
a WeEkly JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

	NEW YORK, FEBRUARY 10, 1872

The Pennell and zimmer Dovetail and shaping
This machine is designed to supply a want long felt by all sash makers.
The formation of the dovetail mortises on the stiles, and tenons on the check rails, of sash have heretofore been the most tedious and expensive parts of sash making, requiring skilled labor, and the use of at least four different machines, as well as from six to ter times handling the material to ac
lever pin, C, is placed in the slot, L, (Fig. 2) and operated as for bottom rails.
For shaping circular sash or irregular moldings, the bolt, M (Fig. 3), is loosened, and that end of arbor, F, is dropped to the position indicated by the dotted outline bringing the bolt, M, into the hook, N , which places the arbor in a perfectly upright position. The belts are then put on the clutch pulleys, θ, (Fig; 2) the upper belt being crossed. The motion of the arbor is reversed by a slight pressure of the foot

CHEMICAL EXPERIMENTS FOR YOUTHFUL READERS.
From the British Photographic Journal Almanac.
The series of experiments here presented are intended for the younger readers, for whose benefit they are presented in attractive and even sensational style as possible, in the onfident belief that no experiment here indicated will be erformed by a youth without gaining by such trials an in ight, however small it may be, into some chemical action

THE PENNELL AND ZIMMER DOVETAIL AND SHAPING MACHINE.

complish the purpose. With this improvement, the work is all done on one machine, and more perfectly than is possible by any method we have seen employed. An ordinary hand can, it is claimed, make at least ten dovetail mortises or tenons per minute, or the joints for 1,500 windows per day, being the work of some twenty skilled men.
The rapidity of production, in comparison with the old modes, is sufficient to attract attention to this machine, yet there are other advantages quite as important.
A shoulder is formed on the side of the stile, which makes a perfect fit, and a much better and stronger joint. By a slight change, which requires but a few minutes, it is made to do the work of a shaping machine for circular sash or any irregular molding, thus obviating the necessity of a separate machine for that purpose.
Figs. 1 and 2 are front and rear views of the machine, and Fig. 3 is a detail view, showing the arbor, F, referred to below.
For dovetailing bottom stiles for check sash, the carriage, A, is placed on the rails, D. The arbor, E , is adjusted to the bevel desired for the dovetail. On the arbor, \mathfrak{G}, are placed two cutters, which form the straight side of the dovetail and the shoulder on the side of the stile, which is then laid on the carriage and passed through the cutters on E and G .
For top stiles, the cutters on the arbor, F, Figs, 1 and 3 , are adjusted to form the shoul der on the face side of the stile. The upper cutter on the arbor G being removed, the stile is passed through as before.
For bottom, check, and common meeting rails, the carriage, B, is placed on the rails, D, (as shown in Fig. 1) with the lever pin, C, in the lower branch of the slot, I , and the arbo E is adjusted to a perpendicular position. The rail is placed between the chipbreakers, K and passed through all the cutters. When returning, the carriage lever, C , is guided into the upper branch of the slot, I and the rail is reversed, with the shoulder placed to the gage, H , (which gives the length desired) and the operation is re peated.
For top check rails, the carriage, B, is reversed, and the
on the lever, P , which connects with the clutch, Q . The cutters are so constructed that the work is done equally well with the arbor running in either direction to cut with the grain of the wood. It is claimed that by this machine are gained the advantages of rapidity of work, the obviation of the necessity of skilled labor, perfection and strength in the joints, and the means of manufacturing check rail sash as cheaply as common sash, with uniformity of work, so that parts may be made and laid away for future use and easily put to

of which he previously may have been quite ignorant; and hey will thus serve an educational purpose as well as conduce to the occasional spending of a pleasant hour. All the hemicals to be mentioned can be obtained readily.

1. To make a milky liquid by the admixture of two coloress ones.-In one vessel, which ought to be made of glass, pour a little water, so as to half fill it, and add to it a few rains of common salt, which will speedily dissolve. In an ther vessel, also half full of pure water, dissolve a few grains of nitrate of silver. Both liquids wil be bright and colorless. Now pour one of them into the other, and the resulting mixtureis thick and white like milk. When a solution of common salt, which is the chloride of soda, is mixed with a solution of nitrate of silver, the nitric acid of the latter salt combines with the soda of the former, forming nitrate of soda which is soluble in water, leaving the silver in combination with the chlorine, forming chlo ride of silver-a white powder which is insol uble in water, to which it therefore gives the appearance of milk. If paper were washed with one of these solutions, and then, after be ing dried, were brushed over with the other the chloride of silver would be formed on the surface or in the texture of the paper. In this way is sensitive printing paper prepared.
2. To produce a yellow, cream-like liquid from two colorless ones.-To make cream in stead of milk, it is only requisite to substitute for the common salt in the previous experi ment a little iodide of potassium or any othe soluble iodide. The resulting precipitated pow der is iodide of silver When an iodide of soluble kind is dissolved in a clear varnish, solub e albumen collodion, a plate of such a ith ench a bedy, af of coated with such a body a dens yellow color when immersed in nitrate of sil-
ver. This is what takes place whenever a gether at any time, and an appliance for shaping circular plate is sensitized
ash and moldings.
The machine is on exhibition at the S. A. Woods Machine Co's. salerooms, 91 Liberty street, New York, and 67 Sudbury street, Boston. For further particulars, address Van Gilder \& Goodlander, agents for the United States, Williamsport, Pa.
plate . To make smoke issue from two empty tumblers.-Mois ten the inside of one of the glasses with strong ammonia and treat the other in a similar way with strong hydrochloric acid. Keep the glasses thus prepared at a distance of two or three feet from each other. Now, taking a juggler's li-
cense with facts, direct the attention of the spectator to the perfect emptiness of the glasses, and, taking one in each hand, hold them up and bring them together slowly mouth to mouth. When a few inches apart from each other, smoke will be seen to issue from them ; and if they are held closely together, they will be seen to be filled with a dense white vapor, which will soon condense in the insides of each glass in the form of a white powder. This is a capital experiment for astonishing a few friends; butin performing it as a "trick," care must be taken that the previous preparation of the glasses is not shown. Rationale: The vapor from the hydro. chloric acid, which is invisible, combines with the ammoniacal vapor, also invisible, and produces, by their combination, chloride of ammonium, or sal ammoniac, in the form of a white powder. If, instead of being moistened with the hy drochloric acid, the glass be filled with chlorine gas, the effect will be somewhat better
3. To make a liquid that is blue when the bottle containing it is open, and colorless when corked.-Fill a small bot tle with liquor ammonia, and place in it a few turnings or filings of copper, corking it immediately. It will remain colorless as long as it is closed, but after the cork has been removed for an hour or two, the liquid will have become of a blue color. Recork the bottle and it soon again becomes colorless; reopen it and it becomes blue as before. Ammonia has no action upon metallic copper; but when the copper is has no action upon metallic copper; but when the copper is oxidized by exposure to the air it becomes soluble, the blue color being the result of a solution of oxide of copper in ammonia. When the bottle was again corked, the remainder of the metallic copper extracted the surplus oxygen
from the portion that had been oxidized and dissolved. It from the portion that had been oxidized and dissolved. It
is ouly when copper is highly oxidized that it produces a is ouly when copper is highly oxidize
blue color in the above circumstances.
4. To produce fluids by the rubbing together of solid bodies. -Triturate an amalgam of lead with an amalgam of bismuth, and a fluid like mercury is immediately produced. By the trituration or rubbing together of any of the following pairs of solid bodies, a tluid will also be formed: Sulphate of zinc and acetate of lead; sulphate of soda and nitrate of ammonia; or sulphate of soda and carbonate of potash.
5. By the mixture of two highly odorous bodies to produce an inodorous one.-The pungent odor of ammonia is too well known to need comment. Into a bottle containing some of this liquid pour, some hydrochloric or nitric acid. The ndor of each vanishes, the result ng mixture being quite in-
odorous. Muriate or nitrate of ammonia is formed by the odorous. Muriate or nitrate of ammonia is formed
6. By mixing two inodorous bodies to form a highly odor ous one.-Mix together in a mortar equal parts of sal ammo niac and quicklime. Ammoniacal gas is disengaged, which has a powerful and pungent odor
7. To produce a very hot liquid by mixing two cold ones. -Half fill with water a small bottle capable of being easily held by the grasp, and then pour sulphuric acid slowly into it. The mixture will soon become so hot as to compel the person holding it to set it down. The bulk of the liquid, too, will be found to have diminished.
8. A fine solid green pigment made by mixing together a blue and colorless solution.-Have two solutions made, one of them being of sulphate of copper and the other of carbonate of soda. Pour a little of the latter into the former, and the richly colored paint known as French green will be imme. diately formed and precipitated. Remove the liquid by filtration. By this mixture, subcarbonate of copper, the pig. ment above named, is formed
9. To convert two clear and colorless liquids into a solid masc.-There are several ways of performing this experiment, which never fails to excite intense wonder in those who are unacquainted with the working of chemical miracles. Here is the appearance presented by one of them, as I once saw it performed by a parlor magician. On the table stood two bottles containing apparently water, a glass tumbler, and two glass rods for stirring with. The "Professor" first poured into the tumbler a portion of the contents of one of the bot tles, and then followed with some from the other, stirring the mixture briskly for a few seconds, when, to the surprise After this had been thoroughly examined by the astonished spectators, the "Professor," uttering a few meaningless words from the jargon of jugglery, touched the mass with the end of one of the glass rods, and immediately the whole was con verted into a clear liquid. Explanation: One bottle contained a saturated solution of chloride of calcinm, and the other a saturated solution of carbonate of potash. When they were mixed together, they were decomposed, chloride of po tassium and carbonate of lime being formed; and as the lat ter absorbs the whole of the water of solution, a solid body is maintained. The cause of its becoming fluid on being af terwards touched with the glass rod is simply this: One of the rods was a hollow tube, and contained in its interior little nitric acid, which, having been adroitly poured on the solid mass, immediately converted the insoluble carbonate of lime into the soluble nitrate of lime. There are other com pounds by which results of a similar nature can be produced drops of sulphuric acid. Salphate of lime (plaster of Paris) is formed by the reactions. One other method we give Pour a saturated solution of caustic potash into a saturated solution of Epsom salts, and a similar result will follow. In this case, the sulphuric acid of the Epsom salt (which is sul phate of magnesia) leaves the magnesia to combine with th potash, the magnesia being precipitated as a white powder
10. To produce an exceedingly intense light.-Into a dis like a child's saucer, put a small heap of saltpeter (nitrate of potash) that has been finely powdered and well dried. In
the midde of thio make a neat in which plare a bit of phos
phorus the size of a small marble. Now turn down the lights in the room, and apply a lighted match to the phosphorus, which will then burn with a light so intense as to dazzle the eyes of those present. The heat caused by the burning phosphorus decomposes the nitrate of potash, and the oxygen thus liberated causes the flame of the phosphorus to become intensely luminous. The room in which this experiment is tried must be well ventilated, as the fumes of phosphoric acid are noxious.
11. Experiments with iron.-(a) Write or draw on paper with a solution of sulphate of iron. Whendry, it will be invisible; but if a sponge moistened with a solution of gallic acid ible; but if a sponge moistened with a solution of gallic acid
or pyrogallic acid be passed over it,the previously invisible writing is made as visible as if written with ordinary black ink The sulphate of iron and the gallic acid react on each other, forming gallate of iron, which is of a black color. Writing ink is made from this mixture. (b) If, instead of the gallic acid mentioned in the former experiment, a solution of prus siate of potash be employed, the invisible image will be developed as a fine blue color. By mixing solutions of sulphate of iron and prussiate of potasl, Prussian blue is formed; hence the blue color as the result of the experiment. (c) Make a rod of iron very hot (a white heat), and then apply the end of the rod to a piece of sulphur. The iron will immediately be fused and fall down in large drops, which must be caught in a vessel of water. If some of these drops be placed in a ittle sulphuric or nitric acid, they will readily dissolve, but in doing so a smell of an extremely offensive character will emitted. This smell will be immediately recognized as The hot that for which decayed eggs are so justly noted The hot iron combines with the sulphur when melting, form ing sulphuret of iron. This dissolves in the acid with great
readiness, attended by a copious liberation of sulphuretted readiness, attended by a copious liberation of sulphuretted
hydrogen, the offensively smelling gas alluded to. To the presence of this gas in mineral waters is due their medicinal properties, and yet few gases are more poiscnous. Before leaving this gas, here is a pretty experiment that can be per. formed with it: Draw on paper any invisible figures with sugar of lead, nitrate of bismuth, or nitrate of silver. These are invisible at first; but if a current of sulphuretted hydrowith passed over the surface, everything is brought thol If a current of the gas be passed into a bottle of ammonia the liquid is converted into sulphide of ammonium-a sub stance of much use in chemistry.

Progress of Submarine Telegraphs.

Among the cables brought to a completion in 1871 are the China cables. These were, first from Singapore to Saigon and Hong Kong, and again from Hong Kong to Shanghai from Shanghai to Nagasaki, and from there to Wladiwos tock, where the company's lines join the Russian system. It
will be seen that by these extensions we have two routes to will be seen that by these extensions we have two routes to China, the one by the Great Northern line through Russia and the other by the various cables and lines to India, thence to Singapore and China.
The completion of the submarine cable from Java to Port Darwin, in Australia, has been too recent to admit of our obtaining details; but it is unq eestionably the fact that we are at length telegraphically connected with our antipodes How soon it will be before communication is established with the southern and most inhabited portions, we are una ware, but in all probability the difficulties of erecting the verland line have been found greater than was anticipated Among the other completions are the Holyhead and the
several West India cables. The majority of the islands have been connected, and are now in telegraphic working order but the largest extension, that from Jamaica to Panama, is till incomplete. It may be remembered that, in the attempt to lay this section, the cable broke, and, after some time
spent in grappling, was temporarily abandoned, while the spent in grappling, was temporarily ab
further extensions were proceeded with.
The principal of the new cables manufactured and laid uring the past year are the German cable from Borkum (Emden) to Lowestoft, a four wire cable (Willoughby Smith s improved gutta percha) of very heavy construction; the cable in the Grecian and Turkish Archipelago, 564 knots; and the several cables for the French Government.
The Cbannel cable, it may be remembered, was prevented from departing by the Government, who had the opinion that it was a breach of the neutrality law. The cable and ship French Government; but some little time after the war was The Mediterrane cable was picked up to be used elsewhere The Mediterranean cable was a greater undertaking, and was successfully laid between Marseilles and Algiers, over the route of the old cable, which had been speechless for
some years. A fault, however, occurred after the laying some years. A fault, however, occurred after the laying and after some trouble the cable was successfully repaire
by Mr. F. C. Webb. On this occasion, grappling was done in 1,000 fathoms, and the cable recovered, a great feat, con sidering the rough bottom of the Mediterranean.
A small amount of cable was laid in the Hebrides by the Post Office. This amount would have been increased but for the disastrous fire, which took place at the Silvertown Cable Works and destroyed a large amount of cable and ma chinery. The damage, however, was soon repaired, and the factory has been for some time again in working order
large amount of cable will be noticed as being mafac ured for the Anglo-American and Falmouth and Malta Tele graph Companies; this was for repairs and alteration of
routes. The Atlantic cables (both) were broken down during the early part of the year, and were not repaired until June. The 1866 cable, being found to be in very bad ground as was imagined, was removed further south, and an extra
working order, and it is hoped they will remain so. The only oth \upharpoonright r Atlantic interruption occurred on the Duxbury section of the Erench Atlantic cable. This was soon re paired, no interruption to communication being caused by it. The repairs to the Lisbon and Gibraltar section occupied some time, and they not only included the removal of a portion of the cable from bad ground to a better place nearer the shore, but also laying a duplicate cable from Gibraltar, some little distance above the coast towards Lisbon.

Of the other lines, no interruptions have occurred except o the Great Northern, China, and Japan extensions, the Hong Kong cable baving to be repaired; and the Japan section is now again in working o der.
The Spanish Government have had their connection with the Balearic Isles renewed, and the Dutch Government have had a cable laid in the Straits of Sunda. The traffic from the West Indies to America has been found sufficient to allow of the duplication of the International Ocean Com pany's line from Punta Rossa to Key West (Florida).
From present appearances, the progress of submarine telegrapby this year will be small. A company appeared for the extension of a cable from Spain to the Cape de Verde Isles and to Brazil, but as several parties appeared to lay equal claims to the concessions, the project has for the present fallen through.
The silence for so long of two of the Atlantic cables seems to give talk of the laying of a fourth cable, and also of the possible acquisition by the British and American Govern ments of the existing cables. The laying of a fourth cable, we believe, is very likely to come to pass.

Pyroligneous Products.

One hundred kilogrammes of wood subjected to destructive distillation give 50 kilogrammes of a crude product containing: 2 kilogrammes of methylic alcohol, 3 of crystallizable acetic acid, 10 of tar, 15 of water, 20 of carbon remaining in he retort.
To obtain from this the acetic acid, requires a long and tedious process, consisting in saturating the acid with lime precipitating this lime as sulphate by the use of sulphate of soda, which leaves acetate of soda, crystallizing this out and igniting it to drive out the tar, crystallizing and recrystalliz ing; and finally distilling with sulphuric acid, which give the acetic acid. In manufacturing pyroligneous acid, the product of distillation is simply allowed to remain in contac with iron turnings until the acid issaturated. To purify the crude article, the author offers a new method, by which the acid may be sufficiently purified to be made to unite with soda, alumina, copper, etc., while the alcohol is saved. By stilling the wood with ten per cent sulphuric acid, the acetic cid may be readily separated; also by this method a yellow compound, insoluble in water cooled below 15°. On distilling dry wood at a high temperature (about 700°), gaseous pro ducts and an oil of extraordinary illuminating power are ob
tained. The method to be used is not precisely stated, but tained. The method to be used is not precisely stated, but
the author claims that a profit of over 18 francs can be made the author claims that a profit of over 18 francs can be made
on every 100 kilogrammes of wood, by his process.- M Maiche.

How to Bend Glass Tubes.

It is well known that it requires some tact to bend a tube with an even curve and without collapsing its sides, and many chemists never do succeed in bending them skillfully Although having no particular skill in this matter, I never ail to bend them perfectly satisfactorily by using a flam different from the one usually employdd ; the flame is one given by the Bunsen burner, described in my article on alkali determination in silicates. (See American Chemist, Vol. I page 407.) Use a Bunsen burner, having the extremity flat tened out so as to give a short and thin but broad flame, something like the flame of an ordinary gas burner. The tube is placed in this flame and turned round and round until a good heat is given to the tube; it is then withdrawn from the flame and bent, when it does so with a perfect curve and no collapse of the sides of the tube. Of course this is only intended for the smaller tubes, but a tube of one third of an inch and more can be thus bent very readily.-J. L Smith.

The San Gregorio Meteorite
Six meteorites from this region have been thus far noticed five of which have been analyzed by the writer. Of the sixth o specimen has as yet been detache witain or very near the boundaries of the Mexican Desert,
which is about 400 miles in width by 500 miles in length, and which is about 400 miles in width by 500 miles in length
situated in the provinces of Cohahuila and Chihuahua.
ituated in the provinces of Cohahuila and Chihuahua.
Professor J. Lawrence Smith advances the conjectur based upon his analysis and examinations, that five of thes meteorites were derived from the sameoriginal mass, moving ver the territory from northeast to southwest. Two of thes meteorites are estimated to weigh three and four thousand pounds respectively.
The San Gregorio meteorite has an extreme length of six and one half feet, is five and one half feet high and four feet thick, and is estimated to weigh about five tons. An enaly is gave: Iron, $95 \cdot 01$, nickel, $4 \cdot 22$, cobalt, $0 \cdot 51$, copper, a mi nute tracs, phosphorus, 0.08 .

The West Bloomfield Gas Well.-Prof. S. A. Latti more, of Rochester University, has recently made a careful photometric test of the illuminating power of the gas of the West Bloomfield well, and found it to be $14 \cdot 42$ candles. H stimates the flow of the well to be 800,000 feet per 24 hour The main to convey the gas to Rochester is being rapidly laid down, and it is thought that the city will, before long
derite ail its light from this well. Who knows bat gas wells derive ail its light from this well. Who knows bat gas wells
ate to play a mote important part in the world than oil wella

STATE EDUCATION AND THE LABOR QUESTION.

There is every probability that these two subjects will ocupy a large share of the attention of our legislative bodies for some time to come. Rudimentary education is free to all in this country, and the opportunity afforded to every one to acquire an education sufficient to read and write is a result of which we have some right, as a nation, to be proud. But technical education is sadly wanting in most of our States; and owing to this, and to the want of some good system of apprenticeship, the supply of native skilled labor does not keep pace with the demand, and the result is that our shops and manufactories are filled with mechanics and artisans from abroad, who bring with them the prejudices, existing among the laboring classes of the countries they come from which are antagonistic, in some respects, to our notions of free rights.
These truths are acknowledged by all our best thinkers These trut on the questions of labor and education, and recently Governor Washburn, of Massachusetts, in his inaugucently Governor Washburn, of Massachusetts, in stas to the legislature of that State, has spoken candidly and sensibly on the subject. We are unable to give more than a few extracts from his excellent address; these are as follows:
"We shall not reach our highest development as a commonwealth until our elementary and classical schools are supplemented by institutions for instruction in the industries on which our prosperity so largely depends. Of our present population, probably two thirds are engaged in mechanical or manufacturing pursuits, or dependent upon those so engaged. The State has established an agricultural College for her farmers, and from the beginning of her history has dealt generously with such of her sons as aspired to knowledge of the higher branches of learning; but has done little for the education of her mec anies in their particular field of labor. Her duty to encourage and promote the special edu cation of these classes rests upon two grounds; first, the wel-
fare of the individuals directly concerned; and, second, the preservation of owr manufacturing supremacy. A great part of the work of many manufacturing establishments is so de pendent upon scientific attainment that it must ultimately take rank as a learned profession. Not only are a knowledge of chemistry and a somewhat extended acquaintance with mathematics highly desirable to the mechanic who aims at an advanced position in his trade; but skill in drawing is universally important and valuable, and it is with pleasure that I notice the introduction of teachers of drawing into some of our public schools."
On the subject of the condition of the working population, the Governor spoke to the following effect:
"I commend to your candid and cordial consideration the varied interests of those who are denominated the laboring portion of our citizens. The question of practical concern is not so much whether the condition of this class is better or worse here than in other sections of the country as whether that condition is satisfactory-whether it is what it might be made by honest and resolute endeavor, what it should be made by those who have the well being of the common wealth deeply at heart. To this question I am sure no one will venture an affirmative reply. Neither is it of paramount importance to determine whether the situation of this large body of persons is better or worse than it was former ly. Our view should be forward and not back ward. Many seem to ho'd the opinion that if the working men and work ing women, as they are commonly designated, receive con stant employment and are adequately remunerated: if they gain the needful bread and meat in exchange for their labor if they have comfortable homes and enough for the decen support of themselves and their families, it is their duty to be there with content. But this is a narrow judgment of the matter in issue. They ought not only to perform their daily tasks faithfully, but be so circumstanced that they will per form them cheerfully. In so far as lies within our power we ought to remove every just cause of complaint. Every human being should have higher and nobler aspiration han merely to provide food and clothing for the body. This hould never content him. The head of a family ought to have time for study, thought, reading, recreation, innocent pleasure; he properly desires to give his children a better ducation than he had, and furnis
The fact that there is unrest and dissatisfaction when man is confined to unremitting toil, is one of the brightest and most healthy omens of the times. It is an indication that his better nature is struggling for emancipation; it is a hope
ful sign of finer and nobler manhood in the future. Such ful sign of finer and nobler manhood in the future. Such
efforts far improvement should never oe discouraged, but alefforts for improvement should never be discouraged, but al
ways encouraged. That there ever have been and ever will be grades of society, is true enough; the statesman should seek to diminish the distance between the extremes by ele vating the lower. It has been said that as soon as the mate rials for the construction of society were brought together, they proceeded forthwith to arrange themselves in layersthe stronger, more nimble and more cunning of the living constituents climbing to the higher places, and forcing upon those below the office of upholding them in their elevation. As the pyramid was originally built, so it remains in its general design. Within the heaving mass of multitudinous life, individual atoms are constantly changing places, but without destroying, however much disturbing, the primitive distribudestroying, however much disturbing, the primitive distribu-
tion into layers. These are still disposed one above the tion into layers. These are still dispo
other, in a gradually dierinishing series.
Standing still is not the province of society; it must either advance or recrograde. Especially under such a government as ours, change is almost a normal condition and an inherent necessity. The pyramid continues to uplift itself as an entirety; but atoms in the bottom layer of to-day may be in
top layer of to-morrow. Hence one reason why it become us to fairly and honestly examine the conditions of the labor ing classes, upon whom the whole superstructure of the so cial organism rests. Because they are a part of ourselves, it devolves upon us to relieve them, as far as possible, from the grie ances to which they are subjected. Their existence is not separate from the existence of the State; what tends to to their welfare is calculated to promote the general welfare; in the last analysis their interest is identical with the interest of the upper classes; the least addition to their comfort is a gain to the whole community; and if their case is con sidered in the right sp:rit, there is no good cause for antag onistic feeling.
The question raised by them and in their behalf can never be adjusted by the two extremes-those anxious to secure the greatest possible amount of pay for the least possible work, and those anxious to obtain the greatest possible amount of work for the least possible pay. Nor will relief come with the determination how many hours shall constitute a legal day's work. For no period can be fixed which should be applicable alike to all. The ingenious, skilled la borer who uses mind as well as muscle cannot apply him self the same number of hours to his task as he who merely handles the hoe or shovel, holds the plow or drives the oxen. uses the trowel or weaves at the loom. The great desidera tum is to determine what would be a fair division of profits between the employer and the employee. Settle the question as to compensation per hour, and there will be no serious difficulty about the number of hours. Let us not expect to ad jusulty about the issue confronting us by lecturing the laboring classes We must be willing to meet them on their own ground and discuss the matter at stake from their point of view.'

