Suntifit Smaran.

THE ADV0CATE OF INDUSTRY, AND JOURNAL OF SCIENTIFIC, MECHANICAL AND OTHER IMPROVEMENTS.

SCIENTIFIC AMERICAN, published weekly
At No. 128 Fulton street, (Sun Buildings,) New York, BY MUNN \& CO.
o. d. munn, S. h. wales, A. e. beach.

Responsible Agents may also be found in all the
principal cities and towns in the United States. Sampson Low, Son \& Co., the American Booksellers,
47 Ludgate Hill London, Eng. are the British Agents
to receive subscriptionsfor the Solst Single copies of the paper are on sale at the office o
publication and at all the periodical stores in this city publication and at all the p.
TERMS-Two DJllars per annum.-One Dollar in
advance, and the xemainder in six months. gents employed.

Improved Magnetic Steam Gage.
This invention consists in combining tight chambered mercury gages for indicating steam pressure or vacuum, with self-adjusting or floating magnets, magnetic needles and index dials, in such a manner as to give true magnetic indications of varying degrees of pressure occurring within steam boilers, or of vacuum in condensers, the mercury, floating magnet, and body of air through which this result is accomplished being enclosed in a chamber, without the necessity of employing any communicating means with the exterior dial plate likely to affect the accuracy of their movements, the whole being of such a character as to be adapted to the knowledge of the engineer, and completely under his control, and susceptible of being tested at any time, and adjusted if incorrect while in position for work.

In our engraving, Fig. 1 represents a front clnvation of the improved magnetic pressure gage, with the needle indicating thirty pounds pressure. Fig. 2 is a front view of the gage, with the dial plate removed, to expose the contents of the same; and Fig. 3 is a vertical section of the same. Similar letters in the figures refer to corresponding parts.
The magnet, D , having a north and south pole, may be about four inches in length, and is provided with pivots, A, at the center, upon which it is hung within a small pressure or vacuum gage chamber, C, formed by a brass index or dial plate, B , and a dish-shaped iron casting. The length of the magnet should not be increased, for the reason that when the magnet and needle are placed at right angles their points are so remote that certain action cannot be relied upon. The exact form of the magnet is not material, except that one arm is required to be larger than the other, so as to ensure its floating in relation to the surface of the mercury represented, and rising and falling with it. The magnetic needle is made and suspended outside the dial plate in the ordinary way, and corresponds in length with the magnet, D. E is a stop, for preventing the poles of the magnet from changing sides in the chamber, and thus insuring the true position of the magnet and index point of the needle. F is a bent tube, which acts as a receiving chamber (in place of which a secondary chamber may be constructed within the body of the instrument) for the mercury, while charging the gage with the same, previous to the application of pressure, and from which tube or chamber the mercury is forced by the pressure of the steam into the chamber of the gage in the exact ratio of the pressure applied. At the top of the chamber, C , is an opening, G , for the purpose of charging it with mercury to adjust the point of the ${ }^{3}$ needle to the scale on the index. To deter-

| mine this, mercury should be poured in until | of mercury. The index for vacưom may be | and charging the gage, as before stated, for a |
| :--- | :--- | :--- | the point of the needle points to zero, or to the made on the opposite side of the same dial $\begin{aligned} & \text { pressure gage, or by filling the entire cham- }\end{aligned}$ 0 on the index, when the opening is closed by plate, and the same instrument may be used a plug, or other means, and the instrument is in working order. The index on the dial plate is correctly graduated under a column changing the connections from a boiler to a

LOWE \& BARNUM'S MAGNETIC STEAM GAGE.

through the brass dial plate will at all times keep the two parallel, and that moreover the engineer can at all times properly adjust the needle to the dial plate by simply shutting off the pressure of the steam from the boiler by closing a cock, removing the plug from the opening, G, and after setting the instrument again inserting the plug and closing the cock. This important feature places the instrument
under the sole control of the engincer, and enables him to test its accuracy at all times -a desideratum not possessed by the ordinary steam gages in use.

It was patented by Joshua Lowe and Daniel Barnum, on the 8 th of July, 1858. Any further information can be had by addressing Daniel Barnum, No. 2 Sussex Place, Jersey City, N. J.

GLEASON'S CAR COUPLING.
Fig.I

Ti, 2
Tilatig. 3

We have often had occasion to point out the advantages which would be obtained by the use of some improved coupling that would prevent the necessity of persons passing between the cars when liable to move, to couple them, and that would allow of the cars being easily detached from the platform, in case of accident. We now reiterate the enumeration of these desirable ends, and proceed to describe the coupling which is the subject of ur engravings.
Fig. 1 is a perspective view of the coupling
box, A, having its mouth flared as usual, and in which the link, B , is secured. C is a cross bar that projects slightly above the platform, and is supported by two bars, a, which are connected at the bottom by a cross bar, c. This is seen in Fig. 2, which is a horizontal section of the coupling box, and also in the vertical section, Fig. 3. The cross bar, c, is kept above the level of the bottom of the box by the spring, D , attached to the box at d. There is a proper recess in the box to
the plane of the bottom of the box, b_{y} pressure on the cross bar, C. E is a loose tongue, hinged to the upper side of the coupling box, and hanging with its lower end in contact with and behind the cross bar, c, when it is in an elevated state.
The operation is as follows :-When the coupling is in its normal state with the bars, c and C, in the position shown in Fig. 3, the link can be pushed in, and as it enters it lifts E , passes under it , and E drops into the link, forming a perfect lock, as the bar, c, prevents it from coming forward, this car can now be run against another, and the projecting portion of the link instantly couples itself in the other car. When it is desirable to uncouple the cars, all that is required is that the bar, C , be pressed with the foot, and consequently c is pushed into the recess, allowing E to swing forward, and the link instantly disengages itself from the car.
The inventor is F. E. Gleason, of Columbus, Ohio, and additional particulars can be obtained by addressing him or Mr. John Short, of the same place. It was patented May 18th, 1858.

A New Application of Science
A photographer in London-Mr. H. Wat-kins-advertises to get up visiting cards with the caller's portrait on one corner. We shall probably soon be receiving letters with the writer's face indelibly portrayed at the top of the sheet.

Machine for Pegging Boots and Shoes.-S. D. Tripp, of Stonehaven, Mass., objects to our note, headed as above, on page 345 of the present volume of the Scientific American, and says that he has a ma
that will peg boots and shoes perfectly.

Stientific Ammrican.

Issued from the United States Patent onfe for the weik dnding july 20,1855 . [Reported officiaily or the Scientrfic American.]

[The nature of this invention is in the use of a chair winh extends from one tie to another, in conjanction their meeting ends, and an cllipticaal or shpheroidal
band, which passest hrough the slots in the ends of the band, which passes through the slots in the ends of the
rails and underneatht the chair, and is astanenced by an
in
 so securres the joints of rails that the weight of the en-
gine and train over the same does not depress or deflect the point of junction to a greater degree than
other portions of the rails are depressed. It also presents a safeguard against displacement of the rails
either by thrust or lateral motion.]
 Coninination or Electro and Prinantint Mag-

 TThis washing machine consists of of tub with a fluted
concave bottom and a fulted rubber, which is hung concave bottom and a fluted rubber, which is hung
above, and vibrates over kaid bottom , he clothes are
attect and the concave tub bottom. The rubber is suspended bys springss so os to allow of any desired foree being ap-
piled to the clothes, without the necessity of the operapiled to the clothes, without the eecessity of the opera-
tor being compelled to bear the labor of ifting the rubtor being compelled to bear the labor of inting the enw
ber to apply said force. It is also rendered fexible by
hin ged joints, so as to a accommolatate itself to any bunch. ing of the clothes beneath it. This is one of the simplest washing machines ever patented, and it performs
the operation of washing clothes in a manner somewhat similar to the human hands.]

 This machinc is designed for sharpening old cotton
gin saws without the necessity of removing them from the erra.. The machine is exceedinglys sinple, and is
placed on the sav, and feeds it by its own teeth. We have seen the machine operate, and it certainly does
work perfectly. The saw teeth are sharpened with
 saws can be sharrenecd in ajout five hours,
hand it usually requires two or three days.]
Prows-G. D. Colton, of Galesburgh, Ill: I claim
arranging the frame, B , secured to the axie, C, as de--

$$
1
$$

Our Reward.

Often in this world of ingratitude and selfishness where every man is for himself, we are pleasantly surprised on opening our letters, to find that many contain thanks, and kind expressions of good-will, proving that inventors have not yet been corrupted by this world's ways. One morning last week we received four such, from which we make the following extracts :-
E. Sirret, Jr., of Buffalo, N. Y., writes: "I have reccived the patent which you secured for me. I am very thankful for the efficient manner in which you conducted my business. and when I or my father have more to do in that line (as we hope we shall soon) we shal that line (as we hope we shall soon),
most certainly call upon you again."
most certainly call upon you again."
B. Hazen, of Cincinnati, Ohio, says
B. Hazen, of Cincinnati, Ohio, says: "I
have received from the city of Washington my Letters Patent for a corn husker, for which please accept my very grateful acknowledgments."
Joshua Tetlow, of Taunton, Mass., says "I take great pleasure in informing you that the patent on my cotton gin, issued on th 13th inst., and that I received it this morning I feel glad that I entrusted you with the pre paration of the necessary papers; and I assure you that if ever I should have any more pat ent business, I shall surely engage you to at tend to it."
John F. Taylor, of Charleston, S. C., remarks: "I have this day received my Letters Patent, and thank you for the promptness with which you have attended to all business I have ever entrusted to your care;" and again he says, "I would also state that I have been a regular subscriber to the Scientific American for a number of years, and have
from it much valuable information."
rom it much valuable information."
These and many more of a similar charac ter which we receive daily (the above being
but the result of a single mail) give us much pleasure and satisfaction, stimulating us ever to watch with care our clients' interests, and constitute apart from business relations, our almost hourly reward.

