a WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE. MECHANICS, CHENISTRY, AND MANUFACTURES.

NEW YORK, MARCH 23, 1872.
$\left\{\begin{array}{c}\text { \$3 per A nnumm } \\ \text { [IN ADVANCE.] }\end{array}\right.$

Collecting and Removing Scums from Boilers. Our engraving illustrates a simple and undoubtedly effective device for removing scums from boilers, which has, we are told, proved its efficacy and value in a five months' practical test on the steamship John Gibson. Upon inspection of the boiler in which it has been used, it was found that no scale had collected on the tubes, and only a slight and easily removed scale had collected on other parts.
In a trip between New York and Washington, with the cock kept a quarter turn open, it is stated that the salt saturation was kept within limits by its use.
The prisciple of drawing off scums from the surface of water in boilers, by means of a surface blower, is not new. The inventor of the present improvement rests his claims upon something beyond this, namely, the form of the collector and its position in the boiler at the point to which all the surface circulation tends. It is obvious that if, at this point, a device be placed that allows point, a device be placed that ans the free descer it obstructs the motion of the scums, the latter will gather in the collector, from which they can be forced out under pressure through a tube provided for that purpose.
This is claimed to be the action of this surface blower, the parts of which are as follows:

A is a perforated globe put together in halves, wlich are connected by lugs and bolts, B. C is the eduction pipe, and D the cock.
The engraving shows the device as applied to a marine boiler, and placed in the focus of surface circulation. It is scarcely necessary to add that the same appliance may be used in any boiler, when impure water renders it needful.
Patented through the Scientific American Patent Agency, March 5, 1872, by B. C. Davis and J. T. Hardester, Baltimore, Md. For ?urther information address Phillips \& Calverley, No 444 Water street, New York, or Holmes \& Co., 72 West Pratt street, Baltimore, Md. The former are the agents fo
York State, and the latter for the State of Maryland.

BRIDGE OVER THE MISSI SSIPPI, AT BRAINERD, MINN.--.

 NORTHERN PACIFIC RAILWAY.Our engraving is a fine view of one of the bridges of the Northern Pacific Railway, a work which is now being pushed with energy, and is destined to become a most important ar.

DAVIS AND HARDESTER'S SURFACE BLOWER.
bably unsurpassed anywhere, and fruits, of nearly all the kinds natural to the temperate zone, thrive in the mild climate of its luxuriant valleys.
All the elements of prosperity exist in the territory which will supply the road with traffic, namely, Minnesota, Dakota, Montana, Idaho, Oregon, Washington, and a part of Wisconsin, and a brilliant future for this work cannot be regarded as doubtful.
According to statement of Messrs. Jay Cooke \& Co., (De. cember 25, 1871,) this road is now completed across the State of Minnesota. 255 miles, from Duluth to Fargo, on the Red

River of the North, and trains are running regularly. The Dakota division, extending 200 miles westward, from the crossing of the Red River to the crossing of the Missouri in central Dakota, is now under construction, and contracted to be finished July 1, 1872. In the meantime, a section of 65 miles is building between the Columbia river and Puget Sound, in Washington Territory, where track laying is progressing.
The Northern Pacific company, in order to remsve hurt ful rivalry and secure early and direct connection with St. faul, Chicago, and the East, recently purchased the main Paul, Chicago, and the Exst, recently purchased the main
line and branch of the St. Paul and Pacific road. During the past year the main line has been completed, through an excellent country, to Breckenridge on the Red River. At the eame time the branch has been ex tended from its late terminus at St. Cloud, 65 miles nortluward, to Brain erd, where it joins, and becomes tribu tary to, the trunk line of the North ern Pacific. Finally, contracts have been let for the construction of a branch road (to be technically known as the St. Vincent Extension of the St. Paul \& Pacific Railroad), from St. Cloud, 375 miles, to Pembina, near the north western corner of Minnesota, and on the border of the British Pro vince of Manitoba. This is to be completed before the close of 1872. It will drain the richest portion of the Red River valley and open direct communication with the Britisn settle ments of Winnipeg and the productive valley of the Saskatchewan. It will also serve as the southeastern arm of the Northern Pacific road, reaching to St. Paul and Minneapolis.

At this date, the Northern Pacific company own, by construction and purchase, 640 miles of finished road. The completion of the above named coatracts will give the company, at the close of 1872 , more than 900 miles of completed track in the prosperous State of Minnesota alone, and 1165 miles altogeth er; it will carry the trunk line nearly one third of its distance across the continent, and bring to it the large and rofitalle traffic of Montana and the Government transportation of the Upper Missouri. The Hudson's Bay Company have already leased wharves and warehouses at Duluth, pre paratory to doing the whole of their large business over the Northern Pacific line. Nearly two million acres of the company's lands in Minnesota are ready for sale, and many thou sand have been sold to colonies and settlers, who are moving to the line of the road in gratifying numbers.

a navigable balloon.

The recent trial of M. Dupuy de Lôme's balloon, at Paris, has certainly taken the importance of a scientific event in France. The construction of this aërial machine starts with the principle that to obtain a navigable balloon, the two following conditions must be complied with :
1 st . The permanence of the form of the balloon, without any sensible undulation of its surface.
2d. Obtaining a horizontal axis of least resistance in a direction parallel to the propelling force.
The permanence of form is assured by a fan carried in the car, and put in communication by a tube with a small balloon placed within the largest one at its lowest part. The volume of this small balloon is one tenth of that of the large one. It is furnished with a valve opening, both within and without, and regulated by springs. The large balloon is provided with two hanging tubes, open to the air and fall ing for a distance of 25 feet from the lower part of the bal loon. The inflation of the litll b.illoon causes the hydrogen to fall more or less in the banging tubes, but never sufficient y to force :t out of their open ends.
To obtain a horizontal plane of least resistance, the form given to the balloon was that developed by the arc of a cir cle turning around its chord, and in which the versed sine was nearly one fifth of the length of the chord.
The following are the principal dimensions of the balloon :

The upper portion of the balloon is covered with an envel ope of fabric whielr supports the car by a zone placed around the centre of the body. This envelope is then continued below the upper half until it covers about three fourths of the body. Below the envelope and attached in a similar manner is a second zone within the first one, having the form of a cone tangential to the sides of the balloon. The summit of this cone serves to attach the cordage by which the car is sustained.
The rudder consists of a triangular sail placed beneath the balloon and near the rear, and it is kept in position at the bottom by a horizontal yard 19 feet 8 inches long, turn ing around a pivot on its forward extremity. The hight of his sail is 16 feet 4 inches, and its surface 161 square feet Two ropes for working the rudder extend forward to th seat of the steerer, who has before him a compass fixed to the car, the central part of which is large enough to carry a crew of 14 men. The forward and aft parts are formed with a framing of bamboo.
The screw is carried by the car. The shaft can be easily lifted from the rear and thrown upon a forward support, so that no damage can arise to it, either on departure or arrival The screw is driven by four men, or by eight men working at a capstan. The gas escape valves, of which there are two, are placed at the top of the balloon immediately over the pendent tubes, before spoken of, and through which the cords for working the valves pass into the car. The balloon is made of white silk, weighing about 7 oz . per square yard with seven thicknesses of caoutchouc superimposed; the en velope also is of white silk. The joints are so arranged that they are stronger than the material itself. On the inner face three coats of varnish were applied, formed of gelatin, gly cerin, py roligneous acid and of tannin. Such a varnish is impermeable to hydrogen.
The balloon, properly called, weighs about half a tun, and the total weight of the whole machine is 1753 tuns. The crew, luggage, provisions, instruments, etc., weigh $1 \cdot 446$ tuns Of ballast, two thirds of a tun are taken. Collectively, these
figures give 3.85 tuns, equal' to the full ascensional power of the balloon at the ground level.
M. Dupuy de Lôme had calculated that, with a speed of 5 miles an hour, the resistance of the balloon in the direction of its main axis would be $24 \cdot 26 \mathrm{lb}$., and that the speed of he screw should be 21 revolutions per minute to overcome this resistance. This speed could be easily obtained by four men. working half an hour and being relieved at the end of that time by four others; with the eight men, working together at a capstan, 27 or 28 revolutions could be obtained, which would give a speed of about 8 miles an hour
The stability assured by the system of suspension adopted is such that, even under the maximum effort of eight men working the screw, the equilibrium was only disturbed half a degree, and a man in walking from one end of the car to the other only affected it by half a degree.
The apparatus for producing the hydrogen, by the action of diluted sulphuric acid and iron turnings, consists of two batteries of 40 casks, each producing at one operation lasting three hours 5,375 cubic feet of hydrogen, and working alternately.
At the trial trip; three days were required to fill the bal loon. It was ready on the 1st of February in the evening and it was kept inflated all night; but at two in the morning der, fan, onnections, etc. The loss of gas during the night had been inappreciable, and previous experiments showed that the varnishea silk was perfectly reliable. The wind had risen, and the meteorological bulletins were far from being encouraging. However, the inventor decided to make the ascont, and after having repaired a slight damage, he left the ground of : P. M.

There were about two thirds of a tuu of ballast on board, and the balloon was in perfect equilibrium. Three hundred and the balloon was in perfect equilibrium. Three hundred and fifty pounds of ballast were thrown out, and the as
ing force thus produced carried the balloon up rapidly.
A strong wind was blowing from the south. A few minutes after the departure, the shaft of the screw was iowered upon its bearing and was started by the eight men together, slowly at first and then with an increased speed. The rud der was first moved to the right, then to the left, and then was adjusted in order to ascertain how far its influence would be felt by the balloon. When the screw was set in motion, the effect of the rudder was immediately felt, as desired, proving that the balloon had acquired a sufficient speed with relation to the surrounding air
The experimental trips had a threefold purpose: to ascer tain the stability of the balloon, the relative speed that could be obtained, and the manner in which it obeyedthe rudder, either on a fixed course or in tacking, An anemometer, previously regulated, gave the relative speed of the balloon; a compass attached to the car indicated the direction of movement. To measure the course followed in relation to the ground, a planchette was fixed to the side of the compass, parallel to the vertical plane and in the direction of the true north. The field of the planchette was painted black, the part forming a vertical surface being white. By this arrangement, it was very easy to obtain a visual ray in a vertical plane, the verticality of the planchette being assured by the mode in which the compass was hung. By observing any clearly defined object on the ground passing beneath the observer,'and then by turning the planchette in the direction of the same object when it was shifted from the vertical plane, the direction of the route followed by the balloon could be read direct off the compass.
The'same observation gives the speed of the balloon, the hight being observed by a barometer.
Between 1.15 P. M., and 2.35 P. M., eight observations were taken of the hight of the balloon, of the temperature, of the route measured on the ground in relation to the mag. netic meridian, four times with the screw not working, and four times whilst it was being driven by eight men. At 2.35 . M., it was resolved to descend, and at 3 P. M., the balloon oucked ground at Mondécourt, exactly at the village indiated on the map of the route laid out beforehand from the calculated deduction of direction and of speed.
The landing was effected with perfect success and without accident, in spite of the force of the wind. M. Dupuy de Lôme arrives at the following conclusions from the results of the trial: That the stability of the balloon was perfect, hat it manifested no signs of oscillation under the action of the eight men .working the screw, and that the shifting f the weight in the car produced no sensible movement. The vertical axis was only shifted-under the most trying
conditions-a small part of a degree, and longitudinally conditions-a small
here was no change.
In comparing the direction of the balloon, drifting freely before the wind, with the directior given to it when the screw was in operation, it was found that the resultant made with normal direction an angle of 12°. It is stated also hat the speed given to the balloon, with $27 \frac{1}{2}$ revolutions of he screw, was $6 \frac{1}{\frac{1}{3}}$ miles an hour, whilst the rate due to the wind alone was from 26 to 37 miles an hour
With the same weight, for a mechanical motor as, that required by the eight men for driving the screw, a force ten imes as great might have been obtained, and the speed due to the balloon under such improved conditions would be $13 \cdot 60$ miles per hour. With such a power, it would be appar ently practicable not only to make a considerable angle with he wind's direction, but also under favorable circumstances neering.

oxalic Acid.

This acid. first obtained from salt of sorrel by Savary, in 773, in the form of a sublimate, and by Wiegler in 1779 as an aqueous distilate, was subsequently recognized by Scheele as identical with Bergman's acid of sugar, prepared
from sugar and nitric acid. Its composition was established from sugar and nitric acid. Its compos
by Dulong, Döbereiner, and Berzelius.
The principal commercial product of oxalic acid is the binoxalate of potash, known as salt of sorrel. This substance is produced by decomposing carbonate of potash with excess of oxalic acid. The carbonate of potash is first dissolved in hot water, and the oxalic acid added until effervescence ceases: after which a similar quantity oxalic acid is added, the solution boiled for a few minutes, and then set aside to crysallize. After being drained and dried, the crystals are fit or the market.
This salt is the form in which oxalic acid is found in na ure, in living plants, such as the various species of rumex umex acetosella, the field sorrel, are well known as containing this compound.
Oxalic acid is, with exception of carbonic acid, the most highly oxidised of all carbon compounds. In plants it seems to be more the product of decay than growth, being found deposited in the cells of the root, bark, and leaves of old plants in the form of small crystals of oxalate of lime, the so alled raphides. It is in this shape (in which it is innocuous) that it exists largely, and in some of the lichens is said to constitute as
On the small scale, oxalic acid is prepared by heating one part of sugar with eight parts of nitric acid, sp. gr. 1138, to the boiling point; the solution is evaporated down to onerapidly oxidized; on cooling, white crystals of oxalic acid are
deposited, which may be purified by solution, in a small quantity of water, and recrystallization. It is important that enough nitric acid is used, as the mother liquor will then crystallize down to the last drop. But if the sugar is in excess, saccharic acid and other intermediate products will be formed, which will turn black or browa on evaporation.
In the chemical factory, oxalic acid is prepared by the action of nitric acid upon vegetable substances containing no nitrogen, such as sawdust, starch, gum, treacle. A little pardonable exaggeration, respecting the amount of oxalic acid obtainable from a given amount of sugar, is apt to pre vail among the manufacturers, but it may be taken that one cwt. of good treacle will yield 116 lbs. of good marketa ble oxalic acid, and the same weight of good brown sugar about 140 pounds of oxalic acid. As a general rule, 5 cwt . of saltpeter, or its equivalent in nitre, and $2 \frac{1}{2} \mathrm{cwt}$. of sulphuric acid will evolve sufficient nitric acid to decompose one c wt of sugar. Attention of manufacturers is far more directed oo economizing the nitric acid than to increasing the pro duction of oxalic acid from a given bulk of sugar
The process is conducted in large lead lined tanks, or in earthenware jars, each of the capacity of a gallon or less, placed in a water bath. In the former case, the nitric acid need not have quite so high a specific gravity as in the latter The temperature should be about $125^{\circ} \mathrm{Fah}$. If the proces is going on well, gas is regularly evolved with but slight appearance of red fumes, notwithstanding that the gases are a mixture of nitric and carbonic acid; but the fact is that the presence of carbonic acid prevents for a time the oxida tion of the nitric oxide. So long as carbonic acid is present, the mixture may be mingled with its own bulk of oxygen gas for several minutes without diminution of volume; but if the carbonic acid be condensed (by addition of ammonia va por, for instance), the whole becomes of a deep orange hue. When 100 parts of starch, sawdust, straw, hay, bran, tobacco cuttings, etc., are mixed with about 300 parts hydrate of potassa in solution, the liquor evaporated, and the residue heated for four or five hours, a quantity cf oxalic acid is obtained, amounting to between 100 and 150 parts of the crystallized acid.
This is the method adopted by Messrs. Roberts, Dale \& Co., Manchester. The material they use is sawdust; thi is placed in vats and moistened with a lye made of a mixture of caustic potash and soda. The sawdust is then re moved to plates of iron, where it is dried and afterwards washed with warm water in small quantities; the potash dissolves and is thus removed, the oxalate of soda remain ing undissolved. The mother liquors are then evaporated to dryness and ignited, to secure the potash, whi h can be used over again. The oxalate of soda is then treated with a solution of caustic lime, oxalate of lime is produced and hydrate of soda remains in the solution, which is evaporated and the soda recovered. The oxalate of lime is in turn decomposed by sulphuric acid. The liquor decanted from the insoluble sulphate of lime upon concentra tion yields crystals of oxalic acid.
Oxalic acid crystallizes in large transparent colorless crystals containing two atoms of water, $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4},+2 \mathrm{H}^{2} \mathrm{O}$. These melt at 208° Fah. in their water of crystallization; on continued heating, they are partly decomposed and partly volatilise as dry oxalic acid, $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4}$--Mechanics' Mayazine.

We have received from the Graphotyping Company, of $^{\text {a }}$ London, some specimens of their prints made from engravings of various kinds, copied in the form of electrotype blocks by photograpuic agency. These specimens are fully equal to any that have been produced here by the same means.

The town of Lawlew, Iowa, which three years ago was a patch of hazel bush with only one house in sight, shipped $12,000,000 \mathrm{lbs}$. of railroad freight last year.

NEW ROOKS AND PUBLICATIONS.

Phonography.
The american Journal of Phonography is a very neat little publicaton, devoted to the illustration of the art of short land writing. It is contalented wo. 33 Park Row, by Mrs. Eliza B. Burns, an experienced and and valuable prin this field. This system of writing is adapted to useful those advocates who seek its introduction into the public schools on the ground of its facilitating study. It sometimes helps the boy to carry on his thumb nail what he ought, by real study, to have fixed in his mind. Phonography is an abbreviated code of private signals, and deserves no place in he schools.
American Bullder.
The publisher of this magazine has returned to Chicago, and will continue publication office; but we are happy to see the publication again, looking brighter, if anything, from the ordeal throu which it pessed. See adver t'sement on another page.
The Metric System of Weights and Measures. An Address delivered before the Convocation of the Univer-
sity of the State of New York, at Albany, August 1, 1871 . By Fredorick A. P. Barnard, LL.D., President of ColumBy Frederick A. P. Barnard, LL.D., President of Colum-
bia College, New York City. Revised Ediion. Published by Order of the Board of Trustees of Columbia College. New York. 1872.
We regard this as by far the ablest exposition, of the merits of the metric found a complete answer to objectors, who base their opposition upon the ficulty of transition from the present system to that of the decimal.
An Inquiry into the Influence of Antiracite Fires upon Health, with Remarks upon Artificial Moisture, and the Best Modes of Warming Houses. By George Derby, M.D., Surgeon to the Boston City Hospital, etc.
Second Edition. Revised and Enlarged. Boston: A. Second Edition. Revised and Enlarg
Williams \& Co., 100 Washington Street.
This is a paper, read by the author before the Boston Society for Medical Improvement, now published in pamphlet form. As we propose to refer to
it more at length on a future occasion; we will simply say here that it is an importank
subiectas
the paries sllver extracting process in GERMANY.

In the year 1850, Alexander Parkes, of Pembrey Copper Works, South Wales, and Birmingham, took out a patent for extracting silver from lead by means of zinc, the metals being mixed in the liquid state, and it being stated that the silver would combine with the zinc and be carried to the top of the metal bath through the smaller specific gravity of the zinc silver alloy, and that then the latter could be easily separated from the desilverized lead. The announcement of this process caused a great sensation amongst the metallurgists of the time, and was generally believed to be fallacious until, in 1851, Mr. Parkes proved beyond all doubt the correctness of his statement by trials which were carried out on a large scale.
In 1866, this method was resorted to at the lead works of Pirath and Jung, at Commern, and Herbst and Co., at Call, in Rhenish Prussia, at Tarnowitz, at the lead works near Clausthal and Lauthenthal, in the Hartz, near Sterlberg in Rhenish Prussia, and at the works of Messrs. Rothsberg in Rhenish Prussia, and at the works of Messrs. Roths-
child, at Havre, in France. In all these localities, it is in perchild, at Hav
The lead under operation at the various works differs materially through variations in the percentages which it contains of silver and other accidental metals, such as antimony, copper, iron, arsenic, bismuth, and others. While the lead of the Hartz contains at Clausthal 40 oz . of silver per tun, and at Lautenthal 45 oz. , it has only 32 oz . at Tarnowitz, 13.20 oz . at Havre, and not more than 8 oz . at Commern and Call, in Rhineland. This latter is too little to pay the cost of extraction by the old cupelling process, and just bears the expenses of the Pattinson system, while it is stated to be profitable with the Parkes process. The amount of zinc to profitable with the Parkes process. The amount of zinc to
be used in the process depends upon the quantity of silver be used in the process
contained in the lead.
The process is carried out inlarge cast iron Pattinson pots, about 7 feet indiameter, and from 22 to 24 inches in depth; these pots holding from 10 to 12 tuns of lead. This is melted rather rapidly, and heated sufficiently so that a piece of zinc, thrown on its surface, at once melts when the first portion of spelter in bars is introduced. The whole quantity of zinc to be used is divided into three portions, of which the first is two thirds, the second one fourth, and the last one twelfth of the whole quantity to be employed. When the first portion is melted, it is well mixed from 20 to 30 minutes first portion is melted, it is well mixed from 20 to 30 minutes
with iron rabbles and perforated iron ladles, or, as at the with iron rabbles and perforated iron ladles, or, as at the
Havre works, by a movable mechanical stirring machine. After that the fire is removed from under the pots, and they are covered with wet coal slack, and allowed to cool slowly, when the spelter gradually rises again to the surface, and carries the silver with it. The spongy crust, or the silver sponge, which is now formed on the top of the metal consists of a mixture of dross or oxides and grains of metal, and it is taken off with the ladle, together with the skulls of zinc silver alloy which form on the sides of the pot, and are detached with a chisel. This crust is removed about 2 inches tached with a chisel. This crust is removed about 2 inches
thick, when the lead below begins to show signs of crystallithick, when the lead below begins to show signs of crystalli-
zation. The metal is now again heated up and the second porzation. The metal is now again heated up and the second por-
tion of zinc incorporated and treated exactly as before. After the second sponge is removed, some liquefied lead, which is subsequently removed from the sponge and still contains a little silver, is added, together with the last portion of spelter, and the operation is finished after about 20 or 24 hours.
The lead loses its silver with each portion of spelter, while the poor lead contains from 0.6 to 0.7 per cent of zinc. The silver sponge is found, besides the silver, to have taken up the copper and gold of t..e lead, but it leaves antimony and bismuth behind.

refining the lead.

The lead must, of course, be refined before it becomes marketable, which is generally done by remelting with salt and sulphate of lead for from 10 to 24 hours.
The refining operation is in each instance continued until such time as the lead flows readily from the ladle without forming skulls; and, when cast in molds, it solidifies, showing a colored surface-a dull gray color and crystals on the surface always indicating the presence of antimony.
A method of refining lead, which we shall notice here, is that of M. Condurié, of Havre, by means of steam, which is now in much favor on the Rhine, the Hartz, and in Silesia. For this purpose, iron Pattinson pots are used, which hold 5 tuns of lead. This is heated to a light cherry heat, when a hood of sheet iron is put over it, and dry steam of four atmospheres pressure blown into the metal. This begins to boil violently, the steam is decomposed, its oxygen combining with part of the lead and its impurities; while hydrogen, together with some metallic fumes, escapes to a condensing chamber. After three hours' operation all zinc, and at Havre all the antimony, are found to be gone. This, however, is not the case with antimony in the Hartz, where steam of an effective pressure of one atmosphere only is employed, and where this metal occurs in larger quantity. The result of the refining process is generally from 89 to 88 fer cent of refined pig lead, containing only traces of impurities. Experience shows that, with this steam process, less dross or oxides
are obtained than by the ordinary furnace refining. This are obtained than by the ordinary furnace refining. This
dross is remelted in a low blast furnace, and reduced into hard lead. In some places, i is washed to get the small globules or grains of lead separated from the oxides, when the former go back to the refining process, and the latter, con-
taining from 60 to 67 per cent of oxide of zinc and 33 to 40 per cent of oxide of lead, are sold for paint. When using the steam process, great caution is necessary to avoid explo-
sions from hydrogen gas, it being requisite to blow some sions from hydrogen gas, it being requisite.
steam under the hood, and thus drive the gas off.

refining the silver.

