

A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE. MECHANICS, CHEMISTRY, AND MANUFACTURES.

NEW YORK, APRIL 13, 1872.
183 per Annam

Improved Mfethod of Propelling Canal boats.
We have heretofore expressed the opinion that screws or praddle wheels at the bows, of boats designed to run in naryow channels, when properly applied would be most likely to effect the propulsion of such boats with economy of power, and without the liabiiity of producing injurious side swells. Our opinion is based partly upon general principles, and partly on experiments performed with the method of propulsion herewith illustrated, which we witnessed some two years since, and which have been recently repeated in our presence. These experiments have confirmed us in what before was merely a theoretical view, derived from the consideration of the nature of the problem.

The boats experimented with were placed first in a chansel so narrow that just sufficient space was allowed for their passage without binding at the sides, and subsequently in a wider chanael, which gave ample room for the generation of side swells, as these would have been produced by any of the ordinary modes of propulsion

The propeller is a hollow, water tight drum, with paddles spon its oater surface, as shown in Fig. 1. The paddles are bent or inclined from the ends of the drum to the middle, where they form an obtuse angle, as shown, being obtusely V shaped, the outer enda coming in contact with the water first, and the immersion of the blade taking place gradually and without shock. A little space is left between their inne edges and the periphery of the d.um. This construction in edges and the periphery of the dines the water moved by the paddles toward the center and aids the wings, which extend from the bow to each side o the paddle wheel, in collecting and displacing the water longi tudinally under the bottom of the bcat, as shown in Fig. 2. Another effect produced by this shape of the paddles is that they rise from the water without lifting it, as the straight paddle or bucket does, the easy inclination of the paddle giving the water more time to escapa.
The boat is a flat bottomed scow, the bow turning up in eircular form, as shown in Fig. 2. It has a rudder at the
that the while its longitudinal axis shall remain parallel to itself which will be a great convenience in getting close to docks, etc. The bow rudder will also be very convenient in turning harp bends in canals.
Before describing the experiments referred to, we wil make some general remarks on the propulsion of boats, which will render the results of the experiments more intel ligible.

Fig. 3

-2x

Let the reader bear in mind that the combined weight of boat and its cargo is just equal to that of the water it dis places in floating. If the boat weighs, say, fifty tuns and arries a cargo of two hundred tuns, then there is a dis placement of two hundred and fifty tuns of water. The retically, this weight of water must be displaced from the front to the rear of the boat, or a horizontal distance equal to the boat's length, for every time the boat advances its length, and the power required to do this and to overcome
the friction on the sides of the boat (skin friction) is the very minimum required for its propulsion. But as power is force expended through distance in time, it follows that, as the velocity of advance increases, not only must the amount of water displaced increase in the same ratio, but the velocity with which the displacement is effected also increases in the same ratio. The forces required to impart different velocities to a body is as the squares of these velocities; so that to move the same amount of water the same distance with twice a given velocity would require four times the expendi ture of force necessary to move it at the given lesser velo city. But as in the advance of a boat the amount of water displaced increases also directly with the velocity, we have velocity again entering as a factor in the product of force expended, so that the latter is as the cube of the velocity. This principle is enunciated, in books on physics, as follows : "The resistance of any medium, to the motion of a body moving therein, will be as the cube of the velocity with which the body moves.
This law holding good for displacement of water lateral y, which displacement does not aid the boat's advance, we may say that the waste of power in propelling boats also increases as the cube of the velocity. It is well known that with steamboats or locomotives, a given number of miles can be accomplished at low speed with a consumption of much less fuel than would be the case were the same distance passed over at high speed, the variation confirming the law laid down.
As the boat can only advance by the longitudinal displacement of water, it has been the study of naval constructors to eliminate, as far as possible, all other displacement; and to this end, the modeling of vessels and the construction of screws and paddle wheels have received the most profound attention, and all the aids which science affords have been brought to bear upon the subject. The inventor of the meth od of propulsion under consideration does practically remove lateral displacement. With a propeller wheel or screw at the

stern, with side wheels, or with a tow line, the displacement of water in front of a vessel takes place more or less laterally, and it flows by the action of gravity into the chasm made by the advancing vessel. With blunt bowed vessels, a certain portion is displaced in the direction of the advance of the vessel. The action of these displacements is to produce an inclined plane, up which the boat must, so to speak, climb, so that gravity acts constantly against progress. The stern is lowered, as shown in Fig. 3 while the bow is raised This effect increases as the channel narrows, so that, if the latter be only wide enough for the boat to pass, the water would be heaped up in front; and if the channel be oonly deep enough to float the vessel, the water would be caused to over. flow the banks in front, while the stern of the boat would ground on the bottom.
The water only being able to reach the stern and get be hind by flowing under the bottom, and doing this only by virtue of its own gravity, the speed of the boat would be limited to that at which a volume equal to the displacenent of the boat can find its way from the bow to the stern under the bottom, when acted upon by gravity. Thus if, in a channel seven feet deep, the boat draws six feet of water the water must flow through under the boat by the action of gravity with a velocity six times as great as that at which the boat is advancing. But the action of gravity, which is uniform, cannot be hurried. A body falling one second moves sisteen and one twelfth feet and no more. The velocity of flow under the boat will be that due to the difference in depth of water before and after the boat; and as this can be much tempt to tow a boat in such a channel as we have described, tempt to tow a boat in such a channel as we have described,
or to propel it at the stern, is a practical impossibility. Wior to propel it at the stern, is a
dening the channel, we can force it along, but as the displacement now takes placa by the sides of the boat instead of un der it, side swells result, with waste of power and other at tendant evils. These swells are the result of the manner in which the displacement takes place; and sharp models may lessen, but cannot wholly obviate them.

With the Goodwin bow propeller, illustrated herewith, al these effects are reversed; the displacement is under the bot tom, and is caused not by gravity, but by the power of the propeller. An inclined plane is created which is the highest at the stern, so that gravity acts wich instead of against pro gress. There are no side swells, and the boat runs as well or gress. There are no eide swells, and the boat runs as well or
even better in a channel just wide enough for it to pass as in one wider.

Experiment 1.-The boat was placed in such a narrow channel as described, and a tow line attached. Result-the water was heaped up in front, overflowing the banks, and the boat only moved fast enough to create the overflow.
Experiment 2.-Power applied to the stern with same ef fect.
Experiment 3.-Propeller wheel in front. The boat made rapid progress, the water bubbling up at the stern but making no side swells.
Experiment 4.-Boat loaded down at the stern till it grounded. Propeller set in motion, when instantly the stern rose and the boat moved on as before.
Experiment 5.-The boat was placed in a wider channel when it moved as before without side swells. When propelled from the stern, or drawn by a tow line, it gave heavy side swells, and moved much more slowly with an expendi ture of the same power.
Experiment 6.-The boat was heavily grounded from bow to stern. Upon starting the propeller, she gradually rose and moved forward slowly, grounding again, alternately grounding and rising, but still making a fair rate of prorress
Experiment 7.-The narrow channel was filled to the brim, when the boat, moderately loaded, traversed it at high speed producing scarcely a perceptible overflow of the banks
Experiment 8.-A precisely similar boat, with three screws propelled by the same power, at the bow instead of the pro peller wheel, moved at less velocity through the channel producing head and side swells. Grounded like the boat with the propeller wheel in experiment 6 , she was powerles o move.
Experiment 9.-The boat with propeller wheel at the bow was attached to the stern of the boat with the screws at the Wow. Both having the same power applied, and carrying equal loads, the propeller wheel boat towed the screw pro peller boat stern foremost nearly as fast as the screw pro
The reason for this lies in the fact that the screws throw The reason for this lies in the fact that the screws throw ectly against the breast of the boat, and that the water tan gentially displaced by them avails nothing in propelling the boat. These two sourcas of waste are not found in the bow
paddle wheel, since it displaces all the water, except that paddle wheel, siace it displaces all the water, except that
carried about by friction, tangentially and in just the right direction for propelling the boat. A very large per centage of its power is therefore utilized for propulsion while a large proportion of the power applied to the screws
is lost. Indeed, the first experiments of Mr. Goodwin were is losr. Indeed, the first experiments of Mr. Goodwin were with bow screws, but the decided superiority of the bow systems as to lead to an abandonment of the idea of propellng koats in narrow channels by screws at either bow or stern.
Another advantage of the drum paddle wheel is that its buoyancy and the increased buoyancy it imparts, to the beat when in motion, compensate for the room it occupies, whil he screws are additional load to be carried.
Captain Goodwin is an experienced navigator of the Ohio iver, on which, as well as on other western rivers, stern pro peller wheels are largely used. He found that, in attempt-
ing to cross bars, he could get over by turning the boat and
running stern foremost, when he would ground with the bow on, and also that in narrow channels he could make better speed by running stern foremost. This having been confirmed by trials on the part of others, we are told the prac tice has been adopted by many, and is gaining in favor.
As we have remarked, we are confident that for narrow chan nels and shallow water this system of propulsion offers advan tages possessed by no other yet produced. Arrangement are now on foot to test the principle by practical working on canals with full sized boats, the inventor being confident that under such circumstances he will be able to prove the value of his invention to the most incredulous. Captain W. F. of his invention to the most incredulous. Captain w. F.
Good win's address is 91 Liberty street, New York, of whom Good win's address is 91 Liberty street, New York, of whom
further information may be had on application. See adverfurther information may be
tisement in another column.

THE REMINGTON WORES. ILION, N. Y

The Remington armory comprises twenty five different buildings, which occupy twenty-three acres of land in the heart of the town of Ilion. Two races, running from States Creek to the Erie Canal, pass through the works and furnish them with a valuable amount of water power. Not so very long ago the works, for a whole month together, turned out on an average 1,400 rifles and 300 revolver pistols a day This was, of course, exceptional; but the average capacity of the works is rated by the firm at 1,100 rifles and 200 pistols a day. The firm have now contracts on hand which compel them to produce over 1,000 rifles a day. But in addition to this great production, the Remingtons make any number of rifles, guns or pistols to special patterns; and sond shot guns nd fowling pieces all over the world.
The Remington rifle is a breech loader, of apparent simplicity but demanding the most skillful construction. This arm has been introduced in most of the armies of the world. how the barrels are made.
When I was at Ilion yesterday, a short, thick bar of steel, about six inches long and four inches in diameter, was placed in my hand. It was bored. "From Sheffield in England that is the embryo gun barrel," I was told.
A workman produced one of these same bars, red hot from a heating furnace, ran a rod with a shoulder to it through the bore, and hurried with it to a rolling mill. Through it went, coming out longer, but preserving the bore, the rod left behind by reason of the shoulder preventing its passing through the rollers. Another rod was put in, again the growing barrel went through, and the process was re eated sixteen times, till there was the gun barrel in the ough.
The boring of it, after the quality of the metal, is the great thing. This and rifling are the most important features The making of the locks, triggers, stocks, etc. is, in these days, purely a matter of mechanical operation; unless the
automatic machinery goes wrong, they must be according to pattern. But in boring and rifling, mechanical skill is the one desideratum ; if either be untrue, the barrel may burst or the shot fail the truest aim. The rifling is done by a very small cold steel chisel inserted in a long rod firmly attached to a rapidly revolving wheel, which also moves up and down a platform. The barrel is run over this rod and placed firmly in position. As the wheel revolver, the chisel in the rod cut the rifling in the barrel; and as the wheel advances and re tires very rapidly, the twist of the rifling is very elongated The appearance of the rifling on looking through a barrel i ery much like a long piece of apple paring. The next rocess is the polishing. This is done by a simple con uns are attached to a machine which works upe. Severa guns are attached to a machine which works up and down, band of leather, well covered with emery powder, and out side a rod which simultaneously polishes the inside. From he polishing room the ba rels are taken to the testing room, where they are put to the severest test. 'I'wo men work his department. They load forty barrels at a time, with 80 grains of powder and 500 grains of lead in each, and carry them into a small room, arranged for the purpose, to edoed and held down by a heavy beam. A train of powder is then laid to all the touch holes, every one hurrying out and all is ready. The whole thing looks like an improvised nitrailleuse. The double doors baving been carefully closed the tester strikes a small rod of iron, protruding through the wooden partition, with a hammer. The rod is driven into a percussion cap at the end of the train of powder and the ex losion of the charges in all the rifles immediately occurs The value of this test is very great, the ordinary charge being seventy grains of lead. The barrels are afterward
tested with 150 grains of powder to see if they have been trained by the first test. The roof and walls of the testing room show that gun barrels can burst. The barrels are then teeped in boiling acids, which give them the peculiar shade of color they generally have. The mottled appearance i produced by heating them in boxes filled with charcoal, and hen dashing them, while red hot, into a solution of ammonia.
maining the bayonets.
In other buildings, the rolling, tempering and polishing o the bayonets is carried on. The steel bar to be converted into a ayonet is passed through a succession of rollers with dies on rem, each successive die being longer and smailer, and ap last roller. The whole operation is similar, to a great extent, to olling angle or bridge iron; with the exception that the shape is given by a pattern die, on the rollers, instead of by pattern of the rollers themselves. The slots in the shoulder
of the bayonet, for fixing it on the barrel of the rifle, are all cut by punches. The polishing is done on the emery wheels.

STEAM STREET CARS

One of the prominent features in the Remington character is restless activity. If business flags a little in the gun trade they immediately turn the use of some of their irnumera le machine shops to the production of other manufactures After the close of the French war, they converted one of their buildings into a sewing machine factory, and are now ble to turn out 500 machines a week, their gun lathes "and drills being particularly suitable for working the smaller arts of a sewing machine. They have also quite lately taken up the construction of Mr. Baxter's new steam car or street railroads, and have contracted to build 100 of them. Two will be completed within a month. The advo cates of these cars, in summing up their advantages over
the ordinary horse car, say that the boilers are entirely safe, and burn the smoke perfectly. There is no noise or puffing steam, and the car can be stopped and started in half the ime required by the horse cars, and can be run as slow or fast as may be desired ; while the cost of fuel is less than half (in proportion to power) of that for any locomotive or dummy ever made. But the great point in the invention is its being able to ascend grades up to 400 feet to the mile, (1 in 13) without any complication of gearing or machinery, but having a simple direct connection similar to a locomotive. It does not do this by the force of momentum, but can be stopped and started on any part of the grade without diff culty. In fact, it can do all that the horse car can, and do it much better, and at a small fraction of the expense, both in first cost and in the running, and will actually save more than all the cost of the horses and their keeping.
the remington agricultural works
Here you see mowers, reapers, plows, hoes and rakes being made by thousands, all the work being done by ma chinery. I saw a lump of steel converted into a square hoe and another into a heart shaped one, in what an Irishman would call "no time." I saw them tempered and polished I saw them tested, and they were almost as pliable as a Damascus blade. I stood for several minutes in solemn contemplation of about 500 plow shares, and my respect for plow shares has increased immeasurably.
These Remington agricultural works sold last year, 2,500 nowers and reapers, 5,000 plows, 500 cultivators, 30,000 culti vator teeth, and a large number of hoes and rakes. The last item is always an exceedingly variable one. During the six ears the works have been in full operation, they have made as few as 10,000 , and as many as 23,000 hoes in one year.
But, even here, the Remington restless activity display itself. I saw some cotton gins being put together, and in quired what they were doing there. The reply was : "Oh we make cotton gins of a superior kind here. We often make two hundred or three hundred gins a year." In the foundery, I saw men at work on heavy iron beams. "What are they for?" I asked. "Oh, we build bridges about her and in other parts of the State, railroad and other bridges." and in other parts of the State, railroad and other bridges."
The fact is these Remingtons inherit a mechanical spirit The fact is these Remingtons inherit a mechanical spirit
and a restless activity. They cannot be otherwise than and a restless activity. They cannot be otherwise than
busy. If guns are not in demand, they make pistols; if pistols are not wanted, they make cartridges; should car tridges become a drug in the market, they burst out in sew ing machines, horse cars, cotton gins, bridges, plows, mower and reapers, or anything else that strikes their fancy, or that Col. Squire, their able and energetic director in New York, may suggest. They have created Ilion; they are bound to see that Ilion gets along, and they attend to their own and Ilion's business. They build churches and homes; they give $\$ 100,000$ or more to colleges, they treat their workmen like fellow creatures, and Ilion shies its cap in the air for the Remingtons and the Remington works.-Correspondenc New York Times.

Bromine Water as a Test for Phenol (Carbolic Acid) If we add bromine water in excess to a dilute aqueous solu tion of phenol, a yellowish white precipitate of tribromophe ufficient, the precipitate disappears again, The reaction i ery delicate. If one part of carbolic acid be present in 3,700 parts of water, or 0.0229 gramme in a litre, there ap ears, on adding the bromine water, a distinct turbidity. No ther re-agent hitherto known is capable of detecting such $m i$ ute traces of phenol. The method may be advantageously applied for detecting the presence of coal tar contaminations in potable waters. Acid liquids, before the application of oub-agent, must be nearly neutralized. To ascertain, in
 and phenol, it is filtered, washed, and putest glass, iquid is then poured out into a small basin, and mixed with dilute sulphuric acid, the characteristic odor of phenol appears, and the acid itself separates out in minute oily drops. If phenol is suspected in urine or sewage, it is advis ble to distil, when the phenol will be found concentrated in the first portion which passes over.

Australian Locomotives.-Australia is making very apid progress in the arts, and is destined ultimately to be come a great center of civilization. The latest advance is the manufacture of locomotives. Three locomotives have bee bilt at Ballarat, and three at Melbourne. They were con tructed for the North Eastern Railway line, and are said, to have demonstrated the economy of hereafter building rather than importing locomotives.
THe very best way to clean a stained steel knife is to cut solid potato in two, dip one of the pieces in brick dus (such as is usually used for knife cleaning), and rub the blade with it.

DIAMOND CUTTING IN NEW YORK.

According the American Watchmaker's, Jeveler's, and Silersmith's Journal, the New York Diamond Company has commenced the business of cutting and polishing diamonds, and the promise is good for its success. The premises are in 15th street, near Broad way.
The business is divided into three entirely distinct and separate branches. First, there is the cleaver or splitter, called the klover; then the cutter, or snyder; and, lastly, the polisher, or slyper. So much skill is required of each that it is hardly possible to imagine that any one could combine the three trades perfectly. The splitter or cleaver must be a three trades perfectly. The splitter or cleaver must be a
person of the quickest possible perception, Seizing a stone, person of the quickest possible perception, Seizing a stone,
he looks at it quickly, and decides instantly in his mind how he looks at it quickly, and decides instantly in his mind how
the stone must be cut, so as to give it the greatest weight and the stone must be cut, so as to give it the greatest wo streaks
brilliancy. Instantly he detects any flawz, or strix or streaks in it ; judges in a moment what minute fragments must be cut off in order to get rid of these fla ws, and must be so thor. oughly acquainted with his subject as to be able to tell whether the imperfection is at the surface or in the heart of the stone. As to color, he knows at once whether it will turn out of pure water or not. He must be both bold and cautious. Having decided in his own mind what that stone of a carat or more will turn out-having even calculated to a nicety how much the clippings of the rough diamond will be worth, whether they will make little brilliants or flat rose being held by a cement made of rosin and pounded brick dust. Taking anotlier diamond, or a fragment of one before split, having a sharp edge, he secures it in anothor stick precisely in the same way. Steadying his two hands over a small wooden box, lined with brass, which has at the bottom a sieve to secure the precious dust, he ap; 1 ies the knife edge of one diamond to the face of the other. It cuts rapidly-
there is a distinct notch made. Showing us the stone he is there is a distinct notch made. Showing us the stone he is about to cut (in this instance a fine one of about two carats), he points out to us a minute flaw on its surface, which he
proposes to remove. It might be ground off. But if this proposes to remove. It might be ground off. But if this
slow process was employed, it would take two or three days, may be a week, and that portion of the diamond capable of being turned into a pretty little rose diamond be lost. Now he takes something like a steel ruler, with a perfectly flat, square edge, about six inches long and say a sixteenth thick,
places first this rule, not on the stone, but on the line where the cleavage, not to be, considers a moment, then having as it were taken his aim, he deftly, with an instanta neous movement, places it in the little notch cut in the dia mond, with the other hand seizes a small steel rod, some thing like the pestle to a mortar, gives the ruler or knife one, two quick taps, and, showing us the stone, there is a distinct, perfectly straight split. Now, warming his cement, be takes the stone out, now divided into two parts; he has taken off a piece which, it is true, is very small, but in looking at it closely we see he has cut right through a fault, and has so got rid of an imper fection. It is not difficult to describe, but the skill, accuracy, judgment and coolness required is wonderful. The stone might be worth in the rough $\$ 100$ or $\$ 10,000$; the process is the same. A eingle error on the part of the cleaver, an ignorance of the nature of the stone, or of what it ought to be like when perfect, might spoil for his employers more in one minute than they could make up in months.
The cleaver havin y determined what shape the diamond shall have, it is handed over to the cutter. The diamonds are secured precisely in the same sticks, and held over ex actly the same kind of box. The stone to be shaped is held in the left hand, though both stones are in process of cut ting. The thumbs are closely braced, the left hand being
protected by a leather glove The process is a very slow one; the clervage had a presto quick artistic slight of hảnd in it, but the clervage had a presto quick artistic slight of hatnd in it, but
this has a dull plodding look. Slowly the faces are abraded as the t wo diamonds are ground together. In this condition they have not the least appearance of beauty; if, when split up by the klover, they still retained some little sheen and
glitter, here they look like bits of very poor smoky glass, glitter, here they look like bits of very poor smoky glass,
about as brilliant as a cinder. The shape required is ap. proximated. Stones we saw, ready for the polishers, were rather more roughened out, apparently, than conforming to the required forms. It is a long and tedious process, requir ing no end of patience and judgment.
After this, we visited the polishing rooms. Seated, before revolving steel disks running parallel with the floor, sat a number of men all intent at their tasks, the tables turning noiselessly with a speed of 2,000 revolutions to the minute They were begrimed with oil. Each man held in his mouth something that looked like a tooth pick, which he compla cently chewed. This they would dip occasionally into a lit tle glass vessel containing an olive colored misture, made o oil and diamond powder. A drop of this they wculd apply to the diamond they were polishing. The first process was that of soldering the stone into a brass cup, the solder rising
above it until it looked like a big acorn, the stone being as above it until it looked like a big acorn, the stone being as
the apex. To do this properly, to follow each workman through his work, and to present each facet in its proper position, seemed to us the acme of skill. Taking a tiny stone the fractional part of a carat, but, minute little thing as it was, having no less than sisty-four distinct surfaces to be smoothed, a workman who does nothing else but fix the stones seized it between his forceps, placed it in its proper position in the solder, now in a plastic state, and heedless of burnt fingers, shaped the yielding mass of metal around it until it was thoroughly secured; then taking it, still hot, he plunged it into water, where the metal hissed ; and we thought this workman must be endowed with salamander qualities
Taking the precious acorn with its diamond point, the pol Taking the precious acorn with its diamond point, the pol
isher now commenced his work. First he touched the point
with the olive oil and diamond dust, and felt with the end of his finger the exact position. It seems to us that in this process the senses have to play entirely novel functions. The polisher's eyes are apparently of little uss, but the sense of other faculty. Placing the stone in the acorn with its poin down ward, he clamps it in a wooden rest, the diamond just touching the revolving wheel. To produce pressure, he put on the wooden rest pieces of lead, weighing perhaps four or five pounds; sometimes he has the weight of three or four on it. One ciimond at a time is not sufficient to absorb his att-ntion: he has three, all mounted at the same time, going together. Occasionally he takes one of the rests off, and planges the acorn into some water to cool it, looks at it a moment, feels it with his finger, and puts it down again Sometimes he seems to be paying a certain slight amount of attention to the plate, looking at the streak the stone make on the revolving dikk. This seems to be all the process, only his and nothing more. Little does the observer imagine the years of assiduous and patient toil it has required to acquir this proficiency. All the workmen are Israelites, all from
Holland. Those who understand the business inform us that from generation to generation they have carried on this trade and that the persistency of this remarkable people, the dog ged perseverance which they are famous for, has alone made them proficient in this branch of art. It may take months of this patient, monotonous toil to perfect a single stone of any sizo. Sometimes it happens that a surface is presented to them which defies even the mordant qualities of any other diamond powder. They may grind and grind away for months, and the smooth, glittering surface will not come. They have come acruss a bit of the poetical adamant. Still they work on with it; they will make it brilliant. It passes from hand to hand, from wheel to wheel. Everybody has tried it, and everybody has given it up. But still they keep on trying. Suddenly a bright little speck appears-you could cover it with the point of a cambric needle. The ob
durate hide is getting worked durate hide is getting worked off, and human patience is
triumphant, and a magnificent luster rewards their labors.

