stinntific

Scientific American
circulation 1g,000
poblisaid wetely
At 128 Fulto
BY MUNN \& COMPANY.

John Carruthers, Savannah, Ga.
M. Boullemet, Mobile, Ala.
Sidney Smith, St. Louis, Mo.
M. M. Gardissal \& Co., Paris.
Responsible A Agents may also be found in all the principal cities and towns in the United States.
Tierms- $\$ 2$ a-year- $\$ 1$ in advance and the remain
ar in 6 month. Terms- $\$ 2$ a-
der in 6 months.

RATEMORD WBWS.

The Quebec and Halifax Railroad The British Government has thrown cold water on this scheme. Mr. Hincks was dispatched from Canada to solicit the support of the Government in London to negociate for $\$ 35,000,000$ to build the Quebec and Halifax Railroad, and it would seem the last Ministry gave him encouragement of success. The Derby-present-Ministry has declined to guarantee such a large sum, and gave, as a reason, "the said railroad is not one that would properly develope the resources of the country." Mr. Hincks is highly offended with the government, and has come out in a sharp letter, which was published in the "London Times." He considers himself to have been uncivilly treated, and states that the government behaved towards him haughtily and proudly. This is just what might be expected; the British Government, as a general thing, do not know how to treat their colo nies. The Lords and Dukes think themselves made of some different kind of stuff from the plebians and colonists. The best way for them to govern their new colonies is to let them alone: and to the colonies we say, " the best way for you to do is to try and stand alone. We do not speak of severing any old connection, or forming a new one, but we do say-try more to stand alone; do not go abegging so otten to your old hard-wrought Mother. It is the working people of Britain who pay for all-they work for it, not the who pay for all-they work for \cdot it, not the
Dukes; therefore, whatever taxes or loans are made, they have all to be taken out of the faces of the workers."

Railroad Car Improvement.
An important improvement in car and loco motive trucks for railroads, Col. Ross informs us, has been made by Whitman \& Rutter, formerly of the Stonington Railroad. For instance, they ride a car body on six round balls, in lieu of two hundred and ninety-six inches friction of bearing. The truck is so calculated that the weight is equalized on a rough or smooth track, entirely doing away with springs. The equalizers are so arranged as to form thirty-six working joints around the truck, making the car or locomotive ride easie than with double the number of springs now in use. No matter how rough or uneven the rail may be, this truck obviates every obstacle and gives an easy motion to the cars in their passage over the road.

A patent for this improvement has been applied for, and the saving to railroad companies for springs and wear and tear must be very large. Rutter has cars on construction at El mira, N. Y., for some of the railroad compa nies.- [Providence Journal, R. I.
[Anti-friction balls for bearings are nothing new, they are very old, and no reader of the Scientific American would apply for a patent for such devices, unless it were for the very purpose of losing his money. Such bearing were illustrated. See engravings on page 412 Vol. 3, and page 148, Vol. 4, Scientific Ame rican.

The accompanying engravings are views of \mid spindle without a can, the spindle being capa- \mid ing, as shown in the second can, from th mprovements in machinery for coiling and ble of removal with the yarn, and taken to right hand in fig. 2; they are secured when packing the slivers and rovings of cotton, \&c. the spinning frame as a large bobbin. The closed by a catch. A guide is formed for the The inventor is Peter McKinlay, of Wap inger's Falls, Duchess Co , N. Y. ; he has ta en measures to secure a patent.
Figure 1 is partly a front elevation and part y a longitudinal sectional elevation of a coil er and packer with four cans. Figure 2 is a plan view partly in section of fig. 1. The same letters of reference indicate like parts on all the figures. The object of this machine is to obviate the necessity of using so many of the intermediate machines employed beween the carding and spinning operations. The improvements embrace the coiling of the slivers, rovings, \&c., to be packed in such a manner that they can be distributed in layers formed of loops of various forms, as may be most desirable, the said layers being placed either in the cans usually employed, or coiled round rods having a foot plate of sufficient ze to receive the layers. The slivers canalbe packed in the common can, or around a cure, to the bottom, a, the other half are se

Figure 2.

J, secured in the plate, B, the said bevel wheel cans one disc being provided for each can. receiving its motion from a spur-wheel, K, \mid These discs may be made of thin metal plate which is secured to it and receives motion secured to plate, P. In the engravings, this rom any prime mover; motion is communi- plate is represented quite narrow, with disc cated to the cans through another bevel wheel, over, the cans. The plate, P, is supported a X, on a vertical shaft, L, which carries a pi- its ends by two cranks, $Q Q$, of equal length nion, M, gearing with a wheel, N, hung loosely one of which is keyed to shaft, L, so as to turn on a stud having a pinion, \mathbf{O}, secured to it, which ears with the teeth on the bottom, a, of the first can. The several cans are geared together by intermediate spur-wheels, j, which make them revolve together in the same direction. The spindles, G G, and the discs revolve with the cans.
P is the coiling head, which consists of plate of sufficient length to cover the whole ine of cans, and to extend beyond them each way; it is of sufficient width, or nearly so, to cover the cans during every portion of it movement, or certan parts, in the form of the cran liscs, k, are made of larger diameter than the L , and revolves with it; and as the two loops around the centre spindle. The can and
directions, the direction of its revolution varying the form of the loops. Their form will also be varied by any variation in the relative speed of the revolutions of the can and feed tube, a very slow movement of the cans making the loops almost circular, and a qüicker movement makirg them approach nearer to an elliptical form. The coiling head may receive a vibratory movement by means of cams, eccentrics, or levers, and be made to distribute the sliver in the cans in loops of any form, varying from parallel to circular layers, nearly.
Operation-Before starting, the discs, H H, are brought up nearly to a level with the tops of the cans ; the sliver is then brought through the tubes, o, and the machine set in motion. The sliver is fed in by the rollers, T T , and deposited on the discs, $\mathrm{H} H$, upon which it is deposited on the discs, H H , upon which it is
compressed by the discs, $k k$, or the face of compressed by the discs, $k k$, or the face of
the plate, P , whose surface must be polished the plate, P , whose surface must be polished
to lessen friction on the material. As the sliver is crowded in, the discs yield to the increasing pressure, and slide gradually down the spindles, \mathbf{G}, until they reach the feet, \mathbf{F} F, when the cans are full; the machine is then stopped. The opening parts, E E, of the canguides are then opened, and also the door of the can, and the coiled material is all taken out by taking hold of the ends of the spindles. The coils of sliver or rovings may be deposited in other cans, or light boxes, to be carried to the next frame, by inverting it into the said cans or boxes, and withdrawing the spindles and discs, or the spindle may be placed like a large bobbin in the next frame, the sliver being drawn off over a roller. The same spindles are replaced, or other spindles are placed in the cans, and the operations are repeated as before. This coiler and packer is susceptible before. This coiler and packer is susceptible
of considerable modification; for instance, the of considerable modification; for instance, the
cans and spindles may be stationary, and then, in addition to the motion now given to the coiling head, another motion may be given, corresponding to that now given to the cans,
by which the sliver may be coiled in the by which the sliver may be coiled in the same manner. The same result may be obtained by placing the crank or cranks below, and giving the cans a double movement, by which, while they revolve slowly on their axes, they move quickly in a small circle, the plate, P, and its appendages, being in that case stationary. It may also be obtained by applying the crank movement to revolve the upper end of the can, the bottom being supported on a pivot moving any way, while a slow axial movement is produced either by a ratchet wheel and catch, at each revolution of the crank, or by a slow movement from below by gearing or belting. Instead of the cans opening at the sides, the mackine may be made with only the bottoms, $a a$, upon which common cans may be placed with spindles, G G , mon cans may be paced. Instead of stuffing
and discs, H , inside. and discs, H H, inside. Instead of stuffing
boxes, h, springs or slit tubes may be used to produce the necessary friction of the disc upon the rod.
One great advantage possessed by this machine, is the unlimited number of cans which may be employed. The coiling head requires no more mechanism to drive it for twenty cans than for one; the only additionel gearing required being that for revolving the cans. Another advantage is the distribution of the Another advantage is the distribution of the
sliver in any form of loop; it can be driven sliver in any form of loop; it can be driven
at a greater velocity than common coilers, and at a greater velocity than common coilers, and
it allows of a greater quantity of sliver or roving to be packed in the cans.
More information may be obtained by letter addressed to the inventor.

Imitation of Black Walnut.
Steep two pounds of the outside shuck of the butternut in one gallon of soft water, until the strength of the bark has impregnated the water; stain the article that is desired to be colored with this decoction, giving it from three to ten coats, according to the darkness of the color desired.
J. C. H.

At the commencement of the University of North Carolina, a few days ago, the honorary degree of L.L.D. was conferred upon Lieut. Matthew F. Maury, S. S.
Observatory, at Washington.

