Scrimutifit Ammeritan.

Scientific ${ }^{\text {THR }}$ American,

 BY MUNN \& COMPANY.
8toker \& Bro, Philadelphia.
LeCount \& Strong San Yrancisoo, Oa
Cooka, Kinney
Coobe, Kinney \&Co, Franciaco,
Bitto.
B Dawson Montreal,
a. .
B Dawson. Montreal, त. E.
M. Bowllemet, Mobile, Ala.
E. W. Wiley, Neworlens
C.
M. Bo
E.
W
E.
M. M.
E. G. Fuller, Halifax, N. S. . .
M. M. Gardissal \& Co., Paris.

Responsible Agents, May also be found in all the principal cities and towns in the United 8tates.
Trems- 8 an -jear- $\$ 1$ in advance and the remain
der in 6 menths.

To Remove Chemical Marking Ink Stains from Linen.
Nitro-muriatic acid has been recommended for this purpose, but, without enteriny into the obvious demerits of this agent, which is neither fitted for general use, nor suited for cambric or fine linen, Boettger proposes a concentrated solution of Liebig's cyanide of potassium as a sure and harmless means of removing the stain of marking.ink from linen textures. In the preparation of this salt, it is essential that the ferrocyanide be as tree as possible from the sulphate of potash, to prevent the generation of a combination with sulphur during the process of heating, which would entirely defeat the object. Names and marks on linen and wearing apparel, of many years standing, may be totally and effectually removed from the finest cambric, even with out the slightest injury to the texture, by rubbing the marking gently with a rather concentrated solution of oxalate of potash. The red and black stains produced on the skin, by the solution of the salts of silver and gold, may be perfectly removed by a solution of the above mentioned salt. It is necessary, this salt produces ill effects if applied to open sores.

Legumin Cheese.

The Chinese prepare an actual cheese from peas, called "tao-foo," which they sell in the streets of Canton. In preparing this cheese, the paste from steeped ground peas is boiled, which causes the starch to dissolve with the casein. Atter straining the liquid it is coagulated by a solution of gypsum. This coagulum is worked up like sour milk, salted, and pressed into moulds to make cheese.

Florida Paint Root.
This root grows in great abundance in the flat woods, near the streams, and in the savannahs of the counties of Levy, Marion, and South Florida. It has a top similar to the flag, and a root about the size of a man's thumb, of various lengths, running horizontal, not far below the surface. It is very juicy, and of a deep red color. Hogs are exceedingly fond ot it, and fatten on it rapidly, if they are black, or have black hoofs. It is said by the old settlers that hogs with white hoofs seem to founder, and their hoof comes off, which causes them to perish unless fed well till they recover. Even when the animal has only one white hoof, and the others black, the white hoof comes off. The root colors the flesh, bones, and marrow, of hogs that feed upon it, and the urine becomes of the color of blood. There is no doubt this root may be substituted for madder, and become a source of no inconsiderable traffic to the people of Florida. Like the arrow root or compta-it grows spontaneously in great abundance and may be cultivated, if thought advantageous.-[Ocala (Fla.,) Mirror.
Little can be done without determination, and no great acquirement without patience and steady application.

SHIP'S SPEED INDICATOR.

Figure 1.
Figure 2.

The annexed engravings are views of an tight joint at the bottom; \mathbf{C} is a circular instrument for indicating the speed of ships at plate on its upper end forming the base of the sea, or boats on a lake or river, invented by I. indicator and firmly secured to it. Thi Z.A. Wagner, of the city of Philadelphia, who plate supports two other plates, D E, of simi has taken measures to secure a patent. Fig-
ure 1 is a side view of this instrument; figure $\begin{aligned} & \text { lar size and form, by means of pillars, } a \text { a } a \text {, } \\ & \text { these three parts form the frame for the indi- }\end{aligned}$ 2 is a vertical section of the same taken cating mechanism. A recess, b, is made in through the centre across the vessel ; figure 3 the side of the keel, K, of the vessel, to reis a top view of the same; figure 4 is a top ceive a part of the spindle, A, not confined in view with the dial plate removed; figure 5 is tube, B. The bottom of the spindle rests in a a horizontal section of the vane, and a part of step, c, within the keel, and its upper end the keel of the vessel, showing the recess in which the vane is received, when the instrument is no
like parts.
The parts.
This instrument is a fixed and permanent pring log consisting of a Vane attached to some part of the vessel below the water line, and with a spring attached to it with its ten sion acting in an opposite direction to that in which it .s influenced by the water while the vessel is sailing. This vane is connected with an indicating apparatus which may be placed in the cabin or on the quarter deck,
and which tells the speed of a vessel by a pointer moving round on a dial
A is the spindle of a vane, $F ; B$ is a tube in which is enclosed the said spindle. The length of tube and spindle should be from the bottom of the vessel to the cabin or deck where the dial and indicating parts are to be through the water would wind it up. The situated. The tube terminates with a water- toothed pinion, G , gears with a rack, J , which
is movable on the plate, C , to which it is connected by a screw, e, passing into the plate, and a loop, f, secured to the edge of the plate; a slot, g, is made in the rack to receive the screw, e and allow of the longitudinal motion of the rack. The loop, f is just wide enough to allow the rack to pass through it freely, but a spring, h, is secured to the plate, C , and applied to the back of the rack in such a manner as to force its face against one side of the loop, which is thus made to enter a space between two teeth, and will hold the rack firm in any position.
When the \log is in use it occupies a posi. tion nearly at right angles to the keel. The vane is brought into position for action by drawing the rack towards the right (as in fig. 3.) by a handle, i, provided for the purpose. The rack, J , being held by loop, f, holds the The rack, J , being held by loop, f, holds the
pinion in such a way that it cannot turn, pinion in such a way that it cannot turn,
hence the vane cannot move without winding or unwinding spring, H. The indicator dial is described upon plate, E , and the pointer, p, is attached to the upper journal of a toothed pinion, L, which works between the plates,
D and E . The movements of the D and E. The movements of the vane are transmitted to the indicator by an expan'ling lever, M , which has a toothed sector, O , at one end gearing with the pinion, L. That part of the lever which carries the sector is loose upon the spindle of the vane, so that it can be released when desired; it is also furnished with a tongue, j, by which it is connected with the other portion of the lever. The part, M. is t.rmly secured to the vane spindle and a piece, N. is fitted to slide longitudually on it, beins confiued by siuds, $h i$, working in a slot, l. The inmost end of the piece, N, has a notch, n, to receive the tongue, j, of that part of the lever carrying the sector, 0 . When the the tongue is in this notch the indicator is in communication with the vane, but when the piece, \mathbf{N}, is withdrawn far enough to leave the tongue, j, free, the indicator is released; stops, $s s$, are secured in the plate, D , to prevent the sector working out of gear with the pinion, and the indicator thereby losing its proper relation to the vane. A stop, t, is secured in the same plate to prevent the lever, M, being forced by the spring, H , or the action of the water upon the vane, to such a position as to carry the pointer backwards past the zero point on the dial.
To take an observation to determine the speed of a vessel through the water, the rack, J, requires to be drawn out (as in fig. 3) to such a position nearly at right angles to the keel; also when the indicator is connected, the spring, H , will be free from tension at 0 or zero point on the dial. The rack, J , is secured in this position, either by the side of the loop engaging between two of its teeth, or by a pin inserted through it close to the edge of plate, D, to prevent it moving inwards. The sector is then connected with the lever, M, by sliding the piece, N , to make it receive the tongue ρ, in its notch. The resistance encountered by the vane in passing through the water will be in proportion to the speed of the vessel, and will cause the vane to turn its spindle, and wind the spring, H , to such a tension as will exactly balance the pressure on the vane, when all the parts of the instrument will become sta. tionary. The pointer will then indicate the tionary. The pointer will then indicate the
speed of the vessel in knots per hour, accordspeed of the vessel in knots per hour, accord-
ing as the dial is laid out. When the obsering as the dial is laid out. When the obser-
vation is made, the vane can be turned back vation is made, the vane can be turned back
in its recess. The vane can also be properly adjusted to indicate the velocity of favorable or adverse currents, when the force of said currents is known. It can easily be attached to any vessel, and is both a neat and ingenuous instrument for the purpose intended.
More information may be obtained by letter addressed to the inventor, No. 29 Arch ter addressed to the

Srimfiat Amoricm.

MISEBTHNEOSS.

Inventors-The Sclenulfic America
The ohjucts of mechanical inventions are to furnish the comforts and conveniences o life, and this ohject has been accomplished successfully in most of the departments of mechanism. Inventors have done much, but it is their duty to do more; we are for from having approached that perfection which is a tainable; the field for improvement is a great field, it is yet unbounded, and we have n) doubs but inventors will yet change nearly the whole face of the mechanical world. They are a class of men whose perseverence and energy are alike notorious; their busi ness is like digying for gold, and their work
like that of the miners-some valuable im like that of the miners-some valuable im
provements being the result of accidental dis. covery, but a far greater number requiring great ammount of thought and experiment before they are brought betore the public Bacon says-" Antiquity attributed divine bo nors to inventors, bit conferred only heroic honors upon those who deserve well in civi affiirs, for the benefits of inventions extend to all mankind, but civil benefits only to paril. cular countries; and these civil benefits seldom descend to more than a few ages-whereas inventions are perpetuated through al time." And Dr. Herschel remarks, "that any accession to our knowledge of nature is seen so ner or later, to make itself felt in som practiral application. And a benefit conferred on science by the casual observation or shrewd remark of even an unscientific or illiterate person iufallibly repays itself with interes though in a way that might never at first have been contemplated."
He should be deemed as great a benefactor who brings into existence an article or machine which will make us wiser or happier, as he who confers a benefit upon the community in any otber way. But inventors owe a duty to themselves, while they benefit the world for many valuable improvements which have cost them hours of toilsome mental and perhaps physical labor, have been appropriated to public use, and the inventor left without the least remuneration for his services. We believe " the laborer is worthy of his hire," -and he is not the less entitled to it who la bors for the general good in the field ot inven. tion, instead of laboring for individual advantaye. Our laws have given to inventors an opportunity of protecting themselves and obaining a remuneration for their services, and they should do it; but to secure their right they must seek to protect them in season-as soon as their inventions are complete, or even as soon as valuable ideas are conceived, is the time to claim their protection; we shall render inventors all the aid in our power in per fecting their inventions by imparting to them the requisite informa ion, and in protecting them from piracy. The increased circulation of the Scientific American renders more attention to this department of our business in dispensable, but notwithstanding this, we are still fully prepared to carefully examine every The number of examinations of new inven. The number of examinations of new inven cions has also increased so as to require an ad promptly to all the numerous cases under ou charge. No case is, however, permitted to leave the office until it has passed the ordea ot our criticism. This is perhaps one of the principal reasons of our great success in ob. taining Letters Patents for new inventions We sometiones fail, but never for want of tha care with which business of this kind must be transacted. This extensive Patent Office business enables us to furnish the readers o the Scientific American with a great amount of valuable information.
Our readers are aware that we labor fo their interests, and they in turn labor for us A long list of subscribers is requently forwarded to us, with the assurance of approba tion and many thanks for the Scientific Ame rican, which wetkly finds its way to their homes and firesides, loaded with new improvements, new illustrations, and suggestions, it short, all that is valuable collected from our
immense resources, the whole scrutinized, cri tic ${ }^{1 s e d}$, and prepared for practical application