African stones are particularly hard and obstinate, an give much more trouble than South American ones. The company have already a large proportion of the business of repairing diamonds. It happens frequently, even with the most skillful workmen, that in setting a stone an edge is chipped off or roughened, and requires some slight remodel ing Again, when soldering and plunging into water a piece of jewelry containing a diamond, from the too sudden change of temperature, a film appears, on the surface of the diamond, which dims its luster. It then requires repolishing. Fires may occur, and diamonds subjected to a long heat lose their sparkle, and want retoaching. All these accidents give constant employment; but it is rather with the idea of taking stones in the rough, making a market in New York for rough diamonds, and of bringing these productions to the utmost pitch of skilled perfection we would treat-and this has be
fully accomplished by the New York Diamond Company.

walking.

Walking briskly, with an exciting object of pleasant interest ahead, is the most healthful of all forms of exercise except that of encouragingly remunerative, steady labor in the open air and yet multitudes in the city, whose health urgently requires exercise, seldom walk when they can ride if the distance is a mile or more. It is worse in the country, especially with the well-to-do; a horse or carriage must be brought to the conditions first named, walking is a bliss; it gives animation to the mind, it vivifies the circulation, it paints the cheek and sparkles the eye, and wakes up the whole being, physical, mental, and moral
We know a family of children in this city who, from the age of seven, had to walk nearly two miles to school, winter and summer; whether sleet, or storm, or rain, or burning sun, they made it an ambition never to stay away from schoo on account of the weather, and never to be "late;" and one of them was heard to boast that in seven years it had never been necessary to give an "excuse" for being one minute behind the time, even although in winter it was necessary to dress by gaslight. They did not average two days' sick ness in a year, and later they thought nothing of walking twelve miles at a time in the Swiss mountains. Sometimes they would be caughtin drenchingrains, and wet to the skin n such occasions they made it a point to do one thing-le was dry before they reached home
There is no unmedicinal remedy known to men of more value in the prevention of constipation than a few miles yous walking; let one follow it up a week-a walk of two or three miles in the forenoon, and as nuch in the afternoon e made, the result will be triumphant; and yet nine per ons out of ten would rather give a dollar a bottle for some auseous drops or poisonous pills than take the trouble to put in practice the natural remedy of walking. Nor is there an anodyne among all the drugs in the world which is the hundred th part so efficacious, in securing refreshing, health Journal of Health.

Stopping Pinholes in Lead Pipe.
A correspondent in the Industrial Monthly writes: " The supply water pipe which extends from the street, along the top of our cellar to the sink in the kitchen, had a very small hole in ne side, so that a stream of water spun out, not so large as a cambric needle. If I had known that the difficulty could
have been remedied by placing the square end of a tenpenny
nail on the hole and hitting it two or three light blows with hammer, the knowledge would have saved me much trou le and expense. But I did not know that a small hole in lead pipe can be stopped by battering the metal just enough to close the orifice, therefore I went and called a plumber Of course he was employed by the day. He knew how to top the issue in less than one minute; but he preferrad to make a good job for himself and for his employer. He was too proud to be seen carrying his solder and tools along the street ; hence a helper must be detailed to carry these appli ances. His employer paid him twenty cents per hour, bu charged sixty cents per hour for his services. He paid the helper ten cents per hour, and charged forty cents, whether hey were loitering along the streets, or at work. They ooked around, lit their pipes, smoked and chatted, and used about four ounces of solder, for which the charge was fifty cents, as they reported they had used one pound. The plumber reported one hour each for himself and helper Thus the cost of stopping one pinhole cost me $\$ 1.50$, when ny one who can handle a hammer could have closed th issue in half a minute if he had thought of how to do it."

Bones and Bone Meal.

The complaint of fraud in the manufacture of commercial manures gives rise to many questions concerning the manufacture of bones into some available form by the farmer himself. This is a very important subject and yet it is one beset by many difficulties. To a majority of farmers in this country, bones are the only reliable source of supply to replace the phosphates carried a way by the annual exportation of grain, beef and pork. But bones broken into fragments of not more than an ounce in weight each will, under ordi nary circumstances, remain in the soil undecomposed for half a century, and consequently but little benefit will be derived from their use. Bones, to be of immediate value, must be ground fine; but this with "raw bones" is a very difficult process. Bones subjected to the action of high steam lose all their oil, and a large portion of the gelatin which so obstructs the grinding, and thus become brittle, and are quite ea ily ground in a common mill. The same end can be reached more directly by burning the bones, the waste being merely the animal matter contained in them. The phosphate of lime is unaffected by either steaming or burning.
The mineral part of the bones, thus separated, will be found to consist substantially of 45 per cent of phosphoric acid and 55 of lime. This compound is insoluble in pure water, and but very sparingly soluble in rain water charged with carbonic acid. If we take this " bone phosphate" and add to it a little more than hale its weight of sulphuric acid (commercial oil of vittiol), we will in a fer days produce a new compound, in which the sulphuric acid has removed two thirds of the lime from the bones, combining with it to form gypsum, supplying the place of the lime thus removed with water. This is a true soluble superphosphate. Its elements

Phosphoric acid	$6 C \bullet 39$
Lime (calcium)..	23.93
Water.	$15 \cdot 38$

This mass will be found very tenacious, and somewhat difficult to handle. To remedy this it should be mixed, in sufficient quantities to render it dry, with some good absorb ent, such as dry swamp muck reduced to-a powder, or with ground charcoal, or even with road dust. Lime or ashes should never be used for this purpose
Several farmers can co-operate in the construction of a mill, and thus produce the bone meal which they use a prime cost. From this, they can make their own superphos phate, and use it either by itself or mixed with composted

But bones may be reduced to a very fine state of division by use of strong wood ashes, and thus, presenting a large surface to the solvent action of water and carbonic acid in the soil, may be of great value in maintaining fertility. We suggesi the following formula for using bones with ashes
Ground bones.
.100 pounds
Strong wood ashes
400 pounds
Soda saltpete
Epsom salts.
70 pounds.
10 pounds.

Dissolve the soda saltpeter and Epsom salts in sufficien water to thoroughly moisten the ashes and bone meal. Mix well, and let it stand ten days, stirring it daily. Use some absorbent, such as dry muck pulverized, to dry the mass and reduce it to powder.
German potash (150 pounds) may be substituted for the shes, in whole or in part. This amount used on an acre will have a marked effect on the crop. $-R$. T. Brown.

Fastening Loose Window sashes.

The most convenient way to prevent loose window sashe from rattling unpleasantly when the wind blows is to make our one sided buttons of wood, and screw them to the stop. which are nailed to the face casings of the window, making each button of proper length to press the side of the sash outwards when the end of the button is turned down hori zontally. The buttons operate like a cam. By having them of the correct length to crowd the stiles of the sash out wards against the outer stop of the window frame, the sash will not only be held so firmly that it cannot rattle, but the crack which admitted dust and a current of cold air will be closed so tightly that no window strips will be required. The butons should be placed about half way from the upper to the lower end of each stile of the sashes.-Industrial Monthly.

Adjustable Spring Bed Bottom.
The principal object of this invention is to make the sla bottoms, of the common slat bedstead, elastic, so that it may be used in place of the cumbrous spring led bottom frame now in use, with the additional advantage that it may be made hard or soft at pleasure, to suit the season. It is claimed that it can be put up or taken down as quick, and will occupy as little space, as any other bedstead bottom, and that it can as little space, as any other
The engraving represents two styles of bedstead. Fig. is a view of a bed bottom employing the double or endle: bearing cord used for crosswise slats. Figs. 2 and 3 are debearing cord used for crosswise slats. Figs. 2 and 3 are de
tail views of a bed bottom having a single bearing cord used for the lengthwise slats. Two spring bars with grooved ends (one may be useã), made fast at their centers to opposite sides of the bedstead, on the rails, communicate their motions by means of the bearing cord or cords passing over pins or rollers between the ends of the slats on the inside of rails, the bar acting like a a archer's bow. In the double or endless cord for the crosswise arrangement, both cords rest in two grooves or pins, but divide and pass on each side of the slats and around the end of the spring bars, in such a way that the end strain bears up alternate slats. The adjacent slats, then resting on different cords, do not interfere with each other's vibration. The côrd never touches the upper surface of the slats, for the weight of the mattrass depresses the slats between the pins, and keeps them in the centers of the spaces. The web of slats need not be fast in any way to the bedstead, as represented, but can be lifted off and rolled up. With length'wise slats, the single cords will answer, for the reason that the weight of the occupant comes on but few slats. The cord is not attached to the spring bar, but passes around the end, and is brought back a few inches and made fast to ascrew in the bed rail. As the bearing cord always slips on the end of the spring bars, the motion is multiplied, so that a little spring in motion is multiplied, so that a little spring in She spring bars gives great elasticity to the lats, and the bars and slats can be made of the theapest material, pine, spruce, or fir answerng perfectly for this purpose.
There is a groove on the under side of the slats, which are held in position by two small stay cords passing through two converging holes in such a way that, although loose in the holes, there will be no slipping if the cord is made taut as it should be. At each corner of the bedstead there is, on the rail, an oblong button, nearly in front of the end of the spring bar, and by turning this up against the end of the bar the bearing cord is made taut, thus rendering the bed hard for hot weather.
When no spring bars are used, the double bearing cord is passed around rollers placed on screws in the bed posts. This makes a very cheap spring bed. The reciprocating motions of the slats allow them to adjust themselves to the varying shapes of occupants of the bed. The slats can also be used divided, the halves being held apart by a piece of cord to make them more elastic.
This invention is covered by two patents, dated August 15 1871, and Feb. 27,1872 , taken out through the Scientific Amer ican Patent Agency. The patentee, being a disabled soldier and not able to attend to active business, would like to cor respond with parties for the sale of rights, at moderate prices. For further information address Geo. Brownlee, Princeton, Ind.

THE BALTIMORE BOILER INSPECTION LAW

At the last session of the Marylant Legislature, a bill was passed authorizing the appointment, by the governor, of two inspectors of boilers for the city of Baltimore. It names, as the qualifications of these inspectors, that they shall be wel skilled in the construction and use of steam engines and boilers, and fixes their salary at fifteen hundred dollars per annum. With this munificent provision for their support they are to be content, and not to engage in the manufacture of steam boilers, engines or machinery applicable thereto and are not to receive any money, gift, gratuity or considera tion from any person or persons. With the kind of inspec tors and inspection likely to be obtained from any ability such salaries will secure, the Baltimoreans might, in our opinion, about as well be without any. The other features of the bill are not objectionable.

Blood Crystals.
An interesting volume has just been published by M. W Preyer, on blood crystals. 'Though blood crystals were first observed by Hünefeld, the merit of discovering them is due to Reichert, who first recognized their nature. The fact of the crystallization of a complex organic substance like blood was first received with some amount of incredulity, but the corroborative testimony of many microscopists soon cleared away all doubt, and a variety of methods were suggested by which the crystals could be obtained. The best plan for ob taining them is thus given by M. Preyer: The biood is received into a cup, allowed to coagulate, and placed in a cool room for twenty.four hours. The serum is then poured off, and a gentle current of cold distilled water passed over the finely divided clot placed upon a filter, until the filtrate gives scarcely any precipitate with bichloride of mercury. A current of warm water ($30^{\circ}-40^{\circ}$ Cent.) is now poured on the clot, and the filtrate received in a large cylinder standing in ice. Of this a small quantity is taken, and alcohol added,
drop by drop, till a precipitate falls from which an estimate \mid positive and reliable fastening which it is the object of the may be made of the quantity required to be added to the present invention to provide.
whole without producing a precipitate. The mixture, still placed in ice, after the lapse of a few hours, furnishes a rich crop of crystals. The forms of the crystals obtained from the blood of different animals do not vary to any great extent and are all reducible to the rhombic and hexagonal systems. The vast majority are rhombic prisms, more or less resembling that of man. The squirrel, however, with several of the rodentia, as the mouse and rat. and the hamster, are hexagonal. The hæmoglobin of several corpuscles is required to form a single crystal. All blood crystals are double re to form a single crystal. Anse blood has been hitherto exam
fracting. The animals whose

ADJUSTABLE SPRING BED BOTTOM.

ined and found to crystallize are-man, monkey, bat, hedge hog, mole, cat, lion, puma, fox, dog, guinea pig, squirrel, mouse, rat, rabbit, hamster, marmot, ox, sheep, horse, pig, owl, raven, crow, lark, sparrow, pigeon, goose, lizard, tortoise serpent, frog, dobule, carp, barbel, bream, rudd, perch, her ring, flounder, pike, garpike, earthworm, and nephelis. The spectrum of blood-coloring matter when oxidized, with its or in the yellow part of the and E of Fractrum, and the single band of deaxidized hæmoglobin, are now well known. Preyer states he has not been able to obtain a spectrum from a single blood corpuscle, but that the characteristic bands are visible where certainly only a very few are present.

FASTENINGS FOR NECK TIES, SCARFS, ETC.

Much annoyance is often experienced through the ineff ciency and unsatisfactory character of the fastening used fo

attaching these to the button or stud of the neck band. If at first they answer the purpose, they soon get out of order so as to need constant adjustment, which soils the ties and, in
addition to the inconvenience caused by it, renders these articles much less serviceable than they would be with a more solution. minutes.

Picric acid gives a good yellow without any mordant; it must be used in very dilute solution, and not warmer than $70^{\circ} \mathrm{Fah}$. so as not to penetrate the leather. Anilin blue modifies this color to a fine green. In dyeing the leather, the temperature of 85° Fah. must never be exceeded

Anilin green is well adapted to dyeing leather, and its application is quite simple. Whether use in paste or as powder, we must make a concentrated aqueou
The leather is brushed over with a solution of sulphate of ammonia, mixed with water, the dye solution applied at 95° Fah., and it must be endeavored, by rapid manipulation, to prevent the dye from penetrating through the leather. By the addition of picric acid, the blueish shade of this dye stuff is modified to leaf green, and it becomes faster; but the pic ric acid must not be added to the color solution; it must be applied to the leather before or after the dyeing with anilin grean.-FF. Springmuhil.

MEASURING THE VELOCITY OF ROTATION.

Professor A. E. Dolbear suggests, in the American Journa of Science, a simple and effective method of determining the velocity of rotation of wheels and shafts. Upon the face o upon the periphery of the rotating object, he fastens smoked paper, and this he touches with a point of rubber which is attaehed to one branch of a vibrating tuning fork, having a known rate of vibration. The fork is to be so held that the direction of its vibrations will be at right angles to the line of motion of the shaft. By counting the number of undulalations made on a given extent of the smoked paper the speed of rotation is at once indicated. Thus if the fork makes 100 vibrations in a second and one vibration is recorded on the smoked paper in a space covering one half the ed on the smoked paper in a space covering one half the
circumference of the wheel or shaft, or two vibrations with. circumference of the wheel or shaft, or two vibrations with-
in the entire circumference, it is evident that the rate of roin the entire circumference, it is evident that the rate of ro-
tation is 50 revolutions per second. By this simple and easy method, the velocity of rotation of gyroscope disks and of al kinds of shafts and wheels may be readily ascertained.
Chimney Moving.-The Cabot Company, of Brunswick, Maine, in order to enlarge their cotton mill, moved their large smoke stack chimney- 78 feet high, 7 feet 9 inche square at base, and 5 feet square at top-containing more than 40,000 bricks and weighing more than 100 tuns-twen ty feet, without rollers or balls, or guys or braces to steady it-one of the greatest feats ever performed in the State It was planned and carried out by Superintendent Benjamin Greenes, not one of those engaged having ever witnessed the moving of such a body. It was accomplished by building such ways as are used in launching ships, surfaces planed, and greased, chimney wedged up, and moved by two jack screws in four and a half hours. The flues were disconnected from the boiler at 1 o'clock P. M., and at $9 \frac{1}{2}$ o'clock the same even ing the flues were again connected, fires going, and steam up.

Bees are exceedingly susceptible of atmospheric changes even the passage of a heavy cloud over the sun will drive them home; and if an easterly wind prevails, however fine the weather may otherwise be, they have a sort of rheumatic abhorrence of its influence and abide at home.

OUR next eclipse of the sun will take place soon after sunrise on Wednesday, Sept. 29th, 1875. Visible north of North Carolina and east of the Mississippi

At Denver, Colorado, on the 29th of July, 1878, at $3 \frac{1}{2}$ P. M.

THE DISCOVERY ${ }^{[\text {FFor the Sclientific American,]] }}$ HISTORY OF THE CHROMOSPHERE,
Extensive preparations had been made to observe the chro mosphere and prominences during the eclipse of 1868. The spectroscope, for the first time, was directed toward
these mysterious flames about which there had been so these mysterious flames about which there had been so
much discussion. They were about to disclose the secret of much discussion. They were about to disclose the secret of their composition. The observers, stationed at different points
along the path of the eclipse, met with general success. A along the path of the eclipse, met with general success. A
spectrum of bright lines was found to be given by the chro mosphere and prominences, although at this time the word chromosphere had not been invented, and that envelupe which now bears the name had not, in reality, been distinguished as an envelope or atmosphere separate from the photosphere; yet a red light had been seen around the sun, and it was this which gave the bright lines. The spectrum of bright lines seen at once showed that this envelope must be gaseous and
existing at a very high temperature. To M. Janssen, the well existing at a very high temperature. To M. Janssen, the well
known astronomer, belongs the honor of succeeding in seeknown astronomer, belongs the honor of succeeding in see ing the bright lines when the sun was shining in full splen dor ; Mr. Lockyer attempted, independently, to discern thes lines, but failed, owing to defective instruments. The diffi culty to be surmounted was this: the brightness of full sunlight eclipsed the comparatively feeble light given off by the prominences and chromosphere; how to get rid of this in tense llght was the problem. If a beam of sunlight be passed through a prism of glass, it will be dispersed, giving a spectrum of a certain length and brightness. Now if instead of one, two or more prisms be used, there will be an increase in the length of the spectrum and a corresponding diminution of its brightness: Now, as the spectrum of the chromo sphere and its appendages is not a continuous spectrum but a spectrum of bright lines, the only effect which an increase in the number of prisms used could have would be that of more widely separating the lines, not to any great extent di minishing their brilliancy. Mr. Lockyer hoped, by using a sufficient number of prisms. to be able to see the prominences for after toning down the glare of the solar spectrum, as given by one prism, he expected to see a monochromatic image, of the prominences he should examine, in each of the lines given by the prominences. As stated above, he failed, not because his theory was wrong, but because of the imperfec tion of the instruments he used.