The Governor General of Cuba has granted charters to two telegraph companies to run lines so as
the Island.

The Telegraph.
A work on the Electric Telegraph, by Alexander Jones, of this city, who has been so long and intimately connected with telegraphic reporting, has just been issued by George P. Putnam; it gives a chronological history of telegraphic inventions, and corrects the prevalent idea that Franklin was the first to convey electricity to a distance on wires. This was done in 1726, by Mr. Wood, in England, -Franklin, however, was the first who made the discovery that electricity and lightning were identical-the same thing. His experiment of drawing lightning from the heavens, by the flight of a simple kite, is the most wonon record.
Mr. Jones takes the same view of Judge Kane's decision, in the Morse and Bain case, which was decided in Philadelphia last year, s we have done in discussing the question. He says, "the decision of Judge Kane is one of the most extraordinary ever delivered in a court of justice. It was given in opposition to the direct testimony of highly respectable scientific witnesses bearing upon the direct points at issue, otherwise how could he have decided that Steinheil's Telegraph was not a recording but a visual telegraph, when it actually recorded dots on strips of paper?" There can be no doubt but Steinheil's telegraph recorded messages by dots, before Prof. Morse had discovered his dot and dash alphabet. Steinheil's telegraph, however, is not so beautiful nor so good as that of our American nventor.
This work pays a high compliment to House's Printing Telegraph; this we are pleased to see ; it is, as a telegraphic machine, the most ingenious ever invented. A number of excellent suggestions for new applications of the telegraph, are made by the author. The application of it to send fac-simile representations of runaway criminals, \&c., to distant places, is an important one. The time will come when the earth will be belted by the electric wire, and New York will yet be able to send the throb of her electric pulse through our whole continent, Asia, Atrica, and Europe, in a second of time. Telegraphing is but in its infancy : it is only eight yearssince country; it was only forty miles long, and put up between Baltimore and Washington by a Congressional grant of thirty thousand dollars. Congressional grant of thirty thousand dollars.
Since that time the telegraph has made many triumphs, and at the present moment there are no less than fifteen thousand miles of telegraph lines. What a change in eight short years! We well remember travelling through the interior of this State, in 1846, when the first line was being erected between Albany and Buffalo ; many of the passengers, men apparently of considerable intelligence, and of sharp business qualities, laughed and talked about the new humbug invention: it galled our feelings greatly, for we believed in its practicability and great usefulness the first time we saw a machine operate. What fu-
ture triumphs there may be for the telegraph we cannot tell, but we look upon it as one of those great inventions which, like the steam engine, change the destinies of nations, by revolutionizing their social customs. Mr. Jones believes that it will yet supersede the Post Office, and although we are not so enthusiasic, we will not pretend to deride the idea, for it has, in a measure, done so already.
While Daniel Webster, a few weeks ago, was speaking in Faneuil Hall, those who sat listening to his voice, had only that advantage over others in distant cities, for as the words were falling from his lips, in Boston, the electric telegraph was recording them for the The speeches delivered in Washington, every day, are, in substance, transmitted to New York and other cities, almost as soon as they are delivered.
Well and divinely is it recorded in Scripture, man was created in the image of his Maker; his inventions are an evidence of this. The brutes of the field continue in the same state from generation to generation; man alone progresses. The hut of man, of one age, is exchanged for the palace in another; the anoe and flat-boat, of one age, is exchanged for the noble ship and the leviathan steamboat
seen, in our day, exchanged for the locomotive and the electric telegraph; the latter invention conferring upon man a power approaching to that of omnipresence. Truly, our inventors have done more for the world, to change its destinies, physically, than
warriors and statesmen that ever lived.

Narrow Escape of an Engineer.

In the last number of the Scientific American, we noticed the falling of the building occupied by the "Buffalo Republic," (N. Y.,) burrying the compositors, \&c., all of whom escaped with only a few slight bruises. The "Republic," in connection with an account of the affair, notices the following narrow escapes incurred by one individual :-"During the last month, while engaged in adjusting the machinery of the power press in the 'Hudson Observer,' Ohio, the engineer, not perceiving his position, turned on the steam. He was struck by a portion of the machinery, and by the merest chance was saved from being crushed to death. It so happened that he ing crushed to death. It so happened that he
was on board the Forest City last Wednesday, when her larboard flue exploded, and was thrown a distance of thirty feet. He again escaped injury. The first day that he commenced working in our office, the roof tell upon him, and he was saved by being underneath the skylight when the roof fell."

The Savarn Manufacturing.
the want of ple in that section in respect to the peoring enterprize, as a wanton disregard of nature's bounties. We have been informed that many of the cotton manufactories in our Southern States, have failed to be profitable, and the original stockholders have mostly sold out their interests. We cannot account for this; it is certainly reasonable to suppose that the manufacture of cotton goods can be con-
ducted more economically near the cotton ducted more economically near the cotton
field than at the north or in England. On the other hand the north or in England. Oning this but by experience. In Georgia a great number of cotton factories are in operation; how successful or otherwise they are we cannot tell. England, in the Old World, and
Massachusetts in our own country, have made a great deal of wealth by the manufacture of cotton fabrics. Is it in the climate, or what can be the cause of failure in our southern manufactories?

Boiler Explosion.
On Friday afternoon, last week, a steam boiler in the rear building of the Eagle Spice Mills of Messrs. Isham, on Hudson, near Grand street, Jersey City, exploded with
fearful violence, destroying the building, fearful violence, destroying the building,
and burying four men in the ruins. The and burying four men in the ruins. The windows in the houses in the vicinity were and a portion of the boiler weighing 500 lbs . was thrown at least 300 feet high, and came down in York street, a block and a half from the scene of explosion. It fell upon the sidewalk, and smashed the stones into atoms.The engine was broken to pieces and the fragments blown to a great distance.

Death of a Balloonist

James Goulston, a balloonist, lost his life on the 2nd of June, on an aerial excursion, from Manchester, Eng. He was thrown out of the balloon, and his feet were entangled in the cords, and in that state he was dragged by the balloon along the ground, head downwards, tor a great distance. His death was a sad one.

Burning Diamonds.

In a recent lecture at the Royal Institution, London, on Carbon, by Prof. Faraday, the place was illuminated for some time, by a very expensive light, viz.: diamond in oxyplayed converted into coke, and one piece had one end converted into charcoal, while the other was diamond still.
At a recent Prussian Industrial Exhibition, a large proprietor of iron works exhibited sheet iron of such a degree of attenuity, that the leaves could be used for paper with white ink. The machinery for the purpose of rolling these thin iron sheets rolls 7,040 square feet of metal from a 100 lbs of metal. Thes
leaves are as flexible as those of paper.

The Age of Gold.
What is to be dore with
What's the to be dore with all the gold? ellow due question. A perfect flood of the world, and yet not the world either, but two countries of it, and singularly enough, the only two countries prominently distinguished for free institutions and commercial greatness. There is something remarkable in all this; There is something remarkable in all this;
and who can divine what the result may be? Two years ago there was but little gold produced in these United States, and not a single colony of Britain produced any. Since that time California has sent us million upon milion of this staple product-at once the curse and glory of many nations. Gold obtained by honest industry is not a curse, we only speak ot it es a curse when wars and wrong acts are committed to obtain it. Australia, that new continent, and colony of England, is now vieing with California in her golden products. We see by recent foreign papers that one man dug out 130 ounces of gold in one day, and others have been equally fortunate. The California diggers appear to have the advantage in respect to a greater quantity of water, but the supply of gold appears to be as good in Australia. It is supposed that the supplies of gold from California and Australia will be quite abundant for a great number of years. What then will be the result of all this? Will bank bills become scarce, and only hard yellow eagles become the recognized currency, because of their abundance? No; there is no appearance of such results; banks are becoming more plenty every day, but are becoming different in character, viz., dealers in Bills,--bill brokers. As such, they are to be welcomed as a great improvement on the small shaving fry which intest every commercial city. We look upon the gold discoveries as something of great beneficent good to man. The very abundance of an anti-corrosive metal, like gold, must be a benefit to mankind, whatever may be the purposes for which it is employed, in commerce and the arts.

Ballooning.

Mons. Petin has announced that he will make a balloon ascension on horseback, from this city, on the 5th of July, if the corporation furnish him with gas. We hope the city fathers will do this, so that the citizens will be a^{\prime} 'e to enjoy the sight; it will do us all more good than to spend two or three thousand on dinners to Holland officers, where the Common Council do the most of the eating. We would add, however, that we should prefer that Mons. Petin would substitute his car for the horse.

Irish Industrial Exhibition
The Irish Industrial Exhibition formally opened at Cork on the 10th of last month. The papers from Europe inform us that it promised much for the credit of old Ircland. the samples of fine linen work from the North Province of Ulster, were represented to be rich and unequalled by; the finest French works of that kind. The British Association for the Advancement of Science is to meet in Belfast this year.

