a Weekly journal 0f prectical infornation, art, science, mechanics, chemistry, and manufacture
$\underset{\text { INEW SERIES.) }}{\text { VOI. XXXI }}$.]
NEW YORK, JULY 13, 1872.

IMPROVED CANAL BOAT

We have already illustrated in the Scientific American oeveral proposed improvements in the construction of canal boats designed for steam propulsion, which had not then been put to practical trial. ness for the intended purpose We now purpose. We now place before our read newly invented of a new hich boa which has been sub jected to actual tria on the Erie canal. It is the invention of Mr. Frank M. Mahan, of Memphis, Tenn. and was designed by him in view of meeting the conditions im posed by the State act of last y ear, which offered to reward the profitable introduction of some motor for canal boats, other than animal power than animal power. The bow of the boat in shown on the left in FIg. 1. It i shaped somewhatlike a funnel, so as to cut the water with its outside edges and throw it .into and 1hrough a channel or water way formed in the boat from stem to stern. The nature of this channel will b_{3} better understood by referring to Fig. 2, which is a longitudinal section of the nal section of the
boat. Here A is the channel or water way channel orwater way, which passes along the bottom of ihe boat in the middle It is shown in cross section in Fig. 3. It maintains this form of cross section uni formly until near the stern, where the channel is enlarged sufficiently, as shown in Fig. 2, to admit the wheel, B. It is afterwards contracted, somewhat, to form the outlet shown at the stern. This outlet may be seen also in the right hand boat in Fig. 1, where the dosted lines indicate the course of the channel and the position of the wheel. The wheel, B, which is the propelling instru ment, is constructed with vertical buckets, so as to economize power and preventback wa er wasinvented and patented by Captain Prim Emerson, of Memphis, Tenn., in 1868
The power employed is steam, and the boat is steered by the rudder shown in Fig. 1.
In propelling the boat, the action of the wheel tends to produce a vacuum in the front portion of the channel, A, and causes a cur rent of water right through it in the direction indicated by the arrows in Fig. 2. The shape of the bow, which is the reverse in form and effect of that of a clipper ship, prevents the escaps of the displaced water laterally, and throws it all into the channel; and it has been demonstrated by experiment that it passes so much more rapidly through the channel than the boat does through the water as fully to insure the passage through the channel of all the water displaced by the bow. In this way, the banking up of the water and consequent side swells, which are caused by the common bluff-bowed boat, are entirely avoided. A high rate of speed is therefore attainable without giving rise to the ordinary attendant heavy swells. This boat does not "bury" or settle down in the water while running with heavy load, as is the case with the boats used bitherto, but, thear on the contrary, the faster it is driven through the water the more buoyant it appears to become. The channel or water way makes but little difference in its capacity for freight carrying. The disposition of the freight around the channel is slown in Fig. 3.

The boat Port Byron, flom which our engravings are

The inventor states that she will be able to take in tow one or two boats of 150 tuns burden, built with water ways through them and coupled together like a train of cars, and hen make from three to six miles an hour.
-paper impregnated with starch and iodide of ponsitive test
It was found, however, that the test was affected by other substances in the same way as by czone.
An eminent member of the Academy of Rouen, M. Hou zeau, has largely extended our knowledge on this subject Ozone had been produced by electric sparks purely ar; M. Houzeau obtained it of drochloric acid on binoxide of barium. A sure test of ozone in the atmosphere was still a desideratum; M. Houzeau appears to have desideratum;
He found that paper, rose colored by lit mus and coated in part with iodide of potas sium, was not acted upon by the substances otber than ozone, which disturled M. Schön otber than ozone, which isturled M. Schon
bein's experiments. With this test, then, he

Fig. 3

perty of Toof, Phillips \& Co. and Captan Prime Emerson of Memphis, Tenn., either of whom may be addressed for further information.
examined the influence of ozone in the atmosphere. The re sults are briefly these: Odorous oxygen exists in country air in its normal state, reaching, at its maximum, the proportion $\overline{140} \overline{0} \overline{0} \bar{\circ}$. From day to day the quantity varies in one locali ty, and its quantity is different in different localities. Ozone may be found frequently in small towns, but it is almost en tirely absent from great centers of population. In spring, it appears very abundant; in winter, it shows very little action. From violent motion of the atmosphere in storms, ozone accumulates to a prodigious extent. One must exercise reserve in drawing conclusions; but it seems very probable that ozone is the cause of the salubrity of country air. A recent ex periment comes in to throw new light on its properties. By a simple apparatus, the Rouen chemist has obtained in a liter of ccmmon oxygen from 60 to 120 milligrammes of odor ous oxygen. In such proportion, ozone has no longer those beneficial effects which are seen in Nature to result from its minute distribution; when concentrated, it is dangerous for respiration, burns the organic tissues, blackens and corrodes
silver, and has even greater discoloring power \mid silver, and has even greater discoloring power than chlo-
rine. On contact with it, a mixture of equal parts of phosphureted hydrogen and oxygen explodes with violence. It is hoped that ozone will yet becomo of important use in in dustrial pursuits.

PAPIER MACHE FOR INTERIOR DECORATION.

It seems hardly possible, when admiring the rich bas reliefs or the deli ia:e moldings which ornament the proscenium or
boses of our principal theatres, to believe that these beauri boses of our principal theatres, to believe that these beauri
fully desiyned decorations are merely a hollow sham, and fully designed decorations are merely a hollow sham, and really noshing more than shells of common brown paper
Such, nevertheless, is the fact, and we hope to convey to our Sach, nevertheless, is the fact, and we hope to convey to our readers some idea of how this most prosaic or materials is, by the molder's skill, transformed into objects of art and beauty
Prior to the days of Queen Elizabeth, in England, those heavily fretted and vaulted ceilings, found in old English residencer, were made entirely of hard stucco and by skilled artists. These last mentioned individuals were. or
rather esteemed themselves to be, very important personages, for bistory t-lls us that they went to their work in gold laced for bistory t-1ls us that they went to their work in gold aced
garments, with rapirrs at thrir sides, and alcogether led a garments, with rapirrs at th-ir sides, and altogether led a
free and ea-y sort of a life, laborirg when they chose, asking free and ea-y sort of a life, laborirg when they chose, asking
waat they pleased, and always getting the entire amount of their demands. The people, however, eventually grew tired of the extortionate prices of these gentry, and a desire arose for cheaper work and less expen-ive material, resulting in the invention of a rude kind of papier maché comoosed of coarse pulp mixed with plaster. This wis the first introduc tion of the material which, at the present time, after having undergone countless improvements and changes in its composition, is now gradually superseding plaster for interior decoration.
Several different methols are practiced for manufacturing the paper and for causing it to assume the required form * In Eugland, a mold made of brass or type metal is first oiled and it s iaterior covered with a thin coating of gilder's com position, a mixture of wh tivg, resin, glue and oil. Over this, coarse paper pulp is poured, and the whole is forced into the mirute indentations of the mold by a strong screw press.
Small objects. oroam $\begin{aligned} & \text { ants, snuff boxes etc., are made from a }\end{aligned}$. Small objects. oroam onts, snuff boxes etc., are made from a
five quality of pulp, the sarface of which, on drying, is rubbed with pumice, colored, varnish-d with shellac, and heated to a t -mperature of 280°, when a brilliant surfac δ is obtained by polishing with rottenstone or by hand rubbing. For large works, the mold is covered with powdered tale and the paper in sheets is pressed in by means of the fingers or small tools. Another English process is to mold the paper into thick blocks or slabs, from which the articles are carved or turned, the same as from wood.
The newest and most improved method of manufacture of papier maché ip that introduced by a well known decorative artist in this city. The first step in this process is to carve the required object out of plaster, the utmost care being taken From this model, a pla-ter mold is mads in several pieces, so From to render it easily taken apart or put together. Into this
as mold a thin layer of the finest gaper pulp is poured, care being
mother taken that every portion of the mold is thoroughly covered. To back this thin covering a thick pulp, made from cane fiber, generally bamboo, is employed. This substance is used be cause it is perfectly homogeneous and sets firm and hard in the mold. So strong are the casts thus made that they can be constructed as thin as canvas in pieces of twelve feet
square. Whole ceilings, cornices, and sides of rooms can thus be made of any degree of elaborate ornamentation, and apart ments completely finished without the use of plaster, the paper being attached to the walls by ordinary nails and screws. Besides being used for ceilings and cornice work, this material has been fund to answer every purpose as an imitation of heavy carvings on furniture. A curious bed of decayed vegetable matter, somewhat resembling peat, has lately been discovered in a forest near Paterson, N. J., por tions of which, when mixed with the cane fiber pulp, give the composition, on its beroming hard, the exact color and ap pearance of black walnut, rescmbling the wood so closely as rrquire careful inspection to distinguish it therefrom.
For delicate tracery in cornices, papier maché is far superion
plaster, on account of its strength and superior lightness, to plaster, on account of its strength and superior lightness,
Mixed with clay, glue and an alkali, it is perfectly fireproof and the addition of silicates renders it impervious to the action of moisture. It is in use, as we stated in the beginning, in many of our finest theatres; and even in churches it is largely employed to imitate the stone capitals of pillar or the heavy groined arches which apparently support the roof.

CRACKERS AND THEIR MANUFACTURE.

Not many of our readers are, we think, a ware of the large scale in which the manufacture of so simple an eatable as the ordinary cracker is carried on in this city. In their own homes, the article is perhaps but little used, but if they visit the hold of a vessel fitting for a voyage, or glance into the commissary store room of any army post, thers on tiers of barrels packed with the hard heaped up tiers on tiers of barrels packed with the hard
tack which strves, to the sailor or soldier, as a substitute for tack which strves, to the sailor or soldie,
the ordinary home made or baker's loaf.
The process of manufacture is accomplished almost entirely by the aid of specially devised machinery. The flour is first hoisted to one of the upper floors of the factory and then emptied into a large bin; thence it passes to an elevator
which carries it to a revolving sieve. Here it is thoroughly which carries it to a revolving sieve. Here it is thoroughly
sifted of its impurities, and then allowed to fall through sifted of its impurities, and then allowed to fall through
a shoot leading into the mixer. The latter consists of a cylinder containing a rotary axle on which knife blades are
astened. At the opposite end, from that at which the flou oushed out of the machine by the action of the revolving blades. The flour, on entering the mixer, is immediately oistened by a stream of water pouring in from above
Except for the fancy varieties of crackers, flour and wate constitute the sole ingredients, not even salt being added, as is considered that that substance renders the biscuits liable o spoil. As fast as the dough is pushed from the mixer, it received in large masses by a workman who passes it hrough a machine technically termed the "breaker." Thi nothing more than a pair of heavy metal rollers, which squeeze the dough into a kind of thick sheet. Still further
rolling follows until the material is made into sheets of bout one half an inch in thickness. The dough is now eady to be made into crackers. Once more it is rolled to bring it to the exact thickness required, and then, from between he rollers, it travels under a set of dies which, working very rapidly, stamp out the crackers in quantities at a time. As
ast as the latter are cut, they slide along on a sheet o fast as the latter are cut, they slide along on a sheet of canvas, one workman removing by hand the dough from ecom them, wnile another, as soon them places then in the oven.
This last mentioned receptacle is arranged in a very pecuiar manner. It consists of a huge brick com partment heated rom below by large furnaces. Within is an iron wheel re mbling the padale wheel of a steamer, tr:ys, however, which re so arranged as lie al ways horizontal, taking the place o the buckets on the latter. This wheel revolves, bringing eacb the trays, of which there are twelve in turn before th pen door. U_{2} oon these trays the uniaked crackers are plased nd those already finisned being removed, each batch ravels once a around the oven, the time occupied in so doing being suffictant to admit of their becoming thoroughly cooked. They are then packed in boses, barrels, or tins, an re resty for the market.
A single oven of the kind above described will bake one huvdred barrels of flour made into dough in ten hours; and we a te in formed that, with thre9 such ovens in operation, as many as eight thousand barre
The quality of crackers varies according to the materials used in them. Some are made of simple flour and water others contain lard, sugar, or flavoring extracts, while others gain are leavened with ammonia. For the cheaper biscuits, the ordinary grades of flour are used. The price of cracker, epends upon the market value of the grain: at present they vary from four to twenty-five cents per pound, according to quality.

Curious Facts about Iron.

It is well known that nitric acid in a diluted condition at tacks the metals more energatically than when concentrated the red fuming liquid containing hyponitric and other nitro é oxid $e s$ is here ex
If iron is immersed in concentrated nitric acid (the pure monohydrated acid answers best), it will be momentarily at acked, as will be evinced by the evolution of gas bubbles rom its surfaç; this, however, very shortly ceases, and no rther action is visible
If a similar piece of iron is immersed in the same acid diuted with an equal bulk of water, chemical action at once nsues and continues with energy until either iron or acid is shausted. So much for the relative oxidizing effects of con entrated and diluted acid. Let the experiment be varied a ollows
Prepare two glasses, the one containing the monohydrated, he other th \leadsto diluted, acid. Plunge into the latter a rod o iron, which will be vigorously dissolved. Remove it now into the first glass, and the dissolving action will almost cid and it will remain there a few moments to
The contact with the concentrated acid appears, therefore to have so altered the surface of the metal as to render it en irely indiffer nt to the presence of chemical agents, to hich before it was highly sensitive. Without implying he possiblity of the transmutability of the elements (which it may be incidentally remarted, seems far less absurd with ur present knowledge than it did-twenty-five years ago), it eally appears that the surface of the altered iron has ac quired the properies which render it more electro-negativ han normal iron; so that if the two are brought in contact
mmersed in an exciting liquid, they will generate a galvan mmersed in an exciting liquid, they will generate a galvan ic current, an effect which is universally considered to predi cate the contact of two uulike elements. The liberation of hydrogen in statu nascendi, on the surface of the altered metal, appears, however, to have the effect of bringing it back again to its normal condition; for the current shortly eases to flow. To illustrate the foregoing, the following periment will suffice
Lat the altered rod, which remains unaffected in the dilu ed acid, be touched for a moment with a rod of iron which as nt previously been immersed in concentrated acid, and will instantly be attacked; or, dip such a rod, after im arsion in a mono-hydrated acid, into a copper salt solution nd it will be found to remain entirely free from copper. (a proof, it would seem, that the altered surface is electronege a five even to copper); remove it now and touch it for a mo
ment with a piece of normal iron, and it will instantly coat self with copper, reducing the thin film of the salt remein ing on its surface. Upon the explanation above mentioned Which may or may not be correct, the contact of tho two pieces of metal generates an electric current; hydrogen is
liberated on the negative or altered iron, converting again to
iss ordinary state. The moment this takes place, the diluted opper salt is reduced.

Sponge Fishing

From the account given by Vice Consul Green, of the Tuni an aponge fishery in his report to the Foreign Office, which as lately been issued, it would sesm that to fish for sponges requires as much if not more skill than to fish for salmon. the sponge fishery, is most actively carried on during the three months of December, January, and February, for at other seasons the places where the sponges exist are over brown with staweeds. The storms during November and December destroy and sweep away the thick marine vecreta tion and leave the sponges exposed to view. The fishery is divided into two seasons, namely, summer and winter; the former commencing in March and ending in November, and the latter as noted above. But the collection of sponges is ot very productive in summer, as it is confined to the operaions carried on with diving apparatus, which can only be sed on rocky and firm bottomed places, or to the success of ative fishermen, who wade along the shores and feel for sponges with their feet among the masses of seaweed. The ponges thus collested by the Arabs are also of an inferio quality, owing to the small depth of water in which they ave grown. As nevertheless, calm weather and a smooth sea are essential for the suecess of the fishermen, the winter season, although lasting three months, does not generally afford more than forty-five working days. The Arab inhab tants of the coast, Greeks, principally from Kranidi, nea Nauplia, (Napoli de Roumania), and Sicilians, are chiefly em ployed in the sponge fishery, the Greeks, however, being the most expert fishermen, while the Arabs are the least skillful. Sponges, says the Pall Mall Gazette, are obtained by spear $\mathrm{n}_{\mathrm{y}} \mathrm{r}$ wi ih a trident, by diving with or without the assistance of an apparatns, or by dredging with a maciine somewhat similar to an oyster dredge. Tae Arab fishermen, principal natives of Markenah and Jerbah, employ boats called sanals, manned by from four to seven persons, one of whom is he harpooner, while the others manage the sails, etc he speanas watches for the sponges from the bows of th andal, and the boat is luffed round on his perceiving one,: s to enable him to strike it. The depth of the sea in which he Arabs fi*h is from fifteen feet to thirty-five feet. A though the Greeks are most expert divers, the majority o hem use the spear. They employ small and light boats just sutficient to carry a spearman and an oarsman. The boat is rowed gently along, while the spearman searches the bottom of the sea by means of a tin tube of fourteen inches in diameter by nineteen inches in length, at one end of which is placed a thick sheet of glass. This tube is'slightly nmersed in the water, and enables the fisherman to vie w he bottom undisturbed by the oscillations of the surface. The spears used by the Greeks are shorter than those emloyed by the natives and Sicilians. but with wonderful droitness they are enabled to reach sponges covered by sist feet of water. They hold in their hands from three to fou pears, and dart them so quickly and with such precision ne after the other, that before the first has time to disap par under the surface the second strikes its upper extrem y, and thus gives it additional impetus to reach the spong aimed at. The Sicilians, also, fish with a spear and in smal owing boats, but do not understand the employment of the tabe, and have not acquired the knack of the Greeks in using hres or four spears; they consequently seldom secure an equal quantity of sponges, alchough they are always more successful than the Arabs. The produce of the fishery is, it is stated, susceptible of considerable augmentation by an in crease in the number of fishermen, and a new sponge is re produced within a year wherever one has been removed.

Reducing Powers of Hydrogen and Phosphorus When a jet of cold hydrogen gas is directed against paper that is impregnated with any of the salts of the oxide of silver-such as the phosphate, nitrate, arsenite ulphate, sulphite, carbonate, acetate, oxalate, etc.- th lver is reduced to the metallic state and blackens instantly nvisible characters traced upon the paper with any of th bove salts are immediately rendered visible under th action of the gas.
The sane, however, is not true of the chloride, bromide odide, cyanide, or sulphocyanide of silver, provided these be pure. Iodide of silver prepared with commercial iodide of potassium in general blackens because the salt is not pure Thus we have a test for the purity of our chemicals. Do we desire to know whether an emulsion film of collodio-bromide contains free nitrate or not, submit it to a jet of hydrogen and the question will be answered at once, the amount of darkening showing the quantity of free nitrate present.
If we make a drawing upon a paper which has been im regnated with nitrate of silver, by means of a pen or brush dipped in a solution of chloride or bromide of ammonium and then submit it to a jet of hydrogen, we shall obtain a white drawing upon a black ground.
For hydrogen may be advantageously substituted nitroge or carbonic acid, which have been passed through a tub containing fragments of phosphorus. This gas, then, black ens not only salts of the oxide of silver, but also those of
mercury and of copper. Proofs may thus be obtained upon mercury and of copper. Proofs may thus be obtained upon
paper impregnated with carbonate of copper. Hydrogen hus charged with phosphorus is more energetic upon th salts of silver than either of the other gases.
A Committee of the American Railway Master Mechanic Association are of the opinion that back flue sheets of locomo ives should be of $\frac{1}{2}$ inch iron or $\frac{7}{6} 1$ steel, and front flue sheets of $\frac{7}{16}$ iron or $\frac{8}{8}$ steel.
the progress of fish culture in new york.
From carefully conducted experiments, made during the past few years, it has been determined that fish may be trans. ported, acclimatized and bred, and thus supplied in increased uumbers for the use of mankind with as much facility as animals existing on the land. With a view ioward popular benefit from these discoveries, the Commissioner of Fisheries of Now York State were authorized by the Legis. lature some two years ago to build a hatching establishment for the purpose of breeding the better binds of fish for distribution throughout the public waters of the State. This building, which was erecied in the summer of 1870 , is practically the most efficient and the most productive of results of any in the world. The water is introduced in the ordinary way through a number of flannel sieves, and is led into 24
troughs, which are sisteen feet in length by fifteen inches in troughs, which are sisteen feet in length by fifteen inches in
the clear in width. These troughs are raised about two feet the clear in width. These troughs are raised about two feet
from the ground, so that a person sitting on a stool alongfrom the ground, so that a person sitting on a stool along
side can readily examine the condition of the ova during the period when they are hatching. The lower ends of the troughs is an inch lower than the upper ends, so as to give a gentle motion to the water that is introduced into them. The water flows from a spigot about an inch in diameter and through another flannel screen, which is an additional protection against the a camulation of sediment.
The troughs stand in pairs, so that the workman can easily overlook them by passing on each side through a passage way left for that purpose. They are divided into comparments at every two feet, and at first, when the eggs are
being hatched, the water running through them is only about half an inch deep. The moment however, the fish are out of the egg, screens are introduced at each compartment and, a piece of board being put across the lower end of the trough the water is raised to about three inches in depth. The
hatching house is located at Caledonia, N. Y., and is situated hatching house is located at Caledonia, N. Y., and is situated
on a brook the water of which is very peculiar, remaining at on a brook the water of which is very peculiar, remaining at
substantially the same temperature throughout the year, never growing warmer in summer or colder in winter. Every stick and stone that is covered or washed by the water is alive with caddises, and every bunch of moss or piece of wood is filled with fresh water shrimps or other minute insects. The stream evtn in its natural condition, without the assistance of any artificial propagation, has produced enormous numbers of trout; and at the present n.oment, although it has been greatly fished, it is jairly alive with them.
The fourth Annual Report of Commissioners of Fisheries for this State furnishes us with much valuable information relative to the general progress that has been made in fish culture during the year 1871. On the Hudson River, the successfal than heretofore. Owing to the large increase of successfal than heretofore. Owing to the large increase of
that fish in the Connecticut river, in which some millions that firh in the Connecticut river, in which some millions
of young fry had be-n placed three years before, the market of young fry had be-n placed three years before, the marke
in New York and other adjacent cities was supplied so abunduntly as to seriously reduce the profits of the fishermen on the Hudson; so that it became a neces ${ }^{\text {ity }}$ to take $m+$ asures to restore the fisheries in this state a ad to protect the persons, deriving their livings therefrom from ruin, and $8,295,000$ eggs
were placed in the Hudson during the year. These, it is bewere placed in the Hudson during the year. These, it is be lieved, will greatly increase the yearly yield which at pres ent does not exceed one million mature shad, and it is esti mated that in a few years the fisheries will be so improved that $500,000,000$ fry will be artificially hatched.
Another experiment was made, at the expense of the State of California, to introduce shad into the Pacific Ocean, where they had hitberto been utterly unknown. Mr. Seth Green, a gentieman already celebrated for his discoveries in the art of
fish culture, was employed for carrying out the purpose, and fish culture, was employed for carrying out the purpose, and
the fry were taken out of his establishment on the Hudson. The undertaking was generally pronounced to be hopeless. The undertaking was generally pronounced to be hopeless.
Three thousand miles of land had to be crossed, mostly over Three thousand miles of land had to be crossed, mostly ovar
a section of country nearly destitute of water, It was a trip by railroad with little opportunity to stop for a resting spell if that were necessary; and all this wish a fish so exceed ingly delicate that it can hardly be kept in confinement. Mr. Green's report states that he started on his journey with 12, 000 young shad, placed in four eigbt gallon milk cans. He deposited about six hundred fish in different bodies of water along the route, and finally, after surmounting apparently overwhelming difficulties in the shape of impure water and dearth of any water at all, he placed 10,000 living shad in perate, but contrary to all expectations, it resulted in triumphant success.
phant success.
During the year, the State hatching house, before alluded to, has been greatly enlarged, and operations for the winter hatching of fish commenced on an unprecedented scale. Mil lions of the spawn of salmon trout were taken there from
the great lakes to be distributed through the States, or to be developed and then distributed. It is mush less expensive developed and then distributed. It is mu'ch less expensive
and easier to distribute the ova than the young fishes The ova may be transported anywhere during the month of December, but no later.
Notices have from time to time been published in the papers authorizing parties to send for as many eggs or fry as
they needed for stocking public waters, and all who have applied liave been accommodated.
The Report before us contains detailed accounts of various other operations which have been performed. The Commissioners pride themselves upon not only bulding the cheapor in the world, but also in building one tbat has in every way pioved an entire success, and which is capable of supway proved an entire success, and which is capable of sup-
plying all the public waters in this State with all the salmon plying all the
tribes of fish.

