THE ADVOCATE OF INDUSTRY, AND JOURNAL OF SCIENTIFIC, MECHANICAL AND OTHER IMPROVEMENTS.

SCientific american,

 At No. 37 Park-row (Park Building), New York, BY MUNN \& CO.O. D. MUNN, s. H. WALES, A. e. beach.

 Agent geo Propeapectua on last page. No Traveling

Weather Prediction.

Although we have no faith in the predictions of Thomas, the almanac maker, or any of the weather prophet fraternity, we will publish the information of a corresponden -J. Royal, of White Rock, Ill.-who professs to be able to foretell the weather one year in advance for any locality where there is an almanac calculated. Here is the prophesy:"The first half of April will be wet, the last half fair ; the first week in May will be wet, the balance, fair; the first half of June will be fair, the last half changeable ; July will begin and end with a few days of changeable weather leaving the middle of the month dry; August will have a great many wet days; September will set in fair, but the balance of the month will be changeable, the last part being wettest ; October, changeable, gradually increasing to wetness; November, like the preceding, only commencing fairer and ending wetter; December, fair weather." On this, we are told we may rely, with the exception of September, where there has "to be added the extra stormy weather caused by the sun crossing the line." This truly depends on the prevailing winds at the time; if the winds be southerly, the month will be wet; if northerly it will be as dry as if the sun were at his extreme distance from the line.

To Waterproof Fabrics.

Take a pound of glue and one pound of tallow bar soap and dissolve them in five gallons of water. Now bring the water to the boiling point, and add carefully and slowly one and a half pounds of alum. When this is all dissolved, cool down the liquid to about 130° Fah. and plunge the articles to be prepared into it, then hang them up to dry. When they have become quite dry, they should be washed in soft water and dried a second time. Such articles should not be used for wearing apparel, excepting for loose tunics to be put on in rainy weather. Any person may thus prepare at little expense a coarse cloth water-proof fabric.

Breaks in Levees.

In a paper recently read before the New Orleans Academy of Science, by Dr. R. Cartwright, he attributes the breaks in the levees of that city to the burrowing of crawfish. He says these animals build their houses near the base of the levee and next the river, for the convenience of catching fish, shrimps, \&c. When the water comes up against it, they burrow through the levee, and go on the other side, to prevent being drowned. The most effectual method to drive them away is to throw on the base of the levee the crushed stalks of the sugar cane, called bagasse.

BURNET AND BRODERICK'S SEWING MACHINE.

The sewing machine is now a peice of mechanism of such extended utility and application, that every contribution to its improvement or simplification is to be regarded with due attention and respect, and each invention which has for its object the more perfect action and the production of better work deserves to be examined impartially and with care.
The illustrations of the present article show a perspective view, Fig. 1, and a front end view, Fig. 2, of a new sewing machine, invented by S. S. Burnet and W. Broderick, of Chicago, Ill., and patented November 30th, 1858, in following the description of which, we ask the reader to remember the above remark.
Upon the table or bed, A, a frame, B, and attached arm, B^{\prime}, is secured. These carry the feed motion and needle and their operating parts. Through the top of B , a horizontal bar is placed carrying a belt wheel, C, and.two crankwheels, $D D^{\prime}$, the crank wheel, D serving also as a cam by a small whes , senving a , , D is arm, E, which as D is rotated gives a back and forth motion to the rocker, F, that is at tached to B^{\prime} by a pin, a, and F communicates its motion through a link, G, to the needle carrier, H , and needle, I. H moves in guides, T. The motion of the needle is thus obtained by means the most simple and effective.
To D^{\prime} is secured a link, J, that passing through a slot in A, operates the rocker, K, suspended by the bearing, V , under A , and K gives the proper motion to anether link, L_{L} that moves the slide, M, in which the shutthe, N, is placed; the shuttle moving in. a race-way, h. By these means the shuttle motion is obtained.
The thread coming off the spool, 0 , passes between two thin flat metal plates in P , and a slide on them brings them closer together, or allows them to be further apart to regulate the tension; from P it passes through a small loop, l, thence through an eye or forked wire on G, where the teusion is properly raised at different portions of the stitch by a spiral spring, after which it passes to the needle, being guided on the way by the eyes, $l^{\prime} l^{\prime \prime}$.

The feed motion is obtained in the follow ing manner; the feed bar, R, is pivoted to the frame at c, and it is moved by a smal cam, b, on F, which forces it forward, and by means of a feed plate, S, the serrated end o which, i, moves the cloth. The feed bar and plate are forced back by the spring, X. In S , is a slot that works over a pin in an arm,

d, that can be lengthened or shortened by th double screw, e, a little nut on the bottom of which prevents its moving by the motion of the machine, and a spring, f, on the uppe end of the device elevates the portion, i, from the cloth, as S is being drawn back, and a the same time the end of g, which passes ove the indentation, h, on D , allows this to be done ; when i is pushing the cloth forward or is at rest, the lever, g, keeps it in contact with the cloth, by being all the while on the largest diameter of D. The plates, j, serve to
cover up the shuttle and race. The whol machine is operated by a band, U , passing over the pulley, C. A perfect loop is formed by this machine, and the shuttle is allowed time to pass through the loop before it is drawn tight, and thereby accomplishes the interlocking of the two threads, and the drawing of the stitch tight upon the cloth Every part is under complete control, the length of feed being regulated by screw, W and the machine operates quietly and with great precision and regularity.
Any further information can be obtained by addressing Burnet, Broderick \& Co., Chicago, Ill.

