
a WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES.

xxvi.--No. 4. $\}$	NEW YORK, JANUARY 20,1872

SCIENTIFIC COMMISSION OF JAPAN.

There are two parts of the world now rapidly advancing to the front rank as centers of civilization, which fifty years since were practically unknown to the Caucasian race, namely Australia and Japan. The former has been transformed rom a sarage wilderness to a state of comparative cultiva tion and wealth with a rapidity only paralleled on the conti nent of America. The latter, which for ages has remained in a state of barbarism, has at last shaken off, in a great meas ure, the prejudice and superstition that prevented its pro gress, and has shown that it has the material, power, and resolution to take its place with the most civili ed nations of the earth. A few years will affect this won!lerful transfor mation. The present generation may live to see it.
It is worthy of remark, that the most powerful influence in bringing about this great change in the condition of Japan is the outcome of American civilization. One of the oldest nations on earth now sits at the feet of the youngest, and asks for aid and instruction in all that pertains to the mate rial interests of its people. Our engraving ${ }^{-}$gives accurate portraits of the distinguished American citizens selected by the Japanese Government as a scientific commission to in vestigate and report Upon the commercial industries and ag. ricultural resources of the country, and to give counsel as to the best means of developing such resources.
The chief of the Commission is General Horace Capron, long and favorably known es a thoroughly scientific agricul turist, conversant as well with the various sciences collateral to agriculture, and late Commissioner of the United States Agricultural Department, in which difficult position he has won richly deserved commendation, from those qualified to judge, in all sections of the country.
Professor Thomas Antisell, of Washington, accompanies the party as an expert in the subjects of mining and manufactures. Professor Antisell's reputation as a technical

NEW YORK, JANUARY 20, 1872.
chemist, mineralogist and geologist is well known, and General Capron is to be congratulated upon having secured his services.
The work of the demission includes the examination of the country with reference to the introduction of railroads and other improved means of transportation. This branch is confided to Major A. G. Warfield, Jr., of Baltimore, Md. Major Warfield is looked upon in his profession as one of the most competent of its younger members; has already had much experience in the special class of work which is likely to be demanded in Japan, and is pronounced by no less an authority than Latrobe, of Baltimore, one of the best locating engineers of the country.
The Secretary of the Commission, Doctor Stuart Eldridge, of Washington, D. C., possesses high scientific and literary qualifications, and, although a young man, has achieved a prominent standing in his own profession.
The Commission is amply provided with the nesessary equipments and instruments of precision; and, with such a personnel, there is much to be expected from its labors. We look confidently for a result which shall benefit not only our sland neighbors, for neighbors they are both in interests and feeling, though so far distant in miles, but shall, perhaps, be of equal advantage to ourselvea. While Japan is represented by such men as Mr. Mori, the Minister at Washngton, and Consul Charles Wolcott Brooks, of San Francisco, international commerce must increase, community of interests be more fully recognized, and the good feeling, already existing between the great nations of the East and West, strengthen and become permanent.
By late advices from Japan we learn that the Commissioners were received with high honors by the Japanese Government, on arrival at Yokohama and Yeddo. At the former place a grand salute was fired from the forts, and on their landing they were received by a delegation of Japanese officials of high rank. On the next day they embarked on a

Japanese war steamer for Yeddo, being saluted by the fleet at that fort on passing, and were received on landing by another delegation of Japanese officials, among whom were the Prime Minister and Minister of Foreign Affairs. A grand banquet was given there by the Prime Minister and Cabinet at the Summer Garden on the 9 th of September, which was followed by a number of others at the residences of the different members of the Cabinet. On the 16 th of September, the Commission had an interview with His Imperial Majesty, the Tumo, or Mikado, which is said to have been rarely accorded to foreigners, and was given on a scale of unusual magnificence. In every way the Commission have been most favorably received, and the members pleased beyond all expectation.

HISTORY OF ICE-MAKING MACHINERY.

[Condensed from the Milk Journal.]
Cooling and ice machinery have been practically divided into two classes. First, those in which heat is directly applied in order to produce cold; as; for instance, in the air machines, where the air is first compressed and subsequently expanded, and in the ether machines; where the evaporation expanded, and in the ether machines; whers the evaporation
is effected in vacuo, the speed of the process being accelerated by the use of an air pump; and second, those machines in which cold is produced by direct heat without the aid of power, as, for example, in the latest ammonia machine. Each machine has its partisans, and dire battle is done occasionally ; ink has flooded fields of paper, and thousands of broken pens must have strewn the lists. It is claimed for the air machine that it requires the assistance of no chemical agents; that the machinery acts direct upon the air and water; and that it will produce cold air, refrigerate fluids, or make ice continuously as wished, with the aid of fuel alone. On the other hand, it is claimed for the ammonia machine that more ice or heat reduction can be got out of the coal used by it than

any other, the quantity needed being only what will suffice to boil a solution, and that the only power needed is that small amount which works the pumps and keeps the cold
conveying fluid in motion. As for the ether machine, it is claimed for it that the construction is of the simplest, that it is cheaper to maintain than any other, and that the congelation commences with the first revolution of the flywheel. Outsiders, who are factionaries of no particular maker, would mostly look at freedom from accidents in dealing with the machines, giving preference to the ether machine, where the process is carried on in a vacuum, and the resistance to overcome does not exceed 15 lbs . per square inch, as against three times the amount in an air machine, and ten times the amount in some ammonia machines. Others would judge by the lowest temperature which the invention could register. As a rule, the best machine of any class will be found to be that which is the safest, occupies the least space, needs the smallest quantity of fuel, works the most continuously, makes use of the cheapest medium, is the least costly to maintain, can be worked by hand or power; above all, that which costs the least, and which the best fulfils other purposes when not used for its own specific work
arr machines for producing cold and ice.
Among the first machines of this description were those of
Newton \& Williams, introduced into notice about twenty Newton \& Williams, introduced into notice about twenty years ago. The latter compressed the air and passed it in that condition through a close chamber containing a liquid of low temperature, which absorbed and carried off most of the heat produced by the compression. The condensed air was then led to expand, in contact with the substance cooled, from which substance the heat was gradually absorbed. cooled, from which substance the heat was gradually absorbed.
The main points of the air machine are epitomized in the The main points of the air machine are epitomized in the
foregoing, but the modes of operation have been somewhat foregoing, but the modes of operation have been somewhat
varied. Sundry other inventors followed in the wake, but it was not until 1862 that the production of ice was economically attained by the Kirk air refrigerator.
The success of this ice machine led Mr. Kirk, of Glasgow, to study, in its turn, the production of an article for cooling liquids without making ice, and he has, during the present year, constructed a machine for this purpose, capable of cooling 45 barrels of water at the rate of 15° per hour. Here the water which removes the heat caused by compression, and that to be cooled, are injected as a shower through the com-
pressed and expanded air of the hot and cold chambers, and are withdrawn by simple valves. When driven with compound engines, a surface condenser is attached, which ena-
bles clear water for divers purposes to be warmed by the exhaust steam. The machine, moreover, works noiselessly, and is as simple as it is effective for common refrigerating purposes.
In the ice making air machine of Mr. Mignot, of Paris, especial means have been adopted to inject the water in the form of spray into the very midst of the air as it is being compressed in the compressing cylinder. The cold air produced, being about 60° below freezing point, is conyeyed through a trough with large cells containing the water to be congealed, and escapes at about 4° above freezing point, which would be at a temperature enabling even more work to be done if wanted. The chief feature of interest in this machine, which last year attracted great attention, lies in the injecting of the spray, which slightly diminishes the work necessary to compress the air. Another point to be admired cylinders are placed in easy conjunction with each other, and so work simultaneously. It is just possible also that the ice produced at so low a temperature would outlast the natural ice. In the air machine of Mr. Windhausen, of Brunswick, the air is admitted into the compressing chamber as usual, and thence passes into a condenser formed of two series of pipes, whence it enters the expansion chamber to be dilated and cooled. The air then escapes through a valve into the refrigerator, containing the vessels of liquid to be frozen. that is, if ice is wanted, or directly into the room to be cooled, if a reduction of temperature there is desirable. He employs either a single or double acting cylinder, compressing on one side of the piston and expanding on the other, or a double
cylinder, one for compressing the air, and the other for subcylinder, one for compre
sequently expanding it.
The above represent the most successful machines of the present day for the production of cold by the alternate compression and expansion of the air. Whether the system can eventually be brought into still more economical restraint, depends, we think, mainly upon the improvements brought to bear upon the steam engine itself. For the steam engine is a law with this kind of ice machine. At present, air machines are reputed too costly to compete with, for instance, the ether machines. An ether machine of 12 horse power will favourably compare with a Windhausen machine of the same power; for the former takes up only a space of six
superficial yards, and will produce 400 lbs . of ice per hour, superficial yards, and will produce 400 lbs . of ice per hour,
whilst the latter occupies one half more space, and turns out but 300 lbs . of ice. Perhaps it will eventually be found that the air machine will be the one most suited for the artificial refrigeration of air, apart from ice making, inasmuch as the requisite amount of cold can be regulated with the greatest nicety by means of a valve under the control of the attendant.
ammonia machines for producing cold and ice. As the machine of this kind which first attracted notice after Dr. Faraday had shown the possibility of obtaining cold by the liquefaction and subsequent gasification of ammonia the ice machine of Mr. Carré, of Paris, demands a mention, not only for that reason, but because it is still peculiarly adapted for ice manufacture on a small scale. This machine is fully described on page 265, Vol. XXIII of the Scientific American.

Mr. Mort, in 1867, patented a process of producing a tem perature suitably low for the preservation of animal food by an improved machine, where ammoniacal gas was liquefied
by pressure, and made to absorb heat on its release from liquefaction, which is well worth attention; and in 1869 he protected a process in which, as he says, he avails himself of the known affinity that ammonia has for water, and claims that, with nothing but a peculiar pump and a simple appar atus, the whole process of producing cold is carried on, and substances are refrigerated aud frozen without the necessity for any medium of transmission other than the ammoniacal liquor itself. In the earlier aznmonia systems of Carré, Tel ier, Reece, and others, liquefaction was carried on under
pressure alone, but Mr. Mort's process is one of liquefaction by affinity, by the aid of a slight pressure. It is, however difficult to explain these differences without the aid of exper iments.
A recent ammonia machine is the one patented by Mr solution London. A generating vessel is charged with boiler, which expels all the air A strog solution of ammo nia is then pumped up to the top of an analysing cylinder above; and, as the solution descends the different plates there, it is in a great measure separated from the water by the steam rising from the generator or boiler. The nearly an hydrous ammonia is now passed into a rectifier, where it is
completely cooled by a stream of cold water, and rendered completely free from watery vapour. The perfectly anhy drous ammonia now descends into a liquefactor, where it is liq uefied by the mere pressure of the gas upon itself. When sufficient accumulation has accrued, the fluid is then run into a cooling cylinder until the coil therein is full; and when that is effected, access is given therefrom to a second cylinder where the liquid ammionia assumes its gaseous condition, cooling the liquid inclosed in the inclosed coil. The now exhausted ammonia traverses the coil in the cylinder to an absorbing vessel, where it meets with the exhausted liquor from the distilling vessel, or generator, and is dissolved. The solution is now pumped through a horizontal heater, where it meets with the liquor proceeding from the boiler into the top of the analysing cylinder, where the same series of operations are repeated. If water is required to be cooled, it is sent through the coil in the cooling cylinder direct; and when ice is desired, a solution of chloride of calcium is made to flow through the coil, and round the ice forming cells in which the ice is made. A drawback to the use of this machine is that it has to be worked up to an enormously high pressure, and, if imperfectly constructed, would induce a
very serious explosion. Another objection is its cumbrousvery serious explosion. Another objection is its cumbrous
ness, and non-adaptability to working when on shipboard.
ether machines for producing cold and ice.
The principle of the ether process is the production of cold and ice by the evaporation of this volatile liquid; but as its tension is otherwise too small, this is carried on in vacuo. A machine of this kind also permits the continuous re-use of the ether without loss, provided that the stuffing boxes are
kept in perfect order. In Messr. Siebe's machine, the ether is removed by an air pump worked by hand or steam, and the air is then allowed to enter the refrigerator, where it becomes vaporized. It then traverses some branch pipes into the cylinder, and is forced through other pipes into a spiral coil surrounded by water, which acts as a condenser. An air vessel is constructed in the condenser, and sometimes an auxiliary condenser is placed in a bucket outside.
In passing through these coils the ether is liquified, and, parting with its heat to the environing water, is returned to the refrigerator. One adaptation of this machine is largely employed by brewers, who usually pass a continuous stream of water, or wort, through the apparatus, with a consequent
reduction of 20° to 30° of temperature. Messrs. Siebe's mareduction of 20° to 30° of temperature. Messrs. Siebe's machine, to make one ton of ice, will, they aver, cool 15,522 gallons of water, or 648 gallons per hour, 10°; whereas one ton of ice applied in the ordinary way will only cool 3,240 gal. lons, or 135 gallons per hour, 10 , showing a considerable waste to attend the use of ice by brewers, etc., and a great economy in the adoption of a refrigerating apparatus. In a similar way, we are informed that in Texas it takes 300 lbs . of ice to cool $1,000 \mathrm{lbs}$. of meat; and here, too, the ice machine is a necessity.
Professor Gamgee, during the past twelve months, has patented what he considers an improvement on the above kind of machine, viz. : by affording a greater area of conducting surface in proportion to the space occupied by the machine; in other words, he constructs his refrigerators and condensers on the tube within tube principle, and obtains a greater cooling power in consequence.
In working both the above machines, the ordinary ether is adopted; but the latest system of Mr. Tellier is based on the evaporation of an ether produced by the distillation of wood, and is carried on by him at Auteuil, near Paris, with marked uccess. This machine seems to be able to effect all that a efrigerating machine can effect, in the way of ice production and the maintenance of chambers at $28 \frac{1_{2}}{}{ }^{\circ}$ during the hottest summer months. Like the majority of ice machinists, he is now busy developing a scheme for the importation of meat. He proposes to subjoct Australian newly killed carcasses to his process of cooling, etc., and send them homewards in ressels fitted up with his cooling machines.
FREEZING POWDER MACHINES FOR PRodUCING COLD AND ICE There are in the market of nearly every country some scores of differently constructed machines, varying in price, for the production of ice by the use of freezing powders.
An inexhaustible freezing compound, which can be recon-
tituted by exposing it in shallow vessels to the sun's heat, when the ultimate crystals, of which it is composed, can be
collected, is sold by Messrs. Brown Brothers \& Co., of London, who are also venders of a series of excellent block ieemaking machines, the smallest of which, the " Paragon," costs $£ 3$ urning out a half pound block in eight minutes, and the argest, the " Industrial, No. 4," costing £r2, and producing filty pounds of block ice in half an hour. Cheaper machines han even the " Paragon" are sold for icing creams and the like, but we need not enter upon them. Of course the cost of the freezing powders rules the question as to whether it is more expedient to make ice in this way than to purchase foreign ice.
Vie have now completed our remarks upon ice machines, properly speaking; and, in order to imbue the minds of our reacters with an idea of the value of these machines, we may state that the Windhausen air machine patent for North America was sold for $£ 22,500$, and the French patent for 750,000 francs. As much as 40,000 dollars has also been obtained for the right of using the Carré machine in a single Texan province.

The Factories of England---Sufferings of work

 men.In the course of an article on sanitary reform, in Chambers' Journal, an intelligent writer says:
' If we turn back to the unhealthy state of the air in facories and workshops, it may be observed that the workmen of all countries show such a carelessness about their health hat the best reforms often fail through the want of their co operation. In some trades, where poisonous substances are used, the masters have tried to enforce the wearing of gloves or the frequent washing of the hands; yet the men have refused to conform to such simple injunctions. At a manufac tory in the neighborhood of Newcastle, the workmen threat ened to leave because they were desired to take baths at cer tain intervals. But nevertheless, great improvements have taken place in the last fifty years. White lead which is one of the most dangerous compounds of oil paint. has been ren dered almost innocuous; and the largest manufacturers can now boast that years will pass without any of their men being attacked by colic; this is chiefly due to strict attention to the laws of cleanliness. The making of matches re quires many dangerous operations, such as dipping the bunches into inflammable paste and placing them, when in ished, in boxes. In the first of these the maker constantly breathes phosphoric vapor, and in the second, which is chiefly performed by women, spontaneous combustion frequently occurs, causing serious wounds on the hands. These have both been remedied by using machines instead of the hands, and a still greater benefit has arisen by a different prepara tion of phosphorus being employed.
" The Sheffield cutlers have suffered severely from the sharpening of steel knives and needles; the fine dust enter ing the mouth and nostrils, and the constant stooping over the grindstone deforming the chest. The preparation of skins and leather places the currier in an unwholesome at mosphere; and the cotton mills of Lancashire have a bad reputation. Ventilation is the principal remedy against these maladies.

As for the long trail of smoke which our large factories emit from their chimneys, much has already been done to lessen it, though there is still great room for improvement At one time, it was suggested that if they were built, to an in mense hight, the smoke would cease to be noxious, and Glasgow points with pride to some of these columns, higher than any building in the world excepting the spire of Stras burg cathedral and the largest pyramid of Egypt. But this was a very imperfect proceeding. There was nothing in the air to neutralize these emanations, and though the particles fell at a greater distance, attenuated, it is true, they were jnst as mischievous. Coal smoke is very disagreeable, but other gases from chemical works act as a mortal poison on vegetation. Such are the nitrous and sulphuric vapors from the manufactories of these acids; whilst the smelting of iren ore renders a country sterile for miles round. One of the most curious effects of this kind is to be found in the smoke of lime kilns on the vineyards of France; it gives the grapes and wine for some distance round a disagreeable taste; and in Burgundy, the kilns are always interrupted in their work from the time of the flowering of the vines to the season of ingathering. In the previous cases, condensation of the injurious vapors before
ound eminently serviceatle.

Fire-Proof Buildings--Views of the sculptor,

The Providence Journal publishes a letter from Mr. Hiram Powers to a citizen of Rhode Island, in which, aifter alluding to the burning of Chicago, he says
But it may be asked, "Is it possible to make a city fireproof?" I answer, yes, and without any great extra expense. To prove this, I have only to say that, although there have been frequent fires in the city of Florence during the thirty-four years of my residence in it, not one house has been consumed, except a theatre, and that was not entirely destroyed. Rooms, full of goods, have been heated like ovens by ignited calicoes, straw hats, etc., but as the foors above and below were all covered by thiu brick tiles, the goods burned without ventilation. And as there was no flame, a smell like that of a coal pit soon gave the alarm, and the fire was soon extinguished by no other engine than a squirt holding about a gallon, which discharged a well directed stream through some aperture. I once beheld some firemen marching to a fire in Florence. Foremost were three men with picks, next four men with buckets, then three men with highly polished brass squirts on their shoulders; all marching with an air of pomp and importance.
can sculptor, and had been burning twenty-four hours on the end of a joist just under his fire place. He had smelt something like a coal pit for some time, and at length perceived smoke rising from the brick floor. On going below be found the room full of smoke, and a rush bottomed chair just under the joist was partially consumed. But the joist was not yet burned off, and why? Because the fire was bricked down. It could not rise and burst into flames.
The secret of fireproof building then is this: It must be made impossible for the flames to pass through the floors or up the stairway. If you will have wood floors and stairs, lay a fiooring of the thinnest sheet iron over the joists, and your wood upon that; and sheath the stairs with the same material. A floor will not burn without a supply of air under it. Throw a dry board upon a perfectly flat pavement and kindle it as it lies, if you can. You may make a fire upon it and in time consume it, but it will require a long time. Prevent drafts, and though there will still be fires no house will be consumed. The combustion will go on so slowly that discovery is certain in time to prevent any great calamity.
But the roofs, how about them? Slate or tiles? Zinc melts too easily. I believe that hard burned tiles, if flat, would stand the frost at home; and if so, they constitute the best roofing. My house has no joists. All the floors are of best roofing. My house has no joists. Arhes was made over
tiles resting on arches. One of these arches a room twenty five feet square, by four men in four days. The bri ks are about one and a half inches thick, and laid edgewise with plaster of Paris. There was no framework prepared to lay them on, unless you would so term four bits of wood which a man could carry under his arm. And yet this arch is so strong as to be perfectly safe with a large dancing party on it. I never have heard of one of those floors falling, and they are absolutely fireproof. Of eourse iight arches like these would not do for warehouses.
It would pay, I think, to send out here for an Italian brick mason who knows how to build those thin but strong arches for dwelling houses. - I know that there is a prejudice at home against brick or composition floors. "Too cold in winter," it is said. And so they are if bare, but cover them with several thicknesses of paper and then carpet them, and no one can distinguish the slightest difference between their temperature and that of wood floors. Who doubts this, let him try the experiment with the feet of the thermometer. The truth is that the brick or composition floor is no colder in itself than wood-the thermometer attests this-but it is a better conductor. I do not insure my house, as I know that it is not combustible.

SODA.

One of the chemical discoveries of the present century, the applications of which are the most varied, and the history of which is the least known, is the manufacture of soda. It is a metallic oxide; that is to say, the combination of a metal with oxygen. Like potash, with which it has many affinities and many common uses, it belongs to what the Arabs called, in the ninth century, alkalies,-a name which, as well as alchemy, has been adopted in most European laboratories. It has a strong affinity for acids, and combines with them to form various salts. This property is made use of in trades of various kinds, as, for instance, in scouring cloths that must of various kinds, as, for instance, in scouring cloths that must
be freed from greaey matters, and also in the manufacture of be freed from greasy matters, and also in the manufacture of
soap. The white and marbled soap has not even yet lost its superiority, and still occupies a first place among similar products of other nations. It is made by combining soda with the acid fat of olive oil.
The glass manufactories also consume an immense quan tity of soda. Glass is composed of flint and different alkaline bases, such as potash, soda, lime, and barytes. Certain mineral oxides give it a variety of color, sometimes of a very undesirable kind. Should the paste contain traces of iron, instead of producing white glass there will be only the common bottle glass; and if the iron be in larger proportions, the dark green shade will be the result. On the contrary, add a certain quantity of oxide of lead to a pure base of potash, and the beautiful crystal glass is formed; a still larger dose, and the diamond paste, with its wonderfully dispersive
power, will deceive many an unpractised eye Between power, will deceive many an unpractised eye. Between
these extremes, the dull bottle and the many sided crystal, there is the window glass, which adds so much to the comfort and health of our houses, the gorgeous looking glasses to adorn our drawing rooms, the rich decorations for the dining table, the crystal pendants of our gaseliers, and many other objects which satisfy our commonest necessities, and minister to the highest taste or luxury.
When marine salt is acted upon by sulphuric acid, an acid gas is thrown off, and sulphate of soda remains. In the time of Leblanc, chemists were ignorant of the composition of the gas which escapes, and gave it the name, for want of a bet-
ter, of muriatic acid; and marine salt was supposed to be a ter, of muriatic acid; and marine salt was supposed to be a
composition of this acid and soda, which was an error. In the present day, it is known that marine salt is composed only of soda and chlorine, and that muriatic acid consists of hydrogen and chlorine. Neither Leblanc nor his companions suspected the real case. that sulphuric acid could have no power over salt without the intervention of water. It is this simple agent, which, by decomposing, furnishes oxygen for the
sodium, and hydrogen for the chlorine; giving, as a result, sodium, and hydrogen for the chlorine; giving, as a result,
the soda which combines with the sulphuric acid, and a gas which flies off, now called, to adopt the more exact name of the new system, hydrochloric acia. Without water there
could be no reaction; happily, it was always present in the sulphuric acid that was employed, and consequently this error in theory had no influence over the result in action. We have now reached the point of obtaining sulphate of soda;
sulphuric acid, which was altogether Leblanc's discovery
Most chemists proposed a solution of this difficultquestion by heating the sulphate with various bodies; he laid his hand upon the one which gave the best results,-chalk (carbon ate of lime) and charccal. It is singular that he did not even know the exact theory of the reaction this produces, which latter chemists have fully defined; but his instinc was so sure, his first experiments wert conducted with such accuracy, and the quantities were so irreproacbably defintd, that later years have in no degree changed the manufacturing process which Leblanc first laid down. First came the de composition of marine salt by sulphuric acid; then the washing of the rough soda on the floor of the kiln.

sulphuric acid

From the first of these operations, one of the most impor tant articles in modern industrial occupation intervenesthat of sulphuric acid. In a few years, a way of making it in large quantities was discovered, and the face of all chemical operations was changed. It is by the help of $\dot{i t}$, that, directly or indirectly, chemists are enabled to extriact from the differ ent salts the greater part of the acids used in laboratories and in the arts. Thanks to it, hydrochloric acid has been eco nomically obtained, which has rendered such service in paper making, bleaching, dyeing of stuffs, also serving for the preparation of gelatin, of ammoniacal salts, and of disin fectants. Next is carbonic acid, which is used in the manu facture of soda water and all effervescent drinks, in the ex traction of sugar from beet root, and the fabrication of alka line bicarbonates; and last of all is azotic acid, the most powerful agent of oxidation, which dissolves all metals, even powerful agent of oxidation, which dissolves all metals, eve
gold and platina, when united to hydrochloric acid, and i gold and platina, when united to hydrochloric acid, and is
indispensable to the workers in metals. By sulphuric acid phosphates are transformed into powerful manures; sul phates of aluminium, of potash, of magnesia, of ammonia and of iron are economically obtained, with many other important applications in agriculture, medicine, and domestic
economy. The production of electric currents, of electro economy. The production of electric currents, of electro chemical gilding and plating, the refining of gold and silver the making of stearine candles, the purification of colza and other oils, the dissolution of indigo, are some among many other branches of trade which could not be carried on with out sulphuric acid; and its being manufactured in such large out sulphuric acid; and its being manufactured
quantities is entirely owing to the soda works.

hydrochloric acti.

