

WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE. MECHANICS, CHEMISTRT, AND MANUFACTURES.

NEW YORK. MAY 25, 1872.

Portable Drilling Machines

In all machine construction, much time and labor ar wasted in drilling holes by hand, for the want of a practical machine driven by power, which would do the work. Our illustration represents three sizes of portable drilling machithes, manufactured by Thorne and De Haven, of Philadelphia, which fulfil the couditions required of a tool for this purpose. They can be bolted to the work to be drilled, as easily as a ratchet brace can be rigged up for hand drilling, and can be driven by power in any position, at any dis tance, and in any direction from the driving apparatus.
Tarred rope is used for Tarred rope is used for
transmitting the power, and transmitting the power, and
is found to be preferable in is found to be preferable in every respe
leather belt.
eather belt.
The operation is as fol lows: The power is trans mitted, to the fast and loose pulleys on the countershaft by means of a flat belt from the line shaft, in the usual way. On the other end of the countershaft isa grooved pulley, which gives motion to the rope which drikes the drilling machine. The pulling side of the. Th pulling side of this rope held in a frame which ro atés on a hollow stud through which the rope passes. The rotation of this frame permits the rope o be led in any direction to the drill. A weighted idler is hung on the slack side of the belt, maintaining the tension and permitting the distance of the drulling machine to be varied at will A weight of only 25 pounds hung there will prevent the rope from slipping on the pulleys when drilling a two and a half inch hole, in the olid, with an ordinary feed When the rise and fall of his weighted idler fal his weighted idler does no ive suffient distance, ad ditional lengths of rope can
be inserted by means of the be inserted by m
couplings used.

couplings used.

All the features of the machine are shown in the engraving. The hight of the post can be altered to suit different lengths of drills and chucks used in the spindle. The radial arm is traveled by a screw and rotated, on the post, by a worm and tangent wheel, ziving great accuracy of ad justment and permitting his adjustment without the his adjustment without the necessity of removing th rope from the cone pulley. The frame carrying the spindle, gears, and cone pulley can be rotated so as to bring this pulley in line for the rope, in whatever position the machine may be. By removing a collar from the bottom of this frame, as shown in the central figure, the spindle can be set to an angle, with the base of the machine, in any direction. By holding the post in the clamp bearing on the side of the base, the machine will drill parallel to the base.
Both the driving apparatus and the drilling machine have been patented in this country and abroad. Any further in formation can be had by addressing Thorne \& De Haven 23d and Cherry streets, Philadelphia, Pa., or J. Austin \& Co, general agents, 168 Fulton street, New York.

Bone Dust as a Fertilizer.
The question is often asked whether boiled bones are worth less, and how much less valuable they are, than those containing the grease. Grease is of no value as a fertilizer, containing the grease. Grease is of no value as a fertilizer,
and its removal cannot diminish the cash value of the bones

The grease may even lessen their value, in so far as bones containing it are less rapidly decomposed.
There is a great difference in bone dust ; the finer it is, the easier it becomes active. According to esperiment, steamed and very finely ground lone dust is almost entirely decomposed in a few months, while coarse, raw bone dust has decomposed but slightly in years, so that it is in this respect ery like wool and leather. On this account a very fine bon ust has a considerably higher cash value than the coarse. When to use bone dust depends not only on the plants but also on the soil. Bone dust contains phosphates and nitro so on the soil. Bone dust contains phosphates and nitro-
 plied.-Journal of Applied Chemistry.

Indium, the Last New Metal.

In making the superphosphate, the bone dust is piled up in a heap, and 30 to 40 pounds of sulphuric acid added to each hundred weight. A hole is made in the top of the pile, and the acid mixed with its weight of water poured in from time to time, and the whole as thofoughly mised as possible. The heap is thon covered with earth and laft antil is it to be used or at least for a few days, then mixed with earth and ap

Indium was first recognized in 1863, by Drs. Reich and Richter, in the zinc blende of Freiberg in Saxony, and by reason of the very char acteristic spectrum afforded, which consisted of two bright blue or indigo bands, the brightest of them somewhat more refrangible than the blue line of strontium, and the other of them somewhat less refrangible than the indigo line of potassium. Since its first discovery, indium has been recognized in one or two varieties of wolfram, and as a not unfrequent constituent of zinc ores and of the metal obtained therefrom, but al oras in a therefrom, but always in a Indeed, indium would apIndeed, indium would appear to be an exceedingly rare element, far more rare than its immediate predecessors in period of discovery. Its chief source is metallic zinc-that of Freiberg, smelted from the ore in which indium was first discovered, containing very nearly one half part of indium per 1,000 parts of zinc. A considerable quantity of indium extracted from this zinc was shown in the Paris Exhibition of 1867; and an ingot fren the Freil erg Museum, weighFreil erg Museum, weighing 200 grammes, or over 7 ounces, has within the last
few days been kindly forfew days been kindly for-
warded by Dr. Richter himwarded by Dr. Richter him-
self, for inspection on the self, for inspection on the
present occasion. To Dr. present occasion. To Dr.
Schuchardt, of Goerlitz, Schuchardt, of Goerlitz, also, the members of the
Institution are indebted for his loan of nearly sixty grammes of metallic indium, and of fine specimens of other rare chemical products, prepared with his well known skill, in a state of great purity and beauty of great purity and beauty. dium is dissolved not quite completely in not quite phuric or muriatic sulwhole of the indium originally present in the zinc is left in the black spongy or flocculent residue of undis-

PORTABLE DRILLING MACHINE.

 gen, plants; so wherever these are wanting in soil, bone dust can gen gas by means of zinc and acid is so well acquainted. Bebe used to advantage. It is not judicious to employ bone dust sides some zinc, this black residue is fourd to contain lead, or other insoluble organic substances in soils which already contain vegetable remains, as, for instance, in boggy and marshy ground, for we may safely assume that in such soils organic matter decomposes only very slowly, or not at all. In practice, bonedust is used on grain and on dry, not marshy, meadows, and especially on potatoes, since by manuring in the hill a smaller quantity of fertilizer accomplishes a more considerable result.The method of applying bone dust is either to mix it with other manure, or sow it broadcast on the field and plow it (for grain), or manure in the hill (for potatoes, corn and beets); r it is mixed with sulphuric acid, and the superphosphate
thus prepared is used in one of the thus prepared is used in one of the above mentioned ways.
sides some zinc, this black residue is found to contain lead,
cadmium, iron, and arsenic, less frequently copper and thallium, and in some cases, as that of the Freiberg zinc, a small proportion of indium. From the solution of this residue in nitric acid, the indium is separated by ordinary analytical processes, based chiefly on the precipitability of its sulphide by sulphuretted hydrogen from solutions acidulated only with acetic acid, and on the precipitability of its hydrate both by ammonia and carbonate of barium. From its soluble salts, metallic indium is readily thrown down in the spongy state by means of zinc. The washed sponge of metal is then pressed together between filtering paper, by aid of a screw press, and finally melted under a flux of cyanide of potassium.

Thus obtained, indium is a metal of an almost silver white color, apt to become faiztly bismuth tinted. It tarnishes slowly on exposure to air, and thereby acquires very much the appearance of ordinary lead. Like lead, it is compact and seemingly devoid of crystalline structure. Moreover, like lead and thallium, it is exceedingly soft, and readily capable of furnishing wire, by the process of "squirting" or forcing. The specific gravity of indium, or $7 \cdot 4$, is very clos to that of tin, or $7 \cdot 2$, and much above that of aluminium
$2 \cdot 6$, and below that of lead, $11 \cdot 4$, and that of thallium, $11 \cdot 9$ In the lowness of its melting point, namely, $176^{\circ} \mathrm{C}$., indium occupies an extreme position among the metals permanent in air, the next most fusible of these metals, namely, tin and air, the next most fusible of these metals, namely, tin and
cadmium, melting at 228°; bismuth at 264°; thallium at 294° cadmium, melting at 228°; bismuth at 264°; thallium at 294°;
and lead at 235°. Though so readily fusible, indium is not and lead at 235°. Though so readily fusible, indium is no than the zinc in which it occurs, and far less volatile than cadmium. Heated as far as practicable in a glass tube, it is incapable of being raised to a temperature sufficiently high to allow of its being vaporized, even in a current of hydro gen.

Indium resists oxidation up to a temperature somewhat be yond its melting point, but at much higher temperature it oxidizes freely; and at a red heat, it takes fire in the air burning with a characteristic blue flame and abundant brown ish smoke. It is readily attacked by nitric acid, and by strong sulphuric and muriatic acids. In diluted sulphuric and mu of hydrogen. Oxide of indium is a pale yellow powder, beof hydrogen. Oxide of indium is a pale yellow powder, be-
coming darker when heated, and dissolving in acids with evolution of heat. The hydrated oxide is thrown down from indium solutions by ammonia, as a white, gelatinous, alum-ina-like precipitate, drying up into a horny mass. The sul phide is thrown down by sulphuretted hydrogen as an orange yellow precipitate, insoluble in acetic but soluble in mineral acids. The hydrate and sulphide of indium, in their rela tions to fixed alkali solutions more particularly, seem to manifest a feebly marked acidulous character. Chloride of indium, obtained by combustion of the metal in chlorine gas, occurs as a white micaceous sublimate, and is volatile at a red heat, without previous fusion. The chloride itself un dergoes decomposition when heated in free air, and the solu tion of the chloridedoes so upon brisk evaporation, with for mationin both cases of an oxichloride.
But the chief point of chemical interest with regard to any newly discovered element, and consequently with regard to indium, is the establishment of its atonic weight; which in the case of a metallic element, is based primarily upon the determination of the ratio in which it combines with oxygen and chlorine. In Cl_{3}, the atomic weight of indium is
$113^{\circ} \mathrm{J}$. -Lecture by Professor Odling, in Mechanics' Magazine.

The Eye

There is no optical instrument maker who does not suc ceed in constructing an apparatus much more perfect in many points than the eye-that marvellous organ, which we are inclined to regard as the masterpiece of vital and organi arch

This sense of sight, which is so far reaching that it give us the power to penetrate infinite space and apprehend the universe, at the same time makes us familiar with the mi nutest objects: this sense, which is the freest and most un circumscribed in its actions-for our sense of touch is limited by the length of our arms, hearing to a few thousand feet
the senses of smell and taste having still greater limitationsthe senses of smell and taste having still greater limitations-
this sense, I say, acts through an agent apparently so imper fectly adapted to its purpose, that recent investigation stand amazed at the idea how by it we receive any intelligi ble impressions. That we do is an evidence of the independence of the mind, and its power to make useful these necessary and imperfect means contact with the outer world, and proves the necessity of educating this sense to quick and precise perceptions in order to correct its faults and p
The eye has the defect of what in physics is called
The eye hat of that is the phe the "averren of a lens have a common focus but rays which pass a certain distance from the center do not converge at the same point, but pass beyond. The nearer they come to the circumference, the greater the focal distance, if the lens is rigorously spherical. In good optical instruments, this defect is scarcely perceptible, the rays being centralized by flattening the lens. Again, the eye is not spherical, but has an elliptical curve. This was for some time thought to bs an advantage, but the contrary is the truth. And this curve is not even well " centered," that is, placed symmetrically to the visual axis like a lens, but is changed and twisted in every direction. From this results what has been called the "astigmatism" of the eye, which consists in not being able to see at the same distance a vertical line with the same dis phenomenon has attracted the attention of all oculists, as it phenomenon has attracted the attention of all oculists, as it
sometimes constitutes a real disease of the eye. Again, the retina of the eye has spots where it is entirely blind to impressions of light. But is this eye, which is unsymmetrical, ladly centered, blind in spots, at least perfectly translucid? Not at all. The cornea and crystaline lens of the eye are are not absolutely limpid, as appears when examined through an intense blue or violet light, which renders it fluorescent. This phenomenon is due to the traces of a sub tance analogous to quinine, a body which possesses in the highest degree the property of fluorescence, that is, of emit tiog a light of its own, under the excitement of blue or violet composition, but has a crystaline structure of siz branches

This is the cause of the stars appearing to us with rays. Al attempts to explain this phenomenon were vain, until it was hat tho be in the visual organ itself. It is for this reason be double or triple to some persons.
These facts are enough to show to any one how prone the untrained eye must be to error and self deception, and that see is not a physical but a mental act. In infancy, the ey aided by the hands or touch to acquire experience of the ature and consistency of things; later in life, the eye a erts its superiority by instructing the hands to perform in enious and cunning work. The two senses seem thus t lends to sight material aid and support. The eye refines and ends to sight material aid and support. The eye refines and
gives intelligence to the material sense of touch, so that, when sight is wanting, touch takes its place and performs it duties.
The eye in its direct and steady look embraces but a smal compass of actual sight; in fact, we clearly see but a small point, which comes just in the focus of the eye; and it is owing to a quick vibratory movement of the eye that w Professor John H. Niemeyer

PATENT INFRINGEMENT CASES.

United States Circuit Court-Southern District of New York.
Rubber Tip Pencil Company vs. S. D. Hovey et al.
This was a suit in equity brought for an alleged infringe ment of the patent granted to J. B. Blair, July 23, 1867, fo rubber heads for pencils. The nature of the patent and the facts are fully set forth in the opinion of the court.
Benedict, Judge:
This action is founded upon a patent for rubber heads for
ead pencils, issued to J. B. Blair, dated July 23, 1867, and lead pencils, issued to J. B. Blair, dated July 23, 1867, and
umbered 66,938 . The novelty of the invention and the vanumbered 66,938 . The novelty of the
The proper construction of the patent is the question first解: The specification states the invention to be a new and useful cap or rubber head to be applied to lead pencils for the purpose of rubbing out pencil marks.
It then describes it as follows: "The nature of the invenIt then describes it as follows: "The nature of the inven-
tion is to be found in a new and useful improved rubber or rasive head for lead pencils, and consists in making the same有 cil or a tenon extending from it. $* * * * *$ The said head may have a flat top surface, or its top may be of a semicircu-
lar or conical shape, or any other that may be desirable. lar or conical shape, or any other that may be desirable.
Within one end of the same head, I form a cylindrical or other proper shaped cavity. This socket I usually make about two hirds through the head and axially thereof; but, if desira head. The diameter of the socket should be a very little smaller than that of the pencil to be inserted in it. The
elastic erasive head so made is to fit upon a lead pencil at or elastic erasive head so made is to fit upon a lead pencil at or near one end thereof, and to be made so as to surround the
part on which it is to be placed, and to be held thereon by part on which it is to be placed, and to be held thereon by
the inherent elasticity of the material of which the head is the inherent elas
"The head is to be composed of india rubber, or india rub ber and some other material which will increase the erasive properties, such as powdered emery for instance."
The article is further described by drawings,
The article is further described by drawings, which, the specification states, " exhibit the elastic head so made as to cover the end as well as to extend around the cylindrical
sides of the pencil; but it is evident that the contour of the said head may be varied to suit the fancy or taste of an artist or other person, and I do not limit my invention to the precise forms shown in the drawings, as it may have such or any other convenient for the purpose, so long asit is made so as to encompass the pencil and present any erasive surface ates that the elasto ried not only to lead pencils, but to ink rasers and other articles of like character
The claim is for " an elastic erasive pencil head made sub f this language, it is to be noticed that the invention is not tated to be a combination, but a single article of manufac ture-namely, an elastic erasive pencil head. The peculiari-
ty in this article, by reason of which the inventor supposes himself entitled to secure it as his own, is not stated to con sist in its elasticity; that is a quality of the material to be used, which is india rubber. Nor does it consist in erasive capacity; that, also, is solely
the article is manufactured.
An effort has been made to show that the erasive capacity the Blair head is increased by means of certain swells or projections on the sides of the head, which are portrayed in
the drawings and supposed to be indicated in the specification as a feature of the invention claimed; but I find no language which can fairly be said to convey the idea that such swells or projections form a part of this invention. On the contrary
the description states that the heads may be of any conve ne description states that the heads may be of any convenient external form, and expressly declares that the inven-
tion is not limited to the precise forms shown in the drawings, but may have any convenient form "so long as it is made to but may have any convenient form "so long as it is made to
encompass the pencil and present an erasive surface about the sides of the same." The phrase last quoted from the specification discloses what is the real and only feature of
the article in question upon which the right to it is based the article in question upon which the right to it is based and the characteristic is one of form,
in the specification external form.
The characteristic form which the inventor claims to have invented is, broadly, any form which will enable the rubber to encompass a pencil, ink eraser, or other article of erasive surface about the sides of the same" add nothing to
the description, as it is impossible to have a piece of rubber encompass a pencil, ink eraser, or other article of similar character without presenting an erasive surface about the
sides of the same. From this form which the inventor gives to a piece of rubber-otherwise to be of any convenient form-and from this form alone, does the article derive its value, as distinguished from rubber in any other
form. By means of this form, any person is enabled easily to attach the rubber to a pencil, ink eraser, or other article of similar character, and the only useful result attained by
the invention in question is that the head can be so easily the invention in questio

Now, what is it that accomplishes the useful result at tained by the Blair pencil head? Simply the hole made in In it to constitute such a pencil head as Blair's sith a cavity n it to constitute such a pencil head as Blair's specificatio be round, square, or any other shape. It may go through o be round, square, or any other shape. It may go through or
partly through the piece of rubber, and it may be of all
sizes. The article sought to be secured by thi sizes. The article sought to be secured by this patent,
briefly and yet, as I think, fully described, consists, therebriefly and yet, as I think, fully described, consists, there-
fore, of a piece of india rubber with a hole in it. I am unable to fix any other limitation to the invention by any fai use of the language employed in the specification and
Such an article cannot be the subject of a patent. The elastic and erasive properties of india rubber were known generally designated; and how to make a piece of rubbe encompass and adhere to another article was known to nowing of who had ever seen a rubber shoe. No perso in the knowledge that a piece of rubber could be made to encompass and adhere to a pencil, ink eraser, or other arti le of similar character, by making a hole in it ; nor could an ne be deficient in the skill requisite to make such a hole. I am of the opinion, therefore, that the patent in question annot be upheld for want of invention
This conviction, which I am anable
unnecessary for me to express any opinion upon the ques unnecessary for me to express any opinion upon the ques
tion of abandonment so largely discussed at the hearing nor to determine whether the patent in question is for the same invention described by Joshua Gray in his application
for a patent, and by others who have been relied on by the for a patent, and by others who have
defence as showing prior invention.
A decree must be entered, dismissing the bill with costs. United States Circuit Court-Northern District of New Yorle. Jacob E. Buerk vs. Dennis Valentine.
This was a suit in equity on two patents for watchmen' ime detectors. Judge woodruff decides that both com dainant's patents are valid, and that both were infringed by his country. The patented improvements (sometimes called by the trade watch clocks and watch control), are largely used in factories and public buildings, and enable the officers to have a check on the watchman. The watchman carries the and inserts a marking key fastened in the room, so as to mark a paper dial secured inside the detector. This is done tened at each place for that purpose. An inspection of th paper dial, at any time afterwards, will reveal the time and der of the visits.
Decree awarding an injunction and account, as prayed in

Insect Wax of China.

In China, prior to the thirteenth century, beeswax was em ployed as a coating for candles; but about that period the white wax insect was discovered, since which time that arti cle has been wholly superseded by the more costly but in comparably superior product of this insect. The animal feeds on an evergreen shrub or tree (Ligustrum Unidum) which is found throughout Central China, from the Pacific to Thibet.
Sometimes the husbandman finds a tree which the insects hemselves have reached, but the usual practice is to stock them, which is effected in spring with the nests of the in cct. These are about the size of a fowl's head, and are re moved by cutting off a portion of the branch by which they are attached, leaving an inch each side of the nest. The
ticks with the adhering nests are soaked in unhusked rice water for a quarter of an hour, when they may be separated. When the weather is damp or cool, they may be preserved for a week; but, if warm, they are to be tied to the branch es of the tree to be stocked without delay, being first folded between leaves. By some, the nests are probed out of their seats in the bark of the tree without removing the branches
At this period they are particularly exposed to the attack of birds, and require watching.
In a few days after being tied to the tree, the nests swell, and innumerable white insects the size of nits emerge and spread themselves on the branches of the tree, but soon with one accord descend towards the ground, where, if they find any grass, they take up their quarters. To prevent this the ground beneath it is keps bare, care being taken also that their implacable enemies, the ants, have no access to the tree. Finding no congenial resting place below, they reascend and fix themselves to the lower surface of the leaves, where they remain several days, when they repair to the branches, perforating the bark to feed on the fluid with in. From nits, they attain the size of lice; and having com pared it to this, the most familiar to them of all insects, ou Chinese authors deem further description superfluous. Early in June, they give to the trees the appearance of hoar frost being changed into wax. Soon after this, they are scraped off, being previously sprinkled with water. If the gathering be deferred till August, they adhere too firmly to be easily removed. Those which are suffered to remain to stock trees the ensuing year secrete a purplish envelope about the last of August, which at first is no larger than a grain of rice but, as incubation proceeds, it expands and becomes as large as a fowl's head, when the nests are transferred, in Spring, to other trees, one or more of each, according to their size and vigor, in the manner already described. In being scraped from the trees, the crude materialis freed from its impurities, probably the skeletons of the insects, by spreading it on a strainer, covering a cylindrical vessel, which is placed in a cauldron of boiling water; the wax is retained in the former vessel, and, on congealing, is ready for market. The pel-lat or white wax, in its chemical properties, is analogous to pu rified beeswax and also spermaceti, but differing from botiz being in my opinion an article perfectly sui generis. It is perfectly white, translucent, shining, not unctuous to the touch, inodorous, insipid, crumbles into a dry, inadhesive felspar; melts at 100° Fahr.; insoluble in water; dissolve
in essential oil, and is scarcely affected by boiling alcohol, the acids or alkalis
The aid of analytical chemistry is needed for the proper elucidation of this most beautiful material. There can be no doubt it would prove altogether superior in the arts to purified beeswax. On extraordinary occasions, the Chinese employ it for candles and tapers. It has been supposed to be identical with the white wax of Madras; but as the Indian has been found useless in the manufacture of candles, it cannot be the same. It far excels. It far excels, also, the vegetable wax of the United States (Myrica Conifera).
Is this substance a secretion? There are Chinese who regard it as such-3ome representing it to be the saliva and others as the excrement of the insect. European writers take nearly the same view; but the best native authorities expressly say that this opinion is incorrect, and that the ani mal is changed into wax. I am inclined to think that the insect undergoes what may be styled auraceous degeneration its whole body being permeated by the peculiar product, in the same manner as the coccus cacti is by carmine. It costs at Ningpo from 22 cents to 35 cents per pound. The annual product of this humble creature in China cannot be far from 400,000 pounds, worth more than $\$ 100,000 .-D r . D . J . M a c$ gowan.

THE NEBULAR HYPOTHESIS.

