Scientifix Ammeritan.

THE ADVOCATE OF INDUSTRY, AND JOURNAL OF SCIENTIFIC, MECHANICAL, AND OTHER IMPROVEMENTS.

Scientific ${ }^{4}$ merican
At 123 Fulto Street, N. Wr. Sur BY MUNN \&\&COMPANY.
O.D. MUNT, B. H. WAles, A.E. B:ACH. Foderhen \& Co.. Boston.
A. Winch. Phildel
A. G. Courtenay.

 Single copies of the paper are on sale at all the per
cal stores in this city, Brooklyn, and Jersey City. THRMS- 82 a.-year, -81 in ad vance and the remain
der in six months. der in six months. -

Rail Road Economy.

The New York and Erie Rail Road have adopted a systere of keeping a separate account with each locomotive on the road, embracing No. of engine; miles run; cost for Engineer and Fireman; gallons of oil used; miles run to one pint of oil; pounds of waste used; pounds of tallow used; cost for oil, waste and tallow; cost per mile run for oil, waste and tallow; cost for repairs of engines; cost per mile run for repairs of engines; cords of fuel used; cost of fuel; cost per mile run for fuel; total cost; total cost per mile run; tuns useful load carried one mile ; cost of useful load per load carried one mile; cost of useful load per
mile per tun: tuns of useful load and dead weight carried one mile.
A report of the operations of the Road for the month of May have been issued by its diligent Superintendent, D. C. McCallum, Esq., which contains the following interesting statistics:

Milies ran to ne pitho roin : Milise rin to ne cord of wood Averaze cost of wood. cord
 Therst wood, cord . .

 is appended to the documen a com parative statement, showing the results of working several engines on the different divi sions. The name of the engireer, the number and kind of his locomotive are given, in order to excite a laudable ambition.Cost of Fuel.-The following is a table showing the cost of fuel on this Rail Road for the first five months of the year:

This shows a most important saving in fue -a third and one mill per mile, and affords evidence of an able, vigilant superintendence. Cost of Oil on the Central Rail Road -The same system of monthly accounts, we have been informed, has also been adopted on the New York Central Railroad. We have the returns of the cost of oil on two of the Divisions of this Rail Road for the month of May last. They are as follows:

Syracuse and Rochester	73,659		
Total	$\frac{177,924}{17,84}$	$\frac{131.2}{9,070}$
1212			

These returns are for 18 locomotives on the 1212 Syracuse and Utica section, and 31 on the Rochester and Syracuse division. This will afford our readers some idea of the vast amount annually expended for lubricating materials on Rail Roads. There is plenty of room for
direction.

Tennessee Copper Ore in England.
The Tennessee Copper mines have sold 2000 tuns of ore in Liverpool since March last. The lowest price was $£ 20,12 \mathrm{~s}, 6 \mathrm{~d}$, and the highest $£ 37,10 \mathrm{~s}$. per ton. The prospects of the Tennessee mines are stated to be good, the yellow sulphuret ore becing in great demand in Eng land.

Business is fast reviving throughout our manufacturing districts; the prospects for brisk Fall trade are good.
VOLUME X] NEW-YORK, AUGUST 11, $1855 . \quad$ [NUMBER 48.

NEW-YORK, AUGUST 11, 1855.
[NUMBER 48.

These engravings illustrate an improvement the lathe, part of which is turned; S is the un-|through the opening in the ring, h. The stick, in self-acting lathes for turning such orna- finished part of it. The roughing tool, o, the S, is then secured between the head stock, b, mental work as pianoforte and table legs, bed finishing tools, $k k^{i}$, the guide traces, $q q$, and and the puppet screw, c, in the usual way. The posts, \&c., from patterns, for which a patent their levers and fulcrums, together with the hooked tool, o, fig. 2 , is then set to cut away was granted to Albin Warth, on the 10th of clutch, d^{\prime}, and lever all belong to the slide rest, the stick in front of ring h, to such a size as last October.
Figure 1 is a perspective view, and fig. 2 is a bird's-eye or top view.
a is the frame of the lathe; b is the head stock; c the back puppet; d the feed screw to move the slide rest, g, and d^{\prime} is its clamp; h is ring support; $k k^{\prime}$ are finishing tools. o is roughing hooked tool ; $p p^{\prime \prime \prime}$ are guide levers, and l an adjusting screw; $r^{\prime} r^{\prime}$ are guide patterns; $p^{\prime} p^{\prime \prime}$ are the guide lever fulcrums. p^{4} is a spring on the guide lever; $q q$ are tracer patterns to guide the tools, $k k^{\prime} . \quad r r$ are sup-解

face of the pattern guides, $r^{\prime} r^{\prime}$, have each a ery new pattern, to be sure, requires new guide tions are truly remarkable. We saw it at work friction roller pressing on the back of the plates, but an endless variety of these can not long since, when it was employed in protool stocks of the finishing cutters, thus making cheaply and easily be made and kept, so as to ducing table legs. All that the attendant had them trace and cat the pattern on the stick. turn out a great variety of such ornamental to do was to place the rough sticks between The tracers, $q q$, are also attached to the spring turning. When it is desired to leave any por- the centers, and in a second or so they were levers, $p p^{\prime \prime \prime}$, and they can be raised so as to tion of the stick square, as in fig. 1, a ring transferred into table legs, turned with the most elevate the tracer guide points above the pat- plate with a square opening is substituted.- beautiful configurations, and the work wholly tern, $r^{\prime} r^{\prime}$, and not touch them. The slide is Various ring plates may be used. In conse- finished,-no sand-papering or re-touching to reversed quickly in the common way. It will $q u e n c e$ of the guide spring levers, $p p^{\prime \prime \prime}$, hav- be done afterwards. It may be used for pro- $^{\text {d }}$ be observed that the tool stocks have a trans- ing fulcrums at p^{\prime} and $p^{\prime \prime}$, the cutters are kept ducing every conceivable variety of ornamenverse motion outward and inward by the perfectly free from jarring or vibration, so that tal or plain turning, and may be relied upon tracers, so as to make them act on the stick, the very finest and most delicate work may be for perfection in its results. The machines are and be governed by the configuration of the produced in this lathe with ease and precision. substantial, easily managed, and not costly.guide plates, $r^{\prime} r^{\prime}$. The ring, h, supports the This invention is one of the most ingenious Apply to Richard E. Dibble, General Agent, 2 stick in the lathe as the slide rest is moved and important improvements in its line that $\left\lvert\, \begin{aligned} & \text { No. } 360 \text { Broadway, New York, for further in- }\end{aligned}\right.$ along, and prevents the stick springing. Ev- has been patented for a long time. Its opera formation.

Information Relating to Steam Encines.	the
We oftentimes receive letters from corres-	te

