Scrimtific
 Ameritan.

THE ADVOCATE OF INDUSTRY, AND JOURNAL OF SCIENTIFIC, MECHANICAL AND OTHER IMPROVEMENTS.

VOLUME IX.]

NEW-YORK MAY $20,1854$.
[NUMBER 36.

SOIENTIFIC MBMERICAN,
At 128 Fulton street, N. Y. (Sun Buildings.) BY MUNN \& CO.

 Responsible Agents may also be found in all the prinolpal oities and towns in the United States. TERMS- $\$ 2 \mathrm{a}$-year :- $\$ 1$ in advance and the remain der in six months.

Home Made Guano.
The following is from a communication to the N. E. "Farmer;" it will be useful to many of our agricultural readers:-

Some years ago I thought I would try my luck in keeping a few hens. The house I keep them in is a rough concern. I putsome crotches into the ground, boarded up outside and inside, then filled in by sawdust to make it warm. It is well lighted with glass windows, and well ventilated, aud a small stream of water runs through it. The roosts will accommodate about a hundred hens, that being the number I usually keep. Under the roost I throw three or four ox-cart loads of dry mack, chip dirt, \&c., which I haul over two or three times a week with my manure hook. I bury their grain in it, and make them work for a living, which gives them exercise in cold weather. In the spring, I have a fine heap of home made guano. If there is any束放g imparted that is better to make our crops grow, I am mistaдеn."

French Beet Root Sugar Factories
French Beet Root Sugar Factories.
According to the official returns of the beet root sugar manufactories up to the end of last March, the number of establishments at work at that period was 303 , or 85 less than in the same month of last year. The quantity of su gar manufactured was $73,987,419$ kilogra mmes being an increase of $2,530,318$ kilogrammes over the quantity manufactured during the corresponding month of last year.

Improved Hose Protector

The annexed engravings represent a method of protecting the hose of fire engines crossing city railroads, so as to allow the cars to pass freely over the hose without touching or injuring them. A patent was granted for the improvement to David Demarest, of this city, on the 1st of last November. The nature of the invention consists in the employment of a portable inclined section of a railroad track, to be placed on the fixed track, which section has an opening for the hose to pass through, by which the hose can be laid over the fixed railroad, and then the portable track, inclosing the hose, laid down, to allow the cars to run over on the portable section.
Fig. 1 is a perspective view ; fig. 2 is a side view of a protector for one rail, and figure 3 is a small section. The same letters refer to like parts.
The hose, B , is represented as being laid from a hydrant to a fire across a city railroad track. Over this hose is laid the Protector, A, which has its greatest depth at the center, in which is the free opening that encircles and protects the hose. It (the Protector) is inclined towards the extremities, and has g, rail on its surface or top; and it lies solid on the stationary rail, it being straight on its under side, C. It is also clamped firmly to the rail by the clamps, $a \boldsymbol{a}$. All this is so plainly represented in the figures, that the nature, appli cation, and construction of the apparatus will be understood at once
A car is represented as having passed over the portable track,-one section being used for) each rail. All that has to be done in protect-

ing fire hose, by using this improvement, is a very serious character, to which they had simply to lay down the Protector, as shown, and been heretofore subjected, and it keeps them when a car comes along it merely passes up a in working order-no small consideration-du slight incline and over the hose, without touch- ring the whole period in which they are requiring it. This protector is also applicable to the ed for use. These protectors ought to be car protection of hose from all kinds of carriages, ried to fires either by the engines, or a compa over-the whole width of a street, by making ith ny apecially appotated for that purpone. broad on the surface for the vehicles to run up- The patentee is in the employ of the Sixt on. The improvement is a very good one, and Avenue R. R. Oo., and for more information is now used by either one or two of our city respecting it, letters may be addressed to him railroads. It protects the hose from injuries of at the office of said Company.

REGULATOR FOR STEAM BOILER FIRES.---Fig. 1.
 provement in Regulating the Dampers of Steam ing the damper in the chimney (or if a blowe Boilers by the pressure of the steam, for which is used, the damper for shutting off the blast, a patent was granted to Patrick Clark, of Rahway, N. J., on the 3rd of last January.
Figure 1 is a perspective view of the regulator; figures 2 and 3 are vertical sections through the center, in which figure 2 shows the lever down, and figure 3 the lever up. The same letters refer to like parts on all the figures.

B, which is also of cast-iron. C is the pipe lead ing from the boiler, and connecting with this cylinder at D, by being screwed into the platform, A , to which the cylinder, B , is bolted. The pipe, C , is bent like a syphon, to prevent the steam from coming in contact with the diaphragm, E. This diaphragm may be made of vulcanized india rubber, or any flexible substance, having considerable strength and being impervious to water. It is shown in figures 2 and 3 , intervening between the piston, F, and water, D. It is made cylindrical in form, of a lengith sufficient to allow of the piston moving through any distance required; about one inch is sufficient, but it may be one or ten feet, should the nature of the case require it. One end (the upper end) is closed. The lower end is open and is carrounded by a flanch abou one inch wide, whish answers the double pur pose of holding it to its place, and making a tight joint betwee the flanch of the cylinder, and the top of the platform upon which the cylinder rests.
A flat disk of vulcanized rubber will answer in place of this diaphragm, where the distance moved through by the piston is not greater than one inch. The bore of the cylinder must be as much greater than the piston as will al ow the diaphragm assuming the position shown at S and $S . \quad F$ is a cylindrical piece fitting the upper part of the cylinder loosely, and having hole bored nearly through its axis from the top to receive the bar, G. The bar is smaller hank the hoie in whioh ft stands, to allow of its accommodating itsalf to the varying position of the lever, H, which rests on its top; I is a ball or weight made to slide back and forward on the lever. It is used to counterbalance the tatic pressure on the bottom of the piston; K is a rod connecting the lever, H, with the crank of a damper. The machine as described in the foregoing being put in connection with the boiler and damper, the piston will be acted upon by the pressure of the steam, and when the weight of the badl on the lever, H, is little more than counterbalanced, the lever will be lifted, thereby closing the damper; of course, if the pressure now diminishes a little, the weight and lever will descend and open the damper, to be closed again if the pressure of the steam should rise above the given point.
After Watt had made his first and great improvement on the steam engine, and had so far perfected it as to cause it to go into general use, he turned his attention to the minor details, such as producing rotary from the reciprocating motion. The construction and application of the governor, the cut-off, \&c. Among these details was his centrivance for regulating the draft of the boiler fire, which was introduced at an early period of his career. His genius did not fail to see the advantages that must result from its use, both in the economy of fueland the saving of time, as well as a preventive of accidents resulting from too high a head of steam to the person attending the engine, who might be employed more usefully than in watching his fire. He therefore invented a regulator or boiler fires, which went rapidly into use, and is still used on all the engines now in operation in the mines in England, and in many of the manufactories where low pressure steam is used. In his day it was thought that steam, having a pressure of five pounds above the at mosphere, was as high as was compatible with safety, and the construction of his fire regulator was suited to the circumstances.
As time passed on, however, and improve ments were made in the construction of boilers and boiler plate, and also in the construction of pistons, which could be kept tight againsti higher pressures, high pressure boilers were in troduced, and the principle of the fire regulator which he invented not being capable of
modification to answer the purpose on these boilers, they had to be used without any such contrivance. Many years after his death, and within the recollection of some of our older engineers, Perkins, the celebrated American genius, whose invention for preparing steel plates for engraving will render him memorable so long as science holds a place in the memory of man, invented an arrangement to answer the same purpose tor high pressure boilers that Watts did for low pressure. This contrivance gave motion to the damper by means of the expansion and contraction of metallic bars, the expansion and contraction being consethe expansion and contraction of on the changes of pressure of the steam
quent in the boiler and its consequent change of temperature. The amount of first motion of this contrivance was so small, and consequently needed so much multiplying, that it was liable to many derangements which destroyed its utility. Still it was used to some extent, and was only given up on account of the difficulty of keeping it in order.
This regulator, it is believed, possesses all the good qualities aimed at by the eminent men above mentioned. It is comparatively frictionless, and does not depend on the contact of metals to form a tight piston.
The claim is for the diaphragm, E, in combination with the piston moving in the cylinder.
More information may be obtained at the Office of Clark's Patent Steam and Fire Regulator Co., 208 Broadway.

