

A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE. MECHANICS, CHEMISTRY, AND MANUFACTURES.
NEW YORK. JUNE 1, 1872.
$\left\{_{\substack{83 \text { per Annam. } \\ \text { IWADVANCEL }}}\right.$

Railroad Rail Straightener.

Our engraving illustrates what appears to be a useful in vention for straightening railroad rails without taking them up or drawing the spikes. A is a truss bearing bound round with a metal band, through which passes a truss rod, the course of which is partly shown and partly indicated by dotted lines. The curved center of this truss rod bears against the rear end of the bearing, B, which is firmly secured to the truss bearing, A. C is a bearing made with a bulge to fit the rail. D D are clamps, which are placed the required distance apart, and wedged so as to hold the truss bearing to the rail. E is a lever with a cam shaped end. The whole operation will readily be understood from Fig. 2, which represents, in section, the relative positions of the working parts and the rail, just before the lever is depressed to straighten it. The in ventor states that four or five men will take a crook out of a rail, with this machine, in one minute; to take it up, straighten, and replace it , would occupy them twenty-five or thirty minutes. Its efficiency was proved by straightening a portion of a rail on which rested the driving wheel of a thirty tun engine. Patented through the Scienti ic American Patent Agency March 26,18 in Further information may ny, March 26, 18i, patentee, G. I. Kinzel, Knoxville, Tenn.

The Effect of cold on ron.
The effect of cold on iron, concerning The effect of cold on iron, concerning
which much diversity of opinion exists, is which much diversity of opinion exists, is illustrated pretty forcibly by the experience of the Grand Trunk Railway of Canada which is exposed to severe cold and a great deal of it. At the recent half yearly meeting of the company, in London, the President said that 3,500 to 4,000 rails on the line break every winter! But he found comfort in the fact that, in about 110 miles of steel track, only eight or ten rails have broken. It was feared when Bessemer rails were first introduced that their resistance to wear would be counterbalanced by unusual ia bility to break, and that they would be es pecially dangerous in severe climates, the impression being apparently that, having something of the hardness of cast iron, they had also something of its brittleness. This expe rience of the Grand Trunk, however, indicates that they ar especially fitted for such climates.

BAILLAIRGE'S STEREOMETRICAL TABLEAU.
Our engraving is a perspective view of the above named educational device, which has been patented for its inventor Mr. C. Baillairge, of Quebec, in the United States, Canada and Europe. It con sists of a board, about six feet long and four feet wide, with some two hundred wooden models, comprising, so to say, all the alementary forms, their segments, and seclions, and numerous other solids, simple and compound.
The tableau is set in an appropriate frame with glass covering so as to exhibit th models while exclud ing the dust. The front can be opened at pleasure so as to afford access to the models, each of which is merely supported on the board by a round nail or wire, which admits of its easy removal and replacement by teacher or pupil. The in struction conveyed by this tableau, appeal ing, as it does, to the uneducated eye and mind, is, the inventor thinks, destined to be of great us in developing the intelligence of the untaught masses of mankind. He expects to introduce it into all the educational

KINZEL'S RAILROAD RAIL STRAIGHTENER

a rule for finding the solid contents of any body, called "the

 prismoidal formula." This formula has been shown, by Mr Baillairgé in his treatise on geometry and mensuration pub fished in 1856, to be less restrictive than supposed, and he has added to the known solids, measurable thereby, a long list of others discovered by him, the whole of which are given in the tableau. Each tableau is also accompanied by a printed treatise, explanatory of every use to which the models can be put. Mr. Baillairgé is in possession of a massof testimonials, from high officials and other distinguished
of testimonials, from high officials and other distinguished

(0) () OO E

 0000100101010

 of each, making
until recently only

Dr.Wilkie, of Quebec, thinks " the government would confer a boon on schools of the middle and higher classes by affording access to so suggestive a collection;" and Professor Newton, of Yale College, considers the tableau "of great
use for showing the variety and extent of applications of the prismoidal formula."
institutions of the United States and elsewhere, as it is now ling disseminated in Canada; and he has no doubt that and architect, to whom the models will be suggestive of various forms and relative proportions which cannot fail to aid them in their pursuits. The rapid success attained by a school Quebec, mensuration of all kinds of surfaces and ye to the use of this tableau. Every tableau is inscribed with til ${ }_{14} \mathrm{H}_{8}, \mathrm{C}_{16} \mathrm{H}_{10}, \mathrm{C}_{18} \mathrm{H}_{12}, \mathrm{C}_{20} \mathrm{H}_{14}$, etc.; but portance in the first two have had any practical in prance in the arts. They were used simply as fuel, and a of them is claimed to be a specific for the small pox.
After the volatile portions have been removed, there re mains this dead oil, which is heavier than water. This wa or a long time used as a fuel in glass houses. It was then found that the carbolic acid it contains was a most powerful disinfectant and antiseptic. It was found that it would pres vent the spread of th cattle disease, that cat the having the dis ease inits worst form might "be placed with others with safety, if they were protected by this acid. It was found too, that the durability of timber was increased four or five fold by its application.
But I wish tonight to invite your special at tention to the beautify colors which have re cently been obtained from refuse coal tar They are naturally sub divided into three groups, the aniline col ors, those derived from naphthaline, and the car folic acid colors. I shall confine my attention wholly to the chemical phase of the subject Benzole is a subdue Benzole is a hydrocar contact with nitric contact citric acid an atom of nitrogen ca res off an atom of by

BAILLAIRGE'S STEREOMETRICAL TABLEAU.

men, both in Canada and Europe, together with reports of va rouse educational and other institutions, all highly comply mentary to him and his invention.

Aniline Colors,

Professor C. F. Chandler recently delivered an interesting lecture on the above, before the Polytechnic Association of the American Institute, from which we take the following
It is well understood that coal is an ele ment of our national wealth, and that we derive from it our power. The combustion of 300 lbs . of coal under a steam boiler will produce a power equal to the mechan cal force exerted by a man for a year. An other important application of bituminous coal is to the manufacture of illuminating gas. In this manufacture there are certain residual products, which were at first thrown away; and it is of these that I pro pose to speak tonight.
Coal tar is produced at the rate of about ten gallons to the tun of coal. Thousand of barrels of coal tar were at first thrown away; but the chemist turned his attention to this substance, and discovered so many products useful in the arts, which could be made from it, that coal tar now finds a ready market at $\$ 1 \cdot 50$ per barrel When coal tar is subjected to distillation the liquid portion passes off, and there re mains the heavy black pitch which is used for roofing and for pavements. The liquid portion, which comprises about one fourth of the original coal tar, produces first a light fluid called naphtha, and then a heavy liquid which is called dead oil. The light liquid is a mixture of carbon and hydro en, of which benzole is the type. It is gen, of which benzole is the type. It $\mathrm{C}_{12} \mathrm{H}_{6}$, that is, taking into account the difference of weight, 72 parts of carbon to parts of hydrogen. Other substances ar produced from this, differing by two atoms drogen; and we have
nitro-benzole, which is a very fragrant oil, an artificial oil of $\left\lvert\, \begin{aligned} & \text { nitro-benzole, which is a very fragrant oil, an artificial oil of } \\ & \text { bitter almonds, used instead of that substance in the many- }\end{aligned}\right.$ facture of soaps. When the nitro-benzole is made to give up

\square
\square
\qquad

\square
\square
\square
\square

its oxygen and take up hydrogen, it becomes aniline. Nitro gen is a protean element which gives rise to a great va
riety of compounds. Ammonia is NH_{3}; and these three riety of compounds. Ammonia is N_{3}; and these three stances. Aniline is a similar substance. It is ammonia, re placing one atom of hydrogen by phenyl, which is $\mathrm{C}_{12} \mathrm{H}_{5}$. There is no limit to the number of compounds that may be developed on thistype; and it opens one of the most impor tant fields of chemical investigation at the present day. All tant fields of chemical investigation at the present day. An
the aniline colors are derived from $\mathrm{N}_{3} \mathrm{H}_{9}$, converted by the the aniline colors are dirived from $\mathrm{N}_{3} \mathrm{H}_{9}$, converted by the
process of substitution into new compounds. The first inprocess of substitution into new compounds. The first in-
vestigation in this direction, which, however, did not result vestigation in this direction, which, however, did not result
in any practical product, was that of a German chemist, who in any practical product, was that of a German chemist, who
found that by treating aniline with chloride of lime, he pro duced a violet or purple tint. Perkins, who was the firs successful manufacturer of color from coal tar, manufac tured a substance to which he gave the name of mauve Then came the discovery of the rose aniline, which is pro duced from commercial aniline, pure aniline not answering the purpose. Subjecting commercial aniline to the action of nitric acid, and then to the action of nascent hydrogen, we obtain rose aniline, which is $\mathrm{C}_{40} \mathrm{H}_{19} \mathrm{~N}_{3}$. The chloride, hy drochlorate, arseniate, acetate, nitrate, and other salts of this substance produce the beautiful tints of which I have speci mens here. Hoffmann found that he could change this beau tiful red tint of the rose aniline to various shades of violet by simply boiling it with more aniline. This introduced more phenyl in the place of hydrogen. One atom made it purple, another more bluish, and a third atom of phenyl made it the most beautiful blue that has ever been manufac tured.
Replacing the hydrogen with ethyl, $\mathrm{C}_{4} \mathrm{H}_{5}$, or with methyl $\mathrm{C}_{2} \mathrm{H}_{3}$, we obtain still further colors. In every case the beau tiful rose red becomes more and more purple, until the sub stitution of the last atom of hydrogen converts it into a deep and perfect blue. On carrying the investigation further, it was found that by proper treatment the blue color could be converted into a green, by using ethyl and methyl. Subsequent treatment developed an entirely different base, having the form $\mathrm{C}_{40} \mathrm{H}_{17} \mathrm{~N}_{3}$, with yello:v tints; and further treat ment produced a brown and finally a black ; so that the most durable black for calico printing is now obtained from ani line.

From the coal tar obtained from a tun of coal, three fourths of a pound of this beautiful color are produced. The coal which is worth about $\$ 6$, produces the gas, the coke, the ammoniacal water, largely used for agricultural purposes, the carbolic acid, used for the preservation of timber and as a disinfectant, and finally this beautiful color, which alone is worth nearly as much as the coal originally cost. The amount of this industry has become so enormous that at present five tuns of this raw aniline oil are manufactured
daily on the continent alone, and $90,000 \mathrm{lbs}$. of iodine are used in effecting the substitution; and yet it is an industry which has started since 1860.
A word with regard to the carbolic acid colors. The carbolic acid is obtained by treating the dead oil with an alkali. This furnishes a number of coloring matters. Carbolic acid is $\mathrm{C}_{12} \mathrm{H}_{6} \mathrm{O}_{2}$, or it is the oxide of benzole, which is $\mathrm{C}_{12} \mathrm{H}_{6}$. Treating carbolic acid with nitric acid, we produce ${ }^{\circ} \mathrm{C}_{12} \mathrm{H}_{3}$ $\left(\mathrm{NO}_{4}\right) 3 \mathrm{O}_{2}$. Picric acid is a substantive dye for silk and wool uniting with them without any mordant. Treating picric acid with the cyanide of potassium, an acid is produced which gives beautiful garnet colors on silk and wool. By treating carbolic acid with soda and the oxide of mercury, it is converted into rosolic acid, which produces various shade of orange, and is used for coloring house paper. Treating this with ammonia, it produces a scarlet tint. The intimate connection, existing between the rosolic acid and the anilire colors, is shown by the fact that, by treating rose aniline in anhydrous acid, the same result is obtained. From this orange red of rosolic acid, can be produced a deep blue colo by the action of aniline.
There is a series of naphthaline colors, but they are not found to be fast, and I will therefore pass them by.
When coal oil is distilled, and 25 or 30 per cent of volatile products are removed, the result is solid, and is called an thracene. Recently, from this, there has been artificially preduced the coloring matter of madder. The colors from aniline had proved brilliant and durable for silk and wool, but not for cotton fabrics. It is now a question whether the colors from anthracene will supply this want, and whether they will be found to be permanent.

QUICK STEAM LAUNCHES.
 by F. J. $\overline{\text { Bramwele,Esq., C. E. }}$

For some little time past, the interest of naval architects and engineers has been excited by the reports which hav from time to time been given in the newspapers of the per-
formances of steam launches built by Mr. Thorneycroft, of formances of steam launches built by Mr. Thorneycroft, of
Chiswick. From these reports, it has appeared that steam aunches of about 50 ft . in length have attained speeds va ying from seventeen to nineteen statute miles per hour, or 144.7 to 162.7 knots per hour speeds which even in this day would be considered very good for the finest sea going steaners, and speeds which have hitherto been regarded as impossible unless the vessel were at least 200 feet in length. The writer, having been much struck with these statements and with those made to him by engineers who had witnessed esting for the Institution to have a short paper upon the esting for the Institution to have a short paper upon the
subject. He, therefore put himself in communication with Mr. Thorneycroft, who kindly allowed him to make what experiments he thought fit. These experiments, which
have taken place within the last few days, have been made
on the Miranda. The length of the Miranda over all is 50 eet: ditto, on water line, 45 feet 6 inches: the beam 6 fee inches; ditto, on water line, 5 feet $9 \frac{1}{2}$ inches; the draft o cwit. of coals 2 trim with six persons on board, and weph f the screw. She is built of steel, the general thickness of the plates being 1.8 inch to $1-16$ inch. She has a pair of in erted direct acting engines having cylinders of 6 inches di meter by 8 inch stroke. These engines make up to a many as 600 revolutions or 800 feet of the piston per minute heir ordinary working speed, however is less than this.
They drive a two bladed screw of 2 feet $6 \frac{1}{2}$ inches diameter and feet 4 inches pitch. This screw is abaft the rudder, which is made in an upper and lower part joined by a bow, so as to pass the shaft which is placed out of the horizontal line to The extent of 1 in 28 , the after end of course being the lower. eating surface of 116 feet, and a total fire grate surface $41 \frac{1}{4}$ feet; the barrel plates are 5.16 inch thick, the fire ox external plates also 5.16 inch; and the internal, which are copper plates, are $\frac{8}{8}$ inches thick; the stays of the fire oox are $\frac{8}{4}$ inch, and 4 inches apart. The fuel is coal. The boiler is fed by a three millimeter Giffard injector. The hole weight of the engines and boiler is about 40 cw to 41 cwt ., or $4,448 \mathrm{lbs}$. to $4,560 \mathrm{lbs}$.
A point which the writer thought it would be interesting note was the gross indicated horse power at eich of the peeds. So far as the writer has ever heard, no one has at tempted to indicate engines at anything like 500 revolutions
per minute. At 300 revolutions the horse power was 11.05 , per minute. At 300 revolutions the horse power was $11 \cdot 05$
at 600 revolutions, $71 \cdot 61,400$ revolutions, $23 \cdot 45$, and 500 , $42 \cdot 31$ he next thing to be ascertained was what was the speed of the boat at these varying revolutions. For this purpose, it was determined to take the ordnance measurement from Barnes railway bridge to Putney old bridge; this appears by measurement to be three and a half statute miles and eighty ight yards. A counter was kept in gear; the total numbe f revolutions was 6,131 , giving a mean of 530 a minute. It was clear a greater speed could have been maintained so far as the engine and boiler were concerned; but it was feared that the injector was hardly large enough to supply the re quired quantity of feed water, and therefore the link wa otched back.
The total number of revolutions was 6756 , giving just under 580 revolutions as the mean per minute. At the very last o he run, the engines were making 600 revolutions per minute Mr. Thorneycroft having found that he had water enough in is boiler, and being thereby enabled to give the engine ull steam without risk. The mean speed was 18.36 mile er hour. Runs were then made upon the measured mile a varying revolutions; 555 revolutions give $18 \cdot 65$ speed; 500
give $16 \cdot 15$ speed; $400,11 \cdot 82$ speed; $300,11 \cdot 05$ speed; $200,4 \cdot 02$ ive 16.15 speed; $400,11 \cdot 82$ speed ; 300, 11.05 speed ; 200, 4.02 peed; 100 revolutions could not be taken, as it would no have given a rate sufficient to have stemmed the tide
The slip of the screw was for 500 revolutions 14.7 per cent for 400 hundred revolutions, 219 per cent; for 300 revolu tions, 12.9 per cent ; and $200,7.1$ per cent. The highest poin f observation on which any measurement was taken wa The displacement of the boat at the draft at which she was tried was 3.73 tuns. If the speeds at the varying revo utions be reduced from statute miles into knots, and the the formula $\mathrm{V}^{3} \times \mathrm{D}^{2} \div 1 \mathrm{H}$. P., be employed to ascertain the coefficient of stermship performance, the following result will be obtained: At 500 revolutions, the coefficient will be 150 ; at 400 revolutions, the coefficient will be 106; at 300 evolutions, the coefficient will be 131, etc.
In conclusion, the writer has to thank Mr. Thorneycroft, and he thinks the Institution will also thank him, for the eadiness with which he has allowed these experiments to be carried out; and more than that, for having made that which the writer believes to be a real step in the science of steam propulsion. And he trusts that these unusual and wholly unexpected results of speed will call the attention of he velocity of large sea going steamers.-Engineer.

The Star Depths

Mr. Richard Proctor recently delivered, at the Royal In titution, a lecture on star depths. He dwelt on the contras etween the ideas which we form from the aspect of th tarry heavens, on a calm clear night

When all the stars shine
and the scene disclosed to the mind's eye of the astronomer Each star, amid the solemn depths, is in reality a sun instinct with fiery energy and urging its way with inconceiv-
able velocity through space. Nor are these suns exempt able velocity through space. Nor are these suns exempt
from mutation. Several among them are losing year by ear a portion of their light and heat, equal to the require ments of our earth, or of the whole solar system even for undreds of years; others are growing brighter; new slar have appeared, and stars known to the ancients have vanished. Thus the question arises whether our sun, a star ike the rest, may not also be subject to changes. If so, the uestion is one of extreme interjst to ourselves, not as di ctly affecting our wants, but as involving the very exist nce of more or less remote generations. To obtain a direc sun continued with unflagging patience for many years. But indirectly the question may be answered by comparing the present aspect of the heavens with the scene presented
to those who first studied the stars. The lecturer then proceeded to inquire whether any traces remain of those feature
star groups by certain names. He showied that, though the constellations of the Great Bear and the Lion as at present
figured do not in the least remind us of the animals they are upposed to represent, yet the figures of these animals may θ fairly trac 3 d if we include larger regions of the heaven than the present constellation koundaries permit. For instance, if Canes Venatici be included with Ursa Major and the three stars at present regarded as the tail (of a tailless animal) be regarded as forming an outline of a part of the back, then we have a figure not unlike a bear. Again, if we regard the group of stars forming the northern claw of Cancer as marking the place of the lion's head, the stars in Leo Minor as forming the mane, and Coma Berenices as the tufted tail of the animal, then the space thus indicated will e found to include a very fair representation of a lion. In ike manner the stern of the ship Argo is very fairly indi ated if the stars forming the hind legs of Canis Major ar ncluded in the configuration. Hence the lecturer arrived a wo conclusions-1st, that the ancients were not solicitous to ccupy the heavens with constellations fitted in like the countries in a geographical map; and 2ndly, that the star xhibit at present the same general configuration which ex isted when the most ancient constellations were formed From the second of these conclusions, we may infer that probabilities are on the whole in favor of a satisfactory de gree of steadfastness in the sun's luster
The remainder of the lecture was occupied by an explana tion of the general principles on which the determination of tellar distances depends. This introduced the consideration of the enormous extension of the stellar universe when with distances from star to star so enormous as have bee roved to exist, the number of stars is so vast as to be practically infinite. Amongst the illustrations of this part of the lecture was an illuminated diagram showing 324,108 tars; but the lecturer mentioned that the Herschels 18 in tescope would show 530 times as many stars and the grea Rosse telescope, more than 2,000 times as many.-Mechanics Magazine.

Liebig on Lager

A correspondent has interviewed Baron Liebig, the cele bated German chemist, at his home in Munich, and gleaned his views upon the lager question. "Beer," said the Baron is better than brandy. Man must have a stimulant of som sort. Brandy is a great evil. We find that the consumption of beer is making great headway even in wine districts-for instance, in Stuttgart. As a nourishment, beer takes a very subordinate place, not higher indeed, than potatoes; and we find that in no city is there such an amount of meat consumed as in Munich, where the greatest quantity of beer is also consumed. Beer must have meat or albumen. Before every beer cellar in Munich, you will find a cheese stand. Why? Because in cheese you will find that albumen which in beer is lacking. Therefore you see that beer and cheese go to gether by a law of Nature! But as an article of nourishment bear is very subordinate. Schnapps is a great misfortune and destroys the working power. Through our late war, we have won great respect for tobacco, tea, coffee, and extract of meat. A physician told me that, when the wounded would take nothing else, they have grasped at cigars; their eye glistening-they felt a lifting up of the sinking nerves. To bacco must have this effect. We could not do our wounded frequently, a greater service than by giving them cigars And we came to the conclusion that tobacco was valuable to
us." Baron Liebig evidently looks to America for an imus." Baron Liebig evidently looks to America for an im e: "It in beer and the perfection of beer drinking. Said hing bericans that they make every wil,, in emai , be better than German. With us everythin though it was earlier the best. And why? Look into our bre wery system. The brewers are only ignorant people, who brew good beer from routine alone. They are incapable of helping themselves. But as soon as the Americans get any thing from us they improve upon it, and we get it back again as an American discovery.'

Arabian Mode of Perfumin.

How the Arab ladies perfume themselves is thus described by Sir Samuel Baker in his work on the Nile: "In the floo of the hut or tent, as it may chance to be, a small hole is ex cavated sufficiently large to contain a champagne bottle. A fire of charcoal or simply glowing embers is made within the hole, into which the woman about to be scented throws handful of drugs. She then takes off the clothes, or rob which forms her dress, and crouches over the fumes, while she arranges her robe to fall as a mantle from her neck to the ground like a tent. She now begins to perspire freely in the hot air bath, and the pores of the skin being open and moist, the volatile oil from the smoke of the burning per fumes is immediately absorbed. By the time the fire has expired, the scenting process is completed, and both her perso nd her robe are redolent with incense, with which they ar o thoroughly impregnated that I have frequently smelt a party of women strongly at full a hundred yards distance when the wind has been blowing from their direction. The cent, which is supposed to be very attractive to gentlemen, is composed of ginger, cloves, cinnamon, frankincense, and myrrh, a species of sea weed brought from the Red Sea, and
lastly the horny disc which covers the aperture when the lastly the horny disc which covers the aperture when the
shell fish withdraws itself within its shell. The proportions shell fish withdraws itself within its shell. The proportions
of these ingredients in this mixture are according to taste,"

The support of one of the large tuns of ale in Coolidge, ratt \& Co.'s brewery, containing from 400 to 500 barrels of boiling beer, recently gave way all of a sudden, letting the
vat fall and spilling the beer. Loss, $\$ 4,000$.

beetles.