To Restore Writing.

Many documents that have been written with bad ink after a certain time fade, especially if they have been kept in a damp place, or if the paper that has been used has been over-bleached in its manufacture. Sometimes ship letters get wetted with sea water, and many other causes obliterate writing that is of much value. In nearly all instances such writing may be restored, or at least rendered legible, by brushing over the half distinct lines with a solution of prussiate of potass with a camel's hair pencil. The solution may be made by dissolving about half a teaspoonful of prussiate of potass in a tablespoonful of boiling water. For certain chemical reasons this does not answer in all cases, and when it fails we may use the following with good hopes of success :-First, a strong infu: son of tea, made with a teaspoonful of black tea in half a cup of boiling water; or, secondly , a solution of carbonate of soda made in the same manner; or, thirdly, a quarter of an ounce of protosulphate of iron (green vitriol) in a like quantity of water. A last resource is a solution of sulphuret of potassium (liver of potash) of about the same strength as the preceding solutions. In trying to restore writing, we ought to begin with only one or two words, because if the first solution does not answer, we then have an opportunity of trying the others successively until we discover which answers best; but, as a general rule, it may be relied on that the first-named is the most likely. These trials are equally adapted for writing upon parchment as on other material.
S. Piesse.

Lougevity of Persons Engaged in Diferent ccupations.
Thre Legislature of Massachusetts have had some tables prepared to show the mean average of life attained by individuals engaged in various employments, and from which we cull the following interesting facts:-Bank officers are the longest lived, their average being 68 to 76 ; next judges and justices, 65, and then agriculturists whose average is from 63 to 93 . Clergymen, coopers, gentlemen, public officers and shipwrights average from and between 55 and 60. Blacksmiths, butchers, calico printers, lawyers, hatters, merchants, physicians, and ropemakers attain ages varying from 50 to 55 . Carpenters, masons and traders live from 45 to 50 . Bankers, editors, jewelers, manufacturers, mechanics, painters, shoemakers and tailors average from 40 to 45 . Machinists, musicians, and printers live from 35 to 40 , and est lived of all being, only from 30 to 35 . Of course, it is not necessary that a person who follows any of the above businesses should die at a definite age, but still the table gives a very good test as to the effect of employment in wearing out the human frame.

Gold Solders.

No. 1.-Composition: Gold, 4 parts; silver, 3 ; copper, 1 ; zinc, $\frac{1}{2}$.
No. 2.-Gold, 3 ; silver, 3 ; copper, 1 ; zinc, $\frac{1}{2}$.
No. 3.-Gold, 2 ; silver, 3 ; copper 1 ; zinc, $\frac{1}{2}$.
The gold, silver and copper must be fused in a crucible, before the zinc is added, because the latter is a volatile metal. When these metals are completely fusedthey must be well stirred, and run into bars. Solder No. 1 is is for gold sixteen carats fine and upwards; No. 2 for 14 carat gold; and No. 3 for gold of lo.wer qualities. If more zinc is added to any of the above solders it will flow at lower heat, but the color is not so good. If care is exercised by any jeweler in making these solders, they will be found sufficient for all his soldering operations.

The Bottom of the Atlantic.
It has now been satisfactorily ascertained by Lieut. Maury that the basin of the Atlantic ocean is a long trough, separating the Old World from the New, and extending probably from pole to pole. From the top of Chimborazo to the bottom of the ocean, at the deepest place reached by the plummet in the northern Atlantic, the distance in a vertical line is nine miles. The deepest part of the north Atlantic is probably somewhere between the Bermudas and the Grand Banks. The waters of the Gulf of Mexico are held in a basin about a mile deep in the deepest part. There is at the bottom of the sea between Cape Race and Newfoundland and Cape Clear in Ireland, a remarkable steppe, which is already known as the "telegraphic plateau." The great circle distance between these two shore lines is sixteen hundred miles, and the sea along this route is probably nowhere more than ten thousand feet deep.

Novel Insect Trap. of fly and other ins.

Patentees of fly and other insect traps had better sell out their inventions at the highest offer. Our reason for this advice will be shown by the following: -An Illinois correspondent gives us an account of a new insect trap that will no doubt be very successful. He says-" In the first place, you must procure a large toad, such as St. Patrick banished from Ireland (good luck to him), which are easily tamed, then make a small box with a hole near the bottom, so that the toad can put his head out; drop some molasses on his back and put him in the box; his tongue is three inches long, and he can catch any insect that comes within his reach. This trap is not handsome but useful." The inventor thinks it especially applicable for catching fleas, but if we should chance to have a flea for a bedfellow, we should certainly prefer his company to that of a toad alongside in a box, but the suggestion is ingenious and decidedly novel. What next in the trap line? We should like to know.

A Compensating Clock Pendulum.

A clock recently introduced in England has a peculiar compensation glass pendulum, and a barometric contrivance, to prevent the error arising from the density of the atmosphere. The metallic compensation is effected without any friction, by the ascent and descent of two spring levers, with three adjustable weights, and which lengthen or shorten as they rise or fall. The mode of compensating is regulated by a screw in the top of the ball, which, in case of heat, is moved towards the center of motion of the spring lever, or in the contrary direction in case of cold. The glass rod is attached to the pendulum spring by means of a screw cut on it, and below a glass regulating nut works into a glass screw, cut on the bottom of the pendulum rod.

A Fat Fish.

The siskawit, a fish of Lake Supcrior, is reported to be the fattest fish that swims either in fresh or salt water. The fishermen say that one of these fish, when hung by the tail in the hot sun of a summer's day, will melt and entirely disappear except the bones. In packing about fifty barrels, a few seasons ago'at Isle Royale, one of the fishermen made two and a half barrels of oil from the heads and leaf fat alone, without the least injury to the marketableness of the fish. Besides this leaf fat, the fat or oil is disseminated in a ayer of fat and a layer of lean throughout the fish. They are too fat to be eaten fresh, and are put up for market like the lake white fish and Mackinaw trout.

Facancy in the Patent Offce.
Since the discharge of the chief examiner from the steam engine department of the Patent Office, some months ago, many complaints have been made by inventors of steam machinery that their cases are not acted upon, while applications filed upon inventions in articles coming under different classes are
almost immediately taken up and disposed of.

We are assured that this cause of complaint will be speedily removed, and we trust our friends who have cases pending in the engine class will use as much patience as they can, and we will do all in our power to facilitate the Office in finding a capable person to take charge of the above department. The delay is no fault of ours. Have a little patience gentlemen! Your turns will surely come.

Method of detecting Decay in Timber.
We learn from the Cosmos that a simple method has been adopted in the shipyards of Venice, from time immemorial for testing the soundness of the timber. A person applies his ear to the middle of one of the ends of the timber, while another strikes upon the opposite end. If the wood is sound and of good quality, the blow is very distinctly heard, however long the beam may be. If the wood was disaggregated by decay or otherwise, the sound would be for the most part destroyed.

Recent Patented Improvements.

The following inventions have been patent ed this week, as will be found by referring to our List of Claims :-

Machine for Cutting the Heads of Casks.-A. D. Stewart, of Bennington, Vt., has invented an improvement in that class of machines for cutting cask heads in which circular concave saws are used. The invention consists in using in connection with a circu lar concave saw, and on the same mandrel, a cutter formed of two or more saws, arranged in a novel way, whereby the heads are cut out from the stuff, and a bevel cut on both sides of the heads at one operation, the work being performed in a very perfect manner.

Sole Cutter.-By an arrangement of a cutting knife in a proper frame, this inventor causes it to follow a pattern ; and with its aid any number of boot and shoe soles can be cut from leather or other material exactly according to a given pattern, by the mere turning of a crank. John Crawshaw, of Rochester, N. Y., is the inventor.

Apparatus for Hanging up and Carrying off Paper-Hangings.-Wall paper being printed in such great lengths requires some system of laths over which the paper can be loosely thrown to dry. This invention consists in a certain arrangement of belts for carrying the laths, whereby, as the paper is formed into festoons, the sides of the festoons are prevented striking each other, and smearing, or otherwisc injuring, the wet impression or coating. It further consists in the application of springs to the lath-feeding box, to allow laths of varying thicknesses to be used, and to permit laths that may be warped to pass throngh, and yet never to allow more than one lath at a time to pass out. The in ventor is Theodore Vandeventer, of New Brunswick, N. J.

Mode of Casting Hinges.-This is an improvement in casting that kind of hinge in which a central pin is dispensed with, and a jointed connection formed between the two parts or leaves of the hinge by means of seats or projections at the ends of the knuckles of one leaf, a part of which fits in a corresponding recess in the ends of the knuckles of the other leaf, the joint being formed by casting one part in a mold partly formed by the other part, or in other words. casting one part with the other. The invention is designed to obviate the difficalty hitherto attending the free movement of the joint, and to dispense with the labor or finishing now requisite, in order to perfect the hinge when cast in the usual way. This is effected by casting the knuckles of such form that their inner halves will be portions of cylinders of less diameter than their outer halves, and thereby allow a space between the face side of each knuckle, and the edge of its adjoining leaf, so that a perfectly free moving joint is obtained when the hinge is cast, no extra labor or finishing being required. Conrad M. Lane, of Cincinnati, Ohio, is the inventor.

aflcu finburtions.

