a WeEkly Journal 0f practical information in art, science, mechanics, Chemistry and manufactures.

Improved Baling Press.

It is very important, in preparing certain substances for market, such as hay, moss, corn-husks for mattresses, straw, \&c., that they should be compressed as small as possible in bulk, so that they may not occupy too much room in proportion to their weight. The engraving published herewith is an accurate reproduction of a new press for the purpose alluded to, and, as will be seen by the engraving and.the following description, combines the most desirable qualities in the smallest compass consistent with strength of parts. The details of this machine are as follows :-
The box, A, is of hardwood, strongly bolted together ; it is furnished with two doors, B and C , one on the side and the other on the top, which are both thrown open in the engraving to discloze the interior. The ends of the press box, A, are occupied by the pow-er-transmitting machinery. This consists of two spiral wheels, D (one on each end), keyed fast upon the shaft, E ; upon the other end of this shaft is the worm wheel, F , in which works the worm, G, attached to the shaft on which the levers, H, are secured. The clamps, I, are fastened to the swinging bolts, J, which slip over the spiral wheel shaft, and these clamps can be moved outward in order to let the top of the press come down; when in place they are slipped over the stout bar, K , on the top cover, and thus retain it in place when the pressure comes uponit. The follower cannot be shown as it is inside the press box; but the bar, L, is a part of it and connects with the
grooved wheel, D. These are the principal detail The operation of the press is very simple. When the press box is filled with the material to be compressed, turning the levers at which the operator is stationed causes the chains to run up on the spiral grooves of the wheel, D, thus elevating the follower at the bottom anu compressing the material in the box. It will be seen that the movement is well proportioned to the work, for when the hay is loose and easily pressed the follower runs up rapidly on the larger portion of the spiral wheel ; but as the resistance increases, the power of the press is augmented by the difference between the large and small portions of the wheel, D; the motion is slower and the

fully and satisfactorily tested; the inventor says he will warrant it to press one tun of hay per hour, and make bales in shipping order at a cost not exceeding fifty cents per tun. It was patented through the Scientific American Patent Agency on July 7th, 1863, by D. L. Miller, of Madison, N. J. Further inform ation can be had by addressing him at that place.

Case-hardening Iron.-A new method of casehardening iron has been patented in Germany, by M Martignoni. The process consists in rubbing the surface of the iron, while at a red heat, with the following composition :-5 parts of cow-hoof, reduced to fine shavings ; 5 parts of quinquina; 2.5 parts of common sea-salt; 1.5 parts of saltpeter; and 10
parts of coarse black soap. This mixture is formed into a paste, and applied by a roller, on which it is smeared. The iron is subsequently tempered in cold water.

The Great Eastern---Her Repairs in New York---And the Ghost.
An interesting paper was lately read by Capt. Pa ton, of the Greal Eastern, before the Mercantile Ma rine Association, Liverpool, in which he spoke of the great advantages of double-bottomed shipsremarking that a ren such as the Great Eastern had- 90 feet in length and about four feet in breadth--was sufficient to sink any ordinary singlebottomed vessel. Yet had it been actually neces sary, she could have re crossed the Atlantic in safety. The mode of repair was by an immense coffer dam or caisson, 104 feet long, 15 feet broad, and 8 feet deep, placed under the bottom of the ship, over the fractured part, made to fit tight by the aid of a hose, and emptied of water by means of a steam engine. The men were thus enabled to work at the bottom of the vescel and repair the damage in the usual way, by putting in new plates, fixed together with heated rivets. The quantity of plating thus put on the ship was 800 superficial feet, and when she arrived at Liverpool the work was found to be so well done that this portion did not require re-plating. There was no instance on record of such repairs being done to a ship afloat under similar circumstances. He gave nearly all the credit of the plan (illustrated on page 403, Vol. 7, Scien tific American, new se ries), and the carrying out of the varied and difficult operations connected with it, to Messrs. Renwick, engineers, of New York. Speaking of the operations of the divers, he said they had been materially aided by a newly-invented submarine lamp, enabling the men to see objects under water as distinctly as in broad daylight.
Captain Paton told an amusing ghost story in connection with the great ship. An impression got abroad that the ship was haunted, the alleged ghost being that of an unfortunate rivetter, who was heard plying his a vocation in one of the wells or compartments. Before the vessel left this country he believed that one of the men employed in her construction was missing. The man was a rivetter; he was
missed from the ship, and never came for his wages the supposition being that he had been rivetted up in some part of the vessel. So firmly impressed were some of the men with this idea that they left the ship in consequenca, and affirmed that they had heard their departed friend busily engaged rivetting in the middle of the night. The story was believed by many persons in New York, and on one occa sion, while the ship was under repair, a diver signalled to be drawn up. He appeared pale with fright, and declared the ghost of the rivetter was busy in the bottom part of the ship; iu fact that he began rivetting immediately over his head. Such was the consternation amongst the divers that the called in the aid of one of the spirit mediums, who are somewhat numerous in the city of New York The medium came on board the ship, and, after an examination, declared that the missing man was there both "in body and spirit." Fortunately h (Captain Paton) by pure accident was enabled to dis pel the illusion. Being in a boat near the bows of the ship, he discovered that a swivel connected with the moorings worked to and fro, the movemen causing a chink, or vibration, which at times, more especially at night, was heard throughout the vessel It was this sound which had conjured up, in connection with the supposed fate of the unfortunate rivet ter, the phantom, whose mysterious doings spread such consternation on board the big ship.

SOUTHERN OPINION OF MECHANICS.

If there be any well-meaning but deluded mechanics among us who have advocated the cause of those now in arms against the Government, and have sought by all the means in their power to disparage the efforts of our people to subdue those who would destroy this country utterly and forever, we beg them to read the following extracts from the Rich mond Examiner, and ponder upon the animus or sirit which prompted the paragraphs alluded to. What can be the future of any nation or country which so despises operatives of all classes? Disaf fected workingmen at the north, who pine for a more intimate association with rebels, should read care fully the extracts appended. We quote :-
"Even before the war the so-called 'workingmen' had their candidates in our larger towns; and since the war we have seen in the very Capital of the Confederacy an appalling display of mechanic 'goosery,' which nearly frightened our worthy Representative out of their propriety. Indeed, such is the arro gance of the few artisans of the South, that well moaning men, who, a few months ago, reveled in visions of the future development of the material resources of Virginia, stand aghast at the sequel of their dreams as they foresee the whole 'chaos come gain' of a corrupt civilisation; all the -isms of the North, all the -ologies of Germany, the phalansteries of the French communists, the extrava ganzas of English radicals, running riot through our Southern country. Mills and manufactories on ever stream and in every valley would be a poor compen sation for the introduction of such a crew of the sons and danchters of Belial ; and no wonder that those who cling with love, which is often the highest reason, to the old framework of our society, shud der at the thought.of a Lowell on the Appomattox, or a Manchaster in the Piedmont region. And yet they see no other future for the Border States of the Confederacy. Slave labor is to be withdrawn from the northern side of the James, aud the country is iiterally and metaphorically to go to grass. The old lords of the soil are to migrate to the far South, and Yankees and Yankecfied Southerns are to dye the rivers of Virginia with indigo and copperas, and make her skies black with the smoke of her furnaces. Then the fatal process which led to the dissolution of the old Union is to be repeated, and another frat ricidal war inaugurated.'
"The old framework of our society" means of course slave labor. In another part the rebel editor says :--
"Bat suppose, for the sake of argument, that after the war is over manufactures will be found to pay in the South. Even then we are not disposed to admit that our social system will necessarily undergo a rad ical change, and we shall be forced to import labor ers from abroad, and with those laborers the germs
of Red Republicanism and its kindred tares. An easier solution of the problem is found in the ad vanced intelligence of our slave population, who are, in some respects, not a whit behind the opera tives of Lancashire. When the blacks cease to be profitable in the field we can transfer them to the workshops; and the more elaborate the fabric the more minute the subdivision of labor-the easier will be the management of the race, the less the danger from the thievish propensities of this pecu liar people. Everybody knows, although everybody seems determined to blink at the disagreeable fact, that of late years all the higher order of slaves, such as domestic servants and mechanics, have been bent on the acquisition of money, which they either hoard with senseless avarice or spend with reckless profu sion. Hence we have said that such slave labor a may not be profitable in agriealtural or domesti servitude should be employed in those manufacture which require a variety of independent processes, ather than in the more simple handicrafts for which alone negro operatives have been deemed fit. At al vents, the cap acity of the negro race for manufac turing operations, not simply for the heavy work o the foundery and the flouring mill, but for the pro duction of delicate fabrics of cevery kind, deserves a series of careful experiments at the hands of those who wish on the one hand to see our system of slav ery perpetuated and developed, and on the other to prevent the rise of a mere mechanical class; which by its license, its half education, its narrow views its low moral standard, has endangered every form of free government, and has always proved the wors foe to social order.'
Even the corrupt governments of the Old World recognize and admit the claims of labor, and encour age industry in all possible ways, but this stupid ϵd itor is of opinion that when the war is over, and if their leaders had succeeded in their attempts, they would have been able to do as they chose with white mechanics. The tone of the extracts is worthy of notice by all artisans. They have reason to thank themselves that in the society they live, respect able mechanics are as much honored and esteemed a the highest officials in the land.

Manufacture of Pig Iron in Buffalo

This branch of manufacture in Buffalo has already ttained considerable magnitude, as the blast fur naces now in operation there are producing daily ifty tuns of pig iron, and some portion of the time during the season, it has been as high as seventy tuns daily. Allowing an average of sixty tun daily, the yearly product |will be 21,900 tuns. The works now in operation are being enlarged, and when completed the product from one establishment will be fully one hundred tuns of pig metal daily, added o which will be the daily product of a new blast furnace at Black Rock, now near completion, of say, 30 tuns daily. The total product of pig metal in Buffalo will be, next year, about 47,450 tuns. The following from the Philadel phia Gazette, giving the ron product of Pennsylvania in 1862, will show that the iron manufacture of Buffalo, although re cently established, will compare favorably with that of the Keystone State
The Board of Trade of Philadelphia state the product in 1862 to have been 381,448 tuns in Eastern Pennsylvania, against 313,000 tuas in 1861-an in crease of more than 20 per cent. At the close of 1862, a large number of new works were started and old ones were revived. In the Adirondack, in Massachusetts, in Ohio, and in Western Pennsyl vania, every dormant establishment has been started in full vigor. Of Eastern Pennsylvania we know more definitely, and can safely estimate the aggregate at near 500,000 tuns, and the increase ove 1862 at 20 per cent., while in other parts of the loya States the increase is probably 25 per cent. In 1862 the Lake Superior region sent out $\$ 12,000,000$ worth f copper and iron; of iron, pig and ore, 150,000 and of copper 9,300 tuns. In 1860 the production was double that of 1859 , yet less than 120,000 tuns of iron and iron ore, and in 1861 but little more than half the aggregate of 1862 . The reports al ready made of the business of 1863 , sufficiently show that both copper and iron from this region will be argely in excess of 1862.
The movement of iron ore from Lake Superios, as
given above, indicates the progress of the iron trade in the Lake Superior regions-and this, on the open ing of the new line of railway from Marquette to Little Bayde Nocquet, will be largely augmented and the raw material will be much cheapened. The future of Buffalo in the development of this brauch of manufacture is most propitious, and a few years hence the iron product will be more than doubled.

New Time Calculator

A very remarkable time calculator, called a "Per petual Indexed Almanac or Office Calender," and in vented by Mr. William Gibson, of South Granby Shefford, C. E., was shown at the recent exhibition in Montreal. It marks the dates and days of the week in plain figures and letters, and will indicate in a few seconds the name of the day upon which any particular date will fall in the future, or has fallen in the past, however remote. Although literally a wheel within a wheel," it is yet very simple, con sisting of two circles, one of course revolving within the other. Its usefulness to the merchant, arith metician, and indeed to any one that, unlike the poet, "takes note of time," cannot be questioned The following problems, solved by it in a few sec onds, will give some idea of its almost inconceivable power :--
."Suppose a year so far advanced that it would take a line of figures of such a length to decipher, that the electric fluid would take a duodecillion of year to pass over the line of figures, of which year th four last figures are 4953 - on what day of the week would the 10th day of June fall on that year? The answer is Sunday.'
"To assist in explaining this problem, it may be stated that in order to point out the dates of a year baving five inches of a line of figures to decipher it so many of these Almanacs (called Perpetual) which point out dates for 100 years, would be required supposing each Almanac to be one inch square and ne-sixteenth of an inch thick) that they would cove over 4,590 worlds like this one mile deep; and it would take a man's labor 2,608 years to write a line of figures that the electric fluid would pass over in ten secends of time.

Nonpareil Washing Machine.

The best recommendation we can give of this, is, that while we have tried fifteen or twenty kinds, this is the only one that our "help" continues to use without being required to do so. It acts somewhat like the old "fulling mill ;" the clothes are put into the hot water, and beat by two pounder which constantly turn them over. The beaters are moved alternately by a crank, provided with a balance wheel which adjusts the force required so as to mak the turning easy. Take it all in all, the Nonparei is the best Washing Machine we have found. If we could find a better one, we should put it in our list for anything that helps to reduce the hard work of washing day, is a godsend.-American Agriculturist.
[An engraving of this machine was published ou page 232, Vol. V., Scientific American (current series). We have had one of these machines in us or the last year, and our experience fully confirms the above statement.-EDs.

The : atent Office Operations.

The following is a summary of operations of the Patent Office from October 1, 1862, to September 30 863, inclusive :-
Applications received from Octefler 1, 1862
to Sept. 80, 1863, inclusive
Caveats filed during the same period
applications for the extension of patents.
Patents issued, including reissues and design
pplications on which patents had been al lowed but not issued by reason of the non payment of the final fee within the time pre scribed by the law of March 3, last, about
Balance of money on hand October 1, 1862 . Cash received from October 1, 1862, to September 30, 1863

370
$818,157 \quad 21$ - - Total.

179,378 55
......
alance to the credit of the Patent Fund 0 oc tober 1, 1863.

Bunches of grapes may be preserved all through the winter by simply inserting the end of the stem in a potato of the size of a hen's egg. The buache should then be laid on dry straw, and turned occa sionally.

MISCELLANEOUS SJMMARY.

The "Warrior" Lighted by Gas.-The Warrior

 is undergoing a thorough examination in dock at Portsmouth. The Times says that many improvements have been recently made in the fittings of the vessel. Perhaps the one possessing the greatest novelty is the introduction of "ozone gas" into the engine room and screw alley. Two small copper reservoirs, holding about a quart imperial measure each, contain a supply of spirituous oil, which flows by a pipe, after the manner of a caged bird's water fountain, into a small copper-inclosed tray filled with sponge. Through this a stream of atmospheric air is blown by a pipe from a pump (the latter set in motion by a weight and pulley), which, passing out by a discharge pipe at the opposite end of the tray, goes direct to the burners. There it gives out a beautiful white light, with comparatively no heat. An apparatus for the supply of a dozen burners may be carried under the arm. It requires no gasometer, and its use entails no danger to the ship. It emits no smell when burning, nor docs the vapor itself, when allowed to escape unburnt from the nozzle of the burner. Its use entails no atteation beyond the winding up, once in 24 hours, of the small weight which sets the machinery of the air-pump in motion. Its cost is one-fourth that of the candles served out for use from the paymaster's stores of the ship.A Glaggow paper anmounces" for sale by private bargain, the wonderful organ of James Watt, the illustrious inventor of the steam engine, made by his own hands for his own amusement, in the city of Glasgow, nearly 100 years ago."
The London Mechanic's Magazine says " the manufacture of American watches commenced within the last ten years in Waltham, as*an experiment, has proved eminently successful. Unable here tofore to compete with the low-priced labor of European workmen, they perfected machinery by the aid of which watch movements are fabricated equal to the hand-made. The continued growth of this branch will- diminish the importation of foreign watches, and may at no distant period earn for North America a reputation in this manufacture equal to that she enjoys in the kindred branches of clock-moking. Gold and silver watch cases are now produced to a very large extent, chiefly in the cities of Philadelphia, New York, and Newark."
The new iron paddle-steamer Will ${ }^{\prime}$ the $W i s p, 600$ tuns, and 180 horse power, was tried recently on the Clyde. The builders had engaged to carry 200 tuns dead weight at the speed of 17 miles an hour, under a considerable penalty-the owners engaying to pay a premium of the same amount if the vessel exceeded that speed-Mr. Wilkie, engineer, Glasgow, being appointed umpire. With the above cargo the vessel accomplished the distance between the Cloch and Cumbrae Lights in 52 minutes 11 seconds, being over 18 miles an hour ; consequently the builders have won the premium. The Will o' the Wisp was de_ signed, built, and engined by W. Simons \& Co., Lon. don Works, lenfrew. Probably a blockade-runner.
The Vagaries of Stean.- The curiosities, so to speak, of boiler explosions, are well set forth in the following paragraph cut from an exchange:--"A boiler in a sawmill at Fort Wayne, Ind., exploded on the 14th ult., nearly destroying the mill. The boiler passed through a barn adjoining the mill, killing a valuable horse, then through another barn, killing a cow, then through two apple orchards, doing much damage to the trees. One of the flues was blown nearly a quarter of a mile. A piece of the boiler struck and upset a kettle in which a woman was boiling soap, without injuring her. Fortunately no one was seriously hurt."
[The cow might object to the conclusion.---Ens.
Merino sheep from Vermont have just been shipped for Australia. They were sent for by sheep farmers in the "bush" as the best that could be found any where--a compliment to the farmers of the Green Mountains.
The new iron railroad briage over the Ohio at Steubenville will be 1,890 feet long, have 8 spans 90 feet above the water, 4 of 225 feet, 3 of 310 feet and 1 of 820 feet. The aggregate weight is estimated at 28,835 tune er $5,670,000$ pounda.

