying for an American patent.
American inventions, even if already patented in this country, can be pat ented in Canada provided the American patent is not more than one yea

All persons who desire to take out patents in Canada are requested to com nunicate with Munn \& Co., 37 Park Row, N. Y., who will give prompt at tention to the business and furnish pamphlets of instruction free.
Messrs. Munn \& Co., have had twenty-five years experience in the busiess of obtaining American and Foreign Patents for inventors; they hav peeial agencies in nearly all countries where patents are granted. Mod rate charges and prompt attention may always be expected.

MUNN \& CO. ${ }^{37}$ Park Row. N. Y.

NEW BOOKS AND PUBLICATIONS.

The Chandler Elements of Drawing. By John S. Wcod man, of Dartmouth College. Boston: Ginn Brothers. This book contains simple and progressive instruction in the art of draw Reports of the President, Secretary, and Depart ments of the Massachusetts Institute of Tech nology, for 1871-2. Boston, Mass.
These documents are clear and concise accounts of the valuable work
done by this society during the past year. It should be read by all who are interested in the all important question of technical education.
Campaign Handbook and Citizen's Mandal. By Frank Hartford, Conn.
This is a little volume containing facts, dates, and figures which illustrate the working of the Constitution of the United States, trgether winh bio
graphical sketches of the candidates for the Presidency and Vice-Presi graphical sketches of the candidates for the Presidency and vice-Presi-
dency; and it is compiled especially for all persons, being tree from an dency; and it is compiled especially for all perso
personal or party bias. It is coniously filustrated

Fairmount Machine Works,

B ORDON IRON WORKS. - Manufacturers
 DON'T RUY STEAM RNGINES

 Trrinine Water Wheel Maty way

$\mathbf{W}^{\text {OODWORTH SURFACR PLA NERS, }}$ \& 125.

BEST \& CHEAPEST PAINT

PRINCE \& BASS, MANUPACTURERS,

T

$\$ 100$ to 250 per monit guarateed sirl

September i4, I872.]
§̌ieutific
Autcricaur.

Petaler Portable Rialroad Company,

TO CONTRACTORS, MINERS, étc. By this invention one horse does the work

LOUISIANA PORTABLE RALLWAT COMPANY,

$\mathbf{F}^{\text {Rench ranges, }}$

THE "PHILADELPHIA"
$\boldsymbol{H Y D R A} U L I C J \boldsymbol{J K}$.
$\mathrm{P}^{\text {ISTON guided from both ends; all working }}$

Civiland Mechanical Engineering, at the

$\mathbf{W}^{\text {OOD CARPETING. }}$

W ATER or SOLUBLE GLASS, Silicates o W. J J. $\underset{\text { Whalen Turbine . No risg to purchaser. Send for }}{\text { Pamphiet,Tree. }}$

©he Sunt

Charles A. DANA, Editor.
The Leading $\begin{gathered}\text { Independent } \\ \text { of America. }\end{gathered}$
 Io and 120,000 conies daly It trik es at corrin
or
$\stackrel{+}{\circ}$

Han Soming annexatiron frat expose the grea

1 ations of Bancroft Davis, the Brpbe. taker, and the

$T H E \operatorname{SUN}$ was the first to expose the cor Tepution pervading the Nay, Post Odfice and Indan T HE SUN was the first to expope Grant and

the mour roberies oft the carpet-bag forernment of

public at the cheapest possible rate. As an advertisin
medium it is unequaled.
The Weekly Sun for the Presidential Cam
THE WRRKITY SUN Will be especially valuable during
the Presidential canvass.
It will contain fall and interesting accounts of all im-

ormation and pleasant entertainment which its columns
frish.
THE WRELX SUN is furnished to subscribers at the
uniform rate of one dollar a year for each copy, alway
TERMS OF THE SUN.
WINSLOW, LANIRR \& CO.
$B A N K E R S$,
NO 27 PINE ST. N. Y.

\$5,000,000.

