a Weekly journal 0f practical information, art, science, mechanics, chemistry, and manufactures

improved form of coal railroad

Our engraving represents a new form of coal railroad used for transporting the fuel from the boat and depositing it at desired points within the yard. The chief peculiarity of the invention consists in the utilization of the momentum of the car when filled, acquired by descending an inclined plane, to return the car, when emptied, back to the place whence it started.

As will be seen from the illustration, the coal is hoisted from the boat in buckets by means of an ordinary derrick For this work horse power may be employed, or, what is more convenient, a small hoisting en gine. The car, which rests on a scale platform at the end of the railroad, is, by this means, easily filled, but one man being required to empty the buckets as fast as they are elevated. As soon as the scale beam, previously weighted, indicates that a certain quantity of coal, one or two tuns for instance, is contained in the car, the latter is ready to start on its journey to deposit its load. The lower portions of the sides of the car
are so arranged as to be held are so arranged as to be held
closed while the process of fill. closed while the process of filling is going on, but on the arri. val of the car at the point at which it is to discharge its contents, a projection on the side of the track strikes a lever which, acting on the mechanism, causes the sides to swing open, so allowing the coal to fall out. This projection is a block of wood moving in a greove on the side of the railway, which can be placed at any locality at which it is desired to drop the cont of the car. The automatic arrangement which causes the empty carriage to return consists of an endless wire rope, which is first attached to the framework of a small wheel which travels on a rail
underneath the main track. Th underneath the main track. The rope then passes over a sheave at the loading end of the road, thence through openings underneath the car, the latter working freely upon it, thence over another sheave at the further end of the railway, and, finally, back underneath the track, until it is attached to the opposite side of the framework of the wheel first mentioned. To the axle of the latter is fastened, by means of hinged rods, the triangle of planks, shown in the engraving, to the lower side of which a heavy weight is applied
The car, having received its load, is started by a slight push down the inclined track. It travels on until it strikes a metal block, which is immovably fastened to the endless wire rope. This block the car carries on with it, causing a strain to be applied to the rope which, passing over the sheave at the starting point, is communicated to the wheel under the track. The latter, yielding to the pull, travels along its rail, causing the triangle attached to it to tilt until
the side on which the weight is fastened is raised to a nearly the side on which the weight is fastened is raised to a nearly
vertical position, the apparatus being prevented from being moved bodily by the hingeing of its forward angle to the ground. The car, meanwhile, continues its motion until the lever, holding its sides closed, strikes the projection before referred to. The coal is then allowed to drop out, and the moment the car is freed therefrom, the heavy weight on the triangle begins to fall. The latter, though overbalanced by the loaded car, is much heavier than the vehicle when empty, so that, in seeking to return to its original position, it moves the traveling wheel to which it is attached; this communicates motion to the endless rope, which starts the car on its backward journey. Assoon as the weight reaches the ground the pulling strain on the car ceases, but the acquired momentum of the latter is sufficient to carry it back to its original starting point.

It will be seen that the arrangement of the weight is such that, when the car strikes against the block on the rope, the strain is made to act gradually, so that by the time the car is ready to discharge, its inertia is nearly overcome. The ad vantage of this is the avoidance of the great wear upon the moving parts incident to sudden stoppages or changes of motion. The apparatus accomplishes its work with great celerity and is easily attended by a single man, who has only

to empty the buckets, as they are hoisted, and start the car

 when filledTrials made in our presence proved that a loaded car can travel a distance of 175 feet, discharge its contents, and re urn in the space of thirty seconds. The economy and com paratively small cost of this invention will recommend it to all practical men. It can be easily erected in any coal yard it has no confusion of ropes no switches or turn outs, re uires but a single track and when compared with the re quires but a gle of transporting coal in wheelbarrows from point to point of transporting coal in wheelbarrows from point to poin
cannot but result in a large saving of time and expense.

HUNT'S IMPROVED COAL RAILROAD.

Mr. C. W. Hunt, of West New Brighton, Staten* Island, is the inventor, from whom any further information may be obtain ϵ d, or the railroad itself may be seen in operation a his coal yard in the abovementioned village.

DOANE'S IMPROVED CANAL CONSTRUCTION.

William H. Doane, of Cincinnati, Ohio, has patented an invention which consists in applying to the banks and bottoms of canals a lining composed of smooth plates of sheet metal riveted together so as to prevent the passage of water between their joints, the upper edges being clamped between two stout sills or string pieces, by which arrangement the lining is secured in its proper position, andits upper portions protected from injury. It is preferred that these plates should

be long enough to extend from the top to the bottom of the embankments. In order that the upper portions of these plates may not be injured by the horses feet, or otherw ly confined between two longitudinal sills or stringers, which latter are united by spikes or bolta as shown in our , whic ing. The lower portions of these plates may also be engrar. ing. The lower portions of these plates may also de diatance to sills, if preferred; or they may extend a suitable distance
below the bed of the canal and be maintained in their proper position by the earth
In some places it may be desirable to extend the lining completely across the bottom of the canal. The lining plates may be composed of copper, galvanized iron, or any other suitable sheet metal. This lining will not only preserve the banks from being washed by the passage of boats thro ugh
the canal, but it will also prevent the percolation of minute streams of water through the earth, which are the well known cause of the most disastrous breaks. It will effectual y prevent muskrats and other vermin from burrowing through and injuriog the banks.
A canal provided with this improved lining would be es pecially adapted for steam navigation, and boats could be propelled in it at the highest speed without injuring the banks in the least; indeed, the more active the use of such anal, the better condition it would be in
The lap of the joints should be in the direction of the flow, as such an arrangement will prevent eddies, and by inducing a more rapid current there will be less opportunity for sedi ment to deposit in the canal.
A patent has been granted to the inventor for lining the sides of a canal with metal plates united by rivets, and whose upper portions are se cured between, and protected by, sills, as described. The only objection to the employ ment of such plates would be their first cost and the expense of replacing them, which would be at least partially bal anced by the reduction of such repairs as are constantly re quired on canals with unpro tected earth banks.
$\overrightarrow{\text { Railway Progress. }}$ From the "Manual of the Railroad of the United States,' for 1872-3-a useful volume issued by H. V. Poor \& Co. 68 Broadway, in this city-we obtain the following statistics relative to the railroads of the country:
Tbe United States now con$\operatorname{tain} 60.852$ miles of railwaynearly double as many as in nearly The largest number of
1860. The miles built in any one year was in that just passed, in which 7,453 miles were opened. The greatest mileage is in Illinois reaching 5,904; the smallest in Rhode Island, 136. The State of Massachusetts has one mile of railroad to $4 \cdot 86$ miles of territory, this ratio being the greatest in the country
The longest road in operation is the Chicago and Northwestern, extending 1,500 miles; the shortest, the Little Saw Mill Run Road in Pennsylvania, which is but three miles in length. The total cost of the railways in the country is $\$ 3,000,000,000$, or an average of $\$ 50,000$ per mile. The earnings for the past year amount to $\$ 454,969,030$, or $\$ 7,500$ per mile. The largest net earnings made on any road were gained by the New York Central and Hudson River, $\$ 8,260,827$; the smallest on the Portland and Oxford Central in Maine and three others, all of which not only earned nothing but incurred a loss.

Ventilato

This consists of a wrought iron tube, about three inches in diameter, which is long enough to reach into the middle of the stack, and, like the Norton well tube, is provided with a conical point at the tip, and pierced for about two thirds its length with numerous holes. A screw arrangement is affixed to the posterior extremity, by which it can be connected with an accompanying discharge pipe.
For use, this apparatus is to be driven horizontally into the stack to be investigated, either by means of a mallet or by a screw arrangement, and the temperature ascertained after a short interval by introducing a self registering thermometer. Should the temperature be too high at any point in the stack, a tin tube is to be affixed vertically to the outer end of the iron tube, and an outward current of air from the interior of the stack produced, by means of which the heat is speedily carried off without any injury to the stack. Hooks may be attached to the tip of the instrument, by which small samples of the central part of the stack can be brought out.
Deftroying Caterpillaks.-According to schmidt, an excellent remedy against caterpillars consists in a dilute solution (1 part in 500) of sulphide of potassium, the infested tree being sprink led with this substance by means of a small hand syringe. This method has been used on a large scale in France, and, it is said, without any injury to vegetation.

DOMESTIC MOTORS.

M. Soulié has, in a recent paper, discussed the merits of various motive forces in relation to the above subj ct. He men tions the following:-Springs, electricity, heated air, compressed and rarefied air, water, and steam. Each of these may be briefly discussed.
Springs are sometimes applied in the working of sewing and other machines. They are a case of transformation of force, rath \mathbf{r} than a source of it . The spring, theoretically, gives out the work that was spent on it in winding up. But there is al ways a loss, and they return only 060 to 0.80 of the work at first expended. Suppose a steel spring, 1 kulogramme n weight, ($-2 \frac{1}{4} \mathrm{lbs}$) can store up 12 kilogrammeters (-26 bs. moved 3 fe +t) it will only be possible to utilize $7 \cdot 20$ of these, or about 16 lbs. The application of springs must thus be very limited. They are, further, inconvenient, inasmuch as they call for frequent winding up, and breakage is apt to take place. They are also fitted with a fly as regulator. This acts by destroying the excess of work, through resistance of the air against its arms, the resistance increasing with the square of the velocity. It ceases to act,or acts feebly. when the spetd becomes low, and in this differs from the fly wheel of a steam engine, which then gives back the force previously stored in it. Now in a spring driven sewing machine, for example, the action of a regulator is very much needed as he speed diminishes.
Electricity.-The electromagnetic force is to be objected to for its cost, and for the small quantity of force produced in proportion to the apparatus. The force of a motor is heat transformed into work. In the case of the pile, the heat arises from the dissolution of zinc. Now, comparing carbon with zinc: one gramme of carbon, combining with oxyg+n developes 8 calories. One gramme of z inc diwsolving gives only 0.55 calories. Hence 145 grammes of zinc must be div solved. to develop 8 calories, and be the equivalent of 1 gramm \leftrightarrow of carbon. The price of zinc is, at lowest, $\$ 108$ and that of coal $\$ 7$, or $15 \cdot 4$ times less. If the cost of acid is further taken into account, it is found that one calorie developed by the action of acidon zinc costs 223 times as much as one frow direct combustion of coal. Zinc is not found in a nataral state like coal, but requires the expenditure of fuel and other outlay in its preparation. Thus the direct ase of coal is more economical
Wo have referred to the transformation of electricity into work; there is the opp ssite case of work transformed into el-ctricity. This is done, and wi h the best results. Magneto eleciric machines, driven by steam enyines, supply a brilliant light to many of our lightbeuses.
Electricty as a motive force is rather capricious in its ac ion. The battery requires considerable attention, and acid are a sou ree of danger in inexperienced hands.
H.afill air.- This is sometimes used, the ordinary coal gas being the sourc of heat. The large and extended distribu tion of gas in towns, and the power of consumption only when wanted in the motor, are advantages. On the other hand, the cost-say 40 cents per horse power per hour-must limit its use to a small production of force.
Supposing 2 cubic meters of gas per horse power per hour o be consumed in the gas motor, each cubic meter rapresent ing a calonfic power of 6,000 calories. This consumption would represent a theoretical force of 1,320000 kilogramme ters (per borse power per hour). Practically it represent only $270,(10$ kilogrammet rs. Hence, the proportion of actual to theoretical work is $\frac{270,000}{1,320,000}$ or 0.004 .
Now in a steam engine, consuming 1 kilogramme of coal per horse power per hour (each of these representing 85000 calories), it may be shown that the work corresponding to a calorie $\mathrm{j}_{\star} 32 \mathrm{k}$ logrammeters, as against 225 kilogrammeters in the other case. And the utilization of heat in the gas en gine does not compensate for this difference
In motors with gas heated arr, the pressure in the cylinder falls imruediately on explnsion, though this may be remedied somewhat by introducing a litite water with the gas and air Then the heat.ng of the cylinder necessitates the application of a current of cold waterto abstract the heat, which would other wise make the action of the piston impossible. The apparatus is thus apt to be complicated, and it requires con stant care. Carbon and sulptiurin acid are, moreo 'er, depos
ited in the cylinder-the latter from the sulphuretted hydroited in the cylinder-the latter from the sulphuretted hydro gen contained in the gas. The gas is apt to escape and vitiate the aimosphere; so much so, perhaps, as to become ex plosive. All these are objectionable features.
Comvressed Air.-This may rather be called a mode of transiorming motive force, as mechanical work has to be done in compression. The use of this kind of motor has hitherto been obiefly in such works as tunneling, bridge making and mining. In the works at Bardonnech \oplus, connected with the Mont. Cenis tunnel, a column of water by its descent caused air to be compressed into a reservoir, from which it was used at will. In expanding, the air should, theoretically, give back the work done in compression. In real ity, it leturns only part of it. These are theoretical figures but they show the necessity of cooling the compressing apparatus.
The distribution of compressed air, as motive force, in a city would be an expensive thing, requiring a powerful en gine, reservoir, pipes, etc. M. M. Bitz some time ago pro jected the supply of Paris in this way, upon the following data:
Works prrducing 945 horse power effective force, from 19,917,260 cubic meters of air compressed to 6 atmospheres by steam engines of 2,450 horse power in all, would cost two mil through leakage, there would be 782 horse power remaining

The net cost of the compressed air would be $\$ 00116$; and ts selling price might be 2 cents to $3 \cdot 6$ cents per cubic meter. The expense per horse power per hour in consumption would
Such a plan, if it could be carried out, would present many dvantages. The consumption could be easily measured the force would be an intermittent one; escape of air, in stead of being hurtful, would be a benefit in ill ventilated places; and there would be no delicate apparatus to manage s in the case of electric batteries.
Rarefied Air.-M. Bourdon has invented a motor working on this principle, the rarefaction being caused by the flow of water in pipes. It is also adapted for compressed air. The maximum pressure at disposal being that of the atmosphere it would require a large volume of air to produce a given force, and the direct use of air would seem to be more eco omical.
Water Pressure - In many towns there is a large distribu tion of water, the pressure of which depends on the motor urnishing the supply, and the difference of level between the extremities of the distributing pipes.
In some cases the water is not carried to the different floors of dwelling houses; and in some its use for industrial pur poses is forbidden. The pressure in some parts of Paris is 70 to 80 meters (227 to 260 ft .), in others not more than 7 or 8 , or 22 to 26 ft .
High prices are paid. For a quantity not above 20 meters daily, the price is $\$ 8$ per cubic meter per annu in for wate from the Ourcq; $\$ 16$ per cubic meter per annum for wate from the Seine. For a quantity over 20 meters, the corre ponding prices are $\$ 5$ and $\$ 11$.
In Lyons, a force of 20 kilogrammeters would cost $\$ 247$ per annum. In R subaix and Tourcoing, it could be had at 75 cents per day.
In London, water at a pressure of 45 meters is paid for a rate of 4 d . for $1,000 \mathrm{gallons}$ (or 8 cents for 4,543 liters). This is $\$ 12$ or 12 cents per horse power p+r hour. In some towns, though the distribution is large, the pressure is small; and in others the system is defective in both respects. In most cases a reduction in price would be neceseary, before the water could be used in dwelling houses as a motive force. From many points of view, it offers advantages. It s a ssfe for $\cdot \mathrm{e}$ to deal with, and is not injurious to health It can be easily manipulat-d, and when the water has don ts wors, it can be utilized for other purposes.
Stenm.-This is generally inapplicable for the purpose in view. There are two sources of danger in use-the presence of fire, and of confined elastic flaid. In the hands of inex p ri - nced or careless people, these are apt to lead to acci dent. It may be stated, however, that Mr. Fontaine has constructed a small speries of steam engine for house usehe steam generated by gas, and giving various forces from 6 kilogrammeters ($13 \frac{1}{2}$ lbs. moved 3 feet) upwards. It is said to be convenient and safe.
We have thus passed under review the various kinds of orce utilizable for small industries; and it would appear on the whole, that pref-rence should be given to hydraulic force, which may be made good use of in this way if the expeose of obtaining water be somewhat lessened and the manner of its distribution improved. Further experiment is also desirable on the employment of compressed air, the ca pabilities of which do not appear, as yet, to have been ex hausted.

Salt Manufacture in England.

An interesting notice under this heading is given in a re cent number of the Birmingham Daily Post. The mavufac ure in Worcestershire is confined to Droitwich and Stoke Prior, a parish near that town, the chief establishment being that of Mr. Corbatt at the lattar, and of the Droitwich salt Company at the formor place. The sources of the productare the underlying beds of rock salt, and the brine springs from which the salt is extracted are formed by the percolation of water bec?ming saturated with salt from the cck.
The processes of manufacture are simple. The springs are reached by wells, linfd with iron cylinders to prevent the 30 feet of of fresh water, in which the brine rises to within 30 feet of the surface, and whence it is pumped, night and
day, with undiminished supply, at the rate of some ten or day, with undiminished supply, at the rate of some ten of
twelve thousand gallons per hour. The brine, containing from 26 to 30 per cent of solid matter, is pumped into rese voirs called "tuns," from which it is conducted through pipes to the evaporating pans, which consist of enormous constructions of riveted iron plates, with flaes underneath or conveying the heat from the fires kept up for that purpose. As the water evaporates the salt rises to the surface in flakes, and then falls to the bottom of the pan, whence it , at regular intervals, removed for drying. The salt is raked from the bottom of the pan and flung into lorries which run upon metal rails by the side of the pan. These orries, when full, are run to the stores, ipped on to the floor about 20 feet beneath.
Some idea of the extent of the manufacture may be path ered from the following facts: The works at Stoke cover an area of 22 acres, with constant extensions, and represent a capital of more than £ 100,000 . A reservoir is in course of excavation, to hold $4,000,000$ gallons of brine ; there are thirtyfour evaporating pans, most of them 135 feet long by 25 feet broad; and there is storage for between s venty and eighty tuos of sult. The full weekly production at the two establishments named is six thousand tuns. There are three sinds of salt made, the difference in quality consisting chief y of the difference of the size of the salt crystals, caused by and precipitation: 1. "Butter salt" so called from its gener-
al use in curing butter, etc. 2. "Table salt," which is but. ter salt made into molds and, 3d, "Broad salt," of a coarser grain, and used largely for the manuring of land. In the "butter salt" pans the brine is heated to 212° Fah., the vaporation being rapid, but the "broad salt" brine is only heated to 180°. The "butter salt" is drawn several times each "shift," the broad salt only every other day.
Salt is molded into blocks for domestic use, by filling the salt boxes, called 'tubs," fitted with perforated bottoms, which are set down to drain; when the salt is sufficiently consolidated, each tub is taken up, turned over, and brough own sharply on a wooden stool, to free the tub from th salt, and the block of salt, after being trimmed on the edges, is taken to the drying stove. This stove is a room about 180 feet long, 50 feet broad, and 40 feet high, the floor of which is traversed by iron flues nearly a yard in bight. The block re first placed on small raised platforms called "cat paths," by the side of the flues, and when partially dried, are placed n the flues themselves until the prucess is completed.
Both at Droitwich and at St ke Prior, the proprietors man facture their own vans, which are of iron, and cost about $\$ 400$ each, as the railway companies decline to supply them n account of the action of the salt upon the iron. Each firm has, therefore, iron w. rks, and employs several hundreds of these vans, the making of which, and the constan repairs required, keep the works in continual activity.
Mr. Corbett is the patentee of a new mode of preparing salt of superior fineness and hardness. By this method the pan is covered, and inside it are a number of rakes, made to evolve by steam power; the agitation of the brine and the reater heat caused by the retention of the steam combin o produce a more rapid deposition of salt, the crystals of which are consequently very fine and hard. The Stoke works bring isolated from any town, Mr. Corbett has provi ded nearly 150 cottages, which are rented at moderate rate by his workpeople. There are also new and old schoo rooms, a masier's house, and a dispensary.

Determination of Mercury in its Ores.

Eschka gives the following method as applicable to cinna bars, fahl ores, and in general all ores of mercury. Th weighed sample is placed in a porcelain crucible who e edge are perfectly true and smooth. Hilf the weight of pure, clean irou filings, perfectly free from grease, must be ad ted, and well mised with the ore by carefal stirring with a glass od. The whole is then covered over with a layer of iron flings, from 05 to 1 centimeter in depth. The cracible hen fitted with a coscave gold cover with perfectly true and ven edges, so as to fit exactly, and carefully tar-d. Th concavity of tbis cover or lid is next filled with distilled waer. The crucible is then heated for ten minutes, by means of a flame whose point plays round its bottom. After this ime the gold cover is taken off, the water poured a way, the mercury ad hering to the coavex side is washed with alcohol to remove any bituminous matter, the lid is dried in a wate bath and weighed when quite cold. The increase of weight ives the amount of mercury in the sample token
The weighing is performed on a porcelain crucible, which in each case was weighed also. When the operation is con plete, the lid is heated, at first gently and then strongly, til all the mercury is driven off. The weight of the lid and its support is found to have sustained only a very slight altera tion. Theedges of the crucible and the lid must fit exactly or some of the mercurial vapor may escape. The concavity of the upper eide of the gold lid must be large enough to hold a sufficiency of water to ensure the condensation of the vapo's.
In rich ores, the quantity of mercury is so considerable that semi-fluid amalgam of gold may be formed on the convex side of the lid, and when it is taken off, this may run in a drop from side to side. In such cases, care must be taken that nothing is lost; and in wawhing the amalgam with alcohol, the washings are collected, and any minute globules of mercury or amalgam are cautiously transferred to the concavity of the lid, so that they may be dried and weighed with the rest.
In poor ores, containing 1 per cent or under, the quantity taken for analysis should be 10 grammes; in those ranging from 1 to 10 per cent, 5 grammes; in from 10 to 30,2 gram mes; and in those containing above 30 per cent, 1 gramme.

Benzoic Acid in Gas Liquor.-According to Reinsch, on reating gas liquor with sulphate of lime at a temperature o $50^{\circ} \mathrm{C}$., the carbonate of ammonia in the liquor is completely decomposed, with evolution of carbonic acid and formation of a yellowish solution of sulphate of ammonia, smelling strongly of tar. The tarry constituents are not easily sepa rated from the salts of ammonia. If, however, the solution is dried at a moderate heat till no more aqueous vapors are given off, and the residue is then heated in a porcelain capsul, covered over with a plate of mica, the mass assumes first a rose color, then a purple red, whilst the mica is coated over with benzoic acid in shining crystalline needles. Over this crust is a tender, woolly sublimate, consisting of sal ammoniac and sulphate of ammonia If the residue is treated with water and filtered, we obtain a colorless solution of sulbate of ammonia, and on the filter remains an aniline brown coloring body.

THE electrical conducting power of a metal is diminished by heating it. A poor conductor is more easily heated by an electrical discharge than a good conductor. Thus a stroke of lightning that would fuse an iron rod would not injure a copper rod of the same dimensions. The conducting power of copper is 120 , while that of iron is only 24.