The unit of a "horse power" is $33,000 \mathrm{lbs}$. lifted one foot high in a minute. To calculate the horse power of any engine, multiply the area of piston in square inches by the pressure of steam in pounds on the square inch, and by the velocity of the piston, and divide the product by 33,000 ; theresult is the nominal horse power of the engine. It is the common practice, however, to deduct the fourth of this, as being expethed on the engine itself, that is absorbed by friction and not given out to the machinery which the engine may be driving. For this reason some engineers use the divisor 44,000 in estimating the horse power of their engines. This is the case with the Clyde en gineers, (the builders of the Cunard steamers,) the engines of which are rated lower than American ones of the same power.
We sometimes also receive letters making
inquiries different from the above, relating to inquiries diff erent from the above, relating to
steam engines, and although easily answered by those who understand the subject, they in volve considerable time and trouble to work out the calculations. One of these we will also present, for the benefit of all such inquirers:
"I have an engine with a piston 5 inches in diameter and 20 inches stroke, how much steam must I carry to make it work up to six-horse
power?"
The rule is (though not to be found in books) multiply the area of piston in square inches by a stipulated velocity of piston, and use the quotient as a divisor to divide the sum total of horse power which the engine is desired to work up to. Thus : Area of the above piston in inches $5 \times 7854=19 \cdot 6350 \times 300$ (velocity of piston in feet per minute) $=5890 \cdot 5000$. The sum of six-horse power is $33,000 \times 6=198,000$ $\div 5890 \cdot 5000=33 \cdot 44$, or thirty-three and a half pounds nearly of steam pressure on each square inch of piston. The velocity of 300 feet per minute is high, but the rule is equally applicable to any assumed velocity. This speed of piston for an engine of 20 inch stroke, is equal to 90 revolutions of the crank shaft per minute. We would never run such a short stroke engine faster than 200 feet per minute. The velocity of piston should vary with the length of stroke -increasing as the stroke is lengthened. The old rule used to be 160 feet per minute piston velocity, for a $21-2$ feet stroke; $2: 28$ feet for
6 feet stroke, and 256 for an 8 feet stroke.
The proper velocity for pistons is still a ques tion of dispute among engineers. Scott Russell says " 220 feet per minute is the velocity of piston generally reckoned in Great Britain, but it is a rule as groundless and injurious as it is universal. With large ports, valves, and condensers, double the speed may be employed.' Such a speed he can see economically employed on our fast river boats, in opposition to Tredgold, who set up 250 feet velocity of piston per minute to be a law of nature. It is, indeed difficult to construct engines of a short stroke difficult to construct engines of a short strote
to run at a high velocity because the diameter to run at a high velocity because the dremeeter
of the piston has to be reversed so frequenty; still, our locomotives are standing evidences of what engineering skill and science can do for high speed in short stroke engines. A steamboat engine of ten feet stroke, making twenty revolutions per minute, involves a velocity of 400 feet of piston, while a locomotive of two feet stroke, and the same velocity of piston, must make 100 revolutions per minute; its piston will have to be reversed 200 times for eve ry 40 times that of the steamboat's.
By adoptinga certain pressure of steam as a unit, we can easily determine the velocity of piston required to work up to any amount of horse power. Thus for a piston of 12 inches diameter, and steam at 40 lbs . pressure on the square inch, it will require a piston velocity of 291 feet per minute to work up to 40 -horse power $(33,000 \times 40) \div\left(12^{2} \times 7854 \times 40.\right) \quad$ The result we have given in round numbers. The result we have given in round numbers. The
area of a piston is obtained in these examples by squaring its diameter and multiplying by the decimal, $\cdot 7854$. The same result can be ob-
the circumference of piston by half its diame

Some persons speak and write respecting a steam engine as if its power lay in the cylinder, walking-beam, and fly wheel. It should never be forgotten that the fountain of a steam engine's power is its boiler, but we will leave the subject of "steam boilers" for another article. The foregoing calculations have reference to the average steam pressure in the cylinder during the whole length of the stroke, not the pressure in the boiler, which is always higher than that in the cylinder, especially when working the steam expansively, and noengineer in his senses uses it otherwise. In practice, an engine running at a high velocity will do more labor by cutting off the steam before the stroke is completed, than by using the full pressure during the whole length of stroke. Many may suppose this cannot be so, but the fact is otherwise, for in using high pressure steam in short stroke engines, during the entire length of stroke, by the frequent rapid reversion of the piston's moption, there is experienced a reactive pressure of steam on the exhaust end which gives to them a thumping action, an evil which can be obviated by working the steam expansively, and which thus both saves stea and economises the power.

Curious American Patent Case in France.
We learn from our valued cotemporary, the English and American Intelligencer, published in Paris, of a singular lawsuit which recently took place in France, respecting a French invention, for which application had been made for an American patent in 1844.
"A person, named Mondot de Lagorge, invented some years ago a species of vessel,
called by him a 'nautical locomotive,' which called by him a 'nautical locomotive,' which York in 90 hours, and, though merely skimming on the waves, could brave the most violent winds without rolling or pitching. He took out patents for his invention in France and England, and determined to take out one for the United States also. Accordingly in May, 1844, he went before Mr. Lorenzo Draper, who was then the American Consul at Paris, executed the ordinary formalities, and deposited the necessary plans for obtaining one. Mr. Draper offered to cause his brother, who was in business in the United States, to do what was necessary to procure the patent; and M. Mondot de Lagorge gave him the sum of 1,630 f which it was calculated would be required for the expenses. Ten years passed away, and M. Mondot never got his patent. Thinking that this was owing to the negligence of Mr. Draper, he, in January last, brought an action against him before the Civil Tribunal of Harre, to obtain restoration of the 1,630 f., and damages for his neglect. Mr. Draper represented that all he had done in the matter was in his Consular capacity, and that, therefore, he was not subject to the jurisdiction of a French court. But the Tribunal decided that the objection was not valid, and ordered the case to be gone into on its merits. On the 2d March, the affair came on, but Mr. Draper did not appear. The Tribunal, after hearing M. Mondot de Lagorge's statement, condemned Mr. Draper by default to restore the $1,630 f$ f, and said that he was liable to pay damages, but before fixing the amount, it required the plaintiff to give an estimate of them. Mr. Draper having taken no steps to have this judgment set aside, it,
after a certain delay, became definitive. M. after a certain delay, became definitive. M.
de Lagorge, in virtue of it, applied to the Tribunal to assess the damages. His calculation was, he said, that his ' nautical locomotive' would have produced a profit of $1,080,000$ f. for each of the fourteen years, during which the patent, if obtained, would have lasted. But as no 'nautical locomotive' had actually been constructed, and, as therefore his invention had not been brought to the test of experience, he was willing to set the damages at the moderate sum of $200,000 \mathrm{f}$., which was less than one-fifth of one single year's estimated profits, and less than one-seventieth of the whole fourteen years
profits. Mr. Draper resisted the demand, profits. Mr. Draper resisted the demand, on M. de Lend lat having acted geld responsible for any damages which that person might have sustained, and that it was even hard on him to have to repay he sum which had been ad-
proved that he had sustained any damage, as lutely necessary to take the cup out of a saw his invention had never been anything more until it becomes of a considerable size, for a than a mere project; and, finally, that it was by that gentleman's neglect to do what was required, that he (Mr. Draper) had not taken out his patent. The tribunal, after examining all the circumstances, decided that Mr. Draper had been guilty of some slight neglect in the business, but that as he had acted gratuitously, and as, besides, it did not appear that the plaintiff could have sustained anything like the normous loss he represented, no other person having appropriated his invention, he (Mr. Draper) should only pay 200f. damages and the costs."
On the Manazement of Circular Saws.
The subject of circular saws is one of particular interest to almost every portion of our country, especially in the South and West.Reciprocating saws were at one time almostexclusively used in the preparing of lumber, but the obvious disadvantages arising from their intermitent motion, in spite of many improvements made on them, has led to their partial abandonment, and the substitution of circular saws in their place. The day cannot be far distant when (except for scroll work,) straight saws will be numbered among the things that were, for circular saws, possess many advantages over them, especially as it regards the greater speed at which they can be driven, and the greater quantity of work they can turn out in a given time-as much time is lost with the straight saws in getting ready to work. The greatest difficulty experienced in managing circular saws lies in their tendency to heat. Wherever there is much friction experienced in one, it will get hot and expand, and in that condition will not make good lumber, and sometimes, indeed, it will buckle, and thus become materially injured. If the heating of a saw be uniform throughout, no further harm will result than its becoming "limber," and unable to sustain itself under a strong feed, but whenever it is reduced in temperature, it assumes its original form. It is very seldom, however, that the expansion of a circular saw, when heated, is uniform, as the friction is always greatest on the side next the log, owing to the plank yielding. Friction is caused by a too small kerf being cut out of the log, and also by the springing of the timber. In the latter case, when a line is cut, each portion of the log has a tendency to assume the form of an arc with the bark turnedinwards; this presses that portion of the log between the head blocks against the saw, while at the same time the opposite side of the saw is entirely relieved, thus causing unequal friction and expansion. In adjusting a circular saw to timber, the blade is not placed parallel to the log, but has what is termed "rake," that is, the cutting edge of the saw comes nearer the log than the opposite edge. This is done for the purpose of allowing the saw teeth to ascend without scratching the face of the log, and also to relieve the center of the saw where the tendency to heat is greatest. If, however, too much ake be given the saw, it will cause undue friction, and the inner side of the saw will heat and expand.
The arbor of the saw should be kept well lubricated, and not allowed to get hot, as it ransfers the heat to the center of the saw.Whenever the center of a circular saw becomes heated, it has a tendency to cup. The side of convex, and if run too long, it will not return to its former shape when cooled, but will require hammering on the edge to straighten it. This is a job which requires considerable skill, and besides, few who use such saws have suitable anvils to straighten them upon. To such the following will beuseful information:-Prepare a suitable number of annular papers with their inside diameter about one inch less than that of the hub, and place them on the shaft
adjoining the concave side of the saw. Preadjoining the concave side of the saw. Pre-
pare a lot of similar papers with their inside diameter equal to that of the hole in the center of the saw, and their outside diameter about one inch greater, and place these on the saw shaft adjoining the convex side of the saw. A sufficient number of these being so placed in, they are tightened up in the hub, and the saw is brought up true in the face. Care must be exercised to put in no more papers than will be exercised to put in no more papers than will
straighten the saw. It is not, however, abso-
saw will do good wort even when cupped a quarter of an inch; the increased difficulty, however, of managing it in this condition, renders it advisable not to work it in such a state. In working cupped saws, the teeth should be made to fill a wider gauge on the convex than on the concave side; and if the tendency to heat at the center continues, it should have more rake, if cupped towards it. The teeth of a cupped saw in ascending, in all likelihood, will scratch either the face of the \log or the plank. This is another and a sufficient reason to straighten it at once.
The edge of the saw is guided by a pair of rollers or wooden pins placed just below the \log and near the front edge. Pins are preferable to rollers, for they do not pack a ring of sawdust on the saw when it passes between them, as rollers do. The proper position of these guides relative to the saw, varies under different circumstances, but in no case should both press against the saw at the same time, as they would be sure to heat it. When a saw heats on the edge, it is far more difficult to manage than if heated in the center, for a "cupped" saw still presents a straight line on the edge, while a buckled saw (one stretched on the edge) does not.
The edge of a saw may become heated on account of the teeth not being in proper shape. If any part of a tooth except the edge rubs on the \log, the friction at that point will heat it. If sufficient depth of tooth is not preserved, there will not be sufficient room to free itself from sawdust, which will crowd in the kerf, causing undue friction on the sides of the teeth. If the saw cuts out of a true line, it will press hard against one of the guides, and thus also cause undue friction. It should never be forgotten that the heating of a circular saw, causing cupping or buckling, is always the result of undue friction; to avoid this, therefore, every effort should be exercised. A saw sometimes gets buckled from other causes than heating. Its roller guides are sometimes placed to bear too hard against it, and when this is the case the sawdust is pressed between them with a force sufficient to thrust the rollers out of placeOr if the rollers be so rigidly fixed as not to be moved by such a pressure, they tend to stretch the saw at the point where it passes between them. Gumming machines also tend to stretch the edge of the saw.
It is not necessary at all times to straighten a buckled saw on an anvil, especially if only a narrow ring near the edge of the saw is stretched, as it may be remedied by cutting through it, either by drilling a hole at the root of each tooth, or filing towards the center of the saw until the stretched part is cut through. Water is sometimes used to cool a saw; it also enables a saw to work in a smaller kerf,
thus saving power; and it also acts as a partial lubricator It each side of the saw near the center. Its use, however, should be avoided in cold freezing weather. Allowing the saw shaft to play endwise, is one of the most effectual means of keeping the saw cool. When the timber springs against the saw, tending to heat it at the cen ter, the end play of the shaft allows the center of the saw to yield; at the same time, the guide pins at its periphery keep it in line and the friction is therely reduced, and liability to heat diminished in a corresponding degree.
I have pointed out some difficulties experienced in operating large circular saws, and the manner of remedying and avoiding them, hoping that my experience may be the means of
benefiting others.
J. W. GAREr. benefiting others.
Grenada, Niss.