Animal and Vegetable Life
There is nothing short of revelation that more beautifully or satisfactorily proves the existence of an Almighty mind than the fewness and simplicity of the ultimate element of animal and vegetable life. Thus, there are but four elementary principles essentially necessary, and but six generally employed, to form every variety of organic life; nitro gen, carbon, oxygen, and hydrogen are the bases, to which sulphur and phosphorus may be considered supplementary. With these, infinitely varied in their atomic proportions, are built up not only the whole animal kingdom, but also every variety of the vegetable world-from wheat, the "staff of life," to the poison of the deadly Upas tree. It is also worthy of remark that these four elemen tal principles are those also of which both air and water are composed, so that air and water may be considered in truth and fact a being the original elements of organic life.Dr. Toulmin.

Gun Boats.

About three weeks since (page 237) we directed public attention to the above subject in a brief review of Chief-Engineer Isherwood's work on the British gun-boats. Since that period much discussion has taken place in the daily papers in reference to the utility of such war vessels. The brave old Commodore Stewart, in a letter of the 27 th ult. to the National Intelligencer, expresses a favora the National Intelligencer, expresses a favora-
ble opinion of their qualities for the siege of fortifications. He says:-" They will prove of great importance under the power of steam, in any future operations against ports and permanent batteries.

Peculiar Recording Thermometer

The following is the description of a very simple recording thermometer, used by J. Gautlett-a farmer of Middlesborough-on Trent, England-and which is stated to be very correct in operation. It consists of a long tube of thin sheet zinc, containing a loose, dry, wooden rod. Thetwo are fixed at one end only. The relative greater expansion of the zinc, by an increase of temperature causes it to protrude beyond the wooden rod, and vice versa. This varying motion of the zinc is communicated by a lever to a pencil which passes on a revolving cylinder, con taining a strip of paper, which is wound off every minute by clockwork.

Measures have been taken to light the city of Honolulu with gas, and it is expected that he works will be completed for this purpose in the course of four or five months at farthest.

fasued from the United States Patent Once
 [Reported effecaly for the Scerentific American.]

 CIt is is requisite that a Hlliard cushion should be as
harid as the ball itself to reflect it at the same angle at
 ball. The smaner the point to contact feeween ine bal
and cushion the more true the angle of reffection. This inventor uses a cushion formed of a metal strip, and covered with rubber to protect the ball.]

 TThe rail of this billiard table is supported by rhombshapea studs which have room enough in their enters
for bolts to pass through, while thep are beveled down towards both ends; so that an open space is left be-
tween the bed and the rail neaily all tha wny round, and a ball cun be racacled with the cue, when close to the table, Thie poocket bows are also tormed of the
same materill as the raill. the table. Thine pocket boo
sme materina as the rail.]

ferevive
geribed.
c.

[This is a very simple and efficient means of ad-
justing the reflectors of a stereoscope, and does away justing the reffectors of a \& sterc
with any complicated devices.]

 Thinc ecnmmon mode of fastoning skates by straps, only because the straps themselveg if properly tied, causs grat pain to the foot, but alao because it is
almost impossille to buckle the straps properly, the
 cloge together, weaken the strap, and tear out when
any strain is put uoon them. To overcome these diffl culties is the object of thisinvention, which cousitst in
fuateriing the skates by means of serews, which are ner that the striain of the cap and of the strap can lea adjusted by turning the screws, and that the foot can be cramped in the toe-cesp by means of the heel-strap
without cunsing any pain without causing any paiil $]$

 Covsrzorrion or MALLers Lyman w. Blanchard,
of whitinum,

 (The top of a cal assh, , by this invention, is constructed
without folding bows, the frame of the top being perfectly rieili and affixed to centers by meana of a singlo radius bar at each side of the ootat or velicicle. Hy thisi
means the calash hop is greatly simplifed, and ren-
derod menns the calash top is greatly simplifed, and ren
derod more duralle than those of ordinary construc-
tion]

 LIn the front part of this skate a cap is placed which
can be adjusted by means of slides to the size of dif. cerrent feet. $1 t$ is drawnup to the toes by the straps
fin that serve to fasten the skates to the foet.]

 together subijected to the henationg
tion, substauntiully as desesrived.

 Whief, and the
ase torth
This machin
ing orrn but may be used for other seeds, for the seed
 tear, ana the front of the machine elevated or depressen distributer is not operating, or the reverse.]

 silidio g band, h, and a aregister or silde, f, on tits flanch.
d, for, the putpose set forth. CStoves which have sheet iron cases are, bb this in-
Vention, Ined, and the draft ontrolled iu such a way
that the cane is protected from the fre and the heat that the case is protected from the fire a.
well distributed through the appartment.]

tThe fnishing or trueing of turned articles is faclilsuch as the arms of axles for vehicles and the like, can be turned at one operation. The invention consists in
placing within two or more rings or bands a series of cutters and wedges, which are adjusted by means of set

 lensth of shoes. Sed

 [The oliject of this inver
[The object of this invention is to obtain a machine giag of boots and shoes, to wit, the making of the hole in the soles to receive the pegs, and the driting of the
pegs in the holes, and also the spliting of the pegs pegs in the holes, and also the sdinting of the pegs
from the stifig or hlock, as well as duplicating the row of
 the gole at the point where driven. The invention
cousists in the means employed for effecting the above cousists in the means employed forefene is obtaiced-
results, whereby an automatic machine one that will act perrectiy and dits work will