Cotron.-The great demand for cotton and the high prices paid for it, have led to increased efforts in its cultivation in various parts of the world, and with good prospects of future success. According to a recent estimate of Mr. Ashworth, an English statistician, India will yield $1,550,000$ bales during the ensuing year, Turkey 40,000 , Egypt 300,000 bales, China, Brazil, and the West Indies, 483,000; while America is credited with only 100,000 bales. Messrs. Whitworth \& Brothers of Manchester, make a much higher estimate than this, however, and expect $3,165,000$ bales from all sources. Cotton is of vast importance to the whole civilized world. For many purposes, there is no other material that can take its place; and besides this so much capital is invested in cotton factories and machinery that an intense self-interest is manifested to increase the supply;so as to set all the factories which have been idle, or partially idle, for about two years, in full operation again. It is believed that there are now about 300,000 bales in Western Louisiana and Texas, which would be secured to the trade were these ecctions of the Gulf states subdued. About $3,344,000$ bales are required per annum for the British factories. There was a fall of one penny per pound on Indian cotton at Manchester on Nov. 17, making $2 \frac{1}{2}$ pence decline from the prices that ruled two weeks before.
Tricks of Wine Merchants.-The London Grocer says:-" Wine merchants who have not been long in the trade will derive considerable information on the ways and customs of preparing ports, sherries, and other wines for the English markets, and in asionishment many will read that not a drop of port or sherry wine reaches market without a large admisture of brandy, and every Oporto wine-grower declares that port cannot be exported without spirits. It is scarcely possible for wine to continue for many years in contact with the crust and cork without being deteriorated in bouquet; and it is a well known fact that almost every third cork containing very old wine is decayed, and has a bad smell, which it imparts to the wine. Port, with all its strength, when it has been in bottle twelve, fifteen, or twenty or more years, has generally what is known as the ' bottle stink ; yet, with this bottle stink, if declared to be a 'real vintage 1820,' ten guineas will he a small price for it."
Loss of the "Isaac Newton."-A most shocking accident occurred on the 5th inst., by which upwards of ten persons lost their lives, and which also resulted in the total loss of the steamer Isaac Newton. a vessel running to Albany. The boiler of this steamer gave way in some part, at present unknown, and by the escape of steam and expulsion of coals from the furnaces, killed and badly scalded a great many persons. The accident occurred early in the evening and fortunately a steamer happened to be near, which at once proceeded to the wreck from which the flames were bursting in every part and rescued the survivors. The scenes on board are said to have been appalling. The vessel was valued at $\$ 200,000$, and is a total loss.
Huge Armstrong Gun.-Recent British papers contain elaborate and highly-colored accounts of a new Armstrong gun of $13 \frac{1}{2}$ inches bore, 15 feet length, and weighing 22 tuns, which was lately tried at Shoeburyness with conical cast-iron hollow shot weighing 600 pounds. The charge used for it was 70 pounds of powder. Twelve rounds were fired and the London Morning Post states that with charges of 75 pounds its ravge is about ten miles. It is a muzzleloader. In all likelihood all the breech-loading Armstrong guns supplied to the British navy will soon be discarded, as their breech-plugs blow out and they are unsafe.
High-iiandet Proceeding.-A party of rebels re. cently embarked on the steamor Chesapeake, runuing from this city to Portland, and while off Cape Cod, on the trip to Portland, overpowered the crew and took possession of the ship. The second engineer was killed and thrown overboard, and the chief engineer wounded. The rebels took passage from this city and were probably a set of desperadoes or adventurers, who could be collected here at an hour's notice for any undertaking. This affair shows that necessity exists for a strict watch to be kept at all times on veseelis of every clase,

Aerial Locomotion.-M. Jules Seguin has brought before the Parisian public a project for aerial locomotion between the Place de la Concorde and the Porte de la Muette, on Moreaud's system. According to this arrangement, the balloon will be held captive by means of a steel wire cable, running over vertical pulleys at the point of departure and arrival. These so-called pulleys are really large cylinders or drums on which the rope is wound backwards and forwards by means of a steam engine. To the cable which performs the functions of a locomotive, is fixed a line, which conducts the balloon; this is the general idea fof a system on which M. Moreaud has experimented with great success, employing small balloons. M. Seguin proposes to carry 250 persons at each trip, from the Place de la Conrorde to the Bois de Boulogne, or about 600,000 persons per year.
The Rifled Musket.--In making the gages for the purpose of manufacturing the United States riflcd musket, the Providence Tool Company worked up a set to nearly the size, but left a small margin to work off when they were to be tested by the standards at Springfield. Tho company hired a shop at Springfield, as they were not allowed to take the United States standards away, stocked it with men and tools and finished the gages at once up to the standard size required by the Government. In our article on this subject it was stated that the gages were sent back to Providence to be reconstructed; this was a misapprehension of the facts in the case, and should have been given as previously related.
An Old Horse-shoe.-An iron horse shoe has lately been exhumed in the diluvium at Abbeville, France, supposed to be a pre-Adamite deposit, and in which bones and skeletons of the Hudson's Bay beaver, elephant, \&c., had been previously fouud mixed with flint arrow-heads. The flint implements were supposed to afford proof that man had existed in France long anterior to the period usually assigned for his advent-about six thousand years ago.
Mr. Canton, the President of the Medical Society of London, has been writing a volume on the arcus senilis, or old man's bow. This is a ring, or bow, or segment of a circle, which shows itself on the edge of the cornea or dark part of the eye, of which it is a fatty degeneration, and a never-failing symptom of bad health and a decaying constitution. The advantage of this discovery is, that persons having this symptom may pay proper attention to their health in time.
Sensible Englishwoman.-An accomplished English lady, in a recent contribution to Fraser's Magazine, says :-"If at any time I needed to find a gentlemen who should aid me in my little difficulties of travel, or show me a kindness with that consideration of a woman which is the true tone of manly courtesy, then I should desire to find a North Amercan gentleman. They are simply the most kind and courteous of any people.'
Incredible !-We learn from a "truly educated" engineer abroad that "if very heavy engines with imperfectly fitted bearing surfaces are run at high speeds there cannot be the least doubt that they will break down." It is to be regretted that this important fact has been so long withheld from the engineering community.
Some articles intended to be transmitted in the English mails, but which were not forwarded by the officials, are thus described by a cotemporary :-Two canaries, a pork pie from Devonport to London, pair of white mice, leeches in bladder, bottle of cream, sample of cider, a roast duck, a loaded pistol, fish, reptiles, \&c.
Massachusetts Pianos.-The Commercial Bulletin states that the piano-forte manufactory of Messers. Chickering \& Sons, Boston, is "the largest building in the country, except the capitol at Washington," and that about fifty pianos are manufactured weekly at the establishment.
Who Makes Match Splint Machinery ? - A number of inquiries on this sukject have been made at this office latterly. Manufacturers of such machinery will do well to advertise in the Scientific American.
Louls Napoleon has ordered twenve light steam plows for the iuperial farms in France. They will range from two to five horse-power,

ARMOR PLATES FOR SHIPS OF WAR.

No more vitally interesting or exciting question than that of rendering ships of war shot-proof exists in the mechanical, naval, and, we may add, shipbuilding professions. By the courtesy of Commander H. A. Wise, of the Ordnance Department, Washington Navy Yard, we are furnished from time to time with accurate reports of artillery practice, on the several systems of armor-plating experimented upon at the Washington Navy Yard. These are correct reports, not altered or changed in any respect from the copy furnished by the Government, and we call the especial attention of our readers to the results as herewith presented. The subject of the appended
nesses of half-inch plate iron, then comes a tissue of pedoes brought up by the Mount Washington from wire ropes 14 inches thick. The target is mounted Hampton Roads, as follows :on timber 9 inches thick, consisting, first, of two 1 inch boards (one horizontal and one vertical), and then of two layers of timber $3 \frac{1}{2}$ inches thick, disposed of vertically and horizontally.
Dimensions of Target.-Length, $67 \frac{1}{2}$ inches ; width $50 \frac{1}{2}$ inches ; iron thickness, $15 \frac{1}{2}$ inches ; timber, 9 inches.
Gun, XI. inches, No. 214, C. A. \& Co., mounted on wooden pivot carriage in front of battery; charges, cannon powder, 1862. Projectiles; first, one wrought-iron, and, second, one cast-iron solid shot. wrought-iron, an
Primers friction.

These torpedoes are, in material and workmanship, rather inferior; however, would seem to answer the purpose of exploding a certain quantity of gunpowder under water. They are made of tin and are encased in square wooden boxes indicated by the engraving. In the lower end of theze boxes hooks are driven, to which pig iron is fastened which keeps the torpedoes in their upright position.
The cylinder, A, holds about 25 to s. of gunpowder, which is lighted by quick-match leading up through the tube, B , to slow-match, witk which the smaller tube, C , is filled. The tube, C , is of two thicknesses

engravings is Mr. Hodge's target, composed of wire rope or cables, placed behind a wooden facing of a certain thickness. The first engraving represents the target as it stood when fired at, the second a side view of the same target, and the third a rear view of the same target. The official report is herewith submitted. It is proper that we should add

that these illustrations will be continued in future numbers of the Scientific American, showing the effect of shot upon targets of all descriptions, faced with rubber, backed with rubber, wood, \&c. \&c.
PRACTICE AT Mr. HODGE's WIRE TARGET No. 1. [OFFIOIAL.]
Pencote Battery, May 7, 1862.
The front of the target consists of three thick

First shot hit direct, passing clear through the target into the bank. Penetration not determined. Second shot hit direct, passing clear through the plate and penetrated the bank a distance of 9 feet 6 inches.

A NEW REBEL TORPEDO.

Navy Ordnance Yard,
Washington City, Nov. 21, 1863.
Commander H. A. Wise, Chief of Bureau of Ordnance, Navy Department :-

Sir :-Conforming to direction contained in tele gram of Nov. 19th, I beg to report about the tor-
of tin, which are sliding in each other, and by thi means ean be lengthened, so as to constitute a time fuse.
The cylindrical tube, D , is nothing but a common night-lantern of tinner's make: it protects the burn ing match from being extinguished by the waves, conceals the light and supplies oxygen to the combustion by means of the small smoke-stack, E.
Most likely they were set adrift intended to be carried to the ship's sides by the action of the tide ; a plank five feet long, floating on the water, giving the direction to the torpedo

> Respectfully submitted,
(Signed) Wm. N. Jefrers,
Inspector of Ordnance
REPORT OF THE CHIEF OF THE BUREAU OF ORDNANCE.

Bureau of Ordnance,
Navy Department, October 20, 1863.
SIR :-In your last annual report, under the head of "bureaus," you were pleased to make the following remarks:
" Like every other branch of the public service that of ordnance was wholly unprepared for the great crisis that befel the country in 1861; and one of the most embarrassing difficulties at the commencement of our national troubles was that of procuring ord nance as rapidly as was required for our increasing navy. To remedy the deficiencies and wants when our vessels were multiplying, we were compelled for a time to revert to old artillery which had been dis carded, and to avail ourselves of extraordinary means to meet the then existing necessities. These difficulties have been, in a measure, overcome, and our ordnance is greatly improved and improving.'
In the report which I now have the honor to pre. sent, I shall endeavor to show briefly, yet as clearly as possible, how much this branch of the public service was unprepared for the great crisis of 1861 and in what manuer and to what extent the existing difficulties have been overcome, and our ordnance of the navy increased in numbers and improved in character.
Not a single ship or squadron has ever been delayed in its movements for the want of ordnance or ordnance supplies.
From the record it appears that the ordnance of the navy, at the commencement of 1861, consisted
ff 2,468 heavy guns and 136 howitzers, of the followng calibres: 32 pounders, $8-\mathrm{inch}, 10$-inch (old model), X inch (Dahlgren), X-inch (Dahlgren), and XInch (Dahlgren).
The old system of armament is represented in this able by the classes of $10-\mathrm{inch}, 8$-inch, and 32 ounders; the new system by the rifled pieces and ihe smooth-bore IX-inch, X-inch, and XI-inch guns of Rear-Admiral Dahlgren, and the rifled-guns of 4 r. Parrott, to which are added the ponderous and owerful XV-inch guns introduced by Assistant Secetary Fox, as the special armament of the monitors nd other turretted vessels.
Of the new system it is probable that over 700 ;uns of different calibers that are now in process of abrication will be completed and added to the numer given in the table by the end of the current year. In arming our vessels the primary object has alrays been, recently, to place on board of them the leaviest and, consequently, the most effective guns rhich they could safely carry without reducing their peed, or endangering their sea-going qualities.
The only establishments in the country which were repared for the work of founding heavy cannon phen the rebellion took place were the South Boson, Fort Pitt, and the West Point founderies.
Right nobly did they come to the rescue in the our of need, and thus afforded time for the bureau o seek other manufacturers who might be willing to ndertake the work of supplying the navy with canon.
In addition to the above-named founderies, the bueau has now, as sources of supply, the establishment t Providence, R. I., known as the Builders' Iron 'oundery, the founderies of Messrs. Hinkley, Wilams \& Co., of Boston, and the Portland Co., of ortland, Me., and at Reading, Pennsylvania, the cott Foundery of Messrs. Seyfert, McManus \& Co.
In procuring cannon for the navy the same condions have been exacted from all these founderies, as egards the character of metal and every other elerent necessary to constitute good and reliable guns. To gun has been accepted, as a standard, which has ot been subjected to the ordeal of 1,000 rounds of orvice charges. With this standard thus estabshed, all the guns of a contract must coincide in beir composite elements.
The only exception to this rule has been in the ase of the XV-inch guns cast upon the plan of ajor Rodman, of the United States army. Time did ot permit of this proof being applied, and the guns ere necessarily accepted and put into service, after aving endured, however, somewhat more than the sts prescribed by the army regulations.
It is most gratifying to know that the judgment of ie Navy Department has been sustained by the re-ult of the further test which has been applied to e first gun of this class made for the navy, and hich is still undergoing a series of experimental ings after being modified in form. All doubt is us removed of the ability'of the Fort Pitt foundery produce guns of this great size which can safely be lied upon; and the power thereby added to the 'e of our monitors has been most fully exemplified the capture of the Atlanta.
In the summer of 1862 the bureau, in conjunction ith the army ordnance, directed a 100 -pounder irrott gun to be subjected to a series of 1,000 serse rounds.
The gun stood the test without bursting, and its ouracy and range were considered sufficiently good warrant the adoption of these rifled guns as a peranent part of our naval armament.
Finally, from personal inspection, and witnessing e firing of over one hundred rounds from these ins at the West Point foundery recently, the bureau satisfied that whenever attention is paid to details deven moderate skill in the manner of loading d firng :- attained, they will prove the most ser:eable rifle guns that have ever been introduced o any service.
t should be remarked also that the average cost these guns is much below that of any others which ve been offered to the Government.
Che projectiles now commonly used in the navy y be divided into two classes, the smooth and the ed, and are used almost exclusively in their reetive guns.
'or the smooth-bores we have the shot, shell,
shrapnel, grape, and canister, and the same for the rifles, excepting the grape and canister, which are not generally provided. The former are spherical ; the latter elongated and of different forms and devices, as embraced in the systems of Parrott, Hotchkiss, Schenkl, and others.
It is hardly possible to state with exactness the number of each kind of projectiles on hand and available March 1, 1861. Since that time upwards of 5,170 tons of shot of all classes have been provided for the use of the navy.
Since the outbreak of the rebellion the navy has been amply supplied with powder from the various mills engaged in its manufacture in the loyal States, and has not been compelled to seek it in a foreign market.
So great has been the consumption for naval purposes that the bureau has been obliged to order no less than 2,980 tons since March 1, 1861. This vast amount has been promptly furnished, of the most approved quality, and in conformity with the estab. lished tests, by the Messrs. Dupont, of Wilmington, and the Schagticoke, Hazard, American, and Union Powder Companies. For uniform strength, density, and hygrometric qualities, no better powders can be found anywhere.
So far as the navy is concerned, the above-named mills are fully capable of supplying all the demands. The same difficulties were experienced in supplying the navy with small arms at the commencement of the war as with heavy guns; for it had been customary to rely mainly upon the army for the limited number required in the ordinary operations of a time of peace. The navy was, consequently, obliged to make use of every available description of arm in its possession, and to buy at once such as could not be obtained from the army.
Hence the present stock is made up of a number of different styles and calibers, partly breech-loaders, and the want of uniformity in this respect is felt to be very embarrassing.
The proposition will be to adopt one caliber of musket and one of carbine-the former being a muz-zle-loader, the latter a breech-loader for boat service; and this it is at present believed will be best obtained by using altogether the "Plymouth"' pattern of musket (ten thousand of which are now being delivered by Mr. Whitney, of Connecticut), and the Sharp \& Hankins breech-loading carbine.
The powder magazines for the use of the navy on the Atlantic border are now situated at Portsmouth, N. H.; Boston, New York, Fort Mifflin, on the Delaware ; Washington, and Fortress Monroe.
The capacity of the first five named is about 500 tons each ; of the one at Fortress Monroe 3,000 barrels. At Baltimore there is also a small magazine rented from private parties which will contain about 200 barrels.
In times of peace, although danger still existed, the chances of disaster were very much reduced because the magazines contained moderate quantities, and were only required to be opened and work performed in them to supply occasionally the wants of a cruiser. Now the demand for powder and magazine stores is unceasing, and the chances of disaster are multiplied proportionally.
The importance of this subject will be sufficiently felt by reflecting on the terrific consequences of the explosion of five hundred tons of gunpowder in the vicinity of a city like Boston, New York, or Philadelphia. Words can hardly do justice to the disastrous effects of such an event. It wauld level spire and dome with the earth, and shake either of those cities to their very foundations. By an explosion of a far less quantity of powder than that named, an entire quarter of the city of Leyden was destroyed in 1807, and 150 persons perished in the ruins.
It will be seen from the foregoing brief and imperfect account of the state of our naval ordnance at the commencement of the rebellion, and of its present condition, how great an advance has been made in placing it not only on a footing commensurete with our prosent necessitios, but als in preparing it for further and more extended operations; and it may be said that in general efficiency it now equals, and, in some respects, far excels the ordnance. of any other navy. The record of its rapid progress during the past two years from comparative weakness in numbers and appointments to power and un-
rivalled excellence, is but another evidence of the vast resources of the loyal States, and of the skill, energy, and patriotism of their inhabitants.
H. A. Wise, Chief of Ordnance.

The "Warrior" in Bad Condition:

We find in the London Times the following account of the condition of the frigate Warrior, from which it appears that that famous vessel is practically useless for the present:-
"The ship's bottom, as she now lies in dock, has the appearance of a well-made thrummed-mat, being covered with a fine crop of tuft-weed, which must have grown at the rate of about three-quarters of an inch per month, since the ship has been afloat, to reach its present condition. The vitreous sheathing had less of this weed upon it than the compositions, and they have adhered to the ship's bottom with two exceptions.
"It is impossible, however, to say how far these small plates (which are about twelve or fourteen inches in length and about four inches in width, and are attached to the ship's bottom by a hot cement) have protected the iron until they have been removed, and the surface has been laid bare and examined. The same remark will also apply to the compositions, for there are signs of corrosion over the lines of rivet heads at the ship's bows that require to be very closely looked into. There are existing indications of mischief to the rivet-heads at the bows of the ship to warrant a careful scraping and examination of every part of the ship's bottom from keel to water-line."

Cornish Pumping Engines.

It appears from a tabular statement prepared by the proprietor of Lean's Engine Reporter, for the years 1841 to 1860 inclusive, that the average duty of these engines has fallen off from sixty-eight millions in 1844 to fifty-two millions in 1860 , or 25 per cent; also that less interest was now felt in the performance of these engines, as while fifty were reported in 1841, only fifteen were reported in 1858, and twentyfive in 1860. Although the nominal, or reported duty, showed this marked diminution, it was not asserted that there had been an actual falling off to the extent thus indicated-for the duty paper did not take into account the quality of the coal, which was certainly inferior to that used twenty years ago ; besides which the present practice of sinking the engine shaft, for the whole, or part of its depth, in an inclined direction upon the course of the lode, must have tended to increase the friction of the pitwork, and the mines were also deeper than formerly. Nor was expansion of steam adopted to so great an extent now as it was some years ago; it was then carried further than was compatible with aafety, as was evidenced by the repeated breakages of the main rod, the piston rod, and the other principal parts of the engine. But after allowing for all these legitimate causes of the falling off of duty, it was thought that the average duty of the county was still at least ten millions below what it should be.

Safety Valves Dangerous,

The London Engineer, in alluding to our remarks upon Professor Airy's paper on boiler explosions, says: "It is daugerous to open a large safety valve suddenly." The general idea of safety connected with the use of a safety valve is that when the steam in the boiler attains to a certain fixed rate of pressure, it shall open suddenly and allow the steam to escape so as to reduce the dangerous pressure. It is known to engineers that if a safety valve is raised suddenly, under great pressure, the water is liable to foam and flow out with the steam, in the same manner that soda-water or spruce beer in a bottle, charged with carbonic acid gas, will be carried out with the gas when the cork is drawn. It is upon this principle seemingly that Clark has founded his projectile theory of boiler explosions. No other danger is entertained by engineers in raising the safety valve suddenly than the escape of water from the boile:
Sourenns ros nge Protocraperrs.-In consequence of a prize havigg been offered in France for the invention of a fabstitute for albumen prepared from hens' eggs, an albumen equal in quality, and much cheaper, has been discovered, which is made from fish roe.

