

A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY AND MANUFACTURES.

"squeezer," whicn natrens lc out into what is called 2 bloom. It is then reheated in another furnace, and is. finally rolled or hammered into bars or rods of any shape.
And that is the way past iron is converted into wroughtiron. In fact the operation resemb'es batter-making in its manipulation, as much as any process all are familiar with. If a quantity of cream were tossed about until the batter formed, we should have a puddled ball of butter, and the buttermilk would be represented (in the process of rom cast) by a pile of cinders $\left.\begin{aligned} & \text { opening, and works the melted iron back and forth } \\ & \text { until it assumes the shape of a ball. This occupies }\end{aligned} \right\rvert\, \begin{aligned} & \text { handled efficiently. }\end{aligned}$ considerable time, and is very severe labor, both on The ball having been thus rolled up is hauled to the refuse worked out from the pig iron. In ordinary account of the heat radiated from the furnace and the front of the furnace and hoisted out; it is then puddling furnaces the chimney stack is the hottest rom the weight and nature of the work. A ball of pat on a truck and carried to a machine called a part. The fuel is burnt at a great disadrantage
resulting in enormous waste and adding greatly to the cost of production.
The invention represented in this engraving is intended to obviate these objections by consuming the gases and products of combustion, generally, in the furnace where the iron is melted and puddled, and not in the chimney where no useful effect is gained from it.
Fig. 2 shows how this object is obtained. A grate, A, is provided at the end and $\dot{\text { a }}$ fire built upon it; from here the heat, smoke, and gases pass over into a larger chamber, B , where the iron to be melted is laid. The products of combustion, in passing over the bridge wall, C , are met by a blast of air which, together with the temperature gradually obtained in the chamber, results in much better combustion than usual. So great, in fact, that with the same kind of iron and coal used in this and in other furnaces, a saving of one-fourth the fuel is obtained and nearly forty per cent in ore for "fixing," yielding more iron of a better quality in a shorter time. The cost of this furnace is about the same as an ordinary one.
In order to tacilitate the process of melting the pig and economize fuel as far as possible, the pig iron, before being put in the chamber where it is finally melted, is charged into a muffle, at D, which heatsit very hot. From this it is subsequently removed, as before explained.
In the perspective view there is a trough, E , shown attached to the chimney. This is only a section of a length running across the building. The pipes, F] going from it enter water boshes, G, set about the jambs and sides of the furnace to prevent them from being burnt out. These water boshes are open at the ends, as shown at H, so that all danger from generating steam is obviated, the same being discharged into the open air instead of being confined, or, at best, so set as to require watchtulness, as is generally the case.

This furnace is now in successful operation at Montreal, C. E., and the wear and tear of brick work is far less than is common in the old plans.

The inventor is a practical puddler of many jears' experience, and states that the furnace is adapted to the use of Western coal with blast, and an additional advantage is the construction of the water boshes. These are economical where "hot fixing" is used, as it generally is at the West. The engraving reprosents a double furnace, but it can be applied to a single one as well.
It was patented on the 3 d of October, 1865, througi the Scientific American Patent Agency, by John Wil liams. For further information address him at Victoria Iron Works, Montreal, C. E.

COUNTER-WEIGHTING MACHINERY-

The value of balance weights in all cases where rotating machinery runs at high speeds is so generally recognized in the present day that it may appear superfluous to add a word to the chapters which bave already been written on the subject. Nevertheless there is hardly a question connected with their application in practice which does not still form a subject for discussion, and many mechanicians even now dispute the necessity for their use, fail to understand the principles on which their value depends, or apply them in such a way that they prove of little service. A short explanation of the theory of their action will therefore not be out of place here, and we shall endeavor to place the subject before our readers divested of those mathematical formulas for which practical men have so little liking. It is fortunate that the theory is so simple that this object may be easily carried oat without detracting materially from the value of the explanation.
It is known that unbalanced machinery running at a high speed produces more or less violent oscillations in the supporting framework, which may be, and generally are, extended even to the buildings which contain it; and a little observation will show that these oscillations recur in a species of determinate sequence or rythm bearing a direct relation to the rapidity of revolution of the unbalanced machine. There is, in fact, nothing irregular about them. As the speed of the machine increases, so do they increase in number and intensity, and as their intensity increases in a more rapid ratio than the speed, they quickly become inconvenient, if not dangerous, representing as they do strains which waste now-
er and seriously compromise the stability and permanence of machinery. It will also be understood that they have no connection with the strains properly due to the performance of useful work, and that they have existence in all unbalanced machinery, whether it does or does not ran against a load. These oscillations are due, in short, to causes which have nothing whatever to do with the performance of the work which the machine is intended to execute, and there is but one way of removing, or, more properly, of preventing them. Their existence depends on the fact that " the whole centrifugal force of a body of any figure is the same in direction and amount as if the whole mass were concentrated at the center of gravity of the system," and that the centers of gravity and of rotation are not identical.
In order to make the meaning of this proposition perfectly clear, we may suppose the case of a fly-wheel accurately balanced, poised in space, and caused to revolve. The center of gravity of this wheel will be identica 9 with its geometrical center, and it will therefore revolve about this last without displaying any tendency to assume another center of rotation. Let us now further suppose that certain weights are affixed at one side of its rim so that its accurate balance is destroyed, and that things jeing thus altered it is caused once more to revolve. The center of gravity no longer coincides with the geometrical center of the mass, but the wheel will only revolve about its center of gravity, and theretore that which was before the center of rotation now itself describes a circle whose radius will equal its distance from the new center of gravity. Thus, if the wheel have a diameter of 10 feet, and the weights added on are sufficient to shift the center of gravity 6 inches from the geometrical center, then will the circle described by this last have a diameter of 12 inches, and the wheel wiil then revolve eccentrically about the new center without developing any vibrating strains whatever. Why this law should have existence no one can pretend to say; we have only to do with the fact that it does exist, and that it is as immutable as the action of gravity itself.
We are now in a position to perceive why want of balance, or, strictly speaking, want of coincidence between the actual ceitite of fotition and the conter of gravity of any revolving mass, tends to produce oscillation. We have next to consider the magnitude of the disturbing force, We will suppose a fly-wheel in practice weighing $1,000 \mathrm{lbs}$., running at any given number of revolutions, and so far out of balance that its true center of gravity is distant 1 foot from its center of rotation. We purposely magnify the error in order to make the matter clear, and instances may be aciually met with in which large fly-wheels are nearly a foot out of balance. The shaft being held down in brasses, it follows that the wheel is compelled to revolve about a center other than its center of gravity, and as a result of the tendency which we have seen to exist, the axis of the wheel, in endearoring itselt to describe a circle of 12 inches radius, strains the brasses and framing up and down to the right and to the left. But the framing is weaker in some directions than in others. In these it partially yields to the strains impressed upon it and withdrawn during each revolution, and the result is vibration. Thus, in the case of an unbalanced portable engine, it will be found that the entire structure rocks backward and forward at each stroke, as the shaft is thrust forward and backard in its endeavor to comply with the simple law which we have laid down. We said that the torce of disturbance is the same as though the whole weight of the mass were concentrated at the center of gravity; and as in our case he weight is $1,000 \mathrm{lbs}$., and the radius one foot, the force of perturbation will be precisely the same in amount as if the entire wheel were suppressed ard replaced by a single ball weighing $1,000 \mathrm{lbs}$. and rotating in a circle of 12 inches radius. With this fact before us it is easy to understand how great are the strains thrown on the bearings; and the heating and cutting of the brasses of unbalanced flywheels and crank shatts is no longer remarkable in any sense.
According to the theory commonly received by socalled practical men, it is sufficient to balance a crank and connecting rod by a weight or weights disposed within the fly-whed rim, and this object is carried ont
with some elegance by furming the rim with recesses or cavities, so that it may be lighter on one side than the other. We shall not go so far as to say that such a practice is wholly erroneous, but we m:יst impress upon our readers the fact that it is very imperfect. A steam engine so counterweighted is not in a strict sense counterweighted at all, and instances bave come under our knowledge where recessing the flywheel rim has done more harm than good. The expedient would be perfect if the whole rotating mass were concentrated in the same plane, put in practical mechanical engineering this never occurs. Thus, in the case of an ordinary steam engine, we find that the crank and the fly-wheel are in all probability separated by a distance of several leet, and under such circumstances, counterweights applied to the latter cannot possibly compensate for the perturbations due to the gravitation of the former. The axis of the system then tends, at any given period of a revolution, to rotate about a point situated somewhere between the fly-wheel and the crank. Thus to deal once more in suppositions, let a shaft 10 feet long have at each end a fly-wheel similar to that of which we have already spoken, the center of gravity of each wheel being separated from the center of the shatt by a distance of 12 inches. It must further be assumed that the preponderating weights are so arranged as to be equal and opposite. It this shaft were now placed in bearings so that it could revolve freely, it would be found that the wheels would remain at rest in any position in which they might be placed, and from this it might he, and often is, assumed that the system would revolve at any speed without throwing a strain on the brasses. In short, the wheels would be deemed balanced in the full sense ot the term. No idea can be more erroneous. If' caused to revolve freely in space it would be found that each wheel would act almost independently of the other; the ends of the shaft describing, under the conditions, circles of 12 inches radius, while a point in the center of its length-and this point only-would remain unaffected. Its position may be determined by drawing a line trom the center of gravity of one wheel to the center of gravity of the other, the point where this line cute the axis of the shaft being the point of repoge. From this it follows that the only proper method of balancing consists in disposing the counterweights in the same plane as the distributing force. In the strict sense this cannot possibly be accomplished in practice, but we can approximate to such a condition with sufficient accuracy to answer every reasonable purpose. The fly-wheel of an engine can of course be truly balanced with little trouble, but in order to balance the weight of the crank and cornecting rod it is advisable to modily the former, converting it into a disk carrying the crank pin near its periphery at one side, while directly opposite a mass of metal must be provided sufficiently heavy to counterweight the proper proportion of the gravily of the connecting rod. Where this sjgtem is inapplicable, as in marine engines, the counterweights should be applied directly to the backs of the cranks-an arrangement carried out very perlectly by Messrs. Penn \& Son. Each crank should be balanced as though none other existed in the length of the shaft, and the result is then, that, although neither of the weights is in the plane of the rod, yet as one comes on either side, an imaginary plane is constituted, in which the entire mass revolves in perfect balance. In paddle engines precisely the same arrangement should be adopted; a cast-iron paddle constituting a very imperfect substitute, which has sometimes lead to the breakage of a crank shaft, or even of the framing.
The calculation of the exact weight required as a counterbalance in any given case involves some points of considerable nicety; and hitherto the best results have been obtained under the system of trial and error. In point of fact, it is difficult to obtain all the data necessary to render the calculation perfectly complete; and the operation of increasing or reducing the weight of the counterpoises is so simple that no reasonable objection can be urged against a style of practice which is based on direct experiment. It is well, however, to know approximately what are the proper weights for any particular case; and as these are mainly determined by the centrifugal force of the mass to be balanoed, the following simple rule for determining this factor will be of service to many
who do not real formulas with ease:-Multiply the square of the number of revolutions per minute by the diameter of the circle of revolution in feet, and divide the product by the constant 5,870 ; the quotient is the centrifugal force of the body in parts of its weight, which is supposed to be 1. By this rule the strain on the shaft brasses may be easily determined; and the magnitude of the centrifugal force to be balanced having thus been found, it is a simple mater to determine with approximate accuracy the proportions proper for a counterweight usually revolving in a circle of greater diameter than that described by the crank pin.-London Engineer.

Maple Sugar Making.
Mr. A. S. Chapman, of New California, writes as follows to the Rural New Yorker:-
I will give you a short article on the making of maple sugar, as practiced in this region by the great makers-men who labor not for fun but for moneywhose fathers and grandfathers made sugar here when moccasin tracks and red skins were too abundant for comfort. I will not burden you with a repetition of all the minute details of the business, but will mereiy give you an outline of their method. There are some questions not yet settled among our manufacturers. For instance, a part maintain that a tree will last infinitely lenger tapped with a gouge or ax than if tapped with a bit or auger, but the great majority use a half or five-eighth inch bit and the common elder spile or conductor. One old gentleman, some 76 years of age, avers that the trees last far longer to bore them.

All agree that well-burned two-gallon crocks are the best to catch the sap, being so easily cleansedand as they turn them down at the foot of the tree and dispasture the land with sheep, they obviate the necessity of hauling them in and out as they would have to do with wooden or tin buckets.
Immediately after harvest they commence splitting up the old logs, the tops of oak trees and any refuse wood-no matter how rotted, if it will only split and hold together-to pile up or stand on end, and thus they continue to do at leisure times milis snow comes, when it is hauled and stood on end at the camp-house.

For storage for sap they use hogsheads, or vats made of two-inch oak plank.
For boiling small kettles are used, holding from 13 to 17 gallons, and at the back of six kettles some place a pan to heat the sap or melt ice (particularly t.le latter, when they have it.) Sometimes a sudden freeze will come when the crocks are nearly full. if it only freezes over, they take a little forked stick, like an old fashioned pot-hook, break a hole with it through the ice and haul it out with the look. If it freezes solid, they hit the edge of the crock against a root and out comes the ice in bulk, the saccharine matter preventing its freezing like common water.

One peculiarity of their furnaces is the distance from the bottom of the kettles to the bottom of the furnaces, which is about four feet. Thus it will be seen that while they use very small kettles, they make very great fires under them, and bere lies the secret of making good sugar, viz., rapid evaporation in small vessels. The quicker it can be got off the fire without acorching the better. When it "leather aprons," or " makes roads," it is done. Great care is taken to keep the crocks sweet and the kettles clean. When the former get a little slippery or soured they are set out from the tree to catch rain water, and are then scrubbed out and turned down till the next run. When the kettles cannot be washed clean they are filled with hickory bark and burned out, which is tar the best way of getting off the burned stuff from the top of them.

When the sirup is done, it is stored away in barrels or casks, until they have leisure and a fair day to sugar it, which is done in the same kettles where it was boiled into sirup. Should the sirup become ropy (sour), saleratus or soda is used to sweeten it.

In sugaring the tops of all the kettles are greased and a small piece of fat pork thrown into each with four or five gallons sirup and boiled with a light brisk fire until it will break in water, when it is dipped into wooden pails and emptied into long stirring-troughs, where it granulates and cools, and when the lumps are worked out it is putaway for use or sale.

In conclusion I may say that too much care is not
likely to be used to keep the kettles clean, that very rapid evaporation in small quantities (not much together) is necessary to make good sirup, and that insures good sugar.
a. S. Chapman.

New California, Ohio, 1866.

Heating of Air by Compression.

SIR:-I observe that one of your correspondents wishes to know how to calculate the healing effect of compression on air. If the compression is but a small fraction of the original volume, the following rule may be near enough to the truth for most practical purposes:-Find the absolute temperature of the air by adding 461 to the temperature in Fah. degrees, or 274 to the temperature in Centigrade degrees; then multiply the absolute temperature by two-fifths of the fraction of its original volume, by which the volume of the air is diminished. The product will be the required increase of temperature. The fraction of itself by which the pressure is increased during the process is $=1.4 \times$ the fraction by which the volume is diminished.
Example.-Suppose original temperature to be 39 deg . Fab., then absolute temperature $=39 \mathrm{deg} .+$ 461 deg. $=500 \mathrm{deg}$. Fah. Suppose also the air to be compressed to $99-100$ ths of its original volume; then fraction expressing the compression $=0.01$; consequently $0.01 \times \frac{2}{5} \times 500=0.004 \times 500=2 \mathrm{deg}$. of Fah. elevation of temperature; also $0.01 \times 1 \cdot 4=0.014$, raction of itself by which the pressure is increased. When the compression is considerable, the calculation cannot be made with any approach to accuracy without the help of logarithms; and the following is the rule:-Take the logarithm of the ratio which the original volume of the air bears to the compressed volume; multiply that logarithm by $0 \cdot 408$; to the product add the logarithm of the original absolute temperature; the sum will be the logarithm of the new absolute temperature. Also multiply the logarithm of the ratio of the original to the compressed volume by 1.408 ; the product will be the logarithm of the ratio in which the pressure must be increased.
Example.-Suppose, as in the previous example, that the original absolute temperature is 500 deg . Fab.; suppose the air to be compressed to one-fourth of its original volume; then-

Log. $880 \cdot 26$ (new abs. temp.)........2.9446105 880.26 deg. -500 deg. $=380.26$ Fah., elevation of temperature; and $380 \cdot 26+39=419 \cdot 26$, new temperature on Fah. ordinary scale. Also $0.60206 \times$ $1 \cdot 408=0 \cdot 8477005=\log .7 \cdot 0421$, ratio in which the pressure of the air is increased; so that if it is originally at atmospheric pressure, its new pressure is about seven atmospheres.
To find the mechanical work required in order to produce the compression (including that required tor expelling the air from the pump) multiply the elevation of temperature, as computed by the preceding rules, by 0.238 , and then by 772 if the temperature is expressed in Fis. deg., or by 1,390 if in Centrigrade deg.; the product will be the hight in feet to which the same quantity of work would lift a weight equal to that of the mass of air operated upon. That hight may be stated in other words as $183 \frac{1}{2}$ feet per deg. ot Fab. or 330 feet per deg. Centrigrade. Thus, in the second example already given, we have 380.26 deg . Fab. for the elevation of temperature, and $380.26 \times 138 \frac{1}{2}=69,774$ feet, being the bight to which the mechanical work requitred, would lift a weight equal to the mass of air operated upon.
One lb. avoirdupois of air at the mean atmospheric pressare ($14 \cdot 7 \mathrm{lbs}$. on the square inch), and at the absolute temperature of melting ice (493 deg. Fah., or 274 deg. cent.), occupies 12.387 cubic feet; and at other pressures and temperatures its volume varies inversely as the pressure and directly as the absolute temperature. Divide the criginal volume of the air operated upon by the volume of 1 lb . at the original pressure and temperature; the quotient will be the weight operated upon in pounds.
It must be borne in mind that in order to realize the elevation of temperature given by the rules, the air must be perfectly dry; if liquid water is present,
part of the heat developed takes effect in evaporating the water, and the elevation of temperature is much diminished.
W. J. Macquorn ranhine.

Glasgow University, 3d February, 1866.
[Mechanics' Magazine.

- Mushroom Ketchup.

