A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES. $\underset{\text { [NEW SERIES. }]}{\overline{\text { Vol. 26. }}\} \text {. }}$ (NEW YORK, DECEMBER 24, 1870

$\underbrace{* 3 \text { per Annum }}_{i=1}$

Improved Independent shuttlemotion Loom. |of the lower ends of the levers, J, to which they are at- stantly stopped by dogs, Q, which, by the use of the foot may
The advantages gained by making the motion of the shu a very simple manner, com
Which are set forth
Fig. 1 is a per
spective view of
the loom with the improved shuttlemotion attach. ment, the details of which will be understood by referring to Fig. 2 in connection with the following description.
Power is communicated to the loom through the loom through the B. The shaft, B, B. The shaft, B, has formed there on double cranks, which,through the medium of the connecting rods, C, give the required oscillation to the lay.
Through the medium of suitable gearing, D, rotation is imparted to the shaft, E. This shaft carries two cams, F, each of cams, F, each of which has a hinged segment, G, which allows the motion of the primary shaft, B, and the shaft, E, to be performed in either direction without affecting the operation of the loom, and also permits the lay to be pushed back by the hand of the attendant at any portion of the revolu-
tion, without necessitating any re-adjustment of parts in starting the loom.
The cams, the shaft, E. This alternately forees the opposite ends of the levers, H, outwards, against the lower ends of the vertical oscillating levers, J, against which the ends of the levers, in, press, but with which there is no possitive connection by pivots or links attaching the two sets of levers to each other.

The forcing out of the lower ends of the levers, J, in the manner described, causes them to alternately stretch the coiled springs, K, the inner ends of which are respectively linked to the tops of the levers, J , and the other ends of which are attached to the undersides of the lay
tle independent of the velocity of the other parts of power looms, have already been fully set forth in these columns. These advantages are so manifest that inventors have for jears sought to secure such a motion, and several have been years sought to secure such a motion, and several have been llustrated in this journal within the past two years. We have now to add another, which secures the desired result in

The cams, F , operate oscillating levers, H , pivoted at I , and having friction rollers pivoted to the ends which engage with the cams. The operation of the cams is to alternately thrust the back ends of the levers, H, inward at each revolution of
beam, as shown.
Each of the levers,J, is attached by a leather cord,L, leading from its upper end to the picker, M, situated at the end of the lay race, R, opposite the lever. Other cords, N, lead from the
pickers over pulleys, O, down to double pulleys, P, attached to the frame of the loom, as shown, upon which the cords, N , wind, as other cords, T, are unwound by the inward motion

The action of the movement is as follows: The revolution of the shaft, E, forces inwards one of the oscillating levers, I, thereby forcing outward the bottom of one of the levers, and forcing in its top so as to put teusion in the spring to of the specifically given in our article descriptive of Stevers Inde
outward the

TERREL'S INDEPENDENT SHUTTLE-MOTION LOOM.
ains an important advantage by dispensing with the semicircular pick-er-staffmotion, and that the shuttle is on this account not nearly so likely to be knocked off the lay-race. It is also claimed that this movement is simpler and cheaper than any which has preceded it, has preceded it, while it fully at-
tains all the other advantages securad rantages secured in other independent shuttle movements.
The velocity of the throw of the shuttle is the same whether the picks be rapid or slow, and great rapidity is attainable. We are told that looms with this motion attached are now succesafully run at a speed of 200 picks per minute without donger of too great strain too great strain The movement can be attached at a cost of about $\$ 3 \cdot 50$ to any power loom in market except the Lyall " Positive Motion Loom."
The springs may be adjusted to different tensions to the double puller, P by unwinding the cord, T, which rotation of the textures to be woven. Thus a uniformity character winds upon the pulley the cord, N , and draws back the picker, unattainable on the old looms, is always secured. M , to the rear end of the shuttle box, ready to make its stroke the moment the spring to which it is attached by the cord, L is released by the let-off portion of the cam, F.

The pickers being self-sustaining and having a downward tendency in their movement, always maintain an upright position and always strike the shuttle at right angles directly
This simultaneous action of the movement at the opposite

Mg. 2
 stability of move ment and allowing a high speed without danger of breakage. The reversibility of the cams without interfering with the operation of the pickers, secures the advantage that in stopping the loom to mend a thread of the warp, the lay may be moved back while the mending is done, and if the pitmans or connecting rods, C, are on the dead center, it is not necessary, as in old looms, to move the power wheel by hand to get the itmans off the center The work proced from thepont which it stopped,when the loom is again started
All the machinery is attached to the loom itself-no part to the floor; and the heavy surgends of the lay is alternated at each revolution of the shaft, ing motion of old looms is avoided, as well as much of their E, so that while one spring is under stretch the other is mak- noise. Patented Dec. 13, 1870, by E. P. Terrel. Patentshave ing its recoil, and not only making the stroke of the picker at also been applied for in all the foreign countries. For further the other end of the lay, but also drawing back the picker information in reference to the sale of the patent for the which made the last stroke ready for the next alternate United States, address F. M. Hamilton, West Liberty, Logan If a thread break, the motion of the shuttle, S , may be in- $-\mathrm{D} . \mathrm{C}$.

proaress of poreign invention.

There seems to be considerable activity in invention abroad. The stimulating effect of the war on military inven tion seems, however, to be gradually subsiding. Among the Enemical patents issu

illeminating gas from tar

To prepare the material for this purpose the acid tar i placed in a suitable vessel (by preference lined with lead) and boiled up with open steam. The condensed water from the steam combines with the acid and sinks to the bottom and is drawn off. The alkaline tar is then run in, and the whole of the tare again boiled up. In this way any acid that may be present is neutralized, and leaves the tars in a purified state floating on the surface of the solution of salts, alkali, and other matters (the alkali may be recovered by evaporation) The purified tar can now be used for gas making by mixing
it with small coal, or by running it into the retorts after the charge of coal has been introduced, but it does not do so well to run it into the retorts in this state, as it is apt to choke up the running-in pipe with carbonaceous matter.

Interesting to nautical men is a newly patented

steering gear,

which is an ingenious application of hydraulic pressure to move the rudder. The rudder head is provided with a strong tiller, which is actuated by means of a pair of hydraulic tiller, which is actuated by means of a pair of hydraulic
rams placed horizontally on each side of the tiller athwart the ship. These rams are connected together at their inner the ship. These rams are connected together at thich works ends, between which they carry a block or bush, which works
on the turned cylindrical end of the tiller, and which permits the tiller to slide radially. These hydraulic cylinders have bramches attached to their outer ends, to which strong hy draulic pipes terminate in a slide valve chest having three ports-namely, one of the end ports, communicating with one of the above named hydraulic cylindess, which the in ventor calls the port cylinder; the other extreme part with the other or starboard cylinder, and between these two ports the exhaust port is laid.

Of higher scientific interest is an

ATRONOMTCAL INSTRUARENT

called the "Heliade," by means of which the true time at any portion of the day may be discovered, as well as the latitude, longitude, and meridian line of the place where the instrument may be. It consists of a rectangular box hung so as to turn on tivo pins, and the axis of which passes through the center of the volume of the box in the direction of its length. The axis of the two standards is perpendicular to the base, which pivots horizontally on a support, whose legs are composed of screws, by means of which the base may be maintained in a perfectly horizontal position, which forms an essential condition for the exactitude of the observations. This
true horizontal position is ascertained by means of two water levels fixed at right angles on the base. A screw nut serves to arrest the pivoting movement when the box is in the desired position. Inside the box are two hollow demi-cylindere with their concare parts standing back to back at the center of the volume of the box. Their bases form exact half circles. These demi-cylinders are graduated in their concave
part by means of lines parallel with the hemicycle of the base, and of others perpendicular to the first, and parallel
with the generating line of the cylinder. This instrumen with the generating line of the cylinder. This instrument resembles in its general features the heliorama, recently illustrated and described in this journal. It is the invention of F. M. Pannerat, of Paris, France.
The question of the disposal of sewage is now attracting the attention of the most able chemists as well as engineers throughont the civilized world. Among others, C. M. Tessie du Motay, the discoverer of the process for making oxygen, so often referred to
ented a process for
treating excrements
which may prove valuable. The chief objection to it will probally be the cost, though as some of the substances employed are useful as fertilizers, they may perhaps add enough to the value of the matters treated to in a measure compen-
sate for their use. Taking human or animal excrement the sate for their uze. Taking human or animal excrement the
inventor disinfects it by one of the metallic salts or antiseptic agents which are now employed, when it contains ammonia in the state of sulphur hydrates or sulphurets, or sulphureted hydrogen in the free state. After this operation he adds to the misture of solids with liquids or separately or united in one and the same liquor, soluble phosphate, acid, or neutral magnesian salts, fluosilicic acid, or even soluble fluosilicates, alkaline tenons or metallic, such as fluosilicates the reagents separately or collectively employed have reacted upon the soluble portion of the excremental matters in such a manner as to form a combination with them, the inventor adds, in order to cause them to pass from the acid into the neutral or alkaline state, either line or carbonate of lime or magnesia or carbonats of magnesia. If after this treatment the excrement still gives off sulphohydric odors, a metallic salt should be added in order to complete its disinfection
Among the curiosities of the patent announcements, we find one completed for a
perpetial notion,
the invention of R. M. Marchant, of Torrington Square, London. The inventor compresses by stages the air, steam, or gas to be used as a motive power by means of pumps, a separate pump and chamber being provided for each stage, and the pumps being constructed in such manner as to prevent pump or chamber be passed, by the law of gravity, through the water in such pump or chamber to a higher level, so that all pressure tending to leakage shall as far as practicable be
exercised by water on the joints, with which joints the air is precluded from coming in contact by the difference of its gravity. This meager description hardly indicates where the self-motive power is to come from, but those who are suf-
ficiently versed in the attempts made to secure perpetual moficiently versed in the attempts made to secure perpetual mo-
tion by the use of fluids of different densities will see in thi tion by the use of fluids of different densities will see in this device a familiar principle which has always failed to secure the desired result. A more complete description would ther Mr. E. Weare, of Stonehouse, England, has patented method of

Utilizing waste thread
in the manufacture of textile fabrics. He accomplishes the end sought by returning the waste threads to the condensing which is attached to one of mechanism, the greater part of which is attached to one of the scribblers, by preference to the last. Over the end of the carding engine, rollers are fixed, over which rollers the waste thread from one side of
the engine is conducted to the other side, and the threads the engine is conducted to the other side, and the threads from the two sides of the engine thus brought side by side The waste threads are taken up by or coiled upon, a roller or spool driven by any convenient gearing from the carding en gine or otherwise; and the said roller or spool, when filled with the waste threads, is conveyed to the scribbler (the axis of the roller or spool placed in suitable supports), and made to bear or rest on a second roller or drum, which has a slow, uniform rotary motion communicated to it, whereby the waste threads are uniformly delivered into the sliver as carding engine in the usual way
pentagraphic embroidery
is a name applied to an ingenious method of performing ornamental needlework, invented by Mr. Billwiller, of St. Gall
England. A number of jointed frames are employed, England. A number of jointed frames are employed, each carrying tambouring or sewing apparatus. They are so arranged and connected together that the needles they carry
may be made to traverse in any direction over the surfaces of may be made to traverse in any direction over the surfaces of
the fabrics to be embroidered, and that the movements of the several needles shall be simultaneous and similar. The needle frames are also connected with a pentagraph having ${ }^{2}$ tracing point capable of being led by the workman over the lines of a pattern which it is desired to copy, and when this similar to that passed over by the tracing point. Thus each needle will produce embroidery resembling the pattern, but not necessarily of the same size; usually it is preferred that the pattern should be on a larger scale than the work pro duced by its means.

Professor Helmholtz on Faraday. ho of "Faraday a
by Prof. Tyndall.
The name of Faraday is one to be held in reverence by all natural philosophers. Many times in London, in connection with lectures which I delivered at the Royal Institution, I had myself the privilege of his obliging help and the pleasure of his amiable society. The perfect simplicity, modesty, and undimmed purity of his character gave to him a fascination which I have never experienced in any other man. I had therefore a duty of gratitude to fulfill towards him.

But apart from this, and apart from that friendship for Faraday's younger associate and successor, the author of this I should which induced me to undertake the task, I believed that I should render a service to German readers by facilitating,
as far as in me lay, an insight into the action and character of a mind so richly and peculiarly endowed, and so entirely the product of natural growth.
It is, moreover, by no means for the philosopher only that such an insight possesses interest. His interest, certainly, is the most immediate, for it has hardly been the lot of any single man to make a series of discoveries so great and so pregnant with the weightiest consequences as those of Farproducts, aday himself, even subsequently, was hardly able to describe in clear terms, the intellectual combinations which led to them. These discoveries, moreover, were all of a kind calculated to influence in the profoundest manner our notions of the nature of force. In the presence of Faraday's magneto electric and diamagnetic discoveries more particularly, it was impossible for the old notions of forces acting at a distance to maintain themselves without submitting to essential expansions and alterations. The clearer expression of these
changes is at the present hour the object of physical science In what way such extraordinary results were achieved is naturally a question of the first interest to the inzestigator who strives after similar though more modest ends. But Faraday's development appears to me to possess no small
human interest in relation to many theoretic questions of psychology, and to the art of education. The external conditions under which he cultivated those striking capacities which excite our wonder were the simplest that can be im agined. He was completely self-taught; brought ap in hum ble circumstances, having received no more than the com monest instruction, and having been only favored by fortune in the circumstance that when he was a poor apprentice to a
bookbinder, he found, at the right time, a helper in Humphry Davy, who recognized his peculiar gifts, and procured for him the possibility, though in a subordinate position, of working in the direction towards which his genius impelled him.
And throughout his whole life and labors the advantages
and disadvantages of such a mode of development reveal and disadvantages of such a mode of development reveal themselves in simpler and larger traits than in the case of tage rose undoubtedly from the fact that his intellect was not too soon subjected to theoretic fetters, but enjoyed its
freedom in the presence of natural phenomena; and that in stead of book learning, he permitted the fulness of nature herself to operate upon his open mind. The disadvantage are, perhaps, of a subordinate kind; but they reveal them selves in quite as unmistakable a manner when he strives to give expression to his ideas, and to supply, by all kinds of sensuous imagery, the want of mathematical culture. This is manifestly the way in which he alighted upon his lines of force, his ray vibrations, and other notions, which bewildered the investigators of his time, and the truer and clearer mean ing of which has been in part made out by mathematical the ory since Faraday himself ceased from his labors.
And still, in this unlearned son of a smith, who held fast hroughout his life the pious creed of his fathers, ran a vein of philosophy which gave him the right to be ranked among he foremost of those engaged in the general intellectua ravail of our age. That, as Tyndall informs us, he retained the term " natural philosophy," usual in England to express physical science, and the name "philosopher" for the cultiva or of that science-lies essentially in the nature of his work After the science of our age, in its laudable efforts to make human knowledge a true image of the actual universe, had shattered many an old metaphysical idol, it halted amid the transmitted forms of physical ideas regarding matter, force, atoms, and imponderables. These names were even converted into new metaphysical shibboleths by those who thought themselves most advanced in the way of enlighten ment.
It was these ideas that Faraday sought in his riper labors to purify from everything theoretical which was not the true and immediate expression of the facts. More especially he pposed the action of forces at a distance, the assumption of wo electric fluids and of two magnetic fluids, and, in like manner, all hypotheses which contradicted the law of th conservation of force, of which he had an early presage hough he singularly misapprehended its mathematical ex ression. And in these precise directions he exercised, in he first place, the most unmistakable influence on the physicists of England. The mathematicians among them, espec ally, labor to render theories of phenomena the pure and true expression of the laws of fact, to the exclusion of al arbitrary theoretic devices. In this way Faraday's ideas, though in a modified form, often reveal themselves with their true significance assigned to them.

Responalbility for Detention of Advertised Trains

 and for Accidents.The English courts hold the railway companies to a pretty strict rule in regard to their relations with the public conven ience and the public safety. A case of long standing has recently been tried in the Court of Exchequer, the result o which is a case in point. A season-ticket holder found the advertised train not going to start, in consequence of the fire man having neglected to keep up steam, and ordered a specia train. The bill for this was about two hundred dollars. The sharp passenger paid it, and then brought an action for the recovery of the money and some fifty dollars additional for his own loss of two hour's time. The judge expressed himself "astonished" that the company had resisted such a claim, and the jury gave the plaintiff a verdict for all he asked.
If we should import a little English law or an English judge or two, it might prove of advantage to the American public. In England likewise accidents to persons or property from the carelessness or neglect of railway officials or em ployés, are punished by heavy pecuniary assessments under
the head of damages. Verdicts to the amount of thirty or the head of damages. Verdicts to the amount of thirty or
forty thousand dollars for personal injury have been recoverforty thousand dollars for personal injury have been recovered, and we read of one case where the jury rendered a ver-
dict of over fifty thousand dollars. These heavy verdicts dict of over fifty thousand dollars. These heavy verdicts, Trade Returns for Great Britain, for 1868, it is stated that nine railways in England and Wales paid for compensation for accidents on their roads the sum of $\$ 2,103,855$, of which $\$ 1,407,040$ were for injuries to persons, and $\$ 605,015$ were for damages to goods. The compensation for accidents in 1869 , it is anticipated, will amount to a larger sum than that above it is ant
stated.
The English managers are much in favor of settling claims for damages by arbitration instead of trusting the matter to a jury, and in this we think they are wise; and we believe like wise it is better for both parties. Arbitration simplifies the whole proceeding, saves time and expense, and, if the arbitra tors deal fairly with the facts of a case submitted to them justice will not be so likely to be delayed or defeated by merely legal technicalities. Another very sensible decision was recently decided by an English court, to this effect, that a railway company is not responsible for the loss of articles from a passenger's portmanteau, which had been left by the owner in one carriage while he traveled in another, his own negligence having made the loss possible.-Railoay Times.

A New Mode of Evolving Light.-Mr. Andrew Pritchard writes to Nature as follows: "A singular phenomenon of the evolution of light has been recently observed by me. By tearing sharply a piece of twilled calico into strips in a room well guarded from light, a perceptible luminosity was clearly distinguishable, which appeared at its maximum at the final parting of the fabric. This phenomenon is exceedingly well marked in dry, new calico, and appears to me due to the dressing, as after being washed no light is evolved. Whether attributable to electricity, phosphorescence, or fluorescence I leave for further investigation. The light appears similar to that produced on breaking a lump of sugar in the dark So far as I can ascertain, the phenomenon of light being evolved on tearing a fabric is new,"

Effects of Compressed Air on the Men Employed
in the Caisson of the East Pler of the St. Louis in the
Bridge.
[From the Report of the Chief EngInecr, Capt. James B. Eads.] The first symptom manifesting itself, caused by the press ure of the air, is painfulness in one or both ears. The eustachian tubes extending from the back of the mouth to the bony cavities over which the drums of the ears are distended, are so minute as not to allow the compressed air to pass rapidly through them to these cavities, and when the pressure is increased rapidly the external pressure on the drums causes pain. These tubes constitute a provision of in the atmosphere in which we live. The act of swallowing facilitates the passage of the air through them and thus equalizes the pressure on both sides of the drums, and pre vents the pain.
The pressure may be admitted into the air lock so rapidly that this natural remedy will not in all cases relieve it. By closing the nostrils between the thumb and fingers, shutting the lips tightly, and inflating the cheeks, the eustachian tubes are opened, and the pressure on the inner and outer surfaces of the tympanum is equalized, and the pain prevented. This method must be used and repeated from time to time as the pressure is let on, if it be increased rapidly. No inconvenience is felt by the reaction when the pressure is let off, as the compressed air within the drums has a tendency to open the tubes, and thus facilitates its escape through them; whereas increasing the pressure has the effect of col lapsing them, and therefore makes it more difficult to admit the compressed air within the cavities of the ears. It fre quently occurs, however, from some abnormal condition o these tubes, as when inflamed by a cold in the head, that neither of these remedies will relieve the pain. To continue the admission of compressed air into the lock, under such cir cumstances, would intensify the suffering, and possibly rup ture the tympanum ; therefore the lock tenders were particu larly instructed to shut off the compressed air at the momen any one in the lock experienced pain about the ears; and then, if it could not be relieved by the above means, the lock was opened and the person was not permitted to go through into the air chamber. Sometimes fifteen minutes were occupied in passing persons through the first time, after which they usually had no further trouble from this cause.
The fact that the depth penetrated by the air chamber was considerably greater than that hitherto reached in any simi lar wark, left me without any benefit from the experience o others in either guarding against any injurious effects of this great pressure upon the workmen and engineers subjected to it, or of availing myself of any known specific for relieving those affected by it
When the depth of sixty feet had been attained some few of the workmen were affected by a muscular paralysis of the lower limbs. This was rarely accompanied with pain, and usually passed off in the course of a day or two. As the penetration of the pier progressed the paralysis became more difficult to subdue. In some cases the arms were involved, and in a few cases the sphyncter muscles and bowels. The patients also suffered much pain in the joints when the symp toms were severe. An average of at least nine out of ten of those affected suffered no pain whatever, but soon recovered and generally returned to the work.
The duration of the watches in the air chamber was gradu ally shortened from four hours to three, and then to two, and finally to one hour.

The use of galvanic bands or armor seemed, in the opinion of the Superintendent of Construction, the foremen of the chamber, and the men, to give remarkable immunity from these attacks. They were all ultimately provided with them. These bands were made of alternate scales of zinc and silver and were worn around the wrists, arms, ankles, and waist, and also under the soles of the feet. Sufficient moisture and acidity were supplied by the perspiration to establish galvanic action in the armor, and as the opinion of those most of this remedy, I am very much inclined to believe it valuable.
Immediately on the manifestation of greater severity in the symptoms, a hospital boat was fitted up at the pier, and one of the ablest physicians in the city (Dr. A. Jaminet) was en gaged to attend those affected, and also to institute such sanitary measures as his judgment should dictate. A careful examination of the health and bodily condition of every
workman was daily made, and none were permitted to enworkman was daily made, and none were permitted to en
gage in the work without the approval of Dr. Jaminet. Those most severely affected were sent to the city hospital and had the benefit of the advice and treatment of its resident physician, Prof. E. A. Clark.