One of the most serious embarrassments arose from the immense quantity of hydrochloric acid which was poured out from the soda works in the form of gas. It was condensed as much as possible by passing it through a series of
vessels full of water, thus obtaining acid dissolutions, which vessels full of water, thus obtaining acid dissolutions, which
had a certain value; but more was produced than could be disposed of. Besides, much e caped into the atmosphere in the shape of corrosive acid vapor, which attacked the iron parts of buildings, dried up the leaves of the trees, and exercised a most pernicious influence on the health of the surrounding neighborhood. The winds carried it away to great distances, and the effects were percaptible miles away. The proprietors had to pay heavy damages; and it became a mat
ter of existence or non existence to "the soda works to find a means of condensing and co!lecting this deleterious acid. Ail these difficulties have been surmounted; and as it has often happened in chemistry, each has become the means
of fresh progress. One of the most curious plans tried to purify the air was to build the works near to old abandoned quarries, and to bury the inconvenient vapors in their depths; but the acid, penetrating the stone, rendered it moist and friable, so that portions fell, and houses built in the neighborhood were rendered unsafe. Two different arrangements are now adopted, both succeeding perfectly. One is to pass the gas through many hundreds of stone bottles, communicating with each other through well luted tubes; a current of water is driven through them in an opposite way to the gas, and the smallest portion of hydrochloric acid is thus dissolved. Another plan is what is called the absorbing cas-
cade; a high, wide tower is built of flintstones, the interior of which is filled with coke, fragments of flint, or bricks set apart; the gas is introduced at the base, and before it can escape it has to pass through all the interstices of these hard materials. From above, a fine rain of water is continually falling, and, meeting the gas at every angle, retards its pro gress and absorbs the acid.-Chambers' Journal.

Experimental Science at Cornell.

Professor B. G. Wilder, Professor of Comparative Anatomy and Zoology, at Cornell University, Ithaca, N. Y., calls upon all persons, who desire to facilitate the cause of science, and
the instruction of the young men under his charge, to send the instruction of the young men under his charge, to send
him specimens for dissection. For every specimen a written acknowledgment will be sent, and eventually, to each donor, a copy of any scientific paper in which may hereafter be embodied the result he will have helped to reach. The specimens may be sent at his expense as above. The package, if large, may be sent as freight; if small, by express. He says: "We want brains of all animals, both wild and domesticated; nothing can be amiss, for if duplicates come of what we already have, the students can dissect the brains, or the
skulls, if desirable, can be prepared. When possible, the size and weight of the animals should be noted; and especially the sex and apparent age. The most valuable collection that could be sent us would include a male and a female, an old and a young, of the same species, the size and weight, the age and sex being marked in some way upon the specimens
themselves; these would be worth more than fifty heads of different animals and bearing no such information. When the animals are small, or any doubt could arise as to their
specific identity, they should be sent entire; but if large, the heads alone. Of course, a badly damaged head would not be worth the sending, unless very rare; and in all cases the killing should be so accomplished as to avoid injury to either brain or skull: the head should b; cut off with one or two of he neck artebre attached, so as to save the medullde oblon gata at the nape of the neck, and should be kept in a cool place before sending.
"We want the unborn young of all animals, and at all stages of development; as a rule, the smaller the better, but as with the brains, hardly any specimen of this kind would be amiss: for where it is too large for entire preservation in alcohol, special organs may be prepared (the brain, stomach, etc.), po as to be extremely useful in showing the manner of the animal's development. On account of the extreme delicacy of these specimens, great care must be exercised in procacy of these specimens, great care must be exercised in pro-
curing and sending them. When possible, they should be kept and sent in the womb, the fluid contents of which are the best protection; but if this cannot be, then they should be placed in a jar or can with water and a little salt; larger embryos (colts, calves, atc.) may be laid upon hay or tow, and packed in a box, great care b+ing had to prevent any pres sure upon the head, for the skulls of unborn animals are so soft as to yield, and the brains are then ruined. Still-born or aborted animals are particularly useful if the time since conception is known; but embryos are often found in animals killed in the chase or for food. Ot course, the species from which the embryos are taken should be noted, and, in case of domesticated animals, the exact breed so far as known; the pure breeds are most valuable for both brains and embryos, such as the ass, the mule, the different breeds of horses, the Newfoundland dog, and indeed nearly all the breeds of dogs, the braius of which differ among themselves to a wonderful extent.

Such monsters as animals with two heads or two tails, or n unusual number of limbs or toes, or with but a single eye in the center of the face, etc., usually die soon after birth, and are then looked upon as mere curiosities, and so thrown away. Such specimens are of the greatest value to science Goethe, who was naturalist as well as poet, well said: 'It is in her monstrosities that Nature reveals to us her secrets, and many of the more obscure laws of life and organization have been elucidated by the aid of these unfortunate crea tures, which go astray before they are born, and live only to die. The not infrequent occurrence of such malformation among the humaia race should alone induce a careful study of whatever may lead to a knowledge of their nature and possible causes. There are few persons, especially living in the country or upon farms, who have not occasional opportunities of procuring such specimens as we desire; but none are so likely to have them as the hunters, the butchers, and the stock breeders; let me ask all such to save and send the specimens that almost daily come into their hands. Their value to us and to science is not to be estimated by the little trouble it may take to procure them, or the price which ignorance sets upon them."

Advantage of Californian ov

Growers.

In Europe, they only reckon to secure in ten years one good crop and fine quality, and two more crops of fine qualty, but small quantity; while seven vintages are reckoned as being of poor quality, small quantity, and total failures In our State, the variation in quality seldom amounts to five per cent, while the most disastrous years have not lessened the crop below the ordinary yield more than twenty-five per cent in quantity. This very variation in quantity cañ be fully known three months previous to the vintage, thus allowing the producer ample time to secure his casks, and furnishing him positive knowledge as to the number required In other countries, even fourteen days before the vintage there is no certainty of a crop; a wind, a rain, or a hail storm is apt to occur at any moment and devastate the entire vin tage. All is uncertainty there; nor has the vintner any pos sible means of positively ascertaining how many casks he must provide. In abundant years in the old countries, the exchange has often been made of so many gallons of wine for an equal number of gallons capacity of casks. The disadvantages of being forced to secure such immense quanti ties of casks in so limited a period are too easily perceived and we certainly cannot appreciate our
uch in being a cery differen.
Another great benefit, derived from the long continuance of the dry weather, is the exemption from weeds in our vineyards after the final plowing. Thus all the nounishment and strength of the soil go wholly to their destination, the vine, and hence the vigorous appearance that even the most delicate imported varieties acquire even in our poorest soils. They necessarily bear much more. This circumstance will also explain, in a measure, why our cultivation does not cost as much per acre as that in European cuuntries, though our labor is so much higher. The advantage of our dry weather does not end here; it precludes the possibility of continued mildew, and allows the vintner to laave his vines unstaked the bunches of grapes actually lying and securely ripening upon the very ground, without fear of frost or rotting. In this condition, the grapes mature sooner, are swt eter, and, it is believed, possess more flavor.-Overland Monthly.

Preservation of Stove.-Doctor Eugéne Robert, of Paris, recommends copper salts as being the best preservatives of stone in a damp climate. These salts prevent the formation of lichens, to the action of which M. Robert attributes the destruction of stone. This is, without doubt, true for granite, but its efficiency for sandstone is questionaable. The latter deteriorates by exfoll tion, without the de v elopment of any vegetation.-Les Mondes.

EXTRAORDINARY EXPERIMENTS ON STEAM BOILERS.

Perhaps the most interesting and important experiments, relating to the explosion of steam boilers, that were ever at tempted were commenced on Wednesday, November 22,1871, by Mr. Francis B. Stevens, under the authority of the United Railroad Companies of New Jersey. We give, herewith, an engraving of the scene of the experiments.
At the suggestion and by the advice of Mr. Stevens, that corporation generously and philanthropically appropriated the sum of ten thousand dollars to be expended by him in experimental investigation of the causes and of the subject generally of steam boiler explosions.
Mr. Stevens collected nine boilers; and, after testing, by hydrostatic pressure, several times to the point of rupture, each time repairing them, he finally set them all up on the United States reservation at Sandy Hook-by permission of the Secretary of War-with the object of actually exploding them by steam, and thus observing, if possible, the conditions of explosion and with the intention of obtaining as much valuable information as possible.
These latter experiments were commenced on November 22, in presence of Joseph G. Belknap, Inspector-General of Steamers for the United States, Coleman Sellers, President of the Franklin Institute of Philadelphia, Professor R. H. Thurston of the Stevens Institute of Technology at Hoboken, N. J., B. F. Isherwood, U. S. Navy, Captain Woolsey of the Jersey city ferry, Mr. A. Smith of the North Shore Ferry Company, Messrs. Callan and Dripps of the Pennsylvania Central Railroad Company, Mr. Brown of the Camden and Amboy Railroad Company, and Messrs. Erastus Smith, Charles Haswell, Norman Ward, William and Andrew Fletcher, and other engineers and manufacturers, making a party of about fifty of our best known experts in engineering.
The first boiler tried was a steamboat boiler which had been in use thirteen years-a return flue boiler, 6 feet 6 inches diameter of shell, 28 feet long. It had been subjected, November 4, to a hydrostatic pressure of 82 lbs. per square inch. At 2 P. M. a large fire of wood burning violently in its furnaces, the gauges, which were placed at a distance of about 250 or 300 feet from the boiler, indicated 58 pounds pressure per square inch. The pressure rose steadily and regularly at a rate of about 2 pounds a minute until, at 2.18 by Professor Thurston's time, a pressure of 90 pounds was reached, and the horizontal seams of the shell began to leak very generally, while a rent started in the flange of the steam chimney at its junction with the shell. At 2.23 P. M. the pressure had reached a maximum of 93 pounds, and the leaks allowed steam to escape as rapidly as it was generated. The pressure then gradually subsided to 90 pounds at 2.50 P . M., when the fires were extinguished and the experiments were ended.

The next experiment was made upon a new construction namely: a copy of the back end of the Westfield's boiler, in the spacing of its screw stay bolts and in its dimensions generally. The fires having been lighted, the steam rose in pressure very rapidly, reaching 165 pounds to the inch in 29 minutes; and, while the Professor was entering the figure in his note book, the explosion tookplace, at 3.51 P. M., with a loud report and producing remarkably interesting effects. One side of the "leg,"-for the construction was that of the "water leg" of a boiler-was thrown a long way out in to the adjoining field, tearing down the fence in its way; the other side went in the opposite direction, cutting a large hole in thenext boiler, letting out its steam and water, and putting an effectual estoppel upon the proposed explosion of that, at least until repaired. The brickwork of the furnace was thrown in all directions with tremendous violence, some portions falling unpleasantly near the party at the gauges. Both parts of the exploded boiler were deeply "dished." The parts of the exploded of the sheets; and, around the holes, were noticed curious markings, resembling the magnetic spectra in their outlines, and possibly indicating the distribution of strains in the metal while yielding under pressure The next day, November 23, another boiler was experimented upon, the gauges being now placed 450 feet from the enclosure. This boiler was built by T. F. Secor in 1845, and was removed from the steamer after being in use 25 years; and, when removed, it had a certificate for 30 pounds. It was a return tubular boiler, 12 feet wide and 15 feet 5 inches long. It had been twice subjected to the hydrostatic test, the last time to a pressure of 59 pounds without fracture. On this occasion, the steam rose regularly, and at 50 pounds some of the traces gave way with a loud report, and at $53 \frac{1}{2}$ pounds, the water standing 15 inches above the flues, it exploded with terribly destructive effects. The steam chim ney, with a part of the boiler top, weighing altogether several tuns, rose to a great hight in the air, falling over four hundred feet from its original position, and the boiler itself was torn into hundreds of pieces, the flying fragments tearing down the high fence and injuring others of the boilers remaining to be tested.
Mr. Stevens concluded to leave the other proposed experi ments until some days later, in order that all interested persons might have an opportunity to witness the effect of this last explosion, and to satisfy themselves that steam boilers are not necessarily safe because there is "plenty of water." The public owe a debt of gratitude to Mr. Stevens and to the United Railroad Companies of New Jersey for the professional zeal and enthusiasm that has proposed and urged the prosecution of these experiments, and for the liberality which has enabled them to be carried out. We doubt not hat thousands of dollars and hundreds of lives will be saved by this signal disproof of the prevalent belief among
engineers that a boiler is safe from explosion so long as it has a good supply of water, even though old and worn out. Other wealthy railroad and steamboat companies owe it to hemselves and to the public that the New Jersey companies are not compelled to pay all of the expenses of these exper. iments, and that Mr. Stevens is not compelled to stop in this rood work for lack of funds.
The experiments having now ceased for lack of means to continue them, Congress has been petitioned to provide funds to prosecute them to final results. We trust this petition will be granted as not only engineers, but the general public, are greatly interested in obtaining more light upon the subject. We know of no scientific work more worthy assistance from the General Government, and none from which more practical benefits are to be anticipated.

Williams’ Car and Tender Loading Apparatus

Mr. James Williams, of Bell's Depot, Tenn., has just patented an invention which consists in a box holding a sufficient quantity to load the tender with fuel or the car with freight. The box is pivoted on a frame higher than the tender and car, so as to tilt toward the tender and car, and the side of the box which swings down is hinged so as to be let fall upon the top of the tender or car and form a chute for conducting the contents into the vehicle to be loaded. The ends of the hinged side have pieces similar to the end boards of the box, which assume a vertical position when the side falls down, and form sides to the chute, preventing the escape of he contents of the box over the ends.
For loading tenders, the box is much smaller than is re quired for discharging a car load at once into a car, and is arranged in vertical ways. A hoisting drum and other ne cessary apparatus for lifting the box from the ground to the proper elevation for discharging is employed; but for loading cars the freight should be as high as the box to be put into it, or it may be carried up by elevators. The frame sup porting this loading apparatus is mounted on car wheels to to be run along a temporary track, to facilitate the taking of the wood or coal from different positions, and conveying the load to the proper place for discharging.

The refusal of Mechanics' Unions to reconsider their unreasonable restriction, whereby their own sons are denied the privilege of learning the trades of their fathers, is one of the mysteries of the age. We have before alluded to this, for we feel that the prosperity of the country, the interest of humanity, and the welfare of coming generations, all demand that the shutting out of boys from learning the trades ought to cease, so that they may be trained up to become good work men, and be able to learn an honorable mode of living.

Chromium and its Compounds in the Arts and in Medicine.

The following is a brief abstract of an interesting lecture on chromium, delivered by Dr. Louis Feuchtwanger, before the Polytechnic Club of New York. It was fully illustrated by specimens.
Chromium is a very remarkable metal, which is very sparingly distributed in the earth's crust. Chromic iron is the only mineral which is found in sufficient quantities to be useful as a source of this element. It is found in serpentine rocks, in veins and disseminated grains. It is quite abundant in Siberia, Styria, Asia Minor, the Shetland Islands, Cuba, and the United States. (The lecturer described the deposits of Pennsylvania, Maryland, North Carolina, and California, which he had carefully studied.)
The constitution of chromic iron is exhibited by the formula $\mathrm{FeO}, \mathrm{Cr}_{2} \mathrm{O}_{3}$ or ($\mathrm{FeO}, \mathrm{MgO}$), $\left(\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{Cr}_{2} \mathrm{O}_{3}\right)$.
The following analyses exhibit the percentage composition

Locality.

Baltimore, cryst.

Bolton, Canada.
L. Memphremagog.
$\mathrm{FeO} . \mathrm{MgO} . \mathrm{Cr}_{2} \mathrm{O}_{3} . \mathrm{Al}_{2} \mathrm{O}_{3} . \mathrm{SiO}_{2}$
$\begin{array}{llll}20 \cdot 13 & 7 \cdot 45 & 60.04 & 11 \cdot 85\end{array}$
$\begin{array}{lllllll}18.97 & 9.96 & 44.91 & 13.85 & 0.83 & \text { Abich }\end{array}$ $\begin{array}{llllll}35.68 & 15.03 & 45.90 & 3.20 & \text { Hunt. }\end{array}$ $\begin{array}{llll}21 \cdot 28 & 18 \cdot 13 & 49 \cdot 75 & 11 \cdot 80\end{array}$

Hunt.
1 Moberg L. Memphremagog
$\begin{array}{lllll}18.42 & 6.68 & 64.17 & 10.83 & 0.91\end{array}$ Moberg
The following minerals also contain chromium :
Crocoisite, $\mathrm{PbO}, \mathrm{CrO}_{3}$, containing 31.3 per cent of chromic àcid.
Melanochroite, $3 \mathrm{PbO}, 2 \mathrm{CrO}_{3}$, containing $23 \cdot 3$ per cent of chromic acid.
Vauquelinite, $3 \mathrm{CuO}, 2 \mathrm{CrO}_{3}+2\left(3 \mathrm{PbO}, 2 \mathrm{CrO}_{3}\right)$, containing $27 \cdot 9$ per cent chromic acid.
Pyrope, Bohemian garnet, a silicate of alumina, iron, and magnesia, containing from two to six per cent of chromic acid.
Ouvarovite, lime chrome garnet. Silicate of lime and chromium, containing 22 per cent of Chromic oxide.
Emerald, a silicate of glucina and alumina, colored by three-tenths of one per cent of chromic oxide, according to Klaproth.
The following are the more important applications of chromium compounds in the arts:

1. The yellow or neutral chromate of potassa is the basis of all the other preparations, being made directly from the chromic iron.
2. The red or bichromate of potassa is obtained from the foregoing salt, and is extensively employed in the arts. In photography it is the basis of most of the printing processes, on account of the property which ithas of rendering gelatin insoluble by exposure to light. In dyeing, it is extensively
used as a mordant. It is the material from which chromic used as a mordant. It is the material from which chromic oxide, chromic acid, and the metallic chromates are prepared. known; it is extensively used in printing " greenbacks," and in staining glass and painting porcelain.
3. Chromic acid is a powerful oxidizing agent. It is ex4. Chromic acid is a powerful oxidizing agent. It is ex-
tensively used on this account in chemical researches, is found very useful as an exciting fluid in galvanic batteries, was used for preparing the beautiful "mauve red" from aniline, is employed in bleaching palm oil, destroying the empyreumatic impurities of acetic acid, etc.
4. The chromates of lead, bismuth, baryta, strontia and zinc are extensively used as pigments, varying in tint from the vermillion red of the basic chromate of lead, to the pale straw yellow of the strontia salt. The common "chrome green" is a mixture of chromate of lead and Prussian blue. 6. The beautiful violet chromic chloride has recently been introduced as a cancer remedy.
5. Chromium steel, made by combining about five per cent of chromium with cast iron, possesses most remarkable properties. On account of its excessive hardness, it is the best metal for the construction of safes, while its tensile strength, equal to a strain of 140,000 pounds to the square inch, especially adapts $i t$ to the construction of suspension bridges; it was employed in the St. Louis bridge, and will be used in the Brooklyn bridge.

FREE PISTON AIR PUMP.

Probably the most remarkable pneumatic machine which appeared in the French Exposition, or which has been yet constructed, is the free piston air pump, of Mr. J. A. Deleuil, of Paris. The peculiarity of this machine is that the piston works out of contact with the barrel of the pump, and of course entirely without friction. This piston is a metallic cylinder, and the barrel within which it moves is of glass. But though there is no contact between the surfaces, the space between them is exceedingly minute, being stated at that the workmanship should be very superior, and that the strength of the whole machine should be such as to remove all danger of change of figure, or of any even very slight all danger of change of figure, or of any even very slight
deviation of movement, or disturbance of the truly concendeviation of mo
tric adjustment.
The efficacy of this machine depends upon the difficulty and slowness with which gases make their way through very narrow spaces. The film of air between the piston and the wall of the cylinder is practically confined there, and forms a kind of lubricating cushion. The only resistance, therefore, which the piston encounters in its movement, is that which arises from the unequal density of the air above and below it. The engraving shows this machine in elevation. The piston is driven ly means of the epicycloidal combinaion of La Hire, operated by a crank and flywheel. It is guided by a rod extending entirely through the barrel at
bottom as well as at top. There are two valves at each end bottom as well as at top. There are two valves at each end
of the cylinder, one opening inward and the other outward

The outward opening valves both communicate with the ame tube, which is recurved and united with the cylinder t both extremities. At the middle point of this tube, a branch leading from it may be connected with a condensing apparatus; so that the pump may be used for compression as well as for rarefaction. When used for the ordinary purposes of an air pump, however, this branch is open to the atmosphere. On the other side, the two inward opening valves are similarly connected, and the branch tube on that side establishes communication with the receiver to be exhausted. But when the pump is employed to compress air, this branch is open in its turn to the atmosphere. The valves, as drawn in the figure, are operated by the elasticity of the air. But, in the construction now given to this part of the apparatus, they are opened and shut mechanically by the piston itself. For this purpose, there are introduced two cylindrical rods passing through the piston and reaching from end to end of the cylinder, but capable of a slight longitudinal movement as the piston changes its direction. This movement opens a valve at one end and simultaneously closes, the corresponding one at the opposite end; but this change having been effected, the rod remains stationary, the piston sliding on it as it continues its movement. The particular contrivance here described is not peculiar to Mr. Deleuil's pumps, however, as it has been often employed before.

The interior bore of the barrel must, of course, be very ruly cylindrical and well polished. The piston is, in length, more than equal to its diameter. When the pump is used for compression, a greater length of piston is employed than is necessary for exhaustion. In point of fact, in this case, the difference of pressure on orposite sides of the piston becomes several times greater than it can be when the machine is employed only to produce a vacuum. There is no difficulty in carrying the condensation, in the course of a very few ty in carrying the condensation, in the course of a very few
minutes, as high as five or six atmospheres. On the other hand, exhaustion is effected with remarkable rapidity. With machine having a cylinder of four and a half inches in dimeter, a twenty gallon receiver may be exhausted down to pressure of less than half an inch of mercury in five minutes. Exhaustion may be carried lower than to the tenth of an inch in mercury.
The figure shows that the piston has not a continuously cylindrical surface from top to bottom. It is cut by grooves of very slight depth, and about half an inch apart. These grooves fulfil, apparently, a very useful function. Suppose he difference of pressure below and above the piston to be very great-the excess being, for example, below: the veloity, with which the air tends to escape on the upper side, will be much less than that with which it tends to enter the arrow space between the piston and cylinder on the lower. But before this superior velocity can be transmitted beyond the first groove, this groove must be filled with air of density equal to that below the piston. And before the same velocity can be propagated beyond the second groove, this second groove must be filled in like manner. As the movement is slow even when the pressure is greatest, it will take much longer time to transmit, through all the intermediate grooves to the upper limit of the piston, the tendency to movement which exists at the lower limit, than it would do if the piston were quite continuously cylindrical; and thus we have the paradoxical effect of a packing, produced not by adding to the substance of the piston, but by taking from it. It is found, in fact, that the working of the pump may be interrupted a sensible time without turning a stopcock, and yet without vitiation, by the infiltration of air between the piston and cylinder, of the vacuum already secured.

How greatly the world would be benefitted by unlimited acilities for transportation and exchange of goods is shown by the fact that, while the people of Persia are starving by tens of thousands, the inhabitants of some of our Weste
Mtates are burning, corn in their stoves in place of coal.