The next day after the eclipse of August 19, 1868, M Janssen tried the experiment and succeeded. There wer the bright lines. Astronomers could now examine the prominences at their leisure. That which could be investigated heretofore only during an eclipse would now become a subject of daily study; in fact, M. Janssen had proved that it was possible to produce in effect a total eclipse wheneve desired, providing the sun shone clear of clouds.
The next question which engaged astronomers was that of the coincidence of the lines seen with those given by some known gas or gases. Sodium and other metals had been proved to exist in the sun long before. Kirchoff had discovered the law that every body has the power of absorbing such light as it emits. The coincidence of the bright lines given by the vapor of sodium with the D lines in the solar spectrum had been announced. The coincidence of the chro mospheric lines with certain dark lines in the solar spectrum
was soon established. The line, marked $H a$ in the engravwas soon established. The line, marked $H a$ in the engraving, was found to coincide with the C line of Kirchoff's map. $B H$ with F, and $H y$ with a line near G. These lines were coincident with those given by glowing hydrogen, and as they were*the most prominent and the brightest. hydrogen was announced as being the chief constituent of the prominences and chromosphere. Another line was seen in the orange part of the spectrum, which at first was thought to be the sodium line D; but this was a mistake, and the line was soon found to be more refrangible than D . This line has been called the D_{3} line. Whatis the nature of the substance which produces and chromosphere are examined. Other lines are sometimes seen, such as the sodium and magnesium lines. These are however, generally found in the lower portions of the prominences and in the chromosphere proper, rarely being seen in the more elevated portions of the prominences, probably by reason of the greater gravity of the vapors of these metals over hydrogen gas. Continued observation showed that the sun was surrounded hy immense masses of hydrogen, ejected from the chromosphere, which were continually changing their form, bursting out, now here, now there; and when we consider that only a small portion of the sun's surface can be examined on any one day, only the edge or limb, it is apparent that innumerable outbursts occur of which we have no knowledge.

Of the mighty forces which are at work in that orb, which has been justly termed the ruler, fire, light, and life of the planetary system, we can have no conception: of the forces which lave the power of hurling immense masses of matter to the hight of hundreds of thousands of miles, and at a velocity with which we are entirely unacquainted. That the chromosphere is the abiding place of terrific cyclonic storms, and (if we may be allowed the expression) volcanic eruptions, is a fact beyond doubt; daily evidence meets our eyes attesting to the turmoil going on therein.

HEARD'S VENTILATING HAT.

Not only in tropical climates, butin the torrid temperatur f midsummer, experienced in our latitude, will such an in vention, as the one illustrated in our engraving, be found of reat service and comfort. The overheating of the head ha ften resulted in total prostration and even death, while un doubtedly many lesser disturbances of the general health are indirectly caused by it, not to speak of the great discomfor esulting from a heavy almost air-tight head covering, in ho weather. While it is requisite that the head should be pro ected from the direct rays of the sun, it is also desirable that the air should have free access to all parts of the scalp, thus keeping it cool, carrying off the perspiration, and obviating ot only the greater evils above alluded to, but the minor on of baldness, which is greatly hastened by overheating.

The making of a few perforations at the top of the crown fa hat does not really make a ventilating hat. To ventilate n air space requires either very much larger openings than hese, in proportion to the space to be ventilated, or else penings below as well as above, so that the currents of heated air rising may meet opposing descending currents, and may be freely replaced by cooler air entering at the botNow.
Nom
Now, in this hat, these principles are fully carried out Air enters through an annular space formed between the sweat band, A, and the exterior, B. Rising equally about al parts of the head, it passes out of the opening, C, which ex tends entirely about the top of the crown, the part, D, over lapping the part, B , so as to exclude rain
The hat may be made of any suitable material, and the entilating device does not, as will be seen, interfere with conformability to reigning styles
The invention was patented May 24, 1870, by Dr. Joseph M. Heard, then of Aberdeen, Miss., but now of West Point Miss., whom those desirous of manufacturing on royalty may address for further particulars.

INEXTINGUISHABLE SIGNAL LIGHT

In a Belgian exchange, the Chronique de l'Industrie, we find the description of an interesting little invention, which has found favor with the Grand Duke Constantine, of Russia, and has been adopted into the naval service of that country. It is a signal light of peculiar properties, being ignited by water, and, although unable to ignite other objects, not to be extinguished by wind or water. It is said to produce a very powerful and brilliant light, which can be observed at great distance and retains its illuminating quality, though in small compass, for a considerable leng' h of time.

The appa an in vention of N.T. Holmes consists of a sheet metal
cylinder, having a conical top and a tube of about six inches in length projecting from its bottom. It is filled with phosphate of cal cium, which is prepared in the following man ner: Pieces of chalk are put into a crucible, together with a quan tity of amorphous phosphorus, and then brought to a white heat. The chalk, becoming incandescent, absorbs the vapors of phospho. rus, and thereby becomes phosphate of chalk. The apparatus, when filled with this substance, is Whetically closed and preserves it for an indefinite period ored through the, end of the pendent tube. A float is con nected with the cylinder in the manner shown in the engraving, and then launched. The water, entering the tube, causes the phosphate of calcium to decompose and to generate a quantity of gas, which, escaping at the top, is ignited by contact with the air, and remains so until the contents have been entirely consu med. It is stated that the London Board of Trade has recommended the adoption of these signals in place of the blue danger signals at present in use in the com
mercial navy, experiments having proved the superiority of this ingenious invention.
How to Preserve Soap Grease.-Fill a cask half full of good strong lỳe and drop all refuse grease therein. Stir up
the mixture once a week.

COMBINED CAST IRON AND WROUGHT IRON ARCH GIRDERS.
A cast iron arch girder is considered as a long column sub. ject to a certain amount of bending strain, and the resistance will be governed by the laws affecting the strength of beams as well as those relating to the strength of columns. By rea on of the slight curvilinear form of the castiron arch gird ers, so much in general use, they will not compare as favora bly with the laws governing columns as with those governing eams.
The metallic arch in one piece differs materially from a stone or brick arch. In the latter, by the use of separate blocks, the capacity of the material to resist compression only is exerted; while, with the use of an arch of any material n on
A stone or brick arch is an arrangement of blocks (vous soirs) set in a curvilinear form, each block separate from the other, and subject only to compression. The greater the weight placed upon the arch, the more compressed and com pact these voussoirs become. Their resultant pressure, or the thrust of the arch, is received by piers or abutments at th extremities; and, should a slight yield of the abutment tak place, it would only cause a further setting of the voussoirs and not affect the strength of the arch in the same degre that would be caused by the elongation of the wrought iron tie rod in a cast iron arch girder, as the deflection of the lat ter is not great before rupture takes place, and a slight elon gation of the rod causes considerable deflection.
Most materials used in the construction of arches have a much greater capacity to resist compression than to resist extension; and it is obvious that this system of voussoirs, when made of a material whose resistance to compression is greate than to extension, has an advantage over those in which the material is used in one piece. As wrought iron possesses the property of greater resistance to extension than to compres ion, its use is analogous that of a tie rod.
In the cast iron arch girder, both extension and compres sion are exerted, as on a straight beam, and these are the greatest at those points which are most distant from the neu ral axis of cross section; hence the point of rupture will occur at one of these two extremes.
In cast iron, the resistance of compression is to that of ex tension in the ratio of six and a half to one; and, being a rigid, crystalline, unmalleable substance, weak in its resist ance to extension as compared to that to compression, it be comes a matter of calculation, which should be based upon

xperiment, to adjust the malleable wrought iron tie, which has a certain degree of extensibility, coming into play in pro portion as the girder is loaded. These girders, as ordinarily t the ends to receive the casting in one piece, with groove being a little shorter, are expanded by heat and then placed in position in the casting, and allowed to contract in cooling o tie the bottom of the casting, thus acting as an abutmen, to receive the horizontal thrust of the arch. If the tien should be too long, it does not receive the full proportion of the strain until the castiron has so far deflected that its lowe edge is subject to a severe tensile strain which cast iron is feeble to resist.
If, as is more frequently the case, the tie rod is made too hort, it is subject to severe initial strain, which is added, to the strain proper induced by the load, to produce rupture. Wrought iron is extended about a one thousandth part of its length by every ten tuns of direct strain per square inch of cross section, which is the limit of elasticity of the bestiron, as eight tuns per square inch is for ordinary iron. There ore, a cast iron arch girder, with wrought iron tension rod annot be considered as an elastic arch confined between fixed abutments.
The usual careless manner in which these wrought iron tie rods are adjusted to the cast iron arches, ordinarily one quar er of an inch and occasionally three eighths of an inch less in length than the recess made in the casting for their recep in length than the recess made in the casting for their recep-
tion, thus detracting from their capacity to resist strain and causing the cast iron arch to camber or the rod to elongatecausing the cast iron arch to camber or the rod to elongate-
usually both-with want of knowledge of the proper proporusually both-with want of knowledge of the proper propor-
tion of the cast iron arch to the tie rod, imperfect castings, tion of the cast iron arch to the tie rod, imperfect castings,
bad welds, and great atmospheric changes, are the causes of bad welds, and great atmospheric changes, are the causes of
the several failures of these girders in this city during the past few years. The last case of this kind occurred in a building on the southeast corner of 56th street and Sixth avenue, New York, on the 28th of last November. The ther mometer had fallen 22° in a few hours, and the three inch rod of the girder parted at the weld. This girder, whose distanco between the supports was about 25 feet, was marked to sustain 125 tuns, and broke with a load of about 60 tuns It was set up in the building just before the enforcement of he law requiring it to be tested.
In view of these facts and the observations I have made in testing about 270 of these girders, I conclude that, as or dinarily made, in proportioning the wrought iron tie to the cast iron arch, one square inch of cross section of tie rod should be allowed for every ten net tuns of load imposed upon the span of the arch. Regarding the arch as flexible, or as possessing no inherent stiffness, and the tie rod as a chord without weight, the following formula is proper: Let S equal span in feet; V the versed sine in feet; U the
uniform load
strain; then
ad per foot of span; H th
$H=\frac{U}{8} \bar{V}{ }^{2}$
P. H. Jackson,

Inspector of Iron Construction, Department of Buildings, New York city.

[For the Scientific American.]

NUMBER II.

To select the best material, for driving pulleys in friction gearing, has required considerable experience; nor is it certain that this object has yet been attained. Few, if any, well arranged and careful experiments have been made with a view of determining the comparative value of different materials as a frictional medium for driving iron pulleys. The various theories and notions of builders have, however, caused the application to this use of several varieties of wood, and also of leather, india rubber, and paper; and thus an oppor tunity has been given to judge of their different degrees of efficiency. The materials most easily obtained, and most used, are the different varieties of wood, and of these several have given good results.
For driving light machinery, running at high speed, as in sash,door, and blind factories, basswood, the linden of the Southern and Middle States (Tilia Americana), has been found to possess good qualities, having considerable durability and being unsurpassed in the smoothness and softness of it, movement. Cotton wood (populus monilifera) has been tried for small machinery with resudts somewhat similar to those of basswood, but is found to be more affected by atmospheric changes. And even white pine makes a driving surface whioh is, considering the softness of the wood, of astonishing efficiency and durability. But for all heavy work, where from twenty to sixty horse power is transmitted by a single contact, soft maple (acer rubrum) has, at present, no rival. Driving pulleys of this wood, if correctly proportioned and well built, will run for years with no perceptible wear.
For very small pulleys, leather is an excellent driver and is very durable; and rubber also possesses great adhesion as a driver; but a surface of soft rubber undoubtedly requires more power than one of a less elastic substance.
Recently paper has been introduced as a driver for small machinery, and has been app.ied in some situations where the test was most severe; and the remarkable manner in which it has thus far withstood the severity of these tests a ppears to point to it as the most efficient material yet tried. The proportioning of friction pulleys to the work required and their substantial and accurate construction are matters of perhaps more importance than the selection of material. The mechanic who thinks he can put up frictional gearing temporarily and cheaply will make it a failure. Leather belts may be made to submit to all manner of abuse, but it is not so with friction pulleys. They must be most accurately and substantially made, and put up and kept in perfect line. All large drivers, say from four to ten feet diamter and from twelve to thirty inch face, should have rims of soft maple six or seven inches deep. These should be made up of plank, one and a half or two inches thick, cut into "cants," one sixth, eighth, or tenth of the circle, so a; to place the grain of the wood as nearly as practicable in the direction of the circumference. The cants should be closely fitted, and put together with white lead or glue, strongly nailed and bolted. The wooden rim, thus made up to within about three inches of tie width required for the finished pulley, is mount ed upon one or two heavy iron "spiders," with six or eight radial arms. If the pulley is above six feet in diameter, there should be eight arms, and two spiders when the width of face is more than eighteen inches.
Upon the ends of the arms are flat " pads," which should be of just sufficient width to extend across the inner face of the wooden rim, as described; that is, three inches less than the width of the finished pulley. These pads are gained into the inner side of the rim; the gains being cut large enough to admit keys under and beside the pads. When the keys are well driven, strong "lag" screws are put through the ends of the arm into the rim. This done, an additional "round" is put upon each side of the rim to cover bolt heads and secure the keys from ever working out. The pulley is now put to its place on the shaft and keyed, the edges trued up, and the face turned off with the utmost exactness.
For small drivers, the best construction is to make an iron pulley of about eight inches le $e_{i s}$ diameter and three inches less face than the pulley required. Have four lugs, about an inch square, cast across the face of this pulley. Make a wooden rim, four inches deep, with face equal to that of the iron pulley, and the inside diameter equal to the outer diameter of the iron. Drive this rim snugly on over the rim of the iron pulley having cut gains to receive the lugs, together with a hard wood key beside each. Now add a round of cants upon each side, with their inner diameter less than the first, so as to cover the iron rim. If the pulley is designed for heavy work, the wood should be maple, and should be well fastened by lag screws put through the iron rim; but for light work, it may be of basswood or pine, and the lag screws omitted. But in all cases, the wood should be thoroughly seasoned.
In the early use of friction gearing, when it was used only as backing gear in saw mills, and for hoisting in grist mills, the pulleys were made so as to present the end of the wood to the surface; and we occasionally yet meet with an instancs where they are so made. But such pulleys never run so smoothly nor drive so well as those made with the fiber more
deasly in a line with the work. Besides, it is much more dif-
ficult to make up a pulley with the grain placed radially, and to secure it so that the blocks will not split when put to heavy work, than it is to make it up as above described.
As to the width of face required in friction gearing: When the drivers are of maple, a width of face equal to that required for a good leather belt (single) to do the same work is sufficient. Or, to speak more definitely, when the travel of the surface is equal to twelve hundred feet per minute, the width of face should be at least one inch for each horse power to be transmitted, and for drivers of basswood or pine, one and a half to two inches.
The driven pulleys, as before stated, are wholly of iron. They are similar to belt pulleys but much heavier, having more arms and stronger rim. The arm should be straight rather than curved, and there should be two sets of arms when the face of the pulley is above sixteen inches. For the proportion of these pulleys, a very good rule is to malse the thickness of rim two and a half per cent of the diameter that is, when the pulley is forty inches diameter, the rim should be an inch thick.
To secure perfect accuracy, these pulleys must be fitted and turned upon the shaft; and when large, should rest in jour nal boxes in the latter while being turned. If simply swung upon the lathe centers, they are liable to vary while the work is being done. When turned exactly true, round and smooth these pulleys must be carefully and accurately balanced The neglect of this last essential point has worked the de struction of otherwise well made friction pulleys.
When thus constructed, there is a beauty about the move ment of this gearing, which at once enlists the favor of all who can appreciate the " music of motion," and gives charac ter to its bailder. Its efficiency and peculiar advantages will be more fully shown in a future article.

Sea weed as a Fertilizer.

The sea weeds that are thrown up on the shores of salt water have long been prized in this country, as in Europe, for their fertilizing action when applied to tle soil. The annals of Scotch and Irish husbandry contain ample testi mony to their value, and it has been asserted that the recent great advance in the cost of iodine largely depends upon the fact that much of the sea weed, which was formerly burned for the iodine makers, is now employed for agricultural purI h
have recently examined a sample of a commercial artile brought into the trade by the Quinnipiac Fertilizer Com pany, of New Haven, under the name of "Kelp Fertilizer." This is simply sea weed dried and reduced to such pulverization that it readily passes a sieve with one fourth inch nieshes. Professor D. C. Eaton pronounced the sample I analysed to be chiefly Fucus nodusus or rock weed.
Its composition, as taken from a bag of 100 lbs . weight
as:

Nitrogen $=120$, equivalent to ammonia, $1 \cdot 46$ per cent
In this analysis, the dried substance was carbonized at low heat, and extracted with water, before incinerating. On comparison with stable manure of good quality, using the average of a number of analyses of the latter, it appears that the relative quantities of the active ingredients are expressed by the following figures:

Stable Manure.	Kelp Fertilizer.
Organic matter........ 1	5-6 $\frac{1}{2}$
Nitrogen.............. 1	2-3
Phosphoric acid....... 1	1-21
Sulphuric acid........ 1	23-25
Common salt.......... 1	37-54
Soda................. 1	23-32
Potash................. 1	3-4
Lime................. 1	2-21
Magnesia............. 1	1-6

It thus appears that, by the addition of thirty pounds of fish guano (containing two pounds each of nitrogen, phosphoric acid and lime) to 1,970 pounds of the dry kelp, the tun of mixture would be worth, as far as can be judged from the quantity of the several solid ingredients, five times as much as the best stable manure. This consideration is one of high importance where, as in the Connecticut valley, stable manure sells for $\$ 10$ to $\$ 15$ per cord and often cannot be got at any price. The mixture named makes a pretty close imitation of stable manure in a dry and therefore concentrated form.
When used fresh from the sea shore, as thrown up by the tide, sea weed speedily suffers decomposition, and disappears in a short time; its saline ingredients become a part of the soil, but its organic matter would seem to be of little permanence.
Once dried, however, it becomes a rather slow acting fer tilizer, and in various instances, where it was used in field trials last year, it gave the best results when applied very It is deemed advisable to use with it a small quantity of

American Chemist.
Patent Suit on Car Wheels.
In the Supreme Court of the United States, Mowry vs. Whitney-appeal from the Circuit Court for the Southern District of Ohio
This suit was brought by Whitney to restrain Mowry from an alleged infringement of a patent, granted to Whitney in 1848 and extended in 1862, for a process prolonging the time of cooling, in connection with annealing cast iron car of colli
wheels.
The defence was that the process was not new, and that the appellaint had not adopted it in his mode of cooling cast iron wheels. The decree was for the complainant, and the case being referred to a Master for an account, the sum reported in favor of Whitney by that officer was about one hundred and twenty thousand dollars. It is here insisted that the Court erred in holding that Whitney's patent is protected against prior annealing processes, because former processes were confined to " unchilled articles," and also in deciding that the s.ppellant's process was an infringement of the patent, when they were, in point of fact, essentially different. One cools by placing the wheel in a cooler and the other in a net chamber. The patent of Whitney is invalid because there is no novelty in it. It is simply the application, of a process well known, to a purpose analogous to purposes to which it had been applied long anterior to the alleged invention. It is also urged that it is void because what is claimed is not useful, as the process would destroy the hardness of the rim (or chill) of the wheels, and thus detract from their durability. It is further contended that the Court erred in apportioning the profit of Mowry by the alleged infringement, and in overruling the exception taken to the report of the Master. C. B. Collier and A. G. Thurman for applicant ; H. Baldwin, Jr., E. W. Stoughton and B. R. Curtis for appellee.

Bailey's Paper Harrel

Mr. William H. Bailey has recently patented, through the Scientific American Patent Agency. an improved paper barrel, intended as a means for protecting non-liquid contents of barrels from loss, adulteration, and change of trade mark The paper barrel is to be used within a wooden barrel and properly printed, to show the mark of the manufacturer, even if the same should have been erased from the wooden barrul. In the sale of flour, sugar, paints, etc., it often occurs that dishonest dealers will remove the barrel heads of inferior brands and substitute therefor those marked with the names and devices of superior qualities, thereby seriously injuring the public and the most conscientious manufacturers. This will be made impossible by the application of the inner paper barrel, which is printed at both ends, and mark ed with the firm name and device, and which cannot be re moved without being destroyed and having the contents of the barrel entirely displaced. The paper barrel also pre vents the adulteration of the contents of the barrel and the escape of the contents through crevices between the staves,
which at present occasions serious losses to dealers and conwhich at present occasions serious losses to dealers and consumers.
The paper barrel is made to fit exactly within the wooden barrel and with heads at the ends. These heads are also cut out of paper, and gummed or otherwise fastened to the sides either by having lips or ears on the latter overlap the heads, or by having lips or a flange on the head gummed to the sides, or otherwise. In place of paper, equivalent simple or com'pound fabrics may be employed. The bulging body of the paper barrel is made in sections properly gummed to gether or in one piece.
In using the invention, the paper barrel fitted with one head is firmly gummed or held in place within the wooden barrel, and then filled as far as required. The other head is then gummed or fastened to the body. The wooden barre head is finally put on.

Loebling's LRubber Fillings for the Grooves of Transmission wheels.

This is a rubber filliog for lining the grooves of cast iron wheels, which run at a great velocity and are principally used for the purpose of transmitting power to distant points by means of wire ropes. The same filling may, however, be used for other grooved wheels running at a slower speed, and for different purposes.
It is composed of a core of hard rubber, surrounded by a skin of soft rubber, about one eighth of an inch thick, more or less. This coat of soft rubber extends along the two sides and the bottom, and is omitted on top, where the rope rests. By means of this combination two difficulties are overcome One is the difficulty of inserting the filling into the dovetailed groove and yet having it large enough to fill the groove completely and not be thrown out by the centrifugal force, which is very great, owing to the high velocity of the wheels. The other difficulty is to find a material hard enough on top to resist the wear of a rapidly running rope, and at the same time have the necessary velocity. This is accomplished by surrounding a core of hard rubber by a skin of soft rubber, which has elasticity enough to allow of its being driven into the groove and of expanding sufficiently afterward to hold it there, and yet is hard enough to resist the wear of the rope This improvement is calculated to remove one of the chief drawbacks incident to the telodynamic system of transmit. ting power through long distancer. It was patented through the Scientific American Patent Agency, March 19, 1872, by Mr. A. Roebling, of Trenton, N. J.

