Scinntific Ameritam.

THE ADVOCATE OF INDUSTRY, AND JOURNAL OF SCIENTIFIC, MECHANICAL, AND OTHER IMPROVEMENTS.

Scientific American PUBLISHED WEEKLY BY MUNN \& COMPANY. O. D. MONN, S. H. WALES, A.E.BEAOB. Federben \boldsymbol{t} Co...Boston.
A. Winch, Philadelphia.
S.

 TERMS $\$ 2$--year :-\$1 in in six months.

Rochester Trial of Mowing Machines A trial of mowing machines, under the di rection of the Monroe County Agricultural Society took place on the 26 th ult., a short distance west of Rochester. There was present a very, large concourse of farmers from all parts of the country, as well as hun dreds of spectators, all curious to witness so interesting a contest. Eight different machines were entered, viz :
Manny's Reaper and Mower; a combined machine, with Wood's improvement, by Mr Wood of Hoosic Falls, Rensselaer County.

Wood's Mower, with Manny's patents also by Mr. Wood.
Ketchum's Mower ; by Howard \& Co., o Buffalo.
Ketchum's Mower and Reaper Combined by Rapalje \& Co., of Rochester.

Wheeler's Patent, from Cayuga County. Forbush's Mower, from Buffalo.
Burrell's Mower, from Geneva.
Russell:s Mower; entered by R. H. Pease of Albany.
The ground chosen, a large field just north of Judge Buell's house, was, in all respects unfavorable. Its surface was uneven, and the grass short and thin. The performance of most of the machines, under such circumstances, failed to satisfy the farmers present, who scrutinized it with critical and practiced eyes. It is not impossible, indeed it is likely, that the result would have been very different had the test been more fair, or less severe. But as it was, only two of these performed tair and handsome work. These were Manny's and Ketchum's. Both mowed well, and drew forth commendations. But it was evident that Manny's, with Wood's improvement, was the general favorite. No only was its work admirable, but it present ed two peculiar and very important advantages. Its swath was wider than any of its competitors, and it made good clean work with a much slower motion of the team.
[The above is in substance taken from the Rochester American of the 27 th ult. We have not yet received the report of the committee on the trial, and the above may be incorrect in many particulars. We know that was the case with the correspondent's report of the N. Y. Tribune, relating to the Westchester County trial, the true report of which was published in the last No. Scien tific American.
The report of the Tribune had to be cor rected by a letter of one of the parties-Al len \& Co.-whose machine received hig praise by the committee, butwas pronounced a failure by the correspondent of that pa per.

A Ship Sailing Against 1he Wind.
We bave received a letter from James B Conger, of Jackson, Tenn., relating to the communication of G. W. Steadman, in the Scientific American of the 9 th June. It states that Mr. S. did not quote Mr. Conger's article correctly, that it was a misquotation, and the only reply he deems necessary is to refer readers to his article in No. 26, page refer
283.

The accompanying engraving is a perspective view of an improved machine for the above-named purpose, for which a patent was granted to Charles P. S. Wardwell, of Lake Village, N. H., on the 29th of last August.
The nature of the improvements embraced in this machine consists, 1st, of the vertical saw for squaring off the end of the rail ; vertical saws for forming the tennon shoulder, and horizontal saws and cutters combined for cutting the tennons. This combination in one machine dispenses with the use of a separate machine for cutting the shoulders of the rails. This machine is capable of completing a tennon before the rail is reversed, or before it is discharged hus saving considerable time and expense Second, the improvements further consist in the mode of arranging the shoulder and tennon saws, whereby either of the vertical aws can be changed in position, and adjust- a rai
ed to cut the required depth of shoulder and the horizontal saws and cutters are so combined as to compensate for wear. Third, it also embraces the employment of one or more cutters between the horizontal tennon saws, in combination with the shoulder saws, whereby two or more tennons may be cut on each end of the rail at one operation. In this thachine, there is also a small saw to be used for double tennons, when the space between two is $1 \frac{1}{2}$ inches or more; -this the patentee has taken measures to secure by a new patent;-but when the spaces beis not used.
A is the frame of the machine; B is the eed carriage, which moves transversel over the top of the machine, in the ways, C C ; D is the saw for squaring off the end of $\begin{aligned} & \text { lower saw, G. Consequently, when the ma }\end{aligned}$ $\begin{array}{ll}\mathrm{CC} \text {; D is the saw for squaring off the end of } & \text { lower saw, G. Consequently, when the ma- } \\ \text { the rail ; it is arranged on the arbor of } \mathrm{E} . & \text { the } \\ \text { chine is in operation, the pieces slitted off } & \text { la }\end{array}$

This saw is situated near the front part of by these saws will be the same thickness as the machine, and bears such a relation to the depth of the shoulders formed by GG. the end of the feed carriage as to saw off the These saws are adjusted in the same manner rough end of the rail before it passes to the as the saw, D and the shoulder saws, GG. shoulder saws. The bearings of this saw, in R is a cutter, (there is another not shown,) which the spindle rests, is a swinging hub, arranged between these saws, $\mathbf{N} \mathbf{N}$, on a disk Z, with a curved groove in it, having a fas- which is attached to a hub. A space the tening screw, u, to hold it firm in any posi- same width as the required tennon is left betion in which it is set, and it swings on the tween the edge of each cutter and saw. other axis pin, u. This allows the saw, D, These cutters are employed when it is deto be moved towards or from the carriage, sired to form two or double tennons on each and to adjust it to suit the various length of end of a rail. T is the driving pulley on the tennons. GG are vertical shoulder saws, main shaft. The belting around the pulleys each secured on the end of a spindle. They HECS, b, show how the spindles are driven. stand near the edge of the feed carriage, and O is the belt thatdrives the vertical spindle of they are hung a short distance behind the the tennon saws; it runs round the drum, Y, arbor of the saw, D , so that the bed rail will on the sbaft, W . which has gearing on the top not come in contact with them until its end to f ed the carriage, B, with the stuff to be has been squared; also not to interfere with \mid tennont d, into the saw. V are fast and loose pulleys. The movement of the carriage, B, pulleys. Trils to be tennoned, is continuous,
with the rain until the tennons are completed. When a rail is tennoned, its ends are reversed, and the carriage returned to its former position, when the operation of tennoning the other end proceeds in the same manuer. This machine operates correctly, and with great rapidity. Its parts are so combinfd as to render the process of tennoning easily adjusted to various sized ten ions, and the process is continuous, from beginning to end, till the tennoning is complete.
The convenient method of adjusting the saws in this machine, and the rapidity and ease with which it operates, we have been assured by the patentee, render it of inestimable value for the purposes specified. It is asserted to be the best of the kind ever put into use.
More information may be obtained by letMore information may be obtained by let-

Sicentific Americam.