Flax Industry.-No. 5.
The manufacture of flax continued to extend and increase in Belgium until about the year 1838, when the English competition seriously injured the business. The number of pieces of linen of the better qualities manufactured in 1840, was estimatedat 400,000 , and the value of all the production from flax in the same year at pro,action francs. The linens which have for
$60,000,00$ fran the most part contributed to the reputation of the Low Countries, are undoubtedly those made at Courtray.
It will not be foreign to our subject to cor. rect at this point an error which has been widely extended, and has found credence with very many persons, viz., that which ascribes to Holland the manufacture of nicer varieties of linen. The facts are these :-After the troubles of the 16th century, almost all the linen goods manufactured at Courtray were sent to Harlaem to be bleached, and during the whole of the 17 th century, the bleaching of this place was regarded as an indispensable compliment to all the high-priced linens. The goods of Courtray, almost without exception, passedinto the hands of the Dutch, who, after they had given them the blane de Harlaem, sold them as the manufactured products of Holland. In the 18th century the manufacturers of Courtray succeeded in imitating the Harlaem white, and henceforth all the branches of industry concerned in the flax manufacture became concentrated at one point.
General laws for the regulation of the linen manufacture were early enacted both in Holland and Belgium. By these laws all the cloth was carefully examined, and an imprint placed upon each piece, which made known its quality. This imprint, known to all the merchants of Europe, was a valuable guarantee, and at the same time, a recommendation. These measures, without doubt, powerfully contributed to develope the flax manufacture of these countries, and to give reputation to their products.
The culture of flax gradually extended into all the Cantons of Flanders, but those of Courtray, Tele, and Termonde, in the district of Waes, furnished, as at the present time, the best products.
In 1720 the price of ordinary flax was from 13 to 20 sous for a stone of Brabant, of the weight of three kilogrammes, (about seven pounds avoirdupois.) In 1763 it increased to 34 sous, this increase led to an ordinance which prohibited exportation. At this epoch flax of a superior quality brought 61 sous per stone of three kilogrammes. Since then it has often exceeded these figures, and from 80 s to 90 s , was obtained by many of the cultivators during the jear 1849-50.
In 1840 the number of hectares (2 acres, 1
rood, and 35 perches) under cultivation with flax, was upwards of 41,000 . Since this time the cultivation of flax has extended in all those Provinces which produce the better qualities, but has greatly diminished in those which produce the inferior varieties. The latter has to sustain the competition of the Russian flax, which is employed to a considerable extent in the coarser goods of the country. In 1846 the importation of Russia flax into Belgium exceeded ten millions of kilogrammes, (a kilogramme is equal to 2.20485 lbs. avoirdupois;) in 1841 it was unknown in Belgium. Another in 1841 it was unknown in Belgium. Another
cause for the decrease of this production of ordinary flax is the failure of a number of manufacturers who formerly worked this quality; the demand for Belgian manufactured linens on account of foreign importationshas, for the last few years, been supplied with difficulty, on account of the yearly increasing deficit in the better qualities of flax. While the consumption and production have both greatly increased, the former far exceeds the latter. Notwithstanding it may be stated that the cultivation and production of flax in Belgium is of greater importance at the present time than at any former period, especially when we consider the total value of the fabrics produced, which has greatly increased since 1830.
The history of the introduction and progress of the flax industry in Holland is embraced for the most part in that of Belgium, the latter country being formerly a province of the Kingdom of the Netherlands. As the character of the soil, however, in these countriesis essentially different, the culture of the flax in Holland presents some striking peculiarities. Holland is situated on the borders of a sea, from the waves of which it has been reclaimed and is now preserved only by the skill and enterprise of its inhabitants. Its position clearly indicates the nature of its soil, which consiste almost wholly of alluvial deposits and peat.The potders, or the bottoms of lakes which have been drained, being kept constantly moist by a careful system of irrigation, have a won derful fertility. The low and marshy places are principally used for pasturing great numbers of cattle, but the plains are given up almost entirely to the culture of flax. At the time of flowering these plains present an immense blue surface, which attracts the attention of the traveler, and when agitated by the wind has much the appearanc of a vast lake or sea.

Wor the Sciential American.]

I find myself under the necessity of asking your kind indulgence, while I explain my ideas a little more clearly on the subject of Judge Sprague's decision on theSewing Machine case I hold that the first inquiry, whether Hunt's machine was ever perfected, is altogether irrelevant, because the Patent Law, as far as my knowledge extends, does not ask whether a machine shall or shall not be perfected in order to become public. Nor does it ask whether "it had been abandoned and forgotten before a subsequent invention." It asks "whether the whole or a part of a machine had been before known or used." The only exception is in the proviso of the 15 th Sec. of the Act of ' 36 , "That whenever it shall satisfactorily appear that the patentee at the time of making his application for the patent, believed himself to be the first inventor or discoverer of the thing patented, the same shall not be held to be void on account of the invention or discovery or any part thereof, having been before known or used in any foreign country; it not appearing that the same or any substantial part thereof, had before been patented or described in any printed publication." The Act of ' 37 , Sec. 9 , is additional to and explanatory of Sèc. 15, of ' 36 , and does not admit of a patent being granted for anything which was before known or used in this country. In your reply to my remarks you state that "A person might construct and use a machine in secret for twenty years and not give anything to the public, and after that, if another person invented the same machine, he could obtain a patent and restrain the inventor from using his machine." I think that construction of the law would hardly be sanc-
clause of Act 5th, of the amendments, says, clause of Act бth, of the amendments, says,
nor shall property be taken for public use without just compensation." As there is no law against a person inventing and using a machine in secret, if he so elects, I think it must be conceded that he is in legal possession of such ma chine or invention, and entitled to the use of the same, and that use is property. Now I would ask how the public-not having any right to appropriate private property to their own use "without just compensation,"-would take the use of that machine and give it to another individual, who is a part and parcel of the public (for the public is made up of individuals) " without just compensation." I believe the law does not contemplate the granting of a patent to any one for anything which was before known or used in this country, for the reason above stated; it would not harmonize with the Constitution, and whether I am right or wron is respectfully submitted for your consideration

Edmund Field.
Greenwich, Conn., May 5, 1854.
[Our correspondent does not present the question properly for correct adjudication. The patent laws do not ask anything, but they do provide for the asking of questions relative to what is public property in a machine when the validity of a patent is disputed on a tria for infringement. To invalidate a patent (as was attempted in the case to which he refers) it is necessary to prove that the machine pa tented, is either not new or not useful. "To constitute a prior invention," says Curtis (page 37) "the party alleged to have made it, mus have proceeded so far as to have entitled him self to a patent in case he had made an appli cation." Now as the Patent Law requires tha the improvement must be useful, how can machine be useful if it is not perfected?
Judge Sprague's decision was to the effect that "it had not been proven that Hunt had invented a practical machine," consequently, in the eye of the law, it was no property-pub lic or private. As it respects the question of abandonment (for a lost art or forgotten ma chine is out of order in discussing this question our patent laws do provide for this, and deci sions have been made in accordance with itthe one of Battin's Coal Breaker, for example So far as it relates to secret inventions, ou correspondent's objections to our views are just as applicable to any machine built and used, after a patent has been granted, as be-
fore. The question of "private property" is fore. The question of "private property" is one of a different issue entirely; the law declares what is property. Our correspondent is perfectly right in what he has said, about "private property," but a "secret invention "is no tinction, he will find no difficulty in coming to a right conclusion on the subject. Phillips, on the property in patents, page 317 , says of an invention used in secret, "it is not a specie of property ;" "it is only the inventor's secret." It is true, there is no law against a person de vising and using an invention in secret, and it would be a queer thing if there was. Such a law would be like a statute against something that never had, has not, and may never hav an existence. To make the question plain.Suppose an inventor secures a patent to-day, and in the course of three or four weeks after wards, finds access to a room where a machin like his is in operation, and he then goes, and according to law, prays for an injunction, de scribing the machine and place-making oath that such and such a person is violating his $p a-$ tent by using a machine like that specified in it? What then. The Court orders the person against whom the complaint is made to appear and show cause why an injunction to restrain him from using said machine, may not be granted. The defendant appears and does not deny his using such a machine, but says he constructed it twenty years before, and has used it ever since. Well, where is your proof? He has none to present-it was kept secrethis own statement is no proof.) There i nothing left for the Court to do then but to grant the injunction. If, however, he can pro duce one respectable disinterested witness testify to the prior age and use of his machine it would not, in the eye of the law, be considered a secret invention, but public property,
to the use of which all were entitled who de sired to use it. There is therefore a great difference between what is considered "private property," and a "secret invention." The laws of every country specify what is propertypublic and private.

A Curious Dining Hall.

We learn from a London paper, that Professor 0 wen was recently entertained at dinner in the garden of the Crystal Palace at Sydenham, in the model of an Iguanadon. The animal in whose mold the dinner was given was one of the former inhabitants of Sussex, England, several of his bones having been found near Hor sham. His dimensions have been kept strictly within the limits of an anatomical knowledge The length from the snout to the end of the tail was 35 feet; he was 12 feet high; the cir cumference of his body was 25 feet; and the girth of his fore leg 6 feet 6 inches. Twenty one gentlemen dined comfortably within the in terior of the creature, and Professor Owen sa in his head as a substitute for brains.

Velocity of the Wind.

Professor Stoddard, in a lecture recently deivered upon the hurricane in Knox county hio, stated that in one town a grove of oak trees was almost entirely blown down. The trunk of one of these trees was about three feet in diameter. Assuming, however, its dimeter to be but two and a half feet, a force of 147,000 pounds would be required to break it, The surface of the tree exposed to the action f the wind was about 1000 feet, which would give a pressure by the wind of 147 pounds per square foot, or a velocity of not less than 171 miles per hour, which is nearly one-fourth the initial velocity of a connon ball.

The Comet.
Commander Plana the distinguished astrono mer at Turin, in speaking of the new comet which was visible there lately, mentions curious circumstance in connection with the popular superstition about theinfluence of comets over worldly affairs. He states that when large comet appeared in 1446, just after the Turks had overthrown the Greek Empire, Pope Calistus ordered public prayers to exorcise both the comet and the Turks.
A) Mammoth Vessel in the Upper Lakes.
A) Mammoth Vessel in the Upper Lakes. hip, 'Canada,' of Buffalo, is in port here, to day, for the first time. She isowned by Messrs Walker and Bantam, and is under com mand of Captain Bantam. Her dimensions ar -length of keel, 208 feet; breadth of beam 32 feet; depth of hold, 14 feet; capacity, 1,100 tuns. Last year, she carried at one time 50,000 bushels of oats, and at another, 40,000 bushels of wheat. She brought up a deck load four of the largest size passenger cars; and i now loading for Chicago with 800 tuns of coa and 300 tuns of merchandise.

