Srientific Ameritan.

Scientific American

 CIRCULATION 16,000. poblished websiAt 128 Fulton street, N. Y , (Sun Buildings),
BY MUNN \& COMPANY.
Hotehk iss \& Co., Boston
Dexter \mathbb{E} Bro., Ne\# York
City
Stokes \& Bro., Philadelphia.
Cooke \& Lecount, San Francisco,
Cooke \& Letount, San Francisco, Cal.
G. S. Ointenay, Charleston, $\mathrm{s.c}$.
John Carruthers, Sarannah,
M. Boullemet, Mobile Ala.

Sidnoy Smith, St. Louis, Mo.
M. M. Garisisal \& Co., Paris.

 derms-\$2 a-year- $\$ 1$ in advance and the remain

Pailroads in Teras.

We hope Texas will go ahead in the rail road line at the earliest date. It is a country well adapted for railroads, and they are the very means required for developing its resources, and giving an impulse to industrial emigration. We believe that three railroads are now projected, two of which have been sur veyed, and companies formed for their prose eyed, and companies formed for their pros cution. The first is the Buffalo Bayou, Bra zos, and Colorado Railroad; this railroad is intended to unite the navigable heads of the Brazos, Colorado, and Red rivers with the waters of Galveston Bay, at Harrisburg. There are fifteen miles graded, and in a few months the whole will be ready to the Brazos to lay the rails to connect with that river. This project is the first step for a railroad from the Gulf of Mexico to the Pacific
The second route is the San Antonio and Gulf Railroad, to connect Harrisburg and South-western Texas with the waters of Matagorda Bay, and of course the Gulf at Indianolo.
The third route traverses the above two from east to west, and cutting across the heart of Texas, at the head of navigation on all her chief rivers, is intended to join the New Orleans and Opelousas Railroad, which, it is declared, when fully completed, will carry the best trade of Texas to the "Crescent City."

A Stately Bridge.

The New York and Buffalo Railroad, con necting Buffalo with the Erie Railroad at Hornellsville, via Warsaw and Portage Falls, is now completed, and running, except the bridge over the Genesee at Portage Falls, which is to be completed on or about the 20th inst.

Of this bridge the W yoming County Mirror, says :-
This immense structure is nearly completed. Those who have not seen it should go now, as it is worth fifty miles travel to see them raising it. It will be, if not the wonder of the world, the wonder of the thousands who will visit it annually. We are not aware that there is another bridge in the world as high and as large as this, and are confident there is not, of similar structure. It is 235 feet from the river to the track, and 240 to the top of the railing; and the length is 1,000 feet. The Suspension Bridge at Niagara Falls is 230 feet high and 795 long-so that Niagara is beat in this respect. And yet, though this work is reared to such an astonishing height it has the appearance of perfect safety We are told, that by calculation they know that it would bear twenty times the weight of any train that can be put upon it. We think we should not fear in the least to ride over it the first time. We understand it is in contemplation to pass overit the first time with four of the heavy engiites followed by a train of cars. If so, and the people have notice of the time, there will be thousands there to see it.

IVACHINE FOR FINISHING YARNS AND THREADS.
Figure 1.

The annexed engravings are views of ma- giving motion. In our country, the manufa chinery for finishing cotton, silk, and worsted ture of cotton yarn in factories as an exclusiv yarns and threads. The inventor and paten- branch of business unconnected with weaving ee is Godfrey Erman, of Manchester, Eng. is almost unknown in England there are Fig 1 is a sectional side elevation, and fig. 2 more than $30,000,000 \mathrm{lbs}$. exported ever s a front elevation of the principal gearing for year.. This yarn is dressed and put up i

Figure 2.

bundles for sale, and it is necessary, like the them, and this has always been done by hand finishing of cloth, that it should look well. the work is dangerously unhealthy, especially This machine is intended to clean, smooth, the dressing of the arsenic greens, and besides, and separate the threads. It is an important it never has been thozoughly done by hand machine, especially for cleaning and dressing this machine will accomplish the object.colored yarn. There are some yarns collored The time will no doubt arrive in the course with barwood, some with arsenic, potash, and of our progress in textile manufactures, when the sulphate of the copper; they have all to much yarn, green, bleached, and colored, of e beaten and shaken when dry, to remove the silk, cotton, and wool, will be made in our offensive sediments of the dyestuffs out of 1 country, and for factories and dyeworks screws, H, passing through nuts above, by the
his machine will form a landmark, to confer no small amount of benefit upon the manufacturers, and those who have been accustomed to finish yarns. The thread manufacture is but in its infancy among us; this machine is specially applicable to the dressing of threads in hanks like the strong linen kind, which we hope yet to see greatly improved, and rendered more perfect. There are a few factories in our country for making linen thread for shoemakers and saddlers, but there is only one fac ory in our whole country with which we tory in our whole we are acquainted, that makes linen thread for sewing; the samples of the thread which we have seen, of this home manufacture, lead us to say, that its makers have a great deal to learn yet.
The threads are submitted to the operation of the machine while in the hank, and the object of the process is to impart. to the threads a smoothness and evenness not hitherto attained by any of the ordinary means employed; and also to give them a greater degree of lustre or gloss than usual. The principle of the improvements is, to submit the threads to friction, produced by a revolving brush, the threads being maintained in a state of tension, and also in motion during the operation. A is one of two side standards, which being properly connected together by cross pieces, form the framing of the machine. B is the main driving-shaft, tor giving motion to the machine; it is carried by two bearings, one of which is upon the side standard, and the other upon a bracket or carriage, fixed to, and projecting from, the standard; upon this dri-ving-shaft is fixed the driving-pulley, and also a spur-pinion, which gears into the spurwheel, C , upon the boss of which is fixed a pur-pmion, gearing into and driving the wheel D. The wheel, C, and its pinion revolve loosely upon a pin or stud projecting from the lever, E. The fulcrum of this lever is upon the shaft carrying the wheel, D. The upper end of the lever, E, carries a pin, which passes into. a slot in the lever, E^{\prime}; by means of this slotted lever, the lever E can be caūsed to arrme one of two positions, nearer to or further from, the driving-shaft, so as to put the wheel, \mathbf{C}, into gear with the pinion upon the driving-shaft, B, or remove it from gear with it, and thereby stop its movements; but at the same time the pinion upon the boss of the wheel, C , is never removed from gear with the wheel, D. The shaft carrying the wheel, D, is mounted in manner similar to that of the driving-shaft, B, that is, the bearings of it are in the sidestandard and in the bracket or carriage. The inner end of this shaft carries uponit one-half of a toothed clutch-box, the other half being upon the end of the roller, F. This is one of the thread-rollers; the other is at F^{\prime}; and it is around and between these two rollers that the hanks of thread are placed in the machine; and the bearings upon which these rollers revolve, are of such a construction as to be removed from, and repiaced in, the machine with facility, the clutch being the means of connection between the roller, E, and the shaft carrying the wheel, D , so as to communicate motion to it. The upper threadrroller, F^{\prime}, revolves loosely in its bearings; thus it will be seen that when the thread-rollers, F, F^{\prime}, are mounted in the machine, and the lever, E , fixed in such a position as to throw the wheel, C , into gear with the pinion upon the drivingshaft, movement will be given to the rollers, and consequently to the threads upon them, submitting fresh portions of them to the action of the revolving brush. During the operation, the hanks of threads are maintained in a proper state of tensipn, as follows :-The bearings in which the upper thread-roller, F^{\prime}, revolves are attached to the sliding-bar or frame, G. This is attached to the ends of two
turning of which in either direction, the screws, and consequently the frame, G, will be elevated or depressed, and the hanks of threads upon the rollers tightened or slackened accordingly. The screws are worked by gearing as follows:-Upon the driving-shaft, B, is fixeda bevel-wheel, gearing into and giving motion to another bevel-wheel upon an upright shatt, I. Upon the upper end of the upright shaft, I , a bevel-wheel I ' is fixed ; K K are two bevel-wheels fixed upon one boss, or a short hollow shatt working upon the shaft, L which boss is attached to the shaft by a feather, which admits of the two bevelled wheels being moved lengthwise upon the shaft, so as being moved lengthwise upon the shaft, so as
to bring either of them into gear with the beto bring either of them into gear with the be-
vel-wheel, I^{\prime}, or to throw them both out o6 vel- wheel, I^{\prime}, or to throw them both out of
gear with the wheel, I^{\prime}, at one time. This is gear with the wheel, I^{\prime}, at one time. This is
to allow the shaft, L , to be turned in either to allow the shaft, L, to be turned in either
direction, so as to elevate or depress the direction, so as to elevate or depress the
screws as desired, or to allow the shaft, L , direction, so as desired, or to allow the shaft, L,
screws
and and consequently the screws, to be stationary. Upon the other end of the shaft, L, is fixed another bevel-wheel, L, gearing into the horizontal bevel-wheel, L , hel, $\mathrm{L}^{\prime \prime \prime}$. The boss
is fixed to the spur-wher also forms the nut of the screw, \dot{H}, by which
ald also forms the nut of the screw, H , by which
it is elevated and depressed. The other screw it is elevated and depressed. The other screw
is likewise provided with a similar nut and is likewise provided with a similar nut and
spur wheel, with a connecting pinion between moving upon a fixed stud; the intervention of the piuion being for the purpose of moving both nuts in the same direction simultaneously. The boss carrying the two bevel-wheels, $\mathrm{K}_{\mathrm{K}} \mathrm{K}$, is provided with a small lever, K^{\prime}, by which it may be readily moved along the which it may be reace moved along he
shaft, L, when desired. Upon brackets, N , shaft, L, when desired. Upon brackets, N,
fixed to and projecting from the standards, A, fixed to and projecting from the standards, A,
is mounted the driving shatt of the revolvingis mounted the driving shatt of the revolving-
brushes, which consists of two eld-wheels or brushes, which consists of two end-wheels or
centres, O , upon the periphery of which are centres, O, upon the periphery of which are
fixed the bars, P, carrying the brushes. Upon one end of the shait outside the carrying bracket. is fixed the driving band-pulley, \mathbb{Q}, this is driven by a separate band trom that which gives motion to the main driving-shaft, B, whereby the movement of the brush is much more rapid than that of the threads under operation, and the movement of the threads may, when desired, be entirely suspended, as before described, while that of the brushes continues. At the lower part of the machine is mounted a fan blower, \mathbf{T}, for the purpose of throwing a current of hot or cold air upon the threads under operation. The construction of this blower is of the usual kind, and motion is given to the tans either from the main driving-shaft, B, or from the
brush shaft as most convenient. brush shaft as most convenient.
When a nuinber of hanke of chread are to be submitted to the action of this machine, the two rollers, FF^{\prime}, are removed from the machine, and mounted in what may be termed a filling frame. The hanks of thread are then passed over the two rollers, and equally distributed on their surfaces. The rollers being placed in their respective bearings in the above machine, the driving-shatt, B, put in motion, and the spur-wheel, C , thrown out of gear with its driving pinion, so as not to give any movement to the rollers, FF^{\prime}, that one
of the bevel-wheels, K , upon the shaft, L , which will elevate the screws, H, is thrown into gear with the bevel-wheel, l^{\prime}, so as to turn the nuts and elevate the screws and the upper thread-roller, F , until the threads have attained their proper state of tension. The turther upward movement of the screws is then suspended, and the spur-wheel, \mathbf{C}, thrown into gear with its driving-pinion upon the driving shaft, B, giving a slow progressive move-
ment to the threads around the two rollers, ment to the threads around the two rollers,
FF . The strap driving the revolving brush shaft is now thrown into gear, thereby giving motion to the brushes, which passing rapidly through bet ween the threads, lay the fibres o them, and impart a great degree of smoothness and evenness to the threads, and a lustre and gloss not hitherto attained. When the tension of the threads becomes relaxed during the operation, as they will, the screws are again elevated, and the proper state of tension restored. When the threads are sufficiently finished, the machine is stopped, the rollers,
F F^{\prime}, are removed, the hanks of finished F F^{\prime}, are removed, the hanks of finished threads taken off, and others to be operated upon supplied, and the rollers remounted in the machine as before.

