Stimntific Ammitam

Scientific ${ }^{\text {THR }}$ American,

BY MUNN \& COMPANY.

 der in 6 manthe.

MQRMTH RRORNDO

Solder for Iron
We publish the following by request; it was published before in volume 5 , but it will be new, we have no doubt, to some thousands of our present subscribers. The receipt is not a new one, but a good old one, none the wors for a little wear.
When the filings of soft cast-iron are melted in a crucible with borax, which has been previously calcined in order to get rid of the water it contains, a hard shining, black pitchlike soldering substance is obtained, being glass of borax colored black with iron.
Sal ammoniac having been applied to the internal joining, or between the overlapped edges of thin sheet iron, some oi this black solder being powdered is to be laid along a short portion of the joint, and as soon as it is melted over a clear forge fire, the soldered part is to be placed on the beak of an anvil ann with a suat hann. and quick the powiler is then to be laid upon the ad joining part of the joining, until the whole of the seam is soldered.
Another method, which has been published for this purpose, is to melt five ounces of borax in an earthen crucible, and when melted to add half an ounce of sal ammoniac, and pour the melted matter upon an iron plate. When cold, it will appear like glass, and is to be powdered and mixed with an equal quantity of unslaked lime.
The iron or steel being heated to a red heat, a little of the above powder is to be sprinkled on the surface, where it will melt like sealing wax. The iron or steel is then to be again heated, but considerably below the ordinary welding heat. then brought to the anvil, and hammered until the sufaces are perfectly united.

Feeding Bees.

"Put a pound of brown sugar in a low tin small strips of wood across for the bees to rest on while at work. One pound of sixcent sugar produces two pounds of honey." Our neighbor of the Scientific American must revise his chemistry. How a pound of food can become two pounds of secretion, besides supporting the animals, it is beyond our reach to discover. We have seen the same statement before and commented on it in our last number.- [The Plow, Loom, and Anvil. LOur neighbor must revise his chemistry. How can a stalk of corn produce more weight of fruit than the guano applied to manure it ! The question is not how much honey is produced from a pound of food, but a pound of sugar. Does not honey contain more moisture than sugar. Let our neighbor pat 20 pounds of honey in a sugar evaporating pan and expel all the moisture, and then weigh the product and see if he gets any more than 10 pounds of a gummy sugar.
Benjamin Loder, Esq., the well-known head of the Erie Railroad Company, has resigned his trust into the hards of the Board of Directors, owing to continued weak health.

IMPROVED VALVE AND OSCILLATING ENGINE---Fig

The annexed engravings represent an im- \mid tightly bound in order to prevent the escap provement in the valves of oscilleting engines, of steam. This occasions unequal wear in invented and patented by Wm. M. Smith, of the trunnions and stuffing box of the piston Washington, D. C. Oscillating engines pos- rod, and also detracts from the power of the sess the advantage of occupying but little engine. The object of the invention is to re space, are generally light, compared with others, and simple in construction.
One objection which they have heretofore been found to present, has been the difficulty

attendant upon the admission and discharge of the steam, and another difficulty has been the friction occasioned by the steam trunnions

medy these defects.

Figure 1 is a side view of the engine with a tace view of the steam trunnion. Fig. 2 is an inside or face view of the valve, and fig 3 is a horizontal section of the valves and steam chest as connected with the trunnion of the engine. The trunnion, a, of the cylinder is made as large on the face or end as convemient to admit of long rad:al passages being made through it: \boldsymbol{b} is a short cylindrical steam chest, which is turned on the interior and firmly bolted to the lower half of the plummer block, i, forming a cover or cap to the end of the trunnion; in this steam-chest, b, is a piston valve, c, the lace of which is ground, and fits against the end of the trunnion; this valve is fitted with metallic or other packing on its periphery, where it touches the sides of the cylindrical steam chest, and is stationary, thereby dispensing with all valve gear. The steam alternately enters and exhausts to and from either side of the engine piston by the oscillating motion of the trunnion, a, which is made with suitable steam ways in it. The action is as follows :-The steam enters through the opening, d, of the valve and the exhaust escapes through the concave, e, to the pipe, f, which passes through a stuffing-box in the centre of the steam-chest

To reverse the engine, the valve is turned halt round by the lever, h, fast on the exhaust pipe, f; steam is admitted to the cylindrical chest, b, hy a pipe, S , and presses upon the back of the valve to keep it tigh. The advantages of this form of valve will be apparent by an examination of its simple structure and mode of operation.
For further information concerning rights \&c., apply to the inventor.
singular Swamp.
At Capetown, near Dundas, C. W., while the navies on the Great Western Railroad were digging through a swamp, they came across a stream of quicksand so fine as to have no grit to it. The stream is of a pale lilac. As this substance runs out from below, the top of the ground falls in. The track they had ladd for drawing the dirt cars on has in many places fal'en in, leaving the end of the rails sticking out in some places, while in others they have been swallowed up in toto. It is a curiosity to behold the springs at the source of this singular fluid. It boils up like a pot over a fire, depositing the heavier particles around the mouth of the crater, until it assumes the shape of a mound, the top of which is flat and in boiling motion.

Vermont Gold.

Rev. Zadock Thomson has written a letter giving an account of his experience in searching for gold in the vicinity of Bridgewater, Vt. He says :-
"The gold is found in the range or talcose slate and steatite, which is known to extend through the found ength of the State, from north to solifh. This range pastes through Bridgewater, near the middle, and the gold locality is but a short distance from the centre of the township, towards the southwest. The gold is disseminated very sparingly in veins or seams of quartz, and is associated with the sulphurets of lead, iron and copper. The strata of slate between which the quartz is interspersed dip some 55 degrees towards the east, and the seams of quartz vary much in thickness, and are somewhat irregular Gold has yet been found in only a few of these seams, and most of which has been obtained was from a single seam, in which several hands are now at work. This is from ten to twenty inches wide, and some portions of it are filled very abundantly with galena, or sulphuret of lead. At a blast made in this seam while 1 was present, more than one hundred pounds of pure galena were thrown out with the quartz, together with some sulphuret of iron, and a very few small particles of gold; but whether gold or lead will here be found in suffcient quantities to pay for working is yet problametical."

Girenwood Cemetery

This populous city of the dead is now arrayed in its summer attire, and its cool shades attract a large number of visitors. On an average, 18 interments take place there daily; and passing the gateway from morning till night, is nearly an unbroken line of funeral processions. During a small portion of the year, the daily number of interments reaches 25 or 30 . Since the 1st of January last, the interments number 2,760 . The total number of interments since its first organization to the present time, is 26,470 , of which 22.712 were made previous to the opening of the present year. The first interment took place in September, 1840.
Some very fine monuments are now erected in it, and we presume that no other single burial place in the world gives employment to so mary persons. This city of the dead verlooks New York Bay, and the grounds are very beautiful.
A railroad testival was had at Savannah, Geo., on the 2nd inst. It was a grand affair

MSCELANSOSS.

The North Paciflc Expedition

The expedition which has sailed from our country to visit Japan and various other countries, is one of much interest to men of science. True, in these expeditions some particular sciences have received much greater attention. The single department of zoology has, in some cases, been placed in charge of a corps of six or more savans, while other sciences have been entirely neglected. In the present only two or three of the scientific corps could be detailed for that department; but, on the other hand, important subjects of research, before but slightly considered or left untouched, have here received their due proportion of attention.
Mr. Storer, of Boston, accompanies the expedition as a chemist and has a fine apparatus. Mr. Kern, a photographer, also belongs to the corps scientific, and has good apparatus and an abundance of materials, and Commander Ringgold himself will act as chief astronomer and general superintendant. As assistant as-
tronomers he has appointed Lieut. J. M. tronomers he has appointed Lieut. J. M.
Brooke, and also Mr. Coolidge, of Harvard Brooke, and also Mr. Coolidge, of Harvard
Observatory at Cambridge, whosa studies both here and at the principal Observatorie in Germany, well fit him for the nosition. In this department also most of the sea officers of the squadron will assist, especially in the minor operations. The intruments provide are numerous and of a superior character.
The science of geography is, of course, th The science of geography is, of course, the
great subject of investigation. In this Commander Ringgold has determined that the mander Ringgold has determined that the
observations shall be complete. Economic observations shall be complete. Economic
considerations must of course have the primaconsiderations must of course have the prima-
ry position; the adaptation of the waters of ry position; the adaptation of the waters of
the country to the purposes of navigation, the country to the purposes of navigation,
whether for the commercial or whaling interest; its fisheries; its internal resources; vegetable productions, wood, mineral wealth, coal or metals. The accurate survey of all the coasts and islands lying within the scope of observation will also be a primary object. The topographical and hydrographical parties for this purpose will be formed from the sea officers of the squadron, who have been judiciously selected by Commander Ringgold for their proficiency in these departments. Most prominent among these stands Lieut. Commanding Rodgers, of the steamer John Hancock, whose experience on the coast survey well fits him for this department. Landscape views, pictures of individuals of native tribes, \&c., will be taken. There are corps for ornithology, geology, and zoology, in short, every department of science is represented on that squadron, and we have no doubt but the returns will be a ruch harvest of important new information to our country, and the expedition will no doubt prove an honor to it

Rheumatism.