CThis invention is principully applicable to the manufacture of coal oil, but may also be applied to the dis ducts. It consists in the construction of the bodies of revolving retorts in sections, whereby retorts of a much larger size than have ever before been practicable,
owing to the difficulty of casting their bodies in one piece above a certaiu sizs and the great difficulty of new method of connecting the sections, so that longitudinal projections are formed within the retorts for the
purpose of carrying up the coal by their revolution. It purpose of carrying up the coal by their revolution. It
alsoconsists in having the retort head so constructed that it will not radiate much heat. The charge is dis-
then ributed equally from end to end when the the coal is
supplied to one end of the retort. The necessity of any supplied to one end of the retort. The necessity of anch
outside projections from the end of the retort in which the door is placed is obviated, and the plummer-blook are enabled to be brought close to the head. Such provision is made for the escape of the vapors from the re lort through the hollow journal, that the dust and solid arters cherefectuall confined within the retort, an tain size. And lastly, the inventor combines a system of effecting the revolution of two or more retorts,
that very little power is rendered necessary, and ystem of revolution more effective than a continuou ne is obtained.
Prorpacrop-Chas. Gordon, of Washington, D. C. C.
I do not claim any of the devices separately whicich ar
referred to, as they have been long known and used. But I do claim my improved protractor, as des
cribed, consisting of the base the theridian
vernier, the arc and rulers, with the clamping scthe vernier, the arc and rulers, with the clamping screw
the whole arranged and operated as specified.

Hoss-Covpling-Smith Groom, of Troy, N. Y. $: 1$. 1 do
not claim as my invention, the arrangement of notched

 as represented in
Jooslyn Mant 14 . 187 .
But $~$
claim

 two hanveeth, of the coupling, as described tor the purpose
specified.
 beam, H, and handles, I I, the whole being constructed
as and for the purposes set forth.

 machine, substat.
 a apring, as that said inner box or bearing may have spring tubstantially as described and for the purpose
set forthe
And we also claim, in combination with the clastic or spring connection bet ween the inner and outer box,
othe rinlers, h, tor the iner box
tially as set forth and described.

 ately. In claine corstructing the table platform or bed,
B, so that it may turn on or about necks or ases, sub.
and tantially as describe

 diver mav elevthe or depress the cutters or ortionininh
die traction and other wise balance and oovern the
 manhire,
Third,
forth ran
[The ob
[The object of this invention is to obviate side draft,
to facilitate the raising and lowering of the finger bay and the manipulations generally of the whole machine so as to render the labor of the driver and team comparatively light.]

 iter serew thread on the

 Lrrer-Boan-Matthias Ludlum, of Fair Haven, V .
I claim providing the exterior of the boat with adjust. berate innor ar at didftrerent fixed hoontion or ar distunces,
oor from the sides of the bout, substantially as set
ort Also, providing either float, arranged along the out-
sides of a boat, with an open or trelilizwork railing,
made to project below the float, essentially as speci
fied. Expanding A DGirp-Chas. Meyer, of Fond du Lac,
Wisp i bam well aware that expanding augers have
been before constructed, in which the gections are moved in and out the icentrically, but not in the same
manner nor by the sam coanis) and I also know that
he dies of universal cliucks have been operated hereto
 nd It do not claim, therefore, the expanding cutters
neither do I claim, separately, the manner of expand-
nis the section ing the sections.
ButI claim as a new article of manufacture, an ex-
pading aiaur, constructed and operated substantially

CThe cutters of this auger are arranged on sections auger, so as to be all at an equal distance from the even.]
 H, constructed and arranged as described, with the ad-
justande coverer and droppill tubes the whole ar
ranged for joint operation in the maner

 of the concave cover, B, When the mame is constructed
and applied as deercribed, and retained in place solely
by atiospheric pressure.
 We do not contiae ourselves to any particular number
of clampon the shaft, D, nor to any particular ar-
rangement theref, tor various modifications of the
samemay be used, for
 and soip bar or other cleausing subst
itally as and for the purpcse set forth.
[The bristles to be washed are sccured in clamps
attached to a rotating shaft, which is placed in a suitable box or case filled with suds, and having diagonal plates attached to its inner surface and also a
pressure brush and soap bar, or other cleansing material, the whote being arranged to perform the work in a than can be attained by the manual process.
M.

 furnaces with the hearth and boshes of an elliptical or
elongated form, zubstantially as described, in combina-
tion with the application of tion with the application of the blast at the sides, so
arranged as to introduce the blast in the direction of
the breadth and for the ourpose sie

HEAT-RAESS-Edarard Reynolds, (assignor to Thomas
W. Brown, of Boston, Mass.

Improved Blow-off for Boilers.

This invention makes security doubly sure, and adds an additional protection or preventive of accidents to boilers by the sedimentary deposits from the water. There is much solid matter contained in water, some of it organic particles which when the wate ceases to hold them in suspension, they rise to the surface instead of falling to the bottom The same is true of salt water, the salts in which, as evaporation goes on, rise crys tallizing to the surface and afterwards form a scale on the inside of the boiler, causing it to burn out rapidly, and being at the same time a fruitful source of accident. The design, then of this surface blow-off, invented by J. H Washington, of 36 Fawn-street, Baltimore Md., is to prevent the forming of this scale by blowing-off continually from the surface.
A is the boiler, through the top of which projects a pipe B, to the bottom of which (inside the boiler) is attached by a water-tight hinge or joint, a, the tubular arm, C , carrying at its extremity the hollow float-ball, $D_{\text {. }}$ D moves up and down in guides, F, whic are proportioned according to the limits be yond which it is not safe to allow the wate in the boiler to rise or fall. A steam whistle may be attached to the end of C , to notify the engineer when the water is too low. Nea the end of C there is a small branch-pipe, c projecting vertically downwards, and over this is slipped the perforated hollow ball, E, which is itself half filled with water, the perforations only being made on the upperhemisphere. This can be slid up and down on c to take the proper relative position with respect to D and the surface of the water. This
it will be seen will accommodate itself by the float, D , to the motion of the water in the boiler caused by the rocking of the vessel, and should any sudden lurch occur, which leaves the upper hemisphere of ball E, entirely
first to be blown out before the steam can es cape and by that time the ship will have right ed itself, and if not steadied then, will refill E with water which will again act as a prevent ive to the escape of steam should a simila lurch occur,
WASHINGTON'S BLOW-OFF FOR BOILERS.