The Coast Survey

Professor Benjamin F. Pierce, the distinguished astrono mer and mathematician, succeeded Professor Bache, and now superintends the operations of the coast survey. Some idea of the extreme accuracy with which the survey is carried on may be obtained from a description of the manner of measuring the base lines of the primary triangles. Four bars, each a little over two yards in length, are clamped together end to end, making a combined length of over eight yards, or of exactly eight French meters. These bars are stiffened by being placed in a wooden box, allowing the ends to pro ject beyond the box, the whole forming a measuring rod, which is used as follows: The compound bar is carefully placed in position in the line to be measured, and a powerful microscope placed over the forward end and adjusted so that its crosswise exactly coincides with the edge of the bar. The bars are then advanced until the rear edge comes into exactly the same position under the microscope that the forward edge has just left. A microscope is now adjusted over the forward edge again, the rod advanced as before and adjusted to its second position. This process is repeated until the base line of six miles, more or less, is measured. During the whole time, the temperature of the bars has to be carefully observed. The base line apparatus now in use was devised by Professor Bache, and has superseded the one here described on account of its greater accuracy. The measuring bar is so constructed that its length is not affected by changes of tem perature, and greater nicety is obtained in making each successive length of the bar commence precisely where the previous one ended. Such accuracy has been obtained in the use of this apparatus that repeated measurements of the same mile do not differ from each other more than one twensame mile do not differ from each other more than one twen-
tieth of an inch. The necessity for such accuracy does not at first sight appear, but becomes evident when we remem ber that an error of a one-thousandth part in the base line is reproduced in such a way that all the lines measured will be in error a one-thousandth part. This, in a line of one hundred miles, would be about five hundred feet. An error of five feet in that distance would disgrace the survey. In order to verify the triangulation, a line is established by means of it at a considerable distance from the base, and then measured with the base line apparatus. The length of the line by the two methods should agree. It is a source of gratification to those who take pride in the successes of their own country that our coast survey, tried by these checks, is not surpassed by the most careful surveys of any other country. The accu racy which is indicated by this method of measuring the base lines is an example of the accuracy required in every part of the survey. In the triangulation, the form of the earth has to be rigorously taken into account, and the angles are obtained by repeated measurements with the most accurate instruments. The geographical positions of the various stations have also to be fixed by the most refined astronomi cal observations, reduced by the most elaborate and accurate methods. In this way, the assumed figure of the earth 'is constantly tested, and the effect, upon the plumb line, of its irregularities and want of homogeneity shown. Two meth ods of making astronomical observations, first introduced into work of the kind by the United States Coast Survey, have drawn very flattering commendation from the old astronomers and masters of survey in England and Europe generally. They are that of determining the latitude with the zenith telescope, and that of determining the longitude with the aid of the telegraph. The accuracy obtained by these methods is such that they have nearly superseded all others.

A California Tea Plantation.

A writer in the Overland Monthly for January says: At Colonel W. W. Hollister's, I saw something I had never seen before. The Colonel has a tea plantation, in an evidently flourishing condition; but, though the plants looked thriv ing, and the planter believes that, in time, he will reap an abundant harvest, this is a venture I should not advise many to embark in for the present. Fortunately, Colonel Hollister has both the means and the disposition to make these experiments, of which the farming community of all California will some day reap the benefit. Shall I expose my gnorance by confessing that I never before knew that there is really but one tea plant? The different varieties we buy are only the result of the different manipulations in preparing it for the market. The plants themselves look to me like lit tle, young orange trees. I saw them from one to four inches in hight, and the seeds are about the size and shape of a small hazel nut. Together with the tea, the Colonel has imported a "live Japanese," to take charge of the plantation ; s that if tea raising succeeds at all, it certainly will here. His almond orchard, too, is on a grander scale than that of his neighbors: fifty thousand trees have already been set outsome of them, in fact, are over two years old-and fifty thousand more are being planted. Speaking of his neigh bors: they are not so very near. The Colonel has a hundred thousand acres, more or less on which to plant tea, cotton or Canada thistles, should he so choose.
Josepif Gillott, who died at Birmingham, England, Jan uary 5 , at the age of seventy-two years, had a world-wide reputation as a manufacturer of steel pens. He was born at Sheffield, and removed to Birmingham when about thirty years oid. In 1803 Mr . Wise, of Grat Britain, began the manufacture of steel pens. Mr. Gillott became interested in the business, and by his wonderful mechanical talent made several improvements and built up a large trade. About thirty years ago he put up the extensive Victoria Works, on Graham street, Birmingham, which are to-day one of the sights of the town.
It is an ancient proverb, "The feet of the avenging deities are shod with wool."

Currespandente.

'he Bditors are not

Class Lesislation and the "Working Man."

To the Editor of the Scientific American:
After repudiating the communistic nonsense which is so frequently and erroneously attributed to us as a class, it becomes our duty to oppcse, with all our powers, the idea that our occasional troubles are to be remedied by exceptional legislation, and by defiance of the laws of political economy in other words, that an evil can be cured by a folly, perhaps by a crime.
Class legislation, the parent of all jobbery, political intrigue and malversation of public property, is the favorite panacea, for short work, low wages and dull trade, of all the writers and talkers who are trying to tinker this matter; and such of us as value our independence, and believe that all legislative enactment should deal with the public as a whole and on general principles, will join with me in repudiating any violation of this principle, the maintenance of which is vitally important to the interests of any nation whereof the working people form a considerable portion. When government by public opinion is superseded by government by " rings," the interests of the working men are the first to go to the wall. We have had all sorts of special acts of Con gress passed in the last few years; ihe majority of these are ostensibly intended to raise artificially the prices of commodities, and the public are informed that only by these high prices can high wages be paid. In the meantime, wages are falling $9 n$ every hand, the charges for all the necessaries of life are, almost without exception, whyt they were wher gold was at 180, and the public lands of the west (the almost gold was at 180, and the public lands of the west (the almost
boundless extent of which, offering new fields for industry boundless extent of which, offering new fields for industry
and enterprise, is the real reason why wages are high in our country) are being jobbed a way by millions of acres to rail road companies and other wielders of powerful influences, well known to Congress and to State legislatures, to lobbyists and other enemies of the public welfare. The loudest talkers and the most pretentious of our would-be friends are advocates of these class laws, who think they can bolster up a falling trade by an act of Congress or a subsidy ; they have had their own way for some years, and now goods are at famine prices, wages are falling, the export trade and the enterprise of our merchants are on the wane, and, as usual, the working men suffer, more severely than any other body, the injuries resulting from a subversion of the laws of political economy. Have we not good reason for deprecating this suicidal policy, however specious may be the smooth speeches of the monopolists who are so disinterestedly advocating our interests, and who never, on ary account, are influenced by considerations personal to themselves?
I will give an instance of the effect of attempting to make things pleasant by resisting the laws of Nature. Recently, in London, the number of laborers engaged at one of the docks was much reduced by the weather, and employment was scarce. The men out of employ offered to take lower wages; the men in work resisted their being engaged. Now the wages of a dock laborer are none too high any where; he is required to extrcise only physical strength, and no man with knowledge of a handicraft would willingly spend his time in hauling bales of goods. Therefore the work is always done by men who are not accustomed to anything but a rough and penurious life; and in resisting the reduction of wages, the hands in work had as fair a claim as any man can possibly have. We take it for granted, then, that it would be a great hardship to these people to have their scanty pay still further reduced, for reduction of such a pittance means still further reduced, for reduction of such a pittance means
dispensing with some of the actual needs of existence. But, in candor, we must consider the case of the majority, who in candor, we must consider the case of the majority, who
were out of work. They say: "You have had your five dolwere out of work. They say: "You have had your five dol-
lars a week for some time, we have had nothing; we are willing, and shall be glad, to take four; you do not want your meals diminished in number to two in a day, we are without a meal at all. Let us, whose necessities are greater than yours, have our turn. Our willingness to take less wages is a proof and a ood indication that, and how far, our needs are greater than yours. Let us have a chance. Your wages should be kept up, means only that your pay must be maintained at its present rate; our only chance of getting work, and thereby bread, is by the reduction of wages." What can legislation do in such a case? What is the use of fighting against Nature, and attempting to make water run up hill? If men would $r \in f l e c t$ and see that the curse of society is too much legislation, that the interference of the government with trade and economical questions is as illegitimste as it is with religion, dress, and diet, there would be some chance for the permanent elevation of the social status of the working people. We have our brains full of vigorous life, we have almost exclusive possession of the mechanical ingenuity which now produces so large a share of the world's subsistance, we may say, without boasting, that we are loyal and law-abiding, and capable of the moderation and self-restraint without which man is a worthless blatherskite; and other trades and professions cannot refuse to call us brothers, if legislators and grievance mongers would only leave us to our own independence.
The most scandalous malversations of the public funds ever contemplated are the proposed subsidies to ship builders. and I am glad to see that no workmen are found clamoring for access to the public pure:e. Why? Not because a workman has not as much right to a share of the public money as another, but because employment created at is only pauperism on a large scale; and the work-
men are not the persons for whose benefit subsidies are voted. They have always been the victims, not the protéges of class laws and special legislation; and if there are some among us who are not yet aware of the fact, they will certainly soon find it out.
In conclusion, let me say that we are not less anxious to repurliate the accusation of communistic ideas than we are that of a desire for national aid and public eleemosynary benefits; and a summary of all that we can say or think on this subject is comprised in the following short, pithy, and peremptory sentence: Let us alone.
In another letter, I propose to remark on some of the legiti mate remedies for our troubles and difficulties. New York city.

Printer.

Zinc Amalgamation for Extracting Gold and Silve

 To the Editor of the Scientific AmericanI am glad to see that Mr. Butler asks if extraction of gold and silver by this mode "has been practically used in any place on a large scale." I hope for some light on the subject in reply to his query. I have soüght (by private means) ject in reply to his query. I have sought (by private means)
to learn if such was the case. I have thus far only heard to learn if such was the case. I have thus far only heard
from those who set forth their theories, but fail to adduce from t.
What we need, are facts. It is the business of the miner, the world over, to mine and raise the ore. Then the ore is taken by the stamp mill or the smelting works and the metals extracted, Now many seem to think the miner should step aside, from what I conceive to be his legitimate business, to test any new process which seems to have a correct theory behind it. He should not; when facts are shown, proving that such a mode, at such an expense, will do more for the miner than the millman or smelter can do to-day, that mode will find speedy adoption. The field is a large one. The waste is now enormous. The reward to the suc cessful man will be great.
Let me give you some figures, from a mine in Colorado, so well attested to me that I am ready to be responsible for them. The mine yields gold and silver, and the figures cover a period of forty-one weeks, ending December 9 ultimo. The gross yield, in currency, was over $\$ 72,000$; the actual profit, from this yield, was over $\$ 39,000$.
Tests, repeated week after week, render it sure that less than three fifths, in value of the gold and silver, was obtained. The actual value, in currency, of the metal wasted was, therefore, more than $\$ 48,000$.
This difference was actual waste, a subtraction from the wealth of the country of just so much actual value, in all probability never to be regained, aside from the loss to the Boston owning the property.
Boston, Mass.

Iron and Copper Pyrites in Gold and Silver.

To the Editor of the Scientific American :
The gold found in this combination, instead of being of a bright yellow color and metalic lustre, is of a grayish brown, dull tint. In this condition, it is known as " rusty gold," and seems to be quite indifferent to the action of quicksilver. Experience shows that this class of ore, on melting, gives a regulus of bright gold, containing 99 per cent of the original. This experiment indicates that there is a film of some other substance upon the surface of the rusty gold. Besides ferruginous sulphuret of copper, may there not be tennantite, white copper and the different classes of arseniate of copper, all of which contain more or less arsenic and sulphur? In some instances the amount of silver in the pyritical ores is usually very small. A small portion, alloyed with gold, is saved in the stamp mill; but by far the larger part, being in a state of sulphide which will not amalgamate, is lost. Why? This is the problem of which the solution has been ng looked for
The fact that copper is found in these ores in combination with silver as well as gold, indicates that the species of silver is the sulphuret, that is, brittle sulphuret of silver, which contains silver, antimony, iron, sulphur, arsenic and copper; sulphuretted antimonial silver, containing silver, antimony and sulphur; or, it may be, carbonate of silver, composed of silver, carbonic acid, oxide of antimony, and a trace of copper. However, the striking resemblances, of these species containing sulphur, antimony, arsenic and copper, would lead one unskilled in mineialogy and metallurgy to form a fixed idea that the film of some substance found on the surface of rusty gold is a combination of the heretofore mentioned im. purities. Of course, this coated gold can be saved only to a small extent by the ordinary stamp mill process.
The partial desulphuration effected by the many patent processes which have infested the territories will not accomplish this. Why? The chemical nature of this coating has not yet been absolutely ascertained
The fact that so high a roasting is required to remove it clearly indicates that it is not sulphide of iron; while other circumstances would lead us to believe it to be oxide of iron; but may it not contain antimony and arsenic? It has been generally supposed that desulphurating ores by heat would remove the impurities that impeded amalgamation. This has
proved an erroneous idea; sulphur is not the only obstacle proved an erroneous idea; sulphur is not the only obstacle In Colocads of amalgamation.
In Colorado ores we have, in combination with gold and sil ver pyrites of iron and copper and all these in combination con tain more or less antimony and arsenic, which are directly opposed to the affinity of quicksilver. Hence it is palpable tha agencies accompanied with mechanical power to stir the substance up and keep the whole in motion, reducing them to
(thus leaving the ore in a condition for amalgamation) before the amalgamating process is commeneed. The shameful loss in these and all other classes of gold and silver ores, proves that the processes of chlorodizing in use are a failure, and that heat by roasting, alone, only partially removes the impurities at an astounding cost. Scientific men, so called, have made stupendous mistakes of judgment; but they have been surpassed by the blunders of practical men, so called. The scientific men without practice and the practical men without science, the honest men without capacity and the smart men without honesty, have done so much to destroy the mining industry of the territories, that the very fact of its continued existence, after such terrible trials, is proof of its inherent vitality and future prosperity. The great quesiss inherent vitality and future prosperity. The great ques-
tion apparently still remains unsolved by practical operation apparently still remains unsolved by practical opera
tions on a large scale: Will mere desulphurating by roasting leave auriferous pyrites, in a condition suitable for the extraction of the gold and silver by amalgamation? Experi ence thus far is discouraging; but we need not doubt some simple expedient will be discovered; overcoming the diffi culty. That such an invention is needed appears from the fact that chloridizing and smelting, two processes which are acknowledged to be metallurgically perfect, are too expen sive to be applied to a large class of ores, for which amalga mation wil! probably always remain the available method. Percival Stockman.
[The above is by an experienced miner who has spent many years in the mines of California and in the silver mines of Mexico and South America.-EDs.]

Turbine Water Wheels--A Proposition.

To the Editor of the Scientific American:

I propose to the builders of turbine water wheels through out the United States, or to as many as may see fit, to meet me at the Grand Central Hotel in the city of New York on some day to be appointed, for the purpose of selecting some suitable place, near one of our cities, say Boston, New York Philadelphia, Baltimore or Richmond, where we can have our water wheels tested and examined by a commit-
tee of competent and disinterested persons; with the understanding that said committee shall reject all wheels sent them which may be made or finished differently from those offered for sale; an that all the wheels sent to the commit tee, and not rejected by them, shall be examined and proper ly tested; and that a report of the merits of each whrel tested shall be published; and that all expenses shall be equally divided and paid by those who send wheels to be ex ned and tested.
N. F. Burnham. York, Pa.

Condition of our Navy Vessels.

Since the Spanish war speck has appeared on the horizon, our daily papers have taken up the sabject of our war ves sels; and, from the discussions and information otherwise obtained, we should doubt if our naval authorities are pre pared for an emergency, should hostilities be commenced between this country and Spain. On the authority of the World, we learn that at the Brooklyn navy yard there are three still unfinished vessels lying, on which not a day's work has been done since the close of the war. These are the first rate screw steamships, Java and New York, each of 2,490 tuns burden, and the ironclad Colossus, 2,127 tuns and fitted to carry ten guns of large calibre. The Java is constructed of white oak, the New York of live oak, and both will be splendid vessels if they do not rot before they are launched. The Colossus will require a year's work for her completion, but the others could be finished much sooner if there were any money to carty on the work. There are no vessels in commission, although a number are lying there for repairs. Among these are the Minnesota, first rate, 2,912 tuns and forty-five guns; the Roanoke, second rate, ironclad 2,260 tuns and six guns; the Florida, second rate, 2,135 tuns and twenty-five guns; the Tennessee, second rate, 2,135 tuns and twenty-three guns; the Hartford, second rate, 2,000 tun and eighteen guns; the Canandaigua, third rate, 955 tun and ten guns; the Iroquois, fourth rate, 695 tuns and six guns, and the Portsmouth, fifth rate, 846 tuns and fifteen guns. There are also two storeships, the Guard and the Supply, the former carrying four guns and the latter two It might be imagined, on viewing the rather formidable array of guns and ammunition presented at the yard, that the country was fully supplied; but on closer examination such would be found to be not the case, as by far the larger quan tity of powder is the remnant of what was left over after the war, and consequently has not improved by age. Most of the guns are Parrotts, of which there are three hundred, ranging from twenty to one hundred pounders. Of smooth bore guns there are three twenty inch guns, twelve fifteen inch guns twenty-eight nine inch guns, ninety seven eight inch guns, and one hundred howitzers. This enumeration includes only those which are serviceable. The small arms comprise a number of pistols and cutlasses, and about two thousand Remingtons. The above quantities represent the whole of the avyyard supplies, and it may well be asked: What would b one if war were declared?
Of all the vessels now at the yard, only the Canandaigua is nearly ready for active service, though the Hartford and Portsmouth are also fitting for sea. The Canandaigua can be made ready in about ten days. In case of war, little assistance could be furnished from here, unless large extra expenditures were authorized by Congress. With abundance of men and money, only one vessel in addition to the Canan-daigua-the Portsmouth-could be made ready in a month, and then only as a sailing vessel.
In six months, under the same conditions, eight vessels could be made ready, including the ironclad Dictator, now
lying at New London. Perhaps the most formidable engine of war would be the Stevens floating battery, which is at the present time being put in a state of completion, and is expected to be quite ready for action within forty days' time. As the battery now lies in the yard at Hoboken it appears unwieldy, but ere a fortnight a vast change will be apparent. It has been pronounced by naval connoisseurs one of the most formidable of engines of war. Its keel was laid down in 1840. Since then it has been on the verge of completion thrice, but the changes in navalarchitecture have been so numerous and important that it has been taken apart to make it conform to these improvements. It is nearly 300 feet in length, is 25 feet beam, and draws 21 feet of water. Its frame is built of the stanchest of live oak. This is covered by teak planking, which in turn is backed with two foot teak slabs. The outside armor consists of five inch chilled iron plates. These are secured to the wood by headless bolts. By this method, the surface on each side of the vessel is smooth, and affords no opportunity for plunging shots to tear off the plates. Its battery will consist of seven guns; four of these are 500 pound rifled Rodmans. The remaining three are 250 pound rifled Parrotts. Her prow is composed of solid iron, backed by oaken logs, and will prove a powerful ram. It is confidently expected that she will be enabled to steam at the rate of twelve knots an hour. Taken altogether, she is a war ship that, if brought into action, will astonish the Spaniards quite as much as did the Monitor the people of the Merrimac.

PREPARATION AND COMPOSITION OF ALLOYS

The following instructions are extracted from Fesquet's translation of Guettier's metallic alloys, noticed in our łast issue:
As generally practiced, the metals to be combined are melted by processes and in apparatus which vary, according to the quantity of alloys to be cast or the nature of the metals under trea tment.
The metals easily fusible, such as lead, tin, etc., are melted in a ladle, or in wrought or cast iron kettles.
The more refractory metals are melted in crucibles, whose qualities of solidity and resistance to the fire are the more sought for as the metals have a higher point of fusion, or are more valuable.
For gold, silver, and platinum, we require crucibles of a superior quality, which will not crack, and thus lose in the fire the metals they are intended to receive.
For copper and its alloys, although requiring crucibles as solid and lasting as possible, we look more towards economy, because the work is frequent and regular, and we operate on quantities of less value.
When the mass of metal becomes considerable, whether because many castings are to be made, or because of the heavy weight of the pieces, instead of the crucibles, we ope rate in reverberatory furnaces, and sometimes in cupolas.
The processes of melting and mixing the metals in a crucible, however simple they appear at first sight, require certain precautions upon which we cannot too strongly insist. The alloys made in one operation are always very difficult of preparation, when the metals, such as zinc and lead, copper and lead, for instance, possess a sort of "antipathy" in their affinity. It is with much trouble that we obtain, in this way, thoroughly homogeneous castings, presenting the same body and grain of similar alloys, which have already passed through a previous fusion.
In order to arrive at the best possible results, without employing the method by separate operations, it is proper, as a rule, to endeavor to operate according to the following prin ciples:-

1. To charge the crucible, and melt first the least fusible of he component metals
2. When this metal is in fusion, to heat it up to such a point that it will be enabled, without too great a cooling, to bear the introduction of the other component metals.
3. Once the first charge is in fusion, to introduce the other metals in the order of their difficulty to melt.* Whatever are the proportions of the component metals, and no matter the most refractory metal should be melted first. Its fluidity indeed, gives the measure of the temperatare necessary for indeed, gives the measure of the temperatare necessary for
finishing the alloy. By charging first a fusible metal, it finishing the alloy. By charging first a fusible metal, it may volatilize and become oxidized, and the crucible may also break by raising the temperature high enough to receive
without too much cooling, a less fusible metal. At the same time, there will be more waste, and the proportion of the alloy will be sensibly changed.
4. To present at the flame of the furnace the metals which are to be subsequently added, in order to heat them as much as possible, and thus facilitate the change of temperature which takes place when the new metal is added to that or those already melted in the crucible. This practice is espe cially good when we have to introduce a volatile metal, such as zinc, which, being melted too rapidly, may cause the crucible to break.
5. To stir after the introduction and melting of each component metal; and to cover the crucible, at the same time
that the fire is increasing more or less, according to the less that the fire is increasing more or less, according to the les or greater fusibility of the metal.
6. To cover the alloys rich in zinc with a layer of charcoal dust. This is not necessary when there is not in the alloy any metal, such as copper or iron, having a high point of

* This is a general rule, to be applied in most cases; but there are excep tions. For instance: gold will easily dissolve in melted tin, and platinum in many metals. If platinum were first melted, and zinc, fer instance, added
the temperature necessary to obtain the fusion of platinum would be sufii cient to volatilize the zinc.-Trans.
fusion; or when the proportion of zinc added does not require
a protracted heating, and the alloy may be poured out immediately. With alloys rici in tin, the scorification* of part of this metal; therefore it is prefer able to cover the surface of the molten mass with refractory sand or pulverized sandstone.