As this disease is very common, and is a very painful one, any useful information on the subject may be of benefit to some of our readers. The following is part of an article
on the subject from the "Dollar Newspaper," on the subject fr
Philadelphia :-
"Rheumatism is a disease of the blood, and in order to effectually remove the disease, the rheumatic poison, (perhaps the urate of soda) must be eliminated from the circulation.The principal depurating organs are the emunctories of the kidneys, the lungs, and the skin. Through the skin and the kidneys alone can the rheumatic poison be removed, and far more through the latter than the former. Every man afflicted with rheumatism should have a long bath tub, in which he can completely immerse his whole body. In such a tub (made of tin perhaps) he should every morning take a warm, weak, ley bath, rubbing the surface briskly with a flesh-brush till it glows finely. This bath should be used for four or five days, and then, tor a few days,
a strong salt-water bath (warm) should be a strong salt-water bath (warm) should be substituted. This is the best external treatment known to the protession, and the great trouble is that it is so little known to them Warm flannel should,
worn by rheumatics.
But the great remedy for rheumatism, after ull, is diuretics; and among the best of them all, is diuretics; and among the best of them
is the meadow saffron (colchicum autumn-
ale.) The tincture of colchicum seeds is generally used. The brandy tincture is the best or decidedly nervous rheumatics; the wirm nerve fibre. Of either of these tinctures, 25 drops three time a day, for an adult, till it operates as a slight laxative (when the dose should be lessened) is about the right quantity. After using the tincture of colchicum for ten or twelve days, the solution of iodide of potassium (of the strength of one ounce to the pint of rain-water,) half a teaspoonful twice a day will speedily complete the cure. An experience
of several years in the treatment of all grades of rheumatism has established the correctness of the above treatment. I have never seen a case that would not yield to its powers.-
Sometimes acids or alkalies (according as the urinary deposit is white or red,) may be used with fine effect. The best acid that can be used in rheumatism is the citric, and the best orm is that ot sour lemonade
The "Lynchburg (Va.) Express" says:A gentleman wishes us to publish the follow lowing for the relief of humanity. He says he has known a number of cures made by it,
and all of them in a short time:-Half an and all of them in a short time:-Half an ounce of pulverized saltpetre, put in half pint of sweet oil; bathe the parts affected and a sound cure will speedily be effected.
[We would state that the first extract is decidedly orthodox, and the information should be extensively circulated. The wine of colchicum affects a cure upon some persons sub ject to gout in a very short period. We can not say anything respecting the practical ef ects of the latter receipt, but it is so simple that it can easily be tried, and that withou risk.

Railway Apothegms.

Construction.-Make your road to last or years, and not for days.
Let your cuttings and embankments be guarded against falls of the one and slides of the other.
Let your curves be of large radius, and do ot regard expense in having them so.
Avoid drawbridges utterly, if you can, and is they must be used let the approaches be open nd clear for 1,500 feet on each side of them Build your permanent bridges in a thorough manner, and, whether of stone, wood, or iron guard them effectually against the ordinary causes of decay-and thus, partially avoid massacres!
Use compound rails in preference to simple ones.
Incre
Increase the number of your "cross ties,' and the item of repairs will be decreased.
If you cross the rails of other roads, do so bove or below them, and never on a level. Let ordinary road-crossings be equally above or below your rails, and your con-science-it you have any-will be clearer.
Operation.-Provide a numerous and efficient police and you will be less criminal and ave fewer damages to pay
Establish careful, clear, and stringent reguations, and see that they are enforced, by punishing, remorselessly, their violation.
Let those regulations, and all signals, be un mistakable ; and, if possible, uniform throughout the country, and the country will be the ainer as well as yourselves.
Police your road and "moving stock" very day, at least, and so lessen the chances f accident.
Be sure the men you employ are temperate, s.
Avoid cheap directors, cheaper presidents, and careless switchmen.
Railroads were contrived for high velocires, and (if you mind these maxims) such velocities are the best; in other words, care will prevent accidents.
Money is plenty-so let foresight and poliy guide your "rail" operations, and your dividends will be larger.

Leyland.

Nern dingsley sewing Machine. Notwithstanding the great variety of sewforms and improvements are constantly being added. The novelties of the machine above referred to, relate to the shuttle motion, the eed motion, the method of holding the cloth
feeding device, and the means of producing proper tension on the thread. The improve ments make the machine a very convenient article for sewing boot legs and other articles of similar form, as the channel through which the shuttle slides, is within a long cylindrical tube around which the leg of the boot or other similar article, may be bent in the operation of sewing. Engravings would be necessary to render the construction of the parts to which the improvements relate, well under tood. The inventors, M. W. Stevens and E G. Kingsley, of Stoughton, Mass., have take measures to secure a patent.

The Steam Yacht North Star

The following is an original extract taken from the proof sheets of the next number of the "Knickerbocker Magazine," by Mr. Curtis especting the rise and progress of Cornelius Vanderbilt, Esq., the proprietor of the "North Star:"-
Until the age of sixteen, Mr. Vanderbilt was brought up on a small farm on Staten Island, owned and cultivated by his father. Arrived at this age, however, he found himself with a growing desire to make his livelihood by following the sea. He therefore left the farm, and commenced running a small sail boat between Staten Island and New York boat between Staten Island and New York,
which was owned by his tather. After the age which was owned by his tather. After the age of nineteeen he commenced life on his own
account, following the same business for the account, following
space of two years
This brought him to the beginning of 1817, when his business life began with an activity and increased with an energy seldom equalled and more rarely surpassed. He now took charge of a small steamer running between New York and Elizabethtown, N. J., belonging to Thomas Gibbons. In 1818 he attended to the building of the steamer 'Bellona,' and was her captain for five years. In 1820 he built the steamer 'Caroline," which, it will be remembered, in the troubles on the Canadian borders, in the commencement of the 'Patriot' movement, was cut out at night at Schlosser, on the Niagara river, and sent, wrapt in flames, over the Great Cataract. This was the first steamer which Captain anderbilt built on his own account.
In 1821, he built the ' $F a n n y$;' in 1822, the Thistle' and the 'Emerald;' in 1824 the Swan;' in 1826, the 'Citizen;' in 1827-8, the 'Cinderalla,' the 'Clifton,' the 'Union,' the 'Champion,' the 'Nimrod,' the 'Livingston,' the 'Cleopatra,' the 'Sound Champion,' the ' North Oarolina,' the 'Governor Dudley,' the Vanderbilt,' the' 'Gladiator.' These last four steamers he built for a company, for the purpose of running between Washington and Charleston, forming the regular mail line.
Then Captain Vanderbilt built the 'Sylph,' the 'Augusta,' the 'Emerald,' the 'Red Jacket,' the 'Hugenot,' the 'Hannah Burt,' and the ' Eastern,'-all fine boats-the ' C . Vanderbilt' and 'Commodore,' which formed the great Boston line by the way of Stonington and the Railroad. Captain Vanderbilt next built eight steamers for the Transportation Company, and the five steamers (?) that ran betweer. Havana and Mantanzas. He also purchased, refitted, and ran the 'New Haven,' the ' Huntress,' the 'Water-Witch,' and the 'Worcester.' His next 'American produc. tions' in this kind were the steamships 'Prometheus,' the 'Daniel Webster,' the 'Star of the West,' the 'Northern Light,' and the ' North Star.'
Nor are the vessels here enumerated all that have been built by Capt. Vanderbilt; there are several others whose names we cannot now recall.
Now we should like to have this hasty sketch of a poor American farmer's boy's early career and after advancement-this patent lesson of what industry, energy, enterprize, and integrity, can accomplish in a country of free institutions and tree American republi-cans-we should be glad to have it seen and
felt in the various quarters of Europe where the steamer North Star shall unfurl the flag of our country.
Mr. Vanderbilt has been, as we have seen, entirely the architect of his own fortunes. Amassing immense wealth, he has, at the same time, made the fortunes of thousand
of others. He is now a large proprietor manufacturing and engine building establish-
ments. He probably gives employment to more hands than any other one man in Ame-

Events of the Week.

Atmospheric Thlegraph.-We have received a communication from a correspondent who points out some difficulties in the way of the successful operation of an atmospheric telegraph. The first objection is. " 1 st. a perfect vacuum cannot be formed in the tube; 2nd. The tubes must be accurately bored out and fitted perfectly straight ; 3rd. The piston must be packed, causing great friction, impossibility of oiling, and hence the packing must heat."
We have said before, that the difficulties in the way of its successful operation, are mechanical. If these can be overcome, there is no reason why it should not operate. We are well a ware of the impossibility of forming a perfect vacuum with the best air pumps; and so are those connected with the Boston Atso are those connected with the Boston At-
mospheric Telegraph. It is not positively necessary that the tube should be perfectly bored throughout; the packing of the piston obviates the necessity of having a perfect tube. We could not raise an objection against the plan by saying "the piston will heat," and we are positive that our correspondent has no correct information on this point. There are difficulties in the way of a successful atmospheric telegraph; if there were none, the system would have been in operation long ago. The question is, does Mr. Richardson's plan The question is, does Mr. Richardson's plan
remove them? This question, on a small remove them? This question, on a small have been informed, on a large scale.
a Bright idea about Heat.-"Suppose all the obstacles to the perfect and economical transfer of heat removed, so that all the heat in a cylinder full of steam could be transferred from the exhaust to the contents of the steam pipe-transferred from the outgoing to the in-coming medium, what would be the total mechanical effect of a unit of be the
heat."
The
The above we have quoted from a scientific cotemporary, who calls for some one to anwer his query. We refer him for an answer to the gentleman who made the discovery that 1 lb . of coal can be made to pump the Niagara river dry in a day.
Instead of progress having been made in physical science, we sometimes think, from the stuff uttered by pretenders to scientific knowledge, that there never was such a dearth of the genuine article. The above quoted paragraph simply means, "what would be the mechanical effect of a unit of heat in a steam engine, by exhausting into the boiler." The absurdity of the question shows the depth of the interrogator.
A Simple Fire Annihilator.-We perceive that a cotemporary speaks of sulphur as being an effective and simple fire annihilator, and tells of an insurance agent of Troy, lator, and tells of an insurance agent of Troy,
N. Y., who recommends it as having been efN. Y., who recommends it as having been ef-
ficacious in one case, of saving his property. ficacious in one case, of saving his property.
It is not a little remarkable that many discoveries are continually being developed some years after they have been described in our columns, and this is one among a number of others. If any person will turn over to page 2, Vol. 7, Scientific American, he will see in some comments upon the once celebrated Phillips' Fire Annihilator, that we distinctly mentioned sulphur as having been successfully used for extinguishing fires in chimneys.