We have every inducement to prosecute ou nterprize with energy, to make the Scientific american the repository of science and truth and a journal of correct intormation in regard o the mechanical news of the day-a pubhumbugs, inconsistencies, and false theories, of which the present age is remarkable, as well which the present age is remarkable, as well
as remarkable for its great improvements and discoveries.

Recent Forelgn Inventions.

Hat to Fit every Head-Andrew Fulon, of Glasgow, patentee.-This improvenent consists in adapting to hats, helmets. and other coverings for the head, a fiexible padded lining which adapts itself readily to the exact contour of the head of the wearer and thus secures a good fit, while it also en ures all the ease and comtort derivable from the wearing of an easy cap. The lining is
held to the sides of the head by gentle springs held to the sides of the head by gentle springs
and does not come so close to the interior, but and does not come so close to the interior, but idmission of air for ventilation.- [Condon Mechanics Magazine
LWe commend this su'ject to the attention If our hatters, it is an invention of a most deirable character, and the hatter who first inroduces such an improvement among us hould, and no doubt would, receive a very beral patronage.
Improved Process for Refining Gold.A patent bas been recently t_{t} ken out by Mr. Petrie, of London, for an improvement in what is termed the "parting" process by reiners, and which is said to promise very imortant results. The refiners alloy, consisting ot one part impure gold and three parts silver yranulated in the usual manner, is placed in a number of small cells or cylinders, placed up. ight on an incline, between two parallel rails, which may, if desired, form flues, whereoy the cells are warmed while in action Hot nitric acid is kept continually dropping from a tap into the highest cell, and having passed through the mass of alloy, and through a false bottom, ascends on the other side of a
diaphragm, and overflows into the next cell; rom thence it fows into all the cells in succession. From time to time the upper cell is removed, and another, containing fresh alloy is placed at the bottom of the series, the whole being moved up the incline. By the time the nitric acid reaches the granular suraces, and as each cell is raised it comes constantly in contact with more energetic acid until, on arriving at the top, and before remo val, the whole is dissolved, and the gold left pure in a spongy state. There is also an ar angement for condensing the nitrous fumes which are conducted by stoneware tubes
through an apparatus called a gas collector through an apparatus called a gas collecto
into an oxidator. They are afterwards drawn off by pneumatic suction, are condensed into resh strong nitric acid, which flows out in a continuous stream for further condensation, or for immediate use.
Artificial Blocis for Hydraulic Puroses - The material called hydraulic lime senerally used for engineers work under wa er, is a silicate of lime, in a somewhat nas ent state. A discovery has been made by M. Berard, of Paris, of a most valuable pro cess tor manufacturing blocks for hydraulic purposes, and particularly submarine ones. The commonest argil is employed by the inventor, which is a silicate, with a base of alunina; a block of any required dimensions is, herefore, constructed of unburnt bricks, taken rom the field and stratified in layers, with he fuel on some piles of bricks forming a rating. An outer casing of unburnt bricks a hort distance all round the block is filled of the block, it soon rises, and heats the mass o a temperature which will soften argil, the ontraction causes sinkings and vacancies which must be filled up as they occur. When
ufficiently burnt, the outer casings, which will then be burnt bricks, may be taken down, and the block removed to its destinaion. It will be seen that blocks may be made of any shape or size, having no limit but the possibility of carriage; and, when the peration is properly conducted, the solidity of the substance is remarkable; it requires reat force to break them, iron instrument
mark them; and as concentrated nitric or sul phuric acid, or the most energetic alkaline so they will be indetructible under the actio of sea or any uther water.
Desilverization of Lead by Zinc.-Dr Karsten, a German chemist, several years ago made some experiments with lead and zinc, and found that when a mixture of these metals was allowed to cool very gradually, lead with a minute trace of zinc was found at the bottom of the crucible, and zinc with a small amount of silver at the top. It the lead contained silver, it was almost entirely trans. ferred to the zinc. Hearing that in Carmarthen silver is withdrawn from lead by means ot zinc, he resumed his examination of the of zinc,
ubject.
He found that silver may be entirely sepa rated from lead by zinc, and that the follow ing method gives the best results:-A tube o cast-iron $1 \frac{1}{2}$ inch in diameter is fitted to the cru:ible, so that the desilverized lead may be let off irom the bottom. One end of this tube dippiny nearly to the bottom of the crucible, uruished with a slide moving in goooves the edge of the crucible, so that it can be shu when required by means of a rod. In this way the strea n of melted lead may be regu lated, and the fall of level gradual and uni form. In the crucible were put 25 cwts . of lead, containing seven eighths of an ounce o silver to the cwt, and 4 cwt . of zinc. The whole was then fused, and stirred together for one hour at a brisht red heat. This large amount of zinc was used because it was inintendad to attempt a process of concentration in which the same quantity of zinc should serve to desilverize subsequent charges of lead. After the stirring apparatus was four hawn, and the melted mass kept freed from silver, was drawn off until only about 6 cwts . of metal remained in the crucible. To this residue a second 25 cwt . of zunc were likewise added, for reasons given below. A fourth, fifth, and sixth charge of lead were introduced and treated in like manner, 2 cwt. of zinc having again been added to the fourth charge. The lead drawn off, in each case, was entirely freed from silver.-
But when a seventh charge was introduced without an addition of zinc, the lead, when drawn off, still retained silver to an extent of g ths of an ounce to the cwt. The desilveriz ing of 150 cwt . of lead in this manner re quires 8 cwt . or $5 \frac{1}{\frac{1}{3}}$ per cent. of zinc, a quantity differing widely from that indicated by former experiments-namely, $1 \frac{1}{\&}$ per cent.
An addition of $1 \frac{1}{2}$ per cent. of zinc is quite sufficient for the perfect desilverization of lead when only one charge is worked. Thus
25 cwt . of lead may very well be freed from 25 cwt. of lead may very well be freed from
silver 42 lbs. of zinc, but the difficulty of se silver 42 lbs. of zinc, but the difficulty of se-
parating the smalı quantity of argentiterou metal from the desilverized zinc is so great that this plan is not practicable. On the other hand, there is a certain limit to the size of the crucible, which cannot be exceeded, and recourse must, therefore, be had, to a process of concentration. The silver is separated from the lead very imperfectly, if twice or thrice as much zinc as is required for one charge of lead is added at once, with the vie of making it serve for several charges. It is
likewise imperfect when, on introducing into like wise imperfect when, on introducing into
the crucible the several charges of lead, the it per cent. needed for desilvering the lead is added with each charge. It, therefore, with reference to the above example, the first melt ing is made with 25 cwt. of lead, and 42 lbs. of zi c, the second, third, tourth, \&c., charges (added to the residue in the crucible) must also consist of 25 cwt . of lead and 42 lbs . o zinc. The cause of the unfavorable result of the process attempted by the author lies in the necessity for stirring the melted metals The oxidation of the lead and zinc at the sur ace of the mass is very disadvantageous,
The argentiferous zinc obtained by this process al ways retains a portion of lead sufficlent for the refining of the silver af er the zinc has been separated from the mixture; and the alloy of silver and lead remains in lead is not sufficient for the per centage of must be added, in order that in the distilla. must be alded, in order that in the distilla.
distille, which is afterwards cupellediculties when suitable muflas are employed. The author had mufflos constructed which, except a slita of an inch in diameter, were quite closed for a height of 4 inches from the bottom. The slit could be closed and re-opened in the usual manner, when the distillation being completed, it was necessary to draw off the remainining argentiferous lead. Such a muflle was charged for each distillation with l cwt. of the metallic alloy of zine, lead, and silver. The product of four distillations of a mixture which, according to the most careful assays, containe 474 ozs. of silver, was 242 Ibs. of lead and 449-44 of silver. The loss of silver amounted, therefore, to $3 \quad 1-22 \mathrm{oz}$. ; his owing chiefly to the scattering or globules in the mufle, and it partly remain covered by subsequent distillations, washing;, $\& c$.
To Coat Iron with Tin.-The tin is first melted, with a stratum of chloride of zinc and sal ammoniac on its surface, and the iron or metal to be coated is immersed in the molten metal until sufficiently covered.

