Srientifit Ameritan.

Scientific ${ }^{\text {rHe }}$ American, pUbLISHED WEEKLY

At 128 Fulton Street N. Y. (Sun Buildings.) BY MUNN \& COMPANY.

 Yederhen \& Co., Botton.
A. Winch, Philadelphia.
A. G. Courtenay, Charles Aqents.
 A. G. Courtenay. Charleston.
Responsible Agents may also
Se Found in all the princi1 cities and towns in the United States.
Single copies of the paper are on sale at all the
cal stores in this city, Drooklyn, and Jersey City. cal stores in this city, Jrooklyn, and Jersey City. TERMS-- 82 a-year,- $\$ 1$ in advance and the remain
der in six months

Remedy for the Yellow Fever A correspondent of the New York Herald sends the editor the following:
"A few years ago I fell in company with a very intelligent captain of a merchant ship who had made many voyages to the West Indies, and also to the coast of Africa, and he informed me that as an antidote to the fevers prevailing in these climates, he always took prevailing in these climates, he always took
with him a large bottle of pulverized charcoal, of which he gave his crew a teaspoonful three times a day, in a glass of water, and he never lost a man by the yellow fever, though other ships were daily losing their men. Should any one have faith to try this, with good effects, I hope it may be published to the world "
[As the yellow fever has lately appeared in a few localities in this country, the above will ko interesting. We have little faith, however in its utility.]

The Inventor and his Fly Trap The following good story is told by the New Haven Register: " Bishop went down to New York with one of his patent fly trap machines, which makes the fly catch himself by a revolving cylinder. A butcher was very desirous he should set it agoing in his shop, and in the course of half an hour something less than a peck of flies had been 'hived.' The butcher was pleased, but concluded, as his fies were 'all trapped,' he 'didn't want the machine.' 'Very well,' said Bishop, 'I'm a Yankee, and I won't take any advantage of you by carrying off your flies,' and drawing the slide, he liberated the whole swarm about the butcher's ears, and beat a retreat under cover of a little the loudest buzzing ever heard in that vicinity."
Cattle at the Paris Agricultural Exhibilion. The finest cattle exhibited at the above named exhibition, recently held in Paris, were what are called the "Angus breed." They surpassed the Durhams and Herefords, and were the objects of general admiration. They have no horns, and are mostly spotted-black and white. They are raised in the counties of Forfar and Kincardine, in the north Great Britain.

Yankee Washing Machines Abroad
A late number of the London Times contains a long notice of Hollingsworth's Washing Machine, which, it appears, has found its way across the Atlantic. In this machine a number of buoyant balls made of wood, are employed as rubbers. The inventor, Mr. Christopher Hollingsworth, is a farmer of Indiana. The Dutchess of Sutherland and others of the nobility appear to have taken quite a fancy to the contrivance.

Steam Music.

The steamboat Glen Cove, running between this city and Albany, regales its passengers with music from a steam organ. It is heard at the distance of some miles before reaching the wharf playing "The Campbell's are Coming." The patent for this ingenious invention was secured through the Scientific American Agency for this country, and noticed on page 245 of the present volume. Patents have also been taken out in most European countries.

New Horizontal Windmill
Our engraving illustrates an improvement for which letters patent were granted to Messrs. Jacob W. Goodwin and Moses C. Hawkins, of Edinburg, Pa., April 8, 1856.
The principal features of novelty consist in the employment of hollow cones to catch the wind, instead of flat vanes or sails; also in a peculiar method of regulat.
Referring to the cut, A is a hollow standard which supports the apparatus, B the revolving spindle to which the hollow wind cones, C , are connected and supported by means of rods, D. E is a force pump, operated by means of its piston rod, F ; the latter is operated by the crank shaft of the pinion, G. H is a pinion on the lower end of revolving spindle B. Pinion H gears with G, and thus the motion of spindle, B, and cones, C, is transmitted to the pump.
The regulation is done in the following manner :-The water rises from the pump, E , through pipe I, into tank J. K is a small hydrostatic bellows, connected by an opening with the bottom of the tank. L is a curve ${ }_{d}$
rod, extending from the bottom of bellows K to the end of brake lever, M. The latter is pivoted at N , and its forward end terminates just below the brake pulley, 0 , which is at tached to spindle B. When the water rises in tank J to a given line, its weight expands the bellows, K, which, being connected with the end of lever L, the latter draws down the back end of M, while its front end rises and lifts pulley 0 , raising with it the spindle, B , and its pinion, H . The two, pinions, G H, are thus disconnected, and the pump stops, so that tank J cannot overflow. When pulley 0 is raised, the rubbing surfaces, P, come in contact with similar surfaces immediately above, and the friction of the two, being equivalent to the power just previously consumed on the pump, the speed of the wind mill will continue the same as it was before the pump was disconnected. Q is a weight, attached by cord and pulley to the back end of lever M. When lever M is pressed down, weight Q rises. Therefore the bellows, K, will not operate until the weight of the water in the tape overbalances that of weight Q . R is an adjusting screw, by means of which
the rotation of the spindle, B, and of the whole apparatus, can be instantly shifted when desirable. The mouths of the cones being always presented to receive the wind, while the points move against the same, an effective power is obtained, no matter in what direction the wind is moving.
The windmill requires no vane or attention to bring it properly before the wind. It is self-acting in all respects, simple, durable, noiseless in operation, economical in manufacture. On the prairies, at railroad stations, and at all localities where power is needed for the raising of water or other purposes, it will be found highly useful. For further information address the patentees.

Kecent Foreign Inventions.
Singeing Fabrics by Superheated Steam.-J L. A. Hulliard, of Paris, patentee.-In order to impart to cotton and linen cloth a beautiful smooth surface, it has to be singed to remove the long wool. This is commonly done by passing the cloth, in pieces, over jets of gas light-a very delicate operation-requiring the nice adjustment and running of the rollers which guide the cloth. The invention of Hulliard consists in heating a metal plate with highly superheated steam, then passing the cloth over this plate. The improvement appears to be a good one. Wood can be completely charred with superheated steam, consequently its heat imparted to a metal plate may be expected to singe textile fabrics in a superior manner to jets of gas light.
Instead of employing starch and gum as a dressing for cotton and linen cloth, he uses the cyanides of zinc and tin, then passes the cloth over a cylinder in which superheated steam circulates, and the high heat of which oxydizes the metallic dressing, and gives to the surface of the cloth, when callendered a fine appearance.
Annealing Wire-DJ. Cocker, of Liverpool, Eng.-This improvement consists in first heating the wire in an oven, then passing it into a closed chamber to cool so as to anneal it perfectly.
Varnish for Exposed Iron.-J. E. Cook, of Greenock, N. B., patentee.-This varnish consists of six pounds of gum shellac dissolved in a gallon of methylated spirit, or common wood spirit. This is stated to be an improved varnish for iron work exposed to a moist atmosphere where it is liable to rust.
(Methyle C. ${ }^{2} \cdot \mathrm{H}^{3}{ }^{3}$) is a hypothecal base not yet obtained separate, but its oxyd is easily obtained by distilling common wood spirit with alcohol. Wood spirit is formed by the destructive distillation of wood. The varnish is claimed to be of a superior quality for coating, plaster, and brick work, and silvered glasses, to prevent the action of moisture in the at mosphere.
Manufacturing Iron.-H. Bessemer, of London, Eng., patentee.-This inventor claims the application of heated currents of air or steam in eight different methods, to iron and steel, in a molten state, in furnaces and crucibles, in order to free it from impurities and improve its quality. The injection of jets of steam into molten iron improves it, but the use of steam for this purpose is not new-only tha method.
Washing Textile Fabrics.-A. \& J. Walace, of Renfrew, N. B., patentees.-The claim of these inventors embraces the injecting of currents of hot air into the common dash wheels employed in bleach works for washing pieces of cotton cloth. A pipe passes into the dash wheel through a stuffing-box, and the hot air is driven through it into the apart ments of the wheel.
The French Academy of Sciences have appropriated 2,000 francs to make experiments with balloons, by M. Poitevin.