That class of insects which naturalists term coleoptera, and in common parlance are known by the name of beetles, seem to have been studied with more interest and care
ther entomorical species sp
The individual species of scaraboi may be divided into seven principal classes; of which the first, that of the cetoniid 0, comprehends a series of beautiful insects, which feed on the juices of flowers. The golden beetle is one of the most charming; the country people call it the king of the beetles. It is of a golden green, with white spots; when it flies in the sun, scarcely raising the elytra, its whole body sparkles like polished metal. During the summer months, it lives in gardens, always choosing the most brilliantly colored flowers on which to rest; it penetrates to the heart of the roses and peonies, or settles on the petals of the honeysuckle, which it eats, sucking the honeyed liquid. It is per fectly inoffensive, does no harm to vegetation, and has not the unpleasant smell which belongs to many of the tribe The females lay their eggs at the foot of trees among de cayed wood, or even in the nests of ants. Here the young larvæ find their nourishment in woody morsels for three years, and then construct their cocoons, from which, in due time the beetle emerges. One beaatiful kind, found in the Philippine Islands, is so much admired by the ladies that th y are kept as pets in small bamboo cages. The Brazilian species are of an immense size, and may be seen resting under the leaves of the maize plantations, or flying round the tops of the tallest trees. These, again, are surpassed in size by the Goliath, which is peculiar to tropical Africa. Collectors have been so ansious for specimens, and found them so difficult to obtain, that as much as fifty pounds has been given for one of these insects, which are the common food of the natives, when roasted
The sacred beetle of the Egyptians belongs to the coprinc; its singular instincts had, without doubt, much astonished them, for it is found on the most ancient monuments in the land of the Pharoahs, depicted on amulets, placed on sarco phagi, and treated with the greatest veneration by the dwell ers on the banks of the Nile. They were an agricultura people, and valued these great black insects for their habit of clearing away noxious substances. An oily substance which they secrete keeps their skins bright and glossy, so that none of the dirty matter among which they live can ad here to them. The fore feet are armed with spines, whilst the hind ones are much longer and suited for the work they have to perform. The care which the female takes for the preservation of its eggs and the development of its larvæ is
very curious. Instead of simply hiding them, like other beetles, in a lump of mud or some little cavity where the gg is laid, she surrounds it with manure, and rolls it up in to a little ball with her hind legs; soon it is a solid, well neaded mass, with the egg in the center. Already a choice has been made of a suitable place where the larva, when hatched, can find a living. Towards this point she sets out rolling the ball before her; meeting with some obstacle, or a ough piece of ground, she places the lump on her broad head, and thus carries it over. But should it prove insurmountable, she fies off to seek other aid, and soon returns
with five or six others, who assist her by pushing on all sides, and thus carry the precious burden to its destination. Then the hole must be dug in which to deposit it-the fore leg now come into play, being especially formed for spades,-and when it is deep enough, the ball is rolled in, the hind leg rush down the earth, and every trace of the hole disappear inder the parent's indefatigable labor
Among the class of the melolonthido, the common cockchafer may be regarded as the type of the whole, and a ver redoubtable enemy it can prove itself to be. In some years, t appears during the month of April in prodigious numbers its life lasts until June; and during all this time it is prey ing on the leaves of various trees,--the maple, poplar, birch beech, and oak. But it shows a marked preference for the elm, so that in France the peasants call the flowering and ruit buds " cockchafer's bread." It is not uncommon to se whole forests on the Continent entirely bare of leaves in the spring months, having been eaten up by these insects. But this is a slight evil compared with what they have already effected underground, by living on the roots of cereals. The arious metamorphoses of tke insect in its underground life ast for three years, during all which time it displays a wo erful voracity. When the females are ready to lay thei eggs, they choose a light, well cultivated soil, and, burving
themselves in it, perform their task. There are generally themselves in it, perform their task. There are generally
about forty young ones, which burst the shell in thirty days. about forty young ones, which burst the shell in thirty days
Nature has armed them with powerful mandibles and forked tooth, so that they set to work at once.
After a warm day, when they have been tempted neare the surface, whole fields, covered with green shoots, are a once changed into dried-up withered leaves and stems. The roots of the vegetables, grain, or colza, have been eaten and soon perish by the same means. For this reason, the habits of this kind of beetle have been made a peculiar study on dreaded.
When the ground is in course of preparation for receivin the seed, in the months of September and October, almos all the larvo are near the surface; taking care not to \dagger low the ground too deeply, they will, in most cases, be turned up and the harrow, energetically used, will destroy the greate number; if, however, the plow is too deep, they will only be buried.
The Sexton beetles are well known throughout Europe and are so called from their living on the bodies of any ani-
mal they can find. Should a dead mouse or mole be left in a
field, they collect in large numbers around it; and as their intention is to lay their eggs in it, and so provide suitable food for the larvæ, they proceed to bury it, that it may not dry up or be eaten by other animals. Hollowing the ground beneath and throwing out the earth, the animal gradually sinks down and is covered with the surrounding soil. About twenty-four hours suffice to conceal a mouse. The eggs are speedily laid, and the larvæ feed upon the putrid flesh until speedily laid, and the larvx feed upon the putrid fess until
they are full grown, when they descend into the earth for they are full grown, when they descend into the earth for
three or four feet and undergo their metamorphoses. There is a very curious tribe found in Brazil, the body being im. mensely distended and lying on the top of the back. Thsy mensely distended and lying on the top of the back. ansy are generally found in the nests of the white ants, and do
not lay eggs, but produce living larve. The Bombardier beetles derive their name from the apparatus of defence with which they are provided. Their habit is to hide under stones in large numbers, and when the stones are disturbed, they eject a quantity of vaporous fluid with a loud noise; it is pungent. acrid, and volatile, becoming a bluish vapor when mixed with the air. Chemical tests prove it to be a strong acid, which will produce a sense of burning on the skin.
It is to the family of beetles that the cantharides belong which have been used by the medical profession from the days of Hippocrates and Aretæus. Not unlike them in appearance are the pretty glowworms, which light•up the grassy banks of our southern hedgerows during the summer nights. It is the female only that possesses the phosphores cent light, which it can withdraw at pleasure; and it is no furnished with wings, so that its appearance is more like that of a larva than a beetle. Some species find their home in timber or planks, instead of the ground. Every one knows wooden floors of old houses seen to be drilled through the wooden floors of old houses: these are made when the larva change into beetles; and as they are nocturnal in their habits, they discover their whereabouts to their companions by
striking their mandibles against the wood. From this sim. le noise has arisen the superstitious dred of invalids and nurses, who, in the dead of the night, hear the death watch, and consider it as a summons to another world. Elm trees suffer greatly from the attacks of a beetle of this class, whole forests being sometimes laid low under its insidious labors The female makes a gallery beneath the bark, and, boring side alleys, lays an egg in each; when hatched, the young ones eat a way in regular directions until the whole tree is pierced. In tropical countries, the larve are of a much larg or size, and their ravages are more serious. The Titan, which is found in Guiana, revels in the undergrowth of that hot, damp district, where vegetation is exuberant; and the mimosa trees in the West Indies have their young shoots de troyed by a lamia. M. Houllet, who once lived in the neigh borhood of Rio Janeiro, heard the sound of falling branches of trees belonging to the acacia every night. On examina tion, he found they were sawn all round, but the pith was left untouched, so that they broke from their own weigh when the wind blew upon them. It was supposed to arise from the mischief of the slaves; but on cutting. into the had; no doubt cut round with its powerful jaws, to preven the sap flowing in, which would interfere with the growth of s young.
In such a numerous family, only the most curious exam ples have been selected; but we may just mention the lady birds as belonging to $i t$, as they are such favorites with little children. These pretty insects are common in all quarters of he globe, and are very valuable in checking the swarms o ansects which infest roses and other plants. It is not in the seen creeping up the stems, and swallowing the lice in regu ar order. During the last few years, immense numbers have appeared in the south of England, and have been described as extending in dense masses for miles. In conclusion it may be said that the uses and instincts of beetles are most wanderful. Plants grow too fast, and the larvæ settle on make haste to reach their full size. They fertilize the soil by scattering decomposing matters, and thus prevent them from vitiating the air; while their gorgeous colors compet with those of the floral world and add to the charms which Nature offers to the ohserver.

Mineral Sperm oil.
This is a burning heavy oil made from petroleum; and it valuable properties as a safe illuminating agent are such a to render this product one of very great importance. Th
following statement of its discovery and character is give following statement of
by Mr. Joshua Merrill:
"In the.summer of 1869 , in connection with Mr. Rufus $\dot{\text { S }}$ Merrill, I made an important discovery relating to burnin heavy or paraffin oil in lamps, for illuminating purposes. Mr R. S. Merrill is a skillful mechanic who has devoted himsel for several years to perfecting the construction of lamps and burners for hydrocarbon oils. While experimenting upon crease the light from this beautiful substance over that obtained from common candles-the only form in which paraf fin is burned-he one day put some lubricating oil into the lamp, instead of the paraffin wax, and we were both much surprised at the good qualities of the light yielded by it But, after experimenting some days, we found this heavy oi to be impracticable as an illuminating material in its present form, and that some modification would be necessary. It oc-
curred to me that if this heavy paraffin oil was passed hrough a partially destructive distillation, cracking it enough to lessen its viscidity but not enough to render it volatile, its and yet preserve its character as a fixed oil.
"After many trials, I obtained the product now called ' mineral sperm oil,' which is sufficiently thin to fill the wicks perfectly; but it is so far from being a volatile oil that it is comparatively irodorous, and will not take fire at any tem. perature below 300° Fahr., or nearly 100° hotter than boiling water. Flames of considerable size such as a large ball of wicking yarn saturated with oil and ignited, when plunged beneath the surface of this oil, previously heated to the temperature of boiling water, are extinguished at once. It burn 3 freely in the German student lamps, and with great brilliancy from the ' Dual' burner,'
The manufacture of this oil and in Great Britain; and Mr. Merrill estimates the quantity that may be made as at least one quarter of the whole pro-
duction of petroleum, or 160,000 gallons of the mineral duction of petroleum, or 160,000 gallons of the mineral sperm oil every day-a quantity more than twice that of the whale and sperm oils, obtained in the best days of the whale ishery of this country.
The present time, when government authorities and scien tific men are so generally cautioning against the "dangers of kerosene," and just as French savans have discovered that certain heavy petroleum oils may be burned in lamps, seems peculiarly opportune for the introduction of this product of American skill and invention-namely, a hydrocarbon, or a mixture of hydrocarbons, which seems to fulfil all the re quirements of an oil to be burned in lamps, yielding a steady, brilliant, and safe light. And practical indications of its ap preciation may be found in the manufacturer's announc ment that the demands for this mineral sperm oil are steadi y increasing. It is used on ocean steamers plying betwean ho United States and Europe, and also on several railroads.

Metal Coated Sheet Iren.

An improved method of protecting iron from injury and deterioration has been introduced by Mr. B. Morrison of Phil adelphia, whose invention consists in deoxidizing the scale oxide adherent to sheet iron, and amalgamating, blending, or intimately uniting with it any of the softer and more fusible metals, so as to render such scale oxide more flexible, soft, adherent, and less liable to rust, and the sheet iron also more perfectly annealed and flexible. It is essential that the sheets be made of the best charcoal bloom iron, and that the scale oxide thereon be even, or of uniform thickness and unbroken; and in order to produce such a scale oxide, it is recommended that the usual rough and imperfect scale be removed-by means of a weak aciu, in the usual manner practiced in the process of coating sheet iron with zinc by immersionand that the sheets be then passed between a pair of smooth pressure rolls, and finally subjected to a sufficient heat to produce thereon a new and uniform scale of oxide
Having prepared saturated or strong aqueous solutions (say) of sulphate of zinc, chloride of zinc, chloride of tin, acetate of zinc, acetate of lead, and of any other readily fusible metal that will amalgamite, unite, or combine with the deoxidized scale on the iron at a strong or bright red heat under the hydrogen or carburetted hydrogen gas, immerse the deoxi ized sheets in either one or a mixture of two or more of the aid solutions for five or ten minutes, or apply the same by rubbing it on by means of a sponge or rough brush; let he excess of solution drain off, and the remainder crystallize or dry upon the surface of the sheets. Now place them in a box in the heated chamber of a furnace; then introduce the hydrogen gas, and slowly heat up to a scarcely visible red, aintaining the said low heat for (say) half an hour, more or less, to allow a perfect reduction of the oxide of the applied solution; after which the heat should be increased to a bright red, or heat a few degrees above that which may be required to fuse the now reduced softer metal and cause the same to amalgamate, blend, or unite with the deoxidized and consequently, soft and porous scale on the sheet iron.
To obtain brightness of surface when desired, it is proposed to pass the sheets severally between and in contact with a pair of cylindrical rapidly rotating bristle brushes; and, if fterward intended to be put up in packs for storage or ship nent, the sheets may, as a further protection against camp. ness, be dipped into any suitable hydrocarbon oil, and then
the superfluous portion drained or wiped off. The solution the superfluous portion drained or wiped off. The solution
of the sulphate or of the acetate of zinc forms, with the de of the sulphate or of the acetate of zinc forms, with the de
oxidized scale on the iron, an excellent coating. About three oxidized scale on the iron, an excellent coating. About three
parts of the solution of chloride of zinc mixed with two parts parts of the solution of chloride of zinc mixed with two part of the solution of chloride of tin make, with the deoxidized scale on the iron, an excellent flexible coating of a white color. Three parts of the solution of the acetate of zinc mixed with two parts of the solution of the acetate of lead and one part of solution of the chloride of tin, make, with the deoxidized scale on the iron, a very suitable coating for sheet iron intended to be used in the construction of stoves, tove pipes, coal hods, etc.; but as the predominant metal in the coating is the deoxidized scale oxide of iron, the numbe and proportions of solutions of whatever metals are intended be applied thereto may be increased and varied as th coating desired may require

Germination---Its Relation to Light
The theory of the germination of plants, which has been eretofore admitted, requires that the germinating seed be xcluded from direct sunlight. Late experiments appear to establish the fact that, while exclusion from the luminous rays of the solar spectrum is necessary to the healthy germation of seeds, yet the chemical or actinic rays are indispen able to that process. These penetrate much deeper into th oil than do the luminous rays. The exclusion of the chem. cal rays, and not the absence of oxygen alone, is assumed to be the cause of seeds failing to grow when buried too deeply in the earth. Will our agricultural colleges settle this ques tion by careful experiments? Let us have all that can be known of the mysteries of plant life.

the national steamship companys steamer "egypt."-[See Page 364,]

HEAT AND LIGHT

Report of a recent lecture by Professor John Tyndall, before the Roya nstitution.]

History shows us two different philosophical schools trying to account for the visible universe. The one school bases itself upon speculation, and the other on observation and ex periments, the one trying, as it were, to develop a universe out of its own consciousness, the other seeking patiently fter the outward facts of the universe, and through them fter the principles that connect them. It is needless to sa hat in our day the school of experience has gained the up per hand. Indeed it is common, in philosophical books, to sa hat, in the investigation of Nature; you cannot go beyond experience. Take the idea of atoms, for example. No doub this notion was first derived by the ancient philosophers from the observation of small sensible particles of matter. Bu in transmuting them to atoms, they so diminished the size of these particles as to place them entirely beyond the bounda ry of experience.
Most physical minds of the present day believe in atoms and molecules, or groups of atoms, though none of us have ever seen either atoms or molecules. In fact, you can hav o explanation of the objects of experience without invokin the aid of objects lying beyond experience; we cannot possi

bly reach the roots of natural phenomena without the help f atoms and molecules. We figure them as the constitu onts of all bodies. .
It is the play of the power we call heat among these atom and molecules which is to occupy us during these lectures In front of the table is stretched a platinum wire, which can be warmed by passing an electric current through it; the wire passes over a wheel, to which a straw index is attached and a small weight is hung at the end of the wire. You are to figure that wire as an assemblage of atoms, held nea each other by their mutual forces, but not in contact with each other. Heat forces them more widely apart.
The platinum wire stretched between the two stands, a (Fig. 1), is lengthened when it is heated. This can be done by causing an electric current to pass through it. The wire is fastened to the hook at the top of the ctand, a, and is car ried round the axle of the small wheel, where it is made fast ver the periphery of the wheel is a cord from the weight, d, which keeps the wire in a state of tension; to the wheel it elf is fixed the straw with a paper attached to it to act as an index, e. The platinum wire is pulling in one direction, and the weight is pulling in the other direction, but if the latinum wire is released the weight will instantly predomi nate, and the index will fall. That it does so is shown by pressing the top of the stand, a, towards b; now, making contact with the wires from a battery, at f and g, the wire becomes hot, and the index falls. Stopping the current, the wire contracts, and the index comes back again.
But here electricity might be supposed to have something o do with the effect.
Here are two wooden stands, A and B (Fig. 2), with plates

of brass, P P , riveted against them. At present the bar of iron, C , is not lnng enoagh to stretch from one support to the other. I will support them on two little projections of wood attached to the stan̆ds at $P P^{\prime}$. One of the plates o brass, P, is connected with one pole of a voltaic battery, D, and from the other, P^{\prime}, a wire proceeds to the electric alarm bell, E ; and again from that instrument a wire returns direct to the pole of the battery.

At the present moment the only break in the circuit is due to the insufficient length of the bar of iron to bridge tha space from stand to stand. Underneath the bar is a row of gas jets, which I will now ignite; the bar is heated, the metal expands, and in a few moments will stretch completely across from plate to plate. When this occurs, the current passes and the signal bell rings, as you hear. Throwing a little water on the bar, after the gas is extinguished, the ound.
The contraction of a bar of metal, which has been heated, is a very powerful force. The contractile force of cooling has been applied by engineers to draw leaning walls into an pright position.
The bar of iron, A (Fig. 2), is red hot; it has a hole through it at B, through which the cold bar of steel, C, is inserted; it
 is then dropped in to the Y shaped supports, D E, and screwed up tight by the thumb screw at F; the whole ar rangement stand in a trough; and water being poured over the bar, A, it contracts, and doe o with such an exertion of force that the bar at B is broken into two pieces.
But bodies expand in very different degrees, ańd it is neces sary to devise instruments which are capäble of measuring very small changes of volume. Among the most delicate of these is the apparatus before you. At the bottom of the sketch, Fig, 3, B represents the upper end of an uprightbar of metal ; on the top of this bar rests a little brass stem, S, the top of which acts as a fulcrum to the plate of agate, A. The arm, C, above the plate, moves on a pivot, which you see marked by a dot; a very little pushing of this arm causes it to move through a greater space than the body which pushes it. Attached to this arm is a piece of the hairspring of a watch, and that is carried round an axis, X , upon which is a nirror, M, upon which a beam of light, H, is made to im pinge. Now, if you conceive the end of the bar to be lifted, and to push the arm upwards, it will cause the mirror to ro tate, and the beam will travel with it, but with twice its ve locity. Thus, in this experiment, instead of a straw, a ray of light is used as an index. It is exceedingly sensitive clasping the bars of metal with both hands causes a sufficien elongation to bring the luminous index from the ceiling to the floor. Pouring a little alcohol upon it causes, by its evap oration, sufficient chilling to send the index back with great velocity; again clasping tbe bars, it is again brought down wards.
Putting tires on wheels, while they are still hot, is a fami iliar example of the way this contractile force is utilized. Thus we make ourselves acquainted with the sensible fact of expansion. We are here in the domain of experience, but here is something within us which prevents us from resting here. What is the internal mechanism which produces thi xpansion? Here, again, we must help ourselves to concep ions by reference to the visible world. An experiment wil ake the matter clea:

On heating this flaccid bladder over a ring burner, turning in the hand at the same time, it becomes smooth and tight In a very natural way, this fact of the expansion of atmo spheric air was transferred from the region of experience into the region of atoms and molecules. It was assumed that the atoms were surrounded by atmospheres-atmospheres of heat or caloric ; and the expansion of bodies by heat was sup posed to be due to the swelling of these atmospheres. We have here that theory of heat which regarded heat as a free elastic matter, surrounding the atoms of molecules of bodies as the atmosphere surrounds the earih.
We can, as I have already said, make no attempt at ex plaining natural phenomena without resorting to a mental imagery of this kind. The first effort at explanation is an effort of the imagination. But having assumed a distinct and definite cause, it is a duty, which Science never neglects, to verify or confute the assumption by comparing its conseto verify or confute the assu
quences with observed facts
The notion of calorific atmospheres was thus tested and found wanting; and it was the founder of this Institution whose life and doings have been recently sketched so admi rably by Dr. Bence Jones, who offered the most striking ex periments and the most powerful arguments against it.
Count Rumford contended that heat could not be a kind of fine matter, because its supply by friction is inexhaustiblewhich matter is not. He contended that his experiments proved heat to be motion. And there was another great name, also associated with this Institution, who soon afterwards rendered it in the highest degree probable that the orig. in of light was a vibratory motion; and inasmuch as heat re sembles light so closely, and in most cases preceded and ac companied it, the notion became irresistible that heat also as a kind of vibratory motion
But how on this assumption is expansion of bodies by heat be accounted for? Well, it requires no great effort of the magination to see that when the atoms are oscillating to and fro, they require a greater amount of room than when
they are at rest. In this one case the atom occupies a space
measured by its own diameter; in the other it virtually occu pies the line along which it oscillates.
Though the amplitude of vibration be very small,its ntensity may be great ; strik ing a tuning fork, it is set in vibration, but the vibration re so minute that they ar well nigh imperceptible. If however, two cork balls are suspended, as at $a a^{\prime}$, Fig. 5, about a quarter of an inch away from each limb of the tuning fork, c, the greater pace required by the fork when in a state of vibration is shown by the violence thrown to $b b^{\prime}$
Another example is fur nished by the brass rod, $a b$
 ig. 6. When rubbed with a iece of flannel, having some powdered resin sprinkled on it is thrown into longitudinal vibration. The center, s, is a ode, and remains still; but the two free halves elongate and contract in rapid alternation. I apply the rubber more briskly, and the balls a and b are thrown off with violence very time they come in contact with the ends of the rod.

In this case the amplitude of the vibration is so small that o eye can detect it, and still it is capable of projecting the vory balls violently into space.
But the energy of those small vibrations to which we give ne name of heat is immensely greater.
Dip the hand into a finger glass until the water in it is warmed one degree. An amount of energy is withdrawn from that hand sufficient to project that water to a hight of 772 feet, or if the degree be centigrade, to a hight of 1390 feet above the earth's surface-three times the hight of St Paul's.
Paul's.
ollow this vibratory motion to its consequences As the temperature of a solid body increases, its atoms oscillate more and more widely, the body in consequence expand ing more and more. A point, or temperature, is at length attained when the hold which the atoms of the most refractory bodies exert upon each other is so loosened that the atoms are enabled to glide round each other with freedom. When this occurs, the liquid state sets in. You must not imagine cohesion destroyed in liquids, for very strong cohesive power may be associated with the power of free liquid sliding of the atoms over each other
In the body of a liquid, each atom or molecule is surrounded on all sides by its neighbors, and thus prevented from flying away; but it requires no great stretch of imagination to see that at the surface, where on one side they are entirely un controlled, the molecules may be jerked away from the liquid altogether. This, in fact, is the conception of the vaporous r gaseous state of matter now prevalent. The temperature of gases-that, in fact, which keeps them in a state of gass supposed to be a motion of translation instead of a motion of vibration. The gaseous molecules fly through space; striking against the surfaces by which they are surrounded, striking against each other-and recoiling like little elastic balls. Here, for instance, is a vessel covered with india rub ber, which is now quite flat. The air, according to this new conception, is hitting the opposite sides of the india rubber with equal force. It is, therefore, in equilibrio, and will re main so till the forces on the two sides become unequal.
Placed on the plate of an air pump, directly exhaustion of the air within the vessel commences, there is a loss of projectile energy on the part of the air in the interior, and the air on the exterior, retaining all its original power, drives the ndia rubber before it, forming a hollow within the bell glass f the air pump.
The pressure of the atmosphere being known, and the weight of the gases that compose it being known, it is easy o calculate the velocity with which the atoms must strike against a surface in order to produce the pressure. Of course the lighter the atoms, the greater must be their velocity
The velocities of the following gaseous atoms at $32^{\circ} \mathrm{Fah}$.
Oxygen..
Nitrogen.
Hydrogen
1.514 feet a second
...... 6.050
If the gases be heated, their velocity is augmented and the ressure correspondingly increased.
Extreme care is necessary in determining the coefficients of expansion. Such constants are the foundation stones of science; and no higher sincerity was ever exercised by man

Examples of solid coefficients

Copper	from	$1 \cdot 000,000$	expands to	$1 \cdot 000,017$
Lead	$"$	$1 \cdot 000,000$	$" /$	$1 \cdot 000,029$
Iron	$"$	$1 \cdot 000,000$	$"$	$1 \cdot 000,012$
Zinc	$"$	$1 \cdot 000,000$	$" ،$	$1 \cdot 000,029$
Glass	$"$	$1 \cdot 000,000$	$" ،$	$1 \cdot 000,0080$
Platinum	$"$	$1 \cdot 000,000$	$"$	$1 \cdot 000,008$

The last is almost the same as that of glass: hence the pos sibility of fusing platinum into wires with glass tubes for eudiometric and other purposes. Were the coefficients dif ferent, the fracture of the glass would be inevitable during the contraction in cooling.-Mechanics' Magazine.