the labor has been performed, and the expense The curre, in 1854.
The entire income which has resulted from all the cases disposed of during the past year, has been greater than the whole expenditure of that year.
It is, therefore, possible that the receipts for the coming year may be nearly, or quite equal to the expenditure, if rigidly confided equal to the expenditure, if rigidy
to those things which are indispensably neto those things which are indispensably ne-
cessary. There are, however, some matters which, though not altogether indispensable, seem to commend themselves strongly to the
favorable consideration of Congress, and favorable consideration of Congress, and
which will call for some increase of expenditure in future. Among these may be reckoned, in the first instance, an increase of salary to some of the examiners. In the report or last year it was stated that the examin ing force had been augmented by placing an additional clerk in each of the examining rooms, as a second assistant examiner. The
despatch of business in the office was much facilitated by this arrangement, which was, however, found inadequate to the rapid increase in the number of applications. It was therefore thought expedient to place several of the assistant examiners in charge of duties which had previously been intrusted only to the principal examiners.
Accordingly, on the first of April last, five of the assistant examiners were each intrusted with the charge of an independent examining desk ; so that for nine months of the past year there have been eleven separate and independent examining rooms, with each an acting principal and assisting examiner. These assistant examiners who bave thus been performing the duties of principals, and the clerks of the second class who have been acting as assistant examiners, seem to have just claims to be placed on a footing of equality, as to compensation, with others who are performing the same duties, and are sub ject to the same responsibilities. The necessary examination cannot be made with proper promptness with a less force than ten principal and as many assistant examiners; and should the business of the office continue increasing, as it now promises, before the end of the present year we shall need twelve of each class of examiners. The number should, therefore, I think, be increased to that extent at once, or power given to the Commissioner so to increase it as soon as occasion requires
The business of the PatentOffice progresses or lingers, in precise proportion to the efficiency of the examining corps. The increased expense of supplying a few additional examiners is trifling, in comparison with the advantage of having the business of examination despatched in a few days after the application is made, instead of obliging the applicant to wait as many months for that purpose.
The report for the year 1853 was illustrated with wood engravings, which, though some what imperfect, are believed to have added much to the value of that report, by rendering it vastly more intelligible than it could otherwise have been made. Steps have more recently been taken to improve still further in this particular, by providing copper-plate engravings for this purpose. A conditional contract has been made with a competent artist, which, if approved by Congress, will render the report for the year 1854 highly creditable to the office, and eminently useful to the public. I feel great confidence that the advantages resulting from these illustratious will fully justify the increased expendi ture thereby rend ered necessary.
The present rate of fees hasbeen in existence for more than sixty years with but little variation. During that time the intrinsic value of money has been very essentially diminished. The labor and expense thrown upon the office has been more than doubled by the change which took place in 1836 ; and the additional compensation more recently provided for clerks and other persons employed in the office has still further contributed to swell the ratio of expenditure to that of revenue, and to call for a new tariff of fees, in order to prevent the necessity of curtailing the expenses of the office in a way
which cannot but be prejudicial to the bes which cannot but be prejudicial to the bes
interests of those by whom those fees will be paid.
It is believed that the inventors themselves would prefer a sufficient augmentation of the rate of fees, to enable the business of the office to be promptly and successfully conducted, rather than to save a few dollars at the expense of great vexation and delay in obtaining official action upon their applications for patents.
In my last annual report, the attention of Congress was invited to the consideration of the propriety of dbolishing all discrimination in the rate of fees as between citizens and aliens; subsequent reflection has only confirmed the opinion then entertained and expressed on that subject. Some of the beneficial results of the liberal policy then recommended in enducing a like liberality on the parts of other nations, are already sufficiently obvious.

At the present time, the laws of Canada do not permit our citizens to obtain patents in that province under any circumstances, which causes great inconvenience and loss to our inventors. All machines invented here, can be made and used in Canada without any license from the American patentees, and the products of those machines can, with little trouble or expense, be brought into our markets to compete with like commodities manufactured here by persons who are obliged to pay for the right to use the patented machine for that purpose. This operates like a discriminating tariff against the home manufacturer, which cannot but be prejudicial to his interests.
Reliable information of a private charac ter has, however, been received, to the effect that the Canadian Parliament is taking steps to remove this cause of complaint. A bill was introduced into that body at a recent Session (which has been adjourned over to some time in the present month,) and is still pending, which contemplates allowing American inventors to obtain patents in Canada; and the only cause of doubt as to its becoming a law is believed to grow out of the enormous fee demanded by this office from all Canadian inventors. The proposed modification in our rate of fees, would doubtless be followed by the desired change in the Canadian law. This would remedy the difficulty complained of by our inventors above alluded to, so far as future patentees are concerned, and might perhaps do so in relation to patentees of a previous date.
It may be thought that we shall best at tain our object by retaliatory measures. Such a course would be calculated to arouse angry and hostile feelings, rather than to lead to any final advantage to either party. A course dictated by kindness and liber ality, will soon dissolve the barriers which makes nations strangers and enemies.
We can well afford to lead the way in a course of measures which will contribute no inconsiderable share towards rendering us and our Canadian neighbors practically one people.
I take the liberty of inviting the attention of Congress to the other matters treated of in my report for 1853, to which I have nothing to add at present.

Very respectfully, yours, \&cc.
Charles Mason, Commissioner.
To Make Beautiful Hair oil
Take one quart of olive oil, or fine lard oil, $2 \frac{1}{2}$ ounces of spirits of wine, 1 ounce of cinnamon powder, 5 drachms of bergamot. Heat them together in a large pipkin, then remove it from the fire, and add four small pieces of alkanet root; keep it closely covered for six hours, let it then be filtered through a funnel lined with blotting or fil tering paper.

Quick Made Blacking for Shoes.
Beat up two eggs, add a teaspoonful of alcohol, a lump of sugar, and ivory black to thicken; it should be laid on and polished like leather blacking, and left a day to harden before it is used.

The census marshals report the population
of this city (New York) at about 750,000.

Gillem yndmentions.

Improved Carriage Wheel.
The annexed figures represent an improvement in carriage wheels for which a patent was granted to John Skelly, of Brooklyn, L. I., on the 30th of last January. The improvement consists in the peculiar construction of the wheel, whereby light or small hubs may be used, and a more durable and stronger wheel made than the ones now in common use. Fig. 1 is an enlarged section view of a spoke inserted in the felly, at the end of which is shown a portion of the tire. Fig. which is shown a portion of the tire. Fig.
2 is a front view of the wheel. G, fig. 1, is the felly of the wheel, f is a screw on the end of spoke F, and is shown in its place in the felly. C, fig. 2, are spokes, one end of which are secured in mortises in the hub, and the opposite ends are secured in the inner side of the rim in the usual manner There is a ring or band which is formed of wooden is a ring or band which is formed of wooden
segments placed between the spokes. C, at any proper point between the hub and rim, or the ring or bavd may be made of an entire piece of wood, with holes bored through it to allow the spokes, C, to pass through. At each side of the ring or band there is screwed a circular metallic plate or band, E, fig. 2, of sufficient thickness to give the ring or band

the requisite strength. F are short spokes, one end of which are secured in the outer edge of the ring or band, and the opposite ends are secured in the inner side of the rim. the long and short spokes being placed alternately in the wheel. There are from sixteen to eighteen spokes in ordinary carriage and light wagon wheels, and this number is essential, and steamed or boiled fellies are used, and if the fellies were not supportare used, and if the fellies were not support-
ed by a requisite number of spokes, the fellies would flatten, or become depressed between the spokes, and this now generally occurs in common wheels when subjected to some wear.
It is customary to use small hubs in the construction of carriage wheels; they are considered ornamental, and add much to the light appearance of the wheel. Large hubs would render a vehicle unsaleable. It will be seen that a small hub with mortises made in it to receive sixteen or eighteen spokes, will be much cut up or weakened, besides there cannot be much of a shoulder allowed for the hub. By this improvement the hub has only half the usual number of mortises cut in it, and the long spokes, C, may have requisite shoulders at their ends adjoining the hub, so that they may be well supported in the hub, and prevented from working or becoming loose therein. At the same time the fellies composing the rim are well supported, lies composing the rim are well supported,
as the usual number of spokes are inserted as the usual number of spokes are inserted
in them, the ring or band allowing the re-
quisite support to be given the fellies by
means of the short spokes, and also diminishing the number of mortises usually made in the hub. Thus a strong and durable wheel is obtained, the spokes are well supported by a ring or band, and prevented from twisting or bending when the tire is shrunk on
the rim. Small hubs may be used and the cost of manufacture
More information may be obtained by letter addressed to J. B. Oliver, 66 Schemerhorn street, Brooklyn, L. I.