PRIME INVESTMENT

LOW PRICE.
CHICAGO CAMADA SOUTHERII

First Mortgage Sinking Fund 30 Years'
7 PER CENT. GOLD BONDS
$90 \& A C C R U E D$ INTEREST.
Interest Payable April and October,

This road is the western link in the new AIR LINE from buffalo to CHiCago, and runs from the De troit River to Chicago in nearly a straight line Southern, and is being built by the same men, viz. Milton Courtright, John F. Tracy, David Dows, Wm. L sott, Henry Farnam, R. A. Forsyth, John M. Burke, Northwest, or the Chicago, Rock Island and Pacific Geo. Opdyke, of the Midland Road ; Sidvey Dillon, Dan Kenyon Cox, and other prominent railroad men. The Road, like the Canada Southern, will have st straight and level; much shorter, and can be run mor necting Buffalo and Chicago.
dive milles more are so far advanced as to be finished bs January 1st, and the entire road will be completed dur the entire road have already been purchased.
The builders of the road control enough of its Chica start, having projected the line to accommodate ex st runk line between Chicago and the Atlantic seaboar est transportation practicable
The branch lines will make the shortest connection is well as between all these points and Buffalo.
The Canada Southern Bonds, in every particular lik go, by the best class of inventors, and were on the ma set a shorter time than any other railroad loan of lik

The proceeds of these bonds will com plete the entire line, and we recommend them with the same confidence as we did the Canada Southern, and regard hem as in every way a choice security.

Pamphlets and all information furn sh d by
LEONARD,SERLDON \& FOSTER BANKERS,

NO. 10 WALL ST., N. Y.

Machinery,

Machinists' Toolgs

Cold Rolled Shafting.

Sturtevant Blowers

Pat. Punching Presses
 1838. SCHENCK's PATENT. $18 \% 1$ WOODWORTH PLANERS

W OOD-WORKING MACHINERY GEN.

Andrew's Patents.

 Alour intur, ime, Durable, end Economioas.

14 4 (1)
 T HE Union Iron Mills, Pittsburgh, Pa. The

 Congulting and and hoskin, Chemistry as applied to the Arts, Manufactures andLedicine.
SCIENTIFIC AMERICAN. The Best Mechanical Paper in the World A year's numbers contain over 800 pages and several
hundred engravings of new machines, useful and novel hanared engravings of new machines, useful and novel
nventions, manufacturing establisbments, tools, and Tho esses.
Thentific AMERICAN is devoted to the inter ests of Popular Science, the Mechanic Arts, Manufac
tures, Inventions, Agriculture, Commerce, and the In dustrial pursuits generally, and is valuable and instruc ve not only in the Workshop and Manufactory, butalso TERMS.
One copy, one year
One copy, six months
83.00
1.5
1.00

One copy, four months
CLUB BATRS
$\begin{aligned} & \text { Ten coples, one year, ach } \\ & \text { Over ten copies, same rate, each }\end{aligned}$
One copy of Scientifc American for one year, and One copy of Scientific American for one year,
Ten copy of " science Record," - - - - 4.0
Ten copies of "Science Record," and ten coples
CLUB PREMIUMSS.
Any person who sends us a yearly club of ten or more copy, gratis, of the large steel plate engraving, "Men of Progress.
Remit by The postage on the Scientific American is ive cents per ubscribers must remit, with subscription, 25 cents extra to pay postage.
Address all letters, and make all Post Offlee orders or

MUNN \& CO.
37 PARE ROW NEW YORE.

A. S. CAMERON \& CO., Steam Pumps,
 Diamond-Pointed SNEAM DRIGM:

T THe adoption of new and mproved applica

 $\mathbf{K}_{\text {Asthma. STO WELL }}^{\text {IDD Co }}$, Charlesto Rn, Mass.

THE BAND SAW!
H ITTORY, with Engravings of the OLDESS

 FISHER \& DUNCAN,

 American Saw Co.
 No. ${ }^{1}$ Ferry Stret, Patent Movable-Toothed CIRCULLAR SAWS, Patent Perforated
circular, Mill Cross chut Saws. $\mathrm{G}^{\mathrm{E} \text { Portable and Stationary }} \mathrm{CO}$., Manufacturers o G Portable and stationgry, $A N D$ BOILERS;

 FLOURING MILL, near ST. LOUIS MO, FOR SALE

VILIFIE \& $\&$ EEYT, PENN WORKS

 MORRIS, TASKER \& CO., americar Charcoal Iron Boiler Tubes.

Wroughtiliron Tubes and Fitings,
For GAs, STEAM, WATER AND O
For Gas, STEAM, WATER AND OII.
Stean and Gas Fitters' supplies, Machinery for
NO. 15 GOLD ST., NEW YORK.