IT is a miserable economy to sa:ze time by robbing your IT is a miserable econ.
sulf of necessary sleep.
sCIENTIFIC AND PRACTICAL INFORMATION.

surface electricity

M. Terquem has recently made some experiments for further elucidating the fact that the exterior surface of a hollow body is alone affected by electricity. Faraday showed that a small animal, placed inside a cylinder of wire gauze, was not incommoded when the cylinder was so highly electrified that sparks were freely given off by it. He also constructed a room, 12 feet in each dimension, of metallic wire, and suspended it by ropes of silk; and he found that, occupying this room, with electroscopes and electrometers at hand, there was not the slightest indication of electrical action inside the chamber, even when sparks of considerable length were given off by the metal of which it was made. M. Terquem verifies these results by taking a metal birdcage and sus pending it to an insulated conductor of an electrical machine. While sparks sufficient to indicate a highly charged electric al condition were obtained from the exterior, pitch balls, feathers, and even a gold leaf electrossope remained un moved inside. Two bundles of linen yarn were hung, one outside and one in; the inside one was unaffected, while the outside was excited, the threads diverging from each other and giving out sparks.
sulphide of sodium.
This salt has lately been used in blowpipe analysis as a re agent, in the following manner: The mineral under examina. tion is fused with borax under the reduction flame. A small quantity of sulphide of sodium is then added, and the sub stance again submitted to the flame. Iron, silver, copper lead, nickel, cobalt, bismuth, palladium, thallium, and uran ium give opaque masses of a brown or black color. Zinc gives a white mass; the product with cadmium varies from
red to yellow as it cools; that of gold and platinum give a bright light brown, and that of tin, a translucent yellow brown.

detection of malic acid.

The adulteration of wines with cider can easily be detected by filtering and adding ammonia in excess. The apple juice will immediately deposit crystals on the side of the test tube. Genuine wine sheds a pulverulent deposit which does not adhere to the glass, and is devoid of a crystalline structure. Acetic acid will dissolve either of these precipi tates. The deposit from the cider consists of flat crystals
with parallel sides; that from wine shows star shaped formwith parallel sides; that from wine shows star shaped form-
ations. The treatment with acetic acid shows the presence of lime and phosphoric acid in both cases, the quantity of lime in the wine being minute.
scarlatina.
Mr. W. M. Searcy suggests the frequent examination of the tonsils of all persons living in a house where scarlatina is present, as the redness and enlargement of these organs are premonitory symptoms of the disease. Nitrate of silver in solution-one dram to one ounce distilled water-is a
good local application, and if the case be severe, aperient good local application, and if the case be
medicine is used in conjunction th erewith.

the agassiz expedition

Professor Agassiz's party have visited Rio di Janeiro, and have explored the whole neighborhood of that beautifully situated port. The distinguished naturalist has forwarded a large number of specimens to the Cambridge Museum, Mas During a trip to the Southern Parahyba river, the Profes sor obtained specimens of a number of species of fishes, some of them entirely unknown to science, which he very very carefully placed in alcohol for preservation. On his way
back to Rio di Janeiro, he passed the night at a gen back to Rio di Janeiro, he passed the night at a gentleman's
residence, and his host's cook, naturally looking upon the party merely as gentlemen sportsmen, poured off the alcohol and served up the valuable specimens nicely fried for breakfast. It was an appropriate repast for a scientific party ; but
it is hardly to be supposed that the worthy professor would have enjoyed it if he had known at the time the source from which the supplies had been drawn.

the dead sea.

Being without an outlet, evaporation is the only escape of the water pouring into it by the liver Jordan and some other which is a depression in the earth's crust thirteen hundred which is a depression in the earth's crust thirteen hundred
feet below the water level of the Mediterranean, an immense feet below the water level of the Mediterranean, an immense
mass of materials which must at last fill it up, when the Jormass of materials which must at last fill it up, when the Jor-
dan will then run on beyond and find an outlet to the sea, if the world remains in its present physical form long enough.
The Jordan wafts down ninety cubic yards of water every second. Each day it carries in six and a half bushels of salt, liberated from rocks on its passage, in each ninety cubic yards. Therefore that dreadfully salt, bitter reservoir has nearly reached the point of saturation.
When no more salt can be dissolved, then it will accumulate on the irregular bottom till it reaches quite near the present surface. Its future will have quite as much interest for coming ages as its past history.

Porous Filters.-In the course of an examination of filters, at the instance of the British Medical Journal, Professor Wanklyn has had proof that filtration through beds of porous materials includes very powerful chemical action, albuminoid matter being instantly resolved into ammonia
and other products by the action of the filter, which, indeed, and other products by the action of the filter, which, indeed,
behaves in this respect like a boiling solution of permanganate of potash. A good filter is a sanitary engine of great power.
The best and most durable insulation for electric wires is to tin them and cover with pure rubber.

UMBRELLA FRAMES.

The following are the processes which are required to The following are the processes which are required to
nake the frame of an umbrella, as seen in the manufactory make the frame of an umbrella, as seen
of Messrs. Cox, Brothers, and Holland.
Nearly one hundred pairs of hands have their part in the preparation of the frame alone of this little article.
The covers were, till within sixty yeals, made of oiled silk, the frames of whalebone or bamboo cane. Steel was introduced about 20 years ago, the change being induced partly by the increasing cost of the whalebone, and partly through the great improvements accomplished in the manufacture of elastic steel.
No less than 2,500,000 sets are issued in one year from the manufactory of this firm alone.
The frame or furniture-as it is technically called-of an umbrella or parasol is composed of six parts. 1. Tie rib, the ends of which are named respectively the tip and the notch ends. 2. The stretcher, having the fork end and the notch ends. 2. The stretcher, having the fork end and the
last end. 3. The runner, which glides up or down the stick last end. 3. The runner, which glides up or down the stick
on opening or shutting the umbrella. 4. The notch or wheel, forming the apex or bottom of the umbrella, which is riveted to the stick. 5. The open cap, which fits outside the cover over the notch, and forms a finish. 6. The ferule, which is placed at the bottom of the stick and protects it when used in walking. In certain cases, there is also a seventh part-the stick-which is made of taper metal tube. The wire of which the furniture is made is received into the manufactory in coiled bundles, and cut into the required lengths by a machine. Four or five gross of these lengths, now called "ribs," tightly confined within three or four iron
rings, are placed in a furnace, and brought to a red heat: when the heat has uniformly penetrated the whole bundle -care being specially taken not to oxidize the metal-it is laid on an iron plate having a number of grooves corresponding to the number of rings clasping the ribs, the rings being fixed at such intervals as to fit into the grooves, A heavy
iron bar is now laid upon the ribs and kept moving backwards and forwards, causing the ribs to rotate on their own own axes, thus not only straightening them by the friction, but softening the steel and preparing it for subsequent manpulations. The ribs are now taken to "the heading shop," where, by means of presses and press tools, the heads or tips '' of the ribs are made. The indentation to receive the hole for sewing on the cover is next impressed. These and great number of other operations are carried on in separ being found essential for commercial success. In the pierc ing shop, the hole is punched and the rib is completed at the "tip" end. In another shop, the eye is punched at the tip end, the eye is put on a steel peg, and the notch end of the ib is formed in a pair of dies similar to those in which a eedle eye is made. The ragged or superfluous portion is now removed and the end of the rib made smooth and round.
The hole is then pierced to receive a threading wire, which forms the axis for opening and shutting the umbrella. The ribs now receive an impression in the middle, and they are sent to be hardened and tempered by the usual process of heating in a muffle and immersion, while hot, in a bath of oil. They are then again confined within rings and revolved gradually heated till the steel attains a blue color, after which every rib is tested singly, to see that the proper degree of elasticity has been obtained. This is an important onsideration, and requires a very nice proportion of temoo high, the steel becomes too soft, while on the other hand, if not carried far enough, the articles become brittle and useless. The rib is now ready to receive the stretcher joint, which is made as follows: Brass wire is drawn, with groove down the center, and is cut into lengths suitable for joints; the rib is placed within the groove of one of these bits of wire, the horns of the bit are elongated to enable it, in an after operation, to surround the rib at the place where it has been marked to receive it, otherwise the joint would slip on the smooth surface of the rib; the rib, with the joint, is now placed between a pair of engraved dies in a press, and the pressure applied by this nd only recently perfected. This joint is drilled, and the rib is complete and ready for japanning.
The stretcher is made as follows: The wire in coils is placed upon a reel, drawn through rollers to straighten it and cut into suitable lengths. One end of the stretcher is plit by means of press tools, about half an inch down it. In another pair of tools this split is opened by a wedge
shaped punch, which widens into the shape of the stretcher fork, descending into the die in a uniform shape. The fork in another pair of tools is then flattened on each side at one operation, and pierced so as to be attached to the stretcher joint on the rib. The hole is now put upon a peg, and the other end of the stretcher is formed in the same way as de cribed above in the case of the top end of the ribs.
The ribs and stretchers are now japanned, when they are aken to the riveting shop, where a large number of girls ar mployed in riveting them together.
In addition to the above kind of ribs and stretchers, there He several others, known as the Paragon, the Premier, and round until whey nearly become tubes makes are considered to be both lighter and stronger, and as the extra cost is but a few pence per frame, this construction is adopted for all the best silk umbrellas. These better qualities have also enamelled tips to the ribs, which are fixed by fusion, with the aid of a blow pipe.

Runners are made of brass and iron. They are constructd as follows: The "blank" for the barrel is cut by circular ed as follows: The "blank" for the barrel is cut by circular
shears into oblong pieces, knocked round on a mandril, and shears into oblong pieces, knocked round on a mandril, and
soldered at the joint. A ring of metal is cast and rimered to the size of the barrel, where it is now soldered at one end, and a ring of brass at the other. They are next turned on a lathe, and a groove turned in at the end which is afterwards to be notched to receive what is called "the threading wire," which is the axis on which the stretcher works. They are next taken to a notching machine, the exclusive invention of this firm, which, as a most important advance upon the methods hitherto in existence, demands special notice. Until this machine was invented, all notches were cut by hand, and, however skillful the workman, they were necessarily, in some measure, cut at irregular intervals. This was not of vast importance while the "gores" of the covers were cut out by hand, but after the introduction of sewing machines and machines for cutting out the gores also, this irregularity became a serious difficulty, which this firm has now, by an ingenious arrangement of levers, happily surmounted, and the notches are cut with mathematical accur acy that confers upon their frames a well merited distinction.
The runners are now smoothed at the bottom, minutely examined by the foreman and sent to be japanned or silvered as required. The top notah or wheel is made from a brass casting, turned and notched by the machine just described. The open cap is cut from a round "blank," when it is raised by dies in a stamp, three or four times successively, being stamped deeper at every operation. The bottom is punched out, taken to a lathe and turned, and afterwards subjected to a bronzing process, peculiar to this house, or, if for common caps, japanned. The ferules are also cut out of round blanks by machinery, and repeatedly drawn in presses until the required depth is obtained, veing annealed and cleaned between each drawing. The bottom of each ferule is then cut out, and an iron blank inserted and soldered into its place. As this iron bottom is twice as thick as a penny, it is capable of enduring a vast amount of wear when the umbrella is used, as it is almost universally the case, as a walking stick.
The whole of the ordinary umbrella furniture is sent away in parts, to be fitted, covered, and finished by other manufacturers. There is another class of frames, furnished with tubular metal sticks, which are fitted as complete frames before they leave the manufactory; these are particularly adapted to hot climates, which are found serious ly to warp the wooden sticks.

The Hartford steam Hoiler Inspection and Insurance Company.

The Hartford Steam Boiler Inspection and Insurance Com pany makes the following report of its inspections in the month of February, 1872:
During the month 745 visits were made, and 1,534 boilers examined- 1,443 externally, and 370 internally-while 194 were tested by hydraulic pressure. The number of defects in all discovered was 794 , of which 198 were regarded as dangerous. The defects, in detail, were as follows:
Furnaces out of shape, 34-4 dangerous; fractures, 79-39 dangerous ; burned plates, 53-29 dangerous; blistered plates, 96-12 dangerous; sediment and deposit, 111-9 dangerous incrustation and scale, 130-4 dangerous; external corrosion, $54-16$ dangerous ; internal corrosion, $20-6$ dangerous; inter hal grooving, 23-3 dangerous; water gages defective, 29-12 dangerous; blow out defective, $13-4$ dangerous; safety valves verloaded or out of order, 24-12 dangerous; pressure gages efective,104-19 dangerous, varying from -6 to +12 ; boilers without gages, 3-2 dangerous ; deficiency of water, $9-9$ dan erous; braces and stays loose and broken, 24-15 dangerous ; boilers condemned, 7. There are many cases of glaring neglect eported, showing not only a great want of attention on the part of those having charge of boilers, but on the part of owners and users as well. If some responsible person would give a few moments' attention each day to the boilers and boiler connections, many disasters would no doubt be prevented. Among the instances of carelessness met with, are he following: A safety valve leaking badly, instead of being repaired, was found with a plank laid across the lever loaded down with bricks- 300 pounds pressure would proba bly not have been sufficient to raise this valve. In anothe case, where the boiler was in a building with a flat roof, th afety valve lever was found wedged under one of the raft ers; this was regarded as an economical arrangement, "be-
cause it saved steam!" We might fill a page with similar cause it saved steam!" We might fill a page with similar
instances, but enough has been said to show that destructive instances, but enough has been said to show that destruct

We are informed that the French and Austrian govern ments have succeeded in the propagation and cultivation of sponge, and the experiment is likely to be made elsewhere, as the result is commercially valuable.

An obdurate screw may be drawn by applying a piece of red hot iron to the head for a minute or two, and immediate ly using the screw driver.

If you are caught in a drenching rain, or fall into the water, by all means keep in motion sufficiently vigorous to prevent the slightest chilly sensation until you reach the house; then change your clothing with great rapidity before a blazing fire, and drink instantly a pint of some hot liquid

Books introduce us into the best society; they bring usin to the presence of the greatest minds that ever lived.

PROPOSED CITY RAILROAD.
Among the recent projects for rapid transit in New York is that of Mr. R. H. Gilbert, for an elevatel railway, on the plan so tastefully represented in the accompanying engraving The plan is to place along the street, at distances of from fifty to one hundred feet, compound Gothic iron arches, which shall span the street from curb to curb, at such an elevation as shall not interfere with the ordinary uses of the street. On these arches, a double line of atmospheric tubes, eight or nine feet in diameter, are to be secured. The arches are strongly connected with each other by means of a vertical, latticed or trussed girder running between the tubular ways, which are to be firmly joined to it on either side by ties of suitable construction. Through the tubes, supported as described, cars, carrying passengers, are to be propelled by atmospheric powor. There is also provision in the same set of arches for two or more sets of tubes for the transportation of mails and packages. The.stations will be situated at distances of about one mile apart along the line, and will be provided with pneumatic elevators to raise passengers to and from the place of transit with perfect safety, thus obviating the necessity of going up and down stairs for transit. The movement of the cars or trains along the line, as well as their arrival and departure from stations, is made known at all points by a telegraphic device which is automatically operated by the cars in passing.
A bill is now before the New York Legislature to author ize the construction of this work, which, it is alleged, can be

Abstract

economically and expeditiously executed. The bill has been favorably considered and reported by the Senate Committee, and meets with no opposition except on the part of the property owners and occupants of b-aildings on the streets which are intended to be occupied by the works. These people object to the erection of this ornamental structure or big bridge as they term it, in front of their doors, and claim that the presence of the tubes would be equivalent to the roofing over of the street. They will consent to nothing that cuts off heir light and air Everybody in New York wants rapid transit, but, strange to say, the moment that any body sets to work with a defin ite plan for its realization, they are vigorously opposed and the work prevented.

New Anemometer

A new form of anemometer has just been constructed in Europe, and seems likely to prove of material service to all who desire to notice and record the direction and velocity of the wind. The anemometer consists of an ordinary pair of Beckley fans and a set of revolving cups, fixed in any con-
venient situation, and connected by insulated wires with venient situation, and connected by insulated wires with a galvanic battery and with a recording apparatus. There is no limit to the length of the connecting wires, so that, for example, recording instruments at Lloyd's might be connected with fans or cups at any part of the coast. The recording in
strument itself consists of a clock, a wind dial, a reel of paper and an endless band carrying a carbon paste for printing

The dial indicates the direction of the wind, and the printing band prints this direction every half hour. The same band records every quarter of an hour of time and every com leted mile that the wind has traversed. The slip of pape issued by the machine is about an inch broad, and it re eives the time on its left hand margin, the direction of the wind on its right hand margin, and a dot for each mike on a central line, so arranged as to be comparable with the time record. The number of dots marked on the paper between 10 and 11, for example, indicate the velocity of the winc. during that period of time, and the dots become crowded a the velocity increases, and stand farther apart as it decreases. The battery is composed of zinc and carbon elements with dilute sulphuric acid, and will work for six months without attention. The reel of recording paper holds a supply for three months, and the clock can be made to run this length f time without windinc; so that the whole apparatu time withour whis, so that the whole apparatu ould be as near it wossible self acting. Ordinarily, how or, it would be desirable for the attendant in charge an eight day clock would be sufficient for the requirement of most observers. The great advantage of the instrument says the British Trado Journal, is in the character of its re cord, and in the fact that the electrical communication does away with the use of cranks and shafting, which are not only costly and heavy and far less delicate, but which also in the immediate neighborhood of the fans.

GILBERT'S PROPOSED CITY ELEVATED RAILWAY

MUNN \& CO., Editors and Proprietors.

published weerly a

no. 37 park row (park building) new york. o. d. munn.

VOL. XXVI., No. 16. [New Series.] Twenty-seventh Year
NEW YORK, SATURDAY, APRIL 13, 1872.

the great sewing machine job before congress

We recently alluded to the application now pending be fore Congress for the extension of the Wilson sewing ma chine patent which covers the feeding device, a feature which all sewing machines must have. The existence of this patent is a bar to the introduction of a variety of im proved machines, which will be brought out next year i the Wilson patent is not extended, for it expires in 1873. The owners of improvements are not allowed by the parties who control the Wilson patent to put their goods in the market.
The Sewing Machine Riag, consisting of the Wheeler \& Wilson Company, the Singer Compang, the Grover \& Baker Company, and the Howe Company have had the almost ex. clusive monopoly of the sewing machine business for the past quarter of a century. This is long enough in all conscience
Under the shadow of these patents, Wilson's patent being a chief one, they have wrung from our people many millions of dollars in profits, and to-day they charge American citizens sixty.five dollars for the same machines that they sell on the other side of the Atlantic for half the money. It would be a wicked thing for Congress to do to extend this monopoly. It has lasted long enough, and ought now to die a natural death.
In the memorial of W.L. Groot and others, we find the following interesting particulars:-
The corporations a bove named "are now selling machines in England, Ireland, Scotland, France, Belgium, Holland,Austria Russia, Prussia, Norway, Denmark, Sweden, Spain, and other countries of Europe, at one half the price they offer the same sewing machines to our own people, and cheaper than they can be produced by the poorly paid labor of Europe, where the manufacturer, who has no patents to dread and no 'combination'to interfere, realizes, even at the price of one half what we must pay, a profit of 100 per cent. This unjust discrimination carries its own strong logic why no further excrimination carries its own strong logic why no further ex-
tension shall be granted to enable a few to oppress thousands. number and price of sewing machines.
Not counting the great number of sewing machines made and sold since the origin of the business, the chief patent of which has expired and is now sought to be renewed by Congressional legislation, your memorialists annex the number made in 1870 only by the companies forming this 'combinanation,' the statement being made under oath:
Singer Manufacturing Company sold. Wheeler \& Wilson Manufacturing Company sold Gröver \& Baker Sewing Machine Company sold. The Howe Sewing Machine Company sold.
Total..
127,833
83,208
83,208
57,402
57,402
75,156 343,599
These were retailed at an average price of $\$ 65$ each, making in the aggregate $\$ 22,333,935$. The same number of sewing machines would have retailed in Europe at half the price charged here, and our people must pay for this number sold them $\$ 11,166,967.50$ more than the people of Europe are chärged. This great product is only of four companies, not counting many others, all of whom have paid a tribute to $\$ 50,000,000$, and all of it is clear gain, the small amounts $\$ 50,000,000$, and all of it is clear gain, the small amounts which were originally invested being too insignificant for
comparison at this day. This is easily apparent when the comparison at this day. This is easily apparent when the
incontrovertible fact is made known that the cost of each sewing machine sold at $\$ 65$ is less than $\$ 12$. If this patent is not extended, the price of all sewing machines now selling
at $\$ 65$ must be reduced to $\$ 32.50$, and there will be no differat $\$ 65$ must be reduced to $\$ 32.50$, and there will be no differ-
ence between our people and those in Europe, as there is an ence between our people and those in Europe, as there is an
abundance of capital anxious to produce better sewing maabundance of $\$ 3$ than are now sold at $\$ 65$, and to have liberal,
chines at legitimate reward for both labor and capital.
Your memorialists will be ready at any time to appear be fore Congress, both in person and by attorney, to give such additional proofs, and to propound such questions, to the applicants or their attorney, as it is impossible to present in the limits of this memorial.

SEWING MACHINES AND THEIR EFFECT UPON HEALTH.

