a WEEKLY JOURNAL OF PRACTICAL INFORMATION IN ART, SCIENCE, MECHANICS, CHEMISTRY AND MANUFACTURES VOL. VI.--NO. 25. NEW YORK, JUNE 21, 1862. NEW SERIES.

Improved Rail Car Brake.

The object of the invention here illustrated is to connect the brakes of all the cars in the longest train so as to enable the engineer or any one man at the head of the train, or upon any separate car in the train, to simultaneously, and uniformly, and with the most perfect equality of pressure upon all the wheels, apply the means of communicating power to the brakes at any moment, and obtain the maximum of pressure within three seconds.
Mr. A. I. Ambler, the inventor, has secured by Letters Patent through the Scientific American Patent
rod is attached to each ear or the trucks thereof, sup ported by suitable bearings and connected between the cars by two universal joints and one slip joint ; the slip joint being formed of a funnel and slide supported by a yoke spring and suspended just beneath the coupler or draft head between the cars, and so ar ranged as to elevate or depress the tumbiing rod at pleasure, for the purpose of adapting the same to the diffcrent hight of cars to enable the tumbling rod connection (the slide and funnel) to be coupled by the simple act of the cars coming together, while this coupling of the tumbling rod is held together only
d. Upon the shaft of this pinion is a crank, e, carrying upon its end the connecting rod, f, which grasps at its opposite end the belt, g. This belt passes around the cone, h, on one of the axles of the car, and italso passes around the cone, i, which fits loosely upon one of the arms of a bent lever. This lever has its fulcrum at j, with both of its arms free-one arm carrying the cone, i, and the other the friction roller or pulley, k. A friction roller also surrounds the fulcrum of the lever, and a chain, l, is passed around both of these rollers and secured, one end to the car frame and the other to the levers of the brakes.

Fig. 1.

AMBLER'S MOMENTUM CYLINDER BRAKE.

Agency, several other combinations based upon the novel principles he seeks to inauguratc, combining simplicity, economy and efficiency, which will be illustrated as early as possible.
The plans of the inventor contemplate and secure three important, substantial and practical results never before obtained in car braking, viz., continuity of power, simultaneousness of action and perfect uniformity of pressure upon all the wheels throughout the train; to which may be added the fact that any separate car may be broken without interfering with the means by which the continuous breaking is effected, thus combining all the advantages of the old system of braking with the introduction of thenew principles evolved. These brakes dispense with all brakemen, prevent the wheels of cars from sliding on the track, bring the whole face of the shoe upon the wheel and prevent unequal wearing, operate each separate car in its place without being drawn against the car to which it is coupled, and enable the engineer or person having charge of the brakes, to brake the entire train in the time it would require the engineer to signal the brakeman in the ordinary method of braking, thus doing away with intermediate wills, and placing the entire braking power in the hands of the engineer or single brakoman.

In all these combinations a tumbling or rotating
 and disconnects freely when the cars are uncoupled, the slide in the funnel having perfect freedom of action, being in no way held or fastened therein. 'This arrangement between the cars allows perfect freedom of action to the cars when in motion, while the tumb ling rod is thus susceptible of being freely operated, upon all grades and curves of the road, and is therefore always effective. motion of the crank, e, will sarry the belt, d, outward toward the side of the car, thus drawing the larger end of the cone, i, toward the cone, h, and tightening the chain, l, so as to actuate the brakes.

At the inner or smaller end of each cone is a pulley (one of them being loose), for the belt to run on when the brakes are not applied, and as a belt will always run on to the largest part of a pulley, it is only necessary to slip the belt, g, upon the smaller ends of the cones, when it will run to the larger ends itself ; the power that carries it outward being in fact the momentum of the train, hence the name, Momentum Cylinder Brake, which is so appropriately applied to this device. The brake, being thus pressed

This arrangement completely obviates all the objections that have hitherto stood in the way of braking a train of cars by transmitting power through the rain by means of a rotating rod.
With the foregoing we will be better able to describe the invention as representedin the illustrations presented.
In the engravings, B B represent the truck frames, beneath which the coupling rod, a, is secured, the rod being furnished with a bevel gear so that it may be turned by the hand wheel, b. A worm screw, c, is formed upon the rod so as to mesh into the pinion,
against the wheels by the momentum of the cars, requires the exertion of very little power on the part of the operator-only sufficient to slip the several belts from the pulleys on to the ends of the cones.

The shaft of the hand wheel, b, is surrounded by a hollow shaft upon which is a hand wheel, m, and a chain is wound around this outer shaft to operate the brakes when the car is detached from a train, without turning the rod, a.
The parties owning this invention are now engaged with railroad men with a view to its practical application on a leading road out of Chicago, while Mr.

Ambler is also perfecting a series of ingenious improvements in the rolling stock of railroads general ly, which will be given to the public in due season.
The patent for this invention was procured through the Scientific American Patent Agency, in the United States on the 1st of April, 1862. Patents have also been taken out in several foreign countries. Information in relation to the invention may be obtained by addressing Warrick Martin, Chicago, Ill., care of Sherman House, or at Milwaukie, Wis.

NOTES ON MILITARY AND NAVAL AFFAIRS.

the stifuation of tife araires.
The situation of affairs just now is critically interesting, and speculation is rife and ingenuity is fertile in solving the mystery that hangs over the present condition of things. What has become of Beauregard? is still the great question. Some 20,000 of his deluded followers have either deserted or have been taken prisoners, and so far as himself is concerned "Qunth HIudibras, friend Ralph, thou hast

He has got away, so says report, with an army of some 80,000 men-a formidable force--but what he intends to do is a mystery which time alone will reveal. The impression prevails that he has reached Richmond with the flower of his army, and that the Mississippi Valley is given up temporarily, with a view of making a desperate and last determined stand in front of Richmond. There is some probability in this theory ; indeed, we have often wondered why Jeff Davis did not concentrate all his forces--as he can do by railroad-and thus, if possible, defeat at least one wing of the Federal army, and therchy secure a basis upon which to compromise in some way.
Gen. Halleck's army is far down the Mississippi Valley and cannot be changed from point to point with facility, while the Confederates have the advantage of railway connection with their seat of government ; this affords them excellent facilities for concentration, and by backing off and drawing our forces forward the possilitity of a junction of all their forces is greatly increased, while the possibility of any such movement on our part is greatly diminished. It secms to us, tiking all the contingencies into view, that our government ought to have taken every man that offered and marched him on to Richmond to re inforce McClellan. We must not fail there for want of men, and we presume the goverument is fully awake to all the urgencies of the case. lichmond ought to fall by the defeat and dispersion of the rebel army, and in order to do this we shall need an over whelming force. We believe Gen. Mcclellan is equal to this great task-only give him the means wherewith to do it. Gen. Fremont is nolly following up the retreating forces of Jackson, and in a severe battle fought on Sunday the 8 th inst, near Harrisburg, he drove Jackson back and occupied his camping ground, with heavy losses on both sides. The General states in a dispatch to the War Department yesterday, dated on suturday, that the lors of the rebels on their retreat from Harrisburg on the day before the battle was very severe. Among the killed was the uliquitous Colonel Ashby, who, with his cavalry, has been harassing our troops in Western Virginia at almost every quarter. We scarcely heard of a single battle or skirmish for months past that Ashby and his cavalry did not have a hand in. When he was slain, according to Gen. Fremont's report, he was covering the retreat of the enemy with his whole cav alry force and three regiments of infantry with admirable skill and audacity. The retreat was followed up by pursuit on the part of Fremont's forces.
We hope Fremont will not be caught in a trap.

mempiis--xts situation Λ nd surrender.

The surrender of Memphis to the Federal authorties is certainly one of the most important achieveaents of the war for the Union and Constitution. his important city is situated on the Mississippi River on the fourth Chickasaw bluff, four hundred and twenty miles below St. Louis, and contained according to the census returns of $1860,50,000$ inhabitants. In 1840 it had only 8,839 . Thus it will be seen that no other city in the Union had grown more rapidly than Memphis, and at the hour when the State of Tennessee undertook to secede from the Union its prosperity and growth were almost un-
paralleled. Now its streets are almost deserted, and desolation and gloom hang, temporarily at least, over its once fair prospects. The leading citi\%ens of Memphis have been quite as bitter against the government as any other in all the South, while its press was vitriol and gall boiled down. It is now a conquered city, and like New Orleans, and all the other cities and towns along the Father of Waters, can never escape the authority of the government of the United States. The millions who inhabit the great and rich valleys of the Ohio, Missouri and Upper Mississippi, will never allow a weaker power than themselves to hold control of the mouth of that liver.

The bluff on which Memphis stands is thirty feet above the highest floods, and along its front extends a fine esplanade several hundred feet wide-facing which are the principal warehouses. The landing place is a sandstone ridge, which projects into the river from the foot of the bluff. Memphis has had an immense business. Especially in cotton, the shipments of which for the year ending September, 1860, were upward of 400,000 bales. In addition to its river advantages it is an important railroad center-a point, indeed, on which is destined yet to stand, under the auspices of the Union, one of the great cities of the American continent. The people of that city have been blinded to their own interests by the madness and fanaticism of a vile press and a viler set of political ruffians, whose mission is either to rule or ruin.
The city formally surrendered on the 6th inst., to Flag-officer Charles N. Davis, previous to which, however, there was a
short but brilitant naval engagmanem.
The fleet of Federal gunboats had passed Forts Wright and Pillow, which were abandoned by the enemy, and on approaching Memphis it appeared pretty certain that the rebel fleet of gunboats, consisting of eight vessels carrying twenty-five guns, would make a stand. They did so by opening a brisk fire on the Federal flect, which was briskly returned. The contest begun at 5.30 in the morning, and terminated at 7 in a running fight. In addition to the gunboats engaged there were also a "flock of loyad rams," under command of Col. Charles Ellett, Jr., who has long contended for the introduction of this important arm of defence. He performed a noble service, and aided Commodore Davis very much in gaining his brilliant victory. Davis reports to the Navy Department that seven of the rebel vessels were captured or destroyed, only one making its escape. This was the last hope of Memphis, whose citizens only a week before had resolved not to surrender the place. Col. Gorham N. Fitch, late United states Senator from Indiana, is acting as Military Governor of the city, and we indulge the hope that its citizens will return at once to their allegiance, and set about repairing the immense damage which has been wickedly brought upon their once thrifty and beautiful city.
The flotilla of eight gunboats which contributed so much to this gratifying result were razecd and forti fied by covering their sides with two layers of liveoak timber, each about eight inches thick. The prows are iron-plated and quite sharp, and instead of heavy guns these vessels carry a number of sharpshooters, whose firing among the rebel gunners during the ac tion was very effective. These rams are not under the command of the flay-officer of the fleet, but are a part of the army and are commanded by Colonel Ellett.

tile ofening of tile misisisifpi

is an event which cannot long be delayed. The ficets of Commodores Farragut and Davis are gradually making toward each other, and will soon meet face to face in the great river. Not in hostile array-not for the purposes of deadly strife, by terrific bombardments and hand-to-hand encounters on the quarter deck ; but to shake hands under the old flag, and exchange congratulations that the gallant navy has unlocked the commerce of thousands of miles to all nations, and completely destroyed all the enemy's works, including his navy, which after all was no mean affair. When this object is fairly attained, it will be an epoch in our history, and may well enlist all the hearty rejoicings of the whole world, and specially of our own countrymen.
Λt last accomnts, Farragut's fleet was at Vicksimurg
-the rebel forces at that place refusing to surrender. Com. Davis can now puish forward and clear the river below Memphis, as it is believed no serious obstructions exist below that city. We may, therefore, soon hear of the junction and active coöperation of the two fleets to give the last and finishing stroke to the free navigation of the Mississippi. This act literally cuts the Confederacy in twain, and placeß̆ all the country along its banks forever under the control of the government. Surely this is an event over which we may all rejoice.
gen. mitcilel at ciattanooga, tenesesee.
The War Department has received information of the advance of the division of Gen. Mitchel upon Chattanooga. His advance forces under command of Gen. Negley, have had a sharp engagement with the ebels, who were utterly routed, and their baggage, ammunition and supplies taken. The astronomical general is after the enemy, and we may soon expect to hear of more of his gallant exploits. Chattanooga is, or was, a flourishing town on the Tennessec river, near to the Georgia line, and is the terminus of the Nashville and Chattanooga, and of the Western and Atlantic railroads. The advance from this place, either upon Cleveland or Dalton, will cut the Southwestern line of railroad from Richmond just as effectually as though it was done at Knoxville, though the latter point would be much the more satisfactory, as it would be "a harbinger of sweet relief" to those noble mountaineers of East Tennessee, whose devotion to the country is grand and impressive in suffering and sorrow.

misclidaneous.

The official report of the loss in the battle of Seven Pines is made by Gen. McClellan, and much exceeds the first estimate. The killed are 899 ; the wounded, 3,627 ; and the missing, 1,222. The aggregate is 5,739 . These figures show it to have been, next to the battle of Shiloh, the most desperately fought field of the war. The Richmond Dispatch sets down the loss at 8,000 , which includes five generals, twentythree colonels, ten majors and fifty-seven captains, killed or taken prisoners. The Dispatch also complains that the National forces can at any time cut off the retreat of the Confederates South by seizing the railroads at Petersburg, and intimates that a retreat to Lynchburgh and the mountains was the only one left to them.
The Navy Department has issued proposals for the construction and complete equipment of fifteen gunboats, with a speed of not less than thirteen knots, to be delivered within four months; and in conjuncfion with the War Department, proposals are invited for heavy guns for both these branches of the public service.
Paymaster Wise, of the gunboat flotilla, pubiishes a card in the Western papers, in which he says: "I lave paid the whole expense of the flotilla from the first, and including the cost of the gunboats, their equipment, the purchase of several large steamers, pay of officers and men, and the accumulation of a vast amourit of material got together in a hurry, and with all the disadvantages of forming a navy in the ar West, our whole expenses do not thus far cover three millions of dollars, and we have hardly a debt unpaid. Our expenses are now about $\$ 150,000$ per month, making 85,000 per day.
The New Ironsides, building at Philadelphia, has already received four tiers of plates upon her sides, and some idea can now be had of the impregnability of the vessel. As she now lies in the water she does not draw over eight feet ; the remaining seven of her draught will be made by the use of the remaining ron plates. She will be ready for sea by the 15 th of July.

In the second number of the Scientific Amebican, issued Sept. 4, 1845, the editor presents to his readers what he terms "The Labyrinthian Curiosity-the City of Jungo, the bewilderology of which has no parallel." The engraving resembles the Chinese scrawls which usually adorn the sides of a weatherbeaten tea-chest, and we doubt not the good reader at that time looked upon the picture as a complete "bewilderology."

Dr. G. F. J. Colburn, of Newark, N. J., informs us that the patents for his improvements in lamps, illustrated on page 273 of the current volume of the Scifntific American, have been allowed.

Indian Implements for Cotton Culture.

A contributor to the last number of the Edinburgh Review gives the following description of the Hindoo plow :-This is apparently a rude instrument but in effect it is most efficient. It is formed invariably out of strong tough wood. A branch of a tree furnishes the bend required for the plowshare and the handle. The share or body of the plow is shaped to a point, and a strong coulter of iron is fitted into a groove on the upper side of the share, and is held there by strong clamps. When fitted it projects a few inches beyond the wood.

Ropes of untanned hide are fitted to the stem or handle of the plow, and are connected with yokes in front, which are again fixed on the necks of the oxen. This heavy implement plows very deep, probably from a foot to a fuot and a half of the soil, and tears it up in huge clods, breaking the tangled and matted grass roots below the surface. The field is plowed two ways, or perhaps three, or four, according to the quality of the soil, and until it is thoroughly broken up. All stumps are then removed, dug out, or burned, and the field allowed to remain as left by the plow, through the whole of the hot scason. The clods of earth are in fact baked, as it were, and all the grass roots withered and killed. Without this process, the grass roots would not be eradicated, and would spread again with rapidity. On the first fall of rain all the clods swell and fall into powder, not unlike the process of slaking lime ; and when this is complete, a large hoe, formed of a block of tough wood into which a strong iron hoe about three feet long is fixed at an angle of 45°, is employed with a pair of bullocks, or two pair if necessary, to clean the surface. This instrument collects all grass roots as it moves, which are thrown off in. heaps as the hoe is clogged; and the soil is turned up and thrown over the back of the iron portion of the hoe, so as to mix and pulverize it perfectly. The hoe is used as long as there is any inequality or roughness in the ficld; the roots and grass are afterward collected and burned, and the ashes spread over the land. The field is now ready for sowing; and if care be taken to eradicate grass afterward, there is no need of the heavy plow, or of subsoil plowing, for twenty years; at the same time it is employed should the surface soil grow poor. The surface remains clean ; and the yearly cleaning by the hoe, or by a light plow, and subsequent drill plow, sowing is sufficient to ensure good crops.

'The Sounding Properties of Rooms.

A correspondent of the London Builder, presents the following useful ideas on the proportions of rooms for propagating sound. He says: -A building of a certain hight, length, breadth and form, is required to enable an assemblage of persons to hear clearly and distinctly in every part of the room. I only know one room which is as near perfection as possible, vi\%: a concert room at Harrowgate. The following are its dimensions :-
Length of room inside.
Width.
Hight to ceiling line
Hight to center of ceiling
The ceiling is the foot in seven inches. the length of the ceiling and seven in width, each 9 inches deep. There are nine large windows along the north wall, three at the east and three at the west end. On the south side there are two doors and one window, a small orchestrat 10 feet high and two Doric columns on each side of the orchestra.

Washing Silk.

No person should ever wring or crush a piece of silk when it is wet, bccause the creases thus made will remain forever, if the silk is thick and hard. The way to wash silk is to spread it smoothly upon a clean board, rub white soap upon it and brush it with a clean hard brush. The silk must be rubbed until all the grease is extracted, then the soap should be brushed off with clean cold water, applied to both sides. The cleansing of silk is a very nice operation Most of the colors are liable to be extracted with washing in hot suds, especially blue and green colors. A little alum dissolved in the last water that is brushed on the silk, tends to prevent the colors from running. Alcoh \bullet and camphene mixed together is used for removing grease from silk.

Poisonous Effects of Carbonic Oxide Gas.

Carbonic oxide gas is the product of imperfect comustion, and it is composed of an equivalent each of carbon and oxygen. It is very poisonous. Birds placed in a vessel containing it have dropped dead before they could be taken out. Sir Humphrey Davy took three respirations of it mixed with one-fourth of its bulk of common air, when he became temporarily insensible. This loss of sensation was succeeded by giddiness, sickness, acute pains in different parts of the body, and extreme delility; some days clapsed before he entirely recovered. Rabbits have been killed in seven minutes when put into a mixture of this gas with seven parts of atmospheric air. One per cent of this gas in atmospheric air has killed a dog in a minute and a half. Quite recently Dr. Letheby, of London, ascertained that air containing only 0.5 per cent. 'of the gas will kill small birds in about three minutes, and that a mixture containing one per cent of this gas will kill in about half this time. In all these cases, the effects are the same. The animals show no sign of pain ; they fall insensible, and either die at once, with a slight fluiter-hardly amounting to convulsion-or they gradually sleep away. The post-mortem appearances are not very striking: the blood is a little redder than usual, the auricles are somewhat gorged with blood, and the brain is a little congested. In lirds there is nearly always effusion of blood in the brain.
Several accidents have demonstrated how injurious this gas is to buman beings. Dr. Lethebr relates the following accidents occurring from the use of watergas, which has been used as an agent of illumination. He says:-

Water gas sometimes contains as much as 34 per cent of carbonic oxide. It is obtained by passing steam over red-hot charcoal ; and, as the steam is decomposed by the ignited carbon, the hydrogen is set free, and carbonic oxide, is produced. Selligue, in 1840, obtained permission to use the gas in the towns of Dijon, Strasbourg, Antwerp, and two of the faubourgs of Paris and Lyons. At Strasbourg, an accident occurred, which put a stop to its use. The gas escaped from the pipes into a baker's shop, and was fatal to several persons; and, not long after, an aeronaut, named Delcourt, incautiously used the gas for inflating his balloon. He was made insensible in the car ; and those who approached to render him assistance fainted and fell likewise. The use of this gas has been interdicted on the continent of Lurope.

Chemistry of Iron.

