A WEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

Improved Horse Power.

An objection, to portable horse powers now in use, is the loss of power in transmitting rotary motion along the shaft ing with angles connected by couplings, these angles being neces sary to place the shafting near the ground, so that the horses can step over it. These couplings and angles cause friction and wear, the result of which is loss of power, and a lack of durability which it is very desirable to obviate.
While overcoming these objections, the inventors of the machine herewith illustrated have succeeded in simplifying its construction so that the levers and other detachable parts may be easily carried on the axles of the wheels, that support the principal part of the machine, and between the sills. This is a great advantage, as other powers require extra appliances, to render the transportation of these parts convenient; which appliances increase cost, and are more less troublesome in use
The main feature of this improvement, which secures the advantages named, is the ar rangement whereby the toothed wheel that drives the tumbling shaft, with its vertical shaft, and the pinion upon the upper end of the shaft may be raised together from the position shown in Fig. 2-the working position-up to, and held in, the position shown in Fig. 1, during transportation from place to place.
In working, the wheel that drives the tumbling shaft is thus brought down to the level of the shaft, and the objectionable angular transmission of motion is avoided. Another advantage is that the power may be transmitted from the front or rear, or from either side of the machine The cost of construction is also lessened by dispensing with parts used in other more complicated powers. the progress over rough and uneven roads or fields.
The inventors state that they thoroughly tested the invention during the last season, and that its opera tion is very satisfactory in all respects.
The framework of the wheel that drives the tumbling shaft is sustained by four strong upright beams,which slide up and down in strong sleeves cast upon the frame. work of the upper driving gear, and which is held in the working position by nuts run ning upon threads of the sleeves, and the nuts abutting against the under ends of the sleeves, and the collars on the upper ends of the bear ers being brought down against the upper ends of the sleeves The improvement is simple and practical, and, we judge, will add much to the convenience of this class of machines
The invention was patented May 9, 1871, through the Scientific American Patent Agency. For further information address Harrison \& Co., Belleville, Ill.

Jesse Meyers leaned against a shaft revolving three hundred times per minute, in a slaughter house, Muncy, Ind. He undressed in about ten seconds, but strange to say he was not at all injured. Not a stitch of clothing remained upon him.

A farmer in the town of Mount Hope, Orange county, N. Y., digging recently in a swamp on his premises, exhumed rom the muck, about eight feet below the surface, a num ber of bones which, from their size and formation, are supposed to be those of a mastodon. There are two ribs nearly five feet long, and two sections of vertebræ six inches wide. five feet long, and two sections of vertebræ six inches wide

HARRISON'S MOUNTED HORSE POWER

What would give strength to the supposition that the bones are a portion of the skeleton of one of those old time monsters, in the absence of other proof, is the fact that several discoveries of mastodon remains have been made in this county during the past thirty or forty years. In 1841, an from a marl pit. Its tusks were over five feet in length, and with the head bones weighed nearly 600 pounds. It was found near the surface, lying at an angle of about forty-five

Sulphuric Acid---New Mode of Manufacture.
The large and constantly increasing demand for this chem. ical product gives interest to any information as to its char acter and the best modes of preparing it; we therefore ranslate the following article from Le Genie Industriel, a well known Parisian scientific magazine, the new process being the discovery of M. M. Langlois and Thomassin, of Paris:
"This new method of manufac turing the sulphuric acid of com merce has for its object, first, to pexmit a more rapid fabricatio of the acid, and, secondly, to dis pense with a large number of the leaden chambers. The apparatus by the aid of which these result are obtained can be applied in any sulphuric acid factory, wheth er the process be with sulphur or with pyrites, furnaces being employed. To obtain the pro posed object, the vapors of sul phurous acid $\left(\mathrm{SO}_{2}\right)$ are first pro duced by the customary methods and by the aid of the ordinary furnaces, from sulphur or from pyrites; to which is added, by the pyrtes, to which is added, by th nitrate of soda, for instance) in or out of the furnace the thir equivalent of oxygen whi. quivalent of oxygen which i ecessary to transform the sai ulphurous acid vapors into sul phuric acid (SO_{3}.)
The vapors of the sulphurous acid are collected in a small cham ber or crum of lead, into which, if it be necessary, a small jet of steam can be turned. The combustion of the nitrate can be replaced by a spray of nitric acid which would operate in the chamber itself or, if convenient, in a separate one
Thus far the process is known and understood by the pubic; but, to oxydize the sulphurous acid, MM. Langlois and Thomassin use ozone or active oxygen ; first, by substituting for the spray of nitric acid or the combustion of the nitrate ad secondly in using the ozone conjointly with the following nitrates or the products of their decomposition: hypoazotic sulphuric which vapor collect form and ber, in the cham ber, and compresse them in a cylinder This cylinder is a closed utensil, ca pable of resisting a pressure of at least five atmospheres It is similarly con structed of materia which resists acids and is furnished with appliances such as valves,man ometer, etc., ar ranged purposely to ensure safety. This cylinder contains water, of which th quantity is deter mined approximate ly, according to the desired concentra tion of the acid The sulphuric or
he wonder of visitors at Peale's Museum, in New York City. There is in a Boston museum the complete skeleton of a mastodon, which was exhumed near Newburgh, only a few ears ago. One was found in a swamp in Sussex County, N , fifteen years ago; a farmer, taking an exposed part of it to be a stump, hooked his oxen to it and broke off the tusks, whicn led to its discover r .
New Use for Paraffin.-Dr. Vohl announces that mixed with benzole or Canada balsam, paraffin affords a glazing for frescoes much superior to soluble glass. By covering the interior of wine casks, with a film of pure white paraffin poured in melted, he has effectually prevented the spoiling of the wine and its evaporation through the wood.
ors begin, under the pressure, to bubble in the water, with which they are not slow to combine by reason of the grea ffinity of the sulphuric acid for water; and thus they pro duce, in a short time, a commercial sulphuric acid, at least as concentrated as the acid in the chambers. From the gener ating cylinder branches a lead pipe, communicating with safety valve for the escape of azotic gas (hypoazotic or nitrou acid, or binoxide of azote) which would create pressure in the generating cylinder and be forced into the chamber. In stead of ordinary water for feeding the generating cylinder oxygenated water (binoxide of hydrogen), prepared by well known processes, can be used ; this substitution will have the recommendation of dispensing not only with the return pipe but also with the combustion of the nitrate in or out of the
furnace, or with the nitric acid jet in the chamber. The pump can be worked by manual or steam power, according to the extent of the manufacture, as the process, as applied to sulphuric acid apparatus, can be used for making so small a quantity as five or six carboys of acid in twentyfour hours, if desired; and superficially it occupies but little space.'
The inventors have taken out letters patent which cover the novel features of the above described method, namely the use of the pump for exhaustion and compression, and of the cylinder or generator furnished with valves and safety appliances, the employment of ozone or active oxygen, alone or in conjunction with combustion of a nitrate or the jet of nitric acid, and the employment of oxygenated water (binoxnitric acid, and th
ide of hydrogen.)

THE LAW OF TRADE MARKS IN ENGLAND.

We believe this much debated question will have a prac tical settlement in the forthcoming session of Parliament and it is, indeed, time that something was done to prevent even the most innocent infringements. Very properly, the Vice Chancellors are not disposed to strain the laws in favor of any particular houses, when it is shown that the copying of a trade mark has been purely accidental, yet, at the same time, it is extremely hard upon a firm to be told "I bought some of your brandy or champagne"-as the case might be"the other day, and it was so inferior that I shall not purchase any more." Messrs. Martell \& Co. had occasion, in chase any more. Messrs. Martell \& 1871 , to complain very seriously, not only that their trade 1871, to complain very seriously, not only that their trade
mark had been infringed in a general way, but that a country mark had been infringed in a general way, but that a country in bottle, in direct imitation of those so well known in the in bottle, in direct imitation of those so well known in the
trade as connected with the genuine article. Of course an trade as connected with the genuine article. Of course an
injunction was immediately granted by a Vice Chancellor, but we must say, that unless we can get an Act of Parliament, with penal clauses to be rigidly enforced in all these cases, very little good, in the shape of reform, will ever be done. Relative to the Chancery and common law rights anent trade marks, it will not now be at all out of place to quote one or two opinions that have been given in reference to existing statutes.
The Lord Chief Justice says-"An action for counterfeiting a trade mark is, in law, an action for fraudulent misrepresentation. Courts of equity exercise a jurisdiction for the protection of rights to trade marks upon the ground for the protection of rights to trade marks upon the ground
that they are rights of property. In law, no exclusive right that they are rights of property. In law, no exclusive righ
of property in a trade mark in the abstract is recognized; but of property in a trade mark in the abstract is recognized; but
the exclusive right, to use such a mark for the purpose of au the exclusive right, to use such a mark for the purpose of au
thenticating a vendible commodity, is one for the invasion of thenticating a vendible commodity, is one for the invasion of
which a remedy is given by an action in the nature of deceit." This is substantially what we have urged for so long; and we fancy, after all, that the common law courts would be the kest tribunals to deal with these matters, provided a fine could be added to the damages; for not only is the owner of the trade mark damnified by the action of piracy, but the public also come in for a share of the wrong. In the case of Rodgers $v s$. Nowill, it was ruled that "as there is, therefore, no abstract right to trade marks recognized, the plaintiff in an action at law must show that the defendant had an in tention to deceive and make the goods pass as his. The questions in sucha case for the jury are: "Is the resemblance by the defendant with that intent and in order to supplant by the defendant with that intent and in order to supplant
the plaintiff"s goods?" And in the case of Blofield vs. Payne, it was decided that " it is not necessary to show that defend ant's goods are inferior to plaintiff's." By section 22 of 25 and 26 Vic., c. 68 , it is provided that "in every case in which any person shall do, or cause to be done, any of the wrongful acts following (that is to say) shall forge or counterfeit any trade mark; or, for the purpose of sale, or for the purpose of any manufacture or trade, shall apply any forged or counterfeit trade mark, to any chattel or article, or to any cask, bottle, stopper, vessel, case, cover, wrapper, band, reel, ticket, label or thing in or with which any chattel or article shall be intended to be sold, or shall be sold, or uttered, or exposed f.r sale, or for any purpose of trade or manufacture, or shal euclose or place any chattel in, upon, under, or with any cask,
etc., to which any trade mark shall have been falsely applied, etc., to which any trade mark shall have been falsely applied,
or to which any forged or counterfeit trade mark shall have or to which any forged or counterfeit trade mark shall have
been applied : or shall apply or attach to any chattel or arti been applied: or shall apply or attach to any chattel or arti
cle, any cask, etc., to which any trade mark shall have been cle, any cask, etc., to which any trade mark shall have been
falsely applied, or to which any forged or counterfeit trade mark shall have been applied; or shall enclose, place, or at tach any chattel or article in, upon, under, with or to any cask, etc , having thereon any trade mark of any other person every person aggrieved by any such wrongful act shall be entitled to maintain an action or suit for damages in respect thereof against the person whoshall be guilty of having done such act, or causing or procuring the same to be done, and
for preventing the repetition or continuance of the wrongful act or the committal of any similar act." In the above quotation, the law of trade marks seems to be very clearly laid down, and when the words forged or counterfeited are in a criminal motive or intention is implied. While foreign a criminal motive or intention is implied. While foreign
houses are contending so strongly for their rights on this houses are contending so strongly for their rights on this
side of the Channel, they might in their own courts do someside of the Channel, they might in their own courts do some-
thing for the English manufacturer, who has often been a great sufferer through the cleverness (or something worse) of talented French and German copyists. Whatever happens, it cannot be denied that the English Government is bound to protect the trade, and we must all keep a sharp look out for those very clever gentlemen, who imagine that, so long as
there is a handsome binding. it matters not what is in the there is a handsome binding. It matters not what is in the motr-Grecer:

Under this heading, the Virginia newspapers have raised n excitement over a slab of curious stone, lately brought to Wheeling, Va., and put on exhibition in front of one of the stores. The editor of the Wheeling Intelligencer pronounces it " the most wonderful curiosity it has ever been our priviwhite American marble, thirty-eight inches long, seventeen inches wide, and two inches in thickness, which is as flexible as a piece of soft rubber of the same size. It was cut for and used as a hearthstone in the Moundsville Seminary Building which was destroyed by fire about three years ago. Now the question arises, what strange chemical action took place, or in what manner precisely the intense heat, to which the slab was subjected without its calcination at the time of the burning of the building, and its subsequent burial among the débris for the period above named, produced so remarkable a change in the character of the stone. This mystery no one has yet been able to answer or explain. Surely if this knowledge were given to mortals, there is no telling the amount of valuable aid that art would derive therefrom. The same chemical process, if understood, might give us flexible glass, the real value of which could never be told, The oldest workmen in stone and marble declare that they have never before seen anything like it, and we doubt if a similar specimen was ever before discovered. In all the ruins of Chicago, nothing of the kind has been found or re ported. Since the slab has been taken indoors and placed near the stove, it has daily become more and more flexible, a fact which all the more mystifies its character. We hope a fact which all the more mystifies its character. We hope
our scientists will give Mr. Holliday a call and see for themour scientists will give Mr. Holliday a call and see for them-
selves the wonderful curiosity, and that at least some one selves the wonderful curiosity, and that at least some one
of them shall be able and willing to tell us all about the process of making a marble slab as yielding as a sheet of onnet pasteboard."
"Yesterday," says the same editor, " several gentlemen from Pittsburgh, also two or three from Cincinnati, came to see it, and they confessed to be not less puzzled, as to the whys and wherefores, than the wisest of our own citizens who have, up to this time, fruitlessly attempted to explain the process by which a slab of common white marble may be made as flexible as a piece of india rubber of the same size We understand that Mr. Holliday has refused an offer of $\$ 500$ for the slab, also several tempting inducements to visit other cities with the stone. We suppose he is waiting for better offers than have thus far been received."
The Intelligencer's book on mineralogy must have been bsent from the library when the above was written. The tone is undoubtedly itacolumite, flexible slabs of which may be seen, in several college cabinets, without going to Wheel ing. It is extensively developed in Stokes county, North Carolina. When cut into slabs, it might be very easily mis ent localities (as the Brazils and Carolinas) differs somewhat in constitution; but the flexibility in all cases is doubtless due to the disseminated lamince of talc, mica, or chlorite which bind together the grains of quartz. A more full ac count of the mineral will be found in the Scientific Ameri CAN of April 22, 1871

European Field Artillery and Small Arms.
If the Prussian artillery is to be regarded as the model, it ossesses three features which are indispensable to its effi ciency. These are loading by the breech, firing the shells by perc ussion, and the employment of steel in the partial
if not the entire manufacture of the gun. Experience has shown that the deterioration of a bronze piece frequently commences soon after six or seven hundred rounds, and that it becomes nearly hors de combat when the firing is pro-
longed to the twelve or fifteen hundredth. Besides, the fric tion between bronze and lead is productive of bad results. The rifling becomes affected, and the accuracy of the shooting seriously diminished. It has been asserted on good au. thority that during the last continental campaign, a week's ontinual firing was more than sufficient to render a bronze ction perth a material which will resist the teel. A Belgian gun which is constructed of that metal is enabled to be fired from six to eight thousand times without evincing any signs of weakness or damage. M. Nicaise says o, at least, to our no small surprise. There is no doubt hat the French would be very much disinclined to draw up on a German establishment for a supply of steel to manu-
facture their cannon from, but there is no other resource unless they are prepared to make the material themselves It is not too much to assert that a considerable time must necessarily elapse before they could rival the productions of the great workshops of Essen. Had the French guns been upon the same principle as their small arms, they would never have displayed the manifest inferiority they have done. The Chassepot is superior to the needle gun, both in accuracy of fire and length of range. But while the Pru tions of the Chassepot small arm and ball, the French guns resemble equally closely the needle gun, with the additional misfortune of magnifying its disadvantages. With regard to small arms, the Belgians are better off than the Prussians, incetheir infantry rifle is nearly identical with the Chasse pot. The principle of rifling and the length of bore of the barrel are the same, and the same similarity prevails with
respect to the weight of the arm, the charge, and the shape respect to the weight of the arm, the charge, and the shap
and size of the ball. It is to be hoped, in the interests of peace and humanity, that the last continental struggle ma never be repeated; but should future years cause the strife
field artillery before they can expect to cope with their northern neighbors.-Engineer

Applying Plaster to Walls and Ceilings.

The object of this invention is to provide means for utiliz ing plaster and other similar compositions in a more full and satisfactory manner for building purposes than heretofore. It consists in the use and manner of applying molds against the walls or ceilings, to permit the casting of the plaster or other matter to its place. This, it is claimed admits of econ omical application, and in more or less elaborate or artistic style, bringing the finest productions of genius to the humblest homes.
The artistic advantage of this method of applying plaster or other composition to walls or ceilings is, it is claimed, sur or other composition to walls or ceilings is, it is claimed, sur-
passed by the utilitarian benefits arising from its adoption. passed by the utilitarian benefits arising from its adoption.
Building fronts can be provided with cheap and durable Building fronts can be provided with cheap and durable
coatings, and wooden structures can be made fireproof by coatings, and wooden structures can be made fireproof by
having the walls on both sides and also the ceilings lined with having the walls on both sides and also the ceilings lined with
heavy coats of plaster or cement. The old mode of applying such substances by means of trowels, makes it very costly to use them otherwise than very thin, and to obtain nicely flnished surfaces. With the aid of molds the question of great er or less thickness is only one of cost of material, and the surface finish is spontaneously obtained by the very act of application.
To cover the surface of a wall, either inside or outside, a bertical mold or false wall is used, which is placed at the re quisite distance from the surface to be coated. The plaster or other composition is then, from above, poured into the space between the faise and real walls until the space is en tirely filled. The outer surface of the coating will, when the false wall is removed, be an exact impression of the mold. The finest wood graining, as well as moldings, carvings, etc., of most difficult make can thus be cheaply multiplied, Thus the inner or outer sides of walls can be
covered in sections of greater or less extent until perfected. covered in sections of greater or less extent until perfected.
On ceilings, it is proposed to use a pendent ceiling, which is supported or suspended a suitable distance under the beams or laths, according to the thickness of the plaster to be obtained. The surface of the pendent ceiling may be or amented in suitable manner or quite plain.
The plaster is, from above, poured upon the pendent ceil ing. It will adhere to the beams and laths, while the surface of the pendant is so prepared, by the application of glycerine or other material, that the plaster cannot adhere to it The plaster may, on such ceilings, be so thickly applied as to coat the flooring beams, and thus make the floors fire proof. The application of glycerin or other material to prevent adhesion of the mold is also used for facing the walls. Mr. Andrew Derrom, of Patterson, N. J., is the in walls. Mr. Andrew Derrom
ventor of this improvement.

The Sun.

A correspondent of the Oneida Circular says that Professor Young, of Dartmouth, in a recent lecture at New Haven upon the great luminary, imparted much interesting information. The theory which he most seemed to favor respect ing the sun's constitution, he illustrated very simply thus Put a pail of water in a room, the temperature of which is below the freezing point; the temperature of the water set tles slowly till it reaches 32°, and there remains till every drop is frozen. The sun may be a vast quantity of merely gaseous matter, which is gradually liquefying, and according y will not change its temperature till this process is entirely accomplished; then the temperature will fall, perhaps thou ands of degrees, till solidification begins, when it will again emain stationary. One authority believes the sun to be sur ounded with a liquid coat already, and the sun spots are places where the surrounding metallic clouds have opened and we see the liquid surface below it. The theory that the sun's heat is kept up by matter constantly falling into it, he doubts, arguing that, if such masses of matter existed outside of the sun, they would exert some slight influence on the sur rounding planets, no evidence of which is discernible.
Speaking of iron, he said that if the word were written in reat letters across the sun's face, the proof of its existence there would not be so satisfactory as that afforded by the spec trum. He pointed out lines in the spectrum made by metals which exist in the sun, though entirely unknown to us.
He gave several illustrations of the heat of the sun. If a pillar of ice covering nine square miles extended from the earth to the sun, and all the heat of the latter should be di rected upon it, the whole mass would be melted in exactly ne second. If an icicle forty five miles in diameter were to be thrust into the sun with the velocity of light, say twelve million miles a minute, it could never touch the sun; would melt as fast as it came. Still, physicists are as yet un able to determine the exact temperature, one placing it a $67,000^{\circ}$ Fahr., another at $20,000,000^{\circ}$ Fahr.-some difference,

How to Use a Grindstone.

1st.-Don't waste the stone by running it in water; but if you do, don't allow it to stand in water when not in use, as his will cause a soft place.
2d.-Wet the stone by dropping water on it from a pot uspended above the stone, and stop off the water when not nuse
3d.-Don't allow the stone to get out of order, but keep it perfectly round by use of gas pipe, or a hacker
4th.-Clean off all greasy tools before sharpening, as grease oil destroys the grit.
5th.-Observe: When you get a stone that suits your purpose, send a sample of the grit to the dealer to select by ; a
half ounce sample is enoingh: and con be sent in a letter by mail,--Aranklin Journal.

effect of animal excreta in water.