7. To stir thoroughly the molten alloy just before it is cast, and, if possible, during the pouring out. The stirring is to be done with a stick of white wood, burning without split-
ting; and not with an iron rod, which has a tendency to produce dry alloys, and may modify the nature of the com pounds by adding some iron to the alloy-a small proportion it is true, but nevertheless appreciable.
8. To carefully clean the crucible after each operation, in order to maintain the accuracy of the mixture, and facilitate the fusion.
Such are the main conditions for obtaining alloys in one operation. If alloys thus prepared give some trouble in ob taining good results, they are very economical, and presen the advantage of keeping, as strictly as is allowed by the usion, the proportions of the mixture.
Moreover, in practice, it is generally acknowledged that a small proportion of an old alloy, added to a new one, improves it by giving it the homogeneousness which otherwise would be imparted only by a second fusion.
In ternary or quarternary alloys, made of copper, zinc, tin, and lead, it will always be well, in order to obtain more ho mogeneousness in the final mixture, to alloy beforehand the
more fusible metals, such as zinc, tin, and lead; and to combine this first alloy with the copper, under the best conditions possible. In this way the last combination will possess better qualities than an alloy made in one operation.
However, we repeat it, alloys made by the first direct me thod, although much more simple and economical, do not answer all the wants of the arts, and do not present the same guarantees as those which have been remelted. For instance
runners from bronze or brass castings of a first fusion, whe melted again, and when the primitive proportions weregood, present a better grain, and a metal withoat defects, which is more easily worked than another alloy made directly by one peration.
The pieces cast with alloys made by the direct methodwe always mean those in which copper is a component part -are possibly less liable to breakage and shrinkage than if made from old metal; but, on the other hand, the surfaces are not so clean, and the grain is not so close and easily worked. Moreover, such alloys are not very fluid, and do not produce sharp casts. These defects are more to be guarde when pieces of machinery are to be produced.
As a rule, the oftener a metal is melted, the more it loses its previous qualities.

the american historical record

The American Historical Record, and Repertory of Notes and Queries, Concerning the History and Antiquities of America and Biography of Americans," is the title of a new publication, edited by Benson J. Lossing, and published by Chase \& Town, 142 South Fourth street, Philadelphia, which promises to be interesting and useful. Those with literary and antiquarian tastes will find in it-if the future numbers correspond with thisspecimen number-much rare information and a medium for the exchange of such items of history as are at present traditional or to be found only in books so rare as to be only accessible to few. The plan of the publication also comprises historical discussions and essays, current historical literature, records of the proceedings of historical societies, engravings, etc. It is a monthly. The subscription price is $\$ 3.00$ per annum. Mr. Lossing is well known to the public as an author eminently fitted to conduct a magazine of this kind. We make the following extracts pertaining to early American industries:
Butron Making.-It is a notable fact in the history of American manufactures, that the first maker of covered buttons, Samuel Williston, is yet living. In early life he was preparing to enter the ministry, when his eyesight so failed that he was compelled to give up study. He kept a country store in wh.ch the wooden buttons, then in general use, were sold. His wife covered some of these buttons with cloth. They became popular. Williston and his wife contrived machinery to do the work, the first ever employed in the United States. An immense manufactory grew from this liston's factories are still running at East Hampton, Mass., and he is worth several millions of dollars.
The Oldest Daily American Newspaper.-On the 28th of October, 1871, the North American and United States Gazette of Philadelphia celebrated the one hundredth anniversary of its birth. It was first established loy John Dunlap, in 1771, with the title of The Pennsylvania Packet and The General Advertiser, a small folio sheet, published weekly. It was an adherent of the repablican cause in America. In September, 1784, Dunlap \& Claypoole commenced publishing American Continent. Its name was soon changed to The American Daily Advertiser. Forty years later it was merged nto the North American. In July, 1747, The North American and The United States Gazette were consolidated with the present title ; and since 1854, Morton McMichael (for a long

* The author uses the word " scorification," but we do not think that the term is entirely appropriate. Nevertheless, it is certain that charcoal is not
favorable to alloys of tin and copper, and that pureclay crucibles are to be favorable to alloys of tin and copper, and that pure clay crucibles are to be
preferred to those of plumbago for such alloys. Metallurgists know that at a certain period of the refining of copper, the metal is carburized and brittle. In order to prevent this carburization, it has been recommended to give a
ime a partner in the ownership of The North American) be
came its sole proprietor, and remains so. It has been a deervedly influentia! publication during its century of existserved
ence.

A Relic.-In Pittsfield, Massachusettz, is an anvil which was brought to this country in 1663 , by El weed Pomeroy, who had forged upon it the porderous horse shoes sed in he reign of the first Stuart, King of England. Like the Egyptian anvil in the British Museum, three thousand years old, the Pittsfield implement, of precisely the same shape, is as sound as when the first blow was struck upon it.
COAL-Bituminous coal was mined near Richmond, Vir ginia, so early as the year 1700 ; and a Richnond farmer ased it in making shot and shell during the Revolution of 1775-'83. According to the statements made by Volney L. Maxwell, in a lecture at Wilkesbarre in 1858, anthracite coal was first used by Obadiah Gore, a Connecticut blacksmith in the Wyoming valley, in 1768. Jesse Fell, of Wilkesbarre, was he first to use it for domestic purposes. Philip Ginter, a hunter, discovered the Lehigh coal in 1791. The Schuylkill coal was first sent to Philadelphia in 1812.

It had better be admitted at once, says the Engineer, that the specific property, that renders emanations from sewers and cesspools so dangerous to health, is not clearly under stood. A gentleman of eminence has lately directed atten tion to the use of charcoal as an agent effectual for the absorp tion and destruction of sewer gases; but the question after all is, whether typhoid fever is produced by gaseous products exhaled from organic matter in a state of decomposition, or is attributable to the presence of a specific germ. It is certain that those whose calling brings them into daily contact with decomposing matters of the most offensive kinds are not affected by any special forms of disease; and it is also well ascertained that sewage emanations, possessing little or no offensive smell and not necessarily the result of decomposition, have produced typhoid and other com plaints. There is no longer a doubt that cholera poison is a perfectly specific source of disease.
It has been collected from our sewers and experiment ed upon until its properties and characteristics have been clearly ascertained. It produces choleraic symptoms, of any degree of intensity proportioned to thedose employed and composed of such minute cells that it will pass through the closest filter. The probability is that other diseases are also prc duced by specific germs borne in the atmosphere; and if so, it will be unsafe to place implicit reliance upon charcoal or any mere deodoriser. Doubtless the gases that are evolved by decomposing sewage matter will, of themselves, seriously affect health; but there is nothing to show that charcual ha any effect in checking the spread of special diseases, or in arresting the passage of germs, of such minute dimensions that they will pass through finest filters and even elude the search of the most powerful microscope. The object of sewer ventilation is not, as is sometimes supposed, merely to purify or destroy fouland stinking air, but it has for its further aim the destruction or dilution of the insidious and probably inodorous poisons that associate with these foul smells. Where access can be had to furnaces and chimney shafte, complete destruction of all sewage producte can be accomplished; but in the absence of such means, reliance must be placed on free dilution by discharging the sewer air above the roofs of houses and beyond the lungs of our populations. The experience and conclusions of Dr. Alfred Carpenter can not, at this time, be too prominently placed before the public for it is only at a juncture like the present that they are likely to receive attention. He says: "Many facts have been brought to my observation as to the power of sewer gas to produce disease; as a factor in the production of typhoid fever its power is now well known. Many other diseases of the system have been directly traced to its influence; thus di arrhœa, dyspepsia in all its forms, palpitation of the heart various forms of asthma, convuisions, especially in teething infants, and headaches, both persistent and intermittent.'
These, and a further list of complications, are the inevitabl These, and a further list of complications, are the inevitable
results of exposure to sewer gas whether it reach the system through traps from public gas whether it reach the system from soakage under our houses, or through the medium of a contaminated cistern or well.

The Pursuit of Strength.

Those unfortunates who devote their lives to the pursuit of strength, according to Hall's Journal of Health, who rise at unearthly hours, and shiver undor ice cold shower baths, who never eat as much as they wish or what they wish, who live as mechanically as possible, and conscientiously deprive themselves of about all reasonable enjoyment, are certainly to be pitied. Still their terrible system leaves them alone during the night. If they eat, drink, move, and have their being under its supervision, through the day, at night they can sleep undisturbed. But a new school has arisen in California. Some crack-brained enthusiast has announced that he has prolonged his life for years ly sleeping with his finger tips touching his toes. The reason of the advantage of this proceeding is not at first evident, but is easily understood when we read that "the vital electrical currents are thus kept in even circumflow, instead of being thrown off at the extremities and wasted." The discoverer has given the valuable secret gratuitously to the world, actuated solely by a desire to benefit, suffering humanity. "Machines, warranted
to hold the body easily in this position, can be obtained only of," etc., etc. If the method comes into general use, our posTribune.

Automatic Check Rein Attachment for Harnesses. Scarcely any one accustomed to driving has failed to experience the annoyance of being compelled to alight from his wagon to uncheck and check his horse to allow the latter to drink. Every one who drives for pleasure would gladly escape this inconvenience, which, in muddy, rainy, or cold weather, is so disagreeable that we fear the wants of horses are often neglected on account of it. And those who make driving a business would, we should think, gladly avail themselves of so simple a device as we herewith illustrate, when once convinced that it would obviate the necessity of descending from their seats, either to check or uncheck their horses.
The neglect spoken of is probably suffered more by horses hired from livery stables than those owned by their drivers. Such horses will be far more likely to be attended to when this device is attached to their harnesses, as to water them will then give no trouble to their drivers.
The device detracts nothing from the orna mental appearance of the harness. It is entirely out of the way, and costs but little. The inventor informs us that, without advertising or attempting to make a business of selling the device in advance of facilities to manufacture, he has taken orders for a large number in the town where he lives, in the short time since he obtained his patent.
The terret, A, Fig. 2, is substituted for the ordinary check rein hook. It has a pivoted catch, B, made circular, except the recess at the bottom, and having a bevel edge which abuts against a corresponding bevel on the interior of the ring of the terret, so that it can swing backward, but cannot swing forward through the terret ring.
An elastic rubber cord, C, is fastened to the back strap of the harness, by means of a small back strap of the harness, by means of a
catch or dog, D. The cord, C, passes forward over the back strap, or through it if made tubular, (as will be done on fine harnesses), till it reaches the terret ring, being somewhat stretched to give it the proper length and tension. At the end near the terret, it has attached to it a metal piece, E , the rear end of which is enlarged into a ball or knob, which, when pulled through the terret ring from the front. passes far enough back to let the pivoted catch
plate, B, fall to its place, the recess in the bottom of the catch plate receiving the neck of the piece, E , while the ball engages the plate; so that the piece, E, cannot be drawn through forward again until the catch plate is raised. In an eye at the front end of the piece, E, is attached the snap hook, F , having a loop at the front end, through which the check rein passes.
The cord, G, is attached to the catch plate, B, and when drawn backward, raises B and releases E . The horse can then lower his head to drink, and when he has finished drinking, by drawing upon the driving reins he is caused to raise his head, the elastic cord, C, retracts, carrying back the piece, E , through the terret, A , where it engages with the catch plate, B, and the horse is thus checked again. The cords run through loops on the back strap, or through a hollow tubular back strap, as above mentioned.
The cord, G, which is used to release the piece, E, has a ring, H, Fig. 1, at its rear end. A small hook is screwed into the butt end of the whip stock, by which this ring is easily reached, and the cord pulled to uncheck the horse.
This invention was patented November 7 and November 21, 1871, by John Schofield, of Worcester, Mass., who may be addressed (Box 709), for further information.

MECHANICAL NEEDLE SHARPENER.

This is a most ingenious little invention, and one which

has in it the elements of a wide spread popularity. It costs little, and does its work quickly and far more perfectly than it can possibly be done by hand. For sharpening sewing
machine needles, or, in fact, any other needle or small pointed instrument, it appears just the thing that has been long eeded.
In the engraving, A, represents a pedestal, made of fine emery cemented together, forming a solid stone. The pedestal is square, and has in the center a circular opening.
From the pedestal rises a curved standard, B, to which is linked the swinging clamp, C. The latter has two grooved jaws, which grasp the needle as shown, being held firmly together by the sliding loop, D.
The needle being clamped in the jaws, as shown, the swing. ing clamp and the needle are grasped by the thumb and finger of the operator, and swung rapidly around the inner wall of the opening in the pedestal. At each passage of the needle point, around and against the wall of the "opening, it is ground

Science Perfecting Swimming
Frederick Barnett, of Paris, has patented a novel yet simple apparatus for swimmers. The inventina consists in sup plying to man, by art, the apparatus which has been given to the frog by nature. For the hands, he has a large membranous fin which is held to its place by loops passing over the fingers and a strap around the wrist. The surface presented to the water by these fins is so large as to add greatly to the effectiveness of the strokes of the arm, but not so large as to exhaust the muscular power. Their effect is to very much reduce the effort usually required in swimming. But the greatest ingenuity is displayed in the form and fitness of the fins for the legs, which are attached to the ankles, anderee so formed that they act upon the water, both in the movement of bringing the legs and throwing them back They act so finely in treading water, as swimmers call it, that one can really walk, if not on the water, at least in it. The difference between swimming with this apparatus and without it, is very much like the difference between rowing a boat with a handle and the blade of an oar. The old swimmer has no trouble in using the fins at first trial, and is surprised to find with what strength he can swim without exhaustion. He easily swims twice as fast with the apparatus as without it, and with it he can sustain himself for hours upon the water, or swim many miles.

Tungsten Colors.

Fine colors are prepared from tungston, which, being permanent and little acted upon by heat, can be used to advantage on many occasions. Tungstate of baryta is a pure white; tungstate of nickel, clear green; tungstate of chromium, dark green; tungstate of cobalt, violet; tungstic acid, a beautiful clear yellow, passing into or ange. Tungstate of soda is not employed in colors, but is recommended for render ing fabrics uninflammable; for this purpose it is better to combine it with phosphate of soda. Metallic tungsten was at one time supposed to improve the hardness of steel, but we hear very little of its use for this purpose, and it seems more probable that
sharp point, the bevel being formed by the inclined position of the needle upon the face of the opening.
The invention was patented June 28, 1870. For further particulars address Currier, Philpot \& Co., 5 Haymarket street, Boston, Mass.

HAUPT'S IMPROVED EASY CHAIR.

- Next to a comfortable bed, an easy chair is one of the luxuries which adds as much to the comfort, of both the well and the sick, as any article of furniture in modern use. Much ingenuity has been expended to perfect this class of furni ture, and there are many that "lap one like a mother," and

whick are looked forward to with pleasant anticipation as the first haven of rest into which the weary sink, in the quiet evening hours at home.
Our engraving illustrates an addition to these modern comforters, which seems to possess all the requisites of ease and convenience sought in devices of its kind.
The back, seat, foot rest, and head rest, are all selfadjusting and actuated by the movements of the occupant, who is enabled to assume an erect, horizontal, or any intermediate position desired, with very slight exertion.
If the sitter desires to lean back, he places most of his weight on the rear end of the seat, and throws his body backward. This movement starts the pivots of the chair bottom that previously rested in depressions at the rear ends of that previously rested in depressions at the rear ends of
grooves in the side pieces. The seat moves forward, its rear grooves in the side pieces. The seat moves forward, its rear
end descending into these grooves, its front end being raised by swinging braces hinged to the arms and seat. At the same time, the foot rest is moved forward by a rod jointed to the chair bottom and pivoted to the foot rest. The motion of the parts will cease when the movement of the sitter ceases, or will be reversed by his reverse movement.
The parts move harmoniously, smoothly, and easily, and the position of the sitter is changed with that facility which adds so much to the luxury of such chairs.
The invention was patented through the Scientific American Patent Agency by William W. Haupt, of Mountain City
the accidental admixture of manganese was the real indurs ting constituent. It is also claimed that tungsten largely increases the magnetic power of iron.

KNIFE CLEANER AND POLISHER.

This is a very neat implement, and we should judge a very efficient and convenien: appliance for cleaning knives and forks, designed for hotels, restaurants, or private families. The engraving illustrates the device so fully that only a few words of explanation are required.
Two elastic faced rollers are mounted in the uprights of a suitable frame as shown. The lower part of the bottom roller is inclosed in a trough for holding the brick dust, emery, or other polishing material. Each roller is controlled by a ratchet and pawl, so that it can only turn in a direction opposite to that in which the other can turn. The rollers are pressed together by a spring, which is adjusted to give the requisite pressure by a screw at the top of the frame.
In use, the knife to be cleaned is thrust in between the rollers, one of which turns while the other is held from turning by the ratchet and pawl. As the knife is drawn back again, the roller which first turned is held and the other one again, the roller which first turned is held and the other one turns, each alternately turning and remaining stationary as
the knife is drawn out and thrust in, and thus dividing the labor between the two strokes, rapidly cleaning the knife and giving it the required polish.

This knife cleaner is the invention of William S. Beebe Joseph T. Baynes, and Abraham King, whom address, for fur ther information'Watervliet, N. Y.

grinutitir Gmxirim.

MUNN \& CO., Editors and Proprietors:

published weekly at
NO. 37 PARK ROW (PARK BUILDING) NEW YORK.
o. D. MUNN.

"، The American News Co.,", Agents, 121 Nassau street. New York. ${ }^{2 \pi}$ A. Asher \& Co., 20 Unter den Linden, Berlin, Prussia

VOL. XXVI., No. 4. [New Series.] Twenty-seventh Year

[NEW YORK, SATURDAY, JANUARY 20, 1872.

Importance of Advertising.

The value of advertising is so well understood by old established busines business, or having for sale a new article, or wishing to sell a patent, or find a manuracturer to work it: upon such a class, we would impress the impor tance of advertislng.
through which to do it. through which to do it.
etermine that papers is is to be used at first ; but experience will soon the class of persons most likely to be interested in the carticle for sale, will be the cheapest, and bring the quickest returns. To the manufacturer of all kinds of machinery, and to the vendors of any new article in the mechanical line, we believe there is no other source from which the advertiser can get as speedy re
American.
We do not
onaze, but to direct persons how to increase their own business
The Scientific American has a circulation of more than 40,000 copies pe week, which is probably greater than the combined circulation of all the
ther papers of its kind published in the world.

ACCURATE WORKMANSHIP

It has been truly said that no work of human hands is perfect, and that though we may strive to our utmost to secure entire accuracy in workmanship, it will be forever beyond our reach. On the other hand it has often been asserted that the works of Nature are perfect, that they are far superior in every respect to human handiwork, and upon this assumption many a moral homily has been based.
That this proposition has been so generally accepted, affords a forcible instance of the readiness of mankind to accept as truth whatever is presented to them as a generalization. Formulate an idea and lay it down as a proposition, and nine out of ten will accept it as true, because five of the nine will lack the power to detect its falsity, and the remaining four will have too much indisposition to the mental labor involved in logical reasoning, to test whether the proposition be correct or otherwise. About four tenths of the human race are mentally lazy, five tenths are so credulous as to ac cept anything as a principle which is clothed in the garb of a generalization, and certainly not more than one tenth think for themselves.
Only in one sense are the works of nature more perfect than the works of man. In their adaptation of complicated means to ends, they are for the most part unquestionably above any human production. Yet even on this point there is much illogical inference. We once heard a Professor of Anatomy, in lecturing on the hand, speak of its complicated structure and its marvellous machinery, as one of the greatest evidences of a beneficent design pervading creation. Five minutes later he spoke of the carpal bones and their investing ligaments as being peculiarly liable, on account of their structure, to obstinate and deep seated inflammation when injured; but he did not adduce this as an evidence of a beneficent design. Yet surely there is as much reason to believe that all the effects of a peculiar constrnction are designed as that one of them is.

But turning our attention to the mechanics of nature, we find that, so far as perfection in form is concerned, human work may stand well in a comparison. It has been said that the types of all the forms employed in the arts are found in Nature; but if we admit this, we shall find on examination that these types are in the majority of instances extremely imperfect. Nowhere in Nature is found a perfect sphere, a perfect cube, a perfect square or prism. We look in vain perfect cube, a perfect square or prism. We look in vain
for perfect cylinders, for absolutely straight stems of trees, for perfect cylinders, for absolutely straight stems of trees,
for filaments perfectly uniform in size throughout. No infor filaments perfectly uniform in size throughout. No in-
dividual of any species exactly resembles any other, and
dividual of any species exactly resembles any other, and tested.
even the elementary parts of animal and vegetable struc tures differ from each other. The anatomist might dissect a thousand subjects without finding two femoral bones that would not differ in some way; and even in the same body the corresponding parts on opposite sides are often found to be somewhat different. So much for the uniformity and mechanical accuracy of natural things. If man's mechanical productions are not perfect, they excel in the particulars named.
There are many practical difficulties in securing accuracy in construction, but we shall find that they may be placed in two categories. The first category includes our own imper fections. These are nature's imperfections. Our vision is so limited that, in very fine work, we must supplement it by the magnifying glass and the microscope. The command of mind over muscle is so far from absolute that, even when the former has been trained to command and the latter to obey through long years of practice, the control of the one and the obedience of the other are still defective. Eye and ear and touch, all tell us falsehoods and never more than pproximate to truth.
The second category is found in the lack of rigidity in the materials which we use. Even the diamond, the hardes substance known to man, is elastic and changes its size with every variation of temperature. Nothing we can touch is precisely alike under any two different sets of circumstances Some things change by absorbing or losing mo:sture. Others when once changed never resume their original form. So mobile is matter, that a toy cart drawn by a baby hand over a stone floor will generate vibrations the waves of which flow along through the granite, through the legs of the most solid workbench, and set the particles of the material in hand dancing to an entirely new step. All matter through out the universe, though some of it may seem to the superficial eye to be at rest, is in constant agitation. While the large masses are whirling through space with inconceivable velocity, the smaller masses-molecules-are each moving through what may be--for all we know-even wider orbits in proportion to their size, than those of the sun, moon and stars. The slightest external change is followed by a change in their movements. A man goes on board an ocean steamer with a shingle nail in his pocket, and instantly the
compass needle in the binnacle feels the fact, and varies somewhat in its indications. Change, change, is written upon each and every atom of the universe. Nothing shall be constant, nothing shall be uniform. The combined intelligence of mankind cannot command a force strong enough to chain one infinitesimal atom. Endless variety-nothing stable-this is a fiat from which we vainly strive to escape and to which we cannot find one solitary exception.

HIGH AND LOW STEAM.

An error prevails somewhat extensively among steam users who have not studied the theoretical principles of steam generation, which we propose briefly to correct. It is erroneously supposed that high steam contains much more heat than low steam, and that on this account it will be more efficient in heating buildings and driving engines. We would say to those who entertain this notion that a pound of steam at any pressure contains practically a constant number of heat
units. In other words, a pound of steam at either low or high pressure will raise the temperature of a given quantity of water the same number of degrees. This has been thoroughly proved by experiment, the variations from the law being too small for notice in common practice.
It is only the sensible hea \ddagger of steam which is measured by the thermometer, (the temperature), that increases under pressure, and this increases only as the latent heat diminishes o that the sum of the two is always a constant.
These being facts, it is certainly folly to incur the greate danger of high steam for heating buildings. The low steam will, pound for pound, both in evaporation and consumption heat just as many cubic feet of air space as high steam.
But although the theoretical working power of steam is measured by the heat it contains, in practice there is a gain in using high steam for propelling engines. Steam generated under pressure is capable of expanding more than low steam, and as this expansive power can be made to perform work, there is a practical economy in using as high pressures as safety will admit; not that the steam contains the power to do more work, but that we can utilize a larger portiona small proportion at best-of its working capacity. It fol lows that it takes no more fuel to produce a pound of high
steam than a pound of low steam. There is, however, with steam than a pound of low steam. There is, however, with
high temperatures resulting from increased pressure, a greater loss through radiation, to make up for which more fuel will be consumed.
It may be asked: If these things be so, why, in testing the evaporative power of boilers, is it recommended to evaporate under atmospheric pressure? Why will not one pressure do as well as another, provided the proper allowance for radiation is made? We answer that it will make no difference at what pressure we make the test, provided we can keep the pressure uniform. There is usually more or less difficulty in maintaininga constant high pressure, while, with free discharge of steam, there is none in maintaining the atmospheric pressure. It is only for convenience sake that atmospheric pressure is considered by some as more desirable.
In conclusion, we would say that the heat which passes from boilers in the steam generated is the true measure of their working capacity. The heat which passes out in water mechanically suspended does no work. It is only then when the true proportion of the mechanically suspended water is determined that the working capacity of boilers is properly
tested.

the late james fisk, JR.

The man whose name heads tinis paragraph achieved, in a very short time, a prominence in the railway and financial world that has given an interest to the circumstances of his death which his personal merits and character would never have elicited from the public. Our columns are no place for condoning the faults of the deceased by expatiating on his amiability and generosity, nor for homiletics on the scandalous and flagitious vices of which he and, we regret to say, his popularity were very largely composed. Cowardy and wanton assassination has cut him off in the midst of al his notoriety, wealth and pleasures; and New York, amidst the many black deeds that have been committed within he orders, has no greater stain upon her reputation than the nurder which has just been committed.
It is difficult to account for the continued existence, in our midst, of so large a number of persons ready to commit the darkest and most violent crimes upon little or no provoca tion. The absurd and cowardly habit of carrying concealed weapons has much to answer for in this particular, and the great quantity of intoxicating liquors consumed by a large portion of our population is the chief cause for their pro duction and use on the slightest pretext. But the bravado of the murderer obtains its principal stimulus from the fac that the law is full of uncertainties, that political influence and money have a protective power even under the shadow of the gallows, that, against the most adverse circumstances a long delay is sure to be accorded to the guilty, and tha thus the world may cease to take an interest in the matter as we have of ten seen occur in our rapidly changing and ef ervescent state of public opinion. We are justified in these statements by the events which followed the crime of Fos er, who murdered Mr. Putnam on the latter'salighting from a street car. The popular indignation against the dastardly perpetrator of this outrage was very great, and inquest rial, and condemnation followed its committal with a prompt tude which is an integral part of the majesty of the law and the chief means of prevention of crime. But before the day of execution arrived, the culprit was reprieved by ne of the hole-and-corner legal processes which discredi the whole American nation and people; and before long the murderer, the object of as righteous an indignation as ever animated the public mind, will probably be let loose to prey once more on society. It is by such precedents as that of Foster that crimes like that of Stokes are created and en couraged; and it may require the commission of a few dozen more outrageous villanies to get the popular sentiment on this subject into a condition more permanent and beneficial than mere temporary frenzy.
It is quite time that some trustworthy system of adminis tration of the laws was introduced into our social affairs. At present, with a vehement outburst of indignation at the time of the crime, followed by utter indifference to the se quel, and with political intrigue, corrupt judges, and mone tary influence as complications, the process of the law is less certain and less logical than are the freaks of a gambler's for tune. If the wicked act which we now deplore does something to awaken the people, these lines will not have been written, and James Fisk, Jr., will not have died, entire ly in vain.

