THE ADVOCATE OF INDUSTRY, AND JOURNAL OF SCIENTIFIC, MECHANICAL, AND OTHER IMPROVEMENTS.

Scientific American, published werfit At 128 Fulton Street N. Y. (Sun Buildings.) BY MUNV \& COMPANY.

 Agents.

 Responsible Agents may also be found in all the princi pal cities and towns in the United States. Single copiesof the haper aree on sales. a al all the periodi
pal
cal stores in this city, Brooklyn, and Jersey City. der in six montis.

Plaster and Ammonia

A correspondent of the Genesee Farmer says - You have lately proved that gypsum, in its ordinary condition of dry powder, will not combine with carbonate of lime and sulphate of ammonia. I know it is a practical fact, from trial on a large scale. I also thought it would in some cases expel ammonia, because I had injured an experimental plat of turnips by mixing gypsum with guano. With no more chemistry than a gentleman obtains at college and retains scantily amid the varied duties and pursuits of life, I have a very high respect for the results that induction, like yours in the case above, will give us, but no confidence in the dicta of men like Liebig, whose genius (and I think he has a great deal of it,) is occasionally prostituted to fame."
[We recommend this paragraph to the attention of our farmers. The lesson to be derived from it is, that gypsum should be moistened, when mixed with guano.

Falling Bodiew.

The following table, giving the hight and the time of bodies falling, will be found very useful to millwrights in calculating the velocity of water, especially on falls under sixteen feet:-

1	$\cdot 25$	rain	ing in sec .935
2	$\cdot 352$	16	1.
3	$\cdot 432$	20	$1 \cdot 117$
4	$\cdot 5$	24	$1 \cdot 22$
5	$\cdot 557$	25	$1 \cdot 25$
6	$\cdot 612$	30	$1 \cdot 37$
7	$\cdot 666$	36	$1 \cdot 5$
8	-706	40	$1 \cdot 58$
9	$\cdot 75$	45	$1 \cdot 67$
10	$\cdot 79$	50	$1 \cdot 76$
12	-864		

In our engraving, fig. 1 is a perspective and fig. 2 a sectional view. The apparatus is supported on a standard, A, and the weighing lever, B, which operates in the common manner, but is made with three arms, $\mathrm{B}^{\prime} \mathrm{B}^{\prime \prime} \mathrm{B}^{\prime \prime}$, has its fulcrum at C. The articles to be weighed are placed on the platform, D, which rests upon a knife edge on the lever, B.
The weights upon the arms, B^{\prime} and $B^{\prime \prime \prime}$, it will be noticed, are both of the same size; if they were both moved out on the arms, double the quantity of material could be weighed than if only one arm and one weight of the same dimensions were employed.

The tare may be indicated with great facility by using one of the weights for that purpose. The smaller weight is intended for use

IMPROVEMENT IN WEIGHING SCALES.

in indicating the fractional parts. If all of \mid The field for their introduction is large. The the weights are not wanted for immediate use, improvement may be attached readily to the they may be shoved up under the fulcrum, out ordinary platform scales; indeed, the variety of the way, but still remaining in a conve- of form in which the principles of the patent nient position. An additional or extra weight can be presented, is endless.
may be hung upon the extreme end of lever The inventors, Messrs. S. S. Mills and M. B, when necessary Bissell, of Charleston, S. C., will be happy to The simplicity, compactness, and accuracy give any further information. The patent of these scales must be apparent to every one. ${ }^{\text {b }}$ bears date Feb. 5, 1856.

IMPROVED HAY PRESS.

Press for Hay, Cotton, \&c. In this apparatus there is a strong shaft, A A, placed at each of the lower ends of the frame. The compression is effected by means of chains extending from the shaf ts to the ends of the follower beam, B, the chains being ound up on the shafts; the latter are rota
pawls of which, C^{\prime}, catch in the teeth of the ratchet wheel, D. The force with which the compression is effected is limited only by the length of the levers, and as these may be easily extended, the effective power of the machine is truly enormous.
E is a secondary ratchet wheel, having a ted by means of the levers, C C, the hooked $\left.\right|_{\text {spring pawl, not here shown, which holds the }}$
purchase on shafts, A A, during the back strokes of the levers, C C. F is a cord for releasing, at pleasure, the pawl of the secondary ratchet wheel, E. The levers, C C, are not permanently attached to shafts, A A, and may therefore be removed out of the way when not wanted for use.
The ends of bar G, which hold the doors together, fit into mortices in the frame-work of the machine, and thus relieve the doors from strain; the hinges being placed on the outer surfaces of the cross-pieces, the door will not fly violently open when the bar, G, is released and damage is thus prevented. The platform, H , is composed of separate pieces of plank, and is thus easily handled; the pieces are kept slightly apart by means of guide posts
This press is strikingly simple in all its parts, strong, portable, and cheap in construction. The invention is highly spoken of by all who have had it in use.
For further information address the inventor, C. J. Fay, North Lincoln, Me. Patented July 11, 1855.

A Great Artesian Well.
A new Artesian well is being bored in the Avenue Charles X., at the angle of the Avenue St. Cloud and Petit Pare, near Paris, for the purpose of supplying the ornamental lakes of the Bois de Boulogne. An interesting paper has been communicated to the Academy by M. Dumas on the subject, from which it appears that Mr. Kind, the engineer, has undertaken to bore a well 29 inches in diameter, and continue the sinking, if necessary, to the depth of 2500 feet, and thus obtain a daily supply of 10,000 cubic meters of water, being nearly equal to the volume of water delivered by the Seine through the Pont de la Tournelle, at Paris. The boring was commenced on August 2 d last, with a diameter of about 41 in . For some time, when the operations were through marl and chalk, the average daily progress was 16 1-2 feet; then, through sand, it was reduced to $81-4$ to 10 feet; and now, having reached another stratum of chalk, con-. taining boulders, the speed is 5 feet, the depth beingalready upwards of 980 feet, and by May 1st it is expected that the enormous depth of about 2360 feet from the surface will be attained, being more than 490 feet deeper than the Artesian well at Grenelle. The motive power is a steam engine of 24 -horse power.

Red Grantte.

Lord Stanhope, in the course of his lecture before a scientific society in London, speaking of the fragments of marble found in the alluvial soil which covers to a considerable depth the site of the Forum of ancient Rome, says that among the various marbles thus discovered, were considerable portions of red granite, known to exist in upper Egypt ; and then his Lordship adds, that all the red granite which now supplies the world, is derived either from the estate of the Earl of Aberdeen in Scotland, or else from the scattered fragments which the excavation of ancient cities yield. It is singular that the learned lecturer had never heard of the vast quarries of red granite in Finland, of different shades, and susceptible of a polish equal in beauty to the most compact marble. In the deep gorges of the White Mountains, in New Hampshire, a species of beautiful red granite is found.

Bituminous and Anthracite Coal for Boilers. The ferry steamboats plying on the East and North rivers between this city and other places now use bituminous coal for fuel. Two years ago anthracite coal was exclusively used. We have been informed that the bituminous generates steam as rapidly as anthracite, is not so severe on the metal, and on the whole is cheaper.