Artificial Milk.

M. Dubrunfant contends that milk is simply an emulsion f neutral fatty matter in a slightly alkaline liquid, such as can be artificially imitated; and that the process of churning consists in hastening the lactic fermentation, thereby acidify ing the serum of the milk, and at the ame time agglomerat ing the fatty matter which the acidity sets free from its emulsion. He further controverts the cellular theory, by showing that the fat globules of milk do not display any double refraction, as do all organized membranous tissues.
Having thus examined the theoretical constitution of milk, he proceeds to the practical method of imitating it, and gives the following directions: Add to half a pint of water, an ounce and a half of saccharine material (cane sugar, glu cose, or sugar of milk), one ounce of dry albumen (made from white of eggs), and 20 or 30 grains of subcarbonate of soda. These are to be agitated with an ounce or more of
o!ive oil or other comestible fatty matter until they form an emulsion. This may be done either with warm or cold water but the temperature of from 50° to $60^{\circ} \mathrm{C}$. is recommended The result is a pasty liquid, which, by further admixture
with its own bulk of water, assumes the consistency and with its own bulk of wate
Luxuriously minded people, who prefer rich cream to or dinary milk, can obtain it by doubling the quantity of fatty matter, and substituting 30 or 40 grains of gelatin for the dry albumen. The researches of Dumas and Frémy having reinstated gelatin among the nitrogenous alimentary mate rials, M. Dubrunfant prefers gelatin to albumen; it is cheaper, more easily obtained, and the slight viscosity which it gives to the liquid materially assists the formation and it gives to the liquid materially assists the formation and
maintenance of the emulsion. He especially recommends this in the manufacture of "siege milk" on account of the obviously numerous articles from which gelatin may be ob ained.
The uses of artificial milk need not be limited to supply ing the wants of the residents of besieged cities. As an or o supersede the product of the cow, but calves are sugges ed as being superior to vulgar human prejudices. In the ordinary course of rearing, these animals demand a large proportion of the milk of their mothers, and are commonly fed or prematurely sacrificed on that account. By feeding her cheapened by using colza oil, which has been rendere tasteless and alimentary by the frying process), the milk butter, and cheese of the cow may be considerably econo mized, and the supply of veal improved, both in quantity and quality, by keeping the calves a much longer time be fore they are killed
I might make further suggestions in the direction of dairy fed pork," etc., but this is unnecessary; the commer-
cial instinct is sufficiently strong to avail itself of all such cial instinct is sufficiently strong to avail itself of all such
cheapening applications of science. Those who are profe sionally engaged in detecting the adulterations of food will do well to study the physical peculiarities by which M, Du brunfant's milk may be distinguished from that of the cow both in ordinary and condensed form. By substituting vege table albumen for the white of egg or gelatin, the vegeta rian may prepare for himself a milk that will satisfy his ttermost aspirations.-Nature.
The Milk Journal, commenting on the foregoing, says Prejudice, Nature appears to think, would prevent this ex ellent concoction from being taken at breakfast times in stead of the produce of the cow. But our contemporary be lieves that calves would rise superior to human prejudices, and accept it with thankfulness, or greediness which,
such cases, would be a calf's suhstitute for thankfulnesz. such cases, would be a calf's suhstitute for thankfulness.
Such of our readers as are familiar with the composition
of milk will be amused with the expedient of substituting of milk will be amused with the expedient of substituting
carbonate of soda for the phosphate of lime and salt, which form the mineral constituents of real milk, and will suspect that "the strictly scientific manner" which governed this
procedure consisted in falling into the vulgar error which was exposed in our pages some time ago. The albumen deived from white of egg is a very different thing from caseine chemically considered, as we have pointed out, and as Haliwetz and Habermann have also shown still more recently. Butter fats, too, we think, may easily be distinguished from olive oil.

Marble Dressing and Carving Machine.
This machine consists in a tubular stock or case, containing drill or carving tool capable of reciprocating or rotating, or both, jointed, to the end of a rod or shaft mounted in a tube pivoted in the top of a stand, so that it can oscillate, around the vertical axis of the stand and also on its own axis, while it can slide freely endwise
This rod carries at one end a pulley and crank or eccentric shaft for actuating the drill for causing it to strike blows, while it is slowly turned by the hands of the attendant. Or the shaft may gear with the shaft of the drill by bevel gears, to give it a constant rotary motion while being held in contact with the work by the attendant;and motion is imparted to said shaft by a belt working from a driving pulley below, over a guide pulley in the top of the stand, under the rod, and thence in one direction to the pulley working the drill, and in the other direction on a guide pulley in the oppositeend of the drill holding rod, in such manner that its action is end of the drill holding rod, in such manner that its action is
not interfered with by the shifting of the drill holding rod endwise.

When this machine is run at a high speed-say two thousand strokes per minute-it is claimed to be very efficient in carving and sculpturing upon marble, being perfectly manageable and capable of having the drills pointed in any direction, and will do the cutting required in lettering marble as fast as the tool can be properly guided and directed on the surface by an expert,
The inventor and patentee is Mr. Greene V. Black, of Jacksonville, Ill .

Professor Tyndall and the Boys.

Professor Tyndall-the best of all living savans for ma king the truths of science familiar to the meanest under standing-signalized the Christmas anniversary in London by talk to the boys. A correspondent says of him:
Dr. Tyndall, talking to boys, is more like an older and bet er informed boy than the others, chatting with them, than I thought it possible for a Professor to be; while his illustrations and asides take his address completely out of the dull and dry category, and put his young audience completely at their ease. Why, he lit a cigar in one of his experiments, and positively smoked it for a second or two; telling us all that when he did the same thing some years ago at Cam bridge, he astonished the dons there very much. "I don't uppose any one had ventured to light a cigar in the Cam bridge Senate house before," remarked the Professor, "and he great people assembled in it looked as if they thought I oughtn't to have taken the liberty." This said, while a cigar is being lit, and as a prelude to its being put between the professional lips and puffed at, delighted the boys and girls One professor outraging the conventional susceptibilities of ther professors, and telling the story as a gool joke, is jus the thing to hit boy nature, and if Dr. Tyndall had wanted volunteers for a desperately forlornhope, my opinion is that he might have counted upon half the lads present
Again, when explaining the process by which frost and snow had been produced on one of the vessels before him, and scraping the snow from its sides, the lecturer won al hearts. "There's more snow than I expected to find; enough you see, to make a snowball; and if I were very wicked, I could actually (doing it) make a snowball out of what is here nd pelt Mr. Blank (the lecturer's assistant) with it." Pro fessor Tyndall suited the action to the words, and having compressed the snow until it was hard and compact, took laborate aim at the gentleman assisting him (whose back was turned), and sent the snowball spinning past him and within a foot of his head. It may beimagined how the boys oared at this; and though these illustrations were exceptionl, the pleasant, friendly, and familiar manner and speech maintained throughout were equally noteworthy, as were the surprising pains taken to follow each chain of reasoning fair y out. The boys or girls who fail to master the principles of what is being put before them at the Royal Institution must be singularly obtuse.

The Air in Wells

Mr. J. S. Kessler, of Allentown, Pa., writes as follows: " was sent, to an ore bed in the vicinity, to examine or repair pump in a well about 80 feet deep. The well was open, with a temporary shed over it; it was close to the engine house The sky was cloudy, and the atmosphere very damp. On descending, the light was extinguished at about 20 feet from the surface; and a similar thing occurred on a second at tempt, which was made after throwing several buckets of water into the well. As I did not feel inclined to go down the engineer assured me that he had been down on several ccasions under the like conditions; whereupon I agreed to see him go down. Finding him to be all right after an inter val of a few minutes, I ventured down, having previousl opened the ronf directly over the well to admit the light Nearly an hour was spent in repairing the pump, during
which time the engineer made sevcral attempts to strike a which time the engineer made sevcral attempts to strike a
light, but had no success. I did not experience any inconve light, but had no success. I did not experience any inconve
nience other than the very fast breathing caused by any nience other than the very fast breathing caused by any
physical exertion, and on coming out I felt as well as before Being somewhat acquainted with natural philosophy, which teaches that air which does not support combustion cannot support animal life, I am puzzled at the apparent contradiction. What could have been the cause of it? I cannot entertain the opinion that it was carbonic acid gas."

REMOVAL OF OIL FROM WOOL.

This method of separating oils, fats, and resins, from the solid substances with which they are mechanically combined has been heretofore in use for the purpose of removing the animal oil from wool, and also for the purpose of cleansing and restoring to use those portions of fleeces which have been made unavailable by marking the sheep with tar or other resinous material. It has been employed for supplementing the mechanical process of separating oil from seeds or olives by operating on the solidified residues which are known under the name of oil cake, marc, etc. At the International Exposition of 1862, Mr. E. Deiss, of Paris, exhibited specimens of superior oils extracted in this manner from the marc of olives. Mr. Payen, in his report on that exposition has described the process as originally applied successfully to the cleansing of wool by Mr. Moison, of Mouy, Depart ment of the Oise, in France; and as this process illustrates the principle of the operation in other cases, though the details may be different, Dr. Barnard, in his report; gives it in abridged form.

It is to be observed, in the first place, that the case of wool presents a difficulty, which is not encountered when the object in view is only to obtain the oil which the substance op erated on happens to contain.
The wool itself is in this case the important material, and the value of the oil separated from it is a trifle of secondary consequence. In the original experiments the point of difficulty in the practical problem was found to be how to expel the bisulphide from the wool after the operation of solution
had been completed, without injury to the wool itself. Too had been completed, without injury to the wool itself. Too
great heat, in whatever manner applied, was found to have the effect of hardening the fibers, making them cohere, and giving them a tinge of a yellowish brown color, which was variable in intensity according as the material had been a longer or shorter time in oontact with the fatty matters removed. The mere volatilization of the bisulphide was effected without difficulty. It sufficed for this to introduce, into the vessel containing the material to be operated on, cither scribed invariably followed. Mr. Moison discovered at length that with proper arrangements a current of air heated to a temperature considerably below that of boiling water, 70° or $80^{\circ} \mathrm{C}=160^{\circ}$ to $175^{\circ} \mathrm{F}$., would remove the liquid entirely, and leave the fiber of the wool wholly uninjured.

The apparatus employed in "conducting this pro cess is shown in the engraving. The wool to sub jected to the operation is introduced into a cast iron cylinder, A, surrounded by a jacket into which steam may be conducted when it is necessary to raise the temperature. One hundred kilogrammes, say two hundred and fourteen pounds, of wool are placed in this cylinder at once.
There is within the cylinder a false bottom per. forated with numerous holes, with a small free space beneath it. Upon the top of the wool is placed a circular follower or compressor, fitting the interio the false ber, and perforated also with holes lik follower pass through stuffing boxes in the lid and may be driven downward by means of fixed screw may be drive the prolongations above the cylinder. The object of this arrangement is to compress the wool to a cer tain extent, since the success of the operation is always most satisfactory when the mass of the ma terial is reduced in advance to about one half its original volume.
The lid is secured air tight by means of bolts and screws, a leaden washer being introduced into the joint. Matters being thus prepared, liquid bisulphide of carbon is thrown forcing pump, C, which draws the liquid from a reservoir, D This liquid rises through the perforations and completely immerses the confined wool, reaching at length a point above the perforated follower, where it finds a lateral overflow tube. This conducts it into the still or alembic B. Here the bisulphide is volatilized by the heat of steam, which is introduced into the double bottom of the vessel and also in to the midst of the liquid mass itself by means of a spiral tube within the alembic, not shown in the figure. When the
process is complete and the oil in the alembic is entirely free from the bisulphide, the stopcock beneath permits to with draw the product. Before this is done, however, steam is in troduced into the mass of the impure oil by means of a sce ond spiral tube, which is also not shown, and which is per forated with numerous holes. The design and the effect of this part of the process is to remove the last traces of the solvent.
The vapor of the bisulphide is conducted from the alembic to the refrigerator J, where it is condensed in the spiral L , and is finally returned to the reservoir D .
There is a stopcock in the overflow tube which leads from A to B, through which may be withdrawn at any time a few drops of the liquid passing through the tube. When the specimen thus withdrawn, on evaporation upon glass, leaves no trace of oil or other residuum, the operation of the pump C, may be suspended. For a short distance, this tube is of glass for the purpose of enabling the attendant to observe the color of the passing liquid.
The process of solution being complete, communication with C , is cut off by means of a stopcock, and two other stopcocks are opened. One of these permits the liquid, in A, to descend through the spiral H , to the reservoir D . The other allows air to be introduced into the upper part of A by mean of the double acting piston blower, E. The air, as the figure
shows, may be drawn from D ; but the stop cock beneath E is a three way cock, and it allows the supply to be taken also from the atmosphere. In passing from E to A , the air is conducted through the jacketed tube, M, and steam is in complete the velatilization to the to a degree sum first part of this operation, which consists in the mechanical expulsion of the bulk of the liquid in A, may be conducted without heat. The cock in the tube leading from A to H is a three way cock, as well as that beneath E . At the close of the operation, the air blown through may be discharged into the operation, the air blown through may be discharged into
the atmosphere without passing through H. In that case it is conducted, by a long tube not shown, out of the building, is conducted, by a long tube not shown, out of the building,
in order that any disagreeable odor which may accompany it may not annoy the attendants. The two spiral tubes, H and L, pass out of the refrigerator J, before entering the reservoir D. At these points they are provided with smal stopcocks not shown, to permit the examination of the sub stances passing through them. Into each of these tubes, also, as into the one leading from A to the alembic, is introduced a short glass tube as a part of its length, so that the interior of any one of them may be inspected.
There remains one additional portion of the apparatus to be mentioned, which is the gasometer G. While the process is proceeding without any communication with the atmos phere, the volume of the confined air may vary with the tem perature, or with the compression in A, and the volatilization of the bisulphide will also add something to the bulk of the eriform mass. The gasometer, which may be as represent d of the bellows form, or may be the ordinary bell and istern, will serve to keep the capacity of the apparatus properly adjusted to the varying volume of the contents.
The boiling point of the bisulphide of carbon is $48^{\circ} \mathrm{C}=118^{\circ}$ F. If the air introduced into A is therefore heated to 70° or 80° C., the volatilization will be rapid; and this temperature does not effect injuriously either the structure or the color of he wool.
A considerable ecenomical advantage is obtained by this process, in the mere recovery to use of considerable quanti ties of wool which have been ruined by the pitch employed in marking. The animal oil separated has also some value But the same process employed to dissolve the oils contained in the strippings of machine cards in factories, which mounts to one third of the entire weight is the source of a considerable saving. This oil is what has been added in

previous stages of the manufacture; and, after being thus re covered, it may be used again.
The wool which has been freed from oil by the proces picking and beating machines preliminary to carding, yields large proportion of fine fragments, or what may be called wool dust, said by Mr. Payen to amount to forty-two per cent of the total weight. This is valuable as a fertilizer in in agriculture, and is so turned to account. Under former odes of treatment, it was a total loss.
But the application of the process above described ha een more recently extended to a great variety of purposes Thus, when the pitchy glycerin deposits formed during the saponification with sulphuric acid-which is made a prelimi nary to the distillation of fatty bodies-are acted upon by the bisulphide, they yield a considerable quantity of stearin amounting to eighteen or turenty per cent of their weight The waste grease of the kitchen, the exudations which take place from the axles of vehicles or the journal boxes of ma chinery, and all similar forms of oils and fats, contaminated by impurities which, though they form but a small part of the weight, destroy entirely the value, are completely re stored' by this process, which recovers the valuable portion, and leaves the impurities behind. Rags, swabs, and fibrous materials of any kind, which have been employed in clean ing machinery or the parts of locomotives which it is neces ary to oil, soon become saturated to such an extent that hey are commonly thrown aside as useless; but these give up a large amount of oil to the solvent employed in the new o the rags themselves a value which they had lost, since it permits them to be reemployed for the same purposes as before, or to be used in the manufacture of paper.
In the direct extraction of wax by pressure, there is left in the solid residue a proportion of twenty per cent of valuaphide of carbon. This does not render the residue unfit for use as a fertilizer (the purpose to which it is commonly ap plied), but rather improves it. Sawdust, which has been
used for the filtration of oils purified by sulphuric aci ${ }^{d}$
yields to this yields to this process fifteen or eighteen per cent of i^{t} weight. The acid impurities separated from oils in the pro cess of purification by agitation with a small proportion of sulphuric acid, furnish by proper treatment with bisulphide of carbon half their weight of pure oil
Bones of animals obtained from shambles, from the streets, from kitchens, and from various other sources, are used to the extent of many millions pounds annually in every country, for the manufactures of glue and of anima charcoal. These are usually to some extent exhausted of heir oils by boiling, before being used in the manufacture for which they are intended; but the boiling separates only ix or seven per cent, while the bisulphide process extract en or eleven. The oil cakes, which are formed in the me chanical process of the expression of oils from seeds of va rious kinds, furnish, as mentioned above, a large proportion of oil which the press has left behind. These cakes ar sometimes broken up, reduced to powder, and pressed again with the aid of heat. But the labor of the second compres sion is greater than that of the first, and the product is less, while it still leaves the residue unexhausted. The cake have a value as food for animals. It was at first supposed that the complete removal of their oil would injure them for this use, but experience has shown this impression to be an error. It is asserted by Messrs. Schlinck and Rutsch, the exhibitors, to have been fully prowed by experiments on large scale already made, that in regard to the production of milk, butter, and flesh, the residua from which the oil ha been thoroughly extracted are far superior to the pressed cakes, and that they retain their good qualities as food fo nimals though kept long in store.
The compacted masses, left in the extraction of tallow or ard by pressure, furnish twenty per cent additional when treated with bisulphide of carbon. The residue from th compression of cacao gives a similar increase of product on similar treatment. Finally, the marc of olives, as exempli fied in the exposition of Mr. Deiss, furnishes quantities of xcellent oil, which the press fails to separate
The peculiarity of the industry of, Messrs. Schlinck and Rutsch is that they do not take the trouble to use the compression process at all in their treatment of the oleaginous seeds from which their oils are obtained; that is to say, they do not first extract a portion of the oil by pressure, and the subject the residuum to the action of the solvent, as ha been done by others before th $\propto m$.

Cleaning Watches and clocks.
This invention consists in immersing the " move ments" of clocks and watches in naphtha or some equivalent volatile liquid, and exposing them to heated air, thereby, itis claimed, saving much time and expense.
The inventor thus describes his process: "In carrying out my invention and discovery, I in the first place take the " movement" of the watch or the clock from its case; and in case the watch has a "dust-proof cap," that also is removed, so that the liquid will have a free circulation through the works. I now hold the movement with a pair of pliers or other instrument, and immerse it in pure naphtha or other pure volatile liquid of a simila nature. While the movement is immersed it is moved about or twirled in the liquid, so that al parts will be exposed to its action, and so that the liquid will pass rapidly through the works, and wash the dust and clean away the old oil. This opera tion is completed in a few minutes, after which the move ment is exposed to air heated to a temperature a little above that of the surrounding atmosphere.
The evaporation of the naphtha or other volatile liquid is so rapid, after the movement is taken from it, that, unless it is exposed to artificial heat, the moisture of the common at osphere will be condensed upon it, giving it the appearanc of "sweating." From this higher temperature, the move ment is cooled down gradually to that of the surroundin atmosphere. The pivots or frictional points are touched with ubricating oil, and the work is done.
The whole process necessarily occupies not more than six or eight minutes of time. The result is satisfactory in every particular, as frequent experiments have proved, while th ctual cost is almost nothing when compared with the pric ordinarily charged for cleaning watches and clocks. No ta king to pieces and brushing can make the parts more per fectly clean and bright than my process."
Mr. William W. Thompson, of Smithville, Ga., has just patented this invention through the Scientific American Pat ent Agency.

Bleaching.-The residues from the manufacture of chlo rine, consisting chiefly of chloride of manganese, are treated with chalk to precipitate the iron; after separating the li quid from this precipitate by decantation, the manganese is precipitated as sesqui-oxide by lime. This last, by heating in a current of air, gives the green mangana of soda. The mass contains 50 to 60 per cent of pure mangan ate. On mixing it with sulphate of magnesia and adding water, a solution of permanganate is obtained. The principle on which the bleaching depends is the deoxidation of the permanganate in contact with the coloring matters accompa nying vegetable or animal fibers. A deposit of oxide of man ganese is formed on the goods, which, by the action of sul phurous acid, is converted into sulphate of the protoxide, and may be washed out, leaving the goods white. The sulphur us acid is prepared by heating dry copperas with sulphur to a low red heat.-Tessie du Motay.