Gold Bealing.
For making gold foil $2 \ddagger$ oz. of gold dust mixed with 24 dwts . or silver and copper are fused together to form deep gold. The fused metal is cast in an ingot mould of 1.1 inches long by 3.4 inch wide and $3-16$ inch deep. The ingot is flattened into a riband $1 \frac{1}{4}$ inches The ingot is flattened into a riband 14 inches
wide, 6 yards long, and about the thickness of wide, 6 yards long, and about the thickness of
foolscap paper. This having been annealed is marked out by compasses into 160 parts, which are cut out by shears into sections $1 \frac{1}{4}$ inches square, each weighing between 6 and 7
grains. These 160 piece are beaten into leaves grains. These 160 piece are beaten into leaves 4 inches square which are cut again into 640 pieces; in this state the leaf is named "Dent.st's gold."

Gold may be extended into leaves which do not exceed 1-290000th of an inch in thickness. The proof of this remarkable tenuity is easy. For example, an ounce of gold is equal in bulk to a cube each of whose edges measures 512 ths of an inch, so that, placed upon the
table, it would cover little more than 1.6 th table, it would cover little more than 1.6 th
of a square inch of 1 ts surface, and stand fiveof a square inch of 1 ts surface, and stand fiveliths of an inch in height. The gold beater 146 square teet. Now it can easily be calculated that to be thus extended from a surface of five-twelfths of an inch square to one ot 146 square feet, its thickness must be reduced rom tive-tweltiths of an inch to the 290,636 th part of an inch.
The gold employed by the gold beater should be pure; but various colors are obtain. different proportions. The wure copper, in alloy, is proportions. The plar the ing in a crucible and casting into flat oblong ingots, each about three-tourths of an inch wide, and weighing two ounces. Each ingot is then formed into a riband by passing it be. tween two rollers of polished stetl, and this aminating process is continued until the inyot is spread out to a surface of 960 square
inches of the thickness of rather more than one-eight hundreth of an inch.
The riband ot gold is annealed or softened in the fire, and cut up into pieces of the size of a square inch, and 150 of these are placed by means of wooden pliers between an equal number of leaves of vellum, each square of gold occupying the centre of each leat of vel. um. A parchment case, open at both ends, is rawa over this tool, or kutch, as the packet of vellum leaves is called, and this is enclosed
in a second similar case, so as to cover the in a second similar case, so as to cover the
edges lett exposed by the first case. This dacket is then beaten with a sixteen-pound hammer upon a omuoth block of marble, otruig'y supported from below, and suriounded on three sides by a raised ledge of oak; the front edge is open, and has a kind of leathern apron attached to it foreatobing Irag. ments of gold that may escape in the subsequent operations. The elasticity of the packquent operations. The elasticity of the packlightens the labor of the operator, and enables him to apply the blows with regular effect; every now and then, during the interval beween two blows, he turns the packet over to distribute the force equaily, and he occasionally bends the packet to and fro to overcome ny slight adhesion between the gold and the vellum; and at intervals he opens the packet o see that the work is satisfactory, and also to re-arrange the relative positions of the squares of gold, by placing those near the surface in the centre, and placing those in the
centre near the surface. The beating is concentre near the surface. The beating is con-
tinued until the one-inch squares are spread tinued until the one-inch squares are spread
ut into four-inch squares. The packet is nut into four-inch squares. The packet is out, placed on a cushion, and cut into four pieces with a knife. This increases the 150 pieces to 600 , and these are put between the eaves of another tool, called a shoder, made f gold-beater's skin. The packet is enclosed in parchment, and beaten with a twelve-pound
hammer as before. The squares of gold are again spread out to nearly the area of the gold-beater's skin. The packet is asain opened, the leaves of gold are again cut into fours, and each quarter is placed between two leaves of membrane as before. The gold is in this case divided by means of the smooth edge of strip of cane, since it has a tendency to adhere to a steel knife. The squares of gold,
now increased to 2400 , are separated into now increased to 2400 , are separated into
three parcels of 800 each; the squares of each
parcel are again separated by gold-beater's
skin, confined in the parchment cases, and beaten as before. These squares of gold-lea expand for the third time nearly to the size of the leaves of membranes, and have at length attained the required degree of tenuity. The process of attenuation can be carried beyond this, but the gold is apt to tear, and the process requires great extra care. The three beatings and two quarterings expand the gold to an area about 190 times greater than it had in the form of a riband, and 100 square feet of it weigh only an ounce.
After the last beating, the thin leaves are taken up one at a time by means of a pair of long pincers made of white wood, and being placed on a cushion, are blown out flat by the mouth, an operation requiring considerable skill. Broken or injured leaves are rejected; but those which are perfect have the ragged edges cut off, which reduces their dimensions to about $3 \frac{1}{4}$ inches square. Twentyfive of these leaves are placed between the folds of a paper book, the surfaces of which have been rubbed with read chalk, to prevent the gold from adhering, and in this form gold leaf is sold.

Gas for Flowers.

The Paris correspondent of the St. Louis Times says:-
"And now let me tell you of a most beautiful and interesting discovery which has late ly been made by a celebrated Parisian horticulturist, by the name of Herbert. I was persuaded to go to his rooms a few days since, and I assure you I had no reason to regret the long walk I had taken. Beneath a large glass case, four or five feet in height, and as many in circumference, were placed pots of roses japonicas, pinks, dahlias, china asters, \&c., alt in bud. By means of a certain gas, invented by bimselt, and which is made to pass by a gutta percha tube to any pot required, Mr . Herbert causes the instantaneous blooming of the tlowers. The ladies in the room asked successively for roses, dahlias, and japonicas, and saw them burst into full bloom and beauty , in a second. It was really wonderful.-
Mr . Herbert is now Mr. Herbert is now trying to improve on his
discovery, and to make the gas more portable, and its application less visible. The secret is, of course his, and his rooms are crowded every day with the most delighted spectators.
wish I could send you the lovely cameli wish I could send you the lovely camelia so tightly enveloped in the green leaves of its calyx, that the color of its Hower could not even be guessed at; and yet the request was hardly out of my lips when the beautiful white camelia was in my hand. When he has made a little more progress, Mr. Herbert intends to get out a patent and deliver his discovery to the public."
This gas was no doubt discovered among the giants of Brobdignag by the celebrated raveller Gulliver.

Chicory.

While in England, says a correspondent of the Journal of the New York State Agricultural Society, we received information as to the culture ot this plant, the roots of which are used as a mixture with coffee. In many establishments of the first character in London, where coffee is extensively sold, we found the real coffee, prepared and ground, and by its side, chicory, prepared and ground; and
were informed at several of these establishments that it was preferred to mix them, onethird of the chicory to two-thirds of the coffee. The flavor of the chicory is suited to the tastes of many, and its medicinal qualities give it great favor. Most of that in use in England is imported from Belgium and Germany; but it is being cultivated to a considerable extent in England and Ireland, and the ultivation is increasing
The seed is drilled in, in April, the same as carrots or beets, on rich light land, and thinned in the rows to about six inches, and kept entirely free from weeds. In September, ihe roots should be gathered. They are taken up he potato-fork, and the tops taken off, and horoughly taken to a cenvenient place and small pieces, either by hand or a common tur nip-cutter, having them as near a uniform size from the smaller, and put into then separated
bags and placed on a kiln to dry. They are then disposed of in market to the merchants, who prepare the root in the same manner as coffee, roasting and grinding. As soon as practicable after the roots are cut, they should be dried, to prevent the loss of the milky juice, which contains its most valuable properties. The leaves are ted to cattle and sheep, which are very fond of them; and they are also used as a substitute for woad for co loring, and are esteemed very valuable for that purpose.

A second Sam Patch Leap.

A second Sam Patch leap came off on Monday, the 2nd inst, from the Suspension Bridge below the Falls, into the middle of Niagara River. Some five hundred persons were pre sent to witness the feat. In consequence of the strong unexpected current of air under the bridge, the gentleman's back, instead of the pedal extremities, was first introduced to the surface of the water. He was not so badly injured; however, but that he commenced swimming to wards the shore and was soon taken into a small boat. He had an appoint ment to descend the precipice at the Falls, in a similar manner, but the result of his experiments has determined him to look to some other opening for notority and fame.
Such feats appear to take their course like fishions One fellow has been amusing us New Yorkers for three weeks past, with jumping off the High Bridge into the Harlem River It is a profitless and dangerous feat Sam Patch lost his life at last, and Scott, the celebrated American leaper turned crazy and put an end to his life on London Bridge.

Barnum's Opinion about Advertising. The following extract is taken from Freed ley's Practical Treatise on Business; it is from the pen of the celebrated P. T. Barnum Advertise your business. Do not hide your light under a bushel - Whatever your occupation or calling may be, it it needs support from the public, advertise it thoroughly and efficiently, in some shape or other, that will arrest public attention. I freely confess that what success I have had in life may fairly be attributed more to the public press than to attributed more to the problic press than to
nearly all other causes combined. There may possibly be occupations that do not require possibly be occupations that do not require
advertising, but I cannot well conceive what advertising, but I cannot well conceive what
they are. Men in business will sometimes tell you that they have tried advertising, and that it did not pay. This is only when advertising is done sparingly and grudgingly. Homœpathic doses of advertising will not pay perhaps-it is like half a potion of physicmaking the patient sick, but effecting nothing. Administer liberally, and the cure will be sure and permanent. Some say "they can not affurd to advertise;" they mistake-they cannot affurd not to advertise. In this country, where everybody reads the newspapers, the man must have a thick skull who does not see that these are the cheapest and best medium throughout which he can speak to the public, where he is to find his customers. Put on the appearance of busines, and generally the reality will follow. The farmer plants his seed, and while he is sleeping his corn and potatoes are growing. So with advertising. While you are sleeping or eating, or conversing with one set of customers, your ad vertisement is being read by hundreds and thousands ef persons who never saw you, nor heard of your business, and never would, had it not newspapers.

The Koh-i-noor.

Diamond cutters have been brought from Amsterdam to London, to cut the great Koh. i-noor diamond into an oval brilliant, increasing its value and brilliancy.
A machine has been erected in London for the purpose, and the greatest anxiety has been manifested for the success of the undertaking.