We have now to speak of refining the silver. It has been stated above that all the silver is contained in the silver sponge, a mixture of oxides and metallic alloys. By heating this in an iron melting pot, a great part of the lead will run or liquefy out of the rest, and collect at the bottom. This silver lead goes back to the first operation, while the alloys of zinc lead and silver will fuse only at a higher temperature Mr. Parkes had proposed to treat these alloys and oxides with hydrochloric acid, but it seemed to be preferable to dis til off the zinc. At the works at Call this acid process is however, in use, with the following modification: One and a half tuns of the oxides are put in a cast iron melting pot and mixed with hydrochloric acid, at first cold, later with increased temperature, until all water is evaporated, and the mixture has become dry. The metallic alloys of the sponge are then added, and heated up, together with the chlorides formed during the first stage of the operation, 'when chloride of lead and zinc will exchange the chlortne, and be converted into chloride of zinc and metallic lead, which takes up all the silver, and contains 1.5 to 2 per cent of the latter. The operation is finished in about 24 hours, when the rich silve lead goes to the silver fining furnace.
Another mode of utilizing the sponge is by melting it in a low blast furnace with coke and an addition of puddling slag and sand, when part of the zinc is volatilized and the rest carried away with the slag, while the silver remains with the lead. This is done at the works of Pirath and Jung, at Com mern, at Clausthal, Tarnowitz, and other places. In adopt ing this mode of treatment, great care is to be taken that the top of the blast furnace is kept cool, otherwise lead and silver may be lost by volatilization.
A third method of reducing the sponge was first adopted by M. Condurié, at the Havre works, and later imitated a the lead works of Lauthenthal and Tarnowitz, in Germany. According to this plan, five tuns of spnnge are melted in a pot at a cherry heat, when the pot is covered with a hood, as explained in speaking of the lead refining process, and dry steam is driven through the mixture of oxides and metals, the effective pressure employed being about four atmospheres at Havre and one atmosphere at the German works. The steam being decomposed, the oxygen combines with the zinc, the hydrogen reduces the oxide of lead, and large masses of hydrogen gas are developed, which must be carefully mixed with steam, or a great surplus of air, to avoid an explosion. After four hours, 100 cwt . of sponge are converted into from 70 cwt . to 75 cwt . of metallic silver lead and 32 cwt . to 36 cwt. of oxides, which still con ain some lead globules. The latter are separated by sieves, the rest of the oxides digested wish hydrochloric acid, when chloride of zinc, free fro:n sil ver, will form a solution, while the insoluble residue, togeth er with the lead globules and the rich silver lead, goes to the refining furnace
Lastly, the distilling process, which was long ago suggest ed by Dr. A. Gurlt, and which is in use at the Llanelly Lead Works, has been of late resorted to again at Tarnowitz. After trying to reduce the oxides with salt and charcoal in cast iron or wrought iron crucibles, this idea was abandoned, but common Silesian retorts, lined with carbonaceous substances, employed, when the sponge was intimately mixed with small coke, and the retorts heated to a white heat. Thus 100 kilogrammes would give out from 30 to 36 kilogrammes of silver lead, containing 3.52 to 4.01 per cent of silver, and 26 to 28 kilogrammes of spelter, almost free from silver, collected in the condensing pot. Although it cannot be said that the arrangement at Tarnowitz is a perfect one, yet we still adhere to our original opinion that the distilling process, if judiciously carried out, will be the most advantageous of all methods for reducing the silver sponge.
The rich lead obtained in one or the other way goes in each instance to the cupelling furnace where the lead is oxidized, while fine silver remains upon the test in shape of a cake. It has been stated above that zinc will combine with copper and gold before the silver, and this property may be utilized for separating very small quantities of gold which would not pay the expenses of extraction if alloyed with the
whole mass of the silver. It is only necessary to dose the whole mass of the silver. It is only necessary to dose the
lead with a small quantity of spelter and to remove the sponge before the real desilvering operation commences.
If the Parkes process is carefully carried out, it causes hardly any loss of silver; it generally produces even more than, according to the dry assay, should be containes in the lead, while the Partinson process involves a loss of 1.5 or 2 per cent. The total cost of this silver extracting method varies from 8s. to 10s. per tun, according to prices of coal, labor, etc. It is rather curiousto see that a very ingenious and highly successful English invention has required 20 years to be brought to perfection in foreign countries before it returns
to the land of its origin, where we hope to see it soon widely adopted.-Engineering.

Meerschaum

At the Berlin Geographical Society's December meeting, M. Ziegler described the, sources whence the considerable annual supply of meerschaum for meerschaum pipes is derived. Large quantities of this mineral, so highly esteemed by smokers, come from Hrubschitz and Oslawan in Austrian Moravia, where it is found embedded between thick strata of serpentine rock. It is also found in Spain at Esconche, Val-
lecos, and Toledo; the best, however, comes from Asia Minor. The chief places are the celebrated meerschaum mines from 6 to 8 miles southeast of Eskischehr, on the river Pursak, chief tributary to the river Sagarius. They were
known to Xenophon, and they are now worked principally by Armenian Christians, who sink narrow pits, to the beds of this mineral, and work the sides out until water or imminent danger drives them away to try another place. Some meer schaum comes from Brussa, and in 1869 over 3,000 boxes of raw material were imported from Asia Minor at Trieste, worth 345,000 florins. The pipe manufacture and carving is principaily carried on in Vienna and in Ruhla, Duchy of Saxe-Coburg-Gotha. The commercial value of meerschaum carvings at these places may be estimated at $\$ 2,000,000$ annually. However, very large quantities of them are not made from genuine but from artificial material. The waste from these carvings is ground to a very fine powder, and then boiled with linseed oil and alum. When this mixture has sufficient cohesion, it is cast in molds and carefully dried and sufficient cohesion, it is cast in molds and carefully dried and
carved, as if these blocks of mineral had been natural. It carved, as if these blocks of mineral had been natural. It
is said that about one half of all pipes now sold are made from artificial meerschaum.

The Ostrieh.

The domestication of the ostrich has assumed every year greater importance, and this industry promises to become considerable. Mr. Kinnear, of West Beaufort, Cape of Good Hope, is the one who has given most attention to the sub ect. His farm is a model of simplicity, and surprises many who are disposed to consider that large tracts of terri tory are necessary to breed the ostrich with success. On eight acres of land, attached to his dwelling and enclosed with fences, he has at this moment thirty ostriches, nearly all reared by himself. This enclosure is sown with lucerne, and would suffice for nearly 100 ostriches, if his system of irrigation were more extended. A lodge and sheds are constructed for the protection of the young birds during the winter months, and it is here the business of obtaining the feathers is carried on. For this operation, two processes are resorted to; some advise the plucking out of the feathers, others consider it best to cut them a little above the roots, and to remove the roots two months afterwards. Mr. Kinnear prefers the latter mode, as he thinks the former is
often injurious to the bird. The first plucking of feathers takes place when the bird is about eight months old, but the feathers are then small, and not of much value. The operation is renewed every eight months. Three pluckings of ostriches, when in full plumage, realized to Mr. Kinnear $\$ 50$ per annum per bird. One portion of the enclosure is divided into compartments, in each of which the ostriches are paired. At liberty, in the wild state, five females are often attached to one male; and they all lay their eggs in one nest, and set on them in turn. Mr. Kinnear, however only assigns one female to each male. They are coupled in July, commence laying in August, and continue laying for about six weeks, after which they set till October. A month or six weeks later, about December, they recommence to lay
for about five weeks, provided the young brood is removed. In the first season, the hen will lay fifteen or twenty eggs but the second is much less, The male sits on the eggs more assiduously than the females, often sixteen hours suc cessively, from four in the afternoon to eight in the morning; the female, on the contrary, takes the greater care of the young ones. Mr. Kinnear removes the young when they are sufficiently strong to be taken from the nest-that is, one or two days after they are hatched. They require a warm temperature, and hence are placed in a deep box lined with sheepskins, taking care to let the air penetrate by the cover. During the severe colds of winter, the lodge is heated and kept closed. Their usual food is chopped lucerne, but they do not like the stem. Grain is also given to them, and when they are strong, maize. Trefoil and vetches agree with them as well as lucerne. They neither have iron nails, metal buttons, nor other delicacies of that class to which many travellers assert they are partial; but they have sand earth, pulverized quartz, small bones, and plenty of water.
The transport of ostriches demands great care; many die during journeys of long duration. Experience demonstrates that the best mode of transport is to place them in spacious wagons, and to proceed slowly, traveling only in the night. Mr. Kinnear states that, for their usual food, nothing equals lucerne or trefoil, but they also like cabbage leaves, fruit; and grain. Each ostrich will eat about twenty pounds of lucerne a day.
In the district of Coleberg, some farmers have enclosed with walls large spaces of ground, leaving the ostriches as it were in a state of liberty. Competent persons think they obtain by this means feathers of a superior quality to those from animals kept in a domestic state; but the rearing of the young ostriches does not succeed so well. On the farm of Mr. Murray, in that district, many ostriches died last year without any apparent cause, their death being attributed to worm found in the intestines.
In the districts of Worcester and Graff Reinet, the rearing of the birds has succeeded well. The advance which has taken place in ten years, both in the price of the birds and of their feathers, will give an idea of the importance which this industry has already attained in the Cape Colony. In this industry has already attained in the Cape Colony. In
1860 a pair of ostriches six months old could be bought for $\$ 2.50$; now, for one bird alone, a few days after hatching, $\$ 25$ will be given, and for those of three or four months old, $\$ 40$ or $\$ 50$. In 1870 , the quantity of ostrich plumes exported was $29,000 \mathrm{lbs}$., valûed at $\$ 435,000$; and it may be stated that an ostrich which has attained its full developerent will only yield every eight months a quarter of a pound of feathers.

DURING 1870 , Philadelphia produced $\$ 10,000,000$ worth of
arpets, $\$ 5,500,000$ of prints, $\$ 3,000,000$ of silks, and other fabrics to the value of $\$ 40,000,000$.

Improved Wagen Wheel.

 ising checuliarity in this wheel is the method of mortising the hub, cutting the tenons on the spokes, and inserting the latter in the hub.Fig. 1 shows the hub with a portion cut a wiay to show the method of inserting the spokes. Fig. 2 shows the form of tenon on the spoke, and Fig. 3 shows the method of mortising the hub.
By referring to Fig. 2, it will be seen that a partition of the tenon, marked A , is cut as on ordinary spokes. Below this the wond is further cut, away, as shown at B, making a smaller tenon, and leaving a shoulder on three sides of the tenon, which, when the spoke is driven home, rests upon the ledge or shoulder, C, Fig. 3, formed in the mortise to correspond with the shoul der on the tenon.
It will be observed that the shoulders in every alternate mortise are reversed in position, and the sprkes are to be driven accordingly, so that they stand as shown in Fig. 1.
By this means, the hubisnot cut away so much in its center, and a very small and light hub may be made to be very strong, so that it is claimed a prettie wheel, with ample strength, is secured. It is also claimed that the wheel is more elastic than the old style of wheel, and therefore less likely to break axles, so that, even for large and heavy wheels, the method is a decided improvement. Where machinery is employed to do the tenoning and mortising, the improve ment will not add materially to the cost of the wheel, and even with hand work the increase of cost would be trifing.

The spoke is strong just where it needs strength, name, at the shoulder, and the hub is strong just where it requires most strength, at the middle. The principle of construction is sound, and we have no doubt an excellent wheel may be made in this way.
Patented through the Scientific American Patent Agency, January 2, 1872, by Christian Anderegg, of Lawrenceburgh, Ind., whom address for further information.

Car Doors.

A correspondent of Engineering proposes the following construction, to prevent injury to passengers by the accidental placing of their fingers on the door jambs:

It is to lea ve a space of three fourths of an inch between the door and the frame, so that it would be impossible for the door to tighten upon the fingers, should they be in the space. This might be done in existing carriages by cutting away the frame, or reducing the door, or both; but best of all by a new door made narrower than the doorway.

Narrow Gage.

It is now a little more than a year since the Railroad $G a$ zette first took issue with the advocates of the narrow gage, and denied their main proposition, which was that "the dead weight of trains is in direct proportion to the gage on which they run." For this denial, we were assailed from all sides. We were denounced as "enemies of progress and civilization." It was said we "did not understand what we were writing about." We were requested "to revise our theories" if we "wished to promote the public service and add to our scientific reputation," and we fear we were regarded by the advocates of the narrow gage as being afflicted with what Artemus Ward was in the habit of calling "pure cussedness." Being human, it therefore gave us much pleasure to find, on reading the report of the Pennsylvania Railroad Company, that the President had taken the same ground, in relation to this question, that we have advocated. He said: "The saving, in dead weight of machinery carried, by one system over the other is not important, as the heavy engines and cars used upon the usual gage(four feet nine inches) are not due to the width of the track, butsto the necessity of maintaining higher speeds and the movement of heavier loads, than is obtainable with economy and safety on the narrow gage. The equip ment now used on the narrow gage is heavier than that formerly used upon the four feet nine inch lines."-Railroad Gazette.

An Astatie Railroad.

England seems to be successful in once more imparting vigor to the "sick man" of Europe-Turkey-with the same old object of counteracting the evergrowing influence of Russia; this time, however, by more peaceful measures than of yore. The project now on foot is the construction of a system of railroads through Asia Minor and the intervening countries-Persia and Afghanistan-to India. This time England seems to be in earnest, for a section of railroad from Scutari to Ismid is almost completed, being made in superb
style, with steel rails and other modern improvements. From Ismid, the road is to be conducted in a southerly direction towards and across the Taurus mountains. Great difficulty appears to be anticipated in finding a convenient pass through this rugged chain, but it is also set down as the only drawback. When once the Taurus has been crossed, a branch is to be extended towards Smyrna, and to the British settlement at Aleppo, to establish the yital connection with the Mediterranean, and liberate the undertakings of the western power from the direct influence at the Bosphorus. The eastern progress of the road will naturally be slow, because its con struction will be very expensive; but its importance to the commerce of the world cannot be overestimated. The road

ANDEREGG'S WAGON WHEEL.
will not only bring the East Indies into much more rapid communication with the civilized world, but will open immense tracts of agricultural and mineral lands that were ical sito hardly known by aught but their names. The politeven at thicance of the enterprise cannot be without interest, in At this distance. It will be a strife who will be ahead soldiers. The final possession of the East Indies may depend soldiers. The final possession of the East Indi
to a great extent on the results of this race.

ROTARY ENGINES.

In our last article, we explained that the working of the abutment constitated one of the most important problems we have to deal with; it may be well to explain here that the reason, for making the piston so narrow as four inches for an engine of 150 horse power, lies in the fact that by so doing we reduce the travel of the abutment. If the velocity of piston and abutment are identical, then four inches will in tervene between the abutment and the piston at the moment the first is home. Steam is admitted at the same moment, and we have four inches of clearance. The waste of steam in this space will be considerable if the engine is worked very expansively, for if we suppose the diameter of the circle described by the center of effort, to be, say, 9 feet 8 inches, and the circumference to be 29.3 feet, then, if the steam is cut off at 01 , it will be admitted for but in round numbers 3 feet; and 4 inches would be one ninth of this, and therefore an enormous clearance; not all dead loss, it is true, but still a loss to be avoided, above all in an engine intended to be theoretically perfect.: One mode of reducing the loss, as we have already explained, consists in sloping off the back of the piston so that a portion of the waste space will be filled up; by this means, the clearance can be reduced one half. The arrangement will be understood from the accompanying diagram.
In figure 3, A is a portion of the annulus, B is the piston with sides nearly in the plane of the radius of the annulus C is the abutment. The abutment begins to close at the mo ment the back edge of the piston passes the point E; but while the abutment is moving from E to F, the piston has advanced from D to G. This is the clearance space.

In Fig. 4, it will be seen that the back of the piston is sloped off at such a rate as just to keep out of the way of the slide, and thereby the clearance is reduced one half If we also slope off the abut-
ment and make it very thick, we may virtually get rid of the clearance difficulty altogether. It may, therefore, be laid down as a principle that it is possible so to shape an abutment working vertically and a piston working circumferentially that clearance will be done away; and further more, this principle can, within reasonable limits, be so ap plied that it will be unnecessary to impart a very high veloc ity to the abutment, because the piston may be supposed to travel a couple of feet while the abutment is moving through not more than four inches. There is a grave practical difficulty to be got over here, however, which is that as much of the outer ring of the annulus must be removed as the abutment is long-or rather thick-and as this space is not filled p when the abutmentis withdrawn, the packing ring of the piston would be destroyed by flying out and catching the
dyre of what we may term the abutment port. Therefore, it is only safe to assume; that one half the clearance could be saved, and that by the prolongation of the piston in the rear We have said nothing as to the mode in which the abutnient is to be put in motion, nor shall we enter into any particulars on the subject. Some form of cam, worked from the main shaft, suggestsitself at once; and it would probably be well to compress a strong spring in the act of taking the abutment out, which, being suddenly released at the proper moment, would drive the abutment in again in the shortest possible time. The Corliss valve gear supplies an illustration of the principle involved.
We may now proceed to consider the nature of the means to be adopted in connecting the piston with the main shaft, and the method of making the joints tight without undue friction. As regards the connection of the piston with the main shaft, no better device can be adopted than a disk.
It will be seen that, make what disposition of the parts we will, there are four edges of the piston, or their equivalent, to be packed. If we adopt the arrangement shown in Fig. 5, it is true that only three edges of the piston, A, B, C, have to be packed, the fourth, D, being part and parcel of the disk, the wide flange of which is made tight at E, F, by packing rings. In the same way, the abutment will rest on a scraped face, the section of A, B, C, and will require no packing; but its inside edge must rest against the face of the flange G, and therefore, it must be fitted with the packing saved from the piston. Now on the whole, it will be found the best plan to concentrate the packing in the piston and the scraped face joints in the abutment as much as possible; therefore the annulus may be made of the form shown in cross section in Fig. 6. The abutment will then have a fixed bearing, except the small portion of its length from A to B, representing the thickness of the disk, say 3 inches. By adopting this plan we are able to dispense with a rectangular cross section and adopt that shown in Fig. 7, which gives a form of piston as easily packed as though it were made of the ordinary cylindrical form. Supposing this piston and abutment to be made tight, we have next to make the disk tight with the casing or annulus, and this is no small undertaking. The length of joint to be mads tight in a 10 foot engine is about 60 feet, or as much as would be represented by the piston of an ordinary engine with a cylinder 120 inches in diameter Nothing is more easy than to make a good job with packing rings, but it unfortunately happens as a result of the action of these rings that the frictional resistance is pnormons. W6

do not believe it to be possible to arrive at a satisfactory re sult if any attempt is made to pack the joints between the disk and the annulus in the ordinary way. The solution of the problem probably lies in making the disk for a considerable portion of i's breadth, say at least a foot from the edge, bsolutely true. The cheeks of the annulus must be made qually true, and we must rely on a series of grooves turned in the cheeks to keep the joint tight as in the ordinary solid in the c
With first class workmanship the thing may be done; nd the leakage may be still further reduced by enclosing he whole engine in a case filled with steam from the boiler. The leakage would then be from this jacket into the engine and would vary in amount, of course, as the pressure inside nd outside varied. The packing of this joint constitutes, in one word, the great problem to be solved-the great difficulty to be overcome in constructing a thoroughly efficient rotary engine. The working of the abutment is a matter requiring much careful thought, but it presents no insuperable bstacle to the competent engineer. We wish we could say as much of the annulus joint. How to make this tight without excessive friction is the question, and we have no doubt hat, in proper hands, its satisfactory solution would prove a very remunerative speculation. It is to say th least, highly probable that an engine, occupying no more spàe than a flywheel, and simply bolted up against the wall, would become extremely popular, especially as the engine would be eminently economical and efficient.-Engineer.

HALLIDIE'S WIRE ROPE WAY FOR TRANSPORTING ORES.
Thisinvention is one of greatimportance, especially to the miners of the Pacific slope. Our illustration gives a general view of the whole apparatus in practical operation, conveying quartz from the top of a mountain in a rough mining re gion to the mill below. The Scientific Press thus describes it: "The wire rope passes over pulleys elevated upon posts of a suitable length, and, as shown in the engraving, the sacks of ore are suspended by the proper device to the rope. The sacks or cars are loaded on the dump at the mine on the mountain, and, the patent grip pulley being revolved by means of the egine, the sacks or cars pass down on one side, deliver their load, and pass up empty on the other side. Boxes may be used that are self.dumping, or operated by hand, as desired. By this means, the expense of road building, team:, drivers, etc., is done away with, and a safe and very convenient method adopted by which the ore is delivered to the mill. Either sacks or cars may be used for carrying, as desired. The patent grip pulley is a very ingenious device, and accomplishes its purpose admirably.

"The rope way may be run by the same engine that runs the stamps at the mill; and when the descent is sufficient and the load comes down, no extra power is needed, the gravity of the descending loads being sufficient to keep it in motion; it being desirable, however, in all cases to connect with the steam engine or water wheel, in order to regulate the speed of the rope, which is usually about 200 feet per minute. The posts, of course, are arranged high enough so that the cars may be clear of all obstructions from the ground, but the undulations of the grcund can be followed. There being a pulley over the rope as well as under it, the rope is kept between the pulleys and enabled to pass over any mountain at any angle. A brake is sometimes used to regulate the rapidity. One very great advantage, possessed by this system of conveying ores, is that the weather will not affect-it, for it can be worked during heavy storms and freshets, and the depth of snow is of no consequence; moreover it will run as well by night as by day, and with no more care.
"The advantages of this apparatus will be obvious at a single glance to any one familiar with the general rugged character of the Pacific slope.

This apparatus should not be confounded with the ropeway of Hodgson's patent, which is now in operation at the Eberhardt and Aurora Company's mines in White Pine, as it is totally different in its construction."
PREGIPITATION OF ARSENIC BY HEAT IN MARSH'S
by john o. draper, y.d., profestun of ciemistry, umiversity medicai college. new yori.
Among the methods for the detection of arsenic, there is not one which promises better quantitative results, for the purposes of medico-legal investigators, than that by the action of heat on the arsenide of hydrogen. I have, therefore, pndeavored so to improve the ordinary method, of precipitation of arsenic from its gaseous compound with hydrogen, as to render this method both'satisfactory and reliable.
In the text books on medicolegal chemistry, it is recommended that the arsenide of hydrogen, developed by the action of zinc, dilute sulphuric acid, and the arsenical solution, should be conducted through a hard glass tube of narrow caliber which should be heated at some part by a spirit or Bunsen flame. The compound gas is, under these circumstances, separated into its constituents, and a metallic mirror of arsevic deposited a short distanca beyond the flame. After the gas has been exposed to the action of heat, it is to be passed into a dilute solution of nitrate of silver, where any portions that have not been decompozed produce a dark brown F recipitate.

apparatus represented on page 179 of the last number of the Scientific American.
In the first experiment, the arsenious acid solution, introIn the first experiment, the arsenious acid solution, intro-
duced into the decomposition flask, was moderately strong, and a stain soon appeared at 1. This was followed by another at 2 , then at $3,4,5$. The passage of the mixed arsenide of hydrogen and hydrogen was continued about half an hour, at the close of which time there was a thick deposit of arsenic about two inches long at 1 , another about the same length but not so thick at 2 , one still weaker at 3 , while 4 and 5 were of about the same appearance.
In a second experiment, a very dilute solution of arsenic was introduced, and the rate of evolution of the gas was very slow ; in this nearly the whole of the arsenic was arrested at 1 , very faint and unsatisfactory stains appearing at the other heated spots.
In a third trial, a strong solution of arsenious acid was introduced with a result similar to that obtained in the first experiment. We may therefore conclude that, in the separation of arsenic by heat from arsenide of hydrogen, though the greater part of the metal may be removed by a single application of heat when the current of gas is very slow and it is largely diluted with hydrogen, if the flow is at all rapid or if the gas is rich in arsenic a very large proportion of the metal may escape reduction, even though the passing gas is frequently heated; and the last portions of arsenic are only separated in this manner with the greatest difficulty.
In an examination of the liver or other organ, in cases of arsenical poisoning, the solution generally obtained by the process of Fresenius and Babo is moderately strong when arsenic is present; it is therefore necessary to secure under these conditions the precipitation of the whole of the arse nic at the first heated spot, and obtain it in such a form that it may be weighed without loss, and then subjected to any other tests that may be desired. The possibility of accomplishing this problem in a satisfactory manner, we propose to discuss in a future paper.

DETERMINATION OF HIGH DEGREES OF HEAT BY THE
 MELTING OF ICE.

It was mentioned in our number for March 9 (page 168 of the present volume), that any substance, able to withstand the heat of a furnace, may be used to determine its tempera ture. We will now explain this method, which is one of the most interesting applications of our knowledge of the specific heat of bodies.
Suppose we take a lump of mica, asbestos, fire clay, or a large fire brick or a piece of graphite, and expose it so long to the heat of the furnace that we are satisfied that it has attained the same temperature; and then transfer the picce fapidly to the ice calorimeter of Lavoisier and Laplace, and notice how much ice it will melt.
As this most useful apparatus is not as universally known as it deserves to be, and as its description is totally omitted from most text books on natural philosophy, we will describe it here. Fig. 1 represents the exterior view, and Fig 2, a

section of the same. It is made of three vessels of shee tin, of similar shape, and fitting concentrically one into the other. In the smallest central vessel, M, we place the body of which we wish to determine the number of heat units the space, A , between this vessel and the one surrounding it is filled with pounded ice; the vessel has a lid and this is also covered with ice. This ice is intended to be melted alone by the heat of the body, M. In order to secure this, and to prevent the melting of this ice by the exterior heat of the room where the experiment is performed, the space B B, between this second vessel and the third exterior one is also filled with ice. The latter will be melted only by this exterior heat, and the water proceeding from this melting runs off by the stop cock, E ; while the water proceeding from the melting of the interior ice by the heat of the body, M, runs off by the stop cock, D , and is collected in a proper vessel (ste Fig. 1), and carefully measured or, better, weighed.