The products of the decomposition of animal matter in water, are the most objectionable impurity. Organic matters produced by the decomposition of vegetable substances, are not especially dangerous, but the products of decomposing animal substances are highly dangerous, even when in minute quantities. These impurities do not make themselves ap parent to the taste. On the contrary, such waters are fre quently considered unusually fine in flavor, and persons go a great distance to procure them. Nevertheless, they contain an active poison. Many diseases of the most fatal characte are now traced to the use of water poisoned with the soakage from soils charged with sewage and excremental matters Sudden outbreaks of disease of a dysenteric character are often caused by anirruption of sewage into wells, either from a break in the sewer or cesspool, or from some peculiarity of the season. Such contamination of the water is not indi cated by any perceptible change in the appearance of the
water. The filtered sewage, clear and transparent, carries water. The filtered sewage, clear and transparent, carries
with it the germs of the disease. At a convent in Munich, with it the germs of the disease. At a convent in Munich,
31 out of 121 of the inmates were affected with typhoid fever. It was found, upon investigation, that the well wa polluted by sewage, and the disease disappeared as soon as the proper repairs were made.
At Pittsfield, Mass., the typhoid fever suddenly broke out in a large boarding school for young ladies. The water was found to be contaminated with sewage owing to a leak in the cesspool.
At Edgewater, on Staten Island, in 1866, the inmates of a small block of houses were afllicted with typhoid fever, several deaths occurring. On making investigation, the health officers found that a neighbor, through whose land the un derground drain passed, had taken the liberty of closing up the drain, thus sending its contents back upon this block of houses, contaminating the well, and actually murdering the unfortunate victims with sewer poison.
Dr. Stephen Smith, one of the health commissioners of this city, describes an interesting casethat came to his knowledge. He visited an old schoolmate, a clergyman, in the country, and in the course of conversation his friend told him of a family in which typhoid fever had made its appearance, five members having already died, while another was then fatal ly sick. The physician called the attention of his friend to the fact that typhoid fever is now attributed to the poisoning of the water by animal refuse. This was new to his friend, the clergyman, who had not thought of attributing it to anything else than to the visitation of Providence. They went together to visit the locality, and found the house situated on an elevation, with all its surroundings admirably arranged
for health. One readily believed the statement that there for $h \in a l t h$. One readily believed the statement that there
had not been a case of sickness in the house for twelve years. had not been a case of sickness in the house for twelve years.
A few weeks before the fever appeared, when the laborers on the farm were busy taking in the crops, one of the valves of the pump got out of order. Being unable to get their usual supply of water, and being too busy to send for the pump maker, they sent a man down to a neighboring spring to draw water, who, finding that it was not easy to dip the water from the spring, owing to the shallowness of the pool, drew his supply from a brook near by. From this source the fam ily was supplied for two or three weeks. This stream, high face drainage. The first symptoms of poison by this water were a slight nausea and mild diarrhœea; after several days, typhoid fever in its worst form was ushered in. Of the en. tire family, but two escaped an attack, and they did not use the water
This city, during the last century, and before the introduction of sewers or the Croton water, was ravaged every few
years by deadly epidemics, which are now believed to have years by deadly epidemics, which are now believed to have
been favored and invited by the defilement of the wells then been favored and invited by the defilement of the wells then in use, by sewage and fecal soakage. No such visitation has
occurred since the introduction of the Croton water, and the completion of the very perfect system of sewers.
Cholera, though it does not originate from polluted water, is disseminated chiefly by the aid of wells and other impure water supplies.
At Exeter, England, in 1832, 1,000 deaths occurred from cholera. A purer supply of water was then introduced from a locality two miles higher up the river, above the point at which it received the sewage of the town. When the cholera again invaded the city in 1849 , only forty-four cases occurred, and in the cholera season of 1854, there was hardly a case.
In London, in 1854, the water supplied by the Southwark Company contained much sewage, while that supplied by the Lambeth Company was very pure. Both companies had pipes in the same streets, supplying water indiscriminately on both sides. Among those who used the Southwark water,
the deaths amounted to 130 in 10,000 , while among those the deaths amounted to 130 in 10,000 , while among those
who drank the Lambeth water, they amounted to only thirty seven in 10,$000 ; 2,500$ persons were destroyed by the Southwark water in one season. On the previous visitation of $1848-9$, the case was the reverse. The deaths from the Lam-1848-9, the case was the reverse. The deaths from the Lam-
beth amounted to 125 , while those from the South wark amounted to 118 in 10,000 . At that time, the Lambeth company took their water from a point lower down the river.
Another very striking instance occurred in London. The famous Broad street pump supplied water in one of the most fashionable localities of the West end. Daring the visitation of $1848 \cdot 9$, this pump killed 500 persons in a single week, by disseminating cholera. The wealthy people of the west end went to Brompton, a fashionable summer resort, about five miles up the Thames, and soon the cholera broke out among
them there. The health officers soon discovered, on investithem there. The health officers soon discovered, on investi-
the Broad street pump for tea water, and had brought th cholera with it. A curious case was that of an oid spinster
who had moved to Hampstead, three miles from the pump who had moved to Hampstead, three, miles from the pump, but who sent her maid daily, for a kettle of the highly prized tea water. She and her maid were the only persons who suf
fered from cholera at Ham.pstead. A similar story might be told of an outbreak of cholera in a shanty village, west of Central Park, and another in a shanty viliage on the hights across the river. In both cases, it was clearly shown that the cholera germs were distributed among the unfortunate squatters by the waters of the single well in each village. There is a famous pump in the twelfth ward of Brooklyn, at the corner of Van Brunt street, from
which over fifty families obtained their water supply. In which over fifty families obtained their water supply. In
1866 , cholera broke out in five or six of these families, but the 1866, cholera broke out in five or six of these families, but th
spread of the disease was prevented by the prompt action o he health officer, who removed the pump handle.
From thes facts, it is seen that water aids in dissemina ating two of the most fatal diseases which affect the human race, the typhoid fever and the deadly cholera. During the ten years from 1856 to 1866 , there were 21,000 deaths from cholera in England and Wales, and 150,000 deaths from ty phoid fever. There is every reason to believe that at least hree fourths of these deaths might have proper attention been paid to the purity of the etablished, and
This poisoning by bad water is now fully estal This poisoning by bad water is now fully established, and
must awaken communities to the vital importance of securing pure and unfailing supply of this indispensable beverage In Iceland, it is stated that one sixth of the deaths ar caused by hydatids in the liver. These are the larval form of the tænia or tapeworm of the dog. Young leeches, con tained in drinking water, sometimes fix themselves on the pharynx. In a march of the French in Algiers, 400 men were
in the hospital at one time from this cause.-American Che in the hospital at one time from this cause.-American Chemist.

asbestos piston rod packing.

[From the Engineer.]

Few engineers who have to do with the steam engine are ignorant of the trouble which is met with in obtaining a eally good piston rod packing. Sound hemp, properly laid up" and copiously lubricated, makes a tight joint enough for a time, especially if the rod is in first rate condition; but the period of tightness is usually short, and the gland requires constant serewing up, and much friction re sults, which is very prejudicial in small engines. If hemp is bad in the case of low pressure engines, it is infinitely worse when we have to do with high steam, especially if the steam is slightly superheated. A process of slow carbonisa tion appears to go on, the hemp packing loses its elasticity and becomes nearly useless for its intended purpose. All
manner of schemes have been tried to get over the diffmanner of schemes have been tried to get over the diffi-
culty; combinations of cotton, india rubber, and wire gauze, such, for example, as Crickmer's patent packing, have hith erto given on the whole the best results. One inventor, in deed, dispenses altogether with cotton and rubber, and uses copper wire gauze alone. In this case, the tightness of the joint is no doubt secured by the presence of water and oil lodged in the meshes of the gauze; and we have received very favorable reports from those who have tried this packing. It is still certain that something, better than anything hitherto in use, is required, and we have a strong belief that this something is supplied by asbestos.
Asbestos is a mineral fiber consisting of silicate of mag nesia, silicate of lime, and protoxide of iron and manganese In mineralogical parlance, it is a fibrous variety of actino lite or tremolite. It exists in vast quantities in the United States, also in the Tyrol, Hungary, Corsica, Greenland, Wales, Cornwall, Banffshire, and in the north and east of Ireland. It is found under various forms, from that of soft silky fibres to that of a hard block capable of taking a polish. As a rule, the lumps or blocks taken from the vein are easily broken up and separated into fibers extremely flexible, elastic in the sense that each fiber admits of great extension in the direction of its length without contracting again, greasy to the touch, and very strong. The fibers vary in length from a couple of inches to about two feet. They can easily be spun or woven if proper precautions are used Furtiermore, asbestos is an admirable non-conductor of cal condition practically indestructible by heal. All these piston rod packing; and it is therefore somewhat strange piston rod packing; and it is therefore somewhat strange
that, until a very recent period, no one thought of utilising asbestos for this purpose. The credit of suggesting it as a piston rod packing is due, we believe, to Mr. St. John Vincent Day, C.E., who on the 5th inst. read a very interesting paper, on "Asbestos, with special reference to its use as steam engine packing," before the Institution of Engineers and Shipbuilders in Scotland. The new packing, we learn from this paper, was first used in America with much suc cess, and it has since been tested in this country with results of which we shall speak in a moment. In referring to the value of the new packing, Mr. Day said: "The packing used for piston and valve rods or spindles has, as we all know, three prime elements of destruction to contend with, name ly, an elevated temperature, friction, and moisture; and one of them only, namely, friction, has any appreciable effect on asbestos packing when the mineral is pure and properiy pre
pared. No matter how high the temperature of the steam, how rapid the stroke of the piston, or how great the press ure of the steam, the packing seems to be unaffected by those conditions. In America, where the new packing was first used, some of it was taken from the piston rod stuffing engines at constant work, for three months, with steam a

130 lb . pressure per square inch, and making an average aily run of 100 miles, including Sundays; and, as you ca see by the sample shown, the fiber, with the exception of be ing discolored by oil and iron, is just as flexible and tena cious as originally. After having been once disintegrated, it appears impossible to so pack or mat the fibers together tha hey are not easily separable by the fingers."
Asbestos packing was first used in Great Britain by Mr. Benjamin Conner, locomotive superintendent of the Caledonian Railway, and Mr. Day exhibited to the members of the Institution the packing of a locomotive stuffing box which had been used on that line from the 27th of July to the 18th of November, 1871. The engine in which it was used has outside cylinders, and single drivers 8 feet in diameter. The piston stroke is 2 feet. The engine was employed in working the fastest train on the Caledonian line: to wit, the 10 ing the fastest train on the Caledonian line: to wit, the 10
A. M. express from Glasgow, reaching Carlisle at 1 P. M., with three stops on the journey. The best ordinary packing lasts, under these conditions, two months at most, rarely so
long, and the gland requires constant screwing up. The long, and the gland requires constant screwing up. The asbestos packing was apparently as good as when it was put eeks he engine had run a distance of 2,000 miles in three ouched. The following letter from Mr. Conner to Mr. Day ontains valuable testimony to the excellence of the pack ing:-
piston rod stu passenger engines on 27th July, and taken out on 18th Nov passenger engines on 27 th July, and taken out on 18
ember; in that time the engine had run 14,070 miles.
As the packing was put in coiled instead of being cut into ings, the gland was nearly home on 12th September, and an dditional ring was put in at that date."
In the course of the discussion Mr. Conner stated that: "The advantage of the asbestos packing over the soapstone packing was that, with the latter, at the high temperatures of steam from 125 lbs. to 130 lbs., the lower portion of the packing got thoroughly charred, and another ring had to be put in after the first week; so that in course of a month the packing had almost entirely changed. The asbestos packing, being practically incombustible, did not waste; and I suggest that the covering of the packing should be made of incombustible material also. At first I had applied it coiled round the piston rod continuously; but I think it should bo applied in rings. The insile of the packing seemed to me as fresh as when first put in. I believe it takes less ilto lubricate the piston rod, for the oil remained on the rod, not being absorbed by the packing. It kept the rod beautifully polished, more so than any other packing.'
We think that with such testimony as this before us, sup ported further by that of Mr. David Rowan, who spoke to the value of asbestos packing for marine engines, we are fully justified in holding the belief that this mineral will supply a way out of one of the most troublesome obstacles to the use of very high pressure steam. There is, furthermore, not the slightest chance of the supply being exhausted; on the contrary, it is likely to last as long as our coal fields. We are unable to say at present what the price of the asbestos packing is, or where it can be obtained. It is probable, however that when once the value of the material as a packing is re cognised, its regular manufacture in this country will follow.

Action of Heat on Germ Life.

Dr. Crace Calvert, in a paper "on the action of heat on protoplasmic life dried on in cotton fabrics," published in the Londor Chemical Nevos, relates a series of experiments which have a direct bearing on the question of the disinfec tion of fabrics and wearing apparel by exposure in heated stoves with the object of destroying contagion or animal cule life. To carry out tlese views, a piece of ordinary gray calico was treated chemically, and washed until free from any sizing material, and dried; this prepared cloth was then stepped in a solution of putrid albumen, containing abund ance of animalcule life, wrung out, and dried at the natural temperature ; it was then cut into small pieces five centime ters square. Each of the pieces was rolled up and introduced into a strong glass tube which was hermetically sealed Some of these were exposed to temperatures raised succes-
sively to $100^{\circ}, 200^{\circ}, 300^{\circ}, 400^{\circ}, 500^{\circ}$, and $600^{\circ} \mathrm{F}$. Other pieces sively to $100^{\circ}, 200^{\circ}, 300^{\circ}, 400^{\circ}, 560^{\circ}$, and $600^{\circ} \mathrm{F}$. Other piece
were placed in pure distilled water, and another series of pieces were placed in tubes containing an albumen solution, each being successively subjected to temperatures varying from 100° to $600^{\circ} \mathrm{F}$. In all cases it was found that, at 300° F. vibrios were present in small numbers, while in the wate series bacteria were also detected. At $400^{\circ} \mathrm{F}$., no evidence of life was found. In order to ascertain what changes the calico had undergone, one of each of the small tubes which had been heated to the different temperatures was broken, and its contents carefully examined. The pieces heated to 200° were quite sound; that heated to 300° was of a slightly brown color, much injured, and for practical purposes completely spoiled. At 400°, the cloth was very much charred. These results show that the temperature which will not destroy germ life is quite sufficient to materially injure cotton fabric ; hence, it is concluded that no beneficial results can be ob tained by the employment of public stoves as a means of de stroying germ life and contagion.

The total annual circulation of newspapers printed in the State of New York is $492,770,868$ copies, being more than twice the number issued in any other state. The next great est number of issues is in Pennsylvania, where 233,380,532 copies are annually printed. Massachusetts prints 107,691, 952 copies, Illinois, $102,686,204$, Ohio, $93,592,448$. Next come California with 45,869,408 newspaper sheets per annum.

harvesting ice on the hudson.

As we promised in our last, we herewith give engravings of the interior of one of the many great ice houses on the banks of the Hudson river, and of the method employed for raising the ice from the river and storing it in these build. ings. As the ice accumulates near the shore, being towed thither by horses as described in our former article, it is hoisted as described below. The ice houses are constructed with every regard for atmospheric changes, and are models of simplicity. The large one shown in our illustration con tains six rooms, four of which are 75 x 50 feet in area, and of an altitude sufficient to allow a packing of ice 30 feet high, and an open space of 20 feet for air. The two remaining rooms are 150×50 feet in dimension, and the entire building has a capacity of 48,000 tuns of ice. The walls of the houses are double, and filled in with sawdust and tan. At the end of the houses nearest the canal, the apparatus for raising the blocks is constructed, extending from the water to the roof From a distance this looks like two heavy ladders laid upon :an inclined plane, each furnished with a pair of hand rails. At the base of each are two pairs of wheels, over which pass -endless chains, stretching to the summit. To these, bars are attached, at a respective distance of six feet, which with the chains form the "apron." On a level with each floor of the building, a platform connects the plane and door sill, on which the blocks are deposited in order to fill each story in succession.
As the ice reaches the base of the plane, the blocks are pushed one by one close to the lower pairs of wheels. Then the offedges are depressed, and, as the chains force the bars along' they catch the blocks-like the safety cars that grasp the passenger trains on the famous switch-back railroad leading to the summit of Mount Pisgah, at Mauch Chunk, Pa.-and carry them up to the second floor, where the re moval of several slats, forming the surface of the plane, al lows them to fall on the platform before mentioned. A strong staging is built in the interior of the house, extend ing to the different rooms, on which the blocks are pushed to the apartment intended for their storage. From this staging an inccine extends to the highest layer of ice. As the blocks are deposited on the platform, the first is pushed towards the incline in the nearest apartment, the second in the mext, and so on, the entire floor filling up evenly
In order to prevent the blocks crushing against each other as they slide from the plane, a number of large headed nails called "scatchers" are driven in it, and greatly diminish their velocity and render their "shooting" of short range.
When the first story is thoroughly packed, the slats ar replaced in the plane, and those by the second platform re moved, when the rooms are filled like those below
Five per cent of all ice received into the building becomes useless by cracking and scratching. After a layer of block is completed, the workmen shovel from the surface all the loose pecees and the snow, and throw them out of the build ing throwgh the high, narrow air passages, shown on its sides.

Railway Tunnel under the British Channel.
The successful completion and operation of the Mont Cenis rail way tunnel through the Alps has given new impetus to the project of establishing railway communication between England and France, by means of a tunnel under the British Channel. The distance is 22 miles. If a railway tunnel can be carried seven miles through the hard schist and quartz o the Alps, why not for three times seven miles, through the softer chalks under the Channel?
A joint stock company has been formed in London for the purpose of solving the problem. It is called the "Channel Tunnel Company," and the tunnel is to estend from Dover, England, to Calais, France. The capital of the company is $\$ 150,000$, which is being privately subscribed with the immediate object of making a trial shaft and driving a driftway on the English side about half a mile beyond low water mark, with the view of proving the practicability of tunnelling ander the Channel. The completion of this work will fur nish data for calculating the cost of continuing the driftway from each shore to a junction in mid-channel, and capital will then be subscribed for that purpose, or for enlarging it to the size of an ordinary railway tunnel, as the engineers may deem most expedient. The engineers are Messrs. John Hawkshaw, Thomé de Gamond, James Brunlees, and William Low. The tunnel will be made through the lower or gray chalk, chiefly, if not entirely; and by the adop:ion of machin ery, of which the promoters of this company have recently made practical trials, it is expected the passage can be opened from shore to shore within.three years from the time of commencing the work, and at a cost very considerably less than any previous estimates.

cost of tunnelling.

The Mont Cenis Tunnel cost $\$ 975$ per linear yard. The three most costly tunnels made in England have been th Kilsby, the Saltwood, and the Bletchingley, each of whic was executed in treacherous strata, giving out large quanti-
ties of water. The Kilsby tunnel cost $\$ 725$ per yard. The ties of water. The Kilsby tunnel cost $\$ 725$ per yard. The
Saltwood tunnel cost $\$ 590$ per yard, and the Bletchingley, $\$ 360$. The cost of the railway tunnels in France has varied from $\$ 150$ per yard, being that of Terre Noire, on the Paris, Lyons and Mediterranean Railway, to $\$ 475$ per yard, that of Batig.
nolles, near Paris, on the Chemin de Fer de l'Ouest. In Bel nolles, near Paris, on the Chemin de Fer de l'Ouest. In Bel gium, Braine le Compte tunnel cost $\$ 230$ per meter, and the
tunnels on the Liège and Verviers line $\$ 250$ per meter. In Switzerland, the very difficult Hauenstein tunnel, between Basle and Berne, cost $\$ 400$ a yard. In America, the Hoosac tunnel in Massachusetts, through mica slate mixed with quartz, has up to this time cost $\$ 900$ per yard, and the Moor-
house tunnel, in New Zealand, through lava streams and beds of tufa, intersected by vertical dykes of phonolite, cost $\$ 345$ per yard. It will bea convenient standard of comparison for these amounts if we remember that $\$ 125$ per yard would re pres the Channel $\$ 0,000,000$ for the 22 mile. Arely conjectu ral, and an estimate professing to embrace contingencies must be more conjectural than any other; but it is reckoned that the work, if practicable at all, could be completed with in five years of time and for $\$ 35,000,000$.

Caliber Compass.

M. J. Koch explains the con struction of his caliber compass, illustrated, as follows: The distance of the lower points is $3 \cdot 1416$ times as great as that of the upper points. (This number is the well known π used in the mathematical calculations of circles.) Hence, if the upper points are adjusted to any cir cular bar or other object, so as to measure its diameter, the dis tance of the lower points gives the circumference without any further calculation.
fall of the roof of the railload depot at SARATOGA SPRINGS.

We are indebted to our old friend E. J. Huling for the ketch and brief account of the destruction of the new pas enger depot, at Saratoga Springs, N. Y., on December 18 871.

The iron dep.t of the Rensselaer and Saratoga railroad, a Saratoga Springs, was a beautiful structure; but, in planning \mathfrak{t}, the builder seems to have sacrificed everything to make it airy in appearance and beautiful to the eye, neglecting plain rules which the architect of a common shed should have borne in mind. Because the materials used were iron, the builder seemed to think that sach ordinary things as internal bracings were unnecessary.
The following is an illustration of one bent of the structure as it stood. The structure was an open arcade, support ed by cast iron columns, four inches in diameter, standing fifteen feet apart on the sides, and thity feet apart across the building. The roof was of corrugated iron, arched, the base of the arch resting on the top of the columns. The columns vere tied together crosswise by iron rods five eighths of a och in diameter, crossed as shown in the engraving. On the sides, or l.ngth wise of the building, there were cast iron gird

rs of a light and ornamental character between the columns but there was no internal bracing to prevent the columns from falling in, unless the five-eighth tie rods were consid red as such. Along the side of the building was a shed ten eet wide, supported by light cast iron brackets fastened to the columns; these brackets extended ten feet from the side
of the column, and their bearing on the column was about ix feet ten inches, or, in some cases, three feet ten inches beow where the lower ends of the cross tie rods were fastened into the columns. These brackets are reported to have been lested to sustain over ten tuns; and by their combined weight, with the iron roof which they sustained, they must have ex of the iron columns. The iron columns were anchored at heir foot into square blocks of stone. There was a solid rock, underlying the whole depot and parts surrounding, only a few feet below the surface. The railroad track ran along beside the structure, partially beneath the piazza or shed supported by the brackets.
On the day of the fall of the structure, the ground was hard frozen, and there had been a light fall of snow. A heavy freight train ran up so that the locomotive stood about against
the first column, and stuck there, the snow obstructing it so he first column, and stuck there, the snow obstructing it so
that the wheels turned without going ahead. After some bortive efforts to go along, the engine driver reversed his machine and backed down. He had scarcely got below the corner of the arcade when the column, near which his ma chine had stood, crumbled inwards, and the whole affair fel nearly together. Three men who were under the roof es caped, but one lad was caught and crushed, his back being broken so that instant death seemed to have occurred. An anuest was held on the boy killed, and, among others, Mr Cummings, of Troy, the architect employed by the railroa hat to supervise the building, was sworn, and testifie
ican Corrugated Iron Company, Springfield, Mass., and did not make the plans or drawings for the building; that he had feared somewhat that the wind might lift the roof, but had not thought that it would fall inwards. The opinion of other builders was that the leverage of the heavy brackets, bear ing upon the outside of the columns, without anything iuside to counteract them, had caused the columns to break. The locomotive, running up beside the column and stopping there, had seemed to cause a vibration; and, as the train backed down, the first column, where the vibration commenced, was pushed inwardly, and then the others fell nearly together. The coroner's jury censured the builders for not properly doing their work.
Now that the building has fallen, it is considered somewhat wonderful that it stood as long as it did

Conrespondence.

The Editors ar
respondents.

The Davenport Tricks

To the Editor of the Scientifc American

Allow me, in answer to the note of Mr. W. M. Patton, page 84, in No. 6 of this paper, to state that when the Davenports stick their hands and naked arms through the hole of the center door, they are no more tied down by the knots made by persons selected by the spectators, but have got loose, shown this, and then tied themselves again in their own way, as described by me on page 68. The spectators are very apt to overlook this, and not to notice that, ordinarily, very few tricks are performed as long as the brothers are tied down by others, and less in proportion as this has been done more thoroughly.
In regard to the number of hands shown, I have heard persons in the audience who assured me they saw five or sis of them, while I am sure there were only four, having carefully watched the whole proceeding; but when four hands and arms are rapidly moving about through a hole, one may be easily mistaken and count five. If there really were more, it would only prove that they had one or more false hands hidden in their sleeves, but I think this improbable, because, when I tied one up, I carefully examined his arms and sleeves, and am sure there was nothing hidden about the individual. The ringing of the bell is not more won derful than the taking off of their coats, which I explained on page 68.
Mr. Patton asserts they use no teeth in their execution how does he know? And why should they not use them if expedient? To satisfy himself, let him tie up two school bys, of ordinary intelligence, opposite one another, so that each, by stooping forward, can reach with his teeth the knot herewith his fellow is tied down, exactly as is the cas with the Davenports, and let him see how expertly they wil use their teeth for mutual delivery
On page 100, Mr. Patton gives, as his explanation, that the Davenports " have false hands and wrists, made of gum and so closely resembling nature as to mislead by the feeble light," and says further that these are inflated and have hoops or rings imbedded, "so as to prevent a collapse under the pressure of the cords," that these are tied down, and that they slip their real hands out of them to perform the tricks. This explanation is very ingenious, but rather far fetched and unfortunately not in agreement with the facts. When I tied up one of the Davenports, I am sure I was not deceived in such a way, as the hall was fully lighted with some 300 gas jets; and besides I felt the pulse of both of them, before and after the tying u, in order to find if the individuals got excited by my careful watching, and I doubt if even those whose confidence in M.D.s is least, would sup pose that I would be so obtuse as to be cheated by a gum arm when feeling the pulse, or not able to distinguish true skin flesh and bone from gum, extended with hoops and painted fesh color. The sealing up of the knots at the ends of the rope does not amount to anything, as they can slip their hands out of the loop just as well, whether the knots are sealed or not, when only they have tied themselves in the manner described by me on page 68. They do positively not cut the cords, but unfasten every knot, for I used my own hemp ropes, and got all back in the original condition ; while finally, in justice to them, I must state that they have no capacious pockets," and no ropes either whole or cut in hem. I have examined also this point.
If Mr. Patton had seen and watched the performance as losely as I have done, he would be satisfied that hins hypo hesis is untenable
P. H. Vander $\mathrm{W}_{\text {Eyde, }}$ M.D

Motion.