THE STEAMSHIP "EGYPT."

Our full page engraving represents the steamship Egypt a splendid vessel lately built at Liverpool for the Atlantic National line of steamers.
She is 450 feet 6 inches in length, which is more than two thirds as long as the Great Eastern; her breadth of beam is 44 feet, and depth of hold 36 feet. She registers 5,150 tuns f 1000 engines are on the compound principle, and ar er 2,000 horse power. They are supplied with steam by six double boilers arranged in two sets of three each, which arry a pressure of 75 pounds to the square inch
She is a complete four decker. Her spar deck is flush fore and aft, the cabin entrances and skylights being the only obstructions on it. This and the deck below are plated with steel and planked with pine. The two lower decks are plated with iron amidships, where the general strain of the machinery is felt, and are also planked with pine. She car ries four masts and two funnels. Her ability to spread canvas equals that of any vessel afloat, while her rate of steam ing is fourteen knots an hour. The lower masts are of iron, and the lower yards and lower topsail yards are made of stee. She has steering apparatus amidsh which work the and is provided with five steam The saloons, staterooms, and officers' rooms are heated by steam pipes. Between the spar and main decks are accom modations for all the first class passengers, officers, and crew, besides cooking galleys, ice houses, etc.; and the en tire space between the main and next lower deck is left free for the steerage passengers.

The workmanship throughout the vessel is of the highest class, and her construction is such that more than ordinary comforts are afforded to the steerage passengers.

Sensible Suggestions about Patents.
Mr. Wm. T. Hamilton, writing to the Engineer, gives expression to some very practical ideas on the Patent law question now before Parliament. His suggestions apply with
equal force to the American Patent law, which is based on that of England. He says
The simple system which I would propose would be that every inventor should have patent protection, as, of course, for certain proper periods, for every invention or alleged invention, no matter whence he may have taken the primary idea. I would give bim protection, not only for his own original ideas, but for utilizing the abandoned ideas of others. Why not? It would hurt no one. This patent right should of course be defensible upon its being shown by any one else that he had had the same idea in practical operation prior to the date of the patent. Here commercial user would find its proper place. It would of course save to the public every useful invention now in operation; it would in Thus, then, the only patent question which would arise would be one of priority of practice. This would always be would be one of priority of practice. This would always be
a simple one, even for the county court. The issue would a simple one, even for the county court. The issue would
be not whether perhaps abstract ideas were original, but be not whether perhaps abstract ideas were original, but them had been first used. Commercial usage is notorious and of easy proof. I would thus take commercial usage not as the basis of protection, but as the element by which to prove priority; such a system would have the great charm of being almost self acting. The mere existence of such a public counterpoise would keep inventors in the right path for their own sakes. What they now fear is not what is in the light, but what is in the dark. By all means let there be competent authorities to settle these questions of priority in the last resort. The judge of the county court might be stupid; or some cases might involve very nice distinctions as to the application or principles or as to identity, or as to what is or is not essential in a scientific point of view. Let there also be libraries and museums and open registries carefully classified, with every other possible source of in-
formation, free to inventors upon their own seeking. Let formation, free to inventors upon their own seeking. Let
our system be for affording, not for forcing instruction; for our system be for affording, not for forcing instruction; for
encouragement in every direction, not for prohibition in encouragement in every direction, not for prohibition in
any. Do not let us degrade what has higher grounds upon which to rest into a mere notice board against trespassers, which any preliminary inquiry, if coupled witl the condition of originality, could alone be.
Give inventors all possible information not now accessible; give them all possible liberty, but do not meddle with them until others complain that they have taken what previously belonged to those others. Let relative rights be adjusted as all other rights; self interest will do the rest.
If Evgland expects to maintain her inventive superiority, she must boldly open up every possible source of thought, old or new. She must break up some of the old, worn grooves in which we are now too prone-or, perhaps, too
much compelled-to move Let her, above all, give back to much compelled-to move. Let her, above all, give back to
the inventors of the future the vast stock of thought put the inventors of the future the vast stock of thought put
upan a now useless record by the inventors of the past- It upon a now useless record by the inventors of the past- It
would be like shedding a per light over the scene of inventive exertion.

A New and Simple Continuous Battery.

 Professor Bottomley, of the Glasgow University, thus de cribes a new battery in use in that institution.A shallow wooden tray, square and with slightly slanting sides, is lined with sheet lead: and this, after being electro yped with copper, forms both the containing vessel for the liquids and the copper plate of the cell. Copper trays were used at first, but they were soon eaten through by the solu tion. The lead is not attacked at all. The length of a side of the lead tray is 21 in ., and its depth is $3 \frac{8}{3} \mathrm{in}$. In each corner is set a small block of wood $1 \frac{1}{2} \mathrm{in}$. high. The zin plate, which is like a square gridiron, rests at its ower surface and side. The cell is filled up with saturate olution of sulphate of and anstals copper are dropped in, when required, round the edges outcopper are dropped in, when required, round the edges out-
side the parchment paper. For connecting these cells to side the parchment paper. For connecting these cells to
gether in series, the lead lining is carried over the wooden gether in series, the lead lining is carried over the wooden
tray at the corners and down the outside to the under sur-

face of the bottom of it. Here it is soldered to a small squar of thick sheet tin. The cells are piled up one on the top of the other, the tin plates of the second cell resting on the irst, and so on. The tin connections-a suggestion of Mr Varley-are most excellent. Two of these cells are shown in section, Fig. 5. The resistance of each of these cells is on an average 0.19 of an ohm. They are now used at all the tele graph stations where Sir William Thomson's siphon record er is employed.
In using these batteries in a laboratory, where they are not perpetually at work, the best way of managing them nay possibly be not to charge them with sulphate of copper except when they are about to be used, and only to put in as much as will do the work required. To calculate the quantity is easy; and any small excess might be worked
off through a low resistance. We have been keeping them at work almost night and day. They require no attention except to be occasionally supplied with sulphate of copper crystals, and to have the sulphate or zinc that creeps up ver their edges wiped away with a cloth.
At present our battery is tested very frequently, generally once in four or five days. The electromotive force and the in ternal resistance of each cell is determined. We have now had the greater number of the eighty cells in action for three months, and some of them for five or six months. During all that time they have been most satisfactory, the electromotive force of them having remained perfectly con stant.

Increasing the Vigor of Growth in Plants. It has been known for some time that if two branches of a fruit tree be selected, of about the same size and the same upward inclination to the horizontal plane, and one of these be bent downward toward this plane, it appears to lose it vigor, while the cther gains in like ratio. It is now announced as the discovery of an ignorant peasant on the Danube, named
Hooibreuk, that this law holds good only up to the horizontal position; and that if the branch is depressed still further and below the horizontal, it becomes characterized by much reater vigor than before, and, in fact, will put out leaves and branches to an astonishing and unheard of degree. But this depends upon keeping the branches as nearly as possible in a straight line, the effect being In this case, only the buds which oc cupy the top of the arc are developed completely, at the expense of the rest which re main in their original condi tion, contributing neither to the extension of foliage nor of fruit. (The successive po-
sitions of the branch are ilsitions of the branch are il lustrated in the cut.)
Duchesne-Toureace,in communicating these facts to Les
Mondes, attempts to show the Mondes, attempts to show the ranches inclined below the horizontal line, and thinks that the explanation is to be found in the establishment of a siphon arrangement, by means of which the juice is carried over the bend from the main stem in excessive flow. Be this as it may, the fact remains, as illustrated by an experiment prose cuted by this gentleman. In early spring, when the sap was running in the vines, he took four plants of about the same size, and trimmed them so as to leave one stem to each, these being arranged vertically and obliquely upward, and horizon tally and obliquely downward. He then cut off the stems and collected and measured what exuded, and found the amoun from the branch inclined downward was more than three times greater than that from the others.
Car Ventilation.-A correspondent of the Car Builder calls attention to the fact that the problom of car ventilation is still unsolved. Whoever can invent a simple and effective system for the ventilation of railway cars will be likely to
reap a good reward.

Carterymadence.

respondents.
 \section*{Testing Turbines.
Scientific American :
 \section*{Testing Turbines.
Scientific American :
 To the Editor of the Scientific American}

I have read all the efforts to illuminate the turbine ques ion that have appeared in the Scientific American.
In the last one there are some noticeable points, by R. H A., on page 228 of the current volume, who puts forth some uite curious ideas in relation to the efficiency of turbines ith some of which I must beg to differ. These difference zay not be very important; they are certainly entitled to ome consideration as historical facts or well demonstrated theories. It is very true that all engineers concede a differ nce of percentage with extreme variations of head; but what that proportionate variation in head and percentage is has never been satisfactorily determined. Natural causes are known to modify the efficiency of the same turbine under extremely high or very low heads. The extent to which some of these causes affect the efficiency may be readily com puted and proved by actual test. That some turbines work much better under low than under high heads is no doubt true. Whether there are some which work the better unde high heads remains to be proved.
That a properly formed turbine will work equally well under considerable variations of head, is certain. The fol lowing extract, from the report of some carefully made ex periments, proves this beyond a doubt:

Head in feet.	Relative speed.	Effliciency.
$11 \cdot 772$	-709 per cent.	-802 per cent.
$11 \cdot 952$	-686 "	-802
$11 \cdot 995$	$\cdot 730$	$\cdot 804$
$12 \cdot 175$	-702	$\cdot 808$
$13 \cdot 016$	$\cdot 745$	-804
14.084	.731	-804
$14 \cdot 410$	$\cdot 746$	-803

In these seven experiments, the variation in efficiency is six tenths of one per cent. The variation in head was 224 per cent, and the variation in relative speed was 087 pe cent. "That more patents are yet to be obtained before the best effects can be had" is quite novel; the utility is less ap parent, though by substituting " will," for " can,"' the truth would certainly be told. It is very doubtful, to say the leas t, if results higher than have already been obtained depend on patentable derices. It is quite safe to say, that no material progress has been made, in the efficiency of first class turbines, during the last half century. It is now nearly, or quite, fifty years since Fourneyron obtained 88 per cent from turbines " cast in one piece."
It is very true, in nine cases out of ten, that we " by no means" get what is claimed as the proportion of the whole power of the weight of the water." The philosophers have said that "action and reaction are equal." Many inventors, with more enthusiasm than common sense, have in conse quence claimed that water has a double force, impulse and weight; and that it has really twice the power in it, under any given head, that it has ever been credited with. Hence the great variety of contrivances to use the impact, impulse percussion, or blow of the stream of water upon one set of floats, calling it direct action; whilst upon another set in the same machine, they attempt to use the weight, backward pressure, or spirt of the water, calling it reaction. In this sense, not even 30 per cent of the sum of the forces has ever been utilized. All intelligent persons now concede that the total force of a stream of water is directly as the weight and the fall. It is believed that turbines do not act on the impact or the reaction principle; bus that the action is simply a direct, gentle, and gradually increasing pressure upon the buckets of the turbine. How the results of tests can be called speculation, I am at a loss to know. We haveall the evidence that any reasonable man ought to ask for. Overshot wheels have actually raised, from mines, 70 per cent of as much water as was required to drive them, the total loss in all of the machinery being 30 per cent Certainly one third of this must have been in the pumping machinery. It has been equally well demonstrated that the overshot has utilized 86 per cent of the total power of the water used uponit. It is, however, no sign that all overshots utilize 86 per cent be cause one has done so. Nor is it any sign that all Fourney ron or all Jonval turbines utilize 80 per cent, from the fact that their inventors got that result. There are all grades of these famous machines, from 30 per cent ones to 80 per cent ones. Because a small turbine was " accurately and nicely constructed " is no evidence that it was accurately and prop erly designed for the purpose to which it was applied. The test proves, positively, that this feature was sadly wanting or else the pumping machinery was defective. It is quite possible that both were ill adapted to the purpose, wherea an hydraulic engine is the most simple and effective method of utilizing the force of a stream of water, to force a por tion of the same to a greater hight than the fountain head. A turbine, with the necessary gearing, is quite the reverse o simple when applied to the raising of water.
The similarity between a rotary steam engine and a rotary hydraulic engine is quite discernible; and one is about as ef fective as the other; but between the turbine and any rotary engine yet before the public, there is a vast and a radical difference, from my point of view. Nor is it the aim of all in ventors of turbines to imprison the water untilno more work is left in it. In one turbine at least, the water is, as much as is possible, left to its own natural course after entering the turbine, except in regard to its velocity alone. The inventor in this case, has always allowed at least 8 per cent of the total force to be left in the water, at the instant of leaving the edge of the bucket. His theory is the expansion one for all fluids. The water is received upon the bucket of the tur
bine at the highest attainable velocity without shock; then it is retarded in an accelerated ratio, and expanded in volume in like manner, until the moment it reaches the edge of the bucket, as above, with 8 per cent of its living force yet re maining, the 92 per cent having been expended in reaching and urging forward the turbine. A reasonable allowance of 12 per cent, for loss in reaching the bucket and friction of the machine, leaves 80 per cent as the efficiency of the turbine

To force back 90 , or even 80 per cent of the water used,by any machine, is simply out of the question for the reasons shadowed forth in the foregoing. If 70 per cent can be forced back, it may be considered excellent work. A system of weight and meąurement, by proper apparatus and compe tent persons, is, however, infinitely superior. It tells the whole story, " The truth, the whole truth, and nothing bu the truth."
A. M. Swain.

Metallic Roors in Thunder Storms

To the Editor of the Scientific American:
A communication in the last Scientific, signed John Wise has the passage: "While I am not prepared to say positively that a metal roofed building cannot be injured by a stroke of lightning, I have never found one so roofed, in my fifteen year etc.
Will you do your subscribers the favor to give your views as to whether a metallic roof is a protection against lightning ? Wilmington, N. C.
[Answer: A metallic roof upon a building, if connected with the earth, is undoubtedly a protection against the inju rious effects of lightning. Even when lightning rods are not used, a connection is generally established, between the roof and the earth during a thunderstorm, by the water spouts or the wet walls of the building. A metallic roof, if it were in sulated from the earth would be a source of danger, and not a protection.-EDs.

THE INTERNATIONAL EXHIBITION OF 1872

The second of the series of international exhibitions a South Kensington (London) was opened on the 1st of May The leading features of this year's exhibition are cotton fabrics and paper, and the machinery used in the manufac fabrics and paper, and
ture of those goods.
The process of envelope manufacture is illustrated by a eries of machines by Messrs. Dickinson \& Co., of the Old Bailey. The first is a Tidcombe paper cutting machine which cuts the continuous paper from reels into sheets of the required size. The apparatus will cut five or six thick nesses of paper from reels at the same time, by which means the necessity for collecting single sheets, and the employment of collectors during the night hours, is avoided. The paper, after having been cut into sheets 30×22 inches by the Tidcombe machine, is placed between plates of brass and submitted to a pressure of from twenty to thirty tuns in an adjoining press. By this means it receives a glazed surface, and the sheets are then passed to the adjacent envelope cutthis machine, the blanks are passed on to the next depart ment, where they are gummed and placed to dry in a rack ment, where they are gummed and placed to dry in a rack heated by ane the gummer blanks three machines and as many operators manipulating them three machines and as many operators manipulating them. The folding is effected by means of three folding machines,
mourning envelopes being previously black bordered in a mourning envelopes being previously black bordered in a
machine by Mr. J. Parkins. Finally, the perfect envelopes machine by Mr. J. Parkins. Finally, the perfect envelopes
are banded, labelled, and packed in card boxes, which are made at a stand close by
Near Messrs. Dickinsons' interesting series of exhibits is a handy little envelope folding machine by Messrs. R. Fenner $\&$ Co. The uppermost blank of a pile is raised by a pneumatic mouthpiece, working vertically, and the end is seized by a pair of tongs having a horizontal traverse, and by which the blank is drawn under a plunger, which, descending, car ries it into the interior of the machine, where it is folded and embossed in relief, the edges being gummed just before the descent of the plunger. Messrs. Goodall \& Son exhibit a neat machine for a similar purpose, in which a revolving table with three plungers is used. This machine gums the envelope and works two dies at one stroke, one with the maker's name and the other with the monogram or device on the outside of the envelope. The remaining apparatus in this gallery are those used in ruling account books, marbling paper and book edges, embossing and lettering in gold, etc.
Messrs. Letts exhibiting all these processes. Messrs. Letts exhibiting ail these processes
On the ground floor of the eastern range, the ceramic display of last year is replaced by an array of musical instru ments and jewelry, the latter being of a very costly charac ter, the exhibits of one firm being, in one case, valued a $\$ 400,000$, and in another, at $\$ 100,000$.
In the eastern portion of the range of building are placed the stationary exhibits, which range from a sheet of brown paper to a grorgeously appointed valentine, and from penny account book to a banker's ledger of gigantic propor penny
In the western portion of this building are several models of machines relating to the paper manufacture. Mr. T. H Saunders, of Upper Thames street, sends a roll of continuou paper, as supplied to the Times for printing with the Walter
machine. The paper is $2 \underline{3}$ miles in length, and weighs 634 pounds. Mr. Saunders also exhibits a sheet of parchment paper, which is carrying a weight of 5 cwt., and is stated to be capable of sustaining 9 cwt.
This portion of the exhibition is devoted to those articles which come under the head of scientific inventions, of which
there are several deserving of notice. Amongst the most striking is a full size model section, taken transversely, of a
gun, designed by Mr. Bessemer, to carry a 5 tun projectile gun, designed by Mr. Bessemer, to carry a 5 tun projectile. The bore has a diameter of 30 inches, the metal being only 8 inches in thickness. The gun is on Mr. Bessemer's continuuous low pressure principle, and will be 60 feet in length The inventor is having one made a quarter full size, with which he intends experimenting. Mr. Bessemer also exhi bits a model of the projectile to be fired by his big gun, a well as models of the Woolwich 12 inch 35 tun gun, in trans verse section, and its projectile.
At the northern end of the machinery annexe is a Walter printing machine, on which the Mail is printed three times week. At this point, also, M. Charles Kastenheim exhibits set of type setting and distributing machines, as used in the Times office.-Engineering.

Wire Cut Bricks--An Interesting Patent Suit. An improvement in brickmaking machinery, which is com ing extensively into use both in this country and England consists in forcing the clay from the machine in the form of rectangular mass or block and then dividing the block by means of wires into bricks of the proper size. Bricks are thus more quickly made, and are found to be of better quality and truer shape than when separately pressed in molds in the ordinary manner.
In this connection, we present the report of a recent paten uit in England, which contains some interesting informatio concerning wire cut bricks and machinery for their produc tion.

Murray vs. Clayton.-By his specification the plaintit laimed:-"Particularly cutting the clay into the form of bricks by forcing the clay forward by means of a pushing board or otherwise against a series of fixed wires, so ar ranged that the clay is pushed or forced past the wires on
to a 'moveable board' provided with haftles, so that 12 or a ' moveable board' provided with hafidles, so that 12 o
any other convenient number of bricks may be removed at the same time." The defendants denied the validity of the plaintiff's patent mainly on the ground that the invention had been anticipated by a patent known as Dahlke's, which was founded on an invention made in Germany by one Sachsenberg, and by a machine which the defendants them elves made after Sachsenberg, with some variations. The Vice Chancellor was of opinion that the defendants had made out their case, and he dismissed the bill. The plaintiff appealed. Lord Justice James said that the case had occupied long time, but when the real questions detween the partie id not require any very long time for discussion nor present any great difficulty in determination. The plaintiff had iven the usual primâ facie evidence of his being the firs ventur, and he had produced, in favor of the novelty and practical utility of his invention, a mass of evidence greater than his Lordship had ever witnessed in any similar case There was the evidence of brickmakers, engineers, Govern ment contractors, who had not been cross examined. One of these witnesses said that bricks made by the plaintiff's machine were worth 50 cts. per thousand more than other bricks. All this evidence was practically uncontradicted hen came the question whether the invention was pated. His Lordship was of opinion that the plain meaning of the plaintiff's specification was that he claimed the achine, the combination which enabled him to effect the result, so that by one or more turns of the wrist he could at a mass of clay into a number of bricks without thei being touched by the hand of the operator. The question was whether that had been anticipated in any manner. The only things relied upon to show that it had been anticipated were Dahlke's patent and the machine made at the defen dant's works, and known as the German machine. As to
Dahlke's invention, it was for a thing so substantially differ Dahlke's invention, it was for a thing so substantially differ ent from the plaintiff's in principle and in all its details that, it were made now, it could not be consideredinany respect common to the two was the division of the clay by a cutting wire. After leading a fruitless existence of three years Dahlke's patent was suffered to expire. As to the machin made at the defendants' works, which they made in 1864 after the German description of Sachsenberg's machine substituting a table for rollers, there was a mass of evidence It appeared that this machine was made at the defendants orks, and was exhibited at work at their shop to a grea number of engineers and brickmakers. It did not appear to
have been made for sale, but it was a working specimen. O have been made for sale, but it was a working specimen. Of
all those witnesses who saw it at work, not one said that he all those witnesses who saw it at work, not one said that he
thought it a machine of the slightest utility. The evidenc on the other side showed that it was an entire failure, that it was useless for any practical purpose whatever; the labo in working it was too great. The merit of every invention of this kind was that it saved labor. His Lordship was had been held to affect the rights of a patentee who had made a useful machine, though there might be some simi larity between the two. If there were defects in the German machine which the plaintiff cured, though he did not know of that machine, he would be entitled to maintain his patent His Lordship thought it impossible that stronger evidence should be produced than had been produced here of the
novelty of the plaintiff's invention. It was so simple, and sovelty of the plaintiff's invention. It was so simple, and
so well 1 alated to effcct the object intended, that the only wonder was that people had gone on for thousands of years making bricks without hitting upon it. With regard to the question whether the defendants had infringed the plaintiff patent, it appeared to his Lordship that the defendants
machine was a mere transposition; they moved the wire
against the clay instead of moving the clay against the wires, as the plaintiffs did. There was nothing but a colora ble variation, and it was plain that the alteration could only have been made for the purpose of evading the plaintiff' patent. The object was effected by means of a much large expenditure of power. But as was aaid by Lord Hatherley, in the case of "Daw vs. Eley," a clumsy invention might be an infringement, though it would not have been an anticipa tion. On the whole, his Lordship was of opinion that the plaintiff had made out his case ; that he was the first inven or of a new and very valuable invention: and that the de fendants had failed to make out that there had been any anticipation of it. It was proved also that the defendants had committed an infringement, and there must be a decre for a perpetual injunction against them, and they must pay the costs of the suit.