To Fix Carpets on Floors.

The foreign correspondent of the Newark "Advertiser," in writing from Florence, says "Here iron rings are fastened in the floors when the carpets are laid, and they have large hooks in the binding, for which these rings are eyes; so that there is no taking out and nailing in of tacks, and carpets are raised and laid as noiselessly and easily as bed-covers."

The Ericsson Raised.
This vessel was raised on Thursday last week, and was towed to the Naval Dock at Brooklyn, for repairs. The damage sustained, is said, will amount to about $\$ 50,000$. The accounts of the daily papers of this City, respecting her late and unfortunate trial trip, are not to be trusted in any one particular-except ing that relating to her being capsized.
Prince Paul, of Wurtemburg, is now in this country collecting botanical, and ornithological specimens, for the publication of a work, when he returns to Europe. This is a very oreditable occupation for a Prince, and \it would be more to the honor of them all, if they engaged in some such useful and instructive profession.
There are half a million more females than There are half a mile in Great Britain

Sicientific Amertican.

[Reported Officially for the Scientific American.] LIST OF PATENT CLAIMS Issued from the United states Patent Office for the week ending may 9, 1854.

 set forth.

[A notice of this Vol. 8, Sci. Am]

BEA HIVEs-Clark Wheiler, of Little Valley, N. Y.: I
do not clam either the box, the pendant valyes or reti-
culated
 ${ }_{\text {Sci. Am.] }}^{\text {[SSe netic }}$

 Second, enlarging that portion of the nee dite which,
having entered the material is to retire fromit theore
the pullupon the last loop is commenced. in the manner
described.

 in the groove of the feed wheel, whereby the bearings
of the
the groamp on the ewo oposite concentric surfaces of

 separate from and not contrilled by that which pro.
duce the movemen of the clamp by which orrespond-
ing extent of motion is produced in the feed wheel.
 Vot. and controlling it by a spring, or their equivalents,
asthat it may be sman anound tor emove or replace
the cloth or ther material to be senw, as escribed.
I also claim the arrangement and combined adjus.
 the relative positions of said needles toe each other, and
their jint positions in relation to the material to be
sewn in deocribd.
I also claim the arrangement of an adjustable table

 [A notice of this useful imp.
page 268 of this $\begin{aligned} & \text { Vol. Sci. Am.] }\end{aligned}$

advantages specified are obtained.
[This is an ingenious key, and is proof against being
turned by the burglar from the outside of the door.]
 combination of mechanism operating the guide, viz.
the lever, rod, and springs, arranged and operating as
set forth. PoMp-Jacob Edson, of Boston, Mass. : I Ilaim, first,
the tube., inc oombination
structed and operating

$\left\lvert\, \begin{aligned} & \text { furrow compact, and prevents the falling in of the earth } \\ & \text { as sef forth } \\ & \text { Briders-Albert }\end{aligned}\right.$

 web than at another

 sed flame from the
ters, a a described.

 porrii

 [See not
Sci. Am.]

 vich boots may be made.

Recent Foreign Inventions.

Although gas made from coals is coming to more general use, in our cities, \&c., thu doing away with the necessity of using oil still, the demand for oil, is becoming greate every day. Enormous quantities of it are now being used on all our railroads for lubrication thus entailing a great working expense on such systems of travel. Any improvement there ore, to increase the quantity, improve it, of render it cheaper, becomes of great impor tance to the community-for the people pay fo all these thing. We have therefore selecte the two following specifications of reeent for
eign patents, granted for manulacturing oil, eign patents, granted for m
and lubricating materials :-
Treating Oil $_{\text {IL }}$ Matters-G. F. Wilson, of London, patentee.-This invention consists in diminishing or removing the smell and colo from the oily matters that are produced by the destructive distillation of resin, and in combining them with the olein of palm and other neutral oils. The resin oily matters are distilled, or repeatedly distilled, with the air exlcuded, -the matters, in some cases, being treated with powerful agents, such as sulphuric acid before this distillation; or they are exposed to heat, to drive off their more volatile part.The purified resin oily matters are mixed with the other oily matters, by means of agitation or boiling up with free steam.
In carrying out his invention the patentee tas recourse to a preparation for mixing the resin oil with the olein of palm oil and othe eutral oils. The resin oil is first caused to be heated for about four hours, in a close vessel
by means of heated steam,by means of heated steam,- keeping the tem-
perature to about 350° Farr;; and it is then to be distilled with the air excluded. According to the state of purity desired to be obtained, the distillation is to be performed again and again ; and, for this purpose, steam, heated to a high degree after it leaves the steam-boiler, is employed, as is well understood. If the resin cid inpure, about 2 libs. of sulphuric same is then to be washed in water, and submitted to the process of heat.
Having thus prepared the resin oil, it is to be mixed with a neutral oil; and, for this purpose, the oleine of palm oil is preferred. The best mixture will be found to be in about equa quantities,-but this may be varied; and, in order intimately to mix these matters or oils, they are boiled by the aid of free steam, by which a most intimate admisture is effected; nd such combined oils will be found very use ful for lubricating heavy machinery.
Lubricating Materials-Francois Monfrant, of Paris, Patentee.-This invention consists in the employment, for the manufacture of lubri cating materials, of all fatty oils (with the exception of coleseed oil), which are dis-acidified by means of milk, and are then caused to blend and intermix with fat or a fatty body, by means of resin or a resinous composition.
In preparing the said lubricating materials, the patentee employs a large boiler or heating vessel, heated either by fire, or by steam, or ho air, or otherwise. In this vessel, the oil to be op erated on is placed, and heated to such a temperature that the hand can just bear it when im mersed. The lard or other solid fatty body is then added (care being taken to stir the mix ture well with a spatula from this time to the end of the operation), and also resin of the ordinary description, or resinous body, in the poportions necessary, to produce the severa proportions. When these two bodies are perfectly melted, and an intimate commixture has taken place, pure fresh milk is added, in the proportion of at least twe pints for every 100 kilogrammes (220 lbs about) of oil ; and the
be the proportion of milk added to it. In the event of milk not being procurable, the same proportion of albumenized water (prepared by adding the white of one egg to a pint o water), or of alkaline water (containing 5 grammes)'(31 dwts. of crystals of sub scarbonat of soda to a pint of water), or even water alon may be used; but milk is, in all cases, to be preferred. The mixture is allowed to be heat ed to boiling, or until the bubbling, produced by the evaporation of the aqueous matters has operation has been carried on to a sufficient exent, a slice of new bread is placed in the heat ing vessel ; and, when this is well browned he operation is complete. It must be obser ved, that the stirring should be continued hroughout the operation; and, in the case of he more solid compounds, even after the boiling is completely finished. When the operation is terminated, as has just been described, the mixture is allowed to repose for several ours, and is then drawn off, before packing it or storage or use, by means of a hand-pump or a common syphon. The results of the different operations described are, that, by the boiling, all the moisture of the milk, and othe freign bodies, is entirely dissipated as vapor and that the acid principles of these substanccs, ombined with the casein of the milk, are renseparated from the deposit which they form, contains no acid, and the deposit itself is, in ome measure, carbonized, and is easily re moved from the vessel. All the products, by eing boiled together, are thoroughly incorpoated ; so that there is no danger of the lard and oil becoming separated,-a result to which the resin or resinous body undoubtedly con tributes. If the operation is to be carried on continuously, it will be needful to have tinned on vessels, into which the clear contents of he boiler can be transferred, to cool and settl before being packed away.
No. I.-Compound for the finer carriagework, \&c.-Resin, $2 \frac{1}{2}$ per cent. of the quantiy of oil. Lard, 50 to 75 per cent. of the quantity of oil, according to the degree of soidity required.
No. 2.-Compound for copper, steel, fire rms, the more delicate kinds of machinery c.-Resin, none; but, instead of it, 2 per ent. of common yellow wax. Lard, 25 to 50 per cent. of the oil employed.
No. 3.-Compound for lubricating oil for machinery.-Resin, $2 \frac{1}{\frac{1}{2}}$ per cent. of the oil employed. Lard, 5 per cent.
No. 4.-Compound for the woolen manufacture, \&c.-Resin, none. Lard, 3 per cent. of he oil employed; but, for this purpose, it is dispensable that the lard should be quite esh.
No. 5.-Compound for paint, oil, \&c.-Resin, 1 per cent. of the oil employed. Lard, 2 per cent.
As before observed, these proportions may be greatly varied. The more lard used, the arder will be the compound. The weather lso affects the proportions to be used, and more lard must be employed in summer than in winter, to produce a like effect. The lard may be composed of half hog's lard and half mutton or other suet or fatty matter. The lard hould be freed from all skin, \&c., and cut into mall pieces; and it is better also to remove from it any portions of fleshy matter that may be mixed with it; and if the fatty bodies employed, whether lard, mutton suet, beef suet, or other fatty matter, are used in the raw state, hey should be first partly melted before being dded to the mixture in the heating vessel, by ny of the means ordinarily adopted for such purpose. The products, obtained as before mentioned, can be employed with advantage to eplace all the oils employed as lubricators, uch as animal oils, lard oil, olive oil, \&c.They possess, moreover, the merit of being erfectly unctuous, and of containing no kind acid; they do not act prejudicially on met hey neither turn rancid from age, nor do they arden from contact with the air ; and, lastly; heir component parts do not separate from each other, but continue always in intimate
commixture.-[Newton's London Journal.

gifle Inndentions.