TEACH THE CHILDREN TO DRAW.

Teach a child first to read; not merely to speak words in he order in which they occur, but to read understandingly slowly, and carefully for ideas. Next teach him how to use numbers in arithmetical calculations, and show him that in all the business of life, in all its study, in all its science, the statement of facts in figures is the most important element Then teach him to draw. You may stop your teaching right here, if you will, and rest confident that, if the boy thus taught has any disposition to mental acquisition, he will find a way to make it. Not that further good teaching will not greatly assist his progress, but that the acquirements named form a solid foundation upon which he may and, if his tastes re for learning, will build a noble superstructure.
The fundamental value of the two first elements of educa ion named are generally appreciated by educators in this country ; the third is only beginning to be appreciated. In he Boston public schools, drawing is now to be made a part of the course of study. The teachers are, we are told, to be taught how to teach drawing, at least such of them as have not the requisite knowledge. This accomplishment should be a part of every teacher's legal qualifications for employ ment in a public school, not merely because it enables him to give lessons in drawing, but because in the present age the power to draw rapidly and well is a means for the ex pression of ideas scarcely inferior to language; nay, withou which it is impossible to convey certain ideas at all, in the absence of the objects delineated by the skilled pencil of the draftsman.
We cannot carry with us in our pockets geological and mineralogical cabinets, collections of shells and plants, musums of machinery and galleries of art. The power to re present such things as we cannot have at hand in talking bout them has become essential to every one who aspires to anything like eminence in science or the arts. Even in walks of life not intimately connected with science and art (daily becoming fewer) the power to draw is one that often aves time and money.
We speak, of course, more particularly of free hand drawing. Mechanical or geometrical drawing, as it is called, per ains to certain branches of business which will engage only few out of the many youths now in American schools. A
nowledge of it and skill in it can easily be acquired after the other, and will be attained by those who find it necessary to their callings.
oks describe the proper method
No study so interests the young as free hand drawing. It followed. Nearly all text books descrive the proper method oes not weary as do studies which exercise the mind with ut practising the hand; and if the pupil is put to it in early youth, it cultivates a habit of keen and thorough observation which of all things is the most important discipline to which a young mind can be subjected.
The fault of superficial observation will scarcely ever be found in a pupil who has been taught to sketch from nature. Perhaps no greater or more universal fault than this can be met with in the men and women of America. As a rule, things are glanced at, not seen. In all matters except accounts, we are as a people inaccurate. Hasty, careless, we plunge along headlong, and things pass by us in a confused stream, as do the near obj
express railway train.
Now while we advocate rapidity in all matters of mere motion, and never yet traveled a hundred miles by a quick train without wishing we could do it quicker, we know that we defeat one of the main objects of life when we attempt to force our minds beyond their normal pace. Let us refuse to look at things at all, rather than to waste time by a half look.
We believe the fault in American character would be greatly remedied by a system of general instruction in free hand drawing, and that the effects upon progress of the discipline thus obtained would be felt most favorably in all the other departments of study pursued in our schools. It appears somewhat astonishing that this fact, proved by years of experience in Europe, should have remained so long un recognized by American educators

THE STUDY OF BOTANY.

The study of botany has claims to far more general favor than it receives. No science can be pursued with greater facility, without the aid of a living teacher. It requires but an inexpensive apparatus. A good magnifying glass, small pincers, a press for preparing specimens, a tin box for col lecting plants, a pocket knife and a good text book are all that are needed. Any section of country affords ample scope for filling a herbarium, which, by exchanges, can be made as complete as desired. Specimens are easily preserved, and when well cared for, always afford great pleasure in their exhibition.
The advantages of the study are, besides the pleasure de rived from any healthy mental occupation, the healthful exercise of body in searching for specimens, the cultivation of the finer tastes, and the vast fund of useful information to be obtained. The dependence of mankind upon vegeta ble products, for supplies of food and clothing and articles of luxury, is greater than upon either the animal or mineral kingdoms. The animals that give us labor, or from which we obtain food, derive their sustenance from vegetables, and thus indirectly plants are made to contribute to the direct demands made upon them for the sustenance of the human family. A large number of the medicines that we rely upon to cure "the ills that flesh is heir to" are of vegetable ori gin. We adorn our homes by surrounding them with beautiful flowers, and even the resting places of the departed are made attractive by the sweet scents and exquisite colors of the floral realm.
It is pleasant enough to inhale the fragrance and to feast the eye upon the softly shaded tints of beautiful flowers but there is all the difference, in the pleasure ordinarily derived from this source and that afforded through the intelli gent inspection of flowers by the skilled botanist, that exists in the degrees of delight, derived by cultivated and uncultivated ears from music. To the botanist, there is far more in flowers and foliage than mere color and odor. There are delicate structures, each of which has a definite purpose and meaning. There are beautiful analogies, properties hidden from the common eye, and nice relations which form a basis of classification. All of these things are delights to the minds that comprehend them.
But there is practical profit in the study, as well as unfail ing pleasure. Every intelligent farmer ought to know some thing of botany. By it he often can tell when his land is in danger of being seeded with troublesome weeds, and can exterminate them before they overrun the soil.
We once lived in a rural neighborhood where the practis ing physician was a proficient in botany. He had doubtless saved the farmers of the county in which he resided thou sands of dollars by his gratuitous hints. We once heard him give warning to a farmer, pointing to a conspicuous plant that reared its head above the fine green of a luxuriant meadow. "Pull up by the roots every weed of that kind that you see on your farm." There were few, and it would have cost little to obey the good doctor's injunction. It was disregarded, and three or four years later the farm was literally seeded with a plant till then scarcely known to any farmer in the region.
But little need be said by way of instruction to those who may be induced by our remarks to uu adertake the study of botany. The driest part of the study, as sometimes taught, is the terminology and nomenclature. Instead of attempting to master all this at once, the better way is for the student to commence with a plant specimen, and endeavor, by means of the analytical method explained in all good text books of botany, to ascertain its name and properties, looking up the necessary definitions as he proceeds. A flower of good size cup, or sweet briar blossom, should be first undertaken, the many rayed, composite flowers being more difficult. By pursuing this course, the task of learning many definitions is distributed so much as to be almost insensibly accomplished.
The practice of preserving specimens should always be
of doing this, and we need only add to their directions that ness with which the work of laying down the plants in papers for pressing is performed. A plant well pressed is easi ly mounted so as to look well, while one ill pressed is not orth mounting at all.
Some of the best and most instructive studies in this latitude are found in plants that appear in bloom while the snow has scarcely melted away in the spring. Indeed we have often found anemones and trailing arbutus on the sunny side of a knoll while the snow still rested on the other, and one must start early in the season to find some of the crowfoots in blossom. How many of our young readers will make a beginning next, spring?

PURE AIR.

We recently heard a Professor of Chemistry say that the greatest curiosity in his cabinet was a specimen of pure iron. This metal, which is present everywhere, is,so difficult to obtain free from impurities, that not half a dozen men on the face of the globe haveever seen it. We are beginning to entertain the same opinion of pure air. Of all the chemical mixtures known to the man of science, we doubt if any gases are so rare as pure and unadulterated air. If it starts right it soon gets mixed up with organic germs, dust spores mephitic gas, carbonic oxide, sulphuretted hydrogen, cholera in disgurse, and typhoid in odors, until plants wither and animals die, and lamps cease to burn. That this should be the condition of things is not astonishing; on the contrary, the chief surprise is that, with all mankind diligently engaged in filling the waters with pollution and the atmosphere with gases,' we are not worse off than we really are

The habits of the present generation are such as to give rise to more refuse matter and poisonous products than those of previous ages. The fuel we use, the articles we manufacture, and the waste of sewage, combine to create more impurities than were known to our forefathers; and if it were not for the fact that science has given us remedies, nearly in proportion to the increased evil, our population would diminish under the high pressure system which at present prevails. Considering this state of facts, it is not at all astonishing that the attention of Sanitary Commissions, Boards of Health, and Parliamentary Committees is called to the subject, and that we hear of so many reports and propositions to remedy the vil.
The recent illness of the Prince of Wales has occasioned an inquiry into its probable cause, and we see that it is traced to the imperfect sewage of the district of country where this nobleman's party were recently hunting. The disease, from which the Prince appears to have fortunately recovered, is called typhoid, or more properly "night soil fever," and " cesspool fever." Since its rise has been unmistakably traced to disorders of the intestines, the medical faculty have bee disposed to give it the name of enteric fever; and by this name it appears likely to be henceforth known. The approach of the fever is, in most instances, slow and insidious, and hence the particular occasion on which it was contracted is often overlooked; but all authorities agree that the foul air proceeding from sewers and cesspools, is the chief cause of this form of disease. By reference to the reports of the Metropolitan Board of Public Works of London, it will be seen that different experiments were made to improve the ventilation of the sewers; but all of them were declared to be too expensive, and no other way could be found than to allow the gases for the future to continue to escape from the middle of the streets. To burn the gases by means of high chimneys would take two hundred and fifty furnaces for the city of Lon don alone, at the cost of two millions of dollars, and a yearly outlay of half a million for fuel, exclusive of the wages of labor. To disinfect the sewers of a large city chemically would be a worse undertaking than pumping out the ocean by Paine's magneto-electric machine. IIt is evident that both of these schemes are impracticable, and the contamination of the air and water is likely to go on for ever if no better remedy can be found. But this is not all; the present system of sewage acts as a destructive agent in other ways. It not only pollutes the water and gives rise to pestilent fevers, but dilutes a most valuable manure, and destroys it for all useful purposes. We spend fabulous sums of money to destroy the very article which, if properly treated, would be worth milions of dollars.
Now suppose some inhabitant of Mars were to visit our earth. He would naturally be received half way by a selfappointed committee of our first citizens, and, in the course of the inevitable fêtes, balls, dinners, and receptions through which he would be obliged to pass, might be shewn through a house " replete with all the modern improvements." The water arrangements, upon which we particularly pride ourselves, would be pointed out, and then would come a sail around the city at low tide, when the mouths of the sewers would be belching forth their greatest stench; and the practical side of the question would be exposed to view, and the hairman would deplore the fact that, in spite of our scientific nowledge, we were unable to abate this nuisance, and he was sorry to inconvenience his noble visitor, and he would about helm and get out of it as fast as possible.
What opinion would this son of Mars form of our boasted civilization? In one place he is shown where we pour the noxious matter in ; and where it comes out we deplore our in ability to neutralize its deleterious effects. He would proba bly ask: Why pour it in at all? And that would show us at once where the Columbus egg of this difficulty lies, and afford the solution. Why pour it in at all? Why pump water up hill to let it run down? Why spend millions to undo what never ought to be done at all?

It is evident that the building of such works as the Thames mbankment, the construction of great chimneys to carry of foul gases, and the immense loss to agriculture, could be avoided if we applied the remedy at the outset, and that would be by using the ounce of prevention and disinfecting all animal matter by dry earth, and never allowing it to pollute our waters.
While our water arrangements appear to us, individually, great convenience, they are, collectively, the fruitful source of most of our diseases,and ought to be differently regulated. In spite of all precautions, much impurity would be likely to find its way into the sewers: but the worst evil could be stayed, and disinfecting rendered substantially unnecessary Pure air is irreconcilably hostile to contagious disease. If we canröt aspire to have it out of doors, it is in vain to look for it in factories, shops, and overcrowded houses.
Nearly all writers on this subject expend all their force and arguments in favor of a complete system of drainage and sewage. We would not gainsay the value of these precanions, but would again repeat that the true remedy is to stop filling the sewers with matter that no power can afterward cleanse.

The river Rhine, it is well known
Doth wash the city of Cologne,
Doth wash the city of Cologne;
But tell me, nymphs, what power divine
Shallhenceforth wash the river Rhine?",

PORTABLE FIRE EXTINGUISHER.

The value of a ready means of extinguishing fires at their解 umns. We have shown, by facts, figures, and argument, that large proportion of all the fires which occur could, by such means, be extinguished before extensive damage occurs.
Without making invidious distinctions between the porta ble fire extinguishing apparatuses now in use, we may well refer to the history of a single one as ample proof of the cor rectness of our position. We refer to that known as the Babcock Fire Extinguisher, which has made for itself a most honorable record, and is becoming quite extensively intro duced. We have not space to enumerate the large numbe of fires which have been almost immediately extinguished by this machine, but the number is very great. A few words, however, as to the origin of the present form and use of the device, may not be uninteresting.
The original machine was of French origin, and is known as the Carlier and Vignon Machine. To this machine as a starting point, have been added a great number of American improvements. Observing the bulletins of the Northwest ern Fire Extinguisher Co., 407 Broadway, New York, an nouncing the dangerous fires that have been recently controlled at the outset by the use of these portable extinguish ers, we have taken pains to investigate its claims upon pub lic favor, and are satisfied that it deserves to rank among the best of modern appliances for saving property.
The machine as now used employs what is known as the Bate and Pinkham mode of charging, by which the liquid acid and the solution of bicarbonate of soda are kept sepa rate until the apparatus is required. By this means there is no gas generated except at the time of using, and conse quently no loss of gas or strain upon the cylinder during the intervals. The moment the two materials are allowed to commingle, which is done by simply pulling out the knob of a stem which controls a stopper, a large quantity of carbonic acid gas, in which no fire can live, is generated under grea pressure which forces out thoroughly mingled water and gas in a fine, small stream through the nozzle of a small hose provided with a stopcock to control the flow. Suitable arm straps enable the person using the device to place it upon his back, leaving his hands free to direct the flow from the hose A very small portion of the mingled gas and water, a mere film, is sufficient to extinguish a fire that has not been so ong in progress as to heat the burning material through and through to the point of ignition. The gas extinguishes the flame, and the water cools the material, a most scientific combination.
It is becoming quite common for merchants and manufac turing establishments to have one of the extinguishers on each floor of their building, ready for immediate use.
It occupies not much more space than a water pail, and no more skill is required to operate it than pouring a bucket of water on an ignited floor.

scientific and practical information

ortifying railway stations.

Some years since the subject of permanently fortifying important railway stations was discussed by the Prussian Government and abandoned as impracticable. Russia has, however, taken up the project and is putting it into actual practice. The two frontier termini of the Brest and Kiew railways in the direction of Austrian Poland are thus being protected by a citadel and a few outlying forts, probably destined to be the nucleus of a consolidated military fortress in the future.

TEST FOR SILK FABRICS
The British Trade Journal states that Mr. John Spiller, in the course of some investigations made last year, found that hydrochloric acid was an energetic solvent of silk, although it left wool and cotton unacted on, at least for a lengthened period. 'The practical bearing of this discovery was exemplified by the immersion of several so-called pure silk ribbons and other fabrics in the acid, when the silk was dissolved away, leaving the threads of the adulterating material intact; thus by obtaining a small sample, and immersing it for a few seconds in the hydrochloric acid, or preferably by dropping a little of the acid on the center of the sample, if it be pure silk a hole will be produced; but, if impure, the
threads left will immediately indicate the nature and extent of the aduiteration.

METEORIC IRON IN GREENLAND.

The Swedish arctic expedition has brought home a number of masses of meteoric iron found there upon the surface of the ground. 'These masses vary greatly in size, the largest weighing 49,000 Swedish pounds, or twenty-one tuns English, with a sectional area of about forty-two square feet. This bas been deposited in the hall of the Royal Academy at Stockholm. Another piece, weighing nine tuns, has been presented to the Museum of Copenhagen. These specimens considerably exceed in size the famous mass at Yale College, which weighs 1,635 pounds, but are not larger than some blocks that have been observed in parts of South America. The Swedish chemist Berzelius was one of the first to examine meteoric iron to see if it contained elements different from those found on minerals of terrestrial origin; but he never detected anything new. This result is rather disappointing, as meteoric iron is now believed to come from sources outside of our world.
mlinois and st. louis bridge.
This important work is progressing successfully and rapidly. The St. Louis Railway Register states that thirtyeight of the large skewback anchor steel bolts to be used in the bridge have arrived. The work of putting them in place has been begun, and there will be no further necessity for delay on their account. The yellow pine and white oak to be used in the construction of the bridge have also begun to arrive. The pine is from Georgia. The oak is from Southern Illinois. Both the pine and the oak are of the best. Work will be commenced in this department at an early day.

HOT WATER PIPES AGAINST WOOD WORK.
We are asked whether these are dangerous. Our own opinion is that no fire ever originated from hot water pipes or from low steam pipes, except where materials liable to spontaneous ignition have been placed on or near the heating apparatus. Artificial heat will, of course, increase the probability that oily wool, greasy wood, metal cuttings, etc., probability that oily wool, greasy wood, metal cuttings, etc.,
will take fire. The ordinary wood work of buildings will will take fire. Thite at 212°.
not ignite
la feullle des jeunes naturalistes.
A journal of a most interesting and valuable kind, under the above title, has recently en tered upon its second year. It is published in Paris, and its object is to become a means of communication and mutual instruction between such French youths as are willing to devote their leisure hours
to the study of natural history. The facilities for such purto the study of natural history. The facilities for such pur-
suits are great in France, as almost every large school has suits are great in France, as almost every large school has
has its own museum, containing specimens culled and arranged by the boys themselves. The editors, with commendable liberality, in vite communications from young natural ists in other countries, promising to translate and publish any which shall be found suitable for the pages of this magazine.
Those of our readers who use chloride of lime in ma ufactures are well aware of the quantity of the chlorine which escapes from the salt, and is lost. A good test for determining the amount of free chlorine has recently been published by Dr. Graeger. He takes a dilute solution of strongly acidified protosulphate of iron, and triturates it with a one tenth solution of permanganate of potassa. The compound must be kept in a close stoppered bottle. A solution of a weighed portion of the bleaching powder to be tested is added, through a pipette, to a portion of the protosulphate and permanganate solution in a stoppered flask, and the bottle well shaken. After this has stood a short time, the amount of protosulphate of iron undecomposed is estimated by means of the permanganate solution. One gramme of bleaching powder, containing $0 \cdot 3546$ grammes chlorine, requires $0 \cdot 278$ grammes protosul phate of iron; but the reaction is made additionally certain if the above named quantity of the iron salt be doubled Care must be taken that ammonio-sulphate of iron is not used, lest that most dangerous explosive, chloride of nitrogen, be formel.

BREAKWATERS.

The obvious desirability of these important constructions, in situations where the water is deep and the expense of laying foundations, to say nothing of the superior erections, is very great, has frequently attracted much attention to the question of floating breakwaters. It has been recently asserted by an eminent authority, that at a depth of fifteen feet below the surface, wave action is reduced to a nullity, or zero; and experiments fully prove the correctness of this cal culation. Of the great economy to be effected by a floating breakwater, with at least fifteen feet of material below the average horizontal line of wave motion, there can be no reasonable doubt; for an estimate of the cost of building breakwaters in the usual manner, namely, on a solid foundation, is given by an English engineer as ranging from $\$ 750$ to $\$ 2,100$ per foot run; and the splendid erection of this kind at Plymouth, England, which secures calm water to a large bay while the sea outside is one of the most tempestuous known in the world, cost; $\$ 75,000$ a year to keep in repair. Mr Thomas Cargill, C.E., in discoursing on the subject before the Society of Engineers, London, Eng., points out that the idea of a floating protection to a harbor is probably derived from the observed action of sea weeds. The Gulf weed always has calm water to leeward, although the enormous masses of it seldom are more than twenty-four inches deep in the water. In these days of cheap iron construction, a system of connected iron cylinders, securely fastened together and anchored at the ends might prove valuable, especially as the protection of iron from the action of salt water by cement is now known to be practicable and thoroughly efficient.

Examples for the Ladies.

Mrs. R. W. Sanderson, Poppenhausen Institute, College Point, N. Y., has
had a Wheeler \& Wiison Machine since February, 1859, employed, without repairs, in sewing all materials, from triple beaver to Nansook, (ten yours in dress-making); it is now used for instructing pupils in the Institute.

"I feel that my comf J. Shaw, Saugus, Mass.

NEW BOOKS AND PUBLICATIONS.

Sctence Record for 1872. Being a Compendium of the Scientific Progress and Discovery of the Past Year. 400 pages, octavo. 100 Engravings, Steel Plate and Wood. Handsomely bound in muslin, \$1.50: extra binding, half calf, ${ }^{*} 2$. Munn $\&$ Co., Publishers, 37 Pa
New York, Office of the Scientific American.
This new and elegant work presents, in convenient torm, notices of the leading subjects and events, pertaining to science, that have occupied pub-
lic attention during the past year. The progress of the more important lic attention during the past year. The progress of the more important
public works is duly chronicled, with illustrative engravings. The leading discoveries, facts, and improvements, in chemistry, mechanics, engineering, natural history, and the various arts and sciences, are recorded and illustrated. Sketches of prominent scientific men, gith illustrations, are given, and among the portraits are those of Faraday, Murchison, Darwin, Agassiz, Huxley,and Herschel. The Mont Cenis tunnel, the Hell Gate works, the Brook-
lyn suspension bridge, the Hoosac tunnel, the St. Louis bridge, the United lyn suspension bridge, the Hoosac tunnel, the St. Louis bridge, the United
States Patent Office, and other works are iliustrated. A large amount of useful information, tables, descriptions of improvements, with engraviugs, are likewise presented. The book is one of much interest and value, and should have a place in every library.
The Natronal Enctclopedia. A Compendium of Universal Information, Brought down to the Year 1871, with the Přonunciation of Every Term and Proper Name. lustrated with five hundred wood engravings. Complete in eighteen numb
The first two numbers of this work are received. As a popular work of eference it gives, in a compressed form, a vast fund of general information. emi-monthly, at 40 cents per number.
The Manufacture of Russia Sheev Iron. By John Percy, M.D.,F.R.S., Lecturer on Metallurgy at the Royal School of Mines, London, and to the Advanced Class of Artillery Author of "Metallurgy." With Illustrations. To which is added an Appendix on American Sheet Iron. Phila-
delphia: Henry Carey Baird, Industrial Publisher, 406 Walnut Street. Price, by mail, free of postage, 50 cents.
This is a pamphlet, containing an alleged exposition of the secrets of Rus-
sia sheet iron. Those interested in metallurgy will find it an interesting
Lord Bantam. A Satire. By the Author of " Ginx's Baby." 416 Broome Street. New York: George Routledge \& Sons, 416 Broome Street
Those who have read "Ginx's Baby" will need no assurance of ours that
its successor, "Lord Bantam," will repay the reading. The sharp pen of the uthor scarifies whatever and whoever it touches, but in a good humored解 the charge of bitterness.
The Hoosier Schoolmaster. A Novel. By Edward Eggles ton. With twenty-nine Illustrations. New York: Orange Judd \& Co., 245 Broadway.
This is a graphic picture of "Hoosier" life, entirely free from any thing
morally unwholesome, and possessing elements of popularity second to very morally unwholesome, and possessing
A Hand Book on Silex. Embraced in Three Practical Treatises. I. On Soluble Glass, and all its Applications in the Arts. II. On Glass Making in all its Details. III. A Guide for Soap Making ; the Manufacture of all
Soaps, and their Manipulations. Containing a lorge Soaps, and their Manipulations. Containing a lorge
Number of Useful Formulæ for Rendering Wood and Timber Fire and Dry Rot Proof, Silicifying Stones, Mortars, Cements, and Hydraulic Lime,White Washes, Paints
and Cements, and How to Protect Wooden Shingles, Pavements, Railroad Sleepers, etc., etc. By Dr. Lewis Feuchtwanger, Chemist and Mineralogist. New York: Published by L. and J. W. Feuchtwanger, No. 55 Cedar Street.
This book contains much of the subject matter treated in the author's
original work on soluble glass, the first edition of which is exhausted, the original work on soluble glass, the first edition of which is exhausted, the
wo departments on glass making and on soap making, having been added. The departments on glass making and on soap making, having been added. ork placed at the command of such as wish information upon the subjects numerated in the title.
Chicago and the Great Conflagration. By Elias Colbert and Everett Chamberlain. With Numerous Illustrations by Chapin \& Gluck, from Photographic Views Taken on
the Spot. Cincinnati \& New York: C. F. Vent. Chithe Spot. Cincinnati \& New York: C. F. Vent. ChiBrothers.
This volume supplies information in regard to the material prosperity of
Chicago antecedent to the great fire, a full account of the fire, and the conition of the city subsequent to the catastrophe. It is a large octavo of 28 pages.
Hanna's Complete Ready Reckoner and log, Table, and Form Book. By J. S. Hanna, Lumber Inspector,
Lockhaven, Pa. Philadelphia: J. B. Lippincott \& Co., Lockhaven, Pa. Philadelphia
Nos. $715 \& 717$ Market Street.
This is a very handy and reliable pocket manual, for those who have to perform calculations relating to measure
materials, wages, board, rent, etc., etc.
New York Observer Year Book for 1872.
Improved from their last year's issue, both in contents and appearance. It contains a list of all the Protestant clergym $\epsilon \mathrm{n}$ of the country, classified tainable elsewhere. Price $\$ 1$. New York Observer, 37 Park Row N. Y.