Improved Mode of Casting Pumps
An improvement in pumps, by John H. McGowen, of Cincinnati, Ohio, to which this invention forms a necessary appendage, has already been noticed in the Scientific American. Mr. McGowen has a mode of casting his pump, which renders it a much better article than those cast by the old process, and also renders the operation of casting much easier. In this operation the cores which form the inerior chamber of the pump, are moulded upon the top ot what is called the "knowl" or drag," in such a manner that they will adhere thereto, and thus keep all the cores in their proper vertical position while the metal is poured. By this arrangement pumps o this description may be cast on either green or dry sa d with equal facility. The invenr, Mr. McG., has taken measures to secure a patent.

Scientific Ahrerican.

Abstract

Forthe Scientific American Rallways, Steamships, and Telegrephs. Railwars-I have seen on page 291, this volume of the Scientific American, that there are some hopes of improvement on our railways which will make them less destructive of life and property. Permit me to recall a proposition made in the very beginning of the system by Mr. Morgan, an able but too modest a man for the times we live in; this engineer was one of the first employed in Massachuwas one of the first employed in Massachusetts and New York. He proposed to have timber between the two rails, about eighteen timber between the two rails, about eighteen inches high, against which horizontal wheels inches high, against which horizontal wheels should run treely, touching occasionally; the should run treely, touching occasionally; the car wheels were to be without flanches, thus car wheels were to be without flanches, thus saving much friction; such wheels might be used on the present tracks. Perhaps more has been written on this subject than I have seen; I merely call it up for re-examination, if it has not been absolutely exploded. Corporations must do something for their own in-

 terest, and they will look to your valuabie paper as the tocus of mechanical intelligence ; it would be well therefore, at this time, that speculation-good, bad, or indifferent, should bring forward their notions; a fool's hint may be made usetul by a wise man.Sea Stenmers-I have seen also in your valuable paper, that a monstrous large steam er is about to be built in England, with four side wheels and a screw propeller. Here I beg leave to remind you that I had the honor to propose in your paper some time ago to construct all our long steamers with four wheels, and referred to the advantage of wagons over carts by way of illustration. The four wheels to a steamer will have some advantages over the wagon, for this will perform Fulton's desideratum, they will raise the vessel out of the water-that resting medium which offers more resistance exactly in proportion to the increase of speed; which proposition was thrown in the teeth of Fulton by the French philosophers when he told them that he could make a ship exceed fourteen knots an hour.
Telegraphs and Steamers-It will be long before we get a telegraph across the Atlantic; but a combination of the two systems extend your telegraph as far East as possible, through Nova Scotia or Labrador, then cross from Newfoundland, or Labrador to Ireland by a steamer of iron expressly built for the postal service, and so strong, as to tear no storms or waves, very long compared with her width and depth, and with as much power as can be put into her, wheels and propellers. I am convinced that you will find in New York, builders and engineers who will produce a post packet which will fly over the water like a flying-fish-merely touch-andgo. This was indeed the philosophy of Fulton, practiced in a minor degree, for the double purpose of speed and freight; but we are willing to sacrifice freight and even passengers' fees-all tor speed. I should prefer, as a passenger, this mode of flying from wave to wave, to flying over the clouds.
The passage over the water would be so short that little coal would be consumed. Boston, June, 1853.
|If such a line could be supported, we would heartily agitate the subject. There is nothing impractical in it ; it is only a question of pay or not pay. A steamship running at an ave rage speed of fifteen miles per hour, could run from Newfoundland to the West coast of Ireland in 5 days 13 hours, allowing the distance to be 2,000 miles, which is not tar from the mark, This project will no doubt be carried out at some future period. $-E_{D}$.

Preserving Strawberries.
As this is the season of the year when this delicious fruit is so plenty, a few directions about their preservation for their future use, will not be out of place.
Strawberry Wine.-Bruise the fruit and press out the juice; then pour over several gallons of water, infuse for twelve hours, and press out the liquor; add this liquor to the juice, and mix with some gallons ot cider; dissolve in the mixture sufficient sugar and three ounces powdered red tartar, and then set it to ferment in the usual way; pare the rinds of two lemons and two oranges, and, together with the juice, throw them into the
fermenting tub, and take out the rinds when the fermentation is over; some brandy may be added.
Strawberry Jam.-Weigh equal proportions of fine sugar and strawberries; put the fruit into a preserving pan, and bruise and mash it well with a spoon or stick, let it boil up, then add the sugar, stırring it well with the fruit; let it boil ten minutes, skimming it perfectly clear.
The Irish poet who compared the lips of his fair one to "a dish of fresh strawberries his fair one to "a dish of fresh strawberries
smothered in cream," possessed a very fine taste.

[For the Scientifio American.]

Curious Properties of the Figure 9
Proposition 1.-Take a number containing wo figures, say 83 , reverse the figures, which will make 38 , then subtract them from the riginal number, 83 , and the difference will be 45 -nine times the difference between the
figures 8 and 3 , which is 5 . Example :
83
38
-45
$45=9 \times(8-3)=5$
The following formula shows the fact and eason, taking the value of x equal to $8, y$ equal to 5 , and z equal to $3:(10 x+z)-(10 z$ $+x)=9(x-z)$.
2nd.-Take a number containing three fi gures reverse and subtract as above, and the difference will be equal to 99 times the differ ence of the first and last figures. Example

853
358

$\overline{495}=99 \times(8-3)=99 \times 5$
Formula $(100 x+10 y+z)-(100 z+10 y+x)$ $=99(x-z)$
3rd.-But if, instead of reversing the three figures as in the second proposition, you place the centre one first, and the last in the centre the first figure less the two last. Example : 853
538
${ }^{538}-315=9+(11 \times 8-53)=9 \times(88-53)$
Formula: $(100 x+10 y+z)-(100 y+10 z+$ $x)=9(11 x-(10+z)$
from which subtract 9 times the first figure and the difference will be equal to the sum or amount of the two figures added together Example:

83 added together make 11
72, nine times first figure, 8 , subtract

- 11

Formula : $10 x+z-9 x=x+z$
5th-Reverse this, and from the two figures ou will have 9 times adred figure. Ex. $\stackrel{53}{8}$, the sum of 5 and 3
$\overline{45}, 9$ times the first figure, $:$:
Formula-10y+z-(y+z) $-9 y$.
A curious result is obtained on the principle of Prop. 5 : take, for example, a number containing two figures (a number containing any amount of figures will do as well) say 86 se parate each figure into two others containing together the same number of digits, say 5 and 3 for the 8 , and 4 and 2 for the six, then you will have 5342 ; now you may change thei 5 and 3 and the 4 and 2 ; for example, place the 3 first, then the 2 , then the 5 , and lastly the 4 (or any other way you may desire) then you have 3254; now take the original figure from any part of the number, and you will in variably find the difference to be a multiple f 9. Example :

If, after this is done, a number is left out of the difference, it can be detected without knowing the figures used in the calculation for example, if a 4 is left out of the first of
the above three examples, you will have 248 which, divided by 9 (or added up until you have only one figure, as 2 plus 4 plus 8 make 14 , and 1 plus 4 make 5) will have 5 , and you eee immediately that there is a 4 wanting to Philadelphia

James Swaim.

(For thel§cientific American.) Heat-Expansion and Contraction.

 A great deal has been said about the differentrates of expansion of different bodies, but the rates of contraction seem to have been rather overlooked. Now to obtain a motive power by the means of heat, cortraction and expansion are equally necessary. To double the volume of a body is only one half of the work, and to bring it back to its original con dition, constitutes the other half. Different bodies are held together by different rates of cohesive power, and in expanding we work against the cohesive power, and in contract ing we work with it.Let $x=$ amount of cohesive power. Let $a=$ a certain amount of heat.
Then $a-x=$ the expansive power.

$a+x=$ the contractive powe

 AndIt will readily be perceived that whatever may be the value of x the whole amount of heat used will always equal $2 a$. This may be further exemplified in the case ot the pis ton of a steam engine with an upright cylinder. If an extra amount of power is required to overcome the weight of the piston in the upward stroke, just so much the less power is required to bring it down again, so that nothing is lost or gained by the weight of the piston. It follows then, that whether we apply the heat to air, water, carbonic acid gas, hydrogen, mercury, or any other substance, the result will be the same. A pound of coal contains a certain definite amount of heat, just as it has a certain definite weight, and it is an error to suppose that by artificial mean we can increase either
Paterson, N. J
Annual Depreciation of Locomtlves.
Lowell, Mass., May 30th, 1853. To the Editor of the Scientific American I noticed in a late number of your paper, you have made an allusion to a statement made by me in the " Railway Times," wherein I say that "an engine destroys itself at the rate of $\$ 10$ per day, when in full use." will give you the evidence upon which the
The tirst cost of the New York and Erie engines is from $\$ 7,500$ to $\$ 10,500$, (not from $\$ 3,500$ to $\$ 7,500$ as given by you.) The average cost is $\$ 9,000$ instead of $\$ 5,000$. The Erie engines run $2,389,271$ miles, by the report for the official year of 1852 , and the expense of engine repairs was $\$ 203,31248$, or eight and a-half cents per mile run. Now by the time an engine has been in full use for twelve years, its first cost and renewals have so depreciated from wear and age, that its sale would not realize half its original cost when new. The first cost being $\$ 9,000$, and the repairs having amounted to $\$ 25,500$ (for 300,000 miles run at 81.2 cents per mile) gives $\$ 30,000$, as the total depreciation of the engine, or $\$ 10$ per day for 100 miles dally trip.
The
The expense for repairs, as cited by me at five cents per mile, refers to the engines on the Baltimore and Ohio Railway, where with the use of the patent chilled slip tire for divers, they are enabled to save $\$ 30,000$ yearly in repairs, above what would attend the use of wrought iron tires.
You show the depreciation of the Erie engines, by my statement, to be $\$ 426,000$ yearly. The valuation of the Erie engines up to the last report, was $\$ 1,349,987$ 29, not allowlowing for any depreciation. If we allow 8 per cent. for annual depreciation, we have $\$ 107,99898$, which added to $\$ 203,31248$, the expense for repairs for one year, gives $\$ 311$,31146 for the total annual self-destruction of motive power. Were all the engines of the first class dimensions, and in 'full use,' this amount would be increased far beyond your highest estimate of $\$ 426,000$.
As I have furnished you with these facts in detail, I trust you will not consider this an extraordinary statement. Zerah Colburn. [The above is from the "American Rail way Times" of June 2nd, to which Mr. Col burn is a regular and valuable contributor.