Polarized Light

We have all noticed that when the sun shines directly through a window hung with figured muslin curtains, the eflection of the pattern of the curtains in the window inter eres with the prospect
When this reflected image is viewed through a Nicol's prism, it disappears when the prism is rotated, leaving the prospect unobstructed; the experiment is very interesting and can be performed by any one who has a polariscope at tached to a microscope, and it is only necessary to observe that the image is viewed at the proper angle. The effect will possibly be best when the sun's rays make an angle with the curtains and the glass nearly coinciding with the polarizing angle. (In my case, the angle was $36^{\circ} 52^{\circ}$.)
Tyndall has mentioned a case in which the haze obstruct ing the view of a mountain top was rendered transparent by the Nicol.
The readers of Nature have probably observed how com pletely the leaves of the ivy polarize light; viewed through he Nicol and a pink selenite, the plant appears covered with bossom. - R. S. Culley, in Nature.

Hunting Truffes

As the annual gathering season comes round, the truffle unters, who lease of the proprietors of the woods the right to dig for these delicacies, commence their operations. To discover the whereabo uts of the truffles, small dogs, trained
for the purpose, are used. The education of the dogs conor the purpose, are used. The education of the dogs con arth, and containing a piece of truffle and a piece of bacon The smell of the latter attracts them, and causes them to scratch up the shoe to get at the morsel of food. By degrees hey confound the two scents, and cannot perceive that of ruffle without thinking of the bacon, and digging up the Tw
Twenty dollars is about the price of a good truffle dog Dogs of the sporting breeds are never trained for the pur pose, as they would be liable to hunt game instead of truf fles, if the former happened to fall in their way. When the rained dog comes on the scent, the truffle hunter proceed hoe up the ground pointed out by the animal as the be f the truffles. In the south of France, a certain species o ank lean pigs are trained and employed in the same man ner as the dogs in more northern districts.-Once a Week.

Improvement in Gig Saws.

Mr. Henry W. Bullard, of Poughkcepsie, N. Y., has lately patented an ingenious and useful improvement, applicable to ig. saws and other mechanisms. It consists of a device to egulate the extent of throw or stroke of the saw, and is so arranged that, by merely pushing a lever, the stroke of the saw may, at any moment, be increased or diminished, at the will of the operator, without stopping or changing the driv ing belt. This result is accomplished by shifting the crank pin to which the saw is attached. The crank pin is so ar ranged that it can be made to slide in or out from the cente of the head or pulley to which it is attached ; and this move ment of the crank pin may be made while the saw is in ful operation. The invention has been in practical operation for more than a year past, and its excellence is fully established. No gig saw machine is complete without it.

A vailable Nitrogen.

P. P. Deherain (in Comptus Rendus) advances a somewhat ovel theory of the reduction of atmospheric nitrogen to an vailable form for the support of plant life. He endeavor to prove that the free nitrogen of the atmosphere is brought
into combination during the oxidation of organic matter in into combination during the oxidation of organic matter in
the soil. To demonstrate this, he dissolves glucose in a dilute the soil. To demonstrate this, he dissolves glucose in a dilute solution of ammonia in water, placed in a large flask filled with a mixture of equal parts of nitrogen and oxygen. Hav ing closed the flask, he heats the mixture gently for one hundred hours, at the end of which time the whole of the oxygen has disappeared, and 5.9 per cent of nitrogen has been taken up. The same process with humic acid and pot ash shows a loss of 7.2 of nitrogen. If these results are con firmed by subsequent experiments, they will throw light on the hitherto obscure subject of the production of nitric acid.

Every young man, after he has chosen his vocation, should tick to it. Don't leave it because hard blows are to be struck r disagreeable work performed. Those who have worked heir way, up to wealth and usefulness, do not belong to th hiftless and unstable class, but may be rackoned amon uch as took off their coats, rolled up their sleeves, conquered heir prejudices against labor, and manfully bore the hea and burden of the day. Whether upon the old farm, in the machine shop or factory, or the thousand other busines places that invite honest toil and skill, let the motto ever be Perseverance and Industry.

Foot Power Buzz Saw
The saw represented in our engraving is run by an appli cation of the principle, involved in Mr. L. S. Fithian's ver tical multiplier, which was described by that gentleman on page 251, Vol. XXII. of the Scientific American. The treadle, A, is supported, as shown, by lathe chain wound on the small drum, \mathbf{B}. This drum is loose on the shaft, C, but is governed in its motions by a contained ratchet wheel, keyed to the shaft, and so arranged that when the treadle is depressed the drum, ratchet wheel, and shaft are made to revolve, and the chain is unwound. On releasing the treadle a weight at its far end brings it again into position; and a weight attached to the drum reverses its motion and causes it to rewind the chain; but the ratchet, be ing now free, does rot affect the motion se up in the shaft, which is continued b means of the balance wheel, D. This bal ance wheel has attached to it a small pinion on the one side and the driving pulley on on the one side and the driving pulley on the other (as seen in the engraving), which are all loose on E is an scribed hereafter. E is an intermediate wheel revolving, in the position represent ed, on one of two arms projecting from and revolving with the shaft. This interme diate wheel, E , engages with the pinion of the balance wheel, D, and gives motion thereto. The wheel, F, also engages, on its opposite side, with the outer gearing of the reverse wheel, E, as shown. This wheel F, is loose on the shaft, and is connected by its inner gearing at the side with a small intermediate wheel, which, in its turn, engiges with the wheel, G. This last wheel G, is keyed to the shaft, and is the conver er of the pewer The other parts of the machine can readily be understood from machine can
Without going into the principle of oper
the engraving. ation in this combination, we may state that, in the saw shown us, the balance wheel re volved seventeen times to one revolution of the shaft.

The inventor states that the revolutions in this machine are from one to one hun dred and two, forty steps on the treadle per minute giving four thousand and eighty revolutions of the saw. The sawing is as smooth and true as fine planing; and to one who is accustomed to the treadle and remembers that he can do no more than put his weight upon it, the work is as easy as any manual labor can be
Patented in the United States and Eu rope through the Scientific American Pat ent Agency. Address H. A. Miller, Presi dent, Room 9, 23 Deyestreet, New York, or Charles B. Fithian 341 North Third street, Philadelphia, Pa.

BELL PULL AND BELL.

The bell pull, illustrated in Fig. 1 of our engraving, is de signed to do away with the vexations attending the use of the ordinary street door pull. The engraving shows how the pull is attached to the door casing, and the whole arrange ment will be understood from the following: By pulling the knob, A, motion is communicated through the shank, B, and

the extension wire, C , to the toggle, D , to which the wire, C , is made fast by the screw, E . This draws the top ends of the levers, F F, forward, and forces the lever, G, downward, thereby pulling the wire, H , which rings the bell. The wire C , is cut off to the right length when adjusted. In the ar. rangetnent shown, the retario of the knob to its original po

paratus of the bell; when required, it may be effected b an independent spring attached to the pull. This bell pull insures reliable action with a very short pull on the knob. It is applicable to all kinds of bells, is easily put on in place of the old pull, and does not require a new knob.
In Fig. 2, the improved bell, the working parts are partly concealed by the bell. Suffice it to say that the lever, I, by an ingenious arrangement of levers, operates upon the striker both in its descent and recoil. Consequently two strokes are insured for each pull. It is not liable to be strained or broen by hard or sudden pulls.
Patents on the foregoing were obtained through the Scien ific American Patent Agency, Nov. 7 and Dec. 26, 1871. For

FOOT POWER BUZZ SAW.
hrough a hopper. After the pencil is polished, it is cut th exact length by a circular saw, and the end is cut smooth by a drop knife, the pencil resting on an iron bed
The stamping is done by a hollow die, which is heated; the gold or silver foil is then laid on the pencil which rests in an iron bed, and the die is then pressed on it by a screw ever. The pencils are then ready to go to the packing room, whence they find their way to all parts of the civilized world at prices ranging from two dollars to twenty dollars pe gross.-American Exchange and Reviero.

New Carriage Mountings.

These mounting Carriage Mountings. he nuts and livets for top props, and pole tips, tc, are made as is usual props, hub bands tc., are made, as is usual, of iron, brass, o hite metal, and r gutta per , with gold or silver, a small portion for orna ment. A whiffletree tip, for instance, has th "dragon tongue" and the neat bead at the base plated with gold or silver, and the re mainder is coated with the hard rubber. A beautiful contrast between the highly polished metal and the brilliant jet black surface of the hard rubber is produced. It has more the ap pearance of an article of jewelry than one in tended for hard service on a carriage. In ad dition to their beauty, these articles combine the important feature of durability. The sur face of the hard rubber will not become scratched or dented as readily as metal, eve malleable iron. It will not easily chip off, indeed can hardly be broken off with a hammer; and we are informed that it does not tarnish by exposure to the weather, and will not lose its color from the same cause They are as strong as the same articles now in use, the hard rubber coating leing only a little thicker than the ordinary close plate. When the ornamental parts become tarnished, they can be cleaned or replated without injury to the rubber portion.
During the last few years, the public taste has been for showy gold and silver mount ings, but there is a growing desire for something more quiet, which shall be at the same time rich and elegant; and our more prominent carriage builders are already using leather covered handles, prop nuts, etc. In Paris, rich gold and silver mountings, and the bright, gay inside linings of former years, have given way to things more sober, owing have given way to things more sober, owing
somewhat, no doubt, to the wide-spread afsomewhat, no doubt, to the wide-spread af-
fliction in that unfortunate nation. In the fliction in that unfortunate nation. In the matter of price, we understand that the rubber
mountings are of about the same expense as further information address the, inventor and manufacturer, the best plated ones.-The Hub.
A. L. Swan, Cherry Valley, N. Y., or E. J. Swan, Laporte, Ind.

Lead Pencils.

A lead pencil is in itself a small affair, but considered as a manufactured product, it rises into much importance. To start a first class factory, with improved machinery and stock of well seasoned wood, requires a capital of absut $\$ 100,000$ ground covered is about half an acre, chiefly occupied by dry ing houses for the storage of red cedar. The Florida red cedar is mostly used in this country and in Europe-some "iben" wood, as the Germans call it, or English yew, is used in Germany-white pine is occasionally used for a common grade of a carpenter's pencil.
The " lead" of the pencils is the well known graphite or plumbago; the best of this is the natural, found in a pure state in masses large enough to cut inlo strips. Of this there is but one mine now up to the standard, which is in Asiatic Siberia, and pencils made from this graphite are all one grade, and pay here 50 cents per gross special, and 30 per cent ad valorem duty. The Cumberland mines in England were the first discovered, but are now almost exhausted. What was formerly refuse in cutting the graphite is now ground, cleaned and refined, and then mixed with a fine clay. In mixing the clay and graphite, great care must be taken in selecting and cleaning the clay and getting the proper proportions; the mixture, with water, after being well kneaded, is placed in a large receiver and strongly compressed and forced out through a small groove at the bottom, in the shape of a thread of the thickness and style requiredshape of a thread of the thickness and style required-
either square, octagon, or round. This thread, or lead wire either square, octagon, or round. This thread, or lead wire,
is cut in bars of the proper length (done by little girls), and is cut in bars of the proper length (done by little girls), and
then straightened, dried at a moderate heat, and packed in airtight crucibles and placed in the furnaces; the grade of the lead depends upon the amount of heat it is exposed to, the amount of clay used in mixing, and the quality of the plumbago. The coloring of the lead is by various pigments. The wood, after being thoroughly seasoned, is cut in thin strips and dried again, then cut into strips pencil length. These strips are grooved by machinery, then carried on a belt to the glueing room, where the lead is glued in the groove, and then the other half of the pencil glued on. After keing dried under pressure, they are sent to the turning room and rounded, squared, or made octagon, by a very in. genious little machine, which passes them through three sets of cutters and drops them ready for polishing or coloring chine wher done on lathes by boyg, and the darer by

PROJECTILE FOR FIREARMS.

This improvement relates to that class of projectiles which are formed in sections. Hitherto the parts have been so constructed that, when fitted together, they were free to move one upon the other, and hence the slightest obstacle to the flight of the ball might cause separation of the sections and rustrate the purpose of the missile
To remedy this defect, the inventor forms the sections a epresented in our engraving, where Fig. 1 is a side view of he missile attached to a metallic cartridge case. Fig. 2 is a longitudinal section of Fig. 1, showing sections in perspec tive. Fig. 3 is a perspective view of one of the sections, and Fig. 4 is the top of the missile.
The missile, A, is thus composed of four parts, shown res pectively at B, C, D and E, which are each provided with an angular projection and depression so that they will fit to gether and make a complete whole when in the gun barrel.

Fig. 1

IHg. 2

Filg. 4

In this way bands are dispensed with, and the ball can be handled, even carelessly, without displacing its parts. Further information can be obtained of the inventor, Mr Carlos Maduell, of New Orleans. by whom patents of Janua gy 1872, and reissue of March 19, 1872, were obtained througk the Scientific American Patent Agency. Post office address, loos box 888, Now Orleans, La

§rimitif esmarian.

MUNN \& CO., Editors and Proprictor: PUBLISHED WEEKLIT AT耳0. 37 PARE BOW (PARK BUILDING) HEW TORK o. D. MUNN. A. E. BEACH.

'The American News Co.," Agents, 121 Nassau street. New York. "' The New York News Co.", 8 Spruce street, New York. Asher York News Co.," 8 Spruce street, New York German States. essrs. Sampson Low, Son \& Marston, Crown Building, 185 Fleet

VOL. XXVI., No. 23. [New Series.] Twenty-seventh Year

A FEW WORDS OF ADVICE AND ENCOURAGEMENT TO INVESTIGATORS AND INVENTORS.
Persons enlightened enough to follow the line of pursuits of which we spoke in our last (page 351), namely, informing themselves by consulting and investigating the transactions of learned societies and the back volumes of scientific journals, complain often as to the difficulty of finding details on particular subjects; and we confess that there is some difficulty, and consequently labor of that peculiar kind which the truly scientific $m \geqslant n$ understand too well, but are too wise to shun. However, the assertion, which we have often heard, that success in such researches is next to impossible, and that scientific discoveries, when inserted in the annals of learned societies or in scientific journals, are buried there, we totally deny. The finding of data on any peculiar subject is an art which, like all others, is attained by practice; besides which, a peculiar condition of mind, enabling persons to con centrate their judgment in this direction, causes some to be very successful in such labors, while others fail. We hav had the experience of several assistants in our private labor atory, some of which were rather unreliable in practical expe rimenting and totally untrustworthy at the balance, but had always the most eminent success when sent to a library in order to hunt up, in the transactions of societies or in scien tific journals, data relating to any branch of physics, chemis try, or technology.
Of great assistance are the collected indexes which some societies publish from time to time, and which some journal publish periodically. For the benefit of science, it is desira ble that this example were generally followed, and that these indexes were made as full as possible, in which case such an index makes a journal almost equivalent to a scientific cyclo pædia. Any one who possesses back volumes of the which isic American, and consolum will agree with thi statement. The British Royal Society has published already three indexes to its transactions, and the French Academy, three indes the first thirty-one volumes of the Comptes Rendus, and of the first ten volumes of Wagner's Jahresberichte. Also the the first ten volumes of Wagner's Jahresberichte. Also the
"Philosophical Magazine" has its collected indexes. The "Philosophical Magazine" has its collected indexes. The indexes of the principal European journals, whether English, German, French, or Italian. However, these indexes will not contain the subjects, but the names of the scientific men who have labored and published their results. This may appear a drawback; however, when we then refer to the name in a biographical dictionary, we may get the references we want and, at the same time, many other details, which not only increase the interest, but put us on the track of a grea deal more.
Libraries such as the Astor, American Institute, and seve ral others in New York, Peabody in Baltimore, and many other public libraries, in Philadelphia, Boston, and, fortunately, now in almost every large city on this continent supply the means for ascertaining the history of almost any subject of scientific research. When such a research is once commenced, the student will, while his material accumulates, be always surprised that so much is known respecting the subject under investigation. But, in place of being dis couraged, the truly scientific mind will commence to feel, not only a lively interest in it, but a sort of affection for it. It will occupy many of his thoughts, and, if the nature of the subject and his circumstances allow it, he will try experi ments of his own. If, then, he is so happy as to discove
something really new, his interest will not only be increased a thousand fold, but he will enjoy that delightful and noble self gratification known only to those who, in the paths of Science, discover a new fact, whether it be a geometrical theorem, a new chemical compound, a not yet discovered de tail in regard to the properties of sound or light, or an improvement in an apparatus, or even an entirely new piece of mechanism; in either case, the delight is unparalleled by any enjoyment which can befall human nature.

the great musical jubilee.

The Bostonians are to give us another grand Musical Jubilee this year, to open June 17th and close July 4th. An immense building is now in progress of erection at Boston, which is to be supplied with a gigantic organ. The roaring octavos are to be produced by cannons fired by electricity he electric keys .being placed on the organ and operated ike the other musical keys, by the organist. The clanging otes are to be done by means of a chime of church bell so worked by keys.
The grand choruses will be sung by twenty thousand per formers, representing some two hundred musical societies, rom all parts of the country.
The orchestra will be made up of one thousand selecte musicians, which, with the military banås, American and foreign, will constitute in all about two thousand players New York, it is expected, will furnish five hundred of this number; while Boston, Baltimore, Cincinnati, Chicago and other cities of the South and West will make up the re mainder.
The instruments for this select orchestra will be as fol lows: First violins, 250 ; second violins, 200 ; violas, 150 ioloncellos, 100 ; contra basses, 100 ; first flutes, 12 ; secon flutes, 12; first clarionets, 12; second clarionets, 12; firs boes, 10 ; second oboes, 10 ; bassoons (first, second, third an ourth), 20 ; French horns (first, second, third, and fourth), 24 trumpets, (first, second, third and fourth), 24 ; alto trom bones, 12 ; tenor trombones, 12 ; bass trombones, 8 ; ba tubas, 6 ; tympani (pairs), 6 : small drums, 10 ; bass drum 4 ; cymbals (pairs), 4 ; great drum, 1 ; great triangle, 1 otal, 1,000.
The building, it is calculated, will seat not less than on hundred thousand people. The chorus and orchestra will occupy nearly two acres; while nearly three acres will be given to the audience. The great drum is to be twelve fee in diameter. The frame has just been completed.
Each programme will contain one or more familiar hymn to be sung by the full chorus and audience together. This will be "congregational singing" on a large scale. Amon the pieces of this description named are Old Hundred.
The music, for the greater part, will be sacred. The se ctions announced are principally from the great master Mendelssohn being most conspicuous. Handel's oratori "Israel in Egypt" will be given entire, by a chorus of sing ers familiar with the music, resident in Boston and its ad jacent towns

A GIGANTIC RAILWAY CAR.

Among the mechanical novelties, to be seen in operation at the Grand Central Depot in this city, is a steam railwa ar seventy feet wide which travels on a track of correspond ng width.
This great vehicle is made in the form of a low platform car, and the track on which it runs is provided with fou rails, extending from Fourth Avenue to Madison Avenue The car is used for the lateral transfer of passenger cars rom the main tracks of the Hudson River, Harlem, and New Haven Railways to the various side tracks, thus avoid ing the use of turntables. The car is propelled by steam, the engine and boiler being contained within a sheet iron ouse carried on one side of the machine.
The cars to be transferred are run upon the great car; steam is then turned on and the huge machine trots off with its burden with as much ease as a horse draws a buggy. Th ported on eight wheels, arranged on indep anged upon one axle. It was por for a struct a grain railway from New York to Chicago, on a rage of 12 feet. That was considered a big thing in the way of broad gages. But it is a pigmy compared with thi eventy foot gage railway and locomotive of the Grand Cen seven
tral.

TIN FOIL.---ITS USES AND MANUFACTURE

Every one is familiar with those soft pliable sheets of metal, generally known by the name of " tin foil," with which packages of spice, and tobacco are enveloped. The name it elf is a misnomer, for the material of which these leave are made is rarely pure tin, but generally an alloy or mix ture of tin and lead, with often a large preponderance of the latter. The lead is added, not only on account of its render ing the composition cheaper, but also because it gives to th in alone.
Before touching upon tin foil, our subject proper, we per haps should mention a species of foil which, though almost dentical in appearance with the former, is made entirely of lead. It constitutes the linings of those tea chests in which phe poorest qualities of tea are imported. The metal of which it is made is carried to China from England in large quantities, averaging some 4,000 tuns per year. The method of manufacture formerly in vogue among the Chinese was
exceedingly primitive, as they merely pounded the lead until attained the requisite tenuity, but in 1858 a rather ingen ous invention was patented in England which we believe is
still in use both in that country and in China. The sub joined description will doubtless recall to many of our read ers the machine, constructed on essentially the same princi ple now employed for cutting the so called "wood hangings" or thin veneers of wood designed to take the place of wall paper. A cylinder of lead is cast in a mold, having a man rel or core in its center. To this cylinder, when cooled, knife or cutter equaling it in length is gradually brought up until it shaves the surface, the cylinder rotating while being cut. The mechanical arrangement is such that the cutting blade advances gradually toward the axis of the cylinder and the rate of this advance determines the thickness of the film. The sheet is received on a collecting spindle which is emoved as soon as filled.
Tin, as is well known, is extremely malleable, being fourth in this respect on the list of metals, so that it is readily rolled or beaten into very thin sheets.. The old methad of produc ing these was simply to hammer the metal on a large fla stone or anvil. One sheet at a time was completed, and the workpen were obliged to use their long handled hammers with much skill, not only to render it of even thickness throughout, but also to avoid pounding holes through its thinner portions. Now, however, the rolling mill has super seded the hammer. For the heavier foils, plates of metal of bout half an inch in thickness are cut and simply rolled be ween powerful steel rollers until they become sufficiently thin. For the more delicate leaves, the process is much more elaborate. Bars, for example, 14 inches long and $1 \frac{1}{2}$ inche thick, are rolled out to a length of some six or eight fee Several of these are placed one upon the other and again put through the mill, their length being thus increased to twelve feet. The sheets are then cut in two, again piled as above described, and once more rolled, this time both lengthwise and in the direction of their width; and so the process is re peated until the requisite tenuity is obtained. In order to prevent the adhesion of the rollers to the metal, the upper and lower sheets of each pile are oiled as they pass through the machine: The last stage of the process consists in piling the leaves in heaps of thirty or forty, cutting the edges and pounding them smooth with a wooden hammer. The sheet re then assorted or further cut up for smaller sizes. Massi eri has lately introduced a new method for casting plates of in of great thinness, which consists in pouring the flui metal on a cold stone. This process has the advantage of rapidity, as a sirgle man can easily make some 900 sheet per day, which only need to be slightly rolled to rende them ready for the market
As we stated in the beginning, an alloy of lead and tin is generally used in this manufacture. The proportions of the different metals for the purpose are not definitely fixed, bu seem to vary according to the ideas of different manufactu ers, each one of whom keeps his own notions on the sub ject, as well as all information relative to the especial de tails or cost of manufacture of the foil, a profound secret We learn however that, of late, alloys containing lead have fallen into disfavor, on account of sundry cases of lead poi soning which they have been instrumental in producing One instance of late occurrence which took place in thi city was that of a devotee of tobacco who was rendered dan gerously ill from masticating the foil with which his favo te weed was enclosed. To obviate such difficulties, the lead is now made in a separate sheet and placed between two leaves of tin. The whole is then rolled together, so tha while the inside of the foil contains the cheap and injuriou metal, the exterior, which comes in contact with the sub tance enveloped, is devoid of bad effects.
Pure tin foil is in use, though in a limited nùmber of ases. Large sheets of it are employed in the manufacture of mirrors; these, of course, are extremely thin. Anothe variety, of not over $\frac{150}{150}$ of an inch in thickness, is "whit Dutch metal," used for ornamentation in theatres and fo ther purposes in which silver foil would be too costly. Dentists occasionally fill teeth with a quality somewha hicker than the foregoing, as it packs with nearly as much eadiness as gold. Lastly, pure tin is used in those sof tubes in which artists' pigments are contained. For thi purpose tin is better than silver, as it has no affinity for sul phur nor is it affected by any oxidizing ingredient which the paint may hold in composition.
Ordinary foil made, as already described, of tin and lead valuable for enveloping any material from which it is de irable to exclude the air. It is generally used in its differ ant varieties to enclose cocoa, chocolate, spices, druggist reparations, corks of wine bottles, etc, though it is mos argely employed as wrapping for chewing tobacco, one manufacturer in this city (Lorillard) alone consuming some 0,000 pounds per month. Sign painters find a use for it in making a kind of fancy sign, the leaves being placed be hind letters traced on clear glass, producing the effect of in aid mother of pearl. This, however, is a probable imita ion of Chinese lacquering, which is done on a groundwork of he same material.
In the market, three varieties of tin foil are found. Of these, tobacco foil is the thickest and cheapest (probably because it contains the most lead), selling at wholesale for 23 ents a pound. No. 2 foil, generally used by druggists, is the next quality, the price being 32 cents, while the thinnes variety is tissue foil, at 40 cents a pound. A great portion of that used in this country is necessarily imported, as there only one manufactory now engaged in its production in he United States.

