THE ADVOCATE OF INDUSTRY, AND JOURNAL OF SCIENTIFIC, MECHANICAL AND OTHER IMPROVEMENTS.

VOLUME IX.]

NEW-YORK JUNE 24, 1854.
INUMBER 41.

SOIENTIFIC AMERIOAN,
pubuished wirrly.
At 128 Fulton street, N. Y. (Sun Buildinge.) by munn co.

 8. G. Courtenay Charlestan
H. T. YLor. Baltimore, Ma.
W. Pease, Cincinnati. 0 Responsible Agents may also be found in
cipal cities and towni in the United States. cipal cities and towns in the United States.
rerkms- \mathbf{a} a-vear :- $\$ 1$ in advance and der in six months.
"Your Paper did not come, Sir." We recommend a careful perusal of the following plain statement, both to post-masters and to subscribers, it is from a paper called "The Advance," published at Hernando, Miss. :
"The uncertain arrival, or uncertain delivery of papers at country Post Offices, is often the ground of complaint against publishers and editors. Many of the offices are poorly supplied with conveniences for taking care of papers, no matter with what certainty they arrive. The papers are jumbled into a few little pigeon holes, or piled upon a desk, box, or barrel, to a wait the call of subscribers-in the midst of boots, hats, bridles, horse collars, and other coarse wares, which may be called for during the day by customers. Country Postmasters, in most cases, being engaged in some mercantile business, many newspapers find their way into some obscure corner, where they are hid for a time from human eyes, as completely as if buried in a mountain cave. In comes the man for his paper, and as it can't be found, of course it didn't come. The indignant subscriber consequently abuses the rascally editor, and, perhaps, calls for pen, ink, and paper, to write a letter of complaint about not sending his paper punctually, when, if the said paper were endowed with speech, it would cry out ' here I am, squeezed to death behind this box, or under this barrel.' We have seen just such things at many country Post Offices elsewhere as in this country. These remarks have no reference to any particular office, but are meant for all where they will apply."
The People's College.

We understand that the prospects for the establishment of this Institution, in this State, are cheering. More than $\$ 50,000$ are now promised by its friends, and it only requires that amount to be paid into the Treasury to locate and commence operations. Geo. H. Stebbins, No. 348 Broadway, has been appointed its local agent in this city. The objects of the originators of this college are good. It is designed to instruct students for practical life, in the workshop and on the farm. The President of the Association is D. C. McCallum, Superintendent of the N. Y. and Erie Railroad-an able and upright man-a friend of education, of moral and scientific progress.

Not all Gold that Glitters.

A curious trial recently took place in London, between parties somewhat conspicuous in the world, being no other than Mr. Wyld, who constructed the monster globe, and had it on exhibition, in 1851, and Mr. Calvert, the great gold discoverer. The affair seems to have been very discreditable to both parties. Wyld was to pay Calvert so much for giving his name as being the owner of a great number of large and small nuggets of gold, which were exhibited in the inside of the globe. These nuggets were lead electro-gilded with gold, consequently those who admired such fine specimens as the produce of Australian and British gold mines were greatly dcceived.

The annexed figures represent an improve- column is bored out to receive the solid piston, ment in Slotting Machines for cutting key D, which fits easily therein, and forms the tool ways in the hubs of wheels, pulleys, and such stock. The tool stock is attached by a conarticles as are required to be keyed on shafts, necting rod, E, to a stud, a, on the face of the or for slotting operations of a similar nature. spur wheel, F, on a shaft, G, which rests in A patent was granted for the improvements to bearings on the standards which support the Parley Williams, 2nd, of Barre, Mass., on the table. The spur-wheel, F, gears with a small 2nd of last month, (May 1854.) Figure 1 is a er spur-wheel, H, on a shaft, I, which is supvertical section of the machine; figure 2 is a ported in bearings above the shaft, G, and is top view of the column containing the tool and the driving shaft of the machine. The drivfeeding devices, and figure 3 is a front view of ing shaft communicates motion to the shaft, G , the top part of the tool stock and the lower by the gearing and stud, a, forming the equivpart of the tool-showing the means of attach- alent of a crank gives a vertisal reciprocating ment. The same letters of reference indicate motion to the tool stock. The tool, J, is atlike parts on all the three figures.
A is a table supported upon standards, B B, button, b, at the bottom, which slides into a and carrying an upright column, C, which is slot, c, in the top of the tool stock. This slot firmly secured to it. The lower part of this for about half way across from the front of the
stock has a narrow mouth, e, which prevents the knob or button, b, being withdrawn upwards, but the other half has its mouth wide, so that it will allow the button to pass up, and the tool to be taken out. This method of attaching the tool allows it to move back and forth horizontally in the machine far enough for the purpose of feeding it to its work, and allows it to be easily taken from the machine when necessary, by simply sliding the knob or button, b, back to the wide mouthed part of the slot, c. As the tool is intended to cut downw ards, it is made of a hook ${ }^{2}$ d form. The cutting edge is made of the full width of the in tended slot, so that it will cut the whole width at once. The length of the tool is such that at the lowest point in its stroke, the cutting edge is just below the top of the column, A. The tool has a spring, l, in front, a short distance below the cutting edge. The column has a slot, k, inside, for the tool to work in. The upper part of the column receives an adjust able cylindrical mandrel, K, which is secured in place by a binding screw, f, and protrudes some distance above the top of the column. The front side of this mandrel has a slot, g, along its whole length, in which the tool works, and at the back of this slot it is cut away to receive a wedge, h, which bears against the back of the tool with its point downwards. This wedge has a lug, i, on one side of its head, in which is a left screw to re ceive an upright right screw, j, whose point rests upon the top of the mandrel.
The wheel or other article requiring a slot cut in it is placed ρ ver the mandrel, K, which must be smaller than its bore, and is supported on the top of the column. It is keyed fast to the mandrel by a key, L, at the back, so as to draw it close to the front of the mandrel where the tool works. A wheel is represented in figures 1 and 2 , (dotted lines in the latter) in place for being operated upon. The action of the wedge, h, when not supported by the screw, j, is to descend by its own weight, and feed the tool forward towards its work. The descent of the wedge is regulated by the screw, j, which supports it during the time the tool is cutting and prevents any further feed taking place after the cut has commenced. Every time the tool ascends the screw requires to be turned by hand in such a direction as to allow the wedge to fall far enough for the feed. The spring, l, in front of the tool rests against the face of the bore, or against the face of that part of the slot which may have been already cut, and forces the tool into close contact with the wedge and prevents it overloading itself.
The reason for making the mandrel, K, de tached and adjustable is, that mandrels of different sizes may be used to suit the hubs of different bores. The mandrel should only be so much smaller than the bore as is necessary to introduce the key, L, by which the hub is se cured to it.
With this machine Mr. Williams has cut a slot 61.2 inches long, by 9.16 inch wide, and 5.16 inch deep in a cast-iron hub in the short pace of five seconds-quick work.
More information may be obtained of the paentee by letter addressed to him at his place f residence mentioned above.