The latest public sensation in England in a small way is "Mushroom Ketchup." It seems that no mushrooms are used in the preparation of this delightful compound, tut that the base of it is decayed beef liver, called Smithfield musbrooms. The London $\begin{aligned} & \text { Grocer thus describes the process of manufas- }\end{aligned}$ ture:-
"This is how the crisp mushrooms of Smithfleld are prepared for the delicate palates of the discriminating British public, who find poison in and forswear pickles, and lick their lips at the delicious juice of decayed animal matter. Enormous quantities of bullocks' livers-we beg pardon, Smithfield mush-rooms-are collected in England, and imported in closed bags from the Continent. These are bought up by ketchup makers-not one or two known roughe, but men who are not generally known as publicans and sinners, and who have the confidence and, we may add, the cash, of the largest distributors of pickles and sauces in the United Kingdom. The mushrooms are salted in tubs, and allowed to remain until the mass becomes thoroughly putrid, and-the details are nasty, but we cannot, in justice to the anti-adulteration league, withhold them-the contents of the tubs are then boiled in iron tanks holding about one hundred and fifty 'gallons each. Each boilling occupies a whole night. It is never carried on by day, for the simple reason that the stench from the boilers would bring down the indignation of the neighbors, who inconsistently hold out one hand to the poor retailer tor cheap luxuries, and with the other destroy the sources of their production. Copper tanks are never used for the boiling operation, for reasons that will be apparent to our readers. All that remains now is to strain off the liquid carefully, and add to its natural fragrance and pungeney by mixing with it the spices of 'Araby the blest.' That which remales after the straining operation is immediately covered with a layer of ashes, and sold at convenience to manure dealers."
At a public meeting an attorney for the manufacture defended his client by denying that the livers were from bullocks; they were from hogs.
Have we any mushroom-ketchup makers among us?

American Cotton Stockings.
The Boston Advertiser says it has been a subject of frequent remark that improvements in American manufactures went on during the recent war at as rapid a pace as though the country were at peace. In no branch of industry has this advance been more apparent than in the manufacture of cotton hosiery in New England. Many millions of dollars are now invested in this business, and the competition with foreiga manufacturers, which has become quite vigorous, is likely to be successful.
Until within eighteen months, the American manufacture has been confined to the common grade of ribbed hese, and no competition with England and Germany, in the manufacture of the finer qualities, has been attempted. Now, however, plain cotton hosiery of the best quality is extensively made by New England workmen, and no one need to seek for imported goods because of a scarcity of fine grades of American manufacture. These remarks will apply as well to the manufacture of cotton shirts, which has reached a great degree of perfection; and American shirts, full fashioned, and without seams, are now made equal to the imported.
The Lawrence Manufacturing Company, at Lowell, have entered largely into this branch of domestic industry, and now manufacture about a thousand dozen of the articles above named per day. A large portion of the labor is done by machinery; but much of it is given out as piece work, to be done outside the manufactory by persons who cannot leave their homes, and thus affords support to many who would otherwise find difficulty in obtaining employment. In this respect the business resembles the shoe manufacture more than any other branch of employ-

Method of Ventilating Ships.

In these engravings we have illustrated a new plan for effecting perfect ventilation, and tor obtaining at the same time a stronger and better vessel than commonly built.
Channels are made at intervals, as at A, by a peculiar arrangement of the timbers and of the planks and ceiling. These communicate with an i ir passage, B. The latter is open at the bow, and nas a valve, C, fitted to it, opening outward. This ralve is always pten under ordinary circumstances, being ke soo by
soaked or charged with the strong brine, applied before the vessel leaves the stocks, this being much the cheapest and most effective plan of salting the vessel, as by this course every cubic inch of the entire frame and every pore in it, is charged with the strong brine with which this space of 440 cubic feet is filled. The space between the timbers on top is filled in with chocks, so as to make the timber round the entire top solid; each joint being stop-watered so as to give a caulking seam at the upper edge of the deck clamps, and the out-board seam, which is on a line with the
a larger or smaller vessel. And here it may with truth be said, that the extra strength of the vessel would more than twice pay the extra cost, saying nothing about the extra durability and the double safety in having two skins in place of one, so that if a plank should be stripped off the out-board, the in-board planking would protect the lives and property on board. This plan further offers a very cheap and reliable way of testing the perfection and tightness of the work before the vessel leaves the stocks. By
inserting a three-quarter inch coupling in the out-

WELLS'S METHOD OF VENTILATING SHIPS.
a spiral spring. When a heary sea strikes it, how ever, it closes so as to prevent water from getting in.
The air enters this valre, and flowing down the air passage, B, finds its way to the channels cut through the timbers, in the manner shown by the engraving. Even if water should be in the bottom of the siip there are always channels open above to effect ventilation.

The space between the planking and the ceiling is divided by water-tight partitions above and below the decks, as shown in Figs. 2 and 3. These permit the spaces to be filled with brine to preserve the timber, if necessary, and they tend more particularly to prevent the ship from being loaded with water in case the external planking is broken.

It is claimed that vessels so constructed-that is, with an inner and outer skin, ventilated in the manner described, and prevented trom being overloaded with water-are saier, more durable, and less expensive in point of repair than ships of the ordinary construction.

In order to make this plan of constructing a vessel understood, it may be well to say, first, that timber begins to decay at the center of the heart, and the decay goes on more or less rapidly as its situation is more or less exposed, until it reaches the surface. In order to prevent this decay, it must have constant, active ventilation, or else the atmosphere must bo entirely expelled from il, as in the case of the keel of a vessel, or timber in other situations-when the absence of air is consequent upon the presence of water, and where the timber under such circumstances is found to be perfect atter the lapse of centuries. Either of the above plans can be used separate from the other, or they may be used together, or changed from one to the other without inconvenience, or much expense. Suppose, for example, we commence the construction of a single-deck vessel, 100 teet in length on the keel, 27 feet wide, and 8 feet deep, we side the timber for this frame 10 inches, molding it 10 inches in the throat, and 6 inches at the upper edge of the deck clamp, allowing 20 inches of timber for 24 inches of timher room. This will require 48 square frames, and 4 forward and 3 after cante.
By this arrangement it will be seen that the average space between the two.skins or between the out-board planking and the in-board planking, commencing at the upper edge of the deck clamp on one side, round by the bottom of the vessel to the upper edge of the deck clamp on the other side, is 8 inches, and the whole inner surface between the two skins is, if it could be spread out on one flat surface, equal to 100 feet in length by 40 reet in width, and, as before stated, 8 inches in thickness. This space is equal in bulk to 32,000 feet of inch boards, or 67 tuns cubic measure. Into this space the frame proper is to be put, and as we put 20 inches of timber in 24 inches of timber room, we claim five-sixths of this entire space for the frame proper; and five-sixths of 67 tuns is 56 tuns for the frame, leaving 11 tuns, or 440 cubic feet of space not occupied by the frame, to be filled with air or brine, as may best suit the views of the owner. The timber should be first thoroughly
-top of the deck clamps. This completes the air-tight arrangement between the two skins.
Next in importance is the plan by which active ventilation is at all times kept up. Supposing that most of the brine, which has previously filled the space between the timbers be pumped ofi; and the air let in to take its place. Air passages, or avenues, B, run the entire length of the vessel, and are carried out-board at the bow and stern by pipes made of boiler iron. These pipes are attached to each end of each opening, forward and aft. The openings are guarded by light valves C, as represented, which close when struck by a sea, are made on the under side of the thick streaks of ceiling past the frames by taking out of the under edge or corner of the thick streak, a score of 3 inches in depth and 4 inches in

width, and when these two thick streaks of ceiling are put together they form an opening of 3 by 8 inches. A half dozen of these openings on a side will at all times give active currents of air passing through the entire frame, the pipes at each end being at all times open, and from which no possible damage can be apprehended, any more than from the cast-iron pipes forward, through which the chains pass. The sides of a ship, with two or more decks, is to be protected in the same way, by being made air-tight between the between-deck water-ways, and the between-deck clamps, in the same way as before described in the single deck vesisel.
It is believed that this plan of construction and ventilation would be invaluable to the navy as well as to vessels in the merchant service, and the extra cost over the usual plan of building, in the vessels whose dimensions have been before stated, would not exceed five hundred dollars, and in that proportion for
board or in-board planking, and attaching a three quarter inch lead pipe to it, and elevating the other end of the pipe say 53 feet, and filling it with water; in this way a pressure of 25 pounds to the square inch is brought to bear on each square inch of the entire inner surface of both skins, or on the vessel whose dimensions have been betore stated, where the inner surface of the two skins is 8,000 feet, the entire pressure would be equal to $28,800,000$ pounds, or 14,400 tuns. This pressure would rapidly force the brine into every pore of the timber, and the salt required to make the brine to fill the before-mentioned 440 cubic feet not filled by the frame, would not exceed 86 bushels; the brine being as strong as salt would dissolve in water-as one gallon of Turk's Island salt will make 4 gallons of brine of this description. In removing the brine a small portion of it should be left on the dead flat of the floor to operate as a motive power to expel the air flrst trom one side then from the other, as the ship rolls to either side, the air is forced out on that side, while the surrounding atmosphere rushes in to fill the space for the elevated side, and in this way a change of air from the outside is constantly kept up in every part of the ship's frame.

A patent was procured on it Dec. 12, 1865, by Oliver D. Wells, of Westerly, R. I. For further information address Oliver D. Wells as above.

A Collapsed Oylinder Boiler.

Mr. Longridge, engineer to the Manchester Boiler Assurance Company, in his annual report, describes a very unusual accident, which occurred on the 30th October, at a bleachworks in the neighborhood of Bury, and, though not an explosion, it deserves notice. The boiler referred to was 30 feet long by 8 feet 5 inches diameter, made of plates varying from $\frac{5}{16}$ inches to $\frac{3}{8}$ inches in thickness, and had two internal flues 3 feet 2 inches ciiameter, made of $\frac{3}{8}$ inch plates. The ends were straightened by two longitudinal stays $1 \frac{3}{4}$ inches square, secured by straps and cotters, and there was a similar stay above the flues across the boiler near the middle. The boiler was insured to work at a pressure not exceeding 8 lbs . per square irch, and was provided with a safety valve $4 \frac{1}{2}$ inches diameter, loaded accordingly. It had also a steam pressure gage and glass tube water gage. About half past ten o'clock in the forenoon of the day mentioned the shell of the boiler collapsed on the right hand side, commencing about 3 feet from the front end, and fracturing through the line of rivets of the fitth circular seam, the collapse extending thence to the back end. The under side of the boiler was also forced upward about 2 inches for a length of 8 feet.
It appears that at the time of the accident there were no fires in the furnaces of this boiler, which was merely used as a steam reservoir, in communication with a range of pipes conveying the exhaust steam from some small high-pressure engines to the drying cylinders and bleaching kiers. There was, however, also a connection with five other boilers, working at
a pressure of 50 lbs . per square inch, by means of a self-acting equilibrium valve, so arranged as to supply steam at a pressure of 8 lbs . per square inch, in case of need. Shortly before the accident, the attendant observing steam blowing off from the safety valve of the low-pressure boiler (the pressure indicated by the gage being then about 9 lbs.), went to the equilibrium valve and moved the w:irht on the lever, in order to reduce the supply of steam, and was returning to the fire place when the shell of the boiler collapsed, as already described, accompanied by a noise resembling that of distant thunder.

It appears that the valves communicating with two or three of the bleaching kiers had just been opened, which by causing a rapid condensation of stean, must have produserl a partial vacuum in the pipes and low pressure boiltr, and thus caused the collapse, an accident which could not have occurred had there been a vacuum valve upon the boiler. Although lhis is the first instance of collapse of the sheil of a boiler which has come under his notice, Mr. Longridge has no doubt that other boilirs of large diameter made of light plates may at times become strained in the seams from the same cause; and as this can be so easily obviated by the attachment of an air valve, it seems advisable to apply one in such cases.-London Engineer.

FOREIGN SUMMARY.
It is estimated that 18,000 elephants are yearly killed to supply Sheffield alone with ivory.
Pouillet pointed out in 1822, that when a fluid is absorbed by a porus substance, a rise in temper ature takes place.
THE attractive force of a magnet being 150 pounds when freefrom disturbance, fell to one-halt by caus ing an armature to revolve near its poles
A magnet, the lifting force of which was 220 pounds when the armature was in contact, sustained $90 \cdot 6$ pounds when the armature was $\frac{1}{2} \frac{1}{5}$ inches distant, and 40.5 pounds when $\frac{1}{50}$ inches distance. Thus at $1-50$ th of an inch distance $\frac{4}{5}$ of the power are lost.

In 1852 the Wave Queen, on iron vessel, was launched by Messrs. Robinson, Russel \& Co., at Milwall. She was 200 teet long, and only 13 feet wide; engines of 80 horse-power; and she went to Denmark and back more than once. This is possibly the narrowest ship, for the length, ever built.

The cost of wax for sealing patents in 1864 is put down at $£ 157!$ As the seals weigh upward of two pounds each, could not a saving be effected in this item? There is an officer of state called "Chaffwax;" bas be any connection with the patent department?
The ancient conduits about Jerusalem are of wonderful structure. One, the lower level conduit, formed of stone, follows the contour of the country for twenty-five miles, passing along the bend of a depression in one case of 55 feet depth, and entering the city at an altitude of 2,450 feet. The other, the upper level conduit, is tunneled through a hill at one part, and the blocks are so keyed together as to form a complete siphon.

NEW PUBLICATIONS.

Woodward's Country Homes.-Those who contemplate building country houses and do not wish to consult an architect, can find a great variety ot designs to select from in this little volume. Hints on localities and choice of materials, selections of sites, etc., are given so that all tastes are likely to be suited.

The Horticulturist.-No magazine devoted to rural affairs is more welcome to our table than this one. It is not only clear in its descriptions of new plants, (ruit, etc., but has an additional value in its illustrations. These are varied in character and rela te chiefly to plans for country houses, new fruits, ornamental gardening, insect destructive to vegeta; tion, etc. The several articles are entertaining and without pretension to display.
Both published by Geo.E. \& F. W. Woodward, No. 37 Park Row, N. Y.
M. Carey Lea, of Philadelpbia, one of the most prolific and hest wịters upon current photorranbicic
subjects, has just brought out a very useful edition of Newman's little manual on a harmonious coloring as applied to photograpbs. The book contains valuable information upon the best modes of lighting and posing the sitter, with a chapter on the production of harmonious negatives. Messrs. Benerman \& Wilson, Philadelphia, are the publishers.

WOODWORTH'S CARRIAGE JACK.

A great many people in the world are contented to waste time with "make shifts" to do their work with, when, by a little outiay, they could procure approved torls designed expressly for the purpose, which would effect a great saving. We, and doubt ess many of our readers, bave seen men washing wagon wheels, greasing axles, and doing other work appertaining to them with the vehicle propped up on saw horses, on rails and similar defective arrangements, being twice as long about it as they would if they had proper appliances; such as a jack, for instance.
The engraving published herewith illustrates a con-

venient utensil of this class which is extensively used in some parts of the country. It consists, in detail, of a light but strong casting, A, having a bar, B, with ratchet spaces, C, cast in the same, working treely up and down inside of it. Attached to the top is a lever, D , having projections which work in these spaces, and below there is a pawl, E, which abuts against the teeth, and prevents the sliding bar from receding or slipping back. The long lever, D, does not work on a fixed center, but the same slides in a slot, F, so that the lever can be shipped into gear with the ratchet teeth when the axle is to be raised, and then withdrawn again and allowed to hang suspended, so that it is not in the way. The pawl, E, always takes the weight of the wagon so that it cannot call, and it may be thrown out of connection with the sliding bar, by simply pressing on the end; this permits the wagon to be lowered steadily.

A spiral spring is plact:l at the bottom of the case for the bar to rest on s. ;'jat it cannot jam the fingers of the person using it r sen handling it.

It was patented Dec. 5,1865 , by Albert Woodworth, of North White Creek, N. Y. Address him at, that place for further information. State righte for sale.

There are 3,089 miles of railroads in New York State, 962 engines, and capital invested \$84,816,200,

The Association for the Prevention of

 Boiler Explosions.At the monthly meeting of this Association, held at tbe office, Coporation street, Manchester, on Jan. 30th, Mr. William Fairbairn, C. E. (President), in the Chair, Mr. L. E. Fletcher, Chiel Engineer, in his report said that, during the last month 252 engines have been examined, and 388 boilers, as well as one of the latter tested by hydraulic pressure. Of the boiler examinations, 274 have been external, five internal, end 109 entire. In the boilers examined, 103 defects have been discovered, 8 of those defects being dangerous. Another case of funnace crowns being injured through over heating has been met with, which would bave been prevented hy the adoption of of e selfacting feed back-pressure valve, and by the eed inlet being fixed ahove the level of the turnace crowns. Since this subject has bean already gone nto, we need only to point out that the present is an additional case of injury which would have byen prevented by the adoption of the above precautions; and, theretore, affords an additional argument for attention to them. A most important case of external corrosion took place at the bottom of a boiler set on a midfeathr , and immediately where in contact with the brickwork. The extent of the injury, as is frequently the case, could not be soen until the brickwork was re moved; and, therefore, it is trusted that those members whose boilers are set on midfeather walls will not omit, in preparation for flue examinations, to have the brickwork plowed out where the transverse seams of the boilers rest upon, so that the cordition of the plates may be actually seen by our inspectors. Explosions this year are fullowing one another in quick succession, and if they continue at the same rate, the annual list will be a long one. Al ready, since Jan. 1, six explosions bave taken place, one of them of a very disastrous character, eight persons being injured, four of them fatally. The total return for the month up to Jan, 26 is six persons killed and seven others injured. Not one of the boilers in question was under the charge of this association.
An explosion, to which reference may be made, is one of those that will constantly recur so long as steam users continue boilers in work with ill-shaped furnace tubes, and persist in the neglect of the simple precaution of having these tubes strengthened with encircling hoops, flanged seans, or by other suitable means. This explosion took place at a mine. The boiler, which was not under the charce of this association, was of the Cornish class, having a single furnace tube, and being internally fired. Its length was 28 feet, and its diameter in the shell five feet nine inches. The diameter of the furnace tube is not so easily given, since it was of the most irregular shape. At the front end it measured four feet vertically by three feet nine inches horizontally. Midway in its length these proportions were reversed, its height being three feet nine inches, and its width four feet, while at the back end it measured three feet eight inches vertically, and three teet ten inches horizontally. There was not any part of the tube within at least one inch of the true circle, while there were other places more than tour inches out of shape. The thickness of the plates was about 3-8ths in. to 7-16ths inch, while the pressure cf the steam at the time of he explosion is reported not to have exceeded 20 lbs. per square inch. The furnace tube collapsed from end to end, but it was at the middle of its length, Where its width had exceeding its hight by three inches, that the collapse appeared to have commenced, and where the greatest amount of depression took place, the top and bottom of the tube at that part being almost crushed together. It appears that this boiler had nearly collapsed on a previous occasion, when it was repaired, and the furnace tube left in the distorted and thoroughly unsafe staie desciibed above. The fact of boiler-makers executing their work in this way, and being entirely ignorant of the danger that must resultfrom it, clearly suows the importance of competent periodical inspection; while this explosion is only anotber of those, already so numerous, that would have been prevented by the adoption of encircling hoops, flanged seams, water pockets, or water tubes, attention to which although so trequently called in previous reports, it is felt to be a duty again earnestly to urge, even at the risk of tedious renetition.

