
a WeEkly Jourval 0f practical inforvation, art, science, mechanics, chemistry, avd manufactures.

Hmproved Horse-power Fire Engine.
The several parts of this invention, in themselves, contain but slight elements of novelty, yet the combination of these parts, which is covered by the patent, constitutes, in our opinion, an important and useful improvement, and one which has before it a large field in which it may be advan tageously and economically applied.
Our artist has so well delineated the machine that it will be at once understood by all familiar with fire engines. It is a combination of the well-known and extensively used endless apron horse-power machine with a force pump, and reel for a hose ; the force pump and reel being placed at the front, as shown. The pump is driven by a crank motion actuated by a pair of bevel gears, the suction and delivery hose being coupled
underneath the barrel of the underneath the barrel of the pump, or in any other convenient position, the relative position of the parts not being material to the claims of the inventor. The whole is placed and fixed on a suitable truck, and the weight of the entire apparatusincluding truck may, it is thought, be brought within 2,500 pounds.

A folding back, when let down A folding back, when et down
as shown in the engraving, forms a bridge whereby the horses mount to the endless apron. The engine is drawn by horses to the place of conflagration, and is ready to operate as soon as the horses can be unhitched from the carriage and led upon the endless apron described. For rural towns and the suburbs of large cities, this engine possesses many advantages, coming, as it does, between the hand engine and the expensive steam fire-engine. Its lightness enables it to be rapidly drawn to a fire, and the cost of fuel is saved. Its cost is much less than a steam engine, and its working efficiency may be made much greater than that of a hand engine as the number of horses is not limited to two, but three or four may be used in machines of large ca-
pacity. It thus has, in proportion to the working power of the horses, the advantages of steam fire-engines, without the defects of hand engines, not the least of which is the generally admitted demoralizing tendency of volunteer fire-company organizations upon the youth who for the most part compose them. Extra hose-carts are not needed. The machine may be placed in charge of some responsible person in small towns, and when required two or three men may effect ually operate it. Where the water has to be raised only a short distance through the suction pipe it is claimed that two horses will, through two hundred feet of hose, throw a three-quarter-inch stream to a hight of from sixty to seventy feet. We think this machine peculiarly adapted to the wants of far-western towns. In such cases it might be placed in the care of the postmaster, merchant, or other responsible party centrally located, and would le an important safeguard against those disastrous conflagrations which have so frequently ravaged our border settlements.
Patented, through the Scientific American Patent Agency, Nov. 2, 1869. For further information concerning rights, etc., address John C. McCarthy, patentee, 131 Barrow street, New York.

Novel Trout Fishing.

The Virginia City (Nevada) Enterprise states that trout are taken at Carson in the following unique manner:
" They take a cartridge of ' Giant ' powder, weighing about a quarter of a pound, insert into it a piece of fuse, properly capped, about six inches in length, then, lighting the fuse, the cartridge is thrown into any deep hole supposed to contain trout or other fish. After the cartridge has been thrown into the water, smoke and bubbles of gas are seen to rise to the surface, then in a few moments comes the explosion-a dull, heavy report. The surface of the water is seen to bulge up, and the ground can be felt to shake for fifteen or twenty feet back from the water.
"Immediately after the explosion, all the fish that happen to be within a circle of twenty-five or thirty feet of the spot where the cartridge fell, come to the surface, either killed outright or so badly stunned that it is some minutes before they recover. Our informant says that with two cartridges he saw over fifty pounds of fish killed, counting trout, white
fish, and chubs. In places, atter a blast, the whole surface of the water would be covered with minnows from an inch to three or four inches in length. At Elko they are practicing the same style of fishing, only that out there they tie the cartridge to the end of a long pole and thrust it into the water, holding it until the explosion occurs. This is the most destructive mode of fishing we have ever heard of; it is a regular wholesale slaughter of great and small, good and bad.
Legislature practice gain ground it will be necessary for the to fish with Giant powder. Parties have already been talking

Miccarthe's horse-pown engine for extinguishing fires.
folds down the support when the jaws are thrust in; while the inner end of the groove in the other jaw, striking the lug which slides in that groove, unfolds it when the jaws are thrust out. The jaws slide in ways which force them to gether when they are thrust in, and open them when they are hrust out.
This implement will draw any sized boot from a lady's aiter to the largest men's wear. Its convenience to travel ers, as well as others, is obvious
Patented through the Scientific American Patent Agency Oct. 29, 1867, by Albert P. Seymour, of Hecla Works, Oneida county, N. Y., who may be addressed for the entire right for the .United States or for State rights.

The East Riyer Bridge. We learn from the Brooklyn Times that the construction of the caisson which is to be sunk at the base of the Brooklyn tower of the East River Bridge, is begun, and is now well under way. Colonel Wm. H. Paine is present at Messrs. Webb's yar every day, superintending th work on behalf of the Bid work on It is of the Bridg Company. It is expected that the caisson will be ready to launch some time in March. I will then ke floated to the loca tion of the Brooklyn foundation of the tower. The river shorc will be dredged out to low wates line, and the caisson floated into its position on a high tide; on the water receding, it will be anchored or "seated," and exca vating to sink it the required depth will be carried on in it interior. Through the roof wil be six shafts, or funnels, will of six shafts, or funnels, made of half-inch boiler iron. The two su!ply shafts through which
artridges, they expect to bring up hundreds of trout single shot."

SEYMOURS PATENT POCKET BOOT-JACK.
This convenient little implement is made of cast iron, and is so contrived that it may be folded into a very small space as shown in Fig. 2, or extended for use as shown in Fig. 1.

Eig.I

The jaws, F G, are pivoted together at C, the head of the pivot sliding in a rib of a siot, E , in the foot plate. The jaws have grooves in their upper surfaces, as shown in Fig. 1, the groove of one being placed further back than the groove of

the other. The support, D, of the foot plate, is pivoted to the foot plaie, and folds down, as shown in Fig. 2, when the jaws are thrust back; thus making a very compact arrangement for carrying in the pocket or carpet bag. The folding and unfolding of the support, D , is effected by lugs cast upon the portion of the support, D , which passes between the jaws and the toot plate. These lugs lie directly under the points of the jaws indicated by the letters A and B, Fig. 2. The outer end of the groove which lies nearest to the foot plate, Fig. 1, striking against the lug which plays in that groove
and by which the excavated soil is removed, will be twenty one inches in diameter each. Each of the two air shafts, by which air is supplied to the workmen, is forty-two inches in diameter. Each of the two water shafts, in which the wate oozing through the soil will be conducted, so as to keep clear of the workmen, is seven feet square. On top of this cais son will be piled timber to the hight of fifteen feet, and the whole mass filled in with concrete; and on this bed of wood and stone will be placed the masonry for the towers.
The caisson is in shape a parallelogram, 168 feet long and 102 feet wide on the outside, and is about 15 feet high. The sides are V-shaped, the bottom being eight inches thick, and the top eight feet three inches, and ten feet high, and the root, which rests on these sides, is five feet thick. The whole is constructed with yellow pine a foot square, with the seams caulked. Between the outside layers of timber is a sheath ing or layer of tin, between two of felt, intended to prevent the atmosphere from working into the interior of the caisson The sharp edges of the structure, are to facilitate the sinking of the box thirty feet beneath low tide level, and accordingly this portion is strongly made. The first layer of timber is of ak; on this is bolted a cast-iron shoe, eight inches wide, val on its face, being three inches thick in the center. Around the shoe is placed an armor of boiler iron, extend ing three feet above the shoe, on both sides of the wall, the whole strengthened by heavy angle irons on the interior, sixteen feet long. As the pressure of air on the caisson will in crease as it sinks, it is estimated that the atmosphere resting on the surface will vary from 18,000 tuns to 40,000 tuns. Consequently careful and accuratecalculation is made to cive trencth to the bor. Whe timbers are all bolted together

 . age, eighteen inches apart throughout the structure, and the ends are made air-tight by rubber washers. The immense number of bolts may be imagined, when it is expected that one hundred tuns of them will be used. The interior of the caisson will be a room one hundred and sixty-six feet long, one hundred feet wide, and nine feet high. There will be about one million five hundred thousand lineal feet of timber used in constructing the caisson, and when ready for launch ng it will weigh three thousand tuns. In order to launch it there will be seven ways or keels underneath, and a water tight compartment, or airchamber, in the interior, thirtyeight feet wide, extending lengthwise. In addition to this there are ten heavy supporting frames to sustain the roof.

As regards the negotiations for obtaining the site for the tower on the Brooklyn side, it appears that they have so far made but little progress. This tower will, it is understood, be built in the third or upper slip of the Fulton ferry. The Ferry Company lease their ferry property from the City of New York, and the Commissioners of the Sinking Fund of that city are vested with the powcr of leasing and selling public property. The Brooklyn Eagle states that when negotiations were opened by the Bridge Company to obtain possession of the upper slip and section of the adjacent land, the Sinking Fund Commissioners referred the matter to a Commission of Estimate and Assessment, consisting of Wilson G. Hunt, and Thomas R. Agnew, who have not yet made their report. It is understood, however, that this will be forth coming without much further delay, after which the preparations for the reception of the caisson will be at once proceeded with.

The
 Force of Contraction Apmied to

Enindings

The force of contraction is equal to that of expansion, and quite as irresistible. Its immense power was strikingly illustrated some years since in Paris. The two sides of a large building, the "Conservatoire des Arts et Métiers," having been pressed out by the spreading of the arched ceilings and the immense weights supported by the floors, M. Molard undertook to remedy the evil by boring holes in the wall at the base of the vaulted ceilings, and opposite to each other, through which strong iron rods were introduced, so as to cross the interior of the building from one side to the other On the projecting ends of the bars on the outside of the building were placed stron g iron plates, which were screwed by means of nuts, tightly against the walls. The rods were then heated by means of rows of lamps placed under every alternate bar, and being lengthened by the expansion, the

nuts and plates were pushed out to the distance of an inch or more beyond the walls. While in this condition, the nuts were screwed a second time tightly against the wall. The lamps were then extinguished, and the rods, contracting as they cooled, drew the walls together with a force almost ir resistible, and to a distance as great as that to which they had been lengthened by expansion. These bars being then left in their new position, the alternate bars, which had re mained unheated, and by the contraction of the others had been also made to project beyond the walls, were again tight ly screwed against the building. These were in turn x panded and lengthened by the application of the lighted lamps, and once more screwed up tightly against the walls The lamps were then extinguished, and by the contraction of the second set of bars the walls were drawn still further to ward each other. These were then left, in turn, to hold the building in its new position, and the first set of bars a second time brought into requisition. And thus the process was continued until the walls were drawn in to their proper verti cal nosition; and the bars being left in their places, they have remained firm and upright ever since. In this manner a force was exerted which the power of man could scarcely have applied by any other means. The same process has since been applied to the restoration of other buildings which were threatening to fall.-Pynchon's Chemical Forces.

Air in Hhuminating Gas

Professors Silliman and Wurtz have been investigating the effects of atmospheric air upon the illuminating power of gas, with, according to the Chemical News, the following results

For any quantity of air less than 5 per cent, mixed with gas, the loss in candle power due to the addition of each 1 per cent, is a little over six tenths of a candle (0.611 exactly) above that quantity the ratio of loss falls to half candle pow er for each additional 1 per cent up to about 12 per cent of air ; above which, up to 5 per cent, the loss in illuminating power is nearly four tenths of a candle for each 1 per cent of air added to the gas. With less than one fourth of atmos pheric air, not quite 15 per cent of the total illuminating power remains, and with between 30 and 40 per cent, it totally disappears.

A Belqian report on the preservation of telegraph post decides that chloride of zinc is the best and cheapest agency to employ, though it does not work equally well in all soils

RAILWAY BRIDGE ACROSS THE SEINE.

Our illustration annexed represents a railway bridge which crosses the Seine, below Paris, at the Point du Jour, on the Chemin de Fer du Ceinture. The bridge, which is rather a remarkable structure, is built in two stories, the lower one consisting of five elliptical, and the upper one of thirty semicircular arches. The span of the lower arches is, in each in stance, 99.2 feet ; and that of each of the upper arches 15.5 feet. The intermediate piers of the lower arches are each 15.5 feet thick in the direction of the length of the bridge, and those of length of the bridge, and those of
the upper series of arches measure at the springing of the latter $3 \cdot 36$ feet in the same direction The upper arches carry the Che \min de Fer du Ccinture, the road way being 29.5 feet wide, the width of the lower being $181 \cdot 7$ feet, thus affording ample room on each side of the upper viaduct for a carriage and foot-way, the carriage roads being each $24 \cdot 6$ feet wide. The materials used in the erection of the bridge are cut stone and rubble, the parapets and balustrades being of Jura marble. In the large spans the stones are set in cement. The river bed beneath is of clay, chalk being reached under the left abutment, at a depth of about 26 feet while on the sides of piers and right abutment, sand was met with. In making foundations for the piers, large bottomless wooden caissons were sunk nearly to the chalk, and were then partially filled in with beton, on which the masonry was built by the aid of coffer dams. The ends of the oner dams. The ends of the centers of the large arches were supported by dried sand contained in suitable boxes, and they were struck by allowing the sand to escape; the centers were only lowered about one fifth of an inch at one time. The lower story was entirely completed before the upper one was commenced. The bridge was erected about four years and a half since, at a cost of $\$ 650,000$, from the designs of M Bassompiere, engineer to the Che min de Fer du Ceinture.

Co-operation in Italy.
A Naples cofrespondent of the London Times says:
" One of the most striking fea ures in modern constitutiona taly, is the disposition to form as sociations. This, of course, is one of the natural results of politica liberty, but in the last week or so, we have had a development of it on the co-operative principle, which has probably received an impulse has probably received an impulse
from what is going on in En cland. A co-operative bank of redit has been formed for the working classes in Naples. On half of its shares have already been taken. The remaining share are offered to the working classes and as soon as two fifths are taken the bank will commence its oper ations. What these are is ex plained as follows: Limited loans on word of honor, prudently re stricted to seventy-five lire; dis counting work ; discounting bills receipt of savings, even so low as ten centesimi ; deposits in running accounts ; advances on public pro perty. Many even of the half wh ave already taken shares, it is said, are working men, not head of establishments ; and, as this is the first instance of the applica tion of the co operative principle to credit in Southern Italy amons the working classes, the experiment is regarded with much interest.
" A bank of the same kind exists in Padua, and has met with considerable success, having with a capital of 30,000 ire conducted affairs in the first year to the amount of 300 , 00 lire, but without meaning to throw cold water on an fiort in a right direction, still it remains to be seen whethe the social atmosphere of Southern Italy is as favorable to the growth of such institutions as that of Northern Italy. At all vents, the working classes are daily becoming a more imdemand for labor, which has been created by private and pub
lic enterprise, and as much from the instruction they have received during the iast nine years.
" The labor market, I may add, is not sufficiently supplied in this country, and the rate of wages has risen within a few years, in some trades, one half higher than it was beforeoperative principle instance of the application of the co by workmen, but by masters-that is, by the architects of Caserta, with whom those of the neighboring town of Madda-
vin that

Italian mind which in many directions and forms is so evident.'

Werrempoud dute

The Editors are nat pessonsititle for the opmions expressea by their cor.
Proposed Endustrial Fair at washington.
Messrs. Editors:-There is now in the Treasury of the United States more than $\$ 500,000$ of money received through the Patent Ofice in excess of expenses. The average amount of such surplus that may be calculated upon hereatter will not be less than $\$ 200,000$ per annum. All the other bureaus
are maintained entirely at the expense of the Treasury. But are maintained entirely at the expense of the Treasury. But
Congress intended that the Patent Office should be in the Congress intended that the Patent Office should be in the
main self-sustaining, and to the special tax necessary for that main self-sustaining, and to the special tax necessary for that
purpose the inventors of the world-for whose benefit the Office was created-consent. It seems reasonable, however, that the taxes thus paid by them should be appropriated for their benefit, and that they should not be diverted to other uses, so long at least as there were wants of their own to the relief of which the money might properly be applied.
Now the models which are required by law are of great. and daily importance, and should not be dispensed with unless from necessity. But the space provided for them is already mainly occupied, and about 5,000 square feet of additional shelf surfaceis required every year. It would also be of great advantage to the supporters of the Patent Office if opportunity were afforded to exhibit working machinery as well as manufactures and other products.
Two years ago it occurred to me that this surplus, which was then said to be of about half its present amount, might with propriety and advantage be applied to the commencement of a structure that would moet present wants and be capable of indeînite expansion. An eminent architect expressed the opinion that such an undertaking would be perfectly feasible. It was believed that from moderate beginnings the present wants of the Office and its patrons might thus be supplied by an institution that would grow into propartions commensurate with the growing requirements and capabilities of the American peopie, that international rivalries might also be invited-that it might thus at length become developed into a permanent world's fair, at the same time that it subserved the legitimate purposes of the Patent Office.
Circumstances prevented an effort to carry out that project then, but other circumstances have revived the intention now. At least it has seemed proper that the idea should be presented and discussed, and, if deemed expedient, adopted and urged to its consummation.
An effort is now being made by the people of this district to hold a World's Fair in this city at no distant day. Nearly half a million of doilars have already been subscribed for that purpose, and it is confidently believed that this amount may be increased to $8,000,000$. Especially if, instead of being a temporary undertaking, it is made one which contemplates permanency.
Now if these two projects were united, could they not be worked up into what might prove a great muiual as well as general advantage? There is competent authority for saying that with $\$ 1,500,000$ a permanent structure of iron and glass might be made of a capacity at least equal to that of the entire Patent Ofice building. Sufficient space for the arrangement and pres?rvation of models would thus be provided as well as for manufactures and machinery oí all descriptions. A permanent temple would thus be erected to human ingenuity to which men of genius from all quarters would resort to give and receive new inspiration.
I hope the thought will not be deemed extravagant that under the united influence of the Smithsonian Institution, the Patent Office, and the Agricultural Department, this establishment might at length become the chief center of the arts and sciences of the civilized world.
As far as has been yet ascertained the matter as thus presented meets with favor among those under whose auspices the project of a World's Fair here has been inaugurated. Betore making any serious effort on the subject, however, it is thought expedient to know the views of inventors and their friends on this subject. Your position and character render your opinions of great moment, and on that account I now address you.
It is not proposed to ask the appropriation of a single dollar by Congresis. All that would be expected from that quarter would be a permission to appropriate funds which rightfully belong to the Patent Office to aid in carrying out the common enterprise wbich is mainly for its benefit.
I am fully conscious of the fact that, in a mere financial point of view, the "Exposition" would prove a much greater success, if held in some large commercial city. But that is not the question now. The enterpriss is already undertaken. not the question now. Ihe enterpriss is already undertaken.
It will be carried through, as I am assured. Whether it It will be carried through, as I am assured. Whether it
prove a innancial success, or otherwise, to the stockholders is prove a inancial success, or otherwise, to the stockholders is
not an element in our present calculation. It is only heithat the Patent Office coald, with any propriety, connect itself with such an undertaking, for it is only here that this undertaking could yield those advantages that would justify the connection and expenditure. Besides, Washington is not the commercial rival of any other city, and the jealousy that might be excited against most other plans of like magnitude would interpose no obstacle here.
\qquad
Washington. D. C.
Chas. Mason

Magnetic Aetion of wind currents.