The total number of men employed in the air chamber of this pier was 3iz. Of this number about thirty were serious ly affected. Notwithstanding the care and skill with which those most severely attacked were treated, twelve of the cases proved fatal. Each one of these, without exception I believe, was made the subject of careful inquest by the coroner, aided by an autopsy conducted u
Whilst the exciting cause in all of these cases was doubt less the exposure of the system to the pressure of the condensed air of the chamber, the habits and condition of several of those who died were, at the time they went to work, such as would have excluded them from it if subjected to the examination of Dr. Jaminet, and the verdict in about one half of the cases gave a totally different cause for the death of the patient. Nearly or quite all of these deaths happened to men unaccustomed to the work; several of them to men who
had worked but one watch of two hours. In contrast to this is the fact that quite a large number of the men (certainly
one half of those constantly employed) commenced with the work at its inception and remained throughout its continu ance entirely without injury or inconvenience
The gentlemen composing the engineer corps of the bridge all visited the air chamber, some of them quite often, either in the discharge of their professional duties, or from motive f curiosity, and none of them suffered any injury whatever Much diversity of opinion was expressed by the medical gentlemen who investigated the symptoms and held autop ies of the deceased. Some of these gentlemen maintained that a slower transition from the abnormal to the natura pressure would have been less injurious; others claimed, on the contrary, that it was from the too rapid application o pressure in passing from the natural into the compressed air The fact that the air lock tenders were in no case affected although subjected many times during a watch of two hour in the air lock to rapidly alternating conditions of the atmosphere, at one moment in its normal state in the lock, and five intes later exerting a pressure of fifty pounds per squar cat upon every part of the body, would seem to prove both of these theories unsound, and lead us to believe that in the length of time to which the human system is subjected to this extraordinary pressure exists the real source of danger nd not from any rapid alternations of pressure to which it s exposed.
After the caisson reached the rock, I have frequently, when passing through the air lock, admitted the compressed ai into it so quickly that none but those well accustomed to it could relieve the pressure upon their ears, and yet I felt no 11 effects whatever from this rapidly increased pressure; and in going out I have let the pressure off so fast that the tem perature in the lock has fallen thirty-two degrees (F.) in con sequence. These transitions occupied but three or four min sequen.
utes.
The
The fact that the air chamber was briefly visited by thou ands of persons, including many delicate ladies, even after it had reached the bed rock, some remaining as long as an our in it without any of them experiencing the slightest ill ffects from the pressure, and the fact that no cases of an mportance whatever occurred among the workman after th watches were reduced to one hour, satisfies me that this is
the true cause of the paralysis, and that' by lessening stil the true cause of the paralysis, and that by lessening still
more the duration of the watches, a depth considerably greater can be reached without injury to the workmen. To ong a continuance in the air chamber was almost invariably ollowed by symptoms of exhaustion and paralysis. Dr aminet, on one occasion, remained in two and three quarte hours when the depth was over ninety feet, and was danger ously attacked soon after reaching home

Hoosac Tunnel---Trial of Dualin.
EAST END
About fifteen hundred pounds of dualin in cartridges ready for use, reached here from Neponset ten days since, being he sixth attempt to supersede nitro-glycerin. The inventor of this compound arrived on the 28th ult., for the purpose of uperintending its application in person. As this parcel had een specially prepared for the purpose, guided by the results five previous experiments at various points of the tunnel great expectations" were raised, as to the results. One of he slopes then being operated upon by nitro-glycerin and having a burden of eight feet, which was being thrown down every blast, bottoming every hole, was offered for the experiment. Similar charges of dualin were substituted for nitro-glycerin; the dualin was utterly unable to move the rock-the inventor asserting that this failure arose from the cold weather having affected the compound, the charges were thereupon warmed, but with no better result Some charges were now inserted in holes having a burden o two feet, instead of eight; these removed the rock, but a powder would have done the same work, this was not deemed a seccess. Meanwhile some 400 pounds of dualin were teamed to the central shaft, but as the results of three days' blasting at the east end were reported of "no account" this has not been used. We believe the results now attained with nitroglycerin at the east end, and above described, viz. : Taking out the roof full width of the tunnel with a single series o seven drill holes having an eight-feet burden, and bottoming
every hole, indicates admirable direction of the work, and every hole, indicates admirable direction of the work, and
argues well for the speedy completion of the tunnel. Progress during November, 133 feet
west END
Well No. 4. Messrs. Hocking \& Holbrook have commenced using nitro-glycerin in their sul-contract, for the purpose of removing the rock preparatory to putting in the brick arch at that point; their first blast of nitro-glycerin in five holes, was tried on Monday with satisfactory results, and hereafter they intend to substitute it for powder, except in trim ming. It seems to produce less jar, and it is anticipated will
be less injurious to the brick work that is completed, than blasts with powder-besides expediting the work and saving money. Sixty-three feet of brick arch were completed dur ing the month ending November 30.
west shaft
The progress of the heading at this end, we understand, during the month of November, has nearly equaled that at tained at the east end. When it is remembered previous to the present contract 40 feet was more than average at this point, the progress, 130 feet during the past month, is very satisfactory.

CENTRAL Shaf

The advance made in the two heading just opened during November was 76 feet. Considering that this rock has to be twice handled, and then lifted over 1,000 feet to the surface; such progress by hand drilling is very extraordinary work,
but as Mr. Walter Shanley has been on the ground during
the month, all the time, this may afford the clue how it is the headings are being driven at such a rate, by handdrilling.
It will be observed that with the most strenuous efforts at hand drilling the progress was not one third of that accom plished at the east end where the Burleigh compressed air drills are used.

Photographs of Arctic Scenery.

One of the most interesting and instructive entertainment of the season was given at the Somerville Art Gallery last week by Mr. Bradford. It is known that Mr. Bradford and
wason was given at the Somervile Art Dr. Hayes revisited the polar regions in the summer of 1869 , Dr. Hayes revisited the polar regions in the summer of 1800 ,
and that they brought back with them several hundred pho and that they brought back with them several hundred pho-
tographs and sketches of a region hitherto unknown to the tographs and sketches of a region hitherto unknown to the
world except by description. The photographs have been world except by description. The photographs have been
copied upon glass for exhibition with the magic lantern on copied upon glass for exhibition with the magic lantern on a canvas 20 feet square. The pictures are remarkable for their
sharpness and definition, and afford a better idea of that wonsharpness and definition, and afford a better idea of that won derful region than it would be possible to obtain withou personalinspection. The interest of the occasion was greatly enhanced by the explanations made by Dr. Hayes, wh courteously gave an account of the adventures of the with the necessary statistical acter of the rocks. We understood Dr. Hayes to say that there was enough ice in one of the floating masses so truth fully delineated upon the canvas, if brought to the New York market and sold at the price we are accustomed to pay, to bring in enough money to pay off our national debt and leave bring in enough money to pay off our national debt and leave
a balance in the treasury. This startling statement affords a balance in the treasury. This startling statement affords
the best idea of the enormous weight of these icebergs, and the best idea of the enormous weight of these icebergs, and
we can better understand, after viewing them, how readily we can better understand, after viewing them, how readily
they can grind out valleys, and change the whole contour o they can grind out valleys, and change the whole contour of
the bed of the ocean in which they float. At the close of the the bed of the ocean in which they float. At the close of the exhibition Dr. Barnard, of Columbia College, made some elo rged upon the Board of Education the impoch studies and ing an opportunity to our school children of seeing represen tations of this entertaining and instructive character
Mr. Bradford then invited the company to partake of somo ces evidently not of arctic manufacture, and of edibles ver different from the pemmican and blubber with which hi raveling companions were obliged to be content in thei orthern journey. The entertainment was one to be remem bered by all who had the pleasure of being present.

New Projection of the Earth.

G. R. Nash, C. E., of North Adams, Mass, has calculated and constructed a new system of projections, which he desig nates "The Conoidal," on which linear position, area, angle and distance, are in harmony, as also "form" when sectional maps are used. It seems to us better adapted for general pur poses than any of the projections now used.
On ' Mercator's" projection, the young student of geography is at once misled respecting the comparative sizes, positions, and forms of countries, islands, seas, etc., resulting from its variable scale, and many persons carry these early impressions through life. "Mercator's" is a special projection for the use of mariners, and not suited for general purposes. The "Spherical" has three disadvantages: One that it is not a elineation of the earth's surface on one representation nother, that parallels of latitude are not parallel ; and thirdly it embraces more area than really exists. The new projectio corrects these disqualifications in both projections, beside ossessing other favorable features, and is, therefore, wo believe, eminently qualified to be the basis for the future con truction of maps, charts, and atlases. A great advantage i also apparent in the lines at right angles with each other dividing the chart into squares, as any person can see at onc the distances north and south, east and west of the equator or prime meridian, or other points, thereby greatly assisting in teaching sizes and areas.
Charts showing only small subdivisions on this projection are necessarily very correct, and can be constructed with any meridian as a " prime."
We have seen a drawing on this projection, which repre sents the first map of an atlas. It is proposed next in order to project the New World, then the Old World, then each continent with its sectional maps, which arrangement would continent with its sectional maps, which arrangement would the whole surface of the earth.

Lamy's Thermometer

The pyrometer invented by Lamy is founded upon the dis ociation of carbonic acid from calc spar in a porcelain tube and an arrangement for reading the amount of gas thus ex pelled. He has since extended his experiments upon othe salts and finds the double compound of ammonia chloride of calcium to be admirably adapted to the accurate determina tion of slight variations in temperature. This is in conse uence of the ease with which the ammonia vapor can be expelled, and the variations in its tension under different de grees of heat. Lamy incloses about a gramme of the ammo nia chloride of calcium (made by passing ammonia gas over dry chloride of calcium) in a flat copper box of the size of a five franc piece, with a tube 4 or 5 mm . wide and 150 milli meters long. This tube is attached to a leaden tube of 1.51 mm . diameter and of any required length, on the end of which is plaeed the manometer for reading the force of expansion of the gas. For lower temperatures a column of quicksilve will answer every purpose. As long tubes can be used thi form of thermonieter is admirably adapted for determining the temperature of wells and caves into which it can readily be sunk.
The subject is one of peculiar interest as affording more can otherwise be obtained.

MERCURIAL PUMP WITHOUT VALVES OR STOP-COCKS. The Journal of the Franklin Institute is indebted to Prof. Young, of Dartmouth College, for an account of the following ingenious arrangement, which was first suggested by Mr. C II. Smith, of Mt. Auburn Institute, Cincinnati, Ohio, to Prof C. O. Thompson, of Worcester, Mass., and was by the latter gentleman carried out in practice with entire success
A glass tube, A B, of such size as may be desired, is drawn ut at one enc, B, and by means of a stout rubber tube is connected with a mercury reservoir,
C. A rubber cork at the end, A carries two tubes; one, D, leading from the vessel to be exhousted to the bottom of $A B$, the other from the botiom of $A B$, the other from the top of Aittle mercury the hight taining a little mercury, the hight F E, being about 30 inches.

When the reservoir, C , is raised, the mercury entering $B C$ closes the lower end of the tube, D, and expels all the air contained in A B by the tube, $E F$, and, in fact, is allowed to fill and flow through E F for a moment. On depressing the reservoir the mercury descends in AB
 and leaves a vacuum into which air flows from D; E F being over 30 inches in hight, the mercury in F rises in it but no air can enter by that way. To render the joints at A tight, a little mercury is run in over the rub ber cork, as was suggested by Dr. Gibls, of Cambridge, in hi modifications of Sprengel's pump.

MILKING-STOOL AND PAIL-HOLDER.

L. B. Hoit, of Cedar Falls, Iowa, has invented an im proved milking-stool and pail-holder, of which the accompa nying engraving is a rep resentation.
The object of this improvement is to hold the pail near the bag of the cow, so that the milk shall not be lost by spraying, as is the case when the pail rests upon the ground, to keep the pail from being soiled on the bottom by filth, and to obviate the fatigue of holding the pail on the knees.
The stool has attached an arm with a circular frame at the end to support the pail. The weight of the milker on the stool counterbalances that of the milk-pail.
By the use of this simple article, milk is saved, and also preserved from filth, the bucket is out of the way of the cow's tail, and she cannot kick it over. At the same time much fatigue is saved to the milker

IMPROVED MOP WRINGER.

This Improvement is the invention of B. B. Choate, of Springfiekd, Vt., and its object is to save the hands from strain, as well as contact with filthy water in the wringing of floor mops.
A, in the accompanying engraving, represents two metallic bars, which are bent at their centers, in the line of their edges, nearly double, and then have their edges and sides curved or bent, in the manner represented in the drawing. These bars are pivoted together a short distance from their ends, and be tween their ends are placed the rollers C and D. The rollers have axles, which have bearings in the ends of the bars, holes being made in said bars for receiving the axles. The centers of the bars are so formed as to answer as foot pieces, upon which
 foot in bearing the rollers together. When the foot pieces at the centers of the bars are separated, the rollers, of course, separate at the same time, so that a mop may be placed between them. When the so that a mop may be placed between them. When the
foot pieces are closed towards each other, the rollers close foot pieces are closed towards each other, the rollers close
upon the mop, and press it as tightly as may be desirable for upon the mop, and press it as tigh
wringing the water, etc., from it.
wringing the water, etc., from it.
The bars, A, are spread wide enough apart at a point just above their pivots that they embrace an ordinary water or mop pail on opposite sides, and are provided with hooks catching upon the edges of the pail, so as to support the bars and keep them in position. Upon one of the shafts of the rollers is secured a crank handle for revolving or giving motion to them.
The operator stands over the bucket and operates one of the bars with his foot, while he turns the rollers with his hand by means of the crank handle. One bar will remain stationary, while the other can be raised or lowered, so as to separate or close the rollers. The mop is pressed and drawn between the rollers in the usual manner.

A NEW INK FOR PRINTERS.

In the official announcement of patents issued during the past week, pul)lished in another column, will be found that of a new printers' ink, which, while it is said that it can be
urnished 33 per cent cheaper than the ordinary ink, is The patentee is Mr The patentee is Mr. Julius Kircher, a pupil of the cele The chemist, Liebig.
The ink in question consists of 10 parts of hydrated per oxide of iron, 6 parts of hydrated protoxide of iron, and from 10 to 16 parts of varnish.
The two first-named ingredients are mixed in a moist state by stirring; 48 parts of water are then added; and the water being evaporated by boiling converts the mixture into a fine velvety black powder. This powder is washed and dried, and finally mixed with the varnish, the proportion of which varies in accordance with the desired quality of the ink.
The advantages claimed for this ink are that it never changes its color. It has no disagreeable odor; it is a fine glossy black ; and, as above stated, is one third cheaper than glossy black;
ordinary ink.
The manufacture of this ink is shortly to be introduced into this country, the requisite machinery for the purpose being now en route from Europe
We understand that the Austrian Government has adopted this ink on account of its permanent unchangeable quality for printing the Government documents.
The patent is owned jointly by L. Bamberger, J. Kircher the inventor, and Leopold Mendelson, the originator of Men delson's Bank .Note Reporter, whose name appears in connec tion with the macaroni and vermicelli manufacture in another column.
We have before us a copy of an Austrian newspaper pub lished at Vienna, printed with this ink, which presents an unexceptionable appearance.
Any information relative to this ink may be obtained by addressing Mr. Leopold Mendelson, 311 and 313 Avenue A, New York city

Triumphs of Science.

The second of the course of four lectures before the Young Men's Christian Association, in this city, on the "Triumph of Science," was delivered on the evening of December 8th After a few introductory remarks, Professor Doremus said there was a class of men who claimed to have discovered the distance of most of the bright orbs in the firmament, as well as the sizes and weights of many of them. Now how was as the sizes and weights of many of them. Now how was
this knowledge gained? It was generally known that we could measure the distance between two objects on this globe without actual measurement, simply by watching the angles which were made between the eye and the objects themselves The same principle was applied by the astronomer to the sun and moon and other celestial objects. Some of the stars were so distant that they could only be measured by the time taken by a ray of light to travel from them to the earth, and, even judged by this standard, were so remote that light took hundreds of years to traverse the space between them and the eye of the astronomer who was gazing at them. When the distance was known the size also could be ascertained by a calculation founded on the diameter and distance of the ob ject, but some stars were so remote that we could not correct ly estimate their diameter, though we could form some idea of their grandeur by their comparative brilliancy.
The weight was discovered by ascertaining the power of attraction possessed by the different planets. Some might say that these were mere dreams of fancy. But, in truth, as tronomical calculations and measurements were the only ones entitled to absolute credit. He was ashamed to say that there was only one State in the Union that had yet been correctly laid down on the map by astronomical observations,
and that State, he was, as a New Yorker, sorry to say was and that State
Massachusetts.

At present the maps of this country were very inaccurate, in spite of the delicacy of the lines that were shown as dividing our various counties and States, and they must ever be inaccurate until verified by scientific tests and measurements He ought not, however, omit to state, further, that at neither of the colleges of the city was there an observatory, or any means provided for astronomical instruction.
In view of our wealth, was not that a great opprobrium to our city? Indeed, that melancholy fact was one reason why he believed professors ought to come forward and bring under popular notice the claims of science. New York gave freely to the right and the left in aid of religion, and he thought this reproach of her illiberality to science would not long be allowed to rest upon us.
The Professor then again returned to the discoveries made by means of spectrum analyses. The most common metal in the universe seemed to be sodium, for we found it everywhere all through the starry world, in the air and in the human body. An old inscription at Memphis said that the earth below showed what the planets above were like.
Our earth was but a burned up star, and its crust but very fragmentary part of its bulk. We all know how terrible were earthquakes or the trembling of the earth's crust under the influence of some internal agitation. By an estimate he had made a few years ago, it appeared that no less than half a million of human beings and millions of other animals had been destroyed by earthquakes and volcanoes within the last two centuries. This showed the vigor of this internal force of the earth and the terrible condition under which we were living.
Dr. Doremus then gave a number of instances of remarkaable sinkings and elevations of the earth's crust, which, compared to the entire bulk of the globe, was but as one to forty. He then proceeded to show the nature of the earth's crust and to trace the various modifications to which its surface has been subjected, especially in the relative arrangement of land isted at present, was the product of unalterable and benefi-
ent laws which had slowly worked out conditions of clim ${ }^{\text {ate }}$ and even of wind currents, in exact correspondence with t he needs of the animated creation
The lecture terminated with some brilliant experiments, showing the precision of the ratio in which the elements of matter combine.

PERPETUAL MOTION.