Riffed Ordnance and their Projectiles. [For the Scientific American.]
Rifled guns and projectiles adapted thereto, have for many years been the subjects of careful investigation and experiment, by persons of high ecientific attainment in the art of gunnery; many important and valuable improvements are the results of their study. Lately the attention of American inventor has been directed to rifled ordnance, by the dire ne cessity of using (and the consequent increased demand for) the best and most efficient weapons of the class discussed.
As yet no particular plans have been decided upon as the best to be observed in general rules for rifling guns or the conformation of their projectiles, Believing as we do that all facts and practical informa tion bearing upon the subjects alluded to have thei value, we are induced to offer, as the result of many careful experiments, much practical observation and labor, a few suggestions in relation to the matter here considered.
The great end to be obtained by the employment of rifled guns is acknowledged to be accuracy velocity of projectile, and great length of range, with the least possible liability to burst, strain, or injure the gun, as well as the most economical use of the charge. It is well known that a certain degree of velocity in rotation is necessary to give accuracy to the projectile, and that it requires power to produce that rotation ; also that a body moving in a right line receives rotation more readily and with less expenditure of power than a similar body at rest; also that the greater the resistance offered by the projectile to the propelling power the greater the liability to burst or injure the gun. Hence in order to accomplish the ends sought and previously set forth, and to apply, economically, the force from the agent employed to propel the projectile, we claim that it is necessary that the rifling of the gun should be gradual and progressive from the breech to the muzzle, ending by giving to the projectile at its exit from the weapon a proper velocity of rotation. Such motion, we are fully satisfied by many practical tests, as a general rule, should be equal to one revolution of the projectile, in from ninety to one hundred diameters of the bore of the gun for all ordnance of less than $4 \frac{1}{2} \mathrm{inch}$ caliber. In no instance should said rotation be more rapid than that of one turn in every ninety diameters. For larger ordnance the velocity of rotation should be less than that just named, but in no case should it exceed one revolution in every one hundred diameters. We are aware that the length of projectiles has much to do with their capacity for retaining rotary motion, and that those which exceed twice their diameters in length require more rapid rotation than shorter ones; hence the greater necessity of adapting the length of projectiles to certain standard rules with reference to the speed of their revolution.
Numerous and thorongh experiments, made by competent experts of the present day, have demonstrated most clearly that the rotation imparted to projectiles of suitable conformation, in accordance with the system of rifling guns herein proposed, is amply sufficient to secure the utmost accuracy and the greatest length of range; therefore the force ordinarily employed in accordance with the present recognized systems of gunnery in creating a higher speed of rotation is, to that extent, a direct and needless tax upon the propelling agent. A more rapid revolution than is absolutely necessary is also objectionable, from the fact that projectiles are liable to drift in the direction of their rotation and in ratio therewith ; excessive rotation is therefore detrimental to accuracy as well as expensive in power.
In order to harmonize the length of projectiles with the best known system of rifling guns, before described, in such manner as to produce the most desirable results and to reduce the same, as nearly as possible, to a general rule, it is believed that projectiles for ordnance of small caliber should in no instance exceed twice their own diameters in length and for guns exceeding $4 \frac{1}{2}$ inches in caliber, from $\frac{1}{2}$ to
$1 \frac{3}{4}$ diameters is preferred ; and for very large ordnance, in cases wherein great length of range is required, the projectile should not exceed $\frac{1}{2}$. of its dimeter in length
Recent experimental tests have proved that projectiles of more than twice their own diameters in length are liable to tumble or change ends during their flight and before they reach their proper desti nation ; also that the direct line of motion of such projectiles can only be sustained, even for an inconsiderable distance, by excessive rotation.
Now when we take into consideration that the long projectile must receive its rapid rotation from the excessive twist or rifling of the gun, and that in proportion to its weight it exposes much smaller superficial area against which the propelling force can act than the shorter projectiles, it will at once be seen that immense charges of powder are required, and that danger of injuring the gun is thereby in volved. It may also be stated that the long projectile, moving with like velocity and rapidity of rotation, is more likely to deviate from its proper line of flight than the shorter ones.
This may be accounted for partially upon the hypothesis that the pressure of the air is not equal and uniform at the apex and at the base of the moving projectile ; hence the longer the projectile, the greater the atmospheric leverage to overcome, to keep its horizontal axis parallel with its line of motion. Another argument in faver of the shorter projectile is that at the instant of discharge, it is seized by the gun at a point nearer its shorter axis than the longer one can be, owing to the location of the expansive portion of the projectile; its longer or horizontal axis is therefore more likely to receive direction in harmony with its line of motion.
In case we succeed by means of the system herein set forth in obtaining greater accuracy, higher velocity, and longer range (with less danger of injuring the gun) than have been accomplished by other methods, which we are convinced is the truth, then the plan is worthy of some consideration, and the object of these remarks will have been attained.

The Electric Wave.

The electric current does not run in a line of narrow limits; neither does it run in a straight line On the contrary it extends in a wave (as indicated even by an ordinary galvanometer) of more than a foot from the axis of motion. Be the essence of the electric force a fluid or whatever it may be, its direction is that of a spiral. These facts are demonstrated by the galvanometer, as follows :-
Put the single cups of a galvanic battery, about six inches apart, in connection in the usual way. Place the galvanometer in the direct line of the cur. rent, and the needle is deflected ninety degrees. In proportion as the galvanometer is withdrawn from this line, the deflection of the needle diminishes; till at length, at a distance of twelve inches from the line of motion, with an ordinary galvanometer, the needle ceases to respond to the electric impulse and remains at rest, north and south. Thus it is demon strated that the wave or electric current extends twelve miles from the axis of its motion.
The spiral course of the electric current is shown by the different points of the compass toward which the needle points when the galvanometer is placed above or under its line of motion. To illustrate the subject, form a wire into a spiral shape in a deviation the reverse of that of a corkscrew. Now place this wire in a direction north and south, and suppose the course of the current is from south to north. If the galvanometer be now placed over this spiral wire, the needle is deflected to the east ; if placed under, it will be deflected to the west. The same effects take place, of course, if the wire be straight. I introduce the spiral wire to illustrate the course of the current.
I think it is this same electric law that regulates the direction of those species of plants which grow spirally, such as the bean, the convolvulus, or morning glory, \&c. These follow the electric law. You will always find them twining around the pole, string, or whatever it may be, just in the same direction as the spiral wire bent in the opposite direction to that of the corkscrew, and taking the very same course as that of the electric current. Doubt-
less it is this same electric force, passing around th earth from east to west, that causes the needle of the compass to point north and south. It is well known that when a rod of iron is made magnetic by a current of electricity being made to pass around it, through wire insulated with cotton, the poles of the rod thus magnetized are at a right angle with the course of the electric current.
I will now mention a circumstance which occurred to me some years ago, when I was engaged in making four or five hundred small magnets for miners' use n California, for separating the particles of iron rom the gold. I made the magnets in a small room in which were shelves on every side of it. In making magnets the process requires several days. No more than a certain amount of magnetic virtue can be imparted to the steel on the first day-say four pounds. The magnets then are laid up on the helves and the poles of each closed by a strip of iron, to prevent the diminution of the magnetic power. The next day the same process of magne tizing is repeated again, and several pounds weight more of magnetic weight is gained. In this way the process was repeated, day by day, till the maximum power was obtained, which was that of eight pounds. Now I noticed that every magnet which was placed on the shelf with its poles south, gained, during the twenty-four hours it remained in that position, about half a pound of magnetic power more than it had when laid on the shelf: while those which were placed with their poles east or west gained no more power. This was not accidental, because I repeatec the experiment several times, and always with the same result.
Now it seems to me this fact indicates that there is a current of electricity constantly passing around the earth in a direction either from east to west, ol from west to east. When the galvanometer shows us that the electric current passes spirally from east to west, the ioresistible inference is that the electric current which passes around the earth is from eas to west. The electric current of the earth, coming in contact with the magnet on the shelf, with its poles south, passes around it at a right angle with the axis of its poles, and thus magnetizes it ; just in the sane way that the electro-magnet receives it, magnetic properties, by the current of electricits passing around it at a right angle with its pola axis. This is the way, too, that the vines to whicl I have alluded grow. If you want to know whicl way one of these vines will grow up around a pole you have only to place the spiral wire, bent as have described, alongside of it, and it will be foun that the vine takes the same course as the spiral c the wire. This arises from the electricity in th earth following the same eternal law that govern the same element everywhere. From the earth j forces up the plant, and rises with it as the soul, that plant.
How philosophically incorrect is it to say th there are different currents in electricity. The di ference produced by it is not because there are di ferent electricities, or different currents in electricit but because the electric current, under differe modifications, produces different results. Take, ff instance, the chloride of lead ; pass through it current of electricity, and it is decomposed. Th lead is liberated at the callode or negative pole, an the chlorine at the anode, or positive pole. So agai with water; subject it to the action of the electr current-it is decomposed, and its constituents, ox gen and hydrogen, are respectively liberated at tl positive and negative poles of the same currer Then again, pass through a person a sensational intensifying direct current-say from the elbow the hand-and at the same time a to-and-fro curre from the other hand to the hand in contact with t direct current, and you feel two different intensitie but it is the same current that produces these diffe ent intensities. The difference of the intensity ari from different modifications of the current made the sudden change in its polarity.
In the above experiments it is evident enough any one that the current which passes out at t cathode, or where the lead and the hydregen are 1 erated, is the very same curront that entered at t anode, where the chlorine and the oxygen were 1 erated, and where the sensational effect was consid ably less energetic.

It is a pity that on a subject so sublime and important as electricity and its concomitant, magnetism, there should be such vagueness and confusion of ideas. We have seen that all those different and wonderful effects just spoken of were produced by one and the same current. Why are we not, then, bound to admit that all the wonderiful phenomena of electricity are from the same source, and that all these varied and wonderful effects are produced solely by the different modifications of the electric current and not by different currents?

Samuel B. Smith, 429 Broadway, N. Y.

Greek Fire or Pyrophori.

Chemists are acquainted with several substances which take fire when exposed to the air ; they are termed pyrophori or fire-bearers.
The liquid bodies, alkarsin and cacodyl, poured from a vial into the air, spontaneously take fire and burn with a white flame, evolving at the same time a most intense skunk-live stench, the very smoke from which is deadly poisonous. These deadly pyrophori would appear as though they had been pumped up from a well near the River Styx. There are also pyrophori of a grain or powder form: one of these is made by roasting acetate or sugar-of-lead in a close vessel, the other from alum and flour in the same way. We may keep them bottled up in safety, but only let the air come in contact and they become "on fire." These latter are by no means new discoveries, for a recipe for making them was published more than a century ago.
The exigencies of modern war have added to their number, and one in particular so dangerous and so inflammable, that it has been compared to the Greek Fire, with which the Byzantine twice delivered Constantinople from the sieges of the Arabs and Saracens, more than eleven hundred years ago.

The ancient Greek Fire is said to have been invented by one Callinicus, a native of Heliopolis, in Syria; its composition was held as a state secret. Gibbon observes-"The art of making it was preserved at Constantinople as the palladium of the state. All the weapons of war might occasionally be lent to the allies at Rome, but the composition of the Greek Fire was concealed with the most jealous scruple, and the terror of the enemies was increased and prolonged by their ignorance and surprise.'
A knight, who despised the swords and lances of the Saracens, relates with heartfelt sincerity his own fears and that of his companions, at the sight and sound of the engines that discharged a torrent of fire.
The composition of it is now pretty well known to be naphtha, sulphur, bitumen and most probably niter. Vast quantities of naphtha or petroleum abound between the Tigris and the Caspian Sea; sulphur must have been common at Rome on account of the proximity to sicily, where it is mined, and niter is a natural efflorescence on the shores of the Dead Sea. Chemistry was most assiduously studied in Egypt, so that taking into consideration that the natural products of the earth almost put into the hands of Callinicus the necessary materials, we are not surprised that with his alchemical skill the terrible war fire was compounded.

Yet if the brave and warlike Saracens were affrighted from their enthusiasm by this fire, which after all bears no comparison to the effect which a bombshell charged with gunpowder can produce, what would they have imagined if they could have seen the modern pyrophori? It will be seen that we are acquainted with bodies in the form of powder or grain which become fired when in contact with air; but we are now introduced to a true liquid fire, which, dash ed over anything, spreads itself like water, then in a few minutes of insiduous attraction and evaporation, bursts into a flame in every part! This liquid is a solution of phosphorus in disulphide of carbon, which carı be almost as easily and as cheaply made as gunpowder. Disulphide of carbon, a transparent spirit-like liquid, was discovered by one Lampadius, as far back as 1796. The making of phosphorus at a very cheap rate dates within a very recent period; the combination of these two bodies has resulted from the demands of present war.
We are inclined to be political in our remarks by nbserving that the more destructive the war agents are the shorter will the war be. The wars of the
kings of Egypt, even of Charlemagne, fought without gunpowder, were almost interminable, whereas the wars with gunpowder have been of comparative short pericds. The actual destruction of the soldier has been greater, but the quick decision has benefitted the people of the nations at war at large. We, the people, not engaged in war, have therefore everything to hope from modern discoveries, which will reduce the period of political wars from years to days. The phosphosulphided carbon, the Greek Fire of today, does not require to be ignited before it is thrown at an enemy, which was necessary with the fire of Callinicus. We have only to direct a shell full to the place desired-splash! The evaporation of the disulphide is rapid, leaving a thin coat of phosphorus -then all is flame. Mr. Septimus Piesse, F.C.S., to whom we are indebted for the chemical facts herein stated, suggests a pleasant thing in this way, which is a ball of gun-cotton soaked in sulphide of carbon.
silicon: A \%ew Compound, Sensitive to Light---Leukon.
The following interesting information is condensed from the Photographic News (London):-
"The photographic action of light upon all matter was some time ago a favorite subject of discussion and experiment. The researches of Herschel, Hunt, and others went far to prove that the chemical change which ligbt was capable of inducing upon mineral and vegetable bodies was not confined to a few substances only, but extended generally to a vast number of substances in each class. The addition of a new member to a class of bodies is always of interest, but the discovery of a new and very sensitive photographic body is of especial value, more particularly, if entirely new ground is opened out by it, and the stranger comes before us as the representative of a new series of elementary bodies hitherto unsurpected of the slightest tendency to photographic change. If we had had to hazard a prediction as to the body whence the next photographically sensitive compound would be derived, certainly the last substance which would have suggested itself would have been common flint or silica. Until the last fow years, silicium, the basis of this, was about the most uninteresting substance in chemistry; but now, through the researches of Wöhler, it bids fair to rival any of the other elements in the number and interest of its compounds. This chemist has recently discovered several new compounds of silicium which are of the highest importance. The starting point of them all is a curious, metallic-looking alloy of silicium and calcium, which is easily prepared by fusing together silicium, chloride of calcium, and sodium, with certain precautions. The silicide of calcitm is then obtained in a button of a lead gray color and perfect metallic luster. In water this slowly disintegrates, forming a mass of lustrous scales like graphite, some impurities being extracted from it by this solvent. Strong nitric acid does not attack the silicide, and this acid affords the best means of obtaining it free from impurities. The most remarkable action of the silicide of calcium is its behaviour with hydro chloric acid, by which it is changed into an orange-yellow substance, a brisk evolution of hydrogen taking place. This yellow body is called by the discoverer silicon, an inappropriate name, we may state en pas sant ; as the metallic basis of silica, silicium, is often called silicon, and is generally known under that name in chemical books. Silicon is prepared in the following way :-The silicide of calcium, purified as above, is treated with concentrated hydrochloric acid in a vessel which must be placed in cold water to prevent the heating of the mixture. An evolution of hydrogen soon takes place, and the silicide is gradually transformed into silicon. The mixture must be often stirred to bring the powder entangled in the froth in contact with the acid, and then left for some hours in a dark place until the evolution of gas has ceased. It is then diluted with six or eight times its volume of water, the silicon filtered off, carefully protected from the light, well washed, then pressed between bibulous paper, and finally dried in a vacuum over sulphuric acid, the bell glass being covered with a black cloth. Silicon is of a bright orange-yellow color. It is composed of transparent yellow laminæ. It is insoluble in water, alcohol, and other solvents; when heated it becomes
of a dark orange yellow. On applying a stronger heat it takes fire with a faint deflagration sund some sparkling, leaving a residue of silicic acid.
"The behavior of silicon when exposed to the light is very remarkable. In the dark, even when moist, it remains quite unchanged. In diffused light it becomes paler ; but in direct sunlight it, in a short time, becomes perfectly white, and hydrogen is given off. When placed under water in sunlight, hydrogen begins to be evolved immediately, and continues like a fermentation until the silicon has become quite white. The purer the substance the more quickly does the change take place, and several grammes are transformed in a few hours. If, however, it has not been perfectly protected from the light in the course of preparation, it is much longer before the whole is altered in sunlight. The formula of silicon is not accurately settled; but it contains silicium, hydrogen, and oxygen, and is supposed to resemble an organic body, in which silicium replaces the carbon. Professor Wöbler, indeed, suggests that it may, perhaps, be the type of an entire series of similar bodies, and it would then open the prospect of a special chemistry of silicium as of carbon.
"The behavior of silicon with metallic salts is curious. In the presence of an alkali, even of dilute ammonia, it is gradually changed into silicic acid, with evolution of bydrogen. When mixed with an alkali, whilst this decomposition is going forward, it acts as a powerful reducing agent on the salts of the heavy metals. Solutions of copper or silver salts soon become black, and gold solutions brown. From solutions of chloride of palladium and osmic acid, on the addition of an alkali, it immediately precipitates a black powder. A solution of lead in caustic soda is precipitated in the metallic state as a gray mass. The reducing agent in all these cases is evidently the bydrogen in a nascent condition. When silicon is thoroughly acted on by light, it is converted into a white body, to which the name Leukon has been given. The composition of this is also a matter of doubt, but it is a body of a some what similar composition to silicon, and in the presence of alkalies it behaves in the same way with some metallic salts. The mode of formation of leukon from silicon, under the influence of light, is also obscure; the most probable theory is that 4 atoms of water are decomposed, 4 of oxygen and 1 of hydrogen uniting to the silicon, and the other 3 of hydrogen being set free. According to this view, silicon is $\mathrm{Si}_{8} \mathrm{H}_{1} \mathrm{O}_{5}$, and $\mathrm{Si}_{8} \mathrm{H}_{7} \mathrm{O}_{10}$.'

Sentence of Captain Stone of the "Africa."
An English journal says:-"Captain Stone is the first Commander of the Cunard Line who has been condemned by a Court of Inquiry, for a culpable want of caution in not having either slowed his engines or used the lead, when the steamer Africa, under his charge, had been driven to the meridian of Cape Race on the 12 th of October last. Great sympathy has been expressed for Captain Stone, and the suspension of his certificate for six months must be felt as a severe blot on his professional reputation. Those who have voyaged with Captain Stone and know him as a skillful and urbano seaman, will sympathize with him in his misfortune, in commen with his friends in Liverpool, and be pleased to gee him on the quarterdeck again in his former capacity. At a meeting of Captain Stone's friends, Captain Judkins remarked that Captain Stone was not called upon to use the lead on the occasion in question. The accident to the Africa was not caused by the nonuse of the lead, but by an unaccountable northerly under-current. Captain Judkins stated that if a whistle or any other signal had been placed on Cape Race the accident to the Africa would have been avoided, and many other sad disasters also prevented He strongly blamed the British government for refusing an American invention of a steam-whistle which had been offered to them, and hoped that when the inventor came to this country with his signal that he would be better treated.'
The sentence of Captain Stone is severe, it must be admitted; but the danger is great. So many ac cidents have happened at this point that the pro prietors of the Cunard line owe it to their passen gers and patrons to take decided action, so that dis aster shall not occur in future.

Improved Water Meter.

The object of the machine herewith illustrated is to measure accurately and automatically all kinds of hot and cold liquids. The action of the apparatus is regulated by the fluids themselves, and all parts continue to work so long as the tank is supplied. The several details are all designated by similar let ters in both figures; the larger of the two showing the general arrangement and external appearance, with a portion of the casing broken out to disclose the interior, while the smaller is a section of the mercury chamber.

Fig. 1 shows a large metallic tank (A) of any form or dimensions desired ; this is supported by four leg and has two chambers, B and C, at the bottom. These chambers are fitted with valves, the seats of which are at D (inside of course) and the valves themselves open downward. The top of the case carries the mer cury chamber E, supported on a pivot and provided with elongated ends which reach over the valve stems F^{6}; in connection with this chamber is the float G jointed at its back end to the case. The train of wheel work moves counters for re gistering the amount of li quid passed through the meter, and is contained in the frame H. The small counter balances on the righ of the engraving are merely to aid in restoring the valves to their seats after the action of the liquid has caused them to open.
The operation of this apparatus is thus described by the inventor:
The fluid flowing into the case A will, on reaching a certain hight, raise the float G. To this ball the rod F is connected. This rod, in rising, will elevate the mercury chamber E. By doing so the mercury in the chamber a (see fig 2) will flow by its own gravity into the chamber b.
By the alteration of the position of the mercury chamber the valve in the bottom chamber, connected with the stem F^{\prime}, will be closed; thereby preventing more fluid flowing into the case A. The mercury chamber then assumes th position indicated by the dotted lines, and will de-

press the other valve, stem F^{\prime}; thereby causing the valve in the chamber C to open and allow the liquid to flow speedily out of the case A. The quicksilver in the chamber b (see fig. 2) will now commence to

Piq.!
flow through the chamber c into the compartment and through the channel e back into the chamber a; thereby causing the mercury, after a certain time, to return to its first position, and to close the valve in C and open the one in B.
By adjusting the small screw f the channel G will be increased or diminished in size, thereby fixing the time during which the valves remain open or closed g and j are counter balance-weights for the purpose of keeping the valves shut during the time the apparatus does not press on the stems; i is a counter balance-weight for the rod I connected with the float, which increases its lifting power. There are screws, J, which can be taken out in order to re-
 by the Lords of the Admiralty. Send over the Rofal Oak or the Normandie, and let the rebel rifles have a chance at their "impenetrable armored" sides ; that will be a capital test of their invulnerability.