Professor John Fiske, of Harvard University, recently de livered a very interesting lecture on the above subject at th Cooper Institute in this city, from which we derive the fol lowing:
The lecturer began by mentioning the planetary revolu tions which have become so familiar to us that we commonl overlook them altogether through sheer inattentiveness, failing to realize their significance, though their harmonious re lations, as Laplace has shown, prove that the various mem
bers of the solar system have had a common origin. The clue to that common origin may be sought in facts which are daily occurring before our very eyes. Every member of our planetary system is constantly parting with molecular ing out heat into surrounding space; and, althoưgh the ing out heat into surrounding space; and, although the
loss is temporarily made good by solar radiation, it is not loss is temporarily made good by solar radiation, it is not permanently made good, as is proved by the fact that
during many millions of years the earth has been slowly during many millions of years the earth has been slowly
cooling. The evidence is overwhelming which shows that the earth's surface was once hotter than the flame of an oxyhydrogen blow pipe. The moon also is cooler than form erly, as is shown by the fact that the stupendous forces which once upheaved its great volcanoes are now quiescent The sun, too, is pouring away heat at such a rate that-ac cording to Herschel-if a cylinder of ice 184,000 miles in length and 45 miles in diameter were darted into tho sun every second, it would be melted as fast as it came.
planetary genests.
There is every reason for believing that sun, moon, and Earth, as well as the other members of our system, have been from time immemorial losing more heat than they have received in exchange. As in losing heat all bodies contract, it follows that the various members of the solar system must all be much smaller than they were at the outset. Though they have increased in mass by appropriating large quanti-
ties of meteoric dust, they must at the same time have ties of meteoric dust, they must at the same time have
greatly decreased in volume. Obviously, therefore, if we were to go back far enough, we should find the Earth filling the moon's orbit, so that the matter now composing the moon would then have formed a part of the equatorial region of the earth. At a period still more remote, the earth itself must have formed a tiny portion of the equatorial region of the sun, which then filled the Earth's orbit. At a still earlier date the solar system must have consisted simply of the sun,
which, more than filling Neptune's orbit and consisting of which, more than filling Neptune's orbit and consisting of than of star. In the slow concentration of this solar nebula, the present peculiarities of the solar system may find their explanation. The incessant loss of heat radiated into the surrounding space caused a steady contraction of the solar mass; while, on the other hand, the increasing rapidity of its rotation impressed upon those parts of it nearest the
surface a tendency to fly off into space, or at least to remain behind instead of accompanying the central portion of the body in its contraction. As in every rotating spheroid, this centrifugal force is greatest where the velocity is greatestat the equator-a time came in the history of our vaporous sun when the bulging equatorial portion, no longer able to keep pace with the rest in its contraction, was left behind as a detached ring surrounding the central mass; which ring soon broke up into many fragments of unequal dimensions. At this stage, then, we have a host of satellites surrounding the solar equator, revolving in the direction of the solar ro tation, following each other in the same orbit, and gradually
becoming agglomerated, by gravitative force, into a sphe becoming agglomerated, by gravitative force, into a sphe
roidal body, having a velocity compounded of the several roidal body, having a velocity compounded of the severa velocities of the fragments, and a rotation made up of their
several rotations. Meanwhile the central mass of the sun, several rotations. Meanwhile the central mass of the sun,
cooling and contracting, left behind a second equatorial belt, which, breaking and consolidating after the same manner became the planet Uranus. In like manner were formed all
the planets and their satellites. Such is the grand theory of the planets and their satellites. Such is the grand theory of
nebular genesis, in which, as Mill reminds us, "is no unknown substance, introduced on supposition, nor any unknown property or law ascribed to a known substance." It principles.
the phenomena of planetary heat.
Further evidence of the correctness of the theory is found
theory assumed that all the planeta, having successively originated from the same nebulous mass of vapor, must be composed in the main of the same chemical elements; and of spectroscopic observation wherever there has been chance to employ it. The contracting process through which the Earth has passed to its present dimensions has been or will be, under proper conditions, repeated to a certain ex tent upon all the other planets. Upon any planet there must eventually occur a solidification of the outer surface, and extensive evaporation and precipitation of water, an upheaval of mountains, an excavation of river beds, and a deposit of alluvium resulting in sedimentary strata. But ob vously the time at which these phenomena occur must de pend upon the rate at which the planet parts with its heat as well as upon the age of the planet, and upon the stock of heat with which it started. Against the facts that the outer planets are immensely older than the inner ones, and have received during recent ages much less solar radiance, must be offset the consideration that they must have started with much greater amount of heat than the inner ones. Mani
festly when the solar mass filled the entire Neptunian orbit it must have contained the heat of which the subsequen loss has shrunk the sun to his present dimensions. Th earliest plane tit enormous quantities of molecular motion; and the ratios of
their volumes to their masses must have been very much greater than in the case of the inferior planets since formed greater than in the case of the inferior planets since formed
from a cooler and denser sun. Just as the hot water in the boiler may remain warm through a winter's night, while the hot water in the tea kettle cools off in an hour, so a great
planet like Jupiter may remain in a liquid molten condition ong aiter a small planet like the Earth, thou .h formed ages later, has acquired a thick, solid crust and a cool tempera ure. Hence we may expect to find the largest planets still showing signs of a heat like that which formerly kept the Earth molten, and the smallest planets in some cases showing signs of a cold more intense than any which has been known on the Earth. This series of inferences, constituting imply an elaborate corollary from the nebular theory, is fully confirmed by observation in the cases of Saturn, Jupiter Mars, and the moon-the only planets whose surfaces have een studied with any considerable success. According to the nebular theory, Jupiter and Saturn ought to be pro
digiously hot; and so they appear to be when carefully ex agiously hot; and so they appear to be when carefully ex
amined. The absence of any atmosphere fron the surface of the moon, with the absence of any signs of liquid oceans and running water, shows a discrepancy which, however, dis ppears when we inquire into its past history as revealed by the present condition of its surface. That surface is almost entirely made up of huge masses of igneous rock, through which, at short intervals, there yawn enormous volcani craters whose fires seem to be totally extinguished. This implies that the moon is a dead planet-that the tremendous forces which produced this state of things are radiated off into space. In the lator ages of a planet's history, when the he nucleus is consequently reduced to a minimum, the ove thickening and hardening envelope will have shrunk in upon he nucleus in such a way as to leave vast abysses capable of ngulfing all the air and water which the planet possesses hus it is that in the chasms of the moon, all its oceans and atmosphere have disappeared. Mars, with his oceans, his
atmosphere, his clouds and polar snows, is another strong Fapporter of our theory.
Facts which, on a superficial view, appear as obstacles to the nebular theory, turn out, on a closer examination, to be powerful arguments in its favor. The vexed question of irresoluble nebulæ" has been settled forever in favor of the theory, by the discovery of the bright lines, which are sure evidence of a gaseous condition. Henceforward, we add the weighty argument that masses of matter still exist in space in the very condition in which our system must be supposed to have originally existed. The distribution of nebulæ is yet another significant argument. The parallel sm between the positions of the planets and nebulæ indi ates a common mode of evolution of the whole starry sys em, and points to a gigantic process of concentration going on throughout the galaxy, analogous to the local process of concent
group.

Singular Break Down of an Engine
A few mornings ago, the residents of the vicinity of Front street, Brooklyn, N. Y., were suddenly alarmed by a report like that of a cannon. It seems that a steam engine, which is located on the first floor of the Brooklyn Brass and Copper Foundery, was working as usual just before the accident oc urred. There was no unusual strain upon it, when sudden y , and without any previous noise or signs of anything miss, the trace at the bottom of the walking beam snapped and although the engineer was on the spot, the whole engine was wrecked before he could shut off the steam. About on undred and fifty hands are employed in the works. The damage cannot be fully estimated until the whole machinery
has been examined, but it will amount to several thousand has been examined, but it will amount to several thousand time. Fortunately no person was injured.
Marvels of the Microscope.-A beautiful and easily produced exhibition of crystal formation may be seen under the microscope as follows: Upon a slip of glass, place a drop
of liquid chloride of gold or nitrate of silver, with a particle of zinc in the gold and copper in the silver. A growth of exquisite gold or silver ferns will vegetate under the ob

Edge Tools.

Shear steel began to be made in Sheffield in 1800. The in ventions of Mushet and Lucas in 1800 and 1804 further ex tended the manufacture. Forks and scissors were made by roiling in 1805. From this time, immense cutlery works sprang up in England, France, and Germany, and the competition between the three countries has been highly benef. cial, for while England stands undoubtedly foremost, yet both France and Germany possess their own peculiar excellences. Amongst the imports connected with cutlery, there is in Sheffield an annual consumption of more than seventy turs of ivory for the handles of knives and forks, and about 3,000 operatives are employed in forging and grinding the blades. An equal number of work people are engaged on pen and pocket knives, made annually to the value of $\$ 500,000$. Very many are occupied in fabricating razors and scissors.
French cutlery is chiefly fabricated at St. Etienne and Thiers, where many hands are employed. Table cutlery is here produced at a rate almost incredibly cheap.
Germany. despite the superior natural advantages of Eng land, exports knives and edged tools to a considerable amount. Solingen has received the appellation of the Shef brated for its cutlery, being especially famous for its swords the blades of which sometimes sell for $\$ 500$.
In Austria, scythes, sickles, and table knives are made an nually by millions, at an exceedingly small cost of production. It is computed that 80,000 Bavarian grindstones are consumed annually in the preparation of these implements. With the rapid development of the mechanical arts, the manufacture of tools has correspondingly grown. At one ime England possessed a monopoly, and the English trade mark was a guarantee of quality throughout the world. The efforts of European States, however, have been rewarded with a share in the manufacture, while the demand for cheaper tools has extended British trade, and yet allowed a considerable portion to fall to foreign cutlers. Operatives in wood work; as carpenters, joiners, builders, turners, and cabinet makers, employ a great variety of cutlery tools sculptors, modellers, and pattern makers require steel tools of many kinds, and all their branches of industry and art are much increased. The demand, therefore, for planes ugers, chisels, saws, and gravers is continually increasing n some instances, the French and Germans claim to have ou'stripped the English. English planes, however, are as et unequalled. Paris, on the other hand, since the period when Dubois and Dupuytren advanced practical surgery to the high scientific position it now holds, has prepared the finest surgical instruments, particularly for dentistry. The most perfect steel work has now been enlisted in the service of science, and delicate balances and other philosophical ap paratus have contributed to the investigations made by our chemists and astronomers.

Luminous Electrical Tubes.

At a recent séance of the Société d'Encouragement, M Alvergnat, maker of physioul instruments, exhibited severa pparatus of his invention worthy of notice. They consis of rarefied tubes which can be easily rendered luminous by electricity. The tension of the vapor in the tubes is mea sured by a hight of mercury varying from 196 to 314 of an inch. The vapor is the chloride or bromide of silicium, and by rubbing the outside of the tubes with any substance developing electricity, a bright light is produced within the tubes, formed of different colored filaments-rose colored for the chloride and yellowish green for the bromide. The tenion of the vapor necessary to produce this phenomenon is reater than that for the Gessler tubes, and the electricity whichilluminatesthese latter tubes does not pass through the ew apparatus of M. Alvergnat. The ingenious arrangement which permits of the easy production of these phenomena is apable of application in the arts and sciences, and the Com ité des Arts Economiques consider it well worthy of attention

Antiquity of Birds.

Those most competent to give an opinion, supported by the disclosures of the rocks, which are records in the great volume of Nature more enduring than public libraries, are satisfied that the first birds on earth were waders, and no organized for flying. They were very large, too, and their legs long, fitting them for searching for food on the margins of muddy lakes and lacustrine shores. This is inferred from the foot marks of those monster bipeds found on the red sandstone in the Connecticut valley. The stride from one step to another shows they were tall, and known to geological science as ornithichnites. There may have been others on a smaller scale of construction. But they were extinct, probably, or disappearing with the advent of bird vith wings. The ostrich, etc, are tolerable representative of the non-flying birds of old red sandstone ages, both in their stilted legs, toes, resembling ornithichnite tracks, and their undeveloped pectoral stumps, which are merely the anatomical beginning of the wings exhibited in higher fam: ies, their successors.
When birds appeared that could soar in the air, an inter nal modification of structure came with expanded wings and the weight and exterior form were essentially changec and diminished in size. The condor is probably a type of to the tertiary formation of the globe.

At a late meeting of the Polytechnic Association of the American Institute, Professor Vander Weyde exhibited artificial musk, made by treating blood in a peculiar manner By adding little hairs, such as are found in genuine musk, the deception is so complete that it cannot be detected even by the microscope.

CITY OF LONDON LIBRARY AND MUSEUM.

Our engraving gives a view of a handsome edifice ad joining Guildhall, London, recently erected by the corporation of that city as a depository of their very valuable library and museum
The style is gothic, to accord with the Guildhall, and the external facing, stone. The museum is on the lower floor, and is over 83 feet long by 64 feet wide. The library is above it, and is 98 feet long and about the same width as the museum. Adjoining the library are a public reading room, 50 feet in length, and a commodious committee room. A flight of stairs leads from the orning the Guild opening in the Guild hall. Below are strong rooms and apartments
for muniments and arfor mun
chives.
This commodious and appropriate building has reflected creditupon all engaged in its erection, and we would like to draw to it the attention of our own architects of public buildings.
The city architect, Mr. Horace Jones, prepared the design, and the contract to camplete the building, in accordance with it, was entered into for £21, 360.

improvements in
 Wheel Making.

One of the difficulties in making light carriage and buggy wheels has been to get a tight spoke and felly joint. One reason why this so ofter fails, and this so often fails, and
so many poor jobs are so many poor jobs are made, is, thatifa round tenon fits very tight in a round hole, the driving on will often split the felly. This often occurs with the very best straight grained timber.
All wheelwrights know how very difficult it is to put on a light hickory felly tight and not split it. If, however, they are not split when put on, carriage makers know how often they give way often they give way afterward, and riages are disfigured riages are disfigured by the bulging and swelling of the felly at the tenon of the spoke. As a remedy for this difficulty, Mr. Jacob Woodburn, of Indianapolis, has applied to the Sarven wheel the following new principles, which are claimed to work very advantageously. Of the first he writes: "We make a tight joint, first, by making the fenon by the instead spoke oval; and, instead of doing this by filing and shaving, which is untrue and uncertain, we havea machine that turns the tenon perfectly smooth and

applies to all wheels. The second invention of Mr. Woodburn will be best understood by the following description by himself. He says
"Our long experience in making wheels has shown us that, while the oval tenon is a very great improvement upon the common method, yet it only partially removes the difficulty The best timber, under the extraordinary pressure and strain brought upon it by rough roads, crossing the rails of street railroads, etc., will sometimes split, and, this giving way, the
spoke becomes loose. This is a great annoyance and expense

Thread Cutting Tools
Many carriage makers are in the habit of paying but little attention to their thread cutting tools; but the thread of a bolt or clip or nut will bear no more tampering with than he mainspring of a watch, and to attempt cutting threads upon bolts or clips with an imperfect screw plate, or to at empt cutting a nut with a worn out or useless tap, is no thing more than tampering with the thread. We would say to any correspondent on this subject, that he can himself re pair bis screw plates as well as any other person. To re roduce the thread in the dies, if they are heavy enough to allow of it, first redu the temper by anneal ing. A good and easy method of doing this method of doing thi is to place sawdust in a metallic box, hea the dies to the required heat and deposit them in the sawdust, and let are perfectly cool. Af ter the dies are an nealed, we reduce the dies in width just suf ficient to allow of the removal of all the old hreads; after which ve place them in th plate and commence means of the plug tap To cut with a taper ould not be so effec ould not be so efre ive, and would have a endency to strain th dies and their bearin on the slide of the plates. The following are the this country: $\frac{1}{8} \mathrm{in}$. d ameter, 24 threads to the inch; $\frac{3}{16}$ in. diam eter, 22 threads to the inch; $\frac{1}{4} \mathrm{in}$. diameter, 20 threads to the inch
5 in . diameter, 18 ${ }^{16}{ }^{16}$ reads to the inch; RARY in. diameter, 16 thread to the inch; $\frac{1}{16}$ in. d the inch; 1 in the inch; $\frac{1}{2} \mathrm{in}$. diame ter, 12 threads to the 8
inch;
10 threads to the
16
in. diameter . 10 threads to the inch and so on until we ar
rive at $\frac{3}{4}$ in.,after which the V shaped thread is y unsafe, and the square - thread is substituted䛼 It is better to have which the dies are cu a trifle larger than the diameter of the bol lesired to be cut concave on the di must not be made so ust not be made so that they will be per ectly round, and al low the edges of th dies to meet while the tap is inserted. Unles the object is to have the bolts all the same size, there must be some space allowed for cu ing them smaller, by a rifle, than the stand ard.
The tempering of the dies is a simple pro cess. First heat and col off; brighten a lit le with sandpaper o brick dust, and $\mathbf{r} \in d u c$ to the required tempe by placing on a bar of heated iron, and cool ing off when the pro true, and as oval as may be required. An intelligent mechanic to the manufacturer of it. This difficulty has been met by per temper is arrived at. To temper taps, the wood or oil at once sees the benefit of this. The hole is round, the tenon our patent felly rivet, which makes it impossible for a felly
is oval; thus the wedging pressure of the tenon is upon the ends instead of upon the sides of the fiber of the wood, pre venting, to a considerable extent, the swelling and splitting of the felly."
This idea, of making the tenons of spokes oval instead of round, appears to us to be a very practicable one, and it admits of wide application. Why would not every wheel be stronger with its spoke tenons ovaled? The points where the spokes connect, with the rim at one end and the hub at the other are the two weakest points in the wheel; but, in the Sarven wheel, this weakness is mostly transferred from the hub to the rim. This is why the oval tenon is particularly valuable in the Sarven wheel; but the same principle
to split. A tight fitting wood screw, with a sharp thread, is put through the felly, on each side of every spoze in the wheel, making over twelve feet of rivet in every set of wheels. This screw, after being tightly put in and firmly meels. in the fiber the mbedded the fiber on side of the felly, so that when the wheel is painted it is not
seen. This makes the joint more securetban the method of putting a bolt, with head and nut, to every spoke, and de tracts nothing from the beauty of the wheel."-The Hub

Reading makes a full man, talking a ready man. The happy medium is reached when a man reads enough to give value to what he has to say.
process is, in all probability, the best.-The Hub.
The Wonders of the Telegraph.-A correspondent at St. Louis, Mo., gives us the particulars of the sending of elegrams from that city to Hong Kong in China, and the return of answer, the time each way being only 4 hours, the message being sent and reply received both during the same day.

Ebonizing Wood.-A simple metbod is to procure an or dinary slate and hold it over the gas, lamp, or candle, unti it is well smoked at the bottom, scrape a sufficient quantit into French polish, and well mix; then polish your article in the ordinary way. If there are any lumps, gently rub them down with your finger, and apply another coat.

Molding Cutter Heads.

Our engraving illustrates an improvement in the construction of that class of "freizing bits," or rotary cutters for tion of that class of "freizing bits," or rotary cutters for
wood working machines, which are adapted to reverse, so wood working machines, which are adapted t
as to present a cutting edge in either direction.
Fig. 1 is a perspective view of the improved cutter ready for work. Fig. 2 is a perspective view of the same, showing the collars ready to receive the bits. Figs. 3 and 4 represent bits removed from the collars. Fig. 5 is a cross section through the bits and spindle, the dotted lines showing the clearance. Fig 6 shows the face of a collar, with the pins on which the bits are pivoted. Without further explanation, it will be seen how, by the peculiar shape of the bits and seen how, by the peculiar shape of the bits and the turn on the pivots, according to the direction of rotation, and stop (in either direction) when of rotation, and stop (in either direction) when
they present a clear cutting edge in front and they present a clear cutting edge in front and
clearance in the rear. When desired to reverse clearance in the rear. When desired to reverse
the action, the nut seen in the figures is slightly the action, the nut seen in the figures is slightly
lnosened, the bits are placed in proper position, and the nutagain tightened.
For manufacturers of moldings, furniture and piciure frames, this invention seems well adapted, and the inveritor claims it to be equally important to all kinds of wood working. Patented April 16, 1872.
For further information, address Hope Machine Company, 181 West Second street, Cincinnati, Ohio. See advertisement in another column.

RESERVOIR PALETTE.

It is well known to draftsmen that it is evaporation, rather than use, that so rapidly diminishes the liquid, color, or ink; and moreover, the material particles or sediment are prejudicial to high class work. The reservoir palette is de signed to remedy these defects, which it does perfectly by simple means. The reservoir is shown at R, in the body of the palette B, and consists simply of a cylindricall cavity filled by a plug, P, so that any water previously poured into it is expelled and rises on to the surface of the palette, where, in the usual way, it is prepared for use by rubbing with the atick of Indian ink or cake of color requisite. After the desired depth of ink, tint, or color is obtained, if left to settle for a short time, the sediment precipitates on the palette, and when the plug is withdrawn when the plug is withdrawn, the clear ink or colored fluid flows readily into the reservoir,
 where it presents a very small proportion of evaporating surface, combined with depth for dipping pens, ϵ tc. The cover, C, being put over the palette, the plug may be used to close the orifice, O; or a common marble is dropped on to it, which readily recedes on the insertion of the pen, and settles in its place again on the withdrawal of the pen.

electro chemical copying press.

This press, the invention of Signor Zuccato, of Padua, Italy, differs but little in appearance from an ordinary copying

press, and that difference lies mainly in the construction of the upper and lower beds or surfaces of the press, of which the former consists of a plate of copper, and the latter of a plate of copper tinned, both on mahogany beds-the upper one being attached by lugs or clips to the solid iron press plate, and the lower being made to slide out as shown. These plates are placed in the ordinary way in the circuit of a battery, so that when brought into close proximity by the action of the screw, the circuit is completed and a current established over the whole of the surfaces.
But, by the aid of an insulating medium-a varnish-applied to a steel plate and removable by the action of a style" in writing, printing, drawing, etching, etc., the electric current is confined to those portions only which are so denuded of the insulating protection; and here it is made to leave record of its passage by its continued action on the steel plate and sheets of copying paper specially prepared and damped with a solution of prussiate of potash. The electrolytic action causes the formation of the ferro prussiate known as the " Prussian blue," producing a perfect facsimile of the original manuscript or design wrought on the var
nished surface of the plate.
The battery employed consists of a single cell, with zinc and carbon elements in an actuating solution of bichromate
of potash and sulphuric acid; and its positive and negative oles are connected in the usual way, by spiral coils of insulated wire, with the upper and lower beds of the copying press. The moveable steel plates, on which the writing,
expensive. Compared with macadam, it is believed that where the traffic is heavy, asphalte would prove the cheaper of the two. The effect of temperature does not appear likely to prove injurious in London, unless it be in the case of asphaltes of an inferior character.
The steepest gradient for which asphalte has been used in the city appears to be 1 in 46 . There is a pretty good prospect that the exten sive trial now being given to various descrip tions of paving will demonstrate the question whether we have practically any other choise than granite or macadam. The success of asphalte would be an enormous benefit to the metropolis in the cessation of the wearying roar which accompanies the passage of heavy traffic over paved roads, and in the comparative ab sence of dust and mud. Horseflesh is also"to be considerad. M. Leon Malo, a French engineer, has computed that, if all Paris were paved with the Val de Travers compressed asphalte, the saving in wear and tear to horses and car riages would be $\$ 1,700,000$ per annum. How far the calculation is correct may be difficult to say; but of the economy of asphalte in its effects on horses and vehicles there can be no question Its general use is a consummation much to be desired, and the present competition will doubt ess tend to reduce the cost of this luxurious mprovement in the art of road making. Our only fear is whether it will stand the hard work demanded of it; though it must be remembered that franite often has to be patched and

CUTTER HEAD MOLDING MACHINE

drawing, or other design to be copied, is made, has to be thoroughly cleaned and well and evenly varnished; care also must be taken, by a firm, steady pressure on the style, effectually to remove the varnish, leaving the writing, printing, or other pattern, in bright steel on a raised ground of varnish, affording perfect insulation everywhere else on the surface.
By placing the copying sheets, efficiently damped with the prussiate solution, in any number from one to five or six, one over the other, superimposed on the prepared plate, a corresponding number of copies can be obtained, and so on, almost ad infinitum. 'Thus any required number of copie can be produced with perfect facility and ease-all being facsimiles of the original.-Mechanics' Magazine.