Submarine Explosive Shells.

We perceive by our foreign exchanges, that Capt. Norton, of Cork, Ireland, is astonishing he scientific men of that city with a new sub marine mortar. It is dropped by hand into the water, and requires no electric battery to ignite the charge. It seems to be a very handy ignite the charge. It se
and destructive missile.

Flax Industry.-No. 10.
The total value of the linen thread and cloth exported from Ireland during the thirty years preceding the year 1740 , was $£ 417,600$ sterling; during the thirty years succeeding 1748, the amount increased to $£ 1,228,148$ sterling. The whole of this production was taken for the English home market, with few exceptions.
The following table shows the amount of Irish linens exported from 1800 to 1826 inclusive:
1801 1801 1805
1809 1809
1813 1817 1821 1826
Of this amount about one-tenth part was exported to countries other than Great Britain. Independently of cloth, Ireland also exported a considerable amount of thread, and with Germany contributed the principal supplies to the English and Scotch manufactories. The above table showing the exportations of Irish linens, shows also that up to 1826 , hand weaving and spinning had been able to sustain "itself against the mechanical processes which were being introduced into England and Scotland as early as 1802. After 1826 the hand labor of Ireland rapidly gave way before the progress of mechanical improvement, and as we have shown the culture of flax for a time was also neglected. Although mechanical spinning has been in successful operation in Ireland since 1827, there were as late as 1840 , a large number of persons gaining a livelihood by meansjof hand spinning.
by me 1828 han spinning.
In 1828 the first factory for the spinning of flax was established at Belfast. In 1841 the number of mills in operation, had increased to forty-one, containing 280,000 spindles ; in 1852 upwards of eighty mills, containing 480,000 spindles were in full employment, the whole exhibiting an increase of a particular manufacturing industry rarely equalled. These mills represented a capital of more than $\$ 25,000,000$, and taken in connection with the weaving and and taken in connection with the weaving and
bleaching department, give employment to upbleaching department, give employment to up
wards of 200,000 persons, disbursing also in wards of 200,000 persons, disbursing also in
wages between five and six millions of dollars. wages between five and six millions of dollars.
The goods manufactured at Belfast find their market principally in the United States, Spain, and Mexico. During the period referred to, the city of Belfast has enjoyed a most unexampled prosperity and its progress in population has been of late years in a more rapid ratio than any city on the British Empire, London alone excepted. Belfast has also expended, without any Government aid, $\$ 2,500,000$, on the improvement of its harbor ; $\$ 1,200,000$ on municipal improvements, and $\$ 15,000,000$ on railroads and canals.
But the flax industry in Ireland is by no means confined to Belfast. Flax spinning factories are to be found in twelve counties of Ireland, bleach-greens throughout the whole of Ulster, and weaving in every parish of that province, and Drogheda, Cork, Galway, and Westport. New spinning and weaving establishments are now being erected on an extensive scale on the banks of the Shannon, the Boyne, the Liffey, and the Erne. And the cultivation of flax, which six years ago was only 53,000 acres, and was confined principally to Ulster, was in 1853 estimated at 176,000 acres, with a crop valued at $\$ 11,000,000$.
The Report of the Inspectors of Factories, gives the number of spindles employed in the spinning of flax throughout Great Britain during the year 1851 as $1,060,693$, distributed as follows: England, 265,560; Scotland, 303,125 ; Ireland 500,000 .
The estimate at the present time is probably as follows: England, 300,000; Scotland between 4 and 500,000; Ireland, 600,000 .
The number of acres of land under cultivation with flax in Ireland increased from 1848 to 1853, as follows:-

1853, as follows :-			
1848	53,868	1851	138,619
1849	60,314	1852	136,090
1850	91,040	1853	176,000

manufacture, and is one of the principal seats of the flax industry in Scotland. The goods manufactured are principally coarse linens, burlaps, canvas, crash, \&c., \&c. Within a circle of ten miles there about sixty spinning mills and factories employed in the production of this class of goods. Some of these establishments are of great extent, having 8,000 or 10,000 spindles, and, perhaps, 500 looms, continually at work. One of them has under pay over 1,000 hands. There is probably no place in the world where more flax and hemp is bought and sold than there is here. Some seasons more than $\$ 15,000,000$ worth of manufactured goods have been sent from this place.
Much of the coarse bagging and canvas is wove by hand. In this branch of the business probably 16,000 persons are employed, and their condition is sad enough to excite compassion in the breast of the most callous observer. The weekly pay of the weaver is, on an average, about $\$ 1,75$. By working long hours, a man may sometimes earn more than that; but for every one that earns $\$ 2,50$ for a week's work, there is another who gets only $\$ 1,12$ for the same.
The town of Dundee is also celebrated for its linen manufactures, and in the importance and extent of its fabrications exceeds Glasgow. In 1745 this place imported flax to the amount of $160,000 \mathrm{lbs}$; fifty years later, its importance had increased to $550,000 \mathrm{lbs}$., and its exports of cloth were between 6 and $7,000,000$ yards. In 1837 this town imported flax to the amount of $70,000,000 \mathrm{lbs}$., and 7 to $8,000,000 \mathrm{lbs}$. of of $70,000,000 \mathrm{lbs}$., and 7 to $8,000,000 \mathrm{lbs}$. of
hemp. The number of pieces of cloth of all qualities manufactured during the same year was 640,000 .
The progress of mechanical spinning in England can be illustrated to some extent by a table showing the decrease in the importations foreign thread, from the year 1827 to 1838 as sho
In 1827 the amount of linen thread imported by the English manufacturers was $3,782,353$ by the
los.
1828
1828 " $3,429,104 \quad 1834$ " $1,624,448$ $\begin{array}{llll}3,320,240 & 1835 & \text { " } & 1,378,183\end{array}$ 2,151,632 1836 " 589,526 $\begin{array}{llll}1,943,424 & 1837 & \text { " } & 416,320\end{array}$ 1833 " $1,564,460$

356,272

The first importation of English linen yarn was made into France in 1825, but the importation did not attain to any considerable figure until 1830 The importation of cloth did not acquire any importance until 1836. The following table exhibits the importations of cloth and yarn from England to France for the years 1830 to 1842 inclusive:
fears
1830
1830
1831
1831
1832
1833 1834
1835 1835
1836 1837 1837
1838 1838
1839 1839 1840 1841
1842
yarn lbs.
6,707 "
39,064 "
112,756 "
846,766 "
1,662,878 "
2,690,186 "
3,802,148 "
6,399,834 "
0,590,484 "
0,590,484 "
2,435,542 "
$2,420,200$ " 8,491,400 "