Juvenile Crime.

Out of 16,000 criminals committed to the Great Prison in this city, last year, over 4,000 were under 21 years of age. The Chief of Police considers that there are not less than 10,000 vagrant children in New York. Mr. Brace, who has recently 'travelled through Europe, and visited the prisons and vilest places in the cities, considers New York to be the worst place he has seen for the number and criminality of youth. He believes them to be the hardest looking and most depraved youth he ever saw. It is sad to reflect, too, that the majority of depraved and wicked young persons are females.

Ice Yet.

The " Lake Superior Journal" says, that on the 5th inst., the Captain of a trading sloop, bound to St. Louis River, found the Lake so obstructed with ice, that when within twenty miles of the river, he found it impossible to proceed, and had to return. The ice extended along the coast as far as could be seen, and was twenty miles wide. It was firm, hard, and of immense thickness. The oldest Indian does not remember ever having seen Indian does not remember eve
ice so late in the season before.

For the Scientific American.
Davison's Nautical Challenge In the Scientific American of June 12, 1852 you have turnished an engraving of a pleasure boat belonging to Mr. Darius Davison, in connection with his challenge to the commercial
world. It is not my purpose, nor yet my province to accept the challenge, or to propose a sub-
stitute-and should have allowed the tempo-stitute-and should have allowed the temporary excitement you notice to have passed in silence, or to have spent its force in bombastic eruptions, but for the possibility of the proposal being regarded as having its basis on the principles of equity, by those who may not be familiar with the laws of buoyancy, or possess a knowledge of the laws of resistance Inasmuch as the rivals in the proposed race are to navigate the same element, and as consequence, must depend upon the buoyan properties of the same, to counteract the in fluence of gravity, would it not better accord with the principles of justice to measure both vessels in the same element? Or, if success is to be consequent upon obtaining the least amount of resistarce commensurate with the greatest amount of buoyancy, should not both vessels be measured in the element from which the buoyancy and resistance is obtained? Does it in any equitable sense accord with the principles of fair competition, to measure the entire longitudinal displacement of one vessel in water, while that of the other is to be measured in air? What connection has the length of a vessel on deck with the determination of the amount of resistance to be overcome on the immersed part of a vessel? I am pesuaded that you would answer, " none whatever." If the acceptance of the challenge of Mr. D. is designed by him to test the comparative merits of shape for speed,equal length and an equal amount of displacement and stability should have been the guide of the competitors. John W. Griffiths.

Decomposition of Water by Heat.
When oxygen and hydrogen gases are exposed to a high temperature or the electric spark, they immediately combine and form water. Prof. Grove discovered that all the processes by which water may be formed are capable of decomposing water. The explosion of the mixed gases by the electric spark, is believed by him to be due to its great heat. Priestly decomposed water by passing it through heated tubes; and it also can be decomposed by incandescent platina. It is impossible to pass hydrogen gas through water without its taking up so much oxygen as to acquire the power of giving luminosity to phosphorus in the dark. The following are some of the ideas of Prof. Grove on this important subject :-
"It was found that if hydrogen and carbonic acid were exposed to the action of the ignited wire, there was a contraction of one volume, leaving a residue of carbonic oxide. It, instead of carbonic acid, carbonic oxide were employed, the mixed gases expanded in volume; and the carbonic oxide, taking oxygen from the water, was converted into carbonic acid. Here we have two dissimilar results produced by the same cause-by means of hydrogen we take oxygen from carbonic acid and by means of hydrogen we take oxygen from water. If steam be formed in the eudiometric tube and acted on by the ignited wire, on cooling, a small bubble of gas is tormed, which is found to be oxygen and hydrogen in the exact proportions in which they form water. This is the first result of the firstaction of the heated wire :-in a few seconds a small
bubble of gas is formed, but if the action be bubble of gas is formed, but if the action be
continued for a week, it does not increase in continued for a week, it does not increase in
quantity. It is, however, easy to remove the bubble as it is formed, and bring a fresh quantity of steam under the influence of the heated wire, and thus collect a quantity of gas which should be quite sufficient for any eudiometric examination. It might be objected that, as the wire was ignited by a voltaic battery, the decomposition was not due to the heat of the wire, but to an electrolytic action. This objection would not, however, be maintained by those who were acquainted with electrica phenomena. With the view, however, of re moving all doubt, the use of the battery was entirely done away with, and all the results
were obtained by the agency ot heat alone, in
the following manner:-into a silver tube, a capillary tube of platina is soldered, and this is again connected with a bent tube, which admits of the removal of any gas formed. The tubes being filled with distilled water, their ends being immersed in vessels of oil or water, the flame of a spirit lamp, urged by the blow-pipe, is brought to bear upon the capillary tube of platina, by which it is almost immediately brought to a white heat. The water is, of course, instantly converted into
steam; and this steam is decomposed by the team; and this steam is decomposed by the gency of the heat alone. By boiling, we thus convert steam into mixed oxygen and hydrogen gases; and this operation may be continued for any length of time by removing the bubble of gas formed, and bringing a fresh supply of steam under the influence of the heated platina. If fused globules of platina are dropped into water, there is immediately formed a bubble ot oxy-hydrogen gas, which nay be collected in an inverted tube."
These experiments correspond with others made by different persons ; the presence of decomposed gases, in steam boilers highly heated, can thus easily be accounted for.

Errors in Philosophy.

The "Philadelphia Ledger" of the 19th inst., has a leader on "Errors of Philosophy." It discusses the question with its usual abiliy, and reviews a work of Dr Dods, on Electrical Psychology. The doctor, it seems, has adopted some erroneous notions, akin to those of Knox, on the human races. He believes hat men should be confined to the latitudes in which they were born, and use only the food, drink, and clothing which those latitudes produce. These views are rather amusing and entertaining to us, as they are the same as those which used to be entertained by our worthy old grandfather, and which were rather a positive part of his nature. They are not, therefore, new to Dr. Dods, nor do we think he backs them up with any stronger arguments.
"He says that such is the case with the lower animals, which consequently suffer little from disease, which they instinctively know from disease, which they instinctively know
how to cure; and that the human race, especially in civilized communities, suffer greatly in health from violations of this law. In treating of acclimation, or "the philosophy of becoming acclimated," he says that each latitude has vegetables peculiar to itself, and that these constitute all existing varieties; and that the same species of vegetables differ from each other in different latitudes, as far as the climates and elements of soil may differ from each other. Hence, he adds, an apple, pear, or peack, produced in forty degrees of north latitude, differs much from the same fruit reared in thirty degrees of north latio tude ; that this is certain, because such fruits are the respective results of the surrounding elements which produced them, and that the same may be said of corn, wheat, rye, and other cereal grains, and of hemp, flax, cotton, and other vegetables used for clothing. And that, as animals eat vegetables of the second growth, the creation of vegetables having necessarily preceded that of land animals, the same may be said of beef, pork, mutton, poultry, and other meats. He then says that, as our bodies are made of water and the vegetables and animals on which we subsist, and are
adapted to the climate and surrounding elements of the region where we were born and reared, a sudden change of climate, as a change from forty to thirty of north latitude, disturbs the due operation of the electric forces, constituting the habitude of the system, and on which its health depends, and produces disease. He says that all the substances of our bodies, derived from food and drink are continually changing, whereby the fleshy particles are renewed annually, and the bones once in seven years; that on a change from
forty to thirty degrees of north latitude, we forty to thirty degrees of north latitude, we and flesh, different from those left; that the old particles of our bodies, brought from one latitude, continue to escape as usual, to be supplied by those of another latitude; that this difference in the quality of particles cre ates a disturbing conflict, throwing the elec-tro-nervous force out of balance, and producing disease; that, if we survive the operatior
we become acclimated in about seven years
by acquiring in the new latitude, flesh and bones different from those of the old. The conclusions which he draws from these premises are, that those born and reared in forty degrees otemorth latitude should not drink the tea and coffe, or eat the oranges, lemons, citrons, pine-apples and other productions of other latitudes, nor wear the wool, cotton, silk, hemp, flax, or other materials produced in a foreign region of different climates from their own. He says the Creator has not erredinadapting all productions to their respective climates, and that man no more requires foreign productions than the beasts around him, who find their appropriate food and drink, and even medicine, where they were born."
There is much that is true in this. For hundreds of years our fathers and mothers were content with fish, beef, bread, milk, and beer. Were they less healthy or strong than the remark of an old English lady, one of our early settlers, she never had drank tea, and she was born before nervous diseases came into fashion. The princıples, however, laid down in the above extract, are not correct; our guides are observation and common sense. The beneficial adaptability of food, for the system, wherever it is grown, or wherever it
may come from, can only be determined by its effects. The acclimating ot different kinds of grain, fruits, fowls, fishes, and animals in countries foreign to their nativity, has been easily and successfully accomplished in many countries to the great benefit of the people. It is even a natural law, but one above reason that the seed of potatoes and many vegetables produce better when taken from a distance. It is the same with some animals, yea it is the same with some men. The Dutch Boors of South Africa, are giants in comparison with their forefathers. The difference of latitude between Holland and Atrica is certainly very great. We know some men who never had a day's health in their native latitude, but who became stout and healthy when they moved ten degrees further south. We have no doubt but there are also reverse cases of this kind. The vegetable productions in various climates are liable to change, but those who may be born in a forrest should always feed upon the trees and shrubs grow-
ing in it, according to the Dod theory. Sugar, oranges, and many tropical productions are healthy as food, and conduce to the comtorts of those who live in regions where they are not natural products. Is it not erroneous to suppose that the dweller on the Green Mountains can eat maple sugár with impunity, yea with benefit to himself. but not cane sugar. The idea is preposterous. It is not latitude nor the natural productions of latitudes which affect the health of men or races so much as climate, we use the term in reference to the nature of the country, such as its hills, waters, swamps, prains, winds, heat, \&c. No principle can be aid down in reference to the best latitude for mar, this can only be determined by experience, every man for himself. In the same latitude there are countries much healthier than others, and there are fruits and food grown in the latitudes in which a man is born, more unfit for his fooa than some which come from thousands of miles distant. While we say this, we must say that every man should be master enough of his appetite as to live on the products of the latitude in which he is born, for there is no doubt but they are perfectly capable of supporting life and rendering him healthy.