Infection and Disinfection

The water of low, moist and marshy places is productive of various maladies, particularly of dysentery and chronic diarrhæa, and many pernicious effects are produced by the exhalations of various gases rising in sewers, sinks, etc. Whenlow and moist grounds and deep and rich soils, covered either by water or large trees, are cleared or exposed to the action of a warm sun in a hot climate, the emanations prove more noxious than in their unreclaimed state, and will remain so until a complete cultivation has taken place. The various exhalations and secretions formed in the course of disease are either entirely of insensible emanations from
the bodies of persons affected by the earth emanations and the bodies of persons affected by the earth emanations and specific fevers, which we may term infectious, or altogether of a consistent and palpable fluid, formed on the morbid sur-
face of the diseased body (the itch may serve as example), face of the diseased body (the
and which we call contagious.
Many of the maladies propagate themselves both by impalpable or invisible emanations from the body floating in the surrounding atmosphere, and by the contact of a consistent fluid or virus formed in the diseased part as we see it in the small pox and plague, both of which are infectious and contagious. Typhus and scarlet fever are conveyed from one person to another by bringing substances capable of absorbing and retaining for a time the emanations given out from the diseased body; and among the materials known as the the diseased body; and among the materials known as the media of transmitting infectious diseases are such as woolen and hairy substances, furs, feathers, bedding and clothing They all appear to imbibe easily the morbid effluvium, and to
retain it longest. Cotton, flax, linen and other substances retain it longest. Cotton, flax, linen and other substances
of a soft or porous nature exercise a similar property, but in of a soft or porous nature exercise a similar property, but in
a feebler manner. They consist in the destruction and exclusion of infectious agents, or preventing communication with infectious persons or things: by the quarantine or sepa. ration of the infected from the healthy; by the exclusion of infected articles, or destruction of all infection existing in them, and particularly by applying remedies which dilute or destroy the infection floating in the air or in any other medium, or by chemical agents, which are the hygienic safeguards against all infectious, malarious and contagious diseases, and which are called the disinfectants.
All substances which act more or less energetically on fetid and offensive effluvia, whereby their unpleasant odor is destroyed, are called by the general term disinfectants, or deodorizere, for they render miasmata inert, while another class, odorizer, for they render miasmata inert, wtile another class,
allied to them, are called antiseptics, because they check or prevent putrefaction. Warmth, air and water promote puprevent putrefaction. Warmth, air and water promote pu-
trefaction, while cold, exclusion of atmospheric air, and detrefaction, while cold, exclusion of atmospheric air, and de-
siccation are the best antidotes; also gases which do not siccation are the best antidotes; also gases which do not
yield oxygen to organic matters, coatings of oil, butter, tallow, wax, resin and sirup all act antiseptically, for they exclude the air.
Among the disinfectants employed for neutralizing contagious and malarious diseases, or destroving the germs of infection, either from ship fever, cholera, bilious and yellow
fevers, small pox, typhoid and scarlet fevers, rinderpest, etc., fevers, small pox, typhoid and scarlet fevers, rinderpest, etc., are the following:
Chlorine acts energetically through its affinity for hydrogen; also on sulphuretted hydrogen, ammonia, phosphuretted hydrogen, and other fetid and offensive vapors arising from decomposition of animal matter, marsh gases, cesspools, sinks, and in the atmosphere surrounding dead bodies; but chloride of sodium is very frequently employed for the above purposes.
Nitrous acid is unquestionably one of the most powerful disinfectants on board ships where ship fever or cholera has broken out.
Salt baths are very useful and economical disinfectants, such as the nitrate of lead-half a pound to ten gallons of water is effectual; chloride of zinc for this purpose is in great use in England.
The sesquichloride of iron, with the addition of a small portion of carbolic acid, is now used in the city of New York by the butchers, night scavengers, and in small pox districts by order of the Board of Health; it is called the Metropolitan disinfectant. This preparation has become quite celebrated, and may easily be obtained by dissolving the native sesquioxide, a hematitic iron, in hydrochloric acid, and add-
ing about 57 per cent carbolic acid. ing about 57 per cent carbolic acid.
cheap and useful. cheap and useful.
The Girondin disinfectant is a French preparation, com posed of sulphates of copper and zinc.
Condy's liquid is a solution of manganate and permanganate of potash. It is a very useful disinfectant for the reason that it readily parts with its oxygen in presence of organic matter.
The bromo-chloralum is a disinfectant of a late date, which is mostly employed for embalming dead bodies, principally in France.
The Egyptian powder is a composition of crude carbolic acid and pipe clay.
Infected clothing may be restored and made innocuous by exposing it to a temperature not below $200^{\circ} \mathrm{F}$.; the infec tious germs of certain diseases such as scarlet, yellow, ty tious germs of certain diseases such as scas and ship fevers are entirely destroyed.
Ventilation is one of the most indispensible measures fo producing disinfection.
Cotton, arriving from southern climates where contagiou diseases prevail, and which might communicate such diseases is said to be preserved by permanganate of potash, as it de stroys effectually miasma, and also organic spores which cause fermentation and putrescence.
Dry earth cannot be surpassed as a disinfectant, and pos-
sesses many advantages over all others. It is the cheapest sesses many advantages over all others. It is the cheapest
material, without odor, does not contain poisonous salts as do
all other disinfectants, is an excellent fertilizer, requires bu a small quantity to effect the object, and the apparatus may be easily applied in sick rooms, both in public, private, and school houses. Common street earth, charcoal, peat, boneblack and clay are all good materials for the absorption of bad odors and the promotion of decay of organic matter. Dry earth acts both physically and chemically, for it absorbs the water which would otherwise assist in fermenting the organic matter. If dry earth is intended to be used as manure, plaster of Paris, burnt lime and similar vehicles may be mixed with the street earth.

Blacksmithing in Germany

In the interior towns and villages of Germany, it has been he custom for many years, says the Coach Maker's Journal, for the farmer to purchase the iron for his tires and horse shoes, and in some instances, when having a new wagon built, to purchase all the iron entering into the same, the lengths of every piece being furnished him by the smith. One part of the contract is that the smith shall return to the farmer all ends and cuttings from the iron, and it frequently occurs that the farmer remains at the shop until the iron is all cut up, in order that the smith shall not indulge in too much cabbage. Each smith shop has what is termed "the hell," and in cutting off a set of tires, if the farmer be not "thesent, the largest half of the end cut off finds its way to "the hell;" the duty of putting it there devolves upon the youngest apprentice. From this always plentiful store, the smith furnishes his material for the manufacture of bolts, horse shoes, etc., for transient customers.
The horse shoeing part is also a feature; the farmer will bring with him the end of some piece of iron or tire, with which to make the shoes, or perhaps a dozen or more old horse shoes to be converted into new ones. The farmer must blow the bellows until the work is forged or the shoes all made, and must then hold up the horse's foot while the shoes are being driven on or fitted or taken off, and invariably carries the old shoes home with him, unless he prefers to give the old shoes in payment for the apprentice's serto give the old shoes in pa
vices in holding up the feet.

The Cattle Plague

Dr. Bouley, an eminent physiologist and veterinarian, who has given special attention to the cattle plague, has lately made a very important report, to the Academy of Sciences of Paris, of the proceedings of the Int rnational Sanitary Con rention, held March 16 of the present year at Vienna. This has for its special object the determination of the best methods of preventing the cattle plague, and the taking into consideration the question of establishing proper sani-
tary regulations in regard to the cattle traffic between the countries represented in the convention. Delegates from eleven states were present at the convention, namely Germany, Austro-Hungary, Belgium, France, Great Britain, Italy, the Roumanian Principalities, Russia, Servia, Switzer and, and Turkey.
The delegates included in their number some of the best veterinarians of their respective countries, as also various officers specially charged with the enforcement of sanitary regulations. There was but little contrariety of opinion as to the exotic nature of the disease (at least in regard to Western and Central Europe) and as to its mode of propagagation. It was well established in the convention that, out side of Russia, it never develops spontaneously upon any race of cattle, not even that of the steppes; and consequently that, whenever it shows itself outside of its native home it may be considered as imported.
It is also well established that, even after it has continued for a longer or shorter time in any given country, it is only transmitted by contagion, and that it always becomes extinct when the conditions favorable to its propagation cease to exist.
It
It was considered expedient by the convention to leave Russia entirely out of the sanitary agreement, and not to established guarantees.

As to the general question of absolutely preventing the importation of cattle from Russia, it was found very easy so far as Germany was concerned; but very difflcult for Austria and Hungary, owing to the great extent of the coterminous boundaries of the two countries, and the de pendence of Austria upon Russia for this source of food. It was, therefore, recommended that a careful supervision
should be exercised, and that cattle, after crossing the frontier, should be subjected to quarantine of ten days be The question their journey.
The question being thus settled in regard to the importa tion of animals from Russia into Austria, the next point that came up for consideration was the nature of the conditions toward several governments should impose upon themselved of the disease; and the measures concluded on as most essential were: first, the immediate slaughtering of all animals that had come in contact with the plague, as also of those which might be considered as under suspicion of having the disease, in consequence of the influences to which they had been exposed, this being accompanied by a proper compensation to the owners; secondly, the burial of the
dead bodies of all animals affected with the plague, without attempting to utilize them in any way whatever; thirdly he utilization of the flesh of sound animals killed under suspicion, but proved after death to have been healthy, this to be permitted only under special conditions rigorously de termined; fourthly, the destruction of the germs of the contagion wherever they can be found, in the slaughter the disinfection of all objects with which they have been
brought in contact; fifthly, isolation, as complete as possible, of the places where the plague has been found to exist, so that no animal believed to be capable of carrying the con tagion or of receiving it shall be allowed to enter the in-
fected districts, this isolation to be putin practice on farms fected districts, this isolation to be putin practice on farms
and all other localities, and to be of greater or less extent, according to the extension of the disease.
The convention found that, among the various countries that had had occasion to take measures for the proper disinfection of cattle cars and other vehicles of transportation, Germany had the most satisfactory arrangements. Here, after a train has been emptied of its contents, the cars are immediately deluged with warm water of at least $160^{\circ} \mathrm{F}$. The shock and strength of the current, falling from a considerable elevation, detaches all organic material adhering to the wood work, and, by the elevation of temperature, anihilates all virulent activity
The principal point established by the convention, according to Bouley, was the nacessity of an obligation to slaughter all animals as soon as the disease made itself manifest, or as soon as there seemed a probability that an animal would be attacked. In this way the plague will be arrested by sacrifice of the smallest number of animals.

Chemical Fertilizer

There are certain fertilizers, says the Nero York World, which are strictly chemical, being the result of chemical processes; there are others not usually so termed which should be thus designated because they act chemically in the soil, that is, they are inert and thus valueless unless some substance for which they have an affinity exists or is placed in the soil together with them. To the first class belong the various salts of ammonia, to the second, plaster and common lime, while in both classes may be placed sulphates of soda and potash. However and whenever we use any of the ammonia salts, they are of value in themselves, but plaster and lime and salt are little if any value in themselves; yet if the soil has in it any decaying vegetable or animal matter, and if it be desired to set free the silica, then these substances work actively and are of great value. We cannot see that sulphate of soda is of much greater actual value, except for cotton, than plaster, while it is much more costly. Sulphate and muriate of potash are of far greater value as, when their acid constituents are given up to fix any free ammonia, their potash is fresd and is an element available and useful to almost every crop.
The multiplication of chemical works in our country has caused the production of many of these elements as waste products, and hence chemical fertilizers, once very costly, have now come down to a comparatively low rate. We know one concern which does a large business in these manures, which was directly forced into it to get rid of the vast accumulation of waste material. The supply created a use, and good results from use made a constant demand. And as there is an increasing demand, every day adds some new source of supply. There is now throughout this country millions of dollars worth of material going into apparen waste which might be caught up and made to do service for the present generation. The sewage of hundreds of cities, the ammoniacal waters from as many gas works, the excreta from thousands of privies in towns, villages and country homes: these are but part; the waters of the East and North Rivers, of the Merrimack and the Delaware, and numerous other streams all float off material, called refuse, which con tains the great elements of fertilizing.
Chemical fertilizers are usually rapid in their action; the farmer who invests in them gets a prompt return for his money. Manuring for generations yet to come is good sound theory, but is an idea not appreciated in this fast age; it has been almost universally abandoned in England, where the chemical or concentrated manures are largely used and highly recommended by men of high reputation, both farm ers and scientists. We are not yet willing to advise farmer to abandon the barn yard and compost heap which has done such good service, but there is an evident want of some more active direct fertilizer, or some elements to be combined with those bulky matters to add to their value or develop more rapidly the useful constituents they contain.
We have not alluded to the prepared superphosphates and poudrettes, which might be classed as chemical fertilizers as they are passed through a chemical process in their manu facture; they are more the result of object than the residue of a chemical process; nor have we spoken of the various fertilizers, derived from the earth, which are identical with certain chemicals; they are more fit to be classed as mineral fertilizers. We believe that the settlement of our great Western plains and mountains will develop there such masses of these substances as will amply make up to the farmers of the Western States their distance from the source of fertilizers of that character from abroad, or the lack o vast chemical works whose waste materials afford the base of most of the strictly chemical fertillizers.
a Veritable earthquake was felt on the 11th of July in the vicinity of New York city, in Westchester county, and on Long Island. The shock is reported at the beginning to have been similar to that of a piece of artillery or heavily laden cart driven rapidly over frozen ground. It seemed to come from the south and roll away off toward the north. It was sufficiently loud to awaken nearly all the sleepers, to cast down piles of coal in the cellars, to shake the crockery in the rooms, and to give a very perceptible vibration to the houses.
The financial report of the late Musical Jubilee at Boston Mass., exhibits a deficit of one hundred and fifty thousand dollars.

COMBINED GIN HOUSE, HORSE PO WER, AND COTTON PRESS.

In the invention we now illustrate, the cotton raiser is sup plied with an apparatus, for preparing his cotton for market of an economic and at the same time effective character. It consists in the combination of a horse power with a gin and press, in such a manner that the gin discharges its cotton directly into the press, and the gin and the press are both worked by the one horse power.
Fig. 1 ahows the general arrangement, which the following description will explain: A frame, such as represented is erected for the working parts of the machine, and supports on its top the gin house. At A is the horse power and drivng shaft and pulley. The atter is connected by belting, as shown, with the counter shaft, B, from which the gin is run, so as to insure the requisite amount of speed. The gin is not shown in the en gravings, but is so situated as to discharge its cotton into the press, C, which is shown in detail in the top view of the same in Fig. 2. The followers of this press are connected with the two outside levers seen in both figures; the ends f which are in their turn of which with the turn, onnected with the driving haft. The operation is as fol ows; The levers are thrown utward so as to draw apart the press followers, and the gin is started and run until the open press, which holds enough for a bale, is filled with cotton. The gin is now stopped and the press completely covered in by means of a lid. The ropes are next wound on to the drawing shaft, and the horse power again started, this time to effect the pressing by pulling in the levers. When the compression of the bale is finished, the team is stopped, the levers secured in their then position, and the ropes loosed from the shaft. A curtain is next drawn between the gin and the press, so that the ginning of a second bale can be commenced while the first is being secured and withdrawn from the press through first is being secured and withdrawn from the press through
its face, at D, which admits of being removed for this purits face, at D, which admits of being removed for this pur-
pose When this is done, the levers and press followers are

thrown out to their original position, the cover taken off the press, and the curtain drawn back. The ginned cotion again press, and into the press, and after enough has accumulated, a second bale is compressed by a repetition of the foregoing operation.

The superiority of belting over gearing, as a mode of trans mitting the power in this apparatus, exists in its non liability to receive damage by a variation in distance between the shafts, which would cause grinding or jumping, and perhaps breakage, in geared wheels. Such variation arises from the constantly changing quantities of seed cotton in the gin house. When full the fioor beams, which alao support the upeer shafts, are deflected by the weight, and as the cotton is ginned out and the weight lessened, they recover their position. The difficulty here pointed out is obviated by the use of belts and pulleys, which have another advantage in the economy of their first cost.
As in this process the cotton goes from the gin into the priss direct, no lint room is required, and labor is saved; and as the press takes no more timber to build it than does an or dinary lint room, its cost is reduced considerably-the inventor says to less than one half that of the majority of presses now used. Ho also claims that a better sample of cotton is produced by his than by the old method, in consequence of its not having to be handled at all on its way from the gin to the press, and that the compression of the bale is accomplished in much less time for the same reason.
The press was patented, through the Scientific American Patent Agency, for the inventor, Mr. James M. Shaw, of Water Valley, Miss. Further information may be obtained by addressing Shaw \& Son, as above.

Luminous Electrical Tubes.
One of the most convenient methods of exhibiting the illuminating qualities of electricity is by means of the Geissler
tubes, which now form part of the standard apparatus of colleges and other institutions of learning. The Geissler tubeso called after the inventor, Dr. Heinrich Geissler, of Bonn, Germany-consists of a glass pipe sealed at each end, and also provided at each end with a platinum wire which proects in to the tube. The atmospheric air is exhausted from the tube, a small quantity of gas or vapor is introduced, and the tube is then sealed. When the two wires are placed in connection with a Rhumkorff coil, a stream of electrical light passes through the tube, taking various forms and col ors, which vary with the kind and density of the enclosed gas. Hydrogen yields a white light; carbonic acid, green; nitrogen, yellow, etc. The most magnificent effects can thus nitrogen, yellow, etc. The most magnifcent effects can thus
be produced. A practical application of this discovery is a
they come in contact with saccharine liquid, they germinate or reproduce the ferment.

Submarine Warfare

In 1862, Mr. Thomas Page, of London, proposed to destroy the enemy's ships by means of cannon arranged to be fired below the water line. He proposed to have water tight gun rooms constructed in the hold of the vessel, to be filled with compressed air. At the moment of firing, a valve at the port hole was to be opened, the and gun run out and discharged. Our sketch shows the plan of Page, which, we believe was never practically tried. Mr. Quick, another ingenious Englishman, has devised a torpedo which is intended to be fired below water line into the unprotected bottom of an enemy's vessel, substantially as pre viously proposed by Page. Mr. Quick has enjoyed the advantage of a prac tical trial of his invention under the auspices of the British government. The trial recently took place at Shoe buryness; but the result was not very flattering, and must have been any thing but entertaining to the specta tors who were thereby endangered.
A 10 inch gun was laid on the beach at about 5 deg. elevation, at a spot which would be covered by about 3 feet depth of water at high tide. The bore was closed at the muzzle by disk of glass fixed in a wood washe tightly soaled round the edge, while an electric wire led through the vent of the gun to a small igniting charge in the center of the base of the torpedo. The torpedo itself was a cyl inder something over five feet long with a sharp pointed head, and im mediately behind it was a space in tended to be filled with gun cotton The after part of the body contained four rockets, which were in commun
argical lamp which consists of a small glass tube and bulb The electric light is produced in thebulb, which may be in roduced into cavities for medical examination.
Attention has lately been called to another kind of lumin ous tubes, also produced by Dr. Geissler, in which luminosity Suchuced without the use of the coil and electric battery Cases, as nitrog contain small quantities of certain come luminous after being exposed to friction with any of come luminous after being exposed to iriction with any of
the well known producers of electricity, as silk, wool, cotton, or even paper ; the best, however, are catskin and prepared india rubber, which is now largely employed in the manufacture of combs, etc., and which is also used in the Holz electric machine. This mass is so very sensitive that it is
sufficient to make the tube luminous after it has passed a sufficient to make the tube luminous after it has passed a
couple of times through catskin, when it is not even touched, couple of times through catskin, when it is not even touched,
but held two or three inches distant. When a rarefied spiral glass tube was inserted in a larger plain tube, spontaneous discharges of light would continue within the former even after the luminous state of the whole length had ceased for some minutes, and the color of the light is depen dent on the quality of the traces of gas left within the spiral tube. Thus with traces of nitrogen it is darkened, very much like the tint of the aurora borealis; with hydrogen it is a light rose, with carbonic acid a bright white, and the spontaneous discharges would be of much greater intensity at a low temperature in winter than in summer. The very curious researches of Dr. Geissler may possibly lead to a clue to the wonderful phenomenon of the aurora borealis.
Another curious discovery of Dr. Geissler was that mer cury, when shaken in a rarefied glass tube, would also become luminous, and emit a strong light, so that in a perfectly dark room all objects could be distinctly seen; the color of the mercurial light could be modified by the presence of small traces of gases in the tubes. A minimum of nitrogen shows an intense red, and hydrogen a yellowish light. The capacity of mercury for producing light seems to depend on its purity, so much so that it was not luminous when it contained an admixture of tin, lead, zinc, or bismuth, but gold or silver did not affect it. It would be possible to utilize this peculiar quality of mercury for lighting up chambers filled magazines instead of using the Dary lamp

Ferment Fungi.

Dr. Engel, of Strasburgh, has ascertained that alcoholic fermentation is accompanied by the development of two different genera of fungus plants, while that of fruits embraces four kinds. These latt-r ferments are found almost always on the surface of the fruit, where they remain in a latent condition without development. When, however, the epidermis becomes cracked, or when the stem of the fruit is separated, the ferment (or its spores) comes into contact with the sacc arine juices, and the ferment is then reproduced, but always in the form of ferment and never in that of mold. Engel maintains that the alcoholic ferment exists in Nature, although the fact has been denied by others. Thus, as long as a cherry is intact, it has a particular savor; when, however, the stem is detached or the epidermis is cracked, the cherry not only changes its color, but assumes a vinous taste, and exhibits a large number of fermented cellules.
He also remarks that the ferment of bread is of a different species from the yeast of beer, and that he has never been able to germinate the spores of ferments in vegetables which contained but little sugar, or none at all; but that as soon as
cation with the igniting charge, and whose gas escaped on ation througa spiral vents designed to give rotation to the torpedo and keep its axis steady while projecting it through the water. On this occasion, the gun cotton bursting charge was dispensed with, the object being what range and direction might be obtained.
When the tiderose and covered the gun, the experiment took place. On firing, the torpedo burst open close to the muzzle of the gun, two rockets rising into the air, one of which descended again almost immediately, while the other flew high over the heads of the spectators. The condi tions governing a rocket's motion under water are even more complicated than those in air; the pressure of the gas in every case, of course, increases with the depth of water above the rocket. In fact, to obtain the full development of force without risk of bursting the case, a certain given depth is required. Success could hardly be expected to fol ow a preliminary trial on a large scale. Even supposing such an engine to be desirable, Mr. Quick's torpedo has hard ly reached the stage of development desirable for a public

page's submakine gun.
trial; the same forces which cause the ricochet of a shot in water, or, in fact, the bounds of a stone thrown by hand to skim in "ducks and drakes," would always give a submarine rocket, if it moved with a high velocity, a tendency to rise lize a Venus out of the sea.

The Number of Eggs from a Hen.-A German natural ist answers the question, how many eggs a hen can possibly lay, as follows: The ovary of a hen contains about six hundred embryo eggs, of which, in the first year, not more than twenty are matured. The second year produces one hundred and twenty; the third, one hundred and thirty-five; the fourth, one hundred and fourteen; and in the following four years, the number decreases by twenty yearly. In the ninth year only ten eggs can be expected, and thus it appears that, after the first four years, hens cease to be profitable as layers.