Alctu alnturtions.

American Association for the Advancement of Science.-No. 2.

Gar Pikes.-Old-Fashioned Fish.-John E Gavitt, Esq., of Albany, exhibited a vase of young gar pikes, when Agassiz said :-
"If it were announced that some of the old Egyptians were outside, he should not be able to keep his hearers inside. This apparition of the oldest fashioned fish alive wa hardly less striking. There were very few types of this kind to be found among living fishes, but there were many among fossils. I had what other fish had not, a ball and socke joint in the neck, so that they could bow ; this was common to them with reptiles. Their pectoral fins were small, and continually in vibratory motion, like the cilia of anamalcules. In the Old Red Sandstone he had found a fisb which he called Glypticus, with the same sort of a tail. This went with so many other things to show that the order of succession in past times was exemplified now in the developement of individuals. Here were also two features observed in genuine reptiles, the power of moving the head on the back bone, and the quasi tail. He noticed also that while these gar pikes had something approaching the reptile's apparatus for breathing they had gills as fully developed as those fishes which breathed only through gills.
Col. Foster stated that in the Ohio strata corresponding with the Onondaga limestone of New York, fossil gar pikes were found, and they were evidently a deep water fish, as this limestone must have been deposited in deep water.
Prof. Dana, from appearances on cora islands, argued that a very solid limestone without ripple marks, might be deposited in water not deeper that 40 or 50 fathoms.
Prof. Hall said that the occurrence or absence of ripple marks was not an infallible mark of deep or shallow water. It was only when earthy deposits were made upon them that they were preserved.
Prof. Dawson, of Nova Scotia, inquired whether there was any particular adaptation of the gar pikes to their baunts, which are among the rushes ?
Prof. Agassiz said that they bore some re semblance to alligators both in shape and habits, and that they haunted the same class of places

Comets.-Dr. Peters, of Cambridge, Mass read a paper on a comet discovered by himse at Naples in 1846. He has computed its expected places to 1860 , and indicated upon a chart the limits of space within which it is to be sought at any specified time. He then spoke of the peculiar value of the periodic comets, as showing the nature of the interplanetary spaces, and of the real service which amateurs can render to astronomy by searching for comets. This work cannot be undertaken by those who are occupied in regular observations, and the comet medal of the King of Denmark was of great value in stimulating research by amateurs. As interest in science appears to be decreasing in Europe and increasing in America, Dr. Peters hoped that a similar medal might be proposed here.

Dr. Gould wished to express his sense of the gratitude due from astronomers to Dr. Peters for his services in these eleven years of labor upon the comet, and especially for the extreme beauty of the method of search proposed by Dr. Peters-the restricting of the probable field of the appearance of the comet at any day to a narrow line. He thought that the nonappearance of certain comets of short periods might arise from variations in the luminosity of the comet.
Cyclones, or Typhoons on the North Pacific.Mr. W. C. Redfield, of New York, read a paper on this interesting subject. It comprised notices of about thirty cyclones of violent character in the trade-wind latitudes of the North Pac fic. As regards the several months of the year, their occurrence was as follows: In February; ove ; April, one; May, two; June, two; July, hree; August, four; September four; October, six ; November, four; Decem ber, one. At the Marian Islands, about lati-
tude $13^{\circ} \mathrm{N}$., they are looked for in December ${ }^{\text {set }}$ forth in the paper.
and January, as well as in the summer months.
Immediately at the close of the paper, Dr Hare asked Mr. Redfield what he meant by a cyclone. Mr. Redfield answered, a wind which moved in a curved line. The Dr. objected, in quite a long speech, to the theory and views

IMPROVED SEED PLANTING MACHINE

New Broadcast Sower
In this improvement the seed is deposited in a box, A, and flows down through a tube, B, into the curved hollow arm, C, by whose centrifugal motion the seed is scattered broadcast. The arm, C, is attached to the upright spindle, D , which is rotated with great rapidty, by means of pinions and gear wheels which derive power from the axle of the vehicle. The connections for this purpose will be readily apparent by reference to the cut E is a lever by moving which the pinion, F , is instantly disconnected from the driving gear wheel, G, and the seed sowing apparatus brought to a stop.
The extremities of the arms, C , are furnished with valves, H, each of which is con nected by means of rod and spring, I, and rollers, with a cam arrangement, K L, attached to the under side of the bottom board of box A. (See fig. 2.) The object of the valves and adjuncts is to regulate the quantity of seed sown per acre, and also to prevent the scattering of seed except from that end of hollow arm C which sweeps out at the rear of the machine. Were the seed allowed to escape indiscriminately from both ends of C portions of it would strike the vehicle, or animal, and be improperly scattered.
The tendency of the springs, I, is to keep he valves, H, constantly closed, and they never open except when the arm, C, revolves and brings friction rollers J against the cam surfaces, K L. The duration of contact between the rollers, J , and cam surfaces is equivalent to the time occupied by the arm, C , in sweeping around the rear of the machine. The valves, H, are therefore open, and the seed escapes, when the extremity of arm C begins to emerge from beneath the seed box, A, but the valves instantly shut, when the extremity of C has finished its rear sweep and begins to go under box A again. The quantity of seed sown per acre is regulated by adjusting the nut, a, (fig. 2,) which releases or tightens the pressure of springs, I, on the valves, H .
The cam surfaces, K , it will be seen, are formed by bending the ends of the rods of which they are composed. Cam surface L is attached to a movable cross bar, M , one end of which is hinged to box A. A rod, N, extends from M to a point near the driver's seat within his reach. When he wishes to pp the discharge of grain he pushes rod N , and

When he had concluded, Mr. Vaughan made the remark that an upward current of air would infallibly produce a whirlwind.
Dr. Hare replied: When you have read my book, sir, you will be better qualified to form a judgment upon the question, and to take art in the discussion.