The Action of auinine on the Blood. The nature of the influence exerted upon blood by quinine has recently been the subject of a fresh investigation by Schulte. Its extraordinary power of stopping fermentation and putrefaction by destroying low organisms, such as bacteria and fungi, has been before pointed out. It is supposed
to dminish the formation of pus in inflammatiou, by arrestto dminish the formation of pus in inflammation, by arrest-
ing the motions and preventing the exit from the blood vesing the motions and preventing the exit from the blood ves
sels of the white blood corpuscles, the accumulation of which, according to Conheim, constitutes pus. By depriving the red blood corpuscles of the power to produce ozone, it dimisishes the change of tissue in the body, and therefore lessens the production of heat Ranke and Kerner have shown tbat the waste of tissue is reduced when large doses of quinine are administered, as indicated in the smaller propor tion of uric acid and urea excreted.
With the object of ascertaining whether this effect is referable to the direct influence of quinine on oxidation in the blood or to its indirect influence through the nervous system, Schulte employed a method based upon the changes occurring in the alkalinity of the blood observed by Zuntz who had noticed that a considerable formation of acid takes place in freshly drawn blood, and continues in a less degree till putrefaction commences. The amount of acid formed was estionated from the dininished alkalinity of the blood, as comparatively shown by the quantity of dilute phosphor-
ic acid required for exact saturation. A sufficient quantity ic acid required for exact saturation. A sufficient quantity
of chloride of sodium was added to the phosphoric acid to prevent the blood corpuscles from being dissolved and interfering with the reaction by their coloring matter. The point of saturation was fixed at the transient teddening of care fully prepared test paper by carbonic acid. Schulte has thus Scharrenbroich to confirm the experiments of Kuntz and the production of acid, and that quinine can stop it both before and after coagulation; that sodium nitropicrate has an action similar to, and nearly as powerful as, quinine; wbile the action of cinchonine is much less energetic. Harley has shown that while quinine lessens oxidation in blood, some shown that while quinine lessens oxidation in blood, some
substances, such as snake poirons, increase it. Binz found that when putrid fluids were injected into the circulation of an avimal, the temperature rose, but that this increase o temperature could be more or less prevented by the addition of quinine to the putrid liquid, or the simultaneous injection of the quiuine.
With respect to the influence of quinine on the change of tissue, Schulte gives the result of some careful experimets made by Zuntz, who found that, after taking three 0.6 gramme doses of hydrochlorate of quiniae for two days, the then decreased as much, the specific gravity falling from 1.018 to 1.012 ; the urea also showed a marked decrease.

The Production of Chlorine and Hypochlorites.
We give the details of the method recently patented by M. Tessié du Motay. According to that distinguished chemist, the processes hitherto employed to produce chlorine continuhe presence of certain metallic peroxides or dehydrating salts have never given practically valuable results, because the excess of oxygen or air and nitrogen, mixed with the chlorine generated, partly prevents the condensation of this chlorine intended to in bleaching. The object of M. Tessié du Motay's process is, while wholly or partially utilizing the hydrochloric acid employed, to generate pure chlorine in an isolated state which an combine without waste with the alkaline or alkalino-ter rous bodies in the form of bleaching chlorides; and to
complish this, the inventor has discovered two methods:

1. Into a retort heated to a deep red, containing peroxide of manganese or a mixture of peroxide of manganese and lime, a current of hydrochloric acid is caused to pass; chlorine and steam are produced and disengaged, and there remain
in the retort non-decomposed peroxide of manganese and chloride of manganese, and chloride of calcium. The chlorne is collected in the water or led away into a chamber for thy production of dry hypochlorites. Over the mixture re maining in the retort, a current of air or oxygen of the same temp-rature is caused to pass, which, in the presence of par oxide of manganese decomposes at once the chloride of man ganese alone, or the chlorides of mavganese and calcium regenerated from the sesquioxide of manganese alone into ses quioxide of manganese mixed with lime, and sets at liberty the chlorine contained in the chlorides. This chlorine mixed with air and azote or oxygen is led into vats coutaining
misture of lime and protoxide of manganese which has been previously produced by the decomposition of chloride of manganese by an excess of lime, the soluble chloride of cal-
cium produced in this reaction Laving been previously run off. In presence of the oxygen of the air and of the chlorine it produces immediarely sesquioside of manganese and hypo chiorite of lime, which in reacting upon the sesquioxide pro duces finally the hydrate of peroxide of manganese and chlo ride of calcium. The excess of lime remaining, having no hypochlorite of lime Uesquioxide, remains in the sose of hydrate of peroxide of manganese, chloride of calcium, and hypochlorite of lime, líquid hydrochloric acid is made to react in the rrdinary manner. Chlorine is at once disengaged by the reaction of this acid, on the one hand uoon the hydrate of proxide of manganese, and on the other upon the hypochlorite duction of hypochlorites. After this reaction it for the pro duction of hypochlorites. After this reaction, it remains in
the vats of the chlorides of manganese and calcium. Upon the vats of the chlorides of manganese and calcium. Upon
the chlorides of manganese and calcium, an excess of lime is the chlorides of manganese and calcium, an excess of lime is graphic stone, etc.
again caused to act, which reproduces the mixture of pro toxide of manganese, chloride of calcium, and lime already referred to. The soluble chloride of calcium is then run off, and there remains in the insoluble state a mixture of protox ide of manganese and lime, which will serve for other similar operations by repasciog under the action of chlorine and air to the state of hydrate of peroxide of manganese, chloride of calcium, and hypochlorite of liquid lime.
It therefore follows, first, that by the reaction of gaseous hydrochloric acid upon air and oxpgen, in retorts heated to redness containing peroxide of manganese or a mixture of peroxide of manganese and lime, a first quantity of pure chlorine is produced, which is led away into condensing chambers, and for the production of hypochlorites; secondly, that by the decomposition by means of air or oxygen of the chloride of manganese alone, or the chlorites of manganese and lime contained in the said retorts, gaseous compounds are produced containing at once oxygen and chlorine. These compounds in their passage across the vats. containing the protoxide of manganese and liquid hypochlorites of lime produce pure chlorine by the action of liquid hydrochloric acid, the chlorine in its turn being led into the chambers for the production of dry hypochlorites. Instead of the mixture of protoxido of manganese and lime in excess, over which the chlorine mixed with air and oxygen is caused to pass just as it comes from the retorts, a milk of lime may be employed, \mathbf{w}^{3} ich is transformed into bypochlorite of lime. Tbis bypo cblorite, as well as the mixture of hydrate of peroxide of manganese and bypochlorite of lime treated by liquid hydro cbloric acid, regenerates pure chlorine suitable to be taken to the chambers for the production of dry hypochlorites.
The chloride of calcium remaining from the operation is collected in vessels wherein carbonate of magnesia, or mag nesia and carbonic acid, are caused to react simultaneously, carbonate of lime and chloride of magnesium being produced. This distilled chloride of magnesium regenerates the hydro chloric acid, which is again employed for the production of a fresh quantity of chlorine. The magnesia remaining serves again for another operation. Thus the reactions which con stitute the process are shortly as follows; 1. The oxides o manganese serving for the production of chlorine are ceaselessly regenerated; 2 . The hydrochloric acid is utilized completely for the production of chlorine; 3. All the chlorine generated is in a pure state, and consequently suitable for the production of dry hypochlorites.
2. The second method only ciffers from the one just de cibed in the substitution of magnesia for lime, the chlorides of magnesia produced being without transformation, and ca pable of re-engendering hydrochloric acid by simple distilla tion.

New Method of Reproducing Drawings.-According to M. Rénault of Paris, if a drawing be made on strong glazed paper with glutinous ink, and the lines be afterward overed with a metallic powder (the bronze powder of com merce) and if the drawing thus prepared be pressed upon a heet of sensitized paper, the lines of the original drawing re reproduced in black by the chemical action of the pul verized motal upon the sensitive paper. By softening the nk with tle vapor of alcohol and renewing the bronze whe t is exhausted, many impressions may be produced.

Paper as a Means of Defense.-Colonel Muratori, aays Engineering, has made a successful application of paper as a deftnsive material in the construction of a cuiraps which, weighing the same as the ordinary service cuirass, is capable of far greater resistance. It will turn a regulation pistol bullet fired from a distance of 3 feet, and is equally capable of resisting a bayonet thrust. The inventor claims that the fabric can be used for armor plating ships of war, and is es pecially suitable for covering bottoms of vessels to protect them from explosions of tor pedoes.

Beer Drinking in the United States.-From the re port of the proceedings oi the Brewers' Congress lately, held in this city, we learn that the amount of fermented liquors , woman and child in the country. Assuming the beer to have been consumed in the State in which it was manufac tured, each individual in New Jersey averaged 292 glasses, in New York 261 glasses, in Maine, probably on account of the iquor laws, $7 \frac{1}{3}$ glasses, and in Texas but 5 glasses. Thes data may be of value to our Teutonic fellow citizens in find ing their choice as to the States in which they may in future locate their beer manufactories.

Dr. Angus Shith gives a good rule for ascertaining the amount of carbonic acid in the air of houses: "Let us keep our rooms so that the air does not give a precipitate when a
$10 \frac{1}{2}$ ounce bottleful is shaken with half an ounce of clear $10 \frac{1}{2}$ ounce bottleful is shaken with half an ounce of clear
lime water," a sanitary regulation which can easily be carried out.

Iron ship building is becoming an important industry in Denmark. At present several vepsels of 1,000 tuns are being built, and one of these, it is stated, will be employed in laying down the telegraph cable between China and Japan. Two passa ge to this city, and are the first iron vessels built in Denpassa ge to thave ever entered the port.

There are about four hundred species of minerals known but the varie ies of these species are almost infinite. For ex mple, carbonate of lime exists as chalk, marble, spar, litho-
raphic stone, etc.

Fig. 1.-THE MALE MOSQUito.

THE MOSQUITO ILLUSTRATED.

ination of specimens reveals endless novelty in details.
Fig. 4 shows various wings belonging to several sp+cimens collected at one time, and which were very b autiful objects uoder the microscope, and shone with all the tints of the rainbow. We shall not therefore attempt to make our read
"Mosquito" in the United Stałes, "cousin" in France nd "gnat" in Great Britain, are the names commonly givn to the fam ly culicidre, of the proboscidean division of the rder diptera, or two-winged insects. The family is large nd is at present but little understood. Our own mosquitoes
ers acquainted generally with this multitudinous family, but

will at once introduce them to some of its members, who have been studiet, and their habits.
The male mosquito, during his short life, subsists on the contents of the flower cups of various plants, preferring that

of the tall white lily; and alter the performance of his natural functions, his life is brought speedily to a close.
With the female it is otherwise. She has work to do and proceeds about its accemplishment thus: She selects some quiet, cool eddy in a brook, crosses her hind legs (as shown in Fig. 5), and builds a boat of eggs (Fig. 6). When finished, this boat contains sometimes more, sometimes less, tban three hundred eggs; but it is always of one form. The eggs near the ends contain males; those in the middle, females. It cannot be upset or filled by any effort, and pouring gallons of cannot be upset or filled by any effort, and pouring gallons of
water on it will not sink it. Neither can any weather affect water on it will not sink it. Neither can any weather affect
it. It may be frozen in solid ice, then thawed out and ex. it. It may be frozen in solid ice, then thawed out and ex-
posed to a June sun, and in time larvæ will make their appearance.
But they do not all build this boat; the females of several varieties have their eggs strung (see Fig. 7). A spot of the mucus, full of eggs, was transferred from a rain watertank, with some of the water, to a breeding glass. In five days, exposed to the warmth of the sun, the larvæ began to come forth, as shown in Fig. 8. When six days old they could be हeen lazily floating about, some with two eggshells, some with three, and one with four attached to the extreme hairs

Fig. 2.-THE FEMALE MOSQUITO.
of his body, as at Fig. 9. As their movements were unaccountably slow and lifeless, they were separated from the unhatched eggs and placed in fresh water; when, after sinking to the bottom, they discarded the eggshells and rose rapidly to the surface. The experimenter concluded that the she 'ls had acted as buoys in the stagnant water.
The large mosquito of the Southenn swamps sinks a hole in the soft mud with the end of her body, and hangs the eggs upon a foot stalk, as in Fig. 10. When the larva comes out, there is always water at the bottom of the hole, ample

for its sustenance until it sinks into the mud to undergo its transformation into the perfect insect.
The large mosquito of the dry, sandy pine barrens of the Carolinas and Grorgia selects a spot exposed to the sun, and drops her eggs among the grains of the sand. The proct ed ings and habits of the larva are unknown; but in twelve or fifteen days the metamorphosis is complete. This variety is exceedingly venomous.
Fig. 11 represents the full grown larva from the egg of the boat; and A will direct attention to the respiratory tube of hairs. The larvæ float with their heads downwards, dive on being disturbed, and carry down enough air in the closed tubes to last them until they come up again. They remain in the larve state from five to fifteen days, casting their skins thrice, or oftener, and then enter the pupa state. The position is now altered, and the breathing tubes are kept up in the water. The change can be seen in Figs. 12 and 13. The pupa becom s s less active and seems to scull along with the paddles at the end of the tail. Five or ten days more and it bursts on the back, and the mosquito, as in Fig. 14,
rises from the opening. This feat is accomplished with dif rises from the opening. This feat is accomplished with difficulty, and not a thousand th part of all that burst the case tscape. Using the empty case as a raft, the insect plants two legs firmly on the waier and waits until the wet wings get separated ; then another pair of legs are disengaged, the body elongates, and the wings begin to unfold, as presenter in Fig. 15: finally, the last pair of legs are drawn forth, the body poised, the wings elevated, and the fly stands on the water (Fig. 16), ready for flight.

Fig. 17 is the fully developed female of a night mosquito found at the extreme north down to Florida. Her congener of the day resembles her closely, excapt that her body, when empty, is of an apple green color, and turns to dark amethyst after a meal, which are marks of all the day culicidce.
Fig. 18 shows the dissected body of a mosquito, on which

Figs. 19, 20, and 21 are stings of several kinds. Authors are not agreed as to the number of parts composing the sting ; it appears to vary according to the genus. Soveral prickers can be folt in the large northern mosquito, and a dozen lan cets are found in the southern. After the tubes are separa ted from the sheath, the lancets can be separated also. The two side tubes serve probably to aid suction, and to support the head, but eventually are employed as an outside protection to the lancet case. There will be noticed quite a hollow in the sheath, into which the blades of the lancets fit; then these join over them, and the sheath is complete. In some the proboscis is not hairy, but smooth and polished. In biting, it seems that the hollow extremity of the sheath is in-

troduced into the wound made by the lancets, and by its means the gnat sucks the blood while the lancets keep the wound open. The mosquito has not always a thirst for blood, but often sucks up other liquids, particularly those with spir. its in them. In this case the sheath is extended in front of the lancets. The pain of the wound made by the bite is attributed to the irritating action of a fluid retained in the

sheath to keep its parts in working order. It is not poisonous alike to all persons.
Figs. 22 and 23 w:ll show how the sting is applied.
The humming noise of these insects is supposed by some to be made by the rubbing of the wings on the chest; by others, by their beating against the air; and some think it proceeds from the proboscis.

dues s the movement. This muscle is composed of little disks which are kept apart and are yet connected by fibers in be ween them ; these fibers pull the disks together on one side while they are relaxing their hold on the other, and, by alternating the movement, give rise to the rapid motion in the wings.

The eye of the day mosquito is a most briliiant object. The facets are very thickly placed, and from each one springs a small sharp cornea; these catch the rays of light and cau e the eye to scintillate with various shades of color. We give a drawing of the eye at Fig. 24.
The metamorphoses we have described, which are common to all gnats, are rendered the more interesting by means of the ease with which they may be witnessed and studied There is a fresh progeny of these insects every month, and their total production is so numerous that it has been held by some writers that the very air would be darkened by them were it not for their natural enemies devouring great numbers. (These latter are various kinds of birds and several carnivorous insects). Wet summers are found most favorable for their production, while in dry seasons their numbers are less unlimited. This no doubt arises from the standing waters and marshy spots, in which the insect passes the first stages of its existence, being dried up in many places before the contained larvæ reach maturity. There is not much probability, in view of the foregoing, of the student ever lacking specimens; but should such a contingency arise, the ex ing specimens, bure in posure in an open place of a vesselof win wint in the sum

supply of wigglers, or gnat worms, as the larvæ are some times called. These, from their transparency, require no preparation for examination by the microscope, for which instrument they form excellent objects. The insect and its transformations have always presented a most interesting subject for observation to the naturalist and the ordinary observer, and the interest is by no means diminished by modern investigation.
Nearly a hundred years ago, James Barbut, in writing of the mosquito, said with enthusiasm, "it is impossible to be hold and not admire the amazing structure of its sting. One undergoes with pleasure a puncture that enables us to observe how this piece of mechanism acts."

Lately, microscopic research informs us that the rapidity with which the gnat vibrates its wings-ifty times in a se-
cond-depends on the peculiar form of muacle which pro

We doubt if any of our readers would be as willing as the author just quoted to sacrifice themselves in the cause of science, but the question would, no doubt, be speedily decided by the effect of a mosquito bite on the particular individual bitten. In some cases and perhaps also under peculiar cir cumstances, the bite is attended with but little if any virulence; generally obstinate itching arises from it, and frequently redness and swelling of the adjacent parts; in rare cases, irritable ulcers are the result. The preparations of ammonia will remove the itching, and rubbing at night with fuller's earth and water is recommended by some writers to allay the pain and lessen the inflammation. It is also stated that if the part is scratched and washed with cold water im .

mediately after the bite is received, a cure will be effected; but the operation must not be delayed, as a little while later it would only increase the itching and swelling.
Contemptiole as these small insects may, at the first glance, seem to be, their greedy attacks upon man and beast and the prodigious swarms in which they sometimes appear have made them formidable enough to cause extraordinary mea sures of defense to be taken against them. They are nowhere more troublesome than in Lapland, where the natives are compelled to anoint themselves with grease and to drive off with smoke the almost incredible numbers by which they

are assailed. During the short summer of northern Asia, mosquitoes and other insects so abound in the woody tracts of Siberia, near the Ural Mountains, that the peasants burn tacks. Within the tropics, a bed of sand is resorted to as a
means of defense against their assaults, and in more tempe rate and civilized regions, curtains of gauze and other mate rial are used as barriers against the foe. Essential oils have also been employed to drive them away from particular localities, but with only partial success.

Correspondente.

The Editors are not responstble for the optnions
spondents.

Factories in the wyoming valley

To the Editor of the Scientific American:
I have just returned from a delightful morning ride up the Wyoming valley, a forenoon ramble along the Oatka, and a visit to two somewhat peculiar and interesting manufacturing establishments.
Two miles above the beautiful thriving village of Warsaw is the factory of Martin \& Co., devoted exclusively to the manufacture of map rollers and moldings, of which they turn out about 250,000 sets per annum. Much of the machinery used has been invented or improved by Mr. Martin, the senior partner, to whose kindness I am indebted for the privilege of inspecting the machines and operations.
The rollers are turned by a self acting lathe. A square stick of the required size is moved forward and guided by three pairs of feed rollers, or wheels, with grooved edges. In the first pair, the grooves are angular to fit the square stick. By this pair, the stick is driven forward through a bole in the center of a wheel, on the inside of which the knives are set. This wheel is driven by a belt. The stick is turned as it passes through the wheel, being guided and drawn through by two pairs of feed rollers with curved being run through emery faced blocks. The painting and varnishing of the rollars and moldings are very rapidly done by a machine which causes them to pass through the can which contains the paint, the holes in the sides being made to fit the stick to be painted. A wire frame receives the to fit the stick to be painted. A wire frame receives the
painted rollers, on which they are carried aside hy dozens painted rollers, on which they are carried aside hy dozens
and stacked until dry. A simple machine turns the tenons and stacked until dry. A simple machine turns the tenons
and the rollers are ready for the knobs. The contrivance for and the rollers are ready for the knobs. 'The contrivance for
turning the knobs is the most interesting feature of the establishment. It will turn from four to five thousand a day. The knobs are turned from cubic blocks which have been soaked two or three days and bored half through. The block is driven upon a mandril at the end of anhaft. This mandril projects over a table. On the table is a block about six inches square and two feet long, one end being made small to serve as a handle, the other turning on a pivot. On one side is a curved knife, which, when the hock is drawn up to the knob, gives it its general outline. A second knife, fixed in the end of a smaller block, which slides in a groove knob by means of a the larger one, is then brought up to the quired shape. No peculiar machinery is employed in the quired shape. No peculiar machinery is employed in the
manufacture of moldings, unless a planer, which smooths the four sides of a strip at once, be peculiar. After planing, the four sides of a strip at once, be peculiar. After planing,
the strip is split diagonally so as to make two moldinga, which are next shaped by a small planer with a knife of the requisite shape. Rollers and moldings are made of bass wood, knobs mostly of soft maple. The establishment has
been in operation 19 years, and is thought to be the only one been in operation 19 years, and is thought to bs the only
in the country doing a large business solely in titis line.
Two miles farther up the stream, in a most romantic glan is the factory of the Warsaw Furniture Company, their finishing and salesrooms occupying a fine four story block with French roof, in the village. The machinery is driven by a turbine water wheel, which communicates with the main shaft of the factory through an endless wire cable 480 feet in length. The company use no machinery invented here; but I understand that they intend to introduce ? machine for fitting joints, the invention of the foreman. For curved sawing, they use an endless belt saw about 20 feet long, which runs over two wheels and through a table on the de scending side. The frame which supports it resembles an enlarged Wilcox and Gibbs sewing machine. The company manufacture, for wholesale and retail trad ; all kinds o bouse and office furniture.
The water of the Wareaw village waterworks has just been put to a new use. By means of one of Stannard's cold wa
ter bydraulic engines, a half inch stream having 260 feet head is made to print the Wyoming County Democrest at the rate of 1,000 impressions per hour.
C. H. Dann.