It is stated in the Comptes-Rendus that MM. Minary and liesal have been experimenting for two yoars with cast iron and they find that the puddling operation has for it object the burning of an excess of car bon. Gray and black cast iron contains but little oxigen. Granular white cast iron contains a considerable quantity of oxide, and is very easily refined, but they say it does not make good wrought iron. The fusibility of cast iron increases with the quantity of oxygen it contains. Two crucibles, the one contain ing iron scraps and the other containing scraps and a certain proportion of the oxide of iron were placed in a furnace, when the former were found merely softened and adhering together, but the latter were fused into one mass. Bessemer's process, it is asserted, should only be applied to gray sast iron.

Wasmena Wonlers.---If you do not wish to have white woolens shrink when washed, make a good suds of hard soap, and wash the flamels in it. Do not rub woolens like cotton cloth, but simply squeeze them between the hands, or slightly pound them with a clothes pounder. The suds used should be strong, and the woolens should be rinsed in warm water. By rubbing flannels on a board and rinsing them in cold water, they soon become very thick.
Zanc Wash for Rooms. - Mix oxide of rinc with common size and apply it with a brush, like lime whitewash, to the ceiling of a room. After this apply a wash, in the same manner, of the chloride of rine, which will combine with the oxide and form a smooth cement with a shining surface.
Time telegraph line from New York to Utah is 3,242 miles. Messages to this distance have been repeated dive times, the longest line being 1,200 miles. The total amount of battery used was 750 Grove cups.

The City Directory, May 1, 1862.
We have just received from John F. Trow, pub lisher, No. 50 Greene street, the New York City Directory, compiled by H. Wilson, being volume 6. To residents of the city this directory is as inlispensable almost as the light of the sum, and to thousands out of the city it would afford business information worth ten times its cost, which is $\$ 2$ rom We are-much gratified to learn from the proface, in pite of the croakings of the enemies of the govern ment, the fears of its friend:s, aud the farge number of volunteers which have gone to the war, that the number of names in the directory has increased this year. In the last year's directory the number of names was 152,825 , this yene it contains 153,186 . In addition to the names in the regular directory, there is also added Wilson's New York Commercial Register, which contains much valuable business information.

American Railway Brakes in England

The following interesting account of an American nvention in England, is from the Londom Emginer. The mode of applying railway brakes invented by William G. Creamer, of New York, has been tried with the best results on the South-Castern Jinilway, where it has been finally adopted to a considerable extent. The brakes are applied by the force with which stout springs, previously coiled, unwind themselves when a catch is disengaged. In some recent experiments with an engine tender and sixteen carriages, weighing 143 tuns in all, the train when ruming at the rate of 50 miles per hour, down an incline of 1 in 100 was stopped in 30 seconds and in a distance of 373 yards. When ascendiug a gradient of 1 in 664 at the rate of 36 miles per hour, the train was stopped in a distance of 133 yadds and in $\mathbf{1 6} 6$ reconds.'

The Navy.- The following are the naval approniations contained in the bills which have passed at this session of Congress, and have been approved ly the President :-For iron-cased gunboats, $\$ 10,000,000$; gunboats on Western rivers, $\$ 1,000,000$; naval service for $1862, \$ 20,603,000$. The sum of $\$ 22.843,-$ 11302 for the navy for $1862-63$ is contained in ant appropriation bill which has passed the Honse, lint which has not yet been finally disposed of.

Californta Fruts - Among the fruits being intro duced into California, and for which the soil and climate of that State are presumed to be adapted, aro the European grape vines, best adanted for wine and raisins, the Mediterranean currants, the almonds of Italy and Smyrna, oranges, lemons, olives, fiss, Italian chestnuts and pomegranates.

Tim Scmentific American is the cheapestand - sme people say--."the best mechanical paper in the world." We suppose this must be so or peoplowemld not keep repeating it. We do know that no other weckly journal of the kind in the world an lo ohe tained for so small a sum; the leading English swientific papers are treble its price per annum.

Tire Australian papers of March contin a sketch of a project for a new tram commmication with Europe. It is proposed to construct steamships of from 6,000 to 8,000 tuns harthen, cap tble of carrying sufficient coals, without stopping for a supply, and of sufficient speed to complete the transit. by way of the Cape, in forty or forty-fivedus

Extensive buildings have been erected at Lomg Beach, near Greenport, for the purpose of manufacturing oil and guano of the fish known as "bunkers," which swarm the coast of Long Jiland. Λ long wharf has been constructed, which is to be connected with the buildings by a railway. 'The engine used is 40-horse power.

Frrends, hurry in your sulseriptions for the nem volume which commences in two weeks, and do not forget to speak to your neighbor abont it, capecially if you find himin a good natured moorl. He cannot refuse so reasonable an application, if he desires io know what's going on in the great world of industry.
Vine cultivation is making immense strides in Victoria, for grapes are selling there at 4 cents per $1 b$. The vineyards yiclded, in 1861, the average of 630 gallons per acre.

Cameo Engraving.
The art of cutting cameos is a species of sculpture,
rather than engraving. There are two kinds of cameos, one of which is stone of different colored strata, so that the raised figure is of a different color from the ground, the other is of the conch shell. The shells are sawed into squares with saws of soft iron, similar to those used by sculptors. After the shells are cut into suitable pieces they are ground on a stone to their required shapes, by grinding them nicely on the edges and leaving them thick in the middle. After this they must be cemented on a stick about 6 or 7 inches long, with cement of Burgundy pitch and rosin of equal parts heated together until they are perfectly amalgamated. The end of the stick is immersed in the cement while it is warm, and enough attaches itself to it to fasten the shell, which must also be slightly warmed or the two will not be attached. After being cool the shell is ready for cutting. To produce a likeness of an object, the best way is to cut the profile on paper, lay it on the shell and trace it out. The best gravers, the harder the better, are alone fit for the work, and they are ground down to different shaped points, some diamond, some oval, some chisel shaped and some round. After the likeness or design is traced on the shell it has to be blocked out with the hand, or it might be done by flat drills in a lathe. The blocking out is done by tracing the design with the diamond pointed graver, and leaving the pencilings distinct and cutting away all the outside with chisels and gouges, taking care to leave the groundwork thick enough to finish up. After the blocking out is completed, begin with the top of the profession in making the head, by leaving a space for the hair a little raised and then engraving the features, taking great pains not to do too much at a cut, for if once spoiled there is no remedy. The neck and breast are done next, as cautiously as the face. The hair is done last and is the most difficult part to perform, although the uninitiated would think it the simplest, but it is the most difficult work of all, for no matter how good the rest of the work may be, if the hair is poorly executed, the whole figure looks bad. In cutting the hair it must be gracefully curled with delicate curves. Sculptured heads are the best models for the learner to study.
After the figure or design is finished with the graver, the cameo is polished with pumice stone as smooth as possible, until all the marks of the graver disappear. It is then finished with a stiff tooth brush and potter's clay, or whiting and water, and afterward washed in pure water, when it will be observed to have that beautiful polish for which cameos are so justly admired and which has made them, on account of their chasteness of coloring, a very popular branch of jewelry.
To take the cameo off the stick after it is finished, it is necessary to heat the stick over a spirit lamp until the cement warms, when it is ready for framing.
It may be observed that the grace of a figure depends much on the drapery.

Japanning and Varnishing.

Japanning is the art of covering bodies by grounds of opaque colors in varnish, which may be afterward decorated by printing or gilding, or left in a plain state.
All surfaces to be japanned must be perfectly clean. Paper should be stiff for japanning, such as papier mache.
The French prime all their japanned articles, the English do not. This priming is generally of common size. Articles that are thus primed, never endure as well as those that receive the japan coating on the first operation. When they are used for some time they crack, and the coats of japan fly off in flakes. A solution of strong isinglass and honey, or sugar candy, makes a good japan varnish to cover water colors on gold grounds.
A pure white priming for japanning, for the cheap method, is made with parchment size and isinglass, laid on very thin and smooth. It is the better of three coats, and when the last is dry, it is prepared to receive the painting or ornamental figures. Previous to the last coat, however, the work should be smoothly polished.
When wood or leather is to be japanned, and no priming used, the best plan is to lay on two or three coats of varnish made of seed lac and rosin, two
ounces each, dissolved in alcohol and strained through a cloth. This varnish should be put on in a warm place and the work to be varnished should, if possible, be warm also, and all dampness should be avoided, to prevent the varnish from being chilled. When the work is prepared with the above composition and is dry, it is fit for the proper japan to be laid on. If the ground is not to be white the best varnish now to be used is made of shellac. This is made in the proportions of the best shellac five ounces, steeped in a quart of alcohol and kept at a gentle heat for two or three days and shaken frequently, after which the solution must be filtered through a flannel bag, and kept in a well corked bottle for use. This varnish for hard japanning on copper or tin will stand forever, unless fire or a hammer be used to burn or knock it off. The eolor to be used with shellac varnish may bs any pigment to give the desired shade.
To form a hard perfect white ground is no easy matter, as the substances which are generally used to make the japan hard, have a tendency by a number of coats to become dull. One white ground is made by the following composition: White flake or lead ground up with a sixth of its weight of starch, then dried and mixed with the finest gum ground up in parts of one ounce gum to half an ounce of rectified turpentine mixed and ground thoroughly together. This is to be laid on the article to ke japanned, dried and then varnished with five or six coats of the following : two ounces of the whitest seed lac to three ounces of gum anima reduced to a fine powder and dissolved in a quart of alcohol. This lac must be carefully picked. For a softer varnish than this, a little turpentine should be added and less of the gum. A very good varnish and not brittle, may be made by dissolving gum anima in nut oil, boiling it gently as the gum is added, and giving the oil as much gum as it will take up. Although this varnish is not brittle, it is liable to be indented with strokes and it will not bear to be polished, but if well laid on it will not need polishing afterward. It also takes some time to dry. Heat applied to all oils, however, darkens their color, and oil varnishes for white grow very yellow if not exposed to a full clear light.

To Tin Small Articles.

To tin small articles prepare a solution of the chloride of zinc, which is done by feeding muriatic acid with scraps of zinc until it will take up no more. A strong glass bottle is the best vessel for this purpose. Let the solution settle and then decant the clear and it is ready for use. Next prepare an iron pot, of such size as will suit the purpose for the work to be done. Next put the pot on a fre and put in a sufficient quantity of tin to cover the work. When the tin is melted put in as much beef or mutton tallow as will cover it about one quarter of an inch thick, which must remain in a clear melted state, taking care not to let it get on fire. The iron, or any other metal to be tinned, must be well cleaned, either by filing or scraping, or polishing with sand. Let the article to be timned be then wet with the chloride of zinc and carefully immersed in the tallow and melted tin, and if the article be well cleaned, it will in a very short time, be fairly and perfectly covered with the tin, when it may be taken out.
To tin a piece of plated metal, say a piece of copper plated on one side with silver, prepare a paste, which may be of common pipe clay, and a very little wheat flour wet up with water. Then take a soft brush and lay an even coat of the paste over the silver side and lay it in a warm place to dry; then when dry it may be immersed in the pot of melted tallow and tin as already described, and the copper side will be covered with tin, but the silver will be protected from the tin by the paste, which may be removed by washing in water.

To Make Steel.-Take wrought-iron clean scraps of any kind one hundred pounds, black oxide of manganese 1 pound, and 2 pounds of ground charcoal, put this in a crucible with a lid fitted and luted tight to prevent the carbon from escaping, and submit to the action of intense heat for some time; afterward pour it in molds, which must be warmed and greased to prevent the metal from sticking. It requires practice to make the metal sound, by taking it from the furnace at the proper time. It is afterward submitted to the trip hammer to close the grain.

Fine Cotton Yarn and Cloth.

Some idea may be obtained of the perfection of the cotton machinery used in England, by some statements obtained from a letter published in the Man chester Guardian, from H. Houldsworth, manufacturer of fine yarn. It has been stated that the fine cotton yarn spun in India by female hands is finer than that spun by machinery in England. We are informed this is not the case. Mr. Houldsworth examined the finest piece of Indian muslin exhibited in London in 1851, and found that it measured ten square yards, weighed 1,507 grains, contained 104 warp threads and 76 weft threads to the inch, the number being what is denominated No. 357 . At the same exhibition No. 400 English yarn was shown, but at the present exhibition in London there is a piece of muslin, woven in Fravee from No. 700 yarn spun in Manchester, which exceeds anything ever before attempted. It is a mere fancy specimen, however, and not fit for practical purposes. On the other hand, there is a whole piece of cloth of about thirty yards in length, made of No. 440 yarn. This cloth was also woven in France, but the yarn was spun in England of Sea Island cotton. The fine muslins of Hindostan have been called in oriental style "woven wind," but they are evidently coarse compared with the finest specimens that have been woven in France. Mr. Houldsworth states, as an item of curiosity, that a few threads of No. 2,500 have been made, but they are of no practical use. A single fiber of Sea Island cotton is equal in fineness to No. 8,000 yarn, and a pound weight of it in a single fiber of thread would measure 3,818 miles in length.

A Good Word for the Skunk.

The American Agriculturist takes up the cudgels in defence of the poor, despised, but seldom-kicked skunk, and gives him a good notice. Our cotemporary says :-
"All summer long he roams your pastures at night, picking up beetles and grubs, poking with his nose potato hills where many worms are at work. He is after the grubs, not the tubers. He takes possession of the apartments of the woodchuck, who has quartered himself and family upon your clover field or garden, and makes short work with all the domestic arrangements of that unmitigated nuisance. With this white-backed sentinel around, you can grow clover in peace, and the young turnips will Hourish. Your beans will not be prematurely snapped, and your garden sauce will be safe from other vermin. The most careless observation of his habits shows that he lives almost exclusively upon insects. While you sleep he is busy doing your work, helping to destroy your enemies. In any fair account kept with him the balance must be struck in his favor. Thus among the animals we often find friends under the most unpromising appearances, and badly abused men are not unfrequently the benefactors of society."
This all may be very true and we have no doubt it is, but nevertheless we camnot forgive the rascal for certain attentions which he once bestowed on some of our neighbors. The eccentric John Randolph once said, he "would any time go half a mile to kick a sheep." So with us in reference to a skunk if we dare.

Preserving Animal Substances.-Putrefaction requires the presence of water ; hence, by drying animal substances, they are preserved. Putrefaction is impossible above 182° or below 32°. Freezing acts precisely as drying. Hence bodies preserved by frost, and those which remain fresh for years after death on the Arabian deserts, are preserved from the same essential cause.

Preserving Butter.-Take two parts of the best common salt, one part of sugar and one part of saltpeter, and blend the whole completely. Take one ounce of this composition for sixteen ounces of butter, work it well into a mass and close it up for use. Butter thus cured requires to stand three weeks or a month before it is used.

The Hartford Manufacturing Company of Plated Ware, received on the 30th ult. a large order from one of their old customers in New Orleans. This is the first order from that city since March, 1861, when the secession frenzy broke out.

Cuts ofrentr

EDITORIAL CORRESPONDENCE

Wheeling-Its Manufactures--Mines--Suspension Bridge, \&s. Wheeling, May 29, 1862.
In proceeding from Columbus, Ohio, to Wheeling, Va., part of the train is switched off at Belaire, to go round by Wheeling, and part of it proceeds direct to Mingo Junction, a few miles below Steubenville, where the two sections of the original train are again united into one, which then goes on with one engine to Pittsburgh. By this arrangement se veral important towns in the Ohio valley are provided with daily railway communication between the west, via Cincinnati, and the east and north by Pittsburgh. In proceeding up the valley of the Scioto, extensive plains, covered with the promise of a most abundant harvest, are seen as far as the eye can take in the distant landscape. So permanently fertile is this valley, that I was shown large fields in which corn had been yearly planted for half a century, and yet no diminution of yield has ever been experienced. The quantity obtained ranges from 40 to 70 bushels per acre. As the agricultural exports of a State afford a very fair index of its wealth and capacity, the following statistics of Ohio for 1861 will show how it stands :-

Flour, bbls	.2,446,031
Wheat, busk	7,398,958
Corn, bush.	.5,622,802
Other grain, bush	293,425
Beef, blls.	52,613
Cattle, number.	290,187
Hogs (including p	.1,117,161
Wool, lbs	4,397,081
Cheese and butter	9,410,420

The annual average value of the agricultural products of Ohio for the past six years, has been no less than $\$ 130,000,000$.
Most of the interior of Ohio is flat, and appears to be a great limestone basin, but coal is found in all the hilly country toward the north, south and east. The term coal basin is so frequently used, that many persons suppose coal is only found in valleys, and at a considerable depth in the earth. Here the coal fields deserve the name of coal hills, as coal crops out of almost all the cuts made for the railroads; and it may be noticed in the face of many of the deep ravines, where it is mined by driving in a slightly inclined horizontal tunnel.
We have arrived at Wheeling, Va., a place famous for stirring incidents in Indian warfare, but now better known for several branches of manufacturing industry. It is situated on the left bank of the Ohio river, and extends, in a scattered manner, for several miles along the river. It contains about 23,000 inhabitants, has several respectable buildings, is apparently a thrifty place, and has an enterprising and frank population. Directly behind it the hills rise to an elevation of about 600 feet, and I was charmed with the view from one of them in the early morn, when the Ohio valley, with its winding river, was seen to a great distance, and the city was lying in quietness below. On the other side of the ravine before me, a friend points out the rock, with the deep cleft under it, where Louis Wetzel shot the crafty Indian, Red Turkey, who had decoyed and slain quite a number of the old pioneer hunters. About half a mile distant from this I am also shown the precipice over which Capt. McCulloch leaped and escaped when pursued by Indian foes.

Wheeling has seven large rolling mills, also seven foundries, three nail works, two glass manufactories and several establishments for making wagons, carriages and ambulances. The advantages of Wheeling for manufacturing, chiefly depend on its water communication, and the abundance, cheapness and quality of the bituminous coal found just behind it in the hills. Each mill has its coal mine. At the Crescent rolling mill, for example, where railroad iron is manufactured, a tunnel is driven into the face of the hill, where the coal is mined and thence descends on quite a short incline into the very mill. 'The seam of coal is about five feet in thickness: it is mined for $18 \frac{1}{2}$ cents for half a load of $12 \frac{1}{2}$ bushels ; and is retailed at 6 cents per bushel. The lower portion of this seam of coal contains a great deal more sulphur than
the upper portion, hence the "top coal" is prized for domestic purposes, and for use in iron furnaces. A mine is ventilated by driving in a counter tunnel to the main working one, but communicating with it. A fire is kept burning in the counter channel, and the fresh air to supply combustion passes through the rooms in which the miners operate, thence out by the fire tunnel. A proprietor of one of the flint glass manufactories informed us that a fan operated by the steam engine, had been triod for some time, in ventilating their coal mine, but it was given up, for the old fire system of ventilation. The mine is ventilated day and night, and also on Sundays, by simply keeping up the fire, whereas a fan requires an engine to be kept constantly in operation. Wheeling enjoys a high reputation for its railroad iron, nails, flint glass and iron castings. Hamilton \& Clark have just finished a government contract for 300 tuns of 13 inch mortar shells. Each weighs 216 lbs., and the thickness of metal is $2 \frac{1}{2}$ inches. The government test for these shells is very severe. Each is measured with two ring gages, and also with calipers, and finally passed through a cylinder. The thickness of each must be uniform to the $\frac{6}{0} 0$ of an inch, or it is rejected. There is no iron ore in Wheeling. That which is obtained for use comes from the iron mountain in Missouri. Laurence county, Ohio, also supplies some iron.

In the middle of the river is a somewhat extensive island, forming part of the city of Wheeling. It is joined to the Virginia shore by Ellett's famous suspension wire bridge, over 1,000 feet in length. From the island to the Ohio shore the river is crossed by a truss bridge. The steamboat people of Pittsburgh entered a suit some years since in the United States Circuit Court against this bridge, as a nuisance. The specified complaint was, that during high water, steamboats having tall funnels could not pass under it. A great many experts were examined on the trial, the object of the pursuers being to show that long funnels were necessary to good natumal draft in the furnaces of the steamboats on the river, and that the bridge prevented the use of such funnels. The result of the trial was that the bridge was solemnly declared to be a nuisance by the court-an obstruction to the free navigation of the river-and it was only saved from being taken down by Congress passing a hill making it a Post Office route. After all, not a single steamboat has been prevented from running on the river by it; a jointed funnel can be lowered in a few seconds, and thus a much lower bridge can be easily passed. This noble suspension bridge still stands, a monument of Charles Ellett's engineering skill and daring, and over it we will soon be passing on our way up the valley to Steubenville and Pittsburgh.

OUR SPECIAL CORRESPONDENCE.

A Prisoner's Rations-The Wry the Bull Run Prisoner were Taken-Their Long Confinement and Happy Re-lease-Prosperity of New England Manufacturers-No Distress in Consequence of the War-Great accumulation of Fine Goods-The Stock of Cotton Almost Exhausted.