(fig. 2.) This carries the yoke, L , towards the outer ends of K , and they open so that rollers, J, when they come around, cannot touch the cam surfaces; consequently the valves, H, remain closed, and no discharge of seed takes place.
This machine will sow all kinds of grain or grass seeds at the rate of trom four to six acres per hour, doing the work in the most even and perfect manner. The patentee states that its cost is not much more than a common gig, for which the vehicle may also be used if desired, the seeding arrangement being so fixed as to be easily removed. Or the wheels of a common wagon may be conveniently applied during the seeding operation, thus saving a portion of the cost. Invented by Enos Stimson, North Craftsney, Vt., of whom, or of A. Stimson, Chicago, Ill., further information can be had. Patented May 6, 1856.

The Scientific American.

We cannot sufficiently draw attention to the advertisement of the Scientific American, published weekly at New York, the name of which indicates its character. It is the only paper of its kind in the United States, and we hardly think that its value is duly appreciated by mechanics and manufacturers of all degrees, or it touches fully every appliance with which they are associated. It records all new inventions and discusses their character, and every amateur and practical mechanic in the country should have the paper at his hand. [Boston Courier, Aug. 28th, 1856.
[The above is only one out of hundreds of complimentary notices from the newspaper press which we might insert did our space permit.-Eds.

Yellow Fever
A few cases of this dangerous disease originating from foreign vessels, have occurred at the New York Quarantine, and vicinity, eight miles from the city, giving rise to the most exaggerated statements. In some of the country districts it is rumored and believed that a most fearful epidemic is raging in this city, that the 1 eople are dying off like rotten sheep, and that sure death awaits all strangers who venture into our limits.
It is proper to say that all this is foolish nonsense. No yellow fever exists here at all, and the city was never in a more healthy or
salubrious a condition than it is at the presen moment.

The Boiling Springs of Utah

In Washhotah Valley, Utah, there are ten boiling springs, which are great natural curiosities. They are situated on the banks of a stream and pour out their waters seething hot, with a great noise. The waters hiss and dash over jagged rocks, and jets of steam hot enough to scald the thand are also forced out. Deposits of sulphur and alum are found in their neighborhood, and the whole appearance of the region evince a powerful volcanic action.

Notices of cases sent to the Patent Office and of moneys received on account of patent business for the week ending August 30th, are necessarily deferred until next week.

Improved Music Hoider.

By Thomas Ward, Birmingham, Huntington Co., Pa.-The object of this contrivance is to promote the convenience of band musicians. It is intended to be attached to some suitable part of the instrument carried by the performer. The chief novelty consists in the combination of a spring or trigger with the spindle of the holder in such a manner that when the performer touches the trigger the spindle will instantly revolve and present the opposite side of the sheet of music to his eye, thus preventing any interruption.
In our engraving, A is the spindle, covered at its upper part by a case, B. C is the spring, which is spiral in form and encircles spindle A. D is the trigger, pivoted to an adjustable hub or boss, E. F is the screw for adjusting E. The lower part of case B fits into hub E. The manner in which trigger D detains the case B, is shown in fig. 2. When the trigger is pressed down, B is released and revolves half around. The spring, C , is at tached by one end to A and by the other to B thus causing the revolufion. The music is

supported between the slotted holders, G, which are hinged to the sliding tubes, H . The latter are supported on the cross piece, I which passes through the head of spindle A.' The tubes, A, are connected by means of rods, J, with collar, K. When it is desired to spread the holders, G, further apart, so as to accommodate wider pieces of music, the tubes, H are drawn out latterally, the rods, J, spread, and the collar, K, rises. L is a screw in the collar, K, which holds the latter, and its aduncts in any desired position.
This is a very simple, cheap, and useful im provement. In full size it is hardly twice the dimensions shown in our cut. For further information address the inventor as above.

Sicutific Ammericar.

NEW-YORK, SEPTEMBER 6, 1856.
The Past and the Future.
With this number of the Scientific American the labors of another year are added to those of the past, and we close the well-filled leaves of Volume Eleven to open the virgin pages of Volume Twelve.
Our record for the years 1855-56 exhibits a most gratifying increase in the stock of useful knowledge, and a highly satisfactory state of progress in the arts and sciences throughout the globe. In our own country this progress has been more apparent and extensive than, perhaps, elsewhere ; for we have enjoyed the blessings of peace and a full measure of material prosperity. Europe, however, has been convulsed with bloody wars-calamities whose influence upon the intellectual affairs of mankind is always baneful.
We return our heartfelt thanks to the noble host of patrons who have honored us with their attention and patronage during the year now brought to a close. They have our warmest wishes for their individual prosperity and success in all that can contribute to their happiness. We have honestly endeavored to piness. We have honestly endeavored to
benefit them and thus to merit their approbation We have good reasons to believe that, in some respects, at least, we have been successful. It is under this belief that we propose to commence another new volume, determined to labor with increased ardor, and, if possible, render ourselves and our journal more and more useful in the world.

We cordially invite all our old friends to lend us their co-operation. We hope that each of them will endeavor to bring over some new recruits into the ranks of those who love knowledge and believe in it elevating power.

Route of the Monopolists.

The utter defeat of the Woodworth Patent Bill at the late session of Congress is regarded with great satisfaction by mechanics, inventors, manufacturers, and all classes of people throughout the country.
Those who labored against that iniquitous scheme may congratulate themselves upon the entire success of their work. The victory was most complete. Notwithstanding the vast sums of money which had been pledged to procure its passage, and the almost superhuman efforts that were put forth by its myr midons, the Bill came far short of a success No committee reported in its favor, and it did No committee reported in its favor, and it did
not even reach a second reading, much less a discussion, in either branch of the National Legislature. Had it reached the latter stage, it would, beyond doubt, as circumstances now show, have been rejected. Resolutions from many of the States instructing their representatives not to vote for it, denouncing the monopoly, and requesting Congress to refuse its extension, had been sent in, besides petitions and letters from individuals, villages, towns, and cities in large numbers, all aided by the thunder voice of the public press. These had their proper effect, and the general feeling of the Members of Congress became adverse to the schemers.
The resulting consequences will be of the highest importance. On the 6th of December, 1856-just three months from to-day-the Great Monopoly which for a whole generation has been a terror and a scourge to inventors, and a cruel extortioner among the hard-working masses, will fall to the ground. A new and broad field for genius and industry will then be thrown wide open to all.

We derive great satisfaction in feeling that we have contributed, in some degree, to this noble result. All the means in our power have been long and faithfully employed towards its achievement, as the readers of our columns achievement
well know.