Combined Steam and Ether Ensines, Missrs. Editors-In the Scientific American of February 9th, you published an article relative to Ether Engines. You appear to distrust Du Tremblay's ether engine, because the Company has lately paid a dividend of 40 per cent.
Having resided here many years, and being quite aware of all that is taking place, I can give you correct information on this point. It is quite true that the Ether Co. has paid a fair dividend of 40 per cent., independently of a large reserve fund which has been laid by to meet eventualities; but this large profit is not wholly due to the use of Du Tremblay's ether engines. In the first place there have been such vast quantities of military stores transported from Marseilles to the Crimea, at such extravagant freights, that all steamboat companies have gained large profits; in the next place the Ether Co., were fortunate enough to meet with a steamboat builder who, miscalculating his estimates, sold them two 300 horse power vessels at about 20 per cent under their real cost, and as the constructo was also beyond the time stipulated for thei delivery, the Company took advantage of a penal clause in the contract to get about $£ 7000$ in cash out of the builder.
All these circumstances have tended to swell the dividends of the Compaay, but still the ether invention has largely contributed to the profits. Your readers will easily understand this on examining the principle of this invention. Du Tremblay's plan consists in a pair of engines conjoined; the first cylinder is worked by ordinary steam in the usual way When the steam has exerted its mechanical effect, it escapes into a tubular condenser, enveloping the tubes in which ether is contain. ed. Of course there is no communication between the interior and exterior of the tubes in the tubular condenser. The vapors of water and ether never mix. The ether absorbs the heat of the steam with great rapidity-the latter is condensed, while the former is converted into steam.
This ether-steam drives the second engine and of course all the power generated by itis clear profit.
After the ether-steam has exerted its mechanical effect, it is reduced to a liquid state in a tubular condenser, which is cooled by passing among and around the tubes a large volume of cold water. To complete the operation, the condensed water is returned to the boiler, while the condensed ether is returned to its vaporizer ; this vaporizer being at the same time the condenser of the water-steam.
As to the practical results, it is now about three years since the first trial of this system was made in the Mediterranean-a small boat of about 60 horse power was constructed, which has been navigating since then so much to the satisfaction of the Company, that they had two 300 horse steamers built, in 1853, and they have now on the stocks three vessels of 200 horse power, and two others of 420 , all on the ether principle.
The ether cylinders of the boats now navigating, give about 60 per cent. of the power of the water-steam cylinder. So many improvements have been introduced in the last twelve months, that there is every reason to expect that the ether-cylinders will indicate a power equal to the water-cylinder, the saving of fuel then, would be exactly 50 per cent.
The waste of ether is almost zero-so little, that the smell even is scarcely perceptible in the engine room.
The boats navigating are the $D u$ Tremblay, 65 horse power; France, 300 ; Brazil, 300 Thosenowbuilding are the Zouave, 200 horse power; Kabyle, 200 ; Sahel, 200 ; Ville de Lyon, 420; Amerique, 420.
You have alluded to a patent taken out by H. G. Pecoul, of Paris, "for generating power in steam engines, by passing steam from the boiler through spiral copper tubes, which converts ether in a cylinder into vapor, and it then actuates the piston to give it motion."
No doubt.this would work, but there would be no economy ; the patentee would obtain in practice no more power than if he applied his water-steam directly on the piston. Theoret ically there would be an economy of 9 per cent., because the specific heat of ether is 91 , water being 100: but in practice he would
lose more than he gained, by leakage, by inducing into his engine a highly volatile andinflammable ingredient. This was M. Du Tremblay's starting point about, 15 years ago.

A Subscriber.
Marseilles, France, March 5, 1856.
[We are obliged to our correspondent for his information. We were positive that all he reputed profits of the Ether Engine Co., were not made by the superior economy of their engines; our correspondent's letter is confirmatory of our suspicions. It seems that the engineer who built engines for them made a miscalculation, and failed to meet his engagements at the time specified, and the managers of the Ether Co. profited, in this case, not by the saving of fuel in their engines, but by shaving the engineer. We have been of the opinion that the comparisons made be tween the combined ether engine and the simple steam engine, so favorable to the former-
by its friends-have not been just to the latby its friends-have not been just to the lat er. We cannot perceive how such a saving can be effected, as that described in the fore going communication.
The way the great saving is stated to be accomplished in the combined ether engine, is by applying the heat of the exhaust steam to generate the vapor of ether, which is used to actuate a piston in an auxiliary engine. The ether coil forms an outside condenser for the steam engine; the condensed steam is employed to feed the boiler, and the condensed ether is employed over and over again, in the generator. The arrangement involves the expense of two engines in all their details, excepting a boiler for the ether one; and thus the expense for the machinery must be at least fifty per cent. greater than for a simple steam engine. The force of the ether vapor generated by the exhaust steam cannot be greater than that of the exhaust steam itself-this is the law; therefore it appears to us that the friends of the ether engine mistake a transfer of power by the heat of the exhaust steam for an increase of force. The exhaust of both the steam and ether cylinders must be greatly prolonged by the method of condensation, thus causing back-lash. A steam engine worked with high pressure steam, and the expansion principle carried out to its utmost limits, w think, will, on the whole, work as economical ly.

Falling Water-Form of the Oritlce-Water
Messrs. Editors-Considering ourselves in some measure the cause of the publication of your recent articles on the power of falling water, now that they are finished, we desire to offer a few general remarks on the subject, not
in a fault-finding disposition, but that we may be the means of communicating the results of our experience to others, when they can ex-
ercise their own judgment as to whether or rcise their own judgment as to whether or not we are correct.
The question was, as we understand, the quantity of water which would pass through a turbine water wheel when in motion, with a
given head and area of openings, but the calculations related to the quantity which would pass through the same size of aperture when at rest,-which we consider a very different matter. We are nearly agreed with the rules aid down in your articles, to calculate
power of a given qnantity of water passing in a given time, and under a given head, but the difference is in determining the real quantity of water which will fall in a given time through a given sized opening, and if our experience is correct, the results as given in the articles, will, in all ordinary cases, be found to be altogether too high, for though we are aware that an aperture may be constructed
which will pass 100 per cent. of its area, we Which will pass 100 per cent. of its area, we
know that one of the same size may be constructed, which, from its form and location, will not pass more water than 50 per cent. of its area. We have tested one wheel built on the re-action principle, and running in unlimited water, which, when at maximum speed, would pass 150 per cent. of its area, and we
never tested one which did not pass as high as 125 per cent. of its area. The same wheels, while standing still, would pass from 80 to 90 per cent. of their area of openings. We
find the Jonval wheel, built by us, with buck-
ets well polished, will pass, when running about 100 per cent. of the water ; and when standing still, about 73 per cent. Again, we have tested others of the center discharge class, which, from the peculiar shape of the floats or buckets, would pass more by about 10 per cent., when still, than when running, (which at most did not exceed 90 to 95 per cent. of their area of openings.)
From these, and a long course of similar experiments, we have been led to the conclusion that no rule can be given which will be of general application, except we take into account the form and position of the aperture (whether in motion or at rest,) and the degree of contraction to which the fluid vein is subjected in passing through it. And the coefficient for the different shaped apertures, we think, can best be ascertained by allowing the same quantity of water which will pass through each, to flow over a notched board or weir, placed further down the stream, when the quantity, we think, may be very correctly ascertained by using tables taken from the results of experiments made in Scotland, and which were published in Vol. 6, Scientific Ambrican. We think the New York engineer mentioned by you was deceived by the party who told him that his 25 horse power engine performed the same work of a 70 horse power water wheel, and we could tell you of
a similar case. Colins \& Gilberrt.
Troy, N. Y.
[The rules in the articles referred to by our correspondents, had no reference to water assing through a turbine wheel at motion or rest. In them it is plainly stated that they are given, for water flowing out of a stationary orifice in a gate, or over a weir. All writers on hydraulics are agreed that the form of the opening has much to do with the quantity of water discharged in a given time. We did not suppose that the form of the openings and their position in wheels could make such a difference as that stated by our correspon-dents-ranging from 150 to $12590 \cdot 8073$ and 50 per cent. of discharge in the same area of openings.

Advice to Electrotypers.

Messrs Edirors-Supposing that any fact calculated to benefit the mechanic would be acceptable to you, I do not hesitate to inform you in relation to a discovery of mine, made several years since, and which I have repeated frequently, and can vouch for as perfectly successful. In plating articles by the electrotype process, you are aware that the articles to be plated are placed in a sort of wire basket, which is immersed in a solution composed of nitrate of silver, cyanide of potassium, bicarbonate of soda, or some other substances equaly injurious. You are probably also acquainted with the fact that the operator frequently suffers very much from taking the articles from the bath, his hands becoming impregnated with the poison, causing them to inflame very much, burst open, and discharge an acrid humor, which excoriates the parts with which it comes in contact. The basket is attached
to the negative pole of the battery, and consequently its contents, and the hand also, while in contact with the articles contained in the basket, become affected electro negatively, and consequently receive the poison into its tissues. To prevent this disease, platers are in the habit of anointing their hands with a pomade made for the purpose, or using an india rubber globe. The first of these quickly impairs the quality of the bath, and the other is somewhat inconvenient and troublesome. The plan adopted by myself is this:-If at the same instant the operator introduces his hand into the solution, he grasps an iron stirrup connected with the positive pole of the battery, the current will proceed from himself, and consequently his tissues will not absorb any of the poison. The stirrup must be surrounded with linen saturated with salt water. Long experience has made me familiar ith this operation.
M. Vergnes.