It is one of the accompaniments of almost every change in human habits, brought about by advances in civilization, that the health of the public is influenced in some way. Often so that medical science is kept constantly on the alert to combat attacks from unexpected quarters. It has been charged against that most valuable of modern labor saving inventions, the sewing machine, that the act of impelling it by foot power, as almost universally practiced, has resulted in injury to female health. At first these charges were hardly more than surmises, but they were finally made direct and positive, with how much reason it is the object of this article to enquire. Fortunately for our purpose, we find in the report of the Massachusetts State Board of Health an extended discussion of the subject, from the pen of Arthur Nichols, M. D., which contains many facts and statistics drawn from various sources. Of these facts we shall freely avail ourselves, and shall thereby further the object of the publication of all such reports, the general enlightenment of the public.
In 1860, Dr. A. K. Gardner expressed, in the American Medical Times, his opinion that the exercise of propelling sewing ical Times, his opinion that the exercise of propelling sewing
machines with the feet, so far from being injurious, is really machines with the feet, so far from being injurious, is really
beneficial inasmuch as it gives exercise, which, though it af beneficial inasmuch as it gives exercise, which, though it af
fects only part of the body, is still better than no exercise at fects.
all.
Dr. Vernois stated, in 1862, in the Annales d'Hygiéne Pub lique, that, both in males and females, the motion produced cramps, partial paralysis, and, in females just begin ing to perate, a peculiar and injurious nervous excitement.
Dr. William Ord, in a report on the sanitary condition of ressmakers and needlewomen in London, 1863, states that while in general the exercise is beneficial and tends to improve the health of females, the cramped position sometimes causes pain in the chest and indigestion, and that delicate women are greatly exhausted by this particular work.
This testimony was followed by something far different in 1866, from M. Guibout, physician to the Hôpital Saint Ləuis, in Paris, who, in a paper read before the Société Médicale des Hopitaux, made such strong statements, in regard to the effect of sewing machines upon female health, that general apprehension resulted. Shortly after the reading of this paper, Dr. Feurnier attributed a case of paralysis of sensa tion in bottom of the foot, occurring in a girl admitted to the same hospital, to the use of the sewing machine; and the publication of this case increased the general alarm.
The opinions of Dr. Espagne, Professor at the Montpellier University in France, were published in 1869, in which he denies that any injuries result, from the use of the feet on sewing machines, other than general fatigue and muscula pain.
Next follow the published opinions of the celebrated Dr Decaisne, who has done so much toward enlightening the world upon the effects, of various trades, professions, and call ings, upon the liealth of those engaged in them. He examined and questioned a large number of women, searched hos pital records, and came to the conclusions which are thus summarized:
'The effects of this work upon the muscular system differ n no respect from those of any other kind of excessive labor involving the use of certain portions of the body to the exclu sion of others. The affections most commonly complained of re muscular pains, pain in the region of the kidneys, and cramps in the lower extremities; none of which, however are developed among those working three or four hours daily These pains, cramps, etc., are most commonly found among beginners, and usually diminish after one has become accus omed to the motion of the machine
The use of the sewing machine, when employed within moderate limits, without overworking, as is too often done is attended with no greater inconvenience to health than working with the needle, as was shown by the examination of 28 womea between the ages of 18 and 40 , employed from three to four hours daily."
We now come to the investigations of the Massachusetts State Board of Health. The Board circulated widely this printed question, "Have you observed any injury to health from the use of sewing machines moved by foot power? If so, please to send us all the information you may have on
the subject." To this question, 138 replies were received, rep esenting 120 different towns. Of this number, 80 report on or more instances of injury, and 58 return negative or doubtful answers.
We cannot give place to even a synopsis of the various re plies. They however establish the fact that, among operatives on sewing machines, certain complaints do exist in greate proportion than with other females, while they as plainly show that this results not from the exercise itself but from is excess. It is avowed by Dr. Nichols that these complaints fare not inseparable from the propulsion of the sewing machine by the feet, but that excessive work of this kind is Now likely to be followed by injury, if not by total prostration
might be far from excessive with another. The number of hours per day these operators work would not injure them were the machines driven by steam power. Anything more than from five to ten minutes labor, without rest, on the brake of the old style fire engine would be excessive for most men But because this labor is too much, it does not fillow that an engine cannot be made upon which a man might work six hours without over fatigue.
Operators at sewing machines are obliged to sit with back entirely unsupported and the knees elevated, thus keeping the spinal muscles constantly on the stretch, inducing the pain in the small of the back which is the most constan effect of work of this kind. This irritation is reflected by ympathy to other parts, and general debility finally results. We have never seen any satisfactory reason why the tables of sewing machines which are operated by foot power should not be brought up over the lap, so that the operator might it leaning slightly backward, with the spine thoroughly supported and the limbs extended. We proposed this once to a leading manufacturer, and were told that the notion that women were injured by working on sewing machines had no women were injured by working on sewing machines had no
foundation in fact. We argued that those who had investi foundation in fact. We argued that those who had investi gated the subject, though claiming that moderate exercise of
this sort wonld not injure, almost unanimously insisted that xcess would injure, and added that profitable employmen with such machines implied an extent of labor which these authorities claimed to be excessive on machines as at presen onstructed. We failed, however, to convince him that any mprovement in form was either desirable or practicable Notwithstanding this discouragement, we put our idea to the est of actual trial, and found that all who had been accus omed to work on the old machine, who tried the modified position above described, were unanimous in testifying to the superior comfort and ease secured by it. There may be im provements made in treadles, as suggested by Dr. Nichols but these do not reach the root of the evil. It is the position, not the mere labor of propelling the machines, that fatigues he operator.
Those who tried our plan of raising and bringing the table up nearer the person, and placing the treadles farther away ound no difficulty, in handling the work or in keeping it properly placed on the table, as the manufacturer above al luded to seemed to apprehend. The whole body was placed in an easy unconstrained position, and so supported as to rest rather than fatigue the back. We look to see some such change made in the construction of sewing machines. They are so valuable in many departments of industry that in vention will not rest till their full utility is developed. The value of an improvement that would enable an operator to work even one hour per day longer than at present, without injurious fatigue, can scarcely be over estimated.

DEATH OF'SAMUEL F. B. MORSE.

After a few days' illness which, with his great age, led to nticipation of a fatal result, Professor Morse died at ten minutes before eight o'clock in the evening of Tuesday, the $2 d$ of April. His long and varied life, and his universal re nown, will give interest to the following particulars:
He was born at Charlestown, Mass., on April 27, 1791. His arly education was acquired at Yale College, and his career would have been through life that of a painter, had not cir cumstances directod his attention to scientific pursuits. With a view of following the first named vocation, he left the Uni ed States in 1811, in company with Washington Allston, to study his art under the tuition of the well known Benjamin West. The Society of Arts, of London, recognized the mer its of the young artist, and awarded him a medal for a piece of sculpture, a "Dying Hercules." After four years' absence, he returned to his native country and subsequently established an association which, after many changes and against much opposition, became, in 1826, the National Acad my of Desiga. He again visited Eurnpe in 1829, and, while n that continent, was elected to the Professorship of Litera ure of the Arts of Design, in the city of New York University In the year 1826 or 1827, his attention had reverted to elec tro-magnetism and cognate subjects, of which his education at Yale had given him a sound practical knowledge; and he had an additional incentive to this pursuit in his close and intimate acquaintance with John Freeman Dana, then a co laborer with Morse in the lecture theater of the New York Athenæum. He returned from his second visit to Europe in 1832,and in conversation with his fellow passengers on the ship (the Sully) concerning the recent obtaining of an electric spark from a magnet, mentioned the idea of an electro-mag netic and chemical recording telegraph. The more zealous and indiscreet of his admirers claim for this conversation the credit due to an criginal idea, whereas the desirability the credit due to an criginal idea, whereas the desirability
and possibility of telegraphing by means of electricity had and possibility of telegraphing by means of electricity had
alrealy occupied the attention of Mr. Ronald, who had erectalrealy occupied the attention of Mr. Ronald, who had erect-
ed eight miles of insulated wire in his garden and dispatched ed eight miles of insulated wire in his garden and dispatched
signals through it, and who published an [account of his signals through it, and who published an [account of his
method in the year 1823. Other inventors in England and method in the year 1823. Other inventors in England and
France, in the latter part of the eighteenth century, had been working towards a similar object, and it is impossible and unnecessary to decide to whom the thought first came. Cer tain it is that it had been largely canvassed long before Professor Morse's labors commenced. But it is to Morse that the credit of long and enduring perseverance in introducing a practical and efficient telegraph is due; and he was enabled to do this great service to mankind by the invention of the electro-magnet by Joseph Henry, to whom all users of electro-magnetism, for whatever purpose, must confess them. elves indebted.
It is hardly necessary, just now, to describe the difficulties
in this city and considerable newspaper discussion have called public attention to all the facts, and full justice has been done to Morse, not only by his admiring and grateful countrymen, but by scientists and public men, by crowned heads and peoples in all parts of the world. He had to struggle for years against the prejudices and timidity of capitalists; he went to England in 1838 with his invention, only to find that an electric telegraph-in which the signals were conveyed by the pointing of a needle on a dial-had been already patented and introduced to the public by Messrs. Cooke and Wheatstone; but persistency at last met its reward, and success and fame, honors and wealth fell to his; share and he has left us after the enjoyment of a long life crowned with an unusual meed of all those things for which men ordinarily toil and worry away their existences.

He was liberal and charitable in all his transactions, and took a paternal interest in all that belongs to the great invention he gave to the world. Living alternately in New York city and at his country residence on the Hudson, near Poughkeepsie, N. Y,, his face was well known to all classes of his countrymen; and the latter part of his life was un clouded by trouble, and his end was peaceful.

SPIRITUALISM ANSWERED BY SCIENCE.

Mr. H. L. Hinton, 744 Broadway, N. Y., has issued the pamphlet entitled as above, by the celebrated London bar rister, Mr. Edward W. Cox, in which he gives expression to his views concerning spiritualism, or spirit manifestations, as deduced from the series of scientific experiments made last year in London, under the auspices of Dr. Crookes, Dr. Huggins, and others, Mr. Cox being one of the examining party. A description of some of these experiments, with drawings of the testing apparatus employed by Dr. Crookes will be found in our back numbers.
In the present work Mr. Cox describes the various forms of spirit manifestations that he has witnessed, from which it is evident that he has been a careful and extensive observer.
He has become fully satisfied that intelligent noises or rap. pings are actually produced, that chairs, tables, or other objects are undoubtedly moved, and that the proofs of the real ity of these demonstrations are just as absolute as are the proofs of any other fact in nature. The force by which these demonstrations are made, he calls psychic force. It may be indicative, he thinks, of the exis beyond the body. He rejects the idea that the manifesta tions are produced by the agency of disembodied spirits. They are purely and wholly the result of forces residing in the human organism, and neither our departed friends, angels, or devils have to do with them. The medium is never able to communicate anything that is not already known to some person present.

This psychic force, Mr. Cox thinks, operates by a vibratory or wave like action, is opposed to and capable of overcoming the attraction of gravitation. Tables and other objects that are moved are first filled, so to speak, with the psychic ema. nation, which renders them buoyant in the air, when they float, swing, and sway about as if supported by an invisible balloon;
One of the explanations of these phenomena, and upon which Mr. Cox lays much stress, is the unconscious cerebral action of the mind of the medium, which action is manifested through the psychic force. Now as this unconscious cerebra action can be induced and made to set men's bodies in mo tion, without their knowing it, it becomes a question whe ther Mr. Cox himself and his friends did not have thei cerebrums unconsciously excited so that they could hear
noises and see sights that in reality never took place; or so noises and see sights that in reality never took place; or so
that they could not see the person who pushed the piano, that they could not see the person who pu
lifted the table, or forced down the balance.
What Mr. Cox and Dr. Crookes now need, in order further to verify their published conclusions and observations, is a scientific apparatus so made as to indicate the true condition of their own cerebrums. An instrument, that shall be capable of indicating the unconscious excitement or action of the mind, would be of great value in pathology. In addition to its uses in unraveling these "spirit" mysteries, it would doubtless be of inestimable importance to physicians in the diagnosis and treatment of mental disorders ond diseases that react upon the brain.
There are various forms of unconscious cerebral action to which persons have been subject. To some individuals, vi sions and spectral personages have appeared when they have been wide a wake and in the full possession of their ordinary senses. Sir David Brewster mentions several examples of this kind of cerebral action.

The latest phases of these psychic demonstrations, as brought out in this country, to wit, the visible production of
the forms of departed friends, standing out clear and positive in the presence of the members of the psychic circle have never been witnessed by Mr. Cox; at least he makes no mention thereof; nor does he allude to the spirit flames and lights now produced here. Mr. Cox should come over and visit Mrs. Mary Andrews, at Moravia, N. Y., who will show him things in this line that will probably make his hair stand on end. One visitor has assured us that the sight of these things brought on a cold perspiration, and he felt a if the gates of the eternal world had been actually throw open. Until Mr. Cox $£ 0 e s$ to Moravia, it is evident that spiritualism will not be fully answered by science.

Repeated spectroscopic measurements made last year by Professors Zöllner and Yogel, in Germany, show that the velocity of rotation of the sun on its own axis is at the rat of six hundred and sixty miles an hour.

A TRADES UNION TIRADE

To appeal to the passions and prejudices of men rathe than their reason, to distort and misrepresent facts, state ments and motives, to misconstrue the slightest and most friendly criticism into an abusive attack, and to reply to it by real and undisguised scurrility and abuse has ever been the method of discussion and the characteristic manner of men who, through the false pretence of regard to the interests of the working classes, seek only the furtherance of thei own private interests and purposes. We are sorry to say
that in this spirit the editor of the Machinists' and Blacksmithls' Monthly Journal, an International Union organ, pub lished at Cleveland, Ohio, comments upon some remarks of ours relative to the action of trades' unions in regard to apprentices.
The immediate cause of offence, to our brother editor, is the lause in one of our recent editorials which follows :
"The refusal of mechanics' unions to reconsider their unasonable restriction, whereby their own sons are denied the privilege of learning the trades of their fathers, is one of the mysteries of the age. We have before alluded to this for we feel that the prosperity of the country, the interest of humanity, and the welfare of coming generations, all demand that the shutting out of boys from learning trades ought to cease, so that they may be trained up to become good work men, and able to learn an honorable mode of living.
Upon this we are charged by the editor with being very abusive, with departing from the truth, with being "opposed to trades unions, not from principle," with being destitute of virtue, with shamming interest in the welfare of the mechanic, with giving nothing tangible for their benefit, and with picturing a state of affairs that does not exist. We are sarcastically complimented for our learning and directly called feeble minded, both of which are equally flattering from such source.
Perhaps we shall again be called abusive when we say that such a tirade can avail nothing against the truth of the paragraph which has provoked this uncalled for attack. We might add that a contrast, between the tone of our offending paragraph and the charges based upon it, might lead candid minds to throw back the charges of abuse upon the accuser and inspire some doubt as to his respect for the truth and candor he professes to revere.

LIGHTNING RODS.

"We have a company in our town putting lightning rods on our houses. They use a copper rod, corrugated or fluted, and they fasten the rod to the shingles "with zinc, allowing the rod to rest on the shingles and against the sides of the houses. My idea of putting up rods is to insulate the rod by means of glass tubes. But when questioned on the subject, the company's agent produced a paragraph, from an essay by Sir David Brewster, in which that eminent philosopher is made to say that the old theory of insulation is exploded, and that the conducting rod should be placed as near as possible to the object to be protected, in Now I shingles of the building
Now, I a and many of our engineers and builders read your paper. We wish to know from you what we shall do with the rod that is not only not insulated from the house but put in as close contact withitas possible. A reply through your paper
will be read and acknowledged with gratitude by many of will be read and acknowledged with gratitude by
your readers in this place and surrounding country.
W. C. McDougal.'

Meridian, Miss., March, 1872.
Answer.-The method of attaching the rod which you de scribe is correct; it should not be insulated. The golden rule in regard to the erection of lightning rods is to place the lower end of the rod in communication with an extensive conducting surface underground; the electricity is thereby dissipated without injury to the building should the rod be truck
If the area of this conducting surface equals that of the roof of the building, the rods being of proper size, perfect protection may be expected, not otherwise.
You will invariably find, in the examples of rodded build ings that have been damaged by lightning, that the lower extremities of the rods were not arranged in accordance with the above rule. The general practice is simply to stick the extremity of the rod into the ground for a short distance and there leave it, no provision for underground conducting sur face being made. This is a very defective and unsafe practice.

A good way to provide the necessary conducting surface is connect the rod with an iron pipe, laid down specially for the purpose and extended several hundred feet under ground way from the building, burying the pipe for the whole dis trench charcoal or in moist earth. Another plan is to make trench leading from the building and firn or iron ore, the lower end of the rod being made to commu-
nicate with such conducting material. Leader pipes, metal roofs and chimneys should also be connected with this conducting material. In towns where there are water and gas mains, the lightning rods should connect with them, as the metals of such pipes present large conducting surfaces.
You will perceive from the foregoing that an essential part of the lightning rod is an extensive conducting surface under
ground. If your rod lacks this, it is of little value, your house ground. If your rod lacks this, it is of little value, your hous suffer damage.

Colonel C.W. Jenks has traced into the Blue Ridge severa Franklin, N. C.

Examples for the Ladies.

Mrs. T. M. Scullin, Troy, N. Y., has used her "dear friend," a Wheeler ilson Machine, sinue 1855 , in dress and cloak making. The last six month
he earned $\$ 332$, and the year before, $\$ 117$. Mrs. Mary Hacher, Muscatine, Iowa, has used her Wheeler \& Wilso achine since September, 1857 , and earned from $\$ 10$ to $\$ 22$ a week, makin in as good order as when she bought it
Mrs. C. D. Goodman, Cleveland, Ohio, has used her Wheeler \& Wilson ing or blunting it.

Watch No. 2755-bearing Trade Mark "Fayette Stratton, Marion, . J. "-manufactured by United States Watch Co. (Giles, Wales \& Co.), ha one second.-James B. Weaver, with A. S. Barnes \& Co., 111 and 113 Wil iam Street, New York.
Burnett's Kalliston will impart a clear, soft, and beautif ul hue to the skin.

NEW BOOKS AND PUBLICATIONS.

The Amateur Microscopist ; or, Views of the Microscopic World. A Handbook of Microscopic Manipulation and Microscopic Objects. By John Brocklesby, A.M., Professor Hartford, Conn. New York: William Wood \& Co.
This is a very convenient and useful little work, tull of practical instruction upon the uses of the microscope. It is profusely illustrated with
engravings which show the construction and various powers of the instrument, together with views of many remarkable objects that may be easily obtained and prepared for observation. A most interesting chapter is tha devoted to crystallizations, in which the author presents us with many new drawings, and gives directions for preparing the slides so that the process of crystal. iormations may be readily witnessed under the microscope. This
part of the work will be especially welcomed by amateurs. The examinapart of the work will be especially welcomed by amateurs. The examina-
tion of crystals is always attended with peculiar interest. The beholder revels for the time being amid sights of gorgeous beauty, and gazes upon gems seemingly most rare, exquisite, and pre
addition to our stock of scientific literature.
Barry's Fruit Garden. New Edition. New York: Orange Judd \& Co., 2054 Broadway.
This volume of 490 pages, as its title implies, is devoted to the culture of fruits of every variety in orchards and gardens. It also contains hints
on the kind of soils best adapted for the different varieties, best modes of propagation pruning training for the afrere vaneties, best modes of the various fruit trees, the kinds of insects that prey upon them, and the remedies for ridding trees of the evil. The book is illustrated with numer ous engravings of green houses, propagating beds, grafting, pruning, and garden implements, and the mode of training trees into beautiful and gro-
tesque shapes. It also contains directions for the management of strawberry tesque shapes. It also contains directions for the management of strawberry
plants and other like fruits, with a chapter on nutting trees, etc. It is a plants and other like fruits, with a chapter on nuting trees,
work important to every agriculturist, and will find ready sale.
Pocket Book of Mechanics and Engineering. By John
W. Nystrom, C. E. Philadelphia and New York: J. B.
Lippincott \& Co. E. New edition, revised and enlarged.
This book is already extensively known, this being the eleventh edition.
In the present revision and enlargement, much valuable matter has been added. For example: Logarithms of numbers and of trigonometrical functionsf orevery minute of a degree, or for every four seconds of time, are
given; also the eight natural trigonometrical functions for angles, expressed either in degrees or time, εs may be required. In regard to dynamical terms, the author proposes to abolish a great number (f them, including "moment of inertia," which is a well established term in the philosophy o dynamics. A list is also given of proper dynamical terms, limited to force, motion, tima, power, space, work, static and dynamic momentums, which
the author maintains are all the terms necessary in dynamics. Example are given fur the dynamics of fly wheels, in which the term " moment of iner tia" ought to perform an important function, but does not appear in th formulas and calcuiations. However right or wrong the author might be in
the philosophy of dynamics, his reasoning is well worthy of attention the philosophy of dynamics, his reasoning is well worthy of attention Barometrical tables, for the measurement of hights, are ne w and very com-
plete, in English and French measurers which have been arranged by the author from actual practice among the Andes; also, original formulas f the flow of water in bends of pipes; the evaporation on the surface of water under the atmosphere; the harmonical and geometrical sciles of vibration
in music or acoustics; illustrations of the in music or acoustics; illustrations of the expansion of bodies by heat, a and near the temperature of fusion. The article on air and heat, and th examples. The properties of inflamed gunpowder and its dynamics in heavy crdnance are given; al:o the properties of water and steam, with
formulas and tables; also an original rule for determiaing a standard formulas and tables; also an original rule for determiaing a standar nominal horse power of steam boilers. On the parabolic construction of
ships, the author gives a formula by which any form of a ship can be ships, the author gives a formula by which any form of a ship can b
recorded, and by which any ship builder familiar with the parabolic metho can construct a ship of a defnite form. The formulas and tables tor the parabolic method are very simple and complete.
New and Complete Clock and Watchmakisr's Manual Comprising Descriptions of the Various Gearings
Escapements, and Compensations now in Use in French Escapements, and Compensations now in Use in French
Swiss, and English Clocks and Watches, Patents, Tools Swiss, and English Clocks and Watches, Patents, Cools
etc., with Directions for Cleaning and Repairing. Wit etc., with Directions for Cleaning and Repairing. With in America. By Mary L. Booth, Translator of the Marble Worker's Manual, etc. New York: John Wiley \& Son Publishers, 2 Clinton Hall, Astor Place.
This will, we should opine, be a valuable book for the watchmaker's and
weler s craft, although there is not much in it regarcing America mprovements in watchmaking. The brief sketch of the history of watch making in this countrs is not of much importance. There is much in the inding are not of the highest order, and we suppose that the publishe sought rather to place the work before the public in cheap form than to mit its sale by a more expensive style of execution.