Extraordinary Phenomenon.
Recently during a thunder storm, at Kington, Canada, the lightning struck the bridge pierced a large hole in the floor, and threw down one of the stone piers. A soldier, crossing at the time, had his clothes torn by the lightning, and the metallic ornament on his cap melted, but escaped himself without any
serious injuy.

For the Scientiac Americad

Aurora Borealis.
The Aurora Borealis, or Northern Lights, have ever excited the speculation of philoso phic minds; yet the wisest philosophers have been unable to explain its wonderful display, and bring it within the range of philosophic lıw. We find in our atmosphere a strong un der current of cold air moving towards the equator; so strong indeed, as to form a stiff breeze, called trade wind; and necessarily there must be a corresponding upper current moving towards the poles. This upper current, when it leaves the torrid zone, is highly rarefied, ε nd does not meet with any very ra pid condensation, until it arrives within the intluence of the eternal frosts of the poles, or as high latitudes as 70°. Near this latitude the magnetic poles have been fixed; and around the earth, following this line of latitude, is frequently seen in the heavens a brilliant band of light, from which flashes np beams and floods of light, forming the beautiful and frequently brilliant display termed Northern Lights. This light is electrical light, produced by the evolution of electricity consequent on the sudden condensation of the atmosphere. The beams of light which spring up through the sky, are currents of air highly charged with moisture, which, on coming within striking distance of the electrical band are suddenly electrified.
It his been discovered by observation that in certain latitudes a storm generally succeeds a brilliant display of Northern Lights. This is owing to the check given to the advancing current by the opposing force of electricity which condenses it; and consequently it falls to tie earth.
G. H. W.

Nelson, Madison Co., N. Y.

[For the Scientific American.]

The sad catastrophe to this steamer, which has been announced, leads us to reflect on the causes which led to the great sacrifice of human lite here. From the accounts received through the papers, the ostensible cause originated in the excess of heat generated, by which the wood- work of the vessel was set on fire,
being no doubtr in an excessively dry state being, no doubt, in an excessively dry state easily inflamed. A steamer constantly in ac-
tion, mist be in a state of extreme danger from this cause, and the surprise may be, that such accidents do not more frequently occur. This calamity is a sad warning to us, to guard against its recurrence. The present system upon which steamers are built, subjects them to accidents of this kind almost constantly; and no effectual plan has been yet devised to remedy the evil. That a remedy exists there can be no doubt, and as it is essential that such remedy should be at hand, I would here present the means by which this remedy may be applied, for the consideration of steamboat engine builders. The base of this means is the application of the motive power itself to remedy the evil. The intervention of steam, between a burning body, or flame, and a body between a burning body, or flame, and a body
subject to be set on fire from the too near apsubject to be set on fire from the too near ap-
proximation to the burning body, will effecproximation to the burning body, will effec-
tually guard the latter from conflagration, or ottaining a degree of heat which would induce it to take fire. This conservative action of stem is well known, and I took occasion some short time since to point out its application in extinguishing fires, by guarding the houses surrounding the fire by throwing on the surtace exposed to the fire, only so much the surface exposed to the fire, only so much
water as will be converted into steam by the water as will be converted into steam by the
heat of the adjacent fire. This fact being esheat of the adjacent fire. This fact being es-
tablished, (a very important one), the application ot the same means,-namely, steamthrown and kept between the fire and the wood-work ot the vessel, will effect the object of securing the vessel from taking fire, however hot the furnace should be. I shall not enter here into the philosophy of the principle. Facts are of more importance than theory, and we have many of the former to prove the truth of the proposition. It is upon this principle that individuals have exposed their persons to the violent heat of ovens, that would cook an egg with impunity. The excessive perspiration induced from their bodies kept the heat from acting on them. It is thus that the fire-eaters (as they are called), are able to lay a red hot iron on their tongue without injury to themselves, because a body
of steam is generated between the surface of the tongue and the red-hot iron, that prevents the tongue from suffering, or being burnt: the fire-eater would notdare to put the red-hot iron on his tongue when in a dry state. Why do the operators in furnaces, where they are subject to violent heat, wet themselves and the red-hot metal? The answer to this is evident from what has been already ad vanced. These facts will suffice to prove the efficiency the plan to cut off the heating process be tween the lurnace of the steamer and the
wood of the vessel. The whole of the heating apparatus aboard the steamers should be cut off from the hulk by a body ot steam filling the cavity made here, which will guard the vessel from the danger of fire. I have oyaged in many steamers, and have found them all more or less greatly heated near the furnaces, and though this may not be dangeous in short trips, as the heat soon ceases, ye where the voyage is long the danger is increased in proportion. It is time for us to look into this matter, and if there be danger, which has been manifested in the fate of the Henry Clay, we should not lose a moment to rectify the evil. The problem of adapting the means suggested, to the particular condition of this epartment in the steamer, belongs to the Enineer of the Machinery, and with him I leave the subject for consideration and action. The community will not be satisfied without guard is set securely against a recurrence o the distressing catastrophe of the Henry Clay
Rubit. Mills, Engineer and Architect. Washington, D C.

Brick Making.

Since my communication of the 6th Marc (No. 25) I have been engaged in pefecting the brick machine there mentioned; during the progress of which mayy unforeseen difficul. ties were encountered and many disappoint ments incurred where success seemed certain. Perseverance, however, has overcome them all and I have now the satisfaction of seeing my anticipations realized.
It will be remembered that I set out with the intention of taking the clay direct from the bank, temper and mould it as stiff as potter's clay, so that the bricks might be borne off to the floor and set on edge to dry. The first part of the operation was successful from the start, and for this I am indebted to my former dry clay machine, for the secret lies in first reducing the clay to dust befure it is mixed with the water, when the two combine instantaneously. The operation of the
knives then mix and temper it so thoroughly knives then mix and temper it so thoroughly
that in less than five minutes it is reduced to that in less than five minutes it is reduced to excel. Not a particle of raw matter can be discovered, even the size of a bean. This mustrender the machine of peculiar advantage at the South, where they have not the benefit of the great disintegrator-frost. These this part of the process is the most laborious I am told that it requires the work of twelve oxen, travelling half a day in a clay pit, to mix enough for 8000 bricks. By this machine the tempering and moulding is all done at once, and never more than a cart load under peration at the same time.
To fill the moulds with clay as stiff as I proposed, was the firstdifficulty encountered, and here mary thought that I should fail. It is indeed astonishing how much this inc reases the resistance comparea with the soft mud as usually worked, and what power is necessary to overcome it. After numberless experiments, which it would be tedious to recount; the section of a screw applied in a peculiar way
accomplished the object, and since it was adop. accomplished the object, and since it
ted not a single failure has occurred.
But then the communication between the sixteen moulds first filled, and the body of clay in the box, must be broken as the train passes along the railway; and this presented a far greater resistance than I had anticipated. After repeated trials and many disappointments, a combination of gearing secured this also, and finally, having perfected some minor details, chiefly in the mode of management, the machine has been put in full operation to I send you specin who have witnessed un burned, and call yourattention particularly to the solidity and closeness of the texture, not
unlike stone, as an evidence of the great pres sure under which the clay is thrown together The steam machine, driven by a six-horse ngine, works six moulds in a frame-make thee and a half revolutions per minute, giving 1260 bricks per hour. The work is all done by common laborers, chiefly boys. Supposing the clay dropped at the machine, it requires one man at the pulverizer, three boys to dust the mould and return them to the machine wo boys to off: bear, and three boys to whee he cars to the yard and set the bricks in th un. Each car carries forty bricks: cost the machine, including patent right, $\$ 500$.
The smaller machine is moved by one hors attached to a twelve-foot lever; it make hree revolutions per minute, throwing out our bricks each time, giving 720 per hour. In his the pulverizer is omitted, as it would render it too complicated. For this purpose the clay must be thrown into a heap and well saturated with water twelve hours previous; the machine does the rest. I can see no dif the machine does the rest. I can see no dif-
ference in the quality of the brick made by either: cost, including right, $\$ 250$.
To make "gluts" for tronts, a separate train of mould must be prepared, made a fourth an inch deeper, and a fraction less in width and length. If a suitable shed or other build ing is prepared for the purpose, all this part of the operaion may be done in rainy weather and thus f to hands. Twenty tour hours after being mould hands. Twenty-tour hours after being mould
ed, the "gluts" are ready for the hand press d, the "gluts" are ready for the hand press
I have in cortemplation another improveI have in cortemplation another improve
ment, which, as it is not yet fully proved, ment, which, as it is not yet fully proved,
will merely mention. The present speed is all that can be allowed to enable the boys in ront to work the pistons and pass off the bricks; when made of stiff clay they are quare and true-very nearly if not quite equal to the common latch mould front. But when quantity, instead of quality is desired, I propose to have an extra train of moulds with fixed bottoms: to work the clay soft, as in other brick machines-pass the moulds im mediately off to the drying floor, and throw them down flat. They will of course be no better than other moulded bricks except as to the clay being better tempered, but as there are no pistons to work, and no interruption in front, the speed may be double, and consequently the quantity of bricks increased in like propartion.

Francis H. Smith. Baltimore, August 12, 1852.
We have seen specimens of the bricks referred to above; they are of a very superior quality. In the course of a few weeks, we shall publish an engraving of the machine.

Elementary Mechantes:

Strength and Strain of Materials. The materials employed in machinery are subjected to four different kinds of stress or strain, by which the force of cohesion may be ultimately overcome, and fracture ensueThese are, 1. Tenison, or any stretching force, by which they may be torn asunder, as in the case of ropes, tie-beams, king-posts, \&c. 2 Transverse Pressure, or any breaking force acting perpendicularly or obliquely to the direction of their length, as in the case of levers, joists, \&c. 3. Vertical Pressure, or any crushing force acting in the direction of their length; as in the case of pillars, posts, \&c. 4. Torsion, or any twisting force acting at either or both extremities of a beam or rod such as the axle of a wheel, a screw. \&c
The natural forces, inherent in materials which oppose the preceding forces, are, Direct Cohesion and Elasticity. Numerous experiments have been made on the direct cohesion
of different substances, particularly woods and of different substances, particularly woods and metals-on their resistance to transverse pressure, and their amount of deflection under a given pressure-on the modulus or measure of so great nor so satisfactory an extent, on their resistance to vertical pressure or crushing weight.

The following ta'sle contains the mean strength and elasticity of various materials; as deduced from the most accurate experiments it is the latest that has been published, and it was presented by Mr. Barlow, to "the British Association for the Advancement of Science."
The first column of figures, marked C, con
The first column of figures, marked \mathbf{C}, con inch section of the material ; the second, mark

S S, the constant for traverse strains; the hird, marked E, the constant for deflectiors; and the fourth, marked M , the modulus of elasticity.

n, Wire,

The use of this table will be exemplified in the following problems, for the demonstration of the principles of which, we must refer the Philosophy.
Force of Direct Cohesion, or Tenacity of Materials.-The resistance of a homogeneous body to longitudinal tension or a stretching force is proportional to the area of a transverse section; hence, the centre of tenacity is the same as the centre of gravity of the section. The absolute strength of rods or beams is estimated by the cohesive power of the material of which they are composed. The preceding table exhibits in column \mathbf{C}, the force of direct cohesion in pounds avoirdupois for every square inch of area in the transverse section of a beam or rod of the materials enumerated in the first column.
To find the absolute strength or force of direct cohesion of beams or rods of given materials, that is, their absolute resistance to lon gitudinal tension or strain in pounds-

Rule-Multiply the area of the transverse section of the rot heam in inches by the tubular number, in the column marked \mathbf{C}, opposite the name of the material, and the product will be the strength or resistance required. Note 1.-In practice, the weight or strain should not exceed one-third of the absolute strength according to Barlow, or onefourth according to Tredgold. Thus, the force which would tear asunder a piece of teak $4 \frac{1}{2}$ inches broad and 2 inches thick, is $2 \times 4 \frac{1}{2} \times$ $15000=135000$ pounds. Hence a longitudi nal strain of more than 45000 lbs . would be unsafe in practice. Note 2-The tenacity of materials of the same kind is proportional to their specific gravity. Hence, a piece of teak, whose specific gravity was $1-20$ part less than whose specific gravity was $1-20$ part less than
that of the preceding, would have 1.20 part that of the preceding, w
less of cohesive power.