Improved Hydrant.

The Corporation of New York is beginning to introduce larger sized hydrants, which have six or eight apertures, for the simultaneous supply of as many different streams of water to different fire engines. This is a capital improvement. Heretofore only one engine could be supplied from each hydrant, rendering the employment of long lines of hose pipe necessary to conduct the water from distant supplies. Of course the loss of time in coupling the hose and bringing the water, under such circumstances, is considerable, meanwhile the building burns.

Altm Inbentions.

The Trang-Atlantic Telegraph

The steamship James Adger sailed from Nerw York this week, for Newfoundland, to assist in laying down the first section of the submarine telegraph which is to connect this country with Europe. A large party of ladies and gentle men were on board, among whom were Prof. Morse, inventor of the telegraph, Peter Cooper and Cyrus W. Field, Esqrs., prominent projec tors of this enterprise, and Lieut. Maury, and Professor Silliman. The duty assigned to this steamer is to take in tow the cableship Bryant and lead her across that portion of the Gulf of St. Lawrence which exists between Port au Basque, in Newfoundland, and Cape Northabove Halifax-a distance of 74 miles. The above Halicx a dista of miles. Th cable was made in End ly arrived out in the Bryant. It will be run
out from her stern while in tow of the steamer. out from her stern while in tow of the steamer.
The cable is composed of three wires, and is only $11-2$ inches in diameter. Weight of the whole, 400 tuns.
When these wires are laid the island of Newfoundland will be connected, telegraphically with the American continent, and in the course of two years or less, the great inter-oceanic wires will be laid, and all Europe brought into instantaneous communication with this coun try. A land telegraph from St. John's, on the eastern slfore of Newfoundland, to connect with the submarine cable at Port Basque, is nearly complete, so that in a few weeks the former city will be connected with New York. It is expected that all the ocean steamers will call at St. John's on their homeward passages, to leave news and despatches for transmission to the States, so that ere long our daily papers will be in the regular receipt of intelligence from London which has been but six days in transit. The distance from St. John's to Cork, Ireland, between which two points the ocean cable is to be laid, is only 1680 miles. It is pleasing to us, as it must be to every American, to think that this great project, the telegraphic union of the Eastern and Western Hemispheres, is about to be accomplished by a private company composed chiefly of American citizens They have undertaken, and thus far carried out the enterprise with an energy and sagacity creditable in the highest degree to them and to their country. If Professor Morse is spared to us but a short time longer, he will have lived to girdle the whole earth with his magic wires.

Apple Paring Machine.

The accompanying engravings represent a very compact and simple machine for paring apples, and other fruit, \&c., invented by J. D Browne, of Cincinnati, Ohio, who has taken measures to secure a patent.
Fig. 1 is a perspective view of the machine, and fig. 2 is a horizontal section, showing the manner the paring knife is mored against the rotating fork which holds the apple. Similar letters indicate like parts.
The machine is so small and compact, that it may be carried in a gentleman's coat pocket. Nearly all its parts are of cast iron. B is a thumb screw, which fastens it to the edge of a table by pressing the table leaf between it and the sole plate which supports the standard, A. E is the large wheel for giving motion to all the parts. This wheel has cogs, d, around its inner periphery. There are three small hubs, $\boldsymbol{a} b \boldsymbol{c}$, cast on standard A, which serve as bearings for the axis k of the large wheel, E, and those of the small planet wheels, $f j$. There is a fork, e, on the axis of wheel, f, and there is is a fork, e, on the axis of wheel, f, and there is
a worm, i, on the outer end of the axis of wheel, j. When the wheel, E , is rotated, it revolves the wheel, f, which rotates the fork, e, and also the wheel, j, which operates the worm, i, that takes into the teeth of the wheel, J, which moves the knife round against the apple on fork e. A small vertical standard, H , cast on the sole plate has a coiled spring, D , around it and it also sustains the paring knife frame, G, which has a collar encircling standard, H , under wheel J , and another at the foot of the standard. One end of the wire spring D is secured in a hole in the standard, H, and the other end is clasped around the foot of frame G. The paring knife has a head stock, K , se-
paring knife is secured with a screw on the the knife. Unless, however, the wheel, J, was the knife. Unless, however, the wheel, J, was
the outer shell of the pitcher at Q. From the lower side of this spout lid, two bent arms p lower side of this spout lid, two bent arms p
p^{\prime} and $q q^{\prime}$, made of wire, proceed and form a lever in connection with the spout lid. A small piece of metal, S , is soldered to the extremity of the wires. The position of these arms and the weight is such, that when the pitcher is tipped over, the weight and lid assume the position in fig. 3, thus allowing the water to flow out; and when the pitcher is restored to its vertical position, the lid returns to its seat-as shown in fig. 2 , closing the opening of the spout. It is very convenient sometimes to pour out water from an ice pitcher with one hand; the old plan of operating the lid to do this was by a chain attached to the lid and handle. The method of operating the lid, represented in these figures, is a great improvement over the old plan. The pitcher may be mate of any suitable material.
More information may be obtained by letter addressed to the patentee at Philadelphia.