Patent Safety Air Pump Attachment.
Patent safety Air rump Attachment.
This improvement is designed to render nearly the whole capacity of the air pump of a marino engine available as a water pump to free the hold of a ship in case of accident, or from the ordinary accumulation of bilge water, without in any way interfering with its efficiency as an air pump, or impairing the vacuum in the condenser.
Our engraving represents a vertical section of oae of the air pumps, condensers and hot wells of the steamship Arctic, lost some years since between Liverpool and New York. The condenser is represented provided with the ordinary injection pipe, B, to which a bilge injection may be attached if desired. A channel way, C, provided with foot valves, D D, leads from the condenser to the air-pump, E , in which moves a piston, F, having in it a proper bucket valve and seat, G G. This pump is in connection with a hot well, $\mathrm{H}-$ praper delivery doors, J J , being applied between the two -which hot welt commanicates with the outside of the ship, through a pipe, K , commonly known as a disclarge or waste pipe, through which the air, water, and vapor delivered by the air pump pass overboard. What constitutes this improvement is the attachment to the body of the pump, near the top thereof, of an independent suction pipe, L, which pipe, L, extends down into the hold of the ship, and is provided with a screw stop valve, O , and two ordinary ball valves, P Q, one of which latter may be dispensed with if desired. When the stop valve, 0 , is closed, the air pump, E , operates precisely the same as before the pipe, L , is attached. When, however, the valve O is opened, there being water in the hold of the vessel, and after the piston, in its upward stroke, has delivered the water from the condenser, and commenced its descent, leaving a vacuum above the bucket, water will, by the pressure of the atmosphere, rise through the pipe, L, lifting the ball valves, P and Q, in its passage, and fill the pump as the piston descends, until the air, vapor and water below the piston, drawn from the condenser on its previous up stroke, by their superior pressure, open the bucket valve of the piston. The said bucket valve then passes into the channel way, C , and again takes hold of the condensing water, in the same manner that it did on its previous stroke, and as it re-ascends will again exhaust the condenser of water, air and vapor and at the same time deliver the whole contents of the air pump, comprising the water drawn from the condenser, and that drawn from the hold of the vessel, through the pipe, L , into the hot well, H , and from thence through the discharge pipe, K , overboard, and thus it will continue to act as long as there is water in the hold.
Another advantage results from the use of this invention in the fact that all the chips, coal, \&c., that may be drawn from the hold, instead of being drawn into the condenser and through the channel way, C, and foot and bucket valves, D G, tending to choke them up, as is the cise in the employment of the ordinary bilge injection, is drawn directly into the pump, above the bucket and foot valves, and thence through the hot well and pipe, K, overboard. It, moreover, gives a pumping capacity far exceeding any pump ing apparatus heretofore known, and being a necessary part of the main engine, it is not liable to fail, and is ready for all emergencies. It does not require increased machinery except the simple attachment of the suction pipe, L, and valves, O P Q, but simply renders the machinery already working on board steam vessels at all times available, without additional power to the pumping capacity demanded for public safety, and it is applicable To illustrate the benefits of this invention a means of security to life and property, the inventor mentions that had the ill-fated steamer Arctic been provided with this simple
attachment, her hold would have been kept \mid five feet stroke, making 196 cubic feet perresufficiently free from water to have enabled her to have been properly sustained and brought safely into port. To substantiate this opinion he gives certain facts in relation to this vessel as follows:-The two air pumps of volution of the engine. The average number of these revolutions per minute was twelve, showing an aggregate of 2,352 cubic feet, equal to 67 tuns of water per minute or 4,020 tuns per hour, which the air pumps on board the Arctic were capable of discharging had

BARNUM'S SAFETY AIR PUMP ATTACHMENT.

they been provided with this simple attachment. Her whole tunnage was less than 3000 tuns, so that the capacity of the air pumps to
discharge water from the hold per hour, at their average speed, exceeded the actual tunnage by more than one quarter, and therefore it is clear that with this improvement, it would have been impossible for her to sink under a leak less than wotild sink her under ordinary circumstances in one hour. It fol-
lows, then, that as the Arctic was over five hours in filling and sinking, had this improvement been attached to the air pumps, the noble vessel with all her treasure in life and property would in all likelihood have been safely brought into port.
This invention was patented May 4, 1858, nd any further information may be obtained from the inventor, Daniel Barnum, No. 2 Sussex place, Jersey City, N. J.

BRADEN'S IMPROVED LOCK.

Mig. 2

This invention consists in the use of a series of slides provided with teeth or racks, and ar ranged with a bifurcated bolt into the parts of which the ends of the slides work or pass, and a series of bits attached to separate arbors placed one within the other, and operated by means of keys or knobs.
In our illustrations, Fig. 1 is a horizonta In our illustrations, Fig. 1 is a horizontal
one, and from them and the following description the lock will be understood.
A represents the case of the lock which is of metal and of the usual quadilateral form. The bolt is formed of two bars, B, being connected at their inner ends by the bar, C , that is connected by a rod, D , to a crank pulley, E, on the end of the shaft of the knob, F . By , on the end of the shaft of the knob, F. By section of the lock, and Fig. 2 a transverse this means the bars, B, are moved in and out cal
by turning the knob, F. The bars, B, work, one at the upper end and the other at the lower end of the case, A , and between the top and bottom plates of the case and longitudinal plates, $a a$, the inner ends of a being connected to a bar, b. G. represents a series of slides which are placed one over the other and fitted together, each slide having a longitudinal recess, c, made in it, at one side of its center and a projection, d, at the opposite side, the ledge or projection of one side fitting into the corresponding recess of its adjoining one. The ends of the slides, G, pass through openings in the plates, a; corresponding openings being made in the bars, B. The slides, G, are made of such a length that when adjusted centrally with the case, their ends will be flush with the outer edges of the first mentioned opening, and springs, G^{\prime}, are fitted in the case to keep the slides in their proper place. To the front side of each slide, G, a series of teeth, h, are attached, and in addition to these there are some yielding or elastic teeth, h^{\prime}, placed one at each end of the teeth, h, giving or yielding only in one direction, and being perfectly rigid in the other.
H represents a series of bits which are at tached to bosses, i, each of these being attached to arbors, $j k l m$, fitted one within the other, each arbor being allowed to work independently of the others. Each arbor passes through the outer plate of the lock, and each is provided at its outer end with a knob or thumb wheel, n. The bits, H, are so placed that one will be opposite each slide, G, and the bits are placed at such a distance from the teeth, h, of the slides, that the bits will gear into them, and move the slides as the bits are turned.
The bars, B, when pushed outward from the case, A, are retained in that state by the slides, G, which are moved promiscuously, so that their ends will projectinto the openings in B, some of the slides fitting into one bar and some into the other, and in order to shut the bars back into the case, A, the slides, G, must all be so moved that their ends will be flush with the outer edges of the openings in the plates, $a a$. This is effected by having a mark, g, on each knob or wheel, n, coinciding with the position of its bit, A, and then when the lock is locked, the person must note the movement he gives each slide by counting the turns of the knob or wheel, n, through which it was moved, or an index plate may be attached to the outer plate of the lock in order that the position of each slide may be noted by the person who locks the lock. This being done, the same person of course can move the slides in proper positions, so as to liberate the bars, and therefore allow them to be moved back by turning the knob, F. The elastic teeth, h^{\prime}, are to prevent the bits, H , being stopped, wlien the slides have been moved the full extent of their movement in one direction, the teeth, h^{\prime}, yielding to the action of the bits. When, however, the bits act upon the teeth in the opposite direction, that is, the direction in which the slides cian move, the teeth, h^{\prime}, will not yield or give, and the slides will be moved, the teeth, h^{\prime}, acting in the latter case as stationary teeth. By means of the yielding cogs the positions of the slides are prevented from being discovered by being tampered with, the bits being allowed to turn completely round any number of times. One or more of the slides, G, may be used, and the lock therefore made as complex as desired, and placed beyond the reach of burglars.
This lock is the invention of Mr. Joseph A. Braden, of La Grange, Ga., to whom a patent was grauted June 8, 1858, and from whom any further information can be obtained.

New Horse Feed

Mr. R. Long has obtained a patent in Great Britain for an improved preparation of food for cattle, which consists in mixing hay, straw, and lucerne, chopped small, with oats, bruised or partially crushed, and cementing them together with vegetable mucilage mixed with common salt, then pressing them into cakes.

Scientific Americant.

NEW YORK, JULY 31, 1858.