When the direction of the straining force does not coincide with the perpendicular to the centre of tenacity or centre of gravity of the transverse section, the Rule is modified as follows: Multiply the tabular number in column C, by the breadth and square of the thickness of the beam, both in inches, and divide the product by the sum of the thickness and 6 times the distance of the line of direction from the centre of the section, in inches; the quo tient will be the absolute strength required of which take one-third as before, for the pracical load. Note.-In actual constructions an allowance of one-third of the thickness should be made, tor the probable deviation of the direction ot the stretching force. The ab solute strength will then be one-third of that found by the Rule in the preceding article; and the practical load 1.9 of the same quanand the practical load 1.9 of the saty
ity, or $1-12$ according to Tredgold

Scientific Americam. 2

NEW INVENTECNS.

Sawing Felloes.

Asa George \& Seth Stubbs, of Lincolnton, N. C., have taken measures to secure a patent for a useful improvement-in a machine for sawing felloes and other articles forming parts of circles. The nature of the improvement consists in providing a revolving table on which the plank or stuff out of which the felloes are to be made is placed; this table is so arranged as to have different centres, either of which may be employed as desired, so that the felloes may be cut to form parts of circles of different diameters according to the centres on which the stuff is placed. The saw sash is of ordinary construction, and two saws are secured at one end of it. and made adjustable so as to cut felloes of different widths. There is a stationary table adjoining to the movable one, on which the plank partially rests while the saws are cutting to keep the stuf firm and steady under the saws.
Machine for Making Sheet Metal Tubes. Orson W. Stow, of Southington, Hartford Co., Conn., has invented a new and useful improvement on machinery for forming sheet metal tubes, for candle moulds, dipper handles, lamp tubes, \&c., and consists in a peculiar mode of operating a die rod which torces the sheet metal into a concave bed, and thus makes one half of the tube, and then in combination with this action there are folders attached to movable wings which have their axes of motion coinciding with a line passing longitudinally through the centre of the die rod spoken of, these folders, by properly bending the sheet of metal over the half o the die rod, form the other half of the tube. Measures have been taken to secure a patent.

New Machine for Splitting Leather.
Henry F. Patton, of Deansville, N. Y., has invented some improvements on machinery for splitting leather. The nature of the invention consists in the employment of a knife having a horizontal reciprocating motion imparted to it by a serpentine cam which is secured on the end of the feeding roller that is placed behind the knife, and which draws the hide through between the two gauging pressure rollers in front, against the edge of the knife. It is common to have but one gauge roller on leather splitting machines, this one has two, the extra one being placed above and entirely seqparate from the lower one; it is secured on a frame attached to springs, and acts as a pressure roller, thus enabling the knife to operate upon the leather in a very correct and superior manner. Measures have been taken to secure a patent.

Improvement in Pumps.
P and W. F. Dodge, of Newburg, Orange Co., N. Y., has taken measures to secure a patent for an improvement in doubleacting lift and force pumps. The improvement consists in connecting the valves of the two pistons by a tube encircling the rod, whereby their simultaneous operation is insured, one closing at the precise moment the other opens.
mproved Hinges for Blind
Messrs. W. French and W. C. Whipple, of New Haven, Conn., have invented an improvement in hinges for blinds, the nature of which consists in the employment of a latch arranged and attached to a hinge in a peculiar manner, by which the shutter or blind may be secured in an open position, without the necessity of using catches at the outer edges f the blinds, and hooks in the wall, as is now he with common blinds. Measure have been taken to secure a patent.

New Rifle Pistol.
Mr. Marston, of New York city, the inventor of the breech-loading rifle, which receives its name from that of the inventor, has made some fine pistols on the same principle. They are better, we believe, than the revolvers, and should be introduced into the navy, and all our cavalry regiments.

Hydrochloric Acid.
Dr. Davis, of Syracuse, N. Y., states that he has employed hydrochloric acid with great success in dysentery. He employs one drachm of the acid of commerce diluted with half an ounce of water, and given in 20 drops in half a gill of sweetened water every sixth hour

WILLARD'S MOSQUITO FRAME.

The accompanying engraving is a perspec- |clamp which fastens the frame to the head-
tive view of a frame of a mosquito net for beds, invented by J. A. Willard, of Alton, Illinois, who has taken measures to secure a patent for it. The trame is made of wire, with oints, formed into small pannels; it can be olded up so as to be carried in a valise, and then be stretched out over the bed, and the net spread over it, as represented in the figure. The top is separate from the sides, and is comoosed of extension pieces of wire, which slide into one another (for beds of different widths) like the cases of a telescope. There is a wire

sons who are travelling. On the Sacramento river, in California, the mosquitoes are to be seen in clouds, and are the terror of travellers; one of these frames, with a nst, weigh only a few ounces, and can be carried about whithersoever a person travels, so that if he has to sleep on the banks of the Sacramento,
on the cold ground, he can easily stretch his frame, spread his net, and bid defiance to all the mosquitoes in California. A number of gentlemen in this city (New York) have seen these trames, and are about to furnish their dwellings with them. This city is not a little distinguished for its mosquitoes; cities furthe
south are not able to surpass it, for the whole insect tribes from the swamps of Jersey and Long Island, have discovered that here they need not weary their wings in search of sub jects, but at once, in the language of the immortal Campbell, " like reapers descend to the harvest of death."
\& uilders Buckman, Jr., model and pattern erent sizes of frames can be seen at Messrs Buckmans' factory, and all the requisite information given about every thing mation given about every thing conne.
with it, both as it respects price and use.

FORMAN'S PATENT PLOW.

The accompanying engraving is a view of a wrought-iron plow invented and patented in February last by James H. Forman of Sharor, Chambers Co. Alabama. The letters refer to different parts of the plow. A is a plow stock with subsoil share attached; B is the turning share $; \mathbf{C}$ is a medium share; D is a subsoil share; E is a sweep or grass killer, and F is the opener. A plow for one horse weighs a bout from 30 to 35 lbs . ; that for two horses weighs about 40 lbs. With the subsoil shareattached, one horse, Mr. Forman informs us, will break stiff clay land eight inches deep; and by preceding it with the turning hare, a depth of twelve inches may be obtained. The medium share with one horse, will break from four to five inches deep on one and a half acres in one day. With the turning share, one good horse will do more ridging and bedding, and do it better, on the land in Alabama, than two horses can do with the Eagle Plow. The sweep can be adjusted so as to run from one to two inches deep, thereby cutting up the roots of grass-killing t-and clearing away weeds around the roots of the growing crop; it effectually cleans a tour foot row by three furrows. The opener,
F, opens a very wide and deep furrow, and when the land has been previously broken will do the work of two turning plows. By the adjusting pin, and the extra holes in the beam, the plow can be adjusted to any size of horse, or to dip to any required depth, even to the burying of half the beam. It requires no clevice, has but two bolts and one rivet. It is not subject to wear, as the share effectually shields the foot. This plow is very portable each one can be packed in a space which will not occupy more than a cubic foot, and all the parts can be put together, ready for work, in two minutes, and any good smith on a plantation can make it. This plow is well adapted for southern culture, and we have betore us the certificates of six planters in Alabama, who are now using it, who say they believe it to be more durable, and better adapted to all required purposes generally, than any other plow with which they are acquainted. More information may be obtained respecting it, by letter addressed to Mr. Forman, at Lafayette, Oak Bowery, or Sharon, Chambers Co., Ala.

New Electric Globes.
A new improvement is now in operation in

Paris, which will consist of large globes of crystal placed on the top of every column now along the Boulevard, for public use. In the evening these globes will be illuminated with electric lights, and will produce an immense blaze over the public road. The experiment has already been made, and proved very successtul. Our opinion about it is, that the light will be more brilliant than profitable, but Louss Napoleon le Grand can afford it.

Active Principles of the Scullcap.
The following is taken from the Eclectic Journal of Medicine :-
"Scuteline.-This is obtained from the blue, or as it is usually called bitter scullcap. There are several species of this plant, that re used as medicine; but the above is the only kind that contains any valuable medical properties.
It is a common practice when treating on the remedial agents, in the light of discoveries, to say, that ' this remedy is one of the best, the 'most valuable,' and 'one of the greatest discoveries of the age,' etc. Now, it is possible, that I am as liable as any one, to run into this foolish and qaackish mode of expressions: yet expressions of this kind to the scientific and thinking mind, are disgustive and repulive. The scuteline, is entitled to these eulogies, if any medicine, but it is sufficient to say of it, that it is a valuable medicine.
In its pure state, it is a white powder. The process of obtaining it is somewhat difficult, and too tedious to insert here.
Medical Properties and Uses.-It is indicated in the treatment of nervous diseases, especiaily those attended with debility, which have been induced by the use of tea, coffee, tobacco, alcoholic drinks, or any poison habitually taken into the human stomach. Who has not witnessed the dried and mummy-like appearance of the tea and coffee drinker?How often do we see the emaciated, cadave-rous-like palpitation, nervous irritability, all the result ot the free use of the above articles. The true physician will never prescribe physic to cure bad habits; but this much he should do, teach his patients to avoid the exciting cause of his disease, and then with proper remedial agents, aid the recuperative powers of nature restoring a normal condition of the system. The scutelline being a nervine tonic, is peculiarly adapted to this end. It is also useful in the treatment of tetanus, convulsions, tremors and chorea. It is generally supposed that no method of treatment is successful in the cure of chorea; but in the incipient stages of this disease, the scutelline will be found a successful remedy. Dose, one to two grains, from two to six times a day.

Inflammation of the Bowels.
Dr. Hoyt, of Boston, instead of treating this disease in the old common mode, by blood letting, calomel and opium, \&c., he lays down the following rules :
'? Give the patient no medicine; nor food of any kind, but allow him to drink water moderately. He should be laid upon a bed and laid in a cold wet sheet, and cold water applied in the folds of a cloth on the abdomen. If the patientshould get cold (which should not be permitted) the cold water application must be suspended, and the patient covered up with blankets kept up from the body by segments ot hoops. When heat has accumulated to a higher than ordinary degree, the cold wate must be resumed. Water applied internally and externally is the remedial agent depended on, and it is cold enough for this purpose at seventy degrees."
He says he has tested this method of treatment thoroughly and with success. It is a most dangerous disease.