Providence, June 4th., 1862.
Messrs. Editors :-On board of the magnificent steamboat Metropclis, on Tuesday June 3d, were a number of released prisoners who were captured by the rebels at the disastrous battle of Bull Run. They had been in prison ten and a half months-weary months they were-and were most happy at having obtained their release. One of them, an intelligent and cheerful young man from Maine, had in his haversack one of the rations with which the prisoners were supplied twice a day at Tuscaloosa in Alabama It was a lump of corn bread about three inches long, two wide and two thick. Besides this twice a day they had a piece of bacon as large as a man's two fingers once a day. This kept them a little hungry, but considering their want of exercise was probably good for their health. I could not help sympathiz ing with their long and weary confinement. The young man said that most of the prisoners were taken while helping off the wounded. About 400 came at this time, and the remainder (some 600) were soon to follow.

Though the cotton manufacture, in which this city
of Providence is so largely interested, has been some-
what checked by the war, the business for the past year has been very profitable, especially for concerns that had large stocks of cotton. 'Ihere are very large stocks of fine goods accumulated in the hands of some manufacturers, and I venture the prophecy, that the longer they are held, the less they will bring. It seems to me to be one of those epidemic delusions that so frequently pervade the business world. The stock of cotton is almost exhausted, and unless the state of affairs is very soon changed by the military operations, nearly all of the mills will soon be closed. A very large portion of the men have gone to the war, thus giving employment to men who would otherwise have been idle. One large manufacturer told me that he had 80 men at work in one weaving room, and 50 of them have gone to the war. They were nearly all Englishmen. Though the English nobility, and the English government which is in the hands of the nobility very naturally sympathize with the great slaveholders who got up this rebellion, the hearts of the great mass of the English people are with the North.

The extensive jewelry establishments of Providence have nearly all suspended operations in consequence of the war, but many of the other manufactories are in operation, and new ones have been created by the war, especially those of sabres and rifles. If I can find anything of interest among any of these I will give you an account of it.
B.

On the Cleaning and Preservation of Engravings.

The frequent inquiries addressed to me by those who possess valuable engravings-which have become damaged through accident, or exposure-respecting a mode I adopted successfully for restoring some very fine ones, induce me to publish in the widely-read pages of the Scientific American, a general process applicable to the largest number of cases.

Any one who will incur the trouble of looking up in the older print shops, and depositories in residences in this country, will find abundance of defaced engravings of rare merit-the works of the best masters rejected, which can be restored easily to quite their formerdegree of freshness and beauty. All who have studied the better efforts of the old artists, in giving permanency to their conceptions in this department of art, assign to it a very high place, and it may be suggested that a higher cultivation and enjoyment of design and execution, in so far as the influences of light are concerned, may be gained from careful observation of engravings, than can result from time bestowed on paintings, which often command public admiration, or are the so-called gems of an exhibition
In commencing to restore an engraving some at tention must be given to the kind of injury it has suffered. A general brown color, more or less deep, resulting from atmospheric action only, is the least possible change. Spots and stains caused by ink, colored fluids, oil or insects, must be first treated and all pencil marks removed by india rubber or bread crumbs. A fluid acid, obtained by dissolving one ounce of crystals of oxalic acid in one-fourth of a pint of warm water, may be used for application to all stains, and the paper should be wet with it thoroughly where spots of any kind exist. Excepting in a few cases, this acid will not cause the removal of stains immediately, but generally it combines with the bases of them, and they are removed by subsequent steps ; the thorough wetting should be done a few hours before proceeding to clean the engraving. To facilitate handling and for the protection of the odges of the paper, a piece of millinet, or the stiff open fabric formerly sold for ladies' skirts, should be roughly sewed around one stick at each end, so as to form an apron, like a chart attached to two rollers, the cloth of which must be an inch larger than the argest print to be handled. From one to ten prints of éven large size may be cleaned at one time, after they have been wet on their spotted parts with the acid, and evenly spread on the apron, so as to allow of the immersion of the whole in water. A tub of the ordinary size will allow prints of considerable surface to become immersed, but the most desirable resort is a common bathing vessel, so nearly filled with warm water that the bent paper supported by the open texture can rest on the bottom and sides, where it should be allowed to remain with occasional
rasising of it and moving it by means of the stick inmales, from twelve to twenty-four hours.

On the first trial a degree of alam will be felt in tite case of a highly-prized favorite, at this seemingly carelass truatment; but it must be borne in mind that paper is a firmly felted mass of short fibers, which may be soaked in various fluids for weeks and resist all diluted acids and most chemical agents for a long time while wet, if not exposed to mechanical abasion by touch, or rapid motion. The strong paper of engravings absorbs much air, which resists the petnetration of the water, and motion is necessary to remove this as well as to allow the colored soln. tions fomed to pass away. This motion may be given by holding the supporting sticks and passing the mass fiom end to end of the bath, or slowly up and quickly down, criabling the sheets to become separabed mumentaily. Discolored water may be drawn oli, the apron and contents resting on the botton and sides, and fresh water be slowly admitted to replace it. Cold water cian be substituted for warm, longer time being allowed for its action. When the prints no longer add color to the water after being agitated, the water must be withdrawn and replaced by such a portion as will barely cover the paper. Half a pound of bleaching powder (chluride of lime) mixed to a paste inst in cold water, and then added to two quarts of cold water and well stirred from time to time for six hours, will ationd a nearly clear fluid, resting on a white deposit in the earthen ware vessel chosen. A portion of the clear part of this fluid, must be added to the water in the bath, until both taste and odor denote the presence of chlorine in the water. MoLion being given to the paper the bleaching effect of chlorine will be perceived, or its odor in the water will have been lost; when more must beadded so that the odor or taste of chlorine must be present in He water two or three hours.
The action of the chlorine on the parts previously wet with acid will remove nearly every kind of discoloration, while the brown hue of the paper giving place to perfect whiteness, the light and shadows of the engraving become of their original perfectness, and the picture will be as distinct as when it was first impressed. It has happened, in a few trials, when the prints were long stained, they did not yield to the weak chlorine water, that resort was had to a little mineral acid to develop free chlorine in the bath. One onnce of muriatic acid was added to one pint of cold water and the weak acid thus formed mixed in the water of the bath, soon caused the bleaching of every fiber in the paper.
Cher the bleaching the water must be drawn off, the paper drained, fresh clear water admitted and the paper moved through the water to thoroughly wash away all adhering chlorine. Several quantities of what maty be used, the paper being each time drained, and tinally the whole mass, raised by the handles, may be placed on a ditan white woed table or bourd to drain. If a sumber of prints hove been treated, the wet mass may be placed in a warm room, or air wiy be iwhitted, and as the one on the top of the jhe heomes soore dry than the rest, it may be reinnved to auy support and left to dry. In hastening ine diying I have extender volinary bed sheets and encead the wet printi; singly on these; slow drying rubring any pressing unnecessary.
Those having the notal presses might prefer to press Hie stil damp sheets, and where only two or three printinare the subjects of trial the substitution of ofur west and redy mpliances will oceur to any one.
This description is given in detail purposely, although unnecessiry, so far as the process is concerned, beenase I wish to impress on the mind of any one who possesses an iujured engraving, that it can te restored tuits original value without the expenditure of much attention ; and it must not be the con clusion, fron reading this process, that great care is "wquired, for time is insisted on rather than attention. The few dispositions being made, not the slightest catsumed be given to the matter ; if the bath can be shared, the odd minutes of a week will chable one to rentore duzens of specimens and give mamamey to then bematies.
It Boy!stum street, Bobion, May 30, 1862.
Tun German oesa ias recently overflowed 10,000 acres of fertile ladid Norfolk County, England.

Casting Guns Hollow....Their Length.

Messrs. Editors :-I have read attentively your extracts from Capt. Benton's compilation of instructions on ordnance and gunnery. I particularly noticed reports of experiments made in France to demonstrate the maximum charge and 1,320 feet velocity result ; also I nuticed the effects of Iength of bore on the maximum charge in proportion to the weight of the projectile and the proper or most favorable length of piece in proportion to the caliber, is given, all of which, I suppose, is mainly correct, except to meet the present emergencies of iron-clad ships greater length in piece in proportion to the caliber no doubt is requisite, thereby increasing the maximum charge of powder, giving greater range, which is penetration.
But what is proposed to meet this pressing necessity for increased attacking force? Why, Captains Rodman and Benton and coadjutors of the Ordnance Department have moderately proclaimed to the country a wonderful discovery-a mode by which 15 -inch guns could be cast, and even 20 -inch guns cast upon hollow cores, cooled from the center. Well, did not every well-informed mechanic know that 20 -inch guns and even up to 36 -inch caliber, were cast upon cores cooled from the center with hot air confined around the outside, during a gun mania that pervaded the world three or four hundred years ago? Every engineer and skillful. iron worker in this country knows that large cylinders must be conled from the center, and for that purpose removes the core to let in cold air, which cools quite as fast as tie good of the metal requires. He also knows that no system of cooling so large a mass of cast iron as is requisite to make a 20 -inch caliber gun sufficiently strong to bear a maximum charge of powder (which should not be less than one half the weight of the projectile), can be depended on. According to Capt. Benton's reports, heavy ordnance should have 20 calibers in length. I will venture the opinion, and challenge the world for a refutation, that to attain the great range or crushing powe we are now after, as a specialty for naval attack and coast defence, we should have at least 20 calibers in length-more if we can get it-and sufficient strength to bear at least one-half the weight of the projectile in powder. The gun should have at least 200 lts . to 1 Jb . of ball ; then you will have a gun that will throw a shot through the Monitor's "cleese box" or through both sides of the British Warrior. Such a gun can be built of cast iron with relays of wrought iron ; cast iron alone would not be safe. Capt. Rodmın's absurdities would require 30 to 40 feet in length at least and 100 tuns in weight; all the weight he now has can be advantageously used in a gun of 10 -inch caliber.
You say the Monitor had 11-inch guns, firing shells of 169 ltss. and 12 Hbs . of powder. Those 11 -inch guns should be strenothened to bear at least 75 Hbs . of powder and they would have sent their shot through both sides of the Merrimac.
You say Rodman's 15 -inch gun has be n fired 500 imes with 30 to 50 Hbs . of powder--Cipt. Benton says 40 tbs.-giving initial velocities verying from 902 to 1,328 feet per second. Now, Mi. Sermatife, there must be some typographical error here ; in Capt. Benton's excellent work he gives the result of 1,320 feet, where the maximum charge apualed the weight of the ball. I believe 1,300 is about the maximum claimed in England and France when using maximum charges of powder. 'That Capt. R. is attaining 1,328 feet with less than one eighth the weight of his ball in a 15 -inch caliber, in a gun about 12 cal ibers long, is a statement the engineers of this coun try beg to be exeused from accepting without accompanying vouchers; and that 40 Hzs . powder is a tes for a 15 -inch gun, is assuming more than the public are prepared to accept. It may sound very well for Capt. R. to say, in his official report, the gun is not half tested; greater ranges and greater velocities and double the amount of gas it is capable of enduring, in his opinion. He knows perfectly well that a short piese, proportionate to its caliber, cannot burn powder sufficient to supply a large amount of explosive force sufficient to give the ball a great range. Civilans who preside in the Ordnance Department and in committees in Congress are not to be expected to have practical knowledge on these subjects. The great power for defence in this country is in its mechanics. Give them ، chance to unite their skill and
furnish them the means, and you evoke a power in this country greater than is possessed by any other nation.
I know I am expressing the views of a numerous class of engineers and mechanics who dare not speak for fear of offending.
Buffalo, N. Y., June 5, 1862.

The Figures on Dress Parade

Assuming an army of 600,000 men formed into line, \sin rle rank, they would show a front of 23 miles, allowing two feet to a man, which is rather close packing for free movements. We will countermarch one-half-the right wing-and place them as a rear rank (the usual formation), and we have a front of $11 \frac{1}{2}$ miles, which distance they would require when marching in column of platoons. Should the generafissimo wish to make a rapid inspection, if he had the appliance of a parallel railroad track and a fast locomotive, he may run down in front of the line in a quarter of an hour, and make a hasty review. If mounted on his charger, at a smart trot, it would require over a half hour. This respectable army, formed in hollow square (in double rank) would be nearly three miles from side to side, showing on each front a fraction under three miles. The inclosure would contain about 5,760 acres, an area equal to some immense Indian corn-fields in Illinois. When marching in column it would require a whole day, taking the thing easy, for the extreme left wing to rach the point left by the right wing in the early start. When we add the commissariat, artillery, ammunition, and other wheel transports, we must give the army two whole days before the left wing delouch from the starting point of the right wing. If this immense army were formed in a solid square, allowing about four square fect for a man, they would cover about 150 acres, and form a block of bayonets a fraction under a quarter of a mile square. Estimating each man as carrying weight of musket, equipments, rations, \&c., at fifty pounds, this army will have trudged along with 15,000 tuns weight. Allowing two pounds of provisions per diem for each man, they consume 600 tuns per day, and if they consume one quart of water per day, which is the best drink for an army, they consume 150,000 gillons-- sily 1,200 hogsheads--which is a clever sized shipload each day.

Disinfecting Agents.

Now that warm weather is approaching, our citizens should thoroughly cleanse their premises, rendering them as pure and healthy as possible. We are convinced that a great portion of the diseases so prevalent during the hot menths in summer, is attributable to the accumulation of filth in alleys and yards. There are a number of disinfecting agents which will be found efficacious in removing offensive smells from damp, mouldy cellars, yards, pools of stagnant water, locaying vegetable matter, \&c. Either of the following will answer the purpose, while they cost but a trife.
1.- One pint of the liquor of chloride of zinc, in one pailful of water, and one pound of chloride of lime in another pailful of water. 'J his is perhaps the most effective of anything that can be used, and when thrown upon decayed vegetable matter of any decription, will effectually destroy all offensive ofors. 2.- Three or four potuds of sulphate of iron (copperas) dissolved in a pailful of water will, in many ases, be sulfieient to remove all offensive odors. 3.- Chloride of lime is better to seatter about damp bluces, in yares, in damp celtars and upon haps of lilth.
Medical Use of Malt in Germany.....It would appear, the London Lancet states, that German physicians have been for some time past using malt in bronchitic and dyspeptic affections with some benefit. The solution of malt, after one hour's maceration in water at 75° Cent., is peculiar, inasmuch as gluten is found in it in a dissolved condition. Malt is being used in the form of powder taken into the stomach, or added to warm baths, and also to make a kind of beer. M. Fremy, of Paris, has tried these preparations, and states in the Moniteur des Sciences that he considers them as excellent tonitas.

To remove the stain; on spoons aused by using them for boiled egg, take a little camon salt moist between the thumb and finger, and briskly rub the stain which will soon disappear.

ORDNANCE IN THE LONDON EXHIBITION.

From a long article on the subject of ordnance in the London Engineer, we take the following extracts :When Mr., now Sir William, Armstrong first urned his attention to guns it was as a mechanical engineer, and it was the same with Mr. Whitworth Whatever those gentlemen have accomplished has been in the way of improved construction only. If there be any invention in the Armstrong gun it is in the invention of Captain Blakely, or, to go further wack, of Professor Treadwell, of the United States, or even, perhaps, that of Mr. Peter Rothwell Jackson of Salford. Captain Blakely proposed, and, luckily, patented the use of coils shrunk successively upon an inner tube of cast iron, brass, or steel, as carly as 1855, or two years before the then Mr. Armstrong had taken up the plan. In the United States, how ever, Professor Daniel Treadwell not only made cannen nearly twenty years ago, with welded coils shrunk successively upon an inner tube, in some cases of wrought iron and in others of steel, but he published a pamphlet on the subject, one which, dated 1845, is still in existence, and in the hands of military men in London. But on the 6th November 1834, Mr. Jackson, of Salford, patented a mode of constructing cy:inders for hydraulic presses by successfully shrinking wrought iron or steel hoops upon a thin cast iron cylinder. Mr. Jack son in the same year made a press the cast iron portion of which was $19 \frac{1}{2}$-inches bore and $\frac{7}{2}$-inch thick, and successively shrunk on three series of wrought-iron hoops, each 2 -inches in thickness, thus making the walls of the cylinder 67 -inches in total thickness. This press has been in use ever since, and Mr. Jackson has informed us that it will bear a strain of 10 tuns per" square inch, or 3,000 tuns in all. The hoops are not coils, it is true, but plain rings, and it is only in this respect that the mode of construction differs from that of Captain Blakely, whose patent completely forestalls the Armstrong system except only in the injudicious practice, pursued at Woolwich and Elswick, of making the inner tube of wrought iron instead of steel. Mr. Jackson was anxous, twenty-eight years ago, to apply his system to the construction of heavy guns, but his friend, the late Mr. J. G. Bodmer, who has met with no success in introducing his own plans to the notice of government, dissuaded him from the attempt.
With these facts, therefore, we cimnot magnify our present class of rifled ordnace irsto anything like a great or recent invention. 'The Armstrong and Whitworth guns in the Exhibition are remarkable chiefly for the excellence of their workmanship, and to this is due the great range and precision which they have attained. They are at the same time costly, and, in some important respects, faulty in construc tion. This, although perhaps sufficiently known to our reades already, will be shown presently
It is to be regretted that Mr. Whitworth did not send a sample of his 12 -pounder breech-loader, as it was with a gran of this description that, in an offi cial trial on the 2nd of April, 1861, results very much superior to thoe afforded by the same class of Armstrong gun were obtained. As we have noticed the construceion of the 12 pounder Armstrong, it is as weil to give its maximum performance ; and, as this was obtained in a trial with the Whitworth gun, the practice with both may properly be given together.
According to the report of the ordnance select Commitice, the trials took phace Apill \%, 1806, the following beine the data and results

No. of	Charge	Elevation,	lan range	Mean observed	Mean time
rounds.	1 l .	ders.	yards.	delectinn, yde.	of Highlu.
Five	$1{ }^{1}$	2	1,130	4	$3 \cdot 4$ sec.
Five	1	2	1,256	5	$3 \cdot 6$ "
Five	$1{ }_{1}^{1}$	5	2,146	9	6.8 "
Five	1	5	2,358	11	$7 \cdot 3$ "
Five	$1 \frac{1}{3}$	10	3,568	12	$9 \cdot 8$ "
Five	$1{ }_{4}^{4}$	10	3,908	17	$12 \cdot 9$ "