Asphalte Pavements and Roadways. This subject is one of very great importance, especially in large towns and cities. The authorities of the city of Lon don are lisposed to afford, says the Engineer, an extensive trial to the asphalte pavements, at the same time admitting
any other mode of paving which appears to offer any advan any other mode of paving which appears to offer any advan
tages. The Commissioners of Sewers have not even discard tages. The Commissioners of Sewers have not even discard ed wood, but are going to try the American system at a very important junction of streets, where failure would be exceed ingly annoying. Trial is also being made of granite pave ments jointed with asphalte. The task of providing proper carriage ways for the enormous traffic of London is no small matter. Within one square mile, or thereabouts, there are forty-eight miles of streets. "Of these," says Mr. Heywood " about nine miles of carriage ways are subject to the largest most concentrated, and most destructive traffic in the world." The wear from the traffic' causes a large consumption of granite annually, and public convenience requires the use of a granite by no means the hardest and most economical The expense of maintaining the granite carriage ways of the city is very considerable.
The luxury of asphalte paving is undeniable. It is quiet er and cleaner than granite, though not quite so quiet as wood. "Consequent on the laying of the Val de Travers asphalte, the roar of Cheapside has given place to the mere clatter of horses' hoofs, as if a regiment of cavalry had taken the place of the usual wheel traffic. The change is like the calm after a storm; but the process is at once reversed on quitting the region of asphalte and entering upon the gran ite roadways. In fact, the asphalte has the effect of a tram way, with the absence also of the grinding sensation which accrues from the flange of the wheel as it travels along the grooved rail. After being down for two or three months, the asphalte has more of a ringing sound than at first, a result which is attributed to the consolidation produced by the
weight of the traffic. Being impervious to moisture, the as weight of the traffic. Being impervious to moisture, the as
phalte paving promotes evaporation, and as there are no joints to retain dirt, it is comparatively easy to keep the pav oints to retain dirt, it is com
ing in a state of cleanliness.
Horses falling on asphalte are found to be less injured than f falling on granite, but have more difficulty in getting up again. A little sand, or a horse cloth, removes this disadvan tage.
Prop
Proper care being taken, by a system of street orderlies, to keep the surface of the asphalte in a state of cleanliness, the elf is a great comfort to the public. The sloppy state of the granite carriage ways in summer is a special nuisance, only tolerated because the alternative may be a blinding cloud of dust. With due care, asphalte need have neither dust nor mud.
The durability of the asphalte paving is a question of much importance, and at present can scarcely be answered though there is reason to hope for a favorable result. This element in the problem materially affects the question of comparative cost as between asphalte and granite. The City
Engineer concludes that the durability of asphalte will be Engineer concludes that the durability of asphalte will be less than granite, and in a report presented last year he cal-
culated that, as a general rule, asphaite would be the more
mended, and what is called "relaying" is a formidable af mend.

Remarkable Parasitic Fungus.

A correspondent, Mr. A. J. B., of Kansas, sends us a box of specimens and says: Please find herewith what to me is a wonder as well as curiosity, in the shape and character of what is, with us in Kansas, known and called a common grub worm. A bed of them was found and dug up re cently while setting posts in this town. The grub when found was just as he now appears, having no life or animation whatever, while the sprout, queue, or whatever it is termed, grow ing from near the head of the grub was in a growing condition, and full of vegetable life and greenness.
We give a drawing of the specimen sent by our correspondent. The grub is the larva of a brown beetle which feeds upon the roots of grass, corn, wheat, etc. The long sprouts from the head are fungi (probably Sphaeria or Isaria) which grow at th expense of the nutritive fluids, and therefore of the life of the animal They are generally found in the inte rior of the body (hence called entophy $t a$) and near the posterior end. The dreaded disease of the silk worm (Muscardini) is caused by a fungus. Hosts of the seventeen year locusts ar destroyed by a fungous disease. "It is probable," says Dr. Leidy, " that this disease is one of the means of main taining the equilibrium in the aggre gate of the life of the species under existing circumstances." These "veg etable grubs" are something of a my tery to the naturalist, and. more ligh is wanted. Professor Orton noticed like phenomenon on the western slop of the Andes, near Quito. The fact that all animals are liable to fungous
diseases, that there is in fact a flora diseases, that there is in fact a flora
within man, ten different parasitio within man, ten different parasitic
fungi Laving been found in him, the fungi laving been found in him, the
recent investigations of able naturalists recent investigations of able naturalist on both sides of the Atlantic, and the lectures of Huxley and Tyndall, invest this subject with deep interest and im portance.

Proposed Government Boiler Experiments. Judge Bradley, of the United States Supreme Court, has made a valuable suggestion in his late letter to the Secretary of the Treasury on the subject of steam boiler explo. sions. He points out the absolute necessity of making a trial of steam boilers, of the size and kind generally used, to trial of steam boilers, of the size and kind generally used, to
find the laws governing explosions and the means of prefind the laws governing explosions and the means of pre-
venting them, and cites the few experiments made at Sandy venting them, and cites the few experiments made at Sandy
Hook as showing there is much to be learned by this method of investigation. He recommends Congress to appropriate $\$ 100,000$ for the purpose, and to authorize the Government have a system of experiments made under charge of a board of skillful engineers.

The Currant Worm.-A small yellow fly, with brown wings, about the size of the common house fly, deposits its ggs about May 1st. The worms appearabout the middleo May. Remedy: Hold a pan under the brush and jar the branches; the worms fall into the pan and are easily destroyed. Repeat the operation as often as necessary. The larvec are supposed to burrow in the earth.

contraypoudence

The Editors ar

Maple Sugar.

To the Editor of the Scientific American
There is a short article headed "Maple Sugar," in your is sue of April 27, in which the writer gives an account of the process of the manufacture of that sweet compound. He says that pearly all of our hard wood trees will yield more or less sugar; this I doubt. I do not deny but what all of our bard wood trees will yield sap, but I deny that nearly all of them will yield sugar. Take, for instance, the birch; one birch tree of common size will yield more sap than two or three maple sugar trees will, in the same length of time; but the sap concentrated by boiling yields a compound as unlike sugar, in looks, taste, and smell, as tar is unlike honey. Again Le says: "After the sap is drawn, it is concentrated by boiling it until it commences to crystalize." Now this is not so. Having had considerable experience in sugar making, I nill give to your many readers the usual process of the manufacture of that desirable article. After the sap is drawn it is concentrated by boiling to the consistency of sirup, but never until it crystalizes. When the sirup becomes thick enough to "apron" (as the farmers call it), or when it will drop from a dipper (which they always have to stir the sap with and to dip off the scum which rises to the top) in thick sheets, it is immediately removed from the fire, and allowed to cool or not as the maker of the sugar may desire. After it is removed from the fire, it is dipped from the kettle or pan in which it is boiled into wooden pails or barrels. The next operation is to strain or filter the sirup through woolen cloth r'his dome, it is set away, and the farmer can sugar it off at his contenience.
If the sap were allowed to boil until it commenced to crystalize, it would be impossible to filter the sirup; consequent ly it would be of no value, for the reason that it would be so full of dirt that it could not be used.
When the farmer comes to "sugar off" his sirup, as it is called, the kettle or pan is cleansed untilit is perfectly clean. The sirup is then poured in and two or three eggs, according to the quantity, are well beaten and added to the sirup. This is to clanse it from all impurities which rise to the top while boiling. Some use milk in the place of eggs; others, both Farmers never boil the sap that runs after the trees com mence to bud, for sugar made from such sap is unfit for use because it is black and has a taste which is termed "buddy. years, and then look as though they would last for as many years,
more.
H. N. L.

The Cause of Earthquakes.

To the Editor of the Scientific American:
I do not know whether the theory I wish to advance about earthquakes is new or old. The phenomena are felt all over the world; and I ask, are they not caused by the shrinking of the earth's crust? Our mountain chains and river al leys are diagonal to the greatest diameter of this planet; and forming the mountains. The shells and other sea fossils forming the mountains. The shells and other sea fossils
which lie in the formation of these mountains indicate the which lie in the formation of these mountains indicate the
salt plains; the deep soil through which the rivers plow fursalt plains; the deep soil through which the rivers plow fur-
rows shows that the richness of the earth is washed into the rows shows that the richness of the earth is washed into the
sea, to be upheaved again when the land has become too sea, to be upheaved again when the land has become too
poor to support life. When new streets are opened in Kangrs City, Mo., the excavation is sometimes thirty or forty feet deep through alluvial deposits, uncovering water worn ledges of rock which are now 100 feet above the river. The tree growth of the Eastern portion of this continent denotes that the land does not show great antiquity.

I hope to learn, through your columns, what savans thin f the causes of earthquakes.
J. W.

Elgin, Ill.

Making Shingles.

To the Editor of the Scientific American:
Some years ago I owned a manufactory for cutting and sawing pine shingles, and I tried the following experiment : I had an old thick 40 inch saw, from which I broke off the teetb, and then, by ranning it slowly in a mandrel and hold ing against it pieces of broken grindstone, ground down the edge upon one face till it was sharp all round like a circular knife. I then put it on my sawing machine, and by putting on a larger pulley and reducing the driver, made it revolve at about 60 revolutions per minute. Then by using well steamed blocks, I succeeded in cutting with it, before the edge turned too much, some scores of perfectly sound and smooth shingles. It required but little power to force the block on to it, and though it crowded or rubbed pretty hard, I do not think it would have heated injuriously if run constantly at that motion. The experiment convinced me that, above all others, this is the way to make shingles, or cut other thin and small sized boards. The dife of thes in getting a proper and well tempered solid knife, of the kind made; and after corresponding with several tool and saw the job, I gave it up. I believe now, however, that a knife made in sections, or plates of tempered steel riveted on to either a cast or wrought solid circular center of the right thickness, woald answer the purpose. This might be an inch or more in thickness at the center, so as to give great
rigidity. A knife of this kind need never be taken from its rigidity. A knife of this kind need never be taken from its
beearing to be sharpened. but could always be kept with the keenest edge by having a stone so fixed as to bear against it as it revolved. Owing to its drawing cut, it would pass
through knots or other tough places in the timber much
more easily than a straight knife, and its edge might be made much thinner and yet stand. My experience in cut ting pine shingles shows this to be a great advantage, for, out of good well steamed timber, with a sharp thin knife, shingles perfectly sound can be made, while with a thick or dull knife they will always be checked. An edge that will stand knots safely when chopping through a bolt will not cut a sound shingle.
The advantages of using such a machine as this are so manifest that, when once it were settled that it would work its adoption would be universal. It would be constantly ready for use, and there would be no stopping for filing o sharpening. It would not take one fourth the power of a saw. It would save at least one fourth of the timber, and would make perfectly smooth shingles. If inclined to heat in use, a stream of water might be run on it to keep it cool The best way to set it would be on the top of a perpendic ular shaft, with a reciprocating frame holding the bolts sliding back and forth over the top face, cutting two bolts t once from opposite sides.
The cost of steaming timber is merely nominal in a steam mill, using waste steam, which is the best, and it is a posi tive advantage to the timber to steam it.

Charles Boynton.

Memphis, Tenn.
 Power Required for Canal Towage.

To the Editor of the Scientific American
The Scientific American of May 4 contains a paragraph under the title "Cable Towing on the Erie Canal," which might lead your readers to think that you sanctioned all the statements therein made, and in this way serve the interests of the Cable Towing Company, to the prejudice of many other inventors who are now engaged in working out differ-
ent methods of accomplishing the same result. The portion of the paragraph alluded to, which I think requires your correction, is the statement of the comparative cost of towing loaded boats by horses, and the system by cable. By the former, it is stated, the aggregate cost of towing a boat the entire length of the canal, 350 miles, is $\$ 122.50$. By the steam cable system, "it is confidently believed" that one tug will haul six boats at a speed of three miles per hour, with an expenditure of two tuns of coal for twenty.four hours, six days being allowed for making a trip. The cost of coal for towing the six boats will be $\$ 6$ per tun, or $\$ 72$. I am very anxious to know the facts. My own experience is that it takes three horse power to tow a boat with 200 tuns freight at a speed of one mile and a half per hour, no matter what the motive power may be; and that, to tow the matter what the notive power may be; and that, to tow the
same boat at three miles an hour, will require about twenty four horse power. This great difference in the power re quired-with but a small increase of speed-arises from a law which cannot be shirked by any mechanical contrivance It will, therefore, take 144 horse power to tow the six boats at threemiles per hour, and say 26 to propel the tug; in all, 170 horse power. Eight pounds of coal for each horse power per hour is as little as can be allowed; that is 1,360 pounds, equal to $16 \frac{1}{4}$ tuns per day, or $97 \frac{1}{2}$ tuns, which, at $\$ 6$ per tun equals $\$ 585$, the cost of coal for the trip.
If the foregoing statement is about correct, it is safe to say that boats cannot be towed economically at a speed of three miles per hour. The best speed for towing by steam will be ound to be twomiles an hour, and this can be attained econo nically by any of several systems that have been invented.

Rochester, N. Y
[While the resistance to vessels in canals is much greater especially in narrow canals, than in open water, still we think that our correspondent is in error in his estimates for the pro pulsion of a train of six boats. Some useful data upon the be found on page 321 of our present volume, where it appears that $2 \lambda \mathrm{lbs}$. of coal per horse power per hour are consumed on the steamer Adriatic, her maximum speed be ing $16 \frac{1}{4}$ knots per hour, and her burthen 4,200 tuns.-Eds.]

North Carolina F'lshertes.-Herring and shad are so bundant in North Carolina that the former are selling for $\$ 1.50$ per thousand, and the finest shad at from 10 to 25 cents ach. The seines used are of immense size, and are worked by steam power. A seine worked at the mouth of the Chowan
is said to be a mile and a half in length, and in it 300,000 herrings have been taken in one day. They also take from one o two thousand shad at a catch. Steamers are at the wharves, constantly loading with these fine fish, packed in ice, for the New York and other northern markets.

How to Wash Printing Rollers.-Avoid all grit, sand and dirt, simply use strong ley to loosen the ink; and quickly with a soft sponge, wash off with water (in winter blood warm) the ley, squeezing the sponge dry, face up the roller so that no moisture remain thereon. Let it then stand ex osed to the air one hour, machine rollers two hours, befor be guided by ink on its surface. The time for exposure must do in dry or windy weather. Be careful to ink the roller as soon as possible after exposure to keep it tacky.

Cement for Fixing Glass Letters.-A thick solution of marine glue in wood naphtha will answer perfectly if colo is no object. But the glass must be chemically clean, and this is not always easy. The least trace of soap or grease
will spoil the adhesion of any cement. Try soda or ammonia, will spoil the adhesion of any cement. Try soda or ammonia
followed by whiting and water, clean cloths, and plenty of rubbing, and let the cement dry on the letters till the surfuc just begins to be " tacky" before you apply them.

Whe Uses of Old Rags

Woolen rags, as they come in from the peddlers, comprise very variety of fabric that it is possible to produce from wool, from a coarse and barsh carpet to the finest and softes product of the loom. These arepiled up in huge heaps up on the warehouse floor, and women and girls, whose wage avtrage from four to five dollars a week, attack them on al sides and "sort" them into no less than ten grades, each o which has a special use and an established value. The great er part of these are manufactured into "shoddy," and, as this is a word concerning which a general misapprehension exists, it may be weil to devote a paragraph to its consideration.
Shoddy is, perhaps, the best abused material in use. So far from being a mere sham and a poor substitute for wool, it is, in reality, a valuable material, and enters, in certain proportions, into the composition of nearly all cloth. It is not, as is generally supposed, woolen rags ground to a pow der and worked into the cloth to give it weight, but wool fiber, combed out of wool fabrics by a peculiar process, and mixed with new wool when the latter is carded, is spun with it, and finally becomes a component part of the cloth.
Thus, by mixing a due proportion of fine grade of shoddy or wool fiber with new wo sl of a coarse grade, a substantia yet soft and handsome fabric can be produced and sold at a moderate price; while the same thing, with fine high cos wool in the place of the much reviled shoddy, would cost fa more and possess but little more value so far as wear and ap pearance are concerned.
Cotton and linen rags are sorted with equal care. They are the principal source of papermaking material, and are in constant demand. Used alone, they make the highest grade of paper, while, in combination with varying proportions of paper stock, they produce the various grades of paper to be found in the market. Paper material may be used over and ver again, provided always that a given amount of new rag tock is used, but it deteriorates in value with each process, wing to the breaking and consequent shortening of the fiber nd, beginning, say in the form of writing paper of fine qual ity, it passes successively through the various grades, and ventually is found in the shape of a coarse article, possess ng little strength and small value.

Saving Money

The possession of a few dollars of ten makes all the differ ence between happiness and misery, and no man, especially with a family dependent upon him, can be truly independen unless he has a few dollars reserved for the time of need While extreme carefulness as to the expenditure of money will make a rich man poor, a wise economy will almost as certainly make a poor man rich, or at least make him, to a considerable extent, independent of the caprices of employers and of the common vicissitudes of life. Nothing is more important to the poor man than the habit of saving something; but his little hoard will soon begin to grow at a rate wich will surprise and gratify him. Every working man ought to have an account in some savings' bank, and should add to it every week during which he has full employment, ven if the addition is but a dollar at a time. If he does this, e will soon find the dollars growing into tens, and these ens into hundreds, and in a little time will be in possession o a sum which is constantly yielding an addition to his in come, which secures him a reserve fund whenever one is needed, and which will enable him to do many things, which without a little money, he would be powerless to do.-Pittsburgh Post.

Anvils.

The best anvil in the market is, perhaps, the Peter Wrigh nvil, made in England, and patented. The peculiarities of his anvil are that the horn, bick, face, and arse are one solid piece of metal, and the surface is put on in one piece, while with the ordinary anvil the horn and bick are a separate piece, the body a separate piece, and the arse and four arms or legs are also separate pieces, making, in all, sevan pieces before the steel is applied, which is put on in three pieces.
Persons that have never witnessed the manufacture of anvils would naturally suppose, says The Hub, that the same were made upon anvils. Such, however, is not the case. The nvil upon which anvils are forged consists of a large cast ron frame of about three inches in thickness, one foot in deptb, and about four feet square, resting upon the earth, or having four feet of space either way, which is filled with th eaviest kinds of iron turnings, or the smaller grades of scrap iron, the former being preferable. When the anvil i removed from the fire, it is placed upon this bed of adjusta ble scrap iron, and after a few blows soon sets itself into the roper position to receive the remaining blows from th trong arms of the half.dozen men who stand about the rame. The small square holes in the ends of the anvil, a what is termed the waist, are called by anvil makers "port holes" or "porter holes," into which the iron porters are in serted when taking to and from the fire and changing the position while forging. The face is finished on the grindstone

Endgavor to take your work quietly. Anxiety and ove action are always the cause of sickness and restlessness, We must use our judgment to control our excitement, or ou bodily strength will break down. We must remember that our battle is to be won by a strength not our own, It is battle that does not depend upon the swift nor the strong.

According to a recent report of the New York and N ew Haven Railroad Company, not a single loss of life or limb to any passenger, on any train on that road, has occurred during the past sixteen years. Two and a half millions of passen gers are annually carried. Length of road, 76 miles. This is one of the safest and best managed roads in the country.
" Sorry He Did Not Learn a Trade."
A young man, well dressed and of prepossessing appearance, called at our office recently and inquired in great earnestness if we had employment of any kind to give him for but a few days, if no longer, as he was a stranger in the city out of money, and unable to pay for a few days' board and lodging. He further stated that he was a book-keeper, but after a di' 'igent search, he had found no one who wanted any help in that line, nor could he obtain employment at anything that he felt competent to perform in a satisfactory manner. The positions of clerk and book-keeper, he remarked, were all filled, and applicants for them far in excess of the demand I am sorry," said he, "that I did not learn a trade,"
The appeals of the young man excited our sympathy, but, requiring no farther assistance in the office, we were com peiled to reply to his eager questioning that we could not employ him.
The door closed after him, and he again went out to continue what, in all probability, proved to be a fruitless search for employment. But his words lingered behind and, as we sat musing on them, recalled to mind the oft repeated expressions of the mechanic, in which he reproves himself for want of foresight in selecting an occupation. Here I am doomed, he says, to toil in a shop, at work which is hard, afford ing but poor pay. Like a dog, I must come at the call of a Whistle, or like a servant, obey the summons of a bell; ;had I studied book-keeping or entered a store as a clerk, I might have
life.

In the cases cited, we find each one dissatisfied with his selection, and wishing to exchange places. And the difficulty at once presents itself, as to how we shall decide for them and the classes they represent, so that the seeming mistakes in selection may be remedied. We acknowledge we are un equal to the task.
Food, clothing, tools, machinery, houses, ships, and an al most endless variety of other things are continually in de mand, which require the labor of farmers and mechanics; while that class which makes exchanges (merchants) is of necessity comparatively few in number, and, therefore, needs but a small force of assistants. The necessities of the mil lions of earth require by far the largest number of persons to be employed in agriculture and manufactures. Whenever then, through pride or any other motive, parents disregard the law and encourage their sons in seeking after situations, as clerks, book-keepers, etc., rather than to engage in those pursuits for which there is always a natural demand, ther must be a corresponding amount of suffering as a penalty Hence we find the so called respectable occupations are glutted, while the mechanical branches are suffering through the lack of skilled laborers. An advertisement for a clerk
will quickly bring to the office door a small army of applicants of all sizes and ages, while the want column may plea several days for a good mechanic, and fail to meet with a re sponse.

Sorry he did not learn a trade." Let apprentices and journeymen, who may be bewailing their lot, at once resolve to thus repine no longer, but by hard study and close appli cation master their trades, and having done so, demand fair compensation. Then by adding to skill, honesty, punc tuality and economy in expenditures, there need be no fean
that they shall be compelled at any time to beg for sufficien employment to pay for a day's board and lodging.-Coach employment to pa
Malker's Journal.

The Diamond in its PIatrix.

Professor Gustav Rose, of Berlin, in a communication to the Chemical Society of the Prussian capital on the recent discovery of diamonds in situ, said that the diamonds were found not loose and detached in alluvium, but actually en closed in another mineral, and though of but microscopic size, had not on that account been the less surely identified They were found by Professor von Jereemjew, of St. Peters burgh, in a mineral first described by Professor Rose during
his journey through the Urals, and named by him xanthophyllite. This rock occurs in yellow tabular crystals, cleaving along the principal face, or radially segregated in rounded masses, and was found to be a silicate of alumina, lime, and magnesia, with some water. The spherular segre gations often enclose a nucleus of the talcose schist. It is in these crystals of xanthophyllite that the crystals of diamonds are met with, lying in parallel positions in respect to each other and in a definite position as regards the crystals of their matrix, in a similar way to the minute crystals of iron mica in felspar or oligoclase; the diamond crystals, how ever, are smaller than these, and are not visible to the naked
eye. On placing a thin plate of xanthophyllite under the eye. On placing a thin plate of xanthophylite under the
microscope, the diamonds are recognized by their peculiar form, hexakistetrahedra, with somewhat rounded faces, and form, hexakistetrahedra, with somewhat rounded faces, and
are seen to have their tetrahedral faces, which are also frequently visible, parallel to the cleavage face of the xanthophyllite. The diamonds are not in equal abundance in all parts of the xanthophyllite. In the yellow transparent crystals they are sparsely found, or not at all; the greenish, less transparent varieties contain them more plentifully, and
are often filled to excess with them. In its bearing on the questions of the formation and origin of the diamond, the occurrence in the Urals is very interesting. There, as in Brazil, it occurs with crystaline schists, in the so called metamorphic rocks, which are supposed to be Neptunian rocks that have been deposited from water, and have subsequently undergone certain changes, amongst others that of taking crystaline characters, whereby all the organized constituents have been removed. Why carbon has separated in
the itacolumite of Brazil as diamond, and at Strehlen, in

Silesia, as graphite, is a phenomenon demanding explanation. Professor Rose asks whether we may trace the cause to the where it only

Japanese Metal Work

The Japanese are very skillful in all that relates to the art istic treatment of the metals, and produce works in this branch of art as commendable as they are varied. They are expert in casting, carving, damascening, engraving, inlaying, weaving, and tempering; and in many of these departments produce specimens comparable to anything done in Europe. Perhaps the most characteristic of all their metallurgic works is that called by them syakfdo. In this, numerous metals and alloys are associated, the designs being produced in colors through the agency of the various colored metalswhite being represented by silver, yellow by gold, black by platina, all shades of dull red by copper and its alloys, brown by bronze, and blue by steel. Gold, silver, and polished steel, of course, represent themselves in designs as well as abstract colors. A red garment, embroidered with gold and clasped with silver, would be executed in red colored copper, inlaid with gold, and furnished with a silver brooch; the sword in the hand of a warrior would be in polished steel, and if bloody, would have red copper inlaid on it. These instances will suffice to illustrate the general mode of producing colored designs by the exclusive use of metals. The Japanese have brought bronze casting to great perfec tion, as is proved by the superb incense burner which was presented to H.R H. the Duke of Edinburgh by the Mikado, now on exhibition in the South Kensington Museam. They also produce a highly finished and polished bronze work, on which the relief ornamentation is produced by cut ting the surrounding metal away. The relieved objects are hen engraved, and richly damascened with gold and silver is nell founding is carried on to a considerable extent, and art
negled in the designs. Repousse work is well is never neglected in the designs. Repousse work is well
known to the Japanese metallurgists, but is not so largely adopted by them as it is by western artists. Flat silver wire woven into diaper patterns, is a favorite material for cover ing uniform surfaces, and is frequently applied by the Jap nese artists in an effective manner. In drawing the atten ion of the meeting to a group of storks, executed in gold silver, bronze, and other metals, Mr. Audsley, in a paper re cently read by him in England before the Architectural as sociation, said the audience would agree with him that the apanese have been more successful than our silversmiths in appreciating the nature of their materials, and realizing the orrect modes of working them. This group-where ever eather is a thin plate of metal, carefully engraved; wher ural colors; where the rock they stand upon is modelled with accuracy, and its stunted vegetation truthfully renderedwould bear comparison with the best efforts of our silver would bear comparison with the best efforts of our silver
smiths as displayed in presentation plate, of which the best that can be said is that it contains many pounds of "solid silver;" and the comparison would lead to the a ward being iven in favor of the Japanese work.