Lozenge Tea.

At a late meeting of the Horticultural Society of Edinburgh, a paper was read by Dr. Murchison, on the essence of tea in lozenge form, used by the Chinese as a substitute for tea, when they wish to have the article in a a more condensed form. Some specimens were tested by the members present, and pronounced excellent. In the course of his remarks, Dr. M. showed that the amount of water in which the essence is diluted in the form of tea as usually drank, varies from 90 to 99 percent. The lozenges will keep for many per cent. The lozenges will

Bcientific American
 NEW-YORK, AUGUST 21, 1852.

Mechanics Fairs.---New York Crystal Palace. Fairs, for the display of works of art and the products of industry, are of verv ancien origin, and have been the means of doing much good in every country in which they have
been established and encouraged. Our counbeen established and encouraged. Our country, although young, has been greatly benefitted by such exhibitions; they should be sustained with the heart's best enthusiasm of the nation. The objects of such exhibitions are to excite a spirit of laudible emulation, and to present objects of comparison for improve$\mathrm{m}\lrcorner \mathrm{nt}$. The man who exhibits a machine at a Fair, does so because he believes he has produced something which he is proud of display ing, and respecting which he has a consciousness that it possesses peculiar merit. Machines and implements of different kinds arranged together, enable those who are interested to make comparisons of their qualities to detect defects, and thereby suggest improvements. That spirit, so pre-eminent in our people-the desire to excel-is thereby stimulated, and many men, observers at past Fairs will be exhibitors at future ones; this is the way to improve and progress. Almost every (if rot all) State in our Union has its State Agricultural Society, and the utmost latitude is allowed at the Fairs, for the display of useful machinery; this is right-we are glad that such a spirit is abroad in our land; it has done much for the advancement of Agricultural and Mechanical Art, and it will do much more.

The Annual Exhibition of the State Agricultural Society of New York, takes place at Utica on the 7th of next month (September) The Annual Fair of the State Agričultural So ciety of Pennsylvania takes place at Lancaster on the 21 st of October next. The Fair of the Maryland Institute will take place in Baltimore on the 4th of the same month; and the 25th Annual Fair of the American Institute will be held at Castle Garden, this city at the same time. We have noticed a few of these Fairs, because inquiries have been made of us respecting them. We hope they wil all be well attended and well managed. We have a foreboding that this will be the last Fair of the American Institute, at least for a few years to come; we hope not, but we cannot get rid of this feeling at present. There can be no doubt, now, of the certainty of a World's Fair to be held in this city next year the gentlemen who are at the head of it have surmounted every obstacle, and it is stated that it will be opened on the 1st of next May (1853), and perhaps continue for four years Hitherto we have spoken against this Fair and called it Riddle's Fair ; we now under stand that the influence which was exerted at the World's Fair, in London, and of which some of our exhibitors, spoke to us about with unpleasant feelings, and which was deprecated, as being connected with the origin and management of the World's Fair, in New York, is no longer an obstacle. We looked upon this Fair as not National, and when it was asserted, that we were to have a Crystal Palace designed in England, which was to be a mere model form of the London one, we
could not speak of the scheme, but as it deserved. But the building to be erected will be American in design and construction, and so far recommends itself to our favor. We
always stated we believed it would be a benefit to this city, and so it will, and we hope and believe it will be of immense benefit to our whole country. Measures have been ma tured, and some discordant elements removed to make it honorable to all engaged, and profitable to exhibitors and visitors. France, Eng land, Austria, Russia, Prussia, Belgium, Spain Turkey, and the Isles of the sea, will contribute to the New York Crystal Palace. W may expect to see the greatest Fair ever held in our country, in this city, next year.

Our First City Railroad
The Sixth Avenue Railroad is now completed, as far as fiftieth street, and the cars be gan running on Wednesday last week. Twenty cars have been placed on it, to follow one another every five minutes. The Common Council, after this road was nearly finished, by
$\left|\begin{array}{l}\text { a shameful piece of trickery, endeavored to } \\ \text { stop it. If the effort had been successful, in }\end{array}\right|$ stop it. If the effort had been successful, in
all likelihood the tax payers would have been made to bear the whole expenses of the com-
pany to the song of half a million of dollars. pany to the song of half a million of dollars. This is essentially our first City Railroad, de to be hoped that it will be managed with discretion, spirit, and a sacred regard for the good of the people.

The Yacht Race.---England Learning. The Regatta of the Royal Victoria Yach Club, came off in England on the 23rd of last month. In the contest, the yacht America which took the prize last year, under the able management of the Commodore of the
New York Yacht Club, came in third, two New York Yacht Club, came in third, two
other yachts being before her. This has other yachts being before her. This ha
been made the subject of some rejoicing on the other side of the water, and it has been said boastingly " the American crack clipper has been compelled to take the third place assigned to her, and the honors of the club have been nobly regained." This, we say, is not so; the America, in that race, proved herself, as she did before, to be far superior to any yacht in the Royal Club. In the race, by a mistake, she was sailed for some time on a
wrong tack, and thus lost considerable time, wrong tack, and thus lost considerable time, but even after this, when the other yachts had obtained this advantage, she passed them all, and would have came in first had the breeze not fallen away almost to a calm. The fact admitted in all the accounts of this race, of the America overhauling and passing all the yachts in the squadron, when the breeze wa stiff, is proof positive of her superior quali ties. The America, by the regulations of the club, was only allowed to carry but one smal top sail, while the winning yacht carried large balloon topsails. The name of the winning yacht is "The Arrow," she is an old stager, but during the last winter she was lengthened, and so far as it could be done was remodelled after the America. This fact is the most honorable of all to American skill or it proves incontestibly that the advantag and superiority of the America is owing to
the higher scientific attainments of the Ame the higher scientific attainments of the Ame-
ricans in ship-building. The sails of the English yachts were cut in the American ashion, and every thing that possibly could be done, in copying after our celebrated yach is an evidence that Uncle John is not too old nor too stubborn to learn from his young relative.
Lord De Blaquiere, the owner of the America, has written a letter to the London Times, in which he speaks, with enthusiasm respecting her qualities. He has sailed 7,978 miles with her since last November, and when un der the most trying circumstances of wind and weather, behaved well. She has astonish ed many practical seamen in the Malta squad ron, and has been distinguished by an almost total absence of repairs owing to the economy of her rig. He believes that her well-judged symmetrical lines, and her simple rig are the causes of her unmatched success, and he hopes that his countrymen will profit by her exam ple.

The Flax Cotton.

This substance, about which so much has been said, and said favorably too, appears to a failure; at least this is the view we tak f the subject.
A parliamentary paper, recently printed in England, contains a further report trom Si Robert Kane, the Director of the Museum o Irish Industry, on M. Claussen's invention for the production of flax cotton. Some surprise has been expressed, that, if M. Claussen's im provement contained anything real, that the acts have not been communicated to the pub ic. The result of the experiments in Ireland o not, however, appear to sustain the expec tation that a substitute for cotton has been
found in Claussen's method of working flax. The' agents acting for M. Claussen found it impossible to produce satisfactory results in those works which they had themselves se lected, and where they had been working previously. This was attributed to defective machinery. Sr Robert Kane, in his report, says that several interesting facts have been already ascertained as to the real nature of the material produced, and as to the true action
of the material used. He expresses himselt
satisfied that M. Claussen's process does not
at all produce a material approaching in strucat all produce a material approaching in struc-
ture or organic quality to cotton. The views ore or organic quality to cotton. The views
or the by some of the persons, who have come for ward to explain the process in public, do not appear to be well founded. The flax fibres are, in M. Claussen's process, excessively finely divided and separated from each other, but each remains still a thorough and comlete flax fibre, and quite unlike cotton; and the same amount of division, and the same fineness and pliability of fibre, may be given and often is given, to flax, by simple dressing, especially if the flax has been over-rotted. This point, as to structural character, is fundamental to the value and quality of the flaxcotton, and further experiments are to be made. It is asserted since this report that the various minor difficulties which have impeded the practical application of the discove y have been fully surmounted, and that th se of the article has been carried on with great profit for some time past by a body of individuals in Belgium.
We, however, accept the statements about ts success with great caution; we are positive that many falsehoods have been told about the cheapness of this production. A patent has been secured for the United States, and a company has been formed for carrying out its objects, but the company, so far as we learn, have done nothing to merit much at ention in the way of successfully competing with cotton. We were intormed some time ago, that a factory to carry out Claussen's patent had been started at Fall River; but its products are very dilatory in coming to market. On page 125, Vol. 6, Sci. Am., we stated that the nature of what was called flax-coton was "entirely different trom cotton," and the testimony of Sir Robert Kane corroborates our statement. It seems then, that the lax-cotton, so far, has failed to realize the expectations of many, and at the same time, has not turned out according to the representations of those particularly interested in making good their own assertions about the superiority and advantages of the discovery.

Telegraph Batteries.

A few weeks ago we published a few statements respecting an invention made by Geo. Little, in Electric Telegraphs, and the "New York Courier and Enquirer" copied them Some person connected and acquainted with telegraphs, has endeavored to correct some things in the short article, but it is very evident that he is a careless reader. It was thus stated in the article referred to-" Mr. Little calculated to save $\$ 200,000$ to the Telegraph Companies; he does not use platinum, mercury, nitric acid, nor sulphuric." Out of this the corrector goes on to prove that this cannot be, as the batteries for all the telegraphs in our country involve only an expense of about $\$ 12,000$ per annum. This may be true; we know that Mr. Jones puts down the expense or batteries at a far lower figure-only $\$ 6,100$ -but the article referred to did not state that the whole saving was to be effected in the bat-tery-it only states he does not use certain materials, and no more. He also asserts that Mr. Little "has discovered nothing new, that the idea of substituting the magnetic electric machine for the galvanic battery, is not a new one. In 1845, Prof. Morse made the experiment on the magnetic principle on the line between Baltimore and Washington, using a magnetic electric machine belonging to Dr . Page, of the Patent Office." He also states hat Mr. Davis, of Boston, and Mr. Baily, of Detroit, made successful experiments with a
like machine. We would state that like exlike machine. We would state that like ex-
perimentswere made twenty years before Prof. Morse attempted it; but how does this man know what machine Mr. Little uses? It was stated in our article that he recorded messages exactly like the chemical records of Bain; Prof. Morse never did that, and if Davis and Baily have done so, let them produce the documents.

