
a WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE. MECHANICS, CHEMISTRY, AND MANUFACTURES.

NEW YORK, APRIL 6, 1872.
$\left\{_{\substack{83 \text { per Annam } \\ \text { HW ADVAMcr }}}\right.$
Portable Spring Grist Mill.
Our illustration this week shows an arrangement of portable mills, with bolt, which is claimed to combine many important improvements.
The mill is complete in itself, with surfaces dressed and ready to make flour, when it leaves the shop. All that is required is to attach the belt. These mills are built under the patents of Messrs. Reed and Buckingham, and are of three sizes, namely 24 inches, 30 inches, and 36 inches diameter. The grinding surfaces are composed of the best French burr stones, set in cast iron cups, and the mill is what millers would call an upper runner, that is, the upper stone revolves while the lower one is stationary.
The spindle, which is attached to the upper or runner stone, is hollow and contains a stationary tube by which the grain is fed directly to the stones. As by this means the grain does not rouch the revolving surface until it enters between the stones, it cannot fill up the eye or hang as it does in the common mills; so that any kind of grain, such as oats or crushed cobs, may, it is claimed, be ground without difficulty, when, on other mills, they can only be cround by being mixed with heavy substances. This is a feature of being mixed with heavy substances. This is a feature of very great importance in all mills where a high motion is required, as, without such an arrangement for feeding, it would be difficult to introduce the grain between the stones.
The runner stone is attached to the spindle in such a manner that, while it is carried around with a true and even motion and held steady on the spindle by springs, it can still rise when necessary by the yielding of the springs, and permit hard substances, such as nail or pieces of iron, to pass through the mill without injury to the stones or heir connections. In this important feature, this mill differs from all mill differs from all oth ers. The method of at taching the spindle to the runner stone by means of springs, which operate as above de scribed, was patented by Gen. C. P. Buckingham and has been used exclu sively on these mills. This method, and the arrangement for feeding, constitute the distinctive features of the above described mills.
The bed stone is hung on a point, and is pre vented from rotating by two trunnions on oppo site sides of the cup. It is clasped by spring bars at four points on the side which permit it to train itself with certainty, hold it when in train with a firm grasp, and prevent all wobbling of the stones.
The bearings, two in number, are in the iron frame above, and may
be oiled at pleasure without stopping the mill. For the purpose of dressing the stones, the frame opens back on hinges so as to turn the surface of the runner up and bring it on a horizontal line, the stones remaining in their bearings; and in dressing the runner, it can be turned round on the spindle as if chucked in a lathe, so as to make the surface perfectly true without trouble or danger of getting the stones out of line. In putting the surfaces of the stones together for grinding again, it is claimed to be impossible to get them out of position. The operation is as simple as shutting a book.
The bolt chest is composed of iron frames and wood panels, held together by iron rods, arranged to be packed closely in boxes for shipment, and which can be set up ready for work in a few hours. The iron trussed reel-20 inches long by 30 inches diameter-is also in sections, and is furnished with a coat of best quality bolting cloth. The lower part of the chest forms the conveyer trough, which is provided with the proper cut-off and slides for grading the flour, while at the top is the cooler conveyer, to temper the flour before entering, the reel.
There is also attached a return conveyer, so that at the option of the miller he can return part of the flour to the head
of the reel to be rebolted, thereby producing the maximum yield.
A flour elevator is also furnished complete, as represented, and the arrangement of the various parts to each other is such that the same belt drives them all.
It is claimed that there is nothing about the mills or bolts that can, for a long time, get out of repair. With proper at tention, the running parts cannot get out of order (excepting the wear of the stones themselves), and will, it is claimed, the wear of the sto
last for many years.
\qquad
-
\qquad

unsurpassed. For further information address John Cooper \& Co., Mount Vernon, Ohio.

Price's Composition Pavement

Notwithstanding the many failures in constructing improved pavements, and the few successes that have been achieved, inventors seem resolved not to relinquish the problem until they secure a complete triumph. Mr. Thomas Price, of Pittsburgh, Pa., assignor to himself and John D Burton, of the same place, has recently patented, through
the Scientific American
Patent Agency, a new method of making asphalt pavements of carbonized rock-that is to say, of broken rock whose pores have been filled with asphalt, tar, or other carboniferous material. It is intended, therefore, to produce a pavement every particle of which shall be air and water proof, and whose hard ingredients will readily and instantly combine with the binding material.
The invention consists in the use of a compound prepared as follows
Rock of a suitable kind, preferably lime rock, is broken into piees of con venient size, and then in a suitable vessel exposed to heat. Its pores are thereby opened, and it is prepared for the and it is prepared for the recep tion of the asphaltum tar, or equivalent matter The latter, being mixed with the heated rock penetrates the pores and envelopes the several pieces, so as to make them thoroughly air and waterproof. During the process of heating, the rock is liberated of all gaseous matter and pro perly prepared for the reception of the asphal tum and tar The rock tum and tar. The rock after having cooled, i reheated, and more tar or asphaltum added which may be mixed with a small quantity of plaster of Paris, some oxide of zinc or iron, and some disinfecting powder for destroying the smell and noxious vapors. This composition should be spread three and a half or four inche thick, upon a bed of

A good mill.that, with ordinary care, will make the best of flour, and one that can be furnished for a moderate price, and, at the same time, have such attachments as will guaran tee the best results, both as regards quality and quantity, and also one that is so arranged and completed at the shop that any ordinary carpenter can in a few days set it up in place, ready to work in any room or building where there is power, is certainly a great desideratum.
These mills have been in the market for some fifteen years, and, it is claimed, not one has failed to give satisfaction. This mill took the gold medal at the Exhibition of the Mechanics' Institute, Cincinnati, and was especially noticed in the report of the committee. It also received the first premium at the Ohio State Fair, and the highest award (silver medal) over all others at the Cincinnati Industrial Exposi tion.

The manufacturers make a specialty of building portable machinery, and have, within the past two years, very much improved these mills, which they guarantee to do as much and as good work as any mills of like size in the United States. They state that the 36 inch mill and bolt grinds and bolts from ten to twelve bushels of wheat per hour as an average business, and that the yield and quantity of flour is
gravel or other material, and then pressed by hot and heary rollers until quite firm. It will, it is claimed, prove a dura ble pavement, easily put down, and as easily taken up and replaced when necessary, which will become the stronger the more it is compressed by wear. The patent on this inven tion was issued March 12,1872.

Transplanting Hair.

The successful transferring of skin and flesh to assist the recovery of wounds, has induced some one to experiment on hair, and the result is a process of removing portions of the scalp, with the hair on, from some luxuriant head, and planting it on the victim of baldness. A cotemporary points out that it may soon become fashionable to wear hair of various hues and shades, thereby producing the most singular and beauti ful effects of color; or the hair might be made to appear white, green, blue, or red at the owner's option, and by va rious ways of disposing it. "Take, in due proportions, hair of all the prismatic tints, rumple it, and immediately you of all the prismatic tints, rumple it, and immediately you have white hair; comb it in another way, and there is you
purple, your ultramarine, your yellow, or any possible hue." If these directions are followed, the recognition of the original color of the head may require the use of the spectroscope

THE TOBACCO MANUFACTORIES IN BROOKLYN.

The manufacture of tobacco is carried on in the city of N ew York and its vicinity to a greater extent than in any other part of the United States, although there are factories for this businiess, of more or less importance, in every large city. In Brooklyn, there are several large factories for the production of plug tobacco for chewing, three of which give employment to about 1,600 hands, producing nearly 7,000 ,000 pounds per anrum, and paying over $\$ 2,000,000$ tax. The Brooklyn Daily Union has recently made an investigation into the processes employed in the preparation, and gives, among much other interesting information on the subject, the following particulars:
The Pioneer Tobacco Company has a factory situated in The Pioneer Tobacco Company has a factory situated in
Hicks street, occupying the space on the west side, between Hicks street, occupying the space on the west side, between
Warren and Baltic streets, connected with the New York ofWarren and Baltic streets, connected with the New York of-
fice of the firm by a private telegraph. The visitor was perfice of the firm by a private telegraph. The visitor was per-
mitted to witness the process of manufacturing plug tomitted to witness the process of manufacturing plug to-
bacco in all its stages, from taking the tightly pressed leaf from the huge hogsheads in which it was packed after being dried on the Virginia plantation down to the pasting of the gaily colored label and the more important revenue stamp on the box in which the finished plugs are packed for final sale. It would be impracticable to give within the ordinary limits of a newspaper article a detailed description of all the various manipulations which the innocent " weed" is subjected to in this vast establishment, where five hundred and fifty employees, men and women, are busily occupied in preparing the coarse and brittle leaves into preparations designed to tempt the palates of men all over the earth; though everything is done with the utmost care and regularity, and the nicest system is every where discernible. The "hands," as the handfuls of tobacco leaves tied together at the stalk when picked are designated, go through innumerable processes of drying, moistening, extraction of stems, dipping in licorice juice-a beastly process, and sufficient to impart a permanent distaste for the article to any but the most hardened devotee-followed by more rolling, squeezing, flavoring, drying, and finally rolling and cutting into its desired shape of plugs. The flavoring process is a secret and mysterious feature of the tobacco transformation-defying even the scrutiny of the Government officials. The bunches of leaves, after a long series of torturings, are laid in a pile upon the floor, and each successive layer is sprinkled from a watering pot with some liquid mixture whose ingredients are one of oae, and even to hazard a guess at which would probably be deemed an impertinence. Essences and volatile oils, and the mixer thereof only knows what else, are thus sprinkled the mixer thereof only knows what else, are thus sprinkled
upon the leaf already partly saturated with licorico, and upon the leaf already partly saturated
are forever after blended with the delicate aromatic flavor of the tobacco. The delicacy referred to may be partially realized when it is stated that the odor in some of the apart ments of the factory is almost powerful enough to raise a man's hat off his head unless it fits tightly. One of the pleasantest episodes of the tobacco's journey through the building is its brief visit to the "drying room," where it is hung upon racks and subjected to a dit, and compared with which a Turkish bath is but a cold and chilling institution. It would be a dangerous place for an unpopular revenue of-ficer-if there could be such an individual-to be entrapped iato. For there are traditions among the operatives-hough
they have never yet been publicly recorded-of men who they have never yet been publicly recorded-of men who
lave been unwittingly locked up in the drying room late in the day when the hands were leaving for the night, and how upon opening the doors the next morning there was nothing left of them except the heels of their boots, the unhappy owners of which had been melted a way like tallow dips in a hot oven.
When the tobacco has been tharoughly prepared, it is rolled by hand: women working with nimble fingers and extreme skill in this process: into long sauzage shaped rolls, known technically as "lumps," and containing either one pound or one half pound, each of which is verifitd by actual weighing. These rolls are afterwards passed through a large mach ne which presses them out into tia's slabs nearly as hard as stone adi which squares them off at the edge
The second place visited was P. Lorillard \& Company's factory in Sedgwick street, a huge establishment occupying an immense building on each side of the street, connected by a covered bridge at the second story. This factory is larger than that of the Pioneer Company already described, but the processes used are mainly the same, except some
variations in the mechanical contrivances. There is also a private telegraph here convecting with the office in New York. The same courtesy, also, was displayed to the reporter, who was shown through all the apartments and permitted to witness the various manipulations.
The factory of Messrs. Buchanan \& Lyall, in Degraw street, was next visited, with similar experience, the place giving evidence on all sides of able management, and a tho rough and well regulated system, while the large force of operators testified to the immense amount of business done there.
Th; above mentioned are the three largest plug tobacco factories of this city, but not even a visit to their extensive wockshops and laboratories, their " lump," "sorting,"'" dip ping," "casing;" and "rolling" rooms would give an ade quate notion of the magnitude of the supply they furnish to the country's commerce. This will be best gained from the following statistical summary of the amount of business
they lave done during the few past years, and which is steadily increasing as each twelve months roll by.
P. Loriliard \& Co. employ in their Brooklyn factory from four hundred to six hundred hands, paying them for salaries an average of over $\$ 3,000$ weekly. Their monthly sales are
about 250,000 pounds of plug tobacco, the value of which is about 250,000 pounds of plug tobacco, the value of which is
about $\$ 70,000$, and the revenue tax upon which is $\$ 75,000$. Their total sales in 1871 were $2,500,000$ pounds, the net value of which, without adding the tax, was $\$ 787,000$. This, of course, represents only a portion of the business done by that large firm, it having other factories in other cities in the vicinity of New York.
The Pioneer Company employs about five hundred and fifty operatives, and manufactures about $2,250,000$ pounds of plug tobacco per annu
taxes about $\$ 730,000$.
Messrs. Buchanan \& Lyall employ about four hundred and fifty laborers, and manufacture about $1,800,000$ pounds of obacco yearly, paying about $\$ 000,000$ a
A smaller establishment is Watson's factory, opposite Lorillard's, where from 75 to 125 employees are hired, manufacturing about 200,000 pounds of plug tobacco annually. The business done by this establishment is mostly foreign, its products being chiefly exported to South America-a trade in which it has almost a monopoly.
It will accordingly be seen, by referring to the above figures, that the three large Brooklyn plug tobacco factories employ constantly from fifteen to eighteen hundred operatives, paying them about $\$ 350,000$ per anaum for wages, and that they manufacture seven million pounds of tobacco each year, upon which they pay the Government annually over two millions of dollars taxes. It is said that during the last five years, for the same article, the whole State of Virginia has not paid so much to the United States Treasury as these Brooklyn factories.

THE GOVERNMENT WORISS AT HELL GATE.

The great work of removing the rocks at the dangerous pass in the East river, known as Hell Gate, City of New York, is progressing with great vigor. Engravings of the works were published last year in the Scientific Ameri-
can. A number of interesting illustrations are also to be found in Science Record for 1872. The mining, it will be remembered, is done by running out tunnels, into the rocks under the river, from a vertical shaft located on the shore at the margin of the river. The following recent particulars are from the Evening Post:
The work of removing the obstructions at Hell Gate, which was begun about two years ago, has been vigorously carried forward with but trifling interruption, and will, it is now estimated, be completed within a year and a half. One hundred and sixty five thousand cubic yards of rock were to two thousand cubic yards have already been taken up. About two hundred and forty men are now employed in the work, nearly all of whom are Cornish miners of long experience. A much larger number were formerly employed, but the introduction of the diamond drill, and the increased use of machinery in all branches of the labor, has permitted a great reduction of the working force. A hundred of the workmen were discharged last week.
The immense bed of rock is now perforated by sixteen tunnels and seven concentric galleries, the floor line of which is thirty two feet below the level of the river at mean low tide. It was originally designed to make the channel but wenty five feet in depth, but subsequently it was determined to render it perfectly safe for vessels of the largest draught.
The average hight of the tunnels and galleries is twenty-two The average hight of the tunnels and galleries is twenty-two
feet, and their width sixteen, leaving a roof from seven to ten feet thick, supported by numerous pillars. The length of the extreme gallery is six hundred feet, and of the grand tunnel two hundred and twelve feet and a half. There will altimately be twenty-eight tunnel headings, some of which will extend three hundred and seventy five feet.
the diamond drill.
The work of boring is done wholly by machinery, the la borers serving only to trim and dress the rock after the rougher work has been executed, and to perform the opera are the diamond pointed drills and four Burleigh steel per cussion drills. The diamond drill is the invention of Ro dolphe Leschot, a French engineer, and was flrst used in the construction of the Mont Cenis tunnel, but is now worked by improved machinery under American patents. The two used t Hell Gate were introduced last October, and have proved This drill consists of a hollow steel disk an inch and a half in diameter, the rim of which is studded with twelve bits of black carbon. Attached to an iron pipe of the same thick ness, it is propelled by compressed air at a pressure of sixty
pounds per square inch, and cuts its way through the hardest rock with marvellous rapidity. The motion is rotary, and the number of revolutions seven hundred and fifty per minute. Unlike percussion drills, it receives no wear except from friction, and heace is constantly in working order, and needs no sharpening.
Fifty-four feet and four inches have been tumneled by this drill in eight hours, through a mass of granite and quartz By screwing on additional pieces of pipe, it can be propelled in one direction to an indefinite extent; but for blasting pu ally, however, through the intervention of a new process in blasting, it is expedient to continue a tunnel of this charac ter for a long distance, thereby effecting a great saving of
time. Sand or clay is theu rammed into the bore until it is nearly full, to act as a recoil block to the charge, and the rock is blasted section by section.

All the blasting at Hell Gate is done by nitro-glycerin, and has been so carefully managed that not an accident has yet occurred. The nitro-glycerin is made into cartridges from eight to fifteen inches in length, about an inch in diameter, and holding from four to ei ht ounces. They are coated with a glutinous composition which effectually protects them from water. When a blast is made, a little tube of fulminate is attached to the cartridge and a spark transmitThough a large a wre connecting with an electric battery in succession with great rapidity, they are never fired at once, as the vibration in this case might seriously jar the stone roof, opening seams for the admission of the water. The explosions are of tremendous force, shattering the rock into fragments of a size convenient for removal. These are piled on cars drawn by mules, running on iron tracks
which are laid in all the tunnels, and conveyed to the shaft, which are laid in all the tunnels, and conveyed to the shaft,
where they are hoisted up by a steam derrick. The masses already taken out form two immense embankments on the river front.
A building near the mouth of the shaft contains three large steam boilers and five air compressers, the latter furnishing the motive power for the drills. In working the compressavoiding the formation used instead of water, thereby weather. Near by is a powerful steam pump, which drains all the tunnels comparatively dry through pipes radiating from its base.
Before blasting, it is necessary to use great care in ascertaining the line of resistance and quality of the rock, which is chiefly composed of granite, quartz, and gneiss. The strata embrace a great variety of minerals, however, includ ing, besides various metallic depesits, veins of decomposed felspar that are as soft as clay. The testing is done with the diamond drill, which in two instances struck sand and water
after boring twenty-eight and thirty-four feet respectively, rendering it necessary to abandon blasting in that direction and to have the bores tightly plugged up. In opening tunnel heading No. 3, a section of rock was struck so full of seams that the water poured through the roof at the rate of six hundred gallons per minute. This was effectually remedied by constructing a massive schilt of timber, oakum, and Roman cement, fourteen feet in length by twelve in width.
The work is carried forward almost constantly night and day, the men being divided into gangs which relieve each other at regular intervals. It is executed under the supervision of Major General John Newton, of the United States Engineer Corps, who planned it from the beginning. The Superintendent in immediate charge is G. C. Reitheimer, an engineer of wide experience in various countries, who has devoted himself especially to work of this kind.
When the rock is at length completely honeycombed, and nothing remains but the roof, its supporting pillars and the outer walls, it will be mined with seven thousand pounds of nitro.glycerin, which is equal in explosive power to seventy thousand pounds of gunpowder. All the charges will be connected by wires with an electric battery in the office of the superintendent, when, at the given signal, it is confidently expected that the whole vast mass will be blown into atoms, which will be entirely removed from the bed of the iver.
Brown Tint for Iron and Steel.-Dissolve, in four parts of water, two parts of crystallized chloride of iron, two parts of chloride of antimony and one part of gallic acid, and apply the solution with a sponge or cloth to the article, and dry it in the air. Repeat this any number of times, according to the depth of color which it is desired to produce. Wash with water and dry, and finally rub the articles over with boiled linseed oil. The metal thus receives a brown tint and resists moisture. The chlo ride of antimony should be as little acid as possible.

A Word to Boys.-Boys, oid you ever think that this world, with all its weallh and woe, with all its mines and mountains, oceans, seas and rivers; with all its steamboats railroads and telegraphs; with all its millions of grouping men, and all the science and progress of ages, will soon be
given over to the boys of the present age-boys like you? given over to the boys of the present age-boys like you Believe it, and look abroad upon your inheritance, and get ready to enter upon its possession. The presidents, emperors ers, men of the future-all are boys now.

Rough Weather.-The captain of the steamship Dorian reports that he sailed on February 19th from Gibraltar nd six days afterwards encountered a continuation of gates from W. S. W. to W. N. W. veering every few hours, and accompanied with squalls of terrific force. During
25 years' experience afloat, he never saw such weather." In 25 years' experience afloat, he never saw such weather." In
the squalls the water was actually torn up in sheets and hove the squalls the water was actually torn up in sheets and hove
in the air, rain pouring in torrents, the mastheads enveloped in the air, rain pouring in torrents, the mastheads enveloped ing as it Never in the tropics or near the line, have I seen such close proximity to the lightning. This weather continued more or less up to the 15 th inst., when it gradually toned down, enabling us to make some headway.'

The New York Mutual Gis Company, a new corporation is now laying pipes in this city. It will have new and improved appliances, use naphtha to enrich its products and supply its customers with gas of superior briliiancy-so they say. The present price of gas here is $\$ 3.50$ per thousand cubic feet; in Pittsburgh, Pa., \$1.80,

Beware of Green Colors.
The third report of the Massachusetts
The third report of the Massachusetts State Board of Health contains a valuable article on the evil effects of the use of arsenic in certain shades of green. The subject is
not new; more than one hundred years ago the use of not new; more than one hundred years ago the use of
arsenic as a pizment in certain manufactures was forbidden arsenic as a pizment in certain manufactures was forbidden
by law in France. But the beauty and healthfulness to the eye of the color, and the thoughtlessness or cupidity of makers of wall paper, artificial Howers, toys, lamp shades, confectionery and other articles, render it necessary to warn
the public again and again of the injury-sometimes a fatal the public again and again of the injury-sometimes a fatal one-inflicted by its use.
It appears that arsenic, aside from its uses in medicine and in destroying men or vermin, is employed in the arts, mainly as a large ingredient of green coloring pigments. Into one of these it enters as the arsenite of copper, known popularly as Scheele's green, and into another as the aceto-arsenite of copper, which is called Schweinfurt green. The generic name of emerald or mineral green is applied indifferently to either. Of these two colors, the first contains fifty-five per cent, more than one half, of white arsenic; the other in every one hundred grains, contains fifty eight grains of arsenic. Both pigments furnish the prettiest and most durable shades of green, each costs comparatively little, and the pro-
cess of manufacture does not require great skill. Hence, it cess of manufacture does not require great skill. Hence, it
spite of their deleterious effects, both are used. At one time, in Paris, when it was proposed to make the use of arsenic illegal in the manufacture of wall paper and artificial flowers certain of the makers said such a law would force them to close their shops; and in 1860 a paper maker in England said that in his shops alone two tuns of arsenic were used
weekly.
green colors in paper hangings are dangerous.
The most frequent instances of poisoning by these colors have followed the use of green paper hangings. Makers of the paper, dealers in it, paper hangers and even people who
live in the rooms papered with it have often suffered under live in the rooms papered with it have often suffered under every sympton of poisoning by arsenic, and in some cases have received lasting or fatal injury. In fourdren died in succession, and a post mortem chemical examination in the case of the last one showed traces of ar senic. The walls of the room in which they lived were covered with green paper, in which chemical tests showed the presence of arsenic-three grains in every square foot. In 1859, a middle aged woman in Boston was attacked with the
well known symptoms of arsenic poisoning ; and although well known symptoms of arsenic poisoning; and although
her life was saved by removing the paper, yet her health her life was saved by removing the paper, yet her health
was permanently injured. Such cases might be muliiplied almost indefinitely from the reports of physicians.
Some years ago this subject excited considerable discus. sion, and arsenical paper hangings became unfashionable The faskion appears to have changed again, however. Dr. Flank W. Draper, author of the article on this subject in the report, says that, in every store he visited while making his sbowed signs of the presence of arsenic. Under these cir cumstances, it would be well if every one who wishes to buy any green wall paper would subject it to the following simple chemical tests:

EASY TESTS FOR ARSENIC

Take a fragment of the paper and put it into a solution of ammonia. If arsenic be present, the liquid will assume a bluish color. In case a further test is required, pour a little of the ammoniacal solution on crystals of nitrate of silver; and arsenic, if present, will show itself by leaving a yellow deposit on the crystals. As arsenic is used in coloring all qualities of paper, from the cheapest to the costliest, a knowledge of this test will
It is of some interest to know how the poisoning by wall paper is effected. Formerly it was held that the poison was set free by some kind of decomposition, and vitiated the air as a gas. The modern theory is, however, that "the poison
escapes from the paper into the atmosphere in the form of dust, mechanically disengaged," as by dusting or wiping the walls, or jarring them in any way. The dust of a room
whose walls were covered with paper containing arsenic, on whose walls were covered with paper containing arsenic, on
being submitted to a delicate chemical test, is said to have exhibited unmistakable traces of the poison.
green colored dresses, toys, confectionery, etc., are poisonous.
But it is not alone in coloring wall paper that these poisonous pigments are used. Confectionery, pastry, ornaments and toys are colored with them, articles that soon find thei nish an illustration. One of the green blocks of paint, weighing $38 \cdot 26$ grains, on analysis was found to contain 8.89 grains of arsenic. The shelves in closets and pantries are sometimes covered with arsenic paint, from which the poison is easily absorbed by any warm or moist substance. The brilliant green paper so common for covering paste board boxes, for tickets, for bonbon wiappers, for lamp shades, is colored with arsenic. The green of artificial grass and leaves is generally produced by arsenic In one case, in a single twig of twelve leaves, Arsenic is used to color cloth for women's dresses. Dr Draper procured a sample of the stuff called tarlatan, re sembling muslin, at one of the retail stores in Boston, which was found to hold feebly $8: 21$ grains of white arsenic to every square foot. To handle or to wear such goods is dan gerous to life.