Old Rubber:

A fortune awaits the happy inventor who shall teach man ufacturers to restore old rubber to the condition in which it was before vulcanization, for, with that secret, there would practically no consumption of this invaluable article. Tho hing has been done, and successfully, and we have ourselve yys the Commercial Bulletin, seen pieces of vulcanized rub er possessing great strength and elasticity which were made atirely from old car springs; but it has never been accom nished on a large scale, and awaits the en
Meantime,old rubberhasits uses. By a system of steaming and passing between rollers, it is reduced to a semi-plastic tate, and in this condition is used in combination with coarse fabric for heel stiffening, a purpose for which it is admirably adapted, its waterproof qualities being of especia value. There is, in a neighboring city, a factory devoted enuns of old rubber of all kinds are consumed annually.
Old rubber is also largely used to mix with new raw ma erial in the manufacture of all kinds of rubber goods. It erves to give bulk and weight, and if it does not increase it certainly does not lessen, the strength of the fabric. It may also be mentioned that powdered soapstone, white lead cerra alba, and other heavy substances enter largely into the composition of almost all rubber goods, the use of which becomes apparent when it is remembered that they are gen rally sold by weight.

Cure of Hydrophobia.

Dr. Alford, at Flint, Mich. has cured a case of hydrophobia The disease did not make its appearance until eight month fter the patient was bitten. The treatment was this Sulphate of morphia, one grain, was injected subcutaneously every four hours, and half a dram of powdered castor given internally, in sirup, at the same time. Chloroform was also
inhaled in small quantities. In about half an hour sleep inhaled in small quantities. In about half an hour, sleep ocurred, and continued, with intervals of variation, for about twelve hours, when they entirely ceased. Vomiting and great prostration followed, but the patient ultimately re covered. The excessive prostration was counteracted by wrapping the patient in a woolen blanket moistened with warm solution of muriate of ammonia, twenty grains to the

Dr. Alford tate that he had another successiul case
Dr. Al

A New Sensitive Singing Flame

Philip Barry has recently described a very sensitive flame produced by placing a piece of ordinary wire gauze on the ring of a retort stand, about four inches above a Sugg's steatite pin hole burner, and lighting the gas above the gauze. "The flame is a slender cone about four inches high, the upper portion giving a bright yellow light, the base be ing a non-luminous blue flame. At the least noise this flame roars, sinking down to the surface of the gauze, becoming a the same time almost invisible. It is very active in its re sponses, and being rather a noisy flame, its sympathy is ap parent to the ear as well as to the eye."
A simple addition to this apparatus has given me a flame, which, by slight regulation, may be made either; (1) a sensi tive flame merely, that is, a flame which is depressed and rendered non-luminous by external noises, but which does not sing; (2) a continuously singing flame, not disturbed by not sing; (2) a continuously singing fame, not disturbed by
outward noises; (3) a sensitive flame, which only sounds outward noises; (3) a sensitive flame, which only sounds
while disturbed; or (4) a flame that sings continuously exwhile disturbed; or (4) a flame that sings continuously ex
cept when agitated by external sounds. The last two results cept when agitated by external so
so far as known to me, are novel.
To produce them, it is only necessary to cover Barry's flame with a moderately large tube, resting it loosely on the gauze A luminous flame six to eight inches long is thus obtained which is very sensitive, especially to high and sharp sounds If now the gauze and tube be raised, the flame gradually shortens and appeara less luminous, until at last it becomes violently agitated, and sings with a loud uniform tone, which may be maintained for any length of time. Under these conditions, external sounds have no effect upon it The sensitive musical flame is produced by lowering the gauze until the singing just ceases. It is in this position that the flame is most remarkable. At the slightest sharp sound, it instantly sings, continuing to do so as long as the sound, it instantly sings, continuing to do so as long as the
disturbing cause exists, but stopping at once with it. So quick are the responses that, by rapping the time of a tune, or whistling or playing it, provided the tones are high enough, the flame faithfully sounds at every note. By slightly rais ing or lowering the jet, the flame can be made less or more ensitive, so that a hiss in any part of the room, the rattling of keys, even in the pocket, turning on the water at the hydrant, folding up a piece of paper, or even moving the hand over the table, will excite the sound. On pronouncing the word "sensitive," it sings twice; and in general, it wil interrupt the speaker at almost every " s " or other hissing sound.
The several parts of the apparatus need not be particularly refined. By the kindness of President Morton, I have used several sensitive jets of the ordinary kind made of brass hey all give excellent results. Glass tubes, however, drawn out until the internal diameter is between one sixteenth and ne thirty-second of an inch, will do almost equally well For producing merely the singing flame, even the inner je f a good Bunsen burner will answer. The kind of gauze oo is not important; I have generally used a piece which had been rounded for heating flasks; it contained about 28 meshes to the inch.
The experiments can be made under the ordinary pressure of street gas, three fourths of an inch of water being suffi cient.-W. E. Geyer, in the American Journal of Science.

The Origin of Petroleum.

The recent development of the reproductive power, of petroleum wells that had been for some years abandoned Petrose they were believed to be exhausted (says the Petroleum Monthly), is not alone a matter of value, to th wners of the territory that was until lately presumed to be worthy basis than any the world has hitherto been able to obtain for forming an approximately correct opinion concern ing the chemical process whereby petroleum is generated ing the chemical process whereby petroleum is generated.
Until within a few days, a popular opinion prevailed that Until within a few days, a popular opinion prevailed that
petroleum, in spite of its name, was the product of coal; and so nearly was this idea general among a majority of people hat many foreign receivers of petroleum are still accustome to order it as "coal oil." The belief, however, that the errene oil of Pennsylvania and Canada is exclusively product of bituminous coal may now safely be pronounce to be an error. There is certainly no evidence that coal is not one of the substances from which petroleum is distilled; but, at the same time, it is a somewhat strange fact, allowing a proper degree of credit to the belief that coal does enter into the composition of petroleum, that no coal beds usceptible of being worked are known to exist within fifty miles of the oil-producing territory. Again, it is a manifest and recognized fact that carbon does predominate as an in egral essence of petroleum; and the other fact that the oi erritory of Pennsylvania is surrounded by beds of bitumi nous coal, renders it eminently reasonable to believe that coal enters largely-if not, indeed, more largely than an
other substance-into the process of distillation whereb other substance-into the process of distillation whereb
petroleum is produced. Petroleum is certainly a minera oil. But whatever may be the number and chemical variet of the minerals from which it is formed, the distillation of it is more intimately associated with limestone than with any other mineral. Sandstone is also found in boring oil wells, but it is from the pores of limestone that, in the chemical process of extracting oil from the minerals found in connect on with its production, the greatest quantity of petroleum is taken. It is singular that, in boring for oil, no coal has ever been found, even in the smallest quantities, while sand, sandstone, and limestone abound. The inference, therefore, cannot be escaped that petroleum is the product of the dis tillation of at least two, and probably of more than three distinct mineral properties.

Improved Fire Shield.

It is the object of this invention to provide convenient and efficient means for preventing the spread of fires in cities and villages. It consists of a portable adjustable shield or and villages. It consists of a portable adjustable shield or wheels, as indicated in our engraving, so that the machine can be transported from place to place without difficulty and with expedition.
A light frame or platform, A, is supported on the axles, B , of the wheels, C , but raised above and projecting over the wheels. Two pairs of stanchions, D , attached at the bottom to the platform, A, and connected at their top ends, have a pulley hanging from the center ends, of each pair. There is an each corner, or one for each stanchion, rigidly connected to the platform and extending up about half way, more or less, to the top of each stanchion. The upper ends of these rods are curved and forked, and each contains a pulley, H . There is a brace for each of the rods, G, on which horizontal pulley shafts, J, are supported. A horizontal pulley shaft, K, at each corner of the platform, is supported by stands, L. Another horizontal pulley shaft, M, at each corner of the platform, is also used.

All these shafts are provided with cranks, by means of which they are revolved, and are also furnished with wheels and pawls, by which movement may be prevented.
Sheets or plates, O, of metal or other incombustible material, are suspended from the stanchions, and from the rods, C , by means of chain wire ropes, P, and are raised or lowered by means of the crank pulley shafts.
The plates may be of any size or thickness, and are so arranged that they work independently of each other; and they may be adjusted in a mass, or so as to present two or three thicknesses to the heat of a burning building.
It is claimed that, by interposing this shield between buildings, one of which is on fire, that the fire may be limited in extent and much property saved.
Patented through the Scientific American Patent Agency, Nov. 28, 1871, by Henry Riere, whom address, Kansas City, Mo, for furger, whom adion.
Q, which runs in a thread formed in the removable bar, R, this bar being taken out while the cover is raised or lowered. When the follower is actuated against the stuffing, the latter enters the tick, which, as fast as it is filled, slips off the chute very much as a filled case slips off the nozzle of a sausage stuffer.
With the use of this machine and that of a trifling ma chine by the same inventor, and on which a patent is now

Effects of Electricity on Mulk

The Milk Journal states that, in an address before th North Western Dairymen's Association, Mr. X. A. Willaro epeats the following interesting facts :
Mr. Andrew Cross, the celebrated English experimenter considered that the roots and leaves of plants were in opposite states of electricity; some of his experiments in this direc tion are very interesting. He cut two branches from a rose tree. They were as nearly alike as possible with the same number of buds, and both equally blown. An arrangement was made by which a negative current of electricity was passed through one, a positive current through the other. In a few hours the negative rose drooped and died, but the positive continued its fresh ness for nearly a fortnight; the rose itself be came full blown and the buds expanded, and urvived an unusual length of time. Again, he was able to keep milk sweet for three weeks in the hottest weather of summer, by the applica ion of a current of positive electricity
On one occasion, he kept fishes under the electric action for three months, and at the end of that time they were sent to a friend, whose domestic knew nothing of the experiment. Be fore the cook dressed them, her master asked her whether she thought they were fresh, as he had some doubts. She replied, that she wa ure they were fresh, indeed, she said, she would swear they were alive y \in sterday. When served at table, they appeared like ordinary fish, but when the family attempted to ea them, they were found to be perfectly tasteless the electrical action had taken away all the essential oil, leaving the fish unfit for food However, the process is exceedingly useful for keeping fish, meats, etc., fresh and good for en days or a fortnight. Now this is consisten with our observation and the facts known to every one in the habit of handling milk. When the condition of the atmosphere is in a negative electrical state, or shows a deficiency of posi tive electricity, a state of weather which we designate as sultry, close, muggy, and the like here is always difficulty in keeping milk sound Even in good, healthy milk, the fungus germ common to all milk increase and multiply with reat rapidity, producing the common lactic acid fermentation or souring of the fluid; but in case fungi from decomposing animal or vege able matter comes in contact with the milk

RIEGER'S FIRE SHIELD.

pending, a mattress can be filled and stitched in a remarka bly short space of time. The machine has already elicited high praise from practical men, and has won prizes in all airs where it has been exhibited. There is no doubt that it is a first class machine for the purpose intended; and we would recommend parties interested in this class of manu factures to make personal investigation into its merits.
The simplicity of its arrangements, and the ease with which it is managed, together with tha time saved by its use, cannot fail to be considered points in its favor. It was id dable mater comes in contact with the milk, rapid decomposition takes place, and we have rotten milk putrid odors, and floating curds. The exposing of such curds o the atmosphere, as well as the aeration of milk to im-
prove its condition, are both philosophical, because these prove its condition, are both philosophical, because these minute organisms of f.ngi are affected by the oxygen of the air, which checks their develcpment and multiplication.
The influence of electrical action is a question entirely new to the dairy public, but it is one concerning which I think some useful suggestions present themselves for ou consideration. When the electrical equilibrium is disturbed or when the state of the atmosphere indicates a preponderance of negative electricity, we are all made aware of the fact by its depressing influences At such times, it is important that w take more than ordinary care in the andling of milk; that it be keptou handing or mill that be kept ou oiven to it aration and such treat given to its aeration, and such treat ment be given it as shall be inimica to the growth and development of fungi. And again, the fact that milk may be kept sweet a long time in hot weather by electrical action will offer a very important suggestion to inventors in the preservation of milk, and perhaps in the improvement of cheese at the factories. I believ that we are only on the threshold of the cheese making art, ard that a we become better acquainted with the laws of Nature and their applica tion, great progress is yet to be made in every branch of dairy husbandry

The best authorities estimate th entire world's wool product for 187 at $1,620,000,000$ lbas. Of this enor mous quantity, Europe produced about $827,000,000 \mathrm{lbs}$; Asia, 470,000 , 000 lbs.; Australia, 175,000,000 lbs. the United States, $122,600,000 \mathrm{lbs}$. and South Africa, $34,000,000$. Grea Britain presents the largest market for wool in the world, her own an nual production being estimated a $260,000,000 \mathrm{lbs}$,

Watson's mattress stuffing machine.

patented through the Scientific American Patent Agency. April 2, 18\%2, by Thomas A. Watson. For 8tate, county, or other territorial rights, address Watson \& Phillips, Bren ham, Washington, Co., Texas.

WATER ordinarily freezes at 32° Fah. But if it be con fined in a strong vessel, so that its tendency to expansion is
restrainad, the freatus point may be lowered to 23° Fah.
ion is something $250,000000 \mathrm{lbs}$ The United Stat used of the raw material, in excess of the home production, about $68,000,000$ lbs., imported at a cost of $\$ 9,780,000$. The value of the manufactured articles imported into 'he United States, in 1871, was about $\$ 44,000,000$.

THE production of quicksilver in Calif ornia amounts, on an average, to about 2,250 flaskm per month.

sicutific Gmxricam.

MUNN \& CO., Editors and Proprietors.

go. 37 Pari row (park building) new york.

 o. d. MUNN'The American News Co.," Agents, 121 Nassau street. NewYork. he New York News Co.," 8 Spruce street, New York.

VOL. XXVI., No. 22. [New Series.] Twenty-seventh Year NEW YORK, SATURDAY, MAY 25,1872

HOW TO CONDUCT NEW SCIENTIFIC INVESTIGATIONS

any one, inclined to use his leisure hours to enter a new field of scientific investigation, for the purpose of the pro motion of science or for personal benefit, either reputation or profit, must first proceed to find out all that is known, respecting the subject chosen, before he commences his at. tempts to find something new. This is indeed the only way in which he may expect to be rewarded for his trouble; for what is the use of consuming our time and money to ind before us have left behind long ago? That this statement is not exaggerated will be acknowledged by many who have either themselves made that mistake or been the witnesse of the same mistake made by others.
The preparatory investigation suggested here will lead the explorer through many most fascinating paths of knowledge; and in order to conduct it rightly, we will give a few hints to all concerned.
The first information which we may obtain may be in a cyclopædia, found in almost every public library or in the possession of any well-to.do private citizen who loves books and ought to be willing to occasionally give others the benefit of his treasures when properly approached. If the cycloprdia is written in the right way, the article looked for will first give the general reader sufficiently full instructions in all he cares to know concerning the subject, and secondly, it will suggest to the student how and where to get further information. A good cyclopædia is similar to a finger post information. A good cyclopædia is similar to a inger post
in the footpaths of science; it must point out the way, as it in the footpaths of science; it must point out the way, as it on a hill, from which he may overlook the prospect, and gives the laborious traveler the guides necessary for his exgives the laborious traveler the guides necessary for his ex-
plorations. Those finger posts of the cyclopædia point to plorations. Those finger posts of the cyclopædia point to
two kinds of roads, to special treaties on the different two kinds of roads, to special treaties on the difcren
branches of science, mathematics, mechanics, physics, chemis try, etc., and to the transactions and memoirs of scientific associations. Of these two, we consider the latter as the most
important, notwithstanding there is a general tendency to important, notwithstanding there is a general tendency to
overlook them. It is argued that the truths they contain overlook them. It is argued that the truths they contain
have been absorbed in the special treatises of science, while have been absorbed in the special treatises of science, while
there are errors in them that have been rejected, and that therefore they are confusing and even dangrorous to the student. There is some foundation for this opinion, and we agree that a totally ignorant person may thus be led astray; but any one having only a moderate knowledge of the pre sent condition of science, as far as can be learned from the latest ordinary text books, is not subject to this danger, and only such are fit to enter at all in new scientific investiga tion. And these surely will find such documents, especially the old memoirs, instructive and even delightful reading. They have the great merit of being conscientiously written,
with an admirable truthfulness and sinaplicity, and in this with an admirable truthfulness and sinaplicity, and in this
respect contrast very forcibly with many modern writings. respect contrast very forcibly with many modern writings.
They are earnest and condensed, true models of style, true models for practical investigators, and they describe the most admirable modes of research.
There is another reason why these scientific recorls should be consulted. The most valuable data were not often represented in such a way that the attention of subsequent compilors was sufficiently directed to them. Such a one takes no more than what strikes him, or what he wants, and the result is that second hand compilers, who abridge and the result is that second hand compiers, wen alter the abstract, miserepresent the results
of the original investigators. In this way, the most valuable incidental matter lays buried and neglected among the vol umes of the memoirs, taking years to be unearthed; and even it is often not found there at all, but has been rediscov ered by great labor and republished; and afterwards, some explorer of the old memoirs finds the original discovery and,
by publishing the truth, robs the later discoverer of one of by publishing the truth
We know that nobody will undertake the kind of labor we are speaking of except when he loves the subject so much as to be truly inspired with such an interest that even when he doubts if pecuniary profit will accrue to him in consequence, he will not abandon his investigation in consequence, he will not abandon his investigation.
Scientific knowledge has its claims on us to be cultivated for its own sake, as well as literature, poetry, or music; we must not solely pursue it for the sake of money making, bu first for its beauty and beneficial influence on our minds nd consider the profit, often the consequence of scientific nvestigation, as a secondary matter, but an important one at the same time, in which science has a decided advantage
over literary and poetical pursuits, which can do nobody over literary and poetical pursuits, which can do nobody
any material good, and never exerted the least influence of he improvement of the conditions of mankind.
All the great agents which have reformed the modern re lation of man are due, not to literary and poetical, but to practical scientific pursuits. Is it a wonder, then, that the tendency of the most advanced minds is to modify our institutions of learning and to make them more scientific and less literary? Not only are physics and mechanics more pleasant studies than Latin, and chemistry more interesting than Greek grammar, but we assert that a man may make
more money by applying a mere superficial knowledge of more money by applying a mere superficial knowledge of
these sciences than by a much more profound knowledge of these sciences than by a much more profound knowledge of extensively superseded by more practically useful studies is a matter of surprise.

ENGINEERINGG IN BRUSSELS.

The recent completion of the public improvement works at Brussels affords a good illustration of the successful issue to which great engineering undertakings in large cities can be carried. These works have given to the city a beautiful boulevard extending (with its branch) over a mile and a half and conveying, in its tunneled substructure, the contents of a iver which had become a nuisance.
The Senne, which passes through the city, had there a very tortuous channel with very slight descent. Choked with the drift brought in from the outside country, and receiving all the refuse from the populous districts bordering it, it de generated at last into an open sewer, which, swelled by the rains, occasionally inundated the adjacent parts of the town. The disastrous consequences to health and property induced much anxiety and deliberation, which resulted finally in the building of the present works. The leading features of the design consist in the construction of a large tunnel, and the diversion of the river waters into it on a straight course Earth was filled in upon the tunnel even with the adjoining ground surface, and a new street formed upon the top of the tunnel. The latter is composed of a system of arches struc turally connected, presenting, in cross section, four channels the two middle arches, of twenty feet span and fourteen feet seven inches hight, draining the river, and two side arches, thirteen feet one inch high, and, respectively, ten feet five inches and eight feet two and a half inches wide, collecting the city sewage. These channels can be made to communi-
cate for the purpose of flushing; and ingeniou provision has cate for the purpose of flushing; and ingenious provision has been made to accomplish this by utilizing the water from the city water works. The boulevard or street above the tunnel is ninety-two feet in width, wider than our Fifth Avenue, and runs hearly across the city. Besides sanitary considerations he improvement has great importance. It opens a new and commodious thoroughfare between two distant railroads,
affords sites for public and other much needed buildings. affords sites for public and other much needed buildings.
Great as is this achievement, it is far exceeded by Great as is this achievement, it is far exceeded by the
Tharnes Embankment in London, and the Metropolitan and other underground railroads in that city. In these, greater difficulties have been overcome. How successfully, is proved by a glance at the noble quay along the river, and at the constantly changing crowds in the handsome stations built many feet below the busy streets. We cannot but look upon them all as monuments of engineering skill exerted in the interests of the people; and it seems strange that in our own city we are so backward in admitting the practicability of minor efforts in the same direction.

the colorado potato beetle

In the last annual report of the State Entomologist of Missouri, Mr. Charles N. Riley, we are given some interesting additional facts regarding the Colorado potato beetle, its ravages, parasites, and enemies, and the means taken to coun teract its work.
The insect showed numerously in the spring and summer of 1871, and there was a consequent faling off, of the potato crop in several States, of from 20 to 35 per cent, while new territory was being steadily invaded. Parts of the borders of New York and Pennsylvania and the interior of Canada were reached, and its continued march east ward is confidently predicted. The southern columns of the invader extend far more slowly than the northern, which is, no doubt, because the insect cannot thrive when the thermometer ranges near obtained never entirely quits any dre three years generally proves less injurious, because its natural enemies have mul tiplied sufficiently to keep it in check. These natural ene milos are on the increase, and twenty-one cannibal or parasit
ic insects are now known to attack it, in one State or another while toads, crows, ducks, and chickens are learning to deour it also. It is believed the skunk likewise preys upon The Colorado potato beetle has in the past been found to flourish only on plants of the nightshade genus proper
(Solanum), other members of the same family being but lit(Solanum), other members of the same family being but little to its liking, and it therefore is an interesting fact that last summer it was found feeding upon the cabbage, which is, botanically, so very distinct. Whether it will continne so to do seems a matter of considerable doubt.
Various have been the expedients tried to rid the potato of this pest, both chemical and mechanical. Of the former, Paris green has been found to be the most efficacious; but a good deal of objection has been made to the too general use of this poison on the ground of its dangerous nature, and it has been stated that the bugs could be subdued by determined handpicking. It has been thought that potatoes grown on land where Paris green has been used are often watery, rank, and of bad flavor, and that peas planted in soil mixed with the green rotted immediately, and that some, flourishing finely in unadulterated soil, died when transplanted into the mixed soil. Each cultivator must judge for himself how far these statements are to be relied on. It is cer tainly advisable to avoid as much as possible the use of the poison. Properly mixed, it has been used without the slight est injury to leaves or tubers, and what is wanted in the matter is a series of accurate and reliable experiments.
The green may be shaken over the vines in various ways, and some make use of an old sack attached to the end of a stick; it is most safely applied, however, by aid of a perfor ated tin box attached to the end-of a stick three or four feet ong. The least possible dusting suffices, and by taking the landle in one hand and then tapping the box with a atick held in the other, the amount sifted can be regulated as the rows are rapidly walked along. The green is most effective when mixed with flour, though plaster has the verit of cheapness.' If the green be pure, it may be mixed with 25 to 30 times its weight of flour, though 12 to 14 parts are usu ally recommended; and a deep, bright green color should be chosen, as the paler colors are weaker. It does not appear to seriously endanger the animals around, except where left ex posed in quantity sufficient to be eaten by them; but nothing can excuse the careless use of the poison, which must be especially guarded against during the heat of the day; it should al ways be dusted in the cool of the morning, while the dew is on the plants. The antidote for Paris green poi. son is hydrated sesquioxide of iron. Where it cannot be purchased, it may be prepared thus:-Dissolve copperas in purchased, it may be prepared thus:-Dissolve copperas in
hot water, keep warm, and add nitric acid until the solution becomes yellow; then pour in ammonia water-common hartshorn-or a solution of carbonate of anomonia, until a brown precipitate falls. Keep this precipitate moist and in a tightly corked bottle, and administer a few spoonfuls when a case of poisoning by Paris green or arsenic occurs. It might be supposed that as arsenic is one of the principal ingredients of Paris green, it could be used as an economical substitute. It has been tried, however, with no satisfactory result. It does not kill the bug with anything like the certainty of Paris green, and causes injury to the leaf of the plant.
Various mechanical contrivances for knocking the bugs off the vines are in use. One is a simple box six inches high, with wheels to which brooms are attached so as to sweep the bugs into the box. Another consists of a trap held under the vine to catch the bugs which are detached by means of a light, flat, and broad broom. The trap is afterward emptied through a sliding door and the bugs destroyed. The great difficulty with all such devices is that they can only be used when the vines are a considerable size, while it is necessary to fight the enemy from the moment the tuber breaks th 3 ground. This is what makes the Paris green so valuable.