Whitworth breech-loading 12-pounder, No. 1, weight 9 cwt 3 qr., length sft. Sin. heragonal, hore riftled to make one

gave the best results. This was due to the mechani cal fit of his projectiles to the bore of his gun, no forcing or stripping of a lead-coated shot, like Armstrong's, being involved.
The Whitworth Rifle and Ordnance Company, of ackville street, Manchester, exhibit a handsome 1-pounder muzzle-loading rifled cannon, mounted on carriage; a 6 -pounder muzzle-loading rifled cannon also mounted ; a 6 -pounder breech-loading rifled cannon without carriage ; a 12 pounder brass riffed field piece ; a 32 -pounder and a 70 -pounder rifled ship's cannon. All these guns have bores hexagonal in ross section, the projectiles being planel to correpond. The pitch of the rifling is, in all cases, 20 diamoters of the bore. Mr. Whitworth, we believe, employs mild steel, or "homogeneous metal," for the inner tules of his larger guns, those of smamer wore being made wholly of "homogeneous iron," so called. In making his larger guns Mr. Whitworth takes a tube of this material, and turns it so as to have an ex crnal taper of about an inch. Upon this a series of hoops of fibrous iron, as employed by Mr. P. R. Jackson, are forced on cold by hydrostatic pressure Each hoop is about 20 -inches long on the gun. All the hoops are put on with the greatest amount of pressure they will bear without injury. A second series of hoops, breaking joint with the first, is forced on over them, and thus the larger guns are made up. For the hoops next the breech Mr. Whitworth has ometimes used puddled steel. It is Mr. Whitworth's opinion, frequently declared, that large guns may be made wholly of "homogeneous metal," a material which is practically identical in everything, except cheapness, with the mild steel we have so long adrocated for guns.
The standard charges of powder in the Whitworth guns are generally one-sixth the weight of the pro ectile, the Armstrong charges being only one-eighth of the weight of the shot. The average ranges ob tained with the Whitworth 12 -pounder at $2^{\circ}, 5^{\circ}$, and 10° of elevation, have been already given. With $2-1 \mathrm{p}$. shot, and 13 m . of powder, the average range, at 20° elevation, is 7,000 yards, and at $35^{\circ}, 10,000$ yards, or ncarly six statute miles. Mr. Whitworth also exhibits one of the flat-fronted projectiles which were fired through the armor plates and side of the Trusty during official trials at the Nore. Besides these are hexagonal shot and shell, ranging from 1 lb . to 70 H . weight.
The largest gun in the Exhibition is that made by he Mersey Iron and Steel Company, of Liverpool, and named the Prince Alfied. This is a wrought iron, muzzle-loading rifled gun, forged hollow by : process patented six years ago by Mr. William Clay. The gun is 12 feet long, 35 -inches in diameter at the breech, 18 -incbes at the muzzle, 10^{1}-inch bore, and weighs 10 tuns. The rifling consists of twelve shal ow grooves, making one turn in 30 fect. Before being rifled it was fred with a 140 H . ball, and 30 Hb . powder, against a target of $4 \frac{1}{2}$-inches iron plates, backed with timber and sand. The plate was indened 6 -inches, but not actually penetrated and is exhibited along with the gun, as is also (or was for a short time) the $4 \frac{1}{2}$-iuch plate, shattered in 1856 by the 13 -inch Mersey gun, firing a $280-\mathrm{bb}$. shot. Th Mersey Company also exhibit Col. Clay's 12 -pounder reech-loading riffed gun, of 3 -inch bore, with 15 shallow grooves. This picce, it is stated, has been ired 19 times a minute, with a great escape of gas we do not doubt, at the breesh, which is not such as a likely to give a grood fit.
The nest largest gun is that of Herr Krupp's, of inch bore, and weighing ! tuns, a single puass of cast stoel, and ly far the largest gun of that material ever made. It is, however, hardly more than a steel forging, bored and rough-turned, for, although open at both ends, no breech-loading arrangement is shown, nor has the bore been rifled. Herr Krupn also exhibits a 100 -pounder, a 68 -pounder, a 40 -pounder, a 25 -pounder, and a 25 pounder steel gun, each in the same stage of finish as the 9 -inch gun. He also sends a 4 -pounder muzale-loading rifled cast steel gun.
Captain Blakely uxlibits a 200 -pounder cast iron an, strengtheies! on his principle, and weighing 7 uns. It is a muzzle-loading gun, with an $8 \frac{1}{2}$-inch bore, rifled with three grooves on Commander Scott's centrical system." The makers of the gun ar Messrs. Fawcett, Preston \& Co., of Liverpool. The
gun is hardly as well strengthened as we should suppose Captain Blakely would have it, if called to a contest with the heavy Armstrong gun, yet there can be no doubt that the wrought-iron coiled jacket extending from the trunnions to the base ring affords reat additional strength, shrunk on as it is with a considerable degree of tension. Captain Blakely's system, besides itá imitation by Sir William Armstrong, has been adopted by the Spanish, and to some extent by the French governments. The Confederates have also purciased many Blakely guns, and the Federals have employed the same plan for strengthening cast-iron guns, which, thus jacketed, are known as "Parrott guns," from the name of the maker, Mr. li. P. Parrott, of West Point. Captain Biakely also exhibits a 9 pounder cast steel gun with 8 grooves.
Mr. Lancaster exhibits an oval-bore cast.iron gun of the 95 cwt. class, doubtless a 68 pounder originally. It is stated to have fired 604 rounds at angles of above 12° of elevation. A smaller oval-bore gun is exhibited with it. The initial velocity of the shot from the large Lancaster guns, where the charge is one-fourth the weight of the projectile, is given as 1,650 feet per second.
Commander Sentt, R. N., exhibits the muzzle of a -pounder, as rifted on bis centrical system.
Mr. P. M. Parsons, of Arthur street East, exhibits a wrought-iron gun with a novel arrangement for loading at the breech.
Mr. Bessemer exhibits a 24 -pounder gun in the rough, and another of the same rate in the finished state. That in the rough is a solid forging of Bessemer stecl, forged from an ingot 18 -inches square and weighing 28 cwt. Both are examples, on a small scale, of the ordnance which we have so long advocated as the cheapest and strongest for the purposes of modern warfure. The material may be produced actually at a less cost than wrought iron in the same shape, while the former has nearly double the strength of the best Lowmoor iron, and, being completely fusible, may be obtained in perfect soundness and homogeneity. It is to be regretted that Mr. Bessemer has not yet found it convenient to give a demonstration, on the largest scale, of the capabilidics of his material for ordnance, but the time when will he conclusively lested camnot be far distant. He exhibits some improved projectiles, which we have noticed on former occasions.
Altogether the Exhibition is particularly full in espect of ordnance, the examples shown illustrating is wonderful improvement in construction, or, mure strictly, in workmanship, over any known eleven years ago.

The first number of the Scientific American was issued August 28, 1845 ; it contained engravings and short notices of the long railway carriage now so commonly used, the iron steamship Great Britain, Signor Muzio Muzzi's traveling balloon, and also the noble head of George Washington. Its contents are a medley of poctry, $\{$ crude science, rational religion and miscellancous items. The editor announced, in his opening address, that he was called upon from the South and Weis to undertake such an important work. We suppose it siffe to say that not more than tive hundred copies were issued of the first number. It is now the most widely circulated journal of the kind in the world.

Changlable frimerichen. - Draw a landscape on paper, with India ink, representing a winter scene, or mere outline, the foliage is to be painted with murite of cobalt for the green, acetate of cobalt for blue, and muriste of copper for yellow, which, when dry, will all be invisible. Put the screen to the fire, and the gentle warmth will occasion the flowers, \&c., to display themselves in their natural colors, and winter be changed to spring. When it cools, the colors disappear, and the effect can be reproduced at pleasure.
There are seventy rivers in Canada in which salmon is caught. Alout 10,000 barrels of this fish are exported :mnually from the Bay of Chaleur.

Exgilisir bar and bolt iron is selling at Liverpool or $\$ 510$ (about $\$ 27$) per tun. The best Staffordshire is selling at f 7 .
Scotcr pig iron is selling at Glasgow at about $\$ 13$

Improved Fire Alarm.

Samuel D. Cooper, of this city, has invented and patented an apparatus for an instantaneous alarm to the inmates, on the first beginning of a fire in any part of a building. A bell of suitable size is so arranged in relation to a hammer and coiled spring that the unwinding of the spring will ring the hell. Wires lead from the apparatus to every room in the building, where they are so connected with strings that when a fire occurs the wires will be released, in their turn releasing the spring, when the bell will be rung for a long time with great violence, awakening a person in the room, or indeed any one in any part of the building.
The apparatus is not complicated and will be understood by an examination of the engravings, of which Fig. 1 is a front view, and Fig. 2 a view of the interior with the back plate removed. A is the bell, and B the hammer attached to an arm on the rock shaft, C. This shaft has at ints lower end an arm, d, which enters a slot in the end of the rod, e. The rod, e, is pressed outward by cams, $f f f$, and withdrawn by a spiral spring wound around it. This reciprocating motion, it will be seen, rocks the shaft and rings the bell. The cams, $f f f$, are upon the shaft of a spur wheel which meshes into the teeth of the wheel, G, and this wheel has upon its shaft a drum around which a cord, h, is wound ; the cord passing also around the drum, I, of the coiled spring.
The wheel, G, is turned ly means of a key which fits upon the end of its axle, winding the cord, h, around its drum, and coiling the spring in the drum, I, more closely upon its fixed shaft. Upon the withdrawal of the key the spring would immediately begin to uncoil and ring the bell, were the several parts left free to move, but a simple stop is provided in the form of a bolt, j, which passes through the lower edge of the case, and enters between the cams, $f f$, thus preventing the wheel with which they are connected from turning, and holding all the parts in a fixed position. The bolt, j, is attached to a spring, k, which tends to withdraw it from between the cams, $f f$, but the spring is held in place by a cord, l, that is drawn vertically across the middle of the face pate, and attached to a knob at the top.
For each room in the building a slide, M, is provided. Each of these slides has cast upon it an arm, n, which passes through a long slot in the face plate into the interior of the case, and is connected rigidly with a rod, o. The rods, oo, have spiral springs wound around them tending to force the slides, M, toward the middle of the case, but the rods extend outward through the edges of the case, and are held
in this extended position by the wires, p p, whish are dows, and secured by winding its end upon a button conducted to their respective rooms in the manner of provided for the purpose. ordinary bell wires. When the wire reaches its If a fire occurs in the room, it burns off the preroom, it has attached. to its end a stout cord, which is pared thread, allowing the cord to unwind from its
 belaying pin, thus releasing the wire, p, and permitting the slide, M , to be thrown inward by the spiral spring upon the rod, o. As the slide, M, flies inward the knife-blade edge upon its end cuts the string, b, releasing the spring, k, which withdraws the bolt, j, from between the cams, $f f$, thus permitting these cams to revolve and sound the alarm upon the bell, A.

As the slide, M, darts forward, it uncovers a plate on which are words indicating the room in which the fire is burning.
The bell makes an intolerable noise, but if it is desired to have a still louder alarm, provision is made for exploding a bomb with a report louder than that of a musket. The bomb is made of paper filled with gunpowder and overlaid with strong twine, and thus constructed causes no damage by its explosion. It is suspended in the vicinity of the apparatus, and has a fuse leading from it to a match which is inserted in a cylinder provided for it in the face plate. A friction wheel is connected with the spring so as to rub against the match when the spring is released and thus fire the bomb.
The apparatus should be placed in some room which is constantly occupied, and when a fire occurs not only will it be immediately announced, but its location will be indicated; thus preventing any delay in finding the origin of alarm. This apparatus will be found as useful in vessels as in houses, and may be extended to the several buildings of large establishments. It is so simple that any bell hanger may put it up, and the expense, we are assured, will not exceed one dollar per room.
A patent for this invention was granted, through the Scientific American Patent Agency, August 6,1861 , and further information in relation to it may be obtained by addressing the inventor at 10 and 12 Pell street, New York City.

The Scientific American has been published seventeen years. During this long period its columns have sent forth a great abundance of the most valuable information. Thousands of receipts have been given which have been of great benefit to its readers, and would benefit thousands of others if they could be brought to light once more. This we now propose to do, beginning with the first number of the new volume, and concarried once or twice round a belaying pin, and is tinuing them from time to time until much, if not then connected with a thread or small twine which is all, of this useful matter is once more reproduced and made very inflammable. The thread is led around the brought to life. Many a one of our readers has been ceiling, and down by the sides of the doors and win- greatly benefited by some one of these receipts.

At No. 37 Park-row (Park Building), New York O. D. MUNN, S. H. WALES, A. E. BEACH.

TERMS-Two Dollars per annum-One Dollar in advance, and the
emainder in six months.
Single copies of the paper are on sale at the office of publication, and
at all periodical stores in the United States at all periodical stores in the United States and Canada.
Sampon Low, Son \& Co., the American Booksellers. No. 47 Ludgate
Hill London, England, are the British A gens to receive Hill London, England, are, the American Booksellers, No. 47 Ludgate
for the Siments to receive subscriptions

VOL. VI. NO. 25.....[New SERies.]..... Eighteenth Year
NEW YORK, SATURDAY, JUNE 21, 1862.

THE TIME IS UP.

The next number of the Scientific American will close the sixth volume of the new series. As we review the past six months the mind is almost staggered with the stupendous events which have taken place. The achievements of our armies, and the victories of our naval forces have formed subjects of absorbing interest. These great events have doubtless attracted much attention that would otherwise have been devoted to science and mechanics; and yet, considering all these things, it is surprising how much has been done in advancing the useful arts.

Public excitement has energized the public mind, and never before in the same space of time, have our inventors done more to deserve the gratitude of our people. We may justly claim for them many of the successes which have thus far attended the National forces.

At this period last year the affairs of the nation looked dark and gloomy. We then warned our people that "it was no time to be idle while the statesman was puzzled.

The mechanic and inventor are called upon to renewed action, for without their combined power our armies and our republic would be swept from the face of the earth.' This call upon our mechanics and inventors was not made in vain. A novel war boat, in the redoubtable Monitor, saved a large fleet from destruction at Fortress Monroe, and but for it McClellan's army would not have been menacing Richmond to-day. Two river gunboats of novel construction saved an army from annihilation at Pittsburgh Landing, and new improved guns and other implements of war have given to our forces the advantage in every engagement.
The dark clovds which hung over our country are breaking away: and never in the history of our Republic has more confidence been placed in the permanency of our government. It has exhibited a strength and vigor which augur well for our future peace and its stability. When this conflict is settled we may reasonably expect a period of great manufacturing prosperity, for the productive power of our country is exhaustless. We, therefore, with much hope in the result, take this occasion to call upon our readers to renew their subscriptions for our new volume, which will commence in two weeks from the present date. The amount of subscription is so small, while the information conveyed in thecolumns of the Scientific American is so extensive and useful, that we think every inventor, mechanic and manufacturer in our country can, and should, subscribe. It is the only complete source of information respecting new improvements in American machinery and manufactures, and no person can really be intelligent on these subjects who does not consult its pages.
We hope our old friends will introduce the subject to their acquaintances, and also send in their subscriptions at an early date. Ten persons forming a club may have the paper one year for $\$ 150$ each, and it is only one dollar for single subscription for half a year, which embraces one entire volume. Remember our rule to discontinue the subscription when the time runs out, for although we want all the names we can get, we do not wish to thrust the paper upon those who do not want it.

MANUFACTURE OF LARGE GUNS.

The Fort Pitt Works, at the foot of 0'Hara-street, Pittsburgh, Pa., have obtained deserved celebrity for the casting of large ordnance. The premises are not very attractive in appearance, they being composed principally of a few common brick structures. Their fame, however, does not rest upon outward embel-lishments-nor upon their extent, but upon the character of the work executed therein. For several months past this establishment has been turning out weekly from seven to nine large guns and mortars. It was at these works where the great 15 -inch Rodman gun (illustrated on page 305, vol. iv., new series Scientific American,) was completed, and two others of the same size have lately been cast. One of these we saw last week on the lathe, nearly finished, the other had just been lifted from the foundry floor. In the rough, one weighs nearly thirty tuns; when finished, twenty-five tuns. Its extreme length is fifteen feet ten inches; its greatest diameter is four feet. We never obtained a comprehensive and just idea of the size of this great piece of ordnance-the largest in the world worthy of the name of gununtil we saw the huge mass upon the lathe. These two new guns are exactly similar to the one at Fortress Monroe, with the exception of their trunnions, which are placed three inches further back. They were cast hollow and cooled according to Capt. Rodman's invention. We counted nine finished guns and mortars ready to be sent away, and an equal number undergoing the boring and planing operations in the machine shop. Several were cast and ready to be raised from their molds, and several others were undergoing the cooling operations in their molds. The classes of mortars we saw were eight, ten and thirteen inch; the navy guns nine and eleven inches; the army guns ten and fifteen inches. These guns are all pure castings, being made entirely of cast iron. Very great care is exercised in the selection and purification of the metal that is used ; and great experience and much skill are necessary in conducting sach operations. The castings are truly beautiful ; the metal is clear and very close in the grain, resembling steel. A piece is cut from the casting of every gun and submitted to a severe test, then it is labeled, numbered and laid aside for reference. A most excellent quality of pig iron comes to this foundry from Bloomfield, Blair county, Pa.; but good iron is also made in Pittsburgh from Missouri ores. It is, however, in treating the iron when in the furnace that the practical skill of the molder comes into play. The impurities are carefully removed, and only the purest metal allowed to reach the mold.

A new class of large navy guns are about to be cast and finished in this foundry. Hitherto eleven inch guns have been the largest size used in the navy, but a contract has been made for several fifteen inch-Dahlgrens, designed to suit the turrets of such vessels as the Monitor; and we had the pleasure of examining the huge patterns from which they are to be cast. The total length of each will be thirteen feet five inches; depth of bore a hundred and thirty inches; diameter of bore fifteen inches; greatest diameter forty-eight inches; diameter at the muzzle in the rough thirty-eight inches. This muzzle, however, is to be turned off to twenty-six and a half inches, and from thence taper up to nothing at the base line (a line struck through at the base of the cylindrical bore). The thickness of metal outside of the bore at the base line will be sixteen and a half inches ; from this line to the outside of the circle it will be twenty-four inches. A small tapering gas chamber will be formed behind the bore at the base line, a hole one-fifth of an inch will be drilled one inch back from the center, then carried straight to the top forming the vent. These guns when finished will not only be the largest, but the best and most beautiful navy guns in the world. They are not to be cast solid as has been usual with navy guns heretofore, but they will be cast hollow and cooled upon Capt. Rodman's principle. It would be impossible to obtain a good sound, solid casting of such a size, hence the necessity for casting hollow. Under Major W. Wade, experiments were made with an eight-inch Columbiad cast solid at Fort Pitt works, and another cast hollow, and cooled inside with water; also with two ten-inch Columbiads, one made solid and the
other cast hollow, each pair having been cast from the same metal and furnace. The result showed the hollow cast guns to be much the strongest. The charges of powder used in the trials ranged from ten to fifteen pounds for the eigh-tinch guns, and from eighteen to twenty-four pounds for the ten inch guns, with shot and sabots. The solid cast eight-inch gun burst at the seventy-third fire; the hollow cast gun of the same size was fired one thousand five hundred times without bursting. The solid ten-inch gun burst at the twentieth fire; the hollow cast gun stood two hundred and forty-nine fires before it burst. The mold for a hollow cast-iron gun has a core formed on a cast-iron tube closed at the lower end, and after the metal is run into the mold, the interior is cooled by a stream of cold water admitted into the core by a tube that reaches nearly to the bottom. The cool water descends through this tube to the bottom of the hollow core, then it ascends through the annular space between the two tubes, and is dis. charged from the core at a point a short distance above the casting, and it flows off in a heated state. It requires the water to flow in a continual stream for several days before a large gun is sufficiently cooled. This system appears to be the most perfect ever devised for casting and cooling large guns. Each of the Monitor class of vessels armed with them will be able to hurl shot weighing four hundred and twenty-five pounds, which is nearly three times the weight of the round shot fired from the largest Armstrong gun yet made for the British navy.

business in general.

Our manufacturers and merchants, very generally, have done a good spring business. The extent of it has exceeded their expectations, and as a consequence, a more buoyant spirit prevails among all classes. The condition of the lumber market is a good index of the condition of the country, because it affords evidence of the number of buildings that are being erected, and when the building art is prosperous it is a sure sign of growth and progress. As Chicago is now the largest lumber market on our continent, it is gratifying to learn that the lumber business of that city has greatly revived. The sales for this summer promise to be good. We learn from the Boston Com. mercial Bulletin, that most of the manufactories in Massachusetts are running nearly full time, that Laurence and Lowell are busy, and that in several places new factories have been put up and several old ones enlarged. Orders are now beginning to come in from some of the Southern cities, which have been made submissive to legal authority. Six tuns of tacks were lately sent to New Orleans from Taunton, Mass., and a large order for plated ware has been received at Hartford, Conn., from the same place, this being the first since March 1861, when the secession frenzy seized the people of Louisiana. The quantity of goods now being manufactured is not equal to that of former prosperous times but for all this it is very large, considering the circumstances of the country. The quantity of cotton on hand is very small, and the cotton market is stagnant because prices rule high, being 31 and $31 \frac{1}{2}$ cents per 1 l . for middlings. It is expected that Charleston, S. C., and other Southern cotton ports will soon fall into possession of the Union forces, and that a large supply of cotton will be obtained at early date.

THE LONDON EXHIBITION MANAGEMENT.

We judge from the remarks of our foreign cotem poraries, that the London Exhibition this year, will be a financial failure, however successful it may be as a display of manufactures, mechanism and art. Its management is denounced as being short sighted and mean. The absence of Prince Albert-who was the ruling genius of the Exhibition of 1851, is now felt. The season tickets are too high in price and the Commissioners have made a rule charging each exhibitor the fee of a season ticket. Foreign and British correspondents of the press are also charged for season tickets, and letters are now appearing in the French and German papers ridiculing the building and the stiff and thick-headed Commissioners who do not seem to have sufficient gumption to conduct the Exhibition upon liberal principles. Mr. Train in a late speech upon the subject in London, stated in substance that the show appeared to be conducted espe-
i:ally for the aristocracy, and that the people were shut out of Hyde Park and not recognized.

INCRUSTATION OF STEAM BOLLERS

A positively harmless and cheap remedy for this universal evil must prove of great interest to all using or owning boilers. The loss of fuel alone, to say nothing of risk of explosions from choked up feed pipes, and burning out of the boiler in heating through this non-conducting crust, must be amply repaid by any non-injurious antidote. So many remedies have been iound inefficient or injurious, we had concluded to recommend nothing again; but our attention has been especially called to the "AntiIncrustation Powder," made by H. N. Winans, of this city, that we have concluded to callpublic atten tion to it through our columns.