Inventions Patented in England by American

[Compiled from the Conmissioners of Patents’ Journal. From March 8 to March 14, 1872, inclusive.
attery Gun -W. A. Mills, Salisbury Conn.
Bilge Water indicator.--A. Harris, New York city Boot Heel.--F. Richardson, F. Hacker, Providence, R. I. Cotton Cleaning Machine.-N. B. Hail, Providence, R. I
Dial Platt.-J. C. Dunne. E. C. Lewis, L. Atwood, b. w. Muss, B. M. Baily, C. E. Kilby D. B. Cbannell, Butland Varshall, W. B Electric Torch. - W. w. Batchelder, New York city. Governor.-J. B. Duff, Patchoque, N. Y.
Heald, etc.-D. C. Brown, Lowell, Mas
Leather Making Machinery.-E. Fitzhenty, Somerville, Mass.
Prevention of Railway acidents. -S. Wing Sparrow, Portland, Me.
Propelling Vessels, etc.-A. Mot, G. E. Weaver, Providence, R. I.
Roll for Spinning Machine.-W. A. Caswell, Providence, R. I.
Rolling Machine.-A. Johnson, New York city.
Rotary Engine, etc.-C. Avery, Tunkhannock, Pa
Trimming Boot Soles, ETc :-S. H. Hodges, Boston, Mass.

The Charge for Insertion under this head is One Dollar a Line. If the Notices
exceed Four Lines, One Dollar and a Half per Line will be charged.
Dickinson's Patent Shaped Diamond Carbon Points and Adjustable Holder for dressing emery wheels, grindstones, etc. Se
American, July 24 and Nov. 20,1869 . 61 Nassau st., New York.
The paper that meets the eye of manufacturers throughout Over 800 different style Pumps for Tanners, Paper Makers, Fire Purposes,etc. Send for Catalogue. Rumsey \& Co., Seneca Falls, N. Y. Portable Mulay Saw Mill, that may be run profitably by the power of a Thrashing Engine. Manufactured by Chandler \& Taylor Indianapolis, Ind. Send for circular.
A. N. Fox \& Co., Buffalo, N. Y., are operating Vacuum on Sugar Pan, of $261 / 2$ to 28 inches mercury. Pro
denscr-no air pump. See advertisement.
Croquet Wickets, made and pointed by machinery, of number four Black, Galvanized, or Tinned Wire, supplied to the trade by Laugh-
land \& Co.,No. 212 Franklin Street, New York.
For Diamond Turning Tools for Trueing Emery Wheels and Grindstones, address Sullivan Machine Co., Claremont, N. Hamp
Grindstones for File Cutters. Worthington \& Sons, North Amherst, Ohio.
Mill Wrights' Grindstones, for picks, J.E.Mitchell, Phila.,Pa. Ship Carpenters' Grindstones,for adzes,J.E.Mitchell,Phila.,Pa Billiard Cushions-Manufacturers of Billiard Tables, use Murphy's Patent Cushions. The finest made. Sind for sample set. Gutta
Percla and Rubber Manufacturing Company, $9 \& 11$ Park Place,New York. H.R.Russell,Woodbury,N.J., wants Catalogue of School Desks. H. E. Shelley, Austin, Texas, wishes price and description of besthand Brick Presses.
We will Remove and Prevent Scale in any Steam Boiler or make no charge. Geo. W. Lord, 232 Arch Street, Philadelphia, Pa.
For Sale-A Steam Boiler, 44 inches by 13 feet, with 43 three inch Flues-about 30 Horse Power. Not long used. Address A. \& E. H.
Painters, attention-New Pat. Quick, Clean, Easy, and Cheap Way of Graining, first class Imitations of Oak, Walnut,
Send Stanp for Circular. J. J. Callow, Cleveland, Ohio.
Patent Self-acting Horse Holder for Sale-State Rights. Very simple. Can be attached to all kinds of vehicles, will give them a
vast preference. A great want never before supplied for saving life, propvast preference. A great want never before supplied for saving life, p
ervy, \&c. Address Abm. Quinn, 280 Marcy A venue, Brooklyn, L. I. Astronomical calculations for almanacs a specialty. Address Richard H. Buel, 7 Warren Street, New York.
Right, for Sale, of a valuable improvement in Sad Irons. Address, H. W. Seaman, Millport, N. Y
Williamson's Road Steamer and Steam Plow, with Rubber Tires. Address D. D. Williamson, 32 Broadway, N. Y., or Box 1809. Something New. Shaping Machine Attachment for Lathes. Wm. E. Cass, $61 \& 63$ IIamilton Street, Newark, N. J.
Improved Foot Lathes, Hand Planers, etc. Many a reader of this paper has one of them. Selling in all parts of the count
Europe, etc. Catalogue free. N. H. Baldwin, Laconia, N. H.
Drawings and tracings made of Machinery, Models, etc. C. Delafield, C. E., 26 Broad Street, New York.

The Baxter Steam Engine is safe,and pays no extra Insurance. For the best and cheapest Water Wheel Regulator "in all creation," address Sullivan Machine Co., Claremont, N. H.
The most economical Engine,from 2 to 10 H.P., is the Baxter Our Home Physician. By Dr. Beard and other eminent Physicians. Is the latest and best Family Guide. 1067 pages. \$J. E. B.
Treat, Pub., 805 Broadway, New York. Agents wanted. If you want to know all about the Baxter Engine, address Wm. D. Russell, oflice of the Baxter Steam Engine Co., 18 Park Place,N.y.
If you want a perfect motor, buy the Baxter Steam Engine. Shive's Patent Watchman's Clock and Time Detector-the Save your Boilers and Save Fuel-Use Thomas's Scale Dissolver, pr. 5 c. per lb., in bbls. and $1 / 2 \mathrm{bbls}$. N. Spencer Thomas, Elmira,N. Y. Enameled and Tinned Hollow-Ware and job work of all kindas. Warranted to give satisfaction, by A. G. Patton, Troy, N.Y.
Best and Cheapest—The Jones Scale W orks,Binghamton,N.Y. Mining, Wrecking, Pumping, Drainage, or Irrigating MachinFor Solid Wrought-iron Beams, etc., see advertisement. Address Union Iron Mills, Pittsburgh, Pa., for lithograph, etc.
Belting as is Belting-Best Philadelphia Oak Tanned. C. W. Arny, 301 and 303 Cherry Street, Philadelphia, Pa.
Boynton's Lightning Saws. The genuine $\$ 500$ challenge. Will cut five times as fast as an ax. A 6 foot cross cut and buck saw, $\$ 6$. E. M. Boynton, 80 Beekman Street, New York, Sole Proprietor.

Over 1,000 Tanners, Paper-makers, Contractors, \&c., use the Pumps of Heald, Sisco \& Co. See advertisement.
Opium Eaters-If you wish to be cured of the habit, address T. E. Clarke, M. D., Mount Vernon, Ohio,

Boiler and Pipe Covering manufactured by the Chalmers Spence Non-Conductor Co. In use in the principal mills and factories.
Claims-Economy, Safety, and Durability. Offices aud Manufactories, foot E. 9 th street, New York, and 1202 N. 2 d street, St. Louis, Mo.
L. \& J. W. Feuchtwanger, 55 Cedar St., New York, Manufacturers or Silicates, Soda and Potash, Soluble Glass, Importers of Chemi-
cals and Drugs for Manufacturers' use.
Brown'sCoalyard Quarry \& Contr
Brown'sCoalyard Quarry \& Contractorg' Apparatus fer hoisting and conveying materianhyiron cable. W.D.Andrews \& Bro,414 Water st.,N.S Bliss, 4 to 8 Water st., opposite Fuiton Yerry, Brookijn, N. צ. In the Wakefield Earth Closet are combined Health, Cleanliness and Comfort. Send to 36 Dey St., New York, for desuriptive pamphlet. ery, mechanics, or manutacturers, be a demand for new Machinery, mechanics, or manutacturers' supplies, see Manufacturing Ne
United States in Boston Commercial Bulletin. Terms 84.00 a year.

Presses,Dies \& all can tools. Ferracute Mch Wks,Bridgeton,N.J Seeds and Fertilizers. R. H. Allen \& Co., New York. Vertical Engines-Simple, Durable, Compact. Excel in economy of fuel and repair. All sizes made by the Greenleaf Machine Works
Indianapelis, Ind. Send for cuts and price list. For 2 \& 4 Horse Engines, address Twiss Bros.,New Haven, Ct Peck's Patent Drop Press. Milo Peck \& Co., New Haven, Ct. Hydraulic Jacks and Presses, New or Second Hand, Bought and sold, send for circular to E. Lyon, 470 Grand Street, New York.
All kinds of Presses and Dies. Bliss \& Williams, successors All kinds of Presses and Dies. Bliss \& Williams, successors
to Mays \& Bliss, 118 to 122 Plymouth Sti., Brooklyn. Send for Catalogue. aet your steam boilers and pipes covered with the best nonconductor in the world. Call for Circular. Asbestos Felting Company,
45 Jay street, New York City.
For Steam Fire Engines, address R. J. Gould, Newark, N. J.

Modeasqquarige

L We present herevith a series of inquiries embracing a varitety of toptes or
areater or less general interest. The questions are simple, it it true, but wo reater or less general interest. The questions are simple
prefer to elicit practical answers from our readers.]
1.-Coloring Castor Oil.-How can I impart a yellow 2.-Solvent for Anilin Green.-Can any one inform me a volathe non-acid solvent for anilin green?-A. G., Jr.
3.-Seasoning Hickory.-Can any one inform us, through the columns of your paper, the best way to season second growth hickory
or stone cutters' mallets, so that they will not check?-G. W. B. \& Co.
4.-Kiln for Drying Corn.-I am in pursuit of the best method of kiln drying corn, but cannot find anything that suits me. Can
your readers make some suggestions on this point?-J. M. P.
5.-Dyeing.-How are anilin colors used in dyeing, and what are the proper recipes for preparation? How can I color fabrics with
chrome green and yellow, and with Prussian blue; and what is used as a set" or mordant for each?-S. W. o.
6.-Cement for Varnished Work.-Can you inform me how to make a glue or cement to fasten wood to painted or varnished work,
that it will adhere as well as on unpainted work?-PAINTER.
7.-Strength of Wooden Vat.-Can any one inform me what pressure a wooden vat, 16 feet deep and 10 feet wtde, of staves five
inches thick, hooped with $9 / 4$ iron, 19 inches apart, will bear, and what should be the limit of pressure of steam therein? The vat is used in preparing
raw.-I. A. S.
8.-Timber for Water Pipes.-What kind of timber will make the best and most durable piping for conveving water under
9 -Nickel Plating Lead Pipe.-Can any one inform me what, if any, are the advantages of nickel plating the supply or induction ipes of pumps? Will such plating prevent the deleterious effects which
= 10.-Expansion of Mercury by Heat.-Will some one of your readers inform me how much per cent mercury will expand when
heated from 0° to 100° Fahr.? Which metal comes nearest to mercury in its degree of expansion?-S.
11.-Staining Poplar a Walnut Color.-I would like to know how to stain poplar or other light colored woods a walnut color, so that I can rub it down smooth after staining. I can stain a very nice
walnut with permanganate of potash, but it does not go deep enough in the wood, and any attempt to rub smooth rubs off the stain.-J. R. H.
12.-Nickel in Solution.-Nickel, held in solution so that it can be applied with a brush, is much needed. It must be chemically pre-
pared with such ingredients as not to discolor polished steel, and should evaporate at a low temperature of heat, leaving the articles plated with 1 iekel. The discoverer of such an article would find an immense sale for it, and would confer a lasting benefit on manufacturers of, dealers in and users
of polished tools.-J. E. E.
13.-Pitch of Screw Propellers.-Can any of your -eaders give a simple method of computing the correct pitch of screw pro-
ptllers from the dimensions of the wheel?-G. R.

gutwers id Cftretpundewts.

SPECOLL NOTL.-This Coiumn is designead for the general interest and in. struction of our readers, not for gratuitous replies to questions of a pur elely
business or personal nature. We will publish such inquivies hower business or personal nature. We woill publish such inquiries, hovever,
when paid for as advertzements at $1 \cdot$ av a line, under the head of \cdot Businees when paizfor
and Personal.

Largest Engine in the World.-W. N. G. is informed that we used the figures given by our informant regarding this engine.
1t was probably the crank that weighed one tun, and not the crank pin. A. B. S., of La., sends a black mineral specimen and says Will you kindly let me know the cost of having the enclosed specimen of
plumbago analyzed? 1 would also like to be informed of the number of plumbago analyzed? 1 would also like to be informed of the number or
graphite mines now worked or known to exist in North America, the graphite mines now worked or known to exist in North America, the
value of said mines, etc.- Answer: Your specimen is not "plumbago,"
butis but is simply a soft bituminous shale. If you will compare the traces on
papermade by it and by a good lead pencil, you will see the difference. paper made by it and by a good lead pencil, you will see the difference.
The best graphite (plumbaso) mines in the United States are at Stur-
bridge, Mass., Ticonderoga, N. Y., Brazadon, Vt., and Wake, N. C. FAS'T Colors.-Query 8, March 16.-If the material to be dyed black is woolen, be sure, in the frst place, to have it thoroughly
free from grease, and clean. Boil in your logwood (half weight of matefree from grease, and clean. Boil in your logwood (half weight of mate-
rial) liquor for an hour, and aadd the copperas, in solution, gradually, and of tin in solution will give abillia of the Now the nittle of drain, and expose to the action of the air for an hour or two, after which give a thorough wa
E. H. H., of Mass.
Test for Lead in Water.-Query 24, March 9.-To F. C. The best test is sulphuretted hydrogen. Precautions to be observed:
Evaporate in a porcelain vessel or a porcelain lined preserving kettle. Evaporate in a porcelain vessel or a porcelain lined preserving kettle.
Lead is usually present in water, as carbonate or some other insoluble compound, hence most or all of it remains on the filter and should be tested for there. The sulphuretted hyarogen may be prepared from
black sulphuret of iron and either oil of vitriol or muriatic acid, no hea being required. The gas should be washed by passing through water. F. C. may prepare the gas quite as well, if not better, by heating together
a little flowers of sulphur and some parafili.-E. J. H., of a little flowers of sulphur and some parafin.- -E. J. H., of -
Melting Asphaltum.-No. 1, March 23.-To H. E. W.-
This can easily be done in a pot over the fire.-E. H. H., of Mass.

Tempering Trap and other Springs.-W. R. H. should take good cast steel, work at a low heat, and forge evenly; temper in salt
water, and then heat gradually and evenly until it will burn tallow when take good cast steel, work at a how heat, and forge evenly; temper in salt
water, and then heat gradually and evenly until it will burn tallow when
some is rubbed on." Continue the heating till the blue flame ceases to some is rubbed on. Continue the heating till the blue flame ceases to
appear and the flame is white. This is, I believe, the best mode for trap appear and the flame is white. This is, I believe, the best mode for trap
or other large springs; who knows of one better adapted for small or other large springs; w
springs?-W. H. R., of Pa.
Painting Bath Tub.-If C. A. H. will have his bath tub painted with dead Hat colors, and then varnish it , it will not scale.-W
Test for Iron and Steel.-Tell J. H. that if he let fall a drop of nitric acid on steel, it will cause a black spot upon it, but if upon
wrought iron, it will not have this effect. He will find this a simple and easy method of distinguishing the two.-H. S., of P. I.
Demagnetizing Steel.-Let J. B. W., page 200, scour his tools with fine emery, and he will remove the magnetism from them, as
it only affects the surface of iron and steel,-C.
Frosting Glass.-G. P. may make a saturated solution of Epsom salts, and cover his glass with it by means of a piece of rac. In
crystallizing, the salt will present a pretity appearance.-E. H. H., of crystallizing, the salt will present a pretiy appearance.-E. H. H., of
Mass. and add a little gum elemi to give increased toughness. To blacken the and add a little gum elemi to give increased toughness. To blacke
figures, mix a little lampblack with the above.-E. H. H., of Mass.
Preparing Skeleton.-G. L. F., after cutting off as much water till the remainder easily separates. The French still further pre pare their skeletons, by bleaching for a short time in a weak solution of chloride of lime. This is no disadvantage whatever.-E. H. H., of Mass Disinfecting Well.-The most feasible plan for cleansing the well would, I think, be putting in an abundance of chloride of lime.
The quantity I can't suggest, not knowing the depth of water. Mix the powder to a smooth cream with water and pour in. Give the sides thorough washing over, and allow to remain some days in order to effec tually destroy the putrid matter; constant agitation of the water wil again allow the water to accumulate and again pump out. After a again allow the water to accumulate and again pump out. After
while, I think the well will be found perfectly clean and pure. I would like to know of the success of the plan.-E. H. H., of Mass.
Shellac Varnish with Linseed Oil.-J. C. may dissolve the lac in either a strong solution of ammonia or a saturated solution of
borax, and then add the oil and thoroughly agitate, to form an emulsion. borax, and then add the oil and thoroughly agitate, to form an emulsion. The ammonia will be found the best, as in
the coat of lac and oil.-E. H. H., of Mass.
Cleansing Soapy Felts.-W. H. P. will probably find that, after the soap is washed off as thoroughly as may be, the addition of stale urine or dilute ammonia will remove the remainder. These al-
kalies will be better than either caustic soda or potash, as less likely to kalies will be better than either caustic soda or p
affect the color of the material.-E. H. H., of Mass.
W. A. McD., of Pa.-The black "hairs" attached to the coke are pure carbon. If these is any appreciable difference in quality
between the hairy coke and the hairless cose, it is in favor of the former between the hairy coke and the hairless coke, it is in favor of the forme
The white hairy substance that you send, resembling cotton wool, which you say is formed by passing a jet of steam through the slag that issues from the bottom of the furnace stacks in which the Fayette county coke
has been used, is only the slica of the slag, blown into threads by the has been used, is only the silica of the slag, blown into threads by the
steam jet. It rsadily melts and is not like asbestos as you suppose.
A. H. M. \& Co., Ala.-The mineral you send is a soft bituminous shale without any graphite. It may be (and is) used to adulter.
ate graphite for stove polish and the like; but it can never take the place ate graphite for stove polish and the like; but it can never take the place
of true graphite in the manufacture of pencils and in the electrotype art Water in Aquaria.-I have had an aquarium for fifteen months without changing the water, and C. D. can have similar suc cess by taking some porous stone, broken into s nall pieces, and cov-
ering the bottom of the aquarium to a depth of two inches. In this place some myrtle, water lilies, or other plants that will thrive under water Do not put in too many plants, and wash such as you use free from al dirt. Fill the aquarium with water, put in your fishes, place the vesse out of the sunshine, and let Nature do the rest. Study how to proportion
the plants to the fish, as the plants yield oxygen to the fish and the fish the plants to the fish, as the pla
carbon to the plants.-S. B. R.
Dividing Circles.-Your correspondent R. C. W., query 19 , Feb. 17, wishes a method of dividing circles. The best method is by cal-
culating as follows: Let n equal the number of parts into which the circle is to be divided, d equal the diameter, and c equal the length to be circe off, that is, the side of inscribed polygon; then will c divided by d is equal to (sine times 180 divided by $n)^{\circ}$. A near approximation, when n is large is c divided by d is equal to 3.141593 divided by n. Let n equal 63 , then by the first formula: c divided by d is equal to 0.049846 , and by the second
divided by d is equal to 0.04986 ; hence c equals d multiplied by 0.019816 divided by d is
H. A., of Conn.
Brass Founding.-If D. G. will take a sand crucible, and allow it first to be well warmed up, he can heat it safely in a blackssaitb's
fire, although, at best, there is some liability to crack. IFe should have on a good supply of coal, so that the crucible is not too close to the sharp blast; then use a light blast, and heat slowly until the brass is melted. When hot. it will look white on the surface. If the brass, as he says
" will not run," let him add to the old brass a little good sheet copper and a small quantity of block tin. Old brass will not run well, if remelted and a small quantity of block tin. Old brass wil not run well, if remelted
several times, unless thus treated. The white smoke of which he speaks is nothing uncommon.-W. H. R., of Pa.
Painting Sheét Inon.-Query 18, March 16.-Let J. C. mix together one pint good varnish, one pint boiled oil, and red lead sufficient
to produce a proper consistency. Prepare it a few hours before wanted, to produce a proper consistency. Prepare it a few hours before wanted,
and repeatedly stir while using. Use no turpentine or dryers. I have and repeatedly stir while using. Use no turpentine or dryers. I have
a stack thus painted which has stood the weather and heat for two years, a stack thus painted which has stood the weather and heat for two yeas
and remains as when first d nne, but changing to a darker color. The expense is trifling. This is applicable to C. A.H.'s bath tub, and I would advise him to give it a trial.-J. K. W., of Mich.
Worcestershire Sauce.-White vinegar, 15 gallons; walnut catsup, 10 gallons; Madeira wine, 5 gallons; mushroom catsup, 10 kal lons; table salt, 5 pounds; Canton soy, 4 gallons; powdered capsicum,
pounds; powdered allspice, 1 pound $;$ powdered coriander seeds, 1 pound cloves, mace, and cinnamon, of each, $1 / 2$ pound; assafctida, $1 / 1$ pound, dis solved in brandy, 1 gallon. Boil 20 pounds of hog's liver in 10 gallons of
water, for 12 lours, renewing the water from time to time Take water, for 12 hours, renewing the water from time to time. Take ou
the liver, chop it, mix with water, and work it through a sieve; mix with the sauce. Imitation No. 1.-White vinegar, 240 gallons; Canton soy, 36 gallons; sugar house sirup, 30 gallons; walnut catsup, 50 gallons; mushroom catsup, 50 gallons; table salt, 120 pounds; powdered capsicum, 15 pounds; allspice, 7 pounds; coriander, 7 pounds; cloves, mace, and cin-
namon, of each, 4 pounds; assafectida, $21 / 2$ pounds, dissolved in St. Croix namon, of each, 4 pounds; assafeetida, $21 / 2$ pounds, dissolved in St. Croix
rum, 1 gallon. 1mitation No. 2.-White vinegar, 1 gallon; Canton soy um, 1 gallon. 1 mitation No. 2. -White vinegar, 1 gallon; Canton soy
1 pint; molasses, 1 pint; walnut catsup, $11 / 2$ pints; table salt, 4 ounces powdered capsicum, 1 ounce; allspice, 1 ounce; coriander, $1 / 2$ ounce; $;$
cloves, $1 / 2$ ounce ; mace, $1 /$ ounce, cinnamon 6 drams; ; ssafcotida, 11 ounce
 in rum 4 ounces; mix. Imitation No. 3. - Take port wine and mushroom catsup, of each 1 quart; walnut pickle, 1 pint; soy, $1 / 2$ pint $;$ pounded an-
chovies, $1 / 2$ pound; fresh lemon peel, minced shallots, and scraped horse radish, each 2 ounces; allspice and black pepper (bruised), each 1 ounce (or currie powder, $3 / 4$ ounce); digest for 14 days, strain, and bottle. -H . W. B., of N. J.