On the Production of Butter

The production of butter is nearly the same verywhere, and yet how different is the quality of that made in onefarmer's family from that made in another's. It is the attention which is paid to the minute parts of the process-by some denominated trifles-which gives the great superiority to one parcel of butter over another. Cleanliness, attention, and labor, are the requisite qualifications for producing
good butter everywhere, with proper dairy utensils and accommodations. Having received some letters recently, making inquiries respecting the best methods of preparing butter for selling next winter, we have taken the present opportunity to collect information from various sources on the subject. In London the butter from Dorsetshire holds about the
are milked twice a-day in summer-in the ands. The milk is passed through a sieve and then set to cool in milk-leads. In some counties glass-ware or stone coolers are used but a Dorsetshire family will use nothing but leads. In these the milk is allowed to stand for a period varying from 12 to 36 hours Usually, after standing for 24 hours it is skim med, and the cream is collected in tin vessel until sufficient to form a "churning" has accu mulated. In very large dairies in the sum mer season, butter is made every day; and it may be set down as a general rule that the quicker cream is converted into butter, the sweeter and better is the butter. It should not be allowed to remain longer than three days under any circumstances. The churn having been prepared by rinsing with hot water in winter, and with cold water in summer, th cream is agitated until a complete separation o the fatty matter from the milky fluid has bee effected. The butter having "come," it is taken out and well washed. It is then worked with the hand until the buttermilk is thorough ly expressed, and the air-bubbles are broken. A portion of salt is mixed with about each hal dozen pounds; the manipulation is resumed the lump undergoes a second washing, which carries off the surplus salt; and it is finally made up into rolls for the home-market, or with an additional salti g, is packed in clean ubs for the London market.
There is an objection to the lead coolers, for if the milk sours it acts upon the metal, and by taking up a portion of it, a poisonous ingre dient becomes mixed with the butter. Th quantity may be very minute, but no matte for that, it is still a deleterious agent.
The production of butter by churning is both chemical and mechanical process. Milk, according to the analysis of Henri and Chevalie is composed as follows:-
Casein, pure curd
Butter
Milk sugar
Sater
$4 \cdot 48$

Water
$100 \cdot 0$
By the mechanical operation of the churn and envelopes of the globules of fat are broken, the chegioles brought into cohesion. By he chemical process the sugar of milk is converted into lactic acid, and the bulk of the fluid,
which was put sweet into the churn, is instantly soured. The best temperature for obtaining these results has been found by experience to be 60° Fah. To attain this temperature the dairymaid rinses her churn in summer with cold water, lest the butter come too quickly, and be flaccid and pale, and in winter with warm wa ter, lest it come not at all.
The primal condition of excellence in buttermaking is purity. Milk is in the highest de gree susceptible of taint. Milk in the udder may be poisoned by the cow eating improper food. "Milk," says Dr. Taylor in his work on Poisons, "is rendered bitter when the cow feeds on wormwood, and the leaves of the artichoke. Its taste is affected by the cabbage, the carrot, and all strong-smelling plants, and the effects extend to butter and cheese, and all articles of food prepared with milk." Milk may even be poisoned without the cow being affected. With so sensitive a fluid, therefore the utmost care is required, not simply a regards the milk itself, but also the food which the cow eats and the water it drinks. If milk is so liable to be affected that it may be the medium of conveying poison through the cow it follows that the quality of butter very materially depends upon the quality of the wate hich the cow drinks.
The dairy-vessels must be scrupulously clean; they and the dairy itself must be removed from everything that taints the air. If the coolers be made of zinc, a very serious effec indeed may be produced. "It is probable," says Dr. Taylor, " that some of the lactate o zinc is here formed. Milk and cream which were allowed to stand in such vessels hav given rise to nausea and vomiting." From th time when its elements are first formed from the succulent grass of the field, until the tim when it appears on the breakfast-table, butte
leads, (so to speak) a most precarious existence and its preservation depends almost entirely on trifling, but constant attentions.
The dairy house should be a cool, clean, airy place. Good butter cannot be made if fies, dust, \&c., are allowed to get into either the milk or cream. When the butter is made in the churn, and removed from the churn to the basin for working it for market, great care should be exercised to keep it cool. The waer for washing it should be crystal pure, and about 48° of temperature. Nothing but the best of salt should be used in salting, and one ounce of ground white sugar should be mixed with every two pounds. Sugar is a good preservative, and it tends to remove any bitterness of taste in the butter. Butter should always be packed in air-tight vessels. Any but ter will keep well if it is clean, freed from milk particles, and well salted and tight-packed.
The quality of butter and the quantity of milk depend less on the breed than on the food of the animal. It is almost impossible to assign to any particular breed the milching palm-it belongs to the individual animal.
The Guernsey cow, a small animal, has long been famous for its good quality of butter, but perhaps this depends more upon the pasture of that Island, than the quality of the animal. Good natural grasses are the most economical and best summer food for cows.

[For the Scientific American.)

 frects of Mooulight on Fish

 frects of Mooulight on Fish}In the "Scientific American," page 186, the question is mooted whether the putrefaction of fish and meat exposed to moonlight, is more rapid than at any other time. That moonlight affects fish is not only a traditionary belief, but s a positive fact, which can easily be ascer tained by those who have doubts upon the subect. I have known it to be so for more than forty years. I recollect of an instance where a person purchased newly-caught fish at the fishing station, and threw them floundering in to his wagon, without taking the precaution to cover them from the moon's rays of that night. He lived a distance in the country, which required about five hours to reach, and he thought; as the journey was to be made in the cool of the night, all would be well, but he was greatly surprised when he arrived at home at daylight, to find the most of his fish so green and putrid that they had to be thrown away. Why was this? Such an effect would not have been produced upon fish on a moonless night, nor even by exposure to the sun's rays for the same period. All old housekeepers are careful not to expose fresh fish or meat to moonlight. It is also generally believed that it is dangerous to sleep exposed to the moon' rays. These precautions and traditionary opinions had their origin in facts, which I have abserved on both land and water. The great hing in mooted questions in natural philosophy, is first to discover and arrange facts ; bu in accounting for them, there may be a variety of opinions, until some new fact is discovered which settles all the disputed points. G.V. Troy, N. Y.

Uniting Wrought and Cast Iron.
Filings of soft cast iron are melted with calcined borax, the mass pulverized and sprinkled on the parts to be united. They are then separately heated and welded together on an anvil by gentle blows.

Strawberries.

This fine fruit is very plentiful in our mar kets at present. We think they are finer in favor and larger in size this year, than we ver saw them. Whether this is owing to favorable season, or improvements in their cultivation, we are unable to tell.
A convention of farmers is to be held in July at Warrenton, Va., on the subject of the joint worm. The exchange from which we clip the oregoing, calls it "A Joint Worm Conven. tion."
The gieatest breadth of the River Nile is 2000 feet, or about a third of a mile. Its cur-
M.

diflet Imbentions.