If any reliance can be placed in the testimony of practical engineers and owners of boilers, who have for a long time used this article, then it is certainly a thing of much value, and weil worth the attention of all who use steam power. We have examined a multitude of testimonials in which its merits are emphatically set forth. They all agree that the ingredients used are not injurious to the iron of the boiler, that they ucutralize the action of acids contained in the water, arrest oxidization, loosen scale where it has been formed, and effectually prevent its formation at all times, keeping the boiler smooth and clean.
We recently read a letter from an engineer of the steamboat Antelope, running on the Mississippi, in the vicinity of St. Paul, Minn., in which he states, that since using Winans's Incrustation Powder they were enablud to make 20 Hbs . more steam, in the same boiler, with the same fuel. The article is in use by hundreds of respectable parties, and in many cases practical results similar to the above are alleged to have been obtained. The inventor's office is at No. 11 Wall street, New York city, where he will be happy to see any who wish to inform themselves further upon the subject

NEW ENTERPRISE---STEAM WAGON FOR THE WESTERN PRAIRIES.

On the 7th inst. Gen. J. R. Brown, of Minnesota, forwarded by the New lersey railroad, for the West, a peculiar steam wagon. It was built by Mr. John A. Reed, No. 63 Liberty street, this city, and is intended to be used in the transportation of freight from Omaha to Denver city, in Kansas. It is propelled by four engines of ten-horse power each. The driving wheels are ten feet in diameter, and they have a tread of eighteen inches in width. The stering wheels are six feet in diameter and twelve inches broad in the face.

Ample provision is made for carrying wood and water sufficient to run the engingsi four hours. From the tests that have been made, the wagon has; been proved capable of hauling cight tuns of freight at the rate of four miles per hour, or of beims propelled at the rate of six miles per hour with one or two tuns behind it. In an experiment in ascending Bergen Hill, N. J. (which is qual to six hmmed feet per mile), it moved steadily at the rate of about four miles per hour without any perceptible diminution of steam. An engineer, fireman and steersman are required in operating the matchine, and the consumption of fucl will be equal to ond cord of wood in eight hours. The owner and the buider of hee wagon, as well as lle engineers and othere who have witnessed the trials of its speed and the adapation of the machinery, have the fullest confidence in its suc: cess. They believe it capable of hauling ten tans of freight at the rate of eighty to one handred miles in the twenty-four hours, over a common road.
This enterprise is one of great importance, and we shall watch its development with deep interest. If steam can be successfully used for the transportation of freight and passengers over our Western prairies, it will have an important bearing upon the interests east of the Sierra Nevada range, and will materially promote the settlement of our Western lands.

We heartily wish it is quite natural that wo should that every one of our readers would make up his, mind at once to get at least one new subscriber to the semarife American. We should be delighted with such a demonstration of loyalty to our journal.

Cultivating Plants when the Dew is On

The following interesting and practical information is from a correspondent of the Country Gentleman:-
Fifteen years ago, I noticed a plot of cabbages, the large firm heads of which I could not account for from anything apparent in the soil. On asking the owner how he made from such a soil so fine and uniform a crop, I found his only secret was that "he hoed them while the dew was on." He thought that in this way he watered them, but of course the good resulted more from the ammonia than the moisture of the dew.
I adopted the practice the following year, and with the result was so well satisfied, that I have since continued and recommended it to others. There will be a very great difference in the growth of two plots of cabbages, treated in other respects alike, one of which shall be hoed at sunrise and the other at midday ; the srowth of the former will surprisingly exceed that of the latter.
A story in point sometime since went the rounds of the agricultural press, of which the substance follows: A small plot of ground was divided equally between the hired lad of a farmer and his son, the proceeds of its culture to be their own. They planted it with corn, and a bet was made by them as to which should make the best crop: At harvest the son came out some quarts behind. He could not understand the reason, as he had hoed his twice a week until laid by, while he had not seen the hired lad cultivate his plot at all, and yet he had gained the wager. It turned out the winner's crop had been hoed quite as frefuently, but before his rival was up in the morning. Providence, it scems, follows the hoe of the early iser with a special and increased reward.
But there are exceptions. Cultivating while the dew is on, manifestly benefits such gross feeders as cabbage and corn, but there are plants very impatient of being disturbed while wet. The common garden snap and running beans are examples ; and if worked while wet, even with dew, the pores of the leaves scem to become stopped, and the whole plant is apt to rust and become greatly injured. Whether the Lima beans and other legumas are as impatient of locing loed in the dew, I have not ascertinined. Experiments should, however, be trice the coming season on all hoed crops.

Photographic Engraving.

A new method of photographic engraving by M. Fontaine, of Marseilles, France, is described as fol lows in the Photographic News:-
Having a photographic negative of the object which it is desired to engrave upon copper, I expose it in a pressure frame to the light in contact with a plate of that metal, covered with a solution composed of pure gelatine, lichromate of potassa, and fish glue. Atter exposure to the lipht, I immerse the plate in a dish containing lukewarm water, the bichromate of the soluble portion of the gelatined plate being dissolved, I obtain the design from the negrative en creux (intaglio); then I pour upon it some pyrogallic acid to havden the gelatine and fix it, so that the minute details should not disappear upon its drying. When dried, I pour upon the plate a solution of pure gutta-percha in sulphide of carbon, and afterward I take a piece of guttal percha of the same size as the plate, and warm it on one side. 1 then puti it in contact with the side of the plate, whinh I had corered with the solution of ghtie percha, and put in a prosis. Nextremoving the whole from the press, I remove the gutta perchat from the gedatined plate, which is perfectly united with the puriiied guttic percha, and I have then obtained in relief in great purity the design of the negative which I desire to engrave. After black-leading it, I place it in an electrotype bath, and thus obtain an engraved plate.

Bunsby Agan-A Dark Prospect.-The London Post, Ministerial organ, gives it as its deliberate opinion, that if the Federal army beats the Confederate army the latter will be vanquished, but if the Confiderate arony beats the Federal army the South will gain their independence. It seems to us just as though knowledge would die out with the demise of this Jack Bunsby the second. Verily, darkness is again brooding over the whole earth.

Waste Products of Gas Works.

In a late lecture on the above subject by Dr. Lyon Playfair, before the Royal Society, London, he endeavored to illustrate the effect of enriching pure hydrogen gas by passing it through naphtha, when the glass vessel in which the fluid was contained exploded as he applied the light to it, and fragments of glass were scattered in all directions, and dense brown fumes filled the lecture-room, and drove many of the ladies away. He exhibited a large and weautiful mass of paraffine and a bundle of paraffine candles that had been made from coal tar, and contrasted the present state of the manufacture and the use of that article with its condition in 1851, for in the Exhibition of that year, a single paraffine candle only was exhibited as a great curiosity, which had been produced from peat; whilst in the Exhibition now open, there are abundant specimens of the paraffine wax and candles made from coal tar, the production of that article having become an important branch of manufacture. He stated that 4,000 tuns of the muriate, 5,000 tuns of the sulphate, and 2,000 tuns of the carbonate of ammonia are annually produced from gas liquor ; and he no doubt surprised, and somewhat disgusted the lady portion of his audience by informing them that their smelling bottles are filled from the refuse of gas works, and the sweeping of streets. He exhilivited the process of extracting oil and naphtha from coal, and described the chemical changes that take place in the formation of aniliue, roseine, and the other hydrocarbon compounds that now form dyes of all colors. Specimens of all the products were exhibited, and of silks and woolens that had been dyed by them. To illustrate more forcibly the quantities of such products derived from coal, a mass of coal weighing 100 lbs. was placed near the lecture table ; and near to it were placed the various products obtained from a mass of that size, and the quantity of wool which had been dyed by the products of the distiliation of a similar mass. The chemical processes by which coal becomes converted into beautiful colors, may, he said, also be applied to extract from the mineral the smell and flavor of almonds, with which confectionery is now flavored, as a substitute for the far more dangerous dilutions of prussic acid.

Gen. Beauregard and the Scientific American.

We find, on looking over our list of subseribers in New Orleans, that Gen. Beauregard was one of the number. We owe him something on this account, and we hereby notify the Gencral that if he will nuw take the oath of allegiance, and heartily repent of his past sins and folly, we will once more send him the Scientific American, a new volume of which begins July 5th; terms $\$ 2$ a year, $\$ 1$ for six months. We are surprised that Beauregard could have conducted himself as he hasdone. The only explanation ve can possibly give on the point is that he had been a reader of our paper for only a slort time, and was early cut off from its constant perusal by the black. ade. Gen. Beauregard's wife, we are hapry to know, is under the protection of Gen. Butler.

Another Steamer for China.

The new and elegant steamer Fire Cracher, just built under the direction of its commander, Capt. Henry W. Johnson, sailed from this port for Shanghate, China, on the 7 tin inst. Among the passengers were Mrs. H. W. Johnson and Mrs. Anson Burlingame ; the latter goess out to mect her husbind, who is the American Minister in China. The building of stearners to run on chinebe rivers is angrucuting toavery large business; in this country. Capt. Johnsun took nut the steaner F're Dartabout eighteen monthago, which has been very ancersfilly anployd sicce her areival there.
Every subscriber of the Scientific American ought to be an agent for the increase of its circulation. Whoever reads the paper can aid in this matter very materially by recommending it to his neighbors. In the absence of agents we appeal to our friends to lend us a hand. Let us have a "subscription bee," such as we remember used to take place in our early days, when all turned out withoxen horses, plows and shuyels to do up some good work with dispatch.
Turs canals of this state are in navigable order their entire length, according to a report at the Engineer's office since the great freshet which caused so much destruction in Pennsylvania and elsewhere.

THE LONDON EXHIBITION

It is our intention to give a series of articles-the information being collected and derived from reliable sources-on the machinery and articles in the Great Exhibition. We begin with
marine maines.
With respect to the comparative character of the marine engines in the Exhibition, the London Engineer says:-"The triumph of the screw over the paddle is complete." All the engines are direct acting and the stroke in the largest does not exceed four feet. No new style of engine has been brought forward, but the mechanical skill exhibited in the construction of all receives high praise. The trunk engine which is commonly used for the war ships of the British Navy, was first designed by James Watt, and represented in the specifications of his patent of 1784, for a steam hammer. Maudslay Sons \& Field, exhibit 800 -horse power screw engines for the Valient, a new iron plated frigate. These are a pair of horizontal double piston rod engines with 82 -inch cylinders, stroke 4 feet. The cylinders are steam jacketed, and the covers are also double to admit steam, so as to prevent inside condensation. The air pumpsare worked by long rods directly from the pistons. There are two slide valves working simultaneously for cach cylinder. Each is double ported, and steam is taken at once through four openings at tach end of the cylinder. The steam pressure is nearly taken off the back of the valve by a counteracting balance pressure adopted for all the engines of this company. Another set of marine engines on exhibition are a pair of 400 collective horse power, by Messrs. Humphys \& Temnant. They have horizontal cylinders, $64 \frac{1}{4}$ inches in diameter and 32 -inch stroke. The yalves are worked by a link motion, the link being a curved bar. The valves are double ported and placed on the sides of the cylinders. A pair of such engines is furnished on shipboard with a fire bar surface of 280 feet and a heating surface of 7,600 fect in the boilers and they carry 25 Ht . pressure. Althuugh rated at 400 -horse power, they work up to 1,8u8-horse power.
Messrs. John Penn \& Son, exhibit a pair of 600 -horse power trunk engines made for the spanish governme ut, also one cylinder of the engines for the great new iron plated frigate, the Achilles. This cylinder is 1.12 inches in diameter, for stroke of 4 feet. It weig hs 18 tuns.
Messrs. Todd \& Macgregor, of Glasgow, exhibit-a pair of 60 -horse power screw engines, with inverted cylinders 30 inches in diameter and 22 -inch stroke. These engines are the only pair provided with surface condensers (Sewell's). They have a link motion as a reversing gear and an expansion gear besides. They are described by the London Engineer as being models of compactness and neatness of design.
In the French Department are a pair of 400 -horse power engines from La Compagnie des Fioryes at Chuntiers de la Mediterranés. Their general arrangement is like those of Maudslay Sons \& Field, but they are peculiar in not having the eccentrics for working the valve rods, on the main shaft as is common on English engines. The eccentricis are on another shaft placed above and geared to the crank shaft --apparently a superfluous arrangement. The slide valves are fixed on the top of the cylinders, the latter are not steam jacketed. English piperis state that the sicrew for the freach engines has edges as sharp as a lady's fan while the British serevs ane rouded off at the comers. 'Tlewe cam be an question of the fact that by romindig the edrow of a sores propeller its useful effect is increased so much as to give an additional speed of about from 11. to 25 per cent to the vessel. One thing very striking and dissimilur between screw and paddle-whecl engines is the very short stroke of the former compared with that of the latter. For exampic, the new paddle-wheel steamer Scotia, which lately visited New York, has cylinders of 100 inches in diameter and 12 -foot stroke, while the Achilles, mentioned above, has cylinders 112 inches in diameter and only 4 -foot stroke. Engines to drive propellers by direct action make from 40 to 80 revolutions per minute according to the pitch of the scheiv. The short stroke is necessary to get up the proper speed on the screw. It is also contended ly some engineers that there is less friction involved in a short than a long stroke, but this is mere fancy.

NOTES ON FOREIGN INVENTIONS AND DIScoveries.

A Kite Life Buoy.--A patent has been obtained by Lieut. G. Nayres, R. N., for a kite to be used for saving life in cases of shipwreck. The kite is made similar to those used by boys, but its central stem has a hinge, and the stretcher bar at the top is jointed to the vertical stem. It is covered with canvas, and by means of the jointed stretcher, it is adjusted so as to present more or less surface as may be required according to the strength of the wind. Two lines are used for the kite, one being in the position of the common string used in flying, but with a thimble, near the kite, through which a second cord is run, passing toward the lower part of the central stem, thence through a swivel, and cxtending to the hand. This kite is flown in the usual manner by the first line, and when it has reached a point directly above where it is to be lowered, the first line is slackened and the second held firm, when the kite is immediately brought down, and it may thus be used to draw a man ashore from a wreck, and when made hollow, it can be inflated and used as a life buoy.

Rolled Cast-Steel Rifle Barrel.-L. Cristoph and G. P. Harding of Paris, and W. Hawksworth, of Linlithgow, Scotland,-have obtained a joint patent for making steel tubes for rifle barrels without welding, by drawing and rolling. A peculiar form of mandrel, having two or more swellings, is used in drawing the tubes. The one which comes into action first is the smallest, and the size of each gradually increases. A thick draw plate with a conical hole is used, and the aperture corresponds with the graduated enlargements of the mandrel. In making a steel conical tube, such as may be used for a musket barrel, the skelp of stcel is first cast hollow, or cast solid and bored out, then drawn and rolled over the mandrel to give it a true smooth cyclindrical bore, and a slightly tapering outside form. The tube is lastly placed in a matrix, and a mandrel drawn through it having projections on it to cutrifle grooves, and thus obviate the telious and expensive mode of cutting grooves with a rifling lathe.
Water-Proof Walls.-W. Smith, of London, has obtained a patent for a preparation, which he states, renders the walls of brick. and stone houses completely water proof when applied to them. He takes flint or other sach silicious substances, and reduces it to fine powder ; then he adds to this some powdered \& lum, and mixes them thoroughly with water, reducing them to the consistency of common oil paint. The composition is now applied with a brush to the surface of the wall, and when it becomes dry it resists water. This composition while being applied, requires to be continually stirred in the vessel which contains it. It is cheap, and when applied to wooden buildings, it renders thent almost fire proof. Gunpouder for Blasting..-The gases which result from the explosion of gunpowder in mines are very offensive and deleterious, and is it therefore very difficult for miners to work for some period of time after a blast has taken place in a coal mine. To obtain a powder better adapted for mines, not as regards its expansive force, but to render it less injurious to the miner, respecting the pollution of the air which he inhales, I. Lobb, of London, adds a quantity of fresh slacked line and a littio dry satw dust, and usess about one half the duantity of the sulphur that is in common gunpowder. 'The dry lime prevents the powder from becoming deliquiscent in such damp situations as mines, and at the same time, it tends to absorb some of the fetid gats.
Preserving Articles of Food.--A patent has been obtained by I. McCall and G. B. Sloper, of London, for preserwing articles of food, the principle of the invention consisting of introducing into tin cans containing the food a substance for which oxygen has a greater affinity than for the meat or other article of food under preservation, and which at the same time shall be in no way detrimental to it. The patentees have found in practice that sulphite of soda is the best agent for their purpose. They prefer to incase ar cover the sulphite of soda or other suitable material in composition as aforesaid, in golatine or other suitable protecting coat, to prevent its coming into action before the coat has been dissolved by the heat to which the tin and contents ate first subjected, and
the time of its solution they vary according to circumstances. About the time they have calculated for its solution, they hermetically seal the tin, and then for a short poriod apply a higher degree of heat, when the oxygen remaining in the tin and in the meat or other food will combine with the sulphite of soda.

RECENT AMERICAN INVENTIONS.

The following are some of the most important improvements for which Letters Patent wert issued from the United States Patent Office last week. The claims may be found in the official list on another page :Spring Spur.-The object of this invention is to facilitate the putting on and taking off spurs and to arrange the fastening so that the spur will fit bouts of different sizes, and also be held firm and thus be prevented from dropping off, and at the same time, should the rider be thrown, and the spur catch on the stirrup, it will be detached from the boot, preventing him being dragged on the ground. The invention consists in the application to a spur of two curved spring arms, bent in such a manner that when they are slipped or sprung over the instep of a boot they will draw the spur up tight against the heel and retain it firmly in its place. It consists further in comlining with said curved spring arms a strap or wire which passes under the foot, which is provided with two loops, one on each end, to which the pants can be fastened. A. S. Hudson, M. D., of Sterling, MII., is the patentee.
Piano Orchestra.--This invention consists in the application of musical instruments played by percussion, such as drums, cymbals, tam-tams, triangles, \&c., to harmoniums, pianofortes, organs or other instruments played by keys, in such a manner as to allow the performer to bring the said instruments into play by making use of his hand or forearm during the execution of a piece of music, without causing an interruption of the harmonies or passages. Also in novel mechanism for playing upon the small or rolling drum, in order that when so applied and played by keys it may ralize nearly all the effects executed by a skillful drummer with his drumsticks. Also in a mechanism applicable to harmoniums, organs and other wind instruments played in a similar mamer, by means of which the keys may be stopped with their valves in an open condition, in order to permit the player to act freely on the percussion instruments during the sustained accords or tunes, whenever it is desired to produce a particular effect with the latter instruments. Also in a set of metallic funnels or trumpets adapted to the accoustical holes of harmoniums, \&c., through which the sound, by applying the tremolo-vale, receives the character of a trumpet. And further, in uniting the said percussion instruments in one which, being played upon by a single artist in the same manner as any other instrument played by keys, may be employed in an orehestra or for accompaniment in general. We have seen in one of the French journals a very flattering account of this instrument as performed by Mr. Schalkenbach, the inventor, of 'Triers, Prussia. The assignee of the United States patent is E. Justh, of San Francisco, Cal.

Chinneys for Coal-oil Lumps.---'This invention consists in combining a glass chimney and a glass cone in one piece so that they will be permanently attached, and having the chimney perforated near its base to admit air to the flame alwe the cone. 'The invention is designed to be applied to coal oil lamps and has for its object economy in the construction of the fixtures, greater facility in exposing the wick tube fur trimming, durability as regards the fracturing of the chimney and cone either by heat, blows or casually dropping them, and also insuring a perfect combustion with a low or small flame. The inventor is William Howard, of Flushing, N. Y.
'To ieeep Buas from Vines.-A correspondent of the American Agriculturist gives this remedy for protecting melons and other vines from bugs :-Take common cotton batting, separate it into very thin layers, and spread over the plants as soon as they appear, putting a little dirt on each corner to prevent the wind from blowing it off. He has tried it for several years with success. 'The plants may attaiis considerable size before removing the cotton. The cotton does not interiere with light or moisture.

ISSUED FROM THE UNITED STATES PATENT OFFICE for the week ending june $3,1862$.

* Pamphlets giving full particulars of the mode of applying for
 ne entors, may be had gratis by addressing
of the Scrientiric Arreican. New York.