As the substances used for this experiment may lose some of their weight by the intense heat to which they are ex posed, it is unnecessary to weigh these before they are exposed to that heat; their weight is ascertained only after the practical portion of the experiment is finished, that is, after they have been exposed in the calorimeter, melted all the ice they could melt, and are cooled to the temperature of the melting ice, 33° Fab.
It is evident that precautions must be taken against loss of heat during the transfer, of the heated substance, from the furnace into the calorimeter; it is, of course, impossible to
prevent this loss altogether, and all we can do is to bring this loss to a minimum by care in our manipulations. It is unnecessary to make any corrections for the specific heat of the vessel itself, as we commenced with having it at 32° Fah.; and the heat the interior lining absorbs from the body, M, is finally all given off again to the ice to be melted. The heated body is best laid in the space, M, on a non-conducting cushion of mica and asbestos, as otherwise the heat would be too rapidly communicated, and serious disturbances caused. Suppose now we have taken a piece of fire brick, heated it, and introduced the same in the calorimeter. We find that the-weight of the water proceeding from the ice melted is 7.62 lbs., while the weight of the piece of brick after cooling is found to be 3 lbs .; 762 lbs . of melted ice is equivalent to 142×7.62 or $1,082 \cdot 04$ units of heat, and as this number was carried out of the furnace by 3 lbs , of fire brick, of a capacity of 0.19 specific heat per pound, we have 3×0.19 or 0.57 as the divisor of 1082.04 units, which gives for the temperature of the furnace $1,898^{\circ}$ Fah.
If there is any doubt as to the correctness of the result, by reason of the uncertainty in the specific heat at the high tem perature to which we exposed the sample of fire brick used one single determination with a substance like platinum, of which the specific heat is exactly known, gives us the cor rect temperature of the furnace; and this may then be applied to correct the specific heat of the fire brick. Suppose for instance, the method with platinum and water, explained on page 168, gave us, in the same furnace at the same time, a temperature of $1,790^{\circ}$ we should then reason as follows: $7 \cdot 62$ b. melted ice is cquivalent to $7 \cdot 6.2 \times 142$ or 1,082.04 units of heat; and as 3 lbs brick carried this amount, each lb. of brick carried one third of $1,082 \cdot 04$, or 394 units, that is, one lb. of brick, when it had absorbed 394 units of heat, showed a temperature of $1,790^{\circ}$ sensible heat; its capacity for heat or specific heat must then be $394 \div 1,790$ or $0 \cdot 22$. As long, then, as we use this quality of fire brick and take its specific heat as equal to 0.22 , we shall have more correct results than if we take it at $0 \cdot 19$, as it is found at ordinary temperatures and given in most of the tables of specific heat.

$\mathfrak{C a t r e s p o n d e m c e}$.

The Editors are nat responsible for the opinions expressed by thetr Cor.
Counterbalancing Saws and other Machinery
To the Editor of the Scientific American:
E. F. J., writing in your issue of March 2, wishes to know how to counterbalance his gang saws so as to prevent vibra tion, and states that the saw gate weighs some $5,500 \mathrm{lbs}$. As the theory of counterbalancing seems to be but little understood among millers, I propose to occupy some of your space n explaining it in a practical way.

Let the circle, Fig. 1, represent a disk or wheel revolving pon a horizontal axis, \mathbf{S}; it is evident to any mechanic that if the disk be perfectly true and of uniform density, there will be no vibration; but if we attach the weight, A, to one side, throwing the disk out of balance, a vibrating action will be produced, which increases with the weight, distance from the center, S, and number of revolutions in a given time. To make our disk run smoothly, we apply an equal weight, B, equidistant from S, Fig. 2.
Before leaving Fig. 1, we must inquire what are the naures and directions of the vibrations produced by the weight A. If we whirl a plummet in the air, we find a force de veloped called the centrifugal force, which keeps the string taut and draws the hand constantly towards the bob. So also with our disk ; the centrifugal force of the unbalanced weight

A, causes a tension in the direction, S A, which wears away the side of the axle next to A, and causes it to vibrate in the direction in which it is poorly supported. If it be supported upon a poor foundation, the vibration may be in the vertical direction; or if the axis or shaft be supported by the overhead sleepers of a weak framed building, then the vibration will be in the horizontal direction. These evils may be pre vented, as shown in Fig.2.
Fig. 3 shows four equal weights, A opposite B, and Coppos ite D , all at equal distances from the center, \mathbf{S}; therefore Fig. 3 rotates without causing vibration. Fig. 4 shows three equal weights, A, B, and C , at equal distances from S and their centers, dividing the circumference into three equal parts; then this disk also revolves without vibration. The practical way of determining when pulleys, disks, etc., intended for rapid revolutions, are balanced is to lay the shaft or axis across two beveled straight edges, as the sills of a lathe, which allow it to revolve without friction, and the heavy side speedily turns down, and pieces may be applied to the top until the pulley remainsin any position.
Referring again to Fig. 4, draw the dotted line, B C, and extend the line, $A S$, to D; we will have $S D$ equal to half ΔS; at the point, D, we will apply a weight equal to $G+B$, $\mathrm{A} S$; at the point, D , we will apply a weight equall to still be
or double of or double of A; and removing B and C, our disk will still be
balanced when tested on the straight edges, and will revolve balanced when tested on the straight edges, and will revolve
without vibration. The principle of the lever applies here without vibration. The principle of the lever applies here
as to all mechanical constructions; and weight, A, multiplied as to all mechanical constructions; and weight,
by distance, AS, equals D multiplied by D S.
Although we do not practically calculate, the method of balancing on the straight edges accomplishes the calculation, and we come to an important point usually overlooked, which is that the attraction of the earth, or gravitation, has nothing to do with the vibration of unbalanced mechanism.
Gravitation supplies a convenient method, of measuring the mass of matter in any bedy 6 weighing, which is tolerably correct, and also their moment or leverage; for we have found, when disk No. 4 blances perfectly, that $A \times A S=$ $\mathrm{D} \times$ DS.
In Figs. 5, 6, and 7, let F represent the position of a crank pin to which is connected the pitman represented by the line, our purpose, may be represented by the weight, A. Now we may counterbalance by adding the weight, B , equal to A , on the opposite side of the axis, and equally distant from it with the crank pin, F ; and this will be balanced, that is, the crank will stand in any position. Now run the mill at a rapid rate will stand in any posilion. Now were a strong vertical vibration only, bewithout B , there will be a strong verticanlion in that direction,
canse A , the unbalanced part, moves only cause A, the unbalanced part, moves only in that direction,
but attach B, and the vertical vibgation is counterbalanced but attach B, and the vertical vibration is counterbalanced
and removed; but there is introduced a vibration equal:y severe in the horizontal direction. Therefore it appears that we cannot counterbalance a reciprocating weight by a revolv. ing one so that it will run without vibration; but we can use another weight moving in directly the opposite direction, as in Fig. 8 , where B and C represent two weights, each one
half of A, connected to the pins, G and H, directly opposite to the pin, F. Two cranks are used, one on each side of F, because a single weight at B or G, equal to A, would tend to because a single weight at B or G, equal to A,
I hope that I have now shown clearly that a simple reciprocating motion cannot be balanced by a rotating motion, but can be by another reciprocating motion, equal and oppos.te 'To apply the results of our inves.isations to the oase nub. mitted by E. F. J. He can first apply a counterbalance of ha!f the weight of his saw gate, which would reduce the vibration in the vertical direction but one half, and would introduce a horizontal vibration of equal amount. To this may in proportion as its weight exceeds the weight of the gate; these excessive we gats, however, produce heating and wearthese excessive we gats, however, produce heating and wear.
ing of the iocranals. They must, moreover, be placed very close to the plane in which the center of the length of the crank pin rotates, or else form d on a pair of disks each side of the pin, as in Fig. 5. Fig. 9 shows a method which will prevent vibration both in the verticai and horizoatal direc. tions. The weight, A, being countorbalanced by B, of equal
amount, another veisht, C, equal to A or B, is introduced amount, another veight, C, equal to A or B, is introduced, suspended by the rod, q, made as long as can be and connected to the same crank, F, by the pitman, R; the weig it, C, counteroala aces the horizontal action of B. The best way, however, is a modification of Fig. 8, in which a forged crank is ustd, having three pins or wrists, two down and one up. If the pitman, AF, has a good length, the weights, B and C,
may slide vertically eack side below the gate, or they may be suspended in a pit under the crank. It will not be found neesssary to counterbalance within 500 or 1,000 lbs., as some allowance must be made for the power required to force the
saws down through the timber.
W. H. Harrison. saws down through the timber.
w. H. Harrison.

Phladelphia, March 4, 1872.
The remarks of our correspondent, relative to balancing eylinders or pulleys on straight edges, will be demurred to by some of our readers who have had experience in balancing cylinders destined to run with high velocities. It is a fact, not as universally known as it should be, that cylinders that are in standing balance when tried on the straight edges will often shake heavily when set to running at high speeds, owing to the distortion produced by unequal centrifugal force, the inequality in this force being due to nonhomogeneity of the cylinders, etc. This subject was discussed at length in vol. XXIII. of the ScIENTIFIC American. The diagrams Vol. XXIII. of the ScIENTIFIC AmERICAN. The diagrams
above given, relative to balancing saws, will, however, prove above given, retative to balancin
valuable hints to, many readers.

California boasts the largest orchard in the world. It contains 426 acres, and over 75,000 fruit trees.

To the Editor of the Scientific Remerican:

I was interested in the perusal of an article in the number of your excellent periodical for February 24, on "A Remedy for Small Pox, by one who has tried it," and also in a notice of the same in your editorial columns. I have long since learned to "go slow" in recommending and using medicines that gain some reputation in the treatment of this disease; and your correspondent, I think, presumes too much upon his observations in a single case.
One or two points which this case brings to my mind may be of interest to your readers, and help your correspondent to account in another way for the results following the administration of the sulphite of soda in the care of his patient. Whatever authorities may say in a general way, in relation to the correspondence between the severity of the premonitory symptoms and the subsequent stages of the disease, a large experience has taughtme that even if this be the rule, it is not without numerous exceptions. There is a class o ${ }^{6}$ nervous, impressible, neuralgic persons, in whom the febrile stage of small pox produces severe back ache, headache, nausea, and even delirium from the general febrile excitenausea, and even delirium from the general febrile excite-
ment, etc., and in whom the later stages of the disease are of ment, etc., and in whom the later stages of the disease are of
the mildest type. I think I have seen as severe symptoms at the onset of an attack of varioloid as frequently occur in unmodified small pox. I have n n w in my mind the case of a professional brother, who suffered so intensely throughout the first stage of the disease that the most serious appre-
henisions were aroused, among his friends, as to the result, heisions were aroused, among his friends, as to the result but the later stages were of the mildest kind.
Again, there is a variety of the disease which is designated as "dry poz" or "horn pox," which, I think, is frequently the cause of too hasty conclusions in regard to the potency of medicines in this disease. In this variety, the premonitory symptoms may be very severe, and the eruption on its first
appearance be so profuse as to denote a case of confluent small pox; but when the eruption has reached the vesicular stage, that is, when the contents are transparent, instead of
passing on to suppuration (formation of yellow matter), it bepassing on to suppuration (formation of yellow matter), it be
comes dry and hard, and desquamation takes place rapidly No pitting occurs usually in these cases, and these are the cases that give reputation to certain medicines and methods employed to prevent pitting. Now it will be seen how easy it is to mistake these cases, in which nature seems able to bring about this abortive action, and attribute it to the wonderful specific properties of a medicine which the patient was taking, but which had no agency in the matter whatever; for this is the result in scores of cases that are treated on a purely expectant plan.
Sulphite of soda is no
Sulphite of soda is no new remedy for this class of diseases. If was heralded forth a few years ago as the antidote to blood poisoning, and tuns of it have bean used in the treatment of zymotic diseases. But I am of the opinion that the observing, intelligent portion of the profession have lost con fidence in it.
After a quite extensive observation in the treatment of small pox and employing all the reputed remedies and abor tives for the disease, I am convinced that the remedy is not yet discovered.
But why search for the pound of care while we hold in our hands the ounce of prevention, in the form of true Jennerian Viccination?
Chicago, Ill
R. M. Lackey, M. D.

Elastic Backing for Armor Plating.

To the Editor of the Scientific American:
A correspondent in the number of your valuable journal for February 24 says: "The fostering of erroneous opinions or other causes have left us withoutan efficient navy," etc.; and ne proceeds to demonstrate the practicability of elastic back. ing for arnor, as though it were the only thing essentially aecessary to produce an efficient navy. Permit one of long experience in naval affaire, and a close observer of all mat ers appertaining thereto, to suggest a few objections to elarric hacked armor, and to offec a few general remarks about
our navy. our navy.
It hus been found by experiments at the Washington navy yard that the difficulty, in securing the plates having elastic backing, more than counteracts any advantage gained by diffusing the impact of percussive force. The more unyitlding the backing, tho better the condition in which the fasten. ngs were found after impact of the projectile. A fifteen nch shot seldom failed to destroy some of the fastenings of armor having elastic backing. Properly securing the plates is quite as important as the plates themselves. The experi ence of the Essex and others is not sufficient evidence of its
efficiency, having only to oppose comparative pellets, as scarce y any gun of the rebels, on the Mississippi away from Vicksburg, was above a 64 pounder. I am quite sure, at close quarters, before a fifteen or twenty inch gun, the Essex would not only have had her armor stripped from her, but
the St. Louis ferry boat would have been knocked to pieces in a short time,
To produce a good and efficient navy, it is neither essentially neceessary to expend "untold millions" on plate vessels with elastic backed armor, nor to plate a cruising vessel at all. The writer of the article alluded to is evidently not informed of the improvements made for conducting a naval war, and the imporrant part the torpedo is destined to play in future naval engagements. We have at present in our navy three vessels of about three hundred tuns each, capable of steaming ten knots an hour, fitted with torpedo engines. Alongside of either in an engagement, the heaviest ironclad
extant would not float twenty minutes. Much credit for the adoption of this plan is due to Chief Engineer Shock and Superintendent Wilson.

For an efficient navy, two types of vessels are necessary, one for cruising purposes and the other for coastwise pur poses. For the latter, the Monitor class are especially adapt-
ed, their low freeboard, sheer deck, and rounded turret presenting very obtuse angles to the line of fire, and presenting a target very difficult to penetrate. But such a vessel, while well adapted for attacking or defending ports, is not fitted for a cruiser.
For a cruising vessel, a different type is needed. She should be a swift vessel, provided with a fifteen or twenty inch pivot gun forward and aft, arranged to train to all quarters, to carry fewer men and still fewer officers, and occupy heir places with coal, etc.; and she should be fitted with a torpedo engine above referred to. In the event of an engagement between such a vessel and an ironclad, there would be no sailing in circles with the former, but she would go for
her antagonist at once, striking her at the bottom. Unless her antagonist at once, striking her at the bottom. Unless
the ironclad should cripple her before reaching her, a matter highly improbable when going bows on, her fate would be decided in a few minutes.
To impute old fogy:sm to the late administration of the navy is unjust, and is not sustained by facts. Never was there so much ability and energy displayed in that depart ment. It was then the great advance was made of reducing the number and increasing the caliber of the guns (it would have been better, however, had the practice extended to the personnel also), thus requiring a less number of men, leaving more room for stores, and rendering the vessel more efficient. The fault of the present condition of the navy is not to be attributed (as some persons, having hobbies to ride or axes to grind, suggest) to "old fogyism and fossillike plans, expedients, and devices," but to Congress in not providing the means wherewith to make it more efficient.

Torpedo.
Baltimore, Md.

The Models in the Patent offce.

To the Editor of the Scientific American

D., in your issue of March 2, defends the antiquated notion of illustrating by model at Washington every inven tion for which a patent is solicited, and asserts that the inventor's labor in comparing notes on inventions would be increased a hundred fold in the absence of models. While I differ from him on this point, and claim instead that it would be much reduced were good and generous illustration by well execnted drawings the rule, to the exclusion of models, necessarily more or less inaccessible internally, I will not argue this point, but will suggest to him to inquire what proportion of the inventors of our widely extended country ever visit the Patent Office, or can possibly avail themselves of the facilities there afforded to examine models? Perhaps he would reply one in one hundred, thou $\mathrm{g}_{\mathrm{h}} \mathrm{I}$ think even this a large estimate. Is it wise to maintain an institution so nec-ssarily expensive (both to the inventor directly in the first instance and indirectly through increased of fice expensess), and unwieldy a branch as the models require, simply to accommodate the few inventors who are favored with the pecuniary ability and time to make it possible to visit Washington? How much better for them to be at (as they would have to onlyabout) ande per cent of the cost in most cases, and receive the excellent drawings and speci-fications-provided for by the wise system lately inaugurat ed-at their homes where they can examine th +m during the fragments of leisure time they may be able to command!
Let no hindrance be placed in the pathway of inventors, but let them understand and unite upon that which is for their true interest.
The writer believes the expense may be much better bestowed, upon developing and further im jroving the present excellent facilities for furnishing inventors with good copies of drawings and specifications relating to the classes of in vention they are severally interested in, than by accumulaing and caring for, at the inventors expense, the immense aggregation of models to whici but few can ever make the necessary journeys to gain access.

Inventor No. 2.

Buckskin Leather and Grove Making.
 To the Editor of the Scientific American:

To a stranger passing over the Fonda, Johnston and Gloversville railroad, large and frequent fields, filled with skins hung on poles to dry, form the most no iceable feature of the country. A desire to trace the deerskin as it comes from the hunter's hand through all the proctsses by which it is converted, first into leather and then into mitttens and loves, led me; and the courtesy of the proprieter, Mr. D B. Judson of Kingsboro, gave me an opportunity to visit the as I suppose, largest mill and factory in the ccuntry: Mr John Filmer, who leases the mill, conducted me through it and explained the several proc+sses by which about 200,000 hides, which are brought from distant parts of the continent, the Rocky Mountains, South America, and some from Europe and Asia, are here annually converted into 1 -ather. The deerskins come in bales, dry and with the hairon. They are at first soaked for some time in vats, some in clear water thers in lime water, after which the flesh is removed from one side and the hair and grain from the other with large, straight, two handled knives, the skins being stretched over
zinc covered beams, and the workmen taking the position of a person rubbing clothes upon a wash boad. The skins ar hen worked for hours in oil, in a kind of alling mill; the oil is taken out with soda ash, which converts it into soap, which is in turn removed by washing. After drying, the skins are made fast and stretched and softened by means of the stake, an instrument resembling that with which the ocher. Last of all, the face is smoothed by grinding on
or
wheels covered with emery and pumicestone. From the mill, the leather is taken to the factory, where it is cut with steel dies, and made up into gloves and mittens on machines. The finished gloves are dampened, stretched upon a hand shaped board, dried and packed in paper boxes, ready for market. Besides deerskin, American sheepskin and lambskin German and French kid, and chinchilla, velvet, cassimere, and Petersham cloth are used. Cloth gloves with kid and deerskin palms are a novelty of the past season, and have had an extensive sale.
Mr. Judson's leather mill èmploys some fifty men, and his factory, about the same number in the factory and from there to four hundred at their homes. Some twenty thousand dozen pair of gloves and mittens, worth about $\$ 250,000$, are made yearly. This business, commenced twenty-one years ago on a small scale, affords an instance of what a thorough knowledge of business, persevering industry and integrity, with the favor of Divine Providence, may accomplish. The town contains many other mills and factories, some nearly as extensive as this; but one may serve as a type of the whole. The annual sales in Gloversville amount, I am told, to about about $\$ 4,000,000$.
Gloversville is a flourishing village, with a population of 5,000 , on the Cayadutta creek. eight miles from its junction with the Mohawk. It is the northern terminus of the Fonda, Johnstown, and Gloversville railroad, but a company has been formed for the purpose of extending it to North ville, fifteen miles farther north, the gate to Hamilton county and the north woods, the Paradise of sportsmen. Kingsboro', though older than Gloversville, is really a suburb of the latte place.
C. H. D.

Kingsboro', Fulton Co., N. Y.
Borax.
To the Editor of the Scientific American
Your Nevada correspondert'requests a description of the borax lagōns and marshes of Tuscany in Italy. I was there many years ago; and if no better account is given, the fol lowing may perhaps be worth perusal:
The borax region covers about thirty miles square, the water therein being weakly impregnated with boracic acid In some locations, this is stronger than in others. The ceneral appearance of the region is desolate, and gaseous puffs of the acid are often seen rising from the water. The borax of commerce is made artificially, by saturating this
solution with carbonate of soda, sal soda, or the barilla of solution with carbonate of soda, sal soda, or the barilla of
soap makers. The solution is concentrated to the crystalizing point in wooden vessels lined with lead, in which leaden steam coils are placed. The crude article contains about twenty per cent of impurities, which are generally sulphates of ammonia, lime, magnesia and alumina, with chloride of iron, sulphur, etc. These are extracted by redissolving the crystals in lead lined tanks heated by steam, decanting from the impurities which have settled to the bottom, adding more carbonate of soda and recrystalizing. The result is refined borax, well known in the arts, being of a clear white color, re sembling alum, of a sweetish, alkaline taste, slightly ef florescent on the surface. Sulphuric acid takes the soda from this salt when in saturated solution, leaving the boracic acid in white, shining, scaly crystals, which give to the flame of burning alcohol a greenish color-indubitable evidence of the presence of this article.
Large quantities of tincal or crude borax are brought to Europe, for refining, from the East Indies where it is col lected by the natives as it exudes from the soil. It is gen erally in crystaline lumps, usually yellowish or greenish in color, feeling greasy and having a soapy smell, and is mixed with earthy matter
A more lengthy account may be found in the " United States Dispensatory," which is in the library of nearly every physi cian and apothecary. If Mr. Lewis intends prosecuting hi pursuit permanently, he wotld be abundantly repaid by taking a voyage to Europe.
B. т.

Steam Traction on Canals.

To the Editor of the Scientific American
All other devices, except that of self-propelling of the vessel, seem to have been ruled out in offering inducement for an economical conveyance on canals. Notwilhstanding this, why would not a wire rope, passing over drums located on the tow path and actuated by stationary engines at proper distances, answer the purpose ? There would be two ropes, to which boats passing either way could be at tached by means of a clip on the tow rope. The promoter of this style of power advertise to transmit from " one to 300 horse power, any distance." The last named power could certainly move 150 boats, seventy-five each way, of
the usual capacity. It has long been considered unprofita ble to exceed four or five miles an hour speed on canals This could easily be attained in this way, Why would it not answer? The waste water of the locks might be use in many places.
B. т.

Technical Education.-The Polytechnic Academy at Munich is frequented this winter by 900 students and noninscribed visitors (hospitanten). The engineering class has the greatest number of pupils, namely, 346 students and 12 casuals, However, in the general class the casuals have a Bavaria, and 230 non-Bavarians amongst whom are a great number of foreigners, particularly Russians and Americans. It appears that the South German and Swiss polytechnic schools at Munich, Stuttgart, Carlsruhe, and Zurich have greater attractions for these two latter nations than the North German technical institutions.

SCIENTIFIC AND PRACTICAL INFORMATION.

SICK HEADACHE.

Mr. James Lord, of Erie. Pa., writes, in reference to an article on sick headache published on page 128 of the present volume, to say that he has suffered much from this painful and distressing malady, and has, of course, tried many remedies ; among these he mentions tansy tea, rhubarb, bath ing in salt water, abstinence from fat and rich meats, etc. He found relief by the use of a bath of hot water, softened with carbonate of soda, taking the bath in a sitting posture and remaining in it for ten or fifteen minutes. This is the sitz bath. a favorite application of hydropathists, and is an effective means of allaying nervous irritation of any kind.

Conflagration at jones and laughlin's works.
We regret to hear of a destructive fire which took place at
the extensive iron manufactory of Messrs. Jones and Laughthe extensive iron manufactory of Messrs. Jones and Laughlin, Pittsburgh, Pa., on the 28th ult. 'This establishment is, we believe, the largest iron works in the United States, and the damage, which has only partially disabled the operationise
of the firm, amounts in value to $\$ 300,000$. The enterprise and courage of the proprietors is characteristically exhibited and courage of the proprietors is characteristiclisy exhibited
by their determination to have the whole estallishment again by their determination to have the whole establishment again
in working order in seventy days from the date of the fire, so that the employees (2,500 in number) of the firm will suffer as little as possible by the calamity.

PULVERIZED SOLID COD LIVER OIL

The dificulty of overcoming the nauseating qualities of cod liver oil has attracted the attention of many pharmaceutists, among others of M. Tissier. He takes of white gelatin, 4 parts, distilled water 25 parts, simple sirup, 25 parts, refined sugar in powder, 50 parts. The gelatin should be heated, in a water bath, with the water and sirup till dissolved, the cod liver oil and sugar being mixed in a mortar; the two compounds should then be stirred together, and the stirring continued till the mixture is cold. It will then appear as a gelatinous mass, and powdered sugar should then be added tiil a firm paste is made, which, after being cut in small pieces, must be left to become so hard as to be easily granupieces, must be left to become so hard as to be easily granu-
lated in a mortar. The second addition of powdered sugar lated in a mortar. The second addition of powdered sugar
will bring the quantity up to 250 parts, 20 per cent of which will be cod liver oil. It should be keptin a tightly stoppered bottle.

mineral caoutchouc.

A Parisian journal reports the finding, in Australia, of a mineral substance resembling caoutchouc in most of its characteristics. It contains 82 per cent of an oily hydrocarbon. We shall be interested in any further particulars of this discovery, as they may lead, on future investigation, to the production, by synthesis, of one more organic substance.

MERCURIC SULPHIDE.

A metallic substance, previously unknown to science, has recently been found in California, in Lake county. On analysis, it exhibits all the powers of mercuric sulphide, and is undoubtedly that compound, formed naturally. It has a me tallic appearance, a dark gray color, and a specific gravity of 7.701. It is proposed to call it metacinnabarite.

utilizing subterranean fires.