WROUGHT IRON AND STEEL POŞTS.

The accompanying engravings show the construction of a wrought iron or steel post, for which a patent has jusi been obtained by W. A. Gunn, of Lexington, Ky., through the Scientific American Patent Agency. It is intended to take the place of cast iron columns, and box, cylindrical, and other forms of posts, chords for bridges, and columns for build ings, for which it is claimed to be a very economical device
It consists simply of three I beams united in the form of

the letter H. The inventor claims for it the following ad vantages: Allthe material is useful to sustain the weight, no loss being incurred to obtain stiffness; the component parts of the post, being among the most rigid forms of wrought iron, may be regarded as perfectly stiff for longer distances than the parts of boxes or columns, and hence less riveting is required than in others, less cutting of the material, less labor, and less weakening of the post, so that, it is claimed, one fourth the rivets used in the ordinary forms will be suf ficient in this; as a post yields by flexure, it is strong in proportion to its ability to sustain a cross strain; the I beam being considered the strongest form to resist a cross strain, and this post being really an I beam in both directions, the inventor adopts it as adapted to this purpose; it will also, on this account, be useful for girders and bridge chords; the riveting, being on the interior part of the post, weakens it less than when on the exterior part; it is also adapted to the parts of bridges which may be subjected to tension as well as compression; as different sizes of beams may be used at will, the dimensions of posts may be easily graduated to any size required; the parts being quite a common form of iron, no special machinery is required for their construction; the whole surface is exposed and can be painted readily, while hollow posts are liable to be injured by rust on the inner sur faces.

In the engravings, A, B, and C represent I bars or beams of wrought iron or steel. The bars, A and C, are placed with their sides against the edges of the bar, B, and are riveted a shown, the rivets passing through the flanges of B, and through the webs or bodies of A and C. The rivets are not placed opposite each other in the different bars, and, as above stated, are placed further apart than in ordinary beams.
Patented January 2, 1872. For further particulars, address the patentee as above.

Elevators for Private Houses.

This is a small, light, cheap, and economical elevator principally adapted for use in private houses, the "cage" or "car" of which is constructed of wire, the elliptical shape being preferred, and attached and detached at pleasure, by suitable means, to an up and down, continuously moving endless chain
The chain passes around pulleys at the top and bottom of the passage, and is propelled by a motive power competent to pull up and down about one half the maximum weight proposed to be elevated or lowered. The cage is guided up and down by a suitable number of wire rods or ribs, which press outward against the gaides, in which are gaged suitable slots for retaining the rods.
The counterpoises are so attached as to pull against the weight, which causes the ribs of the sides to spring inward, away from the guides, so as to move freely up and down. Whenever disconnected, the ribs of the cage spring outward and bind against the guides, the friction bei g increased, if necessary, by short bends in the rims at the top, which, when not pulled by the counterpoises, will enter notches cut at the back of the slots. One of the ribs has a bend or two to catch in notches in that guide which is between the up and
down running parts of the chain, and has a hook on each side, so that by springing the rib inward and sidewise a hook will catch in the chain, and the rib will be released from the guide.
The hook on one side will, at pleasure, catch on that part of the chain running upward and thus pull the cage up; or the other hook, at pleasure, will catch on the down running part of the chain and pull against the counterpoises and ower the cage. There is on each side of the rib an eccentric button, held in one position by suitable springs; by pulling properly attached cords or wires the buttons are turned so that either one, at will, will pass behind the rib, and first press it inward and then sidewise until the hook catches the chain on the opposite side; by turning the other button, it will be released, and the rim will then fly back into posi tion and hold the cage stationary. There are suitable projections arranged-one at the top, the other at the bottomwhich will catch upon a button and release the rib which is attached to the chain, and prevent the cage from being pulled against the ends of the passage way. If the chain should break, the hook being released will allow the rib to fly back into its normal position and hold the car stationary Although an endless continuously moving chain is em ployed, the inventor does not limit himself to it, for it may, a pleasure, be varied, and the cage be moved in both directions py one part ; or a chain winding on and off drums at each end of the way, and having reversible driving gear, will be applicable to the apparatus without any material change of the latter.

Mr. James D. Warner, of Brooklyn, N. Y., is the patentee f this invention.
ALBERT'S METHOD OF SECURING FLAG HALYARDS
Flags are used in the aggregate not more than one month in twelve, yet,in the usual way of securing halyards, they are subjected to constant strains during wet weather, and are whipped by the winds in dry weather, so that they are worn fully as much when out of use as when employed. On the fer ryboats, they are usually wound spirally about the pole, forming by their attrition a stripe where the paint is worn away making the staff appear like a veritable barber's pole. When flags are used on buildings, the halyards are usually wound o tight on the cleats that when wet they are either parted, stranded, or weakened by the contraction of the rope, and are unable to support the flag when again hoisted. To repair and readjust them requires some one to climb the flagstaff, a kind of operation for which few are fitted except telegraph pole climbers, who, with their artificial spurs, mar the pole and injure its beauty. Now, by the invention illustrated in the accompanying engrav ing, all these evils and inconveniences may be avoided, and the halyards, which are the most expensive kind of rope of equal weight used on shipboard, may be preserved for a long time in perfect order, and at all times ready for use.
The invention consists of three pieces, namely, a bent bar having a footstep which is attached by three screws to the flagtaff, or having this part modified in form so as to be conveniently seized to the backstays on shipboard, a traveller or weight which slides up and down on the vertical part of the bent rod aforesaid, and, third, a fair-leader, which keeps the bite of the halyards separate in all weathers and prevents them from whipping the mast. When the flag is up, the halyard is belayed to the cleat. When the flag is down, it is belayed to the traveller.
The traveller has a belaying pin to which the halyard is belayed, as shown, the pin being wound with tarred cord to prevent wear of the rope, as is also the fairleader. This simple and common sense. invention can be applied at small expense, and would, if employed, save much money and trouble to the users of flags.
The invention was patented September 26th, 1871, by Captain William Albert an old sea captain, who has learned by experience the value of a better method f securing halyards than existed before his ingenuity supplied the deficiency.
Further information may be obtained by addressing Capt. James Borland \& Co., Ship Chandlery, No. 53 South street, New York.
Sulphide of Bismuth.-Bismuth, in the presence of or in combination with sulphur, yields a beautiful red coating, when passed before the blowpipe on"a large piece of charcoal, upon the addition of a little pulverized iodide of potassium. A finely pulverized mixture of equal parts of sulphur and iodide of potassium is best kept for such purpose and makes an excellent test material for bismuth. In making these in vestigations, V . Kobell met a green mineral which occurs associated with joseite at St. José dí Madureira, Brazil, and which proved to be bismuthite, not previously noticed at that locality.

THE PHOSPHORIC LIGHT.

The apparatus consists of an iron vessel, A, into which sticks of phosphorus are introduced. That used at the Man chester Photographic Society's meeting was five inches in its largest diameter and three and a half inches in depth, havin a capacity of twenty-eight fluid ounces. This vessel is fitted with an iron cover of substantial thickness, ground so as to fit air tight to it, and secured in its place, when required, by cross bar inside, fastened with a bolt and nut. Three othe holes are also bored through this cover, as seen in Fig. 2, that marked No. 1 being half an inch in diameter, and having a piece of brass tube about an inch long screwed into it, with a narrower tube inside. This is the jet through which the phosphorus vapors issue, and the smaller tube conveys the oxygen required to supply the flame, the oxygen passing through the tube, entering the hole 2, and being conveyed as seen in Fig. 1, through the vessel, A, containing the phos phorus, up through the middle of the jet at which the phos phorus vapors are burned. It is indispensably necessary tha

Fig. 1.
Fig. 2.

the oxygen should not escape into the vessel, A; for, if it did combustion would take place in the vessel itself, and would probably lead to an accident. The other hole, 3, is for occasional use, and is fitted with a pipe for the introduction of common coal gas under such circumstances as will be hereafter mentioned. The vessel, A , is placed upon a stand over a large Bunsen burner, and with it is enclosed in a capa cious lantern, furnished with plain glass front, and with sil vered reflectors behind. The lantern is also supplied with a chimney communicating with the outer air, and having a gas burner inside it to produce a strong up draft before commenc ing to experiment.
When all is arranged, three or four ounces of the element phosphorus are thrown into the chamber, A, and the lid screwed down. The apparatus is then placed in the lantern, and the Bunsen burner beneath it is lighted. The phosphorus inside soon melts and inflames, burning until the oxygen in the chamber is consumed, and causing the emission, a the jet, of a small quantity of white smoke (phosphoric anhydride). After a while ebullition takes place, and bright flashes of flame spontaneously appear at the nozzle. If the heat be sufficiently applied, the flame becomes continuous, and extends in hight in proportion to the rapidity with which the gaseous phosphorus is evolved, burning with consider able brightness. If, however, sufficient heat be now applied to make the flame quite continuous, and a current of common coal gas be passed directly into the chamber through hole 3, this gas and the phosphorus become associated together, and burn at the jet with a brilliant flame entirely under the control of the experimenter. When the experiment was performed before the Manchester Photographic ment was performed before the Manchester Photographic
Society, this flame varied between fifteen and twenty inches in hight; and upon the introduction of the oxygen, its bright ness became so greatly augmented as to render it almos unbearable to the eye. The readers of this journal may judge for themselves whether or no a room is not brilliantly illuminated by a flame eighteen inches in length, and so bright throughout the whole of that eighteen inches as to be almost unbearable to the sight. When the writer says the illumination of a room by this light is far greater than is possible by a single oxyhydrogen light as ordinarily employed he is not making any idle boast of one inflated with his own idea, but is simply stating what was proved to be the fact at the most numerously attended ordinary meeting ever held by the Manchester Photographic Society.
In making use of the apparatus here described, the write found it convenient to have all his taps near together, a shown in the diagram, so that, without moving about, it would be possible to increase or diminish the heat beneath the phosphorus chamber, accelerate or lessen the draft in the chimney, augment or suppress the supply of hydrogen to the chamber, and add to or take from the quantity of oxy gen introduced into the flame.
What efforts have been made for the commercial introduc tion of the phosphoric light have, thus far, been unavailing because of the strong prejudices which are entertained against the use of phosphorus. It is true, an accident with this substance might prove a very disastrous affair, as acci-
dents with gunpowder and steam have proved; but gunpow der, steam, and phosphorus, may all be used, in suitable
appliances and with ordinary care, with a very small amount of fear of any mischance.-British Journal of Photography.

$\mathfrak{C o r x e s}$ pandente.

The Editors are not responsible for the opinions expressed by their con

Condition of the Models at the Patent office.

To the Editor of the Scientific American:
Permit me to call your attention to the condition of the m odels in the Patent Office. For want of room to properly store them, these models, in many instances, are left around on the floors, piled on the tops of the cabinets and on each other on the shelves, so that it is almost impossible to make an examination of them; many are also broken from this cause. In some cases, there are bushels of broken pieces of models, the uses of which can only be guessed at.
The present efficient head of the model room is doing all that he can in properly arranging and classifying the constantly accumulating models; but with the limited amount of space at his disposal it is impossible to do all that should be done. Some space has been made by disporil shelves beof theen those already in the cabinets, but in many instances these shelves hide the models and interfere with their proper these shelves hide the models and interfere with their proper examination, thus neces-itating a frequent handling where
sight alone would be sufficient but for the second set of sight alone would be sufficient but for the second set of
of shelves. Even with the most careful handling, models of shelves. Even with
are frequently broken.
To remedy this, two things must be done immediately More room must be provided, and the models dispensed with in all new applications not absolutely requiring them to explain the in ${ }^{-1}$ ention sought to be patented. To continue the present system, a new set of model halls as large as those now used would be required every seven years at the present rate of accumulation, which amounts to about twenty
thousand annually. At this rate, without counting any in crease in the number of patents granted, the number of mo dels now in the office would be doubled in the period mentioned. You can this see the neressity of some immediate change.

Some additional space might be obtained by building more galleries on the top of the cases in the north and wes halls, which could be lighted through the roof. This would help for a year or two, but sooner or later the present sys tem will have to be abandoned - useful as it is to point out what has already been done-and so prevent inventors from
wasting their time, money and talents on machines that are wasting their time, money already patented by others.
In every case where the model is dispensed with, as proposed, the applicant should be required to furnish drawings in perspective, where the case could be properly illustrated in this manner, a copy of which, at the patentee's expense, should be mounted on card board and varnished, and placed with its appropriate class in the model cabinets. Such a drawing would last a long time, and should it be defaced or photo-lithographs issued with the patents. The necessity for perspective exists in the fact that a majority of non-profes. perspective exists in the fact that a majority of non-profes
sional people cannot readily understand a mechanical drawing.

If some such system as this is adopted at once, it will be comparatively easy to find room for the models of such applications as absolutely require them for the proper illus tration of the invention; but under the present style of pro ceeding, the halls are being filled with a large number of mo dels of devices that drawings would show just as well, with out taking up a tithe of the room, and at the same time save inventors the difference between the cost of the drawings and models.
The present Commissioner has been too short a time in his office, or to busily employed in his other duties, to appreciate the difficulties caused by the present limited space in the model halls; and I, therefore, appeal to you, as "the rights of inventors, to see that some remedy is applied im. rights of in
mediately.
There are now about seven hundred and fifty thousand dollars in the Treasury belonging to the Patent Office, nearly dollars in the Treasury belonging to the Patent Office, nearly
all of which has been taken from poor inventors who could ill spare it; and the least that should be done is to provide sufficient room, for the models that applicants are compelled to furnish, and to so arrange them that they shall be readily accessible for examination; and if space cannot be found, then the inventor should not be required to go to the expense of a model which the Patent Office cannot find room properly to exhibit.
Washington, D. C.
Inventor.

Expose of the Tricks of the Davenport Brothers.

To the Editor of the Scientific American:
As Dr. Vander Weyde has finished what he considers to be an expose of the Davenport Brothers, 1 submit for the con sideration of your readers a totally different view of the sideration of your readers a totaly they can judge who is right.
matter
The Davenport Brothers do not depend on their ability to untie the cords with which they are bound; in almost every case, this would be impossible for them to accomplish in time to =atisfy the spectators. A statement of what I have wit
nessed will serve to illustrate and prove what I assert. I nessed will serve to illustrate and prove what I assert.
have seen the brothers tied by experts, with such a numbe of ropes and complexity of knots, all drawn aw forcibly as a strong man could pull them, that it would have taken at lunst thirty minutes for the most dexterous manipulator to
have loosened one hand, the knots of the ropes on the wrists
and legs being sealed with was. In five seconds by the watch, after the doors were closed, a naked arm and hand were projected from the hole in the middle door, grasping a
large bell and ringing it. The doors were opened upon th large bell and ringing it. The doors were opened upon the and legs examine hand, and the the seals unbroken. The fact is they perform all of their tricks with free hands and at the same time do not untie a single knot. Dr. Vander Weyde says that the smallness of their hands aids them to undo the fastenings; this is true but not in the way the Doctor understands it. They have
false hands and wrists these are made of gum, and so false hands and wrists these are made of gum, and so
closely resemble nature, both in form and color, as to mislead all who are not expecting deception in that way; the eeble light in which they perform their tricks assists to secure them from detection. The wrists of these counterfeit coverings extend up the arm a sufficient distance to be cov ered by the sleeve of the shirt, and have flat hoops or rings of thin sheet metal embedded in the substance of which are under the pressure of the cords. These counterfeit hands and wrists are of ordinary size, and yet are large enough to permit of the ready insertion, or removal of the hands of he Davenports, owing to the remarkable slimness of their atural members. The position in which the hands are aced, and the tying of the ropes on the under side of the reception, aid greatly in keeping them in proper position for he easy insertion of the hands. The coat sleeves above the wrists are padded to make the arm of a relative size in pro portion to the hands. In the trick of exhibiting five arms and
hands at one time extending out of the window in the cabinet, hands at one time extending out of the window in the cabinet,
hey employ four counterfeits made of thin gum, capable of being inflated, the fifth and smaller one being one of their wn arms. They do not open the door after this performance until they have had time to exhaust the air out of the rauds, and roll up and deposit them in their coat pockets. In regard to freeing themselves of the fastenings, they simply cut th \rightarrow cords off; others of a proper length are produced from their capacious pockets to throw on the floor; the cut fragments are put safely away in those same pockets. A moment's reflection will convince any one that it is simply impossible for the Davenports to endure, for three fourths of an hour, the torture of tightly knotted cords upon their naked wrists; try it for five minutes and see if it will not convince you of the truth of my demonstration
Harrisburg, Penn.
Wm. P. Patton.

C. W. Williams on Coal and smoke.

To the Editor of the Scientific American:

Is Mr. Charles Wye Williams the latest and best authority pon the consumption of coals and the prevention of smoke? have read his book, and he seems to make these remarka le ponts:
1st. That the prevention of smoke is impossible. He enters into very learned statements and calculations, which, as he leaves them, condemns us poor inhabitants of bituminous re ions to the unrelieved prospect of endless carbonization-in being lined inside and outside with smoke.
2d. He learnedly thinks he shows that smoke isn't worth much, and that its prevention wouldn't be much of a saving. 3d. He states that Mr. Charles W ye Williams has invented he only useful mode of approximating the prevention of nske; and that any other invention shows either that the is, is either a knave or a fool
The arguments of the book do not seem, to the present writer, satisfactory; and its tone savors more of magisterial elf conceit, than of that humility which science, like every ther great subject, ought to engender in minds above medi crity
Is there not a better book on the subject? B. F.
[The criticisms of our correspondent upon C. W. Williams' works are not without foundation, whether relating to matter or manner. That author's views contain, in our opinion, so much admixture of error, that he is hardly entitled to be styled an authority in the strictest sense of the term. As ur old readers are well aware, we have had occasion to dif er from Mr. Williams in many points besides the ones enu-merated.-Ed.

Mississippi Bridge at Rock Island.

To the Editor of the Scientific American
The new iron bridge over the Mississippi river, from Rock island to the city of Davenport, is being hastened to comple tion, and will be ready for travel in about six weeks. It is a Whipple truss bridge, and is built to accommodat wagons, with a foot way below and a railroad overhead.
The bridge consists of five spans and a draw; the spans vary from 200 to 210 feet in length, and weigh six tuns to the linear foot. The draw span is the longest on the Missis ength, and weighs 871,784 pounds. The draw is built in re verse way of the fixed spans, that is, the Whipple trues is in verted, bringing the top chord into tension, and the bottom bord into compression, and carrying the entire strain from he ends to the center or main posts. In the fixed spans, the rain is transmitt:d from the bottom of the posts to the top chords by means of the tie bars. This throws the top chord
into compression. into compression.
The turntable, on which the draw span rests, is indeed a novel affar, and is the invention of C. Shaler Smith, President and Chief Engineer of the Baltimore Bridge Company. The bed carcle, which is 32 feet in diameter, with a 12 inch
upper surface, and weighs 36 tuns, rests on the pivot pier. The top surface is beveled, the inner side being the highest The rotary table, five feet in depth, and resting on 36 cast iron wheels 30 inches in diameter, is placed on the bed circle the 36 wheels resting on the beveled face of the circle. Each wheel, which has a 12 inch face, is leveled, the outer side having the greatest diameter. Thus each wheei, from its formation, tends to travel in a segment of a circle, and avoids the tendency, which square faced wheels have, to travel on a tangent. From the center of each of the above wheels runs a rod to the center pin, which is 33 inches high, with a base four feet in diameter, which pin is mounted on the ra dial center of the masonry. The rotary power is not yet finished, but will consist of an iron reservoir containing about ished, but will consist of an iron reservoir containing about
three barrols of pure glycerin, which will flow into four hythree barrols of pure glycerin, which will flow into four hy-
draulic pumps worked by a steam engine. The glycerin draulic pumps worked by a steam engine. The glycerin
will be forced by the pumps into two large rams on each will be forced by the pumps into two large rams on each
side of the center of the draw span. An iron cable will be side of the center of the draw span. An iron cable will the
led from the plunger of each ram one quarter around the circle, and there made fast to an iron eye let into the mason ry. Tho machinery is so arranged that, while one ram wind in on its cable, the other will be laying outits cable, ready o pull in, or when it is desired, to reverse the motion of the draw.
This huge draw was recently swung into position for the rrst time, the united muscular power of twelve or fifteen men being amply sufficient therefor. Three persons on!y had the honor of being on the draw while it was making its first wing, one of whom was your correspondent,
Davenport, Iowa.
Luke Copperton

VARIANCE BET WEEN HYDROSTATIC AND STEAM PRESSURE IN BOILERS.

The hydrostatic force is the only force present in applying the water test to ascertain the strength of steam boilers
But, if heat be applied to a boiler to generate steam, two But, if heat be applied to a
constant forces are present:
1st, the expansive force of steam, and $2 d$, differential expansion.
Besides these, two inconstant forces: 1st, repulsion of the water from the metal, and 2d, dissociation of the water arising from expulsion of the air by continual ebulli tion, sometimes ryake their appearance.
If the drift pin has been used, the damage it has done will be increased by heat.
One or more of these forces, combined with the expansive force of steam, b comes irresistible; and when in operation to that extent detracts from the possibility of working steam at the pressure of the previous hydrostatic test. The presence of these additional forcesin a steam boiler is clearly attributable to extraneous causes, and not to any destructive but hidden agency inherent in steam. For, while no force will rebel at a volation of its la ws sooner than steam, yet its controllability in conformity with its laws is not exceeded by that of any other active force. In proof of this, we find that when steam has been generated in one boiler and forced into a second one, it equires a greater steam pressure than water pressure to upture the one containing steam only, owing to its greater fluidity and elasticity.
Further proof, of its controllability and even harmlessness when isolated, is seen in its easy confinement in every varity of vessel and under varying circumstances, extending ven to rubber hose at high pressure. The thinness of a late capable of confining isolated steam is surprising
On comparison of two boilers tested, the one by wate pressure and the other by steam forced into it, their condi ions will be found to be the same in kind, and different only in degree of temperature. Every part of each being of uni orm temperature, the force of differential expansion is ab sent from both. The plates not b ing heated above 600°, the point of maximum vaporization, the force of repulsion is ab sent from both; therefore the only remaining force left is the steam pressure in the one case and the water pressure in the ther. The behavior of steam, isolated in one boiler, being identical, then, with that of water isolated in another, and the two being convertible, the one into the other, according o temperature, it is presumable that there can be no antag nisms due to their contact and union in the same boiler en gendering other and additional forces besides those above erated.
This inference is fortified by the fact that there is not known an instance where the forms, in which the elements of water present themselves, whether in that of gas, vapor iquid or solid, manifest any antagonisms, the one to the other n any possible combination. To assume therefore that the contact and union of steam and water in the same boiler can possilly engender a dangerous force, is not only an assump tion without foundation, but is contrary both to reason and nalogy. It appears, therefore, that there are known to ex ist in some boilers, besides the expansive force of steam, other illegitimate forces which are not resistible by any trength of material, and are consequently capable of produc ing all the phenomena of explosions; and it further appears that th + se illegitimate forces cannot be present in thos boilers oossessing uniformity of temperature not exceeding 600° and containing water from which the air has not been ex pelled.
The question now arises: Can these conditions be perma Nontly maintained in boilers generating steam?
No problem in mechanics is more simple. By an applica tion of the law of gravity, the water will flow from the cold end of a boiler (in a properly adjusted pipe) to the hot end, and the water in the hot end will flow in the barrel of the oiler to the cold end, thus interchanging places with such rapidity as to insure a temperature substantially, if not theo
retically, uniform. The greater the heat, the greater the speed of flow. The constant force of differential expansion being thus practically obviated, it remains to dispose of the inconstant force, repulsion. But there can be no repulsion of the water until the plates are heated above 600°, the point of maximum vaporization, an excess of which degree of heat it is well known metal
water is flowing over it.
It follows, therefore, that neither differential expansion nor repulsion can be present in a boiler having rapid and perfect longitudinal circulation.
The salutary consequences of this action of water in steam boilers are not limited to their immeaiate safety only, but extend to their cleanliness, economy, and efficiency and regularity in generating steam.
The flow of water from the fire box to the cold end of the boiler will produce a current adequate to sweep into the mud drum all deposit on the sides and bottom. This mud
drum may be so constructed as to form an eddy, retaining drum may be so constructed as to form an eddy, retaining
the sediment while passing the clarified water again to the the sedim
fire box.