Warkaw, N. Y.

British Patent Reform

To the Editor of the Scientific American
I notica in a recent number of the Scientific American that the patent laws of Great Britain are, in all probebiity going to be r arranged, and that it is proposed to nid a neer clanse to the effect that "letters patent, whict have been granted for any invention which has not, within a fair and reasonable time (to be arranged), been brought into active use, shall be declared to have expired."
This, in my opinion, is an excellent suggestion, and one this country operate with great fairness to invenvors in plitd at Washington for letters patent for an invention, in connection with railroad operation, which was, hy nuny prac. tical men, considered to be of considerable valse, botify with regard to saving of expense and obviating danger. My application waz, however, refused, on the ground that i, inter
fered with an invention of ten years back, which I know has fered with an invention of ten years back, which I know has
never been brought into active use, and is patented only in never been brought into active usa, and is patented only in
England. Again, not long ago, I applied for letters patent
for another invention, also in connection with railrcads.

Result, another refusal, as conflicting with English patents No. —— and No. ——, of, respectively, 1847 and 1861 . Nei-
ther of these, to the best of my knowledge, have ever been ther of these, to the best of my knowledge, have ever been
brought into active use, and I know England well, the railroad world not less than any other.
Here, therefore, is a clear instance of the justice with which this new proposed clause in England would operate with us here. If you will be kind enough to pablish this letter, it may draw forth some expressions of opinion on the subject, and be of interest to inventors generally.

Invientor.

An Optical Experiment.

To the Editor of the Scientific American
A microscope is any instrument by the aid of which we can subtend the angle of vision. Is there any instrument which will enable us to subtend the angle of vision indefinitely? I think that the ordinary photographic camera is such an instrument. The following experiment would soon demonstrate the correctness of my deduction: Photograph the palm of a human being, say eighteen inches in diameter. Cut a circular inch from the center of that photograph and mount it upon cardboard. Mark it number one. Take an eighteen inch photographic copy of number one. Subject the copy to the cuttiog process and mark that circular inch nhmber two. Copy number two and cut out number three, and so on until you obtain many circular inch photographs. Spread the last copy taken on the table. Put the original palm under the best microscope you are able to use and compalm under the best microscope you are ablions can be carried
pare results. Lunar and solar investigation pare results. Lunar and solar investigations can be carred
further, by the above described method, than by any other further, by the above described method, than by any other
with which I am acquainted. Warren De la Rue has pubwith which I am acquainted. Warren De la Rue has published excellent photographs of the
things to cut the second hole into.
hings to cut the
New York city.
R. B. S.

A Machinist's Query.

To the Editor of the Scientific American:
On page 349 of your volume XXVI, is an article headed "Sorry he didn's learn a trade;" now I have learned a trade, and I am not sorry for it, but it is hard to know that after serving four years a pprenticeship to my trade, I can get only $\$ 3.50$ a day for building and repairing an engine, while a man who has served no apprenticeship, and is ignorant of I think, is alike an iojustice to the mathing running it. This I think, is alike an iojustics to the mabinist and to the pub-
lic who risk their lives by the incompetence of these men. lic who risk their lives by the incompetence of these men.
If an accident occurs, the public clamors to hang the poor ig . norant wretch who caused it; but an ounce of prevention is better than a pound of cure. Is there no way to prevent railway officials from filling such important places with ignorant men? Ask the public who have the risk to run, or the Congress which is said to right all wrongs
Galveston, Texas.
A Young Machinist.

The Steam Jacket.

There is a practical objection to the use of the jacket to which we have not yet referred. High pressure steam especially if quite dry, appears to exert a peculiar solven
effect on cast iron. Already we hear rumors in numerous effect on cast iron. Already we hear rumors in numerous directions of the rapid wear of the high pressure cylinders of compound engines, an evil which grows in proportion with each augmentation of the weight of the casting. It appear to be fortunate that the remedy for this evil affords the best possible metiod of applying the true theory of the jacket in practice. In certain cases the jacket is made by putting a thin steel tube into a cast iron cylinder bored out to receive it. 'The Reading Works Company, for example, have brought this system of construction to great perfection, with excellent results. How far the scheme is applicable to marine engines, we are unable to say. We suggest that, especially in marine engines, instead of steel-notably an uncertain
material-hard b ass, or more strictly speaking gun metal, liners should be used for the high pressure cylinders. Properly made, the material is much harder than cast iron, and wil take a beautiful surface; while the material, being an excel lent conductor, would comply with one of the fundamental
conditions of eminent success in using the jacket. The idea is a mere extension of the system of lining air pumps. We do not claim it as original, but we believe this is the first time the scheme has been mentioned in any journal; and it appears to us to be well worth the consideration of engineers engaged in the construction of large steam engines working with considerable pressure.-Engineer.

Locomotive Boiler Incrustrations,
At the recest meeting of the American Railway Master Me chanies' Association, they expressed the belief 1 at the boiling of the water previous to its use in locomotive : wall separate the sediment from the water, and obviate, in a lidge degree, the
trouble now felt from incrustrations. On some of the westru railroads, the loss by these iocrustrations was no less tha $\$ 75,000$ per year for each one hundred locomotives. Mr Coleman Sellers, of Philadelphia, called attention to the fact hat the entirely pure water was more injarions to boilers han that which was slightily impregnated with sults or soms oreign substances, and stated that on one occasion the boiler in one trip thereby.
"Is there any material or device more economical for pack ing stuffing boxes than hemp?" Hemp is considered the est, as no danger from fire is felt, this material standing 500
degrees of heat, while ordinarily steam reaches only 343 dedegrees of heat, while ordinarily steam reaches only 343 de-
grees.

SOMETHING ABOUT PIPES.

It is an interesting fact, particularly at the present time when resolutions, at the Convention of the Young Men's Christian Association at Lowell, Mass., condemning the use of tobacco, have been made the subject of considerable comment, that over nine millions of pipes made from different varieties of wood alone are yearly manufactured in this tional than wooden pipe is probably more distinctly na ing in cost between the aristocratic meerschaum and the ing in cost between the aristocratic meerschaum and the
plebian clay, it is rarely expensive, while at the same time its plebian clay, it is rarely expensive, while at the same time its
manufacture calls into existence an industry which develops a raw material by far the largest part of which is obtained within our own brokers.
The root of the "Briar Ivy" is the substance most generally ased for pipe making, it being selected for the purpose on account of durability, hardness, and the bright polish which it is capable of taking. It is found throughout the Southern States generally-the best qualities growing in Virg:nia-and is sent to the market in large pieces which vary in size from that of \approx man's fist to the dimensions of a good sized keg. It costs the manufacturer from thirty to forty dollars per ton, the price depending upon the quality of the wood
The above information was imparted to us by one of the manufactures of pipes in this city, while wending our way from his office to the cellar underneath the factory, where the rough briar root was stored. As we entered the last mentioned apartment, we noticed, heap ${ }^{\text {² }}$ against the walls, the odd shaped pieces of the wood. Some had just been re ceived, for a workman was busily engaged in throwing them into an oven which, heated by steam pipes, served to dry out all sap and moisture the wood might contain. In the middle of the cellar, a circular saw was in motion, cu'ting the dry pieces into slices of about two inches in thickness, which as soon as finished were received by boys and piled in regu lar heaps. From this underground apartment, the slabs are sent to a drying room on one of the upper floors, where they are kept heated at a moderate temperature for six months, during which time the wood becomes thoroughly seasoned Following our guide, we next entered the workshop. Here the clatter of innumerable wheels and the buzzing of saws and lathes rendered speech out of the question. Pick ing our way over heaps of wood and edging between count leas belts, we were at length arrested before a workman who, sitting on a bench in which revolved a circular saw, had at his side a pile of the slabs which we had already seen cut, down in the cellar. Taking one piece at a time, he ressed it against the blade and in a few ssconds it was di ided into several smaller blocks of the shape of Fig. 1 The blocks vary in di. mensions according to the size of pipe to be made. Very little of the
wood is wasted, the odd wood is wasted, the odd
pieces being all worked up into stems or small pipes.
The blocks as soon as cut are passed over to the turners. Standing men, we watched him as he placed the pisce in the lathe chuck. A pressure of the boring ol, and the inferior of excavated, then a part of
the exterior was turned ; and finally the block wis reversed and, in a few revolutions, the end for the stem completed The entire operation did not occupy more than ten second the pipe, wben thrown to one side, appearing as in Fig. 2 Still it was far from finished. It had to be carved into shape nd, to witness the process, we were conducted to a nother par of the room where the filers were at work. Exch operative had before him a revolvin; divk, one side and the edges of which were cut coarse or fine, like files. This instrument removés the wood in either large or small quantitios as may be desired. If the pipe is to be ornamented, the finer file are used to cut a way minute portions. The workmen are all well skilled, and reproduce apparently iutricate designs with wonderful accuracy.
The most delicate work, such as faces, flowers, etc., ar ut by hand. We noticed that, in carving heads, it was evi dently the intention of the manufacturers to meet the fancy of the German portion of our population, as there appeare to be an unusually large number of profiles of King Wil liam, Bimmarck and Moltke
After the carving is completed and a hole drilled for the stem, the pipe is thoroughly sand papered by holding it against a revolving wheel covered with that material. This done, it is passed to the burnisher where a brilliant polish is given to the wood by allowing it to rest agaiust a rotary disk made of layers of chamois leather.
We next passed to the finishing room where, seated at long tables, we found a number of workmen engaged in fastening to the pipes the pewter tops and covers, together with the small bits of chain and bands which hold the stems and mouth pieces in placs. The lathar are manufactured from the tips of horns which are bronght from the comb makers for the purpose. Thess tips are tarned to the shape desired, holes drilled through their leogti, and then they are bent into soape by the action of heat and finally colorad black by a peculiar kind of dye Whea completed, they are carried othe finishing room and there attached to the pipes. Nothing further remains to be done but to pack the finished
pipes in boxes, label and mark them, and they are ready for have shorter hours, whether they have decreased or in the market.
The factory which we have described manufactures over one hundred and fifty gross of pipes weekly. Other woods beside briar root are used, none, however, equaling it in durability and beauty. Among these are apple, cherry, mahogany and poplar, which are made into the cheaper pipes, which cost from nine to twelve dollars per gross. The most expensive articles are made from the brar roo

THE ENGLISH BUILDING TRADE LOCK-OUT.

As we chronicle the latest phases of the eight hour uprising in this city, the cable brings us the news of the great louk-out which has lately taken place in the English metropolis. Twenty thousand workmen, mostly belonging to the building trades, having struck for reduced hours and increased wages, have been thus retaliated upon by their em ployers, and have consequently been thrown into idleness and forced to rely upon the societies and unions for their daily support.
The agitation for less hours of labor was commenced in London in 1853. The masons were the first to make the de mand, though they were almost immediately joined by the carpenters and joiners. Both trades eventually agreed to a propo al made by the masters, by which, altnough the num. ber of working hours was not diminished, their wages were
increated sixpence a day. In 1858, the nine hour question increased sixpence a day. In 1858, the nine hour question
again came up, and in 1859 , under the leadership of George again came up, and in 1859, under the leadership of George
Potter, a noted agitator, the bricklayers, masons, and carPotter, a noted agitator, the bricklayers, masons, and carpenters united in the formation of trades' unions in support of the movement. In July of the last mentioned year, the operatives in one of the largest establishments in London lock out of some 24,000 workmen by 224 of the principal manufacturing firms. After a struggle of nearly eight months in duration, a reconciliation was effected by the masters agreeing to withdraw a certain docament, whereby they pledged themselves not to give employment to union or society men.
The nine hour movement was thus virtually abandoned, only, however, to appear again in 1871 when a general up. rising of the engineers took place throughout the kingdom. Long and bitter controversy ensued, resulting in the yielding of the masters and a concession of nine hours as a day's work to this branch of trade.
Encouraged and emboldened ky this victory, the carpenters and joiners recently revived the question and demanded that a day's work shall consist of nine hours labor, except on Saturdays, when they shall only be required to work six hours and that their wages shall be increased to nine pence, or eighteen cents of our money, per hour-a change amounting to the reduction of the number of hours per week from fifty-six to fifty-one, and an augmentation of thtir weekly wages of about seven pence or fourteen cents in our curren cy. The masters refusing to accede to these terms, the
The employers then threatened a struck and left work mindful of the heavy losses which they would necessarily mindful of the heavy losses which they would necessarily
be compelled to undergo, and at the same time not wishing be compelled to undergo, and at the same time not wishing
to resort to such an extreme measure without giving their men time to delibelate on the consequences thereof, they proposed an appeal to arbitration, and named the Earl of Derby and the Marquis of Salisbury as their representatives. This overture was rejected by the strikers, and the menaced lock-out was enforced. Not only have the carpenters and joiners-the originators of the movement-been thus served, but the masons, bricklayers, and all others employed in the building business have been summarily ejected from the factories and workshops.
The general tone of the London masters is that they consider this action of their men as capricious, " and that the time has not yet arrived when they can reasonably or fairly be expected to yield the nine hours demand with increased pay." The employers also assert that though the general effect of the strikes during the past twenty years has been to raise wages some fifteen per cent, yet this increase has been more than balanced by the large numbers of men thrown out of employment and the suffering and privations which their families have been forced to endure. Lock outs as a means of retaliation or coercion are not approved
except as a last resort, but the present one is deemed justiexcept as a last resort, but the present one is deemed justi-
fiable in order to support the firm and unwavering resistance with which the masters declare they will oppose this outbreak.

The workmen, on their part, say that the cost of living in London is greatly increased, and they complain that they are obliged to waste much valuable time, for which they receive no remuneration, in traveling to and from their places of labor. The masons, especially, are dissatisfied with their wages, which are now eight pence (sixteen cents) per hour, making their compensation for nine hours work amount to \$1.44 in our money.
In reference to this uprising, the London Building News is of the opinion that the workmen are much stronger than they were in 1859 , that they have more money and a more perfect organization at their command, and that "if defeated now, the nltimate victory of the men is next to certain." The same journal further says that, as the prices of the ne-
cessaries of life have greatly increased, "it is not unnatural cessaries of life have greatly increased, "it is not unnatural
that the men employed in the building trades in London should either demand increased pay or diminished hours of labor; and so far as we can learn from personal intercourse with them, they are much less interested in increased pay
creased pay. They say that one man out of ten is out of work, and they prefer to divide the work now done by nine Theong ten men"
The London Times editorially considers that a vast loss will result to Great Britain from these strikes, owing to the great enhancement which will take place in the price of the products with which England supplies the world. Soal and iron will be much dearer, and as a consequeace England will lose her present advantages in her resources for indus trial production.

Uses of Blast Furnace Slags

Professor Egleston says that Mr. Sepulcre, a Belgian enineer, was one of the first who successfully transformed the slag into a stone which could be generally used. This he effected by causing the slag channels to terminate in an excavation whose sides had an inclination of about 30°, and whose capacity varied from a half to ten cubic meters The very steep inclination of the sides causes the section of the pits to increase very rapidly, and this allows the solid crust, which forms on the surface of the liquid slag, to rise with it without becoming attached. The slag must flow continuously into the excavation, and if, for any cause, there is an interruption, the crust must be raised to allow of the liquid material flowing underneath. In this manner, the whole mass of slag in the pit is sure to be all liquid, and will solidify from above and under pressure. After the excavation is full, it is left for 5 to 10 days to cool, the only precaution required being to cover the top with ashes or sand to a sufficient depth to prevent the mass from cooling too rapidly. The stone so produced grows hard oo exposure to the air. When first made, it can be easily broken into any required shape, but after exposure for a period more or less long, it becomes so much harder as to require double the number of tools to work it
All kinds of slags are not
All kinds of slags are not suitable for this manufacture hose which contain too much lime fall to pieces on ex posure. In general, it may be said that they should contain from 38 to 44 per cent of silica, and that the fu'nace should be working well.
Mr. Minary, Director of the Franche Comte Iron Company, conceived the idea of using the slags by granulating them as they flow from the furnace. To do this, the trough through which the slags run is made to terminate in a stream of water which has sufficient velocity to carry the grains of slag into a pit prepared for it, from which it is charged into wagons, without further expense, by an endless chain with buck ts.
The granulated slag was first used as gravel in the works nd to make the bed of the casting house. It was found that from such a casting bed, the pigs came out clean and bright, and were preferred by the puddlers even to those cast in iron molds. This method of using the slag is now of almost uni most of the furnaces run on spiegel.
As these uses consumed but a very small part of the slag, it was offered as ballast to the railroad companies on condition that they should remove it themselves. As the size of the grain can be easily regulated by the velocity and direction of the water, the railroad companies were not slow to vail themselves of these conditions, and soon were glad to pay for it, thus furnishing to the furnace company a revenue from what had previously been a source of expense. The granulated slag weighs 1,200 kilogrammes the cubic meter.
Its cost in France, where it is used, is less than half the price Its cost in France, where it is used, is less than half the price
of sand. It is exceedingly porous, so that it retains very litof sand. It is exceedingly porous, so that it retains very
the moisture, and yet packs sufficiently; the result is that it will bear transporting for long distances, as it is much cheaper than ordinary gravel and better adapted to the purpose of ballast.
The manufacture of bricks from this material immediately suggested itself. It is simply mixed with lime, pressed, and sun dried. It is very extensively used on the Rhine and in its vicinity. These bricks give a light cheerful air to the buildings, and make a warm and exceedingly comfortable house at a very small cost. It is remarkable what can be done when the necessity exists. I saw, at Kreuznach on the Rhine and in the Siegen district, bricks made from ordinary coal ashes mixed with lime and sun dried, which had stood, during several years of exposure, with no sign of deterioraduring several years of exposure, with no sign of deteriora-
tion. The manufacturer assured me that there were seven or eight large establishments for the manufacture of this oal ash brick in Germany
By coating the surface of the unburned brick with granulated slag and then burning it, out of the direct contact of the coal, it was found to produce an enamel of different colors, varying with the composition of the slag. In making fire bricks, calcined sand is replaced by granulated slag. It is proposed to use this material in the manufacture of bricks or the puddling furnace.
Another application of the granulated slag is its use for agricultural purposes. The important part which carbonic acid plays in rendering soluble the different mineral substances which plants require for their growth is well known. The very fine state of division to which it may be reduced at a very small cost is favorable to its decomposition in the soil.
Blast furnace slags gelatinize in acids, and they are, therefore, very suitable for the manufacture of cement. Pélouse and Frémy, in the last edition of their work on general chemistry, cite them as being eminently fit for this purpose. In certain parts of Germany an artificial cement, equal in every respect to the best Portland cement, is manufactured
from them at a price so low as to yield a large profit, and from them at a price so low as to yield a large profit, and
yet very uch undersell the Portland. Very large works
or the manufacture of this artificial cement are, during this ear, to be constructed.
Consilerable attention has been paid in Belgium and Ger many to the use of the slags for the manufacture of chemi cal produ sts. These were first salts of alumina, then salts of lime as an incidental product, and lately the use of the silica extracted for the manufacture of soluble glass.
In certain conditions of the furnace, the slag is spun by the blast into fine fivers, and makes a substance which is some times cal ed "furnace wool." This material is a very bad conductor of heat, and it has recently been propnsed to use t as packing, to prevent loss of heat about boilers, etc
[We have in our possession samples of this wool. It re
embles ordinary white cotton in appearance.-EDs. embles ordinary white cotton in appearance.-Eds.

Chromic Acid.

Chromic acid occurs in brilliant crimson needles, which deliquesce by exposure to the air. When pure, it is almost dorless. Its aqueous solution has a sour metallic taste, and rich amber or reddish brown color. It is very soluble in water, sparitgly soluble in chloroform, insoluble in the ixed oils and fats. As an antiseptic, disinfectant, and pre ventive of germ growth, chromic acid stands "second to one." So says Professor Dougall, in the London Lancet.
The coagulating power of chromic acid in albuminous so lutions has been compared with that of most metallic salts, various acids, etc., and found to exceed them all; for exam ple, it bas about ten times the coagulating power of carbolic acid, fifteen times that of nitric acid, twenty times that of bi chloride of mercury, and a hundred and fifty times that of chloralum, etc.
Chromic acid coagulates, hardens, and oxidizes decompos ing organic matter. It combines simultaneously with ammoniacal products and with nascent sulphuretted hydrogen, re ducing the latier to water and free sulphur. Added to putrid blood, flesh, pus, urinp, or fæcal matter, the off nnsive odor is soon absolutely removed, the mixture remaining fresh for an indefinite time. Dr. R. A. Smirh found that bi chromate of potassium surpassed thirteen other of the most energetic antiseptics, including, carbolic acid, in preventing the evolution of sulphuretted hydrogen in a mixture of equal parts of blood and water. Thissalt bas a coagulating power near that of nitric acid, that is, fifteen times weaker than that of chromic acid.
As a preventive of germ life, chromic acid surpasses sixtysix other chemical bodies consisting of irritant, narcotic, and narcotico-irritant poisons, including all the known antiveptics and disinfectants, except two or three substances, with which it has not yet been compared. In this respect it greatly excels carbolic acid, the average preventive streugth of which, in three aqueous solutions of hay, urine, beef juice, and egg albumen, is only 1 to 400, while that of chromic acid is 1 to 3,300 .

Earth Poultices.

In further illustration of the value of earth for external application, mentioned on page 9 of our last number, a cor respondent, Mr. H. Gallup, of Norwalk, Ohio, sends us the following:
"As the season of bites of reptiles is near, I send you a simple and easily obtained remedy for stings or bites. It is a plaster of clay, or, instead of clay, common swamp or gut ter mud, applied as soon as possible to the wound. I have tried it on myself. In one cave, I was stung, by a numerous swarm of the yellow hornets, in many plares in my neck and arms. I went to a swamp near, the poison being so severe that my sight was much affected. I immediately applied the mud, and, in half an hour, I went to mowing aga:n, with only a small sore lump round each sting. I knew a neighbor who was bitten by a rattlesnake some miles from home his companion left him and went for help as fast as possible, it being just night. He was not able to return until morn ing. When going, he met the man returning, with the poison conquered. He had got to a swamp, dug a hole w th his tomabawk, inserted and buried the bitten place in the mud. That was all."

Increase of Tea urinking.