Messrs. Editors :-I have bern making some experiments for the past threo months, which, I think, will interest some
of your readers. Tho instrument used consists of a wind
vane made of a thin board some four inches long by one twentieth wide, and as thick as a sheet of commercial note paper. In one end are placed four magnets, so arranged that the south poles point down and perpendicular to the vane, which turns freely on a pivot. The instrument is placed in a box so that the air cannot disturb it.
It sounds singular to hear of a wind vane protected from the wind, but, so it is, and I have never, during the entire course of my experiments, found it at fault in indicating the quarter the wind comes from, and that some little time before it comes. The final experiment was made to-day. I placed the instrument at right angles to a meridian traced on the I found it had changed its position, and pointed to the southwest. I timed it, and found that in fifteen minutes the wind ame from the southwest (number 1 of the Smithsonian table). There had been nothing of note, in a meteorological point of view, for over one week, so that the magnetic currents could
not have influenced the vane. Ernest Turner, C. E. Philadelphia, Pa.
ernest Turner, C. E.

Steam Na

,
Messrs. Edprors :-One of the greatest benefits your val able journal confers is, that its columns afford a means of ready commueication between all classes of inventors-those of the hand as well as those of the brain; and thus the floating, useless virions of the theorist meet, fructify, and utilize the barren thoagh vigorous growth of the man of practice alone. The zaechanic sets his wheels and gear, and calls for assistance; \& spirit is breathed upon them which animates the mass. Encouraged by such reflections, I venture to send you some of my random ideas for publication. They might be flint to some ones steel. Concisely and briefly, then, in regard to steam navigation:
Robert Stevenson said, the problem here was how to diminish the friction of the vessel and the water; not how to in crease the power of engines. Among others, two systems might accomplish this: The discovery of a new instrument, or new application of the old ; or a change of naval construction.
First-taking it for granted, I am not quite sure, that the resistace is as the square of the depth, then a lessening of depth in the water, with same power, would increase speed, We need, therefore, as it were, to raise the vessel. If gas raises a balloon, it should raise a ship, and naturally suggests itself as the means. A ship.contrived by the aid of gas, to draw only one, or a few feet of water, with a powerful engine, would seem, in theory, to solve Stevenson's problem My objection is, the vast bulk of gas ; but my calculations may be wrong. I suggest the use of gas, in this manner, as a subject for reflection.
I believe ships are now modeled after the fish because na ture is supposed to have suggested it. They are made sharp and deep. I suggest, ships do not go through the water like a fish, but over the water like a duck. The water fowl is nature's model for those things which go over the water, flat, broad, and rounded. The objection of the effect of waves is futile. The center of gravity is at our disposal.
Another problem is to lessen the consumption of fuel. Now, a steam boiler consists of water in a metal vessel. When fire is applied, the metal absorbs a vast amount of heat, radiates, deflects, and otherwise destroys the effect of the fuel on the water. This is entirely due to the material of the boiler What we want, then, is some agent which will hold the steam and water, while it will allow the direct action of the fire on the water-a substance which shall pass rays of heat as ful ly as glass does the rays of light-a heat-glass. Rock salt does so perfectly, so far as the heat is concerned, but is soluble and combustible. Can not some chemist give us a sili cate of sodium which will answer? Geo. R. Phelan. Memphis, Tenn.

The Tidal wave.

Messrs. Editors :-The Scientific American, of Nov mber 13th, contains an article on this subject, copied from the London Spectator, and your readers are admonished edi torially against overwhelming you with remarks on the same. It is, therefore, with hesitancy that I venture the fol owing.
The drift of the paper quoted, is to show that by the tidal action, the rotation of the earth on its axis is retarded in consequence of the friction of the water, following, the wave in its westerly and opposing direction to the earth's rotation This is substantially the sum of the proposition.
Since the friction of the water is the retarding cause, how would the case stand if there were no water, or if solidified, and itself became friction, leaving a dry earth.
Trivial as this assigned cause, friction, appears, to distarb the precision of the earth's rotation, remaining undetected for ages, does it even exist, in an appreciable degree, or if so is not its tendency to accelerate the rotation?
If we start with a swell or wave under the moon, the estern course of her attraction woud keep up the swell from constantly receding, i. e., the source of renewal to the swell would be drawn from the advance and its decline eastward, by the retiring attraction of the moon. Hence, the friction of the water, both to and from the swell, would be in favor of acceleration.
Pitts urgh, Pa.
Rat Poison.-Recent experiments have shown that sqills is an excellent poison for rats. The powder should be moixed with some fatty substance, and spread upon slices of bread. The pulp of onions is also good. Rats are very fond of either - Journal de Chimie.

THE SPECTROO the scientific American.]
 by daniel knode winder.

In a report of the proceedings of the Royal Astronomical ociety, published in May last, there is a record of several in teresting observations, concerning the spectrum lines of Aurora, which it is interesting to compare with several observa tions made on this side of the Atlantic Ocean. These obser vations promise to be useful in aiding us to debermine the nature of the Northern Light.
In the report alluded to, Mr. Plumber tells us, that in the spectrum of Aurora, he saw one bright line in the green near E .
Mr. Angström saw it as one bright line in the yellew, noad D, and several faint bands, near F.
Mr. Struve observed one bright line, near D, and traces of wo others in the green.
Professor Winlock has seen six lines, the brightest of which was near E .
The writer has frequently seeqn one bright line in the yellow, near D (coïncident with one of a group of lines which appear in the solar spectrum, when the sun is near the hori zon), and one faint line in the green. On one occasion there was visible one additional line it the red.
It has always proved a dificult task to determine, with cer tainty, the position of the spectrum lines of Aurora, and as he value of observations with the spectroscope rests prine pally upon our ability to do so, 1 am glad to find that the ocations of eight lines have been announsed.
The wave length of M. Angström's bright line is 556%.
The lines seen by Mr. Winlock, he determines, microne rically to be as follows: the bright line 14ra, the other five ines, $1280,1400,1550,1680,2640$, Tirchoff's seade.
The bright line seen by myself I found to be very nearly

No

Now we learn from these cbscrvations: First,that the light f Aurora gives a spectrum consisting of bright lines; sec ondly, that the same number of hincs are not always seen thirdly, that the lines are fixed in their positions; fourthly, that the same line is not always the brightest; lastly hat one line in the spectrum of Aurora is councident with dark line, which appears in the solar spectrum, when the sur near the horizon.
I was much pleased to find in No. 15, current volume, SCI enmifrc American, an interesting letter from Professor Van der Weyde, criticising the conclusions reached by M. Ang ström, and, also, those resulting from my own observations To the objections which he urges against my hypothesis I will reply briefly, and, I trust, in the same kind spinit which he has shown in his criticism.
First, he objects becanse the spectrum seen by me is differ nt from the spectrum of oxygen
I reply, that this is a weighty objection to the opinion I have expressed, that Polar light is principally incandescent oxygen. But I have been led to this conclusion from the co incidence of the bright line in Aurora, with a line in Solur light, which I think it probable, is produced by oxygen, be cause of the density of that gas. The difference between the spectrum of oxygen and that of Aurora, does not seem neces sarily to prove my opinion incorrect, for it is a well-known fact, that the spectra of elements vary according to the cir cumstances under which they are produced. For illustration, potassium usually gives a spectrum of enly three of the ser enteen lines of which it is known to consist. Again, the position of the hydrogen line, F, in the spectrum of Sirius is changed by the movement of the star, as it recedes from the earth. Again, carbon gives six differing spectra, according earth. Again, carbon gives six differing spectra, according
to the circumstances under which they are produced, and in to the circumstances under which they are prod
these the same line is not always the brightest.

Secondly, Professor Vander Weyde objects, because of the presence of a line, in the spectrum, that has not been identi fied. I confess that I am at a loss to comprehend this argu ment,as I have only expressed the opinion that Auroral light is, principally, not exclusively, incandescent oxygen.
Lastly, he objects to my explanation of the change of the bright line to a black one. I reply, that I accept the common theory, explaining the change of solar lines from bright to dark ones ; I never, for a moment, doubted it ; but the line under consideration is not an ordinary solar line, but one that is seen only when the sun is near the horizon, and, therefore seems to require a different explanation, and as it is not secn at midday, I conclude that it is darkened by absorption in its passage (morning and evening) through the earth's atmos phere.

I am happy to find so many distinguished scientific gentle men interested in the subject of the nature of Aurora Borealis, and I entertain a hope that the observations made before the present season of Auroral displays shall have passed away wiil enable us to explain more fully the nature of its phe-

Toronto, Ont., Nov. 15, 1869.
A New Waitewasif for Walls, recommended by the Boston Journal of Chemistry, is as follows: Soak one fourtl of a pound of glue over night in tepid water. The next day put it into a tin vessel with a quart of water, set the vesse in a kettle of water over the fire, keep it there till it boiks, and then stir until the glue is dissolved. Next put from six to eight pounds of Paris white into another vessel, add hot water and stir until it has the appearance of milk of lime. Add the sizing, stir well, and apply in the ordinary way while still warm.
"Paris white" is sulyhate of bamer, and may be found at any drug or point storo.
american inventions in europe.
It is a fact exceedingly gratifying to the pride of every true American, that American inventors and manufacturers are to-day supplying the Old World with many of its best implements. In the matter of improved firearms, we are so far ahead of the nations of Europe, that many of them are sending large orders to our manufacturers, and where they have attempted to get them up themseives they have almost invariably adopted American inventions.
A writer in the N. Y. Tribune, mentions the fact that the Snider alteration of the Enfield, in England, was an American invention ; the Henry Martin is but a very slight modification of the Peabody gun, and the Swiss gun is the Winchester (formerly known as the Henry) magazine rifle, altered very much for the worse. At the various trials abroad, the American guns have invariably come out ahead, and the English Commission reported as to magazine guns in favor of, first, the Winchester, and, second, the Ball guns. The Messrs. Remingtons, of Ilion, N. Y., have furnished to the Danish Government 25,000 of their celcbrated breech-loading rifles, and to the Swedish Government, 25,000 ; while this year they will send to Europe generally fully 100,000 . These rifles have been sold to Austria, France, Italy. Spain, Egypt, and Cuba, in smaller quantities, with a prospect of much larger sales in the future. Colt's Company is completing 30,000 Berdan rifles for Russia, and it is rumored that the order has been increased to 100,000 . At the same time Col. Berdan has gone to Russia to superintend a factory there, probably for altering their present arms. Turkey has bought 200,000 of our rifles, and sent them home, and has just completed the purchase of over $\$ 60,000$ worth of machinery with which to convert them into breech-loaders, on the plan, probably, of those altered at Springfield. Sharp's Company been converting 30,000 of their rifles and carbines int metallic cartridge guns for our Government. At the same time the Winchester Company is turning out over 100 per day of its repeating rifles, and is increasing its works. It has also
bought out the Spencer Company, of Boston, including the bought out the Spencer Company, of Boston, including the
Spencer and Fogarty patents, thus combining and controlling all the prominent magazine guns, except the Ball, which is owned by the Windsor Company, of Vermont, and of which quite a number have been recently sold in Persia. The Winchester and Remington rifles are being sent to China and Japan, and the former are also sent to Australia, as well as all over the West, the Plains, and the Pacific coast. Nearly one-half of the entire product of Smith \& Wesson's pistol factory, employing some 300 hands, is sold in Europe, mainly in France, notwithstanding their cheaper labor. This resul is of course due to the fact that they are mainly the product
of machine labor, which machines are themselves of American invention and manufacture, and which produce an accuracy of work and finish that their hand labor cannot equal. But not only are we furnishing Europe and the Old World gener allywith arms,but we are also supplying them with ammunition. The Union Metallic Cartridge Company of Bridgeport, under the control of Hobbs, of lock fame, is furnishing metallic cartridges-far superior to any ever before seen-to nearly all the world. They had one order of $25,000,000$ from the Rus sian Government, and it is reported that the order has been increased to $100,000,000$. They make them of every variety and size, their sale of one small size for pistols averaging 45,000 per day, a large portion going to Australia. And these too, are all made on machines invented by Amcricans, the lik of which do not exist elsewhere in the world. In addition to just completing an order for $\$ 80,000$ worth of milling and just completing an order for $\$ 80,00$ worth of milling and
screw machines, to be shipped to Edinburgh, Scotland, to esscrew machines, to be shipped to edineurgh, scotiand, to es
tablish there a large factory for the manufacture of the tablish there a large factory for the manufacture of the
Singer sewing-machine. Not content with shipping the sew ing-machines themselves-of which large numbers of the leading kinds are constantly sent-they intend making them there, and that, too, with American machinery. Already, the Windsor Company has sent one or two lots of similar machinery to Canadjo for the same purpose; but sending ma chinery from here to dreat Britain is bearding the lion in his den to some purpose. It is also specially worthy of note that the milling machine-one of the most important and useful of all metal-working machines-and the screw-making machine are purely of American origin.

Steam Boiler Incrustations.

According to Cosmos a series of experiments, made on purpose, and continued for a sufficient length of time to yield a reliable result, has fully proved that the addition to the feed water of steam boilers of fatty clays, especially the kind known as fuller's earth, entirely prevents boiler incrustations, even where, of necessity, very hard water has to be used as feed water. A loose, soft mud is deposited as soon as the mo tion of the water, due to the boiling, ceases on cooling. This mud readily runs off on opening the sludge valve of the boiler.
The Annales de Gènie Civil informs us that these incrustations may be prevented by the use of raw potatoes, which cause all solid matters to be precipitated at the bottom of the experiment was tried with an engine of 8 -horss power, into the boiler of which ten kilogrammes of potatoes per week were introduced through the safety valve. Every week When the fires were extinguished, the deposit was removed previous to the introduction of a fresh supply of potatoes. On examining the boiler after fourteen consecutive months of
work, no traces of incrustation were perceptible ; the appearworik, no traces of incrustation were perceptible ; the appear
ancs of the plates was blackish and slightly greasy, and the porners of the joints were in the same state as when first
made. Refuse leather-cuttings from the tanneries will answer the purpose equally well.
These prescriptions for a bad complaint are not new, unless it be the use of fuller's earth. They have, in common with others of the same nature, the important drawback that they are not applicable to all cases. There is no doubt, however, of their utility in some cases.

The Maddening Mechanism of Thought
Our brains are seventy-year clocks. The Angel of Life winds them up once for all, then closes the case, and gives the key into the hand of the Angel of the Resurrection. Tictac! tic-tac! go the wheels of thought; our will cannot stop
them ; they cannot stop themselves; sleep cannot still them; them ; they cannot stop themselves; sleep cannot still them; madness only makes them go faster ; death alone can break into the case, and seizing the ever-swinging pendulum, which we call the heart, silence at last the clicking of the terrible escapement we have carried so long beneath our wrinkled foreheads. If we could only get at them, as we lie on our pillows and count the dead beats of thought after thought and image after image jarring through the over-tired organ! Will nobody block those wheels, uncouple that pinion, cut the string that holds these weights, blow up the infernal machine with gunpowder? What a passion comes over us sometimes for silence and rest-that this dreadful mechanism, unwinding the endless tapestry of time, embroidered with spectral figures of life and death, could have but one brief holiday? Who can wonder that men swing themselves off from beams in hempen lassos?-that they jump off from parapets into the swift and gurgling waters beneath ?-that they take counsel of the grim fiend who has but to utter his one peremptory monosyllable, and the restless machine is shivered as a case that is dashed upon a marble floor? Under that building which we pass every day there are strong dungeons, where neither hook, nor bar, nor bed cord, nor drink ing vessel from which a sharp fragment may be shattered, Shall by any chance be seen. There is nothing for it, when the brain is on fire with the whirling of its wheels, but to spring against the stone wall and silence them with one rash. Ah, they remembered that-the kind city fathersand the walls are nicely padded, so that one can take such xercise as he likes without damaging himself. If anybody would really contrive some kind of a lever that one could hrust in among the works of this horrid automaton and check them, or alter theirrate of going, what would the world give for the discovery? Men are very apt to try to get at the machine by some indirect system or other. They clap on the brakes by means of opium, they change the maddening monotony of the rhythm by means of fermented liquors. It is because the brain is locked up and we cannot touch its move ments directly, that we thrust these coarse tools in through any crevice by which they may reach the interior, alter its rate of going for a while, and at last spoil the machine.Oliver Wendell Holmes.