The efficiency of the steam will be increased by freedom from priming, which is occasioned by the throw of the water into the steam pipe, in consequence of the conflict between the desconding water to take the place of that water which
is ascending with the steam from the bottom. But if this conflict is avoided by the return of the water to the bottom of the boiler through a different channel, a more quiet separation and delivery is made of the steam into its pipe leading to the engines, lessening by that much its tendency to prime. The violence of this conflict may be ascertained by measuring the temperature of ebullition at various pressures. In a vacuum it occurs af 98°, at great elevations, as the top of Mont Blanc, at less than 200°, and, at ordinary lev-
els of atmospheric pressure, at 212°. But in a steam boiler with a pressure equal to eight or nine atmospheres, the automatic separation of the steam from the water is not only more difficult, but the difficulty is magnified by the multitude of tubes and narrow water ways through which both the ascending and descending columns of water must travel at the same instant. Hence, when sudden relief from pressure is given by a supply of steam to the engine, the violence of the ascending column must occupy the water spaces to the exclusion of the descending one, with resulting damage, sometimes greater than that of priming.
The economy is promoted by the maintenance of that temperature most productive of the greatest amount of steam. This point fluctuates slightly above or below 600°, according to circumstances. As an increase in the temperature of the plates, slightly in excess of that figure, say to 800°, will render them nearly eight times less efficient in the generation of steam than a temperature of 600°, and as the circulation of the water will prevent the possibility of their rise in temperature above that of maximum vaporization, it follows that, in so far as this is effected, the circulation of water in a boiler, longitudinally, contributes to its economy by utilizing a heat which otherwise may become a source of disaster.
Again: Regularity of steam cannot be maintained in a boiler, while a part of the water contained in it (that around the fire box) is heated excessively, and another part (that in a temperature above that of fever heat. But, by longitudinal circulation, all the water having been brought nearly to one temperature, it is in a condition to yield steam with the greatest regularity.
It is, moreover, maintained that groovings and corrosions are impossible in a boiler with longitudinal circulation of the water sweeping among the superheated steam, which is their cause.

But the weakest place of a locomotive, and that which firs gives way, is the point of union between the flue sheet and the flues. The difference in the thickness of their materials exposes them to the greatest strains of contraction from the chill occasioned by opening the furnace doors. The effect is visible in the varying shades of color, like that pass ing over steel in the act of tempering. But if the heat on the inside is made constant by the rapid circulation of water of uniform temperature, the strain of contraction is in a measure counteracted by diminishing the chill.
There being therefore no force inherent in steam itself, so far unmanageable as to destroy by sudden violence a boiler containing aërated water, nor to affect its integrity by gradual deterioration, it appears that the variance between the pressures of water and steam in producing these ruptures is due to other disturbing forces, whose presence is wholly prevented by the rapid and perfect longitudinal circulation of
the water.
Onslow.

Lecture at Sea by Agassiz.

During the recent outward passage of Professor Agassiz exploring ship to St. Thomas, the venerable chief made a sensation one day by delivering a scientific lecture on the deck of the vessel. A correspondent of the New York Her ald says that a blackboard was improvised, a portion of the audience listened to the Professor's descriptions of the ani mals which they had found living in, on, or about the Gulf weed.
"On examining a fresh specimen carefully, it is found to be a floating colony of animal life. It has inhabitants which are bound up with it, and depend on continual contact with it for their very existence. Others, which use it for shel
ter and protection, are still free to make occasional excur ter and protection, are still free to make occasional excur-
sions beyond its limits; ancl still others-suburban residents sions beyond its limits; and still others-suburban residents
cruise around its borders and descend upon unwary "car
pet baggers." Among the lower classes the pet baggerz." Among the lower classes, the acalephs are
represented by the hydroids, animals living in a commu represented by the hydroids, animals living in a commu
nity, having a common stem, with a central cavity communi cating wi h numerous branches. These branches support ittle cup like projections, in each of which resides an individual of the species.
Each has a mouth in the center, a digestive cavity extend ing into the common canal, and a number of radiating tentacles. There are two varieties of the Gulf weed, the narrow and the broad leaved, and it was noticed that one species of these hydroids was found only on the narrow variety. It was the campanularia; and even where, in large masses of the weed, the two varieties were intermingled and
contact, this species was never found in the other
The crustacea were well represented by crabs, shrimps and lobsters, a great number of species being found, about alf of which are entirely new. It was found that the crabs were represented by members of the highest order-the de capods furnished with five pairs of legs, the anterior being better developed than the others, showing that tendency to differentiation of structure which is characteristic of the higher groups and reaches its perfection in man. The ear her stages of life correspond to the similar stage of society and, as in savage tribes, each man is his own lawyer and physician, builder and architect, so in the lowest animals, each portion digests and assimilates, respires and contracts It is not until we ascend in the scale of creation that we find separate organs with distinct functions.
In one of our hauls, we captured a curious instance of the physical inferiority of the male sox, which generally ineases as you descend. It was in the person of the male of pipe fish, belonging to a curious genus in which the jaws re prolonged and surrounded by the integument, forming a
tubular mouth. He was encumbered with a mass of eggs, which he was compelled to carry around in a sort of abdomiwhich he was compelled to carry aro
nal pocket until they were hatched.
It seems to some so called "practical" minds that there is no utility in such investigations, and that such lives can have no important connection with our vastly superior human existence. A single, rather trite, but very applicable in stance to the contrary may be adduced.
There is a little mollusk-the teredo navalis-which was at one time the terror of all ship owners. It would quietly and unsuspectedly pierce with thousands of holes the hard est timbers. Ships were rendered valueless, docks destroyed, and at one time all Holland was in consternation at the dis covery that the piles of her embankments were bored through and the country in imminent danger. A distinguished naturalist discovered that at certain seasons the fe male of this species carries her egrs in the folds of her re-
spiratory organs. They remain there until they are fecundated by the milt of the male floating in the water. He also found that a weak solution of mercury thrown into the water destroyed the milt and so prevented the fecundation; and
thus, in a few seasons, ship owners were enabled to clear thus, in a few seasons, ship owners were enabled to clear
their docks of this hitherto unconquered marauder This is but one of hundreds of cases; but it serves to show that size is no criterion of importance in the study of zoölogy.

Lasche's Improvement in Decorative oil Painting.
Jean Marie Laschè, of Paris, France, has invented and patented, through the Scientific American Patent Agency, cer tain improvements in decorative oil painting, the object be ing to replace the painting in oil executed directly on surfa ces for buildings, ships, carriages, carpenter's work, cabine pork, furniture, ornaments, etc., and also the gilding by portable oil painting or gilding already executed, finished,
and dry, which is applied by sheets, strips, or pieces upon said surfaces by the aid of a sticky varnish or waterproo cement. The invention con ists in executing, or in other
words, to execute, such painting in oil, either in plain tones words, to execute, such painting in oil, either in plain tones,
imitations of wood, marbles, in ornamental subjects, or the gilding on tin foil, whereby the work may be performed in pecial workshops by skilled workmen, either by hand or by machinery, in a manufacturing and commercial manner, and afterward be transported, so as to be used and applied where it is required, thereby preventing delays, dirt, smell, and all dwe annoy.
The invention also includes the applying of tin foil upon which oil painting has been executed, or tin foil which has been gilded, upon surfaces by the aid of a sticky varnish or waterproof cement, to replace the gilding or the oil painting of such surfaces. The invention then, is to oil painting and oil gilding what paper hanging is to fresco painting, with the great difference and advantage that, while paper
hanging interposes paper (a hygrometric substance) behanging interposes paper (a hygrometric substance) be-
tween the surface and the painting, this system of interposing tin foil and a waterproof cement between the surfaces and the painting will protect said surfaces with greater effiacy than ordinary oil painting. The process is as follows: Tin foil of the greatest thickness - that is to say, foil of in or composite metals therewith, which are rolled very thin and known as tin foil in the trade - is spread evenly upon a hard and smooth surface, which, by preference, is tin foil. Upon this tin foil in the process of of ect painting is executed, from the plain oil painting in flat tone, to the most elaborate ornamentation in all its branches; and this ciling done either by hand or by proces of printing, sten ciling, through the aid of machinery, in whole or in part, imi-
tation of costly woods, stones and marbles, subjects in flowers, birds, shells, landscapes, subjects of interior, imitation of carving as well as plain gilded, ornamental gilding, and a
combination of gilding and oil painting. In short, anything which is executed in oil paint may, it is claimed, be executed upon this tin foil.
The work, when finished, is varnished; and when thoroughly dry is removed from the hard surface upon which it was sheathed. It is then ready to be transported from the shop, and for that purpose it may be rolled like wall paper. To apply this portable paint, the surface or object upon which it is to be placed is coated with a sticky varnish or hydraulic cement; the portable paint is cut of the suitable size and applied, carefully pressing in against the surface or object, so as to drive away all intervening air. The sheets may be applied to irregular surfaces, carving, sculpture moldings, etc., as the tin foil and the oil paint and gold moldings, etc., as the tin foil
thereon are each very pliable.

New Railway Bridge at Albany,

The new railway bridge over the Hudson at Albany, N . Y., begun in June, 1870, has lately been completed. The main bridge is 1,525 feet long from Quay street to Van Rens selaer island, and the whole length, including approaches 2,250 feet. It is 30 feet in the clear above low water mark of 185\%. There are two bridges above Van Rensselaer creek the first comprising three spans 62 feet 6 inches each) one connecting with the New York and Boston railways, and the other for Troy local trains. The portion of the bridge across the basin descends three feet from the pier to Quay street The trusses in the superstructure are 26 feet apart. All the tension bars of the bridge are of double refined iron, and it is calculated that the bridge will stand a load of 6,000 pounds per lineal foot. exclusive of the weight of the structure, the strain of which will not exceed one sixth of the breaking weight. The draw weighs 350 tuns, and is to be worked by a ten horse power engine placed beneath the roadway. Clark, Reeves \& Co., of the Phœnixville Bridge Works, Phe nixville, Pa., were the contractors for the superstructure.

Housatonic River Bridge.

The new iron bridge over the Housatonic river at Strat ford, Conn., on the New York and New Haven Railroad, is completed. This bridge is one of the handsomest in the State. It was commenced in March, 1871, and has been pushed, in spite of the cold weather of the early winter, to completion in a wonderfully brief time. The bridge is 1,091 feet long, 27 feet wide, with two tracks, and the hight of the iron work is 24 feet. It has five spans. three on the east side of the draw and two on the west, and the draw is 206 feet feet long. Five piers and two abutments of solid masonry support the iron work of the spans; and the hight of the piers, except the draw pier, is 36 feet 8 inches, they being ? feet wide at the top and at the bottom. The draw pier is 30 feet wide at the top and 35 at the bottom, and rests upon 42% fect wide at the top and 35 at the bottom, and rests upon 42%
piles, sawed off by divers, level with the river botom. Total cost, about $\$ 300,000$. The contractors were F. C. Lowthorp, of Trenton, N. J., patentee; John Beattie, of Stony Creek, of Trenton, N. J., patentee; John Beattie, of Stony Creek,
stone work; S. A. Hammond, of Bridgeport, piling and timstone work; S. A. Hammond, of Bridgeport, piling and tim-
ber work, and George Everett, of Allentown, Pa., superintendent of the iron work. The frame work of cast iron came from Birmingham, Conn., and the tension rods from Trenton, N. J.

Patenting Small Articles-m-The Result to Manu-

The advantage of patenting small articles is forcibly il ustrated in the success of the Meriden Malleable Iron Co. whose works are located at West Meriden, Conn.
They are constantly obtaining patents on small articles of utility and ornamentation in their line of manufacture and, owever small the improvement, they consider it a paying vestment to incur the trivial expense attending a patent. Among the last novelties of their production is a very or amental drawer pull, made of gilt and ebony or other hard ood, so constructed that the knob drops down out of the way when not in use. To the knob or handle, which is
hinged to an ornamental gilt base, is inserted a piece of india rubed to an ornamental gilt base, is inserted a piece of in
dia prevents the pull knob from defacing the bureau or furniture, to which it is attached, by constantly dropping against it. Such handles are more convenient than ordinary knobs, and their application renders an ordinary piece of furniture very attractive.
If manufacturers of all kinds of small wares would de ote more study and ingenuity in getting up new and origi nal designs, like trimmings for harness, wagons, furniture, household implements, and articles of every kind where it is rease of their business and profits

What one Firm has Done, others may Do. We will not occupy the space of a page, which we might fill, with complimentary letters received from our friend and patrons since the new year. But the following, from the manufacturers of the fire extinguishing apparatus il
lustrated in the last volume, we beg space for. How many lustrated in the last volume, we beg space for. How many other manufacturers will take our subscription list and go among their employees and get subscribers? We pause for a reply.
Messrs. Munn \& Co.
Gentlemen: We take pleasure in enclosing you a small list. of subscribers to your valuable paper, with check for the ame. We have ourselves received so much benefit from the articles published by you, on our system of
sprinklers that we feel it our duty to at least canvass our sprinklers that we feel it our duty to at least canvass our
building in your behalf. We shall endeavor, as opportuni building in your behalf. We shall endeavor, as opportun the list of your subscribers.
Tendering to you the compliments of the season, we are,
Yours truly,
HALL BROTHERE,
Boston, Mass

ICE HARVESTING ON THE HUDSON.
It has been estimated that the domestic consumption of ice in New York, Brooklyn, and vicinity is a tunnage equal to that of the domestic consumption of coal. Whether this estimate be too large or too small, it is certain that ice has become an article of almost as universaldemand as coal. The comfort, economy, and convenience secured by the use of ice is so great that it may now be classed as one of the indispensable articles of city consumption. Its harvest and supply has grown into an enormous business, which at times assumes the attitude of a merciless monopoly, and, in the absence of effective competition, is enriching the companies that conduct the business. It has also called into existence the use of improved appliances for cutting and storing ice, by which the quantity needed. It has been proposed to use steam the quantity needed. It has been proposed to use steam
appliances for cutting the ice, but at present the ice plow appliances for cutting the ice, but at present the
drawn by horses is the principal method employed.

Our engraving shows the way in which the ice is cut from each other. The furrows are opened in parallel lines, into suitable blocks for storing. In our next issue, we shall giving a surface dimension to the blocks of two and a half $^{\text {and }}$ give engravings of the method employed for elevating and feet by two feet. As the plow passes over a small area, the placing the ice in the large buildings employed for its stor- men, furnished with long poles terminating in strong iron The harvest this year is late; but if the present cold term continues during February, there will be no difficulty in securing a crop.
There have been some difficulties, between the employer and workmen, which have retarded work, but these have been settled, we believe, and ice of fine quality is now being apidly housed. Horse power cutters, steam elevators, and n army of laborers are busily at work, and the houses will ndoubtedly be filled before the opening of spring
The ice plow used for cutting the ice is not very unlike n ordinary plow. For the solitary pointed blade are substi tated several long, sharp prongs or teeth, which act saw plan fashion, and are so adjusted that the ice is cut but half planes and down others, into the storehouses. These, as through. When thus cut, the blocks are easily separated $\left\lvert\, \begin{aligned} & \text { well as the methods of hoisting, etc., will } \\ & \text { of ticle promised for our next issue. }\end{aligned}\right.$

grimitit Ammexicm.

MUNN \& CO., Editors and Proprietors.

 published weekly ato. D. MUNN.

vol. XXVI., No. 7. [New Series.] Twenty-seventh Year.
NEW YORK, SATURDAY, FEBRUARY 10, 1872.

what shall be done with the models at the
It is to be presumed, that, at the time the Patent Office Building was erected, and inventors were required to deposit, with their drawings, models of the devices for which they solicited patents, the steady growth and ultimate magnitude of the collection was not anticipated. A letter, published in another column, informs us that many of these models now lie about on the floors, there being no room to store them elsewhere. Others are piled on the tops of cabinets, and on each other, so that the original purpose of the collection is defeated, so far as the public is concerned, while it is difficult for the examiners to perform their duties. Many of the models are broken and thrown in heaps of promiscuous rubbish.
The head of the model department, who is represented to be very efficient, is doing all he can to bring order out of chaos; but it is painfully evident that there must, sooner or later, be a clearing out of useless and broken models. There are a great many that it is of no consequence whatever to keep. There are others so dilapidated that their inspection sufficient to guide the examiners. The rubbish might as well be removed at once, and space made for the well prewell be removed at once, and space made for the well pre-
served and important models. It is also certain that more served and important models. It is also certain that more
room will be needed, if the present system is maintained; room will be needed, if the present system is maintained;
and this might well be supplied by buildings erected from the money, now in the Treasury Department, belonging to the Patent Office.
It will, however, be useless to expect that it will be possible to continuously supply space to store models. At the present rate of accumulation, to arrange and store them properly' will require an addition equal to the present accommodation once in about seven years. What, then, shall be done with the models, is a question that must in some way be answered. We say, do without them ; that is, do not attempt to preserve them in a public collection. It has been wisely suggested that, for purposes of general has been wisely suggested that, for purposes of general information, good perspective drawings, reproduced by photo-
graphy and cheaply obtainalle on application, would be far graphy and cheaply obtainalle on application, would be far
more efficient than a great central museum of models that not one in ten will ever visit, or, if they should, could ever not one in ten will ever visit, or, if they
find time to examine a tithe of its contents.
Of course, models would be needed to assist the examiners with probably about one fourth the applications made these, after each case had been attended to, might be returned to the applicunts. It is certainly folly to attempt their preser vation in a collection. As the coral insect, particle after parti cle, builds islands of vast extent, so the constant accumula tion of models will result in an enormous reef of ingenious contrivances, which will wreck the patience of any who attempt to explore it. Better at once abandon the attemp to preserve models, and only endeavor to keep the drawing and specifications. This is our view of the subject. If any one has anything better to suggest, we shall be glad to con sider it.

DRYING BY COLD

Most people have an idea that to dry anything rapidly re quires the agency of artificial heat. This is a mistake Chemists are cognizant of many methods of drying sub stances where heat, above the ordinary temperature, is no employed.
One of these consists in placing the substance to be dried in a close compartment, in which is also placed an open vessel containing strong sulphuric acid. Sulphuric acid has a strong affinity for water, and takes water from the air sur rounding it. The air, which also has a strong affinity for water-though weaker than the acid-thus dried, takes mois ture from the substance to be desiccated. This moisture is
seized by the sulphuric acid, and so the air, acting as a con veyor, goes on taking water and giving it up to the acid til the desiccation is completed. In this way, substances may be dried that could never be made to yield their moisture under the action of heat in an ordinary atmosphere, or which would be injured by heating.
Moist gases may be dried by passing them through the interstices in a collection of fragments of chloride of calcium quicklime, fused potassa, or soda, each of which has strong er affinity for water than gases have.
Whenever any substance has a greater attraction for water than the expansive force of heat can overcome, it cannot be dried by heat; and the converse is also true. In the process of evaporating a liquid in an open vessel, or in the desiccation of a solid in a common kiln or oven, the moisture driven off by the heatis seized upen and absorbed by the air. If the air has less water than it has capacity to hold in suspension, the water evaporated disappears from sight and assumes the condition of a transparent vapor intimately mingled with the gases of the atmosphere. If, however, the capacity of the gases of the atmosphere. If, home satisfied, the moisture assumes the form of a cloud of fog or mist, or is even deposited in the form of rain, perof fog or mist, or is even deposited in the form of snow or hoar frost, if the temperature be
haps haps in the form
sufficiently low.
The capacity of air to hold suspended water vapor in creases as its temperature rises, and vice vers \hat{d}, so that by heating it, it may be made to take from substances moisture which it will deposit on cooling, thus becoming a conveyor of moisture, as in the pror
phuric acid is employed.
We have seen the moisture so far extracted from air ad mitted into a chamber, the walls of which were surrounded by a refrigerating mixture, that the weight of the volume was considerably diminished.
By thus continually extracting its moisture through the agency of cold, air at low temperatures might be made the vehicle for rapidly desiccating many substances that heat would injure; and there is no doubt this principle might be would injure; and there is no doubt this principle might be
applied to advantage in some industries. We have ourselves applied to advantage in some industries. Wey it with excellent results, in an experiment, using the same air over and over, as previously explained, and have thus satisfied ourselves of its utility in some delicat operations.

TO OUR READERS.

It is with pleasure that we inform our readers of the large and gratifying increase in the circulation of the Scientific american. During the single month of January, we received upwards of ten thousand new subscribers, and they are still pouring in upon us from all parts of the country.
This unparalleled increase has exhausted our large stock of back numbers, and of late we have been obliged to commence all subscriptions with the date of their receipt by us.
This is the best we can do under the circumstances; but if there is any considerable number of our subscribers to whom this arrangement is not catisfactory, and who really desire to receive the back numbers, we propose to have them reprinted.
To enable us to determine as to the propriety of thus reprinting, we respectfully request all persons who desire to eceive the back numbers and have their stibscriptions cor respondently dated back, to inform us of the fact by mail without delay.
If any of our friends have any of the first five numbers of the present volume, for which they have no use, we should
esteem it a favor if they will return them to this office, and esteem it a favor if they will return them to this office, and
we will add to their subscriptions accordingly. e will add to their subscriptions accordingly.

THE EDUCATION OF THE DEAF AND DUMB.