As an accompaniment to the Grand Jubilee at Boston Professor King, of that city, is manufacturing a gigantic bal oon, capable of carrying fifteen or twenty passengers. This great flyer is to be called the "Colossus."

THE INDUSTRIAL PROGRESS AND REQUIREMENTS OF NEW SOUTH WALES

From the report of the Intercolonial Exhibition, held at Sydney, New South Wales, we extract the following informa tion relative to the manufactures, requirements, and indus trial progress of the colony. Prior to the discovery of gold in 1851, but few manufactures were established, and these few were confined to Sydney. Machinery was not then so generally used in every department of trade as now, and the greatest efforts at production were the manufacture of cooking stoves and other domestic articles, mill work and marine work. These, with the manufacture of soap and candles and the refining of sugar, formed the bulk of the native industries.
At the present time, although a steady progress has been made in the industrial arts, thepre is still room for enterprise and the fact that imports of machinery and skilled labor from Great Britain and the United States are still large shows hat the colony is as yet unable to develop completely its re sources. There is a large demand for foundery and machin work for puryoses of marine engineering, induced by the repairs which are constantly necessary for the steamers em ployed in the ocean postal service as well as in the coastin and intercolonial trade. The machinery and tools necessary for the various processes are all imported from England Mechanical appliances on shore, flour mills, quartz mills, sugar mills, kerosene works, sheep washing apparatus, hydraulic wool presses, etc. etc., are all needed, and it has been found that they can be brought from England or America cheaper than they can be manufactured in the ocalities where required.
Among the minor aricles of iron work, stoves occupy a prominent place. Large numbers from America find ready market, though, as regards durability and economy they are believed to be inferior to those of local manufac ture.
Two sewing machines have keen produced containing im provements invented in the colony; but these were rather curiosities than indications of a young trade. The import of machinery for 1869 was valued at $£ 68,589$, exclusive of weighing and sewing machines; the import of iron and steel or the same year amounted to 17,520 tuns, exclusive of anks, pipes, bridge work and old iron
Galvanized iron, for various purposes, was introduced in 1863. The work of galvanizing for the whole colony is car ried on in Sydney by a single manufactory
Wood, particularly the softer kinds for indoor work, is ob tained in large quantities from Europe and America. Mos of the modern steam driven tools for wood working are also mported.
There is but one paper mill in the colony. A new material for paper is found in a sedge known as cyprus vaginalis, which grows in considerable abundance in the neighborhood of Sydney. It is said to be as suitable as the Spanisk esparto grass. We notice that reference is made also to another useful vegetable termed the "colonial cabbage tree," which is employed as a substitute for straw in the manufacture of hats.
The list of new inventions made in the colony is rathe small as compared with the number which would be pro duced by a population of equal size in the United States The report, however, somewhat naively admits that the inventive genius of Australia has not yet developed like tha of America, although the necessity for labor saving ma hines is as great in one country as in the other.
In minerals, New South Wales is particularly rich, new gold fields being constantly discovered. The yield to every man engaged in gold mining has been estimated to average about £72 4s. 6d. (nearly $\$ 350$) per annum. The largest amount of this metal received at the mint during a single year was $575,538 \mathrm{oz}$. in 1862 . In 1869 but $224,382 \mathrm{oz}$., valued at $£ 866,746$, were received, the decrease being attributed more to lack of enterprise than to the mines becoming exhausted. Diamonds have been found in the wash dirt aken by the gold miner. The number found up to the pre ent time is, at a rough estimate, about 5,500 , the larges stone having been one of 5 星 carats, and the smallest, one enth of a grain. They are always accompanied by rubies opazes, and other gems.
In view of the large amount of machinery imported, and he constant demand which must arise for new labor saving inventions, our conclusion, drawn from a perusal of the re port before us, leads to the belief that a promising field is here presented for the inventor and the manufacturer. The resources of the colony are great and comparatively unde veloped, a fact to be accounted for by the greater part of the population entering largely into stock farming and gnld mining, and depending upon England and America to fur iish, ready made, the implements and machines which migh easily be manufactured from abundant native material.

Butter.-The German Agriculturist says that a great por tion of the fine flavor of fresh butter is destroyed by th usual mode of washing, and he recommends a thoroug kneading for the removal of the buttermilk, and a subse quent pressing in a linen cloth. Butter thus prepared is pre minent for its sweetness of taste and flavor, qualities whic re retained for a long time. To improve manufactured but er, we are advised by the same authority to work it thor ughly with fresh cold milk, and then to wash it in clear wa er; and it is said that even old and rancid butter may be rendered palatable by washing it in water to which a
drops of a solution of chloride of lime have been added.

The total production of hops in the United States for the census year ending June 1, 1870, was 25,456,669 pounds,

SCIENTIFIC AND PRACTICAL INFORMATION,

 tree planting.The great consumption of lumber, which has so reduced the acreage of forest land in Maine, Michigan, and other States of the North and Northwest, and the consequent pro bable scarcity of timber at no very distant date has induced the Maine Legislature to pass an act to the effect that "any andholder who shall plant or set apart any cleared land or the growth and production of forest trees, within te years after the passage of the act, and shall successfully row and cultivate the same for three years, the trees being not less in number than $2 ; 000$ on each acre and well dis ributed over the same, then, on application of the owner or occupant of such lands to the assessors of the town in which the same is situate, the same shall be exempt from taxation for twenty years thereafter."

HONEY DEW.
M. Boussingault has recently published in the Comptes Rendus a communication on the chemistry of honey dew, a saccharine matter found on the leaves of many species of rees. He noticed in 1869 the formation of considerabl quantities of this substance, which formed a sort of varnis on the leaves in such quantities as to fall in viscid drops to he ground. He analyzed the substance, commencing by eliminating the albumen and mucilage by the use of the subacetate of lead; and he thus obtained a residuary sirup with distinct sugar crystals in it. The saccharine mat er disappeared after fermenting the sirup with yeast, leav ing dextrin, which has been proved by Berthelot to exist argely in the manna of Sinai and other parts of the East. M. Boussingault points out that the secretion cannot be the result of meteorological or atmospheric influences, and that the fact of one tree in a group being thus affected indicate the probability that it is a production of insect life. The manna of Sinai was attributed by Ehrenberg to a species of coccus, called by him tamarix mannifera.

COPPER IN COCOA AND CHOCOLATE
Careful chemical analyses show that cocoa and chocolate
 cent of copper, while the kernel of the bean only contained 0.004. Samples of chocolate contained 0.0125 of copper ubstances containing copper, even in the smallest propor inns, cannot be very desirable for the diet of invalids, fo which the above articles are quite extensively used.

> a cheap continuous battery.

The need for an inexpensive battery, created by the ex ended use of electric bells in hotels and other large estab ishments, has induced Herr L. Kohlfurst to describe the ollowing invention: The negative plate is formed of a trun cated hollow cone of copper, closed at the top. The inside ipheone being protected with varnish, it is filled with deeper than itself. The cone is notched around the rim, and the apex is pierced with a small hole. For the positive ele ment, a thick cake of zinc is used (suspended over the face of the cone); it has a hole in the center, through which is a covered wire connecting with the copper. Th lass cylinder is then filled with water, and the sulphate of opper begins to melt, the rapidity of the deliquescence va ying with the access of the water through the notches in the cone ; and so long as this latter maintains a uniform rate the current will be uniform in power. If common or Epsom salt be used in the water, the current will be intensified The inventor states that $1 \frac{1}{2}$ pounds of the copper salt will continue the battery in operation for a year.

Beet Sugar.

There must now be over a thousand beet sugar factories in Europe.
While both the manufacture of beet sugar and the growing of the beets are seen to profitable, it would seem, however hat the peculiar advantage of the industry to a country i ts intluence in diffusing a skillful practice of farming and of promoting agriculture in general. To show the appreciation n which it is held in France, Mr. Howard states that, at an agricultural meeting held a few years ago at Valenciennes, riumphal arch was erected, on which appeared the following inscription: "The growth of wheat in this district, before the production of beet root sugar, was only 976,000 busheis; the umber of oxen was 700. Since the introduction of the sugar manufacture, the growth of wheat has been 1,168,000 bushels, and the number of oxen, 11,500 .'

Artificial Water Lime.-It has been long known to chemists that water lime consists substantially of quick lime urnt clay, and a small portion of the oxides of iron and mag. esia, but scarcely any effort has been made to utilize this nowledge. All yellow or red clays contain iron, and most pecimens of lime in use contain the required magnesia. I burnt clay or brick dust in the fine powder be mixe ith an equal weight of fresh slacked lime, and twice thi weight of clean, sharp sand be added, a compound will be ormed which will harden under water equal to the best hy draulic cement.

Carbolic Acid as a Disinfectant.-C. Homburgh, of Berlin, proposes to use carbolic acid as a disinfectant, by sat rating sheets of Bristol board, or any thick spongy paper with a solution of carbolic acid in water. The paper, in piece of any convenient size, may be hung up in the room to be disin fected, or may be placed in drawers or wardrobes, where it is desired to protect clothing from moths or other insects. This
suggests a convenient method of using this excellent disinfectant and insect destroyer.

THE RECEPTION OF THE MINING ENGINEERS AT THE STEVENS INSTITUTE.

A very pleasant reception was recently tendered to the American Institute of Mining Engineers by the Trustees and Faculty of the Stevens Institute of Technology, at Hoboken, N. J. The visitors were received by the members of the Faculty, and by them escorted through the different depart ments of the college building. The various instruments of the physical laboratory were carefully explained both by professors and students, and their uses shown by actual ex periment. A Hipp's chronoscope of exceedingly accurate construction is one of the latest additions to this already large collection; its delicacy is such that it measures time to the one thousandth of a second, and enables the laws of ailing bodies to be demonstrated at a hight of only eighteen inches. A large induction coil of over 100 miles in length, producing a spark of twenty-one inches, is another notice able feature.
The workshop, containing a steam engine of twenty-five horse power, with link motion and Huntoon regulator, plan ers, lathes, milling machine, and other mechanical appara as, was next inspected, after which visits were made to the hemical laboratory, lecture room, and department of me chanical engineering. The latter contains a large collection f models of every description, together with a number of ngineering relics in the shape of letters from Robert Ful on, Commodore Decatur, and other eminent men of times one by. In the lecture room of the department of physics number of interesting experiments in magnetism were ex hibited on a screen by means of the vertical lantern, and in the president's lecture room, numerous beautiful illustra ions, showing by the aid of polarized light how strains ar distributed in bodies under pressure, were shown in the ame graphic manner.
After inspecting the departments in the upper portion of the building, the visitors met in the large lecture hall, where they remained for some time interested spectators of Pro essor Mayer's experiments with the huge electro-magnet be longing to the institution. A short address of welcome from President Morton followed, after which the party adjourned to the elegant mansion of Mrs. E. A. Stevens at Castle Point, where an excellent lunch was provided. Among those pre ent were Peter Cooper, Ex.Governor Ward of New Jersey Generals Aillmore and Barnard, President Morton, Profes ors Silliman, Draper, Vander Weyde, Mayer, Thurston, and Leeds, and Drs. Torrey and Raymond, besides many other minent scientific gentlemen.
The admirable arrangement of the various departments of the Institute and its superior facilities for instruction called orth the warmest commendations from every one. The college is yet in its infancy, being barely a year old, but i the same spirit of enterprise, by which the management of ts affairs has been characterized in the past, be continued in he future, we can safely predict for it a foremost position among the scientific schools of the country

Parchment Paper.

It has long been known that certain acids exercised a wonderful effect upon woody fiber. Early in the year 1857 Mr. Gaines described before the Royal Institution a method racticed by him of making artificial parchment. His proess consisted in the mixing together of two parts of sulphuric acid and one of water, and, after it had become cool, immersing in it, for about one second, blotting or un sized paper, immediately washing it in several changes of water, after which it was allowed to dry spontaneously. This treatment conferred upon it new properties. No longer weak, it was now tough and strong, semi-transparent, and resembled parchment, being capable of use for the same purpose.
This treatment causes the lignin to undergo no chemical change. The weight is the same as before, and there is no ndication of the presence of the acid. The paper no longe ermits water to pass through it; it is, in fact, waterproof Paper, however, is not the only form in which the lignin may be submitted to the action of the acid, for textile fabrics ach as calico, are affected in a similar manner and rendered ough in an extraordinary degree. Fishing nets, and fabric of that kind, may also have their strength increased many egrees by the same cause.
Another method is to dip white unsized blotting paper fo half a minute in strong sulphuric acid, sp. gr. 1.842, and af erwards in water containing a little ammonia. Anothe ethod is to plunge unsized paper for a few seconds into sulphuric acid diluted with a half to a quarter of its bulk of water, the solution being allowed to cool down to the tem perature of the air before being used, and afterwards wash ing in water containing ammonia. The latter is said to be he method employed by Messrs. De la Rue and Co., who mare parchment paper largely for various purposes
We may here state that as blotting paper alone must be used for this process of conversion, common paper may in urn be converted into blotting paper by immersing it for few seconds in hydrochloric acid. Some recommend for thi purpose a mixture of hydrochloric acid and water; butg in the experiments that we have tried in this direction, we have immersed the paper in a bath of the ordinary undiluted acid, removing it, after a few seconds, to a vessel of water in which it was treated to several changes.-British Journal of Photography.
Lake Superior Tin.-At a recent meeting of the New York Lyceum of Natural History, Professor Henry Wurt exhibited some beautifully crystallized specimens of heavy tin stone or cassiterite, discovered a few months since on the most northerly shore of Lake Superior, near Neepigon Bay The deposits are said to be extensive and valuable.
patent infringement cases.
United States Circuit Court-Eastern District of Pennsylva nia, in Equity.
Reeves vs. Keystone Bridge Company, J. H. Linville and thers.
This was a suit for infringement of the complainant's patent of June 17, 1862. The patent is for an improvement in the construction of columns, shafts, braces, etc., and the in-
vention consists in the use of three or four wrought iron bars of such shapes and dimensions that, when arranged to bars of such shapes and dimensions that, when arranged yo-
gether in the direction of their length and fastened by rivets
or bolts through their flanges, they form a hollow shaft or gether in the direcen their flanges, they form a hollow shaft or
or bolts through
column. The respondents admitted the making and using of the
column described in the patent, but denied its novelty on column described in th

1. That the invention was originally made by Jacob H Linville and John H. Piper.
2. That it was described in the Allgemeine Bauzeitung for September, 1861
3. That it was illustrated by a drawing in the Dreyfuss
Album bearin the imprint of 1861 . Album bearing the imprint of 1861 .
We regret that our space will not permit us to give the
opinion by McKennan, Circuit Judge, in full. Its essential opation by Mollow:
features fored in regard to the first allegation that, on the
Itt apearuary, 1862 , a patent was granted to J. H. Linville
14th on 14th of January, 1862, a patent was granted to J. H. Linville a post composed of two rolled plates of wrought iron, semi-
octagonal in form, secured by rivets passing through is octagonal in form, secured by rivets passing through its
diameter, or by bands shrunk around it, binding the plates diameter, or by bands shrunk around it, binding the plates ble distances to spring them apart at the middle, and termible distances to spring them apart at he midde, and termi-
nating in cast iron bases and capital. This was held by
the judge to be essentially disting the judge to be essentially distinguishable from the com-
plainant's post. It next appeared that in 1865 Iinville, in conjunction with Piper, applied for and obtained a patent
nominally for improvements in his post of 1862 but, really nominally for improvements in his post of 186\%, but, really
changing its fundamental organization, and seeking to fix changing its fundamental organization, and seeking to fix ing the distinctive features of Reeves' post, which had been patented three years before. It was shown in evi-
dence that in 1860 Linville and P iper were engaged together in getting up plans for a proposed railroad bridgge, and that sketches of various forms of posts, including those
described in the patents of 1862 and 1865 were made described in the patents of 1862 and 1865 , were made ent were preserved for a time, but were lost, and, in fact, that nothing beyond making the sketches was done to embody or carry out the alleged invention until the patent of 1865 was applied for. After an exhaustive consideration
of the question whether or not these sketches would carry of the question whether or not these sketches would carry
back the date of the invention to the time when they were made, the Judge held that, whether they are to be consid ered as an incomplete invention not prosecuted with the re quired diligence, or as an experiment actually abandoned they cannot impair the right of Reeves to be treated as the first inventor.
In regard to the second allegation, it was held that a column,
constituted as described in the publication referred to differs constituted as described in the publication referred to, differ
from Reeves' column in the necessary elements composing it and in its principles; and respecting the third reference, as and in its principles; and respecting the third reference, as
it did not appear that the book was published before the patentee's invention, it was held, as evidence, to be alto gether inconsequential.
The complainant is entitled to an allowance of the prayers of his bill, and a decree will therefore be entered for a per petual injunction and an account, with costs.
George Harding and R. C. McMurtrie, Esq
plainant.
C. B. Collier and Theodore Cuyler, Esqs., for respondents.
The Keystone Bridge Company vs. The Phonix Iron Company.
This was
inville and case of alleged infringements of Linville's and the preceding case.
In the opinion delivered by McKennan, Circuit Judge, his
Honor did Honor did not deem it necessary to consider the alleged in fringements of certain claims, in view of the decision just
1endered in the case of heeves vs. The Keystone Bridge Company, and after pointing out the essential difference between the bars claimed by the complainants and those made by the rensondents, dismissed the patent of 1866 from fur-
ther consideration. In regard to the third claim in the ther consideration. In regard to the third claim in the
patent of 1865 , which is for "the use, for the lower chords patent of 1865, which is for " "he use, for the lower chords
of truss frames, of wide and thin rolled bars, with enlarged ends formed by upsetting the iron, when, heated, by com-
pression into molds of the required shape," pression into molds of the required shape," the respondents were proved o have only made round bars which were not employed or asapted to give vertical support to the road, lower chords and the reason of their peculiar conformation. Furt ther, it is not to be doubted that the patent is limited to
the use of the chords in brid se struetures. This is distinctly the use of the chords in bridge struetures. This is distinctly
set forth in the specification where it is stated:" We do not claim the upsetting of bars in the manner described, nor any particular mode of performing the operation, but merely the use of chord bars," etc. Thus the exclusive right to make chord bars in any mode is disclaimed. In effect, they declare that any one may lawfully make the bars, and that no
encroachment upon their rights is committed until the bars are used by being put into a bridge. Now, the respondents are used by being put into a bridge. Now, the respondents
are iron manufacturers, and it was shown that the bridge in question was built by Kellogg \& Clark, who obtained the iron for it from the respondents, and that the bottom chords used were like those claimed by the complainants. It was
held that this proof of infringement fell far short of fixing any accountability upon the respondents, who made the
bars, but did not use them. They only did what they had a legal right to do and did not thereby assume any responsibility for the wrongful acts, or become involved in the unlawful purposes, of others. Bill dismissed, with costs. C. B. Collier and Theodore Cuyler, Esqs., 在隹 complainants. George Harding and R. C. McMurtrie, Esqs., for respon-
dents.

United States Circuit Court.-Maine.-Miller vs. Androscog-
gin Pulp Company gin Pulp Company.
The defendants in this case were charged with an infringement of letters patent for a new and useful improvement in reducing wood to paper pulp, for which letters pat-
ent were issued, August 10, 1858, to Henry.Voelter, assignor
to Alberto to Alberto Pagenstecher
The Voelter patent is for an improvement in the art of re-
ducing wood into pulp for use in paper, and also for certain ducing wood into pulp for use in paper, and also for certain
improvements in machinery therefor.

In all the processes used prior to the present invention the wood has been acted upon by the stone in one of tw
ways: namely, either by causing the surface of the stone $t 0$ act upon the ends of the fibers, the surface of the stone mov ing substantially in a plane perpendicular to the fibers of the wood; or, secondly, by acting upon the fibers in such a di
rection that they were severed diagonally, the surface of the rection that they were severed diagonally, the surface of the
stone moving diamonally across the fber stone moving diagonally across the fibers.
pulp had no pran, in factical length, mand on on trial of the wood. The or nearly so. The second plan was carried out by the us of a stone revolving like an ordinary grindstone, the wood
of en being applied upon the cylindrical surface thereof, with the fibers perpendicular, or nearly so, to planes passing through
the axis of the stone and the point or locality where the axis of the stone and the point or locality where th grinding was performed ; and this plan also failed becaus
the fibers were cut off in lines diagonal to their own length and were consequently too short to make good pulp.
This improvement consists in grinding or rather tearing out the fibers from the bundle of fibers which makes up a piece of wood, by acting upon them by a grinding surface hiane moves substantially across the fibers without cutting in the same plane with them without cutting or severing the fibers eithe
perpendicularly or diagonally to their length as heretofore The defense claimed that substantially the same process wa shown in other patents. The invention is regarded as one of importance. Judge Shepley held the patent to be valid and granted an injunction.

NEW BOORS AND PUBLICATIONS.

The American Newspaper Directory: Containing Accu rate Lists of all the Newspapers and Periodicals pub-
lished in the United States and Territories and the Do minion of Canada and British Colonies of North Amer ica, together with a Description of the Towns and
Cities in which they are Published. New York: Geo. Cities in which they are Published. New York: Geo
P. Rowell \& Co.., Publishers and Newspaper Advertising P. Rowell \& Co., Publishe
Agents, No. 41 Park Row.

This book is already well known to the public, more especially to adverand publishers; and the new edition is corrected up to this date, an contains the full and accurate information claimed for it on the title page
Messrs. Rowell and Co. deserve creait, not only for compling a trustwor thy guide to the newspaper world, but also for the production of so hand
The immigrant Builder ; or, Practical Hints to Hand MEN: Showing clearly how to Plan and Construc Dwellings, in the Bush, on the Prairie, or elsewhere piously Illustrated. By C. P. Dwyer, Architect, Editor of "Sloan's Architectural Review," Author of the "Eco nomic Builder," etc. Price $\$ 1.50$. Philadelphia: Clax ton, Remsen, and Haffelfinger.
This book will be useful to thousands who are now pushing their fortunes on the western prairies, and to many of whom the question of a comfortable
 Fourth Annual Report on the Noxious, Beneficial AND OTHER INSECTS OF THE STATE OF Missouri. By
Charles V Riley State Entomologist. Regan \& Edwardis, Public Printers, Jefferson City, Mo.
This is an able and comprehensive report on the above subject., for the aages, with explanatory illustrations, and is indexed
the Sign Painter’s Guide. By James T. Gardiner. Published by the Author. Cincinnati.
This little work is written with the view of helping sign painters in
acquiring an adequate knowledfe of therr business, including glass gilding, pearl work, etc. It contains, besides, mucli general information, many pearl w
valuab.
ratus.