To the Editor of the Scientific American
What is motion? This question might be confronted with nother, namely: What is not motion? The latter would be he most difficult to answer. It is certain that we do not now of any condition of matter wherein there is no mo tion. Until the universe comes to a standstill, everything must be in motion. The idea of cessation of motion is in conceivable, as much so as is a limit to infinity, or similarly, an end to eternity. Motion is universal, so is matter and motion and matter are inseparable; one cannot exis without the other. Motion is the primordial condition of matter, and Herbert Spencer, in his "First Principles," invests even nebulous matter-that which is sometimes denomi nated chaotic, such as was "void and without form"- with the function of motion, or that of possessing the power of contraction and expansion.
Physical or mechanical forces can only be the result of a
Physer of motion a this transfer of motion can only be
made at the expense of matter. The combustion of the fuel under the steam boiler is only a transfer of the force which had been employed in the formation of the wood and coal; and it is so with every other motor that can be used. The ball propelled from the cannon had its force-equivalent transferred from the labor of the manufacturer of the powder. Not only the powder but the ball as well,in its rounded or elongated shape, had to contribute its part in the play of projection. This system of compensation, as mani fested in the correlation of forces, holds its equivalents to as strict a m vasure of relation as the fulcrum of the scale beam does the things that are weighed in the balance. The seven or eight par cent of the units of heat, which are all that are at present utilized in the transfer of motion from the fir under the boiler to the machinery in the mill, so far from invalidating the science of mechanical forces as correlated, only goes to prove that we are far behind the constructive perfection which ought to give us much more, and which ought to stimulate the inventive genius of all mechanical engineers. The conduction and conveyance of power, that is the transfer of it from the fuel to the propelling wheel, is much, in the condition as to economy, as that of carrying water in a sieve. There is too much lost on the way side The bushel of oats put in the horse's combustion chamber does a great deal more work than the bushel of oats (with its steam included) will do when burned under the steam boiler; and yet the force-equivalent in both cases must be the same.

The economizing of motion is a good deal like going a fish ing. He that understands the nature and the habits of the fish that he goes for will be likely to succeed the best. So in the mechanical profession: he that understands the law of motion and mechanical forces will be most likely to get the most work out of a certain expenditure of motion-trans ferring appliances. There is yet a broad domain and a wide track for the exercise of mechanical and engineering skill; and the man who adds a single increment of improvement in the economy of the transfer of motion becomes benefactor to the human family.
The inertia of the old doctors has given way to the vis viva of modern scientists. The old inertia was defined to do and not to do: not a very comprehensive definition. The ball, when it stops rolling on the philosopher's board, goes only to show that it has played out the motion that was tiansferred to it by the motor, whatever that motor may have been.

There can be no such thing as increasing the amount of force in a given quantity of matter; but there is such a thing as economizing that power, that is to say, enabling it to do more work through one instrumentality than through an other; and the perpetual motion makers ought to take it to themselves that they will not succeed in the solution of their problem by simply adding wheels and levers, unless they hope to move them by the psychic force; a force whose exis tence can be called into action somewhat in the way that the that a force, up a wind. Mr. Crookes is of the opinion does exist and that it can be called into action Mr Daus does exist a kild the writer of this article that told the writer of this article that he had witnessed such phenomena with his own eyes; but Mr. Coleman Sellers
President of the Franklin Institute, gave an illustrated lecture, at the Philadelphia Central High School the other evening, on "the Science of Delusion," in which he demon strated that it is not altogether safe to trust implicitly to our eyes.
Motion, like matter, is constant and universal. It canno be annihilated, nor can it be increased or diminished: but it is transferable, and the best we can do is to devise mean through which this transfer can be accomplished by th least cost of labor and material.
Philadelphia, Pa.
John Wise.

London International Exhibition

To the Editor of the Scientific American:
It may be of considerable interest to many of your numerous readers to be informed that articles for the London In ternational Exhibition of 1872, which opens May 1st, mus be delivered at the buildings at South Kensington, London if belonging to the rlass including "Machinery and Raw Ma terial," on the first day of March, and, if included in the clas comprising " Recent Scientific Inventions and Discoveries" on Saturday, March 2. Other classes have other specified days for the delivery of the articles for exhibition, but the list would be too long to trouble you with in this letter The above information is officially promulgated by Majo General Scott, Secretary of Her Majesty's Commissioner

Hamilton E. Towle.
Colored Candle Light.-Wax candles are made of dif ferent colors, but they all emit a white light. Why may no candles be manufactured, by introducing certain chemical into the material from which they are made, so as to show a variety of colors, such as blue, red, green, etc.? By arranging such candles in tasteful groups, beautiful effects may be produced in illuminating buildings. If some ingenious chemist will devise a way of embracing a cheap chemical with any of the material used for illuminating candles so as to render the light emitted from them of any desired color, he will make a fortune by his discovery.-Commercial Bulletin.
[This is what we told our chemists several years ago, and
till no advance has been made in this direction. If chemi still no advance has been made in this direction. If chemi cals could be introduced into any safe illuminating material so as to produce a variety of colors, the discoverer would reap a rich harvest for his invention.-Ed.]
[Correspondence of the Sclentiflc American.]

JAPAN.

Griffis.-Estab ishment of a Scientific School at Fukuwi-Gen eral View of the Japanese Status--Rapid Progres of the Japanese in European Knowledge and art

Fukuwi, Province of Echezen, Japan, Nov. 25, 1871.
One of the constant readers of the Scientific American responding to the invitation extended by you to the Ameri can citizens to keep you informed of the progress they are making, would send greetings to you from this end of the arth, and would hope to point out a few signs of progress mong the people now beginning their "second life in the istory of nations.
The writer, who had been an instructor in chemistry in America, and had among his pupils thirteen of the Japanese tudents, received an invitation from the Prince of the Pro ince of Echezen, to come to Japan, organize a scientifi chool, and give instructions in the physical sciences. It seemed rather a discouraging place to go to (nearly the an tipodes of New York); but, being earnestly urged by the oung men from Jaran, the writer came to Fukuwi, arriving here March 4th. To a pioneer in the interior of Japan (for eigners not being allowed to penetrate more than twenty ve miles from the treaty ports) it seemed at first like be inning in the stone age. However, we found that severa the young men had been diligently studying medicin for centuries the language of high culture in Japan. As for centuries the language of high culture in Japan. As
fruits of this, I found that vaccination was practiced, dissec fruits of this, I found that vaccination was practiced, dissec
tion slily carried on, a powder manufactory with a na tion slily carried on, a powder manufactory with a na air specimens of smooth bores and rifles were made and fin ished, and even a creditable attempt made to construct a reakwater at Mikuni, the sea port of this city.
In visiting the mines, we found that blasting was known, but not yet fully applied. Pumping was not in vogue, hough it has been estimated that fully one third of the he invading water. The Japanese are very quick to apply machinery, however, and in several provinces we know of pumping machines, driven by steam, being applied. In several of the provinces, foreign engineers are engaged on conracts of three years, and are revolutionizing the old methods f mining. There seems to be abundance of copper, mercu , zinc, tin, and iron, the latter being mainly in the form of agnetic iron ore.
Manufactures are not backward. The Japanese, while welcoming the foreigner and eager to get his knowledge is inventions and productions, are yet anxious to be independent and to "do it themselves." They not only run heir own steamers, and drive their own factories, but each mechanic seems desirous of trying his skill at something oreign, when said foreign thing is undoubtedly worth mak ng. Hence, glass blowing, drug manufacture, wood carving, eather working, furniture, silk winding machinery, etc., etc. though in their infantile stages, are yet striding on toward erfection
In fitting upour own laboratory, many pieces of apparatu nd peculiarities of building, etc., requiring great patience nd considerable mechanical skill, were furnished by work en who were eager to learn; and, considering their rud tools and appliances, they succeeded remarkably well.
It must be remembered that the normal Japanese house not excepting those of the Daimios and rich men, are exces vely plain, walls and neatly matted floor under a roof be ing the main necessities; no furniture, no chairs, nothing suggests the luxurious civilization of Europe or America. In the city in which we dwell, the only chimneys are those upon the chemical laboratory, and our own dwelling house-a house, by the way, built by a Japanese carpenter under ou directions, and exceedingly American and complete in ever
We d
We do not propose to speak of the railroads now building, of those projected, or of the telegraphs and steamship wared by the Japanese. These evidences of ad be duly chronicled. We speak only of the pulsings of the ew civilizations in the interior, two hundred miles from an oreigners. We may say in passing, however, that we have seen the "report" or "Blue Book of the Department of Civi-
lization" of the Imperial Government, and find in their schedules full preparations made for light houses, railroads, telegraphs, a postal system, introduction of machinery, cat tle breeding, scientific farming, navy yards, coast and inland survey, road making, and numerous other enterprises. Of course, it will require years even to fully organize thes plans; but when it is remembered that all this apparatus of civilization has been suddenly grafted on a nation hitherto hermetically sealed to the world, the marvel will be that uch gigantic enterprises can be entertained. The Japanese while liberally engaging professors, engineers and agents, re yet determined not to let Japan become as India, nor be assive recipients. They have now at least three hundre picked young men studying in America and Europe, and on heir return they will personally engage in the business of uperintending the great public works of the country.
The timber of Japan is marvellously rich and abundant, and is mainly grown on the mountains. Indeed this is the and of "the everlasting hills," and the practically waste and is in very great proportion to the cultivated soil. Th
latter, however, is very fertile, and the whole country is cul ivated like a garden. The tools are pretty much the same as those used ten centuries ago. The plows are simply sticks
pointed with iron. The rice is cut by hand with a small hook, and threshed by drawing it through iron teeth. They et very good crops on their irrigated lands; but much re claimable soil exists $n \approx$ glected, and scientific farming is en rely unknown as yet, except in one or two provinces in which American farming machinery has been introduced Cattle breeding claims much attention, and we can assur our readers that the superstitious fanaticism concerning eef and pork is rapidly vanishing.
In many provinces beef is eaten, and in the large cities it issold at the corners of the streets as a delicacy, and devoured with gusto by gray heads and urchins. Whenever our cook laughters a cow, he has no trouble to sell the meat; and five magnificent specimens of California cattle, recently brought here, promise to leave offspring more promising than the stnnted native cattle. Several sharp Japs, who read th signs of the times, have herds of swine, and our local gov rnment is very desirous of having works on cattle rearing nd breeding translated, and have imported the cattle spo ken of.
We are trespassing on your crowded columns, and will herefore, hasten to a close. We forgot to mention the coal which is found here near Fukuwi; it is not very abundant or of first class, though extended exploration might revea ormations of a better, quality. However, were you to come to our house, Mr. Editor, and see our sparkling grate heaped with the black diamonds of Japan, you would think civiliza tion had really begun.
As Rome was not built in a day, nor our country settled in an hour, we must have patience to await fully the flower ng of this nation. Patient toil and faith are needed, but ven in the everyday prose of the pedagogue we feel some hing of the glow of poetry, while reading the faces of ou apanese scholars. We have nearly 125 promising pupils in hemistry and physics, and with two good interpreters, ap paratus from America, a printing press up, and earnes young men to help in translating and applying the knowl edge gained in school, we hope to make the "Fukuwi Scien tific School" one of the centers whence shall radiate the new civilization. In conclusion, I cheerfully acknowledge th reat help in practical hints, etc., from your valuable paper which we are glad to tell our pupils is the Scientific Amer tcan.

William E. Griffis,
Professor of Chemistry, Fukuwi, Japan

MEETING OF THE SOCIETY OF ARTS OF THE MASSACHU

 ETTS INSTITUTE OF TECHNOLOGY

automatic registers

Dr. Sternberg, U. S. A., exhibited and described a new ap plication of electromagnetism. He uses this subtile agen for the automatic regulation of temperature. His apparatus is applicable wherever artificial heat is employed, as in the warming of buildings, and also in various processes in the aboratory and the arts.
To watch a thermometer and operate a damper or registe by following its indications, is, to say the least, unscientific besides requiring more time and attention than can ordinari y be given. The attempt has frequently been made to ef ect the automatic regulation of temperature by using the expansion of a metallic bar or of a volume of confined air to perate a damper; but satisfactory results have never been btained by these methods, and their application is limited s the regulator must be placed near the furnace, and the ex ansion of a metallic bar for a variation of a few degrees of emperature is so slight that it would be impracticable t use a bar long enough to regulate the temperature to a nice point. The use of confined air for this purpose is still mor unsatisfactory, as the air is affected by barometric changes. and though such an apparatus might regulate the tempera ure of the hot air chamber of the furnace with sufficien exactness, it could not control the temperature of distan apartments, which is far more important.
Dr. Sternberg's invention is intended to obviate these dif ficulties, and is at once simple and efficient.
The battery wires are so adjusted in connection with hermometer that when the temperature reaches the desired point, the mercury in the thermometer establishes a circuit y which the register or damper is shut; upon the slightes eduction of the temperture, the mercury falls, the circuit is broken and the register or damper opened.
It is obvious that the thermometer may be placed at an distance from the furnace, and may regulate the temperatur of an apartment by controlling either the register or th amper of the furnace
If the wires from the thermometer be made to operate amper which controls the supply of air to the furnace, fue will be saved.
Automatic ventilation may be secured by the same appar tus-electricity controlled by a thermometer.
Where a number of rooms are warmed by one furnace, he would let the thermometer in the room most used control the damper of the furnace; and the temperature of other room ould be regulated by automatic registers controlling th low of heated air to them
The mechanism for operating the registers and dampers i mple and requires but little power; one battery cup bein ufficient to perform any of the operations.
The point of contact between the wire and the mercury is asily adjusted to any required temperature, and a change of a fraction of a degree will make or break the circuit and ause the apparatus to act.
electric clocks.
Mr. James Hamblett addressed the Society upon the sub
ject of electric clocks. He said: One of the first attempts to propel clocks by electricity was made by Alexander Bain about 1842. His battery consisted of a plate of copper and a plate of zinc buried in the earth. The pendulum rod was of wood, with a large coil of copper wire for a bob; the ends of the wire were carried up the pendulum rod to its point of suspension, and were there connected with wires from the buried plates; two brackets, about half way up the rod, supported a sliding breakpiece, which was so situated that it would be pushed a little at every vibration of the pendulum, and by this means an electric circuit was made and broken. The operation of these clocks was not satisfactory, as they were liable to error from fluctuations of the battery power
Batteries have always been a source of trouble to electric clock makers, for upon their constancy the accuracy of the clocks in a great measure depends. Mr. Hamblett uses the Smee battery ; the elements are pure zinc and platinum; the solution consists of pure waterand chemically pure sulphuric acid. He uses no screw cups, as they are liable to become loose and are frequently the source of much annoyance. The wires connecting the elements of his battery are soldered together.
An electric clock invented by Mr. Charles Shepard has been much used in England. In these clocks the impulse is given to the pendulum by the falling of a lever, which is raised at each vibration of the pendulum by an electromag. net. As the weight of the lever and the distance which it falls are constant quantities, the impulse imparted to the pendulum will be constant, and the accuracy of the clocks will not be affected by fluctuations of the battery power.
The mechanism of these clocks is such that an electric cir cuit i; established and broken once every second, which ope rates dials at distant places.
Electric contacts are usually made of platinum or of an alloy of platinum and iridium. When the circuit is broken, an electric spark passes between the contact points, which causes a slight oxidation of the platinum, and, where an electric current is established every second, this oxide may accumulate and become a cause of error
In Mr. Hamblett's clocks, this difficulty is obviated to a great extent by establishing the circuit, which moves the dials only once in a minute. The dials are made very simple and tick once in each minute ; and all the dials controlled by one clock will move together, indicating exactly the beginning of each minute.
Clocks cannot only be propelled, but may be controlled and corrected by electricity. Clocks controlled by electricity have two small magnets, placed at the lower end of the pandulum, which are so arranged in relation to two stationary coils of wire that at each vibration of the pendulum one of the magnets will pass into the opening in one of the coils. Once each second an electric current is sent through the coils from the controlling clock, and if the controlled clock be inclined to go slow, the current from the controlling clock, acting upon the magnets, will tend to accelerate it, and vice versad.
Mr. Hamblett believes this to be the best method yet de vised for distributing time.
One standard clock may control many other clocks at different points, and if an accident happens to the wires the controlled clocks will not stop, but will go on at their own rates. Methods similar to this have been adopted in Edinburgh, Glasgow and St. Petersburgh.
A clock, erected by Mr. Hamblett in the observatory at Alleghany City, Pa., controls all the clocks of the Pennsylvania Central Railroad and those of conecting lines westward to St. Louis.
This is the longest line of time distribution in the world. He made brief mention of the various time signals and time balls used in different countries, and explained at length the distribution of time and the operation of time signals in England by the mean time clockin the observatory at Greenwich.
lighting gas by electricity.
At a meeting, held January 25, Dr. Van Zandt of California brought to the notice of the Society an invention of his, the object of which is to light the gas in street lamps by electricity. The gas is not only lighted, but is also turned on and off by electricity. All the lamps are connected by underground wires with a central station, where the appar atus consists of a galvanic battery, an induction coil, and a switch to throw the current on or off the wires in any por tion of the city, so that all or any part of the lamps may be lighted or extinguished as required
Two independent circuits are necessary, one for operating an automatic apparatus in each lamp by which the gas is
turned on and off; the other for conveying the current which lights the gas.
The wire for the last circuit passes across the slit in the burner, where it is broken so that the passage of the electric current produces a spark which ignites the gas. The wire near the burner cannot be insulated by caoutchouc or cloth, as these are destroyed by the heat; it is insulated by wind ing it around non-conducting trunnions or the above these ins
He has made a successful trial of his apparatus in this city, using thirty-seven burners and over a mile of wire. He illustrated his remarks with drawings, and by lighting and extinguishing a gas jet before the Society.
ether engine.
Professor Watson then made an interesting communication on the ether engine.
The idea of utilizing the heat of waste steam, by using it to vaporize some liquid more volatile than water, is as old a Humphrey Dary

In 1830, Mr. Ainger suggested ether as a suitable liquid or this purpose, but the idea was first practically worked out by M. du Tremblay in France
The engine of M. du Tremblay was, in most essential par ticulars, similar to the engine constructed by Mr. Ellis of this city, with the exception that he used sulphuric acid in tead of sulphide of carbon.
His engines were used on screw steamships by the French Government, and were of seventy horse power. A considerable saving of fuel was effected by the use of these engines; when using the ordinary steam engine alone, 95 lbs . of coal per horse power per hour were required; but with the vapor of ether and steam engines comibined, 25 lbs. of coal were found sufficient to produce the same result, showing a saving of nearly seventy-five per cent.
The great difficulty in the construction of these engines and that which caused their final abandonment, was the practical impossibility of making tight joints. It was found practical impossibility of making tight joints. that the tightest joints were obtained by using true metallic
surfaces and numerous bolts; between the surfaces was surfaces and numerous bolts; between the surfaces was
placed paper soaked in a solution of gum arabic; but even placed paper soaked in a solution of gum arabic ; but even
these joints would leak. In consequence of the leakage, one of the ships caught fire and was burned.
The Professor then, by means of mathematics on the blackboard, demonstrated the superior efficiency of the ether engine compared with the ordinary steam engine, and showed that the adoption of some volatile liquid-as sul phide of carbon-not liable to produce explosions or confla grations was an important step toward the complete utiliza tion of the heat now wasted by the steam engine.
w.o.c.

The Phosphorescence of Marine Animals. Professor Panceri, of Naples, has been studying for some ime past the phosphorescence of marine animals. He has examined Noctiluca, Beroe, Pyrosoma, Pholas, Chatopterus,
and has lately published a paper on the phosphorescence of and has lately published a paper on the phosphorescence of
Pennatula. He finds in all c'ses that the phosphorescence Pennatula. He finds in all c 'ses that the phosphorescence
is due to matter cast off by the animal-it is a property of dead separated matter, not of the living tissues. In al cases (excepting Noctiluca) he also finds that this matter is secreted by glands, possibly special for this purpose ; but more probably the phosphorescence is a secondary property of the secretion. Further, the secretion contains epithelial cells in a state of fatty degeneration, and it is these fatty cells and the fat which they give rise to which are phosphorescent. Hence the phosphorescence of marine animals is hrought under the same category as the phosphorescence of decaying fish and bones. It is due to the formation in decomposition of a phosphoric hydrocarbon, or possibly of phosphoretted hydrogen itself. In Pennatula Professor Panceri has made phosphorescence the means of studying a more important physiological question-namely, the rate of transmission of an irritation. For when one extremity of a Pennatula is ir ritated, a stream of phosphorescent light runs along the whole length of the polyp colony, indicating thus by its passage the rate of the transmission of the irritation. This ad mits of accurate measurement, and furnishes data for ex tending Helmholtz's and Donder's inquiries to animals so widely separated from their "Versuchs-thiere" as the Calen terata It is also a proof of the thoroughness of Professor Panceri's investigation that he has made use of the spectro scope for studying the light of phosphorescence.-Nature.

Marine Novelty.