Great Industrial Bailroad Excursion One of che greatest and most interesting industrial entertainments came off on Thur day, the 16 th inst., which we have for a long time noticed. It was given by the distinguished firm of Rogers, Ketchum, \& Grosvenor, of Patterson, N. J., to their workmen. This firm is the most extensive locomotive en gine builders in the United States, and employ 800 hands steadily in the construction of engines, \&c. There appears to be a kindly good feeling existing between themselves and their workmen, which should especially characterise all such manufacturing establishments. At the time of the said excursion, the numerous intelligent and hardy machinists, engineers, \&c.; had just completed a large and beautiful locomotive engine, one of the best upon the continent; it was got up with despatch, and in a manner so highly satisfactory, that the proprietors, upon its com. pletion, proposed that the builders in person should make a practical test of its power and operation; nine cars were accordingly selected, to which the new engine was to be applied, and Mr. Hobbs, superintendent of the Union Road, placed in charge. The arrangements of the day were planned and carried out by the workmen of the company.and they were carried out with decided satisfaction. The procession repaired at an early hour to Congress Hall, the boarding place of Mr. Rogers, who was most enthusiastically greeted as the "Pioneer of New Jersey, in the locomotive line, and from thence to Jersey City."
The whole proceedings of the day evinced the most spirited, social and enthusiastic feeling which New Jersey perhaps ever witnessed. It was a great day for the mechanics of Paterson. It does us good to hear of a festival of this kind, as it speaks the teelings of the employers and the employed toward each other. Such generous noble acts are not lost to the company, they are duly appreciated, and will be returned four fold by diligence, enterprize, and contidence. Holidays of this kind might with advantage be much more frequent.
The locomotive first above referred to was maufactured for the Camden and Amboy Railroad Company. The locomotive engine works of Rogers, Ketcham, \& Grosvenor manufacture on an average two locomotive en yints, and from twenty to twenty-five cals for passengers per week. This is an immen: business, unequalled by any firm in the United States.

Notice to Engineers.
On our advertising paye will be found an advertisement of an engineer who wants a situation. We know bim to be a man of experience, well acquainted with marine enyines, knows how to plan and construct them. For a long time he has superistended the construction of marine engines, especially those for propellers, respectirg which his knowledge and experience are very extensive.
The New York and Erie canal enlargement is now to go on until completed-this canal as been in a half hanged state for ten years,

Goimtifir American.

Leather and its Interests.
Being a constant reader of your valuable paper, and feeling a great interest, a real pock ef interest, in every thing relating to leather -I real with more than ordinary interest your article on this subject, in the Scientific American of the 4th inst. It has long been American of the 4 th inst. It has long been I may say, reduced to an axiom, that "there is nothing like leather." But what is leather? would seem to be a question yet to be solved Wehster defines it thus, "the skin of an ani mal dressed and prepared for use," which would seem to be plain enough, until youturr. to his definition of "tanning," which is, "the practice, operation, and art of converting the daw hides of animals into leather by the use of tan," which would seem to imply tha "tan" was an essential ingredient in the pro Dr. Ure's idea, if I properly understand him when he says, "it is the skin of animals, so modified by chemical means as to have become unalterable by the external agents whic tend to decompose it in its natural state." tan or tannic acid is an essential ingredient in the production of leather, you will readily perceive that it is a misnomer to call the Preller" process of softening hides and skins tanning." Indeed I have no hesitation in say ing that "tawing" is a much better term, by which to designate the "Preller" process as the vegetables you enumerate as constituting the compound used by him, have little or no tannic acid in them; the minerals none at all change my remarks to what may more pro. perly be considered, the merits of the question pertaining to this Preller process. You say it is claimed that the leather produced by this procrss, is much stronger, and will wear much better." That the first half of the proposition, that hides and skins may be made tough er, by undergoing a process such as described as that of Preller's, than if they were subjec ted to the ordinary tanning process, will no be denied by any one, who understands the art or mystery of tanning. No, it is an indis putable fact, that the raw skin is tougher than after it is manufactured into leather; that is take two pieces of skin, of given width and substance, the one tanned and the and substance, he one taned and the other raw the raw than the tanned piece. So likewise the raw than the tanned piece. So likewise
is a piece of tawed skin tougher than a piece is a piece of tawed skin tougher than a piece,
of tanned skin; but that it will "wear bet of tanned skin; but that it will "wear bet-
ter" tor the ordinary purposes for which leater" tor the ordinary purposes for which lea
ther is used, will scarcely be admitted by so old a member of the "craft" as I am. N we profess to change the material upon which we operate, by chemical means, so as to render it less alterable by the external agent which tend to decompose it, in its natural state ; in short, to make it "wear better." The intelligent manufacturer and consumer wants something more than toughness in the quality of his leather-he wants supplenes and the nearest approximation to impervious n -ss consistent with a condition to permit the ready escape of perspiration; that is, wants an article which, while it will let in the smallest amount of dampness, will offer the least obstruction to the escape of that which is in. He wants an article about equi. distant from india rubber and Indian dressed or tawed (not tanned) buckskin or buffalo robes, a mean which I do not believe Mr. Preller, or any one else, can obtain from the use of the materials designated in your article, as those used by him. While I shall be, or rather should be, much pleased, to hear of any real improvement, in the manufacture of leather, from an experimenter, upon the Preller pro cess. I trankly confess that I do not to one moment anticipate such a result. S. S.
Dayton, Ohio, June, 1853
LThe author of the above has experimented a great deal in tatning, and is author of the and 289 , of Campbeil Morfitt's work on the subject.

Old Northmen Relic.

A spoon about the size of a rather smal table spoon, was lately dug up with some other articles near the head of a cove at New London, Conn, from a depth of fifteen feet
that depth by successive washings from the
surrounding hills. A N $t w$ London paper says it is supposed that they were left there by the crew of a ship of some of the "North. men " who visited and described the shores of Long Island Sound eight hundred or a thousand years ago. The spoon has been sent to the Connecticut Antiquarian Society and they have pronounced it of Danish manuacture, a composition of bell-metal and gold heart and an arrow head that are on it are very perfect; there are also three other maller finures that are scarcely distinguish able.

[Tor the Scientific American]

noticed in your valuable paper of the $4^{\mathrm{t}} \mathrm{h}$ an article from a western pen, about a large an article from a western pen, about a large
quarry of granite, near Little Rock, Ark., and what I have to say in relation to it is, simply. to add to the story, what I know to be un. known to many:- Within 30 miles of Littlknown to many:-Within 30 miles of Littl
Rock, is an extensive quarry of free stone o Rock, is an extensive quarry of free stone o
superior quality and while there in 1839, aw some Scotch stone cutters cutting out se veral Ionic capitals for columns. I noticed that the stone under the chisel and mallet of a skillful workman could be finished into anything that was beautiful.
About 3 miles from Little Rock are severa ridges or knolls, where I found an abundance of quartz of various sizes, sorts, and shapes hey were very clear, and a friend of mine ent some tu Pittsburgh, to be set in rings pins, and other articles of jewelry.
On the Ouichita River are extensive quar:es of oil stone of superior quality, which brings a great price at present among our astern mechanics; I have seen tons of them piled up in Little Rock for shipping.
At or near the well-known Hot Springs, ome 40 miles from Little Rock, there is found in large quantities load stones or magnets. used to amuse myself by dropping a smal piece of this load stone into a cask of nails and then take it out with nails hanging thick ly on it. There are doubtless many kinds o minerals in Arkansas that have not yet been found. When the Great Central Railroad is completed, then the tide of emigration to that part of the unknown west will begin to flow and I have no doubt but we shall hear of th iscovery of many valuable things that ar now unthought of

Reform our Railroad Bystem

A committee was appointed by the Legis lature of Connecticut to examine into the ause of the sad railroad accident at Norwal k made a report on the subject on the 7th inst The conclusions of the committee coincide with the views we have taken of the subject and attribute the cause of that accident more to a bad railroad system than to the inefficiency or bad conduct of any individual connect ed with the train which was precipitated through the opening of the draw bridge. The committee have acquitted the enginee of any wilful act in producing the disaster and plainly state that the danger was created in entire conformity to the express orders the company. The signal, they believe, was not sufficient, and the train was run at
speed entirelv unsafe.
The committee in their report also say, the public demand a rate of speed which on the oad as originally constructed can scarcely be run with salety. The road was con tructed too cheaply to warrant the highest rate of speed,-the grades are too heavy, the curves as permanent a character as they should be a large outlay has been made for a double rack, and still more is needed to remedy nany defects in the original construction of he road, which the Committee are informe by the President, the Company now have un der consideration. Another cause teuding to
produce this and other disasters is, the want of a thoroush supervision of the road by it officers. So far as the Committee could as. certain, the whole duty of supervision is de volved upon Mr. Whistler, the Superintendent; they have the fullest confidence in his ability and fidelity, but say that the duties are too great for one man, and thit the road would very much tend to insure proper road would very much tend to insure prope
obedience to rules on the part of employts,
and zeduce the chances of disasters. In con-
clusion the committee expressed the opinion that the weight of responsibility for the cala mity must rest upon the company, for no guarding more securely against the danger which were known to exist, and which were created by their own orders-against the negligence even of their own employees in such a place of danger. They say that considera tions of a pecuniary nature should not ope We prevent care
We believe that railroads can be built and trains run upon them at a velo ity of 80 mile per hour with greater satety than they now can on the majority of our railroads, at the rate of 25 miles per hour. But our railroad companies are not blameable altogether for our present ineffi :ient railroad system. It
was difficult, and still is t, obtrin heavy sub. criptions for the construction of railroads moried men want a dollar to yo tarther with 11: than a pound in Enyland, hence our cheap railroats. The daily papers of this city have buen tlooded with editorials and communica tions on the subj ct of railroad management since the Norwalk accident. We have not seen a really sensible article on the subject in one of them; every man seems to have his own favored panacea for the prevention of
accidents, such as some new way of manaying the signals, switches, or something else. The remedy for the evils of railroad accidents is well known to all who are practically acquainted with the subject; it is more money and although it is very true, as the report of comnittee says, that the weight of responsibility for the accident must rest on the railroad company. and that considerations of a pecuniary nature should not operate to prevent care, we do say that some of the responsibility must also be thrown upon the people for allowing any railroad of inefficient construction, in fixed and rolling stock to go into operation. Single tracks should not be allowed; the rails should be heavier and better secured than they are upon any of our railroads; all the tracks should be fenced in, the bridges should be of the most substantial character, and every measure and means adapted to perfect our railroad system. Every good engineer knows exactly what is wanted and what should be done to make our railroads more safe; we wish that our monied me.i-the companies, could be made to feel more deeply on the subject.
The New York and New Haven Railroad is under the superintendence of George W. Whistler, Jr., a very able and competent engineer, and so far as public opinion was understood up to the time of the Norwalk calamity, we think it was decidedly in favor of its general management. We do not altogether agree with the report that the supervision of the president is strictly necessary, as the superintendent is assisted by a number of subordinates which necessarily leaves him more time to look after the weightier affairs of the road. Neither do we see the force of the clause in the recent bill of the Connecti cut Legislature, which refers to the residence of the president, making it incumbent on him to live in Connecticut. What differenice can it make at which end of the road he may happen to be located. There is something in this which appears unworthy of a legislative body; it looks as if some one had conceived a personal prfjudice against Rubt. Schuyler, for it does not seem to be applicable to any other individua cting in a similar capacity. Whether Ro bert Schuyler ought to be president of this particular road is not for us to say, but we an say that he is an able and efficient man nd is well acquainted with the railroad in. erests of the country.