All inventors having improvements in planing machines who have been driven to the caves by the Woodworth Monopoly, may now come forth from their hiding places.
All mechanics who desire to enter into the lumber-planing business may now make the necessary arrangements.
All machinists may now prepare to take or-
ders for the construction of Woodworth Plan- is not just, nor honorable. England can af ing Machines.
All improvements hitherto locked up, because of alleged infringement, may now be put into operation.
The demand for lumber-working machinery will be very large in December next. Those who are earliest prepared to take advantage of the great opening will be likely to reap the richest harvest.
In addition to the Woodworth Patent extension, several other attempts to revive and extend odious monopolies were strangled by Congress. Among these were McCormick's application for a renewal of his Grain Cutting Machine patent, which expired in 1848; Hayward's Rubber patent, expired 1853; Harley's Iron Casting patent, expired 1849; Nock's Padlock patent, expired 1853. Whatever short comings may be laid to the charge of the late Congress, it is certainly entitled to the thanks and gratitude of the people for having refused to breathe the breath of life into the above batch of monstrosities.
The only patent extension granted during the session was to Isaac Adams, Boston, Mass., for his printing press. This patent had already been extended seven years by the Commissioner of Patents, and would have expired in 1857. Its present extension, although a matter of little publicimportance, should never have been allowed. Congress has already made general laws for the government and protection of inventors. It ought not to disregard those laws for the special benefit of single individuals. In the cases of poor inventors who appeal for relief, let a sum of money be donated, if need be. But let us have no suspension of time-honored laws, bringing ruin and injustice upon others, in order to bestow charities upon single individuals.

The Claims of Inventors.-Henry Cort, the

manuf P Iron
The iron manufactures of England far surpass those of any other nation-they command the wonder and admiration of the world. The yearly make of rolled and puddled iron of that country now amounts to 200,000 tuns - 50,000 tuns of which are exported. Eighty years ago, instead of exporting wrought iron Britain was a large importer from Russia and Sweden, paying out annually about $\$ 7,500$,00 ; now it exports iron to these very countries.
What has produced such a great change, and given England such sources of wealth and power? Not the policy of the government, but the inventive genius of Henry Cort, who was deeply wronged by government officials, and his family reduced to comparative pover-

We have already noticed this case in our columns, and our remarks on it have been copied with approbation into several British journals. The London Times, in a strong article, has advocated the claims of Cort's heirs, and there are some prospects of their being rosecuted to a successful issue.
Henry Cort was the inventor of puddling ron, and rolling it by grooved rollers; these were the greatest improvements ever made in the manufacture of wrought iron. The idea is too often held up by those who are not deeply versed in the progress of manufactures, hat government favor is the great cause of their developement, in nations. This is a great mistake; inventors are the great improvers of manufactures; governments more often throw
impediments in their path than afford them assistance. In England, men are knighted, made Peers, granted pensions and high titles, whose claims to such distinctions are but very barren-so far as they relate to the welfare of the country-in comparison with those of he inventors. Great warriors and orators, gen erally, are the recipients of government favors, not inventors and men of solid genius. There are some honorable exceptions, to be sure; but the rule and custom has been to heap honor upon the descendants and relatives of the land Barons, and to overlook the claims and worth of the industrious classes.
Henry Cort did more to advance the real greatness of England than Wellington, yet the heirs of the former are living in comparative indigence, while those of the latter are swathed with honors and revel in donated riches. This
is not just, nor honorable. England can af-
ford to be just and generous to her sons of genius and industry ; and the recent elevation of Mr. Strutt, a manufacturer, gives evidence of a forward step in the right direction. But the throne and the peers must elevate their policy higher still, if they would act wisely for themselves; they should admit the manufacturing and mercantile classes to a full communion of association founded on worth.
Every nation that is governed by a wise and just policy, will encourage and reward its inventors generously, but no nation on the face of the earth has yet done so; we include our great Republic among the number. We have hopes of better things for the future ; and we hope that England and the United States, who have been so largely benefitted, will do justice to the heirs of Henry Cort. Why cannot our ron manufacturers start a subscription fo the benefit of Cort's heirs, and thus show to the world that genius is appreciated, no mat ter upon what soil it flourishes?

```
Recent American Patemes
```