Manufacture of Wine.
The following is given as the mode of manucturing wine:-
"The wine press, or curvier de pressoir consists, in the majority of cases, of a massive shallow tub, varying in size from four square eet to as many square yards. It is placed either upon wooden tressles, or on a regularly built platform of mason work, under the huge rafters ot a substantial out-house. Close to it stands a range of great butts, their number more or less, according to the size of the vineyard. The grapes are flung by the tub and
caskful into the curvier. The treaders stamp diligently amid the masses, and the expressed juice pours plentifully out of a hole level with
the bottom of the trough, into a seive of iron
or wicker work, which stops the passage of the.skins, and from thence drains into tubes below. Suppose, at the moment of our arrival, the curvier for a brief space empty. The treaders-big, perspiring men, in shirts and tucked up trowsers-spatted to the eye with spatches of purple juice, lean upon their wooden spades and wipe their foreheads. But their respite is short. The creak of another cart-load of tubs is heard, and immediately the wagon is backed up to the broad, open window, or rather hole in the wall, above the trough. A minute suffices to wrench out tub after tub, and to tilt their already half-smashed clusters splash into the reeking pressoir. Then to work again ; jumping with a sort of spiteful eagerness into the mountain of yielding, quivering fruit, the treaders sink almost to the knees, stamping and jumping, and rioting, in the masses of grapes, as fountains of juice spurt about their feet, and rush bubbling and gurgling away. Presently, having, as it were, drawn the first sweet blood of the new cargo, the eager tramping subsides into a sort of quiet, measured dance, which the treaders continue, while, with their wooden spades, they turn the pulpy remnant of the fruit hither and thither, so as to expose the half-squeez ed berries in every possible way to the muscular action of the incessantly-moving feet.

New Fluid.

An eminent scientific man, Baron Charles Von Reichenbach, has lately published a learned work, which has made some noise under the name of Dynamics of Magnetism. He believes he has discovered a new flaid or dynamic element in nature, distinct from magnetism, electricity, light, or heat, though somewhat resembling them. He gives it the somewhat resembling them. He gives it the
singular name of Od. Those who are subject to, and perceive its influence, he calls sensito, and perceive its influence, he calls sensi-
tive. Such are capricous and whimsical, tive. Such are capricous and whimsical,
hard-to-be-pleased persons, easy to be put hard-to-be-ple
The phenomenon may be manifested thus: Lay a natural crystal, as large a one as possible, horizontally across a table, or the arm of a chair, so as to leave the extremities free. Let the sensitive person hold the palm of the left hand toward the ends of the crystal, at a distance of three, four, or six inches. In the course a of minute, he will acknowledge that from the apex of the crystal a cool current strikes the hand; but, when the hand is held towards the base, a sensation of luke-warm ness is experienced. The first feeling is plea sant; the other disagreeable, and accompanied by almost a nauseating sensation, which if the hand be continued in the same position, seizes on the arm, and produces a feeling of fatigue. Persons not sensitive perceive nothing.
These opposite effects can be produced These opposite effects can be produced
without touching the crystals; and with very sensitive persons at a distance of several feet, sensitive persons at a distance of several feet,
and therefore Reichenbach was of opinion that something emanated, or radiated, unknown to physical science. In darkness, this fluid has become visible of various colors and bellshaped, now sparkling, then disappearing in a sort of fine mist. The same force may be found to emanate from other sources. Experiments made with a magnet are beautiful, and light and color are emitted. It may spring from a common source with magnetism and electricity, light and heat; and so at present, they must be treated of as a special group of phenomena.
[The above we have seen copied into various papers. The experiments of Reichenbach were given to the world more than six years ago. He is a very eminent German philosopher, but all men are liable to make mistakes, the most learned as well as the most ignorant. The Baron, we believe, has dealt more with imagination than with facts in his electrical experiments. We do not believe one half of that which is contained in his works to which the above refers.
Austin Allen, a machinist in Rochester, cut is throat from ear to ear on Saturday, the 19th inst. He had been engaged upon an in ention of his own, and failing to bring it into operation, his mind became deranged.
The town of Nashville, N. H., has voted to uild an iron bridge across the Nashua river at Indian Head, and appropriated a sum no exceeding $\$ 6,000$ for that purpose.

NEW INVITMOXS.

Frederick Ortlieb, of Matteawan, Duchess Co., N. Y., has takeri measures to secure a patent for some very excellent improvements in steam boilers. He surrounds the sides of any cylindrical boiler, or boilers composed of a series of cylinders, with water spaces connected by pipes directly to the steam chest, and intended as a substitute for the ordinary masonry in the construction of the firechamber. The water in the spaces spoken of is heated by the caloric which is (as firechambers are at present constructed) lost in the dead walls. These water spaces can be added to any boiler, old or new, to increase the heating surface.
A valuable improvement in the boiler relates to the collecting of the matter which floats on the surface of the water when the boiler is at work, but which forms incrustations when suffered to adhere to the plates of the boiler by cooling. A series of bellmouthed vertical funnels convey the dirt and floating matter from the surface by blowing out, these matters being conducted out by the funnels from near the surface, and not in the common way of blowing out. In this improved boiler, priming and incrustations are proved boiler, priming and incrustations are prevented as has already been demonstrated
by its actual operation. Improvement in Smut Machines for Cleaning Grain.
H. L. Fulton, of Chicago, Ill., has taken measures to secure a patent for an improvement in smut machines. The casing is of a circular form, and composed of bars of metal slats like other smut machines, excepting the outside form of the bars, which taper on both sides outwards; this allows the impurities, when they escape through the slits from the inside, to pass off more freely than if the bars were not inclined. The interior construction and arrangement of the parts of this smut machine are different from others, and quite novel. The interior corrugations or projections for scouring the grain and separating the impurities from it, are prismatic, and there is a circular concentrator secured to the inside of the case, and placed between each pair of the revolving scouring plates, and inclining towards the certre of the machine, for the purpose of receiving thè grain as it is thrown by the fans and scouring plates. There are peculiarities about this machine which we cannot describe without engravings, but, from what we have seen of it, we believe it is a good one.
Improvement in Cooking and Culinary Vesooking and Culinary Ves-
sels.
Saml. Cotter, of Ansonia, County of New Haven, Conn., has taken measures to secure a patent for improvements in culinary vessels, the object of which improvement is principally to allow the vessel to be set on live coals without smothering the fire, but allowing it to have free and perfect combustion. The bottom of the vessel is made concave on the outside, and convex on the inside. When a vessel having a flat bottom is placed with water on a clear burning fire it crushes down the coais and prevents free combustion. The concave outside bottom of these vessels will also present a greater heating surface, and cooking will be done quicker with a saving of fuel by them. For cooking in turnaces during warm weather they will economize the fuel.

Marston's Breech Loading Rifle

We recently witnessed some interesting experiments, a short distance beyond Jersey City, with the breech-loading rifle of Mr. Marston, of this city. A number of gentlemen interested in good shooting irons were there to witness the experiments and shoot for themselves. The distance was 500 yards and themselves. The distance was 500 yards and
six rifles of the same kind, but ot different pattern and size, were employed. There was evident satisfaction manifested at the results. The carrying power of the rifle is unquestionably great; the simplicity of its construction places it without a rival for loading at the places
breech.
We have received a letter from L. F. Munger, of Albion, N. Y., with a sketch of a
breech-loading rifle invented by Mr. Savage, of Windsor, Vt., some 10 years ago. It appears to be a very good rifle.