An Alleged Wonderful Discove
The following article is copied from the "Boston Cuurier." We regard it as a serioudu'y, in giving place to it, to express the hope that no oue will be thereby induced to rel, upon its recommendations, except under the anction of compstent medical counsel. It the discovery be all that is claimed, it is most valuable to the human family, and its author will merit the gratitude of the world : Curefor Virulent Small Pox or Scar batina and Meailes - A merchant and shif wner of this city has had the fullowing re
furnished by Mr. L. Larkin, member of the Royal College of Surgeons, and who vouches ror it as a " medicine that will effret a revo ution in the healing art, as reoards the pre vention and cure, not only of small-pix, but also of measles and scarlatina, however malignant the type, in a manner more efficient and extraordinary tban could have been antiipated even by the most ardent philauthropist."
"On the first appearance of tever or irritation ushering in attacks, whether occurring in families or large communities, the subjoin ed mode of treatment should at once be en tered on:-Take one grain each of powdered foxglove or digitalis (valuable in the ratio o its greeness-the dark should be rejected) and one of sulphate of zinc (this article is com monly known as white vitriol) These shou'd be rubbed thoroughly in a mortar, or other convenient vessel, with four or five drops of water; this done a noggin (or about four ounce.) more, with some syrup or sugar should be added. Of this mixture a table spoonful should be given an adult, and two easpoonfuls to a child, every second hour unil symptoms of disease vanish.
Thus conducted, convalescence, as if by magic, will result. The rapidity ot an event so auspicious will equally delight and astonish It may, however, be necessary further to note, that should the bowels become obstiucted in progress of the disease (an evil by no mean common) then a drachm of the compound powder jalap (formed of two parts cream o tartar with one of jalap) and one grain ot the herb, treated as above, formed into a pastil with syrup or suyar, should be given to an adult, and halt the quantity to a child. This imple mediciue shuts out every other form or article whatever, as totally unnecessary, i not pernicious.
The 'methodus medendi' of these medicines, capable of effecting results so gigantic remain now only to be given, and appears to be as follows:-The herb, by its anti-tebrile properties, lays hold at once of the fever, th prolitic source of woe, which it immediately strangles, whi'e tue zinc acts the part of tonic, instantly restoring the equilibrium."
Mr. Larkin adds:-" No emisrant or government vessel should hereatter be allowed to put to sea without a few pence worth ot these protectors, and it is further ardently hoped that, as the dearest interests of our common humanity are so vitally involved in this discovery, the press of all countries will sive publicity to this announcement."
LAs this is an alleged discovery, we, as one of the press, have given it publicity, but in doing so, let us say that we do not place such dependence on its "fever strangl ng "powers, as its author would have us believe it possesses.

Change in the Fisheries.
Formerly Newburyport had an abundance of codfishermen, but the mackerel busintss was more invitilig and more profitable, and as the cod declined, mechanical trades engayed a good share of the men, till now, vely tew remain. The old fishermen have died,
and the young ones are in other pursuits; ard and the young ones are in other pursuits; ald his year at least three-quarters are obtamed trom the British provinces, and the sprily nehing was in many instances abandon, rom the difls is being reduced by losses and sales, and no new ones take their placts, and yet there is a fallure of men.
The Provincials have learned from the tmericans, and greatly improved in their dishing operations: it they remain as at present, and the Yaukees are driven from the waters, they will have greatly the advantage, and the business must go to them

Paper Making in Norih Carolina
There are five papur mills now in operation Noith Carolina, and another with a capital $\$ 25,000$, is in process of erection, about six niles from Raleigh. The two mills near R_{d} leigh (the "Manteo" and the "Neuse" nills.) consume annually about one million tind a halt pounds of old rags; and the other our mills viz: at Fayetteville, Shelty, Lin. In and Salem, as much more , 0000000 of stock used annually in North Cd

Wrimtific amoxiem.

WW TMWTRNTONS

A new Lathe for Turning Hollow Ware. From the peculiar kind of cut required to turn hollow ware, no self. acting lathe has heretofore been successfully used for this kind of turning. It is commonly performed in a common lathe with a hand tool, and is very laborious, especially in turning ware of an oval form, where the hand of the workman must accommodate itself to the devistions of the surface, and be subjected to a constant jerking motion. The turning of hollow ware
differs from most other kinds of turning, as the differs from most other kinds of turning, as the principle object to be attaned a clear brigh surface, the wort is ald arned off should bert a turned off should be taken from all sides equa ly, even though the interior surface should b an irregular curve, the object being to remove the crust on the surface of the casting, so as to prepare it for the process of tinning.
The improvements made in these lathes ar the invention of Peter Teal and Charles Ty ler, of Philadelphi , Pa. The important fea tures of their invention are in the manner of holding and operating the cutting tool, and in the chuck which secures the ware in the lathe. The cutter is self-feeding and self-ad justing, and is held in its place by an arm from a slide frame, upon the lathe. It is made yielding to accommodate itself to the inequa lities of the surface of the ware by means of a coiled spring upon the frame, the depth of the cut being regulated by a guide roller tollowing tha cutter. The ware to be turned is held in a chuck of a peculiar construction. It is so arranged that the ware may be moved first with a circular motion for the purpose of turning the centre and bottom of the ware and then gradually taking an oval or elliptical motion as the cutter proceds toward the edge or ton of the article to be turned. The motion may be kat circular when the ware motion may be kept circular when the war ing, no attention by the workman being re quisite but to set the lathe for the kind of turning required.
Many parts of this lathe are too complex to describe without the aid of engravings, consequently we can here give but a limited idea of the invention, and its operation. Further information may be obtained of the assignees of the inventor, W. P: Cresson \& Co., Philadelphia, Pa .

Anil-Friction Washer for Journal Boxes.
David A. Morris, of Pittsburg, Pa., has ta ken measures to secure a patent for an impro ved mode of constructing washers for reducing the friction between the shoulder of the journals and the boxes of the wheel. The invention is r.ore particularly applicable to railroad cars, to prevent the excessive friction in turning curves; but it may be also applied to any kind of axle or shaft when it is required to avoid friction at the face of the box, upon the shoulder of the journal. The improvement consists in a washer fitting loosely to the journal between the shoulder and box furnished with a number of radial pivots, on which are placed friction rollers. When the axle is : unning tree from pressure in a straight direction, this washer is left quite free, but when there is a tendency to press upon the shoulder, the rollers in the washer run between the surfaces of the shoulder and box and tend to prevent the friction. By this method nearly all the friction is avoided.

A New Mode of Manufacturing Paint Brushes. A very simple and effectual mode of manufacturing paint brushes, without involving the necessity of driving the handle through the centre of the brush, has been invented by Adonijah Randel, of Williamsburgh, N. Y. The nature of his invention consists in placing the hair of which the brush is to be made, in a metal ring, and securing it therein by cementing or sizing the roots, so as to prevent the escape of the hairs, and then uniting the back end of the ring by riveting or otherwise, with a back plate, which receives the handle. The hair is most effectually secured in this manner, and it forms a solid brush; it is manner, and it forms a solid brush; it is
easily constructed, durable, and more conveeasily constructed, durable, and more conve-
nient than those in use. Measures have been nient than those in use.
taken to secure a patent.

The appara

epresented by the annexed engraving, is the phen in operation invention of R. P. Leland. of Grafton, Mass who has taken measures to secure a patent tor his improvement. Fig. 1 is an outside view of one edge of the laster. Figure 2 is a vertical central section of the same, the claw levers or holders being closed ; and fig. 3 is also the claw, lever, spring and box containing

Figure 1.
ear when in operation
A A represents the claw levers, which have the claws, $a a$, on their lower ends to take into the "uppers" in the manner shown in fig. 3. The upper part of these levers are made of the shape represented in figs. 2 and 3 , so that when they have been forced out and opened, as shown in tig. 3, they will, when Figure

Figure 3.

shown in fig. 2 , and thereby stretch the lea- |the claws to work in, as seen in fig. 2; this ther and draw it over the last; these levers trace rests on the sole, as seen in fig. 3, and have mortices or recesses, $c d$, cut in their top \mid keeps it down, the levers passing in and out portions, which form a box for the collar, f, between the legs, h, h, as seen in figs. 1 and 3 (on the end of the screw) to fit in ; also for a E is the left-hand screw for moving the le spring,, , as seen in fig. 2, by which theymay vers in and out; this screw working in the tions, passing inside the wheel and near its
spring being retained in said mortices, by attached to the levers in the manner shown in means of the box, D , which couples the screw means of the box, D, which couples the screw and two levers together, in the manner shown in the drawings, it being impossible tor them
to separate so long as the box retainsits proper place. This box, D, has two legs, $h h$, braced at their bottom by the brace, i, which has a number of holes, j, cut through it for ton. Mass.