Boiler Explosions in France
In twenty-two years there have been only eighteen accidents in France by the explosion of boilers. In that country no locomotive, or any steam boiler, can be used without haing been first submitted to the examination nd test of one of the government engineers
appointed for that purpose. This plan we hope to see adopted at no distant day in our
own country. Out of 10,000 boilers in use, in one year, there were only two accidents took place. It is creditable to France that she carries out the laws she has enacted.
What has been Done and what has to be Done.
There is something almost ludicrous in seeing men in this enlightened day, pulling and puffing at some severe physical toil, when the same thing can be done by a machine whose ron arms never grow weary, and whose sturdy limbs never need repose. Brick-making was one of the most slavish occupations in the world, and a few years ago all the work was done by hand, but man has been drivenin many instances against his own will-from this brutish toil, and the machine now performs that labor, leaving man to follow a nobler destiny. It is needless for us to speak of a thousand blessed substitutions of machine or manual labor, such as the grist mill for the quern ; the threshing mill for the flail; the spinning wheel for the spinning frame; the hand loom for the power loom, \&c., our object principally, in the few words we have to say, is to direct the attention of mechanics and inventors to the duty of observing and marking such and such severe and toilsome occupations for which machine-labor might be substitucit. A company has just been formed in this ity, for the purpose of sawing fire-wood by machinery into proper lengths for stoves, and although wood has been sawn by machinery into proper lengths for stoves in many places, still, until now, no such wood could be purchased in this city; the wood used was all sawn by men employed for that purpose with hand saws. It may be said "the men who made it their business to saw loads of wood from door to door, were not very highly paid for their severe toil, and they will thus be thrown out of earning their daily bread, therefore such machine-labor should be discountenanced." Were the premises correct, the conclusion would meet with our assent but machine-labor, in the aggregate, has not yet created a surplus fund of idlers; men, when thrown out of one occupation, soon fall into others, and in the majority of pastinstances, the changes have been beneficial. The question might be asked, why was there not this city before? we really wonder why so many of our men of capital were so long wooden headed on the subject.
In this city, where there are so many new brick buildings in the course of erection all the it is certainly a subject of wonder to see all the mortar and brick carriect up high ladders by men, having little angular wooden boxes called "hods" on their shoulders. The labor is most oppressive and severe; in our opinion, it could well be superseded by machinery, so as to save running up and down the ladders, at least; this surely could be done by block and tackle. We might present some other objects for the consideration of our readers, but as we have so many sermons to deliver in one year, we have said enough upon this text at present.

Extension of a Patent.
On the petition of Elisha K. Root, of Hartford Conn., praying for the extension of a patent granted to him the 10 th day of December, 1838, for an improvement in punching or forming the eyes of axes, hatchets, \&c., for seven years from the expiration of said patent, which takes place on the tenth day of December, 1852.
It is ordered that the said petition be heard at the Patent Office on Monday the 1st of November, 1852 , at 12 o'clock m . ; and all persons are notified to appear and show cause, if any they have, why said petition ought not oo be granted.
Persons opposing the extension are required to file in the Patent Office their objections,
specifically set forth in writing, at least twenty days before the day of hearing ; all testimony filed by either party to be used at the said hearing, must be taken and transmitted in accordance with the rules of the office, which will be furnished on application.

Thos. Ewbank, Com. of Patents.

Reported Officially for the Scientific American LIST OF PATENT CLAIMS Isaued from the United states Patent Off for tee week ending august $10,1852$. Processes for Maring Illuminating Gas-By
H. W. Adams. of New York City: I claim the proH. W. Adams. of New York City: I claim the pro-
ceaso of manuutaturing illuminating ga, substantial.
ly as et forth, the process of feeding into heated rely as et forth, the process of feeding into heated re-
torts charged with bituminous coal, either oil, coal
tar, resin, or asphaltum, or any other bituminous tar, resin, or asphaltum, or any other bituminous
or carbonaceous substances, separately or mixed, a and or carbonaceous substances, separately or mixed, and
reduced to a fluid state and decomposing the same
ia the same retort. and by the use of the same heat. ia the same retort. and by the use of the same heat
in conjanction with the distillation of the coal, in
the manner and for the purposes substantially as described.
Double Gratrs-By J. S. Brown of Washington,
D. C . claim the arrangement of the forked rods,
or their cuiralents, in combination with the inclined track and roller, for the purpose of causing the
gate always to swing in the direction from the rider, gate always to swing in th
substantially as set forth.

I alio claim the combination of the latch, catch, and pin, or their equivalents, substantially in the

Casting Trpe-By Wm. P. Barr (assignor to Geo.
Brace) of New York City: Brace) of New York City: I claim the employment,
in tyee casting machines, of an ajjastable valve, sub-
stantially in the manner, stantially in the manner described.
Cipre Milss-By Jarvis Case, of Selma. O.: I
clam the employment of the revolving crushing cy-
liuder or roller, with grooves cut in its periphery, claim the employment of the revolving crushing cy-
liuder or roller, ith grooves cut in tis periphery,
the morable feeding slats or radial cogs, the eccentric rings or plates, and the scrapers, the whole be be
ing construted aranged and operating in the man-
ner substantially for the purpose set for Machines for Drilling STones-By Menry W. W.
Catlia (administrator of the Estate of Alex. Catina dec'd). of Burlington, Vt,: In behalf of the with in
named Alex. Catlin, I claim the revolving arms or Wheels, having a cavity near its centre, to receive
the core of the stone, in combination with the re. the core of
volving cut
described.
Method of Szcuring Movable Points of Rail-
noad Frogs-By Marshal Curtis \& Edgar St. Joha, Road FRogs-By Marshal Curtis \& Eday St. John,
of Binghampton, N. Y.: We ciaim the combination
of the peculiarly formed shank of the frog point, of the peculiarly formed shank of the frog point,
and its corresponding channel and socket, said point
secured ot its sat by sike and bolts or their equi-
valents, substantially as described.
Tanning-A. K. Eaton, of Rochester, N. N.: I
claim the combination of sulphate of potash, with
the tanning liquor, substantially in the manner and claim the combination of
the taning liquor, substang
for the purposes set forth.
Grain AND Grass Hanvesters-By Daniel Fitz.
gerald \mathcal{J}. H Smith, of Now York City: We claim,
irst, the construction of the floor in the centre, up. girst, the construction of the floor in the centre, up-
on which a man may stand to gather the grain.
Second, the construction of the rim, to which the knives are attached, for the purpose of giving the
buts of the graina bed to stand upon, while being buts of the grain a bed to stand upon, whil
carried through the channel to the centre. carried through the channel to the centre.
Third, the constructing a spiral channel within
the guards, for the purpose of gathering the grain the guards, for the purpos
within the central space.
Carriages-By Jonathan Fox, of Manchester, N. discs of of wod, with mangular scores of cut ineels of them to
to
which the spokes are fitted, so that as the discs are which the spokes are fitted, so that as the discs are
drawn together, they bend the sides as well as the
edgen of the spokes, said di.ses of wood weing fitted
to and contued between two plates of metal, snb-
stantiall as described to stantially as described.
Second, the elicing perch, in combination with the
levers, a tehet wheil, and pawls, or such analogous levers, 1 atchet wheil, and pawls, or such analogous
devices equivalent to these, as, will raise the hind
end of the body of the carriage, and load when the end of tqu body of the carriage, and load when the
hind axxe stops, while the fore one moves forward,
the weight of the hind end of the body and load
a.ding. as it descends, in propelling the hind axde a.ding, as it descends, in propelling the hind axle
forward the body being made to slide upon the rock-
er of the formard axie, as described or otherwise. for ward, the body being made to slide upon the rock-
er of the formard axile, as described or otherwise.
Third, the sliding perch, in combination with the jevers, or such analogous devices equivalent there-
to, an will raise the load or a part or it, when the
team or movis to, as will raise the load or a part of it, when the
team or moving powe starts, so as to partially re-
lieve the team and carriage from the sudden jerk lieve the team and carriage, from the sudden jerk
and shock to which is subject, when the connec-
tion is firm and unyield ing. MANUFACTURE of GLASS LENSES-By J. A. Gilli-
land of New York City I Iclaim the manufacture of
droptric lenses of glass in steps or rings by pressure
in metallic moulds, as specified.

Method of Converting Rbciprocating into
Rotaky Morion By Chas Howard, of Alton, Ill.
I claim an apparatus, substantially such as descriRotary Morion- -lay chas Howara, of apparatus, substantially such as descrii-
bed, for converting a reciprocating motion into a rotary one, or converting a rotary into a reciprocating
motion, consisting of the wheel, levers (four) and
connecting rods (two), or their equivalents, for the purpose specified
 of Now York City . We claim the process of trying
of Nized paper, by pasing it between a series of trunks,
perforated on two sides, and so arranged that the hot perforated on two sides, and so arranged that the hot
air passing through these perforatious, will come in
contact with both sides of the paper, and then escape, and not run or be confined with the sheets. Repucing Gold Mineral-By Wm. Longmaid,
of Beatumont Square, Eugland Patented in
land Jan. $29.1852:$ I do not claim the use of lime, of Beaumont Square, Eugland Patented in Evg.
land Jan. 29. $182:$ I do not claim the use of lime,
wheu forming fluxes ; but claim the use of iron, subitantially as described, to extract portions of
gold, when the same arenot readily precipitated by
their deasity. Loons For Weaving Pile Fabrics-By Samuel
Richardson, of Claremont, N. HA. I claiam the spring
fiaps, or their equivalents, which open and close the Richaruson, of Claremont, N. H. : I claim the spring
flap, or their equivalents, which open and close the
pincers upon the wires, and support the wires after they are drawn from the loops and carried to a pro-
per pooition be inserted between the sheds of
warp and guiding them into the same, substantially
as described. as described.
$\begin{aligned} & \text { Raliroad Car Brakes-By John Schoenhen,"'of } \\ & \text { Reading, Pa. : I claim the method of arranging and }\end{aligned}$
$\left\lvert\, \begin{aligned} & \text { rative, at the pleasure of the engineer or other hand, } \\ & \text { viz., hanging the drops from arms on arbors, with } \\ & \text { arms projectin in a contrary diretion tothe arms, } \\ & \text { and connected by links mid way to a lever, the end of } \\ & \text { which is the fuct }\end{aligned}\right.$ and connected by links mid way to a lever, the end of
which is the fulcrum; the power being appliedto
the othe end, through the eye by means of the
rope which passes thug the other end, through the eye by means of the
rope which passes through loops along the entire
trainto to te rearen of which it made fast,the esame
devices being reteated and capable of instant train, to the rearend of which it is made fast, the same
devices being re eated and capable of instantaneous
action on eanch car, the arrangement thus having
nothing in itself antagonistic to the end in view,the
rope bein alwa nothing in itself antagonistic to the end in view, the
rope being always slack, and by its own' Weight and
motiou, when the train is under way keeping the
drops up and out of the way of the brakes, so that
dop drops
the
by wi rewinding up the rope throws down the drops, and
renders the brakes inoperative forthe time being;
the whole being subtantiall as described, by no
meansintending to claina neansintending to claim, however, the interruption
of the operation of the brakes, actuated by the
crowding of the cars upon the locomotive by the crowding of the cars upon the locomotive, by the
interposition of drops, when these are interposed by
mechanism, the weight and motion of which, when mechanism, the weight and motion of which, when
the train is under way, is antagonistic to the
counterbalance intended to keep the drops up and out of the way of the brake
Hats-By Benj. Sherwood, of the County of New
York, N. Y $=$ I claim, first, the attaching to a hat a ring, or part or parts of a ring, inside, to fo to upon the
head, and leave a space around it, for the purpose of producing ventilation, in the manner substantiall
as described. Second, I claim constructing a band for the pur-
poso of Giting easily to the head, of thin metal,
made made flexible, by cutting out pirt of of the su
in the manner substantially as described.
Thrbading Wood Screws - By Cullen Whipple,
of Providene, R. I: I claim, first, an annular concave burr cutter for threading serews, having a heli-
cal or conical serrated thiead, subsiantially as de-
scribed.
Second, the combination of the moving rests on
opposite sides of a revolving screw cutter, with the mechanism described.or the equivalent thereof, for
meperating the same in such a manner as to more
on hem simultaneously towat ds and from the cutter,
to press the blanks aganst the latter, to be thread
od and so that the pe sure ed, and so that the pre sure of one blank in one di-
rection, may be counteracted by the presseree of ano-
ther blank in the opposite direction, as set forth ection, may be counteracted by the pressure forth
ther blank in the opopsite eirection, as set forth
Third the combination of the vibrating rests with the vibrating rotating tarn screws substantially as
describd so that the blank may be rota ed steadi-
i, and with regularity, while the rest is carrying iiy, and with regularity, while the rest is carrying
towards the cutter, to sink a screw thread on it.
 the furrows are arcs of circles swept from a single
centre ; but Io claim the particular mill dress re-
oresented constructed and arranged a d presented, constructed and arranged as
in any manner substantially the same.
Compositions for Preservina Butrer-By L.
De Coru of Oincinati, Ohio-I claim the preservation of fresh butter for any length of thime preserva- as de-
scribed, using for that purpose the aforesaid chemiseribed, using for that purpose the aforesald chemi-
cal compound, or its equivalent, substantially in the
manner and for the purpose set forth anner and for the purpose set
designs.
Grate Frame and Fender-By James L. Jack-
son, of New York City : two designs. Grate Frame, Summer Pigcb, and Finder-By
James L. Jackson, of New York City.
Coorive STove-By Fredk. Schultz, of the Dis-
trict of Northern Liberties, Pa. (assignor to Wm. P.
Cress, of Philadelphia, Pa) Cress, of Philadelphia, Pa)
Srove-By Jacob Beesley \& Edward Delany, (as-
signor to Wm . P. Cresson), of Philadelphia, Pa. Cooring STove-By Jacob Beesley, (assignor to
Richard Peterson), of Philadel phia, Pa.