Worn Corns.- By heating these gradually, the inscription

Under this headung we shall pubush nent home and forevon patents.

 The invention consists of a base cup made of tin, a paper cylinder to recelv the cream, and a tin foil cylinder on the outside. These can be furrisshed to
the confectioner at less than one cent apiece. The patent also ocvers a
filler. consisting of an elongated cup and plunger. The cup is principally interconsisting f an elongated ap and plunger. The ap is principally
intended or ocovenience on cars and in pubbic places, where the vessel
 tion consists in fixing a sponge in the throat of a vessel so so that a part of it
shall come in contact with water in the body of sald vessel, and then flling
 sponge causes the absorption of water, and allows the ootst oramify there.
through. A rapid growth follows and a quick evolution of the flower. The latter is much larger and more brilliant in its colors than by any metho
 Pa - The invention consists in combining a lock plate with nifh plates, so
that when nuts require tightening up, the rivets can be cut, removed, and that when nuts require
replighted without removing the fish plates.
Apparatus for Tracing Drawings. Proverre, rec.-Casper Zweifel
and Edward Stevens, Pomeroy, 0 . - This invention relates to an apparatus by which a mirror is made to reffect light through a glass plate and through a picture, drawing, or the like lacid nuon said plate, and through tracing
muslin or other similar material laid upon the picture for the purpose of masin or othr simin maternall
enabling an operator to accurately delineate upon the tracing muslin the
outlines ot the picture. outlines of the picture
 steam simultaneonsly, previous to curing it, and in the means by which
Hor BLAss OvxN.-Richara Lolyg, Pittsburrgh, Pa.-This invention relates
to an oven for heating the blast of a furrace by means of the combustion, to an oven for heating the blast of a furnace by means of the combustion,
within the oven, of gases drawn from the furnace, the chief novelty of the invention consisting in an apparatus for burning the egases inside of fluee
 bers enclosing said flues, the blast therefore fowing outside of the flues in.
stead of inside of them, the latter having been, up to the date of this inven-
tion, the common mode of conducting the blast.
CAR Roor.- John L. Burnham, Nashville, Tenn.-The invention consists cross pieces for outer cover, with intermediate longitudinal and continuous
sheets of metal, which slightly overlap each other. It makes both a very sheets of metal, which siligh
cheap and durable car roof.
Watrr Wrebl.--VIncent M. Baker, of Preston, Minn.-This invention
relates to a new arrangement of gates and mechanism for aduasting the same in water wheels. It consists principally in connecting with each
gate a virating chute plate, which will carry the water at the most
advantageous ande to the wheel whitever the postion of the tie advantageous angle to the wheel, whatever the positho the gate. The
invention also consists in a new manner of hanking the gate, adusting and connecting it with the several gates. The fanges of the cylinder and
crown plate are curved, forming a faring and convenient entrance for the
when water. The gate can swing independently of the chute plate, and vice versad
Each gate is pivoted at or near the middle, and with its inner part fully overlaps its chute plate, while its outer part more pamont of power to be obtained. But the chute plates are self.adjusting,
and will it is claimed, always 8 wing to ward the wheel to carry whatever
and water Is at dsposal at the most advantageous angle
PLAssTc CoMpossritos.- Thomas B. Gunnings, of New York city.-This
nvention relates to a new plastic composition claimed to be of great value when applied to the manufacture of boxes and other useful and ornamental articles, since it is strong, durable, sufficiently elastic, beautifurl in in appear practically, to air, water, and fatty substances. The composition consists principally, or finely powdered carbonate of lime and shellat so combined
and treated as to produce the desired effect. To one part, by weight, of goodkhellac- preferably the Kind known in market as "Camel's"-two parts,
by weight, of finely pulverized marble are added. The ingredients should be finely powdered before mixture, then put into a suitable vessel, exposed
to heat, and stirred constantly untilmelted into a homogeneous mass, which should then be rolled out to a suitable thickness. It can then be reheated molded, and presed or or herwise shaped into the desired form. When the bleaching process , tusibility of the shelinere a light shade is desired pure white chalk may. be used in place of the marble, one part of bleached
shellac being used to one and a half or to one and five eighths parts of shellac being used to one and a half or to one and ive eighths parts of
chalk. Different colors may be obtained by adding suitable coloringmatter to the materials shen frrst mixed. Composition contaning different colors
can be mixed so that the articles made from it will present a marbled ap
 marble known as dolomite, containing carbonate of magnesia; also lime stone, containing sillicate of alumina or clay, or other matter, coral, ete.,
mam be emploped in this, their use being covered by the broad claimm al. lowed in the patent, which are as onows: A new calcareous composition
made as described, and the method described of preparing the ingredient made as edesiried, and the method described or preparing the ingredient
and producing the calcareons composition. The composition in some of its lighter shades will resemble ivory somewhat in appearance, strength, and
elasticity; but, owing to tits plastic state when heated, and to to its capacity fortaking color, this composition can be more frequently applied than
trory vory.
RALLWAY Swirch.-Patrick Carrigan, of Sturgeon, N. Y.-The construc
tion of this railroad switche
 the switch rod a littie too far or not quite far enough. The invention con sists mainly in providing V shaped projections on the rail chair and switch
rod, which, engaging V recesses tormed in the bottom of the groove in the place when ptace chens the raill, to oslide into line with the netationary rails, should they
tion moved a litte too for or not quite far enough by the switch lever. The
the be moved a little too far or not quite far enough by the switch lever. The
invention thus differs materially from those in which the ends fop the rails At in sockets formed with straight sides, since, in the latter case, the raile will not enter the sockets unless a very perfe
by the operation of the switch rod and lever.
SPRING For VRHICLRE,-Alexander W. MCKown, of Honesdale, Pa.-This
invention consists in a combination of auxiliary springs with the ordinary springs of a wagon and connecting devices, whereby the auxiliary springs
may be utilized to reintorce the ordinary springs according to the weight of the load, and thus a void the present objectionable practice of using the sam
springs for light or heavy loads, for both of which they cannot be well springs ${ }_{\text {and }}$ dapted. The ordinary springs are provided with a cross bar or bars rigid 11 connected to them at the ends. These nars carry cranked, pivoted, or
hooked devices, or any equivalent thereof, arranged to conffne the auxiliary springs to the cross bars to re-entorece the main springs or to disconnect them, as may be requrred by the conditions the load
SPARE ARessrix.-Russell Hawkes and Henry J. Paine, of Providence,
R. I, assignors to themselves and Joseph Kelley, of same place--The up. R. I., assignors to themselves and Joseph Kelley, of same place.-The up.
per end of the smoke stack isclosed,except in the middle, from which a pipe of wire e auze or prerforated sheet metal), projects downward and oonnet
at the lower end with the steam exhaust pipe. All smoke that reaches the at the lower end with the steam exhaust pipe. A1 smoke that reaches the
smoke chamber is by the force of the exhaust, as well as by the ordinary
cend in the same to escape. sparks and cindere, however, of larger size than the apertures of the pipe cannot escape into the same, but are, by the same tated orces, carried up around the pipe into an upper, outer, and closed
part of the smoke stack. In this upper outer part are some inclined rings part of the smoke stack. In this upper outer part are some incline ring
which defiect the ascending sparks or cinders, and cause them to enter an annular space, which is formed in the smoke stack by an upright tube. The lower end of the space is closed, except Where it communicates with two
more or less, pipes, which communicate with as many horizontal or in Sined tubes that ead back to the freplace. Thus all the sparks, cinder complete consumption. It may be necessary to create a draft in the incline tubes in order to force the sparks and cinders backward therein. For thi purpose, these pipes are carried through the front end of the engine, and
pen or perforated in front,so the air entering them during the forward me open or perforated in front,so the air entering them during the forward mo-
tion of the locomotive may carry the cinders into the furnace, besides furSince the hem is utilized by attaching to their tront ends spherical refiectors with Lass faces. These will constitute signals that can be used for suitable pur
Loses, and will be displayed withoutte
 com ining, constructing, and arranging the essential parcs of a retort fur nace, namely, the upper fre chamber, its ring grate, the retort passing
thirough the grate, the doors of the furnace, the ash pit, and its doors provided with air inlets; with a second fre chamber, having a grate and an ash , provided with a drawer. The independent flues of the two ire cham ovided, and also a a perforated chamber to contain the article to be heated. The advantage of combining the two fres with retort chamber is clatme
be ceonomy of time in heating and a comparative saying in the fuel Eaveri Closert-Anthony w. Davis, of Wiliminston, Del.-A hopper o er is formed by a fxxed grate, under which there is a similar but movabe rate. A spring or grate moves the movable grate forward under the open.
gs of the grate to hold the bottom of the hopper closed. The hinged lid the closet is provided at its sides with projecting arms or levers whice
 opening the lid, the movabale frame is brounght forward so as to place the ves. sel under the seat, the hopper meanwhilie being closed. When the lid is
closed, the frame with the vessel 1 is moved back under the hopper, the frame riking an ear of the movable grate and pushing the latter back so as to en the bottom of the hopper. The earth can then freely flow into th Mach
 ant's machine for turning logs in saw mills, patented August 25, 1868, whic claimed to render it more convenient in use, and more effective in opera-
on, while requiring less power to operate it, and enabling a smaller chai be used. It consists in a sheave, in combination with the arm of a toothed ar, to recelve the chain, by which construction the strain upon the chain is distributed upon its two parts, so that the chain may be made lighter, and
at the same time the friction pulley may be made smaller, thus giving great.
speed to the device,
Barber'sand drntists' Ciair.-Anthony Abel, of New York city.-This nvention relates to the construction of chairs with adjustable backs, fo ng the back of the chair. It consists in a screw and bevel gear wheels supported in a hinged yoke, and connected with the back and bottom ot the
chair, so that when the nut is revolved the screw will be raised or lowered the bottom side or collar of the nut wheel rests upon the arm of the yoke. As the back of the chair 1 is raised or 10 wered, the relative position of the
screw thereto will chanee; but, as the serew is is pivoted at tits to pent to the back, or is allowed to turn and passes through the hinger yoke, the part ceasily together and without undue friction.
Oscillatise Stram Engine.-George F. Lowry, of Lake Misisisippl Ine, and more particularly to a new valve, new crank connection, and new link mot ion. The valve is made with two sets of apertures or steam pas.
sages. each set having three arms to connect with the inlet and exhaust in in the hich alternately connect with the oscillating slide that is attached to the nd of the piston rod. The link motion, fnally, is an inclined rail, on which its changed inclination to reverse the valves and the motion of the en ne. The mere change of position of sald rail is, therefore, sufflcient to re
verse or arrest the motion of the engine, and the same is, therefore, unde very convenient control. Its several advantages make the improved en
ine peculiarly adaptable for use on steamboats, locomotives, and other noving devices, thoughit can also be proftably employed on stationary ma tinery. The
Machisx for Jointiva Staves.- - Arza M. Benson, of Cleveland, ohiongle so the faces of the cutter are inclined to give the required convexity to the joint. A Asinging table is is rovided with adjustatele clamps for differ
ont lengths of staves. By shaping the cutter heads in a pecciar manner, the vork can be done much faster than on the old plan, as projecting naked arms allow the knives to commence cutting on the stave with heavy shav
ngss-or, in other words, to cut away the stave as fast as it is being fee head, until the ends of the staves are sufficientiy. cut away to come to earing
en cut.
Privinve Press. - Berthold Huber, of Williamsburgh, N. Y.-This inven.
Lon is an improved movement for printing presses by which the cylinder inl be made to move at the exact rate of speed with the bed plate, while 1 i Atact with the bed plate, and allowed to move at a different rate of speed
during the rest of its revolution, to bring it again in contac; with the bed plate at the proper time, thus allowing the cylinder to be made smaller than can be made when the ordinary movement is used. Tie invention is only
pplicable to those presses in which the bed plate is driven by a crank abraced in two claims upon which the patent has been issued.
ConNPLANTRR.-Samuel L. Donnell, ot Humbolat, Tenn. This inventio
onsists in a combination of a hopper, bottom apertured bard, whel ing pins and cups, and a corrugated and pivoted plate having inclines aanged in a new and peculiar mannerby which,wth other parts not new and
hereforen ot comprised in the claim, a very neat, compact, and apparently fective machine for the purpose designed is secured
RoAD PATEMKNT.-Mathew K. Couzens, or Yonkers, N. Y.-Mis inven
ion relates to a new arragement of constituents Tor its object to combine strength and antificictional qualitities with simplic ity of construction, convenience of laying and of taking up. A difflcult
with ordinary road beds for cities and towns is that the occasional taking ap of portions makes the even replacement difficult, and often causes the subsequent sinking of the road at such places. This invention consists in
the arrangement of prismatic blocks, made of concrete or artiflcial stone and grooved on the surface, and in their combination with an asphaltun
covering. The edges of the blocks are made with alternate ribs grooves so that they will lock together when placed upon a road; but every enth gutter block is made without such ribs or g. Thes suenabe ths con
enient remoral and that of the boocks adjoining. blocks are grooved or indented to become suftciently roughened tor the
attachment of the asphaltum covering. Such covering, sufficiently thick, is subsequently spread over the blockg, and forms the actual road bed. By neated tool, the asphatum can at any time be cut to detach the blocks be ciosed by the application of liquid asphaltum, so that hardly any material
nem is wasted by such removal and replacement. In place of asphaltum, any
equivalent bituminous covermg may be used.

Fastrening Key for Coffins. - John Homrighous, of Royalton, Ohio. The object of this Invention is to provide a substitute for screws, used in
astening the lids of coffins, and for all similar purposes, whereby much time and annoyance mar be saved. It consists in a key, ordinarily con structed so that It can be turned ine a hambs screw. The shank of the me a common woo screw. One or morespurs project from the side the shank near its end. These spurs are preferably flat and sharp on one
dge, and placed spirally on tie shank or like the thread of a hatwhenthe key is turned the spurs will draw the key down and tighter the cover to the side, the same as would be done by turning down a screw,
ashoulder on the shank of the key giving the desired hold on the cover. To applythe key, a hole is bored through the top or cover and in the side
end, and then a channel is cut in one side of the hole of sufficient size damit the spurs. With the hole thus prepared, the key may be dropped
nto it, and when it it turned, the spur or spurs will penetrate the wood and ct the same as a serew thread to draw the parts of the coffin, box, or othe or made thin, so that it will readily penetrate the wood. Ordinarily, the asten, and to the left to unfasten. One fourth of a revolution wwhl ither. A great saving of time is thus effected, as compared with the
ime required fordriving screws witha screw driver.

Paddle Mechanisa for Boats.-Charles Howard, of New York city. This is an improved paddle mechanism for the propulsion of vessels and
boats. A shaft is arranged across the boat and connected in a suitalle boats. A shaft is arranged across the boat and connected in a a suntaial
manner with a steam or other engine, which is supported on said boat. At the outer ends of the shaft are cranks which work outside of the boat. On ided in the paddlen ear the cent ter of same. Another pair of shoter crank secured to the ends of a shaft, which is placed parallel to and over the
ther or main shaft. The outer end of each short crak is other or main shaft. The outer end of each short crank is attached to an
arm, which connects it with the upper end of the padde. These shafts are geared so that they turn alike, and the two cranks at each end always point in the same direction. When they revolve, the long crank, which is
ttached near the middle of the paddle, carries that part of the paddle arther for ward and aft than the short crank, which is attached to the uppe end of the padde, carries that end. This dififerenve in the length of the
cranks causes the lower end of the paddle to move further than the upper the same length. By varying the relative lengths of these cranks, the paddle is made to go into and come out of the water at any desirable angle.
If the cranks were of the same length, the lower end of the padde would the cranks were or the ain lingth, che e wef end of the padde would as the paddle would always remain upright, and the stroke would be too hort. If, on the other hand, there were no upper crank, andif the arm tationary pivot instead of to a short cranks, ht would give the paddle to nuch stroke, and cause it to strike the water at so great an angle as to wast its power by driving the water downward at the forward end of the stroke
and raising the water at the back end of the stroke. These paddes are de
nebow, the blade
 angle of the blade throws the water diagonally from the bow, and prevents
tspilling up in front of the boat. The rapid motion of the paddie causes a artial lowering of the water at the bow, which accelerates the speed. If placed further art than the edge next to the boat. This is to prevent the
padde fromlowering the water under the stern of the boat, and to tacilitate TRXY HoLDER. Obed Fahnestock, of Indianapolis, Ind.-This invention
consists of a small horizontal lattice frame or metal, with a hande at one
side, and short tegs on the bottom with screw threaded holes formed in side, and hort tegs on the botiom with screw threaded holes formed in
hem from the top, on which the tray is fastened by screws or, it may be aken in the hand to hold the tray while resting on the arm behind, the and grasping said handle to enable one to hold the loaded tray by on and, and allow of using the other for other things.
Pooker FLask.-Rogers George, of New York city.-This invention
arunishes an improved pocket fask, so constructed that the operation o outing on the cup or cap will cork the fask, and the operation of takin topper, permanently attached to the cap or cup of the flask, as hereinafte nore fully descr:bed. A stopper, made of cork, rubber, or other suitable op of the flask. This may be done by securing a manall serew to said cuy apon which a cork or stopper is placed and secured by a nut. The cork o sopper may be attached to the cup or cap in any other substantial and con-
venient manner. The shape of the cups is ismaterial. It is preferred that he cupsshould conform somewhet to the form of the glass flask, and their bottoms should be flat, so that they may stand steadily upon a table or other
instrument for Extracting air from Fruit Jass. -John h. Parisish, of Talladera, Alabama. - This invention relates to and consists in a peculiar
construction of a tubular perforator, which is passed through the cork of construction of a tubular perforator, Which is passed inough the an oritce through which the air enters, and one cork, the cork is inserted into the neck of the jar. When the jar, with th cork and perforator inserted, is placed in the water, and the contents are brought to the boiling temperature, the steam generated. will exctade the utlet. The cork should be soft and elastic, and tightly driven in. Th erforator is so small and delicate that the orifiee it has made through the Cork, so that airis excluded; but to render the top of the cork perfectl mpervious, a cap of cement, gum, or any other suitable material is used.
It is claimed that, with the use of this perforator, the fruit preserving jar is cheaply made. The process or operation of "puttiogu", fruit or vege
abies is rendered very simple, and the result ts equalec only where the best and most perfect fruit preserving vessels are used.
Sofa Bbdstrad.-Joseph Schater, of New York city, assignor to himse no George W. Smith, of same place.-This is an improved sofa bedstead
onstructed so that it may be extended to serve as a bedstead, and, folded up or serve as a sofa, and when tolded up shail give no indi :ation thathcuan extended. The construction is strong, durable, not liable to get out of
order, and conveniently extended and folded. It is moreover capable of being made highly ornamental, the construction admitting of elaborate \mathbf{a} well as plain de
Wagon Body Lifrer.-Edmard A. Chateld, Waterlo, Iowa.- This is fom and lowering them upon the running gearing of wagons, enabling nngle person, or even a boy, to readily remove-and replace a wagon bod
or rack. The box is poded engage. A post sustains a pivoted lever bar, one end of which being lowered engages the iron loop at one end of the box. When the opposite end of the ttached at the depressed end, the box is so nearly balanced that a sligh rort suspends it, at a level high enough to allow the running gear to rawn from under lt
Hub for Carriagr Wherl.-Joinville F. Fowler, alliance, ohio.-This wooden core encircled by metal bands. The hub bse made of wod, provided with projecting ribs in which mortises for receiving the sposes ar arranged. The spokes are properly tenoned to ft the mortises. Two meta
tings are fitted over the ends of the hab, and provided, respectively, with anges, which bear against the sides of the rib. Each flange has a lip with
hich it overlaps the edge of the rib. By means of screws or bops the langes are secured to the rib, and the rings thereby held in place. By means of these flanged plates the use of metal between the
with, the spokes being allowed to come close together.

April 13, 1872.$]$
 [OFFICIAL.]
 Index of Inventions

§niemtific Ammexicau.

For which Letters Patent of the United States were granted
for the week ending april 2, 1872, and eacil bearing that date.