The Power of Belts.

It has been found that a belt 8 inches wide moving over the circumference of a smooth pulley at the rate of 100 feet per minute, communicates one horsepower. According to this datum, what is the power, say, of a 3 -inch belt working over a 2 -foot pulley, making 146 revolutions per minute. To obtain the velocity of the belt per minute, $146 \times 2 \times 3.1416=$ 917.3472 feet: therefore $917,3472 \times 3 \div 800=3.44$ horse-power, or nearly $3 \frac{1}{4}$ horse-power; and so on for all other breadths of belts. The divisor in this case is the horse-power 800. To ascertain the breadth of belt for a given horse-power, multiply the latter by 800 and divide by the velocity in feet per minute. This rule is sufficiently accurate for all common puraoses. The rules are simple, and the unit of breadth pnd speed of belt per horse power may thus be set down at 1 -inch breadth of belt with 800 feet speed per minute. There are some hand-books for me chanics which contain formulas for calculating the power of belts and the breadth required to communicate a certain amount of power; but they are an imposition on common sense, becauke no explanation is given how the formula has been derived.

DAY's KEROSENE LAMP.

The annoyance of cleaning and filling kerosene lamps is one of the greatest drawbacks attending their use, and we have often expatiated in the Screntific American upon this disagreeable task; certainly every one who uses thom knows full well the truthfulness of our statement. The lamp herewith illustrated differs materially from others heretofore illustrated by us, in that it has no screw on the collar where it enters the lamp, such detail being un-

necessary in its construction. In place thereof the tube, A, is formed with two spiral grooves, B, opposite each other, said grooves being received by short pins inside of the collar; these pins are stationary, and act as a nut; for when the burner and its attachments are pushed down, the same slowly rotate and fit tightly upon the seat. This affords a quick and easily-operated burner; the hole, C , is provided to fill the lamp without removing the burner or chimney. This attachment can be fitted to any old lamp as well as to new ones, by simply removing the ordinary screw collar and replacing it with this improvement.
This kerosene lamp burner was patented by C. T. Day, of Newark, N. J., on Oct. 20th, 1863, through the Scientific American Patent Agency. For furthe information address the inventor at Newark, N. J.

Value of Plows.-Among the Kaffirs agriculture is considered to be a kind of labor unworthy of a warrior, and is therefore entirely left to the women. When they first saw a plow at work they gazed at it in astonished and delighted silence. At last one of them gave utterance to his feelings: "See how the thing tears up the ground with its mouth! It is of more value than five wives!'’

©he Sorientific Agncrican

MUNN \& COMPANY, Editors and Proprietors.

published werkiy

No. 37 Park Row (Park Building), New York o. D. MUNN, B. H. WALES, A. E. BEACH.
four months.
four months.
Single copies of the paper are on sale at the office of publication, and
all periodical stores in the United States and Canada. Sanperon Low, Son \& Co., the American Booksellers, , No. 47 Ludgate
Hill, London, England, arethe British A Ents to receive subscription Hill, London, England, are the British Agents to receive subscription
for Che SIENTIIC AsERICAN
See Prospectus on last page. No traveling agents employed.

VOL. IX, NO. $25 \ldots$... N ew Seriks.]...... Nineteenth Year.
NEW YORK, SATURDAY, DECEMBER 19, 1863

OUR NEW DRESS.

With the commencement of the new volume on the 1st of January next, we shall present the Scientific American, which has now attained its eighteenth year, in a new and handsome dress-one, we trust, that will become its age and character. Though we are growing old and somewhat gray in the service, we have still vigor and determination enough left to make us desire that our next volume should be by far the best yet issued. We shall continue to trim the midnight lamp, if necessary, in order that we may keep the standard of the Scientific American up to any former period in its history. We believe that no other journal ever published has had truer or better friends than ours; and we again appeal to them to aid us in promoting its more wide spread circulation. We do not depend upon agents; we prefer to rely upon the good words and deeds of our friends, and upon the well-established character of our journal, to increase its circulation. Friends! lend us a little of your valuable time in increasing our subscription list, and we will endeavor to more than repay you by making it still more worthy of your confidence and support

CONDENSING AND HIGH-PRESSURE ENGINES

The London Mechanic's Magazine advocates the adop tion of high-pressure engines in place of condensing ones. Itsays:-"A very little additional expense will secure a thoroughly good boiler, capable of carrying high-pressure steam with much greater safety than a low-priced one, with steam of half the pressure. A moderately-sized cylinder, carefully clothed, and a piston running at a high velocity, driven by 75 pounds of steam, cut off at one-fifth of the stroke, and slightly superheated, will give out a greater useful effect per pound of coal than nine-tenths of the condensing engines in every-day use in our manufacturing districts, while the first cost for foundations, piping, engine, and general fittings, will be reduced nearly one-half! The non-condensing engine has been hitherto underrated and treated with a contempt which it does not deserve. Had it received one-half the labor devoted to the condensing engine, it would now hold a very high position as a safe and economical motive power. We would willingly draw the attention of engineers to this class of machinery, convinced as we are that they will find in its im provement a fair and remunerative field for the dis play of their talents."
These remarks of our cotemporary relate to a most important question in which engineers and all who use steam power are deeply interested. But they are of most interest to marine engineers and the owners of steamships, because condensing engines are used exclusively on sea-going steamers and firstclass steamboats. Condensing engines are more complex, cumbrous, and expensive than those of the high-pressure type. Why, then, are they not smployed on steamships, when with them there would be less weight to carry, more room secured for cargo or passengers, and their first cost would be much less. There must be some reason for the general
employment of the most costly, in preference to cheaper engines on steamers. It is not because highpressure engines are less perfect in their construction, or their nature less understood than others; for those which are built for locomotives have attained to as great perfection as the best low-pressure engines on steamships. The fact is, the opinion is very prevalent, and it is based on science, that the condensing engine is the most economical of fuel, and fuel is one of the greatest constant expenses connected with the use of steam machinery. It is generally believed that it will do the same amount of work with at least one-third less fuel, and if this is the case, of course the first expense, although greater for the condensing engine, is of secondary importance. It is also generally believed that condensing engines secure greater safety, because steam of lower pressure is carried in their boilers. But this is not a valid reason in their favor, because boilers can now be constructed to secure as great safety in carrying one hundred pounds pressure, as boilers were formerly built to carry twenty pounds. The chief argument in favor of condensing engines is their economy of fuel compared with the other class ; because the condenser removes the back pressure of the atmosphere with a very moderate expense of power; and it is also well known that pretty high-pressure steam may be carried in their boilers and the principle of expansion be carried out to great perfection in using the steam. But the idea heretofore generally entertained respecting the economy derived from working steam expansively is now denied to be cor rect. Chief Engineer Isherwood, U. S. N., in his testimony given lately in Washington, respecting the use of cut-off-gear for working steam expansively , is reported to have stated that there was only about 18 per cent difference between the best cut-off and no steam cut-off at all; and that this was the whole practical difference between using steam expansively and non-expansively. But Mr. Reeder, of Baltimore, a practical engine-builder, in his evidence asserted the contrary doctrine-namely, that economy was just in proportion to the extent of expansion. Here, then, after the steam engine has been applied to navigation for about sixty years, and after having attained to such great perfection in the construction of engines, we find engineers of high standing in their profession differing in opinion upon the very elementary principles of steam engineering. If there is no economy in condensers and in working steam expansively, then condensing and expansiveworking steam engines are great absurdities, and their place should be supplied with simple, cheap, highpressure engines without cut-offs or condeusers. These disputed questions are certainly not difficult of solution, and it is the duty of professional engineers to solve them. Theory based on science accords great economy to the working of steam expansively, and if this is not secured in practice it is reasonable to suppose that there must be some im perfection in the practice.

USE PATENTED ARTICLE§.
The efforts made by inventors to improve the character and efficiency of the several articles in daily use are worthy of remark and encouragement by the community in general. Nearly every department of practical life, whether in the store, household, office, or wareroom, bears evidence of the efforts of the class alluded to to lighten labor. The proof of this assertion may be found in the almost endless category of useful patented articles, which are, or should be, employed so universally. Of these we may mention cork-screws, boot-jacks, fire-shovels, lock-catches, stereoscopes, carriage-jacks, spring-heeled boots, skates, stamp cancelers, fountain pens and inkstands, copying presses, hay presses, and a host of others, to enumerate which would require the talent of an auctioneer. Let any business man note the facilities afforded by the new stamp cancelers, copying-presses, erasers, \&c., and compare them with the old-fashioned cumbrous instruments for the purpose, and then ask himself if he would be willing to go back to the state of thinge which gzisted twonty yoars agc. Let svery housekeeper ask herself also, whether she would be willing to dispense with clothes-wringers, washing-machines, \&c., and twist her hands sore and her heart sick in the vain effort to do what a pair of rollers or a set of rubbers do in the tub, for both
washing and cleansing the soiled linen of the family The same self-examination may be hetd by every individual in the community with regard to almost everything in use.
The patent mark on an article is in some respects like the mint mark on a coin ; it stanaps it as valuable. There should be a more general inclination among the people to use patented articles. Inquire of your house-furnisher, lady readers, for the newest and best addition to the culinary or general housekeeping department, and you will doubtless be agreeably surprised by receiving something that is new to you, and which will materially lighten your cares.
Let every man also look about him and obtain the best instruments, tools, or what not, for carrying on his business, and he will have every advantage that it is possible to obtain. It is only by keeping up, or in fact a little ahead of the times, that one can hope to succeed; in these days when competition is so active, no means should be left unadopted to secure a prosperous business.

SELF-STOPPING GEAR FOR TOOLS.

It has lately become the practice for a certain class of machinists to affix self-acting gear to lathes and similar tools, so that when the carriage reaches a specified point, either the feed is thrown out and the carriage stops, or else both feed and lathe are stopped and the work thus saved from injury. This is a good plan and one that might be generally adopted with economy on every machine. Such an attachment would be cheap, and might save ten times its cost at times when either accident or carelessness had jeopardized the tools. It amounts to an insurance from damage upon the tool so fitted; and certainly any manufacturer who has paid for broken gears and brackets, or stripped nuts in the feeding apparatus, will acknowledge that anything which promises immunity from such disablement is worth attending to. It may be said that if a man pays attention to his business he is in no danger of breaking tools; but that is not a good argument against the adoption of preventives against loss; for accidents will happen in the best regulated shops, and after the wreck of machinery lays on the floor it is hard to look at it and say "This might have been guarded against hy a little forethought and the outlay of a few dollars." Such attachments as we have advocated cost but little primarily, but may save large sums in repairs and rebuilding tools. In addition to these improvements much advancement has been made in adapting lathes and other machines to do work that has until recently been accomplished only by the use of several cutters shaped for a special purpose. As, for in stance, the curves in the necks of connecting-rods, valve stems, \&c. ; also the octagons, or hexagons, which are sometimes formed upon the same parts of an engine. In some shops in this country these are done wholly by the lathe itself, automatically, it may be said, since the turner has nothing to do but to keep his tools sharp and the work running and the ends shape themselves, "rough-hew them" how the previous operator will.
These additions are also a safeguard against idleness on the part of shiftless men, for the lathe stops when the feed has reached a certain point; and if the turner be off gossiping or otherwise neglecting his duty, the result is shown by the action of the self-stopping arrangement and subsequent inaction of the tool. In many ways these simple attachments commend themselves, and employers, enterprising mechanics, and others, should see that their tools are so fitted without delay.

ECONOMY OF FUEL---SMELTING IRON.

A correspondent of the United States Record and Mining Register communicates a long article on the waste of coal used for smelting iron, and ridicules the construction of the common smelting furnaces; asserting that they are worthy of the days of Tubal Cain, who lived five thousand years ago. He states that two-and-a-half tuns of coal are employed to reduce one tun of yron from the ore, whils one tun ought to be sufficient if properly managed. He confesses to a want of precise information respecting the art of smelting iron ore, but suggests that a saving of fuel might be effected with the use of the blow- pipe.

Iron manufacturers, we believe, would gladly adopt any practical method of smelting ore by which a saving of fuel cfuld be effected; but every smelting furnace has now its blow-pipe in its hot or cold blast-whicis ever is used-and this cannot be much improved without substituting a blast of oxygen gas for that of common air. As common air contains four parts of nitrogen to one of oxpgen, and as the former is perfectly inert and of no use to promote combustion, all the fuel taken up to heat four-fifths of the blast is therefore wasted. By using oxygen gas for the blast, a more intense beat would be secured in the furnace with far less fuel. Great attention has been directed to the manufacture of oxygen gas at a low cost, for the purpose of using it in smelt ing metals upon a large scale; but thus far without success. There is also another difficulty in the way of using oxygen for smelting in common furnaces. These are lined with fire brick which is capable of withstanding the temperature produced by the common blast; but with the use of oxygen the heat generated would be so intense that they would be liable to fuse as well as the ore. With a dry atmo phere and the use of graphine as fuel in a cupola urnace, we have known of the fire brick fusing like lass during the melting of pig iron. Probably some more fractious material, however, could be obtained to obviate this difficulty.
The heat of the waste gases of iron-smelting furnaces is employed in many large establishments for generating steam in the boilers of the engines that are used to drive the necessary machinery. For this purpose the gases are conveged in pipes under and around the boilers, and thus the waste heat is economised. In iron smelting furnaces the heated gases must pass off at a very high temperature ; this is in evitable in maintaining the high heat required to reduce the" ore, and it is only by sach modes as those described for applying such waste heat that it can be economised, to the saving of fuel. It should not be forgotten also that lean ores require more fuel in smelting than rich ores, because a greater quantity of ore has to be acted upon to obtain the same amount of pig metal. We have no doubt that iron manufacturers would readily adopt any new practical method for smelting that would save one tun or half a tun of coal to the tun of iron, for the cost of coal is the greatest expense incurred in many places in reducing iron ores. In the iron region of Lake Superior, for example, where the ores are so abundant and rich, there is no coal, and that which is used has all to be carried from a great distance. If one tun of coal could be rendered sufficient to reduce one tun of Lake Superior iron from the ore, pig metal could be produced with profit for $\$ 16$ or $\$ 17$ pertun. This is an important subject, especially at the present time when coal is so high in price and iron is in such great demand.

LUBRICATING CRANK PINS.

In a foreign exchange we find an account of a method used to lubricate the crank pin of a small engine, such as is used for driving the blowers on board of our steamboats, said engine running at the rate of 300 revolutions per minute. The crank pin was bored out internally, nearly throngh from end to end, and two holes were drilled from the surface of the pin into this hollow center. A tallow candle was put into the central orifice and the same closed by a screw plug. When the pin became heated by friction the tallow fused and ran out through the small holes. In this way the pin was always well lubricated; one candle lasted a whole working day.

Tbe plan adopted on our gunboats, where the engines run at speeds of from 85 to 100 revolutions per minute, is to have a stationary oil cup fitted to a stationary bracket, said bracket being directly over the cranks when they are vertical ; this oil cup is furnished with a ball-and-socket joint at the bottom, from whence a pipe proceeds which is a little longer than the stroke of the cranks; into this pipe a second one is slipped (like a telesoope) which communicates with a ball-and-socket joint on the strap of the connecting rod on the crank pin end. From this arrangement it is easy to see that when the upper stationary cup is filled with oil, the fluid will run down the pipes on to the pin, without incurring loss or imperfect lubrication. The ball-and-socket joint
allows the pipes to work back and forth quite easily Nearly all the navy vessels are thus fitted.

WATER WHEELS IN THE KITCHEN.

Quite a novel, and it would appear a profitable application of water power has been recently made in England, and our inventors, proverbially enterprising and wide awake, have in this case been a little distanced by their transatlantic brethren. Schiele, a skillful and well-known manufacturer, celebrated also as the discoverer of the anti-friction curve, so extensively used in machinery both here and abroad, has designed a small turbine wheel which has been applied to domestic use in many cases with great success. Attention has been given to the subject in this country also, but on a limited scale. There is no good reason, however, why it should not be more fully developed. In small families, it is true, there is not much work for a water-wheel, soberly speaking ; but in large ones there is a great deal of mere "pulling and hauling" which might be done by machinery instead of hand labor, such as driving the wringing-machines, mangles, chopping meats, sifting ashes, drawing wood, \&c., and although we must not suppose that every house will be fitted up like a factory, it is not unreasonable to expect that in future large establishments and those of moderate size will have a due proportion of labor-saving machinery. For hotels and stores small water motors would be a great improvement on steam, which is too often under the charge of incompetent and reckless persons; and for printing offices in towns where water can be laid on with a sufficient head, the class of motor advocated would be both useful and economical. The New Haven Register, we are told, is now printed by the agency of such a machine. In fact, the uses to which a small and convenient water wheel or hydraulic motor of any shape can be put, are infinite, and readily suggest themselves to all The motive power should be so made that it could be taken off and put on the water pipes as easily as a gas meter is attached to its place, and the shaft should have a universal joint upon it, so that it could be diverged from a straight line if necessary and adapted to suit circumstances.
During the past eighteen years there have been quantities of water wheels illustrated in the Scienrific American, and we do not see why the enterprising inventors of them should not take hold of the su kject here suggested and work it out to a practical issue.

WHY ARE THE MONITORS IDLE?

In common with a grest portion of the community we should like to know why the monitors are idle; for that they are, virtually, everyone must admit. Bombarding the ruins of an old fort without any guns in it is notexactly what they were designed for, and does not seem to require a great deal of strategy or the most superhuman naval talent. We have the fullest confidence in the vessels themselves, and believe them to be capable of going anywhere within the range of the rebel guns ; we should like to know why their offensive powers are not brought into use. General Gillmore has done all and more than was required of him, and is now daily throwing Parrott shells into Charleston; what are the monitors do ing? Giving a moral support to General Gillmore, we suppose, for they are certainly idle in every sense of the word. The fearful beer-barrel and clothesline harbor obstructions which were to sink every vessel that came near them have been brought to light; they have been torn up by the violence of the sea; the way is therefore clear to advance, and we should like to be told why no effort is made to get a few inches at least nearer to Charleston.

THE MACHINISTS strike.

The difficulties between the strikers and their employers still remain unadjusted. The men refrain from work and the manufacturers are equally firm in maintaining their position. It is therefore only a question of time when the machinists trade will be resumed in this city. Large numbers of men have left to obtain work in other towns. The strike is not general tbroughout the trade, as a great many of the workmen would gladly go to work if they
from their fellows. We are told that parties of machinists go to shops where certain men are employed under contract, and who have had the courage and honesty to continue on in their duty despite thre ats, and endeavor to deter them from pursuing their occupation; also that apprentice boys have been warned to discontinue their work, or they would be made an example of. This is entirely wrong and should not be permitted by the better class of machinists. Such a course will soon deprive them of their real friends. If any man wishes to go to work, he must be allowed to go; he should not be bullied or abused in any way. This is still a free country, and if reason or argument cannot convince a workman that he is doing wrong to work when his comrades are idle, then there is no help for the others but to submit. Mob law and terrorism won't do, and we hope our friends will heed our words and not disgrace a trade which has always borne a good name, by any overt acts. It would be far better for all hands to go to work than to lose more time in trying to obtain what, it is very evident from the attitude of the proprietors, will never be granted.

nitrous oxide as an ankstheric.