Woodworth Patent.

[Continued from page 374.]

The abstracts which the committee have caused to be made from the records of the Pa tent Office, imperfect as they are, throw much light upon the subject, and tend to show a sufmittee an account of the receipts under the patent. The connection which thoy show between the administrator and Mr. Wilson from the beginning, in matters relating to the patent has been so intimate and continuous as to make it equally improper and impracticaThe agency of Mr. Wilson seems to have been the most active and efficient, excep when new grants were to be procured, and these appear to have been unitormly obtained by their joint co-operation, though always in
the name of the administrator. The abstract of the Patent Office, with the aid of the data furnished by the papers before the committee show additional receipts trom assignments and licenses to the amount of $\$ 1,531$, 486, thus making an aggregate approaching wo millions of dollars.
That even this large sum is only a fractional part of the amount of receipts is apparent, not only from the records themselves, but from other surrounding circumstances. It is to 1836 have been restored since the destruction of the records by the fire which consumed the Patent Office. Many assignments of rights under the Woodworth patent were never recorded, though their existence is proved by recitals in subsequently recorded
grants. A very large proportion of the grants which are entered upon the records recite only the nominal consideration of one dollar instead of stating the actual consideration.
More than forty of the grants embraced in the abstract are of this description though
conveying valuable rights, some of them for
entire States. Many, and indeed most of the conveyances by the admitfistrator to Wilson,
state no other sum than one dollar as the constate no other sum than one dollar as the con-
sideration of the sale. Such is the grant to Wilson for the State of New Jersey on the 9th of August, 1843. Such is the grant for the State of Maryland on the same day. Such is the grant to Wilson of the District of Co see on the 14th of September; 1843. Such is the deed of January 11, 1844, conveying the whole of the States of Michigan, Georgia, and Arkansas, and large tracts of territory in fourteen other States. Such is the conveyance of the whole State of Vermont, except a single county, on the 10th of March, 1845.
The sole consideration for the sale to Wilson of the re-issued patent in the 9th of July, 1845, so far as the record shows, was the sum of one dollar. And even where the record
states a sum which would seem to be the states a sum which would seem to be the ac-
tual instead of the nominal consideration, the committee find upon investigation that the amount is understated in various instances. It is of course incredible that sales so important as those above enumerated, where the pecuniary consideration expressed was the um of one dollar, were made for that amount in fact. In the case of the deed of January morial of 1845 , that the actual consideration morial of 1845 , that the actual consideration
received was $\$ 39,290$. The records equally fail to show the true consideration of the sale to Wilson of the second extension. The deed of March 14, 1845, executed by William W. Woodworth himself, purports to convey the second extension, except the city of New York, in consideration of $\$ 1.000$. This the administrator now admits was not the true consideration. (See memorial of 1850 , page the parties was merely that of buyer and seller, of course terminated the interest of the administrator. Yet, on the 28th of May, 1845, a conveyance of the same right from William W. Woodworth, administrator, by James G. Wilson as his attorney, was executed to Henhe, on the same day, as the records indicate, reconveyed to James G. Wilson for $\$ 46,000$. But it seems that the fact was established before the Senate committee of the last Congress, that the actual consideration of the sale from Woodworth to Wilson was $\$ 100,000$. (Congressional Globe of 1849-50, page 461.) Many deeds were executed both before and after the last extension, by James G. Wilson evident that neither of them regarded it as desirable that the conveyances should disclose, when recorded, the full amount received from time to time for rights under the Wood worth patent. But another reason exists why the records of the Patent Office show only a very inconsiderable share of the proceeds accruing
from the invention. A very large proportion from the invention. A very large proportion
of the rights under the first and second extenof the rights under the first and second exten-
sion were held under licenses from Woodworth and Wilson. These licenses were not by law required to be recorded, and few of them therefore found their way to the Patent Office. It has been a favorite method with the proprietors of the patent to insure a rich certain, and continued revenue, by exacting a
fixed proportion of the gross ea' nings of the machines in regular periodical payments.
If the receipts from the invention had been only between one and two millions of dollars, as disclosed by the imperfect records of the Patent Office, an application for further bounty would be sufficiently extraordinary. But in the facts furnished to the committee in the printed statement and argument submitted on the part of the memorialist, in cornection with those established by the other evidence,
and collected mainly from the public records, data are furnished which show that the sums named beara vary small proportion to the actual revenues of the patent.
It is stated in one of the documents submitted on the part of the applicant, that one thousand Woodworth machines were in operation in this country" in 1850. The administrator proved, on his application for the extension of 1842 , by the affidavit of Mr. Gibson, one of the machines for ten years, and that "the said machines will and actually do dress flooring ancho
boards to the number of one thousand a day, each machine," being an average upon each of ten thousand feet per day. In the printed statement or argument submitted to the committee on the part of Mr. Woodworth, it is stated that "one machine will plane ten thousand feet per day." In the same statement it is admitted that the public pay an average of five dollars per thousand feet for the lumber dressed in the Woodworth machines. The licenses recorded in the Patent Office show that one-fourth of the gross earnings is usual. Iy paid by the licensee to the owner of the patent; and in no instance have the committee beer able to find that the average tribute exacted is le sthan one dollar per thousand reet for dressing ordinary lumber
Taking these data, furnished by the memorialist himself, the gross earnings of each machine for a single day in dressing one thousand plank, or ten thousand feet, amount to ifty dollars. Of this, the clear tribute to the owner of the patent is one dollar per one thousand feet, or ten dollars upon each day's work of one machine; making, for one thousand machines, a clear tribute of ten thousand dollars for each working day, or three millions of dollars per annum, over and above the profits and tribute to the subordinate grantees and licensees. These are the results which follow from the facts furnished by the administrator. The committee are not able to vouch for the accuracy of those facts, and eannot therefore say how nearly the results approximate to the truth. They find one dollar per thousand to be far below the maxi mum of tribute; five dollars per thousand far below the maximum of price; and ten thousand feet per day far below the actual amount which these machines will dress, as claimed in the business advertisements of those who run them.

To be Continued]

Bugs in Peas.
A correspondent of the Germantown Telegraph in writing to that paper on the subject of bugs in peas, says he prevents them as fol-
When
When my seed peas are ripe, I pick out the best, and put them into dry glass pint or quart bottles, filling each bottle as full as possible to allow them to be corked up. Then I place the bottle or bottles in a pan of cold wa ter, and set the pan over the fire to get hot gradually. I let the bottle remain there till the water is too hot to bear the finger in it, then take it out, and cork it up directly; and seal the cork with rosin or anything to exclude the air perfectly. This gives the egg in the pea such a dose that it ceases to live and does not all injure the pea, as I should fear scalding would. It has answered with me for many years past, and will answer for those who will follow my directions.
Almost every pea will grow, after being taken out of the bottle and sown in the spring and from my experience I should say that about half the peas wherein the bug remains till spring, will not grow so as to do any good. I had full proof of this several years back. That year I picked out all the sound peas and owed them only. The chickens got among them and scratched them up in places. Hav ing no more sound peas, I sowed the bug eat en ones, but with poor success; for only one here and there grew. This satisfied me as how far the pea bug injured the seed-pea, and led me to adopt the bottling system, which has perfectly succeeded with me. The sooner they are bottled after being dry and ripe, the better.

Australian Gold
A specimen of Australian gold has been received at the mint in Philadelphia. By an assay of a portion of it, it was found that the proportion of pure metal is 966 thousandths fise; which is equivalent to $\$ 20$ per ounce, or thereabouts. Assays that have been made in England have given the result of 938 thousandths fine. Upon these facts it is presumed that Australian gold is better than California; containing less silver by 6 or 7 per cent. on the average.

While hauling up the wire cable of the lectric telegraph between Ergland ard Ireland, a long and strong pull brought up an ol anchor.

Steam Ether, Air.