Products of the Osage Orange.-The wood of the hedge plant known as the Osage orane (maclura aurantica), if boiled in water, yields a handsome yellow extract, which is used in Texas as a dye. Fromit, a large percentage of tannin is also obtained. The seeds of the fruit also yield a valuable oil, abundant, bland, and limpid, resembling olive oil, and burning with a steady flame in an ordinary lard oillamp.
Mr. G. G. Prindle, of Chittenden county, Vermont, has made an experiment designed to ascertain how far soil is protected from cold by snow. For four successive winter days, there being four inches of snow on a level, he found the average temperature, immediately above the snow, 13° below zero; immediately beneath, 19° above zero; under a drific two feet deep, 27° above zero.
the natural history of the curculio. $\overline{\text { by } \mathrm{C} . \mathrm{V} \text {. } \text { RILEY. }}$
The annexed engraving represents an improvement by Dr E. S. Hnll-a well known and successful fruit grower of Al ton, Ill.-upon his device, which was illustrated in Vol. XXI. of the Scien'rific American, for catching that destructive "little Turk" known as the curculio, or, more properly, the plum curculio. It may be briefly described as an inverted umbrella, and has long been in use among the growers of stone fruit in his part of the country. Several modifications of, and improvements on, the original machine have been made, and notably one which runs on two wheels, by Mr. L M. Ward, of Benton Harbor, Mich., and one which opens and shuts, fan like, by Dr. M. M Hooten, of Ceniralia, Ill.*
All these machines work on the same principle of jarring down and catching the beetles, and they are all intended to economize time and labor in the operation. The jarring is done either by a rubber bumper attached to the machine itself, or by a separate mallet The former method was employed with the original Hull machine, but was very generally abandoned, as it was found to seriously injure
the trees by bruising. Indeed, some years ago the trees by bruising. Indeed, some years ago I became fully convinced that trees suffered too much from this bumping to make it prac. ticable, unless a shouldered spike, against which the bumping might be done, were driven into the trunk of the tree.
Dr. Hull was wont to claim that he could use his machine without injury to the trees, but the present modification of it is an evidence thatexperience has taught him different; ly. In all rolling machines, whether upon one or two wheels, when the bumping was not done by che machine itself, it had to be done by a long pole tipped with rubber, and used
by a second person. But where I have used such a pole and by a second person. But where I have used such a pole and
separately jarred the larger boughs, the trees have been separately jarred the larger boughs, the trees have been
much injured in the course of a single year's work, and, in much injured in the course of a
some instances, killed outright.
The advantages of the present modification over the others may be thus briefly stated: It costs less, and enables the operator to get close to the tree, to which he can give a sudden jar with a hatchet or hammer. This is best done by striking a screw or spike previously inserted into the trunk and purposely made with a shoulder so as to prevent driv ing; or by striking the end of a limb previously sawn squarely off. Such a hard sudden jar with an iron instrument is far more effectual in bringing down the beetles than the more subdued bumping of a rubber mallet, as it is the sharpness and suddenness rather than the force of the blow sharpness and suddenness rather than the force of the blow
which disturbs and alarms the little shy and cunning cuswhich disturbs and alarms the
tomers. we have to deal with.
The working of the machine is very well indicated in the illustration. There is a bag, d, in the center, into which the operator can brush all fallen fruit, and a bottle of cheap alcohol may be kept in the vest pocket into which the beetles should be thrown.
Let me now give you a condensed history of the pest which may be, in great part, conquered by the proper use of such machines, as such an account will not only show the philosophy of the machine, but will render it impossible for paragraphs like the following, which I clip from a late issue of the Scientific American, to find their way into your columns without comment:

CURCULIO ON PLUMS.

A correspondent says that he wraps plum trees, below the ower limbs, with cotton, which he keeps wet with campho and spirits of ammonia. He wets the cotton twice a week
and the result has been a good crop of plums and no curcu and the result has been a good crop of plums
lio. A correspondent in another journal says:
"I have seen various methods for keeping these insects off plum trees, but none so simple or yet so effectual as the following: Soak corn cobs in sweetened water until thoroughly saturated, then suspend them to the limbs of the trees a lit
tle while after blossoming, being sure to burn the cobs afte the fruit ripens, as they will be found full of the young in the fruit ripens, as they will be found full of the young in
sects. A good plan is to change the cobs every few weeks sects. A good pian is to change the cobs every few weeks.
My theory is this-that the insects deposit their eggs in the cobs in preference to doing so in the young plums. The first
season I tried it upon one or two only, and in the summer was rewarded by a good crop of as fine plums as ever ripened, while those on the other trees fell off when about half grown. it to fail."
Now, as to the first remedy, your correspondent might just as well put the cotton round his chimney, under the delusive idea that he could thus keep the flies and mosquitoes out of his house. And as to the second, if persons will hang upon their trees sweetened cobs, as above described, they will, it is true, get eggs and larvæ enough, for some kinds of ants are attracted by the sugar and are very fond of consigning their eggs to the cozy and sweet recesses which such cobs af-
ford. But they will get no eggs or young of the plum curford. But they will get no eggs or youn
culio, and of that they may rest assured.
You have the satisfaction of being in good company in tacitly giving credence to this absurdity, for the paragraph quoted has been extensively copied, and such being the case it is not to be wondered at that the deluded mortal who first hit upon the idea imagined he had made a grand discovery. Suppose a naturalist were to make the following announcement:

GREAT DISCOVERY!!!
No more chickens killed by hawks.
If gunny bags, after being dipped in diluted honey, are
hung on the top of the chicken house, the hawks in the neigh borhood will mistake them for nests and fill them with eggs. and the hawks thus exterminated.
What would be the result of such an announcement? Why every editor in the land, every ten-year-old lad, would scout the whole as a most absurd fabrication, or else consider the author hopelessly insane. And yet this suppositious announcement would not be a whit more ridiculous than is the curculio-corn-cob story in the eyes of an entomologist. Now, lask, why is it that the one announcement would be so universally considered to indicate stark staring madness on the part of its author, while the other will pass muster with the majority of well educated people? Simply because the nat

lowing manner: With the jaws at the end of her snout, she cuts just through the skin of the fruit, and, running the snout under the skin to the depth of about one sixteenth of an inch, moves it back and forth until the cavity is large enough to receive the egg it is destined to contain. She next hanges her position, and drops an eggin to the mouth of the ut; then veering round again, she pushes it by means of her snout to the end of the passage; and afterwards cuts crescent in front of the hole so as to undermine the egg and leave it in a sort of flap, her object being to deaden the flap so as to prevent the growing fruit from crushing the egg. This egg is white, oblong oval, and three hundredths of an inch long. It swells slightly by endesmosis, and may easily be crushed by the thu mb nail without injuring the fruit. The stock of determinable eggs in a female, even at the most pregnant season, seldom exceeds thirty, but doubtless ova continue to develop and are repeatedly impregnated, contrary to the more general rule in insect life, which is that a single coitus suffices for the fertilization of the ova. The period of egg depositing ex tends over two months or more, and larvæ of of all sizes may be found during the summer 8. It is single brooded, that is, but one gene ration is produced annually; and, as a rule, no female lays eggs until she has passed the win ter. I have kept specimens alive, and in a continued state of activity, over thirteen months. 9. During the beetle life, both sexes feed as long as the weather allows of activity. While fruit lasts they gouge holes in it, and after stone fruit has gone, pip fruit (apples especially) is badly attacked. At the proper season tures and gougings are instrumental in ppread ing the dreaded peach rot, by forming proper
ral history of the higher animals is taught, in its rudiments, n our schools and colleges, while that of the more lowlybut none the less interesting and instructive-generally re mains a sealed book.

NATURAL HISTORy OF THE PLUM CURCULIO
The plum curculio (conotrachelus nenuphar-Herbst) in the arva state, in which alone it is found working in the fruit a pale, yellowish, footless grub (Fig. 2, a). In the pupa tate, in which it is ound underground, the out the meme, distinctly visible (Fig. $2, b$). In the beetle o mature form, it is oughened and wart Fig. 1, c), and so colored with gray,brown,white, and black that, when esting on the rough bark of a peach or a plum tree, it almost defies detection, and when lying on a flat surface, ${ }^{\circ}$ th the legs drawn in, looks precisely like a dead bud. It of ten makes a peculiar creaking stridulation, by rub bing the tip of the abdomen up and down against the wing vers.*
To condense the history of its habits into the briefest pos sible space, let me give a series of what I know, from per onal experience, to be well tested and incontrovertible facts 1. It is more numerous in timbered than in prairie regions.
2. Under the hard wing covers of the beetle there arefold ed up two ample membranous wings, with which it can fly
nd does fly; so that cotton bandages, or other like contri and does fly; so that cotton bandages, or other like contri are utterly useless, and result from ignorance of the insect' habits and nature.
3. It does not often use its wings, however, when alarmed but has a habit, in common with many others of its class, of dropping and "playing possum" upon the slightest disturb nce.
4. It hybernates in the mature or beetle form, principally in the woods, under the bark of trees, but also in any other helter that presents, in the vicinity of the orchard. The same spring influences, which cause our orchard trees to wake from their winter rest, also rouse the curculio from its dormitory
5. From this time on, till fruit sets, these beetles are more or less active, and instinctively make their way to our orch ards, where they feed on the buds, leaves, and other tender parts of the trees. They are thus, at this early season, more requently found on the outside rows of an orchard, and es pecially on those trees nearest the woods, and they may be captured under traps long before their depredations on the ruit commence.
6. It is nocturnal rather than diurnal in its habits, ex cept during the egg-depositing season, when the female, more especially, may of ten be found at work during the day; both sexes, at that time, rest concealed on the underside of the more horizontal branches, or under whatever other shelter is fforded them in the orchard.
7 The female commences to oviposit as soon as the fruit is as large as a hazelnut. Oriposition is effected in the fol

* If carefully examined, the elytra will be found to have, on their lower apical edge, a horny, slightly raised plate, about a third as long as the whole
elytron, and transversely and obliquely ribbed by numerousparallel ridges. There is also a longer cord or carina near the sutural edge which may help
to intensify the noise o intensify the noise. The dorsal apex of the abdomen or pygidium form yellowish and roughened plate, win the sides horny and emarginate, so that when the abdomen plays up and
scrape at right angles against the rasp.
$n 2 d i$ for fu
ucedo.

10. It prefers smooth skinned to rough skinned fruit, but will mature alike in plums, peaches, nectarines, apricots, herries; in black knot on plum trees, and in some kinds of pples, pears, and quinces. There is also a larger phytopha gic variety which breeds in the rind of walnuts and hickory uts, but there is no evidence that this variety ever attacks he other fruits mentioned.
11. Varieties of the Chickasaw plum, such as the Miner the De Soto, and what is known in some parts of Missouri as the Salt Plane plum, are almost entirely exempt from its at acks.
12. It is not subject to sudden decrease or increase, as are so many other noxious insects, for the reason that it is sarcely ever devoured by birds, and has not very many insect enemies.* Yet in a clayey soil, many perish while transforming, if the weather be very hot and dry, so as to bake and heat the earth to an unusual degree; and from this cause, together with the work of its few enemies, its num cause, together with the work of its few enemies, its num is the case in the vicinity of St. Louis in the present year.
is the case in the vicinity of St. Louis in the present year.
In these twelve paragraphs, we have all the more impor
In these twelve paragraphs, we have all the more impor-
tant facts in the life history of our little Turk. Exceptions, to some of the rules stated, occasionally but very rarely oc cur.
From this history, we can appreciate the value of the cur culio catcher, as there is no other remedy against this pest but to catch and kill. This me done by the catcher and by the use of traps in the shape of pieces of bark or shingle set around the tree; and by causing all fallen fruit to be picked up regularly either by hand or by hogs.

Spectra of Gases.

M. Cailletet has investigated the influence of pressure on the spectra of gases. He fixed two platinum wiresin the end of a thick glass tube, into which the gases were passed. The spark from an induction coil connected with three Bunsen elements passed between the wires. At ordinary pressure the bright lines of the spectra of the gases appeared on a slightly illuminated ground; and as pressure was increased they grew brighter, but they by and by became merged in a continuous spectrum, whose brightness also increased with the pressure. At a certain pressure (between 40 and 50 at mospheres) the discharge suddenly ceased; and though the battery power was increased and the distance between the platinum wires reduced to $\frac{1}{2}$ millimeter, it was not possible to obtain the spark beyond this point. It is thus seen that a spark, which passes easily in the rarefied gas of Geissler tubes or the electric egg, meets with considerable resistance in com pressed gas. The brightness of the spark at the point beyond which the discharge is unobtainable is 200 times greater than at ordinary pressure
Influence of Variously Colored Light on Vegeta TION.-As the result of a series of experiments upon the in fluence of variously colored light upon vegetation, Dr. Bert has arrived at the following conclusions: 1. That green light is almost as fatal to vegetation as darkness. 2. That red ght is very detrimental to plants, though in a less degree detrimental than the preceding, it is more injurious than blue light. 4. That all the colors taken singly are injurious to plants, and that their union in the proportion to form white light is necessary for healthy growth. This does not agree with the ideas of the Commissioner of Patents, who has granted a patent to Pleasanton for the use of blue glass a an improvement in the cultivation of plants.

Courespmatemte.

${ }_{\text {Eppoitorsts. }}$

The Young Machinist's Query.

To the Editor of the Scientific American:
On page 20 of your Volume XXVII., "A Young Machinist" says: "It is hard to know that, after serving four years' ap prenticeship to my trade, I can only get $\$ 3.50$ a day for build ing and repairing an engine, while a man who has served no
apprenticeship, and is ignorant of the working of the engine, apprenticeship, and is ignorant of the working of the engine,
gets $\$ 4.50$ for running it. This, I think, is alike an injustice to the machinist and to the public," etc.
The above, boiled down, means that machinists are compe tent, and should be placed in charge of engines to run them, and no others are eligible to become engineers Many ma chinists arrogate to themselves (as mechanics) that they alone have a knowledge of the locomotive engine in all its parts, and the ability to repair the same; hence their claim to supe riority as engineers. Let us examine some of their claims The finishing, fitting and putting together the different parts of machinery can only give one a general idea of the princi ples of construction; others employed about the engine can gain this knowledge with equal facility, and what more can machinist do, out on the rcad, in the event of a break down or other emergency, than an engineer who is ignorant of the use of tools? Nothing whatever. Beyond the ordinary work belonging to their trade and the ability to set the valves of an engine, there are but few machinists who know anything about the construction of the valve gear of a locomotive en. gine or the principle upon which it operates. Many will dissent from this, but I will answer their objections, Yankee-like, by asking a question or two: What causes the lead to vary when a shifting link is used? and why is more steam used in one stroke of an engine, when worked expansively, than the other, in making one revolution?
I would call the attention of the "Young Machinist" to these queries, as he so very bitterly complains of the igno rance and incompetency of others, and I suspect his ignorance of the management of a locomotive is the causs of his being in the shop instead of out on the road. The promulgation of the idea, that a man who is unable (so far as a knowledge of the use of tools is concerned) to build a machiae is incompetent to operate or run the same, is absurd; according to this
theury, the woman who runs a sewing machine should not theury, the woman who runs a sewing machine should not
only understand the principles of its construction, but should be compelled to build it; so should the telegraph operator who presumes to run an instrument which he is unable to make, and others ad infinitum. "Young Machinist" asks:
"Is there no way to prevent railway officials from filling such "Is there no way to prevent railway officials from filling such important places with ignorant men," that is, men who are not machinists? It is well for the public, in whose behalf $h e$ appeals so pathetically, that railway officials do not stultify themselves by taking out of the shop a machinist who in charge of an engine, when they can employ a competent engineer who is not a machinist. Again, railway officials are not in the habit of paying premium rates for ignorance and incompetency, for labor is like any other commodity; it is incompetency, for labor is like any other commodity; it is
bought and sold at market rates according to quality, and said oought and sold at market rates according to quality, and said officials are generally good judges of the article, though they
are not infallible. I would ask, is there no way to prevent incompetent machinists from imposing on railway officiels? There are a good many such in the business.
In conclusion, I would say to "Young Machinist" that my acquaintance with railway officials enables me to know that they want sober, reliable, intelligent and competent men, more especially on their engines; and that there is no law preventing machinists from running engines, except the law against ignorance, and that he would display a better spirit by preparing himself to earn $\$ 4.50$ a day than by vilifying the men, as poor wretches, who are already able to earn it; for merit has its reward all the world over.
Macon, Miss.
old Fogy.
Deep Sea Soundings by Electrietty.
To the Editor of the Scientific American:
The want of a means by which the depth of water at sea for soundings) may be obtained expeditiously, certainly, and without stopping the vessel's way, howsoever fast she may be going through the water, has been long felt by seamen Doubtless many disasters, resulting in the loss of vessels,
lives, and cargoes, might have been averted had the captain taken the precaution of frequently sounding, but when run-
ning "on time," the delay of getting a fair " up and down" ning "on time," the delay of getting a fair " up and down" cast is often too great, and captains prefer to, and often do, risk setting into shoal water rather than lose the time required to sound. Of all the contrivances now in use, so far as known, to obviate the difficulty, probably Masseg's patent is the best, but even that is defective and liable to error.
Fortunately, by the aid of electricity, a ship running along a coast at night or approaching the land in thick weather may, without "luffing to" or "slowing down," keep constantly sounding and obtaining the depth of water with rapidity and precision. Indeed, should the vessel suddenly strike shoal water, the fact is made known the instant
the bottom, without wairing to haul it in
he bottom, without waling to haul it in.
It is known by experiment that a lead of a determined shape and weight, with its line attached, will sink in sea water at a certain rate per second. On getting a cast of the
lead, then, it is only necessary to ascertain the time the lead takes to reach the bottom in order to know the depth of wa ter.
This is accomplished as follows: The lead line contains a
heart composed of two insulated copper wires. The iuboard
end is connected with a small battery, and, by means of an armature, with a clock. The other end is bent to the lead.
The lead contains two insulated copper wires passing
hrough its length, the upper ends connecting with those of through its length, the upper ends connecting with those of
the line. The lower ends, tipped with platinum, are slightly the line. The lower ends, tipped with platinum, are slightly exposed beyond the surface of a false bottom or upper sec tion of the lead. The lower section of the lead act
plunger, with a play of about one eighth of an inch.
On striking the bottom the plunger is thrown up, so that a "button" on its upper surface comes in contact with the two platinum points, thus closing the circuit. This is known on deck by the instantaneous stoppage of the second hand of a clock, and the sounding of a gong attached to
he purpose of the gong being to call attention,
he clock is and second hand pivoting at the center, and long enough to reach the perimeter of the face where are marked the fathoms
corresponding to the minutes corresponding to the minutes.
Let it be supposed, for example, that a ship running along the coast at night should, at a certain hour, be, by the chart, in forty fathoms of water. The captain orders a cast of the lead and about forty fathoms of line to be used, the lead weighing say firty pounds. At the instant of heaving the lead the second hand is set in motion and commences its
regular beats; but instead of passing on to seventeen seconds, which is sean, but instead of passing on to seventenn seconds, fathoms, the gong suddenly strikes its warning, and the hand is arrested at four seconds, which is seen to correspond to ten fathoms; the captain is thus warned of his dangerous proximity to shoal water and at once hauls off.
A reel fitted in some convenient place aft should be used for reeling in the line and for keeping it in good order. The battery used is simple and inexpensive, and will keep in good working order for eight or nine months, and the clock gong, and battery may all be contained in a case not larger than an ordinary sized ship's binnacle.
Connected with the same, battery wires may be led through out a ship for signal purposes, such as for communicating with the man at the wheel, with the engine room, etc., etc. i though if the wires be greatly multiplied, the strength of the
battery must be increased in proportion.
S. B. L.

Watering Streets and Melting Snow

To the Editor of the Scientific American:

I notice, in a recent issue, a description of a new plan for watering streets, lately tried in London. Said plan consists in pipes laid close to the kerb stones.
During the very severe snow blockades which occurred in New York four and five winters ago, I proposed to lay iron pipes in the gutters near the kerb stones, said pipes to be
supplied with steam, from the boilers of steam fire engines supplied with steam, from the boilers of steam fire engines
or otherwise, for the purpose of keeping the gutters clear of or otherwise, for the purpose of keeping the gutters clear of
now and ice, and also for melting the street sno N as it might sow and ice, and also for melting the street sno N as it might be thrown to the gutters and thus run to the river by way of critic whether the pipes should remain there permanently replied "yes," as the same pipes perforated properly would answer for sprinkling the streets in summer by attaching them to the water mains. I should like to see this plan tried fixed pipes or with a moveable pipe say 100 feet long resting on small wheels or rollers to facilitate its movement and also keep it an inch or two from the pavemen
Portland, Conn.
t. R. Pickering.

To the Editor of the Summer Heat.
In your article on summer heats, you state that the mercury rises to 120° in Calcutta; this is correct so far as re gards the direct rays of the sun striking the thermometer, that the quicksilver ram a four years reside never rises above 98° when protected from the direct and indirect rays of the sun. There is, however, a difference to be pointed out between the heat of that and this country, namely that, in Calcutta it is a damp heat, making it worse to bear than a free open dry
temperature. I may add than in travelling northward to the arid country north of the Ganges where, in their seaon; the hot winds prevail, the shaded thermometer rises to over 100°; at such times the wind blows as if it had come
out of an immense oven, making it painful to face the air, out of an immense oven, making it painful to face the air
every drop of perspiration being evaporated before reach ng the surface of the skin.

Howrah.

An Optical Experiment.

To the Editor of the Scientific American:

In the Scientific American of July 13, Mr. R. B. S. ex pects that an image can be increased infinitely by photography. He is evidently neither microscopist nor photographer. the failure to realize it, simply because the material upon which anything is photographed is magnified in such a prooking degree that, for example, the moon, tele-photographed he fibers of the paper or ravines of the glass, if they could the fibers of the paper or ravines of the glass
be seen at all, which, however, is impossible.
Let us find a material the surface of which, with a photo
Leen at graph upon it, will not alter or increase under magnifying power, then only Mr. R. B. S's hopes will be realized; otber-
wise our Mr. Rutherford or Mr. Woodward had given us wise our Mr. Rutherford or Mr. Woodward had given us
ong ago photomicrographs of foraminifera, diatoms, etc., rom the chalk cliffs of the moon. Carl Meinerth.
Newburyport, Mass.
By simply scratching crossed lines on a cornelian, a white figure may be produced on a red ground.

RECIPES AND EXPERIMENTS.

The following recipes and experiments have not been practically tested by the editor of the Scientific American but are published for the benefit of readers who may desire to try them. The editor would be glad to be informed of the results of such trials.
Relieving Insect Stings.-It is asserted that the intense pain caused by the stings of insects in sensitive portions of the body may be instantly relieved by injecting into the wound a drop of a solution of carbolic acid (1 to 100) by means of a hypodermic syringe. Less prompt relief́ may be obtained by applying ammonia or tobacco juice.
Preserving Fish.-A novel though rather odd method of keeping fish fresh any length of time during hot weather or a very long carriage is to fill the mouth and gills with a paste made of bread crumbs and spirit of wine; then wrap the fish up in fresh nettles and place outside an envelope of straw. This recipe originated in France, and has been put in practice in that country with considerable success.
To Destroy foul Odors.-The foulest smells arising from inks or drains may be destroyed by pouring down one pound f green copperas dissolved in one quart of water.
To Preserve Lemons.-Lemons may be kept for any length of time by varnishing them over with a solution of shellac in spirit of wine. Query: Could the preservation be effected if the lemons were dipped in a solution of albumen or gum arabic?
To Soften Puttr.-A paste of caustic potassa, made by mixing the caustic alkali or even carbonate of potash or soda with equal parts of freshly burnt quicklime which has pre viously been sprinkled with water, will be found of value to soften putty, around window panes, to be removed when the ormer has become hard by age.
To Prevent Lead Poison - Workers in lead should wash their hands frequently in a strong decoction of oak bark, wear short hair, and, during work, cloth caps. The hand should be cleansed and the mouth well rinsed with cold wa ter before eating. The food should contain a large propor tion of fat, and milk should be taken in large quantities.
To Render Wood Incombustible.-Soak the wood for four or five days in a solution of one pound of alum and one of sulphate of copper in 100 gallons of water.
How to Mount Chromos.-Procure a stout piece of bindr's or other strong pasteboard of exactly the size of the pic ture to be mounted. To this attach the chromo with any smooth paste. Do not use glue for this purpose, as it is apt to soak through the paper. Care should be taken that the picture is laid perfectly flat, and that all wrinkles are moothed out. When nearly dry, cover the face of the hromo with a weak size made of the best white glue. Over his, when dry, lay on varnish which must be perfectly clea and pure. Chromos thus prepared will not need to be cov ered with glass for preservation
same manner as oil paintings.