THE RUBBER tiP Patent case.

For several years past, the stationers have supplied to the pablic a new and highly useful little article known as rubber tips for lead pencils. These consist of small blocks of rubber, molded into various fanciful forms and provided at the center with an orifice into which an end of the lead pencil is thrust. Small and simple as the article is, a very large busi ness is carried on in its manufacture and sale.
Several conflicting patents and claims for patents at one time existed concerning the rubber tip; but the various par ties finally consolidated their interests under the name of the Rubber Tip Pencil Company. One of the principal patents, held by the Company, was that of Blair, 1867, and on this patent the Company lately brought suit in the United States Courtagainst Hovey and others for infringement. We publish the decision of the court in another column. It will be seen that Judge Benedict takes a very narrow view of the invention. He regards it as simply a piece of rubber with a hole in it; and, looking at it from this point of view, he thinks there is not enough invention about it to support a patent, and so dismisses the case.
This decision we believe to be erroneous. True, there was no great amount of invention exhibited in the article. In such a small affair, not much is to be expected. But enough of invention was manifested to produce a new article that everybody wants-enough to create a new and important branch of industry, and therefore sufficient to support a pat ent.

Sledge hammers made from cast steel are superior to those made from iron and faced with steel. They cost about wice as much as the latter, but will perform fully four times the amount of work without requiring to be dressed.

NATURE AND ART.

One of the most interesting general subjects, with which a philosophically inclined mind can occupy itself, is the comparison of a natural object with a product of human art. An artificial object may indeed excite our admiration and even de light; but after some study, we comprehend all that it is intended to, and all which it possibly can, teach us. As it has
been executed by the genius, skill, and perseverance of a been executed by the genius, skill, and perseverance of a
man, it can be understood by another man, provided his man, it can be understood by another man, provided his
intellectual development is not so low and his preparatory education not so defective that he cannot elevate himself to the standard required to appreciate the genius of his more advanced fellow man. By studying the products of such genius, he finds that, after all, they partake of many (and if not of many, at least of some) of the human imperfections. The finest human production represents, after all, nothing more than the state of scientific knowledge or artistic ability possessed at the time of its production; it silently admits o improvements, and confesses that probably it will proved by advancing science, or, even worse, entirely set aside by the more perfect productions produced by later genaside by the more perfect productions produ
erations, and elaborated on a different type.
In studying a natural production type.
In studying a ne without human intat is, an object made by Nature, alone, without human interference, we find that all the above remarks are totally inapplicable. We find that we never will be able to learn all that it can teach. Its place in the universal economy is such that we are compelled to confess that it was assigned by the most Supreme Wisdom, and while science comes, in its giant steps of progress, neare and nearer to that wisdom, new perfections are discovered in it. Every natural production appears more and more elaborate, and more and more in harmony with the whole universe it will never be superseded or set aside, but is steadily ful ferentition of the material universe. At every step of our investigation, it admonishes us of the eternal laws of its being. A thought of the great German philosopher and poet Goethe, which flowed from his pen when his mind was turned to the study of botany, is worthy of attention; it is

```
Die Pflanze das Höchste, das Grösste
Die Pflanze kann es dich lehren. Was sie wissenlos ist.
```


We add the translation

The plant the highest, the greatest attain The plant may instr unwittingly Wittingly ittingly is,

nd this may be said of any natural object as well as of the plant, even of every part of a plant, of every part of the moinutest animalcule ; and if we recall the millions of organ isms which the microscope is revealing in our time, is every grain of fossil carth, in every drop of stagnant water, even in the mud of the ocean bottom, at depths so great as to be for merly considered utterly inaccessible and devoid of life, we are dumbfounded at the infinity of the mysterious Power which presides over Nature's productions, and the compara tive insignificance of man, notwithstanding all his pride.

CANADIAN PATENTS.

Our provincial neighbors have commenced their annual discussion of their Patent law. In the Canadian House of Commons, a few days ago, the Hon. Mr. Pope moved that the House go into committee on certain resolutions to amend the Patent law. He explained that in effect the measure was intended to assimilate the Canadian Patent law to that of Ergland and the United States. The proposed amendment does away with the provision of the present law which requires a year's residence in Canada. The only other change proposed is that patented articles shall be manufactured in Canada. The House then went into committee, Colonel Gray in the chair, and adopted the resolu. tions and reported. The report was received. The resolu tions were read a second time, and a bill founded on them was introduced.
We shall watch with interest the progress of the new bill, but have but little hope that the Canadians will so amend their Patent law as to permit their cousins in the States to secure protection for their inventions within the Provinces. The Canadians have so long practiced the habi of appropriating the inventions of our people that they will not readily give up the privilege; but at every Parliamen tary session, a great deal of virtuous discussion takes place
about Patent reform, which always ends without affording any protection to American inventors. We apprehend tha the present discussion will terminate in the same manner.

EAST INDIAN IRON.

The Indian Mail is wondering why so little has been done to develop India's alleged wealth in iron, while the demand for that metal is so great as to divert British capital int foreign mines. it states that the steel now wrought in Cutch
may vie in beauty of temper with the best productions of Sheffield and Glasgow, and that iron was lately turned out from a rude furnace erected in the hills near Simla superior to that obtained from Glasgow and Merthyr Tydvi at seventy shillings a ton. For sisty miles, along the base of the lower Himalayas, extends a rich iron bearing country while the materials for smelting the ore lie close at hand in the shape of forests of hard timber. The iron bearing tract near Simla, covers two hundred square miles and yields a malleable ore very like that of Sweden. No doubt is enter that it may be brougit into the market there cheaper than the English metal.

SCIENTIFIC AND PRACTICAL INFORMATION.

A NEW BLUE COLOR.

If metallic antimony he dissolved in aqua regia, after fil ering through granulated glass, a solution of prussiate of potash being added as long as any precipitate is produced, a beautiful and permanent blue color is exhibited which can scarcely be distinguished from ultramarine. With chrome or zinc yellow, it gives a green, almost equal in color to Schweinfurth green and far less poisonous.

acoustic telegraph

Professor Weinhold, of Chemnitz, Germany, has invented phonic telegraph, employing neither electricity, magnet ism, light, nor heat. The wire, which must be very carefully insulated, is attached at both ends to sounding boxes Words uttered near one sounding box are repeated by the ther very distinctly. This telegraph has been found to work well on the short line (2,200 feet long) where the ex periment was made.

THE MARSH TEST FOR ARSENIC

$=$ In the Berlin laboratory, it was customary to pass the ar senuretted hydrogen gas through several wash bottles containing dilute solutions of nitrate of lead, before passing it into nitrate of silver. It was often noticed that, although using chemically pure acid and zinc, the lead solution al ways became quite black, a fact indicating the presence of sulphuretted hydrogen. If concentrated sulphuric acid were used, the smell of sulphuretted hydrogen is also noticed Professor Kolbe, who has been studying this subject, concludes that the sulphuretted hydrogen is due to a reduction of the sulphuric acid by nascent hydrogen, the amount of heat generated favoring the decomposition. This reaction could perhaps be represented thus:
$\mathrm{H}_{2} \mathrm{SO}_{4}+8 \mathrm{H}=\mathrm{H}_{2} \mathrm{~S}+4 \mathrm{H}_{2} \mathrm{O}$.
It seems probable that the sulphuretted hydrogen thus generated would precipitate a portion of the arsenic introduced and render the test less accurate. To avoid this, Professor Kolbe suggests the use of a very dilute acid.
adulteration of stearin with paraffin
To determine the amount of paraffin in stearic acid or in stearin candles, the following simple and practicable method may be employed: About five grammes of the substance is weighed out and treated with warm potash lye, not too concentrated. The stearic acid is, of course, converted into soap, while the paraffin remains suspended in the liquid in small drops which finally collect on the surface. By allowing it to cool, most of the paraffin could be taken from the top, but to avoid errors, caused by drops of paraffin which emain suspended in the liquid, a solution of common salt is dded which throws down the soap from the solution. The sid soap and paraffin are brought on a filter and washed with cold water, or a very dilute alcoholic solution. After
all the adhering salt solution is washed out, the soap itself all the adhering salt solution is washed out, the soap itself
diszolves and passes through the filter, leaving the paraffin lone on the filter. This is dried at a temperature below the melting point of the paraffin, say at about 35° to $40^{\circ} \mathrm{C}$. The paraffin may still contain some water and excess of alkali, so that it is not yet ready to be weighed. It should be reated with ether on the filter, and the ethereal solution evaporated, in a weighed porcelain or glass capsule, at a low temperature on a water bath. This operation must be conducted with great care, for the solution is apt to foam and spatter. The weight of the evaporated residue gives the acid.

the forest fires.

The calamities of last autumn, which destroyed so much property in Michigan, Wisconsin, and other parts of the Northwest are now being supplemented in the States of New York and Pennsylvania. Fires are destroying the timber and brushwood on the mountains in Delaware county, N. Y At Hancock, a steam sawmill and much other property, in cluding over $1,000,000$ feet of hemlock timber, have been destroyed. We are informed by a traveler on the Delaware Lackawanna and Western road that a tremendous scene o devastation was visible from the train, the heat being such hat the glass windows of the cars were uncomfortable to the touch.

sexuality of heart disease.

Dr. Richard Quain reports that enlargement of the heart one of the most distressing and fatal diseases, is more than wice as frequent in males as in females, the precise propor on men's hearts, This remarkable liability to enlargement thinks,s hearts, as compared with those of women, is, he thinks, unquestionably due to the greater amount of work and anxiety which, under the present dispensation, falls upon man. Ladies may take this fact to heart, and reflect whether, in claiming the rights of women, they may not at the same time incur the risks of men, and with them a new and unexpected form of disability.

AN ANCIENT RECORD

Mr. Henry Fox Talbot has recently read, before the Soci ty of Biblical Archæology, a paper on a "Curious Myth re specting the birth of Sargina." Sargina the First was an ancient king in Babylonia, his capital being at Agani, in that country, at a date so far distant that the site of the city has
never been discovered. The remarkable discovery of Mr. never bean discovered. The remarkable discovery of Mr . Talbot is that the account of his birth and infancy, recorded on a tablet in the British Museum, has many strange point teuch. The following is a literal translation of the hieroglyph:cal inscription: " In a secret place, my mother brough me forth. She placed me in an ark of bulrushes; with bitu-
men she closed up the door. She threw me into the river which did not enter into the ark. The river bore me up and brought the to the dwelling of a kind hearted fisher etc. The original inscription was doubtless a long one, but only the commencement has been preserved.

AbSORPTION OF SOLID MATTER by animal tissues.
Dr. Auspitz, of Vienna, gives the following result of a number of experiments on the behavior of some insoluble matter in contact with the living tissues. In mammals, granules of starch are absorbed by the subcutaneous tissue and are able to reach the lungs and thence the general cir culation; and, moreover, they pass through the lymphatic ystem to win their way into the veins. The epidermis pre sents an obstacle, to this absorption, which doubtless varie in pertinacity with its condition and the varying state of the pores in different states of health and cleanliness. "Ab sorption," says Dr. Auspitz, "is essentially promoted by the assistance of fatty matters which enter the system much more readily than starch, and in the same manner."
industrial activity in vermont.
The Messrs. Remington, whose works at Ilion, N. Y., we recently described, have taken a large interest in an exten sive rolling mill at St. Albans, Vt. The capability of the new works may be judged from the following figures: Three team engines, of an aggregate of 1,200 horse power, will run the machinery, and twenty-six steam boilers will be required to supply them. The iron mill will employ twenty puddling furnaces, ten reheating furnaces, and two 21 inch rains. The works are estimated to be able to turn out 90 uns of rails per day, using 500 tuns of coal, and will em ploy 400 men, working day and niglit.
electroplated jewelry.
The great demand for jewelry of the more ornamented patterns has induced manufacturera to produce the most elaboraie specimens in inferior metal, coated with gold by electric process.
steam tillage.
Mr. William Smith, of Woolston, England, has long been successful practitioner of cuitivation by steam. He states that by thus thoroughly working the land, he has grown on two fields fifteen crops in succession, wheat after beans, without a fallow; and the yield of wheat last year was fully forty bushels per acre. On two other fields of heavy soil he has grown wheat after wheat, and estimates the crop this year at quiteforty bushels per acre. "The produce of these four fields under horse culture was," he says, "about twenty bushels per acre on an average of years." And notwithstanding the heavy and continued cropping under steam tillage, the land is so clean "that the total cost of working the seed bed for each crop, from the smashing up of the previous stubble to the pulverization of the surface in readiness for the drill, is only $\$ 1.60$ per acre.

IMPROVEMENT IN PUMPS.

An effective and novel application of steam power to the raising of water is evidenced in the action of a Reynold's atmospheric engine, at present engaged in pumping out the coffer dam surrounding the caisson which is being sunk, on the New York side, to support one of the towers of the East river bridge. The engine, which is of an improved form, has two vertical cylinders of $7 \frac{1}{4}$ inches in diameter, and t wo cranks. Its stroke is 14 inches. The steam, at a pressu re of about 50 pounds, is led from the boiler through a half inch pipe for a distance of 75 feet, and enters the engine through a valve half an inch in diameter. With this valve half open, the engine, working at a rate of 65 strokes per minute, and condensing all its steam, raises a six inch column of water 28 feet high without the interposition of any extra machinery whatever.
There is no question but that this is one of the best re sults yet obtained from any pumpingengine, more especially as the raising of the water is rendered doubly difficult from the fact of its containing large quantities of mud and grit. Two steam pumps from a well known manufactory in Brook lyn are also engaged at the work, but it has been found that, although they use together nearly eight times as much steam, raise only a four inch stream, and are placed some ten feet below the Reynolds engine, the entire volume of water discharged by them is not more than half as great as that raised by the latter.

BUILDERS' HARDWARE

The complaints of our correspondent F. G. W. at page 76 of the current volume, regarding the very jnferior quality of builders' hardware, we find echoed in the correspondence of The Ironmonger. It seems they have in England equal cause with ourselves to demand better articles in that line. F. G. W. and others think that the fault lies with the manufacturer, who should supply the market with goods of better quality; but a Wolverhampton lock maker takes the groand that the purchaser is the party to be blamed. He groand that the purchaser is the party to be blamed. He
deplores the question of price taking so large a placs in the deplores the question of price taking so large a placs in the purchase of useful articles, and thinks that if the buy
would only look to quality, and be willing to pay enough, the run of common goods wculd become unsalable. He states that manufacturers would rather send out a good article than a poor one, but so long as the public prefer quantity to quality, builders and cabinet makers will buy the cheapest they can.
There appears to be some force in these remarks. Whether they would apply to the relations existing between our own manufacturers and buyers is a question worthy of consideration.

timely hints for patent office examiners.

The Commissioner of Patents, in a recent dec'sion on a case appealed to him, gives expression to the following timely and common sense views respecting the duties of Patent Office examiners:
" Where two parts of a device coact to produce a useful result, they should not be separated for the purpose of rejection. A legitimate combination must be met as such or the claim admitted.
To dis : $\mathbf{e} ;$ a claim and reject it piecemeal is not admissible. nhe invention claimed in this case is for the double purpose of preventing the losing of the key that holds the standard and beam of a plow together, and of strengthening the ard and beam of a plow together, and of
The device consists of a notched key to pass through the standard and a wedge shaped plate having a slot to receive the standard, the slot being considerably longer than the width of the standard. The slotted plate is then dropped over the upper end of the standard and so adjusted as to bring the thinnest end of the wedge under the keyhole, when the notched key or gib is inserted and the wedge plate driven under it firmly and then fastened to the beam by a screw.
The application was rejected by a reference to Fowler's patent of March 26, 1867, which, it was thought, showed the wed ge shaped slotted plate, and to various classes of machin. ery for the notched key. The key is not separately claimed, neither is the slotted plate, and if they co-act to produce a u veful result they should not be separated for the purpose of rajection. A legitimate comkination should be met as such or not at all. The practice of dissecting a machine and rejecting it by piecemeal is without the eanction of either reason or law. Under such practice, the office might very soon close its doors, for the lever, the inclined plane, and the pulley are all very old and very well known, and might soon
become sufficient references for every possible mechanical become sufficient references for every possible mechanical
device; but in this case applicant's invention is not met even device; but in this case applicant's invention is not met even
by the fragmentary mode in which it was examined. The by the fragmentary mode in which it was examined. The
wedge in Fowler's patent is a fork driven under a pin in the standard, for the purpose of regulating the pitch of the plow point and the draft of the plow. It has no other use, and is not designed or adapted to serve the end sought by the ap plicant. It has no influence whatever in retaining the key in its place more than the beam would have without the plate. It resembles the plate in this case in being wedge shoped, and in being fastened to the beam with a screw, but in no other respect. The key, when considered by itself, has no element of novelty, and the applicant sets up no claim to novelty in either the plate or key. His claim is for a novel combination of the two in such manner as to secure a single and desirable end. It is well bnown that the alternating strain and relaxation upon the beam of a plow while at work has a very troublesome tendency to loosen the pin that re tains the standard and beam in their proper relative positions. If the pin drops from its place, the plow is in danger of being seriously damaged. To obviate this dinger and trouble is the sole end of applicant's invention, and it was no part of the object of Fowler's invention; neither would nor could his invention accomplish such parpose.
The key and slotted plate in applicant's device clearly coact in securing this end, and seem to be admirably adapted to the purpose. The notched key could not be successfully used except with a plate substantially in the form described, and the plate would be worthless for the desire 1 purpose except with the notched key. When acting together, the end cept with the notched key. When acting together, the end
is attained. Hence the combination is legitimate, and is not answered by references that apply only to the parts when separated from each other.
The decision of the Board of Appeals is reversed."

DEATH OF AN INDIAN NOBLEMAN.

On the 11th of January last, died, at Poona, British India, Venaick Gungadhur Shastree, commonly called Aba Sahib The deceased was a Marátha nobleman who, unlike his class generally, chose a life of unobtrusive usefulness.
From his early youth he devoted his attention to science and was in 1848 elected a member of the Royal Asiatic So ciety, which at that time did not number a dozen native members. He accomplished, unassisted, the correction of the ordinary Hindu calendar, which had remained for cen turies in dispute, and is reputed to have been the first in troducer of photography among the native communities of Western India.
Aba Sahib was for many years a subscriber to the Scientific American, and we are indebted to his son for a Bombay paper containing his obituary.

Aeronautics.

An ingenious instrument, for measuring the forces exerted by a horizontal current of air on planes in various positions, was lately exhibited before the Aeronautical Society of Great Britain. The plane is carried at one end of a horizontal arm passing through an eye at the upper end of a spindle, and can be fixed at any inclination by a clamp at the back. The direst pressure of the current is read off on a spring balance operated by the spindle, and the rising farce due to the various inclines is shown on a vertical balance connected with the arm. The experiments show that, as the angle of incli nation becomes more acute, the lifting force exceeds the horizontal (or fower required to propel planes through the air) in an enormous ratio. At 30°, it is about three times more while at 15°, the lift is four times greater than the thrust. More acute angles were not then tried, but it was deemed that further experiment would dissolve all mystery relative to the support of weights in flight.

Beecher on the Darwinian Theory.
Henry Ward Beecher, in the course of a recent sermon, thus expressed himself in regard to the Darwinian theory: It is of little consequence to me where I came from; it is of a great deal of consequence to me at the present day in-
going. There are a great many men at vestigating the road which has brought man up to the present state, and I confess to a curiosity in the matter, and I do not say that these researches may not be of benefit. I regard the labors of Mr. Darwin with profound interest, believing that the world will in time accord him a great deal of credit. Although I am not prefared to accept all his speculations, I thank him for all his deductions of fact. I do not participate a particle with those who dread the idea of man's having sprung from some lower form of existence; all that I ask is that you show me how I got clear from monkeys, and then I am quite satisfied to have had one for n ancestor fifty centuries ago. (Laughter.) Only make he difference great enough and I am content. I had just as leave spring from a monkter.) I look upon the Patagonians ore. (Renewed laughter.) or the miserable crawling Esquiman, latent animalhood. I don't care so much about that thing, for I have never heen there. I had no early associations a great while ago. I have not the least recollection of what happened a million years ago. All my life is looking forward. I want to know where I am going; I don't care where I came from.

Halls and School Rooms.

While sulphurous acid, chloride of lime and carbolate of ime cannot be used without inconvenience, on account of their unpleasant odor, in frequented rooms, chemical science has recently brought out a disinfectant apparently more effective than either, which can be safely and conveniently used anywhere, since it is free from odor, and when properly diluted does no harm to the color or texture of carpets or furniture. This is bromo-chloralum. Would it not be worth while, as a sanitary measure, occasionally to sprinkle the floors of our school rooms, churches and other assembly rooms with it? If this were done at the close of a session, the air, instead of being kept in its foul condition until the next gathering, would be cleansed of its impurities. If the sprinkling were repeated just before the pupils assemble, there would be a tendency to lessen the accumulation of un healthiness in the atmosphere of the room. No thoughtful person can doubt that the question: How may we ecure the best sanitary condition of our school rooms and public halls? is worthy of more attention than it has generally received.Professor M. C. Stebbins.
Five eighti inch octagon steel is the best for making punches, cold chisels, or drills; one and a quarter inches square is the best size to use for making chisels. To make a good sized flatting hammer, you will require about six inches of one and a half inches square steel. This will also make you as heavy a hand hammer as any ordinary man ought to use. If you make but one hammer, let it be of the face and ball pattern.
Trie first coal ever mined in the United States was dug near Richmond, Va. Bituminvus coal was mined there as early as 1700 , and in 1775 was extensively used in the vicini-
ty. During the Revolution a Richmond foundery employed his coal in making shot and sheil for the Continental forces

Facts for the Ladies.-Mrs. J. P. Millard, New Hamburg, N. Y., ha sed her Wheeler \& Wilson Lock-Stitch Machine since June, 1862, doing the family sewing for six persons, and making the bedding for a steamboat,
without a cent for repair; it now works as well as when first used. See without a cent for repairs; it now works as well as wh.
the new Improvements and Woods' Lock-Stitch Ripper.
"Burnett's Toilet Preparations will speak for themselves."

gusiness and zexsmat.