Spontancous Combustion of the FHuman Body.
In a former number, we spoke of the belief in the spon aneous combustion of the human body as "a vulgar super stition." A correspondent calls our attention to articles in cyclopedias, which refer to "well authenticated instances" of such combustion. Let us examine this matter in the light of what is actually known.
We must, in the first place, carefully distinguish between the notion of "a preternatural combustibility" of the body under certain abnormal conditions, and that of its spontaneous combustion. The former is not impossible; indeed here are tolerably " well authenticated instances" of the ind. The latter, if not absolutely inconcei highest degree improbable, and eminent physiologists wh ave carefully investigated all the cases in which a eged to have occurred, do not find a single one established
beyond a doubt. beyond a doub
The earliest case of the kind which has a semblance of authority to sustain it, is said to have happened in 1725, and from that time down to the year 1847, when the last alleged case occurred, some fifty ins tances are recorded. Liebig mad all agree in the follo wing points

1. They took place in winter. 2. The victims were hard drinkers, and were drunk at the time. 3. They happened where the rooms were heated with fires in open fire-places or pans of glowing charcoal. Cases where rooms are heated by means of closed stoves are exceedingly rare. 4. It is admi ted that no one has ever been present during the combustion. . No one of the physicians who collected the cases, or at empted to explain them, has ever observed the process, or ascertained what preceded the combustion. 6. No one has known how much time had elapsed from the beginning of he combustion to the moment when the consumed body wa ound.
Out of forty-five cases collected by Frank, of Berlin, in 1843 there are only three in which it is assumed that the combus tion occurred when there was no fire in the neighborhood and Liebig clearly shows that these three cases are tota' hat "spontaneous combustion in a living body is absolutoly mpossible." Flesh which has been saturated with alcoliol for great length of time, as anatomatical preparations, is not combustible; if ignited, the alcohol burns off, scaresly char ing the flesh. The corpses of dranikards have never been ound to be combustible.
M. Duvergie has opposed Licbig's views, and has expressed the opinion that molecular changes may take place in the living body by which it becomes more combustiole from the absorption of alcohol, or from its conversion into more in
flammabe compounds ; but he admits that the combustion is
probably never spontaneous. Dr. Marc has suggested that inflammable gases, and possibly even phosphoreted hydrogen, which, under certain circumstances, inflames on contact with the air, may be generated in the living body, and may thus give rise to its spontaneous combustion; but this is merely a theory to account for such cases of combustion, if they have occurred.
On the whole, this idea of spontaneous combustion appears to be one of those old medical delusions which, having once gained a sort of credence, are not readily given up. It is easy to see, as Liebig observes, that it arose at a time when men entertained entirely false views on the subject of combustion, its essence, and its cause. It is only since the time of Davy, or for about half a century, that combustion has come to be thoroughly understood. After people had once got it into their heads that the body might take fire of itself, it is not singular that when a man happeneà to be burned up, the case was explained in that way if it could not readily be accounted for in any other way ; just as hundreds of fires caused by carelessness, not easily detected, are charged to the mysterious "incendiary." Then again, other things being equal, the more marvelous explanation of strange phenomena is usually the more popular one. The Latin proverb omni ignotum pro magnifico est might be read omni ignotum pro mirifico est, with everybody, whatever is unknown passes for a marvel. We need not be surprised, therefore, that this idea of human combustibility, which was not inconsistent with the scientific knowledge of the age in which it had its origin and which consequently came to be accepted by the ecientific men of the time, should still live as a popular superstition and even find an occasional defender among the savans of this more enlightened day.-Boston Journal of Chemistry.

Official elist of gatents.

Issued by the United States Patent Office. FOR THE W $\overline{\text { EK ENDING }}$ Dec. 7, 1869.
Reported Oncially for the Scientitc. American

\section*{SCHEDCLE OF PATENT OFFICE FEES:}

For copy of Claim of any Patent issued wittin 30 years................... $\$ 1$
Asketch from the model or ar aving, relating to such portion of a machine

 97,470.-Lubricator.-David Adamson, New York city 97,471.-Baling Press.-J. L. Albertson, New London, Conn Antedated Nov. 25j. 1869.
97,472.-SAFETY VALVE.-Henry Ashfield. Chicago. Ml. 97.473.-Steam Generator Smoke Stack.-W F Beecher 97,474.-SNOW PLOW.-Gottlieb Beer, Grafton, Wis. 97,475.-CONsTRUCTION OF Preserving-Houses.-Harrison Blackburn, Bedford county, Pa. Antedated, ovv. 20,1869 .
97 ,47.--PLANING MACHINE.-J. B. Brown (assignor to him self and N. F.Libby), Lowell, Mass. Card, Pawtucket, R. I. 97, 478.- Boorf Jack-Whe Wheler Case, Russia, assignor to himself and J. H. Real, Jr., Utica, N. Y. Antedated Nov. . .7. 1869.
$97,479 .-$ BUGGY Top-A. M. Cory, New Providence, N. J. 7,480.-PUSHING JACK FOR RAILROAD CARs.-R. A. Cowell cassignor to himself and E. N. Keys), Cleveland, ohio
97,481.-SEWING MACHINE TABLE. Henry Cowgill, Fredo24i, Del., administrator of the estate of J. H. C. Cowgill, deceased. dated Nov. 25, 1869.
$97,483 .-$ PosT OFFICE LetTER Box--B. C. Davis, Bingham-
ton, N. Y. Antedated Nov. 22, 1869. 97,434.- N. Y. Antedated Nov. 22, , ABE9.-C. S. Davis, Orono, afsignor th himself and T. N. Egery, Bangor, Me. 97,486- Compound For Lining Textile Hose.-.Juliu 97, Dolimannand F. W. Claessens, Boston. Mass.
97, A7.-HOISTING APPARATUS.-William Dyatt, New York 97, city.-Ore Concentrator and Sepparator.-James Ed97, croft), Boston, Mass. \quad C. A. Ed wards, Chatfield, Minn. 97,491.-Saw-Set.-A. R. Fenner, Cold Brook, N. Y. $97,492 .-$ Wind Wheel.-Leonard Fischer, Sono
$97,493 .-$ Fruit Box.-J. H. Fisher, Chicago, 11 .
97,494-Machine For Polishing Stone.-Calvin H. Fitch,
syracuse, N. Y.
97,495.-DEODORIzing Apparatus for Water Clobets.B. A. G. Fuller, West Roxbury, Mass.
97, 496. LIGHTNING Rod AND CONDUCTOR.-Theodotus Gar.
ick, Cleveland, ohio. 97,497.-Mrocess of 1yyeing Black.-James Gee, West New Brimhton, N. Y.
$97,493 .-$ Latch.-Rudolph Geselbracht and Frederick Frey
Galena, Il. 97,499.-Boring Macirine.-F. M. Gibson, Chelsea, Mass. 97,500 .-Gang Plow.-D. H. Gleeson (assignor to himself , 501 De-WELL AUGERER.-J. Y. Goode, Water Valloy, Miss. 7.502.-Sash Holder.-A. F. Gregory and C. H. Ensign Bridgeport, Conn.
97 , $503 .-C O A L$
Y 97,504.-Ditching Maciine.-HI. L. Hall, Buffalo, N. Y.
 97. F. Y. -Tweer.-J. F. Harly, Kipton Station, Ohio.

7,503.-Garde Plow and Marker-Henry Haynsworth
 crati-nd David McLaughlin, Philadelphia, Pa, Antedated Nov, 20. 1869°
97,510 .-MACIINE FOR TESTING SPINGS.-George Hopsen,

97,513.-ALARM LOCE.-B. F. Irvine and T. A. Hitchcock, 97,598 .-Dumping Wagon.-J. G. Burwell and J. J. Walls,

 97, 17%.-GAS Burner.-W. L. Jukes (assignor to himself,

 97, F .0 . 0 .-Shaker for Thrashing Machines.-M. A. Keller, ${ }_{97,521 .- \text { SPRING }}^{\text {Litiletown, Pa. }}$ Bed.-S. P. Kittle, Newark, N. J.
97,522- Follding Box Spring Mattress.-Sam. P. Kittle, 97,533.-COMbined Shover And Tongs.-Henry Kliperd and 97,524.-MODE OF ATTACHINTG SEAMTS TO CARIIIAGES.-Chas Krebs, , West Spring field, Mass.
$97,525 .-A T T A C H I N G ~ C A L K S ~$ Warren, assignor to himself nid Z. E. Carsy west frookerley Lafin 97, W2arren. assignor to himself and Z. E. Cary, West Rrookfield, Mass. K 97,527. Hone, Lake village, N.H. Hich for Driling and Preparing Watch

 97, M3so. Mrodcast Seeder-J. S. Lewis, Elkport, Iowa 97,531-G GRAIN BINDER.-S. D. Locke, Janesville, Wis. 97,532.-Grain Binder.-S. D. Locke, Janesville, Wis.
$97,533 \mathrm{Z}$.-GRAIN BINDEr.-S. D. Locke, Janesville, Wis. 97,533.-GRAIN BINDER--S. D. Locke, Janesville, Wis.
97,534 .-GRAIN BINDER.-S. D. Locke, Janesville, Wis. 97,534.-Grain BINDER.-S. D. Locke, Janesville, Wis.
97,355.-GRAIN BINDER.-S. D. D. Locke, Janesville, Wis. 97.536.-Grain Binder.-S. D. Locke, Janesville, Wis. 97, Eidi.-Metallic Cartridge.-John Logan and D. W

 97,540.-COOLER
 97,54.-Garden Implement.-Henry Miller, Roadside, Va, 97, m43- - Combined Hay Rake and Tedder.-John C. Mills,
 97,545. Mools San Francisco. Cal .
 97, self. Robert A. Delong, and Lucius R. Townsend. Malone, N. Y. .
97,588. - Window and Door Cap Molding.-Joseph Parkin 97,549.-DEVICR FOR FORMING BoILERS.-George S. Pierce, $97,550$. Pis
 97, Lass.- Railiway Car Wheel and axle.-Perley Putnam,

 97, $\frac{\text { citry } 5 \text {.-Compound for }}{}$ Destroying Insects.-N. t. p.
 $97,557 .-$ SUsPENDERS. - Abraham Shenfield, New York city. 97,558.-Boot Con:ormator.-Samuel W. Shorey, Gales 97,559.:-Combrned Unibrella and Cane.-Addison Smith,

97,561--MANUFACTURE of Cartridge Shells. - Dexter 97, finith, Springied, wass 97 , 5633. . Track-cleajer for Mowing Machine.--Pratt a
 97,5i5.-Churning Machine.-D. G. Taylor, Campbells 97,5il6., Ky Explosive Compound yor Use in Firearms,
 97, assignor to Joulius: A. Foster, Adrian, Mich. . 97,569.-CEEL How. Hequeorge Theobalt, Springfield, Mass.

 97,573.-CUUTIVATOR.-Hiram J. Wattles, Rockford, Ill. 97.574.-Surcivale.-Martin Wesson, Springfield, Mass. 97,575.-Sifaft Coupling.-Seth Wheeler, Albany, N. Y. ${ }^{97}$.576.-Ventilator.-Charles F. Whorf, St. Louis, Mo. 97, spring Tipld III. 97,579. TSEAT FOR Chairs, Sofas, etc.-Frederick Wittram, 97, Sido Franciseo, Cal. 97, Thit, Fitiock. Thit Thomas B. Worreil and Thomas Walker, 97, Ph82.
 97,584 .-G. GRAIN SEPRARATOR. \rightarrow J.
 97,588 . - Driviving Mechanism for Sewing Machines. 97, James B A Ayer, Elizabeth, N.J.J. Horse Coliar.-W. M. Baker, Greenwich Station, 97,538.- Fritit Jar.-Thomas J. Bargis and John C. Under97,58\%. Rhrind, For Horse Colatars.-Benjamin J. Barton

 Gr, 594.-ALARM FAucet.-Thomas M. Biddle, Fort Wayne 97, ind.-Steam Gage Cock. - Samuel Blackman, Reading, 97,596.-MACHINE For Preprarpa Tobacco Stems.-Nich-

Crystal Springs. Miss. 97,599.-CORN Harvester.-John F. Byland, Walton, Ky.
97,600.-Apraratus For Dressing FLour.-Henri Cabanes
 97, Bord.-RALLROAD TICKET.-C. A. Chamberlin, Pittsburgh, 97,602.-Device for Turning Logs in Saw Mill.-Bela L

 90ew Haven, Conn.
97,606.-DITCHING Machine.
 Cousin and Plerre Oury, Paris, France, assignors, for one third, to N
Whashuuer, New Y ork city. 97,608.-Railway Car.-Walworth D. Crane, New York 97,610. - WATER WHEEL WCROLL CHUTE.-Homer H. Cum $97,611 . \rightarrow$ maccince for Sewing the Sole and Upper of 97, 612. 97, Wilis M. Smith), New Haven, conn.
97, 613 . APPARATUS FOr Treating Croup and other Dis 97,614.-MACHINE FOR RROMNG AND STIFFENING LINEN AND

 97,617.-Combived Call bell and Table Caster.-H. a
 97,6019--BS EEDSTEAD. A. D. D. E. Dugan, Springville, Pa. 97,620.-CAR CourpLiNG.-Joseph Dunott (assignor to himselt 97,621. , SA WING MACHINE. GSamuel Fletcher, Hollis, N. H. 97,622.-Axle for Carriages. - Samuel Forrester, Alle
 97, 6 Conn.-Knife Handle. - James D. Frary, New Britain 97,6z5. Conachine for Jointing Staves.-L. R. Fulda and 97, Martin Fula, San Francisco, cal. \sin WING MACHINE. - Samuel A. Gardner, Round
 97, eity eis.-Corrugated Reflector.-Bernard Goetz, Phila 97, dielphia. At at achachent for Fastening Overlapping Parts
 97,631. - Corto 97,632.- Mille Node of Generating Illuminating Gas.-Alex
 97,634. - Portable Furnace. - John H. Harper, Pitts 97, bujgh, Pa.
 97,637-Fastening For Necktie.-Harry M. Heineman, San 97,638.-Mancisco, Cal. 97,639.-WATER CLosET.-J. B. Hobson and J. Middleton, Jr.
 97,641.-SADIR $/$ N Holder.-Egmont Inger, New York city
97,642.-BRICk MoLDs.-Stephen Inman, Rockford 97,643.-F FASTE NING FOR CORSETS.-Ludwig Jarchow, New
 97,645.-Car Spring.-C. T. Jeffries, Philadelphia, Pa.
 97,647. -ARTIFICCILL LEG.-S. B. Jewett, Laconia, N. H.
97,648-SASH BALANCE.-Chas. Kanzler and Albert Nega, 97,6i9.. ${ }^{\text {Louis, Mo. STAy }}$ for Trungs.-Chas. Kellermann and P. W
 97,651.-OILING CARriage and Car Axles.-Wm. Kenwor thy and J. H. Po Plilitt, Buchanan. Pa.
$97,652 .-$ GAS B B B
97,653.-Shot Cartridge.-Chas. Wm. Lan aster London, 97, En5l-A. Attaching $\mathrm{K}_{\mathrm{N}} \mathrm{nobs}$ to Doors.-Chas. F. Langford 97, bi5j. - CENTRIFUGAL Pump. - N. H. Lebby, Charleston, 97, S56. C. Tool Holder for Grindstones.-Philip Leonard 97,6 Sharon, Pa. Mode of Preventing Corrosion in Pipes, Bolts
 97, Mas9.-Artificial Nipple. - H. D. Lockwood, Charles 97,660.-COOKING Stove.-Zephaniah Lockwood, Saratoga

 97,666.-Wagon STandard.-Jas. McCullough, Quincy, Ind 97, Antied CUTed Dec.4r For CARd-setting Machine.-D. McFar 97, 1 Rand. Worcester, Mass. M $_{\text {RAIN-PIPE }}$ MACHINE.-Peter McIntyre, Norwich 97.606.-Frotr Cañ-A. J. McMillen, Ravenswood, West Va 97,670.-PUMP.-C. L. Merrill, Watertown, N. Y.
97, 671.-Abradieston, Vt. 97,G7. - Pattern for Lating Ott Garments.-Wm. M 97, Mithael., Indana. Pa.
 97,675.-CLamp For Embossing Harness Loops.-O. H. Mor 97,676. Wer Haven, Won. A. Worse, Philadelphia, Pa.
97,677.-HAY TEDERR.-M. D. Myers (assignor, of one fourth 97, t (f). W. Gates), Frankfort, N. Y. H .

 97, 680-- Harrów Cuitivator.-Frederick Nishwitz, Brook

 97, Ne83ark. N. N.J. Antedated Dec.1,1869.
7,684- CENTRIFUGAL MACHINE FOR EXTRACTILiG HoNEY
 97,686.- PIINOFORTE A CTITIN.A. A. W. Perry, St. Joseph, Mo 97,687.-FEED CUTTER.-Hans Peterson, Red Wing, Minn.