A new iron steam vessel, of peculiar design and novel ar rangement, constructed by Messrs. W. Simgns \& Co., has just been launched from the London Works, Renfrew. It com bines in itself the respective properties of a powerful dredger a steam hopper barge, and a screw tug steamer. It is intended to keep the harbors and rivers of North America clear of silting and obstructions at a moderate expense, as it has, in one bottom, all the properties of the more expensive dredge
fleet usual in extensive fleet usual in extensive operations; and by its use ordinary rivers and harbors can be deepened and improved at much less expense than is customary with dredgers, barges, and tug steamers, with their crews and necessary detention. The
mode of working, as described by the North British Daily mode of working, as described by the North British Daily Mail, is as follows: "The vessel propels itself to the place to the guide buoys at both bows and quarters; the dredging girder is then lowered to the bottom by steam; the machin ery connected therewith is then set in motion, and drives a range of steel mounted buckets, which cut, lift, and depos it, into the vessel's own hopper cavity, about 200 tons of spoil The vessel being now loaded, the girder is then raised flush with the deck, the moorings are disconnected from the buoys, and the vessel assumes the properties of a screw steamer. nother connection of the machinery is then put into gear, driving the propeller. The pilot takes his station at the
rudder, and thecaptain takes his station on the bridge, the redging crew convert themselves into sailors, and the vesse teams away to deep sea water, say from 10 to 20 miles, at a speed of eight knots per hour, where, by another arrange ment of the steam machinery, the bottom hopper doors open and the 200 tons cargo is in a moment dropped in thirty or fty fathoms depth of water. The bottom doors are the again a dredger, the process being repeated. This vessel is consequently well suited for exposed localities, and is capable of lifting, conveying, and depositing 500 to 1,000 tons of spoil per day; and by its use, in limited operations, the cost of dredging is greatly reduced. There are many rising seaports and rivers, which can be deepened by this system, whose
trade and prospects would not warrant the heavy expenditure of an entire dredge fleet. We understand Messrs. Simons
a trial on the Clyd arrangements of this vessel, and that after lantic to its destination.-Mechanics' Magazine.

An Expedition in Search of Dr. Livingstone. At a recent meeting of the Royal Geographical Society, London, Sir Bartle Frere, Vice President, explained the grounds on which the Council had determined to despatch an expedition from England for the search and relief of Dr. Livingstone. He said it was now more than two years and a half since anything in the shape of written communication had been received from Livingstone. In one of his last letters he had described himself as in great want of men, stores, clothing, and medicine; in short, of everything that was necessary to enable him to continue his explorations. It was necessary to remind the meeting that, on the receipt of those letters, Her Majesty's Government and the Geographical Society took immediate action to supply the wants of our great traveler, a grant of money being made by the Treasury,and the amount entrusted to our Consul at Zanzibar to be expended, in the hire of men, purchase of stores, and their transmission into the interior. Various causes had intervened to prevent some portion of this assistance reaching Livingstone and, lately, disturbances had broken out in the district about midway between Lake Tanganyika and the coast, which, without affecting him personally, had increased the difficulty of communication. That Livingstone was alive, and had been pursuing the great plan of exploration which he had marked out before leaving England, was to be concluded from the rumors that had reached Zanzibar from the interior; and that plan was the tracing of the sources of the Nile and the limits of the great lake region of the African interior. His latest letters gave a vivid picture of his destitution as regards the commonest necessaries of a traveller. It would be in the last degree disgraceful to them, not only as a body of geographers, but as Englishmen, if they allowed him to perish without making an effort to relieve him. The fortunate chance of a private steamer preparing to leave London in the course of the month, direct via the Suez Canal for Zanzibar, had compelled the Society to act rapidly in this matter. The expedition was being organized, and an appeal had been made to the public for funds to defray the expenses. Already subscriptions had been received to the extent of twelve hundred pounds.

News from the Navigators.

The people of the Samoan group, known as Navigators Islands, in the Pacific Ocean, have sent to the Secretary of State at Washington a request for annexation to the United States, signed officially by all the chiefs and many foreign residents of the islands. These are the only valuable islands in the Pacific Ocean not absorbed by France, England, Ger many or Russia, and the natives say they are more favorable to the United States than any other country, because they believe that the American religion is the same as theirs The islands in question contain three thousand six hundred square miles, and a native population of thirty thousand The people are copper colored, and the productions are cot ton, coffee, sugar cane, dye woods and ewery species of tropi cal fruits and plants. The Australian mail steamers have selected the islands as a port of call for coaling purposes, and men have gone there to erect buildings and construct wharfs. The natives are friendly and Christianized, American mission aries having been there twenty years.

Water Power by Telegraph.
The large establishment of James Richmond, at Lockport, N. Y, the well known maker of bran dusters and grain cleaners, is driven by water power from the waste of the Erie canal. Mr. Richmond also supplies a considerable amount of power to other establishments in Lockport, some of which re over half a mile from his water wheels. This he does by means of endless wire cables, carried on telegraph poles, to peighboring factories and mills. A very simple arrangemen of cogs enables any number of endless wire cables to run to central points in the city, and thence in all directions. In his way, the printing presses of the Journal, the Times, and the Union are run by deputy, at a cost of so much per hun dred feet per annum. Mr. Richmond also furnishes power to a whip factory, a cabinet shop, a glass factory, 2,500 feet away, a shirt factory 2,000 feet in the opposite direction, a foundery, and a machine shop. He has some valuable patents in connection with this distribution of power, and has lately fitted up a series of distributing wires at Fulton, in Oswego county.

Scarlet Fever Non-contagious
Dr. E. H. Lewis, in an interesting article published in the Northwostern Medical and Surgical Journal, states some stri king facts bearing upon the contagiousness of scarlet fever From data, gathered during an epidemic in 1870, the doc tor concludes that scarlet fever is not caused by sewer gases, or marsh miasms, or decaying vegetable matter, impure water, or the habits of people; for in the cases observed by him all these causes were absent. The epidemic traveled directly and rapidly through well drained and elevated regions of country, sweeping everything before it. In the cases ob served, the doctor could find nothing to enable him to believe in its contagiousness. He says: "I have not the slightest donidt that the causes of scarlatina depend upon some pecuiar condition of the atmosphere favorable to the propaga tion of the scarlatina poison, and that it travels in a manne imilar to epidemic cholera, the principal feature of which it imulates, the difference being that in cholera the force 0 he disease is spent upon the bowels, while in scarlatina it is expended upon the skin and throat."

Improved Gage cock for steam Boilers. Our engravings illustrate an improved gage cock for steam boilers, which is extremely simple, though quite unique in design. We judge it is not likely to get out of order, and that it must be very convenient in use.
It consists essentially of on!y three parts, a weight leveror ball, A, Fig. 2, a barrel, B, which screws into the boiler in the usual manner, and a nozzle, C. The nozzle, C, telescopes over the barrel, B; the barrel has a straight steam passage through it, closed by the nozzle which abuts against the end of the barrel, and has a gasket on its interior to make the joint formed steam tight. The use of the weighted lever or ball is to hold the nozzle against the end of the barrel, when the cock is shut, and to withdraw the nozzle when it is desired to open the cock. This is done in the following manner The weighted lever is pivoted to the barrel. It also has a recess that shuts down over the outer end of the barrel. On the inside of each of the two lateral walls of this recess is formed a cam groove, into which lugs, on the sides of the nozzle, enter, so that when the weighted lever or ball is turned upward on its pivot, the cam grooves force the nozzle outward, and when the weight descends, force it inward again, so as to bring the gasket firmly down against the end of the barrel. The cock thus automatically closes itself.
A small annular groove is turned about the outer extremity of the barrel, and collects any steam or water that may escape through between the barrel and the enveloping nozzle, and di rects it down ward out of the mouth of the nozzle. This renders a tight fitting of these parts unnecessary, and they may work with scarcely any friction.
The gasket may be renewed if desired, when the boiler is under pressure, by raising it up to and a little past the perpendicular, whers it will remain. The nozzle can then be slipped off the barrel, the latter bemg plugged with wood while the repair is made. Upon withdrawing the plug, the nozzle may be replaced while the steam and water are escaping.
Patented, Jan. 16, 1872, by William Painter. For further information address Murrill \& Keizer, Baltimore, Md.

GERHART'S IMPROVED WAGON BRAKE.

It is nearly as severe labor for horses to hold $b_{\text {ack }}$ a load in descending a hill as to draw it up the same grade. The use of a good brake upon uneven roads, therefore, both in economy and conve nience, so strongly recommends itself to men of good sense as to scarcely need a word of argu ment. A great many forms of brakes have bee made and used with advantare, but it appear that the useful wombinations of bevices adapted that the useful combin to this purpose have not yet been exhausted. Our engraving illustrates a new combination of levers and links, by which the wheels of vehi cles may be very effectively braked.
The brake bar, A, is supported by keepers attached to the under side of the rear hounds of the wagon, the keepers being sufficiently long to give the bar play to and from the rear wheels. About midway between the middle and the end of the brake bar is attached the link, B, which joins the brake bar to the lever, C. This lever is pivoted to a support extending forward from the rear axle, as shown, its short arm being on the side of the link, B. Its long arm is joined by the link, F to the lever, D. The lever, D, is joined at its lower end with the brake bar, and is actuated by the connecting rod, E , which, when drawn forward, causes both ends of the brake jar to move backward, bringing the brake shoes very forcibly against the wheels to be braked. It will be seen on close inspection that a very powerful leverage may be thus ob tained.
The dotted outline shows a mode of placing the lever, D so that it shall drop back down on the bolster, in which case it is actuated in a slightly different way from that described ${ }_{i}$
The invention was patented through the Scientific Ameri can Patent Agency, Dec. 12, 1871, by John A. Gerhart, of Easton, Pa., whom address for further information.

The Erie Canal Locks.---Lockport.

An enlargement of the locks is urgently demanded, so as to permit the transit of steam canal boats carrying 600 tuns of cargo, instead of 200 tuns, the limit of most of the present boats. It is said that it will cost no more to propel a boat with 600 tuns cargo, if the locks are made larger, than it now costs to tow the 200 tun boats. A writer in the New York Times gives an interesting description of the locks at Lockport, N. Y.:
On approaching Lockport, the eye is at once attracted by a sort of giant's staircase in the Erie canal, of even more im posing dimensions than the celebrated Giant's Staircase in the Doge's palace at Venice. Immediately the exclamation involuntarily escapes one: "Ah! Lockport! I see." It is at this point that, by an extensive system of lockage, the heavily laden barges are enabled to ascend and descend the low range of hills down which the canal takes its course, and on the extreme edge of one of which stands the active little city of Lockport, 6 king over one of the most extensive level plains in the State of New York.
There are five double locks, ten in all, at Lockport, 3 ach
ock being 110 feet long by 20 feet wide. They have a uniform rise of a little over 12 feet, making the total rise about 64 feet. The two head locks have 20 feet, the four lower tiers 18 feet of water. The time occupied in the passage or the boats from one lock to another varies according to theif construction and running. Going east, a boat will pass through all the locks in from fifteen to twenty-five minutes; going west, more time is occupied, as the boats have to be pulled through by horse power on a rising tow path, instead of being forced through by the sabsiding water, as is the case in going east. The boats have a tonnage of 200 to 240

PAINTER'S GAGE COCK FOR STEAM BOILERS

The form of the bricks is shown in Fig. 1. It will be seen that they have a concave inner surface and a convex outer surface, as laid in the arch, and the sides are straight and parallel in their vertical planes. The ends are inclined, to correspond with the radii of the outer and inner curved sur faces. Each end is recessed vertically, so that each brick in terlocks at the ends with two others, as shown, and is thus held from lateral movement, the entire arch, made by succes sive courses, being thus bound together.
This interlocking enables forms to be dispensed with afte e first course is laid, as this course will give the same cur vature to, ε_{n} nd sustain, the next while it is laid and so on.
For arched roofing, as shown in Fig. 2, the bricks may be made lighter by being made hol low, or their composition may be modified, by the admixture of coal or other combustible sub stances, in the formation of the bricks, in way familiar to brickmakers.
Floors will be made by first building an arch of low spring, as shown in Fig. 2, then leveling up the top with mortar, and, lastly, covering with cement.
Where light porous bricks are used for roof ing, an oater coating of some waterproofing ma terial will be needed. Cornices and gable end can be made with ornamental bricks to give an appropriate finish
This invention was patented through the Scientific American Patent Agency, August 9, 1870 by Watson F. Quinby, of Wilmington, Del. Ad dress as above for further information.

Seals of Alaska.

The islands of Alaska are the summer resort of seals in immense numbers, but where they pend their winters is an unsolved mystery. Suf ficient search has been made for their winter tuns, and going east generally carry tbout 7,500 bushels of abodes, with a view to taking their skins, to show that they
grain, or from 140,000 to 170,000 feet of lumber.
There are no lock fees whatever, the State government in cluding all charges in the State toll of two cents per mile on the boat. Still there are what amount to charges, and it is against these demands that the boatmen call out so loudly. The lock officials will get a boat through in fifteen minutes or be half an hour about it, according to the receipt or refusal of a quarter of a dollar from the captain of the boat. Considering the number of locks on the canal between Buf falo and Albany, these black mailings become quite a serious

tax, and, when refused, involve a still more serious lossthe loss of time.

QUINBY'S GEOMETRICAL ARCHING BRICKS

Represented in the accompanying engraving is a new form of bricks for the construction of arches, without the use of

Fig 2.

forms, and which, it is claimed, will be of great use in the con-
struction of the bases of concrete bridges, fireproof roofs, etc.
abodes, with a view to taking their skins, to show that they
do not land in any considerable numbers on any known do not land in any considerable numbers on any known
ground. They begin to leave the islands early in October, ground. They begin to leave the islands early in October,
and by the middle of December have all left, and none are and by the middle of December have all left, and none are
seen again until April or May. A few hundred, mostly young pups, are taken by the Indians around Sitka, 1,200 miles eas of the islands, during the month of December, again in March, on their return to the islands, and in February off the coast of British Columbia; but in such small numbers as to make no appreciable difference in the immense number that visit the islands annually. It is claimed by the natives that the seals return invariably the second year to their places of birth, and, when not too of ten disturbed by driving, continue to do so. In or der to test the truth of this story Mr. Bryant Special Agent of the Treasury Department at St. Paul's Island, has instituted an experiment of an eminently practical character, although it might not command the entire approval of Mr. Bergh, whose jurisdiction, however, does not extend to Alaska. He had one hundred male pups selected before leaving, on a rookery one mile north of the village, and marked by cutting off their right ear; and a like number by cutting off the left ear, on a rookery to the south of the village. This has been done fo two years, and next year the first will be old enough to be taken, when the result will be ascertained.
It is evident that sharks or other voracious fish prey on the young pups while in the water from the fact that of more than a million pups annually the spring. \qquad

Walrus Hunting

Probably not less than fifty thousand walrus, with their young, were killed and destroyed last year by our arctic whalemen. Three fourths of the fleet were engaged in the business, but the walrus had gone far into the ice, and the did not do so well. The arctic walrus, says the New Bedford Mercury, " never forsake their young, but will take them in heir flippers and hold them to their breasts, even when thei destroyers are putting their sharp lances through and through them and the blood is streaming from every side, uttering the most heartrending and piteous cries until they die. The walrus averages about twenty gallons of oil and four pounds of ivory. But the worst feature of the business is that the natives of the entire arctic shore are now almost entirely dependent upon the walrus for their food, clothing boots, and dwellings. Twenty years ago whales were plenty and easily caught; but they have been driven north, so that now the natives seldom get a whale. This is a sad state of thing for them. The question now is, shall our whalemen keep on taking the walrus, and eventually starve and depop ulate these arctic shores? It will certainly come to that ulate
soon."

The Knoxville Cave.

Evidences multiply to show that Knoxville, Tenn., is built over an immense cave. The Chronicle of that city says that, in digging cisterns at the hotels, "the bottom fell out," and what were intended for cisterns made excellent sewers. Similar resu!ts followed excavations on other premises. The other day a public cistern, designed to hold 3,500 barrels of other day a public cistern, designed to hold 3,500 barrels of
water, had been completed; and seven feet of water had water, had been completed; and seven feet of water had
been measured, but it had all disappeared. Further investigation showed that part of the bottom had fallen in, and the water had run off somewhere into the interior of the earth.

srientifir gmmeram.

MUNN \& CO., Editors and Proprietors. PUBLISHED WEEKLY AT
 NO. 37 PARK ROW (PARK BUILDING) NEW YORK. $\begin{array}{ll}\text { O. D. MUNN. } & \text { A. E. BEACH. }\end{array}$

' The American News Co.," Agents, 121 Nassau street. New Y ork. The New York News Co.," 8 Spruce street, New York. A. Asher \& Co.,

Messrs. Sampson Low, Son \& Marston, Crown Building, 185 . Fleet
Greet, Trubner \& Co., 60 Paternoster Row, and Gordon \& Gotch, 121 Hol. born, Hill, , London, are the Agents to receive European subscription 8 .
Orders sent to them will be promptly attended to.
VOL. XXVI., No. 8. [New Series.] Twenty-seventh Year
NEW YORK, SATURDAY, FEBRUARY 17, 1872.

THE HEATING OF BUILDINGS BY STEAM

Our articles, published on pages 55 and 88, current vol ume, appear not to have cleared up some points, connected with this important subject, in the minds of all our readers. Of the difficulty those not thoroughly acquainted with the the ories of heat and steam find in comprehending these princi ples, the following quotation from the letter of a correspondent may stand as a fair specimen. He writes: "I am heating two drying rooms with about 2,000 feet of pipe in each. Am I to understand by what I read on page 55, present volume, that I get as much heat from 40 lbs . of steam as I do from 80 ? If not, how much do I gain by doubling the pressure? Is there any way I can bring the steam back into the boiler after it has passed through the drying rooms?" We propose to answer these questions in their order, not a to the single correspondent from whose letter we have quoted, but to numerous inquiries of similar import which we constantly receive.
The first question shows that our correspondent does not understand the difference, made by writers on steam, in the terms pound of steam and pound pressure of steam. Our as sertion was that one pound of steam (saturated steam, of course), that is, one pound of water converted into steam,one pound weight of steam-not one pound pressure, always contains the same amount of heat, at any pressure. The entire heat in a body of steam cannot be measured by its pressure, but only its sensible heat-its temperature-is so
measured. Thus steam at 20 lbs. pressure has a temperature measured. Thus steam at 20 lbs . pressure has a temperature
of 307° Fahr.; but this multiplied by the entire weight of steam gives a product representing only a little more than one fourth the entire heat the steam will impart before it congeals to ice, or less than one third the heat it will impart before condensing to water at 212°.
Now what we say is that, by taking the same weight of steam and increasing or lowering the pressure to which it is subjected, 'we shall not practicaily alter the amount of hea it contains, which is specific and constant at all pressures and that the amount of fuel required to produce this amount of steam will be a constant, except that, in producing team at high pressures and temperatures, there is greate waste by radiation from the furnace and boiler, and a larger
waste through the uptake. This waste is more than com pensated in the use of high pressure steam in engines, be cause of the increase of work obtained by using steam ex pansively; but in heating buildings it is an unnecessary waste, for which there is no recompense except that heat will radiate more rapidly from pipes carrying high pressure steam, and consequently a less extent of radiating pipe will be required to heat a given space. Hence the cost of the pipes would be less at the outset; but this would in most cases be offset by the increased cost of a boiler constructed to withstand high pressures. The use of high steam for heat ing is then a fallacy, which increases danger and lessen economy.
The third question is: How can I get the steam back to the boiler? We answer you cannot get it back as steam, un ess you pump it or force it back by some other mechanical means, and this leads us to the consideration of another popular fallacy, namtly, that steam circulates in pipes pre cisely as air does.
The difference between steam and hot air is this: Air is a mixture of gases that at any temperature known to science remains a gaseous mixture. Saturated steam is a gaseou compound, that never loses any portion of its heat without change of a part of it to water.

Let us see if we can make this plain. A pound weight o steam, under a pressure of 60 lbs. to the square inch, contain 307 units of sensible heat, and $711 \cdot 5$ units of latent heat
Now, these quantities of sensible heat and latent heat being Now, these quantities of sensible heat and latent heat being specific for steam at the pressure named, it follows that the subtraction by radiation of a single unit will result in the condensation of a portion to water, which can exist at atmospheric pressure as water with 966.5 less units of heat per pound weight than steam can. So if we go on subtracting heat we go on condensing; and if we maintain the pressure by new accessions, we are constantly condensing steam by robbing it of its latent heat; and the water thus produced gravitates toward the lowest part, which, if preperly connected with the water space of the boiler, will allow the water in the system of pipes to seek and maintain the same level as thatin the steam generator. Coming from the boiler as steam, it returns only as water. If the steam be used at atmospheric pressure, every 1,640 cubic feet will, by its condensation, be reduced to only one foot of water. 'This enor mous reduction of volume creates, so to speak, a vacuum into which the live steam rushes with a velocity far exceed ing that which could be created by the difference in the specific gravity of heated and cold air.
This is the secret of the rapidity with which heat is car ried by steam to long distances from the boiler, a rapidity so great that we once saw, in a large dyeing establishment, sixty hogsheads of water in one vat raised to the boiling point in five minutes. No possible application of heated air, circula ting by virtue of differences in specific gravity, could accom plish such a result in five hours, if indeed it could do it a all. The fact is, that there is no vehicle for heat known to science that,-in rapidity, can at all compare with steam. Bu there is for this purpose no need of high pressures. So long the partial vacuum, which the steam will expand and swift the partial vacuum, which the steam will expand and swift
ly fill, and thus the circulation, of steam outward from the ly fill, and thus the circulation, of steam outward from the
boiler and water returning, will be steadily maintained. This is true, of course, for all cases where the temperature of substance, to be heated or dried by steam pipes, does not require to be heated above 212°. If higher temperatures than
this are needed, the pressure of the steam must be increased this are need
accordingly.

SUBSTITUTING OTHER VAPORS FOR STEAM....ETHER AND BISULPHIDE OF CARBON.