The Home Fire Insurance Company, Broadway, N.Y.
Has issued a set of twelve beautifully illuminated calenders, neatly fastibrary. Each card has the calender for the month, and is embellished with n appropriate original design, printed in colors.
almanacs.-We are indebted to G. W. Childs, of Philadelphia, for a copy The Public Ledger Almanac for 1872. The cover is embellished with nformation. Ninety thousand are issued, and a copy is presented to each bscriber of the Ledger
The publishers of "Work and Plafy," a magazine for children of both sexes, have issued an annual. containing directions for playing indoor and
outdoor games, tricks, charades, etc. It is well gotten up and illustrated,
and is from the house of Milton, Bradley \& Co., Springfield, Mass.

\%usiness and serymal.

The Charge for 1nsertion under this head is one Dollar a Line. If the Notices exceed Four Lines, One Dollar and a Half per Line will be charged.

Dry Steam, dries green lumber in 2 days; tobacco, in 3 hours; and is the best House Furnace. H. D. Bulkley, Patentee, Cleveland, Ohio. The paper that meets the eye of manufacturers throughout
 A Correspondent wanted, who understands the erection of works for, and the manutacture of, Malleable Gas Fittings, with the view of an engacement Address, Lock Box 1321, Titusville, Pa
A Mechanical Draughteman wants a situation in a Draughting Office. Good restimonials. i. F. Baker, 20 limon St., Hartford, Conn. For $2 \& 4$ Horse Engines, address Twiss Bro., New Haven, Ct. Working Models made at low rates, by Wm. E. Cass, 61 Hamilton St., Newark, N. J.
Improved Foot Lathes, Hand Planers, etc. Many a reader of this paper has one of them. Selling in all parts of the country, Canada, Europe, etc. Catalogre free. N. H. Baldwin. Laconia, N. H.
Automatic Gas Machines! The Cherpest method of Lighting Buildings out of the reach of City Gas Works. D. W. Holmes, 7 Liberty Square, Boston, Mass.
Patent Rights Sold on Commission by Moody \& Co., 7 Murray Street, New Fork city. Send 50 cts. for one year's subscription for "The Street, New York city. Send 50 cts. for one
Patent Bulletin," post paid. Agents wanted.
Steel Springs for Pocket Books, Memorandums and Diaries. Springs of all kinds made to order. J.F.Dubber,48 Hicks St.,Brooklyn,N.Y. Best Oak Tanned Leather and Vulcanized Rubber Belting. Greene, Tweed \& Co., 18 Park Place, New York.
Blake's Belt Studs. The cheapest and best fastening for Rubber and Leather Belting. Greene, Tweed \& Co., 18 Park Place, N. Y. Valuable Patent Right for Sale. Lock Box 22, Camden, N. J. Edson's Hygrodeik is the best Hygrometer in use. Send for circular. Geo. Raymond, Fitchburs, Mass., Gen'l Agent for United States.
The Improved Ingham or California Cleaner and Smutter Combined is beyond question one of the very best and cheapest in America. Sead for illustrated circular, giving full particulars. It will pay you. Address M. Deal \& Co., Bucyrus, Ohio, Manufacturers.
Presses,Dies \& all can tools. Ferracute IronWks,Bridgeton,N.J . Maine's Portable Ventilator-Adjustable to any window Fresh air without draft. See Scientific American, Dec. 23. Send for Cir
cular. Underhill \& Co., 95 Duane Street, New York hard \& Howe's machinery oils, the best
Chard \& Howe's machinery oils, the best--try them-134 Maiden Lane, New York
A practical Machinist, having first class Machinery for Iron Work, would like to hear of power, with inducement to settle in Virginia
Kansas, or intervening States. Address,J.D.A., Lock Box 91, Bostonn, Mass We will remove and prevent Scale in any Steam Boiler, or make no charge. Geo. W. Lord, 232 Arch street, Philadelphia, Pa.
Rubber Valves-Finest quality, cut at once for delivery; or moulded to order.
Place, New York.
For Hydraulic Jacks and Presses, New or Second Hand, send for circular to E. Lyon, 470 Grand Street, New York.
Williamson's Road Steamer and Steam Plow, with Thomson's Tires. Address D. D. Williamson, 32 Broadway, N. Y., or Box 1809.
Boynton's Lightning Saws. The genuine $\$ 500$ challenge. Will cut five times as fast as an ax. A 6 foot cross cut and buck
E. M. Boynton, 80 Beekman Street, New York, Sole Proprietor.
For Hand Fire Engines, address Rumsey \&Co.,Seneca Falls,N.Y . Over 800 different style Pumps for Tanners, Paper Makers, Fire Purposes, etc. Send for Catalogue. Rumsey \& Co. , Seneca, Falls, N. Y. Scale in Steam Boilers-To remove or prevent scale, use Allen's Patent Anti Lamina. In use over Five Years. J. J. Allen, 4 South
Delaware Avenue, Philadelphia, Pa. Delaware A venue, Philadelphia, Pa.
Taft's Portable Hot Air Vapor and Shower Bathing ApparatusAddress Portable Bath Co., Sag Harbor, N. Y. Send for Circular.
For Steam Fire Engines, address R. J. Gould, Newark, N. J. All kinds of Presses and Dies. Bliss \& Williams, successors to Mays \& Bliss, 118 to 122 Plymouth St. , Brooklyn. Send for Catalogue.
Brown's Coalyard Quarry \& Contractors'Apparatus for hoistinge and conveying material by irou cable. W.D.Andrews \& Bro,414 Water st.,N.Y. Presses, Dies, and Tinners' Tools. Conor \& Mays, late Mays \& Bliss, 4 to 8 Water st., opdosite Fulton Ferry, Brooklyn, N. Y.
Over 1,000 Tanners, Paper-makers, Contractors, \&c., use the Pumps of Heald, Sisco \& Co. See advertisement
For Solid Wrought-iron Beams, etc., see advertisement. Ad dress Union Iron Mills, Pittsburgh, Pa., for lithograph, etc.
Mining, Wrecking, Pumping, Drainage, or Irrigating Machinery, for sale or rent. See advertisement, Andrew's Patent, inside page. ertical Engines-Simple, Durable, Compact. Excel in econ omy of fuel and repair. All sizes made by the
Indianapolis, Ind. Send for cuts and price list.
Millstone Dressing Diamond Machine-Simple, effective, du rable. For description of the above see Scientific American, Nov. 27tlh
1869. Also, Glazier's Diamonds. John Dickinson, 64 Nassau st., N. Y. Peck's Patent Drop Press. Milo Peck \& Co., New Haven, Ct. To Ascertain where there will be a demand for new Machin ery, mechanics, or manutacturers' supplies, see Manufacturing News ot
United States in Boston Commercial Bulletin. Terms $\$ 4.00$ a year.

TO CITY SUBSCRIBERS.

The Scientificic American will hereafter be served to our city subscribers, either at their residences or places of business, at $\$ 3: 50$ a year, through the post office by mail carriers. The newsdealers throughout this city, Brooklyn, Jersey City, and Hoboken keep the Scientific American on sale, and supply subscribers regularly. Many prefer to receive their papers of dealers in their neighborhood. We recommend persons io patronize the local dealers if they wish the Scientific American or any other paper or magazine.

Illtesequngrio3.

[Wepresent herevorth a series of inquiries embracing a variety of topics of greater or less general interest. The questions are simpl
prefer to elicit practical answers from our readers.]
1.-Encke's Comet.-Will some of your readers inform
2.-Gearing for Saws.-Is it practicable to run a circu${ }^{2}$ ar ant
3.-Waterproofing Cotton Cloth.-I am making a tent of cotte
W. U.
4.-Face Worms,-Can any of your correspondents give mes.
5.-Emery Belts.-We wish information as to the manner of making and using emery
fluting irons or tongs. - S. \& B .
6.-Field Glass.-Is there any difference in the con struction of a day and a night field glass? If not, how can I determine the
ight adjustment?-F. H.
7.-Shellac and Linseed Oil.-Can I mix shellac varnish with linseed oil, and form a preparation that will give some luster whe applied to bare wood?-W.
8.-Cement for Sheet Iron and Rubber Packing.Can any of your readers inform me how to make a cement that will unit firmly Russian sheet iron and t
by changes of weather?-J. m .
9.-Varnishing Pitch Pine.-I am informed that some process has been discovered, by which varnish can be applied to pitch pine so as to prevent the wood from turning dark and becoming din
ance. Can any of your readers tell me how it is done ?-J. H.
10.-Coating Iron with Quicksilver.-Can iron weights be coated with quicksilver, by using hydrochloric acid to effect the union? Will some one refer me to some work whence I can get a sufficiently clear
account of the process to enable me to repeat it, or state the process for the public benefit?-T. H.'s S
11.-Dimensions of Boiler Grate.-I have a marine boiler, 7 feet in diameter, 12 feet long, with grate surface 3×7 feet inside the
boiler, which is cylindrical. The draft returns between two inch tubes. I would like to know if the grate surface is sufficient to burn shavings and
buther cuttings. - B.
12.-Steam Boilers.-Mr. G. H. Gregory, of Toronto, Canada, in commenting on a letter from Mr. Nicholson, published on page 5 of
our current volume, asks how it was that the motion of the steamer, in a sea or rough as that described, did not throw the water into contact with th
13.-Proportions of Saw Mill Gearing.-Supposing he pitman and saw of a Muley saw mill to weigh 200 pounds, and be attached a crank wrist of 26 inch stroke, and running at a speed of 350 revolu words, what proportion of the weight of saw and pe required, or, in ethe words, what proportion of the weight of saw and pitman is necessary as a
14.-Frictional Electricity.-I have a battery of this kind-turning with a crank, and designed for medical treatment-that I can not get to work; and I desire to get, fromsome of your many readers, a pos
sible remedy. It turns freely; the mechanism is all correct. The perma nent magnet is strong, and I can observe no derangment of the revolving magnet. I have examined all points of contact, insulation, etc., and have tried it with clo
do?-M. H. K.
15.-Compound Screw Gearing.-You have given an answer, furnished by J. P. N., of New York, to my query in regard to com-
pound gearing; but unfortunately, I am no better off than before, as the rule iven by J. P. N. will only apply to simple gearing, as I understand it. I speaking of compound gearing, I refer to those lathes on which the wheels, want is a quick meethod of finding the wheels without making elaborate cal ant is a quick method of finding the whe find the spindle and screw wheels, take it for granted that he did not understand my query. Will he please
16.-Application of Light Engines to Saw Mills.-Since he war, steam threshers are being introduced into this part of the Stace but, as most of the threshing is done early in the fall, many of them are idi saw mills during the winter season, but none that I know of have been suc-
cessful. Now, in theory it would appear that a ten horse power would saw half as much as a twenty horse power. Thus far, however, we have not been able to do that much with ours; so what we want to know is how to
apply such power to get satisfactory results. Timber is scarce, but we fre quently have large trees, requiring at least a fifty inch saw; so, to make the engine to a fifty or tifty-six inch saw so as to give the best results.-NEMO.

Basuxers to Courespandents.

SPECIAL NOTE.-This column is designed for the generalinterest and in struction of our readers, not for gratuitous replies to questions of a purely
business or personal nature. We will publish such inquires, however, when paia for as advertisemens and Personal."
J. J. W., of ——.-White cedar, placed in the ground for fence posts, is very durable. We know some that has lasted more than M. M., of Mo.-We see no advantage in constructing boilers
E. M. W.-You will find the subject of ice formation dis cussed at length in the Scientific Am
Oil in Winter.-To J. S., query 7, Jan. 1: By mixing kero sene oil with seal or sweet oil in a warm state, it will be prevented from
getting stiff in cold weather. The right proportions will be found upon getting stiff in cold weath
trial.-W. H. R., of N. J.
Etching on Glass.-F. H. can etch on his glass vessels as follows: Coat the object to be etched with a thin film of wax; then
with a sharp instrument. draw the desired characters carefully, cleaning the wax off in the figures; go to some chemist and get some fluoric acid which must be handled very carefully. The acid comes prepared in metal
bottles. Pour some of the acid in a small lead pan, which place in a still bottles. Pour some of the acid in a small lead pan, which place in a stil
larger vessel filled with sand; heat the sand and place the glass object over the gas liberated from the heated acid, and it will soon be found to be beautifully etched. Great care must be taken when this is going on, for
the gas, as well as the acid, is of a very deleterious character -E. X., of
Mass
M. H. B., of Ill.-In order to trim a flat boat, would the ex less of weight upon the heavy side be precisely double the amount neces-
sary to carry to the light side? Ans. Yes.
Frictional Electricity.-This can and has been used for telegraphing. It is
arch. - E. X., of Mass.
Preparation of Cotton Seed Oil.-Query No. 23, Jan. 6 Treat the oil with ozone or ozonized air; either will accomplish the de Cleaning Paint Brushes.-J. G. M. should try soaking Lleaning Castings.-Query No. 15, Jan. 1. I advise L. V B. to try the sand blast for cleaning his brass castings.-W. H. R., o
N. J. Rotary Motion.-W. T. V., query 13, Jan 1, 1872, can im part rotary motion, of any desired speed, to the vertical shaft described
by a suitable train of gearing, actuated by a barrel spring.-J. M.,ofN.Y back Pressure.-To R. R.: The back pressure upon piston will not be materially increased, provided you leave the end of five inch pipe open. Do no "use any back pressure valve. The pipe must be laid
so that it will not "trap." You should use leng round bends instead o elbows.-J. M., of
Gun Scattering Shot.-H. W., query No. 3, Jan, 1, can prevent hls gun from scattering by inserting a ring about half an inch in widh in the in about one sixteenth of an inch in thickness, and be fitted very neatly.W. H. R., of N. J.

Bronze Paint.-This can be made by mixing chrome green two pounds, ivory black, one ounce, chrome yellow, one ounce, good
japan varnish, one gill. Grind all japan varnish,
W., of Mass.
Gun Scattering Shot.-If H. W. will inclose his shot in strong, round paper cartridges, just fitting the band, his charge will not stick, and glued with Bronzing Iron.-To bronze iron, J. G. H. should obtain, at any paint store, a bottle of gold size and some bronze powder: mix the articles in a saucer to the proper consistency and apply immediately, a
it soon dries hard. Any sort of brush can be used.-H. E. A., of Conn.
Fusing Sulphur.-F. C. A. can fuse his sulphur by a heat of 226° Fah. If the heat is carried above 450° Fah., the sulphur becomes dark colored and thick,like molasses. F. C. A.
some book on chemistry.-H. E. A., of Conn.
ement for Leather and Iron.-E. A., query No. 4, in No 1, present volume, can make a very good cement for leather and iron
by making a compound of glue dissolved in vinegar, heated by making a compound of glue dissolved in vinegar, heated over a mode-
rate fire; then stir in one third its weight of white pine pitch. This should be done in a glue pot, where it should be kept and heated whenever wanted for use.-J. L. T., of 0
Uun Scattering Shot.-E. A., January 1st, asks how his gun can be made to shoot closer. It can only be done by having the gun
rebored, so that the bore shall taper towards the muzzle. There is, howrebored, so that the bore shall taper to wards the muzzle. There is, however, an article on this subject on the 394th page of Vol. XXIII, Scienti-
FIC American. The Roper gun, made in Hartford, Conn., has a close shooting attachment, which consists of a ring of steel gradually tapering towards the muzzle (of the
sportsman.-E. X. of Mass.
Coimpound Gears in Screw Cutting.-If R. H. S. will follow my example, he will find it both tsimple and reliable. Let him make a fraction of his leading screw and screw to be cut. with his leading screw for numerator. Now let him split these into factors, and by adding always the driving gears. Suppose he wants to cut twenty-four thread per inch. Example 1: Four twenty-fourths is equal to (2 divided by 6) multiplied by (2 divided by 4). Now by adding a cipher to each, the gears will be (20 divided by 60) multiplied by (20 divided by 400 . If he has not
two twenties, let him increase one numerator and one denominator, say one fourth, which would be (25 divided by 75) multiplied by (20 divided by 40) ; if he still has not got these gears, let him alter them again until he finds a right set of gears. Now I will give him another method from the same factors. Example 2: Four twenty-four ths is equal to (2 divided by 3) multiplied by (2 divided by 4). By multiplying the first fraction by 12 and the other by 15 , he will have: (24 divided by 36) multiplied by (30 divided by
120); or he can multiply by any numbers to suit his gears. If this is sim ple and reliable enough for R. F. S., I hope he will acknowledge it, as
have been solicited to write a book on screw cutting.-C. F., of N. J.
Tightening of Belts.-I notice in Vol. XXV., No. 21, that G. W. F. wants to know whether belts are tighter in wet or dry weather. G. W. F. wants to know whether belts are tighter in wet or dry weather
In Vol. XXV.,No. 26, E. O. McC., of S. C., says belts slacken in wet weather, and thinks that what he saw of a few (probably) new belts is a proof of the truth of his statement. Now I fully agree with E . O. McC. in answering the query, but I judge from a much broader observation than E .
O. McC. or S. S. F. (Vol. XXVI., No. 1.) I have worked around leather
belting for a number of years, and for the last three years have had belts belting for a number of years, and for the last three years have had belts
of the following dimensions under my care: one 142 feet long by 36 inches wide; one 188 feet 6 inches long by 34 inches wide: one 85 feet 6 inches long by 34 inches wide. These belts are all double and made of the best of leather,all running from one fly wheel 30 feet in diameter to 6 and 7 feet driven pulleys. Now I know that on a damp day these belts sag from 6 inches to 18 inches more than they do on a pleasant day. I hear some correspon-
dent say: Your machinery drives harder. Well, I will tell such that we were stopped eight weeks an spinner's strike in the summer that 1870 , that, during all that time, the belt, half way between the pulleys, would indicate the state of the atmosphere as well as a barometer.-J. D. C., of Mass.

Declined.

by the Editor, but their publication is respectfully declined:
Cements.-M. M
ire Kindler.-D. W
flying Machine.-W. F..W
Gas.-J. S. P.
Geometrical Problem.-W. P. M.
Latent Heat.-F. of T.
Massachusetts Institute of Technology.-W. O. C
Mechanical Movement.-E. N.
New Steamboat Act.-T. W. B.
Psychic Force.-J. C. B.-P. P. H.-J. A. S
Rupture of Boilers.-T. W. B
strains on Trusses.-J. McR.
o Smoke or not to Smoke.-E. E. S.
aswers to Correspondents.-L. E. C.-R. R. R.-C. S.-
G. W.-P. L. S.-E. B. R.-O. C. W.-W. J. B.-W. O. B.
-C. D. S.-W. Q. \& Co
Queries.-W. E. H.-W. J. P.-T. B.-C. G.-M. L. D.-W
E.․ (r. A. I.

getent Anterian and fureigu zatents.

Under this heading we shall publish
nent home and foreagn vatents.

Shof fastening. - Samuel P. R. Triscott and George Alfred Wheeler Worcester, Mass.-This invention has for its object to furnish an improved device for fastening the ends of boot and shoe laces, which shall hold the
laces or strings firmly and securely. The device can be readily struck up out of sheet metal, in two pieoes, so that it can be very easily and cheaply made, and, at the same time, can be ornamented in any desired style or manner.
Saw Filer's Vise.-Nathan H. Baldwin. Laconia, N. H.-This invention has for its object to furnish an improved vise for saw filer's use, holding the saw firmly, and enabling it to be adjusted in any required position. The
coot of the yise rests upon the bench or support, to which it is secured by a foot or the vise rests upon the bench or support, to which it is secured by a
hand bat. The standard of the vise has its lower end jointed and secured to he upper end of the foot by means of a bolt and hand nut. To the upper end of the standard is pivoted the middle part of the rear jaw of the vise uper end the lower edge of the middle pa t of the rear jaw is tormed a half circle, having a slot formed in it upon the arc of a circle having its center at the voting point of the said jaw. A cross head bolt passes through the slot of he half circle, through a hole in the upper end of the standard, and has a and nut screwed upon it, so that by turning the head of the bolt across the
lot in the half circle, and tightening up the nut, the jaws may be securely eld in place when adjusted. By a simple adjustment, the jaws may be eversedfor holding the saw to joint the teeth.
Circular Saw Mill.-Melancton W. Danks. Fulton, N. Y., assignor to mself and J. E. Harroun, of same place.-The object of this invention is
provide convenient and efflcient means for feeding, gigging back, and hanging or varying the feed to circular saws, so as to adapt the feed to ight or heavy work; and it consists in a series of bevel friction wheels, so arranged that, while the feedmotion and the gigging motion of the carriage
is produced by means of said bevel friction wheeels, the feed may be varied at the will of the attendant, as may be desired or necessary. The inventor does not confine himself to any particular number of bevelfriction wheels, nor to any particular diameter or proportion for either the sliding wheels or those on the feed shafts. Neither does he co:ffine himself strictly to saw mill feed ork in the application of his bevel triction wheels, as they may, he claims, apphed
adjustable Cut-off Valve.-George w. Smith, New Haven, Conn.e valves oscillate in shafts. Accmbination of adjustable packing with combination, ot a walking beam provided with spring catches at its ends ree armed plates, ropes or chains, and springs, with each other and with the valve shafts and driving shaft, is another of the claims. A combination of pins, spring, bent levers, and connecting rod, with spring toes, walking eam, and governor, constitute the third claim. We judge that the in
Hair Switch.-Benjamin Franklin Burgess, Jr.. Bcston, Mass.-This tly of human hair and partly of thread or silk, or other suitable material. is thread portion is surrounded by the human hair, or forms the central ortion of the switch, the arrangement being such that the human hair alone shows, and, being such, the natural hair of the wearer can be perfectly
matched, which cannot be done with any dyed material. A switch, made matched, which cannot be done with any dyed material. A switch, made according to this invention, will not get rusty like other artificial switches. of human hair and fine thread, keeps perfectly clean, and is entirely unob. jectionable for ladies' wear.
Harvester.-John b. Thomison, Lynchburg, Tenn.-This machine is to used either as a reaper or mower, and is so constructed as to rake the grain and drop it automatically upon the ground, in such a way as to place of machines, the details are such as require diagrams for their illustration. We can only add, theretore, that the means employed for making the change from mower to reaper, and vice versa, are simple and easily adjusted, while
the whole seems to be a substantial structure, capable of doing its work with small waste of power, and with little wear of parts.
Pruning Knife.-David Morris, Bartlett, Ohio.-In this invention, pruning is accomplished by a knife that slides toward and away from a stationary hook, said knife moving in guides, and being moved by a rod that runs
through the tubular handle of the instrument. The extremity of said handle bears levers with cogged segmental heads, which engage with the serrations
on the head of the rod, and enable it to be reciprocated, by working the ers, so as to move the sliding knife
Suyt Machine.-John Wernwag, Harper's Ferry, w. Va.-This invention relates to an apparatus which receives grain as it comes from
the threshing machine in a hopper whence it is carried through a conveyor trough, wherein it is secured and wherefrom it is discharged into a revolving conical screen, within which it is beaten and separated from refuse grain and from which it is emptied into a fan by whose blast it is winnowed, the
dust passing off through a trunk, the good grain falling through a spout, dust passing off through a trunk, the good grain
the refuse grain being charged by a conveyor.
Car Couplings.-Franklin Nalley, of Battle Ground, Ind.-This invention has for its object to furnish an improved car coupling, so constructed as to couple the cars automatically when they are run together. By this con
struction, as the coupling link enters the bumper head, it pushes a catch back, which releases the coupling pin and allows it to drop into place, securing the link. By inserting the double coupling link in the upper and middle holes, in the middle and lower holes, or in the lower hole and beneath the bottom of the bumper heads, cars of difterent hights
coupled with the same facility as if they were all of the same hight.
Spring bit for Cleaning and Enlarging Wells.-James H. Boyd, of West Monterey, Pa.-The object of this invention is to produce a convenient application, to the shank of the bit, of a spring for crowding it against the ring close to the bit during its application to the well. When the tool is to be applied to a well, the spring is held close to the shank by the spring catch, so that the insertion of the tool will be facilitated. The projecting outer end of the catch at the same time holds the bit clear from the wall of the well, preventing it from scraping while being let down. As soon as the device is being worked, when in its proper place the catch will release the spring, causing the same to crowd
the bit against the wall of the well. For enlarging a well, the bit is used wie bit against the wall of the well. For enlarging a well, the bit is used
with a long spring. In this case the spring will enter the smaller part of the well and cause the bit to work in the larger part of the same upon the shoulder. For cleaning out wells the short spring is used, which crowds the bit against the wall of the well for properly scraping the same
Head Rest for Car Seat.- John C. Giffing, of New York city.-The head
rest is attached to a base block, which rests upon the top of the seat when rest is attached to a base block, which rests upon the top of the seat when
the head rest is attached. The head rest is secured in this position by two the head rest is attached. The head rest is secured in this position by two
metallic straps. The ends of the base block are sawed in a distance equal or about equal to the width of the straps. The straps are bent to form square cornered staples. The front leg of the staple shaped strap extends
down on the front side of the back of the seat. The back leg extends down down on the front side of the back of the seat. The back leg extends down
on the back side of the seat, and may be shorter than the other leg. The on the back side of the seat, and may be shorter than the other leg. The
winth of the block is designed to be about equal to the thickness of the back of the seat, so that the legs of the two straps will straddle the back of the are slipped into the slots in the ends of the block, where they are tastened by pins. In leaning back or resting against the back of the seat, the person's.back will bear against the front legs of the straps, which will keep the head rest in its proper position when the head bears upon the cushion.
When not in use the head rest is folded up, in which condition it may be When not in use the head rest is folded up, in which condition
carried in a satchel or overcoat pocket without inconvenience.
Clothes Wringer.-John Fox, of Farmersville, Iowa.-This is an improved clothes wringer, which, adjusting itself to the varying thickness of
the articles passing through it, and being easily adjusted to operate upon eful utensil.