New York.
Treating Timber to make in Durable.
Messrs. Edirors-I am not aware that the following is generally known, at all events it is not practiced in this locality. In Germany it is known and practiced extensively. The
matter is this :-Hard wood, such as hickory beach, dogwood, \&c., is impregnated with the liquid of stable manure, and afterwards submitted to the influence of heat, and thoroughly dried, for the purpose of imparting to it good preservative qualities and rendering it tough and solid.
Wood intended for axe handles, mallets, \&c., is steeped in this liquor for several days, and afterwards hung up over a fire and exposed to the influence of heat arising therefrom : two or three days is sufficient to render it thoroughly dry. It is then said to possess greater toughness and solidity than when subjected to any other process.
The farmers of Germany use mallets made of hard wood, which is prepared as above, for the purpose of driving iron wedges to split their timber; the wedges are usually made with a head about two inches or two and a half, and the malletsuffers no indentation from the percussion

If the process imparts to the wood such qualities spoken of, the knowledge of the fact may be interesting and profitable. It is certainly a simple and convenient process, and some one may be disposed to test it, and compare its effects with those obtained by other methods. George Kilgour.
Cumberland, Md., April, 1856.
The Best Form of Sailing Vessel
Messars. Editors-Out of a great number of experiments with different sized models the following was the most satisfactory: With a 20 -inch model (2 -inch beam) I tried the relative values of straight and curved floors, and I am constrained to believe that the latter is the best. With the straight floor and keel the model was drawn through still water 60 feet by a 7 lb . iron sinker-the line passing over a horizontal staff-in 10 seconds. The sinker was then changed for a four pound lead, which required 14 seconds to accomplish the same result. The model was then cut down to convex curves, and the length divided into sevenths; forward three-sevenths shaped to a curve whose circle would be 600 inches in circumference, and aftermost four-sevenths to the curve of a circle of 840-nearly a parabolic curve-that is, in a ship 200 feet long the curves from forward to center of motion and abaft that, would be respectively 1000 and 1400 feet radias. The model when so altered was drawn through the water by the 7 lb . sinker in 9 seconds-a gain of one-tenth-and by the 4 lb. sinker in 12 seconds-a gain of one-seventh The buoyancy of this floatant was incomparably superior to the straight keel.

Investigator.

The Inventor of the Steam Fire Engine Boiler.
Messrs. Editors-Be pleased to correct a mistake which you have made in regard to the inventor of the boiler used in the fire engine exhibited in the Park at New York last week, and oblige the real inventor,

Thomas Prosser, C. E.
Brooklyn, April 3d, 1856.
[We were informed that Mr. Lee was the inventor of the boiler in question, and made no mistake in stating this.

Useful Suggestion.

Messrs. Editors-I have seen a circular saw, the shaft of which run in zinc boxes, and although exposed out doors, uncovered, for years, and frequently not used for months, it never was touched with rust-neither the saw nor its arbor. The zinc boxes generated an electric current, which prevented the iron from rusting. Might not the rails of railroads be prevented from rusting by being connected with zinc plates.
P. R.

Hannibal, N. Y.
To Prevent Ships Sinking at Sea.
Place vulcanized india rubber tubes of sufficient size in the hold and underneath the deck of a vessel, and if it becomes disabled and leaks let these tubes be inflated by a powerful air pump, and they will keep the vessel afloat.
Mountain Island, N. C. 1856.
This.fine fruit has been very successfully cultivated in Pennsylvania, by engrafting on plum trees. Prune trees have also been raised in Indiana.

9flcu 3 Inturntions.

A Hot Air Locomotive

The hot air locomotive built at the Novelty Works, this city, for P. Bennet-as recently noticed by us on page 181 -was tried on the 4th inst. on the Paterson Railroad, N. J., and accomplished the feat of running off the track. It is stated that when this happened it was running at the extraordinary speed of eighty miles per hour. This locomotive has cost $\$ 40,000$, and weighs about 40 tuns. The hot air employed in it is moistened with steam generated in a small boiler. The hot air to be used in the cylinder passes directly through the fire and is mixed with carbonic acid gas.Any engine impelled by such a motive agent or rather agents, must soon destroy itself. In their very nature the hot air and gas (although somewhat mollified by steam) will act injuri ously upon the metal.

Canal Across the Isthmus of Suez
This great enterprise, which, for many years, has seemed a visionary project, is likely to be realized. The commission of engineers and scientific men whom the Viceroy of Egypt appointed to examine and determine upon the practicability of it, have made a report, in which they declare that the canal could be built on nearly a direct route from Suez to the Gulf of Pelusium, with abranch to the Nile. Th estimated cost is $\$ 8,000,000$, and the construction will take six years. It is estimated that this canal will effect a saving in distance between the respective places and Bombay, as follows: Constantinople, 12,900; Havre, 8,928 ; London, 8,550 ; Liverpool, 8,550 ; New York, 7,317; Nıw Orleans, 8,178 miles. More than one half the distance is abridged between the principal ports of Europe and Asia, by the proposed canal. This single fact shows its immense utility to all nations, as well as to Egypt and Turkey.

The Steamer New Jersey.

It will be recollected by our readers that on the night of the 15 th ult., the steamboa New Jersey-running as a ferry boat between Philadelphia and Camden, N. J., was consumed by fire, by which calamity 36 persons lost their lives. The citizens of Philadelphia have given this case a most thorough examination, and the Coroner's Jury have returned a verdict which places the whole blame of it upon the owners, and some of those employed on the steamboat-the captain, pilot, engineer, and fireman; also the Inspector. The boiler was worn out, leaky, and defective; the boat was inadequately manned, had no life-boats, life preservers, buckets, nor means of escape, from collisions or fire. We hope that those wh have been blameable in this case, and whose bad conduct has been fully proved before the Coroner's Jury, will meet with the punish ment they so justly deserve

The Rensselaer Polytechnic Institute
In our notice of the Pennsylvania Polytechnic Institute, a few weeks ago, we forgo to mention the above-named excellent Institute in Troy, N. Y., which was established in 1825 by the old Patroon, Hon. Stephen Van Rensselaer, and in which have been educate some of our most distinguished men in the walks of science. This institution is designe for the education of Architects, Civil, Min ing, and Topographical Engineers, upon an enlarged basis, and with a liberal developement of mental and physical culture.

New Measuring Instrument.

Our engravings illustrate a convenient and ornamental little pocket instrument, for measuring surfaces of all descriptions, the in vention of Mr. Louis Young, No. 1 Whitehall st., New York City, by whom it was patented Nov. 20, 1855.
One end of the instrument is held in the hand; the other end is furnished with a measuring wheel, which is rolled over the surface of the object to be measured, the distance traversed by the wheel being accurately in dicated in feet, inches, and parts of inches on graduated disks. Fig. 1 shows an exterio view of the improvement, A being the measur ing wheel; B is a pointer, which shows the
inches and fractions, while the number of feet with H. At every revolution of wheel A, the quired, this invention presents special advanare seen through the aperture at C. Refer- pawl, G, will push against the teeth of ratchet tages. Its cheapness and simplicity are strong ring to fig. 2-which exhibits the interior con- wheel, H, move it one cog, and thus exhibit a struction-it will be seen that wheel A is fur- different figure at the aperture in the handle nished at its center with a cam, D; the latter C. To take the measure of any surface, therehas a connecting rod, E, extending to the slide, fore, it is only necessary to roll the wheel, A, F ; this slide has a pawl, G , which moves the over the same, when a correct answer will be

IMPROVED MEASURING INSTRUMENT.

p. The saving of time and trouble over the to operation by touching the button, K , on ordinary method of measurement by tape or the handle.

ule is obvious.

In the center of disk I there is a coil spring , which returns the disk to zero, ready for a ew measure The is brougt in

matical accuracy in their construction are all |measures can be constructed on this plan. It produced by unerring machinery. Surveyors' is a very excellent and useful improvement. nstruments and many other varieties of Apply to the patentee for further information.

NEW METHOD OF CONNECTING DOORS.

Improved Method of Connecting Doors. His improvement consists in providing double doors with spindles, A A', which exend up through the jamb into the casing; pul leys, B B', are attached to the spindles; a chain belt and connecting rods, C, unite the two pulleys, so that when one door is opened, the other will also be moved; the inconvenience of having to open both doors by hand
is thus avoided. The rods have an adjusting nut, C^{\prime}.