The Lives of Eminent Men

In lately reading the life of the French mechanician Jacquard, whose name has been immortalized by his inventive genius, we were forcibly struck with a conviction of the important lessons conveyed in the simple narrative of his every-day transactions, and of the benefits that would accrue to the youth of the benefits that would accrue to the youth
of our country if the lives of such eminent of our country if the lives of such eminent
men, whether distinguished in the world of men, whether distinguished in the world of
arts, letters, or other useful avocations in life, could be displayed before them in the same familiar and instructive form. Knowing full well the passion we are sometimes apt to contract for the most insignificant appendages to the favorite objects of our attention and regard, we do not wonder that the historian who properly comprehends his task does not hesitate to descend into what at first sight might be thought unimportant details. We think it is much to be desired, and should always be an object of attention to those who are employed in writing the lives of eminent persons, or in compiling materials from the works of others, to select such of their actions as are most characteristic of their genius and disposition. A trifling and seemingly inconsiderable action, an expression or word
in a man's unguarded moments at home or in a man's unguarded moments at home or conveys a perfect idea of his genius and character, and serves as a key to most of the greatest and important actions of his life. And if these inferior indications of a man's life ought not to be omitted, much less should the greater and more important elements of his ability and character.
It must ever be acknowledged in favor of those who undertake to instruct us in the transactions of past ages, who faithfully draw from life, and accurately delineate the actions and characters of mankind, that they open before us a noble fund of rational enjoyment, and are, at the same time, of the most important service in directing the minds of men to virtue, and exciting them to an honorable and worthy conduct. Whilst they are calling forth into exercise the most generous principles of the human heart, in instructing us in the nature and obligations of private and social virtue, it must be allowed that they increase our general knowledge. The actions and characters of men it is alike their province to describe, with this principal difference, that the former represent them in the public and more active scenes of life, and as they af fect the general course of human affairs, whereas the latter, without omitting the public, leads us into the more private and domestic situations, makes us acquainted with the whole circle of a man's friends, lays open his connections and correspondence, the plan of his education, the method of his studies, his leading views in life, and the manner in which he employed his time, and introduces us to the knowledge of a var sty of circumstances of the greatest import: nce in judging of his character and manners the whole affording very useful hints for others to improve upon.
There have been many philosophers, mathe maticians, mechanics, and others, at various eras of history, who have in a remarkable manner supported their characters, distinguished themselves in their professions, and merited favor by the service they have rendered mankind, and whose lives if properly detailed, would serve as instructive lessons to others. To render them of general and extensive use, however, they should not only be written with the greatest truth and exactness, without the errors too of ten consequent upon the partialities of friendship or the
influence of prejudice, but those gentlemen influence of prejudice, but those gentlemen
who have taken upon themselves the noble duty of perpetuating their memories and worth should search into the records of the
periods in which they existed, and collect and dispose other facts of interest which have transpired in connection with them. Upon such a plan as this it would be easy to see what advance any art or science had made at
a particular time, who were a man's predecessors in the same art or profession, and what advantage he enjoyed from them. As we come down, as materials increase, and
knowledge and the arts advance, a more extensive account of such cotemporaneous and useful events may be given, and a correspondingly increased interest and benefit attached to the lives of praiseworthy characters. so that in celebrating the virtues of good men who have been the ornaments of human nature, and whose works have benefited their fellow men, the candid chronicler will not only perform a highly useful and delightful duty, but convey to his readers the most comprehersive and instructive

The Habitual Use of Spirits

We are all of us more or less aware of the directly visible injurious effects produced by the habitual use of intoxicating drinks, in the follies and vices, the absorption of all the generous feelings, all the tender humanities and sweet charities of love, while the heart is held under its sway; but few of us know the full extent of the change produced by it, both in the mental and corporeal faculties. The British and Foreign Medico-Chirurgical Review shows that the habitual use of spirits arrests that metamorphosis of tissue which is necessary for health, leaving the effete tissue as a useless burden in the body, to be converted into that least vitalized of all the organic constituents, oil and fat, till finally life itsel
is clogged at the fountain-head. Thousands is clogged at the fountain-head. Thousands
of men, according to the Review, who have of men, according to the Review, who have
never been inebriated, annually perish, having shortened their lives by tippling a little every day. The dram arrests the metamorphosis of tissue, another dram is taken before this arrest ceases ; the re-action, thus postponed, becomes more intense ; the depression is excessive; more drams are taken; and so, in the end, without ever having been intoxicated, the tippler sinks into the grave, presenting the strange anomaly of a reasonable being periodically applying a poison which is sure to impair and eventually destroy the vitality of the body, and divert the nobler impulses of the heart from that course which consecrates it to a heaven-born life. The effect of drinking spirits is different from that produced by wine, for wine is rarely used except at meals, so that the effects have time to pass away before a second dose becomes due, and hence no craving for an increased quantity is experienced. Men are now living, in consequence, in robust old age, who have taken the same identical number of glasses of wine daily for half a century, without feeling it necessary to increase the quantity.

Efect of too much Acid on the System. There are many persons in the world, who, thinking themselves either too thin or corpulent to accord with their beau ideal of symmetry and beauty of person, are constantly exercising their minds with a view of increasing
or diminishing their rotundity, and in many cases applying remedies for their supposed defects, which eventually destroy their health. Young ladies of full habit, fearing further innovation upon the symmetry of their waists, are not slow to resort to copious and constant draughts of acidulated liquids, without reflecting that they impair, and, in fact, arrest
the operation of the digestive organs, when taken beyond a certain point. There is reason in the vulgar notion, unhappily too fondly relied on, that vinegar helps to keep down any alarming obesity, and that ladies who dread the appearance of their graceful outline in curves of plumpness, expanding into fat, may arrest so dreadful a result by liberal po-
tations of vinegar ; but this can only be accomplished at the far more dreadful expense of health. The amount of acid which will
keep them thin will destroy their digestive
powers. Portal gives a case which shorila be a warning:-"A few years ago a lady in easy circumstances enjoyed good health; she was very plump, had a good appetite, and a complexion blooming with roses on a polished ivory ground-work. She began to look upon vory ground-work. She began to look upon
her plumpness with suspicion, for her mother her plumpness with suspicion, for her mother
was very fat, and she was afraid of becoming was very fat, and she was afraid of becoming
like her. Accordingly she consulted a woman, who advised her to drink a glass of vinegar daily. The young lady followed the advice, and her plumpness diminished. She was delighted with the experiment; but she soon began to experience the evil effects. A cough and slow fever came on, with a difficulty of breathing; her body became lean and wasted away, swelling of her lower limbs and feet succeeded, and a diarrhea terminated her life."
If ruddy and rotund young ladies pine for graceful slimness and romantic pallor, let them avoid vinegar and other acids destructive to health, and either accept, with a laughing grace, what nature has bestowed on them, or else practice a proper regimen and system of habits, to avoid what they so much dread. Take plenty of exercise, be less indolent, and more moderate in the quantity of sleep indulged in, as much sleep implies much inactivity, and leads to an accumulation of fluids in the body, and the consequent deposition of fat in habits predisposed to secretion. Those, on the other hand, who wish more obesity, we would advise to indulge in good feeding, composed of plenty of farinaceous food, with but little meat, and plenty of pure fresh water, and lead a calm life, free from mental inquietude.

A New Gold Excitement.
Since the days when the grandees of Old Spain looked upon the continent of America as a land of gold, and the love of wealth made them forget their family pride, and the time when Sir Walter Raleigh risked his life on the broad Atlantic to visit the western El-dorado-not in a steamship or a modern clipper ship-from these times to to-day this continent has been subject to the best kind of yellow jacks, namely, gold fevers. California has been made by one, and no sooner do we see her rising a prosperous State, and able as it were to walk alone, without the stimulus of gold washing, than a new field is opened up for the restless miner, and gold in plenty is discovered far north on the Pacific Coast. Thousands have left California for the new gold field, which is in the valley of the Frazer river; in the British possessions, flowing from the Rocky Mountains into the Gulf of Georgia. There would seem to be no humbug in the excitement, and the gold discovered has been really astonishing, many miners report having collected almost fabulous quantities of gold. The Hudson Bay Company have the control of this portion of the country, and we are inclined to think that the discovery of gold in their territory, and consequent enormous immigration, will do more to break up this disgraceful monopoly than all the Reports which the British House of Commons have been making for the same purpose during the last few years. The Indians who inhabit the district belong to the Chinoors tribe, and are already familiar with the whites from their intercourse with British and Freneh trappers, and will no doubt prove of valuable assistance to the miners. We also see that some English capitalists propose to make a great Pacific Railroad in connection with the Grand Trunk of Canada, and their surveyors are already in the field planning the line from Lake Superior through-this same territory to Vancouver's Island in the Pacific Ocean. This will increase the value of the gold mines, and render the journey there easy. Imagine the Great Eastern to Portland, railroad to Montreal, crossing the Victoria Bridge, from thence by boat and rail to the Pacific-only seven thousand miles by steam -through the finest scenery in the world, and over the greatest engineering triumphs mankind has ever seen. Truly America and England are great countries, and the people rather go-a-head.

The Gibbs' Interference Case
Among the patents issued on the 13th inst., we find that of James E. A. Gibbs, assignor to John H. Ruckman, being a re-issue of his patent dated June 2, 1857. The issue of this renewed patent terminates one of the most severely contested interference suits that has ever been tried in the United States Patent Office. A brief history of this case may prove not uninteresting to our readers. As above stated, Gibbs obtained letters patent for an improvement in sewing machines on the 2 d day of June, 1857 ; and in September following, A. F. Johnson, assignor to himself and F. F. Emery, filed an application for a similar invention and demanded an interference. Upon examination of the evidence presented on both sides, priority was decided on the 6 th day of March, 1858, in favor of Gibbs. Instead of appealing to the Circuit Court of the District of Columbia, the attorney for Johnson made a successful attempt to obtain a second trial within the Office, which, however, resulted in the dissolution of the interference, the Commissioner deciding that Johnson only claimed a peculiar construction of hook, consisting in a specified combination and arrangement of parts, which claim, he thought, might be allowed. Gibbs' assignee, not satisfied with this decision, insisted that the question of priority be decided. He accordingly caused the suspension of the issue of Johnson's patent, surrendered his patent, and applied for a re-issue of the same with a claim covering Johnson's modification. This having been examined in connection with the evidence before the Office, the Commissioner granted the patent to him, thus acknowledging Gibbs' priority and title to a broad claim. Both Johnson's and Gibbs' patents were or dered to issue simultaneously, but delays oc curred in the issue of the latter on account of an error in the records of assignments.