In the last number of the Scientific American, page 381, the heat of steam and the operation of the mercury gauge were explained and illustrated; although the article in that number was complete in itself. so far as it went, still this one may be taken in connection with it. There may not be much information in this to experienced engineers, but we know there is much which should be more generally diffused among our people. We quote the following two extracts from exchanges to prove this :
"Combination of Ether with Steam. The 'Patrie,' Paris paper, says that experiments have, for some years past, been made with ether combined with steam, on board of Government vessels. The result has been that a greatsaving may be effected, but that the inflammable nature of ether renders it dangerous. It has just been resolved to replace ether by chloroform, and two engines of sixty horse power are to be placed in the Gallie, to enable experiments to be made."
" Rarefied Air Engines.-The Philadelphia Ledger notices an important experiment, now being made by Capt. Ericsson, sustained, it is said, by the capital of an English house. It is to double the pressure of the air, by an increase of 480 degrees of heat; the heat being produced by a very small quantity offuel. This rarefied air is to drive a piston in a large cylinder, and this piston is to give motion to the water-wheels of a steamer. We find in a late English paper the following paragraph, which looks like the same kind of an experiment:
The proprietors of railways will be glad to hear of Mr. Palsey having clearly demonstrated the practicability of his compressed airlocomotive. The expense of coke is very great for the production of steam power, while the expense of coal for the production of airpower will be much less, and the expense of water for locomotives will be altogether saved. The expense of tubes and fire boxes will also be taken away. The first experiment of this invention took place on the 25th ult., the second on the 2nd inst., on the junction, a few miles below Cambridge, on the Eastern Counties Railway. The engine was charged to only 175 lbs. in the reservoir, and ran $5 \frac{1}{2}$ miles in 28 minutes, the speed being varied from 12 to 15 miles per hour. A higher ing pressure of the byucre" ing pressure of the regulator."
Gas and air have often been tried, as substitutes for steam, but they have hitherto failed: ignorance of the nature of steam has been the cause of this, in the majority, if not all of the cases.
M. Brix, of Berlin, Prussia, in experiments made with water, alcohol, oil of turpentine, \&c., proved that there was far more latent heat in water than in either of these fluids. The latent heat of steam he found was 972 deThe latent heat of steam he found was 972 de-
grees; alcohol, 3852 ; ether, 162 ; turpentine, grees; alcohol, 3852 ; ether, 162 ; turpentine,
1332 . This differs by some degrees from the experiments of Dulong and Despretz, of France, but nothing in reference to the relative degrees of heat of the liquids mentioned. The vapor of water (steam) having more latent heat, is not so dense as that ot alcohol or ether, and those who get up ether engines seem to overlook this fact, or they are not ac. quainted with it. The specific gravity of alcohol vapor is 2.5 times that of water vapor; this is about the proportion of latent heat it has below the steam; but this also proves, that equal volumes of these two vapors possess equal quantities of latent heat. "If the latent heat of different vapors," says Graham "be proportioned to their volume, the same bulk of vapor will be produced from all líquids with the same expenditure of heat; and hence there can be no advantage in substituting any other liquid for water, as a source of vapor, in the steam engine." So much for any benefit that may be obtained by the uss of alcohol, ether, or chlorotorm, as substitutes for steam. Let us now see what ad vantage is to be gained by the employment of air.

How do Heat and Water Produce Mechanical Effect.-By the application of
por (steam) of a bulk 1700 times greater. A cubic inch of water produces, when combined with heat, 1700 cubic inches of steam. A cubic inch of water, converted into steam, will raise 2,125 lbs. one foot high. This is the mechanical value of a cubic inch of water converted into steam by the application of heat. It costs no physical labor at all. Here is the It costs no physical labor at all. Here is the
way to work the question : $-1700 \times 15 \div 12=$ 2125 lbs. one foot high. Well, then, a cubic inch of water raised into steam will push 15 lbs. to a distance of $1412-3$ feet; it can do more; can hot air do any more? No. But can this cuhic inch of water, raised into steam produce no more mechanical effect? It can produce more. What is it? If the 15 lbs. were pushed through a tube 1700 inches long, by applying cold water to the outside the steam will be condensed to its original bulk and the 15 lbs . will descend in the vacuumthe steam being re-converted into water-heat converts water into steam, and the abstraction of the heat from it re-converts it into water. This is one of the most important qualities in which steam differs from air; no known degree of cold is capable of converting air into a liquid. "It is," says Lardner, "precisely this quality, giving us the power of re-converting steam into water at pleasure, which enables us to use steam so extensively for mechanical purposes, and deprives air of the same mechanical utility." The annexed engraving, fig. 1 , exhibits the principle of the application of steam to produce mechanical effect. This figure consists of a glass tube, about an inch in diameter, slightly expanded into a bulbous form at one extremity, and open at the other; a piston is made, by twisting tow about the end of a piece of straight wire, which must be fitted tightly in the tube by the use of grease. fitted tightly in the tube by the use of grease.
Upon heating a little water in the bulb below piston p, steam is generated, which raises the piston to the top of the cylinder. Here the simple elastic form of the steam is thoving power; and in this manner steam is employed in the high pressure engine. The greater the load upon the piston, and the more the steam is confined, the greater does its elastic force become. Again: the piston being at the top of the cylinder, if we condense the steam with which the cylinder is filled, by plunging the bulb in cold water, a vacuum is produced below the piston, which is now tor-
ced down to the bottom of the cylinder by

Fig. 1.
the pressure of the atmosphere. In this second part of the experiment, the power is acquired by the condensation of the steam, or the production of a vacuum; and this is the principle of the common condensing engine. In the first efficient form of the condensing engine (that of Newcomen) the steam was condensed by injecting a little cold water below the piston, which then descended, from the pressure of the atmosphere upon its upper surface, exactly as in the instrument. But Mr. Watt introduced two capital improvements into the construction of the condensing engine ; the first was, the admitting steam, instead of atmospheric air, to press down the piston through the vacuous cylinder, which team itself could afterwards be condensed, which the same advantage might be taken as which the same advantage might be taken as
of the vacuum below the piston. The second was, the effecting the condensation of the steam, not in the cylinder itself, which was thereby greatly cooled, and occasioned the waste of much steam in being heated again
at every stroke; but in a separate air-tight chamber, called the in a separater which kept cool and vacuous. Into this condenser the steam is allowed to escape from above and
cuum is obtained without ever reducing th temperature of the cylinder below 212°
Using. Steam.-A third improvement in the employment of steam as a moving power consists in using it expansively; a mode of application which will be best understood by eing explained in a particular case. Let i supposed that a piston, loaded with one on, is raised four feet by filling the cylinder in which it moves with low-pressure steam
or steam of the tension of one atmosphere or steam of the tension of one atmosphere.
An equivalent effect may be produced at the same expense of steam, by filling one-fourth of the cylinder with steam of the tension of four atmospheres, and loading the piston with four tons, which will be raised one foot. But the piston being raised one foot by steam of

four atmospheres, and in the position represented in fig. 2 , the supply of steam may be cutoff, and the piston will continue to be elevated in the cylinder by the simple expansion of the steam below it, although with a diminishing force. When the piston has been raised another foot in the cylinder, or two feet from the bottom, the volume of the steam will be doubled, and its tension consequently reduced from four to 4.2 , or two atmospheres At a height of three feet in the cylinder, the piston will have steam below it of the tension of 4.3 or 11.3 atmospheres, and when the piston is elevated four feet, or reaches the top of the cylinder, the tension of the steam below it will still be $4-4$, or one atmosphere. The piston has, therefore, been raised to a height of three feet, with a force progressively diminishing from four atmospheres to one, r with an average torce of two atmospheres, by means of a power acquired without any consumption of steam; but by the expansion merely of steam that had already produced its usual effect.
High-pressure steam is merely low-pressure steam compressed into smaller bulk; for example, if steam, at 30 lbs. pressure, were confined into one half the space, it would exert a pressure of 60 lbs ; in that case its latent heat would be diminished and its sensible heat increased. The working of steam expansively is now the rule among all intelligent engineers, on locomotives, steamboats, \&c.
(An exceedingly interesting paper was recently read upon this subject, before the Institution of Mechanical Engineers at Birmingham, England, by D. K. Clark, of Edinburgh, that is, on working the steam expansively on locomotives; we shall present the outlines of the said paper in another number).

A short time ago there was published in a periodical of this city, devoted to the discussion of such questions, an article on explosions on the Western rivers; it was therein stated that American High Pressure Engines, Second Class, working from 80 to 150 lbs . of steam per inch, "seldom cut off at all." This is not correct, and we have the, best authority from a Western engineer for saying that no such engine is to be seen on the Western waters. All of the engines on Western steamboats that rate under from 80 to 150 lbs. pressure, have, for the last fifteen years, been constructed to cut off from one-half to three-quarters-varying between these points, but eldom less or more.
There are many erroneous opinions afloat respecting the quantity of fuel required to raise water into steam at different pressures. There is no saving of fuel by evaporating water in a vacuum and no more required in raising water into steam under a pressure of 100 lbs.; the consumption of tuel in the conver
sion of a given quantity of water into steam, is the same, whatever be the pressure of steam produced. This is a curious but important fact. There is another one equally important to be understood by all engineers ; it is this: that with the same boiler, to produce a double mechanical effect with an engine, four times the amount of fuel is required; hus to make a steamboat running only 8 miles an hour, move with a velocity of 16 miles per hour, four times the quantity of fuel will be equired. Experiments with the mail steamboats running between England and Ireland, gave such results, and they accord with the xperience of many engineers.

Opium Eaters.
It is estimated that there are 50,000 pounds of opium annually retailed in New York city, the greater portion of which is used in destroying the health, the intellect, and the morals of the community. - Exch.
[Is this so? Every ounce of it is as bad as a gallon of rum, if chewed to satisfy a morbid

PROSPECTUS

OF VOLUME VIII.,
OF THE

The Eigith Volumb of the SCientific AmeRICAN commences on the 18th of September, and as a great proportion of our readers usually commence their subscriptions at this point, we take occasion to extend them our gratitude for the encouraging and liberal support heretofore bestowed upon
our humble efforts, and to re-assure them of ourdeour humble efforts, and to re-assure them of ourdetermination to advance it still higher in the scale of
utility, and, if possible, in their own estimation. We im at an honorable independence in discussion upon all subjects, and, in some instances no doubt, our readers may have been surprised at our determined opposition to highly lauded discoveries in the Arts and Sciences.
Time tries all things, and it is with some degree of pride that we revert to the efforts made through the columns of the Scientific American, to establish sound views respecting several conspicuous miscalled discoveries. Since the commencement of this Volume, thatpeerless Exhibition of the Industry of all
Nations closed its gorgeous display, affording a deNations closed its gorgeous display, affording a de-
lightful episode in the stern page of the world's hislightul episode in the stern page of the world's his-
tory. Above and beyond all criticism it has passed away, leaving a world-wide infuence, beneficial to very branch of industry, and although not prof usely represented by gew-gaws and tinselry, -the character of our country shone forth with magnificence in all the elements of substantial utility. Acting under the stimulus suggested by the success of the Great Exhibition, the enterprizing citizens of New York have determined to construct a Crystal Palace of no mean dimensions, and as this is likely to beendeavor to present our readers with descriptions and illustrations of such novelties as may be deserving attention.
The presentform of the Scientific American will be preserved as most suitable for binding and preservation. The paper will be of the best texture, and we shall aim to store its pages with practical knowledge in every branch of the Arts and Sciences. Invention claims important attention, as one of the fundamental agencies in the world's advancement;
hitherto we hope to have satisfied our readers by hitherto we hope to have satisfied our readers by
our weekly summary of "New Inventions." our weekly summary of "New Inventions." The
Weekly List of Patent Claims, officilly reported for
our columns, is a distinguishing feature, which must commend itself to every one interested in Patents. We need the co-operation of our readers to enable us to publish a journal, worthy of their support. at two dollars per annum. We have never appealed to them in vain, and the Premiums offered for the largest list of subscribers, will, we presume, encourage new efforts. All subscriptions are payable in advance.
We rep
none are accredited from this office.
none are accredited from this office.
Letters should be directed (post-paid) to
MUSt-paid) to CO .,
128 Fulton street, Now Yors.

Terms! Terms! Terms!

One copy, for One Year

Five copies, forSix Months

ive copies, forSix Months
Ten Copies for Six Months for
Ten Copies for Twelve Months,
Ten Copies for Twelve Months,
Fifteen Copies for Twelve Month
Twenty Copies for Twelve Months, Twenty Copies for Twelve Months, subscriptions, or Post Ofice Stamps taken at their full value.
105 PRIZES-For List of Prizes offered for the four largest lists
present volume.