A late member of the London Grocer publishes the tea statistics of the United Kingdom for the past seventy-one years. In 1801, the quantity of tea consumed was $23,730,150$ pounds, the average price of which was four shillings two pence balf penny per pound. The population then numbered $15,828,000$ souls, making the yearly amount of the beverage drunk by each person average one pound eight ounces.
In 1871 , the consumption had risen to $123,401,889$ pounds, but the price had fallen to one shilling, ten and a half pence per pound. The total population had grown in numbers to $31,513,000$, and we judge that the taste for tea must have in creased in the same ratio as its cost decreased, as in the last
mentioned year the average of each individual was three mentioned year the a
pounds fifteen ounces.

Water Level Indicator.-M. Plaudié, an engineer in Imphy, has designed a new water lever indicator for vertical boilers, in which the water stands from 20 ft . to 25 ft . above the ground, and which is eonsequently difficult to observe directly. He obtains the indications of the level at a convenient hight by the difforence in pressure of two liquid columns, the one having a fixed hight, and the other being variable according to the change of level in the boiler. These differ ences in tine pressure are indicat d by the movement of a mercurial column inclosed in a U tube, which communicates at each end with one of the tubes just mentioned. Tais apparatus works very well in the shops at Suraing and other establishments.

IMPROVED ELLIPSOGRAPH.

We have pleasure in laying before our readers the accomnying engraving and description of a very beautiful in rument for describing ellipses, invented by Mr. Arthur W. howne, of Bloomfield, N. J. It is correct in principle and erfect in operation.
Fig. 1 represents the instrument standing in position to escribe the eliptic outline partly shown; and from this :gure, a general idea of the operation may be at once coneyed.
A is the fixed center upon which the instrument is worked; B is a revolving center which has a planetary notion round A, and C is the pencil point which moves, like a satellite, round the center, 13. It will require no explanation to show how these compound motions compel the pencil point to travel in an elliotic path. We will proceed to explain how they are produced. D is a geared wheel attached to the central upright standard. E is a sleeve from which pro jects an arm carrying the axis, F, on which the loose intermediate gear, G, runs. To the lower part of this axis is adjustably attached the a-m and sleeve, H. Within the sl eve, H, is placed the shaft which carries the revolving center, B, to which the adjustable arx carry ing the pencil is attached. This shaft is ro ing the pencil is attached. This shaft is roas follows: The central standard is held firm ly in position while the sleeve, E, is revolved by means of the thumb wheel showa in Fig. 1. Motion is thus communicated through the arms to the center, B, which is carried round A in a circle. Motion is also caused in the intermediate gear, G, by which it is conveyed to the small gear, I, and the pencil is conse quently carried round the center, B, while B is being carried round A.
In Fir, 2 are shown a pen, which may b used in lieu of the pencil seen in Fig. 1, and arms of varied length on which either may be carried; also a gage, J, the use of which will be explained hereafter.

The instrument can be made to describe el lipses of any given diameters (within, of c urse, its compass) with either of their exes on any given line. To adjust it for size and form, the long and short diameters of the re quired ellipse are accded together and divided by four, which gives the distance at which the centers, A and B, should be set; the short diameter is then subtracted from the long and the remainder divided by four, which gives the distance at which the pencil point should be set from the center, B. To describe the proposed ellipse with its long diameter on a given line, the gage, J, is placed on the three points of the iostrument shown at A, so that the star marked on aach may coincide. The center, B, and the pencil point are both brought to its edge, and the three points a A are pricked uoon the given line, while the edge of the gage is perpendicular to it The gage is then removed and the ellipse described.

The instrument will, no doubt, prove very valuable for various uses. Figs. 3 and 4 are diagrams made by it which illustrate its capability very forcibly.
It was patented May 14, 1872, and further information regpecting it can be obtained of Mr. C. P. Madd of the Ridge wood Works; Bloomfleld, N

Lncrease of Invention in Belgium and Italy. We have notice i of late a large increase in the number of new inventions both domestic and foreign patented in Belgium and Italy. The "Bulletin du Musé de l'Industrie," an excellent scientific monthly published in Brussels, Belgium, contains a list of over 160 patents issued in that country for the latter half of the month of April, and also presents illus Steele's and a translation of the description of Jewell and Columns of the Scientific American
coler
From Italy a now periodical comes to us entitled "Le Industrie e le Privative Industriale" in which we find a full de-

BROWNE'S ELLIPSOGRAPH.

scription, accompanied by engravings, of Massey's rotary engine, for which due credit is given to our journal. For the month of
Government.
This increase of inventions anges well for the future proress of both countries, and the promptness with which their labor saving devices comed and the genius of their inventors as fully appreciated by the people of Earops as by the public of the United States.

CORN HUSKER AND PICKER.

The device we illustrate is designed to afford protection to the hand while picking or husking corn, and is claimed by the inventor to be effective and to render these operations very easy to the person performing them. Its construction and operation will be readily understood on reference to our engraving.
Two metal plates, about an inch wide, are hinged together at their inner ends. Their outer ends are bent inward and fasbioned into teeth in euch a manner that, when the jaw thus ormed is closed, the plates are nearly parallel, and the under tooth fits closely between the two upper ones. The plates re respectively fastened to a thumb and finger stall whic are both joined to a wrist strap. In using the device, the

forefinger and thumb are inserted in the stalls, the hinged joint is drawn back so as to fit into the angle formed by them, and the wrist strap is fas ened by a buckle. Thus armored, the ear of corn can be broken off from the stalk and after wards husked without any chance of injury to the hand, for it is grasped by the metallic plates instead of the fingers exposed is protected by them and by the finger stalls. The form of the teeth insures a very firm hold on that part of the husk seized by them and, altogether, hand husking is mado so easy by the aid of this appliance that the inventor
thinks the use of machinery for this purpose, with its attend ant waste of fodder, may well be dispensed with.
A patent was granted May 7, 1872, to the inventor, Mr Samuel H. Mitchell, of Lacon, Ill. Further information may be obtained by addressing the Mitchell Manufacturing Company, as above.

Tea Drunkards.

Dr. Arlidge, one of the pottery inspectors in Staffordshire has put forth a very sensible protest, says the Lancet, against a very pernicious custom which rarely receives sufficient attention, either from the medical profession or the public He says that the women of the working He says that the women of the working instead of an occasional beverage; they drink it several times a day, and the result drink it sever is a lamet able no doubt the case, and, as Dr. Arlidge re marks, a portion of the reforming zeal whic keeps up such a fierce and bitter agitation against intoxicating drinks might advanta geously be diverted to the repression of this very serious evil of tea tippling among the poorer classes. Tea, in anything beyond moderate quantities, is as distinctly a narcotic poison as is opium or alcohol. It is capable of ruining the digestion, of enfeeb ling and disordering the heart's action, and of generally sbatitering the nerves. And it must be remembered that not merely is it a question of narcotic excess, but the enor mous quantity of hot water which tea bib bers necessarily take is exceedingly preju dicial both to digestion and nutrition.

The Development of the Lobster. According to Mr. S. J. Smith, in the Amer ican Journal of Science, the first stage of larval life finds the little animal a free swimming schizopod, about a third of an inch long, without any abdominal appendages and with six pairs of legs, to which are at tached powerful swimming organs. The eyes are bright blue, and the body is orange to reddish orange in color. The s \in cond stage show an increase in the size of the little ani mal, and a development of a portion of the abdominal legs, with other and less impor abdominal legs, with other and less impor tant changes. In the third stage observed the animal has become half an inch long, the anterior legs have largelyi ncreased in size, the second and third paire are furnished with claws, the abdominal appendages have be come conspicuous, and the "pockets" have appeared, though they yet differ from those observed in the adult. The fourth stage finds the young lobater three fifths of an inch long It has lost its schizopodal features and has become to all intents and purposes, an actual lobster.
It is still, however, a free swimming animal, moving through the water very rapidly by means of the abdominal appendages, and darting back ward when disturbed, with the tail, frequently jumping out of the water like a shrimp. It is probable that there is yet another stage of development before the complete lobster is reached. From the data ob tained, it is also probable that these changes all take place in the course of a eingle ses.son.

COMBINED FLASK AND WHISK.

If, in his travels at night, the reader's coat and throat gets dusty, he now hes the means supplied whereby the dust may be removed from both in the morning, and his wife be none the wiser, if he can manage to be absent minded enough to forget the customary kiss when he starts out to business after breakfast. While he is brushing his clothes, he may take a pull at the concealed flask in the handle of the whisk, thereby recovering his damaged appetite, without fear of a reproachful lo k rom bis better half. Poriers in hotels and professedy temly nip on their ravels, will y nip on also see their opportunity in the present ivvention, but, it is to be hoped that Bridget, who presides in the kitchen, will not be equally perceptive. The flask is made of tin, glass, or other material, of rdinary or special shape, and is concealed by wrapping to it the brown straw in o dinary manner, an elastic wrapping being interposed between the
 straw and the flask. The fask is provided with a stopper having a ring by which the whole may be hung up, in which case the device is probably the mo.t innocent looking of any yet invented by bibulous mortals for the surreptitious concealment of fluids. This in vention was patented Nov. 21, 1871, by Louis T. Pyatt, of Philadelphia, Pa, who, had he brought out his invention when the Maine liquor law was enforced in most of the States might have made his fortunes.

Srientifir Smoriram.

MUNN \& CO., Editors and Proprietors. published weekly at
NO. 37 PARK ROW, NEW YORK

> Tre copy, one year $\boldsymbol{m} \mathbf{R I} \boldsymbol{S}$.
> One copy, six months

VOL. XXVII., No. 2. [New Series.] Twenty-seventh Year
NEW YORK, SATURDAY, JULY 13,1872

a plea for common sense.

In our number of June 22, there is a communication entitled "A Plea for the Classics," in which the writer quotes the following sentence from our article of May 25: "Not only are physics and mechanics more pleasant studies than
Latin, and chemistry m re interesting than Greek gramLatin, and chemistry m re interesting than Greek gram-
mar, but we assert that a man can make more money mar, but we assert that a man can make more money
by applying a more superficial knowledge of that science than by a much mere profound knowledge of the dead lan guages." On this our correspondent replies; "From the above, one would draw the conclusion that money making was the chief end of man. If that be so, the writer is cor rect. But man was born for a higher purpose than the simple attainment of wealth. I maintain that every man who comes into the world was put bere to make humanity better," etc. This seems to be unfair dealing, as the paragraph preceding that about money making, which our correspondent does not quote, runs thus: "Scientific knowl well as literature, poetry, or music; we must not solely pur well as literature, poetry, or music; we must not solely pur
sue it for the alke of money making, but first for its beauty sue it for the eake of money making, but first for its beauty
and beneficial influence on our minds, and consider the and beneficial influence on our minds, and consider the
profit, often the consequence of scientific investigation, as a secondary matter, but an important one at the same
time, in which science has a decided advantage over literary time, in which science has a decided advantage over literary
and poetical pursuits." And further: "All the great agents and poetical pursuits." And further: "All the great agents
which have reformed the modern relations of man are due, which have reformed the modern relations of man are due,
not to literary and poetical, but to practical scientific pur suits;' 6 tc. Our correspondent dees not answer this, but comes only with the argument that, in scientific names, many words are derived from the dead languages; well, what of it? Science does not consist in words to be remembered, as our correspondent appears to suppose when he says that "the dead languages compel the mind to think correctly, to rely on judgment, not on memory, whereas mathematics and natu ral sciences give exercise only to the latter."
Every one who has studied mathematics and natural sci ences as well as languages, knows that the reverse is exactly the case; there is no study in existence in which there is such a complete series of logical reasoning as in mathematics, and where memory alone without reasoning is totally inadequate there is no science in which the practical judgment of men is more exercised than in the study of the natural sciences,
that is, the study of Nature which surrounds us and of which we are ourselves a part. It is the study of God's han diwork, while the study of languages is that of mere human invention, the memorizing of mere words; as every language contains a few thousand of them, which have to be remem bered before the grammar is of any use whatsoever, who can deny that it is exactly in the study of languages that the memory receives the most active training?
It is the misfortune of those who, like this correspondent have received a one fided mere classical education that the foster the delusion that language and the study of gramina re the chief end of man, while in fact languages are only the vehicles by which knowledge of facts can come into our minds. We are much in favor of the study of languages and it must not be confined to Latin and Greek, but include a few of the living languages of the nations foremost in civili za:ion, not for the trifling and selish satisfaction that we can enjoy the originals better than a translation, as this corre spondent states in regard to Homer, but for the more rationa reason that we will not be confined to those works which trans lators choose to publish in the English tongue, but be able to go to the original source, and get our treasures of infor mation at first hand.
The statement of our correspondent that a man of the liver a lecture on that subject without making some stupen
dous grammatical mistakes, if he is ignorant of the classics, is too strong an assertion. And if it were wholly true, his "profound knowledge" of his subject would be such a redeeming quality that a m‘re granamatical mistake would by no means make him "a laughing stock of the community." We suspect that those, if any, are becoming the laughing stock of the community whose training has been so one sided and neglected in the most essential branches that they have no knowledge of anything else but the classics and who suppose that this knowledge is everything in this nineteenth century, who are ignorant of the agencies which govern the world in which they live, or of the properties of the materi world
als of which their own bodies are made, and who know noals of which their own bodies are made, and who
thing which can be of practical benefit to mankind.
Surely the chief end of man is not money making, but the first thing he must know is how to make a living for himself if he cannot do that, how can he fulfil his purpose, which our
correspondent states to be "to make humanity better for being in this world ?" It is not the question: What may be good to know? but first: What is absolutely needful? And in order tofoulfil what "society demands" so that man may be "pre pared for the battle of life" in this nineteenth century, mathema'ics and natural sciences must be studied more, if possible, in combination with the classics, but if need be, at the expense of the classics. Have we not scores of eminent and highly successful men who never studied the classics, and do the latter in general make a man's life useful to his fellow men in the same degree as
more on practical subjects?
The custom of a so called classical training is simply a re lic from the middle ages, when there did not exist anything worth studying but the writings of the clasicical authors when the languages spoken had no literature, and when no
 branch of knowledge was properly systematized except by our
of the dead languages. Cicero's expression, quoted by correspondent, applies as well to a system of education base on scientific as to one based on literary training; and no doubt
if Cicero, who possessed an eminently if Cicero, who possessed an eminently progressive spirit, could see the present condition of the branches of human knowledge, he would be foremost in recommending a thor ough reform in our collegiate courses.
Many of our most eminent men, who surely cannot be sus. pected of underrating classical training, as they themselves received it most thoroughly, are of the same opinion, because by also studying sciences they became able to estimate all nowledge at its comparative value. We will only name one those : President Barnard, of Columbia College, is also in institution of learning under his charge will undoubtedly have the most benignant result on the future of its graduates.

Letters from professor thurston.

Professor R. H. Thurston, of the Stevens Institute, Hobo en, N. J., has gone on a professional tour of observation mong the iron and mining regions of the country. During and the information the notes for the SCIENTIFIC AMENEA found fresh, interesting and valuable. Professor Thurston is clear and ready writer. The first of this series of letter will be found on another page of the present paper.

PROGRESS OF THE EEGHT HOUR STRIKE IN NEW YORK.

The excitement is dying out. The movement is a failure Eight weeks of idleness are producing their effects, and the disheartened workmen, unable to make further sacrifices or support their families on the pittances allowed them by the Unions, are slowly abandoning the movement
The principal event of the past week has been the rapid rowth, both in numbers and influence, of the iron and meta workers supporting the strike. Daring the fifth week of the movement, when its utter defeat seemed most imminent one John Roach, a workman in Roach's Iron Works, gathered together half a dozen men and went around among his
trade singing comic songs of his own composition containing humerous hits against the employers. As he travelled from one body of men to another, he organized meetings and final y succeeded in founding the present league of iron and netal workers, which now numbers several thousand men has more money than any other union, and may be consid red as leading the movement.
Numerous meetings of the different unions and societies has resulted deld during the week, but nothing of importance the 21st ult, an indignation meeting was held at the Cooper Institute, during the progress of which several highly infammatory speeches were made. One Mackey threatened 93. "Wuen the aristocracy of Paris refused bread to the working men, there followed a scene in which those came laborers revelled in the finest halls and palaces of the itt." A set of resolutions of similar tenor was adopted, in would be taken to protect the workmen against the police and to "resist any further acts of violence and brutality, on the part of them or any other tools of the enemies of the industrial wasses."
A fiery individual by the name of Blessart who " had been ruled by British bayonets," remarked that he had never seen such tyranny exercised over any people as that which seeks to crush down the New York working men at the concludud roughs clothed by a government of thieves. He did not know much aiout this country, and that he did not wigh to augment his atock of kinowledge in relation thereto
until it changed from a country of "thieves, murderers, and policemen."
The work of this meeting, however, was promptly disclaimed and repudiated by the large majority of the strikers, the President of the Metal Workers' League saying that he was sure that the working men would frown down any at-
tempt to draw them into scenes of outrave and riot. If they could to draw them into scenes of outrage and riot. If they they demand stout hearts and clear heads, garms for work and not for war, and prove that they could manfully and hopefully bide their time.
On the 25th ult, the sugar refiners returned to their labor under the old terms. These men had more right on their side than any other trade on strike, and, next to the Ger man and metal workers' leagues, they were the largest or ganized body of workmen in the city. The withdrawal of their support has been the most powerful blow the move ment has yet received. The piano makers have also all succumbed, each man, it is estimated, having lost over a hundred and fifty dollars by the strike. In the shops of the New York Central and Hudson River Railroad, the movement is at an end, all the hands, with the exception of the ringleaders who were refused reengagement, being at work under the old system. The men of the Delamater iron works and those of a large number of other factories throughout the city have recently surrendered, while those from similar es tablishments that still hold out are making overtures of compromise.
The New York Tribune, in a carefully prepared article, points out the cost of the movement, so far as could be learned from estimates gathered mainly from employers. 8 . 938 , 6 men employed when the shops are ful in 3,500 are bricklayers, 10,000 are day laborers, 3,000 are car penters, all of whom gained their demands at the beginning of the movement, and the balance is made up principally of of the movement, and the balance is made up principally of workmen connected with the building business. The piano-
forte makers, sewing machine makers, and brass founders forte makers, sewing machine makers, and brass founders
have completely failed. 23,424 hands are working ten hours a day without advance of wages. 4,800 house painters also labor ten hours, but receive extra pay. 11,498 men are esti nated to be still on strike, but this number has been largely reduced since the article was publishtd. The loss to the employers is fixed at $\$ 2.043,550$, and to the workmen in wages $\$ 1,674,950$. These statistics cover about forty trades, there being of course others regarding which accurate infor mation could not be obtained. It is believed that the figures here given as the amount of the losses incurred would ex tend over a period of one month, so that for a year the total direct loss to both employers and workmen would reach the sum of $\$ 11,814,000$. Leading members of different trades tate that if eight hours should be conceded as a day's labor, he effect workers would be unable to continue business in the city workers would be unable to continue business in the city he furniture trade would increase their prices 25 per cent
for fine furniture, 15 per cent for medium, and from $7 \frac{1}{3}$ to 10 for fine furniture, 15 per cent for medium, and from $7 \frac{1}{2}$ to 10
per cent for cheaper goods. The cost of production to brass per cent for cheaper goods. The cost of production to brass
founders would be augmented 25 per cent. Clothing would advance 30 per cent. The great majority, representing al rades, unite in belief that, in case of their acquiescenc: to the demands of the strikers, outside competition would force them to abandon work in New York, an opinion the correct ness of which is admitted by the workmen themselves.
As regards the indignation meeting above referred to which had a fit sequel in the repudiation of its resolutions and the unhesitating acquittal of the policemen against whom charges had been brought, we can only express our surprise that American workmen should allow themselves to be influenced by such firebrands as Blessart and Mackey. The remarks of the former person on bayonets, standing ar mies, thieves, and murderers wer: out of place and absurd These men are not Americans, nor do they know anything of our institutions. They merely rant communism and wild ocialistic ideas here, as th y would in any other country, simply to foment disorders and defy the authority of the aw. The language of condemnation uttered by the metal workers is manly and sensible, and will win for them the re spect and even sympathy of many who do not approve of the cause they support.
Our workmen lose sight of the fact that they are in every espect bettrr off than their European brothers. Lat them read the account of the great lock-out now taking place in England, and picture to themselves the misery that must ensue therefrom. While they are striking htre for eight hours' labor and 25 per cent advance on wages that are al ready large, the English artisan is locked out because he venturs to demand nine hours as a day's work, with an in crease of but fourteen cents a week-a mere pittance that an ordinary laborer would spend for beer in a single day. The merican mechanic if so honest and industrious, is th equal of the best in the land-the highest positions in th nation are open to him, and he is and should consider him self infinitely above the level of the degraded communists of France, or the uneducated hopeless drudges of other Euro

pean countries.

There is a fair prospect, we are gratified to learn, of this dispute being settled by amicable arbitration, and it is re ported that the Citizens Association and the Commission ers of Emigration of this city have proffered their good offices in the matter. We thrust that this plan will be car ried out, and that no obstructions will be opposed to it either by employers or workmen. It has been fully demonstrated hat the eight hour system cannot be adopted at present, a of our induatries to such a degree os to render cur competi-
tion with foreign labor impossible. Let the workmen, then, submit their views to arbitration peacefully and with moderation; and if the employers meet them, as we think th y will, in a spirit of forbearance and reason, we have no doubt but that a compromise will be effected, satisfactory and honorable to both parties.

THE EAST RIVER BRIDGE.

The third Annual Report of the New York Bridge Company has recently been published and contains muca iuteresting information relative to the progress in the construction of the great suspension bridge between New York and Brooklyn.
The tower on the Brooklyn side has been carried up to an elevation of 100 feet above high water and within 20 feet of the roadway. During the winter months, the old boom derricks have been removed and a new set of hoisting machinery placed in position.
On the New York side, the past eight months have been entirely occupied in sinking the caisson for the New York tower, an operation rendered especially disagreeable from he fact that the site selected had been, for some years past, a dumping ground for garbage and refuse, so that the mud was filled with decayed animal and vegetable matter. The total weight of the caisson is 7,000 tuns, and it is considered twice as strong as its counterpart on the Brooklyn side. At a slightest weakness or deflection of the roof could be observed even when the main frames and edges below were entirely dug out and not resting on the ground. Outside of the masonry, a coffer dam has been carried up to a hight of 25 feet. The chief benefit derived from this structure was that
the masonry could be laid below the water level during most of the winter, and the work of sinking the caisson could therefore proceed without interruption. At present, the coffer dam has been designedly filled up with sand and forms part of the timber dock extending to the tower masonry.
Twenty-five courses of stone (granite and lime stone) have been laid on top of the timber reaching to a hight of 50 feet and amounting to 11,700 cubic yards of masonry. Sand was discharged at a depth of 60 feet through a 31.2 inch pipe continuously, for half an hour at a time, at the rate of one yard in two minutes. This represents the labor of fourteen men standing in a circlo around the pipe and shoveling as fast as their strength would permit. 'The material passes from the pipe with tremendous velocity, stones and gravel often being projected to a hight of 400 feet. In order to de-
flect the sand at the top of the pipe at right angles, both flect the sand at the top of the pipe at right angles, both
wrought and cast iron elbows were used, but as it was found that these were rapidly cut through by the blast, solid blocks of granite were substituted.