 97,690-DRART REGULANCR FOR PLOWS,-M artin Prillaman 97,G91.-Machine For Swaging Thiesps on Screws. T, T. T. Prosser, chicago, III.
 97,694.-Privx Seat.-Frank Reed, Fitchburg, Mass. An
 Buffalo 77.697.-Land Roller.-Hermann Retzlaff, St. Louis, Mo. 97,698.-ATMOSPRERIC AND Condensing Hydraclic En
 97, colo-Machine for Making Bucinees.-Julius Robbins, 97, Auburn, K. K. . . . Ste Sharpener.-Z. C. Robbins and H. A. Rob-
 97,703.-Machine for Rolinef, Pressing, and Cuttini
 97, Hich. - Consignor SpRiNG AND ITS ATTACHMENTs.-Timothy 97, Roge, Cortland, and P.S. B. Buell, windsor, N. M. Rusing Bed Botcom.-Ira M. Russell, Lewiston, 97, 70%, apparatus for Laying Ou't Stair Rails.-a 97, Shoilars, Leavenworth, Kansas. Wm . Sharkey, Chico, Cal. 97,709.- PRocess For Manufacturing Cheese.-Mary
 97,711.- PLAAE FOR HOLDING THE Lids OF Triviss ix 97, PiAcE.-J. W. Shubert and Yorvat Douy has, Eev Haven, Conn. 97, 7ribe-KEx GUARD-P. G. Smith (assignor to himseli and

97,715.-HamMER.- S. B. Smith, New Haven, Coun.
97,761.-Boot AND SHoe CLEAXER.-W. H. Smith, Newport, $97,717 .-$ Ricut for Firearms.-C. E. Sneider, Baltimore, 97,718.-Manufacture of Tron axd Steel.-H. Spencer
 97, Mo. - Spring Bed Botron.-Jost Stengel, Croton, Mich. 97,721.-Pleating Machine. - Simon Sterns, New York
97,722.-Bedstead Fastening.-William Stevens,Tarentum, 97,723.-Tool Rest for Lathes.-J. G. Stowe, Providence R. I. I.-Har Loader.-W. H. Straub, Danville, Pa,
$97,725 .-W$ ASHING MACHINE.-T. H. Tatlow, Jr., 97,725.-Washing Machine.-T. H. Tatlow, Jr., Newark, 97, Mob.-Havgine Window Shades.-J. I. Tay, Oakland, 97,7at.-Means for Hanging Window shades.-J. I. Tay
 97,729-Grain Drill.-J. H. Thomas and P.P. Mast, epring 97,700.- Rajuway Car Brake.-J. b. Van Dyne, Náshrille

 97,733.-FAstening For Traveling Bag.-C. Walsh and Josiah Walsh, Newark, N.J., assignors to c. Walkh. Ward, New
$97,744 .-$ BREECH-LOADING 97,7a5.-PEE.-Addison G. Waterhouse, San Francisco, Cal.
 97, man (assignor to L. B. Kelly), Clicazo, ill.
97,737. BoILER FEED AND WATER HEATER.-H. Wigley, 97,738. Now Aloany Ind CREPER.-A. Wilke, Brunswick, Germany. 97,739.-Corn Pianter.-F. L. Wilkens, St. Mary's, Ohio. Anteded Dee. $4,1869$. . 18 .
970.-TIRE HEATE.-Isaiah M. Williams, Clinton county, 97, Ohio.-Mechanism for Driving Sewing Machines.-J.if.
 97,743--CIDER MILL--Levi Wilson, springield, Ohio.
97,744.-APPARATUS FOR TREATING DISEASES BY MECEANI
 97, 746 . -Plow. - Alex. Wright, Allegheny City, Pa. 97,747.-Game Trap.-E. M. Day, Elkhart. Ill.
97,748-Gas Machine.-T. G. Springer, Clinton, Iowa 97,749-MACHINE FOR MAKLNG CANDLE MOLDS.-Moses

REISSUES

 $\overline{\text { DESIGNS. }}$
3,779.-Clock Case Front.-F. Kroeber, New York city. 780.-Pendulum-Clock Case Front.-F. Kroeber, jew 3.781. Coity. Collar.-E. E. Mack, Albany, N. Y.

new publications.

[^0]
Hinproved Telemaph instrument.

The apparatus which we herewith illustrate is a combination of three distinct inventions, upon each of which a separate patent has been granted; viz., the magnet, the sounder, and the key. They, together, constitute one of the most beautiful and efficient instruments of its class we have had brought to our notice. We will notice the parts of the device in the order above specified.
The wire has, previous to this invention, been wound entirely around one spool, after which it was carried to the other, which was wound in like manner ; the current consequently passed through the entire coil on one spool before reaching the other.
In this new system of applying the wire, both spoois receive the current simultaneously ; the current passing alternately from one to the other. Greater power and quicker action are, therefore, secured by a battery of a power which, under the old system, would almost be insufficient to work the instrument.
These advantages are secured by winding both spools at once. The spools are placed with their heads together, and the wire being started at the outer end of one spool is wound in a single layer over that spool, crossed over the heads of both spools, which are placed together, then wound over the second spool, and back, crossed over the heads again and wound over the first spool and back, again crossed over the heads, and so on until both spools are filled. In this way many connections are made between the two coils, and the wire, instead of being wound continuously on each spool separately, is equally distributed between beth.
The spools thus wound are set up in the ordinary manner.
When the electric current is passed through the coils, it passes simultaneonsly around both spools, and both, therefore. act at once to attract the armature, instead of, as heretofore, one after the other. The action is thas rendered more sudden and powerful than in the method of winding, as heretofore practiced.
It is scarcely necessary to add that this method is equally applicable to all kinds of electro-magnets for whatever purpose they may be employed, and whether spools, cores, or legs are used.
The principal differences between the key, Fig. 1, and those in ordinary use are, first, the addition of a supplementary lever, A, pivoted to the principal lever, C, at B, the use of which is to make an indirect circuit while the instrument is not in use ; and, second, the insulation of the point of the adjnsting screw, H, which limits the motion of the principal lever, C. A hard-rubber knob, D, on the principal lever, C, is

separated by a coiled spring from a button of similar matarial on the supplementary lever, A. The latter has a foot, E, which rests against the standard, F , when the instrument is not in use, the points of contact being made of platinum. The current then passing through the standard, F, passes through E , and thence through C , and the spring attached to the standard, G, and so out through the wire. In use the knob, D, and the button on the supplementary lever, A, are pressed together, which breaks the indirect current, and the direct circuit, is then made and broken in the usual manner by bringing together a platinum point on the under side of the principal lever, and a similar point on the bottom of the slot in the standard, F, or vice versa, as the key is depressed
or elevated. or elevated
The insulation of the point of the adjusting screw, H, is necessary to prevent the current from passing through it from the standard, F , to the principal lever, C. The sides of the slot in the standard, F^{\prime}, are also insulated by plates of hard rubber, to prevent any danger of making the circuit by accidental contact of the lever, C, with them.
This device, therefore, it will be seen, closes the circuit automatically when not in use.
Fig. 2 represents a combination of an electro-magnet with coils formad as above described, with ar improved sounding column.
The armatare, I, being alternately attracted to the magnot,

J, and withdrawn by the action of the spring, K, through the may be necessary. If he could sell copies of the patents and sounding bar, L, strikes L upon the end of a steel bolt, not of the drawings at cheap rates to those who desire them, and shown in the L, strikes L upon the end of a steel bolt, not hown in the engraving, which passes down through the botlow hard-rubber cylinder, N. This hol'ow rubber cylinder is surmounted by a brass cap, and rests on a brass ring, which, in its turn rests on the rosewood stand of the instrument, the whole being firmly held by a nut screwed on the lower end of the central steel bolt. Around this nut are borea soundholes which communicate from the bottom of the rosewood stand with the interior of the hollow hard-rubber cyinder, N . This cylinder reinforces the sound made by the impact of the sounding bar, L , upon the central steel bolt above described, in a remarkable manner, making it very distinct and place copies in the State capitals and great commercial cen ters, more complete information of the action of the bureau than is now furnished by the report would be promptly disseminate 1 , and an annual expenditure of $\$ 200,000$ of the public money avoided.
My immediate predecessor, in each of his annual reports, urged the repeal of all laws which authorized an appeal from the decision of the Commissioner of Patents on applications for letters patent and in interference cases. The reasons he presented are, in my opinion, clear and unanswerable. It is, indeed, believed that it was the intention of Congress to abolish such an appeal by the act of 1861 . No mention is made of it in the provision for appeals, or in the new schedule of fees thereby established. It has, however, peen held that prior acts which authorized such an appeal are still in force, and that the right thereto still exists. If their purpose was to secure uniformity in the administration of the patent laws, it has signal ly failed. The appellants may select either of the four members of the Supreme Court of the District to hear and determine the case, and from his decision no appeal lies to the court in banc.
The Commissioner, in a paper addressed to me, represents that, as a natural consequence of the appeal and of the fee claimed for acting upon it, the judges have, without authority from Congress, assumed to extend their jurisdiction to his purely ministerial duties, and to interfere with the discharge of them. Decisions have been made on the proper date of letters patent, the allowance of amendments the issue of double patents to an inventor and his assignee, and on other questions of a like character. The practical working of this as serted supervisory control over the doings of the Commissioner has been, upon the whole, injurious. Consistency of decisions and of administration has not been attained. Controversies and litigation as to the extent of rela

DAVIS'

clear; the sound waves formed in the interior of the hardrubber cylinder, N, communicating freely with the external air, through the holes at the bottom of the stand above described. A screw, O, limits the motion of the sounding bar, L , and a winding pin, P , in a double-slotted post, serves to regulate the tension of the coiled spring, K.
The construction of this instrument involves some nice scientific principles, which cannot fail to attract the attention of electricians and practical telegraph operators.
The patents for the three parts of this instrument we have thus described were taken out through the Scientific American Patent Agency ; the one on the electro-magnet bearing date Nov. 9, 1869, and the patents on the key and sounding column July 6, 1869. The patentee is Mr. William Edward Davis, of 319 Newark avenue, Jersey City, N.J., where address him for further particulars.

REDUCE THE COST OF PATENTS.

We publish elsewhere an extract from the Report of the Secretary of the Interior, giving a brief resumé of the operaSecretary of the Interior, giving a brier rear
tions of the Patent Office for the past year.

The financial result appears to be gratifying. The applications have been very numerous, and the fees.in excess of expenditures some $\$ 218,920$. The Secretary proposes to use this surplus in printing copies of the drawings-a suggestion which is very good so far as it goes; but we should have experiencedadditional pleasure if the Secretary had urged upon Congress the importance of reducing the patent fee. The Patent Office is a self-sustaining institution, and can be kept so by a judicious administration of its affairs and upon a reduced scale of fees. We should say that $\$ 25$ were amply sufficient $-\$ 10$ payable in advance, and the balance, $\$ 15$, upon the - Illowance of the claims. We hope Commissioner Fisher, in his Annual Report, will take hold of this matter and urge a reduction of the costs of granting patents.

Patent office Affairs.

The report of the Secretary oif the Interior furnishes the following interesting facts concerning the Patent Office:
Application for Patents $. .19,360$ Applications for extension
Patenis issued.
Patents allowed, not issued.
Balance appropriation on hand Oct. 1, 1868 Appropriation since made.

Total.
Expenditures since Oct. 1, 1ヵ68.
Balance on hand.
Fees in excess of expenditures
Expenditures in excess of fees, 1863.
. 3,686

The office now pablishes a weekly list of claims, which is furnished to subscribers at $\$ 5$ per annum. It is believed that by the easuing year the receipts will cover the entire cost of the work. This list, published simultaneously with the issue of the patents, serves all the purposes of the annual report, which is not issued until two years later.
In order that the puotic and the examining, corps may have access to the drawings of the Offica, I recommend an appropriation for printing copies. The expense so occasioned can bs reimbursed, if the Commissioner be authorized to make sale of them, and apply so much oi the procceds thereof as
$\$ 117,249 \cdot 18$
8839,267•18 $\$ 472,462 \cdot 62$
$416,04: 53$ 416,804:53 213,926.02 564,420.00 During the celebrated Egyptian campaign of 1798, the differ ence of level between these two seas was calculated by the ence of level between these two seas was calculated by the
French engineers, and found to be 0.85 of a meter. The result obtained in making the survey for the construction of the Suez canal, in 1866, was 86 of a meter. The accuracy of the earlier survey is very strikingly confirmed by the close coin cidence of these results.

A Valdable Present.-What more useful present can be made to young mechanics than a year's subscription to the Sciontific American? Employers will te doing thei employés a great service by acting on this hint, and we fee sure that at the end of the year they will consider the invest ment a good one.

Snentitit gmorian,

MUNN \& COMPANY, Editors and Proprietors.

NO. 37 PARK ROW (PARK BUILDING), NEW YORK. o. D. MUNN, S. h. Wales, A.e. beach.
voL. XXI., No. $26 \ldots$ [New Series.]... Tweenty-fourth Year.
NEW YORK, SATURDAY, DECEMBER 25, 1869.

Contents:

TO OUR READERS

The day of publication falling one day earlier in the calendar each year, has gradually antedated the issue of our jour nal, causing thèreby a serious inconvenience to ourselves, and one that has been noticed by many of our readers. We prefer in this matier not to be so far in advance of the actual time, and in order to correct the discrepancy between the date of the paper and the day of actual issue, we seize the opportunity now offered at the beginning of the new volune to defer the issue of the first number one week. By this arrangement none of our subscribers will lose anything, as we have already published two complete volumes, of twenty-six numbers each, for 1869 , and before the 1 st of January the first number for the year 1870 will be published and mailed to all our subscribers. With the present number we send out a supplement of the Scientific American to all our readers, which contains a large and fine engraving of the Railway Bridge ever the Susquehanna river at Havre de Grace, also a calendar for 1870. This supplement has been printed at considerable expense, and is sent free to all our subscribers. We would regard it as a special ravor if they

would post it up conspicuously where it may be seen, as it con

tai ss our annual prospectus.

Subscriptions are coming in very rapidly, and present indi

cations encourage us to believe that our circulation will be

very much increased on the new volume.

ANNOUNCEMENTS FOR THE NEW VOLUME.

The premiums in cash offered by us are as follows: Whoever sends in the largest list of subscribers, according to published terms, on or before the tenth of February, will receive $\$ 300$ for the second list, $\$ 250$; third list, $\$ 200$; fourth list, $\$ 150$ fifth list, $\$ 100$; sixth list, $\$ 90$; seventh list, $\$ 80$; eighth list, $\$ 70$; ninth list, $\$ 60$; tenth list, $\$ 50$; eleventh list, $\$ 40$ twelfth list, $\$ 85$; thirteenth list, $\$ 30$; fourteenth list, $\$$ fifteenth list, ${ }^{\text {W. }} 20$.
Sureiy these prizes are worth striving for, as cither of the sums specified will be handy to have in the pocket. To those who do not compete for the cash prizes we offer the splendid large steel engraving, "Men of Progress-American Inventors," as follows: Any one sending 10 names and $\$ 30$ will receive one picture; 20 names and $\$ 50$, one picture ; 30 names and $\$ 75$, two pictures; 40 names and $\$ 100$, three pictures; 50 names and $\% 125$, four pictures. This picture is worthy of the subject, and will grace the drawing-room of any citizen of the land. We are aiming at a large subscription list and we frankly acknowledge that we can only ac complish it by the coöperation of our present patrons, who have always generously responded to our appeals. We urge them now to speak a good" word for the Scientific Anierican. By so doing they can induce some of their neighbors to join in making up a club. If ten or more names are sent, the subscription is $\$ 2.50$ a year.

steam plowing in america.

The time is coming when in many portions of the United States the steam plow will be permanently adopted. If, in a country of small farms like England, it can be made so useful as to render profitable lands, which, without it, can only be worked at a loss, how much wider is its scope on our broad plantations, wide prairies, and river bottoms which are devoted to grain production.
The period is ripe for the introduction of a Yankee steam plow. Some inventors in this field have had the mis fortune to live some years too early. But the inventive genius of the country is now fairly turned to the solution of the problem, and the steam plow of the time to come is now imperatively demanded.
In aiming at the production of a good steam plow, we think inventors have confined their efforts too closely to the imitation of the work of the common plow. Is it not quite possible that some other method of loosening the earth may be found to answer all the purposss of the furrow, without rend ering large tractive power necessary.
The early, and still favorite method with gardeners, is forking or spading up the ground, and there can be no doubt that in this way the soil is better prepared for the reception of seed than by the use of the plow.
No mowing machine inventor has ever succeeded in apply ing other than human strength to the working of swinging ingades or scythes, though many have sought to do so. It was not till the shearing principle as used in the common cutter bar was adopted that mowing machines found an abid ing place.
But it may be objected that in plowing green sward it is essential to not break the earth to pieces but to turn it over neatly, grass side down, so that the vitality of the grass roots may be destroyed and the turf may rot. We do not think the continuous furrow the only means whereby this may be accomplished, and we believe the plowing machine of the future will demonstrate the truth of our views.
A new locomotive plowing machine, capable of drawing a gang of plows through a stiff soil was recently tried at Rochester, it is said, with highly satisfactory results. The locomotive weighs scarcely more than two tuns, but its tractive power is gained by a series of out-thrusting flukes in the traction wheels, which penetrate the earth, and are with drawn by machinery inside as the wheels revolve. By this means the flukes only project from the wheels as they ap proach the earth on the under side of the wheel. There are
springs attached to the flukes to relieve them when they come into contact with stones or other impenetrable sub stances. The plows are attached to this traction engine by chsins, and at the trial, three plows, eact held in the usual manner by ain attendant, were drawn in this way through a stubborn soil.
So much for the Rochester machine.
From New Albany, Ind., we learn of a new steam plow the invention of a citizen of that place, and which is described at length in the Daily Ledger: "The framework, in fact the entire machine, is of pipes. 'The driving wheels are geared positively, and are driven by vertical cylinders, the pistons of which are attached by an irregular eccentric motion, direct from the engine. In addition to this motion eight toggle
joints joining levers, which simulate the motion of a horse's leg, assist the driving wheels when they fail in their trac tion."
The description given in the Daily Ledger is not so clear as to give a very distinct idea of this plow; but we gather that the plows proper are attached to beams, which are raised or lowered at will, and move along with the traction engine.
A California inventor has also recently taken out a patent for a steam plow, the general principle of which, like those are not aware that the English method of drawing gangs of plows across fields by a wire rope and drum finds mach favor with American mechanics; but if plows must be drawn through the earth after the old fashion, it seems a more economical plan than the use of traction engines for that purpose.