Carriage Couplings.
Norman B. Livingston, of Portland, Ind., has made an improvement in the manner of coupling the front axle and reach of carriages and wagons, the same consisting in having an eye piece or collar with a shank instead of the usual "king bolt." The shank of the collar is attach. ed to the reach, and is capable of revolving; the collar turns loosely in a groove formed in the periphery of a horizontal circle plate which is secured to the top of the front axle, and is made in two parts, to admit of the eye piece being fitted in the groove. By this coupling a greater bearing surface is secured, and the carriage or wagon is made to adjust itself more freely and easily, when running, to the inequalities of roads. This coupling is also stronger than that of the usual king bolt, is more durable, and not so liable to get out of order. Measures have been taken to secure a patent.

Bullets for Breech-Loading Fire Arms. Henry W. Adams, of this city, has taken measures to secure a patent for an improvement in bullets for breech-loading fire arms. The bullet is hollow with a portion of its exterior of the form of the frustum of a cone, the smaller end of which is of the same size as the bore of the barrel, for which it is intended. The object in view for making the ball of this form is, that when it is driven by the force of the powder from the enlarged chamber in which it has been received, into the regular bore of the barrel, it may perfectly "slug" and fill the grooves, and be afterwards kept expanded to fill the grooves, until it is discharged from the muzzle.

Mortising Sash Stiles.

J. B. Smith, of Milwaukie, Wis,, has taken measures to secure a patent for an improvement in mortising sash stiles by machinery, which mortises both ends of the sash stiles-no matter what their length is-and clearing out the mortises at the same time, without the necessity of reversing the ends of the stiles, tightening or slackening the driving belt. This improvement obviates the necessity of laying out the stuff, thus saving both time and labor in the operation.

Improved Car Seat.

A. C. Moestue, of La Porte, Ind., has made an improvement in car seats, which consists in a peculiar construction of the seat, whereby its back, when the car is going in one direction, forms the seat, when the car is going in the opposite direction. The seat and back being formed or connected together and provided with folding leaves for the purpose of having high backs when required. The whole seat swings upon pivots, and is kept in the desired position by means of pawls in catches, which fit or catch in segment racks attached to the sides of the seat. Measures have been taken to secure a patent.

> Grease Feeder.

Francis A. Hoyt, of Fitchburg, Mass., has taken measures to secure a patent for an improvement in a grease feeder for lubricating the interior of steam cylinders, and other parts of steam engines, the nature of which consists in forcing the grease from a cup on the exterior to the interior of the steam olinder, \&c., by means of a piston working in a small cylinder which has communication at one end with the interior of the steam cylinder through a passage in which is placed a valve, which closes by the outward pressure of the steam. This grease feeder is a force pump, and its check valve simply prevents the steam in the cylinder from acting on the oil in the pump, while the plunger is raised. The oil from the cup descends by gravity under the plunger of the pump, then it is injected into the cylinder, to lubricate its interior by the plunger of the pump.

Hose Coupnng.

James McPhail and Ephraim C. Barrett, of the city of Boston, have made an improvement in ${ }^{-1}$ ose Couplings, which consists in the employment of a raised galvanized iron collar or annular guard round the screw end of the male
section of the coupling, for preventing vehicles, stones, \&c., coming in contact with the screw thread and injuring it during the time that the said screw part may be disconnected from its converse coupling part. Measures have been taken to secure a patent.

New Nail Machine

A new self-feeding machine has lately been put in operation at Troy, N. Y., which, it is said, will manufacture, in a given time, as many gain nails as any other known process, whil one man and a boy can operate ten machines

WHEAT CLEANING MACHINERY.

The annexed engravings represent a combi- into the spout, then passing through the air nation of screen fans and smut mill, forming a trunk, D, where it is fanned, into the cylinder compact and efficient machine for cleaning or smut mill, K , where it is scoured, thence wheat, invented by Samuel, Taggart, millwright, into the air trunk, G, through the spout, F, of Indianapolis, Ind., who has taken measures secure a patent for the same.
Figure 1 is an elevated section; figure 2 is a transverse section of figure 1 , and figure 3 is a horizontal section through the dotted lines in figures 1 and 2. The same letters refer to like parts in all the figures.
The mode practiced at the present day is to place the several component parts of wheat cleaning machinery on different floors of flourning mills, at an expense of from $\$ 1,000$ to to $\$ 3,000$ in some instances. The inventor asserts that by using this machine more than half the usual cost of wheat cleaning machinery can be saved, that it does not require more than quarter the room occupied by the ordinary machinery now in use for cleaning wheat, and that less propelling power drives it.
Description.-A, figure 2 , is a spout leading rom a wheat garner-or hopper-into th screen, B, through which the wheat passes, and where it is fanned the second time, passing out at the opening in the bottom of air trunk at M, into an elevator, and is carried to the hopper to be ground. L, figure 2, is a shaft, bevel, and spur wheels, to which motion is transmitted to the screen, $\mathbf{B} ; \mathbf{E}$ is a pulley on smut mill shaft, through which motion is given to the entire machine by a belt; J, figure 1 , is a hopper to receive shrunken wheat and chess, which pass through the aperture at the valve, N. The smut, chaff, and other impurities pase on through the trunk, I, out of the mill, and thus got rid of, without filling the room in which the machine stands, with dust and dirt the case of the smut mill, K, being tight-no perforated. The arrows in the engraving show the direction of the air-or blast wheat chess, \&c., respectively, H H H, figures 1, 2, and 3 , show the fans which produce or create the blast. finds its way through the coarse wire cloth, addressed to Mr. Taggart, at Indianapolis.

This is an improvement in Gun Locks, for the inventor is enabled to use an extremely which a patent was granted to P. F. Charpie, simple and useful device for a gun lock, and to of Mount Vernon, Ohio, on the 16th of last August. This figure is a view of the inner side of the lock-plate, showing most of the parts of the lock; the hammer is represented as being down.
The nature of this invention consists in con necting the dog of the main-spring to the ham mer, by means of a screw passing through a curved slot in the lock-plate, in combination with suitable packing, encompassing the slot on
place the principal parts on the inside of the plate, fully protected from moisture.
A represents the lock-plate of the ordinary shape, and constructed of the usual materials B is the hammer attached to the plate by a screw, a; C is the lock-spring, the outer end of which is connected by a stirrup, D, to a dog, E. The screw, b, which connects the stirrup with the dog, passes through a curved slot, c, in the plate, \mathbf{A}, and into the hammer, B. The end of the dog, opposite the end through
which the screw, b, pasees, rests upon a stop d, which is secured to the plate, A. This stop catches into notches 1 and 2. The notch, 1 being for the half cock, and the notch, 2 , for the full cock. On the outer side of the plate A, and surrounding the slot, c, there is a circular recess, in which recess is placed suitable packing. The lower and circular end of the hammer, B, through the center of which the screw, a, passes, covers this packing, and bears against it. The object of the packing is to prevent moisture from entering the lock through the slot, c.
Operation.-When the hammer, B, is drawn back and raised, the screw, b, moves downward in the slot, c, and the spring, \mathbf{C}, is depressed the dog, E, moves forward till either notch, as desired, catches upon the end of the stop, d : when the hammer is fully raised, the notch, 2 , catches upon the stop; the notch, 1 , being for he half cock and the notch 2 for the full cock, as aforesaid. The hammer is let fall by the ordinary means of a trigger. The end of the dog on which the notches are cut, is made to bear upon the stop, by the spring, C , as wil be readily seen.
This lock prevents the entrance of moisture by means of the packing mentioned. The claim is for connecting the dog to the hammer by means of a screw, b, passing through thecurved slot in the plate, in combination with the packing which encompasses said slot. The main-spring and dog are thus placed on the inside of the lock plate, and moisture may be kept out. More information may be obtaine of Wm. Henry, Jr., Wooster, Ohio.

Patent Cases

Unstamped Patent Articles-Before Judge Betts, U. S. Circuit Court, New York City, May 11th. Chester W. Palmer against A. Allen and W. Nichols. This suit was brough by the plantiff against the defendants as the assignees of a patent issued to George H. Gray or a sash fastener, called Gray's Patent Sash Fastener, to recover $\$ 10,000$ penalty under the Patent act of 1852 . sec. 6 , which provides that all patentees or assignees of patents are re quired to stamp or engrave, or cause to be tamped or engraved, on each article vended or offered for sale, the date of the patent," un der a penalty of $\$ 100$ for each offence.
The defendants are assignees of the patent for New York City, and some other counties, and sold 21 dozen of the articles in question unstamped, at one time, in the City of New York. In defence of the action they proved hat the articles were not manufactured by them, but by Gray, the patentee, who sold them to the defendants.
The Court charged the Jury that the assignees of a part of a patent were no more liable under this act, for articles purchased by them, than any other purchasers, unless it appeared that he articles were so manufactured with their connivance, and that it was not the selling of the articles which rendered them liable to the penalty, but the omitting to put oa the stamp, and that if the articles were manufactured before coming into the possession of the assignees, it was not their duty to put on the stamp.
The Court also charged that the penalty wa $\$ 100$ for every separate article sold unstamped, and not $\$ 100$ for all that were sold at one time and that if they found that the defendants were liable to the penalty, they must give the plaintiff a verdict of $\$ 100$ for each article sold by them.
The Jury thereupon, after a short absence found a verdict for the defendants.
[Patentees must be very careful in stamping every patented article; the above named patentee is liable to a fine of $\$ 25,200$ for selling the bove named number of articles. There is no way whereby he could escape such a penalty, excepting on proof of their manufacture previous to the issuing of the patent.
Bell Telegraph-On the same date an injunction was granted by Judge Betts, on the omplaint of the U. S. Annunicator and Bell elegraph Co., against J. W. Sanderson and C. L. Mather, for infringement of their patent, unless the defendants, within ten days, give security in $\$ 5000$ to abide by the decree of the court, in $\$ 0000$ to abide by the decr.