Messrs.'T. L. von Dorm and E. L. Eaton. photographers,o Omaha, will please accept our acknowledgments for an ex cellent photograph of the U. P. R. R. bridge at that point.

The Administration of Chloroform, Nitrous
oxide, etc
The recent death from fright in a dentist's chair in this city of a woman to whom nitrous oxide or laughing gas, had been partially administered, has called renewed attention to the dangers that attend the inhalation of anæsthetics generally. It seems to be the opinion of the most experienced
medical men that no danger attends the operation if it is medical men that no danger attends the operation if it is Dr. Conducted.
Dr. Curtis of Cincinnati holds that many surgeons are too hims in putting persons under the anæsthetic influence. He nimelf determined to give chloroform very slowiy, and to inclined to inhatations of atmospheric air. As pathaling the chloroform, he gave it loosely through a silk handkerchief and so slowly that from 15 to 30 minutes were required to prepare the patient for operation, never giving it fast enough to diminish sensibly the force or volume of the pulse or to darken the coior of the surface. He never gave more than was necessary to prevent sensation, pinching the surface to learn when this was accomplished, and renewing the inhala tion during operation only when he found sensation return-
ing. Soon after the introduction of cbloroform into surgery, ing. Soon after the introduction of cbloroform into surgery
a Boston surgeon, while operating on a patient under its in a Boston surgeon, while operating on a patient under its in
fluence, discovered that the blood flowed very freely; but, as it was durk blood, heuld not seriously affect the subject. Soon he was alarmed by the sinking of the patient, who was only restored by strong stimulants and friction. The operator had given chloroform without the admixture of a quantity of atmospheric air sufficient to purify the blood of carbon; and hence, though he had wounded an artery, as he discovered by the irregular discharge, the blood was purple, instead of vermilion, as it should have been. The chloroform had been given too fast, excluding the oxygen of the atmosphere, as was evident by the dark color of the blood, the reduction of the force of the circulation, and the purple hue of the surface generally. This is a point to which great attention should be paid in the use of the anæsthetic agent.
The inhalation of chloroform is only a speedy method of making a person " dead drunk," and Dr. Curtis soon saw that if the anæsthetic state were brought on gradually, as intoxication generally is, and stopped as soon as sense and muscu lar motion are by taking alcoholic liquors, it produced no worse effect upon the system. In both cases the patient often vomits, both when taking the narcotic and when get ing rid c^{8} it; and in both, insensibility to the severest operations may be produced. By taking proper care in regard to these things, Dr. Curtis says that operations may safely be performed on very small children and very old persons, on those whose lungs or hearts are diseased, or who are much those whose lungs or hearts are diseased, or
reduced by chronic ailments of various kinds.
A singular effect which chloroform has upon some persons is its dulling the brain and destroying the intellectual facul ties for months after it has been taken, and after physica health has been restored. One gentleman of active mind, ready thinker and fluent writer, might be named who has been under the influence of chloroform three or four times
for surgical purposes, and after each time his intellect has been torpid for months, though his surgical recovery was rapid.

Electric Probe for Wounds.
In the last general assembly of the Scientific Association of France, M. Trouvé exhibited and described his probe for he search and extraction of foreign bodies remaining in wounds. Surgeons have at all times been occupied with the
discovery of a simple and practical means, capable of revealing to them to a certainty the presence of any foreign bod in the tissues. Since Garibaldi's wound, two plans have That by friction (Dr. Nélaton's plan) was preferred to the
That employment of electricity, proposed by M. Favre, of Marseilles, which was the subject of a communication to the Academy of Sciences. The style or probe which Dr. Nélaton mall "riscover the presence of a ball has at its extremity blackened in contact with a leaden bullet. This plan is, without doubt, ingenious, and in this special case of great utility.; but the services which it can render are very limited In fact the body, the presence of which it is sought to verify must be of lead, and the wound should not be closed, very straight, nor even very curved. 'This verification becomes
even impossible when, as frequently happens, the bullet is even impossible when, as frequently happens, the bullet is
encysted or covered with a portion of muscle or cartilage er even with a fragment of the clothing of the wounded

The apparatus of \mathbf{M}. Trouvé consists of three distinc parts: a battery, a probe, and an indicator (revélateur). In principle, it is founded on the difference in conductibility bezinc and india rubber hermetically sealed, the exciting liquid being bisulphide of mercury. The probe is a pipe, flexible or effected, and then the stylets of the indicating apparatu may be introduced. The indicator contains in its interior a very small electromagnet ;'with a vilrator and two small rods of steel, very sharp and insulated from each other; and ssoon as these points, which are in connection with th battery, touch any metallic substance, the vibrator begins t
With this apparatus, it is possiole to distinguish the differ ent metals from one another. If the metal is lead, the
rembler vibrates regularly; if however, it is iron or copper the trembler has a jerky movement. Iron may be dis
tinguished from copper by its action upon the needle of a galvanometer.

Recent Decision by the Commissioner of Patents.

 Harriet L. Low, Administratrix. Application for the 6, 1858, for an Improvement in Nawing Machines. Decided March 2, 1872.Practice where the original patent has been reissued.Where a patentee assigns his entire interest in his patent for the original term, and the assignee without the concur-
rence of the patentee surrenders the original patent and secures a reissue, the patentee may have certificate of extenion attached to the original patent.
Leggett, Commissioner:
The invention to which
The invention to which this application relates is an im-
provement on sawing machines. provement on sawing machines. The claim is very narrow, disclaiming all the parts of the machine, and claiming only
the combination in the definite form stated. The examiner reports that this combination was new and patentable at the time the patent was issued, and that the proof shows the time the patent was issued, and that the proof shows the
same to be of considerable value to the public. The statement of accounts is not very full or definite; but this is ex--
plained partly by the death of the patentee, and his books plained partly by the death of the patentee, and his books
not showing minutely the expenditures on account of the not showing minutely the expenditures on account of the
patent; but enough is shown to satisfy the Office that the patent; but enough is shown to satisfy the Office that the
net receipts have been very small, and much less than the value of the invention.
An argument has been filed in opposition to the extension,
based chiefly upon the fact that the application is for the extension of the original patent, while the original patent was surrendered and reissued March 6, 1866, and again re-issued April 2, 186\%. In the application for extension, no ignored as completely as if they had never been in existeuce The remonstrant holds that, when the original patent was surrendered and reissued, it ceased to exist, and cannot now be revived by extension. This doctrine would be just and applicable provided the patentee had joined in either application for reissue; but the records of the Office show that he
assigned his entire interest in the original term of the patassigned his entire interest in the original term of the pat-
ent to one C. S. Burt, and that said Burt as assignee secured the reissues without joining with him, the patentee; and there is no evidence in the Office that the patentee or administratrix had any knowledge whatever of the reissue. Under such circumstances, it would be a manifest and unnecessary hardship to require the patentee to apply for the extension of the reissue, and then compel him to incur the expenses and
risk of another reissue in case he preferred the original form risk of another reissue in case he preferred the original form
of the patent. In this case, the patentee assigned only the of the patent. In this case, the patentee assigned only the
the original term of the patent, reserving to himself, under the law, the exclusive right to the extended term; and it would be an anomaly in law if the assignee could render the extended term worthless to the inventor by obtaining a worthless reissue just before the expiration of the original term ; yet such might be the case if the remonstrant's doctrine is law.
But it is not necessary to further discuss this matter, as the question has been adjudicated by the courts. In the the question has been adjudicated by the courts. In the
case of Potter vs. Braunsdorf, 7 Blatch., 110, Justice Blatchcase of Potter vs. Braunsdorf, 7 Blatch., 110, Justice Blatch-
ford says: "Where a patentee, having secured his invention by a patent with a specification in such form as he regards to be most proper, assigns the entire patent for the original term only, reserving his right under the eighteenth
section of the act of 1836 to apply for and obtain an extensection of the act of 1836 to apply for and obtain an exten-
sion, it ought not to be and it is not in the power of the assignee, by surrendering the patent and obtaining a reissue of it on a specification not signed, assented to, or adopted by the patentee, and which perhaps the patentee may regard as rendering the reissued patent invalid, or as securing, by new and different claims, rights of little value, to effect, with
out his consent, the statutory right conferred on the patenout his consent, the statutory right conferred on the paten-
tee to apply for and obtain an extension of the only patent which he has ever adopted or assented to."
The extension is granted, and the certificate will be at-
tached to the original patent; or, if the original patent is lost, to a certified copy of the same.

The Imitation of Gems.

Nowhere has chemistry-the science most essential for this purpose-been brought to greater perfection than in France. Acccrdingly, none have attained more skill in the art of imitating gems than the French. If the revenue that Paris has derived from this source alone for the last quarter f a century were stated in plain figures, it would seem more fabulous than any story in the "Arabian Nights." But it would seem worse than fabulous to say than three fourths of those gems which were worn daily, or at least nightly, in New York, Philadelphia, and Boston, including those that sparkle on the bosoms of some of our great men, have contributed to that revenue in proportion to their size and char acteristics. Yet it would really be no exaggeration of tho act. Let those who think we want to trespass on their creThat of M Fo the works of would be sufficient. That learned member of the Royal Academy of Sciences has been enabled, by a long series of experiments, to produce a perfectly col rless crystal. This he calls fondant, or base; he has formed one by each of the five different processes; he has also shown ow various colors are produced, according as a given piece of crystal is intended to be a diamond, an amethyst, an
emerald, a ruby, etc. Several German chemists have given the world the benefit of their researches on the same subject nd some have enriched themselves and others by them. This is true, for example, of Professor Lippert, of Dresden who prepared 3,000 casts; of these one jeweller bought 1,000 and rapidly made his fortune; the remainder were purchased by different jewellers, each of whom obtained the prices of real gems. Since the celebrated experiments of Lavoisier every person of ordinary intelligence is aware that the dia mond is simply pure carbon crystallized, and that it can be burned in osygen, the sole result of the combustion being carbonic acid. M. Despretz, another French chemist, has ac tually made real diamonds, having melted and crystallized arbon by means of a galvanic battery; but Nature has so arefully kept the secret to herself thus far, that the learned renchman's diamonds are so small as to be visible only with a microscope.-British Trade Journal.

LET him who regrets the loss of time make the proper use of that which is to come.

Improved Portable Fence. far as we are aware, very few if any have proved entirely been the author of several improvements of this kind, which the defects usually attending this class of devices, namely their liability to being blown over by wind storms, the room they occupy, their inefficiency in restraining animals, and their liability to get out of repair.
In the present invention, he claims to have so far profited by previous failures that he has produced a fence free from the defects named. That others are convinced, as well as himself, is evident from his statement that, at a recent exhibition of the fence, the inventor sold in a single afternoon twenty-seven local rights to make and use it.
It is claimed to be as strong as any post fence, requiring only small posts, having the sides slightly hewn, and it has two holes bored for the holes bored for the insertion of hooks for fastening, which fin
ish the same without ish the same with
weakening them weakening them.
Two metal hooks Two metal hooks
or clamps, A, Figs. 1 or clamps, A, Figs. 1
and 2 , with slots for wedges, B and C, are used, as shown, for fastening panels to the posts. Another style of hook is shown at D, Fig. 1. The panels consist of two strips nailed at right angles across the slots or rails, say ten or twelve inches from each end. The slots should be six inches
apart, and number four or five to each panel, two extending six irches beyond the rest, for fastening on the clamps or hooks The rails are left unimpaired and not weakened. In picket $f=n c e s$, the rails may meet as shown. In rail fences, the rails need not meet within six inches, as also shown, the post, of course, closing up that space.
Cross lines of posts may be set on farms, and fences removed with great facility from one line of posts and fastened on to another when and where wanted. Any panel may be detached anywhere, and an easy way of access from one field to another obtained, to pass with teams or stock without, as is often the case, going from one end of a field to another ; this is especially a great desideratum for lawns, gardens, lots, etc., as means of access where gates are not always just where wanted.
Whitewashing preserves fences. It is believed that by having a large enough trough, made of boards, into which to lay panels, and filling the same with whitewash, two men, by immersing the panels, may whitewash more in one day than they could in a week in the usual way, dcing it more thoroughly, dispensing with brushes. This fence is exceedingly simple, and may be made indoors at seasons when farmers have most leisure.
Two patents were obtained on this fence through the Scientific American Patent Agency, Feb. 6, 1872, by Israel L. Landis, of Lancaster, Pa., who may be addressed for further information.
wood Ashes.
Ashes from the wood of the hickory, sugar maple, elm, etc., contain about 50 per cent of potash compounds, consisting chiefly of combinations with carbonic acid and silica, while the ashes of pine wood will rarely yield more than 20 pe: ce it. Ashes saved from clearings often contain earth, mixed with them in gathering the remains from fires. When wood is used for burning lime, the ashes are often put into the market largely mixed with that substance. Sifted coal ashes are sometimes used to adulterate wood ashes, and the friud can hardly be detected by the eye.
Leached ashes always retain a portion of potash, usually in combination with silica or phosphoric acid. These compounds are slowly soluble in water, and, therefore, are not removed in leaching, but they are valuable, especially to grain crops and grasses. Ashes, whether leached or unleached, should never be suffered to go to waste. Even coal ashes may be used to good advantage on stiff clay soils. Their effect, however, is more mechanical than chemical.

Cut your Hay and Clover before they Ripen. An interesting discussion is in progress, among the chemists of continental Europe, on the true character of that substance which forms the frame work of plants, generally known as woody fiber. Chemists have heretofore considered this as a single proximate element, but the researches of Dietrich and König have pretty clearly established the complex character of this substance. There is first the true frame work, or vegetable fiber, consisting, substantially, of organized starch. To this substance, the term cellulose has been appropriated. Covering this true skeleton is found a second substance, much denser than the cellulose, and con taining the chief part of the mineral matter remaining as ash after the plant is burned. This is called lignin. These terms

Aphough there kave been many inventions intended to supply a good, cheap, and convenient portable fence, yet, so satisfactory. The inventor of the present device has himsel upon trial, have proved not to be wholly free from some o
have been heretofore applied indiscriminately to woody fiber. The point of interest in the discussion lies in the fact that cellulose is largely digestible, while lignin is al most indigestible. Dr. Marcker, at Weende, has conducted a series of instructive experiments on the digestion of hay by sheep. Of the crude fiber of meadow hay, he found that about 60 per cent was digested, and the 40 per cent which remained in the excrement consisted chiefly of the lignin, containing a large proportion of the mineral elements of the food. Of the albuminous portion of the hay, but 55 per cent was digested, while the non-nitrogenized substance, such as sugar, gum etc., proved more digestible, 68 per cent having disappeared When the experiment was repeated with hay of the second cutting, in which the woody fiber had not fully matured, it was found that 68 per cent of the crude fiber was digested Professor E. W olff has made similar experiments with red clover hay, with results almost identical. He ascertained Fig 1.

LANDIS' PORTABLE FENCE

owever, in another experiment, that clover which was cut before it had blossomed was about one sixth more digestible than that which had passed the bloom before it was cut, From these experiments, it is fairly to be inferred that the increased weight which grass acquires in ripening is from the increase of indigestible lignin, and not from digestible cellulose. Meadow grass or clover cut at or before blooming is worth 16 per cent more than an equal weight cut after it has matured. The nutriment in the seed of timothy hay is an unknown quantity in these experiments, and will change the results somewhat. $-R$. T. Brown.

PALMER'S STAVE JOINTING MACHINE.
The simple invention illustrated herewith is, in our opinion, calculated to effect a great saving in the jointing of staves and in the manufacture of all kinds of casks. The object

which the inventor has accomplished is to joint every stave to the proper curve corresponding to its width, so that out of a lot of jointed staves, those required for a cask may be taken indiscriminately, and no matter whether there may be a third more staves in one than in another, the same ellipsoid

form will be produced in both, and a perfectly tight symme trical cask will result. We are told that barrels made in this way, without the use of flags, prove perfectly tight. The jointing proceeds with the same rapidity with which the slitting of a stave might be done with a circular saw. The parts are few, and all may be made as strong and substantial as
need be. The entire absence of delicate complications, and phe ease by which the machine may be manipulated, are we have no doubt that this machine of prll take its place per manently among standard appliances in the manufacture of all sizes and descriptions of casks.
The general principle which underlies the machine is that of making the stave move on a carriage which moves on two guide ways, inclined to each other at an obtuse angle in such a way as to make the carriage describe a curve, the angle of the guides, and consequently the curve cut, varying o suit the width of the stave.
Fig. 1 represents the device as placed on a saw table ready for work. Fig. 2 represents the details of the same. A, in both figures, represents the frame of the carriage ways, and B the carriage. The latter may be rounded on the top to suit the curve of staves cut with barrel saws, or flat, for fla staves. C, Figs.. 1 and 2, indicates horizontally inclined guide ways meeting at D. E is a lever pivoted at F. G, Fig. 1, is a pin rising from the end of the long arm of the lever, E, up through a slot in the carriage.
Now, as the lever, E, is also joined to a lever, H, Fig. 2 (where the carriage is shown bottom side upward), the arms of which lever are of the same length as those of E, it is
 obvious that any move ment of the pin, G will also produce an equal movement,in the same direction, of the pin, I, Fig. 1, which rises from the end of the long arm of the lever, H, through a slot in the carriage, the same as the pin, G.
Thus the two pin move laterally in the same direction and to the same extent, when a staveis placed agains them. At the sam ime the carria sum ways, C, Fig. 2, are adंjusted to give the pro

er curvature to the edge of that particular stave

The stave, therefore, has only to be laid upon the carriage in the proper position to be jointed. In doing this, the pins are moved by the edge opposite that presented to the saw and the guideways are correspondingly adjusted.
A spur, J, Fig. 1, holds the end of the stave which is remote from the operator.
The adjustment of the carriage ways remains to be decribed.
When the carriage is brought into the position shown in Fig. 1, the lever guide pins, G and I, being left free to move the end of the long arm of the lever, E, Fig. 2, enters a recess in the end of the lever, K, Fig. 2, being guided thereto by a weighted cord, L, attached to it, which cord runs over a pulley, M, in the recessed end of the lever, K. The lever, E, thus engages the lever, K, and causes it to shift the guide ways, a ratchet and pawl(not shown) holding the guideways in place till the cut is made, when the pawl is automatically disengaged on the return of the carriage
The device is capable of adaptation to any saw table, by slight modifications.
Many testimonials certifying to the value of this machine have been shown us, as coming from practical men who have them in use.
Any desirable bilge may be given to casks or barrels by its use, and it can be applied to the jointing of any kind of staves, large or small, curved or straight. The machine is cheap, and will, we believe, meet a long felt want on the part of stave manufacturers.
Patented August 8, 1871, by Lemuel R. Palmer, whom ad dress, for further information, Belfast, Me.

A material which has come quite extensively into use in Germany, as a substitute for hair in the stuffing of saddles, etc., consists of a mixture of flax seed and tallow. The ad etc., consists of a mixture of fax seed and this substitute consists primarily in the fact that
vantage of thin the mobility of the seeds, one upon the other, prevents the the mobility of the seeds, one upon the other, prevents the
packing or settling in any particular place, as often happens in saddles stuffed with hair, thus causing any given pressure to be readily and uniformly distributed over any given surface. The tallow serves the purpose, too, of keeping the leather flexible, and of preventing the absorption of perspiration, protects the article itself, and prevents the back of the animal from becoming galled. Animals with sores or galled spots on the back can be ridden with saddles stuffed with this material without any great inconvenience, The tallow also has the effect of preventing the rotting cf the flax seed, and is to be added in sufficient quantity to give the requisite softness to the entire mass. An aromatic odor can be imparted by introducing oil of turpentine or camphor powder, and the durability considerably increased thereby. One part of tallow to from six to ten parts of flax seed may be used, according to the temperature.

Carpeted Floors.-When a carpet is taken up to be cleansed, the floor beneath is generally much covered with dust. This dust is very fine and dry, and poisonous to the lungs. Before removing it, sprinkle the floor with very di Iute carbolic acid, to kill any poisonous germs that may be present and to thoroughly disinfect the floor and render it sweet.

E DISCOV For the Scientific American,

by Ji h. leach, of dartmouth college

The discovery of an atmosphere beyond the photosphere of the sun opened a wide field of observation to astronomers, field which the triumphs of the spectroscope have rendere so interesting as to claim the especial attention of scientific men; and in no other department of science have such won derful discoveries been made, and in so short a time, as in the department of solar physics. The invention of the teles cope enabled men to explore the depths of space, to measur and examine the surfaces of the heavenly bodies, but that of the spectroscope has discovered to them their very composition.
The prominences of the chromosphere, as such, were first observed during the eclipse of 1842 ; red clouds had indeed been seen prior to this, but no suspicion of their character had entered the minds of the observers. The eclipse of 1842 found a corps of observers, composed of the first scientific men in all Europe, among whom were such men as Arago, Biele, and the younger Struve, a waiting the phenomena. The appearance of the prominences was an object of surprise, and various theories were entertained in regard to them, some believing them to be mountains on the sun, others flame, and some entirely denied their existence, believing the sight of them to be an opticai delusion.
The prominences were next seen during the eclipse of 1851. Observations made during this eclipse dissipated, in a measure, the doubts entertained in regard to their reality. Drawings were made of the prominences by many observers, but the time had not come for a general acceptance of their solar origin; this was to be proved and acknowledged by the cientific world in 1860. The observations made during this eclipse were especially directed to the solving of this problem to the satisfaction of all. M. Goldschmidt's account of his observations at this time is very interesting. In addition to sketches of the prominences made by M. Goldschmidt and others, the aid of the photegraphic art was brought to bear upon the solution of the prominence problem by De La Rue and Secchi. Every photographer well knows the feeble ac tinic power of red light; against this they had to contend, but in spite of all difficulties they succeeded in obtaining several good pictures.

The following engravings represent the prominences as photographed by Də La Rue, in 1860. Fig. 1 represents the earliest phase, while, in Fig. 2, the prominences on the left are nearly obliterated; those on the right are revealed. The problem was never solved to the satisfaction of all. The prominences were proved to be solar beyond a doubt. A solar envelope or atmosphere, beyond the photosphere, in which the prominences had their origin was revealed; in fact, the chromosphere was discovered. Science could measure the dimensions and copy the forms of the solar appendages; but it re mained for the spectroscope to reveal their composition Kirchoff and Bunsen, quietly working in their laboratories, were soon to open an avenue leading to discoveries which should rival those of the telescope.

Some idea of the delicacy of spectrum analysis may be gained when we know that the $\frac{180000000}{}$ of a grain of so dium can easily be detected; and we have only to take a book from our shelves, and open it over a lighted taper to detect in its flame the presence of sodium in the dust which has fallen from the leaves. An instrument having such a power of delicate analysis was now to be employed in the investiga tion of the chromosphere and its prominences. Nine year must pass away before an eclipse would occur whose path would furnish accessible stations for observation. The tota eclipse of August 18, 1868, furnished unusual advantages and it was at this time that the spectroscope was first directed toward the solar prominences.
The results of the observations made during this eclipse will be given in another article.