Figure 1, in the annexed engraving, is a track, raise the earth and throw it into a se perspective view, and figure 2 is a transverse ries of buckets formed in the inside of each vertical section of the loading apparatus, for a new and improved self-loading cart, invented by Samuel Parks, and Francis C. Rue, of Warren, Illinois.
The cart is so constructed that two plows with mould-boards, turning in opposite direcattached to the levers in the manner shown in fig. 2. This forms a very useful as well as ef tectual instrument for shoemakers; it is one of those labor-saving machines which is required by good workmen.
Further information may be obtained by ies of buckets formed in the inside of each their revolution take the earth, thus thrown within them, upwards, by their revolution, to the top of the box, into which it falls, over an inclination of the bucket, and an inclined slide plate upon the top of the box.
ets, and E E an adjustable frame to hold the plows, D D, and by which they may be raised and lowered at pleasure by means of a cord I, wound upon a pulley in front of the body of the cart, extending over a pulley, H , and attached to the trame, E at G This frame is tached to the forn by turning the crank moved up or down the crank, J upon the front puley shaft. This shaft has a ratchet upon it, by means of which the plows may be adjusted to any desired depth of cut being made secure to the adjustable frame by bolts. This frame is prevented trom moving backward by a hook and staple, F, attached in any permanent manner to the under side of the body. One end of the buckets, C , is inclined to the external side of the periphery of the wheel, so that when the dirt is brought above the body of the cart, it slides down an inclined plane, upon an inclined plate fixed upon the top of the box, which is fitted up to the inner face of the wheel. From this plate the earth slides into the box. Theaxle, main parts of the wheels, body and tongue, main parts or the wheels, body and tongue, or This is a very imple arrangenent, ad should ne ioticed by be noticed by farmers and others interested Fig. 2

Further information may be obtained by letters addressed to the inventor.

Sawa without a Saw Sash
An improvement in the mode of hanging saws without a saw eash, and by which any amount of strain may be given them, has been constructed and the requisite steps taken to ecure a patent. This improvement is the invention of Charles Burleigh, of Fitchburg, Mass. The manner in which he accomplish es this object is by attaching to the upper saw cad two straps or chains, passing over strain ing and stationary pulleys attached to the up per part of the bed frame. These straps o chains also passing under stationary pullies beneath the saw, and are attached to the lower saw head or block. Levers may be substitu ted tor the pulleys, and the cords or chains attached to the top of the upper, and bottom of the lower saw head, and to the ends of the levers; by this arrangement of the invento the saw may be perfectly strained, and the weight and triction attending the working of the ordinary saw sash or frame avoided.

Improvement in Cultivators.
An improvement in these useful imple ments of husbandry has been made by Samuel Churchill, of West Henrietta, N. Y. The nature of the invention consists, in a peculia manner, of elevating and depressing the frame which holds the shares, and the shares them selves, by means of which they may be made to penetrate the earth the required distance and make deep or shallow furrows, as desired or be raised, and kept entirely from the earth when the implement is being drawn from one locality to another. The mode adopted by Mr. C., to accomplish this object is by means of levers and connecting rods or stirrups at tached to the frame, which are under the im mediate control of the driver. Measures have been taken to secure a patent.

By the late news from Europe it is sup posed that war is not far distant b=tween Russia and Turkey

ysintific almaxicm.

\mathfrak{E} cirmifific ${ }_{\text {marrican }}$

NEW-YORK, JUNE 25, 1853

Industrial Wordds' Fairs.
The most repulsive aspect in which men can be viewed, is in deadly strife-one man seeking to destroy the life of another-and et what is history but a series of descriptions in mashes; despots and mighty conquerors with their butchering hordes pass in glittering array from page to page. Man appears to be the most viscious of all animals in respect to the wanton destruction of his own species. Hatred and strife, because of the evils which they entail should be avoided by all wise men and all enlightened nations. In order to accomplish this object, the spirit of mutual good will should be generally cultivated. As means of accomplishing this ed the "World's Fair" of 1851, in London, as he grand pioneer ot a series of such exhibiions, which would rotate triannually amons all the civilized nations of the earth, and which would tend to bind them closer and
closer by the fraternal cords of an enlightened self interest, and honest emulation to excel in he arts of peace. Our hopes respecting such future results are now exceedingly faint. The
prospect of a World's Fair, one worthy of the prospect of a World's Fair, one worthy of the name in France in 1855, in America in 1858 and so on rotating among all the enlightened ations of the world, a cannot, we are sure, be realized. This year there are in two diffeent and separate countries, two Worlds Fairs in name, but only local affiairs in reali y. One is now open in the city of Dublin Ireland; the other is to be in New York
City. The Irish Crystal Palace is said to be City. The Irish Crystal Palace is said to be
exceedingly creditable to the people of Dubexceedingly creditable to the people of Dub-
lin, but we have seen no illustration of it excepting that funny one in the New York Daily Times, consisting of five o's, all in a row The New York Crystal Palace has yet to earn good name if it can. We, however, consider that the Crystal Palace of Dublin, and especially the one in our own city, barriers to future World Fairs. We hope we may be mistaken, but it is not possible that nations can unite periodically in great industrial exhibitions atter spending their strength and wealth in disiointed and extrordinary local efforts. We do not allude to annual State and county industrial fairs, as these are not attended with great expense to exhibitors, and rather serve to fit them for successtul competition among the nations; we only allude to very expensive fairs like the New York Crystal Palace which we consider anything but honorable to our country, as it blocks up the pathway to a future Worlds' Fair in America, one worthy of its greatness, and the genius and skill of its enterprising people. Let us look calmly at the case as it stands, and see if we have not good reasons, as lovers of o
ing deeply on this subject.
The New York Crystal Palace is the pro perty of a joint stock company composed of perty of a joint stock company composed of
mercharits, lawyers, and stock-jobbers. It was mercharts, lawyers, and stock-jobbers. It was
projected by the the American Commissioner projected by the the American Commissioner
to the Worlds Fair of 1851, and was designed to the Worlds Fair of 1851, and was designed
for money making objects; in fact, the project for money making objects; in fact, the project has been looked upon as such an excellent
speculation for paying good dividends, that the stock has been running up and down from par to seventy per cent above it. It has been represented abroad as a World's Fair-a na tional exhibition, instead of the fair of a mer cantile company, in order to make it high ly successful, hence the Queen of Engly successtul, hence the Queen of Eng-
land has appointed a Royal Commissioner to represent her Court in the person of the Earl represent her Court in the person of the Earl
of Ellesmere, who has come to our shores in of Ellesmere, who has come trigate appointed for that purpose, and a fine frigate appointed for that purpose, and
with a brilliant staff of joint Commissioners consisting of Charles Lyell Bart, and Profes sors Wilson, Dilke, Wallis, and Whitworthall distinguisbed men in the pursuits of sci-
ence. These men were no doubt appointed ence. These men were no doubt appointed
with a perfect understanding that they were with a perfect understanding that they wer
coming to a World's Fair-under national pa tronage-instead of the Crystal Palace of mercantile company. They no doubt ex. pected to find a tair worthy of the spirit our people, one that would be a taithful inde
of our country's genius and power; but in-
stead of finding a magnificent and large structure corresponding in dimensions with our great population-twenty six millions-they have found only an unt!nished but neatly designed building, placed so unfavorably that it signed builting, placed so unfavorably that it
is dwarted by a neighboring water reservoir, and surrounded with dust, dirt and groggeries, and surrounded with dust, dirt and groggeries.
We hope that when the exhibition opens, a favorable impression will be made upon those distinguished foreigners who have come here to view the handiworks of our people
At present things cannot but make a mos unfavorable impression upon them-but neiher our government nor our people are res ponsible for any disappointment in their ex pectations.

Present Condition and Temperature of the Planets Jupiter and baturn.
James Nasmyth, an ingenuous engineerinventor of the steam hammer, \&c., an excel ent astronomer, draughtsman, and painter as communicated to the Franklin Journal a copy of a paper read by him betore the Royal Astronomical Society, of London, on the subect indicated by the above caption. He assumes the hypothesis of the original molten ondition of the earth to be established, and oing back he attributes the evidences o ancient deluges to be easily explained by the ooling of the earth, the condensation of wa ter, and the falling in from time to time of the arth's crust towards the centre as our globe cooled. There was a time, he believes, owing to the heat of the globe, when no water could rest upon our earth in a liquid form, but as the crust of our globe cooled, some parts sunk down, the waters were condensed, and thus seas and lakes were formed. He believes that the conditions of cooling and condensation are now going on in Jupiter, and that Sa turn is so hot that no water rests upon it bosom, but surrounds it in vapor, of wh ich er rings are formed.
Mr. Nasmyth's views may be correct and they may not ; they do not at least explain all the deluge phenomena on our globe, nor can they answer all the objections which may be brought against them. For example is hypothesis supposes that all the matter o which the sun and all the planets is compose was once connected in a molten state, and tha the sun is still a molten mass. Now if Mr. Na smyth is correct, how does it happen that against all the laws of cooling bodies-the earth-far in the inside of Jupiter and Saturn cooled before these planets. The only an wer given is that these bodies are so muc larger than the earth; but that is not a sufficient one, as Jupiter revolves on his axis in ours, 56 minutes, and being twelve hundre city is more than twenty-four hundred times that of the earth; consequently his cooling action is exactly so much greater than that o he earth. His theory also cannot account or the absence of water in the moon, but would give seas and lakes to that satelite An inhabitant of the moon, if there were one and he a plutonist, would come to the conclusion by Mr. Nasmyth's method of specula tion, that our plaret was in a molten stat Eq. Lieut. Maury in his description the Equatorial Cloud Ring says.-A bett of were the clouds which overhang this belt lu minous, and could they be seen by an observer from one of the planets, they would presen to him an appearance not unlike that which the rings of Saturn do to us."
Here is a phenomenon explained, which in upiter and Saturn would go to prove those planets to be in a different condition from that set torth by Mr. Nasmyth.