The device is remarkably simple; and, thoroughly, efficiently, and perfectly per judging from the testimonials we have seen from the engineers of steamships which have it fitted in their boilers, and from the Inspector of Boilers for the Baltimore district, it very

Sawtellss Spinning Flyer
The accompanying figures represent an improvement in spinning flyers, invented by J. N. Sawtell ; Fig. 1 is a side elevation an Fig. 2 a plan view of the nozzle. In form it is similar to the common flyer, but in construction quite different.
A is the bronze shoulder of the nozzle and B B are the arms of the flyer. The bronze part extends upwards, forming the tube, A^{\prime} and C is the hardened iron capping or collar on the neck.

We will now explain wherein this flye differs from others, and point out its advan tages. In making the common flyer, the neck or nozzle is brazed to the arms or wires, B B, but this flyer is constructed by casting the nozzle (which is bronze) on the arms and thus uniting them together in a more permament and superior manner. By the old way of brazing the nozzle and arms, the wires are highly heated, which injures their elasticity and strength, and by the refinishing which hey require afterwards they are reduced in ize which renders them weaker still. One of the arms is also liable to be reduced somewhat smaller than the other which thus tends to throw the flyer out of balance, and render the operation defective. The brazing is also sometimes imperfect and the arms, as a consequence, soon become loose; and when a nozzle becomes much worn, the cost of re-
pairing it is so great as to render this opera tion inexpedient.
In constructing this improved flyer by casting the bronze nozzle on the arms, B B the two metals are permanently united, ye this is done in such a manner that the wires are not overheated, and thereby not softened, nor do they require to be reduced in size after wards, but retain all their original stiffness, strength and elasticity ; they are therefore not liable to work loose, nor be thrown out of balance ; and should the hardened capping, C, become worn, it can be renewed at a smal cost, and the whole nozzle rendered as good s when new.
These flyers have now been in operatio for nearly three years and have given great satisfaction. They are manufactured by the Ames Manufacturing Company at Chicopee, Mass., who will attend to communications addressed to them on the subject. It was patented Feb. 17, 1857. For more informa tion see advertisement on another page.

Lawton \& Bliss' Hose Coupling.

A swivel joint for hose-one that would admit of turning, and that could be easily put together-has long been wanted. Here it is. It is the invention of R. B. Lawton and W. H. Bliss, of Newport, R. I., and was patented Feb. 22, 1859. Our illustration fully shows the invention, the coupling being seen in section.
A A^{\prime} are the ends of the two hose provided with caps, B B', by which they are attached to their respective metallic rings or thimbles, $c d$, the one, c, fitting into the other, d, and pressing against a rubber packing ring, f, in d which renders the joint water-tight. Around a groove, e, is made, and in d there is a hole in which a hollow screw is fitted provided with a. screw-cap, h, through h a pin, i, projects that fits into the groove in the top of the roller, g, that is conical at its end and fits into the groove, e, thus securing the thimbles, $c \cdot d$, together and allowing one to move round the other with perfect freedom, but at the same time preventing them coming apart. This roller being conically shaped and the groove having inclined sides, the pressure of g upon the side of e will always tend to keep c close
o d, and thus compensate for any wear by the simple act of connecting them together A simpler and more efficient hose couplin it would seem impossible to devise, especially when so many ends are attained by the sam device. Any person desirous of knowing more concerning it, in a business or othe point of view, should address W. H. Bliss, at Newport, R. I.

Firing of Locomotives.

In the saving of wear and tear, and in the economy of fuel and oil in running locomotives, a very great deal depends upon the engineer This is very clearly set forth in the recen report of R. A. Wilder, Esq., Superintendent of the Minehill and Schuylkill Haven Rail road, published in the Miner's Journal, Pottsville, Pa. The principle feature of this report is the information contained about the successful use of anthracite coal for fuel. It is used on the engines running on thi road, and has been found much cheaper than wood at two dollars per cord. The engines are similar to those in which wood is em ployed for fuel, excepting that the fire-box is larger in area, but not quite so deep. An engine of 30 tons will take a train of 140 cars the summit of the mountain and return loaded-a distance of 65 mile , arr tol of four tons of coal-the total rise in the roa n with a hammer, as has been observed that when broken by rollers, although the wor is done more rapidly, it does not ignite so readily, on account of the sharp angles being roken off. The fire in the furnace, is neve more than six or eight inches deep, and an experienced fireman never throws in to much fresh coal at once; great care and skill re required in firing-in fact most of th leces of buring lo the , hile a while another using the same coal, and raising as much steam, has preserved a se of bars for several months. The rapid de truction of fire-boxes, under the use of coal as fuel, has retarded its introduction as a substitute for wood. As the bottom parts of the fire-box plates are subject to the most rapid destruction; it has been uecessary to remove the entire box to replace the injured parts. This has been owing to the method by which the sheets have been riveted toether. On the above road, the lower parts of the fire sheets which are injured are only cut away, not the entire fire-box, and a saving of nine-tenths of the usual cost has been effected. By forming the fire-boxes with a set of lower fire-plates, joined to the upper portion above the fire surface by a horizontal seam, these could be easily removed, when burned out, with but little expense in comparison with that now incurred, according to the method by which fire-boxes are at present constructed. The firemen were very much prejudiced against coal when they first commenced its use, but now they prefer to work on coal-burners rather than those in which wood is employed. Engines which use wood require to stop frequently to obtain a supply of fuel; a tender full of coals will last an entire day. In Pennsylvania, where good oak wood can be obtained for two dollars and a quarter per cord, coal is found to be cheaper, and ten years experience on the above rairroad has established the superiority of coal ove every other kind of fuel. Common locomo tives with large fire-boxes can be altered with very little expense, to burn anthracite all that is required for their success is careful firing-no large lumps being used, and a thin fire kept up.