The Cause of Consumption.

Dr. Henry MacCormac, of London, in a new book, puta forth the theory that tubercular disease of the lungs is caused sole ly by breathing air which has already passed through the lungs of either brutes or human beings, or air that is defi cient in oxygen. If we assume the quantity of air in the chest at about 230 cubic inches, and that from twenty to thirty cubic inches are changed and removed during each thirty cubic inches are changed and removed during each
respiration, about ten breathings will suffice to renew or exchange the gaseous contents of the chest cavity. At each in spiration, from 4 to 5 per cent of the oxygen inhaled is, or should be, replaced by about the same quantity of carbonic should be, replaced by about the same quantity of carbonic
acid, an amount which in a few hours would be represented acid, an amount which in a few hours would be represented
by an appreciable weight of solid carbon. If any portion of the inhaled air be prebreathed air, says Dr. Mac Cormac, the dead metamorphic carbon will be retained pro rata unoxidised within the organism. This effete unoxidised carbon-this detritus of degradation" being retained-speedily becomes "tubercle."
He says that without adequate ventilation we cannot possi bly get rid of the ten or twelve hundred cubic inches of carbonic acid which the lungs eliminate hourly. He has also been at some pains to obtain the average death rate from con sumption in various parts of the world. We learn from him that in the Austrian capital phthisis prevails to such an ex tent as to have been named morbus Viennensis; but he traces the cause readily enough to close stoves in stuffy chambers, to doubly glazed and padded windows, which are never opened, ventilation being entirely unthought of. A similar state of things he finds to exist nearly every where, the deaths being from 28 per cent in some parts of America to 10 per cent in Paris, while in St. Petersburg, out of 5,000 deaths, 1,900 are
occasioned by phthisis! " Double doors and windows, every interstice being carefully closed with wadded cloth or voilok, exclude the current, and, along with the close stove or petch, render stagnant utterly the stinted, breath-fouled atmosphere, effectively hindering its replacement from without, and, in fine, entailing the direful scourge of tubercle, from which no class or condition of the community finds escape.'

The Uses of Mineral Waters.

It would be a most desirable study in this country for a physician of experience in such matters to make a tour to our nost renowned mineral waters, and to ascertain, more accu rately than we can now learn, their real merits. Most of the published descriptions now extant are by proprietors, hote keepers, or those in their interest, who are only concerned to brag as loudly as possible about the virtues of particular
Certain it is that the prolonged use of any mineral water,
in health or disease, is of doubtful efficacy, and is generally directly prejudicial.
Magnesia in large quantities is objectionable, as are also lime ealts. They are liable to caust dyspepsia. It is said tha horses acquire a rough coat if supplitd with water containing large quantity of sal phate of lime. Goitre and crerinism are attributed to thrse impurities in water; at least, the facts obser ved make this reference extremely probable. The goitse appeared in the Durham jail, afflicting a large proportion of the cmvicts. The spring water with which they were sup. plied was analyzed, and found to contain 77 grains of lime and magnesia salts per gailon. On substituting for this a water containing only 18 grains of these salts, it was found that the old cases rapidiy improved, while no new cases made their appearance. It is a curious fact that in Ireland, on the Waterford side of the Suir, where sandstones and slates pre vail, goitre and cretiwism are alnost unknown, while on the Kilkenny side, where limestones abound, goitre is not un ommon.
Still, perfectly pure water is not the best for a common beverage. Every one knows that distill. d water is Hlat and insipid. It is probably not even the healthiest. Dr. Letheby one of the highest auchorities on the sanitary relations of water, considers water of moderate hardness preferable to very soft water for domestic purposes. About six grains of carbonate of lime per gatlon is desirable. He finds that the death rate is less in cities supplied with moderately hard water than in those supplied with soft water.
It is a familiar fact that it is a great advantage in making tea or coffe to use water of about five degrees of hardness that is, containing about five grains of carbonate of lime or its equivalent in the gallon. The fine flavor of tea made with such water is due to the fact that the carbonate of lime prevents the water from dissolving the astringent matter con tained in the tea, without interfering with the extraction o the theine and the other desirable constituents of the leaf. Medical and Surgical Reporter

The New Pile Drive

The American Builder (Chicago,) says that F. C. Prindle, civil engineer, has made a report of the marvellous succes of the new method of shooting piles into the ground with cannon, now in use in the Government construction of the new landing wharf on League Island, in the Dela ware. More than 800 beavy yellow pine piles, averaging ten inches middle diameter, have now been driven through mud and clay to a very hard bortom, twenty.one feet below mean low water. The machine was recured to a large scow, in the usuai manner, assisted by a small engine to hoist the piles into position.
The gun, weighing 1800 lbs , has a $6 \frac{1}{4}$ inch bore, 24 incies deep, pointing upwards, and is recessed at the lower end to, receive the head of the pile, upon which it rests.
The ram, weighing $1300 \mathrm{lbs} .$, moves in the same guides as the gun, and is provided with a piston, projecting from it lower end and neatly fitting into the hore of the gun, its upper end having a bore of greater diameter to receive a fixed piston secured to the top of the frame and thus form an air cushion to prevent its escape from the guides when the hight of its rebound is limited, as during the first blow with very long piles. The ram is caught and held at its highest ascent, and also released for the succeeding blow, by the operation of a friction brake at one side pressing it against the opprsing guide-all at the will of the operator on deck.

The operation of driving is as follows: The engine hoists the ram, gun, and pile into position simultaneously, with one movement; the brake is then applied, holding the ram in place, uppermost, and the gun and pile are then lowered to gether until the ple rests in the mud; the gun is then low ered on the top of the pile, the recess securely holding the
pile head in place direct]y underneath. pile head in place directly underneath.
A cartridge is then dropped into the gun, the operator releases the brake, and the ram falls with its piston entering the bore of the gun (which is made slightiy funnel shaped at the muzzle), and by compressing the air, exerts a gradually increasing downward pressure upon gun and pile, till the inertia of both is more or less entirely overcome, the cartridge is crushed by the piston, and ignited by the heat evolved by the sudden and severe compression of the confined air. An explosion immediately ensues, the result of which is to the reactionary pile downward, and this t to which it is thus thrown, practically. I suppose, from a state of rest The force due to the fall of the ram, and the explosive force The force due to the fall of the ram, and the explosive force
exerted to throw it again in position, are thus at once comexerted to throw it again in pile.
bined and applied to the pile.
The principal difference of effect, between this method and the ordinary hammer, appears to be just here: in the one case, the pile is already in motion when a tremendous force is suddelly brought to bear upon it in the same direction, and in the other case it receives a violent blow when at rest, and a considerab e portion of the force is expended uselessly in the destruction of the pile head itself, before its inertia is overcome and motion produced. Hence the necessity of strongly banding the pile heads in the latter case, and the ut ter absence of any necessity for their protection in the former
The ram, on its rebound, is caught and held by the brase and the operation repeated at pleasure. On January 13 h twelve piles were driven in a single bour. The piles wert all driven without the slightest injury, and none of them
 device will
american.

The Raileigh Chang and Eng
Eng and Chang, who are now living in the western twins
of this state, and one of whom is lying dangerously ill at the
present time, were born in a small village on the coast of the present time, were born in a small village on the coast of the
Siam in the year 1811. We are in posses ion of some par ticulars concerning them which may be of interest to our readers. Their parents got their living by fivaing. And until 1829, when Eng and Chang were brought to the Uui ted Scates, they made their iving by welling shell fish Their mother bore seventeen children. At onntime ehe gave birtu to three, and never less than t wo. But none of these children were deformed. While you may whisper in the ear of one without ihe other hearing, while volatile salts ap plied to the nostrils of one has no effect on the other, and while pinching the arm of one excites no sensation in the other; still, if you but stick a pin in the exact ver ical center of their connecting link, both will flinch from he hurt. These twins are seld with each other. They play a good game of draugats, make
pretty much the same moves, and at the same time, and fre pretty much the same moves, and
quently play against each other.'

Remarkable Electrical Instruments.

At a recent meeting of the Society of Telegraph Engineers in London, first and foremost among the objects of interest was Lord Lindsay's giant electro magnet, by far the largest in the world. It stood in one corner of the largest room, and nsists of several straight massive horizontal bars of sof ron, running upon whetls, and so arranged as to form a ectangle; the opeving between the pules is narrow, only a ew inches. Lord Lindsay had to jump over the bars to get into the open square space in the center, and observers stood utside watching his experiments. The magnet consists of more tban 26 ft . of iron, each bar having a sectional area of about 36 inches; we were told, says the Engineer, that it weighs about six tuns, and has fourteen geographical mile of conducting wire wound around it, the coils being then protected by outer cas ngs of wood. It was charged by means of a powerful battery, but as the Grove's battery used for the purpose is not yet completed, only one fifth the power of the magnet was, according to Mr. Varley's estimate developed at the soirée. Under these conditions, a plate of opper fell between the poles, at the rate, as nearly as w culd judge, of $\frac{1}{8}$ inch per second, this slow fall through th r being due to the mysterious action of the magneric ray pon the electrical currents which those rays induced in the copper plate. One experiment which particularly attracted the attention of the observers was that of inserting a lighted aper between its poles, where it burnt freely so long as the magnet was charged, but directly the curent was broken nd the magnetism disappeared, the taper was extinguished The induced current produced in the wire by the cersation of the magnetism when the battery current is removed is so oowerful that the shock would probably be fatal to any erson who by an unfortunate accident happened to complet circuit at the time. To guard against this, a very ola . H. Varley, which breaks the circuit gradually by introdue ing resistances varying from nothing up to infinity. 1he ing resistances varying from nothing up to infinity. The ducting wire weighs about 600 lb . to the geographical mile, and is nearly $\frac{1}{4}$ inch in thickness. We are told that the battery ultimately to be used with this magnet will consist f 150 of Grove's vitric acid cells, each platinum plate o which will expose a square yard of surface, both sides of
the plate iucluded. A battery of this colossal size has never before been constructed, nor indeed at all approached in dimensions.
All the parts of the magnet, as already stated, run upon wheels, and the front bars are governed by a screw motion o as to accurately adjust the distance between the poles.
In the course of the evening Mr. Ladd froze some mercury and the solidifird metal was allowed to fall between the poles see what diamagnetic effects would result. There were one at all so far as we could see. Most of the observers ad taken the precaution of giving their watches into the harge of attendante, lest their good time-keeping qualitie hould be destroyed by the action of the magntt upon the eel springs.
Another chief object of interest was Sir William Thom n's siphon galvanometer. The apparatus is now in practi al use for the reception of messages through the Indian cables, and it is a good instrument for registering indica ons produced by feeble electrical curr${ }^{\circ}$ nts.
Mr. C. F. Varley exhibited a battery, very useful for test ing purposes where high potency combined with extreme uniformity from day to day is of vital importance. He ex hibited 1,000 of these cells, as well as a number of condensers invented by him to enable long submarine cables to worked rapidly and continuously The sheets of tinfoi these condensers are so completely insulated that once hen they were charged with 1,000 cells and left for thre months, at the end of that time, enough of the charge re mained to give a brilliant spark. At the soirée he discharged ho condensers through a sewing needle; the steel was blow to vapor and molten globules, with a loud report and bright flash of light; some of the globules were blown to he further end of the room. Fine platinum wire was i ike manner blown into vapor, but not into globules.
Mr. Apps, the optician, exhibited a very beautiful Gassiot cascade made by him for Lord Livdsay ; the electrical stream olaced over the edges of a vase made of uranium glas
under the receiver of an air pump. He also cxhibited a vacuum tube twisted into very large lettere, consrructed of uranium glass, and exhausted to a high degree so that only $\frac{1}{8}$ inch spark was required to illuminate it: this was proved by allowing the spark to pass in air between the terminals of the coil. Mr. Apps also had on view several
of his patent induction coils; one of them gave a spark 6 inches in length, though of the siz \rightarrow only, he states, of in rrdi ary coil giving a spark of $1 \frac{1}{2}$ inch. One of the urgst use al instrumens he had on view was De Wilde's lectrical probe and forceps, as used in H. M's. military hospilals and by the Prusnians during the late war The piocit.e of the probe is that it carries within it two wires conne 12 d wilh the opposite poles of a weak battery; a currant car lot sa: inl the ends of the wires at the extremity of the probe oach the bullet; the circuit is then completed, aril by an lectromagnetic effect the existencs and position of the bullet are made known to the operator. The apparatus is ntended to make bullet extraction as easy an operation a ossible, attended by the minimum of pain to the sufferer. Among the other things which Mr. Apps exhibited wer bube containing sulphate of strontium and sulphate of barium, which remained phosphorescent many minutes after be cessation of the apar britge arrangement, giving a scalo of difforences fiom 1,000 to 1 ; there was also included a somall ivory disk acrange ment for reading off approximately very small resintances, to one millionth of an ohm.
Lord L'ndsay exhibited among other things a large induc ion coil, which gave soarks 20 inches long in air; this coil was made for bim by Messrs. O. and F. H. Varley. The las muntioned manufacturers exhibited a vacuum tube 9 ft . long, which was brilliantly illuminated. They also exhibited a pencil writing Morse instrument, for which they casimed more cleanliuess and a higber rate of speed than with an nk writer: and among their instruments was one of the vacuum lightniog protectors for submarine cables, usad to orevent lightniog, which may strike the land wire, getting into any cable connected therowith.

Suint.

In nothing is the spirit of the age more clearly shown than in the efforts made to utilize waste substances. This being done with such effect that what was formerly ot rid of with great difficulty and at considerable expense may become one of the most important objects of manufac are. We need only point to such matters as sewage, the ag of furnaces, the five coal of commerce, the waste of rites used in the manufacture of sulphuric acid, etc., as llustrations. Quite a recent instance of this improved conomy is found in the treatment of the wool of shrep. It has been ascertained that sheep derive from the soil upon which they pasture a considerable amount of potash, which ter it has circulated in the blood, is excreted from the skin with the sweat, and remains, generally in connection with his, attached to the wool. Chevreuil discovered, some tim ago, that this peculiar mixture, known by the French a saint, constitutes not less than one third the we ght of the aw merino fleece, from which it is easily removed by im mersion in cold water. In ordinary wools the suint is less the amount being about 15 per cent of the raw fleece Formerly it was considered as a kind of soap, mainly for the reason that the wool, besides this, sometimes contained abou 8 per cent, or a not inconsiderable quantity of fat. This fat owever, is usually combined with earthy matters, mostly with lime, and consequently forms a soap which is very in soluble. The soluble suint is a neutral satt arising from the combination of potash with a peculiar animal acid, of which little more is known than that it contains saltpeter. Special ffort has lately been directed to suint, in order to obtain as uch as possible of the potash eliminated from the animal much as possible of the potash eliminated from the animal
and a special industry bas been esta'lished in various por and a special industry has been established in various por
trons of the great French wool district, such as Rheims, El boos of the
Bœuf, etc.
A company purchases from the wool raiser the solution of he suiat obtained by rinsing the wool in cold water, the orice paid for it being higher in proportion as it is more con centrated. As a general thing it is maintained that a fleece weigbing nine pounds contains about twenty ounces of suint which should contain about one third part, or six to seven ouncer, of potash, although not more than five and one hal ounces are perhaps directly available.
In the wool manufactories of the towns just referred to here are neariy 60000,000 pounds of wool washed aunually he yield of ab ut $6,750,000$ sheep. This quantity should contain over $3,000,000$ pounds of pure potash. Thus, he water in which the wool is washed and which has been heretofore thrown a way, is made to yield a product, adding ppreciably to the value of the wool itself, and more than covering the cost of its treatmunt. It is, of course, not an easy matter to utilize this solution of suint on a small scale; but wherever the work is carried on by the wholesale, as it is in connection with all great manufacturing establishmenta, it will undoubtedly become a regular part of the process of manufacture.

Samuel C. Bishop

Mr. Samuel C Bishop, proprieror of the Bishop Gutta Percha Works, New York city, died here July 4th from pros ration by the heat. Mr. Bishop was for many years con +cted with the production of gutta percha goods, and in fac was one of the earliest introducprs of the gutta percha indus ry in this country, finally becinming the acis manufacturer ne of the most importac. uses of gutta percha is for elec rical insulation. The gutua percha cornred wires aud cable made by Mr. Bishop are used everywhere for submarine telegraph purposes, in miues for blasting, etc.

Signor G. A. Paequale attributes the ivjury to vegetation, by the recent eruption of Vesuvius, to the injurious effect of the chloride of sodium which falls in considerable quanti ties with the ashes.

MASTERSUN'S CANADIAN TURBINE.

Our engraving illustrates a very ingenious invention, lately patented through the Scientific American Patent Agency by Mr. W. G. C. Mastersun, of Hinchinbrook, Huntington Co., Province of Quebec. By various skillful devices, which we shall describe, he supports a water wheel and chute independently of each other, but in such a manner as to allow of their both being raised by a float, so as to do away with the use of a step. He further arranges the buckets and outside rim of the water wheel so as to form receptacles for the water in corners situated beyond the outlet slots of the rim. The water driving the wheel is water driving provided with water thus provided with water
cushions to bear against, and cushions to bear against,
the motion of the wheel is the motion of the wheel is rendered steady and continu-
ous. Another prominent feaous. Another prominent fea-
ture of the invention is a selfture of the invention is a self-
acting grate for the water outlet.

Fig. 1 is a perspective view of the complete apparatus, showing the water gate alluded to, fully raised. Fig. 2 is a sectional elevation of the same, with the gate nearly closed. A is a water cylinder on which are supported, by on which are supported, by the legs, B, the cylindrical air chamber, C, and the inner cylindrical water tube, D. E is
a horizontal pipe, through a horizontal pipe, through
which the water is supplied. which the water is supplied.
F is the water wheel, which F is the water wheel, which
consists of a disk-like plate at the bottom, an annular plate at the top (between which plates the buckets are inclosed), an d an outer rim, slotted to dis ${ }^{\mathrm{d}}$. charge the water, as shown in Fig. 1. By means of the bottom plate it is mounted on the shaft, G, in the manner shown at Fig. 3, which represents a detail section of the hub. The shaft, G, extends upward shaft, G, extends upward carries the driving pulley, I, at carries the driving pulley, I , at
its top. The upper end of the tube, H, is screwed into a nut which rests upon the bottom of a cup or chamber placed upon the top of the water tube, D. The shaft, G, passes through this cup and carries over it a collar which bears against friction rings placed within the cup. The whole of this arrangement is shown in detail in Fig. 4. The lower end of the tube, H, carries the chute, J, which is contained within the annulus of the wheel, F. There are plates in the chute which run in the same direction as the buckets in the wheel, and which guide the water into the corners formed in the buckets before alluded to. From the bottom of the water wheel is suspended an air vessel which is shown at K .

The operation is as follows: The water received from the supply pipe passes down the water tube, D, through the chute, J, into the buckets of the wheel, F, and forces the air contained in the tube and wheel into the air chamber, C, where it reacts on the water and gives additional pressure upon it in the direction of the water outlet, which is formed
by the flaring mouth of the gate, L , and the slanting top of the water cylinder, A .
The top of the water cylinder, A, is open. It is provided at the bottom with a pivot gate shown at M. Before escap. ing through the gate, L , the water rises in the cylinder, A , and by floating the air vessel, K, supports the chute, water wheel, and shaft. On making its escape, the water raises the gate, L, which is balanced by weights as shown in Fig. 1, to a hight proportionate to the power exerted ly it. By varying the area of the water outlet, by means of this gate, the power of the wheel is regulated.
The use of the water support in lieu of a step, and the provision made for water cushions in the buckets of the wheel must result in very easy motion and place the wheel under complete control. For convenience, should repairs become necessary, the chute is constructed so that it may be raised in the water tut,e above the inlet; thus allowing room for a workman to descend the tube and do what may be required. Patented March 19, 1872. Further pariculars may be obtained of the inventor at Proctorville, Vt.

Paper from wood.

Houghton's process is now being worked in England and on the Continent. The wood is cut up by mechanism into small bits, and then boiled in an alkaline solution. The pressure employed is 180 pounds to the square inch. The wood is introduced into the boiler in wire cages running upon a set of rails, so that, while one batch is being removed, another is ready for disintegration. When the boiling is completed, the ready firs pieces wood-which may be called fasces of wood small pieces of wood-which may be called fasces of wood appearance to a piece of rather coarse field rhubarb after it is cut up and baked in a pie. The material is now ready for blesching in a vat, where it is treated with chlorine pumped into the liqurr in such quantity as not to injure the fibrr ; and the operation is afterwa do completed by the use of perman-
ganate of soda. The condition of the material is that of a soft, pulpy, highly fiberous mass which, having been subjected to the action of a hydro-extractor, or, more simply, a " wring. er," comes forth in the shape of a damp fleecy mass, in which only a microscopic eye could detect the pristine wood fiber. The alkaline liquor, after the boiling, is of a clear brown color, about the tint of moderately strong tea, and is destined not to be thrown away as waste, but to be used again after the balance of the alkali absorbed by the fiber has been restored to it. This is effected by the use of sulphate of soda treated with coal as to produce a combined substance capa
ially a self-cleaning filter, in which the water leaves all its sediment behind as it bubbles up into the pure water chamber in the center of the filter. The filter is supported on central trunnions in a wooden frame, and is turned, end for end, by simply detaching the supply pipe. The valves act by their own gravity as the filter is reversed. The perforated heads, which confine the filtering material and secures the central cylinder, are loose disks held in place by the outside heads. For further particulars address H. N." Taft, 18 Lafayette Place, New York city. This filter was patented Dec 26, 1871.

MASTERSUN'S CANADIAN TURBINE

ble of restoring the necessary constituents. The material used for this purpose costs lese than $\$ 25$ per tun, and about 10 per cent of it will restore the lost alkali, for which it is substituted weight for weight-a trifling cost when compared with that of making up the deficiency with either caustic or carbonate of soda at the present prices. By this process, the liquor is made fit for reintroduction to the boiler, and on be ing removed is treated as before, so that it may be said to be constantly renewable.