35,423.-J. Q. Adams, of Highspire, Pa., for Improvement in Horse Rakes
 teith, for the fonble parpose of holding the rake teeth down more
tirman, and of raisin, them from the ground when required, sulb.
stantilly as sp:clied. 35,429.-J. S. Atterbury, James Reddick and T. B. Atter manufacture of Hollow Glass Ware in Bas-relief :
 $3 \overline{5}, 430 .-$ J. S. Atterbury, James Reddick and T. B. Atter-
bury, of Pittsburgh, Pa. for Improvement in the bury, of Pittsburgh, Pa., for Improvement in the manufacture of footure of class ware have elamoth new manufacture of glass ware, which, while it shal
 35,431 .-George Bailey, of Buffalo, N. Y., for Improved Baggage Check I claim the e deseribed method of checking baggage, that is to say,
by altaching to the article a ticket holder, and miserting therein ai
 stantin) C. F Barage, of Condor,
35,432.-C. C. B. Barager, of Candor, N. Y., for Improved
Reversible Plow :
 tixed sections of mold board, $\mathrm{HA}^{\prime} \mathrm{H}^{\prime}$, when arranged to operate in the
manner and for the purpose set forth. IThis invention consists in a peculiar manner of attaching a swing. Ing section of mold board on the side of a plow having two shares,
and connecting it with the beam in such a manner that it may be turned to correspond with either of the plow shares, and thus
adapt the implements to use as a right or left-hand plow as may be adapt the implements to use as a right or left-hand plow as may be
desired, by simply turning the beam in one or the other direction.] $35,433 .-W$. B. Bement, of Philadelphia, Pa., for Improvement in Stands for Machines
I safe tool receptacle formed thereins when cast it one entire prece,
ossentially in the manner ind fur the purposes set torth and described 35,434.-W. B. Broadwell, of Springfield, Ill., for Improvement in Corn Plows
I claim in combination witi the bar, G, and clamps, H H, the fender
or guard, I, applied to the beams, A A, and bar, G, as and for the pur-
pose specifie d. pose specifie d
The object of this invention is to obtain a corn plow which may be readily adapted for use, either as a single or two-horse plow. The
invention consists in constructing the implement of two distinct parts, each being provided with two plows, and connected in such a manner that they may be readily detached when one part only is required ; the means employed for connecting the two parts of the plow, aulmitting of being adjusted so as not to interfere with the plants or break down the same as the machine is drawn along. The invention also consists in using in connection with the implement thus constructed, a fender or guard*so constructed and arranged as to protect them by the action of the plow.l
35,435.-S. B. Conover, of New York City, for Improvement in Potato Diggers
I claim, first, The combined rotary screen, conveyer and weed sepaibaft, I, a nd provided with openings, a a a, substantially as and for the
 with the tilting receivers.
or the purpose specified.
[This invention relates to an improved machine for digging potatoes; and of that class in which a rotary screen is employed to separate the potatoes from the earth, and deposit the former in suitable re 35,436.-J. W. Coombs, of Mount Vernon, N. Y., for Im provement in Coal Scuttles I clain, first, The combination of the scuttle, A, hinged ash box, E ,
shaking sieve, D, and handle, i, , all constructed arranged and opera-
ting in the manner ind for the purposes set forth ting in the manner and for the purposes set forth.
Seond, The combination with the siveve, D, and scuttle, A, of the
ring, h, as and for the purpose specified. Third, The arrangement of the join ted removable had, , in combina-
tion with the scuttle, A, as and for the purpose described.
Fourth别 poses specified.
interior of a coal arrangement of a movable sieve in the hinged to the bottom of said scuttle in such a manner, that by the action of said sieve the good coal can be separated from dirt or ashes that may be mixed with it, and that the moisture which generally adheres to coal, and which causes coal scuttles to rust and wear out in a short time, is permitted to pass through said sieve down int
$35,437 .-L$ C. Crowell, of West Dennis, Mass., for Im-
provement in Aerial Machines:
claim the arrangement of the hinged
pramidal winged steering apparatus or rudder \mathbf{E}, in car, $\mathbf{~ i n}$ combination with the adjustable hinged propeller, C , constructed and operating,
substantially in the manner and for the purpose shown and described. [This invention consists in the arrangement of two or more fla ${ }_{t}$
sharp pointed hinged wings, capable of being turned up into a horizontal position or down into a vertical position, and of one or more rotary hinged propellers, the shafts of which can be brought in
a horizontal or in a vertical position, or to any desired inclination, in
and with a suitable car in such a manner, that from said car the motion of the whole machine can be controned the proveller to the wiss, and the rulter
35,438 .-B. F. Field, of Sheboygan Falls, Wis., for Im-

 Third, The agitators, consisting of elliptically-tormed disks of metal,
p, securcd in an oblique position on a horizontal shaft, 4 , arranged to operate in the manner and for the purpose set forth.
[This invention consists in a simple device for varying the size of he seed apertures in the hopper, and indicating on a dial the quantity of grain sown per acre ; also an arrangement of grass seed hopper in side the hopper ; also in a peculiarly-formed agitator, consisting of elliptically-formed disks of sheet metal, securea in an oblique position n a horizontal shaft. $]$
35,439.-D. R. Fraser, of Chicago, Ill., for Improvement in Piston Packing the combination of the expanding action and compressing action o steam at one and the same time upon the ring or rings, I, or p pston,
substantialy as and for the purposes described
Second, The arrangement of the valves, their seats, their spring Second, The arrangement of the valves, their seats, their springs
and their chambers, with relation to the pistem head and follower and
the packing rings, for the purposes deerilsed the packing ringes, for the pelatponses dhe perilised.
Third, The construction or the ring, C , substantially as and for the purpose described.
Fourth, I claim the arrangement and combination of the packing
rings, C II I, the whole coustructed in the manner and for the purpose described.
Fifth, I claim the combination and arrangement of the wedge, \mathbf{E}, or
its equival with the centering bolt orscrew \mathbf{D}, of the piston, subits equivalent with the centering bolt or screw, D, of the piston, sub
stantially in the manner and for the purposes described.
Sixth, The interposition of self-adjusting wedges, B, substantially in Sixth, The interposition of self-adjusting wedges, B, substantialy in
the manner and for the purpose described.
Seventh Aldinsting the pack ing by means, of wedges, \mathbf{B}, applied between it and the arms of the piston head, A, whether the wedges be
operated antomatically or ortherwise for the purpose set forth.
Eighth, 'I he spaces, operated antomatically or otherwise, for the purpose set forth.
Eighlh,
forth. 1 he spaces, p , substantially as and for the purposes set 35,440.-C. H. Frost, of Peekskill, N. Y., for Improvement in Heaters
I claim, first, The extension of the corrugations of the fire pot from
the top to
set the bottom, and opening into the ashpit, substantially as set forth. The combination of a arate and fire pot, in such a manner
Second, The to leave the spaces formed by the corrugations of the fire pot and
as as to leave the spaces formed by the corrugations of the fire pot and
rim of the Erate open into the ashpit, and free for the passage of air,
substantially as set forth
35,441--H. N. Fryatt, of Belleville, N. J., for Improved
Centrifugal Machine for Filtering Liquids : Centrifugal Machine for Filtering Liquids:
I claim, constructing the centrifugal machine for filtering purposes,
with an, annuar filterng charber surcunding central reception
chamber, the said filtering chamber having a closed top and bottom, chamber, the said filtering chamber having a closed top and bottom,
and its sides being formed of an outer and inuer pervious cylinder,
with the inside filled with pulverized charcoal or its equivalent, sub. stanially as and for the purpose set forth.
falso caim in combination with the central reception chamber, and
the annular filtering chamber, the cap extending inward over the
reception chamber, and the inner cylinder to form a chamber in reception chamber, and the inner cyp exter to form a chamber in
which the lictuid accumulates before pressing through the filtering which the liquid accumulates before pressing through
chamber, sulstintially as and fur the purpose set forth.
35,442 .-I. A. Heald, of Washington City, D. C., for Improvement in Machines for Making Cigars:
I claim, first, A series of grooved and smooth rollers, $\mathrm{F}_{\mathrm{F}} \mathrm{F}^{\prime} \mathrm{G}_{\mathrm{G}^{\prime}}$, constructed and operating substantially as and for the purpose set Second, The combination of cylinders, $I I^{\prime}$, and cylindrical castings,
J Jon constructed and operating substantially as and for the purpose J fot fonstructed and operating substantialy as and
Third. The combination of rollers, $K \mathrm{~K}^{\prime}$, with the cylinder, I^{\prime},
operating substantially as described and for the purpose set forth operating substantially as described and for the purpose set forth,
Fourth, Apron, L , and friction roller, t, in combination with roliers,
K^{\prime}, constrecting and Fourth, Apron, L, and friction roller, t, in combination w
K^{\prime} constreting and operating substantially as set torth.
Fifth, Finger, p, or its equivalent, when operated subst described, and for, or the purs eques satent forth. when operated substantially as
Sixth, The revolving sldiding shaft, \mathbf{N}, constructed and operating 35,443.-Edward Heaton, of New Haven, Conn., for Improvement in Ordnance
I clamm the construction of the screwbreech;with the ball seat, d d, and
a charge chamber, D, which is contracted at $\mathrm{i} i$, toward the seat, as
and for the purpose shown and described and for the purpose shown and described.
[This invention is more especially intended for ordnance. Its prin-
cipal object is to enable accurate firing to be pratermed cipal object is to enable accurate firing to be performed with iron projectiles without the use of packing of soft metal or other material, such projectiles.]
35,444.-Jacob Holben, of Allentown, Pa., for Improvement in Operating Grinding Mills
I claim the method specified of cleanng millstones by the use of
35,445.--Samuel Holdsworth, of Durham, England, for 17, 1860: 17, 1860 :
I claim, first, The combination of the saddle, C , the catch, E , the
traverse bar, F , and insmument, G , the swich bar, b, and the derfier
plate, k , the whole applied and on plate, k, the whole applied and operating substantially as set forth to
insert and withdrav the terry or pile wires in a hoom.
second, The construction of the lever, B^{\prime}, through which the Second, The construction of the lever, B^{\prime}, through which the
mechanism for insertng and withdrawing the pnle or teryy wires is
act tated, with a curved slot, B^{*}, substantianty as and for the purpose set forth.
Thir, The combination of the pusher, H, and the instiument,
constituting a means of transterring the wires from the position to
which they are withdrawn from the fabric to that from which they consturng a meath orawn from the fabrich
which the are witrawn
are reinserted, substantially as described.
are reinserted, substantially as described.
Fourth, 'rhe employment of the supporting post, N2, of the instru-
ment, \mathbf{N}, as i means of tightening the weft, substantially as specifie Fourth, The employment of the supporting post, N2, of the instru-
ment, N, as a means of tightening the weft, sulstantally as specified.
Fith, The combination for oiling or tubricatnng the terry or pile

 wheel, P . the levers, $\mathrm{P}^{\prime} \mathrm{P}$, the shaft, P 5 , the sectors, $\mathrm{P}^{8} 8 \mathrm{P9}$, and the
straps, ${ }^{\prime} \mathrm{P}$ P7, connecting the levers with the pickers when arranged
and overating as specified and overating as speciiied.
Seventh, The combination of parts, for operating the tappets, con-
sisting of the separate shaft, , the int rual toothed wheel, Q, and the
pinion, Q^{\prime}, the whole applied ind operating substantially as specite inion, Q^{\prime}, the whole applied and operating substantially as specified. stood by the claim, but it would be impossible to explain the mechanism intelligibly without drawings.]
35,446.-P. N. Horseley, of Jersey City, N. J., for Improvment in Ventilators for Hats :
I claim the air arrangement of the sliding ring, C, in combination
with a hat or head covering, B and connected to the same by rods and spring sockets, c, or by other equivalent means, substantially
[This invention consists in the arrangement in the interior of a hat or other head covering of a movable frame,-one part of which is attached and out in such a manner that whenever the wearer desires, the hat or head covering can be raised from the head, and returned in such a position, that the air has free access to the interior of the hat or other able and cooling ventilation is effected.]

35,447.-William Howard, of Flushing, N. Y., for Im provement in Coal-Oil Lamp Chimney
I chin1, an an improved article of mannfacture I chan, as an improved article or manumacture, a chimney and cone
made with the bases of the two parts joined together ; the cone being placed within the chimney, and the latter bing grovided with aper
tures, b, to admit air between the cone and chimney, all as shown and
described. 35,448.-A. S. Hudson, of Sterling, Ill., for Improved I claim, first, The
with the spme A or use of the curved spring arms, B, Second, The arrand sent forth. af the looped wire, C, passing under the
font in combination with the curved spring arms, B, applied and
operating as and fo: the purpose specified. 35,449.-T. S. Hudson, of East Cambridge, Mass., for Improvement in Inkstands
I claim, an ink stand as constructed with the separate annulus, d,
combined with the pertorated cap, b, and cover,
as to in manner, and so sorate therewith, substantially as described. 35,450 .-Jacob Jahraus and J. G. Bickel, of Buffalo, N. Y., for Improvement in Faucets : Second, We claim the formation of the holes, op, in the key of
Sta Second, we claim the formation of the holes, op in the key of a
frucet with the tubes, q , for the purpose of producing a self-acting
vent, substantially as described. 35,451.-W. H. Johnson, of Springfield, Mass., for Im
proved Marine Propeller : I claim, a propel'er
I claim, a propel'er for vessels, consisting of a rigid vibrating arm,
H, to which is pivoted an elastice blade, M, substantially as specified. 35,452 .-Frederic Kettler, of Milwaukie, Wis., for ImI claim, first, The combination of cog rollers, D, with piston, C, and plate, B, as shownand described.
Second, The abutments, E, and plates, E^{\prime}, and pistons, C , as com.
bined and arranged with the whole apparatus. Sined and arranged with the whole apparatus,
Third, The elevation, F^{\prime}, in combination with the spring, F , arranged and combined with the apparatus as described.
Fourth, The volute spring, Garranged in the manner and for the purpose specified, in combination with the apparatus, forming a pack
ing around the alle, A. A.
Fifth, Yalve, m, i: combination with the apparatus, in the manner
35,453.-Arthur Kinsella, of Cascades, Washington Terri-
tory, for Improvement in Aerial Machines : tory, for Improvement in Aerial Machines
I claim, the arrangement of the generator, D, and condenser, E,
connecting With thg eylinder, C, by means, of pipes, d d ${ }^{\prime}$, y^{\prime}, and
stop cocks, $\mathrm{e}^{\prime} \mathrm{e}^{\prime}$ h h h^{\prime}, operated by crank shafts, f , as descrised, in
 in the manner and for the purpose specified.
This invention consists in the employment or use of a gas generator and condenser, connected to a suitable cylinder by means of pipe p. ovion whe sronkshaft in combination with fenwheels and discharg pipes passing out at the of the bith a steering out he stern of the rath, and with the air is forcibly driven out at the stern of the ball is propelled in the same manner as a rocket, and at the same time the course of the balloon can be governed at pleasure.j
35,454.-William Koss, of McGregor, Iowa, for Improved Trace Fastening.
I claim the adjustable trace fastening, consisting of the donble
spring plate, B, linged at, D, the rod, S, and springs, F, and P, all
constructed and arranged as described and set forch. 35,455.-T. S. Lambert, of Peekskill, N. Y., for Improvement in Boilers and Tea Kettles
I claim, first, The construction and combination of a lug and bail,
in such a manner by grooves or pins that the weight of the boiler in such a manner by grogev or pins that the weight of the boiler
when inclined in pouring will fasten the two together, substantially
as set forth. Second, The combination of the arm, A, figure 3, of the cover with
the lug and bail, in the manner substantially as set forth. 35,456 .-J. B. Leverich, of New York City, for Improvement in Cover for Gun Locks
I claim the employment or use or a cover, A, of india-rubber, cloth,
or other suitable material impervious to water, having in its ends or other suitable material impervious to water, having in its ends
Aastic bands, ar or their equivalent, substantially as described for the
purpose of protecting the lock of fire-arms. [This invention cons or
tight material, and provided with elastic bats a bag of some water manner that the same can be stretched over the lock of a gun or other firearm, and that when thus stretched over the lock, the bands em. brace closely the stock and the barrel of the gun on either side of the lock, thus forming a sure protection to the lock against water or other impurities, and when the firearm is to be used, said bag can easily be same.]
35,457.-E. B. Manning, of Cromwell, Conn., for Improvement in Tea and Coffee Pots:
I clam an improvement in the construction of Britannia pots, by
making the lower body and bottom of such vessels of iron or a meta I claim an improvement in the construction of Britannia pots, by
making the lower body and bottom of such vessels of iron or a meta
capable of bearing much greater heat than Britannia, substantially a capable of bearing much great
and for the purpose set forth.
35,458.-Morris Mattson, of Boston, Mass., for Improvement in Douche Baths:
I claim a bath apparatus, consisting essentially of two or more tank
or reservoirs containing water of different temperatures, the outle or reservoirs containing water of different temperatures, the outle
trom which nnite in one delivery
able cock or cocks, and are commanded buv a suitantially in the manner specilied, for the pur 35,459.-John Maxheimer, of New York City, for Improvement in Bird Cages
 door will rest upon the cups, holding them in place and preventing
the waste of seed ; itso permitting the filling of the cups withnoup
therr remoral: likewise entirely cinsing the opeling when the cup the waste or seed; inso permiting the
therr remorat; likewise entirely colsing,
are removed for cleaning, all as set forth.
[This invention consists in attacling the seed and water cups to the cage in a novel way, and using in connection therewith sliding doors
arranged in such a manner relatively with the cups, that when the Tranged inch a mamer relatvely withe clps, that when the cleaned, detached or removed from the cage for the purpose of being ings in which the wns are fited bird, the doors also when the cups are adjusted to the cage serving and at the seed being sed and
35,460.-R. S. Merrill, of Lynn, Mass., for Improvement in Coal-Oil and other Lamps:
claim the combination of an on reserv
I claim the combination of an oll reservoir and burner, under the
arrangement set forth, so that the burning part of the wick shall be arrangement set forth, so that the burning part of the wick shall be
constantly supplied with oil, antomaticali, substantially as described. 35,461.-Jacob Miller, of Canton, Ohio, for Improvement in Fanning Mills
I claim, first, In combination with the main shoe and its riddle, the
transverse trough and its ridd de, for the purpose of giving the grain a
second cleaning as it passes to the side of the machine, substantially as described.
I also claim in combination with the transverse trough and its rid-
dee, a condncting pipe for introciucing a blast into the trongh, to give I also claim in combination with the transverse trough and its rid-
die, a condncting pipe for introoucing blast into the trongh, to mive
the grain a second action of air as it passses over the transverse riddle, the, grain a second action of
substantially as described.

I also claim the so arranging of the ridd or or riddes in the trough,
as that they mat be tincilied to either side or or the maichine, for the
purpose and substantially in the manner set forth. 35,462.-Jacob Miller, of Canton, Ohio, for Improvement 55,462 - Jacob Miller
in Fanning Mills
 pialso claim in in combination with the anxiliary riddle, a conducting
pas ons described.
asige for introducing a blast to said ridde, substantially

 35,463.-Jacob Miller, of Canton, Ohio, for Improvement in Fanning Mills:
I claim the arrangement of the riddle, C E and conducting board,
D , with the two wind passages. and the delivery spout or trought I^{\prime}

35,464.- Jonathan Mosteller, of Lock Haven, Penn., for
Improved Cement for Roofing and for other Purposes:

35,465.--Alvan Munson, of Peterborough, N. H., for Improvement in Pumps
claim, first. Having the pist

 cumstances may require.
pump of sector foum in its provided with an oscillating valvular plunger and piston, and a check or retaining valve, whereby a combined lift and force pump of very
simple construction is obtained, and one that may be readily repaired simple construction is obtained, and one that may be readily repaired When necessary, its valves being rendered very accessible, and one
also which will admit of the water escaping at the termination of its work in order to prevent dificulty from freezing.]
35,466.-G. W. Nichols, of Wheatland, Iowa, for Improvement in Rotary Pumps
clamin the combination of the eceentric inuer driving cylinder, B,
transmit ting the water through itself, with the outer cylinder, A, and
pustin, , silustiutialily as sivecitied,

25,467
35,467.-F. F. Oliver, of New York City, for Combination
of Pencil Sleeve and Eraser : II claim is an article of miannfacture the combined sleeve and erat
35,468.-Frederick Pohlman, of Coxsackie, N. Y., for Improvement in Hay and Straw Cutters:

 transerse slot as described, the whote constructed in
work king essent tialls as and tor the purposes set forth.
35,469--D. C. Rand and M. Wadhams, of Perinton, N. Y.
for Improvement in Drying Grain and similar Sub
etances:
keepinimi in the emplionment on the atotating cylinder for containing an

35,470.-C. W. Rawson, of Little Prairie Ronde, Mich., for

解
the same direction, and anl arraned ed
tion, as as and for the perpose, set forth.
$35,471 .-\mathrm{H} . \mathrm{B}$. Record, of Turner, Maine, for Improvement in Tree Protectors

35,472. Nathan
proved Fish Cutter or Bait Mill

35,473 .-G. J. and H. W. Ross, of New York City, for Im provement in Hydrants
In thaim the arriug thent of the espring with the rotury eduction pipe TThis invention consists in having the cituction pipe of the hydran to turr and operate the cock, that is to siyy, oplen and close it ; the matically close the valve, and cut of the supply of water when the operator releases the eduction pipe after turning it for a supply or water.]
$35,474 .-$ T. W. Roys, of Southampton, N. Y., for Improved Rocket Harpoon
Itlaim the combination of a harpoon and rocket witha bomb, sub-
stantially as described, tor the purposese of killing whales.