The Science of Asthetics; or the Nature, Kinds Laws, And Uses of Beattr. By Henry N. Day. Pub
lished by Charles C. Chatfield \& Co., New Haven, Conn. This treatise on the "general subject of beauty as perfect form" "was spe cially prepared by the author in view of the demand for text books in thi
department of study. It is an elegant volume of over 400 pages, and is

Selections from Favorite Prescriptions of Living American Practitioners. By Horace Green, M.D.,LL.D. New York: John Whey don, 15 Astor Place
This is a new and excellent edition of a valuable work, to which has been added a carefully prepared toxicological
antidotes and tests. Published at 9 2.50.
The History of a Great Enterprise.-In eighteen hundred an fity-four, the original incorporators of the Wisson Sewing Machine Com PANY embarked in the manufacture of Sewing Machines, and from that time making First Class Sevoing Machines, with varied success attending theit efforts. It being their constant aim to produce a Shuttle or Lock-Stitich Machine that should be simple to handle, durable as steel and iron could make it, with unlimited capacity, unexxecled by any other machine, regard
less of name or price, and withal to confine the price within the reach of all classes of people; and success has crowned their efforts in the production of the celebrated Wilson Under-Fbed Shuttie Sewing Machines, Which combine all the Elegance, Simplicity, Dur rability and Strength possi-
ble tor any sewing machne to attain and they are the First and Only Class moderate priced machines put in the market. Salesroom, 077 Broad Way, New York; alsof or sale in all other Cities in the United States.
Facts for the Ladies. - Mrs. Jonn Bogert, Jersey City, N. J., bought
555 Wheeler $\&$ Wilson as for it a Whon Loek-stitch sewing Machine, and earned enough to ary forit in five weefy, stitching
and Woods' Lock-Stitch Ripper

Burnett's
dressing table.

\&usines and tersmal.

The Charge for Insertion under this head is one Dollar a Line. If the Notic
exceed Four Lines. One Dollar and a Half per Line will be charyed.
Dry Steam, dries green lumber in 2 days; tobacco, in 3 hours; The paper that meets the eye of manufacturers throughout Siturtin slates-Boston Bulew, 9 doa year. Advertsements 1 c , a line. Antuation wanted as Assayer, for any or all branches, or as
Anst. Address S. P. c., 60 W. 22nd street, New York. Dederick's Self-tightening Crank Box,79 Beach St.,New York Cutlery Grindstones, equal to the best foreign, made by Worthington \& Sons, North Amherst, Ohio
W,000-I will give this for the right of a good "Clothes Washer." Send drawings and stamp to J. C. Miller, Pittsburg, Pa.

Bliss' Gate and Door Spring is unequaled. Send $\$ 1.00$ for prepaid samples, Agents wanted. J. Bliss, Cleveland, ohio
For the best Foot Power Jig Saw, address Goodnow \& Wight man, 23 Cornhill, Bosto n,
Manufacturers of lamps, burners, lamp goods, illuminating oils and gasoline, please correspond with T. Tully \& Co., springield, Ill
Steel Measuring Tapes Manufactured and for Sale by W. H. Paine, Greenpoint, N. Y. (Send for Circular.)
An experienced Patternmaker, has a good knowledge of Draughting, used to steam Engiue, Mill, and House
tion as Foreman. Address Lock Box 59 , Corry, Pa
Patent Right for Sale-A cheap and novel "Measuring Canister." Address S. E. s., Lock Box 62 , Washington, D. C.
Hexagon Iron-superior quality for screws, \&c., $916 \mathrm{in} .09 \frac{1}{2}$, $\%$ in. $09,11.16$ in $09,7 \%$ in. $08 \%, 2 \%$ in. 08,1 in. 08 , per 10 . The above is price per bunde; single
23 Cornhill, Boston, Mass.
Glass Work for Inventors. T.Degnan, 115 Milk St.,Boston, Ms. For hand fire engines,address Rumsey \& Co.,Seneca Falls,N.Y Small second hand or new Upright or Horizontal Boiler, re quiring no Brick Worlk, wanted for Engine $6 x 6$ Cyl., for cash. C. Kratz qairing no Brick
Evansville, ind.
T. Shaw's Steam Gauges, Ridge av. \& Wood st., Phila., Pa If you want a perfect motor, buy the Baxter Steam Engine. Brown's Coalyard Quarry \& Contractors' Apparatus for hoisting lining Wreang Pumping Draina or Irrigating Mechin ery, for sale or rent, See adrertisement A Adrew's Patent ing Mach For Tri-nitroglycerin, insulated wire, exploders, with pam phlet, as used in the Hoosac Tunnel, send to Geo. M. Mowbray, North , Mas
All kinds of Presses and Dies. Bliss \& Williams, successor 10 M Blss, 18 to 122 Plymouth St., Brooklyn. Send for Catalogue. For Steam Fire Engines, address R. J. Gould, Newark, N. J. Presses, Dies, and Tinners' Tools. Conor \& Mays, late Mays \& Bliss, 4 to 8 Water st., opposite Fulton Ferry, Brooklyn, N. Y.
n the Wakefield Earth Closet are combined Health, Cleanliness and Comfort. Send to 36 Dey St., New York, for descriptive pamphlet. If you want to know all about the Baxter Engine, address Wm. D. Russell, oflle of the Baxter Steam Engine Co., 18 Park Place,N.Y. Hoisting and Pumping Engines (Locomotive principle); best mat from 6 to 40 H P. J. S. Mundy, 7 R R. Av, Newark, N. J Dickinson's Patent Shaped Diamond Carbon Points and Ad justable Holder for dressing emery wheels, grindstones, etc. See Scientifi Peck's Patent Drop Press. For circulars address the sole manu
T. Shaw's Blast Gauges, Ridge av. \& Wood st., Phila., Pa. Callow's New Patent Mode of Graining Wood, Makes Painters grain all woods first class who never grained before
Likewise makes Grainers lightning fast who thumbed it out before. Likewise makes Grainers lightning fast who thumbe
Address, with stamp, J. J. Callow, Cleveland, ohio.
The most economical Engine,from 2 to 10 H.P., is the Baxter. Wanted-A Purchasing Agent in every city and county, to supply Nye's fine Sperm Sewing Machine Oil. Put up in Bottles, Cans, and
Barrels, by W. F. Nye, New Bedford, Mass. Presses,Dies\&all can tools. Ferracute MchWks,Bridgeton, N.J The Patna Brand of Page's Patent Lacing is the best. Or ders promptly filled by the Page Beltng Co., No. 1 Federal St., Boston. Absolutely the best protection against Fire-Babcock Extin guisher. F. W. Farwell, Secretary, 407 Broadway, New York.
Over 800 different style Pumps for Tanners, Paper Makers, The Baxter Steam Engine is safe, and pays no extra Insurance. Self acting Screen makes 6 grades Coal, ores, \&cc. A State right at a bargain. Geo. Lord, 232 Arch Street, Philadelphia, Pa.
mportant.-Scale in Steam Boilers-We will Remove and prevent Scale in any Steam Boiler or make no charge. Geo. W. Lord, 232 Anti Lamina" will clean and keep clean Steam Boilers. No injury to iron. Five years' use. J. J. Allen, Philadelphia, Pa.
Williamson's Road Steamer and Steam Plow, with Rubber Tires. Address D. Đ. Williamson, 32 Broadway, N. Y., or Box 1809.
Boiler and Pipe Covering manufactured by the Chalmer Spence Non-Conductor Co. In use in the principal mills and factories
Claims-Economy, Safety, and Durability. Offices and Manufactories, foo E. 9th street, New York, and 1202 N . 2 d street, St. Louis, Mo.

Derricks built by R. H. Allen \& Co., New York and Brooklyn For the best Recording Steam and Indicating Gauges, address

For Solid Wrought-iron Beams, etc., see advertisement. Ad dress Unon 1 on Mins, Pinsburn, Pa., for Mograph, etc. Belting as is Belting-Best Philadelphia Oak Tanned. C. W Arny, 31 and 303 Cherry Street, Philadelphia, Pa.
Boynton's Lightning Saws. The genuine $\$ 500$ challenge Will cut five times as fast as an ax. A 6 foot cross cut and buck saw, $\$ 6$. E. M. Boynton, 80 Beekman Street, New York, Sole Proprietor

Hydraulic Jacks and Presses, New or Second Hand, Bought and sold, send for circular to E. Lyon, 480 Grand Street, New York.
hive's Patent Watchman's Time Detector-the most uner ring detector extant. Price
wood Sts., Philadelphia, Pa.
T. Shaw's Hydraulic Gauges, Ridge av. \& Wood st., Phila, Pa. Kemmer's Patent Oil Frescoing-great improvement for fres oing Ceilings and Walls. Office, No. 4 Warren St., New York. Factory Better than the Best-Davis' Patent Recording Steam Gauge Simple and Cheap. New York Steam Gauge Co,, 46 Cortlandt St., N. Y. ery, mechanics, or matacturers be a demand for now MachinOnited States In Boston Commercial Bunletin. Terms 84.00 a year.

Motesfequeries.

(We present hereeouth a series of inguuriese embracing a variety of toptcso of areater or less general interest. The questions are simple, it ts true, but we

 greater or less general interess. The questions are simpleprefer to elicit practical answers from our readers. 1
1.-India Rubber Belts.-Can an endless gum belt be made uniform in thickness and strength throughout
inches wide and 125 feet in length is wanted.- -s . .
2.-Dimensions of Air Pump.-How large an air pump do I want, and at what rate of speed should I run it, to produce a pressure of 100 pounds per inch, the air to be discharged through a three eighth inch
pipe, and the dishare pipe to beopen all the while? How targe an air
chamber or reeciver should t want? How much power would it take to chamber or receiver should I.
drive such a pump?-0. o. W.
3.-Future Huntina Prospects.-Can any one tell me What thé West will be fifty years hence? Will there be plenty of game out
there and could a man make a living by his riffe? Also, if a person had a there and could a man make a living by his rifte? Also, in a person had
cartridge rifle, could he find plenty of that kind of ammuntion out there
now, or had he beteter get a rifte that would use booth cartridge and bose now, or had he better
ammunition?-O. K .
4.-Welding Steel.-What is the proper flux to use for 5.-OXYGEN in Solphuric Acid.-What number of cubic feet of oxygen gas does it take to oxidize one ounce of sulphur to form sul-
phuric acid ? TJ. T. 6.-Slowly Drying Glue.-I am doing some joiner's work Which requires the glue to set or dry very slowly. Can any of your corress.
pondents tell mehow to make itdoso withoutinjuring its strength?-J.H.P. 7.-Transferring Pencil Drawings.-How can I trans fer a pencil drawing on paper to box wood or type metal for engraving?-
J. H. K. 8.-ACETIC AcID.-Will some correspondent inform a sub scriber how to make good acetic acid on a small scale ?-F. O. R.
9.-Flavoring Extracts.-Will some one téll me how extracts of vanilla and lemon are made ?-E. R. T.
10.-Power of Head of Water.-I have a fall of 19 or 20 feet water, only 12 bv 2 inches; on a 20 foot wheel, what power will it give?
Which will be cheapest and best, an overshot or turbine wheel? I want to Which will be cheapest and best, an overshot or turbine wheel? I want to
build a stone dam ; how thick should the wall be? The stones are small. Is the escape of any water? Please tell me how to begin and finish the dam.
11.-Mounting Prints.-I wish to know if wetting (as much as will be required for the purpose of backing in map style) will in
jure the color of a common lithographic print? If so, is there any othe cheap methor of preserving it? What is the most pliant and best material
tor backing? What is a good varnish for the face of the print? Whll soaking blur common ink writing? If so, is there anything with which either or a lithograph may be treated to fix the colors? I have two lithographs
and another paper, with considerable writing on it, which I desire to back and mount in map style.-E. D. W.

ghawets to Correspandents

SPECIAL NOT E.-This column is designed for the general interest and in-
struction of our readers, ngt for gratuitous rephies to questions of a pureli struction of our readers, ngt for gratuitous replies to questions of a pureliy when paid for as advertisements at 1 .00 a line, under the head of "Bustness
and Personal. ALL reference to back numbrfis must be by volume and page.
Tempering Miners' Picks.-J. A. C. will find full direc Staining Gun Barrels.-To S. "G.-We have recently given full information on this subject. See pages 217 and 260 of the cur rent volume.
Teimpering Steel Sphivgs.-To L. G.-Your question has been answered by "sever correspondents during the last few months.
See pages 200,249 an 313 of the current volume. J. C., of W. Va. The ineral you send is mica schist, of no W. O. H., of Miss., says: I enclose you an insect picked up
in a room which had beecr for some time unopened. Please let me know in a room which had beee for some time unopened. Please let me know
what it is. Answer: The "insect" appears to be the puparium of a gay
colored fly, whose " tailed" larva has a long respiratory tube. The colored fily, whose "at tailed"
species is Merodew bardus (Say)
Differentiation of Foci.-How should the lenses of a portrait camera tube be set so that the chemical focus and the light focus
will be coincident? Can a tube that has these foci i at different distances be remedied ? And how? I noticed a few days since.that, in taking a view
of a house with a portrait lens, using a stop three inches in diameter When the plate was deve oped there which the center of about posit of silver than over the rest of the plate. How can this be prevent posit of silver than over the rest of the plate. How can this be prevent-
ed? Is there any combination of lenses that will present the image on the plate in the camera in its true position, that is, that will form a nonreversed picture? If so, what is the combination ?-X. P. M. Answer;
When the lenses of your portrait camera are truly achrom atic, the chemmatic, or are so only in name, by the:defective relations of the curves o matic, or are so only in name, by the.derective relations of the curves of
the flint and crown glass, they cannot possibly be made to coincide.
This is entirely the business of the maker of the lenses; you cannot correct this by setting. All that you can do is to find out how far the chem-
ical focus is in front of or behind the light focus, and when you have focussed with the ground glass, to set your prepared plate so much forward or backward. In some cameras, the maker has done this by means of
difference in the position of the ground glass and the plate holder, and you may correct your camera box in.the same way. The new excellent
landscape lenses of Lindmayer of Philadelphia, and many German lenses
made in imitation of his, are not achromatic, and it is not claimed that made in imitation of his, are not achromatic, and it is not clamed that spot in the ceanter of your picture, which you so admirably describe, is
well known among photographers and called " the ghost ;" it is a common defect in the lenses and cannot be prevented; all that you can do is to modify things so as to make your ghost as slight as possible. When the
spot is between the lenses at the right place, the ghost is at its minimum. spot is between the lenses at the right place, the ghost is at its minimum.
There are combinations for making a non-reversed picture, namely, a
metallic reflector (in front of your lenses, placed at an angle of 45° with metallic reflector (in front of your lenses, placed at an angle of 45° with
the axis of your camera tube), the so-called prism with total reflection, or a mirror inside the camera box, etc.
Paris Green.-Query 2, page 330.-Paris green is known in chemistry as scheele's green. It is an arsenite of copper, and is made
by dissolving one part ot common white arsenic (arsenious acid) and three parts ot carbonate of potassium in fourteen parts of water and add-
ing the mixture to a boiling solution of three parts of sulphate of copper (blue vitriol) in forty parts of water. The Paris green is precipitated.-
L. L.-F. G., of Mass.

Cleaning Instruments.-To H. O. M., query 19, page 297 -If the lacquering is bady spotted, clean it off with strong alcohol, and then polish the brass or German silver with the following paste by means
of flannel and a little water, and polish off with clean chamois leather or cottoncloth and a iittle whitening, after which you might revarnish with shellac dissolved in alcohol, colored with a little dragon's blood, which can be got from any apothecary: Soft soap, 3 ounces; sweet oil, $1 / 2 /$ ounce ;
turpentine, $1 / 2$ ounce; powdered rotten stone, 4 ounces; finest flour emerv turpentine, $1 / 4$ ounce; powdered rotten stone, 4 ounces; finest flour emerv
1 ounce; fine powdered crocus of ahtimony,
$1 / 2$
ounce. Melt the soap, oil paste, and mix well.-E. H. H., of Mass
Concrete Walls.-T. D. D., query 13, page 297.-Boil lin seedoilover a fire for two or more hours until it forms. on cooiing
tough viscid mass. If while hot, or thinned a little with benzine, this is painted over the walls, I think you will find your trouble relieved, a the composition will form a perfect waterproof coating. In boiling the
oil take care that the fumes do not catch fre ; but if they do, put a shee oil take care that the fumes do not catch fire; but if they do, put a shee
iron or tin or a thick wet mat or piece of carpet over your pot; so shu out the air and extinguish the flames. On no account throw
Be provided and ready for the emergency.-E. H. H., of Mass. Bengal Signal Light.-Query 2, page 313.-A white Ben gal light, very powerful, is composed of saltpeter, 33 parts, sulphu
parts, antimony, 3 parts, and slacked lime, 4 parts.-A. V., of Mass. Sulphate of Mercury.-F. G. V., query 1, page 297, ma dissolve the metal in diluted nitric acid, and précipitate the sulphat
from the solution by the addition of sulphuric acid.-E. H. H., of Mass. Galvanized Iron Vessels for Milk.-W. P. T., query 7, page 297. Will find that the lactic acid in the soured milk or cream wil
act upon the zinc surface.of the vessels, thus rendering the fluid poisonous. Earthen or enameled iron pans are every way better (excepting the liability to breakage) than zinc or tin. Polished iron is not so easily acted upon as the two former metals.-E. H. H., of Mass
Galvanized Iron Pipes.-B., query 11, page 297, would be less liable to occasion zinc poisoning if the lead and brass connections
were out of the way, for they in fact will act as the other element of a galvanic battery, the water forming the electrolyte and taking up the zinc. The amount of action of the water.upon the zinc will depend partly
on the salts it has in solution. Total prevention of the contamination o the water by the zinc will be almost impossible, but constant changing
will lessen the evil. Antidote for zinc poisoning: Clear the stomach b will lessen the evil. Antidote for zinc poisoning: Clear the stomach by an emetic, then use albuminous drinks,
in ten grain doses.-E. H. H., of Mass.
preparing Fabrics for Paint.-To F. O. L., query 21 page 208.-Paint the cloth with thin flour paste, and allow to dry. It
Grove's Battery.-Query 10, page 313.-The zinc cylin ders of a Grove's battery should be amalgamated with mercury. All
that is necessary is to clean them by immersing them in dilute sulphuri that is necessary is to coean them by immersing them in dilute sulphuri
acid of the same proportion as that used in the battery (eight parts water acid of the same proportion as that used in the battery (eight parts wate
and one of acid is good), and then pour over them mercury, keeping them constantly wet with the acid. Sometimes a little rubbing with a coarse rag will hasten the amalgamation. When once coated, a ittle
mercury kept in the cup with the zinc will keep them bright. The zin cylnder should have about twenty-four times the area of the platinum.
J. C. G. will need for his arrangement a strip of J. C. G. will need for his arrangement a strip of platinum 8 inches lon
and $1 / 4$ inch wide, if his acid touches only the inside of the z inc, and twic as wide if it touches both sides. To give needed strength, however, the platinum should be at least 2 inch wide, and should extend nearly to the
bottom of the porous cup. The porous cup should be as large as can be puff into the zinc cylinder readily.-L. R. F. G., of Mass
Preservation of Telegraph Poles.-H. R. R., query 9, page 313.-I have for some time been paying attention to this; and my
opinionds that neither tarring nor charring them is done with satisfactory results. The best Tode of preserving them is coating their ends with
soluble glass. This method is not very expensive, and is proof againgt worms, as they cannot make their way through the glass; it is also proo against the decomposition of wood by moisture, as soluble glass does no mela at any ordinary temperature. If H. R. R. . were to try this method,
I think he would find it answer. Any chemist will tell him the mode of Ithink he would find it answer. Any
preparing soluble glass.-C. A. S., of O
Grove's Battery.-Query 10, page 313.-J. C. G. is entirely wrong in supposing that the amalgamated zinc for a Grove battery is mixture of zinc and mercury. The zinc is merely coated with mercury
to prevent rapid and uneven action of the acid upon the zinc. Plunge the zinc in a bath of dilute sulphuric acid, dip it into a vessel containing mercury and watersso that the mercury may cover the whole zinc; then,
with a stiff brush remove all superfluous mercury. ${ }^{\text {. }}$. This is amalgamate with a stiff brush remove all superfluous mercury. This is amalgamate
zinc. His zinc cylinder should be open at both ends. The porous cup need not be latinum sufficient. He can buy a cell much cheaper than he can m keit.-s. H., of Ala.

Zectut gmeticamand forcign equtents.

ader this heading we shall pusisish
nent home and forean vatents.
Apparatus for Supplying Locomotive Tenders with Fuel.-Henry
C. Land, of Garlandyife, Miss.-This consists of a platform or frame, C. Land, of Garlandvife, Miss.-This consists of a platform or frame, on
which the wood or coal is placed. To its lower side, at or near its centra line, is pivoted the upper end of a frame, by which the platform is sup-
ported. The lower end of this frame is pivoted to a base frame or other uitable supports. Inclined rods are pivoted to the forward part of the lower side of the platform. The lower ends of the inclined rods ar
pivoted to the base frame, a little in the rear of the lower end of the voted to the base frame, a little in the rear of the lower end of the
pivoted frame, so as, when the frame and platform are swung forward, to tip or incline the platform and discharge the fuel into the tender. A strong upright frame is rigidly attached to the base frame just in the rear of the winging frame, and by various appliances attached to the former the
movements of the latter are controlled. The apparatus is designed to be edischarged from the platform directly into the telder standing upa the track.
Prokle and Cruet Stand.-Thomas Leach, Taunton, Mass.-1st. The in ention consists in a new pickle stand, provided with a hollow seat for also with a horizontal flange on which is fastened a vertical handle tha traddles said hollow seat diametrically; 2ndly, in extending the sai pickle and cruet stand; and 3rdly, in combining, in one article of table furni ture, a pickle and cruet stand.
Washing Machine.-William G.Knowles, Jamestown, R.I.-This inven ion relates to a new washing machine in which a reciprocating slotte washboard is arranged to move on spring rails under and against frictio ollers that hang in a spring frame. The goods pass down through the slo
in the washboard into the suds, and are drawn through the washing appara tus by the friction exerted against the rollers by the reciprocating wash-

Window Blind slat.-Alois Kohler, Williamsburg, N. Y.-This inven tion relates to the peculiar form of the slat. It may be made with any suit able molding upon its face. In cross section, the lower side of the slat pre
sents a curved groove in front and a projection or heel in the rear sents a curved groove in front and a projection or heel in the rear; the
upper side presents a tongue and a rear recess. These parts correspond, forming a perfect joint.