Alarm, burglar, I. and A. Herzberg
Alarm, burglar, T. N. Howell........................
Bed, spring, I. E. Webster...
Bed bottom, spring, S. B. Andrews
Bedstead fastening, J. Simpson
Belts, fastening for, H. Norfolk
Billiard register, Wood and Geer.
Boats, propelling canal, W. P. More................
Boats, device for propelling canal, T. K. McDonel
Boiler tubes in tube sheets, securing steam, W. Moorhouse
oot and shoe heel, c. B. Norto
Boot strap, guard for, J. E. Curtis.......
Brake and starter, combined, J. A. Cody
Brick kiln, B. R. Hawley,
Brick kiln, B. R. Hawley (reissue)
Brick machine, H. C. Bank
Brick machine, c. Clarke.
Bricks, tiles, etc., manufacture of, J. M. Reid
Bridge, J. Zellweger..
Bridge, J. H. Diedrichs.............
Bridge, wrought iron, A. P. Boller
Bridges, arch for, D. Forague.
Brushes, handle for, S. D. Foster
Buckle, H. Sanders
Buckle, Maxwell and Lindner.
Building, fireproof, J. J. Bartl
Burner, gas, S. W. Pingree...
Cages, construction of bird,
Camel, marine, M. Toulmin.
Camera boxes, guide slidefor, o. Loehr
Car coupling, F. M. Hunt
Car dumping, s. D. King.................
Car platform, R. A. Cowell (reissue)
Car roof, J. L. Burnham.
Car seat,. . S. Whipple
Car buffers, spring for,
fr, J. Haldeman....
Carbureter, H. Holton.....................
Carpets, machine for cleaning and finishing, J. Wilkinson, Jr....................
Carrage wheel, C. A. Mille
Carriage wheels, hub for, I. E. Bower
Carriage wheels, tire for, H, Silvester
Cartridge shell, S. W. Wood (reissue)..................
Casks, device for closing the mouths of, J. F. C. Ride
Cattle, device for removing obstacles from the throats of, c. schule Chair, folding, H. James....
Clay, etc., machine for grindi
Clipping machine, J. W. Moyer... Alexander.
Cloth, cord, and paper cutter, combined, I. B. Milliner
Clothes pin, S. B. Luca
Clothes wringer, A. H. Goss
Clothes wringer, Bailey and Couch, (reissue)
Collar, breast, G. Van Wagenen............
Cooking apparatus, steam, L. K. Williams.
Cooler for liquids, J. w. Campbell, Sr..
Coop, poultry, M. Potter..
Corn sheller, A. H. Patch..
Cracklings, cutting tool for the manufacture of, L. F. Lannay... Cultivator, I. H. Chappell.
Demijohn, G. W. and C. W. Foste
Digger, potato, M. Johnson..
Ditching machine, H. Carter
Dough board, H. F Morse
ovetails, device for molding, A. L. Fine
Dovetailing machine, Gear and Dunkl
Drawings, etc., apparatus for tracing,
Dredging machine, W. T. Thelin.
Dryer, M. P. Smith
Dryer, clothes, A. C. Stowe.
Drill, grain, Mast and Gardine
Earth closet, R. s. William
Electro-magnet, I. P. Tice..
Elevators, stop motion for, H. E. Bathrick
Engine, gas, G. B. Brayton...
Engine, rotary steam, S. Gibson...
Engine valve, steam, S. J. Peet, (reissue),
Engines, constructing links for valve gear
ve gear for steam, J. A. Wildman
Fare box, J. B. Slawson, (reissue)
Fats and oils from seeds, etc., sep
Fence post. Freeman, Idell, and Va
Fertilizers, treating animal matters for, w. L. Bradley
Fertilizers, apparatus for pulverizing animal matters for, A. Smith
Fire arm, breech loading, J. F. Thomas,
Fire arm, breech loading, w. H. Elliott
Fire arm, breech loading, s. W. Wood, (reissue)......
Food, treating vegetables for, Adamson and Simonin
Fork, horse hay, Ream and Bush
Fruit packing implement, C. C. Roberts.
Furnace, boiler. B. $\begin{array}{r} \\ \text {. Smith. }\end{array}$
urnace, hot air, W. H. Bon
Furnace for melting iron, G, H. Sellers
Furnace for treating ores, J. M. Reid
Gaiter, w. E. Putnam..
Glass mold, F. A. Weise.
Glass blower's mold, s. .
Grain binder, J. H. Whitney
Grain for grinding, preparing, L. s. Chichest
Grain for grinding, preparing, L. S. Chester...
Graipe crusher and stemmer, Johnston and Jo
Hair for stuffing cushions, etc., W. Adamson
Hair for stuffing cushions, etc., W. Adamso
Hame for harness, D. Foreman
Harvester and husker, combined. J. Mc...........
Harvesters, divider attachment for, Keller and L
Hay carrier, J. B. Drake
Heater for preventing the accumulation of snow, R. B. Miller
ide and leather working machine, F. Fitzhenr
Hinge, W. Wakenshaw...............
Hinge for carriage doors, E. Wells.
Horse power, J. H. Kleppinger, (reissue
hose, manufacture of waterproof, T. L. Reed. Hose and tubing, manufacture of, S. P. Cook Ice cream holder and filler, H. R. Robbins
icemachines, valve for, F. Windhausen...
mplement, compound, J. C. Schlarbau
Iron, metal coated sad, W. H. Howell
ron, manufacture of, J. Absterdam.
Iron from mill cinder, manufacture of, C. M. Nes..
roning and polishing cloth, machine for, H. Hamill
Knife scouring board, E Doming
Knife scouring board, E. Deming
Lambrequin, wooden, H. Weber
Lamp, hunting, J. T. Staples.,
Lard, bleaching, O. J. Backus
Latch and lock for sliding doors, combined, c. W. Chappell
Lathe carrier, extension, W. A. Lorenz...
Line and strap holder, F. W. Jay.
Lock, permutation, G. L. Damon
Lock for valises, ete, R. Schmitt.
Locomotive, counting register for, E. P. Curtis
Marbles, manufacture of imitation, G. Davey..
Matches, machine for slitting, Smith and Jordan
Mattress stuffer, T. A. Watson.
Medical compound, F. Goetsch
Medical compound or capsicum plaster, J. \& I. Coddington
Metal, machine for bending sheet, R. B. McConnell.
Meter, liquin, J. s. Barden
Mill, mortar, H. Hill.
Millstone dress, P. W. Yarrell.
Mill, hide and fulling, S. Hussey
Mortising machine, E. Dayton..
Mowing machine, Burdick and Daggett
Muff, ear, c. Sedgwick...............
Music leaf turner, C. I. Adkins
Musical instrument keys, making pivotholes'in, S. H. Wilder Neck-tie holder, A. F. Bixby..
Neck-tie or scarf, reversible, L.
Nipper, nail plate, G. B. Johnson...........
Nuts, device for locking, T. w. Kirkwood
Nuts, device for locking, T.
oil cup, lubricating, A. Higley
Oven, hot blast, R. Long.......
Packing, piston, A. W. Harris
Packing piston, C. B. Cottrell
Paint and putty, compound for, R. M. Breini
Paper. Ay, T. E. Peck...
Pavement, concrete, W. Gilber
Pen, fountain, G. F. Hawkes.
Pencil holder, lead, E. Weiss
Pencils, machine for . Welsisenborn.
Same.......
Pipes, branch coupling for cement, M. Stephens
Pipes, tiles, etc., manufacture or drain, C. J. Eames
Planter, hand corn, A. C. Kent
Plow, S. A. Fanning.
Plow, gang, A. Freeman.
Plow, ice, G. B. Gruman
Preserving meat, w. A. Gillespie
Preserving meat for food, Adamson and Simonin..
Press, steam and hydraulic, J. F. Taylor (reissue)...
Propeller and fire extinguisher, combined, A. Turner
Puddlers' balls, machine for compressing, J. Dangerfield
Pump, Young and Brand.
Punches to their stocks, securing, J. Johnson.
Punching metals, machine for, E. Craddock.
Railway rail, E. Wiley......
Railway rope, J. H. Müller
Railway rail chair, Loomis and
Rake, horse hay, L. A. Paddock.
Refrigerator, P. Nunan
Rings, manutacture of sheet metal screw, L. F. Betts
Roaster, coffee, B. I. Williams
Rock and ore crushing roll, A.
Roofing composition, D. G. Conger, (reissue
Roofng, metallic plate for, T. N. Hickcox..
Ruler, parallel, T. Bergner.
Saddle hook,
Saddle hook, gig, W. Sassa
Sash holder, w. W. Amos.
Sash holder, W. H. Brown
Sawing machine, S. w. Nyce
Scouring and hulling machine, L. S. Chichester
Scraper, earth, M. Kelley..
Screws, machine for thread
Screws, machine for threading wood, J. M. Carpenter
Seat, portable show, D. C. Price.............
Seed sower,s. w. Paine.
Sewer basins, cover and trap for, Chase and White
Sewing machine, H. Plummer, (reissue)
Sewing or embroidering machine, A. W.
Sewing or embroidering machine, A. W. Johnson
Sewing machine for fringing, P. Casselbe.
Sewing machines, treadle for, R. Leavitt..
Sewing machines, treadle for, W. H. Eiliott.
Sewing machines, treadle for, F. H. Coombs.............
Sewing machines, rufling attachment for, E. J. Toof.
Same..sam
Shipping apparatus,
Shoe,J. H. Hurd....
Sink strainer, J. L. Mot
Snuffers, Stow and Barnes, (reissue)
Soap, J. Burke.
Soda water, cooler for, J. Mathew
Spark arrester, W. F. Grassler
Spike drawer, P. C. Parkinson
Spikes, manufacture of, J. H. Swett
Sprinkler, street, H. G. stiebel...
Stamping and hammering machine, G. D. Crocker
Steam generator, T. McDonough.
Steam trap, G. Doyle, (reissue).
Stencil plate, J. McCullagh
Stereopticon apparatus, A. G. Buzby......
Stone, machine for dressing . J D
Stone, manufacture of artificial, C. J. Bandman
Stone from blast furnace cinder, manufacture of, F. Lürmann
Stove, cooking, A. Wieting.
Stove, cooking, D. Stuart...
Sugar machine, centrifugal, L . Weinrich.
Sugar from sweet potatoes, etc., extracting, Adamson and Simonin.
Sweeper, carpet, willey and Emery.....
Thrasher and gin, peanut, B. G. Scott..
Thrasher and gin, peanut, F. G. Scott....
Thrashing machine,
Tonsco curing apparatus,
Toy wagon, W. H. Eastman.
Tramway for turnplkes, J. M. Johnston
Trap, animal, B. and D. H. Harnish....

Trunk lid supporter, C. D. Rutherford..
Tumblers, apparatus for finishing, D. C. Ripley.

APPLICATIONS FOR EXTENSIONS.
Applications have been duly fled, and are now pending, for the extension
of the following Letters Patent. Hearings upon the respective applications are appointed for the days hereinafter mentioned:
20,723.-Hand Drill.-H. H. Packer. June 12, 1872.
20,775.-Rallobad Car Seat and Berth.-Z. Cobb. June 19, 1872 1,059.-Steam Enatne'-H. and F.J. L. Blandy. July 17, 1872. 20,920.-Spinnuna Fraw. A. Houghton June 26, 1872. 20,960--Heel Shaver.-V. Snell. July 3, 1872. 0,719.-HEEL Shaver.-V. Snell. July 3, 1872.
2,

EXTENSIONS GRANTED
9,696.-Grinding Attachment.-D. H. Gage.
9,718.-Turning and Sliding Table.-W. Sell
19,683.-Hot Air Furnace.- J. Child.
19,719.-STop Motion For Loom.-R. J. Stafford.
9,783.- Combination of Lead Pencil and Eraser.-H. L. Lipman.

Value of Extended Patents

Did patentees realize the fact that their inventions are likely to be more productive of proft during the seven years of extension than the first all term tor which their patents were granted, we think more would avan extended for seven years, tor the benefit of the inventor,or of his heirs in case of the decease of the former, by due application to the Patent Ofllice, ninety days betore the termination of the patent. The extended time inures to the beneff of the inventor, the assignees under the first term having no ights under the extension, except by special agreement. The Government be obtained to conduct the busine ss before the Patent oflce. Full informaion as to extensions may be had by addressing

MUNN \& CO.. 34 Parls Row.

FOREIGN PATENTS--A HINT TO PATENTEES.

It is generally much better to apply for foreign patents simultaneously
with the application in the United States. If this cannot be conveniently whene, as little time as possible should be lost after the patent is issued, as the laws in some foreign countries allo x patents to any who first makes the application, and in this way many inventors are deprived of valid patents
for their own inventions. It should also be borne in mind that a issued in England to the first introducer, without regard to the rights of the real inventor; therefore, it is important that all applications should be entrusted to responsible agents in this country, who can assure parties that
their valuable inventions will not be misappropriated. The population of their valuable inventions will not be misappropriated. The population of
Great Britain is $31,00,000$; of France, $37,000,000$; Belgium, $5,000,000$; Austria $36,000,000$: Prussia, $40,000,000 ;$ and Russia, $70,000,000$. Patents may be secured f all kinds are always in demand in Europe. There will never be a better time than the present to take patents abroad. We have reliable business connections with the principal capitals of Europe. A large share of all the
patents secured in foreign countries by Americans are obtained through our patests secured in
Agency. Address

37 Park Row, N. Y.

Mechanic's' Tool Book,

 th Practical Rules and Suggestionsfor Use of Machinists, Iron Workers,
and others. By W. B. Harrison. CoNTENTS-Care of Trols-Files and Filing-Filing Crist-COId Chisels-Gauges, callipers, dividers, etc.
Stautard, Gauges tor Screvs -The Angle of 60 -Lath
Turcin

 tion and Grinding of cyinitical sarfaces-Fiting an
Griuding external and internal cylindrical surfaces
Grinding and production of conic

D. VAN NOSTRAND 23 Murray Street, New York $* *$ Copies sent by mail, post paid, on leceipt or price
$*$, Send for Catalogue of Scientific Books-80 page
owo Ten cents, post paid, to any address. TOR SALE-Weeks \& Kohler's Safety
 Soin
Burning \& Lubricating

LARD
WORKS
of

GEST \& ATKINSON,

 Eggleston Avenue \& Fifth stree

CINCINNATI, OHIO.

A^{T}

 Morrissett, Alabama, engraved on cap. The a bove re
ward will be prompty paidyy me for recovery of watch
and suitable reward for chain.

New and cheaper edition of the figuier The World heirore the Deluge.

 Sent, free by mailt to a
on receipt of the price.

Spectrum Analysis,

 Pre:-listoric Times,

You want the choicest
ORNAMENTAL FOLIAGE PLANTS

Ever Offered in this Country plants. See our illustrated Catalogue of new and rare

Moseley Iron Bridge and Roof Co. W

Mannuactuning Improvemints.

nar yoris sricil worrs. 87 NASSAU ST., NEW YORK.
 GUARANTEED.
$500.000{ }^{\text {AGENTS WANTED to sell }}$

 Thaten Turbine Nor rikg to purchaser. Send for
RECATDINGTRAGE

 MECHANICS\&\& ENGINEERING:

 Andree's Patents.

PARR'S

TECHNICAL GUIDE,

 $=\mathrm{VEv}=$ wiveman Souicindins

P. BLALSDELL $\boldsymbol{A} \boldsymbol{C O}$ MIANUFACTURERS OF FIRST CLASA

C INCINNATI BRASS WORLS.- None but

PATENTS BOUGET AND SOLD SOR SOR ENGINES\& BOILERS 36 PER CENT UNDER COST, AND GUARANTEED,
What do you ned E. R. ROEERTS \& CO., Consulting

PATENTEES,

ROPER MOH ATR
F LECTRIC APPARATUS for BLASTING GEORGEE E. LINCOLN \& CO., Room 9 , 22 Summer St,
Boston, Mass. Electric Batteries of vonsionsting of sizes, Electric Fuse Headidectrici fuses of any required length, $\frac{\text { Send for Circular. }}{\text { Fruit, Tres! Garden, Plants! Flower, Seeds }}$

 T CEE PRUNERS AND SAW TOOLS-

\qquad
SCHENCK'
$\underset{\text { Wheaterpro and best. }}{\text { WHIPPING TAG. }}$
P. O. Box 2564 . 90 Ann Street, New Yor
Send tor prices and samples. Superior for cotor

WE warrant every Steam Gauge bearing our name and numbered a.
firor TWO YEARS.
UTICA STEADI GAUGE CO., Utica, N. \mathbf{x}
PMOPRMTER PUTRPS

THE WOODWARD
STEAM PUMP.

SAVE 20DOLIARS.

$\mathbf{A}_{\text {attractive }}^{\text {GENTS Litle article }}$.

OADSTONE, Blodstone, Fluoric Acid,

CAUTION.

 Patrom an, asthe eame rer
beat. Send for a Circular

S
MERTM CASTMTCS
under hainsworth's patent.

T HE Union Iron Mills, Pittsburgh, Pa. The

Machinery,

Machuinists Trools.

Cold Rolled Shafting.

Sturtevant Blowers

 Good 2d Hand Madiinery for Sale.

Canadian Inventers, dide whe pien For mill particulumars 37 Park how, Neot Xortu

Subscribers-Who wish to have their volumps bound, can send them to this office. The charge for binding is $\$ 1.50$ per volume. The amount should be remitted in advance, a as soon as they are bound
 BAIRD'S Boons

For Practical mini
 any one $\%{ }^{10}$ will favor me with his address.
HENRY CAREY BAIRD hENRY CAREY BAIRD,
406 WALNUSTRIAL PUBLISHER STREET, Philadelphia

Mechanical DRAWING.

THE PRACTICAL DRAUGHTSMAN'S

 Fines.
Drawing Instruments.
D. The above, or any free of postage, at the publication prices.
 HENRY CAREY BAIRD, 406 WALNUT STREET, Philadelph

PP Manufacture
ing Companies.

QF is awarded the first Premium, at the Fair of tie american I
oars. Comparison invited. Competition challenged. Send for circulars.

To Electro-Platers. B RITERIES CHEMICALS, AND MAE
 STAVE MACHINERY
Buy Barber's Bit Brace.
PORTABLE STEAM ENGINES, COMBS

Avicuyavo steam yawn CHIS. B. HARDIER,

AUSTRALIAN COLONIES.

 Machinery:

OTIS

相 ,

REPORT OF JUDGES

to tie genvrai comintrpe

CINCINNATI INDUSTRIAL EXPOSITION:

Gentlemen-The Judges appointed to examine into the merits of the articles con-
taine in Class 10, beg leave to make the following report:

A!)

 The newel of micsicav conical enate an di Hereariance as apucimnus of this branch
 (Cinaftecuw mate dree matches sthilitied ley ithi bompani as e of fill goody, frow chat
 Thad for the millime isl cue excellent of the ' Hind, and mentor mode Rumour sound alfrecaitid Withe helle to need firth commons Muted @ole Watch bomphoun?

Price Lists furnished the Trade on application, inclosing business card. For sale by the Trade generally.

BEWARE of worthless imitations with which the country is. flooded. To avoid impo-
sition, see that the words MARION, N. J, are engraved on the plate over the Main-Spring sition, see that the words MARIO.
Barrel. All others are spurious.

[^0]Planing and Matching

MACHINISTS.

Milling Machines.

 SINGLE AND BARREL MACHETE-
 PUMPS - Rot pear pion rite

LI THE CHUCRS-HORTONS PATENT

 Wood and Iron Working Madininery,

 CIRCULARS NW BENCHES.

SCIENTIFIC AMERICAN

Pinetum

For 1872.

A year's numbers contains over 800 pages and makes two volumes, worth as a book of references, ten times the subscription price

ENGRAVINGS

by our own artists, will not only be given, of all the best Inventions of the day, but especial attention will
be directed to the description and illustration of
LEADING MANUFACTURING ESTABLISH gENTS, MACHINES, TOOLS AND PROCESSES.
Inventors and Patentees wether with descriptions of the more important Invent gether with descriptions or he more important Inven-
tins. We shall also publish reports of decisions in Pat int Cases and po
efts of Patentees.

THE NEW VOLUME OF

SCIEATMCEBCAN

commenced JANUARY FIRST; therefore, now is the
time to organize Clubs and to forward subscriptions Clubs may be made up from different post office. TERMS FOR 1892.
 Any person who sends us a yearly club of ten or more
copies, at the foregoing club rates, will be entitled to on copy, gratis, of the large steel plate engraving, "Men of Progress."
Remit by
Remit by postal order, draft or express.
The postage on the Scientific American is five cents ar quarter, payable at the office where received. Canada subscribers must remit, with subscription, 25 cents extra to pay postage.
Address all let

[^1]gaturtisements.

Tuckiziver

 Parties BUSTNESS WANTTED. a tries crould wike to arrange with some party whi has

To Machinists \& Machine Tool Builders. Fisisile The Enoiness, Paterns, Drawingst Machine
A M. TREEIAND.
VATUABTE TOOTS Beach Iron Works Property, Hart One Large Double Tool Post Planing Machine

$\mathbf{R}^{\text {ANSOM SYPHON CONDENSER perfect }}$

Diamond Pointed STEAM DRIDAS:

T THE adoption of new and improved applica

Diamonds Barbon $^{\prime}$

 NASHVILLE INDUSTRIAL EXPOSITION

 A. S. CAMERON \& CO.,

Adapted to every poss
blent
sent for a Price List.

ToDd \& RAFERRTY, Manufacturers of
 Working Models

NEAFTH \& LHV
 PENN WORKS,

First Premium (Medal) awarded in 1870, and endorsed by Certificate from the Amer ican Institute in 1871, as "The Best Article in the Market.'

SPECIAL NOTICE.

 The
 Nain

TMENPBRS,

HARDWOOD BOARDS
FRENCH BLACK WALNUT, AMBOINE, THUYA
GUNGARIN ASH:

Swain Turbine.

W ill do ten per cent more work

1 New and Valaadle Bozk.

THE

FOR 1872.

 MUNN \& CO.. $3 y$ Park Row, New Vork city BeACH'S SCROLL SAWING MACHINE

Cotrs ARMORTESTING MACHINE-S

 Pat. Solid emery wheels and oll

Machinists' Tools OF EVERY DESCRIPTION.

MLLES TOOL WORKS,

Brass \& Copper SEAMIESS TUBING

MTATIONARY BOLLERS.
,
WIRE ROPE.

[^0]: whoirsant rooms United States Watch Cos,
 GILES, BRO. \& CO.
 83 \& S5 State St., Chicago, Ill.

[^1]: MINN \& CO.,
 37 PARK ROW, NEW YORK