Paid Fire Department.
The "Nonpareil," of Cincinnati, says the ystem adopted by that city, of paying the re department, works admirably. It has proved as efficient as the volunteer system,
and is attended with perfect harmony, economy, quiet, and order. It is stated that the ave used the steam engine with entire suc cess. Our readers will recollect we gave a weekse description of this engine but a few now to construct a system of telegraphic communication to give notice of fire. We have
security from fire; when will New York show like signs of spirit and philanthropy. The firemen of New York City are noble hearted or they would not labor with such zeal as they do, and with so little encouragement.

Lime Water-Cure for Carbonic Acld Gas.
A correspondent (Wm . Collier) of the London Mining Journal" imparts a piece of valuable information respecting the beneficial effects of lime-water to cure persons af ected with carbonic acid gas. He states that two of his workmen were employed to clean out a "carbonator,"-a large iron cylinder, 15 reet deep and 8 feet diameter, which was used at his chemical works, and through which a current of carbonic acid gas passed from a neighboring lime-kiln. This current of gas should have been shut off while the men were at work, but in this instance, by some neglect, it was not, so that when one of the men went down to the buttom to work, he dropped on his back, and could not answer the man at the top who was to assist at the operation. The latter made the alarm and said, "the other had dropped down dead." Mr. Collier immediately directed a man to go down and lash a rope around the body of the man at the bottom of the "carbonator," who was then hoisted out, but life appeared to be extinct. He was at once carried to the fresh air, and some fresh lime-water was procured, but it was difficult to get his teeth apart as they were firmy set. At last Mr. C. got his mouth open so as to introduce two tea-spoonstull of the limewater, which began to exhibit some effect. A little more was applied, which went down his throat, and he immediately, but imperfectly, began to breathe. A third time the lime water was given, as he was now able to drink, and he then began to breathe freely. He was then lifted up and made, with some assistance, to walk round about. In half an hour afterwards, he walked home, went to bed, slept, and next morning felt nothing the worse except his having a slight headache.
This is an important fact in chemistry, as it relates to life, its dangers. and preservation. Iv is wetl known to chemists that lime water
has a very great affinity for car bonic acid, and has a very great affinity for carbonic acid, and whenever it comes in contact with that gas it immediately absorbs it, forming a precipitate of the carbonate of lime, or if the lime water is kept still in a large vessel the carbonate forms in a thin scale on the top, such as on bleachers' lime and dyer's vats. In the case herein described, the lime water no doubt combined with the carbonic acid gas inhaled by the workman, and the carbonate of limean inert substance-was formed; it therefore appears to us, that lime water is an antidote to be employed tor those who are injuriously affected with inhaling carbonic acid gas.
Those who work at lime-kilns, where much carbonic acid gas is developed, have a remedy in the material which is continually passirg through their hands. Those who labor at charcoal pits, have also a remedy for the injurious effect of the gas of the coal, in a bot le of lime water. To make good lime waer tor the purpose, it must be prepared from fresh burned lime. Take about half a pound of fresh burned lime, and pour about five quarts of clear soft water upon it; stir up the aside for about two hours. The clear should
and then be poured out into clean bottles and well stoppered, so as to exclude all the air. Hot water is not necessary for this purpose, as lime is as soluble in cold, and a quart will hold about 32 grains of lime in solution. Those whose business leads them to work much over a charcoal fire, will find it for their advantage to have a bottle of lime water always at hand. It would be well for a person who is a bout to descend into a well to clear it out, first to throw down a few pailsful of tresh lime water, in order to absorb any free carbonic acidgas which may be at the bottom. On three separate occasions we have been severely affected with carbonic acid gas, by working over a large charcoal fire, and although we were well acquainted with the atfinity of lime water for it, we never on any of those occasions thought to try it as a remedy. The substances we used were emetics,
the head, and by chafing the chest. We hope this notice will direct general attention to this subject; every thing useful connected with the preservation of life-a remedy for an ill-should be known and read of all men.

Events of the Week.

Fuel Consumed-Grain Ground.-As we often have enquiries respecting the amount of fuel necessary to drive a steam engine, according to the amount of grain which the engine will grind, we would state that James R. M. Stewart, of Knox Township, Ohio, has published a statement in the "Steubenville Herald," Ohio, which says that twelve bushels of grain were ground with one of coal consumed in an engine erected by Nathan Cope \& Co., of Salineville, Ohio. The engine is a high pressure constructed with some improvements, invented by N. Cops, an excellent engineer. His engines, we have been informed, are the most economical of any erected in central Ohio.
Tea Culture in America,-The "Rochester American" says that a gentleman who has carried on both the culture of tea and the manufacture of tea from their leaves, for years, and some of the time employed two hundred men at the work, has left that place, after an extensive examination of the soil and climate of the South, for China and the East Indies, expressly to import a stock of young plants, superior to those cultivated by the late Dr. Junius Smith, at Greenville, South Carolina. We have no doubt but the plant can be cultivated in some of our Southern States, but the question is, can it be cultivated as economically as in China. We cannot tell; nothing, however, surpasses a fair trial in testing the question. There can be no doubt but a very superior tea can be cultivated in our country from any which we now get from China, as we have been creditably informed, by some who know the fact that none of the first quality comes here.
A Reform Carried.-On Tuesday, the 7th inst., the citizens of New York voted to adopt the amended charter, and did so with such hearty good will, that out of 40,000 votes cast, only 3,000 were adverse to the reformed charter. It is believed that the new charter will cure many of the ills with which our city has been afficted for a number of years, by unscrupulous magistrates.

What is doing to the Ericsson.
The work of removing the machinery of the Ericsson was completed last evening. This afternoon she is to be towed from her dock in Williamsburgh to the foot of Thirteenth street, North River, for the purpose of receiving her new and powerful engine and other machinery, nearly all of which is in readiness to be placed on board. The shaft, bed plater, and water-wheels are the only parts which have been retained in her. The owners are confident that the Ericsson will be in readiness tor sea the 1st of September next."
The above is from the "New York Tribune;" we have quoted it to show that we have no artnor part in making up unfavorable reports respecting the splendid success of the Ericsson. The best thing that could be done with this ship would be to put a pair of good steam engines into her; perhaps this is the very thing that is to be done, but as Capt. Ericsson says." this is not a proper subject for discussion at present.'

Communications.

We are always glad to receive communications from practical men upon subjects suited to the character of our journal; we reserve to ourselves the right to use them or not, but we cannot undertake their preservation. A copy should always be kept by the write who desires to preserve his communication None but those familiar with the details of editorial office can understand the difficulty ways .taking good care of manuscript

The English papers speak in glowing terms of the "North Star," Capt. Vanderbilt's steam yacht. Her performances across were excel ent. Her over-head engines were the sub ect of severe criticism-on the whole not un avorable. Her hull was prononnced to sur ass that of any English steamer tor beaut

Eeportel Offciallly for the Scientific America, LIST OF PATENT CLAIMS
 Cotrisg

 cifed

 ment adrawia
tually
grasens or orent
stram.

 of the tre place, and a recess in one or both of the
jiants of the fere place fur the door or doors to slide

 receive the same, as set forth.

 fore the geets on bot sides oit the table, in com
nation with the said endless band couve yers.

 replaced, as set forth.

 tise from being spliotered by the cutter, or chips
Whan
wnd hever are forced through and driven out oan the

 dramiog for ward, add carry ing im mediately uuder
neath ine delivery follo mer the boards or platiorms

 sec nd, the arrangoment of the plates or platens.
in such retation tw their support tund peratatiog me me

 tion of ubat, and ant an acite eonal
manulacture of glas, as set forth.

 substitute for
other purposes.

O A New Car Ventilator.

 One of our daily papers thus describes method of car ventilation lately introduceon the Buffalo and New York Railroad, which is the invention of Dr. Foot, of Buffalo :"In the centre of the car there is a box about four feet high, by two feet and two and a half in its dimensions. In this revolves a
fan wheel, on the circumference of which are teeth about half an inch long. This whee moves in water to the depth of the teeth, and of course keeps a thick spray in the box when the car is in motion. The wheel is driven The air is sucked into the box at each side by the motion of the tan, which forces it through the spray into a conductor, which connects in several places with the car by means of ventilators, but in its passage through the spray it loses its dust and comes up pure. The ca windows are to be shut in very dusty wea-
ther, and the air for breathing, pure and cool ther, and the air for breathing, pure and cooo,
passed through water, is to be thus furnished. The press of arr made by the tan is so great that it will hold a hat suspended over one of the holes out of the top of the car The experiment was successful to such a de
gree that it ought to be examined by competent judges."
[This plan strongly resembles one described on page 340, Vol. 7, Scientific American, in vented by Harvey Law, of this city. The
description to which we reer says: "M description to which we reter says: "Mr.
Law remedies the evil ol dust entering the cars by bringing the air in contact with revolving moist surfaces in troughs below the cars, and they take up all the sand and dust out of the cars cool and pure." The idea of extractivg the dust from the air to supply railroad cars Mr. patented to James Cummings in 1848, as applied to Spark Arresters.
Another Car $\mathrm{V}_{\text {entilator-Another mode }}$ of car ventilation has been introduced on the Naugatuck Railroad, Conn., by Messrs. At
woad \& Waterbury. The nassenger cars woad \& Waterbury. The passenger cars of
a train are all thrown into one long saloon by a train are all thrown into one long saloon by and, the windows being kept closed and the train opened at the rear, a strong current of air is received just over the engine through
pipe or bag, as wide as the train, and some six to twelve inches deep, which passes in at the top of the front car, and so along throug all the cars, and out at the rear.

Flying Machine.
We learn that nearly all the work of Mr
month it could be made ready for its voyage in open air' A little more money, however is needed to complete the arrangements, and a iberal interest is promised on the investment the proprictor having no doubt whateve the people at large have not the same degree of faith that Mr. Porter has, and therefure of faith that Mr. Porter has, and therefore
are reluctant to take part in the enterprise.

The Rotary.