Our Prophecy Fulfilled.

On page 333, of the present volume of the Scientific American, we expressed our views on the plan about to bè adopted to disinfect the Susquehanna, and we entered our protest against removing her stores at this season of the year, prophesying disastrous consequences from such a very fool-hardy proceeding. Well, our learned Board of Health and sapient officers of Quarantine knew better, and despite of warning, continued their operations. The result will be seen in the following paragraph, copied from the New York Tribune of July 22d, under the head of "Quarantine Matters":
"The United States ship Susquehanna appears to be situated about as badly as the Grotto (another infected ship). Cases of fever occur daily, and those on board, numbering about forty, are much alarmed; and ask to be relieved. Since Monday five men have been prostrated. Every effort will be made to free the vessel of the infection, though all past efforts have most signally failed."
This is exactly as we expected, and, of course, no one is to blame-the mis-governors of the city not being. responsible for human ife. What a fine thing it is to have a good salary and no responsibility!

The Dudley Observatory.
The unfortunate quarrel which has sprung up between the Director of the Dudley Observatory, Dr. Gauld, and certain of the trustees, has called forth a pamphlet from the Scientific Council, Professors Henry, Bache, and Pierce, in which it is clearly and ably demonstrated that Dr. Gould has been most shamefully abused by a set of conceiteq individuals, who seem to have about as much knowledge of astronomy as a pig has of refinement. The pamphlet contains 90 pages, and is an interesting exposé of this ridiculous controversy.
The ninth exhibition of the Chicago Mechanics' Institute, for specimens of American manufactures, and the mechanic arts will be opened September 4th, this year, and continue open until the 17 th of the same month Space can be had by addressing G. P. Hunson, Superintendent.

Steam Boilers and Furnaces.

article 4.
The draft of furnaces is a question of great importance, and yet it is one to which too little attention has been devoted both by practical and scientific men. At present we can merely throw out a few useful hints on the subject. The utility of every furnace depends on its draft. A fire burns because the oxygen of the atmosphere is brought into contact with fuel at a high heat. A chemical union, called combustion, between the oxygen and the fuel is effected, and heat is developed. The combustion of fuel converts most of its solid constituents into carbonic acid gas and water ; these products of the fire possess the property of extinguishing it, hence the necessity for carrying them off as fast as they are generated in the furnace, To carry on combustion the fuel has to be continually furnished with fresh air. The supplying of this air to a furnace, and the removal of the gases produced by combustion, constitute "the draft."

The efficiency of a boiler furnace, or any other kind, depends on the rapidity with which coal can be perfectly burned in it. By simply bringing the oxygen of the air into contact with fuel, rapid combustion cannot be effected. A fire built in an open space under a boiler burns very slowly, because the heated gases, in expanding, meet with much resistance owing to the great expanse of the superincumbent atmospheric column; such a fire is said to have no draft. But when the fire is enclosed in a furnace, and the heated gases of combustion are conducted away in a contracted unbroken column through a chimney, the fire burns rapidly-it has a good draft. The reason of this is the heated ascending gases in this case meet with but a limited resistance in comparison with those of the open fire, because they have a much less superincumbent weight of air to displace.
The deductions of science show that the draft of a furnace is increased according as a chimney is elevated, because the pressure of the atmosphere is less at its top than base Many mistakes have been committed in building short wide chimneys, thinking thereby to obtain a rapid draft, but few mistakes have been committed in building high chimneys. On this point-the hight of chimneys-there is no difference of opinion among those who are versed on the subject, but there is in regard to the proper area of chimneys. Some contend that a chimney of a limited hight does not require to be wider than the aggregate section of all the flues or tubes of the boiler. Others contend that the area of a chimney should be twice that of the flues, and Mr. John Curry, an engineer, of Louis ville, Ky., who has constructed the engines and boilers of many western steamboats, considers that the area of steamboat chimneys should be two and a half times that of the flues, independent of the area of fire grate. Mr. Curry's testimony on the draft of the furnaces of western steamboats, given in the great trial against the Wheeling Bridge Company in 1850, amounts to this, that with these proportions of chimney area to that of the flues, a good natural draft can be obtained in chimneys from 30 to 50 feet high. Mr. Scott Russell, on the other hand, gives the rule that for each square foot of fire grate the flues should be one-fifth, and the areas of chimneys only one-tenth, and of equal diameter throughout. "If the chimney," he says, "is forty feet high, and has a cross section of onetenth of the area of the fire srate, it will give an abundant draft. Some very satisfactory boilers have been made by allowing a proportion of 0.6 of a square foot of fire grate per nominal horse power, and making the sectional area of the flue at the largest part oneseventh of the area of grate, and at the smailest part (back end) one-eleventh area, an himneys the same.'
So also says Bourne, allowing in such cases sixteen square feet of flue or tube heating surface for each. horse power. A better draft has been obtained with boilers twenty-eight
feet long on steamboats than with those of greater length. Short wide boilers with vertical tubing afford the best draft, and are the most efficient in evaporation. The higher the heat in a furnace, of course, the more rapid is the draft. Furnaces well lined with fire brick are more efficient than those which are surrounded with iron sides, even when such sides have water spaces behind them. It is common in furnaces to allow one-third of the area of the grate bars for open spaces, to admit the air to pass into the furnace, but in some instances equal areas of air spaces and fire bars are used. As no more air can pas inte a furnace to supply combustion than that which passes between the grate bars, it would be reasonable to suppose that at least an equal area of space should be allowed for the flues and chimney. Some contend that such are the best proportions, but this is a subject regarding which practical and scientific men have no generally settled opinions. It would be well if an extensive set of judicious experi ments were made to ascertain the best proportions of the draft spaces in furnaces of all kinds. It has been found that a chimney of fifty feet in hight gives a good draft for small boilers from up to 20 horse power. A chimney one hundred feet in hight is sufficient for the draft of engine boilers from 50 up to 400 horse power. A rapid draft can be obtained in any chimney, however short, by a blower, the steam blast exhausting into the chimney. At present, we conclude these articles, but at some future time may recur to the subject.

Californian Research.

Messrs. Editors.-Owing to the extreme state of isolation in which we exist, having communication with Upper California and the civilized world only at intervals of four or five months, I have just received my last batch of your journal since the 1 st of December last. In the number for December 26th you giv an abstract of the result of Dr. Hayes' experiments and observations on the conversion of uncrystallizable sugar(glucose and fungin with melissic acid) into cane sugar, and state "the chemical change referred to Dr. Hayes pronounces to be something entircly new." This fact I discovered in the summer of 1856, in the course of a series of experiments on the generation of the alkaloid daturin; and the acts were announced in the California press, and thence copied into several European journals. These results were subjected to revision, and confirmation received of their correctness in investigations instituted into the nature of the sugars of different varieties of datura and taphelia, the pomegranate, and various indi genous plants of the Peninsula, in the month of November and December last. The saccharine secretions on concentration yielded in some instances a few concretions of irregular tabular crystals of glucose, in others a gummy uncrystallizable mass, polarized strongly to the left, and precipitated gold, silver and copper from their solution in the metallic stat without the aid of heat. After an exposure of a fortnight to atmospheric action I found the sirup filled with a mass of crystals, which appeared under the magnifier oblique rhombic prisms; the solution precipitated nitrate of silver but slowly, and polarized strongly to the right. This change has, in the intervening period, affected more than 95 per cent of the original substance.
I must not occupy your space in detailing the minutiæ of the experiments, but will add that the direct solar radiation greatly facilitates the conversion; that the change proceeds very slowly, or not at all, in hermeti cally-closed vessels; and that I have hitherto obtained no clue to the cause of the phenome non.
R. L. D'Aumaile.

La Paz, Baja California, May, 1858.
[Although the remarks made by our correspondent are on a subject the discussion of which we have for some time avoided, we insert them, because they show that even in our western wilds there are persons who study science and obtain results as accurate and as valuable as any that are promulgated from our colleges of the north.-Eds.

The Atlantic Cable Failed.

The steamship North Star, from Southamp ton, arriving at this port July 20, brough news of the failure of the enterprise. The Niagara and Gorgon arrived at Queenstown Ireland, on the 5th, and the Agamemnon and Valorous had not arrived on the 7th. The two larger ships met on the 28 th of June, and for the third time connected the cable; they then started afresh, and the Niagara having paid out over one hundred and fifty miles of cable, all on board entertained the most sanguine hopes of success, when the announcement was made on the 29 th at 9 P . M., that the electric current had ceased to flow.
As the necessity of abandoning the project for the present was now only too manifest, it was considered that the opportunity might a well be availed of to test the strength of the cable. Accordingly, this immense vessel, with all her stores, \&e., was allowed to swing to the cable, and in addition, a strain of four tuns was placed upon the breaks, yet, although it was blowing fresh at the time, the cable held her as if she had been at anchor or over an hour, when a heavy pitch of the sea snapped the rope, and the Niagara bore away for Queenstown. She must have passed the Agamemnon, but owing to the heavy fogs missed seeing or gaining any tidings of her. It was conjectured that the latter may have eturned to the place of meeting.
Should nothing be heard of her, the Nicgara would, after coaling, proceed to the ocean station. Having still on board 1800 miles of the cable, which, supposing the other vessel has retained a similar amount, would till permit the junction being completed, and allow 30 per cent for casualties.
These repeated failures have taught us something. Professor Morse, thinking from the results that the cable is too thick, and many others that it is too thin; the Professor's view is, however of the greatest value, and should be tested by a practical experiment. The Evening Post, of this city, in an able article on this subject, concludes with the following axioms, which every one having common sense must indorse
"A cable coiled cannot be uncoiled without kinks:

Therefore the cable must be reeled to be laid.