A few weeks since we published a letter from Prof. Dussauce, against the use of nitrous oxide or laughing gas as an anesthetic agent, in which he quoted the opinions of several distinguished chemists, as to its injurious effects upon the hut san system. Two communications have since appeared in our columns against the views expressed in that communication, and in these the safety of this anesthetic agent was advocated. A short reply by Prof. Dussauce will be found in another column. He simply states that he has no intention to engage in a discussion upon the subject, but reiterates his former opinions as coinciding with those of the authors to whom he referred. The Cosmos for this month contains an article upon this subject by George J. Ziegler, M.D., in which he describes the characteristics of nitrous oxide, and wherein it differs from ether and chloroform in its effects upon the human systern. He states that other anesthetics are directly sedative in their action upon the animal organism ; whereas it is primarily and permanently stimulative, not being followed with any of that languor so peculiar to the others. There is a relation between its action and that of atmospheric air, as it contains a greater proportion of oxygen. At the same time, he states that as an anesthetic it is not altogether devoid of danger. It produces a sort of delirium of a pleasurable and sensitive character; but he says, "It cannot nevertheless be indiscriminately employed with safety ; for the artificial excitement of the system which is rapidly engendered by its free administration, may not only prove injurious by directly increasing the tendency to irritation, hemorrhage and inflammation, in the parts subjected to surgical mutilation, but may also develope latent pathological tendencies of a different as well as of a like character in other parts of the body, in persons with certain abnormal predispositions; to such a degree, indeed, as to seriously injure health, if not absolutely endanger life itself."
He states that the character and particular manifestation of such tendencies depends upon the special predisposition of the individual system acted upon, as the nitrous oxide has "a marked preference for the blood, brain, ver rous sysiom and genito-urinary organs." Undue excitement occasioned by the free or inappropriste use of the protoxide of nitrogen may produce primary and secondary irritation, congestion, serous or hemorrhagic effusion and inflammation in different parts of the body, and especially in the brain and kidneys. In other cases, however, it may produce beneficial effects by aerating the blcod and stimulating the action of the system. It b: 3 undoubtedly sanative properties, but Dr. Ziegler states that while he does not undervalue this remarkable agent avd has no disposition to excite undue apprehension respecting its potent action upon the human system, his preaautionary remarks respecting its nature and indiscriminate use are put forth for the purpose of enabling it to be so applied as to avoid evil and obtain good. Hence he says, "Nitrous oxide should always be administered with great care and precaution."

LECTURE ON THE IRON-CLADS

Mr. B. S. Osbon gave a lecture on this subject a Niblo's on the 2 d instant. The lecturer had been many times under fire in the vessels, and gave portions of his experience in and opinions of the monitors, in a manner which was well received by the large audience assembled. He was also aided in his delivery by several diagrams and models of the ves sels, and proceeded to set forth the peculiarities of the iron clads at sea and in action. The remarks he made were simply matters of fact, well known to the readers of the Scientific American, and we do not deem it necessary to reproduce them here. In relation to the speed of the monitor batteries, Mr. Osbon stated that the Montaute (to which vessel he had been attached) had achieved $8 \frac{3}{4}$ knots per hour with ease In regard to the effect of shot striking the turret, he said that those inside were not incommoded in the least by the concussion, and that he would not object to remain within 18 inches of the turret when hit by heavy shot. The large guns, when fired, were also unobjectionable in respect of noise to the crew inside ; some difficulty, however, was experienced when the 15 -inch guns were fired; as all the powder was not burnt, some of it would be blown in the face of those in the pilot house when heavy winds prevailed

The lecturer compared our iron clads with those of the other naval powers-France and England--and thought, as does every practical person conversan with the subject, that there is great room for improvement in the foreign armored vessels, and that in a contest with anything like equal numbers we must prove the victors.
To judge from the usual manifestations the audience were pleased with their entertainment.

Incrustation of Boilers.

We have frequently referred to this subject and the different remedies for it. One of the most reliable is the "Anti-incrustation Powder" of Mr. H. N. Winans of this city, to which we drew especial attention in our issue of June 21, 1862. Since then we have seen a number of additional testimonials of its operation, and from all we can learn, it is perfectly reliable. Messrs. Bement \& Dougherty, Phila delphia, after two years successful use, pronounce it uninjurious, and George Shield, Chief Engineer of Cincinnati Water Works, after five years use, says it not only has no injurious effects, but prevents the iron from oxidizing. These valuable recommendations, with many others, induce us to give it our approval and to recommend it to all using steam. With the high price of fuel and the immense loss in generating steam, occasioned by the formation of scale in boilers and the consequent injury to the iron by overheating, we consider almost any expenditure an economy which will effect a remedy, and this we believe Mr. Winans's material will do with out injury to the boiler. We therefore advise our readers to consult his advertisement, make a trial and save fuel, repairs, \&c.

Invention the Road to Riches,

What would the world be without the thousand-and-one ins anious little utensils, tools, instruments, and appliarees scattered on every hand? It would compare with a workshop without tools, a hand withont fincers, a wagon without wheels; it would, in short. he ne helņless as a rudderless ship without sails In the field of invention there are many avenues and bye-paths as ye^{t} unexplored and unworked. Men dig in the bowels if the earth for gold and for diamonds, but there are mines of wealth lying upon the surface: it only requires a kéti vision, practical ideas, and a little study to discover them. Men $d o$ find them every day. Let those who seek a speedy road to riches turn their attention to the useful arts and to supplying the wants existing in them for improved machinery. In this way they will not only do themselves a service, but the world also.

Petroleum.-A freshet occurred on Oil Creek on the 22 d ult., when about 200 boats laden with petroleum started down, carrying about 20,000 barrels. In a few places the boats were jammed owing to the hurry and confusion to get out of the creek, and the loss incurred has been estimated at about $\$ 20,000$.

RECENT AMERICAN PATENTS.

The following are some of the most important improvements for which Letters Patent were issued from the United States Patent Office last weei. The claims may be found in the official list :-
Potato Digger.-This invention consists in the ar rangement of a hinged adjustable platform supported by a castor wheel in combination with a frame supported at the front end by two wheels and carrying a rotary digging cylinder, a conveyer and a slotted endless apron, in such a manner that, by said hinged platform, the digging cylinder can be thrown in and cut off the ground, and the potatoes, by said cylinder are thrown on the conveyer and delivered to the slotted apron and by said apron carried up over the hinged platform and dumped, free from dirt and other impurities, into a basket or other receptacle on the rear of the hinged platform. Albion Wheeler, Mallory, Iowa, is the inventor of this potato digger
Vulcanizing Burner.-The principal object of this nvention is to provide for the heating of dentists vulcanizing apparatus and the regulation of the heat thereof, in such manner as to effect perfect vulcanization in the shortest time practicable without the constant attention of the dentist, which, with the means of heating heretofore in use, has been necessary to insure perfect work. In performing the vul canizing process the work may be heated rapidly to a temperature of about 280° Fah., beyond this point the increase of temperature to the vulcanizing point must be regular and not exceed 1° a minute. It is also desirable to have the temperature remain near that point for some minutes, but detrimental to have it greatly exceed that point. This invention con sists in a novel system and construction of burners, and in au extinguishing apparatus connected there with, whereby the work is enabled to be heated rapidly to as high a point as it is safe to do so, and then to heat more slowly to the vulcanizing point, and whereby the flame is extinguished when vulcaniza tion hàs been completed. G. E. Hayes, of Buffılo, N. Y., is the inventor of this improvement.

Fruit Press.-This invention relates to a new and improved press which is more especially designed for expressing juice from grapes and other fruit, for the manufacture of wines, \&c. The object of the invention is to obtain a siraple, portable and ecenomical press for the purpose specified, and one that may be operated with facility, and perform its work expeditiously and thoroughly. To this end the invention consists in a novel arrangement and application of a windlass for operating the follower of the press, and a novel arrangement of parts for holding the windlass, and consequently the follower at any desired point. The invention further consists in a novel construction of the curb in which the fruit is pressed, and also in the employment of perforated boards placed within the curb and arranged so as to admit of a free escape of the juice from the fruit under pressure. John Manrow, of Sacramento, Cal., is the inventor of this improvement.

Interesting to Miners.--We have received a lette from Mr. Alexander Rabe, editor of the Hamburger Geverbeblatt, in which he states that, by some effort he would be able to induce from 4,000 to 5,000 experienced miners of Saxony, Hanover, \&c., to emi grate to the United States, if such guarantees would be given to them as to make it sure that they could find employment immediately on arriving here. We publish this fact in order to enable proprietors of coal mines in this country to avail themselves of the opportunity, and to make an effort to obtain a supply of experienced hands, which they appear to be y.natly in need of at the present time. Any letters relating to this matiter addressed to Mr. Rabe, we think will be promptly atiended to by that gentleman. We are not personally airírainted with the gentleman, but he refers to the American coingl at that port.

Cars for Narrow and Broad Gage Rallroads.-A car built upon a plan patented by Mr. C. D. Tisdale of Boston, adapted to run upon the narrow gag roads of New England and the Grand Trunk Road of Canada-broad gage-has lately made a trial trip of 500 miles, loaded with 100 barrels of flour, and passed alternately over the narrow and broad gages with perfect success.

ISSUED FROM THE UNITEDSTATES PATENT-OFFICE for the weri ending december $1,1863$.
** Pamphlets containing the Patent Laws and iull par ticalars of the mode of applying for Letters Patent, speci ying size of model required, and much other information aseful to inventors, may be had gratis by addressing MUNN \& CO., Publishers of the Scientific American New York.
40,729.-Journal Boxes for Railroad Cars.-W. B. Aitken Philadelphia, Pa.:
I claim, first, Combining and arranging the reversible bearing,
DD, or their equivalents wlht the supportblock, E, and box, A, with
the convergng support ribs, e e, substantially as described and for
the purposes set forth. Second, The combination and arrangement of the packing ring,
F, chamber, Gpring ring, H, and adiusining screws, II, with the
shaft, B, the whole being chamber, G, spring ring, H, and adjusting screws, I I, with the
shaft, B, the whole being constructed and arranged to operate sub.
stantially as and tor the purposes set forth Stantially as and for the purposes set forth.
Third, Arranging the lubricating collar, J, Jo the outer edge of the
ournal, \mathbf{C}, by means of the spring ring, \mathbf{K}, or its equivalent, sub lournal, \mathbf{C}, by means of the spring ring, K, or its
stantially as described and for the purpose set forth.
0,730.-Chimney.-R. M. Basset, Birmingham, Conn., and George Mallory, Watertown, Conn.:

We also claim making the cap, c, separate from the chimney body and the two in such manner that different designs of cap may be em
ployed on the same pattern of body or case as hereinbefore specified 40,731.-Slide Valve for Steam Engines.-R. C. Bristol Chicago, Ill.:
I claim, first, The combination of the parallel overhanging way formed in the ends of the valre with the parallel wayso of the seat
composed of separate metait and the friction rollers, the said ways
being in aplane corresponding with the face of the valve, substan-
tially as and for the puroses set fort sially as and for the purposes set forth.
Steond, the valve with its face grooved as described, in combina
tion with the straight or parallel ways, ha ving rollers bet ween the tion with' the straight or parallel ways, having rollers between them
for the purpose of making the valve selt-fiting and relieving such
oilers in part from the load Third, Constructing the valve with a grooved face, and arranging
the same with respect to friction rollers, in such manner that it is the same with respect to friction rollers, in such manner that it is
free from the rollers during the sell-fiting of the valve to its seat,
and afterwards is mainly supported upon the rollers and operates
to always be thus suported, substantially as herein described. to aways be thus supported, substantialy as herein described.
Fourth, The combination of horizontal or parallel ways, friction
rollers and grooved valve, substantially in the manner a and for the purpose set torth.
0,732.-Manufacture of Steel.-W. H. Brunt and J. W. celroy, Pittsburgh, Pa.:
We clairn in the pricess of making steel direct from pig iron in an
ordinary padding fornace, throwing into the furnace pulverized charcoal or other carbon, when the iron begins to granulate, and
closing up the furnace to retain the gases evolved therein, as herein
described. 40,733.-Plow.-A. B. Chapman, Pittsfield, Mass.: with conccive sides, and mounted upon a a vertical or nearly vertical
shatt at the rear of the moldt-board, E, in the maner arposes specified Second, The lever, J, emploved in connection with a screw shaft,
H, and nut, K, or eruivalent devices to adjust the roller, G, and se:
cure it in any position. cure itin any position.
Third, The combination with the roller, G, and lever. J, of the
bracket, I, constructed as described, and employed for the nent and securing of the said lever and the handle, A^{\prime}, as explained
mer [This is an ingenious and eflective contrivarce, whereby the mold nd the the greater part of the furrow slide nd the power required to draw the plow correspondingly reduced.] 40.734.-Lamp Lighter.-C. M. Clinton, Ithaca, N. Y. ire cound thick, when one or more wiresare used about the wick or the purpose of preventing the destruction of the wiek in the
smanler vart of the tube, and to draw the wick out of the tube, for
srimming it, as well as to center and protect the flame about the pro.
jecting wire or wircs. 40,75 wire or wires.
South Dane for Finishing Leather.-S. P. Cobb claim the peculiar rechass.:
ment of the dicing staif,, , the same consisting of the fly wheel, E,
the eonnecting rud, F, He, rocker he connecting rud, F, the rocker lever, C, and pitman c, c, arranged
and so as to operate substantially as hereinbefore specified.
I also claim the conbination I also claim the conibination and arrangemeut of the brush, H, or
Ieather-cleaning mechanism with the dicer, a, and its staft, D.
I also com combination and arrangement of the adjustable
smocshing tuol, I, with the dicean a and monhing tool, I, with the dicer, a, and ins staff.
I also claim the combination and arrangemastable cleanng mechanism with the dicer, a, and its carved bed, G. 40,736.--Shuttle for Sewing Machines.-.Joseph Coignard,
Nantes, France: Iclaim the comb ination of a polished tension roller or eylinder held
 40,737.-Producing Oil and Spirits of Turpentine from Pine Wood.-S. L. Cole, Burlington, Vt.: I claim the discovery or invention of producing oil or spirits of tur-
pentine and other analogous oils direculy from wood, nsing for that pentine and other analogous oils direculy from wood, nsing for that
purpose the apparatus hereinnefore described or any other substan
ially the same, and which will producc the int purpose the apparatus bereinbefore described or any other
tially the same, and which will produce the intended effect.
40,738.- Band Ruffle.-C. O. Crosby, New Haven, Conn.: rutlle produced from a strip of faturle shined, crimped or plaited, an
 40,739 - Band Pufl
40,739.- Band Ruffle.-C. O. Crosby, New Haven, Conn.: Tunle, produced from a single strip of tabric folded and plated crimpecrer siffred and stitched through the band and ruffle with two
rows or stitching, suottandily in the manner herain 40,740.-Automatic Dancer--1. N.Crow and J N. Crow

Mott Haven, N. Y.:
claim, first, The emp loyment or use of the spring-botth A, or it I claim, irst, The emp loyment or use of the spring.bott, A, or its
equivalent, in co mbination with the figare, B Bhaving jointeadimbs,
and otherwise constructed and operating in the manner and for the and otherwise constructed and operating in the manner and for he
purposesubstantially as specified.
Second The Second, The combination of the elastic rod, \mathbf{C}, with the figure, B ,
and spring board, \mathbf{A}, substantially as and for the purpose described. [This invention consists in combining with a spring-board or othe with jointed limbs, in board a vibrating motion, and hoiding the imparting to said spring
proximity to the surface of the board, the figure begins to dance in he most ludicrousard comical manner.]
40,741.-Rotary Harrow.-Charles Daniel.-Sigel, Mo.: I claim, first, A rotary harrow with a star-shaped frame, A, con
structed and operating in the manner and for the purpose substantiSecond, The central guide ring, B, in combination with the star
shaped rame. A, and with the grooved rellers, b, attached to the Shanght ponle, C, substantiallv as and for the purpose, set forth.
Third, The prongs, E. secured to the corners of ihe starrame. A, and operting in combination with hie teeth, ,
pole, C , substautially as aud for the purpose specified.
|The distinguishing features of this improved harrow consist first, in the shape of the frame; second, in the means employed for the pur pose of connecting the draught pole to the frame, and third, in the ap hication of gages or shovels on the outer ends or corners of the rame and set deeper than the teeth and crooked in such a manne
hat the same take deeper hold on one side than on the other, and cause the harrow to rotate as the same is drawn forward.
40,742.-Air-tight Cork.-J. S. Davison, Cranberry, N. J. which will prevent the admission of air) to stoppers of cork, so as to
render them impervious to the air in the difierent waysherein des cribed, or by other means, substantially the same, the
arranged substantially as and for the purposes set torth.
40,743.-Fire-box of Locomotives.-Cyrus Dean, St
Catherines, Canada West
I claim, first, Making the fire-pan, B, solid or pan-like, williout
rate bars or openings, for the purposes and substantially as des
ribed. grate bed.
uribeco
Second, I claim arranging the draught flues and dampers, \mathbf{E}, , Second, I claim arranging the draught flues and dampers, E, so
that the air will pass over the fire pan, and feed the fire from the
four sides and at a convenient distance above the bottom of the fir pun, substantially as described. Third, I also claim the combination of the angle-plates, C , with the
solid fire pan, B, substantially as set forth. 40,744.-Signal Code for Rockets.-G. H. Felt, New York City: ords, letters, figures or combinations of the same, any one of which words, letters, figures or combinations of the same, any one of which
can be designated by the corresponding numbers of the column and
lay layer, the intersection of whioh will be the sp
tially as and for the purposes herein specified Sooond, Arranging these columns on leaves, which leaves are made
to slide in and out of frames, whereby the relative position of the
spaces are chand spaces are changed, substantially as and for the purposes specitied.
Third, Arrangig these oclumns on both sides of the frames an
movable leaves, substantially as and for the purposes herein specified.
Fourth, Designating the colors or number by characters, instead
of numerals, substantially as and for the purposes herein specified. of numerals, substantially as and for the purposes herein specified. 40,745.-Means of Attaching Skates.-John Forbes,
Halifax, Nova Scotia:
I claim the foot-piate, C, pivoted to the runner, A, or connected to
it by a hinge, and provided with a tastening formed of a proiection,
at
at he back of the runner, and a catch, K on the foot-plate or other at the back of the runner, and a catch, K, on the foot-plate or orther
suitable arrangement, and also provided with a siding plate, F, which

and for the purpose herein set forth.
I further claim the manner oraplying or arranging the clamps,
b H, so that the same may be adjusted to suit boots or shoes of differ
 ent sizes, to wit: by having the plate, G, in which the oblique slots
h h, are made atiached the slidig plate, F, by screws, gg, which
pass through oblong slots, i, intothe plate, F, and having the clamp
H, attached ot the plate, F, by screws, j , which pass through oblong H, attached to the plate, F, by screws,,j, , which
slots, k, in the plate, F, as herein described.
[Thisinvention relates to an improvement in that class of skat fastenings, or means of securing skates to the feet, in which jaws o clamps are employed to grasp the heel and sole of the boot or shoe The object of the invention is to obtain a fastening of the kind speci hed which will admit of the skate being applied to and detached from he boot or shoe with far greater facility than hitherto, and at th same time form a tirm and secure attachment.]
40,746.-.Fly-expelling Fan.-W. R. Fowler, Anne Arun del County, Md.:
I chiun the sleeve, M, rods. I I, thumb-screws, n n, and revolving
shati, G , when the whole shall be constructed, arranged and oper
ated as and tor the purpose herein described.
40,747.-Die for Cutting Stencil Plates.-D. G. Garretson New York City:
I claim as an improved article of manufacture a die for cutting proximate form within the outline of the letter or thgure of the die
and having the outer surfaces of the outline vertical or nearly so substan tially as herein set forth.
[This invention consists in an improvement in cutting the dies, as hereinbefore described, whereby the same are rendered more durable

40,748.-Machine for making Railroad Chairs.-B. F Gossin, Cincinnati, Ohio:
I claim, irist, Bending the lips of wrought-iron railroad chairs by plate of the chair and acting simultaneously on the outsides of the the
wo lips, in combination with a suitable mandrel for forming the in erior of the chair, all substantially as hereinbefore described.
Second, The combination of the washers, g, and slots, K, arrange and employed as described for the puarperse, og, adj stiots, K, arrange
to different widths and thicknesses of chairs. Third, The arrangement of a pair of rolls, B B ${ }^{\prime}$, rotating horizon
tally and in the plane of the chair plate, in combination with the lally and in the plane of the chair plate, in combination with th substantially as set forth.
Fourth, The combination of the rabbeted table, J, for retaining th
nished chair while the mandrel is being expelled, with the finge Fourth, The combination of the rabbeted table, , for retaining the
finished chairw while the mandrel is being expelled, with the filler
h, depending fom the rack, H, for expeling the mandrel by the re
turn motion of the said rack, as explained.