NUMBER IV.
In 1790 one Conradus Schwiers, a Doctor of Divinity, patent ed a "Machine on a self-moving principle, or perpetual mo tion." Fig. 7 is a view of this machine, which, it will be a nce seen, is an effort since often repeated, to obtain a whee so as to keep its center of gravity from ever falling directly under the axis while revolving. The following is the specifi cation :
"Now know ye, that in obedience of the said letters patent, and the proviso therein contained, I, the said Conradus Schwiers, do hereby declare my said new invented self-mov

Fig. 7.

ng principle, or perpetual motion, is made and performed in manner following, that is to say
" Two stiles or uprights marked in the plan hereuito an nexed, A, A, etc., and fastened together by the screws, $1,2,3$ and to the base, between which stiles or uprights run the wheel, C, and the pinion, D, and the two double pinions, D D, etc., over which double pinions run a douple chain, etc., to which chain are fixed the buckets, F, F, etc. The chain is made with joints on each side and bars running across, equal in number to the cogs of the wheel, C. Upon the same axle with the wheel, C, on the farther side of the inner stile, A, runs the wheel, G, whose diameter is full double that of the wheel, C; and the pivot of the wheel, G, runs in the back, H, as the other pivot of the same axle runs in the front stile, A. The wheel, G, is divided near the periphery into receptacles in number equal to the buckets on the chain, which recepta cles are supplied with metal balls, I I, etc., from the buckets, F, F, etc., by means of the gutter, K, which balls by their F, F, etc., by means of the gutter, K, which balls by their
weight forcing round the wheel, G, and thereby lifting up weight forcing round the wheel, G, and thereloy lifting up
the buckets, F, F, etc., on one side as they go down on the the buckets, F, F, etc., on one side as they go down on the
other side, discharge themselves again at the bucket, L , where they are taken up by the buckets, F, F, etc., and discharged

Fig. 8.
 ge at gutter, K, and stant succession as of tenas any receptacle is vacant in the wheel, G, at the gutter, K , for their reception, and by that means the perpetual revolution is obtained the ball being at the same time discharged from one backet when the lower ball is taken up by another." A very common principle has been worked out to uniform failure invarious ways, from the earliest to the latest times. It is shown in the accompanying diagram, Fig. 8, which represents a large wheel, the circumference of whick is furnished, at equal distances, with levers, each bearing at its extremity a weight, and movable on a hinge, so that in one direction they can rest upon the circumference, while on the opposite side being carried away by the weight at the extremity, they are obliged to arrange themselves in the direc tion of the radius continued. This being supposed, it is evident that when the wheel turns in the direction, a, b, c, the weights, A, B, and C, will recede from the center; consequently, as they act with more force, they will carry the wheel towards that side; and as a new lever will be thrown out, in proportion as the wheel revolves, it thence follows, say they, that the wheel will continue to move in the same direction. But, notwithstanding the specious appearance of this reasoning, experience has proved that the machine will not go; and it may indeed be demonstrated that there is a certain position in which the center of gravity of all these weights is in the vertical plane passing through the point of suspension, and that therefore it must stop.
Fit companions to these remarkable specimens of false reasoning are the two modern devices of which we give illustrations in Figs. 9 and 10.

| Fig. 9 represents a device by Charles Batcheller, of Polk | uses and applications, the millwright should be familiar with | sieve in a grist mill, or the whiffers which take the rolls from |
| :---: | :---: | :---: | :---: | :---: | Co., Iowa, on which he has taken a patent during the present $\begin{aligned} & \text { The fly wheel is used to equalize velocity; the balance to }\end{aligned}$ co.,

"My invention is designed to provide a simple balance power, that may be adrantageously used in connection with any machinery where a bal ance wheel or fly wheel is used or may be used. By my combination of levers, weights, and gearing, I create a compound power that is perfectly balanced when at rest. Thus far it is similar to a common fly wheel. But less force is required to put my compound wheel in motion, and, after being started, it accumulates a greater power, and much more rapidly, than an ordinary balance wheel. The degree of power actually gained has not been accurately determined. In addition to the increase of power I gain an increase of speed. While my compound balance-lever power makes one revolution, the inside shafts and wheels lustration is a perspective view of my compound balance lever mounted on a frame. A is the balance lever mounted on a frame. A is the
frame. B represents picces forming frames, in frame. B represents pieces forming frames, in
each of which are hung three geared wheels. each of which are hung three geared wheels.
There are two of these frames and two sets of There are two of these frames and two sets of
those geared wheels. C is a geared wheel, which can be used for communicating power. D, belt wheels, which are also used to communicate power. These can be used at the same time, one on each side; and in place of the belt wheelsand belting, geared wheels may be substituted. E represents weighted levers firmly secured to the axes of the geared wheels. There are four of these weighted levers, but only three shown in the illustration. G represents geared wheels secured on the hollow shafts, H, together with the frames, B. There are two of the geared wheels, and they are so placed that they connect the two sets of wheels and weights. By this connection the balancing power is formed The frames, B, and the wheels, G, are secured upon the hol low slafts, so that they cannot move independent of each other. Shafts are placed within the hollow shafts, H , upon whicl the communicating wheels, D , and the center wheels are secured, so that they can move independent of the frames B, and wheels, G . While the frames, B, make one revolution, the wheels, D , and the center wheels, make two revolutions. This is caused by the action of the weighted levers, E. Their weight, or inertia, prevents them from passing around the center of the axis of the wheels with which they are suspended in the revolving frames. The full force of this resistance, or inertia, is applied to the other wheels of each set, and by these wheels communicated to the center wheel.
"The size and weight of this compoundbalance lever power may be varied and adapted to the various uses to which it may be applied."
Fig. 10 is a device of Doctor Alois Drasch, of St. Egidi, Aus tria, patented in the United States, December 22, 1868.
"This invention consists in the arrangement of an annular tilting tray, which forms the orbit for a revolving ball, in combination with a supporting platform, and with a lever which extends into the tray and connects with a shaft, to which motion is to be imparted, in such a manner that, by continually changing the position of the tray, the ball is caused to rotate therein without interruption, and by the action of the rotating ball on the lever the desired motion is imparted to the shaft, which connects with the working machines or mechanism to be driven. 4 represents a tray whicl forms an annular path, or orbit, for the ball, B. This tray is made of sheet metal, or any other suitable material, and its diameter is about other suitable material, and its diameter is about
four times that of the ball, B. It is supported in four times that of the ball, B. It is supported in
its center by a rod, which connects, by a ball and its center by a rod, which connects, by a ball and
socket joint, C, with a platform, D, so that said socket joint, C, with a platform, D, so that said tray can be readily tilted in any desired direction. From the edge of the platform, D, rises a circular rim, E, which prevents the tray from being tilted any lower than desirable. The position of the tray is governed by a hand-lever, F, which enables the operator to continually tilt said tray in advance of the rotating ball, so that said ball is kept rolling on a continually clanging inclined plane ; and, as the ball progresses in its orbit, it bears on a lever, G, which extends from the shaft, H , into the tray, as shown in the drawing. The tray is guided in its tilting motion by an arm, I, which is firmly attached to its circumference, and catches in a loop, J , secured to the edge of the catches in a loop, J, secured to the edge of the
platform, D. The slaft, H, is intended to transplatform, D . The shaft, H , is intended to trans-
mit the motion, imparted to it by the action of mit the motion, imparted to it by the action of
the ball, B, to the working maclines, or to a the ball, B, to the working machines,
mechanism of any desired construction.
mechanism of any desired construction.
"In the drawing, my motor is shown
"In the drawing, my motor is shown as applied for propelling a railroad car, or velicle, and in this case the slaft, H, bears a bevel wheel, K , whicl gears into a similar bevel wheel, L , mounted on the axle of the car, or velicle, so that the rotary motion imparted to the shaft, F, will be transmitted to the azle of the car, or velicle, and the desired motion of said
car, or vehicle, will be effected. It is obvious, however, that car, or vehicle, will be effected. It is obvious, however, that machinery of any kind and it is particularly valuable in localities where the erection of a steam engine, or other motor would be difficult or impracticable."

Fly and Balance Wheels.
The fly wheel and the balance wheel, and their different

The fly wheel is
equalize weight.
 a excellent compensating medium.

There are many circumstances in which a fly wheel may be advantageously applied in a strictly rotary machine, either when the propelling power is unsteady or disturbed by other machines, or when the power is steady and the work of resistance is unequal, as in circular saws used for
cutting fire-wood, making shingles and staves, or cutting fire-wood, making shingles and staves, or other work where the saw is alternately cutting and running empty at short intervals. By lengthening the arbor of such saws so as to place a fly wheel upon the end, at a convenient distance and out of the way, a great improvement may be made in their working, as it tends to equalize the velocity while the saw is running idle, and giving it out again while the saw is cutting. This effects a considerable saving of power, which is stored up, considerable saving of power, which is stored up, as it were, in a reding as light motive power and quired, thus enabling as light motive power and light belt to carry a saw through a cut which, slip the belt, and be ticklish and troublesome to slip the belt, and be ticklish and troublesome to feed.
It should be remembered here that the principle of the fly wheel is sometimes misunderstood and misapplied, as well as that of the lever, and that the fly wheel can never, under any circumstances, add power, but only equalize it. A machine may, therefore, be made with too much fly wheel. An instance of this will show what we mean. A friend When a crank is used as the medium of transmission be- of ours took a fancy for turning, and employed a good machinist ween a rotary and reciprocating motion, in either direction, to construct a crank power, to be worked by hand, to drive his fly wheel is generally necessary to equalize the momentum lathe. The workman first set up a large shaft, with a crank among the various situations of the crank during its revolu- on one end and a fly wheel on the other. The fly wheel was tion. The size and weight of the fly must; of course, be de- heavy enough for a ten-horse power engine, and a train of ermined by the weight, and, more particularly, by the nature cog-wheels, ingeniously contrived to gain specd by an advanof the machinery. In many instances, this contains a suffi- tageous leverage without losing power, connected this first ciency of regulating influences within itself, as the locomo- shaft with the cone-shaft from which the lathe belt got its ive engine on a railroad, or the tread-power applied to drive motion. The result was that three men sweating on the grindstone. The ordinary stationary steam engine, or a crank gave the first shaft a motion like the shaft of an oversaw gate driven by gearing or by a belt, requires a fly wheel shot wheel, and drove the lathe like a buz. But the men
of a size and weight proportioned to the momemtum of the reciprocating moviements. But a saw gate, or other reciprocating motion, taken direct from the water wheel by a crank on the same shaft, will run well enough with no other fly wheel than a balance; in fact, gates are often run in this way, without either fly or balance; but a balance should always be attached when circumstances admit of it, because, in addition to the assistance rendered by balancing the weight of the gate and pitman, another advantage is gained in the reduced strain and wear upon the binder and plumb block, by which the crank is much easier kept in its bearings. The rule among millwrights for the weight of the balance is to have its balancing power as near to that of the gate and pitman as
 sulted to see if the work could be lightened. The result was hat the great generator of power, the fly whicel, with its complicated train of cogged levers, was set aside, and a light band wheel upon the crank shaft substituted, from which the cone shaft was driven direct, and one man drove the machinc with perfect ease and regularity.
Now, this blunder was not made by an inferior mechanic as the workmanship of the various parts was excellent, but was the result of mistaken theories, most likely derived from a careless perusal of books, and jumping at conclusions which he had never enjoyed the opportunity of rectifying by experience. It may further be remarked here, as a general rule, that when a fly wheel is necessary to any revolving machine, it should be either upon or asnear to the last and quickest mover as possible, and never, as in the case referred to, upon the first and slowest, where its effect is only to load and lumber the machine, and increase the friction without any compensating advantage.
We shall end this subject by a remark which we forgot to make when treating upon the saw mill crank-balance, which is, that the weight of the balance should never be more than the propor tion there indicated, because the balance, though counteracted by the weight of gate and pitman, when up or down, has no compensating equivalent while acting horizontally, except the butt-end of the pitman, which leaves a great centrifugal force unbalanced, and acting alternately in both direc tions at each revolution, has an injurious effect upon the binder and bearings; and, further, that the balance and crank should be connected, and opposite each to the other, and not on separate parts of the shaft. A gang-shaft was broken where we were working, last winter, when no othe cause could be assigned than that the balance was placed on the tail end of the shaft, which was thus in addition to the strain of driving, made the medium of connection between the crank and bal ance, and it snapped off at the crank bearing.Craik's Practical Milloright and Miller.

Tests for Glycerin.

We translate the following tests for glycerin from the Chemischen Central Blatt of Oct. 5, 1870 "Brescius recommends as a test for glycerin, which is to be used in wines, beer, etc., to heat ten or twenty drops of the same in a platina capsule
possible; the extra weight of the saws, stirrup irons, and It will commence to boil, then it will burn and leave a slight ages being found sufficient, with the advantage of gravity compensate the cut of the saws.
In computing this balancing power, regard must be had to the distance of each from the center; that is, the weight of ate, etc., must be calculated by the length of the crank from the center, while the weight of the balance must be calculatd by the distance from its center of gravity to the same cen er, which is generally greater than the length of the crank o make this plainer, suppose the crank to be twelve inche long, and the center of the balance eighteen inches from the center of the shaft, then every pound weight in the balanc will be equal to one and a half on the crank.
For a light and swift crank motion, such as a screen or
race of carbonaceous substance, which will be but smal when glycerin is distilled, while glycerin not distilled will leave considerable residue. This carbonaceous substance will disappear by being heated to a red heat, without leaving a perceptible white or other residue.
By adding the same volume of concentrated sulphuric acid, drop by drop, to a pure distilled glycerin, no color will ap pear, even after several hours. The vessel ought to be set in ice, and the sulphuric acid must be very carefully added to prevent heating of the mixture. Glycerin not distilled will under these circumstances, take color, if only a very light shade. Any glycerin will take a brown color, by being heated with strong sulphuric acid, and it is for this reason especially
necessary in this test to cool it off well. Pure distilled glycerin, to which are added a few drops of oxalate of ammonia, will not give, even after several hours, the slightest indica-
tions of cloudiness. Glycerin not distilled will, however, usutions of cloudiness. Glycerin not distilled will, however, usu-
ally turn cloudy at once, or at least after a short while, if it ally turn cloudy at once, or at least after a short while, if it
does not form a precipitate. Pure glycerin, added to pure nidoes not form a precipitate. Pure glycerin, added to pure nitric acid, with a few drops of a solution of nitrate of silver, will not show the least cloudiness, while impure glyce. Above always present a greater or lesser milky appearance. Above all it is to be observed that glycerin, even when shown in a ar gass the being warmed on the hand by rubbing, leave a fatty odor which usually appears more prominent by adding a few drops of diluted acid, f. i. sul phuric acid

Drying of wood.

Dr. Hartig, of Munich, has recently made experiments on various kinds of woods. He says trees generally contain, during the winter months, about an average of 50.7 per cent of moisture; in March and April, about $46^{\circ} 9$ per cent; in May, June, and July, about 48 per cent; while up to the end of November the quantity of moisture increases but little. Air dried wood (timber) contains from 20 to 25 per cent of water, and never less than 10 per cent. Wood, which by being artificially dried, has been deprived of all moisture, is thereby entirely altered as regards its cohesive strength-it becomes brittle, and loses its elasticity and flexibility.
In order to dry all kinds of timber by artificial means, so as to preserve the essential physical structure, and, thereby, the good properties of the wood, the drying should be effected slowly, and the temperature to which the timber is submitted should be moderate to begin with and care should be taken not to eliminate all the water.
The author enters into details, illustrated by engravings, on the best means of drying timber on a large scale, and states that small pieces of wood, such as are intented for joiners and furniture-makers, may be readily and efficiently dried by being placed in dry sand, and then heated to 100°. The sand acts in the manner of an absorber of the moisture, as well as a diffuser of the heat

Improvements in the Now York City Hall Park. Our friends who have visited our office in Park Row will recollect that it fronts directly upos the City Hall Park. Should their business again call them here they will find a great and agreeable change has been made in this hitherto ugly looking plat of city property. On the lower end towards the Battery the massive and substantial U.S. P. O. building is slowly rising. . On the north side of the post-office a handsome avenue has been cut through from Park Row to Broad way, and a very substantial Belgian pavement has been laid upon it. The remainder of the Park has been paved with the Scharf asphaltic pavement, which makes one of the most beautiful road surfaces we have seen, and we hope it will prove durable. The spaces between the walks and drives are handsomely laid out, and trees, fountains. and urinals of pleasing design have been placed therein. From a thing of ugliness the Park has been transformed into one of beauty, and the general appearance of the immediate vicinity is much improved thereby.

The scientific lectures before the American Institate, at he Academy of Music, are as follows: Tuesday evening, December 20, 1870, The Struggles of Science, by George B Loring, M.D., of Salem, Mass; Tuesday evening, December 27,1870 , How We Stand and Walk, by Prof. Burt G. Wilder, of Cornell University, Ithaca, N. Y.; Friday evening, Janu ary 6, 1871, The Triumphs of Modern Surgery, by Prof. F. H. Hamilton, of Bellevue Hosip. Mod. College, New York; Friday evening, January 20, 1871, On Water, by Prof. C. F Chandler, of Columbia College, New York; Friday cvening January 27, 1871, On Tides and Tidal Currents, and their Effects upon Harbors, by J. E. Hilgard, of the U. S. Coast Survey, Washington, D. C.; Friday evening, February 3, 1871 On Light, by Henry Morton, President of Stevens Institute Hoboken, N. J.

Since the halfpenny postal-cards have been introduced in England it appears that their anticipated advantages are not without inseparable inconveniences. Whatever is written on these cards can be read by any one through whose hands they pass, while a letter weighing half an ounce may be sent securely in an envelope, over the length and breadth of the British Isles, for a penny postage-stamp. The economizing patrons of the cards, however, in their endeavor to sare a halfpenny and secure their communications from inquisitive eyes, are directing their attention to sympathetic inks; apparently forgetting that the employment of such inks entails expense and loss of time to both the sender and receiver, and completely frustrates the main object contemplated by the use of the cards-dispatch. This is not the first time in the world's history that the attempt to save a cent has resulted in losing a dellar.

Attaching Eccentrics to Shafts.-Mr. A. Stewart, of the U. P. R. R., North Platte, Nebraska, writes us that the method of attaching eccentrics, recently described and illusrated in this journal, and communicated by Mr. Egbert P. Watson, is not the invention of Mr. T. G. Gorman, as stated. Mr. Stewart says he had drawings and patterns made for the ame thing while foreman of the Springfield shops in 1868, but that he does not claim the device ashis invention, having seen the same twonty years previous

MORE than half of education is learning hono to learn.

CHOrxespondewte.

The Editorsare
respondents.

Beet-Root Culture in New Mexico

Messrs. Editors:-I have for the last two years experi mented on raising sugar beets, the genuine Silesian, from seed obtained from Silesia, and I believe that this part of the world cannot be surpassed in the quantity and quality of beets suitable for sugar. We have for more than two years serious ly entertained the idea of establishing a beet-sugar factory in this territory, but times were so dull and money so scarce that we have not yet been able to commence in earnest.
There are greatinducements offered for a beet-root sugar fac tory in this territory. There is an enormous quantity of sugar used, and every pound of it is brought from the East; and sugar, at wholesale, sells here at $\$ 22$ to $\$ 24$ per sack (100 pounds).
The beets grow here in abundance, and are a never-failing crop with irrigation, and labor is cheap-we pay 50 cents and board, per day for labor. It is clear that a beet-root sugar factory would be a financial success under judicions management.
We have been stirring the matter from time to time in our ocal papers, and there is plenty of will, but not enough money. For instance, we here would do all as far as land and buildings are concerned-would furnish the beets, wood, coal, and even labor, if some party will furnish the capital to bring
and set ap the machinery. We have got splendid water good location, and plenty of land and wood.
We have got a fine woolen mill going, which we are just enlarging to a three-set mill, and shall have it in full opera ion again by next spring.

Carl W. Wildenstein.
Cherry Valley P. O., New' Mexico.
How to Make Leather Cord Belting
Messrs. Editors:-A. R. K. asks in "Queries," page 346, current volume, how to make a round leather cord belt. He can make one any length by cutting a perfectly circular piece of leather, then cutting it a little way round (two or three inches) with his knife to start it. Then take a piece of wood two and a half or three inches long, and cut a step in the ander side like A in the diagram, and nail it to a board, the cut side down. Then put the leather under it like B, and stick a sharp knife down on the side towards him with the edge next the block about one tenth of an inch from the shoulder

and draw the little piece that has been started through be tween the knife blade and the shoulder on the block, and he can draw it all out till he comes to the center of the leather Then soak the leather in water a few minutes, and roll it Utica, N. Y.

Conductivity of Various Substances.

Messrs. Editors:-I notice in your paper an article by Rich ard Higgs, from the Electric Telegraph and Railooay Revieno in which he starts out with what seems to me false premises He assumes that "experiment proves that the best heat con ductors are the best conductors of electricity," and in support of this he inserts a table showing the relative conductivity of different metals, " by which," he says, "it will be seen that they generally agroe as to order," but glass is not once spoken of. If I understand the matter at all, glass conducts heat rapidly, but shows a decided resistance to the passage of electricity. There are a number of substances in which as wide a divergence might be shown; the muscles of a living body, for instance, conduct electricity much better than heat. I am greatly mistaken if Mr. Higgs has not selected his facts to suit his theory, instead of suiting his theory to the facts-not an unusual practice in "these latter days." I do not claim to be much of an electrician myself, however, and should be pleased to hear from you or some of your readers who may be better acquainted with the subject.
Baltimore, Md.
C. E. Bentley.

Our correspondent is mistaken in supposing glass a good conductor of heat. The art of glass blowing depends in a great measure upon its nonconductivity, which enables it to be heated in particular places and to retain its heat in those places without diffusing it to parts desired to retain their form and rigidity. Let our correspondent take a small piece of glass tubing and heat a spot in it to red heat in an alcohol or
glass flame. He will find that he can hold the tube in his glass flame. He will find that he can hold the tube in his fingers only a very short distance from the heated portion. Then let him try the same experiment with a metal rod or Eds.

Heating of Buildings.

Messins. Editors:-Permit me to remark that the practical man among your readers would disagree with you in your article on the " Heating of Buildings," page 359, on one point in particular, viz., that steam henting is the next best to grate fires. If you reconsider this matter, you cannot but confess that this is an error, as it is well known that warming build-
ings with circulation of the hot water apparatus is, if no equal to grates, the next best, as the most sensitive plan will thrive when cultivated under this heat; if with steam it would die. Hot water when well applied is economical steady, and healthy.
J. B. M. Montreal, Canada.
[Steam heat, if properly applied, is, we still think, for ordinary purposes, next to the grate in excellence, all things con sidered. It is true that for green-houses hot water apparatus is preferable; but for general heating purposes, low pressure steam, with air admitted from the external atmosphere, and passed directly through the heating coils, is more easily managed, we think, and less liable to prove inefficient under the care of such per

Hoosac Tunnel.
Messrs. Editors:-I was forcibly struck with the difficulties the practical engineer would have in establishing a line, or ties the practical engino points on the supposed line, at the bottom of the central two points on the supposed line, at the bottom of the central
shaft of the Hoosac Tunnel, described in your journal of October 29th, and as an engineer, would not be willing to trust to its correctness; but would insist that the corporation should sink another shaft not more than 3,000 feet or less than 500 feet (as the vertical contour of the ground migh dictate) distant from the center shaft, to determine my ac curacy. The difficulty, as all will agree, is in dropping two perpendiculars from two points in the tangent line on the surface to the bottom of the shaft, these points being neces sarily less than 35 feet apart. I am at a loss, therefore, in endeavoring to obtain any information from your "San Jose Cal.," correspondent, in your issue of No. 24, when he gener alizes "that a reliable result can only be obtained by the aid of a transit instrument, modified according to the exigencies of position and surrounding circumstances." This sentence certainly "covers the ground," if, indeed, a better transit is certainly "covers the ground," if, indeed, a better transit is
needed than Queen, of Philadelphia, Temple, of Boston, and a host of other makers are making every day for civil engineers. But it does not seem to me that a transit is to overcome the difficulty that will be experienced. A perfect line is supposed to exist, or else certainly the shaft is not sunk on the line. This being the case, in what way will perpendicu lars be dropped by the aid of a transit? One cannot see through the telescope of the transit down the shaft, and if ho could he would not depend upon (to use a field engineer's expression) its "dumping" perfectly, no matter how perfect the transit might be in its mechanism. The objective diff culty is in dropping the perpendiculars. Can this be done perfectly, and a test of its perfection estaklished? If so, the great difficulty is overcome. If not, I cannot conceive how a "transit instrument" can overcome it. Returning, however, to the plummet, not remembering the difficulties that have been experienced with long lines, I would suppose they been experienced with long lines, I would suppose they
were either the " vibratory-oscillating" or " vibrating rotawere either the "vibratory-oscillating" or " vibrating rota-
tive" motions. The attraction which would bring the lines tive" motions. The attraction which would bring the lines
closer together at the bottom than at the top of the shaft would affect only the length of the line, not its direction and any motion of the earth which would affect the perpendicular of the lines, not vibratory in its character, would affect each line equally, and the line at the bottom of the shaft would be parallel, if not vertically identical, and so would practically be perfect. If, however, as I suppose, the difficulty is in either of the vibrating motions, I would sup pose the hanging or suspending the plummet in oil would suffice. But I would still insist on another shaft being sunk, as before stated. The subject is an interesting one to engineers, and I would (for one) like to hear the views of the gineers, and I would (for one) like to hear the views of the
profession. By the way, Messrs. Editors, will you or the wriprofession. By the way, Messrs. Editors, will you or the wri-
ters for your "Correspondence" column, give us the history of the Mount Cenis Tunnel in this same connection?
Clarksville, Tenn.
G. C. Breed.