In our engraving the belt is crossed, so that both doors will open in the same direction By changing the belt, so that it will work in directlines, the doors will open in different directions. If desired, a spring may be attached to the spindles above the pulleys, which will, at all times, close the doors.
The parts are simple, strong, and wholly oncealed in the casing from view.
For offices, stores, shops, cabins,state rooms, and all situations where double doors are re.
(
ecommendations.
Mr. Charles E. Brown, formerly of New York City, now of East Cambridge, Mass., is the inventor. His patent bears date January 8,1856 . For further information apply to Mr. D. M. Devoe, 178 Wooster street, New York City.

Launch of the Steamship Adriatic

This noble vessel was launched from the ship yard of her builder, George Steers, on the forenoon of the 7th inst., amid a vast concourse of persons who had assembled to witness the scene. At half-past eleven o'clock the booming gun told the hour for the last wedge to be struck away, when instantly the leviathan hull began to move on her ways, and quicker and quicker, onward she bounded majestically into the " briny deep." The impetus she received carried her to the other side of the river, and led to the demolishing of one of the piers, but the Adriatic sustained no injury.

The model of this steamer is the same as that of the Niagara. Her entrance is sharp and beautiful, and all her lines very graceful and fine. Her length is 354 feet, breadth 50, depth 33 , tunnage 5250 tuns. Her engines are to be oscillators, the largest of this character ever constructed. Their bore is to be 96 inches, their stroke 144 inches. They are now in course of construction at the Novelty Works of Messrs. Stillman \& Allen. They are to be fitted up with Mr. Allen's new valve arrangement, and are to be splendid specimens of engineering. The hull is divided into a number of water-tight compartments, and no expense will be spared to make her the finest and as safe a steamer as plows the deep. Her interior arrangements will be on a grand and costly scale, and her whole cost, it is estimated, will not be much less than $\$ 850,000$.
The Persia-the latest built ship of the Cunard line-is 360 feet long, or six feet more than the Adriatic, but she is five feet less in width, and in burden is less by 600 tuns.
The Vanderbilt, the Persia, and the Adriatic, the new great Atlantic steamers, will be representatives of different classes of engine propulsion. The Persia is fitted with side levers, the Vanderbilt is getting in over-head beam engines, and the Adriatic will have oscillators. The latter kind of engines are the most simple and compact, but hitherto they have been objected to for large vessels on account of their steam heated trunnions. The engines of the Vanderbilt are now being rapidly fitted up at the dock of the Allaire Works. Her cylinders are of 90 inches bore, with a stroke 144 inches ; the estimated power of them is less than those designed for the Adriatic. The Persia's cylinders are 100 inches in diameter; their stroke is ten feet.
The fitting up of these large vessels with steam engines so different in their construction and arrangement affords us much satisfaction, inasmuch as their experience will be a great addition to the science of marine engineering.

Mechanics Festival.

We learn by the Weelily Banner, of Hamilton, C. W., that the mechanics of that place belonging to the Mechanics Institute, held their Annual Festival on the 2nd inst., and had a fine time of it, between eating and speechifying. The President, Nehemiah Ford, stated that the success of the Institute during the past year, had been unparalleled. There had been an increase of 200 members, and its financial affairs were in a flattering conditon. The success of the Institute does honor to the mechanics of Hamilton. It has a good library, owes no debt, and has a large list of members, who are careful readers of the Scientific American.

To Major Raines and Lieutenant Churchill we are indebted for courtesies tendered us, while spending a few hours on Governor's Island last week.

Chilled rolls of the very best quality can be procured of the Birmingham Iron Foundry See their advertisement in another column.

Sirintific Ammrican.

NEW-YORK, APRIL 19, 1856.

The Architecture of Cast Iron.

We have before us, in an illustrated and a well written pamphlet by John W. Thomson, A. M., of this city, an account of the origin, application, and advantages of cast iron in the construction of buildings. No city in the world is undergoing such an architectural transformation, at present, as New York, and cast iron is a powerful agent in this revolutionary work. In one single street ten handsome houses-some of brick and some of stone -which a few years ago were used as the mansions of wealthy citizens, are now being taken down, and on their sites are to be erected ten structures for stores, with ornamental cast-iron fronts. Designed upon one plan, and placed close together they will resemble a single harmonious, stately, and imposing edifice. The "happy adaptation of cast-iron to ornamental architecture," no man can doubt for a moment, after viewing the majestic pile of Messrs. Harper, in Pearl street, and other cast-iron buildings which have been erected during the past few years in New York, and other American cities. The value of cast-iron as a plastic and stable material for building, is now being appreciated; and in a few years hence, so many beautiful buildings of it will be put up in our cities, as will make them far surpass, in architectural effect, the most fa mous cities of the old world.
The origin of cast-iron buildings is due to James Bogardus, of this city. The pamphlet informs us, that it was while contemplating the rich architectural designs of antiquity in Rome and Florence, in 1840, that he conceived the idea of emulating them in his nativecountry by the aid of cast-iron. When he returned, some years afterwards, he devoted his attention to the subject, and in 1848 commenced to build his factory on the corner of Center and Duane streets, which we are informed was the first entire cast iron edifice ever erected. The inventor met with much to try his patience, and to discourage him during the time it was building. There was a general prejudice, amongst all classes, and peculiarly so among most men of science, against the use of metal as a building material. It was believed that by the changes of atmospheric temperature, it would expand and contract so frequently, that a building made of it would soon become loose in its joints, buckle in its several parts, and become unstable and unsafe. Experience has proven such notions to be unsound and erroneous. The atmospheric changes of temperature exercise no appreciable effect upon such structures.
The pamphlet states that not a single joint in Mr. Bogardus' factory has ever moved an hair's breadth, although a powerful steam engine, is kept at work on one of the floors, and heavy machinery kept in operation on all the others. To us it appears that such cast-iron buildings must be more stable than those of granite, stone or brick, the numerous joints of which are only united by a feeble bond of mortar, whereas, the whole of the joints of these cast-iron structures, are turned true in a lathe to fit accurately, and then they are all screwed together, thus making a cast-iron building as strong as if it were one entire casting.

It may justly be asserted that cast iron has already been the means of originating new styles of architecture, and we may be pardoned for indulging in a feeling of national pride, because of its American origin. In brick, stone, marble, and granite, the finest modern structures are but feeble imitations of the old masters; and as Ruskin has placed metal as a building material, beyond the pale of conservative architecture, we may justly claim cast-iron building as the only new architectural art which modern genius has devised. Hitherto its use has been chiefly confined to factories, stores, lighthouses, and towers, but we hope the day is not far distant when churches, spires, mansions, and cottages will be constructed of it.

A single prnament for a building may be
as cheaply executed in marble or free-
stone, but when a multiplicity of such is required, they can be cast in iron at an expense not to be named in comparison with like ornaments in wood or stone, and with this advantage they will always retain their original fullness and sharpness of outline. The pamphlet referred to contains some very beautiful and chaste ideas on this point, which we cannot do better than close this article with :-
"Fluted columns and Corinthian capitals, the most elaborate carvings, and the richest designs, the architect may have dreamed of, may be re-produced in iron for little more than the cost of ordinary castings. Ornamental architecture, which, with limited means, is apt to be tawdry, because incomplete, thus becomes practicable, and its general introduction would tend to elevate the public taste for the beautiful, and at the same time gratify one of the finest qualities of the human mind."

Recent American Patents.