The necessity of two vessels to lay the cable, quadruples (and more) the risk of accidents:
"Therefore the cable must be laid from one ship.
" The voyage to England is easier, shorter and safer than the voyage from England :
" Therefore the vessel with the cable should start from this side.
" There is one vessel, and one only, of tunnage and room sufficient to carry the whole cable, to wit-the Great Eastern:
" Therefore, the cable, if ever laid at all, must be stowed on a succession of reels in the Great Eastern, and that ship must sail from. our own shores."
If these views should be deemed to possess any value, it would be easy for the Great Eastern to bring the cable with her to this country and lay it on her first trip home. While acknowledging the numerous difficulties in the way, we cannot be persuaded to despair, because we know that ultimately the cable must and will be laid.
Since the above was written, the following intelligence was received in this city :-

Washington, July 24, 1858.
Captain Hudson, in a letter to the Navy Department, dated Queenstown, July 8th, says that the Niagara was then awaiting the arrival of the Agamemnon and Valorous, when he hoped to start again for the rendezvous in seven or eight days, under more favorable auspices of weather than experienced in June.

The Upas Tree.

An exchange says the story that the Upas tree of Java exhales a poisonous aroma, the breathing of which causes death, is now known to be false. The tree itself secretes a juice which is deadly poison, but its aroma
or odor is harmless. Strychnine is made from the seeds of a specie of Upas tree. Such is the name of a district the atmosphere of which produces death. This effect is not occasioned by the Upas tree, but by an extinct volcano near latar, called Guava Upas. From the old crater and the adjoining valley is exhaled carbonic gas, such as often extinguishes life in this country in old wells and foul places. This deadly atmosphere kills everything that comes within its range-birds, beasts and even men-and the valley is covered with skeletons. By a confusion of names, the poisonous effects of this deadly valley have been ascribed to the Upas tree, the juice of which is poisonous, and hence the fable in regard to the deadly Bohun Upas tree.

Death of M. Gardissal.

We are pained to learn the death of our able and faithful Paris correspondent and agent, M. Gardissal. Through this event the business heretofore so ably conducted by the deceased will be carried on by his equally able sons, C. Desnos and F. Gardissal, who have for many years past acted as assistants to their father, and who will continue to act as our attorneys and agents at Paris.
M. Gardissal, during a long and active life, contributed much to the advancement of science and the mechanic arts by his numerous writings on industrial education, legislation, and development. After a vigorous application in early youth to fit himself for the profession of a mechanician and civil engineer, and acting as Professor in the University, he devoted his life to the zealous discharge of his duties with a warm attachment to the cause in which he had embarked. In 1854, M. Gardissal published a dictionary of ${ }^{\text {technical }}$ terms in French and English, and for some years past published a monthly periodical (L'Invention), to which and other works he contributed much valuable matter, in which was displayed great spirit of research, indefatigable industry, and liberal and manly sentiments. M. Gardissal was endeared to many of our clients and other Americans, who received, upon their visits to Paris, the most marked evidences of his attention and kind disposition, and who will learn the announcement of his death, as we have, with the most profound sorrow.

A Suggestion to Cities.

The people of this country profess to be profound admirers of water, and we boast with honest pride of our Croton and Fairmount; yet no sooner are water works introduced into a city than the pump and accompanying cup are removed, and the weary foot passenger is actually driven into a bar-room or soda water saloon to quench his thirst. We would suggest that for every cup and pump removed from the public streets, a little stream of the pipe water be substituted, either in the form of a fountain on the curb-stone, oir as an ornament to an alcove in the wall of some house or public building. These might be made very ornamental, and a ladle or cup attached would do more to promote the temperance of our population than the employment of a dozen lecturers on the subject. The expense would be very trifling, and the boon would be thoroughly appreciated by every one. The cities of Europe are nearly all provided with little fountains, at which the people can drink; and as we have copied them in the beautiful and healthy custom of planting our streets with trees, let us also copy them in supplying limpid streams of cooling water.

A Gentle Hint.
We are constantly being asked by correspondents for advice which is of a strictly personal character, such as the relative merit of certain machine shops, whether the writer is qualified for this profession or that profession, to all of which we must decline answers, no because we have no desire to advise our friends, but because the Scientific AmeriCAN is for the puolic good, and for the spread of generall
knowledge.

P. \& T., of N. C.-We are of opinion that lightning
rolls should not be insulated from metallic or other rolls should not be insulated from metallic or other
roofs. If the rods are in one piece we do not think that roofs. It the rods are in one piece we do not think that
paiut destroys their efficiency. If made in sections, the
paint, by beconing intervosed between the joints, may pinint, by becoming interposed betiveen the joints, may
produce insulation or separation sufficient to cause danger
E. C. 1
result of you N. H.-We shall be happy to hear the cannot sce why eggs laid in August should be bette than those laid in any other month.
J. K. ©., of in.-A good waterproof cement is made biscuits are made by substituting carbonate of soda for yeast.
A. B.
A. B. K., of C. W.-Type metal, consisting of 6 parts
of lead and 2 of antimony, or Britannia metal, which is of lead and 2 of antimony, or Britannia metal, which is
conmposed of variable quantities of copper, tin, bismuth, and antimony, would answcr your purpose and take plating well.
J. W., of N. Y.-When the atmosphere is not fully charged with electricity, or in other words, when the
aii and earth are not equalized in the quantity of electricity, $i t$ is not in its normal condition, and so will not conduct sound as well as when it is properly charged. But an over-dose of elcetricity in the atmosphere would be as likely to interfere with its sound-conducting pro-
partics as an under-dose. We do not know of any work parities as an under-dose. We do not know of any work
treating on this subject; such a book would prove very treating on
interesting.
G. W. C., of N. Y.-Haswell is perfectly correct in
stating that "the stating thant "the centrifugal force of a body making
ten revolutions a minute is four times as great as when making five revolutions a minute;" but you are wrong
in supposing that it only requires twice the power to in supposing that it only requires twice the power to
double tho speed, for it takes four times the power to double the speed, so that there is no excess that can be made available.
Jinney L, of Ga.-We expcct that the reason your chiinney gets red hot is, that it is too near the furzace, and your exhaust may enter the chimney at too high
a point, so that it condenses, and the air being very rarified indeed where the chimney is hot, the condensed exhaust steam falls down, cools it, and so produces
a downward, instead of an upward draft, for a short time. As we do not know all the conditions and rela tions of your boiler, furnace, engine, and chimney,
thisis is the best theory we can give you. J. of D. C. The resson why the sin J., of D. C.-The reason why the snakc-like motion
is observed in a rope that is agitated in one end, is that the material is elastic, and as you disturb the line by moving to one side, there must be a compensating departure from the line on the other, and this being continucd, the wavy motion is produced, nanely, by al-
ternate compensations, the force applied being quicker than the conducting power of the rope.
A. B., of Mass.-Evaporated water contains no solid mutter, saline air being produced by the air entangling
in solid particles of salt which have becn left by the in solid particles of salt which have been left by the evaporati
mixture.
w. S.
brot ype," by Charles Seely, published by Seely \& Gar banati, 424 Broadway, New York.
J. T. M., of N. Y.-The simplest method we can re-
commend you for preserving egges, is to dip them in commend you for preserving egge, is to dip them in
grease, and then pack away in outs, or similar material. You will find plenty of reccipts in back volumes
of the Scr. Am.
J. W., of Mich.-A good elementary work is "Colburn
on the Locomotive," published ly wiley \& Halstead on the Locomotivc,", published by Wiley \& Halstead of this city. The link-motion is
George Stephenson is the inventor.
C. C. H., of Ill.-A body falls with exactly the gam velocity, in the inverse ratio, that it ascends, deductin the difference of atmosphcric resistance. The law Which governs falling bodies is; that the velocity in creases in arithmetical progression, following the odd
numbers; thus a body falling sixteen feet the first sec ond, will fall three times sixteen feet the next second five times sixteen the third second, and so on. D. McG., of Texas.-M. \& J. H. Buck \& Co., of Leb-
anon, N. H., can furnish you with a brick machine anon, N. H., can furnish you with a brick machine
adapted for your purpose. See engraving on page 265, adapted for your
Vol. XI, Scl. AN.
J. A., of Pa.-If you have a patent on your machine here, a party has no right to make the machine, even
if he does slip it to another country to be used. Your patent protects you in the sole right to make, sell, use,
$\& c$., and a party violating either of these conditions is \&c., and a party violating either of these conditions is
liable to you for infringement. of many millers, that water exerts more power at night
than in the daytime, and that furnaces draw better at than in the daytime, and that furnaces draw better at
night. We should really like the results of some practical expcriments on the subject.
Money received at the Scientific American Office on account of Patent Office
Siturday, July 24,1858 :-
J. R. F., of Ohio, $\$ 25$; J. C. McD., of Ohio, $\$ 60$; J.
W. C., of Ind., $\$ 30 ;$ G. M. P., of Mass. $\$ 55$; S. W. C., of Ind., $\$ 30$; G. M. P., of Mass., $\$ 55$; S. H., of
N. H., $\$ 25 ;$ F. \& B., of Wis., $\$ 25$; E. D., of La., $\$ 30$ I. P. E., of Ind., $\$ 35$; J. H. R., of III., $\$ 25$, E. L., of P. E., of In., $\$ 33 ;$ J. H. R., of D., $\$ 25$, E. L., of
Conn., $\$ 30 ;$ F. McN., of Ohio, $\$ 25$; J. B., of III., $\$ 30$;
W. B., of N. J., $\$ 35$; S. N. S., of N. Y., $\$ 35$. J. W., of
N

$\left\lvert\, \begin{aligned} & \$ 27 \text { J. H. B., of N. Y., } \$ 35 \text {; W. D., of N. J., } \$ 14 \text {; H. } \\ & \text { G., of In., } \$ 30 ; \text { J. A. K., of Mo., } \$ 55 ; \text { A. S., of N. Y., }\end{aligned}\right.$
 A., of-N. C. $\$ 50$; J. J., of
$\$ 110$; R. W., of Vt., $\$ 25$.