35,475.-T. W. Roys, of Southampton, N. Y., for ImproveI claim making the triacks on

35,476.-T. W. Roys. of Southampton, N. Y., for Inproved
Apparatus for Ravsing Sunken Whales to the Surface
of the Water :

on reels, substantiall
hawser io a whale.
35,477.-F. M Ruschaupt City, for Improved Percussion Powder : of New York
We claim
 35,478. - Samuel Slocomb of
5,478.-Samuel Slocomb, of East Cambridge, Mass., for
Improvement in Inkstands :
Improvement in Inkstands
claim the improved piston and w
Ir claim the improved piston and well inkstand as made with the
ground or air-tight joint arranged on the top of the neck of the ink re
servoin
 35,479.-J. W. Stout, of Raritan, N. J., for Improvement

[This invention relates to an improvement in that class of reaying and mowing machines, which have their sickles and driving gear at-
tached to a frame which is allowed to swing on the axle of the wheels, tached to a frame which is allowed to swing on the axle of the wheels,
on which the main frame is mounted.

35,480.-Harvey Mann, of Bellfonte, Pa., for Improvement in Axes
 ax, to be welded
35,481 -LL. J. Whitcomb and W. E. Prall, of Maineville,
Ohio, for Improvement in Apparatus for Evaporating Sac charine Juices
We claim, first, The arrangement of a range of boiling pans upon a
Common level, communicaing through apertures, adapted to be si:

Third, The decanting faucet, $\mathrm{I}_{\mathrm{i}} \mathrm{i}^{\prime}$, having a provision for gradual
tated.
Forth, The arrangement of the reservoir, \mathbf{M}, which receives crute p from the mill, and discliarges the same inte, the tirst boiling pan
a a pipe,, , whilich traverses the furnace for pre-heating the crude 35, as set forth.
35,482.-Tonathan White, of Antrim, N. H., for Improved
Apple Parer:

 with a cam, i, and stop, k, the whole being so as to
tially in the manner and for the purpose as specitied
35,483.-C. J. Woolson, of Cleveland, Oliio, for Improve ment in Cooking stoves :
I claim the construction and arrangement of the perpendicular and
hrizontal connecting bars in the fire chamber of cooking staes, il
35,484.-Horatio Worcester, of New York City, for Im-
provement in ram

5,485.-David Zug of Slaeflerstown, Pa for Lu
35,485. - David Zug, of Shaefferstown, Pa., for Improve-
ment in Harvesters : ment in Harvesters
claim, first, The tubulated

 sliding serew boxes, 111 H2 in combunation with the screw, F, for re 35,486. - S. S. E. Cleveland (assignor to Jonathan Nayhew \&
T. Ray , of Buffalo, N. Y., for Improvement in Head Lights for Locomotives
I cliaim, first, The combination and arrangement of the perforated
tube
unt perforated tube being connected th the bottom of the sil chamber, for
he purpose of moditying the supply of air to the interior of the wick

 set torth, The extension of the oil chamber downwar.tly, as represented
Ty the flat tuve, I, in combination with the rack end pinion and nar-
bit by the tiat ture, I, in dombination with che rack end pinion and nar
 ats set terth.
5,487.-J. C. Conklin, of Yorktown, N. Y., assignor to G
W. Depew, of Peekskill, N. Y., for Improvement in
Harrows:

35,488.-James C. Cooke (assignor to himself and Julius
Hotchkiss), of Middletown, Conn., for Improvement
Hotchkiss), of Middletown, Conn., for Improvement
in Breech-loading Firearms
Inilim, first, Thi operation or the brecelt piece so that it moves up
 Ward, when the lever guard is moverd

 ment is made allin the manner and for the purpose described ,
Third, The beveled shoulder piece, d, in combinition with the bev

35,489--H. S. Phillips (assignor to himself and G. E. No-
be) of Westfield
basteners:
I cliaim the combination of the rack, 4 , and cogwheel, 6 , with the the
acl 5, and fistener, 7 , constructed and arranged in the manner and for the purpose set forth.
5,490--J. B. Schalkenbach, of Triers, Prussia, assignor
to E. Justh, of San Francisco, Cal., for Piano Orches
tra:
Iflaim, first, Thic application, in combination with harmoniums,
finlofortes, or other instruments played by keys, of percussion in

 ments, oonsisting of the drum, cymbal lam.tan.
playing mecclianism, substantially as set torth.
35,491- - B. S. Stokes (assignor to himself and W. H. Bur-
wick), or Manchester
Pieces for Cigars and Pipes:
claim the constriction
outh pieces for cirgars and pipes, so that ones or more currents of cond air may be inhaled int the mouth, at the same time the smok eis
recie ted trough ducts independent of hie smoke duct, tor the purpos.
es set forth. $35,492 .-$ H. D. Stover and E. S. Wright, of New York Citv, Scroll Sawing Machines:
Se claim, first., The methid of hanging the savs by means of strans

 ally in the manner set forth

 (uide block, constricted and arranged as described to admit of adjust

35,493.-Dwight Tracy, of Worcester, Mass., assignor to
himself and J. P. Hale, of New York City, for Improvement in Spools for Se, wing Thread:
First. T clainm uniting the parts of spools and forming the tube
 Second, cladim specilining the heads upon the tule or barrel by pinch.
ing them between the thanzes raised in the tube or barrel, substantial-
ind 35,494 - - W. A. Barlow, of Elkhorn, Wis., for Improvement

 UThe object of this invention is to obtaina astove by which the heat
will be radiated more pertectly than hitherto, and in which stove the Wrat may be changed with great facility, from a direct to a circuitous ne, and rice versa.]
25,495.--Richard Montgomery, of New York City, for Improved Shield for Iron-cilad Vessels :
I claim a sliield, arranged and operatin! sulss

35,496..--Richard Montgomery, of New York City, for Improvement in Apparatus for Bending Corrugated Plates of Metal :

ke-issums.

1,313.- Jacob Swartz, of Buffalo, N. Y., for Improvemen in Harvesters. Patented Nov. 14, 1854. Re-issued June 5, 1860 :
 straight line, a shop whise trout end is sighed firward and ap ward
bove the points of the fing frrs, sulhstantially as shown, throush whic
 medium of a linge connection.
1,314.- Jacob Swartz, of Buffalo, N. Y., for Improvement
in Harvesters. Patented Nov. 14, 1854. Re-issued

$$
\text { Tune, } 5,1860
$$

June, 5, 1860 :

 Fourth, Making the central purtion of the coupling arm, E, or it

 ent or in Harvesters. Patented Nov. 14, 1854. Re-issued
 of the manner describedt
in the the the main frame of harvester of the
Seond, The comblination with the couphing , is, inger bar, G, cutter bar, n, tha pitman, b, or thei ive position of the cutters and fingers to eacl other are not material V. Varied, When raised or lowered in respect to said main ir trame

and b^{\prime} vertical slot, ${ }^{\text {a }}$,
stantialy and described.
Fourth in

1,316--J. H. Snyder, of Troy, N. Y.., for Improvement in
Manufacturing Railroad Chairs. Patented July 13,
Manufacturing Railroad Clais. Patorted Juy
1558 :

Pa'tents for seventeen years

The new Patent Laws enacted by Congress on the 2d f March, 1861, are now in full force, and prove to be of great bene oali parcies who are concerned in new inventions.
The duration of patents granted under the new act is prolonged to seventern years, and the goverine required ou filing an application for a patent is reduced from $\$ 30$ down to $\$ \mathbf{8 5}$. Other changes n the fees are also made as follows :

The law abolishes discrimination in fees required of foreigners, ex cepting reference to such countries as discriminate against citizens of the United States-thus allowing English. French, Belgiana, Austrian nioy all the privileges of our patent system (exceptin cases of designs) on the above terms.
During the last sixteen years, the business of procuring Patents for new inventions in the United States and all foreign countries has been conducted by Messrs. MUNN \& CO., in connection with the publica ion of the SCIENTIFIC AMERICAN ; and as an evidence of the confidence reposed in our Agency by the Inventors throughout the country, we would state that we have acted as agents for more than FIFTEEN THOUSAND Inventors! In fact, the publishers of this and Pater aroad. Thousands of Inventors for whom we have taken out Patents have addressed to us most flattering estimonials for the services we have rendered them, and the wea:th which has inured to the Inventors whose Patents were secared hrongh this Office, and atterward illustrated in the SCIENTIFIC AMERICAN, would amount to many millions of dollars! We would state that we never had a more efficient corps of Dranghtsmen and Specitication Writers than are employed at present in our extensive ofices, and we are prepared to attend to Patent business of all kind in the quickest time and on the most liberal terms.

The Examination of Inventions.

Persons having conceived an idea which they think may be patent able, are advised to make a sketch or model of their invention, and remit to us, with a full description, for advice. The points of novely are carefully examinied, and a reply written corresponding with the
facts, free of charge. Address MUNN \& CO., No. 3'7 Park-row, New York.
Preliminary Cxaminations at the Patent Office. The advice we render gratinonsly uplon examining an invention does not extend to a search at the Patent Office, to see if a like invention has been presented there, but is an opinion based upon what knowledge we may acquire of a similar invenion from the recorks mow Ofice. But for a fee of $\$ 5$, acompanied with a mudelor drawing and description, we have a special search made at the Unted States Paten Office, and a report setung forth the prospects of obtaining a Patent sc., made up and maned the finventor, with a pamphiet, giving instructions for further proceedings. These preliminary examinations are made through our Branch Ollice, corner of F and Seventh-streets, Washington, by experienced and competent persons. More than 5,000 such exammations have been made through this office during the
past three years. Ad
How to Make an Application for aratent. Avery appicantior a Patent must furnsh a model of his invention, If susceptible of one; or if the invention is a chemical his composition must furnish samples of the ingredients of which his compostion consists, tor the Patent on on them, and sent, with the government fees by express. The express charge shonld. be prepaid. Small models from distance can often be sent cheaper by mail. The safest way to remit money is by draft on New York, payable to the order of Munn \& Co. Persons who live in remote parts of the country can usually purchase drafts from their merchants on their New York correspondents; but, it not convenient to do so, there is but little risk in sending bank bills by mall, haviakthe lener ristere by the hith \& Co., No. 37 Park-row. New York.

Caveats.
Persons desiring to file a Caveat can have the papers prepared in the shortest time by sending a sketch and description of the invention The government fee fora Caveat, under the new law, is \$10. A pam-
phlet of
glish and German, furnished gratis on application by mail. Address
YUN N \& CO. No MUNN \& CO., No. 37 Park-row, New York.

Foreign ratents.

We are very extenneiy engaged in the preparation and securing of Patents in the various European countries. For the transaction of this business, we have offices at Nos. 66 Chancery-lane, London; 29 Boule vard St. Martin, Paris; and 26 Rue des Eperonniers, Brussels. We think we can safely say that thrbie-podrtis of all the European Pat onts secured to American citizens are procured throngh our Agency.
Inventors will do well to bear in mind that the English law does nct Inventors will do well to bear in mind that the English law does no limit the issue of Patents to Inventors. Any one can take out a Patent
there.
Circulars of information concerning the proper course to be pursued in obtaining Patents in foreign countries through our Agency, the re-
aurements of different Patent Oflices, \&c., may be had gratis upon apWhrements of different Patent Offices, \&c., may be had gratis upon ap plication at our princien
of ouranch Officea

Rejected Applications.

We are prepared to undertake the investigation and purecution of re We are prepared to undertake the investigation and prosecution of re jected cases, on reasonable terms. The close proximity of our Wash-
ington Agency to the Patent Office affords us rare opportunities for the ington Agency to the Patent Office affords us rare opportunities for the
examination and comparison of references, models, drawings, docuexamination and comparison of references, models, drawings, docuvery great. The principal portion of our charge is generally left de pendent upon the final result.
pendent
 history of the case, inclosing the official letters, \&c.

Assignments of Patents.
The assignment of Patents, and agreements between Patertees and manufachurers, Curess NUNN \& CO at the Scientisic america Pat ent Agency, No. 37 Park-row, New York.
It would require many columns to detail ail the ways in which the Inventor or Patentee may be served at our offices. We cordially invite all who have anything to do with Patent property or inventions to call at our extensive offices, No. 37 Park-row, New York, where any ques tions regarding the richits of Patentee:z, will be cheerfully answered. Communications and remittinces by mail, and monels by expres (prepaid), should be addressed to MUNN it CO., No. 37 Park-row, New Vork.

H. K., of Wis.-Your application for a patent is now pend ing before the Patent oflice. We cannot, therefore, introduce int the paper any such additionai matter as you describe. If the addition:a improvemeut is important, you had bet
of it ; in fact, you can proceed in mother way.
. G. S., of Conn.-Whether a third party could patent, or use a combination composed of elements existung in two prior pat ents, depends altogether on the nature of the patented claims.
S. M., of Del. -The changing of one fluid for another in a chamber, for kepping cool the tube of a kerosene lamp wick, would not be patented. For a description of Adamas see page 340 of thi
volume. W. A. C., of Mass.-We can supply the back numbers of the schartifie ambercan to Jannary last. We shan be happy to enrol your friend's name amongst our iist of subseribers. It is not new to provide a camon with a central twisted or rilled rod, and construct projectiles for the same with twisted or rifled central openin
tion.
W.
V. S., of Ill.--You do not require any ingredient in boiling Water to soften the timber that may be boiled therein, such as plow
handles, for the purpose of bending them. Steaming timber will answer just as well as boiling it
R. H., of Pa.-Cement to stop the seams of a boiler from leaking, should always be applied inside. In alocomotive carrying the usual high pressure steam, the best cement is of litte avain. O. O., of N. Y.-Water may be admitted into the Stevens floating battery by pumping or by a valve in the bottom. It is diss charget by a pump. Water ballasting is employed in some of the coal carrying vessels in England.
J. W., of N. J.-Gem salt must be a local term. If it is used for petrifying substances, as you have stated, it is probably the fluate of lime.
L. H. of Minn.-There is not any metallic alloy that will expand and contract, as packing in a cylinder, in the am" Iatio and nine coure feet of efliective heating surface, are allowed tor the horse power of a boiler. Only one half the flue or the tube surfuce is cousidered eflective heating surface.
J. H. G., of Iowa.-So far as we have been able to ascertain, American sweet potatnes have not yet become an article of ex port to Europe. If packed in dry saw dust and kept dry, we think they would keep on a voyage across the Atlantic.
I. R., of N. Y.-There is no published work extant which contains illustrations and descriptions of the improved apparatus lately introcluced for heating buildings with dry fire heat, hot water and steam. Yon can only obtain a practical wean whe whe thought yon wished to get a work like Griseom's or Reid's, ehietly thought you wished to
T. E. M., of Phil.-Plaster of Paris figures may be bronzed hy giving them a few coats of size, allowing each to dry, then applying the bronze as a varnish. Bromze powders of all culors can be purchased at almost every store where artists' materials are sold. you may mix these powders with glue, or with lac varmish, and apply them to the fors whi a for n when the size is damp. Melted pitch is abont the best cemen ing the kernel of the nuts and submitting this to pressure in bass. It is satid to lee julferor to olve oil fir the hait
J. II. B., of Minn.-..-We cannot recommend you to a bet ter source for obtaining information respecting governors of steam engines than the publishod columes of the Schavtific Ampricin These contain ilhstrations of most of the improved governors. The gyroscopic governor is illnstrated on page 193, Vol. III. (new series.)
We do not know where A. Judson, the inventor of the Judson Vilve We do not know
V. P., of Md.--The law is silent as to the time when the $\$ 20$ alditiomal fee shoma me pail on the issum of Letters Patent. If you have no good remsons for delay, we advise you to foward the fee at once ant have rint patent issue, as you are less likely to en counter an interfering application
Sprchal Notice--Formign Patent.-The population of Great Britain, is $30,000,1000$; of France, $35,000,000$; Belgium, $5,000,000$ Anstrina, $40,000,000$; Prussia, 20,000,000; and Russia, 60,000,000 Patents may he secmred dmerican citizens in all of these com tries. Nuw is some, whe ar vantage of these immense foreign fields. Mechanical improvements of all kinds are always in demand in Europe. There will never be a better time than the present 1.0 take patents abroad. We have re liable business comections with the principal capitals of Europe Nealy all of the patents secured in foreign comntries by American row, New York. Circulars about forelgn patents furnished free

Money Received

At the Scientific American Office on account of Patent Omice business, during one weok preceding Wednesday, Jme 11 J. E. T., of N. Y., $\$ 15$; J. B. W., of N. J., $\$ 10$; II. B. S., of Ill., $\$ 15$. - of Pa., \$15; J. II. d G. W. S., of N. Y., \$25; M. W., of Ny., 22; (C. F. B., of R. I., S10: J. D of Mich, \$35; E. W., of Mass, $\$ 25$ S. S. B., of $0, \$ 15$; T. M. C., of Ме., $\$ 25$; J. E. K., of N. Y., $\$ 20$; J. K. B., of Ind., $\$ 2.5$; S. M., of Del., $\$ 25$; K. \& II., of Wis., $\$ 30$; C. M., fN. B., $\$ 20 ;$ A. S. B., of Conn., $\$ 25$; T. \& M., of Comn., $\$ 25$; R. K.
Mass., $\$ 15 ;$ J. C. \& Co, of Mich., $\$ 15$; G. W. II., of Ill., $\$ 10$; D ., of Ill., $\$ 15 ;$ B. S., of N. J., $\$ 15$; II. U., of N. Y., $\$ 10 ;$ L. \& P K D., of N. Y., 815 ; B. R., of Mass., $\$ 40 ;$ K. \& M., of IIl., $\$ 25 ; \mathrm{D} . \&$ R.,
 of N. Y., \$15; W. II. ©, of N. Y., \$15; S. S. If., of Wis., S30; S. P. E., I., of Me., $\$ 25$; C. S. I., of Ind., $\$ 25$; II. B. B., of Mass., $\$ 25$; W. II. W., of N. Y., $\$ 25$; II. T. P., of M.ass., $\$ 25$; J. II. II., of N. II., $\$ 25$; G.
P. P., of Comn., $\$ 10$; G. B. II., of N. Y., \$25; L. L., of N. Y., $\$ 25$; G . W., of N. Y., \$20; J. II. K., of Pi., $\$ 20$; J. C. M., of N. IIl., $\$ 20$; R. D
 N. Y., $\$ 20$; D. C., of N. Y., $\$ 10 ;$ F. W., or N.J.., $\$ 20$; H. W. O., of Comn., $\$ 20$; A. ©.L., of Wis., $\$ 50$; B. \&E. II., of Ill., $\$ 20$; W. H. W., of N. Y., $\$ 20$; W. 女., of N. Y., $\$ 20 ;$ J. S. B., of Ind., $\$ 20 ;$ A. B. C., of
Iowa, $\$ 20 ;$ II. K., of Wis., $\$ 20$; S. d A., of Mass., $\$ 45 ;$ M. II., of Iowa, Iowa, $\$ 20$; II. K., of Wis., $\$ 21$; S. \& A., of Mass., $\$ 45$; M. II., of Towa,
$\$ 20 ;$ J. D. S., of Ill., $\$ 20$; W. F., of (Germany, $\$ 20$; C. © (B. M. W., of N. Y., \$40; R. A. T., of N. Y., \$20; N. McG., of N. Y., \$15; M. R. S., f $\mathrm{N} . \mathrm{Y} ., \$ 30$.
Specifications and drawings and models belonging to parties with the folowing initals have been forwarded to Ollice from June th to lrednesday, June I, 1862- -
R. A. T., of N. Y.; C. d G. M. W., of N. Y. ; A. I. A., of Wis.; L. L. of. Y.; G. B. H., of N. Y.; J. G. W., of N. Y.; M. R.S., of N. Y.; J. K., of Ill.; J. D., of Mich.; E. W., of Mass. ; C. \& (C. of T. T. M.
C., of Me.; S. S. B., of O. J. II. d. W. S., of N. Y.; S. M., of Del. . S. B., of Comn.; t. \& M., of Comn.; W. S. II., of O.; H. T. P., of Jiss. ; W. H. W., of N. Y.; J. G. Y., Jr., of Ne. ; J. II. H., of N. H. ; R. F., Jr., of Mass.; M. \& K., of Inl. ; W. \& T., of N. Y.; J. T., of N.
Y., (2 cases, C. A. if., of Pat. S. B. E., of Conn.; W. H. (\&., of N. Y.; Y., (2 cases, C. A. M., of Pa. S. B. E., of Conn. ; W. H. (E., of N. Y.;
(cases, H. I. S., of N. Y.; J. K.. of N Y.