The Railroad Accident near Springfield, Mass.The danger of heating railroad cars by stoves has received a further illustration by the conflagration of the ruined carsin the Springfield, Mass., accident. There is an onportunity fo a ingenious mechanic to invent some means of heating the ars by the exhaust steam of the locomotive. Many attempt have been made to perfect such an arrangement, but non capable of practical application has been produced.

Cheap Paint.-A cheap paint may be made for out-build ings and general use, by taking milk and cement-o water lime, as some call it-mix and apply three or four coats a dry color may be added. This will last for years, and by enewing once in two or three years, a building will be kep looking well at small expense

Live within your means, if you would have the means which to live.
a patent office curiosity, and a specification IN RHYME.

Among nearly 20,000 specifications, including substitutes now on file in the United States Patent Office, the followin is one of the most remarkable and amusing. In this case, a ate Commissioner decided that no patent should issue upon poetical specification which was in other respects entirely sufficient. This specification was written by the inventor Dr. D. Breed, late of the Patent Office.

Fig. 5.
Fig. 6.

ROACH TRAP.
To all those whom it may concern By this description, you may learn That1, D. Breed, a District man, Havemade invention of a plan,
Both new and useful, of a trap For catching roaches while you nap In setting forth my new invention,
Of first importance I would mention My trap's a novel earthen cup Oatside of which the roach cre And, jumping in to eat molasses, The well glazed mouth he ne'er repasse
In drawings, figures one and two Show simple forms, yet something new; The first has rough outside or way he next, an inclined path at A. Is crowned with bowl like half a pea,
To hold molasses, say a drop. And smoothly glazed from base to top. But this is no essential thing; Without it, in the roaches spring, If, in the bottom of the cup
You place the sweet whereo You place the sweet whereon they sup. The figure three shows form unique Of which in highest praise I speak 'Tis slaze 1 on in and outer sides, Where creep the roaches up a trac Without a fear of sliding back.
In figure four, at B, a spout Is made, to wash dead roacles out his form is glazed entire within, Also the mouth ap to the brim. aton the outerside, all round In five and six, a septum, C uts full two thirds the cup from three. he smaller part has open door And letter D, close to the floor, Where Mr. Roach with ease walks up;
Nor zeeds his wife or child his hand A little trip in balance hung ay o'gr the mouth of cup be swung; To save expense, away Ifing f vaied tras, with spral Ind sundry forms, I yet might talk of clay or other mortar made To suit the fancy or the trade Forms now conceived, yet not revealed,
That sleeping lie in fancy's field. rom this description, you may mak Whatever form you choose to take, rom figure one to six, made p recommend said figure three of porcelain, like cup tor tea. claim. As manufacture new, I claim
Said pottery trap, or porcelain

If, while you sleep,
The roaches creep
nto your sugar bowl
And, when you wake
They quickly take
Safe to their hiding hole, Before your head,
Upon your bed Upon your bed,
Again you lay to na
Be sure to get
And bait and set
The rhyming roaching trap.
D. B.

THE richer a man makes his food, the poorer he makes his ppetite.

FRICTIONAL GEARING.

е. s. wicklin

NUMBER I.

Frictional Gearing is the term applied by Webster to wheels that transmit motion, by surface contact, without teeth. Among mechanics and practical men, who build and se them, such wheels are usually called " friction gear." When spoken of separately, that is, without reference to thir combination, they are called friction "pulleys," especially those with faces parallel to the axes. Whenmade conical, they are termed "bevel friction," and are usually spoken of as " wheels."
This style of gearing is now in use in the lumbering region of the northwest, and is fast gaining favor wherever used. It has someadvantages, not possessed by other modes of communicating motion, which do not appear to be counteracted by any peculiar disadvantages. As a rule, however, it docs not strike the mind of the mechanic favorably when first suggested, but must be seen to be appreciated. The first impression appears to be that the point of contact is too small to possess any considerable amount of adhesive force It is penerally received a law that friction or adherion generally in pron con amount of presure the condion the amount of pros and the condion of the surfaces. But to many minds, this law appears more as a learned theory than as a practical truth. In fact, thereare few, even of our best mechanical thinkers, who do not manifest some surprise when, for the first time, they see with what apparent ease one smooth wheel will drive another equally smooth, by what appears to be a very slight contact; and that the sec. ond wheel is not only itself driven, but carries with it ponderous machinery, involving the expenditure often of more than fifty horse power. Nor is it strange that many minds are unprepared for such results, since most of our mechanics rely, to some extent at least, upon books, in the absence of personal experience. And here books fail.
There are, perhaps, no other means of transmitting motion about which so little has been written, in proportion to its importance, as frictional gearing. And most that has been written is upon the grooved wheels, which are frictional with a vengeance, and are, by the unequal motion of the parts in contact, as well calculated to absorb the motive power as they are to destroy each other.
As examples; In the latest edition of Webstcr's "Unabridged" we find the following definition: "Frictional gear ing, wheels which transmit motion by surface friction instead of teeth. The faces are someimes made more or less V shaped, to increase or decrease friction, as required."
In a recent work on mill building, perhaps the latest published in this country, a work of large pretentions, the only allusion to this class of machinery is a single sentence, in the chapter on friction, as follows: "Friction also furnishes a convenient medium of communicating and transmitting mo tion in machinery, as in gigging back the carriage and log in saw mills; and in some modern mills, the whole driving power for both saws and mill s'ones is communicated by friction of iron upon iron.'
Another late mechanical work gives us the following in formation upon friction gearing: "The surfaces of the wheels are made rough so as to bite as much as possible."
The above quotations furnish a sample of what may be learned from books of this very important mode of trans mitting motion. And yet, in all the vast lumbering region of the northwest, comprising a large part of two or three States, and furnishing building and fencing material for several millions of people, there are few mills in which some part of the work is not done by friction gear. And in many mills the whole power, amounting to from 100 to 300 horse power, is thus transmitted.
The growing popularity and importance of this rather new style of gearing cannot fail to make it a subject of interest to mechanical engineers and manufacturers.
With this view, the writer now proposes to give, in a short series of articles, some observations taken from a practical stand point, and also the results of a few experiments, made to determine the percentage of adhesive force or trac tion of these wheels as compared with belted pulleys.
Now a word as to what friction gearing is, where it has become an undoubted success. In large mills where this gearing is used to transmit power to drive five or six gangs, one or two large circular saws, a muley, gang edgers, trim mers, slashers, lath mills, shingle mills and more besides where 20,000 feet of boards may be sawn in an hour: the faces of the wheels are not " made more or less V shaped so as to increase or decrease friction as required" Nor is th power "communicated by the friction of iron upon iron." Neither are the surfaces of the wheels "made rough so as to bite as much as possible." On the contrary, the surfaces are made smooth and straight as possible; one wheel, or pulley, made smooth and straight as possible; one wheel, or pulley,
is made of iron, and the other of wod, or of iron covered is made of iron, and the other of wod, or of iron covered
with wood. So it is seen that the books are wrong, at least so far as applied to the localities where this gearing is most used.
Where it is practicable, this gearing is so arranged that the wood drives the iron. This is done so that the "slip," in starting up machinery while the driving wheels are in full motion, will tend to wear the wooden wheel round rather than to cut it in grooves, which is done to some extent when the wheels are reversed; though this tendency is much less than might be supposed, as in most cases the "hull wheel," used for drawing logs into the mill, is a large wooden wheel driven by a small one of iron. And these wheels, though started and stopped with the driver in full motion a hundred times a day, work well and last for several years. But for
machinery in constant use, the wooden wheel should always drive the iron.
For driving heavy machinery, the wooden drivers are put upon the engine shaft, and each machine is driven by a separate counter shaft. Two or more of these counter shafts are usually driven by contact with the same wheel, and each is arranged so as to be thrown out from the driver and stopped whenever required, and again started at any moment without interference with other machinery. This is easily accomplished, as a very slight movement is sufficient for the purpose.
To drive small machinery, these friction drivers are put upon a line shaft so as to drive a small counter shaft, from which the machine is driven by a belt, and stopped and started, by throwing out the counter shaft and thro wing it in again.

Cotrepmatice.

2he Eitiors are not responsible for the opinioions expresed by thets Cor

A Visit to a Watch Manufactory.

To the Editor of the Scientific American:
For many years I have had a great desire to become acquainted with the manufacture of watches by machinery. None of the many aricles published on the subject seemed satisfactory, and I gladly availed myself of an invitation to
visit the works of Giles, Wales, and Co., at Marion, N. J. visit the works of Giles, Wales, and Co., at Marion, N. J.
Here I found an immense building devoted to the manufacture of the movements of watches. The building is constructed almost entirely of iron and glass, and is remarkable for its excellent facilities for light and ventilation. Inside, it is a perfect hive of industry, more than five hundred men and women being busily engaged in their various duties. I spent three days in wandering through the building, and trust the notes of my observation will be interesting to the general reader. The work is all done on four different floors and a basement. I will begin with the basement, which is devoted to the engine room, smith shops, hardening room, punching room, etc. On this floor, all the heavy work is done. Here all the parts are wrought into shape from the crude material. All the steel used here is of American man-
ufacture, and has been found to be superior to all other as it is not so liable to spring, when hardening the pinions, staffs and springs. The company is able to supply itself in America with all the material necessary for its watches, except the stones for jeweling purposes.
Ascending to the first floor, we find it occupied by the office, forwarding rooms, and machine shop. In these latter shops, the company makes all the various machines used in making the different parts of the watch. They have four or five hundred of these machines, some of them performing very novel work. Many of them require the greatest accuracy and leave nothing to the eye or touch of the workman. Exactness is secured by gages, the coarsest measuring to the $8 \frac{1}{5 \pi}$ of an inch, the next, to the $1 \frac{1}{2} \overline{5} \sigma$ of an inch, and the finest, to the $\frac{1}{17000}$ of an inch. The workman has only to trust to the guidance of these gages.
The second floor, I find devoted to
The second floor, I find devoted to the balance and pinion department. Here the expansion balances are made and the piuions finished. The operations of making and polishing the pallet jewels are also going on. I was astonished at the skill and ingenuity displayed in the machinery constructed for these purposes. The machines cut and polish the hard stones, with all their perfect angles, of the greatest exact ness in size, and so small that it takes one hundred thousand of them to weigh a pound. The facility with which the precious stones are cut up into jewels is indeed astonishing, considering their hard and brittle nature. The roagh stone is first sawn into slabs, then these into squares. The latter are then cemented to the chuck of a lathe which runs with lightning rapidity. They are then cut by a diamond pointed chisel, fixed to an arm which moves arn horizontal semicircle. Thus they receive a convex form. By another ap-
plication of the diamond point, the little cup shaped cavity plication of the diamond point, the little cup shaped cavity
for hoiding the oil is formed. Then the minute perforation for holding the oivot is made by a fine diamond drill, first applied to one side and then to the other. These perforations are then brought to the required size and smoothness by a hair-like wire covered with diamond dust. In this room are also made steel screws, perfect in every particular and yet so small that it takes 40,000 of them to weigh one ounce.
I next ascended to the motion room on the third floor. this room all the motion works are fitted, including the mainspring birrel, the winding and stop works, the enamel ing, marking the figures and gilding the plates. Here also in a room with locked doors, is performed the damascening, a process which gives to the metal the appearance of watered silk. This is a secret known only to the operators.
Thence I go to the fourth floor which may be called the great workroom of the establishment. Here the differen parts of each watch are brought for final adjustment. Every part is made to harmonize. Each pivot must have its proper
side stake and end stake, lest an atom of dust or a change of side stake and end stake, lest an atom of dust or a change of
temperature lock the wheels and stop the watch. The temperature lock the wheels and stop the watch. The Every watch is carefully tested with reference to the effect of heat and cold, and position. The springs and driving powers are so carefully harmonized that all work with the greatest precision.
Since my visit to this wonderful manufactory, I am satisfied that the old way of making watches is superseded, and that American industry and genius has surpassed Europe in on of her oldest and most difficult branches of manufacture.

To the Editor of the Scientific American:

I have read your remarks in the Scientific American of March 16th, on the subject of turbine wheels, with much inme so and the common sense of your conclusions seems to ing them up.
The fact which you state, that every competent hydraulic engineer concedes a different percentage of water power unengineer concedes a different percentage of water power un-
der different heads, seems to me to prove that more patents are yet to be obtainedbefore the best effects can be had. The power, as we get it, is a fitful uncertain thing and difficult to calculate in advance, and is by no means what is claimed
as the proportion of the whole powier of the weight of the as the proportion of the whole powier of the weight of the
water. If it were definitely determined what proportion of water. If it were definitely determined what proportion of
the good effect upon a turbine wheel is impact, purely a blow, and what the weigbs the water in quiet pressure we could at least make an approximate' prediction as to what a well constructed machine would do under any known head; but, so far as I am informed, speculation, for this, is our best basis at present. It seems to me also that the fact, which you state, is sufficient to show that no such result as the utilization of 90 per cent, or 80 per cent, or even 70 per the utilization of 90 per cent, or 80 per cent, or even 70 per
cent of the whole weight of the water has ever been realcent
ized.
I have seen a turbine of small size, accurately and nicely constructed, for the purpose of using as a cross test with hydraulic engine also well constructed. Both were used upon the same stream and under the same circumstances.
The wheel exhibited a little over 40 per cent of the whole power of the water, as shown by the engine, which regis tered the whole, less the friction. Certainly, one of the phases of which you speak was present. The water was of great head, the wheel making some 3,000 revolutions in a miuute. It lost the power of the water, out of proportion to the work put upon it, apparently up to the point where the more quiet weight pressed upon it, probably up to the point in speed where the wheel nearly ceased to urge the water in " meshing" through.
The relations between a turbine wheel and a water pres sure engine may be pointed out as much the same as those between a reciprocating and a rotary steam engine. The aim of inventors of both rotary steam engines and turbine wheels is to imprison their respective forces until no more work is
left in them. eft in them.
No other test for economizing power would be so satisfac tory as for claimants-on wheels already competing, or any others-to force back to its normal head 90 per cent, 80 per
cent, or 70 per cent of the water used, giving credit for friction in returning it
R. H. A.

Extracting the Precious Metals from their Ores. To the Editor of the Scientific American:
On page 168 of this volume of your valuable journal, you call the'attention of your readers to the importance of a new method of extracting the precious metals from their ores. The article leaves no doubt as to the paramount importance of this widely absorbing topic. You justly point to the disappointment experienced by the miner in obtaining so small an amount of the gold and silver, compared with the assay value. This gives rise to the questions, are our present methods scientifically worked, or are they for the most part chimerical? From the attention I have given to this sukject, I am inclined to take the latter view, perhaps from a certain amount of obtuseness that prevents my seeing things as others see them. I admit the utter impossibility of my and silver by means of the caldron for the boiling of gold ares, and I cannot comprehend the acumen of the metallur ores, and I cannot comprehend the acumen of the metallur-
gical chemistry proposed for the refractory metals. Assurgical chemistry proposed for the refractory metals. Assur-
edly, Barba (who invented the beneficio de cazo, in South America in the year 1590, for the reduction of the plata cor ea or horned silver of the mineralogist, and also employed chloride of sodium and magistral or sulphate of copper) ought not to be ignored ; especially as that method has been in use ior nearly 300 years, and is used both in North dan South America. Substituting iron for copper is the only new feature, and I think its advantages quite problematical. The refractory ores are treated, in this newly devised apparatus, with chloride of sodium, nitrate of potassa lime, bisulphuret of carbon, fixed and volatile oils, bydro chloric acid, and sulphuretted hydrogen, an array of speci ally selected chemicals sufficient to break the bonds that hold together substances of the most refractory nature. The rationale of the chemical changes, I leave others to formu ration
lize.

The ultimate effect of boiling the ores in the caldron with the above substances may be anticipated: The oxidation of the mercury and its loss in the subsequent washings, and the risk of explosion by treating the ores with the hydro carbons in the heated caldron, also the great expense of
uch a process for poor ores, where such a method is admis such a process for poor ores, where such a method is admis
I am glad to see this matter open for discussion in the columns of your valuable journal; it is the precursor to the ettlement of this troublesome question.
Newark, N. J.
J. Tunbridge.

Some of the good people of Boston are indignant at the ction of the city authorities of Hartford, Conn., for enacting resolution for erecting a statue, in their public park, of thetics. Boston claims the discovery for her citizen chem ist, Dr. Jackson.
Work does not wear men so much as worry.

An important improvement in the manufacture of artificial guanos, the discovery of which affords for many cases a practical solution of the difficulty of disposing of sewage, has just been announced in Great Britain, having reference to a substance called Huano manure. This material, it is claimed, is as rich as Peruvian guano, and its manufacturers furnish a guarantee to that effect. It is worth, according to the scale of fertilizers, from $\$ 40$ to $\$ 45$ per tun, although its first cost, as manufactured, is less than $\$ 13$ per tun. In the course of inquiries leading to the invention in question, it was first ascertained that Portland cement transforms night soil into stone, which, upon being crushed, gives 18 per cent of phosphate of lime; and when applied as a manure for growing turnips, it has produced 26 tuns to the acre. Owing to the insoluble nature of the phosphates, however, the action was slow, and the next step in the process was to utilize this property of cementation in the superphosphate manufacture, in which night soil is substituted for water in the decomposition of the phosphates. During this process the phosphates part with the two portions of their lime, uniting with sulphuric acid to form sulphate of lime, (plaster of Paris), from which is derived the valuable property of cementing night soil from a liquid into a solid mass. This solidification produces simultaneous deodorization, removing all offensive and foul effluvia, as well as any capability of giving out deleterious gases, and such powers of destruction are transformed into fertilizing endowments. It will thus be seen that cementation lawfully usurps the place hitherto occupied by fermentation and evaporation, and hydrates all the moisture-which, being chicfly urine, possesses manurial value to the last drop-together with the incorporation of the whole of the ammonia, alkaline salts, and other valuable constituents existing in the night soil.
The inventor, Mr. Hughan, has made arrangements with an extensive manufacturer of superphosphates to carry on the process, and great expectations are expressed as to the value of the results to be anticipated. The advantages of working the new patent, in connection with such a manufacture, are: 1. The night soil gives that pasty condition to phosphates essential to the recertion and dilution of the acid employed in superphosphate manufacture. 2. The phosphates are increased one fourth in quantity from the alkaline phosphates and phosphoric acid of the soil; thus, if 75 units of phosphate of lime are introduced, 100 are with drawn. 3. The phosphates receive a new supply of nitrogen equal to from 2 to 4 per cent of ammonia from the soil. 4 .
The phosphates obtain 5 to 8 per cent of alkaline salts, The phosphates obtain 5 to 8 per cent of alkaline salts,
containing 1 per cent each of magnesia and potash, from the containing 1 per cent each of magnesia and potash, from the
soil. 5. The phosphates receive, in addition, 16 per cent of organic matter intermixed with the urea and uric acid, possessing the latent quality of evolving ammonia to the last atom, and inducing nitrification, as well as the ammonia and nitrates as returned in the analyses. On the other hand, night soil receives from phosphates the following advantages: (a) Cementation; (b) solidification; (c) deodorization; (d) porta bility by rail or sea in the service of agriculture; (e) the bringing within the pale of sanitary laws, contributing to health and to municipal revenues. It is tven suggested that the present superphosphate manufacture must ultimately pass over into night soil utilization, either voluntarily or by legislative enactment.

The farm of Mr. Ardicic Miastodon. county, New YM. Arden Mitchell of Otisville, Orange
 skeletos apon the premises, of the entire he eartion one of the largest mastodons that ever tramped was m. According to the New York Times, the discovery To made by a laborer who had been hired to dig muck. The man had excavated to the depth of four feet when he ped work an enormous bone, shaped like a rib. He stop thinking it must have belonged to som monstrous animal directed that deeper and more extended digging be done. At a depth of fifteen feet, the pelvis, head and other large bones were found. Search has been continued until almost the \in ntire skeleton has lueen exhumed. It is said to be much larger than the famous remains in the Boston Museum, which were also found in Orange county, and which were the largest known specimen of these extinct mammalia. The upper jaw and main portion of the head of this new marvel
weighs about five hundred pounds, and measures three feet weighs about five hundred pounds, and measures three feat
seven inches across the top. There are four teeth in the seven inches across the top. There are four teeth in the
upper jaw, two on each side. The back teeth extend seven upper jaw, two on each side. The back teeth extend seven
inches along the jaw bone, and are four inches across. The openings where the tusks have been are three feet and eight nches deep and eight inches in circumference. The vertebræ was found in forty pieces, but lying all together, while the pelvis was taken out whole and uninjured. The channe here the spinal cords lay when the monster was alive is fiv ches in circumference. Among the missing bones are the asks, the lower jaw bone, and those of the hind legs. On one of a leg that has been found weighs alone over 350 pounds. When the skeleton is reconstructed, it will meas are fourteen feet from the bottom of its feet to the top of it head, and over twenty-five feet from head to tail.
A singular incident connected with the skeleton is that in its stomach was found a quantity of undigested matter Among it were fresh looking and very large leaves, of odd form, and blades of strange grass, of extreme length, varying from an inch to three inches in width, and looking as if freshly cropped from the earth.

Speak nothing but what may benefit others or yourself;

SOCIETY OF ARTS OF THE MASSACHUSETTS INSTITUTE
 OF TECHNOLOGY.
 meeting held at the institute in boston march 14 1872.

The President, J. D. Runkle, in the chair.
Mr. S. Dana Hayes read an interesting paper on the history and manufacture of petroleum producs. This industry though less than twenty years old, has become one of great importance in this country, and petroleum and its product take a high rank among our exports.
The crude and refined pctroleum exported from the United States in 1871, estimated at a low average value of twenty five cents per gallon, amounted to nearly $\$ 35,000,000$.
Mr Joshua Merrill, of the "Downer Kerosene Oil Compa ny" of Boston, has done more perhaps than any one else to bring this new manufacture to its present advanced state.
the riest coal oil
manufactured in this country was made by Mr. Atwood in Waltham, Mas in 1852. This oil was used for lubricating purposes, and was made in connection with picric acid, ben zole, and other products, from coal tar; 175,000 gallons of this oil were made, and it was considered as one of the best lubricating oils of that day. Its odor was very offensive, which, with several other comparatively poor qualities, would render it quite unmerchantable if compared with the neutral hydrocarbon lubricating oils of the present day.
It appears that some of the lighter coal tar products were used for illuminating purposes in this country as early as 1856, and it was found, upon the introduction of the Knapp and Deitz lamps, which were designed for burning resin and other oils, that some of the light hydrocarbons, obtained by Mr. Merrill from 'Trinidad bitumen, burned readily in them, giving a brighter and more beautiful light than the common animal oil lamps and candles.
The first attempt to produce lubricating oils from the Albert coal of New Brunswick was made in South Boston by Mr. Merrill early in 185\%. By the aurumn of that year he had six retorts, with a capacity of 1,200 pounds of coal each, in operation, producing 360 gallons of crude oil in twentyfour hours. The number of retorts was soon after increased to fifty, and the establishment then yielded at the rate of 900,000 gallons of crude or 650,000 gallons of refined oil per annum.

It was found that the first products of the distillation were several thin, light colored hydrocarbons which, being unfit for lubricating purposes, were considered valueless; and as considerable loss of material resulted from their production, attempts were made to prevent the decomposition which caused their appearance; but all endeavors in this direction orly served to show that any distillation of these hydrocarbons is destructive; and as it was soon after discovered that these lighter hydrocarbons were valuable for illuminating purposes, further attempts were not made to prevent their production.

The lightest product of the distillation of the Albert coal was called "keroselene ;" its specific gravity is only $\cdot 634$, and boiling point, $85^{\circ} \mathrm{Fah}$. It possesses remarkable anæsthetic properties, which have been utilized to some extent
The production of illuminating oil from

penhsylvania petroleum

was commenced in 1858, and in 1860 there were fifteen es tablishments in the United States engaged in this manufacture exclusively. After the introduction of petroleum, the use of Albert coal steadily diminished until 1865, when it was firally abandoned.
\because By distillation, petroleum breaks up into thin hydrocar bons even more readily than Albert coal, and the process my be so modified that the entire contents of the retort will be converted into illuminating or burning oils. By the present process of distillation, nine distinct commercial products are formed, as follows:

Mr. Hayes exhibited specimens of these products before the Society.

rhigolene

is the lightest of all known liquids, and it evaporates so rapidly at comnon temperatures as to reduce the temperature to 19° Fah. below zero in twenty seconds. It corresponds to the keroselene produced from Albert coal, and, like that, has been used as an anæsthetic in surgical operations; its value for this purpose is due to its rapid evaporation.
The most noticeable characteristic of the heavy lubricating oils produced from Albert coal and petroleum was their offensive odor, and though many experiments were made by various manufacturers, it was not until November, 1867 that any success attended the effort made to produce a neutral odorless lubricating oil. At this time, Mr. Merrill, partly as the result of an accident, succeeded in making a clear, nearly odorless, neutral oil. Subsequent experiments demonstrated that this desirable result was attained by employing a very moderate fire in the distillation, and withdrawing it gradually toward the close of the operation; thus removing all the light odorous hydrocarbons, without decomposition either of the distillate or the heavy oils $r \in$ maining in the still.