Smoke-Consuming Stoves.
An improvement in smoke consuming stoves has been made by E. A. Hill, of Joliet, Ill., who has taken measures to obtain a patent for the same. The fire box of the stove is divided into two compartments, each having a separate smoke pipe, and both fire places so connected together that the smoke from one can be thrown over the surface of the other fire alternately by a damper, so that the products of the combustion of both fires pass up the same pipe. For burning bituminous coal, the improvement appears to be an excellent one; for it is designed that one of the fires shall always be full, red, and glowing when the other is supplied with fresh fuel, so that the black smoke (carbonic oxyd) which arises when new coals are put on, shall be carried over the top of the glowing fire, and mixed with a portion of fresh heated air, by which means it will ig-nite-flame up-and be consumed; in other words, form carbonic acid. This stove will not only consume the smoke, but save considerable fuel. The fire-box being divided into two compartments is a good idea, and is one which we have brought before our readers, as something which promised to be convenient and beneficial. Its application by Mr. Hill is new, ingenious and useful.

Cut-Off for Steam Engines
Oliver Cope and W. S. Bracken, of Salineville, Ohio, have taken measures to secure a patent for a new mode of operating the cut-off to govern the speed of an engine. The invention consists in fitting the cut-off eccentric or cam, to turn freely on its shaft, and so connecting it with a governor of any known construction, that the latter will always bring it to the required position relatively to the engine, to cut off the steam at such a point in the stroke of the piston, as will give the desired speed to the engine, and any tendency of the engine to runfaster or slower will cause the governor to move the eccentric on its shaft, either in advance or in rear of the said position, and thus cause the cut-off to act earlier or later in the stroke of the piston, as may be required.

Improvement in Looms.
William Henley, of New Salem, N. C., has taken measures to obtain a patent for improvements in looms, which are applicable to those operated by hand or power, but they have been made principally with a view to their application to hand looms. One improvement consists in a certain means of throwing the shuttle, and the other improvement relates to operating the harness, both of which derive motion from the lay, so that the swinging of the latter sets the whole of the loom in motion,-in other words, by swinging the lay, all the working parts of the loom are moved. In common looms, the shuttle, the lay, and the harness are operated by three distinct and separate movements.

Flax Breaker.
An improvement has been made in machine ry for breaking flax, by John Hinde, ofSchenectady, N. Y. It consists in passing the flax hemp between a ribbed or fluted endless apron and a series of fluted rollers, which have a rolling motion over its surface. The action of this sheet or apron and the rollers is intended to resemble the action of the human fingers in rubbing and divesting the material of its boon or woody substance. Measures have been taken to secure a patent.

Fountain Brush.
An improvement has been made in self-supplying brushes, by J. B. Wentworth, of Lynn, Mass., who has made application for a patent The nature of the improvement consists: lit In placing a brush at the end of a tube and filling the tube with the necessary marking or painting fluid, and regulating the supply to the brush by a valve. 2nd. In placing the brush within a socket provided with a strainer, for the purpose of preventing the brush becoming clogged and filling up with impurities.

SCYTHE SNATH FASTENINGS.

The annexed engravings are views of an side view of the snath plate, on which the mprovement in fastening scythe snaths, by scythe matches. The same letters refer to like John Boley, of Baldwinsville, N. Y., and which parts.
was noticed in No. 40, this Vol. "Sci. Am." A is the main shank of the snath; B is a Figure 1 is a view of the scythe secured to metal plate secured on it; it is formed with an the snath. Figure 2 is an enlarged section oblong slot through its center, and with prothrough the middle of one of the nibs or jections or teeth, a and $e e e$, to fit into the rehandles of the shank. Figure 3 is an inside cesses, a^{\prime} and $f f f$, on the circular plate, C , view of the heel of the scythe. Fig. 4 is an on the heel of the scythe. The scythe is se enlarged view of the heel of the scythe and cured to the snath by placing the recesses, snath fastened together, and figure 5 is an in- $\left.\right|_{\text {e e e and } a^{\prime} \text {, of the plate, C, over the projec }}$

tions or small teeth, e e e and a, on the plate end of the nib shauk. By turning this nut to B, of the snath, and then introducing the screw bolt, D , through the oblong slot, D^{\prime}, and screwing it up firmly. By doing this, the teeth, e, are made to set snugly into the recesses, f, and thus hold the scythe firmly from moving laterally while it is being used. The point of the scythe can be set further in or out by placing the teeth, e, in different recesses, f, there being three of these latter side by side. The
tooth, a, is a pivot. The oblong slot, D^{\prime}, altooth, a, is a pivot. The oblong slot, D^{\prime}, al-
lows of the screw bolt being shifted to suit the variations in hanging the scythe.
In figure 2, H is the ring clasp of the nibe handle, and surrounds the snath shank, A. k is a collar on the lower end of the nib shank G , and j is a collar nut on the top of the collar G , This nut works on the thread of the lower

the right or left, the metal ring, H, is made t clasp the snath shank, and secure the nib a any desired point suitable to the grip of the mower ; that is, by turning, j, to the left, the ing clasp, H , is loosened on the snath shank and the ring, H, can be shifted further up or down, and by turning the said collar nut to the right the ring clasp is secured firmly on the snath shank at any point to which it is shifted. Measures have been taken by Mr. Boley to se cure a patent for the method shown and de scribed, of securing the scythe and snath tother to allow for the hanging of the scythe by the notches and teeth; also for the method of securing the nib or snath handles to the main shank of the snath. More information may be obtained by letter addressed to the inventor
provement in Carpenter's Braces, for which a patent was granted to Charles M. Daboll, of New London, Conn., on the 16th of last month (May, 1854.)
Figure 1 is a side elevation of the brace stock, with a bit inserted in it. Figure 2 is a section of the pad with the shank of a bit inserted in it. Figure 3 is a similar section of the pad broken off, showing the position of the catch and thumb piece, when raised for detaching a bit, and fig. 4 is a top view thereof Similar letters indicate like parts.
The nature of the invention consists in the improved manner of securing and detaching the bit in and from the socket of the brace, by means of the eccentric catch, D, and the inclined side ${ }_{2} b$, of the notch in the shank of the bit, operating in such a manner that any force exerted to withdraw the bit, will bind it tighter in its place without straining said catch, and by which a slight pressure upon the thumb lever, C , combined with the catch, will release its hold upon the bit.
The pad, A , of the brace is provided with a socket, a, of the usual form, to receive the shank, B, of any bit. Near the mouth of said socket, in a suitable recess at one side for its reception, is situated the eccentric catch, D, whose pivot, g, is so located that its holding projection, h, will be raised, by vibrating inward, (as in fig. 3) sufficiently to allow the shank of the bit to be inserted in the socket; and then entering the notch of the shank,
whose side, b, is made inclining or flaring out,
to allow the free insertion and withdrawal of the catch, will, by its eccentric action in vibrating outward, press the shank against the opposite side of the socket and wedge it there with increased firmness whenever any force is exerted to draw the bit out of the socket, as represented in fig. 2. The catch is pressed against the shank of the bit by a spring, f, sit uated in the bottom of the socket and acting upon the thumb lever, C, by which the catch is operated. This thumb lever is sunk into the side of the brace so as to form an even surface therewith, except its button, d, against which the thumb presses for raising the catch and this must project snfficiently to allow the required extent of motion to the lever by being pressed down even with the surface of the brace. The lever vibrates on a pivot, e, nea its center, and its lower end is notched, a shown at c, for the purpose of receiving a spur i, on the catch, D , by which means the said catch is operated and limited in its motion both ways, by the thumb lever. The exterio face of the projection, h, is rounded or beveled off, as represented, so that the shank of the bi will itself raise the catch and enable itself to be inserted without touching the thumb lever. Thus constructed, the entire catch forms a nea piece of workmanship, having no projections outside to mar the appearance or obstruct the motions of the brace, and retains the bit with great firmness and security; while it is made to easily set free the bit, however tightly held since the action of the thumb lever is to lift the binding projection, h, almost directly from the shank of the bit.
Further information respecting this ingenious and useful improvement may be obtained by letter addressed to the patentee.