Hoosac Tunnel.

Messrs. Editors:-Your Californian correspondent, with the titles attached of A.M. and M.D., on page 372, current vol ume, contends " that the plummet cannot be depended on to give a vertical line for a central shaft to the tunnel, in conse quence of the earth's rotation, whtch causes a deviation to the west, in geometrical progression, with the depth.'

The earth's rotation tends to a deviation in its own direc tion, or east, in the simple ratio of the depth; but the tend ency to deviate, for all practical purpose, is counteracted by the earth's constant central attraction.
We can, however, suppose an extreme case, when the plum met has descended under the influence of the eastern devia tion, unrestricted by the central attraction, and its descent being arrested, the string would represent the rod of a pendu lum, and the plummet would vibrate till the vibration was stopped, when it would rest on the true vertical line. The length of the tunnel is not recollected, but if it were 6 miles, or 3 miles each way from the center, a rise of 6 feet at the the ends above the center would be required to meet the spherosity of the earth. The tunnel isassumed to be straight which would in effect be equal to a descent from each end towards the center. If the tunnel followed the arc, instead of the straight chord, its floor would be on a level throughout and vertical shafts from any part of the surface would enter it at right angles; whereas any vertical shaft to the straigh tunnel would enter obliquely, except at the central point. Pittsburgh, Pa.
T. W. B.

A series of experiments made with water and benzole water and oil of cloves, water and sulphide of carbon, has been made, and shows that two liquids, not miscible with each other when in contact, boil at a lower temperature than whe the most volatile of these liquids is brought to ebullition by itself.

successful application of steam to canal boats.

In the winter of 1867-8, the writer, after considering variousmethods for applying steam for towing on the canals, conceived the plan of locating an ordinary screw propeller in the center of the bow of the ordinary canal boat, in a cavity or opening (tapering in shape, and terminating about 20 feet from the bow) which is formed for that purpose, with the view of preventing any agitation of the water, of displacing it at the bow, and of replacing it at the stern of the boat; and, in order to show the indications with this method of propulsion, a working model of a boat, and a section of the canal, on a scale of $\frac{1}{t}$ inch to a foot, were constructed and tried in the spring of 1868.
1870, when the and experiments were tried until September 1870, when the canal boat Geo. Barnard (a lake boat, 90 feet $\times 17$ feet $\times 6$ feet draft, and which carries 200 tuns) was procured, and steam power applied on this plan, at Nyack, for the purpose of making an actual trial on the Erie canal, to test the speed, the consumption of fuel, and to find whether there were any objections to its working when going through the locks, and running on the canal. Accordingly, on November 4th, after everything had been made ready, the Geo
Barnard left Nyack on a trial trip to Schenectady (on the Erie Barnard left Nyack on a trial trip to Schenectady (on the Erie
canal) and back, a distance of over three hundred miles, going with her own steam all the way.
The results of this trial prove that steam can be applied to ordinary canal boats to propel them three miles an hour, or twice the speed of the present loaded boats; without any injurious action on the canal banks whatever.
That the speed of the boat is the same on the canal as on the river.
That the boat can go through a lock in six minutes from the time the bow enters until the stern leaves it, or about one half the time a loaded horse boat takes; for, owing to the screw being in the bow, when going up the boat can be drawn against the upper gate, against the current, allowing the lower gate to be promptly closed.

That the boat will pass over the tow lines of other boats. That it can be handled in the locks by three hands.
That a loaded boat can be run 72 miles per day, on one tun of coal, costing $\$$, while the towing for horse boats has cost 40 cents per mile this season, or $\$ 28.80$ for 72 miles, and they take two days to go that dist
for two days instead of one.

That, if desired, this boat will tow one or more loaded That, if desired, this boat will tow one or more loaded
boats at a moderate speed. (She towed a boat loaded with boats at a moderate speed. (She towed a boat loaded with
135 tuns of cargo, at Rondout, at the rate of $2 \frac{\pi}{4}$ miles an hour.) That stcam can be applied to any canal boat at a cost of about $\$ 600$ for altering the boat, in addition to the cost of the machinery, and then she will be capable of doing twice as much business as before.
That such a boat can go on the canal, river, or lake, with her own steam, and so dispense with all charges for tunnage. That steam can be advantageously applied to a canal boat or barge, with a smaller reduction of the carrying capacity, on this plan than on any other, as the boat can be built very full, and yet the water can flow to the screw, and go from it
very readily. That a boat
That a boat carrying 200 tuns of cargo, on this plan, with a 16 -horse power engine, and burning one tun of coal in
twenty-four hours, will go three miles an hour, while the twenty-four hours, will go three miles an hour, while the
carrying capacity is only reduced ten tuns by the application carrying capacity is only reduced ten tuns by the application
of the machinery, and if a greater speed is desired it can be of the machinery, and if a greater
obtained by applying more power.
obtained by applying more power.
The steering qualities of the Geo. Barnard, when loaded on an even keel, are all that could be desired, and she behaved very well throughout the trip; the only thing found to be needed was a jet in the smoke pipe, so that the steam pressure could
be maintained when cleaning the fire, or when the smoke pipe be maintained when cleaning the fire, or when the smoke pipe was lowered to go under the bridges.
The action of the engine and boiler was perfect, in fact the engine was never stopped until the destination of the
boat was reached each day. The action of the screw on the trial has been found to draw a current into the opening at the bow, force it along under the bottom, and replace it at the stern, thus allowing the vessel to glide along without making any commotion in the water. The boat passed through forty four locks on her way. She passed three loaded horse boats
above Cohoes, and beat them three hours on a run of nine above Cohoes, and beat them three hours on a run of nine
miles, thus showing that there is now no difficulty whatever in successfully applying steam to canal boats on the Erie Champlain, or Hudson \& Delaware canals.
Alloys of Copper, Tin, Lead, Zinc, with Man
In the year 1826 a spoon, made by Messrs. Zernecke, of
Berlin, was analyzed, and the alloy was found to be composed of copper, $57 \cdot 1$ per cent; manganese, $19 \cdot 7$ per cent; zinc, $23 \cdot 2$ per cent. This analysis is included in a chapter on "Kuperf-
mangan," by Mr. Johann Tenner, in his "Handbuch der Met-all-legirungen," published at Quedlinburg. Berthier produced a large number of alloys of manganese with various metals, and has recorded their principal properties. Although there is no published account of such experiments, Dr. Percy some years ago thoroughly investigated the nature of manganese alloys. There are also specifications of patents, one in the name of Emil Stoehr, dated 1802, the other in the name of Oscar Prieger, dated 1864, both claiming the original discovery of this class of alloy. Whilst, therefore, the alloys of copper, zinc, and other metals with manganese, have been more or less known to the metallurgist for more than forty
years; whilst their valuable physical properties have been years; whilst their valuable physical properties have been
fully described; whilst, moreover, manganese in its ores almost approaches iron in its abundance and in its value, and whilst for years being suffered to escape as a waste product
from almost every large alkali works, we find the metallur when yot succed in reducing it to serve widely excep when yoked with iron. Attention was directed to this subject
by the late Mr. John Keates. To produce metallic manganese by the late Mr. John Keates. To produce metallic manganese
was not from the first attempted; and it is with extreme dif ficulty that even small quantities of this metal can be pre pared. From the first it was discovered that in using eny of the ores of manganese the iron and the silicon completely destroyed the value of the product. Having obtained a com paratively pure oxide of manganese, recovered from the "still-liquors," and having mixed this with oxide of copper not metallic copper, together with wood charcoal, all finely ground and intimately mixed, the charge was put into a plumbago crucible, then heated in an air furnace at an intense heat from three to four hours. It was found when the pot was taken out that, still suspended in the charcoal, and not run down to the bottom, were innumerable fine shots of a run down to the bottom, were innumerable fine shots of a
bright white metal; these being separated by washing and bright white metal; these being separated by washing and
placed again in the crucible and heated, fused into a prill or placed again in the crucible and heated, fused into a prill o
button covered with a layer of green vitreous slag. The pro eess was continued, until some small ingots were produced and on these experiments were made as to their mallealility and ductility. The alloy was found to be very hard and brit tle when hot, but when cold, although still hard, it rolled with ease, and was highly elastic. The proportions of the alloy were about-copper, 75 per cent; manganese, 25 per cent. When the simple alloy had been produced in sufficient quantities, compound alloys with zinc were tried in various proportions, and these again rolled with complete success Certain mixtures of copper, zinc, and manganese possess the advantage over both German silver and yellow metal that whereas the one will only roll cold, and the other hot, the manganese alloy rolls from hot to cold. The laboratory ex periments having been completed, an air furnace was built in which a 1 cwt. plumbago crucible was used. The results
were precisely the same as those obtained in the laboratory, only it was found that by stirring the charge a few minutes before the crucible was taken out of the fire, by far the great er portion of the metal that before was in small fine shot needing very careful washing, now settled to the bottom of the pot, and could be poured out as a bar or an ingot, the slag also melting, and the unconsumed charcoal floating on the top. This experiment was continued until several hundredweights of the alloy were produced, so that it might be subjected to various tests, and also that some approximate estimate of its cost and value might be formed. As a simple alloy, in which the proportions of manganese range from 5 per cent to 30 per cent, it is both malleable and ductile, with tenacity considerably greater than that of comper. Windith German silver, is obtained. The alloy of copper and manganese combines with tin, lead, and other metals, and from these castings are made, and applied as bearings for machin ery and other similar purposes. It was not the nature of the metal itself that prevented its being widely used; it was its cost. The waste of manganese is very considerable, over 10
per cent remaining unreduced, and forming a silicate; the wear and tear of the plumbago pots and the furnace incurred a large expense, and in proportion to the quantity of metal produced the fuel consumed and the labor expended were great. The work was therefore for a time arrested by an ob stacle which not unfrequently bars the path of the inventor of mangowever, now simply a question of cost. The wast always be considerable, but the value of the raw muteria would permit some such loss, could the other points le ob-tained-and these, it is believed have now been achieved The metal has been produced by heating a mixture of car onate of manganese with oxide of copper and charcoal in tolerably large reverberatory furnace, and not in a small and
costly pot. The fuel used has been principally the common costly pot. The fuel used has been principally the common slack or small coal of the district, and not coke. The labor has been proportionately reduced, and a series of alloys are produced that ere long promise to play no unimportant part in the arts and manufactures. It is the excellent furnace ar rangements of Mr. Siemens that have assisted in overcoming he difficulties at first encountered, by affording the intense
heat needed, with a non-oxidizing flame, in a quiet atmo sphere.
Specimens exlibited.-(1) Manganese and copper in various proportions, from 35 per cent to 5 per cent of manganese as ngot, sheet, and wire. (2) Copper, zinc, and manganese; also in different proportions, and in a variety of applications (3) Copper, zinc, manganese, and tin; as ingots and as bea proportions; as bars. (5) Copper, manganese, and lead.-J. F. proportions; as bars.
Allen, Esq. F.C.S. Before the British Association.

There is an Under-Current.

It has long been known that a current is constantly flowing nto the Mediterranean from the Black Sea, and from the Atlantic, besides the numerous rivers pouring in alway abundantly, and the question has often been asked: How is t that the great Midland sea does not become over-full? The nswer is: Because, while a surface-stream flows in through Strait of Gibraltar, a stream deep down is constant
ly flowing out; and the existence of this under-current is said to have been proved by a captain, who sunk a basket of stones by a rope to a considerable depth, where, being acted upon by the strong stream, it towed the boat out agains the surface-current. Nevertheless, the existence of the under. current has often been questioned. Dr. Carpenter, however in the Mediterrencan, states that he took much pains to investigate this question, and ascertained that the outflowing under-current does really exist.

EYESIGHT AND THE MICROSCOPE.

York.]

In using the microscope, I have found that the best system is that recommended by Dr. Carpenter. It is to alternate the use of the eyes, always keeping the unemployed eye open But I feel confident that it is of no use to keep the unem ployed eye open if it be made to stare at a dead-black surface It is the exclusion of light from one eye, and the consequent unequal action of the visual organs, that is thus produced unequal action of the visual organs, that is thus produced,
that causes the mischief that we dread; and it matters not whether this unequal action be produced by covering the eye with the eyelid, or by excluding the light from it by other means-the result is the same. In making observations with the microscope, all extraneous light should be excluded from the eyes. Hence the value of a properly arranged shade. Such a shade, however, should consist of more than a mere flat sheet of pasteboard covered with velvet. It should have a perpendicular portion, rising up in front of the face, and cutting off all light except that which comes through the microscope. And now, having provided a shield of this kind, which, by the way, is easily made of pasteboard, blackened on the inside with dead-black varnish (made of alcohol, lampblack, and a very little shellac), if we punch an inch hole at such a point that the unoccupied eye can see it in the same way that the other eye looks through the instrument, we will find that the fatigue experienced by that eye is vastly less find that the fatigue experienced by that eye is vastly less
than when it is exposed to the dead-black surface. A few than when it is exposed to the dead-black surface. A few
trials will set at rest all questions on this head, and the change from light to darkness is easily made by simply slipping a piece of blackened paper or card over the hole.
With few exceptions, we use altogether too much light with the microscope. Where a full flood of light is passed hrough a transparent object, the finer points are apt to be drowned" out entirely; and it is only by modifying the amount of light by means of the diaphragm, that we are enabled to make out the more delicate details. Hence it will be found that the use of the bull's-eye condenser, for concentrating the light on the mirror, and consequently augmenting the amount of light passing through the olject, is, in general otally unnecessary. This arrangement of the illuminating apparatus is totally different in its effects from that of the chromatic condenser, and cannot be substituted forit, as some ersons seem to think
The first requisite in the light that we use is whiteness Hence daylight, the light from a white cloud, the artificia white cloud illuminated by duylight, the light from the old ashioned argand lamp burniug sperm oil, the modern studen lamp burning kerosene oil, and its various modifications, and the argand gas-burner are good-their excellence being abou in the order here laid down. Common gas-light, candles, and erosene lamps are inferior just about in the older we have named. White light is not nearly so fatiguing to the eyes as the reddish glare from a half-smothered combustion. Hence, in all cases we must seek to have the most perfect combustion and highest possible temperature of flame in our sources of artificial light. It is true that this gives rise to great heat, but this difficulty is easily obviated by the use of proper screen or shade, and none will be found better than he one previously described. Indeed, when working by arti fial light, it will be found that the heat is one of the most efficient causes of injury to the eyes, and the screen that we have mentioned is, perhaps, quite as useful, from the fact that it cuts off heat, as from its excluding unnecessary light.
The second requisite is steadiness. Nothing is more trying to the eyes than a flickering light. Of all sources of light, the naked gas-flame is the most unsteady; and yet we have seen young men working away with it for hours. The argand gas-lamp with glass chimney is much more steady, but it is not quite as white as a well-trimmed German student-lamp, burning good kerosene oil; and as this means of illumination is the most accessible in this country, it is probably to be preferred above all others.
There are certain conditions of nearly equal importance that ought to be found in the microscope itself, and that are found in the instruments of the best foreign makers, as well as those of this country. A very trifling want of correct adustment on the part of the microscope produces a very njurious strain. Hence the necessity of a ready means of producing a delicate and accurate adjustment of the
focus of the microscope. This is totally wanting in some nstruments, and within a few days we saw, in an Engish scientific periodical, an advertisement of a microscope which claims superiority on the ground that it does not require focusing. Such a microscope must be essentially bad, except for a very limited class of objects. All good microscopes are furnished with arrangements for focusing. A second requisite is that the instrument should be so steady that the object shall be retained in view and in focus without change. Any tremoris injurious to the cycs, and especially is this the case when that tremor produce a continual change in the relation of the object to the focus. A single hour's work with a lens held in the hand or mounted on an unsteady stand will cause more injury to the eyes than wecks of work where a first-class instrument of far higher power is ustd. It has always seemed to us that watchmakers, engravers, and those who use lenses, do not sufficiently apprectate ihis fact.
They in general mount their lenses on wire stands, which They in general mount their lenses on wire stands, which
tremblingly respond to every footstep that falls upon the foor, and thus cause continual demands upon the eye for readjustment of focus. Wherever a microscope-single or compound-is used for more than a few seconds, it ought to especially all disturbance of the focusing, will be avoid. espe
ed.

Shaw's Cotton Seed Huller.

The proper hulling of cotton seed is a matter of much importance, in a commercial point of view. Our readers having perused the valuable articles on Cotton Seed and Cotton Seed Oil, published in this journal during the past year, will stand in little need of any argument on this point. If the seed be much broken in the hulling process, so as to approximate the quality of meal, its spoiling during exportation is almost certain. We have been shown a letter, from a London firm, attesting that a lot of seed, hulled by the machine shown in our engraving, was shipped to London from this country, not only arriving in perfect condition, but yielding 42 lbs. of oil from 165 lbs.of seed, in the samples tested, the oil being of excel lent quality, not inferior to that extracted from Egyptian seed
In an agricultural point of view, the proper and conomical hulling pot of the proper and economical huls which are worthless for industria since the hulls which are worthless for industrial
purposes, or for feeding contain nearly all the ferpurposes, or for feeding con
We are informed that since the shipment of seed We are informed that since the shipment of seed
to London above referred to, other lots have been to London above referred to, other lots have bee sent with equal success. If these are facts, as stated they establish the possibility of shipping hulled seed, and will undoubtedly open the dpor to a largo foreign traffic in this article.
The operation of the machine is extremely sim ple, as is also its construction.
The seed is placed in the hopper, A. From this hopper it falls upon an endless apron, which carrie it along and drops it into a. vertical chute, from whence it is carried by a screw conveyer through the center openings of two revolving chilled iron plates, inclosed in the case, B " and passed through plates, inclosed in the case, B, and passed throug between their surfaces to be hulled. These hulling plates have a peculiar "dress," the action of which s to decorticate the kernels of the seed.
The seed, passing downward from the hulling plates, meets a blast, generated by the fan-blower, C , which blast carries up all such seed as is imperfect ly hulled, together with the perfectly separated hulls, and deposits them upon the "separators," D These separators are screens, upon which a series of fingers play, rubbing the imperfectly separated seeds and hulls, and completing the work of the hulling plates.
Very little of the seed is thus imperfectly hulled by the plates, and the passage of the same through the separators completely supplements the operation of the plates. At the same time the air blast re moves all dust, and also acts to dry the hulled seed A second separator in the opposite side of the machine from D separates the small portion of seed that may have been crushed in passing through the hulling plates, the crushed portion being used as food fo cattle, while the sound and comparatively uncracked portions, constituting the greater bulk of the product are reserved for exportation, or for home oil manu factories.
Patented Nov. 9, 1869, and June 7, 1870. For information concerning these machines address Jewell \& Ehlen, 93 Liberty street, New York city.

GAS STOVE

A correspondent of the Journal of Gas-Lighting (London)

gives a description of a gas stove, which is not open to the objections against such stoves as they are usually constructed. It may be easily made anywhere by ordinary sheet-iron workers, and as such a stove would be in many cases very
desirable, we reproduce the engraving of it from the journal referred to.
a^{\prime}, the air-passage (2-inch tubing), passing underneath the floor to the outside of the building, and protected by an air brick.
$a^{\prime \prime}$, the exit-flue. With a view to the economization of heat, this may be considered as part of the stove. As much of it as may be convenient should, therefore, be fixed in the room.
b^{\prime}, an air-chamber, through which the air circulates, enter ing below through the tubes, $b^{\prime \prime}, b^{\prime \prime \prime} . c$, the ring-burner.
d, a circular doorway for lighting the gas and examinin the hight of the jets. This is closed by a disk of glass set in a tight-fitting ring, fastened by a bayonet-joint

SHAW'S COTTON SEED HULLER

The exit-flue may extend horizontally a considerable dis-tance-say 30 to 50 feet-if within such limits it can be conveyed into a constantly-used chimney, or, in any case, one with a good up-draft. If no chimney be available, the flue may be carried (horizontally) any reasonable distance to the outside of the building, the end being turned up in the usual manner. By a slight alteration in the fitting up-that is, by connecting the airtubes, $b^{\prime \prime}, b^{\prime \prime \prime}$-so as to receive air from outside the house, a constant flow of fresh (warmed) air would be admitted to the room.