Sirientific American.

Sinutific Ammerican.

NEW YORK, MAY 20, 1854.
What we do not Eat-Tobacco Man is a strange being-a compound of dirt and deity. In nothing, perhaps, is this more evident, than in his use of tobacco. It does not appear strange that a man should, by degrees, become accustomed to eat and relish a bitter plant, which at first he rejected with loathing, but that he should take some drug like tobacco, set it on fire, and make his mouth a fire pump, to draw in and force out the smoke, is indeed more than passing strange "'tis wonderful." It is no less fantastically droll, that he should grind up this same drug into powder and feed his nose with it, when reason and instinct require that organ to be kept profoundly clean, for the purpose of enjoying "nature's incense on the dewy morn," and for giving "utterance clear to vocal sounds." Perhaps there is a little more reason on the side of our universal national characteristic, "chewing the weed and spitting out the juice," but this habit, too, is no less strange than either of the other two. But strange as these things are, the surprise would not be great if its use was confined to a small number of the human family, but instead of this being the case, there is perhaps no other drug more universally and extensively used in one form or another, by both civilized and savage man.
The history-rise and progress-of the cultivation and use of tobacco is more like a romance than a plain unvarnished record of an mance than a plain unvarnished record of an
inanimate, bitter vegetable production. It deinanimate, bitter vegetable production. It de-
rives its name-Nicotina Tobacum-from Jean rives its name-Nicotina Tobacum-from Jean
Nicot, an agent of the King of France, who sent some of its seeds from Florida to France in 1560, and from Tobacco in Yucatan, from which it was first sent to Spain. It is generally held to be a native of America-indigenous to its tropical regions. Some, however, have doubted this, and consider it to be a native of both Africa and Asia, as savages have been found using it far in the interior of these continents; hence some modern travellers say, "it is impossible to conceive that its use and cultivation could have spread over such an extent of the old world, as it has since the New World was discovered." Be this as it may, the fact is ūiquestionable that it was unknown in Europe prior to the diseovery of our continent, and the inference is, that if it had been known to the inhabitants of Africa and Asia, it would surely, from the old established trade with these countries, have found its way at an earlier periodsuch as during the Roman Empire-into Europe. It was introduced into Spain and France from America in the beginning of the sixteenth century, and into England by Sir Francis Drake in 1586.
Since that time it has spread in the east into Turkey, Persia, India, China, Australia, the Phillipine Islands, and Japan. It has been raised with"success also in nearly every country in Europe; it is cultivated in Egypt, Algeria, in the Canaries, and at the Cape of Good Hope. It is, indeed, among narcotics what the potato is among food plants-the most extensively cultivated, the most hardy, and the most tolerant of change in temperature, altitude, and general climate.
When it was first introduced into Europe its use was opposed by Pope, Kaiser, and King, but although the knout was threatened for the first offence in using it, and death for the second, in Russia, it has marched over these enactments, and established itself in the imperial Palace-Czar Nicholas being now an inveterate user of the weed. Pope Urban the VIII. thundered out a bull against it; James the I. —pragmatical Jamie-wrote a counterblast against it, and both priest and pastor denounced it from altar and pulpit. But what signified the opposition of king and priest, to tobaccoit has conquered them all. Larger quantities of it are now grown in France, than any other vegetable; the Dutchmen-high and low-seldom have the pipe out of their mouths, and in Persia and Turkey, where smoking was declared a sin against religion, the people have become the greatest smokers in the world. In

India all classes smoke; in China the practice is so universal that "every female, from the age of eight or nine years, wears as an appen dage to her dress, a small silken pocket to hold tobacco and pipe.
It has been calculated that no less than $2,000,000$ tuns of tobacco are grown annually on our globe, and no less than 199,752,646 lbs. $-88,232$ tuns-by the census of 1850 , of that in the United States.
In 1662, the quantity raised in Virginia was $60,000 \mathrm{lbs}$. ; and the quantity exported in 1689 only $120,000 \mathrm{lbs}$., while now the whole product only $120,000 \mathrm{lbs}$., while now the whole product
of the country is more than a thousand times of the country is more than a thousand times
greater, and from present indications its use and cultivation are becoming more genera every day, for while it was cultivated in non of the Northern States, a few years ago, no less than $53,000,000 \mathrm{lbs}$. were raised in 1850 . We do not really know what lesson we can learn from the extraordinary history of tobacco Medical and other men have written against it but seem to have urged nothing very specific, but seem to have urged nothing very specific
excepting this, that as nicotine, (C.10, H.7 0.5 the same elements as sugar but combined in different proportions) the active prin ciple of tobacco, is poisonous in its iso lated form, the use of tobacco must be inju rious. The experience of mankind does not confirm this conclusion, excepting in cases of excessive use, which, like everything else, used immoderately, is injurious. And yet no later than last week we read in more than one of our cotemporaries, that there is now living somewhere in the State of Maine, an old lad 112 years of age, who, for half a century, ha been a most immoderate nose-consumer of tobacco, the stimulating effects of which seem to have forced her on, alive and cheerful, far beyond the common years of mortals.
The cigar seems to be conquering its way over all other modes and forms of using tobacco. Opposition to its use seems to promote its consumption, and it is now considered to be a common solace among all ranks and conditions -the poor pipe smokers only being prevented from using it from inability to buy.
While we are writing this, a Convention of Cigar Makers are in Assembly in Syracusethe central city of this State-for the purpose of taking into consideration their own casetheir remuneration for making cigars. We hope they will make no wordy war against their manufacture by machinery,-something which will be accomplished at no distant day, as a
number of such machines have already bee number of such machines have already been
built, and further improvements will no doubt built, and further improvements will no doubt lead to their success. In the Crystal Palace bacco from almost every State in the Union but the finest quality of this plant is raised in Cuba, the cigars made from it selling for $\$ 150$ per thousand. There can be no doubt but man could live cheerfully and well without using this plant in any form. Those who do not use it are as cheerful and healthy as those who do Its effects upon many are very exciting to the nervous system, and as it is not pretended to afford any nutriment; it may in a great measure be considered an article of luxury merely, costing our country an enormous amount every year. As a voluntary tax it costs the people of Britain and Ireland every year more than $\$ 20,000,000$, while it costs our people at least $\$ 10,000,000$. We are glad, however, that to bacco, and not opium, is so extensively used by our people; still, if it is an evil, it forms no excuse for its use to say, "it is the substitute for a greater." Every man, however, in this respect, should be a judge for himself; it is the duty of every man to temper his appetites and passions, and bring them into calm subjection to judgment and sound reason. The conclusion at which we have arrived, in view of the use that is generally made of tobacco, the vast amount of it that is consumed, and the great expense of its cultivation and manufacture-is, that it affords a matter for the profound study of the philosopher, statesman, and man of science.

American lnstitute.
The Annual Election for Officers of this Intitution took place on the evening of the 11th inst. The election was quite an exciting one.

Bullock, the opposing candidate, by a very large majority. A number of very excellent and able men, were elected for the other officers We hope the Institute will go on and prosper in doing good-make it worthy of its namesomething which it has not yet done.

The accompanying figures illustrate both sides of the new three dollar gold pieces recently issued. They are very beautiful in de sign, but while one side is very appropriately ornamented, the other is quite the reverse. The encircling chaplet, composed of wheat, corn and oak leaves-our natural productionsharmonizes with our tastes, feelings, and associations, but the female head of the other sidewhich our cotemporaries say is that of an In dian-has a Grecian face, and looks like one of those Aztec Princesses with a crown of peacock's feathers, that we see in pictures.What business has such a crowned head upo our republican coins? None whatever. If a
head is to be placed on any of our coins, why head is to be placed on any of our coins, why not have that of the President during whose
dministration it was issued. This, like th old Roman medals, would make our gold coins historical.