The concrete for filling the chamber in the caisson is all mixed above and let down through the supply shafts ready for distribution below. No brick pillars were used as under the Brooklyn caisson, the bearings of the frames being so wide as to be equal to all contingencies when once uniformly packed under with concrete. The stones, earth and sand, left third of the space; and since the concrete is going in at the rate of 80 to 100 yards per day, it is probable that the chamber will be filled in the early part of this month Final exit will be had by the water shafts.
The effects of the compressed air in the caisson, on the orkmen, were not so serious as at first anticipated, but two increased, the working hours below were gradually reduced from four to two per day. An ingenious mechanical telegraph devised by Colonel Paine was used for keeping up communication between the upper and lower portions of the work. For illuminating purposes, ordinary street
gas was used, sixty burners giving all the light required. It gas was used, sixty burners giving all the light required. It
was noticed that in the compressed atmosphere all the gas lights became sensitive flames, answering to the stroke of a hammer on a piece of iron or even to the tones of the voice
Chief Engineer Roebling, in concluding his report, recommends the early acquisition of the ground required for at least one anchorage, so as to make a beginning this season and utilize the coming winter by putting in the foundation,
Having proceeded thus far, the bridge company now ask the New York Board of Apportionment for more funds, re questing the sum of $\$ 300,000$, being a 10 per cent instalment of the subscription of this city to ward the expense of the structure. An inspection of the statement of receipts and experditares in the report before us shows that the receipts
of the company, from stock paid in, rent, sale of New York of the c mpany, from stock paid in, rent, sale of New York
bonds, etc., amount to $\$ 2,923,624.26$, while the expenditure bonds, etc., amount to $\$ 2,923,624.26$, while the expenditure reach the sum of $\$ 2,905,389.49$, leaving a balance on hand o but $\$ 18,234.77$. Consequently, from the original sum sub scribed, $\$ 5,000,000-\$ 1,500,000$ from New York, $\$ 3,000,000$ from Brooklyn, and the balance from private individuals of both cities-nearly $\$ 3,000,000$ have been expended, and yet the structure is but little more than barely commenced. At war prices, the estimates of Mr. John Roebling, who planned the bridge, did not exceed $\$ 4,000,000$ for the entire work.
A system of swindling and corruption has been proved to is simply management of the affairs of the investigations into the matter, states the members of the New York and Brooklyn rings, who formed the majority o the private subscribers, have not paid in a cent of their sub scriptions. The latter were shams, employed merely to bide the too palpable intention of defrauding the corporations of New York and Brooklyn. An individual by the n\&me of
William C. Kingeley, a corrupt and notorious member of
the Brooklyn ring, holds the position of general superintendent. This man has been authorized to receive five per cent on the expenditures incurred in the work, so that for his proportion of the spoils he has secured $\$ 125,000$ on disburse ments of something over $\$ 2,000,000$. Chier Engineer Roebling is the actual superintendent, and fulfils the require ments of the position; while Kingeley's auties seem to consist in selling material from his own mills to the company at an enormous profit, and then pocketing, ia additiou, five per cent of the expenditures therefor. S, far frow the cost of the eatire structure being but four or five millions, it is evident that, unless some measures be taken to rid the company of such vampires as the Brooklyn ring, forty millions will not cover the amounts that will be squandered and stolen. The whole course of the management is an oatrage upon the The whole course of the management is an oatrage upon the
tax payers of both cities, and we trust that no further funds will be allowed until reforms are instituted.
We pointed out, when the question of a suspension bridge across the East River was first agitated, that the expense of such a structure in the location selected would be much greater than the estimates published. It such a means of crossing were absolutely necessary, it might as well have been
thrown over near Black well's Island, where the stream is thrown over near Black well's Island, where the stream is
much narrower. In our opinion, bridges are not the most suitmuch narrower. In our opinion, bridges are

Tunnels can be bored under the bed of the river with the utmost facility. The pre ent bridge will at a low estimate, even if honestly managed, cost at least twenty million dollars and will require several more years to be brought to completion. On the other hand, the same company that are making the excavations at Hell Gate, we are informed, offer to construct a tunnel under the river for one million dollars, and we have no doubt but that the work could easily be performed, with the aid of the greatly improved machinery now in use, within a year's time. In fact, for the amount which will be expended on this single bridge, at least six tunnel can be opened between different points of the two civies thus affording much more extensive, effective and less costly means of intercommunication.

LETTER FROM PROFESSOR R. H. THURSTON.

Pittsburght, Pa.,June 25th, 1872,
A visit to the iron and steel works at Trenton, N. J. Cutting iron beams with toothless savos. The Siemens furnace and the Martin steel. The eight hour strike. Iron ship building in Pennsylvania.
A professional tour of observation among the great iron and the most interesting mining regions of the country can hardly be made as comfortably, at this season, as a trip to the seashore; but, when engagements forbid attempting such an excursion in May or October, it may be still found quite profitable enough to justify an engineer in taking the sum mer months for it
Leaving New York on such an errand a few days since, we made our first stop at Trenton for the purpose of visiting the works of
he new Je irey iron and steel company, and the TRENTON IRON COMPANY.
The first named, unfortunately, were not in operation on that day, and we were compelled to satisfy ourselves with an nspection of cold furnaces and of rolls at rest.
Between 600 and 700 meu are usually employed at these works, in the production of 2,0000 tuns of iron and steel nnually, of a quality that has made their proprietors de servedly celebrated. Many large iron beams and "channel bars" are rolled here, some of the former being fifteen
inches in depth. We had the pleasure of witnessing the interesting and somewhat singular operation of sawing some of these immense beams to length, while cold, with a saw made of soft steel and without teeth. The work was done rapidly and well, and the edge of the saw, when its work was done, was left so cool that the hand could be placed upon it without great inconvenience, although the showers of burn ing iron torn from the beam during the operation had led us to suppose that the saw itself would become highly heated The saw, we were told, wears well and saves considerable ex ense by enabling the beams to be cut to length when coll. At these works a Siemens gas furnace is used in the man cacture of "Martin Steel" on the open hearth. The pro arbon in selected brands of carbon in selected brands of cast iron, by adding to it, when in spiegeleisen, as in the other methods of steel making, to orrect any defects arising from the presence of impuritios It is beautifully simple, and when carried on in the Siemens furnace, where the flame can be made oxidizing, deoxidizing, or neutral, and where the temperature can be kept perfectly nder control, it possesses many advantages over older pro esses, where it is worked with carefully selected stock. As que steel need not be tapped off until it is of the desired quality, the product may be made uniformly right
Wo noticed here that all the heavy tools about the mill were driven each by its own edgine, making them all inde pendent of the main engine and saving the expense of driv geavy shafting many hours to do The Trenton Iron Company employ about 300 men, and pro tough and wonderfully uniform in quality. Both of these firms have acquired this very great reputation by a constan and conscientious attention to quality of prodact even mor than by their great enterprise.
A large number of men are employed in the iron works and the potteries of Trenton, but there seemed to be no indi
cations of a desire to "strike." It is hardly probable, how
ever, that it is because they have learned from that experience which has driven work from London within the past few years, and which has just seriously crippled many branches of trade in New York by driving business away to other parts of the country
the eight hour strike.
It is unfortunate that our people have yet to learn, by bit ter experience probably, that if labor is worth fifty cents an hour, the great economical law which controls the relations of supply and demand will defeat the attempt of any combination of capital to get the hour of labor for less money, and that, if labor is worth but thirty cents an hour, no combina tion of labor and no amount of "striking" will secure more for it except by simultaneously raising the price of the ne cessaries of life in eyen higher ratio, thus leaving the work ing man worse off than before. They have, apparently, also still to learn that a reduction of working hours means a reduction of production and corresponding increase in price of all products of labor in full proportion. So long as these simplest laws of political economy are not taught in our common schools, it; remains the duty of the press to teach eon ecientiously one of the most important lessons which our people have to learn, and to impress upon working men the fact thatif capital receives more than its share of profit, a fair distribution can only be secured by the working men becoming capitalists, by combination and coöperation-the true object of "trades' unions," and the only way in which their members have been really and permanently benefitted. iron shipbuilding in pennsylvania.
From Trenton we went to Philadelphia, where we visited several very extensive ironworks, and where we were particularly interested in the iron shipbuilding yard of Messrs. W. Cramp \& Son. This firm are building four large iron steamers for the American "Atlantic S. S. Company," and are employ ng upon them over $1,000 \mathrm{men}$.
These vessels are over 350 feet long, more than 40 feet wide, and, when laden ready for sea, will weigh about 5,000 tuns. Their hulls will probably weigh 1600 tuns.
They will be driven by engines of 2,000 horse power, as measured by the usual engineer's standard, but the real power required to propel such vessels can be best imagined by those unfamiliar with such things when they are told hat, to do the work of such steam engines as they do it, day after day and even week after week without stopping, would require a stud of nine thousand good draft horses, and such a number would make three "string teams," to work eight hours per day each, that wouid be more than four miles in length each, or if all driven together, would extend thir teen miles.
All of the materials entering into the construction of these vessels are American, and the iron of the hulls is of much better quality than that usually put into British built ves sels. The workmanship is excellent. I have seen none bet ter in the best shipyards of the Tyne or the Clyde. They have beautifully "fair" and graceful models.

ond steam engines.

The enginas are the most effective form of "compound" engine-the form which, it has been recently stated, could not be built in this country because, as alleged, our construc ing engineers are unfamiliar with its construction (!)
I was kindly allowed to examine the drawings very minute ly, and admire; the neatness of their design, their excellent roportions, and the evident familiarity of their designer with the principles involved in this latest form of the marine It is singul
It
It is singular that our builders are so slowly taking hold of this style of engine. They have seen it coming ferward steadily gaining ground, for many years past, as steam press res have gradually risen; and in spite of occasional failure until within a few years, the introduction of surface conden sation has removed the great obstacle to the use of high ressures, and has led the way to the adoption of the com pound engine by the leading builders of the world.
The cause of our conservatism can hardly be a difficulty in finding engiveers capable of designing such engines, for al though it is true that it requires a more thorough acquaint ance with principles and methods than the old engine, we still have many engineers who can produce quite as good deigns as any found abroad.
Messrs. Cramp \& Kons are among those who do not propose to be left behind in this matter.

DESIGN PATENTS TO FOREIGNERS.

Strenuous effort was made during the last session of Con ress, by some of our large carpet manufacturers, to get the ww allowing protection to foreigners for designs repealed. The bill was not reached, therefore no action was taken before the adjournment; but we learn that it is contemplated the next session, to attach a repeal clause to other amend ments of the Patent law which the Commissioner will recom meud, and so cut all foreigners off from protecting their de signs for carpet patterns and ocher fabrics. This will be a retrograde step, and Congress may as well go a step further and rep.
But there is no knowing what these gigantic carpet corpo But there is no knowing what these gigantic carpet corpo-
rations may ant accomplish; therefore we advise all foreign rations may not accomplish; therefore we advise all foreign
mauufacturers to a vail themselves of the presmnt la to promaufacturers to a vail themselves of the presunt la to to
tect, their desigrs in fore thanext meeting of Congress.

Amone the best conductors of sound are iron and glass. Through them sound is transmitted at the rate of 17,500 fert or over three miles, per second. But in air sound travels only 13 miles per-minute, or 1,142 feet per second.

THE NEWARK INDUSTRIAL EXHIBITION.

The Industrial Exposition which is to be inaugurated on the 20th of August next in Newark, N. J., is to be similar n character to those which have proved so successful in Birm ingham and Manchester, England. Its especial aim is to de monstrate that the population of Newark, numbering 115,000 bring forth products emb:acing almost the entire range of man's handicraft.
The example set by Newark in thus encouraging the industries within her limits is an excellent one, and deserves to be followed by all our manufacturing towns and cities. Such exbibitions if properly conducted are of the utmost value not only as a stimulus to the devising of new inventions, luat also toward the ca.rying of those already in the market to a high er degree of excellence. A healtly competition and rivalry between producers is also engendered, and at the same time the business and consequent wealth of the locality is increase from the fact of the manufactures in which it excels bein brought directly to the notice of the public at large.

The Time Planets would take to kall into the sun M. Flammarion makes the following remarks, on this sub ect, in Les Mondes
Supposing the Earth to be arrested in its course, and the centrifugal force thus destroyed, the Earth, being left to the first force, would fall to the sun with a uniformly accelerated motion. It would take about 64 days in its fall, and would reach the sun with a velocity of 600,000 meters in the last second, or at the rate of about 360 miles for that second.
The following are the figures obtained from a calculation of the tine the planets would take to fall to the center of the sun, supposing their motion to be arrested. (The calculations are based on the mean distance of each planet from the sun.)

Mercury	15.55 days.
Venus	$39 \cdot 73$
Earth	64.57
Mars.	121.44
Jupiter.	$765 \cdot 87$
Saturn	$1901 \cdot 93$
Uranus	5424.57
Noptune	10628.73

Superior Safety of paraffin oils.

Dr. William Wallace, of Glacgow, communicates to the London Grocer the results deduced from a number of experiments made by him with a view of testing the applicability of heavy paraffin oils, better known as mineral lubricating oils, to the process of "batching" or preparing jute for spinning, and also for wool spinning, more especially with reference to the risk from fire supposed to exist in factories where these oils are used. He states that the flash points of paraffin oils vary from 293° to 338°, and as the lowest of the temperatures is far above the boiling point of water and any degree of heat to which any part of a spinning mill could possibly be exposed unless it were actually on fire they appear to offer perfect safety to spinners of jute or wool. Fatty oils have a higher flasu point, but the real dan. ger cosess's in the generation of heat by the oxidation or insensible combuation to whici all these oils are subject, although at different degrees. A rag of cotton waste, saturated partially with linseed oil, kept in an ordinary apartment, partially with linseed oil, kept in an ordinary apartment,
will sometimes break out into open combustion in the course will sometimes break out into open combustion in the course
of a few hours; and Turkey $\mathrm{r} \in \mathrm{d}$ dyed calico, prepared with olive oil, cannot be left for more than an hour in a heap with olive oil, cannot be left for more than an hour in a heap
without very serious risk of a conflagration occurring. The without very serious risk of a conflagration occurring. The
drying oils, such as linseed, are the most dangerous, and those which have the least tendency to become by exposure thick and rancid are the safest; Dr. Wallace considers that the paraffin oils are safer than any fatty oil because they have no tendency whatever to "heat" when in contact with fibrous materiais.
"The American Vacuum Brake," the invention of Mr. J. Y. Smith, of Pittsburgh, has been applied to cars at Boston, Mass. The time occupied, in bringing the train to a full stop at speeds from 25 to 30 miles per hour, varies from 26 oo 30 seconds, and the distance from 672 to 1,152 feet. The general construction of the brake is analagous to that of the Weatinghouse; the power empioyed, however, is the pressure of the atmosphere produced by creating a vacuum instead of that due to compressed air
Puddling by Petroleum.-It is asserted by the French technical journals that the experiment of using petroleum as fuel in the puddling furnace, which has been in progress at a large iron producing establishment during three month ${ }_{j}$, has proved itself to be very successful. In point of convenduced, it is asserted that petroleum affords the best fuel duced, it is asserted that p
Jn the onion, there is found a peculiar oil containing sul phur, called the sulphuret of allyle. The odor of the breath after eating onions is caused by the presence of a small quantity of this oil, which is exhaled in breathing.
Mercury is sometimes found in a pure state; but it generally occurs in the form of cinnabar, which is a red colored mineral composed of mercury and sulphur. In its pure state mercury is volatile, vaporizes at $662^{\circ} \mathrm{Fah}$. and solidifies at 39° below zero.
Facts for the Ladies.-Mrs. S. D. Joyce, Kingston, Mass., has used her Wheeler \& Wilson Lock-Stitch Sewing Machine since 1867. in general
sewing, sometimes changing her silk or thread twenty or thirty times a day, working as easily as with hand needle. See the new improvements and Woods' Lock-Stitch Ripper.
Brilliancy of Complexion.-For its preservation Burnett's Kalliston $\underset{\text { is guaranteed. }}{\text { Brilliancy }}$
"Our Favorite Sewing Machine.-The cheapest and best Sewing
Machine now manufactured for family use is probably the New wilson. Machine now manufactured for family use is probably the New Wilson.
We certainly would use no other. It works with equal facility on We certainly would use no other. It works with equal facility on musinn,
woolen, cloth, cambric, tarletan, flannel and leather. It does not paralyze the spine, or wear out the operator in any way, neither does it demand an incessant stoppage to find out where the difficulty is. There is no difftculty. It runs smoothly and evenly, hems, fells, tucks, gathers and binds. It does the finest and most beautiful work on cambric and linen. It also has the
merit of being cheaper than any other first-class machine, as it can be pur merit of being cheaper than any other first-class machine, as it can be pur-
chased for $\$ 50$. The feeding device is an impruvement on all other ma.chines, and a special patent of the Wilson. It does not get out of order, nor break needles, nor slip, nor pucker the cloth. So complete has the Wilson Se wing Machine been made, by a skillful combination of brain and muscle, York: also for sale in all other cities in the United States.

3usines amd erwonal.

The Charge for Insertion under this head is One Dollar a Line. If the Notices
exceed Four Lines, One Dollar and a Half per Line will be charged.
The paper thest meets the eye of manufacturese throughout the United States-Boston Bulletin, 8400 a vear. Advertisements 17 c .3 inns. For Sale-To R. R. Contractors: Two second hand direct-acting Locomotives, 12 tons and 20 tons weight-in good running order.
dress Grice \& Long Loco. Works, 1340 Beach St., Philadelphia, Pa. R. R.-The improved "Broughton" Lubricators, Oil Cups, and Oilers, manufactured by H. Moore, 41 Center St., New York, are decidedly the best.
For Silver plated Show Window Bars, write to John D. Moran, 205 Hudson St., New York
Walrus Leather for Polishing Steel, Brass, and Plated Ware Greene, Tweed \& Co. . 18 Park Place, New York
Extra Heavy Oak tanned Belting-Rubber Belting, Packing Hose, \&c. Greene, Tweed \& Co., 18 Park Place, New York.
Situation Wanted-To take charge of a Boiler Shop or turn Flanges. Is used to Marine and Locomotive Work. Address James T Connelly, 443 N . 6th St., Philadelphia, Pa.
G.W. Babcock, Providence, R.I.,wants a Watchmaker, of good habits, honest, and faithful, competent to a nice job, without mutilation.
For Hydraulic Jacks and Presses, New or Second Hand, send for circular to E. Lyon, 470 Grand Street, New York.
For Marble Floor Tile, address G. Barney, Swanton, Vt. Wanted-A $2 d$ Hand Boiler of about 3 horse power. Whit ney Arms Company, New Haven, Conm
For Vertical Portable Engines and Saw Mills, apply to Griwith \& Wedge, Zanesville, Ohio.
For the latest improvement in Stationary Engines and Saw Mills, write to Grifflh \& Wedge, Zanesville, Ohio.
Wanted--A situation under instructions in draughting room by a young man who is
Princeton, New Jersey.
Pattern Letters and Figures, to put on patterns, for molding names, places and dates on castings, etc. H. W.Knight, Seneca Falls, N. Y For the simplest, cheapest, and best Rotary Pump in use for Wanted,Patent Glove Clasps made. J. L.Weir,Dresden, Ont. Wanted—Iron Planer, of 5 to 6 ft . square by 12 to 16 ft . long, capacity. Must be new, or as good. Will exchange for some choice
selected lands situated within 5 to 10 miles of Rail Roads in Northern Iowa. John Coper \& Co., Mount Vernon, Ohio.
The best Bolt Forging Machines are those that work verti cal, and forge Bolts any length horizontally. For such, address John Abbe, 39 Charles Street, Providence, R. I.
To Capitalists-Two valuable Patent Rights for Sale or exchange for other property. For pa
Germantown, Columbia Co., N. Y.
Persons in want of Portable or Stationary Steam Engines, or Circular Saw Mills combining the latest impro
with Sinker Davis \& Co., of Indianapolis, Ind.
Upright Drills-The best in the world. Built by Hawes Machine Co., Fall River, Mass. Send for Circular.
The " Bellis Patent Governor," made by Sinker Davis \& Co., of Indianapolis, Ind., is acknowledged to he the most perfect engine
For the most beautiful Site, Building, and Water Power f manufacturing pu. osese, aldress Harris Brothers, Newport, N. Y.

For Machinists' Tools and Supplies of every description, ad dress Kelly, Howell \& Ludwig, 917 Market Street, Philadelphia. Pa.
Three fourths saving of fuel, by the Ellis Vapor Engine (Bi sulphide of Carbon) in runnin
burg, Mass. To whom apply.
Old Furniture Factory for Sale. A. B., care Jones Scale Works, Binghamton, N. Y.
Peck's Patent Drop Press. Milo Peck \& Co., New Haven, Ct.
Write for Chemicals, Crude Materials, and Drugs for Manufacturers' use, to L. \& J. W. Feuchtwanger, 55 Cedar Street, New York.
Steel Castings to pattern, strong and tough. Can be forged and tempered. Address Collins \& Co., 212 Wat, a treet, New York

The Waters Perfect Steam Engine Governor is manufactured oy he Hask Machine Co., Fitchburgh, Mass
Galvanized Slating Nails, Stove Reservoirs, and Hollow Portable Baths. Address Portable Bath Co, Sag Harbor, N.Y An inducement.-Free Rent for three months to tenants with good business, in commodious factory just built for encouragement
manufacturing. Very light rooms, with steam, gas, and water pipes, manufacturing. Very light rooms, with steam, gas, and water pipes,
power elevator, \&c. \&c. Manufacturers
Corporate Association we power elevator, \&c. \&c. Manufacturers' Corporate Association, West-
fleld, Mass. Plans of Bullding, Room 22, Twenty One Park Row, N. Y. Standard Twist Drills, every size, in lots from one drill to 10,000 , at $\%$ mauufacturer's price. Sample and cirevar mailed ior 25 c .
Hamilton E . Towle, 30 Cortlandt st., New York.
For hand fire engines, address Rumsey \& Co.,Seneca Falls,N.Y To Ascertain where there will be a demand for new Machin. Onited states in Boaton Commercial Bulletin. Terms 84.00 a year.