Rapid Telegraphing.
There was great rivalry between the Western Union and the other telegraph companies having lines between this city and Washington, D. C., as to which should transmit most rapidly the annual message of the President, delivered to the Senate and House of Representatives on December 5th. The message contained about 9,000 words, and was transmitte over 10 wires by the Western Union Company, dropping copies at Baltifore and Philadelphia in $37 \frac{1}{2}$ minutes, or a the average rate of 25 words per minute on each wire.
The entire message was transmitted by the Bankers and Brokers' and Franklin Companies in 70 minutes, employing two wires each. This was at the rate of 33 words per minute The Franklin Company used two wires until the message was completed, and a third wire for 15 minutes, the average time being 70 minutes, and the average speed 28 words per minute.
The Bankers and Brokers' Company used two wires, the average time being 70 minutes, and the average speed 35 words per minute. One of these wires averaged 39 words per minute-Mr. Benjamin Johnson sending and Mr. I. S. per minute一M
Fitch receiving.
The result in the strike in January last drove from th Western Union to the opposition companies, greatly to the advantage of the latter, some of the best operators formerly employed by the former. The operators of the B. \& B., and Franklin lines may justly feel proud of this achievement and
their substantial demonstration of superiority.-The Teletheir sub
grapher.

The Mode of Erecting a Rallway Bridge acros the Ganges.
Last month a party of engineers, headed by Sir John Ren nie, visited the works of Messrs. Campbell, Johnstone \& Co., at Silvertown, to witness the exhibition of a new method o launching girders or bridges without scaffolding. The struc ture which formed the subject of the experiment was two
spans, each 110 feet in length, of a bridge which is to be
erected across the Ganges at Cawnpore, and which will carry on the top surface the rails of the Oude and Rohilkund railway, and below, a good and substantial roadway for bullock trains or ordinary traffic. The bridge is to be formed of lat tice tubular girders, the hight over all being ten feet eight inches, and the bullock road nine feet wide by eight high. The bridge, when complete, will consist of 23 spans each of 110 feet in length, resting upon cylindrical piers of brickwork, and the weight of materials in each will be about 75 tuns.

The method hitherto adopted for launching girders of these dimensions has been simple haulage by means of chains and pulleys, which has been attended with great loss of power delay, and many other inconveniences. The mode adopted and devised by Messrs. Campbell, Johnstone \& Co. voids waste of power, has nothing to do with eithe chains or pulleys, and depends entirely upon direct propulsion. The span having been built up on the sore, rests at each end upon a series of ten wheels, which are propelled by ten hydraulic rams, five on each side; the number may of course be diminished r increased, according to the work to be performed -and to these wheels, which play upon a rail beneath the bridge, there is fitted a worm and worm wheel moved by a ratchet brace, which is set in motion by five men on each side working handles up and down, who can propel 150 tuns at the rate o nine inches in the minute, a speed which, with slight alteration of the machinery, will be increased to a foot. In this instance a bridge 2,530 feet in length, is to cross the Ganges in 23 spans of 110 feet each. Every section (each including two spans) will be launched from the same shore, and all will be driven across by the apparatus and moved from pier to pier as required. The bridge was designed by Mr. Heppel, C. E., and has been constructed by Messrs Campbell, Johnstone \& Co., to whom belong the en tire credit of devising the apparatus for the fixture of the superstructure.-Herapatl's Journal.

UTOMATIC BOILER FEEDER.

This new feeder is the invention of the English enginee Mr. Macabies, and is designed to maintain a constant level in steam boilers. It is composed of a cylindrical receiver furnished with two spherical valves, one slide valve, and a floating water gage.
The receiver is put in communication first with the atmosphere and the hot water of a reservoir, and then with the steam and water of the generator.
It is in reality a supply cylinder of small capacity working automatically, and having no parts liable to derangement. The work of supplying the boiler is reduced to a simple surveillance of the apparatus.
According to the English Mechanic, when the float is down, as in the figure, the steam in the receiver can escape by the valve at the upper right hand corner, and hot water from the proper reservoir flows in by the valve at the lower left hand side. As the receive fills, the float rises and closes the right hand upper valve; the team, then acting upon the water of the receiver, closes the alve which admits the supply and opens the valve upon the opposite side, which communicates with the boiler. Th water, being subjected to equal pressure above and below

lows into the boiler by virtue of its weight. The float de cending with the water shuts the steam valve and the water again flows in.

Dyeing Articles made of Horn Black.-The objects made of horn, and ready for use, but not yet polished, are placed in a lye of caustic soda or potassa, and left therein ntil a portion of the surface has been dissolved, which may e readily detected by the somewhat fatty feeling the horn ssumes when touched with the fingers. The objects are ext washed in pure fresh water, and afterwards passed hrough Lucas' aniline black. After having been dried, th objects are washed, and, lastly, polished.

stientitic smmiram,

MUNN \& CO., Editors and Proprietors.

NO. 37 PARK ROW (PARK BUILDING), NEW YORK. o. D. MUNN. S. H. WALES. A. E. BEACH. 85\%"، The American News Co.," Agents, 121 Nassan street, New York. *- "The New York News Co.," 8 Sprace street, New York. $\underset{\text { strect, Trubner \& Co., } 60 \text { Paternoster Row, and Gordon \& Gotch, } 121 \text { Hol- }}{\text { Hel }}$ born Hill, London, are the Agents to recelve European snbactitions. Or ders sent to them will be promptly attended to.
Pry A. Asher $\& \&$ Co, 20 Unter den Linden, Berinn, Prussla, are Agents
for the German States.
VOL. XXIII., NO. 26 [New Series.] Twenty-fifth Year.
NEW YORK, SATURDAY, DECEMBER 24, 1870.

PROPRIETORS AND FOREMEN

A mechanic writes us: "I must caution all mechanics against using their inventive genius, if they have such a boss as I have got, lest they on Saturday night get a note in their book, informing them that they are no longer wanted.'
Proprietors of manufacturing establishments sometimes imagine that because they purchase the intelligent labor of their operatives, and grudgingly dole out, at the end of the week, its moderate wages, they can lay claim, or ought to lay claim, to the private brain work of the individuals so unfor tunate as to be under their employ. We advise every mechanic, who has such an employer, to leave him as soon as he can find another situation, for he certainly cannot make a change for the worse
But, while there may be some such employers, we are glad that our experience warrants us in saying that they are exceptional. The majority would be glad to see a talented op erative working his way from the ranks, and would (so long as he does not neglect the duties for which he is paid), en courage, rather than discourage, any effort he might make to that end. Cases are not rare where young mechanics have added their inventions to the capital stock of the firms in which they were employed, and become partners. Mechanics should, however, remember that they have no right to use the time of their employers in the furtherance of their own private interests, and that they deserve not only rebuke, but discharge, should they, without the full knowledge and consent of their employers, surreptitiously make models, or drawings, instead of attending to their proper work.
In many cases, the power to employ, or discharge, is vested in a salaried foreman, possessing no direct interest in the business which he superintends. Whenever this is the case, proprietors should recollect that a foreman will "bear watch ing," as well as his subordinates. It is to our knowledge, not without precedent, that foremen take a leaf from the book of municipal management, and make a trade of indulgences to the workmen under them. In other words, they roll a brib like a sweet morsel under their tongues, and the man who re-
fuses to pay tribute finds, after a while, that he must make way for perhaps some inferior workman, having less self-re spect, and more love for unrighteous mammon.
In general, we believe proprietors of large establishments are too carcless of the personal welfare of their employés and might secure better service, and advance their own interests, by seeing that justice is impartially administered by their foreman. No man ever yet lost any thing by showing his help that he had, at least, the regard for them which common humanity claims.

HOW VERMICELLI AND MACARONI ARE MADE.

Macaroni and vermicelli are articles of food originally, we believe, prepared in Genoa, in Italy. The former is a dough of wheat flour and water, made into a pipe-like form, a little larger than the barrel of a goose quill, and dried till it is hard. The latter is a simple dough of wheat flour and water, or a mixture of flour, water, eggs, sugar, and saffron, made into threads, and dried like macaroni.
Except in a few small establishments, where the work has been generally performed by hand, the manufacture of these articles has not until recently been prosecuted in this country The Mendelson Vermicelli and Macaroni Works is an ex tensive steam manufactory of macaroni and vermicelli, re
cently established at Nos. 311 and 313 , Avenue A, in this city. cently established at Nos. 311 and 313, Avenue A, in this city.
Feeling that a description of the processes employed would be of interest to our readers, we this week visited the works be of interest to our readers, we this week visited fore the first
mentioned, and were rewarded by witnessing for mentioned, and were rewarded by witnessing for the first
time a very interesting series of manipulations, which, though time a very interesting series of manipulations, which, though
extremely simple, require for their conduct great care, skill, and experience, to secure uniformly good results.
The first step in the manufacture of these articles, is the preparation of the dough. This is done in machines strongly resembling pug-mills for mixing clay for brickmaking. The tempering of the dough is not done by any particular formula the variations in the quality of the flour used not permitting the use of a particular specified quantity of water. The tempering is a work of great nicety, as upon it depends the per fection of the subsequent processes.
The dough taken from the mixers is put into a press, and compressed into cylinders about seven or eight inches in diameter, and from twelve to fourteen inches in length These dough cylinders have considerable consistency. They may be handled without detriment to their shape, which exactly fits the cylinders of powerful hydraulic presses of
peculiar construction. Into these cylinders the dough is placed, and pressed through holes in former plates at the bottom of the cylinders.
For macaroni, the holes in the former plates have each a plug which is supported from the inside, and which is enough smaller than the hole to leave an annular space all around it. Through this annular space the dough issues in the form of long tubes, which are removed, cut into proper lengths, and placed on trays formed of cloth of loose texture stretched on square frames of a convenient size for handling. These trays are placed in frames in a darke
they remain till the macaroni is fully dried
hrough the same operations as macaroni until it reaches the hydraulic presses. In these presses the former plates used for vermicelli are made with concentric groups of holes, each group containing about forty-eight holes and each hole being about one tenth of an inch in diameter When the pressure is applied the dough issues through these holes in threads resembling catgut in appearance almost ex actly. The pressure to which it is submitted causes it to become heated; and to cool it and partially dry it, a blast of cold air is made to play directly upon it, a flan blower being used for this purpose. The operation is completed by cutting the condles of forty-eight threads into proper lengths, twist ing the lengths up into graceful coils, drying, and packing. We understand the concern is now working about twenty five barrels of flour per day, with city orders for all they can produce.
Mr. L. Mendelson, the head of this establishment was the originator of the Mendelson Bank-Note Reporter, and is wel known as one of the many German citizens who have brought with them to this country rare business talents and grea commercial enterprise.

CLOSE OF VOLUME XXIII.

The never-ceasing tide of time has brought us to the close of our twenty-third volume. The six months consumed in its publication have been months of steady progress and healthy growth, and have brought us many gratifying assur ances that our efforts to please our patrons are successful and duly appreciated.
The contents of the volume are, we think, unprecedentedly rich and varied, and its numerous engravings maintain th standard of high excellence we have always sustained in this department.
The correspondence contains very much instructive practi al matter, and constitutes a very valuable feature of the vol ume.
Tow
al
Towards the close of the volume we started a new feature amely, a column of queries, wherein the information desired by our readers may be made known to practical men, and pactical answers received from correspondents so situated as o be in possession of the information required. We think his column will call out a vast amount of practical informa ion which will be placed at the disposal of all our readers. Our miscellany has comprised the most instructive and popularly written articles on theoretical and practical sub ects, obtainable from the best home and foreign sources, and the editorial articles have been written with a view to sug-
gest thought, and to indicate the general current of progress gest thought, and to in
in science and the arts.
That our efforts to keep ahead of all competitors in our peculiar field have been successful is indicated by the steady and healthy growth of our subscription list, and the unmis akable signs of satisfaction gathered from our extensive correspondence.
To the press at large, and our exchanges particularly, we are indebted for many favorable notices and warm commen dations. Our articles have been extensively copied and cred ted, both at home and abroad.
We feel that we are justified in appealing to the friends of the Scientific American to aid us in increasing our circula tion, and feel confident that the appeal will be responded to by a large accession of new subscribers for 1871
Meanwhile we shall continue unabated our efforts to keep n the very front rank of popular scientific publications, and hall neglect no opportunity to add to the attractions, genera interest, and value of our paper.

REMOVING STREET SNOW AND ICE

On some of our thoroughfares, where rival horse-railwa companies have adjoining tracks, the efforts which they make The great scraper of the Third Avenue Company, for exam-
ple, will come along, sweeping the snow from its own track very nicely, but depositing it upon the track of its next neigh bor, whose following machine chucks it back again where it came from. This sort of fun is sometimes kept up for a whole day; time and labor of man and beast are wasted; public travel obstructed, and the companies lose much money.
The draft of the large snow scrapers is very heavy, and quite ruinous to the health of the horses. We have seen the vapor of perspiration from some of the twelve-horse teams rise above the third-story window of our office, after the efforts of the poor animals to drag the machine.

The companies ought to join hands, and wholly remove the now from all crowded places, either by carting or melting. By the practice of a little common-sense and ingenuity it vould be easy to clear, and keep clear the tracks throughout the whole length of every city line. The aggregate loss of the various companies from snow obstructions is enormous On some occasions all travel is suspended, and the entire forces of men and animals, with extra laborers, are employed to dig the snow; but as it is not removed, the rails are soon again covered.
There is a grand opportunity for an ingenious person to make a fortune by the invention of an effective machine for doing the above work.
On Broadway they employ to clear the gutters, snow scrapers, consisting of planks set on edge, diagonally to the line of draft. Eight horses drag the machine along, and they suc ceed in throwing up a portion of the snow into a windrow and temporarily cleaning the gutter. But the immense trave of vehicles soon rolls the snow back again.
The best method is to remove the snow altogether; and probably the best way to do that, is by the application of tam.
In London they employ old steam fire engines for this pur pose. The snow is scraped up into great heaps near the sewer openings, and jets of steam are then applied, by which the mass is quickly melted, and disappears through the sewers. This is a very speedy and effective method of get ting rid of street snow and ice. We hope that our city au thorities will give it a thorough trial this winter

sUccesis as the measure of ability.

The world usually accords the merit of ability to those who achicve success in any field of effort, and it is right. Success is the evidence of ability-ability to succced-noth ing more. Real mental caliber is not evidenced by success unless that success is attained in some occupation or pro fession which requires great mental ability for its conduct.
A man may succeed in wearing a very small pair of boots if his understanding is sufficiently narrow; and men succeed as often through deficiencies as through proficiencies. A man sits daily in front of the Tribune office in this city who make a living by whittling with his feet. This man has no arms and has by long practice acquired the power to hold a piece of wood with the toes of one foot, while he whittles with a knife held in the toes of the other foot. It is quite doudtial judging from the appearance of this individual, whether, had he been endowed with arms, he would have achieved eithe the notoriety he now enjoys, or have made half the money he now pockets from the wonder-loving groups who gathe bout him. Such success as he has attained has been won hrough virtue of his deficiencies
We recollect reading some years ago an account of a won derful dancer whose chief attraction was that he had but one leg. With this leg he did what single legs had been deemed incapable of doing, and though his dancing fell shor of a first-class two-legged performance, yet it was really won derful for one leg, and so one leg drew houses where proba bly two would have failed to please the public.
As with physical defects so with mental. The pian playing of the blind negro idiot (?) "Tom," whose perform ance is certainly wonderful for a blind idiot, would lose a great portion of its charm if he were once understood to be in full possession of the intellect allotted to ordinary mortals He succeeds in making a great impression because he has, or is supposed to have, two great defects.
It often is the case, on the other hand, that men fail be cause they have minds too large for their business. These minds will be, must be, occupied with higher things than the rivial details of business, and the petty cares, to neglect which is to insure failure in most commonplace vccations.
Success, then, unless measured by the character of the field in which it is achieved, is no measure of mental or physical power. Is a man successful? In what is he successful? Is he a successful dandy like Beau Brummel; a successfu knave like a modern railroad grabber well known in this metropolis; a successful dry-goods clerk; or a successfu awyer and statesman, like Clay and Webster; a successfu divine, like Whately; or a successful teacher, like Arnold? Success is, it is true, a measure of ability, but of great abil ty only when it is itself tested by the higher measure of lofty aims, wise purposes, and good deeds.

the relation of mineralogy to chemistry.

It is related of the famous Abbe Huay that while examin ing a fine specimen of calc spar on one occasion, he acciden tally let it fall, and it broke into a hundred pieces. He wa horrified at his carelessness, and, after making due apology began to gather up the fragments. He soon observed that every piece had the same shape, and that the calc spar was made up of an infinite number of rhombic crystals. This circumstance led to the examination of many other minerals, and the result was the foundation of crystallography, and the
reference of all crystalline substances back to six primitiv forms. The science of crystals soon commanded the atten tion of chemists, and an instrument was invented, called the goniometer, for measuring the angles, and for deciding to what class each mineral belonged.
Later researches seem to point out that there is an intimat relation existing between the crystalline form and the com position of a body, and we may some day discover the law by which we can arrive at the composition of a mineral o other salt, by measuring its angles, and without the necessity of subjecting it to analysis. But this is at present mere spec ulation.

The peculiar luster, cleavage, hardness, and other physical properties of minerals, have been studied, and something like an independent science has been established, founded upon these external properties. As our knowledge of chemistry has increased, and better methods of analysis have been in vented, we are ceasing to lay so much stress upon the out ward forms of minerals, and have commenced arranging them with reference to the bases and acids they may contain Chemists have found that all minerals are composed of well known elements combined according to the laws of atomic weights, and that they are in every sense chemical salts. For example, feldspar is a double silicate of potash and alumina, and can be made in the blast furnace and porcelain oven as readily as chloride of sodium or saltpeter in the lab oratory. Calc spar and arragonite can be made, the one from cold, the other from hot solutions. Every year witnesses the artificial manufacture of minerals, and there is a fair prospect of our ultimately being able to make every stone there is on the earth.
The time does not appear to be very far distant when we shall make even the precious stones, the diamond, the ruby, or the emerald, as readily as we now do glass and porcelain. Professor Dana, in his unsurpassed book on mineralogy, gives the formula of all minerals so far as is known, and classifies them according to their chemical constitution, and thus vir tually hands the science over to the chemist. It was not until minerals were made artificially that we were able to form a rational theory of their probable origin in the rocks. Nature's laboratory does not differ from man's inferior imitation, and as the laws of combination are constant, it is safe to infer that the same agencies were employed in producing the native minerals that we pursue in making them artificially. It is only when we treat minerals as true chemical salts that we can assign them their proper place in the universe.
In a recent German work on chemistry, by Professor Geuther, of Jena, we find a tolerably full list of chemical compounds, and among them a large number that occur native, and are known as minerals; for example, under mag nesium, potassium-magnesium chloride is described as carna lite; calcium-magnesium chloride as tachhydrite; calcium magnesium carbonate, as dolomite; calcium-magnesium sili cate, as augite, and so on through a long catalogue of sub stances. The crystalline form, solubility, hardness, specific gravity. general properties, and formulas of all salts are given \mathbf{w}^{*}-uil the occasional observation that this or that compound is found in nature as a mineral, but without any break in the order of discussion on account of that fact.
In this way mineralogy becomes incorporated with chemis try, and rocks may be defined to be chemical compounds that occur ready made in nature, just as carbonaceous substances are traced back to living organisms, and are treated of under the head of organic chemistry. It would not occur to any one to bottle up gases and to regard them as entitled to found a separate science, or to speak of metals, gases, or liquids as we do of chemistry and physics. Gases are a part of chemis try, and so are metals and minerals.
We have called attention to this subject in order to afford our readers some knowledge of the great progress made in the extent of our acquaintance with the crust of the earth, and of the formation of minerals, since chemistry was impressed into the service of explaining the nature of the forces that must have been at work to produce what we see around us. It was not until the acid character of silica was made known by Berzelius that we were able to manufacture glass in a rational and scientific manner, and glass is in fact an artificial mineral very much like what we find ready made in volcanic craters.
The manufacture of porcelain, of soluble glass, of saltpe ter, and of many other useful compounds, is conducted in imitation of what is going on in nature, and is now founded upon strictly scientific principles. The total number of min erals thus far described does not exceed 700, while the different salts of potash alone amount to nearly as many, so that the study of potash in all of its relations involves nearly as much labor as the examination of all the minerals that have thus far been found. It will thus appear that the relation of mineralogy to chemistry is of the most intimate charac ter, and that minerals can only be studied philosophically when regarded as chemical salts.

Agricultural pursuits are beginning to absorb the atten tion and energies of the population of Colorado, which is fa vorable to the development of the resources of the territory. That prosperity which depends upon the hazards and uncertainties of mining is at best but spasmodic, and it is only where agriculture is made the fundamental interest that the population assumes a settled character and industry is attend ed by permanent rewards.

Subscmibers whose term expires with the year will take note that this is the last number, and will oblige the publish ers by remitting for the new year immediately.

SCIENTIFIC AMERICAN. 1871.

Special Club Premium.
A New Volume of this journal will commence on the firs of January next. Any person sending us yearly clubs fo n or more copies will be entitled to receive, free of postag or express charge, one copy of the celebrated engraving, MEN OF PROGRESS," for every ten names.
This large and splendid Steel Plate Engraving is one of he finest art works of the day, possessing a rare and peculiar alue over ordinary pictures, by reason of the life-like ac curacy of the personages it represents. The scene of the pic ture is laid in the great hall of the Patent Office, at Washing ton. The grouping is spirited and artistic. Among the persons represented are the following eminent inventors:
. F. B. MORSE, ..
YRUS H. MCCORMICK,.........................nventor of Electric Telegraph THOS. BLANCHARD
WILLIAM T. G. MOR SAMUEL COLT,. Charles goodyear, RENRY BURDEN, HENRY BURDEN,
JOHN ERICSSON,. JAMES BOGARDUS JAMES BOGARDU
JOSEPH SAXTON, PETER COOPER, JOSEPH HENRY,. ISAIAH JENNINGS

\qquadInventor of Reaper. |Inventor of Chlaroform |
| :--- |
| Inventor |
| In | Inventor of Rubber Fabrics.Inventor of Steam Cut-Off. Ventor of Horse-Shoe Machine

Inventor of the first Monitor Inventor of the frst Monitor
.Inventor of Iron BuildingInventor of Watch Machinery Inventor of Iron-Rolling Machinery .Inventor of Friction Matches

These noble men, by their own efforts, raised themselve from the depths of poverty, and by their wonderful discoveries, conferred incalculable benefits upon the human race entitling them to rank among its greatest benefactors. It is but fitting that the remembrance of their achievements, and the honored forms of thoir persons, as they lived and walked among us, should be perpetuated by the highest skill of art The picture, which is three feet long and two feet high, forms an enduring and desirable object for the adornment of the parlor. It was engraved by the celebrated John Saroain from a large painting by Schussele, and all the porvait were taken from life. Every lover of Science and Progress should enjoy its possession. Single copies of the Engraving $\$ 9$; Three copies, $\$ 25$.
One copy of the Scientific American for one year, and a copy of the Engraving, will be sent to any address on receip f $\$ 10$.