DECK AND SALOON CABINS OF STEAMBOATS.

The annexed engravings are views of an |thereot, \boldsymbol{v}° z., the floor, the sides and roof, to improvement in the construction of safety deck and saloon cabins for steamboats and other vessels, for which a patent was granted to Wm. R. Jackson, of the city of Baltimore, Md., on the 5th of last month (June, 1855). Figure 1 is a side elevation of a vessel with a safety cabin on it, and fig. 2 is a cross section, showing in detail the mode of securing the cabin in the vessel, and the mode by which it may be removed.
The nature of the invention consists in the construction of deck or saloon cabins of stem or other vessels in such a substantial manner, by securing and uniting the several parts

each other, as to render it capable of resist-

 ing the violence of the shock of launching when necessary, and the force of the wind and waves when launched, and to subserve the purpose of a safety and escape vessel or life boat, in the event of accident from foundering or fire occurring, while at the same time its usefulness as an ordinary cabin of the vessel, is not in tho least affected.The cabin or saloon may be of any desired form or dimension, keeping in view, however, its capacity of accommodating the crew and passengers in case of emergency. The floor of the cabin is formed entirely distinct from

the ordinary deck of the hull, and is com- \mid hitched, the cakin can be launched or moved posed of strong timbers extending from side back and forth, like the feed bed of a saw to side, and strangthened properly with cross mill. A ship having this separate cabin, if framing. This cabin floor is not only planked on its upper, but on the lower side of the timbers, so as to increase its strength and buoyancy. The sides or walle, B, of the cabin are likewise formed of strong timbers raised upon and united with the timbers and framing of the floor, being secured thereto by suitable augle irons, or other device, so as to render the separation of the sides exceedingly difficult. The roof is likewise formed of timbers similarly united to the sides, and the planking of the roof and sides is applied to the inside as well as outside. Any desired number of windows or doors may be intro duced, as in ordinary cabins. This cabin or saloon is made entirely distinct from the hull of the vessel, and may be secured thereto by any suitable device, such as metal rods, $f f$, passing through the deck timbers (admitting of being driven below the level of said timbers). Said rods are provided with swivel hooks, $d d$, for tightening the straps, $a a$, by chains b and c, when made continuous by the trigger, e, and slip ring, g.
A rack is placed on the under side of the saloon, and a spur wheel, C, projecting through the deck above the beam, A , takes into it. This wheel is secured in the shaft, D , which receives motion by a band around D, which receives motion by a band around
pulley E , and thus, when the links are un-
damaged in the hull, and in a sinking condition, has but to have triggers, e, slipped from the links, and the cabin would float when the hull sunk under it. Each cabin of this kind is thus a large life boat.

More information may be obtained by let ter addressed to the patentee, at Baltimore.

American and Scotch Pig Iron

The Buffalo Democracy, in discoursing on the above subject, says :
". There is a very general belief on the part of our country iron founders, that Scotch pig is superior to American. This error arose in this way: as long ago as 1830 , Bent, of Al bany, became widely known as the manufac turer of the best, smoothest, and lightest hol low ware-using for the purpose Scotch pig, which was then made by hot blast. Neilson, the inventor of the hot blast was a Scotchman, and introduced his improvement firs in Scotland.
The well-known effect of the hot blast is to soften the metal, (if not weaken it,) and as Bent's ware, being thin, required a free run ning iron, it was found that the Scotch rawcoal pig had the property of liquidity, in a grg.

The success of Bent's hollow ware manu The success of Bent's hollow ware manu
cture, established inthis country a fictitiou
character for Scotch pig iron. And it has cost us millions and millions of dollars. Scotch pig, weaker and softer than English or American, has heen lavishly used for mill-gearing, steamboat work, machinery and engines, throughout our country. It has been partic. ularly used in this non-producing iron State of New York.
The sooner our foundrymen and machinists learn the fact that anthracite coal produces learn the fact that anthracite coal produces
better iron than bituminous coal, and that better iron than bituminous coal, and that
our hematite and primitive ores yield a stronger iron than carbonates (especially the Black Band,) the better it will be for their customers.]
[The Democracy should inform itself more fully on such suhjects before it discusses them. Here we are told that Scotch pig iron is simply a metal which flows smoothly because it is made with the hot blast, but inferior in strength to American iron made with the use of anthracite coal. It does not seem to know that the hot blast is used both in our own country and in England, in the smelting of iron ores with anthracite coal. None of our foundrymen or engineers require to be told that Scotch pig iron is a weak metal in comparison with the American cast-iron-they all know it. It is famous only on account of its quality-correctly given by the Democracy -of easy flow, for the making of smooth castings. For this reason it has no equal for making hollow cast-iron ware and smooth stove plate, and fine skinned castings, but the ore from which it is made-the Black Band, discovered by Mushet-and not the hot-blast, gives it those peculiar qualities. We under stand that Black Band iron ore is found in abundance in some parts of the Ohio coal basin; if so, as good pig iron for smooth castings can be made from it as in Scotland, and we hope this will soon be successfully and extensively accomplished. The hot-blast is employed in reducing the Black Band iron ore, as it is very refractory, and requires a high degree of heat.
Is the Center of the Earth a Mass of Fire The Philadelphia Ledger copied our artion ihe above subject, from page 296, ScienTIFIC AMERICAN, and since it has done so, two letters from correspondents, commenting on it, have appeared in our cotemporary, one of which agreed with our views, while the other, in the Ledger of the 2nd inst. advocates the central fire theory. Who the author is we do not know, but he merely repeats the old views on the surject, and does not attempt to answer the objections and arguments against them which we have presented. He puts forth the view, that because the earth is flattened at the poles, this is evidence of it having once been in an entire fluid state. This may be, but certainly it is no argument for the earth having been -or is now in the interior-a fiery liquid. He also states that he has made a calculation of the weight of the earth, and what its gravity ought to be if fluid, and sulject to the compression of attraction frow the surface to the center, according to its mass, and he bas found it to be equal to about five times that of water-just what experiment found it to be. This is two and a half times greater than our heaviest known rocks. He thus furnishes a strong argument again st himself, for how, in the name of all that we know about the laws of mechanics, could any hot molten mass-or fluid-be compressed to a density greater than that of iron, and yet be retained in a fluid state? If it ever had been a fluid, such a pressure must have reduced it to a solid of greater gravity than our heaviest known rocks.
The theory taught by so many men, that we are living on a mass of fluid fire 7000 miles in diameter, and are separated from it only by a thin crust of sixty miles in depth, requires more faith to embrace than we possess at present. There are many persons who will strain out knats and swallow camels, in scientific matters as well as morals, and this central heat theory is one of those camels.