Jandary 20, 1872.$]$
§ricutific Ammitan.
 blasting coal, rock, eto. The paper is cut in peceuliar form, one end is sat
urated with a solution of saltpeter and dried, and then the beveled side is

 other material or suitable size and form, and the tube
The match, properly prepared, may be rolled in the of the tube, or at-
the The match, properly prepared, may ot
tached to the end of the tube in any othele manner. The powder is
prevented from escaping from the end of the tube by means of a stopper of prevented from escaping from the end of the tube by means of a stopper of
soap or other suitable material in the end. The squib may be dipped in liquid sulphur to render it more inflammable, if desired. It is used for the pur-
pose of throwing fire through the small opening left in a cartridge by th pose of throwing fire through the small opening left in a cartrigge by
withdrawal of the tapering piece of iron or the needle, after the cartridge withdrawal of the tapering piece of iron or the needle, after the cartriage has been tamped in the hole which has been drined in the called a " blasting barrel," that is generally put into the hole with the cartridge and left in when the blast is discharged. Squibs of some
kind are used,by all miners, ordinarily made upon the spot and coassequently very imperfectly prepared, and with material unsuited to the purpose. The
object of this invention is to furnish these squibs as perfect as they can be object of this invention is to furnish these squibs as perfect as they can be
made of the most suitable materals, and have them ready for use in mining and other districts.
Cloth Shearing Machine.-Michael Craven, of Dedham, Mass.-This invention refers to a new shear rest for shearing cloth, such as plain and fancy cassimeres, satinets, shawls, etc. Its object is to prevent the forving
of flocks on the back of the goods while being sheared. A roller as long as of flocks on the back of the goods while being sheared. A roller as long as
the brush of the machine is used, which hangs in arms that project from a the brush of the machine is used, which hangs in arms that project from a
rod, whose ends are journals by which the roller frame is pivoted to the frame of the machine. The roller is carried up clear of the brush. The cloth is drawn over the roller with its face side to the brush, which will
raise the nap so that the shear blades may cut it off. The cloth passes between the roller and brush, both being close enough together to raise a sufflcient nap, which loosens ste flock felted into the cloth. In ordinary shear-
ing machines, these flocks collect into lumps and accumulate on the back of ing machines, these flocks collect into lumps and accumulate on the back of
the cloth, so that the shears will cut holes where such lumps appear. The the cloth, so that the shears will cut holes where such lumps appear. The
roller in thismachine will keep the lumps back and off the cutters, besides creating less friction than the ordinary flat, sharp edged rest now in use. Brush.-George Pirrung and Felix Pirrung, of Chicago, Ill.-This in-BRUSH.-George Pirrung and Felix Pirrung, of Chicago, M.- This in-
vention relates to that class of brushes where the bristles or other material vention relates to that class of brushes where the bristes or other material are conined to a rectangular head by means of a groove or grooves therein,
as clothes, shoe, whitewash brushes, etc. The head of the brush is grooved,
and the bristles are doubled at the middle and confined in the groove by a and the bristles are doubled at the middle and confined in the groove by a piece of wood, metal, or other material, by means of screws, nails, or in any
substantial manner. At the ends of the brush, the bristles are secured by substantial manner. At the ends of the brush, the bristies are secured by
metallic clasps attached to the head by nails or screws. The clusters of metallic clasps attached to the head by nails or screws. The clusters of
bristles forming the ends of the brush are likewise secured by wires fastened
by the nails. The bristles tor the sides of the brush may be put into the by the nails. The bristles tor the sides of the brush may be put into the groove in clusters or sections, the bristles of each cluster being secured to-
gether by wires. The wires may connect the end clusters with the side clusgether by wires. The wires may connect the end clusters with the
ters. The head is provided with holes to receive the bent handle.
Bale Tie.-Floyd G. Brown, of Brenham, Tex.-This invention is a new buckle or tie for holding the ends of the bands of cotton bales. It is formed
with two arms or ends. both of which are doubled, forming thereby a hole in the tie for receiving one end of the band. The object of the invention is chiefly to prevent the loss of the buckle from the band while the latter is
loose, and also to facilitate the fastening of the band to the bale. It is made of sheet metal of rectangular form, with two nearly square apertures near the ends and with a transverse slot in the middle. The buckle is formed
from this plate by doobling the same in line with the slot. One end of the band, after being bent, is fitted through the aperture in the buckle so as to and all the slack of the band is secured, when the operator makes fast the outer end of the band by doubling all the surplus of the same, so that it also
can be hooked over the bars. This tie, it is claimed, will be absolutely secure, and will prevent the spontaneous working loose of the band under all
Iron Column.-William A. Gunn, of Lexington, Ky.-This invention con-
sists in an improved construction of metallic columns to givelthe strength sists in an improved construction of metallic columns to givelthe strength
of the double T beam in two directions, while the necessity for cutting and of the double T beam in two directions, while the necessity for cutting and
riveting is greatly lessened. Double T bars or beams of wrought iron or riveeling ire used. Two of the bars or beams are placed with their sides against the edges of a third bar or beam, and are riveted to said bar or beam, the
rivets passing through the flanges of the latter, and through the bodies of rivets passing through the flanges of the latter, and through the bodies of
the first named bars or beams. The rivets should not be placed opposite
each other in the different bars or beams, and may be further apart than in each other in the different bars or beams, and may be
posts or columns constructed in the ordinary manner
Animal Poke.-Stephen C. Leonard, of Rushville, N. Y.-This is a new or pokes and with contrivances for adjusting the throat latch in suitable position and at suitable hight to fit larger or smaller animals. The top of
the bow may be cushioned by means of leather wound around or applied the bow may
against it.
Car Coupling.-Frederick A. Illingworth, of Waltham, Mass.-This is an improved arrangement of coupling hook and shackle on a car coupling and has for its object to bring all the parts of a coupling under more perfec
control, and, at the same time, insure greater reliability than can be foun on the cars now in use. The invention consists first in providing the pivot-
ed coupling hook with a prop or device whereby it can be held up clear o ed coupling hook with a prop or device whereby it can be held up clear o
the link or shackle or let down at will. The invention also consists in th new arrangement of a pivoted connecting shackle, which has also a prop,
whereby it can be held in a horizontal position ready for coupling. Furthermore, the invention consists in a general new arrangement of parts for
the purpose specified, and by which ordinary coupling links can also be with this improved coupling.
Double Drrrick.-Asa M. Tomb, of Owego, N. Y., assignor to him-
elf and Charles M. Haywood, of same place.-This invention relates to a new machine for hoisting and lowering heavy weights and conveying the same from one place to another; and consists in a new ar-
rangement of hoisting ropes, pulleys, and shafts. The frame of the derrick on caster wheels, wbich support it on the ground and permit its conveni ent and speedy conveyance from one locality to another. A windlass is
hung horizontally in bearings secured to the frame. The operating shaft is hung horizontally in bearings secured to the frame. The operating shart shaft, and a pinion on the same, the pinion meshing into a toothed whee which is mounted upon the windass. The elevacing ropes to the windlass, and each is thence carried over a friction roller, and
tached to
over a loose pulley, on a horizontal rod secured to the upper part of the over a loose pulley, on a horizontal rod secured to the upper part of the
frame. From this pulley the rope passes over a loose pulley, on a suspendd shaft, and thence up again over another loose pulley, and back to a shaft
to which its end is fastened. Thus, the two ropes being applied to the ends of the shaft, the shaft is held suspended. The windlass, when turned ends of the shaft, the shaft is held suspended. The windlass, when turned
to wind up or unwind the ropes, causes this shaft to be raised or lowered.
Two or more loose pulleys on this shaft serve to hold chains from which the weight is held suspended. The pulleys can be brought more or less fa apart according to the length of the thing to be hoisted and conveyed. I
stone quarries and yards, and also for building and other purposes, this der stone quarries and yards, and also f
rick will be of considerable value.
Millstone Dress.-Edmund Deer, of Annapolis, Ind.-This inven tion relates to improvements in dressing burr millstones for grind
ing grain; and consists in feather edge zigzag furrows in the runner and in feather edge furrows in the bed stone, arranged in a peculia rows. Short furrows extend from the encless furrows to the eye circle.
There may be more or less in number of these short feathered furrows, and more than three endless furrows in the bed stone. In the runner a series or feather edge furrows radiate from the edge of the eye, and extend to th
periphery of the stone. Between these furrows are intermediate furrows periphery of the stone. Between these furrows are intermediate furrows,
commencing at the periphery of the stone, connecting with each other and with the radial furrows by means of short furrows, which latter are snearly right angles with the intermediate furrows. The intersection of these
h ort furrows with each of the longer furrows at the particular point where
the partially ground grain is driven around the endless furrow of the be
gives the short furrow ample opportunity to receive air and feed from the eye. The endless furrows in the bed diminish in size from the outer one in-
ward. The advantages of the endless furrow are that, starting with the ward. The deep edge of the furrow, the grain is not driven directly up the slant of the furrow, but is driven round, gradually nearing the feathe edge, and becoming more and more crushed and more nearly pulverized
than it would be were it to pass directly across the furrow. Nothing re mains atrest in these endless furrows, as the action of the air is too powe ful to allow the partially crushed grain to remain at rest. The "land" o
the skirt gives ample chance for the runner to act upon the unfinishe four, and there being no furrows in the skirt to receive the flour, it is hrown off by the runner fully ground. Furrowing of this description will, it is claimed, do more grinding, with less friction, and consequently with
tess power than the "drop" now in common use. Instead of making endless eather edge furrows in the bed stone, the furrow may be made in sections, or form a series of arcs of circles with their feather edges in the direction of the skirt of the stone. The inventor does not, therefore, confine himself
strictly to endless or continuous furrows. The " land" in the bed stone may also be in sections so long as it forms, as a whole, a parallel with the skirt of the stone.
Hemmer for Sewing Machines.-S. b. Lawrence, of Scarsdale, N. Y.This hemmer attachment consists of a presser having a slot and point, and
a detachable scroll secured by a screw or its equivalent. It also consists in a notch formed in the slot of the presser to allow the adjustment of the poin Plows.-Wi
Plows.-William H. H. Doty, of Sonora, Ohio.-Thisinvention has for its
object to furnish use as a double shovel plo w, a single shovel plow, or a covering plow. The handles may be readily adjusted ! higher and lower, according to the hight
of the plowman. The construction also enables the plow to be taken apart and packed in. The construction also enables the plow to be taken apart A longitudinally adjustable frame, combined with a pair of handles pivoted thereto, and supported by adjustable braces, so that the handles and beams of the patentee. House beles.-Amos L. Swan, of Cherry Valley, N. Y.-This improve cam and two slotted plates which connect the cam with the bell hammer, and in the general construction, arrangement, and combination of the parts
and:devices whereby, it is claimed, the apparatus is made much more positive ts action, ringing the bell whether the cord be pulled quick or slow. Bung Inserter.- James Gillies, of Glasgow, Great Britain.-Thisinve crew threaded metallic bushes for the bung holes of casks and other like holes in other vessels. The tool is formed of a main round spindle, with a square head at top (for being turned by a powerful ordinary straight two armed wrench or lever, with the hole in the center, such as used for turning crew taps and wideners), having a toothed or serrated conical boss or segis prevented from coming off by a screw nut. The spindle has a completric piece) formed on it as a duplex cam, the two part cam fitting and filling the conical interior of the bush, so that when inserted in it the turning of the spincle in the eye of the eccentric of the boss by the wrench at the top, causes one or the other of the wings to act as an eccentric wedge or
cam and press the teeth of the griping boss into the innerservice of the bush, the griping action of the teeth increasing in proportion to the force
required to turn or tighten and fix the bush, just also as the bush is gettin further into the wood. which strengthens and sustains it for the necessary outward pressure of the cam tool, which can then get a stronger tap on the
head to insure the non-slipping of the teeth within the bush. Both the pindle and griping boss are preferred to be made of the best steel and tempered especially at the acting parts, so as th
time of the wearing efficiency of the tool.
Blind Stops.-Perry A. Burgess, of Butler, Mo.-This invention is an imrovement in the class of blind slat adjusters in which a bar is connected
ith the slats at one end thereof. The slats are provided with a pivot at ach end near the rear edge, by which they are pivoted to the stiles, and they have another pivot at one end,near the.inner edge,by which they are pivoted
to the adjusting bar, which is fitted in a recess or rabbet in the inner edge of to the adjusting bar, which is fitted in a recess or rabbet in the inner edge of the style extending from one cross piece to the other. The pivots are placed near to the outer edge of the adjusting bar as they may be with safety,
and the bottom of the recess is near the pins so that the slats may close completely. A spiral spring is connected to the upper end of the adjusting bar and to the top of the blind, and adjusted to pull the bar up and close the
and slats when let free. A groove is formed in the blind frame for this spring, and a grooved plate fastened therein for attaching the spring and preventing he latter from wearing the wood. It is grooved to let the spring and the justing bar flush with the surface of the blind. A grooved catch plate thumb bit is jointed to the lower end of the bar to engage with the said holes and hold the blinds more or less open, as required. A spring on the ower end of the
the catch plate.
base Burning Cooking Stove.-William Clark, of Shelburne, Vt.-This invention relates to a new cooking stove, which is provided with a circular
freplace and rotary interior lining thereto, and with a feed cylinder for the utomatic supply of coal, and other new arrangements of parts, whereby it claimed to be an important improvement on the cooking stoves now in
sse. The invention consists chiefly in the arrangement of the aforemen tioned rotary firebox, which can be set or turned at will to regulate the apply of coal, whichains a removable cross partition to have but half or under the oven, as may be desired. The invention also consistsin a new rangement of draft.door, grate, oven, and water reservoir.
Hominy Mills.-Theodore Hudnut, of Terre Haute, Ind.-A long iron or teel shaft of suitable length and size is used for the purpose, and a wood haft is fitted upon it, said shatt being as much shorter than the iron shaft as
is necessary to have the latter project at each end to form the journals and receive the gearing for turning it. The wood shaft is secured by means of collars keyed to the iron shaft and bolted to the wood shaft, and it has four or more plain sides, according to the number of rows of cutters it is to
carry, each side naving a metal plate attached to it. These metal plates ave lugs attached to them at intervals of the same distance apart it is required to have the cutters, the said lugs being arranged lengthwise trans-
versely of the plates; and those of one row are placed a short distance laterally from those of the next rows either way, in such order that they form ith the inner point of the cutting edges projecting over a true circle struck rom the axis of the shaft, and are bolied to the arms between them. These arms are bolted to the luge on the plates, being laid across said plates tanentially, so that they are conflned against turning on the bolts by said
plates. The collars are provided with broad plano-convex disks which keep the grain away from the bearings and in contact with the cutters. 'i'his arrangement of the arms or holders of the cutters permits of their being eadily removed for repairing or removing the cutters.
Liquid Meter.-David W. Huntington and William A. Hempstead, of angement of yalves and ports whereby, in a double cylinder meter, the pisto
and of one cylinder actuates the valve for the other, and vice versa. The sec-
nd part consists in an improved arrangement of valves fir balancing them nd part consists in an improved arrangement of valves fir balancing them The third part consists in a device for steadying the piston rods during the
time of their greatest extension from the stuting box of the cylinder; and the fourth part consists in the combination, with a water meter, of a mud and sand trap
Clover
vention ached to a wooden core, said staves having roughened exterior surfaces nd having also knobs or raised parts standing out from the periphery in cir surface with transverse grooves, in the same, which the raised parts of the cylinder traverse.

Practical Hilts to Inventors.

M UNN \& CO., Publishers of the Scientific American解 d themselves of their services in procuring patents, and many millions o dollars have accrued to the patentees, whose specifications and claims they
haveprepared. No discrimination against foreigners; subjects of all counies obtain p.

How Can I Obtain a Patent ?

the closing inquiry in nearly every letter, describing some invention Tich comes to this ofllce. A positive answer can only be had by presentin
complete application for a patent to the Commissioner of Patents. An pplication consists of a Model, Drawings, Petition, Oath, and full Specifica ion. Various offlcial rules and formalities must also be observed. The
forts of the inventor to do all this business himself are generally without access. After great perplexity and delay, he is usually glad to seek the aid of persons experienced in patent business, and have all the work done ove gain. The best plan is to solicit proper advice at the beginning. If the
parties consulted are honorable men, the inventor may safely confide hi deas to them: they will advise whether the improvement is probably pat

How Can I Best Secure My Invention?

This is an inquiry which one inventor naturally asks another, who has had
ome experience in obtaining patents. His answer generally is as follows ome experie
and correct:
Construct a neat model. not crer a foot in any dimension-smaller if pos. New York, together with a description of its operation and merits. On re ceipt thereof, they will examine the invention carefully, and advise you ast its patentability, free of charge. Or, if you have not time, or the means al
hand, to construct a model, make as good a pen and ink sketch of the im rovement s possible, odel, make as good a pen and as to the prospect ot patent will be received, usually, by return of mail. It is sometimes best to
have a search made at the Patent of an application for a patent.

Preliminary Examination.

In order to have such search, make out a written description of the invention, in your own words, and a pencil, or pen and ink, sketch. Send these
with the tee of $\$ 5$, by mail, addressed to MuNv \& Co, 37 Park Row, and in due time you will receive an acknowledgment thereot, followed by a writ ten report in regard to the patentability of yonr improvement. This specia search is made with great care. among the models and patents at W
ton, to ascertain whether the improvement presented is patentable.

Caveats.

Persons desiring to flle a caveat can have the papers prepared in the shor est time, by sending a sketch and description of the invention. The Govern
nent tee for a caveat is $\$ 10$. A pamphlet of advice regarding applications or patents and caveats is furnished gratis, on application by mail. Addres

To Make an Application for a Patent.
The applicant for a patent should furnish a model ot his invention, ir sus
 of which his composition consists. These should be securely packed, the inventor's name marked on them, and sent by express, prepaid. Small mod-
els, from a distance, can often be sent cheaper by mail. The safest way to remit money is by a draft, or postal order, on New York, payable to the or-
der of MUNN \& Co. Persons who live in remote parts of the country can der of MUNN \& Co. Persons who live in remote parts of the country can
usually purchase drafts from their merchants on their New York corres-

Re-issues.

A re-issue is granted to the original patentee, his heirs, or the assignees o e entire interest, when, by reason of an insufficient or defective specific ion, the original patent is invalid, provided the error has arisen from inad tion.
ach distinct part of the invention comprehended in his original application by paying the required fee in each case, and complying with the other re-
quirements of the law, as in original applications. Address MUNN \& Co. 37 Park Row, for full particulars.

Trademarks.
Any person or firm domiciled in the United States, or any firm or corpora. citizens of the United States, may register their designs and obtain pro tection. This is very important to manufacturers in this country, and equal-
so to foreigners. For full particulars address MUNN \& C 0. , 37 Park Row New York.

Design Patents.

Foreign designers and manufacturers, who send goods to this country, may
ecure patents nere upon their new patterns, and thus prevent others from tabricating or selling the same goods in this market.
A patent for a design may be graated to any person, whether citizen or Aien, tor any new and original design for a manufacture, bust, statue, altorelievo, or bas relief; any new and original design for the princression, orna-
en, silk, cotton, or other fabrics; any new and original impres ment. pattern, print, or picture, to be printed, pain
placed on or worked into any article of manufacture
Design patents are equally as important to citizens as to foreigners. For
tull particulars send for pamphlet to MUNN \& Co., 37 Park Row, New York.

Rejected Cases.

Rejected cases, or defective papers, remodeled for parties who have made applications for themselves, or through other agents. Terms moderate.
Address MUNS \& Co., stating particulars.

European Patents.

MUNN \& Co. have solicited a larger number of European Patents than ny other agency. They have agents located at London, Paris, Brussels
Berlin, and other chief cities. A pamphlet pertaining to foreign patents Serlin, and other chief cities. A pamphlet pertaining to foreign patents
and the cost of procuring patents in all countries, sent free.

Munn \& Co. will be happy to see inventors in person, at their office, or to avise them by letter. In all cases, they may expect an honest opinion. For
uch consultations, opinion, and advice, no charge is made. Write plain o not use pencil, nor pale ink; be briet.
All business committed to

All business committed and strictly confdential.