If you want a perfect motor, buy the Baxter Steam Engine. Brown's Coalyard Quarry \& Contractore' Apparatus for hoisting Mining, Wrecking, Pumping, Drainage, or Irrigating Machingry, for sale or rent. See advertisement, Andrew's Patent, instde page For Tri-nitroglycerin, insulated wire, exploders, with pamphlet, as used
Adams, Mass.
Kelley's Chemical Metallic Paints, $\$ 1, \$ 1 \cdot 50, \$ 2$ per gallon, mised ready for use. Send for cards of colors, \&.,116 Maiden e, N. Kelley's Pat.Petroleum Linseed Oil, 50c.gal., 116 Maiden Lane. All kinds of Presses and Dies. Bliss \& Williams, successors to Mays \& Bliss, 118 to 122 Plymouth St., Brooklyn. Send for Catalogue. Diamonds and Carbon turned and shaped for Philosophical and Mechanical purposes, also Glazier’s Diam
set by J. Dickinson, 64 Nassau st.,New York.
For Steam Fire Engines, add̄ress R. J. Gould, Newark, N. J. In the Wakefield Earth Closet are combined Health, Cleanliness and Comfort. Send to 36 Dey St., New York, fordescriptive pamphlet. If you want to know all about the Baxter Engine, address Wm. D. Russell, office of the Baxter Steam Engıne Co., 18 Park Place,N.Y. Presses,Dies \& all can tools. Ferracute MchWks,Bridgeton, N 2 Spindle axial Drills, for Castors, Screw and Trunk Pulleys, © For $2,4,6 \& 8$ H.P. Engines, address Twiss Bro.,New Haven,Ct. The Patna Bran 1 of Page's Patent Lacing is the best. Ol ders promptly niled by the Page Belting Co., No. 1 Federal St.. Boston Absolutely the best protection against Fire-Babcock Extin Williamson's Road Steamer and Steam Plow, with Rubber TIres. Address D. D. Williamson. 32 Broadway. N. Y., or Box 1809. Tested Machinery Oils-Kelley's Patent Sperm Oil, $\$ 1$ gallon; Engine Oll, 75 cts.; Filtered Rock Lubr
tificates. 116 Maiden Lane, New York.
For Solid Wrought-iron Beams. stc., see advertissmens address Union Iron Mills, Pittsbargh. Pa. for ithograph, etr.
Belting as is Belting-Best Philadelphia Oak Tanned. C. W Arny, 301 and 303 Cherry Street, Pbiladelphia. Pa.
Boynton's Lightning Saws. The genuine $\$ 500$ challonge. Will cut five times as fast as an sx. A 6 foot cross cut and buck saw, \$6. E. M. Boynton, 80 Beekman Street. New York, Sole Propritior.

The Baxter Steam Engine is safe,and pays no extra Insurance. Betterthan the Best-Davis' Patent Recording Steam Gauge. Simple and Cheap. New York Steam Gauge Co., 46 Cortlandt St., N. y.
"What I know about Machinery," especially Engines, Pumps, and M achinists' Tools, which I sell at93 Liberty street, Ne w York. S. N.
Hartwell, late agent for I. W. Pond.
The most economical Engine,from 2 to 10 H.P., is the Baxter. Over 800 different style Pumps for Tanners, Paper Makers, Fire Purposes, etc. Send for Catalogue. Rumsey \& Co., Seneca Falls, N. x.
Inventions Patented in England by Americans.
[Compiled from the Commissioners of Patents' Journal.]
From June 7 to June 12, 1872 , inclosive.
Diffrrential Pulley.-T. A. Weston, Ridgewood, N. J.
Fastrinta for Retort Lid.-G. Stajcliff, J. R. Floyd, New York city Fabtining for Refort Lid.-G. Stavclif, J. R. F,
Ink Fountain.-Hopson ana Allen, New York city Locomotive Enaine, eto.-J. Harrison, Jr, Philadelphia, Pa. LUBRICATor.-J. S. Eggle.ton, Auburn, N. Y.
LERROBATOR.-G. Harrington, New York city.

S'TAIR Rods, ETC.-E. J. Smith, Washington, D.
Sturfing Box Gland. -J. N. Colby, of Mystic, Conn., Glasgow, scotland
Stan

FOREIGN PATENTS--.-A HINT TO PATENTEES,

It is generally much better to apply for forelgn patents simultaneously
with the application in the Unlted States If this cannot be conveniently with the application in the United States. If this cannot be conveniently
done, as little time as possible should be lost after the patent is issued, as done, as little time as possible should be lost after the patent is issued, as
the laws in some forelgn countries allow patents to any who first make the application, and in this way many inventors are deprived of valid patents tor their own inventions. It should also be borne in mind that a patent is issued in England to the first introducer, without regard to the rights of the real inventor; therefore, it is important that all applications should be
entrusted to responsible agents in this country, who can assure parties that entrusted to responsible agents in this country, who can assure parties that
their valuable inventions will not be misappropriated. The population Great Britain is $31,000,000$; of France, $37,000,000$; Belgium, $5,000,000$; Austria $36,000,000$; Prussia, $40,000,000$; aud Russia, 70,000,000. Patents may be secured by A merican citizens in all of these countries. Mechanical improvemente of all kinds are always in demand in Europe. There will never be a better
time than the present to take patents abroad. We have reliable business connections with the principal capitals of Europe. A large share of all the patents secured in foreign countries by Americans are obtatned through our Agency. Address

MUNN \& CO.
37 Park Row, N.
R.
arculars, with rall intormation on foresen nateats. thrnished free

NEW PATENT LAW IN CANADA.

By the terms of the new patent law of Canada (taking effect September 1st, 1872) patents are to be granted in Canada to American citizens on the most favorable terms.
The patent may be taken out either for five years (government fee \$20), $\mathrm{o}_{\mathbf{r}}$ for ten years (government fee $\$ 40$) or for 1 fteen years (government fee $\$ 60$).
The five and ten year patents may be extended to the term of ifteen years. The five and ten year patents may be extended to the term of fifteen years. The formalities for extension are simple and not expensive.
In order to apply for a patent in Canada, the applicaut must furnish a model, specification and duplicat
applying tor an American patent.
American inverions, even if already patented in this country, can be patented in Canada provided the American patent is not more than one year old.
All persons who desire to take out patents in Canada are requested to com. municate with Munn \& Co., 37 Park Row, N. Y., who will give p
tention to the business and furnish pamphlets of instruction free.
Messrs. Munn \& Co., have had twenty-flve years experience in the business of obtaining American and Foreign Patents for inventors; they have special agencies in nearly all countries where patents are granted. Mod. erate charges and prompt attention may always be expected.

Motesfequeries.

[We present herevith a series of inquiries embracing a variety of topics of
greater or less general interest. \quad The questions are simple, it is true, but we greater or less general interest. The questions are
prefer to elicit practical answers from our readers.]
1.-Smeltina Iron with Petroleum.-Has petroleum ever been used as fuel in an iron smelting furnace, and can it be done with
good economical results?
J. s.
2.-Cardboard Spools for Ribbons, etc.-What varnish should be used in the making of cardboard winders for ribbons and
aces? Shellac dissolved in alcohol is good, but it is too expensive.-A. R.
3.-Coloring Ivory.-I should like to learn, from some
your readers, the method of dyeing ivory billiard balls red.-E. S. H.
4.-Flexible Material to withetand Heat.-What flexible material will stand the action of fire and heat, the degree of heat
not to exceed that of a stove pipe?-L. M. S.
5.-Proportions of Steam Engine.-In a condensing steam engine, what proportionshould the condenser bear to the cylinder?
-D.
6.-Shoemakers' Ink.-How can I make this preparation? The ink must be of a good black color, and must not thicken or mold. One
that can be made easily will be preferred.-L. R.
7.-Soluble Glass and the Teredo.-Will several heavy coats of soluble glass, applied to the bottom of a boat, be a suffl-
cient protection against the worm in salt water that gives so much troucient protection
ble?-A. $\mathrm{L} . \mathrm{S}$.
8.-The Sun and the Zodiac.-Considering the theories prevailing in regard to the earth's orbit, it is perfectly natural to presume
that a line drawn from the first point of Aries to the first point of Libra that a line drawn from the first point of Aries to the first point of Liora
would cut through the sun's ceriter. Will some one inform me if observa-
tions have ever ultimately established the fact? If so, by whom taken, and tions have ever ultimately established the fact
where may I find an account of the same ?-D.
9.-Concrete Building.-Can any one give me information respecting concrete building? What proportion of Roman cement is
used to sand, ashes, and stone? What is the average cost of such building used to sand, ashes, and stone? What is the average cost of such building
per suane foot? Would it be practicable for me to carry out such a build-
ing with the aid of day laborers only, with carpenters' aid for the woodper square foot? Would it be practicable for me to carry out such a build-
ing with the aid of day laborers only, with carpenters' aid for the wood-

work? Are there any persons who make a specialty of such building?| work ? |
| :--- |
| R. w . |

Ausucts to Correquondents.

SPECIAL NOTL.-This Column 18 designed for the generalisterest and s .
struction of our readers, not for gratuitous replies to questions or a purely struction of our readers, not for gratuitous replies to questions of a purely
ousiness or personal anature. We winl ppublish such inquirtees, h owever. ousiness or personal nature. We will publish such inquiries, however,
onhen paid for as advertisements at 1.00 a line, under the head of "Busness
and Personal."
LLL reference to back numbers must be by volume and page.
Nickel Plating.-C. A. S. will find a full description of a Mending Bellows.-W. S. H. should use the preparation described on page 138, Vol. Xxv. of the Scientific american.
Ice Machines.-To W. A. C., of Ga.-We know of no small cheap ice making machines in this country
Inflammatory Rheumatism.-We could not send A. B. any advice on the subject of this complaint. A properly qualified medi-
cal man should be applied to, and nostrums and advertised specifics avoided
Boiler Scale.-W. M. K., of Ill., does not name the mineral of which the scale consists. Different deposits require different reme-
Phosphorescent Light.-R. L. Y., of Kansas, will find directions for making a phosphorus light on page 10 of No. 1. Vol. XXVII.
of the Scientific American. The cork must be removed occasionally, as the phosphorus will not burn without a supply of oxygen.-D. B., of
N. Y. Ocean Cables.-To H. F. H., query 2, page 416, last vol-ume.-The Atlantic cables lay on the bottom of the ocean, which, along
their whole course, is covered with a fine silt well adapted to preserve them from the action of currents which may exist.
depth to which they are submerged.-D. B., of N. Y
Test for Zinc.-To J. B. query 10, page 416, last volume. -The salts of zinc are easily detected with a blowpipe flame. Evaporate of soda therewith, and burning them on a piece of charcoal. The metallic zinc will soon appear and will volatilize, becoming reoxidized on con-
tact with the air, and a sublimate will fall on the charcoal. This deposit tact with the air, and a sublimate will fall on the charcoal. This deposit
is yellow when hot, and turns white on cooling. The protonitrate of cobalt, when added, exhibits a fine green color.-D. B., of N. Y.
Electro-silvering German Silver.-Query 5, Vol. XXVI., page 401.-If J. H. will use a small or weak battery, so as to deposit the
silver very slowly, it will be very soft and perhaps not need annealing.s. G. S

Condenser with Rhumkorff Coil.-To S. G. S., query 18. page 385, Vol. XXvI.-I constructed a Rhumkorff coil with condenser,
and had the same difficulty as S. G. S. I think it is caused by the platiand had the same difficulty as S. G. S. I think it is caused by the plati-
num terminals being heated by the spark, and fine particles of platinum
are detached and carried from one pole to the other, and the action of the hammer welds the two surfaces together. I would suggest to S . G.
S. to make his spring stiffer at the point where the platinum plate is solthe hammer welds the two surfaces together. I would suggest to S . G.
S . to make his spring stiffer at the point where the platinum plate is sol-dered.-F. M., of N. J.
Force of Falling Bodies.-If J. E., query 18, page 385, last volume, will multiply the weight of any falling body, in pounds, by
the hight of the fall in feet, he will have the force of the blow in foot pounds. Leaving friction out of the question. the force of the blow of
his hammer is precisely equal to the force expended in raisitg it, nameiy, his hammer is precisely equal to the force expended in raisit g it, nameiy,
$6,000 \times 4=24,000$ foot pounds. Converted into heat, this force would be competent to raise the temperature of one pound of water a little more
than 31°, thas: 24,009 divided by 772 equals 8109 units of heat. - W. B. P., oftoma
Recovering Silver.-To C. O., query 1, page 385, Vol.
xXVI.-Evaporate the solutions to dryness, burn the paper, and add the XXVI.-Evaporate the solutions to dryness, burn the paper, and add the
ashes; dissolve the lot in dilute nitric acid. Precipitate pure metallic ashes; dissolve the lot in dilute nitric acid. Precipitate pure metallic
silver by putting a piece of clean copper in the solution. Wash the pow-
dered silver clean with rain water, and redissolve in only enough dilute dered silver clean with rain water, and redissolve in only enough dilute
nitric acid. Put the solution of nitrate to crystallize.-E. H. H., o nitric
Mass.
Action of Running Water on Lead Pipe.-To G. G. E. quary 10, page 385, Vol. XXVI.-There is no probability that the water
will be at all poisonous from taking np any lead from the pipe, especially if the water is hard.-E. H. H., of Mass.
Phosphorescent Oil.-To H. W. B., query 5, page 385 Vol. XXVI.-Cannot be done. P
phorescence.--E. H. H., of Mass.

Eccentric Whiskers.-To A. S. R., query 4, page 385, Vol.
xXVI.-These result probably from deficient nutrition, and possibly XXVI.-These result probably from deficient nutrition, and possibly
constitutional ill health. Where the general health is and has been good constitutional ill health. Where the general health is and has been good,
the hair in any part does not usually suffer. Clip your whiskers occathe hair in any part does not usually suffer. Clip your whiskers occa-
sionally, and do not use a very alkaline soap. Most, if not all, of the popular hair preparations and hair dyes are most
driven out of the m rket.-E. H. H., of Mass.
Spectacles.-To J. Y., query 13, page 385, Vol. XXVI.For short, long, or aged sight, spectacles should be of perfect material, ground to proper focus to suit the peculiar wants of the organ, and thor-
oughly polished. "E E sharpeners," as they are called, should never be used without professional advice. The eye is too delicate to tamper with.-E. H.
VACUUM IN
Vacuum in Casks.-In reply to X., I cannot see what " the screw motion of the liquor,", or "terrestrial gravitation," or the "varia-
tion, from the perpencicular, of the plummet suspended from the collar tion, from the perpendicular, of the plummet suspended from the collar
of a deep shaft" have to do with the mere pressure of the atmosphere keeping water in the cask. Molasses having'a greater specific gravity than water cound not be raised to the same hight as water, nor could the
liquid mercury rise so high as molasses. If X. takes a hollow hemisphere liquid mercury rise so high as molasses. If X. takes a hollow hemisphere
and fits (by grinding) to it a hemisphere of iron, and then cleans the surand fits (by grinding) to it a hemisphere of iron, and then cleans the sur-
face of each, places them together so as to squeeze out the air, so that it face of each, places them together so as to squeeze out the air, so that it
cannot enter between the sides. he will find, on inverting the whole arrangement, that the pressure of the atmosphere will be sumfcient to pre
vent the solid mass of iron from falling out of its cup. The force of gravent the soid mass of ron from faling out of its cup. The force of gra-
vitation would naturally make the lump fall, but it is overcome by the at mospheric pressure. So in the case of the glass of water with the paper
over it; for convenience sake, we may say that the paper contributes to over it; for convenience sake, we may say that the paper contributes to
afford to it some of the properties of the solid iron-to wit, impermeability of the air and consequent suspension of the whole. The same principle is anplicable to the cask; fill it with water, and have the bung hole
accuuately covered with thin paper, turn upside down, and the water will accul ately covered with thin papp
not flow out.-E. H. H., of Mass.
Mounting Prints.-To E. D. W., query 11, page 370, Vol XXVI. - Make a th11 size of fish glue or isinglass. Take a good sized flat
varnish brush, wet the brush with the size just suffciently to moisten the varnish brush, wet the brush with the size just suffciently to moisten the
surface of the print to the extent of the width of the brush and the whole surface of the print to the extent of the width of the brush and the whole
length of the print. Commence at one side and continue in this way until length of the print. Commence at one side and continue in this way until
you have gone over the whole surface. Draw the brush with a light, quick stroke, as closely each time to the part previously wet as possible,
without apping or quick stroke, as closely each time to the part previously wet as possible,
without lapping or going twice in a place. When dry, go over it again
in the same way, only at right angles to the first stroke. Let this dry, in the same way, only at right angles to the first stroke. Let this dry,
then proceed to mount as follows: Stretch as tightly as it will bear while tacking, to a frame of the required size, a piece of new, smooth fine mus-
lin or factory cloth. Rub over the whole surface of this, with a good paste brush, a sufficient quantity, of well cooked paste made of equal
parts of wheat fiour and starch, to thoroughly wet the cloth. Lay the parts of wheat fiour and starch, to thoroughly wet the cloth. Lay the
print on to it, and, with a piece of clean paper covering it, rub it down, print on to it, and, with a piece of clean paper covering it, rub
on both back and front side, untrl smooth and fast. When thoroughly Recovering Silver from Waste Solutions.-To C. O., query 1, page 385. Vol. XXVI.-Burn the silvered paper in an iron kettle in the open air if no air is stirring, or elsewhere where there can be no
danger from fire, putting it on to the flame a little at a time until all is burned. Carefully collect and save all the ashes, as they are precious.
Pulverize and mix together 8 parts niter (saltpeter), 4 parts carbonate of Pulverize and mix together 8 parts niter (saltpeter), 4 parts carbonate of
soda, 1 part cyanide of potassium ; and mix these with 32 parts of the burned paper a<hes. Put this last compound, or any part thereof, into a
crucible, place this into the flre of a blacksmith's forge, bringing the fire crucible, place this into the flre of a blacksmith's forge, bringing the fire
well up around the side of the vessel. Blow the fire carefully until the masi is brought to a boiling, red hot state, shortly after which take it from the fire and quickly invert it that the flux may all flow out before
cooling. Pour it anywhere, on or about the forge, where there is dirt cooling. Pour it anywhere, on or about the forge, where there is dirt,
sand, or ashes, so that, for the sake of convenience, the flux will not adsand, or ashes, so that, for the sake of convenience, the flux will not ad-
here to the brick or stone work. When cold, which will be in a very few here to the brick or stone work. When cold, which will be in a very few moments, break, with a hammer, the flux away from the center, which you
will find to be a button of pure siver. I have Rever tried the residues from silver washings, but have no doubt they can be reduced in the same
way. I have a lot on hand, some precipitated with salt, some with sulphuret of potassium, and some with lime. I shall try these soon and, if desired, will report results. Old chloride of gold solutions, I precipitate
with sulphate of iron, managing the residue in this why, of cen obtaining button of pure gold as large as a robin's egg. All of these precipitate button of pure gold as large as a robin's egg. All of these precipitates
should be collected by filtration or other convenient method, and dried
thoroughly before smelting.-G. W. T., ot N. Y.

zerent gmerian and forcigm gatents.

nent home and foreign patents.
handle Fastening for Traveling Bags.-Morris Sehwerin, of Newark N. J.-This invention is an improvement on his handle fastene, patented
July 4, 1871. It consists in forming the fastener of a hollow cylinder which open at one end and outwardly flanged at both. A corrugated band is gether, passed through a slot in a smanges, and ind bent outward. Th plate is thens riveted to the bag. The end of the handle is then inserted in
pital the cylinder and fastened therein by a screw which is passed through a
hole or slot in the band. The two ends of the screw, which goes completely through the cy/inder, are allowed room for play either under the
corrugation of the hand, or in slots formed therein, as may be most con enient.
Fastenivg for Jewzley boxes.--Henry Hoefer, of Brooklyn, N. Y.-
This invention consists in improving the cushions or pads of iewelry boxes, and stands so that the wire of the article to be held is secured by a clam instead of being stuck through the cloth covering. Any approved arrange-
ment of spring jaws may be used for the purpose; that, however, being preferable in which the jaws are opened by pr
owards the cushion to which they are attached.
Sled Brake.--Jonathan Moon, of Spring Valley, Minn.-This invention
curnishes a simple, convenient, reliable, and automatic sled brake, which is o arranged as to apply the brake whenever the sled tends to move faster than the horses, with a force proportioned to the forward pressure of the ad ; it consists mainly in the employment of a roller, whichis wad ower rod extends through the runners and eccentrically ptvots the roller re pivoted the rear end of the tongue braces. To the upper rod, near it ends, is also pivoted the forward ends of the two connecting rods whici
operate the dogs or brakes. By this construction, when the sled tends to operate the dogs or brakes. By this construction, when the sled tends to
move faster than the horses, the tor-ward pressure of the sled carries the move faster than the horses, the for ward pressure of the sled carries the
lower angle of the roller forward, while the tongue presses its upper angle backward, causing the rods to operate the dogs and retard the sled. As
soon as the horses again begin to draw, the reverse movements take place, nd the dogs are again drawn up into the runners. By another ingeniou T, J He
STove Pipe Shelf.-John Hecker Betts, New Canaan, Conn.- This inven-
tion furnishes an improved support for stove pipe shelves, and consists of a base that stands on the top of the stove and supports a vertical bar whic is hooped to the stove pipe. From this bar project at intervals short
brackets which support pivots on their upper sides, and on these pivots the helves are mounted.
Door Latch.-Willam H. Mott, New York city.-This invention fur
nishes an improved latch, which consists of two overlapping and slotted bolts which are worked by wins and shoulders in connection with a lever of by a double wire spring. It may be placed or either the right or left side of by a double wire spring. It may be placed or either the right or left side
a door which makes it a very convenient lock for cupboards, etc.