Cheap Gas.-In the city of Dublin, Ire land, a new gas company supplies good coal gas at 80 cents per 1000 cubic feet, and no rent charged for meters. This is cer tainly very cheap gas in such a city, when it is considered that all the coal used is imported from England.

Sicutific American.

NEW YORK, APRIL 9, 1859.

REMOVAL.

The Scientific American Office has removed from its old location, 128 Fulton st. (Sun Building), to No. 37 Park Row (Park Building), where all letters, packages, and models should hereafter be addressed. Entrance is had to the office also at No. 145 Nassau st. Munn \& Co.'s American and European Patent Agency is at the above office.

The Commissioner of Patents.
The appointment of Hon. J. Holt to the office of Postmaster-General has left the Patent Office without its usual supreme director, and the minds of inventors are naturally stirred with much anxiety in regard to the person who shall be selected to fill such an important situation. The qualifications requisite for this purpose are peculiar. The Commissioner of Patents should not be merely a lawyer, mechanic, or man of science, but he ought to be well informed in the arts and sciences and patent laws. He should also possess laborious habits, an analytical mind, impartiality, and conscientiousness in a high degree. It is admitted by all that the two most successful Commissioners we have ever had were Judge Mason and Mr. Holt, both bred to the legal profession. They brought with them into this office cultivated minds, broad views, generous feelings and deep sympathies ; and these qualifications gained for them general respect and a deep hold on the esteem of inventors and all who had business with the Patent Office.
In the appointment of such Commissioners by Presidents Pierce and Buchanan, it is much to their credit that they selected men who were more distingaished for mental endowments, and strict integrity, than for poitical influence. The same motives and spirit should prevail in making the selection of a successor to Mr. Holt. To administer the affairs of the Patent Office with a due regard for the interests and honor of our country and government, the Commissioner must be a man adorned with the qualifications we have here pointed out, and who will do his duty without fear or favor, in a spirit of honest uprightness and liberality with kindness of demeanor. He must make himself felt as the moving power of the department over which he presides, and he must endeavor to maintain the high reputation which it has recently acquired, or the effect will be deeply injurious to the important injerests entrusted to his care. If an incompetent person should be appointed to this office, the result would be disastrous in its bearing upon the progress of improvements in the arts and sciences, and would create distrustin the minds of inventors ment.
We have no name to present for the office. It would be manifestly out of place in us to urge any particular one for the position, but we have pointed out what should be taken into consideration in making the selection and we trust that at an early date we shall see the right man in the right place. We believe the President will be cautious in his selection to fill this important official trust.

Science and Poisoning.

One of the most important murder trials which has ever come before our City Courts, was terminated, after eighteen days sitting, on the 26 th ult. in the conviction of James Stephens for poisoning his wife. We do not allude to this case as a criminal topic-because that would be entirely foreign to the legitimate order of our mission-but for the
purpose of showing the power and subtility of science, in detecting arsenic, when used for criminal purposes. In this case the victim had been dead and buried for nearly a year
before the matter was brought before the courts, the body was then exhumed and the intestines placed in the charge of Dr. Doreintestines placed in the charge or
mus for chemical analysis. The result of mus for chemical analysis. The result of
this was given in detail, in an examination this was given in detail, in an examination
of two hours on the witness-stand ; the following is the substance of it:- He found from four to six grains of arsenic in the remains of the deceased woman. At such a period after death much of the arsenic swallowed by a patient, would be absorbed, and the quantity found in the remains was not an exact test of the amount of arsenic taken. The quantity of arsenic sufficient to cause death varied in different persons and under different circumdifferent persons and under different circum-
stances. It was on report that a grain and a stances. It was on report that a grain and a
half had killed ; Sir Benjamin Brodie was the authority for that. Two grains, three grains according to the circumstances, were sufficient to cause death. An analysis of two hundred cases of poisening by arsenic, made by

Lee, established Professor Doremus' conusions on the subject of the symptoms produced by poisoning with arsenic, which were vomiting, pain in the pit of the stomach (devomiting, pain in the pit of the stomach (de-
scribed as a burning pain), a similar pain in scribed as a burning pain), a similar pain in
the throat, nervousness, and prostration of the whole system, partial paralyzation, diarrhœea, swelling of parts of the body, and a peculiar anxious appearance of the countenance.