0,749.-Direct-acting Engines.-Thomas Hanson, New
York City:
I claim the employment of two piston valves attached to a tubular
alve stem substantially as described, in combination with the rod salde stem, substancialy as aescribed, in combination with and operated at first by a tappet arm
sliding in the piston rod, and then by pressure on its cam, and communicat
on the
cribed I claim also combining the piston valves of the pump with the pis h the pis
ing in the tubular stems of the said valves to operate them, in combination with
the mode of operating the said red partly by a tappet on the piston
rod, and partly by pressure on the ouble inclined cam attached to
the said rod, substantially as and tor the purpose described.
40,750.-Dentist's Lamp for Vulcanizing.-G. E. Hayes Buffalo, N. Y.:
I claim, lirst, The combination in a spirit-lamp f $($ or vulemizing o
other purposes, of two burners, one of whic is supplien

lly as herein specified. Second, The cut-off con

 curing and weight or a sprin,
[This invention relates to a new and fmproved churn power of that
he invention is to obtain a much simpler device thanthose previously
devised for the purpose, and one which may be economically con devised for the purpose, and one which may be econ
structed and be compact or occupy but a limited space.]
40,752.-Preserving Iron from Corrosion.-G. W. Holley I claim protecting Y.:
 40,753.-Artificial Fuel.-J. H. Hubbard, Hartford, Conn. f an thracite coal or coal dust one tun of plaster of paris, or onetu uel, substantially in the manner and for the purpose as described. 40,754.-Steam Engine Governor.-J. D. Humphreys
London, England:
I claim a governor for regulating the speed of marine or other en ombination with a fly wheel, said governing apparatus operating in 40,755.-TTethering animals.-Moses Johnson, Colebrook, N. H I claim the said tethering apparatus made substantially in manne
and so as to operate as described. 40,756.-Grain Separator.-Louis Pierre Josse, Paris France. Patented in France Nov. 22, 1862:
ove-described apparatus for separating or cleansing wheat or othe raneous matters or impurities mixed therewith, in which apparatu heavier parts is effectuated by imparting a suitable horizontal recipro-
cating motion to a triangularly shaped shallow box or boxes. in which and
fall the grain or seeds to be cieansed, by the effect of whe which motion
and the configuration of the said box or boxes the chaff or lighter parts ise to the top of the grain, sceds, or heavier parts and travel an
eave the said box or boxes in an opposite direction to that of thes ave the said box or boxes in an opp
atter parts, substantially as described.
40,757.-Endless Saw.-George Kammerl, New York City: 1teel limks rolling as an endless chain continually in but one direc
tion over the required pulleys, in the manner which this specification
and drawings clearly show.
0,758--Constructing Wagons, Carriages, \&c.-John Kirkman, Peoria, Ill.:
springs, $I^{\prime} I^{\prime}$, rods, I I I, eccentrically pivoted arms or ross,
rubbers, g, all arranged and operating substantially as set f forth. [This invention relates to a wagon constructed entirely of iron an connection which an ingenious device is employed for auto assing down slopes
0,759.-Operating Wagon Brakes.-James H. Lee I claim, first, The combination with the brake lever, B. of a spring
to throw the said lever into the rack, F, automatically whe rawn forward.
Second, The combination of the lever, I spring, D, and lever, K,
r cam, I^{\prime} operating to release the brake lever, B, and retract the r cam, I^{\prime}, operating to release the brake lever, B , and retract th
brake, substantially in the manner described. [By means of this invention the teamster is enable

40,760.-Corn Planter.-J. C. Leffel, Shelbina, Mo.: Iclaim, frrst, The rock shaft, C. Lefrevided with the troadiles, g g
nd connected with the slide bar, D, through the medium of the arm, for the purpose of operating the slide bar. D, as set forth.
Second, The covering shares, L L, curved or bent of semi.circula form in their transverse section, rounded at their front ends and Third, Constructing the runners, A A, so as to be of beveled or
aper form in their transverse section, as and for the purpose pecified.
['This invention relates to a new and useful improvement in the eed.dropping device and seed-coverers, and also in certain pecul it is elied the ordinary corn planters in general use.

0,761.-Patching Minie Bullets.-Orrin D. Lull, Watkins, ${ }^{-}$N. Y.
I claim the use in a cartridge case of any suitable form of a patel
or wrapper, W, constructed with a central aperture, w2, and a num ber of leaves, $\mathbf{w}^{\prime} \mathbf{w}^{\prime} \mathbf{w}^{\prime}$, adapted for wrapping around the base of the
ball without wrinkling, doubling, or lapping ; all as hereinbefore de-

0,762 , Fruit Press.-John Manrow, Sacramento, Cal . I claim, first. The windlass, B, provided with thet wo ropes, 11^{\prime}, in , all being arranged to, operate in the mar.ner and for the purpos Second, The curb, N, constructed of four sides, n u $\mathrm{u}^{\prime}{ }^{\prime}{ }^{\prime}$, perfor
ted with obllique holes as shown, in connection with the perforated
ooards, O, provided with channels, b^{\prime}, all arranged to operate ooards, 0 , provided with channels, b^{b}, all arranged to operate a
 with the toothed wheel, \mathbf{C}, of the windiass, to operate as described.
Fourth, The combination of the windlass. B, ropes, 11^{\prime}, lever, arranged as shown and with the follower or slide bar, J, attached as
descried, the curb, N, with perforated sides and the perforated
boards, O, and with or withont the brarded or weighted lever, A^{\prime}, all rranged to opral
40,763.-Artificial Limbs.-Amasa A. Marks, New York
City : I claim making feet and hands for artificial limbs of "sponge" or
soft rubber, combined with "hard" rubher or wood, as and for the
purpose herein set forth.

40,764.-Curd Agitator.-James H. Maydole, Eaton N. Y.

I claim, first, A curd agitator, consisting of a series of rods, ar
anged relatively as described, in combination with a shoe or scraper provided with a thin edge, so as to pass under the curds and close to second, In combination with my improved curd agitator, a handl
so located upo may be convenient machine. as that the forward end of said machin
mereof, substantially and tor the purposessed durine sut operation
 tively as described, so
part of the machine bv
the other as specifif.

ors, in which the plows are secured to beams that are connected b The beams can be adjusted closer together or further apart wheels.
 direction.]
0,767.-Grain Separator.-J. A. \& J. W. Miller, La Grange Ind.: ectional removable or detachable screens, k, arranged as describe occasion may require.
Second, The combination and arrangement of the shoe, C, f,
fan, purpose set forth.
Third, The spout, F, at the bottom of the shoe, \mathbf{C}, in combinatio with the spout, G, opening, f, in the side of the box or case, A, slide
, and drawer, H, or other receptacle, all arranged as and for th [This invention
[This inven or use of a shoe pr vided with screws, and used in connection with a rotary conica s to admit of the device being very readily adapted for operatin pon different kinds of grain.]
40,768.-Sad Iron.-Oscar F. Morrill, Chelsea, Mass. 1 clam my improved sadio as constructed with ris heat inter nother, and the induction and eduction passages, substantially i 0,769.-Drop Pr
0,769.-Drop Press.-Samuel Remington, Ilion, N. Y.: I elaim the employment of the lever, f, and its pin or screw, u,
segment, g and itsadusting holes with he adjustable roll, e^{\prime} when
combined with roll, e, and the shifting rod, i, or its equivalent, as ombined with roll, e, and the shif
nd for the purpose herein specified.
40,770.-Grain Drill.-Martin Rich, Horicon, Wis.
I claim, first, A seeding machine so constructed that the seed
opper may be transferred from the front to the rear end of th
rame, thereby adapting the same machine to sowing either rame, thereby adapting the same machine to sowing either broad
cast or in drills, substantially as set forth.
Second, The drill tooth with the upper end constructed in the elon Third, The clearer, a, for freeing the teeth from rubbish, construc ted and operated substantially as described
10,771.-Railroad Frog.-Thomas Sharp, Chicago, Ill.:
I claim operating the edjustable bar, \mathbf{R}, by means of the projec
ion, D, thereon, the rods, F, and elbow lever, ${ }^{\text {. }}$, when constructed or the purposes herein specified.
0,772 .-Priming Metallic Cartridge.-Christian `.Sharp 0,772.-Priming Meta
Philadelphia, Pa.:
I claim charging metallic cartridge cases with detonate by intro vid state, and by a rapid revolving motion of the case projecting an he case substantially as described. Singer, Chicago 40,773.-Cooking .Apparatus.-Joseph, Singer, Chicago I claim, first, Adapting the lowermost vessel, A, for receiving the
heat of a lamp or gas burner, or of a charcoal furnace, by means of perforated removable bottom plate, B, appliced to the perforated Sottom, B, of said vessel, substantialily as described.
Second, The portable cooking apparatus, constructed, arranged nd operating substantially as described.
40,774.-Washing Machine.-Hamilton E. Smith, Pitts burgh, Pa.:
I claim the perforated cylinder, D, or its equivalent with its inter
nal cage, the whole being constructed and arranged to revolve in
eservoir, substantially as described 40,775.-Device for Operating Churns.-Henry Soggs Columbus, Pa
I claim placing and operating the churn, H , in the swinging frame,
B, (including the necessary op erating mechanism), in combination with the sliding vent cover. P P', so that that vent, cover will slide
back and forth on the top of the chun, and allow the dash rod a free
perpendicular play,

0,776.-Cultivator.-Isaac and Stephen Stout, Tremont Ill.:
We claim, first, The combination and arrangement of a front and he purposes described.
Second, The combination and arrangement in the rear frame of secultivator of a drivers seat made adjustatale and a sean frame
the cup ner and tor the purnose described.
Third Third, The combination and arrangement in the main or front
frame of the cultivat or, of the hinged lever, the central support for the middle plow hand les and their braces, a a lever-catch to regulate
the depth of plowing and an adiusting device to change the line of
dratt, all operating substantially in the manner and for the purposes the depth
dratt, all
set forth.
In,777.-Farm Gate.-A. C. Teel, Girard, Ill
 shown, to admit of the sliding of the gate and the turning of th
same for the purpose of opening and closing it as herein set forth. [This invention consists in a novel way of hanging gates whereb the use of hinges is dispensed with and the gate at the same time endered capable of being opened and closed with equally as grea facility as if it were hung upon hinges, the expense of the latte being therefore avoided without any disadvantage whatever.]
0,778 .-Direct-action Steam Engine.-Thomas Thatcher I claim, first, The two tappet levers, $\mathrm{J}^{\prime} \mathrm{J}^{\prime}$, applied and combined
with each other with the valve and with plungers, $\mathrm{C} \cdot 彡$, substantially as herein specified.
Second, The rim or casing, h h, around the exhaust port of th alve esea, in combination with the two cavities, gand ant i , in the of the
valve
abstantially as and for thin purpose herein specified. [This invention relates n the seration of the slide rect-action engine. It cros. irst in a novel system of tappet ers for effecting the first. 'te stra'e of the valve हैं $\begin{array}{ll}\text { port is closed the stea. } & \text { nd, in a nowel construction } \\ \text { ompleing the stroke of the: }\end{array}$ by the agether of th
4.7.-M ior fittire Pipe and other Boxes.-Wm Min, fir The skeleton elce plate, or open revolving chuck s, the rollers fitted to run in a groove in the periphery of th thuck, to which carriage wheels are attached, for the purpose of fit-
ting in pipe or other boxes, constructed and operated in the manner
herein specified. Second, I claim the adjustable frame, to which the face plate is at
ached, in combination with the lever arm, rule scale and indicator foted.
Third, I claim the arrangement of the hinged beam, \mathbb{Q}, the slidin bar, h, and cutter, a, the regulating stop , and and weight, m, with the
reversile cone,, for centering the wheel, in the manner as de
scribed, tor cribed, for the purposes herein set forth
10,780.-Grain Drill.- W. W. 'Iuttle, Gratiot, Wis.
 secoud, The scattering device formed of the spouts, hij, and the
box, H^{\prime}, arranged as set forth. [This invention relates to a Inew and improved machine for sowing seed either in hills or drills or in a broadcast manner, and it consists n a novel and improved arrangement of means for distributing the

40,781.-Grate for Stove and Furnaces.-George Vander Heyden, Troy. N. Y. I claim, first, A series of fire-grate bars, B B B B, when the face
sides of said series of bars are constrented in respectively graduated
and

 Lecessary to renewa ar or bars, in the man ner as hereiin shown an
set ford
Thrd, I claim the manner of uniting two or more fire.grate bars

 hry cross-bars, E E, the rods, FF, the saddle rods, G G G G, and th of a furnace by means of chatas or hooks, or their equiv
the manner as herein shown and for the purpose set forth.
 erein shown.
0,782.-Hay Rake.—John Wallace \& Daniel Carpenter Goshen, N. Y.:
I claim the arrangement of the double-shouldered cams, I, and
spring dogs in combination with the teeth, H, and hinged arns, F
constructed and operating in the manuer and for sponstructed and operat.
stantially as specitied.
TThis invention relates to a horserake in which a series of inde pendent revolving teeth are employed, each tooth being secured to an independent hinged arm and provided with a double notched or perfectly free to acco of the ground and the several teeth can be discharged simultaneousl by withdrawing the spring catches, and, after having made one half hrowing the catches into the second notches or shoulders.]

40,783.-Stave-cutting Machine.-Peter Welch, Oswego
aim, first, The combination of the lever, D^{\prime}, shaft, P , wheels I claim, irst, The combination of the lever, D, shaft, P, wheels,
purpose and racks, T and U, substantially in the manner and for the
purn Second, The combination of the double.racked arm j, with the
pawls, k and n, arranged and operating substantially as specified. Third. The combination and arrangement for conjoint operation or
he pawls, kand n, the stop, d, and the spring catcli, c, substantiall
n the manner and for the purpose described.
40,784.-Machine for Jointing Staves.-Peter Welch, Os wego, N. Y.:
claimi the combination of the carriage, \mathbf{Y}, slide, W , wheel,, ,
haft, R , shatt, N, and lever, M, with the N ,
in thenting sims, substantially in the minner and for the purpose described.
I also claim the combination of the gage, , with the lever, M, so
that it is operated at the same time and in the same proportion as the hat it is operated at the same time and in the same proportion as the 40,785.-Chimney and Shade for Lamps and other Lights
-Marian J. Wellman \& J. J. Greenough, New York

City: claku che employment of perforated metal or wire gauze for the
chimneys, shields, or screens aforesaid, by which the temyerature is
ept low, as and for the purposes set forth. 40,786.-Potato Digger.- Albion Wheeler, Mallory, Iowa with castor-wheel, d, in combination with the digging cylinder, E onveyor, H, and slatted apron, I , all constructed a nd operating in 40,787.-Carriage Spring.-Gallus Woeber, Davenport Iowa.
I clain the lugs, , proiecting from the edges of the leaf, d, of
spring, A, and operating in combination with h the pins, g, and lea ves, b, in the manner and for the purpose substantially as specified. TThis invention consistsin the arrangement of lugs or ears project ceeding leaves, and provided with pins passing through said lugs cose by the action of said lugs and pins, the leaves are firmly hel , by the a , without weakeng the leaves by holes and by means which a cieap, simple and perfectly reliable.
4),788.-Cooking Stove.-H. G. Wood, Buffalo, N. Y.: E, which surrounds ihe fireepot oud all suides exceept anderneath it, it combination with an oven having flue spaces, $G G^{\prime}$, leading trom th
air chamber and surrounding the oven, arranged substantially in th air chamber and
manner set forth
40,789.-Corn Planter.-G. J. Bergen, Galesburgh, Ill.: carrying, he seeding mechanism and a dropman's seat, and a rea
frame carrying a coupling windlass and a driver's seat with the slot ed coupling, substantially as described for the purposes set forth. Windlass, substantialy in the manner and for the purposes se Third, The windlass, C, to balance the front and rear frames or
control the depth of planting in a seeding machine, or to regulate the wight of the tongue upon the team, asset forth.
Fourth, The combination of the chain fasten to either frame
with the windlass, and running spirally around it to vary the lever With the wiandiass, and rescrining spirselly around it to vary the lever
age, sub stantiall a desch.
Fifth Fifth, The revoln ng seat for the dropman combined with a see
planter, constructed and operating as and for the purpose described
Sixth, The combinatton of the dropman's seat with the driver' Sixth, The combinatton of the dropman's seat with the driver's
eat and with the windlass, substantially as described and for the purposes set forth
Seventh, The indicating, spring with its ribs constructed and opera ing sibstantlaly las described.
Eigith, The sloted joint connecting the front and rear frames
when the draft
, the rear frame is effected alone by is coupling and so as drant of ow a verticalm m
and for the purpose set forth.

40,790.-Swivel Hook for Watch Chains, \&c.-Louis Bor nemann, Hudson City, N. J., assignor to August Ha
I claim, first, The semicircular shank, d, of the mozable part, \mathbf{c}, the hook, in combart, A, constructed and operating in the manner an
the stationary
for the purpose substantially as shown and described. Second, The stop, e, in the end of the semicircular shank, d, in
So shat
combination with a groove or its equivalent in the stationary shank,
a, as set forth.
The object of this invention is a swivel hook which will open an close by theaction of a screw barrel without a hinge and by a posi ve motion, in such a manner that by imparting to said screw barre rotary motion, the movabie part of the hook will slide in and out, neously.]
4,791.-Non-fusible Fuel.-William Budd (assignor to L G. Marshall and Andrew Cochran), Philadelphia, Pa I claim the combination of the several materials as hereinbefore
set forth, with or without the proportions and manipulation, so as
on make a non-
40,792.-Training Hops.-F. W. Collins, Morris, N. Y., as signor to himself and W. H. Pratt:
of a pole in each hill of the proper hight only to support the hop to
the bearing point, with cords or twines, or their equivalent, connect
ing each of these poles with the poles of each adjacent hill, substan he bearing point, with cords or twines
ing each of these poles with the poles of
tialiy as and for the purposes set forth.
40,793.-Horse Rake.-Jacob Farmwalt, (aerman Town-
ship, Ohio, assignor to Arthur (Xraham, Clark's P. O
Coshocton Co., Ohio :
I claim the jonted arms, H HI, and brace guides, J J , in combina,
ion with the shaft C, provide with spring teetli and axietree, F,
when arranged in the manner and for the pirpose set fort I also claim the levers, K and L , with their respective pirot joints
and rack, R , in combiuation with the shate C , ointed arms, $\mathrm{H} H$
when arranged in the manner as and 40,794.-Stereoscopic Apparatus.-S. D. Goodale (as signor to L. C. and D. C. Goodale), Cincinnati, Ohio
 Second, The arrangement of hinged lens-holder, Gg, and flap, F
ogether with their catches, H and I , both holder and flap being ca
ogateof being closed or opened by a single movement, in the manne Third, The arrangement of blinds, $\mathrm{J} \mathrm{J}^{\prime}$, catches, K^{\prime}, and segmen Fourth L Lhe ar set forth, er, \mathbf{S}, substantially as set forth
Fifth, The provision of lips, N^{\prime}, beneath the box, for the purpos 40,795.-Blinds for Windows, de.-Henry Hotíman (as signor to Charles Wehle), New York City
I claim the construction of blinds, shutters awning
 connecting levers intended to be attached to a door or window by an
rrangement for raisiag or lowering the same, substantially as de
$40,796 .-$ Balanced Valve for Steam Engines.-C. II. Par
shall, Detroit, Mich., assignor to Parshall \& Duncan I claim, irrst, The plate, , , interposed netween the valve, o V, aud
he cover, H, ot the valve chest, and supported by standard3, $\mathrm{L} \mathrm{L}^{\prime} \mathrm{L}^{\prime}$
 II, and cur
specified.
1This is an ingenious and effective device for relieving a slide valv in use, requires no enlargement of the valve chest, and admits of the use of a cut-oft of any form.]
40,797.-Cask-washing Machine.-Wm. Robinson, Wemb don, Bridgewater, England, assignor to G. B. Turrell 1859 :
I claim an apparatus, substantially such as herein described, where
by a compound motion can be imparted to the cask, barrels, or othe
essels, simultaneously in two or more directions.
Also he combination of the rotaing frame, B, serrated ring, \mathbf{C}
screw clamp, D, carriages, E, and eccentrics, \mathbf{E}, constructed and op
, screw clamp, D, carriages, E, and eccentrics, E, constructed and cp.
eratng in the manner and for the purpose substantially as herein
shown and described hown and described
age 353, current volume of the Scievific Anerican
40,798.-Stereoscope.-C. H. Wheeler, West Roxbury, Mass., and J. A. Bazin, Canton, Mass., assiguors t C. H. Wheeler aforesaid :
claim, irst, The board or bed pi

I claim, tirst, The board or bed plate, A, in combination with the
hinged eve-glasses, C, ind longitudinanly-sliding picture-holder. B
constructed and operating in the manner and for the purpose sub constructed and sperand described.
stantially an shown and divable field piece, K, in com
Second, The longitudinally-sliding adjustab
bination with the bed plate, A, hinged eye.glasses, C, and adjustable Second, The longitudinally-sliding adjustable field piece, F , in com-
bination with the bed plate, Ahinged eye.glasses, C , and adjustable
picture holder, B , as and for the purposes set forth. picture holder, B, as and for the purposes set forh-
Third, Connecting the eye-glasses, C to the headof a pivot, f, substanially as und for the purpose deseribed.
Fourth, The spring catch, e, in combuntion witht he hinged head
piece, D, wed-plate, A, and eye.glass, ©, constructed and operating as and orthe purpose set forth.
Fifth, The combination of the parts, a c, of the bed piate with
each other and with the picture holier, B, substantially as and for ach other and with the pic
he purpose herein set forth.
[An engraving.and full description of this invention was publishe on page 384, current volume of the Suientific Ainerican.]
40,799.-Protecting the Walls of Fire-proof Safes from Corrosion :
I claim the method herein described of protecting the parts of Ir claim the nethud herenin descrived of protecting the parts of
fire.proot safes from dannpess or corrosion, bt the employment and
application, as a coating, of the surfaces of the iron in contast with the filling and for hermericilly seating the joints of liquid quartz, sub-40,800.-Composition for Filling Fire-proof Safes.--W. K Marion, New York City
1 claim the herein-described compound for filling sates and other
fire-proot struc ures, the same consisting in the combination with
calcined and powdered calcined and powdered gypsum, of alum, in pieces, imbedded in wand
interspersed through the mass of plaster in such relative proportions interspersed throush the mass of plaster in such relative proportions by hat, shall supply tererquisite quantity of wat
ter, substantially as and tor the purposes set forth.
40,801.-Covering ${ }_{4}$ Cords, Wires, \&c.-Frederick Beck, I claim the employment or use of flock or powder obtained b grinding woo lon worsted or cotton, rags or paper or other material
in combination with solution of fine or oher suitable cement, fo
the purpose of covering cords or wires, substantially as set torth. 0,802.-Ata , Rubber Soles to Boots and Shoes.-D E. Hayward, Melrose, Mass.