> Change fu Locomotive Fuel

A number of experiments have recently been made on the Baltimore and Ohio Rail road by the superintendant for the purpose
testing the economy of coke as a fuel in testing the economy of coke as a fuel in
comparison with wood, which has heretotore been used exclusively. The coke made was from the Cumberland bituminous coal, and the result, we understand, has been so satis actory that it is intended hereafter to dispense entirely with the wood. The saving of expense has been stated to be about 25 per cent.
About two years ago the Hudson River Railroad Co. bought a quantity of coke for the purpose of testing its merits comparatively with wood. We never heard the result. The time is not far distant when all our railroads will be compelled to ston using wood for locomotive fuel, and the sooner they set about preparing tor the change so much the better. It will be a good thing tor pasbetter. It will be a good thing tor pas-
sengers when wood ceases to be used; the sengers when wood ceases to be used; the
spark punishment now inflicted on travellers spark punishment now inflicted on travellers
will then be abolished. As no wood is emwill then be abolished. As no wood is em-
ployed on the English railways, we cannot ployed on the English railways, we cannot
see how it is that the same fuel used there see how it is that the same ruel used the used here with equal advantages the coke from the Cumberland coal may bring about the desired relief.

Salmon Fisherles in California.
The "Sacramento Union" presents some information respecting the salmon fisheries on the Sacramento river, which far transcend all the ideas we ever had of the abundance of such fine fish in any part of the world. It says :-
"The water of the river must be alive with salmon, or such quantities caught daily would sensibly reduce their numbers. But experienced fishermen inform us, while the run lasts, so countless is the number, that no matter how many are employed in the business, or how many are taken daily, no diminution or how many are taken daily, no diminution
can be perceived. They seem to run in imcan be perceived. They seem to run in im-
mense schools, with some weeks intervening mense schools, with some weeks intervening
between the appearance of each school, dubetween the appearance of each are light, as
ring which the numbers taken compared with the quantity taken during a time like the present. No account is kept of the number engaged in fishing, or of the amount caught, and all statements relative thereto are made from estimates obcotred fom those who bave experience in the business, and probably approximate correct-

These estimates give the number of men employed now in taking fish in the Sacramento at about 600 ; the number of fish taken daily do an average, 2,000 ; their average daily do an average, 2,000 ; their average
weight seventeen pounds. It requires two weight seventeen pounds. It requires two
men to man a boat, which would give 300 men to man a bnat, which would give 300
boats for 600 men; 2,000 fish a day would oats for 600 men; 2,000 fish a day would
give to each man a fraction over three as his give to each man a fraction over three as dily,
share. Large numbers are saltod down dail several firms and individuals being extensively engaged in this branch of the trade. The fish are put down in hogsheads, which average, when filled, about 800 lbs.
The salmon fish is found in no other waters in such vast multitudes as are met in rivers emptying into the Pacific. On the Atlantic side the leading fish feature is the run of shad in the spring; on the Pacific side, salmon ascend our river at all seasons, in numbers beyond all computation. In California and Oregon our rivers are alive with them, the great number taken by fishermen are but a drop from the bucket. Above this, on the coast side, tribes of Indians use no other food. As a table luxury they are esteemed by most persons the finest fish caught. Unlike many fish they contain but few bones, and the orange colored meat can be served in slices to suit customers. It is emphatically the meat for the million; it costs so little-not a quarter that of other meats-that rich and poor can feast upon salmon as often in the day as they choose to indulge in the luxury. In the course of a few years salmon fishing will extend itself to all the prominent rivers in the State. Catching and curing salmon will then have become a systematized business, the fish consumption will then have extended itself generally over the State, and more than likely become in the meantime an important article of export."

The North Star arrived at Southampton on June 1st, after a passage of 11 days. This was good, but not extraordinary, as she carried no cargo and was in good sailing trim

Scientific Mancricam.

WEW IWVEMROMS.

Power Loom for Weaving Hair Cloth.

The annexed engravings are views of loom invented by John Gledhill, of this city for weaving hair cloth by power, an invention which is as valuable for the weaving of hair cloth as the power loom for the weaving of cotton cloth. Figure 1 is a front elevation; figure 2 is a longitudinal vertical section; figure 3 is a cross sectional view of a double trough containing the hair for the weft; figure 4 is a side view of certain parts of the same to illustrate a part named the "automatic server," and figure 5 is a front view of the nippers which draw the hairs that form the weft. through the shed of the warp. The same letters refer to like parts on all the figures.
Hair cloth is composed of a warp of linen threads, the weft being hair. As each hair is like a single thread, and has ends of unequal thickness, it (the cloth) has never been woven heretotore but by hand-the fine end of one hair is drawn through to match at the selvedge with the thick end of the preceding hair. It will easily be seen that such a mode of weaving hair cloth is exceedingly expensive and tedious. As the hairs are all like single threads-one hair for are ant formidable difficulty stood in the way formidable difficulty stood in the way of weaving such cloth by continual action as in the power cotton loom, where the thread is continuous on a cope, and is shot off in continuous lines. Mr. Gledhill has in a very ingenious manner surinounted every difficulty, and produced a loom for this purpose which does honor to his inventive faculties, and credit to his perseverance. There are also some improvements on this loom, which are applicable to all other looms for weaving cloth.
A is the frame; B is the crank shatt having the main driving pulley on it; \mathbf{C} is the harness shaft-the one on which the cams are secured for working the treddles; D is the lay; these parts and the yarn and cloth rollers are the same as those in the common power loom. The arrangement for tranomitting motion from the crank shaft, B , to the lay, D , is best shown in figure 2, and embraces an improvement applicable to all looms, viz., a mode of keeping the shed open for the passing of the shuttle or feeder with the weft thread, as long a period as possible during every revolution of the crank shaft, B. The main connecting rod is represented by E which is the longest part, and is attached to which is the longest part, and is attached to
the lay by a pivot, $a ; \mathrm{F}$ is a link which connects the crank with E , by a pivot, b, which nects the crank with E , by a pivot, b, which serves also to conmect the race b^{\prime}, G which works on the fixed centre pin, b^{\prime}. The movement given to the lay by this arrangement is the full throw of the crank, the effect of the link and radius rod being to increase the speed during the forward portion of the stroke, ard to decrease it during the backward portion of it, and thus keeps it longer in a backward position for the purpose stated.
The loom represented requires only two leaves of harness, but that is sufficient to show an improvement in the harness motion which is adapted for all cloth looms. Each leat is suspended at the extremity of two cords, $d d^{\prime}$, of which d is attached to the right hand end of both leaves, and d^{\prime} to the opposite end; the said cords passing over pulleys, H H H', which work at the back of the top rail, I , of the frame, and around the pulley, J , whose axle is in the upper end of the rod, K , which works vertically in guides, e e, outside the trame. The rod, K , has a spiral spring, applied to it, to draw it downwards. The bottoms of the leaves of the harness are attached to treddles, L L, which are moved by tached to treddles, L L, which are moved by cams, M M, on shat, C, in a well known way. One harness is always caused to rise
by cords, d, and d^{\prime}, when the other io depressed by the treddles, and thus both are balanced while a proper tension is preserved on each by the action of the spring, in drawing down the pulleys perfectly steady, and thus a most excellent system of harness balancing is carried out. These two combinations and arrangements of machinery belonging to this loom are adapted to other looms; we will now describe the entire new arrangements
parts, and combinations for weaving hai cloth by this loom.
The line passing over the rollers behind the lay represents the warp; the quadrangle representing the shed or opening of the yarn of the warp by the heddles or harness to allow the hairs to be drawn through; M^{\prime} is a hopper for containing the hairs each by itself
standing in water; this hopper has two com partments, one ; this hopper has two com hickest ends uppermost; the other containing hair with the smallest ends uppermost.