This important discovery was secured by letters patent in
this country and Europe, and the demand for these oils is steadily increasing. In 1871, 50,000 gallons were sent to England alone, where it was used for lubricating spindles oiling wool, etc.
paraffin
is one of the products of the destructive distillation of petro leum, and was made by Mr. Merrill in 1859, and since then he has made 50,000 pounds in a single month. Its principa uses are for making candles, waterproof fabrics, che wing ork has used 100,000 pounds in one year
mineral sperm oil
is a heavy and perfectly safe illuminating oil, first made by Mr. Merrill while experimenting with paraffin oil in lamps he produced it by subjecting the heavy paraffin oil to a par tially destructive distillation, which, without sensibly in creasing its volatility, made it less viscid, so that it would ascend the wicks freely, and still retain its character as a fixed oil.
This oil is comparatively inodorous and will not influence or give off an inflammable vapor at any temperature below 300° Fah.
Mr. Merrill estimates that the present yield of petroleum is sufficient for the production of 160,000 gallons of mineral sperm oil every day-a quantity double that of the whale and sperm oils obtained in the best days of whale fishing.
It costs at present somewhat more than common kerosene but it burns more slowly and gives as bright a light, so that the actual cost of the light obtained is about the same; a single lamp, burning mineral sperm, costs one half cent pe hour. Its perfect combustion requires more oxygen, and a different form of burner, as the Argand or Dual, is neces sary; these burners are as cheap and as easily obtained as and others, being made by the same manufacturers.
Referring to the origin of petroleum, Mr. Hayes said the prediction made by the chemist Liebig, many yearsago, that he should live to see the sunlight of past ages shining in his house, seems to be now practically realized for the whole civilized world.
That ancient sunlight has come down to us, stored up in he vast deposits of coal and petroleum.
He performed a number of interesting experiments to how the different degrees of inflammability possessed by the different petroleum products, and demonstrated that the or dinary kerosene now in use is but little safer than naphtha The mineral sperm was ignited with difliculty ; and a burn ing torch was instantly extinguished, when plunged beneath the surface of this oil, without inflaming it
A vote of thanks was tendered Mr. Hayes for his interest ing communication.
W. O. C.

VALUABLE PHOTOGRAPKIC IMPROVEMENT.

Among recent photographic improvements is the proceas f Colonel Stuart Wortley, of London, long distinguished as a scientific observer and amateur photographer.
Instead of the usual nitrate of silver bath, Colonel Wort ley employs what is known as an emulsion. That is to say, he mixes with the usual collodion a few grains of nitrate of silver and also of nitrate of uranium. These substances give to the collodion a remarkable sensitiveness to light. In taking pictures, the operator simply pours the sensitized collodion upon the glass plate, and then rinses it in water. The plate is then ready for immediate use, or it may be kept, in a dark place of course, and used at convenience. The picture is readily developed by means of pyrogallic acid, ammonia, and bromide of potassium, and the finest pictures are produced with more certainty and much less trouble than by the ordinary process. A trial was recently made in London before a photographic committee, for the purpose of exhib iting the relative merits of the old and the new process, the latter being conducted by Colonel Wortley, and the former by Mr. Gordon, a celebrated photographer. Both parties used the same lenses. Repeated trials upon all sorts of pictures, outdoor views and gallery portraiture, revealed the fact that the new process was the best. It proved to be more sensitive than the wet process, finer pictures with less labor being the result.
Colonel Wortley promises soon to give us the exact formu la ky which he prepares his plates, when we shall place it before our readers. The process is attracting much attention abroad, and it would seem that the days of the wet bath and its troublesome paraphernalia are nearly ended.

the holtz electrical machine.

On page 380, Vol. XVI. of the Scientific American, we published an illustrated description of the Holtz electrical machine, the most powerful instrument known for generating frictional electricity. Sparks of unprecedented length are produced by this machine, with very small expenditure of pow $\rightarrow r$ in operating it.
Mr. E. B. Benjamin, 10 Barclay street, New York, has just imported from Berlin an improved machine of the same kind, the largest yet made. It is destined for the University of Pennsylvania, and is said to be the most powerful electrical machine in the world. It was constructed under the supervision of Mr. Poggendorff, and has all the improvements devised by Holtz, Bokhardt, and other celebrated electr:cians and physicists.

When adjusted properly and working under favorable conditions, this machine givez a spark eighteen inches in length, with a loud detonation. The effects produced by this elegart specimen of scientific and mechanical skill are highly interesting, and it is a matter of congratclation that such an instrument is to remain in this country. The re volving plate of glass is thirty-four inches in diameter.

SCIENTIFIC AND PRACTICAL INFORMATION.

treaty between cuinta and japan.
There is at last a prospect that China, the mostimpenetrably onservative nation in the world, may yield somewhat to ex ternal infiuences, and allow the introduction, into her inte rior, of the productions of America and Europe. This hope is held out to us by the conclusion of a treaty between China and Japan, arranging the terms of commercial intercourse between the two. countries, stipulating the conditions on which certain ports, to be afterwards selected, in each country shall be open to the commerce of the other, and appoint ing a system of arbitration for the settlement of disputes. In spite of the rigorous conditions under which the English ave traded with the Chinese in the five treaty ports, Amoy Ningpo, Shanghai, Foochow and Hong Kong, much good effect on the prejudices of the Orientals has been made by the traders there, and the opening of some more localities to similar influences, especially to a nation of the same branch of the human family, is likely to widen the beneficial result of that interchanged commerce which has already done so much, and which wili in the future do more, for the canse of civilization.

RAMIE

Our readers have been informed of the advantages to agriculture likely to result from the introduction of this fiber into our country, and many, if not all, will be interested in knowing that its cultivation in Califormia has been entirely successful. Some cloths of great strength and delicacy of texture, possessing a high finish that is not usually seen except on silk goods, were recently exhibited at the California State fair, and attracted much attention. The farmers of the State are very anxiously making enquiries on the subject, and a company has been formed in San Francisco to promote the cultivation, and to give the necessary informa. tion to agriculturists. The great strength and fineness of this fiber give it a place among materials for textile manufactures which only silk can rival, and there must be many States in our extensive country in which the cultivation can be successfully carried on.

an abscess Cured by inadvertence.

Dr. Du Hadway reports the singular restoration to health of a man afflicted with a psoriatic abscess. The Dr. tried several remedies without success, and at last prescribed two drams iodide of potassium in six ounces distilled water; dose, a tablespoonful three times a day. The patient, a for eigner, misunderstood the directions, and swallowed the wholeat once. Strangely enough, the 120 grains iodide of potassium did him no harm; but, on the contrary, his appetite, which had bsen very poor, was restored, and in ten days the abscess was healed. He needed no further medicine, and is completely restored to health.

WEIGHT OF WROUGHT IRON AND STEEL
Many of our readers, who send us inquiries as to the weight of wrought iron and steel of different sections will find the following formulæ useful: The weight of a bar of round iron is the square of the diameter in inches \times the length in feet $\times 2.63$. The product shows the weight in pounds avoirdupois. The weight of a bar of iron of any section is the area of the cross section in inches \times the length in feet $\times 3.36$; and the product also shows the weight in pounds. For round steel bars, change the constant factor from $2 \cdot 63$ to $2 \cdot 67$, and proceed as for round iron bars. For steel bars of other sections, substitute $3 \cdot 4$ for $3 \cdot 36$, the other factors remaining the same as for wrought iron bars.

FRICTION GEARING.

We commence this week a series of able articles upon Fricon Gearing, a subject which is of great and increasing me chanical importance. The use of this kind of gearing has proved very economical and satisfactory for many kinds of work, and our readers will receive with interest the theoretThey practical information contained in these contributions. of Black Rim pen of an able engineer, Mr. . A experience in designing and constructing this class of gearing, in the western lumber mills.

We are indebted to E. Furse, banker, No. 9 Piazza di Spagna, Rome, Italy, for specimens of asbestos wall paper, and plain thick paper for enveloping books, valuable papers, and choice goods. Mr. Furse would like to introduce the article into this country if he can negotiate with reliable parties.

Ants on Peach Trees.-A writer in the Boston Cultivator says that in his experience he has been led to look upon the black ant as his best friend in the peach orchard, his only object in traveling up and down the tree being to destroy lice, which frequently cover the young and tender leaves of the peach tree.

A Candle to Burn ali Night.-When, as in case of sickness, a dull light is wished, or when matches are mislaid put powdered salt on the candle till it reaches the black part of the wick. In this way a mild and steady light may be kept thruogh the night by a small piece of candle.

To Preserve Clothes Pins.-Clothes pins boiled a few moments and quickly dried, once or twice a month, become more flexible and durable. Clothes lines will last longer and keep in better order for wash-day service, if occasionally treated in the same way.

Self-acting Trap for Sewer and Drainage Reservoirs. Our engraving is an illustration of a self-closing sewer trap invented by M. K. Couzens, civil engineer, Yonkers, N. Y., for which a patent was issued, through the Scientific American Patent Agency, January 10, 1871.
The inefficiency of the various traps in use, to prevent the clogging of pipes leading from street receiving basins to sewers, led to this invention, which secures a seeondary, selfclosing, and higher outlet to the sewer of the drainage waters received, whenever the lower or ordinary one is clogged by sediment.
The body of the trap is of cast iron or other metal, and the horizontal portion that enters the connection pipe is of double capacity or area of section to the vertical part. A float valve of non-corrosive metal is fitted to the trap, and, in its elevation and depression by the rise and fall of waters in the basin, is guided by, or plays upon, a vertical rod, suspended from the metal bucket frame that is attached to the upper part of the trap. A per manent conical hood is seen above the valve to protect the central opening therein. The peculiar shape of the basket frame and its wire covering protect the valve from sticks or blocks that may enter the basin. The compression of air in sewers by freshets has often occasioned damag ing explosions, before air escape valves were in vented and applied.
This invention incidentally supersedes such valves, entirely accomplishing that object in a more certain and preferable manner. The simpliciy and details of the plan will,from the clearness of the illustration, be readily conceived by practical men. A represents the surface of the street, B the drip stone, C the iron cover in the sidewalk, D the connecting pipe with the sewer, and E the basket frame inclosing the float valve and its at tachreent, as described.
We are told that Strickland Kneass, Esq., Chief Engineer of Philadelphia, and other eminent en gineers, who have examined the invention, have recommended its general adoption. For further particulars, address the patentee as above.

The Use of Earthquakes.

The usefulness of earthquakes was a favorite subject with the late Sir John Herschel. Wer it not for the changes in the earth's crust which are constantly being effected by the action of subterranean forces, of which the earthquake is the
most active manifestation, there can be no doubt that the action of the sea beating upon the land, together with the denuding power of rain, would inevitably cover the entire earth with one vast ocean. "Had the primitive world been constructed as it now exists," says Sir John Herschel, "time enough has elapsed, and force enough directed to that end has been in activity, to have long ago destroyed every vestige of land." Mr. Proctor shows most clearly the beneficial manner in which the restorative action of the earth's subterra nean forces is arranged. Of course, every upheaval of the surface must be either accompanied or followed by a depression elsewhere. "On a comparison of the various effects, it has been found that the force of upheaval acts (on the whole) more powerfully under continents, while the forces of depres sion act most powerfully (on the whole) under the bed of the ocean. It seems as if Nature bad provided against the inroads of the ocean by seating the earth's upheaving force just where they are wanted."

KEHOE'S IMPROVED STRIKING BAG.

The name of Kehoe is familiar to every athlete in Ameri

ca. The Indian clubs of his manufacture have long been held to be the best in market. Those of sedentary habits have received much benefit from the use of the apparatus

SELF-ACTING TRAP FOR SEWER AND DRAINAGE RESERVOIRS

English buck, and is accompanied with the necessary rope wee paper. and hook for its suspension. It consists of an inner bag filled with sand, to give the proper weight, which is inclosed in an outer bag containing cork shavings, sponge, or other soft elastic material, and which, surrounding the hard sand bag, prevents any injury to the hands. Gentlemen of sedentary habits will find this exercise particularly beneficial. A few minutes sparring in the morning will quicken the circulation and equalize it for the day, giving a warm and healthy glow to the whole body. These bags may be obtained of Mr. Sim. D. Kehoe, 100 Williani street, New York.

Structure of the Albuminous Substances.
It has long been known that urea is capable of undergoing transformation into carbonate of ammonia, under the influence of alkalies and water; and I have indeed recently, in these pages, proposed a ready method of estimating urea by the quantity of ammonia which it furnishes on being maintained at a temperature of $150^{\circ} \mathrm{C}$. in contact with alkali. If however, instead of being heated with caustic alkali alone, the urea be boiled with strongly alkaline solution of permanga nate of potash, it yields ne ammonia, but undergoes oxidation to the state of nitrogen gas, or nitric acid, according to circum stances. No other substance is known which gives up all its nitrogen in the form of ammonia when acted on by alkali and gives no ammonia on treatment with alkaline permanga nate of potash.
In investigating the albuminnus substances, I have observ ed the following facts: If caseine be heated to $150^{\circ} \mathrm{C}$. with alkali, it yields about 3 per cent of ammonia; and if the resi idue be afterwards boiled with permanganate, some 7 per cent of ammonia is then obtained. Now, if caseine be at once boiled with permanganate of potash, it yields only 7 per cent of ammonia.
Albumen, if heated with potash to 150° C., gives 3 per cent of ammonia, and on subsequent boiling with permanganate, about 12 per cent of ammonia. If it be at once boiled with permanganate, it yields only 12 per cent of ammonia.
Creatine (which contains urea conjugated with sarcosine) behaves in a parallel manner. The two thirds of its nitrogen existing in the condition of urea, are evolvable as ammonia by proper treatment with alkali, but only the other one third of its nitrogen is evolvable as ammonia by the action of permanganate of potash.
The structure of creatine is known; but the structure of caseine and albumen is unknown. Let a similar explanation be applied to caseine and albumen as to creatine. In cascine about one sixth of its total nitrogen exists in the form of urea, being transformable into ammonia by alkalies, and oxidisa
In albu,nen, too, about one sixth of the entire nitrogen ex ists as urea.
On extending my experiments to gelatin, I was much inte sted in observing that no ammonia is evolved when that sted in observing that no ammonia is evolved when that
of ammonia-some 9 per cent-is formed by the action of the permanganate. Gelatin, therefore, differs totally from the protein substances-it contains no conjugate urea.-J A. Wanklyn, in \cdot Mechanics' Magazine.

Photo-Intensifying Process.

A new process, by M. Merget, is as follows:
The negative, no matter how feeble, provided all the de tails are indicated, is fixed with hyposulphite of soda, and washed thoroughly; a solution, more or less strong as the case may require, of corrosive sublimate (" mercuric chloride," as it is now called) is then poured over it. This at first blackens and then whitens the imare. If but little intensification be required the solution should be very weak, and it should be washed should be very weak, and it should be washed by it, and before the white stage is reached: but if the negative be very feeble, the solution should be strong, and should be left upon the film until the whitening process has reached its maximum effect. The film is then to be thoroughly washed, and the image is to be blackened by pouring over it a solution of py rogallic acid-strength, three grains to the ounce of water-to which has been added an al kali in sufficient quantity to impart to the mixture its maximum of reducing power. The alkali may be either potass or soda, caustic or carbonated, or it may be ammonia; in fact, the old discolored alkaline developer, strengthened with a little more ammonia or carbonate of soda, will answer the purpose, although a fresh solution is better. The application of this al kaline pyrogallol (as pyrogallic acid is now called) immediately blackens the negative and intensifies it to the required degree-that de gree depending upon the extent to which the previous action of the mercuric chloride ha been carried. The negative is now to be well washed, dried, and varnished in the usual way

New Type Foundery.

We learn, by a letter which we have seen from London, that the advertising agents, G P. Rowell \& Co., and S. M. Pettengill \& Co., of New York, have been offered one of the large type founderies of London at a great sacrifice, type founderies of London at a great sacrifice,
and the writer proposes that the whole machinery and equipment shall be removed to New Yorik, and put up and operated.-Milwau-

CURRIER'S TEA AND COFFEE POT STAND.

Our engraving illustrates a new and ornamental tea and coffee pot stand, patented November 14, 1871, by Thomas D. Currier, of Waldoborough, Me. The pedestal may be formed in any desired style to suit the taste. From it arise two standards, as shown, to the tops of which is connected a bail or handle for convenience in carrying.
The pot is supported in a ring which is pivoted to the standards in such a way that it hangs perpendicularly when not tilted. From one of the pivots projects, upward and for ward, a handle, as shown, by which the potis turned so as to eliver its contents from the spout.
By these means, the pot may be carried and used without burning the hands, so that the advantages of the coffee urn are secured without the expense of a faucet, the latter being ikely to get out of repair and difficult to clean
From the ring, which supports the pot, descends an arm or brace, which engages the bottom of the pot, as shown, and assists in supporting the vessel. In the pedestal is deftly con-

cealed a call bell, which is operated by the knob shown at he front. The whole is susceptible of tasteful ornamentation, and the device is fast winning popular favor. Address tion, and the device is fast winning popular favor. Ad
the patentee, as above, for rights to manufacture, etc.

§rimfifir Gmmiram.
 MUNN \& CO., Editors and Proprietors

pUblished weekly a

NO. 37 PARE ROW (PARE BUILDING) NEW YORE. . D. MUNN. A. ह. BEACH.
'The American News Co.," A gents, 121 Nassau street. New York. "The New York News Co.," 8 Spruce street, New York.

VOL. XXVI., No. 15. [New Series.] Tiventy-seventh Year.
NEW YORK, SATURDAY, APRIL 6, 1872.

AFRICAN DIAMONDS-.-AN INVENTION WANTED.
Mr. J. L. Babe, of 3217 Sansom street, Philadelphia, Pa. has lately returned from the diamond regions of South Af rica, and during a recent call at our office gave us a variety of interesting particulars concerning the localities and meth ods of searching for the precious gems. More than thirty thousand persons are now engaged in this novel business, and thousands of diamonds are constantly being found, many of large size and great value. Mr. Bale brought with him several hundreds of the diamonds, one of which, a fine large one, is valued at not less than $\$ 120,000$. In its natural state the African diamond is smooth and polished, and when set without cutting is quite ornamental; but its beauty is, of course, greatly enhanced by cutting in the usual manner.
The new diamond fields of Africa are at the present mo ment the focus of attraction for adventurers from all parts of the world. Fromthis country and Europe the intending dia mond searcher steers for Cape Town, a large and flourishing British colony at the extreme southern point of Africa, the Cape of Good Hope. Here, by steamer, he coasts up the eastern shore of the continent for 500 miles, over the waters
of the Indian ocean, to the British city of Port Natal; thence of the Indian ocean, to the British city of Port Natal; thence
on foot, or in ox carts, overland north westerly, through Af on foot, or in ox carts, overland north westerly, through Af
rican wilds for some 400 miles, to the Vaal river. This locality is almost midway between the Atlantic and Indian oceans, where the Vaal river empties into the Orange river, and the latter into the Atlantic ocean. This is the present South African diamond region.
The diamonds are found in a certain species of cement like earth, whitish in color, which, under the blow of a wood en mallet, is readily reduced to powder. 'This earth is of peculiar formation, and its constituents have not yet been fully determined. It occurs in pockets, of considerable depth and of about an acre in superficial area, which pockets are scattered about, at little distances apart, over the region we allude to. The pockets are walled in by slaty rocks which rise to or nearly to the surface of the ground. The indications are that these cavities or pockets in the rock have been filled by the oozing up from below of this cement The diamonds are found in the cement, which is mined by picks and crow bars, and the following is the general operation:
The pockets are staked off into "claims," a claim consist ing of a plot of ground thirty feet square, and for which the operator pays the proprietor from two hundred to eight hundred dollars. The mining is carried down vertically as far as paying earth is found, a narrow wall being left standing be tween each claim. Some of the pits have now reached a depth of 70 feet. The mining is chiefly done by the native blacks, the earth being raised in buckets to the surface, and carried to a sorting table. Here the cement is pulverized by hand, by means of wooden mallets, care being taken not to strike so hard as to injure the diamond. The pulverized ce ment is then spread out upon a table in a thin layer, and the
anxious eyes of the searcher carefully ssan the particles, anxious eyes of the searcher carefully ssan the particles.
Good eyes are in demand. Fortunate is he who after days of hard work finds at last one or two of the bright little stones to reward his labors.
The work of crushing and separating is, as we have stated all done by hand. An invention is greatly needed by which the crushing, at least, may be done by mechanism. Mr. Babe thinks that a machine turned by a couple of men, or by mule power, would be the best. It must have a crushing power sufficient to break up chunks of the earth, and pulverize them to particles of not less than one thirty-second of an inch in size. It must also effect the crushing without injury to the diamonds contained in the cement. The natural adhe
siveness of the cement is rather more than that of common
dried mortar. Here is a problem for the ingenious to work out.
Another problem is to construct a diamond separating ma chine that shall be reliable and require no water. The present diamond fields are dry diggins, the river diggins having been exhausted.
It is said that these diggins were accidentally discovered by the observance of some protruding diamonds in the plas tered walls of a small farmhouse, the cement having been used in making the mortar. This building still stands, says Mr. Babe, an object of veneration and interest to all diamond hunters.

SMALL POX---ITS PREVENTION---THE TREATMENT OF PATIENTS WITH REFERENCE TO THE PROTECTION PATIENTS WITH OF THE PUBLIC.

We shall take as a basis for our remarks upon this sub ject the following well established facts :
First, since small pox has been known to mankind, there has not been one instance where, introduced into the border f any country, it has been thereafter wholly annihilated. Second, the utmost that has been accomplished towar extinguishing the disease has been to render communitie proof against its becoming epidemic.
Third, this has been accomplished through the two agen cies of vaccination and the isolation of those who have con tracted the disease

Fourth, that the disease, once contracted, will run it course till, by its self limited character, the patient either dies or recovers.
It has been claimed that vaccination, repeated at interval of about seven years, is an absolute preventive of small pox, even of the lighter form of the complaint called varioloid This we do not believe, since we have known at least one case of fatal result from small pox where repeated attempts at prevention had failed, the patient being apparently unable to contract the vaccine disease. But admitting that vaccina
tion may sometimes fail, when persistently attempted, the cases in which it fails are so rare that they are not worth mentioning as an argument against the value of revaccina tion. The fact remains that, probably, not one out of a mil lion persons, who intelligently practice revaccination, will ever have small pox. Clearly, then, if revaccination was universally practiced, this one means might be considered as mple protection to the public
But we have proof, in the almost epidemic character thi isease has assumed, that vaccination is neglected by a large portion of our population. It is, therefore, thought neces sary to supplement its protective effect upon the public by the isolation of those so unfortunate as to contract small pox, and laws are enacted empowering health boards and officers to remove-forcibly if need be-these sufferers from home and friends, to indiscriminately thrust them into pest houses, where those accustomed to kind care and pleasant home must feel the depressing influences of foul air, filth, the ight and smell of all that is loathsome, and receive only the cold care of paid nurses, whose gratification is scarcely concealed at the death of a patient and the consequent les sening of their burdens. Now, on the principle that whateve is necessary to protect society is justifiable, and on no other his course may be justified. The patient who has lead a cleanly ife, who has tried to protect himself and society from small pox by vaccination, yet still has taken the disease, must fee hat such treatment is a social crime. He reasons: "I have done my duty to the public, have taken every possible pre caution. Those who have not done their duty now stand in fear of me, and shut me in this lazar honse, It is they who are the criminals, not I. Is it right to punish one innocent for the protection of many guilty? No." There can be but one answer to such a question.
How can we avoid such injustice then? At present the aw has no power to discriminate, because there are no ade quate means for making discrimination. People are born move about where they like, live where they please, some times change their names, and finally die unknown to and intraced by any public authority. They are earnestly re quested to conform to sanitary laws, but rarely compelled to o so. When they have conformed, they have nothing to certify that they have done it. No record is kept either of
compliance or non-compliance. An imperfect scar received compliance or non-compliance. An imperfect scar received
in any way may be taken for the vaccine cicatrix, and a per son may claim to be protected by vaccine disease who neve had it. Others who are protected may be thought to have neglected it, and so there is no means whatever, in any lo
cality, of determining its degree of immunity from smal cality, of determining its degree of immunity from small pox.
The state Board of Health of Massachusetts, in their late e report, lament that the law of that State does not em power them to isolate small pox patients, and ask that this isability may be removed, leaving it to the judgmert of health officers whether such isolation is necessary to public rotection or not. We do not quarrel with isolation in and of itself. We believe in it. Small pox patients should be iso ated. Their houses should be closed to visitors and warning signals placed upon them; but in the large majority of cases,
occurring among those residing out of tenement houses, this occurring among those residing out of tenement houses, this
is enough. We do not think isolation in pest houses would ever be needed were vaccination compelled by law, and a proper system of registration adopted. Nevertheless, as aid to the easy enforcement of such a law, we would make every patient who cannot show certificates of vaccination, performed nce in seven years, liable to isolation in a pest house, and only these, with the exception of those living in houses con taining more than one family, hotels, barracks, etc. Such of ase latter as can show the proper certificates and can pro
where their cases can be treated like those occurring in priA famines,
A great deal of hardship might thus be prevented, while in ar opinion the total risk to the public, and the death rat mong cases which occur, would be greatly lessened.
We should, moreover, be correcting an injustice and reieving the responsibility of physicians, who are frequently ulcted by fines for non-compliance with the imperative law of Health Boards which requires the reporting of every case coming to the physician's knowledge.