1 claim securing nails or rivets, a, to the rubbe sole, B, by vulcanSecond, I claim the canvas cloth, c, when the nails or rivets, a, ar passed through it, and the cloth and nails are attached to the sole i
he manner substantially as set forth.

RE-ISSUES.

1,581.-Photographic Album.-Altemus \& Company, Phil
Patented July 21, 1863:
Patented July 21, 1863 :
I claim, first, A photographic album or other book consisting of
succession of leaves hinged together, substantially as described. sucession of leaves hinged together, substantially as described.
Second, The use of the perforated plates, a, secured to the leaves,
and hinged together, substantially as set forth. 1,582.-Railroad Rails.-T. S. Blair, Pittsburgh, Pa. Pat ented May 19, 1863
I claim, as a new article of production, useful in the arts, to wit, a
ompered or untempered rail way rail, partyy iron and partly steel,
carbonized and rerolled,
1,583.-Wooden Pavement.-Samuel Nicholson, Boston,
Mass. Patented August 8, 1854 :
I claim the so combining or arranging the foundation or support, or face or bed, substantially as herein described, with said long an She combined in such a manner as that partitions shall be made leav-
ang cells or channels between them with a wooden bottom formed by he sh material, and also combined with such cells or channels filled wit herein described, having such wooden bottom to ress upon, substan
tially a herein descibed, whereb the particles of broken stone o
ravel are prevented from working under the lower ends of the longer gravel are prevented from working under the lower ends of the longer
blocks, and whereby water is prevented from passing from the sur-
face of the paverent downward though the jointso said wooden
blocks and also moisture is prevented from being absorbed upward
face of the pavement downward through the joints of said wooden
blocks and also moisture is prevented from being absorbed upward
from the ground by said wooden blocks, subsiantially as herein de-

1,584.- Securing Bottle Stoppers.--Thomas Pinner (as signee of John Alexander), New London, Conn. Pa
ented July 24, 1855 : ented July 24, 1855

$\underset{\substack{\text { eit frath } \\ 1 \\ 1 \\ \text { alsso } \\ \hline}}{ }$

1,585.-Steam Boiler.-T. T Prosser, M. C. and K. A
Darling (assignees of T. T. Prosser) M. C. and K. A
Darling (assignees of T. T. Prosser), Fond du Lac,
Wis. Patented August 1i, 1863. Ante dated January 31, 1863
We claim, tirst, The application of the exhaust stem of a steam
ngine to the exterior surface or surfaces of a steam boiler or boilers
rany part thereof, for the purpose of utilizing the batent engine to the exterior surface or suse of utilizing the latent and sensi
or any part thereof, for the purpore
 manner and for the purpose set forth.
Fous or at and steam boiler, in the
mand Fourth, issing one or more of the tubes or flues ordinarily used for
the transnission of the products ot combustion from the fire cham steam of an engine, for the purpose set forth.
Fifth, Introducing a flue or Hues, a tube or tubes, into the wate space of a stam ob oiler and using it or them for the
exhausi steam of an engine, for the purpose set forth
1,586.--Channeling Soles of Boots and Shoes.-Martin
Wesson, Springlieh, Mass. Patented May 24, 1859 : I claim, first, The combination of one or more feed rolls, E F, knif ating substantially in the inanner and for the purpose herein se Second, The combination of lever L , sliding pieces, h^{\prime}, and knives,
b'd when arranged and operatitug, as descrived, and forming a knife
holding arrangement, for the purpose specified. DESIGNS
1,870.-Clock Dial.-George Hilis, Plainville, Conn.
1,871, 1,873 and 1,874.--Stove Plates.-D. E. Paris and N. S. Vedder, Troy, N. Y., assignors to the said D. E

1,872.-D. E. Paris and F. E. Ritchie, Troy, N. Y., assig 1 ors to D. E. Paris, atoresaid.
1,875.-Fire-place Stove..--Garrettson Smith and Henr bre, Phiadelphia, Pa., assignors to C. S. Collin and E, S. Heath, Baltimore, Md.

MPORTANT TO INVENTORS

PAT'ENTS FOR SEVEN'IEEN YEARS

DESSRG. MUNN \& CO., PROPRIETORS OF THE tates solicil patents in the United the most reasonable terms, The also attend to various other depart ments of business pertainingto psi ents, such as Extensions, Appeal before the United States Court Interferences, Opinions relative to Infringements, \&c. The long ex ance Messts. Mune \& Co. hav nd Dra prings has rendered the erfectly go has rendered them mode of doing business at th nited States Patent Office, and with the greater part of the invention which have been pareated. Information concerning the patentabiit rawing and description to this office

reliminary examinations at the patent offich.

 The service we render gratuitously upon examining an inventio does not extend to a search at the Patent Oce, to see if a like inve ion has been presented liere, butis an opinion based upon whal ur Home Ofice But fors rawing and description, we heve a tates Patent Omce, and a report setting forth the prospects of sining a patent, \&c., made up and mailed to the inventor, with amphiet, giving insuctions for further proceedings. These prelin nd Seventh treets, Whin ons. Many thousands of such , mination competent per his office. Address MUNN t CO., No. 37 Park Row, New York.how to make an application for a patent
Every appicant for a patent must furnish a model of his inventio if susceptible of one; or, if the invention is a chemical production must furnish samples of the ingredients of which his composition onsists, for the Patent Once. These should be securely packed, th y expros. expr. om a mate YUNN \& CO. Per asuslly purchase drafts from their merchant on their New York respondents; but, if not convenient to do so, there is but little rist in sending bank-bilis by maii, having the letter registered br the post. master. Address MUNN \& CO., No. 37 Park Row, New York. The revised Patent Laws, enacted by Congress on the 2d of March 361, are now in full force, and prove to be of great benefit to all ies who are concerned in new inventions.
The duration of patents granted under the new act is prolonged to mentern years, and the Government fee required on filing an appil ation for a patent is reduced from $\$ 30$ to $\$ 15$. Other changes in the On filing each Cave C fows :

The law abolishes discrimination in fees required of foreigners, ex epting natives of such countries as discriminate against eltizens of , United States-lhus allowing Austrian, French, Belgian, English nioy all the privileges of our patent sysiem (but in cases of de

Olu Kitutitic Smaticam

the examination of inventions.
Persons having conceived an idea which they think may be patentable, are advised to make a sketch or model of their inveution, and submit it to us, with a full description, for advice. The points of novthe facts, is promptly sent free of charge. Address MUNN \& CO No. 37 Park Row, New York.
Nigns) on the above terms. Foreigners cannot secure their inven. signs) on the above terms. Foreigners cannot secure their inven-
tions by fling a caveat; to citizens only is this privilege accorded.
During the last seventeen years, the business of procuring Patents tor new inventions in the United States and all foreign countries has been conducted. by Messrs. MUNN \& CO., in connection with the publication of the SCIENTIFIC AMERICAN; and as an evidence of he conirdence reposed in our Agency y the inventors througho TWENTY THOUSAND inventors! In fact, the publishers of this aper have become identifed with the whole brotherhood of inven tors and patentees at home and abroad. Thousands of inventors for whom we have taken out patents have addressed to us most flattering testimonials for the services we have rendered them, and the ealth which has inured to the inventors whose patents were se TIFIC AMERICAN wound and to many millions of dollars! W would state that we never had a more effcient corps of Draught men and Specification Writers than those enaployed at present in our li kinds in the quickest time and on the most liberal termas. rejected applidations.
We are prepared to undertake the investigation and prosecution of ejected cases on reasonable terms. The close proximity of our for the examination and comparison of references, models, drawings, documents, \&c. Our success in the prosecution of rejected cases hs been very great. The princiral portion of our charge is generally lef dependent upon the final result.
All persons having rejected cases which they desire to have proscuted, are invited to correspond with us on the subiest, giving a brie history of the case, inclosing the offelal lettera \&c.

caveats.

Persons desiring to file a caveat can have the papers prepared in the shortest time by sending a sketch and description of the invention. het printed in English and German, is furnished gratis on applica on by mail Addres MUNN \& CO No. 37 Park Row, New York formign patents.
We are very extensively engaged in the preparation and securing of patents in the various European countries. For the transaction f this business we have offices at Nos. 66 Chancery lane, London 29 Boulevard St. Martin, Parıs ; and 26 Rue des Eperonniers, Brus sels. We think we can safely say that three-Fourtis of all the European Patents secured to American citizens are procured througb Inventors will do well to bear in mind that the English law does no limit the issue of patents to inventors. Any one can take out a pat ent there.
Circulars of information concerning the proper course to be pursued in obtaining patents in foreign countries tbrough our Agency, the requirements of different Government Patent Offices, \&c., may be had gratis upon application at our principal office, No. 37 Park Row, New York, or any of our branch offices.

ASSIGNMENTS OF PATENTS.

Assignments of patents, and agreements between patentees and manufacturers are carefully prepared and placed upon the records a Patent Agency, No. 37 Park Row, New York.
It would require many columns to detail all the ways in which inventors or patentees may be served at our offices. We cordially invite all who have anything to do with patent property or inventions to call at our extensive offices, No. 37 Park Row, New York, where an questions
swered.
Communtcations and remittances by mail, and models by express prepaid), sh
New York.

TO OUM READERS.

Patent Claims.-Pereons desiring the claim of any invention which has been patented within thirty years, can obtain a copy by addressing a note to this office, stating the name of the pasentee and date of patent, when known, and inclosing $\$ 1$ aseissued copying. We can also furntsh a sketch of any patented machine 1 sisued
since 1863 , to accompany the claim, on receipt of $\$ 2$. Address MUMI since 1863 , to accompany the claim, on receipt of $\$ 2$. Ad
$\&$ co., Patent Solicitors, No. 37 Park Row, New Fork.
vamiable Role.--It is an established rule of this office to stop sendi.
Models are required to accompany applications for Patents under the new law, the same as formerly, except on design pateate When two good drawings are all that are required to accompany the
Recitipts.-When money is paid at the office for subscrip
Ts.-When mon remit their money by mail, they may consider the arrival of the frsi paper a bona-fide acknowledgment of our reception of their funds
New Pamphlets in German.-We have just issued a re. oised edition of our pamphlet of Instructions to Inventors, contsining in the Germen ingrage, which persons can have gratis upon application at this offec. Address

No. 37 Park-row, New York.

Binding the "Scientific American."

It is inportint that all works of reference should be well bound The Scientific Amerioan being the only publication in the country Which records the doings of the United States Patent Olllee, it is pre-
parved by a large class of its patrons, lawyers and others, for reference
some complaints have been made that our past mode of binding in
cloth is not serviceable, and a wish has been expressed that we would cloh the style binding when adopt the style of binding used on the old series, i. e., heavy boa sides covered with marble paper, and morocco backs and corners.
Believing that the latter style of binding will better please a lar portion of our readers, we commenced on the expiration portion of our readers, we commenced on the expiration
Volume VII. to bind the sheets sent to us for the purpose in Volume VII. to bind the sheets sent to us for the purpose in heavy
board sides, covered with marble paper and leather backs and corners. The price of binding in the above style is 75 cents. We shall be unable hereafter to furnish covers to the trade, but will be happy to receive orders for binding at the publication office, No. 37 Psrk Zow, New York.

Back Numbers and Volumes of the Scientific American VOLUMES I., II., III., IV., V., VII. AND VIII. (NEW SERIES) complete (bound) may be had at this office and from periodical dealers. Price, bound, $\$ 225$ per volume, by mail, $\$ 3-$ which includes postage. Every mechanic, inventor or artizan in the United Subseriber hald for to preserva VOL. VI. is out of orint and cannot be suapplied.

4

E. L. W., of N. Y.-The hight of the atmosphere is sup posed to be between 45 and 50 miles, but there is no absolute cer tainty on this point: The calculations made respecting its hight have been based upon the pressures taken at different altitudes. W. A. M., of Mass.-The best solution that we have tried to render cloth water-proof and yet porous to the air, is made wit the ace tate of lead and sulphate of alumina. Take 4 ounces in half a gallon of of the sugar-of-lead; dissolve them separatel allow the sediment to seitle for two hours. Pour off the clear handle the cloth in this until it is saturated and dry it in a warm handle the cloth in this until it is saturat
room. Give two dips and dry after each.
S. S. \& Co.-Your plan to exhaust the smoke box of air or rather to apply the blower at that pont, is a good one if you can make it work. We imagine, however, that some difliculty would be experienced in the passage of the smoke through the fan or ex hausting apparatus to the chimney. The usual method of intro ducing air through the furnace is the most feasible. Use a Dimpfel blower. Slippery elm (powdered) is good to loosen scale in boilers put in two
W. C., of C. W.-We are surprised that you should ask us if condensed water from the worm would run back into the boiler against steam pressure. The impracticability of the thing T. D. L., of N. H.-Y
.D.L., of N. H.-Y ou cannot employ a syphon for ele vating water from a lake over a bank to be employed to any practi cal purpose in operating a water wheel. Cut a race through the b. I Mass.--The opinon which you entert
. L., of Mass.--The opinon which you entertain that if the shot in a gun is not crammed down close upon the powder the gun will burst when discharged, does not accord with some ex periments made with guns, an account of which was publishe The experiments were conducted by Captain Stockton, of the Navy with the following results : - With the shot "rammed home" the with the following results :-With the shot "rammed home "
bursting charge of powder was 6% ounces; with a space of two inches between the shot and powder, the bursting charge was $73 / 4$ ounces; with a space of four inches between them, the bursting charge was 8 ounces; with a space between them of 6 inches, the bursting charge was $93 / 4$ ounces. Your suggestion respecting weld ing some k, Winged rifle shot are objectionable because they meet with too much resistance from the atmosphere. Pointed shot is inferior to round and flat-fronted projectiles for penetrating thick iron plates. S. R., of N. H.--If your bail wire is bright and brittle put it into an oven until it assumes a blue color, then allow it to by covering with sand and subjecting it to heat fron a fire, and afterwards allowing the wire to cool slowly, but it is liable to become black. For a flat roof tin is the best material that you can use There is an excellent roofing material illustrated on page 176, Vol. Vili. (new series) of the Scientific American. A mixture of equa parts of asphaltum and coal tar boiled in a cauldron for two hour and mixed with dry sand, makes a cheap roor the surface with fin the top of
gravel.
G. G., of N. Y.-It has so happened that two distinct pat ents have been issued for the same thing, but through an oversight on the part of the Examiner, as two patents cannot equally exist the same invention the patent would belong to the original and first inventor, and the subsequent inventor could not use the improve inventor, and the subsequent inventor could
D. B., of C. W.-Reading pig iron, manufactured in Pennsylvania, will answer well for making very strong and durable gearing, mixed with a limited quantity of Scotch pig. The latter should never lee employed for large castings that are to be subjected to severe strains; because, although it flows very freely and produces a smooth skin, the castings are wiobe the in honeycombs in their interior. Most American pig iron is excellent
for gear wheels, and that made from Lake Superior ore has nowal for gear wheels,
high reputation
H. W., of N. Y.-There is no difficulty to be apprehended of the kind you mention in using a gas stov
G. H., of N. Y.-Your plan of coating a telegraph wire with lead is too slow and tedious a process and not likely to be
adopted by any company.
M. K., of N. C.-Your scheme is not feasible in practice The danger of handling gun-cotton in the manner proposed, as also
the nature of the mivention, render it unlikely to be of any practical the nature of the meention, render it unlikely to be of any practical D. B., of N. Y.-The substance which you have forwarded to us will answer very well for paper stock, but it is too brittle to be employed for spinning and weaving into cloth. The most importan question connected with it is its cost.
Nots.-To those correspondents who write to us concerning me chanical books and where to obtain them we would say examine the advertising pages of the Scientific American and you will be informed.

Money Received

At the Scientific American Office, on account of Patent Office business, from Wednesday, Dec. 2, to Wednesday, Dec. 9, 1863 :-
F. A. De M., of N. Y., \$16; H. F., of N. Y., \$11; A. B. L, of N. Y., \$41; H. S., of N. Y., \$20; E. R. R.. of N. J., \$20; J. F. D., ,f N. Y., $\$ 26$; G. B. McD., of Ky., $\$ 20$; S. S., of N, J., $\$ 10$; I. B , ? N. N., $\$ 20$; S. B. C., of N. Y., $\$ 20$; E. H. B., of Pa., $\$ 20$; G. P. G. of N. Y., $\$ 16 ;$ M. A.J., of Mass., $\$ 45$; R. L. S., of Conn., $\$ 16$; F. C.,
of Mass , $\$ 16$ J. N., of Ill., $\$ 16 ;$ P. R., of Conn., $\$ 16 ;$ T. H., of N. or Mass,$\$ 16$; J. N., of Ill., $\$ 16$; P. R., of Conn., $\$ 16$; T. H., of N.
H, $\$ 28 ;$ A. B. G. of N. Y., $\$ 16$; W. H. W., of Wis., $\$ 35$; G.S., of Maine, $\$ 21$; F. B. H., of Ind., $\$ 222$; E. H. I.., of Iowa, $\$ 16$; A. B. $\&$ N. II f., of Vt., $\$ 35$; J. B , of Ohio, $\$ 45$; A. L. S., of Conn., $\$ 16$;
G. P. S., of N. Y., $\$ 19$ S. S., of N. Y., $\$ 25$ A. C. C., of N. Y., $\$ 25$; V. \&. M., of N. Y., $\$ 20$; A. J. C. P., of La., $\$ 41$; G. A., of N. Y
$\$ 41 ;$ T. H. \& H. J., of N. Y., $\$ 45$; S. A. S., of Mass., $\$ 20 ;$ J. B. S, of Mich., $\$ 70$; E. P., of N. Y., $\$ 41$; J. L of Mass., $\$ 20 ;$ J. B. S, of Mich., $\$ 70 ;$ E. P., of N. Y., $\$ 41$; J. L.
G., of N. Y., $\$ 20 ;$ J. McC , of N. Y., $\$ 20 ;$ B. \& H., of Conn., $\$ 20$; A. G., of N. Y., $\$ 10$; C. S., of N. Y., $\$ 20$; W. G., of Ind., $\$ 16$; H. H., A. G., of N. Y., $\$ 1$; C. S., of N. Y., $\$ 20$; W. M. C., of Oregon, $\$ 16$ J. J. S. G., of Mich., $\$ 26$; G. of R. I., $\$ 60$; J. M. C., of Oregon, $\$ 16 ;$ J. S. G., of Nich., $\$ 20$, G.
A., of Iowa, $\$ 15$; A. D. L., of Mass $\$ 16$; N. B., of Ill., $\$ 16 ;$ N. A.. of Ohio, $\$ 15 ;$ J. J. E., of N. Y., $\$ 112 ;$ J. H. Q., of N. J., $\$ 30$; T. J.
V., of Conn., $\$ 359$ O. D. D., of Mich., $\$ 25$; H. D., of Ohio, $\$ 16 ;$ H ., of Conn., $\$ 359$; O. D. D., of Mich., $\$ 25$; H. D., of Ohio, $\$ 10$; H
W. C., of Vt.; $\$ 31$; A. J. C. P., of La, $\$ 25$; J. S., of N. Y., $\$ 25$; A S., of N. Y., $\$ 16$; R. D. C., of England, $\$ 60$; R. W.C., of N. Y., $\$ 45$; I. J. Van T., of N Y., \$45; R. H. G., of N. Y.. 20; C. W. \& W. W, M., of Mi., $\$ 20$; W. \& M., of Germany, $\$ 20$; I. E. P,, of Conn , $\$ 10$ G. L. T., of N. Y., $\$ 16$; L.H., of N. Y., $\$ 31$; O.L G., of N. Y., $\$ 31$ H. H., of N. Y., $\$ 10$; C. W., of Iowa, $\$ 10$; R. S. H,, of Iowa, $\$ 20$; E D. A., of Coun., $\$ 25$; A. S. H., of Mich., $\$ 25$; E. S. N., of N. J., $\$ 15$; E. Y, of Mich., $\$ 16$; J. G. B., of Mass., $\$ 25$; D. B., of N. Y., $\$ 25$;
S. M. P , of Ohio, $\$ 10$; E. H., of N. Y., $\$ 72$; W. C. M., of N. Y., $\$ 25$; S. M. P , of Ohio, $\$ 10$; E. H., of N. Y., $\$ 72$; W. C. M., of N. Y., $\$ 25$
J. F. D., of N. Y., $\$ 26$.