THE USES OF SNOW.

As we write, a few straggling snow.flakes flutter timidly below window and quicky to melt and will gradually fill our streets with the characteristic New York slush, to the utter weariness of overdone horses, and the almost total ex tinction of good temper on the part of drivers, who will wear that snow is a nuisance, and wish that it were in a place where it would not be long in melting.
Now it is to be admitted that so far as New York city is concerned, the benefits of a " good heavy fall of snow" are rather indirect than otherwise, yet we shall see that even the poorest, who shiver in cellars along dark and gloomy alleys,
are interested to have the snow fall, although they, in their are interested to have the snow fall, although they, in their ignorance, think it " poverty's curse."
Coal is dear this winter, and for the poor, hard to get, but The ousts more than coal, and food must be had at any cost. many a matreshift may be eked out and supp hunger can not be appeased by a subterfuge.
The snow which falls upon the earth is a tender mantle to infant food-plants which would otherwise perish of frost. In what is called an "open winter,", you may sse whoie fields of
young rye and wheat and clover, all pulled up by the frost and laid on the top of the ground to wither and die in the spring sunshine. The frost heaves up the earth, and with it the plants; slight thaws permit the earth to settle and rean
its hold, and so successive freezings and thawings gradualiy
uproot entire crops. "Winter killed," is the sad verdict of the farmer, as he contemplates the loss of his Jabor and seed in the spring; and "winter killed," might be appropriately spoken of the suffering and dying victims of starvation prices which follow the destruction of crops.
True, Nature sometimes in her zeal to protect, covers too deep and smothers the young plants; tucks in the coverlid so tight that the unseasonable warmth of the earth stimu lates their vitality into an attempt at growth, which fails for want of air and light. But such disastors are comparatively rare, and open winters are the most deadly to grain crops. It is also true that in the large territories devoted to grain grow-
ing in the United States, when a crop fails in one section it ing in the United States, when a crop fails in one section it succeeds in another, and so the food-supply keeps pretty steady pace with the demand, but it is none the less true that in many sections of the country winter wheat or rye could not be successfully grown without snow to protect these crops from trost.
But snow has another important office to perform. It is a fertilizer. Ask the experienced farmer, and he wiil tell you that the late snows of spring falling upon the springing crops makes them look green and vigorous, and really nourishes them. It is the bearer of ammonia, an important ele ment of the food of plants, which it collects from the air. We have known thrifty farners to rise early to plow win a light snow before it melted, being aware of its value, though perhaps not realizing in what its virtue consisted. It is also without doubt true that open winters are more favorable to the spread of dise:se than the contrary. It is an old proverb that " green Christmases fill church yards."
So we see that snow has other uses than to make sleigh ing, though we get so little of this in New York, and the snow so interferes with travel in our crowded thoroughfares that one may well be pardoned for wisling that in the annual distribution our metropolis might be over-looked.

What Remains for inventors.

A great deal has been done in mechanical invention and chemical discovery. In these respects the world has moved immensely since the beginning of the present century. It is the habit of some short-sighted people to predict that we have, as a race, arrived at the pinnacle of our greatness, so far as relates to the subjugation of the brute forces of nature We have, say they, now harnessed the forces of gravity, heat, electricity, light, and affinity, we have learned how far it is possible to make them work for man, and henceforth, what ever improvement is to be made, must be only in the form of the harness.
It is the habit of this class of men to not only regard the steam engine as capable of improvement only in trivial details, in variations in the form of cut-off, or other subordinate particulars, but to look upon electricity as a necessarily more expensive force to generate than heat, and as consequently, forever debarred from economic use as a generator of motive power for machinery. They consider the application of light as limited to the various kinds of photography now known, and which may hereafter be developed.
They discern no remote possibility in the enormous force of chemical affinity, although it is through one of the commonest manifestations of that force-combustion-that we get the heat for our engines, dwellings, dyehouses, furnaces, and forges.
Although the present era in science has given to the world [the great doctrine of the mutual convertibility of these forces, and the cognate and equally important doctrine of the conservation of force, the possibilities which a consid. eration of these doctrines open to the mind, do not seem to force themselves upon their understandings.

- To give a glimpse of some of these possibilities is the object of the present article
When we, divesting our minds of all preconceptions, exam ne our relations to the things which surround us, we find al these relations resolving themselves into motion. It is primari ly through motion that we get any knowledge of anything, and practically it is motion which feeds,clothes, and warms us.
Growth is motion. The changes which take place in the subGrowth is motion. The changes which take place in the sub stances which we take as food, is a movement of their mole cules and their rearrangement in the tissues of our bodies, where they rest not day nor night until firally eliminated and thrown out as effete matter. Nor even then do they rest. There is no rest in nature. Motion is life : nay, more ; it and matter together constitute the whole category of physial existence.
It follows that whatever foree can contribute to the physi al and mental welfare or the pleasures of mankind-and it is in this only that invention finds a profitablefield-must be capable of being converted into mass motion; for the human control of molecular motion depends upon mass motion.
To illustrate this let us consider the growth and prepara tion of any article of food, as wheat. It is by the mass mo tion of the plow and the harrow the ground is prepared to receive the seed ; in this way the molecular motions concerned in its growth are aided, and the full ear and plump berry obtained. It is by mass motion that it is harvested, thrashed, ground, and kneaded, preparatory to the molecular changes which take place in its conversion into bread. It is by mass motion that it is masticated and mixed with the saliva in the mouth, to facilitate the molecular change it must undergo in he process of digestion.
As in this, so in all chemical processes, mass motion is em ployed to control the molecular motion, and this mass motion is, to a very great extent, in the present age of the world, communicated through the agency of machinery. But we also find that the mass motion of machines is obtained by the aggregation of molecular metions, so that in a ceaseless cycle these forms of motion flow one into the other

The chief field for inventors must, then, continue to be in Of all absurd terms, this "practical" is most misunderstood. the future as it has been in the past, in the employment of What does it mean? Clearly, it means pertaining to pracmachines as intermediate. links between molecular motion and other molecular or mass motion, which it is desired to make minister to the wants of mankind.
If we now accept the modern view that light, electricity, and gravity are, as well as heat, but modes of molecular motion, who shall dare to say that machinery may not be made the connecting link between them and other modes of molecular motion, in the future, as successfully as it is now between heat and work
It sounds odd to speak of a light engine, or a gravity engine, although we are familiar enough with caloric engines, steam engines, and electric engines; and a water wheel is but a gravity engine, although we know that previous to the action of gravity it was, so to speak, "wound up" by the action of heat upon the water of the sea
There is yet an almost unlimited field for lesser lights in the invention of improvements on present forms and devices, but the geniuses of the future have more glorious work before them. When the vast coal-fields upon which the world at present relies shall have been consumed, there will be just as much carbon as before, only it will exist in another form. The mass motion which it will have produced in assuming that form, will in its turn have been converted into molecular motions of some kind, which will be capable of re-conversion without loss into mass motion again, and the
Wshop will keep running-no fear about it
Where, then, shall inventioa stop? When man ceases to want anything to minister to body or mind, then will invention cease. What is there left to do? So much, which is possible,
plished.

THE CONSTRUCTIVE FACULTY OF THE MIND

Perhaps no one of the powers of the human mind is more widely and uniformly distributed among mankind than the power to control and guide the muscles in the shaping of crude materials into objects of utility and beauty.
Phrenologists have classed constructiveness as a distinct faculty, and have given its supposed external indication a location upon the skull. It is evident, however, that it is not the simple control of muscle by the will that phrenolo gists mean by the term constructis faculty their books contain principally heads of such men as have distinguished themprincipally heads of such men as have distinguished them-
selves by great feats of mechanical skill and genius in inselves
vention.

Now we maintain that if what is meant by constructive ness in phrenology be anything more than mere power to guide the muscles in making imitations of existing things (and of course more is meant), it can no more be justly con sidered a single faculty of the mind than the power to be come scientific in the most general sense of the latter term, To be scientific a man must have not one but many "bumps" well developed. To become a skilled constructor in anything but the imitative sense of the term, he must have not merely pists, but the rest of his skull must contain some brains, a well. Take away his causality, his calculation, his ideality his sense of color, form, and weight, and he will never make even a horseshoe, not to mention a steam engine. And though he may possess all the faculties which go to make ekilled cons
knowledge.

To construct, one must have mental as well as physical materials. To become skilled in the working of any material and fashioning it into that which better fits it for the use of man, it is necessary to know in some measure the properties
of that material, and the means by which it may be so of that material, and the means by which it may be so
fashioned.
Savages perform marvels of imitative skill, when the rude character of their implements are considered, but they invent little. Much invention and a savage state are incompatibles not be hard to show that the progress of civilization has gone hand in hand with invention.
We see then that mechanical skill may be reduced to three subjective elements; namely, good natural powers of min and body, cultivation of those powers, and knowledge.
Brutes have not the first of these elements, they can there fore not have the others, and hence it is absurd to speak of their being skillful in their works. The beaver's dam, the honey comb of the bee, and the tailor-bird's nest, are ofteu
spoken of as works of skill, but they are only so by comparispoken of as works of skill, but they are only so by comparison with the feeble mental and physical faculties of the bea ver, the bird, and the bee. To form wax into much more feat if done by a boy six years old. To build a dam as subsubstantial as it is done by the beaver, or to stitch leaves to getker like the tailor-bird, is far within the power of the lowest and most ignorant savages on the face of the earth Savages do even more remarkable things than these, but they are not feats of constructive skill in a broad sense of the erm ; a watch or a steam engine is, because all the requisite above enumerated are necessary to its construction. True,
an ignorant man may imitate, but he could not devise, or improve it. An educated man might invent improvements but lack the power to construct his improvement, but neithe of these could be called skillf ul.
How absurd, then to consider constructive skill as a peculiar aculty of the mind, like the phrenologist, or mere deftness f the hand like the workman, who will none of books leeause he esteems most the judgment of practical men, and
tice, and practice signifies the practice of something, the ap-
plication of knowledge or theory. Hence, theory precedes practice. A theoretical man may not be practical, but a practical man must be theoretical in spite of himself, and just as he is deficient in theory, in just so much he must be deficient in practice. There is a lesson to be drawn from this, but it must form the subject of a future article.

MIEN OF PROGRESS---GREAT INVENTORS.

We continue this week our biographical sketches of the lives of the great inventors whose portraits are offered (see another column) as one of our subscription prizes.
At the extreme left of the picture stands the dignified Dr. william thomas green morton,
who was born in Charlton, Mass., August 19, 1819. His youth was passed on a farm. At the age of seventeen he spent some time in a publishing house in Boston. In 1840 eighteen months after established himself as a dentist in Boston. Among other improvements introduced by him was a new kind of solder by which false teeth are fastened to gold plates, preventing galvanic action. In order to render his work complete, it was desirable that the roots of old teeth should be removed. This was a tedious and painful operation, and there seemed little prospect of the success of the invention, unless he could devise means to lessen the pain. He tried by stimulants, intoxication, and magnetism, but in vain ; yet still he clung to the idea that there must be something to produce the desired effect. He entered his name as a medical student in Boston in 1844. About this time the idea was suggested to him, in a lecture at the college, that sulphuric ether might be used to alleviate pain in his operations. He studied chemistry, and experimented on animals. Learning from books and lectures that the ether could be inhaled in small quantities, but that in large amount it was dangerous, he experimented on himself, and, satisfied of its
safety, he administered it to a man, on September 30, 1846, producing unconsciousness, during which a firmly-rooted bi cuspid tooth was painlessly extracted. At the request of Dr Warren he administered the ether to a man at the Massachusetts General Hospital, from whose jaw was removed a vascular tumor, October 16, 1846, with perfect success. Dr. Morton obtained a patent under the name of letheon, November, 1846, in the United States, and the following month in England. The Paris academicians awarded 5,000 francs to be equally divided between Drs. Jackson and Mor ton; the latter declined receiving this joint award, but in 1852 received the large gold meda., the Monthyon prize. From this time Dr. Morton labored incessantly for years to induce surgeons to adopt the ether, and, when its anæstrietic qualities were demonstrated, chloroform in their practice. His efforts secured him small profits, but brought upon him bitter persecution. His claim to the discovery of anæsthesia
was disputed, and even the value of his efforts in behalf of was disputed, and even the value of his efforts in behalf of
its introduction was denied. In 1867, after witnessing a very successful, though severe surgical operation, in which Dr Morton administered with his own hands the anæsthetic, we istened to an able and eloquent statement of his claims to the discovery of anæsthesia, as applied to surgery, which had the effect to establish in our mind the entire justice of that claim, and which, whether allowed by posterity or not, in ou opinion entitles him to head the list of the world's benefac by those who know how much suffering is saved by its now eneral application, and this value cannot be expressed in language, or estimated in dollars and cents. After many fruitless applications to Gongress for some pecuniary recog-
nition of his services to the world, some of them made at a nition of his services to the world, some of them made at a
time when the agony of thousands of wounded and maimed soldiers on the battle field, was being mitigated by his dis covery, to the eternal shame of an ungrateful country be it aid, he died July 15th, 1868, a poor man.
Immediately in front of Dr. Morton, stands
COL. SAMUEL COLT,
who was born at Hartford, Conn., July 19, 1814, and educated in his own native city. When a child, he preferred the workroom to the school-room. He remained in his father's factory from the age of ten to fourteen, when he was sent to school t Amherst, Mass., but ran away from the school, and, in July, 1829, shipped as a boy before the mast on as East India voyage. On his return, he served a short apprenticeship in
a factory at Ware, Mass., in the dyeing and bleaching department, where he learned something ; after which, under the assumed name of Dr. Coult, he traversed every State and most of the towns in the Union and British North America,
lecturing on chemistry. In this way he earned considerable lecturing on chemistry. In this way he earned considerable
money, which he devoted to the prosecution of the invention of his revolver, the germ of which he had already devised while on his voyage to Calcutta. The first model of his pistol, made in wood, in 1829, while a sailor boy, is still in existence. At the age of twenty-one, he took out his first patent for revolving firearms. Before obtaining his patent there. He returned to the United States and succeeded in inducing some New York capitalists to take an interest in the 1835, with, and a company was formed in Paterson, N.J., in 1835, with a capital of $\$ 300,000$, under the name of the Paten Arms Company. The revolvers were first introduced into use in the Florida War of 1837. In 1842 the Patent Arm
Company were forced to suspead. The Mexican War com mencing in 1847, General Taylor sent Captain Walker of the Texan Rangers to procure a supply ; there were no arms to be
hed, not even could heobtain one to serve as a moddel; so that
he was compelled to make a new model, which he did with several improvements. The first thousand were made at Whitneyville, Conn. Other orders immediately following, Mr. Colt procured more commodious workshops at Hartford, and commenced business on his own account. The demand for revolvers greatly increasing, and more room and greater facilities being required, he purchased a tract of meadow land south of Mill River, within the limits of the city of Hartford, surrounded it with a dyke or embankment about two miles in length, one hundred and fifty feet at the base, from thirty to sixty at the top, and from ten to twenty five feet in hight. He erected within this his armory, consisting of two main buildings, with others for offices, warerooms, etc., in which armory he could manufacture one thousand firearms per day. He aiso manufactured the machinery for making these firearms elsewhere, and supplied a large portion of the machinery for the armory of the British Government at Enfield, England, and the whole of that for the Russian Government at Tula. The entire expenditure upon his grounds and buildings amounted to more than $\$ 1,000,000$. He did not forget the comfort of his workmen, having good dwellings provided for them, besides a public hall, a library, courses of lectures, concerts, etc. Mr. Colt subsequently invented a submarine battery of great power, and was one oi the first to lay a submarine cable. He amassed an immense fortune in his manufacture of arms; and died in 1861.
By his side stands
CYRUS hall m'cormick,
of Scotch descent, though born in this country, in the State of Virginia. The constant employment of his active mind in pursuit of mechanical improvements, has resulted in one of the most important inventions of agricultural machinery. His automatic mowing and reaping machine, was exhibited in the World's Fair, held in Hyde Park, London, in 1851, and like many other pioneers in the van-guard of progress, was greeted with ridicule. The Times called it " a cross between an Astley chariot and a flying machine." Its first trial, however, at Tiptree farm, changed the current of public opinion and even the Times recanted. A still more satisfactory ac knowledgment of its merits was the award to it of the Grand Prize medal of the year by the jury of the Exhibition. In the New York Exhibition of 1853, it also won a gold medal Mr. M'Cormick, not content with this great success, continued his investigations and experiments, until he achieved another important improvement in this same machine, the automatic " raker." This machine, called by its inventor the " M'Cor mick," attracted a great deal of attention at the last Great Exhibition in London, in 1861 ; even crowned heads and the highest nobility considered it worthy of their examination At every trial in all parts of Great Britain and the Continent it elicited applause by its admirable performance of the operations for which it was constructed. At the Lancashir Agricultural Meeting, at Preston, it triumphed over nine competitors. Mr. M'Cormick has a large factory in Chicago,
Illinois, where, as an inseparable result of such indomitable perseverance and inventive genius, his success is firmly estab ished.
In front of Mr. M'Cormick sits, with vulcanite cane in hand, and large vulcanite pin on his shirt-front,
who was born in New Haven, Conn., Decmber 29, 1800. He there attended public school. When not studying he assisted his father Amasa Goodyear, who was the pioneer in the man ufacture of hardware. He subsequently joined his father in the hardware business in Philadelphia, and made many im provements in agricultural tools. The firm being over whelmed by the commercial disaster of 1830 , Goodyear se lected a new business, the improvement in india-rubber. His arly experiments were made in New Haven, Conn., Roxbury Lynn, Boston, and Woburn, Mass., and the city of New York The first important improvement made by him was at New York, 1836, being a methou of treating the surface of nativ india-rubber by dipping it into a preparation of nitric acid This discovery enabled the manufacturer to expose an india rubber surface in his goods, which, on account of adhesive ness, was before impracticable. The nitric acid gas process as it was called, was introduced into public use and met with reat favor, especially in the manufacture of shoes. Sulphu had been noticed as producing remarkable drying effects on rubber, and in 1838 and ' 39 Goodyear made at Woburn, Mass, many experiments with compounds of india-rubber and sul phur. In the course of these experiments, about. January 839, he observed that a piece of rubber mixed with ingre dients, among which was sulphur, upon being accidentall rought in contact with a red-hot stove, was not melted, but that in certain portions it was charred, and in other portion it remained elastic though deprived of adhesiveness. From 1839 to the day of his death vulcanization occupied Mr. Good year's whole attention. More than sixty patents were taken out by him. The first publication to the world of the proces of vulcanization was Gondyear's patent for France, dated April 16th, 1844. He was unfortupate both in France and in England, in being robbed of both patents at the Paris Exhi bition of 1855 . He obtained the grand gold medal and the ribbon of the Legion of Honor, presented by Napoleon III His whole time night and day appeared to be taken up with mprovements in india-rubber. For years he suffered from poor health. He died in the city of Washington 1861.