Spark Arresters.

C. Abos, of New Brunswick, N. J., has obtained a patent for an improvement in spark rresters of locomotives. The object of the mprovement, is to prevent the sparks passing out, by returning them back to the fire-box by peculiar arrangement of the draught-pipe, and a self-opening and closing valve in th central pipe. See claim on another page.

Hydraulic Ram.

Joseph D. West, of the City of New York, has made an improvement in Hydraulic Rams, the nature of which consists in a peculiar arrangement of valves, whereby the Ram is made double-acting, and the use of weighted or spring valves dispensed with-important considerations truly. Measures have been taken to secure a patent.

Dies and Punches.

W. Lormer and L. Siess, of Massillon, Ohio, ave taken measures to secure a patent for an mprovement in dies and punches, for making clinch rings or washers. The nature of the invention consists in a stationary lower die provided with a stationary central pin, and raising and falling bottom in combination with a hollow and falling punch. By this ar angement the metal can be forced into the die nd punched, and the washer finished and disharged with greater ease and facility than by modes heretofore pacticed.

The Largest Boring Machine

A Philadelphia correspondent informs us that a larger boring machine than the one noticed in the "Scientific American," page 299, is in operation in that city, at the Iron Works of Messrs. Morris \& Co. It is capable of bor ing cylinders 16 feet in diameter and 18 feet long. He mentions that the "Ericsson's" large glinders were bored in this machine. We ne ver heard of this before.

Sowing Guatho.
E. Marshall, of Hunterdon, N. J., has made n improvement in apparatus for sowing guano, nd other fertilizers. In a cylindrical hopper here is arranged a series of adjustable blades nd a vibratory brush, by which means the guano is distributed with great regularity.

Patent Case.

A case of Interference in the Patent Office, Barlow vs. Beardslee, on Planing Machines, has been declared against the former.

Scientific gmacrican.
NEW YORK, JUNE 24, 1854.

Iron Bridge

Since the fall of the Wheeling Suspensio Bridge, articles have appeared in a number of our daily papers condemnatory of iron as a material for such structures. Some of these articles evince considerable ability, and in one which appeared in the "Washington Star," signed "Engineer," the question is discussed with good judgment, and scientific knowledge. The conclusion at which the author arrives, with respect to the use of this material for bridges, is, that in the absence of the necessary skill, both in the manufacture of the proper iron, and in the scientific arrangement of the parts of the different kinds of iron, so as to give each the office best suited to its properties, it would seem mgst prudent to build either of stone altogether, or with stone piers and wooden superstructure.
In speaking of those properties of iron which chiefly contribute to its strength and utility, -its elasticity and tenacity, he points out a fact in connection with its elastic quality, to which, too little attention has been paid by engineers, in its use for resisting strains and supporting weights, that is, the difference between its elastio and tensile power. Thus he says, "a weight of $8 \frac{1}{2}$ to 11 tons suspended to the end of a bar of wrought iron, of a square inch section, will overcome its elasticity; while 24 to $26 \frac{1}{2}$ tons similarly suspended, are necessary to overcome its tenacity, or to produce disruption of the bar. Hence we see that the elasticity of the wrought iron may be destroyed, long before disruption would ensue, and long before the ordinary observer would discover that any change had taken place in the bar, or in any structure of wrought iron.' This is true, and will account for a great many accidents connected with iron bridges, steam engines, \&c., which have been pronounced "mysterious."
Metal in a state of rest, although sustaining a heavy pressure and strain, as in a beam or brace, and exhibiting only the deflection due to the superposed weight, will continue to bear that pressure without fracture so long as its rest is not disturbed, and the same strain not too frequently repeated. But by frequent changes of pressure or strain on iron, a certain disturbance of its particles takes place, the metal deteriorates, and suddenly, when not expected, the very same strain or weight which it had of tentimes supported, or resisted, will break it to pieces. Iron of the lowest degree of elasticity, is the easiest broken by frequent deflections, whether caused by concussions, or rolling heavy weights on it.Thus if we take two pieces of iron wire, possessing different elastic powers, the least elastic will break by being bent and rebent sooner than the other piece; but, at the same time, every person is aware of the ease with which any iron wire can be broken by bending and rebending. It soon becomes as brittle at the bending point as a piece of glass. How dif ferent from a piece of whalebone, or india rubber. Here, then, is the very quality which should be looked to in iron for building bridges, as such structures are subject to continual concussions, deflections from heavy rolling bodies, and oscilations, from severe gales of wind.

There can be no doubt, in our opinion, but the breaking down of so many iron bridges in our country, can be traced to the bad quality of iron used in their construction-it did not possess sufficientelasticity.
The deteriorating effects of fatigue on iron, by which it so often fractures suddenly, has been proven by the fall of the iron bridge on the New York and Erie Railroad three years ago, an? a number of other iron bridges in various parts of our country. In view of these facts, we must conclude that iron has not hitherto been safely used for many bridges.
But are wood and stone, not equally with iron, subject to deteriorate, by fatigue, con-
perience has made engineers better acquainted with their application, and thi be ver point to which attention should be especially
directed by engineers in the application of iron, namely, a knowledge of its powers for the purposes to which they wish to apply it. Iron combined with carbon in certain proportionssome kinds of steel-is the most elastic material known to us, and it will maintain this quaity for a long period, and endure more fatigue than any other known substance. All iron is iron, just as all wood is timber; but there are ust as many varieties of the former as of the latter, and yet, how small is the amount of knowledge possessed by the most experienced engineers of the different kinds of iron, in comparison with wood. Let civil and mecha nical engineers look more to the quality of the iron which they use for various purposes, and the community will not be so of teninflicted with painful accidents on sea and land, from the bursting of boilers, the fracturing of the shafts and beams of engines, and the breaking down of iron bridges.