The consideration that the latent heat of watery vapor is reater than that of the vapor of any other substance (se he table, paye 5 of the current volume), and that, conse quently, more heat is consumed by the evaporation of water
than by the evaporation of any other fluid, has given rise to he idea that it would be more economical to use another fluid an water for the production of steam and the transforma ion of heatinto power. Thus the amount of heat required to vaporate one pound of turpentine is scarcely one seventh of hat required for water, but then the boiling point of turpen ine is so much higher that the advantage might be counter alanced by the stronger fire required; but it is especially al cohol and ether which have attracted attention, as these iquids, besides requiring for evaporation respectively only bout one third and one sixth of the latent heat required by water, combine with this property that of possessing the low oiling points of 176° and 95° Fah. As ether in particula ppeared very advantageous in this respect, it has been ex ensively and thoroughly tried; and we remember to have een, among other attempts, a very large ether engine, buil the Novelty Works, New York. The execution of this undertaking was as thorough and perfect'as can be expected nly from a workshop possessing the superior capabilities of hat excellent establishment, now, alas! suspended by the esults of our unwise legislation on shipbuilding. The en ine worked, of course, on the condensation principle, as ethe is too expensive not to be used over and over again; and the method of surface condensation was here especially advan ageous. Experience proved that there was no advantage in he supposed lesser amount of latent heat cond this was largely dvantage being the lower boiling point, and this was largely verbalanced by the disadvantages in the practical working ats and oils, used for lubricating, and the ether vapors would pass through seams, cracks, and stuffing boxes which were perfectly steam tight, so that it was found next to impossile to keep it any length of time in the boiler; and, last but ot least, anywhere this hot vapor escaped it was in grea anger of taking fire, and would cause local heat, generat undue pressure, and become totally unmanageable; and it larmed the experimenters repeatedly to such a degree tha inally they threw up the ether experiment in utter disgust, and sold the machine for old iron.
The reason that there was found to be no advantage, in the fact that ether vapor contains less latent heat than wate apor, was simply in overlooking that these amounts of la ent heat are always given by weight and not by volume ; as however, in driving a piston by means of a vapor, we hav othing to do with the weight of the vapor used, but onl ith its volume (for, by every stroke, we must fill the cylin er, whatever be the weight of the vapor), we see at once that in order to come to a correct conclusion in regard to the econ-
omy of the latent heat consumed, we must compare this latent heat for equal volumes, and not for equal weights. In order to do this, we may reconstruct the table (given on page 5) for the latent heat of equal weights, into one for the latent heat in equal volumes of vapor; and this we may easily do by multiplying the latent heat of each vapor with its specific weight. The figures contained in the third column of the following table representing the relative amounts of latent
heat in the vapors of different substances which are there reduced to the standard of water $=1000$, by dividing each of these products by 0.433

Name.	Units of latent heat of vapor. weight.	Spec. grav. (Air $=1$.)	Product of latent heat gravity.	
Water.	. 962	$0 \cdot 45$	433	1000
Alcohol	. 385	$1 \cdot 25$	481	1111
Ether	. 162	$2 \cdot 26$	365	840
Oil of Turpentine	. . 133	$3 \cdot 21$	487	1125
Bisulphide of Car	bon 210	$2 \cdot 60$	546	1261
Ammonia. 900	0.59	531	1226
Carbonic Acid.	. . 300	$1 \cdot 53$	459	1060
Chymogene...	. 140	$4 \cdot 0$	560	1293

It is seen from this table that, in consequence of the fact that the vapors which possess the least latent heat are the heaviest, and therefore possess, for the same weight, the smallest bulk, the relative amounts of heat for equal bulk do not differ materially; or at least it is seen that the differ ence of the extremes, in place of one being more than seven times the other, as is the case with ether and water, are incon siderable, when we compare equal volumes, differing less than one third part in the most extreme cases; in fact they are so small that some investigators have come to the conclusion that in all cases the same volume or bulk of vapor is pro duced by the same expenditure of latent heat, and conse quently of fuel, whatever be the liquid which is evaporated asserting that the differences in the figures of the last column are only due to the errors of observation consequent upon experiments of so delicate a nature as the determination of the specific gravity of gases and vapors, and of the latent heat absorbed by their evaporation-a conclusion of a cog nate nature to that in regard to the same amount of specific heat, which the atoms of all elementary bodies appear to ossess, and which was spoken of on page 389 of our las volume.
A liquid as volatile as the ether being thus almost uncon rollable over fire, in a steam boiler, the next question is Can it not be heated in another way, say by means of the es caping steam of a high pressure engine? Or may it not be inclosed in a tubular boiler, through the tubes of which, in place of the flame and heat of coal, the exhaust steam is passed before going to the condenser? There is no doub that in this way we may utilize the exhaust steam, without producing any back pressure, as has been the case with most other contrivances suggested for this purpose. As the ex haust steam may have a temperature of some 240°, and mus have at least 212° (otherwise it can be no more steam), we may develop considerable pressure in a boiler containing ether, heated in this manner. According to Régnault, the pressure of the ether for different temperatures is as follows table of regnault for the pressure of ether at DIFFERENT TEMPERATURES.

Degrees Fahrenheit.	Degres Centigrade.	Pressure of ether in atmospheres.
240	116	9.25
230	110	8
212	100	6
194	90	5
176	80	4
185	70	4
140	60	3
122	50	2.5
104	40	2
86	30	$1 \cdot 33$
68	20	0.8
50	10	0.6
		0.33

It is seen from this table that the heat of exhaust steam is amply sufficient to develop considerable pressure by the in ervention of ether in a separaie condensing engine; but as ether is a quite expensive sub stance, being a product of chemical action on organic growth, the next question is: Can it not be superseded by another cheaper ingredient? And the nswer is affirmative. We find in the table, on page 5 of this volume, bisulphide of carbon mentioned; this substance eing simply a product of the combustion of charcoal in an tmosphere of sulphar vapor, CS_{2}, as carbonic acid is a pro duct of charcoal in an atmosphere of oxygen, CO_{2}, can be, an now manufactured very cheaply, while its boiling poin 113° Fah.) is only 18° higher than that of ether. The abov table, given for the pressure of ether, is approximately cor-
rect for that of bisulphide of carbon, if we add 18° Fah. or rect for that of bisulphide of carbon, if we ad
10° Centigrade to the temperatures mentioned. 10° Centigrade to the temperatures mentioned.
We are happy to find that the idea has been realized, and that at present, in the city of Boston, a steam engine* is suc cessfully in operation, in which the heat of the exhaust steam heats bisulphide of carbon, and so originates a new pressure in another boiler even surpassing the first pressure, that of the steam in the boiler heated over the fire. Such a bisul phide of carbon engine may, of course, be separated from the steam engine, or may be so connected as to act on the ame shaft and to form a single engine, in which the grea problem, of changing as much of the heat as possible into wer, will be much nearer to solution than was ever th power, will
case before

THE INDIRECT INFLUENCE OF INVENTION UPON MANUFACTURES, ARTS, AND COMMERCE

In a recent editorial, we spoke of the direct beneficial in luence of patents upon general business. We propose now to notice some of the ways in which business is indirectly benefitted by invention, the latter having undeniably been reatly stimulated by our patent system
In the first place, business is helped by the increased facil ities for its transaction afforded by such inventions. Com munication, transportation, printing, all of these have been *This
volume.
improved so much during the last fifty years that even we who live in the days of the telegraph, ocean steamers, railroads, and steam power presses, do not at all realize the magnitude of the change. Fifty years ago such a business as is transacted by more than one firm in New York could not have been created even by the greatest business capacity. In creating these immense concerns, the proprietors have had the aid of cheap printing to advertise them, of railroads to bring them customers from distances that fifty years ago would have occupied months to traverse, of the telegraph to transmit orders, and of a hundred of other improvements. The steam elevators, that raise their numerous customers to the acres of Hoors in the upper parts of their buildings, are patented machines. The bills and forms, which enable them to transact their business without confusion, are executed cheaply by patented machinery. The paraphernalia of their counting rooms include numerous patented helps to business. The very goods they sell are mostly manufactured by patented looms, driven by patented water wheels or steam engines.
Even the currency is so improved that the counterfeiter finds his deception more difficult and more easily detected. But there is a still more indirect way in which general business is benefitted by the patent system. In this Yankee land, where the masses are constantly enlightened by the agency of the common schools and newspapers, every lad before he is fourteen knows something of the nature of patents, and has heard of money made and to be made in the invention or in the business manipulation of some patented improvement. The most ambitious often see, or think they
see, that this way lies fortune. Many are thus induced to see, that this way lies fortune. Many are thus induced to
interest themselves in machinery, and to acquire some interest themselves in machinery, and to acquire some
knowledge of mechanism. We thus have become a nation of mechanics, ready at the moment any exigency of agriculture, manufactures, commerce, or war, suggests a want, to act upon the suggestion, and the needed improvement shall be forthcoming. The farmer's boy invents his churn, bis dog power, his washing machine, before he is twenty, and, by the time he reaches middle life, understands enough about machinery to run a saw mill, or even something more complicated, if necessary.
It is this utiversal, although partial, knowledge of mechanics that has rendered the introduction of agricultural machinery so successful in this country, and has so increased the production of the soil, that every commercial artery is now plethoric with the teeming harvests of our inland do main. Who, fifty years ago, would have thought of cultivating a thousand acres of wheat? The chances of harvesting
without serious loss this amount, by any help attainable at without serious loss this amount, by any help attainable at
that time by a single farmer, would not have been one in a hundred. The modern harvester, the threshing machine has changed all that, and no one now thinks of impossibility in connection with harvesting a thousand acres.

What has caused the unprecedented growth of this great commercial center, New York? New York, as it now is, would have been an impossibility without the improvements we
have named. Not a bushel of wheat from Illinois or Minnehave named. Not a bushel of wheat from Illinois or Minne of the large business houses which now crowd the lower part of the city would have been heard of ; the busy manu facturing towns that fill their establishments with wares would have been nothing but hamlets, and the vast prosperity, that have been one of the most brilliant chapters in history.

AGRICULTURAL CHEMISTRY AND CHEMICAL MANURES

The researches of that veteran chemist, Baron Liebig, and others in the analysis of soils and the use of artificial man ures did not result in such extensive progress in agriculture as was anticipated. As the effort to apply the knowledge gained by these researches was made throughout the world by intelligent agriculturists, it became evident that there was still some lack in agricultural chemistry, some mysteriou circumstance, relation or element, that defeated this endeavor. As a consequence, the idea of chemical farming be came a thing to be lidiculed, and fell into an ill repute which still attends it. The prejudice thus created will for a long time impede progress; but there cannot be a doubt that the missing link, which, if found in Liebig's researches, would have resulted in success instead of failure, has at last been discovered.
In the light of this revelation, the cause of the failure to apply chemical principles to agriculture is plain. We find t fully explained in the lectures of M. Ville, a translation of which, as delivered at the experimental farm of Vincennes France, now lies before us.* These lectures are, we believe the most important contribution to agricultural science that has appeared during the last half century. In our review of them, which we shall not attempt to make exhaustive, we shall extract some passages which will give a glimpse of their character to such as have not yet read them. In the third lecture, M. Ville remarks
A priori, one would think that a chemical analysis which acquired at the same time so much delicacy and certainty, ought at least to give us a means of estimating with certain ty the richness of the soil, and so guiding us in the choice of the manure best suited to its nature. There is none, how ever, and I defy the most skillful chemist to say in advance
what will be the return from earth submitted to him, and what will be the return from earth
what manures are most appropriate.
A few words will explain the reason why chemistry is powerless to furnish us with these indications: you must recall the distinctions we have drawn between the different elements of which the soil is composed.

Let us suppose a soil containing both quartz sand and felspar sand among its mechanical elements. For vegetation ca and nothing but silica, while the second is a silicate base upon lime, potash and soda, besides containing phosphate o lime in very feeble but appreciable quantities.
Here, then, are two bodies whose composition, in spite of similitude of exterior, have no analogy ; and which, however, are equivalent in an agricultural point of view, because, the
felspar being insoluble in water, its rolle in regard to vege tation descends to that of the quartz sand, that is to say, to a simple mechanical element. But for the chemist, there are no insoluble bodies, so he confounds in one whole the potash, lime and phosphate of lime that the felspar sand contains, though they are of no use in vegetation, with the product
of the same nature which we have ranged under the class of of the same nature which we have ranged under the class of
active assimilable elements. Thus is explained the insufficiency of the signs with which chemistry can furnish us.
In order to understand fully the meaning of this quotaion, it is necessary to say that M. Ville includes all the essential constituents, of soils in which plants can grow, in the category of fertilizers; but he divides them into two classes, the first of which is azotic or nitrogenous matter, and the second of which includes ten mineral substances, only three of which, phosphate of lime, potash, and lime, are so directly connected with the growth of plants that they need occupy the attention of the agriculturist in his attempt to restore to soils what has been drawn from them by the growth of crops. The other minerals act mechanically and are hence called mechanical fertilizers; but M. Ville maintains that they exist naturally in sufficient quantities, and that it is not necessary to provide them. So far as the mere growth of plants is concerned, this is probably correct, but there are doubtless many cases in which it is desirable add some material not directly concerned in plant growth for the purpose of modifying stiff soils, or tempering light

The most favorable conditions of soil for plant growch be ing the presence of azotic matter, phosphate of lime, potash and lime, M. Ville calls a mixture of t ese substances "th complete fertilizer." The non-assimilable elements are con sidered as purely mechanical in their effects.
The following experiments are given to illustrate these facts:
In burnt sand, free from all additions but moistened with distilled water, wheat acquires but a rudimentary develop ment-the straw hardly attains the dimensions of a knitting
needle. In this condition, however, vegetation follows its usual course ; the plant blooms, bears grain, but in each head there are but one or two dwarfed, badly formed grains. Thus, without soil, the wheat finds in the water it receive and the carbonic acid of air, aided by the substance of its grain, resources sufficient-sorrowfully, it is true, but at last to run through the entire cycle of its evolution. tain 108 grains of harvest. Add the ten minerals (phosphor us, sulphur, chlorine, silicium, calcium, magnesium, potassi um, sodium, iron and manganese) to the sand, excluding the Under these and the result is but little more.
Under these new conditions, the wheat is a little more de veloped than in the preceding case, but the harvest is stil more feeble; it reaches 144 grains. Suppress the minerals
and add only azotic matter to the sand ; the growth will stil be mean and stunted, but the harvest will slightly increase as it reaches 162 grains. Let us follow the changes. In pure burnt sand, 108 grains; with minerals without azotic matte 144 grains; with azotic matter alone, 162 grains.
In this iast case, a new system is shown. As long as we leaves show a yellowish-green color. As soon as we add azo tic matter to the sand the leaves change their color, becomin ing a dark green. It seems as if vegetation would take its usual course, but the appearances are deceitful; the harvest is still feeble.
Let us attempt a third experiment, which will, in a meas ure, be a synthesis of the three preceding. Unite azotic
matter and the minerals in the burnt sand. This time you will be tempted to believe in the intervention of a magician the phenomenon so far surpasses those preceding it. Just now
the growth was languishing, doubtful, diseased; now the plants shoot up as soon as they break the ground; the leave are a beautiful green; the straight, firm stalk ends in a head
filled with good grain; the harvest reaches from 396 to 450 grains.
You s.
de by choice, we have succeeded in artificially producin vegetation to the exclusion of manures and all unknown sub
You w
You will acknowledge that this is an important and fundamental point. No more mystery, no undetermined power some chemical products of a known purity, distilled wate esult, a harvest comparable in all points to the best obtained in good earth.
We are, therefore, justified in saying that the problem of
egetation here receives its solution, for we have not only egetation here receives its solution, for we have not only ion, but the degree of importance of each of the concurrin agents.
Azotic matter in its decomposition furnishes ammonia and nitrates; and the clay constitutes a receptacle which hold and gives out gradually as may be required these important ingredients. M. Ville divides plants into two classes, ac Thus as they draw their nitrogen from the air or the he form Beets prefer it in the form of nitrate and take it from the soil. Peas and the other leguminous plants prefer to take it as a gas from the air. The consequence of this distinction is that plants which take nitrogen from the air will flourish in a soil containing only the other elements of the complete fertilizer, namely, phosphate of lime, potash and ime. Therefore, by planting in a soil one of each of the two classes of plants, it is pessible to tell whether the soil
contains the azotic and mineral matters or not. Thus, if peas and wheat be planted in the same soil, and the peas yield well while wheat yields little, the land has the min
eral elements but lacks the azotic or nitrogenous matters.

At Vincennes, previous to the fertilization of the soil, the land produced nothing, and hence was proved deficient in all the elements of the complete fertilizer, by the addition of which it has been made extremely productive.
As chemical analysis of soils fails for reasons above stated he ricbness of the soil is determined as follows:
Suppose you institute seven cultures of the same plant-
may be of the beet or wheat, as you will may be of the beet or wheat, as you will.
To the first give the complete fertilizer:
To the first give the complete fertilizer; to the second, the same fertilizer excluding azotic matter; to the third, the
complete fertilizer deprived of phosphate of lime; to the complete fertilzer
fourth, the complete fertilizer less the potash; to the fifth, less the lime; to the sixth, less all the minerals-that is to say, reduced to the azotic matter; the seventh not having received any manure.
It is very evident
It is very evident that if, in the complete fertilizer, the ef fect proper to each component is manifest but as it is associ-
ated with three others, the comparison of the returns obtained from the seven strips of the little field ought to indicate what the soil contains and in what it is wanting.
In this system of investigation, the culture with the complete fertilizer becomes, in a measure, the invariable stand ard of comparison to which are referred the returns of the other strips of ground; and, according as they approach or
recede, we conclude that the earth contains or does not contain the element which has been voluntarily excluded from the fertilizer.
To put the value of this method beyond doubt, M. Ville eports the results given under three different conditions. At the experimental farm at Vincennes were obta
1864, the following proportional returns from wheat :
With the complete fertilizer

> without lime.
> potash.....
> azotic matte 5644

Without any fertilizer.
The conclusion is evident. At Vincennes, the complete fertilizer was necessary; the azotic matter was most deficient.
An eminent agriculturist of the department of the Somme furnished a second example, which is upon the beet
With the complete fertilizer.
without lime
potash...
phosphate...
4504
4103
3703
................. 2202
Without any fertilizer.................. 220 You see here, also, the earth is wanting in azotic matter, he complete fertilizer
The third example is from a culture of sugar cane, insti-
tuted by the Hon. M. de Zebrun, of Guadaloupe, a former elegate from that colony
 If I add that sugar cane particularly draws its azote from
he air, you will conclude that the soil is particularly want ng in potash and phosphate of lime.
Here are, then, two methods of knowing the richness of
the land. The first is founded on the culture of two different plants without any fertilizer, and the second, on the cultur f the same plant with five different fertilizers. These two pplications of the same principle lead to the same results, I need not add that for
ignification, the earth must not be used until the effect of aach fertilizer has been spent.
By the aid of our experiments in burnt sand, and with only chemical products, we have realized a theoretic scale of culture whose progressive returns have shown us the laws which regulate vegetable productions. By the light of the ize practical processes of analysis accessible to all, whose testimony is of almost absolute certainty, and by means of which we can always say what a land contains, what it
needs, and can consequently determine the nature of the needs, and can consequently determine the nature of the
agents to which we must have recourse to fertilize it. In subsequent lectures, M. Ville gives tabulated statement f results from the use of what are ordinarily called chemi cal fertilizers, that is, such as are not directly of organic or gin. These statements indicate that the chemistry of plant growth is destined to pass from under the odium of previous failures, and take its place in the sciences as a splendid colin agriculture.
We cannot extend our remarks and quotations further, b it we will say that we have rarely examined a work more eplete with interest, or perused a record of experiments in which the true scientific method has been more closely fol lowed.

SHORT EXTRACTS FROM A FEW LETTERS

An esteemed correspondent from Fort Concho, a remote spot in western Texas, forwards us a long list of subsctibers, and states as follows: " This post is far west of any organized county, cultivated land, or. signs of civilization of any kind. The citizens, if such they can be called, are mostly refugees from Mexico or outlaws from the States. Every one goes around armed to the teeth, homicides are common, and horrid shooting affrays are more so. Military law is the only law we have, and that has no control over these outside ' citizens.' When we reflect on the kind of men who recruit the army in time of peace, and what reckless men are willing to drive the mails, by stage, through these wild regions among hostile Indians and more dangerous 'citizens' (though the stage is always escorted by a soldier), we cannot wonder that there is no safety for money in the mails.'
Another says: "I live in a small village, where there is more taste for whiskey than for science. It is hard to form a club of ten without cutting a club to break my own head. I have received five names by advancing the money for three, the fourth being a present to my brother in Nebraska; for the balance of the club, I am "going it alone. I hope

I won't lose more than my trouble. I will try to circalate them and get my money back if possible.'
The following is gratifying to any who feel interested in the education and mental improvement of the young: "I cannot express to you what amusement your paper gives to my boys, nor what interest it awakens and fosters in them The subscription is from their purses, and they prefer your weekly to any other they have received."
A Chicago friend writes as follows: "I have been burned out in the great fire (October 9, 1871), to the tune of ten thousand five hundred dollars, besides suffering many conse quent inconveniences resulting from my losses, but I can go hungry a whole day and be merry; yet if I fail to get the Scientific American at its proper time, my equanimity is disturbed and I become a piece of broken machinery, "out of gear." I hope you will see to it that my paper is sen from your office as early as possible after it is printed.'

SCIENTIFIC AND PRACTICAL INFORMATION.
 the recent eclipse

One section of the English expeditionary party in India chose Bekul, on the western coast of the Madras Presidency, as the point of observation. The chief results are published and the existence of radial lines, well marked and distinct in the corona is now established. These seem to demand our acknowledgdment of the existence of forces extending outwards from the center of the sun. Their exact position and narrowness, says Mr. Proctor, force this conclusion upon us.

PYROLIGNEOUS ACID

Professor Cox, State geulogist of Indiana, has recently ex perimented with pyroligneous acid, and claims that his re sults give us some new light on its nature and constituents. The acetic acid of the drug stores is usually derived from crude pyroligneous acid, and the latter has thus been erroneously spoken of as an impure acetic acid; but in the experiments of Professor Cox, acetic acid burned, steadily but not raipdly, with a reddish purple flame full of scintillations, while the pyroligneous acid of commerce boiled away with out sparkling. In another experiment, the Professor found that the vapor of pyroligneous acid extinguished the flame of burning paper, while that of acetic acid left it undis turbed, but did not itself ignite
These facts do not appear to us to show that the two acids are different in their natures, as it is well known that acetic acid will burn, and that when diluted with water, as in py roligneous acid according to the usual theory, it will not.

> a resisting medium in space.

The retardation of Encke's comet, amounting to about two and a half hours in its period of three and a half years has been frequently cited as a proof of the existence of a medium in space, of sufficient weight to resist a body of such extreme tenuity as a comet. This explanation of the mystery of space has been objected to by Professor Asaph Hall, who gives his reasons in the following words: "So far as the motions of comets have been determined, the evidence is against the theory of a resisting medium in space. Thus far, the observations of the planets lead to the conclusion that their motions are in strict accord with the law of gravitation; and in the disputes about the acceleration of the mean motion of the moon, no one has thought to seek its cause in a resisting medium, but much more probable causes are at hand. Encke's comet, therefore, stands alone in the strange anomaly in its motion which the calculations have shown. If it be proved that the diminution of the periodic time actually exists, this anomaly must be considered as a peculiarity of Encke's comet, and its cause must be sought for in something which distinguishes this comet from all others. It was early pointed out, by Olbers, I think, that this comet moves through those regions where the zodiacal light is seen. Possibly, also, the numerous meteoric streams which are moving around the sun, and which are closely connected with the orbits of some of the comets, may exert an influence on their motions."
balancing slide valves.
A correspondent states that it is the common practice, with western engineers, to calculate only the areas of ports, in es timating the pressure upon slide valves with a view to balance them. We can scarcely credit this statement, and think our correspondent must be mistaken. If the faces of will be the product of the entire area of bearing surface and ports, in inches, multiplied into the pressure per square inch maintained in the steam chest. This, multiplied into the coefficient of friction existing between the surfaces, will give the force required to move the valve under such pressure when unbalanced. Practically, there are few valves that are perfectly fitted, or that remain so if properly fitted at first. Any sure method of balancing slide valves for general use should therefore provide for experimental adjustment
the sun's effect on the magnetic needle.
It was observed by D. Müller that the variation of the magnetic needle pursued its regular course till the commencement of the recent eclipse. It then began to retrace its steps until it reached its minimum declination at 1 h . 58 m. , which was the instant of totality. After that moment, the ascending motion towards the west recommenced, and continued until the needle regained the exact position it had occupied when the eclipse began.

Le Génie industriel

We regret to learn that the journal of the brothers Armengaud, published under the above title, is discontinued

Forty volumes have been issued during the twenty years of its existence, and it had till lately an extended circulation and a justly acquired celebrity; but the recent disastrous war on French soil has paralyzed so many industries and impo verished so many mechanics and manufacturers that its pub lication became no longer a source of profit to its esteemed proprietors and editors, who look hopefully for the resusci tation of mechanical and industrial science in France at no very distant date.