Excavations are going on at each end of Excavations are going on at each end of
the Hoosac tunnel, at the rate of eight feet ser day.

Stieutific Agmericant.

NEW YORK, JULY 14, 1855.

Resignation of the \mathbf{U}. S. .

It is with unfeigned regret that we are bliged to confirm the brief announcement made last week of the resignation of the Hon. Chas. Mason as Commissioner of Patents. He vacated the office on the 5 th inst. his chief clerk, Mr. S. T. Shugert, receiving the seals, and taking charge of the depart ment ad interim.
Although there have been at times some differences of opinion between ourselves and the late Commissioner, on subjects connected with the patent laws, still we have ever acknowledged and commended the consummate wisdom, the untiring energy, and the unswerving honesty which have always characterised his administration. When he first took office the Department was in a most deplorable condition. Years of ignorant and imbecile management, occasioned by the appointment of officers wholly unfit for their stations, not only in the executive but in other branches of the establishment, had heaped up a mass of rubbish in the shape of abuses, errors, absurd rules, complaints, unfinished business, and the like, that had nearly crushed out the vitality of our patent system.
Mr Mason came into power in May, 1853. At that time the affairs of the Patent Office were in such a lax and disgraceful state that it took from six montbs to a year to get a patent through, and as much longer to obtain a hearing on an appeal. With an energy wholly unknown to his predecessors, he set about the work of renovation and reform, determined, if it was in the power of man, to restore the Department to respectability and usefulness. Before the year closed he had so far completed his herculean task that inventors were enabled to receive their pat ents within a less number of weeks, after fil ing their applications, than they had previously waited months and before the close of his administration, patents were often or dered to issue within six days after the application was placed on file. We need hardly say that under his admirable direction every other branch of the service was brought up to the same standard of prompt ness and efficiency, and the whole depart ment, re-invigorated and organized, wa made to move on with regularity, harmony and precision. We quite agree with the cor respondent of the New York Tribune, when in speaking of Judge Mason, he says:
"He was undoubtedly the best, the ablest and the most successful man that ever stood at the head of this highly important depart ment, and probably the most efficient office the present government has had to boast of An iron adherence to strict impartiality, a clear insight into the principles of mechanics, a keen perception in legal matters, and a noble devotion to the inventive interest of the country, are the great qualities which marked his business career, and which, who ever his successor may be, will hardly be surpassed.'
In retiring from a post which he has filled with such marked ability, and with so much benefit to the interests of the country at large, he will carry with him the profound gratitude of all inventors, and of all classes of people who had business to transact at the Office with which he was connected. The services he has rendered are most noble, and their influence will long be felt.
It has been our pride to think that amid these days of official corruption and misma nagement, there was one branch of the public service in which true honesty and fidelity to principle, reigned supreme. That branch was the Patent Department, administered by Charles Mason. We are not politicians, and we pretend to no keen eyed prescience, but we pretend to no keen-eyed prescience,
we believe that the day is not far distant, we believe that the day is not tar distant,
if his life is spared, when he will stand forth from the lesser ranks, the honored and honest Chief Magistrate of this Republic. He pos-
sesses all the qualities for this exalted posi tion, and sooner or later, we doubt, not they will become developed.
Next to the regret which we experience in the resignation of Judge Mason, is a feeling of dissatisfaction that he should have aban doned his post without having first provided or introduced a competent successor. Probably, however, he considered this a delicate matter, about which the least said by him the matter, about which the least said by him the
better. Without having cast about much, we cansuggest three namesthat would perhaps be as acceptable to inventors as any others, ander the unfortunate circumstances. We allude to Chief Clerk Shugert, Professor Baldwin, now an Examiner in the Patent Office, and to ex-Examiner W. P. N. Fitzgerald, formerly connected with the Department. All of these gentlemen are men of probity, energy, and experience in Patent Office matters, and we doubt not hat either of them would give good satisfaction. When Mr. Fitzgerald was connected with the Office he was accused of exhibiting considerable personal animosity, at times, towards those who either did not like his decisions, as Examiner, or whom he did not happen to fancy. Mr. F.is, notwithstanding, a man of great talents, and would bring to the Commissionership a ripe experience. The accusations alluded to were no doubt over strained and magnified.
The present excellent condition of the Patent Office requires that a new Commissioner should be appointed with as little delay as possible, in order that business may not become accumulated and affairs confused We trust, however, that the President will not exercise so great haste as to make an illadvised appointment. The matter is one of grave importance to the country, while the honor of the present administration will be affected according as the selection is good or bad.
In the meantime Mr. Shugert, the Chief Clerk, is a faithful and an excellent officer, who will discharge the important functions committed to his care with credit and success, until relieved by the Executive or re gularly appointed as Commissioner.
If the Patent Laws are to be amended next winter, we trust that among the other chan ges the Commissioner's salary will be raised. The compensation of $\$ 3000$ now paid is an insufficient reward for a man of ability, at a post so responsible.

New York Docks.

The captains and owners of vessels gene rally assert that the docks of our city are a disgrace to it. Considering that New York owes its wealth and importance to its ship ping interests, everything relating to those interests should be vigilantly $\begin{aligned} & \text { qupervised, and } \\ & \text { no ignorant narrow-minded policy should }\end{aligned}$ rule the councils for improving our dock and harbor. But because the harbor naturally is an excellent one, it would seem as if our city authorities had acted upon the principle of warring against its natural advantages, in stead of increasing and improving them. No improvement, we conceive, is more urgently required, or would do more good, than to build solid and enduring docks, and erect covered cast iron sheds on them for the protection of cargoes during the loading and unloading of vessels. It often happens that a severe thunder storm, with heavy rain,
suddenly comes up, when our docks are covered with bales of merchandize, thus causing much loss. We have no doubt but that goods are injured every year to the amount of at least two millions of dollars, by exposure to the weather on our docks. All this could be avoided by having good dock sheds made of cast iron, portable and fire-proof. Some large companies, like the Collins Steamship C_{0}., having exclusive docks to themselves, have erected sheds for the protection of goods, and with a saving, we have no doubt, of ten times the value of the sheds evey year.
Our docks are wretched affairs, considering the wealth of New York and the vastness of its trade. They are simply log cradles filled with stones, and are of a frail character at
that. A few months since one of them sunk
down into the river, because a somewhat large cargo of pig iron was deposited upon it; whereas, it should have been strong enough to have sustained the weight of all the vessels, with cargoes, which could be got along side of it. It is a great mistake to suppose that frail docks, because they can be cheaply erected, are the most economical. They re quire to be renewed so often, and need so many repairs, that they are far more expensive in the end than more solid and enduring structures. The city of New York cannot spend too much (if expended judiciously) in improving its docks and harbor. We hope, at least, that the improvement suggested, regarding the cast-iron dock sheds will meet with that attention which we think it deserves.