REVERSIBLE WATER FILTER.
A filter that cannot be reversed, and thus made self.cleanng, is not worth much. A filter that does not allow the fil-

terea water to rise, instead of falling, into the pures water hamber, is imperfect
The accompanying engraving represents a filter adapted to all the purpostes for which fil ers are used, which is tsaen-

Sandspouts in Nevada. For several hours yesterday city, on There visible from this city, on Twen'y-two Mile Desert, five or six tall columns of sand, sucked up by as many whirlwinds. At sea these would bave been waterspouts,
but upon the desert they were but upon the desert they were only what we might call sandspouts. The columns appeared to be ten fect in diameter and one thousand feet in hight. Although they waltzed about over the plain for two or three hours, they never came together and never lost their distinctive cylindrical form, and when they did go down they went down at once-all falling todown at once-all falling together. These sandspouts are well known to all old prospectors, and seem to indicate a change of weather. We bave frequently seen in the Forty Mile Desert, east of the lower Sink of the Carson, not less than ten or fifteen of these tall sand columns moving about over the plains at the same time. It is seldom that they come together, but when they do, they dart forward like two flashes of lightning, and an ex plosion like a heavy blast ends all, and the two columns of sand at once fall to the ground. Those who have not been upon our great deserts, and have our great deserts, and have never witnessed these grand sandspouts or the wonderful
mirages, have but little idea of the romantic grandeur of these apparently uninteresting wastes of sand.-Virginia (Nevada) Enterprise.
a Waterspout in Colorado.-The spout empties itself over a carriage and drowns two persons.-A remarkable waterspout occurred on the Central City stage road, four miles above Golden city, on Sunday afternoon, July 14. The torrent of water struck a carriage containing G. Vierden, his wife, her sister, and a girl named Blood, who reside five or six mile up the cañon and were returning home. The two latteis were drowned. The body of Miss Vierden was found some three miles below the scene of the disaster, covered with sand and débris. The road was badly washed out and rendered impassable

The Planet Venus.
At a recent meeting of the Royal Astronomical Society, a very interesting communication relative to the markings on the planet Venus was read by Mr. Langdon, a " station master" on one of the English railways. It appeared that the author, wishing to devote some portion of his leisure time to astronomy, became possessed of a 6 inch silvered glass reflector with which he observed the planet Venus from May to November, 1871. At first he had some difficulty in obtaining good views of the planet, but by inserting a diaphragm of card, perforated with a fine hole by means of a red hot needle, in the eyepiece, and thus shutting off all extraneous light, he in the eyepiece, and thus shutting off all extraneous light, he
brought the planet into perfect subjection, and pursued his observations with ease and comfort. Having read some time last spring that doubts had been cast on the existence of markings on the planet, he referred to his notes and sketches and compiled from them the paper now communicated. In May, 1871, he noticed a dull cloudy mark on Venus, which was seen by some men to whom he showed the planet. One of them, a mason, declared that the object he was looking at was the " moon," and he knew it to be so, because of the dark mark upon it. On one occasion Mr. Langdon saw the southern horn rounded off, the worthern horn being quite sharp and ending in a fine needle-like point. On another occasion, both horns were sharp and pointed, and once the northern horn appeared bent and turned inwards towards the center of the disk of the planet. The appearance of the terminator is described as being jagged, very like the moon, but someis described as being jagged, very like the moon, but some-
times hazy; the author, comparing the moon's terminator to net work, said that of Venus appears like fine lace. Near net work, said that of Venus appears like fine lace. Near
the time of inferior conjunction, the dark body of the planet was well seєn. In concluding his paper, Mr. Langdon returned his thanks to Messrs. Proctor, Norman Lockyer, Browning, and others for baving sown the seed of knowledge broadca t, some of which he had picked up and endeavored to turn to account,
MARE men intelligent and they become inventive

Srientifir Gumrican.

MUNN \& CO., Editors and Proprietors. published weekly at
NO. 37 PABLSHED REEW, NEW YORK
\qquad

voL. XXVII., No. 5. [New Series.] Twenty-seventh Year
NEW YORK, SATURDAY, AUGUST $3,1872$.

changes of climate

The question whether the climate of different countries has changed since historical times can only be answered with certainty when we shall have collected correct meteorologi cal observations of several centuries. It is well known, how ever, that the invention of the tharmometer was only made in comparatively recent times, and that only since the latter part of the last century regular observations have been com menced in regard to the temperature of different localities.
Glaisher, however, claims already to be able to determine, by the observations made in England, that a gradual rise of the mean temperature is taking place there. He finds, indeed, that from 1770 to 1800, the main temperature of the year was $8 \cdot 72^{\circ}$ Centigrade; 1800 to $1829,9 \cdot 17^{\circ} ; 1830$ to $1860,9 \cdot 44^{\circ}$ According to Dove, the yearly mean temperature of Berlin, Prussia, from 1848 to 1865 , differs only $\frac{1}{10}$ of a degree from that of the 137 years before that time.
According to Professor Loomis, the mean temperature of New Haven was, from 1778 till $1820,7 \cdot 60^{\circ} \mathrm{C}$. and for 1830 to New Haven was, from 1778 till $1820,7 \cdot 60^{\circ} \mathrm{C}$. a
1865 , only $7 \cdot 52^{\circ} \mathrm{C}$., showing a gradual cooling.
865 , only $7 \cdot 52^{\circ}$ C., showing a gradual cooling.
Such results are, however, by no means reliable, because it
Such results are, however, by no means reliable, because it
cannot be proved that the instruments used during the difcannot be proved that the instruments used during the dif-
ferent periods agreed exactly; and they may have been placed in different circumstances.
If. therefore, we wish at the present day to decide if any changes have taken place in the climate during, say, twenty centuries, nothing is left but to enquire if changes have taken place in the flora and fauna of the country in question.
The fossil remains of plants and animals show the most enormous changes since geological times; indeed, changes so great as to make a climate, once tropical, at present temperate or even polar. And this suggests the que
From the fact modifications in the flora.
From the fact that in Palestine, at the present day, the vine and the date palm tree are cultivated one next to the other, as we know was the case 3,300 years ago, Arago con-
cludes that the climate there cannot have changed at all durcludes that the climate there cannot have changed at all dur-
ing that period. If ever, during that period, the mean teming that period. If ever, during that period, the mean tem-
perature had risen a few degrees, the cultivation of the vine perature had risen a few degrees, the cultivation of the vine
would at once have ceased; if, on the other hand, the mean temperature had descended a few degrees, the date palm trees would all have come to an untimely end. For similar reasons, Arago holds that the climate of Egypt, Greece, and Italy has not changed, while Biot proved the same for China, deducing it from the study of the Chinese records, which are very complete in regard to the condition of that country during past centuries.
In the meantime, it appears that several other countries show a decrease of temperature. For it is proved that in many regions of France and Germany the vine was cultivated many centuries ago where now it has been abandoned, for reason that the grapes do not attain full maturity. However we do not consider this as an argument. as the abandonment
of this culture, in localities not well adapted and which pro of this culture, in localities not well adapted and which pro duced only sour wines, is not to be wondered at when, by the
improvement in intercommunication, it became more ecoimprovement in intercommunication, it became more economical to obtain good wines from elsewhere than to make poor wines at home.
In the Alpine region, however, there are many facts which point to a gradual descent of temperature and deterioration of the climate. So it has been proved that, in the former centuries, the Alpine glaciers were less extensive than at
present. In the second half of the sixteenth century, people went to church from Wallis to Grindelwald, along a road which at present is entirely covered with ice. A chapel, which is marked on Schopf's map in 1570, was destroyed by
the glaciers in the beginning of the seventeenth century, and the glaciers in the beginning of the seventeenth century, and
its place is now covered by a glacier. The bell from this its place is now covered by a glacier. The bell from this
chapel, with the year of its manufacture cast in it, namely 1044, is to the present day preserved in Grindelwald.
At Guhannen, in the Hasli Thal, hemp used to be cultivated; this is at the present day, by reason of the early snow falls, utterly impossible.
Formerly the Engstlen Alp was covered with cattle from the 21st of June; since the beginning of this century, it is not possible to take possession before July, while the retreat in the fall must also be made some eight or ten days earlier There is also no doubt but that the upper limits of the mountain forests are many hundreds of feet lower than for mountain forests are many hundreds of feet lower than for
merly; as, high above the present limits where all fores merly; as, high above the present limits where all forest
growth is at present arrested, there are found the remains growth is at present arrested, there are found the remains
of old forests, dead trunks, enormous roots, and other re of old forests, dead trunks, enormous roots, an
lics, witnessing a prior very vigorous vegetation.
It is evident that such changes must be the result of lowering of the mean temperature of the country in general so that, so far as concerns these mountain regions, a gradual cooling appears actua!ly to be taking place.

THE CHIRONECTES PICTUS.

During the voyage of exploration of Professor Agassiz last winter to the West Indies, there was hauled on board of the Hassler one day a ball of gulf sea weed, in bulk about the Professor from the peculiar manner in which it wa rolled up. On being placed in a bowl of water, it soon became evident that the ball was a nest of some kind, but what an'mal could have made it, and to what class it be longed, was the question. This was soon settled by the mag. rifying powers of a good lens. The sea weeds were bound nifying powers of a good lens. The sea weeds wher
together by numerous little elastic threade, which were uniformly beaded; and on examination of the beads under the ens, they were found to consist of embryo fishes, and exhi bited the usual large eyes upon the side of the head and a
tail bent over the back of the body, just like the embryo of ordinary fishes shortly before hatching. Some of the beads were placed in jars, and in a few days they had hatched out and become quite lively, when the Professor was enabled to ascertain, from the study of their pigment cells, that they were the progeny of the chironectes pictus, or fish havin hand like fins.
By the favor of Captain Fisher, of the schooner Isabella we have just received, in good order, from Mr. P. W. Humphreys, of the Aransas Pass lighthouse, Texas, a specimen of these singular fishes, which, he states, was picked up from bunch of sea weed at the above place. The specimen is hree inches in length, has irregular, black stripes, and is in eed a queer looking fish
As its name indicates, says Professor Agassiz, "it has fins ike hands; that is to say, the pectoral fins are supported by a kind of prolonged, wrist-like appendages, and the rays of the ventrals are not unlike rude fingers. With these limbs, these fishes have long been known to attach themselves to sea weed, and rather to walk than to swim in their natura element. But now that we have become acquainted with heir mode of reproduction, it may fairly be asked if the most important use to which their peculiarly constructed fins are put is not probably in building their nests."

DRAWINGS OF THE PATENTS.

We are glad to beable to state that the Official $\dot{G} a z e t t e$ of the Patent Office, in which the Claims are now printed, is to e hereafter illustrated with the drawings of the patents, done on a reduced scale by the photo-lithographic process. The public will thus be placed in possession, at a cheap rate, of complete copies of the drawings of the patents, together with incomplete copies of the specifications. Part of a loaf is better than no bread, says the adage, and therefore we suppose we ought to be thankful for fragments of the patents. We trust, however, that Congress will now go a little urther and order the printing of the entire specifications compact type, now used in the Gatte now given. In the more space will be ocupio if the full about two third printed, while the work will be rendered infinitely more creditable and valuable. By the full printing of all the patcreditable and valuable. By the full printing of all the pat-
ents in this manner, applicants will be enabled to inform ents in this manner, applicants will be enabled to inform themselves readily as to what has been previously done in
any particular line of invention, much litigation will be voided, and the general business of the Patent'Office will be simplified.
a decision by the commissioner of patents.
" Where a device, though simple, saves time and labor, and not anticipated, the grant of a patent is warranted."
The above simple and reasonable proposition was laid own by Commissioner Leggett in a recent appeal to him rom a decision by the Board of Examiners-in-Chief.
It appears that George Richardson applied for a patent for nimprovement in bobbins, which consisted in simply making a couple of holes through it so that the bobbin spindle could be conveniently oiled. The primary examiner rejected the case on the ground, first, that the invention lacked utility-was good for nothing; second, that it lacked novelty, it being common, and not an invention, to make oil holes in machinery.
The Board of Examiners-in.Chief coincided with this view,
holes, as the oiling could be just as easily done by removing the bobbin from the spindle; they were also of opinion that the oil would exude from the holes and injure the yarn upon the bobbin; the holes were therefore a damage and not an mprovement
In reply to these objections, it was shown by the applicant that, in practice, the oil did not exu le, that his improvement saved time and labor in oiling and was therefore useful, and that as the examiner had bsen unable to produce a reference to a similar device, it was proper to assum ${ }^{\prime \prime}$ that it was nov el. The two conditions of patentability being thus estab lished, namely, novelty and utility, the applicant asked that the patent might be all s wed.
Commissioner Leggett granted the petition, reversed both of the decisions of the examiners, ordered a patent to be issued, and laid down for the guidance of examiners the ster ling proposition here repeated: "Where a device, though sim ple, saves time and labor, and is not anticipated, the grant of a patent is warranted."
This maxim is clear and correct. It ought to be painted in conspicuous letters, in blue and gold, upon the walls of all the apartments occupied by the examiners.in chief and the primary examiners, as a constant reminder to duty. It seem o be difficult for some of these officers to remember that their first and most important function is to assist and encourage inventors by the granting of patents. Instead of doing this, they frequently commit the folly of improperly rejecting their cases; and in the study of excuses formaintaining such rejections, they are apt to exhibit more ingenuity than is found in the invention which they reject.

AIDS TO VENTILATION

We have frequently called attention to the importance of heated flues as assistants in the ventilation of buildings, partments, etc. It is proposed in Glasgow to connect the main street sewers with the chimneys of the principal man facturing establishments, and thus to establish an upward raft from the sewers which shall carry off the foul gases hat otherwise would escape into the streets. This is prac ical and may be easily effected. The employment of chim ney drafts for such purpose is very simple and effective We observe by a paragraph in the Oneida Circular that this plan has been adopted by the Oneida Community, with com plete success, in the ventilation of their water closet apart ments. Almost every other ventilating expedient h ad been tried without really satisfactory results. But as soon as the apartments were connected with the chimney, no further trouble was experienced. One of the earliest uses of this method that we remember to have seen was at the Asylum for the Insane at Hartford, Conn., where it has been in oper ation for many years. Dr. Butler, the able superintendent of that Institution, had always experienced great difficulty n maintaining a pure atmosphere in the vicinity of the closets until he introduced pipes beneath the seats, which were made to communicate with an adjacent chimney. A draft up through the chimney was thus made, whereby the foul odors were entirely carried off.
In New York and other cities, nearly all the private dwellings are invaded by sickening odors from the sewers, which find their way up through the house drains in spite of the best arranged traps. This difficulty may be easily overcome by extending a small pipe from a point just below the usual trap into the nearest fire chimney. The pestilent gases will thus escape into the chimney instead of into the house Such connections ought to be made in every dwelling house where drain pipes are used, and the faithful architect will see that they are included in the specifications.

TESTING ARMORED TURRETS..--A REMARKABLE EX PERIMENT.

The English Board of Admiralty has recently inaugurated a series of tests for the definite determination or the merits of the turret or Monitor system as a means of harbor defence. The Glatton, the vessel selected as a target, is one of the atest specimens of British naval architecture designed by Mr. E. J. Reed, late Chief Constructor of the British Navy Her length is 264 feet, breadth 54 feet and draft 19 feet She is raised out of water 3 feet, which can be reduced to feet by flooding. Her tunnage is 2,700 tuns. Her guns are contained in a single turret which is considered the heaviest and strongest afloat.
The object of the experiment, which took place July 5, was to determine whether, by the impact of a 600 pound shot propelled by a 12 inch rifled gun, this turret could be jammed, or prevented from working. There was also to be ascertained the probable damage that might be caused to the guns and other interior fittings of the turret.
The armor plating of the latter against which the shot was to be thrown consisted of, first, one rolied covering of iron 15 inches in thickness, disposed over the circumference of the outer face of the turret in two tiers, and secured to the back ing and inner skin by four and a half inch india rubber washer-headed bolts. Behind this armor plating there is 14 inches of teak, then an inner skin formed of two six-eighth inch iron plates, and a quarter inch iron plating over the nut on the tails of the bolts holding the armor plates. The tur ret wall is further strengthened, structurally, by two hor zontal girders or frames, forming two shelves to the teak backing from the inner skin, each formed of three quarter nch boiler plate and 10 inches in depth.
The gun used was one of the 25 tun 12 inch muzzle-loading Fraser guns made at the Woolwich Arsenal. The projectiles selected were the Palliser 600 lb . shot, solid and chill headed and the powder charge was 85 lbs . large pebble. The vessel carrying the gun, the Hotspur, was moored at a distance of

200 yards from and on nearly a parallel line with the Glatton In the turret of the latter, a kid, a rabbit and a fat hen were placed to try the effects of soncassion.
The weather in Portland Roads, the locality selected, was in every way favorable. After a few trial shots, the first projectile was aimed at a mark on the extreme opper edge of the turret; but the sighting was untrue and the huge mas of iron skimmed over the top of the turret.

A second shot soon followed, striking the turret armor in its weakest part, in the center of the turret wall, upon a bolt head and upon the lower edge of the upper 14 inch armor plate at its longitudinal junction with the lower plate. It lifted the upper plate, or rather forced it upward and over the face of the backing, until its lower edge was separated from the upper edge of the lower plate to a distance of $2 \frac{1}{2}$ inches, the upper edge of the lower plate where the nho penetrated being depressed
The fracture extended upwards from the plate's lower edge in a three quarter circle form, measuring 17 inches vertically and nearly 20 inches along the plate's edge. Ocher effects of the shot's work outside the turret were seen in the broken-off head of the bolt struck, a starting apart of the plates in three longitudinal and vertical joints in the imme diate vicinity of the blow, and also a starting of the two plates between the gun ports in their vertical jointing. In side the turret, the inner end of the bolt struck by the shot was found to have driven in and fractured the inner skin or iron lining, its nut breaking off and lodging upon one of the trunnions of the starboard gun.
The depth of penetration was 15 inches. Still, with all the immense atriking force of the shot, estimated at a little over 6,100 tuns, there was no through penetration, and the turret was found to revolve with the same facility as before the shot was fired. None of the gun fittings or gear was injured in any way. The kid, the rabbit, and the hen looked dazed, but they had sustained no other injury.

The second shot fired at the turret was lower than intended, taking the glacis plate in its entire breadth, making a deep indentation and cracking the plate through. From the plate the shot struck the bottom of the turret plating, penetrated to a depth of 15 inches, and then rebounded broken up on to the deck in front of the turret. The inner skin of the turret was not even bulged. This was thought quite sufficient as establishing, in the most indisputable manner, the free work ing of the turret under the heaviest fire without much dan ger of being jammed or of damage to the gun slides. The injury.
We are indebted to the London Times for the foregoing particulars.

THE DECREASE OF OUR FISH SUPPLY.

During the summer of 1871 , Professor Spencer B aird, of the Smithsonian Institute, was authorized by Congress to examine into the state of the National fisheries and to determine definitely the question as to whether the fish indeAfter careful investigations, made principally along the Eastern shore of Massachusetts, the Professor has found that such diminution is constantly taking place, and that since 1860 fully nine tenths of the fish have disappeared from our fishing stations. This depreciation has been general, except in the matter of blue fish which, from the time of their ap pearance in 1847, have increased rapidly and are now a abundant as ever they were.
To account for this decrease, it was held by many that the food on which the fish subsisted had disappeared; and to ascortain the truth of the assertion, dredges were drawn over mussel beds, and the water in various parts of the bays and ocean was examined to see if it contained much animal life. The results obtained proved that the bivalves, crustaceans and similar creatures existed in great abundance on the bottom, while the water was literally teeming with infusoria, polyps, jelly fish and other animal matcer; thus affording positive evidence that such varieties of fish as were bottom feeders or slow swimmers had around them more food than
they could possibly consume. they could possibly consume.
Attention was next direct
Attention was next directed to the modes of destruction employed, and it was discovered that to the pound net was
due the principal part of the decrease of fish. But sixty of these nets are in use along the entire New England coast and they take almost all the fish that are captured. They have ruined the hook and line fishermen, nearly driven the fykemen out of the business, and now, having sole possession of the ground, control the supply of the market. The catch is often numerous; four men will manage a pound net with of six hours has frequently been as large as one thousand blue fish, or an equal quantity of other varieties, which realize to the net men only about a cent a pound. Professor Baird, after examining all the different devices for capturing flsh, decided that the mode above described was the most destructive in use.

The increase of blue fish is another cause to which the diminution in numbers of the smaller fry may be ascribed. The former have augmented considerably, and the oil factories having destroyed the menhaden (their natural food) in vast numbers, they have been forced to feed on killies, porgies, young weak fish, striped bass and young shad. Profersor Baird reports that these ravenous creatures fed even after they were in the pounds, and filled their stomachs with small found in were along shore andunts. He also states that, if the manufacture of menhaden oil were discontinued, the bluefirh would be astisfied with the comparatively worthless
food; but with their natural supply cut off, they have to seek support on fish that are more valuable than themselves. The world of science in general is indebted to Professor
Buird for the superb series of photograohs, some eighty in Baird for the superb series of photographs, some eighty in
number, which he has taken of the various species of fisb number, which he has taken of the various species of fish
examined by him. It has been customary heretofore to hang up the fish by a string or nail, the consequences being that its shape became distorted, and its natural pricportion and form were lost. In this case, however, each fish wa carefully laid on white paper and the camera arranged vertically above it. Then by pinning out the fins and placing a marked rule beside it, the Professor obtained an accurate photograph of the specimen, showing shape, size and char cteristica. The scientific distinctions such as lateral iines in rays and divisions of the operculum are clearly repre sented, and can be more easily examined on these photograph han on the originals themselves.
We trust that our next Congress will take measures to rrest this alarming diminution of one of the most useful and valuable of our food supplies. If we consider how largely on fish and on their capture the livelihood of that portion of population dwelling on our coasts depends, the mportance of the question will be appreciated and the necessity of some action by the General Government ap parent.

[Special Correspondence of the Scientific American.]
 LETTER FROM PROFESSOR R. H. THURSTON.

Pittsburgh, Pa., June 25th, 1872.
The Inclined Railway and the Iron City. Coal, iron, and glass production. The puddling furnaces and iron rolling mills of Pittsburgh. Cold rolled
This city of Pittsburgh is well named "the Iron City" Climbing the neighboring hills, or, better, riding up in the cars of the Inclined Plane Company, on the Birmingham ide of the Monongahela, the city, spread out below us, be ween and on both sides of the two rivers (the Monongahela and the Alleghany) can sometimes scarcely be seen through the drifting clouds of smoke from its hundreds of furnaces.
The city is really composed of three municipalities, which will probably, ere long, be united in government as they are now in interest. Pittsburgh in the middle, with Birmingham and Alleghany on either side, together make up a total of probably, 210,000 people who are principally supported by the work done here in working iron and in making glass.
iron, glass, and coal statistics of pittsburgh.
The amount of iron made in the vicinity is not great, but the amount worked into plate, bars, rails and other " uses" is at present not far trom 350,000 tuns per annum. There ar early 600 puddling furnaces here, and roll trains of suffi cient capacity to work off the product of these furnaces The total number of rolling mills is about 45 , and there are 75 founderies and machine shops which work over about 150,000 tuns of metal. The rapidity of the growth of the manufactures of Pittsburgh may be judged by the fact that the increase during the past eight or nine years, or since the ffect of the first stimulus of our civil war began to be ob erved here, has amounted to nearly 200 per cent.
The production of glass has increased in nearly an equal ratio and now employs about 5,000 workpeople.
About $150,000,000$ bushels of coal are mined near here, and the oil trade of the city foots up to about $\$ 12,000,000$, per year the furnaces.
Although there are not very many blast furnaces running hose lately erected are of large size and are fitted with every valuable improvement that may be found in leading iron aking districts at home or abroad. We visited, with the able professor of chemistry of the Western University of Pennsylvania, the Isabella furnac"s, and were exceedingly pleased with their design and the arrangement of the plant. rom the top of these great towers, which are 75 feet high nd 20 feet in interior diameter, we obtained a fine view of he surrounding country, and, riding up on the smoothly working " air hoist," made the ascent without fatigue. Each of ese furnaces is expected, when running up to its full capa ity, to make 65 tuns of iron a day.
One of the most noticeable iron mills of Pittsburgh is that f Messrs. Lyon, Short \& Co. The celebrated Sligo iron which is so well known all over the country, is made here This iron is probably not excelled by any in the world in trength, toughness, and uniformity, and "equal to Sligo" is a phrase that usually means much more than can safejy be
promised of otherirons. The ore from which this iron is promised of other irons. The ore from which this iron is
derived is found in middle Pennsylvania, among the Alle ghanies, and it is smelced and to some extent puddled at the mines. The superiority of the iron is due to the exceilence of ore and fuel, and perhaps quite as much, also, to the ex raordinary care taken, from beginning to end of every pro cess of its manufacture, to preserve it from injury by con amination with impurities or by carelessness in manipula tion. The only noticeable peculiarity in working, aside from hose mentioned, is that all iron made here goes under a ver heavy hammer where it is very carefully worked before go gh to the rolls.
We found at these mills a well selected little library for he workmen, which gave good evidence of having been generally used, and a fine collection of samples of ores and metals, also placed where the workmen could reach them. The great care taken here to secure the mose scrupulou attention in every detail, and to the importance of doing careful and honest work, is fully equalled by the care taken to raise the character of the employees, securing steady inustrious men and offering them every opporcunity to im
characteristic in some degree of those in other establish ments here, very generally are members of building associa ions, and their destre to invest their savings in real estate is ne of the most pleasing and encouraging evidences of thei atelligence and thrift.