In ancient times, the Hindoo pundits decreed that any one born deaf, or any one dumb from whatever cause, should be incapable of succeeding to property; though the same law arranged for the sustenance of the sufferers by making it a charge on the person who superseded them in the inheri ance. It has been stated that, among the oldest nations of the East, the destruction of such children as useless burdens on society was connived at, if not authorized, by the govern-
ments. But instances of the care and sympathy of individuals for these poor creatures begin to occur after the adven of Christianity; and in the writings of the venerable Bede and elsewhere, we read of the partial success of attempts to
teach the deaf and dumb to communicate by signs. The firs noticeableat and dumb to communicate by sise is the publica tion, by a Benedictine monk named Bonet, of a treatise called "The Reduction of Letters and Arts for Teaching the Dumb to Speak." In this book, the author professes to have vented a system of finger talking or "dactylology;" and nearly everywhere. The desirability of such means of communication subsequently caused many physicians and other scientists to bestow great attention and ingenuity on the subject; and, among many treatises publishing suggestions one of the best was written in the year 1680, by one Dalgar
no. He was a Scotchman by birth, and a school teacher in England; and his work, called "Didascalocophus, or the Deaf and Dumb Man's Tutor," even goes so far as to assert the superiority of written language and a finger alphabe over reading and talking by the organs of speech. Professor Porter republished this treatise in the year 1857, and states that it is " a work of such preëminent ability, and so replete with sound principles and important suggestions of practical value, that it ought to be familiarly known to every instructcause by giving his time and attention to teaching a few
deaf mute pupils; and his success was rewarded by the Sax on government inviting him, in 1772, to Leipsic, to superintend school which is in existence and prosperity to this day Without, however, enumerating all the various advances made in this branch of education, by mingled science and philanthropy, we come to the labors of Americans in recent days.
In the year 1815, the deprivations of all the pleasures of ife, which deafness and dumbness visited on a young lady of Hartford, Conn., interested some gentlemen of the same city in the subject; and they despatched a clergyman to Eng. land, to learn the system taught by some persons named Braidwood, who had met with much success and some celebrity. With a narrowmindedness strangely out of place in such a connection, these people declined to instruct the visitor except on terms at once exorbitant and burdensome; and the clergyman journeyed to France, accomplished his mission, and returned to the United States with M. Laurent Clerc, a well educated deaf mute, and one of the best teachers, on the system of Abbé Sicard in use in his country, then to be found. In 1817, the Ainerican asylum at Hartford was opened, the Rev. Mr Gallaudet the clergyman above men tioned taking the post of \mathbf{M} Clere that sistant then noble and useful works, originated in the sense and liberality of a few private individuals, has grown up an extended system for the education and improvement of these unfortutem for the education and improvement of these unfortu-
nates, whose claim to our wisest, best, and most strenuous nates, whose claim to our wisest, best, and most strenuous
efforts needs no recapitulation. A column might be filled efforts needs no recapitulation. A column might be filled
with the names of deaf and dumb persons who have become valuable and useful members of society, some of whom have obtained eminence in art, science and literature.
But the greatest success in teaching those born deaf to speak has been recently attained, in the United States and in Ger many, by the use of a system of lip talking. By this me thod, the language is communicated to the pupils solely by the motion of the speaker's lips; and such excellent results have followed the introduction of this method that, in an asylum at Northampton, Mass., general conversation is car ried on with such rapidity and vivacity that it is at first diffi cult to induce a spectator to believe that the little pupils have been, many of them, stone deaf from their birth, and that the observation of the movements of the lips is the only opportunity for instruction that they have ever had. So thoroughly efficient is it that education is being carried on, through its means, up to the higher branches, many of the pupils being proficient in physiology, botany, and mental philoso phy, as well as in drawing and other arts. Such re sults indicate the great superiority of the new system, and enc ourage us to hope that the terrible afflictions of deaf ness and dumbness may be soon doprived of their worst evils.

PRODUCTION OF STEAM IN BOILERS.

The economical and safe production of steam in iron boil ers is, in this steam using age, a matter of primary import ance; notwithstanding which, it is somewhat astonishing how little is generally known of the principles which must be ob served to secure both safety and economy. The theories and speculations, indulged in by various authors in regard to the precise nature of the molecular motion produced in solid, liq uid and gaseous bodies by the agency of heat, have-at leas until they are subjected to experiment-no practical value We must seek light alone from such facts as are demonstr). ted, and be guided solely by that light.
The only motion that takes place in heated water, with which the steam maker has to do, is that caused by the dif ference in the specific gravities of the molecules by unequal heating. The motion in steam which the steam user needs to comprehend is that caused by the mutual repulsion of the heated particles of water in a gaseous state.
When heat is first applied to water, the heated particles ise because their specific gravity is lessened. Other particles are in turn heated, and give place to others, and so successiv trata of particles are heated over and over, till at last some of them arrive at the required temperature to expand into gas. In assuming this form, that portion of water so con verted takes suddenly, under atmospheric pressure, a little more than four and one half times as much heat as it previ usly had, which heat disappears as temperature or sensible heat, and, becoming latent, imparts its expansive energy to he steam, a small part of which energy is subsequently con verted into work in the engine to which the steam is supplied. In thus suddenly absorbing so much heat, it as suddenly ex pands to a much greater volume than it previously occupied causing upheaval of the superstratum of fluid ;and, rising to the top, it escapes with such rapidity as to cause bubbling, a state of things we call ebullition or boiling
Now in the construction of steam boilers, we have to con sider only these simple and elementary facts, with such modfications as arise from pressures above that of the atmosphere nd the expansion of metals by heat, and we must provid hat the movements which take place naturally in steam eneration shall not be artificially interfered with. Neglecting hese provisions, we fail in economy, and increase the dange of steam production. The water must have free circulation and the steam must have ample avenues of escape from the liquid. Then if the boiler can withstand safely a given pres ure and the strains caused by unequal expansion, and if the team finds a ready escape from the boiler before that limit of pressure is reached, we have, so far as the boiler proper is oncerned, the required conditions for economy and safety.
But to generate steam we must generate heat, and here nomy is the one most important to be
the combustion of a given quantity of fuel, we must obey the law that governs all chemical combinations, the law of definite proportions in the union of substances to form other substances. Combustion is only such a chemical combination. Every pound of carbon in the coal, wod, peat, or other combustible, will require for its perfect combustion two and two thiras pounds of oxygen. Every pound of hydrogen will require eight pounds of oxygen to form nine pounds of water and to develop in the combination all the available latent heat of the two substances. If not enough oxygen be admitted in the draft, there will be imperfect combustion and the loss of carbon in the form of smoke which passes into the uptake. Again, it is important that the carlonic acid, caused by the
burning of the coal, and the steam which arises from the burning of the coal, and the steam which arises from the union of the hydrogen of the coal with the oxygen of the air should have the heat as far as possible extracted from them and passed through the shell of the boiler into the water and steam confined therein, and that as little as possible should be wasted through the uptake or by radiation from the furnace or boiler. But now a little thought renders it evident ihat, as heat always passes from a warmer to a colder body, if the gases in the uptake are cooled down to the temperature of the steam on the other sides of the plates over which they pass, that must be the extreme limit to which their heat can be economically extracted. Steam at 60 lbs . above atmospheric pressure has a temperature of $307^{\circ} \mathrm{F}$.; therefore if a boiler carries steam at this pressure, and its circulation is perfect, it is useless to attempt to get any heat from gases at the temperature named. Practically it is im possible to work down the gases of combustion to the ex
treme theoretical limit at which they will pass into the chimney at the same temperatue as that of the steam in a wel constructed boiler
But to insure perfect combustion, it is necessary not only to admit oxygen in the right quantity, but to give the combining materials the proper temperature, and to so commin gle them that they shall combine and develop their heat be fore they have passed over the surfaces $t \rightarrow$ be heated. Combustion in the chimney is waste, and a waste too often to be observed with ill-constructed and arranged furnaces. The oxygen entering in the usual way is cold, and, before it will support combustion, bas to be heated. To effect this in the moat thorough manner, it is far better that the draft should
be diffused, that is, enter at many points rather than at one be diffused, that is, enter at many points rather than at one.
This accelerates both the heating and the commingling of the air with the uncorsumed gases.
Now what we have written has been, in substance, often repeated in these columns, and we have often gone into de tails of setting, as well as the discussion of various forms and designs, of boilers, but it seems so difficult to keep the mass of our readers educated up to the true principles of stearn
gentration, that it is probable we shall have to repeat "line generation, that it is probable we shall have to repeat " line upon line and precept upon precept" so long as our paper is sought for instruction in such matters. If those young queries relating to boilers, will endeavor to apply the principles we have laid down, they will soon be able to decide for themselves the points upon which they solicit information

imperfection in lamps, wicks, fluids.

To those who, dwelling in cities, enjoy the blessing of pay ing exorbitant, prices for impure gas, and who, in consein the next best resource, lamps, and to that less favored portion of the human race who, beyond the reach of gas mains and monopolies, are obliged to use lamps, and to those who are struggling to devise improvements in these useful household utensils, these remarks may prove useful.
The primary object sought in the use of lamps is light. Some of them are used for heating, but of them we do not speak at present. That lamp which gives the most light
with the least consumption of illuminating material will, if it be safe, clesnly, and convenient, be the best. Safety is it be safe, cleanly, and convenient, be the best. Safety is
best secured in the use of safe materials, and no consumer best secured in the use of sate materials, and no consumer
of petroleum oils should be without the means and knowl edge requisite to determine those which are safe from those hat are unsafe. Cleanliness and convenience are matters of considerable importance. Lamps for ordinary use should be portable and free from the liability to get out of proper
adjustment in carrying them about. But details of this kind adjustment in carrying them about. But details of this kind
need not be dwelt upon at length. Of much more impor tance is the correct knowledge of the principle of illumina tion by hydrocarbon fluids consumed in lamps.
No one who has paid much attention to the subject has failed to discover that wide irregularities in efficiency exist in lamps of different construction, and even in lamps of the same general style and finish. In fact no single lamp will perform its office with perfect uniformity. The cause of these variations will appear upon an examination of the com-
mon elements of lamps whicl burn liquids such as animal oils, melted fats, or the products of petroleum distillation.
iils, melted fats, or the products of petroleum distillation.
The essential parts of all lamps are a receptacle to hol The essential parts of all lamps are a receptacle to hold material to the place of burning as it is needed. To these essential parts may be added the chimney, which in most
lamps is necessary in order to bring the air which supports lamps is necessary in order to bring the air which supports
the combustion to the flame in sufficient quantity to secure perfect burning.
Any known compound of hydrogen and carbon burns with a luminous flame, but, in order that the greatest illumination with the most economy may be secured, it is necessary that adjusted. If too much is given, the flame supplies too much heat and too little light; if not enough oxygen is furnished, a part of

Now, in stoves and furnaces we make provision for regula ting the amount of air supplied to the fuel; but in the ma jority of lamps used for lighting purposes, the amount of ad mission is adjusted at the outset, the only change being that caused by the clogging of air passages by dirt, oxidization, etc., so that lamps ,which when new work well, often fail to give a good light after a little time, and require frequent at tention to keep the draft free from obstruction. There have been some fine lamps provided with dampers, yet, notwith standing the scientific and practical value of such an attach standing the scientific and practical value of such an attach-
ment, we know of no lamp in general domestic use that has ment,

The quality of wicks is also a matter of no small imporance; for, although most lamps provide for regulating the flow of oil by raising or lowering the wick, this alone will not insure a good result. Some wicks do not burn evenly, so that a portion will be too high while other parts will be too low, and the flame streams up from the high parts. This arises partly from unequal admission of air, and also from the want of uniformity in the texture of the wick. If the threads which, through their capllarity, convey the oil to the flame be twisted unevenly, so that some are hard while oth ers are soft, it will be impossible to make use of them with off branches of charred material instead of burning squarely down in all parts, always give trouble.
The burning of petroleum oils in lamps without chimneys is a problem presenting many difficulties. It has been solved by the use of mechanism to produce a current of air directed to the flame, but such machinery adds so much to the cost
of lamps, and is attended with so many inconveniences that it probably will never come into such general use as to su persede the old method. It is, however, so desirable to avoid the use of chimneys that, barring its difficulties, the problem is a tempting one to inventors. It is needless to
say that a device which would accomplish such a result, and say that a device which would accomplish such a result, and
not add materially to the cost, or necessitate greater atten ion than ordinary lamps do, would be second in value to scarcely any invention ever produced.
Every year brings forth some new invention pertaining to lamps, which shows, that though the field has been long worked, there yet remains something to be gathered. The direc ion that any study to improve lamps must take hereaf ter is toward the better application of general principles of construction, as it is not probable any new principle will be developed. It is, however, very desirable that the inconven iences attending the use of most lamps in use should be ob-
viated. An.ong these are the accumulation of oil upon the outer surfaces of lamps, which renders them uncleanly to the ouch; the frequent trimming and cleansing required; the accumulation of soot on the chimney; the liability of lamps to smoke when left unwatched and unattended, or when car ried about; the very disagreeable smells emitted, etc. While these defects remain, there will continue some desire and ef fort to remedy them; and we believe that, by a thorough investigation of the causes of the anroyances speciried, th means to avoid them would ultimately become apparent.

religion and science.

Genuine truth being uncontrovertible, the truths taught by religion and by science must agree in the end. Where dis crepancy appears to exist, it is only because either the theo-
logian takes the individual opinions of a certain class o cientists for the individual opinions of a certain class of in his turn, takes the individual opinions of certain theolo gians for the teachings of religion. In this way, a kind of antagonism is cultivated, which would not exist if the training of those destined for religious teachers was less on ided, and if, in place of confining their preparation chiefly of those scientific principles, the application of which,during the last half century, has produced the most stupendous hanges in the relations of man to his fellow man
On the other hand, the training of many prominent inves tigators of science of the present day has been not less one
ided; the unwise antagonism, displayed by sided; the unwise antagonism, displayed by many religious
teachers against scientific pursuits, has reacted on several of teachers against scientific pursuits, has reacted on several of
the prominent leaders of science, and, in their writings and the prominent leaders of science, and, in their writings and
teachings, they accordingly ignore religion; thus, a class of teachings, they accordingly ignore religion; thus, a class of
scientific scholars has sprung up, chiefly in Germany and scientific scholars has sprung up, chiefly in Germany and
France, who, to speak mildy, do not consider religious train France, who, to speak mildly, do
ing to have any important value.
Herbert Spencer, whatever opinions many may have of him, has the merit of baving clearly pointed out the demarca tion line between the knowable and unknowable, between that which science can demonstrate, and that which is beyon the field of science, and which pure science can never reach Certain minds appear to be constituted in such a manner that they can be satisfied with adhering to the knowable, to only that which science teaches, keeping that which science can not determine out of their thoughts. But such a conditio of mind is only temporary; sooner or later, there grows in whem a desire for light in this direction; and happy are those
whain it-happier in proportion that their work in ob tho obtain it-happier in proportion that their work in ob with a faith accepted without mental labor; but such an in dividual has no conception of the enjoyment and suprem happiness of the cultivated mind, that finds the truth by ome to rest working, and whose cares and doubts at las cious gem, which all intelligent beings are interested in sarching for-Truth.
For many ages, the teachers and priests of religion constiprogress of knowledge, however himan society. With the
less and less, and, at the present day, it is only very promi nent where civilization is least advanced. This undeniable fact, however, must not be construed to mean that civilization
is antagonistic to religion. We maintain the contrary; but is antagonistic to religion. We maintain the contrary; but
it has been caused by the neglect of the priests of religion to it has been caused by the neglect of the priests of religion to remain at the head of civilization and in the vanguard of the searchers after positive knowledge, as was the case with the ancient Egyptian priesthood. Those men, supposing that the knowledge of the truth, by the mass of the people, would be dangerous to the maintenance of the existing order of affairs, instituted secret rites, to guard jealously, for the benefit of the few initiated, their precious knowledge; of these rites, certain degrees of the Masonic order of the pre these rites, certain degrees of the Masonic order or the pre-
sent day are the degenerate descendants. In proportion as sent day are the degenerate descendants. In proportion as
the influence of abstract religious dogmatio teachings, on the the influence of abstract religious dogmatic teachings, on the
mass of the people, was growing lesz, the influence of the discoveries of science, of the increase of positive knowledge concerning the material universe, grew stronger and stronger The invention of printing has, for more than four centuries, been flooding the world with books, so that now almost every man may possess his own library, at a less cost than in ancient times a single book could be obtained for; to this is added, in our day, an unparalleled development of journal irm, scientific, political, and religious. Not only our stock of knowledge has increased; its diffusion has increased in a still greater ratio; and, if our religious teachers and leaders only take this into account, and provide such measures as wil cause their profession to be at the bead of civilization, as well scientifically as in other respects, as was the case with the aacient Egyptian priesthood, there is no doubt that thei useful and necessary influence will become greater than ever before, for the simple reason of the immense moral powe which must be the necessary result of the combination of scientific knowledge with a religious mission and strict mo rality.

the navy of the future.

" When the Navy estimates for 1872.3 are laid upon the table of the House of Commons, we understand it is very probable that they will be found to contain provision for the construction of a vessel the armament of which will consist of torpedo artillery carried below the water line. Som time since, trials were made with the Whitehead fish torpedo,
under conditions, entered into between the inventor and the under conditions, entered into between the inventor and the
Government of this country, that if the torpedo proved to be as effective upon trial as it was asserted to be by its inventor the latter should recieve the sum of $£ 15,000$, the Government ob taining the right to the use of the torpedo as part of the nation al armament. Upon its trial, the torpedo exhibited powers ex ceeding those which had been claimed for it by its inventor nd he received from the Government the sum agreed upon. A_{s} it is to further test the torpedo as a new form of sea a ume that the will, as a test vessel, be of very limited disume that
mensions.
The facts of the great success which attended the trials of his torpedo, that the Government has paid so large a sum or it, and that the Admiralty are about to construct a vessel testits merits as a nel our fleets, would appear to indicate that Ittle or no doubt is entertained of its successful application. If it should be found in practical work that a ship can thus carry her bat-
tery of torpedo guns at any required distance below her tery of torpedo guns at any required distance below he water line, or say from seven to 12 feet below her line of Hotation, the nation will be committed to another reconstruc tion of its navy. Armor plating will have to be extended to ships' bottoms and not cease at their top sides, while chain cables, coals, provisions, etc., will then, in all seeming probability, have to be stored above the level of the ship's wate line, and in about the positions where she now carries he guns.
The foregoing from the London Times indicates that a wide field for invention in the naval line is open for ingenious minds. The London Engineer in a recent number makes the following frank avowal concerning the British navy: "It is ertain that we have not a single ironclad afloat that cannot e penetrated by shot and shell at close range, while the ma jority of our ironclads are not invulnerable save at a range of a mile and a half. Such a thing as an absolutely impreg able ship or turret has at this moment no existence."
What is true of the British navy is also true of every navy in the world.
Now, where is the new invention which, shall remedy this state of things, to come from? It canonly be developed by the persevering study of ingenious persons. Not power, position, influence or riches can bring out a new discovery Thought, persevering thought, is the true mother of progress. For the revelation of the most brilliant secrets, we most generally look to obscure persons of simple habits, humble minds, in lonely places. But the comfortably situa ed, well-to-do individual, having conceit of knowledge, is rarely original. The poor inventor has a clear road before him.
How ro Shave.-As you strap your razor, strap the two sides alternately, and keep the back of your razor always on the strap, as you turn it from side to side. You thus avoid cutting your strap and turning the edge of your razor. As you shave, keep your razor almost parallel with the skin, and not at a great angle with it. Give your razor also a slight lateral motion. In fact, to borrow the simile of the artist, "the more you can make your shaving like mowing grass with a scythe, the better." Do not make faces as you shave, with the object of making a better surface for your Adopt these hints and you will bless the unkzown giver.

SCIENTIFIC AND PRACTICAL INFORMATION

NEW PROCESSES OF WATERPROOFING

The desirability of rendering cloth waterproof without nterfering with its permeability by air has attracted a great eal of attention; and a somewhat elaborate process for the purpose has just been published. The mixture is prepared as follows: Place, in a metal vessel of about six gallons ca pacity, 20 lbs . sulphate of alumina cut in thin slices; and in a similar receptacle, 8 lbs . of oleic acid, and six quarts of alcohol. Thoroughly dissolve the latter compound, and sti it with a wooden stick for twenty minutes, gradually adding the sulphate of alumina. Leave the whole for about twenty five hours to settle. The oleic acid and the spirit will then be at the surface, and can be decarted; the remaining deposit should be filtered through flannel, and pressed into a cake. This can be dried by heat, and ground to a powder. For use on silken or linen clothes, one pound and a half to 20 gallons of water will be ample; wool will not require more than one pound. It is as well to strain these solutions, and the fabrics require only to be thoroughly saturated and dried in the air.
Another mode of applying the sulphate of alumina is as follows: Thirty grammes of acetate of lead is dissolved in a pint of water, and a similar solution is made of twenty-four grammes of sulphate of alumina. The two solutions are blended, and the fabric, after being soaked in the compound for twenty minutes, is dried by the atmosphere.

dyeing wool.

An eminent French authority recently gave the following directions, in a paper read before the Association of Com merce at Roubaix
Good dyeing is not pcssible, unless the wool has previously been thoroughly purified from all fatty matters, and from animal moisture. Bleaching-that is to say, this thorough cleansing and purification-therefore, constitutes an integral part of dyeing, and it is of the utmost importance that it should be most efficiently carried out; in fact, the dyer should watch this part of the process constantly. The next point to be attended to is mordanting. Ntarly all the colors used in dyeing require, in order to form a stable dye, that they should have for their base some metallic substance, the bodies used for this purpose being the mordants. Now, if bodies used for this purpose being the mordants. Now, if
the compounds formed between the coloring matters and the the compounds formed between the coloring matters and the
dyes are insoluble, the compounds formed between the mordants and many of the impurities in the wool-the soap in badly washed wool, for instance-are not less fixed and in soluble. If the mordant be a salt of iron, for example, it forms an insoluble iron soap, which effectually prevents the wool from taking a good pure tone of color. In order to ge a good result under such conditions, dyers are constantly in the habit of evading the obstacle, and dyeing without any mordant whatever; so that mismanaged cleansing gives rise ficial and valueless.

the communication of disease.

A further contribution to our knowledge of this subject has recently been made by M. Chauveau, a member of the French Academy. He states that contagion depends, not on virulent humors in a state of solution, but on solid matter held in suspension by gases; and he cites, as evidence of the truth of this theory, the facts that the inoculation with dis solved substances remains without result, and that with cor puscles is followed by the appearance of disease. He also proves, by experiment, that miasms in the air are not disengaged gases, but solid corpuscles. A person may be inocu lated, with a fluid formed by the condensation of the vapo of evaporation of a virulent liquid, without danger, while he primitive liquid contains all its contagious properties These results were observed in experimenting with the virus of small pox, epizoötic typhus, and other diseases.

discovery of Gold in siberia.