MACHINE FOR MAEING WIRE Tubes.-William C. Edge, of Newark, N. J.
-This invention relates to a new machine for manufacturing, from metal wire or links. conti uous fabrics of tubular or other form on a small scale for jeweler purposes, or on larger scales for practical uses of various
kinds. The principle of the invention consists in the arrangement of a reciprocating tool which expands the meshes that are put through completed loops of the fabric. By thus being expanded, the meshes become absolute
and well connected parts of the entire fabric, and constitute loops for the reception of new meshes, to be expanded in turn. In this monner fabrics oi various designs are rapidly and accurately made by automatic process,
and cheaply produced. The invention consists, further, in various details such as the mechanism forshaping the consists, further, in various deta th means of imparting the necessary motions to the several devices of the machine, the arra
and other devices
Washing Machine.-Anton Hochweber, Troy, Indiana.-This invention furnishes an improved washing machine, which is so constructed that it
washes the clothes quickly and thoroughly, and without injuring even the most delicate fabrics; it consists mainly of an oscillating box, to the inner ents of which are attached corrugated blocks. Between these is placed a
beater formed of a series of horizontal boards. whose ends fit into the corbeater formed the blocks. These boards are fastened to two upright boards, and rollers are attached for the beater to run on. In using the machine,
the clothes to be washed are divided into two parcels, which are placed in the box upon the opposite sides of the beater. A suflicient amount of water and soap are then put in, and the box is oscillated u oon its pivots, the tween it and the blocks alternately. As the beater moves in either direction, the water rushes through the spaces between the horizontal boards tion, the water rushes through the spaces between the horizontal bo
apon the clothes in the rear of the beater, and assists in washing them. Top for Heating Stove.-Harry Whittingham, New York city.-This
invention hasfor its object to supply cylindrical and other stoves with ornainvention has for its object to supply cylindrical and other stoves with orna-
mental sheet metaltops, and thereby reduce their expense and weight with mental sheet metaltops, and thereby reduce their expense and weight with.
out in the least diminishing their usefulness or durability. Heretofore, out in the least diminishing their usefulness or durability. Heretofore,
cylindrical and other stoves with ornamental tops had them made of cas iron. The improvement consists in making such tops of sheet metal, and a.-This invention CAR Couplivg.- Horace w. Barnum, Omaha, Nebraska.-This invention
furnishes an improved car coupling, which will couple itself as the cars are run together, and uncouple itself should one of the cars turn over in either direction; it will couple cars of diff srent hights with the same facility
as though they were of the same hight, and admits of their being coupled with as though they were of the same hight, and admits of their belng coupled with
the ordinary coupling link and pin when required. The details of the conthe ordinary coupling link and pin when required. The detal
struction would not be understood from a verb $\geqslant 1$ explanation.
Car Coupling.-Charles Layton, Matawan, N. J..-This invention re-
lates to a new and useful improvement in couplings for railroad cars, and cosists in the construction following: Under the draw head of the car
cond truck projects a hanger, to which is pivoted at its center a cross bar or lever. To the forward end of the lever is pivoted the coupling pin, and
to the rear end the uncoupling box. Both pass upward through the draw head-the pin sufficiently far to engage with the coupling link, and the bar right through so that it may be operated from absve. A spiral spring is
attached to the lever and draw head in such a manner as to hold the attached to the lever and draw head in such a manner as to hold the
coupling pin in place when in use. The coupling link is simply a bar with coupling pin in place when in use. The coupling link is simply a bar with
holes to recelve the coupling pins. When the cars are uncoupled, the bar is held up by means of a notch therein, which hooks on to the top of the draw head. When two cars come together to be coupled, the end of the
coupling link strikes the bar and forces it from the top of the draw head when the coupling pin is thrown up by the recoil of the spring and the car Eyt
Exe Glass.-John-Cadman, Chatham Village, N. Y.-This invention relates to a new manner of arranging the springs on eye glasses, with the
object of introducing a more rational mode of holding them to the nose than is at present in vogue. It consists in setting the glasses at nearly a right angle to the spring. so that the latter clamps the nose direclly
bi tween the eyes at the thin part, and not at the lower fleshy part, as hereto rore, which more or less interferes with the process of breathing.
Shield For Corns.-Benjamin Brandreth, Sing Sing, N. Y.-This invention relates to a new arrangement of a plaster for application to corns or
bunions; its object is, by a judicious combination of parts, to obtain the runions; its object is, by a judicious combination of parts, to obtain the
requisite soothing or curative and adhesive properties. It consists in the combination of an annular or other saaped porous or healing plaster with an adhesive plaster, the latter serving to retain the former in place and insure its effectiveness.
Stereotype Block.-Wiliam A. Pinnell, New York city.-This inven
tion fur ishes an improved block for stereotypep tion fur ishes an improved block for stereotype plates, which is so con
structed as to avoid the loss of time now unavoidable in making structed as to avoid the loss of time now unavoidable in making up a form
of plates on a printing press, on account of the irregularity in the thickness of the plates. The block is so constructed that the plates, of whatever size, can readlly be secured to it by means of swiveled screw clamps and catches,
or screw hooks which are screwed into holes in the face of the block as may or screw hooks which are screwed into holes in the face of the block as may
be necessary to conform to the size of the plate. Under the block are placed be necessary to conform to the size of the plate. Under the block are placed
wedges, which are worked by screws, and by means of which the plates are wedges,
leveled.
Piston Rod Packing.-John W. Lynch, Richmond, Va.-This invention those now in use. It is formed by two sets of conical sectional rings of
metal, hard wood, or any other suitable substance. The sections overlap so as to make steam tight joints, and one of the sets issmaller than the other,
in advance of which it is kept by projecting studs. In fitting new engines, the stuffog bozes may be bored conically to receive the packing; and in applying it to those in use, a bush provided with a conical bore is fitted int tight oil space, into which oil may be poured through a hole in the tuffing $b: x$.
Horse STALL FLoor.-George W. Gordon, of Charleston, Mass.-This is
an improvement on the stall floor of Z G. Garlick, which was patented an improvement on the stall floor of Z. G. Garlick, which was patented
July 21. It consists, mainly, in so arranging the secondary floor as to con July 21. It consists, mainly, in so arranging the secondary floor as to con-
stitute a close box or framing for the hinged part, thereby facilitating the cleaning of the stall, preventing draft of air upon the animal, and pro ducing other advantages.
bedstead fastening.-Leander May, Columbus, Ga.-This inventio consists in an improved method of connecting the rails and posts of bedcormation, which are let into mortises in the rail and project about an inc rom the end. These mortises are covered by pieces of wood which are glued
to the rail. The face of the post has a mortise for each hook of suftlien size to admit the projecting hook or the rail and allow of a downwar movement after its insertion. A fastening plate is placed in each mortise of the post. These plates are made of iron, with a mortise or slot of a length
qual to or aboat equal to the mortise in the post, and of a breadth at one equal to or aboat equal to the mortise in the post, and of a breadth at one
end equal to the post mortise, and less at the other end, so that, when it is ndaced in the mortise, a part projects into the mortise in the post. It is with this part that the hook of the rail engages. The plates are inserted into the posts through slots cut (by a circular saw or otherwise) on the inside at ight angles to the mortises. When they
with strips of wood to exclude vermin.

Sewing Machine Cover. - Dorcas C. Junett, Troy, N. Y., assignor to il protecting cover for the Wheeler \& Wilson sewing machine. The im proved cover is made S shaped in cross section, and its front edge bears
against the back edge of the sewing machine top plate. The back part of th cover is rasied and arched so as to fit over the working rock shaft of the machine. At the under side of the cover are projecting legs which support it on the table on which the machine is secured. These legs have in wardly bent lower parts which fit against the lower plate of the machine. A ledge
at the side of the arched upper part of the cover supports it on an end pin. By means of these supports the cover is made self sustaining, and, when pplied, it at once fits its proper place. A spout or nozzle profects forwar falling against the oiled part of the shaft.

Spooling Silk.-Henry L. Brown, of Middletown, Conn.-In spooling
ewing silk formarketit has been the practice to estimate the weight, 0 he silk on the spools, by judging the size and by weighing batches of the
spools from time to time, and taking the average; buc the most skillful persons fell considerably short of that accuracy which ought to be attained in this matter, for it is highly desirable that each spools s.all have exactly the
quantity, by weight, it is desigued to have, and no more. In this invention his object is atteind by the spooling apparatus. In one pan are placed the bobbins from which the
ilk is to be drawn and in the other a suffcient number of weights, each of which is equal to the weight of silk intended to be wound on each commer cial spool, is placed to balance it. One of the weightsis now removed and
the silk wound off one of the boboins on to the commercial spool until the emaining weights balance the remaining silk. The spool, which now has its proper weight of silk, is removed, and another weight is withdrawn,
when the processis repeated with another spool. This is continued until he silk is all wound off the bobbins
Elegtric Clock.-Vitalis Bimmer, of New York city, assignor to himselt and Gustave Autenrieth, of same place.-This invention relates to several improvements in the mechanism for actuating clockwork by electricity,and January 4,1870. It consists, first, in an improvement of the mechanism for egulating and sustaining the pendulum vibration, secondly, in a new means of converting the vibratory motion of the pendulum into rotary motion;
thirdly, in a new attachment to the arbor of the second hand of the clock. Whereby, once during every revolution of said arbor, or at shorter inter ty that lead to a second or secondary clockwork, actuating the same when the circuit is estabished, and finally, in the arrangement of the secondary clock, and in a new pawl mechanism for insuring exactness of mo-

Fastening for Retort Lid.-George Stancliff, of New York city.-This nvention provides a means for securely fastening the lids of gas retorts by
which the elosing can be rapidly effected. At present the lids are usually losed by means of screws. Considerable time is required in opening and losing them, and more or less gas is consequently los. .t. In this improve For the support of one of the ears a fixed hook is secured to the mouth of the retort. While a sliding hook for the sapport of the other ear is fitted end. When the lever is swung to bear with its eccentric part agaiost the flange, the hook is dra wn back and firmly holds the lid against the retort. When the lever is swung up the lid will be instantaneously loosened, and
Lathe for Turning Irregular Forks.-Eli K. Wisell, of Warren, Ohio. -This invention relates to certain improvements on the spoke machines for
which patents were ©ranted to the inventor 3d of March, 1863, and 14th of anuary 1868. The object of the present invention is, frst, to provide ad the same are only supported behind the cutter head in whichever direction they may be moved longitudinally. It consists in providing two vibrating supports-one on each side of the cutter head-and in connecting their ends with a pivoted beam, which is oscillated to raise the supports altern ately.
and thus insures the aforementioned ohject. Another object is to provide a balance for the adjustable reciprocating pattern frame, whereby the same is in the right position, and is aiso eased off the pattern to prevent the rapid wear of the same and ot the roller with which the pattern is in contact. This second object is attained by the arrangement of a horizontal rail. which
supports the front of the pattern frame, and is serured at th, ends to levers that always keep it in a horizontal position, but are weighted to crowd the rail upward whenever there is an opportunity for so doing, by the elevation of the pattern frame
Grading Plow.-Adam P. Hopkins, of Bentleyville, Pa-Tr is invention consists in a triangular grading or scraping plow with certain attachments,
by means of which it is readily shifted to the right or left, or Yett to turn both ways alike. A long bar is pivoted to the scraper at the apex of the
inner angle formed by the two sides, and extends rearward a considerable inner angle formed by the two sides, and extends rearward a considerable
distance beyond the base, where it is provided with a star or other wheel, with points adapted to roll along the ground. This bar may be shifted from stde to side of the scraper, a a 1 held at either side by a pin. Each of tht ded which is attached by one end to the apex of the scraper and by the oth +r to either corner when required. If it is desired to turn the earth to the
right, the chain is hooked on to the right side, and the bar acjusted to the left. By reversing the chain and bar, the plow turns the furrow to the leff. To have the plow turn both ways, the chaia is not engaged with either hook and the bar is allowed to hang by the pivot at the angle of the sides.
Water Wherl.-Walter Forward, of Battle Creek. Cal.-This invention furnishes an improved water wheel which is so constructed as to utilize al-
most the entire power of the water. The wheel is attached to a shaft which passes out through the side plates of the wheel case, and is supported and connected with the machinery to be driven in the ordinary manner. The
face of the wheel is channeled or has flanges formed upon its side edges to form a passage way for the water. Buckets, two or more of which may be used, are placed in radial slots in the wheel, which siots extend out through the flanges so as to fully support the ends of the buckets. The escape o water through the slots of the flanges aronnd the ends of the buckets is pre
vented by the plates, which are attached to the flanges in such a way as no vented by the plates, which are attached to the flanges in such a way as no
to interfere with the movements of the buckets and not to prevent thei ends being fully supported. Upon the rear ends of the end edges of the buckets are formed prijec ions or pins, which project at the sides of the wheel and enter grooves in the inner surfaces of the side plates. The
grooves upon the forward side of the wheel, where the buckets are exposed grooves upon the forward side of the wheel, where the buckets are expose
to thefull action of the water, are curved upon the arc of a circle. Th to the full action of the water, are curved upon the arc of a circle. Th
grooves upon the rear side of the wheel, where the water is received, ar curved upon the arc of an ellipse, the entire grooves forming a continuous curve, so that the projections or pins of the buckets move smoothly and
easily through them. By this construction of the grooves, as the buckets leave their discharge opening they are drawn inward, so as to pass the pro lecting bottom of the water box, when they are again projected to receiv
and be acted upon by the water. The water is confined in the channel the wheel from its entrance to its discharge points, by a curved plate o casing, so that the buckets are under the full pressure of the water from it entrance to its discharge. The forward edge of the water box bottom is so
formed as to fit into the channeled face of the " heel, and the wheel is so ar ranged in connection with said bottom as to receive the water upon the rea side of the whel, above its eenter, so tha
der the full pressure of the head of water
Machine for Polishing the eves of Needles.- Rosewell Thompso of Waterbury, Ct.- In thisimproved needle eye polishing machine, a series
of threads is drawn from spools on a spool stand through a guide plate, and two clamping bars hold the threads from u, winding further from the spool till required, andalso hold them at the proper distances apart. A large
quantity of needles are then strung on these threads from which to from time to time the batches to be on these threads from which to dra thread. When one patch is selected and moved forward on the threads to where they are to be worked, a second clamp is applied to the threads, be t ween them and the reserve stock behind, to keep them separate, to keep the polishing is going on, and thus prevent the reserve stock frem escapin off the threads, as would be the case it the threads were allowed to fall in case of breaking. The ends of the threads extend considerably beyond the clamps and pass through a notched guide, which keeps them parallel, an beyond this they are temporarily secured in a detachable clamp. The row of needles to be polished hang downward from the threads, and are confined
st their lower ends in a clamp, which is connected to a reciprocating frame worked by hatd the threads. The threads are charged with the emery or other polishing medium, and the clamp bas a handle by which it is taken in the hand to
manipulate it while in motion so as to cause the polishing threads to act on manipulate it while in motion so as to cause the polishing threads to act on
all parts of the ovol end walls of the eyes. The work is thus accomplished all parts of the oval end walls of the eyes. The work is th
as well as when all the motions are imparted by the hands.

Plow.-Henry Gillette, of Millville, N. Y.-In this invention improve-
ments are made in the mode of attaching subsoil plows to the surface plows
y which the depth of cut of the lower plow is readily controlled and ad by which the depth of cut of the lower plow is readily controlled and ad-
usted. The subsoin plow is arrarged at the lower end of a vertical bar Which has a series of notches in its upper front side, and an eye on the top These notches are made of a size to engage with a cross bar, which is made
fast to the handles of the surface plow. When the bar is adjusted to the required notch, the two are held to eether by means of an arm which is means of a pin
harvester.-Christopher Lidren, of La Fayette, Ind., assignor to himself and R. Jackson, of same place. -The improvements of the present in vention areapplicable to.the reaper which was patented by the same inventor
March 30,1869 and to the mowing machine which was patenced by him SepMarch 30, 1869, and to the mowing machine which was patented by him Sep construction, and appear to be of a valuable nature. They relate to the
balancing of the frame, etc., the adjustment of the cutter bar, the method balancing of the frame, etc., the adjustment of the cutter bar, the method
of working the rake automatically, and various other matters which would uire too much space to explain in detail.
Stem-winding Watch--Jules A. Borel, Paul Courvoisler, and Jea Courvoisier, of Neufchatel, Switzerland, assignors to Florian Quinche and
Charles L. Krugler, of New Fork city.-This invention relates to a new ar rangement of stem winding watch, whereby the setting apparatus is automatically thrown out of sear whenever the face of the watch case is closed
or the stem pushed inward. It consists in the arrangement of a peculiar or the stem pushed inward. It consists in the arrangement of a peculiar
side, which actuates the clutch lever for throwing the winding or setting mechanism into gear and which has a wedge sbaped attacbment for contact with the fastening catch of the case. When the catch is crowded in, either moved and the spring clutch lever liberated to connect with the windin
mor mechanism.
Desk Lid Prop.-Henry R. Russell, of Woodbury, N. J. assignor to him
self and Isaac S. Russell, of New Market, Md.-This invention turnishes an mproved prop for the desk lids of school and other desks. The prop, which is pivoted both to desk and lid, consists of two arms joined by a pivot run-
ning in a slot, and is so arranged that when pulled out straight by raising the lid it becomes fixed in that position by the engagement of a potch in on arm with a pin on the other. By the construction, when the lid is raised to its full extent and lowered quickly, the pin drops into the notch and se curely sapports the lid. If the lid be raised suficiently to relieve the
cateh, and lowered slowly, the inclination of the prop will allu w the attrac cateh, and lowered slowly, the inclination of the prop will alluw the attrac
tion of gravity to act upon the arms and cause them to drop or bend so much that the pin will not se t itself in the noteh, which allows the lid to be lowered orclosed. The prop thus works automatically and enables the lid be operated with one hand, leaving the other hand free.
Shaft hanging.-William J. Kennedy, of Victory Mills, N. Y.-This in vention relates to a new self adjusting shaft hanging, which is of such construction that the shaft is held secure and prevented from falling if one o
the supporting pivots breaks. It consists, principally in the screws that serve as pivots for the bearin $:$ through a swivel holder, and safeugha slot in the hanger, so that it constitutes an additional means of vibration of the swivel holder, the slot being of such diameter and form as allow of the necesar whatory movent
Wind Wherl.-Henry J. Campbell, of Virginia, Ill.-Thls invention fur
nishes an improved wind wheel which is designed especially for operating a nishes an improved wind wheel which is designed especially for operating a
pump. The arms which carry the wings are attached to a hollow shaft, and are pivoted to them so that they may be turned with their edge more or less to the wind. Their forward ends are connected by ropes toin-
sure their all moving together, and two of them are connected by rods and other appliances with a rod whica passes back through the holiow shaft. B means of this rod the wings are adjusted as may be required; and a
bucket, which receives the overflow from the pump tank, is so arranged in onnection therewith as to stop the wheel by its wergt when ged in . Other appriances or valu
Sidewale.-John Moffet, of New York city. -This invention consists in roviding the surfaces of sidewalks, pavements, or stair plates, whether of abber, which are fitted into sockets or holes formed in the material. These re so disposed as to receive the pressure or the feet when walking and pre

Saw Filing Machine.-Thomas M. Chapman, of Oldtown, Maine.-This nvention consists in an arrangement of driving mechaniim for imparting
reciprocating motion to the rod or frame by which the file is actuated bich is calculated to simplify and cheapen the construction, improve the action, and economize space. It is a further improvement in the saw fling
machine illustrated on page 182 of our volume XXVI, and consists more particularly in constructing the connecting bar so that it has considerable elasticity in the direction of its vibration, which direction is the same a
that of the movement of the file holding frame. In this view, it is made o wo bars of tough, straight grained wood, or metal which possesses som degree of spring, and the bars ure connected tog ther by bolts, and main-
tained, by blocks or long washers placed between them, at a distance apart ditable for forming connections with the wrist pin of the crank shaft an he connecting pin of the file frame. Other advantages inciden
Car Brake.-Stephen E. Harrison, of New Haven, Conn.-This invention rhorse cars; and consısts principally in connectivg the brake beams by oggle lever, to the middle joint of which are attached chains which ex evd to the ends of the car, respectively, where they are fastened to shafts Pinions on the shafts mesh into sliding racks that can be forctd down by the A spring serves to keep the toggle levers distended, and thereby holds the round its shaft by the depression of one of the racks, the toggie joint is aised and the toggle levers somewhat contracted, so as to draw the brake his arrangement a very slight motion of the rack suffices to apply th bakes with great power. "Immediately on the rack being released, th ud unwinds the chain from the shaft.
Sucker Rod Joint.-Addison Crosby, of Westfield, N. Y.-This inventio Slates to a new means of fastening the ends of wooden rods in the metalle chinery; and consists principally in the employment of wooden wedge atted through the sockets and rods, the apertures in the sockets being
made larger than the wedges to permit the requisite spreading of the wood made larger
of the latter
Bee Hive.-Samuel D. NcLean, of Sunny Slope, Tenn.-This inventio trong and durable and enables the hive keeper to inspect and control the bees readily. A prominent feature is a piece hinged to the front of a slid place for the bees, and, when shut, to fit flush with the side of the hive and

Buttre Worker. - George Ruston, of Freeport, Ill.-This inventio fruction, in about the same manner as when worked by hand. It conssists in the
combunation of a round roller and a fluted one, geared together, betwee hich tion of around role ticking to the fluted roller.
Scroll Safine Machine.-Samuel Ide, of Medina, n. Y.-This inven tion relates to a new coupling for the pitman and lower cross head of
reciprocating saw, and to a novel connection of the saw and cross head which facilitate the attachment and removal of the saw blade, and insure cross head. It consists, first, in a peculiar arrangement of the upper part
of the of the cross head for the reception of the saw; and secondly, in the use of

Practical Eints to Inventorss.
$\mathbf{M}_{\text {have devoted the past twenty of tive years to }}^{\text {UNN }}$ \& Cientipic American have devoted the past twenty-five years to the procuring of Letters d themselves of their services in procuring patents, and many millions Hollars have accrued to the patentees whose specifications and claims the a ve prepared. No discrimination against foreigners ; subjects of all counries obtain patents on the same terms as citizens.

How Can I Obtain a Patent

is the closing inquiry in nearly every letter, describing some invention Which comes to this office. A positive answer can only be had by presenting application consists of a Model, Drawings, Petition, Oath, and full Specifica tion. Various official rules and formalities must also be observed. The
eff orts of the inventor to do all this business himself are generally withoat suicess. After great perplexity and delay, he is usually glad to seek the aid of persons experienced in patent business, and have all the work done over azain. The best plan is to solicit proper advice at the beginning. It the
parties consulted are honorable men, the inventor may sately confide his deas to them: they will advise whether the improvement is probably pat-

How Can I Best Secure My Invention

This is an inquiry which one inventor naturally asks another, who has had
some experience in obtaining patents. His answer generally is as follows some correct
zonstruct a neat model, not over a foot in any dimension-smaller if pos-
sible-and send by express, prepaid, addressed to Mown New York, tond by express, prepaid, addressed to MonN \& Co., 37 Park Row ceipt thereof, they will examine the invention carefully, and advise you astc its patentability, free of charge. ©r, if you have not time, or the means at hand, to construct a model, make as good a pen and ink sketch of the im-
provement as possible, and send by mail. An answer as to the prospect of a patent will be received, usually by return of mail. It 1s sometimes best to or an application for a patent.

Preliminary Examination.

In order to have such search, make out a written description of the inven ith the tee of 85 , by mall, addressed to men and ink, sketch. Send these ue time you will receive an acknowledgment thereot. followed by a written report in regard to the patentability of your improvement. This specia ${ }^{1}$ Joarch is made with great care, among the models and patents at Was

To Make an Application for a Patent.

The applicant for a patent should furnish a model of his invention, it susvention be a chemical production, he must furnish samples of the ingredient If which his composition consists. These should be securely packed, the inventor's name marked on them, and sent by express, prepaid. Small mod els, from a distance, can often be sent cheaper by mail. The safest way to cemit money is by a draft, or postal order, on New York, payable to the or-
ter ot MUNN \& Co. Persons who live in remote parts of the country can asually pu.
pondents.