The Healthiness of Swill Milk.
On page 230 of the present volume of the Scientific American, we gave a table of analyses of milk from the Report submitted to the Academy of Medicine on swill milk by Dr. Saml. R. Percy; we purpose now from that report to give a brief explanation of the table :-
"It is proved conclusively by the analyses of swill milk made by Dr. Reid, Dr. Doremus and myself, that it is different in its component parts from milk obtained from cows in the country. Although the amount of solid particles are not much less than in country milk, the proportion of the different ingredients vary very materially. In all the instances in which an analysis of this swill mill: is given, the butter and sugar are very largely decreased, while the casein (or curd) and the saline matters are largely increased. The butter is proved by minute analysis to be entirely deficient in the peculiar phosphoric organic compound which is appropriated Whecially by the brain and nervous system. Whetber, upon minute analysis the casein would be found to contain the same proportionate amount of nitrogenous material, I cannot say ; I can only imagine that it would not, from the starving condition that children are in who live upon this milk. The chemical and microscopic investigations I have made of this swill milk prove that it is different in its component parts from country milk, and that the globules which should be contained in it are diseased, dead and broken down, even before it leaves the udder of the cow, and that the majority of the butter globules are coated with a viscid substance, a product of their decomposition, which renders them cohesive and different from those in healthy milk.
"Minute chemical analysis, either vegetable or animal, is yet but imperfectly understood, and nothing is yet known which will detect the numerous gaseous poisons which are absorbed into the system, and float and mingle sorbed into the system, and float and mingle
and destroy the vital properties of the blood and nervous system. Beneath the warm rays of the sun the insalubrious marsh pours forth its pestilential miasma, which prostrates the body in fever; but our senses cannot discover, neither can the microscope or the most delicate
chemical tests detect, anything different from the common atmosphere. Chemical tests cannot detect animal poisons combined with the milk more readily than thoy can detect poisons in the blood; but that distillery milk produces injurious effects when taken into the stomach is as certain as that malarious districts produce ague, or foul unventilated crowded
rooms produce typhus. Chemical analysis rooms produce typhus. Chemical analysis
can at present do but little towards detecting
the peculiar changes that take place in the milk of a woman when she is angry or frightened, or why that change should make the child sick, nor does it tell why thunder should turn milk sour.
"But chemical analysis does point out with unerring certainty that milk or blood in a natural state contains certain well defined elements, and any great deviation from this state renders these fluids unhealthy and unfit for sustaining life, How greatly these differ from the healthy standard, may be seen from the tables. Into the very minute chemical analysis I have not ventured, but physiolorical I gical rosearch, observation and careful at tention to the symptoms of the little patients under my care, have proved to me that the secretions from unhealthy cows have produced sickness, disease and death, and that it is in capable of forming healthy tissues or an active vigorous nervous system."

Aluminum Becoming Cheap

It is only a few years ago that this valuable metal was uncommon and expensive, owing chiefly to the difficulty of reducing it from its oxyde. We believe that about three years ago, the market value was no less than $\$ 18$ per ounce, but so many improvements have since been made in the manufacture, that it now has become cheaper than silver. M. H. St. Claire Deville, of Paris, was the first chemist who succeeded in producing it in anything like large quantities, but his process was very expensive The oxyde of aluminum had first to be converted into a chloride, and from this reduced to the metallic state by sodium in crucible submitted to a high heat. When Deville commenced his experiments, the price of sodium was five dollars per ounce, and it required three ounces to obtain one of aluminum. In a very outcast region of the worldcold Greenland-an aluminous mineral called cryolite has been discovered in great quantities, from which the metal can be reduced a 2 very limited cost, and a large factory has lately been erected at Battersea, England, by M. Gerhard, for this very purpose. 7 To 270 parts by weight of powdered cryolite, 150 parts of common salt, and 72 parts of sodium are added and all mixed togetherin an earth en crucible, which is then covered and ex posed to a red heat in a furnace for $t w o$ hours. The crucible is now removed, uncovered, and its contents poured out, when the aluminum is found in small buttons among the slag. These are again smelted with common salt, and by this means so reduced that when the scum is taken off, the aluminum is poured out into ingot molds. By this short process, M. Gerhard has been able to obtain aluminum at such a comparatively low cost, that he has been able to sell it for about one dollar per ounce.
Aluminum is the lightest of all the metals, its specific gravity being about the same as glass, or four times less than silver. This quality should recommend it for coinage, to take the place of coins of the lowest value It forms an alloy with all the metals but mercury and lead, and is well adapted for electrotyping, as it deposits easily with the galvanic current.
The London Mining Journal states that very useful hard alloys may be made of aluminum and steel. By adding only 8 per cent of aluminum to common steel, a grea improvement is effected, and a steel very similar to Bombay wootz, which is celebrated for making sabres, is the result. If common Kaolin, which contains aluminum, is added to iron when being smelted in a crucible, to convert it into steel, an improved product is the result.
Edward Everett.-We have received from T. H. Leavitt, Room No. 23, Park Building (above our office) an engraving on steel; of this distinguished statesman, orator and scholar It is a highly successful work of art and does much credit to the engraver, H. W. Smith The price of the engraving is $\$ 3$.

Christian G. Ehrenberg.
This distinguished microscopist was born in Saxonia, and is, next to Humboldt, one of the oldest members of the Academy of Science in Berlin. He has devoted the last 40 years of his life to the investigation and microscopic analysis of one order of animal cules, the Infusoria. His patience and per severance are unequaled; and as a reasone on the observations he makes, he is generally logical and sound. The microscope owe him many improvements, and his name stands among the highest of those on Science's scroll of fame. Europe, Asia and Africa have seen him wandering in search of Infusoria recent and fossil, and his agents in America, Australia, and other countries keep him well supplied with specimens-some taken from the bottom of deep seas and the tops of high mountains, from the Arctic regions and the torrid zone. It is said that he makes 40 different microscopical analyses of every specimen. The works from his pen are numerous, his " Microgeology" being the best known and fullest of original thought and interesting discovery. When he is removed by death from the ranks of living men, a place will be left vacant that will not easily be filled up.
Mr. L. Breisach read a paper on the life and discoveries of this eminent naturalist at a late meeting of the Polytechnic Club of the American Institute, which was listened to throughout with great interest.

Infringements.