Specifications and dra wings belonging to parties with
the following initials have the following initials hove been forwarded to the Pat ent Office
24,1858 :-
H. \& M., of Pa.; J. C. C., of N. Y.; G. W. B., of N Y.; J. J., of N. Y.; J. H. I., of IIl.; W. B., of N. J.; G D., of N. Y.; F. B. A., of Iowa; P. \& D., of N. Y.; A M., of Conn. ; B. \& A., of NII.; S. H. of N. H.; E. D., of La.; F. McN., ot Ohio; A. R., of N. Y.; S. N. S., of
N. Y.; R. W., of Vt.

Literary Notices.

Signers of tie Dielaration of Inderiendenog.-
We have received a copy of a large and handsomely executed chart, containying a h history of and handsomely the signers
of the immortal Declaration. It yives in a brief form
it lith

"THIE CouNTRY GENTLIMMN entered upon a new
volume onthe list inst.
may be taken to your ifeside, your arantleman that
may be taken to your fireside, your parlor or your iib-
rayy with satety. The more faniliar and intimate
your accuantinter more tour pleasure and our
profit. We will guarantee its character as above rerofit. We will giarantee its character as above re-
prorch or suspicion It is one of the very best of ou
arricuturala and family papers., Thie above paragraph from the
receives our hearty eudorsement.
Tur California Cultunist-Whecler \& Wadsworth,
publishers, San Yranciseo.-We have received the first number of this new periodical devoted to agriculture in
California, and the stuly of nature everywhere. There

TILE Scalpsi-E. H. Dixon, M. D., Editor, and pub-
ishod by Sherman \& Co., No. 1 Vesey street, New
 albhorrence of humbug, whether prof essional or not,
the ablest ournan of its kind this side the Atlantic, or
rather we should not say "of its kind," for it is dis tinctive and stands alone an open, honest oasis in a
broad desert of medical quatecery, interesting as a ro
nance, and truthful as histocy,

TO OUR SUBSCRIBERS.

Recerris-When money is paid at the office for sub scriptions, a receipt for it will always be giveu; but
when subscribers remit their money by mail, they when sobscribers remit thiir money by mail, they
may consider the arrival of the first paper a bona fide acknowledgment of the receipt of their funds. The Post Office law does not allow publishers to enclose
receipts in the paper. receipts in the paper
Patent Clams_-Persons desiring the clajim of any in-
vention which has been patented within fourteen vention which has been patented within fourteen
years, caul obtain a copy by addressing a letter to this years, cat obtain a copy by addressing a letter to this
office, stating the name of the patentee, and date of patent when known, and enclosing $\$ 1$ as f ee for copying.

TERMS OF ADVERTISING
Twenty-five cents per line each insertion. We re pectfully request that our patrons will make their advertisements as short as possible. Engravings canzot be admitted into the adverinsocolumna,

${ }_{\text {serting. }}^{\text {** }}$

IMPORTANT TO INVENTORS.

 of twelve years standing, and our facilities are tun-
equale by any other agency int wo wrid
experience we have had in preparing specificationsand drawings has rendered us perfectly conversant with the
mode of doino busings at the United States Patent Office, and with most of the inventions which have been
patented.
inventions inf ormation hoonceniont the patentability of
Iiven, without eharge, on sending

 streets, Washington (opposite the United States Patent
Office.). This oftce is under the general superinten-
dence of one of the firm, and is in daily communication
 such cases as may require it.
We are very extenively engaged in the preparation
and securing of patents in the various European coun and securing of patents in the various European coun-
tries. Fror the transaction of this business we have
offices at Nos. 65 Chanctry
 the European paten ts secured to American citizens are
procired through our Agency.
circurs of inf ormation concerning the proper course
to pursued in obtain ing patents through our A gency, to be pursued in obtaining patents through our A gency,
the requirements of the Patent Office \&e.. may be had
gratis upon application at the principal office or either
of the bran aphe
of the branches.
to
MUNN \& COMPANY,
No. 128 Fulton street, New York. The annexed letter from the late Commissioner of
Patents we commend to the perusal of all persons in-
terested in obtaining patents :Mrssis. MonN \& Co.-I take pleasure in stating that
While I held the office of Commissioner of Patents,
 served, as 1 have always observed, in all your inter-
course with office a marked degree of promptress,
skill, and fidelity to the intrenest of

STEAMM WHISTLEE_ TMPROVED PAT-
large assortment constantly on hand Mandinactured
HAYDEN, SANDERS \& CO.

THE SUBSCRIBER HAS ESTAABLISHED
Ihe manufacture of his helf-straining Saw Mill
Irons, at Clicago, Ill. Letters addressed to him at

and prompt attention, if accompanied with a stamp.
Suly 6 , 1858 .
$\begin{array}{l}\text { E. PARSONS. }\end{array}$

FOR SALE-AN \&-HORSE UPRIGHTT new) all in o, good rundint order.
MATHLR, West Norwalk, Conn.

5,000 AGENTS WANTED - TO SE SELL

1 RON PLANNERS AND ENGINE LATHES sers, Gear cutters, Chucks, \&c. on hand and finishing.
These tools are of superior quality and are for sale low
for cash or approved paper. For cuts giv ng full description and prices, aldress,
Co., New Haven, Conn.'

SECOND-HAND MACHINISTS, TOOI.S-
Drill, Chun, Linge and Hand Lathes, Iron Planers,
Drathe Gear Cutter and Vises, all in

THE "COUNTRY GENTLLEMAN , of THE best of the aqricultural or horticultural papcrs
fon any latitude or locality is piblished weekly, ach
number containing sixteen larke quarto closely y rinted
pate
 N. B.-A new volume begins July ilst. Send ${ }^{\text {Ald }}$, Yor a
specimen number.

IMPORTANT TO IRON AND BRASSS invented a method of constructing molds for iron, brass
or other metals, which can ouly be cast at a hiigh heat, or other metals, which can ouly be cast at a hiigh heat,
of cheap matrial, aesslyt obtanad in any section, and
as easily worked or constructed as auy ordinary mold of

 can be worked with great rapidity (onne every 2 min-
ntes if if necessary), which fact renders them very valua-
ble to malleabie iron workers. My ble to malleable iron workers. My charge for the reci-
pe, itit full directions is 10 , accon panied by in ob-
ligation from the applicicant to entirese seriecy. Aliberal
 HUDGIN, Practical Chemist, $\begin{gathered}\text { Bowling Green, } \\ \mathbf{V}\end{gathered}$
 Ware stores.

SLIDE LATHHES, IRON PLANERS, UP versal chucks, and a large assortment or machinists
tools at grieaty reduced prices. Address CHARLES
H. SMITH, 130 North Third st., Philadelphia, Pa.

MARYLAND INSTITUTE BALTMMORE.
 of continued success, their Eleventh Anpual Exhibi
tion tion be opened in the Institute's spacious building
on the 5 thi of october, and continue open four weeks.
 terwards for exhivition only. Persons from all parts of
the Union are invited to contribute. Aside from the
theneral advantastes of this Institute for the exhibition general advantagses of this institute or the exhibition
of productsof the skll and industry of their country-
ment the Mnnagers submit tlat the present is an opvor men, the Mnnagers submit that the present is an oppor-
tunity which none should allow to pass unimproved.
As busincss is now rallying from its unparalalad de-
 attention and confidence of the community, insures suc
cess, and paves the way to competence and fortune.
Circulars with rules \&c. will be promptly furnished

PUSEY'S HORSE POWER GOVERNOR-
 dependent governors manufactured exclusively, and for
gale by the patentee, LEA PUSEY, near Wilmington,
Del. Agents wanted.

WELLINGTON MILLS EMES will look for copyright label on - CON-

LATH MILLL_J. H. BACHELDER'S PAT-

STEAM ENGINS, TTEAM ROHERRS,

Machine relting steai Packing

These maclines have no rival.-SScientific Americian.
Wherler if wisisvs swive Mac

Philadelphia river woris mand

- A W. P. Con-

ENGRAVING ON WOOD A ND MECHANY
C. CAL DRAWING, by RICHARD TEN EYCK,
Jr., 128 Fulton street, New York, Engraver tothe Scien amercan.

Corlisg pateve Treat eigines-

Sicimce and

Celestial Phenomenon

At about eight o'clock on the evening of the 3d of July, says the Utica Herald, during a perfect deluge of rain, there occurred near Utica one of the most beautiful celestial phenomena ever witnessed in this country. The heavens were completely overcast with clouds, yet from the horizon to the zenith there appeared one expansive sheet of pink, of the most delicate and splendid tint. The hue was deeper in some parts than in others, yet it extended over the whole visible heavens, and was of so brilliant a character that by its reflection the water running through.the gutters looked like streams of blood. Heaven's artillery had celebrated the glorious Fourth during pretty much the whole day, and in this phenomenon fireworks were displayed far beyond the skill of the most ingenious and accomplished pyrotechnist.