MUNN \& CO.,
37 Park Row, New York City.

TIMELY SUGGESTIONS.

Every Employer should present his workmen and appren ces with a subscription to the Scientific American for the coming year.
Every Mechanic and Artisan whose employer does not take the Scientific American, should solicit him to subscribe or 1871.
Now is the time for old subscribers whose subscriptions pire with the ycar, to renew.
Now is the time for new subscribers to send $\$ 3$ and com ence with the new year.
Now is the time for forming clubs for the new year.
It will pay any one to invest $\$ 3$ for himself, his sons, or hmerican.
It is easy for any one to get ten subscribers at $\$ 2 \cdot 50$ each and for his trouble obtain the splendid large steel plate en graving worth $\$ 10$.
It is easy for any old subscriber to get a new one to join in taking the paper.
It is no more trouble to remit $\$ 6$ for two subscribers than 3 for one.
If any mechanic whom you ask to subscribe says he can ot afford it, tell him he cannot afford not to.

If any one wishes specimens of the paper to examine be fore subscribing, tell him to write to the publishers and they will cheerfully mail them.

If any one wishes an illuminated Calendar for 1871, to hang in his office or shop, he can have it sent free on sending request to this office.
If handsome illuminated posters and prospectuses are wanted to assist in obtaining subscribers, send to the publish ers of this paper.
It is the intention of the publishers of the Scientific American to make the paper next year better and handsome than any previous year during the last quarter century it has been published.
It is the intention of the publishers to illustrate by superb engravings all new and practical inventions and discov cries that may be developed during the year.
For terms to Clubs, see special premium notice given

In accordance with a long established rule, all subscriptions terminating with this volume will be discontinued at that time. We trust that all our subscribers will not only renew, but that they may find it convenient to induce some of their neighbors to join them. We intend to give our readers full measure and running over, in return for their money. That the publishers may calculate the quantity of paper o print on the new volume; and that none may be dis appointed by not getting back numbers, we would impress upon all the importance of renewing their subscriptions and sending new names as early as possible.

NEW BOOKS AND PUBLICATIONS.

The Cabin on tire Prairie. By Rev. C. H. Pearson, Au thor of "Scenes in
Lee \& Shepard.
This is one of a series of stories called the "Frontier Series," now issuing y the above-named firm. It is a graphic picture of prairie life, full of varied tories, and to those unfamillar with the scenes it delineates, unique incl-
dent. As a specimen of good healthy reading for youths of both sexes, it it nexcelled, while adults may peruse its instructive pages with pleasure an proft. The book in
Manual of Social Science: Being a Condensation of the
Principles of Social Science of H. C. Carey, LL.D. By
Kate McKean. Philadelphia: Henry Carey Baird, 406 Walnut street.
We shall in a future issue review his book editorially
Wr are indebted to the Hon. Horace Capron, U. S. Commissioner of Ag fully compiled and valuable statistics, and many important papers on variou subjects relating to American agriculture.

Sensible Holiday Presents.
No present can be more acceptable to a wife, mother, sister, or lady friend, than a Doty Washing Machine, price 814, and a Universal Wringer, 89, which are warranted to give entire satisfaction. Mr. R. C. Browning, en'l Ag't, 22 Cortlandt street, N. Y., will, on receipt or the price, send elthe both Machines, free of freight, to places where no one is seling; and, a hey may be returned, free of freight, and the money will be refunded. Can anything be more fair?

Facts for the Ladies.

Her Royal Highness the Princess of Wales has appointed Messrs. Whecle Wilson "Sewing Machine Manufacturers to her Royal Highness"-the onl
honor of the kind ever conferred upon a sewing-machine house.

In the Advertising Agency

or Geo. P. Rowell \& Co., No. 40 Park Row, New York, everything is so sy ematized that their tmmense business is conducted withont confusion or de lay. They have regularly on fle over 5,000 newspapers.
, sale at low prices, by Theo. Tusch, 37 Park Row, New York

zerent axmericau aud forcigu tatents.

ncler this hoading we shall publish
inent home and foreign patents.
Combined Loce and Latch.-F. M. Ranous, Yreka City, Cal -This inven Hon has for its object to improve the construction of an improved gat ne patented October 26,1869 , and numbered 96,147 , so as to make it mor onvenient in use, and more effective in operation, enab
lock without interfering with its operation as a latch.
Safety Valve.-J. Armstrong, Brookfield, Missouri.-This invention re Stes to a ther steam boilers.
its object to improve the constructive New York city.-This invention has for bee-hive traps, so as to make them better adapted for usc.
Mode of Sectring Ships' Anchors.-William Henry Barker, Windsor Nova Scotia.-The object of this invention is the construction of some simple
apparatus, by which the anchor can be hung to the catheads and instantaapparatus, by which the anchor can be hung to the catheads and instanta-
neously let go when necessary, and avolding all the principal oblections to ny of the machinery now in use for that purpose.
Metiod of Coupling Pipes. - George C. Germain, Cuyahoga Falls, Ohio The object of this invention is to so connect gas and water pipes, made o gas proof and readily appled

Crair.-C. R. Long, Louisville, Ky.-This invention relates to a new an the legs, whereby the ordinary apper rounds and stretchers of the chair are dispensed with, while the seat is made detachable, and the chair strong nd durable.
Watrr Whrel.-Daniel W. Case, Garden City, Minn.-This invention relates to improvements in water wheels, and consists in the constructio and arrangement of the bearing for the shaft, and adjusting apparatus there for in the top of the case of the wheel; also, in certain improvements in the
construction and arrangement of the chates leading the water to the whee and the gates therefor, and also in an arrangement for discharging the wate from the wheel, partly through central and partly through vertical discharges.
Cultivator.-Freeman C. Jewell, Rahway, N. J.-This invention has fo its object to furnish an improved cultivator, simple in construction, easily operated, and effective in operation, and which shall be so constructed tha can be readily and quickly adjusted, as circumstances may require.

Exhaust Valve.-W. A. Carns, Malden, Mass.-The object of this invention is to prevent sparks and cinders from entering or being drawn into the cyinders of locomotive engines, when the motion is reversca.
Wabhing Machink.-D. C. Harlow, Hannibal, Mo.-The object of this in vention is to provide a simple and cheap apparatus to be used in connection
with the common wash-tub for washing clothes, and consists in revolving a spring cylinder above a concave formed of rollers.
Drbsiing and Furrowing Mill-stones.-James Lee Norton, London, England.-This invention has for its object improvements in apparatus fo ressing and furrowing mill-stones.
Car-Coupling.-A. F. Street, Zanesville, Ohio.-This invention relates to new and useful improvement in couplings for railroad cars, whereby rength, durability, and certainty of operation are secured
Shovel Plow.-Isaac A. Benedict, West Springield, Pa.-This invention relates to a new and useful improvement in winged shovel plows, and con sts in attaching the wings to adjustable arms and making the wings ad jastable on the arms.
Cloot-Alary- -J. H. Davis, Chillicothe, Mo.-This invention haf for it object to provide means whereby alarm attachments can, whenever desired
be secured to or connected with clocks of suitable construction. At present some clocks are provided with alarm attachments and others not. Thos which have no attachments cannot, at present, be changed into alarm clocke. By the ald of thisinvention clocks of all kinds can be readly converted into

Mili Carrirr.-Lewis Morris, Havre de Grace, Md.-The object of this invention is to provide for public use a can in which millk may be transported from the farm to the city without deterioration in quality, from air or
warmth, by the way. The can is constructed of material, which is a nonconductor of heat, with a lining of sheet metal, and is provided with a cover having a pecullar butsimple and convenient device which admits of being sealed or locked, and also otherwise secured, without loss of time.
Anti- Friction Box for Axles, Shafting, eto.-William O. Reid,
Vienna, N. C. - This invention consists in such an arrangement of friction balls with circumferential grooves in the internal surface of a pipe-box, tha both the vertical and the longitudinal pressure (as between the axle Journal draft strain upon the team, therely greatly lessened.
Maciener for bending Plow Handles.- Jacob Woodburn and S. F. Smith, Indianapolis, Ind.-This invention consists in an improved device for to the plow, and in the pecullar construction of detaching parts, whereby the holding device may be quickly and easily attached to or disconnected from the machine for bending the hand
without being expensive or cumbrous.
Machine for Finishing Plow handles.-S. F. Smith, Indianapolis, Ind.-This invention consiscs in the arrangement of an ordinary sand polish Ing belt on two conical or round-faced pulleys-one larger than the other-
so that said belt shall be causcd to present a similar rounded surface, and in certain novel means of adjusting the tension of the belt and the angle of the smaller pulley thereto.
Favoar.-Franz Wiesenhofer, Fremont, Ohio.-The object of this invention is to prevent flies and otherdnsects from entering the lower ends of the the liquor drawn through such fancets.
basr-burining Stoves.-Igrael Snyder and Peter C. Garrett, Grand RapIds, Iowa. - This Invention relates to improvements in base-burning stoves,
and consists in making the fire-pot open at the sides from the grate up to the bottom of the reservoir with which it is connected; the said open flre-pot being used, and the draft being arranged to cause the flame and caloric cur rents to implnge against the outer shell of the cylinder as low down, and as cyllinder and the fre-pot to the bottom of the stove for heating purposes. Blit Splice Poivt Finisier.- John C. McLaren, Montreal, Canada.This invention relates to an improved machine for cutting the ends of pleces
of leather to be spliced for making belts, and it consists in a clamping apparatus for holding the strap and a cutter for catting the end, both of peculiar construction, the object of which is to make a clean and smooth cut at the machine is left stringy and uneven. Canceling Stayp.-E. [s. Goodman, New Orleans, La.-This invention relates to improvements in canceling stamps, and consists in providing the die with one or more plates having a number of sharp edges for cutting the
articles to be stamped, and providing a thick leather bed on which the die trikes for the protection or the cutters. The said plates on which the cutters are formed, serve for guldes for the ink-ribbon. The invention also comprises a novel arrangement of the type and the holding devices therefo for having the name and address of the inventor, maker, or other person sunk into the face alongside of the type for the date, so that an impression thereof will be given to the thing stamped at the same time.
lates to improverenty A. Maltby, Brownsville, Texas.-This invention refoot and hand-propelling apparatus, also consists in a novel combination of operators may employ both foot and hand simultaneously, and at the same ime gulde the machine by movements of the body actuating the guiding ap. paratus through the medium of the seat.
Crurn.-John W. Jordan, Lexington, Va.-This invention relates to improvements in churns, and consists in a vertically moving dasher, composed
of one or more lazy-tongs frames, Jointed at one end to the bottom of the churn case, and at the upper end to a vertically reciprocating rod worked by a lever or otherwise, so as to expand and contract the said frames, which
have perforated boards so attached as to move up and down in the cream in a way to cause intense agitation.
Wraving certain ginds of fabrios.-Wm. Sam'l Laycock, Sheffleld, England.-This improvement consists in fixing on each end of a shuttle a pingle hair selected out of a bunch of hair on that side of the loom from which the shuttle commences to work. The shuttle is then driven through the shed by friction or otherwise, from under the shed, and when it reaches the opposite shuttle box it quits its hold of the hair it has drawn into the
shed, and the nippers on the other side of the shuttle takes hold of another single hair selected out of a bunch from that side of the loom, so that in
traversing back it deposits that hair in the shed, and the opposite nippers gain seize another of the fabric.
Chain Clutch.-Hiram Pitcher, Fon du Lac, Wis.-This invention relates to a new and useful improvement in clutches for chain pulleys or wheels and
windlasses, and for all purposes to which it is applicable, and it consists in a series of self-adjusting blocks, each with a recess for receiving and holding a chain, arranged in a groove around a wheel, drum, or windlass.
Springs for Carriagrs.-D. S. Abbott, Ischua, N. Y.-This invention re-
lates to a new and useful improvement in springs for carriages, wagons, latcs to a new and useful improvement in springs for carriages, wagons, ar recelves the weight or power, it is made to compress or operate upon an elastic spring, by means of which the required degree of elasticity is imwagon body or seat.
tockbridge, Mass. - This invention has for its object to furnish an impored aparatus for introducing oll into the interior parts of an engine, oilling the throttle valve, governor valve, steam chest, cylinder, and other parts not sually ofled, preventing the wear or such parts, and which shal be slimple constructio, enily aphea, and efrectiv operation.
Anti- Friction Journal box or Bearing.-James Wardrobe, C. d. b. Isk, J. F. Cartis, and George Fetley, Carlin, Nevada.-This invention has team cars, horse cars, and other Journals or shafts, which shall be simple in onstruction and effective in operation, being so constructed as to run for any required length of time without heating.
Type-Setting Machine.-W. S. Shipley, Jersey City, N. J.-This invenion relates to a new machine for setting type into rows and columns ready or the printing press, and consists chiefy in the application of an air blast whereby the types arc conveycd from the recelver to the form in which they
arc set up. The invention consists also in the use of sectional grooved re elvers for holding the type in proper position for the blast. These recelver arc rotating blocks operated by means of levers or pawls from a keyboard so that each block can be turned at will to carry its type to the blast chan-
nel, which is formed by the grooves of the said blocks.

Improveyrnt in the Manufacture of alum and in Obtaining by
ouch Manefacture Prodects applicable to Certain Useful Pur-osess.-Peter Spence, Newton Heath, Manchester, Great Britain. This invention consists in the use of certain compounds of alumina and phosphoric acid, particularly, or such compounds of alumina, iron, and
phosphoric acid at present obtained in the island of Rodondos, near Antiga, in the West Indles, and known under the name of Rodondo phosphate, and of minerals of similar composition obtained in other West Iddia islands and other places.
Tool Cersst.-G. F. Card, Piper City, ill.-This invention relates to improvemants in tool chests, and consists in an application to the cover of a
chest of a seat and clamp, such as used by leather workers, in such a way that when the cover is raised and the chest opened, the whole constitutes a seat and bench of a convenient kind for such workers, and when closed, the
tools being in tha same places as when the workman is at work, will be packed ready for storage or transportation.

Pistor Rod Paceing. -William Hartley, Rockford, ill.-This invention relates to improvements in piston rod packing, and consists in an arrange ment of sectional metallic rings and binding screws in a hollow cylinder
attached to the plston head, through which the rod works, the said arrangement being such that the rings will be caused to bear upon the piston and against the ends of the cylinder, to which they are neatly fitted and make steam-tight joints, while allowing the piston to vibrate laterally as much a may be necessary for any inaccuracy in the working of the rod.

(0)ficial eqist of eqatents.

ISSUED BY THE U. S. PATENT OFFICE.
for the week ending Dec. 13, 1870
sCHEDULE OF PATENT FEES.

On application for Reisse.

 g, in each case, may be had by MUNN a CO.,

109,993.-Carriage Spring.-David S. Abbott, Ischua, N. Y
109,994.-Pump Piston.-J. D. Alvord (assignor to Jame

 Mo. 109,997 .-Brick Machine.-J. M. Austin (assignor to Isaac Turner, Georgetown, Mo. 109,999.-SHovel PLow.-I. A. Benedict, West Springfield 110,000.-Let-off and Tension Mechanism for Power Looms.-E. B. Blgelow, Boston, Mass.
110,001.-CARPENTERS ${ }^{\prime}$ VISE.-George F. Bissell, Oneonta
N. \mathbf{Y}. N. Y.-Self-Lubricating Axle.-G. P. Blaisdell, North Easton, Mass. 110,00. -L. W. Boynton, Hartford, Conn. Brown, New York, assignor to
110,05.-GAA LAMP.-J. H. Brown
himseif and C. E. Bali, Jamaica, N. Y. himself and C. E. Ball, Jamalca, N. Y.
110,006. ADJUSTABLE SHACKLE FOR CARRIAGE Springs.-
John Bullard, North Hye Park, vt. John Bullard, North Hyde Park, Vt.
110,007 .-TooL-CHEST. -George
110,007.-TOol-Chest.-George F. Card, Piper City, Ill.
110,
Vald Mass.-Wher Wheel.-Daniel W. Case, Garden City, Minin.-Stamping Mill or Crusher.-George F. Case
 110 dale, Mass. to himself and W. I. McBride), Philadelphala, Pa.
110,013.-TABLE.-George J. Congle, Chipewa Falls, Wis. 110,014.-CORN CUTTER.-H. V. Corbett (assignor to George W. Amlgh), Allendale, Mich.
110,015.-FEED REGULATOR.-Wm. T. H. Daniels, Belville,
Oho. 110,016.-Alarm Attachment for Clocks.-J. H. Davis, Chilicothe, Mo.
110,017.-COFFEE Roaster.- Noah Davis, Boston, Mass. 110,018.-INkING Apparatus FOr Printing Presses.-Fred
Otto Degener, Brooklyn. E. D. N. Y.
110,019.-LaND Roller.-George C. Dolph, West Andover 110,020.-Hinge.-Rudolf Drahota, Philadelphia, Pa. 110,021.-Trumpet for Spinning Machines.-Geo. Draper,

 Company"), Boston, Mass. Fork city-
 and John Donaldson), Rockford, III.
110,027.-MANUFACTURE OF PAINTS.-F. W. Gerdes, Allegheay City, Pa.
110,028.-PiPE Coupling.-G. C. Germain, Cuyahoga Falls, 110,029.-Machine for Mixing "Batch" for Glabs.-W. T. Gillinder, Philadelphat, Pa. Benjamin Giroux, Chicago, Ill.
110,031.-HAND STAMP.-Edward S. Goodman, New Orleans, 110,032.-TMMpan Sheet for Printing Presses.-John 110,033.-WASHING MACHINE.-Dewitt C. Harlow, Hannibal, 110,034.-Device for Driving Sewing Machínes.-A. W. Harris, Providence, R. I. 110,036.-NaUtical Alarm.-John F. Haskins, Fitchurg, 110,037.-MODE OF ATTACHING Composition HeEls to
 110,039.-Culinary Vessel.-R. M. Hermance, Troy, N. Y.
 Mass, assignor to himself and Robert M. Stone, Des Moines, Iowa.
110,041. SEMI - ROTARY VALVE.- Josephus F. Holloway,
 LIquids, AND ix Matrrial for the Sayg.- Duane Hull, Brooklyn, N. Y.
110,043.-BURGLAR-ALARM.-Marshall J. Hunt, Rising Sun,
 Mas8. , Muck-Creasing AtTACHMENT FOR SEWING-MAoinnes. John C. Jenson, Chicago, Ill. C. Jewell, Rahway, N. J. 110,047.-Churn.-John W. Jordan, Lexington, Va.

110,048-PRINTTNA-I.-Pk.-Julius Kircher, Cannstadt, near 110,049.-GLIt, Gusssware and Metal Stem-connection.
 110,051 ind - Buhl-SAw.-Thomas Leavitt, Everett, assignor to 110,052. - CARTRIDCE. CAP EXTRACTOR. - John Logan and
 110,0.04.-P PURIFYING BENZINE.-George Lupton, Indianapo11 ils, Ind. 110,056. - MOLD FOR MAKING GLAssware.-James B. Lyon, 110,057.-VELOcIPEDE.-Henry A. Maltby, Brownsville, Tex-110,0.088.-Hair-Restorative.-Allen C. Maxfield, Biddeford, 110.
10, $0.59 .-L i f e-R a f t .-D a v i d ~ M c F a r l a n d, ~ N e w ~ Y o r k, ~ a s s i g n-~$

 $110,066$. Hrrchiva-Post.-Wilson S. Owings, Pan Handle
Postame. West
110.

 110,070.-Device for attaching the Shank to Mineral
 11 Treka City, cal.
 Athnir Risley, Utica, N. Y. Y. 110,075.-MACHNE Mor CuTting Corks.-Eilert O. Schartan,
 110,0,77. - Type-SEttina Machine. - William Stephenson
 110,079.-Mortising-Machine.-William H. Sible, Harris 110,080 birg Pa Plow-Clevis Attachment.-Henr C. Sieverling, 10, BRINR PROCESS OF REMOVING EARTHY MATTERS FROM
 110,083.-Base-Burning Stove.-Israel Snyder and Peter C.

 Lember, 1870 .
110,086.-Journal-Box.-EDward H. Stearns, Erie, Pa. 110,0888.-CAR Coupling.-Augustus F. Street, Zanesville, 0 10,089- - METHOD OF UNITING Wood.-John A. Thompson
 110,091.-TREE Protector.-Charles Henry Trumbull, Ma-

 110,096 .- BRaRREL.- James W . Wenton, New York city. 10,097.-Pattern for Meaburing and Lating Out Gar
 Washington, D.C. Antedatad Nov. 26,1880 . 110, 100 .- WEIGHiNG Wagon. - Geo. A. Wilcox, Chicago, IIl.
 110,102.-MANUFACTURE OF Emery W HEELS. - John F. Wood
(assignor to "The Union stone company"), Booston, Mass. 110,103. (asignor to "The Union Stone Company"), Boston, Mass.

 110,106.- Barrel Champeriva and Crozing Machine.

10,108.- Preserving Sweet Potatoes.- Hedgemon T.
 110, Belmont, Romford, England.