Improved Potato Digger-By Silas Woolson, Moodna, N. Y.—This implement consists of two large bars or levers, pivoted together in the center, somewhat like a pair of scissors. One of the bars is furnished with prongs like a fork, at one end, by which the potatoes are raised. The other bar is used as a fulcrum for the fork. The forked bar is slotted at its center, so that it may be drawn up or thrust down, and also hinged on the pivot. In use the operator thrusts the fulcrum bar into the earth, and holds it erect with one hand, while with the other he pushes the end of the forked bar under the hill and then bears down. Th_{e} potatoes are in this manner all lifted out, and the dirt falls through the prongs. This apparatus renders the labor of potato digging comparatively easy.
Contrivance for Milking Cows.-By Wil liam H. Whitman, of Bailey Hollow, Luzerne Co., Pa.-Consists of a square box the top of which is perforated with four holes, placed at the proper distance apart, to receive the teats of the cow. The insides of the holes are lined with a series of spring fingers connected with a cam, in such a way that when a small crank is turned the fingers will press the teats and cause the milk to exude. The operation resembles the ordinary process of hand milk-
ing. The milk falls to the bottom of the box and flows thence through a flexible tube to a pail or other receptacle.
Safety Gas Burner.-By Augustus R. Marshall, of Stratford, Conn.-This improvement consists of a safety attachment for gas burnners, whereby, whenever the gas is blown out by a current of air or otherwise, its escape will be immediately arrested, and waste or other bad consequences prevented. Without drawings it would be difficult to explain the parts. It will be sufficient to say that there is an air chamber so connected with a valve, that when the gas is burning, the air chamber is expanded by the heat, and the valve thus kept open. But when the gas is extinguished, the air chamber contracts, the valve falls ${ }^{l}$ and the gas is shut off.
Condenser for Steam Engines.-By John T. Denniston, of Lyons, N. Y.-The object of this invention is to complete condensation and obtain the vacuum at an earlier point in the stroke of the engine; also to expel the water and air from the condenser, (the condenser used being the wat condenser,) through separate channels and at a less expense of the power of the engine. The invention is adapted for river boatengines, in which the vacuum apparatus is above the water line, as well as for stationary engines, whose condensing apparatus is at a higher elevation than the source from whence the water for condensation is derived.
Instrument for Measuring Distances and Al-titudes.-By E. A. Crandall, of Friendship, N. Y.-This instrument consists of two telescopes, sight tubes, or other sighting devices, placed at certain fixed distances apart, on a suitable table. One of the telescopes is stationary, relatively to the table, and the other movable on a fixed pivot, in a line that forms a right angle to the stationary one, so as to be
same point or object. The movable telescope has attached to it an index, moving over a graduated scale of distances on the table, by which, when brought to bear on the same point or object as the stationary one, it indi extes on the said scale the distance of the point. The operation of the instrument is based upon the well-known principle in trigonometry, that when the length of the base of a right angled triangle is given, the adjacent angle formed by the hypothenuse serves to determine the length of the perpendicular.
Contrivance to Prevent Liquids Boiling Over -By John Leiblong, of Waterbury, Conn., (assigned to Edward Brown and J. R. Case.) Consists in placing a conical shaped cap within the vessel, said cap having an opening at its apex, over which a deflecting plate is placed. The whole is so arranged that the boiling liquid will pass up through the opening in the apex of the cap and striking against the deflecting plate, will run down again into the vessel. The liquid is thus effectually prethe vessel.
vented from passing over the sides of the vessel.
Improved Fountain Pen and Indelible Pencil. -By Nelson B. Slayton, of Madison, Ind. -Office 290 Broadway, New York City.This improvement consists of a hollow tube tapering to a point like a common ever-pointed pencil. The point is slitted from its apex, for a short distance, up two or more sides The tube is filled with ink, which, when at rest, remains confined, and cannot escape. But when the point is moved in contact with a sheet of paper, as in writing, the ink flows freely as fast as wanted, but no faster.
This contrivance moves over the paper with all the ease and smoothness of a lead pencil, yet the inscription made is with veritable ink. There are no nibs to catch in the paper, no spattering or blotting, no ink-stand to be continually dippedinto, and no valves to be regulated. The instrument may be carried in the pocket like a common pencil. It is, in fact, a complete pen, inkstand, and pencil, all combined. By turning a nut at the cap the mark produced will be fine or coarse. The inventor informs us that he was led to attempt the invention of an improvement of this kind from an article published in the Scientific American setting forth the need and advantages of such an improvement.
Patented in the United States, Great Britain France, Belgium, etc., through the Scientific American Patent Agency.
Machine for Sorting out Ivory Combs.-By William Fosket and Benjamin S. Stedman, of Meriden, Conn., (assignors to Julius Pratt \& Co.-In the manufacture of ivory combs the blanks are generally cut of as great length as the width of the elephant's tusks, out of which they are made, admits. Therefore there is always a great variety of lengths, and many of them are so nearly of the same size that it is difficult to detect any difference without comparing them closely, side by side.
It is desirable in putting the combs up in packages of dozens, more or less, to have all the combs in one package of the same size exactly. The only way of sorting them heretofore employed, has been to pick them out by hand, which is a slow and tedious operation, requiring great practice to acquire any considerable degree of skill. The machine now patented is intended to perform this operation of "sizing," as it is termed, with great exactness and dispatch.
It consists of a round table with a slot or groove cut through around its edge. Said slot is made in flaring form, being wider at one end than the other. The blanks are placed one at a time, across the head or movement part of the slot; there is a pointer in the center of the table, which then comes around and sweeps the blank along the surface of the slot until a point is reached where the slot is wider than the blank, when it falls through. Boxes are arranged beneath the slot, into which the different sizes fall, and thus are sep arated.

Missing Numbers.
Such numbers as we have on hand, subscribers can have furnished them gratuitously, to complete their sets for binding, by addressing a note to this office.
 a seriesof springs which overriie ea
together and arrant in an inclin
bottom, substantially as set forth.
Air-Hfativg Furnaces-John Liddle, of New-York
City: 1 claim, first, the construction of the main body of the furnace, substantially as described-forming, by plates
attached to the internal surface, a series of tubes around its circum ference--so as to form the smoke flues without
any vertical jointsbetwen the interion and exterior, no
wit hout the employ ment of cores in casting, as set fort

 purposes speciified.
Second. Combin

 springs F. F. in the manner and for the purpose substan-
tially as set forth and described.
 lar g. and spade Ab, with reservoir a a b b; the whole
being arranged and operated in the manner and for the
nurpore described purpose described.
Condenser for Steam Engive-John T. Denniston,
of Lyons, N. Y.: I claim, first, forming a partial vacuum bef ore the commencement of the eduction of the stam
from the engine to the condenser, by first filling the con fom the engine to the condenser, fy first filling the con-
denser with water, and then partially with hd awing the
water to form steam space, substantially as set forth water to form steam space, substantially as set forth.
seocond. uspending the water in the rondenser, in a
number ot cups or cells v v, with perforated bottoms and number ot cups or cells v v, with per forated bottorss and
passages w w, between them, thus casing the team to
sirculate amnon and over and under the water, in the passages $w w$, between them, thus causing the steam to
circulate aniong and over and under the water, in the
cups and through the shower of water falling through the
condenser.
 or arm that is connected at or near the other end to a nixed
vertical shatt or axis in such a manner that taid tloat
shall be allowed to swing around said vertical 1 shatior axis,
 not subjected to any side ways concussion or strain from
nether the tide or swell, but is ree to orcillate or vibrate
eith the swell, and communicate motion to any suitable with the swell, and communicate motion to any suitable
bell orother alarm, substantialy as specified.
Second I claim, attaching the ends of a chain or its equivalent, on oppositich sides of a hever or that chain or reives ad
viluat!ng or oscillating motion from a swell, when said chain is pasied over a cam wheel or other similar article
to connm unicate the motion imparted
chain to the hammer of a bell or other signal of alarm, and as described.
ihird.
íl Third. I claim the arrangement of the cam g, and catch
h, rotatively with the heel of the hame ar and with the
chain, ubstantially as specififed, whereby the vibrating chain, substantially as specified, whereby the vibrating
motion of the chain works the said hammer, as set forth.

 SEAMLESSS Hosierr-William Goddard, of New-York
City: 1 claim, the process or method of manutacturing eamless hosiery of the form required ior what is kunown mac hines that knit the tubes of a uniorm diameter, and
addinn thereto the ribbed top, the heel, and the to, by
hand knititing, or any cquiyalent theretor, as described.
 arrangement of raising water of two concentric annular
channels, to which are anfixed selficactng, rotating valves,
atiaching to one channel a syphon, through the suction of which and pressure of water toilowing, the rotating valves
are operated, constructed and arranged substantially as described.
 E, substantially as described, tor the purpose specified. Also, in combination with the above, the fixed square
pates sliding on the bevels D and
cified and fior the purpostantially as spe-

 such a rake-head, nor such spring teeth.
Neitherdo I Ilaim such a rake.head.,nor such spring
teeth neither do I claim the whels or the handes sy
which naid rate is glided hor the arms