Persons having remitted money to this office will please to examine the above list to see that their initials appear in it, and if they have ot received an acknowledgement by mail, and their initials are no be found in this list, they will please notify us immediately, an inform
press.
Specifications and drawings and models belonging to parties with the following initials have been forwarded to the Paten O\#fice, from Wednesday, Dec. 2, to Wednesday, Dec. 9, 1863 :-
J. F. D., of N. Y.; H. W. C., of Vt.; A. J. C. P., of La.; J. S f N. Y.; G. A., of N. Y.; N. C. S., of Conn.; R. B. C., of Mass. R. W., of N. Y.; W. H. W., of Wis.; J. C., of Ohio; W. E. D., of Y. Y. D. B., of N. Y.; E. H., of N.Y. (3 cases) ; W. C. M., of N .; J. F. D, of N. Y.; H. F., of N. Y.; E. P., of N. Y.; S. \& M ., of Par (2 cases); C. F., of Iowa; J. (G. B., of Mass.; J. H. Q., of N.J.; E. D. A., of England; J. S. G., of Mich.; D. \& C., of N. Y . B., of Ohio; G. P.S., of N. Y.; S. F., of N. Y.; A. C. C., of N Y.; A.E.L., of N. Y.; L. H., of N. Y.; J. B. McC., of Mo.; A. S
H., of Mich.; G.S., of Maine; D. P. S., of N. Y.; T. H., of N. H. H. H., of R. I. (2 cases); A. B. \& N. H. S., of Vt.; S. M. P., of Ohio.

RATES OF ADVERTISING

Twenty-five Cents per line for each and every insertion payable in advance. To enable all to understand how to calculate the amount they must send when they wish advertisements published, whe expank hat en admitted into our advertising columns, and, as heretofore, the pabhishers reserve to themselv
they may deem objectionable.
FO ER and Accountants Friend Used in the BOOK-KEEP I ER and Accountants Friend. Used in the counting house for

THE " WOKKING FARMER" FOR 1864.-TTHIS STER ling agricultural publication-established by Prof. James J.
Mapes, in 1843 -enters upon its sixtenth volume wih the January
number. It will contain during the year more agricultural matter, Napes,
number. It will contain during the year more agricultural materer.
adapted to allthe States in the Union, than any publication of the
day. Each new subscriber for 1864, will receive tine December num.
din

 and get the premiums. Specimen copies for the use of Canvassers,
and Girculars, containing a list of our valuable premiums senton
application to the Tublisher, WM. L. ALLISON, Nos. 124 and 126
Nassau street, New York.
A Sale.-One set old and new series, well bound perfect RAR A Sale.-One set old and new series, well bound, perfect and
complete, except the first volume of oid series, 22 volumes. Price
$\$ 100$ One set of old series complete except volumes 1 and 3 , well
boupd

P ATENT SOLID EMERY WHEELS,--THT NEW YORK

T^{o} MO CAPITALISTS-A PARTNER WITH

TO LEASE OR FOR BALE THE OXIY YAOANT
 C 4 Chests fitted with complete sets of tools PARR'S TOON

 D ENTIST'S AND LECTURER'S NITROUS OXIDE

 T UDD'S REVOLYING CYLINDER STEAM ENGINE.

I NCRUSTATIONS PREVENTED WITHOUT INJURY.-

G REAT WESTERN WIND) WHEELL--THIS WHEEL

I ICENSES TO MANUFACTURE W. P. PENN'S

 Proposais for timber for the navy.

 poses:- 1 . White Oin for Gun Carriages.
Glass 2 . White, Pine and white Wood.
Class 2 . White. Pine and Hhite W
Class 3. White Ash and Hickory.
Chass 4 .
Class 4. Gum Logs.

PROPOSALS FOR MORTAR SHELLS.

 or ther ownestabish meals.
Eath party ybuining zenuract will be required to enter into bonds The Lepartumeint reserves the right to reject any or all bids, if no

Thervous DISEAGBS AMD PhYSTCAL DEBILTRY

SAVING of FUGL TO Palimes UBiNG STRMA.

A VALUABLE WORK FOR INVENIOR

 PATMNTEES AND MANUEACTURERS.
The publishers of the Scienvific AmeRicas have just prepared with much care, a pamphlet of intormation about Patents and the patent Laws, which ought to be in the hands of every inventor and

 atent Latrs, which ought to be in the hands of every inventor andpatentee, and aiso of gaufacturers who use patented inventions
he character of this usefuil work will be better viderstood ing thar ollow ing synopssis of its conneuts:- Act of 1861--Practical In-
The complete Patent Law Amendment Act of structions to Inventors, how to ob tain Letters Paten t, also abou
Models--Designs--Caveats--Trade-marks-Assignments--Revenue - Extensions-Interferences-Infringements-Appeals-Re-issues o - Best Mode of Introducing them-Importance of the SpecificationWho are eutitled to Patents-What will prevent the Granting of a Patent-Patents in Canada and European Patents-Schedule of Pat
ent Fees; also a variety of miscellaneous items on patent law ques It has been the design of the publishers to not only furnish, in con-
venient form for preservation, a synopsis of the 1 ®TFNT LAW and Practice, but also to answer a great variety of questions which have
been put to them from time to sime durng their of seventeen years, which replies are not accessible in any other form.
The publishers will promptly forward the pamphiet by mail, on re-

$\$ 000$, $\$ 150, \$ 100, \$ 50$ PREMIUMS.-TO EDITORS mounts for the best tour articles on either my Soap, Saleratus, or
Concentrated Potash. The article must state the writer's experienc n using the goods, and must be no must test thate the writer's experience
ished in the editorial columans of and be pubtion, may address the und the above, and desiring fin her inform
 tamig the nutice to me, and also write me by mail, giving fulladdress.
The Preminms will be awarded on the toirth day of July, 1864 .
B. T. BABBITT, 61 to 74 Washington street, New York.

To B. T. BABBI'tT

New Haten, Conn., Oct. 22, 1863.
Sirki-abserving your Premium adertisement in the Scientific
American I conctued to state, in a few worde, what I knew of the nerits of your soap, having used it enough to conscientionsly say
that it till that it repesented to be.
I wish to ask yon if it is necessary to write my name in full unde the aricle, shouled I put it in one of the New Haven papers, If to article, which is on the next page, is of no account, pleas
say she and end the matter; if it is acceptable, it will appea
in the paper immediately.

J. D. W.

CHRISTMAS AND NEW YEAR'S.-THE CRAIG MI ppropriate boliday gift to old or young, combinining instruction with
 athe trade. Address 11 ENRY CRAIG, 335 Broadway, New York.

L ESSONS AND PRACTICAL NOTES ON STEAM.

 enlarged. *vo. cloth. $\$ 2$.
"This is the second ed
 to young man lue engineers, , students, and onthers. The teet is illus
trated and explained by numerous dagrams and representations of traed and explianed by numerous diagrams and reppesentations or
machinery. This new edition has been revised and enlarged by Chie
Engineer J. W. King, U. S. N., brother to the deceased author of the
Workis is one of the best, because eminently plain and practical

A NEW PATENT DRIER --WIICA IS EQUAL TO Aohn street, New' York.
THE SUBSCRIBER IS SOLE AGENT FOR A. A Will address A. SNIDER, Armada, Mich.
GEWING MACHINES.-GROVER \& BAKER'S NEW

TAN BLOWERS-DIMPFEL'S, ALDEN'S, MCKENZIE'S A and others, for Steamboats, Iron Works, Founderies. Smith Shops,
Jewelers, \&c..on hand for sale by LEACH BRUTHERS, 86 Liberty
sireet, New York.

PLATINA, WIRE OR SHEET.-FOR ALL YURPOSES. 18, 20, 22, 24, 4^{*}.

TORSALE. YOLUMES 2 TO 12 OF THE SCIEN
DUEICAL BOXLS PLAYING $1,2,3,4,6,8,10$, 12
 Mmpaniments. Toy Musical Boxes-a fine and durable article fo chidren. My stock of Musical Boxes is the only complete one to be
found in tis conntry. Price trum $\$ 2$ 75 to \$000. M. . PAILLARD
Importer, No. 21 Mriden Lane (up-stairs), New York. Musical boxe

THE CHEAPEST MODE OF INTRODUCING INVENTIONS.

INVENTORS AND CONSTRUCTORS OF NEW AND asefui Contrivances or Machines, of whatever kind, can have their FIO ADions illustrated and described in the columns of the SCIENT ing.
No charga is made for the pubication, and the cuts are furnished to party for whom they are executed as socu as they have been used. We wish it understood, however, that no second-hand or poor engravpris such as patentees often get executed by inexperienced artists for We algo circulars and handbills from, can be admitted into these pages. zented reserve the right io s.ccept or reject such subjects as are pre eagraving and publishing any but our desire to recelve orders, and such as do not meet our approbation in this respect, we shall deciline to publish.
For further particulars address-
Publisherso the SOIENTIFIO EME. No. 37 Park Row, New York City
G ROVIER \& BAKER'S CELEBRATED SEWING MA

PAYE'S PATENT FORGE HAMMER-ADAPTED TO both heary and light forgings, with an adastable stroke of from
one inch to three feet, on hand for sale by LEACH BROTHERS,
Liberty street, New York. Oill! OiLil OIL, menSE'S Improved Engine and signal Oil, indorsed and recom年解ded by the highest authority in the United States. This Oil ound in no other oil. It is onfirered to the pubaic uphn the most rell.
able, thorough and practical test. Our most skilfiul engineers and machinists pronounce it superior to and cheaper than any other, and
the only oit that is in all ceses reliable aud will not gum. The
ScIENTIFIC AMERICAN, after several tests, pronounces it © superior to any other they have ever used tor machinery." For sale only by the
Inventor and Manufacturer, F. S. PEASE, No. 61 Mzin street, Buffaio, N. Y.
N. B. - Reliable orders filled for any part of the United States and
1214^{*} ROON PLANERS, ENGINE LATTHES, DRILLLS AND A. other machinists tools, of superior quality, on hand and finishing
for sale low. For description and price address NEW HAVEN MAAF
UFACTURING COMPANY, New Haven, Conn.

B SLTAn, NUTS AN AND WASHLERS OF ALL SIR sale by LEACH BROTHERS, 86 Liberty
PORTABLE STEAM ENGINES - COMBINING THE

W and improved oil stop, is acknowledged by cotton and woolen and improved oil stop, is acknowledged by coten and woolen
manufacturers, and those who are making the greatest saving in the
use of water, to be superior to all other wheels in the country. For
illustrated circular andres illustrated circular, address A. WARREN, Agent, Am
Wheel Company, No 31 Exchange street, Boston, Mass.
1412*
TR New York, dealer in Steam Engines, Boilers PLT-STREET Woodworth's and Daniels' Portising Tenosing and Sash Machnes ; Woodworth's and Daniels' Planers, Diek's Punches, Presses and
Shears; CobandCorn Mills; Harrison's Grist Mills; Johinson's Shingle
Nills; Belting, Oil, \&c.

G RINDSTO NES.-OHIO, NOVA SCOTIA, NEWCAS-

Y UILD \& GARRISON'S CELERRATED \&TEAM Stlees are the Direct Aection Excelsior Steam Pump, The improved
Balance Wheel Pump Wa ter Propeller , an entirely new invention for pumping large quan-
tities at alight iff. For sale at Nos. 55 and 57 First street, Wil-
liamsburgh, and No. 74 Beeikiman street, New York. $14 t \mathrm{f}$
B PACK DIAMOND STEEL WORK, BROTHER \& CO., manufacturers of best quality

POWER LOOM WIRE CLOTHS AND NETTINGS, Puperior in quality and at low prices, by the CLINTON WIRE
CKOTH COMPANX, Clinton, Mass.
N. B.-Cur trade-mark "Pow.
ei: Loom Wire Cloth." VULCANIZED RÜBBER-
Adapted to mechanical purposes-MACHINE BEL'TNG. STEAM.
PACKING, VAIVES, HOSE, EMERY VULCANITE WHEELL,

3ut 3 cactutury fïr dcufft)e (Frfinder.
 Ben folde gratiz an diefelben.

 us aborefititem an

Die

Improved Rarrow, Drill and Roller.
The annexed engraving represents a machine by which the successive operations of harrowing, seed ing and rolling are performed in once going over the ground. It is especially designed for tilling the lands of the Western prairies, where the ligatness of the soil and the prevalence of severe winds make it desirable to deposit the seed at a considerable depth and leave the ground in as compact a condition as possible.

A, represents a harrow suspended at its center by chain attached to a shaft or pulley, B, which is
grass seed falls on a distributing plate of peculiar form, to scatter it uniforinly over the whole surface of the ground. The position of the driver enables him constantly to observe the flow of both the grain and the grass seed from the hoppers, so that if any obstruction occurs it can be at once detected. The draught pole is so attached to the frame as to permit it to rise and fall freely, but is braced laterally so as to control the direction of the machine. The implement is supported entirely on the roller, H, at back and on the castor wheels, Q Q, in front. It is thus adapted to conform freely to undulations in the

LONG'S COMBINED HARROW, DRILL AND ROLLER.

provided with a hand lever, C , by which the harrow may be raised above the ground or permitted to descend to its operating position; D , is a spring catch which engages with the lever, C, to retain the harrow in its elevated position. The grain hopper, E, is provided with a rotary stirrer, F , which is driven by a belt, G, from a pulley attached to one end of the roller, H. The seed passes out at the rear of the hopper through open spouts regulated by a gage
ground; the team is relieved of its weight and the depth to which the harrow and drill teeth penetrate is accurately gaged.
This machine (as will be understood from the foregoing description) combines several implements in one. It is of simple and cheap construction, and very effective in operation. The entire absence of cog gearing renders it durable, not liable to derangement and very easy of draught. Letters Patent for

BARKER'S IMPROVED SKATE.

plate, I, into flexible tubes, J, by which it is conducted to the hollow drill teeth, K K. The said teeth are mounted in a board, L, hinged in front to the main framc, and capable of being turned up in such a manner as to raise the teeth completely clear of the ground, in which position the said board may be held by a hook, M. The drivers seat, N, is mounted upon a transverse board, 0 , directly over the roller, H. The grass seed hopper, P, is attached to the front of the said board, and provided at its lower part with apertures, a, from which the
the above invention were secured through the Scientific American Patent Agency, on May 12, 1863 ; further particulars may be obtained by addressing the inventor, Rev. James P. Long, at Osage, Mitchell County, Iowa.

Improved Skate.

The approach of the skating season renders it necessary that all who intend to participate in this delightful and invigorating pastime should provide themselves with the best and most convenient skates,
if they desire the fullest enjoyment of the sport. We publish herewith an engraving of Barker's skat ing boot and skate, which is designed to obviate the trouble of attaching skates to the feet by the usual methods. The attentive reader will observe that the skate runner has two small flanges on the parts which rest against the sole, as shown in the engraving. By this arrangement no straps whatever are required, and should the screws become loosened at any time they can easily be tightened again with a mall pocket screw-driver. These skates can be at tached to any boot, and the holes occupied by the screws when the skate is in use can be filled up when the skate is removed, by other screws, made a little shorter, so that the thread in the heel and sole will not be injured by walking, or in the daily avocations of the skater. The skates are now being made in Troy, N. Y., for the patentee, Mr. G. T. Barker. A patent was granted on this skate, June 23, 1863. For further infurmation address the inventor at Pittsfield, Mass.

THE

Sicmutific Ancrican

FOR 1864!

VOLUME X.---NEW SERIES

The publishers of the SCIENTIFIC AMERICAN respectfully giv notice that the Tenth Vorume (New Series) will commence on the first of January next. This journal was established in 1845, and is undoubtedly the most widely circulated and influential publication o the kind in the world. In commencing the new volume the pub lishers desire to callspecial attention to its claims as

A JOURNAL OF POPULAR SCIENCE.
In this respect it stands unrivalled. It not only finds its way o almost every workshop in the country, as the earnest friend of the mechanic and artizan, but it is found in the counting-room of the man ufacturer and the merchant ; also in the library and the househoid. The publishers feel warranted in saying that no other journal now published contains an equal amomut of useful information; while it is their aim to present all subjects in the most popular and attractive manner.
The SCIENTIFIC AMERICAN is published once a week, in con venient form for binding; and each number contains sixteen pages of useful reading matter, illustrated with

NUMEROUS SPLENDID ENGRAVINGS of all the latest and best inventions of the day. This feature of the iournal is worthy of special note. Every number contains from five to ten original engravings of mechanical inventions relating to every department of the arts. These engravings are executed by artists spe cially employed on the paper, aud are universally acknowledged to be superior to anything of the kind produced in this country.
The publishers of the SCIENTIFIC AMERICAN promise to pre sent, as during preceding years, all the latest inprovements in Stearn Engineering, War Vessels, Ordnance-military and naval, Fire-arms Mechanics' Tools, Manulacluring Machinery, Farm Implements, Wood-working Machinery, Water-wheels, Pumps and other Hydraulic Apparatus, Household Utensils, Electric, Chemical and Mathematica Instruments, Flying Machines and other Curious Inventions-beside all the varied articles designed to lighten the labor of mankind, no only in the shop and warehouse, but in every place where the indas uries of life are pursued.
From its commencement the SCIENTIFIC AMERICAN has bee the earnest advocate of the rights of American Inventors and the

REPERTORY OF AMERICAN PATENTS In this important department, so vitally connected with all the whetever, as in its columns there is-published a we etly Oficial Lis of the "Claims", of all patents granted at the U. S. Patent Office.

THE PRACTICAL RECIPES

alone are oft-times worth more to the subscriber than the amount of a whole year's subscription.

TERMS OF SUBSCRIPTION.

Two volumes of the SCIENTIFIC AMERICAN are published each year, at $\$ 1.50$ each, or $\$ 3$ per annum, with correspondingly low terms to Clubs; $\$ 1$ will pay for four months' subscription. The numbers for one year, when bound in a volume, constitute a work of 832 pages of useful information, which every one ought to
A new volume will commence on the first of January, 1864.
club rates.
Five Copies, for Six Months............................. \&

Ten Coptes, for Twelve Months.....................................
Ten Coples, Cor for Twelve Manthe 15

Fifteen Copies, for Twelve Monthe. .34
.40
For all clubs of Twenty and over the yearly subscription ia only $\$ 200$. Names can be sent in at different times and from different Post-offices. Specimen copies will be sent gratis to any part of the country.
ear's subscription to pre pay postage
MORN \& CO., Publighera
No. 37 Park Row, New York
fron the stram press of john 1. gray \& green