Improvement in Grain
enjamin Hoyle, of Martin's mont Co., Ohio, has taken measur a patent for a useful improvement in thresher and cleaners, the object of which im provement consists in screening and fanning, and also threshing a portion of the grain termed tailings, twice at one operation, and with one and the same machine.

IMPROVED SHUTTLE MOTION.---Fig. 1.

The accompanying engravings illustrate an mprovement in the shuttle motion of looms, invented by W. H. Robertson, of the city and county of Hartford, Conn., who has taken measures to secure a patent for the same.
Figure 1 is an elevation of the front part o the lay of a loom, having the improved shut tle attached. Fig. 2 is a transverse section. The same letters refer to like parts. This improvement is designed for looms for weaving narrow fabrics, of which several pieces are woven at the same time, such as coach lace, carpet binding, \&c. It consists in driving the huttles by a number of small rocking jacks, one for each shuttle, in combination with a number of double inclined guide plates, which are fixed on the lay, the said jacks having two ingers each, and attached by pins to a rod which is moved parallel to the movement of the shuttles. By the movement of the rod, the jacks are also moved, and by contact with the in-

Fig. 2.

clined guide plates, are caused to rock. The shuttles are driven by the fingers of the jacks, which act on opposite ends of them, one finger of each jack being always in contact with its shuttle. The rocking motion of the jack causes one finger to drive the shuttle one half
of its flight, and the other finger the other half, one taking it as the other leaves it, the inger which is not in contact always being moved sufficiently out of the way to clear the warp. A represents part of the lay, or a board attached to the lay. B are the shuttles which run in a slot, b, in the board, A. C are openings in the board, A , for the warp; D is the rod to which the jacks are attached; it slides longitudinally through guides, a, attached to the board, A, receiving its motion through any convenient means from the driving shaft of the loom. E are the jacks, which are made of thin metal plate, and hung so as to rock freely on pins, c, secured to the rod, D . The two fingers, $d d^{\prime}$; of each jack are arcs, described with the same radius from the centre, c, and enter small recesses in the under side of the shuttle near its ends; $\mathbf{F} \mathrm{F}^{\prime}$ are the double inclined guide plates, which are placed alternately on opposite sides of the other, F^{\prime}, behind the jacks. The upper edges of these plates are all of the same form, having two inclines, e and e^{\prime}, and a horizonlal part, f, between the inclines, except that the extreme end plates, $F^{\prime} F^{\prime}$, are only half the length of the others having only one incline. Each jack has two pins, g, h, which are on opposite sides of the centre, c, and on opposite sides of the plate; these pins run along the top edges of the guide plate, F F.'
As the whole line of shuttles move simultaneously, and every corresponding part of the

Devonshire Cream.
The clouted cream of Devonshire is prepared by straining the new milk into a shallow dish, into which a little warm water has been previously put; and after allowing it to stand from 6 to 12 hours, it is carefully heated over a slow fire or hot plate till the milk approaches to the boiling point; but it must not actually boil, or the skin of cream will be broken. The dish is then removed to the dairy, and the cream allowed to cool, when it may be used as cream or made into butter. derstood by the The rod, D, is supposed, in the engraving to be moved towards the right, and the point of the shuttle, in fig. 1 , is just commencing to pass through the open shed, being driven by the finger, d, which is held up by the pin, g running along the highest or horizontal part, f, of the guide plate, F or F^{\prime}, the finger, d^{\prime} being depressed sufficiently to clear the warp.' By the time the pin, g, reaches the commencement of the incline, e^{\prime}, the pin, h, reaches and commences ascending the incline, e, of the next guide plate, and the finger, d^{\prime}, commences ascending while d is withdrawn from the shuttle. The fingers are of such length that one catches the shuttle just before the other leaves it, so that the progress of the shuttle is not arrested by the changing of the fingers. By the time the pin, h, reaches the top of the incline, e, the filuger, d, is withdrawn far enough to clear the warp, and the shuttle is carried the remainder of its flight by the finger, d^{\prime}, which is held up by the pin, h, running along the horizontal part, f, of the guide plate, which at the same time holds down the finger, d. The shuttle and jacks must be long enough to allow the fingers to rise and fall while the warp is between them. When the rod, D, moves in the opposite direction, the operation of the several parts is precisely the reverse of that described.
More information may be obtained by letter addressed to the inventor.

A New Flax Dressing Machine

On Wednesday last week we examined the new flax and hemp dressing machine invented by L. S. Chicester, mechanical engineer, No. 57 Chambers street, this city, and for which a patent was granted a short time ago. The machine is in the agricultural implement facory of F. Neshwitz, Williamsburg, and presents some peculiar and excellent features. The object of Mr. Chicester, as embodied in his machine, is thoroughly to break flax, or hemp, or other fibrous materials, and separate
the woody parts from the fibrous, and the the woody parts from the fibrous, and the fibrous from each other, by one single continunical operation in which the material shall be grasped and held at two different points, and on opposite sides, and held so loosely as to permit slipping without undue or injurious strain on the fibres, and yet so firmly as to permit the two surfaces that grasp it, to slide back and forth nearly at right angles to the line of motion of the material, and by the side of other surfaces that grasp it at another point, and at the same time leave the grasping surfaces to move along with the material, that other surfaces may in succession grasp it at different points along the length of the mass, until the whole of it is passed through, and so on with every portion of material that is fed in. On the rough flax to be broken and cleaned, there is exerted a mechanical action resembling that which would be produced if a piece of the material were grasped at one point by the thumb and finger of one hand, and heldat another point by the thumb and finger of the other hand, then moving the
terial is bent in two places nearly at right angles. The action of the machine is then like rubbing the flax without drawing the fibres apart, so as to break and loosen all the woody parts and impurities which adhere to and connect the fibres. This is the principle of the machine's action; the flax which it dresses is beautiful; makes less tow than any flax breaker we have seen in operation. As we intend to present engravings of it in a few weeks, we will not say any more about it at present, only that it is well worthy of examination by all those interested in the flax business.

A new claimant for posthumous fame has been brought to notice by T. D'Arcy McGee, editor of the Celt, now published at Buffalo. He states in his history of the early Irish settlers in America, that Christopher Colles, an
Irishman, who arrived in this country about the time Fulton was born, delivered, in 1772, at Philadelphia, a series of lectures on the subject of Lock Navigation, and was the first person who suggested, to the Government of this State, canals and improvements on the Ontario route. He was generally considered
Onte, canals and improvements on the Ontario route. He was generally considered
as a visionary projector, and his plans were as a visionary projector, and his plans were
treated with ridicule, and frequently viewed treated with ridicule, and fr
with distrust.-[Exchange.
LLocks for canals were known and used in Europe and Asia centuries before Colles was born. Canals with locks were also known, long before he knew anything about them. The Carlsgraf Canal, in Sweden, had two stone Locks built in 1768, of 200 feet long, by 36 broad. It is not known to many that Col. John Stevens, of Hoboken, suggested the construction of a railroad in place of the Erie Canal, when it was first projected. Canals were then well known and covered all Europe, but the sagacity which projected a rail road then, was certainly of a more original cast than that of Mr. Colles, nevertheless the Irish engineer may have been the means of doing much good, but where is the proof of his being the first who suggested canals and improvements on the Ontario route?

Villainous Obstruction on a Raiiroad. The "Cold Water (Mich.) Sentinel," of the 13th inst., gives an account of a terrible outrage committed on the Southern Road, near that village, by the breaking of a switch. for the purpose of throwing the express train off the track. The train arrived from the east in the night, at a speed of about thirty-five miles an hour, and the first notice of danger was given by the concussion of the train. The speed was such that the locomotive was driven into the bank clear up to the smoke-pipe. One fireman was thrown through the window, his life being saved. The engineer, Harvey Spalding, and the other fireman, were caught between the tank and fire-box.
Three of the try-cocks were broken off, and the steam came pouring out, literally scalding and burning the unfortunate victims to death. They lived about two hours in the greatest agony, all efforts to relieve them from their position availing nothing. All the cars were smashed to pieces, but, providentially, none of the passengers were killed.
The perpetrators of this outrage deserve to be burned at the stake. There is no class of men more exposed to dangers than our engineers; they are the most important class of men in our country. They are of more value to the community than all our generals and political declaimers, and yet we venture to say, nine-tenths of our people never think of this-they do not know it. Does that fine lady, or that spruce gentleman, on car or steamboat, know who has the care of their lives-who is the greatest man on the train or boat? No. Look! there he is, standing by the engine, with an old blue jacket on-that's the engineer ; mind, don't forget this.