The island of Ischia, off the coast of Naples, has for over two thousand years been a favorite resort of Italian invalids, on account of its hot sulphurous and other springs. This land was evidently thrown up by volcanic agency, and a large proportion of the soil is still kept at an abnormal temperature by subterranean fires. It is proposed to use this heat for the evaporation of sea water and the manufacture of salt, and the project seems feasible and likely to be a success.

absorption of matter by phosphorus.

The red amorphous phosphorus (not the red scales obtained by spontaneous sublimation, by the heat of the sun, in a Torricellian vacuum), possess a power, similar to that of
porous carbon, of absorbing many substances without acting porous carbon, of absorbing many substances without acting
chemically upon them. Rosanilin, iodine, and sulphur are perceptibly taken up by the phosphorus. The powdered phosphorus, shaken up with the violet solution of iodine in bisulphide of carbon, or of rosanilin in ether, will take up the iodine or rosanilin and leave the fluid colorless; and the rosanilin may be recovered from the phosphorus by treatment with alcohol. Signor Testini recently published these facts as the results of personal investigation.

Hydrofluoric Acid on Glass viewed Microscopically. The hydrofluoric acid was prepared in the ordinary method, from calcium fluoride by the action of sulphuric acid. The
solution was then diluted and kept in a lead bottle for use solution was th
when required.
When the acid was first dropped upon the glass, no action was evident, the appearance presented being simply that of drop of water on glass. In a very short time, however, the drop became a little duller, but this almost immediately cleared away, and several small particles, seemingly of glass, were seen floating in the drop. These seemed to be undergoing a process of fusion, the appearance being similar to that seen when a small portion of metal is thrown into
some of the same substance in a state of fusion; it is tossed about for some time, and then finally disappears. This was what evidently appeared to me to be going on here, the bydrofluoric acid baving apparently. a solvent action on the glass. What strengthened this opinion was the presence of magnificent colors, changing every moment as these small portions of glass were liberated from the larger piece and were undergoing the process of solution, thus leading one to suppose they consisted of small glass prisms, the colors being more perfect than those obtained by water prisms,
simply. Some of these particles were completely surrounded by a halo of color, as if they had been thrown into a variegated solution. The principal color evident in such cases was a deep green, but dark blue was also seen at rare intervals.
The above observations were repeated several times, and always with the same results, with the exception that the small particles of glass floating in the drop of acid exploded now and then, causing a great commotion in the liquid and throwing up_little jets of finely divided acid, behaving as if the small glass particles were hollow spheres. I may also mention that when these explosions occurred, bright flashes of light were visible, resembling closely the appearance of rainbows seen in waterfalls.-Microscopical Journal.

Ignition of Explosives.

Interesting experiments were recently made by Messrs. Leygue and Champion, to ascertain the temperature at which certain explosives ignite. They used for this purpose a bar of copper, which was heated at one end only. It was provided with small grooves, placed 10 centimeters apart from each other, and provided with metallic alloys of different fusibility, so that the temperature of each part of the bar was easily ascertained. The substance under trial was then strewn upon the bar in small quantities, and the place where it ignited gave the temperature of ignition. Thus was it shown that, for their explosion, was required for:

Chassepôt percussion cap
Fulminate of mercury.

Cent. Fanr.
01
01
392

Chasse powder
Cannon powder.
Picrates of mercury, lead and iron.
Picrate powder for torpedoes.
musket..
. 200
cannon.
These researches prove the great explosive power of ful minates and nitrite compounds, while our ordinary gunpow der and picrate powder may be employed with much greater safety.

Prussian Steel Field Guns.

It appears that the great artillery question, as to the best material for field cannon, has recently been decided in Prus: sia in favor of cast steel. The materials considered were ordinary gun metal, cast steel, east iron, wrought iron, and phosphoric bronze, which latter alloy was repeatedly recommended for its great strength and tenacity. The large stores of old smooth-bore gans of gun metal in Prussia, and the enormous augmentation which they had received during the war, in the shape of captured French bronze ordnance, had to war, in the shape of captured French bronze ordnance, had to
be taken under careful consideration, in order to utilize their be taken under careful consideration, in order to utilize their
value. The final decision, however, was in favor of steel, at value. The final decision, however, was in favor of steel, at
at least for field pieces, and large orders have been received at least for field pieces, and large orders have been received
at Krupp's steel works, at Essen, while gun metal will be reserved for middle sized ordnance in fortresses only. The advocates of gun metal at the Artillerie Pruefungs Commission were not few, but steel remained the favorite, in spite of its very disagreeable property of getting brittle in great cold. Your correspondent had some experience as to this quality, when he commanded, during the late siege of Belfort, a battery of long cast steel 24 pounders. Though the guns were almost new, and handled with very great care, the cold was so intense, up to -16° R., or -4 Fahr., that after a fortnight's firing the sudden expansion had caused fine flaws, near the expanding ring which acts as a gas check. These flaws increased rapidly in size, and the cannon had to be readjusted. Under ordinary circumstances, the guns would have stood at least twice as long.-Engineering.

A New Explosive.-A new explosive has been lately brought under public notice by Dr. Justus Fuchs, of Alt Berun, in Prussian Silesia. It is called fuiminatine, and is another kind of nitrite explosive. This new agent differs from dynamite in having a considerably larger contents of nitro-glycerin, and in the 25 per cent of silica contained by the latter being replaced by 15 per cent of a chemically prepared substance. This hitherto unknown substance is said to possess much greater absorbing power than kieselguhr, and, when ignited, to be almost entirely dissipated as gases, thus considerably augmenting the explosive effect. While all the silica of the dynamite is left as a white residue after explosion, fulminatine only leaves a little black carbonaceous remnant. The prices of both explosives are the same.

Nitro-Glicerin can be analyzed by means of an eudiometer, which is an instrument for ascertaining the quantities of certain gases in any given bulk of elastic fluid. Hydrogen and oxygen are introduced within the instrument after having first been carefully weighed, and a small quantity of nitro-glycerin is finally added. An explosion of the mixture is then effected by means of an electric spark. The gas produced within the eudiometer can then be readily analyzed, showing the following to be the constituents of nitro-glycerin : Carbonic acid, $45 \cdot 72$; binoxide of nitrogen, $20 \cdot 36$; nitrogen, 33.52 .

A PLAN, to make all railroad cars throughout Germany of one pattern, so that repairs may be facilitated and prices equal. ized, has been proposed by a scientific association of railroads in that country. The question of "typical locomotives" has been thoroughly ventilated by the same parties, without favorable results. . We doubt whether, aside from the practical side of the idet, the same could be successfully carried out, since it adoption would prevent sound competition and forbid since it adoption would prevent souns
the introduction of improvements.

BEACH'S SPARK CATCHER AND CONSUMER.
It is entirely unnecessary to say anything in reference to the value of a good spark catcher and consumer. So much property has been destroyed in dry weather, by sparks from chimneys and locomotives, that the lesson has been sufficient. ly enforced. Our engraving illustratesan improved device of this kind, which has, we are informed, been quite extensively adopted, and has given universal satisfaction wherever used, being found especially serviceable in connection with sawing and planing mills, and, where steam is used, for thrashing grain.
The arrester, B, is placed in the uptake, A, at an angle of 80° from the horizontal; it is of wire gauze, and cut of oval

form to correspond with the section of the uptake made at the same angle. While the smoke and gases of combustion pass freely through it, it stops the sparks, which are directed by the upward current along its under inclined surface through the opening, C , into the flue, D , leading downward to the fire box. Faliing upon a counterpoised valve, E, they accumulate till they are dropped, through F, into the fire box, where they are consumed.
The lower part of the spark flue is contracted, as shown. It is proper to say, however, that the counterpoised valve is only needed for stacks into which the steam does not ex. haust, as when the steam exhausts in to the stack it creates a downward draft in the spark flue, so that the valve, the office of which is to stop the upward current, may be dispensed with.

When the valve is used, it should be merely balanced, the best thing for the purpose being a cup containing shot. We regard this as a good invention and worthy the attention of manufacturers employing steam as a motor.
Patented November 8, 1870, by Darwin Beach, whom address, for further information, Oshkosh, Wis.

Connect your Lightning Rods with the Water and Gas Mains.

Mr. Henry Wilde, a distinguished electrician, recently read a paper, before the Literary and Philosophical Society in London, upon the inductive influence of gas and water pipes in determining the direction of a discharge of lightning. In the course of his remarks, he gave several very interesting examples of this inductive influence, in the case of churches and other buildings which were furnished with lightning rods which terminated, as they usually do, a few feet down in the earth. In these examples, when the lightning struck it had followed the rod until within a short distance of the gas pipes, and had then leaped from the rod to follow the superior conducting path offered by the pipes. He said.
In my experiments on the electrical condition of the ter restrial globe I have already directed attention to the power. ful influence which lines of metal, extended in contact with moist ground, exercise in promoting the discharge of electric currents of comparatively low tension into the earth's sub stance, and also that the amount of the discharge from an electromotor into the earth increases conjointly with the tension of the current and the length of the conductor ex tended in contact with the earth. It is not, therefore, surprising that atmospheric electricity, of a tension sufficient to strike through a stratum of air several hundred yards thick, should find an easier path to the earth by leaping from a lightning conductor thrøugh a few feet of air or stone to a
great system of gas and water mains, extending in large towns for miles, than by the short line of metal extended in the ground which forms the usual termination of a lightning conductor.
It deserves to be noticed that, in the cases of lightning discharge which I have cited, the lightning conductors acted efficiently in protecting the b ildings from damage of a mechanical nature, the trifling injury to the church tower at Kersal Moor being directly attributable to the presence of the gas pipe in proximity to the conductor. Nor would there have been any danger from fire by the ignition of the gas. if all the pipes used in the interior of the buildings had been made of iron or brass instead of lead; for all the cases of the ignition of gas by lightning which have come under my observation have been brought about by the fusion of lead pipes in the line of discharge. I have, therefore, recommended that in all cases where lightning conductors are attached to buildings fitted up with gas and water pipes, the lower extremity of the lightning conductor should be bound in good metallic contact with one or other of such pipes outside the building. By attending to this.precaution, the disruptive discharge between the lightning conductor and the gas and water pipes is prevented, and the fusible metal pipes in the interior of the building are, placed out of the influence of the lightning discharge.
Objections have been raised, by some corporations, to the establishment of metallic connection between lightning conductors and gas mains, on the ground that damage might arise from ignition and explosion. These objections are most irrational, as gas will not ignite and explode unless mixed with atmospheric air, and the passage of lightning along continuous metallic conductors will not ignite gas even when mixed with air. Moreover, in every case of the ignition of gas by lightning, the discharge is actually trans. mitted along the mains, such objections notwithstanding. A grave responsibility, therefore, rests upon those who, after introducing a source of danger into a building, raise obsta cles to the adoption of measures for averting this danger.

HIMMER'S ELECTRIC BATTERY.

On page 305, Vol. XXV., we gave a description of this battery without an illustration; we herewith give an engraving which will convey a better idea of the improvement.
A is the outside cup, containing and supporting all the other parts of the battery. Within the cup, A, is placed a smaller cup, B, of truncated conical form, which rests upon the bottom of A , and in which is placed the copper element, C , having the form of a thin hollow cylinder, to which the wire, D, passes. E is the zinc element, to which is attached a screw cup, for the reception of the wire, F.
The zinc elementis cylindrical in form, and has an annular rim, which supports it from the top of the cup, A. A flask or bottle, G, of conoid form, is inverted, and supported by the internal edge of the rim of the zinc element, so that its neck enters the cup, B, as shown; the neck is supplied with a cork, H, having two glass tules passed through it, the upper ends of the tubes being drawn down quite small, to prevent the dropping of the copper salt.

This flask is supplied with sulphate of copper, in crystals, and water, as shown. The outside cup is then filled with a solution of magnesium sulphate. The flask is then inverted into the position shown.
The water in the flask gradually dissolves the sulphate of copper which flows out into the cup, B, where, on account of balanced pressure, it can rise no higher than the ends of the glass tubes whith pass through the perforated cork, H. That amount of the copper thus actually brought into contact with the solution of the sulphate will be active in the battery. The copper salt undergoes decomposition by electrolysis, its copper passing to the copper plate, which is thus thickened. The zinc sulphate, which deposits outside of the cup, B, in the bottom of the exterior cup, A. The battery is thus only exhausted when the oopper salt has been wholly decomposed provided the zinc has not been wholly consumed.

If, just previous to this period, the flask be removed and If, jusplied with sulphate of copper crystals, enough of the solution of the latter will remain in the cup, B, to maintain the action of the battery during the process of filling, so that the duration of the action is practically limited only by the consumption of the zinc.
A battery of this kind has run for eighteen months without stopping, driving an electric clock during the period named. For all purposes where continuous and uniform acion is desirable, it is doubtless an excellent arrangement. Patented through the Scientific American Patent Agency Oct. 10, 1871. For further particulars, address Autenrieth \& Himmer, 371 Pearl street, New York.

KETCHUM'S PITMAN CONNECTION.

Our engraving exhibits a method of constructing connections of pitmans, for harvesters or other machinery, so as to make and maintain a positive action therein, and prevent the

working loose of the parts. The construction obviates th jar consequent upon loose connections, ald also affords ease in repairing, providing for ample and continuous lubrication and protection of the bearing parts from grit and dust.
In the engraving, A is the crank wheel, B the wrist, C the pitman, and D the connection of the pitman to the cutter bar or other reciprocating part of machinery.
The wrist consists of two parts, E and F, held from turn ing in their bearings by set screws, G. The inner end of F is conical, coresponding in form to the shoulder on E, opposite it. F also has a longitudinal hole, through which the smaller part of E passes and is secured by the nut, H, the turning of which takes up all the wear which may occur in the conical shoulders of the connection.
The connection of the pitman at the other end also consists of two conical pointed center bearings, I, one of which is held by a pin or set screw, while the other is screwed in to adjust the bearing and render the motion positive.
Oil holes, J, are formed in the pitman and cutter bar, in which oil being placed, the oil flows to the bearing surfaces as required. Thus noiseless and thoroughly lubricated bearings are secured.
We are told that a pitman of this kind has run in the shop of the inventor for four months, and the connections are as perfect as when first started, although the motion is excessively rapid. The improvement is applicable to eccentric pitmans, cut off valve rods, etc., in which great accuracy of movement is desired.
The invention was patented through the Scientific American Patent Agency, Dec. 12,1871, by Amos Ketchum, of Estherville, Emmet Co., Iowa. Address as above for further information.

The Great Pyramid of Egypt.-At a recent meeting of the King's College Engineering Society, a paper by Mr. Jacob " Θ_{n} the Great Pyramid" was read. The author first gave a general description of the pyramid, as to its position foundation, internal and extercal masonry, and the chambers and passages which it contains. He then propounded the theory originated by Mr. Taylor, of London, and which has been recently more fully developed by the Astronomer Royal or Scotland. This theory supposes the Great Pyramid to have been built for a standard of weights gnd measures, from the wonderful relations, existing in the dimensions of this stupendous structure, almost inexplicable on any other hypothesis.

OVER three thousand five hundred new books appeared in England last year.

Sriemtifir shmairan.

MUNN \& CO., Editors and Proprietors. NO. 37 PARE ROW (PARE BUILDING) NEW YORE O. D. MUNN. - A. E. BEACH.

4 'The American News Co.," Agents, 121 Nassau street. NewYork. "The New York News Co.," 8 Spruce street, New York. $2 \mathrm{DF}^{2}$ A. Asher \& Co., 20 Unter den Linden, Berlin Prussia, are Agents tor the German States. * Messrs. Sampson Low, Son \& Marston, Crown Building, 185 Fleet reet, Trubner \& Co., 60 Paternoster Row. and Gordon \& Gotch, 121 Hol born Hill, London, are the Agents to receive European subscriptions. Orders sent to them will be promptly attended to.

VOL. XXVI., No. 13. [New Series.] Twenty-seventh Year.
NEW YORK, SATURDAY, MARCH $23,1872$.

THE EEECTRÓM $\widehat{A G N E T I C ~ T E L E G R A P H . ~}$
We have had occasion of late to call attention to the brilliant discoveries of Professor Joseph Henry in electricity, of which one of the prominent results was the production of a practicable electric telegraph, the main features of which were adopted and introduced by Morse, upon whom so much of honor, fame, and wealth liave been bestowed, and in whose renown we, in common with all his countrymen, justly take pride. But while we heartily rejoice in the worldwide, substantial celebrity that Professor Morse enjoys, we perceive no good reason why it should be deemed a detraction from his honors, to notice and praise the labors of those whose achievements preceded him in the same field.

The Journal of the Telegraph, we are sorry to observe, goes off into a spasm of indignation whenever the mere suggestion is thrown out that some other person than Morse may have had a hand in the production of the telegraph. In its last number, it-also presents a recent opinion by Dr. L. D. Gale, formerly an exapiner in the Patent Office, now advanced in years, who thinks that Henry is entitled to credit as the discoverer of a new fact in science, while Morse, by putting that fact into a machine, is entitled to be called the first inventor of the telegraph. According to the reasoning first inventor of the telegraph. According to the reasoning
of Dr. Gale, it is the making of the machine that is of the of Dr. Gale, it is the making of the machine that is of the
greatest importance and entitles a man to the greatest honors. We wish we could have persuaded the old gentleman to think in some such way as this years ago, when he was in the Patent Office. He used then to say it was the principle of the invention, or the new fact in science, that was the grand point, not the mere form in which it was expressed, and he used to reject applications for patents unmercifully unless they contained a new principle. The editor of the Journal coincides with Dr. Gale's new way of thinking, and in an editorial article under the heading "What is Invention!" assumes that it is not the discovery of a principle of Nature but it is the application and successful adaptation of the discovery to the production of novel practical results. Professor Morse himself dofines invention as the combination of things known to produce a new effect. Still other definitions even more comprehensive might be given, although no one will dissent from those above mentioned as far as they go.
Assuming then, as all these gentlemen admit, that the in vention of the telegraph consisted not in a fact in science, but in the form of a machine by which telegraph signals could be communicated at long distances, who was the inventor of the telegraph ?

Whoever first made such a machine is, according to Dr Gale and the Journal, and Professor Morse himself, the real and true inventor, and the man to whom they ought not to hesitate to do honor and justice. The following we believe to be undeniable truths in telegraphic history:
1st. That Joseph Henry was the first inventor and maker of the electro-magnet in the form substantially as now used in nearly all telegraph instruments, that of Morse included.
2nd. That this same electro-magnet is the motor or actuat ing power of nearly allelectric:telegraphs and other electric machinery, and without' it they could not operate.
3d. That Joseph Henry was the first to discover that the use of the intensity current galvanic battery, in combination with his magnet, was necessary to produce a practicable elec-tro-magnetic telegraph.
4th. That Joseph Henry was the first to announce, and to point out how to make, a practicable electro-magnetic telegraph instrument.
5th. That Joseph Henry was the first to construct and put into actual operation a practicable electro-magnetic telegraph instrument.

6th. That Joséph Henry was the first to construct and put
into operation an electro-magnetic telegraph instrument in into operation an electro-magnetic telegraph instrument in used in combination. 7th. That in 1831 an electro-magnetic telegraph machine was put into operation by Henry, and intelligible signals made
by the movement of a bar operated by his electro-magnet, by the movement of a bar operated by his electro-magnet,
which latter he used in combination with the intensity curwhich latter rent battery.
8th. That Henry's electro-magnet and a signalling bar working in combination therewith, and the use of the intensity battery in combination with the magnet (all of which improvements were discovered by Henry) constitute the essential features of Morse's and nearly all other electro-magnetic telegraph instruments.
9th. That Morse, in making his instrument, copied every essential part thereof from Henry's operating instrument, t wit: Morse copied, 1, Henry's electro-maghet; 2, Henry' combination of a signalling bar with that magnet; 3, Henry's use of the intensity current battery in combination with the magnet.
Thereal status of the case, then, abetween Henry and and Morse, appears to be this:-Henry was the first inventor of the telegraph, and Morse was the introducer of Henry's inventions, and also a secondary inventor.
Those who object to this view of the case may ask themThose who object to this v
selves the following question :
Suppose Congress, in its wisdom, should see fit now to grant to Joseph Henry a patent for his electro-magnetic inventions of 1831, for the production of telegraph signals and other useful purposes: w'at would then become of the Morse instrument, which was not patented until 1840? The answer is plain. The use of the Morse instrument would be a cléar infringement of Henry's patent, the Morse machine being a secoñdary invention.
Congress ham already given us an example of its willing. ness to recognize at any time the real origin of important inventions, as evinced in its grant of the Page patent, for electrical devices, that had for years been in public use. Time works wonders, and it is not the most improbable thing in the world that the Journal will yet have occasion to assist in the support of a patent to Joseph Henry as the legitimate and first inventor of the Electro-magnetic Telegraph.

THE PROBLEM OF FLIGHT.

To dangle, helpless, from the tail of a gas ball is as yet the utmost extent to which "birds without feathers" have been able to successfully essay aerial navigation, unless we make an exception in favor of M. Dupuy de Lôme, whose machine we will allude to anon. Floating aw.y passively, at the mercy of ever shifting winds, only able to descend or ascend by the rude methods of letting out gas or throwing out ballast, the balloonist sees. birds skimming away with ease and rapidity at will, with or against air currents, and feels humiliated at the long list of failures which stand on record in the history of aeronautics.
By nature comparatively a slow moving animal, man has contrived ways to distance the fleetest land and marine creatures. He plunges boldly into the deep, moves about in it, or rapidly skims its surface; but in the atmospheric ocean, all he can yet do is to dive and float. The moment he disconnects himself from land or water, he loses the power of locomotion, and the power even to guide the motion of the bubble which supports him. Like the down of the thistle, he is tossed about by every capricious air current, thrown into the tops of trees, dropped upon desert wastes, or soused into water at the sport of wind sprites. Going up, he knows he must come down, but where he will alight, or whether he will come down easy, he cannot determine.
Aeronautical societies have been formed, thousands of devices have been tried and abandoned, yet man, who has ran. sacked his resources, must atill envy the birds that possess a power yet unattained by him. Is it beyond human skill to solve this problem?
There are many who still retain faith in the possibility of aerial navigation by the human race. We do not deny this possibility, but judging from past failures, it would, to say the least, seem remote.
Yet there is only one thing lacking. Could we guide a balloon by means independent of the winds, we could go where we wish through the air. In sailing vessels, the water floats us, the winds propel, and the rudder guides. In bal loons, the air floats, the winds propel, but nothing guides. On page 100, Vol. XIX, a correspondent of this paper made a suggestion which, we think, was at least a hint at one means of securing the long needed control over the course of
balloons, though it could only be applied to balloons designed balloons, though it could only be applied to balloons designed
to traverse over water. He proposed to provide a balloon with a perpendicular mast extending through its central axis to some distance above and below the balloon proper. To this mast he would attach, at right angles, a spar which should extend to some consicerable distance fore and aft of the balloon. From this spar he would extend ropes to a keel floating upon the water, which keel was to serve the two-fold porpose of ballast, rudder, and storage chamber for materials out of which to generate a fresh supply of gas, when needed to replenish the balloon.
Now we consider it more than probable that the machine, as described by our correspondent, would have added one more to the list of failures, had it been tried. There were faults in detail all too plainly evident, but the principle, of viding a body floating in air by a device acting upon water, does not appear to us chimerical. In order to make use of necessary that the third body should be at rest, or moving with less velocity than the first. The suspended body, thus
carried along by the suspending or supporting body at a higher speed than that of the guiding body, will, if brought into contact with the latter, be reacted upon, and have the direction of its motion changed according to the nature of the eaction.
This is precisely the principle of the rudder. The vessel moves faster than the water, and carries the rudder along at the same velocity, so that if the direction of the rudder be changed, it is reacted upon by the water, and the stern of the vessel is forced to the right or left according as the rudder is deflected.
Now if two balloons were attached to a floating keel that would prevent them moving to leeward (one balloon at each ent of the keel), and the keel were supplied with a rudder to change its direction, and if between the two balloons were extended a spar and a sail of proper dimensions, we should have a machine that could be guided, and which, with a wind directly aft, would have to overcome only the resistance due to the displacement of water by the keel and the skin friction thereon. With a thin keel, the sum of theseresistances would be small and a high velocity could undoubtedly be attained. With side winds, there would be but little drifting, and we think a fair rate of speed cofuld be made, and that beating to windward might be successfully accomplished. But if this principle cannot be thus successfully applied, here are perhaps other and better ways to accomplish the desired result, and we are confident this is the most promis ing direction in which to look for any immediate advance in aeronautics. We are not aware that experiments have been tried to test the feasibility of guiding balloons by the resistance of water, though it has been proposed to ballast them by floating weights.
It is stated that M. Dupuy de Lôme has made an applicai tion of a double screw and a rudder to the basket of a bal loon, by which he can guide the entire machine to some extent. Glowing accounts have been published in regard to the success of the trial made with this machine, but the follow. ing statement, from the columns of a cotemporary, gives probably as fall credit to the experimentas it deserves:
" The machine was brought head to the wind at a hight of about a thousand feet; but, although the screw was kept hard at work, the voyagers were taken northward in obedience to a southerly wind, very much as if they were in a balloon of the old fashioned sort. They landed at last, in safety, at Noyon in Picardy, and the trip is regarded as hav ing proved that if M. de Lôme cannot sail with his 'air ship' directly against the wind, he can considerablywetard the usual progress to leeward, and possibly change the direction of progress so as to make it a few points more favorable than an ordinary balloon. This is something gained, although we should like more evidence as regards the alleged facts."