J. S. L., of N. C.-In our present system-or want of system-of measures, the word gallon has various meanings. The Imperial gallon, established by the British Parliament in 1825, holds ten pounds of distilled water, and measures 277.274 cubic inches. The standard gallon of the United States measures 231 cubtc inches, and contains 83338322 pounds avordupois of distllled water at a temperature of 3983 F .-the temperature of maximun
densitp-the barometer beng at 30 inches. The gallon of the ensty-the barometer \ddagger ngs at inches. The gallon of the State of Kev York bas a capacity of 8 pounds of pure water at its
 30 New York gallons per minute, the weight win be 240 pounds, -a little less than one-fourth of a horse-power; a horse-power to 33,000 pounds falling one foot per nilnute. In flouring mills from three to flve horse-power is required for cacl run of stones.
c. H., of Conn.-It your raise a weight over a sing . ., of Conn.- 1 you sine a pulley, of course the size or the pulley win have no enect except resistance to another, then the force required to raise a given weight, when applied to a pulley of constant size, will be in inverse proportion to the size of the rulley sustrining the resistance a carriage on large wheels runs more easily than one on small wheels mainly from its greater facility for overcoming obstruc tions in the road, thou the friction of the axles is also less.
C. S. F., of Ohio.-We should suppose that filling your cistern with exhaust steam would injure the cement. If gou try it will you please send us the result?
A. A. C., of N. Y.-The power that torces water up the stort leg of a syphon is the weight of the atr pressing upon the surface of the water; this will never raise water at the surface of
 boiler to your \in nzine 1,003 feet, with no percentlole loss of press re, provided your pipe is of suticient size, and with little loss rom condensation if sour pipe is well buricd in wod ashes or other slow conductor of heat
R. McK., of N. C. $-33,000$ pounds of water per minute fallug one foot produces one horse-power, and a cubic foot of water weighs $621 \frac{1}{2}$ pounds.
A Subscriber, of Pa.-If you construct a beehive that will prevent the escape of the queen bee you will stop the propa gation of the bees, as colabitation takes place high in the air, during the hymenal flight of the queen with one of the males or rone
H. S. B., of Ohio.-As emery is much harder than magnetic oxide of iron, it is unversally consldered superio
grinding material. D!d you try your experiments fairlg?
A. S. C., of N. Y.-We believe that some of the French clock cases you refer to are made of conl
D. W., of Md.-You had better be careful about scraping the varnish oft your black walnut gunstock and applying the dses published in the scientific americas. They are well enough on new wood, but where previously saturated with oll and varnish, may not work weh. An ounce troy cont ans 480 grains acd 12 ounces make a pound. An ounce aveirdupois contains $47 / 2$ grains, and 16 ounces make a pound. A grain is the same in both cases; a pound troy is equal to $5,7 i 0$ gralns, and a pound avoirdupois to 7,000 .
E. K. W., of Ill.-Wax for making flowers with is generally made into sh ests by rolling it. The clothes wringers ought to answer very well tor this purpose if the rolls are not injured.
S. H., of Durham, Eng.-The terms of our paper are $\$ 3$ per annum, to which must be added the usual international D. P , of Ind Yourwill find a water-proof cement C. D. P., of Ind.-Youl will find a water-proof ce sold in all saoe-ind
Neptune, of N. Y.-The steamer Adriatic was sold to an Irish company, and is now in service in Engish waters. At the time she was designed and built she was the fastest ship afoat. W. K. T., of N. Y. -If we should insert nothing in our paperbet what is known to a few, we are a fraid our readers would consider that we were a little behind the age.
D. C. M., of Pa.-The verdict of the jury on the boileriexplosion case that you were so attentive as to send us, is the stercotsped one in all such disasters. In sea-going steamers sur face condensers are generally employed. In these the steam is condensed without coming in coutact with the water, and when so condensed is fresh wate , and pumped into the boiler again.
H., of N. Y.-The steel you send us is colored by temper, but that is not the way watch hands are tinted.
W. K. T., of Pa.-Oils are extracted from seeds by nsdraulic pressure.
W., of N. Y.-Iion, in bcing heated from 32° to 212°, expands in length oar inch in 81
S. E., of 1H1.-Address Henry Carey Bailrd, of Philadelphia, for works on tie mechani, arts
G. W. M., of Va. - Watt made a series of experiments on the: poser o: horses. and came to the conclusion that the average poser of a horse was sufficient to raise about 33,000 pounds one toot lifth per minute; this has consequently been adopted a the measure of a horse-power. Your heavy oxen would probably have about the same power.
J. B., of Mich.-All works on chemistry describe the compositign and properties of the atmosphere; Booth's Encyclo pedia of Chemistry has an admirable article on the subiect.
C. W. F., of N. Y.-The thinner your steam pipes the more rapidly will you evaporat? the liquid in which they are laid. W. J. V., of N. Y.-The pattern in Brussels carpet is woren in.

(0)E

Castings fronl Iron Patterns.

Messrs. Editors:-There are many facts connected with this question, propounded in your issue of the 24th inst.: " Why doєs cold iron float upon molten iron ?" which are worthy of investigation and solution. I have, for nearly thirty years, been connected in one way or another, with the operation of the iron foundery, and have often observed the phenomenon above referred to, and never have I known a piece of codd or even hot, but unmelted, iron to be dropped into molten iron that did not float upon the surface until entirely melted, except in case of its adhesion to the sides or bottom of the ladle-no matter how often it was forced beneath the surface. This lact seems conclusive evidence that the molten bas greater specific gravity than cold or unmelted iron. But this fact and conclusion is apparently irreconcilable with the seeming if not real fact that a casting formed in a mold of given dimensions is less, when cold, in its corresponding dimensions than the mold in which it was cast. Now the question arises as to the real or imaginary fact here referred to. Two facts are known to every founderyman: First, that castings are less in at least some of their dimensions than the patterns that they are made from; second, that castings made from iron patterns (we of course mean cast iron), are usually, though not invariably, heavier than the patterns they are made from. These differences are readily accounted for; but the question as to whether castings are naturally less in all their dimensions than the patterns from which they are made is one I am not prepared positively to answer. This is the point that needs demonstration, and if the affirmative be substantiated, then comes the question of reconciling the apparent paradox.
Castings are undoubtedly more or less dense accordiner to the nature of the mold in which they are cast, and I think it likely that it a casting were made in an unyielding mold, and as soon as made was so securely confined as to make any expansion of it during ite transition from the flaid to the congealed state impossible, when it becomes cold it will imme; diately sink if carefully placed upon the surface of molten iron, aud will not appear upon the surlace again, at least until it has become so nearly melted as to relax what, in common parlance, we call the grain. These remarks, which are mostly suggestive, I hope will induce some person who has solved the problems connected with this subject, or who is in possession of information respecting the results of experiments made, to give us the benefit of the knowl edge through the medium of your journal, or, at least, by referring us to the published work, if there be any, containing the desired intormation upon the points embraced in the discussion of this subject.
H. P.

Philadelphia, Feb. 28, 1866.
[We should like to know how our correspondent satisfied bimselt that caspings made from cast-iron patterns are heavier than the patterns. The statement seems incredible.-Eds.

On Gears.

Messrs. Editors:-I notice in your paper of the $3 d$ instant a communication from "Inquirer," in regard to the pitch of gears. The question be asked may be decided by considering the principles of gear wheels. When gears work into each other points in each describe circles called pitch circles. It now we conceive of two wheels, one of forty and the otber ot four teeth, to be placed together, there will be a point in them common to both pitch circles, or a point of tangency. Lay off from this a distance equal to the pitch on the larger wheel. Revolve the wheels until this second point becomes the tangent point. All points in the pitch measured on the large pitch circle, and which are approximately on the circle itselt, have coincided with the smaller one. Hence it is evident that on the small wheel the distance from the first to the second point must be measured on the pitch circle, and this distance is also the pitch. A good way to do this would be to take, say onefourth of the pitch, and lay it down four times on the
pitch circle, so obtaining the consecutive points for teeth. On large wheels the chord so nearly coineides with the arc that this consideration may be disregarded.
L. S. Austin.

New Haven, Conn., March 3d, 1866.

Light in a Bowl of Water.

Messrs. Editors:-There is one phenomenon of light for whick I beg an explanation. I allude to the peculiar illumination which takes place under certain circumstances, at the foot of a column of falling water. For instance: You set a white earthen washbowl on the floor or on a stand near a window, at which the sun is shining in. Let a sunbeam pass over the bowl or even strike its edge. Now, from a pitcher held two teet above the bowl, pour a balf-inch stream of water into it, and you will observe that the column of falling water, at the point where it strikes; the bowl, and for half an inch up its length, is almost as bright as a spot of sunshine itself. You may vary the experiment, a thousand ways with resulte diferingr only in the intensity of the illumination, and the presence of sunshine is not always necessary. Why this illumination at all?

Argent.
Paoli, Ind., Feb. 28, 1866
[The appearance, doubtless, results from the refraction of light in its passage through the several particles of the broken column of water, and the reflection of light from their surfaces. One of the most brilliant experiments ever exbibited in a lecture room, is the throwing of the electric light upon a column of falling water; the numerous reflections and refractions produce precisely the effect ot a cascade of light. This dazzling experiment has been exhibited in England, but not, so far as we are aware, in this country.Eds.

Relating to Screw Taps

Messrs. Editors:-There has been quite a dispute in the shop where I work about filing a tap after it is finished, and I should like to have your opinion on the subject. One man says, that after a tap is futed, in filing it up, that from the top of the threarl to the bottom of the flute it should be filed perpendicular; while another one says that it should he filed under, more in the shape of a hook. The most of the hands agree with the last statement.
Another point on which some disagree is in the way the top of the thread is to he lett. One says file the top perfectly square, another not at all; and, another, that the cutting side should be left higher han the back side, so that it will not drag. This refers more particularly to the so-called square aps.
I am an apprentice in the shop where this discus. sion happened and should like to know the correct way to make a tap in the particular parts.

> W. W. Tarbox.

Providence, R. I., Feb., 28, 1866.
[A tap is nothing more than a series of screw cutting tools made on a shait, each tooth of the tap being a tool. It is there!ore necessary to file them so that each will cut and none drag. No more should be filed off the back than is necessary to make it clear well, otherwise it will be weakened, an:l the same applies to the front or cutting edge. It it runs under, the tooth is not only weakened at first but its tendency is to hook or draw in too rank and thus break. It is easy to make any tool cut like a razor for a dew times, but what we want are tools that will stand day in aud day out. Every one has his own ideas about these thinge, but we prefer to have taps clear behind and not too much cut under on the working edge-this makes clean sharp threarls and safe tools.-Eds.

How to Make Babbitt Metal.

Messrs. Editors:-I never had a chance to get your valuable paper till this year, and I find myself about forly years behind the times. I have been running engines for oeveral years, and find it difficult to get a good article of Babbitt metal; I have no doubt you have told your subscribers how to make it, but it would oblige me very much if you would insert t again.

David Stout.
Bloomingdale, Ind., Feb. 5th, 1866.
[We do not remember having inserted a recipe for this metal, and therefore give it. It is made in the following proportions:-One pound of copper, one pound of regulus of antimony, and ten pounds of tin.

Melt the copper first, then the antimony, then the tin, strewing charcoal powder over the crucible to prevent it from burning away. Cast it in bars. It should not be kept hot on the fire any longer than is allsolutely essential. Wash the box to be t:nned with alcohol, and then sprinkle powdered sal ammoniac on it, hold it over the fire until the same fuses, then plunge it in melted tin. A'l parts not to be tinned must he washed with clay. Muriate of zinc, that is, zinc cut with muriatic acid, may be employed instead of the ammoniac, where it can be obtained. When the box is tinned it will take the Babbitt, but it must be pretty loot before the Babbitt is poured in.-EDs.

Ho Color Watch Hands Red

Messes. Editors:--1 spe in your paper a query as to how to make watch hands real. Add to any alcohol rarnish searlet aniline color to suit taste, and apply to the well-polished gold or trass watch hands with a soft camel's hair pencil. W. G. Starke.
Zanpsville, Ohio, March 5, 1866.

nother.

Messrs. Edirors:-In reply to a question in your paper, I would say, I have used a solution of dragon's blood in alcohol, tor giving the red color to watch hands, and find it gives he desired shade.
C. Leavitt.

Windsorville, Cenn., March 1, 1866.

another.
Messrs. Editors:-In your last number of the Sar entific American, I saw the question, "How is the red color given to the hands of a watch ?" I have a methon which was given me by a watchmaker, the truth of which I cannot vouch for, as I have not yet hall an opportunity to try the experiment; it is as follows:-Mix one ounce of carmine powder and one onnce nitrate of silver with one-half ounce of tinner's japan. Mix them in an earthen vessel over a lamp until a thick paste is formed. Then dip the lamers into this paste and lay them on a copper plate waich is to be then subjected to the heat of a lamp until the color is produced.
North Brillgewater, Mass., March 2, 1866.

The Way to Galvanize Cast Iron.

In compliance with the request of a correspondent, we repullish the following directions for zincing cast iron:
Messrs Editors:-For the information of E. D., and others, I place at your disposal some experiments made by myself in galvanizing small cast-iron articles, such as gears and other small parts of machinery. I heated the castings to be galvatized to a red heat, I then plunged them into a bath of clear muriatic acid, to detach the scales and to thoroughly clean them: they are then immersed in a bath of melted zinc. As soon as the iron has attained the melting heat of the zinc they are removed. In this way I have made some beautiful galvanized castings. Great care should be taken, or in plunging the articles into the zinc, while wet, the zinc will be thrown in the face of the uperator. The zinc should be covered with sand, and the casting must be immersed very slowly.
Worcester, Mass., Oci. 14, 1865.

Items.

Mrssrs. Editors:-The following items, results of ny own experience, may be of interest to some of your readers:
Solvent for Suellac.-Coal-ar naphtha will dissolve it pertectly. This is not expensive, and can be furnished at about seventy cents per gallon-perhaps cheaper. The orlor, however, is offeeisive. Coal oil or petroleum napltha will not answer.
Burning Fluid or Camphene.-One part spirits of turpentine, niue parts alcohol. They mix readily. I make my own fluid and have used it for years.
In a late number, you mentionel starch for paste. Add to the starch alter it is dissolved and ready for use, a little alcohol; this makes a mechanical mixture, not a chemical one, preserves the starch a long time from fermentation, and ooes not interfere with the alhesiveness of the paste.
I amglad to see that the United States Revenue Commission advocate a reduction of the tax on raw whisky. The present high price of alcohol is a severe tax upon the chemist, druggist and experimenting technologist.
Boston, March 6, 1866.

To Tighten a Scroll Chuck.

Messrs. Editors:-I noticed some time ago that you gave an answer to a machinist about a milling tool which, although a little thing, has interested many in this vicinity. Would you give me your opinion on this point?
A great many scroll chucks are in use all over the country, and they are very handy tools. There is one trouble, however, and that is setting them up. Sometimes after you get a piece to run true on the face, if you endeavor to set the jaws tighter it is ten to one but that you screw the wrong way and slack them off, thus losing all the time you spent in straightening the job, besides bruising it and the lathe shears if it falls out, as it is sure to do it heavy. Is there any way to tell which way to turn the diaks so as to be sure you are right ever time?
R.S. C.

Newark, N. J.
[It is easy to tell in a chuck that has been used some time by looking at the edges of the holes. They are burred up on the working side. Every new chuck should be nea!ly marked with arrows pointing in the direction of the threall, close to the holes.Eds.

Capsuling Bottles with; Gelatin.

At a recent meeting of the Pharmaceutical Society, of London, Mr. Haselden read a paper " (On Gelatin as a Material for Capsuling Bottles." He began by reading an extraet of considerable length from an article in Temple Bar, entitled ' Patents and Patentees, " in which the story of the litigation in the matter of Betts' patent metallic capsuies is very well told. The article alter telling this story, goes on to suggest an eflicient substitute for metalic capsules, as tol-lows:-
' We beg leave to suggest to them a most efficient substitute for the patent metallic ca, isule-namely geiatin applied precisels in the same way as sealing wax or rosin-that is to say, in its melted condition, the top of the bottle being dipped into it. It is obvious that by repeated (ippings after cooling any thickness of capsule may be effected. We must observe, however, that gelatin is too brittle when used alone, but fortunately science suggests a ready ant effectual ' alloy,' acting precisely like the lead of existing metallic capsules. This alloy is glycerine -that curious substance of which we may say that it is impossible to decide to what purpose it may not be applied. The proportion in which it may be added to the melted gelatin, to give it pliability and toughness, is thout one ounce and a-half to the pound of the latter, well stirred in.
"Of course, any colors may be given to these capsules, either for ornament or to distinguish readily the various liquids or other preparations.
"In hot climates there are voracious insects that attack and eat everything-and, of course, they are ond of all animal matter-so that the gelatin capsule will be endangered. But here again we are ready with the remedy. Bitter aloes and other repellants may be arlded to the melted mass to secure this opportune rival from those tropical plagues.
Mr. Jaselden exhibited a variety of loottles capsuled in variuus styles with gelatin-some with the corks standing up and tied over with gutskin, or leather before dipping in the gelatin; others with the corks cut flush with the mouth and not tied over. All of these had a pleasing and even clegant appearance. The plan the author recommended was to melt the gelatin in as little water as possible, and then to add the glycerine. The color could be given by any convenient material, such as white lead, vermillion, or gamboge. A transparent solution could also be used, and then any trade mark miglt be fixed on the cork hefore dipping in the gelatin. Three dippings he had found were sufficient to give a firm protective covering. As regards the cost, he believed it was not equal to that of the metallic capsules.
In answer to a doubt expressed that the gelatin capsules would not resist moisture, Dr. Redwood mentioned that copaiba capsules withstood damp well, and suggested that a dip in a solution of tannic acid might render the capsules more repellant. He stated also that gelatin absorbed three or four times its weight ot water, and suggested that the best way of preparing the solution would be to cover the gelatin with water, leave it standing for a night, pour
off the water not absorbed in the morning dissolve by heat, and then add the glycerine.
A vote of thanks to Mr. Haselden was passed unanimously.-Chemıcal News.

Hydraulic Lifts for Cupolas.

At the Messrs. Grisseli's works in the Eagle Whart Road, some very simple hydraulic hists are in use for raising the materials to the firing stages of the cupolas. They each consist of a small iron table, raised by a ram $6 \frac{1}{2}$ inches in diameter, and guided by a frame of angle-irons. The pumps liy which the water is supplied to the hydranlic cyiinder, are worked by a belt from the shalting of the shops. They are fitted with a cock placed upon their sucion pipe, and another cock is placed upon the discharge pipe leading from the hydranlic eylinder to the tank from which the water is drawn. When it is desired to raise the litt, the cock on the discharge pipe is closed, and that on the suction pipe opened by one motion of a lever. On the arrival of the lift at the proper height, a projection on the table strikes a lever, and closes the cock on the suction pipe, and the cock on the discharge pipe still remaining closed, the table is supported in its position. When it is desirell to lower the lift, the lever, which we have already mentioned, is merely pushed a little farther over, when the cork on the discharge pipe is.opened, and the water being released, the table descenils by its own weight. In case of accident to the cook gear, the table is prevented from rising too high hy a hole being formed tbrough the lower end of the ram, so that when this rises above the packing of the cyliuder it allows the water to escape as rapidly as it is pumped in. The hoists will raise about 2 tuns each, and were designed by Mr. John Ives, the head foreman of the works.