ELIPHALET NOTT, D.D., LL.D
is represented as seated by the right of Professor Morse in the middle foreground. Although for more than half a century President of Union College, he was to a great exten self-educated, having never received a collegiate training. He was born in Ashford, Connecticut, June 25, 1773. He studied divinity in his native county, and at the age of twen-ty-one was sent out as a domestic missionary to the central
part of the State of New York. On passing through the old settlement of Cherry Valley, he was requested to take charge of the Presbyterian Church at that place; he accepted the call, and in addition to his pastoral duties became the teacher in the Academy. Two or three years afterward he was called to the Presbyterian Church, at Albany, where he took a prominent position as a preacher. In 1804 he was chosen President of Union College, Schenectady, N. Y., which place he continued to fill for 58 years. More than 3,500 students were graduated during his presidency, and in their number may be found some of the most eminent men in the country. Union College was emphatically of his own formation. He came to it in its poverty and infancy, and raised it to wealth and reputation In 1854 the semi-centennial anniversary of his presidency was celebrated, when between 600 and 700 of the men who had been graduated under him came together to do him honor. Dr. Nott was an earnest advocate of the temperance cause, and published "Lectures on Temperance" in 1847. Though he has written much, his other publications are con confined principally to occasional addresses and "Counsels to
Young men." He gave a great deal of at'ention to the laws Young men." He gave a great deal of at'ention to the laws of heat, and besides obtaining thirty patents for applications of heat to steam engines, the economical use of fuel, etc., was the inventor of a stove bearing his name, which has been very extensively used. He died in Schenectady, January 29, 1866 Immediately behind Dr. Nott stands

CAPT. JOHN ERICSSON,
whose great genius as an inventor and engineer are universally acknowledged. He was born in the province of Wermeearliest impressions were derived from the engines and ma chinery of the mines. In 1814 he attracted the attention of chinery of the mines. In 1814 he attracted the attention of
the celebrated Count Platen, and in 1820 he entered the the celebrated Count Platen, and in 1820 he entered the
Swedish army as an ensign, and was soon promoted to a Swedish army as an ensign, and was soon promoted to a
lieutenancy. His regiment being stationed in the highlands, where government surveying was in progress, Ericsson surveyed upwards of fifty miles of territory, detailed maps of which, executed by his own hands, are yet in the archives of Sweden. He visited England iv 1826, with a view of intro ducing his invention of a flame engine; not succeeding, he abandoned the idea, and numerous other inventions followed. He joined the house of Braithwaite, London, where he introduced several improvements in steam boilers. In the fall of
1829 his invention was applied to railway locomotion on the Liverpool and Manchester Railway. The directors had offered a prize for the best locomotive engine, and within seven weeks of the time of trial Ericsson heard of the offor, planned an engine, executed the working drawings, and completed the machine. The lightest and fastest engine started on this occasion was the "Novelty," which, guided by its inventor, Erissson, started off at the rate of fitty miles an hour. A
similar engine, of great power, he subsequently constructed, similar engine, of great power, he subsequently constructed,
for the King of Prussia. For this invention he received the for the King of Prussia. For this invention he received the
prize medal of the Mechanics' Institute, in New York. In 1833 he reduced to practice his long cherished project of a caloric engino, and submitted the result to the scientific world in London. Ericsson's attentioa was next directed to navigation ; the result revolutionized the navies of the world. He was employed through Capt. R. F. Stockton, of the U. S. Navy, in the construction of the U. S. ship of war, Princeton, the first steamship ever built with the propeling machinery below the water line. In the United States division of the great exhibition in London, 1851, Ericsson gained the prize
medal for a large number of important inventions there exhibited. In 1852, he was made Knight of the order of Vasa, by King Oscar, of Sweden. The same year brought out his caloric engine in the ship Ericsson. It propelled a ship of 2,000 tuns from New York to Λ lexandria, in the winter of 1853 It was visited there by the President and heads of the depart ments. His caloric engine has been perfected, and a large number are in successful operation. His greatest triumph was the invention and construction of the Monitor. He is still designing and improving naval batteries, and at the sams time conducting extensiva ressarches on the subject of solar heat, with a view to its application as a motive power, and also in other scientific fields. Probably no man in Λ mer Ericsson. He economizes every moment. We are informed, that he has for thirty successive days, worked eighteen hours each day. He rarely leaves his house unless obliged to do so, and allows himself no leisure for social rccreation. The speed with which he masters details and throws off designs, is said to be probably unparalleled. His manners are simple and dignified, but, without any assumption, he impresses every one with whom he comes in contact, by his broad views and
rich stores of learning. His inventions are numerous 'and various, but they all bear the true stamp of genius.

FREDERICK E. SICKLLES,
seated a little to the left of Dr. Nott, was born in the State of New Jersey in the year 1319. While an apprentice at the "Allaire Works," New York, he invented a "Cut Off", which its great value in the saving of expense for fuel in the working of steam engines, but also from the litigation that existed during the lifetime of the patent. Although in controversy during the entire fourteen years, for which term the patent was granted, Mr. Sickels could obtain from the courts but partial protection to his rights, and it was not until after the patent had expired, and its extension had been refused by the
Patent Office, that he obtained a decision from the highest court that he wass the inventor of the improvement known as the "Sickels' Cut Off." Mr. Sickels has taken out twelve patents for as many distinct improvements in steam engines, all which have gone into extensive use. His latest invention for steering vessels by steam power has been successfully applidd to governnment and metrchant steamers, and was favor.
ably received in England at the great exhibition in London, 1862, where it received the Great Medal.
The most prominent figure in the group occupying the iddle foreground of the picture is that of
samuel finley morse,
who was born in Charlestown, Mass, April 27, 1791. He graduated at Yale College in 1810, and went to England with Washington Allston in 1811, to study painting under his tuiion and that of Benjamin West. In 1813 he received the gold medal of the Adelphi Society of Arts, at the hands of the Duke of Norfolk, for an original model of a "Dying Hercules," his first attempt at sculpture. He returned to the United States in 1815, and in 1824-25 with some other artists of New York, organized a drawing association, which, atter wo years' struggle agai sst various obstacles, resulted in the sta blishment, in 1826, of the present "National Academy of Design." Mr. Morse was chosen its first President, and was ontinued in that office for sixteen years. In 1829 he visited Europe the second time to complete his studies in art. residing for more than three years in the principal cities of the conti-
nent. During his absence abroad he had been elected to the professorship of the literature of the arts of design in the University of New York, and in 1835 he delivered a course of lectures before that Institution on the affinity of those arts.
While at Yale College, Mr. Morse had paid special attention While at Yale College, Mr. Morse had paid special attention to chemistry and natural history to such a degree, that, from
being subordinate as recreations, they had become a dominant pursuit with him. The electro-magnet on Sturgeon's principle (the first ever shown in the United States) was exhibited and explained in Dana's lectures, and at a later date y gift of Professor Toney, came into Morse's possession, and out both hemispheres. It was on board ship bound for Havre in 1832, and in a casual conversation with some of the passenin 1832 , and in a casual conversation with some of the passen-
gers concerning recent discoveries in France, regarding the means of obtaining the electric spark from the magnet, that Morse's mind conceived not merely the idea of an electric
telegraph, but of an electro-magnetic recording telegraph, as it now exists. The testimony to the paternity of the idea in Morse's mind, and to his acts and drawings on board the ship is ample ; so that the court and judges before whom he
appeared were satisfied with his claim; the date of 1832 is appeared ware satisfied with his claim ; the date of 1832 is
herefore fixed by this evidence as the date of Morse's concep tion of the telegraph system which now bears his name. In the latter part of this same year he reached home, prosecuted his studies, and prepared portions of his apparatus. The first nstrument was shown in successful operation to many per ons in 1835 and 1836, for the purpose of communicating from nd to a distant point. In 1837 he completed and exhibited is whole plan at the University of New York. Application was made to Congress in 18it withoutsuccess. But in March
of 1843 he was startled with the news that Congress, near of 18 ± 3 he was startlee with the news that Congress, near
the midnight hour of the last session, approved his plans and lad placed at his dispossal the sim of $\$ 30,000$, to make the experiment between Washington and Baltimore; all
know the result. Submarine telegraphy originated also with know the result. Submarine telegraphy originated also with
Prof essor Mors.. He laid the first submarine telegraph lines in New York harbor in 1842, and received a gold medal for that achievement. One of the most prominent figures on the right of the picture is that of
henry burden,
an inventor and mechanic, who was born at Dunblane. Scot land, April 20,1791 . His father was a farmer, and it was while a youth engaged on the farm that the son gave evi dence of inventive genius, by making with his own hands abor-saving machinery from the roughest materials, and with but few tools and no models. The first marked success was constructing a thrashing machine. He atterwards engaged in erecting grist-mills aud making various farm implements.
During this period he attended the school of William Hawley, an accomplished arithmetician ; and afterwards, having resolved to try his fortunes in America as a machinist and inventor, he went to Elinburgh and entered upon a course of studies, embracing mathematics, engineering and drawing. Arriving in this country in 1819, he devoted himself to the mprovement of agricultural implements. His first effort was in making an improved plough, which took the first pre mium at three county fairs. In 1820 Le invented the firs his machine for making the wrought spike, and in 1835 for a machine for making horseshoes. 1840 he patented a machine for making the hook-headed spike, an article which is used on every railroad in the United States. In the same year he patented a self-acting machine for reducing iron into blooms
after puddling. In 1843 he patented an improvement in his horseshoe machinery. In 1849, he patented a self-acting machine for rolling iron into bars. In June, 1857, he patented a new machine for making horseshoes. This may be considered his greatest triumph in mechanics; it is solf-acting and obtained patents for this machine from every prominent cove ernment in Europe. Mr. Burden's suspension waterwheel is another of his inventions. In 1833, he built a steamboat 300 feet long, with paddle-wheels 30 feet in diameter; from its shape it was called the "segar boat." It was lost through the mismanagement of the pilot. In $1836, \mathrm{Mr}$. Burdon warmy advocated the construction of a line of ocean steamers, of 18,000 tuns burden. In 1845, when the steamer Great Brit ain was crippled by breaking one of her screw blades, Mr.
Burden went to England for the especial purpose of inducing Burden went to England for the especial purpose of inducing
her owners to adopt the sidewheel,but was unsuccessful. He her owners to adopt the sidewheel, but was unsuccessful. He
is now a resident of Troy, N. Y., and is highly esteemed as a citizen.
The remaining portraits are those of Richard March Hoe, trastus B. Bigelow, and Elias Howe, biographical sketches of. whom will be given in a tuture number.

miCROGRAPHS

The microscopist often desires to secure in permanent form, the beautiful and curious objects which are revealed to his eye. Recourse is frequently had to the pencil and the prism, success being in direct proportion to the skill. Photography affords the best means, and by its employment we obtain exact copies of the magnified objects. Such pictures are called micrographs, and are produced by combining a microscope with a photographic camera. These combinations are generally expensive; but their operation is simple, and they are easily managed.
Mr. Louis Ed ward Levy, of Milwaukee, Wis., sends us some micrographs of his own production, which are creditable to im as an amateur, especially when we consider the simplicity and cheapness of the apparatus by which they were produced. Over the eye-glass tube of an ordinary achromatic microscope he places a sleeve or ferule, to which is attached a small box aving itsrear part open so as to receive the plate-holder which fits nicely into the box. The interiors of box and plate-holde are painted black. In focusing, a frame with ground glass takes the place of the plate-holder. With a microscope and camera, thus made, all objects visible by means of the micro sope may be readily photographed. Mr. Levy states that his box was made of tin, and the whole expense was only $\$ 3$

Report on Steam Boilers Exhibited at the Hecent

 Fair of tho American Institute.The Harrison Safety Boiler-First Medal and Diploma.-1st. Safety. 2d. Economy of space. 3d. Econoliable .-Camble of driving the engines at the Exhibition, and which did furnish all the steam for the competition tests of the engines.
Root's Wrought-Iron Sectional Boiler-Second premium and diploma for facility of repairs and economy of space.
If any of our readers have been kept awake by the probem we gave them last week in regard to this report, they may now rest easy-tho report is made.
How about the evaporation power of these boilers? How about the quality of steam produced? How about the boilers exhibited, not mentioned in the report? We recom mend any who wishes to see how much can be said with out saying anything, to put the report on engines and this on boilers side by side, and study them together.

The Gold Hill Fire still Burning.
The terrible and fatal fire which broke out in the Gold Hill (California) mines on the 7th of April last, and which resulted in the destruction of a large number of lives, is still smouldering. After it had been reduced to close quarters, it was carefully walled in, and work was again started in different directions around it. It was thought to haver been extinguished long ago; but sucb, it appears, is not the case, for few days since some miners work'ng between the 600 and 00 -foot levels of the Kentuck mine suddenly picked through into a space where there was flenty of fire, finding large brands of it. The place was at onca closed up again. Being as far as possible shut in and kept from the encouragement of a tmospheric air, the fire merely smoulders, but it is there, nevertheless, and may keep on burning for many months to come. It can do no particular harm, however, as it is merely burning out the old timbering where the mine has been worked out.

Obituary---Death of Mir. John Degnon

We ragret to announce the death of Mr. John Degnon, whom our readers will recollect as the engineer who took the locomotive Best Friend to Charleston in 1836, and set it running, and therefore claimed to be the first man who ever ran a locomotive in the United States. When we saw him last he appeared in good health, but he died of paralysis, at Boston, on the third of December, aged 59 years. He was a skillful mechanic. He learned his trade at West Point Foun dery, and has been successively engineer on the steamships Arctic and $R \in d$ d'Italia.
Remittances should be made in money orders, bank checks, or drafts, if possible. When neithez of these can be procured, send the money in a registered letter. The present registration system is virtually an absolute protection against losses by mail, and all postmasters are obliged to register letters whenever requested to do so.
Agents who receive their weekly supply of the Scientific American through news companies, are urged to canvass their localities. By a little effort among intelligent mechanics and manufacturers, they can add largely to their lists. We will send spocimen numbers, when desired, for that purpose.
Subscribers who wish to have their volumes bound, can send them to this office. The charge for binding is $\$ 1.50$ per volume. The amount should be remitted in advance, and the volumes will be sent as soon as they are bound.

City subscribers will continue to be served, either at their esidences or places of business, at $\$ 3.50$ a year. Send in rour names and the carrier will serve you faithfully.
OUR rule of prepayment of all subscriptions is so rigidly enforced that whoever receives the paper regularly may consider it paid for. No names are entered on the subscription books without atvanco payment.

Powerful Turbines. A correspondent of the American Odd-Fellow, which, by the way, is a very well conducted and popular magazine, thus describes the turbines used in the Mastodon Mill, in the vil. lage of Cohoes, New York.
"The entire number of looms in this mill is fourteen hun. dred and eighty-six ; five hundred of which are located on the first floor." These looms and the other machinery of the mill are driven by three "immense turbine water wheels, made by the Ames Manufacturing Company, which operate the main shaft, and possess an aggregate driving capacity of over eleven hundred horse power. This pit having an extreme depth of forty feet, with a fioor twenty-five feet from the surface, which hides the water wheels from a top-view, is in reality an underground two-story building. Three mammoth cast-iron cylinders, eight feet each in diameter, convey the water from the canal on the west side of the building to the wheels; the volume of water being regulated by a sort of tiller located in the pit, and connected with the flood-gates. The perpendicular shaft of each turbine is connected with the main shaft by beveled gear, and the united power exerted; if so applied, would reverse the motion of the great Burden water wheel at Troy, and drive the machinery of a goodsized manufactory besides. The shaft to which this wondrous power is applied is supported by three granite abutments, and forms the axis of six ponderous driving pulleys, twelve feet each in diameter. The immense belts which radiate to all parts of the building are in keeping with the massive pulleys and gearing. These are each two fect wide, and the longest one, reaching to the fifth story, measures nearly two hundred feet. At the north end of the pit, two rotary force pumps are located, which, in case of fire, can be instantly geared to the main shaft by means of a sliding cog wheel, and are jointly capable of throwing six thousand gallons of water per hour."