LIGHT VERSUS HEAVY. SHAFTING.

Much as has been thought and written upon the subject of shafting, our observation leads us to believe there yet remains a great lack of general information upon it. The laws of transmission of power are, as a rule, well understood by professional engineers, but the majority of those who use shafting, in comparatively small establishments, have only a very imperfect comprehension of these principles. With a view to present them as clearly as we can to the comprehension of all such, this article is penned.
The transmission of power always takes place by pressure acting through distance. Time enters as an element in calculating the amount of power transmitted compared with some fixed standard, as the horse power, or 33,000 pounds raised one foot in one minute. Pressure may act for any length "of time without the transfer of motion, and as motion or heat is always the result of transmission of power from one body to another, it follows that, by observing whether motion or heat (or both) take place, we may determine whether any power has been transmitted. A weight resting upon a fixed support exerts pressure, but transmits no power. A body moving in absolute space exerts no pressure, and consequently transmits no motion to any other
body. Its velocity neither increases nor diminishes, unless it receives some impulse or check from contact with other bodies moving either faster or slower than it moves. Two bodies in contact, moving in space with the same velocity and in the same direction, exert no pressure on each other except that caused by their mutual attraction. Let the forward ball meet with resistance and instantly pressure is generated between the two balls, and the product of this pressure in pounds, multiplied by the distance in feet the resistance must be encountered, is the power which will be transmitted by one ball to the other, and from the latter to the resistance.
The elements of power referred to the above standard are, then, pressure, distance, and time. The unit of pressure is that equal to such action of gravity as is measured by a pound. We therefore speak of the unit of pressure as being one pound. The unit of distance is one foot. When any num. ber of units of pressure is multiplied by a number of units of distance, physicists have agreed to give the product the denomination of foot pounds, which represents the work performed as compared with the unit of work, namely, one pound raised one foot against the action of gravity, or the foot pound. The elements of velocity are distance and time. The greater the velocity with which power is transmitted, the less will be the constant pressure required to transmit a given amount of power and perform a specific amount of work in a given time.
To sustain great pressure requires great strength, and increased strength of a given material having a specified form implies increased weight. Increased weighf implies increased friction. It is, therefore, a theoretical fact proved in
practice that the heavier a line of shafting is, the greater will be the loss in friction during the transmission of power through it. It is also a fact that light shafting running at high speed will perform work that would break heavier high speed winl perform work
shafting running at lower speed.

We have here a plain argument in favor of light shafting. In the application of these principles, however, we often see errors committed which tend to render some people skeptical as to their truth.
One of these errors is that light shafting is often not properly supported. The lighter the shafting, the more apt it is to spring by its own weight, the weight of pulleys and gears, and the tension of belts. Light shafting will require, therefore, more frequent support from hangers than heavy sbafting. Besides, with high velocities, there is more fiddlestring vibration, aided by centrifugal force, which consumes string vibration, aided by centrifugal force, which consumes
more or less power, generally more than is suspected. The more or less power, generally more than is suspected. The
obviation of this also calls for frequent supports along the lines of shafting, with accurate fitting of couplings, journals and boxes, and as perfect allignment of the shafting as possible.

To keep everything in perfect order will also require constant watchfulness. Slight settling of buildings, springing of floors, from the placing of new and heavy machinery or other cause, alterations which cannot be prevented, will
often throw a shaft out of line, no matter how perfectly it may have been hung.
A cognate subject is the size of pulleys. We reserve this for a future article.

Busimes and zersonal.

The Charge for Insertion under this head is One Dollar a Line. Ifthe Not
Dry Steam, dries green lumber in 2 days $;$ tobacco, in 3 hours; and is the best House Furnace. H. G. Bülkley, Patentee, Cleveland, Ohio. Wanted-Parties to manufacture a newly patented Wrench Address Bradshaw \& Lyon, Delphi, Indiana.
Improved Fruit Box. S. P. Tolman, Perrysburg, O., patentee. Grindstones for Axe Manufacturers. Worthington \& Sons, North Amherst, Ohio.
Right, for Sale, of a valuable improvement in Sad Irons. Address, H. W. Seaman, Millport, N. Y.
Williamson's Road Steamer and Steam Plow, with Rubber Tires. Address D. D. Williamson, 32 Broadway, N. Y., or Box 1809. Send Brick Machine Circulars to Box 6001, New York city. Something New. Shaping Machine Attachment for Lathes Wm. E. Cass, $61 \& 63$ ■amilton Street, Newark, N. J.
Edge tool Makers' Grindstones—J. E. Mitchell—Phila., Pa. Bay Chaleur Grindstones, verysuperior-Mitchell, Phila.,Pa. Pattern Molding Letters (metallic), to letter or number the patterns of castings. All izes. H. W. Knight, Seneca Falls, N. Y.
Parties letting steam power can have the amount determined, by the application of the indicator. Address Richard H. Buel, Consulting
Mechanical Engineer, 7 Warren Street, New York.
Mechanical Engineer, 7 Warren Street, New York.
50 Hand Drilling Machines, the best in the market, for sale at half price, 820 . Hoffman \& Finney, 215 Water Street, Brooklyn, N. Y. We want Ten more good Patents, of sensible, practical Tools, to manufacture in connection with our Star Tools. Will either huy, make
on contract, or royalty. G. W. Hallett \& Co., Star Tool Works, West on contract, or
Meriden, Conn.
Safety Steam Generators for Common Stoves. $\frac{1}{8}$ to 2 -horse, $\$ 25$ to $\$ 100$. A. D. Brock, Washington, D. C.
$\$ 5,000$. The right party with Five. Thousand Dollars can secure a piroftable investment, with
C. W. Hermance,Sctruylerville, N. Y.
Nickel Plating.-For the best Apparatus and Solutions, apply to George W. Beardslee, 82 Fulton Street, Brooklyn, N. Y.
Wanted-Two good second hand engines and boilers, 10 to is horse power. Send description and price to Lane, Pitkin \& Brock, Mont-
pelier, Vermont.
Wanted-One first class Engine with all modern improvements, either new or se
Box 237 , Buffalo, N. Y.
D. F. Shields; Auburn, N. Y., wishes to purchase two Carpet Beater Machiniés.
$\$ 3.00$ Microscope sent prepaid for $\$ 3.00$. Useful and amusing. Well worth the money. Frank Blockley, 552Lafayette Av.,Brooklyn,N.Y. Wanted-A position as Superintendent or Agent of a Sash, Door and Blind Factory-12 years' experience. Good references. Address Agent, 50 State Street, Albany, N.Y.
For the best and cheapest Water Wheel Regulator "in all creation," address Sullivan Machine Co., Claremont, N. H.
Blake's Belt Studs. The best fastening for Leather. or Rubber Belts. 40000 Manufasturrers use them. Greene, Tweed \& Co., 18
Manufacturers and Mill Supplies of all kinds. Greene,Tweed \& Co., 18 Park Place, Ne wं York.
The "Safety" Hold Back for Carriages prevents runaway accidents. See Sci: Am. Feb. 24, 1872. Undivided Interest, or State an
County Rignts, for sale. Addres3 N. W. Simon s. Williamsfield, Ohio. Lord's improved Screen or Separator-also Watchman's Time Detector. For particulars, address Geo. W.Lord, 232 Arch St., Phila., Pa. Walrus Leather for Polishing Steel, Brass, and Plated Ware.
Greene, Tweed \& Co., 18 Park Place, Ncw York. The Exeter Machine Works,
The Exeter Machine Works, Exeter, N. H., manufacturers of Sectional Boilers and Steam Engines, will soon open, in Boston, Mass., a centrally located sales room, in connection with their works; and are
willing to take the agency of a few first class Machines and Tools not willing to take the agency of a
already introduced in that city.
Standard Twist Drills, every size, in lots from one drill to 10,000 , at 34 manufacturer's price. Sample and circular mailed for 25 c .
Hamilton E. Towle, 176 Broadway, New York. New York.
The paper that meets the eye of manufacturers throughout

To Ascertain where there will be a demand for new Machin pry, mechanics, or manutacturers' supplies, see Manufacturing Ne
United States 1 n Boston Commercial Bulletin. Terms $\$ 4.00$ a year. Enameled and Tinned Hollow-Ware and job work of all kinds. Warranted to give satisfaction, by A. G. Patton, Troy, N. Y. For Circular of the largest variety of Wood Planing and Mi tre Dovetailing Machinery, send to A. Davis, Lowell, Mass.
Rubber Valves-Finest quality, cut at once for delivery; or moulded to order. Address, Gutta Percha \& Rubber Mrg Co., 9 \& 11 Par
Place, New York. Place, New York.
Best and Cheapest—The Jones Scale Works, Binghamton,N Y Grist Mills,New Patents. Edward Harrison, New Haven,Conn Taft's Portable Hot Air Vapor and Shower Bathing Apparatus Address Portable Bath Co., Sag Harbor, N. Y. Send for Circular. ery, for sale or rent. See ad For Steam Fire Engines, address R. J. Gould, Newark, N. J. For Solid Wrought-iron Beams, etc., see advertisement. Address Union Iron Mills, Pittsburgh, Pa.. for 1ithograph. etc.
Belting as is Belting-Best Philadelphia Oak Tanned. C.W. Arny, 301 and 303 Cherry Street, Philadelphia, Pa.
Boynton's Lightning Saws. The genuine $\$ 500$ challenge.
Will cut flive times as fast as an ax. A 6 foot cross cut and buck saw, $\$ 6$. Will cut inve tomes as fast as an ax. A 6 foot cross cut and buck
E. Moynton, 80 Beekman Street, New York, Sole Proprietor.
Presses,Dies \& all can tools. Ferracute MchWks,Bridgeton,N.J ${ }^{1}$ 'or 2 \& 4 Horse Engines, address Twiss Bros.,New Haven, Ct Hydraulic Jacks and Presses, New or Second Hand, Bought and sold, send for circular to E. Lyon, 470 Grand Street, New York. All kinds of Presses and Dies. Bliss \& Williams, successors to Mays \& Bliss, 118 to 122 Plymouth St., Brooklyn. Send for Catalogue. Brown's Coalyard Quarry \& Contractors' Apparatus for hoisting
and conveying material by ironcable. W.D.Andrews \& Bro,414 Water st.,N. Y and conveying material by ironcable. W.D.Andrews \& Bro,414 Water st.,N.Y Presses, Dies, and
Bliss, 4 to 8 Water st., opposite Fulton Ferry, Brooklyn, N. Y.
Over 1,000 Tanness, Paper-makers, Contractors, \&c., ifse the Pumps of Heald. Sisco \& Co. See advertisement.
In the Wakefield Earth Closet are combined Health, Cleanliness and Comfort. Send to 36 Dey St., New York, for descriptive pamphlet. For Diamond Turning Tools for Trueing Emery Wheels and Grindstones, address Sullivan Machine Co., Claremont, N. Hamp.
Boiler and Pipe Covering manufactured by the Chalmers Spence Non-Conductor Co. In use in the principal mills and factories.
Claims-Economy, Safety, and Durability. Offlces and Manufactories, foot E. 9th street, New York, and 1202 N .2 d street, St. Louis, Mo.

For Best Galvanized Iron Cornice Machines in the United States, tor both straight and circular work, address Calvin Carr \& Co., 26
Merwin St., Cleveland, Ohio. Peck's Patent Drop Press. For circulars address the sole manufacturers, Milo, Peck \& Co., New Haven. Ct.
$\dot{\text { Pewer Punching and Shearing Machines. }}$
For car builders, smith shops, rail
MachineWorks, Indianapolis, Ind.
Hoisting Engines. Simplest, cheapest, and best. Send to John A. Lighthall, Beekman \& Co., Office 5 Bowling Green, New York. L. \& J. W. Feuchtwanger, 55 Cedar St., New York, Manufacturers of Sillicates, Soda and Potash, Soluble Glass, Importers of ChemiNew \& Improved Bolt Forging Machines, J.R.Abbe,Prov.,R.I Cmproved Foot Lathes, Hand Planers, etc. Many a reader of this paper has one of them. Selling in all parts of the country, Canads
Europe, etc. Catalogue free. N. B. Baldwin. Laconia. N. H. Wanted, to correspond with owners of Patents-Picture Frames, Hangers, or other light metal work-view to mannf
Address H. J. Dorchester, 18 North Main Street; St. Louis, Mo.
(ket your steam boilers and pipes covered with the best nonconductor in the world. Call
45 Jay Street, New York City.

Motede queqioo.

LWe present herevith a series of inquiries embractng a vartety of topics of
freater or less general interest. The questions are simple, it ts true, but use Jreater or less general interest. The questions are simpla,
orefer to elicit practical answers from our readers.]
1.-Melting Asphaltum.-Can you inform me of any pro cess by which I can melt asphaltum economically?-H. E. W.
2.-Cure for Red Nose.-Will some one be so kind as t
3.-Scale in Tea Kettle.-Will some correspondent in orm me how to take the scale off an iron tea kettle, and how to prevent its
4.-Horse Power of BoILer.-Will some one of your many correspon
ers ? - D. A. M.
5.-Melting Points of Platinum and Cast Steel.-

What degrees of heat are required to melt, respectively, platinam and cast
steel?-J. A. H.
6.-Frosting Glass.-What is the best method of frosting
7.-MAKing Rules.-How can I prepare shellac for this purpose, to make it waterproof and durable? With what can I black the
8.-Copying Prints by Pressure.-Is there any way of preparing paper so that, when pressed on a plate in a book of designs, it will
cony the plate without damage to the book? $?-\mathrm{s}$. \mathbf{O}. C.
9.-Coloring Gold.-Will you please inform me the best method ot coloring fine jewelry, and how the satin finish is produced?-J.
L. D.
10.-Preparing Skeleton.-Will one of your numerous correspondents inform me what chemical or other compound will eat the
desh from a dead animal, and leave the bones uninjured ?-G. L. F. 11.-Lake Dwelling Races.-Will you please inform me where I can get any information about the prehistoric lake dwellers of
Switzerland?-C.
12.-QUEstions in Optics.-Does the power of a refracting telescope depend to any considerable extent upon the size of the object t glass, or on the convex eye piece? Is
and sizes of similar lenses?-J. A. H.
13.-Iron in Water.-I have in my cistern an iron submerged pump which, I think, excels all others for doing good work. But
he water tastes so strong of iron that we can hardly use it. Is it deleterithe water tastes so stro
ous to health? - M. M.
14.-Fusible Metal.-Is there not a composition, into which bismuth enters largely, which readily melts when subjected to heat ?
I believe the spoons, made for a trick, which melt on immersion in hot tea I belleve the spoons, made for a trick, which melt on immersion in hot tea
etc., were formed of such a substance. I wish to knowits component parts, etc., were formed of such a substance. I wish to knowits component parts,
and how its fusibility can be regulated, and whether it is strong and will and how its fusibility can be
bear a tensile strain.-O. E.
15.-Fly Preventina Wash.-Can any of the readers of the Scientific Amprican inform me if there is a wash, to be applied to a new ceiling (painted white), which will prevent flies from alighting on same ?
-A. H. S., Jr.
16.-BED Buas.-I am unfortunate enough to live in a house that is full of bed bugs from top to bottom. The walls are full of
cracks, and they are full of bugs. Is there any thing that can be put in cracks, and they are full of bugs.
white wash to kill them?-J. P.
17.-Demagnetizing Steel.-Will some of your readers tell me how I can demagnetize fron orsteel without using heat? Some of
my tools (jeweller's) have accidentally been magnetized, and it renders them my tools (jeweller's) have accidentally been magnetized, and it renders them
almost useless.-J. B. W.
18.-Disinfecting Water.-Will some one suggest a mode of disinfecting a well of water made foul by leakage from bating vats
of a tannery? The well is about thirty feet deep, twenty of which are of a tannery? The well is about thirty feet deep, twenty of which are
blasted in solid rock. In blasting; fissures were made, and they are now blasted in solid rock. In blasting; fissures were made, and they are now house. We are anxious to have the well purified that it may be used for family purposes; the water was originally very good. -J . G. W. \& N .
19.-Brass Founding.-Will some one please give me the process of melting and molding brass in small quantities? Will ordinary
sand crucibles break in a blacksmith's fire, and are they the best for melt ing brass? I melted some old brass, and while melted, a light blue smoke arose from it , and one of its component parts seemed to pass off, leaving What I will call quite white ashes mixed with the remaining metal. Wha was the matter? The brass had some grease on it when put into the cruci le. It seemed difficult for me to heat the metal hot enough to run freely
20. Material for Gias Pots I
20.-Material for Glass Pots.-I wish to know if there is any mixture that will resist the destructive properties of the flux of soda
and lime in the manufacture of glass. At present we are using the German nd lime in the manufacture of glass. At present we are using the German
clay pots, but they wear at the top very fast. If a mixture could be produced to coat the inside of the pots with, they might be made to last three or fou months -D. F.
21.-Piston Packing.-Can some of your many readers inform me how to manutacture the best packing for the piston rod and valve stems of an engine?-C. E. s.
22.-Cut Worms.-Will some of your readers tell me how to get rid of those pests the cut worms, that are so troublesome, in the gar
23.-Shellac Varnish with Linseed Oil.-I would like to ask if I can mix shellac varnish with linseed oil, and if so, in what pro-
portions. The same question was asked by W. W. in No. 4 , page 58 , curportions. The same question was asked by W.
rent volume, but has not been answered.-J. C.
24.-Cleaning Tin Ware.-What is the best preparation, form of a powder, for cleaning tin ware?-P. T.
25.-Cleansing Soapy Felts.-How can I get rid of the soap in a felt that has been fulled by soap ? Is there any material for this
purpose that I can add to the water while washing the felt ?-W. H. P.

Guswers to Corregpondents.

SPECIAL NOTE. -This column is designed ror the general interest and in-
struction or our readers business or personal nature. We will publish such inquiviries, however when paid for as adverasements at $1 \cdot 00$ a line, under the nead of \because Dusines and Personal.

aLL reference to back numbers must be by votume and page.

A. D. O., of Tenn.-The black speck noticed by you as floating across the fileld of vision is probably nothing more than an air bubble
in the fiuid (tears) which lubricate the external surface of the eyeball. In the finid (tears) which lubricate the external surface of the eyeball.
It is a thing of common occurrence, and will probably never give you any serious trouble.
O. G. O., of Ohio.-If you use artificial means to ventilate your dry kiln beated by steam pipes at the bottom, it will matter little
where you draw out the saturated air. If, however, you depend upon Where you draw out the saturated air. If, however, you depend upon
natural circulation, you should give free admission of air over the sur natural circulation, yous should give free admission of air over the sur-
faces of the heated pipes, and free egress at the top of the kiln. The kiln should not be so, high that the air will cool much in making the passage.
Speed of Circular Saws.-D. S. B., query 11, Feb. 3, asks for the right speed for a 52 inch circular saw. Seven thousand feet a minute for the ed
K., of N. H.
Scene Painting.-Y. R. can use any powder paint for this purpose, if he will grind it with a size made of isinglass. It should not be
too strong, or the painting will look as ifit had been varnished.-E. E. s. too str
of 0.
Tempering Springs.-W. R. H. wishes to know how to temper trap and other springs. A very good way is to harden them in
oill, or water not too cold; if in water, dip them in edgeways and hold still oil, or water not too cold; if in water, dip them in edgeways and hold stil till cooled; and to draw the temper right, heat them gradually till you
can see thered color come in them when held in the dark; and lay away can see the red color come in them whenheldinthe dark; and lay away
to cool. I think steel is less liable to have cracks in it if hardened in raw linsed oil.-G. P., of N. Y.
Paper Friction Pulleys.-Query 13, page 154, present volume. These arenearly equal to iron, and better than any other mate
rial except that metal. They are made of bookbinder's tar board of gasket paper,the sheets being cut the size needed for the pulley, and firmly bolted together. The friction comes on the edges of the sheets, which soon glaze, and are almost as hard as iron.-B. T., of -
incombustible Whitewash.-In answer to query No. 1, January 27,1872 , I would give the following recipe for an incombustible wash. Slake some stone lime, in a large tub or box, with boiling water;
when slaked pass six quarts of it through a fine sieve; to this lime add one quart of salt and one gallon of water. Then boil the mixture and skim it clean. To every five gallons of this mixture add one pound of alum half a pound of copperas, and, by slow degrees, three fourths of a pound
of potash, and four qual ts of white sand or hard wood ashes sifted. This solution will admit of the motroduction of any coloring matter, and may
be applied with a brush. It is more durable than paint.-J. A. H., of be applied with a brush. It is more durable than paint.-J.A. H., of Kan.
Permanent Pencil Marks.-Query 10; page 154, Vol. XXVI. A very weak solution of gum arabie, passed over the drawing
with a soft brush, willrender pencil marks permanent.-B. T. of -

Soot in Stove Pipes.-Query 11, page 154, present volume. If your Iowa correspondent will raise up the botto of his pipe, where it
is attached to the stove, is attached to the stove, and burn it out by inserting hala a newspaper sat-
urated with coal oilt the soot will give him very little trouble. A pipe
more than twenty feet long is thus cleared out in an instant. It should be more than twenty feet long is thus cleared out in an instant. It should be
done when there is very ittle fire.- B . T., of --
Preserving Natural Flowers.-R. a. L. can preserve flowers much better by dry yny and fastening them on paper than by using
gum or parafifi. The flowers should be dried by putting several newspapers between each specimen, and keeping them under a very heavy weight until dry; the papers should be changed each day. To prevent
insects, a litte corrosive sublimate (chloride of mercury) should be added to the paste that is used to fasten them on the paper. - E. E., of O.
Facing Oil Stones.-I have tried sand paper, as described in your issue of March 2,1872 . 1 have tried both sand paper and emery
paper glued to a face plate, revolving, but 1 have found none of these so paper glued to a face plate, revolving, but I have found none of these so
effectual to the purpose as the following: Take a piece of iron with even or straight face (it ought to be planed); ; catater a litile emery or fine sand
about as coarse as No. $11 /$ sand paper on the iron plate, add alitle water about as coarse as ov. 111 sand paper on the iron platee, ald a alitle water
and rub the race of the stone, renewing the emery or sand and water as and rub the fare of the stone, renee wing the emery or sand and water as
requisites, finishing with an addition of water without emery or orand.
This is the equickest and truest way, making the stone perfectly straight This is the quickest and truest way, making the stone perfectly straight
and occupying from flve to ten munutes' time. -J. W., of N. Y. Trueing Grindstone.-Query No. 2, March 2, 1872.-TrueIng a grindstone by means of a gas pipe means to nee the latter as we use
a tool in turning. A piece of soft iron will do as well. It must be solong that the end may be held
motion. - P. K., of N. \mathbf{Y}.
Copal Varnish.-Query No. 3, March 2,1872.-Pure gum copal, resembling amber in color and perfectly clear, should be selected.
Breal $\overline{\text { it }}$ in small preces, and put it in an iron pot a wrought iron is the Break it in in small pieces, and put it in an iron pot; a wrought iron is the
best, as it will stand the heat. Melt the gum, over a cool, coke, or charbest, as it will stand the heat. Melt the gum, over a coal, coke, or char-
coal Ifre, slowly, taking care that it does not get hot enough to ignite oil
of turpentine when the altter is pouree in. The pot sheuld be corered of turpentine when the latter is poured in. The pot shenld be covered
with a alid, having in it a hole sumficienty large to admit the stick for stiring. When the gum is melted, remove the pot away from the fire, that the
turpentine may be added without danger of innition. Pour the turpentine in through the hole in the lid, stirring the mixture all the thilie till it tin in through te hole en the lild, stiring the mixture all the mine till
is of the proner consistency. The precautions against fire finut be strictlis observ.
ofN. Y.
Splitting of Horses' Hoobe:-In regard to E. E. G.'s in-
 for his onsre hoos, and drive them more towarars the toe than the heel it
the hoor, and also have lips drawn on the toe of the shoe. There 1 no the hoof, and also have lips drawn on the toe of the shoe. There is no
particular remedy for it t; horses having white hoofs (called chall feet) are more or less apt to have soft hoofs, and sloes a.e more liable to get loose
on such hoofs. The best remedy I Ihave found in twenty-elght yeara' exon succh hoofs. The best remedy I have found in twenty-elight years ex.
perience is to let the animal go barefoot on a farm m wole eeason, and perience is to let the animal go barefoot on a farm a whole season, and
Nature will take care of titself If the horse is aroadter ror very flat
footed, ee should by all means be keht shore, with the nail holes not too
E. P. W. sends us a specimen of mineral matter in very finely divided particles, and says: The inclosed powder was scraped from
the bottom and sides of an iron kettle which has been used to hold altered Fater. Can you tell me or what it is composed? Do you think it per-
 (rust); it does not contanin a particle of liad. The water, so far as this
seident is concerned, is perfectiy case but we would recomen some. sediment is concerned, is perfectly safe; but we would recommend some.
thing better to keep it in than an iron kettle. Su.phuretted hydrogen is the most delicate test of lead.
E. E. T., of Missouri, sends us a mineral specimen, and Bays: Will you be so kind as to tell me if the inclosed specimens are lead,
silver, nickel, tin, Iron, or any other metal? If so, what, and what is their silver, nickel, tind, fron, or any other metal ? If so, what, and whiat is their
value? Answer: The specimen you send is very pure galente (sulphuret of lead), the source of the lead of commerce. It contains elghty per
cent of the metal, and yields at the furnace seventy per cent. The smeltcent of the metal, and yielda at the furnace seventy per cent. The smelt.
ing of the ore costs above 8 per tun. If the ore occurs in narrow veins, It may pay to assay for silver, as such galenite is usualiy highly argentif-
erous.
Asbestos Packing.-I noticed in a late number of the
Asbestos Packing.-I noticed in a late number of the Sorkvitrio A Arrrion an article on the use of asbestos for packing steam
engines, from which it appeared that the idea was a new one. A few days ago 1 came across an article in an old book of scientific lectures, pub-
lished in 1829 , in which it was stated that asbestos had been used for packIng high pressure engines, but it gave nothing in regard to the manner of
using or as to its success. -W . B. D. The earliest American patent that using or as to its success.-W. W. D. The earliest American patent that
we notice connected with the use of asbestos for steam packing was that granted to william Peters, in in 862. In this patent, the claim rests upon
the comblination of asbestos with fiax or other flboros material, so as to forma steam packing.
Copal Varnish.-Query 3, March 2, 1872. Linseed oil is the principal solvent for gum copal. The best varnish is made from old
oil which has stood for years and has deposited all its impurities and beOil which has stood for years and has deposited all its impuritites and be-
come defecated. The gum is aliso carefoflivv eelected, and both are mixed by heat. The more gum melted, the thicker the varnish, which is dillated
in using with benzil.e or spirits of turpentine, the latter being best. The lon
longer the varnish stands after making, without disturb bince, the better,
for all its impurites are deposited. TTme and a large capital are neces
 sary to make the best copal varnish, and so much depends upon skill, ac-
quired by lon; experience in the business, that it will not be eass for am inexperienced person to make it even with the most minute directions. The best quality of vari
years old.- - . \mathbf{T}., of
Liaht Engines for Saw Mills.-To Nemo, query 16, January 20. I have a ten horse thrashng engine, running a afty inch Emerson's movable toothed saw, and have sawed over 4,000 ogess and thrashed
over 100,000 bushels of grain during the past six years.
Ithink, with a practical sawser and engineer, you would succeed. There are but few, of the many sawers and engineers, who are competent to fill the posi-
tions they claim. From six to ten teeth in saw with half an inch teed to tions they claim. From six to ten teeth in saw, with half an inch feed to
each revolution in hard wood, will do; and your engine should be run as nearly as possible to one hall the revolutions of saw, which should run 450 to 500 per minnte. You will have no lack of steam if your boiler and en.
gine are properly proportioned, using your steam expansively and keep. ing the piston packing snugly out, flling the cylinder. I cut from 2,000 to 0 4,000 fee 1 nch lumber per ay. $-J .1$. . A., of in.
Hydrogen Lamp.-L. G. G. can construct a hydrogen lamp as follows: Introduce into a suitable jar (ot bottle glass or earthenware)
a small quantity of sheet zinc, or, in the absence of z inc, seraps of iron, nalls, etc., cut In small pieces, together with water sufflient to cover the
same and to the depth of half the jar. Then add a small quantity of strong
 serthy, into othe mouth of the jar or oottle, a clocesefting cork perforated
with glass or metallic tube , the e as will be ejected in the form of a jet with glass or metallic tube, the gas will be ejected in the form of a jet,
which, being directed on a piece of platinum sponge, instantly ignites, and the hydrogen lamp is fnished. Particular care should be taken (antil
 process is the simplest way to construct the lamp; but if L. G. G. Wishes
somethiog nicer and more complete, he should get a Doebereiners in-
get flammable lamp fromamaker of philosphical and E. х., of Mass.