Figure 1.
y, so as to trom each bunch alternate- troughs, and passes through the slit, h, abov ly, so as to lay a thick and fine end alternate- the bunches of hair, and has a weight, \mathbf{N}, susJy together for the weft. This hopper is at- pended to it, which keeps the hair tight in tached to the left hand of the loom, and there the trough.
are two troughs, $g \mathrm{~g}$, arranged parallel with Attached to the loom breast beam is the each other side by side, as shown in figure 3. arm, O , which carries the automatic server A narrow slit is made transversely across the this arm is adjustable back, forth, and sidebottoms of both, and the ends of the hairs ex- ways: P is a square head pivoted at the side end from the hopper, M^{\prime}, into these troughs of the arm, and has on its face four studs, protruding through, to be caught, as we shall one of which is caught and acted upon by a explain, by the automatic feeder. A cord, hook, l (attached to the lay) every time the is attached to the frame at the side of the lay recedes, in such a manner as to perform

Figure 2.

one quarter of a revolution, it being prevent- of nippers will seize it, and draw it through \mid when the return stroke is about to commence, ed from turning further by a spring bearing the weft thread. For some kinds of work, it the upper jaw, p, descends and takes a hair piece, m, which is forced against the back may be necessary to taketwo or more hairs at from the serving hook, embracing it firmly side by a spiral spring, m^{\prime}, the spring yielding a time, and for this purpose, the serving and carrying it through the warp. The lay to the operation of hook, l, but preventing the hooks can be made with two or more notch- is then beat up. and a shot of weft completed. the fourg turned accidentally. On each of es, but to take one hair at once, the notch of The nippers have a forward and back motion hook, n, made of a curved piece of steel se-
curea wy oue enu whed piece of steel se- more. These hooks never fail, as they re-i A spring drag is secured to the loom to V-shaped notch cut on its outer end. These pecially as the end of each hair is prepared to tion of the lippers. In this loom, one inch of hooks require to be alternately at opposite ends of the harrs, their notches being oppoite the centres of the troughs, $g \quad g$, of the opper. Every time the lay recedes atter a beat up, the hook, b, turns the head, P , and ne of the serving hooks, n, takes a single hair in its notch, and draws it forward from
the hopper, M^{\prime}, to such a position that a pair

revolving cam, \mathbb{T}, on the harness shaft acting hibits the approach of dust or dirt Me
nd of the lower rod, Q , is rigidly attached to (though it may be adjustable on) a block, S , which is capable of sliding on the sole of the
lay. The right hand end of the upper rod works treely through a guide, 1, , attached to the block, S , and is connected near the point of the jaw by a radius link, r. It has a spring, , coiled round it within the guide, q, which always tends to close it, and on its back side here is a work stud, t, projecting from itThe nippers are caused to pass qui<kly ing its bate mation, and grip the hair, v which is held in readiness by the server, and then return with it through the open warp, by a transverse motion given to block, S , by
upon the horizontal vibrating lever, U , which operates the picker staff, V, to which is connected an arm, u, attached to the nippers, and which works them exactly like the power loom picker staff. While the nippers are passing through the shed to fetch the fillinghai, they are kept closed by a spring, s, until the points of the jaws have passed through the shed, and have arrived opposite the server, when the stud, t, comes in contact with the right hand sword on the lay, or a suitable stop, which holds the upper part of the fip ${ }^{5}$. The jaws of the nippers being thus opened, a hair is received between them, and
hair lost in the hand loom every shot, is
saved, which amounts to a great deal in the saved, which amounts to a great deal in the
length ot a web. The operations we have described by this loom, will show that the useful scribed by this loom, will show that the useful
results obtained are designed to affect an entire results obtained are designed to aff ect an enti
revolution in the manufacture of hair cloth. Measures have been taken to secure a pa tent, and as the invention is quite a novel one, the claims are extensive.

A new Journal Boa.

A new journal box, intended more particularly for mailroads, has been constructed by G. V. Alden and John Smith. of Hornelsville, \mathbf{N} Y., the objects which :1....o., $p^{\text {ished by the }}$ invention, are a more prisect method of lubricating the axle without the possibility of the lubricating material being unnecessarily wasted, and also allowing the necessary play of the axle in the box, without permittin dust to enter the bearing. The centre of the box is provided with a circular reservoir for oil in the usual manner. Two circular cham bers are also cut, one in each end of the box which chambers receive thick collars nicely fitted to and forming the bearing for the axle these collars fill the circular chambers, and rest upon a spring at their periphery, so that the axle may have a slight play at each end the box, and still be closely fitted to the collars. This prevents the escape of oil and pro have been taken to secure a patent.

Models fur Inventions.

Inventors will perceive by reference to an advertisement in this number, that they may obtain models for any kind of machinery by ddressing Mr. Fairbanks, at this office. This will accomodate those inventors who hav frequently inquired of us where they could get a model constructed to represent their inventions.

Sufficient stock has been subscribed in Balimore to build a steamsh

Suratifir Ammericam.

\mathfrak{G} cientific ${ }^{\text {American }}$

NEW-YORK, JUNE 18, 1853.
Management of the Patent Office The Patent Office is one of the mostimpor tant departments connected with our government. It was organized for the purpose of promoting the progress of discovery and the useful arts, and to protect the peculiar rights o inventors, a class of men who have done mor for the advancement of civilization, and the honor and greatness of our country, than all the political economists that have ever lived. The steam engine, the cotton gin, the spinning jenny, the power loom, the telegraph, th sewing machine, and all other useful inven tions, are iron apostles of civilization; they convince without arguing, and subdue all opposition by the eloquence of action. The position by the Patent O fficemanagen the laws which regulate the issue tration of the laws which regulate the issue not only to inventors, but the whole people. The Commissioner of Patents, as the supreme head, should be acquainted with the laws o patents, a man of good judgment, of scientific ability, candor, and impartiality. The examiners should be men possessed of a tho rough knowledge of the machinery and articles in their several departments, patient in investigation, industrious, sensible, generous, and impartial, so that no injustice should be done by them to any applicant for a patent Good men, although liable to make mistake (for none are perfect) are always willing to rectify the same when they are pointed out while bad men, under the best laws, canno be trusted in any capacity.
The present Commissioner of PatentsJudge Mason-has given evidence since he
entered upon the duties of his office, of great ability and uprightness. He has changed th policy which was pursued by the Patent \boldsymbol{O} fice for a short time, and which we con demned on page 247, in reference to retaining all the fee tor rejected applications on which caveats had been filed. According to the thirds of the fees on rejected applications will hereafter be returned on all withdrawals and we have no doubt but every useful reform which Judge Mason in his wisdom deems ne cessary to the good aministration of the Pa tent Office affairs, will be carried out at the proper time and in the proper manner.
At the present time the Patent Office is far behind, at least six months, in the examination of applications. This is very trying to the patience of inventors, and sometimes injurions to their best interests. The business of the Patent Office should always be in such a state that no application should be longe than one month in the office before it is exa mined. When men in any office are crowded with business, their work is oftentimes but very superficially performed. At the present
moment the examining corps of the Patent moment the examining corps of the Patent
Office, although very diligent, are not strong enough in numbers to perform their incum bent duties so promptly and thoroughly as they should be fulfilled. Examiners have sometimes had much extra labor, unpleasant and extended corresponderice, owing to hasty adverse decisions. An applicant for a patent should al ways have the benefit of a doubt in the mind of an examiner, for a trial at law, after all, is the only real binding cord ot legality
We hope that during the next session o Congress, an addition will be made by law to the examining corps, so as to render every department complete and effective. The present Commissioner will then have been in office to see and know exactly what is wanted, and will be the most proper person to institute and recommend such measures as will make the Patent Office the best managed of any in connection with our government.

To Correspondents.

No matter what your communications treat
upon, we require you to furnish us with upon, we require you to furnish us with your proper name and residence in tull, or no notice whatever will be taken of them. We have re peated this statement frequently, and still receive annonymous letters. They are