Living Weather Prognosticators-The Eclipse It is said that the woodcock in New Jersey is building its nest this year in open and mois places, hence some of our cotemporaries stat that old hunters predict a warm dry summer There are many prevalent opinions respecting the prophetic instinct of beasts, fowls, and in sects, but we are of the opinion that their in stincts lead them no further to prepare for changes of weather than the immediate pre monitions of every such change. Beasts birds, and insects, living in the open air, are more sensitive to the indications of coming storms, just as the Indian is superior to the civilized man in this respect, but from the pre sent month, we believe that neither man no animal can indicate or tell what kind of weather we may have during the next month. If the changes of weather followed after one another in continual and regular procession, then the signs of the opening of one year would be good for the whole year, but no meteorological re cord gives us any foundation, as yet, for suppos ing that there is any such regularity. The lesson we would learn from the change of habits in the woodcock this year, is simply this, that the spring, having been so wet and stormy, the wamps in the woods are too full of water for that bird at the present time to pursue the purposes of nature and rear its young.
We have heard some predicting a wet and tormy summer on account of the influence of the approaching eclipse of the sun. We do not know whether this will be so or not, but i we have a wet season, it will afford some evi dence of a regular successsion in the changes of weather when like influences are in operation. Thus in 1836, when an eclipse of the sun took place on the last Sunday of May-if we recol lect aright-we had a very wet summer, as we had a previous severe winter-the one of the great fire and heavy snows in this city. The crops, especially the corn, failed throughou most of the States, and as a consequence, the food was very high during the succeeding win ter-the one when the flour riots took place in New York. Instead of the United States ex porting wheat to Europe that year, we import ed it, and poor stuff the most of it was. But although we may have a very wet sum mer this year, and the crops fail in many States, in all reason we would not anticipate the in ability of our country to raise enough foodand to spare-for ourselves. The fact is, that Michigan, Illinois, Wisconsin, and Iowa which are now great surplus-producing States, were then unable to provide food for their new settlers-these States being then in their in fancy. At any rate, the present year will af ford a good opportunity for observing the effec
of the eclipse upon the weather, and of making comparison with the wet and cold summer season of 1836.

Yankee Lumbermen in Canada.
Since the close of the Baltic to a valuable timber trade, a great impetus has been given to that on the American side of the Atlantic great quantities have been shipped from the Potomac during the past winter, for France and the Maine Lumbermennever were so busy as they have been during the past season.But the greatest scene of lumber activity on our continent, for the past two years, we un derstand, has been in Canada. About two year's ago the Canadian Government threw open to competition an immense tract of tim ber land, lying on the bank of the St. Maurice midway between Montreal and Quebec. The Government of Canada was liberal in the terms which it offered. A tract of territory consist ing of two thousand square miles, covered with red and white pine, was divided into portion f fifty square miles, and the right to cut for a given number of years was sold at auction in Quebec in the month of July of each of the last two years. And a number of our Eastern lumber merchants availing themselves of the advantages then held out, bought tracts, and began operation on a grand scale. Messrs. Nor cross, Philips, \& Co., of Lowell, we understand, have now one of the largest lumber establishments in Canada. They have extensive saw mills at the junction of the St. Maurice with he St. Lawrence, and it is said had a thous and men employed by them in cutting \log the last winter. There were employed last winter in the timber territory named, six hundred pair of horses, and five thousand men.and never before did such activity exist in the North American timber trade. The old saying "it is an ill wind that blows nobody good," may e aptly applied to wars in Europe : although hey do immense evil to the people in those countries which are the scenes of strife, they benefit us in America, by increasing our com merce, and calling forth greater industrial ef fort.

Reaping Machine.
It was our intention to have published a se ries of articles on reaping machines in this volume of the "Scientic American," but we are compelled to delay them until we com mence our next volume. The reason of this is, that these articles are to be illustrated with excellent engravings of the various reaping machines, starting from the rudest implement of ancient days, to the most improved of our own, giving the history of each, and describing its construction, and the number of these ia so great, that we could not furnish them in this volume. As we desire every volume to be com plete in itself, it would not be prudent to com mence any series of articles that would require o be extended to another volume.
The History of Reaping Machines, which we atend to present, will be of great importance nd the only one of the kind ever set before the public through a periodical.

A Good Law for Philadelphia.
"From and after the first July it shall not be lawful to erect a house in Philadelphia-for a dwelling-without a yard in its rear covering at east 30 square feet of an area, and with a separate well-built cesspool. Such a law should e enacted for every city in the land. In New York the houses occupy less space than in London. This cannot be healthy. The wan of cesspool conveniences in connection with hundreds of buildings in this city, where females are employed, is the cause of a great amount of suffering and disease. A law like that of Philadelphia is much needed here.

Cure for Corns.
Mr. Cooper, in his "Dictionary of Surgery," has the following infallible cure for corns: Take two ounces of gum ammoniac, two oun es of yellow wax, and six drachms of verdigris; melt them together, and spread the composition on soft leather; cut away as much of the corn as you can, then apply the plaster, and renew it every fortnight till the corn is away.

American Association for the Advancement of science.
met in washington in the last week of APRIL, 1854.
Transparency of the Ocean.-Capt. Glynn, of the U.S. N., read a paper on this subject. Philosophers ashore, and philosophers of the forecastle, have wondered in all times as to the causes and extent of the color of the sea, and queried how far into it our vision could penetrate. Capt. Wilkes advanced the opinion that the transparency of the sea varied quite directly with its temperature. To this his observations did not allow him to assent entirely.
The surface of the sea must be perfectly tranquil and smooth. There must not be a ripple on it. So essential is this point, that during a cruise of four years, he only succeeded in sixteen observations that proved worth saving. Of these sixteen, in only one the water was ruffled by a slight breeze.
The next trouble was to discover what object would be most likely to reflect all the rays of light-what would be longest visible. First we tried an iron pot painted white. When we looked for it for the second experiment, the white pot was a black one again. Next we tried a sphere of hoops, covered with white cotton cloth. Before it was called for the second time, it was smashed into a cocked hat. Next we tried a mere hoop, covered with canvas. It was laid away on some old spikes, and when needed next, it came up sound enough, but of a bright yellow. At last we took a common white dinner plate. It was good enough. It was the brightest object we could find, was always handy, and was always clean, of course, seeing I took it from my table. It was slung so as to lie in the water horizontally, and sunk by an iron pot, with a line. The first experiment was tried April 4, 1848; the last one, December 22, 1850 ; everything wears out at last on boa.d of a man-of-war, and my last observation took my last white plate. The observations were taken wherever we
could get them—ranging over 200 degrees of latitude, in different oceans, in very high latitudes, and near the Equator. I have to assume, what doubtless I may, that they do not differ from what they would if taken all in the same place. At every station we noted in the connection the sun's altitude, the velocity of the current, the temperature of both the air and the water, and the number of fathoms at which the plate was visible below the surface. We took these observations from a boat, bringing the line on to its shady side-then leaning over, with faces almost touching the water, and eyes shaded from the reflected rays from the surface by the brims of our tarpaulins, we watched for the disappearance of the plate as it was slowly let down. The men were about as much interested in the thing as I. was-and, as sailors may have as good eyes as officers, each one took the observation, 一so this table of results is really the mean of the observations of a number of men, not of one only. The varying points between which it disappeared from the vision of all, and where all could see, never were further separated than the length that the line could be lifted or let down by a reach of the arm-not over four feet. The water varied thermometrically from 40° to 85°.
It did prove that the lowest degree of temperature gave shortest line of visibility, and it did happen that at the point where the water was the warmest, there we saw the plate at the greatest depth. On two occasions we saw the plate when it was 25 fathoms below the water's surface, and on one of these the water was at 85 degrees. On these occasions all noticed the extraordinary clearness of the water. To lay in the boat and look down, was like looking down from the mast-head. Objects were clearly defined to a great depth. Fish were playing about below us, whose movements were so distinct that it made the flesh creep to see them. On this occasion I tried if a contrast of colors would increase the visibility. I so placed the plate upon the pot that a periphery of the black surface surrounded the white plate, but it made no difference at all. The Commander remarked that he never saw the water
above 80 degrees of heat. He thought no sandy bottom could have been seen further
than the plate was. So he believed that the
maximum of visibility under water, under the most favorable circumstances, is twenty-five fathoms. But between the highest and lowest points of visibility, which corresponded with the highest and lowest points of the water's temperature, there were great variations, which showed no direct correspondence between the temperature and the line of visibility.
At the mouth of the Mississippi we find the water no more transparent than so much muddy water. The further we get from the points where earthy matters in large quantities are washed in, the clearer the water is. Now the Pacific, like the Atlantic, is a great whirlpooltide flowing entirely around its circumference. In latitude 20° on the west side of the Pacific, furthest removed from all stormy quarters, and where the ocean is stillest, we found the greatest transparency of water. Off Cape Horn, where eternal storms drive up the dirt torn by glaciers and icebergs from the regions around the Pole, the water was exceedingly turbid. With the thermometer at 68°, we got only ten fathoms of visibility.
Long Island Sound.-Charles A. Schott presented the abstract of a paper on the tidal currents of Long Island and its approaches, from observations in connection with the United States Coast Survey, between the years 1844 and 1848, inclusive. The great tidal wave from the Atlantic, which enters the sound between Point Judith and Montauk Point, is divi-
ded into two branches by the intermediate poded into two branches by the intermediate po-
sition of Block Island. And another portion of this wave enters New York Bay, and passing through Hell Gate, meets the wave from the east. The tides meet near Hewlett's Point. The variable limits of this meeting are Sands Point and Throg's Neck. It was found that the velocity of the flood stream was a little less than that of the ebb, owing to the discharge of the river water into the Sound. The average velocity of the tide in New York Bay was found to be 3 knots; in New York Harbor, 3 7-10 knots; in the Sound, 2 1-5 knots. The velocity in the Race (off Fisher's Island) was 4 7-10 knots; in Hell Gate, $59-10$ knots. These velocities vary, of course, with the size of the channel, (width and depth) and the quantity of water to be discharged. The total number of stations taken to observe the currents was seventy-five, and they generally occupied thirteen hours each.
Gulf Stream-Prof. Bache, of the coast survey, read a paper on the distribution of temperature in and near the Gulf Stream of the coast of the United States.
On the seaward line off Charleston, from the shore to sixty miles out, the depth increases gradually, till it acquires a depth of one hun. red fathoms. But it soon deepens with great rapidity, as it on the side of a mountain, until at about eighty miles out the ocean-bottom is more than six hundred and fifty fathoms from the surface. This continues forward less than ten miles, when the depth as suddenly decreasfathoms, which so goes on only a few miles, when it again deepens to about five hundred fathoms, with subsequent fluctuations. There is, therefore, a submerged mountain-peak or ridge between these points of a truly remarkable character. The differences in the temperature vary almost precisely according to the change of contour of the bottom, showing that the temperature at great depths is much modified by the propinquity of the ocean's bed. It appears that the Gulf Stream, while certainly not superficial, does not run to the bottom, for off Cape Florida, at twelve hundred fathoms, the water in summer is of a temperature of 38° Fahrenheit-a degree below the average winter temperature much further north
Course of the Gulf Stream-Lieut. Maury followed Prof. Bache. He showed that the stream varies its course according to the seaon, having a more southerly sweep in winter. The stream is more rapid off Cape Hatteras than Cape Canaveral, and never deposits the seaweed, with which it is so plentifully beset, on the western side. This was accounted for by supposing that the stream stands above the general level of the ocean, with its highest
sloping off like the roof of a house "each way This stream is what modifies so agreeably the climate of Western Europe, and at the same time causes its fogs. Storms that arise on the coast of Africa, trailing westward, fall into its influence, and sweep around its circuit. In
this stream the "San Francisco" was on the 26th December, and it was along its eastwardly current that the ship drifted. The Gulf tream is sensibly affected by the discharge of the waters in Winter from the Chesapeake Delaware and Hudson.
Meteoric Stones and Shooting St RrsDr. Lawrence Smith, of Louisville, Ky., read portions of a paper on the Meteoric Stones, with an account of some recently discovered. He exhibited several small meteorites, and some large ones. A fragment of one in his possession he showed, of which the whole body weighed over 60 pounds. It was found in Tazewell County, Tennessee. A large one from Saltillo, Mexico, lay on the table, weighing 260 ounds.
Mr. Bartlett (Boundary Commissioner) had described to him one specimen which weighed 600 pounds and its greatest length was five feet. These bodies are composed principally of nickeliferous iron with portions of cobalt, copperas, copper, and phosphorus. The iron generally amounts to 95 parts out of a hundred. But in all meteorites we find one combination of these constituents, namely: Shreibosite, of which there is no natural specimen on earth.
It was long supposed that these bodies wer identified with the shooting stars, but that er ror is of easy demonstration. For'in all the periodically returning occasions of shooting stars, there is not a case on record where the rall of meteoric stones has aocompanied them. Then we can obtain the elevation of the shooting stars, and without difficulty learn their veocity. They are often far beyond the circle of our atmosphere, and travel at the rate of sixteen miles a second, while we know that nothing can revolve around the earth at a swifter rate than five miles a second. Shooting stars then are cosmic bodies, revolving around the sun as a center. They are self-luminous too. But meteoric stones could not strike the earth in their fall, coming at the rate of sixteen miles a second, without producing very different impressions from what are recorded of their fall. Nor can these stones be self-luminous in our atmosphere. They are of heavy iron. They cannot be mere concretions of
nebulous matter as some have maintained. They have not the form that nebulous matte would assume on condensing. Evidently then they are notidentical with shooting stars.
They are not of terrestrial origin. The num ber of those who think that they are, is too limited to require a set refutation of that theory.
They are not of atmospheric origin, aggregated from different directions, hardened like hail, though from different causes. Their form forbids that suspicion. Whence then are they.
Dr. Smith evidently accepted the "lunar theory." They were masses thrown off with great force from the moon, revolving around that body until in the great eccentricity of their orbits, they fall within the circle of our atmosphere; once within which, and with velocity greatly retarded, our earth becomes their center. They may have been thrown out from the craters of volcanoes a long time ago, and been thousands of years revolving before their orbit brought them in contact with our sphere. Laplace and Cerago, who once held this theory, gave it up, but they were compelled to do so or surrender another belief of theirs, that they are identical with shooting stars. One-twentieth of the surface of the moon is volcanic, and if the craters, as revealed by the telescope, are only in the usual proportion to the highth and depth of the volcanoes, there need be no doubt that they have sufficient ejecting force to hurl large masses of volcanic matter to immense distances. Remember, beside, that the attracting power of the moon is but one-sixth that of the earth, and that bodies thrown from its surface experiense in consequence but onethrown from the earth's surface.