REMARKABLE TELEGRAPHIC IMPROVEMENT

The Western Union Telegraph Company has acquired the exclusive ownership of the patents of 1868 of Joseph B tearns, of Boston, Mass, forinstruments by which telegraph essages are transmitted in opposite directions, by the use o a single wire. This improvement is one of the most im portant that has been made in connection with telegraph ince the introduction of Henry's inventions by Professo Morse
Many of the Stearns instruments are now in use, and the Western Union Company is introducing them upon its lines a fast as they can be manufactured. The importance of the nvention will be understood when we state that it practical ly doubles the transmitting capacity of every telegraph wir owned by the Company.
Let none of our readers suppose that the chimera of "send ing two currents in opposite directions on the same wire" La been realized in this invention. Not that, but its practica equivalent is realized, to wit: Two messages are transmittec imultaneously in opposite directions by means of one wire while the electrical current is always moving in one circuit in the usual manner. By ingenious arrangement of instru ments at the two ends of a line, say between New York and Boston, the operator at New York is enabled to transmit a Boston, the operator at New York is enabled to transmita
message to Boston while the operator in Boston is at tr. message to Boston while the operator in Boston is at the same instant transmitting a message to New York, one set of
signals being transmitted by that portion of the current which passes over the wire, the other set of signals being trar mitted by that portion of the current which returns through he earth. We shall, on a future occasion probably, illustrate and fully describe this marvel in telegraphy.
The actual money value, of this remarkable invention, the Western Union Telegraph Company is estimated, to-day at a quarter of a million of dollars; and each year, as busi ness increases, its value must augment
We ought to add that Mr. Stearns, the inventor, is one of the best of living electricians, and his discovery is the sim le result of profound and exact study of the laws of electric ity. As a man of genius, who has conferred lasting benefits upon his fellow men, Mr. Stearns is entitled to the highest espect.

EPIDEMICS OF DISEASE, DISASTER, AND CRIME.

It would almost seem that the old saw "It never rains but it pours" was meant specially to apply to the calamities of the human race, and that accidents and crimes are epi demic as well as disease. To a certain extent this is as suredly true. Diseases become epidemic when a particula combination of conditions favorable to their rapid spread ar established in an infected district. So when the moral at mosphere becomes tainted, when judges and legislatures ar bought up by rings, when gambling houses, rum shops, and brothels are numerous; when news stands teem with corrupt ing literature, the conditions are established for an epidemi of crime. When legislatures are thus corrupt, and valuabl franchises are granted to grasping corporations, permitting hem to monopolize avenues of travel without any prope uarantees that the safety and convenience of the public will be considered, when inspectors can be tampered with and induced to report as safe what is unsafe, when in the haste to make money the people of young cities build block after block of inflammable materials, when tenant house are put up in the most shabby manner and with shameles disregard to everything except the anticipated and iex ggerated rents to be extorted from their unfortunate occupants, the conditions are well established for an epidemic of disaster.
The philosopher studying the conditions of epidemics can asily trace at least one fundamental condition common t hem all, namely, moral infection. It is this corrupting in fluence that leads to neglect of duty on the part of official who are paid to establish, so far as man can control them, the conditions of health. Thus we have streets and slums in ur large cities reeking with filth, and foul with noxiou umes. Thus we see buildings little better than traps for human beings, erected under the very eye of those appointed by law to correct such evils. From moral laxity follows the judicial laxity that allows those justly accused of crime to escape conviction, and convicted felons to escape punish ment. What wonder, then that in this era of social corrup on the three epidemics have simultaneously come upon us The kerosene explosions, boiler explosions, explosions of freworks, falling of buildings, disasters on railways, the burning of cities and vast tracts of most valuable timber mall pox raging in our midst and extending itself through out the land, the murders and the long list of minor crime hat have passed into the history of the last twelve month -what a terrible, soul-appalling list would they make, were we to blacken our pages with their enumeration
But we see the signs of a healthful and hopeful reaction The patience of a long suffering public is exhausted. Ther an under current of public opinion setting in that will offences against society, or public servants to shirk their
plain duties. Already this effect is indicated in the decisions of courts, in the altered tone of public offenders, and the general feeling that better times are at hand.
Let us, from the painful recollections of the era of epidemics out of which we hope soon to emerge, learn permanently the lesson that there is no safety in a society where morals are generally corrupted.

the present status of organic chemistry.

The different compounds belonging to the vegetable and animal kingdoms, as well as those which, by chemical operations, may be obtained from the same, possess certain peculiarities which distinguish them, in many respects, from the compounds belonging to the mineral kingdom. Some years ago, the opinion prevailed that the cause of this difference was to be found in the fact that they were formed by so called vital forces; it was assumed that there is an essential difference between inorganic and organic compounds, and chemistry was therefore divided into inorganic and organic chemistry. It was found that, while, in regard to mineral compounds, the synthesis is just as easy as the analysis (that is, it is as easy to make them as to decompose them into their elements), in regard to organic compounds, on the contrary, elements), in regard to organic compounds, on the contrary,
their synthesis (formation out of their elements) was surtheir synthesis (formation out of their elements
rounded with difficulties which appeared for a long time so rounded with difficulties which appeared for a long time so
insurmountable that the hypothesis was adopted that the insurmountable that the hypothesis was adopted that the
elementary substances followed other laws in living nature elementary substances followed other laws in living nature
than they did in dead; and that it was only possible to change the products of living organisms into inorganic elements, but that it was utterly impossible to do the reverse, that is, to make an organic compound out of its inorganic elements.
The modern development of chemistry has, however, demonstrated that this view is totally erroneous; a more intimate knowledge of the organic substances has revealed methods to manufacture chemically those substances thus far only obtained by the intervention of organic life.
However, it must be remembered that certain organic substances possess a second peculiarity, namely, a certain structure called organization. The starch granule, the blood disk, or the simple cell, that first germ of all living organisms, shows this organization, which is the exclusive product of the so called vital processes; and this cannot be produced artificially. But homogeneous liquid compounds, or solids, either amorphous or crystalline, all thus far exclusively derived from organic sources, have now been made, by simple synthesis in the laboratory, in such enormous numbers that there is no more any doubt but that the rest of them will soon be made in a similar manner.
We have come, therefore, to the conviction that the same chemical laws prevail in living as in lifeless nature; and that the peculiar properties which characterize the compounds built up by living organisms are not owing to their organized origin, but simply to the fact that they are carbon compounds and that therefore the cause of those peculiar properties has to be sought in the chemical nature of carbon itself. And this is easily ascertained when we compare the chemical proper ties of carbon with those of the other elements. That there
is a peculiar power in the carbon itself, was already recogis a peculiar power in the carbon itself, was already recog-
nized several years ago, when, by the most prominent chemists, carbon was designated as the great organizer.
In order to understand this peculiar property of carbon, we must first explain what is meant by the modern term "atomicity."
Without deciding the reality of the existence of the indivisible so called atoms, we need only accept the chemical fact that different elementary substances combine in definite proportions by weight; and that if there are atoms, and we supp ?se that they combine, atom with atom, the definite propor tions referred to could be best accounted for by assuming that these atoms possess, for each elementary substance, a definite weight. Therefore, the name "atomic weight," if objected to by reason of the hypothetical basis on which it is founded, may be exchanged for "chemical equivalent," or "combining equivalent," and the word "atomicity" fo "quantivalence."
Among all elementary bodies, hydrogen is distinguished by the simplicity of its combinations; and the latter are therefore adopted as types of all other compounds, which are simply formed by the substitution of the atom of another element for an atom of hydrogen. Hydrogen alone, pure, consists of a double atom, for one of which only the othe substance may be substituted:

The elements of the first group contain one atom of hydro gen combined with one atom of another substance. There fore, chlorine, fluorine, bromine, and iodine, are called mon-
atomic or univalent. In the second group, two atoms of
hydrogen are combined with oxygen, sulphur, hydrogen are combined with oxygen, sulphur, selenium or tellurium; the latter are therefore called diatomic or bivalent. In the third group, nitrogen, phosphorus, arsenic and antimony are each combined with three atoms of hydrogen; they are triatomic or trivalent; while, in the last group, carbon is combined with four atoms; it is, therefore, called tetratomic or quadrivalent.
Monatomic elements form among themselves but few and simple compounds, whilo polyatomic elements form different combinations. Chlorine forms but one compound with hydrogen, and the chemical affinities are satisfied; but when an gen, and the chemical affinities are satisfied; but when an
atom of oxygen is combined with only one of hydrogen, one atom of oxygen is combined with only one of hydrogen, one
equivalent is unsatisfied, and this may be filled up by hydrogen, and form water, or by chlorine, and form hypochlorous acid, or again with oxygen; when again one affinity of oxygen will be unsatisfied, which can only be closed up by another atom of hydrogen.

Water $=\mathrm{H}-\mathrm{O}-\mathrm{H}$
of Hydrogen $=\mathrm{H}-\mathrm{O}-\mathrm{O}-\mathrm{H}$
This latter graphic representation is coming into great favor to represent the manner in which the atomicity of the elements is satisfied. The univalent hydrogen is only at tached to one element, while the bivalent oxygen is attached to two.
The polyatomic elements have also the property of com bining with themselves. It is very characteristic of the tetratomic carbon that the capacity in its atoms to satisfy its own affinities by combining with itself is developed in the highest degree. Therefore, a great number of carbon atoms may combine to a single group, and behave like a chemical unit. To this property a second one must be added, which makes it distinct from all other elements, namely: all free affinities of such an atom group of carbon can be satisfied by hydrogen. Therefore, most carbon compounds contain also hydrogen.
That part of chemistry ordinarily called organic is there fore now named the chemistry of the carbon compounds and its derivations. Their number is indeed something startling Welisien published in Brunswick, Germany, in 1860, a sys tematic review of the same, and described more than 3,000 , and since that time we have become acquainted with several hundred more.

We ought here to remind our readers that, in the modern chemical theory on which the above speculations are based hydrogen $=1$ is considered as a double atom, and is written H
H
, H, so that H becomes in fact $-\frac{1}{2}$, or, what is the same, by taking $H=1$, we have $C=12, O=16, S=32$; also, Se and Te are doubled. Many other elements remain as they are. Not only does this theory agree better with the views of organic compounds explained above, but there are two other satisfactory reasons why the new numbers should be adopted. To these we may recur later.

If a person "faints," place him on his back and let him lone; he wants arterial blood to the head; and it is easier for the heart to throw it there in a horizontal line than per pendicularly.

Examples for the Ladies

Mrs. C. D. Goodman, Cleveland, Ohio, has used her Wheeler \& Wilso Machine $41 / 2$ years with the same N .2 needle that came in it without break ng or blunting it
Mrs.J.R.Bowen, Wellisboro, Pa., has used her Whecler \& Wilson Machin Imost constantly since 1859 on all kinds or material, without any repairs o
Mrs. Mary Hacher, Muscatine, Iowa, has used her Wheeler \& Wilso Machine since September, 135 , and earned from $\$ 10$ to $\$ 20$ a week, making as good order as when she bought it.
"Burnett's reputation is a guaranty of the excellence of his prepara
ions."-[Boston Journal.]
Watch No. 21039, Stem Winder-manuractured by United States
Watch Co. (Giles, Wales \& Co.,) Marion, N. J., has been carried by me four months; its total variation from mean time being seven sceonds per month
-S . M. BEARD, firm of Beards \& Cummings, 128 Front Street, New York.

ghtimes and edrsomat.

The Chargefor Insertion uniler this head is One Dollar a Line. If the Notic
exceed Four Lines, One Dollar and Half per Line will be charged
The paper that meets the eye of manufacturers throughout ver 800 different style Pump for Tanners, Paper Maters, Over 800 different style Pumps for Tanners, Paper Makers,
FirePurposes,etc. Send for Catalogue. Rumsey \& Co., Seneca Falls, N.Y. Portable Mulay Saw Mill, that may be run profitably by the power of a Thrashing Engine. Manufactured by Chandler \& Taylo ind
A. N. Fox \& Co., Buffalo, N. Y., are operating Vacuum on Su gar Pan, of $261 /$ to 28 inches mercury. Prod
denser-no air pump. See advertisement.
For Sale Cheap-A Valuable Hardware Patent. Address Kook \& Co., Fair View Village, Mont. co., Pa.
Carpenter's Grindstones,ready for use. J.E.Mitchell,Phila.,Pa Croquet Wickets, made and pointed by machinery, of number four Black, Galvanized, or Tinned Wire, supplied to the trade by Laugh four Black, Galvanized, or Tinned Wire, supp
land \& Co., No. 212 Franklin Street, New York.
A few young men of mechanical ability wanted to learn the machinist's trade. Address Brown \& Sharpe Mf'g Co., Providence, R.I. Wanted-A buyer for La Dow's "Patent Dexter Grapple," for Vermont, the
Galway, N. Y.
Everything for Cider Mills and Vinegar Factories. Address J. W. Mount, Medina, N. Y.

Fr Diamond Turning Tools for Trueing Emery Wheels and

How to Temper Springs-Simple and sure; no extra expense Send stamp for particulars to Gilbert L. Bailey, Portland, Me
Water Power to Let, on line of Central R. R. of New Jersey. 24 horse power-never failing stream. Apply to E. W. Vreeland
Crantord, N. J. Cranford, N. J.
An expert examination of inventions, in their earlier stages, is often valuable both to inventors and capitalists. Address Richard H.
Buel, Consulting Mechanical Engineer, 7 Warren Street, Newr York. Buel, Consulting Mechanical Engineer, 7 Warren Street, New York. ing presses, \&c., cheap. Address John Dane, Jr., 95 Liberty St., New York. Right, for Sale, of a valuable improvement in Sad Irons. Address, I. W. Seaman, Millport, N. Y.
Williamson's Road Steamer and Steam Plow, with Rubber Tires. Address D. D. Williamson, 32 Broadway, N. Y., or Box 1809. Womething New. Shaping Machine Attachment for Lathes.
Wm. E. Cass, $61 \& 63$ Hamilton Street, Newark, N. J.
Lord's improved Screen or Separator for Ores, or any other material. We will send a cut with full explanation. Geo. W. Lord, 232
Arch Street, Philadelphia, Pa.
Improved Foot Lathes, Hand Planers, etc. Many a reader of this paper hasone of them. Selling in all parts of the country, Canada, Europe, etc. Catalogue free. N. H. Baldwin, Laconia, N. H.
Drawings and tracings made of Machinery, Models, etc. C. Delafield, C. E., 26 Broad Street, New York.

The Baxter Steam Engine is safe,and pays no extra Jnsurance. The most simple and best Pump in use. Hersey's Patent Rotary Pump, for Soap, Oil, Tallow, Beer, Water, etc. We quarantee it the best in use, and allow one month for trial bef
circular. Hawes \& Hersey, South Boston, Mass.
For the best and cheapest Water Wheel Regulator "in all For the best and cheapest Water Wheel Regula
creation," address Sullivan Machine Co., Claremont, N. H. Standard Twist Drills, every size, in lots from one drill to 10,000 , at $2 /$ manufacturer's price. Sample and circular mailed for 255 .
The most economical Engine,from 2 to 10 H.P., is the Baxter Our Home Physician. By Dr. Beard and other eminent Phy sicians. Is the latest and best Family Guide. 1057 pages. \$5. E. B. Treat, Pub., 805 Broad way, New York. Agents wanted.
If you want to know all about the Baxter Engine, address Wm. D. Russell, office of the Baxter Steam Engine Co., 18 Park Row,N.Y. If you want a perfect motor, buy the Baxter Steam Engine. Shive's Patent Watchman's Clock and Time Detector-the best ever made. Price $\$ 15$. Shive Governor Company, Philadelphia, Pa. Building Felt (no tar) for outside work and inside, instead of plaster. Felt Carpeting, \&c. C. J. Fay, Camden, N. J.
For best Hay and Cotton Press, address C.J.Fay,Camden,N.J. Save your Boilers and Save Fuel-Use Thomas's Scale Dissolver, pr. 5 c . per lb., in bbls. and $1 / 2 \mathrm{bbls}$. N. Spencer Thomas, Elmira,N.Y.
Farm Implements \& Machines. R.H.Allen \& Co., New York. Enameled and Tinned Hollow-Ware and job work oî all kinds. Warranted to give satisfaction, by A. G. Patton, Troy, N. Y. Best and Cheapest-The Jones Scale Works, Binghamton, N.Y. Grist Mills,New Patents. Edward Harrison, New Hä ven,Conn. Diamond Carbon,of all sizes and shapes furnished for drilling also Glazier's Diamonds, by John Dickinson, 64 Nassau st., New York. Railway Turn Tables-Greenleaf's Patent. Drawings sent Railway Turn Tables-Greenlearss Patent. Drawis Mining, Wrecking, Pumping, Drainage, or Irrigating Mackin ery, for sale or rent. See advertisement, Andrew's Patent́, inside page.
For Steam Fire Engines, address R. J. Gould, Newark, N. J. For Solid Wrought-iron Beams, etc., see advertisement. Address Union Iron Mills, Pittsburgh, Pa., for lichograph, etc.
Pattern Molding Letters (metallic), to letter or number the patterns of castings. Allizes. H. W. Knight, seneca Falls, N. Y.
Peck's Patent Drop Press. For circulars address the sol manufacturers, Milo, Peck \& Co., New Haven. Ct
Belting as is Belting-Best Philadelphia Oak Tanned. C. W. Arny, 301 and 30 Cherry Street, Philadelphia, Pa .
Boynton's Lightning Saws. The genuine $\$ 500$ challenge Will cut five times as fast as an ax. A 6 foot cross cut and buck saw, 8
E. M. Boynton, 80 Beelrman Street, New York, Sole Proprietor. Presses,Dies \& all can tools. Ferracute MchWks,Bridgeton,N.J. Hydraulic Jacks and Presses, New or Second Hand, Bought and sold, send for circular to E. Lyon, 470 Grand Street, New York.
All kinds of Presses and Dies. Bliss \& Williams, successor: to Mays \& Bliss, 118 to 122 Plymouth St., Brooklyn. Send for Catalogue.
American Wickersley for Saw Grinding, equal to the best English, made by Worthington \& Sons, North Amherst, Ohio.
Don't wear out your knees. O'Callahan's Eureka Floor and Ship'sDeck Planer will do the work of five men. For patent rights and Ma.chines, address T. O'Callahan, 185 Essex Street, Boston, Mass.
Send 10 cts. for circulars of a Well Auger that will bore a well 100 feet dee
in last number.
Qet your steam boilers and pipes covered with the best nonconductor in the world. Call
45 Jay Street, New York City.
L. \& J. W. Feuchtwanger, 55 Cedar St., New York, Manufac turers of Silicates, Soda and Potash,
cals and Drugs for Manufacturers' use
Machinist's Grindstones in Iron Box-J. E. Mitchell, Phila., Pa Brown's Coalyard Quarry \& Contractors' Apparatus for hoisting and conveying material by iron cable. W.D.Andrews \& Bro,414 Water st.,N.S Presses, Dies, and Tinners' Tools. Conor \& Mays, late Mays \& Bliss, 4 to 8 Water st., opposite Fulton Ferry, Brooklyn, N. \mathbf{y}.
Over 1,000 Tanners, Paper-makers, Contractors, \&c., use the Pumps of Heald, Sisco \& Co. See advertisement.
In the Wakefield Earth Closet are combined Health, Cleanli ness and Comfort. Sendto 36 Dey St., New York, for deseriptive pamphle To Ascertain where there will be a demand for new Machinery, mechanics, or manutacturers' supplies, see Manufacturing \mathbf{N}
United States in Boston Commercial Bulletin. Terms $\$ 4.00$ a year.

Hotesequwories.

LWe present terecevith a serice of inquiriese embraracing a variety of toptcs of
greater or less general interest. The puestions are simple, it is true, but we prefer to elicit practical ansoers from our readers.]
1.-Dyeing Questions.-Will some reader of the Scien tific American intorm me how to dye a bright Prussian blue, also a dark green, and a solferino on raw cotton?-W. H.
2.-Adhesion of Rubber Belts to Pulleys.-What is the best preparation for moistening heavy rubber belts, put to heavy strains
as in saw mills, etc., to make them adhere to the pulleys, and preventing as in saw mills, etc., to make them adhere to the pulleys, and preventing
slipping, at the same time not injuring the belt or griming the pulleys?O. E. S.
3.-Ротато Starch.-What percentage of starch can be 3.-Potato Starch.- What percentage of starch can be
obtained from the potato; and what machinery is required for its manufac-ture?-x. Y. z.
4.-Forcing Cement into Fissures.-What is the best means to torce cement (hydraulic) into a wall or cavity extending upward higher than the point of injection, as into the roof of a da
adit in mines, so as to make a water tight job?-T. S. M.
5.-Relative Strength of Iron and Wood.-Can any one tell me of what thickness of plate a hollow iron spar would require to be
built-of say 20 inches diameter-to equal in strength a first rate pine spar of the same diameter, supposing them each to be 60 feet in length? Also, whether there would require to be any angle or T iron up the inside of it? Or would the boiler plate alone be sufficient ?-H. A. C.
6.-Vacuum in Casks and Mines.-Upon what principle of physiss is it that, when the taucet of a liquor cask is opened without any
vent above having been provided, the air, by jerks, seeks to enter in? It vent above having been provided, the air, by jerks, seeks to enter in? If
the answer be that it mounts to fill the empty place which the liquor, by the answer be that it mounts to fill the empty place which the liquor, by
jerks, leaves in descending, the quastion is why that liquor does not stay up steadily, being so far within the limit of thirty feet in hight? Ag i, is
it, or is it not a cognate deep mine, along a gallery having communication with the upper air only by
a single orifce through a partial partition wall along the middle of such a single orifice through a partial partition wall along the middle of such
callery, partial because, stopping short at the farther end, or breast, it so gallery, partial because, stopping short at the farther end, or breast, it so
gives room for a round of motion of the air? It is frequently resorted to, in gives room for a round of motion of the air? It is frequently resorted to, in
the mining region, as a means of ventilating the deep mines. The questions are: In the first case, if the weight of atmosphere was sufficient to counter balance hydrostatic pressure of liquor in the cask, why did it not do it ? Secondly, in the case of the mine, since the heavier air was already at the
bottom, why did it not stay there?-J. A. P.
7.-VARNISH FOR VIOLIN.-Will some of your readers tell me how I can prepare varnish for a violin? I have been told that there
must be no oil about it. How can I stain the violin a darker color than the natural wood?-J. D
8.-Poison for Wolves.-Will some of your correspondents inform me of a quick and deadly poison for wolves, other than strych-
9.-Driving Elevator.-I wish to use a long elevator where I cannot get power to the upper pulley conveniently. Will driving
the lower pulley make it work? The ascending side will need to carry a
oad of about two hundred pounds.-C. W. W.
10.-Gold Solution and Bronzing.-Will some of your readers please inform me how I can make a gold solution for gilding to be
used by boiling, without a battery? And how can I do antique bronzing used by boiling, without a ba
with a green shade?
11.-Preparation of Indigo.-What amount of sulphuric acid is required to dissolve one pound of indigo? What is the best substancs to use for neutralizing the acid, and how much is necessary for that
purpose? What kind of a vessel is to be used for the process?-D. C.
12.-BoILER QUestions.-Is there any cheaper or simpler meth of feeding boilers, from a tank a little above the waterline in boil-
er, than with a steam pump? What is the best' way of bringing the flame capacity?-C. S. B.
13.-Salt in the Earth.-During our late war, the men would occasionally get a piece of fresh meat to eat, and, when out of salt to
season it, they dug the soil from under old houses and, leaching the water through it, cooked the meat in it. The latter would be found to be agreeably salted. How do you explain the presence of salt in the soil? There
were no cellars under the houses. It was only necessary to procure the were no cellars under the houses. It was only nec
dirt where it was protected from the sun.-C. E. W.
14.-Tension of Belts.-My plan for driving burrs from an upright shaft is condemned on account of the pulleys being too close. They are 6 feet between centers, and are respectively 2 feet and 3 feet in
diameter. It is reasoned that a short belt requires a greater tension-which diameter. It is reasoned that a short belt requires a greater tension-which
therefore is harder on the belt and spindle,-and will not transmit the same power. I contend there is no difference under like conditions, if tightener
pullegs. pulleys are used in each case, and the belts present the same surface to the
pulleys. The tension may be given by tighteners or by the weight of the pulleys. The tension may be given by tighteners or by the weight of the
belt; they would be just the same, and transmit the same amount of power, belt; they would be just the same, and transmit the same amount
and be no harder on the spindle. II I am wrong, why?-T. S. I.