Cleaning Gutta Percha.-Query No. 12, March 2, 1872. This can be done by using a mixture of soap and powdered charcoal, pol-
Ishing arter
J., ofN. \mathbf{Y}.

The well-known vigilant and moral gnardian, Last Case.

The well.known vigiliant and moral gaardian, Allan Pinkerton, spies out
"cases "cases" as quickly and as correctly as the sharpest of the lynx-eeded fraternity of which he is the acknowledged head and king. He is as keen at
detectlng true merit as he is criminallty and he has now made a strong etecting true merit as he is criminailty. and he has now made a strong
point, professionally, in the case of the HRRING SAFE. Six of Pinkerton's
 therefore, Pinkerton may we
Safes."-CN. Y. Day Book.

Examples for the Ladies.
Mrs.J.R.Bowen, Wellibboro, Pa., has used her Wheeler \& Wilison Machine almost constantly since 1859 on all kinds or material, without any repairs or Mrs. T. M. scallin, Troy, N. Y., has used her "dear friend," a Wheeler \& Wilson Machine, since 1858, in dress and cloak-making. The last six months
she earnei $\$ 332$, and the ear before, s417. Th Cure Asthma.-Whitcomb's Remedy acts more directly than any other known panacea.
Watch No. 1105 S. Stem Winder-bearing Trade Mark "Frederic (Ghilest, Wales \& Co.,) has been carried by me eleven montha; ; tit total vari tion from mean time being only seven seconds in the entire time.-A. H.
King, Vice.Pres't Elastic Cone Sp'g Co., N. J : Car Sp'R R. Co., 7 Park

Zocent 2 mericam and foretga edatents.

Onder this heading we shall publish weekly notes of some of the more promi.
nent home and foreron vatents.
Combined Wardiobe and Bedstead. - John A. Morgan, Bloomfield, Iowa.-The trivention consists in a new way of combining a wardrobe and
bedstead so that the latter can be pushed in and folded up within the former while the wardrobe can be aired, as well as made to receive a writing desk, $W_{\text {ashing }}$ MAO on top.
Washing Machine.-James E. Connolly, Dublin, Md.-The invention consists in a washing machine that embodies a new mode of rubbing the
clothes between cloth-flappeis rubbers which constantly retain them in the most eligible position for receiving friction and for allowing the water to percolate therethrough. It se ms to be peculiarly well adapted to family
use, and supples a want which has long been telt by the public. percolate therethrough. It se mand supplies a want which has long been telt bv the public.
use,
Raitroad Chatr.-J. C. Wands, Nashville, Tenn.-The invention consists
in a new mode of fastening chairs to railroad rails, so as to give both a perpendicular and lateral pressure upon the rail. This serves the double purpose of a fish bar and chair, and prevents either end of rail from getting higher than the other. The rail is also, by this device, debarred any move-
ment whatever, except the longitudinal play which is necessary tor expan. sion and contraction.
Hydrostatio Whighing Madeine. -Frederic Eliot Duckham, of Mill-
wall, Middlesex, Eng.-This invention relates to improventa apparatus in which a cylinder containing water or other liquid is employed the weight of the goods being ascertained by the pressure of the piston on the liquid indrcated on a pressure gage suitably attached. The object of
the invention is to provide a portable apparatus for ascertaining the weight the invention is to provide a p srtable apparatus for ascertaining the weight
of materials in general, and more particularly heavy goods, during ship. and for other smooth bored cylinder, in which is fitted a piston and rod, made watertight by means of cupped leathers or other suitable packing. The apparatus or
cylinder is suspended by means of a suitable stirrup piece or sling connectcylinder is suspended by means of a suitable stirrup piece or sling connect-
od to a link from a crane, or in other convenient position. The goods to ed to a link from a crane, or in other convenient position. The goods to be
welghed are suspended from atsje center of the piston by means of a piston rod which passes through a suitable watertight gland or packing in the are attached. A pressure gage, preferably that known as the Bourdon gage. communicates as usual with the liquid in the crlinder for the purpose of indicating the degree of pressure on such liquid, or, in other words, the
weight of the goods suspended, or the amount ot the strain applied. Inweight of the goods suspended, or the amount of the strain applied. In-
stead of employing a central piston rod passing through the bottom of the cylinder, the goods may be suspended by means of an inverted stirrup piece, similar to that by which the apparatus is sustained, and which is passed over
the top of the piston and down through guid s placed on the outside of the cylinder, below which it is united in a link to which the goods may be at tached. In this case, the top or the piston should be rounded and madesut-
ficiently large to profect slightly over the top of the cylinder. Instead of ore described, it may be mounted in gimbals or trunnions supported by bracket or shelf, or the apparatus may be bolted securely thereto, the goods being attached as previously described. When employed to denote strains
and for other testing purposes, the cylinder is attached in a vertical or other position, and tension applied to the piston rod or stirrup piece, the strain being denoted on the pressure gage as before.
BUGGY Top.-Robert Bower, ofLima, \mathbf{O}. -This invention relates to a new
extension joint iron for carriage or buggy tops, and, also, to a new shifting extension joint iron for carriage or bugky tops, and, also, to a new shifting
rail for the same. The extension joint has a projecting bracket by means of which it can be connected with the upright joint or disconnected at pleasure. The shifing rall has an oval headed bolt which connects it with the seat
iron and is locked by a spring lever, by which it can also be turned to release the rail frcm the seat.
Bails for Kettless, Boilers, etc.-William M. Stratten, of West Troy,
N. Y. -Tbis invention has for its object to improve the contrin N. Y.-This invention has for its object to improve the construction of
boilers, kettles, etc., so as to place them more fully under the control of the person handling them, enabling him to handle them with ease and satety; and it consists in the bail so constructed as to become rigidly connected
with the body of the kettle or boiler, when the weight of said vessel is npon said bail, and to become like an ordinary bail when the weight is taken of said bail. The bail has end slots an? shoulders combined with the kettle
body, having lugs and notched, shouldered, and curved flanges by which,
when the bail is raised is an ingenious and very useful improvement.
A wning Scide. - Thomas F. Darcy, New York city.-The invention conhe frame inde rods, which are attached to the window casing, and upon which frame to which the awning is attached. The slides are screwed upon or otherwise attached to the ends of the base rod. The sides project upward
at an obtuse angle, and have a hole formed in them for the passage of the of the slides ensbles the base rod to be turned up, so that. This construction be parallel with the slide rods, and to slide up and down upon said rods. This construction also, when the awning is lowered and extended, causes he slides to grasp the slide rods, and thus causes the awning to be hel
teadily by its own weight, so that there can be no shaking and rattling. Quiliting Frame.-Robert J. Gillham, Columbia, Tenn.-This inventio relates to a mode of adjusting the movable parts of quilting frames, whereby,
it is claimed, they are made more convenient and useful than they have hitherto been. By the arrangement employed, the side rails an
be used without the end bars, should the latter be in the way
Cut-off for Water Pipes.-Francls \mathbf{H}. Goddard, of \mathbf{O}
assignor to himself and W. T. Warner, of the same place.-This inventio
has for its object to furnish a simple and convenient device for changing the direction of liquids and other materials usually delivered through pipes by gravity-as, for instance, for transferring or changing the direction of a
liquid from a pipe leading to one cistern to a pipeleading to another cistern,
or discharging the water used in rinsing off a roof, outside of the pipe
off the water when the cistern becomes full-and for other uses where the
direction of a substance passing through a pipe or spout requires to
be changed; and it consists in a hinged joint and rocker, constructed and
 going ship and a donkey engine with a system of pipes that sea water may it passes through the feed pipe; and that too whether the vessel is at sea or

Wat

Water Elevator.-John L. Burch, Franklin, Tenn.-This invention re rates to an endless chain water elevator of simple and convenient arrange-
ment of parts whereby it may be readily taken apart for transportation or more easily placed in or removed from a well than others heretofor mployed.
hay Mower, or apparatus for hoisting and Stowing away hay or
Long Feed.-Samuel K. Paden, Pulaski Pa Long Fred.-Samuel K. Paden, Pulaski. Pa.-This invention consists in a rail for supporting the hoisting apparatus, formed of a light strip of wood
braced by a lapping strip of iron on top and bottom, and clamped firmly at each end. This is cheap, easily handled, and withal very strong. It aiso consists in combining a pulley lock and carriage lock with the same
pivoted bolt, in such a manner that one is automatically unlocked as the other is locked.
Horse Hay Fork.-Samuel K. Paden, Pulaski, Pa.-This invention con-
sists of two arc shaped forks, having concentric shanks provided with lever arms. The shanks themselves fold on the forks while the lever arms fold
arms n the shanks. It appears to be a very conenien and usefulimprovement ents of this class.
Railmay Traok Cleaner.-Alexander Blakely, Fairfield, Iowa.-This tive wheels to produce traction, by means of a brush arranged in rear of the hindmost drive wheel and rotated by said wheel. This brush is raised
or lowered and held to or away from the track by simple and convenient nechanism.
Polley and Wherl Fastener.-Augustus Newell, of Chicago Ill.-
This invention has for itt object to furnish a simple and reliable This invention has for its object to furnisn a simple and reliable means o
fastening pulleys and wheels of suitable kinds to shafts or axles. It consists in the use, for that purpose, of a split, conical, tubular screw, which, by means of a nut, is clamped to the shaft, and crowded against the inner edge
of the wheel or pulley. By the use of this improved holder pulleys may be
secured entirely concentric, which ecured entirely concentric, which heretofore was exceedingly diffcult, and almost impossible. Wooden
well as those made of metal.
Sand Paprr holder.-John D. Gernez, New York city.-This inv.ention has for its object to furnish an improved device for holding sand paper
while being used, which shall be so constructed as to hold the sand paper securely, acd at the same time in such a way that it will not injure the fin. gers of the operator, and may be snifted as it becomes worn, so that all the
paper may be sued up.* A cork block, with a recessed and sloted hand paper may be used up.t A cork block, with a recessed and slotted hand
piece, flanged end plates, shaft, crank or crankwheel, hand locking nut nd pivoted clamp bar, combined with each other, to adapt them to receiv
Latch.--J. Hyde Fisher, Chicago, Ill.-This invention has torits object to
furnish an improved lever latch and handle, designed especially for refrige rator doors, but which may be used with advantage upon closet and othe doors, and which shall be so constructed as to take up the wear, holding the door at all times tightly closed. It consists in a latch, a hinged bar or catch Carriage Wheel.-Alexander m. Ocobock, Toledo, Ohio.-This inven tion consists of a pair of metal collars for fitting on the wood hub and clamping the spokes at the edges, the spokes being arranged alternatel right and left, or "dodged," which collars have recesses or projections wit the other spokes fit in the recesses of the other, and the projections of one hat each spoke is clamped between a projection of one collar and a reces of another. The spokes are so dovetailed as to prevent them from working
out; and the spaces between each two spokes circumferentially are filled by the projections.
Ironing MACHine.-Anson G. Gardner, Troy, N. Y.-This invention con parallel with it, and rolling on the goods to be ironed wnen moving forward but sliding on them when moving back to do the smoothing, the rotary mowheel may revolve continuously, if desired. In ironing small articles wit this machine, two attendants can be kept busy, one on each side, each apply ing and removing the goods as the wheel recedes from him. In this respect
the machine is claimed to be better than those in which the table or bcd oscillates or reciprocates, and is not always in the right position for the
attendant.

Leader Brageket.-Stephen J. Dwyer, Albany, N.Y.-This invention ha or its object to furnish an improved bracket for leaders or conductor spouts, which shall be simple in construction, conveniently applied, and re-
liable in use. It consists in the construction and combination of a spike iaving a slotted arm, formed uponitsouter end to adapt it to receive a band
an wedge.
Water Cut-off.-John W. Burkholder, of Rushford, Minn.-This is pipes, so constructed as to allow the frist water trom the roof o
un off into a waste pipe, and then adjust itself to receive the rest the off into a waste pipe, and then adjust itself to receive the rest
the anduct it into the cistern or other receiver. A combina-
ton of a short pipe, pivoted oscillating pipe, weight case, water case smal tion of a short pipe, pivoted oscillating pipe, weight case, water case, small
pipe, and wire gauze filter with each other, said parts being constructed and operating in connection with each ot
Fastener for Mereting Rail of Sashes.--John b. Whitney, New York of windows together, for preventing the raising of of the upper sash : and consists in a fastening bar and spring, constructed and arranged to operate in the lock shell. The spring operates to force the
bar longitudinally, so that the shank of the knob will enter the recess, and bar longitudinaly, so that the shank of the knob will enter the recess, and
thereby lock the bar so that it cannot be woved by a knife blade or other thin instrument inserted between the sashes from the outside. When the ashes are thus locked the bar cannot be moved, except by first pressing the
knob either inward or outward, thus rendering the fastening secure.
Corn Husiing and Shelling Maohine.-Alexander Lane, of Moscow y.-A feeding spout is used, suitable for introducing the ears of corn with of rotating disk, which carries knives for pulling or cutting off the husks the ears being prevented from falling from the spout beyond the disk by a roughened or notched spring hanging down in front of and below the end o
the spout, and by the side of the disk, so as to receive the he spout, and by the side of the disk, so as to receive the ends of the ear ind cramp them across the end of the spout, and press them against the end
of the disk, untilthey are forced from the spout by those thrust in behind hem by the attendant. A guard also holds the ears against the face of th shelling wheel after the husks are removed, and this wheel removes the
grain from the cob, being assisted, somewhat, by the disk and the knives ereon, against which the ear is caused to bear by the oblique face of Wheel which descends toward it. The shelled grain, husks, and cobs, fal upon a screen which is shaken by a fan shaft, crank, and connecting rod, the
said screen being suspended ou rods, so that it may swing to and fro. The grain falls through the screen into a cavity, and escapes through a spout while the chaff, cobs, etc., are blown out through a passage by a fan. Three
or more sets of these husking and shelling wheels, and the spouts and guards there sets of these husking and shelling wheels, and tho spor
Antral Trap.-Hudson H. C. Arnold, Burlington, Kan.-This invention as for its object to furnish an improved trap for catouing rats, mice, molesi
tc. In setting the trap for moles certain parts are detachec. The soi thrown up by the mole is smoothed off level with the surface of the ground: bait hook forced down longitudinally in the passage way of the mole, and a in place when adjusted by passing a rod down in the groundithrough holes
in the frame. With this arrangement, when the mole finds his passage way mbstructed by the end of the lever, he attempts to remove it, which springs
the trap, and the pointed rods are forced into or through him.

STEAM PUMP.- -Samuel Stanton, New York city. -This invention relates to
improvements in valve gear for steam pumps; and it consists in a novel improvements in valve gear for steam pumps; and it consists in a novel
arrangement of apparatus for setting and tripping a couple of springs, by Which the valve is shifted ; the object being to provide a liberativg appara movement of the valve in either direction can be effected instantaneously at
each end of the stroke, and that the valve so liberated will be instantly each end of the stroke, and that the valve so liberated will be instantly
shifted throughout the whole extent of its movement. To effect this, a combination with the valve, which is balanced, of notched spring pins, tappets, shatt and crank or cam, and also notched spring rods, combined with a
toe and a slide provided with two inclines and slot, and operated by the pistoe and a slide provided with two inclines and slot, and operated by the pis-
ton rod, are employed, and covered by the claims allowed in the patent. Electric Clock.-Elisha Wilson, Elizabeth, N. J.-This invention relates Elecrric Clock.-Elisha Wilson, Elizabeth, N. J.-This invention relates
to a new mechanism for transmitting motion from the vibrating pendulum
of an electric clock to the train of wheels that connects with the hands; also, of an electric clock to the train of wheels that connects with the hands; also,
to a new arrangement of compensating pendulum magnet and compensating coil. The invention consists, first, in providing the lever, which is directly vibrated by the pendulum, with a projecting stop, that extende directly
toward the ratchet wheel of the works, and holus the same arrested after every motion imparted to of by the pawl. The invention also consists in the use of a simple and adjustable rest for the pawl, whereby it can be set to
take into a suitable desired number of teeth at every stroke. The invention also consists in the arranging the parts of a compound permanent magnet on
the pendulum in two or more consecutive polar sections, both to increase its magnetic force, and also to obtain an automatic compensating arrange-
ment; and in the application of different metals at the contact of breaking points of theelectric circuit.
Clotere Wringer. - Joseph S. Maughlin and William C. Marr, of
Onawa, Iowa.- This invention has for its object to furnish an improved Onawa, Iowa.- This invention has for its object to furnish an improved
machine for wringing clothes, which shall be simple and compact in
co struction, convenient in use, and effective in operation in either capacity; and it consists in the construction and combination of various parts, upon which five claims
issued to the inventors.

Ditchina Machine

Ditching Machine.-Jordan W. McAlister and John C. Poffenberger,
of Jacksonville, Ill.-This invention consists of a plow, an elevating of Jacksonville, lll.-This invention consists of a plow, an elevating
wheel, guide, and discharging spout, all mounted on a truck by means of a
vertically adjustable frame, and arranged in such a manner that Wheel, guide, and discharging spout, all mounted on a truck by means of a
vertically adjustable frame, and arranged in such a manner that the furrow
slice is turned into the wheel at the side and carried by its rim and buckets slice is turned into the wheel at the side and carried by its rim and bucketg
thereon up past the fixed guide, which keeps it from falling out to a point above the axle, where it falls from the wheel and is received $-\sqrt{2}$ a spout
which conducts it to the bank at the side of the ditch. The machine is run
back and furth along the ditch, the elevating wheel running in the last turback and furth along the ditch, the elevating wheel running in the last fur-
row made, while the plow makes the one at the side deeper, thus working row made, while the plow makes the one at theside deeper, thus working
the ditch to a depth of about three feet, for which a wheel of about seven the ditch to a depth of about three feet, sor which a wheel of about seven
feet diameter will redufred. It will be understood thas the wheel is al-
Iowed to rest with its whole weight on the surface of the ground when the Towed to rest with its whole weight on the surface of the ground when the
first furrow is being turned, and subsequently at the bottom of the furrow last turned; and, eince the plow necessarily always runs deeper than the
wheel, it follows that every furrow slice after the first will be double the thickness of the first. In order to dress the vertical walls of the ditch better than the land side of the plow will do, a cutter is placed on the heel of
the land side to dress off an inch or more of the land, as the heel of the the land side to dress off an inch or more of the land, as the heel of the
plow passes, and deposit in in the bottom of the furrow to be turned up
with the furrow slice at the next round. This seems a very simple and efwith the furrow
fective machine.
Shingle Maching.-Jerome V. Gue and George I. Anderson, of North
Western, N. Y.-A large horizontaly Western, N. Y. - A large horizontally revolving saw is mounted at the cen-
ter of a suitable frame, on the top of a mandrel. The carriage carries a ter of a suitable frame, on the top of a mandrel. The carriage carries a
bolt at each end, and feeds one up to the saw at one side at the same time
it is moving the other away at the other side, the said carriage being arit is moving the other away at the other side, the said carriage being aroff the under sides and discharged down chutes. This carriage is wide
enough to receize the bolts endwise between the sides and holding dogs, enough to receive the bolts endwise between the sides and holding dogs,
one of which is permanently fixed on the carriage, and the other is part of a long bar, pivoted to swing toward and from the fixed dog for engaging and releasing the bolt. It is pressed against the bolt by a spring, and and
from it by its inclined end acting on a stud pin, just previous to the end of
the movement of the bolt a way from the saw. This releases the bolt at the the movement of the bolt away from the saw. This releases the bolt at the
ends, and lets it fall upon a frame which stands as much below the saw as the thickness of one phingle, so that the falling of the bolt on said frame
sets it for the next cut. The bolt is conffned again between the dogs as soon as the carriage moves backward. In order to shift the bolts for alte nately cutting heads and points, suitaple mechanism is employed. It
claimed that by this plan the feeding and setting apparatus is rendered exclaimed that by
tremely cheap.
Cocos.-Thomas Prosser, of Brooklyn, N. Y.-This invention consists in a
combination of an elastic packing ring with a stem, having ais enlargement combination of an elastic packing ring with a stem, having an enlargement esc ipe of water through the gland. The essential object of this device is to ave a prasticable selt closing cock, and thus guard against wasting of the
water and damage fy flooding the rooms when accidentally left open. It is water and datag barrels, casks, and the like, but it is mainly designed for use
alike useful
on water service pipes. ater service pipes.
Braced Chain.-George H. Edwards, of Lanark, Ill.-This invention consists of a braced chain, to be used for endless carriers and the like, in which
two sets of links and braces connecting them are used, one set of links being jointed together in the ordinary minner, and the others having one end
slotted tor the joint pin to allow the chain to contract for going around the drums. The two sets are connected by the braces, which are connected to
the joints of each set of links in pairs by the pins which connect the links, ther end to members of two other pairs in a manner to be diagonal to th chain of links.
Iron Fence.-Oscar Wilson, of Middleburg, N. Y.-The posts are iron
rods, the lower ends of which are leadedinto stoueblocks set in the ground. The horizontal rails, two or more of which may be used, are narrow and
thin or round iron bars or rods. They are secured to the sides of the posts by links which pass around the posts and through slots in the bars and are secured in place, clamping the bars securely to the posts by wedge keys
driventhroughthe end of the links across the outer side of the bars. The shoulders or sides of said notches may hold the rails from slipping up o down. The ends of the rails that meet and overlap are halved with square
ends and shoulders, so as to support the said bars or rails from sagging, and hus stiffen the fence. In the rougher and cheaper styles of fence, the end cf the bars need not be halved, but may be simply overlapped. The up-
rights or pickets are preferably iron rods bent into a U -shape. The arms of the uprights or pickets are secured to the rails by links which cross the
rails, and the ends of which are bent at right angles across the edges of the ralls to receive the pickets which pass across the other side of said rails.
By this construction, the links are made to clamp the pickets firmly'by forcing tie opposite ends of said links toward each other. There are also
braces, the lower ends of which are leaded into blocks of stone set in the ground. They are made of iron rods, and their upper ends are bent inward and are secured to said posts after the fence has been plumbed by wedge keys driven through said eyes or loops along the sides of the posts. The
corner posts, gate posts, or any desired number of the posts, may be inclosed corner posts, gate posts, or any desired number of the posts, may be inclosed
with a box or case which is made of iron and in two parts. The adjacent edges of the box or casing are notched to receive and fit upon the ralls. An
ornamental cap or top is added, the base or shank of which is made larger or of dovetail form to tit into a dovetailspace or recess formed between the

Cotton and Hay Press.-Adam W. Clarkson, of Due West, S. C.-This nvention consists in combining the follower of the press with toggle levers,
and with sliding side pieces, and with an operating capstan. When rotary motion is, by suitable means, imparted to the capstan, so that it wil actuat to compress whatever is between it and the expanding toggles, be forced end piece. After a bale
tas been thus formed, the sides of the press can be withdrawn, the bottom has been thus formed, the sides of the p
and top also opened, and the bale tied.