Captain Turner's Trigger.Guard Lock.

We have received an ingenious little contrivance invented by Capt. Henry Tarner, of the 3d Manchester Rilles, the olject of which is to prevent the possibility of a rifle or gun being used without the owner's permission. It consists of an ordinary lock affixed to one of two cbeeks of brass, which, when in use, box in, so to speak, the trigger. The gran may be cocked, and even cleaned, it necessary, but the hammer once raised cannot be let do wn again, as the trigger is iuaccessible while the lock is on. The lock we have before us is intended for the Enfield, but of course a similar lock could be easily made to fit any gun, and, as the inventor points out, its adoption would nearly insure security against the various accidents which arise from leaving loaded guns about a house. Captain Turner believes his invention to be original, but is satisfied with the credit of devising it, and gives it freely to the public.-Volunteer. Service Gazette.
[Captain Turner has been anticipated in this country by at least one person. The American trigger guard consists in a spring so placed and made that no one but those in the secret of it can cock the gin at any time.-Eds.

American Corn at the Great Exhibitions. At the last meeting of the Farmers' Clul, Mr. Car-penter announced that be had molertaken to collect and present at the great Paris exhibition specimens of the parious kinds of Indian corn raised in the comtry. It any man has a variety of corn which is peculiar in any respect, he is requested to smid a sample to Mr. Carpenter. The sample may be either a couple of ears or two or three kernels, and it should be sent in all cases hy mail; the postage on seeds is right ceuts per pound. The address is W. S. Carpenter, 156 Reade strect, New York.

Mowers,
 Reapers, Seeders, Cultiva

Since the close of the war many of our old readers and subscribess at the South bave made themselves known, and the Scientific American begins to circulate quite extensively in all that region. We have very frequent inquiries from Southern readers tor the best Mowers, Reapers, Seeders, et?. We think that the makers of these articles would do well to advertise permanently in the Scientific Americin.

The Whipple File Company is reported to havs failed for \$750,000.
the practical valde of agricultural CHEMISTRY.
A great deal of falsehood and nonsense has been published in regard to the chemistry of agriculture, as there has in regard to all other subjects. From the peculiar difficulty of separating truth from falsehood in this department of knowledge, erroneous statements here have been more mischievous than in other departments, and have brought the science into somewhat general contempt. But this contempt is not justified. Agricultural chemistry-when its established conclusions only are accepted-will lead no man into error. Dr. A. Voelcker, the appointed chemist of the Royal Agricultural Society of England, thus states what may be determined by the chemical analysis of soils:-
"In the first place I would remark that the chemical analysis of soils can give very decided answers to the following questions:-
"1. Whether or not barrenness is caused by the presence of an iojurious substance, such as sulphate of iron or sulphide of iron?
"2. Whether soils contain commou salt, nitrates, or other soluble salts that are useful when highly diluted, but injurious when they occur too abundant15 ?
"Whether or not barrenness is caused by the preponderance of organic matter, or lime, or sand, or pure clay?
"4. Whether sterility is caused by the absence or deficiency of-
a. Lime.
b. Phosphoric acid.
c. Alkalies, especially potash.
d. Or available mineral (ash-constituents) matters generally.
"Whether clays are fertile or barren?
" 6 . Whether or not clays are usefully burnt and used in that state as manure?
"7. Whether or not land will be improved by liming?
" 8 . Whether it is better to apply lime or marl, or clay on a particular soil?
"Whether special manures, such as superphosphate or ammoniacal salts, can be used (ot course, discreetly) without permanently injuring the land, or whether the farmer should rather depend upon the beral application of farm-yard manure that he may resto.e to the land all the elements of lertility removed in the crops?
"10. What kinds of artificial manures are best suited to soils of various compositions?
"11. Whether deep plowing or steam cultivation is likely to be useful as a means ot developing the natural stores of plant-food in the soil?
"12. Whether the food of plants in the soil exists in an available or inert condition?"
Is it not plain that a positive knowledge of these twelve facts would be of considerable value to nearly every farmer? If not in every case, certainly in most cases, they would enable a cultivator to so direct his labor and the application of his manures as to increase the product of his land.
In one respect a knowlede of the chemical composition and growth of plants is of practical value to every agriculturist-that is, in the satisfaction derived from the possession of the knowledge. Why is it advantageous to a man to increase his crops? Because this increase enables him more abundantly to provide food, and clothing, and shelter-to satisty more completely the needs of his body. But the gratification of animal wants, though the most imperative, is not the sole end of human exertion, "For there is a spirit in man, and the Almighty has given him understanding." The spirit has wants, the gratiflcation of which contributes as positively to the happiness of a man-as practically promotes his well being-as the gratification of his animal desires.
Where is the farmer so stupid that he would not make some exertion for the sake of understanding with clearness and certainty the composition of the plauts which he cultivates? Who is not gratified to know the nature of the sixteen elemen's which enter into their structure-to ascertain which of these are drawn from the solid earth and which from the invisible air? And, finally to learn all that can be known of the decompositions and recombinations which are perpetually going on in the green laboratories that convert his soils and manures into his.
ripened blades and grains? If there be such, for him agricultural chemistry is of no practical value except to direct his labor more profitably, and thus to fill with larger harvests his cribs and barns.

GOODFELLOW'S PISTON PACKING.

These engravings represent a new method of packing steam pistons so as to render them tight and capable of being subsequently adjusted as they wear without removing the follower or taking the piston part, as is generally done. Fig. 1 is an elevation and plan view, and Figs. 2 aud 3 represent the details. There are three rings as usual, but instead of

being flat inside they are beveled, as shown in Fig. 2. These rings are also split, and fit one over the other, as in all ordinary pistons. To expand them against the bore of the cylinder the inventor provides a steel spring, A (see Fiz. 1), and a coned plug, B. This screws into the botiom plate of the piston, and

tarning it forces the plug against the sides of the spring, and presses it apart, thereby opening the packing in an obvious manner. The inner ring is nicked for a portion of the circumference to render the distension equal at all points.
The inventor claims the following advantages for his arrangement:-A peculiar feature is the shape c_{1}
the rings and the steel auxiliary spring combined. The rings are made of cast iron, for when composition is used they expand more when hot thau the cylinder, and are thereby liable to bind and cut it. Pistons in which the elliptic spring is used are liable to wear uneven and press closer on one side than the other, but as this packing is not so acted upon, it is self-adjusting and therefore wears evenly. Owing to the wedge-like shape of the rings they obviate the corrosion of the edges of the rings and flanges of the piston by keeping the rings not only steam tight gainst the sides of the cylinder, but also against the flanges of the bead and follower.

One of the best features of this piston is, thatwhile it is perfectly steam tight, it is without excessive friction found in the common packing. This is owing to the peculiarity of the inner ring, it being grooved deeper toward the opening, and also to the eccentric, C, shown insile of the inner ring, which makes it not only very elastic but tends to equalize the pressure of the rings throughout the circumference of the piston. It is not liable to get out of order, neither is there danger of misplacing any of its parts as there is in many other kinds of packing.
Patented Dec. 12, 1865, by S. Goodfellow. For further information concerning this piston, address J. T. Goodfellow, agent, Troy, N. Y.

Costly Axle Greasc.

A gentleman who enjoys a country seat in Virginia, received a complaint from his carriage-driver against some patent axle grease he had sent out from the city, and on investigation ascertained that the Fenian bad been greasing his wheels with some cans of pate fore gras he bad provided for lunching.
"Pate de foce gras," is a pie of fat geese livers. They are made in Strasbourg, France, and imported to this country at a high price. The only grease about them is a thin coating of leaf lard to preserve them from change. The "Fenian" probably supposed the lard was to apply to the axles.
M. Perrott has communicated to the Academy of Sciences at Paris an account of his apparatus for producing very high temperature by means of soal gas mixed with atmospheric air. He nnites a certain number of Bunsen's burners,so that their flames may form a single band of flame without penelrating each other, and thus obtains a column of heated gas, of intense caloritic power, in such a position that its energy may be readily controlled. Into this he introduces air in such a manner that as little heat as possible shall be lost. With an apparatus consuming two cubic meters of gas per hour, he states tbat he has been able to melt 670 grammes of silver, and in 30 minutes to melt and run out into bars a kilogramme of copper,

Frientifir Amprican

MUNN \& COMPANY, Editors \& Proprietors.
 PUBLISHED WEEKLY AT
 NO. 37 Park row (Park building), NEW tork

O. D. MUNN, S. H. KALES, A. E. BEACH.

VOL. XIV., No. 13..[NEW SERIES.]. Twenty-first Year
NEW YORK, SATURDAY, MARCH 24, 1866.

Contents: (Illustrations are indicated by an asterisk.	
*Williams's Furaace tor Puddling Iron \square	
Counter Weighting Machinery 192, Hydraulc Lifts for Cuppras. 197	
Heating Air bry Compression. ${ }_{\text {Mushroom Ketchup }}$	American Corn at the Great
American Cotton Stockings.. 193 A Exbitition 197	
Wenhipsethod of 194 tivators, and all Kinds of 197	
Collapsed	
reign	
*Woodworth's Carriage Jack.. 195	
Castings from Iron Patterns.. 196: of Patents Report....... 199	
Lightin a Bowl of Water 196i Launch of Winan 's Fourth	
How to "ake Babbit Metai. 19 Cl Patent Claims ... 20	
Items............................ 19	
REMARKS ON THE COMMISSIONER OF PATENT'SREPORT.	

In our last number we published complete the interesting and valuable report of Commissioner Thea ker, in which he presents a tabulated statement of the marvelous progress of invention in our country since 1837, at which time the present system of granting patents was put into practice. The general progress of the country during this period of thirty years has keen in exact proportion to the activity of mechanical ingenuity. The two have kept pace with each other, and we may reasonably expect that this parallel will continue so long as our laws are so admirably adapted to toster and protect inventions.
The Commissioner declares that the present patent system has been so uniform for many years that any material alterations would be objectionable. He suggests, however, several minor amendments which are more or less important to the proper transaction of the business of the Office.
We heartily endorse his recommendation that provision be made for the removal of the Agricultural Bureau to some other building.
The business of the Patent Office has increased so rapidly that all the availablespace in the building must soon be needed for its legitimate business. Congress cannot act too promptly upon this suggestion.

We trust also that the Commissioner's views in regard to the preparation of matter for the annual reports may be adopted. The last report published is that of 1862. These reports lose much of their value and interest from the tardiness in getting them out, and but for the Scientific American the country would be comparatively ignorant of the progress of invention.

We regret tbat we cannot endorse the Commis. sioner's recommendation that an extra fee of ten dollars ought to be paid when an appeal is taken from the primary examiner to the examiners-in-chief. It is possible, and more than probable, that frivolous cases are appealed to the Board of Examiners, but this objection, we think, is not sufficient to warrant the extratax of ten dollars in all appeal cases. The Board, composed of three persons, at a salary of $\$ 3,000$ each, was established on purpose to conserve the interests of applicants for patents who might fail to convince the primary examiner of the merits of their claims. There ought certainly to be some tribunal in the Patent Office, where an appeal can be taken in all disputed cases, and that, too, without extra expense to the inventors. During the year 1865 there were filed 10,664 applications for patents, and of this whole number only 465 appeals were taken to the Board-less than one-twentieth of the wholea proportion by no means extraordinary. This would give 155 cases per annum to each examiner in-chi-f, and two working days to each case, We would suggest as an amendment, that if the present Appeal Board has more cases than can be properly disposed of, let the force be increased, but do not impose an
additional tax upon inventors who now pay enough or their patents. If the patent fund was not sufflcient to meet the expenses of the Office the case would appear to up different, but such is not the fact. There are now over $\$ 130,000$ surplus to the credit of the patent fund. The receipts last year over all expenses were $\$ 74,59250$. We can therefore see no good reason why inventors should have their appeal privileges abridged-raṫer let them be extended.
The Commissioner recommends a change in the aw that now works a forfeiture of the applicant's rights, after allowance of the patent and failure to pay the second fee within the limit specified by the law. His proposed amendment enables an inventor, who has been absent on duty in the army and navy, to show the Commissioner that failure to pay was caused by absence on duty in such service. This is a good suggestion, but it does rot go quite far enough. The rebellion having ceased, there are a large vumber of inventors who were residents o States in rebellion, and whose claims lapsed under the limitation of the act of 1861. Some cases of tbis character of great hardship have recently come to our notice, which ought to be mitigated; therefore we hope the proposed modification will be so drawn as to give the Commissioner discretionary power to grant relief in such cases.
On the whole, the Commissioner's Report is a very excellent and practical document.

FIRE-PROOF WORKSHOPS.

Considering the inflammable nature of factories, and the materials used in them, it is surprising that so few fires occur. When they do, however, the destruction is great and the loss felt far and wide-not alone by insurance companies and the owners, but by those who depend upon them for a living-by the wives and little children of the workmen.
Destructive fires are continually occurring in factories with all the precaution that can be taken. Where the buildings are not fire-proof, a little carelessness or the hand of an incendiary may destroy the labor of years. The burning of Colt's pistol factory is a case in point; a disastrous fire broke out in the Springfield armory, a short time ago, and many other instances might be adduced which would show that accidents of this nature will happen in the bestregulated concerns. The only remedy seems to lie in making the buildings practically incombus tible, or, at least, in so arranging them that the dam age would be confined to one apartment. There are many ways of effecting partial exemption from ire which might save buildings not fire-proof. One ot these we saw recently in an Eastern factory. The structure was of brick, and the floors wood; in all respects save one it was a common factory. Thirs exception was in the floors, which were made clouble, or water-tight, and at the point of juncture of floor and wall, every crevice was thoroughly sealed. Provision for flooding the apartment was at hand, and when so flooded the water wou'd cover the floor to the depth of an inch or more. It may be urged that if the fire got so far under way as to render the flooding necessary, the walls would be bulged by expansion and render them no longer tight.
The Merrimac Mills, in Lowell, Mass., were fitted with the provision spoken of, but it was found of no utility. The fire started at one end and burnt through the floor, which being saturated with oil consumed in spite of the water rushing over it. One of the mills burnt to the ground.
At West End, New Jersey, a few miles from this city, a large iron building is nearly completed for Messrs. Giles, Wales \& Co., who intend manufacturing watches on a large scale. It is one of the finest in the country. It looks like a Crystal Palace from the size and number of the windows; the traveler who passes can see through from one side to the other. The building is 253 feet front, and is threestories high with a basement in addition. There are 606 windows in it, 10 feet high by 5 feet wide; the columns between being only one foot wide.
The Wheeler \& Wilson Sewing Machine Company are about to build a fire-proof factory in Bridgeport, Conn., for their business, which will cover two acres of ground. It will be the largest and finest workshop in Connecticut, and be fitted with every preventive against fire. Doubtless other concerns of
bich we are not informed are being warned in time and are taking similar precaution.
Even thougn property is insured for every cent of its real value, the loss is not met, for the delay in filling orders, and the conseauent diversion of trade nto other channels, can hardly be estimated.
The subject of fire-proof workshops is one of so much importance that it commends itself to the atcention of all large manulacturing concerns. It would be the work of years to re-build all the machinery now used in the Wheeler \& Wilson Sewing Machine Co's factory. The loss of their machinery, hough heavily insured, would be a loss of their business; hence this Company now employs several careful men to watch their establishment.

LAUNCH OF WINANS'S FOURTH CIGAR STEAMER.

In our issue of November 6, 1858, we gave an elaborate illustration of Winans's cigar steamer then in process of construction at Baltimore, Md., and in our comments at the tirre we prophesied the failure of the vessel-a prophecy that was signally fulfilled. The last number of the Lmilon Engineer has an account of the launching of another vessel on the same plan by Messrs. Winans. She was launched sideways on two cradles, in the same manner as the Great Eastern. The Engineer says that this is the fourth vessel which has been constructed by Messrs. Winans on this cigar pattern. The places where these were constructed, with their principal dimensions, were as follows:-
1st. In Baltimore-length 635 feet, diameter 16 ft . 2d. In St. Petersburg-length 70 feet, diameter 9 ft . 3d. In Havre-length 72 feet, diameter 9 feet.
4th. In Isle of Dogs-length 256 ft ., diameter 16 ft . The propeller of the first was placed around the middle of the vessel; the second had a propeller beneathher bottom; the third is fiteed for trying propellers in various positions; and the fourth has a propeller at each end.
From thase numerous experiments with the propelling apparatus, it seems that the projectors are wedded to the belief that the cigar model is a good one, though nearly all ship-builders regard this model as condemned by the most obvious principles of common sense, as well as by the established conclusions of science. It the vessel was to be wholly submerged the form would be excellent; but as she is to float at the surface, the submerged portion only will act upon the water, and it seems to us thal the form of that portion is very badly calculated to overcome the resistance of the water.
In the case of a sled, it is well to have the forward end rounded upward in order to compress the snow downward beneath the runner, but water is so little compressille, that the action of a ship upon it in this way is inappreciable-it can be displaced only by being pushed aside; therefore, the vertical wedge is the best form for a ship's bow-and the sharper the wedge the greater may be the velocity of the vessel with any given velocity of displacement of the water. In the spindle ship the vertical axes of the submerged portion of the bow are very blunt in proportion to the relative length and breadth of the vessel, and the sloping from midships upward is of no use.
Again, the resistance of water to lateral displacement increases with the depth from the surface, hence the importance of light draft. The best form of bottom for light draft is one of equal immersion from stem to stern; in the cigar ship the depth of immersion varies throughout the whole length.
Finally, the resistance to high speed is more nearly proportioned to the area of the immersed midship cross section than to any other element; in the cigar ship this area is very much larger in proportion to the tunnage than in vessels of ordinary construction.
The movement of water, howerer, when it is displaced by vessels in motion, is an exceedingly complicated problem, and we should not have atsolute faith in any a priori conclusions in relation to it, however reasonable they might appear. It is conceivable that Messrs. Wiuans may establish the correctness of their opinions by practical domonstrations. At all events, they pay for their costly experiment with their own money, and all must respect the courage, enterprise, and perseverance which they manilest in determining tho correctness of their theories.