Damage to Cargoes Sweating Ships

In the San Francisco Herald of May 12th we find the decision of Judge Hoffman given in a case where action was brought to re cover damages by Adrian \& Story, against the owners of the clipper ship Live Yankee, for goods carried in that vessel, and which were found saturated with moisture, and much damaged. The Judge appears to have had a very obscure idea respecting the cause of the damage done to the goods, which is known by the name of "sweating;" and it would appearthat the witnesses in the case gave some curious testimony. The following is part of the Judge's charge:-"On the whole, I consider that under the evidence in this case, it does not appear that the damage has occurred from causes originating in the agency of man, nor that it could, like da mage by rats, injuries by worms, \&c., have urisen from causes, the effect of which the Court cannot affirm that the carrier could or ought to have guarded against; that it is not to be likened to the case of some known and internal defect in the particular conveyance, for which the carrier is liable, but it is a risk to which every shipper knows there re no ascertained and established means of preventing, and that in shipping in this ves sel, he assumed the risk of her system of ven tilation, and that, inasmuch as he knew the dangers to which his goods were exposed, he assumed the risk of damage.'
This is an exceedingly important question to the shippers of goods to California, inasmuch as the decision absolved the liability of the vessel for damages, although those goods were damaged while in the vessel. The reasons given for such a decision do not dis play a deep probing of the subject by the Judge. It seems that a great deal of goods shipped in New York, when they arrive in San Francisco, are found to be damaged by this sweating of the ship between decks; and what confused both Judge and others was evidence to the effect that some ships (as was the case with the Live Yankee) which are ventilated, have their cargoes damaged, while others not so ventilated have carried cargoes as safe and sound as when first stowed wo that remedy will be found we have evil is ascertained; and this, we are of opinion, has already been pointed out by one of our California correspondents, in a letter on the above decision, addressed to the San Fran cisco Herald. He says :-"It is evident that the primary cause of sweat, as it is inappropriately called, is nothing more nor less than the steam arising from the hold of the vessel, generated by the heat of the tropical climate; that it collects or ascends to the highest point, to wit: immediately under the upper deck, where it increases in density, by reason of the hot sun beating down upon a single planked deck; and when at such a period a heavy shower of cold rain, or accompanied by hail or sleet, such as frequently occur in tropical latitudes, the steam, in contact with and immediately under the upper deck, would be suddenly condensed, and form in drops of water upon the under side, and thence falling upon the cargo, damage it."
The washing of the decks, he also states, will condense such steam on the under side; and the side sweating of vessels he attributes to them passing through warm and cold currents of the ocean. Ships not ventilated,
but having good thick deck planking, he states, may not be affected with sweat, because such planking is a good non-conductor. The remedy which he suggests is a double deck for warding off the heat of the sun, and preventing sudden condensation by washing the decks, or by rains; also boring holes transversely in the deck beam, to allow a free circulation of air. The double deck is a good suggestion and ventilation should never be neglected. We are also of opinion that it would be an improvement on board of ships to have less slashing of water on the decks, and more dry scraping, especially in the tropics. This plan was pursued in the late Niger Expedition, under McGregor Laird, and with marked benefits, both as it related to the health and comfort of the crew. These sug gestions reat leat well worthy the atsten tion of shipowners and forwarding mer chants.

Coal Burning Locomotives

How are our northern railroads getting on with experiments for the use of coal as a substitute for wood as fuel on locomotives? We have been informed that coal would actually save one half the expense for fuel, if used in place of wood; its economical use for that purpose, then, is self-evident. That it can, will, and must be used yet, for such fuel, w have no doubt whatever; and it appears to us that the sooner it comes into such use th better, both forrailroads and the public.
We have seen a statement to the effect that in one year no less than one hundred and orty cords of wood are burned on every mile f railroad using wood. for fuel; and that o the New York and Erie Railroad alone 65,000 cords are annually consumed, each cord costing as much as a tun of coal. What a saving would be effected on that oad, if coal was substituted for wood! But to this it must come soon, as it is not pos sible for the supplies of wood to continue many years longer.
If coke could be economically substituted or wood-and we do not see why it may not ances sparks and smoke. In spite of the many improvements which have been made in spark arresters, it is a positive fact that on all our railroads, ventilating cars to the contrary notwithstanding, the spark and smoke nuisances are still strong and fertid. That many of our railroads have not exhibited more zeal in endeavoring to abate such evils, zays but ittle for their desire and attention to increase he comforts of railroad traveling. If steamboat traveling, or even the old up-and-down stage system, were as fast as that of the railroad, not a soul would patronize the latter. Those who travel on our railroads make up their minds before they start to endure a sort of purgatory, for the sake of soon arriving at the end of their journey. We are of the opinion that our railroads can be so reformed as to render traveling on them as pleasant and comfortable as by any other mode of conveyance, and the substitution of anthracite coal or coke for fuel on the engines would be a great advance in the path of improvement.

Ex-Commisslorer Maso

We had the pleasure of an interview with Judge Mason, last week, in this city. He was en route tor his home in the far West-Iowa. His health appeared to be good, notwithstanding his past arduous labors.
A rumor was published in the papers, at the time of his resignation, that he would probably return to his post again next fall, when Congress meets. We wish there was some truth in the rumor, or that there was any ground for so desirable a hope-but we believe there is not.

Malignant Postule.

C. Watson, in a letter to the Tribune, states that he was attacked with malignant postule, and soon cured himself by the application of leeches first, then bathing it by a sponge with hot water, to keep it bleeding for some time, after which he applied a flax seed poultice. This method of treatment ap pears to be very rational, and it may be of use to some of our readers.

Foreign Editorial Correspondence.-No. 6.

Heidelberg, June 9, 1855.