 MEASURING DisTANCES-Enoch A.Crandall,of Friend-

 Apple Paree-Charles B. Carter, of Ware, Mass, : I
claim the disk H, with its cover L, and slicing knife c. perating in the manner and for the purpose substantial
y as set torth viz-the purpose of the said disk being to Ya auset rorth, viz- the purpose or the said disk being tho
regulat the motion of the apple as described by the
persure of the hand, without the enecessity of any other
screw: it being understood that I do not claim merely the screw : it bing understood that I do not claim merely the
use of a slicing knife for slicing the apple into a spiral, as
that is not new.
 a separate receiving chamber B. arranged between it and
theboiler, and connected to both by pipes but I claim
heplyint an and applying the said chamber B, or arranging it with respect
to the guge, so that it shall 1 artially sirround the same,
and form a niche or recess H to receive such gauge, and
 cified ; the said recess H being provided or not as the the
case may require, with the curved cover or slider I , made
to operate therewith, substantially as set forth. In also claim, contstructing the gaune in tubuiar sections
of glass or other sutable transparent material, in combiof glass or other suitable transparent material, in combi-
nation with providing the same with a clamp trame or
napparatus, and connection rings and cups, substantially as
 m m, in combination with the springs s s, for the purpose
of regulating the stroke of the knives K , for cutting the
 pose or raising the mold the the grate under ne clay
when the same is constructed, arranged and operated in
the manner and for the purposes set forth. Amal.gamator-Alva M. Stetson, of San Francisco
Cal.: Iclaim, the employment of the boxes a a aplace
 Manveacture or Lean Pipe-John Robertson, or
Brooklyn. N. Y.: I do not claim as my invention any par Brooklyn. Nd. Y.: I do not claim asmy invention any pa
of the cylinder, nor of the dies. nor of the arrangene
theneor in the chlinder, no of the manner of adaptin
these to the hydraulic press, nor the mode of operatio

 psribed.
Sud. We also claim, adjusting the said plathorm or its
Suivalent, to any required inclination-as described by means of the left and right ssrew shaft G, blocks F F, in-
clined planese e, idsk Ha and plates K K. or their equiva-
lents, as described. Fountarn Pen-Nelson B. Slayton, of Madison, Ind.: I
claim, the fountain-pencil, consisting of a tube tapering
to to a point and slit from said point some distance up two
or more sides. said tube being onnected with an ink-re
orvere servoir, which is closed except at its connection with said
tube and from which the ink is cased to to tow through
the said tube and down the slits thereof, and issue from the point the areof, when the saids poineris moved ind in ocntact
with a surface of suitable character to receive an inscrip tion in ink, substantially as descrilied.
I also claim regulating the degree of fin

Machinery for Filuivg Seine Needles-Simon
Stanton, of Manchester, N. H., (assignor to himself and
 the twine, vibrated perpendicularly arm traversed hori,
zontally dy devices such as described or their equiva-
lent lents, so as to deliver the twine across the score and
around the tongue of the needle, substantiaily as described
Bilge and Leakage Water Indicators for Ves.
sits-Reuben Shaler. of Madison, Conn.
bilge and leakage indicators, (he (in
bectional diaphrasm
 Apple Parers-Marvin Smith, of New Haven, Conn.:
Ido hot claim the combination in the same machine,
such, of knives of different kinds, and operating in diflerent ways, for the purpose of paring and slicing apples;
having been done many years since having been done many years since,
But I clanim, first, the ocntruction of a machine for
paring and silicing apples, in such a manner that a vibra. tory or oscillating apotion, may me biven to the fork carry.
ing the apple simultanously with the axial or rotating
motion of the same, whereby I am enabled motion of the same, whereby I am enabled to use a paring
knife that shall be automatic or self-acting in ins opera-
tion
 operating in such a manner that the adjustment of the
cutting edge of the knif e to the entire esurace of the ap
ple shall be coincident with the vibratory or oscillatin
 fork c, that as the said fork is moved in the direction of
the hinge of said pawl the point of contact hetween the
fork
ork and the pawl
cont, shall
 average or mean draft, in combination with the slot
and pin S , or its equivalent. which overcomes the vibra-
tin mmont
tinly CUPprivG-Loyall Gillotson, of Thompson, Ohio: I wish
to be distinctly understood as not claiming the use of a
cuppins instrument nor the emplay
 known to the medical profession.
But I claim, the within described apparatus, viz., the
spiral wire G tisk
to and to a cuping instrument for the purpose of employing
electrictivin conjunction with eupping as an adjuvit
for diseased parts of the human body, as set forth. Ball CASTor for Trunks And Furnirure-Judso
Knight, of Newark, N. J.: I do not claim the separa parts of the castor as my invention. But In claim, the
combination of the oointa a and and the ball b, workin in
an open socket c. in the manner and for the purpose sub combination of the poin
an open socket c. in the
stantially as described.
 coam the elastic bulb or receiver, f, surrounding and
communicating at botom with a holiow stem, bc, which
supports and opens into the bowl. in the described combi supports and opens into the bow. in the descroled ooming
nation with the air duct, ghaving an in wardy openity
valve, h, aftording the described means of communication valve, h, affording the described means of communication
from the external atmoshere to the upper part of the
bulb, or equivalent devices, for the purposes explained. re-1ssue.
 claim the mode of sustaining the fuse rope in the fuse
tube and preventing the fire of the charge of the gunf rom
passing by the fuse rope and into the bomb, viz. by metal passing by the fuse rope and into the bomb, viz. by metal
orlmetalich plus, or the equivalentsthereof castaround
or made to closely encompass the fuse rope anter it has

 be trown outwards, immedately aftr the projectad
may be discharged rom the gun, such wings beeingmade
of vulcanized india rubber, or any substance or substances of vulcanized india rubber, or any substance or substance
which may de deemed an equivent theret. inasmuc
as such may possess the requisite a
 tion. wesigns
 Cooring. Stoves-N. S. Vedder \& Wm. L. Sanderson
of Trrov, N. Y., (assignors to Sweetland \& Litte, of Cres
cent, N. Y .)

This is the last Number of Volume Eleven. Our friends will please to renew their sub scriptions promptly in order to procure the coming volume complete
We do not employ traveling agents to canvass for us. This system we are obliged to condemn after a fair trial of it. We offer prizes as a stimulant to our friends to enter he field. Remember, we pay One Thousand Dollars cash on the 1st of January next. These are good chances for the employment of leis ure hours

Volume Eleven Round.
About two hundred complete sets of Vol ume Eleven are in the hands of the binder, which will be for sale at our counter next week. Price $\$ 2 \cdot 75$. They may be sent bylexpress or mail to any part of the country When ordered by mail it is necessary that 75 cents extra be remitted to pre-pay postage, Volumes 6,7 , and 10 , bound, can also be furnished at the price specified above.

Great Britain, France, Belgium, Austria Prussia, and Russia, are all densely populated countries, having large manufacturing metors of the agriculturalinterests. The ly correspondence with their agents in Euope, in regard to patents in these countries They are largely engaged in securing European patents, and will freely consult with those who wish advice upon this subject.