ISSUED FROM THE U. S. PATENT OFFICE for the week ending marcif 13, 1566 for the Scien
$\int \rightarrow$ Pamphlets containing the Patent Laws and full particulars of the mode of applying for Letters Patent specifying size of model required and much other information useful to inventors, may be had gratis by addressing MUNN \& (O)., Publisher: ot the Sorbisific Ambrican, New York.
53,094.-Manufacture of Water-proof Paper.-Stephen
M. Allen, Woburn, Mass.:
stances in which the original resinous or albuminous mattur suls 10 tained with or wit :out the addition of forcing resinous or gelatinou Second, I claim a pulp and paper inade from vegetable fher con tainugg a arge proportion of its natural gum, whentpulped, in com
bination with pulped untanned anmal liber; and
whether mixed or not tain thith other toreign resinous or gelatinous sub stances, as set torth.
Thira, claim the printing, enamelink, or glaziisg or varnishing
of a pap,r prepared in the maner and liaving the properties liere it described.
53,095.-Belting for Machinery.-Stephen M. Allen,
Woburn, Mass.
I claim asat new articie of manufacture, belting and banding for
riving machnery, prepared anc possessing the qualities suustau driving machnery, prepared ang possessing the qualities substau
tally as herein beit torth. 53,096.-Mail Lock.-Theodore Ascherfeld, Elkton, Md. Antedated Feb. 2s, 1866 :
First, e clam the construction of the lock case, as described, with
a bead or projection antording protection to a strip which is wripped
arnund it, tor the purpose duscribed
arund it, Ior the purpose described.
second, I claim the groove iround the tock case, in combinition
withthe securing pins their substantial equivalents, lor retainius
withthe securing pinsor their substantial cquivalents, tor retaiting
the strip in position.
1hird, 1 elaim tho cover, N , in combination with the said lock
Third, I claim the cover, N , in con
case, as and for the purpose described.
53,097. - Air Engine.-John B. Atwater, Chicago, III.:

mrouth means substantialy as described.
Third, Heating and expanding arr and commanicating to it cer
t am quantitics of moisture ny means oi steam acting directy upon

Lourth 'The cumbination of a chambered cylinder, D, with the
ported plates, E E' and a steam generator, said cylinder operating
substantially as asescribed. Fifth, The combination of air-supplying chambers, constructe and o:'eratiog substantially as described, with a raretying cliamber
e, or ne étivalent, and a stean generator, substanially as de scribed. Arranging the air raref ying chamber, o, in such relation to
she steam ge:perator that the same ure will heat both, substantially as desiribed The arrangement, substantially as herein described,
seventh chisibered air suppher, D, trom the engine, in such manner that the relative motions of the said supplier, D, and of the engine, wil
be such that tue periods it opeling and closing of the valves of tie ngme will correspond with the opening and closing of the cavitics
53,098.-Clothes Wringer.-Selden A. Bailey, Waterford, Mass.
First, I clain rollers for wringing machines, constructed of alter-
nate saytrs of nu dia-rubber and pen forated cloth, sulstantially as
herein speciid d.
Second, In combination with a wringing machine, the bench, II,
c.jnstructed substantially as and for the purposes set forth. 53,099 - Bench for Clothes Wringers.-Selden A. Bailey,
 ane
the bench, A, stindurds, a a, and cross bar, B.
53,100 - Plow. -Wm. J. M. Batchelder, Dayton, Ohio 53,100.-Plow.-Wm. J. M. Batchelder, Dayton, Ohio,
 operath, the purpose speciffed.
beant for the pur
second, The co bination oo
second, the combination of the clog piece. a, slide, d, lever, g,
lar, it, , iad lever, i, constructed and arranged substantially as de-
scribed aud for the purposes set torth. 53,101.-Granaries, Frnit Houses, Elc.-S. R. Beckwith, Cleveland, uhio:

 ioint, suibstantially as and tor the purposes set torth.
secont, l'he conbination of an tce nloor with a
 posest substanatially ast described
Third, The mpes, (") and D', in combination with the cock, F. gut-
ters, B, and an ice tloor, substantially as and tor the purposes herein specitiel.
Fourth, I claim preserving grain, joints, vegetables, etc., iu a
building whose upper hloors are constructed as set forth, for receiv ng ice, with the rumn or roous constructed as set forth, for receiv- fors capable of being
made air tig tit, and vontilated into and above said tloors, in the made air tight, and v+ntilated into an
5:, 10\%.-Neck Tie.-H. Bendix and J. H. Fleisch, New
ela-tic land b which serves to retain the hook of and ela-tic band, b, which serves to retain the hoolk and is attached to
the supporting plate by an eyelet, rivet, clisp or other fastening, as and tor the purpose described
53,103.-Kerosene Lamp.-Jacob H. Beidler and A. R. - Firit, I claim in a lamp, lil.:

Firsis, I clain in a lamp constructed and operating on the princi
ples above described, making the conductinz pipe from the heat
generator to the illuminating burner of a non-conducting or slow-
conduct. n g material, as described
conduct.ng material, as described
second. TTe combination of the con ducting pipe, B, maje of
w ood or of some other non conductor or slow conduct or of heat, the
heat generator. J. che perforated plate, $v v$, the deflector, , , and
the illuminasing butner, all constructed, arranged and operating
53,104:-Mode of Raising Heat by the Combustion of Fuel of Various Kinds.-John F. Bennett, Pitts burgh, Pa.:
gree of beat for the reducing of metallic oxide.s, or for other purposes
In the arts where liigh tenperature are requlred by ntroduclog
ino or more blasts oo oxygen or atmospheric ait aither hot or cold, at such different points. nt the furnace as that a fresh supply ot oxy-
gen shail be introduced at or a little bevond or above the point at Which the gaseous deutoxyde(or acid gas) produced by the first sup-
why or oxygen lias becn reduced to the gaseous protoxide or oxide ply of oxygen lia bern reduced to the gaseous protoxide (or oxide
gas) by the chuminal combination of one itom of the oxygen of the
gaseous du utoxide with the clement used as futl, and thus, by a gaseous du utoxide with the element used as futl, and thus, hy a
series of cuccesion t combusions, continuallv adding to the heat
produced by the first combustion, sulsstantially in the manner and produced by the first combustion, subst
53,105.-Machine for Making llug Tobacco.-John Blackie, New York City: First, I claim the endless belt trough, ID, constructed and operat
ing and for the purpose as set torth. Second, In corthe purpose as set torth. with the trough, E. made as described, I
Saim the roller. D, arranged to operate as set forth

 rough, Et, ts and for the purpove herein' set forth. 53,106.-Car Brake.--Virgil W. Blanchard, Bridport.

 he pupase of transmittiby powe

 K, alt being arranged in such a manner that it the whechs revolve
in either drection the force or power that results foum the contict
of the rubber and wheels will be applied to the shoes over the rails,
sulstantially at described.
3,107.-Machine for Making Skewers.--I. W. Boyn
ton, fiartford, Conn.
I claim the combination of the endess chain fecder with the
cutter shaft and its cutters, and the grooved bair or er eroved roller T cer shatt and its cutters, and the grooved bar or \&rowed roller
whter they are constructed, arranged, and operated subt:antially as
herein described and set toull.
,108.-Machine for Pointing Skewers.-Leander W.
Boynton, hartiord, Conn.

 cribed and sel forth
53,109.-Nozzle for Fire Engines.-Carl Burchardt, New York City
iention of a thin blate, b, to the nozzale of :

 Third, The vent, d, in combmation with the nozzle, N, construc
 bination with the discharge openings of thee nuz
substantially as and for the purpo.se set forth.
53,110.-Reaping and Mowing Machine.-J. M. Canfield, - E. Coleman, and l. P. Wheeler, Jawrence Kansas:
First, We claim the combination ard arrangment of the lever
 F, bott, b, arm, , rod, J, and lever. K, arranged and operating a 53,111.-Boot-blacking Case.-Edward S. Carter, Keo kuk, Iowa:
I claim the combination of the case, A, and the brushes,
B \mathbf{B}, and
ru*h fastening. E , ubstantially as described. 53,112.-Washing Machine.-John Catt, Bourbon, Incl.
 , as set for h, tor the purpo.
53,113.-Machine for Cutting Files.-Aaron Chambers,
North Providence, lir I
I claim giving to the rocking bed a gradual tirping movement
during the operation of cutting the file, sulustantially in the manner
and for the purpose described.
I also claim rolling and controlling the rollıng or oscillating movement of the bed by means of a puttera and other suitable appliances, 53,114.-Letter and Paper File.-W. C. Choate, Wash ington, 1 . C .
I claim an improved file hoard formpl in two parts or sections of
a square having hooks or catcles, notclies or hules, ats herein de a square
scrived.
53,115.-Altiscope.-John Clark, Philadelphia, Pa.: I clam combining with a selescopic columm of thes, in ariangefor adjusting these parts to any elevation of the
the manner and for the purpose hercin set iorth.
53,116.-Extension Holding Strap for Street Railway Cars.-Thomas Cogrgswell, Boston, Mass.
I claim, first, In combination with har, I, or its cquivar, it, an
extension holding s'rup, substantially as and for th? purpose de-

 53,117.- Pump, for Deep Wells.--Rohert Cornelius, Philadelphia, P'a.
clam the supplemental annular clamber at one or both eud
 53,118.-Steam Generator for Heating Purposes.-Isaac E. Craig, Cleveland, Ohio
first, I clamime nee pates, D, forming a system of supports and flua's, , f when arranked the purpose set fortb.
second, I claim one or more water chambers, B B', when con-
tructed ind arranged in relation to each other and fluestay plates,
 Third, I Ilaim the construction of the frame, B", in combination
w.th the side pates, $\%$, when arranged in the manner and tor the 53,119.-Water Closet.-Hugh II. Cragie, New York City :
I claim a movalile pipe for directing a ie or jets of water up-
ward as arranged in reation to a water chset, substantially as
and tor the purposes 53,120.-Saw Grinding Machine.-Joseph Croakes, St. Louis, Mo.:
Claim the ovilating bed, L, in combination with the adiuctable
grindstone, P , atrauged and operated hy mpans substantraily

3,121.-Bed Bottom.-Stephen II. Crossman, Battle I claim the spring slat, as arranged and combinel with the end
supvoits and cords, as herein described and for the purposes set 53,12
53,122.-Snaj, Hook.-E. S. Dawson, Syracuse, N. Y.: I claim the arrangement of the bar, c , recess and groove in the
body of the sinit) with the thong, d, and sping on the tonyue ait
fording the means for tie attachment of the tongue to the bydy arding the means for the attachment of the tongue to the body and
also for guiding and prote-tIng the spring, substantialy as dealso for
serib d.
53,123.-Churn.-John Davis, 2cl, of Lake Village, N.H.: I clam the open vertical and radical dasher half tuhes, gg and
hin, arranged and operating substitntiaty as and for the purpose
3,124.-Manufacture of Pegs for Shoes.--(ieo. W. Day,
Charlestown, Mass.:
I clain an artitici
: 105. Stump Extractor.-William Dickerson and H. (). Wilbur, Ridgeberry, Pa.:
 commenerdimind continued to a certaina extent pulling the oue sump

 ,

Ki.--Broom Corn and Sorqhum Strippers.--Knowi;
W. Doudna, Milwood Township, ohio: W. Doudna, Milwood Township, ohio :

I chim the appheation the the operation of removing the seds
rombroom corn a sud sorghum cane of the spring or principle of notion rroduced hy dividing a nattened piece of wood so that the
 it he jawt of machine or clamy, in a parallel or nearly paralled po-
ititinn when a stakk or stalks ot broom corn or sorghum cane is
placed between (in a horizontal position) the clamps or jaws of my nachine.
5,127.-Combined Spade and Fork....L. Duvall, Big Spring, Ky.:
sitam hee arrangement of the tinespromanently attached to :t to and operated dy the arm, g, and rod t, or their equivalents, sub-
stantially as and lor the purpose described. 3,128.-Pump for Deep Wells.-S. H. Burly, Lynch. burgh, Val: aving the interior cube, (i, and the openings. h, in relation to tuce Ther and to the salves of the tulbe a. and packing 1 , all substan
ially a and for the purpose dessibed. ,, le9.-Collee Mill.-Charles R. Edwards, Niagara City First, I clam the face niece, k, and regulating har, t and hooks, ce purpoyes set forth.
recond, 1 rlaim the guarding of the grinding suriaces from ton
eose contact with each other, substantially tis tan for the purposic:
 "ine parts may he remuved torether and replaced in the mill with tourh, I clain the axle, r, coy wheel, p, nut x, and handle, ss
in combrnation, when constructed and arranged specitically as and Fourth, eclaim the it
combration, when c
or the purpuses stet for
: 130.-Weather Strip.-Edmund C. Evans, Cabinet

 53,131.-Spittoon.-Francis L. Faulkner, Derby, Conn. 1 claim the comblnation of the grate, , with the plate, F, when
constructell ond arranged so that by turing he crate, Che bow
may he opened. or closed, substantially as and for the purposes may be o
specified.
3,132.-Washing and Wringing Machine.-Henry Fishwe clain, first, Connecing the pitman, F, with one or the wrinc
 herein specificicd
Third,
Third, Constructing the tub, A. in the manner described, with
oottom, B, openinr, \mathbf{C}, plate, D, and chamber or space, E, when wise bottom, B , openine, C , plate, D , and chamber or space, E , when use
as and for the purpose herein fuliy set forth. 53,133.-Sand-paper Holder.-Timothy IS. Fitch, NorI cliain, a sand-apaper holder, constructed and arranged in the
manner subistantially as herein set forth and described. 53,1:31.-Wristband.-P. Tenney Gates, Plattsburgh I Claim, tirst, A reversible wristband unattached to any othe farment,'cons tructed substantially as described and for the purpose second, A wristband, pendent trom an attachment on the arm,
ubstantialiy :as and for the purpoes described. 53,135.-Apparatus for Sprouting Malt.-Joseph Grecmen, chicago, III.
Fint, I claim the combinat ion and arrangement of the e chamber,
A, the portorated vessel, B, ind the pertorated air chamber, D, sulf.

3, BG.-H:uresting Rake.-William F', doodwin, WashFust, I chitn carying the rabe forth and back over the platform hy weans in the viliathe arm, b, combined with the arms. $\%$,

 whereby the
effective stroke, as described. $53,137 .-$ Harvesters.-Wiliam K. (roodw, Washing-
ton, D. C.:
 53,138.-Grain Binder.-William F. Goodwin, Washington, D. C.: of carrier, II, and matle to move therewith by means of the springs,
t, and bars, F 2 , sub; tantially as aud for the purpost herein speci-
ied. Second, In combination with the above, I claim the series of sta-
tionary fingers, G , and slaats or supporting bars, G, said stationary fingers acting in conjunction with the viorating finger.s, F, tol form
and compress the gavel, substantially as described.

mauner
sitel Yourth, I clain the carrer, I, composed of the plates, i, rollers,

 been passed around then, to seize its ins hiterlockedt ends and draw

the proijection, e', protuberance, e7, and' spring, e2, for operatiog
the cratle, E .

 Lichteenth, In combination with the hooked rods, R R R, I claim
the vibratiug arm, 12 , which 1 operated by
 and double-orank shaft. Rs.
Nineteenth, 1 claim the connecting rodz, Rs, formed with hooked
ends. 33 , to iermit them to be readily disengaged, as and for the vurpose est forth.
Twentith, 1 claim the binder frame, 991010 , braced ly means
of the tubular shaits, as hereun described.
53,139.-Collce PGt.-John G. Grove, Cleveland, Ohio :
 chamber, i, ant receptable, E, the several parts being constructed 5: 3 , 140.-Rooling Cement.-William Green, Cleveland, I claim a ronfing cement composed of the ingredients herein
forth. and prepared and compounded in the nauner specitied. 53,litl.- Churn.-Amos Hamlin, Schoharie, N. Y.: lirst, I claim the combination of the handle, E, with a double
set of cogs, d d, and the recipocating siatits. B, B, wilh segment,
pinions. © © all constructed and arran ;ed to operate as and for the
 Second, The movable bridge, D, in combination
B diahher C hande, E, hand the. A, constru.
substantially as and for che purpose described.
53,142.-Mode of Melting and Aggregating Iron Chips, tre.C. Haserick, Lake Village, N. H.
 53,143.-Shatt Coupling.-Moses Hawkins, Derby, Conn.:
I clain in the method of coupling shaftung the employment int
comphination or one or more feathers formeed on or orked to the
oharit longitudinally a surrounding collar adapted to pmbrace the shat's end, and receive eaid longitudinal feathers and cross beys, pissing throush said collar and depression anross slots in the
silitis, the whole arranged to operate as specified. 53,144.-Burglar Alarm.-M. C. Heptinstall, Enfield,
 when arranged, combined. operating and fred from the inside of 53, 145.-Drilling Machine.-John George Hirzel, Wilmington, Del.:
 plates, springs, screw and couplings, foot piece with slige, and drili
bit with heel, as arranged and described, for driling oval or rou nd
loles, constitutang a portable metallic self-acting hand drill.
63,146 .-Time Piece. - Hoban J. Holden, Genoa, N. Y.:
I claim the tripper, t, the lever, e, the catch, i, and wheel, c, in
I claim the tripper, t , the lever, e, the catch, i , and
combination, whenuseday a differential gear.
53,147 .-Cotton Picker.-George A. Howe, Brooklyn,
53,147.- Yotton Picker.-George A. Howe, Brooklyn, to rotate it. sulstantially as dencribed
Sassing around and acting directly upon its axis the endess chain uescrib. d. Third, The guard, F F F in combination with the endless toothed
chaiu, constructed, arranged and operating as and for the purpoes
described. 53,148.-Cofree Roaster.-Fenton Humphrey, Philatelphia, Pa.
grans, wit it tex eover dical vessel for roasting colfee and other

53,149.-Fly and Mosquito Bar.-J. Henry Jennings,
 descrubed.
E3,150.-Modes of Securing Tips to Boots and Shoes. -J. Jenry Jennings, New Bedford, Jass.
I claim securing tips to the toes oit boors and shos by a wire or
cord laced throught tht edges, ind nails or their equivalents as hercin
set forth and de.eribed for tast tening the cord or wire.
53,151.-Fruit Jar. - Josee Johnson, New York City: First, I claim cinking the contining screw within and below the
mouth of a seif.sealing can, substantially as and for the purpose
hercin set forth. siecond, Ic aim the employment of one or more apertures in the
side arranged as represented relatively to the suitace on which the cuver rests, to allow the loosening of the cover substantially in the

 action of the same or a d flerent bar to overcome the a ahes on of
the cover fu removin' it, substantially in the manner and for the
purpose herein set forth. 53,152.-Apparatus for Bleaching Paper fuip.- Henry
L. Jones and Duncan L Farquharson, Rochester, L. Jones and Duncan L Farquharson, Rochester,
N. Y.: First, We claim bleaching the materials to be converted into pa
per by subjecting the same to the action of bleacbing liquor applied
under pressure, substantially as described.