In all matters pertaining to patents, such as conducting interferences wing assignments, examinations into the validity or patents, etc., special care and atten
pamphlets of instruction and advice,

MUNN \& CO.
PUblishers scientific american,
3y Park Row, New York.
office in washington-Corner F and 7 th streets, opposite

[OFFICIAL.]
 Index of Inventions

For which Letters Patent of the United States were granted
for the week ending jandary 9, 1872, and each bearing that date.
Alarm for portable boxes, et
Baby tender, C. N. Ziegler..
Badge for hats, illuminated, W. J. Scott
Bag holder and truck, combined, P. C. Van Brocklin
Bale tie, J.T. Butler.
Bed bottom, spring, S. Logan.
Bee hive, H. Staggs.........
Bee hive, J. W. Gladding
Beer, apparatus for cooling, A. Foubert
irell, sheet steel, J. E. Tencate
Blackboard rubber,
Blackboard rubber, Bigger and Pugh
Bone black for \#ltering, artificial, W. H. Kelsey
Boot and shoe, J. A. E. Moroney
Boot and shoe, J. B. Field.......
Boot and shoo, J. B. Field..
Boot clamp for base ball players, E. S. Ellis.
Bottle stoppers, fastening for, H. T. Dewey
Brick kiln, T. Lindsley
Brick machine, J. Orm
Bridge for cars, platform, A. Rank, (reissue).
Brooms, flanged collar for, H. A. Lee, (reissue)
Buckle, H. S. Woodruff.
Buckle, Potter and Smith.
Burner, vapor, S. G. Munn
Cans, sealing the nozzles of
Car brake, F. A. Canfield.....
Car, compartment, W. D.
Car coupling, C. Eastin.
Car coupling, Hughes, Nutting, and Aldrich.
Car coupling, G. C. E. Weber.......................
Car for railroads, smoke and cinder, S. Greacen
Car wheel, Rupp and Ott
Car wheel, Rupp and Ott....
Car wheels, casting, J. K. Sa
Cars, deflector for, J. A. Rockwood
Carriage wheel
Carriage wheel, C. Palmer.
Carriages, axle box for, F. B. Morse
Cavil, J. A. Wood.
Chamfering the rails Corn
Cheese hoop, M. B. Fraser
Chimney cowl, S. Lutz...
Clapboarding, F. Buscher.
Clothes wringer, E. King.
Cock connection, locked plug, J. B. Edson.
Combing machine, E. Tavernie
Composition for destroying vermin, P. Müller.
Composition for lining water coolers, A. Mahler.
Corn popper, W. F. Collier, (reissue)
Cultivator, cotton, M. B. Camp
Dredging machine, W. H. Lot
Drill, ratchet, J. J. Switzer...
Drill, rock, M. C. Bullock
Electromagnetic engine, H. S. Daggett.
Electromagnetic safe.protector, W. Duncan, (reissue)
Electromagnetic hotel annunciator, G. B. Scott
Fimbossing, R. J. Chute.
Engiae, dummy, T. C. Robiuson
Engine, rotary, A. O'Leary
Engines, boiler for toy stea
Eye glass suspender, S. F. Merritt....
Fare box, H. Baranger.............
Fastener, shutter, N. v. Merrill..
Fastener, shutter, N. V. Merrill....
Fish plate, fastening for, R. Anthon
Fish plate, fastening for, R. An
Fluting machine, J. F. Hayen.
Fluting machine, J. F. Hayen.
Food or pearl wheat, article of, J. E. Weave
Fountain and cooler combined, C. Lauby..
Fuel, artificial, Febrey and Smith.
Furnace, annealing, T. F. Hammer
Furnace, hot air, L. B. Tupper...
Furnace, steam boiler, E. F. Griffin.
Furnace for manufacture of i
Gas apparatus, H. S. Maxim.
Gas apparatus, H. S. Maxim..........
Gas purifier, P. Munzinger, (reissue)
Gas and water mains, machine for tapping, G. Shelley
Grading and ditching scraper, C. D. and M. C. Meigs.
Hammer, power, J. Palmer
Harvester, Q. F. Messinger
Harves er,
Harves er, corn, J. Burke.

Hinge, J. D. Browne

Hinge, self-locking blind, o. S. Garretson
Hinges, manufacture of, L. Crooke..
Hose, manufacture of rubber, J. Quin
Huller and cleaner, clover, T. Church
Implement, compound, Devoe, Rogers, and Beals
Iron, manufacture of, J. J. Johnst
Iron, steel, \&c., crucible for melting, W. F. Dunba
Ironing machine, C. C. Thomas......
Jack, hydraulic, Shaw and Eisenhardt.
Journal box for lubricating axles, J. Schinneller.
Key board, chromatic, H.
Kiln, lime, D. T. Barrett..
Knapsacks, mode of slinging, W. Hoff man.
Knife sharpener, S. Gissinger
Knitting machine, J. Rose.........
Lamp chimney, mica, G. M. Bull.
Liquors, apparatus for aging and mixing, s. c. Bruce
Meat, manufacture of fluid, S. Da
Meat, manufacture of fluid, S. Darby
Medical compound, Wv. L. Simmons.
Medical compound or salve, L. Masters
Meter, water, T. R. Timby.
Milk cooler, C. H. Latham.
Milk cooler, C. H. Latham
Mill, grist, E. Harrison.
Mill, smut, J. Wernwag.
Mines, device for raising tailings from, w. A. Rogers
Movement, mechanical, J. H. McCam
Nut lock, H. C. Stouffer...
Packing, piston, J. J. Clause
Packing for piston rods, \&c., metallic, D. Devore.
Padlock, A. Serger.
Paper, manufacture of, s. D. Bald win
Parer, corer, and slicer combined, apple, G. Bergner
Pavement, concrete, S. Filbert.
Piano, S. P. Brooks.
Pipe coupling, w. Kearney
Pitcher, ice, J. Dawson
Plitcher, ice, J. Dawson.......
Plane, carpenter's, H. A. Holt

Planter, walking, M. W. Stevenson. Plow, J. Dodge

Powder kegs, safety conductor for, M. Ward
Powders, box for seidlitz, C. A. and I. S. Browne...
Power at railway stations, utilizing, w. J. Plecker
Power at railway stations, utilizing, W.
Projectile for small arnns, C. Maduell.
Projectile for small arns, C. Maduell.
Pruning knife, D. Morris
Pruning shears, R. Hall.
Pulp, machine for the manufacture of wood, H. Dodge.
Pulverizer, soil, D. Osborn.........
Railway, elevated, J. E. Serrell
Railway, elevated, J. E. Serrell
Railway frog. W.
Railway frog, W. Morris...................
Railways, construction of, T. R. Timby..
Railways, construction of, T. R. Timby...
Railways, hose jumper for street, J. Rue
Remedy, pile, L. Heins...
Roofing, metallic, J. Siddons..
Rope walks, strand twisting machine for, J. Rinek......................................
Row lock, A. E. Brockett...
Saddle tree, S. E. Tomple
Saddle tree, S. E. Tompkins, (reissue)
Sandal, R. Johnston............
Sash holder, G. W. Warren.
Scraper, earth, M. Newton.
Screen, coal, T. Farron
Screening apparatus, D. Kahnweiler
Seeder, plow, and roller, combined, O. B. Cheatham. Sewing machine, D. M. Smyth..
Sewing machine, C. F. Bosworth
Sewing machines, rufling atth
Sewing machines, tuck marker for, G. McFadden
Sewing machines, tuck marking attachment for, A. C. Kasson
Shutter, fire proof, G. H. Knight.
Spark arrester, W. G. Grassler
Springs, machine for coiling, Rhinelander and Hornig.
Stamping varnished surfaces, T. H. Müller
Stamping varnished surfaces, T. H. Müller...
Stove, base burning, J. R. Hawkins, (reissue)
Stove platform, I. Miller...
Telegraph pole, T . Rogers
Telegraph printing apparatus, H. Van Hoevenbergh.
Tenoning spokes and boring fellies, machine for, J. Bauman
Torpedo for oil wells, E. A. L. Roberts.
Toy, J. W. Beatty.
Trimming, plaited, A. Shultz..
Truck, Van Haagen and Coope
Truck, Van Haagen and Cooper
Tube joint, steam boiler, heater and condenser, J. Harrison, Jr Type, pointed, Miner and Moody...
Valve, tank, J. H. Dorst
Valve for steam. Dorst
Vehicle, pleasure, C. W. Saladee
Vehicles, torsion spring for, c. W. Saladee.
Vessels, propulsion of, T. B. Raymond
Vessels, propulsion of, H. Niles.......
Vessels, propulsion of, H. Niles...
Vessels, propulsion of, E. Matteso
Wagon, dumping, w. W. Carré...
Washing machine, D. W. George
Watch frame, cover for, A. Combs
Watches and clocks, cleantng, w. W. Thompson
Water wheel, W. H. Elmer
Weather strip, J. M. Dils
Weather strip, J. M. Dils
Wrench, pipe, C. Neames
Wringingmachine, J. G. Roth
EXTENSIONS GRANTED.
18,966.- Miprovement in Locomotive Engine Wheels, granted to George
S. Griggs, December 29, 1857.
18,874.-Improvenent in bagasse Furnaces,
December 15, , 857 .

DESIGNS PATENTED

5,462.-CARpet Patrern.-John H. Bromley, Philadelphia, Pa., assignor to
john Bromlev \& Sons, same place.
5,463.-Car Seat End Framb. - Thomas W. Brown, Belmont, Mass.
5,464.-Drawer Pull.-Albert D. Judd, New Haven, Conn.
5,465.-Tremis.-Joseph G. Konvalinka, Astoria,
5,466.-RrM or VAsEs, ETC. Jonnathan Moore, Brooklyn, N. Y., assignor to
himself and Abram Horton, same place.
5,467.-FLoor Oit Cloth Patrern- -Joseph Robley, Brooklyn, N. Y., as-
signor to William M. Brasher \& Co., same place.
5,468- - Carpet Pattern.- John Howie Smith, Enfield, assignor to Hartford
Carpet Company, Hartford, Conn.
5,469. --Circoular Register. - Ed ward A. Tattle, New York city
5,470.-Hot Arir and Ventilating Regtrcer.-Edward A. Tuttle, New
York city.
5,471--Hot air and Ventilating Register.-Edward A. Tuttle, New
Yoris city.

TRADE MARKS REGISTEREI

626.-Whisk Y.-Barkhouse Brothers \& Company, Louisville, Ky
627.-Plows.-Bouton, Whitehead \& Co., Naperv1le, Ill.
627.-Plows.-Bouton, Whitehead \& Co., Naperville, Ill.
628.-LAMP CHIMNEYs.-Charles F. A. Hinrichs, New York city.
629.-DISINFECTANTS, Etc. - Marcelin, Warren \& Co., New York and Brook-

- A. C.
631.- SEwing Macrines.-The Finkle \& Lyon Manufacturing Company,
Middletown, Conn.
sChedule of patent fees:

On application for Reiss ue. on ön Pate
On application for Exten sion of Patent.
On grantingthe Extension

For Copy of Claim of any Patent issued within 30 year.
Δ sketch h rom the model or drawing, relating to such portionat a m ochime
as the Claim covers, from
upward, but usually at the price above-named.
The tull Specifcation af any patent is8uedsince No
the Patent Oftce commenced printing them. .
\qquad

at a reasonable cost, the price depen
involved and the number of vievo.
Full information as to price of drawings in each case, nosy ve pat a
addressina
MUNN \& CO.

APPLICATIONS FOR EXTENSIONS.
Applications have been duly filed and are now pending for the extension of the following Letters Patent. Hearings upone
are appointed for the days hereinafter mentioned:
 19,347-India
ary 16,1858 . Rubber Door Mats. -Granted to Edwin M. Chaffee, Febru-
19.490- - Metallic Ties for Cotton Bales. - Granted to Frederic Cook,
March 2, 1858. Hearing February 14, 1872.

19,222.-SEED PLANTERS.-Granted to James D. Willoughby, January 26 ,

 19,79-STor Moriof 1

 9,

Value of Extended Patents.

Did patentees realize the fact that their inventions are likely to be more productive of profit during the seven yeass of extension than the firs
ull term tor which their patents were granted, we think more would rhemselves of the extension privilege. Patents granted prior to 1861 may be
the extended for seven years, forthe benefit of the inventor,or of his heirs in cas of the decease of the former, by due application to the Patent Office, ninety days before the termination of the patent. The extended time inures to
the benefit of the inventor, the assi;nees under the first term having no rights under the extension, except by special agreement. The Government rights under the an extension is \$100, anditis necessary that good professional service be obtained to conduct the business before the Patent Office. Full informa tion as to extensions may be had y addressing
MUNN \&

Inventions Patented in England by Americans

Compiled from Commest
Blending Inks.-T. L. McCready (of New York city), London, England Centrifugal Machine.-S. s. Hepworth, New York city.
Coupling.-J. R. Taber (of Fail haven, Mass)., London, England
Galvanic battery.-J. Smith, New York city
Generating Gas.-W. Elmer, New York city.
Hoisting apparatus, etc.-C. R. \& N. P. Otis, Yonkers, n. Y.
Hoisting Aparatus, Etc.-C.
Watch Protector. -W. B. Farwell (of New York city), London, England.

Foreign Patents

The population of Great Britain is $31,000,000$; of France, $37,000,000$; Bel Sium. 5,000.000; Austria, 36,000,000; Prussia, 40,000,000; and Russia, 70,000,000 Patents may be secured by American cltizens in all of these countries Now is the time, whilebusiness is dull at home, to take advantage of these
immense foreign fields. Mechanical improvements of all kinds are always in demand in Europe. There will never be a better time than the present
to take to take patents abroad. We have reliable business connections with the princepal capitals of Europe. A large share of all the patents secured
in toreign countries by Americans are obtained through our Agency. AdIn toreign countries by Americans are obtained through our Agency. Ad-
dress Muns \& Co.. 87 Park Row, New York. Circulare with full intorn:s. dress Muns \& Co.. 87 Park Row, Ne
ter on forelgn patents. furnished tree

Aldermen's Room, Crty hal	
W. BARTLETT, ESQ., No. 569 BROAD-	
e) WAY. Dear Sir: I fully agree with the testimony of General Roome, of the Manhattan Gas Light Co., in egard to your Street Lamps. They are superior to any	
regard to your street Lamps. They are superior to any	
"shine tor themselves," and are admired by all. Ibestreets. The difference between yours and ihe others in	
use here is nearly as great as between the flinid and gas Yours truly, SAM'L S. LITTLE	
"Qu!te eclipses the more conservative peridicals of the day.-Boston Journal, Mass.	

THE GATAXY

 Family.it contains thoughtful articles by our ABLEATANS SKETC

Sketches of life ant adven
IT HAS SERIAL STORIES BY OUR BEST NOVELISTS
IT HAS SHORT STORIES IN EACH NUMBER.
THE WORLD OF LITERATURE.
it is a blessing to any family.
NOW IS THE TIME TO SUBSCRIBE
Price 35 Cents per Number. subscription price

SHELDON \& COMPANY New York.

SAVE 20DOLLARS.

BEY HiNe Gergizaride wilson shitctid Forgale Evers where. AGENTS WANTEDDin uno-
cupied Teritory. For Illu trated Circulars. Addresg:

Cable SCREW WIRE BOOTS AND SHOES, easiest and best. Silver TIPPED SH0ES

$\mathrm{A}_{\boldsymbol{P A T E N T}}^{\text {CAREPTGHTS }}$

 experience of fourteen years, we can thoroughly endorse O., Consulting Engineers, 15 Wall St., New York.

FGOM FORCED SALES.-Ladies' Solid

HYDRAULIC MACHINES MACCARONI, FOR VAKING Machine WYorks Mave ky Iron Foundry,

Narrow Grege Railways

Reynolds'

Washington Iron Works,
\qquad
G Reat success of the hydrallic

$M_{\text {andes. }}^{\text {odor the patent office }}$
 CAST STREL CASTINGS

P OTENT TWINE CUTTER-The TVatentee

$\frac{\text { P. o. Boxs1. }}{\text { 变 } \mathbf{T}^{\text {HE }} \text { AMERICAN }}$ 4. 1 a weekly journal,

TO OLL MANUFACTURERS and Refiners.

Wood aiid Irön Working Machingery,

Fin sale-AM the machinery, paterns
2
TOR SALE, on the most reasonable terms
Forty Worter and Steam Power Mill , \& foot Head, and
Sow Engine- 225 A cres of good Land, one
 SHAFTING with PATENT HANGERS

 SAWS, Planindo \& Matching
 J. A. FAY \& CO.,

GRRAT REDUCTION IN PRICRO
 Iron and steel.
His expanding Mandril is a first class tool, which has
long been needed by every Machinist.
Send for latest circular.

A new edition of the Patent Laws, with official rules for proceeding before the Patent office, etc., including
Censusfor 1880, complete. Itshows the population by counties of all the States and Territories, and population of cities of over 10,000 inhabitants. Important to
every patentee who has rightsto sell. It enables him every patentee who has rights to sell. It enables him
to calculate the value of territory, by the population.
Price, bound, 25 cents. Mailed on receipt of price. Price, bo
Address

MUNN \& CO.,
Publishers SCIENIIFIC AKRRICAN,

ELGIN WATCHES

"It is generally known that American watches are. ald things considered, the best in the world ; but the publit

PATENTS BOUGBT AND SOLTD.
ARTIFICIAL STONE OR CEMENT
ART PIPE MACHINERY.
you please . W . STOCKWELL \& CO.
$28 \& 163$ Danforth St., Portland, Ne.

THE FREAR ARTIFICLAL STONE.

 the woodward STEAMPUMP.

$\mathrm{E}_{\text {of }}^{\text {LECTROMAGNETS-Galvanic Batteries }}$

Hamucy KMiting yanine

1882. SCHENCK'S PATENT. 1871 WOODWORTH PLANERS

B

 Lin in ine iproved In is7, is the best in wee. Send Wencra deam Pamp CHAS. B. HARPDCK,
Latray chucks-hortons patent

P ATENT Rmory Grinders. Twist Drills.

STEEL CASTINGS
T^{0} Pattern tenile strength equal to

 ADSDELX \& CO ACTURERS OE

$\mathrm{T}^{\mathrm{HE} \text { Union irpn Mills }}$

Planing and Matching

> Machinist'\& Tools.

\bar{W} GOD. WORLIVG MACHMERY GES.
MACHINISTS.

Mrining Mixack zecs.

To Elect $\because g$-Platers.

R ICHARDSON, MERIAMY © CO

PUMPS. For Des. ription Prict Price

PROPETIER PUMMPS.

VARIETY MAENTINPROVED MINGY, MACHER CIRCULAAR ANAWH BENCHES.
$\$ 375$ A MONTH-Horse and outfit fur. orchatrat mentivn and conber
 $\xrightarrow{\text { ClincinNATI BRASS WORKS. }- \text { None but }}$
0 IS $\begin{aligned} & \text { SAFETY HoIstivg } \\ & \text { Machinery: }\end{aligned}$

Subscribers-Who wish to have their vol
 be reitted in ind arace, and
Be soon as the are are onumd

Bdertisiments

Aavertisements will be aduitted on this page at the rate of $\mathbf{\$ 1 . 0 0}$ per line for each insertion head advertisements at the
 Fuchativiber
 Adapted to Mechanical Purposes, New York

A WELL test d article of good thickness

\mathbf{S} EWING MACHINE.-For Sale, the patent

STEAM PIPE AND
BOILER COVERING:
NEW PATENT DRILL CHUCK.

 810. Agents wanted. A. Adratess

American Saw Co., Manufacturers of

I RON Prils, and other Machinists' Tools or superion

 Boiler. send for Circulars.
Working Models Andexperimental lachinery, Metal, or Wood , made
\square MILIED MACHINE SCREWS

WIRE ROPE. JOHN A. ROEBLING'S SONS,
 Tille Rriges, Ferries, ,tays, or Guyson Derricks Liranes,

BABCOCX
Fire Extinguisher absolutely the
BEST PROTECTION AGAINST FIRE!" end for "It's Record,
F. W. FARWELL, 407 Broadway, N. Y

Diamond Pointen STHANDRITAS

$\underset{\text { Commission Merchants for the }}{\text { H C C O C O }}$
Commission Merchants for the sale off Stem Pumps
Engines, Boilers, Machin ery, hand Manuracturers
sup

CREDIT \& CAPTPAL

MCKILLOP, SPRAGUR \& CO

Commercial Agencel Register.
It will be the most Complete and Valuable work o
the kind ever published. This is the only Reference firm, in connection with their credit rating. This Agency was established in 1842, and merdial Register has become a Standara Work fo the Bank and Counting Room.
ASSOCIATE OFFICES.
JOHN MCKILLOP \& CO., Phila ilelphia, Pa
JOMES WM. KIMBALL, Boston, Mass.
TAPPAN, MCKILLOP \& CO., Chicago, IIl. TAPPAN, MCKILLOP \& CO., Cincinnati, Ohio. LATHROP, MCKILLOP \& CO.. St. Louis, Mo.
TAPPAN, MCKILLOP \& CO., Milwaukee, Wi TAPPAN, MCKILLOP \& CO., Detroit, Mich. TAPPAN, MCKILLOP \& CO., Toledo, Ohio MOORE \& MCKILLOP, Quincy, IIl.
WRIGHT, MCKILLOP \& CO., Kansas City, WRIGHT, MCKILLOP \& CO., Kansas City, Mo
STRONG \& HEDENBERG, St. Joseph, Mo. STRONG \& HEDENBBRG, St. Joseph, Mo. HOPE, MCKILLOP \& CO., San Francisco, Cal HOPE, MCKILLOP \& CO., Portland, Ore. MURRAY, MIDDLEMISS \& CO., Montreal, Canada. MURRAY, MIDDLEMISS \& CO., To
PURCELL, ROSS \& CO., Albany, N.

 LUBRICATORS

 Trade-Mark Patents.

\qquad urers and business men generally, to the importance o purposes.
Any person, firm, or corporation, domiciled in the
United States, or in any foreign country affording United States. or in any foreign country affording simila privileges to citizens of the United States, can obtain the
right to the exclusive use, for THIRTY YEARS, of any trade-mari. consisting of any new figure, or design, or any new word, or new combination of words, letters, or figures upon their manufactures.
This protection extends to trade-marks already in use or any length of time, or about to be adopted. tained by addressing

Swain Turbine.
 W ILL DO TEN PER CENT MORE WORK ever invented. Gave the best results, in, every respect,
the Lowell Tess.
For Report of tests at Lowell, with Diagrams and $T \varepsilon$.

THE SWAIN TURBINE CO.,
 Pennocls's Patent InouBenining Madiine. NVALUABLE in Car and Machine Shops
 Union Stone Co.,

 WIREROPR.

$\mathbf{S}_{\text {beet }}^{\mathrm{TE} \text {, CHARCOAL }}$ Rand B, B, of the very

L.W.Pond-u-New Tools. EXTRA HEAVY AND IMPROVED PATTERNS ATHES, PLANERS, DRILLS, of all sizes;
Vertical Boring Mills, ten feet swing, and under.
Viling Machines, Gear and Bolt Cutters ; Hand Punches M1lling Machines, Gear and Bolt Cutters; Hand Punches
and shears for Irone
oft ce and Warerooms, 98 Liberty st., New York; Works

VENEERS,

HARDWOOD BOARDS

 $Q^{2} \%$ Send for catalague and price ist
G. W. READ \& Co.,170 \& 172 Center St., N. Y.

Leffel's Improved Turbine.

 JAMES LEFFEL \& CO.,
 PENN WORKS.

From 4 to 500 horse power,
incluaing Corliss
Enfines,
Slide

 Send for Price List. WOOD \& MANN, | team Engine Company |
| :---: |
| WORKS-UTICA, N. |

T P 15 BE BEST SAW GUMMER OUT, ONLY

$T_{\text {Steam }}^{O D D}$ Engines, Boilers, Flax. Hemp Tow

P ORTABLE STEAM ENGINES, COMBIN

rever. T. Carpenter, Advertising Agent. Addres
hereatter, Box

HARTFORD

Steam Boiler

 INSPECTION \& INSURANCE CO. CAPITAL . $\$ 500,000$ ISSUES PoLicies orinspection of the Boilers, covering ance, arter a carefu
loss or damage to Boilers, Brilidings, and Maccinery, STEAM BOILER EXPLOSIONS. $\boldsymbol{S T E A M} \boldsymbol{B O I L} \boldsymbol{E} \boldsymbol{R S}$, stationary, marine, and locomotive. Full information concerring the plan of the Company's
operations can be obtained at the HOME OFFICE, in Hartford. Conn..

PAT. SOLID EMERY WHEELS AND OIL Edac Trones, or Brass and Iron Work, saw Mills and

scientific american

OROSVGGMS

For 1872.
A year's numbers contains over 800 pages and makes two volumes, worth as a book of

BNGRAVINGS

our own artists, whin not only be given, of allthe best

 LEADING MANUFACTURING ESTABLISH MENTS, MACHINES, TOOLS AND PROCESSES.Inventors and Patentees will find in each number an official List of Patents, to
gether with descriptions of the more important Inven tions. We shall also publish reports of decisions in Pat

THE NEW VOLUME OF

SCHEMEMCBCAN

 time to organize Clubs and to forward subscriptions.TERMS FOR 18 gi.
One copy, one year
One copy, six months
One copy four month
Clitz rates $\left\{\begin{array}{l}\text { Ten copies, one year, each } \$ 2.50 \\ \text { Over ten copies, same rate, each }\end{array}\right.$
One copy of Scientific American for one year, and one copy or engraving, "Mer of Progress," - 10.00
One copy of Scientife America for One copy or Scientiftc Americall for one year,
and one copy of "Science Record," . Ten copies of "Science Record," and ten copies of ${ }_{35}$

CLUB PREMIUMS.
Any person who sends us a yearly club of ten or more apy, gratis, of the large steel plate engraving, "Men or ogress. "
Remit by postal order, draft or express.
narter, payable at the office where received. Canada
abscribers must remit, with suoseription, 25 cents extr
Address all

MUNN \& CO.

37 PARK ROW, HEW YORK.
THE "Scientific American" is prin Aed with