Patent Agents-a Caution
It is well known to many of our readers that there are located in the City of Washington a vast horde of selt-styled "solicitors," who protess to undertake all kinds of professional business before the different depart ments of the Federal Goverament. This class of solicitors are for the most part shipwrecked
politicians, who hang about the corridors of politicians, who hang about the corridors of the public buildings, something after the style of the "Peter Funks" of this city,-ready ake all kinds of jobs, and for very smal fees. Of course, having once, perchance either by implication or in fact, been the suckers of government pappage, they are supposed to understand the "ropes," and of course have more influence in the proper direction than ny other class of men
The apparent success of these professiona gentlemen has had its influence upon many ninitiated into the mysteries of " official life;" and as a consequence growing out of it, Wash ington has become a sort of Mecca for young men thirsting for renown and money, wh magine that they are there easily attainable and flow directly from the large annual appro priations made by Congress.
The class of men we are now considering ave really nothing but windy pretentions which they display in long and tolerably ngenious circulars of information to the pubic. It is quite notorious that worth and espectability in professional life sufier in character and business on account of thes false pretenders. This is naked truth, and i apparent to all familiar with the peculiaritie
of Washington. There are also located near the Patent Of ice a class of men known as Patent Agents we are acquainted with several of the highes respectability, who are justly entitled to pub ic confidence, yet, after all, they suffer in their business and reputation by pretenders, who back their claims by professional circulars wondrous length and thundering sound, ing the most brilliant results.
ing the most brilliant results.
We feel called upon, as an act of justice to Qusselyes and other respectable Agents, to such characters,-they are unreliable, and like sharks, feed upon humanity, whose vital they search after, not only in the streets and public buildings of Washington, but through out the whole country. This nuisance becam so intolerable during the administration of M Burke, that he was compelled, to save the P tent Office from the disgrace of this besiegin army, to post circulars of warning along th walls of the Office. This checked their ope rations somewhat, so far as the Patent Offic was concerned, and their theatre of operatio then extended to the country, so that now al most every issue of the scientific America brings to us leitters of inquiry-illegitimat fruit-in reference to some Agents who pre tion, perhaps not patented, and who accompa ny the request ${ }^{\text {d }}$ by enclosing a professional card, so obscure in its meaning as to lead some ot our clients into the belief that they are ou Washington Agents. These men derive their information about inventions and patents from notices in the columns of the Scientific Ame rican, and to some inventors they are no bet er than horse leeches.
We wish our own clients distinctly to un derstand that we are our own Agents, and act perfectly independent of any support in or around Washington. The horde of Agents who thrust their pretentions upon inventors and patentees, have infinitely more profession than real merit, and cannot, as a general thing be relied upon; they are also vastly increas ing, and now swarm like the locusts of Egyp -the public must either stee
Without wishing to create a false impres sion in regard to worthy Patent Agents nea the Patent Office, we will state, that when ever any of our readers wish to employ reliale agents in Washington to transact any business with the Patent Office, we will, upon application, furnish them with the names of esponsible men. We have very reluctantly thrust this subject into our columns. We have done it to caution the public against
endeavor to build themselves up at the expense
ot reliable and able men. and much to the cost of their clients.
Low Pressure Engines on the Western Waters
We understand that a low pressure steamboat named the "Jacob Strader," has been recently built for the Cincinnati and Louisville Mail Co., to run on the Ohio river. All the steamboats running on the Western Waters are driven by high pressure engines, but this boat is not the first low pressure that has been tried on the Ohio or Mississippi. Excellent low pressure steamboats have been faithfully tried on the Mississippi, but failed to work well in such muddy waters excepting for a short time, and hence they were abandoned. At the present moment there are 1,205 steamboats in the United States, and jut of that number there are only 362 with low pressure engines-al the rest being high pressure; the latter are early all employed on the Western rivers Pittsburg has 101 high pressure boats; Cincinnati 104, St. Louis 126, New Orleans 111 and Buffalo in New York has 34-the rest being owned in various other cities South and West, and a number on the north-western lakes. The great number of steamboat accidents in our country caused by the explosion of steam boilers, is to be attributed to the great number of high pressure engines employed. It has long been a desideratum to obviate the dangers of explosions, and there can be no doubt that if the proportion of our high pressure to those of our low pressure teamboats were reversed, the number of boiler explosions would decrease exactly in the same ratio. On the Ohio river, where there are so many high pressure boats, the extra weight of the machinery for low pressure boats has always been a great obstacle in the way of low pressure boats on that river, he dry period of the year. As no effort hi therto made to introduce low pressure boat on the Western waters, has proved successful every one being a practical failure-we can not place much confidence in any new effort not, at least, until it has had a fair trial for some time. Some have supposed that the in frustations tormed on the boilers of our Wes ate of potash, and that when the boiler flues, by neglect or otherwise became red-hot, this ubstance exploded and tore the boiler to frag ments. Others believe that all the explosion on the Western boats are attributable to over pressure of steam, and look upon the incrus Wheory as a chimerical one.
Were it possible, however, to prevent scale in the boilers of our Western steamboats, by time use would be obtained. Is it not possible that a good surface condenser may yet accomplish these two objects! What has become of the information which should have been spread befor the people more than a year ago on the subject of steam engines, condensers, boilers, $\& c$., by a Committee appointed by the Secre
tary of the Navy, which took nearly two years to collect information. It appears to 11 that alter so much labor and money spent, the people should know whether the members o the Committee performed their duties in neglected to sure condensing steamboats will yet be rendered practicable on our Western waters, for they are by far the most comfortable in every sense for passengers, and besides, they are more safe, with respect to lite, and more eco nomical with regard to fuel.

Ericsson on the "Ericsson"
In the last number of "Appleton's Mecha ics' Magazine," there is an article from Capt Ericeson on his Hot Air Engines. From the exciting advertisements published about this article, as being something wonderfully great, we thought before we read it, that
some acute and able reasoning, worthy of an answer, would be presented. But instead of this we have been disappointed. We advise very reflecting practical engineer to read it or himself, to be convinced; that it is nothing but a batch of nonsence. We quote the folowing extract:-
"I have repeatedly stated that the yielding
ull pressure being carried, and I have so reported to Government. Strange to say, those who have written on the subject appear not to comprehend the importance of this ract, nor its true bearing on the question. They all contound the caloric engine with the steam engine. In the latter, when reduced pressure is carried, the consumption of fuel is reduced in an equal proportion-not so in the caloric engine. The principal source of heat being the regenerator, neither speed nor pressure exercises any material influence on the quantity of fuel consumed. I must here emphatically record the fact, that the quantity of fuel consumed in turning the wheels at the dock, at $4 \frac{1}{3}$ turns per minute, differed very little from the quantity consumed under way, making 9 turns a minute. The reason is obvious; the losses by radiation, and the heat passed off through the chimney, \&c., remain constant, whilst the capability of the regenenerator changes with the speed, density of air, and temperature. By increasing these the power of the instrumentincreases in equal proportion; the more heat it receives in a given time, the more it gives back."
Capt. Ericsson has also stated that his wrought iron heaters would not yield. Those who have written on their yielding have comprehended the diffculties, if not the importance of the same, and the owners of the
Ericsson now feel it. It is not true that the hot air engine (caloric engine is a wrong not air engine (caloric engine is a wrong engine and it is not true that reduced pressine, and in tion ot fuel. If he had said that high prestion of fuel. If he had said that high pres-
sure steam used expansively, reduced the sure steam used expansively, reduced the
quantity of fuel he would have been correct. It the regenerator is the principal source of heat, why in the name of common sense does he use any fuel at all. It seems that the fuel his engine consumes is a sequent of his regenerator, and by this logic it is not the heat produced by combustion which moves his engine, buthis regenerator-sone packages of wire gauze. The "regenerator" of the hotair engine is a humbug; it seems to humbug Capt. Ericsson and all the groundlings who believe that a certain quantity of heat can roduce uantities of matter-a perpetual motion idea of the most absurd character.

IPropellers.

A number of fine steam propellers, of moderate tonnage, have lately appeared on our waters, and more are in progress of construction. A line of schooner-rigged propellers yetween this city and various places run very fast. A new line of propellers has been established to carry freight and run on the North River between New York and Al bany. The first one of the line has been built t Newburgh. The boat is of large dimen-ions-160 feet keel ; 29 feet 4 inches breadth beam, 8 feet depth of hold. The machinery consists of two double cylinder engines, direct action, formed upon an improved principle, the invention of John Baird, of the Highland Iron Works. The piston of each cylinder is comnected to the crank-wheel pin of the Propeller-shait, directly under it. The condenser and air-pump are placed between the cylinders; the air-pump being horizental and double acting, receiving its motion from a link attached to one of the slides. The engine is on the Wolte principle, but is aew so far as regards the construction and arrangement of its parts

Con
On the 10th inst., the British ship Leander arrived at this port with the Earl of Ellesmere on board, as the chiel appointed British Commissioner ; Sir Charles Lyell arrived the week before at Bostor:, Prof. Wilson, Messrs. Dilke, Wallace, and Whitworth, other Commissioners have also arrived. The Earl is accompanied by his lady, the Countess of Ellesmere, his son and two daughters
The Earl is altogether too fast for our Crystal Palace folks. We believe it is his intention, as the Crystal Palace is not yet ready to open, to proceed immediately to Niaga Falls, and thence to Canada, where he will Falls, and thence to Canada, w
remain until the middle of July

Reported Officiall'y for the Scientific American LIST OF PATENT CLAIMS Isaued fom the United Btaten Patent Offico for the webi knding juak t, 1853 .

 terion of the ring, to catch the stud or equiralent,
 [See description of this inrention on page: 116 ,
Vol. 7, Sci. $A \mathrm{~m}$]

 rired from
sepecifed.
Also, in the combination above specitied, making
the beam or beams, slide on the fulcticum or fulcra, ad specied. by means of whioh additional element, in
the ocombination. 1 Im enabled to im part to the pad
the dite or padiles, the baccs motion, in the directition
the propelling action, more than the lower half o the proplling action, more th
the crank $\boldsymbol{n} \boldsymbol{n o t i o n n , ~ a s ~ s e t ~ f o r t h . ~}$
 claim treating wool with a composition of oil av
alconol, to prepare and it it for the several man faturins preati
fow en ploped.
(Sea deseription of this invention on page bij, Vol

 Also, the combination of th

 orth.

 mater huse, to friect the conpling with the the tmose
facilik? wile the water is fowing through the bose

 (This is believed to bo a very valuable invention Patents have been taken in foreign countriss through
owr Agency)

 orifice, thus herinetically telling the oribice, and
preventins the eescape of enlurit, saiid ralve also
and
 the valse being cunstructed of at sphere or bat
Working over a a circular opening in the bottom of the water charabor, or constructed in any other manner
I io not claim the water chamber independent of it

 bat causes the platform to move in wardsand and down
mards, hen the boat is coming into the slip, an
he
he

(We recommend this invention to the considera
tion of our ferry tion of our ferry companies, it is a humane inve
tion, and one that should be introduced on ever ferry route.)

 said yoke and the vertical pot tions of the centre of
therest
therey
giving an oblicue or in inard direction to the

Vol. 8, Eci. $A \mathrm{~m}$.)

 Oillet cutter or cuters, for boring or orcarating
tunnels and other apertures in rocks or other har

 concapity towards the machine in in com bination with
a mot ion or mot he
 cession, on
described.

 rendering the pump or engine, more
fective, and lessis liable to derangenent Sci. Am.)

 the oppas.ite face of the water back in
with the first set thereor, as deseribed
Lalaso claime the pectuliar arrangement of fues,
which 1 aal the smoke and volitie productsof com-

I also claim the two recesses and two llue platen
applied to another p plate, in coubbination with the

 the use of two such orens and their frame, in con
nection with the fire place, as s tated

 pecitied
eek's issue were secured through the Scienti6 American Patent $\Lambda_{\text {gency }}$.

Manufacture of Boheman Glass.
A French company, of ample means, hav purchased a tract of land at a short distance where they hystal Lake, near New Rochelle a magnificent establishment for carrying on the manufacture of Bohemian Glass Ware.The "Westchester News" states that the up in the most substantial manner. The principal building fronting the turnike road
will be upward of 300 feet long will be upward of 300 feet long, and four o five stories high; while in the rear there will
be several other buildings of smaller dimen sions, adapted to the wants of the various
branches of the business. One furnace alon
will occupy a space of fitty feet square. The whole work is to be pushed most vigorously as soon as finished quite a colony of workmen France to families are to be brought from France to carry on the business, which is ex commodation of the French families who are expected to be employed in the establish ment, about fifty dwellings will be erected by the company. New streets are being laid out around the works.