Messrs. Editors-On the 5th, I took an early train for Strasburg. At twilight, a sight of the tall spire of the Cathedral notified me of $m y$ arrival in that old city. For many miles west of Paris there is nothing in the country or in its scenery that can afford much pleasure. It is flat and fenceless, exhibiting good cultivation; and, as in Northern France, the women are commonly in the field, doing service never intended for them. I was sorry to see this degradation of the gentle sex; but man is naturally arbitrary, and without refined culture, his despotic passion rules to inflict injustice and oppression.
In the neighborhood of Epernay, about 100 miles from Paris, are extensive vineyards, from whose bountiful lap excellent champagne is produced.
The vine does not grow much higher than four feet, if I may judge from the length of the poles or sticks upon which they run; and as I had a different idea on this point, my first sight of a vineyard fell much behind expectation. They are interesting more for their extent than for any natural beauty attached to them. Espying a large handsome residence upon an elevated plateau near Epernay, I felt anxious to know something of it. It may at first seem singular that a matter of such apparently trifling importance should excite interest; but the sequel is opened, and wonder ceases when I inform you that a pretty house, such as are so common in the United States, is rarely seen in France outside of the larger cities and towns. The dwellings of the peasantry are rude and uncouth, and have not the eharm that usually clusters about the farmhouses in our country.
The building referred to above was represented to be the residence of Madame Cli-quot-a name celebrated in the champagne trade. The reputation of this brand of wine was established by a singular event, and illustrates with much force the old proverb, that"it is an ill wind that blows nobody good." In the campaign of 1814, between France and the allies, their mansion was taken possession of by the Russians, and be came a barrack for officers and soldiers.
Its vaults were well stored with champagne, and, as would be supposed, the Russians were not long in taking the scent of this delicacy. They remained inhabitants of Epernay long enough to test the quality of Cliquot's champagne, and were kind enough to speak well of it to their friends. From that time onward, Cliquot's reputation has been above par, and a great fortune has resulted to the family from this circumstance. The unchanging character of the scenery for some three hundred miles west of Paris, is all at once broken by a range of mountains, called the Vosges; and after passing through several tunnels, and across delightful ravines, entrance is had to the Rhenish valley. The aspect of the country not only changes, but a change is also visible in the appearance of the towns, and in the physical characteristics and language of the people. Everything looks and acts like German. This seemed singular to me at first, but I thought of the varying dialects of the English, Scotch and Irish, and concluded that it was no great affair after all, to find a difference in French character on each of a range of small mountains.
Strasburg stands on the very western frontier of France, and is an interesting place, in some respects, to a stranger. The immense cathedral is a wonder in its way, and has a greater altitude than any other structure in the world, except the great pyramid of Egypt. Its spire is 464 feet high. The first stone of this immense structure was laid in the year 510 : and after a space of about flive centuries it reached to nearly its present condition. No figures remain that indicate its cost, but I was inform main that indicate its cost, but I was inform
ed that at the period of its construction the ed that at the period of its construction the
laborers were paid only three farthings per day. Taking leave of Strasburg, its solemn ca-
thedral, venerated storks, and steep, dingy-
roofed houses, and crossing the Rhine by a bridge of boats, I found myself for the first time in Germany-a land fragrant of strange legends and thrilling historic associationto say nothing of its sour krout and lager bier. The first town to the north that possesses much interest is Baden, a lovely and romantic place, quietly reposing amidst a graceful group of little mountains.
The scenery in and around Baden is picturesque and beautiful, but not sublime. The view from the tower of Mount Mercury is very fine, and well paid me for the labor I had in climbing its steep paths, on a hot I had
day.
Bad
Baden has hot water springs, and is a place of fashionable folly. Gambling is one of its principal staples, and the weasel-eyed managers of the "roulette" are coining
money out of their dupes, and are able to money out of their dupes, and are able to pay more than one hundred thousand dol-
lars every year for this privilege. Itis conducted in one of the most frequented halls of the town, and meu and women are spectat,rs to the villany with as much indifference as they would attend an auction sale. I understand that the women never engage in the play, but thousands of young men open the port to premature ruin by visiting Baden. It is licensed by government, and thus receives a varnish of decency that does not belong to it.
Some four hours' ride from Baden is Heidelberg, the most famous place in Germany. Here isalso a most magnificent ruin-" Heidelberg Castle." The place is also the seat of the first university in Europe, and hundreds of students from all countries come here to pursue their studies.
The seenery about Heidelberg is charming, and with the old castle, and its interesting collection of antiquities, it has become a centre of deep interest to the tourist, and is richly worth a visit from every American who crosses the Atlantic.
Of the city itself, little can be said in its favor, as the streets are narrow, and the buildings far from elegant in design or construction.
The admirable location of Heidelberg, and its rich historic associations, however, relieve the dull and sleepy appearance it presents, as the visiter has his attention drawn away from it to objects of deeper interest.
I visited the University Library, and was pleased to examine its ancient and valuable manuscripts, and particularly the volume of Thucydides' History, Martin Luther's tran_ slation of Isaiah, a sermon by Luther, also copies of the New Testament, and the Psalms richly illuminated. The perfection of chirographic art in those ancient days can only be understood by examination of the work of the ancient scribes. No art can be more beautiful, or more difficult to execute, than these old parchment copies of the sacred Scriptures.
In the morning, at four o'clock, I"made what I hope will be my final attempt at donkey riding, by an ascent of Konigstuhl.
From the top of the octagon tower of th From the top of the octagon tower of this
mountain is obtained an enchanting picture. With the aid of the glass, the tower of the Strasburg Cathedral can be seen a distance of ninety miles. The broad basin of the Rhine, the picturesque valley of the Neckar, and the surrounding mountains, opens to the vision a grand and pleasing panorama of natural beauty, such as I never saw before. I regret that my time is limited at this place, as I could pass a week in roaming among the highlands with pleasure and profit, but must away to Mayence, where I shall take the
steamboat to Cologne.
S. H. W.

Measuring Distances by Sound.

Sound passes through the air with a moderate and known velocity ; light passes almost iastantaneously. If, then, two distant points be visible from each other, and a gun be fired at night from one of them, an observer at the other, noting by a stop watch the time at which the flash is seen, and then at which the report is heard, can tell by the number of intervening seconds how far apart the points are, knowing how far sound travels in
a second. Sound moves about 1090 feet per
second in dry air, with the temperature at the freezing point, 32 deg. Fahrenheit. For higher or lower temperatures, add or subtract 11-7 foot for each degree of Fahrenheit. If a wind blows with or against the movement of the sound, its velocity must be added or subtracted. If it blows obliquely , the correction will evidently equal its velocity multiplied by the cosine of the angle which the direction of the wind makes with the direction of the sound. A gentle pleasant wind has a velocity of 10 feet per second ; a brisk gale, 20 feet per second; a very brisk gale, 30 feet; a high wind, 50 feet ; a very high wind, 70 feet; a storm or tempest, 80 feet ; a great storm, 100 feet; a hurricane, 120 feet; and a violent hurricane, that roots up trees, \&c., 150 feet per second. If the gun be fired at each end of the base in turn, and the means of the times taken, the effect of the wind will be eliminated.
If a watch be not at hand, suspend a pebble to a string, (such as a thread drawn from a handkerchief,) and count its vibrations. If it be $39 \frac{1}{\frac{1}{8}}$ inches long, it will vibrate in one second; if 9 inches long, in half a second, \&c. If its length is unknown at the time, still count its vibrations; measure it subsequently, and then will the time of its vibration, in seconds, equal the square root of the string dividen by $39 \frac{1}{8}-$ Prof. Gillespie.

Scientinc Notes and Queries

Increasing the Size of Flowers-A horticulturist of the suburbs of Versailles, in studying the physiology of the vegetable kingdom, conceived the idea that the smallness of certain plants-the violet for exam-ple-was owing to an atmospheric pressure too great for their delicate organs. Having fixed this idea in his mind, the florist conceived the notion of putting his idea into practice. Providing himself with a small balloon, rendered sufficiently tight to prevent the escape of any gas, he launched it into the air, having attached to it a silken cord twelve hundred meters long. Instead of a car, the balloon sustained a flower pot of Parma violets. This experiment has been going on about two months with the most wonderful results, in the shape of violets as large as Bengal roses. It is expected that the above experiment may be turned to some count.
[The above is from an exchange, and has an exceedingly suspicious appearance.
New British Currency.-In the British House of Commons, a resolution has been a lopted to issue silver coins representing the one-hundreth part of a pound, and copper coins the one-thousandth part.
American Broadcloth-Our broadeloth has now gaindd for itself a character too solid to be easily injured. Its introduction, however, was a work of no small diffculty, be-
cause it had to contend against a very foolish prejudice, that such goods could not be well manufactured among us. The first broadcloth made by the power loom was at the factory of Arthur Schulfield, Pittsfield, Mase, in 1826. There are now in the same county (Berkshire) 924 looms and 97 cards in operaation, producing annually 906,000 yards of woollen goods.
A False Gold Nugget.-A large golden nugget, which had been exhibited in Paris as a California production, has turned out to be a lump of lead skillfully shaped and plated with gold. An investigation has been commenced to discover the author of the fraud, it having been sold for a genuine production.
australian Liberality to the PressThe Government of Melbourne hasexempted editors of newspapers from serving on juries, and have remitted the fines of some for nonattendance. We hope our State Legislatures will soon enact a law of the same liberal character, far assuredly upon no class of men whatever do the duties of jurymen fall so heavily, or are more incompatible with their profession.
A Dutch Steam Line-a line of steamships will soon be running between Holland and the United States. A new steamer, the