The Chargefor Insertion under this head is one Dollar a Line. If the Notice
exceed Four Lines, One Dollar and a Half per Line will be charged.
The paper that meets the eye of manufacturers throughout
John Fairclough, St. Joseph, Mo., desires information about

best bo

T. Shaw's Blast Gauges, Ridge av. \& Wood st., Phila., Pa.

Important to Iron workers.-A man, recently from England, having had twenty years' experience in the Galvanizing of Iron, wishes to obtain employment-would be willing to commence the
by letter, to John Smith, 253 Court St., Buff 10 , N. Y.
Shive's Patent Watchman's Time Detector-the most uner ring detector extant. Price $\$ 15$. Shive Governor Co., 12th and Button-
T. Shaw's Hydraulic Gauges, Ridge av. \& Wood st., Phila, Pa. Kemmer's Patent Oil Frescoing-great improvement for frescoing Cellings and Walls. Office, No. 4 Warren St., New York. Factory
East East Ne
F'louring Mill for Sale. See advertisement, on page 35%.
Better than the Best-Davis' Patent Recording Steam Gauge Simple and Cheap. New York Steam Gauge Co,, 46 Cortlandt St., N. Y. or 2, $4,6 \& 8$ H.P. Engines, address Twiss Bro.,New Haven, Ct Grindstones for File Cutters. Worthington \& Sons, North Amherst, Ohio.
Wanted-A man that fully understands Engines and Machinery, to travel and sell same-also, to sell Stoves. Address, with refer
ence, Great Western Manufacturing Co., Leavenworth, Kansas. T. Hodgson, Amherst, N. S., wants some heavy spiral springs To Ascertain where there will be a demand for new Machinery, mechanics, or manutacturers' supplies, see Manufacturing Ne
United States in Boston Commercial Bulletin. Terms 84.00 a year.

The Best Water Pipe, also the Cheapest, when strength and durability are considered, is the Tin-Lined Lead Pipe manufactured by the Colwells, Shaw \& Willard Manufacturing Co., No. 213 Centre St., New York. Price, 15 cents a pound for allsize. Send for cular
T. Shaw's Steam Gauges, Ridge av. \& Wood st., Phila., Pa. Dederick's Self-adjusting Crank Box, 79 Beach St., New York. Wanted-A first class Machinist; he must thoroughly understand the Harriso 1926, New York.
Patents Sold by Moody \& Co., 183 Broadway, New York. Parties wishing to buy or sell, send for "Patent Bulletin."
Crossley's Patent Lubricator, for Stationary, Marine, and Locomotive Engines, Steam Pumps, \&c. Manufactory, cor. Adams \& John Streets. Brooklyn, N. Y.
If you want a perfect motor, buy the Baxter Steam Engine.
The Baxter Steam Engine is safe,and pays no extra Insurance. Brown's Coalyard Quarry \& Contractors' Apparatus for hoisting and convering material by iron cable. W.D.Andrews \& Bro,414 Water st.,N.Y.
Mining, Wrecking, Pumping, Drainage, or Irrigating Machinery, for sale or rent. See advertisement, Andrew's Patent, inside page. For Tri-nitroglycerin, insulated wire, exploders, with pamphlet, as used in the Hoosac Tunnel, send to Geo. M. Mowbray, North Adams, Mass.
All kinds of Presses and Dies. Bliss \& Williams, successors to Mays \& Bliss, 118 to 122 Plymouth St., Brooklyn. Send for Catalogue. For Steam Fire Engines, address R. J. Gould, Newark, N. J. Presses, Dies, and Tinners' Tools. Conor \& Mays, late Mays \& Bliss, 4 to 8 Water st., opposite Fulton Ferry, Brooklyn, N. y.
In the Wakefield Earth Closet are combined Health, CleanliL. \& J. W. Feuchtwanger, 55 Cedar St., New York, Manufac. turers of Silicates, Soda and Potash, Soluble Glass, Importers of Chemi-解s for Manufacturers' use.
Best and Cheapest-The Jones Scale Woriss, BinghamtonsN.Y. If you want to know all about the Baxter Engine, address
Wm. D. Russell, office of the Baxter Steam Engine Co., 18 Park Place,N.Y. Wm. D. Russell, office of the Baxter Steam Engine Co., 18 Park Place,N.Y. Hoisting and Pumping Engines (Locomotive principle); best and simplest, from 6 to 40 H.P. J. S. Mundy, 7 R. R. Av., Newark, N.J. Send for matter relating to the Huntoon Governor. It will save its cost in three months, on heavily loaded engines. In use in the
largest manufactories in America. It is not a ball regulator. J. Aug. Lynch \& Co., Boston, Mass.
Seeds and Fertilizers. R. H. Allen \& Co., New York.
For the best Galvanized Iron Cornice Machines in the United States, address Calvin Carr \& Co., Cleveland, Ohio.
Diamonds and Carbon turned and shaped for Philosophical and Mechanical purposes, also Glazier's Diamonds, manufactured and re-
set by J. Dickinson, 64 Nassau st. New York. set by J. Dickinson, 4 Nassau st.,New York.
Callow's New Patent Mode of Graining Wood,
Makes Painters grain all woods first class who never grained before ;
Likewlse makes Grainers lightning fast who thumbed it out before.
Address, with stamp, J.J. Callow, Cle Ohio
A competent Superintendent for the manufacture of MalleaIre Iron may hear of a situation on application to the Springfield Malleable Iron Wors, springret, ohio
The most economical Engine,from 2 to 10 H.P., is the Baxter. Wanted-A Purchasing Agent in every city and county, to supply Nye's fine Sperm Sewing Machine Oill. Put up in Bottles, Cans, and
Barrels, by W. F. Nye, New Bedford, Mass. Presses,Dies\& all can tools. Ferracute MchWks,Bridgeton, N.J Also 2 -Spindle axial Drills, for Castors, Screw and Trunk Pulleys, \&c.
The Patna Brand of Page's Patent Lacing is the best. Or. ders promptly flled by the Page Belting Co., No. 1 Federal St., Boston.
Absolutely the best protection against Fire-Babcock ExtinAbsolutely the best protection against Fire-Babcock Extin guisher. F. W. Farwell, Secretary, 407 Broadway, New York
For Steam Whistles, address Exeter Machine Works, 75 Congress Street, Boston, Mass.
An inducement.-Free Rent for three months to tenants with good business, in commodious factory just built for encouragement manufacturing. Very light rooms, with steam, gas, and water pipes,
power elevator, \&c. \&c. Manufacturers' Corporate Association, West field, Mass. Plans of Building, Room 22, Twenty One Park Row, N. Y. Peck's Patent Drop Press. Milo Peck \& Co., New Haven, Ct. The "Bellis Patent Governor," made by Sinker Davis \& Co., of Indianapolis, Ind.,
regulator now in use.
Persons in want of Portable or Stationary Steam Engines, or Circular Saw Mills combining the latest improv
with Sinker Davis \& Co., of Indianapolis, Ind.
Over 800 different style Pumps for Tanners, Paper Makers, FirePurposes,etc. Send for Catalogue. Rumsey \& Co., Seneca Falls, N. Y.
Lord's Patent Separator for Ores, or any dry material, built Lord's Patent Separator for Ores, or any dry material
to order. State rights for Sale. 232 Arch St., Philadelphia, Pa.
Important.-Scale in Steam Boilers-We will Remove and prevent Scale in any Steam Boiler or make no charge. Geo. W. Lord, 232 Arch Street, Philadelphia, Pa .
Anti Lamina" will clean and keep clean Steam Boilers. No injury to iron. Five years' use. J. J. Allen, Philadelphia, Pa.
Williamson's Road Steamer and Steam Plow, with Rubber Tires. Address D. D. Williamson, 32 Broadway, N. Y., or Box 1809.
Billiard Cushions-Manufacturers of Billiard Tables, use Murphy's Patent Cushions. The finest made. Send for sample set. Gutta
Percha and Rubber Manufacturing Company, $9 \& 11$ Park Place,New York
For the best Recording Steam and Indicating Gauges, address The Recording Steam Gauge Co., 91 Liberty Street, New York.
For Solid Wrought-iron Beams, etc., see advertisement. Address Union Iron Mills, Pittsburgh, Pa., for lithograph, etc.
Belting as is Belting-Best Philadelphia Oak Tanned. C. W. Arny, 301 and 303 Cherry Street, Philadelphia, Pa.
Boynton's Lightning Saws. The genuine $\$ 500$ challenge. Will cat five times as fast as an ax. A 6 foot cross cut and buck
E. M. Boynton, 80 Beekman Street, New York, Sole Proprietor
Hydraulic Jacks and Presses, New or Second Hand, Bought

T10teestiqueries.

[We present nerevourn a serteso. inguries embracing a varieny of topics greater or less seneral interest. The questions are simple, it ts true, but wo
1.-Superheating Steam.-Can any of your readers in form me whethe
how?-R. H. E.
2.-Removina Nitric Acid Stains.-Can some of you readers inform me if the yellow stains in cloth,
removed, and if so by what means?-S. H. F.
3.-Defositing Tin by Electrictity.-Can thin shee brass be galvanized on one side with tin? Can it be done without getting
tin on both sides? Is there any preparation of tin that can be applied with tin on both sides?
a brush?-K.
E.
4.-Acidulation of ale.-What is the cause, or what wilp prevent, ale in the process of brewing rom running ind herecticaci
state? In cleansing, should i t be allowed to work until it is perfectly still state? In cleansing, shoulditbe a.
and then be bunged down!-w. H. C.
5.-Electrodeposition of Iron.-Can iron be deposited on brass or copper by the aid of a a galvan
a receip to make a solution?-T. N. s .
6.-Measurina the Flow of Steam.-How can I best given sized pipe, in given time the prester in boiler ayeraging say given sized pipe, in a given time, the pressure in boiner averaging say
pound per square inch Do yo know of ameter or other appliance which
might be connected with the steam pipe which would indicate the amount might be connected with the steam pipe
of steam used in a given time?
7.-Wire Rope for baling Press.-I wish to know Whether a wire rope would be suitable to use as a balance rope on a baling
press, and what sized wire rope would be necessary where it has to hang on a foot roller and sustann 2,000 pounds attached to each end, each 2, ,Copound
alternately passing up and down, and drawing the wire rope over the roll alternately passing up and down, and drawing the wire rope over the roll
crs? Would it weaken the rope to bend it over said roller?-A. J. B.
8.-Proportions of Engine.-An engine, the cylinder of which if ofeleven inches bore and three feet stroke, runs at forty revolu-
tions per minute with fifty pounds pressure of steam, as shown by gage. Can tions per minute with ifrty pounds pressure orsteam, assown by gage. Ca
I do the same work with an engine of seven inches bore and tourteen inches stroke, running at one hundred and difty revolutions per minute, a arryying
eighty pounds of steam, or what part of the work per minute can Ido? 9.-Fanning and Fiy Brushing Machine.--In our warm climate we need fanning and fly brushing machines, and the main trouble
has always been the difiticulty in securing some safe, ight and steady power has always been the difiticulty in securing some safe, ight and steady powet
to run said machines. I think this difflculty can be overcome by constructto run said machines. I think this diffculty can be overcome by construce
ing a wind mill which, night and tay (whenever the wind is favorate) will ing a wind mill which, night and day (whenever the wind is favorable) will
forcee water up into an elevated tank. Said tank can be placed upon the
 will furnish, thinhin, ample and steady power for the purposes named, and
will besides run the family sewing machine and supply the house throughwill besides run the family sewing machine and supply the house through-
out with all the water needed. Will some one get up the required machinout with all the water needed. Will some one get up the required machin
ery or else give uis an idea of the sizes of the windmill, tank, turbine wheel ery or else giv
fans, etc?
10.-Cutting Steel.-I wish to know the proper diameter and. number of revolutions of a smooth-faced soft steel cutter, such as is
11.-Wooden Tank for Water.- Will some one inform me what is the most durable wood to use for a reservoir, to be placed on
top of a house to hold water for domestic purposes? 0 of white top of a house to hold water for domestic pur
pine, which woula be preferable?

Gusuxers tu Cumerymudents.

 struction of our readers, not for gratatuitous replies to questions of a apurrely
business or personal nature. We woill publisis such incuuries, howerer when paial for as advertisements at 1.0 va ine, under the head of "Bustness
and Personal. LLreferencecto

Specimens.-We are indebted to Mr. J. L. Rhodeback, of Norway, O., for speecimens of petriffed honeyc combs, a rare and beauti-
fal petrifaction upon which we shall remart hereafter. Also for specimens of agate spear heads of aboriginal construction.
Pounding of Piston.-To S. R., of Pa.-This question has been fully discussed in the
See pages $138,155,170,217$.
Proportions of Safety Valve.-To C. h. C., of N. Y.We have frequently answered your question. You will find
lars on page 106 of Vol. XXV. of the Scristiric Americas.
E. K., of N. Y.-The mineral you send is anthracite coal Thin seams of this coal occur in many plat
New York, but there are no workable beds.
N. B. D., of Ill.-The mineral you send is iron pyrites or " fools' gold,", of no great value. It
peras and for the sulphur it contains.
C. R., of Va.-In the mineral you send there is a small per B. F. R., of Ala.-The mineral you send is not graphite, but a highly carbonaceous slate, which would nake but a poor substitute for "black lead.
J. W. B., writing from Fayette, Miss., says : I send you here with a large bug found on the bank of a creek in this vicinity. As no one here knows what it in, it take the liberty or sending it to you to find
out the name of the "criter." Answer: We are much obliged for the
 the Dynastes tityr
of the Egyptians.
J. H. D., of Ohio, sends a mineral specimen which he states was taken from a wooden water conductor ten rods long, which drains a
well on a descending grade. The water is used for watering stock. The well on a descending prade. The wateris is sed for watering stock. The trough. The water has the property of turning all vegetahle matter,
falling into it, black in a very short time. Answer: The mineral you send is hydrous oxide of iron, mixed with earthy matter, and contains no poison. The tanin in the vegetable mat.
ing a black precipitate, resembling ink.
Eye Stone.-E. P. B. says: A difference of opinion having arisen between myself and a friend in regard to the nature of an ey stone, whether it is animate or not, we beg of you to enlighten us on the
subject. Answer: rhe best form of eye stone is said to come from Venezuela, where it is found on the seashore. It is flat on one side, oval o
the other. When introduced under the evelid, the motion of the ey the other. When introduceed under the evelidid the motition of the eye
causesit to move about, and any particles of foreign matter in the ese causes it to move about, and any particleso of foreign matter in the
adhere to the stone. The eve stone is as inert as any other pebble.

Neutral NITrate Bath in Photography.-In photography, the most difitcult thing is to preserve the nitrate bath completel
neutral, as, at every dip of a plate, free nitric acid is liberated. If w neutral, as, at every dip of plate, free nitric acidi is iliberated. If we
allow asmal piece of carbon ate of lime or common marbe to remain in the bath, will it not neutraize the acid without incurring the risk making the Dath alkaine? Teeland spar is said to be the purest form or
carbon te or lime ; here can it be procured Answer: Photoraphers
do not want the bath completely neutral; a slight acidity is the best pre do not want the bath completely neutral; a slight acidity is the best pre
ventive against fogging. A neutral bath requires a shorter exposure We prefer to add alittle carbonate of soda when our bath becomes too of ilme, as you propose, would be an injury to the bath.
Siphon.-To J. M. J.-It is not possible to raise water from a well by means of a siphon, unless the siphon discharges at a poin
lower in level than the water of the well . To draw water from a dent ower in level than the water proverbially impossible. The size of the pipe does not affect the efll ciency of the siphon.
Greasing Cogs of Reapers, etc.-I would say, in answer to que
sand
on sand or grit to get into them. The grease lessens the wear; but in th
sand gets toit, it will stick to the cogs and make the wear more rapid.sana C. B., ofo
Hes.
Expansion of Mercury by Heat.-Query 10, page 249.If a given volume of mercury at 320 be taken as 1, when heated to 2120 wiilequal 1.02 ; that is, raising its temperature 1800 increases its bulk 02
of itseslf. But the increase in the bulk is not uniform, for the ratio or expansion for liquids and solids increases with the temperature. Of th metals, zinc expands most. If the ength of a bar of z inc be taken as
when the temperature is 33°, when heated to $2120^{\text {it }}$ will equal 1.002912 a expansion of 002992 of its length for 180. Lead is next, and show 0028826.-X. P. M., of 0 ,

Greasing Cogs.-Query 4, page 297.-Having had some experience in tnis with a reaper, I would advise C. A. A. to put his
grease where it will do some good and no harm. For, if he puts it on the earing of a reaper or mower, he will soon find that it catches and holds every grain of sand that drops on the wheels (and a good many
will fall there in a day), and thus help to wear away the cogs faster thay is necessary. Ifound this when I tried it, so I quit greasing and cleaned off the cogs, and the wheels were soon bright and smooth, and ran as light as ever and with much less wear.-X. P. M., of 0 .
Blackboard.-Query 17, page 297.-I have known silicate IILD BEES.-Query 5, page 297.-C. J. M. should go to where tees.-Query 5, page 297.-C. J. M. should go to where the bees abound, put a little honey on a log, and when a b be
alights and is vell toaden, take him by the middle of the back and at tach a light piece of cotton to his legs. Then letting him go, he will take a straight line for home. Marking the direction with a compass, it can
easily be traced by means ef the cotton. - G. I. \mathbf{F}., of N. Y. Widd Tea.-In your paper of February 24, you advise a correspondent that Jersey tea (ceanothus Americanus) is common!
known as wild tea, and was used during the Revolution of 1776 as a sab known as will tea, and was user during the Revolution of 1 1776 a a a abu
stitute for tea. I write to inform you that another plant callea Labrado tea (ledum Iatifoliu
as a substitute for t to sans itute for tea by our forefathers. See Bigs.
ton and its Vicinity," page 183. -W. B. s ., of Mass.
Painting the Inside of an Iron Water Tank.-Quer 5, page 313.-I would recommend the coating of the inside of an fron tank with beeswax hardened by adding about one fourth part of rosin
Clean the tank and coat it well with the wax preparation, as hot as possi ble without burning your brush. A long experience convinces me that
the alove is the best possiole coating for an iron water tank.-H. W. M., of Mass.
Wild Bees.-Query 5, May 4.-Take the bottom of an old sugainhogshead.and keep it saturated with water; or place on it waste
honeycomb. "Stink bait," however, will draw them much further from home. I have known bees to go two miles to this last; some people sav ome. Have kre of foesto go two
they will go three or four.-H. w. s .
Magnetization.-Query 9, page 297.-A circular piece of steel can be magnetized as well as any other form. In this case the thase points, there will be pointst that will maninfest little or no magnet.
ism. The steel must be tempered, else the force. is lost as soon as the magnet is removed. The best way is to apply the steel to a powerful electromagnet; this might prove the only effective way for a piece as
large as the one mentioned. But if this cannot be done, take two pieces arge as the one mentioed. Aut it
of oadstone with their opposite poles towards each other. Place them upon the center of the piece of steel, and slowly draw them to the edge.
Remowe Remove them, replace them at the center, and again draw them to the
edge. Continue the process until the steel becomes magnetized. This method will not give as good results as the electromagnet.-L.R.F.G., C° Mass.
Brittle Spiral Spring.-Query 12, page 297.-The spiral spring ofa pegging machine breaks after it tas been run for some time be
cause the continual jarring causes the particles to assume the crystaline form. Not only does iron crystalize in casting, but a continued jar wil harder by for and steel to crystalize. C cands say that the stee
 The remedy
G., of Mass.

gatent gmericam and forcign eqatonts.

pree this headitn we shall pubbish weekiy notes of some of the more promi

Soap Holprr.-Jacob A. Camp, of Sandusky, Ohio.-The invention con sists in a perforated and handled soap cup by which all necessity for taking
oap in the hands ir removed, while a better lather, cleaner soap, and econ soap in the hands is removed, whili a better rather, cleaner soap, and econ-
omy in use are all attained. All those who have sued, and those who have mitted heretof ore to use, soap wil
thave one of these soap holders
Churn and buttrr Workrr.-Wm. McKeever, of Staunton, Va.-The vention consists inla stop chamber, with stationary breaker thereunder
hich is combioed with a movable breaker, so that the milk or cream only noves backward and forward in a small arc. This compels the production Which beat and work the butter, so that there is no need whatever to touch ovelty, and is a greater improvement in churns than has been made in the present century.
Wheat Scourring Maching.- George S. Newman, of Liberty Mills, Va.The invention consists in a grain scourer which discharges the grain from
he hopper around the shart and upon a top cup, whence the centrifu al power torces the errain outward, over its concave sides, and rubs the eellicle with great friction. This detaches all or a alarge portion of the dirt
The grain is then conveyed down to the shaft and into one cup after anothe until the operation is completed.
Mole Trap.-Clark Polley, of McMinville, Tenn.-The invention consists slide, but to hold together aplit the parts, and thus render them easily detach able. This greatly simplines, cheapens, and makes more useful the whol