MESSRS. JONES AND LAUGHLIN's wORES.

We had the pl-asure of visiting the mills of Measrs. Jones \& Laughlin, and of witnessing the manufacture of the cold olled shafting. After rolling their shafting hot to nearly the size required when finished, it is carefully freed from cale and the reduction to finished size is accomplished by cold rolling. The shafting leaves the rolls with a beauti fully smooth surface, perfectly round and wonderfully uni form in section, fitting Whitworth gages as accurately as the most carefully made lathe work. The most singular result of undergoing this process is a great increase in strength and stiffness, although the density is not aopreciably changed. The shafting is not rolled sufficiently to give it the im mense accession of strength and stiffness, mentioned by Sir William Fairbairn in the account of his experiments, as that, present prices, would probably be hardly remunerative; bu hafting sizes it is far stronger and stiffer than any turned ket is readily found for the ten or twelve tuns per day that comes from the rolls.
Another article of production in the cold rolling mills is the "finger bar" of mowing machines, of which immense the "finger bar" of mowing machines, of which immense
numbers are made. They are found to be stiffer and more numbers are made. They are found to be stiffer and more
perfectly elastic than steel, and to possess the additional very perfectly elastic than steel, and to possess the additional very
great advantage of being as easily worked as the best of iron. great advantage of being as easily worked as the best of iron.
The light trains of rolls in the "new mill" are driven by belts from overhead shafting-a novel method of driving rolls.
These works are very extensive, containing 83 puddling furnaces and producing from 150 to 175 tuns of metal per day, as the result of the labor, in all departments, of 2,500 men. The rail trains, making rails weighing from 8 to 40 pounds per yard (for mines), and the nail machines dispose of that part of t
The works are very conveniently arranged and the charac er of the work done in the cold rolling department is mar vellously perfect.

MESSRS. PARK'S WORES.
The steel works of Park Brothers interested us very much not in consequence of the novelty of the processes in use, bu as exhibiting another illustration of the fact, noticed at the Sligo Mills, that the most well known among manufacturers of the higher grades of iron and steel, owe their reputation to the skill and honest painstaking with which they have worked long known methods.
Here the iron is carefully chosen from among the best brands, worked carefully, and thoroughly inspected as it omes forth after each process, and none gets into market, as first quality steel, that is not really of the highest grade. Considerable quantities are made for manufacturers of den ists' tools, a use to which only the very finest and strongest of steel can be put. Every one, who has ever been so un fortunate as to fall in to the hands of a dentist, probably won ders how the art of man can produce such metal as that o which his instruments are made; slender as a needle, fre quently, yet sustaining almost the weight of the operator while cutcing the enamel of the tooth, the hardest substance ound in organic nature. Here in Pittsburgh, we learn that he condition of success in its manufacture is the combination of the highest skill with the most scrupulous attention to each detail in the process.
This firm make large quantities of "low" steel for steam boilers, and are at present making some sheet steel for th great bridge across the Mississippi at St. Louis. R. H. T.

CHEAP RAILWAYS.

The advocates of narrow gage railways in this country, who seek to adopt the three feet gage as the standard, will do well to examine the plans of Mr. Fell, who has lately constructed and put in successful operation, at Aldershot, Eng. a railway of 18 inches gage, on which siege guns of seven a railway of weight are easily transported. This railway, one mile in lengta, was constructed in 45 days. It is built on posts, in order to obtain the necessary levels, and cost $\$ 10,000$ per mile. From the accounts given, it seems practicable to do nearly as much business on an 18 inch railway of this de scription as on the 3 feet road.
The concur:ent opinion of the narrow gage people, at the recent St . Louis convention, was, that a 3 feet railway could be built for about half the coat of the 4 feet $8 \frac{1}{2}$ gage, which is the orainary meazure, and that therefore the 3 feet gage ought to have the preference.
The Wotton railway in England, 7 miles in length, having the usual 4 feet $8 \frac{1}{2}$ inch gage, cost only $\$ 7,200$ per mile. It was built for light traffic, and proves to be very serviceable. The narrow gage estimates are usually higher than the cost of the Wotton railway.
M. Harting, of Ucrecht, has designed an instrument un der the name of physometer, primarily for the purpose of endering visible and measurable the variations in the ai volume of a fish's air bladder during life, but applicable also for the determination of any changes in volume of body, such, for instance, as those of the muscles under con traction, or those of caoutchouc under extension.

IT is proposed to construct fourteen new French ships of war. Or these, two will be armor plated vessels of the first rank, and two others will be armor plated monitors.
sCIENTIFIC and practical information. cholesterin.
This curious organic substance was first obtained by Con radi in 1775, from the so-called bile stone. Its chemical com position is represented by the formula $\mathrm{C}_{26} \mathrm{H}_{44} \mathrm{O}$. It is a white, tasteless, inodorous substance, insoluble in water sparingly soluble in cold alcohol, but easily soluble in boiling alcohol which, on cooling, deposits beautiful crystaline nacreous lamince, soft to the touch and melting at $278 \cdot 6^{\circ} \mathrm{Fah}$ It is also soluble in ether, wood spirit, oil of turpentine, soap water, and neutral fats. A solution of cholesterin, in two volumes of alcohol and one volume ether, deposits, by spontaneous evaporation, laminated transparent crystals of hy drate of cholesterin ($\mathrm{C}_{26} \mathrm{H}_{44} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}$).
Cholesterin resists the action of concentrated alkaline so lutions at boiling heat, but lime decomposes it at 482° Fah. hydrogen is given off and the cholesterin converted into an amorphous fatty body, nearly insoluble in alcohol. When strong sulphuric acid is gradually added to a slightly heated mixture of cholesterin and dilute sulphuric acid, it becomes soft, acquires a deep red color, and decomposes, giving off all its oxygen in the form of water.
Cholesterin is converted by the action of nitric acid into cholesteric acid, $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{5}$
A biluary calculus, or bile stone, composed of nearly pure cholesterin and beautifully crystallized, was recently found in the smaller intestines of Mr. V. M. Griswold, a well known photographic chemist of Peekskill, N. Y. At the time of his death, this obstruction had reached an enormous size, being an inch in its smallest diameter, two inches long and five inches in its longest circumference. Mr. Griswold had been confined to his bed but four days, and died in the greatest agony.
lead glazing in stone and earthenware.
It is well known that a lead glaze has long been used as a glazing for pottery. The danger to which the workmen are subjected in its use ought, before this, to have consigned it to that limbo whence no lost art returns. The dust given of by grinding the lead oxide is breathed by the workman, is brought into contact with him as a slimy mass floating on water when he dips the pot in glazing, and he absorbs its vapors while the vessels are burning. Hence it is that potters and manufacturers of earthenware frequently suffer from lead, has been invented and used by Alois Klame free from Znaim, Moravia, Germany, which, it is hoped, will save the Znaim, Moravia, Germany, which, it is hoped, will save the lives of hundreds of workmen now sacrificed on the leaden
altar. His glaze consists of two thirds of fusible brick clay, altar. His glaze consists of two thirds of fusible brick clay,
and one third of a clay which contains a large quantity of and one third of a clay which contains a large quantity of
ocher or iron or, the whole mixed with 8 parts of ley from ocher or iron orr, the whole mixed with 8 parts of ley from
wood ashes. This glazing, although requiring a high temperature in the buraing, is so firm as to resist the action o mineral fully as well as glass. The operation is very simple and the results so satisfactory, after a six years' trial, that the process may already be called success, and not only are users of the ware safe against the insidious and cumulative poison, but the workmen too are safe from all danger in its use.

New Objection to Patent Laws.

It has been our lot from time to time to hear a great many objections, good, bad, and indifferent, against the existence of a patent law, but it could only have occurred to a Scotchman to start what we have lately become familiar with under other circumstances as "the religious difficulty." During the sittings of the late Parliamentary Committee on Patents, Mr. Macfie, the well known advocate for abolition of patent right, managed on every possible occasion to bore his colleagues on the committee, and to puzzle the witnesses by making a long speech embodying his particular views in the guise of a question. One of the persons under examination happened to use the word "steal" in reference to those persons who used an invention without paying royalty to the inventor. Mr. Macfie was down upon the unfortunate witness in the following manner (Question 2250): "You use the word 'steal,' but I think God, in His providential arrangements, has so constituted mankind that one receives the benefit of that which another discovers, and I think that the patent lawos have a tendency to interfere with those divine arrange ments; I look on the patent laws as facilitating a denial to the nation of that which in their absence they would enjoy; do you really think the word 'steal' appropriate ?' We have ventured to italacise a portion of this extraordinary "question," which places the matter in an entirely new light. With the fear of Exeter Hall before our eyes, let us remove the foul blot from our statute book without a moment's delay.-Engineering.

High Heeled Boots for Ladies.

A London surgeon, Mr. P. Hewlett, reports several cases of serious fractures of limbs indirectly caused by these heels, which had tripped up their wearers; and he refers also to the distortion and injury to the foot that they often induce. He says: "Last year I was sent for to see a young lady in one of our London hotels. She wished to consult me about her foot. On seeing it I thought its state depended upon her boots, and I asked to see them. The boots were brought in by the lady's maid, kut the only thing I could observe about them was the immensely high heels. I said: ' It is the high heels of your boots that cause the mischief, and unless you diminish them I can do nothing for you.' She became quite angry, and said she could not alter them. 'I cannot do it and will not.' Suddenly she again toned down, and said: Pray, sir, what would people say if they saw me walking
heels versus brains. If you have brains, you will cut off th heels; if you have no brains, you will continue to wea them.' She fortunately had brains, cut off the heels, and her foot got quite well."

Growth of Nails.-M. Dufour has made observations a to the rate of growth of the nails. Here are some of the results: The nails of the little fingers grow more slowly than hose of the other fingers and the thumbs. The difference is about one ninth. The mean rate of these (excluding the lit tle fingers) is about one millimeter (100th part of an inch) in ten days. The rate of growth on the thumbs is probably greater than that on the six longer fingers. There is little difference between the rates of growth in different animals, The nails grow at about the same rate on both hands. The rate of growth is not constant throughout the length of the nail; it is greater near the base. The rate of growth at th side parts is probably the same as in the middle part. Th substance of the nail advances equally throughout its breadth The rate of nail growth in an individual at intervals of several years shows sensible differences.

Delcon's Method of Obtaining Chlorine.-The pro cess consists in passing a heated mixture of air and hydro chloric acid over sulphate of copper, or over pieces of pumice or brick saturated with thesame. He finds that the action i essentially a surface action, and that there is a certain com paratively small range of temperature, between the critical imits of which the percentage of hydrochloric acid decomposed varies greatly. The velocity with which the mixed gases pass over the surface of the active material also cause considerable variation in the comparative amount of chlorine produced.
We are asked by our correspondents for the addresses of makers of round leads for pencils and for a good book on th subject, for a good printing ink at 25 cents a pound, the price of a one horse power caloric engine, where to get a mall brass engine of sufficient capacity to run a sewing machine or churn, and many other articles, for introducing which to the public our advertising columns are always open

A Novel Escape from Prison.-A prisoner in the New York city prison, possessed of some medicai kno vledge, re cently conceived the idea of producing artificial small pox for the purpose of being removed to Bellevue Hospital where he would have a good chance for escape. He touched is face over in spots with croton oil, which quickly aced pustules. He was regarded as a small pox patient by D_{5} vealis, removed from prison and sent to the hospital, whenc
duly made his escape. Four other persons confined in he duly made his escape. Four other persons confined in remanded to their cells.

LONGFELLow," the fastest racing horse in America, wa badly injured, during a race at Saratoga Springs, July 16th One of his racing shoes became twisted and cut the adjoining foot and leg. It was a three mile race, with "Harry Bassett." Longfellow had made $2 \frac{1}{4}$ miles in 3 min . and 59 sec .-the fastest time on record-when the accident occurred, and Bas sett came in one length ahead.

A patent has lately been granted to B. F. Day, of Hazle ton, Pa., for the separation of slate from coal by means of an ascending column of water. The lighter mineral is carried off by the water while the heavier, descends through the water. An apparatus working on this principle, for separa ting diamonds from other pebbles, has been in use for sever al years.

æusiuts and æersonal.

The Charge for Insertion under this head is One Dollar a Line. If the Notice
exceed Four Lines, One Dollar and a Half per Line will be charged.
Dry Steam, dries green lumber in 2 days; tobacco, in 3 hours nd is the best House Furnace. H. G. Bulkley, Patentee,Cleveland, Ohio.
The paper that meets the eye of manufacturers througnout he United States-Boston Bulletin. 8400 a vear. Advertisements 17c.a line apple Grinders-The Best Machine can be had by addressing Watson Barr, Ypsilant1, Mich.
It is better to purchase one of the American Twist Drill Company's Celebrated Patent Emery Grinders than to wish you had
anted-A situation as foreman of a boiler-shop-has had over twenty years' experience in the construction of locomotive, marine,
and stationary boilers. Has been, until quite recently, toreman of the and stationary boilers. Has been, until quite recently, toreman of the
boller-shops in a leading manufacturing establishment. Address " Boiler boller-shops in a leading manufacturing establishment. A
Maker," Rail Road Gazette, 72 Broad way, New York City.
Spring Bed, Bed Spring, Fanning Mill, and Thrashing Ma hine Mandach
Jewels for all secret societies, badges for all kinds of business, plated and lettered at wholesale prices. Die sinking, mould making. Send

Band Saw Mills.-I wish to communicate with parties en gaged in the manufacture of Band Saw Mills for sawing lumber from the round log, also with parties who have such mulls in successful oderation. R. F. Learned, Nat

Blake's Belt Studs. The best fastening for Leather or Rub ber Belts. 40,000 manufacturers use them. Grene, Iweed \& Co., 18 Par Place, New York.
ew Style Testing Machines-Patented Scales. Send for New Mllustrated Catalogue. Riehle Brothers, 9th and Coates Streets Philadelphia, Pa.
Flouring Mill near St. Louis, Mo., for Sale. See back page. Diamonds and Carbon turned and shaped for Philosophical and Mechanical purposes, also Glazier's Diam
set by J. Dickinson, 64 Nassau st..New York.
State Rights on improved Cigar Moulds for Sale. Patented
June 25, 1872. Inquire of Isaac Guthman, Morrison, White Side Co. , ills.

For Machinists' Tools and Supplies of every description, ad dress Kelly, Howell \& Ludwig 917 Morket Street, Philadelphis, Pa A traveling agent throughout Germany, Austria, and Swit The best recipes on all subjects in the National Recipe Book Post paid, \$2.00. Michigan Publishing Company, Battle Creek, Mich. The official report of the Master Mechanics' Association wil be published in full in the Raillbond Gazettr, 72 broadway, New York, beginning July 6 . Send $\$ 1.00$ for 3 months' sabscription.
We will Remove and Prevent Scale in any Steam Boiler or make no Charge. Two Valuable Patents for Sale. Geo. W.Lord,Phila., Pa. For Hydraulic Jacks and Presses, New or Second Hand, send for circular to E. Lyon, 470 Grand Street, New York.
Walrus Leather for Polishing Steel, Brass, and Plated Ware Greene Tweed \& Co 18 Park Place, New York.
For Marble Floor Tile, address G. Barney, Swanton, Vt. Upright Drills-The best in the world. Built by Hawen Machine Co., Fall River, Mass. Send for Circular.
Steam Boiler and Pipe Covering-Economy, Safety, and Du foot East 9th Street, New York-1202 N. 2d Street, St. Louis.
Three fourths saving of fuel, by the Ellis Vapor Engine (Bi sulphide of Carbon) in running
burg, Mass. To whom apply.
Old Furniture Factory for Sale. A. B., care Jones Scale Works, Binghamton, N. \mathbf{Y}
Peck's Patent Drop Press. For circulars address the sole manufacturers, Milo, Peck \& Co., New Haven. C
Steel Castings to pattern, strong and tough. Can be forged and tempered. Address Colins \& Co., 212 Water Street, New York. The Waters Perfect Steam Engine Governor is manufactured by Haskins Machine Co., Fitchburgh, Mass
Presses, Dies, and Tinners' Tools. Conor \& Mays, late Mays a Bliss, 4 to 8 Water st., opposite F
Portable Baths. Address Portable Bath Co., Sag Harbor, N.Y Brown's Coalyard Quarry \& Contractors' Apparatus for hoisting Mining, Wrecking, Pumping, Drainage, or Irrigating Machin ery, for wate or rent. See
All kinds of Presses and Dies. Bliss \& Williams, buccessors to Mays For Steam Fire Engines, address R. J. Gould, Newark, N. J. n the Wakefield Earth Closet are combined Health, Cleanliness and Comfort. Nend to 30 Dey st., New York, for descriptive pamphlet. Williamson's Road Steamer and Steam Plow, with Rubber Tires. Address D. D. Williamson, 32 Broadway, N. Y., or Box 1809 Belting as is Belting-Best Philadelphia Oak Tanned. C. W Arny, 301 and 303 Cherry Street, Philadelphia, Pa
Boynton's Lightning Saws. The genuine $\$ 500$ challenge Will cut five times as fast as an ax. A 6 foot cross cat and buck
E. M. Boynton, 80 Beekman Street, New York, Sole Proprietor.
Better than the Best-Davis' Patent Recording Steam Gauge Simple and Cheap. New York Steam Gauge Co,, 46 Cortlandt St., N. Y. For Solid Wrought-iron Beams, erc., see advertisement. Ad dress Dnion Iron Mills, Pittsburgh, Pa. . for lithograph, etc.
For hand fire engines,address Rumsey \& Co.,Seneca Falls,N.Y To Ascertain where there will be a demand for new Machin

H1OGosequweries.

[We present herevoith a series of inquiries embracing a variety of to realer or less general inerest. The questions are simple, it is true, but
1.-Hardening Soar.- What is the best thing with which harden soap?-D. D.
2.-Testing Boilers by Hydraulic Pressure.-How can I apply hydraulic power as a test to a boiler, which is intended to carr square inch ? - F. M. C.
3.-Removing the Crust of Shells.-Can any of your readers inform me how to remove the outside crust of sea shells so as to
4.-Sand Pumping.-In your article of July 13, referring to the East River bridge, you say sand was discharged at a depth of 60 fee
(removed from the caisson) by means of the air system through a (removed from the caisson) by means of the air system through a $31 /$ inch
pipe continuousily. Will some one please explain the operation of the air ystem ?-W. E. F.
5.-Metal Drileing.-With what shaped point should small drills (from one thirty-second to one fourth of an inch) be made to
make them cut the fastest and best, or to "take" into the metal most rap-
idly? I have an upright foot power drill, and usually the piece of iron to idly? I have an upright foot power drill, and usually the piece of iron to
be drilled is the same thickness as the diameter of drill. Should they be made square and sharp pointed, or flat like a cold chisel or a common twist made square
drill ?-H. v.
6.-Electrical Machine.-Are there positive and nega tive poles to the induced current of an electrical machine such as is used b dake the coil so that, when the wire bolt is out entirely, I cannot feel any
mate urrent?-R. P. P.
7.-Permanent Marks in Elfctro-Chemical Tele Graphy.-How can the marks on electro-chemical telegraph paper, which
is moistened with solution of iodide of potassium, be made permanent and the paper be protected from the action of ozone which releases the fodine coloring the papect and obliterating the marks? Should the liquid in which the paper is moistened be a saturated solution of iodide of potassium? The 8.-Rhumkorff Coil.-I want to make a Rhumkorff coil that will give a three or four inch spark. I wish to know: ist. The size
length and insulation of wire (iron or copper?) in primary coil, and whether it should be put on in one or more pieces. 2nd. Size and amountot wire (iro or copper?) in secondary circult, and how insulated? 3d. The manner of constructing condenser, and how connected to the coill. 4th. What length shall I make it? I have made several small ones, but the effect is not pro-
portionate to the a mount of material ased. So I want to proced with th portionate to the a mount of material used. So I want to proceed with th

Facts for the Ladies.-Mrs. H. B. Taylor, Putnam, ohio, has used her
Wheeler \& Wilson Lock Stitch Machine 14 years without repairs. In two weeks she earned with it 840 , besides doing her own housework; has stitche 30 yards in iess
Stitch Ripper.

Auswers to Currespmadents.

F. C., of Dayton, O., has bestowed much thought on a con trivance for repeating by sound the matter on a printed or written paper.
His first idea was to have letters printed in a conducting ink on a non conducting material, and exhibit them by pasing over the surface n mon tallic comb, connected with a wire; but he has since suggested the re-
fection of flection of an ordinary look page or manuscript on to a plate chemically
prepared, so that the writing or dark part of the reflection may etch prepared, so that the writing or dark part of the reflection may etch
through the fim to the metal: Over this etched plate, a metal comb could through the film to the metal.t Over this etched plate, a metal comb could
be passed, indicating every completion of the circuit, and the signals be passed, indicating every completion of the eircuit, and the signal
could be read from a telegraph sounder or transferred to a specially constructed instrument with a keyboard. There is much ingenuity in our
corresponetents elaboration of his side describe to correspondents elaboration of his idea, deseribed by him in in detain; but
we cannot altogether we cannot altogether agree with him in considering such an invention to
be e of vast importance and infinite advantage." Mr. F. C.'s i idea is "that a machine of this kind cound read to multertudes," but we question
whether the multitudes wonld not prefer the readily availab e enman voice, of which the language is a aready known, and which speaks without
any elaborate apparatus, however ingeniously constructed. The sent inventor proposes to accelerate our speed in walking by attaching to out feet roller skates, the roilers beeng ratcheted to prevent their going back wards; allo to mske transparent paper " "by forcing oil into the pores by
a sand blast." The use of the sand blast must be considered superfluous, as paper and textiele farbics ere only too accessisile to the eaction of greasy
matter, and no dificiculty in saturating them ans ever been found. Ano. matter, and no difitc culty in saturating them has ever been found. Ano-
ther suggestion is a plow with teeth acting in front of the machine to ther suggestion is a plow with teth acting in front of the machine to
scraten up the soll and throw it backwards, an enlarged illustration of the
 With one or two for increasing the buoyancy or shipe, for teaching draw ing, etc., show
finds exercise.
F. W. H. asks: Can you inform me what will remove the stain which nitric acid makes apon green rep? The stain is upon the
green rep covering of a sofa. Answer: There is no help for you. The green rep covering of a sofa. Answer: There is no heip for you. The
nitric acid has destroved the eigment and it annot te restore.. Stains
made by sulphuric acid on such moods can be rewo ver by ammonia. In
In made by sulphuric acid on such goods can be rewoved by ammonia. In
such cases the sulphuric acid unites with the pigment and forms a com.
 pound. When ammonia is appied, the sulphuric acid unites with the
ammonia and the pigment resumes its former condition. But nitric acid utterly destroys the pigment.
Locomotive Spred on a Down Grade.-To E. G. R.-Yes a grade could be so steep that the engine woul
speed than the steam would drive it on a level.
Propelling Canal Boats.-To R. P. P.-We have pub lished
trated.
Clearing Snow from Rallroad Tracks.-Has steam ever been. tried for melting snow on rallroad tracks? H. J. Answer: Yes
and it is found to be a rather expensive way of getting rid of the snow. To W. B., of Ohio.-The specimen you send is galena or
ard in Tin Cans.-In answer to W. H. C., query 2, page 416, Vol. XXVI..I would say that if the lard has no salt in it, tin cans are
best to keep it in. Many of the pork houses in Canada use tin cans altobest to keep it in. Man.
gether.-H. J., of Mich.
Coloring Ivory.-To E. S. H., query 3, page 26, current vol-ume.- Wash the balls free from grease, and steep for a few minutes in a dilute solution of muriate of tin; take out and rinse in clean water, and
then put them into a clear infusion of cochineal, to which a little ammo. nia has been added. When of the proper color, take out, wash and dry and poish with a piece of dry flannel.-E. н. H., or Mans Shoemaker's Ink.-To L. R., query 6, page 26, current vol-ume-Make a strong decoction of logwood, and a
quantity of chromate of potash.-E. H. H., of Msss.
CoLoring Linsed OIL.-To J. P. W., query 1, page 41 , cur ent volume.-For a red color, add alkanet root and digest with heat, brown.-E. H. H., of Mass
Skin Diseases.-C. N., query 7, page 41, current volume. In my capacity as a physician, I would say to C. . N. and his friends that it
would be ill advised on the part of any professional man to prescribe for an eruption as spoken of. Tt would be necessary to know the occupa tion of the pationt. and the possible presence of some special irritant,
the appearance of the eruption ; whether attended with much inflammation; whether ${ }^{a}$ dry and scaly character or the reverse ; the state of the
 fluenced by, constitutional causes, as well as from some mechanical or
chemical irritants. Knowing the causes and symptoms, the medical man will beable to make a correct diagnosis, and be able to prescribe with Torches for Night Fishing.-B. J. is informed that, in the Eastern States, the use of pitch pine torches has been discarded within the past few years and kerosene lamps subsututed wit mach success.
A large lantern with refector something like alocomotive head light
is is used. The fishermen \#nd it frar more convenien
fulthan the torch such as B. J. describes.-A. E.
Blasting under Water.-In answer to A. H. P., query 12 page 10, current volume, I send the following very yimple plan: Sise a a in
cartridge of proper size, with a tube of length sunfficient to bring tit above cartridge of proper size, with a tabe of length sumfcent to en ing ia
the water. Charge the cartridge through the tube, and then insert a fuse the water. Charge tie carriage throu.
and you are ready for work.-C. H. M.