 110, to himself and Perrin C. Drisko, Booton (Higblande), Mass. 10,114,-Steam Pipe Coupling for Rallroad Cars,-Jo
 110,116- - Boat Detaching Apparatus. - John C. Cotting.
 $110,1119 .-$ HEAD Bill ${ }^{\text {diack }}$ - Perley M. Cummings, Cincinnati,
 110,12.1.-Asphalt Road and Pavement.-Edward J. Des-
 Wis.
110, $123 .-G R o o v i n g ~ T o o L-~ J o s e p h ~ D i l l, ~ G r a n d ~ R a p i d s, ~ M i c h ~$ 110,124.-MMCHINE FOR SEPARATING COCKLE FRM WHEAT
 110,1206. - HoE. James Fairley and Alfred Fairley, Birming.
 110,128.-CUT-OFF FOR CISTERNS.- Frank Fischer, Quincy, III.
110,120 -Notes, CHECKs, ETC., T PREvENT ALTEATION.
 10, i3id-Grañ Thrasher and Separator.-Henry Gill

110，132．－Treadle for Sewing Machines．－James W．W． Gordon，Newport，Ky．James M．Harper，El Paso，Ili 110，134．－COTTON SAED HULLER．－Jackson Harrington（as 110，135．－Hay Elevator and Conveyer．－T．E．Haymond， 110，136．－WWell Tubing．－George W．Hemenway，Elmira， 110，is F ．－Clothes Dryer．－Israel Hogeland，Indianapolis， 110，138．－Grain Binder．－A．S．Hoyt，Winona，Minn．An－ 110，139．－FARMER＇s Boiler．－Joseph H．Hunter，Pennington Point，Ill ． 110 ，Brake for Sewing Machines．－Jas．IV．Jacob （gasignor to himself and John J Jo＇Donnell），Jeffersonville，Ind
110，141．－VEHICLE．－John Jack，Tiskilwa，Ill． 110，142．－HARrow．－D．L．Jaques，Hudson，Mich 110，143．－Pile for armor Plates．－Joshua Jeavons，＇Shef－ 110 fild 4 ．England． Needle Setter for Sewing Maciinnes．－Jacob 110，145．－－CLOTHES DRYER．－James W．Kenning，Quincy， 110，146．－Mechanism for Operating Shuttle Boxes in 110，147．－－SidE－sADDLE TREE．－Andrew Lawrence，Louisville， Ky． New Harmony，Ind．Antedated Dec． 6 ， 1870 ．
110，149．－Cotton－RENOVATING MACHINe．－J．B．Lyons，Mil－ ton，Conn．
110， $150 .-$ Spring Seat For Vehicles．－Wait Mead，Francis
D．May，and R．L．Hoyt，Chestertown，N．Y． 110，May．－and R．L．Hoyt，Chestertown，N．Y．－Thos．T．Millett，Sr．， Savannah，Ga．
 110， 154. ．Wrought－iron Column．－John W．Murphy，Phil－ 110，155．－－FLOUR Packer．－Addison H．Nordyke，Richmond，
 110，1ini．－Coal Grate．－Ira Packard（assignor to himself and 110，158．Slaght），Lena，III． 110，i59．－Sash Balance．－Charles R．Rand，Dubuque，Iowa． 110，169．－SASH BALANCE．－Charles R．Rand，Dubuque，Iowa． 110，161．－Compound for Bating Hides and Skins．－L．F． Robertson，New York city．
110，162．－IMPLEMENT FOR REMOVING Corns，Bunions，ETC． 10，C．L．Roorbach，St．Clarir，Pa．
110，163．－MATERIAL For BEARING SURFACES IN MACHINERY． 110，164．－Scheder，New York city．Cuttr．－V．J．Shryrock，Folsomville， 110，165．－SAND－Papering Machine．－S．F．Smith（assignor to osgood，Smith \＆Co．），Indianapolis，Ind．
110，166．SELF－ACTING VALVE OR Cutt－off FOR Liquid
CANs．－H．S．Snow，West Meriden，Conn． 110，167．－H．S．Snow，West Merlden，Conn．Pard Vegetable Parer．－Henry Soggs， columbus，Pa．
110，168．－Spoke Shave－G．N．Stearns，Syracuse，N．Y．
110，169．－WATER Wieel．－Ralph Stinson，Whitesville， Mo．
110，
170
0 ．－Fence．－W．W．Sullivan，Liberty，Ind． 110，171．－Shuttile－operating Meciianism for Looms．－E．
P． 1．Terrel，West Liberty，Ind． Torrey，Mont Clair，N．J．
110，173．－BRIDGE． Marshall Turly，Council Bluffs，Iowa．
Antedated Dec． 3 ， 1870 ． Antedated Dec．3，1870．
110，174．－UPHOLSTERIN Spring．－H．C．Velie，Poughkeep－
sie，N．Y．

110，175．－Mechanical Movement．－William Walker，Odin， 110，176．－Nail Extractor．－Wesley G．Ward，Fayette 110，177．－Pump．－Wesley G．Ward（assignor to himself and A．M．Flickinger），Fayette，N．Y．
Md． 110 ．NECK－TIE SUPPORTER．－Wm．A．Wicks，Baltimore， 110，179．－Machine for Making Coupling Pins．－Charles 110， 180 ．Williams，Cleveland，Ohio． 110，181．－Washing Machine．－G．L．＇Witsil，Philadelphia Pa． 110,182 ．－PUMP．－H．E．Wolcott，Elbridge，N．Y．，assignor of two thirds of his right to R．B．Wheeler and E．B．Hoyt．
110，183．－WAGON BRAKE．－Jacob Wolila（assignor to the
 Co．），Indianapolis，Ind．
110，185．－MECHANICAL MOVEMENT．－Jacob Wolf，Burr Oak 110，186．－PEN．－G，W．Wooley，Washington，D．C．

REISSUES．

4，196．－TUCK－Creasing Device For SEwing Machines．－
 ent No．51，931，dated Janaary 9，1866．
 field，Mass．，assignees of A．C．Moore．－Patent No．16，931，dated March 4，200．－Gearing for Mowing Machines．－J．V．Strait， 4，Litchfleld，Ohlo．－Patent No．95，950，dated October 19，1869．
4，201．－FURNACE FOR BURNING BONE－BLACK AND OTHER $\underset{\substack{\text { Substancess．－Adam Weber，New York city．－Patent No．} 65,457 \text { ，dated } \\ \text { June } 4,1867 \text { ．}}}{\substack{\text { and }}}$ National Spring Company，New York city assignees of E．T．Russell．－
National Spring Company，New York city，assignees of E．T．Russell．－
Patent No． 10,280 ，dated November 29， 185$)^{\text {；}}$ extended seven years．

DESIGNS．

4，503．－Frame For A PAPER－BAG Mactine．－C．F．Annan， Boston，assignor to himselfand H．S．Merrill，Cambridge，Mass ${ }^{\text {Ben }}$ J． 4，505．－ScYTHE．－C．P．Crossman，West Warren，assignor to himself，D．F．Hale，and Sldney Sanders，Chicopee ，Mass．
4,506 ．－Broom．－R．W．English，Buffalo，N．Y．
4，507．－CARPET Pattern．－H．S．Kerr（assignor to Israel Fos－ 4,508 ter），Philadelpha，Pa． 4,509 ．－Carpet Pattern．－William Mallinson， Hallif
ents． 4，510 and 4，511．－Coal Box．－R．W．Newbery，New York 4,512 alty．Two patents． 4,513 ．－Center－Piece for Ceilings．－J．W Reeves（asignor to w．H．French），Philadelphia，Pa．Two patents． 4，514．－SHOw CASE．－R．J．Roberts，New York city．
4，515．－Cooking Stove．－J．R．Rose and E．L Calely，Phila
 4，517．－HoE．－B．T．Stowell，Quincy，Ill．
4,518 to 4，520．－WOVEN FABRIC．－R．C． and J．W．Taft，Providence，R．I．Three patents ${ }^{\text {and }}$ 4，521．－－PLowshare．－R．Taft，Providence，R．Taylor，Lincoln，Va． TRADE－MARKS．
96．－Razor Strap．－BB．F．Badger，Everett，Mass．
97．－Wagon Axle．－D．A．Brown \＆Co．，Fishervi 97．－Wagon Axle．－D．A．Brown \＆Co．，Fisherville，N．H． 29．－I．Medical Compound．－G．C．Furber Yre 99．－Medical Compound．－G．C．Furber，Yreka，Cal．
100．－Broom and Brush．－L．Y．Gardiner \＆Co．，Ams 100．－Broom and Brush．－L．Y．Gardiner \＆Co．，Amsterdam，
101 it \mathbf{Y} i04．－W Wiskey．－W．A．Gaines \＆Co．，Frankfort，Ky．

105．－Leatier．－G．F．Page and C．T．Page，Franklin N．H
106．－Cigar，Snuff，and Tobacco．－Lorin Palmer，New 107．－Oirk city．－Charles Pratt，New York city． 107．－Oil．－Charles Pratt，New York city．
108－Cutlery．－R．J．Roberts．New York city．

EXTENSIONS

Harvesting Machine．－W．N．Whiteley，of Springfield
 Diviliona．
Harvesting Machine．－W．W．Whiteley，of
Ontiontiters
 WATER WHEEL．－John Tyler，of West Lebanon，N．H．－Ex tended by Act of Congress，Approved July 7，1870．－Letters Patent No
15， 5 ， RAILROAD CAR SEAT AND Couch－T．T．Woodruff，of Phil adelphia，Pa．－Letters Patent No．16，160，dated December 2， 1856 ．
RAILROAD CAR SEAT AND CoUCH．－T．T．Woodruff；of Phil
adelphia．－Letters Patent No．16，159，dated December 2，1856；relssue No． aldelpha．－Letters Patent No．16，159，dated December 2，1856；relssue No．
1，499，dated March 17，1863．

APPLICATIONS FOR EXTENSION OF PATENTS

Machine for Composing and Distributine Trpe．－William h．Houston 15， 1871.
breech－Loading Fire－arms．－William Cleveland Hicks，Summit，N．J．－ has petitioned for an extension of the above patent．Day of hearing Fcb． 22 1871.

Machines for Maeing Aees．－G．F．Hutchins，East Douglas，Mass．，has petitloned for an extension of the above patent．Day of hcaring Feb． 1 Kerper for Rigit and left hand loces．－Caivin Adams，Pittsburgh Pa．，has petitioned for an extension of the above patent．Day of nearing
Feb．8，1871． Gia 8 ，
Gig Mills for Napping Clota．－Ernest Gessner，Aue，Saxon y，has peti－
Auswexs to Conxrspondents．

 ness reference to back numbers should be by volume and page．

G．L．B and others．－We have already published two replie to the article on spiritualism，which seem to cover all that is requisite to
show the ground of diference between its bellevers and Dr．Hammond show the ground of difcrence between its bellevers and Dr．Hammond s
hypothesis．We decline to publish more at present． F．S．C．，of Mass．－The information you seek through our columns would probably bring out a great variety of specifics，none
whichought to be taken without advice．We prefer not to dabble in tiad Whichought to be
branch of sclence．
．W．C．，of Iowa．－We did not recommend the English system of non－examInation，to be adopted in our patent officc．We
copled the article from the $\begin{aligned} & \text { ribun } \text { and gave that journal credit for } \mathrm{it} \text { ．}\end{aligned}$ ． I．B．，of R．I．－You will find a full description of the con straction of the calsson of the Brooklyn bridge in the Scientific Ameri
can for July 2 d ，it being there port of the Engines．

\qquad A B	Fireplace，Strong＇s． Firing furnac es mechanicaii Flood fence，Hartshorn＇s． Fountain，耳egarty＇s． French chassepot gan Friction clutch，Lall＇s， Friction clatch，Pratt＇s．：${ }^{\text {F }}$ ．		Weighing machine，Duckham＇s．． 70 Window－blind，Donato＇s．．．．．．．．．． 166 Wood pavement，Adams＇， 1262 Wood－worker，McBeth，Shaffer $\dot{\text { it }}$ ty＇s．．	Artesian wells．．． Artificial light，new Artificial stone．．．．．．．．．．．．．．．．．．．268， 308 Artificial nitramarine．．．．．．．．．．．${ }^{\text {Artillery }}$ Artisan in Austria，Russia，swed： en．．．．．．．．．．．．．．．．．．．．．．．．．．． 177	Blackboards，to make Blasting powder，new Bleaching agent，new Bleaching clothes．．． Bleaching jute．． Blood． Bogle engines，improved．
					359
	G	Planer，surface Woodworth＇s．．．． 246 Postbutt，metallic		Artisanal，in Freece．．．．Beigio．．．．．．．．． 112 Artisan in Prussia．．．．．．．．．．．．．．．．． 144	Boiler incrustation．．．． $89,168,260,339$ Boiler iron，free trade in
Blind－slat planer，Wardwell＇s ．．．．． 22 Boat hull，Rider＇s．		Pr	MISCELLANY．	Asphalt tubes，underground ilne． 197 Asphaite pavement．．．．．．．．．．．．． 24,276	Boiler，maklng a perfect．．．．．．．： 20
Bo	Grassiopper，the gre			phaitum coat	cl
Boiler	Gun carriage，Moncr			tronomer entrapped．．．．．．．．．．． 35	
Boot connter catt	H		to illustrated articles	Astronomical instrument．．．．．．．： 400	${ }^{\text {Bora }}$
Br	Ha			硅	
ote	Hand－washer，Dicter		A	nospheric pre	
${ }_{8 r}$	Hod elevator， Po we	3		Aurora and English tel	Breakfast，early ．．．．．．．．．．．．．．． 191
${ }_{\text {Brar }}$		Reflers＇strike at La		Aurora borealis．．．．t．．${ }^{\text {Auroral and magetic periods．．．．．}} 3$	Bromide of sodilun，preparing．．．．：${ }^{121}$
itterfiy，mirror．．．．．．．．．．．．．．．．．．．．．．．．．．．． 51. \mathbf{C}			Adulterations．．．．．．．．．．．．．．．．．．．．76， 892 Agricultural report，May and June．．．	Auroral displays，grand．．．．．．．．．．． 276 Austrian stamped envelopes．．．．．．．． 310	Bracing，principle of Brass lamps with tin bottoms Brazillan pebbles for spectacles． Brazing band saws
			Agriculture	B	Bre
					Britigh probiem，the great．．．．．．．．．．${ }^{\text {892 }}$
	Key ring and door fastener，Me－				Bro
					Bronzing coppcr urns．${ }^{\text {a }}$（．．．．．．．．．．${ }^{241}$
Condenser，conical surface．．．．．．．． 288	Knots，art of tying．．．．．．．．．．．．．．．．： 275			Balanclng runner millstones，etc．${ }^{*}+3$	
Corn p					
$\begin{gathered} \mathrm{Co} \\ \text { Co } \end{gathered}$			Alumina mordant from cryoiite．．． 264		
Couping，sieeve，Short＇s．．．．．．．．${ }^{207}$	Letter	Sewin		1	
Cultivator and harr ow Rusell＇s． 211 Cultivator，fork，etc．，Foster＇s．．． 38	L			Balioansin wiariare．．．．．．．．．．．．2i5， 274	buternut stained black－wainioi．： 100
D					
	Loom，shuttile－motion，Ste ver＇m．．． 385		rican		\mathbf{C}
	Loom，shattile－motion，Terrel＇s．．．${ }^{399}$				
Decorticator	Low－water alarm，Springer＇s．．．．． 356		硣		
Diamond cutting in A		Ste	American Instit nte Exposition．．．${ }^{57}$		
Dividers，Weatherhe		Ste	American magazi		Canadian Inventors in the Uniteci
Door and shutter bol	Mechanical fingers．．．．	eam gove	American sumac．．．．．．．．．．．．．．．．．．．： 169		
Draftsmen＇s stand． Draftements achine．	Mercurial pump．．．．̈	Steam plow，Redmond＇s．．．．．．．．．．．． 287 Stump extractor，Howland＇s．．．．． 239	American vitality，depreciation	Bee，lear cutter．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．988 ${ }^{* 9}$	
Drilling machine，Merrill＇s			Aniline photograp		
E	Millstone pick，Crossley＇s ．．．．．．． 179 Miter box，Wilcox＇s．．．．．．．．．．．．． 294		Answers to orrespondentiold，${ }^{\text {a }}$ ，		
	Molding and carving machine，${ }^{\text {Boult }}$ ，${ }^{\text {a }}$			5	
	Mop wringer，Choate＇s	，Greenlear s．．．．．．．．．． 9_{9}		5	
Electro－magnetic regula		moths．			
Elevator，Rüäiger＇		W		uction of．．．．． 324	
Engine，horizontal，Rider＇s．．．．．．．${ }_{68}^{66}$					

Caution itiaidieis or	，
Cement toit ifoion and	
	Earopean sur，the preed
	Ever
	Exxpunition enf
Cheeie imis and	
cinemeareermentioniouix	
	Exosinition ioite
Chemery inisioprobress or．．．．．	Extundens，api，
dect	
Comparins nad	
Chil rommmatit	F
	malrato of
${ }_{\text {chin }}$	ara
Conorioimi．i．isioio	
Comer	，
	Fars
Citay	${ }_{\text {F }}$
cill	Fathitin to tiok
ciole	Imin den
	${ }^{\text {raxe．a }}$
Coill	
	Stand
Composite roller，how discover－	Hucride of of oil
	$\xrightarrow{\text { Forner }}$
	Fromisiondideat
cool	Mrend
me or	Trection
coo	crile
Correspondence，our．．．．．．．．．．．．．．．．．．．	
Cormetan maja ciiligi	
Cotan states in aid	
Coulling tian ibiw mide	
Crime and dieases．idil	
team	隹
	${ }^{\text {ema }}$
Cumious phenomenonaiaice：	
cyen	
Paneerons ractice	
ors ract	
	ara
miral	Curt str
crid	Gan eotan anac
	${ }^{\text {Cuman cotor }}$
of ror Appob	
cidinduame	
ma	
Iproductera	
	Heat
	Eegrem
Hoonat tinei	
Earnohamat key ofmpab	
anh	
Elececticity in in caa Electrrcty not a	Ire by machnery Ice hounge，olo．．．．．．．．．．

In

Railway carriage wheele	
	Than
way torpedo．	
by manhery	
	procease
faneer iol the saditit：	
为	
	Trade．marke， law pro
ber atar fioue o	Tranferiring deilign
Haraing irime	
harraibioe	
	Tyndall Type－set
v8．economy in posit near Ber	$\mathbf{U}^{\mathbf{U}}$
	Under．errent din Mealterranean 46
Sa springe：	
	Vernceiol
Sole	Tvitem
cratem	
	Warand
为	
yub	Watco manisipring ，
eite	
	Water ain oriveid
	tralm
	Water enaeratioio
Siver mina，andele	
	White
Seler	wite
	What mid
	Woor hind
soluerr training，Prusiar	wood pare
Sole	
	Worlds mork，ind it
dis brute fege bun	
	\underline{y}
边	Yachts，cost of．．．．．
ani eiminiroid	
	TENT
dem	
arghtars and	
Oomotive	
Streets，saline solutions f	
canal，iniil	
din	
Teiegrain inatument toom，Loì：	
ander atomatic	

PATENTS

American and Buropean.

MUNN \& CO. continue to give opinions in regard to the Novelty of In-
ventions, free of charge; make special Examinations at the Patent Offce; prepare Specifications, Drawings, Caveats, and Assignments; and prosecute pplications for Letters Patent at Washington, and in all European counAppeals, Extensions, and Interferences.
C. Pamphlet of the New Patent Law for 1870 farnished free. Address

MUNN ac CO.,
37 Park Row, N. Y.

Busimest and extsomal

The Chargefor Insertion under this head is One Dollar a Line. If the
exceed Four Lines. One Dollar and a Half per Line woill be charged.
A number one mower and reaper man desires a permanent situation with some manufacturers. Understands thoroughly handlling reapers in the field, and the management of agencles. Has had ifteen
years' experience. Best reference given. Address Reaper Man, Box 478 , Canton, Ohio
The paper that meets the eye of manufacturers throughout the United States-Boston Bulletin, $8+00$ a year. Advertisements 17c. a line. Independent Seconds, Timers, Repeaters, complicated and fine Watches, of every description, repaired and warranted to perform
ly, by H. F. Plaget (author of "The Watch"), 86 Nassau st., N. Y.
Wanted.-A pair of second hand, low-pressure engines, from 30 to 50 horse power each. Murray, Moore \& Co., Portsmouth, Ohio. Wanted.-A Partner in a manufacturing business already established, with 85,000 to 810,000 . Address B. F. Poole, Clinton, Iow Sewing mach.table m'f'g'saddress E.L.Morgan,Rivesville,W.V. Wanted-Shears suitable for $8-\mathrm{in}$. Train. Quote most favorable terms at once. Battelle \& Co., Memphis, Tenn., Rolling Mill. Patent Floating Bridge, Floating Lighthouse, etc. For rights to bulld or use address Thomas Schofeld, Grass Valley, California I wish to correspond with some manufacturer of Spiral Springs. Louls LeMay, Whistler, Alabama.
Building Felt (no tar)forinside and out. C. J. Fay, Camden,N.J. Craigleith Grindstones, by J. E. Mitchell, Philadelphia, Pa.