WILL YOU FAVOR US?
Will subscribers to the Scientific American, who have duplicate copies of No. 1, 2, or 3, of this volume, or other who do not preserve their numbers for binding, re-mail back o this office what they are willing to spare?
At the commencement of the year, we printed several thou sand more copies of each number than we had subscriber for, and as many as we anticipated a demand for; but sub scriptions have come in so much faster than we expected that the first three numbers are nearly exhausted. The pul lishers will be obliged to any of their patrons if they return all or either of the above numbers. Address Scientific American, New York.

A GOOD MONTH'S WORK.
Since the first of last January up to February 5th inst.a little over one month-201 United States patents have been issued to inventors whose specifications and drawings were prepared at the office of the Scientific American. This number, as large as it is, does not include a considerable number obtained through this office in foreign countries

Death of Mr. Joseph B. Lyman

Mr. Joseph B. Lyman, lately deceased, was for the last four years of his life agricultural editor of the New York Tribune, having previously filled a similar position on the New York World, and having edited at one time Hearth and Home. He had traveled much in many parts of the United States, and was thoroughly acquainted with agriculture in all the localities he had visited. Among the many friends who mourn his untimely death are most of the eminent men in journalism and agriculture on this continent.
The submarine telegraph cable from Florida to Cuba, as we noted some time ago, was supposed to have been injured either by the bites of the sea turtles, or of some kinds o fish ; and we now learn that in China a similar difficulty has been experienced in consequence of the attacks of a minute crustacean. This is so small as scarcely to be perceptible to the naked eye, but can be readily defined under the micros cope. Various breaks have been satisfactorily referred to the agency of these animals, which had embedded them selves in the gutta percha. It has become necessary, there fore, to envelop the cables in certain localities with an exter nal supplementary layer of metallic wire, in order to pre vent injury in this manner.

Patent Infringement Suits.-Francis and Loutrel versus Mellor and Rittenhouse, and the same versus Godfrey \& Co or infringement of plaintiffs' patents for making printing rollers of glue, glycerin and sugar. Judge McKennan, in the United States Circuit Court at Philadelphia, has render d a decision adverse to the claims set up by Francis and Loutrel, and holds that they are not entitled to any broad claim as the first users of these ingredients, but are limited to the proportions substantially as described in their specifi ations.
Mr. Thaddeus Hyatt, formerly of this city, and the in ventor of the glass covered gratings now so commonly used has patented some new improvements connected with build ings, having for their object to render them fireproof. As a substitute for iron beams and brick arches for floors, he pro poses wrought iron tubes, placed side by side. Other im provements consist of hollow bricks filled with plaster of Paris or alum, or other mixtures, which, like them, hold considerable water. Wire laths covered with similar compound are also su
materials.

The experiments on beet root sugar made at the Amhers Mass.) Agricultural college, during the past year, have been so successful that it is intended to ask the Legislature now in session to grant a charter to a company contemplating the manufacture on an extensive scale. They ask ten years immunity from taxation on account of the experiment al nature and public importance of their enterprise. We hope the Legislature will grant the charter as asked for, and thus encourage a new industry in the old Bay State.

The business address for the American Road Steam, George W. Fitts, inventor, illustrated in No. 6, is: American Road Steamer Company, 24 South Front street, Philadelphia, Pa.

Examples for the Ladies.

Mrs. Amelia Coutant, Brooklyn, N. Y., has had her Wheeler \& Wilson Machine since June, 1869 ; has, besides other sewing, made 836 pairs of panwork. She was self-taught, and has broken but two needles of the origina work.
dozen.
Miss Adelaide Perry, Bloomington, Ill., says: We have had our Wheele
\& Wrison Machine in use eleven years mithout repairs, and it runs as well as the day it was bought. Last year I earred with it 8485.85 , besides doing the
sewing for a family of eight persons, and considerable other work.

2usimess aua zersonul

The Charge for Insertion under this head is One Dollar a Line. If the Notaces
exceed Four Lines, One Dollar and a Balf ner Line will Valve Refitting Machinery, sold by C. F. Hall \& Son, sole manufacturers of the only original Patent Machines. Office, 21 Murra street, Ne
ickel Plating without Battery. A new, superior, and infal lible mode, for sale by W. F. Wuterich \& Co., Harlem R. R. Building

000 Tun Grind
New
, Nova Scotia \& Ohio Grindstones-Mitchell,Phila
Patent Self-acting Horse Holder for Sale. State Rights, Very simple. Can be attached to all kinds of vehicles. Will give them
vast preference. Saves life, property, \&c. Address Abm. Quinn, Marcy Avenue, Brooklyn, L. I.
For Sale—At 89 John St., Brooklyn, N. Y., one Trip Hammer and several portable Forges and Bellows.
Portable Mulay Saw Mill, that may be run profitably by the power of a Thrashing Engine. Man
Indianapolis, Ind. Send for circular.
Daniel's Planer I want a good Second Hand or New one, to plane 24 feet long, for cash. C. Kratz, Evansville, Ind
Power Presses, average weight 1000 lbs. Price $\$ 175$. Will make a washer at one stroke. J. E. Coxeter Winchester, N. H.
Wanted, a Second Hand Daniel's Planer. Parties having one to sell, address Centerville \& Co., Box 701, New London, Conn.
The N. Y. Manuf'g Co., 21 Courtland St., N.Y., buy, sell, and manufacture Patented articles. Illustrated Catalogue, 48 pages, free. To Barrel Manufacturers-Wanted a position as Superin tendent, by a man who thoroughly understands the manufacture of Barre
by machinery. First class reference. Address Barrels, 1323 North 19th Street, Philadelphia, Pa.
Patent Rotary Engine; for all purposes, two to one hundred horse power; equal to any, for less price. Send for particulars and price
list to John A. Lighthall, Beekman \& Co., corner Imlay and Verona Streets, Brooklyn, N. Y
Wanted-A machine for stuffing Horse Collars with straw Address A. J. S., Pendleton, s. C.
The paper that meets the eye of manufacturers throughou the United States-Boston Bulletin, 8400 a year. Advertisements 17 c . a line Best and Cheapest-The Jones Scale Works,Binghamton,N Y Save your Boilers and Save Fuel. Use Thomas's Scale Dis solver, Elmira, N. F., and will ship by cheap freight.
New Pat. Quick and easy way of Graining. First class imita tions of Oak, Walnut, Rosewood, \&c. Send stamp for circular. J. J Callow, Cleveland, Ohio.
Foot Lathes and Castings for small Engines. E. P Ryder 252 Plymouth St., Brooklyn, N. Y.
The "Railroad Gazette" will be sent three months for $\$ 1.00$ Address at 72 Broadway, New York
Sperm Sewing Machine Oil, in Bottles, Cans, and Barrels W. F. Nye, New Bedford, Mass.
L. \& J. W. Feuchtwanger, 55 Cedar St., New York, Manufac turers of Silicates, Soda and Potash, Soluble Glass, Importers of Chemi
cals and Drugs for Manufacturers' use.
mproved Foot Lathes, Hand Planers, etc. Many a reader of this paper has one of them. Selling in all parts of the country, Canad Europe, etc. Catalogue free. N. H. Baldwin, Laconia, N. H.
Edson's Hygrodeik is the best Hygrometer in use. Send for circular. Geo. Raymond, Fitchburg, Mass., Gen'l Agent for United States. We will remove and prevent Scale in any Steam Boiler, or make no charge. Geo. W. Lord, 232 Arch street, Philadelphia, Pa.
Rubber Valves-Finest quality, cut at once for delivery; or moulded to order. Addres Gutta Percha \& Rubber Mr'g Co., 9 \& 11 Par
Hydraulic Jacks and Presses, New or Second Hand, Bough and sold, send for circular to E. Lyon, 470 Grand Street, New York.
Williamson's Road Steamer and Steam Plow, with Thomson's Tires. Address D. D. Williamson, 32 Broadway, N. Y., or Box 1809.
Boynton's Lightning Saws. The genuine $\$ 500$ challenge Will cut five times as fast as an ax. A 6 foot cross cut and buck saw, 8 E. M. Boynton, 80 Beekman Street, New York, Sole Proprietor.
For Hand Fire Engines,address Rumsey \&Co.,Seneca Falls,N.Y Over 800 different style Pumps for Tanners, Paper Makers, Fire Purposes, etc. Send for Catalogue. Rumsey \& Co., Seneca, Fals, N. Y Grist Mills,New Patents. Edward Harrison, New Häven, Conn Practical Suggestions on the Sale of Patents." Send for circulars. W. E. Simonds, Hartford, Conn.
tandard Twist Drills, every size, in lots from one drill to 10,000, at $\$$ manfacturer's price. Sample and circular mailed for 25 cents.
H. E. Towle, 176 Broadway, New York. H. E. Towle, 176 Broadway, New York.

Taft's Portable Hot Air Vapor and Shower Bathing Apparatus Address Portable Bath Co., Sag Harbor, N. Y. Send for Circular.
For Steam Fire Engines, address R. J. Gould, Newark, N. J. All kinds of Presses and Dies. Bliss \& Williams, successor to Mays \& Bliss, 118 to 122 Plymouth St., Brookiyn. Send for Catalogue. Brown's Coalyard Quarry \& Contractors' Apparatus for hoisting and conveying material by iron cable. W.D.Andrews \& Bro,414 Water st.,N. Y Presses, Dies, and Tinners' Tools. Conor \& Mays, late Mays \& Bliss, 4 to 8 Water st., opposite Fulton Ferry, Brooklyn, N. Y.
Over 1,000 Tanners, Paper-makers, Contractors, \&c., use the Pumps of Heald, Sisco \& Co. See advertisement.
For $2 \& 4$ Horse Engines, address Twiss Bros.,New Haven, Ct Peck's Patent Drop Press. Milo Peck \& Co., New Haven, Ct Vertical Engines-Simple, Durable, Compact. Excel in econ omy of fuel and repair. All sizes made by the
Indianapolis, Ind. Send for cuts and price list.
Millstone Dressing Diamond Machine-Simple, effective, du rable. For description of the above see Scientiftc American, Nov. 27th
1869. Also, Glazier's Diamonds. John Dickinson, 64 Nassau st., N. Y. For Solid Wrought-iron Beams, etc., see advertisement. Ad dress Union. Iron Mills, Pittsburgh, Pa., for lithograph, etc.
Mining, Wrecking, Pumping, Drainage, or Irrigating Machin ery, for sale or rent. See advertisement, Andrew's Patent, inside page. To Ascertain where there will be a demand for new Machin ery' mechanics, or manutacturers' supplies, see Manufacturing N
United States in Boston Commercial Bulletin. Terms $\$ 4,00$ a year.

Burnett's Cocoaine dresses the hair perfectly, without greasing, dry ng, or stiffening it.
 Hoterequwevies.

1.-Purification of Zinc.-How can old zinc be made pure, or nearly so?-E. M. D.
2.-Application of Gutta Percha.-How is the gutta percha, which surrounds the helices in most telegraph instruments, put on?
3.-Galvanometer.-How can I construct a cheap and effective galvanometer for galvanic electricity?-E. M. D.
4.-Cleaning Bronze.-Will some of your readers give 5.-Scene Painting.-What kind of paint, that will not ub off, is the best to use for painting scenery? -Q. R.
6.-Cement for Cast Iron.-How can I make a cement
7.-Measuring Altitude by Boiling Water.-Is th any way to tell the elevation above the sea, by the boiling point of water with the aid of a thermometer?-F. A. C.
8.-Galvanizing Small Iron Castings.-I want to know the cheapest and simplest way of effecting this. -J. E.
9.-Breaking up Old Iron.-I would like to know the best m
$\mathrm{w} . \mathrm{L}$.
10.-Speed of Shaft.-How many revolutions per minute s it safe to run a shaft containing two cast iron arms, 20 inches long, and inuches square? As the work is to
o how fast it is safe to run it.-W.
11.-Polishing Wood.-Will some one of your correspondents inform me how to construct a polishing wheel to polish boards of both ard and soft lumber?-W. M. H.
12.-Steam Engine Construction.-If two engines are set quartering, so that they both work on one crank, will one eccentric do
o work both valves, and do it as well as one eccentric to each valve?-M.H. A. 13.-Voltaic Pile.-Will some correspondent please in orm me how to make a cheap voltaic pile?-T. F. G.
14.-Ginger Beer.-Will some one give me a receipt to make ginger beer, that will keep good for a month, and also, the best mode
of fermenting, filling bottles, corking, tying, etc?-F. L. C.
15.-Pressure in Steam Boiler.-- Which make the greater pressure on a steam boiler, steam of ons hundred pounds to the square inch,
or hydrostatic pressure of one bundred pounds to the square inch ? Which or hydrostatic pressure of one bun
strains the boiler most?-D. R. R.
16.-Boring Conical Cylinder.-How can I bore out a hole in a cylinder 40 inches long, tapering truly from end to end, 12 nnches in diameter at one end, and diminishing one eighth of an inch in the 40
inches? 1 am to do the job with ordinary tools of a machine shop, on a lathe with a boring bar 10 feet long.-J. F. W.
17-Variation of the Compass.-Will some one please inform me, throagh the Scientific American, what the variation of the
compass is, this year, at Portsmouth, N. H., and whether, and how much a compass is, this year, at Portsmouth,N. H., an
year it is increasing or decreasing?-F. A. C.
18.-Ringing Goblet.-Will some reader please inform me what is the cause of a gobletringing when the wet finger ends are rub 19.-Dividing a Circle by Radil.-Is there any method, other than the tedious one by repeated trials, of dividing a circle into a
given number of equal parts, when the number is a large prime number, say given number of equ
61 or 73 ?-R. C. W.
20.-Hardening Iron by Roliling.-Can thin-say one xteenth inch-iron be cold rolled as hard and elastic as if hammer hard
ened? And if so, what kind of rolls should be used? Would a roll of large diameter, and a flat, movable bed do?-W. S. H.
21.-Hydraulic Cement.-Will some one kindly furnish, through your columns, a formula for manufacturing hydra
a description of the stone used for that purpose?-J. A. \mathbf{T}.
22.-Metals Under Steam Pressure.-Which of the metals, iron, steel, brass, copper, or any other, excepting gold, that will re 100 pounds per inch?-J. A. T.
23.-Gasoline.-Will some of your readers please answer the following questions? What are the chemical constituents of gas evapo
rated from gasoline? Is it explosive when mixed with common air, and, ir rated from gasoline? Is it explosive when mixed with common air, and, it
go, in what proportion? What is the cost per 1000 feet, not counting interest etc., on machinery? An early answer will oblige.-J. A. G
24.-Sand in Drive Well.-I have a four inch drive pipe well, 75 feet deep. There is a rock bottom at a depth of 81 feet. When
opened, an abundance of water was freely pumped; but naving no use for it he pump stood a week or so, at the end of which time pumping was resumed,
but little water came. The cause was found to be no less than ten feet of but little water came. The cause was found to be no less than ten feet o solid sand in the bottom of th
to get the sand out?-w. L.

Ausures to $\mathfrak{C o r r e s p o n a d u t s .}$

SPECIAL NOTE.-This columnis designed for the general interest and in-
struction of our readers, not for gratuitous repplies to questions of a pur rely
business or personal nature. We will publish such inuqives, ousiness or personal nature. We will publish such inquires, however,
when paid for as advertisements at 1.00 a line, under the head of "Busines when paia for as
Lrerence lo back numbers must be by volume and page.
S., of Tenn.-The largest steam hammer in the world is, w believe, the 100 tun hammer at Krupp's steel works in Prussia.
Friction Pulley.-Will a friction pulley with six inches face have as much friction power as one tweive inchesface with the same

Rubber Packing to Prevent Friction.-The device deCement for Sheet Iron and Rubber Packing.-Let J M., query 8, January 20,1872 , try a white lead paint on the iron. Leathe or rubber can be glued on to an iron surface thus prepared.-D. B., of
N. Y. Volume of Hydrogen.-To W. W., query 1, Februuary 3 1872: One ounce of hydrogen measures 22,371 cubic inches. -D . B., of N.Y
Bending Gas Pipe.-This may be done by filling the pipe with molten resin. When the resin hardens, bend the pipe, and it will
retain its round form. Remove the resin by heating.-W. H. R., of N. J.

Waterproofing Cotton Cloth.-H. W. U., query 3, Janu ary 20,1872 , is evidently not a steady reader of your journal. Many reci-
pes for this purpose have been given, and two new ones appear on pag 105 , current volume. -D. B, of N.
A. D. N., of O.-Increasing the diameter of cylindrical boiler increases the strain resulting from steam pressure upon them, directly a . H. B., of Mass.-Y perly in perly in any space we can give you in this column. You ought to obtain
a good work on the steam engine, and read it for the information you
saw Mill Gearing.-To T. B., query 13, January 20, 1872 The weight of the saw has nothing to do with the question. You have to
counterbalance the lower end of the pitman only. Therefore lay the pit man in a horizontal position and weigh the end which connects on the face plate, including the wrist pin; and you have the weight to counter balance. -P. B.
Facing Oil Stones.-Y our correspondents, who have written on this subject, have not yet described the best way of doing it. I go to a foundery and take any flat casting from which the scale has not been
removed; by rubbing the stone on it, as on a board with emery, I can true removed; by rubbing the stone on it, as on a board with emery, I can tru
an oil stone in one fourth the time needed for any other method, and an oil stone in one fourth th
have tried them all.-J. E.
Preserving Natural Flowers.-R. A. L., query 1, Febru ary 10,1872 , should dip the flowers in melted paraffin, withdrawing then ity, and the flowers should be dipped one at a time, held by the stalks and moved about tor an instant to get rid of air bubbles. Fresh cut flowers free from moisture, make excellent specimens in this way.-D. B., o

Copper Dip.-S. D. R., query 2, February 10, 1872, is in formed that sulphate of copper is soluble in four times its weight of wate
at 60°, and that this proportion furnishes the strongest pickle. A coating of the required thickness man be pishuced by diping the of the required thickne
times.
. of N. Y.
R. M. C., of Mass., says: "I would like to inquire, through your paper, if there is any way to bleach ivory, and if so, how it is done? Answer: Ivory is bleached by exposure to sunlight. For piano maker
and others, it is prepared by first sawing it into thin sheets or plates, The ie are placed on suitable frames, under class, and exposed to light fo everal months. The frames are of pecular They are so arranged as to shift, thus reversing the exposure of the ivory so that both sides may be duly acted upon by the light.
. G., of N. J.-It is probable that the draft of your chimney is insuflicient. The gases you detect, by smell, as escaping therefrom are
certainly deleterious. It may be also that you use a damper between the fire chamber and chimney to regulate combustion. This would be wrong and sure to result in the forcing of gases out into the room. The damping
should be done at the throat of the stove, never in the uptake. If th stove is not made so that this can be done, it is not fit for use.
Coloring Band for House's Telegraph.-Reply to R. I H., query 6, page 90. The coloring band of the House printing telegraph
is a common narrow silk ribbon, saturated with a mixture of lamp black ivory black, sweet oil, and turpentine. The ink sold for hand stamps an swers the purpose very well. Electro-chemical telegraphic paper may be prepared in several ways. Bain used a solution of yellow prussiate o potash in water, to which was added two parts nitric acid and two parts
ammonia. With an iron style, this gives a dark blue mark on the passage
. ammonia. With an iron style, this gives a dark blue mark on the passag
of the electric current. A nother formula consists of one part iodide of potassium, 20 parts starch paste, and 40 parts water. This gives a brow mark which, however, is not permanent, fading out in a few hours. -F . L. P., ofN. Y.

Steam Engine for Saw Mill.-I would say to Nemo query No. 16, of January 20th, that it is very doubtful if he can ever obtain "satisfactory results" in running a circular saw mill with a ten horse aəd run his engine faster, but even then he would lack in steam making capacity. He had better not attempt it at all, but procure a portable
muley mill. They are made especially for engines of that class ; can run with one half the expense, and are said to do nearly or quite as much as a stationary muley.-A.D. N., of 0 .
AFETY Gunpowder.-Would it not be an infinite saving, to property holders in cities and to insurance companies, if a plan could be invented to make gunpowder perfectly safe from explosion, so that the manlife would be perfectly protected?-INventor. Answer: Any plan for making gunpowder inexplosive, while in stock, will meet with gener approyal.
ir Pressure and Suction.-P. D. asks how to prove that the pressure of the air, and not suction, raises the water in a pump. Le him take a straight lead pipe forty or more feet long, fill it with water
and plug both ends tight. Theu, holding it perpendicularly, let him im. merse the lower end in a pail of water and remove that plug. After all th water that will has drained from the pipe, let him replace the plug; and on examination, he will find water enough remaining in the pipe to fill it to about thirty-two feet above the water in the pail. Then ask any unbe liever to explain why the water did not all run out. After he has done it
satisfactorily on the suction theory, then ask him to explain why it would all run out if the upper plug were removed?-M., of Mass.
Compound Gear for Screw Cutting,-Some time ago R H. S. asked for a simple rule for cutting threads by compound gearing,
Since that time I have anxiously waited, and still wait, for such a rule Many of your correspondents don't seem to know what compound gea ing is, and give rules for simple gearing, and such rules as would be o very little use to a practical machinist. Imagine a machinist being or
dered to cut a three eighth set screw two inches long for an engine ready dered to cut a three eighth set screw two inches long for an engine ready
to go out, and attempting to flnd his gear by the rule given by C. F. of Neads in the , in reality, heed only multiply the threads in the leading screw and the number of threads to be cut
by th same number. For instance, the screw is 6 , and he wants to cu
8. Multiply by say 3 , which gives 18 and 24 , or by $31 / 2=21$ and 28 , or by 4 , 8. Multiply by say 33 , which gives 18 and 24 , or by $31 / 2=21$ and 28 , or by 4 ,
which gives 24 and 32 ; any of these pairs will cut the required thread. By which gives 24 and 32; any of these pairs will cut the required thread. By
this method, you can see that in a few seconds many sets can be found to cutthe required thread without the usends pencil or chalk. Even if he
cut what I call a practical rule for single gears.L. -J. P. M. C.
Saw Filing.-In query 7, Jan. 27, C. M. B. wants to know how to file a cut off hand saw. I find by the practical use of said tool (which
any one who pretends to file a saw should not be without) that the sa any one who pretends to file a saw should not be without) that the saw
should be filed as follows: Put the saw into the clamp with the handle to the left hand always; run a file lightly across the teeth, as this will kee it straight, and give the filer a chance to see clearly the points of each tooth, whichis necessary a a good job. Take the file and commence at
the point of the saw, holding it (the file) at an angle of about 30° by lowering the right hand, and about 15° towards the handle of the saw. The file is to be so held as to file the front side of the tooth that is set from him and the back side of the one that is set towards him; and the point of the tooth should be but a trife forward of the middle of the base. A saw to do nice work should have the least possible set in it, and must be a good
tool in every respect. I have had over twenty y ears practical experience in the use of the saw, and have filed many saws in shops where I hav worked; and I do not recollect ever having a fault found with one that was fled in this way. It is my experience that this is the only right way. When he has flled one side, he will see that he must reverse the saw in the clamp to fle the other side. In fling in this way, the front edge of the
tooth will be the thinest.-A. D. W, of Mass.