Declined.

Communications upon thef ouowown subjects have been received
by the Editor, but their pubbication is respectruly deciined.
boiler Construction.-W. H. C.
Cholera and sun Spots.-J. L. N
Daily Weather Bulletin.-D.
Elegy on the late Professor Morse.-J. t. s.
Extinguishing Fires.-J. A. n.
Land Drainage.-A. S. P.
Legal Wisdom.-T. H.
The Seven Degree System.-J. B
vacuum in Casks.-X.
Weight, Pressure, etc.-B. o
aswers to Correspondents.-P. E. McD.-F. E, M.-
E. J. L.-C. O.-B. D. H.

Notes and Queries.-L, C. K.-M, McK.-J. W. S.

A Hint to the Working Man.-A man with a family, however poor A may be, © Wes is to his wife to save her health and strength in every way
ossible. He has on right to allow the mother of his children to wear hee life out toiling with her needle to colthe her family. His duty is to buy the
New Wilson Under-Feed Sewing Machine, the best machine for family New Wilson Under-Feed Sewing Machine, the best machine for family
sewing ever invented, and he can buy one for fifty dollars. More than this, he can buy the Wiston machine upon terms which enable him to pay for it In small monthly installmentst, that he can spare out of his wapes wwithout
feeling the drain. variety of family work in the most beautiful manner, a machine that eve a child can operate, and which will prove a permanent family blessing
Salesroom, 007 Broadway, N.Y.; also for sale in all other cities in the $U . S$.

Fecent Anrritan and foxcign zatents.

nent home and foreign patents.

Vexriluator.-Edward M. Greenway, Jr., of Baltimore, Md.-This in ention relates to a new ventilator and air filter to be applied in the wal
or in the windows or window trames of buildings; rangement of a box which is open to the outer air and to that within the
 Ir forhuman consumption is freed from dust, insectst, organic cells, con gious germs, and other noxious merial
PLow.-John Fox, of Oskaloosa, Iowa.-This invention is an improve
nentin the mode of attaching plows to wheeled axles and consta nentin the mode of attaching plows to wheeled axles, and consists in con
structing and arranging the parts composing the clamping device and plow coupling, so that the latter or the dratt line is below the axle; the rrangement being alsosuch that the plows can be adjusted to run deep or shallower, as desired.
 Conn-This invention furnishes an improved machine for kneading an olling dough, which is easily adjusted so as to roll the dough thick or thil as may be required; it consists of a kneading board and rollers operated
by suitable gearing. The dough is placed upon the board, which is moved backward and forward, and its thinness is determined by adjusting the rame of the machine.
base burning Cooring Stove.-Andrew J. Caywood, of Poughkeepsie .ngly shaped unper consists of an elongated fire pot and a corresponding. magazine is arranged; the other end is atilized for a series of ovens whic are placed one above the other. The lower oven has pot holes with cover In the bottom. and is directly exposed to the fire below and mas be use th
or ooking on. It also comprises a series of ovens in a case above the op of the stove case proper, which are suitable for drying purposes, and
otachable foot rest for supporting the feet to warm, receviving the drip detachable foot rest for supporting the feet to warm, re
a trough. and conducting it into the pit below the Are.
Washing machine.-Clark Turner, of Triangle, N. Y.-This invention arnishes an improved washing machine which consists of a box at th bottom of wiich 18 pivoted a rame carrying two rollers; against these th
clothes are pressed and rubbed by a revolving cylinder arranged above hem. Springs are arranged so as to hold the rubbing parts together frmly, and yet allow for varying thieknesses of clothes.
Devioe for Mending broken Spokes in Vehicle Wherls.-Andrew J,
Caywood, of Poughkeepsie, N. Y. -In this invention the broken spoke is oined by a screw threaded sleeve to one end of a screw rod or tube, the other end of which is inserte
by means of a projecting rib.
Ore Separator.-Frederik Cazin, of Frumet, Miss.-This invention re nd operating mechanism arrangement of the actuating plunger siev screened mineral rock, according to the specific gravity-that is, separating the severalkinds of pure ore from the waste rock. It consists in a plunge which is arranged parallel to a row of sieves and pivoted at one end, so hence to its free end. It also consists in arranging a slotted arm with the wrist pin of the drivingshaft and the rod that connects with the plunger that the down stroke of the plunger is quicker than its up stroke.
Windmilu.-Ovett B. Knapp, of Brandon, Wis.-This invention consists
of a windmill which is provided with a tail for keeping the wheel to the nd aud apparatus for automatically turning said tall to take the wind or not when it is desired to start or stop the mill; and also with another tail
forturning the wheel edgewise to the wind when it is to be stopped. It also onsists of a pecul.
Folding Frame for tent. - Franklin A. Guthrie, of Addison, Ohio.This invention furnishes an improved folding tent frame with sleeping
berths, which is simple and strong in construction, light, and capable of being folded in a small compass, so that it may be conveniently transporte rom place to plac
Wagon Brake.-William D. Johnston, of Harrisville, Pa.-This inven nd tongue of a vehicle in such a ma locking mechansm whe the brak iill, presses forward, the resistance of the tongue operates certain lever and connecting rods, and applies the brake with a power proportioned to he force with which the wagon presses forward. By the construction the agon can be backed win anling the be
Saw Clamp.-Thomas L. Kenworthy, of Collinsville, Ohio, assignor to mself and Armstrong Tweedy, of same place.-This improved saw clamp nd they are sprea apart, as required, at the bottom by a frame which is pivoted to one of the
upright frames and presses sgainst the other. In this way the saw is tightly clamped along its whole length, and as the arrangen
may be readily placed in a position to obtain the best light.
Iron for Whiffletrees and Neck Yokes.-James Wood, of Lockpor . Y.-This invention relates to the construction of the ferrules or caps and he ring or hooks of neck yokes and whifetrees for wagons and other ve or ferrules instead of welding them in.
Fence Panel Adjutser.-Francis M. Ranous, of Yreka, Cai.-This in ween the rails and proved device for forming an adjustable connection b_{∞} ber may be compensated. It consists in a mortised socket which is attache the post, and a hollow tenon which is fastened on to the end of the rail ne tenon is placed in the mortise of
Watoh Case Spring.-James L. Wilsen, of Woodstock, Canada.-Thi ign substances generally from finding their way through the case of the watch when the lid is opened, which object is accomplished by constructing he finger attached to the hinged case so as to makelt mill the hole in th wer plate and close it up cople
Coosing STove.-Jackson Barnes, of Burlington, Vt.. assignor to himsel and A. C. Tuttle, ot same place.-This invention relates to new and usefu
mprovements in stoves for domestic use or cooking, and conststs in such construction and arrangement of the parts that the vapor and gases gener ted in the process of cooking are not allowed to escape into the apart ment, but are conducted with the unconsumed gases to the chimney.
Gin Saw Sharpener.-James McBride, of Lilesville, N. C.-This invenGion furnishes an improved machine for fling or sharpening the teeth of gin ing so constructed as to give the proper form to the teeth and to hold the
easily moved from one tooth to another.

Process of Hardening Edae tools. - Leverett W. Stuart, Hawley, Pa.edge face thereof under pressure against a revolving smooth faced metallic

Carriage Wheel Hub.-Jesse b. Bauman, Shepherdstown, Pa.-The invention consists chiefly in the combination of a wooden hub having a cen-
tral row of spoke mortises arranged in a zig zag line, with two lateral ral row of spoke mortises arranged in a zig zag line, with two lateral
clamping plates or collars which are provided with internal tampering lugs or projections, torming when applied to the hub mortises or sockets for receiving and clamping the spokes. Thesecond part of theinvention consists In the manner of attaching the clamping plates to the hub by imbedding or ountersinking the horizontal fanges formed thereonintothe surface of the Bras
Brake for Warehouse Elevator.-Martin G. Gill and Claude L. Gill,
Baltimore, Md. -The invention consists in a peculiar mode the brake lever with a hand lever that is pivoted to the platform frame of
then an elevator, whereby a person standing thereon can apply it readily at any story or distance from the first floor
Magazine Fire Arm.-Andrew Burgess, Oswego, N. Y.-This weapon is
breech loader. The metallic or shell cartridges are inserted at the side a breech loader. The metallic or shell cartridges are inserted at the side, and elevated so as to be driven into the breech by a device operated by the
breech block. The lever gaard and breech block are formed in one piece, and the latter has lateral projections that fit and work in grooves formed he bed plece and running at right angles to each other. The cartriage ex said projections so as to be moved forward and back simultaneously with he breech block. The hammer is set by means of a small rod or bar whic connects it with the breech block. This arm is formed of few parts, and is
little liable to get out of order; it may also be cheaply constructed and is very efflcient.
Potato Digger.-Julian Farlow, Harrison, Ind.-The invention consist in a potato digger with the teeth placed in a lever frame that is arranged on the axle of a two wheeled vehicle
Mining Piok.-John Pearce, Barton, Md.-The invention consists in supporting and preventing the handle of a miner's pick from splitting, by means
of a socket, while the portion around the eye is left thick and in its full of a socket, while the portion around the eye is left chick and in
trength to take the strain of percussion without cracking the metal.
Cotron Cultivator.-Wilson Baker, Memphis, Tenn.-The invention re edious operation but must be performed once on every crop and in such way as to leave plants in a row. The invention consists in cutting away one operation a certain portion of soil from each side of a ridge by means of wo plows, and clearing the edges with scrapers, while a double circula nd revolving cutter makes two parallel lines, one on either side of th Door for Mines.-This in vention provides means whereby the doors the paing and lesving the same, thened and closed by the cars ap ation of the cars. It consists in connecting the doand labor in the ope with links that slide on rails which are fitted into the sides of the mine pas ages. A car approaching a door comes in contact with one of these link After having passed the door, the car strikes the other link and moves ahead, so as to shut the door behind it. The tracks for the links are bent a ange, to allow the links to be swung out of contact of the car when they have been moved the requisite distance.
Mathias Jensen, of Caroon Station, Wyomin. Territory, is the inventor of this improvement.
Clothes Wringer.-Thomas G. U. Fisk, of Macon City, Mo.-This in
vention consists of a novel arrangement of levers, and a weight, or spring with the rollers ; whereby the requisite pressure is obtained on the rolle and at the same time such a wide range of movement of the one roller to-
ward and from the other is allowed that the action is alike, or nearly so pon small quantities or large masses of clothes, and the increased pressur ommon to rollers governed by screws and the springs of the common a cogs is obviated. It also consists of a long cam shaped clamping rolle which is combined with the frame in such a manner as to fasten the frame the tub readily.
Apparates for Distilling.-Heinrich Druding, of Brieg, Prussia, as ignor to Ewald Schmidt, of Hudson City, N. J.-This invention relates to new distilling apparatus, which has for its object to obtain the largest prae
icable yield of spirits in the shortest time from a given quantity of mash nd which is purpose now in use. It consists in a new arrangement of mashing apparat us, rectifying column, condenser, and cooler, and various other improve ments which we have not space to describe in detail.
SwrTch STAND.-Patrick Carrigan, of Sturgeon, Mo.-This invention promandle to move the lever. It consists of a latch which is hinged to the side Fhich passes through holes in the lever and its stand. Upon raising the hinged latch by its handle, the pin is withdrawn and the lever unlocked. Upon bringing the lever ints its proper position,theholes in it and the stand
are brought in juxtaposition and the latch falls of its own weight, and the are brought in juxtaposition and the latch falls of
Cart tongue Support.-Elbert J. Weed, of Stamford, Conn.-The o cet of this invention is to provide an improved device hor supporting the ongue of the common ox-cart, and it consists in forming the support of
wo bars which are pivoted by their upper ends to the sides of a wedge aped block. This block is attached to a hanger (which is rigidly bolte oo the under side of the tongue) by a bolt or rivet, so that it can play there on or turn to the right or left. Arranged in this manner, the supports can be ording to the inclination of the cart to move and the surface of the ground When not in use,the supports are turned up to the under side of the tongue here they are held by an iron bail.
Reorprocating Stanam Engine.-Samuel Smith, of Little Rock, Arkansas,
Theobject of this invention is, if necessary, to convert the slide valve -The object of this invention is, if necessary, to convert the slide valve lacing of the main cylinder, piston, or eonnection without arresting the ction of the machine. It consists mainly of chree cylinders placed side by de. The first contains the piston proper, the second a slide valve consist ng of two disks mounted on a rod, and the third a cut off valve. When the iston proper is in action, these parts perform then nacion, it is shat togethe with thespace between the disks of the slide valve, entirely out of steam connections. Channels are opened which allow the steam to act on the
slide valve disks as on an ordinary piston, and the cut off operates as a slide valve disks as on an ordinary
slide valve in connection therewith.
Scouring Box.-Warren W. Langdon, of New Hampton, Iowa.-This in ention furnishes an improved box for containing the materials require a platform upon which the krives are scoured, while the contained couring materials are placed within easy reach.
TOTGUN.-George Stackhouse, of Mount Washington, Pa.-This inven tion relates to a new toy gun, , in which the trigger is connected with a brought to view whenever the trigger is drawn back, but withdrawn hen the triggeris let go. The child can therefore always see a target Nerdle T
Nerdle Threader for Sewing Machines.-John C. Vittum, of Pittsair of nippers, but with the handles so pivoted that the jaws are caused to jnch together with a spring. These jaws have grooves for griping th needle, situate perpendicular to the handles, and other grooves, for intro
uncing the thread, traverse them. An adjustablegage is set to act in conducing the thread, traverse them. An adjustablegage is set to act in con
nection with the needle post so as to insure the needle being griped by the frst is thus rendered sure and pasy,

Prpe Joint.- William H. Hammond, of Tipton, Iowa. - This invention re.
lates to a new manner of coupling stove, water, and other pipes at angles or in straight lines. For angular joints, the coupling consists of two flanged metal plates which are riveted to the sections of pipe by their flanges and
joined by a tubular screw at therr centers. For straight joints, a notched joined by a tubular screw at therr centers. For straight joints, a notched,
flanged ring is riveted to one section of the pipe, aud the other is provided fianged ring is rivetedto one section of the pipe, aud the other is provided flange.
Tool for dressing Mortises.-Charles E. Littleffeld, of Carver's Har bor, Mane.-This invention furnishes an improved tool which is so con-
structed as to adaptit for such work as has been heretofere done with the chisel, such as squaring mortises, etc., and it consists in a planing tool, which is formed of a stock, of approprinte size for entering the mortise, which carries the plane iron near one end and astraight handle at the other enabled to cutclose up to an angle or line.
Flour Sifter.-Thomas 1. Fontaine, of New Madrid, Mo.-This invenFLour sifter.--Thomas 1. Fontaine, or New Madria, Mo.- Misis inven-
tion urnishes an improved foor sifter, and consists of a frame and box at-
tached thereto, which latter is adapted to receive sieves of varying finetached thereto, which latter is adapted to receive sieves of varying fine-
ness; also of a cam and shaft by which reciprocating motion is given to the ness; al
same.
Washing Machine.-Jacob J. Smith and Charles b. Camp, of Middle bury, Ind.-This invention furnishes an improved washing machine which
is simple, convenient, and inexpensive; it is so constructed that it may be secured to the bottom of an ordinary washtub, and it consists in the ar rangement of corrugated rollers in a suitable frame, between which the clothes are passed to be washed.
Latch for $G_{\text {ates. }}$-George N . Sharp, of La Plata, Mo.-This invention
consists of a catch of peculiar construction which admits of various modes consists of a catch of peculiar construction which admits of various modes operation by means of a lever connected therewith. Provision is also made to work this lever from the inside of the gate by means of a spring
push bar which passes through the gate post.
Buokle.-Jerome B. R. Hardeman, of Tehuacana, Texas, assignor to himself and E. W. Foster, of same place.-This invention relates to a new
buckle, which is provided with two tongues on the same pivot, and with guard for securing the same and the straps in position, by which means mple and reliable fastening is produced
Folding Wash Basin.-Charles J. Nesbitt, of Plattsburg, Mo.-This in re made of sections of metal or other suitable substance, which are con are made of sections of metal or other suitable substance, which are con-
nected by leather, india rubber, or other fiexible material, in such a maner that the basin cau be readily folded up into a small, compact bundle thus forming a useful and convenient article for travellers and others.
Hoop.-This invention furnishes a new article of manufacture in the form
of hoops for pails, tubs, and analogous receptacles, and it consists in contructing hoop iron with semicircular cuts or tungues pointing alternaiel in opposite dyections, which tongues are indented in the wood, after the
hoop is diven on, by means of a punch and hammer. By this means the he wood. Edward Hill, of Orange, Mass., is the inventor of this improve hent.
atedut Cover.-Theodore Hyatt, of New York city.-This invention re
a new and useful improvement in covers for vault lights, whereb entilation is obtained by simply raising the cover, without removing it rom its bed plate. It consists mainly of an annular bed plate with a bar through the bar and is a cover for the same. with the under side of th cover. By means of this thumb screw the cover is fastened down, of levated so as to leave an annular aperture tor ventilation.
Cutting Apparatus for Harvesters.-Calvin D. Read, of Ayer, Mass. -In this invention the construction of fingers and finger bars for mowing machines issimphied. The bar is rolled metal, of a pecular form of cros ection, and is notehed at its front and provided with an upwardly project rom plate steel, and is so formed as to enter a notch in the bar and conform to its peculiar figure; it is fastened to the bar by screwing a nut on to its ear end which passes through the flange.
Churn.-Charles Harvey, of Cairo, N. Y.-In this invention, the asher rod of a plunge churn is connected oy a pitman and crank with a shaf carrying a balance wheel, and motion is given to the shaft by a second
crank to which is attached a vertically sliding rod. This rod is provided ith a handle above and a foot piece below by means of which the operato actuates the machine. By this construction, the churn is worked mainly by the foot and weight of the body, and the operation is, consequently, les
fatiguing than when performed in the ordinary manner.
Apparatus for Stippling Mgtal Strfaces.- Richard Dimes, of New
York city, assignor to Tiffany and York city, assignor to Tiffany and Co., of same place.-This invention is
more especially intended for stippling and dressing the surfaces of silver ware, but it is applicable to the stippling of all kinds of metallic surfaces, and imparts thereto a frosted or a matted or a brightened finish as may be
desired. The improved devlce is composed of a series of stippling points, desired. The improved devlce is composed of a series of stippling points,
made of metal or other material, which are loosely jointed to and swing made of metal or other material, which are loosely jointed to and swing from a chuck or mandrel that revolves with such rapidity as to cause the
points to fly out radially from their chuck; so that when any metallic points to fly out radially from their chuck; so that when any metallic
surface is brought into contact with them it becomes indented or stippled by their action.
Preserving Meats, Fish, etc.-Bartolomé Mosquera, of Santiago,
Chili.-This invention provides a chemical solution by the use of which Chili.- This invention provides a chemical solution by the use of which
meats and fish are preserved in a fiesh condition for any length of time. The meat may be either kept immersed in the liquid, or dried after an immersion of some hours.
Adtomatic Fan.-Joseph Ménonval Belcour, of Paris, France.-In this nvention spring mechanism is placed within a box and is employed to pro-
duce vibratory motion in a tube which projects from the center of its top. A ran is held in the tube and by its waving motion cools the air in its vicinity.
Knitting Machine Nerdles.-Nathan H. Baldwin, Laconia, N. H.Chis invention consists in certain improvements in the construction of knitting needles, by which their bulk is reduced so as to make them capable of
doing finer work than ordinary.
Process for Printing Fabrics.- Edouard A. D. Guichard, Paris, sorts, such as silk, wool, cotton, hemp, flax, etc., whether they are woven in combination with one another or separately, and it consists in the addition of certain compounds to the ordinary colors, by the aid of which they can be imprinted direct, without previous preparation of the fabrics, or after
washing and fixing of the colors.
Wind Wherl.-John Wirnek, Lake Mills, Wis.-This invention consists of a vertically revolving wheel on a horizontal axis, with the vanes or blades on the spokes, which are pivoted so as to turn on their own axes.
The spokes are arranged tangentially to a circle which is considerably larger than a grooved hub at the center, and they have segmental toothed arms at right angles to them, on theinnerends, which gear with said hub. This hub is connected with two fans at the tanl, which are forced together when the Wind is strong, in such a manner as to turn the blades of the wheel to receive
less wind. When the wind is slack, the blades are moved outward by a weight.
Thread Guard and Cuttrr for Spools.-Lewis P. Laffray, Amsterdam, N. Y.-In this invention a small flat plate of metal is fastened by prohe periphery of the spool and a clip on its face, which are so arranged that the end of the thread may be readily held by them so as to prevent unwinding. The device also operates as a thread cutter or breaker
Ring Twine Cuttrr.-Lewis P. Laffray, Amsterdam, N. Y.-This invention furnishes an improved ring twine cutter which is designed to be worn
on the forefinger of the left hand. It consists in pivoting a curved knife or cutter in a groove of the finger ring. and providing the same with a spring nd thumb pieee by which it is raised out of the groove and brought into
position for ase.