Alcohol without Re-Distillation

Some week's since the announcement was made in the journals of the day, and also in a paper read before the American Association for the Promotion of Science, that a method r ber devised at the Patent O ffice for had been devinal from whisk without di taining pure alcohol fon whisk without dis tillation or heat. The discovery, it was stated was accidental, and in this wise :-"A gentleman had a quantity of whisky in a cask five feet high; on drawing it off, he discovered that the upper part of it was much stronger than that near the bottom. The hint was taken; and now we prepare our alcohol by putting whisky into a tall column, and allowing it time for the heavier parts to subside, and we time for the heavier parts to
At the first thought this may seem to many as a very pretty and useful discovery, but a moment's consideration given to the composition of alcohol, will show its utter and atire fallacy, and at the same time demonstrate its value to be on a par with Paine's wonderful discovery of the carbonization of hydrogen by passing a current of the same through cold spipassing a current of
rits of turpentine.
Anhydrous alcohol consists of four atoms of carbon united to two of oxygen and six of hydrogen, the whole represented by the formula C. ${ }^{0} 0 .{ }^{2}$ H. ${ }^{6}$. Anhydrous alcohol, as such, does not occur naturally, but can only be formed artificially. It exists naturally combined with water, and this combination is always a chemical combination, and not a mechanical one; and we might as well expect that water confined in a long narrow column would separate into its component elements-oxygen and hydrogen, in virtue of their different specific gravities (the former] being eight times heavier than the latter,) and thus allow the hydrogen to be drawn off pure at the top, as to expect water and alcohol would thus arrange themselves. Indeed, such is the affinity of alcohol for water, that no amount of distillation, cooling, or condensation, is sufficient to entirely separate the two bodies, a tenth part of the water always remaining after every distillate. In order to procure it absolutely anhydrous, a body must be presented to it which has a greater affinity for water, and which fixes it so firmly that it cannot evaporate with the alcohol at the boiling point of the latter.
The gentleman who had the quantity of whisky standing in a cask five feet high, undoubtedly found the alcohol, atter a time, stronger at the top than at the bottom, and if he had been better posted in chemistry, would have referred the matter to its true cause rather
than to the ridiculous one of difference in specific gravity. Thus, if a quantity of brandy or alcohol be put into a bladder, and be exposed to a warm temperature, the aqueous portion of the spirit will pass through the membrane in preference to the alcohol, and in this way the spirit will be made stronger.Smugglers who carry spirits about their persons in bladders, are aware of this fact, and their customers also, as they always prefer the of its being stronger than ordinary spirit. This
change which we have dascribed takes place in accordance with the well-known laws of exosmosis, and in the case of the whisky in the barrel, the wood, and particularly the head of the barrel, being the highest portion, played the part of the membrane, and gradually with drew a portion of the water of the whisky. As long as the whisky was kept at rest the strong er portion would naturally float at the top. We think a good thick coat of paint, closing effectually all the pores of the wood, would essential y modify the experiment.

Defective Steamships.

Our army-as well as our navy-seems to be nflicted with government mismanagement in almost all that is done respecting steamships. The sad disaster of the "San Francisco" steam ship, on her first voyage, with U. S. troops, involved other consequences than those of suffering and death at that time. The commanding officer has been dismissed from the army for misconduct on that occasion, and Major Wyse, who since then was ordered to embark with his troops on the "Falcon" steamer, has been court-martialed, and sus steamer, has been court-martialed, and susrefused to embark with his soldiers, because h considered the "Falcon" unseaworthy. It so happened that, the "Falcon" on the very voyage in which Major Wyse refused to go on board, proceeded only about forty hours on her passage, when she was compelled to put in at the nearest port, in distress. This was ow ing to a defect in the valves of her engines The testimony adduced on his trial consisted chiefly of opinions respecting the sea-worthiness of the "Falcon"-the quality of her hul, engines, \&c. Very strong testimony was pre sented to show that the vessel was unsafe, and unfit for the transport of troops and passengers, and that of C. H. Haswell, of this City, Enginee for the New York Underwriters, although he considered the machinery good and safe, ad mitted that vessels were often used to carr passengers that would not be used for carrying freight. Respectable witnesses of good au thority, gave testimony in favor of the engine while other testimony equally good-show ing how different persons take different view of matters-was presented against the steamer From an examination of the evidence, we are of opinion that Major Wyse placed himself in a delicate position-sacrificed himself in a measure, trom patriotic motives. While he is the immediate sufferer, apparently, his action will do good, and the very Court Martial that sentenced him, by their decision, almost admi that he was justified in what he did; for the censure the conduct of those who hired the "Falcon." It is not for us to discuss the abstrac right or wrong of that sentence-such a question is not within the legitimate sphere of ou duties-but we do say, that the miserable steamships which have been employed by our government for various purposes, touch the feelings of every true American. The engines of the "Falcon" might have been the best in the world, but they certainly were not in order for that voyage. The said engines were constructed for the "Iron Witch," a steamboat projected by Capt. Ericsson, about fifteen or sixteen years ago, and which failed of success. With repairs and modifications they were transferred to the "Falcon," and, we are informed, " worked well;" but we presume they are better adapted for summer than winter voyages, on a stormy sea. We sincerely hope that more attention will hereafter be paid to the choice of steamships for transporting troops, than has hitherto been done. That Major Wyse's conduct will contribute to this result, we have no doubt; for it is the prevailing opinion that it was wrong to order him with his men to make a voyage in that vessel.

A Noble Inventor

In our list of patents this week there appears the name of the Earl of Dundonald. As but few of the titled aristocracy of any nation have been distinguished for inventive qualities, the singularity of the circumstance provokes us not to pass over in silence our new titled American patentee. Thomas Cochrane, Earl of Dundonald, is a most extraordinary character, and has taken out perhaps fifty patents in England dur-
ing his lifetime. Some of them have been worthless and some very useful. Lord Brougham said of him once, "he was one of the most extraordinary mechanical geniuses that ever lived." He is a British Admiral, as well as an Earl, and for nautical skill, bravery, and genius, he never had a superior in that navy. He distinguished himself while very young in the early part of this century, in some desperate enterprizes on the coast of France; after that he was dismissed from the navy and deprived of his knightly honors, for some alleged disreputable speculations on the London Stock Exc ange. He then left England and became an adventurer for a number of years, in commanding a fleet of one of the South American Republics, then fighting for independence. A ew years ago it was found out that he had been deprived of his knighthood and expelled from the British Navy upon false and frivolous accusations, and he was then restored to more than his former rank and honors. His present itle is one of heir-ship, he having succeeded his elder brother, who died without issue.