Don't Lose the First Number.

The voluminous Index for the past year, which we herewith pubiish, together with the ornamental title page for binding with the volume, necessarily occupy a large portion of our space. But next week we commence a New Volume, and the first number will be an renew his subscription promptly, for thus he will be secure against the loss of the first number.

A	Apple Parer and Slicer, Maxam's,	Barometers, Bad 404 Basket, Cake 333	Boilers, Experiments with 371 Bookbinders Machine 357	0	Cellar Walls, Filling around 209, 233 Cements 366 Com Iron Joints 233
cetate of Lead 168 [352		Baths, Electro.Chemical 299, 339,363	Boot and Shoe Soles, Cutting out 3	Cabbages, Heading for Winter	Cement, Stone
Agricultural Machine, Davis, '1 digig.	Arctic Exhibition, Return of 43	Bed'Spring, W rights, 1 fig. 340	Boring and Mortising Machine, Al-	Canal across the Isthmus of Surd and Tallow 145 252	Center Vent wheel, Richs ${ }^{\text {ce, }} 1$ fig. 41
${ }_{\text {A ir }}$ Ada society for R. R. Cars 20	${ }_{3}$ Arms, Manufacture of Government	Bedstead, Cording 319		Cande Machine 214	Chair, Cabin 294
Alcohol from Tomatoes 83	Artesian Wells, 1 fig. 91	Bell, Pressure 253	Borno	Candes, Manuf acture of ${ }^{\text {Cannon }}$ and Shot 3 figs. 400	C halk Experiment ${ }^{\text {C }}$ 337
Almanac, Perpetual 318	Assay Office 80	Bench Hook 221, 1 fig. 280	Box Opener, Tafts, 1 fig. 12.281	Cans Preserve 309	p, Camp's, 1 fig
Alumina in Soapstone 104	Augers 333	Bench Retor	Bricks, Conkling's, 3 figs. 160	Car Wheel, Mann's, 2 figs	Chloroform ${ }^{\text {Cholera and }}$ its Remedy 3 figs. 1
Aluminum, How to obtain 333	A ward of Prizes by the American In- $_{\text {stitute }}^{93}$ -	Billiard Trables and Cushions, Phe-		Carriage, ${ }^{\text {Carriage Reach }}$ figs. 376 . ${ }^{\text {a }}$	Chuck, Universal,
Alum Mine 346	Axxes, Wagon 214 Axles, Attaching	Blacking for Foundries 10:4	Bridl	Carriages, Attaching Shafts to 357	Churn, Lam
Ammonia, To make in Iron Works 40		Blasting Compound 349	Brine		$\underset{\text { Clamp }}{\text { fig } 333}$ Carpenter's, Oliver's, 261 ,
mition 51, 108 .		${ }^{\text {Blind }}$ lins, ${ }^{\text {, }}$ Oener 326, 2 figs. 3	Sristles, Separating 405	Carmine, To make 246	Cla
arsthetic Agent 220	B	Blueing White Paper 155	Bronz	Carving Ma	${ }_{2} 2$ figs
paratus Milking 41.	Sagrage Wagon, 1 fig. 166	${ }_{\text {Boat, }}^{68}$ Flexible, Stephenson's, 2 figs.	Buckl	Caster, Gleason's,	
Apparatus for Replacing Cars upon		Boiler Incrustations, Preventing 286 Boiler Explosions. Preventing 234	Butter, Restoring Rancid 147 Butter W orker 238	Castings, Weight of by Patterns 19 Castings, Scouring and Coating with	Clasp for Leading Cattle, figs. 85