Laushing Gas.
This singular substance, discovered by Dr. Priestley, in 1776, was brought into particular notice by Sir Humphry Davy, the latter being the first to notice its stimulating properties. When taken into the lungs, it induces the most agreeable state of reverie or intoxication, frequently accompanied with physical as well as mental excitement, which lasts for a few minutes, and then subsides without any unpleasant consequences. Persons who breathe it feel an indescribable pleasure and happiness, so much so as to induce laughter, and hence the name (laughing gas) given to this substance, but which chemists call nitrous oxyd. Enough laughing gas may be prepared for a single experiment by heating two ounces of nitrate of ammonia in a retort, having a large ox-bladder attached to collect the gas. The process is, first to insert into the neck of the bladder a wooden pipe, or stop-cock, made of elder, with the pith pushed out; next moisten the bladder, and squeeze it up, to remove the air; then fix it to the retort containing the nitrate of ammonia. Now heat the salt with a spirit-lamp; it first liquifies, then boils and decomposes, producing water (which remains in the retort) and the gas (which passes into the bladder) ; when the bladder is full, the experiment can be performed. Hold the bladder in the left hand, placing the thumb over the pipe to retain the gas; with the right hand close the nostrils; then empty the lungs by a long expiration; after which, insert into the mouth the pipe attached to the bladder, and breathe the gas in the same manner as if it was air; in one or two minutes, if the experiment be successful, an elysian sensation will follow, more exquisite than can be described.-[Septimus Piesse.

Avoid Rashness in Swimming.
In youth every person should learn to swim, as a part of his or her education, as in many emergencies it may be the means of saving life. But we must caution good swimmers against being too rash in exposing themselves to needless danger. Many excellent swimmers have been drowned by overweening confidence in their aquaticabilities, and not a season passes away without some instance of this kind taking place. An old sailor once told us, that in his experience he never saw a smart man who was fond of displaying feat; of agility, and risking his life needlessly, but lost it foolishly. The case of Sam Patch is an instance of this kind. In cases of danger it is a sublime sight to see a man risk his life to save that of another, but it is worse than vanity to see a man risking his life when no good object is to be subserved by doing so.

The Power of Belting.
Charles E. Moore, of Elizabeth Port, N. J., informs us by letter that he has had an experience of forty-two years in a cotton factory, and that there is no rule to determine the horse power employed in driving machinery by the size of belt. He gives it as his opinion, that belts are generally run at too low speed. "A belt 22 inches wide, running with a velocity of 1500 per minute, to drive 4000 spindles (half twist) with preparations, might have its place supplied advantageously by a belt 12 inches wide running at double the speed." He advises the use of large pulleys with open belts, vises the use of large pulleys with
and the slack on the upper side.

The accompanying figures represent an imwas phia, Pa., on the 26th of June last.
Figure 1 is a side elevation of the improved pitcher. Figure 2 is a vertical section of it nd figure 3 is a detached section of the spout The improvement consists in the arrange ment of the spout and its lid, the latter being made self-acting
The pitcher has an outer case, A B C D, and air at this point. 0 is the spout; P Q, fig. 3 is

Fig. 3 ~
abut three-eighths of an inch between them, all round; this is filled with melted resin, or resin and plaster mixed together. The lid made in the same way, and the space, b, is fille with a n
manner.
The min lid, JRL M, of the pitcher, is inged, but has a flage f, hinged, but has a flange, f, extending down, which slides into the top of the pitcher, a
hown in fig. 2 ; this effectually excludes the a small lid, covering the spout, and hinged to
eccentric to the standard, H , the knife frame under lip of mouth n. It is moved against
the apple, and describes the section of an ellipse i, on the flange, h, of axis g, but when one catch, l, by the rotation of wheel J , is carried round to bring the apple to the end of the fork, the shoulder of the knife frame is thrown out fies back to its original position.
Operation-The apple is placed upon the
Ork, e, and the knife in n, in consequence ofthe

pring, o, bears against it at the base of the ork. The wheel, E , is then turned by the han
lig. 2
 ured at a very tri fling cost, being made of cast

More infor addressed to J. L. Havens, \& Co., assignees Cincinnati.

IMPROVED ICE PITCHER.

Sicuruific Ammrican.
 NEW-YORK, AUGUST, 11, 1855.

The Claims of Inventors.
To excel in anything requires devotion, genius, and enthusiasm. No class of men have displayed, in prosperity and adversity, higher degrees of these qualities thaninventors. There are but few who do not appreciate the benefits which have been conferred upon society by modern inventions, and yet while this is true respecting improvements in themselves, it is no less true that the number of those who look from inventions up to their authors, is but small. The locomotive fleeting along its iron track, outstripping the deer in speed, and the behemoth in power, is the subject of admiration to all who gaze upon it, and it astonishes them to see means apparently so simple accomplishing such results. Little do they think, however of the many heads that have planned, and the hundreds of hands that have toiled to bring it to its present state of perfection. The lathe which is now carving out the bust of an Empress in the Paris Exhibition, appears so simple in its construction and action, that but very few of the great host witnessing its operations will give a passing thought to its ingenious American inventor, who devoted years of study and patient toil to improve and perfect it. We might thus go on and specify an hundred machines, bat time and space would fail us. Our object is to direct attention to the merits and claims of the authors of useful inventions-the improvers of the useful arts-for they are by no means sufficiently appreciated. Some talk of inventions as if they were easy things -mere lucky thoughts-costing nothing; oth ers look upon inventors as men who have mere money-making objects in view in getting out patents and selling them. Inventors do have lucky thoughts, but they are generally the result of many sleepless nights' planning, and years of hard work experimenting. We honor every man who by diligence in business and honesty in dealing acquires a fortune, and surely no men deserve to be better rewarded for their efforts than inventors, for they are pub lic benefactors. But with the most of them, we are positive, money is only a secondary object ; there are exceptions, to be sure, but this is the rule. In conversation a short time since with an old inventor, who "has done the State some service" by his improvements, he stated that it often gave him pain to hear inventors spoken of as mere speculators. "The devotee," said he, "to scientific mechanical research, will spend the last dollar be can control to the God-ennobling end of practically demonstrating a favorite theoretical machine on which he has spent years of investigation. Our country owes more to inventors for its greatness than all other causes put together, aside from a religious and virtuous education." He spoke the honest truth.
Some seem to imagine that the study of mechanics and the investigation and construction of useful machinery belong to a lower order of society and of intellect, but this is a great mistake. Look where we will, at the rushing stream with its busy turning wheel, preparing food for the million, or to the whirling spindle and whisking shuttle preparing webs to clothe them, and ask "to whom are we indebted for these?" and the answer comes back, "inventors." Their genius is impressed upon every ship which sails the sea; the graceful bridge that spans "Niagara's waters dark and deep;" yea upon use. of inventers moment there are hundred of inventors engaged in inventing new machines and improving old ones. Every week a list of patent claims for new improvements is published in our columns, thus giving evidence of the many minds that are busily engaged in advancing science and art. These men are developing the resources of our country, adding to its material prosperity, promoting its interests, and elevating its character.Amid the turmoil of business the public is liable to overlook their worth in the community. We therefore hope that as their patent claims are read each week in our columns, a feeling of gratitude and respect will arise for each, according to the merits of his invention.

The Mason Testimonial

In accordance with the intimation given in our paper week before last, we herewith commence the publication of the names of the contributors to the "Mason Testimonial." These receipts are only up to the 3rd inst., when this sheet went to press.
Considering the very brief time which has elapsed since the subject was first broached and the impossibility to have heard so soon from the more distant or rural districts, the subscriptions thus far received, though not amounting to much in the aggregate, are nevertheless very gratifying. They indicate the existence of a lively interest in the object, and leave us no room to doubt that the final result will be all that any one could wish.
Mr. Shugert, the Treasurer of the fund, in his letter enclosing the list, writes as follows :"A large number of persons here (Washington) have offered contributions, and will pay them in at any time; but I have requeste them not to do so, until the remittances from abroad wourd sufficiently indicate the success of the project pfoposed in the Scientufic American, of complimenting Judge Mason." We felt certain, from the beginning, that a handsome sum would be contributed in Washington, for there is probably no single locality in the country where Judge Mason has a more numerous host of warm and appreciative friends than in that city. When to their subscriptions are added those of the various officers and employees of the Patent Office, the sum total wil already have swelled to a very respectable mount. We noticed that when the late Commissioner of Pensions, Mr. Waldo, retired from Office, the employees in that department, pre sented him with a very beautiful testimonia Of course the Patent Office folks will not suffer themselves to be outdone under similar cir umstances.
We would remind our readers that the ball is now fairly opened, and the opportunity is be fore them for testifying, in a delicate but en during manner, their sense of the eminent ser vices rendered to them, to inventors, and to the whole country, by an honest, faithful, and patriotic man-Charles Mason, of Iowa, late Commissioner of Patents. Such a token will form a way-mark in the history of the American Patent Office, the recollection of which will be alike gratifying to the recipient and to the authors.
By reference to the annexed list, it will be observed that contributors are not limited to any particular amount. Let no one hesitate on account of the smallness of their sums. The aggregate will count up faster than they are aware.
Subscriptions should be sent by mail directed to "S. T. Shugert, Esq., Acting-Commissioner of Patents, Washington, D. C.," who is the Treasurer of the Testimonial fund. Those of our subscribers'who are about to renew their subscriptions to the Scientific American, may or convenience, send money for the above fund to us, if they desire ; we will duly forward all such amounts.
The names and residences of all contributors to the "Mason Testimonial," will be published in the Scientific American. To save trouble to the Treasurer, no other acknowledgment of moneys will be made.
sebscriptions to the "mason testimonial."