Look again at the constitution of the mete-orite,-made up principally of pure iron. It came evidently from some place where there is ittle or no oxygen. Now the moon has no at mosphere, and no water on its surface, or we should find it out by its refracting power.There is no oyger there then. Hurled from the moon, these bodies-these masses of almost pure iron-would flame in the sun like polished steel, and on reaching our atmosphere would burn in its oxygen until a black oxyd coated it ; and this we find to be the case with all our me-eorites-the black color is only an externa covering.
[According to the funny idea of D. Vaughan of Cincinnati, these meteoric stones, if thrown from the moon, ought to keep whipping round our earth in small rings of moon dust-he has put forth the absurd doctrine that the rings of Saturn are the dust of two moons, which having lost their balance, were hurled to the plant and dissipated into dust-now whirling round in the form of rings.
More About the "Killer Whale."Since Lieut. Maury read his paper on the fish, before the Association for the advancement of Science, Lieut. Porter, U. S. N., has written a letter on the subject to the "National Intelligencer." The following is an extract from it :-
In Lieut. Maury's description of the whale, he made some remarks on a fish of the above species called the "killer." This fish is described in "Porter's Journal of a Cruise in the Pacific." This fish is so well known to the old salts of the whaling trade and Pacific cruisers, that I have always thought it equally well known to the scientific. Having, on more than one occasion, been an eye-witness of the at tacks of this fish on the whale, I willattempt a description of it.
The killer is the wolf of the ocean, and hunts in packs, and their tall dorsal fin can be constantly seen above the water. This fish has always, as a companion, but swimming deeper, the sword-fish, and now and then can be seen the shark. On sighting their prey, which the killer sees at a great distance, the pack give chase; the unconscious whale is slowly moving near the surface, and occasionally spouting, as it were in sport, jets of water above him. But he now suddenly sees the "sea-wolf" near him. Instinct at once teaches him that on the surface he cannot be safe, and taking in a long breath, he flukes, that is, dives. But there has been another enemy watching him from the depths below, the "sword-fish," which now darts at him with the velocity of lightning and perforates the whale beneath with his long and spear-like nose.This sends him at once to the surface; here he again meets with his enemy, the "killer."
[The rest of it is a description of the maner in which the sword-fish and "killers" dispatch the whale, and at last make a feast on his fat body.
Taste and Smell in Chemical Investiga. rons-Dr. Hilgrand read an interesting paper upon the intimate connection between taste and mell. The Dr. called the attention of the Section to the fact, that if the nostrils are closed, the sense of taste is lost, and a person is unable to distinguish sweet from sour. He had made many observations upon the subject, and he wished others to investigate the phenome ${ }^{-}$ non also.
[We know that many chemists pay particular attention to taste and smell in qualitative analysis. These senses are given to man, and are just as useful as vision and hearing, though not so valuable. They are also capable of cultivation, and chemists would do well toimprove the advice given above. At the same time great care must be exercised in using the sense of taste, for we have heard it stated, that Sir C. McIntosh, an excellent chemist, had his sense of taste entirely destroyed, by tasting chemicals. It is not safe, either, to taste some chemical compounds.

[Concluded noxt week.]

Fifty miles of the Egyptian Railway has been opened for traffic. Passengers to and from India now travel on it. The British have thus got a shor

Scientific Memoranda.
On the Alcohol of Benzoic Acid-Cannizaro has found that the oil which results from the action of an alcoholic solution of caustic potash has the constitution C14 H8 O2. It is colorless, heavier than water, refracts light strongly, and boils at $204^{\circ} \mathrm{C}$. In its relations strongly, and boils at $204^{\circ} \mathrm{C}$. In its relations
to re-agents it behaves like an alcohol, the aldeto re-agents it behaves like an alcohol, the alde-
hyde of which is represented by oil of bitter alhyde of which is represented by oil of bitter al-
monds. By the action of nitric acid at a gentle heat the new alcohol is converted into oil of bitter almonds; the action of chromic acid converts it into benzoic acid. The vapor of the alcohol passed over red hot platinum sponge yields an oil which is specifically lighter than water and is probably C14 H6. By passing muriatic acid gas into the alcohol the liquid muriatic acid gas into the alcohol the liquid
separates into two layers, of which the upper separates into two layers, of which the upper
is the the chloride C14 H7 Cl. This is a highly is the the chloride C 14 H 7 Cl . This is a highly
refracting, strong-smelling liquid, heavier than water, and boiling between 180° and 185°.With caustic potash it gives chloride of potassium and the alcohol is regenerated. Warmed with an alcoholic solution of ammonia, the chloride gives sal-ammoniac and a crystallizable base which fuses at a higher temperature than Toluidin. By mixing a solution of the alcoholin acetic acid with a mixture of sulphuric and acetic acids, an oil is obtained which is the acetic ether of the new radical, C 14 H 7 $0+\mathrm{C} 4 \mathrm{H} 303$. This is a colorless liquid, having an aromatic odor and boiling at 210°. With caustic potash it yields acetic acid, and the alcohol.-[Ann. der Chemie und Pharmacie.
On Forming Vessels of Gold by the aid of Phosphorus.-The property of phosphorus, of precipitating certain metals from their solution, has long been known; and gold is among the number. M. Levol has used this process in forming gold vessels, so useful in chemical research. He takes the perchloride of gold, and places in it, at the ordinary temperature, some phosphorus, molded of a form convenient to serve as a nucleus for the vessel of gold. To give the phosphorus the desired shape, it is melted in a water-bath near $60^{\circ} \mathrm{C}$. in tempera_ ture, within a vessel of glass having the form required. After cooling it, the phosphorus is taken out solid from its envelope, breaking it if it be necessary. The precipitation of the gold or the construction of the vessel is then begun; and it finally remains only to remove the phosphorus by re-melting it and washing, by the aid of boiling nitric acid, until the last traces are removed.-[Silliman's Journal.