BRAKR ShoE. - John S. Whitworth, of Norfolk, Va. The arched block
body of the brake is made of wood or other material, with a concave oute or brake surface. The cast metal shoe for holding the block is made with back plate curved to fot the convex back of the block, and with projecting
side flanges which embrace the sides, and with a projecting lip, at the lower part, supporting the lower end of said block. The shoe is in suitable manner fastened to a beam or other device. An angle iron, as wide as the shoe is fited into the upper part of sald shoe so as to be on the upper end of the
block, and is, by a bolt, fastened to the shoe. A nut, which 18 applied to th bolt for securing it, may be locked by a pin or ring drawn through the en of sald bolt. The fanges at the sides of the shoe are recessed to admit the
lower plate of the angle iron, and aid thus in holding the latter in place, Thus fastened by means of the angle iron, the block is securely h
shoe, but may be conveniently removed when worn, and replaced.
Horse Power Frame. -Thomas c. Churchman, of Sacramento, Cal.rame of three bed pieces, two end pieces, and three top pieces is irmly held together by bolts, the end pieces betng arranged apon the ends of the
bed pieces perpendicular to them, and the top pieces being parallel to the bed pieces and above them, the pieces betng suitably " " boxed" or notched
where they match or flt upon each other. The end pieces have elevations Where they match or fit upon each other. The end pieces have elevations
at the center of the upper sides for supportirg the center top piece above the center of the upper sides for supportirg the center top piece abov
the master wheel high enough to provide room for said wheel. The prition shaft under the master wheel is extended to the step of the vertical shatt, and thus provided with a bearing in addition to the opter one commonly used, thereby greatily relieving the outer bearing, mand supporting the said
shaft more permanently than when only one is used. This improved conshart more permanently than when only one is ased. This improved con.
struction of the frame is very simple and cheap, and also strong and durable.
Anti-concussion Water Cock.-Mifflin w. Bally; of Pot:stown, Pa. This invention has for its object tof furnish an improved cock for attachmen
to a water pipe, so constructed as to prevent the concussion when the cock 10 a water pipe, so constructed as to prevent the concussion when the cock
is closed and the movement of the column of water checked. It consists in the combination of an air cham ber with the cock, so that, when the plug is
turned to shut oft the water a passage is opened into the air chamber; the turned to shut off the water, a passage is onened into the air chamber; the
movement of the column of water may be checked by the air within said air chamber, and the cock thus rellieved from the concussion. When the hamber, the water in said chamber is forced ont through a waste hole by he compressed air, and more air passes in to again form a cushion for the water, when the cock 18 again closed.
Spricg Bed Botrom.-George Brownlee, of Princeton, Ind.-Cord bear ers are attached by means of serews or otherwise to the side rails. The
tlats rest upon doable cords between the bearers, the cord being laced around the ends of the slats, and resting on the bearers at the points of th.
tersection. A spring is attached to one or both of the end rails by a rivet or bolt, around the ends of which spring the double cords pass. A button as to confle the ends and prevent lasticity, and increase the rigidity of the slats thereby whn desired. The card bearers are small grooved palleys,
which turn on their screws and prevent friction when the cords are strained which turn on their screws and prevent friction when the cords are strained serve to keep the slats in place. To increase the elastictity of the slats they may be made double, the two

Broos.-Robert F. Dobson, of Darlington, Wis.-This invention relates
to an they are made.stronger and more durable than brooms of ordinary construc tion. It eonsists in the constraction and arrangement of wire bands, around
the brush, of sufflcient size to inclose the recuisiste guantity of corn for room, and to give the defired shape to the broom. The corn, with the band, is compressed by a press of pecallar construction. The handle is
sharpened and driven into the brush. A hook is formed on the ends of the Hre which forms the bands, and they are hooked together. When the pres
rrimpoed the corn expands, so that the bands tighty compress it and nake a very strong and durable broom. Tdeg hande is securedin place by bail through the hook fastening of the upper band.
CAN,AL Boart.-Dennis Hinchy, of Santiago, Chili.-This invention relates.
to improvements on conal boats of that kind where a central longitudinal channel ts provided for the reception of the propellers and it consists in connecting the two hulls thas formed at their bottoms by a hollow air tigh same throughout
Steam Condenser. - Archibald Kennedy and John H. Berkshire, of Mus the steam, also in heapinguas claimed to be very efflctent is also claime to be very useful as afliter alone for purify ying cold water for the sapply of railroad tanks for flling the tenders. A perforated steam receiver and
spreader under the water spout consists in more freely without those sudden puffs at the commencement of the ex of the exhaust from the cyllinder (by the operatiton of condensation) and
ond ameliorate the exhaust, and at the same time more thoroughly bring into contact and heat the falling water; and, in conjunction with partialy per-
orated rings and an angular flange projecting downward outside of said ing, prevents the falling water from being forced up the escape pipe, where jy the outward escape 18 made more easy and even, and is more thoroughl
rought into contact with the cold water than it would de were the steam ronght into contact wrth the cold water than it would ne were the steam
exhausted directly trough an open mouthed pipe into the heater. The steam is not sent back, or made to increase the pressure upon the engine but is more easily absorbed by the cold water shower. The
equire cleaning or repacking more than once 1 in ten weeks.
Mrtalutio Couvtrr for boots and shooss.-Almond b. Spaulding, of innton, Me, -The object of this inveption is to strengthen the heels of boote
and shoes, and thereby prevent them from "runging down " at the heel It consists in in nserting. between the outer leather counter and the lining in
 hoe , so as to surround the back portion of the heel. Teeth are formed ou the lower edge of the counter, which are turned up so as to enter the under side of the insole of the boot or shoe, and thereby be made self fastening.
The upper edge of the counter is slotted, so as to render it elastic. This ietalic counter is placed between the outer leather counter and the linin If the boot or shoe, thus stiffening and, it is claimed, effectually prevent
ch
Coantscurtiz.-George Smith, of williamsburg, N. Y. Y.-The oblect of this ame time render them more convenient fordischarging the coal therefrom, ore durable, and much easier repaired then injured by wear than coal piece of sheet metal, and resembles in its outline an inverted hollow cone the apex of the cone beling the bottom and center of the hod. The ordinary horizontal bottom is consequently dispensed with. The top of the hod is
contracted on one side to form a delivery spout, and the bottom of this spont or the dellivery side of the hod stands at an angle of about forty-five
degrees ivith a horizontal line. This gives a free and easy dellivery of the coal when the hod is slighty tilted. The bottom may torm nearly a point. In the ordinary coal hod, the bottom is the first to fall and the most diffleul
o repair when trom either wear or corrosion, this coal hod fails, the pro cess of repairing is very simple. A single piece of sheet metal Is coiled,
fitted and fastened in the hod, and the work is done. These hods can be itted and fastened in the hod, and the work 18 done. These hods can be
made without stamping or other expenive machinery, by any orainary vorkman.
Adtomatiofan.-John B. Williamson, of Louisville, Ey.-Clock work ade of sultable form, is provided with a train of gear wheels, with spring or weight for actuatitin the same. A wheen 1s applied to the last
shaft of the trial and rotated by the same. It has astar shaped slot, or groove, cut through or formed in its face. A lever, pivoted, by a pln, to the
frame, carries a little pin or roller, which enters the star slot of the wheel. The rotation of the latter serves to impart oscillating mottion to
the lever. Whenever the roller passes one of the angles of the star slot
there is a momentary arrest, the " escapement" beting thus produced. The
stem of the fan is connected in suitable manner with the pin or lever, and is oscillated by the motion of the eame. The fan 1 sto be used in hot weather ither to produce the desiredchange of air or to expel insects.
Inszor TRaP.-John H. Welch and John Baker, of Fort Wayne, Ind.-A
pan or dish of sheetmetal or other suitablematerial, has an an uright rim or pan or dish of sheetmetal or other sultablematerial, has an apright rim or
flange, at the base of which are a number of small apertures, through which lange, at the base of which are a number of small apertures, through which
the insect can enter the pan. A wire cone closed on top, surmounts the
 or apertures, formed through the w . In top of the cone are a number or slou outwardly. Sultable substancefor attracting the insects being placed in the pan, thes. will enter the same through the apertures in the rim. The
ower part of the pan being dark, they will Iower part of the pan being dark, they will ascend toward the light in the
Inner cone, and fnally pass throngh the the spaze between the cones, they are caught, as there. are no means of escape except the upper holes,
wardly protruding ends of wire.
FLy Fas.-George A. Goodrich and Peter Miller, of. Hope, Ohio.-This Invention relates to a new arrangement of parts in an apparatus consisting essentialy of a combination of fiy brnshes and operating clock mechanism.
It consists in the work of a fly brush to serve as brake. The arrangement is designed to be laced on a table to keep files away from the same, and is provided with a

support.

Wasiring Machirs.-Chauncey P. Remington, of Smith's Mills, New York.- This invention has for its obect to improve the construction of an
improved washngmachine, tor which letters patent were granted to the
 hriee claims have been allowed. By this construction, as the plunger is
raised the valve will close, and the suction thus produced will loosen the clothes, and at the same time the partial revolution of the plunger will nove them from their place. As the plunger descends its parial revolu-
lon willmove the clothes farther through the suds and will then press them gainst the false bottom with a turning movement so as to sllightly rub them, rd thus hasten the operation of cleaning them.
 lace. This invention consists in the peculiar construction of a distributing Wheel, whereby the seed can be scattered broadcast with uniformity and in Ph quaty as may be desired
Propelifivg and Steering Apparatus for Vessels.-Charles Hemje, o
Hoboken, N. J.-An inclosure or cyindir Hoboken, N. J.-An inclosure or cylinder, somewhat larger then the pro
peller wheel and open at both ends, is made of sheet metal or other suitable peller wheel and open at both ends, is made of sheet metal or other suitable
material. It is arranged so as to embrace the propeller, and thereby obviate the swell created by the propeller wheel when in motion. The water entering the inclosure or cylinder and passing the propeller wheel will be
forced back through the inclosure or cylinder, and will not wesh the forced back through the inclosure or cylinder, and will not wash the banks
of the canal, creek, or river. The cylinder is pivoted by vertical pins, which of the canal, creek, or river. The cylinder is pivoted by vertical pins, which
enable it to be also used as a rudder. The forward edge of the inclosure or nable it to be also used as a rudder. The forward edge of the inclosure or
cylinder should be cut according to the shape of the boat aft, so as to give dge est possibleaccess of the water to the prop edge of it can be shortened more or less toward the bottom, according t
the steering power required. The steering is of water passing the propeller wheel, which is forced back thruagh the in closure or cylinder when the boat is in motion, which column of water can
be directed at such angles with the center line of the boat as to give the be directed at such angles with the center line of the boat as to give the
most perfect steering power-c'aimed to be much more powerful than any most perfect steering power-c:aimed to be much more powerful than any
ordinary rudder, and more easily handled than the same. To make the en-
closure or cylinder movable, it is, at the under side, provided with a projectclosure or cylinder movable, it ls, at the under side, provided with a project rom the keel or bottom of the boat. Vertically above the gudgeon is fast ened, to the upper side of the inclosure or cylinder, a shaft or pin, extending
apward through the stern or fan-tail of the boat. The inclosure or cylinder has to be placed so that the shaft of the same stands vertically over the cen er of the propeller wheel, (measured fore and aft) or at least as near as practicable to that position, as in case of a great variation therefrom, the
nclosure or cylinder could not be moved enough, but would come in con tact with the blades of the propeller wheel. The steering gear can be at tached in the same manner as on any ordinary rudder. By means of an eye
bolt (through the eye of which the above named shaft passes at nearly right angles,) which goes through a post inside the boat, and on on the end of which thread is cut, the inclosure or cylinder can easily beso adjusted, by merely urface of the water in case the boat should draw more water aft than for ard. Through the use of the inclosure or cylinder, it is claimed, the speed increased, and if the same is properly made and adjusted it is expected that by means of the inclosure or cylinder the slip of the propeller wheel is ecreased, because it works in a solid body of water, with no chanceforthe ratter to escape to the surface ; whereas, with an unprotected propeller wheel considerable power is lost when the blades of the same pass near the
urface of the water. It is further claimed that all dangerous or injurious surface of the water. It is further claimed that all dangerous or injurious
eesults to the banks of a canal, creek, or river, which would arise from an inprotected propeller wheel, are completely overcome,as the water enterghee rront opening of the inclosure or cylinder and passing the propelle that of the center line of the inclosure or cylinder. In places where which are bends or turns in the canal, creek, or river, no infury can be done to the
banks, as, for the purpose of effecting these turns, the inclosure or cylinder banks, as, for the purpose of effecting these turns, the inclosure or cylinder
has to be moved so as to always leave the current in the middle of the canal

Method of Mant facturing Furniture Springas.-Joseph Lloyd Haigh, of New York city, assignor to Eagleton Manufacturing Company, of same
place.-This improvement pertains to that porion of the manufacture or prings, for furniture, mattresses, etc., which relates to the compressing or ists in effecting the required compression of the spring after it has been tempered, whereby a stronger and better article is produced. The izes and qualities of material; and my invention, 1 employ the usua
ithe wire of which the spring is to be composed upon a block, in the usual manner. After removing
he coil from the block, it is then in a very long or open condition ; the coil from the block, it is then ina very long or open condition;
and the common method is to subjact the spring to powerful comthe springs give the spring finished, and are then ready for use. My improvement differs from the ordinary method in this that, after I have colled the spring on the block in the
usual manner, I then temper the spring in the ordina:y way, and after the mpering I submitt the spring to the compressing operation by the usual pring in the ordinary manner. The result of my improsement-which, as before stated, consists in giving it the set or compression after it is tempered instead of before temperirg-is to increase the stifiness and strength of the
spring. I find by actual experiment that-as between springs made of prespring. I find by actual experiment that-as between springs made of pre-
cisely the same size of wire coiled, compressed, tempered, and treated alike cisely the same size of wire coiled, compressed, tempered, and treated alike
in all respects, except in regard to the compression after tempering, as -that the springs that and in the ordinary manner.
SCrew Wrench,-Charles Neil, of Trippet Larie, Shefleld, assignor to rederick Brittain, of St. George's Works, Sheffleld, Eng.-The object of wrench so as to obtaingreater strength, and permit makitp the jaws and andle of malleable cast iron. The wrench will thereby bedurable and not xpensive. The head of the wrench is formed on or attached to the handle hank is at right angles to itslip. Theshank of the movable jaw fits in as slot, which is cut diametrically through the head, and is toothed along its lower edge to mesh into the threads of a worm, hung in the lower part of inder the worm and proteets it, the operator taking hold of the worm at the sicles for turning it.

Mgoianisy for Operating bobbin Winding Attachments for Sew.
ing Maciines.-Warreí N. Fish, of Newark, N. J.-The object of this invention is to devise means for operating a bobbin wided on a sewing machine without at the same time necessarily operating che machine itself.
Usually bobbin winding attachments are so arranged that they can at any Usually bobbin winding attachments are so arranged time be thrown into gear with the operating mechanism of the machine, and all parts of the machine are moved whenever the bobbin winder is operated, and if the thread gives out while sewing the work is removed from the machine to permit the winding of a new bobbin. Apart from this inconvenience, much power is wasted in thus unnecessarily moving parts of the machine. This invention consists in the arrangement of means whereby
the driving power of the machine can be transferred to the bobbin winder, so that the machine will be at rest while thelatter is in operation, and vice versa. The object is principally attained by the application of a loose pulley, fast pulley and bobbin pulley, arranged, with respect to each other and to the crank shaft pulley, so as to enable the same belt to operate the ewing mechanisic and the bobbin winder at different times, and in the ,
Harvester.-Daniel Thayer, of Ludlowville, N. Y.-The following ad vantages are seeured by this invention: The sickle bar can be easily and quiciently adjusted to run closerto or further trom the sround, as may be desired. A wheel also serves as a guard to keep the inner end of the shoe from being obstructed or clogged. The draft is distributed, part being applied to the shoe and part being applied through the tongue to the main frame of the machine. The draftstrain is thus divided between the main rrame and cutting mechanism, thereby producing an easy drant, and also The whole forms an apparently simple and effective machine.

[OFFICIAL.]
 Index of Inventions

For which Letters Patent of the United States were granted
for the week ending March 12,1872 , and each bearing that date.

Bag, striking, S. D. Kehoe
Baggage check, M. N. Coe Batting or wadding for upholst
Bed bottom, spring, s. Men-aña Hart
Bedstead and wardrobe combinter.
Beer and water cooler, J. Weinberger
Boat detaching apparatus, C. Quaritius
Boiler, wash, Moreland, Reay, and Lazier
Boiler, wash, J. T. Maxson.
Boiler tube scraper,
Bolt, M. D. Kinkade.
Bolt, M. D. Kinkade...................
Book support, J. Densmore......
Boot and shoe, miner's, Latham and Burto
Boot and shoe shave, B. A. Stockwell......
Boot and shoe stretcher, W. Holden, (reissue)
Boot and shoe seams, apparatus for rolling, J. C. White, (rieissue) Boot and shoe heels, machine for dressing, W. H.
Boots and shoes, elastic goring for, c. Winslow.. Boring mill, J. Wheelock
Brace, back, E. P. Banning,
Brick kiln, F. F. Boudrye.
Brick machine, P. H. Kells
Broom holder, H. B.
Brush, dust, A. Shelling
Buckle, R. F. Russel.
Burner, hydrocarbon vapor, Dopp and Stark
Cages, manufacture of bird, J. Hepp
Can, shect metal, J. Widgery...
Cans, barrels, etc., apparatus for testing, w. D. Brooks, (reissue) Cans, barrels, etc., appara
Carake, J. W. Jacobs.
Car coupling, H. Hawley
Car couppling, A. E. F. Wolcott
Car
Car, stock, A. Rank...
Cars, door for grain, J. Bassler.
Cars, satety shoe for railway, Emery and Doyen.......................
Carriage seat, S. P. Graham..
Carriage wheel, J. Woodburn.
Cask and barrel, J. Marshall..
ement for mending china, etc., B W. Patte
Centrifugal machine for draining sugar,
Chandelier, reflecting, C. F. Jacobsen
Chandelier, reflecting, C. F.
Cigar holder, J. K. Chase.
Cloth, appane, R. B. Rponging Et
Cloth, steam cylinder for finishing, A. Brown
Clutch, friction, H. Aiken.
Clutch for machinery, F. G. Bates.
Composition for journal bearings, S. Croll
Compound from gun cotton, explosive
Cord clamp, S. W. Meredith.
Cornice window, Cony and Norcros
Cracker box. C. F. Thurston.
Dies, manufacture of, F. W. Arvine
Digger, potato, M. Johnson.
Door securer, B. H. Melendy
Door securer, B. H. Melen
ng, D. B. Fuller
Dyeing starsfor fiags, apparatus for press, D. W. C. Farrington.
Elevator connected to wagon bodies, M. G. Balfour
Engine, atmospheric, s. E. Tuttl
Engine, rotary, W. Hall
Engine, traction, W. W. Hanscom
Engine, chloride of calcium, E. I
Engine, steam and gas, J. A. H. Elis (reissue)
Equalizer, three horse, J. Blackwood..
Fabric for head coverings, H. Loewenberg.
Fastener, sash, W. E. Sparks.
Fence, A. C. Betts...
Fence, J. McKnight
Fence, J. H. Stone.
Fertilizer, J. and A. Fo
Fiber to imitate hair, w. Stau
Fire extinguisher, E. Barrett.
Fire extinguisher, J. Gar-ner
Firelighter, J. R. Murphy....
Fire escape ladder, C. G. Buttkereit
Fishing seine, H. Smith.
Flock grinder, J. Waterhouse
Fruit gatherer, J. Waters.
Fuel, artifficial, B. Cutler.........
Furnace, smelting, P. M. Wilison
Furnace, smelting, P. M. Wilson
Furniture button
. H. Howeroft

Gas from coal tar, J. Kidd..

Gas, apparatus for manufact...............................
Gate, J. C. Lus sealing dip pipe of, R. B. Chapman, (reissue) Gate, J. C. Long....
Gate for rail ways, automatic safety, Emmons and Lee
lackling machine, Lannay and Webb
Hair restorative, E. W. Barnes.
Hair, fiber to imitate, W. Stauf......
Harness, ornamenting, F. Meinberg
Harness snap, S. Reynold
Harrow, A. Jones.
Harrow teeth, die for forging, Pedder and Abel
Heating and evaporating liquids by steam, B. т. Babbitt
Hinge for tables, etc., lock, E. E. Hendricks
Hitching and sign post, C. F. Barnard

Hook and buckle, snap, L. b. Jackso
Horse blanket adjuster, A. Z. Neff
Horseshoeing jack, J. Shimer
unsker, corn, J. M. Everts..
Jack, lifting, B. B. Tomlingon
Journal, anti-friction, Hall and Dayton
Journal bearings, composition for, S. Croll.
Kettle, tea, J. W. Ward
Kettle, tea, J. W. War
Ladder, G. W. Willis
Ladder, step, O. M. Sweet.................
Lamp extinguisher, J. M. Goodridge.
Lathing, metallic, K. Nirison.
Link, G. W. Dyer
Link, G. W. Dyer.
Lock, door, W. P.
Lock, door, W. P. Đodson...........
Lock, permutation, W. C. Bussey.
Locomotives, throttle valve lever..............
Locomotives, throttle valve lever for, J. Mills.
Looms, shuttle mechanism for, T. Martin.......
Looms, let off meshanism for, c. R. Saatwe
Lubricating wheel or pulley, R. V, Laney
Lubricatitg wheel or pulley, R. V, Laney.............
Lubricating axles or journals, mode of, R. V. Laney
Lubricating loose pulleys, device for, F. Keifel
Lubricator for car axle boxes, J.
Marble, manufacture of imitation, El.iot and w
Marble, manufacture of imitation, A. Fischer.
Marbe, manufacture of imitation, A. Fischer.
Medical compound, T. H. Thoompson.
Medical compound or coffee ancidote, E. D. H. Saint Cyr, (reissue) Milk cans, securing covers of,N. C. Burnap. Mill, quartz, w. C. Stiles.
Millstones, manufacture of, Elliott and Wood.
Millstones, process of preparing, Eliott and Wo
Movement, mechanical, S.J. Baird, (reissue)
Mucilage holder, A. H. Fatzinger
Ores, separating, Huet and Geyler
Ornamenting furniture, J. E. Rogers.
Ornamenting wood, metal, etc., R. Parke.
Overshoe, J. Wild..
Painters use, holder for, s, Ne Newell.......
Painting wire cloth, machine for, s. Graves
Pan, dust, R. S. Jennings
Papet futting machine, J. Worrell.
Paper feeding machine. A. M. Crane.
Paper making machinery, T. Nugent
Pavement, composition, T. Price.
Pavement, concrete, A. H. Perk
Photographic apparatus, R. H. Mims
Piano, upright, O. Altenberg....
Pipe, water and sewer, J. S. Pierson.
Pipe, machine for making tin lined
Pipe, machine for making tin lined lead, J. E. Granniss
Planes and hoi ts, brake for inclined, L . Klee
Planter, corn, J. M. E. Valk.
Plow, gang, Bowen and Abbot
Plow, gang, G. W. Haines..
Poke, animal, B. E. Blaksle
Poke, animal, B. E. Blakslee..
Pot, coffee, W. N. Hutchinson.
Pot, coffee, W. N. Hutchi
Pot, coffee, J. B. Smith...
Pot, coffee, J. B. Smith..........
Power, mechanical, N. A. Bake
Power, mechanical, N. A. Ba
Printing press, S. D. Tucker
Pruning shears, 0 . Snell.
Pump, E. Graser
Pump, P. Foley.
Pump, garden, C. G. Korth
Pump, rotary, A. Sluthour (reissue)
Pump, steam, C. Swinscoe.........
Pump, steam, C. Swinscoe..........
Rack for hats, etc., C. A. Young..
Rack and umbrella stand, combined hat, J. W. Currie
Rafis, construction of, Moore and Hawley.
Railway frog, D. C. Pierce.
Rillway rail chair, J. C. Wands..
Railways, girder for, R. M. Upjoh
Railways, girder for, R. M. UpJohn....................
Rubber cloth goode, manufacture of india, W. Cable
Sash bearing, window, J. B. Hornbake.
Sash holder, H. P. Tenant.
Sash supporter, window, R. L. Youn
Saw mill, s. Weymouth.
Saw set, Harper and Wurflein
Scale, tailor's, H. Mathest
Scale, tailor's, H. Matheson...
Screws and bolts, machine for threading metallic, B. L. Walker
Sewing machines, attachment for, J. C. Jensen.........................
Sewing machines, button hole attachment for, S. J. Baird (reissue)
Shelf or bracket, extension, A. Rosenfield.
Ship and steamboat building, steam, A. W. Thompson.
Shoe, J. P. Rand.........................
Sled, bob, J. Wampach
Soap cooler, J. D. Sturges.
Soap cooler, J. D. Sturges....................
Spinning machines, spindle for, T. H. Gray
Spoke shave, J. Groben.
Stacker, straw, S. Fullen
Stacker, straw, S. Fullen....................
Stand for windows, show, J. P. Doughton
Stand for windows, show, J. P. Dought
Staves, machine for cutting, A. Cook...
Steam generator, D. Renshaw.
Stone, manufacture of artificial, T. A. Jebb
Stove, heating, W. H. Landon.
Stove pipe damper, J. Spear...
Stove pipe damper, J. Spear............
Stuffing box, metallic, W. H. Holland

Sugar, etc., centrifugal machine f
Sup.porter, uterine, E. P. Banning
Tap and cutter, combined, J. Gunn
Tassel, far, J. Schmid....
Toaster, bread, D. Miller
Toaster, bread, D. Miller..
Tool; combined, T. Garrick..