name.	residence.	I AMOUNT.
Andrew Inglis,	Philadelphia, Pa.,	\$1,0
Chas. W. Felit,	Salem, Mass.,	1,00
Wm. Ballard.	New York,	3,00
Muns \& Co.,	"	50,00
R. W. Fenwict,	"	3,00
H.T. Brown,	"	8.00
A. R. Haight,	*	5,00
R boeklex,	"	2,00
R Macfarlase.	*	5,00
J. W. Соолвs,	.	2,00
J. G. Mason,	"	1.00
Total received to Aug. 2, 1855, \$81,00		

We would remind our editorial friends and others that the present volume of the Scientifio American is drawing to a close, and we desire them to look at their files and see if any of its numbers are missing. If so we shall be happy to supply the wanting copies. We should be glad to receive early notice in every case, for after the volume is closed we shall
not, probably, be able to supply odd numbers.

Patent Snfe Game
There are but few who have not read in the daily papers of persons coming from the country, to our city, being "taken in and done for" by what is called "the Patent Safe Game," and as no idea of what the game is can be obtained from the mere statement of the fact, we present the following illustration and description of it in order to inform our people in the country fully of the matter, because cases are constantly transpiring of honest unsuspecting countrymen being fleeced by the very game of which they have heard so much. The sharpers who prac tice the "patent safe game" are keen fellows and try to maintain an appearance the very re verse of rogues. Three confidants generally play the game, but two can do it. When they

see a person called by them a "Sucker," who ap pears to be a fit subject to play upon, the learn his name, and something about him, such as the place where he came from, \&c. (they have various ways of doing this, one of which is by searching the hotel register,) one of them who is called the "Roper," goes up to him names him familiarly, and shakes him by the hand. This at first rather astonishes the stran ger, but the "Roper" looks so innocent, and is so obliging and kind, that he soon disarms his suspicion, and gains his confidence. He then invites him to go and see the wonderful places about the city, and walks about until he arrives at a proper place, where Mr. "Roper," by looking down on the ground, discovers, acciden tally, of course, a little neatly turned wooden ball, represented by fig. 1 , which he picks up, and gazing upon it with a look of intense curiosity, he says meditatively to his dupe, "Well this is really a queer thing; I wonder what it can be used for," and pressing it all round, to his apparent surprise, out he pushes an interior plug, (B,) of A , fig. (a section view.) With well assumed wonder he says, "Ah, What is this?" and
pulls it out entirely, unscrewing its lid.pulls it out entirely, unscrewing its lid.-
"A nicelittle box; well, now, this is ingenious; and it has something in it too." He then takes out a piece of white paper, (C) shows

"Sucker" the empty box, and throws the piece of paper on the ground. There is another piece of paper, (C , in the small chamber at the other end of the plug, but "Sucker" does notsee this, and the pluy is put back in its place.
A man is now noticed coming towards them attentively examining the ground, with despair depicted on his countenance. He attracts the "Roper's" attention, who says to his dupe companion, "This man has lost something valuable, let us put some questions to him."
"You appear to be troubled in mind, sir; have you lost anything?" "Yes, sir, I have lost something that I would not have parted with for ten thousand dollars. I had spent years in inventing a new safe for fires, which I know would save millions worth of property, and was on my way to Messrs. Holmes \& Butler's, the safe makers, to get one made; but, alas! I have lost the model! It had the appearance of a small carved wooden ball; oh, sir what shall I do." "Roper" says feelingly and honest-like aside to "Sucker," "I can stand this no longer, it pains me to see him. Friend," says he to the afflicted safe loser, "I think I know where it is," and taking it out of his pocket, asks, "Is this
your model safe." "It is, it is, thank you
thank you," exclaims the overjoyed Safe-man. "But how," says Roper, "can such a thing as hat answer for a safe." "Oh, I put a prop under it, and when a fire takes place the support has but to be knocked away, and out it rolls down an incline into the street." "By all the powers," says "Roper," "that is a capital idea. I suppose you have it made to hold something." "Oh, yes, there is a box inside of it, and a paper in its chamber now."
"I don't believe that," says Roper (and aside to "Sucker" he whispers, "I'll bet him on that piece of paper.") "I'll bet there is no paper in it."
"How much will you bet. I'll putup $\$ 1000$." "I have not that much," (aside to "Sucker," "I'll take $\$ 100$ from him,") "but I'll bet $\$ 100, "$ and he takes out a number of bills, perhaps $\$ 50$, and a bank check for other $\$ 50$, and says to "Sucker" (for he has fonnd out how much he has,) "will you loan me bills for this check until we get to my hotel $?$
All this has been done so honest and fair-like, that "Sucker" pulls out his pocket book, gives accomplished "Roper" $\$ 50$ in bills,and takes his check. Then the Safe-man presses on the conical end of the plug, (B,) takes it out, and from the other end pulls out the other piece of paper, (C.) The thing is done, and the Sate-man having fairly won the bet, marches off with the money. The "Roper" looks sad and crestfallen, but is soon relieved of his grief, for up comes a person assuming to be a policeman, charges them with gambling, and makes a grab at them. "Roper" shouts "run" to his companion, and takes to his heels, but poor "Sucker" is held by the officer, and denying the imputation of gambling, solicits to be let go. This the policeman allows whenin his fright "Sucker" flies the city, and soon finds out that his check is worthless; that the Safe-man, Policeman, and "Roper," were colleagues, and he the dupe of the patent safe game.

Prize.
 Prize.

More than a year ago we chronicled the liberal offer of $\$ 10,000$ bona-fidely proposed to be paid by Mr. Moses S. Beach, proprietor of the New York Sun, for the patent right for an invention that could supersede hand labor in feeding blank sheets of paper into the printing press. We believe that offer still remains open, and the end in view unaccomplished
We have now to record the offer of another prize of the same amount, for an entirely different invention. We subjoin the proposal as received by us:-
"Messrs. Editors-If you think proper, please give notice through the Scientific American that an invention is wanted that will saw two sides of a tapering slab for monuments, both at the same time. Whoever does this makes his fortune. I will give $\$ 10,000$ for the patent right. \quad M. M. MANLI South Dorset, Vt., July 23, 1855.
[To save competitors unnecessary trouble, we hope they will carefully observe that Mr. Manly proposes to pay the sum named after the patent is obtained, and not sooner. Therefore none need bore him with letters announcing that they have made the desired discovery, and demanding the reward before ever they have even tested their alleged invention, or taken any steps to secure the patent right.
Personally we are unacquainted with Mr. Manly. We would state, however, that he is a member of the firm of Manly Brothers, who are, we understand, pretty extensively engaged in the marble business, and have a quarry of their own in Vermont. His offer appears to be a "manly" one, at any rate, and we have no doubt it will call out the desired improvement. The remark in the above letter that "whoever does this makes his fortune," we think is" correct, prize or no prize. Let all those who have leisure moments to spend in thinking, remember these two noble prizes. They are open alike to the poor and the rich-to the unlearned and the lettered. In times past the best inventions have generally originated with the poor and uneducated. That it will be so in the futur there can be little doubt. for now as ever, "Ne cessity is the mother of invention."