Gusute to cortexpoudents.

$\overline{\text { SPECIAL NOTE.-- This column is designeid tor the general interest and in. }}$ struction of our readers, not for gratuitous replies to questions or a purely
business or personal nature. We will publish such inquiries, however, when paid for as advertisements at $1 \cdot 00$ a line, under the head of "Business when parsonal.
and Per
D. M., of Mich.-We think the specimen sent is what is called chrome iron, made from the ore known as spiegeleisen
C. A., of Mass.-A body floating in a stream moves with the mean velocity of that part of the section of the current occupied by the
submerged portion. W. B. W., of Mo.-Judging from your description, your boiler furnace is all right. What is meant by.furnaces out of shape, in
boiler reports, is that such furnaces as are made of iron, in the toiler and forming a pait thereof, are distorted
W. H. W., of Conn.-You can use the differential screw for the purpose named ; will publish your other query.
G. N. L., of -.-Your theory of vibrating flames is corroborated by modern research. Consult Tyndall's Lectures on Sound.
E.A. L., of -- Water has been proved to be more compress-
ble than some solids. Its density increasing, therefore, as the depth inble than some solids. Its density increasing, therefore, as the depth in-
creases, there is a theoretical depth at which water would become as creases, there is a theoretical depth at which water would become as
dense as, say, iron, and at which, therefore, iron would cease to sink.
Practically, however, it is probable that there is no depth in the ocean to Practically, however, it is probable that there is no depth in the ocean to
which any known solid that sinks at the surface will not descend. This which any known solid that
answers your other queries.
T. B., of N. J.-Your plan for balloon propulsion by inclined floats is old; it has been tried and found wanting.

Chapped Hands, etc.-For these, or chapped lips, or chafed skin in any part of the body, no application is so good as glycerin, rubbed
in twice a day. Two applications will generally cure any case of the

Melting Asphaltum.-Query No. 1, March 22, 1872.-The best solvent for asphaltum is oil of turpentine. Put in the mineral. and heat tillitis a water bath is the best vessel for the purpose,-D. B, of N.J. Lake Dwellings.-Query No. 11, March 22, 1872.-Sir Charles Lyells work "The Antiquity of Man" contains all the informa-
tion on this subject which has hitherto been obtained.-D. B., of N. J. Ants.-In answer to No. 20, page 169: Sprinkle lime on the places the ants frequent. If on shelves, spread paper over them.
think also that moles will not work among it.-fI. c. M., of Pa. ruit Jellies.-M., No. 27, page 169, is exercised about fruit jellies. He will doubtless be surprised to learn that they are called
"fruit jellies" because not a particle of fruit is used in making them "fruit jellies" because not a particle of fruit is used in making them.
They are simply gelatin dissolved in water, colored, and flavored with the so-called flavoring extracts.-Alex.,
Moles.-T. M. G. had better keep his moles till the wire and other worms in the soil are killed off by these useful animals. Moles ould not be in his garden were there not pernicious worms, bugs, etc.
to feed them. The moles won't touch his vegetables, but they are great on small deer like worms. As regards the ants, let T. M. G. get som quicklime and grind it fine; sift plenty of it on the ground where these in sects make their holes. The lime should be fresh, so as not to have lost
topping Craciss in Iron-
will will take some litharge and common gly certn, and make a
ment, he will be able to stop the leakage.-C. W. D. of Wis.
Fruit Jellies.-Query 27, page 169.-To M. Fruit jellies, so called, are made by putting half an ounce of alum in one pint of water
let it boil a minute, or till dissolved, then add four pounds white sugar let it boil a minute, or till dissolved, then add four pounds white sugar
boil two minutes longer and strain; when cool, add half a two shilling bottle of vanilla, lemon, or strawberry extract or other flavor.-Mrs. B.

Transferring to Glass.-Query 17, page 169.-K. W. can transfer engravings to wood or glass by flrst coating the wood or glass
with copal varnish, then press on the picture, face downwards, smoothly and tightly; let it dry. Then damp the paper slightly, and rub it off wit the finger, leaving the picture to be looked at the
ementing Emery to Wood.-To J. J. T., query 28, page 169. The following cement is wonderfully tough, as I have good reason
to know: Melt together equal parts of shellac, white resin, and carbolic acid in crystals; add the last after the others are melted. The effect o acid in crystals; add the last after the others are
the carbolic acid is surprising.-E. H. H., of Mass.
Ginger Beer.-Query 14, page 122.-To F. L. C. Take white sugar, 5 pounds, lemon juice, 1 gill, honey, $1 / 4$ pound, bruised ginger
ounces, water, $41 /$ gallons. Boil the ginger 30 minutes in three quarts of the water; when cold, put in the other ingredients and strain; add the white of an egg well beaten with a teaspoonful of lemon essence. In four
days bottle; it will keep longer with the honey than with yeast.- Mrs. days bottle; it will keep longer with the honey than with yeast.-Mrs.
K., of - .
leansing Hair Brushes.-Query 25, page 169.-To F. C To cleanse a hair brush, take a basin of cold suds, add a spoonful of spirits of ammonia, put in the brush, and draw a coarse comb through the
bristles as many times as necessary; a cloth too may be used to help the bristles as many times as necessary; a cloth too may be
cleansing. Finally rinse in clear water.-Mrs. K., of - .
Tanning Rabbit Skins, etc.-Query 4, page 169.-To L. H T. A simple way to tan skins is, first, to wash them ia cold suds; then soak the skins in it all night; then hang them over a pole to drain; whe nearly dry,sprinkle with powdered saltpeter and alum ; fold the flesh side together. lay them where they will not freeze, turn every day till dry,
then scrape the fiesh side with a blunt knife and rub with pumice stone then scrape the fiesh side with
and the hands. - Mrs. K., of -
Painting Sheet Iron.-Query 18, March 16.-Let J. C. try asphaltum varnish on his sheet iron smoke stack.-V.s. V., ofo.
To Destroy Ants.-Take of flowers of brimstone, half a pound an1 potash, four ounces. Set in an earthen pan over the fire till
dissolved and united; then pulverize and make, with water, a strony so. dissolved and united; then pulverize and make, with water, a stron's so lution and sprinkle where the ants
gnition of Steel Filings.-A. M., of Oregon.-The fact you mention is a familiar and convincing illustration of the nature of
combustion. Steel in a mass is a very incombustible substance, but, re duced to a fine powder and sprinkled so as to allow a large proportion of the oxygen of atmospheric air to each granule, it burns readily. The exby pulverizing material
Eye Stone.-A friend gave me an eye stone, and said it was a common article in the drug market, and used for removing dust, etc., from the eye. It looks on one side like a bivalve shell, but is plane E., of Mo.-Answer: Yes. It is aken from the head of a fresh water

Coloming [Shells.-Query 3, March 16.-Dissolve a little lac dye in a solution of chloride of tin; and having made the shells tho-
roughly clean, dip them in this preparation until they are of the desired roughly clean, dip them in this preparation until they are of the desired t.-E. H. H., of Mas

Railroad Accilents.-P. B. P., of Pa.-The device you Send is not new, and the vers.
vented its general adoption.
Ants and Moles.-T. M. G. should drop one or two castor oil beans in their holes, and he will then get rid of them. -K., of Md. Elastic Cement.-W. M. S., query 10, March 16, can mend his gas bag by putting on a
of carbon.-D. G. P., of Ill.
Painting Iron Bath Tub.-If C. A. H., query 15, March 16 wili mix his paint to a proper consistency with best coachmaker's japan
varnish, it wfll give him satisfaction. For white lead paint, use half turvarnish, it wfll give him satisfaction. For white lead paint, use half tur-
pentine and half coachmaker's japan. It will not darken much. Venepentine and half coachmaker's japan. It will not darken much. Vene-
tian red is bestf or a first coat, for any color but white.-P. D. W., of - .
O. E., of La.-We hardly think there would be danger of explosion from pulverizing chlorate of potash on clear white paper by roll-
it with a bottle. Should there be, however, a small fragment of camit with a bottle. Should there be, however, a small fragment of cam-
phor, sulphur, phosphorus, resin, etc., upon the paper or bottle, you might produce an explosion. Violent friction will sometimes expiode In such cases the explosion is not very dangerous, however, a small part
only exploding, while the remainder deflagrates and decomposes more only exploding, while the remainder deflagrates and decomposes more
gradually. We should prefer a mortar and pestle, taking care not to use gradually. We sho
the pestle violently.
Fluid and Liquid.-Query 2, March 16.—To H. W. H. The words fluid and liquid are often uzed synonymously. Water is both fluid and liquid, but oxygen is fluid but not liquid. Both terms apply to those pressure.-D. G. P., of Ill

Brass Colored Paint.-O. W. V., query 9, March 16, will will find copper bronze varnish as
thing he canget. \rightarrow D. G. P., of 111 .
Pin Spots in Steel.-Let H. M. H., query 23, page 185, get a small iron box with a sliding top to it, fill it with pulverized charcoal,
and imbed his pieces of steel in it, put in the top, and lute with fire clay. Heat it in a slow fire to a red heat, then take out and let it cool off.-J. H., of Md.

Gas in Wells.- Being much troubled some time ago with a foul well, down which it was necessary to send men to repair a pump fect succemedies having failed, I found the following treatment a per steam boiler, I ran the other nearly down to the water, and blew the wel ull of steam. It soon condensed, with the aid of a little water sprinkled air was perfectly purified. In the absence of a steam boiler, probably a good an effect would be produced by forcing air down through the hose, with a common force pump or otherwise.-O. S., of N. J,
blowing out Boiler.-D. \& N., query 21, March 9, had better let the water cool in their boiler, and then let it out and wash with cold water. Query 30: They will see that it is not right to wash a ho
boiler with cooler water. The consequences might be fracture by irregu boiler with cooler water.
nts and Moles.--Query 20, March 9.--For ants, place a fresh meat bone where the ants can get at it, and they will flock to it in times and the ants will have disappeared. For moles, dig a times and the ants will have disappeared. For moles, dig a hole like previously dipped in sulphur. Set fire to them, and, when once well on fire, cover up close with a board, and the mole hole acts as a pipe. Th
reparation of Nitrogen.-Professor A. W. Hoffmann, of Berlin, recommends the use of nitrite of ammonia for the preparation of nitrogen gas. It is only necessany to heat hissalt when it is decompose into nitrogen and water, thus: $\mathrm{NH}_{4} \mathrm{NO}_{2}=2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{~N}$.
The nitrite of ammonia is very easily prepared from nitrite of potassiun and chloride of ammonium. The nitrogen prepared in this way is very
nearly pure, the only contamination being a little nitrous oxide, a gas very soluble in cold water..-EE. J. H., of -
Test for Nitric Acid.-P. C. H., No. 19.-The mosst deli cate test is brucine, which is said to indicate one part of nitric acid in a drop of the solution to be tested, add one or two drops of the brucin solution, and from one to five drops concentrated sulphuric acid. Sul-
phate of anilin will detect one part of nitric acid in 1,000 parts of water phate of anilin will detect one part of nitric acid in 1,000 parts of water two to six drops concentrated sulphuric acid. The ordinary laboi atory test is to place, in the test tube containing the solution, a crystal of cop peras or sulphate of the protoxide of iron. One or two drops of strong sulphuric acid are then allowed to run down the side of the test tube to the bottom of the liquid; and this sets free the nitric acid, and this in Elastic Cemient.-No. 10, March 16.-Dissolve one dram of gutta percha in one ounce or more of bisulphide of carbon, so as to make ing, add about fifteen grains of pure india rubber, and let it dissolve; or when it has become soft and gelatinous, quickly rub the whole smooth with a palette knife on a slab. Paint four or more coats of this varnish over and around the hole in your bag, allowing each coat to dry before the application of the next. Treat a piece of ine strong calico in the same way. The last coat on each should be pretty thick, and when near ther. When at last the whole is supposed to be dry, press with a wary iron, and then paint the surface of the new piece with a coat or two. If
nicely done, your bag will be as strong as ever. Chloroform may be nicely done, your bag will be as strong as ever. Chloroform may be luid and Liquid.-No. 2, March 16.-These are practi cally synonymous terms, and I woald venture the following defin tions, even if they appear far fetched: Liquid, a form of matter allowing of perfect mobiry or particles or atoms. Fuid: a term whereby we may ible. Thus we speak of water as a liquid. But carbonic acid gas we might speak of as a gaseous fluid, since in pouring it from one vessel to another, it may, under certain arrangements, be seen to flow, and comport itself much in the same manner as when pouring water. Its parti-
cles are perfectly mobile. We speak cles are perfectly mobile. We speak metaphorically of the electric fluid,
as the term there again conveys to the mind the impression of mobility, and thus its condition in passing along or through a wire. This I give as a popular illustr
E.H.H., of Mass.
leaning Discolored Glass.-Query 16, March 16.have frequently cleaned glass that appeared smoky, when soap, turpen tine, alcohol, or scouring with whiling would make no impression on it by applying dilute nitric acid.-W. G. B., of Mich.
FASt Colors.-Query 8, No. 12.-A dye of logwood an blue vitriol is made fast by wringing out the goods in a solution of blue
vitriol and then plunging in a hot solution of logwood. After sufficient vitriol and then plunging in a hot solution of logwood. After sufficient coloring, dry and air the goods one day; wash them in soapsuds until lit-
tle color escapes; then immerse in cold urine and bring to a boill leaving tle color escapes; then immerse in cold urine and bring to a boil, leaving
the goods to cool in the urine. Remove and wash thoroughly in soap. the goods to cool in the urine. Remove and wash thoroughly in soap.
suds, rinsing in clear cold water. It is of the utmost importance that th goods be absolutely clean before coloring commences.-W. D. P., of
Wis.

Declined.

mmurications upon thefollowing subjects have been received and examine

by the Editor, but their publication is respect fully declined:
Atmospheric Electricity.-G. W.
Boiler Explosions.-J. M. H
Canal Boat Propulsion.-
Force.-S. H. T.
Rifles.-G. W. T
Science in the Courts.-Alex.
Shaving with Pumice Stone.-A. K.-R. B. F
Small Pox Cure.-J. H. V.-A. M. L
Solar Phenomenon.-C. S. M.
Spiritualism.-E. G. J.
The Davenport Brothers.-F. J. I.
Water Wheel Tests.-S. \& S.-L. B. A
Answers to Correspondents.-G. W.-J. E. M.-C. H. W -J. T. B.-L. H. \& Co.-L. H. S.-P. D. W.-J. F. A.J. G. W.-G. A. B.-C. T. T.-D. H. B.-J. L.-C. G.H. F. R.-J. L. G.-G. \& H.-T. H. J.-A. H. N.

Notes and Queries.-J. A. Y.-S. T. W.-J. D.-C. L.-B -P.-M. C. W.-N. Y.-G. E. P.-S. H. S.-M. P. B.D. H. B.-P.C.-J. D. J.-J. H. P.-M. S.-C. W. A.T. V.-Q.-J. G.-F. M. G.-T. H. J.-R. H.-J. K. C.M. A. R.-W. L. H.-A. H. B.-B. F. A.-W. M. D.

Under thus headinn we shall pubuish nent home and foreagn vatents.

 tion has for its object to furnisha simple, convenient, and effective atmos
 the otherside of said piston. The two cylinders are open at one end and have numerons holes in the heads at the other ends to allow the air to pass
through freely. The pistons work air tight in the cylinders. Valves are so through freely. The pistons work air tight in the cylinders. Valves are
arranged upona a cross bar, actuatee by buitable mechanism, that when one
 to the interior of the cylinders near their open ends. Wicks pass through the pipesfrom the reserviri to the cylinders. The pipes are provided with
stop cocks to enable the flow of the inflammable substance through the to be regulated or stopped, as desired. Air pipes, connected with the cylin ders, near their orpen ende, radmit ait to said cylinders, which are opened and
cosed by the values so arranged that one will always be opened as the ders, near their open ends, a amit air to said cyilinders, which are opened and
closed by the valves soar arange that one will almass beopenea a the
other is closed. Lamps are placed just below the open ends of of the cylinders and as close e ot hem as sis posside without having the valves in their move. ments, interfere
allow the valves to struction, as aech valve is openeded, the fiame from the lamp sets fire to the
wick, which forma vacum in the cylinders as the valves are closed, and the amospheric pressure forces the plstons for ward alternately, and they
thus keep up a constant motion in the shart.
Upright Piano.-Oscar Altenburg, of New York city.-This is an improved arrangement of the case or frame of an upright pianofor e, which
consists in hinging the face plate of the top to the case so that it can be consists in hinging the face plate of the top to the case so that it can be
folded down, and in providing it with a rib or device for the support of the music when thus folded down. The object of the invention is, tirst,to allow a convenient and fall display of the action and a free escape of the sound
waves; also, ready approach to the pins for tuning, and to dispense with the necessity of opening the top of the case, which may be used as a sup-Fence.-Albert C. Betts, of Troy, N. Y.-This invention consists of a the wires being fastened to the pickets by staples, and the pickets being placed at such distances apart as to prevent the wires from being forced
apart by animals so as to pass through, and not so near as to interfere with apart by animals so as to pass through, and not so near as to interfere rith
rolling the structure thusformed up into a rollfor convenience in carrying t from the factory or shop to the place where it is to be set up, or for re-
moving it from place to place. The wires and pickets thus arranged and connected are made in sections of greater or lesser lengths, according to connected are made in sections of greater or
convenience in handling, and secured in position in the field by erecting the
pickets upon the ground and fastening the wires or pivots to posts set perpickets upon the ground and fastening the wires or pivots to posts set per-
manently in the ground, a rod apart or thereabout, the said wires being manently in the ground, a rod apart or thereabout, the said wires being
secured by staples, which may be readily pulled out again to release the ires are Wires to one picket at once, the wires, pickets, and staples being fed or supplied to the machine in regular course, and thus to provide this part of the
fincef formarket at a very cheap rate, so that the only labor required in the fence formarket at a very cheap rate, so that the only labor required in the
neld will be the seiting of the posts and securing the said wires and pickets weight of the wires and pickets is not such as to require great strength.
Fenge.-John A.Stone, of Chapel Hill, Texas.-This invention retate FENOE.-
new fence of very simple construction and claimed to be of great strength
and durability. A series of posts is secured in the ground at a depth of rom eightee to twenty-four inches, and at istances apart about twelve inchesshorter than the rails to be used. The rails are placed obliquely
against the fronts and backs of the posts, and so that the ends of the rails against the fronts and backs of the posts, and so that the ends of the ralis
between one pair of posts rest on the ends of the rails between the adjoining pairs. After the rails have been placed-say, to about half the hight of the
posts-false posts are, by means of wire bands, tied to the true posts, against posts-talse posts are, by means or wire bands, from the ground to the hight to which the rails are to extend, and serve to
confne the latter intheir positions. After the false posts have been secured, confine the latter in theirpositions. After reals are applied. The helght of the fence may be cheaply inthe remaining rails are applied. The hetght of the fence may be cheaply in-
creased without the use of rails ${ }^{*}$ y having one or more strands of wire
stretched between or through the posts. Such wire may, however, be disstretched between or through the posts. Such wire may, however, be dis-
Sled.-John K. Reichert, Lancaster, Ohio.-The invention consists in avoiding the usual mortise in sled runners, which weakens and renders
them liable to break, by making the standards, which support the crossthem liable to break, by making the standards, which support the cross-
pieces of metal, and providing them with a socket at one end and a bifurcapieces of metal, a
tion at the other.
Fare Box.-John C. Schooley, New York city.-The patentee has contrived a fare box so constructed that not only the valves which prevent
escape of the tare shall operate automatically, but the fare itself shall proceed on its course from the first or inspection chamber to a safe deposit
chamber whenever the box is lowered or suspended by the handle in the ohamber whenever the box is lowered or suspended by the handie in the
most natural and easy way. When the box is again presented for a fare, the most natural and easy way.
valves swing open as betore.
Corn Criss or Housse.-Commodore B. Clark, Pleasant Grove, Iowa.This inventionrelates to an improvement in corn crios or houses, intended culiar construction of parts when combined in such a manner as to form a
crib or house, from which the corn can be taken as desired for use with cribor house, from which the corn can be taken as desired for use with
the greatest facility, and which shall serve to exclude botl rain and snow, and noxious or destructive vermin or animals, and yet permit a thoroush circulation of air through the body of corn.
Cartridge box.-John Miller,U.S. A.,Lexington,Ky.-The inyention con-
ists in the peculiar construction and arrangementof parts in a cartridge box whereby 40 rounds may be carried with convenience, and 50 in case of emergency, while ready access is always afforded to the single cartridges, and the rattle of screw driver against box is prevented by securing it within the
box. This improvement seems to possess decided advantages over its prebox. This improvement seems to possess decided advantages over its pre-
decessors, and will doubtless be appreciated by those acquainted with mildecessors, and will
itary accoutrements.
Fence.-John McKnight, of Romulus, N. Y.-This is a ne warrangement of the supports and fastening devices of a fence, which has for itt object to
facilitate tha putting together of parts and their transportation, and facilitate tha putting together of parts and their transportation, and
thereby to reduce the expense of putting up a fence. The invention conthereby to reduce the expense of putting up a fence. The invention con-
sists in the application to the fence posts of elbow supports tor the panels, and in their combination with a face post and bolt for holding the panels in contact with the posts. The posts of the fence are firmly secured in the
ground. The panels are made in suitable style and of the necessary or deground. The panels are made in suitable style and of the necessary or de-
sired lengths. To the lower part of each post is fastened, by a bolt or pin, sired lengths. To the lower part of each post is fastened, by a bolt or ph,
the upright part of an elbow piece or angle iron. The horizontal part of the angle iron has an aperture for the reception of the tenon formed at the
lower ond of alse post or face piece. From the upper part of each post projects a horizontal bolt or pin, through a slot in the eupper part of the
facepiece, The ends of the panels are placed upon the angle irons either so facepiece, The ends of the panels are placed upon the angle ironseither so
as to overlap or abut against each other, and are then confined to the posts as to overlap or abut against each other, and are the conils in front of the
by the face pieces. Forked plates are slipped over the bolts face plates to prevent the bolt heads from cutting into the wood.
Tooi Handle Fastenning.-Alanson R. Sweat, of Harlan, Iowa, assignor to himself and B. B. Mastick, of same place.-The object of this invention s to provide ready and convenime mand similar tools on to handles, so that such tools may be readily hammers, and similar fools on to handes, so that the handle itself will be
removed in case of failure, and so the
greatly strengthened thereby. It consists in a combined key and wedge attached to a head plate. The handle is fitted to the eye of the ax or
other tool in the ordinary manner, except that the handle shank is made other tool in the ordinary manner, except that the handle shank is made
narrower so that a space is left at the back of the eye for the key. The key
the wedge, and the head plate are made in a single piece of metal, and may
be forged or swaged and made or malleable iron or other metal. The end o the handie is split in the ordinary manner, and the wedge is driven in to the
split with the key at the back of the handle. The key projects through the eye, which forms a support to the handle and allows the key and wedge t o be driven out with ease. By this method the hande and ax or other tool readily separated, and the h
as may be found convenient
Bucile.-Robert F. Russel, of Hazleton, Pa.-This invention relates buckles for harness and other purposes, where the ordinary tongue buckle
cannot be used without annoyance or trouble. It consists in a metallic loop, and a slide, and a ring, constructed, combined, and arranged in a inward, thereby detaching a stop from the slide, and then slipping the slide frcm the loop, which allows the strap to be adjusted as may be desired.
When the strap has been adjusted, the slide is slipped back toward the ring and is caught by a stop lug. The inventor does not limit or confine himsel to the precise form or arrangement of the parts described, nor to any par
ticular use or parpose for the buckle, but designs it for all the purposes fo ticular use or parpose fo
which it may be adapted.
Gate.-William H. Phillips, of Staunton, Ind.-As a vehicle approache this gate, the driver guides the horses in such a way that the wheels may mechanism to open the gate, and, at the same time, raises other cranks int
mer an erect position, so that the driver, by guiding the horses so that the wheei of the vehicle may strike the erect cranks at the other side of the gate, may
thus close the gate and, at the same time, raise the first named cranks ready for the next vehicle in whichever direction it may be moving.
Water Wheel.-Vincent M. Baker, of Preston, Minn.-This invention relates to an improvement in gates and gate mechanism for water wheels
and has for its object, by the improved arrangement, to gain larger spaces for water entrance and avoid unnecessary friction. The invention consists
in sinking the gate rings, in a new form of flanged gates, and mode of connecting them, in such manner that the greatest pressure of water shall be on the inner end of the gate. This causes it to open and close more easily
than it would if the pivots were placed in the center. The greatest pressure of water, being on the inner ends of the gates when closed, helps to open
them, and the draft of water around the wheel when they are open helps to them, and the draft of water around the wheel when they are open helps to
close them. Balls may be placed in a recess for the lower gate ring to rest close them. Balls may be placed in a recess for the lower gate ring to rest
on, by which the gate move more easily. Two balls may be placed back of hosting. The gate thus made with straight inner face, beveled inner end, curved to other gates. On the straight inner face the water is conducted to the
wheel in a straight line; hence less frietion than there would be if said Wheel in a straight line; hence less frietion than there would be if said
face was surved. Leakage is prevented by the fianges covering the joints race was surved. Laakage is prevented by the finge
between the rings and case when the:gates are closed.
Oyster Steamer.-William A. Jones, Erie, Pa.-This is an improve served, so that it may be put back upon them when served. The steamer is made to be placed in the griddle hole of the stove or range, like an ordinary
kettle. It supports a vessel inclosed in another vessel which rests on an kettle. It supports a vessel inclosed in another vessel which rests on an
annular support. Below is a support for a vessel to catch the juice. A perforated pl be poured back upon the oysters when served. The parts may be made large, so as to contain any desired number of sets of the attachments for use
in hotels, saloons, etc., where several dishes of steamed oysters may be in hotels, saloons,
wanted at a time.
Truss.-Edmund P. Bann'ng, Jr., New York city, assignor to "Banning manner of securing the pad of a truss to the supporting plate, with the object of insuring stability of the pad during the motion of the body. It consists in the combination of a double slotted abdominal plate and a single longitudinally slotied hernia pad, held loosely together by set screws, thereby admit-
ting of a rotary motion of the pad. The body of the patient is thereby cnating of a rotary motion of the pad. The body of the patient is thereby cna
bled full freed.om of motion, and will not displace the pad. This improve an absolute closure of the rupture, where, heretofore, with the ordinar trusses, every motion of the body, nearly, was followed by a greater or less