B. F. Cooke's Mode of Calking Vessels.

In the construction of vessels the process of calking the seams so as to exclude the water, forms an important part of the operation. This has heretofore been done by champering the outer edges of the planks, and then driving oakum or other similar material between hern. An objection to this mode of calking the well-known fact that the working and straining of the vessel has a tendency to hrow the oakum out, and render re-calking necessary, while, at the same time, as the planks are not driven so close together, and consequently cainot form a close joint; the hull will be less stiff and rigid than is desira-
The improvements represented in the annexed engravings obviate these objections, and consist in rendering the seams watertight by placing between the edges of the planks some adhesive elastic substance or material, such as india rubber, gutta percha, or compound of both. This may be lone by each plank, and placing in the said groove a位品 of india rubber, gutta percha or other lastic material, and then driving the plank
FIg. 2. Fig. 2

 arm a be coated with a rubber cement, or compound. In the engravings, fig. 1 represents a side elevation of a portion of the hull of the boat, and figure 2 a transverse section, representing wo methods of introducing the elastic calk ing above named, a different method being hown upon each side of the boat
$l i$ are the planks upon one side of the ves sel, and a a those upon the opposite side; are the joints which are calked by grooves, plowed in the edges of the plank, as shown, into which the long strip of elastic calking i introduced. This strip of calking may be ound and tubular, or of any other required orm, so as to fill the channel, which may also be of any shape desired-the planks thus rooved or plowed are then driven together
with a coat of elastic cement between them if it is thought advisable. The calking introduced between the planks, $b b$, as at f, is of a different form from that at $d d$; in this place the planks are not grooved as in tne other intance, but are planed square, and a flat piece of the elastic calking doubled and placed between the edges, thus inlaying all the joints by the elastic material. The edges of this
calking may overlap the external corner of calking may overlap the external corner of
the plank, as shown in fig. 2 at f and connec the plank, as shown in fig. 2 at f, and connec-
ted to the plank unon the outside, or the joints
may be simply inlaid without the overlapping, as may be required. It will also be seen that the ends of the planks and the seams of the upper works, or other parts of the ves sel, may be calked in the same manner. By e above method of calking a vessel, it will e seen that the necessity for chamfering the dges of the plank is entirely obviated, and y cutting the edges square, and placing beween them an adhesive elastic substance, the oint will be impervious to water, and at the same time the hull remain extremely stiff and firm, while the calking cannot be worked out by the straining or working of the vessel, as frequently occurs in the method of calking heretofore practiced. Further information may be obtained by letters addressed to the inventor, B. F. Cooke, of Boston, Mass. Mr. C. has taken the necessary mea snres to secure a patent.

By the latest news from Europe, it appears that the celebrated city of Nankin had been captured by a powerful army of revolutionists who will, to all appearances, soon overthrow the present Dynasty.

TO CORREBPONDENTB

S. B. B., of Vt-The mere application of any well known substance to a new purpose is not patentaE. W. S., of Mass - The Patent Ofice Report many years back could not be obtained for any price.
S. G.
S. G. C., of Pa.-We do not see the least advan tage that you can obtain by using the carbonic acia your engine
. H. F., of Vt.-We should be pleased to have dorm a club of subscribers for the Scientific nents than those laid down in the prospectus. P. -, of Mass - Yours has been received and will meet with attention.
W. P., of Pa.-Your deductions appear plausable, but they will not account for all the phenomena we rains? have you tried the or the various colored pollen from falling upon the staminaterenting the periments alone will determine the true theory
L. P., of Pa.-Your argument is ingenious, but it heated air : we reitr you to the viewe embraced in
 truth is mighty, and our views will be found to be correct ; we are nowise uneasy a bout the tature, it will, and is, developing the sound doctrines promulgated in the Scientific American respecting Pulley, Static Pressure and Caloric Ragines, Water Gas,Fire Annihilators, etc.; we mean to protect our own readers: for them we devote our energies; we are our plainness; we care not for this, we erpect it. S. L. B., of Nich - You are correct, compressed air pa8sing into water winl absorba a portion of
loric from the water and render it cool ; for an ap plication of this principle see the air-cooling apparatus in No. 38, this Vol. Sci $\Lambda \mathrm{m}$.
S. L. II., of Ill.- Yours is not "a worthless fancy," as you state, but very ingenious; you must,
however, see "House's Telegraph," when you will be convinced that he has produced a machine carrying out the same idea
A. C.S, of N. Y.-Different gases have differen air is 815 times lighter than water; a cubic foot of carbonic acid gas is therefore 552 times lighter than a cubic foot of water, which weighs 625 lbs . J. B. C., of Ohio-We do net see any chance for sou to get a patent on the head rest for cars. The
same thing, substantially, has been long known and ased. You had better not apply.
A. H., of Pa.-We have examined the sketch of your improred compound car axle, it contains no drop it ; sereral pertinent references could be gi-
D. P. \%., of Ct.-You do not appear to be a ware of the fact that dry meters are well known, also the differently arranged from any otber known to us, but the watermeter is superior to any other. If yours is useful it is patentable, we think. Moss for the week ending Saturday, June 11:

Specifications and drawings belonging to parties the Patent Office during the week ending Saturday

5cientific Ammerican.

ADVERTISEMENTS.			
Foreign and American Patent Agency			
nical and chemical inventions, offer their services to inventors upon the mostreasonable terms. All business entrusted to their charge is strictly conf-			
 valled Hall of the Institute, in in then ofty of of banti-			
more, on Monday the 3rd day of October, 18:3, where articles for competition and premium will be			
	warranted superior to any otherfor Platers and other Rollers requiring hardening; also for hydraulicand other pistons, railway axles, and shafts forsteam engines \& \& \&c. This cast steel admits of welding without borax with the same facility asiron. NHOS. PROSSER \& SON, 28 Platt street, NewYork. York.		
	ed monthly, in a beautiful quarto. Illustrated with engravings, exhibiting the Structure, Anatomy, and Phsiology of the IIuman Body, with familiar instruc-		
A good chance for manufacturina , mith four acrese of of chioici, lanat, in in the he North River, and three miles from the railroad depot, and on the line of survey of the Albany of John J Vanduzer,premises.			
	AND WELLS, Clinton Hall, No. $1: 31$ Nassau street,New York.Young men about launching forth upon the acti-	draulic Lifting Press, Roebling s Patent Wire Ropefor hoisting and steering purposes, etc. etc.$2920 * \quad$ CHARLES W. COPELAND,Consulting Engineer, 64 Broadway.	
	Licy		
	and rolling mills, katchet Drills of superior quali-ty for machinists, Saw Gummers, Hand drills, TyreBenders, and shafting and machinery generally.:38 1 y		
the Ling Power Co. of U.S. Office 49 Dey street, $\begin{array}{l}\text { New York. }\end{array}$ $\begin{array}{l}*\end{array} \begin{array}{l}\text { don Extra } \\ \text { B. PARSON }\end{array}$			

Rise and Fall of Lake Ontario.
A correspondent in the last number "Hunt's Merchants Magazine," gives a ver interesting account of phenomena connecte with Lake Ontario. It has been long known that this lake is subject to frequent risings and fallings of the waters, and by many it has been supposed that such changes were re gular. This, by long observation, has been found to be incorrect; the risings and fall ings of the waters are not regular, but of ten times sudden and produce wonderful ef fects. At Port Hope, Coborg, Graton, and Colbourne, the water recedes suddenly and leaves the harbor bare, and then returns with a violent roar and invades the land. This portion of Lake Ontario is subject to great submarine convulsions, and sometimes the waters ebb and flow every ten ninutto. A convulsion of the Lake took place in Sep tember 1845, which gave birth to a terrific thunder storm, and was accompanied by severe tornado. Another took place on the 5th July, 1850, which created a terrific wate spout, which was broken by a bolt of electricity, that appeared to have come from the bottom of the Lake. Part of the water spout in a dark cloud passed over to the land depositing its waters at the heads of the Canada Creek, which raised the said Creek so suddenly as to carry away the railroad bridge of the Schenectady and Utica Railroad, befor the trains could be informed of the event.
The waters of Lake Ontario have bee known to fall fourteen inches in thirty-six hours, and these waters could not have been carried away in that short period by the rive St. Lawrence. The Lake is underlaid with fossiliferous limestone, from the north shore in Canada, to the south shore, and it is not long since Watertown and Lowville were severely shaken by an earthquake; these plaes being built on the same limeston strat This section of the Lake sometimes produce fearful lightning storms. one of which visited
1851, while there were three feet of snow on the ground. These facts seern to corroborate the views expressed on page 264, this Vol., Sci. Am., by Mr. Drummond, respecting some earthquakes which had taken place in North Britain
"If some convulsion of nature were to take place so as to tumble down the falls of Niagara," says the author of the article :eferre to, "Lake Erie would become a river." Such a convulsion would need to open up a chan nel through the rock above the present fall a few miles long; some suppose that this was
done once before, and that the Falls were down at Lewiston. There is a mystery connected with the rise and fall of the waters of Lake Ontario, which cannot be accounted for by continued rains or the melting of snows

Enchanted Mountain in Texas.
They have strange things in Texas, as well as wicked doings. The following account of a great natural curiosity in that country is from the "Texas Telegraph:"-This singular mountain, or hill, is situated on the head wa ters of the Sallec-a small tributary of the Colorado, about eighty miles from Bastrop, in a northwesterly direction. It is about three hundred feet high, and appears to be an enormous oval rock, partially imbedded in the earth. When the sun shines the light is re flected from its polished surface as from an immense mirror, and the whole mountain
glows with such a dazzling radiance that the beholder who views it, even from a distance of four or five miles, is unable to gaze upon it without experiencing a painful sensation, similar to that which is felt when looking upon the rising sun. The ascent of the hill is so very gradual, that persons can easily walk up to the top; but the rock is so smooth and slippery that those who make the attempt are compelled to wear the moccasins or stockings instead of shoes. This act, togeth er with the name of the place, Holy Mountain, reminds the visitant very forcibly of the command made to Moses at Mount Horeb "Put off they shoes from off they feet." The
Camanches regard this hill with religious veCamanches regard this hill with religious ve-
neration, and Indian pilgrims frequently as
semble from the remotest borders of the tribe
to perforin their Paynim rites upon its summit.