A Ralloon View of a Hondon For

A London paper says:-"On Wednesday afternoon, when London and the suburbs were enveloped in a dense fog, Mr. Coxwell made a balloon ascent from the Hornsey Gas Works. The ascent took place at 2: 40, when the atmosphere was clear. Soon after three o'clock the fog extended exactly in the direction the balloon was traveling, and presented a strongly defined line of vapor stretching for miles in an easterly direc tion. The formation of this fog, as witnessed by Mr. Coxwell from his balloon car, was, we hear, one of the most interesting occurrences in the adventurous life of the experienced aeronaut, and will no doubt be fully described. Over the Forest, near Woodford, Mr. Coxwell and his companion were unable to see the earth at a hight of only fifty feet, and it was only by the aid of a rope trailing on the ground, that a level course could be regulated so as to select an open spot on which to alight. While holding conversation with some men who were following the balloon, and could only hear the rustling of a rope among the bushes and trees, the aeronauts were supposed to be poachers. Keepers, who were in close pursuit, rushed upon the strangers when Mr. Coxwell cast his grapnel in a hedge, and great was their surprise when they discovered what kind of a net and cordage it was trailing over the park. So dense was the fog, that the balloon ing over the park. So dense was the fog, that the balloon
could not be seen, and the voyagers were supposed to be running along the ground, although Mr. Coxwell proclaimed his balloon, but this was thought to be a ruse to draw off the keeper's attention. Notwithstanding the difficult position, Mr. Coxwell was placed in as to landing, still a safe descent was made."

A PEANUT picker was among the new labor-saving machines exhibited at the Virginia State Fair Hitherto the nuts have been picked off the vines by hand; four bushels a day being the fair average for a hand. A farmer who raised 1,000 bushcls required ten hands for nearly two months to save
his crop, at a cost of fifteen cents per bushel. The crop his crop, at a cost of fifteen cents per bushel. The crop
raised on the south side of James river, between Petersburg and Norfolk, is estimated at $1,000,000$ bushels a year. To save this crop would require the labor of 6,000 hands for two months, at a cost of $\$ 200,000$. The new machine is said to save much time and labor

A Razor Indeed !-Mr. J. W. Churchill, of Willkesbarre, Pa., thinks people hone and strop razors too much. He has used one for two years without either honing or stropping it, and it still cuts his beard well, though latterly it begins to pull-a little. He means to use the razor until compelled to sharpen it, but he can still cut a hair held in his fingers with it. Mr. Churchill thinks his razor hard to beat, and we hink his beard must be still harder to beat if it has with constant use not dulled a razor in two years. The very thought of it makes our fiace smart.

Ciothes Wringers.-These indispensable household arti cles are becoming more generally introduced than almost any other labor-saving machinery. It is but a few years ince the first patent was uaken out on a clothes wringer and now there are but few families that do not use them. A good article in the clothes-wringer line is advertised on anothe page.
Water Wheel Experiments.-We have the promise of report of the recent trial of water wheels at Lowell, Mass., for publication in our next number.

Ausurts in entermadents

L. B. F., of N. Y.-The power to direct safeguards in the use steam boilers, and to provide for the inspection of stationarv steam boilers
is vested in the local boards of health by the Statu tes of New York. These ts vested in the local boards of health by the Statutes of New York. These organized under a special commission like the Metropolitan Board of Health, and have power to enforce their requirements. There is no general law requiring the use of lock-up safety valves on such boilers. A. F. W., of Mass.-To set the tail-stock of a lathe so as to turn a taper, you must set it off the center half the amount of the taper A good practical way to do this is to turn down the work at each end to the size you want it before altering the lathe. Then set your tool accurately to the larger end of the work, and run it along opposite the smaller end and use it as a gage in moving the tail stock off the center. J. A. M., of N. Y.-A wheel intended to roll around a circle eight feet in diameter, would need, in order that it should not grind but
roll freely around the circle, to be beveled so as to incline the outer surface one foot from the perpendicular
W. H. G., of Ohio.-We have no report upon the experiment of carrying fresh meats in the ship Henry Taber, constructed for that
purpose. If it succeeds we shall certainly hear of it and will publish the tact.
C. P., of N. H.-The light minerals you send are common quartz crystals. The red colored specimens are garnets. They contain J. L. T., of Me., and J. A. B., of Mass.-The Report of the Smithsonian lnstitute is prepared by Prof Henry, Washington, D. C. You
E. A. G., of Mass.-" Byrne's Practical Metal-workers' Assistant," contains tae exact information you require. Published by Henry
Carey Baird, Philadelphia. D. W. R., of̂ Mich.-Your question cannot be answered without dagras, and it hot on enogh general interest to warrant ou doing this.
J. R., of Iowa.-The protoxide of chromium is a compound o 26 parts of the metal chromium and 8 of oxygen.
C. C., of O.-The best food for fishes, in a fresh water aqua rium is dried beefcut up very finely,
G. B., of Me.-We have had no personal experience in the lumber trade, and cannot answer the point of your inquiry.
F. H. G., of Mass.-The mineral you send appears to be a species of conglomerate. We discover no sinells.
F. D., of La.-The red-colored mineral contains iron ore.
S. K. P., of Del.-We cannot explain the phenomenon to which you refer; but your only relief consists in thorough drainage. C. S. J., of N. Y.-You can render mull or jaconet much stiffer than starch can make it by the use of isinglass size.

The Charge for Insertion under this head is One Dollar a Line. If the Notices exceed Four Lines. One Dollar and a Half per line will be charged.
To ascertain where there will be a demand for new machinery or manufacturers' supplies read Boston Commercial Bulletin's manufacturing news of the United States. Terms $\$ 180$ a y ear.
Wanted—Brick-making machine circulars. Box 6001, N. Y. In actual use-" Broughton's" Oil Cups and Lubricators have proved to be superior to any. Address, for circulars, II. Moore, 41 Center st., New Yorl.
Peck's patent drop press. Milo Peck \& Co., New Haven, Ct. Back Nos., Vols., and Sets of Scientific American for sale. Address Theo. Tusch, No. 87 Park Row, New York
Mineral Collections-50 selected specimens, including gold and silver ores, $\$ 15$. Orders executed on receipt of the amount. L. \& J.
Feuchtwanger, Chemists, 55 Cedar st., New York.
The Babcock \& Wilcox Steam Engine received the First Pre. mium for the Most Perfect Automatic Expansion Valve Gear, at the late
Exhibition of the American Institute. Babcock, Wilcox $\&$ Co, 4 Cort. Exhibition of the American

For best quality Gray Iron Small Castings, plain and fancy Apply to the Whitneyville Foundery, near New Haven, Conn
Keuffel\& Esser, 71 Nassau st.,N.Y.,the best place to get 1st-class Drawing Materials, Swiss Instruments, and Rubber Triangles and Carves Foot Lathes-E. P. Ryder's improved-220 Center st., N. Y. Those wanting latest improved Hub and Spoke Machinery, address Kettenring, Strong \& Lauster, Defiance, Ohio
For tinmans' tools, presses, etc., apply to Mays \& Bliss, Brook
lyn, N. Y.
Mill-stone dressing diamond machine, simple, effective, durable. Also, Glazier's diamonds. John Dickinson, 64 Nassau st., New York.
Send for a circular on the uses of Soluble Glass, or Silicates of Soda and Potash. Manufactured by L.\& J. W.Feuchtwanger, Chemists and Drug Importers, 55 Cedar st., New York.
Glynn's Anti-Incrustator for Steam Boiler-The only reliable preventative. No foaming,and does not attack metals of boiler. Liberal terms to Agents. C. D. Fredricks, 587 Broadway, New York.
Cold Rolled-Shafting,piston rods,pump rods,Collins pat.double compression couplings,manufactured by Jones \& Laughlins,Pittsburgh,Pa. For solid wrought-iron beams, etc., see advertisement. Addrews Union Iron Mills, Pittsburgh, Pa., for lithograph, etc.
Machinists, boiler makers, tinners, and workers of sheet metals read advertisement of the Parker Power Presses.
Diamond carbon, formed into wedge or other shapes for pointing and edging tools or cutters for drilling and working stone, etc. Send stamp for circular. John Dickinson, 64 Nasseu st.. New York.
The paper that meets the eye of manufacturers throughout the United states-Boston Bulletin, $8: 00$ a year. Advertisements 17 c . a linc. Winans' boiler powder, 11 Wall st., N. Y., removes Incrusta
tions without injury or foaming; 12 years in use. Beware of Imitations.

ILLUSTRATIONS.	oster's. 260			Veloineter Lewisiuizis.	
					Alloss antio
${ }^{\text {3 }}$	${ }_{\text {Ele }}$		Prinas		
		(tatese			iso
					American Eninineering
	-				dill
	Flooring clamp, Nevi				
${ }^{\text {asw }}$				MISCELLANY.	${ }^{\text {Americ }}$
		${ }^{260} 9$			
			the cerinat........in	es preceded by a Steir (*) to illustrated articles	
					${ }_{\text {a mer }}$
tee and ventiaiaior, Him:					
dir ra			Telts....1 ${ }^{193}$		
	Horesios enlis Go,				
	\% 1				Anim
	IV.enams				
			dita wher wied Me.tins		

 Asporatus Deile

 в

shatilesto
diara, Tho
(iocer
Boider entue
exploion
Boier restis prizod
(ting
nutal grimièisis ioidid
ooks, Can
Bran and musele...........iis,
cesmandis

 Camphor warter
Canadian patert
Candles oricin

Caoutchone minerai. Cartita, new mode of Car improvel

Car wheols...

 aged.
Century. piant.:
Chair a durabie
Cheap production, philoso inion
 Chemistry and life.........
Chima and the Chinese....
Chinaman on Chinese questio
 Chronometers, carianion
Cldar vanutacturing..
cider vinegat Circulation in bollers.
C1ty cirectory curiosities
Clock of Beauvais catiet
 Coal and coal mines.........
Coasheor carth closets.
coal dustfuel
 Coal mines, temperature
Coal, producis.
Coal, removing tarifo
 Coating fibrous material

 Cooper Unlon report.............
Copper in anmailk kingo.....
Copper in Daniells battery, sub. Copper in Daniell's battery, sü.
cortutut for
Corals, reef buiidiang............
 Cornish pumplng engines........
Corns, treationt oft.....iof, iis,
correlation of forces..........
 Covering powers of white paint. rosse experiments, tie............. Crystals on driea grass, formint, 144 ,
Cumberland coal, operation 1 n :
 Daniell's battery cell, cheap..... 1
Darwinism and design.........

Dear mutes, communication with ${ }_{*}$
Death from bursting soda bottle.
Death, nethoo of ancertaining...
Deathinof Henry J. Reaymond.....

	Polish wiener kalk................. ${ }_{34}^{359}$
	Popvy ind cement.............iıi, 1 ist, 235
	Portland cement and tar roofing.
	Portrait saans and stamps....... 283
	Postare, new
	Postorice for New York,
	new - 138
188^{2}	Pot
	退
	Premilum for time a
	use.....
	Premiums for new sui
	Printers' ink and paten
	nting presses, early imp
	Prize for everybod
	Prze for everybo
- 22	perty
	ection
	blic debt, red
	lications, new, 112,
. 122	
	Puddling furna
	Pulex irritans
	Pumns exhibited.... 281

PATENT CLALMS

inent home and foreign patents.

Horse Coluar.-A. Beckwith, New Orleans, La.-The object of this in Vention is to provide for public use a cheap, substantial, and durable col
lar for working horses, and which will be easier for the neck than thos heretofore employed.
WrLL AdGrr.-J. Y. Goode, Water Valley, Miss.-The object of this in lated to make them work more easily, and to faciilitate the withdrawal of them from the holes, as required from time to time, without incurring the resistance of atmospheric pressure due to the vacuum commonly produce

Pelow.

Puxp.-Chas. I. Merrill, watertown, N. Y.-The object of this inventio Is to provide for pubicic r.se a simple and cheap attachiment for punps, for
the purpose of forcing fresh atmos.gheric air to the bottom of the well dur ing the process of pumping, and thereby to cleanse and purify the wate. Hax Loadre.-W. H. Straub, Danville, Pa.-This invention consists in as the former arrive, in succeession, at the point where their loads should be deposited in the hay cartt,thes hhall automaticaly drop on their points

like a trap door, and, afierward, be restored again to their former po| like a |
| :--- |
| sition. |

 tion is to so onstruct and arrange the several parts, composing the acion
that, in playing passages where the same note is repeated with great rapid that, in playing passages where the same note is repeated with great rapid-
ity, the whole passage can be played,so as to bring out the individual notes with the utmost distinctness, delicacy, and perfection of tone. by an ex ceedinly slight and rapid depression of the key.
Pors'ro Diearr.-Wm. Green, Bolly, Mich.-This invention relates to a
frame mounted upon two wheels the central Prame mounted upon two wheels, the central part of the frame being bent
downward from the axle, and the rear part sustaining the digging and sep. arating apparatus. The invention consists in a series of narrow spades pro. jecting from the front side of the aforesaid apparatus, each spade rising
above and being curved over upon one of the conveying bars, by which above and being curved over upd
the vines are carried to the rear.
Lifrivg Jack.-w. s. Douglass, Richmond, Vt.-This invention consists of a forked vertical standard, having a aseries of notches in its inclined top,
and bands placea over such notches in in such nanner as to form inclined and bands placed over such notches in such manner as to form inclined
guide ways under the bands, of which guideways the not heses form part, and in which guide ways the pin that forms the lever fulcrum slides, wilen the pin is not resting in a pair of the ontcthes,such sliding being for the purpose
of stationing the fulcrum at a higher or lower point as may be desired, and of stationing the fulcrum at a higher or lower po
the lever being so pivoted as to be seliflocking.
Tipring Device.-J. Keith, Brooklyn, N. Y.-This invention relates to as uaw and useful improvement in a device for tipping pots and kettles tor
facilitating the operation of pour acilitatug the operaion of poumf our heonens.
Cosibined Hay Rake and Tedder.-John C. Mills, Palmyra, N. Y.-Thi
invention relates to a new and useful improvement in combining in one (or combining a tedder with a hay rake), and it consists in the construction of the teddor and the arrangement of the same in combination with the
rake.
Shakres fon Thrasinge Machixps.-Moses A. Keller,Littlestown,Pa.-
This invention has ing the grain and straw as they come from the thrasher, which shall be simple in construction and effective in operation.
SoLeseswive Machives.-Jeremiah Keith, Brooklyn, N. Y.-This inven-
tion relates to new and important improvements in that classof sewing ton reitest to ne wand important improvements in that class of sewing ma-
chines used for sewing soles in the manufacture of boots and shoes, and consists. Taxinly, in connecting the horn of the machine with the needle bar so that they may be revolved, or partially revolved,simultaneously, in com-
pleting the stitch by mechanism detached from thle needle and needle bar, and in forming the stitch or chain on the inside instead of on the outside, is is usuanly done in this sind of sevving, thereby rendering it unneeessary to cut a way the outside of the sole any more than would be done in common hand-sewing
Mode of Layinfiout Garments.-Wm. M. Michael, Indiana, Pa.-This invention comprises a mode of laying out the difrerent parts of a garment
by lines and measures from a central point within the said parts, by means by lines and measures from a central point within the said parts, by means
of patterns for each part of the garments, and a scale enearing the elations to the dififerent measurements of the person.
Reapri And Mowrr. $-\Lambda$ Sheline and E. Burke, Edon, Ohio.-The object of this invention is to provide certain improvements in the operating gear
of reaping and mowing machines, calculateed to furnish more useful and eficient machines than those now win use. The invention consists in an im. proved arrangeninent of the drawing gear, and clutching and unclutching
devices; also, fn an in improved arrangement of attaching devices for the devices; also, , fn an improved arrangement of ataching devices for the
mower; and, also, in an in improved arran gements of side dropp ing devices for the reaper, and operating devices for the reel.
Water Wieel.-A. W. Lloyd, North Adams, , ass.-This invention relates to improvements in water wheets, such as are used with a draft tube,
and has for its object to provide certain improvem ents in the construction of the same. Also, a draftr regulating apparatus for keeping the draft tube fall of water whether running or not, to com pensate for the loss of water
in the said tube, by reason of leaking and accumulat ion of air there in ser in the said tabe, by reason of leaking and accumulation of nir therein, set
free from the water, whicll lowerss the level of the water therein, and consequently the efliciency of the wheel.
Fsurt CAN.-A. J. McMillen, Ravenswood, West Va.-This invention relates to impiovements in cans of tid or other thin sheet metal for putting
up fruit; it consists in the application of a strong band or hoo at the center bet ween the ends to prevent the cans from collapsing, and adapted tro as a register to designate the name of any fruit which may be put into