Accounts from the river Amour, which divides eastern Si beria from the northeastern provinces of Chinese Tartary report the discovery of large and rich gold deposits in that region of country. Washers and diggers are at work in the ributary stre:ms of the Amour, and gold to large amount has already been extracted. The Olakonta and Sega, two of the small streams, appear to flow through valleys of sur passing wealth in this metal, a gang of men having obtained as much as 170 pounds or gold in a day from the banks of the latter river. A company has been originated, at St. Petersburgh, for carrying on extensive mining operations, a well as forthe ulterior object of opening up trade with China and Japan, and with Western North America. A large in flux of Chinese population into Siberia may be predicted.
sound produced by the molecular motion of mag netization.
Professor Tyndall, in a recent lecture, made the following tatement:
The effect I wish to make manifest was discovered by Mr. Joule, and was subsequently examined by MM. De Rive, Wertheim, Marian, Matteucci, and Wartmann. It is his:-At the moment when the current passes through the coil surrounding the electromagnet, a clink is heard ema ating from the body of the iron; and, at the moment the urrent ceases, a clink is also heard. In fact, the acts of magnetization and demagnetization so stir the particles of the magnetized body that they, in their turn, can stir the air and send sonorous impulses to our auditory nerves. The sound occur at the moment of magnetization, and at the momen when magnetization ceases; hence, if a mpans be devised of
making and breaking, in quick succession, the circuit through
wich the current flows, we shall obtain an equally quic uccession of sounds. I do this by means of a contact breake succession of sounds. I do this by means of a contact breaker
which belongs to a Rhumkorff's induction coil. A thin bar which belongs to a Rhumkorff's induction coil. A thin bar
of iron stretches from one of the bridges of this monochord of iron stretches from one of the bridges of
to the other. This bar is placed in a glass tube; which is surrounded by copper wire; the contact breaker is placed in a distant room, so that you cannot hear its noise. The current is now active, and every individual in this large assembly hears something between a dry crackle and a musical sound issuing from the bar, in consequence of its successive magnetization and demagnetization.'
the crystallization of iron and steel
The various qualities of iron and steel may be compared by observing the forms of their crystals through a micros cope. Cast steel of fine quality exhibits fine crystals of a needle-like shape. parallel to each other; and the axes of these crystals are in the direction of the hammering to which the metal has been subjected. The surface of iron exhib ts crystals of the shape of a double pyramid, the proportions varying with the quality of the metal. The pyramids more nearly approach a cubical form as the carbon in the metal is increased in quantity.

vaccination

There are three mothods of inserting the vaccine lymph in the human body. One is effected by drawing the skin tight, and making four or five punctures quite through it with the proper lancet, taking care to penetrate to the cutis vera or true skin, the innermost of the several integument cet should have a groove, down which the lymph can flow, running to the point, and should be held in the wound for two or three minutes to give the lymph a certainty of being two or three minutes to give the lymph a certainty of being
absorbed. In the second manner, the ordinary phlebotomy ancet is used, and two or three scratches, parallel to each other, are made, care being taken that the abrasion is only just sufficient to allow the slightest exudation of blood. Th third process is by vesication; three small blisters are raised raised a few hours previous to the vaccination, and the lympl is inserted under the skin after the serum of the blisters. has been pressed out. Dr. Richard Wilson, of London, give most emphatic testimony to the superiority of the second method, but deprecates its use on persons advanced in years of an unhealthy condition of body. The results in suc cases are frequently large swellings and considerable in follow, which are to be healed only by the slow process of granulation.

EDITORIAL SUMMARY

Hydrosulphuric Acid.-When sulphur acts upon paraf in, at a temperature a little above the melting point of the sul phur, this gas is evolved in large quantities, and this method may be advantageously used for its generation in the laoora tory. A flask, holding about a pound of the material, is fitted with a tube, bent at right angles, about one half inch bore an 12 to 18 inches long, containing cotton wool, and to this ttached the small tube for precipitation. The production of as may be stopped by removing the heat. Heavy paraffin il, stearic acid, or suet may be used as a substit te for par affin.-John Galletly.

A Novel Addition to the Dinner Table.-The Brew ers' Gazette says, and it ought to know, that we are to hav a revolution, it appeara, in wine glasses. London porter re-
quires pewter, and hock a green gla s , and it has now been quires pewter, and hock a green glass, and it has now been
discovered that sherry is not sherry unless drunk out of wood discovered that sherry is not sherry unless drunk out of wood iny carved cupa instead of the orthodox wine glass wit which we have long been familiar. At present the idea is only in its infancy, awaiting the artists who have under con sideration the design of the new sherry cups. We may owever, mention that they will be larges which our grand fathers used.

Camels in Nevada.-The Virginia city (Nevada) Enter rise says that a train of over a dozen camels recently arrive in that city, having journeyed from the Carson River valley below Dayton. These "ships of the desert" were loaded with
hay, in bales, for Adam's hay yard on North D street. The hay, in bales, for Adam's hay yard on North D street. The
huge, ungainly beasts presented quite a picturesque appear huge, ungainly beasts presented quite a picturesque appear
ance as they filed into town with their cumbrous freight. Upon arriving at the hay yard, at the word of command the all knelt down to be relieved of their loads. These animal appear to thrive quite as well in this country as in the wilds of Sahara. There is an abundance of deserts here, if they are necessary to the comfort of the beasts.

Prussian Torpedo Boats.-These boats are cigar-shape and shot-proof against the rifle and mitrailleuse. In the bow is the rudder, and in the stern, an obser is hardly three fee hole about the size of a small diameter. The whole boat about forty feet long, and the only parts above water are the funnel and observatory. The bridge is on a level with the water and protected by a double shield. It is of a graycolor and very fast. It will carry torpedoes whose construction is unknown, dash into an enemy's fleet, especially at night, blow up the ship and make away again. Should it prove a grod sea-going boat, and England ever dared to thwart Germany,
the prediction in the "Battle of Dorking," will probably be realized. Three are already finished and in the port of Dant zic; three unfinished, destined for Kiel, and a number mor under constraction.

Detection of arsenic in Paper Hangings, Dyed and Printed Fabrics and in Colors.-The arsenical copper colors may best be detected by Bettendorf's process. The ample is covered with pure hydrochloric acid containing 25 per cent of réal acid, in such quantity that after it has been digested for 15 or 30 minutes, 20 drops of the clear liquid can be poured off. If the liquid is dark or turbid some more hydrochlorie acid must be added, and the solution filtered. About 20 drops are poured into a test tube in which a knife point full of chloride of sodium and the same quantity of protochloride of tin (stannous chloride) have been placed. When these salts have become a thin paste, pure concentra ted sulphuric acid is quickly but carefully added to about double the volume, so that the mixture grows hot, and fumes of hydrochloric acid gas escape. After the first violent reaction is over, more pure hydrochloric acid is added. Arsenic if present, separtes in the metallic state, rendering the liquid dark grey brown or brown and turbid, and is readily de posited in diluting the liquid.

Boston Firemen.-The dormitories of the Boston firemen are model apartments, as are all the engine houses. They are carpeted and furnished with the $b>s t$ of furniture. The fire men have a parlor or sitting room, and here the stranger is surprised. There are Brussels carpets, black walnut furni ture, ornamental book cases well stocked with useful vol umes, facilities for writing, a piano, and the walls are orna mented with choice paintings backed by handsome paper The department supplies all necessary comforts; but so grea is the rivalry between the respective companies to show up the most inviting quarters that the firemen themselves mak heavy outlays, and respective friends aid them in their work of refinement with liberal hands. Among the many goo regulations of the department is the strict observance of the Sabbath and prohibition of intoxication and profanity, dis charge following the breaking of the rule.

F Ludwig had just published, in the Wiener Anzeiger, p 220,1871 , an account of some researches on the action of chromic acid on certain common gases, namely, carbonic ox ide, hydrogen, marsh gas, and olefiant gas. Even at ordina ry temperatures, and in contact with dilute as well as with concentrated solutions, carbonic oxide is transformed int arbonic acid. Hydrogen gas, on the other hand, is oxidised with tolerable rapidity by conc $_$ntrated solutions, but eithe ot at all or very slowly by dilute solutions. At common emperatures, marsh gis is unattacked. Olefiant gas is ox dised to formic and possibly to acetic acid, as well as to carbonic acid and water at ordinary tempe ature. Operating at higher temperatures, Chapman and Thorp found only car bonic acid and water.
Mr. J. W. Baughman, of Baltimore, Md., writes to inform us that a lady recently ran a needle into her flesh, about three inches above the knee, breaking it off under the skin. She preferred to risk the consequences rather than to have it ex racted by a doctor. Mr. Baughman thought of using a mag net, and applied one of the hor e shoe shape, 8 inches in length She wore it for two days, more or less, and then found the point end of the needle protruding from the skin, one inch rom where it entered. The needle was easily removed. Ou correspondent is curious to know how the needle could come to the surface point upward, having thus turned round in a space less than its own length, which was $1 \frac{1}{16}$ inches, an he suggests that the muscles may have turned it about

Heating Wines.-To destroy the germs in the wine which may produce deterioration of its quality, M. Tellier pro poses to pass steam into a double copper helix which is mtro duced through the bung hole of the cask containing the wine This steam, condensing, is forced up in the form of wate through the interior tube by the pressure of the fresh steam boiler, and thus gotten rid of. The wine may by this mean be heated to a temperature sufficiently high to destroy an germs in it, and at the same time its volatile constituents preserved.

Brown Tint for Iron and Steel.-Dissolve in fuur parts of water, two parts of crystallized chloride of iron, two parts of chloride of antimony and one part of gallic acid, and apply the solution with a sponge or cloth to the article, and dry it n the air. Repeat this any number of times, according to he depth of color which it is desired to produce. Wash with water and dry, and finally rub the articles over with boiled inseed oil. The metal thus receives a brown tint and resist moisture. The chloride of antimony should be as little acid as possible.
A dressing for goods, according to Finckh, may be made by boiling two parts of caustic soda, with four to five parts of palm oil to a soap, which is then dissolved in more water and mixed with thirty parts glycerin of 30° Beck. The mixture should then be cooled, and eight parts of wheat starch stirred in , and water added to bring the weight of the whole up to 1,000 parts. The addition of a little carbolic acid will protect this from fermentation. Of this mixture, add 6 to 8 pounds o every 100 pounds of potato starch used.
Spectroscopic Reflector.-A slightly convex mirror is fastened on a stand, in such a way as to receive the rays from Bunsen buruer near the operator, and reflect them to the prism or slit of the spectroscope. The introduction of any
substance into the flame may be easily accomplished by this arrangement, and the lines are said to appear much brighter than in the ordinary instrument. Prof. Fleck tested, with this apparatus, lime which he had obtained in five different quantities by partial precipitation, and states that different lines appear in different portions; this may be owing to the lpresence of different elements in the precipitates.

A NEW SCIENTIFIC WORK.

We have received from Professors R. H. Thurston and Richard H. Buel, their prospectus, issued from the Stevens Institute of Technology, Hoboken, N. J., for a new and pop ular work, to be descriptive, in detail, of some of the most important of recent inventions and discoveries in mechanics and engineering. The idea is an excellent one, and we have no doubt, from the eminent ability of the editors, that the no doubt, from the eminent ability of the editors, that the
work will be of much value. If it were to be a sensation work will be of much value. In would go with a rush, and a hundred thousand cop novel it would go with a rush, and a hundred thousand cop-
ies would quickly be called for. But, confined as it is to ies would quickly be called for. But, confined as it is to
subjects that require study and intelligence in their mastery no such rapidity of demand is, in the ordinary course of things, to be expected; scientific books generally have but a limited circulation. The editors have, however, adopted a special expedient to secure large sales. They propose to publish descriptions of good improvements, provided the holders thereof will furnish, at their own cost, first class essays accompanied by the best possible engravings. In addition thereto, each applicant is expected to pay to the editors, in cash, the sum of seventy-five dollars for each page oscupied by his essay-which is equivalent to six hundred dollars, besides the cost of essay and engravings, for a space equal to one page of the Scientific American. At first blush, this outlay seems large; but it is only a seeming, for in return, the applicant is to receive twenty five copies of the work free of charge, for every page of space he has paid for. Thus he receives the full quid pro quo for his money, and secures the additional benefits of the publication. We wish every possible success to the editors in this novel undertak ing.

WILL YOU FAVOR US

Will subscribers to the Scientific American, who have duplicate copies of No. 1, 2, or 3, of this volume, or others who do not preserve their numbers for binding, re-mail back to this office what they are willing to spare?
At the commencement of the year, we printed several thousand more copies of each number than we had subscribers for, and as many as we anticipated a demand for; but'subscriptions have come in so much faster than we expected that the first three numbers are nearly exhausted. The publishers will be obliged to any of their patrons if they return all or either of the above numbers. Address Scientific American, New York.

Examples for the Ladies.

 Miss Adelaide Perry, Bloomington, Ill., says: We have had our Wheeler\& Wilson Machine in use eleven years without repairs, and it runs as well as
the day it was bought. Last year I earned with it $\$ 485.85$, besides doing the the day it was bought. Last year I earned with it \$885.85, besides doing the ewing for a family of eight persons, and considerable other work. Mr. George W. Nelson, (machinist,) Alleghany City, Pa., says the Wheelcr
Wilson Machine in his family has been used for thirteen years without repairs; and he will warrant it for ten years more, and that any Wheeler \& repairs; and he wili warrant it for ten years more, and that any wheeler \&
Wilson Machine will serve a family for a life-time-an important fact, par-
ticularly to girls who make their living by the needle.
"The best", is a term always applied to Burnett's Preparations.: They

The Charge for Insertion under this head is One Dollar a Line. If the Notices exceed Four Lines, One Dollar and a Balf per Line will be charged.

The paper that meets the eye of manufacturers throughout the United States-Boston Bulletin, 8400 a year. Adveris. A live man, who wishes to travel, can become equal Partner in a paying Patent for $\$ 1000$. Address Box 113 , Nor wich, Conn
Save your Boilers and Save Fuel. Use Thomas's Scale Dissolver, price 5 c . per lb., in barrels 500 lbs . Remit to N. Spencer Thomas, Elmira, N. Y., and will ship by cbeap freight.
New Pat. Quick and easy way of Graining. First class imitations of Oak, Walnut,
Callow, Cleveland, Ohio.
Foot Lathes and Castings for small Engines. E. P Ryder, 252 Plymouth St., Brooklyn, N. Y.
The " Railroad Gazette" will be sent three months for $\$ 1.00$ Address at 72 Broad way, New York.
Carpenters and Builders-Look here! We want you take an agency for an article wanted in every house. It is just in your line.
There's lots of money in it. Send $\$ 1.00$ to John Glass, Titusville, Pa., for sample and circulars, with terms to agents.
Grindstones-Founded A.D. 1810-J. E. Mitchell, Phila., Pa. Machinists' Grindstones, a specialty-J. E. Mitchell,Phila..Pa. Sperm Sewing Machine Oil, in Bottles, Cans, and Barrels. W. F. Nye, New Bedford, Mass.

State Agents Wanted-Inventors' Co-operative Manufactur ing Company, 21 Park Row, New York. Send tor circular.
A valuable Patent will be disposed of cheap. Address Peterson, care of Inventors' Co- operative Manf'g Co., 21 Park Row, N. Y. For Sale Cheap-A Fitchburg Air Compressor, 10 inch cylinder, at No. 73 Exchange Street, Worcester. Mass. John Goulding.
H. E. Towle \& Co., Engineers, London, attend to business at the London Intemational Exhibition, \&c. New York Office, 176 Broad way. Read letter on Wheel Moulding. Scien. Amer., Feb. 3, p. 93. The advertiser can put in from $\$ 3000$ to $\$ 4000$ into some Business or Agency, if he sees his way clea
while. Address A. Roberts, Buffalo, N. Y.
To Ascertain where there will be a demand for new Machin Pry, mechanics, or manutacturers' supplies, see Manufacturing New
United States in Boston Commercial Bulletin. Terms $\$ 4.00$ a year.
L. \& J. W. Feuchtwanger, 55 Cedar St., New York, Manufac turers of Silicates, Soda and Potash, Soluble Glass, Importers of Chem Walrus Leather, for Polishing Steel, Brass, and Plated Ware. Greene, rweed a Co., sur Me,
A Correspondent wanted, who understands the erection of works for, and the manutacture of, Malleable Gas Fittings, with the view
Improved Foot Lathes, Hand Planers, etc. Many a reader of this paper has one of them. Selling in all parts of the country, Canada Europe, etc. Catalogue free. N. H. Baldwin, Laconia, N. H.
Edson's Hygrodeik is the best Hygrometer in use. Send for circular. Geo. Raymond, Fitchburg, Mass., Gen'l Agent for United States. We will remove and prevent Scale in any Steam Boiler, o make no charge. Geo. W. Lord, 232 Arch street, Philadelphia, Pa
Rubber Valves-Finest quality, cut at once for delivery ; o moulded to order
Place, New York.
Hydraulic Jacks and Presses, New or Second Hand, Bough and sold, send for circular to E. Lyon, 470 Grand Street, New York. Williamson's Road Steamer and Steam Plow, with Thomson' Tires. Address D. D. Williamson, 32 Broadway, N. Y., or Box 1809.
Boynton's Lightning Saws. The genuine $\$ 500$ challenge Will cut five times as fast as an ax. A 6 foot cross cut and bu
E. M. Boynton, 80 Beekman Street, New York, Sole Proprietor For Hand Fire Engines, address Rumsey \&Co.,Seneca Falls,N.Y Over 800 different style Pumps for Tanners, Paper Makers Fire Purposes, etc. Send for Catalogue. Rumsey \& Co. , Seneca, Falls, N. Y Arist Mills,New Patents. Edward Harrison, New Haven, Conn Practical Suggestions on the Sale of Patents." Send fo circulars. W. E. Simonds, Hartford, Conn
Standard Twist Drills, every size, in lots from one drill to 10,000 , at $3 / 4$ manfacturer's price. Sample and circular mailed for 25 cents. H. E. Towle, 176 Broad way, New York.

Taft's Portable Hot Air Vapor and Shower Bathing Apparatus Address Portable Bath Co., Sag Harbor, N. Y. Send for Circular
For Steam Fire Engines, address R. J. Gould, Newark, N. J. All kinds of Presses and Dies. Bliss \& Williams, successors to Mays \& Bliss, 118 to 122 Plymouth St., Brooklyn. Send for Catalogue.
Brown's Coalyard Quarry \& Contractors' Apparatus for hoisting ndrews \& Bro,414 Water st.,N.Y Presses, Dies, and Tinners' Tools. Conor \& Mays, late Mays \& Bliss, 4 to 8 Water st., opposite Fulton Ferry, Brooklyn, N. X.
ver 1,000 Tanners, Paper-makers, Contractors, \&c, Pumps of Heald, Sisco \& Co. See advertisement.
Boiler and Pipe Covering manufactured by the Chalmers Spence Non-Conductor Go. In use in the principal mills and factories.
Claims-Economy, Safety, and Durability. Offices and Manufactories, foot E. 9th street, New York, and 1202 N. 2 d street, St. Louis, Mo.

For Best Galvanized Iron Cornice Machines in the United States, for both straight and
Merwin St., Cleveland, Ohio.
Dickinson's Patent Shaped Diamond Carbon Points and Ad iustable Holder for dressing emery wheels, grindstones, etc. See Scientific
American, July 24 and Nov. 20,1869 . 64 Nassau st., New York Railway Turn Tables-Greenleaf's Pitent. Drawings sent on application. Greenleaf Machine Works, Indianapolis, Ind.
Blake's Belt Studs. The cheapest and best fastening for Rubber and Leather Belting. Greene, Tweed \& Co., 18 Park Place, N. Y. Peck's Patent Drop Press. For circulars address the sole manufacturers, Mino, Peck \& Co., New Haven, Ct.
For Solid Wrought-iron Beams, etc., see advertisement. Address Union Iron Mills, Pittsburgh, Pa., for lithograph, etc. Mining, Wrecking, Pumping, Drainage, or Irrigating Machin ery,for sale or rent. See advertisement, Andrew's Patent, inside page.

Hoteesiduweios.

1.-Preserving Natural Flowers.-Will some one fursh me with directions for preserving natural flowers?-K. A. L.
2.-Copper Dip for Iron Castings.-Will some one give a recipe for making this fluid ?-S. D. R.
3.-Hydraulic Cement.-Will some one tell me how hy-4.-Cement for Crockery.-Will some of your readers nform me how to make a permanent cement for mending broken crockery
5.-Hardening Steel.-In the process of hardening steel 1oes a chemicalchange take place in the nature of the steel? If so, what is does a chemical chang
that change?-A. K . s .
6.-Cracising of Leather.-What is the cause of the eather, used for the front boards of wagons, cracking? I have tried to find 7-Melting Giass.-Can
7.-Melting Glass.-Can any one tell me how I can melt 8.-Mixing Paint.-Could any one inform me how to mix ap paints, and what varnish is best to use in getting up Venetian blinds, so that they will neither blister nor crack?-D.
9.-Expansion of Millstones.-Can any one tell me if, and how much, French burrstones are expanded by the heat generated by
10.-Iron Ship Building.-I wish to know who made the irst iron boat, and when it was constructed.-W. C.
11.-Concrete Floor.-I wish to know what will make oncrete floor for a cellar, without the use of gravel.-J. A.s.
12.-Ignition of Cotton Yarns, etc.-What degree of ore igniting, the yarns or cloth being placed in a chamber, and the hot air driven through by a fan?-J. R. K.
13.-Rhumkorff Coil.-What is the method of constructing the coil of a Rhumkorff induction apparatus? I particularly wish to know the sizes of wirewhen covered, and the method of securing the most
efficient insulation. I have seen described the Ritchie method of winding the wire, but it was very unsatisfactory, being too
not already well informed, to understand.-J. J. s.
14.-Journal Boxes.-What is the best material for journal boxes for a water meter, where the pressure is against the end or small
point of the shaft, which is of brass or some other material that will not cor point of the shaft, which is of brass or some other material that will not cor-
rode? The lubrication is with the water. How do brass and hard rubber run together?-I. C.
15.-Relative Weight to Horse Power of Engine.Can any one tell me the lightest weight of engine, to each horse power, that
16.-Electroplating with Alloys.-Can an alloy be deposited bylelectricity, on a metal surface, as gold,silver, and other
done, if the ingredients of the alloy are good conductors?-R. T.
17.-Steam Engine Phenomenon.-Last summer, I was running my engine after dark. The boiler was well filled with water, and top of the boiler, I saw a pale yellow light, at asmall leak in a connection of the steam pipe; being alarmed lest the building was on fire in the story above, I seized my lamp, hastened up stairs, and satisfied myself that all was safe up there. I returned to the engine room and saw the light as before not only where I first saw it, but at different points where steam was escap ing injets. The lights disappeared when the lamp was brought near them.
When my hand or someother substance was brought in contact with the je When my hand or someother substance was brought in contact with the je
of steam near the point of issue, the light seemed to attach itself to the han or other substance. This continued for about forty minutes. What was he cause?-J. A. L. A.
18.-Preserving Rubber Boots.-Is there any prepara ration to preserve gum boots from cracking? I find that always, after wear-
ingawhile, they lose that fine gloss which they have when new, and get full inga while, they lose that fine gloss which they have when new, and get full
of fine cracks. Can any one tell me how I can patch them in case they of fine cracks. Can any one tell me how I can patch the
torn, so as to make them waterproof again?-J. R. M.
19.-Coke for Iron Manufacture.-Has coke, similar to our gas house coke, been used for melting iron in this country to any extent, nd, if so, with what results? Dees it melt iron as rapidly as coal, and doe
have any chemical action on the metal? I am aware that it has been use in England, but I would lik to know whether that coke is similar to ou gas house coke.-G. w. C.
20.-Valve for Mining Engines.-Can any reader, who is using Davis' piston valve, tell me if it is suitable for an engine used in the shafts of deep mines? I am using the common slide valve, and the empty
car, in descending, acquires considerable velocity and overcomes the friccar, in descending, acquires considerable velocity and overcomes the fric-
tion of the engine, causing an unpleasant tion of the engine, causing an unpleasant rattling of the valve and wear on the threads of the spindle. I think Davis' valve will answer the purpose,
but it is comparatively unknown in this country; and I should like the opin ion of some one well acquainted with it.-F. L.
21.-Trisection of an Angle.-Mr. N., of Ind., sends us the construction of a geometrical problem to trisect any angle of less than
inety degrees; and he ends his communication with the question, ary in such attempts, "if not, why not?" The point which has so long de fied the powers of the best geometricians is the solution and demonstration of the problem by elenentary geometry, and this Mr. Naylor leaves to his eaders. The practical trisection of an angle has long been understood; the
22.-Separation of Gases.-I wish to know if there is any simple way
other. - L. M.
23.-Transit of the Planet Venus.-Is there any reliable rule for computing the transits of Venus?-C. E. P.

ghswers to courespadentr.