Back Braces.-Edmund P. Banning, Jr., New York city, assignor to Banning Truss and Brace Company," of same place.-This invention con adjustable application of an and crum for a back brace. The back bone brace is made of a flatspring o proper length, width, and thickness, and sufficiently powerful for the purposes to which it is to be applied. The spring is inclosed in a sheath or cov-
ering of suitable fabric. Its upper end carries a pivoted transverse piece of plate, to the ends or whe theper part secured. The lower ends or these shoulder straps are secured by links, or
otherwise, to a short strap projecting from the sheath, or directly to said sheath. The straps contain buckles, or equivalent devices, for being
lengthened or shortened, according to the figure of the patient. The upper plates, being pivoted, allow free side motion to the body without affecting the position of the spring. To the lower end of the spring is pivoted anothe
transverse piece or plate, to which the body belt is connected The pivoting of the piece
crum of the crum of the brace is formed by two small metallic pads or plates, which are,
by more or less flexible joints, secured by a transverse bar that slides on the spring. By means of a plate, secured or bolted to the transverse bar, the
latter is transformed into a sleeve that embraces the spring, and can be vertically adjusted thereon. The pads can
fit the small of the back of the patient.
Uterine Supporter.-Edmund P. Banning, Jr., New York city, assigno invention is to construct a uterine support which will be light, cleanly, an under the complete control of the wearer, and which can be used in cases of
anteversion, retroversion, or to relieve the bladder from all pressure by the displacement of the womb, by a reversal of the concave tip. The invention
consists, first, in making the stem and spring of one V shaped wire, which at its outer end, is adjustably connected with the supporting brace, while its inner end sustains a tip of suitable material for the support of the uterus o for its lateral displacement, this tip being concave, and by its reversal made
adjustable for both ante and retroversion. The invention also consists in

Velocipede.-David Martin, Harrisburgh, Pa.-This invention consist an arrangement of propelling and steering apparatus for operating a four separate cranked axle, having two bearings inside the wheels upon th cranked downward to mount the connecting beam and operating gear a
low as possible. The connecting beam is rigidly attached to the hind auxiliary axle, and to the front one by a saddle, fifth wheels, and a king bolt. top of a standard, sapported on the auxiliary axles, and rising to a suitable hight for being worked by hand by a person in a standing position, or nearly lieved, cause a more uniform action the force on the crank than a single onnection will. The hind crank axles are connected to the cr nk ned treadles, pivoted to the connecting beam by links, and the treadles extend forward
under the seat, and a alitle in front of it where they have each a foot piece, upon by the feet of the operator, partly sitting on upon by the feet of the operator, partly sitting on the seat and partly stand-
ing on the treadles, and at the same time working the hand levers. The
carriage is guided by mechanism, actuated by an oscillatory movement of the body. It is belleved that a carriage constructed and operated on this
plan, by which both the power of the legs and arms can be applied, being
 der is composed of U shaped metallic sections, so connected that each side bar of one section embracesoris coiled aroundthe side bars ofthenext,which
thas allows the ladder to be packed in a small space or extended with grea
facility. The sectionsare connected so they can slide on one another, and b ontracted into a small space, and a long ladder can be preserved in a box clos middle parts of the sections, and may be enlarged, if desired, by having uprig form braces against and keep the ladder a desired distance from the wall The ladder, if used as a fire escape, can be suspended by a pin from the inne has of the window. Hind by pulling on a cord which is suspended from it. Then, by a extension rod, the ladder may be held up to another window to assist in the escape of others. LadDER.-George W. Willis, of Atchison, Kansas,-This invention re
lates to improvement in theclass of ladders which are provided with an ex
tensible foot or leg, whereby they are adapted to stand upon inclined or un ensible foot or leg, whereby they are adapted to stand upon inclined or un
even surf aces. The lower end of one of the side bars of the lader is sawn , so as to make it shorter than the other. A foot, which may be the piece sawn from the side bar. The rod passes
through and works up and down in keepers attached to the side of the short ride bar. The rod has a knob or handle formed upon or attached to it apper end for convenience in raising or lowering it. U pon the outer side
of the rod are formed teeth upon which a pawl takes hold to hold the said rod securely in any position in which it may be moved. The pawl is pivote to lugsformed upon the keeper, and its engaging end is held against the
teeth of the rod by a spring. The rod may be kept from turning upon the ide bar by flanges or wings attached to i it. By this construction the ladde Governor.-John S. Warren, of Fishkill-on-the-Hudson, N. Y.-Balls The collar carries a sleeve which revolves with the governor shaft. To the upper and lower ends of this sleeve are keycd bevel friction gears which act upon a bevel friction goar on the end of a horizontal shaft which con trols the water wheel gate. When the speed is accelerated, the lower fric
ion gear acts to close the gate, and when the speed slackens, the upper one

Miners' Boots and Shors.-George Latham and John Burton, of Jeddo a.-The miner is compelied to work much on hisknees, and to lie on hi is shoes and boots, if not specially protected, soon wear out. Much of the imetheminer is compelled to stand in water which holds mineral sub stances in solution, which are very destructive to leather. Boots and shoes ordinary wear. To accomplish this the inventors re-inforce the toe by piece of strong leather sewed with the upper securely to the sole. Thi
piece reaches up over the toe two inches, and extends back on each side with diminished width, not less than one inch, except at termination, and is strongly secured to the upper. A re-inforce counter piece of sole leather
at the heel is sewed with the counter to the heel, extending up in the mid the heel tree metallic plate is riveted to the counter piece and to the upper over the
sewing, which not only makes the connection of the twe parts strong, but ly does in working veins of coal. The counter extends in a single piece
round the heel, and is sewed and protected by the plate on each side With shoes and boots constructed in this manner, it is claimed, the miner much better prepared for the hard labor which he performs than with oo

Spring Bed Botrom.- Warret Owen and Stephen Harter, of Pierceton,
Ind.-This invention has for its object to furnish an improved spring bed Ind.-This invention has for its object to furnish an improved spring bed
bottom, simple, comfortable, and not liable to get out of order, and so contructed as to be level when supporting the weight of the sleepers, and to tend to rise somewhat in the center when the weight is ramoved, and thus
give the bed an appearance of being full. It is tormed by a combination of side bars, wedges, longitudinal slats, cross bars, wires, or equivalent con-
nections and short longitudinal bars with each other, by which the nections and short longitudinal
Girder for Railways.-Richard M. Upjohn, of New York city.-Thi invention relates to a new form of girders and supports for elerated and
ther railway tracks. Inverted T beams and channel beams are used, an formed of wrousht iron, steel, or any other suitable metal. The channel
beams may orm one or more stories, according to the purpose or use which the girder is to subserve, and are placed on opposite sides of the vertica
part of the T beams, so that the lower flanges of the channel beams rest on and are bolted to the base of the \mathbf{T} beams, while their upper flanges are
bolted to those of the beams resting on them, and so on. The several op osite channel beams are bolted together through the vertical part of th T beam, so that all areffrmly boutd together. The girder thus formed may or which girders are employed, the size and weight of parts being varie to suit the conditions of location, etc. The girder is, however, specially
adapted to form a support for the track of an elevated railway. In adapt git to this use, the vertical part of the T beam is extended above th channel beams, so as to form a ridge, and an inverted U shaped rail is laid
or fitted on the same, and is bolted to the channel beams and the T beam in a suitable manner. The usual provision of slots is made in each length of girder, to permit the bolts to slide, for the expansion and contraction of the
beams. Iron plates or tarred felt, sheet lead, or any other suitable materi1.for the purpose of preventing the transmission of sound from the girde Funnel attachment for Liquid Measules.-Cornelius C. Jadwin, of Honesdale, Pa.-The inventor constructs liquid measures with a funnel in-
stead of the ordinary lip, so that introducing the nozzle into the mouth of a jug, can, or bottle, the latter may be filled conveniently without employing he common funnel, which is usually more or less covered with fluids of
previnus delivery, and is likely to soil the hands. The improvement will be ound specially adapted
boat Detaching apparatus.-Christian Quaritius, of Canarsie, N. Y. This invention consists of a detachable connection of the hoisting and low
ering pulley block tackle with the boat and stop chains in connection with the detaching bolts for pulling them out whes the boat strikes the water, o just before, and a drum with a friction brake in the boat, whereon the bigh of the "fall".rope between the palley tackle is wound for paying off there-
from sufficient rope, under the control of one in the boat, to let it down by the friction brake. It is claimed that this arrangement has the advantag paysout alike for both endrol of the person 1 th is 10 danger ef eithe end falling before the other. Also, that the complete detachment of the
boat is insured. This invention has been patented in severalcountries in oat isinsured. This invention has been patented in several countries Bob SLed.-John Wampach, of Shakopee, Minn.-The tongue and th ont beam of the forwara he runners, as heretofore, and to do it in such manner as to allow the runners to vibrate freely as much as required without twisting or cramping the connecting device, as it would be if a rod or any rigidly arranged connec tion wasused. The reach which connects the two bolsters is made in two
parts jointed together, so that they may work vertically and horizontally to work more freely in running over uneve ground bars are used to strengthen the connection of the knee posts wit ith
braces and for further strengthening the knees in the lengthwise direction the sleds, in which they are exposed to very great strains.
Machine for Cutring Staves.-Adam Cook, of St. Clair Borough, Pa
This invention consists in the adaptation of an improved cutter to stave machines, by which better means for adjusting the hight of the cutter and securing it in place are attained. There has also been made an improveear away. This mode of securing the cutter also admits of its more read removal than the common mode does.

Heating Stove. - William H. Lancon, of Princeton, Canada. -This in
ention consists of a combination of an interior fire shell and a dampe with that class of stoves comprised mainly of a horizontal elliptica shell with its major axis in a vertical plane, in such manner as is claimed to greatly economize the heat. It also consists of a novel arrangement o ventilating damper. The stove is composed of two end plates of cast iron of an oval form, the front one having an extension forming a hearth and
ash pit, and near the bottom of the hinder one is an opening for a ventilating damper, and also for removing any ashes which may be deposited with in the hot air space. On the inner side of these plates, near their edges, groove is formed in the casing to receive the outer shell, which is made o Russia or other suitable sheet iron. Within the latter there is another par allel groove,extending about three fourths the distance around the stove, t
receive the inner shell or fire plate. The space between the shells, which called the flame flue, is about two inches, more or less. The inner shell fire plate commences about the center, vertically, of one side, and, curvin downward under the fire chamber, upward along the opposite side, terminates at the center of the top, where it is made, by means of a sharp revers equal parts. A semicircular damper is placed here, with its crank shaf lying parallel with and touching the top of the fire plate, outside the pipe This damper, turned in one direction, closes the direct communication be Ween the ire chamber and smoke pipe. and forces the flame into the flam flue and around the shell. When turned in the other direction, such connec ening the combustion. The ventilating damper is cast upon fits the curve of the shell, on which it rests, and keeps the damper in position.
Fertilizer.-James Fox and Andrew Fox, of Avoca, N. Y.-An ord nary farm wagon has one of the wheels provided with a belt rim. A long hopper ortrough, such as commonly employed on machinery for sowing
plaster, is provided with an agitator, a pulley for driving it by a crank, said palley belng.worked by a bell, ariven by the 1 m or the wagon wheel, and trough is suspended from the box of the wagon at the under aide bett. The the wheels transversely by mens of bails, hoited rods and a cross ba resting on the top, and extending across it and beyond the sides at eac end. The hooked rods pass up through holes in the cross bar, and are held by nuts at the top. The trough is provided with pieces on the top, to be held up snugly against the bottom, for steadying it ; or the said pieces ma
rise up between or outside of the side boards, close to them, as preferred In addition to the central vertical rods of the agitator, bent \mathbf{V} shaped rod work near the surface of the sides of the hopper to prevent the plaste clogging them; the said ends being connected to the said sides at the uppe ends, and operated by sultable mechanism. The trough is provided with

Window Sabh Supporter.-Ralph L. Young, of Topeka, Kansas.-Th Window frame has boxes on each side. Spiral springs are securely attached
to the frame at the top of the boxes at their upper ends, and to guide blocks their ends. The inner portion of the boxes is alted, and a portio of each of the blocks projects through the inner portion of the boxes an into the sash grooves. This portion engages with the sashes by entering recess or cavity therein. The outer portion of the boxes is grooved, and the blocks have shoulders by which they are kept in the slots and grooves as th
sashes are worked up and down. This arrangement is very simple and claimed to be much more durable tha cords, and they work noiselessly.

[OFFICIAL.]

Index of Inventions

For which Letters Patent of the United States were granted
for the week ending March 26, 1872, and each bearing that date.

Animal matters, treating, M. J. Stein......................... ...125,111, 125,112 Animal and vegetable | . 121,98 |
| :--- |
| . $125,0 \%$ | Auger, H. Pitcher.

Bag clasp, traveling, R. W. Chapman
Bales, hay, straw, and other, L. Dod
Barrel heads, machine for cutting, J. B. Stanhop
Bed bottom and sofa, spring,
Bedstead, sofa, W. Walcutt.

Bee hive, H. A. King..

Blacking and brush holder, E. H. Sweetze
Boats, method of detaching, L. H. Watso
Boats, etc., appa Boller feeder, automatic, D.
Boiler feeder, automatic steam, J. Wheeloc Boiler, water tube steam, C. G. Beitel
Boiler for ranges and other cooking ap Boiler for ranges and other cooking apparatus, back log, B. Hunter Bowls, lamps, etc.
Box, R. B. Davis.
Boxes, manufacture of, A. N. Alle
Brace and suspender combined, shoulder, Pratt and whitney. Braiding machine, J. D. Butler
Brick machine, G. C. Bovey............
Brash, whisk, H. S. Blunt
Buckle, trace, J. Lindsey
Burner, gas, S. Gardner............
Burner, hydrocarbon, S. J. Whiti
Camera, solar, Dille a
Car axle, J. W. Hard
Car, stock, Z. Street
Car brake and starter, C. M. Hinckley
Cars, brake for railway, Tatzel and Kinn
Carbureting air, apparatus for, G. Rezno
Card, cattle, W. M. Warren.
arriage tires, device for tightening, J. B. West (reissue)..
Carriage wheels, to their axles, attaching. W. Elder (reissu
Carriage wheels, method of securing tires to, P. D. Crosby
Carriages, handle for childrens, Elder (reissue).
Cartridge box, J. Miller.....
Centrifugal machine for draining sugar, etc., A. Fesca
Charn, A. J. Cox..
Churns, apparatus for operating, D. W. Ketcham.
Cigar mold, J. Baxter....
Clamp, line, W. A. Ford
Clocks, multiple time dial for, J. F. Niehaus.
Cloth, instrument for folding, M. Moschcowitz
Clothes pin, R. W. Huston
Cock, valve, P. C. Rowe.
Cock, conical stop, J. E. Jone
Cullar, shirt, V. N. Taylo
Composition for coloring leather, L. C. Ma
Compound for writing fluid, I. Popper.....................
C ompound, deodorizing and fertilizing, J. M. Loewenstein Compound for hardening bar iron, F. E. Blake Cooking apparatus, back log boiler for ranges and other. B. Hunter Corset, children's, Emery and Fuller

Corset, skirt supporting
Crib, corn, C. B. Clark.
Crib, children's, D. Cox
Crib, folding, A. J. Bettridge
cultivator, c. Warner..
Cultivator, J. W. Spangler..
cultivator and potato digger, J. G. Lac
Derrick, H. s. Blood.......
Digger, potato, W. Starkey
Dough mixer, A. E. Muth..
Drawing board, L. F. Schwenkel.
Dredging machine, sand, J. T. Cl
Dress goods holder, A. S. Grant.
Dryer,Foote and Smith..
Dryer,lumber, E. J. Sumner
Drying fruits, etc., F. H. Smith, (reissue
lectroma
Electromagnetor, M. Hanford.
Engine, reciprocating steam, Shepherd and Clar
Engines, valve for steam, J. Watson.
Engines, utilizing the exhaust steam of, E.........
pergnes for fruits and flowers, s. s. Barri
abric, pile, G. Crompton
Fastener for leather, metalic, H. Beals
Fat, etc., process and apparatus for rendering, M. J. Stein ence, L. Moore.
…............
ertilizers, etc., treating sewage for, H. H. Parish
File, paper, L. P. Keech.........
ire arm, breech loading, E. Whitney
ires, apparatus for extinguishing, H. Baker
langing machine, G. A. Bowe
Garnace dead plat
Gas tube support, flexible, A. Honsinge,
as, apparatus for manufacture of coal, A. M. Gile
lass ware, mold for, J. H. Reighard
overnor for steam engines, Reynolds and Herreshoff
Grate, atove, B. Franklin..
Grinder, flock, E. T. Marble
Gnard and brush holder, paint, w. T. Balley
Gun lock, J. C. Dane.
Hair restorative, S. M. McNet
Iarness, metallic lafer loop for, R. J. Algeo
Harvester, Ray and Sbalters, (reissue).................................., 824,4, Heater, car, C. F. Pike.
M. Force.

Heater, cotton seea, W. M. Force
Hoisting apparatus, N. S. McFarland
Horses, apparatus for checking, s. s. Ingalls
Hose, waterproof, T. L. Reed.
House, brick drying, G. C. Bovey
Ice cream freezer, T.
Iron, sad, J. H. Vail
ron, manufacture of sheet, D. L. Pratt
nife cleaner and sharpener, Houmann and Nielson
Knitting machine, H. Guenther
adders, combined splice and satety hook for, J. Edmunds
p, E. L. Lambie.
Lamp chimney, W. sedgwick.......
Last, shoe, W. J. E. Hinks, (reissue)
atch, capboard, sparyp and brad
atch, reversible, A. D. Judd.
ight, buoy, L. Stevens
ock for pianos, T. Powers
Locks, key hole guard fo
Loom shuttle, F. Miller.
Loom picking mechanism, \mathbf{H}
Lubricating talc for machinery, A. Bridges
Lubricator, steam engine, J. Foster...
Lubricator, steam engine, W. A. Clark
Marrow from hams, apparatus for extracting, W. N. Macqueen. Match box, T. Crommelin

Milk pailrest, G. C. Taft.
Mill, fanning, H. K. Stone
Music leaf turner, W. W
Nail, picture, S. C. Cary.
Nail blanks, punching horseshoe, G. L. Hal
Pantaloons, stretching board for legs of, E.
Paper making machine, Burns and Campbell
Paper, apparatus for stamping and feeding out, Montignani \& Gib
Parer, frult and vegetable, A. G. Batchelde
Pavement, wood L Caldwell
Pavement, wood, W. W. Ballard, (rengraving on metals, McGill and Pin
Picker, cotton, N. F. Sandelin
Pictures, etc., apparatus for mounting and exhibiting, J. W. Hard Pipes, apparatus for manufacturing tin lined lead,

Planter, corn, A. Windeck........................
Potash and phosphate of lime, manufacture of, Manwaring \& Bir
Pottery ware, etc., process for burning, G. C. Hick
Preserving meat, Vazquez and Rosenter
Printing press, T. N. Morse.
Pump, J. Bean...............
Pump, air, w. B. Flanigan................
Pump, bucket for chala, W. Hutchison
Railroad tie, A. B. Tripler, (reissue)
Railroad ties, preserving wood for, A B. Tripler, (reissue)
Rail way ralls, machine for straightening, G. I. Kinzel. Refrigerator, E. B. Jewett..
Rings, machine for rolling stock for finger, J. S. Palmer Rooles, perforating ed wan Saddle, harness, v. Borst... Sash holder, A. and L. L. Griflln Sash holder, Johnson and
Saw gage, W. P. Miller.. Sawing machine, scroll, s. Ide
Separating middlings, machine for, W. R. Middleton, (reissue) Separator, grain, G. A. Dabney
Separator and bagger, grain, J. J. Bradner
Sewing machines, treadle for, A. H. Wagner
Sewing machines, hemmer for, G. E. Doiton...............
Sewing machines, ruffling attachment for, G. E. Dolton
$\mathrm{S}_{\text {ew ing machines, ruflling attachment for, Gray and Joy }}$ Shears, J. Gardne
Shears, R. Renz.. Shoemakers, heac block for, J. H. Morton.
Shovel, snow, W. P. Wentworth, (reissue Signalfor railway crossings, C. F. Pike... Slaughtering appara

Slide

soda water draft tube, D. Fer
Soldering can caps, machine for, W. B. Bishop onnette, G. W. Sherman.
starching machine P o'Thaters';,J. Dalgleis Steam generator, H. Howard.
Steam generator, т. Merrian Steam generator, H. M. and J. F. Ru
Steel, manufacture of, G. F. Wilson. Stool and chair, combined, E. Worch...
Stoves, damper regulator for, L. Boore
Sugar, etc., centrifugal machine for dr Table slide, extension, S. R. Garner. Tassel, H. C. Lees.
Tin from scrap, apparatus for Ray, (reissue) in from scrap, apparatus for separating, F. W. Dorn
Tobacco hanger, A. G. Ferriss... Tobacco machine, J. Scales
Transplanter, J, C. Fuller, (reiss
Trap, animal, J. Rollins
Trap, fly, L. M. Gould.
Trap, fly, L. M. Gould..
runklias, stay brace for, S. H. Amido
Umbrella, G. F. Child.
Valve bucket, A. A. Moulton.
Valve,safety, T. D. Rand..
Vegetable cutter, J. S. Mace......................
Veneers, machine for chingingfor, G. Taylor
Wagon, hay, A. B. Barlow.
Wagons, brake lock tor, L. and H. Egeberg
Wagons, end gate for, G, Lounsbery.
Washing machine, Epstein and Brake
Washing machine, c. Gates.
Washing machine, J. Key......
Washing machine, G. L. Witsi
Washing machine, J. M. Walke
Water ejector, steam, Habermehl and Kleiman
Water closets, valve for, \mathbf{w}. Smith
Well tube, driven. W. D. Andrews
Wells, tool for enlarging oil, c. Bullock
Whip socket, G. F. De Vine...
Winding frames, stop motion for, Unsworth and Whalley.............. 124,989
Writing apparatus for the blind, J. R. Coles
DESIGNS PATENTED.
5,705 and 5,706.-CARPETS-M. Blatchford, Halifax, England.