Tobacco Machiverix--J. H. Dickason, Hanuibal, Mo.-This invention
relates to new and useful improvements in machinery for manufacturing
tol tobacco, wher cby the labor
market is greatiy lessened.
Ironing Machine.-Jules Decoudun, Paris, France.-This inventio onsists in a fixed, smooth, heated metallic surface, and one or more r tension, that, by engaging the fabric to be operated upon between the fixed metallic surface and the felt, the same is carried around with th latter gliding over the heated surface, whereby it is thoroughly ironed. Safety Valve.-Walter :Dawson, Scranton, Pa.- The object of this in ention is to provide a better seat for the valve, and also to secure a mor
ee escape of steam than can be obtained by the ordinary safety valve Design for Chamber Pails.-John S. Jennings, Brooklyn, N. Y.-Thi nvention relates to an improved design for the form and construction of hamber pails.
Machine for Washing amid Rivsinge Wool--Emile Nougaret, Newark N. J.-This invention has sor its object to provide a simple machene for
washing and rinsing wool, wrth the ald of warm or cold water or othe liquid. The invention consists chief y in the arrangement of an annular vessel, in which the wool to be washed is kept in constant motion, by a
stream of water falling in an inclined direction upon it, so that the force of stream of water falling in an inclined direction upon it, so that the force of
the water will serve to move the wool. he water will serve to move the wool.
Sasil Lock and Fiastener.-A. F. Gregory and C. h. Ensign, Bridgeport Conn.-This invention relates to an improved device for retaining window sashes at any suitable hight, and for locking the same, when they are low
ered.
Wasuing Machine.-T. H. Tatlow, Jr., Newark, Mo.-This invention relates to a new washing machine in whi the rubber is attached to a le-
ver that can be oscillated, both in a vertical and horizontal direction, to obtain the requisite action on the articles to be cleaned.
Alarm Faucet.-T. M. Biddle, Fort Wayne, Ind.-This invention has for
its object to provide means for automatically arresting the flow of liquid matter of a suitable kind, when the receptacle is mied to the requisite hight.
Coalland Ash Sifter.-Abram Hagadorn, Canajoharic, N. Y.-This invention has for its object to so construct a coal and ash sifter, of that class
in which a rotary screen is employed, that such screen can be locked stain which a rotary screen is employed, that such scre
tionary, while the coal and ashes are being filled in.
Electric Signal for Rallroad Crossings, etc.-T. s. Hall, Stamford, Conn.-This invention has for its object to provide means by which an elec-
tric signal, visible or audible, to be operated by a passing train, can held displayed for a certain length of time, until the train acts on a differ ent magnet, than that at first set in motion.
SNow Plow.-Gottlieb Beer, Grafton, Wis.-This invention relates to a
new snow plow, which is new snow plow, which is to be moved ahead by horses, or other draft
animals, and which is provided with a steering point, swinging wings, and with a backward projecting pole.
Lubricator.-Dayid Adamson, New York city.-This invention has for its object to provide a lubricator cup, which can be used on all kinds of machinery, but more particularly on high pressure engines, with any
suitable viscid lubricating material. The invention consists in the arrangement of a cylindrical cup which contains a piston, to the upper or outer

Procuss of Dyeing Black.-James Gze, West New Brichton, N.Y.-The
object of this invention is to simplify and accelerate the dyeing and sizing object of this invention is to simplify and accelerate the dyeing and sizing
of all kinds of fabrics in black, and refers more particularly to the dyeing of all kinds of fabrics in black, and refers more p.
Peanut Picker.-W. A. Crocker, Norfolk, Va.-The invention comprises an arrangement in a closed case, throngh which the vinas are supplied at diagonally, making large angular meshes, working between fixed screens, one above and the other below the upper portion of the chains; also, in combination with the above, a rotary spiked vine discharger, a fanning deice, and a scouring apparatus.
Paper File.-Benj. F. Herr, Livingston, Ala.-This in vention consists in the arrangement of thee parantel bars, one of which is provided with
hooks and pins for the connection of the other two, and springs for forcing the middle bar against the second outer bar, for clamping the pa
pers placed between them. For disengaging the papersthe barsare forced together and the hooks disengaged from the second outer bar and engaged
with the middle bar, holding the springs, while the second outer bar is ree to be removed.
Spring for Horse Collars.-B enjamin J. Barton and Roswell J. Stanley, Washington, Iowa.-This invention has for its object to furnish an improved spring for horse collars, which shall be so constructed as to
strengthen the collar and keep it in position and form, both when on and when off the horse.
Churning Machine.--D. G. Tay lor, Campbellsville, Ky.-This invention
has for its object to furnish a simple, convenient, and eftective churning machine, which shall be so constructed and arranged as to do its work quickly and well.
Heating Sadirons.-James Jenkinson, Williamsburgh, N. Y.-This inwith kerosene lamps, gas burners, etc., by means of which the sadirons with kerosene lamps, gas burners, etc., by
Ditching machine.-H. L. Hall, Buffalo, N. Y.-This invention has for its object to furnish a simple, convenient, and effective machine for openused for making crooked ditches.
Cotron Seed Planter.-Matthew Mcimillian, Caney, Ark.-This inven-
tion has for its object to furnish a simple, convenient, and effective cottion has for its object to furnish a simple, convenient, and effective cotthe seed in a narrow channel making it much more convenient for

Gatr and Door Latcir.--Rudolph Geselbracht and Frederick Frey, Ga
ena, Ill.-This invention has for tob object to furnish a simple, strong, onvenient, and effective latch for gates.
Trace loce for Whiffletrees.-Samuel P. Williams, Rutland, Vt.of which thenas for its object to furnish an improved lock. by means of which the trace or tug may be effectually guarded against becoming ac truction and easily applied and operated.
Vmathlator.-William F. Thoms, M.D., New York city.-This invention解 ventilating dwellings, offices, churches, halls, and other buildings, and wicia slall be so constructed and arranged that it may be so adjusted a introduce into the room warm air in winter and cool air in summer. Mole Killer.--Joseph Wilson, Little Falls, N. J.-This invention has for its object to furnish a simple, convenient, and effecective device for de.
stroying moles, which shall be so constructed that it can be set without ob. tructing the track of the mole and thus alarming him.
Burglat-proof Safe.-William McFarland, Williamsburgh, N. Y.--This safe, patented September 14, 1853, and numbered 94,761 , so as to make it more convenient in construction and use, while being equally strong and afe against the attacks of burglars.
Macinne for Rolling, Pressing, and Cuthing Tobacioo, etc.-G. Tob nson, Louisville, Ky.-The object of this invention is to provide a simple and efficient machine for rolling and pressing tobacco leaves and cut-
ing them into plugs or cakes. It consists of a system of tongued and ooved pressing rollers and cutting rollers, together with feeding and de vering apparatus.
Tobacco Elevator. -G. Robinson, Louisville, Ky.-This invention re ates to elevating apparatus for ele vating or lowering tobacco in ware-
ouses, whereby it is designed to provide a simple and convenient appara tus, adapted to carrying the tobacco up or down while suspended in bunch or hands on the racking sticks.
Book Holder.-Hamilton Sherman, Waverly, Pa.-This invention con. osition in frontof the reaver, and provided with means for holding it as required ; also, with a spring clamp of peculiar construction. Gaiden Plow and Manker.-Henry Haynsworth, Sumter, S. C.-This invention relates to improvements in hand garden plows for making and
marking furrows or drills for planting, and for plowing between rows of plants for cultivating. It consists of a curved and fork beam, answering plow or scraper behind the wheel, and a marker supporting pporting it to the beam, so as to project laterally the side for marking the nextrow by a marking rod sapported at a suitable distance from the frame.
Tool Holder for Grinostones.-Pilip Leonard, Sharon, Pa.-This in-
vention relates to improvements in tool-holding attachments for grindtones, and consists of a plate, arranged for oscillation in front of the face of the grindstone, and a carriage mounted thereo i, to slide back and forth, capable of feeding towards or from the stone, the whole being arranged to hold thetoolin contact with the stone, and to move it back and forth evel.
Swivel Coci Eye for Harness.-Thomas J. Magruder, Marion, Ohio.This in vention relates to improvements in the construction of swivel cock
eyes for harness, and consists in constructing the neck of the eyes for harness, and consists in constructing the neck of the eye between
the two ends, of a regular concave form, and uniting the cross bar of the frame, to which the tugisconnected by casting it around the said neck, previously arranged so as not to project beyond the inside of the cross bar,
so formed by casting around the said neck in the mold, whereby the so formed by casting around the said neck in the mold, whereby the
abrupt shoulders commonly formed at each end of the straight necks, which are objectionable because of the weakness of the necks at the junction with the said enlargements, and because of the protruding endsinsid of the frames,are avoided, the objection to the protruding ends is that they come into contact with the parts of the
which they are attached and bear them.

APRLICATIONS FOR EXTENSION OF PATENTS.

Machine for Folding Papers, etc.-John Thompson, New Yorkcity, executor of Thomas Thompson, late of Brooklyn, N. Y., deceased, has ap Cultivating Plow.-William E. Wyche, Brookville, N.C., has petitioned Cultivativg Plow.-William E. Wyche, Brookville, N.C., has pet
or the extension of the above patent. Day of hearing, Feb. 0, 18\%0. Method of Bottling Fluid Under Gaseous Pressure.-Jane Quan in and Henry A. Pintard, Philadelphia, Pa., executors of Alphonse Quan tin, deceased, have ap
hearing, Feb. 16, 1870 .
Harvester Rake-Owen Dorsey, of Newark, Ohio, has petitioned for an extension of the above patent. Day of hearing Feb. 16, 1870.
Method of Bending Wood.-John C. Morris, Cincinnati, Ohio, has ap-
plied for an extension of the above patent. Day of hearing Feb. 23,1870 .

Caveats are desirable if an inventor is not fully prepared to apply for his patent. A Caveat affords protection for one year against the issue of a Caveat, $\$ 10$. Agency charge for preparing and filing the documents from $\$ 10$ to $\$ 12$. Address MUNN \& CO., 37 Park Row, New York.
nventions Examined at the Patent Onfce...on Inventors can have a
careful search made at the Patent Office into the novelty of the careful search made at the Patent Office into the novelty of their invenapplication. Send sketch and descr'ption by mail, inclosing fee of $\$ 5$.

BLOOD ALBUMEN.

$F^{\text {OR SALE-The Patent for the Manufacture }}$

P LLMONARY AND UTERINE INAA

Steam and water gages, steam

H. BoakDMAN Lancaster, Pa--Syperior RON STEAMERS, HULLS, \& LIGHTERS.

Pevey's Cupola,

 W ARRANTED to Melt, with one tun of

Attention Inventoros!

BE NOT DECEIVED.

Flange Cog Wheels on bothi ends of the rolls.

DOUBLE GEAR,

Patent Curved Clamp,

 Patent oscillating boared,

${ }^{6} \mathrm{~A}^{\text {blaze of beauty., for } 1870 .}$ The January double number of the pic-
torial phrenoloalcal journa
 render this the bestane ver issuced. Among the content are the following:

 Terms, only $\$ 3$ a year. Thirty cents a No. Newsmen
have it. Now is the time to subscribe for $1 \mathrm{~s} \% \mathrm{O}$. Premium

Soluble Glass,

 or sllicates of soda and potash

C A FTVTrestell Name Punches, Letters, and

PARKER POWRR PRESSES:

Are what are universally known as the
"FOWLER PRESS,'
 STILES POWER PRESS

 $T_{\text {made }}^{\mathrm{HE}}$ BST PUVCHING PRESSES ARE

Bolts. Nuts.

$\mathbf{W}^{\text {ROUGHT-Iron Pipe for Steam, Gas, and }}$ Ftuns, eter
$\mathrm{R}^{\text {ICHARDSON, MERIAM \& CO. }}$

L.W.Pond's New Tools.

 $\mathbf{N}_{\text {Lathes }}^{\mathrm{EN}} \mathrm{AND}$ IMPROVED PATTERNS-

A GENTS can make equ0 per month by sell
Hownond HosTLR, seneca Fals, N. Y.

Iron \& Woodworking

T Fe Novelit IRON WORKS-

$\mathbf{W}^{\text {OODWORTH PLA NERS }}$ a SPEIIALTY

INVENTRRS, AGETS, MERCANTS

POWER LOOMS. Impreven

woodbury's patent
Planing and Matching
 0 (
 $\mathrm{B}^{\mathrm{UERF}} \mathrm{HECN}$ WATCHMANS TIME DE-

 Catalogues 10 Cents Each. sext br mali.

COTTON AND WOOL

Excelsior Lubricator

Bridesburog Mount' ${ }^{\text {Pr Co, }}$

M Forvey Mchanaical Ent
M. N. ForNEY Mochnaical Enginer, 64

THE WOODWARD STEAM-PUMP MAN

Tool and TaMDEN Wortis,

TODD \& RAFFERTTY, Manufacturers and

To Electro-Platers.

Portable steam engines, combin.

$T^{\text {he above cut represents our }}$

 Each tooth may be ind ependently a duasted to the cut

Fs Independent Steam boiler supply,
 Feed Pump.

 0^{2} RELIABLE FOR HOT ORIL U USTRATED CAT

$\mathrm{A}_{\text {Brom, }}^{\mathrm{LCOTOS} \text { CONCENTRIC } \mathrm{LATHES},- \text {-For }}$

Davis' Adjustable Spirit Level,

MERRICK \& SONS, patent

Safety Hoist ACCIDENTS
Caused by Braaking of Hoisting Ropes,
bsolutely Prevented. MERRICK \& SONS, Washington avenue,
Philadelphia, Pa.
great economy in
WATER POWER.

DEPARTMENT OF THE INTERIOR.

 8 STATES. 1869.

$\mathrm{B}_{\text {Prochand sumperior to }}^{\text {Ro any in the }}$
Box 238 Postomect, Derty, Conn.

Crty Subscribers．－The S TIENTIFIC Ameri－ CAN will be delivered．in every par tof the city $\mathrm{at} \$ 3500$
a year．Single copies for sale at a a the News stands in a year．Single copies for sale eat a athe News stands ind
this city，Brooklyn，Jersey City，and williamsburg，and by most of the News Dealers in the United States．

SUbscribers－who wish to have their vol umes bound，can send them to this office．The charge forbinding 1 s 81.50 per volume．The amount thould be soon as they are bound

Receipts－When money is paid at the office for subscriptions，a receipt for it will be given；but when ubscribers remit their money yy mail，they may con－
sider the arrival of the in rst paper a

Saterticments．

$\$ 1.00$ per line．Engravings may heed advertisements at a

BALL BLACK \＆CO．

Nos． 565 and 567 BROADWAY， offer an Unequaled Assortment of JURGENSEN，NARDINE，JACOT， SALTZMAN，NICOUD，GERARD FRODSHAMK，PEARDON，GORDING， RUGENSTEIN，YARRISON，TAYLOR

LLSO，A FULL LINE OF AMERICAN

WATCHES，

At the Lowest Price．

practically． A ND JOURNAL OF ART．－Terms $\$ 300$

Cottorn：Seed Oil Millls．
Bity by Contract，or otherwise．For Esti－
W Boring and shaping Machines，one set of Boiles

UAN NOSTRAND＇S

Relectic Engineering Mavazine．
No．12，For December，Now Ready．
Published Monthly at $\$ 5$ per Annum
Single Numbers， 50 c ． Single Numbers， 50 c ． contents：

 D．VAN NOSTRAND，Publisher，

Painter，filler，and Vamisiser． 13th Enlarged and Improved Edition． 356 PAGES．
Painter，Gilder，and Varnisher＇s Companion：

STURDEVANT＇S FAN BLOWERS， Pressute Buoveps， Futsons Goveradors，

Oate Leather Belting．
 Leymolds ${ }^{9}$ Turbine Water Wheêls． No Complex，Duplex，or Triplex，
complications．
 GEORGE TALLCOT，
$\mathrm{F}_{\mathrm{T}}^{\mathrm{RENCH}} \mathrm{BAND}$ SAW MACHINES，SAWS

 Sole Agent for the U． f ．， 39 West 4 th st st．， N ． x STEREOSCOPES
W I＇SH ENDLESS CHAIN－To hold from ROOTS WROUGHT IRON SECTIONAL

Safety Boiler．

$\mathbf{R}^{\text {OPER Carloric Engine Co．Co．} 49 \text { Cortlandt st．}}$ M T SECOND－AND－SURFACE PLAN

RPPEATING FIREARMS

M日G SAFETY HOIETMG Machinequ． OTIS BROTHERS
OADWAY．NEW YORK． $\mathbf{W}_{\text {A Partner }}^{\text {ANTED }}$

A Prially devoted to the interests of
AMERICAN HOUSEWIFE． Articles by Experienced Housekeeperss upo
all matters pertaining to Home Life and Domestic Economy．
 Best Family Journal in the Country．

 Send stamp for specimen Copy：Address

THE INVENTORS AND MECEANICS

WEBB＂ ADDER

ONLY PRACTICAL
ADDING MACHENE IN THE WORLD

直hearpe＇s Patents．

 $\$ 20$ A DAY TO MALE AND FEMALE

THE SQUARE－DISH WATER WHEEL CHEAP，w ，MOWER SIMPLE， FUL．

2a－Hand Machinery

 B havD recentiv patented one of the above Machine

SENT FREE

M．O＇KEEFE，SON \＆CO．＇S
SEED CATALOGUE AND GUIDE TO THE FLOWER AND VEGETABLE

Niagara Steam Pump． CHAS．B．HARDICK，

WIRE ROPE．

Tanite Emery Wheel

P AT．SOLID EMERY WHEELS AND OIL
D ${ }^{\text {ECarris steam }}$ Engine，Corliss Cut－orf，was awarded

TV．Carpenter，Advertising Agent．Address

HARRISON

SAFETH BOMER
 Tnarwon spiller works，Philladelphia． 49 Murray st，N．X．，and 36 IKilby st，Boston． 30－HI Conliss Engine． Asiso．s．x Engines．from 15 to so－Horse．Have been in

TYacoing Matevinls．

 SA NVG EVERY DESCRIPTION Henvey Disston a Son，
 RON PLANERS，ENGNE LATHES

HRMC－Oror New Catalogue of Im $\$ 200$ A．MONTH is being made with them

LOWELL FELTING MILLS，
 HOWLAND＇S PATI．KNIFE SHARPENER．

R．BALL Bactures of Woodworthesterer，Maniels，and Manu Dimen

 Portable，agriculitural，and Steam Engines．
Excelled by None－Equaled by Few in Merits

H．B．Smeth＇s
$\mathrm{P}_{\text {Mo }}^{\text {AT }}$ WOOD－WOR，Moristry，Tenoning ，Resawing，and Plan
 red within thirty days．
Smithvile，Burr． cos N ．

[^0]: For Crrissins. -The children must always have something to maiEc
 them merry on Chrismas. Messrs. Turner $\&$ Brother, sci Chestnat street Philadelphia, have issued a neat and and verypretty book called "Christ mas Day", with three poems, viz.: "T TTas Night Before Christmas,""Chriss
 mas Dayy," and "The Night After Christmas," from Punch. It has a bean maas Day", and "The Night After Christmas," from Funch. It has a bean
 tiful cover, and i sent by mail for fifty cénte.