Apparatus for Elevating and Immersing Vessels.-Justin Jacobs,
of West Salem, Wis.-This invention relates to a new device for application oriver steamers, canal boats, and other vessels, and has for its object to prevent their sinking in case of a dangerous leak, and to cause their submersion in case of fire. It consists in the arrangement of vertical slides, hich extend through the bottom or the vessel and are let down to serve as supports for the same on the ground whenever there is danger of th
vessel sinking, also in the combination of these elevators with gates, vessel sinking, also in the combination of these elevators with gate
which, when opened, let water into the vessel to sink it in case of fire Armored Can.-William F. Thompson, of Toledo, Ohio. -This improvement consists, first, in armoring sheet metal cans with wood to protect the
thin metal from injury in handling and ansporting, by fastening side, ottom, and top pieces, or boards to the can by means of clamp plates, oldered or otherwise fastened to the corners of the can, and the ends aved in the cost of the wood case or protecting armor, which up to tht ime, has been first made into a box, into which the can was placed and in closed σ_{y} a cover; and, secondly, it consists of an arrangement of the nozzle iw one corner of the can, which is sloped off to make room for ar-
ranging it so that the top will not rise higher than the top of the can, to adranging it so that the top will not rise hig
mit of so applying the armor on the top.
Tobacoo Drying House.-John C. Streeter, of Hinsdale, N. H.-This in onsists in the provision made for suspending the article to be dried and in the use of metallic supports, connected with the building frame. The aspending wire is bent round the rod so as to enclose it in a loop, and the wo ends of the wire are passed around the tobacco and again bent at an lace angle over the top of the rod. These metallic supports or rods ar other, so that they support the framein each direction.
Grain Soreen.-David D. Schamp, of Pleasant Run, N. J.-This inven tion has for its object to improve the construction of the delivery spouts of thrashers and grain separators, so as to more thoroughly clean the grain e simple in construction and convenient in use. The spout is made with roove and with the shoe. The bottom of the spout is made of wire cloth or pe orated sheet metal, to form a screen through which the dust and fine seed ay escape, while the grain passes down the screen and escapes from the hat fell upon it near its lower end would scarcely be screened the grain remedy this a plate is placed, in the upper part of the spout near its low end, to receive the grain and guide it to the upper part of the screen, so that it may pass over a longer portion of the screen. The outer end of the spout
is extended fourteen inches and has a screen formed in or attached to the Is extended rourteen inches and has a screen formed in or attached to the
inner part of its bottom, of such a coarseness as to allow the grain to pass through, while the straws, heads, etc., which may be in the grain wiil slide over the screen and will drop from the outer end of the spout.
Baling Press.-Commodore J. Barney, of Rockport, Ind.-This inven ion has for its object to furnish an improved press for baling hay, straw
cotton, and other substances required to be put up in bales, and which shal be simple in construction, convenient in use, and effective in operation nabling the work to be done much quicker and consequently much chea orm the baling box, are becurely connected br coss bars between whic the doors for the removal of the bale are placed. Two followers work up
and down toward and from each other in the baling box.- To their outer sides are piwoted and from ealy, the inner ends of bars, the outer ends of Which are pivoted to levers. The outer ends of these levers are pivoted to the base frame and top frame near the outer vertical frame, and their inne pressing them. By this arrangement the levers operate upon the followers in the manner, of a toggle joint, the barsicoming nearer and nearer to a ver-
tical position, and thus acting with more and more power as the bale be. tical position, and thus acting with
comes more and more compressed
Punch and Die for Finishing Umbrilla Staff Collar.-Robert the hand labor now required to finish umbrella staff collars in the lathe and to secure their being made to a standard size, which is accomplished by anishing the exterior of the casting in dies, and sizing the hole by means of a painted mandrel rising through the lower die.
Spade.-Teremy Lake and Andrew W. Elliott, of North Easton, Mass.This in wention relates to a new spade which will enter the ground with greater ease than those now in use. A notch is cut into the blade of the
spade at the middle, and extends from the lower edge aboat half way up the length of the blade. The blade has thus the shape of an inverted letter U. Itt lower cutting edges may be slightly rounded, or straight. A
spade thus made will, with less difficulty, cut through the ground, and will crnmble the soil with less effort than the full bladed spades, though it has saflent surface not to break the cloas while it supports the same
Soldering Tool.-John A. Tillery and Samuel A. Ewalt, Baltimore,
Md.-The invention consists: 1st, in making a soldering tool adjustable radially trom a hinge joint, in order to adapt the same tool to be used with caps of varying size; 2adly, in moving said tool out and in, and fixing it at the same time, at any point of adjustment, by means of a loop headed
screw through which passes the holder. The advantages of this tool con. screw through which passes the holder. The advantagance that point has
sist: 1st, in the are shape by which it can be seen at a glance whe been left unsoldered or imperfectly soldered. 2ndly, in the facility with
which such defects can be remedied without removing the tool; 3dly, in the option that it allows of using either wire solder, or the cheaper drop solder, thereby saving one half the expense.
Llluminator.-Chas. F. Jacobsen, New York city.-The invention con-
sists in combining glass plates, a flanged metalicic case, a fanged metallic im, two concave reflectors and a pair of burners; so as to form a new double night sign. By this construction the name of the business man and
his special occupation or class of goods are displayed with great clearness his special occupation or class of goods are displayed
PLANTER.-Weisel Beall, of Hainesville, W. Va.- This 佂
in intion consists which connects the axle with the seed slide of a plafter, by which the num. ber of hills planted may be indicated on a dial with which it is combined. engraving and lengthy description.
Cotton Plantrr.-John A. Pope and William L. D. Pope, of Charlotte, . C.-This invention has for its object to furnish an improved machine for
planting cotton seed, distributing guano or other fine fertillizers, which planting cotton seed, distributing guano or other fine fertillizers, which
shall be simple in construction, convenient in use, and effective in operation. Its principal features are the combination of a perforated platform, plates and feeder within the hopper, together with a stirrer, by which the
seed or fertilizer is stirred up and made to pass through the holes in the plates on its way to the discharge spout. The seed is covered by adjusta. g plow

Reversible Shade fixture. - William b. Hazzard, of Philadelphia, Pa. in either direction, so that ashade can placed opposite any one part of a window wherever it may be required. The invention is more particularly useful for photographic establishments, hothouses, etc., where the rays of light are to be controlled with great exactness. It consists in the arrange-
ment of a sliding spring roller supported on wire tracks and connected ment of a sliding spring roller supported on wire tracks and connected
with a cord, whereby it can be drawn up, while the lower end of the shade as another cord, whereby it can be drawn down.
CaLEndar.-Robert C. Ogden, of New York city.-This invention relates fastened together and to the back, so that any one month may be exhibited to view by dropping that or another leaf, sheet, or tablet down; and it con-
sists in forming the hinge or connecting device of a single wire, bent at the sists in forming the hinge or connecting device of a single wire, bent at the
ends into loops of a peculiar torm standing at right angles to the wire. By hung construetion, the calend the sheets can be attached and moved mach easier than if plain rings were used.

Boot For Hossiss. - Patrick Murray and Frederick Koch, of Morrisania'
N. Y. -This invention has tor its object to provide a yielding but nevertheN. Y. -This invention has tor its object to provide a yielding but neverthe
less powerfal boot for horses, whereby the muscles and tendons in the lower limbs near the hoof will be protected. A strap is made of leather, or other suitable material, long enough to fit around the horse's leg, and as wide as the section to be protected is long. A cushion is tormed in the
strap, and a section of rubber or other equivalent elastic material also sestrap, and a section of rubber or other equivalent elastic material also se-
cured therein. The cushion, which is made of suitable soft material, pro. jects on the inner side of the strap, and is, by means of the elastic, drawn jects on the inner side of the strap, and is, by means of the elasic, Bein
against the portion of the horse's leg which is exposed to the strain. Being thus held in contact with the parts most exposed, the cushion serves to brace
or sustain such parts and protect them trom injury. The strap is, by buckle, outtons, or otherwise, fastened around the horse's leg." The elastic makes it also self sustaining. The
o prevent the animals from injuring their limbs by striking them against one another.
apparatus for Truporarily Inoreasing the Pressure in Gas Pipes.
-George S. Dunbar, of Pittsfield, Mass.-This invention furnishes an im--George S. Dunbar, ot Pittsfield, Mass. - This invention furnishes an imstreet main, or from the street main to the building, to enable the pressure
to be temporarily increased. The drip box or trap attached to the main pipe is provided with a valve and a compressing apparatus in the following pipe is provided with a valve and a compressing apparatus in the for is provided with a valve which opensinto the drip box. With the top of the drip box is connected an open pipe which passes up the central part of a cup or
receiver, in which is placed water or other liquid to serve as a seal to the receiver, in which is placed water or other liquid to serve as aseal to the
open bottom of a gas holder placed in it. With this construction, when the holder is raised, it will be filled with gas at the same pressure as it has in the main holder and in the pipes. When the holder is forced down, the gas in the holder will be forced out, closing the valve and temporarily increasing the pressure in the pipes, so as to operate as a device for lighting and ex-
tinguishing streec lamps and burners. Door Chrcie. - William Overton Cleugh, of Lexington, Ky.-This inven-
tion has for its object to furnish an improved device for checking a tion has for its object to furnish an improved device for checking a door slam. The box or case of the device is made in two parts. One part is made thick, and is recessed to receive a catch bar. The other part is made thin and is designed to cover and protect the catch bar. The inner end of the catch bar is rounded off, and fits into a round recess in the body of the thick
part. Upon the forward side of the catch bar are formed two catches. The part. Upon the forward side of the catch bar are formed two catches. The
forward side of the forward catch is inclined, so that when the door strikes against it the catch bar may be pushed back, allowing the door to pass the catch. The other or rear projection is intended to stop the door a fter it has passed the first catch. Upon the forward end of the catch bar is formed a toe piece, which projects through a slot in the end ot the case, so that the
catch bar can be readily pushed baek with the foot to release the door and allow it to be closed. The catch bar is held forward by a coiled wire spring. The case should have holes or lugs to receive the screws by which
t is secured to the floor. The door has a small metallic plate attached to it projecting a quarter or half an inch, which is designed to operate upon the catch. This enables the hold \mathbf{r} to be made smaller, and consequently
cheaper, than it could be if it had to operate upon the body of the door itcheap.
self.
Land Roller.-Holloway w. Matthews, of Frenchtown, n. J.-This in roller io the main or front frame holding the two front cylinders of a land roller. The object is to perriit the application of a limbered tongue, whereby much strain is taken from the horses' necks. An L shaped bar connect the front and back frames. This bar has a long horizontal arm which is middle of the back frame. A short vertical arm projects upward from the same, and is swiveled in the front of the back frame. This arrangemen permits the frame to swing to either side on the short arm, and to incline to either side on the long arm, while vertically it is rigidly connected with th front frame. Up and down the frames will swing as though the two were
one. while in every other direction the back frame has independent play, one. while in every other direction the back
The tongue can therefore be hinged to the frame.
Lifting Jack.-R. T. Smart and R. T. Smart, Jr., of Troy, N. Y-This nvention consists of a stand, of any suitable kind, with a long vertical slo the slot. A lifting bar, having one transverse notches in one side crossing connected, by a pivot pin, with a pair of linkss, one on each side, which pin tend downward in the slot, and through to the other side, and have a leve suspended in the lower ends by a pin projecting at the ends to bear against
the side of the stand, opposite the one having the notches, to hold the lever against being forced back by the weight. The short arm of the lever curve upward slightly, and is rounded and shod with a metal strap or plate to act
against the lower side of the lifting bar, which lies upon it. The lifting bar has a notch on the under side, into which the end ot the lever comes whe the load has been lifted digh enough, and by which the lever is locked self
actingly, to sustain the load without other fastenings, but so as not to prevent being unlock ed or disconnected readily when the load is to be let dow again by the raising of the long arm of the lever. The lif fing bar and leve
are readily adjusted to the hight of the axle or other load to be lifted by shifting the pin to the different notches.
Ash Siftrr.-George F. Millard, of Pittsfield, Mass.-This invention con sists of a wide flat bottomed sieve, with oval sides and open top, suspended bearings in two sides of the case, low enough for a cover of the case to
close down and confine the dust while the sifting is going on. When the ashes are sifted out, the sieve is taken out of its case to empty the coal re maining in it. The ashes which accumulate in the bottom of the case are case over. The sieve is swung torward and back by the crank, and, by rea son of its flat bottom and oval sides, gives a quick forward and back mo tion to the contents, and as quickly arrests the
manner well calculated to do the work quickly.
Lamp Snuffer and Extinguisher.-Marcus L. Battie, of Bainbridge, top of the vertical portion of a cranked wire pivoted near one of the nar row sides of the wick tube in the vertical plane of the largest diameter of said tube, and having a handle portion projecting outward from the base o the lamp top for swinging the blade over the top of the tube and back again that only the completely burned portion will be snuffed off. The extin guisher consists of a little plate hinged to the rear of the snuffing plate and curved on the other edge, so that when the snuffer plate is moved over the top of the tube it willswing upward, unobstructed by the cone of the
burner, to the horizontal plane of the snuffer and be moved over the flame so as to extinguish it; and when the snuffer is moved back the said extinguisher will swing down again, so as not to strike against the cone or the snuffer.
Bread Cutter.-Samuel H. Martin and John S. Williams, of Mount Ver-
non. N. Y.-This invention has for its object to furnish an improved bread cutter, simple in construction and effective in operation, enabling the freshest and softest loaves to be easily and smoothly cut, and which may be also
used to contain knives, forks, spoons, or other articles required about a tale it consists of a rectangular box, which is divided into three compartments by partitions. The rear partition extends up to the top of the box,
and to its upper edge is attached a narrow board, to the edges of which re hinged the covers. To the front cover, near its rear or hinged edge, is ttached a flange to rest the edge of which is concaved. To the forward or free end of the knife is at tached the handle by which it is operated. The rear end of the concave
edge of the knife is made with a sharp angle, which may be forced through the crust in beginning the cut. The rear end of the knife is made wide, and to the opposite sides of its lower part are pivoted the lower ends of two hortlparallel bars, the upper ends of which are pivoted to the sides of the
oards that form the knife compartment or slot near their upper edges
apon the bread with a drawing cut. The device may also be used for shay-
ing dried beet, which may be cut readily and quickly by giving the knife sawing movement.
Car Coupling.-Courney S. Servoss, of Wilmington, N. C.-This inven
tion consists of a pair of jaws within the drawhead, closing together or nearly so behind their pivots by the action of springs to engage behind the shoulders of the coupling bar, which couples with them self actingly when
the head and shoulders are forced in beyond the end of said jaws. These aws are so pivoted incavities in the drawhead that the drawing force is expended on said cavities and not on the pivots of the jaws, and they are provided with arms projecting through slots in the sides of the drawhead,
which are acted on to open the jaws and uncouple the car by inclines on which are acted on to open the jaws and uncouple the car by inclines on
vertical bars hanging one on each side of the drawhead from a cross bar, vertical bars hanging one on each side of the drawhead from a cross bar,
to which a lever is attached extending toward the side of the car, where it can be reached without entering between the cars; and this cross head rests by a vertical rod on the end of the coupler to hold it level to enter the drawhead of another car;
ingly in case one runs off.
balanged Slide Valve. \perp Charles H. Hutchinson, of Concord, N. H.This invention relates to that class of balanced valves which are made in Wo parts, one working on the valve seat and the other on the under side o
the top of the steamchest, to prevent too much down pressure, and one of he parts working in and out of the other steam tight. The first part of the invention consists in having the parts of the valves thus working togethe of rectangular form, corresponding to the flanges, so that the down pressure will be alike throughout the valve from erra to end. The second part
consists of a novel arrangement of the paecking for said parts, whereby it is consists of a novel arrangement of the pac king for said parts, whereby it is
adapted to such forms, and may be accurately fitted in a simple and econo mical manner; and the third part consists of the application of an exhaust valve, which opens to withdraw the steam from the interior space of saic lide valve in case the packing leaks, but which closes when steam is shu If and the engine continues to run.
Tobaoco Box.-Wilson C. Thomas and Edwin T. Pilkinton, Richmond a.-The invention consists of a tobacco bor having body formed of sto embrace and support the body. It forms a box cheap, easily made, and et strong enough to bear handling and transportation.
Solderiva Iron.-Herrman S. Saroni, Cincinnati, Ohio.-The inventio onsists in providing a soldering iron with a hydrocarbon reservoir,
aporizer, a combination socket, and means for expelling the fluid in the servoir by elastic force
Solderine Iron.-John A. Tillery, Baltimore, Md.-The invention con ists in centering the soldering tool with a rod which has an end tube pro move in a perfect circle, the air from within the can can still freel scape. Priparin nd other purposes, the same being desiccated and powdered horse radish either alone or in combination with other condiments of salt, pepper, musdesiccated in any approved way, and then ground or pulverized by any wanted
Wash Basin.-Jordan L. Mott, Mott Haven, N. Y.-This invention con Sts of a water closet and wash basin combined in one apparatus for use in pisons. The water closet basin and the wash basin are hinged together so over thereof when in the position for washing; but when the water close basin is to be used, the wash basin swings up and backward. This plan is alculated to economize considerably in the cost of plumbing, and simplifies e apparatus considerably, which is desirable for prisons and institutions. Pipe Wrench.-William C. Westerfield, Fairbury, Ill.-This inventio
 combination of serrated jointed jaws with a slotted shank in the operating
lever, wherein the end of one of the jaws is allowed to slide and to thereby ings the serrated inner faces of the jaws nearer together, thereby gras in whatever object is between them, be the same cylindrical or of other form he motion belng continued, the object whibe turned with theingstrumen intended. When the instrument is reversed, it will operate wher the leve
s swung downward. The invention is also applicable to the moving railroad cars and other purposes.
Baby Walker.-George Euell, Guttenburg, N. J.-This invention relate wo jointed annular frames connected by upright stays. Each of the ring is made in two equal parts, that are hinged together and locked at thei
opening ends by suitable spring catches. The lower ring is supported on legs which are rigidly conneected with it, and which may also extend up andle, cushioned at the ends, is applied to the upper ring. A seat is con ected with the lower ring, and made vertically adjustable, by means of screw, to the size of the child. The rings are swurg open whenever the chil
to be inclosed, and are then locked together, confining the child, bu llowing it full freedom of motion and action.
Mariing Pot.-Jerome L. Tarbox, New York city.-This Invention hat or its object to furnish an improved marking cpp, and is so constructed a
to serve as a can for the ink and a cup for maming. Over the ink reservoi rush m ush may be rubbed when required, while the
Fuss.-George F. James, Manchester, England.-This invention relates in improved fuse and a machine for making it, which cannot be explain in detail without the aid of a drawing. A machine similar to the ordinar
circular braiding machine is employed, and is supplied with a hollow cen tral spindle, above which is a self acting feeder for placing the powder or other explosive compound in the interior of the braid. The work is drawn down the
braiding.
Sifam Generator.-William V. McKenzie, Rahway, n. J.-This inve in consists of a vertical cylinder boiler with vertical flues mounted in water boiler, so as to have an annular fire space surrounding he shell is jacketed on the sides above the surface and at the top, to econo eam generator for cooking food for stock, and for other purposes.
ity.-This invention has for its object to furnish an improved fastening fo the handle strap for which letters patent were granted to the same invent
September 26,1871 . The strap is secured to the bag by rings, and is enough to pass over the shoulder. In the center is a short length strap to make the handle part thicker, and at each end of the thickened
part is secured a short strap at right angles to it. The end parts of the lon trap are doubled and carried through the rings up to the middle, forming riple ply. The short straps are then passed round the long strap and fast hand strap to a shoulder strap, all that is necessary is to unfasten the fasten ings, when the weight of the bag will draw the folds of the strap through ,
Rallway Tir.-Edwarã J. Fenn, of Medina, Ohio.-This invention has tructed as to form a continuous road bed, which shall be stronger and mor urable, than ordinary and form a smoother track; it consists in the con et on edge and arranged in pairs, the ends of the planks of each pair being securely bolted or spiked to the opposite sides of blocks twelve inches long. The outside planks of each adjacent pair are bolted or spiked to the opposite sides of blocks eighteen inches long, which are arranged upon the line of
the rails, and are designed to have the rails bolted to them. This tie would have much more ground surface than the ordinary tie, and would conse

Practical Iints to Inventors.

M UNN \& CO., Publishers of the Scientific American勆 devoted the past twenty-five years to the procuring or Letter ed themselves of their services in procuring patents, and many millions o dollars have accrued to the patentees whose specifications and claims they
anve prepared. No discrimination against foreigners; subjects of all counties prepared. No discrimination against foreigne
ries patents on the same terms as citizens.

How Can I Obtain a Patent

the closing inquiry in nearly every letter, describing some invention Which comes to this offlce. A positive answer can only be had by presenting plication consists of a Model, Drawings, Petition, Oath, and full Specinca in. Various official rules and formalitites must also be observed. The
forts of the inventor to do all this business himself are generally without arcess. After great perplexity and delay, he is usually glad to seek the aid of persons experienced in patent business, and have all the work done ove ajxin. The best plan is to solicit proper advice at the beginning. It the parties consulted are honorable men, the inventor may sately confide his
deas to them: they will advise whether the improvement is probably pat-

How Can I Best secure My Invention?

This is an inquiry which one inventor naturally asks another, who has had
so ne experience in obtaining patents. His answer generally is as follows ad correct:
Jonstruct a neat model, not over a foot in any dimension-smaller if pos ble-and send by express, prepaid, addressed to MONN \& Co., 37 Park Row eipt thereof, they will examine the invention carefully, and advise you as t satentability, free of charge. ©r, if you have not time, or the means a and, to construct a model, make as good a Den and ink sketch of the im rovement as possible, and send by mail. An answer as to the prospect of
tent will be received, usually by return of mail. It is sometimes best ave a search made at the Patent office; such man. .

of an application for a

Preliminary Examination.

In order to have such search, make out a written description of the inven ton, in your own words, and a pencil, or pen and ink, sketch. Send thes ue time you will receive an acknowledgment thereot, followed by a writ en report in regard to the patentability of yonr improvement. This specia
earch is made with great care, among the models and patents at Washing on, to ascertain whether the improvement presented is patentable.

To Make an Application for a Patent.
The applicant for a patent should furnish a model of his invention, if sus nical production of which his composition consists. These should be securely packed, the
nventor's name marked on them, and sent by express, prepaid. Small modas, from a distance, can often be sent cheaper by mail. The safest way to emit money is by a draft, or postal order, on New York, payable to the or
er of MUNN \& Co. Persons who live in remote parts of the country cal sually purchase drafts from their merchants on their New York corre pondents.

Caveats.

Persons desiring to file a caveat can have the papers prepared in the short st time, by sending a sketch and description of the invention. The Govern on application by mail. Addres or patents and caveats is furnished gra
UUNN \& CO., 37 Park Row, New York.

Reissues.

A reissue is granted to the original patentee, his heirs, or the assignees c entire interest, whecific ertence, accident, or mistake wibhout any fraudulent or deceptive inten verten
tion.
A pa ach distinct mar, at his option, have in his reissue a separate patent to by paying the required fee in each case, and comnlying with the other re 7 Park Row, for fanl particulars.

Trademarks.

Any person or firm domiciled in the United States, or any firm or corpor ocitizens of the United States, may register their disigns and obtain pro articulars address MUNN \& Co., 37 Park Row New York.

Design Patents.
Foreign designers and manufacturers, who send goods to this country, may A patent for a design may be granted to any person, whether citizen or aien, tor any new and original design for a manufacture, bust, statue, alto en, silk, cotton, or other fabrics; any new and original impression, orna ment, pattern, print, or picture, to be printed, pai
aced on or worked into any article of manufactur
Design patents are equally as important to citizens as to foreigners. For
ull particulars sead for pamphlet to MUNN \& Co., 37 Park Row, New York.

Rejected Cases.

Rejected cases, or defective papers, remodeled for parties who have made applications for themselves, or through other agents. Terms moderate.

European Patents.

Mund \& Co. have solicited a larger number of European Patents tha any other agency. They have agents located at London, Paris, Brussels and the cost of procuring patents in all countries, sent free.
MUNN \& Co. will be happy to see inventors in person, at their efflice, or to such consultations, opinions, and advice, no charge is made. Write plain do not use pencil, nor pale ink: be brief
All business committed to our core,

and strictly confdential.