The Albatross Steamer.
This fine steamship has been sold for $\$ 85$,000 , to run between New York and Quebec touching at Halifax and Pictou. It is said that one of the purchasing parties has obtained a grant from the British Government to carry the mails from Halifax to Quebec.

Steam plows are not uncommon now in England; Lord Willoughby D. Eresby, employs two of them three days every week.

Bcientific American

NEW-YORK, JULY 3, 1852.

New York and Montgomery Mining Co. the directors and several scientific gentlemen we paid a visit to the mines and workshops of the New York and Montgomery Mining Co., located in the town of Manaakating, in Sullivan County, this State, on the Delaware and Hudson Canal, forty miles from its terminus at Rondout, N. Y. Leaving the New York and Erie Railroad, at Middleton, the party proceeded in carriages to the mines, a distance of twelve miles, through a most fertile and highly picturesque region. From the top of the Shawaugunk Mountain, the view is sublime. The mine in question is situated on the western slope of this mountain, about half a mile from its base, and has been worked for a number of years, the principal object, heretofore, being to obtain the lead from the ore, which yields only from 15 to 20 per cent. of that metal. Within the past three years it has been found that the ore is more valuable than was at first supposed; the skill of the chemist was wanted to unfold its riches. This, we believe, has been most successfully accomplished by E. L. Seymour, a pupil of the celebrated Berzelius, who has arranged all the plans of the workshops, and conducted a series of experiments with a view of testing the quality of the ore and the economy of working it successfully. The ore, by analysis, has been proven to contain 16 per cent. of sulphur, from 25 to 30 of zinc, 15 to $2 \downarrow$ of lead, a half to one per cent. of silver, from 2 to 3 of copper, and from 3 to 5 of iron, besides some cobalt and arsenic. It has been ascertained that fifty per cent. of the ore is convertible into merchantable minerals, the zinc being reduced to the white oxide, which is well known to be an excellent paint. The ore is abundant and is excellent paint. The ore is abundant and is
found combined principally with quartz and found combined principally with quartz and
granite rock. Twenty tons of the ore produce granite rock. Twenty tons of the
four tons of the oxide of zinc.
The ore, without any stamping, which is an expensive and slow mechanical operation, is placed at once in calcining reverberatory furnaces, where the volatile products are driven off, and those that are valuable saved. The sulphur of the ore, which is driven off, is not lost, but saved, and made available in the form of sulphuric acid, by a patent process of Mr . of sulphuric acid, by a patent process of Mr.
Seymour's. This acid is used to reduce the Seymour's. This acid is used to reduce the
differentmetallic ores to sulphates (except the differentmetallic ores to sulphates (except the
lead), after which they are precipitated and made available as merchantable products, such as the oxide of zinc spoken of, the sulphate of copper, the sulphate of iron, and its red oxide for polishing. The lead is made into the red oxide-litharge-and thus all the metallic sulphurets of the ore are reduced to useful commodities, extensively used in the arts. The white zinc is used for painting; the sulphate white zinc is used for painting; the sulphate
of copper is used in great quantities by dyers of copper is used in great quantities by dyers
and so is the sulphate of iron. The great and so is the sulphate of iron. The great
beauty of the chemical manipulations brought into requisition in the several processes, by Mr. Seymour, is the using of one product of the ore for the reduction of several others, whereby the expenses are greatly reduced, because nothing is lost that is valuable, for the sulphuric acid that is used to reduce the copper and zinc, is used over and over again. The operations are conducted with great rapidity. for the calcining furnaces can be charged every two hours, and the metals are taken up by the acid, in large leaden vessels. Ammonia is employed to precipitate the zinc from its acidulous solution, and the white oxide, thus obtained, is a beautiful article. The value of any process depends upon its economy, as compared with others, for the production of the same results; the general economy of the processes introduced by Mr. Seymour, has rendered the mine belonging to the New York and Montgomery Co., of great value. The of fice of this company is at No. 94 Wall st., N Y.; we make mention of this, in case some o our readers may wish to make further inquiries and obtain information about something in which they are themselves interested. It always gives us pleasure to see and hear of new
triumphs in art. We hope the improvements of Mr. Seymour, will be the means of rendering valuable many fractious ores of our country.