(For the Scientific American. Entomology. (Continued f:om page 312.]

III. Hymenoptera-(Yoke-winged.)

Ametlysstina
The members of this order, which embra es one-fourth of the insect population, are mandibulate, obtaining what little nourish ment they need chiefly by lapping the necta of flowers with a long tongue which passes through a proboscis like mouth. The ante rior wings are larger than the posterior; and in flight the pairs unite by a series of hook on the edges. The larvx are very impertect and usually supported by the neutral part o the race. They are best developed in warm limates, where some species attain two inch es in length and three by the wings. Thei life never exceeds a year. Their instinct and ocomotive powers are remarkable; and here we find contrivers that do not fall far short o intelligent beings. The last segment of the body in the females is prolonged into an or gan, which in one division, Aculeata, is ting connected with a poison reservoir; and in the Tenebrantia, an instrument for boring place for their eggs. In the former, the ab domen is joined to the thorax by a slender pe duncle; in the latter they are closely jointed The former contains the group of Diggers called Sand and Wood Wasps. They delight in the hottest sunshine, and burrow the sand
by brushes or wood by strong mandibles. The nts fins or wood by strong mandibles. The Though another family of this section. Though our species are harmless, some exi
tics rival the scorpion in sting and bite. I Telung their hills are often 100 feet in circum tories, each finished in 7 or 8 hours, contain ing saloons and galleries, with vaults support ed by buttresses and pillars. The mason ant use clay; but the carpenters build with saw dust made into papier mache. As warriors they exhibit true myrmidonian valor; rival cities like Rome and Carthage pour forth their myriads to decide the tate of their little world. As slave-dealers, they sally forth to pillage negro formicaries. As darymen, they pasture their milch kine-the Aphides-and milk them by patting the abdomen with their an enn:e, which are their instruments of speech As emigrants, colonies go forth to "settle, th lacks carrying their masters, and formin oads by means of formic acid which the eject, as Hannibal cut the Alps. Theirstrengt is wonderful; two or three will dray a youn snake alive. The males and lemales ar winged; the neuters tend the grubs. To on tribe medicine is indebted for a valuable stypWasps have their wings folded when a The cells in a vespiary son found the colonies; the males are the scaveners; and the workers control domestic af airs. A native of Cayenne builds its nest o beautifully polished white pasteboard; but greyish paper is generally used. The horet (a dangerous insect) is of a larger genus and its nest is often of the size of a half peck of the melliferous division, the clothier-bees nvelope their nests with wool ; the carpen-er-group hore their cells out of solid wood the masons build with artificial stone, and the upholsters line their domicils with boquets The hive of the social bee is a miniature city ivided into streets composed of houses for magazines, habitations, and palaces, constructed on the most exact geometric principles, of material which man cannot produce-myseries which have puzzled philosophers from ristomachus to Huber. The cells are hexa gonal, with a pyramidal base formed of three
rhomboid plates, whose angles are 109028^{\prime} rhomboid plates, whose angles are $109^{\circ} 28^{\prime}$
and $70^{\circ} 32^{\prime}$. A moderate swarm consists of and $70^{\circ} 32^{\prime}$. A moderate swarm consists of
12,000 , and is laid in two months, 5376 weigh pound. In a populous hive, the thermometer ranges trom 92° to 97°, and at swarming
rises at 104°. Each individual makes about
4 excursions daily, and from 40 to 120 respi 4 excursions daily, and from 40 to 120 respi tilated by rapidly vibrating their wings Humming-bees (improperly called "Hum Humming-bees (improperly called "Hum 60 , and draw food chiefly from clover. O the Sawing Hymenoptera, the family of Gall flies are armed with teeth at the extremity with which they enlarge slits on the oak or fig, and the tear issuing from the wound increases till it forms a covering for the eggs, in the shape of an excrescence. The nuts from Aleppo, containing more tannic acid, are of more value in the manufacture of ith; these are prickly and of a bluish green color. Some resemble beautiful frnits, and are eaten in the Levant. Others are hairy, some like mushrooms, artichokes, or flowers; and are of all sizes, from a pin's head to a walnut. The apples of the Dead Sea are the product of ano ther species. The ovipositor of the saw-fly resembles a hand-saw, and its larva a cater pillar. Ichneumons feed on honey and depotheir eggs in the bodies of other insects ver 3000 species are found in Europe alone The Chalcids are of a brilliant metallic here, nd generally leapers. The Chrysids or gold-n-tailed llies are often found running in the unshine upon walls.

This order includes all insects which masticate, and have two pairs of wings-one enin their incomplete metamorphosis, and the ofter covering of their bodies. They are car nivorous or omnivorous, terrestrial, and best leveloped in the torrid regions. In the famiy Cursoria, the legs are fitted for running The earwig frequents dark and damp places, and does much injury to fruits anc flowers It sits upon its eggs with all the maternal instinct of a hen. The cockroach is a troublesome insect, infesting beds, pantries, clotheschests, \&c. It avoids the light, has an offenive smell, and small wings. The toreign insect (represented in the last figure) is some times called the walking-leaf, from the adapation of its color to that of the leaves about it; but ottener, the praying mantis, from its common posture and soft modesty. It is, however, very cruel and voracious, having long narrow body and powerful fore legs they fight one another like infuriated hussars, and are the game-cocks of the Chinese. When alarmed they produce a noise like that of parchment rubbed together. The Phasma or walking-stick has a very long round body, which, when young, is usually green. The tribe Saltatoria are leapers, and deposit their eggs in the ground. Grasshoppers are herbivorous, have slender appendages, and do not warm like locusts; their wing covers, when cosed, are roof-like, and their musical pow ers are such the Spaniards cage them. A hideous looking species from the south of Europe and Africa is devoid of wings. Of crickets, many burrow in the ground, most are noctuinal, and few can fly. The house-cricket is most noisy in the night, fiddling a shrill note by rubbing its wing.cases against each other It llies like the woodpecker. The chirping of the field tribe is sharp and stridulous. Another species presents the structure and habit of the mole ; it does great injury to roots, especially those of sugar-cane. Locusts chiefly inhabit Africa and the south of Asia : what are so called in America being cicada; they are generally of a brown color, about three inches in length, having a head liko a horse, two feelers about an inch long, dark eyes,
strong jaws acting like scissors, a greenish corslet, and delicate wings, laying 40 oat-lik
eggs, and leaping 50 feet. An army of them is an inevitable fore-runner of famine; so immense sometimes as to reach 500 miles, so compact as to eclipse the sun, and the rushing of their wings is like the sound of a mighty ca-taract-being audible six miles. In the work of destruction they make a noise like flame driven by the wind, and the effect of their bite resembles that of fire. From their putrifying carcasses arises pestilential death which, in Italy in 591, carried off a million of men and beasts. They are sold as eatables in the bazaar of Bagdad.

Languages of India.

A work on the Geographical Distribution of the principal language of India, and the feasibility of introducing English as a common language, by the Hon. Sir Erskine Perry, late President of the Supreme Court at Bombay, who has returned to England, atter a sojourn in India, of twel ve years, has been lately issued in London. He is a profound Orientalist and a European scholar, and has visited the various nations he describes; his views, moreover, are those of a statesman India, through its whole extent, as now measured by geographers, contains in its computed population of a hundred and forty millions, at least as many languages and nation alities as Europe. According to Sir Erskine, there are two great classes, the northern and southern; the first consists of seven tongues and ten dialects; and the second of six languages without any dialects. The origin of each is curious and historically instructive. But the most remarkable portion of the essay, is the inquiry, whether the common medium of intercourse amongst the educated minds of India, cannot be accomplished-and the English be rendered that medium. The author argues in the affirmative, with full knowledge and confidence, and the time may yet arrive when the English will be the common language of all America, Australia, the Isles of the Pacific, and the whole East Indies.

Graduating Machine

We have received three very neat small measure scales rom mortume nolge, uf laid out and executed by a machine invented by his father, Samuel Hodge, of Patterson, N. The machine will divide any given number of equal divisions in any given space, and make the lines of any degree of fineness.The machine appears to be a good and ingenious one

Manufacturers and Inventors A new Volume of the SCientific american commences about the middie of September in each jear. It is a journal of Scientific, Mechanical, and other improvements; the adrocate of industry in all
its various branches. It is published weekly in a form suitable for binding, and constituten, at the end of each year, a splendid volume of over 400 pages, with a copiousindex, and from fire to six hundred original engravings, together with a great amount of practical information concerning the progress of vention and discovery throughout the world. The Scientific American is the most widely circulated and popular journal of the kind now published. Its Editors, Contributors, and Correspondents are among
The Patent Claims are published
We particularly warn the public against paying money to Travelling Agents, as we are not in the habit of furnishing certificates of agency to any $\xrightarrow{\text { one. }}$ Letter

MUNN \& CO.,

128 Fulton sireet, New

Terms! Terms! Terms One copy, for One Year
"
Sir Monthe Five copies, for Six Months Ten Copies for Six Months for Ten Copies for Twelve Months, Yifteen Copies for Twelve Montha,
Twenty Copies for Twelve Twonthern and Wern $\$ 28$ fall value