Orivirrar.-Wm. C. Jones, of Henry County, Ala.-This ointment is a
compound formed of beeswax, butter, honey, rosin, mutton suet sun in
 tions. It is intended
and sores of all kinds.
Cultivator Plow.-Cealy Billups, of Norfolk, Va.-The invention con Sists in providing a cultivator plow with wings, ratcheted on their shanks Whaving their r front ends entered into the sockets of the shoe.
 chine, the bottom or which is made inclined, con tains a rack, thesidebarso
which are set in inclined grooves in the sides of the box toward its forward r deeper end. The round or rods of the rack are arranged 2 a a litle dib ance apart, so that the water forced forward by the plunger or beater and he water squeezed out of the clothes may pass through freely into a spac Letwen the rack and the forward end of the box. This space is covered by aplaform or apron, which is slightly inclined to the rearward, and is at-
ached to the sides and end of the box a
ittle below their upper edges. rached to thesides and end of the box a little below their upper edges
The apron keeps the water from dashing out of the end of the tub. The plunger is inclined to correspond with the inclination of the rack, so tha the clothes may be pressed squarely between the plunger and the rack. To
the rear side of the plunger is rigidy attached the end of an arm, to the he rear side of the plunger is rigidy attached the end of an arm, to the
ear end of which is pivoted the lower end of a lever which is attached to rear end of which is pivoted the lower end ot a lever which is attached to
the center of a cross bar, the ends of which are pivoted to the sides of the box. The lever is curved so that the power may be conveniently applied
machine for Making Cop Tubes.-Robert Douglas, of Lowell, Mass. assignor to himself and James Douglass, of same place.-The liability of the paper tube formed in the usual way to collapse asitis passed from the mandrel, in consequence of a partial vacuaum formed the ein for want of air
tn resist the external atmospheric pressure, is remedied in this invention by providing a hollow mandrel, having an opening therein for the admission of air to thetube as it passes from the mandrel. From this mandrel the tube is received between a gripping pawl and a fixed griping jaw on a bar, car
ried by an endless belt, to be drawn trom the mandrel, cut into suitable ngths for drying, and carried to the apparatus for conveying to the drye here are preferably three of these gripers on the belt; also as many cut
ng shears justin advance of each griper, between the jaws or blades of Wich the tubes are drawn by the gripers in advance of them, and thes hears are automatically closod upon the tube and cut it off immediately af the gripers behind have taken hold of the saia tube. At the same tim that the thate is cut, the gripers in advance or theshears are opened and th ece of tube cut off fals upon a chute, by which ris conducted to ende
arriers to beconducted into the heating chamber.
Cider Mile.-William Aiken and William W. Drummond, of Louisville y. - The bottom of the hopper is formed of two inclines, the lower one of he space through which the apples pass down to the grinding cylinder, the urnals of which revolve in bearings attached to the frame, and to whic are attached teeth to break up the apples against the crusher plate. The of the opening between the inclined parts of the bottom of said hopper so hat it may be swung forward to crush the apples against the toothed cylin der to enable them to pass down between the said toothed cylinder and the oothed concave attached to the frame, where the crushing, grinding, o ashing process is completed. To the main shaft is attached an eccentric wer part of the crusher plate, so that at each revolution of the eccentric heel the lower part of the said plate may be forced forward to crush the pples against the toothed cylinder
Wagon Tire Tightener.-John Kafader, of Jacksonville, Oregon. curing tires upon the fellies of wheels, both when first applied and whe hey may have become loose from use. The adjacent ends of the fellies upthe opposite sides of the wheel are cut away, or made a little short, so gainst the ends ot the fellies are placed two plates. The sides ot the plate that rest against the ends of the fellies are made flat to bear squarely agains sid ends. The other or inner sides of the plates incline in both direction rom the center. In holes in the plates, at their angles, are placed smal ollers, said holes being so formed that the sides of the rollers may project sufficiently to receive the wear. Between the plates is placed a wedge
haped block, with its smaller end toward the hub of the wheel. Through he center of the wedge block is formed a screw hole to receive a scre which passes in from the inner side of the rim through the casing, agains hich a collar formed upon the said screw rests, so that by tarning the gg the rim of the wheel, and thus tightening and securing the tire. Th號 the ends of said fellies, so that the outer surface of the case may be flus ith the outer surtace of the fellies. With this construction, should th re become loose from use or other cause, a turn or two of the screws will W.agon brake.-Henry J. Hadden, Jr., of Catskill, N. Y.-This inventio relates to that class of wagon brakes which are applied whenever the horse igidly attached a downwardly projecting arm sbout twelve inches in ods, which incline from each other and pass bact beneath the forward axle withtheir rear ends attached to the brake bar. The brake bar is supporte y and moves forward and back in keepers attached to the sway bar and ounds, and which is kept from longitudinal movement by guide pins a tached to it, which strike against keepers. To the ends of the brake ba
re pivoted or otherwise attached brake shoes, which bear against the rim of the forward wheels and thus check the advance of the wagon.
Cattle Poge.-Orville Sweet and Clarence H. Sweet, of South Glen, Falls, N. Y.-This consists of a block of wood, which may vary in size and
weight with the size and strength of the animal that is to wear it. To the orward side of the block, toward its ends, are attached two pins or prongs kh project forward and incline slightly upward, and which are designed nd upper part of the block is attached a longer pin, which projects upwar nd forward, and which is designed to prevent the animal wearing the pok sharp pointed spikes or pins are attached to the middle part of the block with their points projecting at the rear side of said blocks in such position
to come in contact with the head of the animal wearing the poke, should he poke be jolted or should any pressure be applied to it. To the rear sid the block is attached a spring which rests against the animal's head, and hich should have sufficient strength to hold the spikes away from the an o prick the animal should it attempt to run, jump, or push. The ends of a nimal's horns; and they are then hooked to each other.' The fastening thus onstructed canot injure the animal and cannot shrink when it become et, while at the same time it holds the poke securely in place.
Tree and Plant Protector.-William F. Eaton, of Cape Eliza beth, Me This consists of a standard or stake, the lower end of which is sharpene tandard is proportioned in size and length to the size of the plant to b pported. The upper end has two longitudinal slots formed in it, dividing ral prong the longest. There is a metallic strap. the middle part of whic is bent into circular form. The arms of the strap are parallel with each ther to pass through the slots of the standard, and their ends are bent out ard at right angles to rest against the rear side of the standard. In using the support, the strap is passed around the plant, shrub, or tree. The paral-
el arms of the strap are chen slipped down into the slots of the standard he upwardly projecting central prong guiding them readily into place. Th dges of the middle or ring part of the strap are turned or flared outwar
 which shall he so constructed that it may eb readily and conveniently
drawn forward and down over the horse's eyes when necessary to bring him under control; and consists of a plate sliding against coiled springs contained in the trame in which it runs, and pulled fo
by blinder reins attached to eyes on its forward end.
Priman Conngction for Harvistrers. - Willard Loucks, of Lowville, N. Y.-Tue lower part of the pitman is split and bifurcated, snd carries a
the ends inwardly projecting pins of conical form and with rounded the ends invaraly projecting pins of conical form and with rounded
points. A sleeve embraces the pitman, and is provided with a set serew, whereby it can be fastened at a suitable distance from the lower end. The
cutter bar has an eye formed at its end, and a box, of cylindrical form fitted cutter bar has an eye formed at its end, and a box, of cylindrical form fitted
therein, said box having conical recesses at the ends for the reception oo therein, , asid box having conical recesses at the e ends for the reception or
the aforesaid pins. The split ends of the pitman are spread apart in order the aforesaia pins. The spite ends of the pitman are spreat apart in ond
to admit the pins into the box, and are then held contracted by means of
the sleeve. It, by wear, the eceesses in the box should become enlarged, it the sleeve. If, by wear, the recesses in the box should become enlarged, in
is only necessary to move the sleeve farther down, and thereby further con tract the pins. When the box is entirely worn, it is readily replaced by an othe
Cotron Press. -Gus. Falkner, of Warrenton, N. C.-This invention con pawls therefor, with the tollower of a press working from the bottom up pawlis therefor, with the tolower of a press working rrom the bottom up-
ward anl soarranged that the pressing of the bale may be readily fefected
by hand power applied to said levers. It also consists of a novel arrange. by hand power applied to said levers. It also consists of a novel arrange ment of the top cover and apparatus tor lowering the follower.
WAsi Boiukr. tion has for its object to furnish an improved whan Kansas. - This inven washing shall be done by water forced from the lower part of the boile upon the upper parts of the clothes by water and steam pressure; and it consists in adding, to the ordinary one, another boiler with an inclined slotted bottom, fitting loosely within in it. This slot is oovered by a bridge
which supports a rack on which the clothes are placed. The steam pressur forces the water between the boiler bottoms up through channels formed a the ends of the inner boiler, and discharges
through which, it returns through the slot.
Corn Grater.-George C. Rickards, Jr., of Philadelphia, Pa. assignor to himself and William Allen, of same place.-The object of this invention is pulp, and it consists in the construction and arrangement of the followin parts: The stock is made of wood, in two parts, which are two inches, mor or less, in width, and one inch, more or less, in thickness. These pieces are
connected together end to end, by two serrated plates, one of which i coarser than the other, so that the corn may be grated coarse or fine, a may be desired. These plates are of about the thickness of saw plate steel,
cut out on the upper edge to form semicircles, with the semicircles serrated, the circles being three inches, more or less, in diameter.
Hoof Shears.-Micajah C. Malone, of Palmyra, ill. -The two handles of the shears are connected by a pivot pin. The one handle carries the cutter moves to cut. From the blade projects outwardly a pointed lug, for mark moves to cut. From the blade projects outwardly a pointed lug, for mark-
ing on the outside of the hoof theline to which the same is to be cut. The hook carries an outwardly projecting arm, for clearing the seam and fro of the hoof. There is also an inw urdly projecting lug, on the hook. It
serves to steady the blade in cutting, and to hold the hoor against the por serves to steady the blade in
tion of the hoof to be cut.
Andirons.-John T. Dee and Isaac Murray, of Fredericktown, Miss. The forward ends of the horizontal bars of these andirons are bent down attached to the vertical bars, the lower ends of which serve as feetfor the
andirons. The upper ends of the vertical bars are connected by a horizontal bar, or rather formed in one piece with said bar. This construction enable be when made separate. Ice Machine. - William R. Johnst jn, of Sedalia, Mo., and William White Tenn.-This machine (which would need the ard of drawings to describe in detail) is intended to effect the proper utilization of sulphide of carbon and kindred substances in ice making, by eliminating the vapor of the agent employed trom the air by passing it through oil. Also, to regulate
the evaporation of the bisulphide ba a concentrated solution of chloride of by passing it over chloride of calcium before it enters the freezing cham by pa
ber.

Lock Nut.-James A. Morrison, of Parker's Landing, Pa., assignor to himself and George H. Morrison, of same place. - The object of this invenscrew bolts from working off whenin use. It consists in the employment of a grooved bolt with a ribbed collar, which can be slid to any part of the
bolt without being at liberty to turn; this collar has suitable springs attached, which fall into reeesses in the nut
to the collar, so that it, also, cannot turn.
Soldering TooL.-John A. Tillery, and Samuel A. Ewalt, Baltimore,
Md.-The invention relates to that class of soldering tools which are usually rotated about the cap by twirling or carrying them around with the hand and consists in combining therewith a simple mechanism for operating them more rapidly and conveniently. The invention, however, mainly and more
particularly consists in an arc shaped soldering tool, adapted to all the

Pattern for Cutting Garments.-Mis. Saraha. Millwee, Greenwoo s. C.-The invention consists in a pattern chart for front and back human form, with scales of tigures and perforations, arranged for fitting
plain and full waists, loose sacques, and basques of all sizes. It would seem to be an invention greatly calculated to economize the cost, to ladies, of their various garments, since, with o
cut and readily fil as well as make them.
Door Check.-Simon Peters and Cyrus D. Eisaman, of Penn Station, Pa.
-Thisconsists of an oblong plate made of metal, wood, or any other suitable material, with holes through it, of slotted or other form, and recesses o rabbets on its under side, around or partly around the holes; a spring, or
molded india rubber, with a flange or flanges on its under side, whic a re moldeden if rubber, with a flange or flanges on its under side, which are spring is designed to flll the hole and project above the plate, and a stop for
the door, of rubber, made to flll one of the holes in the plate, and to project the door, of rubber, made to flll one of the holes in the plate, and to project
above it, with a flange to fill the recess around the hole. The plate, with the spring and the stop inserted from the under side, is screwed down to the swung back, the door will passover the spring and be kept from striking th wall by the stop. By this arrangement it will be seen that the door will ke Canal boat.-Hartley J. Hatch, of Chicago, Ill -This invention relate to a new canal boat, which is made in two sections in such manner that its pointed bow can be deiached and brought alongside of the pointed stern whenever a lock is to be entered, and which is provtded with a binged and swiveled paddle box. When the boat is to enter the lock, the bow section is
detached and fastened alongside the pointed stern. The boat is thereby made shorter, and with broad ends, to flll the locklike ordinary canal boats. By this arrangement of detachable triangular section, the boat is enabled to
proceed rapidly through the water without creating unnecessary disturbproceed rapidly through the water without creating unnecessary disturb-
ance of the same, and still to fit the locks like an ordinary poat, all without reducing its carrying capacity beyond the weight and space of the addition al sides required by the detachment of the section. The paddle box or
frame is hinged to an arm, which is swiveled to the pointed stern of the boat, and which carries a toothed disk gearing into a pinion on the steering shaft. By means of the shaft, the arm and the paddle box can be turned to either side. The shatt of the paddle wheel has its bearings in the frame, and is provided with cranks that are connected with the operating engine by suitable rods or devices, said engine being situated on a platform or projec-
tion of the frame, and connected by jointed pipes with the boiler, which is
placed in the stern portion of the main boat.

FLY Trap.-Perry A. Burgess, of Butler, Mo.-This invention relates to a
new and useful improvement in devices for catching files; and consists in a flanged disk of wood or other suitable material, with a central hole and an
interior recess on the under side filled with some absorbent material, as soft leather, felt, or sponge. The disk is placed on a tumbler or similar vessel,
the vessel being nearly flled with soap suds or other liguid. the vessel being nearly filled with soap suds or other liquid. The absorbent
is flled or smeared with molasses or other substance for attracting the filies. The flles enter through the central hole seek the bait, and drop into the liThe files enter
quid beneath.
Corn Planter.-Wm. H. Crosby, Parish, N. Y.-The invention consists and to a front beam, while they rest upon two castor wheels. They are the enabled to rise separately over obstacles and the planter to drop the seed
uniformly and at the proper intervals.
SAfETYVALVE.-Herbert S. Jewell and Ferdinand Steele, Brooklyn,N. Y. $-~$
This invention relates to improvements of the safety vive hich letters patent were allowed to the same inventors on or about Jan. 6 1872. It consists, first, in an adjustable plate, provided with a notched ring for graduating the steam inlet apertures; secondly, in a swinging weigh
applied to the sliding bolt of the valve; thirdly, in a weight sliding and applied to the sliding bolt of the valve; thirdly, in a weight sliding and
adjustable on the stem of the valve by a set screw, and fourthly, in connectingustable on the stem of the valve by a set screw, and fourthly, in connect intermediate arbor.
Gold for dental Purposes.-Richard S. Williams, New York city.e present invention relates to a new preparation of gold foil for denta purposes, by means of which the gold may be used for purposes for which it
is not otherwise well adapted; and it consists in rolling the foil into cyliners, the length and diameter of which is governed by the size and numbe

Harrow.-William J. Cordill, Blue Earth City, Minn. -The body or frame the harrow is made in four parts, each of which is formed by rigidly connecting four, more or less, longitudinal bars by means of cross bars framed
othem. The frames are arranged in pairs, the longitudinal bars of the rame of each pair being placed end to end and connected and hinged to eac other by short bars, the ends of which are pivoted to the opposite sides o
the adjacent ends of two or more of said longitudinal bars. Stop plates or bars are rigidly attached to the upper side of the inner ends of two or more of the longitudinal bars of one frame of each pair of frames, so as to overlap
the upper side of the inner ends of tie longitudinal bars of the other frame the upper side of the inner ends of the longitudinal bars of the other frame, so as to prevent the adjacent ends of the frames of each pair from sinking
down below a certain fixed limit, while allowing their outer ends to drop down below a certain flxed limit, while allow
down to conform to the surface of the ground.
Reversible Filter.-John D. Parrot, Morristown, N. J., assignor to or perfect a water filter for which letters patent, dated July 30 , 1869, we granted the inventor, and to render it more useful than it has hitherto been and for this purpose is attached to it a reversing apparatus, consisting o pes and cocks, by means of which the flow of water may be reversed, an the filte
time.
Combined Cooking Stove and Water heater.-Chester Comstock des of than, Conn. \rightarrow The invention consists, first, in providing the inne the fire room and the radiation of heat therefrom on the sides; second, in suspending over the oven, between cover and fire box, and out of range
with the holes therein, a water vessel, which is connected with cold water vessel on top, and has certain hollow arms and pipes to give a greater heat ing surface; and, thirdly,
Flexible Sides for Bellows.-Alfred F. Jones, New York city.-This avention relates to a new construction of the fiexible sides of bellows, air onsists in the combination of a woven or porous fabric, for strength, with an outer rubber fabric which is impervious to air. The two fabrics are not
intimately connected, except, perhaps, at the edges, and the impervious naterial will, therefore, not be strained, the other fabric taking all train Heretofore, such flexible sides were made of single fabrics, which, under
train, would open their pores and let air in, thereby defeating the object o . the des can be obtained.
machine for Cutting Cloth.-Andrew Heller, New York city.-This Tacture of clothing and other fabrics into certain deflnite shapes, and con ists, principally; in the employment of a vertically reciprocating continuou cutting blade; in the combination therewith of marking troughs and aper ures in the plate to which said blade is attached; and in the arrangement clamp
Preparing Moss for Ornamental Baskets.-Jonathan W. Shiveley cor various ornamental purposes, by coloring it with bronze or or mineral dust, sprinkled on a coating of mucilage or other gummy mat er previously applied, or by dipping in a bath of gummy matter and powder, and then drying 1 t, and either stripping or dressing it to impart a gloss
ppearance or not. He sometlmes steeps or boils the moss in hot water, an hen dips it in linseed oil preparatory to coloring it, as above described, to eep it soft and pliable.
PaddLe Wheel.-George H. Cushman, North Bridgewater, Mass.-This The principal object of the invention is to prevent the washing and wearin way of the banks of a canal by the action of the swell or waves created by he passing of the hoat through the water. Another object is to so construc the foats of the wheel as to enable them to enter the water easily, an wheel closed and with its inner side open, much of the water displace wheel closed and with its inner side open, much of the water displaced
and forced outward by the prow will be arrested and deffected and discharged toward the stern.
Extenston Table.-James Plenkharp, Columbus, Ohio.-This invention is a marked improvement in extension or dining tables, the same being ormed mainly of two parts, connected by slides and furnished with legs signed to form the top of the table when not extended and the middle
thereof when extended. The table is compact, strong, simple in construchereof and attractive in appearance.
Water Wheel.-SamuelP. and Oliver H.Castle,Urbana,Ohio.-Theinven receive the radial buckets, and a conical frustrum to receive the aprons, that while the outer edges of buckets and aprons are equally distant from he center of motion, the outlet is increased and the dead water discharge
with greater facility. It consists, secondly, in constructing the chutes with a gradual inclination, at the top, toward the axis, whereby a greater unigradual inclination, at the top, toward the axis, whereby a greater uni
formity in the percussion of different strata of water is obtained. And it consists, thirdly, in making a circular gate that turns on a pivot and admit of openings of different sizes in
space wanted for other purposes.

Inventions Patented in England by Americanf.

[Compiled from the Conmissioners of Patents' Journal.]
From April 26 to May 1, 1872, inclusi
Concentratina Light, etc.-E.s.Lenox (of New York city), London,Eng Charleston, S .
Horse STockings.--W. Lewis, D. T. Way, Astoria. N. Y.
Lock Nut, ETc.-G. Mallory, Mystic Bridge Cond
Manufacture of Steel.-G. F. Wilson, Providence, R.
Pile Carpets, etc.-G. Crompton, Worcester, Mass.
Printing Press, etc.-M. Gally, Rochester, N. Y .
Reaping Machine.-W. A. Wood, Hoosick Falls, N. Y
Roofing, etc.-D. G. Conger, Chicago, Ill.
STEAM GENERATOR. -J. Goulding, Worcester, Mass

Practioal Fints to Inveitiors.

M UNN \& CO., Publishers of the Scientific American nt in this and foreign countries. More than 50,000 inventors have avail d themselves of their services in procuring patents, and many millions of tollars have accrued to the patentees whose specifications and claims they
laveprepared. No discrimination against foreigners ; subjects of all counve prepared. No discrimination against coregs

How Can I Obtain a Patent?

the closing inquiry in nearly every letter, describing some invetio which comes to this office. A positive answer can only be had by presenting pplication consists of a Model, Drawings, Petition, Oath, and full Specifica tion. Various offcial rules and formalities must also be observed. Th
effrrts of the inventor to do all this business himself are generally withou icess. After great perplexity and delay, he is usually glad to seek the aid of persons experienced in patent business, and have all the work done ove ayin. The best plan is to solicit proper advice at the beginning. It the
arties consulted are honorable men, the inventor may safely conflde his parties consulted are honorable men, the inventor may safely conflde his
deas to them: they will advise whether the improvement is probably patdeas to them : they will advise whether the improvement is probably pat
niable, and will give him all the directions needful to protect his rights.

How Can I Best Secure My Invention?

This is an inquiry which one inventor naturally asks another, who has lac
ne o ne experie
ad correct:
Jonstruct a neat model, not over a foot in any dimension-smaller if pos sible-and send by express, prepaid, addressed to MJNN \& Co., 37 Par Park Row
New York, together with a description of its operation and merits. On reeipt thereof, they will examine the invention carefully, and advise you as ta its patentability, free of charge. Or, if you have not time, or the means a and, to construct a model, make as good a pen and ink sketch of the im rovement as possible, and send by mail. Ar answer as to the prospect of
astent will be received, usually by return of mail. It is sometimes best to of an application ar the Pate

Preliminary Examination.

In order to have such search, make out a written description of the inven ton, in your own words, and a pencil, or pen and ink, sketch. Send thes ne time you will receive an acknowledgment thereot, followed by a writ en report in regard to the patentability of yonr improvement. This specia
earch is made with great care, among the models and patents ${ }^{\text {it }}$ Washing on, to ascertain whether the improvement presented is patentable.

To Make an Application for a Patent.
The applicant for a patent should furnish a model of his invention, it sus eptiole of one, although sometimes it mav be dispensed with; or, if the in
vention be a chemical production, he must furnish samples of the ingredient of which his composition consists. These should be securely packed, the nventor's name marked on them, and sent by express, prepaid. Small mod els, from a distance, can often be sent cheaper by mail. The safest way to
俍 remit money is by adraft, or postal order, on New York, payable country can sually pur

Caveats.
Persons desiring to tile a caveat can have the papers prepared in the shor
st time, by sending a sketch and description of the invention. The Gover ent tee for ceat is $\$ 10$. A pablet of advice regarding application or patents and caveats is furnished gratis, on application by mail. Addres IUNN \& Co., 37 Park Row, New York.

Reissues.

A reissue is granted to the original patentee, his heirs, or the assignees he entire interest, when, by reason of an insufficient or defective specifica
ion, the original patent is invalid, provided the error has arisen from ina vertence, accident, or mistake without any fraudulent or deceptive nten

A patentee may, at his option, have in his reissue a separate patent to ach distinct part of the invention comprehended in his original application by paying the required fee in each case, and complying with the other re
quirements of the law, as in original applications. Address MUNN \& Co. Park Row, for full particulars.

Trademarks.

Any person or firm domiciled in the United States, or any firm or corpora ion residing in any forelgn country where similar privileges are extended toction. Thit var ly so to foreigners. For full particulars address MUNN \& Co., 77 Park Row New York.

Design Patents.

Foreign designers and manufacturers, who send goods to this country, may tabricating or selling the same goods in this market.
A patent for a design may be granted to any person, whether citizen or alien, tor any new and original design for a manufacture, bust, statue, alto ellevo, or bas rellef; any new and original design for the printing of wool en, silk, cotton, or other fabrics; any new and original impression, orna-
ment, pattern, print, or picture, to be printed, painted, cast, or otherwise ment. pattern, print, or picture, to be printed, paint
placed on or worked into any article of manufacture.
Design patents are equally as important to citizens as to foreigners. For
full particulars send for pamphlet to MUNN \& Co., 37 Park Row, New York.

Rejected Cases.

Rejected cases, or defective papers, remodeled for parties who have made
pplications for themselves, or through other agents. Terms moderat Address M UNX \& Co., stating particulars.

Monn \& Co. have any other agency. They have agents located at London, Paris, Brussels,
Berlin, and other chief cities. A pamphlet pertaining to foreign patents nd the cost of procuring patents in all countries, sent free.
MUNN \& Co. will be happy to see inventors in person, at their office, or such consultations, opinions, and advice, no charge is made. Write plain do not use pencil, nor pale ink: be brief.
All business committed to our care, and all consultations, are kept secret and strictly confldential.
In all matters pertain
In all matters pertaining to patents, such as conducting interferences of patents, etc., special care and attention is given. For information, and for pamphlets of instruction and advice,
Address
MUNN \& CO.
PUBLISHERS SCIENTIFIC AMERICAN,
3y Park Row, New York
OFFICE IN WASHINGTON-Cornor F and yth streots, opposite

[OFFICIAL.]
 Index of Inventions

For which Letters Patent of the United States were granted
for the week ending May 14, 1872, and eace bearing that date.

Alarm for money drawers, J. M. Case.
Artist, model stand for, G. A. Gilbert.
Artist, model stand tor, G. A. Gilbert.
Bag holder, E. L. Lyon............
Bag holder, E. L. Lyon................
Bale tie, cotton, W. McNabb....
Bale tie, cotton, E. A. Franklin
Bed bottom, E. T. Gilmore.
Bed bottom, spring. M. A. Richardson
Bed nottom, spring, N. W. Clark.
Bedst ead fastening, C. M. Gilbert
Bench hook, J. W. McGill
Bit, driving, C. Hule.
Blind slat, D. Kelly.
Blind slat, D. Kelly...
Boat propulsion, canal, I. J. Hilgerd...
Bolt threading machine, G. W. Frost
Bolt threading machine, J. J. Grant.....................
Bolts, machine for threading, S. H. Wright, (reissue)
Boots and shoes, mode of cutting soles for,
Boots and shoes, mold for, W. J. B. Mills.
Boots and shoes, counter for, J. Brackett..
Bottle capping machine, A. C. Jordaz.
Buws for archery, E. S. Morton
Box, muff, R. S. Jennings
Bread cutter, Hansen and Andersen.
Brick machine, McLean and
Bridge, hose, L. W.
Brush for dust pan, W. M. Conger
Buckle, harness, S. S. Sargea
Butter worker, R. Lapham..
Buter worker, R. Lapham.........................
Can, packing case for oil, T. Scantlin.
Candlestick, J. Williams.
Cap box, A. A. Gove.......
Car, street, J. Stephenson
Car, dumping, J. C. Wiswell and F. A. Wiswell
Car, railway, A. V. Ryden
Car spring, J. J. Fields.
Car coupling, C. L. Horack
Car coupling, J. L. Mareness
Carding machine, c. Jones..
Carpet stretcher, J. Lindsay.
Carpet, W. Wallace, (reissue)
Carriage wheel, axle for, G. w. Ra
Carriage clips, die for forming blanks for, F. B. Mors
Carriage, irort gear for, C. L. Leo
Carriage door, landau, H. Killa
Carriage wheel hub, C.
Chair, C. B. Howard
Uhest and box, fastening for, J. H. Marvi
Churn, J. Mayes.