Messrs. Editors :-Will you do me the avor of answering the following queries:Any person using a patented improvement (knowing it to be such) without the consent of the patentee or owner of the right; is that piracy? and can he be prosecuted successfully on the part of the State as a crimi nal? Is it a Penitentiary act? I am impressed with the opinion that government hav ing granted the patentee an exclusive right and property in his invention patented, makes it piracy for any one to take and use that property without consent of the patentee or owner of the right ; just the same as for any one to take another's horse and convert to his own use and profit without consent or knowledge of the owner.
Yet I know it is usual to prosecute for in fringement and get damages; but if against a poor willful man, what satisfaction can com plainant get? If piracy, then the injured man can prosecute to some purpose, and defend his rights; if it is a criminal act, then there would be less danger of infringements, in such case, one would be more successful in deterring others from using his patent by prosecuting for piracy rather than infringement. I shall feel thankful for any light you may give me on the subject.

A Subscriber.
A patentee may apply to the Court for an injunction to prohibit an infringer from the manufacture of the patented article. And if the infringer disregards the order of the Court, by continuing to make the article after being enjoined, he is liable to punishment by imprisonment for contempt. The act of infringement, however, is not one of a criminal nature.-EDs.]

Belting.-A correspondent-C. Green, of Bethel, Ohio-in alluding to the account of experiments with india-rubber and leathe belting, published on page 216, states that the difference in adhesiveness of belting under different degrees of tension is very great. He asserts that belts kept in proper ordersoft and pliable-have three times the adhesiveness of those made from the same leather, but which are hard and stiff. To keep leather belting in good condition he has never found any thing equal to fish oil mixed with spent gudgeon grease-the grease caught in the waste pans of journal boxes. This makes the leather soft and pliable-an importan consideration, more especially for belting running rapidly over small pulleys.

Sciemce and Ant.

Under a process lately patented in Eng land, this substance is stated to be obtaised from spent soap-lees, by forcing dry steam of a temperature of 400° Fab. through hem. By this means the glycerine is evaporated, and condensed in a separate vessel, upon the common principle of distillation Glycerine has also been used lately in England mixed with paper pulp whereby the paper so made is rendered soft and pliable, and especially useful for some kinds of wrapping paper.

The Coal Oil Controversy.

Messrs. Editors :-Will you allow me to express to you my feeling of sincere gratification at the broad, manly and consistent course that you have pursued concerning the "coal oil" question. It is unfortunately too rare at the present day to find a journalist who will, without fear or reward, boldly defend the truth or the claims of an individual as you have done. And let me say that I do not doubt but that the minds of all your unprejudiced readers are with you. I think that unless an individual is blinded by interest he must see that Young's claim covers the ground justly, if any claim does. Was india-rubber the special discovery or invention of Goodyear? Was it not kuown, and all its qualities as an impervious material perfectly undertood long before his day, yet a patent was obtained for a mode of preparing it so that it could be used for all purposes of life. So, as you remark, Young appears to have been the frst to have so prepared coal oil as to adapt it to, and design it for, the general purposes of illumination.
For one, I thank you for the true, disinterested and manly stand you have taken; although I am no more interested in the question than yourselves, yet I love to see courage, honesty, and generosity. R. W.
New Berlin, N. Y., March, 1859.
[We cannot refrain from the publication of the above letter, as it is from one of our oldest and moit respectable subscribers, and whose calling forbids even the supposition that he is in any way interested in Young's coal oil patent or any other of a like character. He takes a fair and candid view of our position in this discussion, and has also a just appreciation of Mr. Young's rights.

New Horse-Power.

It is not always economical to have a steam-engine to do the work of a farm, but it can never be otherwise than the cheapest in the end for every farmer to obtain some mechanical device with which the strength of the horse can be at any time made available in turning machinery, such as cotton gins, lumber saws, threshing machines, \&c. To provide this device, what are called " horsepowers" have been invented, and the subject of our illustration is one of the more recent of them, which we introduce to the notice of our readers, as this is the season when such things are purchased. It has been tested by the proprietors, by gearing it to a forty-five saw-gin, and two mules were sufficient to turn out from 1,500 to 2,000 pounds of lint per day. It is very portable, and any number of horses from one to eight can be applied to it. The inventors are T. H. Wilson and Brothers, of Athens, Ga
In fixing it for use, it should be secured to some level floor or surface such as A, by pins or clamps. The base of the power that is thus placed is an annular ring, B , provided with cogs and attached to frame, C. On A rest four small cog-wheels, D, connected together by having their axles orshafts atrightangles to each other upon a common ring, E; to this ring, E, is also secured a bar, F, the end of which is prevented from being pulled off by a tire, G , that passing through E is looped at a, on the other side, and so forms an attachment
for the horse, it will be obvious that, although only one is shown in the engraving, as many as there is room for on E can be used. On the wheels, D, rests a ring, H, as large as the lower one, B ; H being cogged on its upper and under surface and from receiving motion through the intervention of D which have not
only a rotary movement but also a progressive one, H performs two revolutions while the horses are performing one, thus doubling the velocity of the machine at the outset. H gives motion to wheels, I , that run on shafts whose bearings are posts of the frame, C , and whose other ends carry bevel wheels, J , close

WILSON'S HORSE-POWER.

o the central upright, C^{\prime}. The bevel wheels, S , give motion through another one to the belt wheel, K, by which the power can be conveyed to any machine desired. By varying the proportions of these wheels, any desired relation between the velocity of the horse an