Rail Road trains will yet be running at the rate of 100 miles per hour; that is our opin-

Editorial Correspondence.-No. 10.
The Great Freneh Exhibition.-The American
Department.
PARIS, July 12, 1855.
It is estimated that there arenow invested in manufacturing, in the United States, about six hundred millions of dollars, and that the annual value of the products reaches the enormous sum of one billion of dollars. We have large workshops and foundries scattered over the country,-cotton, woolen, paper, oil, leather, and silk manufactories, besides forty thousand mills employed in the lumber trade. The combined results of these immense interests throw into the shade the industrial exploits of any other nation within the same period. Yet it is not easy to convince a foreigner of this truth from the meager display that is made of our skill and ingenuity in this wonmade of our skill and ingenuity in ars begins to derful Paris Exhibition-and it now begins to
appear that the manufacturers of the United appear that the manufacturers of the United
States have committed a great blunder in not States have committed a great blunder intion for the display of their products. I stated in one of my previous letters that they had no encouragement to come here, owing to the contiguous position of England, and of the advantages possessed by English manufacturers. I have thought very strange that the Canadas should have made an appropriation of $\$ 50,000$ for the purpose of Exhibiting their products in France.
I now understand that the good results of this enterprise are beginning to be realized, and that orders for lumber, edged-tools, etc., are already on their way to Canada. France needs many things that can be imported from other countries having them in abundance, cheaper than they can be produced at home. In the article of building lumber, France is almost as poor as horses employed in the fish trade of New York. This remark is also true in regard to most of the more yaluable minerals, and if the cotton and woolen manufacturers of France would consult their own interests, they would set aside some of their old machinery and adopt such as is displayed from the English workshops of John Platt \& Son of Oldham, and I. Elce \& Co., of Manchester. Their spinning and carding machinery cannot be excelled -but in regard to looms, I think those made in the United States are the best. I am sorry that we have not one of Reynold's or Scott's Looms to show in our department. With all that has been said of the figure we cut in this Congress of Ingenuity, we have really several contributions that do much credit to our coun-try-as will be seen from the subjoined list of machines that have been illustrated in the Scientific American. In fact they comprise Scientific American. In fact they
almost our entire show of machines.
almost our entire show of machines.
We have Harraday's ingenious machine for cutting garments, furniture coverings, etc., etc.; H. W. Peaslee's excellent machine for washing and handling paper stock; Charles Starr's book-backing machine, improved and exhibited by Sanborn \& Carter, of Portland, Maine ; Halliday's wind-mill; Willard Day's submarine lamp; Wilson's, and Singer's sewing machines, actively in operation, to a staring ing machines, actively in operation, to a staring
multitude; Aatkin's curious raking machine, multitude; Aatkin's curious raking machine,
attached to reaper, by J. S. Wright, of Chicago ; also, McCormick's and Manny's reapers, each of which have appeared in the "History of the Reaper." A machine for cutting metals, invented by S. P. Ruggles of Boston, Mass., is a very fine invention, and does our country much honor. It is faithfully attended by E. Richmond, who is the European proprietor, and with the true spirit of an enterprising Yankee, he shows his visitors how easy it is for Yankee, he shows his visitors how easy it is for
such a machine to bite off the thickest plates such a machine to bite off the thickest plates
of iron. It effects in an easy manner the rude operation of the blacksmith, who first cuts the enamel of the iron on each side, with his cold chisel, and then breaks the internal substance by a blow, over his anvil. The machine has a wheel that revolves with mathematical exactness, cutting the upper enamel of the plate by a rotatory drawing stroke. It is put in motion by a toothed rack, which causes it to in motion by a toothed rack, whice of the plate, whilst the pressure of this wheel upon the plate against the edge of a horrizontal fixed blade causes it to cut the lower enamel, and at the same instant produces a separation of the internal fibers of the iron, so that the plate is divided without the blades coming in contact
thirds of an inch. The cutters can be elevated and depressed to suit any desired thickness of iron, by means of eccentric bolts. The cutting blades are nearly straight on their edges, and therefore if properly chilled they will not re-
quire sharpening. It requires very little power quire sharpening. It requires very little power
to operate the machine, and it cuts the heavies boiler plate at the rate of 10 ft . per minute It possesses another important advantage, viz by the use of an adjustable plate holder it is capable of cutting circular lines, thus adapting it to the use of tin, copper and zinc workers. A small machine for this purpose is on exhibition and I am pleased to learn that the business prospects of its exhibition are very encourag ing. I consider it the best iron cutting ma chine in use.
F. \& A. Walle, of Bethlehem, exhibit their ingenious machinery for making paper bags. The importance of such machines will be understood when the fact is known that about nine hundred millions of paper bags are annually consumed in the United States, for packing garden seeds, groceries, etc. Until the introduction of this•maohinery these bags were made by hand, at the rate of about 1000 pe day; the machine is capable of supplying 15,000 per day. It performs the several opera tions of cutting, folding, pasting, and printing the bag, and by means of a chamber at one end, into which the bags are carried by a series of belts, they are brought into contact with a current of air, and rapidly dried, and are thus delivered for use. The printing is done by the delivered for use. The printing is done by the
aid of a type cylinder, revolving suitably with the velocity of the bag to be operated upon and inked by rollers. A machine to do all this is necessarily made up of many parts, requiring several changes of motion, and without illustrations it is difficult to present a clear idea of its operation. The machinery in operation attracts a good deal of attention.
J. A. Reed, of New York, exhibits a very beautiful improvement in oscillating steam engines. For simplicity and effectiveness, I think it is the best engine in the building. This is saying a good deal, considering that there are
about 100 steam engines on exhibition. The about 100 steam engines on exhibition. The
exhibitor is, I believe, finding a great demand for his engines, and has already sold his stock on exhibition, consisting of three engines of 1 , 3 , and 15 horse. The peculiar features of this engine consist in admitting the steam into both sides of the cylinder at the same time, by its oscillating movement. By this means the steam pressure upon the cylinder is equalized or balanced. The advantages of the improvement are, that it enables the steam ports to be
constructed much larger than the ordinary size, constructed much larger than the ordinary size, and allow a larger area for the steam to pass freely, and to exert its full power at once. The steam is admitted at the end of the cylinder, and acts at once upon the piston head. Mr. Reed also exhibits an improvement in steam pumping enginəs, which consists in arranging the valves upon a rod in such a manner as to balance the steam pressure, which enables the engine to be worked as in the case of a steam pump or saw, without the necessity of a balance wheel. If we are ever to have steam fire prairies, I think we must depend upon these simple engines of Mr. Reed, as they are the very essence of simplicity.
Thomas Blanchard of Boston, has on exhibition two of his wonderful machines for carving -a small machine is now at work carving medallions upon ivory. It finishes them at the rate of one every twenty minutes, with hand power.
In dentistry we have seen some very superior specimens exhibited by Dr. N. W. Kingsley, of New York. The mounting is especially good. The artificial teeth of J. A. Ross of New York, now residing in Paris, are not excelled by any. Wethereds, of Baltimore, exhibit a large sized machine of their system of surcharging steam -which has also
A large machine, intended for carving busts of the size of life, is now_waiting for the pattern of a bust of the Empress. The exhibitor intends to show the French people that he can produce a perfect bust, without the aid of the artist's chisel. It is certainly a very curious and ingenious invention, worthy of the inventor's fame. Among the other contributions
of Wind and Current Charts of Lieut. Maury Specimens of bank note engraving by Rawdon Wright \& Co., of New York; a pair of weigh ing balances presented to France by the United States, through Alexander Vattemare, which are pronounced by Mr. Silbemann, Director of the Conservatoire of Arts, as the most perfect in the world; also very beautiful specimens of daguerreotypes by Gurney and Meade of New York. There are other articles of merit from our country, which I have not space to enumerate. I will however mention the grain separator and horse power of J. A. Pitts, of Buffal -undoubtedly the finest machines for the purpose in the exhibition. We are creditably re presented by a small but decidedly usefu group of articles, and if the American exhibitors do not receive medals and honorable men tion, it will be because they do not attend to representing their articles-a defect that sadly exists, I am sorry to say. It is impossible fo the Commissioners to answer such inquiries as the juries are instituting.
S. H. W.
P.S. Owing to the difficulty in getting the steam through the long series of copper pipes that have been used for that purpose, the Im perial Commission has ordered iron pipes to be substituted, as iron does not condense steam as rapidly as copper. This delays the machinery exhibition, and I shall be obliged to leave Paris without much time to see it all in operation.

Recent Foreign Inventions.