Trth, D, and pipe, B, sulstantially as and for the purpose sa

 expiained.

 willithe bas's, c^{\prime}, and body or the post, as and for the purpose de-
53,154.-Tack and Nail Machine.-Nathanicl Leonard
and Nathaniel N. Leonard, North Dighton, Mass.:
 in it, the whe being substan tially as described We also ciaim the combination of the beveli.g, and the discharger,
, and its operative mechanism as described, witu mectiaulsm lot

53, 155.- $\Lambda \mathrm{X} .-\mathrm{Joln} \mathrm{L}$. Lewis, Pittsburgh, Pa .
 handle, and of such a shape that when wo or said pieces are put
tozether a a cros soce setion thereof will represent an ax without the teel considitered as spitit longitudinally through the cye 1 also el claim torming on said bars the proiction, T. and corres.
1 ponding cliannel, s.isor the thury
during the operation of weldiny.
53,156.-Corn Planter Cultivator.-W. II. Lineback Greenifela, ind.:
It claim the spring, K, when arranged and appled to the seed handes, and also connected with
hite seed silde,
ha , substan

3,157.-Saw.-John Lippincott, Pittsburgh, Pa.:

 kept in order without gummin?
33,158.-Fan Attachment for Sewing Machines.-Thomas R. Lovett, Mount Airy, P'a.:

tatocs to Prevent. Potato Rot-Abraham Mallett, Erie, Pal.:

53,160.-Rotary Steamship.-David F. Masnata, New York City:

 53,161. - Covering for Hose.-Thomas Mcauley, San
Francisco, and M. L Cheney, Illinoistown, Cal. We claim forminga hose covering by winding rope or curd spirally
around a cylinder or former, and having tor its support warps or
 ornd set fortl
53,16?---Rooting. - John McFay, Columbia, Ohio:
 arranged in the mane mer and tor the purposes set forth.
53,163.-Instrument for Parting Ladies' Hair.-Joseph
L. Meek, New York City:

Iclaim en instrument to racilitate the parting of ladies' hair, con-
sisting of a yote, A, and a a guide, B, substantially as herein de 53,164.-Animal Trap.-Charles Melone, Lawrence, Kansas:
Finst, I clain the combination and arrangement of the inclined
 and sirng, J, witen arre ned ww
53,165.-Process for Making Paper Pulp from Wood. Antonio Mencci, Clifton, N. Y: clame the thocers or reating vegetable material with dilute ma 3, 166 , Illiin:
and applied thereto, sumstantially is :und for hie purpose herein
3,167.-Distillation of Petroleum. - Alolph Millochan,
 ances by i coilo p pipe containiuy hieated vipors and returnius the sic cond, I climm supplyiug the cruid or partaily crude petroleum
 Thirdit I claim the cock, \bar{x} or its chivialent, in combination win
 purposes and as set forth, Fifth, I ciann tlie conical bottom to the inner still, appled as an for the purpusess st t 10rth.
53,168.--Priming Cartridges.-Arthur Moffatt, Washing ton, J. C.:
Primed cartridge havinizan an rimvilitud exploter or flange and center
 or anvil being consumable when the cartriuge is tired, snstantantialy

 fenth.
53,169 . -Paper-cutting Machine, Charles Nontague, Hartford, Conn

 rth for the purpose specifled
3,170.-Steam Pump.-John C. Morgan, Alliance, Ohio:

 53,171.-Harvester Rake.-John Numma, Middletown, Ohio:

 Heneel, ot, tore clevating the tork durin
thally as and for the purpose speciied
53,172.-Horse Rake.-S. R. Nye, Barre, Mass.

 53, 173.- Tin Can Opener.-Eben T. Orne, Chicago, Ill.: Ihesait he harpeded revolving shar, Fin e, mpination witi 53,174.-Fan Blower.-Frederick Ortlicb, WilliamsFist, lecliim , Y.
cln side, extending equidistsiunt radially with the blidides or the than hower, and rotativg therewitity rnd thate manner and tor the pur-
 herecen doperibel.

 53,175.-Nozzle for Fire Engines.-Charles Oyston, Little Falls, N. 1 .

 53,176. Washing and Wringing Machine.-Elias C.

 thand thily at comp, describell. 5., 17i.- PBrel Washing Machine.- Jonathan Peacock,
lockford, Ill:: First, I clainu the an

 irumes, as and tor the purpose ett tho tho

53,17s.-Verical Windass. (hates; Perler, New York City
I closm the chain wheol, p , in combination with the canstand,
and chan wheel, p , substantially s. set torth.
53,179.-Feed Cutter.-S. Pettibone, Corunna, Mici:

 pee or any part connected therett, sulstantially as herein de-
53,180.-Corn Husker.-Ignatins Pliilbrook, Shelby, III.: I claim the plate, A, when constructed sulstaiziaity as deserilis.
oo ais to perfectly provect the tand and fingers. and intoviled with 53,181.-Self-Acting Blow Pipe.-Moritz Pinner, New York City:
stanidily at herem set torthor automatic blow pipe, onerating subsupyling or exhaustinc blowing mathine that could br wed for a gas jet or its embination or an automatic blowing machine with

 Fithl, Tne connininion
pilstinn ially as describel.
,, 1 , 12. - Sand Box for Iocomotive Engines. - Thomas Prier and James II. Wilson, Covington, Ky. An-
Cedited Marcl 5 lsco:
 5:3,1s.3.-Steam Gage.-Enmett !uinn, Washington,
 53,154.-Mode of Pr
powder.- illbert Tre Rand, New York Holding Gum-powder.-Albert I. Rand, New York City:
 53,185.-Pumps.-Assaria Rewerick, San Francisco, I claim ihn cylinder, Λ and M, and piston, H and N, with the the
ralves, when arranged and operated silssiantially as descibed. 53,186. - Axle Box.-O. H. P. Robinson, Bellport, N. Y.:

53,187.-Breech-loading Fire Arms.-Wm. H, Robertson and George iv. Simpson, Hartford, Conn.:
 53,188 .-Solia Bedstead.-H. S. Rose, Bath, N. Y.
 tudinal bar, n, supported by the tran verse bar, m^{\prime}, the said slitits
d_{n} working between the slats, b, which form the botion of the main
frame or bodv of the sofa or loung
forth for the purpose spec fie J.
53,189..- Drilling and Driving Machine.-Isreal M. Rose, New I ork ity. Antedated Feb i6, 1866:

 sevent , Consiruc ing the irr of a drill with flanged enters,
mi, on it, adaptud to ecrve as reamers. : ubstantially as cescribed. 53, 190.- 1 ubricator- George Scott Kensington, Pa.:

 53,191.--Brick Mold.-S: Samuel Slirefller. Joliet, Ill.:

 $53,192$. . Butter Worker.-Chester F. Smith, Litchfield, First. Ic aim the form and conctrnction of the shield-shaped tub,

 $53,143$. .- Facing for Stair Treads.-Oliver Snow, Meriden, Conn.:
I claim the here ein described sheet metal racing for stair treads as 53,194.-Amalgamator.-John T. staats, New York
 53,193.-Lubricator for Steam Engines.-John Storer, New York (ity:

 53,196.-Hat Forming Machine.-H. N. Swift, Mattea-

53.197.-Neck Tic.-George B. Taylor, New York City:
 53,198.-Reaping and Mowing Machine.-D. H. Thayer,

 53,199.-Device for Feeding Pins.-Cyrus L. Topliff,

 53,200. - Peg Iasper.-Elmer Townsend, Boston, Mass.
 purposie specifiled.
53,201.-Telegraph Insulator.-Wm. W. Waddell, Hills-
boro. Uhio:
 53,202.-Device for Changing Speed.-John H. Wait,
 53,203-Apparatus for Cleaning Bciler Tubes.-Henry I claiur a e eries if spring, scrapers arranged around a central
stock, in combination wit1 a clearing out pision or C isk, suostan-
tially as set
 53,204.-Machine tor Cutting Files.-Alfred Weed, Bos-
ton, Mass.: ton, Mass.:
 me s ume ime and trom the same indicater, he torce of the cutting
blow and the extent of th ter muvemenr.

53,205.-Cultivator.-W. S. Weir. Jr., Monmouth. Ill.:
 piates, B B. and screw bolt, f all constructed and
erate in the manner and for the purpose specifled.
53,206.-Lining for Artificial Limbs.-James W. Weston, New York City. Antedated March 6, 1866: I caim a lining for artiticial limbs, at the parts where the stump
is rec ived, formed of thin sheet cork, substantially as and for the 53,207 . -Device for Watering Cattle.-Oscar Whedon, Medina, N. Y.: I claim the combination and arrangement of the several parts
consis ing of the cistern. A conduitor pipe, \mathbf{B} trough, \mathbf{C}, connectconsis ing of the cistern. A condustor pipe, B trough, c, connect-
int pir e D. and bent pipe. E. a. 1 as slown and for the purposes
siveriticd
23,208.-Method of Burning Waste Coal.-J. D. Whelp ley and Jacob J. Niorer, Boston, Mass.
We caim the use of finely conminuted fuel, or dust of fuel, min
fled with the air used in supi, orting the combustion of the gases of
furnaces and fire 53,209.- Propelling Wheeled Vehicles.-John G. WilkiSon, Quincy, Uhio:
 he manner and for the purpose herein specified.
53,210 . - Wagon Brake.-J. H. Wilkinson, Kickapoo, First.
First, T,e rods, e e and fif, n combintion with the clip, D, and
 purpose specifit d.
Third line combingtion of the sliding rea.h. B. stationary reach,
C. clip. D, brakes E E. rods, e e and $f f$, and hind and torwa d axles of a vehice', all operating together substantially as and for the pur 53,211.-Stave Machine.-John R. Winfield and Wm. S.
 ion or forcing it through the space between the knives, as lierein
set forth.
 cause it to press or bear harde t ag
and size of the wood $m i y$ require.
53,212. - Cultivator. - George W. Zeigler, Tiffin, Ohio: First, I claim constructing thie chovel plow with a movable cross

 per surface having notches in it to receeive spurs which proiect from
pte sotom surface of the flanged casting,
the substantialy as deFourth, The construction of the central standard, g ', with a pin, e,
s, 1 , that the plates. C c C n be secu ed to the beam, A, in the act of securing the central shovel to the plow, substantially as described
Futh, The c mbintion if the flanged ca-ting. B, with the shove holder, C , those two parts being constructed subitantially as de cribed. The construction of the shove's with detachable points, p,
Sixth,
substantially aq described. substantially aq described.
Seventh Providng for adjusting all the shovels about a central
axis simultanoously when these shovels are aattached to sta nd ards hat can be adjusted and secured in position independently of each 58,213.-Railroad Switch.-John W. Zinn, Caldwell,
 53,214. - Propelling Carriages.-Charles K. Bradford Terrill Jr.) Lynne C. B. Sanderson, and Mino First, I claim t:) combination of ihe connecting rods, . with the
triction pand, K , and the clutch, C , transmiting motion to the or the purpose described. only, substantially as an Sce nd. The combination of the pivot pin, L, with the lever, A.
hinving notclu, s, E E, E, so that the leverage may be increased or
diminitheu at will for the purpose described Tbird, 'he combination of the n' tched ievers, A, with the combi-
nation set forth in the flist claim, so as to allow greater power to be exerted without increasing the length of the stroke.
53,215.-Car Coupling.-Ebenezer Cary (assignor to
himself, Horace H. Har:ley, and John Sully), Burlington, Iowa:
In combluation wi h the coupliug pin, D, constructed as described,
claim the peculiar shaped opening, c , in the draw head. A . where I claim the peculiar shaped opening, c, in the draw head. A. Where-
by tte pin, being rased and curned, may be supported indeendent
Iy of the block in the araw head, in he manner as heremn described. 53,216.-Machine for Boring Hubs.- L. A. Dole (assignor
to himself and A. R. Silver), salem, Ohio: to himself and A. R. Silver), salem, Ohio ng plate, C hollow sup.orting rame, A, and the turning cape, ,
 , substan thelly as described.
Thi d, The radial arms, E. provided with adjustatle sliding blocks.
i, in combination with a centerıug chuck and auger slatt, :ub Fourtially as described.
Fourth step ed
nd used substantiol
Fourth, The step ed blocks, \mathfrak{j}, when applied to radial arms, E,
and used substantial y as described. 53,217.-Method of Preserving Wood.-H. L. Eddy,
Geneva, N. Y, assignor to himself and A. Dunlap Geneva, N. Y, assignor to himself and A. Dunlap,
Ovid, N. Y.: I clarm the application of petroleum or its liquid products to
wood or other fibrous substances, as an antiseptic or, reservative 53,218 -Mode of Grinding the Mouth Edges of Glass A. K. Samuel), Philadelphia, Pa.:

I claim grinding the mouth ed es of glass iars by simultaneousiv
revoving a sei ies or them aganns a grin ting disk in motion, sub53.219 -Coupling

Fawcett (ass Shafts of Roring Tools.-Samue Fawcett (asslgnor to himself and Alanson Br
Rochester, N. Y. Antedated March 2, 1866:
I claim the manner of coupling or joining tw pieces together b
means of a cortugated or irregular joint, a toper sleeve or ban 1 fit ting ov r the same, in comblnation with joint nuts to hold it firm
substantiaiy in the manner and for the 53,220. - Linchpin.-Louis B. Gusman (assignor to him self and and Edwin Steer), Philadelphia, Pa.:
I claim the linchpin, C, with itt sulot, x , in combination with the
spring D, he later
pin substantially as and pin substantially as and $o r$ the purpose described.
53,221.-Ore Washer.-George B. Hamilton (assignor to First, The cunstruction and use or the oblique agitato: or hollow lower to the upper end of the cylinder, suhstantially as de.cribed. Secnnd, I I laim di.-charging the washed ore through the sbait of
the cylinder, subst intially as et forth. Third, I chaim the use of the runks, G, for dipping the water int
the cylinder, C, substantial y as sDecifio.
 55, 22 .- Car Spring.-Albert Hebbard (assignor to himI clam a netalic nest spring, thenkerva tuffalo, A. Y.:
 53,223.- Brick Machine.-James Hotchkiss (assignor to himself and Ezra Buss). Springfield, Uhio:
First I clatim the combi ation ot the continuoush-r-volving in-
clined arme, a a in the pug mill. With the intermittently-moving
mold wheel,' G, substantially as herein specifed mold wheell', G, substantially as herein specitied.
second, I'also clam the side clamber, c, extending trom the pug
 of the chamber. c and heid therein by the wooden or frangible pin,
k, forthe purpose specified
Fourth. I also claim the arrange ment of the scraper, L, with its

 presing the wricks, while $\mathbf{y e}$ in the forming molds. substincialy as
her in specibrd. her in specin+d.
Sixh, I allo claim t'e combined arrangement of the adjustable
toggle-moving fccentrics, $Q Q$, and the crank, T, and pawi, R, for loggle-moving cccentrics, Q Q, and the crank, T, and pawi, R, for
nilg an int rinittent motion to the mold wheel, substantially as
herein described Seventh, I also claim the combination of the crank wri.t. U, pawl,
R. sliding thereon, and tie trangible pin, t, for the purpo.e set forth.
 Ninth. I Iso claim tie hinge, or woable track, S, under the
mold wheel. in combinat on with the adjustable toggles, N N. be-
neath it, aslierein specifled. 'Tenth, I also claim the device for tilting the bricks edgew'se from
the followers upnn the modd wheel, arranged and operating sub-
stantiall as
 Th. Twelfth, I also claim the euspension of the followers. $J J$. in their molds. by'means of the not hor slot, o. in eactl, and the pins, F F ,
or the equivalent thereof, substastially as hertin set sorth. 53,224.--Knitting Machine.-James A. and Henry A. House (assignorsto Bridgeport Knitting Company), Bridgeport, Conn.:
irst. We claim a chain of needles in a kritting machine, when the same are cosrructed so as to ho ke together suust ntially
in the manner and for the urpose specified.

 ioth.
Fourth, The combination of one or more hooks, e, with a vibrat-
ing sinker. a, constructed and arrange, to operate together substantialv, in the manner and for the purpnse sp cified.
Fitth. Tue adjustable tand, N, arranged in combination with and constructed so as to adjust the movement of the cam, a2.
sixth. The working oir, A', construc ed and arranged so as to onerate the hook, e, the thread guide, D', and sinker, a, substantiaily seventh One or more yarn gurdes, D, in combination with one
or more hooks, e, and a chaia of needles, when the said chain of needies is oonstructe. in the manner describod,
Eighth, The combinathon of ievers, Azand L, with the switching
ever, P, substantrally in th manner and tor the purse
 P, sub.tantially as and for the purpose specified. arenth, The combination of one or more tops, T, with the chain Elintially as and for the purbose set torth.
Eleventh, The pressure spring, S2, in in crmbination with a chain
of netdes, when the chan of needes is constructed and arranged
 Twelfth. The proeecting plates r2 and re covering the the
and E , in the manner and for the purpose described.
53,225.-Composition for Making Anatomical Casts.P. Gill, Franklin, Ind.: Ohio, assignor to Joseph I claim a co npo istion for making casts, compounded and prepared
substautially as set forth. 53,226. - Evaporator and Cooler.-Henry Kohly, Jr. First, I cluim the air space, I formed between the jacket, F boiler, 1 . in combenation wit, the biler, D, ,olute channtil, A, and and
flues, \mathbf{H}, constructed and operating substantially as and ior the purpo.e descrioed
Second. Making the boiler, B. partially or wholly self-supporting by cartying into it the con ensed water resulting from the steem
over the volute channel, sub:tantially as and for tue purpose set
forth. forth.
53,227.-Pie or Plate Tongs.-Alvin Lawrence (assignor
to himself, Ambrose Lawrence, and John E. Crane), to himself, A mbrose Lawrence, and John E. Crane),
Lowell, Mass. Lowell, Mass.:
 stantially as aud ior the putpose specified
Second, And in c mbination wit. the leg. A and B and the coil
k , the drous, g b and e, or their tquivalent, substantially as and tor k, the droos, gband e, or their tquivalent, substantially as and tor Third. And in combination with the legs, A and B, and coil, k,
and in connction with the drops, g band e, , the toes, $\mathbf{c} h$ and f,
 manner and ior the purpose set forth.
Firth, The coil, k. in combination with the legs, A and B, and
handle, d, and wh
and the said coil is made to serve as a hinge handle, d, ans then the said coil is made to serve as a hinge
and stop, substantially as anc for the purpose set forth. 53,228.-Machine tor Perforating Metal Brand.-Amos Leland (assignor to himself and Alexander P.
Colesberry), Philadelphia, Pa.: First. 1 claim the cylinder. H. wr hi his pins, a, and rif, e, and the
y linder, I. with its flinges. b, openi ngs, i, and rif, e, cons tructed and operat ing in each otter, a and for the purpose specifled.
second, The combination. with the cylinder. H, of the spring d,
for retaining the ends of the banus substantialy as described. 52,229.-Evaporator.-Charles and David Mercer Strickerville, Pa., assignor to Blymyer, Bates and First, w:
an, in such a manner a- to heat the center and leave cooling tides
 terior thereof shall be unobitructed for the work of the operator.
Third, The comb nation with evaporating pans of a steam chamber, constructed as describe d.
53,230. - Fastening for Bail Hoops.-John F. Milligan (assignor to himself and kichard Branch), St.
Louis. Mo: Louis. Mo.:
I claim the button, a, with its '.ead set obliquels to the plane of
the hoop and with an obllque fanne, d, operaing in the manner
aud for the purpose heren described. 53,231 .-Leggins.-Albert L. Munson, New Haven, Conn., assignor to himself and Samuel T. Williams, First. I claim a teggiog mad
First. I claim a legging made wholly or nartially of pap\&r, whether
united to the boot fort as a boot leg or separate therefrom as a gatter or anklet, or imitation of stocking leg or drawers, all sub.
stantiall as alescribed, and whet her entossed, or printed, or
painted. or stained, or enameled, or pertorated ar otherwise oramenied or "ot.
Second, Making such artice to open in the direction ot its length.
Third. Connectiny the sections f, i said opened legging, by means 3,232.-Well Foring Apparatus.-Thomas J. Parke lespie and E. A. Huntsicker), Philadelphia, Pa. Antedated Nov. 8 , $1865:$,