to New York

A new kind of Coal in Australia-It is stated that Z Williams, one of the English Chartists who was banished to Australia, has diseovered a bed of yellow colored coal in that country, which burns as freely as the best bituminous kinds. In all likelihood this will turn out to be a bituminous shale, and may be as valuable as any cannel coal. The discovery was made by accident.
The Centrifugal Pump for Suneen Ves-sels.-J. S. Gwynne, of this city, has offered to raise the hull of the burned ship Jose ph Walker, and place it on the dry dock for $\$ 5000$. He offers good security for the performance of the work. The hull of this ship has occupied a berth for eighteen months, and has cost, we suppose, as much as $\$ 20,000$ in efforts to raise it , all of which have failed of success. Mr. Gwynne has confidence in the power of his rotary pump to do the job easily, by enclosing the outside of the hull with canvas, and then pumping out the water. His proposition is good; why not give him a trial?
Beware of Eating Dried Apples-Dr.F. Meigs describes a fatal case of cholera in the last number of the Philadelphia Medical Examiner, caused by eating one piece of a dried apple. The subject was a female somewhat delicate, but afflicted with no organic disease. Dr. Meigs speaks forcibly against eating even a small piece of such fruit. The period from the time of eating the piece of dried apple until death ensued, was not 24 hours.
Light-Houses on Lake Superior-The Lake Superior Journal of 23 rd ult., states, that on the 19th the schooner Fanny and Floy passed through the Sault Canal. having on board the superintendent, fifty men, and a full cargo of lumber, sash, glass, \&'c., all materials necessary for furnishing seven light houses. The following will be the locations of the light houses:-Round Island Iroquois, Grand Island, Rock Harbor, Eagle River, La Pointe and Portage River.
[The vicinity of this lake is fast growing up into a Superior region.
Blagkberry Diarrhga Cordial-The following is said to be not only an excellent and pleasant beverage, but a cure for diarrhea, \&c: Recipe-To half a bushel of blackberries, well mashed, add 4 lb . of allspice, 2 ounces cinnamon, 3 ounces cloves. Pulverize well, mix, and boil slowly until properly done. Then strain or squeeze the juice through homespun or flannel, and add to each pint of the juice one pound of loa, sugar. Boil again for some time ; take it off, and while cooling add half a gallon of best cognac brandy. Dose-for an adult, half a gill; for a child, a teaspoonful or more, according to age.
As the blackberry season is at hand, this cordial should not be neglected to be made by every family. It is simple, good, and easily made.

TelegraphLines on Railiroads.
Having long thought of an improvement in the construction of telegraphic lines in connection with railways, but having never seen or heard of its being adopted, I beg to offer a few remarks upon it. My plan would consist in stringing wire, (insulated, and covering it with the rails, as the rails on the Grand Trunk Railmay are concave or hollow under, when laid, which would readily admit of such a plan, and it would be much cheaper, more durable, and would look better than lines built on the ordinary plan, for a much smaller wire would answer the purpose, and would save expense of poles, insulators and repairs, as it would never get out of order, and rain would have no effect, as it has on lines now in use. I hope to hear of this improvement being generally adopted, if found practicable.
Morrisburg Canada West, July $1,1855$.
A mowing machine trial took place at Dedham, Masss., on the 26th ult. The Judges

Scrience ant Art.

The Art of Dyeing.-No. 29.

Black Color-Black has been, by philosophers, denied to be a color, but it deserves to be called a color as well as brown. It is produced by the combination in excess of the three rays, red, blue, and yellow. To say that it is no color because it does not reflect light, is just as correct a piece of reasoning as to say "it is not light itself." Every thing that we can distinguish by a quality of sight like a black piece of goods, independent of its form, may very correctly be called its color, as an artificial optical distinction.
Black Color on Woolen Goods-A black color can be produced on woolen goods by dyeing yellow, red, and blue-ihe one on the top of another. Take five pounds of woolen goods, and dye them a deep yellow, by boiling them in the liquor of 2 lbs . of quercitron bark, and a pint of the spirits of tin (chloride of tin) in the boiler ; this will dye a good yellow color. Take them out of this liquor, and dye them a deep red on the top of the yellow, by adding seven ounces of ground cochineal, 10 of cream of tartar, and half a pint of the chloride of tin to the liquor in the boiler. The goods are boiled in this for one hour, when they will be found a deep scarlet color. They are then lifted out of the boiler and washed thoroughly in cold water, and at last run through a tub of milkwarm water containing a little urine. They are then washed again in cold water, and are fit to be finished in the boiler. This is done by simply boiling them in a clear liquor containing good sulphate of indigo, which on white goods dyes a blue color, but will, when dyed upon the top of this scarlet-colored goods, produce a beautiful black. This color is too expensive to dye for common use; the method is merely given to show how a black can be dyed by using the very dye stuffs and processes for dyeing the three primary colors-red, blue and yellow. It is scarcely possible to give the exact quantity of the sulphate of indigo to produce the effect stated, but about one ounce to the pound of goods, if good in quality, is sufficient.
This receipt is very useful for the jobbing dyer, but not to the carpet or cloth dyer in the manufactory. When the jobbing dyer receives a red woolen shawl, or piece of red cloth to dye black, he can easily do this, by simply boiling it in a kettle with some sulphate of indigo. He can thus color such articles a good black, while he would utterly fail to do so by any other process. He may also dye old spirit claret colored dresses a good black in the same manner-simply boiling them in a solution of sulphate of indigo. Deep purple can be treated in the same way, and with the same results, only a little fustic or quercitron bark liquor should be added to that of the chemic (sulphate of indigo).
Iron Black.-For ten pounds of woolen goods, boil them for one hour in thirty ounces of copperas and ten of the sulphate of copper, with three pounds of fustic liquor. They are then taken out, aired and dripped. The kettle is then clearad out, and the liquor of five pounds of good logwood introduced into it, and the goods entered when boiling. They are kept boiling in this for one hour and a half, when they should be a full black color. If they have a slaty appearance, they require more \log wood; if they have a full brown rusty appearance, it is a sign they have received too much logwood. By running them through a sour of very dilute sulphuric acid, some of the logwood will be stripped off, and the color will assume a clear good shade. Goods intended to be fulled with soap are dyed very full in color, as the fulling strips off some of fashioned way of dyeing black, was to boil the goods in a very strong logwood liquor first, and in the copperas liquor last. By giving the stuffs two or more dips, the color is rendered more durable. The fustic is employed to throw the color on the jet shade If this be left out of the batb, the color wil
various colors, such as greens, drabs and
browns, may be dyed a good black by this $\begin{aligned} & \text { suds; after this } \\ & \text { rinsings in water. }\end{aligned}$
process. Farmer's wives may dye their own \quad By adding about one ounce of tartar to the stockings, \&c., a good black by the method pound of goods, in the preparation or mordescribed. They must boil them well-not dant, and rinsing them in two cold waters less than an hour-in both the copperas or after they have been boiled in the mordantmordant, and the logwood liquors. To pre- leaving out the fustic-and then dyeing, as
vent them crocking off, they must wash them
has been described, with the \log ood, a beauvent them crocking off, they must wash them has been described, with the logwood, a beauwell, and that in a strong solution of soap tiful blue black will be the result.