Machinists' Grindstones, by J. E. Mitchell, Philadelphia, Pa. Cutlers' Grindstones, by J. E. Mitchell, Philadelphia, Pa. Scale.-Allen's Patent will remove scale from steam boilers, and not injure the fron. Send for CIrculars. Josiah J. Allen, Phlladelpha. Wanted-Situation as Mechanical Draftsman. Apply Box 561 Pilttbargh, Pa., ©. B
Fifteen cents for good Arithmetical Puzzle. Send by mail hy o $\&$ Co., Phlladelpha.
Molder Wanted-One who thoroughly understands pipe moldIng in all its branches. Murray, Moore \& Co., Portsmonth, ohlo. Screw Driver.-The entire right for sale. Patented June 22, Millstone Dressing Diamond Machine-Simple, effective, du rable. For descripton of the above see Sclentinc American, Nov. 2 2th,
1869. Also, Glazzer's Dlamonds. John Dlckinson, 4 Nasaan st., N. \mathbf{Y}. Crampton's Imperial Laundry Soap, washes in hard or salt water, removes palnt, tar, and grease spots, and, contannng a large ner-
centage or vegetable oll, 18 as agreeable as Castlie soap for washlng hands. "Grocers keep ti." Offle 84 Front st., New York.
Excelsior Stump Puller \& Rock Lifter. T.W.Fay,Camden,N.J Full information given of some valuable public land-just reached by railroad. A Aood investment, sure to
Investment, Box 100, Rochester, Beaver Co., Pa.
Soap Stone Packing, all sizes, in lots to suit. Greene, Tweed \& Co., 10 Park Place, Mer
$\&$ co., 10 Park Place, Manuracturers' Agents.
Walrus Leather, for Polishing Steel and Plated Ware Greene, Tweed \& Co., 10 Park Place, New York
Baxter's Portable Steam Engine. For descriptive Pamphlet address Rnseell \& Speer, 10 Park Place, New York.
Patent Elliptic-geared Punches and Shears.-The greatest economy of power, space, and labor. Can be eeen in operation at our fac-
tory, in Trenton, N. J. Address American Saw Co. 1 Ferry st., New York. Hand Screw Punches and Lever Punches. American Saw Co., New York.
Self-testing Steam Gage-Will tell you if it is tampered with, or out of order. The only rellable gage. Send for circular. E. H. Ashcront, Boston, Mass.
Peck's Patent Drop Press. Milo Peck \& Co., New Haven, Ct. Glynn's Anti-Incrustator for Steam Boilers-The only reliable preventive. No foaming, and does not attack metals of boilers. Price 25
cents per ib. C, D. Fredricks, 587 Broadway, New York.

The Merriman Bolt Cutter-the best made. Send for circu The Merriman Bolt Cutter-the best m
lars. Brown and Barnes, Falr Pictures for the Drawing Room.-Prang's "Lake George," "West Point," " Joy of Autumn," " Prairle Flowers," Just issued. Sold nall Art Stores. "Three Tom Boys." "Bethoven," large and small. Manufacturers and Patentees.-Agencies for the Pacific Coast wanted by Nathan Joseph \& Co., 619 Washington st., San Franclsco, who are already acting for several firms in the United States and Europe, to To Cure a Cough, Cold, or Sore Throat, use Brown's Bronchia Machinery for two 500 tun propellers, 60 -Horse Locomotiv Boiler, nearly new, for sale by Wm. D. Andrews \& Bro., 414 Water st., N. $\overline{\text { I }}$ Lighting Gas in Streets, Factories, etc., with Bartlett's Patent Torch saves great expense, all rikks, etc. It is be
Address J . W. Bartlett, 569 , Broadway, New York
Keuffel \& Esser 116 Fulton st.,N.Y.,the best place to get 1st-class old Rolled-Shafting,piston rods,pump rods,Collins pat.double For mining, wrecking, pumping, drainage, and irrigating ma or see advertisement of Λ ndrews' Patents in another column House Planning.-Geo. J. Colby, Waterbury, Vt., offers in very Valuable Patent for sale,the merits of which will be ap reclated at sight. Apply to or address Jewell \& Ehlen, 93 Liberty st.,N. Y or Solid Wrought-iron Beams, etc., see advertisement. Ad dress Union Iron M!lls, Pittsburgh, Pa., for lithograph, etc. mproved Foot Lathes. Many a reader of this paper has one Belting that is Belting.-Always send for the Best Philade phia Oak-Tanned, to C. W. Arny, Manufacturer, 301 Cherry st., Phil'a. For Fruit-Can Tools,Presses,Dies for all Metals,apply to May Bliss, 118, 120, and 122 Plymouth st., Brooklyn, N. Y. Send for catalogue. Best Boiler-tube Cleaner-A. II. \& M. Morse, Franklin, Mass. The Best Hand Shears and Punches for metal work, as wel as the latest improved lathes, and other machinists' tools, from entirely new patterns, are manufac
Liberty st. New York
o Ascertain where there will be a demand for new machinery r manufacturers' supplies read Boston Commercial Bulletin's Manufactur

Receipts-When money is paid at the office for sibscriptions, a recelpt for it will be given; bnt when subscribers remit thelr money by mall, the may consider the arrival of the firat paper a bona:fld acknowledgment or their funds.
City Subscribers.-The Scientific Ameri CAN will be dellivered in every part of the city a s3.50 a:jear. Slingle copies for sale at the News.stand in this city, Brooklyn, Jersey city, and williame. burgh, and by most of the News Dealers in the United States.

Aduertiscments.

D.

CEMENT THE COPLAY CE

Why Yeast Powider shonld he Usied.

$\mathrm{U}^{\text {Nolversal }}$ Combination.-Fourteen

TO COPPER, BRASS Seamless Loco nnd

A. S. \& J. Gear \& Co.,

Pus farber's ⓘt 户raoe
WOODBURY'S PATENT
Planing and Matching

Newspaper

 Advertising

Niagara steam Pump.

BACON'S TRUNK ENGINES,
bacon's steam - And belt HOISTING MACHINES,

DELAMATER IRON WORES,
To Electro-Platers. Baterits CHEMICALS, ANDMATE-
 OTSS' $\begin{gathered}\text { SAFETY Hinsing } \\ \text { Machinery. }\end{gathered}$

I

TITI IIITH WROUGHT BEAMS \& GIRDERS

MULTIPLYING PRESSURE

AMERICAN JOURNAL OF Science and Arts.

10.000 . Cose itt Mailed Fre for \& Cone

$\mathrm{B}^{\mathrm{ENT}, \text { GOODNOW } \& \mathrm{CO}}$

Safety Hoisting Gear patented and made by MERRICK \& SONS, Philudelpha, Pa.
$\mathbf{W}^{\mathrm{ANTED}-\mathrm{A} \text { honest and inteligent man }}$

SENT FREE!

A

BAIRD'S

Industrial

 LITERATURE.
LIST NO. 4.

Shaw.-Civil Architecture. By Edward Shaw.
102 plates.
tto
..........................810
on Shunk-A Practical Treatise on Railway
 $\underset{26}{\text { Sloan.-American Houses. By Samuel Sloan. }}$ Smeaton.-Builder's Pocket Companion. By Smith - The Practical Dyer's Guide. By Da-

 Smith_-Parks and
Charles B. J. smith.
Pleasure Grounds.
By Stokes.-Cabinet-maker's and Upholsterer's
Companion. By J stokes. 12 mo 81 25 Strength and other Properties of Metals for
Cannon.
25 plates. 4 to..................... 81000
 Tables Showing the Weight of Round, Square,
and Flat Bar
ITon, steel, etc., by Measurement.. Taylor.-Statistics of Coal. By R. C. Taylor. Templeton.-The Practical Examinator on
Steam and the Steam Engine. By willam Temple.
ton Thomas.- The Modern Practice of Photogra-
phy. By.
 Turner's (The) Companion. 12mo. 8150

 Warn.-The Sheet-Metal Worker's Instructor

 Watson.-A Manual of the Hand Lathe. By Watson.-The Theory and Practice of the Art
 Weatherly.-Treatise on the Art of Boiling Wharton.-International Industrial Competi-

 Williams.-On Heat and Steam. By Charles Wohler.- Hand-Book of Mineral Analysis.
Edited by Prot. B. B. Nason. 12mo. (Nearly ready:

The above or any of my Books sent by mall, free or postage, at the pubilcation prices. My new revised and
enlarged Catalozue of Practical and Sclentilic Books, 82 pp. 8vo, now ready, complete to Dec. 15,1800 , will be sent, riee of postage, to any one who will favor me
HENRY CAREY BAIRD, indostrial publisher, 406 Walnut st, Philadelphia, Pa.

No
 TTKB MECEANIC Can afford to be without some of Boows

 ment fice of portage, to any one wlo will tavor me
with

Swain Turbine
 SWAIN'S TURBINE WHEELS.-In the Citizen of June 28, 1866, we took occasion to notice, mewhat at length, the enterprise at North Chelmsford

 CBARLES A. DANA, Editor.

 started under the auspices of Mr. SwAns, formerly of our clty, and for the past six or seven years known as theSwain Turbine Company. We are glad to hear that they have met with excellent success in introducing their wheel, in various parts of the country. It recelved medal at the great Mechanice' Fair, as eminently adapted
to the parpose which it serves. The following testimodials will be read with interest by all who have occasion to use water power:

Los Gatos, Santa Clara Co., Californtai, $\begin{gathered}\text { December 10, } 1867 .\end{gathered}$

A. M. Swarn-Dear sir:-The following testa har
been made by us at the dates given. Our oversho wheels were iron rim, iron braced, iron shafts, and a Im 12 inches deep, and 20 f . in dlameter.
Tney would not farnish sufflicient power to run two ets of machinery on one wheel when buckets were flled with water, hence the tests; one run on each overAll our tests were made by measuring the depth or water in a flume, and the distance a floating stick would travel in it per minate. All the flour made is our
brand, using over five bushels of wheat per barrel.
Febuary 1, 1887.-Water 13 inches deep in flame, 4 feet Wide, ranning 168 feet per minute, drives one run on overshot wheel and all mill machinery to
fiour per hour- 744 cublc feet per minate.
Febuary 7th.-Water 17 inches deep, 4 feet wide, run ning 180 feet per minute, drives 2 rans of stone, on both overshots, all mill machin
hour- 1020 cublc feet used.
Nov. 15, 1866.-Water 9 inches deep, 4 feet wide, running 156 feet per minate, drives one ran on Stevenson per hour, and all mill machinery, uilng 488 cublc feet per minte.
Ang. 13, 1867.-Water 8 inches deep, 4 feet wide, runing 182 feet per minute, drives one run on Swain wheel barrels of flour per hour, using 552 cubic feet of water per minate.
Aag. 20th. - Water $6 \$$ inches deep, 4 feet wide, running 56 feet head, and all mill machinery, except wheat cleaners, to make 3 barrels flour per hour, making 24 cublc feet of water used per minute.
Nov. 2d.-Water 91/ inches deep, 4 feet wide, running 186 feet per minate, drives two runs on Swain wheel under 56 feet head, and all mill machinery, except wheat
cleaners, making 4 barrels flour per hour on one stone,
and grinding one tun of barley per hour on the other run ; grinding 11,721 pounds of barley in a stralght ran of less than six hours-using 451 cubic feet of water per min.

Sept. 27th.-Water 7 inches deep, 4 feet wide, running 132 feet per minate, drives one run on Leffel wheel under 62 feet head, to make 3 barrels fiour per hour, and all mill of water nsed.
Yoar wheel (12 inch) will ran 775 to 800 tans per minute, and will send a stone to $\$ 00$ easily, and even faster, if we dare

Truly yours,
ROGERS \& HARRISON.

A. M. Swant-Dear Sir:-Wehave now been using your 12-Inch wheel, with buckets 1 C inches deep, for over one year, in our flour mill, under 55 feet head. We have
made very careful tests with overshot wheels, and find your wheel fally equals the best overshot, even with partlal gate, and excels it with fall gate. It will ran our mill machinery and ran up to its full motion with he gate have tested it beside the Tyler, the stevenson, and the Leffel Turbines, drawing water from the same plpe, and find it superior to them all in simplicity of gate fixtures, steady power, and great economy of water. After twen-
ty years' experience in water wheels, and the expendrture of thousands of dollars on different wheels, we momid not take any other wheel as a gif, if we could get the swain perfect built turbine by paying for it at the highest rates. Wia consider money paid for perfect work turer, the best possible investimet
We have great tronble with the Letrol wheel gate in
leaking and breaking, and have broken the gate eeveral times in the six months we have run it, while your gate has never falled to close tight, and has never bothered us fr a moment.

Truly yours,
ROGERS \& HARRISON

A Newspaper of the Present Time

Intended for People Now on Earth. Including Farmers. Mechanics, Merchants, Professional Men, Workers, Thinkers, and all Manner of Honest
Folks, and the Wives. Sons, and Daughters of all such. only one dollar a year :

ONE HUNDRED COPIES FOR 850,
Or less than One Centa Copy. Let there be a $\mathbf{8 5 0}$ Club at every Post Offlce.

THE SEMI-WEEKLY SUN, 82 A YEAR, of the same size and general character as the THE
WEEKIT, bnt with greater vBryety of migecelianeons readiner,
Rreater
steashness. becuise it

THE DAILY SUN, 86 A YEAR.

 For Terms to Clubs, and Specimens, address I. W. ENGLAND, Publisher, Sun offlee, New York

S TEAM Gages, large assortment, self-testing
A GENTS WANTED-($\$ 225$ A MONTH) A by the AMERICAN KNITTING MACHINE CO.
Boston, Mase., or St. Louls, Mo.
L.W.Pond's New Tools NEW AND IMPROVED PATTERNSMills, Lathes, Planers, Drills, Milling Machines, Boring
Gron. Garlice

98 greate 98

Liberty st., New York. Works at Worcester, Mass. M ODELS, PATTERNS, EXPERIMENTAL

T HE BEST PUNCHING PRESSES ARE

Agents! Read This!

$\mathbf{W}^{\mathrm{E}} \mathrm{WHLL}$ Hil PAY AGENTS A SALARY
 1832. SCHENCE'S PATENT. 1870. Foodworth Planers.

IIANTED-AGENTS, \$20 PER DAY, TO

Milling Machine,

BRICKS. ${ }_{\text {BHE }}^{\text {THE }}$ HOTCHKISS

SHINGLE AND HEADING MACHINE-
 THE NORTHAMPTON HAND PEGGING

 THIRTY FEET OF LUMBER MAKE AN

Andrew's Patents.

1826 ge tig veptiai 1870
 \$15,000 A YEAR .
W ANTED-AGENTS-
 Miee complete 815, sent d.o.D.
58 Bromiteld street, Boston. Mass.

8 OCLOCK.

$\overline{\text { P. BLAISDELL \& CO., }}$ BULDERS OF A AEW PATTERN 12-in.

 Groen:TPea platror. TO SUIT ALL ALEASTES.
THE WOODWARD STEAM-PUMP MAN-

\rightarrow Hhickster IMarataing

THE FIRST EDITION of One Hundred and Fill Thoasan Colie of vick's HLUsTRATED

COLORED PLATES.

Themost beantifaland themost instractive Floral Guide

Q) 2 PANGLED

$\$ 10$ MADE FROM 50 CRNTS!
SOMETHING urgently needed by everyR. L. WoLco TT, 181 chatham Square, N. Y .
$\mathrm{R}^{\text {ICHARDSSON, MERIAM \& CO., }}$

Gear's Variety Molding

$\mathrm{R}^{\text {OBERT McCALVEY, Manufacturer of }}$
ORTABLE AND STATITONARY STEAM

Trade-Mark Patents. MONN \& CO. desire to call the attention or manurac--
turers and buisiness mean generally, to the importance or the law of patents, as applied to trade-marks for business Any person, firn, or corporation, domiciled in the United States, or in any forelgn country affording simillar Ight to the exclusive use, for thirty finis, of any TRADI-MARE, consisting of any new figure, or design, or gures, upon their manufacturcs.
This protection extends to trade-marks already in nse Fall length of time, or about to be adopted.
ained by addressing

$$
\begin{aligned}
& \text { MUNN \& CO. } \\
& \text { 3y Park Row, New York. }
\end{aligned}
$$

Patents on Designs. Cltizens and allens can now secure design patents for
three and a half, seven, and fourteen years. The law on this subject is very liberal. Foreigners, designers, an cure patents here upon their new patterns, and thus prevent other makers from selling similar goods in this mar ${ }_{\text {ket. }}$ These
These patents cover all novelties of form or confgura Fon of articles of manufacture.

No. 37 Park Row, New
Canadian Inventors, Under the nem Paten
ceme terms as cutizene
For full particularg.
3y Park Row, New Y
gaturtiscurnts.

Alvertisements vill be admitted on thts page at the rate of $\mathbf{8 1 . 0 0}$ per line for each insertion. Engravings may $81 \cdot 00$ per line for each insertion. Engratings may head advertisements at the same rate per line, by meas.

Swain Turbine.

"OnILow-Water Wheel from this on" W ILL DO TEN PER CENT MORE WORK ever Invented. Gave the best results, in every respect, a
the Lowen Teets
For Reporto test at Lowell, with Dlagrams and Ta

THE SWAIN TURBINE CO., North Chelmsford, Mass.
27 See inside page for important data and testimonala TAFT'S PORTABLE HOT AIR, VAPOR, AND SHOWER Bathing Apparatus. SUSPENDED IN ANY ROOM, READY

Second-Hand Machinery. 15 SLIDE LATHES, 11 IRON PLANERS

Wood-Working Machines.

 3 FLOOR-BOARDING PLANERS, 3 Sur

The Trophy Tomato.

 Send for CIrcular
To Western Purchasers of Machinery

$\mathbf{S}_{\text {ECOND-HAND ENGINES FOR SALE.- }}$
Pror from Stot in horee power, portable or stationary,
$\mathbf{F}_{\text {and }}^{\text {OR CIRCULAR }}$ ILLUSTRATINGA NEW

PORTABLE STEAM ENGINES, COMBIN-

 46. Cortlandt. st., New York. J . C ., Lawrence, Mass.

LTrom Losucks Hortins patent

Prices Reduced.

\mathbf{L} EFFELSE DoUBLE TUR

 JAMES LEFFEL \& CO.,

DRITHS

DIAMOND POINTED
STEAM DRILLS.
F OR ALL KINDS OF ROCK DRILLING

 roprietors and Man inatarers,

1Water Wheels. $W^{\text {arren's }}$ new graduating tur-
 Allen Engline Works, THEALLEN ENGIITE

 fyimixim

Pure Para Rubber

 VALVES AND SHERT RUBBER,

The WATCHES made by the
New York Watch Company
Are the BEST \& CHEAPEST.
Ask to Soe Them. Factory, Springfield, Mass.
STEAM ENGINE GOVERNOR.

NE WBUGH, N. Y., Steam Engine,

Variable Cut-Off,

WIRE ROPE.

JOHN A. ROEBLING'S SONS FOR Inclined Planes, Standing Ship Rigging

[^0]

Reynolds'

ENGINES,

Tools, Machinery, etic. FOR sALE

THE NOTELTY IRON WORKS, FOOT OF EAST 12TH St., N. Y. embracing
ENGINES, PLANERS, LATHES,
SMITHS' AND BOILER MAKERS' TOOLS and Machinery and Patterns of the most appro
etc., etc. Also,
HIGH-PRESSURE ENGINES, partly finished.
GTEVENSON'S PAT. TURBINE WATER WHEELS
$66-\mathrm{in}$. diameter, and
MARINE BEAM ENGINE, 66 -In. by 10 -f. stroke. JNO. S. SCHULTZE,
\$ Send tor Catalogue
New York Oct 29, 1870
HaRD FOOD BOARDS

and Spanish Cedar crank Eoxes,

VEMTEHRS,

A. S. \& J. GEAR \& Co, Boston, furnish

S ELECTED Sperm Oil.-Warranted strictly
 SAW MILLS.
$\mathbf{M}_{\text {ley }}^{\text {ORSISNO }}$ \& HIMMS

$\underset{\text { RUMPFF }}{ }$ \& LUTZ, I MPorters and Manuafturarg of Aniline

Tanite THE Thery Wheel.

Does not claseotem Than or smell. Addrees

Working Models

CAUTION.

London................ 48 Cannon atreet.
H. UTRAMARINE,

PAT. SOLD EMERY HínELS AND OIL

RON PRANERS, ENGINE LATHES

A daLUABLE PATENT TO RE SOLD, o

Nickel Plater.

 W ANTED, A MODEL MAKER, accu B

Scientific American
For $18 \% 1$.
TWENTY-SIXTH YEAR.
THIS SPLENDID WEEKLY, GREATLY and interesting Journals evcr pabished. Every num
is beautifully printed on fine paper, and elegantly illu is beantirully printed on fine paper, and elega
trated with original engravings, representing
New Inventions, Novelties in Mechanics Manufactures, Chemistry, Photog-
, Architecture, Agricultu
and Art.
Farmers, Mechanics, Inventors, EngIneers, Chemiste Manuracture
will Ind the

SCIENTIFIC AMERICCN

Its practical suggestions will save hundreds of dollar
to every Hoasehold, Workshop, and Factory in the land esides afrording a Conlnual source or Valuable instruc Aon. The Editors are assisted by many or the ables all the leading Sclentinc and Mechanical Journals of the world, the columns of the Scientifio Amerions are con An Ontly enriched with the cholcest Information.
Weekly.
The Yearly Numbers of the entryirifio Aniriican make two splendid Volumes of pooty Onr Thousand Pags
equivalent in size to TOURTHOUSAND ordinary book pages. ETECIMEN COPIES SENT FREE.
$83 \cdot 00$ a year, 81.50 half year; Clubs of Ten Cop les for one year, at $82 \cdot 50$ each, $\$ 25 \cdot 00$, With a SPLENDID PREMIUM to the person who forms
the Clab, consisting of a copy of the celebrated Stee the Clab, consisting of a copy of t,
Plate Engraving, "Men of Progress."
A New Voluyr commences on the frest of January Premium, and also the papar, at the lowest Club rates. MUNN \& CO.,
Publishizb or the scientifio Ayerica:
37 Park Row, New York.

[^0]:
 \geqslant BOOTS \& SHOES $\$$ NEMFIE \& LEVY,

 PENN WORKS