 53,233 .-Direction Label.-Milo J. Proctor (assignor to himself and Wheelock Tilton), Lowell, Mass.:
the label. I claim the loop, b, which gives convenience in attaching
Second.
the label to articles for the purfoses described and manner set the or 1
3,231.-Eyelet.-Jesse F. Richards, Attleborough Mass, assignor to the American Eyelet Company Providence, R. I.
I claim the in roved eyelet possessing the characteristics sub-
tantially as herein described.
53,235. - Car Brake.-Jesse B. Rumsey, Tiffin, Ohio assignor to James G. Rumsey, washington, D. C. I claim the combination of the lever, D, with the claans. E, brake
shaft, F. and brake, C, when used in the manner and tor the purpose
herein ser torth
53,236. - Gearing for Grinding and other Rollers.Nathan L. Sibley:
First. I claim connec'Ing the shaft of the rollers, B and B^{\prime} by the
nions, C and I, and the external gear, D, and internal gear, H,
Second. 1 alsu claim linking the shafts of the rollers or pinion
sing nilly as descr bed, so that the pinions and gear will always mes popely, whether, the rollers, are worked near torether or tiar apart
Tuird, I also clain the plate, J, in combination with the pinion Tuird, I also clain the plate, J, in combination with the pi 53,237.- Quartz Mill.-F. Sundell (assignor to himsel and Anthony Chabot), New York City:
 thu mannar and ror tie purpose herein specified.
Second Ont or mure screens. E, ipplied the the cylinder to operat
the 53,238 .-Automatic Boiler Feeder.-J. R. Widgeon (as
signor to himself and Fred. E. Frey), Bucyrus,Ohio I clain the segment, cor wheel, n , in combination with the
chamber. A, havin, ports, 1 m, and with the seat, B, provided with holes, d ef z , substantially as and fur the purpose vescribed. 53,239.-Burglar Alarm for Windows. - W. H. Winans
N. Y.:
 vitinthe clapper rod, q, of an alarm, to operate, when applied to a
vindow, substautialiy in the manner as and tor the purpose he' ein set forth, I further claim the latch or fastening, g, on the top of the
second,
alarn case, A, in conbination with t.e clapper rod, G, to operate as alarin case, A, in combination with tie clapper rod, G, to operate a 53,240.-Railroad Track.-Hugh Baines, Manchester Eng.:
Isling comination of ties, longitudi als, diagonals, rails,
cliat s. on charsso t e diazonils, at every quarter of a mile, more or less of the railroad allowing no xpan-iuil or contracrion at each rai
 52,3 11.-Manufacture of Coloring Matter from Aniline. Philibert Chevalier. Lyons, France
First, I clam as new products he coloring matter hercin de
scribed. derved from anuline ind it homolozus. seconl, The process oi producing the said coloring matters, sub
stantialy as herein described and set forth. 53,242.-Machine for Bending Cranks on Rods.-Edward Lord, Todmorden, England:
 imultanereor, the rwise.
3,2 13 . - Binder Guides for Sewing Machine.-Thomas Rogers, Liverpool, England
first, operating thinging the upper uphat , B, to bring it inear to or awav for , the lower patac by meansor a sp, ing and a thumb screw and screw gui es, D F, snbstant 1 Illy as thown.
Secoid. In combioation with the above, I claim the tension bar,
S explined.
phird. In combination with the binder, constructed as herein de
scibed. I claim the guides. D and F, attached to ant arringed to
 $53,24 t$.-Composition for Cleaning and Scouring Textile Rolland, Paris, France:
I canim as a new article of m n nufacture the improved liquid composition tor cleansing, scourring, a, ıd bleaching tex ine, animal, mind eral and vegetable subs ancev. composed
prepared in the manner herein described.
53,245.-Dental Drill.-Philo Soper, London, Canada: First, I clain the conbination of a soring power subitantially
such as hercin deseribed, with the sundle. b. and tool holder, o a Sonstru ted and operating as and for the purpose set footh. ool hoder. o, and wit a sitable sprigo pow r, o on tructed and
operating substantially as and for the purpose described. Third, The ir rangement of two or more bearings. r r, in the end
of the conizal box to oper te in combination with he spindle, b,
and toolholder, \mathbf{o}, substantially as and tor tue purpose set forth. 53,240.-Telegraph Insulator.-William W. Smith, Cin cinnati, Uhio:
First. I clain, the reffexed or eup-formed insulating block, B, en
closed in a chamber, of of port or prijecticn therefrom. Second, In the described combination with the above, the perfo
rated cap or aunulus, Ff . 53,247. - Process for Disintegrating, Fibers.-Charles
Heaton, New York City: First, 1 claim W York City.
First, 1 claim the above-described process of converting vegetable
fibrous materal into pulp, by frist applying to the material a caus-
ic alkaline solution or a solution in whicl ic alkaline solution or a solution in whichs caustic alkaline propermechanically. and then reducing sucin material, so prepared. to
pulp, ty mechanical acion, or its equivalent, substantialy in the
nanner set forth. nanner set forth.
Second, The pro
by a caustic alkaline solution, or a solution in which caustiz alka line properties predominate. When such treating is not for the pur pose of reducing the material to pnlp by dissolving its gummy por
tions, but it is tor the purpose of fimply sof ening the material.
Third, The process of subjecting vegetable fibrous material to me Third, The process of subjecting vegetable fibrous miterial to me-
chanical pressure, for the purose of reducing or disintegrating
such material, when it has previously been treaied with a caustic alkalne solution, or with a solution in which caustic a lkaline prop the material is afterwards urther reduced or pot.
Fourth. The pr ocess of making coarse paper Fourth, The pr ocess of making coarse paper from vegetable
fibrous productions by separating the flbers with out dissolving or re
dising morous productions to that the gums shall
mo the paper, subscantially as set forth.
of
53,248.-Process for Disintegrating Fibers.-Charles First, I claim the process of redu
means of mechanical pressure, instead
ion with heat, whether such agents are Second. The process of subjecting pulp. or vegetable fibrous mat-
er which has beeu imperiectly reduced to pulp, to meclanical gressure for the purpose of further reducing undis ntegrated por
ions of the same.
53,249.-Manufacture of Dry Caramel.-Thaddeus Hyatt, Philadelphia, Pa.:
I clalm as a new manu facture,
33,250.-Preparation of Coffee.-Thaddeus Hyatt, Phil I claimphia, Pa.:
and
3,251.-Attaching and Hinging Covers to Stoves, Tea
Kettles, Etc. - Dennis Litlefield, Abbany, N. Y. Tclaim the use of a cylndrical-seyed pivot pin, in combination
with a circular notched aperture or the purpose of hinging and se
curing swinging covers upon stoves, tea-kettles, or simitar open opped vessels, substantialiv in the manner herein set torth open

REISSUES.

2,191.-Machine for MakingIndia-rubber Hose, Belting ssignment of himself, Roxbury, Mass. Patented Sept. 13, 1864:
I claima mand Inder tubing and sim lar ait.cles ot rubber or ot her similar materinh, E and M, and operating substantially as described.
192.-Combined Hay Spreader anu Elevator.homas ven. Patented Dec. 19, 1865:
I claim the elevating ehute in combination with the raking cylin
er derivi ing motion rom the supporting and driving wheels, sub antially as a for the purpossespecitied
And Ialso claim the rotating cyliad-r
Anving and supporting wheels, in combination with the movable eeth projected and wichdrawn by an eccentric or equivalent means,
substantially as aescribed and for the purpoe set torth. 2,193.-Power Loom - Christopher Ducwo

Carmel, Conn. Patented June 28, 1859. Reissued
July 4, 1865
I claim the combina ion of a reversible ratchet mechanism wir the reversible revolving oappets used in the loom to move the shut
tie boxes in a vertical direction, subs: ant ialiy as and for he purpose described.
Also, the combination of the pattern mechanism of the loom with
rev rsible catchet mechanism, and the reversible revolving tap ets, substantially as and for the purpose des urib
2,194.-Power Loom.-Christopher Duckworth, Mount Carmel, Conn. Patented June 28,1853 . Keissued July 4, 1865 :
i a horizontal plane by nalternate movement to the shuttle boxe
 said pawis, substantially as described.
Second, Giving an al ernate diagnal movement to the shuttl
boxes by means of nawls r varible ta boxes by means of nawli, r versible ta pets, and a contrivanc
which will automaticaly control the movements of said pawlis, sud
stantiall as described stavtially as described. Third, rhe combinaton reversiole tappets with shuttle toxe which are so applied to the toum that thev will admit of bein
 ially as described.
Fit
the use of tappets which receive a forward and backwar novenent or a cont nuous ror ary movernent in combination

 tle boxes of 1coms by means of contrivances which are controlled
automatically, in such manner that the boxesare moved a greatr automatically, in such manner that the boxes are moved a great-
or less distance by a single $\begin{aligned} & \text { ribration ot the lathe, } \text { o ove to throw the }\end{aligned}$
shut shuttles in regular order, or to skio a shuttle according
2,195.-Composition of Matter for Printer's Inking Rollers and for other purposes.- Lewis Francis and
Lewis Francis. Patented March 8, 1864. Reissued
Sept. 27, 1864. Reissued Feb. 28, 1865 :
I claim ce mlining an alkali or alk alles, or alkaline earths, or any
of the compmnds of alkalies or alkaline arths, with glue and gly
cerin to form a new and useful composition of matter for various erin to t
purposes.
2,196.-Nozzle.-Charles Oyston, Little Falls, N. Y Patented Aug. 25, 1863
I described with a water nozzle. A nd 1 also cla m making the dividers or spreader
pipe, substa ntially as and 1 or the purpose specilled.
,197.-Breech loading Fire-arm.-H. O. Peabody, Bos ton, Mass. Patented July 22, 1862.
Finged at the ear end. with the trigger guard lever, E, by mion, D pin and slot c nnection operating substantially as described, fo he purpose specified
Second, the comhi
at the rear end with the retractor, F, for the purpose of ejecting the discharged cartridge case by a continued movement of the othe position for loading subst antially as described.
Third. H lding the breech piec at its respect Tg and firing ov the use of the notrhes, j ann 11 , in combination wit the spring, G, and roller, i, operating in the manner substantiall
as described.
Fourth, Causing the swinging breech block. D, when in the manip
ulation or the arm it has been made to operate upon the retractor. , to eiect the cartridge shen madi to returned to such position tha chamber for the purpose of artritge by the means substantially as described.
2,198.-Enlarging Photographs.-David Shive, Phila First. I claim a photographic solar camera swiveled or otherwise
ointed so as to permit the axis of the lenses to be adjusted in hori zontal and vertical planes in conformity with or approximation to
the apparent direction of the sun's rays, for the purpo se specifed
Second, I claim a photographic solar camera Second, I claim a photographic solar caurera provided with a con
densing lens, F a negative holder, a magnifying levs or compin ion lenses and a waper holder, c. the described portions of the ther and the apparatus itselt being adapted for the direct presen
tation of the condensing lens to the suns rays, owhereby the axe f the lenses made ap
tion of the said rays.
2,199.-Portfolio--Henry T. Sisson, Providence, R. I Patented April 5 , 1859 :
nd a hinged spring folder, B, or their equivalents in combinatio arranged a
ap cifled. I also claim in combination with the
2,200.-Running Gear of Street Locomotives.-Ira C assignees Ira C. Story. Patented Nov First, I claim the combination of one or more friction rollers or

Second, The aljustable platrorm in comb:nation with the friction
wheek, \mathbf{O} and N , ald the wiving wheel, \mathbf{C}, substintially as de Third, Reserving the moveruents of a locomotive by the alternate
pplacation to the drivers of riction ro lers revolving in opposite 2,201-Sash Stopper and Lock.-Washington Va

4aasbeek, Mount Vernon, N. Y. Patented Oct
4, 1864:
First. I claim the retaining lever, C , reaching beyond the sash,
provided at is outer end with a pur,' c, arranged to bite upon the
 recond. In combination with the above, I claim the inner spur
or bitiug edge, b, substantially as set furth for the pui poes specified 2,02.-Machinery for Cleaning Top-flats of Carding
ngines.-Horace woodman, Biddeford, Maine patented July, 8, 1856
 ith them, when sdid shatt is used in comblna, ion with to traverse
 et forng and specifed.
 Third, A triversing mechani m oroper, substantially such as de-
cribed, a cleansing mechanısm proper, substantially such as de cribed, and a locking mechanism, proper, substan iallv such a F urih, A detent or locking merchandinin con tructed subst $A \mu$ ially n the manner and fr the purpose. shown.
Fitth, Tlie conibination of as traversing merhanism, cleansing
nechanism and det int or lockirg mechianism, with a pulley, P) Ocated on and ine with the axis of the main mishnder ot a the culley, Pr
ongine, so that the

 sto remove the waste fron the same, or cleane e the card or said
arprior or preparatory to the cleaning of each top card, sub-
tantially in the

 ith such teeth. whereby the sories of top cards meing cle n with
hanged, sulstancially as and ior the purposes set futh and de 2,203.-Scroll Sawing Machine.- Lysander Wright, and

Charles B. Smith (assignees i.y sander Wright), First, I clam, tbe vior.tion-wegnt d d lever, A, or its equivalent,
constructed ajad operating subsiantialiy as and for the purposes pecified.
Sic ond
 Third. The connecting rod rod, D, in combination with the saw hook,
T' and vibrativeweigh ed lever, A, operating substantially as and ur the purpoes set fortl
,204.-Hollow Augers.-Arcalous Wyckoff, Elmira, N Patented.july 12, 1859 :

 utter for the purpose of iving an ontward direction to, and carry
ng away the cutuns, subsiantially as set forth.

DESIGNS.

2,278 and 2,279-Bedsteads.-P. C. Cambridge, Jr., En,280. - Trade Mark.-A. W. Fagin, St. Louis, Mo
2,281.-Tap-plate of a Watch.- F. A. Giles, New York 2,282.-Portable Furnace.-John Martin, Jacob Bees
ey and John Currie (assignors to stuart and York City.
Plate.-Samuel M. Richardson, New
M.

NEW RATES OF ADVERTISING.

FORTY CENTS per line for each and every insertion, pay mount tbev must send when they wish advertisements publisied we will explain that eight words average one line. Engravings will ot admitteu into our advertising columns, and, as beretofore, the and her may deem oblectionable.

STOVER MACHINE COMPANY, MANUFACTURERS

F W. BACON, No. 84 JOHN STREET, NEW YORK ON. Fet $17,1866$.
ing you put in m ngine some 15 months since woiks to pay entire satisfaction

experience of ${ }^{\prime} 2$ years of runing large ensines in saw and flouring
mills. \quad Your, truly,
$\begin{array}{l}\text { JOHN KENDLL }\end{array}$

CUMBER CAN BE SEASONED IN TWO TO FOUR days, by Bulkley's Patent, at an average cost of \$1 per M. from

FOR SALE AT A BARGAIN-- 20 MILLING MA-

RON CASTINGS AND STEAM BOILERS. - THE Boston. are prepared to manutacture common a nin gun-metal cast
ings, of rom ten to thiriry pounds weight. made neen sand, dry
sand or loam. as desired; also Flue and Tubutar Boler sand or loam, as desire, also Flue and Tubular Boller, and
n Hinkley's Patent Boiler,', for locomotive or stationary engines,
Warrauted to save a large percentage of fuel over any boiler now
in use.

TO INVENTORS.-R. L. DELISSER, No. 69 BEAVERER

W HITLOCKS PATENT S:EAM OVEX--IUST THE

$\mathrm{G}^{\text {IOULD MACHINE }}$ COMPANY,

Patent solit ementy wheels, silicate ond TH:S PATENT IS NO HUMBUG; IT IS A BELT
 an not believe it. Forfull particulars address
SEYMOUR ROCER , Pittsburgh, Pal
M class Iron ylanor, planer fteet in it incipes. right in ever cass Iron Planor, planer 4 feet ive $2+$ inching. right in every

Water-wheld. - YALENTINES PATENT IMbity PROVED Tur'गne, eombining greaiceonomy or water, dura-

FORSALE-TIVO VALUABLE PATENTS. ADDRESS

A R.IRE OPPORTUNITY FOR OBTAINING BACK
Adrless W. T. s., No. 1,02 Cliestnut street, Philiadelphia, Pa. 1*
PATENT FOR SILE.-THE MOST VALEABLE,

 onsed any water-wheel bailder to compete with liis mako ot wheel
 only the relative merts sut thi, actual percentapio or each wheel Mr. .an De Water evaded this by proposing the est ghould be

 ing minc a puthico "ullengr.

 nches in thameter, and the :Leltel Double Turbine" wheel, (33 This atiount ground by the Lefiel whee essceeded that of the van
Do wister wiecl hy twenty-four (24) barrels of flour in twenty-four
hours. hours the wheels are in the same flume, and this is as fair a trial as

MPORTANT TO MANUFICTURERS AND INVENT-

T URNING TOOLS -MY SUBSTITUTE FOIR THE tendedide rest moett with apyroval from pratetcal men. It is in in.

W ANTED-MACHINERYY FOR MAKING WROUGHT

W ANTED-AN S-FOOT IRON PLANER, ABOUT 30
 CIE UNDERSIGNED, HAVING FACLITTES FOR

TO PARTIES WISIING TO INVEST IN A GOOD
 and one fior tine polishing; Thiroating, Facing and Sizing Nachines;
one Denuistown Rim Rounder; one Hub tiortiser, Fay's
Ratent,

 fictory, The above mactines have been in uee about one yea, and
can we seen, in pertect runing order, at our anctory. Any

SAW MAKER WANTED-TO TAKE CHARGE-ONE S_{11} S:I

PRemium machives

Descriptive Circular sent free on application. $\begin{aligned} & \text { WIEELER, MELICK } \\ & \text { in }\end{aligned}$
M ANUFACTURE OF VINEGAR.-PROFESSOR IIaciure Vinegar by the slow and quick methods, and by distuatio of wood; prepanation of the wath, with and without aleoh ol; pre
paration of the zrains puritication of vinegar; fabrication ot ace tic acid; , priceesses to try vinegars.
iot riuther intormation address
$i x$

New Lebanon, New Yorl.
TOSAUCE, Chemist is radyturers. - PROF. H. DUSins stuce, Chemist, is reaty to furnish I Pans of Fractories Dram-

$\mathbf{W}^{\mathrm{E}} \mathrm{ILTVE}$ NOW MANUFACTURED SUPERIOR orse-powr; a alson doulle-uctinn St stam Engines, from four to forty

A new work on modermane enginemrivg,
 MODERN MARINE ENGINERESG;

monthlil),

 and Low boilriss.
The piates are correctly tinted to portray the dititerent materials,
vith thie recognized colors adopted by eus ineers for practicd

 Vumerous clear Wood Cuts will be interspersed, in order to assic
tie student as well as to refresli the memory of the earned the examples depicted will be those of the late et and beet-known
desifn ind construction.