	Tool handle fastening, A. R. Sweat... 124,517 Toy J. M. Hartz 124,575	
	Trap, animal, L. F. C. Chamberlin..................................... 124,417	
	ss, E. B.	
	arnish, imitation	
	Vehicles, wheel for, J. Davis... 124,554	
	Velocipede, D. Martin	
	Velocipede, l. G. Perreaux.. 12	
	Ventilator, car, R. L. Omens	
	Wagon brake, A. Snyder.. 124,6.6.74	
	Washer, lock, W. H. Van Cle	
	Washing machine, J. E. Connolly..................................... 124,548Washing machine, A. E. Worden.......................... 124,649	
	Washing machine, J. E. North... 124,651	
	Water wheel, v. M. Baker.. 124,471, 124,472	
	Wheele and journals, box and sleeve for, R. V. Laney.................. 124,597	
	Windmild, G. Mabie... 124,419, 124,429	
	Writiog machine, type, B. Halstead................................... 124,437	
Yoke, horse, G. P. Cole.. 124,54		
	DESIGNS PATENTED.	
	9 to 5,64J.-Jarpers.-A. J. Bouet, Kidderminster.	
	5,648.-Metal Pail or Cast.-G. C. Napheys, Philadelphia, Pa.	
	5,651 and 5,652.-CARPETS.-H. Robinson, Halifax, England. TRADE MARKS REGISTERED.	
694.-"American Sterling" Metal.-American Sterling Company, NewYork city.		
695.-Boors.-Clement, Colburn \& Co., Boston, Mass.696.-Whiskx.-Frieberg \& Workum, Cincinnati, 0.		
--HAMs. етC.-J. Morrison \& Co., Cincinnati,		
	$\begin{aligned} & \text { 699.-BRON } \\ & \text { Pa. } \end{aligned}$	
	 702.-Whisk y.-Walsh, Brooks and Kellogg, Cincinnati, o.	
	schedule of Patent fees	
On each Cavear		
On flilng each appication tor a		
On appeal to Ex aminers-in- Chief..id		
	On ${ }^{\text {Onanting the Exte }}$	
	On an application for Design tiolire and a	
	For Copy of Claim of any Patent r8sued woithin 30 years................... 81	
	A sketch from the model or drawing, relating to such portion of a machine as the Claim covers, Trom . \qquad upward, but usually at the price above-named.	
	The tull Specifcation of any patent issuedsince Nov. 20, 1866 at which time the Patent Offce commenced printing them. \qquad	
	cial Copies of Drawings of any patent issued since 1836, we can suppıy at a reasonable cost, the price depending upon the amount of labor involved and the number of views.	
	ill information as to price of drawings in each case, may be had addressing	

APPLICATIONS FOR EXTENSIONS
Applications have been duly filed, and are now pending, for the extension of the following LettersPatent. Hearings upon the respective application are appointed for the days hereinafter mentioned:
0,522.-Grain Separator.-A. J. Vandegrift. May 22, 1872.
20,515.-Harvester.-W. H. Seymourand D. S. Morgan. May 22, 1872.

20,557.-Sewing Machine.-A. C. Herron. May 29, 1872 .
20,658.-Combination Lock.--s. Perry. June 5, 1872.
20,756.-Ore Separator.-H. Bradford. June 12, 1872
$20,834,-$ Ear MuFf, etc.-W. P. Ware. June 19, 1872
EXTENSIONS - GRANTED.
19,487.-Metallio Lathing.-B. Cornell. March 2, 1858.
19,462.-Straw Cutter.-T. H. and D. T. Willson. February 28.1858.
Inventions Patented in England by Americans.
Compiled from the Connmissioners of Patents' Journal.
From February 16 to February 22, 1872, inclusive
Boiler Furnage.-G. H. Diehl, Chicago, ill.
воотs, etc.-W. J. B. Mills, Phila., Pa., D. W. C. Taylor, Elizabeth, N. J Boot STIFFenings.-N. J. Simonds, Woburn, Mass.
CAR Coupling.-F. F. Taylor, H. W. Larkin, San Fr
Car Coupling.-F. F. Taylor, H. W. Larkin, San Francisco, Cal.
Cutring Machine.-A. Warth, Stapleton, N. Y., W. F. Jobbins, N. Y. city Cutring Stone, etc.-A. S. Gear, Boston, Mass.
Dust Shirld, etc.-W. M. Thornton, T. A. Buckland, St. Louis, Mo. Fire Arm.-G. H. Earnest, Springfield, Ohio.
harvester Rake, etc.-D. M. Osborne, Auburn, n. y
Hoist, ETC.-H. Osgood, M. F. Storer, C. G. Keys, New York city. LAWN MOWER.-E. G. Passmore, Philadelphia, Pa.
Leather Mandfacture, etc.-J. C. White, Quincy, ill.
Lever Punoh, etc.-N. Thompson, Brooklyn, N. F.
Lever Punoh, etc.-N. Thompson, Brookiyn, N. Y.
Lithographio Printing Machine.-R. M. Hoe, New York city
Pencile, etc.-J. Reckendorfer, New York city.
Pottert, ETC.-S. . Thompon, Portsmouth, N. H.
Railway Signal.-L. W. Coe, Auburn, N. Y.
SAIL HANE.-D. G. Low, Chelsea, Mass.
Shuttle.-J. Martin, Lowell, Mass.
Shutrie.-T. Isherwood, Westerly, Conn.
ShUTTLE.-T. Isherwood, Westerly, Conn.
StERL MANUFACTURE,ETO.-J.Henderson (of N. Y. city), Glasgow, Scotlnnd. Operating Mechanism.-A. G. Myers, New York city.
Vessels for Aidis, etc,-J. H. Seibert, Philadelphia, Pa

FOREIGN PATENTS---A HINT TO PATENTEES.
It is generally munh better to apply for foreign patents simultaneously
with the application in the United States. If this cannot be conveniently with the application in the United States. If this cannot be conveniently
done, as little time as possible should be lost after the patent is issued, as the laws in some foreign countries allo x patents to any who first makes the application, and in this way many inventors are deprived of valid patents for their own inventions. It should also, be borne in mind that a patent is issued in England to the first introducer, without regard to the rights of the
real inventor; therefore, it is important that all applications should be entrusted to responsible agents in this country, who can assure parties that their valuable inventions will not be misappropriated. The population of
Great Britain is $31,000,000$; of Fracee, $37,000,000$; Belgium, $5,000,000$; A ustria Great Britain is $31,000,000$; of France, $37,000,000$; Belgium, 5,000,000; A ustria
$36,000,000$; Prussia, $40,000,000$; and Russia, $70,000,000$. Patents may be secured $36,000,000$; Prussia, $40,000,000$; and Russia, $70,000,000$. Patents may be secured
by American citizens in all of these countries. Mechanical improvements by American citizens in all of these countries. Mechanical mprovements
of all kinds are always in demand in Europe. There will never be a better time than the present to take patents abroad. We have reliable business
connections with the principal capitals of Europe. A large share of all the patents secured in foreign countries by Americans are obtained through our Agency. Address

MUNN \& CO..
37 Park Row, N. Y.

Practical Fints to Inventiors.

M UNN \& CO., Publishers of the Scientific American Patent in this and foreign countries. More than 50,000 inventors have avail
ed themselves of their services in procuring patents, and many millions o dollars have accrued to the patentees whose specifications and claims the have prepared. No discrimination against foreigners; subjects ot all coun ies obtain patents on the same terms as citizens.

How Can I Obtain a Patent?

8 the closing inquiry in nearly every letter, describing some invention which comes to this office. A positive answer can only be had by presenting a complete application for a patent to the Commissioner of Patents. *AD
application consists of a Model, Drawings, Petition, Oath, and fall Specific application consists of a hodel, Drawings, Petition, Oath, and full Specifica
tion. Various offlial rules and formalities must also be observed. The efforts of the inventor to do all this business himself are generally without success. After great perplexity and delay, he is usually glad to seek the aid of persons experrenced in patent business, and have all the work done over again. The best plan is to solicit proper advice at the beginning. It the parties consulted are honorable men, the inventor may safely conflde his
deas to them: they will advise whether the improvement is probably patdeas to them : they will advise whether the improvement is probaily
entable, and will give him all the directions needful to protect his rights.

How Can I Best Secure My Invention

 This is an inquiry which one inventor naturally asks another, who has hadsome experience in obtaining patents. His answer generally is as follows some experie
and correct:
Construct a neat model, not over a foot in any dimension-smaller if sible-and send by express, prepaid, addressed to M MNN \& Co., 37 Park Row New York, together with a description of its operation and merits. On receipt thereof, they willexamine the invention carefully, and advise you astc ths patentability, free of charge. Or, if you have not time, or the means at hand, to construct a model, make as good a pen and ink sketch of the im -
provement as possible, and send by mail. An answer as to the prospect ot a patent will be received, usually by return of maii. It is sometimes best to have a search made at the Patent
of an application for a patent.

Preliminary Examination.
In order to have such search, make out a written description of the inven-
tion, in your own words, and a pencil, or pen and ink, sketch. Send these tion, in your own words, and a pencil, or pen and ink, sketch. Send these
with the tee of $\$ 5$, by mail, addressed to MUNA Co., 37 Park Row, and in due time you will receite an acknow whed thereot, followed by a written report in regarid to the patentability of yonr improvement. This specia

search is made with great care, among the models and patents a t Was ton, to ascertain whether the improvement presented is patentable. Caveats.
 Persons desiring to file a caveat can have the papers prepared in the short

 est time, by sending a sketch and description of the invention. The Govern ment fee for a caveat is $\% 10$. Δ pamphlet of advice regarding applicationsor patents and caveats is furnished gratis on application MUNN \& Co.. 37 Park Row, New York.

To Make an Application for a Patent.

The applicant for a patent should furnish a model of his invention, sus ceptiole ot one, although sometimes it may be dispensed with; or, if the in vention be a chemical production, he must furnish samples of the ingredient of which his composition consists. Mese should be securely packed, the nventor's name marked on them, and sent by express, prepaid. Small mod
els, from a distance, can often be sent cheaper by mail. The safest way to remit money is by a draft, or postal order, on New York, payable to the or der of MUNA \& Co. Persons who live in remote parts of the country can usually purchase drafts from their merchauts on their New York corre ondents.

Reissues.

A reissue is granted to the original patentee, his heirs, or the assignees o the entire interest, when, by reason of an insufficient or defective specifica tion, the original patent is invalid, provided the error has arisen from inad tion.
A patentee may, at his option, have in his rei sisue a separate patent to by paying the required fee in each case, and complying with the other re airements of the law, as in original applications. Address MUNN \& Co 7 Park Row, for full particular

Trademarks.

Any person or firm domiciled in the United States, or any firm or corpora Hon residing in any foreign country where similar privileges are extended
to citizens of the United States, may register their designs and obtain proection. This is very important to manufacturers in this country, and equaNew $\overline{\text { Ÿr }}$ ork.

Design Patents.

Foreign designers and manuracturers, who send goods to this country, may ecure patents here apon their new patterns, and thus prevent others from tabricating or selling the same goods in this market.
A patent for a design may be granted to any person, whether citizen or
alien, tor any new and original designfor a mannfacture, bust atal relievo, or bas relief; any new and original design for the printing of wool relievo, or bas relief; any new and original design for the printing of wool-
en, silk, cotton, or other fabrics; any new and original impression, orna-
ment, pattern, print, or picture, to be printed, painted, cast, or otherwise placed on or worked into any article of manufacture.
Design patents are equally a simportant to citizens lll particulars send for pamphlet to MUNN \& Co., 37 Park Row, New York Rejected Cases.
Rejected cases, or defective papers, remodeled tor parties who have made applications for themselves, or through
Address MUNA \& Co., stating particulars.

European Patents.
MUNN \& CO. have solicited a larger number of European Patents than ny other agency. They have agents located at London, Paris, Brussels
Berlin, and other chief cities. A pamphlet pertaining to foreign patents and the cost of procuring patents in all countries, sent free.

MUNN \& CC. Will be happy to see inventors in person, at their office, or to ucif consultations, opinion, and advice, no charge is made. Write plain do not use pencil, nor pale ink; be brief.
All business committed to our care, and all consultations, are kept secret In all matters pertaining to patents, such as conducting interferences procuring extensions, drawing assignmenss, examinations into the vailidity pamphlets of instruction and advice,
Address
MUNN \& CO.,
PUBLISHERS SCIENTIFIC AMERICAN,
OFFICE in wastinuton
\Longrightarrow Value of Extended Patents.

Did patentees realize the fact that their inventions are likely to be more productive of proft during the seven years of extension than the firs
tull term for which their patents were granted, we think more would avail themselves of the extension privilege. Patents granted prior to 161 may be extended for seven years, tor the benefit of the inventor,or of his heirs in case of the decease of the former, by due application to the Patent Offlce, ninety days before the termination of the patent. The extended time inures to ights under the extension, except by special agreement. The hoverngen ee for an extension is $\$ 100$, and it is necessary that good professional service be obtained to conduct the busine is

MUNN \& CO.. 3y Parts Row

STEHL CASTINGS

Rare and Beautiful. Flowers and Choice
Vegetables can always be obtained by sowing

B. K. BLISS \& SONS, 23
Importand rowurrayster Ne
GARDEN, FIELD \& FL0WER SEEDS, Smail Rrits, Horticilurura Impienents, Fer LAWNMOWERS

 AGENTS WANTED.-JUST OUT, LARGE UNITED STATES MAP, WITH TMMENS WORLD MAP ON REVERSE SIDE. LARGE SALES! large prontist The best maps out!
Empire Map \& Chart Estabilishment, 107 Liberty St.,N.Y SCHENCK' CHATERPROQF SHIPPING TAG. P. O. Box 2564
Send tor prices and samples. Superior for cotton. "I solual Clincse the fiffid Mhed."

 It has given perfect satisfaction in every way. My hea
and fall is $173 / 2$ feet. \quad Yours traly
RUSSELL J. BARBER.

Hilson Rivere chramion Murbine.

CIRCULAR SAW MILLS,

 $\overline{\mathbf{W}^{\text {and }}}$ ANTED IMMEDIATELY - An educate

COOPER'S Lumizisfocinic nothl
"The endurng monuments of Fenimore Cooper are
Mis works. White the love of country continuesto pre

 And d place in every American's ubrary." - Danie
Tebser.
Wester.
Splendidly-illustrated Popular Edition
FENIMORE COOPER'S
Leatier S Suraitir Rumamar
4.4.

II. The Derrblater.
III. Tie Patheinder. The Pionerrs.
V. The Prairie.

This edition of the "Leather-Stocking Tales" will b
printed in handome octavo volumes, form new stereo
type plates. Each volume superbly and fully illustrate

PREMIUMS AND CLUB TERMS. ** These club terms are designed spectally for
Where there are no ocal booksellers.

D. APPLETON \& CO., Publishers,
$\mathbf{A}^{\text {BOUT } 1,000 \text { feet } 1 \text { Inch Gas Pipe for Sale }}$
CRUCIBLE STREL CASTINGS

A LIVE EX-REBEL, who obtained orders
A to the amount of Seven Thousand Six Hundred Dol
Iars in seven eeek -M yand June-fo Smutter had Sep
arator and Dutch anchor Bolt Cloths, will travel in Geor

Prother's Foundry, West ε, Edwards' Grocery, and the
ATENT of the best, Hagdrant made for sale,
D. Bill sell the right to manufacture it. Address
W. R. BAILEY \& VAIL, Lockport, N. Y. aring our name and numberech ab
FOR TWO YEARS.
UTHCASTEAM GAUGECO.,UUCA, N.Y:
A• Ger, SCHMDT, Patreet, petween Av. A\&B., Now Xork
$\mathrm{A}_{\text {BunThe }}^{\text {GENT LOOKI }}$ Genteel and respectable
 $\$ 10$ from 50 cts.
 PROPEITER PUMPS
 NEW PATTERNS.

 GERMANY-AGENCIES WANTED FOR

DAVIS' RECORDING GADGE. Nonatiby Chea simplest and NEW GORE STEAM
46 GAGE CO., PATENTS BOUGHT AND SOLD. Send ENGINES\& BOILERS

 SCHENCK'S WATERPROOF TAGS LD LABELS

FOR PRACTICAL MRN.
 HENRY CAREY BAIRD
 BYRNE'S
PRACTICAL METAL WORKER-A NEW EDITION.
 Is Simple, Reliable, and Durable.

Machinery,

,

Machinists' Tools.

Cold Rolled Shafting.

Sturtevant Blowers

Reynolds' тump
 hair Lectric apparatus for blastine
 NON-EXPLOSIVE.

 ROPER HOT ATR

Buy Barber's Bit Brace.

$S_{T} \mathrm{E} A \underset{\sim}{A}$ PUMPING MAEHFNERY

1

INDEPENDENT

 bolibr rbingrWorks Hot and Cold Water. ? Illustrated Catalogue, Sent free on Application. Copo \& Maxwell Manfig Company,
 P. BLATSDELLE \mathcal{E} Co,

PRINCE'S

IMPROVED FOUNTAIN PEN.

CAUTION.

 $\mathrm{M}_{\text {Smith's }}^{\text {OULD }}$ RizaCHINE for Sale Cheap.-
 $\mathrm{A}^{\text {CAREFULLY SELECTED assortment of }} \boldsymbol{P} \boldsymbol{A} \boldsymbol{T} \boldsymbol{E} \boldsymbol{T} \boldsymbol{R T G} \boldsymbol{H} \boldsymbol{H} \boldsymbol{S}$

M

A PaEking nod Finely ground, suitable for

 Thoms BexLEsit, heal

T UE Union Iron Mills, Pittsburgh, Pa. The

 THE WOODWARD STEAM PUMP.

 1832. SCHENCK'S PATENT. 1871 WOODWORTH PLANERS

SAVE 20DOLLARS.

BUY the Celebrated wilson shuttile

UNIVERSAL W00D WORKER,

$\$ 100$ to 250 Per month gararateef grir
 HARTFORD Steam Boiler INSPECTION \& INSURANCE CO. capital.
$\$ 500,000$
 Boilers, Buildings, and Machinery STEAM BOILER EXPLOSIONS.
 STATIonary, marine, and locomotive.
Full inforination concerning the plan of the Company' Fuilinfornation concerning the
operations can be obtanned at the

Fresident. C. M. BEACH,
T. $\mathrm{H} . \mathrm{BABCOCK}$, secretary.

 Piston guided from both ends; all working

PARR'S
TECHNICAL GUIDE,

Planing and Matching

MAACHINISTS.

Milling Machines.

 $\mathrm{H}^{\mathrm{ILL}}$ CLARKE \& CO., 80 MLIT ST, Boston,

$\mathrm{R}^{\text {ICHARDSON, MERIAM \& CO }}$

S

PUMPS. - For Description, Price

M ODELS FOR THE PATENT OFFICE,

VARIETY PATENTHPROVED MINGER CIRCULAR SA SAW BENCHES.

To Electro-Platers.
B RTALESIES, CAEMICALS, AND MATE-
 STANE MACHINERY

ONTS' SAFETY Hoistiva

Portable steam engines, combin.

Niagara Steam Pump. CHAS. B. HARDICK,

Andrew's Patents.

THE FREAR ARTIFICIAL STONE.

\qquad

AUSTRALIAN COLONIES.

Powers of attorney to Co Unites Shichester Consul.

gatertisaments

Advertizements will be admitted on thls page at the rate of $\mathbf{\$ 1 . 0 0}$ per line for each insertion. Engravings ma head advertisements at the urement, as the letter-press.
 Tuchulitioge

Adapted ro Mechntical Parpogas New Yort

FIRST GRAND
 Industrial tuxposition

OFLOUISIANA. The Southwestren Exposition Associa

 MANTPACTURES, Products And ARrs,

 sition above annoumced

Diamonds 多Carbon

 DiAMONOS and CARBON, khated or crude, furnished
A STEAM FLOURRNG MILL WANTED,

Microssope,
 steel tape measures,
Whthrontich] Dpdwinf Instpmen SPY Glasses, spectacles,

THR ROCHESTER TURBINE

 IIRST CLASS TRAVELERS, engaged in
 RISDON'S IMPROVED
Turbine Water Wheel.

Diamond-Pointed STEAN DRIDLS:

WIRE ROPE. JOHN A. ROEBLINQ'S SONS,

Foundry and Machine Shop for Sale,

PENN WORKS,

 $\mathrm{G}^{\text {EORGE Page \& Co., Manufacturers of }}$
 Patent ircolar. Gant Mully, and gah $O M P L E T E$

SIBLEY'S
Leveling Instrument,

Fire Exxinguidisher
 EST PROTECTIO AGAINST FIREP" 407 Bran serretarv 656 W hicaa.
Small Watches for the South. LARGE WATCHES for the WEST

$$
\underset{\text { DESCRIPTIVE PRICE LIST of }}{\text { HOW ARD }}
$$

Waltham Watches.

 priviege $\stackrel{\text { Adress }}{ }$ HOW ARD \& CO., PORTLAND CEMENT, $\mathrm{O}_{\text {Bate }}^{\mathrm{F} \text { the well known manufacture of John }}$Wood Workers' Tools,

I Rov planers, enaine lathes

Canadian Inventors,

```
#
```

For tull particulars addres
adars

P Part MUNN at CO.,

FOR SALE, ChelseaMIaciineWorks

Machinists' Tools
 OF EVERY DESCRIPTION.

 car axle lathes (Gray's patent), CAR WHEEL BORERS, HYDRSTATIC WEEEL PRESSS, ETC. NILES TOOL WORKS,
 Office 131 West Second Street,

Brass \& Copper seamizess tubing For mocomotive Mahins and Merchant \& Co.,

Swain Turbine.

"OnLLow-Water Wheel fon this on"
$\mathbf{W}^{\text {ILL DO TEN PER CENT MORE WORE }}$

THE SWAIN TURBINE CO.,

 ReyNoLDs \& CO. Screewed ditaits Briage and ${ }^{\text {ALSOD }}$

THE BAND SAW!
$\mathrm{H}_{\text {ISTORT, }}^{\text {ISTOR }}$, with Engravings of the OLDEs

A. S. CAMERON \& CO.,

french black wainvit imeorne, thuy

American Saw Co., Manufacturers of

$\$ 20,000 \begin{gathered}\text { Grand State Fair of the } \\ \text { IN } \\ \text { PREChanics }\end{gathered}$

THE NEW VOLUME OF

Schexymeican

commenced JANUARY. FIRST; therefore, now is the Clube to organize Clubs and to forward subscriptions TERMS FOR 1872.
 Club ratrs $\left\{\begin{array}{l}\text { Ten copies, one year, each } \$ 2.50 \\ \text { Over ten copies, same rate, each }\end{array}\right.$ One copy of Scientific American for one year, and
one copy of engraving, "Men of Progress,", .00 One copy of Scientific American for onc year,
and one copy of " Science Record," Ten copies of "Science Record," and ten copies oi ${ }^{3.00}$ CLUB PREMIUMS.
Any person who sends us a yearly club of ten or more copies, at the foregoing club rates, will be entitled to ene
copy, gratis, of the large steel plate engraving, "Men of Progress."
Remit by postal order, draft or express.
The postage on the Scientific American is five cents per
uarter, payable at the offce where received. Canada
ubscribers must remit, with suoscription, 25 cents extra
to pay postage.

cats pable to

MUNN \& CO.

37 PARK ROW, ivEW YORK.
CHE "Scientitic American" is printed with
CHAS. ENEU JOHNSON \& CO.'s INR. Tenth and
Lombard sts. Philadelphia, and 59Gold st., New Yorki.