Strength of Wire Ropes.

We learn from a foreign exchinge that a series of experiments were recently made at the Woolwich dockyard, England, to test the comparative strength of wire ropes manufactured by Messrs. Binks \& Stephenson, under a new patent, and those made under an old one. The new ropes were made of the patent wire invented and manufactured by Webster \& Horsfall, Birmingham, which is unquestionably the most remarkable yet produced, the weight which a very small sized coil will bear being almost incredible. The breaking strain, under the old patent and under the new, may be best judged by the comparison made. Thus, an inch and a quarter rope, made under the old patent, broke under a weight of 2 tuns 5 cwt ., while under the new, to break the same thickness, it required no less than 4 tuns 19 cwt. A weight of 4 tuns 6 cwt . broke a rope of two inches diameter, made under the old patent, while it required 9 tuns 10 cwt. to break one of the same size under the new patent. The British Board of Admiralty have the matter under consideration, with a view to its application to the riggir g of the ships of the royal navy. It may not be generally known, but it is none tbe less a fact, that a portion of several miles' length of the Atlantic cable (where it is supposed the greatest strain will be exerted) is made of this very wire of Webster \& Horsfall. The wonderful superiority in point of tenacity of this patent iron wire may be judged from the fact that a single strand of No. 9 (about the thickness of about one eighth of an inch) will bear 3,360 pounds before snapping, whilst the same sized strand, made of the " best charcoal iron" snaps at 1,250 pounds weight.

We understand that there is an agent of Messrs. Webster \& Horsfall in New York, who is about making an arrangement for the introduction of the wire rope of these manufacturers into this country.

New Bridge.

This bridge is constructed in an entirely novel manner, and in an eminent degree possesses the advantages of strength and lightness, together with simplicity of construction. It is a fact too well known to need any demonstration that the circle and triangle are the two most stable forms of disposing material for economy and durability, and in this invention both these forms are very prevalent
The arch is composed of a series of tubes, A, made of wrought iron plates riveted together, or cast iron. These tubes are as long as the desired width of the bridge, and they are arranged side by side as seen in Fig. 1 their length being at right angles with the roadway of the bridge. B are blocks of wood or metal, but preferably of wood, fitted be tween the tubes at or near the ends thereof, and secured in place by long bolts, $a a$, pass ing through the whole series of tubes and blocks, and secured by nuts or keys at the ends, or by short bolts, b, Fig. 2, passing through a block and the adjacent sides of two
tubes, and secured by a head on one end of position, and to retain the curve of the arch. the bolt, and a key on the other, or two nuts The tubes, A, may be strengthened at the or two keys. In addition to the two series of blocks, B , there may be any number of blocks at intervals along the whole length of the tubes, so as to give the arch more rigidity. C is an arched timber or iron binder fitting over the tubes, A, and secured to the block by stirrup bolts, $d d$, plates, e, to keep them in
oints where they are clamped between the locks, B, by cores or disks, f, which may be D D
D D are sills at each end of the bridge, and E E are stout upright posts tenoned and secured into the said sills. The ends of the arch of tubes rest in the angle between D and E,
and the ends of C are tenoned into the posts. F are tension rods of wrought iron connecting the sills, D D, and extended by nuts, g, at the ends, so as to confine the sills longitudinally for the purpose of counteracting any thrust on the ends of the arch. H H are upright posts tenoned into the arched timbers, C. G G are diagonal braces notched and holted at their lower ends to the arched tim-
DURDEN'S IMPROVED BRIDGE.

bers, and at their upper ends to the upper part of the posts, H H , and also notched and bolted to such of the posts as they pass. F are wrought iron tension rods passing through all the posts H and E , and down to the sills, D, to which they are secured by nuts or keys. J are the roadway-bearers which may be of wood or iron,
in the posts.

Thayer's Carpet Fastener.
Much trouble is experienced by housekeepers in attaching the carpets to the floor, and to obviate the difficulty attending the getting up and putting down of them without tearing the carpet or injuring the floor by tacks, this inventor-Horace Thayer, No. 18 Beekman street, New York-has devised the carpet fastener that is the subject of our illustrations.

Fig. 1 is a perspective view, Fig. 2 is a vertical section, and Fig. 3 an horizontal section of the device.
A is the tube, with a cap at its upper end, to prevent it from sinking too deep into the floor, the top of which should be flush with the floor, and B is the slide in an elevated position, bent at right angles over A, and provided with a spike, d, that passes through the carpet and into a hole, c, in the top of the cap, A. The shank of B is somewhat less than the interior diameter of A, so that a spring, C, can pass between them, pressing against a projection, D, into which B is screwed at l. B is flattened out at f, so that it can pass down the slot, i, in the case, A. The spring rests on two shoulders, $h h$.
The operation is as follows:-The case being let in the floor, the shank, B, is elevated, to allow the carpet to be passed under the spike, d, which is pulled through the carpet and into the hole, e, by the force of the spring, c, which always holds it there until lifted up by mechanical means. The top is plated, so that it is ornamental, and when once placed in a house, this fastener will remain without injuring the floor, or becoming useless, for a great length of time.

The most important fcature in this bridge is the construction of the arch of the iron tubes, the interposed blocks and arched tim bers or binders. It is the arch thus construct ed which constitutes the entire support of the load; the duties of the other post being to keep the arch in shape, and to transmit to it the weight of a load passing over the bridge. The tension rods, F F, combine with the sills,
t was patented April 6, 1858. Further particulars can be obtained by applying to the inventor as above.

The Cloud Engine.

This invention consists, briefly, in the injection of a certain amount of atmospheric air into the steam cylinder, and the admixture thereof with the steam. A saving of 33 per cent in the fuel has been claimed for the improvement. It is the invention of $\mathrm{Wm} . \mathrm{Mt}$. Storm, of this city. Sundry experiments, it is said, have at times exhibited the above gain, while others have shown no advantage to arise from the improvement.
P. McManus, of Troy, N. Y., a part owner of the patent, writes us that he has lately put in operation at that place a 7 -horse horizontal engine, with the Cloud improvement attached, which works successfully. It is said to haye run $4 \frac{1}{2}$ days at a consumption of one tun of coal. But when the air was shut off, and steam alone used, the engine only ran $2 \frac{1}{2}$ days on the same amount of coal, and performed less work at that. Mr. McManus claims to have discovered a remedy for the irregularities that have attended former experiments. If the data is correctly stated, the above trial exhibits a nominal saving equal to 50 per cent in fuel. This seems too good to be true. We understand that the engine can be seen in operation at the Phœnix Works, 543 River street, Troy. Can't some of the scientific Trojans look into this matter, and report upon it? Where is Professor Wells?

Westlake's Summer Cooking Apparatus.
We illustrated and described this invention on page 161 of the present volume of Scienrific American ; since which we have had one in use, and find it to be exactly the thing for summer use. A very small quantity of charcoal will cook, boil water, or heat irons in a short time, making no dirt-or dust, and there is no suffocating atmosphere such as a range produces in hot weather. We can heartily recommend it. The manufacturers and dealers are Smith \& Burns, 9 Carmine street, New York.

We have to thank C. F. Loosey, Esq., Austrian Consul at New York, for six numbers of the Zeitschrift, the journal of the Austrian engineers, published in Vienna.

D, and posts, E, to prevent the depression and longitudinal extension of the arch, and the posts, and braces, G, combine to prevent the rising of the bridge, and aistribute the weight of a load from any point to the whole briage. Thos. Durden, of Montgomery, Ala., is the inventor, and he will be happy to furnish additional particulars upon being addressed as above. The patent is dated June 1, 1858.

INVENTORS, MANUFACTURERS, AND FARMERS.
thirteenthyear:

PROSPECTUS OF THE

SCIENTIFIC AMERICAN.
This workdiffers materially from other publications, being an Illustrated Periodical, devoted to the promulgation of information relating to the various Mechantpal and Chemical Arts, Manufatururs, Agrictluure, Patents, Inventions, Engineering, Mill Work, and all interests which the light of Praotioal Soience is Every number of the
contains eight pages of read.ng matter, abundantly illustrated with from five to eight Engravings-all of which are expressly engraved for this publication. All the most valuable patcuted discoveries are de-
lineated and described in its issues, so that, as respects inventions, it may be justly regarded as an Illustrated Repertory, where the inventor may learn what has been done before him in the same field which he is explöring and where he may bring to the world a knowledge of his own achievements.
lished every week, including Official Copies of all the lished every week, including Official Conies of all the
Patent Cuams. These Patent Claims are furnished from the Patent Office Records exrressiy for this paper, and published in the SCIENTIFIC AMERICAN in advance of all other publications.
Mechanics, Inventors, Engineers, Chemists, Manuof life, will find the SCIENTIFIC AMERICAN to b of great value in their respective callinge. Its counseld and suggestions will save them hundreds of dollar annually, besides affording them a contivual source of
knowledge, the value of which is beyond pecunia 1 y estimate. Much might be added to this Prospectus, t o prove that the Soientifio American is a publication which every Inventor, Mechanic, Artisan, and Engineer in the United States should patronize; but the publication is so thoroughly known throughout the country Southern, Western and Canadian mer space stamps, taken at par for subscriptions. Canadian sub scribers will please to remit tiventy-six cents extra on each year's-subscription, to pre-pay postage. TERMS OF SUBSCRIPTION-Two Dollarg Y Year CLUB RATES,

For all copies, for Twelve Months.......:828 scription is only $\$ 140$. Specimen copies will be sen MUMy part of the country.

MUNN \& CO., Publishers and Patent Agents,