Clip, Carriage, Flowers', 341, 2 figs. Cliocks, Calender 261 Cloth, To Extract Grease from 153 Cloth Stretcher 262 fig 330 Folding Machine, Elliot's, 1 Clothing, Water-Proof 336 Clothes Pin Machine, Goddard's, flg. 289 fog. ${ }^{289}$ Window, Silvers, 1 fig. 3.54 Coach Cochinining in Ilininois 1 fig. 144 Cochineal 144 Coffee, Cost and Culture of 170 Coke, Manufacture of 108 Coke for Smeltiog Iron 382 Colors, Bronze for Paper 314 Combs, Sorting out 411 Compass, Ship's, Prime, 1 fig. 273 281. Cooking Apparatus, Demorest's, 2 figs. 3 .1 3i1 Cooler for Beer Casks 342 Copper and its Uss $173.181,193$ Corks, Securing in Bottles 230 Corn Planter, Stoddard's, 2 2figs. 76 Corn Planter, Hughes Corn Planter, Hoeklen \& Fifenwick's, 1 fig. 318 Corn Planter, Denny's, 1 fig. 396 Cotton Gin, Fultz's, 2 figs. $61,2 \% 0$ Cowdee Gumand varnish Crane, Burnet's. 1 fig 321 Crimping Apparatus, Fetter's, 1 fig. 289 $\underset{\substack{\text { Currants, } \\ \text { Cut-Off } \\ \text { Culture of } \\ \text { 2. } \\ \text { 20 }}}{ }$ Daguerreotypes ${ }^{\text {D }}$ ments 1 fig. 13 s , Securing in Monu Decarbonizing Steel Plates 27 Deodorizer, Cheap 378 Disinfecting Agents, 313, $40 . \mathrm{L}$ Distance Indicator 1 fig. 166 Doors, Connecting, Brown's, 1 fig. 252 Drawing Instrument 1 fig. 205, $39 /$ Dredging Machine, Howard's, 1 fig. Drill, Hydraulic, Echols', 4 figs. 244 Drilling, Screw Cutting and Boring Machine, Heacock's, fig. 100 G Gas, Coot of 82 G Gas, Liighting ib5 Gas Burners 2 figs. 182 Gas Retort302 Gas, Puritying 349 Gate, Adjustable, Lum's. 1 fig. 12 Gate, Farm, Weber Gate, Tidal, Flanders', 253, 1 fig Gate, Wate 349 Gauge Cock, Bisbee's, 1 fig. 389 Glazing Sheet-Iron 51 Glass, Silvering 363.403 Gloves, To Clean Kid 152,401 Glue 259 Glue, To Make from old Leather 3 Glycerine 80 Glycerine in Lung Diseases 149 Gold Separator, Kent's, 2 figs. 81 Gold and its Uses 205, 213, 221. 229 Gold Washer and Amalgamator 397 Governor, Marine, Webster's, 2 figs. 153 Governor, Marine 309, 310 Governor for Saw Mills, Green's, 2 fig. 212 Governor, Silver's, 1 fig. 356 Grain, African 48 Grate, Fire 214 Guano 240 Guns, its, 332 Gutta Gutta Gutta ubing 326 Manufacture of 326 H Hair Dye 230 Hams, Making Harness Crease Hanes fats 3 8, 309, 317, 326, 333,	Hat Felting Machine 246, 294 (2), 357 Hay Gatt, Self.Loading 28 Head Shade Cam Head Shade, Campbells, 2 figs. 1, Head $\begin{aligned} & \text { Hilock for Saw Mills } 302,310,\end{aligned}, ~$ Heat Artificial 155 Hemp, Sisal 211,219 Hemp and Flax, Culture 235 Hoisting hlocks, Merrilss. figs. 164 Hominy Machine, Fahrney's, 2 figs Horse Shoes, Towers', 3 figs. 148 torse Shoes, Steel Corked 171 Hose Coupling, W aterhouse's, 2 fig 12 Houses, French Method of Building fig. 216 Hubs, Wagon, Nycum's, 2 figs. 294 Hub Mortising Machine 389 Husking Thimble, Gould's, 1 fig. 302 Husking Machine 317 Hydrant 286,315 Hydrophobia, Cure for 152, 209 Ice, Consum Incense 152 $\stackrel{I}{\text { I }}$ Incrustations in Steam Boilers 198 Incrustations in Water Pipes 400 India Rubber 215, 344,339350 Indicator and Feederfor Steam Boil ers, Clark's, 1 fig. 272 Indigo, Extract of 144 Infernal Machine, Russian 2 figs. 6 Ink, Writing 332,374 Ink Stains, To Extract for Linens 326 Insects and Pestilence 30 Insects, Destroying 384 Inventions, Ancient and Curious 238 2. $254,262,269,278,291,309$ Iodine 304 Iron, Restoring Fibrous 34 Iron, Coating with Zinc 57 Iron, Manufacture of 125 ron, En \square Iron, \qquad 286 408 Apparatus 405 Joint Universal, Hi J Kilns, Lime Kill Drying by Knife Cleaner ${ }_{\text {Steam }}^{\text {347, }}$, 3z rine, Corwin's, 3 figs. 25 La Diorop I Lamp, Lamp, Lamp, ard, Ha pirit, Be Pitts', 2 figs. 52 \qquad for Glass 405 Hunters, s. 140 Lamp, fig. 18 Lard, Strych hoe 261 \qquad ychnine 289 Lathe Lathe C Lathe, Leyden Ja as, Hot Air 252, 307 L Lutgens, Locomotive, Air 252, 307 nk Motion for, Uhry Lock, Latc Dummy 378 and Alarm, Schneider"s ng, F'ield's, 2 figs. 176 Lock for Safes, Lock for Ship Locks 333, 371 Loom Life- Life Life 98 $214,261,357$ pparatus 156 Lubricator 286 Apparatus 156 and Military Wagons in 286 Mill Spindles 286 $\frac{\mathrm{M}}{\text { make }}$ To make 203 Marble Sawing Machine, Noetter \& Schmidt's, 1 fig. 169 Marble Sawing Machines Marble Sawing Machine, Schrag*s, 2 figs. 200 Marble ${ }^{\text {fig. }} 305$ Marble, American 340 Matches Measuri 252Measuring Instrument, Young's 1 fig Meats, Effect of Heat upon 152 Mechanic's Companion, Shanklin's, 1Melodeons, Hunts', I fig. 112 Melodeons 318, 325 . Merrimac, Steam Frigate 267Mercury, Test for 347 Metals, of Experiments with 261, 269Wuman for the Skin 144Hum king Apparatus, Reeves', 1 fig. Mill, Grain, Painter's, 1 fig. 196Mill, Sugar 305 $\begin{array}{ll}\text { Mill ton \&, Dressing, Draper's, } 2 \text { fias. } \\ \text { Millstones, Dressing } 294 & \text { [192 } \\ \text { Mint, U. S. } 368 & \end{array}$ figs. 76Mop Head, Barnes', 1 fig. 156Mortar Mixing 253 Mortising Tool 230 Motion and Heats, Hot Air 185Mowing Machine 2 at Mowing Machine, Triawn's, 2 figs.Music Rack 366Music Holder. Ward's, 2 figs. 410 N are Made 206 Meaiurementify 3 2n8 0 Obse Odo \qquad	 Paper, Moss 121 Maper Making 381 Patent Laws, Reform of 101 Patent Laws, Defects and Remedies 188 Patent Laws, Bill to Amen Patents, Value of 109,349 Petents issued in 1854150 Patent Extensions 236, 362 Y:atent Bill, James', 292, 301, 307, 309 Patent, Woodworth 61, 66, 365 Patents, Reciprocity in 365 Patented Articles, Stamping Date on 285 Pearl Ornaments, Securing in Han Peeling Willows, Machine for 43 Peg Cutter 1 fig 190 Pegging Machine 214 Pen, Fountain 221 Pen. Fountain, McClelland's, 1 fig. 273 Pen and Pencil Case 278 Pen and Pencil, Indelible 411 Perfumery 218, 232 Perpetual Motion, Willis', 139, 1 fig 201 erpetual Motion 232 Perp ianofortes, Driggs', 2 figs. 248 Pinch Bar, De Graw's, 1 fig. 220 Pistol, Repeating 261, 373 lane, Bevel, Devoe's, 1 fig.s. 1 fig. 196 laners, Metal 381,397 Planing Machine, Barlow's, 2 figs. 49 Planing Machine, Killam's, 2 figs. Plaster and Ammonia 249 liers, Combination, Hart's, 1 fig. 401 Plow, Evans', 2 figs. 124 Plow, Plow, Plow, Subsoil 269 h's, 1 fig. 393 Plow Plow, Plow Handles, 364 \qquad Plow Pocket Book 226 otatoes, How to Plant 273 otato Digger 326,411 Potato Powde Power Power Press, Press, der, Pol Press, P \qquad Hower, Davis', 80, 2 figs. 148 Hay and Cotton, Ingersoll's 1 Press, Press, Punching 233 Hay, Fay's, 1 fig Press, Press, Preser Preserving Animal and Vegetable Primer for Fire-Arms 406 Propeller, Low's, figs.390 Propulsion of Vessels, Whittaker's, 1 fig. 188 Propu fig. Pump Pump Pump Yemper $\& ~$ Yeis Pump Force, L Pump, Pump, Pump, Rotary, Lindsey's, 1 fig. 310 Rotary, Denison's, 1 fig. 324 Rotary 326 Pumps Punching and Shearing Machine, Davis \& Stephens', 2 figs. 65 Punching Machine 294 Q Q Rails, fis. s, Speed, \&c. 254 rown's, 246, 3 Railway Rake T Rakes, Rakes, Raking eth Mac mith's, 342 Rakin Rattle Reapin Reapin 406 Reape Reelf Regist Repister Car 230 Reprt of Commissioner of Patents for 1855187,185 Riffes 196 Rock Drill, Goulding's, 3 figs. 121 315, Rooofing Materials for Building 3644 , S 	 W Wills of Holow and Solid Bricks 		