Sifting Apparatus-By Samuel Harris, of Springfield, Mass.-Consists in providing the cover of the sifting box with a series of pins, which, when shut down, project into the sieve and come in contact with the substance to be sifted. When the sieve is moved back and forth the pins serve to stir up the substance forth the pins serve to stir up the substance
and separate particles that adhere, and thus ensure thorough sifting. For spices and many other articles this plan is admirable. The sieve is moved by a crank and rod.
New Method of Arranging Steam Propellers -By Aaron Arnold, of Troy, N. Y.-The inventor provides two extra keels, running along on the bottom of the vessel, one on each side of the central keel. A propeller is attached to the end of each extra keel. The keels ar bored to accommodate the propeller shafts, and, if desired, a propeller may be placed a both ends of each shaft. Located on the bottom of the vessel where the water is more solid and unbroken by the passage of the ship the propellers are expected to act with greater effect than when placed at the stern in the com mon manner.
Driggs' Improvements in Pianofortes.-This invention, described and illustrated in the last number of our paper, was patented in the United States Dec. 18th, 1855. It has also been patented in Great Britain and France through the Scientific American Agency.
Machine for Mixing Mortar-By Henry W. Hunt, of Peekskill, N. Y., and John Sands, of Greenwich, Conn.-The lime and sand are spread out on a circular platform on which traverses a large wheel, while behind follows a couple of scrapers, placed at different angles. Riding on the scrapers is a vessel from which water is allowed to drip upon the lime and sand, so as to impart the necessary con sistency. The action of the wheel is to spread out the mortar, but the scrapers immediately throw it up again into a continuous heap. The mortar is thus very quickly and intimately mixed. At a suitable part of the platform there is a trap door through which the mortar falls, in a heap, when duly prepared.
Improvement in Slate Frames.-By Edwin Young, of Philadelphia, Pa.-Slate frames are generally made of four pieces of wood, dovetailed and pinned together at their corners. In this improvement only one piece of wood is used, which, after being grooved to receive the slate, is bound around the same like a hoop and fastened. Slates thus formed may be made in oval form, the framing consisting of rattan or other light handsome wood. They are rendered much more convenient to handle, are more durable, as the frame cannot easily give out, will not brake on falling, are cheaper , \&c. This is an excellent improvement.
Fastenings of Folding Doors and Windows By G. H. Lindner, of Hoboken, N. J.-Where folding doors are used it is necessary, for security, that one of them shall be firmly fastened, independent of the other; this is generally done by means of bolts at the top and bottom; to fasten and unfasten these bolts is inconvenient. In the present improvement a new kind of self-acting latch is used which takes the place of the bolts, so that by the mere act of closing the two doors one or them will be secured at the top and bottom as

Tidal Flood Gates-By George W. Flanders, of Lynn, Mass.-On many parts of the sea coast he rise and fall of tide water is employed to drive grist and other mills. For this purpose a dam is generally thrown across a creek, a sluice way being left in the middle. The sluice is furnished inside the dam with a hinged gate so that when the tide rises it pushes up th gate and rushes into the enclosure formed by the dam. When the tide begins to fall and the current changes the water closes the gate ; the fall thus obtained is employed to turn a wheel until the tide rises again. The gate is generally hinged at the top and passes across the top of the sluice, so that navigation is wholly cut off. The present improvement consists in hinging the gate at the bottom, so that it may be made to turn down level with the ground either by force or by the incoming of the tide, thus leaving the sluice open for vessels to pass through.
Universal Lathe Chuck-By Michael Neckerman, of Pittsburg, Pa.-The design of the inventor of this improvement is to permit the centering of an object in lathe, either on its true center or eccentrically, as may be desired, without inconvenience. Most chucks are so arranged that the article cannot be centered eccentrically without taking the chuck apart to alter the position of the jaws; after use the chuck must be again taken to pieces to restore the parts. In the present invention there is an ingenious arrangement, whereby the chuck may be instantly altered to hold the object eccentrically or otherwise, at pleasure. It is a good improvement.
Pressure Tea Bell-By Jason Barton, of Middle Haddam, Conn.-Ornamental tea bells of the gong shape, operated by pushing down button, are extensively sold. In these the hammer is connected with a spring and escapement. In the present improvement, which is of the same form and class, the button is attached to one end of a lever within the bell and the hammer to the other; the fulcrum of the lever is placed quite near to the point where the button connects, so that the opposite or hammer end of the lever, when the button is pressed, will have a larger sweep than the other end, and strike the bell. The improvement cheapens this kind of bell considerably, and renders it more durable, as the spring and escapenient are wholly dispensed with.
Fire Regulator for Steam Boilers-By Wm. S. Gale, of New York City-This improvement relates to a method of regulating the draft damper of steam boilers, so as to increase or diminish the fire according to the pressure of the steam. When the pressure exceeds a given weight the apparatus shuts the damper and slacks down the fire; and when there is not steam enough the damper is opened so as to quicken the fire. These conrivances are coming into very extensive use They effect an important economy in fuel by assisting to maintain a steady fire in the furnace.
Most of the apparatuses of this kind consist of a lever attached at one end to the fire damper, and at the other to a piston, which rises and falls according to the pressure of steam.
The present improvement consists in giving the interior of the piston cylinder a slightly conical or taper form for the purpose of alowing the piston to fit easily within it while the damper is open, so as to be very sensitive to any increase of pressure, but to increase the friction of the piston as it is lifted by an increasing pressure of the steam, thereby causing the damper to check the draft quickly at first and then more gradually, instead of entirely closing it with a sudden movement asin other regulators. Another portion of the improvement relates to the construction of the piston.
Improved Washboard.-By Royal Hatch, The washboard is conposed of beaded rounds placed together lengthwise in a frame, the beads of one round fitting into the spaces between the beads of the next round, so that a perfect corrugated surface is obtained for the
clothes to be rubbed over. The water will pass through the rounds, but the suds will be retained, spattering will be prevented, $\& \mathrm{c}$.
Machine for Polishing Buckles--By Robert
G. Pine, of Sing Sing, N. Y.-Consists in securing the buckles or other articles in clamps attached to rotating shafts, which work in yielding or elastic bearings, said shafts being placed at each side of a polishing wheel and guide wheels so that the articles to be polished will be properly presented to the polishing wheel. The shafts while rotating are moved longitudinally, so that the whole surface of the work will be presented to the polishing surface. The polishing is done quickly and in a very thorough manner.
Improvement in Shot Guns-By Buckel and Dorsch, of Munroe, Mich.-This invention consists in giving the barrel of the gun a slighty undulating form, for the purpose of causing all the shot to strike within a certain circle, and prevent its indiscriminate scattering. The barrel is divided into an odd number of parts, say five, seven, or nine, according to the length, the said parts being made alternately of larger and smaller diameter. The parts next the breech and at the muzzle are of the larger diameter, and the intervening parts smaller and arger alternately, thus producing an undulating bore. Many experiments, we are told, have been made with shot guns of this construction, and the result in all cases is, that the shot fall within and evenly cover a certain sized circle, never scattering beyond. Such guns must be far more effective for sporting purposes than the ordinary kind.
Improved Safe Lock-By William Maurer, of New York City-The invention consists in an ingenious construction and arrangement of a series of thimbles, bolt catch, and bit. This lock is believed to present perfect security against burglary, while the expense of manuacture is quite small.

Recent Foreign Inventions.

Cure for Cholera, Dysentery, \&c.-T. Sleight, of Hull, England, has obtained a patent for the following compound to cure bowel complaints : Essential oil of cassia, peppermint cloves, and nutmeg, (about an ounce each) are added to spirits of wine (a pint) and when intimately mixed, about an ounce of ground apple of the pinus picea, or silver fir tree, is also added. A little of the tincture of opium is also added, and the compound is complete. It is given in very small doses, and the smaller the better we opine. No patents for medicines have been granted for a long period by our Patent Office; but in our notes on "Curious American Inventions" we shall present some which will throw the above one entirely in the shade.
Water Gas-W. H. Lancaster and J. Smith, of Liverpool, patentees.-This invention embraces the introduction of water into the common coal gas retort during the process of distillation, whereby the water is decomposed and its hydrogen given of with the carbon and hydrogen of the coal. The claim is for the simultaneous decomposition of water and coal n one retort.
New Lu.bricating Compound for Railway Axles, \&c.-G. Durham and C. Wyatt, of London, patentees.-Take 24 parts of tallow, 12 parts of commnn soap, and 2 parts (all by weight) of resin, and mix them with warm water. The tallow, soap, and resin may be heated and rendered fluid before they are placed in the hot water. The compound is stirred until quite cool. Some of our engineers should make some experiments with this lubricator.
Compound for Feeding Horses and Cattle.The patentee of the following great interior invigorator is A. C. Morrison, of London-a relative, perhaps, of the renowned Dr. Pill Morrison. It consists of kidney beans, oats, barley, rice, linseed, liquorice, niter, carraway, Peruvian bark, galingal, gentian, sulphur, salt, resin, cream of tartar, carbonate of soda, grains of paradise, ginger root, Iceland moss, arrow root, aniseed, cardamus, turmeric, cascarilla bark, canella, alba, and guacum. These are mixed together, in various proportions, to feed the animals, and is stated to be an improvement on the feed compound patented by G. W. Henri, Jan. 30, 1855.