5,724.-OIL CLoth.-J. Meyer, Lansingburgh, N. Y.
,725 to 5.,727.-Oin Cloths.-J. H. Park, Burlington, N. J., Byerly Hart

5,729.-TxPR.-C. E. Heyer, West Raxbury, Mass.
$\mathrm{s}, 730$.-CLoos Froxt.-N. Muller, New York city.

handeliers.-F R Seidensticker, West Meriden, Conn
TRADE MARKS REGISTERED.
12.-Gin.-Adams, Blake \& Taylor, Boston, Mass
13.-Tiginings, ETC.-A moskeag Manufacturing Co., Manchester, H. H.
14.-Painters' Lead.-Boston Lead Company, Boston, Mass.
716.-Cotton Fabrics, erc.-Hamilton Woolen Co., Southbridge, Mass.

717 and 718.-Hair Nets.-A. G. Jennings, New York city.
719 .-SHirtinas,
19.-Shirtinas, etc.-Langdon Manufacturing Co., Manchester, N. H.
720.-Tea.-E. Pavenstedt \& Company, New York city.
721.-Roofing Material.- New England Felt Roofing Co., Boston, Mass.
sCHEDULE OF PATENT FEES

For Copy of Caim of any Patent issued woithin 90 years.................... $\$ 1$
4 sketch from the model or drawing, relating to such portion of a machine as the claim covers, trom
The tull specifcation of any patent issuedstrince Nov. 20, 1866 at which tome
the Patent Offce commencedprinting them.......................... $811^{\circ} 25$
ancial Coptes of Drawings of any patent issued since 1836, we can supply
at a reasonable cost, the price depending upon the amount of labor at a reasonable cost, the price depending upon the amount of labor
involved and the number of viecos. information as to price of drawings in each case, may be had by addressing MUNN \& CO. 37 Park Row, New Yorts.

APPLICATIONS FOR EXTENSIONS.

Applications have been duly filed, and are now pending, for the extension
of the following Letters Patent. Hearings upon the respective applications re appointed for the days hereinafter mentioned:
20,635.-Repatring Cast Iron Critinders.--S. Falkenbury. June 5, 1872
$20,686 .-$ Sewina Machine.-A. F. 0,686.-SEWing Machine.-A. F. Johnson. June 5, 1872. 0,571.-Door Lock.-J. R. Marston. May 29, 1872
2,616. - Furnace - G. Bantz. June 5, 1872.
20,678.-Restoring VULCAnIzed RUbBER.-F. Baschn
20,999.-Plate For Safes.-I. S. Cady. July 10. 1872 .
30,685.-Riveting Machine.-P.B.Tyler,W.Jones,B. Lathrop. June 5, 187 0,679.-Vault Cover.-E. L. Brown. June 5, 1872.
$20,622 .-C a r$
Seat, etc.-S. C. Case. June 5, 1872.
20,631.-Evaporating Pan.-D. M. Cook. June 5, 1872.
EXTENSIONS GRANTED.
9,638.-Floativg Anchor, etc.-J. Humphries, Washington, D. C
9,654.-Trimming Machine.-M. H. Lemple, Lowel, Mass.
,i67.-Spring Testing Machine.-P. G. Gardiner, New York city
19,619-PLANING BLINDD SLats.-C. Carlisle, Woodstock, L. Worcester
,644.-Sawing Machine.-H. L. Low, Galena, Ill.

Practical Fints to Inventors.

M UNN \& CO., Publishers of the Scientific American have devoted the past twenty-five years to the procuring of Letters Patent in this and foreign countries. More than 50,000 inventors have avail-
ed themselves of their services in procuring patents, and many millions of dollars have accrued to the patentees whose specifications and claims they have prepared. No discrimination against foreigne
ries obtain patents on the same terms as citizens.

How Can I Obtain a Patent

s the closing inquiry in nearly every letter, describing some invention, which comes to this once. A positive answer can only be bad by presenting
a complete application for a patent to the Commissioner of Patents. An application consists of a ifodel, Drawings, Petition, Oath, and full Specification. Various offlcial rules and formalities must also be observed. The
efforts of the inventor to do all this business himself are generally without success. After great perplexity and delay, he is usually glad to seek the aid of persons experrenced in patant business, and have all the work done over apain. The best plan is to solicit proper advice at the beginning. It the
parties consulted are honorable men, the inventor may safely confide his parties consulted are honorable men, the inventor may safely confide his
deas to them: they will advise whether the improvement is probably patentable, and will give him all the directions needful to protect his rights.

How Can I Best Secure My Invention?

This is an inquiry which one inventor naturally asks another, who has had some experience in obtaining patents. His answer generally is as follows, and correct:
Construct a neat model, not over a foot in any d!nension-smaller if pos-sible-and send by express, prepaid, addressed to MONN \& Co., 37 Park Row New York, together with a description of its operation and merits. On re-
ceipt thereof, they will examine the invention carefully, and advise you astc its patentability, free of charge. Or, if you have not time, or the means a hand, to construct a model, make as good a pen and ink sketch of the im provement as possible, and send by mail. An answer as to the prospect of a patent will be received, usually by return of mail. It is sometimes best to
have a search made at the Pateat olfce; such a measure often saves the cos of an application for a patent.

Preliminary Examination.

In order to have such search, make out a written description of the inven-
tion, in your own words, and a pencil, or pen and ink, sketch Send these tion, in your own words, and a pencil, or pen and ink, sketch. Send these
with the fee of $\$ \mathrm{~F}$, by mail, addressed to MUNA \& Co., 37 Park Row, and in win the fer of $\$ 0$, by mail, addressed to MUNN \& Co., 37 Park Row, and in
due time you will receive an acknowledgment thereot, followed by a written report in regard to the patentability of yonr improvement. This special
search is made with great care, among the models and patents at Washing search is made with great care, among the models and patents at Washing
ton, to ascertain whether the improvement presented is pate ton, to ascertain w

To Make an Application for a Patent. The applicant for a patent shonld furnish a model of his invention, it sus
ceptivle of one, although sometimes it may be dispensed with, ceptiole of one, although sometimes it may be dispensed with; or, if the in-
vention be a chemical production, he must furnish samples of the ingredients of which his composition consists. These should be securely packed, the nventor's na me marked on them, and sent by express, prepaid. Small models, from a distance, can often be sent cheaper by mail. The safest way to remit money is by a draft, or postal order, on New York, payable to the or,
der of MUNN \& Co. Persons who live in remote parts of the country cal der of MUNN \& Co. Persons who live in remote parts of the country can
usually purchase drafts from their merchants on their New York corres. usually purchase drafts from their mercbants on their New York corres.
nondents.

Guturtiguments.	Peteler Portable Railroad Company, OFFICE, 42 BROADWAY, NEW YORK.
rates of advertising.	
Bects Page - - . . $\$ 1$ •00 a line, Inslde Page - - - $\quad 15$ cente a inno sor each insertion.	
Bagradings may head advertisements at the same rate per kise, by measurement. as the letter-press.	
Thtc vatue of the Scientifis American as an advertising medium cannot be over-estimated. Its circulation is ten times greater than that of any similar journal now published. It goes into all the States and Territories, ana is read in all the princ pal libraries and reading-rooms of	

TO CONTRACTORE, MINERS, etc. By this invention ore horse does the work

Sominctidiss

OADSTONE, Bloodstone, Fluoric Acid,
 =ew
 $\frac{\text { Specialty. } \quad \text { LIVINGSTON \& Co., Pittsbartghod Pa. }}{\text { Sighe }}$

CAUTION.

T HE Union Iron Mills, Pittsburght, Pa The The

Caveats.
Persons desiring to flle a caveat can have the papers prepared in the short-
est time, by sending a sketch and description of the invention. The Governest time, by sending a sketch and description of the invention. The Govern
ment fee for a caveat is $\& 10$. A pamphlet of advice regarding applications ior patents and caveats is furnished gratis
MUNN \& Co., 37 Park Row, New York.

Reissmes.

A reissue 18 granted to the original patentee, his heirb, or the assignees o the entire interest, when, by reason of an insufficient or defective specifica tion, the original patent is invalid, provided the error has arisen from inadverten
tion.
A patentee may, at his option, have in his reissue a separate patent tor
each distinct part of the invention comprehended in his original application by paying the required fee in each case, and complying with the other re quirements of the law, as in original applications. Address MUNN \& Co

Any person or firm domiciled in the United States, or any firm or corpora Aon residing in any foreign country where similar privileges are extended citizens of the United States, may register their designs and obtain pro-
tection. This is very important to manufacturers in this country, and equal ly so to foreigners. For full particulars address MUNN \& Co., 37 Park Row New York.

Design Patents.
Foretgn designers and manuracturers, who send goods to this country, may
secure patents here upon their new patterns, and thus prevent others from tabricating or selling the same goods in this market.
A patent for a design may be granted to any person, whether citizen or alien, tor any new and original design for a manufacture, bust, statue, alto-
relievo, or bas relicf; any new and original design for the printing of woolen, silk, cotton, or other fabrics; any new and original impression, ornament. pattern, print, or picture, to be printed, painted, cast, or otherwise laced on or worked into any article of manufacture. Desiga patents are equally as inportant to citizens as to foreigners. For
tull particulars send for pamphlet to MUNN \& Co., 37 Park Row, New York Rejected Cases.
Rejected cases, or defective papers, remodeled for parties wh have mad applications for themselves, or through other agents. Terms moderate
Address MUNN \& Co, stating particulars
European Patents.
MUNA \& Co. have solicited a larger number of European Patents than any other agency. They have agents located at London, Paris, Brussels,
Berlin, and other chief cities. A pamphlet pertaining to foreign patents and the cost of procuring patents in all countries, sent free.
MUNN \& Co. will be happy to see inventors in person, at their otitice, or to advise them by letter. In all cases, they may expect an honest opinion. For
duch consultations, opinion, and advice, no charge is made. Write plain do not use pencil, nor pale ink; be brief.
All business committed to our care, and all consultations, are kept secret and siricicly confldential.
In an matters pertaining to patents, such as conducting interferences ofocuring extensions, drawing assignments, examinations into the validity
of patente, etc., spectal care and attention is given. For information, and fo patente, etc., spectal care a ade ande,

Value of Extended Patents.
Did patentees realize the tact that their inventions are likely to be more
productive of proft during the seven years or extension than the first tull term for which their patents. were granted, we think more would avail themselves of the extension privilege. Patents granted prior to 1861 may be
extended for seven years, for the eneffit of the inventor, extended for seven years, for the benefit of the inventor,or of his heirs is case
of the deceaze of the former, by due application to the Patent Office, ninety of the deceaze of the former, by due application to the Patent Office, ninety
days before the termination of the patent. The extended time inures to the benefit of the inventor, the assignees under the first term having no rights under the extension, except by special agreement. The Governmen fee for an extension is $\$ 100$, and it is necessary that good professional service
be obtained to conduct the busine s before the Patent Offce. Full informa. be obtained to conduct the busine ss before the Patent Oftce. Full informa
tion as to extensions may be had by addressing

```
                                    MIUNN & C0.. 3y Park Liow.
```

Inventions Patented in England by Americans. [Compiled from the Commissioners of Patents' Journal.]
From March 1 to March 7 , 1872 , inclusi ve. arch 1 to March 7, 1872, inclusive.
Falls, R. I.
Hoist.- W. D. Andrews, Brookhaven, N. Y
Horse Shoe.-A. Quinn, Brooklyn, N. Y.
Horse Shoe.-A. Quinn, Brooklyn, N. Y.
MAGNETIC fNDICATOR.-H. Glover, Brooklyn, N. Y
Mailing Nails. - M. D. Whipple Brighoon, N. Y.
Malleable Cast Iron.-A. F. Andrews, New Haven, Conn.
Ordnance.-N. Thompson. Brooklyn, n. Y.
Railway Rails.-G. W. N. Yost. Corry, Pa
Refining Sugar.-J. a. Morrell, New York city
Stele and Iron.-Z. S. Durfee, New York city.
Tinting Photographs.-H. Vander Weyde, o.
Tinting Photograpis.-H. Vander Weyde, o. Sarony, New York city.
Type Setting Machine.-J.W.Paige, Rochester, D. Reynolds, Albany,N.
FOREIGN PATENTS--A HINT TO PATENTEES.
It is generally much better to apply for forei,yn patents simultaneously
with the application in the United States. If this cannot be conveniently done, as little time as possible should be lost after the patent is issued, a the laws in some foreign countries allo x patents to any who first makes the application, and in this way many inventors are deprived of valid patents
fortheir own inventions. It should also be borne in mind that a patent is
. issued in England to the first introducer, without regard to the rights of the entrusted to responsible agents in this country, who can assure parties that their valuable inventions will not be misappropriated. The population of Great Britain is $31,000,000$; of France, $37,000,000$; Belgium, $5,000,000$; Austria $36,000,000$; Prussia, $40,000,000$; and Russia, $70,000,000$. Patents may be secured
by American citizens in all of these countries. Mechanical improvements of all kinds are always in demand in Europe. There will never be a bette time than the present to take patents abroad. We have reliable busines connections with the principal capitals of Europe. A large share of all the patents secured in foreign countries by Americans are obtained through ou Agency. Address \qquad
37 Park Row, N. Y.

NEW ROOKS AND PUBLICATIONS.

Maurice: A Novel by Bechard. Translated foom the French by Mrs. Josephine Douglas. New York: G. W. Car leton.
The story illustrates a variety of phases of French life, Parisian as wel as provincial, and forthe idle hour will be found entertaining without beng
exciting. The translation is very graceful and flowing, reflecting much exciting. The translation is very graceful and
credit upon the literary culture of the translator

HARTFORD
Stieam Boiler InsPection \& INsorance co. CAPITAL......................... $\$ 500,000$ ISSUES POLICIES OF NSURANCE, after a carefu Boilers, Brililings, and Madinery, STEAM BOLLER EXPLOSIONS $\boldsymbol{B T E A M} \boldsymbol{B O L E E R S}$, stationary, marine, and locomotive. HOME OFFICE, in Hartford. Conn. Ar At any Rene mond of dirbecors:

STRET OASTMNCS,

M ted Cithogne. cinas. Goocci, cincinnati, onio

 $\mathrm{F}^{\text {OREMAN WANTED. }}$ Gor ant Encine and

a Great Need Supplied. aso

Tor $\mathbf{\$ 9 . 0 0}$.

A Book for the Library, the Counting-house,

The NATIONAL ENCYCLOPEDIA;

$$
\underset{\text { Ey Litor of " Zell's Popular Encyclopedia. }}{\text { By }}
$$

Complete in One Vol., Royal 8 Vo .
Illustrated with Seven Hundred Dia grams and Weod-cuts.

This valuable work will be coinpleted in Eighteen
Monthy Nunbors (each containing fifty six two column
pages), at Fifty Cents per number Itw in be

Machinery,

Cold Rolled Shafting.

Sturtevant Blowers

NON-EXPLOSIVE.
 NOPER ROT ATR

Electric Fuse Heads, dedirich fised,

Rescorty
sandy
Hill, N. x.

SATERPROOF
CHEAPEST and BEsT.
$\frac{\text { Sisen tor pries sind samples. Superlor for cotton. }}{\text { Wi Warrant every Steam Gauge }}$

WAIT'S

Eiudson River Chamnion Turbine.

CIRCULAR SAW MILLS,
 Machives
MA saiv iii
WATMOTON

$\$ 10$ from 50 cts.

NEW PATTERNS.

Rare and Beautiful Flowers and Choice
Vegetables can always be obtained by sowing

B. K. BLISS \& SONS, 23 Paris Place and ad Murray St., New GARDEN, FIELD \& FLOWER SEEDS,

LAWNMOWERS

THE WOODWARD
 STEAMPUMP.

SAVE 20DOLH

P. BLATSDR LI \& C M MACHINTS'TSERS OFS. FIRST CLASE
$\mathbf{A}^{\text {GENTS, LOOK! Genteel Business. Most }}$

) $\begin{aligned} & \text { Manfg Chemista } \\ & \text { Hen }\end{aligned}$

1832. SCEENCK'S PATENT. 1871 WOODWORTH PLANEHS

UNIVERSAL WOOD WORKER, | HORZZNTAL AND UPRIGHT BORIVG MACH, |
| :--- |
| MOBETHES |

HYDRAULIC JACK.
PISTON guided from both ends; all working

$\mathbf{A}_{\boldsymbol{P} A R E F U L L}^{\text {CALELECTED assortment of }}$

Engravers' Boxwoon -METLAL for for Machininits.

- SIEA NT

PUMPING MAGHINERY

To Electro-Platers.

STAVE MACHINERY
OTIS' Mand inemo
Hacharsery.
PORTABLE STEAM ENGINES, COMBIN

Ne:ayara sitan premap. CHAS. B. HARDICR,

Andreess's Patents.

 Alluidhtidiple, Durable, nad Econemical.

THE FREAR ARTIFICIAL STONE.

 AUSTRALIAN COLONIES.
 PATENTS BOUGHT AND SOLD. Send

R IVERVIEW Military Academy, Pough

Planing and Matehing
 W Ood-woring machinery gen.

MACHINISTS.

WIGHMMA, 2s Cornhili soston, Mass.

NRiling Machimes.

$\mathbf{S}_{\text {TANDAD, }}^{\text {TAN NTM }}$

SHINGLE AND BARREL MACHINERY.-

PUMPS - For Deseription, Price
 $\mathrm{L}_{\mathrm{J}}^{\mathrm{ATHE}} \mathrm{CHUCRS}$ from

 VARIETY PATENTMDROVED MINERY CIDCULAR ARSW BENCHES.

SCIENTIFIC AMERICAN

For 1872

A year's numbers contains over 800 pages nd makes two volumes, worth as a book of

ENGRAMENGS

In our own artists, will not only be given, of all the best LEADING MANUFACTURING ESTABLISH MENTS, MACHINES, TOOLS AND PROCESSES.
Inventors and Patentees gether with descriptions of the morc important Inven tions. We shall also publish reports of decisious in Pat

THE NEW VOLUME OF

SCIENMMCMCAN

me to organize Clubs and to forward subscriptions. TERMS FER 1872.

One copy, one year One copy, six months
 One copy, six months

Club rates $\left\{\begin{array}{l}\text { Ten conies, one year, each } \$ 2.50 \\ \text { Over ten copies, same rate }\end{array}\right.$
One copy of Scientict 2. One copy of engraving, "Men of Progress," . 10. co One copy of Scientific American
Ten copies of "Science Record,"," and ten copies 0.4.
CLER PRETRIUPES.
Any pern who sends us a yearly club of ten or mor copies, at the foregoing club rates, will be entitled to one
opy, gratis, of the large steel plate engraving, "Men o Progress."
The postage on the Scientiac Amcrican is five cents per uarter, payable at the office where received. Canac
ubscribers must remit, with subscription, 25 cents extra o pay postage.
Address all 1

MUNAN \& CO.
37 PARK ROW, IVEW YORK

Wuchizion

Adupted to Mochnical Purpoen Now York

Diamond-Pointed STNAM DRTMES

T T tions adoption of new and improved applica

 O20.-ADVERTISERS.- \$20.
 ""CAPPENTER AND JONNERS HAND BOOK,", and

a Great want supplied

$\frac{\text { Standad AMERICAN Billiarditalss }}{\text { NEW DESIGN }}$

H.W.COLLENDER ${ }^{\text {SuCCSSHELIGLAN \& COLLENDER. }}$

SITMHAMNWIRS FERRIS\&MIILS 24TH\&WOOD SISPHILA

$\frac{7}{7}$

A. S. Cameron \& Co., ENGINEERS,

Works, foot of East 23d Street, New York City. STEANV PUNTPS,

Adapted to every Possible Duty.-Send for a Price List A GOOD COMPOUND
Of
OTOSOM

WIRE ROPE.
JOHN ${ }_{2 A} A$ $\mathbf{F}_{\text {Bridect }}^{\text {OR Ined Planes, Standing Ship Rige }}$

 SPECIAL NOTICE.
 Rill

 Ftaxe

VENTEHRS,

HARDWOOD BOARDS

Hztzimize

Brass \& Copper seaminiss tubing FOR LOCOMOTIVE, MARINE, AND STA'TIONARY BOILERS. Merchant \& Cong s0y Market Street, Philadelphia.

 Swain Turbine. "OnILow.Water Wheel fron this on" W the Lowell Tests. tests at Lowell, with Diagrams andther of Power address
oles

THE SWAIN TURBINE CO.
T T DD \& \& RAFFERTY, Manufacturars

THE BAND SAW!
$\mathrm{H}^{\mathrm{ISTORY}, \text { with }}$ Engravings of

LUBRTCATORS.

Industrial Hxposition

 OF LOUISIANA.The Southmestern Exposition Associa
 A GRAND INDUSTRLAL EXPOSITTION

apen both day aud night, and is certain to attract a larg
atendance ciose of the Exposition, the Butlding will be
Alosed for ten days (until fune 3d), when it will be again

Circulars, will full information, Blank Forms, $\& \mathrm{c}$., ma
be obtalned
THY

 trademarit Union Stone Co.,

L. W. Pond --New Tools. EXTRA HEAVY AND TMPROVED PATTERNS.

 American Saw Co., Manufacturers of

Coltrs armory testiva machine-

Machinists' Tools

OF EVERY DESCRIPTION.

NILES TOOL WORKS,

$\mathrm{K}_{\text {In }}^{\text {IDDERES }}$ PASTILES $-A$ Sure Relief for
$\$ 20,000{ }^{\text {Ir }}$ IT PREMIUMS. - SIXTH

G EORGE PAGE \& CO., Manufacturers of

Worling Models
 STEAM PIPE AND
BOITER COVERING

[^0]
[^0]: PORTLAND CEMENT,
 $\mathrm{O}^{\mathrm{F}} \mathrm{F}$ the well known manufactur of John