In all matters pertaining to patents, such as conducting interferences procuring extensions, drawing assignments, examinations into the validity
of patents, etc., special care and attention is given. For information, and for pamphlets of instruction and advice,

MUNN \& CO.
 PUBLISHERS SCIENTIFIC AMERICAN,
 37 Park Row, New York.

[OFFICIAL.]

Index of Inventions

For which Letters Patent of the United States were granted
for the week ending May 21, 1872, and each bearing that date.

Iron sponge, T. S. Blair
Kinn, H. Aken..
Knobs to
Knobs to their spindles, attaching, Gill and Baker
Kamp cooking apples, attaching, E. M. and J. E. Mix
Lamp cooking apparatus, J. G. Covey
Lamp, hydrostatic, E. D. Kendall.....
Lamp, Silber and White.............
Lamp, hycrostatic safety, H. S. Whitfeld
Last, shoe, w. J. B. Mills..............................
Latch, door, S. W. Skinner
Leather, mede of covering rounded articles with, J. H. Osgood.
Lock, permutation, J. T. Taylor
Loom, J. Hillsley...................
Medical compound, W. H. Barker.
Medical compound, H. D. and I. D.
Medical compound or bitters, J. Frechette.....................
Medical compound, J. H. Wilson
Metal bars, machine for upsetting, A. Kloman, (reissue)
Meter, water and gas, A. and W. Guthrie......................
Meter, water and gas, A. and W. Guthrie
Meter, water, H. Olney...
Milk cooler, E. L. Matteson.
Mill, feed, G. W. Gibson.
Miter box, C. Caton
Mop head, A. Field.
Packing, manufacturing india rubber piston, I. B. Harris Packing for steam engine, manufacture of, J. Glanning, (reissue).
Packing for journals, Packing for journals, lubricating, J, T. Robinson............
Packing, piston and valve rod, G. Totley a
Paste, preserving and making, G. G. Noah
Pavement, wood, M. Flanigan.
Pen holder tip
Pencil, lead, T. H. Müller....
Photographic lens, R. Morrison.
Pipe elbows, machine for
Pipe elbows, machine for making, L
Piping, machine for making, J. Ayre
Plane, bench, M. Chittenden
Planter, seed, A. Richards.
Plow, draft attachment to, s. H. Dailey
Plow, B. F. Baker
Plow, B. F. Baker
Plow, J. S. Hall..
Plow, J. S. Hall...............
Plow, wheel, W. c. McCook.
Plow,
Plow, H. B. Smith
Printer's block, use of casein
Pruning shears, D. Keethler
Pump reel, sand, H. T. Hunt
Pump, steam vacuum, J. M. Morehead
Pump handle bracket, D. M. Messle
Pump hande bracket, D. s.
Rack, clothes and hat, O. F. Burgess
Razor strop, S. M. Briggs
Reel, velvet, P. Jürgens.
Reel, velvet, P. Jürgens.......
Roaster, coffee, G. W. Merrick
Rope, machine for untwising and cat
Rope band, coupling for, H. Babce
Sand and gravel separating machine, N. J. Keller
Sash holder, A. Maxwell.
Sash holder, W. Patton.
Sash holder, W. Patton.
Sash balance, B. Frazee.
Sash holder, I. Buckman
Saw teeth, circular, N.
Saw mill, N. Johnson.
Saw, pulley for band, W. H. Doane
Saw mill, dog for,
Saw mili, dog for, D. Chase...............
Sawing machine, Schaumloeffel and Davi
Saws, machine for dressing the teeth of circular, J. Lough
Screen frame for window, J. Jackson...
Sewing machine, treadle for, G. Lowden
Sewing machine, J. Speirs.,
Sewing machine,
Sewing machine, rufter for, E. J. Toof.........
Sewing machine case, G. Heckel
Sewing machine, corder for, H. Horn (reissue)
Sewing machine, w. G. Beckwith.................
Sewing machine, bobbin winder for, G. A. Brady
Sewing machine, corder for, Price and Harris
Sewing machine, hemmer for, S. A. Gage...
Sewing machine, tuck marker fur, R. G. Bu
Sewing machine, tuck marker fur, R . G. Bushine, thread cutter for, M. Harr
Ser
Sewing machine, hemmer and tucker for, w. N. Marti
Sheave for wire rope, R. Long...............
Shoes, machine for goring,
Shoes, manufacture of, J. E. Hayes
Signal box, fire alarm, G. Floyd
Signs, illuminating, C. F.
Skating wand, E. S. Todd.
Soda water apparatus, attachment to, M. S. Andrews
Soldering tools, heatigg plate for heating, L. McMurray
Soldering tool, J. A. Tillery......
Soles from sides of leather, method of cutting, S. Boyd
Spark arrester, J. R. Moffltt..................................
Sinning frames, tool for grooving the rings of, C. E. Trowbridge
Stalk chopper, A. Richards.
Stand, pickle and cruet, T.
Steam trap, J. M. Morehead..........................
Stone, etc., rotary cutter for molding, R. Ardrey.
Stone, etc., rotary cutter for
Stool, folding. C. B. Turnbull.
Stove, heating, E. B. Smith
Stove pipe fitter W. Volt
Swing, baby, Wygant and Pauliso
Table rail, extension, L. Lotz..
Telegraph, printing, J. E. Smith
Telegraph, printing, J. E. Smith.
Thrashing and separating machin
Tiles, machine for finishing drine, field, J. G. Mehler, Jr Tilting machine, B. Mathews..
Tin scrip, utilizing, E. Hirschberg
Tobacco box, Thomas and Pikinto
Toy pistol, Haviland and Guan
Trunk fastener, B. Andrews
Trunk, device for locking and strapping, J. K. Mayo Tubes, blast device for facilitating the we
Tunnelling machine, A. W. Von Schmidt. Turntable for changing car truck, Newberry, Dean, and McMilla Tweer for forge, etc., water, J. Frearson
Type setting machine, J. W. Farnham.
Valve, flexible lip formed, E. Field.
Vapor from hydrocarbon, burning, J. Kidd, (reissue) Vehicle, spring coupling for, H. P. Dolson.
Vehicle, ifith wheel for, S. Moreland...........
Vessel in port, method of ballasting, Demarti Vessel, mast and spar for, W. T. Griffenber
Wagon, epring seat for, G. W. Bennett. Wagon, epring seat for, G. W. Bennett.
Wagon, end gate for, C. W. Falleck.....

Wagon axle, H. T. Briggs............
Wagon brake lock, S. S. Hurlbut
Washstand and writing desk, combined, J. J. Arnaud.................................964
Washing machine, M. F. McIntyre... 126,863
Washing machine, J. K. Leedy....
Washing machine, N. T. Worthley
Washing machine, E. Willcox....
Washing machine, W. F. Harper.
Watch, dust protector for, P. M. Sta tzel
Water main, tap for, J. F. Brie:
Water meter, w. o. Wakefield. $\begin{array}{r}127,075 \\ .127,133 \\ \hline\end{array}$
, tap K. J. . Brea...166,96
Water wheel, E , Wakedi... 127,12
Water wheel, W. A. Terry
Water wheel, W. A. Cro well. 126,996
Wheelbarnow, dumping, G. H. Kanmacher................................. 12, 12,065
Whip socket, M. Alannigan...127, 135
Windmill, E. Heath .. 126
Winđinill, Buck and Smith...........
 DESIGNS PATENTED.
5,860.-Carpet.-J. Barreth, New York city.
5,861.-SEwING MaCHINe BED.-W. G. Beckwith,
5,862.-CARPET.-E. Demoussy, Paris France.
5,862.-CARPET.-E. Demoussy, Paris, France.
5,863.-Cooking Range.-J. Magee, Chelsea, Mass
5,864. -OIL Cloth.-C. T. and V. E. Meyer, Lyon's Farms, N. J.
5,8672 . FLoor Cloths.-C.T. and V. E. Meyer, Lyon's Farms, N. J.
5,873.-Tea SERvice.-W. Parkin, Taunton, Mass.
5,874 and 5,875 .-Hirching Post.-R. Wood, Phila
TRADE MARKS REGISTERED
821.-YEAST.-Fieischmann \& Co., ,Riverside, o.
822.-TABLE SAUCE.-Halford Sauce Company, Boston, Ma
823.-SMALL BEER. - J. N. Hammond, Wayland, Mass.
825.-TEA.-S. A. King,New Yoik city.
826.-PRINTING PResses.-V. E. Mauger, New York city.
827.-Oils, ETT.-J. C. Moore \& Co ., Philadelphia. Pa.
828.-Clothina And Ftrnishina Goods.-J. Seligman, Pontiac, Mich.
828.-Clothina and Furnishing Goods.-J. Selig
829.-Soda Water.-S. F. Simes, Philadelphia, Pa,

833.-Drugatists' 'Sundrids.-R. H. Watson, P
832.-PAINT Dryer.-A. Wheeler, Boston, Mass

For Copy of Claim of any Patent rssued within 30 years..................... $\$ 1$ as the Claim covers,from $\$ 1$
upvoard, but usually at the price above-named
The tull Specifcation of any petent issuedsince Nov. 20, 1866 at which trme
the Patent oflce commenced printing them................... 1.25
the Patent offte commenced printing them......................... $\$ 1 \cdot 25$
offictal Copies of Dravoings of any patent issued since 1835, we can supus.
at a rsasonable cost, the price devending upon the amount of labor
invooved and the number of viexos.
in each case, may be had by
addressing
WIUNN \& CQ.
Patont Bollcitors. 3 P Park Row. New York.
APPLICATIONS FOR EXTENSIONS.
Applications have been duly fled, and are now pending, for the extension
of the following Letters Patent. Hearings upon the respective applications are appointed for the days hereinafter mentioned: 20,727.-Cartridge.-G. W. Morse. June 12. 1872 21,185.-Steam Heating.-H. G. Bulkley. July 31,1872 21,194.-Cuttina Miters.-S. W. Hall. July 31, 1872. 21,207.-Reaping Machine.-C. W. and W. W. Marsh. July 31, 1872 21,233.-Carpet Sweeper.-H. H. Herrick. July 31, 1872 .
21,272.-Metaluic Bale Tie.-I. C. Plant. August 7, 1872 . 21,286. - Tempering Wire and Stbel. -H. Waterman, August 7, 1872. EXTENSIONS GRANTED.
28,512.-Car Whexl.-S. P. Smith.
20,238.-SASH Fastener. - F. W. Brockseiper and J. B. Sargent.
$20,233,-$ Worinal Ships
20,227.-HARVESTER.-J. S. Trosel
20,2k7.-Harvester Reei.-J. S. Troxel

Value of Extended Patents.

Did patentees realize the fact that their inventions are likely to be more productive of proft during the seven years of extension than the firs
ull term tor which their patents were granted, we think more would avail themselves of the extension privilege. Patents granted prior to 1861 may be extended for seven years, for the benefit of the inventor,or of his heirs in cas of the decease of the former, by due application to the Patent OHtce, ninety
days before the termination of the patent. The extended time inures to days before the termination of the patent. The extended time inures to
the benefit of the inventor, the assi;nees under the first term having no rights under the extension, except by special agreement. The Governmen fee for an extension is $\$ 100$, and it is necessary that good professional service be obtained to conduct-the business before the Patent otllce. Full informa

FOREIGN PATENTS---A HINT TO PATENTEES.

It is generally mush better to apply for foreign patents simultaneously with the application in the United States. If this cannot be conveniently done, as little time as possible should be lost after the patent is issued, as
the laws in some foreign countries allo m patents to any who first make the application, and in this way many inventors are deprived of valid patent for their own indentions. It should also be borne in mind that a patent is issued in England to the first introducer, without regard to the rights of the real inventor; therefore, it is important that all applications should be
entrusted to responsible agents in this country, who can assure parties that their valuable inventions will not be misappropriated. The population of Great Britain is $31,000,000$; of France, $37,000,000$; Belgium, $5,000,000$; Austria 36,000,000; Prussia, 40,000,000; and Russia, 70,000,000. Patents may be secured
by American citizens in all ol these countries. Mechanical improvement by American citizens in all ol these countries. Mechanical improvement
of all kinds are always in demand in Europe. There will never be a bette of all kinds are always in dime
timethan the present to take patents abroad. We have reliable business patents secured in foreign countries by Americans are obtained through our Agency. Address

MUNN \& CO.
3y Park Row, N. \mathbf{Y},

June i, 1872.$]$
§ritutific Gumturat.

PRINCPS' MRTALLIC PaINT
BEST \& CHEAPEST PAINT

 midik. All packaģes are marked with name and trat
$\mathrm{T}_{\text {Ore especial }}^{\text {UNGSTATE OF IRON OR WOLFRAM }}$
 circular side Valve-To Rall ond Managir and

ORIGINAL PATETT AGENCY,
 A NEW HEALTH MONTHY,

AMERICAN
Newspaper Directory For 1872
now ready. PRICE fIVE Dollars.

PRORTLIGR PUMRS

AUSTRALIAN COLONIES.

 planing anol Matching

Machinery,

Machinists' Tools.

Cold Rolled Shafting.

Sturtevant Blowers

$\overline{B_{B}} \mathbf{B}$

MAN AFACTURINGG SITES-Cheap. Wa
TON, Ser and Rain Facilities. Adress JAMES STRAT
Toard Trade, Bordentown, N. J. EDDWARD H. HOSKIN,
CONSULITING AND ANALYTICAL
CHEMIST, FOOT LATHES, Back Geared and Plane Chucks, Slide Rest, Bac. Just the article for Sewing
Machines and Shoe Factories. I.SHANK, Baltimore, Ma. A NEW COLONY IN KANSAS!
 THE AMERICAN CO $\overline{\text { TONIST }}$ AND HOMESTEAD

RISDON'S IMPROVED Turbine Waier Whed
 at seven-eighths gate.
send for icrcular to
T. H. RIIDON $\&$ CO.,
Mount Holly, New Jersey.
CADMIUM, NICKEL, BISMUTH, PLAT

Flonining Mill near St. Douis, Mo FOR SALE
A FIRST CLASS Merchant Flouring Mill
 running hourly between.
The surrounding country produces, in an eminent de-
gree, the quanlity of wheat which has made the St. Louis gree. the quality or wheat which has made the St. Louis
brands or four so framons. Besides entiving the
advantages of st Louis proprr, such as facilities for
 wheat at lowen: ar loces supply of ex ecellent
Louis; cheaper coar ofthe best quality; lesser

 Liberal terms can be given.
eshisis chance seldomo ottired, and to a practical and
esponsible party cannot fail to prove an excellent in-

 BLAKE'S PATENT STEAM PUMP.
 $S^{\text {END FOR }}$ CIRCULAR. 51 CHARDON STM, 79 LIBERTY ST ST,

THE VIENNA WORLD EXPOSITION
 Exposition. For the purpose of exhibition new inven-
tionsin iall brachenof machinery, they are now forming
a Collective Exhibition of

0 TV S safety hoisting Machinery. No. 348 BROADWAYS, AEW YORS.

NEW PATTER
 $\mathbf{P}^{\text {ORTABLE STEAM ENGines, combin }}$

46. Cortandits. Ne Noatorke

NEW YORK STENCIL WORKS, 87 NASSAU ST., NEW YORK.

 Buy Barber's Bit Brace

- தIEA N PUMPING MAGHINERY

$\mathbf{M a}_{\text {are }}^{\text {ASOS pat }}$ friction clutches

Cond

1832. SCHENCK's Patent 1871 WOODWORTH PLANERS
 \bar{W} OOD.WORLING MACHINERY GEN.

Milling Machines.

 $\mathrm{R}^{\text {ICHARDSON, MERIAM } \& \mathrm{CO}}$.

 CIRCULAR SAW SENCHES.$\overline{B^{\text {UERKS }} \text { WATCHMANS }}$ TMME DE-

Analrave's Pcitents.

 Al itimiayfiple, Durabio, and Economical.
$\overline{\mathrm{TE}} \mathrm{ONLY}$ MODE of Disposing of Patents.

$$
=
$$

 N. H.

$\$ 10010250$ Oer month guaranteed gio

 M MUFACTURERS OF FIRST CLAASA
M

$\mathrm{H}_{\text {Rip }}^{\mathrm{AND} \text { Sind }}$ SA MiLLL- Mo work of 3 men.

HYDRAULIC JACK.

THE HEALD \& SISCO

Patent Centrifugal Pumps, RE STED ALL OVER THE UNTTED STATES

$\$ 10$ from 50 cts.
 $\xrightarrow{\text { ATHi ChUCKS-HoRTON'S PATENG }}$

Water PowABLE

The Wheat Fiell of America!
Healthful Climate, Free Homes, Good Markets
THE NORTHERN PACIFIC RAILROAD offers for sale its Lands in Central and Western
Minnesota, embracing: 1 . The best of Wheat Land;
2. Excellent Timber for the Mill, the Farm, and the Fire; 2. Excellent Timber for the Mill, the Farm, and the Fire;
3. Rich Prairie Pasturage and Natural Meadow, watered
by clear Lakes and running streams-in a Healthful Ciiby clear Lakes and running streams-in a
nate, where Fever and Ague is unknown.
Grain can be shipped hence by lake to market as
cheaply as from Eastern Iowa or Central Illinois. Cars now run through these Lands from Lake Superior to
Dakota. Price of land close to track $\$ 4.00$ to $\$ 8.00$ per acre; further away, $\$ 2.50$ to $\$ 1.00$. Seven Years' Bonds, now selling at par, received for land at $\$ 1.10$. No other unoccupied Lands present such advantages to
settlers. SOLDIERS under the New Law (March, 1872) get 160 acres
residence.
TRANSPORTATION AT REDUCED RATES furnished from all principal points East to purchasers of teads. Purchasers, their wives and chilen, carried free over the Northern Pacific Road. Now is the time ernment Homesteads close to the track.
Send tor Pamphlet containing fullinformation, ma
LaND DEPARTMENT, NORTHERN PACIFIC RAIL
ROAD, ST. PAUL, MINN.,

A RAILROAD WATCH,

completely demoralized by the continuous jar of th train. To overcome this difflculty has long been a probAmerican Watch Co., of Waltham.
This watch is made in themost substantial manner, on
the most approved principles, and combines all the relator, by which the slightest variation can be easily elied on to run accurately, wear well, and ENDURE THE HARDEST USAGE, without any derangement trade and the public as the
PRICE IN THIS MARKET.
The full trade-mark engraved on the plate of eack ${ }^{66}$ AMERICAN W ATCH CO. Crescent St., Waltham, Mass.," and it is distinctively known as the CRESCENT st.

ar ale by all leqing Jewelers

ROBBINS \& APPLETON,
General Agents,
1 bond St., N. Y
Silicate Wall Slating.

Swain Turbine.
 W ILL DO TEN PER CENT MORE NORK

THE SWAIN TUREINE CO. North Chelmasford, Mass. (3)

 CARPENTER These Books in The Art of
 HANDBOOK ${ }^{\text {to anybody, or will refund money. }}$ H. W. HoLLY, 191 Fulton St. N.Y.

LUBRICATRORS D. HYiquave CODD \& RAFFERTY, Manufacturers o

Machinists' Tools MACHINR SHOP TO RRNT

THE BAND SAW!

VENEERS
HARDWOOD LUMBER.

WE warrant every Steam Gauge ring our name and numbered
FOR TWO YEARS.
FOR TWO YEARS.
UTICA Siteuars. GAUGECO..Utica, N.Y.

THE Union Iron Mills, Pittsburgh, Pa. The

G EORGE PAGE \& CO., Manufacturers of
 Patent Circular. Gang, Mulay, and Sash
SA WILS
NITh
OUTHITS combining all reliable improvements-Grist Mills; Shin
gie Mochnes; Wood Working and General Machinery.
Send for Descriptive Cataogues. Address No. 5 W.
Schroed or Street, Baltimore Ma.

MORRIS, TASKER\& CO., Ammican Charcoal Irou Boiler Thbes. Wrought-Iron Tubes and Fittings,
FOR GAS, STEAM, WATER AND OIl.罧 Steam and Gas Fitters' Supplies, Machinery
PAT. SLDID EVERY WGEELSARD OII

Steam Super-Heaters.

I RON PLANERS ENGINE LATHES

COTTSARMORY TESTING MACHINE-

Diamond Pointed STDAN DRIITS

T HEadoption of new and improved applica h tions to the celebrated Leschot's patene, hape mad
these drill more fuly adaptable to every variety

WIRST CLASS TRAVELING SALESMAN

WIRE ROPE.

JOHN A. ROEBLING'S SONS,

PATENT SAFETY
Steam Engine Governors and Water Gauges.
AUG. P. BRown, Manfr, st Lewistrret, New York.

Canadian Inventors,

[^0]
L.W.Pond---New Tools. EXTRA AEA VY AND IMPROVED PATTERSS

 American Sam Co., Manufacturers of

PORTLAND CEMENT,

H.W.COLLENDER SUUESHELAN\& COLLENDER. 738 Broadway, New York.
STRATED PRICE-IIST SENT BY MAIL.
Working Models

Prig tid
SCIENTIFIC AMERICAN.
The Best Mechanical Paper in the World. A year s numbers contain over 800 pages and several
undred engravings of new machines, useful and novel ventions, manufacturing establisbments, tools, and The SCIENTIFIC AMERICAN is devoted to the inter ests of Popular Science, the Mechanic Arts, Manufac-
tures, Inventions, Agriculture, Commerce, and the Industrial pursuits generally, and is valuable and instruc -
tive not only in the Workshop and Manufactory, but also
the Household, the Library, and the Reading Room.
To the Mechanic and Manufacturer ! No person engaged in any of the mechanical pursuit shoula think or doing without the SCIENTIFIC AMERI
CAN. Every number contains from six to ten engravings
of new machines and inventions which cannot be found of new machines and inventions which cannot be found
in any other publication.
Chemists, Architects, Milluorights and Farmers! Chemists, Architects, Milluorights and Farmers! The SCIENTIFIC AMERICAN will be found a most
useful journal to them. All the new discoveries in the science of chemistry are given in its columns; and th interests of the architect and carpenter are not over
looked, all the new inventions and discoveries apper taining to these pursuits being published from week to week. Useful and practical information pertaining to
the interests of mill wrights and millowners will be found the interests of millwrights and millowners will be found
published in the ScIENTIFIO AMERICAN, which information they cannot possibly obtain from any other source
Subjects in which planters and farmers are interested will be found discussed in the Scientific American many improvements in agricultural implements being
illustrated in its columns. We are also receiving, every week, the best scientific journals of Great Britain, France, and Germany; thus placing in our possession all that is transpiring in me
chanical science and art in these old countries. We shall continue to transfer to our columns copious exinterest to our readers. TERMS
One copy, one year
One copy, six months
Ten coples, one year, each $\$ 2.50$
On copy of Scientific American for one year, ${ }^{2.0}$
one copy of engraving, "Men of Progress," - 10.00
One copy of Scientific American for one year, 4.0
nd one copy of "Science Record,"
Ten copies of "Science Record," and ten copies
the Scientific A mericar for one year .
CLUB PREMIUMS.
Any person who sends us a yearly club of ten or more
opies, at the foregoing club rates, will be entitled to one copy, gratis, of the large steel plate engraving, "Men of Progress.'
Remit by
Remit by postal order, draft or express.
The postage on the Scientific American is five cents per quarter, payabue at the offce where received. Canada
subscribers must remit, with subscription, 25 cents extra o pay postage.
Address all let

MUNN \& CO.

37 PARE ROW, NEW YORK
THE SSientife American, is pritte with

[^0]: Nider the new Pateent
 For tul particuarsis dadrea munn aco.