TO ODR READERS.

Models are required to accompany applications for Patents under the new law, the same as formeriv, except on desigu patents when twogood drawings are all that is required to acoompany the petition, specification and oath, except the government fee.
atent Claims.-Persons desiring the claim of any invention which has been patented within thirty years, can obtain a copy by addressing a note to this office, stating the name of the pat entee and date of patent, when known, and inclusing $\$ 1$ as fee for copying. We can also furnish a sketch of any patented machine issued since 1853 , to accompany the claim, on receipt of $\$ 2$. Address MUNN $\&$ CO., Patent Solicitors, No. 37 Park Row, New York.
Recerpts.-When money is paid at the office for subscriptions, a receipt for it will always be given; but when subseribers pamer a hemat fide ackuowledsment of ours recention of thew funds avaliable Rule.--It is an establiphed rule of this office to stop sending the paper when the time for whirh it was pre-paid has expired.
Naw Pamphlets in German.-We have jusì issued a revised edition of our pamphlet of Instructions to Inventors, containing a digest of the fees required under the new Patent Law, de., printen in the German language, which persons can have gratis upou alpl
cation at this oflice. Address

No. 37 Park-row, New York.
Back Numbers and Volumes of the Scientific Amorican, VOLUMES I., JI., JII., IV., V. (NEW SERIES) COM-
 al dealers. Price, bomm, $\$ 150$ per volume, by mail, $\$ 2-$ which in lude postage. Price, in sheets, \$1. Every mechanic, inventor or ar.
izan in the United states should have a complote set of this publicaion for reference. Suliscribers should not fail to preserve their num ers for binding.
We are preprared to hind volumes in handsome covers, with illubinding sides, and ti) furnish covers for other hinders. Price for Ielivered at the office, 40 con covers, by mail, 50 cents; by express, or

RATES OF ADVERTISING.

Twenty-ive Cents rer line for each and every insertion, pay able un advance. To enable all to monderstand how to compute the amom hey must seud in when they wish advertisenents inserted, we will explain that ten words average one line. Engravings will not be ad
mitted into our advertising columns; and, as heretofore, the publishers reserve to themselves the right to reject any advertisement they may derm objectionable.

TIIE CHEAPEST MODE OF INTRODUCING INVENTIONS.

INVENTORS AND CONSTRUCTORS OF NEW AND nseful Contrivances or Machines, of whatever kind, can have their Inventions illistrated and described in the columus of the SCILENTI FIC
ing.
N No charge is made for the pmblication, and the cuts are furnished to the party for whom they are executed as soon as they have been used We wish it understood, however, that no secondhand or poor engravings, such as patentees often get executed by inexperienced artists for
printing circulars and handbills from, can be admitted into these pages. We aiso reserve the right to accept or reject such subjects as are pre sented for publication. Aind it is not our desire to receive orders ion engraving and publishing any but good Inventions or Machines, and to publish.

For further particulars, address

> MIUNN dMEA., Publishers SCIENTIFIC AMERICA

New York City
T" IE CRAIG MICROSCOPE-PATENTED FEBRUARY

II riers Diamonds. J. E. KARELSON, Manfacturer, No. 22 INDUSTRIAL CHEMIST.-EDITED BY PROTHE INDUSTRTAL CHESSOR DUSSAUCE, late of the Imperial Laboratories Francet. Published by JOHN HILLYER, No. 249 Pearl street, New
York City. One dollir and lifty cents per annm.
T PLEVENT LAMP CHIMNEYS FROM BREAKING (A.-

WODELS FOR THE PATENT OFFIĊE, MADE WITH extra care at V. BEAUMON N'S machine shop, 177 Hester street
of Mot Street, also spinning and press work. 254^{*}

W INANS'S ANTI-INCRUSTATION POWDER, (FIVE

BYRN AND CLARK'S PATENT FRUIT GATH

\mathbf{N}^{0} W PEADY.--PARSON JROWNLOW'S WONDER-

TO MANUFAC'UURERS OF THERMOMETERS.-THE

 N OTICE TO INVENTORS.-THE AMOUNT REQUIRED Cor ontaining patents on a limited number of good invention
 pensation. Good reterenes, given required Fior tur ther paricu-
lars address soon, C. P. STIMETS, Box 740 , Washington, D. C. $242 *$

PICKERS.-RICHARD KITSON, HEAD OF WORTHEN

 MI ent Protector and Guide. For sale by JoHN DICKINSON, te and sole manulacturer, No. 64 Nasssad street, New York City,
manufacturer of Glazier's Diamonds. Old Diamonds re-st.
$2 *$

C OMBINED SHINGLE AND HEADING SAW.-UNE-

 Neiw York City 17 tf A LCOTT'S CONCENTRIC LATHES--FOR BROMOM ber kinds of Wood-working Mach inery, for sale by
S. C. HILLS, No. 12 Platt-street, New York. TEIRYYILLE CLOCK SPRING COMPANY.-MANU
facturers of Polished Cloek, Watcl and Toy Springs, Terryvile
Con.

ToPETROLEUM REFINERS.--FOR THE SUM OF

 OTICE TO INVENTOORS AND MANUFACTITRELGS

UNIVERSAL CLOTHES WRINGER.-. WVE BELIEVE
 No. $1,1 / 2$ Dey street, New York chty, and Rubber Clothing Company,
No. 37 Nif street, Boston, Mass.

A NILINE COLORS.--FUCHSINE, BLUE DF LYON A and VIa

A SUBSTITUTE FOR LEAD PIPE, VIZ, A SEMI
A SUBSTITUTE FOR LEAD PIPE, VIZ, A SEMI SEMTcold, in any and every place. It imparts no deleteerions water, hotance to
oater nuderary.circumstances. It is sufficiently elasuc to be easily

 fire. Manufacured be the BOSTON BELTIN
CO. Boston, Mass. Price ilistand circulars se
MoBURNEY \& CO., Agents, Boston, Mass.

ARGE MANUFACTORY A ND SIEAM POWER FOR Late or to Let Cheap.-For sale or to let, in Bridgeport, Comn. a
Large Frame Miantactory, Fiz feet long, 33 feet wide and tour storiee
high; was builu a few years since for a cirriage manutacory, but is high; was buil a few years since for a cirriage manutacory but is
now supplied with it ho horse paver engine and boller in complete
order, with shatting and stemn-heating

 engine of 200) horse power Alply to P. T. BARNU M, A merican Mu- 12 if
seum, New York City, or Bridgeport, Conn.
SOLID EMERY VULCANITE.-WE ARE NOW MANUngand polishing metals, that will outwear hundreds of the kind com
monly used, and will doa much greater amount of work in the sam ime, and more efliciently. All interested can see them in operation a
our warehouse or circulars describing them will be furnished by mail
NEW YORK BELTIN AND PACKING CO 1413 Nos. 37 and 38 Park-row, New York.
NEW York emery wheed company SOLID MANEACTURERS OF
These wheels are consontented dated non , an entirely new and scientific
principle. Composed of pure Turkish Emery tree from glue
 They are manufactured of every number of Emery, fine or coarse,
moulded to every size, and made in quality to any degree of hardness.

 New York Embry wherico. Coientement: Having, Nov. 30,1461 .
 hesstation, pronomuce it the best wheel I have ever used, as
quick, wears slow, and does not glize or softitn by friction,
Respectully yours,
JOHN GALLIGHER,
 No. 116 Nissillu street, New York.
AUTH'S PATENT SHAFTING, PISTON RODS, MAN
 lars contaning statements ot the results of experiments made by
William Fairbairn, of Manchester, England. and Maior William Wiat in.

PATENT FOR SALE.-MPRROVED CATCH BOLT FOR

C ternrise.-The Franklin Sewing Machine Company want agents

SPRING TACKLE BLOCKS...-PATENT RIGHT FOR

B AIRD'S PATENT PREPARATION FOR THE PROhe metals, is a great saving of tuel; does not fiam, and works equially
vell in salt and fresh water. For sale by JAMES F. LEVIN, No 23
dentral Whart, Boston, Mass. New York depot, COLES \& CO. N No.
O1 West street.

TULTON'S COMPOUND, FOR CLEA NSING STEAM

GUILD \& \& GARPS-Adapted to every variety of pumping. The principal Styles are the Direct Action Exy variety of pumping. The principal
Balance Wheel Pump, Duplex Vacuum and Steam Pump, the improved
Wumps, siad the Balance Wheel Pump, Duplex Vacuum and Steam Pumps, \&:ad the
Water Propeller, an entirely new invention for pumping large quan-
tities at a light

IMPORTANT TO INVENTORS.

CO., PROPRIETORS OF THE States and all foreign countries, on the most reasonable terms. They ments of business pertaining to pat ents, such as Extensions, Appeal before the United States Courts Infringements, \&c. The long ex perience Messrs. Muns \& Co. have had in preparing Specification and Drawings, extending over a pe riod of sixteen years, has rendered hem perlectly conversant with the mode of doing business at the Which save batentent Information concerning the patentability If inventions is freelygiven, without charge, or sending a model or rawing and description to this oflice.
Consultation may be had with the firm between nine and four ork. We have also Principal Office, No. 37 Park Row, New Wasmingion, on the corner of F and Sivienth streets, opposite the United States Patent Office. Thisofice is under the general superinendence of one of the firm, and is in daily communication with the Principal Office in New York, and personal attention will be given at the Patent Ollice to all such cases as may require it. Inventors and thers who may visit Washington, having business at the Patent Oflices re cordially invited to call at their office.
They are very extensively engaged in the preparation and securing of Patents in the varions European countries. For the transaction of
 Brterard, st. Martin, Faris, and 20 Rue des Eperomiers, Brussels, We thonk we may safely say that three-fourths of all the European Patents secured to American ciizens are procured through onr Agency.
A pamphtet of information concerming the proper course to be pur wed mobtaining Patents through their Agency, the requirements of he Patent Ollice, \&c., may be had gratis upon application at the Prin inal Onice, or etther of the Branches. They also furnish a Circular of information about Foreign Pat nts.
The annexed tetters from former commissioners of Patents we comMessrs. Munv \& Co.:-I take pleasure in stating that while I held The businges of mbe orice came through ghar hands. I have no

 Immediately after the appointment of $\mathbf{M r}$. Holt to the efice of Postvery grateful testimonial:Misssus. MUNN \& Co.-It affirds me much pleasure to bear testi-

 fessional engagements. Very requecthilly,
Your obedient servant, J. HoLT.

 Publishers, No. 37 P'ank-row, New Yonk.

ORTABLA SI AM ENCINES - OMBINING THE
 than 200 being in ase. All warranted sadisfactory or no sale. A large
stock on hand ready for immedlite applicaion, Descipuive circulars
sent on application. Address J. C. HOADLEY, Lawrence, Mass.
PUMPS! PUMPS :! PUMPS ! ! ! -CARY'S MMPROVED Rutary Force Pump, unrivaled for pumping hot or cold liquids.
Hanufictured and sold by CARY \& BRAlNERD, Brockport, N. Y
Also, sold by J. C. CARY, No. 2 Astor House, New York.
WT ACHINE BRDTMG, STEAM PACEMNG, RNGINE
 Giriev, and warmed to stand 304 degs. of hen. The Hose never neefs
 $1413 \quad$ JOHN H OAEEVER, Treasurer,

A MESSIEURS LES INVENTEURS-AVIS IMPORqui préféreraient nous communiquer leurs inventions en Frangais, peu
ren nous addresser dans leur langue nataile. Envoyez nous undessin ton nous adiresser dans leur langue nataile. Envoyez nous un dessin
tune descrition concise pour notre examen. Toutes communica-
ions seront regues en conflidence.

Dafelbit it au habert

Improved Folding Army Chair. acompanying engravings represent a folding chair designed especially for camp use, though it will be found remarkably comfortable and convenient in any house.
It is constructed with hinge joints so that it may be arranged as shown in Fig. 1, or folded in the compact form represented in Fig. 2. 'The frame is made of hard tough wood, and the buck and seat are covered with cane or may be uphulstered. The back is joined to the seat by a hinge at a, so thatit may be folded flat down upon the seat, or inclined at any angle desired. In order to hold it at such an angle as to make a comfortable seat, the arms are attached to the back by hinged joints, and their forward ends
one hundred and eighty miles, parts of its surface heing below our boundary line in Sonora. Its area is some nine thousand square miles ; and excepting the Colorado, which cuts across its lower end, is without river or lake. It stretches off to the horizon on all sides without one glimpse of vegetation or life. Its surface is ashy and parched; its frame of mountains rise in rugged pinnacles of brown rock, bare even of soil. Words are unequal to the task of describing its apparent expanses, the purity of its air, the silence of its night, the brilliancy of the stars that overhang t, the tints of the mountains at daybreak, the looming up of those beyond the horizon, the glare of the midday sun, the violence of its local storms of dust and sand.

HARDY'S FOLDING ARMY CHAIR.

are torked to receive the curved links, B, which have notches upon them to catch and hold the arms. By making several of these notches the inclination of the back may be varied at will, and yet held firmly in the position to which it is adjusted. The legs are joined together in two pairs and one pair is hinged to the front edge of the seat and the other to the back edge. The pair which is attached to the front edge is made sufficiently narrow to swing between the other pair, and when in the position shown in Fig. 1, the cross bar of the inner pair rests upon the cross bar of the outer pair, and retains the legs in position.

To support the legs and feet of the occupant, the frame, C, is attached by hinges to the front edge of the seat ; the forward end of this frame being supported by legs.

The several joints and hinges described enable the chair to be folded into the small compass represented in Fig. 2.

The American patent for this invention was granted August 20, 1861. It has also been patented in France and Belgium. Further information in relation to it may be obtained by addressing the inventor, Peter J. Hardy, at 150 and 152 Prince street, New York, or at 367 Washington street, Boston.
The Great American Desert---A Novel Enterprise.
In the acquisition of Territory from Mexico we acquired not only good, bad and indifferent lands, but we got a desert, and so large in its dimensions, so formidable in its withering desolations, that we are as much at a loss to know what to do with it as was the party who drew the elephant. Professor Blake, who, from his position of geologist, accompanying the exploring and surveying expedition of Capt. Williamson, of the Atlantic and Pacific Railroad Survey, acquired a personal and familiar knowledge of this journado del muerta'" (desert of death), in a recent lecture in San Francisco, in speaking of the Colorado Desert, pronounced it as fine a specimen of the desert as that of Lybia or Sahara. It extends from the base of San Bernardino southwesterly

Parts are entirely destitute even of sand, being smooth, compact, sun-baked clay; other parts are covered with heaps of sand, disposed like snow-drifts in waves of fifty and eighty feet in hight. Near the mountains along the Colorado there is a terrace at flat as the floor, and paved with pebbles of nearly uniform size, of porphyry, jasper, quartz, cornelian, and agate, all rounded by the action of the water, and polished till they glisten, by the driving sand. In this respect, again, the porch of our Great Desert is like that which outlines the Lybian Desert. Doubtless the northern part of the desert is the dry bed of an ancient lake of fresh water, whose beach lines are strongly marked. Probably, at a comparitively recent period, the water of the California Gulf covered all the clay surface of the desert. It lies below their level now, and if a channel were cut thiough the natural embankment of the Colorado, it would be doubtless covered again with water. It is very probable that the Colorado Desert region was uplifted within historic times. Earthquakes occasionally agitate its surface, and in 1852 there were eruptions of mud and hot water in the central parts of the valley.

The National Intelligencer says that an enterprise is on foot for converting this formidable desert into a fruitful field by introducing water from the Colorado river on and over it, thus causing verdure to replace sterility, "causing the desert to bloom as the ose.'
The propagator of this enterprise having devoted several years in the preliminary work, and having fully determined the practicability of the measure by actual instrumental surveys, now awaits the action of Congress to make a cession of this Sahara to the State of California, in compliance with the expressed wish of her Legislature. It cannot be doubted that Congress will at once comply with the application made by California, and allow the parties to go on with this novel work, which promises to be of so much benefit to the government and mankind.

Great Pumping Engines.-The quantity of water pumped up daily for the city of London is $150,000,000$ of gallons. Of this enormous quantity $79,000,000$ of gallons are pumped by single acting steam engines. One of these engines when working at full power throws 9,000 gallons per minute to a hight of 140 feet. The water thus raised is conveyed into London by cast iron pipes 36 -inches in diameter. The cylinder of this engine is 112 -inches in diameter, and weighs 36 tuns.
Steam on Canals.-The Schenectady Locomotive works are constructing some engines for canal boats, which are much on the locomotive principle. Machinists on the line of the canal believe that the exertions which have been made to substitute steam for horses on canals, will result in permanent success. A considerable number of steamers, supposed to be nearly a hundred, have been at work, many of them with decided advantage.

Na
 of, THE

SCIENTIFIC AMERICAN.': the best mechanical paper in the world. EIGHTEENTH YEAR.

VOLUME VI.-NEW SERIES.

A new volume of this widely circulated paper commenced on the 5th of January. Every number contains sixteen pages of useful information, and from five to ten original engravings of new inventions and discoveries, all of which are prepared expressly forits columns. The SCIENTIFIC AMERICAN is devoted to the interests of Popular Comene, the Mechanic Arts, Manufactures, Inventions, Agriculare instructive not only in the Workshop and Manufactory, but also in the Household, the Library and the Reading Room.
The SCIENTIFIC AMERICAN has the reputation, at home an abroad, of being the best weekly journal devoted to mechanical and industrial pursuits now published, and the proprietors are determined to keep up the reputation they have earned during the seventeen years they have been connected with its publication.

Chemists, Architects, Millwrights and Farmers! The SCIENTIFIC AMERICAN will be found a most useful journal to them. All the new discoveries in the science of chemistry are given In its columns, and the interests of the architect and carpenter are not verlooked; all the new inventions and discoveries appertanng cal infurmation pertaining to the interests of millwrights and millowners will be found published in the Scientific American, which in formation they cannot possibly obtain from any other source. Subjects in which planters and farmers are interested will be found discussed in the Scientific American; most of the improvements in agricultural mplements being lustrated in its columns

To the Inventor!

The SCIENTIFIC AMERICAN is indispensable to every inventor, as not only contains illustrated descriptions of nearly allt he bestinventions as they come, but each number contains an Official List of the Claims of all the Patents issued from the United 'States Patent Ollice during the week previous; thus giving a correct history of the progress of inventions in this country. We are also receiving, every week the best scientific journals of Great Britain, France and Germany; thus placing in our possession all thatis transpiring in mechanical science and art in these old countries. We shall continue to transfer to our columns copious extracts from these journals of whatever we may deem fintere.st to our readers.

To the Mechanic and Manufacturer!
No person engaged in any of the mechanical pursuits should think of doing without the Scientific American. It costs but four cents pe week ; every number contains from six to ten engravings of new ma chines and inventions which cannot be found in any other publication. It is an established rule of the publishers to insert none but original en gravings, and those of the first-class in the art, drawn and engraved by experienced artists under their own supervision.

TERMS.
To mail subscribers:-Two Dollars a Year, or One Dollar for six months. One Dollar paysfor one complete volume of 416 pages; two volumes comprise one year. The volumes commence on the first of January and July. cLub rates.
Five Copies, for Six Months............................. \$4
Ten Copies, for Six Months...
Fifteen Copies, for Twelve Months
Twenty Copies, for Twelve Months
or all clubs of Twenty andover the yearly 1. . 28 For anl Specimen copies will be sent gratis to any part of the country.
Western and Canadian money, or Post-office stamps, taken at par for subscriptions. Canadian subscribers will please to remit 25 cents extra on each year's subscription to pre pay postage.

MUNN \& CO., Publishers,
No. 37,Yark-row, New York