Plentiful as coals are, they are not to cheap to be wastefully burned. By this we do not mean that waste is at any tims excusable, but it will pay for the labor and time expended, to sift coals and save the cinders to be reburned, especially when the labor consist simply in throwing the contents of the ashpit or stove into a sifter, and the ashes and cinders separate themselves, as in the invention we are about to describe.
Our illustration is a perspective view, with alf the case removed to show the interio arrangements. The ashes are thrown int the top, A, which is inclined inward and brings them to the top of the cone, B. B does not reach quite to the case but is aupported by bars, O, from a ring D, that fits in the case and rests on the top of the seive, C. The ashes and cinders in sliding down the cone are perfectly distributed and fall by their own gravity through the space from O to O on to the seive, C , that is also conical, inclining in wards. The fine dust and ash of course fall through the meshes of the seive on an inclined plate or floor, G, by which it is conducte into a box, H. The cinders, on the other hand
l can be obtained, and this excellent horse power adapted to fast or slow machinery.
It was patented June 1, 1858, and an further information can be obtained from the patentees as above, or John R. Cecil, No. 11 Park-place, New York.
pass through a central tube, E, which open into the lower part of the seive, and are re ceived in their proper box, F. Should the seive at any time become clogged, the top, A can be removed and the cone, B, taken out by its handle, z, and free access had to the seive, to clean it. This device acts entirely by the gravity of the ashes and cinders, and is one of the best ash-sifters we have seen.
Any information concerning it will be given by the inventor and patentee, Allan Cumming of 420 Fourth-avenue, New York. The pat ent is dated March 18, 1858.

Discovery of Noah's Ark.

It appears that in the eastern portion of that good old State whose staple productions are "pitch, tar, turpentine and lumber," some remarkable fossil discoveries have bee recently made, among which, is what ap peared to be a portion of a vessel's deck, some forty feet in length and bearing a close resemblance to lignite. The time has been when the discovery of such a remarkable fossiliferous specimen would have set all th geologists and archmologists of the country their hads ; but this of on their head, but at this enlightened period of the world's history, when the duty of not
only managing, but explaining all things terrestrial, has devolved upon a class of me known as editors, it excites no surprise ; for the simple reason that, whatever occurs on the earth, or whatever is discovered above or beneath, or in the waters around it, is certai of a speedy and satisfactory solution. See how easily the editor of the Wilmingto Herald settles this fossil matter :-
" How this vestige of human labor and ar came there, is a question easy of solution We understand that some erudite geologists say that somewhere in Baden county i found the oldest known geological formation in the world. If this be so, if this is the old est part of the world, it must, of course, hav been the first ready for the residence of man and the first occupied by him ; ergo, the Garden of Eden was somewhere in the Cape Fea egion, which was then a better fruit growing country than it is now. We think Adam mush must form If Al him. If Adam and Eve started life in easter North Carolina, it is not probable that Noah
wandered far from the old homestead. This wandered far from the old homestead. This
supposition gains strength when we consider
how Noah pitched his ark. Where else could he have got so much or so good pitch or othe naval stores to pitch her within and without Following up the train of reasoning, why should not these fossil remains have come down from Noah-be, in fact, portions of his ark? To be sure, the absence of Mount Ara rat is a little in our way, but when we get to be philosophically regardless of all facts that stand in the way of our hypothesis, we won't mind little trifles like this."

artificial Fuel.

Little or no attention has been devoted to this subject in our country, and yet it is one which should not be treated with indifference In England there are several large factorie where it is made for ocean steamers especially and if found to be a profitable business there we do not see why it may not be made so here It is generally composed of coal-tar mixed with saw-dust and coal-dust, all heated together and then pressed into square blocks. Fine coal and sawdust, that would otherwise be considered waste, are thus converted into a useful fuel, capable of being packed neatly and carried to any distance.

Morse Honors.

Professor Morse has received intelligenc that the Queen of Spain has created him Knight Commander of the Order of Isabella the Catholic. The Swedish Royal Academy of Science at Stockh olm has also elected him a foreign member of the academy. Our dis tinguished countryman enjoys these honor with an additional grace when it is remem bered that he has a handsome fortune t couple with them. As the chemist woul say, there is a remarkable affinity betwoe these two elements.

INVENTORS, MILLWRIGHTS. FARMERS and Mandfacturers.
FOURTEENTH YEAR
PROSPECTUS OF THE

SCIENTIFIC AMERICAN.

This valuable and widely circulated journal entere apon its FOURTEENTH YEAR on the 11th of Sep It is an Ilustrated Periodical, devoted to the promu al and Chemionl Abte, Manuf aotures, Agricoltue Patmints, Inventions, Enainkering, Mill Work, an all interests which th
All the most valuable patented discove lineated and described in its issues, so that, as respect nventions, it may be justly legarded as an Illustrate Repertory, where the nventor may learn wail has bee and where he may publish to the world a knowledge of his own achiovements.
Reports of American Patents granted are also pub Patunt Clains. These Pas rom the Patent office Records extresaly for th paper, and published in the SCIENTIFIC AMERICAN in advance of all other publications.
Mechanics, Inventors, Engineers, Chemitsts, Manaof life, will find the SCIENTIFIC AMERICAN to be of great value in their respective callings. Its counsel and suggestions will save them hundreds of dollars an nually, besides affording them a continual source of knowledge,
estimate.
TERMS TERMS OF 8UBSCRIPTION-Two Dollars a Year or Dollar for Six Months.

Southera, Western and Canadianmoney or Post office
tamps, taken at par tor subscriptions. Canadian sub acribers will please to remit twenty-six cents eira on ach year's subscription, to pre-pay postage. For all clubs of Twentr and over, the yearly sub

MUNN \& CO.. Publishers and Patent Agents,
No. 37 Park-row, New York.