On Saturday, June i1, we had the pleasure of making another trip up the North River with Ebenezer Barrows, Esq, in his beautíul lit:le steamer "Rotary," and from her performance on this occasion, we see no reason to alter the opinion expressed in No. 3, of the present volume, which was written arter the first trial trip of this little boat last sum that time, and the enuine, although nothing has been done in the way of repairs, and not a screw has been disturbed, works even bet er than on that occasion, when we felt called upon to express our admiration of the smooth ness, ease, and silence of its movements. Not
a sound being audible but the escape of the exhaust steam-the engine working on the high pressure principle. It is believed that the packing fits better now than when it first tarted. It must be remembered that this is the first engine ever constructed on this prinple, with the exception of one 80 small as to be a mere toy, and though it has been usual to make allowance for the defects of a firs machine of peculiar construction, it is not ne tice of the "Rotary," we gave the dimensions of the engine, recapitulation of these is therefore unnecessary, further than to remark that the whole area of the steam surace operated whole area of the steam surace operate at one time, is but 54 square inches, and
upon he average pressure of steam on this occasion was certainly not more than 60 lbs per square nch ; we should think much less, but as it varied considerably during the trip; we can not be positive. It must be admitted that the above area of steam surface is very small to ionate beam, draught, \&c., yet during some portions of the trip, the speed obtained, consi erably exceeded ten miles per hour, the enine at the same time working pump and blower. The consumption of fuel is very mall, we are informed about 110 lbs. per hour. One of the most remarkable features
in the operation of this engine is, if we may in the operation of this engine is, if we may
so express it, its perfect obedience to comnand, the reversal being effected by simply hanging the position of one handle, which changes the direction of its revolution without any clatter, or indeed the slightest per ceptible sound or jar. The trips made by the Rotary have established the fact that this engine pertorms its duties with a very small expenditure of fuel, that its operation may be controlled by a child, and that it will run for very long time without repairs. As it may e constructed cheaply in the first instance, it may be said to possess all qualities desirable in an engine. See engravings of this engine No. 4, Vol. 8, Scientific American.

Maryland Institute at Baltimore.

The Sixth Annual Exhibition of this Institute will be opened in the City of Baltimore on the 3rd of October next. Articles irtended for the Exhibition will be received on Monday the 26th of September, and those designed for exhibition only will be received during that week, but those deposited for competition and premium must be entered before Thursday night, Sept. 29. Particular infor mation in regard to the arrangements and ma agement of the Institute may be obtained by addressing John S. Selby, Actuary of the M
I. I. Baltimore, Md. I. I.: Baltimore, Mc

Our readers are that this Ins itutesure of the high acter that this Ins'itute sustains, and we have no doubt that this display will equal if not surpass that of any tormer year-it will be
one of unusual interest and utility. The off ers and managers are men well qualified to ive satisfaction to exhibitors, and they will se every precaution to give confidence and insure harmony and good feeling. The Hall in which the Fair will be held, our readers will remember, was described on page 32, Vol.
beautiful edifice, and will probably accommode who may wish to offer the products servation, ingenuity and taste por public or before Oct. 31
A convention of some of our Southwestern States. just assembled at Memphis Tenn., has declared by resolution, that Cuba should be ours of a necessity.
Rock salt is said to have been found in the eighborhood of Rome, Ga.

SO COREKSPONDENTE

cutters constructed precisely the same as goun not :ew ; the indizatoris the same as Ely's, whith was invented four gears agy Morse \& Mantfields sours for wagon's, the difference in application is not patentalle.
K J. M, of Savanab-We are not positively sure
hat either invention named in your letter could be patented The patent fee in your letter could be 3500 ; no one but the inventor could take the pa-
H. B, of $\mathbf{N} . \mathrm{Y}-$ We do not see why your improved valve would not work well. We are doubtful
about its possessing any patentable features, this sou can determine by an application for a paten W. B , of Geo. - We bave reen an electro magnetic yours, only the wheel was on a horizontal shaft, and the stationary magnets secured in a frame around it; the magnets on the arms were permanent, how. believe gou could not obtaina patent.
I. M I , of Mass.-We lise Bourne best, and recommend it, but examine the two for yourself :-
Hodge is not out of print. J. C. B., of Wheeling-We would not like to give you an opinion without having practically tested
the two kinds of zinc. Which we have not done; we consider the Jersey zinc equal to any other ; this opinion is founded on examination merely. G. V. McD of Ct -The rotary cutter and mould would be an infringement of Blanchard's patent.
Jek. Mr. J. A C
this number.
J. A. S., of Pa -What you call the backward current is the effort of the divided water to unite, which, in our opinion, does not affect the action of against extending the paddles from the side of the ${ }^{\text {ship. }}$ J.
J. J. P., of $\mathbf{0}$--The number of patents which have boen issued on straw cutting machines exceed one
hundred; the claims of all of them would cost more than you would feel willing to par, undoubted; our charge for copying claims is $\$ 1$ each.
E. B , of Wis.-The Wilson Sewiog Machine, illustrated in No. 38, present Vol, is just the machine
you require for sourkind of work. The objections you adranced to the other machine, are obriated in Wilson's.
II. W. 0
II. W. O., of Ct.-We are not practically acquainted with any substance that will unite two pieces of
horn together, water-proof; still it is our opinion horn together, water-proof; still it is our opinion
that common gutta percha cement will do it; try the experiment.
R. S, of Conn.-We have never seen gour plan carried out, but the exhaust steam has been introduced into the furnace. Your plan is good, and does
not infringe on any patent, but we do not beliere it
J. G, of Ct.-Use lac dissolved in alcohol. J. J. N., of Ohio-The best thing you can do is to cumstances, and if you could and some person sho has tried one, his experience would be of service to you; we could say nothing about recommending it or any oth
principle.
. C, of R. I -We have not the slightest confidence in your alleged improvements in balloons as
embracing anything useful ; if you have a different embracing any thing useful; if gou have a different
view, the only way is to build and test the inrention. vice for cutting grain, which appears to be new and an application for a patent. C. T M, of Miss.-A mod
from the daguerreoty pe.
se shall attend to the Money received on account of Patent Office busi. ness for the week ending Saturday, June 18 :

Specifications and drawings belonging to parties
ith the following initials hare been formarded to
une 18:-

$\mathfrak{S c i m t i f i c}$ ammericno.

Scientific American.

Old Civllization-..Layard's Nineveh
Many shallow philosophers entertain the notion that man commenced his existance as a wild savage of the woods, and that his progress has been step by step to his present ele vated position in modern civilization. N man entertaining such opinions can retain them after reading Layard's Nineveh and Babylon, a work recently republished in ex cellent sty le by the great American house of Harper \& Bros. of this city. At a time far anterior to that of historical record, excepting what we have in the Sacred Scriptures, there were races living and dwelling in Asia, who were highly civilized, and who were ac quainted with sculpture, architecture, music and civil policy; a race who built splendi palaces and adorned them with some of the choicest works of art, of a kind which have been thought by many to be but recently dis covered. The saw, the shovel, and the axe instruments in general use among all nation now, were also used by the serfs of Nineveh and Babylon; the speaking trumpet was even known in those days. In the illustrations of this book there is a representation of the mode by which the ancient Assyrians moved heavy bodies. A collossal winged bull is represented to have been placed on a sledge having rollers, and drawn by great bodies of men pulling ropes. Another body of men are represented as assisting with levers, and Mr. Layard remarks that this was the plan he employed himself to remove the same piece of sculpture (which is now in the British Museum.) The old Assyrians were acquainted with making twisted rope, an art of which their descendants are utterly ignonant. The builders of the Assyrian palaces employed large slabs of alabaster, on which are representations of captives drawing thes huge slabs, many of which are believed to be the forefathers of the present race of Jews. But however skillful they may have been in moving large stones, it would no doubt have done them good had they been permitted to see how us Yankees make frame houses tra vel through our streets.
The inscriptions on alabaster slabs and blocks, discovered by Layard, have been translated by Col. Rawlinson and Dr. Hincks, and corroborate the correctness of the Bible, and what is very remarkable, the translation of the stone writing, agree exactly with the sacred text in stating the amount of gold (30 talents) taken by Senacherib, from Hezekiah, King of Judea. A chapter of intense interes discovery of arched drains, vases, and kettles ot copper; bronze bells, bronze cups; ivory and mother-of-pearl studs, fit for the shirt bo som of a modern beau; a bronze strainer, \&c. in short, the Assyrians appear to have been
better acquainted with the making of bronze better acquainted with the making of bronze
vessels and figures than the moderns. Glass vessels and figures than the moderns. Glass
bowls were also discovered, but what is more interesting, is some picks and saws made of iron. This metal was long supposed to be unknown to the ancient Asiatics. Among the glass articles discovered was a rock crystal lens, with opposite convex and plane faces. It is the most ancient specime
We have long entertained the opinion that savage races are blasted limbs torn from the trunk of a higher civilization, and this book deepens our conviction respecting the correct ness of this theory, opposed as it is to the jargon of a shallow, unphilosophical, but declaiming sect of the present day, but agreeing with every deduction that can be drawn from the remains of ancient cities, roads, \&c., found in every part of the world.

Artesian Well

The artesian well on Court House Squar has reached a depth of 475 feet. The water now flows from the top, running a stream of about two gallons a minute. The water is excellent, and (which is somewhat unusual at that depth) as cool as ordinary well water The workmen are now drilling through rock, below which, the skiltul superintendent has strong hopes that a copious supply of the genuine fluid will be found.-[Montgomery genuine fluid will
(Ala..) Journal.

For the Scientific American.) Entomology.
 nued from pag

. Aphanirtera- (Hidden Wings.)

This orc'er embraces but one family, th Pullidae, or Flea tribe. These pigmy tor mentors are suctorial, of minute size, have only the rudiments of wings, will drag twen y-five times their own weight, and leap tw hundred times their length. The rostrum is etareous, inflected, and armed with a sting The Hungarians put them to flight by greasin their linen, which disgusts the vermin; and Queen Christina shot at them with a canno of liliputian caliber. The jigger or chegr (represented above magnified), is a West In dian species, sma!ler, but more hateful. It ge-
nerally attacks the feet (preferring those of nerally attacks the feet (preferring those of foreigners), and nidificates between the skin and flesh, often rendering amputation neces VI.
Vi. Aptera-(Wingless.)