This receipt surpasses the one of Sam Slick for feeding his horses on pine shavings by mounting them, at meal times, with green
spectacles. Sam's, however, has the merit of
being short, dry, and cute ; while this one of Morrison is long, soft, and kinky.

Cannon-J. C. Haddan, of "Cannon Row" London, patentee.-This invention consists in lining the interior of old and new cannon with riffed or plain tubes to fit the bore. They are inserted into the cannon after it is cast, and are made in one, two, or more pieces, longitudinally or transversely. Such tubes for cannon are intended to be renewed from time to time as they wear out, so that the body of the cannon may serve for a long period, and not as they are constructed at present, the whole gun having to be laid aside as useless on account of the worn bore.
The above-named place, where the inventor of this improvement resides, harmonizes with the character of his invention.

Silver and its Uses.-Conciudes.

A great quantity of silver is used for articles of domestic use among the more wealthy classes; but although such articles pass under the name of "silver plate," they are all alloyed more or less with copper. In our country there is a great difference in the quality of articles which pass for silver, owing to their degrees of alloy. In England, on the other hand, there is a standard for plate silver, and in order to prevent fraud, all silver vessels are required to be inspected and stamped. The alloy is composed of 111 parts silver to 9 of copper, by weight. In France, the standard for plate is 19 parts silver to 1 of copper. The addition of a small quantity of copper to silver, while it increases its hardness to a wonderful degree, scarcely diminishes its whiteness. The greatest degree of hardness is obtained by using of copper one-fifth the weight of the silver. With equal weights-copper and silver-the alloy is a good white. Articles formed of alloyed silver are subjected to a process to remove the baser metal from the surface. They are heated nearly to redness, then plunged while hot into warm water acidulated with sulphuric acid, which removes the oxyd of copper (formed while heating the article) from the surface, leaving it of a blanched appearance, called dead silver. Alloyed silver articles are sometimes boiled in bi-sulphate of potash to produce a like effect. Those parts of plate requiring to be burnished are polished with proper tools.
The most important salt of silver is the "nitrate;" it is prepared by dissolving silver in nitric acid, and evaporating the solution to dryness, or until it is sufficiently concentrated to crystalize on cooling. The crystals are colorless and transparent, readily soluble in water and alcohol. If these crystals be heated in a crucible, they fuse like niter, and are formed into sticks, called lunar caustic. This salt blackens by exposure to the sun. Ivory, marble, $\& c$., may be stained black by soaking them in a solution of this salt, and exposing them to the sun's rays. It is used for making indelible writing ink. The article to be marked, is first moistened with carbonate of soda, then dried, then written upon with a weak solution of the nitrate, and exposed t the sun; it soon assumes a black appearance. It is also much employed for dyeing the hair of those who wish to conceal the marks of age. A weak solution of it applied to the hair, is all that is required to color it black or deep brown. Care must be exercised not to touch the skin with it. The cyanide of po tassium will remove nitrate of silver stains. When nitrate of silver is taken as a medi cine, it gives to those parts of the body ex posed to the light, a leaden gray color. In a weak solution, it is used by some oculists as a wash for inflamed eyes, but it should be avoided if possible, as it greatly discolors the white part of the eye. A weak solution of it is often applied by physicians for curing diseases of the throat.
The nitrate of silver is much used in preparing daguerreotype plates, and photographic paper; it plays an important part in sun painting. Its sensitiveness to light, and other painting. Its sensitesoss of this. A plate of
substances, is the reason ont substances, is the reason of this. A plate of
clean copper introduced into a solution of it, produces a brilliant crystaline deposit of silver; a stick of phosphorus placed in it soon becomes encrusted with tree-like crystals of the metal. Mercury poured into a solution of

ana.

The chloride of silver is formed by mixin together a solution of nitrate of silver with a solution of common salt; it is termed horn silver when found native. This salt is soluble in ammonia, and in a solution of the cyanide of potassium; it is much used in photogra phy. By introducing a solution of potash or soda into one of nitrate of silver, a protoxyd is formed; it falls to the bottom of the vesse in the form of an olive colored powder. If this be digested in a strong solution of ammonia, a black substance is produced, which is terribly explosive-fulminating silver. It explodes under water when heated to 212°, and when it is dry, the touch of a feather, or the rolling of a carriage across the street explodes it. Fulminating silver is also obtained by the action of warm alcohol on nitrate of silver The iodide of silver is formed by adding nitrate of silver to the iodide of potassium. It is easily decomposed by light, and it therefore forms the basis of the film of photographic pictures. Silver solder is composed of 667 parts of silver, 233 of copper, and 100 of zinc. Silver was early applied to the purposes of ornamenting by plating, that is, covering an inferior metal, like copper, brass, and iron, with a skin or coating of silver. The articles to be plated were scoured bright, then heated to a point just below that at which the metal changes color, the silver in thin leaves then laid on and the adhesion produced by a buraisher.
The best method of fire silver plating is that pursued in Sheffield and Birmingham, England, which is to make plated ingots, and from them manufacture the articles. Ingots of copper or brass are carefully filed, then the silver in thin sheets is neatly laid on them, their edges joined together and brushed with a solution of borax. They are then tied with wire and introduced into a furnace heated with charcoal. The ingots are laid on the red-hot charcoal and submitted to heat until the silver is observed to draw into the copper. The attendant who watches the process now withdraws the ingots, for if suffered to remain longer the silver would become amalgamated with the copper Although electro-silver plating has recently become so common we have been assured that the business of fire-silver plating has in no se diminished.
Electro-silver plating is now carried on to a great estent. The silver is deposited from
a solution of the argento-cyanide of potassium a solution of the argento-cyanide of potassium on the articles to be plated by a galvanic curent generated in a battery. White metal, or a composition of tin and copper, is the best basis for silver plating, because when the plating wears off, the white metal underneath is not so readily noticed. Electro silver plating is an art only a few years old, yet owing to its flexible character-the facility with which so many articles can be covered with a coat of this beautiful metal-it is the most interesting of all others for which silver is used

Linen and Duck-Previous to the invention of the cotton gin, and while cotton was a dear material, linen was most generally employed for all the purposes of domestic and personal use, now fulfilled by cotton cloth. The manufacture of linen was therefore sought to be early encouraged in the Colonies, and a Bill was introduced into the Connecticut Legislature in 1735 , to pay a bounty on every yard of fine linen made. The bill, however, was not passed, and to this day no fine linen has yet been made in America. In 1724, Richard Rogers, of New London, Conn., manufactured excellent duck for sails, and obtained a patent or its exclusive manufacture in the year following.
Silk, Flax, and Hemp.-The Legislature of Connecticut early offered encouragement to hose who would cultivate hemp and flax, and every ounce of silk raised from cocoons.
Pins.-As early as 1775, a factory for manufacturing pins was proposed to be erected at Wethersfield, Conn., by Leonardus Chester, but until 1812-during the last war with Eng-land-our country received all its pins from across the Atlantic. In that year their price
makers came to New York from England and commenced business, at which they continued until the war ceased, when they abandoned it . The first patent for manufacturing pins by machinery was obtained by L. Morse of Boston, in 1813. The solid headed pin, the one now in common use, which has entirely superseded the old separate headed pin, was
invented by Lemuel W. Wright, of Haverhill, invented by Lemuel W. Wright, of Haverhill, N. H. He obtained patents for America and ngland, in 1825, and went to the latter counry to sell and introduce his machinery for their manufacture. A working machine was in operation in 1826, in London, and the inventor made and sent out two machines to his own country, but these were never set in oporming this machines were defective in of arranging and keeping the rotary files in order for this purpose, consequently his machines were, at last, only employed to take the wire from a reel, straighten, cut it into lengths, then head and deliver it to be pointed by hand This inventor, like J. Perkins, took up his resdence in England, where he was living three years ago, and was highly esteemed for his mechanical genius and integrity. The names of the inventors of the steam engine, cotton gin, steamboat, and telegraph, are often mentioned with enthusiasm and respect, because of the benefits they have conferred upon mankind by their inventions, but who ever heard
of the name of Lemuel W. Wright, of the Old of the name of Lemuel W. Wright, of the Old Granite State being toasted as an inventor and yet his invention was a most useful, and ingenious one. Like many other good invenions, however, the authorship of the solid-headed pin is disputed. On page 381, Vol. 9, Scienific American, there is a notice of the solidheaded pin having been made fifty years ago by D. F. Taylor, of Birmingham, Eng., whose bother now manufacturers them at the rate of 200 per minute. In 1832 a patent was granted to John J. Howe, for a pin machine, and in 1835 a Company was formed in this city to carry on the manufacture under his patent. The machine formed the head of a coil of fine wire by dies, and the pin so made did not differ from the English diamond pin. In the same year Samuel Slocum, of Rhode Island, obtained a patent in England for machinery to make solid-headed pins, and in 1838 a factory for their manufactory was set in operation at Poughkeepsie, N. Y.; he did not obtain an American patent; the machinery was operated in secret. In 1838, J. Howe also obtained a patent on improved machinery for making sol-id-headed pins, and the "Howe Pin Manufacturing Co." at Birmingham, Conn., are now making pins by his machine. "The American Pin Manufacturing Co.," of Waterbury, Conn., bought out Slocum's machine, at Poughkeepsie, in 1848. The weekly manufacture of pins by these two companies amounts to about 9 tuns. At one time all the pins were inserted into their papers by hand, but machinery has been employed for a number of years to execute this work, so that from first to last, the manufacture of pins, as at present conducted -from the wire until they are ready for mar-ket-is performed by self-acting machinery. The American improvements in pin making, and sticking the pins, have been in use for several years, we understand, in England.