BOOT CRIMPING MACHINE.

The annexed engravings represen't an improvement in machines for crimping boots, for which a patent was granted to Hosea B. Horton, of Northville, Michigan, on the first
of May last. The distinguishing feature of this improve ment is the introduction of an adjustable wire which the wet-leather is more effectually com pressed, particularly when it is of varied thickness; this machine performing the action of the hand hammer, of peueing, spreading or stretching the leather in those thin places to take out the wrinkles in them. In 1846, this was attempted by the employment of jaws, by H. S. Davis, these jaws having rigid projecting teeth or scrapers; but these passed over thin places, and did not remove all the wrinkles. The movable or adjustable wire in this machine may be readily projected beyond the face of the jaw at any point found
necessary to effect the desired ohject. A necessary to effect the desired ohject. A
second new feature in this machine is the arrangement and combination \downarrow the clamp or holder of the leather, when crimping, that the stretch of it shall be maintained by set screws passing through the clamp, ne perating against the edge of the crimp, forming a mold, thus preserving the crimpon it; when the "former," with the crimped leather on it, is removed from the machine, for the recep tion of another crimp and "former."
Fig. 1 is a side elevation, and fig. 2 a cross section. A A are uprights of a metal frame secured to the floor by flanges, which form ways for the jaws, B B, to slide on in the ver tical movement thereof. The uprights, A form an arched frame at the top. The jaws
an move thereon, and can separate slightly from one another. CC is an elliptic spring; one end embraces the jaws, and the other is connected with the lever, D, by which the jaws are made to slide up and down, and to "slick" over the wet leather. This spring serves as a pitman and means of compressing the jaws towards each other, the grasp being regulated by the screw bolt, E, passing from plate to plate of the spring. F is the crimporm or mold, which is placed between th uprights, aud sustained in place by the an gles of the frame, and a thin cross girt, 0 , be low it. This girt also serves as a guide to the jaws, keeping them slightly open. G is an angularly formed metal clamp, conforming in degree with the back edge of the crimp form to which it is applied. It is tapped to receive the screw, H. II are clamps, which being placed over the edge of the angleclamp, with the leather on each side thereof between I and G; on being slightly driven with a hammer, the leather is locked to the clamp; the center clamp is placed on the angle of G, through which the saw, H, passes. K is a turn wheel, the stem of which passes through the arch of the frame, and has an open link, a, through which a pin is inserted. When the screw, H , is to be turned, on the removing of the pin, a, the crimp-form may be detached. $b b$, fig. 2, show a cros section of the wires laid in the grooves nea the edge of the jaws. $d d$ are set screws tap ped in the thickness of the jaws, the ends of which project or force out the wires as may be desired, when turned, so as to bring the pressure of the $\mathrm{j} \neq \mathrm{ws}$ upon those thin places of the leather, which would escape the crimp
conform to the inequalities of the leather ope rated. A piece of wet leather having been laid across the jaws, the lever, D, forces them upon the crimp-form, F; and by the repeated sliding up and down of them, it is smoothed, and assumes the proper crimped form. Should any thin places be noticed in the leather, with the wrinkles not perfcctly taken out, the nearest set screw, d, is turned, and the wire, b, is made to project beyond the face of the jaw; this is all that is necessary. Having forced the edges of the leather above the crimp-form, and on to the angle iron, G, the clamps II are driven oyer. In turning the stem, K, with one hand, and with it the screw, H-the jaws being moved by the other hand-the screw, II, presses against the crimp-form, and draws the leather tight on it, thus completing the operation. The inventor states that one hundred pairs of boots can be crimped on this machine in a day.
More information may be obtained by letter addressed to Mr. Horton.

Fleas, Bed-bugs,

A writer in the Gardener's Chronicle recommends the use of oil of wormwood to keep off the insects above named. Put a few drops on a handkerchief or a piece of folded muslin, and put in the bed haunted by the enemy. Neither of these tribes can bear wormwood, and the hint is especially commended to travelers who are liable to fall among the topers of blood.
[This receipt can easily be tried. We do not endorse it. Cleanliness is the best specific for the above pests of the human family. Still there are so many houses where they are naturally so numerous that this receipt may be very useful to many persons. Corrosive sublimate dissolved and mixed with turpentine and a solution of common salt, is a good specific for bed bugs.

Inventors, and Manufacturers THE SCIENTIFIC AMERICAN. ELEVENTH YEAR.
The Eleventh Volume or the Sorbstifio Amgitian ox meuces September 16th next. It is an ILLUSTRAT-
ED PERIODICAL, devoted chiefly to the promulgation of information relating to the various Mechanic and Chemic Arts, Industrial Manufactures, Agriculture, Patents, Inventions, Engineering, Millwork, and all inter-
ests which thelight of PRACTICAL SCIENCE is calcusts which the lig
lated to advance.
Its generalcontents embrace noticesof the LATEST AND BEST SCIENTIFIC, MECHANIOAL, UHEMICAL, AND AGRICULTURAL DISCOVERIES, -with Editorial comments explaining their application ; actures ; PRACTICAL HINTS on Machinery: information as to STEAM, and all processes to which it is applicable; also Mining, Millwrighting, Dyeing, and all arts involving CHEMICAL SCIENCE; Engineering, ANDA : Proceedings of Scientific Bodies; Accounts of Exhibitions,-together with news and information upon THOUSANDS OF OTHER SUBJECTS. Reports of U. S. PATENTS granted are also pablished very week, including Orfioral Copies of all the PAentific American in \triangle DVANOE of ALL otirr Papkrg. The Contributors to the Scientific American are among the MOST EMINENT scientific and practical men of the times. The Editorial Department is univer-
gally acknowledged to be conducted with GREAT ABLL ITY, and to be distinguished, not only for the excellence and truthfulness of its discussions, but for the fearless ness winh wich ofrorib combled and ror exploded.
Mechanics, Inventors, Engineers, Ohemists, Mana-
acturers, Agriculturists, and PEOPLE IN EVERY PRO
 oo be of great value in their respective callings. Its counsels and suggestions will save them HUNDREDS
OF DOLLARS annually, besides affording them a tinual source of knowledge, the experience of which is beyond pecuniary estimate.
The SCIENTIFIC AMERICAN is published once a week: every number contains eight large quarto pages. orming annually a complete and splendid volume, il.
Lustrated with SEVERAL HUNDRED ORIGINAL EN. Gravings.

TERMS! TERMS!! TERMS One Copy, for One Year
8ix Months
Pive copies.
Ten Copies for Six Months Monthe

> Pive copies. for Six Months
Ten Oopies
Ton Six Mix Months

Southern, Western, and Canada. Mones taken at par
for Subscriptions, or Post Office Stamps taken at their
Tor Subscriptions, or Post once stamps taken at the
par value. Letters should be directed (post-paid) to par value. Letters should be directed (post-paid) to
MUNN $\& 00$