Podura Villosa
These parasites connect true insects with the Myriapoda. They undergo no metamor phosis, and constitute two families-the Louse tribe, and Spring-tails. Different species of wo infest man. The body is flat, divided in to a dozen parts, and fitted with short legs terminated by stout nails. The eyes are almost wanting, and the mouth is like a snout, furnished with a sucker. The female gives birth to 5000 in eight weeks; they are not ubcutaneous, and produce the disease "phthi riasis." New Zealanders and Hottentots eat
them; and in ancient America a poil tax of them; and in ancient America a poil tax of ice was exacted-bags of the precious trea
sure being found in the palace of Montezuma The legs of the sugar-louse are terminated by ong pointed bristles. The abdomen of the spring-tail has no appendages; but its extre mity is prolonged into a forked tail, by which the animal leaps. Their scales are beautiful under the microscope, and are employed as est-objects by reason of their delicate mark ings. Some species are found beneath stones, gregated they look like gunpowder.

Climate ot California.

The climate of California may be divided into three seasons. The rainy or wet season the season of the dews, and the dry season. in which neither rain nor dew falls. The rainy eason commences about the first of Decem. ber and terminates about the 15 th of April The second season embraces that part of the year when the evaporation is greatest, and ews : this season lasts from one month to ix weeks. The dry season includes the summer months, and continues until the rain set in. California contains as many different changes of climate as can be found south of atitude $42^{\circ} \mathrm{N}$. to $23^{\circ} \mathrm{S}$. latitude, owing to the present division of seasons, the atmosphere is divided into two kinds, wet and dry. It may be said, however, that the coast wind i more or less humid at all seasons of the year St. Francisco is exposed during the summer months to damp and chilly winds, whilst the winter brings a mild and wholesome season. with a balmy atmosphere. The interior does not suffer from this influence. The humid at mosphere occupies that part of the year in which the rains predominate, and the season of the dews. The winds generally prevai during the summer S. S. E. in the interior, and on the coast the prevailing sea breezes constitute the chiet winds.
The climate, like other countries, may, in rocess of time, become more genial to agri process of time, become more genial to agri-
cultural pursuits, and the health of those who
have or may hereafter make this State the home of their adoption. Historical facts sup port this position. The climates of European than they are at present. Cæsar informs us that the vine could not be cultivated in Gaul on account of the cold winter. The reindeer now found in the zone of Lapland once inha now found in the zone of Lapland once inha-
bited the Pyrenees; the Tiber was frozen over bited the Pyrenees; the Tiber was frozen over
and the country surrounding Rome was covered with snow several weeks together wnich rarely happens in our time. The Rhine and Danube, in the reign of Augustus, were generally frozen over for several months o the year. The improvement which is continually being made in the climate of America proves that the power of man extends to phenomena, which, from the magnitude and variety of
control.
At Guiana, in South America, within five degrees of the line, the inhabitaits living amid immense forests a century ago, were obliged to alleviate the severity of the cold by evening fires, even the duration of the rainy sea son has been shortened by the clearing of the country, and the warmth is so increased that fires now would be deemed an inconvenience "It thunders continually in the woods, but rarely in the cultivated parts." It is probable that in the course of time, and after the settlement of the country, the habitable portions of California may become, in its seasons, more regular and better adapted to agricultural and other pursuits. Should such cultural and other pursuits.
changes take place as history records to Italy, then indeed is California a favored land. Yet drainage of the dround and the removal of forests cannot be recorded among the causes o increased warmth of the Italian winter.
The elevation of the highest peaks of the Sierras is about 17,000 feet above the level of the sea; Pleasant or Red Lake about 9,000 teet; Pleasant Valley 3,864 feet, and is the nearest habitable place to the mountains. Their mean elevation above the sea will range rom 1,000 to 1,700 feet; the mean temperaure of the atmosphere, from the best calculaions, being about 72°. Fahr.
The fogs in autumn, on the coast, are checked in their advance to the interior of the coas range, thus leaving the dry atmosphere free rom these additions. It is a fact worthy of ish the positivectity of the atmosphere in the interior, that its effect during night, as well as in the day, upon the human body, invigorates the system, and is so refreshing that persons prefer sleeping in the open air, without ther covering than the broad canopy of heaven.
It may be said with certainty, that neither homo, nor idio, nor vegetable, nor animal mi-
asmata exist to any extent that would create disease, and on the whole it may be considered a healthy climate, particularly in those sections where there exists a unitorm evenness in the atmosphere. It may be regarded as more pleasant and agreeable than the clim of any other part of the United States.
The above is a condensed statement from an article in the " Western Journal," by Geo. M. Willing, M. D.; we seldom see an article pon this subject upon which we can depend or truthfulness; almost as many ideas exist as there are inhabitants in the new State. The bove is probably for the most part correct.
st. Lonis Removed to the Country.
Much apprehension, it is said, is now and has long been felt in St. Louis, that the action of the waters of the Missouri, where they enter the Mississippi above that city, will eventually wear a way the Illinois shore to such an extent as to torce a new channel for the reat father of waters, and thus leave St ouis some five or six miles out in the country. The present flood, as usual, is tearing away the bank, having washed off a mile and half of the telegraph line near Alton, with all the land on which the poles were planted. The editor of the "Alton Courier" says:"As much abrasion of the Illinois shore for the next ten years, or even five years, as has been occurring for a few years past, and the lakes and the lowlands above spoken of, will reached. The Gillham farm is now nearly all swept away, and the old dwelling
house, which has already been moved once or twice, will soon have to be removed further back or torn down. Where we rode along in our conveyance, on the public road near this place, some three years ago, is now 150 feet out in the stream of the sweeping Mississippi.

Skylark

A colony of sky-larks, forty-two in number, were recently imported from England by a gentleran of Delaware, with the hope of perpetuating the species in this country and thus adding a songster of much renown to our forest choir. The birds flew from the place at which they were released in various directions, and, for the most part, in flocks of three to twelve, alighting mostly within sight, upon adjoining farms.
In all likelihood the experiment will fail as the larks build their nests on the ground and in a country, where snakes and such varmont are numerous, their eggs and young will be destroyed.

LITERARY NOTICES
J. II Croucher. This work embraces directions for obtaining photographic pictures by the caletype,
and energiatype, also upon albuminized paper, and alas, by collodion and albumen, etc, includirg a
glase
practical treatise on photography, the heliochrome procen, etc.
king picures by the Daguerreotype process, with
that the latert improvements in fixing colors, \&c., illus-
trated with engravings, and is an
to expor of great value
experimenters, and indeed all who take an inte. tra experimengras, ang indeed all who take an an inte.
to ext in this claes of investigations. It is neatly
rest ind
bound; for gale by A. Hart, Philadelphia, Pa. Elements of MECHANiss-Explaining the Prin-
ciples of the Construction of Machines, by F. Ba-
cer ciples of the Construction of Machines, by F. Ba-
ker, \mathbf{C}, is a work designed for the use of schools or students in mechanical engineering, and is well
calculated to facilitate investigation in this branch calcuicect the whole is carefully arranged and il-
of sciene ; the
lustrated with 243 engravings. For sale by A. Hart, lustrated with 24 .
of Philadelphia.
Tue Spiritual Mrdiom-This is a neat little vo-
lume, published by Gould \& Lincoln, Boston, and Yume, published by Gould \& Lincoln, Boston, and
contains some exceedingly curious and rare infor-
mation. The author is evidently a choler and for mation. The author is evidently a scholar and fond
of reading marvelous works of old and new authors.
He believe in He believes in a nervous or spirit principle.
PuTNAM's MoNTHLY-For July, is an excellent
number, it contains an unusual amount of valuable information, and is illustrated with fine engravings,
Published by GP. Putnam \& Co, No. 10 Paık Place, $\underset{\ddagger 3 .}{\mathbf{N} .} \mathbf{y}$
 plates: The Passion Flower, The European Butter-

"Harry Coverdale's Courtship, and what came of
it ", by the author of ". Frank Fairlegh," "Le wis
Arundel." etc. H. Long \& Bro. 43 An st. This is
a very captivating novel, and will pay perusal from a very captivating novel, and will
those fond of romantic literature.
"Young Ladies' Keepsake and Home Library,", for June, is received; it is a choice number. beauti-
fully embellished. Published by J. S. Taylor, No.
17 Ann at. 17 Annat .

Manufacturers and Inventors a new Volume of the Scientific american commences a bout the middle of September in tach year. It is a journal of Scientific, Mechanical, and other improvements; the advocate of industry in all
its various branches. It is published weekly in a form suitable for binding, and constituter, at the end ofeach gear, a splendid volume of over 400 pages, mith a copious index, and from five to six hundred
original engravings, together with a great a mount of practical information concerning the progress of invention and discovery throughout the world. The Scientific American is the most widely circulated and popular journal of the kind now published. Its Editors, Contributors, and Correspondents are
among the ablest practical scientific men in the among th
morld.
The Patent Claims are published weekly and are invaluable to Inventors and Patentees
We particularly warn the public against paying money to Travelling Λ gents, as we are not in the
babit of furnishing certificates of agency to any
one.
Letters should bo directed (post-paid) to
to
MUNN \& Co.
128 Fulton street, New Yorz

Terms! Terms! Terms

One copy, for One Year

Five copies, for Six Months
Ten Copies for Six Months for Ten Copies for Twelve Monthe, Tifteen Copiesfor Twelve Montha, $\$ 2$
$\$ 1$ Fifteen Copiesfor Twelve Montha, $\quad \$ 15$ Southorn opie for Twelve Months, $\$ 28$ Bocriptions, or Post Omece Stampt taken at the nubscription
fall ralue.