Railroads; Speed: Grades, and Curves.
We are indebted to the Superintendent-D C. McCallum, Esq., for a copy of a very complete report of the New York and Erie Railroad for 1855 . There are some matters of a scientific nature in this report, a brief review of which will be interesting to a number of our readers.
The whole length of track-including double and branch tracks-belonging to the Company, is 769 miles; and the tracks are 6 feet gauge. It is a stupendous railroad, involving the use of an immense amount of property, and employing a vast number of persons; therefore, as it does a great amount of business, its affairs require to be managed with great circumspection.
Speed-In the transaction of a passenger traffic great speed forms an important item of cost. The expense of running a train is stated to be increased nearly as the square of the speed. Delays and accidents are the attendants of high speeds The report says :-
call for speed nearly equal to the full capacity of the engine, it is very obvious that the risks of failure in making time, must be much greater than at reduced rates, and when they do occur, the efforts made to gain time must be correspondingly greater and uncertain. A train whose prescribed rate of speed is thirty miles per hour, having lost five minutes of time, and being required to gain it, in order to meet and pass an opposing train at a station ten miles distant, must nescessarily increase its speed to forty miles an hour; and a train whose rate of speed is 40 miles per hour, under similar circumstances, must increase its speed to 60 miles per hour."
The liability to collisions on a single track, with high speeds, are thus clearly set forth, and moderate speeds are recommended.
The Telegraph-It is stated, in the report, that a single track railroad may be rendered more safe and efficient by a proper use of the telegraph, than a double track railroad without its aid. The double track obviates collisions on trains moving in opposite directions, but not in the same direction; and it is asserted to be a well established fact, that collisions between trains moving in the same direction, "have proved by far the most fatal and disastrous." We have always entertained a different opinion to this. Mr. McCallum asserts that a single track, with proper turnouts, and the use of the telegraph, is a more safe and profitable investment than a double track without a telegraph. "In the moving of trains by telegraph, nothing is left to chance." Those railroads, therefore, which do not use the telegraph, exhibit a great want of sagacity and good management.
Resistance of Grades and Curves-The report also contains an account of a series of experiments for determining the effect of resistance of grades and curves. These took place in the month of September last, and were made with a view to determine the relative power required upon the several Divisions of the road for the transportation of heavy freight.
A single locomotive was run the entire distance from Dunkirk to Piermont with trains varying to suit the ruling grades of the different divisions. The engine selected for this purpose weighed $40,050 \mathrm{lbs}$. on the driving wheels, it had cylinders of 17 -inch bore and 24 inches stroke; driving wheels 5 feet in diameter, and an effective steam pressure of 125 lbs . on the square inch.
The traction of the engine was $14,485 \mathrm{lbs}$, that is, the total resistance it could overcome with steam at the above pressure; its friction without load was 347 lbs . It has been customary to estimate the friction of cars on 30 -inch. wheels with journals 3 inches in diameter at 7 lbs. per tun, but the experiments demonstrated this to be too high. The friction of such cars was demonstrated to be only 41-2 lbs. per 2000 lbs ., the resistance of curves $1-2$ ib. per tun per degree of curvature the 100 feet. The adhesion of the engine was 36 per cent. of the insistant weight; this has heretofore been estimated to be from 12 1-2 to 25 per cent. A train consisting of 100 loaded cars, weighing totally 1765 tuns was taken over a mile of road on an ascent of 6.14 feet, and a curve of $1^{\circ} 5730$ feet radius in $111-2$ minutes.
The following were the resistances overcome. Friction of engine and tender 347 lbs ., cars at $41-2 \mathrm{lbs}$. per tun, 7702 lbs ., gravity of engine and train 4104 lbs. Resistance of curve 882 lbs., and additional friction 1410 , making a total of $14,445 \mathrm{lbs}$., or 40 lbs . less than the estimated traction of the engine. On a grade of $601-2$ feet ascending and a curve of 5 1146 feet radius, with a train of 429 tuns total weight the resistance was $14,363 \mathrm{lbs}$., or only 82 lbs. less, while the load drawn was less than a fourth of that on the low 6 feet grade and the one degree curve. This was done in six minutes and a half, but it shows the greatamount of power consumed in ascending inclines, because the whole train, as it were, takes as much power as would lift its entire weight to that hight-60 $1-2$ feet in the second example. No experiments were made test the increase of resistance with an increase of speed, but it is very evident that the Superintendent is of opinion that, with the exception perhaps of friction, they increase accord tion perhaps of friction, they ing
ing to the square of the speed.

Stirnce and Ant.

Improved Locomotive Link Motion.