Cloth, etc., gas proof, w. B. Taylor..................
oat, H. Kuhlman.
Column, metallic, F. H. Smith
Cultivator, W. Kleffel...
Cultivator, W. H. Murray
Cultivator, W. H. Vick......
Curtain fixtures, A. Roeloss
Curtain fixtures, H. H. Phillips, (reissue)
Curtain fixtures, J. L. Young
Dentists' use, preparing gold for, G. J. Pack
Digger, post hole, w. E. Ball.
Digger, potato, B. Avis..
Doll, paper, J. T. Brown
Doll, paper, J. T. Brown.
Dough roller and cutter,
Drill, grain, J. Milton...
Earth closet, N. P. Rider
Electromagnetic apparatus, circuit closer for, M. G. Farme
Electromagnetic engine, M. G. Farmer
Ellipsograph, A. W. Browne
Emery wheel, w. s. Jarboe.
Eogine, traction, J. H. Smith
Engine, operating valve of steam, w. H. Guild
Engine, rotary, J. E. Hanger.
Engine, jet condenser forsteam, G. W. Hal
Exaser for pencil, detachabler, E. B. Meatyard.
Fastener, shutter, W. w. and C. E. Williams
Fastener, sash, W. E. Spark
Fire arms, breech loading, C. F. Russell
Furnace for soldering tin cans, G. W. Fish
Garments, pattern for cutting, S. A. Millwee
Gand
Gas retort, air tight joint for, Dietrich and Schïssler, (reissue).
Gases, purffying, w. T. Kosinski.
Gloves, C. J. Brown.
Grate, N. A. Boynton
Harrow, T. E. C. Brinly
Harvester, O. Farra......
Harvester, C. McCombie.
arvester raker, w. H. Hurlb
Harvester rake, C. Wheeler, Jr., (reis
,
Hatchel, hair turning, L. Wilbur
Hinge, S. Stiger
Hinge, S. Stiger
Hinge, E. Swan
Hinge, w. R. Sear
Hinge, J. K. Otis.
Hoe and rake, combined, W. M. McLendo
Horse collar, lining fo
Horse cap, D. Curtis.
e cream, machine for manufacturing, C. Gooch
ndigo, manufacture of, т. т. Woodruff
Same..........................same.
Iron, manufacture of, J. J. Johnston
Iron, puddling, J. J. Johnston
Knitting machine, J. Bradley....................................
Knobs to their shanks, clasp forsecuring, J. W. Haines.

Knob, rose tor door, W. H. Mattson..126,642
Knobs to thèir spindles, attaching, A. G. Grey.......
Lamp, street, A
Lamp, J. Cook
Lamp, safety derrick, H. Freeman.
Lamp, self lighting, w. A. Lonard
Last for shoes, W. J. B. Mills....
Lathe, met 1 turning, M. G. Stolp......
Leather, gage for splitting, J. N. Baird
Leather, gage for splitting, J. N.
Lift, exercising, R. Forward....
Lock, face plate and strike for, J. M. Spring.
Lounge, bed, Wunsch, Stuhlreyer, and Schwar
Lubricstor, w. T. Garratt
Meat chopping machine, J. L. Good
Medical compound, J. Kornitz
Meter, grain, R. Rutherford.
Meter, grain, R. Rutherford.
Meter, Iiquid, H. Chandler.
Meter, fluid, J. Dooling.......
Miter box, Bower and Mohle
Miter box, Bower and Mo
Nail, horseshoe, J. Josey..
Nail extractor, E. A. Frank
Nut and axle for vehicles interbottom
Oiler for steam engine, automatic, T. Sims.
Ore washer, W. T. Rickard...
Packing, gasket, G. W. Coffe
Padde whel, J. Soth
Pail' slop, J. G. Roth
Paper cutter, desk, J. W. Wetm
Parer, apple, w. M. Griscom...
Pavement, wood, G. A. Beidler
Pencil, composition for indelible, E. P. Clark (reissue)
Pianoforte, duplex agraffe scale for, C. F. T. Steinwa
Pickets, machine for heading, Heiser and Snyder
Picketses machme from hotographic and other negativ
Woodbury..
Picture frame, L. N. B. Gray.
Pin, safety, R. W. Huston......
Pipe, water, D. Allen
Plane, c. Jensen........
Planter, automatic see
Planter, corn, J. Selby....
Planter, corn, W. H. Crosby
Plow, Weeks and Trimble
Plow, Weeks and Trim
Plow, B. W. Tuttle.
Plow colter, B. W. Tuttle.
Press, screw, J. J. Crawford
Press, cotton, J. W. Miller
Press, baling, F. B. Wallin..
Pump, steam, W. E. Kelly..
Pump, steam, W.
Pump, J. Mayher.
Pump, steam, G. J. Roberts
Railroad rail, bolt holder for, D. C. Baker
Range, J. H. Connelly.
Refrigerator and cooking, w. A. Green
Refrigerator, H. C. Cain
Rein, check, R. B. Rob
Roofing composition, W. W. Wilcox
Sash elevator and lock, M. W. Montgomery
Saw mill, circular, N. Zierden
Saw gang, band, w. J. Mctan
Saw gang, band, W. J.
Saw mill, J. H. Smith
Sawing machine, wood, Hartensteln and Hyman
Sawing machine, scroll, J. D. Power3..
Sawing fellies, machine for, J. B. Zimmerman
Sawing machine. band, B. D. Whitne
Screen, window, C. A. Peas
Screw driver, J. A. King
Sounding apparatus, deep sea, H. Fla
Separator, middlings,E. N. Lacroix..
Separator, grain, J. L. Custe
Sewer trap, C. Stubenbord..
Sewing machine, tuck creaser for, P
Sewing machine, bobbin winder for, w. H. Newton
Sewing machine, C. Steb bins..........................
Sewing machine, thread cutter for, c. H. wolcott.
Sewing machine, feeding mechanism for, D. M. Smyth
Shoe welt, machine for cutting, J. H. Russell.
Shoe, manufacture of,W. J. B. Mills.
Shoe, Rose and Mason.
Soldering tool, Tillery and E. Freelan
Spy glass adjustment, A. V. Ryde
Stamp, butter, T. Mabbett,
Stand, coal hod, W. M. Con
Staples, machine for making, A. Whittemore
Steel, manufacture of, J. J. Johnston...
Stool, scrubbing Deike
Stool, scrubbing, Deike and Helmstadt.
Stove, base burning, E. Smith
Sove, Dase bing, T. White.
Stove, cooler, I. Larrance.
Stump pule,
Syringe, vaginal, A. M. Dye..
Table, extension, J. Pleakharp.
Teaching, etc., matenetic indicator for, J. Unna.
Telegraph apparatus, duplex, J. B. Stear
Telegraph, switch for printing, P. Kenney
Ticket holder, J. W. Rockafellow...
Tournure, A. W. Thomas, (reissue).
Tournure, A. W. Thomas, (reissue)
Toy blocks, E. H. Muldaur
Trace carrier, P. A. Snyder
Trap, fly, M. v. Bulla..
Thrashing machne, \&rain separator for, J. W. Breese
Ventilator for car, T. W. Freeborn.
Vehicles, firth wheel for, J. Du Bois........
Vehicles, elastic wheel for, G. M. Ramsay
Vehicles, seat for, J. Richert
Walking stick and tool, combined, C. G. Young.
Washer, dish, S. D. Moxley.
Washing machine, A. Brown.....
Washing machine, Bullock, Tull
Watch wheel, Castle and Castle..
Water wheel, L. M. Sharp.
Water wheel, T. Chester...........
Water accelerator, E. B. Meat yar
Water cistern, compound for use in constructing, D. H. Weeks. Whip socket, S. C. Hamlin
Whip handles, method of
Wine, apparatus for ageing, Luquet and Huerne
Wire, device for milling, N. C. Perry.
Wood, compound for filling the pores of, N. Surge
Wrench, Taft \& Coes (reissue)...
Wringer, clothes, C. W. Bassett

DESIGNS PATENTED

,847 and 5,848.-CArpets.-J. H. Bromley, Philadelphia, Pa. 5,819.-CARPET. -J. Fisher, Enfield, Conn.

5,850.-Carpet.-O. Heinigke, New York city.
5,851- - Pencil Case.-w. s. Hicks, New York city 5,852 and $5,853 .-C a r p e t s .-E$. J. Ney, New York city
5.854.-Statuary.-J. Rogers, New York city. 5.854.-STATUARY.-J. Rogers, New York city
5,855.-CARPET.-J. H. Smitb, Enfield, Conn.

5,856. - Match Box.-H. Sommer, Jr., Newark, N. J.
5.857.- РнотоGRAPhs.-J. G. Stewart, Carlinville, Ill.
5,858. - Coat and Hat Hook. - A. B. Tanner, New Haven, Con
5,859.-Coorina Stove.-N. S. Vedder, Troy, and S. Heister, Lansing.
burgh, N. Y.
TRADE MARKS REGISTERED.
811.-Hames.-Baker, Carr \& Co., Andover, N. H.
812.-Teas.-Cestle Brothers, San Francisco, Cal.
812.-Teas.-Cnstle Brothers, San Francisco, Cal.
813.-BAKING Powder.-G. F. Gantz. New York city.
814. - Wald Blackberry Bitters.-I. Landsberget \& Co., San Francisco
Cal.
815.-CIgar.-E. Parodi, Kev West, Fla.
816.-COugh Sirup.-J.
816. - Covan Sirup.-J. S. Pemberton, Atlanta. Ga.
817.-Medicines. - Pettit \& Barker, Fredonia, N. Y
818.-CosL.-G. R. Tuttle, Cleveland, Ohio.
819.-Plows, etc.-Wiard \& Hugh, East A von, N. Y.
820.-Sturfing Leather.-J. B. Young, Chicago, ill.

For Copy of Claim of any Patent tssued within 30 years.................... $\$ 1$
4 kketch from the model or drawing, relating to such portion of a mach ine
as the Claim covers, rrom $\$ 1$
as the Claim covers,r rom.......................$~$
The tull Spectfccation of any patent issuedsince Nov. 20, 1868 at which trme
the Patent offlce commenced printing them.........................\$? 8 at a reasonable cost, the prove dewending upon the amount of libor
involved and the number of views. involved and the number of vicus. MIUNN \& CO.
Fatent Bolicitors. 3y Park Row. 狍, worw.

APPLICATIONS FOR EXTENSIONS.

Applications have been duly filed, and are now pending, for the extension
of the following Letters Patent. Hearings upon the respective application s are appointed for the days hereinafter mentioned:
21,213.-Machine for Forging Nails.-S. s. Putnam. July 31, 1872.
21,275.-ICE STand.-H. A. Roberts. August 7, 18t2.
21,311.-Securing Plane Iron.-L. Bailey. August 14, 1872.
EXTENSIONS GRANTED.
20,243.-Finger or Guard for Harvesters.-L. Miller
20,192.-Expansive Bit.-W. A. Clark.
20,245.-Sewing Ma Chine Guide.-L. W. Serrelı.
EXTENSIONS REFUSED.
Extension of Robert Wilson, of Milton, Pa., for fly nets. Patented May 11, 1858; refused May 10, 1872.
Extension or G. W. Morse, of Greenville, S.
ented May 11, 1858; refused May 11, 1872 .
Extension of Jeroboam B. Creighton, of Alkron, Ohio, for railroad car
for day and night service. Patented May 18, 1853 ; refused May $9,1872$.

Value of Extended Patents.

Did patentees realize thefact that their inventions are likely to be more productive of profit during the seven years of extension than the urst foll term tor which their patents were granted, we think more would avail
themselves of the extension privilege. Patents granted prior to 1861 may themselves of the extension privilege. Patents granted prior to 1861 may be
extended for seven years, tor the benefit of the inventor,or of his heirs in case of the decease of the former, by due application to the Patent Ottce, ninety days before the termination of the patent. The extended time inures to the benefit of the inventor, the assiznees under the first term having no rights under the extension, except by special agreement. The Governmen
tee for an extension is $\$ 100$, and it is necessary that good professional service ree for an extension isct the busine is before the Patent Offlce. F'ull informa tion as to extensions may be had by addressing

MUNN \& CO., 3y Park Row.

FOREIGN Patents...-A hint to patentees,

It is generally much better to apply for foreign patents simultaneously with the application in the United States. If this cannot be conveniently
done, as little time as possible should be lost after the patent is issued, as done, as little time as possible should be lost after the patent is issued, a
the laws in some foreign countries allo π patents to any who first make th application, and in this way many inventors are deprived of valid patent issued in England to the first introducer, without regard to the rights of the real inventor; therefore, it is important that all applications should be entrusted to responsible agents in this country, who can assure parties tha their valuable inventions will not be misappropriated. The population Great Britain is $31,000,000$; of France, 37,000,000; Belgium, 5,000,, 000 ; Austris
$66,000,000$; Prussia, $40,000,000$; and Russia, 70,000,000. Patents may be secure
and by American citizens in all of these countries. Mechanical inprovemeut of all kinds are always in demand in Europe. There will never be a bette time than the present to take patents abroad. We have reliable busines
connections with the principal capitals of Euro pe. A large share of all the connections with the principal capitals of Europe. A large share or all ch Agency. Address

MUNN \& CO..
3 Park Row, N. Y.

NEW BOOKS AND PUBLICATIONS.

Spectrum Analysis Explained, illustrating its Uses to Science, and including the Theory of Sound, Heat, Light, and Color. Being, No. 3 of "Half Hour Recreations in Popular Science." Price 25 cents. New York: Le
Shepard, and Dillingham, and John Wiley and Son.
Principles of Political Economy; with Some of their Applications to Social Philosophy. By John Stuart
Mill. New York : Lee, Shepard, and Dillingham ; Bos̃ton: Lee and Shepard,
A full and exhaustive criticism of this book will not be expected in this place. The renown of its author as a logician, the lucidity of his style, and
the clearness of his reasoning are well known. Of his docrines, it must be said, and their author would doubtless allow, that there are exceptional c: crcumstanees in various forms of human society that might render their
application unadvisable. But the book is worthy of study by everybody application unadvisable. But the book is worthy of study by everybody
who is interested in the welfare of the community in which helives. Sucfull of mental "meat;", and any student, either of political econumy, logic, or the language, will do well to master its contents.
 FOR SALE

2ND HARND ENGINES AND BOILERS

$\mathrm{F}_{\text {OR }}^{\text {OALEE－A WOOD WORTH PLANER }}$

MONTHLYRECORD
SCIENTIFIC LITERATURE， Containing g general information regarding Scientiific Books，List of the more important new works contents of the latest numbers
of the principal scientific mont nilies and
ind quarterlies，etco，etc．Price 25 cents per annum，post paid．
Publisher and Inv Nostrand，
23 Murray and 27 Warren St．，New Yooks

暑

 WAVE YOU SEEN the New and Ghonderful Method of Showingwithout the aid of a median＇s House Amusement for the Home Home Circle．Tho The
great demand for this development of
 A NEW COLONY IN KANSAS！
 THE AMERICAN COLONIST AND HOMESTEAD the Organization of the Colony，the Lands，Productions
Cliimate，Woo，Water，etc．SENT FREE，
tion to applica
S．R．WELLS，See Ne．N．B．of Migration
 Turbine Waier Wheel
 widuze so
BLAKE＇S PATENT STEAMI PUMP．
 $\mathrm{S}_{\text {CIRCULAR．}}^{\text {END FOR }}$ 51 CHARBON ST．， 79 LIBERTY NT．STM．

PROPBLELER PUMRS Frate sand saduatise
MAGIG 筬
B URDON IRON WORKS．－Manufacturers

Nomvery

Reyrodds

NEW PATTERNS． M Portable steam engines，combin

Cincinvati RRASS WORKS，Eng
G REAT SUCCESS of the HYDRALLIC

 Cor．of Park and College Places，Nev York．

Hixisa complantris．

QW＇AWarded the first Premion，at the fair of the American In
tors．Comparison invited．Competition challenged．Send for circulars．

Cold Rolled Shafting．

Sturtevant Blowers

 Of every size and description，constantly on hand．121 Chambers \＆ 103 Reade Reat Strets，New Yoris．
PATENT PUNDEA＇S PREESES

E．M．MAYO＇S BOLT CUTTER－Patented $\mathrm{F}^{\text {OOT }}$ Chucks，STide Rest Back Back Gusteared and Plane
 Nacurque Sceane Premy． CHAS．B．HARDICK，

PATENTBAND

AUSTRALIAN COLONIES

W OODWORTH SURFACE PLANERS，\＄125

NETH YORK STENCIL WORKS
87 nassau St．，new york．

ROPER TOTAR AR

L．ATME CRUCKS－HORTON＇S PATENT

Rungh hewerer MOLDING，MORTISING TENONING \＆SHAPING

MAC昁iNES SAWS，
SCROLI SAWS Planirir e mindinim Railroad Car，and Agbi J．A．$\stackrel{\text { Superior to anyin }}{F}$ CO．，

GRRAP REDUCTION IN PRICES O LE COUNT＇S PATENT HOLLOW

His expanding Mandrin is a first class tool，which ha long been neaed
Send lor latest circular．
PATENTEES， W bu WISH TO REALIZE PECUNIARY

Wood and Iron Working Machingery，

COAL

W OOD WORKING MACHINERY－Spe－

THÉ VIENNA WORLD EXPOSITIO

 upon application．

188\％．SCHENCK＇s PATENT． 1871 WOODWORTH PLAN ETS

UNIVERSAL WOOD WORKER，
 W OOD－WORKING MACHINERY GENF．

MACHINISTS．

Milling Mrachines．

 STANDARD，UNIVERSAL，INDEX AND A
 R ICHARDSON，MERIAM \＆CO．

S Improved LawD BaRREEL MACHINRRY．－
 VARIETY PATENTMPROVEDBMNERY CIRCULAR SAW BENCHES．

Buy Barber＇s Bit Brace．
B UERE＇S WATCRMAN＇S TIME DE

Alequeresg Pruetets．
 Satety store Elevators．Prevent Accident，it

 Allutir Wu．D．ANDREWS \＆brot，May Morz

 MANUEACTURERS OF FIRSY＇CLASS

STEEL CASTINGS
TO PATTERN；tensile strength equal to $\frac{\text { ODEL }, ~ \text { OR THE PATENT，ORFICE }}{}$

We Warrant every Stean fange Wearing our name and numbered a
FOR TWO YEARS．
 Moseley Iron Bridge and Roof Co．， Wro＇t－Iron Bridges，Wro＇t－Iron Houses， CORRUGATED IRON，

THP Union Iron Mills，Pittshurgh，Pa．The
 LIGHTNING ROD PONTS AND NUTE，

A WELL tested article of good thickness

W requiring light Machinery of to Manufacture, merit, and larg

FIRST CLASS TRAVELING SALESMAN

Steam Super-Heaters. Ador
PYROMETERS, ${ }^{\text {For Orons. }}$, oil

Draughtsman's Alphabets.

Working Models

TRON PLANERS, ENGINE LATHES

Brass \& Copper

 szaminss tubzina STATOTVRY MARINE, ANDMerchant \& Co.

THE HEALD\&SISCO

Patent Centrifugal Pumps, A^{1}

Colts armory testing machine-

Swain Turbine.

"OnTLow-Water Wheel fron this on"
 ever invented. Gave the best results, in every respect
the Lo Rell Tests $\begin{aligned} & \text { ets } \\ & \text { Fests at } \\ & \text { oles of Power address }\end{aligned}$ Lowell, with Diagrams and THES SWAIN TURBENE CO., North Chelmasfor d, iliasa.

FIRST PREMIUM (MEDAL A WARDED IN $18: 00 A N D$

 CARPENTER These Books in The Art of
 HANDBOOK $\begin{gathered}\text { to anybody, or will refund mones. } \\ \text { H. W. HoLLy, } 191 \text { Fulton St. N.Y. }\end{gathered}$
A RARE CHANCE FOR MACHINISTS. Ace, all the spoprietors now offer for sate, at a great sacr
brated Chelseal tools used in manutacturing the cel
bath

Machinists' 'rools
Mill Site at Publice aqle-Hightstown

Diamonds 冬Carbon

THEadoption of new and improved applica
 $=\mathrm{F}+\mathrm{W}=\mathrm{Z}$

VENEHERS

HARDWOOD LUMBER.

A. S. CAMERON \& CO.,

The faet that this Snaiting nas is per cent greater
strength, a finerinish, and istruerto gage, thanany othe

SOILEAM PIPE AND
MICROSCOPES

The Union Stone Co.,

 EMERY THELELS \& EMERY BLOCKS,
For Planink, Raper Gitinge, teather split-

MORRIS, TASKER \& CO., American Charcoal Iron Boiler Tubes

NEAFE \&

${ }^{-3 n}$

PO

Pat. SoLid Emery wheels and oni

H.W.COLLENDER ${ }^{\text {SUCEEESHELSN }}$ SO COLLENDER. 738 Broadway, New York.
ILLUSTRATED PRICE-LIST SENT BY MAIL

WIRE ROPE.
JOHN A. ROEBLING'S SONB, $\mathbf{F}^{\mathrm{OR} \text { Inclined Planes, Etanding Ship Rigging }}$

150 PER CENT SAVED!

Steam Engine Governors and Water Gauges.

Canadian Inventors,
Onder the new Patent Law can obtaln patents on th For tull particouns

[MAY 25, 1872.

Z 875 to $\$ 250$ per month, erery yhere.

PORTLAND CEMENT,

Rug Mex

SCIENTIFIC AMERICȦN.
The Best Mechanical Paper in the World. A year s numbers contain over 800 pages and several inventions, manufacturing establisbments, tools, and The SCIENTIFIC AMERICAN is devoted to the intor sts of Popular Science, the Mechanic Arts, Manufac
ures, Inventions, Agriculture, Commerce, and the In ures, Inventions, Agriculture, Commerce, and the In-
dustrial pursuits generally, and is valuable and instruc the only in the Workshop and Manufactory, but also

To the Mechanic and Manufacturer
No person engaged in any of the mechanical pursuits and Evink of doing without the Scientific Ameri
and of new machines and inventions which cannot be found Chemists, Architects, Millwrights and Farmers! The SCIENTIFIC AMERICAN will be found a most
useful journal to them. All the new discoveries in the cience of chemistry are given in its columns; and the interests of the architect and carpenter are not over
looked, all the new inventions and discoveries apper looked, all the new inventions and discoveres apper-
taining to these pursuits being published from week to
week. Useful and practical information pertaining to week. Usef ul and practical information pertaining to
heinterests of mill wrights and millowners will be found published in the Scien tific American, which informa
tion they cannot possibly obtann from any other source tion they cannot possibly obtann from any other source.
Subjects in which planters and darmers are interested
will be found discussed in the Scientific Americas many improvements in agricultural implements being illustrated in its columns.
We are also receiving, every week, the best scientific journals of Great Bresin, France, and Germany; thus placing in our possession all that in transpiring in me-
chanical science and art in these old countries. We shall continue to transfer to our columns copious ex TERTerest to our readers.

MUNN \& CO. 37 PARK ROW. NEW YORK