City Subscribers and the Carriers.

For several months past we have experienced great difficulty in obtaining faithful carriers to erve the "Scientific American" in this city and Brooklyn, and the complaints from our patrons of the non-receipt of their papers week after week, has become so annoying that we have resolved to discontinue serving the paper in the city by carriers entirely. No doubt many faithful newspaper carriers serve the paper to their patrons properly, with other periodicals, and it is not that class with which our arrangement will at all interfere, but it is those carriers who have been entrusted with the of fice subscribers that this arrangement will effect After this week's issue, those of our city sub scribers who have paid their subscriptions in advance at the office of publication, will re ceive their papers by Boyd's Dispatch Post, en veloped in a wrapper and the postage pre-paid, until such time as their subscriptions expire, after which they may be furnished at the coun er of the office of publication each week, or obtain the paper at any of the periodical de pots in this city, Brooklyn, or Williamsburgh We believe nearly all the periodical depot have the "Scientific American" on sale, and our patrons will be better served and get their papers in better time, and in a bet ter condition than heretofore, while we hope o be relieved of the annoyance of constan complaint about the non-receipt of the paper which our city patrons have of late had just eason for making
All that have paid for the paper at the office and still get their paper irregularly by the new arrangement, will oblige us by sending word to the office, giving their place of residence anew and they shall be attended to.

More Blind Communications
Some one has sent us a sketch and description of an improved repeating pistol. The let er lacks town, county, and State, and also the writer's name, therefore we cannot answer it We are sorry to be compelled to caution our correspondents so often against such gross mis takes. In a few days, probably, our incog cor respondent will write complaining of not re ceiving such attention as we bestow upon oth ers. This is often the case, and to say that it is annoying, is using the mildest language we can think of just now. Correspondents-do be careful in future, and give us all necessary directions,-write plain and to the point, and void unnecessary prolixity in statement; this will please us very much, and aid us greatly in coming at once at the very core of the subject besides insuring a prompt reply.

The Wheeling Bridge.
We judge from the Wheeling papers that no arrangements for the rebuilding of this bridge have yet been matured. The "Grazette" thinks a suspension bridge for the use o locomotives impracticable. The erection of piers, and the construction of a truss draw-bridge is uggested as the most practicable method.

The Bill for granting the renewal of Moore Hascall's patent for a Reaping Machine, wa rejected in the Senate on the 16th inst.

Stientific American

Money received on account of Patent 0mice business
for the week ending saturday, June 17:-
G.M. B., of 0 , $\$ 25$, G. M. B., of O, $\$ 25 ;$ J. B. W., of Mass., $\$ 25$; E. C. F.,
of Ct., $\$ 30$; F. B. H, of Ind, $\$ 30$; G. O., of Me., $\$ 45 ;$ J.
 Mich., $\$ 45 ;$ J. C. F., of N. Y., $\$ 30$; B F., of Ind., $\$ 30$; W.
H.
 of N. H., $\$ 40$.
Specifications and drawings belonging to parties with
the following initials have been forwarded to the office during the week ending Saturday, June 17 :-
 G.. of N. Y.; C.A.S., of Mass.; E. T., of N. H.; ; W. H.

A Chapter of Suggestions, de

Patrint Laws-The seventh edition of the American
PatentLaws and Guide to the Patent office For sale at this office, price $121-2$ cents.
Patexx Clumms-Persons desiring the claim of any inven
tion which has been patented within fourten tion which has been patented within fourteen years,
can obtain a copy by addressing a letter to this office, stating the nam
fees for copying.
PatanTRRS-Remember we are always willing to execut and publish engravings of your inventions, providin they are on interesting subjectss and have never a Inserted in our columns that have appeared in an ted to have the engravings executed to suit our ow ongraving is cansrged by us, and the wood-cuts may b claimed by the inventor, and subsequently used to advantage in other journals.
Bion Nunbars $a x d$ volumbe-In reply to many interro Scientifc American can be furnished, we mase of lowing statement: Of Vols. 1, 2, 8, and 4-none. of
 Of Vol. 7 , all ; price, in sheets, $\$ 2$; bound, $\$ 2,75$. 0
Vol. 8 , none complete, but about 30 numbers in sheet which will be
five numbers.
To Correspondents.-Condense your ideas into as bries space as possible, and write them out legibly, always remembering to add your name to the communication
anonymous letters receive no attention at this office If you have questions to ask do it in as few words as possible, and if you have some invention to describ
come right to the business at the commencement of your letter, and not fill up the best part of your sheet dress us. We are always willing to impart information if we have the kind solicited.

ADVERTISEMENTS

Advertisements exceeding161ines cannot be ad mitted; netther can engraving
columns at any price.
All advertisements must be paid for before insert-
American and Foreign Patent Agency.
Mrontarta invirwis

Fily vion foviviy avo machue woris

E Mankurive The undersiged in prepared tor

 ${ }_{35}$ tr

Scientific Cthrsenm.

New Mexican Sugar.

It is said that almost all grains and vegetables which grow in the clear. dry climate of Mexico, are remarkable for their extraordinary sweetness. The common corn stalk abounds in saccharine matter to such an extent as to | sweetness. The common corn stalk abounds | saccharine matter, that the manufacture of |
| :--- | :--- |
| in saccharine matter to such an extent as to | beet sugar is said to offer strong inducements |
| furnish the native population with molasses, | to gentlemen of enterprize and capital to em- |

which, although hardly as good as the inferior molasses of Louisiana, might doubtless be much improved by a more perfect mode o manufacture than that adopted by the Mexican
population. The molasses is purchased there population. The molasses is purchased there
by those who do not supply their own wants by those who do not supply their own wants

at a rate of $\$ 1,50$ per gallon. The beet of	at a rate of $\$ 1,50$ per gallon. The beet of	ran
New Mexico contains so unusual a quantity of	val	

CHAMPION'S TAPERING DOUBLE LEVER BRIDGE.---Figure 1.