The accompanying engravings represent improvements in Link Motions, patented March 20, 1855, by Messrs. Uhry \& Luttgens, Paterson, N. J. The link motion is so extensively applied to locomotives and also to marine engines that any mechanic acquainted with its appearance will at once perceive the modification in the design here shown; but we believe that the effects or working of this motion are not so well understood. There was a time when it was almost entirely discarded on account of its defects. Still, it has one ad vantage over a common lap valve moved by an independent eccentric, in connection with an independent cut-off, viz., that the exhaust does not commence within 1-4 of an inch from the end of the stroke, as it does in case of the latter, but graduates with the degree of expansion, and therefore barely allows the steam to expand thrice its original bulk, even at the highest cut-off, thereby causing great loss of steam ; though it is allowed that an en gine, with it applied, will run faster and easie than with most other contrivances. Its defects are, too small a steam port, a too earl exhaust, as already referred to, and early compression.
The method commonly employed with link motions to retard the time of exhaust, is to in crease the inside lap, which, though it may be advantageous in a small degree in that respect, still increases the compression and chokes up the exhaust port.
If these defects may be radically remedied and that peculiarity of the link motion which contributes to its present efficacy be brought under the immediate control of the engineer, its introduction and use will be a matter worth the attention of engineers. These results are believed to be fully accomplished by the in ventors of the present improvements. They have lately made a series of practical experiments, in which the superiority of their inven tion was abundantly demonstrated. We are obliged to omit the tables referring to the same.
On these trials the improved link motion operating upon a single valve had 3-32 inside lap, and presented some decided advantages over the common links, among which are the following: The lead only uses about 1-2 to 1-3 of the time of the stroke to open before the commencement of the next, than on the common link, where it increases to the amount of two and three inches of the stroke of the piston at the higher notches; further, the steam port is more than doubled and the time of exhaust is retarded at the higher grades of expansion, while the exhaust port opens nearly three times as quick at these points as with the common link, while the amount of inside lap given to the valve has barely any effect upon the compression, as it neariy commences with the point of the exhaust.
The inventors are of the opinion that compression, in a measure, and where rightly ap plied, may be an advantage-just as a spring is to a trip-hammer-and it will never of itself cause any loss of steam; but it is necessary that that force which it is calculated to neutralize should yet have an existence, viz., part of the momentum of the reciprocating parts. But this is by no means the case on the com mon link motion, as the exhaust coming in too early, thus preventing the steam to act while yet efficient ; the momentum of the reciprocating parts has expanded itself before it meets the compression, the latter thus directly opposing the motion of the engine, and thus, as it has been shown by experiments, say the inventors, causes a loss of from 20 to 25 per cent. of the power at the highest notches.
In the engravings the same letters refer to like parts on all the figures. D represents a common shifting link, supported by connecting link, G, which latter is attached to the reversing lever, H and J , being operated by the re versing rod, 0 ; the link, as usual, is operated by two eccentrics, B and $C,-C$ acting in the forward, and B in the back motion. The link is provided with a die, which, in figs. 1 and 2, operates the rocker, F, while in fig. 3 it actu-
ates connecting rod, Q , suspended by the link P^{\prime}, at f, to some part of the framing of the engine. Besides the rocker, F, there is a differ ential rocker, E , operated by an eccentric or cam, A, and partakes also at its fulcrum of the motion communicated by the link, at a point shown in fig. 3 by letter e. The upper end of this rocker operates, in fig. 1 , the exhaust valves, while in figs. 2 and 3 it communicates, by valve rod, P , motion to a single valve. In fig. 1 the lower extremity of this rocker is provided with a slotted segment bearing a block attached to rod, A, being con nected by link, K, to the reversing lever, $L \mathrm{M}$,
od, N : In fig. 3 the valve rod, P , moves in
uide attached to the framing of the engine. Fig. 4 represents the arrangement of the valve seats, T and $U ; S$ representing the steam ylinder.
Fig. 5 represents a plate, v, resting upon the exhaust valve, and which may be used to balance the latter; the bolt, c, holds this plate to the side of the steam chest, the face, d, being slightly curved, to permit oscillation, while the hollow bolt, a, and the central bolt, b, adjust it in its position. There are two bolts, c, and two or more bolts, $a b$, near the end of the plate. The bolt is provided with a thread on plate. The bolt is provided with a thread on

IMPROVED LINK MOTION FOR LOCOMOTIVES.

he bolt, b, having a shoulder resting on the top of bolv a, while its nut is secured in v. The figs. 4 and 5 form part of the motion o fig. 1 , and the balancing of the larger valve is accomplished in a simple manner, as no pro vision need be made for the escape of com pressed steam, as the small plate upon the valve seat, n, and which is moved by the ordinary link motion, will open the communication.
The position of the cam in relation to the eccentrics in the several figures is as follows : If the eccentrics in all the figures be brought in a vertical position, so that a perpendicular tangent will touch the peripheries of both eccentrics, then a horizontal center line drawn through the center of the axle will formin fig 1 an angle of twenty-five to thirty-five degrees with the center-line of the cam to the relative position of the eccentrics, as shown in the engravings; in figs. 2 and 3 from five to ten degrees with the center-line of the cam, above or below the horizontal center-line, depending upon the direction in which the point of con nection is located however the position of the cam may be varied, and different results thus obtained, as various modifications may also be produced by the amount of throw, and the point where the shaft passes through the cam The proportion of throw and lap adopted in the experiments were for the eccentric, 5 -inch throw, cam 6-inch. throw, the valves having from from $11-8$ to $11 \sim 4$-inch outside lap.
A modification of these improvements is a small cam or eccentric placed and adjusted at e, fig. 3, the yoke or strap surrounding it forming part of the valve rod, P, while the cam or eccentric is attached to lever, E, and the extremity of the rod, A, instead of being
connected to a cam or eccentric on the axle is secured by a pin to the framing of the engine. The cam described in the foregoing description can be easily applied to all engines. It may either be cast together with the back eccentric, or if applied to any old engine, cast in two separate pieces and bolted to the former. The wear of the cam is inconsiderable, because it operates the valve through the intervention of the leverage of the differential rocker, the main power being derived from the link.

The inventors of these improvements are practical engineers, and fully understand what is wanted upon locomotives to insure safety, conomy, and speed. More information may be obtained by letter addressed to them at Paterson, N.J.

Cobalt and Nickel

M. Deville, in a paper before the French Academy, suggests "that other more common metals than aluminum are perhaps less known than may be thought, and he expressed the ope that when he shall have completed a memoir on the pure metals, produced and melted by certain, yet secret, processes, which he has long been preparing, he shall exhibit some unexpected results. Thus he instanced cobalt and nickel, which possess useful physical properties, such as malleability, ductiliy, \&c., developed to a most extraordinary degree; further, they enjoy a tenacity far exceeding that of iron, which hitherto has passed as the most tenacious metal; for, according to the experiments made by M. Wertheim on these metals, the weights which determine the rupture of wires of iron, cobalt, and nickel of the same dimensions are 60 for iron, 115 for cobalt, and

90 for nickel, which shows the tenacity of cobalt double that of iron; besides, nickel and cobalt are worked at the forge with the same facility as iron, are oxydized less easily than iron, and are susceptible of being employed in the same manner as iron.'- [Annual of Scientific Discovery, 1856.

The North river was open to Albany on the 10th inst.-last week. The South America was the first steamboat that made the trip up. The river has been closed for nearly four months.

> Literary Notices.

Chemistry: Theoretical, Practical, And AnA.
astrici- This is the title of a new work on Chemistry,
as applied to the arts and
 pee ency clopedia of chemistry. The engravings are
excellent. so is the letter press, nad any work edited by
Dr. Muspratt cannot fail to be profound and thorough.

 monstrated that with improvements in machinery
and rhe arts. the value of labor has also increased.
In presents atsong argument in favor of the humanizing
influence of useful inventions.

 regard J ena aricuitural journals in our country, and
the very bend
recommend it to those of our subscribers who wish to be
 ture. Itt articles are not a mere re-hashof things which
theve been pubbished a thousand timestbefore buate the
contributions of some of the ablest agriculturalists. inves.

 BLACK wood's. MAGAziNE-The number for this month
 American readers. "Nicaragua and the Fillibusters."
formsthe subjecton anothor tricle in which Walver and
his men meet with a a favorable notice, and the advantages
 are poin
matyazin
city.

 4 Gold st., this city

Inventors, and Manufacturers
ELEVENTH YEAR!

SCIENTIFIC AMERICAN.

This workdiffers materially from other publication位g an ILLUSTRATED PERIODICAL, devoted chiefto the promulgation of information relating to the vatures, Agriculture, Patents, Inventions Engineering Mail work, and all interests which the light of PRACTICAL CIENCE is calculated to advance
Every number of the SCIENTIFIC AMERICAN contains Eight Large Pages, of reading, abundantly illus. trated with ENGRAVINGS,-all of them engraved ex. pressly for this publication.
REPORTS OFU. S.
REPORTS OFU.S. PATENTS granted are also pub. PATENT CLAIMS. These Claims are published ine the Scientific American in advance of all other papers.
This publication differs entrrely from the magazines and
papers which flood the country papers which flood the country It is a Weekly Journal
of ART, SCIENCE, and MECHANICS, -having for its object the advancement of the interests of MECH ANICS, MANUFACTURERS, and INVENTORS. Each number is illustrated with from Five to Ten Original Engra
vings of new $M E C H A N I C A L$. vings of new MECHANICAL INVENTIONS; nearly al
of the best inventions which are patented being illustrated in the Scientiric American The SCIENTIFIC AMERICAN is the most popular j. The of the kind ever published, and of more importance to the interest of MECHANICS and INVENTORS than any thing they could possibly obtain! To Farmers it is rocultural Improvements, instruct them in various A chanical Trades, \&c. \& c
TERMS :- $\$ 2$ a-year ; $\$ 1$ for half a year Southern, Western, Onnada Money, or Post Office stamps taken at theirpar value for subscriptions. Let ers should be directed (invariably post-paid) 128 Fulton street, New York Clubinates.
Five Coapies for Six Months,
Ton Copies for Six Months
Ton Copies for Six Months,
Ten Copies for Twelve Months,
Fifteen Copies for Twelve Months,
Twenty Copies for Twelve Months,