Practiod Iilita to lineatiors.

remater have devoted the past twenty-five years to the procuring of Lette Patent in this and foreign countries. More than 50,000 inventors have avail.
d themselves of their services in procuring patents, and many millions of ed themselves of their services in procuring patents, and many millions of
dollars have accrued to the patentees, whose specifcations and claims dollars have accrued to the patentees, whose speciflcations and claims they
aave prepared. No discrimination against foreigners ; subjects ot all counries obtain patents on the same terms as citizens.

How Can I Obtain a Patent?

the closing inquiry in nearly every letter, describing some _- 2 vention complete application for a patent to the Commissioner of Patents. A application consists of a Model, Drawings, Petition, Oath, and full Specifica tion. Various offlcial rules and formalities must also be observed. Th forts of the inventor to do all this business himself are generally withou success. After great perplexity and delay, he is usually glad to seek the aid
of persons experienced in patent business, and have all the work done over again. The best plan is to solicit proper advice at the beginning. If the parties consulted are honorable men, the inventor may safely confide his ideas to them: they will advise whether the improvement is probably pat

How Can I Best Secure My Invention? This is an inquiry which one inventor naturally asks another, who has had
ome experience in obtaining patents. His answer generally is as follows and correct:
Construct a neat model. not over a foot in any dimension-smaller if pos sible-and send by express, prepaid, addressed to KivN \& Co., 37 Park Row
New York, together with a description of its operation and merits. On receipt thereof, they will examine the invention carefully, and advise you as to its patentability, free of charge. Or, if you have not time, or the means a and, to construct a model, make as good a pen and ink sketch ot the im provement as possible, and send by mail. An answer as to the prospect of a
patent will be received, usually, by return of mail. It is sometimes best to often saves the cos of an application for a patent

Preliminary Examination.

In order to have such search, make out a written description or the inven ion, in your own words, and a pencil, or pen and ink, sketch. Send these
with the fee of $\$ 5$, by mail, addressed to MUNN \& Co., 37 Park Row, and in we time you will receive an acknowledgment thereot. followed by a writ en report in regard to the patentability of yonr improvement. This specia
earch is made with great care, among the models and patents at Washing ton, to ascertain whether the improvement presented is patentable.

Caveats.

Persons desiring to file a caveat can have the papers prepared in the shor est time, by sending a sketch and description of the invention. The Govern ment fee for a caveat is $\$ 10$. A pamphlet of advice regarding applications
or patents and caveats is furnished gratis, on application by mail. Address Munn \& Co., 37 Park Row, New York.

To Make an Application for a Patent.
The applicant for a patent should furnish a model of his invention, ir susvention be a chemical production, he must furnish samples of the ingredien of which his composition consists. These should be securely packed, the inventor's name marked on them, and sent by express, prepaid. Small mod els, from a distance, can of ten be sent cheaper by mail. The safest way to
cemit money is by a draft, or postal order, on New York, payable to the or emit money is by a draft, or postal order, on New York, payable to the or-
der of MUNN \& Co. Persons who live in remote parts of the country can usually purchase drafts from their merchants on their New York corres pondents.

A re-issue is granted to the original patentee, his heirs, or the assignees o A re-issue is granted to the original patentee, his heirs, or the assignees o the entire interest, when, by reason or an insumcient or parective specinca
vertence, accident, or mistake, without any fraudulent or deceptive inten vertence
ition.
pate
A patentee may, at his option, have in his reissue a separate patent to ch distinct part of the invention comprehended in his original applicatio y paying the required fee in each case, and complying with the other re.
uirements of the law, as in original applications. Address MUNN \& C Park Row, for full particulars.

Trademarks.

Any person or firm domiciled in the United States, or any firm or corpora Aon residing in any foreign country where similar privileges are extended to citizens of the United States, may register their designs and obtain proly so to foreigners. For full particulars address MUNN \& Co., 37 Park Row New York.

Design Patents.

Foreign designers and manufacturers, who send goods to this country, may
secure patents nere upon their new patterns, and thus prevent others from abricating or selling the same goods in this market.
A patent for a design may be granted to any person, whether citizen or
lien, tor any new and original design for a manufacture, alien, tor any new and original design for a manufacture, bust, statue, alto-
elievo, or bas relief; any new and original design for the printing of wool en, silk, cotton, or other fabrics; any new and original impression, orna ment, pattern, print, or picture, to be printed, painted, cast, or otherwise placed on or worked into any article of manufacture
Design patents are equally as important to citizens as to foreigners. For
tull particulars send for pamphlet to MUNN \& Co., 37 Park Row, New York

Rejected Cases.

Rejected cases, or defective papers, remodeled for parties who have made applications for themselves, or through oth
Address MUNN \& Co., stating particulars.

European Patents.

MUNN \& Co. have solicited a larger number of European Patents tha ny other agency. They have agents located at London, Paris, Brussel and the cost of procuring patents in all countries, sent free.

Munn \& Co. will be happy to see inventors in person, at their ofllice, or to advise them by letter. In all cases, they may expect an honest opinion. Fo do not use pencil, nor pale ink; be brief.
All strictly confdential. and strictly confdential.
In all matters pertain
In all matters pertaining to patents, such as conducting interferences of patents, etc., special care and attention is given. For information, and fo amphlets of instruction and advice,
Address
MUNN \& CO.
PUBLISHERS SCIENTIFIC AMERICAN
$3 y$ Park Row, New York.
OFFICE IN WASHINGTON-Corner F and yth streets, opposit

Betent Amtrican amd fortigi equants.

Unater rust seading we saral puptitah

Gopher trap.-William W. McKay, of Frankville, Iowa.-This invention consisss in constructing a trap that may be inserted lengthwise into the
burrow of thie animal. In watching the habits of the gopher, it sis observed burrow of the animal. In at thing the habits of the gopher, it is observed
that, in coming to the light or from his burrow, he always pushes earth before, him, so that the common trap is sprung before he reachesit, or is pre-
vented from springing by the earth which would be forced under the pan. This elongted trap prevents the first result, and the covering over the pan prevents hte e ast. As the trapis carefally covered in the hole, the jaws are
made to coses past each other, so that earth will not be caught between
them when the trap is made to coose past each other.
them when the trap is sprung.
Laying Shingles.-Sherman G. Castor, of Orwell, N. Y.-This invention relates to an improvement upon a method of laying shingles which was long
since proposed, and which consists in securing the shingles by nails having since proposed, and which consists in securing the shingles by nails having reason of each course resting on the heads of the nails of the course below,
or beneath it. This plan has, however, rever been practically adopted, on account of the liability, evidently existing, of splitting or cracking the shingles in laying them, or by subsequent imposition of weight, in the form
of snow or otherwise. Another important objection also exists in the want
of any means of preventing snow, or even rain water, from penetrating up. of any means of preventing snow, or even rain water, from penetrating up-
ward between the courses of shingles, and thus finding access to or beneath ward between the courses of shingles, and thus finding access to or beneath
the sheathing of the root, and thus effecting more or less damage. To remedy these and other practical objections to said plan, the inventor employs
strips of wood between the courses of shingles, and nails the latter thereto. Improvement in Corn Sheller Teeth.-Herman R. Rueter, of New Hope, Mo.-This invention relates to a new and useful improvement in
teeth for corn shellers, whereby the ordinary corn sheller is, it is claimed, rendered more effective than heretofore. The tooth is made in two parts,
one being the tooth proper, or part with which the cern comes in contact. This part is locked to the recess is left, within the lock, in which a spiral spring is placed. 'The tooth
proper is made, by this arrangement, elastic, which allows it to give and proper is made, by this arrangement, elastic, which allows it to give and
conform to the size of the ear of corn. The teeth are placed in the machine
so as to act together with inclined upper surfaces arranged to act as a screw so as to act together with inclined upper surfaces arran
to draw the cob through while taking off the kernels.
Air blower.-James W. Newcomb, of New York city.-This invention consists in a double acting blower of two flexible sides and ends, of leather
or other like substance, two opposite rigid immovable sides, and a movable dividing plate or board at the center of the flexible part, moving back and forth between the immovabie sides, alternately inflating and exhausting the spaces between it and the said immovable sides, the air being driven from
both sides into branches leading to an exhaust pipe, which is alternately opened and closed to the respective sides by a valve moved by the shifting
currents ot air coming from the blower. It is claimed that this apparatus currents of air coming from the blower. It is claimed that this apparatus
furnishes a very efficient blowing apparatus of great power. When the plate begins to move in one direction to exhaust one side and inflate the other, the valve is tilted over by the first part of the blast coming against it, opening valve is
the pass
other.

Plow.-Richard J. Miller, of Sherman, Iowa.-This invention consists of a vertically swinging arm at the end of the plow beam, to the swinging end
of which the whifletree is connected, which arm has an eccentric pulley or a segment thereof connected to its axis; and a chain extends from said pula segment thereof connected to its axis; and a chain extends from said pul-
ley to another on a hand lever near the rear of the plow in such manner that,
by pulling the lever backward, the arm to which the whifletree is connected will be forced downward, which will cause the plow to run shallower, and, by allowing the lever to swing forward by the action of the draft, the
said arm will be raised by the draft and the plow caused to run deeper. A graduated notched plate and a holding pawl are provid
with the lever to hold the latter in the required position.
Iron Trlegraph Pole.- Richard D. McDonald, of Jersey City, N. J., and Edward M. Crandal, of Marshalltown, Iowa, assignors to Richard D. Mc-
Donald.-The lowe section of the pole or the part wich Donald.-The lower section of the pole or the part which enters the ground
is provided with a winged supporting socket. The end of this section may is provided with a winged supporting socket. The end of this section may
be pointed or made sharp in any manner, so that it may be driven into the ground; or the end may be split, with the parts turned out in either direc-
tion, where a hole is made to receive the pole. This section is supported upon the socket by shoulders. In "planting" the pole this lower section is
either driven into or placed in the ground, with the supporting socket either driven into or placed in the ground, with the supporting socket the ground. The second section of the pole connects with the first section by a slip joint limited by shoulders. The third and fourth tubular sections
of this pole are of diminishing diameter from the base section up, and each is connected by a slip joint limited by shoulders. In the upper end of each
of the lower sections is a recess, and on the lower end is a lug, which fics into the recess. By this arrangement the sections are prevented from turning, and are held in proper position. There may be bands around the ends
of each section, which will come in contact at each end of the joint, it desired. These tubular sections are made of gas or steam pipe, and are banded to torm the shoulders or enlargements. Rounds pass through holes in
the pole for convenience in ascending and descending the pole. Arms for supporting the wires, with insulators thereon, are provided. In the top of the unper section there may be an insulator, with provision for supporting
a telegraph wire. The pole being a tube, a conducting wire (one or more) a telegraph wirr. The pole being a tube, a conducting wire (one or more)
may be carried down through it to the ground, and thus be secured from may be carried down hro
injury, tranverse bars bein
the wire within the pole.
Drawing Knife.-Albert M. Steele, of Danbury, Conn., assignor to himDrawing Knife. - Albert M. Steele, of Danbury, Conn., assignor to him-
self and Frederick A. Hull, of same place.-The object of this invention is
to render drawing knives more convenient for packiog and carrying, not to render drawing knives more convenient for packi.g and carrying, not
only for the manafacturer, but also for the mechanic in packing away his only for the manufacturer, but also for the mechanic in packing away his
tools; and it consists in joints in the handle shanks and a mode of tighten-
ing the handles; the latter being arranged to fold over, to protect the blade ing the handles; the latter being arranged to
and admit of being packed in a small space.
Rice Cleaner.-David L. Geer, of Lake City, Fla., assignor of one third
his right to Jesse Carter, of same place.-This invention has for its object to produce a machine whereby rice can be rapidly and thoroughly cleaned, after having been hulled in the ordinary manner. It consists in the employ-
ment of a sheft carrying projecting wings or friction blades within a stationary drum or cylinder, the motion of which causes the rice to circulate in ary drum or cylinder, the motion of which causes the rice to circulate in
the space around them, and by its own weight and pressure a friction is produced that cuts off the germs and membranous coatings or skin, producing
what is called rice flour. When the process has been continued until the what is called rice flour. When the process has been continued until the
flour has been removed, the rice presents a finty, white, smooth appearance. The breaking of the grain, so frequent with the use of the ordinary mor-
tar and pestle, is prevented. The friction will also clear the rice of any hulls or chaff that may have adhered to it after the hulling process. In
act, it is claimed that the machine may, if proper time is allowed, be used or hulling as well as cleaning.
PUMP.-Robert T. Smart and Robert T. Smart, Jr., of Troy, N. Y.-This
invention consists of a double acting pump with a hollow piston rod, through Invention consists of a double acting pump with a hollow piston rod, through
which the water is discharged, the cylinder being fixed below-or it may be
above-the water, in which both of the valves are arranged side of a plate in a hollow piston, in such a manner that they both close downwara self actingly, irrespective of the direction in which the piston
moves, and they retain the water above them in such manner that it cannot pass back to either chamber of the pump barrel, thereby avoiding the ne-
cessity of a stnffing box to keep the discharge tube full, so that there is no loss while the pump is standing still. In case the pump is to se used hori horizontal piston will be so changed that the platewill still be horizontal to horizontal piston will be so changed that
hold the valves so as to close by gravity.
Carriage Wheel.-Charles W. Fillmore, Marengo, Ill.-Tu : inventio1:
consists in a peculiar construction of hub and clamp, by which thet-abili' y consists in a peculiar construction of hub and clamp, by which thel-abill y
of wheels to give way at the junction of spoke and hub is entirely obviated
and prevented.

Trlegraphy.-William C. Barney, Washington, D. IC.-This invention
consists in a discovery by which the ground current of a telegraphic circuit may be utilized and messages repeated at the point from which they were
sent without any additional expenditure of fluid or money. It also discloses the unvarying uniformity of the earth as a cond
tion to be used under all conditions of the atmosphere.
Plow Carriage.-Mark A. Melvin, Washington Court House, Ohio.This invention pertains to improvement in the class of gang or wheel plows
wherein a lever, rock shatt and connecting rod, are arranged to be operated from the driver's seat to cause the elevation or depression of the front end from the driver's seat to cause the elevation or depression of the fro
of the plow beam, for the purpose of governing the depth of furrow.
Belt Tightener.-Louis Funke, of Champion Mills, near Belen, Territory of New Mexico.-This invention consists in a toothed segment for work-
ing the moving jaw of a clamp or belt tightener by gearing with a toothed bar, and being revolved by a hand lever or crank, so mounted in the sai moving jaw that it can be readily lifted out of gear with the bar, to allow of
moving the jaw away from the fixed one, and yet be properly maintained in gear with the said bar when required to force the movable jaw toward the fixed one for cla
belts together.
Extension Table. - George H. Henkel, of Germantown, Ohio.-This is a
new extension drop leaf table, which can be used either with a cireular, new extension drop leap table, which can be used either with a cireular, oval, or extended top, as may be desired. The invention consists in the
leaves so constructed that, when arranged at right angles with their posileaves so constructed that, when arranged at right angles with their posi-
tion in an extension table, they combine with other leaves to form an oval tion in
table.
Blacking Box.-Hiram Smith, of Newton Mills, Haddonfleld, N. J.-This so constructed that the blacking can all be removed with the brush, which will not cut the bristles of the brush when removing the blacking, and which
will keep its place wherever it may be placed while being used, without its being necessary for the operator to keep it in his hand. The body of the construction there will be no angles or corners for the blacking to get into and where it cannot be reached by the brush. With this construction also
the sides of the brush cannot come in contact with the edges of the box while the sides of the brush cannot come in contact with the edges of the box while
removing the blacking, thus preventing the bristles from being cut by said of a cylindrical case band or rim. To the lower edge of the rim is attached of a cylindrical case band or rim. To the lower edge of the rim is attached
a bottom which is perforated outwardly, so that the burs of said perfora-
tions may project outward, and thus serve as teeth to prevent the box from slipping around upon ite support while being used. This same thing may be accomplished by forming teeth upon the lower edge on the rim. In this case
the bottom need not be used. The cover is made and fits upon the top of he ordinary manner.
InKstand.-John Charles Sparr, of Irondequoit, assignor to himself and
Ulius Schneider, of Rochester, N. Y.-When the inkstand, with its rack o without it, is overturned at right angles to its pivots, it will quickly right itself, being balanced to be vertically suspended. When the inkstand, with
its rack, is turned in any other direction, the cover will slide down immedi Its rack, is turned in any other direction, the cover will slide down immedi-
ately and close the mouth of the bottle. When the.latter is again in its nor ately and close the mouth of the bottle. When the.latter is again in its nor-
mal position, the cover can be readily moved back to bring its circular aperure over the mouth of the bottle. The inkstand is balanced on pivots, an
Artificial Teeth and Dental Plates.-Robert E. Burlan, Lewisplate by a peculiar wire attachment, after which a porcelain body is packed over the wire and between the blocks, so that when properly packed there
shall be a continuous although sectional block, presenting an artistic and kinds of work, or to various base plates.
Electromagnetic Railroad Signal and Switch Tender.-Hugh S. L Bryan, Liberty, Mo.-This invention relates to an electromagnetic appara tas whereby the flags and lights of a signal stand or a railroad switch can be operated from a point at any distance therefrom, and whereby the flag,
light, or switch in passing out automatically transmits to the operator the light, or switch in passing out automatically transmits to the operator the
signal K , and in passing in, the signal K , by which signals the operator
is informed that the flag, light, or switch is working properly. informed that the flag, light, or switch is working properly
new way of putting up posts and rail or picket fences with wedge clamp me tal, so that the panels may be detachable and used on difierent lines, the
mortising of posts dispensed with and the cost of construction greatly reduced.
Thill
Thill Coupling.-Clement St. James, of Pittsfield, Mass.-This inven.
tion has for its object to improve the construction of an improved thillcouping patented Janiary 18, 1870 , so as to make it simpler and less expensive in construction, more convenient in use, and more effective and reliable in
operation; and it consists in the construction and combination of various parts of the coupling, as hereinafter more fully described. The combina tion, in a thill coupling, of the axle, with clips, and an U shaped bar with a
one picce yoke plate, made up of two parts, constructed of different hights, so as to receive the said U shaped bar in a recess, formed by said yoke plate and the axle, are the features embraced in the claim.
Watch Chain Fastener.- William C. Edge, of Newark, N. J.-This inment to and removal from the button hole of a vest or waistcoat and yet no liable to accidental detachment, and forming an ornamental termination or appendage of the watch guard, the means of fastening not being visible
exteriorly. An S shaped or double hook, whose outer sections or arms are about haf the length of the main inner section, is used. This hook is fastene namented on its top. The loop, for connecting the watch guard to the but-
ton, is swiveled to the hook. The hook is anplied by first fitting the one end through the button hole or eyelet in the garment, then, by reversing
the motion, carrying the central section, and, finally the inner end through the same. Secure fastening of the stud, button, or chain, to the garment is short end of common chains now required in connection with the ordinary short
bar.
CAP
Cap for Boots And Shors.-Benjamin F. Sage, of Beverly, N. J.-This
invention relates to a new toe protector or cap to be applied to the worn ends of boots.or shoes. The invention consists in the use of a flexible de ture and supplied to the market to be supplied to the wearers of boots and shoes, who can easily apply the caps themselves. The cap or toe piece is
made of leather, rubber, or equivalent fabric, and has backwardly project ing side pieces. The side pieces have eyes or hooks at theirends. The boot or eye bolt in the soles on both sides, so that the eye or hook at the end o the cap may be secured thereto; or else the side pieces have hooks that may be forced into the sole, or betw een sole and upper to hold in the leathe
stitching. To insure greater strength, the wire or metal, of which such
device for Moving Pianos.-Samuel D. Reynolds, Rochelle, Ill.-This is an improved device, the use of which will enable pianos to be conveniently moved. It consists of frames with wheels, which are used as follows: The
piano to be moved is turned upon its rear edge upon the benches or horse in the ordinary manner, and the legs and treadles are removed. The frames are then passed over the ends of the piano and secured by screws passing
through the bars and screwing into the bottom of the piano. Longitudina bars are then secured to the frames, and the piano can be easily and readily
Horse Shoe.-Silas Sloat, Morgan, Ohio.-This invention has for it object to improve the construction of an improved horse shoe patented
October 22,1867 . It consists in the construction and combination of various parts of the shoe, by which the rear parts of the shoe are held against the
rear part of the hoof by a lever pressure, so as to hold the shoe firmly to its place. This construction also enables the shoe to be conveniently tightened as may be required. This construction also euables the shoe to be attached
to and removed from the hoof, and does not require the front part of the

 from each other on the large ones, and perpendicuar to each other, and
have angular too nand bottom sicies, for dividug the cream readilyin passing

 enda and atted with vertical wuiles, on the side of the case, to keep the

 progress of the work.
Cras M (
Craxi Macinixs.-Frederic C. Miller, Cincinnati, ollo.-This is a new

 The molds are arranged in a circularechanism, so as to be brought in a line
therein moved, by proper novel
with a table for filling, emptying, and refilling, and then moved around and kept under pressure until again brought in line with the table. The inven tion consists in the new manner of arranging the molds, and in the new
mechanism for moving and detaining the same, which seems well adapted o secure the objects intended.
Thill Coupling.-J. Cugnier Racine, of Appleton, Wis., assignor to him self and M. H. Lyon,of same place.-This invention provides means for pro-
perly securing the bolts with which the shafts, thills, or poles of carriages, wagons, buggies, or other vehicles are held in place. Usually the coupling bolts are secured by nuts, pieces of leather, or similar devices. This inven-
tion consists in holding the bolt by a pivoted plate, which is drawn against the bolt by a spring, and has projecting lugs or spurs at the sides, whereby it is prevented from swinging out of place.
Resd Organ.-George Woods, Cambridgeport, Mass.-This invention ox, such as is described in a patent issued to the same inventor, September , 1870, relatively to the common wind chest, whereby the apparatus fo working the valves of the said attachment is simplified and improved. he invention also consists of a combination, of a sheet or web of india rub
ber coated cloth or other equivalent substance, with the sounding board of the additional wind chest for varying and improving the tones.
Low Water Alarm for Steam Boiler.-Linus Savage, Ashtabula, Ohio
A lever is pivoted to some suitable support near its upper end, and, at ite upper end, is connected with the feed pipe, or with a bar or plate, in contact
with said feed pipe, by a connecting rod, which should be made ad justable o enable the alarm to be set as may be desired. To the side of the lowe bar, pivoted at its lower end to some suitable support,and to which, near it upperend, is attached a hammer. The upper end of the arm rests upon a stop attached to or formed upon the side of the lever. A bell is suspended
from some suitable support in such a position as to be struck by the hammer from some suitable support in such a position as to be struck by the hammer
as it falls when the arm escapes from the stop. With this construction, while a supply of a water is passing through the pipe, the pipe will be cold heated and expand, and will heat and expand the bar or plate connected
with the said pipe. This expansion, by means of the connecting rod, will perate the the alarm. When the supply of water is again started, the water will cool
the pipe, which will contract, and, by its contraction, draw the arm back to its place upon the stop, ready to again sound the alarm. In substantially the same way the expansion of tho supply pipe, upon the failure of the supply of
water, may be used for blowing a whistle, causing an explosion, or giving ther alarms.
 of this invention is to produce a safety watch pocket, which will be entirely
reliable and prevent the fraudulent abstraction of the watch. The inventio will first be fully described, and then clearly pointed out in the claim. A pocket is made of leather, or other fabric, of suitable size and shape. It is
closed on all sides except on top, where it has a swinging flap, which can be opened and closed. The edge of the flap is lined with wire, which forms projecting loop in the middle. This loop, catching over a pin that projects
through the wire lining of the pocket proper, serves to hold the flap closed. Though the wire lining of the pocket proper, serves to hold the flap closed
The pin projects directly from the end of a spring which is fastened to the under side of the wire. A knob also projects through the lining, rests with
its lower end on the spring and will when pressed upone carry the pin own its lower end on the spring, and will, when pressed upon, carry the pin down
out of the loop and open the flap. When it is desired to guard against even out of the loop and open the flap. When it is desired to guard against even
this mode of opening the pocket, a slide can be moved by a projecting knob
and fitted with its end into a notch of the knob. The latter can then no longer be depressed, and the pocket consequently not opened until the slide has been withdrawn from the knob. The pocket is provided with two
wings, formed of V shaped wires, inclosed in the leather or fabric. The wires have prongs at their outer parts, which, as they are held out by the
spring of the wires, will enter the fabric of the vest pocket into which the While the watch is in the safety pocket, this pocket cannot be removed from from the vest.
Constructing Buildings.-Andrew Derrom, Paterson, N.J.-The object or of thorough repair, and also the laborera, engaged at the worlk, from the inclemency of the weather. The invention consists in the use of a verti-
cally adjustable cap or cover, which is placed over the walls to be erected and gradually elevated as the walls go up, meanwhile keeping them, the
flooring, material, and laborers always under roof. The advantages of this: method of constructing ! uildings are manifold. Not only are the men kep in healthy condition, but also material is economized, and the application
of artificial heat is made possible, whereby frost can be kept out and builderection of new buildings as to the repair of such as are burned partly

Gate.-Garret S. Spragg and Gilbert Mott, Tabor, Iowa.-This invention
consists of the combination of a rocking frame with a counterpoise and the ate, in that class of gates which are arranged to have the free end swing up the will and be held so by a counterpoise to swing clear of post, and operated in such manner as not to be obstructed by freezing in the winter, and so as not to acquire readjustment if the post leans, as the
cord and weight heretofore used to do. The weight is suspended so far from he post that they will not interfere with each other in case the nost is pulle om the pulley close by the side of the post. This apparatus works muc easier than the cord and pulley, and does not draw the post with as much force as they do.
Combined Pocket Knife and Envelope Opener.-Aaron S. Penning on, Paterson, N. J.-This invention consists in forming a notch in the divis
on plate, between the several blades or springs of a pocket knife, so as onvert such division plate into an envelope opener. The edge of this plate as a notch formed in it, which produces a point and cutting edge that can lades or at the back of the knife, between the springs. In eititier case, it is ient and desirable article of manufacture.
Belt Tlagtener.-Josiah W. Batcheller, Oregon, Mo.-This invention a place for holding it so that it can be adjusted forward and backward, and
the plate is arranged to be fastened to any suitable support to hold the ghtening pulley in front of the belt. The inven tened to the sewing mach side of the sewing machine table or other support by
the

[OFFICIAL.]
 Index of Inventions

For which Letters Patent of the United States were granted
for the week ending February 6, 1872, and each bearing that date.