SPECLAL NOTE.-This column is designed for the general interest and in struction of our readers, not for gratuitous repiies to questions of a purel business or personal nature. We will publish such inquires, however when paid for as advertisements at $1 \cdot 00$ a line, under the head of \cdots.Busines and Personal."

.

Gearing for Saws.-In reply to query No. 2, January 20, I beg to say, for the information of A. K., that it is practicable to run
circular saws with bevel gearing. There is a circular saw mill in ou circular saws with bevel gearing. There is a circular saw mill in our
town running at the present time (and has bsen forthe last ten years) with bevel gearing, a crown wheel, on upright water wheel shaft, four feet six inches diameter. 2 inch pitch, 6% face, pinion 1 foot 6 inches diameter. 1
have made several mills on the same principle by substituting a mortise have made several mills on the same principle by substituting a mortise
crown wheel and chipping and fling cogs in pinion.- W. H., of Ontario crown wh
Canada.
Blueing Iron.-" Gun Barrel" will find the information he requires in this column.
Generating Steam.-J. H. McC. is referred to pages 55 S. T. A. E.. C. E.-You will find an answer to your questi $\#$ I in any elementary work on physics.
Face Worms.-Let H. E. A., query No. 4, January 20, try J. M. C., of Honolulu.-We know of no reason why the al bumen from sea birds' eggs should not be as good as that of domesti fowls: Dix \& Morris, 58 Cedar street, are dealers in the albumen. The price is abont $\$ 1 \%$.
Staining Canes.-Query 10, January 6, 1872.-Dragon's blood dissolved in water or alcohol, with burnt umber added until the aesired shade is obtained, is the right thing. Apply with sponge. To ge shellac.-E. F. H., of Iowa
Wearing of Slide Valves.-I would state, for the benefit of W. C., that the concavity is attributable to two causes: First and
mainly, to the center of the seat being in constant wear, while the ends are worn only alternately ; secondly, to the unequal distribution of th wearing
Copper Salts.-L. H. B. is in error in stating that copper salts have been recommended for cleaning statuary. A wash of nitrate
or sulphate of copper on stone work has been suggested as a preservative or sulphate of copper on stone work has been suggested as a preservative
the object being to fll the surface pores of the stone with the metallic the object being to fll the surface pores of the stone with the metallic
copper. The salt should be dissolved in water, and the hands copper. The sal
contact with it.
Crystallization of Honey.-Strained honey, if scalded and skimmed, will keep any length of time without change. The scalding
will slightly alter the flavor, but will not impair it materially.-J. H. P. A. W. P. S., of O.-A fall of 17 feet will give a rise, in a fountain, of 17 feet, minus the loss of head due to friction and the resist-
ance of the air to the jet. The material of the conduit will not make very great difference in friction, but the larger it is the less will the friction interfere with the hight of the jet.
Red Spider.-How can the minute red spiders, which are found upon house plants and around windows in great numbers, be de-stroyed?-A. F. W. Answer: It is very difficult to get rid of the red spi-
der. The florists sell certain soaps, intended for that purpose, which are to be dissolved in water and applied with a syringe. These insects flouris where it is warm and dry. But they cannot stand wet. Treat them to a
Causes of Change of Color in the Stars.-C. B.'s theory is probably correct, but it is no new dis
has already written to the same effect.

Tensile Strength of Swedish Iron.-H. L., of Ind.-The breaking weight per square inch of Swedish iron ranges from about 70,000
lbs. to 112,000 lbs., but 85,000 may be taken as an average. This information will answer your other questions, if you calculatet the area of the
cross sections of the round rods, by multiplying the radius by 7854 . S. S. B., of N. Y.-Coke, like other forms of carbon, absorbs more or less of all gases floating in the air to which it is exposed. In
burning, it liberates such of these gases as are not combustible, and by its own combustion produces mostly carconic acid with traces of gases from substa
ing.
Sonorous Stone.--'To W. S. R., page 138, Vol. XXV.-The stone near Poftstown, Pa., must be of volcanic origin, known as trachyte, masses of the same character of rocks. Livingston, in his "South Afri ca," page 101, speaks of thie Bamangwato Hills of the Baka Range, 700 or
800feet above the plains: "The rocks, in falling, produce a ringing noise which leads many to fancy that they contain abundance of iron. In
many places, the lava streams may be reco n nized."-C. H. K.,ofthe West
 Indelible Ink.-Ink for marking linen can be made by dissolving five cents' worth of lunar caustic (nitrate of silver) in half an
ounce of water. Equal parts of starch and saleratus must be used to stiffen the linen. Iron it smooth, write on it while hot, dry and iron again and if there be eny blots, coover them with lard. TThen lay it in the asun for
several hours, and immediately wash in very strong hot suds.-E. E. S.,
of o.
Blueing Iron.-On page 42 of the current volume, I find that J. C. C. Wants to know how the peculiar blue surface is put on gun
barrels. Let him apply nitric acid and let it eat into the iron a little; then the latter will be covered with a thin film of oxide. Clean the barrel, oil, and burnish. A very pretty appearance is given to gun barrels by treat-
ing them with dilutenitric acid and vinegar, to which has been added sulphate of copper. The metallic copper is deposited irregularly over the Gun Scattering Shot.-Mr. Abraham Heaton, of Ada, Mich., states that a gun will always scatter if the barrel be crooked. As
a gunsmith of experience, and being now retired from the business, he hinks he can give H. W. good advice, and has no hesitation in imparting trade secrets. To straighten a barrel: Let it rest on the backs of two
chairs to keep it level; take the breech out and lay a fine needle in the muzzle. Look in at the breech and turn the barrel round; and if the nee dle can be seen plainly all round, there is not much the matter with the
straightness of the tube. But the barrel may be smaller in the middle, a straightness of the tube. But the barrel may be smaller in the middle, a
frequent cause of scattering. To correct this fault, take a wooden rod, frequent cause of scattering. To correct this fault, take a wooden rod,
about six inches longer than the barrel, fit it snugly to the barrel from end to end. The end of the rod is to be the handle to draw it through the
tube. The rod should have a small float file fitted in, about one inch from the end, even with the vood. If the middle of the barrel's length be
smaller than the muzzle, it will be discovered on drawing the rod in and out of the barrel, and then the latter should be held in a vise, and the rod
worked in and out till it passes easily. Then withdraw the rod, pry ou he file, raise the latter by putting a piece of thick paper underneath, and proceed as before. After flling a way the tight part, sand paper should
be used to finish it with. Keep the breech pin in, so that the thread canbe used to finish it with. Keep the breech pin in, so that the thread can-
not be injured. The file must be of the best cast steel, with the temper drawn to a straw color.
Proportions of Engine.-On page 42, Vol. XXVI., J. R. L. wants to know whether the builder's idea of increasing the power of his engine is correct, and the true cause of the engine's.not doing one fourth
more work with 80 pounds of steam than it will do with 45 pounds. I think if the builders will put on a 1,500 pound fly wheel instead of a 4,200 pound one, and enlarge the steam pipe as well as the governor, the engine
will do the work. There is trouble with the governor, which causes the will do the work. There is trouble with the governor, which causes the phenomenon of the engine doing three fourths of
Face Worms.-To H. E. A.; query No. 4, January 20. The best remedy for the eradication of flesh worms that I have ever seen tried
is the following: Rub with dry sulphur at night before retiring; at the me time, take intern with molasses (measured after mixing). In the morning, wash of the face with bran water and after wards with pure cold water. Repeat
ment on alternate nights till a cure is effected.--J. B. Jr., of 0 .
Light Engines for Saw Mills.-In answer to Nemo, query No. 16, January $20, \mathrm{I}$ would advise him to try a saw with inserted
teeth, and take out the teeth at equal distance?, until he has power teeth, and take out the teeth at equal distance z, until he has power
enough to run it. Of course he must replace the teeth with worn out ones, to keep the strain on the saw equal, so that it will run true. A saw
will bear feed much better with only a few teeth that cut a good kerf than will bear feed much better with only a few teeth that cut a good kerf than
it will with many of them, each scraping out a little dust.-E. K., of N. Y. Paint Brushes.-.Query 5, January 1,1872.-If the brushes are not hard, wash them with soft soap and water, or turpentine; if hard
soak in a moderately strong solution of concentrated lye.-E.F. H., of soak in
lowa.

Declined.

mmunications upon the following sub jects have been received
Artificiae Fuel-U. J. C.-E. F. L.
Boiler Experiments.-W. H.
Canal navigation.-
Diamonds.-A. D. R
The Davenport Tricks.-C. B
To Smoke or not to Smoke.-F. H
Worms in Timber.-J. O. M.
Answers to Correspondents.-Y. S.-J. A. C.-E. A. D.G. S. \& Co.-J. R.-C. O.-J. P. N.-R. E. O.-L. S.E. H. G.-P. C., Jr.-E. W. K. P.-W. S.

Queries.-W. A. A.-J. H. P.-J. D.-S. C. P.-J. O.-J. L.-
S. G. S.

害

Under this heading we shall publish
nent home and foreug vatents.
Gin Gearing.-Harris R. East erling, M.D., Bennettsville, S. C.-This invention relates to the combination of two gins, placed diametrically oppo-
site each other, and gearing with a master wheel driven by horse or other site each other, and earing with a paster wheel driven by horse or other
power, the connection between said gins and the pinions that gear with the power, the connection between said gins and the pinions that gear with
master wheel being effected by means of sliding clutches, so that either may be stopped without stopping the other gin or the master wheel. Machine for Polishinge and Varnisining Moldinges.-Charles and
John Gschwind, of Union Hill, N. J. - This invention has for its object to devise a reliable apparatus whereon moldings, to be gilt, silvered, or other-
wise ornamented, can be automatically and rapidly polished and, if desired, also varnished. This object is attained partly by a novel and ingenious arrangement of polishing tools and mechanism for moving the same over the
moldings, and the combination therewith of an adjustable table on which the moldings are secured. It is also partly attained by a new system and arrangement of brushes, mechanism for dipping the same, and means for in-
ereasing their pressure upon the moldings in equal ratio to their distance from the varnish reservoir, and by further items of invention of greater o less importance.

HARNRESS Buocise.-John H. Morris, Normal, Ill.-The invention consist
in constructing and shaping the frame and tongue so that the buckle i neld structing and shaping the frame and tongue so that the buckle 1 , great s
ness.
Drforinge Machins.-George W. Nevill, Richmond, Va.-This inventio consists in a ditching machine which gradually cuts down to the dept
desired, carries the excavated soil up over a flanged wheel, and discharge iesiren, ecarries the excavated soin up over a a fanged wheel, and dischard
it at the side. Practical experiment has demontrated its peculiar adapta bility to the Western prairics.
Carper Spretchrr. - Will iam P. D. Claybrook, Palmyra, Mo.-This in
Vention relates to an improved device for stretching carpets and for hold ng them in position while being fastened, the same being of a simple and convenient fo
various sizes.
SULEy Plow.-John H. Robbins and Samuel Robbins, Bethel, Oregon. ne pitch of consists in a very ingenious method of ad justing the dept truction of beam and graduating mechanism.
Water Elevator.-John L. Burch, Franklin, Tenn.-This invention re ates to an endless chain water elevator, of simple and convenient ar angement of parts whereby they may be readily taken apart for transport
ation, or more easily placed in or removed from a well than others here ofore employed.
CANAL Boat.-William Henry Newell, Jersey City, N. J.-This inventio arbance of the water is prevented and unduefriction during the lateral dis of the boat avoided. It consists in hinging fenders to the sides or at the ends
the boat, so that they will protect the propellor or wheel and tend to pre vent the disturbed water from reaching the banks. It also consists in the pplication to side fenders of extension pieces. The fenders may, on their acted on by the propeller and depth of draft. To one or both the ends of the ender, are or may be applied extension fenders, which permit the proper lengthening or shortening of the main pieces. Instead of extension sections, there may be hinged sections at the ends of the fender, which may be folded
against the main fenders, when to be carried out of the way. These hinged stems and bows, or either nd none at the sides. Where the fenders are caused to meet forward the boat, they will, it is claimed, increase the speed by cutting through the
water with less friction.
Rotary steam Engine.-Thomas B. Van Pelt, of Spring Hill, Kan. to secure the full power of steam. A single rotary shaft, with cylinders, nnecting with the steam chest, disk pistons, eccentrics, cams, yoke, the object sought, and are covered by the claims allowed in the patent. Sass Holders.-Oscar W. Noble, of Darlington, Wis.-A bolt having
slot and pin, and a plate having a pin and slot applied in combination to erecess of the sash, also a cam bolt having a slot and pin, and a plate hav ng slots and a pin, applied in combination to the recess of the sash are the
features embraced in the elaims upon which a patent has been obtained. to mplying a project rame, and thus constitute an absolute support for the sash; and the devic cks the sash when the latter is closed.
Electro-Magnetio Engine. - Claude Victor Gaume, Williamsburg, N. Y
-This invention has for itz object to furnish an improved electro-magnetic ngine, simple in construction and effective and reliable in operation, being armature consist of a central bar, attached at its center to the face of a wheel, and having cross heads formed upon them about midway between their centers
and end, the cross heads having short bars formed upon their ends parallel with the central bar, and the ends of which project to equal distances upon e outer and inner sides of said cross reat dificiculty to be overcome in making electro-magnetic engines practias a motive power
Medical Compound or bitters.-Richard G. Turner, Columbia, Texas, This invention consists in a compound, more especially designed as mese and ailments of the human system, as ceneral debility, torpid live dyspepsia, constipation, Jaundice, and many others.
arible Polishag Machine.-Michael Mallon, Rahway, N. J.-This in riving gear and supporting apparatus therefor, adapted to be mounted on esurface of a large stone polished, and adjusted along it from on osition to another and secured at any point, or to be used on a stationary
able or platform. The machine maybe used to polish metal and other subtances. Sand may be carried upon the top of the stone and fed dow hrough passages, from time to time, to the working surfaces.
Extinguiseer for Street Lamps.-George S. Dunbar, of Pittsfield Mass.-This invention has for its object to improve the construction of a gas light extinguisher, for which Letters Patent were issued, to the same invent
or, October 3,1871 , so as to make it more satisfactory in operation, enabling or, October
the lights to be extinguished by a slightly increased pressure of the gas. I bination of a ls also a combination or a pin with the eatch, flexible diaphragm, and a case; also a combination o a pin or slide, with the lever and a slot in the case in which the said leve
works. The invention is extremely ingenious, the gas being instantly exworks. The invention is extremely ingenious, the gas being
tinguished by a pressure upon a pin passing through the case.

Thill Coupling.-Lyman Derby, of Franconia, N. H.-This invention per tains to an improvement in the class of thill couplings in which rubber o vention consists in a construction and arrangement of parts, whereby pro vision is made for causing two coupling screws to retain a secure hold, un-
der all circumstances, by a single block or piece of rubber inserted between heir ad jacent inner ends, special provision being made for expansion of the rubber or compression of the same without material change in its elasti
force, as applied to or exerted upon the screws; so that, if the block of rub ber should be of undue size or firmness, the screws may notwithstanding bo easily screwed home without injury to the rubber.
Harrow.-C. Hairgrove, of Jacksonville,IIl.-Two central bars are hinged o these bars are pivoted cross bars which are again pivoted to longitudi nal bars at the outside, so that they may be inclined at an angle to the mid-
die hinged bars. A clamping device holds them fixed when thus inclined dle hinged bars. A clamping device holds them fixed when thus inclined
It is obviousthatthemorethe cross bars are inclined from a right angle It is obvious thatthe more the cross bars are inclined from a right angle
with the central hinged bars, the nearer will the teeth which they carry be rought together, and vice versa, the object being to construct a harrow tance from each other.
Tire Setters.- Joseph Pailca, of Ledyard, N. Y.-This invention con-
ists of a bench, whereon the wheel is laid, with the tire adjusted upo Its face at one side, and held by a holder suitably adapted therefor, while th other side of the wheel, on which the tire is to be forced, rests against
curved bar at the end of the frame, and a lever with a hook engaging the upper edge of the tire, while the end takes under the rrame, which contracts the wheel and stretches the tire down upon the face or the hub in suc .
Earth Closet.-Hamilton Sherman, of Waverly, Pa.-This invention re and dropped automatically atevery raising of the cover by a carrier having tion and the mode of operating grate bar slides with hinged metallic flap underneath, closed by entering a narrow channel as the cover is raised and
opened, successively, by their own gravity.

Traverse Motion.-Duncan Walker, of East Hampton, Mass.-This in lined faces or cams, arranged on said bar reversely to each other, and o opposite sides of the wheel at one end of the traverse bar, in such manner
that said faces are alternately acted upon by the said star wheel, and the bar alternataly moved ie opposite directions, the movement in one direction beginning as soon as the movement in the other ceases, and the said move-
mentbeing uniform in speed throughout the whole length, which is the es sential object of the invention, and distinguishes it from those arrangements
in which the bar is moved by eccentrics, which give a variable motion to the n which the bar is moved by eccentrics, which give a variable motion to the
bar, and allow it to rest or move so slowly at each end that the wear of the emes of the movements than between them. The traverse bar assume re perpendicular to the bar and have each an inclined playe or ca which, beginning at a corner of said hole, inclines to ward the center of it to
some extent,and stops at a line parallel with the bar and passing through the ome extent,and stops a
enter of said hole.
he baris, and the othe the baris, and the other is on the opposite side. The three pointed sta
theel revolves horizontally in the hole on the axis of a worm wheel below hich is turned by a worm on the shaft of one of the draft rollers. This star wheel and the cams are so adjusted relatively to each other that one of
the points willbegin to act on one of the cams to move the bar in one direction at the moment another point escapes from the other cam, and ceases to.
move said bar in the other direction, These cams will not be straight inmove said bar in the other direction, These cams will not be straight in evolving points will be uniform in respect of speed throughout each move ment. ammit, Mish Th Atrachent for shoves.-Wesley Wright, et as a suitable attachment to stoves, by which the air (requared to furnis oxygen) may be drawn from the outside of the chamber, and its supply to earth graduated according to circumstances. Iece and adapted to the us et forth.
Washing Machine.-Isaac J. Wells, of Spring Valley, N. Y.-This inven tionhas for its object to furnish a simple, convenient, and effective washing
machine which shall be so constructed as to wash the clothes quickly and oroughly and without injuring them. It consists in a washing cylind and boiler, the washing cyllnder being provided with
combination of stirrer pins with the washing cylinder.
Organ Action. - John H.Odell, New. York city.-This invention embrace of the organ pipes are opened by the inflation of a pneumatic lever, which nflated by the admission of air through a pneumatic tube, whereby the ke herefrom, and the usual and electric wires, may be dispensed with. The invention also embraces the combination of a self acting exhaust valve with the pneumatic lever, and
the employment of certain other novel devices in connection therewith, so e employment of certan other novel devices in connection therewith, s atic lever may be operated by air pressure but it may be also- ${ }^{\text {operated }}$ by an air exhaust or suction, in which case the pneumatic lever and con ected parts would need to be specially arranged for the use of such ex haust. The inventor does not limit or confine himself to the particular form
Construction, or arrangement of any of the parts herein described, as the onstruction, or arrangement of any of the parts herein described, as the
may be varied in many ways to suit the requirements of the constructio way be varied in many ways to suit
Elevator.-William Livingstone and William F. Holske, Brooklyn, as ignors to William F. Holske and William H. Silberhorn, New York city. ric wheels or pawls and weighted levers gearing with them, with the car riage, its actuating rope, and wood or other elastic guides, in such manne that the said toothed eccentric wheels will be caused to engage or bind
against the wood guides by the gravity of the levers, or by the same and a gainst the wood guides by the gravity of the levers, or by the same and
pring to lock the carriages and prevent falling in case of accident. The sential object of this invention is to a void the expensive toothed or no so objectionable on account of their liability to break for want of elasticit by the sudden shock when catching the car. The second part of the invenon consists of a system of intermediate driving and reversing gearing be ween the driving belt, by which the carriage is actuated, and the drum of ion hy the said driving belt constantly moving in one direction, the shifting being readily effected by suspended cords, such as are commonly used in ele ators for actuating the reversing gear. This part of the in vention also com rises a novel friction brake device, which, being also worked by th the clutches the drum is entirely disconnected from the driving belt, an he clutches the drum is entirely disconnected from the driving belt, and
etains the drum until, by the continuation of the action of the shifting gear after the clutch has been released, the drum becomes completely disengaged and the connecting one fully engaged, thus positively holding the carriage during the time of changing the connestion and while both clutches are dis connected to allow the carriage to rest. The essential object of the second
part of the invention is to provide a simple and efficient system of connect ing reversing gear, whereby elevators may be worked from shafting of fac tories, etc. continuously moving in one direction, and thus save the neces ty of employing special engines for reversing the carriage by reversing th valves. Thus the inventors are enabled to drive the carriage in either direc
tion by a power constantly moving in one direction, and to hold said carion by a power constantly moving in one direction, and to hold said car entire disconnection of one clutch and the cessation of the motion of the drum and carriage before the other reversing connection is formed, so that
there is no clashing of any counter forces ; also to allow the carriage to stop here is no clashing of any counter forces; also to allow the carriage to stop
as required by apparatus set in motion by the same act by which the as required by appa
Self-Acting Mule for Spinning.- Joseph P. Sweet, Hebronville ,nd the gearing and ungearing devices therefo dapted for the Franklin mule, which we regard as a positive improvemen upon this class of machines. A ratchet wheel, pawl, tapered pin, disks,
combined with a cylinder shaft, a lever, spring, spring catch, dagger, and ipper, constituting the mechanism er, raced in the patent which has bee tained upon the invention.
Trung Lock.-Joseph Stanton, New York city, assignor to Adolphu
tagelin, same place.-This invention has for its object to furnish an in proved trunk lock, so constructed that the lock itself will act as a guide to bring the parts of the lock into proper position for locking, thus counter-
acting any bad effects from the springingor warping of the side of the trunk body, and preventing any damage to the lock should the cover be acciden ally dropped, even though the locking bolt be thrown forward
Salve.-Louisa Masters, Jackson, Miss.-This preparation has for it bhether they be of long standing or not. It is prepared of various ingre
whed dients, in specified proportions, and in a peculiar manner
Liver Invigorator. - William L. Simmons, M. D., of Weatherford, Tex. -This preparation has for its object to furnish an improved medical comery effective as a corrective of biliousness, indigestion, ete. caused by mi-
asmatic influences, torpor of the liver, headache arising from disordered asmatic influences, torpor of the liver, headache arising from di
stomach, bowels and liver, or produced by malarious poisons, etc.
Bit brace.-James Rice, of Prairie Creek, Ind.-The first peculiarity in urned up out of the way. Second, a very ingenious device enables the sweep or leverage of the brace to be increased or diminished as mas be de
sired. The precise form or arrangement of any of the parts described is not sired. The precise form or arrangement of any of the parts described is not
claimed, as they may be varied in many ways without departing from the in claimed,
vention.
Accouching Garment.-Harris R. Easterling, m.D., Bennettsville, S. -The invention consists in two corsets, leg pieces, and certain intermeof parturition without the assistance of mid wife or physician.