Iron Manofactore.-Mr. J. Boydell, of Anchor Iron-works, Smethwick, England, has patented an improvement in the beds of rever beratory furnaces used for puddling iron. This invention relates to the employment of the refuse product of pyrites, principally composed of iron, in making the beds of reverberatory furnaces used for puddling iron. In the burning of iron pyrites, when manufacturing sulphuric acid or sulphur therefrom, the residual matters resulting (consisting of oxydes of iron, combined with more or less impurities) have is the application of this refuse matter in the puddling of iron which constitutes the present invention; and the process of puddling will, by such application, be rendered less expensive, by reason of the low cost of such refuse matters. The oxydes of iron obtained from pyrites in the manufactures above mentioned differ in quality, some being mixed with considerable quantities of quartz or silex, whilst others retain quantities of sulphur; those possessed of either of these matters to any very great extent, should be rejected. Those lump which present to the touch a soft and smooth surface, and are of a reddish purple in color are the lumps which should be sorted out of the heaps for use in the puddling furnace; and those which present a hard, sharp, gritty, and cinder-like surface to the touch, in consequence of the silex present, should be'rejected, as wel as those which present white crystalline or quartz-like fracture, and those indicating the presence of sulphur. The lumps of the refuse matter having been sorted, those which have been selected for use are to be employed in the making of the beds of puddling furnaces, in like manner to that ordinarily practiced when using oxyd ores of iron; the refuse oxydes from pyrites being used either alone or in combination with the oxydes of iron hereto fore employed. The patentee claims the ap plication of the refuse products of iron con tained in burning pyrites (for the manufacture
of sulphuric acid and sulphur) in the making of sulphuric acid and sulphur) in the making
of the beds of reverberatory furnaces used for puddling iron.
Improvements in Furnaces.-Mr. J. Biden f Gosport, England, has secured a patent for so constructing furnaces as to admit a supply of air to the sides and bottom of the ash-pit in addition to the ordinary current. The furnace is made sufficiently long from front to back to admit of the incandescent fuel occupying the back half of the fire-bars, and the fresh or unburnt coal the front of the bars. The ash-pit is supplied with a sufficient quantity for complete combustion, by free admission in front. In addition to this, a supply is derived from outside the furnace, and conveyed by a tube under the ash-pit, in such manner as to impinge directly beneath the hinder part of the fuel, which is in a state of incandescence,
pass by an opening between the fire-bars and
the bridge, and then mix with any unconsumed products of combustion in the flues, and cause them to be completely consumed. In Cornish boilers, these air pipes are carried through the water space into the furnace, at the proper angle to deflect the air towards the back of the furnace. In marine engine furnaces, the air passes in front of a deflecting plate, which, while it causes the air to impinge directly under the hinder half of the fire-bars, keeps the air passages free from ashes.

More About Etherizing Congrea
On page 357 we presented a brief account of the efforts that had been made by Dr. Morton, to obtain a grant of $\$ 100,000$ from Congress, or the discovery of etherization; and we also stated that the funds for operating on Congress had been provided by the late Treasurer of the Eastern Rail Road, Boston, whose defalcation re now well known. Since we published the re ne to the f the Stokhld of the Stockholders of the Eastern Rail Road, appointed on the case of Mr. Tuckerman, the Treasurer, have made their report, in which we find it stated that the whole of the embezzlement amounts to $\$ 245,203$, or nearly a quarter of a million abstracted from the assets of the Company. It states, however, that he has given up a number of claims and rights to the Company, for its benefit. Connected with one of those claims are appended the following re-marks:-"An investment of a kind and charac marks:-"An investment of a kind and charac-
ter, which, we are advised by the Counsel of ter, which, we are advised by the Counsel of
the Corporation, cannot be disclosed even to us, without prejudice to the interests of the Company, and from which, we are assured, and have reason to believe, the Company may yet derive great benefit, involved, as Mr. Tuckerman declares, an original expenditure of $\$ 50,000$." This, we understand, is the claim for expenses in etherizing Congress, and from the somewhat mysterious language of the Report, we would infer that hopes are still entertained of getting he Congressional grant of $\$ 100,000$. We think, the Company may give up all expectation of obtaining this snug little sum. We really hope the stockholders will not be deceived into any measure for advancing funds to obtain any of that which they have lost through their Treasurer, in etherizing Congress. We cannot conceive how they can ever obtain any of the Congressional grant, except by the collusion of interested parties; and they may depend upon it, that the public and the press will keep a sharp look out upon all their proceedings in relation to this matter.

The Contract Eystem on the Canals.
During the past winter Wm. J. McAlpine, Esq., ate State Engineer, and other associates made proposition to the Senate, to keep the Canals of the State in repair for $\$ 700,000$, per annum $\$ 432,000$ less than the cost of repairs for the previous year. This general proposition was ot accepted, but a partial trial of the system has been made on section No. 1, of the Erie Canal. This section-18 miles long-has now been under trial since the opening of the Canal this season, under responsible contractors, and has been found to operate in the most satisfacory manner. The repairing for this section during each of the previous three years, cost $\$ 100,000$, and the csntract was taken to keep in repair for five years for $\$ 43,000$, per an num-saving to the State $\$ 57,000$ each year his section has been kept in better condition, and boats have experienced less delay and rouble in passing the Locks than during any former year.
The following is an extract from a recent Report of the State Canal Board, on the contract system, and shows what its members tract syste
think of it
"The continually increasing cost of the canal repairs admonishes us that this lavish ex penditure must be arrested, and greater econrevenues will be soon entirely swept away The results of the experiment of letting the repairs by contract, are thus far of the most encouraging character, and affords strong grounds of hope and belief that it will ultiwhich the canals of our State can be made productive of revenue."

Turnips may still be sown in the middle o this month, and produce a good crop b
winter. Late turnips are often the best.

Scrience and Arrt.

The Art of Dyeing.-No. 33.
Black on Woolen and Cotton Fabrics-In article 30 , describing the process for dyeing a black on woolen goods, it is stated that sumac, except used in very minutequantities, imparts a rusty brown color to the fabric. On the other hand, it is stated in article 32 that a considerable quantity of sumac is positively necessary in dyeing a full black on cotton goods. It might, therefore, be inferred that it is impossible to color mixed fabrics of wool and cotton, such as maslin-de-laines, a good black, but this is not so. The following process for doing it, however, is not, so far as we know, described in any printed work. It consists simply in coloring the wool of the fabric a good black first, by the process described in the article referred to, then washing the goods, and steeping them for eight hours in a cold liquor of sumac; after which they are dyed by the process described in article 32 , to color the cotton, only using weaker liquors, and the logwood not above blood heat. The last lime liquor may also be omitted, but the goods must be washed before they receive the logwood. It has been discovered that sumac only acts upon wool to injure its color when used at a high heat, such as is required in wool dyeing, but not when given coAd, and the temperature of succeeding liquors kept correspondingly low. This explains the nature of the above combined processes for coloring such goods a good black. In many factories where cotton and wool waste are swept up and mixed together, and dyed previous to being carded, spun, and woven into cloth, much trouble has been experienced for want of knowledge like the above. Any other color can be dyed on such mixed fabrics by combining the two processes described in these articles for dyeing cotton and wool, always taking care to dye the goods by the woolen process first, and by the cotton one last. Woolen and silk mixed fabrics, and silk and cotton mixed fabrics, can all be colored by combining the separate processes described for dyeing each separately. Some colors, like olive green, may be dyed on woolen and cotton mixed goods at one dip, by the woolen process, and even woolen and silk mixed goods may be dyed a red with cochineal at one dip, but there are exceptions to the general rule.
Printed muslin-de-laine dresses of any color or pattern may be redyed and made a good black by following the above process; the only exception being those goods which are printed with a resist paste, such as second mourning, having white dots or stripes. Claret colors are very easily dyed on printed muslin-de-laines, covering up the whole print and making it one color-which of necessity must be full and dark. Some dyers keep a tub of old sumac standing, for the purpose of dyeing such fabrics by the process described, imagining that they effect a saving thereby. This is a mistake on their part, for sumac liquor, especially in hot weather, soon ferments, and generates acid in excess, which both injures the goods and their colors (this hint may be useful to tanners, as from it the inference is natural that if the bark vat is allowed to ferment with skins in it, the
action will be injurious to the quality of the leatber.) Fresh sumac liquor, and no other, should be used in the art of dyeing.
The foregoing hints will no doubt be very useful to many of our manufacturers, as cotton is now somewhat extensively used in making the warps of cloth which pass current in the market for all wool.
Black wool, when of a deep rusty shade, by receiving too much logwood, can easily be reduced to a good color by a weak sour, but cotton cannot be treated in the same manner.The effort of the dyer, therefore, must be rather to give a little less than too much stuff in dyeing the cotton of mixed fabrics. As the color on woolen goods is also more permanent, and more difficult to discharge than that on cotton, of course the latter cannot stand the fulling process so well.
To Dye Wood Black-Boil the wood in a strong liquor of logwood for half an hour, then take it out, and rub its surface with a piece of sponge which has been dipped into a solution of
steeping them in a strong solution of logwood for about twelve hours, then coating them with the copperas solution, an ounce of which is sufficient for five dozen. To boil them instrong ink would answer the same purpose
To Color Ivory Black-Make up a very strong solution of logwood, a little fustic and copperas, and boil the ivory in this for twenty minutes, then take out the articles, dry them, and rub over their surface with a little sweet oil. Ivory balls, umbrella tips, \&c., may be dyed black in this manner.
Ostrich Feathers-These beautiful feathers are dyed black in the same manner as ivory, but, to prevent them being injured by the agitation of the water, they should be sewn up in a coarse cotton cloth bag. When colored they should be washed, then beaten with the palm of the hand upon a firm cushion until they are dry. This opens up their fibers and makes them look handsome.
Straf Hats aredyed black in the same manner as wood (like the ramrods,) only a solution of copperas ts made up in a pail, and they are steeped in this for half an hour after they have been boiled in the strong logwood.
Horse Hair is dyed in the same manner as ivory, and so is human hair intended for wigs. These items we have no doubt will be of great service to many of our readers.