Hecker's Patent Self-Raising Flour. On page 285 , this volume, Scientific Amerian, it will be remembered, we made some remarks in regard to the Self-Raising Flour manufactured by Messrs. Hecker \& Brother, of the Croton Mills, this city. We stated in that article, that if tartaric acid and saleratus were used as the fermenting materials, "we hailed its introduction."
On page 298 we published two letters as answers to our previous remarks:-the one from Messrs. Hecker \& Brother, which states plainly that the materials used by them in the manufacture of their Self-Raising Flour are the same healthy effervescing substances respecting which we used the commendatory anguage in the article just mentioned. The other letter was from H. A. Smith, corner of North Second and Seventh streets, Williamsburgh. This letter was written " to correct us," because we spoke, as the writer says, "in advocating terms of the Self-Raising Flour." We published Mr. Smith's communication to show our readers, generally, how important it is that any new chemical invention, like the "Self-Raising Flour," for example, should be rightly set forth to the public, in scieniific publications, by the inventor or assignees, and to show to Messrs. H. \& Brother, particularly, the importance of their article, in order toallay any misconception that might be afloat concerning their process of rendering their flour effervescing, we remarking, in a note at the bottom, "we have no concepion of sour flour being used."
The invention of Self-Raising Flour, without the use of deteriorating ingredients, is an important one, because itrelates to a matter in which every person is individually interested, therefore it was but proper that Messrs. H. \& Brother should make the statement they did through our columns, that their patent flour might not be looked upon with distrust by the user, and that the public might be apprised of what ingredients they were feeding upon. About the time Messrs. Hecker \& Brother sent in the article referred to for publication, they also sent to our residence a small quantity of their Self-raising Wheat, Buckwheat, Graham, and Indian Flour, that we might test the quality of the new article ourselves, and we are happy to state that we have been in constant use of the "Self-Raising Flour" since
we first tried it. and our table was never provided with as good hot rolls and corn cakes since we commenced housekeeping.
That the raising ingredients, patented by Henry Jones, and used at the Croton Mills, are as healthy as the ingredients used by housekeepers generally, for fermenting purposes, we have not the least doubt, and as far as our experience has gone, iand we have ta-
ken a good deal of pains to investigate the ken a good deal of pains to investigate the matter thoroughly, we believe that most housekeepers would experience less trouble
in their cooking department, were they to fur nish their cooks with this "Self-raising Flour." Since publishing the letters of the Messrs. Hecker and H. A. Smith, and after using the "Self-Raising Flour" until we were perfectly atisfied that the statement of the former gentlemen were correct, while that of the latter was incorrect, as far as the statement implied the Heckers' brand, we took the trouble to call upon Mr. Smith, to interrogate him personally
as to what knowledge he had of the "Selfas to what knowledge he had of the "self letter, which was published in the Scientific American. His reply was, he had no allusion to "Self-Raising Flour" put up at any particular mills; in fact, he did not know that Hecker \& Brother were engaged in the business of putting up flour, notwithstanding the very article to which he was replying made
mention of them, and he expressed regret that mention of them, and he expressed regret that his letter should have implied that it was their mentioned in his letter. Mr. Smith said the meaning he desired to convey was, that he had had experience in an article known to him as "Self-Raising Flour," and had known the re sult to prove as he stated, but he was entirely ignorant as to who put the article up, and presumed it was a base imitation of the genuine article put up by Hecker \& Brother, at the Croton Mills.
The above statement concerning the pub A. Smith's communications, on page 298, seem-
ed called for, from the fact that the letter of
Mr. S. seemed to convey an impression which Mr. S. seemed to convey an impression which
the writer did not design, besides which we the writer did not design, besides which we
have had an opportunity of testing the matter ourselves since those articles appeared, thus rendering us able to speak of the subject more understandingly.
Strange Case of an Application for the
A pamphlet has recently been published by George W. Beardslee, of Albany, N. Y., giving an account of the rejection of an application for the re-issue, upon new and amended claims, of the letters patent originally issued in 1838 to Barnabas Langdon, one patent for planing boards, and another for planing shingles. The agent who made the application or the re-issue was Charles M. Keller, of New York city, and to us it appears to be one of the most extraordinary attempts to get a ressued grant of a patent that has ever come to our knowledge ; yea, we believe it has no parallel in the whole history of patents in this or any other country. In 1838, Barnabas Langdon, of Troy, N. Y., obtained two patents, one for planing boards and the other for making shingles. The models, drawings, and description of them were perfectly correct and in harmony. After the patent had run fourteen years, up comes the application, through Mr. Keller, for a re-issue, claiming that which was not in the model, not in the drawings, not in the specification, and which was totally different from the old patent. The application was persisted in with great pertinacity, but was rejected out arid out, and the reasons of ejection by the Patent Office, are among the ablest legal papers on our Patent Laws with
which we are acquainted. We suppose they are which we are acquainted. We suppose they are
the production of Mr. Fitzgerald, as he has charge of this class of machines; and whatever may have been said about other decisions which he has made, there can be no mistake about his abilities; we wish some of our U . S. Judges possessed a like amount of knowledge and legal acumen, in respect to patent matters. The first paper of rejection was issued by the Patent Office on the 20th of last February. It says," the yielding and bar mouth-piece, which is the basis of the principal claim, is not found in the specifications, drawings, or models, in either of the original applications, nor in any way alluded to in either of the original patents, but, on the contrary, stationary bars, constituting a part of the frame of the plane stocks are found described in both the specifications, shown in both the drawings, and clearly illustrated in both the models." It then goes on to state that, to admit the yielding bar in front of the first cutter, the stationary bar, (that which was shown and described) would have to be cut out, as " the one would be utterly futile without the other, and never could have been contemplated for the purpose set forth in the new specification" -that which was attempted to be obtained as the re-issued patent. Our Patent Laws provide for the correction of a defective specification, by surrendering the patent, and giving a more full and clear description in a new specification, which, if granted, is termed, a reissued patent. The law, however, does not provide for the introduction of anything that was not in the original model, drawings, or
specifications, and especially not for any thing specifications, and especially not for any thing Keller knows well enough they do not, yet this was attempted in the application for their re-issue. .The way this was done was by obtaining ex parte testimony-affidavits from a number of men, and exceedingly contradictory ones they are, it seems. The object of obaining such a re-issue is best known to those who applied for it; the policy of obtaining it was worthy of Talleyrand or Metternich. If obtained it could have been used to harrass inventors of planing machines and shingle machines, who had obtained patents since 1838, and many others who are using the yielding bar. It could have been used, not for the purpose of restraining patent pirates, but ror pirating the rights of other inventor and patentees, and oppressing the public. If obtained, it would have contravened the provisions of the patent law, and introduced a
most pernicious practice intoour Patent Office. The Report of Examiner Fitzgerald is point ed, clear, and sound on this point. Here i what it says :-
"To hold that a clear and specific descrip tion, model, and drawings of one combination are, within the meaning of the law, defective description, \&c., or another and radically different combination, would be to unsettle all existing patents, and to offer a premium for fraud and concealment in all those to be granted in future.
By this interpretation, any existing patent for a planing or other machine, may, by ex parte parole testimony, be transformed into another patent, embracing and claiming the most important features of any subsequently invented machine, and thus deprive the howost inventor of the fruits of his labors. It would throw aside all the safeguards afforded to restrds and parchments, and cause patents ny, and subject their most important features, and the sacred rights of parties, to the vicissitudes of numan memory, and the perversions of traud and perjuries. The files and records of the party's own acts at the time, stand out prominently as landmarks, pointing the future to the nature of the invention and the intentions of the patentee. They cannot be charged with falsehood, nor can defect of memory be imputed to them. They cannot be disregarded, and while an enlightened and legal liberality should be extended to the unfortunate inventor, who, through 'inadvertency,' has failed to secure his rights; a sleepless vigilance should ever be exercised by this office, lest the pretended re-issue of a patent for one machine, should be resorted to as a mere cloak to obtain a patent for another.
This office and the courts have, in my judgment, gone quite far enough in modifications of patents by parole testimony, and I cannot take the respensibility of extending the rule further."
This covers the whole ground, in our opinion, without any more controversy, as affording sufficient and powerful reasons for rejecting the new claims for the re-issue. These reasons, however, did not satisfy the parties making the application; other arguments and additional affidavits were presented to the Pa tent Office, in order, if possible, to obtain the wicked claim-we cannot call it anything else. On the 4th of last May, the Patent Office, in a still more elaborate letter, rejected the application again. This last letter of rejection places some of the affidavits in a most commanding position. The affidavits of witnesses for the re-issue stated that the yielding mouth-piece, that for which the new re-issued claim was wanted, had been reduced to practice in the early part of 1836 , while Barnabas Langdon, in the early part of 1837, swore," he did know the importance of it." Here is also some exceedingly curious remarks in the said report :-" B. Langdon admits his original model had not the spring bar mouth-piece, and gives the same reasons for omitting it as for admitting the similar feature in the board planing machine. When said Langdon made this admission, he did not remember that his first model had been burnt, but when he recollected that fact, he immediately contradicted himself, and states that the original model had the spring bar,-it is certain the model will never rise up to contradict him. This office cannot believe that the yielding throat constituted any part of the original invention." The rejection of this application was right ; but little dependence can be placed on the testimony of witnesses, whose memories have to be racked over the space of fourteen years, to contradict the model, drawings, specification and affidavit of the inventor himself, when he made his original application, nay when he contradicts himself who can judge whether his first or last affidavit is right?
Judging from this case, we are more and orth Pinced that the re-issue of the Wood patent was granted, and when the inventor was dead, was a wicked act, we cannot call anything else. This is our honest convicvery. We wish to see the honest rights of very inventor faithfully protected, but it is certainly wrong to obtain, by any means, a
document held to be legal and prima acie document held to be legal and prima acie
evidence of a patented invention, claiming that which one never invented, and never criginally claimed. We like to see all men guided by honor, honesty and fair dealing.
$\mathfrak{E c t e n t i f i c} \mathfrak{A m}_{\text {mexican }}$

Reported Officially for the Scientific American LIST OF PATENT CLAIMS Iosued from the United States Patent O
for the webr ending june 22,1852 .
 ner deseribed. of constructing the hollow revolving cylinder, to wit, with brackets along its periphery
and an inner partition near its discharge end for se
parating washin and an inner partition near
parating washing and cau
in the manner described.
VALves ror Poups-By J. R. Bassett, of Cincin
natio ohio :I claim the device consisting of a cylin-
 side or water-way openings, and its eduction open
ings, and of a valve chest adapted thereto, with its ings, and of a valve chest adapted thereto, with it it
induction, and side or water way, and eduction open-
ing

 obtaining from a single valve, deriving its motion
from the outfowing and indowing currents, the re Sumt for which severall separate rableres ave hitherto
been needed substantilly a described

 shank, When putinto a gun barrel, and have the pro-
perty for elaticity, such as will enabe them to un-
fold themselves after being discharged from the gun.
HRAT RADITOR-By Merrill Colvin, of Roches.
Her, N. Y. I claim the combination of the flue, the ter, N. Y.j I claim the combination of the fue, the
cylindrical fue, the fue, H, the receiver, the pipe and the open space, all operatitig in the maa
for the purpose substantially as described.
J. Honss-Powrrs-By A. D. Crane, of Newark, N

 rods and cranks, a rotary motion is produced; but but
do not claim the application of connecting rods and cranks or rpoducing such rotary motion.
Second, I also claim the method of comb arranging
wits the tharts s claimed, the three eccentric Theels runing together in such a manner that while
tha motion of the midale one is unif orm, that of the
other two on which the craks
 purpose of giving to the midale ececentric wheel a
direct motion, not subject to being reversed, as it
it direct motion, not subjet to beeng reversed, as a
would be by uing common wheels, all as deseribed and for the purpose set forth
Third, I doo not intend, by

 or incline and serew in combination with the roller
(three) all operating in the manner substantially as thrree
shown.
 Ciotor a aeries of hammer races with gripers, both a
rotary an progersive motion, and Ro arranged as
to con
 ces sucessivily, at
to present difterent
of the
Sha hammers.
Second, I Ilaim such an arrangement of the seve
ral hammer faeces which aet sumcessively upon the
blank with
 Which the grieprs move, that when the gripers move
forward in said line, thereby conve ying the blank

Thirdird I claim, in combination with such an ar
rangement of the faces with respect to the gripers such a gradation in the nearness with which the the
sereral paiss respectively approach when they strike
 that the combined effect of the w .
duce the nail to the proper form.