Patented articles manuFactured at the

 213 , itore or sate by

$\mathrm{F}_{\text {inchI }}^{\text {IRSThes } 32 \text {-inc }}$ MACHINISTS' TOOLS. -36 AND $25-$ Oinch Iathes, 32 inch Plancrs, 48-inch RadialDrill and Bolt Cutter

Photographs colored by

o. 708 Broadway,

N EXPERIENCED ENGINEER, WHO FOR YEARS

${ }^{6}$ POWER-LOOM WIRE CLOTHS" AND NETTINGS

R EMOVAL.-WM. H. IIOAG, SOLE MANUFACTUR-
 gle Ritachine. 1 Renoved to No. 222 Pearl strect. Post office Box, 4,245. 116^{*} M ODELS PATTERNS, EXPERIMENTAL AND

 EVIFTGralho's Improved Superheater (illustrated on page 98 , scr

$\mathrm{S}^{\text {CHOOL OF }}$ OINING and practical geology,
LAWRENCE SCADDTIFIC SCHOOL
These Depanty weebs each. commencing in February and in in sepember. For intorration appyyby letter to DR. WOLCOTT GIBBS,
ambride, Mass, Dean of both Faculties. C IRCULAR SAWS,
Cequire lest power, less skili, less fles movaple teerit

A MERICAN PEAT COMPANY.-THIS COMPANY nery and Territorial Rightsto to the same, onto manufacture fuel

 TOR THE CCLEBRATED LAW'S PATENT SHINGLE

STEAM BOILER-A NEW, SPLENDID TEBULAR-

F^{OR} SALE-A LARGE FLY WHEEL, 2) FEET IN

$\mathrm{G}^{\text {ODDARD'S BURRING MACHINE WORKS }}$ Office, No. 3 Bowling Green, New York,

Patent Mestizo Wool-burring Picctrrs, Shake willows, Tooi and orders respectrully soliciteu, and piompt attention wivan, by at $\underset{11}{\substack{\text { Iressing } \\ 113}} \quad$ No. 3 Bibowing Giren, N. C .
 JACOOMRD tomeane any binu or narrow goods. made to orlder.
and Hand Looms .

 MACHINERY for the manuracture or DRESS RRN.
Manufactured and for sale ${ }^{2}$ w. P. UHL NGER. Machinis
11 8* No. 1,621 North Second street, Plililadelphina, Pa.
$\$ 200$ MONTH MADE WI YH STENCIL TOOLS.

THE HARRISON BOILER-A SAFE STEAM BOHLER

s-Atention is called to this Staty Gienerator, as omplining
and cost of repairs, economy or fuel, facility of cleaning transporta.

 t produces superheated steam and is not liable to rrimm or tre ing. It is easily transported, can be erected by ordinary workmen,
is readily cleaned inside and out, and requires no special skill in
cin

 ings and specifcations furnished tree. For dencrivive circula
and price address
JOSPI HARRISO 10 4* Harrison Boiler Works, Gray's Ferry Beal
Near U. S. Arsenal, Phladeliz.
10.000
 104^{*} S. J. MCDOWELL, Lock Box 7006 , Cincinnati, Ohio.

PEPPER'S PATENT KNITTING MACHINES-THE ny. The maclunes will knitit ribted or plain. circulariar or papen roods. The mactiziaes are so made that they can be clanged irom.
fine to coarse work and from rib to phain in about hali an hour.

MPORTANT TO MINERS, MILL MEN, AND PAINT
 parties the bullion
I also have machinery and furnaces for worklng Sllver Ores, and

A NDERSON \& SCHERMERHORN, PATTERN LND

W ATER-WHEELS-MANUFACTURED BY AMERIMass. TAN WATER-WHEEL CO, No. 31 Exchange exteet Boston,

TO MMCHINISTS AND MACHINE MANUFACTUR
 2,000 diferent geart. chgents manted to sell these rules, who will be
assign

 w York.
E PROVED CONSTRUCTION ENGINES OF GREATLY IM-
 cavil their superioritite where less than then horse-power is requircd
Portable and Stationary Steam Engine Grist and Sa Mills. Cot

F NGLISH MACHINERY AND TOOLS OF ALL KINDS

 Patent Alarm Drawer. Great inducements to good business
Address A. TURNER, Willimantic, Conn.

WILSON'S STEAM TRRAPS, GREAT SUCCESSS-

Dlatina-wholesale and retail-IN ALI
P forms, ror ill purposes. H. AN. RANNETAL Importer, ND. 7
TINE POWERFUL DOUBLE-LENS MICROSCOPES

TMMENSE IMPROVEMENT IN STEAM.-W. Weight fris PATENT STEAME ENGINES sayc 75 per cint in pace to all uses. For circular address the mitcrs exirye co.

F Yriezzing, shaning and Molding Machines, addrest J. A. FAy
200.000 and FARM LANDS, with Oil Wells and

CHOICE PEAR TREES FOR SALE AT A SACRIFICE.

TMPROVED STATIONARY AND PORTABLE STE AM

WOOD-WORKING MACHINERY.-WE ARE BUILDWes woowrorth lianing. Tonguing, anc Grooving Machines

T accidents by horsce cos

CONNECTICUT IRON WORKS

SPRINGS-POLISHED AND UNPOLISHED-MANU-
SAW GUMMERS, UPSETS, SWEDGES AND OTHER G. A. Prescott, sanly Hill, N. Y.

Y SLLOW PINE LUMBER-TUE OGLETHORPF

W ATER WHEELS.-THE HELLCAL JONVAL TUR-

PATTERN LETTERS MND FIGURFS METALLIC

 M PL-STONG DRESSING DIAMONDS SET IN

ThE FIRST AMERICAN-EUROPEAN PATENT CO Cod Charterech) of Lenisville, Ky, nurchases, sells, nepotiates, in nd Europe. Send for circulars or call at the
NAIN BEANCH OFFICE,
No. 43 Nassau street, New York. S Cocks. Valves. Ftc.: Wrought-iron, Brass anc Galvanized IRteam

(YAN I OBTAIN A PATENT?-FOR ADVICE AND or TWENTY YEARS Attorneys for American and Torcimn Patents

STEAM GAGES-BATES'S PATENT-GOVERNMENT

Boiler felting. - Steam boilers stein
 pared to turnish ind put on felting at once

SUPERIOR PATENT DRAW LIME KILN-WILL Durn Finichins Lime with any coall or wood-50 per cent waving
 Ballis or nyy lenetlowith head of any shape usell in the trade,

Our Spike Macline, for simplicity, durability, quality, and quan-

M ANUFACTURERS OF PLAIN NND ENGRAVED

To ENGINEERS.-INCRUSTATION REMOVED AND

 the preventive.is. F. IEVIN. No. 23 Central Whart. Baston.
412 IMAMPSOX $\&$ COPELAND, No. 95 Maiden Lanc, N. Y.
THE WASHINGTONIRN WORKS HAVE ON HAND for sale their Improved Partable Stean Siasirios. rortathe Cir

 nd Small Forgings. Etc. Address , Treasurer, Newlurgh, N. Y.,

WARD. Avent,
No. $\overline{5}, ~ L i b e r t y ~ s t r e e t, ~ R o o m ~ 8, ~ N e w ~ Y o r k . ~$
19*
W ANTED-AGENTS.-S150 PER MONTII TO SELL

$\mathbf{A}^{\text {TMOSPHERIC TRIP HAM }}$ PRERS.
A Persons intending to orect, or those using liammors, are in

$\mathrm{R}^{\text {EYNOLDEvementsand Reduction in }}$ Irices ThE The best -GREAT

Circular Saiv-mills-Singte and double-

TAYLOR, BROTHERS \& CO.'S BEST YORKSHIRE Iron.-This iron is of a auperior quality for locomotive and cund

PORTABLE ENGINES, SUITABLE FOR THE OIL Renions, from 8 to 20 -1orse power, with large tire place inde The most complete and best engines in the market. Fornarticuliar
WM. D. ANDREWS $\&$ RRO.
didress 1 ti

hio.
G ROVER \& BAKERS MIGHESG PREMIUM ELAS
M. bailey \& co., provision brokers, no

OMIOMLOLL

A MESSIEURS LES INVEXTEURS-AVIS MPORT-

$\mathbf{S}_{\text {Inverted }}$ S-

$\mathbf{R}_{\text {OLTS, nuts, WASHERS. COACH SCREWS, SET }}$ \% ${ }^{2}$,

F OR SALE-UPWARDS OF TWENTY VALUABLE

A NDREWS' PATENT OSCILLATING ENGINES. ied at fhort notice. These enfines leave the shop realy tor. utine

FOR WOODWORTH PATENT PLANING AND .
SETS. VOLUMES AND NUMBERS.

J UST PUBLISHED-THE INVENTORS, AND MF

 of Inventris Assignees and Joint Owners; Instructions as ro Inter
ferences. Roissues, Fxtensions. Caveats, together with a reat vari

PORTABLE STEAM ENGINES-COMBINING THF Pum maximum of efticiency, durability and economy with the mivi

J. A. FAY \& CO.

Patentens Ginctinvatione

Nary Yanris
Shin Yards,
Raircal
Car ind
ind

B PEORTANT WATCHMANS TIME DETECTOR.-IM-
 eat. .end for a circuar.

NDICATOR APPLIED TO STEAM ENGINES TO ascertain the ir condition and power, also to do determine the
F.W. BACO
and Consulting Engineer, No. 84 John street, N. Y.
$\mathbf{S}_{\text {RLE }}$ TEAM ENGINES-WITH LINK MOTION, VARIA-

N. C. STILESS PATENT PDOWER FOOT AND DROP or a circular
1 vol.XliI.52*
ion made to order. Se 1
For daniedils's planing machines, car mor Tistich, Boring Machines, Car-Tenoning Machines, Car Planing
[RON PLANERS, ENGINE LATHES, DRILLS ANi,

A PDREWS' PATENT CENTRIFUGAL PUMPS PACAA PACITY Hrom 90 to en,000 gallons per minute For draininc
 large and constant suphly ot water is requires, these punps are on.
equaled. They are compinact, require liftle powrer. and are not liable
 $\mathbf{W}_{\text {Lock-stitch }}^{\text {Sewing Machine and Button hole Machine. Jii }}$

Sur Beadtung für beutide Crrfinder.

 ocraberygen folde gratios an bitefelben.

Tuf ber Dfice wito beut: gefipoden

mproved Parallel Ruler.

The instrumeut herewith illustrated combines within itselt an improved parallel ruler, square, quadrant, calipers, and compasses. Its operation will be readily understord from the illustration.
The slots, A, in the parallel arms of the rulers are beveled out on the under side to receive the heads of the pins which pass through them from the cross arms, B C. As the arms, B C, are opened and shut, the pins traverse in the slots. These being on a line with the other joints, D E, and parallel to the edge of the ruler, the latter are always held exactly parallel to each other. A scale, G_{1} is hinged to the shank, H , in such a manner that when brought down against the ends of the arms of the ruler, as shown, a right angle is formed at I; and when not in use it can be folded back, as shown by the dotted lines. To the ends of the arms hardened metillic points, L M, are attached for the purpose of using the instrument as calipers, trammels, and compasses; and when so used the thumb screw, N, is designed to secure the arms in any desired position
The parallel ruler in common use, with mathematical instrumpats, works off diagonally across the page, and away from the work of the operator. This moves perpendicularly up and down the page to any distance. A ruler of any given lengih constructed in this manner, wil spread to a greater distance than one as ordinarily made, thus avoiding the necessity of frequently moving the lower limb while operating with it When the scale, G, is in the position sho mn , a convenient rule is always at hand, enabling the operator to draw bis parallel lines at any given distance apart, without the necessity of using any other instrument to measure with. With the scale set as shown, a right angle is formed at I, in which position t may be used by the mechanic as a square, and by the mathematician to erect perpendiculars, or cut lines at right angles. By graduating the shank, J, the more usual angles may be laid off as with a quadrant. W'hen nsed as calipers and dividers, the scale, K, always shows the distance of the points from each other.
A patent for this invention was granted to Uriah Smith, Batt'e Creek, Mich., Jan. 29, 1866. The inventor, not being a mauufacturer, would be glad to correspond with any interested parties in reference to the privilege of manuficture, or the sale of the entire right. For further information address as above.

Printing Rollers.

Printing rollers are made of a mixture of glue and treacle, or of glue and hones. 1 pound of good glue is soltened by soaking in cold water for twelve hours, and then it is united, by means of heat, with about 2 pounds of ordinary treacle.

Messrs. Hoe \& Co. give the following directions for making and preserving composition rollers:-For cylinder-press roliers, Cooper's No. 1. \times glue is sufficient for ordinary purposes, and will be found to make as durable rollers as higher priced glues.

Place the glue in a bucket qr pan, and cover it with water; let it stand half an hour or until about half penetrated with water (care should be used not to let it soak too long), then pour it off, and let it remain until it is soft. Put it in the kettle and cook it until it is thoroughly melted. If too thick, add a litcle water until it becomes of proper consistency. The molasses may then be added, and well mixed with the glue by frequent stirring. When properly prepared, the composition does not require boiling more than an hour. Too much boiling candies the molasses, and the roller consequently will be found to lose its suction much sooner. In proportioning the material, much depends upon the weather aud temperature of the place in which the rollers are to be used. 8 pounds of glue to 1 gallon of sugar
house molasses, or sirup, is a very good proportion for summer, and 4 lbs . of glue to 1 gallon of molasses for winter use.
Hand-press rollers may be made of Cooper's No.
$1 \frac{1}{4}$ glue, using more molasses, as they are not subjec to so much hard usage as cylinder-press rollers, and do not require to be as strong; for the more molasses hat can be used the better is the roller. Before pouring a roller, the mold should be perfectly clean and well oiled with a swab, but not to excess.
Rollers should not be washed immediately after use, but should be put away with the ink on them, s it protects the surface from the action of the air When washed and exposed to the atmosphere for any

SMITH'S PARALLEL RULER.

length of time, they become dry and skinny. They should be washed about half an hour before using them. In cleaning a new roller, a little oil rubbed over it will loosen the ink, and it should be scraped with the back of a case knife. It should be cleaned in this way for about one week, when lye may be used. New rollers are often spoiled by washing them too soon with lye. Camphene may be substituted for oil; but owing to its combustible nature it is obectionable, as accidents niay arise from its use.

New Photographic Printing Process.

We have received from the inventors, Messrs. G. E. Deshrats and W. A. Leggo, of Quebec, C. E., some pecimens of prints-done upon a common hand printing press-of their newly patented process for making printing plates by means of the photograph. The object of the patentees is to produce electrotype plates of pictures, ready for common printing, like ordinary type printing, without engraving or ther hand work.
The process is briefly as follows:-Upon the varnished side of an ordinary negative, pour a solution of gelatin containing bichromate of potash. Dry, and expose the uncoatel surface uppermost to light, which fixes that portion of the bichromate upon which the rays fall. Dissolve off the unfixed portion by dipping in warm water; drain, and we have a film upon the glass more or less raised, according to the strength of the lights in the picture. Take an impression of this film in plaster. Dip the impressed plaster in hot wax, and place the waxed surface upon glass plate also covered with hot wax. The wax upon the plate unites with the wax upon the plaster, and the latter may then be removed, leaving upon the plate a fac simile in wax of the original photoraphic gelatin film.
The fac simile being now dusted with plumbago and electrotyped in the usual manner, a printing block in copper is produced, capable of use with printer's ink upon any press.
The specimens we have received are for the most part copies of steel plate engravings, and the pictures are comparatively well done. There is, however, room for improvement.

Crosshead Guides.-Messrs. Chaplin employ for heir contractors' engines, and for their engines or their steam cranes, a very simple form of crosshead guide. The guide bars are cast in one piece, with the front cylinder cover, and are finished by boring hem out with a cutter fixed to a boring bar passing through the piston rod stuffing box, and the ring by which the outer ends of the guide bars are connected. The surfaces of the bars thus made sufficiently ollow to retain the crosshead in its place. Guide bars should always be furnished with good means of lubrication, and the ends of the crosshead blocks should be rounded off with a very small radius, so hat they may not scrape the oil from the bars as hey work to and fro.-English Trade Circular.
[This is not new either, as the same plan is practised in some engines made at the New York Steam Engine Works.-Eds.

Bursting of a Blast furnace.-An explosion lately occurred at the blast furnaces of J. P. Hickman, Graveland Ironworks, Tividale, near Dudley, Eng. A furnace was about to be tapped, when one of the tweers through which the blast is convejed into the mol en metal burst, and the water which is contained in the tweers to keep them from melting, at once bursting into steam forced out a quantity of the melted iron upon the men employed at the furnace. Two men were so dreadfully burnt that they died the next morning, and two more received very serious injuries.
How to Purify Rancid Lard.-A correspondent of the C'ountry Gentleman writes? 'We had some orty pounds rancid lard, whic'l was valueless as it was. Knowing the antiseptic qualit'es of the chloride of soda, I procured three ounces, which was poured into about a pailful of soft water, end when hot, the lard added. After boiling thoroughly together for an hour or two it was set aside to conl. The lard was taken off when nearly cold, aud it was subsequently boiled up. The color was restored to an alabaster white, and the lard was as sweet as a rose."

Strength of Ice.-As people are a little timid about traveling on the ice at times, we give the capacity of the ice as furnished by te U. S. Ordnance Department which is correct. Ice two inches thick will bear infantry; four inches, cavalry with light guns; six inches, heavy field guus; and eight inches, the heaviest siege guns with 1,000 pounds weight to square inch

INVENTORS, MANUFACTURER
The SCIENTIFIC AMERICAN is the largest and most widelscirculated iournal or its class in this country. Each numb r contains sixteen pages, with numerous illustrations. The numbers for a year make two volumes of 416 pages each. It also contains a full account of all the principal inventions and discoveries of the day. Also, valuable illustrated articles upon Tools and Machinerv used in Workshops, Manufactories, Steam and Mechanical Engino ${ }^{* 1}$ ing, Woolen, Cotton, Chemical, Petroleum, and all other manufacturing and producing interests. Also, Fire-arms, War Implements, Ordance, War Vessels, Railway Machinery, Electric, Chemical, and Mathematical Apparatus, Wood and Lumber Machinery. Hydraul es, Oil and Water Pumps, Water Wheels, Etc.; Household, Horticul ral, and Farm Implements-this latter department being ver and of great value to Farmers and Gardeners. Articles emb tand and which every body likes to red
Also, Reports of Scientific Societies, at hom and abroad, Pateab aw Decisions and Discussions, Practical Reci es, Etc. It also conains an Official List of all the 1 atent Claims, a special feature ot eat value io Invectors and owners of Patents.
Published Weekly, two volumes each year, commencing January and July
terms.

.. 2500
ddres3
MUNN \& CO., Publishers,
No. 37 Park Row, New York Cits
Messrs. MUNN \& CO. have had twenty years' experience in proring Patents for New Inventions. Inventors who may have such usiness to transact can receive, free, all needful advice how to proceed.