Alkalies, etc., package for caustic, J. H. Seibert.
Bale band stretcher, L. J. Anderson.
Bed bottom, H. T. Smith.
Bed bottom, spring, W.
Bee hive, S. Fink...

Beer cooler, Ellerbrock and Mahler.
Beer and water cooler, C. Geenen
Belt, ladies' waist, J. M. Flagg
Belts on pulleys, apparatus for shifting, P. J. Zie
Bits and other tools, device for holding, w. H. Barber (reissue)
Blackboard, M. F. Cowdery..
Boiler, steam, H. W. Adams.
Boiler, alarm, steam. J. H. and W. J. Killey
Boiler, hydrocarbon burning steam, A. G. Buzby
Boiler, wash, C. W. Howard
Bolts and rivets, machine for making, J. Grifitiths
Boot crimping machine, Lomax and Lindley
Boots and shoes, rotary edge key for polishing, S. H. Hodges.........
brick machine, H. Jones
Building block, compound, A. Derrom.
Bung, D. B. Rickey
arner, gas, A. Buckham
Burner, oxyhydrogen, A. W. Wilkinson..
Burning hydrocarbon, J. K. Caldwell (reissue).
Cans, construction of fruit, J. F. Merrill (reissue
from preserve, D. N. Phelps Car coupling, L. Marshall..
Car brake, steam actuated, J. T. Bassett (reissue)
Car seats, hinge jolnt for, G. W. Perry
Carbureter, A. W. Wilkinson...
Carriage, children's, C. G. Macht
Carriage wheel, c. H. Appel
Carriage wheel, C. W. Fillmore
Carriages, umbrella supporter for, A. Clarke
Cartridge, metallic, I. M. Milbank...
Chair, folding, Mitchell and Shea
Cigar mold, G. Barry.
Cloth plaiting machine, J. A. Sawy
Cock, stop, A. W. Wilkinson.
Corer and slicer, apple, H. W. Williams...
Cultivator, J. R. Minter
Curry comb, J. Filson, J
Dental plate and teeth, R. E. Burlan
Dish washing machine, c. Woodrnff
Ditching and tile laying machine, M. M. Hooton
Dough mixer, R. Kent.
Drawer pull, H. Heret.
Drill, grain, B. W. Gould.
Dyeing with aniline black, J. Lightfoot, (reissue)..
Egg beater, H. Miller..
Electrical apparatus for preventing accidents, verny and Veillet.
Electricity, automatic gas lighter by means of, A. N. Alle
Elevator, P. Giffhorn..............
Enginc, locomotive, S. Skillman
Engine, rotary, J. D. Richardso
Engine, traction, J. Greenslade...........
Engines, condenser for steam, W. Wright
Engines, savety valve for steam, H. W. Adam
Envelope, letter sheet, C. Foster
Extracts, manufacture of fluid, L. De Puy
Fan, automatic, w. D. L. Hall..
Fastener, shutter, T. s. Sea bury
Fence, I. L. Landis.
File griping handle,
Fire place, G. R. Scriven.
Fire arms, cartridge for breech loading, I. M. Milbank
Flour, manufacture of, L. G. Binkl
Furnace, boiler, W. C. Smith.......
Furnace for annealing plowshares, \&c., W. M. Watson
Furnace for burning wet fuel, boiler, G. Bantz, (reissue)
Furniture, wall guard for, J. L. Brander.
Game, ball, E. A. Barrett
Gas, manufacture of, A. W. Wilkinson.
Gas fixture, oxylydrogen, A. W. Wilkin
Gate, R. A. Boulware...........
Gate, self-acting, I. D. Mishler.
Gage, dowel, J. Er.
Governor cut off, H. H. Meyer
Grain cleaner and separator, J. H. Red field.
Hair ciipping machine, G. H. Pratt.
Hair tonic and restorer, Stock and Ro
Hame, R. W. Jones.................
Hame, staple for, J. Letch worth
Harness hook, J. U. Fieste
Head block, D. Parkhurst.....
Head block, D. Lane, (reissue)
Head block, D. Lane, (reissue)..
Heating buildings by steam, apparatus for,. F. Gold, (reissue). Hoe, J. C. Miller..
Horsepower, S. Pelton.............
Horseshoe, T. and R. Kinghorn..
Horseshoe stretcher, H. Thompson
Hose, J. Sharpe
Husker, corn, P. P. Snell...
Iron, manufacture of zinc from the dross in galvanizing, L. De Met Jack, lifting, E. Hoyt....
Key for lock, A. F. Whiting
Knife and fork cleaner, etc., combined, Echternach and Welch
Lamp, J. M. Parker
Lamp basket, P. J. Clark
Lamp bracket, H. W. McDona
Lamp burner, P. Baker.
Lamp chimney, E. Blackman.........
Latch and lock for sllding doors, combined, A. F. Whiting. Lock, Q. Bayer.

Lock, door, A. F. Whiting
Lock for cars, seal, J. H. Lyon, (reissue)
Magneto electric machine, A. N. Allen
Meat, etc., preserving, N. H. Shiples
Metal, machine for punching, C. Zender
Metal ware, flanged cover for sheet, J. Fallows
Meter, liquid, w. E. Snediker..
Meter, water, H. F. Wheeler...
Kill, grinding, N. Burr, (reissue)
Ore and stone crusher, R. Learmout
Overshoe, fastening for, H. Starret', (reissue)
Oyster block, W. Rankin
Painting wire cloth, etc,, roll for, G. F. Wrigh
Pan, dust, W. M. Conger..
Pvent, wood, G. Beidler
Pen, fountain, T. M. Davis...
Pencil case, J. H. Knapp......
Pencil sharpener, H. L. De Ze
Pencil sharpener, H. L. De Z eng.
Photographic apparatus, J. and J. Stock
Pipe, tobacco, H. G. Dayton, (reissue).
Pipe, tobacco, H. G. Dayton, (reissue),..........
Pitman, L. N. Rouse.
Planing machine, J. J. Russ, (reissue).
Planing machine, H. B. Schenck, (re
Planter and marker, corn, T. Ryan.
Planter and marker,
Plow, L. Chapman.
Plow, wheel, C. N. Owen.
Plow, wheel, M. A. Melvin
Poker, lifter, and tongs, Lander and Manthorn
Press, hay, J. Scott.
Propulsion, canal, J. L. Nocolai.
Pulley block, differential, C. Hall
Pulley and wheel fatener C. Hall
Punching machine, J. M. Long
Raiload switch, C. F. Keller.
Panilroad switch, C. F. Keller.
Railoy tie and chair, L. E.
Railway tie and chair, L. E. Towne
Rake, hand, G. W. Stearns...........
Rake, hand, G. W. Stearns........
Ralke, horse hay, L. A. Paddock.
Ronfing, G. W. Robinso
Rubber hose, process of vulca
Saddle, cart, C. C. Cushman..
Safe, milk, J. W. Case
Saw, J. E. Emerson
Scissors, G. Turner
Separator, grain, J. Esse
Sewing machine, W. A. Mack
Sewing machines, presser foot for, H. C. Goodrich...
Sc wing machines, tucking dev
Shaft coupling, w. P. Dugdale
Shawl strap and traveling bag handle, J. S. Topham
Shawl strap and traveling bag holder, J. S. Topham
Shingle machine, H. L. Gooch
Shoe fastener, A. Klinger..............
Sieves, construction of, F. J. Meyers
Sign for street lamps, Bell and Jory
Signal and switch tender, electro magnetic, H. S. L. Bryan. Soap, apparatus for manufacturing, E. H. Gibbs
Sole trimming machines, rotary cutter for, S. H. Hodges
Spark arrester, H. F. Reiner.
Spinning, self-acting mule fo
Spinning machines, spindle bearing for, H. L. Pierce
Spirits, manufacture of alcoholic, Rolfe and Rogers
Stand, water cooler, W. F. Nickels
Steam superheater, H. Yost.
Steam pressure alarm, J. Cone
Steel, manufacture of J .
Steel for casting in green sand molds, manufacture of, J. Mill.....................................
Stitching button holes, machine for, D. W. G. Humphrey
Stove, cooking, J. A. Price
Stove, cooking, R. Johnson.
Stove pipes, hot water reservoir fo
Supporter, abdominal, M. G. Brigg
Table, extension, S. E. Wales......
Table, extension, A. Hanso
Telegraph apparatus, G. Little
Telegraph receiving and transmitting instrument, G. . Little Telegraphy, w. C. Barney
Tender, dumper for railroad, T. c. Hendry
Terret, G. W. Soule
Track cleaner, Higley and Atwood
Trap, animal, J. Coombe
Trap, steam, C. Schmandt.............
Turbine motor gate, J. T. Fanning.
Vehicle, spring bottom, J. s. Merrill.
Vehicless elliptic spring for, R. Halloran
Vehicles, hub for wheels of, E. D. Ives..
Vehicles, hub for wheels of, E.
Ventilator, car, H. J. Ruttan.
Ventilator, car, H. J. Ruttan.
Wagon brake, M. G. Pickett.
Wagon, dumping, J. F. Applegate
W ashing machine, M. and F. Way
Washing machine, A. J. Rogers
Washing machine, H. S. See
Washing machine, C. Milner.......
Washing machine, G. w. Gregory.
Water wheel, c. E. Brooks.
Wood, preserving, L. Feuchtwanger
Wriuger, clothes, J. Makechney...
Wringing machine,M. and F. Way
DESIGNS PATENTED.
5,505.-Printed Fabric.-F. Christie, Philadelphia, Pa.
507.-Type,-A Gilbert, Boston, Mess

5,50s.-Leech Jar.-W. Neidlinger, New York city.
5,509.-Soda Fountain.-G. F. Meacham, Newton, Mas TRADE-MARKS.
644.-Unbrellas.-Dawes \& Fanning, New York city

645 to 647.-FERritizers. -Maryland Fe
pany, Baltimore, Md.
648. -SoAp.-J. Oakley, New York city.
648. -SoAP.-J. Oaklev, New York city.

652 to 651. - Whisk Y. - James M. O'Donnell, Staten Island, N. Y.
APPLICATIONS FOR EXTENSIONS
Applications have been duly filed and are now pending for the extension of the following Letters Patent. Hearings upon the respective application re appointed for the day hor a
20,091.-Fly Traps.-W. Riley, April 10, 1872.
$20,564 .-$ Manuracture or Round Belting.
0,180.-HARVESTER.-L. Miller, April 17, 1872
20,181.-HARVESTER.,-L. Miller, April 17, 1872.

 20,345.-Cutter Heads, Etc.-J. P. Grosvenor, Lowell, Mass.
EXTENSIONS GRANTED.

18,871.-Harvester.-T. I. Stealey.
 9, 191.-Blade for Pencil Sharpener. - W. K. Foster

Value of Extended Patents.
Dla patentees realize the fact that their inventions are likely to be more
productive of profit during the seven years of extension fall term tor which their patents were granted, we think more would avail themselves of the extension privilege. Patents granted prior to 1861 may be xtended for seven years, for the benefit of the inventor,or of his heirs in case
of the decease of the former, by due application to the Patent office, ninety ays before the termination of the patent. The extended time inures to the benefit of the inventor, the assiznees under the first term having no rights under the extension, except by special agreement. The Government tee for an extension is $\$ 10$, anditis necessary that good professional service be obtained to conduct the busine ss before the Patent Offlce. Full informa. addressing
MUNN

schlotle of patevt fees:

For Copy of Claim of any Patent issued within 30 years...................\$s
4 sketch from the model or draving, relating to such portion of a machine as the Claim covers, rrom \$1
The tull Specification of any patent issuedsince Nov. 20,1866 at which tome
the Patent oflce commenced printing them....................251•25 the Patent offtce commenced printing them..

MUNN \& CO..

Inventions Patented in England by Americans. [Compiled from the Commissioners of Patents' Journal.]
Artificial Teeth.-C. H. Mack, Portland, Oregon.
Cartridge box, etc.-J. W. Frazier, New York city
Casting Metal, etc.-w. Sellers, Philadelphia, Pa.
Combined Tool.- -J. Dixon, New York city
Cotton Gin.-T. Bourne, New York city
Gas and Water Pipes, etc.- - F . Radde, New York city
Horse Collar.-Z. C. Robbins. Washington, D. C
Marine State Room.-L. D. Newell (of New York city), London, England. Needle Threader.-S. L. Mercer, Washington, D. C
Printing Press.-A. Campbell, Brooklyn, N.Y
Refining Oils and Fats.-C. Morfit (of Baltimore, Md.), London, Eng. Steam Engine.-E. Cope, J. R. Maxwell, Cincinnati, Ohio. Tinting Photographs, etc. - H. Vander Weyde, New York city Water Meter. - G. Sickels, J. H. Thorndike, Boston, Mass.
Waterproofing Leather, etc.-W. Morris, Philadelphia, Pa.

Foreign Patents.

The population of Great Britain is $31,000,000$; of France, $37,000,000 ;$ Bel.
umm $5,000,000$; Austra; $36,000,000$; Prussia, $40,000,000$; and Russia, $70,000,000$ glum, 5,000,000; Austria, $36,000,000$; Prussia, 40,000,000; and Russia, $70,003,000$ Patents may be secured by American citizens in all of these countries.
Now is the time, while business is dull at home, to take advantage of these Now is the time, while business is dull at home, to take advantage of these
immense foreign fields. Mechanical improvements of all kinds are always in demand in Europe. There will never be a better time than the present principal capitals of Europe. A large share of all the patents secure in toreign countriss by Americans are obtained through our Agency. Address Muns \& Co., 37 Park Row, New York. Circulars with full intorma
tion on foreign patents. furnished free.

HOW SHALL I INTRODUCE MY INVENTION?
This inquiry comes to us from all over the land. Our answer is: Adopt establishingany business. Make your invention known, and if it possesse any merit, somebody will want it. Advertise what you have for sale in such papers as circulate among the largest class of personslikely to be interested in the article. Send illustratedcirculars describing the merits of the machine or mplement to manufacturers and dealers in the special article, all over
the country. The names and addresses of persons in different trades may be obtained from State directories or commercial registers. If the invention is meritorious, and if with its utility it possesses novelty and is attractive to the eye, so much the more likely it is to find a purchaser. Inventors, pat entees, and constructors of new and useful machines, implements, and con the columns of the SCIENTIFIC American. Civil and mechanical encibed in ing enterprises, such as bridges, docks, foundries, rollingmills, architecture and new industrial enterprises of all kinds possessing interest can find a plac in these columns. The publishers are prepared to execute illustrations, in the best style of the engraving art, for this paper only. They may be cop led from good photographs or well executed drawings, and artists will be
sentto any part of the country to make the necessary sketcles nishing of photographs, dra wings, or models is the least expensive, and we recommend that course as preferable. Theexamination of either enable as to determine if it is a subject we would like to publish, and to stat the cost of engraving in advance of its execution, so that parties ma dectine the conditions without incurring much expense. The advantag inventions, or engineering works illustrated in a paper of such large circulation as the Scientific American is obvious. Every issue now ex ceeds 40,000 and will soon reach 50,000 , and the extent of its circulatio is limited by no boundary. There is not a country or a large city on the ace of the globe where atented articles from abroad have come to our manufacturers throug the medium of the Scientific American, the parties ordering having see the article illustrated or advertised in these columns. Address

MUNN \& CO.
37 Park Row, N. Y.
NEW ROOKS AND PUBLICATIONS
A Treatise on Acoustics in Connection with Ventila-
Tion, and an Account of the Modern and Ancient
Saeltzer, Architect. New York : D. Van Nostrand, Pub-
lisher, 23 Murray Street and 27 Warren Street.
This book announces the novel theory that the effect of sound in buildings
is very materially modified by ventilation. The theory seems, at first sight, plausible, and we shall examine it with care, postponing remark until we have given the subject the attention it merits. Should this theory prove
tenable, it may lead to very important changes in the construction of tenable, it may lead to very important changes in the construction of
her uars.cll'sa theaaand public halls.

Y	Scirutitic		
			Planing and Matching
1872			
			,
			Milling Machines.
		WOOD WORKING \|ACHMERY	
		MOLDING, MORTISING ENONING \& SHAPING CHINES;	
	IIIIITAゅ WroughtBEAMS \& GIRDERS		
		Planing \& Matching	
		J. A. $\mathrm{FAY} \& \mathrm{CO}$.,	
		Pat'd "DEAD STROKE"	
		POWER HANMMERS,	
		MRCHANICAL DRAWING. U^{t}	PROPELLER PUMPS.
		Lathes \& Drill Chucks. H^{O}	
FOR PRACTICAL MEN.			oanw
		J. B. BARSALOUX, Manufacturer and 	
			Wood and Iron Working Mabinery
IVD			
gS and label	P. BLAISDELL \& Co. 	MACHINERI,	SAFTING with PAtevt hangers
		SAVE 20 DOLLARS. BUY the Ceigerated Wilson shutthe	
	CIRCULAR ANALN AENCHES.		colle
		Parralunsiss	
	PARR'S		
	TECHNICAL GUIDE,		
			Niagara Steam Pump. CHAS. B. HARDICRK,

Surritisments
 Acvertisements will be aduitted on this page at the rate of $\mathbf{\$ 1 . 0 0}$ per line for each insertion. Engravings mat

Adryted so Mechanical Purposes, New York

WELL tested article of good thickness
 WHY NOT WRITE AT ONCE?

FOR SALE, ChelspalladilineWorks 524- $=$

HOME

Insurance Company, OF NEW YORK. OFFICE, 135 BROADWAY.

Cash Capital Assets, January $1,1872, \quad \$ 2,500,00000$ Liabilities,
$4,672,04350$
624,02152
CHAS. C. Martin, President. J. H. WASHBURN, Secretary. THE AMERICAN HATTERS' CON

 TH
 OFING,
FENING G, A 1 ${ }^{y}$ E \mathbf{R}
ST. JOSEPH AND DENVER

[^0]

Public Health Promoted! Agriculture Benefited!

A. L. OSBORN $\&$ CO

424 West Canal' Street, New York GOUX'S
patent absorbent closet \& urinal

Worling Models

WIREROPE.

NEARLY SIX THoUSAND div Sen for or pamplet, one hun. James leffel \& Co.,

BOITERER COVERRING.

PAIEENT CGHA Pintici

 Fire Exxinguikiher "absolutely the AGAINST FIRE" Send or "It's Record 407 Broadway, n. Y 6 Wabash A venue
Chicago.

D RYING MACHNES for PRINT WORKS

TGADEMARK. Union Stone Co.,

 L. HV. Pand-Ne-Ner Tools. EXTRA HEAVYAND IMPROVED PATTERNS.

vFABEB,

HARDWOOD BOARDS, french black walnut, amboine, thuya Domestogether with acomplete stock of G.W. Send for catalogue and price ist.

HUTCHISON\& CO

American Saw Co., Manufacturers of

Baxter Engine

ENGINE READY FOR USE. T ut Bactured by Cort's Patent Fire Arms Manufacturing
 Every Boiler is tested under inspection of the Hartford
Steam Boiler Insurance Company, and by them Guaran-
teed and Insured We, therefore, feel justified in claiming that, in points
of mechanical construction, safety, and durability, the of mechanical construction, safety, and durability, th
BAXTER ENGINE has no equal; whine in simp icity or construction, economy or space and fuel, it stands with-
out a r val.
Over 200 Engines are now in use, and giving entire sat-
 THE BAXTER STEAM ENGINE CO.,
IS PARK PLACE, N.
 From 4 to 500 horse power,
 tc. Wheat and Corn Mills, C Send for Price List. WOOD \& MANN, WORKS-UTICA, N. I.
Why

LUBRICATORS.

D Hown

$\mathrm{P}_{\text {STONES }}^{\text {AT. SOLD EMERY WHEELS AND OIL }}$

[^0]: T Steam Engines, Boilers, Fiax, Hemp, Tow Bage of