Moxdina Machine.-James S. Dewing, Orange, Mass.-This invention
onsists of an ingenious combination of a revolving table with a horizontal and two vertical catters, all of which are adjustable; by means of which
urved work can be turned in ogee form, or with any kind of grooves on eface, and various other operations performed which cound cuthe old apparatus. The
Chain Propeller for Canal boats.-Edwin t. Ligon, Demopolis, Ala.-This invention relates to endless chain canal boat propellers, and has
special reterence to the mode of forming the buckets and applying them to pecial reterence to the mode of forming the brock buckets are composed o Short sections of rubber tubes enclosed in metal tubes. The rubber tube i ound or secured to the cable by means of wire, or other suitable means
and the metal tube, which is of the same length, is formed with an interna screw thread and screwed upon the rubber tube, thus forcing the rubber to take a firm hold of and adapt itself to the form of the cable, so as to retain its position while passing through the water. The metal tabe or cylinder also protects the
Water Meter. - William Van Anden, Poughkeepsie, N. Y.-This inven- $_{\text {- }}$ on consists in combining, with the water wheel or a meter, an auxiliar he speed regulated without incurring loss of time in setting them to corre spond with the measuring and recording apparatus. It also provides water passage to the upper journal and its bearing, by which the same ar bricated, and simplites the construction generaly
Car Coupling.-Alfred J. Jourde, Houston. Texas.-This invention fur ishes an improved car coupling, which is so constructed as to couple the hen upon the track, and uncouple them automatically should one or mor of the cars run of the track or capsize.
Bustle.-Amos W. Thomas, Philadelphia, Pa.-This invention improve cone construction of bustles or tournures of the class in which horizontal
ows are connected with a continuous or circular rim, and consists, mainly the arrangement of braces for supporting the bustle upon the hips of the

Machine for Molding Flower Pots and other Pottery. - Friedrich errmann, Milwaukee, Wis.-This invention relates to improved apparatu machine constructed so as to form the flower pot by the action of a mold and plunger, which latter is operated by a lever. A movable bottom, in
Arch B a new manner of stiffening the two halves of the arches in an arch bridge, and to the proportionate distribution of the weiglt over the same. The im chord near the end of the bridge, and certainly within one third of the span by a strut tie or crown brace, which is again connected by diagonals with rigid uprights. By this construction two trusses are combined with the
aaturalsupporting line of the arch, and the material and cost reduced. Plow.-Glover G. Foreman, Stockton, Ga.-This invention pertains to t combination of a notched or perforated adjusting bar with the plow or
hovelstandards and a cross bar, which latter is pivoted to the draft beam, o that, when it is turned on its pivot, the standards, and with them the plows or shovels, are turned to keep them in proper position with referenc to the line of motion or the desired operation on the soil. The arrangemen appears to be effective as well as simple.
Musical Instroment,-William Standing, Sr., Du Quoin, Ill.-This in ention consists of a musical instrument in which the sounds are produce necks at one end and are closed at the other; they are graduated in size and ength. It also consists in tuning them by means of glass stoppers or plugs, with which their ends are closed, and by which the length of the tube is de ermined.
Spirtoon. - John Hillin, Poughkeepsie, N. Y.-This invention furnishes an mproved spittoon which is simple in construction and convenient in use it is made without any hole in the side, and with the conical or funnel shape being spilled, should it be overturned.
hot air Furnace. - Johnston Mealey, Ogdensburg, n.Y.-This invention is an improvement in hot air furnaces made principally of brick, nore especially upon that patented by John Gwynn. May 8, 1869. It consists in so
arranging the heating and combustion chambers, etc., that the cold air is ivided in to two currents, one of which passes up through the center of the iurnace, and the other between the outer and inner walls, after which they
unite in an inner chamber, between two combustion passages, before being discharged.
Track Detaching Whiffletree.-Robert P. Sims, Mexico, Mo.-This invention relates to a new whiffletree attachment for suddenly disconnect-
ing the traces in case the horses run away or become shy. It consists in ccking a combination with the whimetree or a pivoted trace holder and spring locking lever that, by pulling the lever, the trace holder is released and
swings around its pivot, thereby instantly detaching the outer trace; the whifletree then swings round and becomes detached from the inner trace. Dovgh Mixer. - William Edward Damant, of West Hoboken, N. J.-This nvention relates to a new machine for properly mixing, agitating, an
shaking dough and paste for bakers or confectioners. It consists, flrst, it the use for the mixing purpose of two screws, which revolve in opposite
directions and are twisted in reverse order, so that they not only agitate directions and are twisted in reverse order, so that they not only agitate,
but feed the matter to be acted upon. The invention also consists in the but feed the matter to be acted upon. The invention also consists in the
use of a sliding platform, upon which the dough is discharged by the screws and which is so lightly supported on rollers that it is moved ahead by the dough emerging from the machine.
Clotress Dryer.-Anson W. Phillips, of Fairfield, N. Y.-This invention
furnishes an improved clothes bar or dryer, which is so constructed that it may be conveniently and compactly folded up out of the way, even without taking down the clothes; it consists in the following construction: A hol-
low standard is supported by two cross bars at its bottom, to which it is pivoted. A vertical iron rod is inserted in the top of the standard, and on it are placed, one above another, sleeves from which the arms to carry the
clothes project. By this arrangement the lower cross bars and the arms, clothes project. By this arrangement the lower cross bars and the arms,
with the clothes on them, may be turned in any required direction so as to With the clothes on them, may be tur
dry the clothes or be out of the way.
Deviof for preventina bacillash in Mills.- Alexis B. Rider, of Fairmills and other machinery, wherever it may be requred, to the shaft by means of wooden springs, in such a manner that the springs take up the backlash and thereby avoid the irregularity due to the positive connection of such wheels. Wood springs are much better for this particular use than metal springs, because, as they are not required to yield so much as to de-
maud the greater elasticity of metal, the greater resistance of the wood aud the greater elasticity of metal, the
against breaking force is made available.
Floral Ornament.-Henry James Rogers, St. Denis, Md.-The invention consists in a metallic flower holder with one or more compressible soft metal tubes and firmly held.
Car Coupling.-Samuel K. Paden, Pulaski, Pa.-The invention consist a car coupling provided with a reciprocally fastening and double graplateral play adapting it to curves.
Combined Hrader Threshrrand Separator. - John H. Robbins, Bethel header which is braced against backward motion while it is allowed an up ward front and side movement through a double joint, in connecting with an extension of the header a very simple mechanism which places said header
under the complete control of the driver, and finally in means for exactly adjusting the throw of the rod which connects the pitman with the cutte
bar, so as to prevent said rod from bamping asingt the

Practiad Iilits to invantors.

M UNN \& CO., Publishers of the Scientific American, ant in this and foreign countries. More than 50,000 inventors have availed themselves of their services in procuring patents, and many millionso dollars have accrued to the patentees whose specifications and claims they
have prepared. No discrimination against foreigners; subjects of all coun-

How Can I Obtain a Patenc:

the closing inquiry in nearly every letter, descrtoing some invention Which comes to this offlice. A positive answer can only be had by presenting
complete application for a patent to the Commissioner of Patents. An pplication consists of a Model, Drawings, Petition, Oath, and full Specifica tion. Various oftlial rules and formalities must also be observed. The e inventor to do all this business himself are orcess. After great perplexity and delay, he is usually glad to seek the aid
of persons experienced in patent business, and have all the work done over ajain. The best plan is to solicit proper advice at the beginning. It the parties consulted are honorable men, the inventor may sately confide his
ideas to them: they will advise whether the improvement is probably pat.

How Dan I Best secure MIy Invention?

This is an inquiry which one inventor naturally asks another, who has had
some experience in obtaining patents. His answer generally is as follows ome experie
Sonstruct a neat model, not over a foot in any dimension-smaller if pos Sbe-and send by express, prepaid, addressed to MONN \& Co., 37 Park Row
New York, together with a description of its operation and merits. On re eelpt thereof, they will examine the invention carefully, and advise you as to its patentability, free of charge. Or, if you have not time, or the means at
hand, to construct a model, make as good a pen and ink sketch of the improvement as possible, and send by mail. An answer as to the prospect of a
patent will be received, usually by return of mail. It is sometimes best to patent will be received, usually by return of mail. It is sometimes best to
ave a search made at the Patent ofllce; such a measure often saves the cos

Preliminary cixamination.

In order to have suon sear With in your own words, and a pencil, or pen and ink, sketch. Send these uetime will receive an acknowledgment thereot, followed by a writ ten report in regard to the patentability of your improvement. This specia
search is made with great care, among the models and patents at Washing

To Make an Application for a Patent.
The applicant for a patent should furnish a model of his invention, it sus
ceptiole of one, although sometimes it may be dispensed with; or, if the in of which his composition consists. These should be securely packed, the iaventor's name marked on them, and sent by express, prepaid. Small mod els, from a distance, can often be sent cheaper by mail. The safest way to
eemit money is by a draft, or postal order, on New York, payable to the o remit money is by a draft, or postal order, on New York, payable to the or-
der of MUNN \& Co. Persons who live in remote parts of the country can nsually purchase drafts from their merchants on thetr New York corres pondents.

Caveata.
Persons desiring to file a caveat can have the papers prepared in the shor ment fee for a caveat is \$10. A pamphlet of advice regarding applications or patents and caveats is furnished gratis, on application by mail. Addres MUNN \& Co., 87 Park Row, New York.

Rieismamb.

A reissue is granted to the original patentee, his heirs, or the assignees o the entire interest, when, by reason of an insumicient of defective sp ton, the original patent is invalid, provided the error has arisen from inad verten
tion.
A patentee may, at his option, have in his reissue a separate patent tor Ach distinct part of the invention comprehended in his original application by paying the required fee in each case, and complying with the other re-
quirements of the law, as in original applications. Address MUNN \& CO. 37 Park Row, for fall particulars

Rejected Casem.

Rejected cases, or defective papers, remodeled for parties who have made Address MUNN \& Co., stating particulars.

Trademarks.

any person or irm domichedinthe Unted states, or any irm or corporktion residing in any forelgn country where similar privileges are extended tection. This is very important to manufacturers in this country, and equal ly so to foreigners. For fall particulars address Muna \& Co., 37 Park Row New York.

Design Patentr.
Foreign designers and manuracturers, who send goods to this country, may Iabricating or selling the same goods in this market.
a patent for a design may be granted to any person, whether citizen or alien, tor any new and original design for a manufacture, bust, statue, altorelievo, or bas relief; any new and original design for the printing of wool-
en, silk, cotton, or other fabrics; any new and original impression, ornament, pattern, print, or picture, to be printed, painted, cast, or otherwise placed on or worked into any article of manufacture.
Design patents are equally as important to citizens as to foreigners. For tull particulars send for pamphlet to MUNN \& Co., 37 Park Row, New York.

European Patenta.

MONS \& Co. have solicited a larger number ot European Patents than
any other agency. They have agents located at London, Paris, Brussels Berlin, and other chief cities. a pamphlet pertaining to foreign patents and the cost of procuring patents in all countries, sent free.
MUNN \& Co. will be happy to see inventors in person, at their office, or to
advise them by letter. ln all cases, they may expect an honest opinion. For avise them by letter. In anl cases, they may expect an honest opinion. For
such consultations opinions and advice, no charge is made. Write plain do not ase pencil, nor pale ink: be brief.
and strictly conf
procuring extensions, dring to patents, such ss conducting interferences of patents, etc., special care and attention is given. For information, and for
pamphlets of instruction and and pamphlets of instruction and advice,

Address

MUNN \& CO.,
 PTBLISHERS SCIENTIFIC AMERICAN,
 g\% Park Rhow, Now York.

office in washington-Corner F and 7 th streets, opposit

$\frac{\text { Writing implement, J. Pusey.................. }}{\text { sLHEDULE OF PATEN' FFKES: }}$

For Copy of Craim of any Patent ts8ued within 30 year
as the Claim covers,trom
The tull Speciffcation of any patent issuedsince Nov. 20, 1866 at whitch na
otice Patent oftce commenced printing them....................... $\$ 1 \cdot 25$
Actal Coptes of Drawings of any patent issued since 1836, we carn sulppip
at a reasonable cost, the price depending upon the amount ar laber
at a reasonable cost, the prcce depes
involved and the number of vietos.
Full information
BITUNN 20 .
Patent solicitors. 3y Park Reow. Now Woxik.
Inventions Patented in England by Americans. [Compiled from the Commissioners of Patents' Journal.]
From June 28 to Joly 4, 1872, inclusive.
Bedstend.-M. H. Glassie, J. C. Nash. G. A. Arms. Washington, D.
Brake.-G. Westinghouse, Jr. (of Pittsburgh, Pa.), London, England. Cambra Stand.-E. P. Spahn, Newark, N. J.
Lrvelisa - Man. Kenyon, New Britain, Conn.
Osciliativa Enains.-J. Robertson, Brooklyn, N. Y.
Shor Natl.-T. H. Fuller, Boston, Mass.
Sizing Paper, erc.-J. McC. Dorlan, Ea
Spare Arrister.-W. McK. Thornton, St. Louis, Mo.
Sterl.-G. Ames, Rochester, N. Y.
Tox.-W. W. Rose, New York city.

FOREIGN PATENTS---A HINT TO PATENTEES

It is generally much better to apply for foreign patents simultaneously with the application in the United States. If this cannot be conveniently
done, as little time as possible should be lost after the patent is issued, as the laws in some forelgn countries allow patents to any who first make the application, and in this way many inventors are deprived of valid patent Or their own inventions. It should also be borne in mind that a patent is issued in England to the first introducer, without regard to the rights of the
real inventor; therefore, it is important that all applications should be entrusted to responsible agents in this country, who can assure parties tha their valuable inventions will not be misappropriated. The population of Great Britain is $31,000,000$; of France, 40,000,000; Belgium, 5,000,000; Austria $38,000,000$; Prussia,
$4,000,000$: and Russia, $70,000,000$. Patents may be secured by American citizens in all ot these countries. Mechanical improvements of all kinds are always in demand in Europe. There will never be a better timethan th present to take patents abroad. We have reliable businese connections with the principal capitals of Europe. A large share of all the patents se
cured in foreign countries by Americans ara obtained through our Agency Address

MIUNN \& CO.

3g Park Row, N. Y
Crculars. witt full intormation on foreren nateuts, farnished free.
The new patent law in Canada permits Americans to take patents the The new patent
on favorable terms.

Value of Extended Patents.

Did patentees realize the fact that their inventions are likely to be more ull term tor which their patents were granted, we think more would aval themselves of the extension privilege. Patents granted prior to 1861 may be xtended for seven years, or the benefit of the inventor,or or his heirs in cas fthe decease of the former, by due application to the Patent Office, ninet days beiore the termination of the patent. The extenied time inures to
the benefit of the inventor, the assignees under the first term having no rights under the extension, except by special agreement. The Governmen fee for an extension is $\$ 100$, and it is necessary that good professional service
be obtained to conduct the business before the Patent Otlce. Full informa. be obtained to conduct the business before the
tion as to extensions may be had by addressing

MUNN \& CO.. 3y Partr Row, N. Y.

new patent law in canada

By the terms of the new patent law of Canada (taking effect September 1st 1872) patents are to be granted in Canada to American citizens on the mos avorable terms.
The patent may be taken out either for five years (government fee $\$ 20$), o or ten years (government fee \$40) or for fifteen years (government fee $\$ 60$). The five and ten year patents may be extended to the term of fifteen year The formalities for extension are simple and not expensive.
In order to apply fir a patent in Canada, the applicant must furnish model, speciflcation and duplicate drawings, substantially the same as in applying for an American patent.
American inventions, even if already patented in this country, can be pat nted in Canada provided the American patent is not more than one yea old.
All persons who desire to tat 0 in anicate with Munn \& Co., 37 Park Row, N. Y., who will give prompt a tention to the business and furnish pamphlets of instruction free
Messrs. Munn \& Co., have had twenty-five years experience in the bus ness of obtaining American and Forelgn Patents for inventors; they have pecial agencies in nearly all countries where patents are granted. Mod erate charges and prompt attention may always be expected

MUN \& CO.. 37 Park Row. N. X.

NEW BOOKS AND PUBLICATIONS

Consumption: Its Pathology and Treatment. By Wade Minor Logan, M. D. Robert Clarke \& Co., Publishers, 65 West Fourth Street, Cincinnati, Ohio.
In this ittle volume are given the results of observations made and con-
clusions arrived at by its anthor, in regard to the use of nitric and muriatic clusions arrived at by its anthor, in regard to the use of nitric and muriatic aclds as remedial agents in the treatment of tubercular consumption. That
hey are invaluable aids to other appropriate treatment, he considers fally

Avgust 3, 1872.$]$

important invention. $\boldsymbol{G I G} \boldsymbol{S} \boldsymbol{A} \boldsymbol{W}$,
 thate ito

TO THE PUBLIC.

THE STRUGGLE OF $72 . \mathrm{AT}$ GRAND

Niagara Steam Pampo CHAS. ${ }_{23}$ B. HARDIA st. . Br
Peteler Portable Railroad Company,

TO CONTRACTORS, MINERS, etc. By this invention one horse does the work

$\$ 10$ from 50 cts.

ฐriautific

\mid

 A NEW COLONY IN KANSAS! At "SKIDDY," in Neosho Valley, on Missouri, Kansas, Under the auspices of the National burrat of Mi
thation american colonist and homestead
 PRROPRT_TIERR PUMPP

ro Electro-Platers. Bith
 DON'T RUY STEAM ENGINES

Milling Machines.

PRINCA'S METALLIC PAINT
BEST \& CHEAPEST PAINT

 For Sale, , Iry and in Oll, by the Trade and by 96 CEDAR STREET, New York. mark. ${ }^{\text {mill }}$ packages are marked with name and trade
VARIETY MATENT IMPROVED Cor Machinez and information, address BCHES.

H0W sio $_{\text {TiL }}$ PATENTS.

Send fro our explanatory circular, free by mail to
any address
E.
Reber
PATENT BAND
SAWING MACHINES

P. BLAISDELI \& CO. M MACEACTURERS OF FIRST CLAASE
ROPER TOT ATR

B of umpling Enon Wos for water - Manufacturers

Portable steam engines, combin Pay int the maximum ot eltciency, durability and eco
 98 Liberty st. New Yorl.
ghtricat
77

NRW PATTERNS.

C Wiverview Military Academy, Pough.

Machinery,

Machinists' Toolis.
朝,
Cold Rolled Shafting.

Sturtevant Blowers
 y size and description, constantly on hand. 121 Chambers \& 103 Reade Strete trets, New York.

Pat. Punching Presses

 Ing our new seven strand White Platina Clothe
Liness Sells readil at every house. samples free.
Address the GIRARD WIRE MILS. Philadelphia, Pa.

EDWARD H. HOSKIN Consoliting and analytical Chemist Chemistry as applied to the Arts, Manufactures and
Medicine.

Lathe chucks-horton's patent
STEPTOE, MCFARLAN \& CO.,
 and prices sent on anphication. Warehouse nat Manu
factory, No. 214 to 220 West Second Street, Cincinnati,o OTIS $\begin{aligned} & \text { safety hoisting } \\ & \text { Machimery. }\end{aligned}$

Tunhine Waier Wheol

HYDRAULIC JACK. PisTo guided from both ends alal workine

RING SPINNING

 E. M. MAYO'S BOLT CUTTER-Patented

Cincinnati

NATIONAL INDUSTRIAL

Exposition.
 The Board of Commissioners announce

THIRD GRAND EXPOSITION WILL be open from
September 4th to October 5th, 1872. OOOD WILL BE RECEIVED FROM AUGUST 14TH TO 31st
The Sixteen Grand Departments have been greatly ex Largest ever held in America The extensive transportation arrangenents for visit-
ors will larkely increase the uuprecedented atitendance

150 Dighess nat fixs oft

183\%. SCEENCK'S PATENT. 1871. WOODWORTH PLANERS
 W Oed.WORKING MACHINERY GEN.

R ICHARDSON, MERIAM \& CO

S Improved Law's Batent shingle and Heading Ma

nnasew'spatents.

5ITIITHM WROUGHT
T Hit Union Iron Mills, Pittsburgh, Pa. The

GENTS WANTED. Agents makemore mon-
 Buy barber's Bus Bracz.

 N. H. BALDWIN, Laconia, N. H.

$\mathbf{W}_{\text {cialties. }}^{\text {OOD Frezzing }}$ Machines, Shaping Machines
 Whalen Turbine. Nor rikgsto purchaser. Send for MODELE O OR THE PATENT OFFICE:

A New and Valuable Bonk.

THE

villul inluid 1872

No. $\mathbf{3 7}$ Park Reon Row Now York,

A WELL tested article of good thickness
 haden Lane and 9 mbiberiy street, N. X .
P ATENT EMERY GRINDERS, Union

A DJUSTABLE CIRCULAR SAW Benches
 KERP YOUR BMTLERS CLRAN

provent iun till FLOURING MILL, near ST. LOUIS, MO FOR SALE
 ot fort in 24 hours, The crop this year, hiw

 L. L. \& J. T. Smith,

Nickel Platers
133 \& 135 WEST 25 th ST., New York,

 Damper Reg. Pat. Gage Cocki. Water Feed Reg's.
Send for circulars. MUREILL \& KEIZER. Bait., Ma. WHRN ROPE。 JOHN A. ROEBLING'S BONS, $\boldsymbol{F}_{\text {Bridges }} \mathrm{F}$ Incries, Stays, , or Guys on Derricks \& Cranes

Three-Ply Roofing. Two-Ply sheathing. Send tor
Samples and Circular:
MICA ROOFING COMPANY, 73 Maiden Lane, N. Y. MORRIS, TASKER \& CO., American Charcoal Iron Boiler Thbes. Wrought-Iron Tubes and Fittings,
For Gas, Steam, Water and Oil. Wir Steam and Gas Fitters' Supplies, Machinery for
coal Gas Works, \&c. \&c.

NO. 15 GOLD ST., NEW YORK.

FIRST PREMUM (MEDAL) AWARDED IN 1870 AND TUTR as "The Bast Article in the Market,'
Also, manuracurr ot Asbestos Boiler Felting

TODD \&
Steam Engines, Booliners, Flax. Hemp, Tow Bagging,

A. S. Cameron \& Co. ENGINEERS,
Works, foot of East 23d Street, New York City.

STEANT PUNTPS,

Adapted to every Possible Duty.-Send for a Price List.

HARDWOOD LUMBER.

The Union Stome Co., EMERY WHEELS \& EMERY BLOCKS,

 E F. Hony depthdesired. Samples and Cirion
The' Tanite Amery Grinder, No. 3

EMERYGRINDER, NO. 3 .

TYME TANTTE COMPANY,
Stroudsburg, Monroe County, Pa.

L.W.Pond--Neo Tools. EXTRAHEAVYAN L THES, PLANERS, DRILLS, of all sizes
 Ott ce and Warerooms, 98 Libertyst., New York; Workk
at orcester. Mass.
A. C. sTEBBINs, New York, Agent. Pat. SOLID EMERY WHEELS AND OIL $\underset{\text { Ede }}{\text { STONES, tor Brase }}$

American Saw Co.

RON PLANERS, ENGINE LATHES

$\mathrm{G}_{\mathrm{P}}^{\mathrm{Eortable}} \mathrm{Pand}$ Stsation \& Co., Manufacturers o

Dianond Pointed STLAM DRIMS

T Tiondopion of new and improved applica

THE BAND SAW!
$\mathrm{H}^{\text {ISTOKY, }}$ It, with Engin and

LUBRICATORS

Working Models
 [ght CuTHA HOWARD IRON WORKS, BUEFALONS.
 FISHER \& DUNCAN,

$\mathbf{K}_{\text {Asthma. }}^{\text {IDDER'S PASTILESES-A Sure Relief for }}$ THE HHALD SESCO

PATENT CEETRIRUQEL RUMPS,

 Steampatentsafety gine Governors and Water Gauges.
AUG. P. BROWN, Manrr, 59 Lewfs Street, New York.

Canadian Inventors,

Under the new Patent Law can obtain patents on th
same terms as citizens.
For tull particulars adres
May vart Row de CO.,
PORTLAND CEMENT,

T HE "Scientific American" is printed with