The accompanying engraviigs are views of trap and process for removing tape worms from the human stomach and intestines, for which (trap and process) two patents were granted to Dr. Alpheus Myers, of Logansport, Indiana, on the 14th of last November. The nature of the process and the manner of practicing it is represented in fig. 1. It shows the hand of the operator fishing for the tape worm A B represent two traps of full size for operating on patients of different ages. $w w$ represent the intestines of the patient, and u the tape worm. t is the trap, which has been swallowed and taken into the stomach, and is suspended by a fine silk thread, l, in the hands of the operator. The tape worm is represented attacking the bait in the trap, t, and is on the point of being caught. Fig. 2 are enlarged figures of a trap to show its parts more fally. It is a neat small instrument of the shape A and B, fig. 1 ; it is made of very thin heet gold or silver. A in fig. 2 shows all the parts of the trap-the inside part being in dot-
ted lines; B of same figure shows the main ted lines; B of same figure shows the main
outside tube with its catch pin and the coiled spring, g, removed; the spring is set at the bottom of B, when the trap, as in fig. 1 , is
ready for use; fig. 2 , shows the small bait ready for use; fig. 2, shows the small bait
tube, d, with its bait fork, e; also the cap, C
which is placed over B; also catch, b. The thread,
h, is attached to link, i, of the cap, C. The bait is placed on fork, ρ, of the small tube

Fig. 2
This tube has a very small flange on its bot tom edge. Tube, B , has an opening, c, in its side, and a small pin, f, projecting inside, about little more than a hair's-breadth. The coiled spring, g, is forced to the bottom of tube, B under a, and the bait tube, d, placed in B , wit flange at the bottom catches delicately on the pin, f; the bait fork, e, with its bait, when the instrument is ready for use, is opposite the opening, c, as shown, so that the tape worm, t, puts its head into the small opening, c, and attacks the bait. The process of removing a tape worm from the stomach is as follows :The patient is first put upon a strict course o fasting for several days, and allowed nothing but water to allay thirst. The tape worm then becomes exceedingly hungry, and by instinct draws itself into the stomach to seek for tha nourishment which is now denied it it the intestines (all intestine worms do this, and some times pass up into the throat.) The trap, A or
B, fig. 1, is now baited with any nutritious food-such as a piece of cheese-and placed on fork, e, the points of which are very sharp and fine. The trap is then swallowed as shown in fig. 1 , and the thread, l, fastened to some propperhaps from six to twelve. During this period
the tape worm will have attached its sucker mouth to the bait, as shown, and by a little wriggling, it displaces the small flange of tube d, from the delicate pin f, and then the coiled spring, g, under it, forces up the inside baittube into the upper part of the tube, B , and the tape worm is pressed between the upper edge of opening e, against the fine prongs of fork and is thus transfixed and caught. The spring g, is made of such tension that the worm is merely transixed, and not cut through, which must be avoided. The patient can tell when the worm is captured. He rests for a few hours afterwards, and by careful and gentle drawing up of the trap, the worm is abstracted with it, and gently wound round a spool or quill. Great care must be exercised in drawing it up, so as not to break it.
The tape worm, or tænia, receives its name rom its resemblance to a mason's tape. It is the worst of the various species of worms which afflict the human family. Some of them are exceedingly long; they vary from a few feet to $20,30,50$, and even 100 feet. It is jointed, resembling a measuring tape spaced ut in inches. Every joint of this worm is, in eality, a distinct worm : the creature is at first broad and short; when it multiplies in the bowels, the young adhere to it and each other endwise, so as to form a sort of chain, which ngthens as they continue to increase, and a ast becomes injuriously long, hence merely reaking this worm does not destroy it, for any eparate link is one entire worm, and cannot be injured by being separated from the others. This is the reason why great care must be exercise to remove the worm entire, and not to break it for if but one link is left it propagates, and to itself. health; it cannot be otherwise. There have
been some cases indeed, of persons having them without being sensibly affected, but these are ceptions to the rule
The removal of the tape worm from the human body has always been a desideratum with physicians. The above figures certainly represent an original and ingenious method for re moving them, and Dr. Myers, not long since removed one fifty feet in length from a patient who, since then, has had a new lease of life. More information in relation to this invention may be obtained by letter addressed to the pa tentee.

Volcanic Mud Phenomenon.
On the 19th ult., as the the steamer Tishomingo was wending her way up the Ohio river, the officers and passengers on board of her beheld a remarkable upheaving of waters in the cen ter of the stream. When about seventy-five miles below Louisville, they beheld a dense body of mud and water, some thirty or forty feet in diameter, thrown up, sowewhat afte the manner of a fountain, to a hight of fifteen feet. It rose and sank several times.

Literary Notices.
OI,D KNICKERBOCKER.- In this number for August, the
merry poet,

 Putan

 TME NEW YORK QUARTERLY--The number of this

 Su, Homor No.
 ment, for Reports of explorations and surveys to ascertain
the most practicable route fors a riilrod to the Pacific.
Such don
and Such documents are of nosmall value to us, in in obtaining.
nformation on subjects hilich we dircus in onr columg.
Our thanks are due to Mr . Campbell for his attention to us.

Inventors, and Manufacturers The ScIENTIFIC AMERICAN.
ELEVENTH YEAR! the scientific american.
The fleventh volume of the Scientific AMERICAN commences September 16th next. It is an AMERCAN commences September 16th next. It is an
ILLUSTRATED PERIODICAL, -devoted chiefly to
the promulgation of information relating to the vari, us he promulgation of information relating to the vari)us Mechanic and Chemic Art., Industrial Manufactures, Ag.
riculture, Patents, Inventions, Engineering, Millwork, and 11 interests which the light of PRACTICAL SCIENCE is calculated to advance.
Its general contents embrace notices of the LATEST nd best Scientific, Mechanical, Chemical, and Agricultural Discoveries-with Editorial comments
explaining their application; notices of NEW PROexplaining their application; notices of NEW PRO-
CESSES in all branches of Manufactures ; PRACTICAL HINTS on Machinery; information as to STEAM, and all processes to which it is applicable; also Mining, Mill.
writing, Dyeing, and all arts involving CHEMICAL SCI. writiug, Dyeing, and all arts involving CHEMICAL SCI
ENCE; Engineering. Architecture, Comprehensive Sai entific Memoranda, Proceedings of Scientific Bodies, Ac. ournts of Exhibitions,-together with news and informa ion upon THOUSANDS oF OTHER SUBJECTS.
REPORTS OF U.S. PATENTS pranted are also REPORTS OF U.S. PATENTS granted are also lished every week, including oftcial Copies of all the
PATENT CLAIMS. These Claims are published in the Scientific $\Delta m e r i c a n$ in advance of all other pa. Mechanics, Inventors, Engineers, Chemists, Manufac. urers, Agriculturists, and People in every profession of
i ife, will find the Scientiric Aalerican to be of great value in their respective callings.
The SCIENTIFIC A MERICAN is published once a
week ; every number contains Eight Large Quarto Pa es, forming annually a complete and splendid volume lustrated with SEVERAL HUNDRED ORIGINAL

TERMS: TERMS! TERMS:
\qquad

 pers. Scientific American in advance of all week; every number contains Eight Large Quarto Pa.

[^0]
[^0]: par value
 paid) to

 128 Fulton street, New Cork.