Figure 1 is a perspective view, and fig. 2 is
plan view of an improvement in Bridges, by a plan view of an improvement in Bridges, by Samuel and Thomas Champion of the City of Washington, D. C.
This bridge is a tapering double lever, skeletonized and balanced upon a pier, reaching, in moderate spans from the pier to either shore, and may be swung round as a draw, opening the whole stream by rollers underneath on the top of the pier.
In wide streams, where several spans are required, each section of the length of the bridge will reach from each pier to midway between the piers. Where no draw is required each section may continue in one unbroken connection from the center of the pier to the foot of the side piers each way beyond. By this plan of bridge, the principal weight and crushing force is thrown to the under side of the bridge, the lighter bein σ above the heavier, giving an opportunity for cross and other bracings, where they are most required.
The commencement of this bridge is in a hub on the pier, in which are recesses for the reception of a series of upward diverging, tapering wrought-iron tubes, radiating like the rays of the half risen sun, for the purpose of throwing all compression to the foot of the center column, as all suspension is centered upon the cap on the top of the center or vertical column, over which, in recesses at the proper and angles, all the suspenders pass, and from which they diverge downwards, as the tubes do upwards, each in straight lines-nothing curvilinear in the compression or suspension. These being equal to each other, the expansion is equal, what one gives upward the other does downward, so that the whole remains comparatively stationary.
At proper intervals, throughout the length of the bridge, clamp posts are attached reaching from the upper terminus of the tubes to the lower termini of the suspenders embracing each tub, and suspender as they pass the posts, clamping by bolts through said posts, all tubes, suspeaders, and posts, and holding all in a state of rigidity and tension, which is regulated by gib and key connections in the susp enders.
By this system, in which the principles of the lever, are analyzed, and skeletonized-as by placing the crush resistants on the under side, and the stretch or tension resistants on the upper side, with the correct principle of taper properly maintained and proportioned, any desired length and strength of span may be obtained, there being (as the inventors conceive), no limit in the principle, except in cost and expediency, it being cheaper to erect additional piers, where it is practicable to do so,
center between the piers, to the piers at their greatly increased distance apart. It will be
perceived that this bridge is never loaded in the center with burdensome weight, however lengthy the span may be, but remains at rest and equipoise when no train is passing over it. Iron bridges, which are as heavy in the middle as at the piers, are always loaded, and sometimes very heavily, too, by their own weight alone, and are often breaking down, and would do so in a few years, if no weight were placed upon them.
Believing this principle to be true and demonstrable, as capable of indefinite extension
bark in the business. The only sugar which is $/$ vein of nitre, believed to be unique in its characbrought to Santa Fe now, is transported from the valley of the Mississippi across a desert of early 900 miles in extent-and the cost o ransportation increases its price about ten ents a pound, so that the most inferior kinds value.
saltpetre.
Prof. W. H. E
Prof. W. H. Ellet states that there has been
Prof. W. H. Ellet states that there has been
vein of nitre, believed to be unique in its charac-
ter. The nitre occurs as a solid and uncrystalline ter. The nitre occurs as a solid and uncrystalline
deposit in the horizontal seams of a sandstone deposit in the horizontal seams of a sandstone
rock, and in veins proceeding from them at different angles; and the rock itself, which is quite porous, is abundantly charged with the same material. The nitre itselt is very pure, containing mere traces of nitrates of lime and magnesia. The sandstone in which it occurs is silicious containing a little carbonate of lime, and a notable quantity of sillicate of potash.

s winging draw) is considerably longer from the \mid yond': thus placing everything in sight above
pier to the abutment than to the center between the piers beyond, forming by such additional length, an anchor and counterbalance to the weight of a train between the piers be-
e danger of rust below.
More information may be obtained by lette addressed to Messrs. Champion at Washing

Crystal Palace Notes.

Coal-The yard of the Crystal Palace, near by the feet of few visitors, still, for those few, it has peculiar charms, though no articles of beauty, taste or skill are there displayed-only a small number of mineralogical specimens These, however uncouth in form and unclean
to the touch, are solid specimens on which our country's future greatness materially depends, and from which, without hesitation, we can confidently predict (unless some new substitute for it is discovered in other countries) will some day make the United States the great Manufacturing Mart of the world:-we allude to coal. When some person was speaking to Jame Watt respecting the value of the river Clyde, as being the source of wealth in Glasgow, where he invented his improvements on th steam engine, it is related that he stamped on the ground, and said, "the wealth of this city lies under my feet," alluding to the iron and coal in that locality. He was right. Without coal, England never would have become a grea now manifested there about the future supply of this mineral. When England ceases to produce coal it will for a certainty cease to be the world's workshop, and become a poor and insignificant island in comparison with what it now is. Coal rules the world; it propels the anchor; the steamship that plows the oceán
-that any desired length of span may be obained for the support of any desired weight, the Messrs. Champion present the same to
the consideration and criticism of a discern ing and impartial public. They also call partic ularly attention to the capacity of the tapering suspenders for great length of span, far beyond the one size wire suspension, to say nothing of the advantages of the straight suspenders in their permanency and rigidity over the oscillating inverted curve suspender. In this bridge the permanent and suspension meet, and the anchoring is part of the bridge, the shore end (when not intended for a balance
be worked profitably and with economy.There is one sample of cannel coal from Peytona, on Big Coal River, Va., and one from Little Coal River, Kanawha, Va. These comprise all the coal specimens on exhibition ; they are few but important. It would have given us sincere pleasure to have seen a geological arrangement of samples from all our coal fields. Why was this not done? The Geological Department of the Crystal Palace is very pretty, and interesting to those who are well informed on the subject, but it is not so instructive nor so interesting as it might be made to the multitude.
Plumbago-There is one large and fine specimen of Plumbago, $3 \times 2 \times 2$ feet, weighing 1000 lbs ., from the mines of J. \& J. L. Seabury, New York" State, but where this mine is situated we cannot tell. We can only say that it affords evidence to us that we do not require to send abroad for our black lead pencils for want of natural resources, and yet our best pencils are all imported.

Manufacturers and Inventors
new volume or the
SCIENTIFIC AMERICAN is oommenced aboutththe 20th September, each year, and
the BEST PAPER for Mechanics and Inventors pub is the BEST PAPE
lished in the world.
Each Voluma. matter, and is illustrated with over

500 MECHANICAL ENGRAVINGE

 f NEW INVENTIONS.NETHe TOIENTITIC AMERICANIS a WeriliyJoor NAL of the
ARTS,
ARTS, SCIENCES, AND MECHAgics,
 AND INVENFIORS.
 Of Dew MiChANI an eeing illustrated in the Soientifo. American, it also notices of the progrees of all MEECHANIOAL AND SCI NTIFIO IMPROVEMENTS ; practical disections on the Constrootion, Maxacmanks, and Úgs of all kinds of MACHINERT, TOOLS, \&c. \&c.
It is printed with new type oi beautiful paper, and bengadapted to binding, the subscriber is posibesped, at th
ond of the year, of a LARGE VOLUME of llustrated with upwards of 500 ML'OHANIOAL ENGRA INGS.
The Scientisc American is the Repprtory of Patent Ii. entions: a volume, each eomplete in itself, forms an En Claims alone are worth ten times the subscription price o every inventor.

Tive copies, for Six Months	
Ten Copies, for Six Months	
Ten Copies, for Twelve Months	*1
Fifteen Oopies for Twelve Months	*2
Twênty Copies for Twelve Months	\$28
Southorn and Western Money taken riptions, or Post Office Stamps taken a	
rss should be directed (postpaid) to	