The Beard and Moustache in the Arctic Re-

 gions.Now let us start out upon a walk, clothed in well-fashioned Arctic costume. The thermometer is, say 25 degrees, not lower, and the wind blowing 2 royal breeze, but gently.Close the lips for the first minute or two, admit the air suspiciously through nostril and moustache, presently you breathe a dry, pungent but gracious and agreeable atmosphere. The beard, eyebrows, eyelashes, and the downy pubescence of the ears acquire a delicate, white, and perfectly enveloping cover of venerable hoar frost. The moustache and under lip form pendulous beads of dangling ice. Put out your tongue, and'it instantly freezes to this icy crusting, and a rapid effort and some hand aid will be required to liberate it. The less you talk the better. Your chin has a trick of freezing to your upper jaw by the luting aid of your beard ; even my eyes have of ten been so glued as to show that even a wink may be unsafe.As you walk on you find that the ironwork of your gun begins to penetrate through two coats of woolen mittens with a sensation like hot water.-[Dr. Kane's Journal of the Grinnell Expedition.

Sugar in the Living Animal.
One of the greatest discoveries of our day, says a French paper, is that made by Claude says a French paper, is that made by Claude
Bernard, of the constant formation of sugar in Bernard, of the constant formation of sugar in
the liver of animals. Feed an animal how you will-with food containing saccharine matters, and with food containing no trace of them, you always find the animal has, from the blood, formed sugar for itself. This sugar, which is
secreted by the liver, is, like all secretions, under the influence of the nervous system; you have only to cut what are called the pneumo-
gastric nerves, and in a few hours all the sugar gastric nerves, and in a few hours all the sugar
vanishes. The amount of sugar thus formed in every healthy animal may be increased by certain influences, and then it gives rise to, or is the indication of, various diseases. In one disease the quantity is so great that M. Thenard extraced 15 killogrammes of sugar (something like thirty pounds) from the secretion of one patient! Real sugar, too, and of irreproachable taste, according to Boussingault

MALONE'S HAND CORN PLANTER.

Figure 2.

Figure 1 is a perspective view, and figure 2 is a side section of one of the tubes of the of Tremont, Tazewell Co., Ill. This machine is small and light, not weighing over 10 lbs. , and is capable of planting, by a smart person, from 4 to 5 acres per day on smooth ground. Two crops of corn have already been gathered, that were planted by it, and it is now at work at the spring business the great agricultural State of Illinois.
A A represent two seed tubes made gradualy tapering to their lower extremity, and hav ing metal points, B B, which form the holes in the ground for the corn; these tubes are united together by the cross-pieces, CD. e e
represent two chambers in each of said tube represent two chambers in each of said tubes,
e being the chamber for the verticalslide, d, or covering piston, to work in, and c for the seed to fall through, as seen in figure 2. These two chambers run into one near the extremity; and thereby leave a space for the seed to fall into before being discharged, as seen in figure 2. The spring side, b, of the metal point keeping the corn in the chamber as long as desired, and also yielding when necessary, and allowing of its escape into the ground, the spring being operated upon by the vertical slide or plunger, d; it is connected to one end of a rod or arm working in a slot placed in nearly a horizontal position, and attached by its other end to one of the handles, K , fig. 1 , 一said handle having its fulcrum secured in the lower cross-piece, D. The arms and rods are joined, arranged, and operated in a similar manner, as knee lev ers, the plunger having a perfectly vertical movement. The handles of the planter are moved back and forth in the brackets, when it is desired to operate the slides. a is a horizontal slide working through the seed tube under the hopper; this slide is joined to one of the handles of the planter by an arm. In this slide two passages are formed for the corn to escape through from the hopper; these holes may be reversed, and both or one of the holes in the slide made to receive seed and deposit into the tubes. The horizontal slide, a, and the vertical piston operate at the same time, one receiving seed while the other is discharging it into the ground.
This machine is madelight and portable, and is operated and carried across the field by the handle, K. The farmer stands behind and at the center of the machine, and lays hold of the
handles with his hands, lifts and carries the ma-

who tasted it. But now attend to this: what

 Nature does in disease, man can do in the terrible theatre of experiment. Claude Bernard has proved that there is a very small region of has proved that there is a very small region ofthe spinal column (by anatomists styled the medulla oblongata), the wounding of which (between the origin of the pneumogastric and accoustic nerves) provokes this increased secretion of sugar, and if with a sharp instrumen you wound a dog or rabbit in this place, you will find that in a little while sugar has accumulated to an immense extent in the blood and er liquids.
chine from place to place, forms the impression in the ground by pressing the tubes downward by the handles, and then operates the slides and opens their seed passages by drawing the handle towards his sides, and forces the seed into the ground by moving the handles from his sides.
The horizontal slide, a, is like the slide valve on a steam engine; the seed passes down through either the one or the two openings in it, into c, as shown by the arrow, while the piston, d, pushes it into the ground. The handle, K , gives an up-and-down motion-raising and orcing down d, while it gives a horizontal mo tion to the valve, a. It is a very simple ma chine, and no doubt answers a very excellen purpose.
More information may be obtained from Mr Malone by letter addressed to him at Tremont

Manure for Strawberries.

The following is from a communication to the "Friend's Review," and may be very use ul to many of our readers:-
"The writer had a very productive bed, 30 by 40 feet. I applied, says he, about once per week, for three times, commencing when the green leaves first begin to start, and made the last application just before the plants were in full bloom, the following preparation:-Nitrate of potash, (saltpetre) glauber salts, and sal so da, (carbonate of soda) each one pound, nitrate of ammonia, one quarter of a pound-dissolving them in 30 gallons of river or rain water. One third of this was applied at a time; and when the weather was dry, I applied clear soft water between the times of using the preparation, a the growth of the young leaves is so rapid that unless supplied with water, the sun will scorch them. I used a common watering pot making the application towardsevening. Man aged in this way, and the weeds kept out, there is never any necessity of digging over the bed, or setting out new. Beds of ten years are not only as good, but better than those two or three years old."

Attraction of Compasses on Ships
The following facts will serve to show the necessity of the strictest attention to the ac curacy of ships' compasses :-
"A Cunard steamer, on leaving Halifax, had steered such a counge as should have carried her 30 miles east of Cape Race, in Newfoundland. The weather was wintry and foggy, and
the captain coming on deck in the gray of the
morning, found, to his horror, his vessel apparently rushing to destruction on an iron-bound coast. By instantly reversing the engine the vessel was saved, when an examination of all the compasses on board was had, and the cause of aberration found to be, a new iron tube which had been ${ }^{\text {placed }}$ inside the brass funnel of the saloon without the captain's knowledge, and thus the lives of many persons and the safety of a noble vessel jeopardized by a circumstance apparently so trifing."

итtванй пӧtces.

 vegetable food. To every student of natural history in
this ooun try the work is invaluable, and at present is
the only standar.
PRACTICAL SURVEYR,'s Gurbe-This is a new work

 nonthly at No. 6 John at.
 is the BEST PAPER
Each.Volume contains 416 pages of most valuableread.
ter, and is illustrated with over SOO MECHANICAL ENGRAVINGB Re The SCI LIF The
NAL of the
ARTB,
NAL of the
ARTB, SCIENCES, AND MECHANICS, interests of mechanics, mantracturers Each Number is illustrated with from FIVE TO TEN ORIGINAL ENGRAVINGB of NEW MECHANIOAL INVENTIONS, nearly all of being illustrated in the Scientific American. It also contains a Wexirir List of AMERIOȦN PATENTS;notices of the progress of all MECHANIOAL AND SOIENTIFIO IMPROVEMENTS ; practical directions on the ONSTRUOTIOM, MMXAGEMENT, à
MACHINERY, TOOLS, \&C. \&C.
It is printed with new type on beautiful paper, and be ing ad apted to binding, the subscriber is possessed, at the nd of the year. of a LARGE VOLUME of 416 PAGEA illustrate
ViNGS.
The Scientific American is the Repertory of Patent In Ventions: a volume, each complete in itself, forms an En. clopedia of the useful and entertalning. The Patent to every inventor.