	Jack, litting, L. M. Lusk	ENTED.
dex of Inventions	200 ${ }_{5}^{5,49}$	
Index 0 K	g machines, \&c., electromagnetic stop for, Wells and Moran..	[,49
	Ladder, step, E. M. Norton	,500.-Chain Bolt.-O. F. Fogelstrand, Kensington, Conn.
	Lantern, C. J. Sykes123,208 5,50 5,50	5,501.-Window Catch.-O. F, Fogelstrand, Kensington, Conn.
were granted	dd, elastic, J. E. Jones....................................... $123,178{ }_{\text {, }}^{5,500}$	
for the week ending january 30, 18\%2, ant each	st shoe, W. J. B. Mills. \qquad 123,116 \square	5,504-COPboard Catciel-O. F. Fogelstrand, Eensington, Co
bearing that date. Liocke	Lock, alarm, G. J. Swingle.. 12.3 , ${ }^{\text {a }}$, ${ }^{\text {a }}$	TRADE-MARES.
	Loom, A. Urbahn ... ${ }^{123,210}$ 640.	640.-Refined Prtroleur.-F. M. Backus \& Co., cleveland, ohio.
	Loom shutle, J. Martin.. 123,184	
Easterllng.............................123,49		
	Labricator for st	cis.-Boot or Shoz.-F. Winslow and J. W. Rogers,
	Maesure, tailor	
Ing, C. Releb, (reissue)........................... $4,4.28$ Mea	Measure,	
		On
Blacking box, H. Smith... 123,204 Mil	Milk etratner, w. H. Johnson................................... ... 123,261 On ${ }^{\text {on }}$	On filin eac
Blacking machine, boot, N.	t, willard and P	
Blower. J. A. Svedberg... 123.3941412		
Boat chimney, lowering a		
Boille flue ecraper, J.	Movement, mechanteal, E. Chapman............................... 12.3 , 1237	${ }^{2}$
	$\underset{ }{\text { Nail }}$	(en ${ }^{\text {a }}$
Boiler, wash, E.E.E. Br		On an application for Desilin (fourteen vears):
	Oven, D. S. Coburn .. 123,086 For	For Copy of Clatm of any Patent zssued outnin 30 years.................. 81
Bolts, machine for cuttig off, I. M. Powers....................... 123,124 Ov	Oven, tteam, E. Brown..................................... 123,320 4 8	48 ketch from the modelo or, draving, reating to such portion
Book, pocket, F. Busch		
Boot,		
mping		ov. 20, 1866 at w
Boots and shoes, machine for burn		the Patent offcce comminced printug them.....................s1.25
Brake, steam or ar, S. N. Goodale................................. ${ }^{123}$, 12388181818	Pen, fountain, L. M. Knisely	ngs of any patent issued since 183, we can s
	Pia	involved and the number of views.
Broom or mop clamp, E. Chapman................................ ${ }^{123,083}$ Pip ${ }^{\text {Pr }}$		Full information as to price of draviongs in each case, may be had by
Brush, paint or varnish, A. Randol................................ 12,2933 Pit		addressing
${ }^{\text {Brush a and mixer for stove blac }}$		
Buckle, J. H. Morris,.. 12,2818 Pla		Patent
Building blocks and method		
${ }^{\text {Burning }}$ hydrocarbons, I. Fendrick................................. 1233		APPLICATIONS FOR EXTENSIONS.
	103	Applications have been duly flied and are now pending for the extension
	${ }_{\text {Platen }}$	
	$\begin{aligned} & \text { bebt } \\ & \text {, dite } \end{aligned}$	
cha		Frampton. April $3,1872$.
		20,100.-Drawer for Closkrs, Bureats, mto.-H.R. Taylor. April $10,1872$.
Car coupling, J. Temple.. 123,134	Pot, cofee, C. D. Goodrich.. 123,288	
coupling, H. C. Swan....................................... 123,207 Pr	Preserving meats and vegetables, apparatus for, w. Maxwell........ $123,2733^{20,}$	20,106.-Warm air Register and Ventilator.-E. A. Tutt
coupling, J. A. J. Chapman................................... $123,150 \mathrm{Pr}$ Pr	cheese, W. H. Ragan...................................... 123,125	va par
Car, hand, L. J. Cathell	2759	Bois.
Car truck, W. B. Rogerson	pressure accumulator for hydraulic, W. D. Grimshaw......... 123,169 29,1	29,056.-Prncil Snarprner.-W. K. Foster. Ap.
Car truck, L. I. Freming.. 123,163 Pr	Pr	
Pr		Inventions Patented in England by Am
Cars, air brake for, T. o. Ward..................... 123,312 Pr	Pruning 8	
Cars, device for changing the gauge of, D. Todd........ 123,308 P	Pump. R. T. and R. T. Smart, Jr................................... 123,203	the
Carpet trretcher, w. P. D. Claybrook.............................. 123,23989	Pump, J. W. Hopkins. \qquad	
	Pump, rotary, N.P. Sheldon.. $12.3,130$	W. \& G. H. Sellers, Phila
		C. Mettam
		Pristing Machinrry.
age spring clips, manufacture of, H. M. Beecher................. $123,079 \mathrm{R}$	Rake, horse hay, F. Brown.. 123,081 St	Selfrerleasing Hook.-J. L. Cathcart, M. Ezekiel
Caster for furniture, w. I. Blackman............................... 123,147 R		
Chair, A. Taylor... 123,131	Ruling machine, paper, J. Tregurtha............................... 123,309	
		NEW BOOKS AND PUBLICATIONS.
Chair and step lader, combinea, A. Liesche........................ 123,183 S	S	Science Record for 1872. Being a Compendium of th
	Safe, provision, Sanford,	Scientific Progress and Discovery of the Past Year. 400
Cheese vat, Jones and Faulkner		100 Engravings, Steel Plate and Wood.
Cock, valve, J. Walsh... 123,311 s	Sash holder, R.	y bound in muslin, \$1.50: extra binding,
Comb, O. Johnson. \qquad	Sash holder, w. н. K	
Composition for tanning hides, J. M. Müller......................... 123,118	Sash pulley, J.	New York, ofice of the Scientific american.
Confectionery paste, soap, etc., machine for cutting, M. Laemmel.... 123,265 San	Saw filing m	s new and elegant work presents, in convenient torm, notices of the
Cooper welding, Schurr and Rehbein.............................. ${ }^{123,296}$ S	Sawing m	
Corn sheller, hand, w. H. Wilion.................................. 123.319 s	. S. Birge \qquad 123,223	Hic atten
Countersink, W. H. Dodge... 123,		pn)
Cultivator, M, schwartz... 123,128	Screw cutting lathe, chuck for, Plimpton and Taylor................ 123,197	discoveries, facts, and improvements, in chemistry, mechanies, eng ineering,
Cultivator, A. F.	Sewing machine, braiding attachm	al hi
Damper and pipe collar, combined, A. s. shontz.................... 123.23		trated. Sketches of prominent scientific men,
		and among the portraits are those of Faraday, Murchison, Darwin, Aga Huxley,and Herschel. The Mont Cenis tunnel, the Hell Gate works, the Bro
Dovetailing machine, D. Whitlock.................................. 13,	Sewing machines, ruffing attach	Iyn suspension bridge, the Hoosac tunnel, the St. Louls bridge, the United
Drawer pull, W. E. Sparks.. 123,	Shoe fastening, J. F. Coppo	
Drawing knife, A. M. Steele.. 12.5	flour, A. C. Selleck.	
	Signal for railrcad trains, speed,	
Elevator, freight, W. F. Morrow.................................. 123,189		should have a place in every library.
Elevator, hydraulic, F. L. Ensign.................................... 123	J. D. Sturges (reissue)........	British Jourmal Photographic Almanac. London: H.
Engrine, rotary, J. .B. Bennett................................123,144, 123,15		Greenwood. New York: E. \& H. T. Anthony.
Engine, rotary steam, G. R. Winker................................. 123,320	Somer, seed, J. R. Gill	
Engine, link for steam, D. A. Woodbury......................... 123,	spi	nient form, the principal
Engines, valve for steam, J. W. Hopkins. \qquad 123,	Spinning macl	past year. Of use and value to every person interested in the
Excavating and ditening machin	Spinning, self actiug Jack for, P. Keane (reissue)........... 4,725	1 SHALL I INTRODUCE MY
Fastener, shutter, J. Andrew	Spinning, self-acting	HOW SHALL I INTRODUCE MY INVEN
Fastener, shutter, Kefifier and R	Stand, show, J. R. Pa	iry comes to us from all over the land. Our answer is : Adopt
File, paper, C. M. O ' H	steel in crucibles, manufacture of cast, C. M. Nes (relssue)........... 4,227	
Fire extinguisher, E. J J		
Fire regulator, automatic, G. M.	stone, machine tor dres	any merit, somebody will wantit. Advertise what you have for sale in such
Fire arm, breech loading, , Duval.................................. 12.3 139		to
Friour boltig, Burk and Trussel.. 1233,82		int
Forge, blacksmiths', M. Scott....... 12,2,	Stove pipe	article, all over
Furnace, J. w. Smith.. 123	Stufflng box, I. H. Gid	隹 the country. The names and addresses of persons in dififerent trades may
Furnace for heating and puddling iron, etc..J. Morrison............. 123	Stuming box, metallic, w. H. Holland............... $12.12,173$	
	Table, w. Hoese................ 12, 172 Tanning hides, composition for, J. Muller............... 123118	1
	Tanning hides, composition for, J. M. Mülier......................... 123.118	
Goia, 凶e., saving foal	ning in yacuum and other tanks, K. .	
		the columns of the Scientific American. Civil and mechanical engineer.
$\underset{\text { Harvester, T. }}{\text { Harvester cotter }}$	Telegraphic insulator and bracket, J. Robertson...........................12, 12, 1198	und
Harvester cutters, apparatus for grinding, J. H. Curran..............................13,	Th	${ }^{36}$. and new industrial enterprises of all kinds possessing inte
		, 968 in these columns. The publishers are prepared to execonte illustrations, in
Hat or'ms, machine for forming, C. T.	20	2 ${ }^{\text {ded }}$ the estst tyle of the engraving art, for this paper only. Ther may be cop-
Hay loader, T. Giffl... 123,		ied from good photographs or well executed drawings, and artists will be sent to any part of the country to make the necessary sketches,
Head block, T. Douglass	Tobaco, curing lear, J. D.	
Heating apparatus, hot water, E.		
	Toy gun, A. I. Lenhart.... Trap, animal G. H. Davis.	
Hook, releasing, J. L. Catheart... 12,22	Vaginal irrigator, M. Mattson (reissue)..7, 4 ,726	226 the cost of engraving in advance of its execution, so that parties may
Horse collars, machine for stuffing, L. P. Woods.................... ${ }^{123,1}$	Valve, safety, Jewell and steele	
rse power, G. Brodie	296 Valve seat, D. Wienl.. 123,377	inventions, or engineering works illustrated in a paper of such large cir-
reseshoe toe calks, die for welding and forming, rseshoing apparatus, J. B. Brusoe..........	e, balance ent	culation as the ScIENTrric Ambricax is obvious. Every issue now ex-
Hose coupling, A. F. Allen.. 123.6	Vise, J. Peace..................... 123,	ceeds 40,000 and will soon reach 50,00. and the extent of its circulation
cutter, E. Bacher..123,0	Wadding,	is faceof the globe where the paper does not circnlate.
ector, feed water heater, and c ondenser, combined, E. Korting... 12		authority for
	tand, curtain frame, and towel rack combined, A	patented articles from abroad have come to our manufacturers through
		the medium or the sciesripric Arrerican, the parties ordering having seen
d combined, sad, F. Myers..		
		N \& CO., 37 Park Row,

Practical Iilits to inverioros.

MUNN \& CO., Publishers of the Scientific American Pa have devoted the past twenty-five years to the procuring of Letters dollars have accrued to the pes tentees, whose speciflcations and claims they have prepared. No discrimination against foreigners; subjects of all coudries obtain patencs

How Can 1 Obtain a Patent?
8 the closing inquiry in nearly eyery letter, describing some invention
which comes to this oftlice a complete application for a patent to the Commissioner of Patents. An application consists of a Λ Iodel, Drawings, Petition, Oath, and full Specification. Various official rules and formalities must also be observed. The eff orts of the inventor to do all this business himself are generally without
success. After great perplexity and delay, he is usually glad to seek the aid of persons experienced in pate:at business, and have all the work done over again. The best plan is to solicit proper advice at the beginning. If tne parties consulted are honorable men, the inventor may sately confide his
ideas to them: they will advise whether the improvement is probably patideas to them: they will advise whether the improvement is probably pat
entable, and will give him all the directions needful to protect his rights.

How Can 1 Best Secure My Invention?
some experience in obtaining patents. His answer generally is as follows and correct:
sible-and send by express, prepaid, addressed to NONN \& Co.. 37 Park Row New York, together with a description of its operation and merits. On re ceipt thereof, they wiis examine the invention carefully, and advise you astc its patentability, free of charge. Or, if you have not time, or the means a provement as possible, and send by mait. An answer as to the prospect of a
patent will be received, usually, by return of mail. It ts sometimes best to patent will be received, usually, by return of mail. It is sometimes best to
have a search made at the Patent Office; such a measure of ten saves the cos

Preliminary Examination.
In order to have such search, make out a written description or the invention, min your own words, and a pencil, or pen and ink, sketch. Send these with the tee of $\$ 5$, by mail. addressed to MUNN \& Co, 37 Park Row, and i_{t} due time you will receive an acknowledgment thereot. followed by a writ en report in regard to the patentability of yonr improvement. This specia search is made with great care, among the models and patents at was
ton, to ascertain whether the improvement presented is patentable. Caveats. est time, by sending a sketch and description of the invention. The Govern ment fee for a caveat is $\$ 10$. A pamphlet of advice regarding application or patents and caveats is furnished gratis, on application by mail. Addres

To Make an Application for a Patent. The applicant for a patent should furnish a model of his invention, it sus vention be a chemical production, he must furnish samples of the ingredient of which his composition consists. These should be securely packed, the nventor's name marked on them, and sent by express, prepaid. Small mod els, from a distance, can of ten be sent cheaper by mail. The safest way to
remit money is by a draft, or postal order, on New York, payable to the or er of MUNN \& Co. Persons who live in remote parts of the country can usually purchase drafts from their merchants on their New York corres
pondents.

Re-issues.
A re-issue is granted to the original patentee, his heirs, or the assignees o the entire interest, when, by reason of an insufficient or defective specifica tion, the original patent is invalid, provided the error has arisen from inad
vertence, accident, or mistake, without any fraudulent or deceptive inten tion.
A patentee may, at his option, have in his reissue a separate patent to each distinct part of the invention comprehended in his original application by paying the required fee in each case, and complying with the other re
quirements of the law, as in original applications. Address MUNN \& Co 37 Park Row, for full particulars.

Trademarks.
Any person or firm domiciled in the United States, or any firm or corpora ton residing in any foreign country where similar privileges are extende
to citizens ofthe United States, may register their designs and obtain pro
y so to fore
New York.

Design Patents.

Foreign designers and manufacturers, whosend goods to this country, may abricating or selling the same goods in this market.
A patent for a design may be granted to any person, whe Aien, tor any new and original design for a manufacture, bust, statue, alto ellevo, or bas rellef; any new and original design for the printing of wool en, silk, cotton, or other fabrics; any new and original impression, orna ment, pattern, print, or picture, to be printed, painted, cast, or otherwis aced on or worked into any article of manufacture.
Design patents are equally as important
Design patents are equally as important to citizens as to foreigners. Fo Rejected Cases.
Rejected cases, or defective papers, remodeled tor parties mo have made Address MuNs \& Co, stating particulars

European Patents
MUNN \& Co. have solicited a larger number or European Patents that y other agency. They have agents located at London, Paris, Brussels and the cost of procuring patents in all countries, sent free.
MUNN \& Co. will be happy to see inventors in person, at their offlee, or to adise them by letter. In ant cases, they may expect an honest op:nion. Fo
uch consultations, opinion, and advice, no charge is made. Write plain do not use pencil, nor pale ink; be briet.
All business committed to
ad strictly confdential.
In all matters pertaining to patents, such as conducting interference ocuring extensions, drawing assignments, examinations into the validit patents, etc., special care and attention is given. For information, and fo
Middress
MUBLISHERS SCIENTIFIC AMERICAN,
3y Park Row, New York,
OFFICE in WASHINGTON-Gorner F and yth streets, opposit
adtertisements. The value of the Soientific Ameriona as an advertising medium cannot be over-estimated. Its circulation is ten
times greater than that of any similar journal now pub ished. It goes into all the States and I Rerritories, and \imath etad in all the princ pal libraries and reading-rooms of
heroortd. We invte the attention of those who wish to ake their business known to the annexed rates. A bust
e.s man wants something more than to see his adverisement in a printed newespaper. He wants circulat. on
it it is zoorth 25 cents per line to advertise in a paper of tree thousand circulation, it is worth $\$ 2.50$ ver line civertise in one of thirty thousand.
RATES OF ADVERTISING Back Page --. - $\$ 1 \cdot 00$ a line, Inside Page

BAIRD'S goous

for practicai men.
 HENRY CAREY BAIRD 406 INDUSTR BAL PUBLISAER, J. B. BARSALOUX, Manufacturer and

have rou seen nin

\$8EEECTRICNH\$15 \$OHEGRAPH

 Wood Workers' Tools

 A HAND-book on silex-Embraced in

Princess Metallic Paint

SAVE 20DOLLARS.

$1+=3=$

A LCOTT'S lathes for Broom, Fork, Hoe Codels For THE PATENT OFFIC

 $\mathbf{P}^{\mathrm{ATENTS}} \mathrm{E}$ BoUGRT AND SOLD THE FREAR ARTIFICLAL STONE

THE WOODWARD STEAM PUMP.

1882. SCHENCK's PATENT. 1871 WOODWORTH PLANERS

Niagara Steam Pump CHAS. B. Handicick

Latre chucks-hortons paten

 PTENT EmeryGrinders. Twist Drills,

$\mathrm{L}_{\text {IG }}^{\text {IGTINING ROD POINTS AND NUTS }}$

Wood and Irou Working Madiinery

T. i.

SHAFTING With PATENT HAANGERS

$\mathrm{P}^{\mathrm{ORTABLE} \text { STEAM ENGIVES COMBIN }}$

 T Tin

Planing and Matching

NEW PATTERNS. $\mathbf{B}_{\text {price. . Send to }}^{\text {OLT }}$ CUTTES AND SHAPERS at low

Milling Machines.

$\mathbf{S}_{\text {TANDARD, }}^{\text {TANTV }}$ NVERAL, INDEX AND

 B URDON IRON WORKS. - Manufacturers

$\mathrm{R}^{\text {ICHARDSON, MERIAM \& } \mathrm{CO}}$

PROPELILRR PUMPS

 0 TTS' $\begin{gathered}\text { SAFETY Histiva } \\ \text { Machingery }\end{gathered}$
 Culver's Iron Drag Naw

$\$ 200$ to 250 per month guar an teed durr

HYDRAULIC JACK.

$\mathrm{P}^{\text {ISTONTA }}$ guided from both ends; all working

gatertariments．
 Advertisements will be aduuitted on this page at the rate of $\mathbf{\$ 1} \cdot \mathbf{0 0}$ per line for each insertion．Engravings mas urement，as thee etter－rress．
 Tuck

ASPHALTE ROOFING FELT．

A and dura tivitted，suitartice for of stee good thicknes

L．B．T U P P e R＇s
PBRMIJMFURNACBGBATEBAR册冊冊冊冊冊

Punching

Shearing Machinery．
Powir and hand puncing and SHEARING Maciinery． a send for CATALOGUE AND PRICE DOTY MANUF＇G CO．，

 $T \mathrm{~T}$ SELFFEEDNG FOUTAN Mark－

Mcunan Safes，and mechanical supplies， A．S．\＆J．GEAR \＆CO 56 to 62 STDBUEY STREET，BOSTON，MASE

Andrews Patents．

P．BLAISDELL\＆CO． M MAUFACTURERS OF＊FIRST CLASS

THE Union Iron Mills Pittsburgh，Pa．The

 U．s．Plano Co．， 865 E Boactway，New York． TODD \＆RAFFERTY，Manufacturers

A．S．CAMERON \＆CO．，率

KEUFFEL \＆ESSER， NO． 116 FULTON STREET，NEW YORK
Importers and Mantuctures ofonly frst cass
DRAWING MATERIALS，viz：

Having been the first to introduce to the public the
 Narled Lettuce，analother
Nitwe
and

GTEA NT
PUMPINE MAEHINERY

Cone \＆MIaXWell MInlifo Company，
118， 120 \＆ 122 East Seco
CINCINNATI， 0.
PATV．SOLID EMERY WHEELS AND OIL

BURi STONES

I RON PLANERS，ENGINE LATHES

WIREROPR．

THE BAND SAW！

 CIRCULAL ASALU SENCHES．

PREVOST＇S ELECTRO－
Magnetic Motor Co

$\mathbf{K}^{\text {IDDER＇S PASTILES－A Sure Relief fo }}$

BABCOCK
Fine Extinguishel ：BEST PROTECTION ＂AGAINST FIRE！＂ Send or＂It＇s Record，
F．W．FARWELL，

Secretar 40% Rroadway，n．y． 56 | Chicago． |
| :---: |
| Chasi |

Diamond Pointed STDAN DRIMS：

$T \mathrm{~T}$ tions adoption of new and improved applica

THE ANER BVERIGAN DIAMOND DRILL CO．
No．G1 Liberty St．，New York

Swain Turbine．

OnILow．F．Fater Wheel frun this an

 THE SWAIN TURBINE CO．，

NEAFIE \＆LETY，

PENN WORKS，

 L．W．Pond－－NewTools． extra heavy and improved patterns， OHt ce and Warerooms， 98 Liberty st．，New York；Works at Worcester，Mass． A．C．StebBINs，New York，Agent．
 VEneizRS，

HARDWOOD BOARDS，

 M．Send for cataloguand pice ist Factory． 18 s to 200L Lewist．，bet ween 5 st hana sto st ists．

 American Saw Con．Manafiactinerers of

 SCIENTIFIC AMERICAN

For 1872.

A year＇s numbers contains over 800 pages and makes two volumes，worth as a book of

FINGRAVINGS

Inventions of the day，but especial attention will also
be directed to the description and illustration LEADING MANUFACTURING ESTABLISH－ MENTS，MACHINES，TOOLS AND PROCESSES．

Inventors and Patentees Fill find in each number an official List of Patents，to ions．We shall also publish reports of decisions in Pat

THE NEW VOLUME OF

SCHEMEICEIGAN

commenced JANUARY FIRST；therefore，now is the ime to organize Clubs and to forward subscription

TERMS FOR 18\％2．

MUNN \＆CO．，

37 PARK ROW，NEW YORK