Caveate.
Persons desiring to flle a caveat can have the papers prepared in the short
 r patents and caveats is furnished gratis, on application by mail. Addres

Reissuez.

a risue is granted to the orginai patentee, his heirs, or the assignees o the entire interest, when, by reason of an insufficient or defective specifica-
tion, the original patent is invalid, provided the error has arisen from inadertence, accident, or mistake without any fraudulent or deceptive ina
tion.
A patentee may, at his option, have in his reissue a separate patent to by paying the required fee in each case, and complying with the other re uirements of the law, as in original applications. Address MUNA \& Co.

Rejected Cases.

Rejected cases, or defective papers, remodeled for parties who have made. applications for themselves, or through other agents. Terms moderate

Trademarkg.

Any person or firm domiciled in the United States, or any firm or corpora citizens of the Unted States, may register their designs and obtain pro ection. This is very important to manufacturers in this country, and equal iy so to forelgners. For full particulars address MUNN \& Co., 37 Park Row ew York.

Design Patents.

Foreign designers and manufacturers, who send goods to this country, may ccure patents here upon their new patterns, and th
tabricating or selling the same goods in this market.
A patent for a design may be granted to any person, whether citizen or lien, tor any new and original design for a manufacture bust, statue, alto
celievo, or bas relief; any new and original design for the printing of wool n, silk, cotton, or other fabrics; any new and original impression, orna nent, pattern, print, or picture, to be printed, painted, cast, or otherwise placed on or worked into any article of manufacture.
Design patents are equally as important to citizens as to foreigners. Fo

European Patentw.

MUNN \& CO. have solicited a larger number of European Patents tha serlin, and other chief cities. A pamphlet pertaining to foreign pastent and the cost of procuring patents in all countries, sent free
MUNN \& Co. will be happy to see inventors in person, at their office, or to anise them by letter. In all cases, they may expect an honest opinion. For oo not use pencil, nor pale ink: be brief
All business committed to

All business committe.

In all matters pertaining to patents, such as conducting interference rocuring extensions, drawing assignments, examinations into the validit amphlets of instruction and advice.

Address

MUNN \& CO.
 gy Park Row, Now York:
 ofrice in washington-Comer F and git streets, opi

Iee pick and meat maul combined, T. A. Conklin....
Incubators, electromagnetic regulator for, J. Graves Inkstand, E. Morgan.
Iron and copper, process of purifying, K. W. Zenger................
Iron, brass, etc., with tin, coating or electroplating, W. E. Tilley
 Iron, steel, and other metal, process of purffying, J. F. Bennett. Jack, lifing, W. C. Ellis.
Journal box, D. Whitlock
Jug aud pitcher, molasses, w. Bennett
Knitting machine, J. L. Branson
Knife, tobacco, W. A. Bernard
Knife, tobacco, W. A.
Lamp base, J. Kintz.
Lamp, self extioguishing, J. J. Cathbert
Lantern, dark, T. Langston..
Latch for gates, etc., G. N. Sh
Locks, key hole guard for, J. B. Whitney
Lubricator, C. H. Parshall
Mangle, R. Gage.
Medical compound or bitters, E. Phillips.
Medical compound,
Medical compound, M. H. Campbell.

Milk cooler, Bort and Bryant.
Milk cooler, A. Beema
Mill burrs, device for cooling, Emhrey and Blackburn
Mortises, tool for dressing,
Mortises, tool for dressing, c, E. Littlefiel
Oven, coke, T. G. Kenny.....
Oven, gas and air neating,
Ores of copper, etc., process of heating, Du Motay and Hillegeirt.
Paint, composition for, w. H. Foran............
Paper, etc., apparatus for drying wall, N. Hall.
Paper cutting implement, J. Cook.........................
Paper, wadding, etc., machine for drying.E. C. Wils
Papering machine, wall, A. Weiss
Paring knife, G. H. Vickro
Pasteboard, manufacture o
Pavement, S. C. Prescott.
Pavements, composition for, Snow and Davis
Peg cutter, E. Holmes.
Pictures, mounting, E.
Piles, apparatas for sinkiog pueumatic, F. E. Sickles, (reissue)
Pipe and tube for conveying fluids, metal, D. D. Parmelee..
Planing machine, A. Van Haagen.
Planing machine, Beal and Leach.
Planter, seed, J. Willoughby, (reissue)
Plow, w. K. Harrel
Plow, G. G, Foreman.
Plow, A. B. Farquhar.
Plow clevis, E. A Wr.
Plow, prairie, C. M. Clark, (reissue)
Press, cotton, W. Bradle
Press,
Printing show cards, w.............. c . Hutchings
Priyy seat
Privy seat, H. W. Carpe
Pump piston, P. Zeiher
Pump, steam siphon, T. O'Rorke
Railway track. J. H. Connelily....
Railway switch, M. Brockway, Jr
Raker and loader, hay, Brandt and Shillook
Refrigerator, B. F. Averil...
Refrigerator, S. A. Dunnington
Refrigerator and soda apparatus, combined, J. M. Cohen.
Rein runner, check, A. P. Mason
Ribbons, etc., machine for winding. M. Hay es
Rolling mills, shove under for, J. B. Hastings
Rossing logs, machine for, G. W. Nicho
Rudder and drag, distress, H. Babien...
Ruler, J. M. Batchelder.
Saddle, harness, E. Dixon....
Sash balance, J. w. Trussell
Sawing machive, wood, C. A. Towar.
Sawing machine, w. J. Cunningham.
Screens, wire cloth for coal, C. P. Seitzinger
Screw threads, device for cutting, F. G. Ro
Seaming machine, double. W. H. McGann..
Seat, school, I. S. Wachob.
Seats, flexible division for: T. J. D. Beck.
Separator, grain, A. Zwiebel...
Sewer basin trap. L. A. Gouch
Sewing machine, manufacture of tension wheel tor, I. Manning
Sewing machine, G. A. Richardson..............
Sewing machine, attachment for, P. L. Shepler
Sewingmachine carriage, G. H. Chinnock.
Sewing machine, spool case for, T. Merrick.
Sewing machine, wax thread,
Shirt bosom, G. Harrington.
Shoe fitting machine, Pruden and Benjamin
Sifter, flour, T. L. Fontaine
Soldering apparatus, F. L. Miller (reissue)
Sole for shoes, inner, J. E. McIlhenney
Spark arrester, locomotive, J. Radley
Spittoon for car, H . stanley.
Stand, portable music, A. Isk
Straw cutter, L. M. Johnson...........
Stove, base burning, J. M. Thatcher.
Stove pipes, attachment for, Bellamy and Brothwell
Stove pipe shelf, L. C. Milla
Stove pipe connection, C. R. Penfield
Table leaf support, D. Bull........
Telegraph, printing, T. A. Edison
Thrasher and separator, grain, Hamaker and Frease
Thread cutter and thimble combined, B. M. Wilkerson
Tin cutting machine, C. R. Merriam.
Tin from tinner's waste, apparatus for removing, T. F. Wells
Toy gun, G. Stackhouse........
Toys, mechanical, E. E. Newell.
Toy steam locomotive, F. W. Clar
Trap, waste pipe, T. Smith
Valve, slide, H. H. Meyer.
Valve, slide, J. M. Coale
vehicles, axle for, R Daniels
Vehicles, traction engines, ete., mode of propelling, H. Sells Vise, J. L. Isbell.
Vise, G. M. Evans
Wagons, reach coupling for, W. P. Ripley
Washing machine, Smith and Cam
Washing machine, o. and A. Sne
Washing machine, E. McCoy
Washing machine, Lavine and Oclair
Washing machine, Lavine
Water elevator, N. Adams.
5,941.-PIOTURE.-E. Metcalf, Norristown, Pa.
5,942- CIIAR Box.-G. Moebs, J. B. Thiesen. Detroit, Mich
5,949
5,941.-Pioture.-E. Metcalf, Norristown, Pa.
5,942-CIGAR Box.-GG. Moebs, J. B. Thiesen. Detroit, Mich
5,943.-SKATING MUFF.-R. M. Seldis, New York city.
TRADE MARES REGISTERED.
861.-Cement.-Black Diamond Cement Company, Louisville, Ky
862.-Cement.-Falls City Cement Company, Louisvilie, Ky.

864.-GLoves.-Kutter Luckemeyer \& Company, New York cit
864.-Gloves.-Kutter Luckemeyer \& Company, New York city.
865.-CLEANSING Powpr.-M. H. M. Magan, Plainfield, N. J.
866.-FERTILZER.-Southern Fertilizing Company, Richmond, V
866.-Fertilizer.-Southern Fertilizing Company, Richmond, Va.
867.-TIN LIND Lem Pripe. Colwells, Shaw \& Willard Manufacturing
Company, New York city.
868.-Schoou Books, ETC. - University Publishing Company,New York city.

On each Caveau
On eaci Trade-Mar
On nling each appicati
cation bor a Pate.......
", (をevö̀teen yes
Whip socket, H. W. Comstock....
Whistles, mold for casting, E. Clat
128,019
127,956
Whistles, mold for casting, F. Clator ... 127,956
Work holder, W. F. Gilbert.. 128,200
Work holder, W. F. Gilbert... 122.034
Wrench bar heads, machine for formiug, A. G. Coes................ 1288118
Wringer, clothes, L. M. Cole................................. 128,119
128118
128,119
rench bar heads, machine for formius, A. G. Coes.
ringer, clothes, L. M. Cole......................
5,940.--ReRclining Settee. -M. D. Jones, Boston. Masin, Conu.

vears..........
For Copy ar Cratm of any Patent 2ssuea wothin 3 y years..................... 1 .
A sketch from the model or drawing, relating to such portion at a machine
sketch trom the modelor drawing, relating to such portion at a machine
as the Claim covers, trom $\$ 1$

The full Specifcation of any patent issuedsince Nov. 20, 1856 at whach tine
the Patent oftce commenced printing them......... $81 \cdot 82$

Anctal Copies of Drawings of any patent issued since 1836, we can supply,
at a reasonable cost, the pruce devending upon the amount of labic
at a reasonable cost, the price depending upon the ainownt of worr
involved and the number of vievos.
information as to price of drawings in each case, may be sas mo
addressing
OIUNN \& Cu.
APPLICATION FOK EXTENSION.
Applications have been duly filed, and are now pending, for the exteusion
the following Letters Patent. Hearinys upon the respective application
re appointed for the days hereinafter mentioned
21,102.-SEED PLANTER. - J. D. Willoughby. July 17, 1872.
EXTENSIONS GRANTED
20,411. - Machine for Making Horseshors. - C. H. Perkins.
20,451. - Machine for Making Horseshors. - C. H. P
20,519.-TALLOR's Pressing Machine. - L. B. Storrs.
20.527.-Planing Machine. - I. A. Woodbury.
20,52.- Planing Machine. - I. A.
2,538.- House Bell. - - Barton.
EXTENSIONS REFUSED.
20,539-Cutting Glaziers' Pins.-J. G. Baker.
20,56.-HANERES Fó SSinfting.-W. Johnson.
20,571.-Door Lock.-J. R. Marston.128,020
127,972
128,163
$128,0,08$
128,051
128,042
1288,042
127,953
127,968
28,02
28,100
6937.-BADGE.-G. F. Crook. Cambridge, Mass.
5,938.-Shutrer Bar. - W. Gorman, New Britain, Conn
5,939. - Bell Crank and Rose.-W. Gorman, New Britain
5,940.--Reclining Settee. - M. D. Jones, Boston. Mass.

Value or extended seatents.

Did pateutees realize the tact that their inventions are likely to be more bull term tor which their patents were granted, we think more would avall remelves of the extension privilege. Patents granted prior to 1861 may be
theme extended for seven years, for the benefit of the inventor,or of his heirs in case of thedecease of the former, by due application to the Patent Otice, ninet
days betore the termination of the patent. The extended time inurea days betore the termination of the patent. The extended time inures to
the benefit of the inventor, the assignees under the first term having no rights under the extension, except by special agreement. The Governuent tee for an extension is $\$ 100$, and it is necessary that good professional service be obtained to conduct the business defore the Patent Ottce. Full inform tion as to extensions may be had by addressing

NEW BOOKS AND PUBLICATIONS.

The Art of Graining; How Acquired and How Produced.
By Charles Pickert and A. Metcalf. New York: D. Van By Charles Pickert and A. Metcalf. New York: D. Va Nostrand, Publisher, 23 Murray and 27 Warren Street.
Price $\$ 10$. Price $\$ 10$.
purposes lies that brach of the purposes, lies that branch of the house painter's art which demands from
him his best efforts. An amount of skill which cannot be attained withou careful and well directed study is needed in the production of any work of this kind that is at all calculated to rtflect credit on the performer. Good graining furnishes a handsome and agreeable finish which, for many pur
poses, is most satisfactory; but if it be not good, a plain coat of paint poses, is most satisfactory; but if it be not good, a plain coat on paint
better take its place. In this view we have pleasure in speaking of a work now before us, which appears to be well calculated to afford learners of the art some much needed help in the right direction. The authors are cles their special study. They have, therefore, been enabled to proceed a nce to the most vital points of their subject, and have produced a ner. It is a quarto volume, and contains forty two whole page lithographs of various woods, printed in their natural colors, which are intended as sudies. Among them are many tine specimens of oak, black and Frenc walout, rosewood, the maples, ash and chestnut. Explicit directions are
given how to mix and apply the colors in graining the woods represented, and each variets is dealt with separattly and clearly. Altogether, the wor rurnishes an excellent technical instructor in the art.
The Bee Geeper's Magazine is the title of a new illustrated montlly
deroted to bee culture, the initial number of which we have just received. Its contents are well selected, varied and irteresting, and include valuable apers from the pens of writers who have made the subject of bee culture a as it is promised that no pains will be spared to make it worthy of thir ir pat onage and, indeed, a store house of every information relating to its specialty. Published by H. A. King \& Co., 14 Murray Street, New York eity. Subscription $\$ 2.00$ a year
he sun and its Atmosphere. By Professor C. A. Young This is a lecture by the eminent above named professor, and forms No. of the University Series published by Charles C. Chatfield \& C., of New Haven, Conn. Professor Young's writings on the sun are wellknown to ou
readers, many of them having been priuted in our columns. This lecture is an exhaustive description of the present state of knowledge of the subject and deserves especial commendation for the decisive and lucid manner in which it is written.
The Australian Mechanic and Journal of Science Is the name of a
bourne, Australia.

July 13, 1872 .]
Srimtific Americau.
29

Adartiscments.
 THE WARREN improved hoe-Tri THE WARREN IMRROVED HOE-Tri

Milling Machines.

H0W ${ }_{\text {SEII }}^{\mathrm{TO}}$ PATENTS.

Steam Super-Heaters.

$\mathbf{W}_{\text {gno }}^{\text {ANTED-To }}$

Rertal -
To Electro-Platers. B ATERIES, CAEMICALS, AND MATE.

 FOUR VALUABLE SETS
Scientific Books
The Latest Revised Engirish Edition
UST' Received and for sale at thes
very Low prices annexed.
WATTS' DICTIONARX OF CHEMISTRY.

BRANDE'S DICTIONARY OF SCIENCE

 AN ENCYCLOP AIA OF ARCHITECT-

(1) SAFETY Horsing
$\frac{\text { Nn. sas broanwax. Nkw vork. }}{\text { MACHINRRI, }}$
 TRGULAR S W W BENCHES.

 BLAKES PATENT STEAM PUMP.
 CIRCULAR
COR 51 chardon sp, 99 LIBERTY ST, ST,

 The Ondest and Neqert THELLS.G ROTARY GUCCESS of the HYDRAULC

Niongura Steam Permp. CHAS. B. HARDICK,

F OR S. With five boilers
 GHBAT RBOUCTION IN PRICHON $\bigcap_{\text {LTHE }}^{\mathrm{F}} \mathrm{LE}$ COUNT'S PATENT HOLLOW

 CINCINNAT \& THRRA HAITTH RAILWAY COMPANY,

WOLDING, MORTISING, TENONING \& SHAPING MACHiNE AWS,
SCR SCROLL SAWS Planing \& Matching

J. A. FAY \& CO.,

150

NEW PATTERNS.

Machinery,

Machimists' Pools

Cold Rolled Shafting.

Sturtevant Blowers

y size and description, constantly on hand.
121 Chambers \& 103 Reade Strectse \& CO CO.
Rork.
Pat. Punching Presses

ANUFACTURING SITES-Cheap. Wa-
Ter and Rail Facilities. Address JAMES STRAT-
 Chemistry as applied to the Arts, Manufactures and
Medicine.

PATENTBAND
SAWING MACHINES

THE Unou irchu Mills, Pittsburgn, Pa. The

 $\$ 500,000$ IN CASH ! Second Grand Gift Comeart,
 tuclyy, March 16, 1871.]
The Public Library of Kentuck occupies a splen did
building. recently purchased at a cost of $\$ 0,000$. $\begin{aligned} & \text { It is }\end{aligned}$

- \quad TEEA J_{T}

PUMPING MAEHINERY
 Large and
Splendid Illustrated Catalogra Sent Free, on
Application. Copa \& Maxwall Manific Company, © 118,
(${ }_{18}^{\text {RIG9. Patents Sold }}$ Send for our Circular and Lis H. GIBBS \& Co., 11 Wall Street, New York.

CATHE CAUCKS-HORTON'S PATENT

L. \& J. W. FEUCHTWANGER

Chemists, Importers, and Manufacturers

1882. SCGENCE'S PATENT. 1871. WOODWORTH PLANERS

W OOD WORGING MACHINERY GEIT:

 PUBLISHERS,
Philadelphia, Pa

GLNGLEAND BARREL MACHINERY.-

NEW YORK STRNCIL WORKS,
gY NASSAU ST., NEW YORK

Andwew* Potents.

U. S. Plano CO.. 865 Eroadway, Mow York.

GENTS W ANTED. Agents make more mon-
GE at work for us than at any thin elese. Particulars
free. G.STINson \& Co.,Fine Art Publishers, Portland, Me. Buy barber's Bit Brace.
P. $B L A H S D E L L$ \& COM M ANUFACTURERS OF FIRST CLASS ROPR HOT ARR

NOODBURY\% PATENT

My ortacture-aleo, to manatature and sell on nov
B ORDON IRON WORKS.- Manufacturers

A WELL tested article of good thickness
 S TEEL STAMPS，Letters and Figures at
 WOOD，DITALOGUE \＆CO．，Phila．，Pa． MACHINE SHOP，y，STEAM FORGE BOILER SHOP，飠明 FOUNDRY， JOINER SHOP，in SHIP YARD． TAVING ONE OF THE MOST COM－ Implete works in the United States and the latest
limproved machinery，
anteeing satisfaction． Tug，Ocean and River Steamer Buiders，Phila．，Pa． COVERIVG
 L．L．\＆J．T．Smith，
Nickel Platers，

$\mathbf{R}^{\text {ANSOMMYPHON CONDENSER perfects }}$

禹

 T 0 WESTERN PURCHASERS OF MA

Working Models
 Tit TANTE CO：SGOOD are kep in

，

NEAFE \＆LTHY，
 PENN WORKS，

WIRE ROPE．

JOHN A ．ROEBLINQ＇S SONB，

Sisises

MACHINISTS．

THE HEALD\＆SISCO

MORRIS，TASKER \＆CO．， American Charcoal Iron Boiler Tubes． Wrought－Iron Tabes and Fittings，
OR GAS，$S_{\text {TEAM，}} \mathrm{WATER}_{\text {AND }} \mathrm{O}_{\text {I }}$ For Gas，STEAM，Water and Oir．
steam and Gas Fitters＇supplies，Machinery formen
 TOD \＆RAFFERTY，Manufacturers or

American saw Co．

 CIRCULAR SAWS， Patent Perforated
Circular，Mill Crosss－cinit Saws．

HARDWOOD LUMBER

The Union Stone Co．，

 Send for circular

Diamonds Earbon

Diamond Rointed STLAN DRIHS．

T Tions toption of new and improved applice

AMES IRON WORKS．

 L．W．Pond－－NeovTools EXTRA HEAVY AND IMPROVED PATERNS
ATHES，PLANERS，DRILLS，of all
Vizes

RUMPFF \＆LUTZ，
 Fenver \＆Versmann＇s

Anthrazen Patent．

Steam Entint Gifety Water Gauges．
Floning Mill near St．Louis，Mo．， FORSALE

PAT．SOLLD EMERY WHEELS AND OIL

PORTLAND CEMENT， $\mathrm{O}_{\text {Bazley }}^{\mathrm{F} \text { the White }}$ w Brown manufacture of John

PRUM 2 ges

SCIENTIFIC AMERICAN． The Best Mechanical Paper in the World． A year s numbers contain over 800 pages and severa hundred engravings of new machines，useful and novel
invention，manufacturing establisments，tools，and
oroceses．
The SCIENTIFIC American is devoted to the inter estrof of Popular Science，the Mechanic Arts，Manutac ares，Inventions，Agriculture，Commerce，and the in tive not only in the Workshop and Manuractory，but also
in the Household，the Library，and the Reading Room． Chemists，Architects，Millorights and Farmers The SCIENTIFIC AMERICAN will be found a most
usefful journal to them．All the new discoveries in the cience of chemistry are given in its columns；and the interests of the architect and carpenter are not over
looked，all the new inventions and discoveries apper taining to these pursuits being published from week to
week．Useful and practical information pertaining to week．Useful and practical information pertaining t o
the interests of millwrights andmillowners will be found published in the ScIENTTIFIO AMrRICAN，which informa tion they cannot possibly obtann from any other source
Subjects in which planters and farmers are interested will be found discussed in the SCIENTIFII Amerioan，
many improvements in agricultural implements being ulustrated in its columns． lustrated in its column Journals of Great Britain，France，and Germany；thu placing in our possession all that is transpiring in me chanical science and art in these old countries．We racts，from these fournals，of whatever we may deem ot interest to our readers． TERMS

```
One copy，one year
One copy，six month \(\begin{array}{r}1.5 \\ 1.5 \\ \hline\end{array}\)
```

 One copy of scientific American for one year，and
one copy of engraving，＂Men of Progress，＂ 10.00 one copy of engraving，＂Men of Progress，＂＂ 10.00
One copy of Scientific American for one year，－ Ten copies of＂Science Record，＂and ten copies the Scientific Americar for one year
Any person who sends us a yearly club of ten or mor copies，at the foregoing club rates，will be entitled to one Progress．＇
Remit by postal order，draft or express
quarter，payable at the offlce where received．Canad ubscribers must remit，with subscription， 25 cents extr to pay postage．
Address all le

MUNN \＆CO．，

37 PARK ROW，NEW YORK
THE＂Scientific American＂is printed wit