 drawn.
sefent
isent limiting the approach of the hammers to each ofther
with

 thereb.
form.
 claim the arrangement, as described, in a seming ma
chine, for feeding the ecloth along, consisting of at

mard and back for feeding the clo
stitith) subustantiall a s set forth.
 Foor Car-By Nehemiah Hodge, of North Adams Mass. © Claian suspending each of of the treadilesumon,
which
the passenger operates, from the same side of the a ale, the treadles being so arranged as to rotato
the axle, thether the be applied both together, or
 scribed. 1 Ialo claim combining with the axle and driving
wheels, the fixed ratchets and spring pawls, for the
 an intermi
described.
 set forth.
Second, I claim the shield, the same being con-
 Tor third purposes seliaim theombination of the tho levers,
the one being constructed at tits posterior end with slot and pivot pin to admit of antero-posterior move
ment, and at its anterior end
with supports for cog
 Dryide RALRBODD CAR AxLEs-By W. S. Lough-
borough. of Victor, N. Y. It ito not claim surround-
 making semi-axies of a conical form, but what
claim is the conical semi-axle in combination with
the tube, constructed as described for the double

 correspon
theroop
Again,
 $\underset{\substack{\text { rings, and } \\ \text { But } \\ \text { but } \\ \text { bolts }}}{ }$
But 1 claim the peculiar manner of coupling the
wheels and semi axles to the hollow tube surround-
 in combination with the ring seoured to the whenel
by bols, as describe, for the three fold purpose ;
trate

 from splititing out, by thus removing half the strain
from the lower to the upper side, in the manner set

forth. | from the |
| :--- |
| forth. |
| STEPS |

 pumps are used for fiving the thesired pressure to
sustain the weight of saiid shaft or other body, and
 and other heavy revorving bodies, by upbearing and
suastaining the gud geon of the same upon any lubrii

 signe do so sustain, and arranged and connected with
the thaft, as dearcibed, or in any other manner sub-
stantially the same. the eshaft, as describe.
stantially the esme.
 more stationary planes so arranged that while one
or more remore the rough surface of a board, the rest
or the
 on one side of a boord, an cylindrical rotary cutter
for roubhing and reucing which cuts from the un-
or mid to planed to the planed surface, in omb omination with
stationary cutter placed behinn, and as near theret
sat

 face.
 tion and arrangement of the fan wheel, and its com
bination with the elastic grinding bed or grater, consitruted as describeosastic grin anding band or or rrater, con the same for offecting the feeding, separating and
disconarging of the tocks and and
theremith, in the manner described.
maters
mixed

 Third, I claim the reafectors and their arrangement
in hhe machine, in the manner and for the purpose
set forth, the whole being combined and operated
 pump and a piston or plunger, actuated by water or
other fluid forced rom the same, he air vessel and
the dro
 ger is caused to pause at the end of each stroke in
either direction, substantially in the manner and for
the the purposes deseribed.
I also claim supplying ting as described, and loaded in proper relative opera
 being equivalents, prodocing the same results.
inalso claim actuating the counter through
 the metre
stroke, ise
counter.
Plows-By David Swartz, of Thomas Brook, Va.
I claiin combining a plow and harrow in one imple ment, that is to say, attaching a comb or rake, or it
equivalent, to the rear and upper end of the mould equivalent, to the rear and upper end of the mould
board, to ombout and pulverize the oiin on the bot
tom of the furrow, as it is turned up, substantially as

faces on picture frames, inkstands, other articles, and
on
on mall sand other places and
and by aplying thereto colored silk, waste or other co
lored fibrous substances, combined
with cement
 marbled character

 and vibratary yutti
tially
I claim as also tho the
 ne orthe purpose described

 or any part of the abore described machine.
We claim the method of making batting or ding, by laying on and covering both the upper and
lower
herraces of of she hair, or other elastic fibrous material, that thas boor
merely well picked, cleaned, and spread with layers
 cotton, wool, hemp, etc, for the purpose of re
ing the same ensoth, strong and more
bediang, wadding, and upholstering purposes.

Coal Stove-By Samuel D. Vose, of Albany, N. Y Box Stove-By Samuel D. Vose, of Albany, N. Y Parlor Coor Stove-By Samuel D. Vose of Al
bany, N. \mathbf{y}.

 elphia, Pa.)

ea, its Adulteration, Cle.

The Chinese sometimes give a flavor to tea with it. Warrington has shown or roots with it. Warrington has shown beyond a
doubt that the light-green color of so-called green tea is owing to an adulteration. He found by the aid of the microscope, and by chemical reagents, that all the kinds of green tea imported into England were covered with a green powder, which, on the one hand, was ble substance, and on the other, of Prussian-blue-a poisonous pigment, the deep-blue color of which is made lighter by gypsum, or kaolin. The Chinese add the yellow and
blue color to imitate the light-green of the best kinds of tea, and that this is only practiced with the tea intended for exportation,
and not with that for home consumption. By shaking the tea in a dry state, or better, by shaking it with cold water, and allowing the water to run off through muslin, the coloring washed leaves have a very different appearance when dry, they are as dark as black tea, with a smooth, and not so wrinkled a surface,
The unglazed tea of the English tea-dealers has precisely the same appearance. This tea is either dark-brown or yellowish-brown,
without any tinge of green or blue ; its surface is only covered with some gypsum.
The diff erent varieties of tea all lose nearly 4 per cent. according to P. Mutder, by a complete process of drying at $212^{\circ} \mathrm{F}$. Peligot, ty-seven varieties, that the black teas lost 8 per cent., and the green teas 10 per cent., by drying at $230^{\circ} \mathrm{F}$
Besides the substance of the cells and vessels of the leaves, which in black tea amount to from 27 to 28 per cent., and in green tea to only 17 to 18 per cent., all varieties of tea contain, without exception, from 4.77 to $5 \cdot 56$ per cent. of ash, which is composed of
sulphuric acid, phosphoric acid, hydrochlo ric acid, lime, vegetable substances, which can be dissolved and extracted by different liquids; these are partly of the kind common to all vegetables, as gum, wax, resin, cloro-
phyl, \&c., and partly characteristic and peculiar to tea; viz.: a volatile oil, tanic acid, and theine.
The tannic acid is very similar to that which occurs in the bark of the oak, and in gall-nuts, and has the property, in common with it, of precipitating the salts of iron of a
black color. According to the above analyses, the quantity of this acid in green tea, is very much greater than in black tea, being nearly 18 per cent. in the former, while it is
only from 13 to 15 per cent. in the latter. only from 13 to 15 per cent. in the latter.
The volatile oil of tea is of a citron-yell
color, becoming easily solid, it floats on water, and is quickly resinified when exposed to the ir. It has such a powerful taste of tea, that when placed on the tongue it spreads over the entire throat, and exerts a powerful action on the nerves, producing trembling, and similar ffections. When tea is distilled with water he oil separates, and is volatilized; by boiling, or infusion, it is extracted by the water which becomes impregnated with it. It is obvious that a large portion of this oil must be ost in drying the tea, if it already exist in the eaf, and is not a product of the drying proess, which appears probable. It is contained in green tea to the extent of 1 per cent, and in black tea to $\frac{1}{2}$ per cent. There is no doub that the action of tea upon the system is in great part due to this oil, although the theine is the more efficient cause.
Theine is a compound of carbon, hydrogen nitrogen, and oxygen (C8 H10 N4 O2), which neutralizes acids, and is thus allied to the oranic bases. Crystallized from water, it comines with 2 equivalents, or 8 per cent., and s a hydrate, forms beautiful white, silky eedles. These lose their water of crystallization at $212^{\circ} \mathrm{F}$., melt at $353^{\circ} \mathrm{F}$., and are vo latilized unchanged at 7250 F .; the theine cannot consequently be volatilized at the temperature at which tea is dried. Theine is easily soluble in hot water, much less in cold, and amongst ordinary reagents, tannic acid is the only substance that pre cipitates it, forming with it an insoluble substance in cold, but soluble in hot water Theine has no smell, but a slightly bitter aste. Theine is to tea, what quinine is to bark, hat is to say, the exciting effects of tea must be attributed chiefly to this constituent, although the small quantity contained in tea made this at first appear doubtful. Mulder first stated the amount in tea to be $\frac{1}{2}$ per cent.
Stenhouse afterwards obtained 1 per cent. and, lastly, Peligot proved that there could ot be less than 9 per cent. in dry tea. The arge amount of nitrogen in tea-leaves corrob rates the latter statement, as these contain wice as much as is found in rye or wheaten lour, and more than one-half of the nitrogen is contained in the aqueous decoction, which must be solely attributed to the theine.
There is another nitrogenous constituent ontained in tea besides theine, which is only dissolved by water when a little potash is dded to it; this substance, according to Peliot, is precipitated by acids, and resembles in general characters the casein; it is retained in n insoluble state in the leaves, in combinaion with tannic acid.
It is obvious, from the foregoing observations, that only a portion of the substanes contained in tea leaves is soluble in water and can be communicated to the decoction as is consumed in China and America. The portion extracted from black tea varied in x specimens, according Mulder, from 29 to 38 per cent. ; in the same number of kinds of green tea, from 34 to 46 per cent. Peligot ound in black tea 38 per cent., in green tea 43 per cent., as the mean quantity contained in the commercial undried article, and estimated the amount of nitrogen in this soluble ortion, which must be solely due to theine, t $4 \frac{1}{2}$ per cent. in each kind. Thus, from 00 parts of tea, supposing it to be entirely xhausted, 6 per cent. of theine would be conained in the decoction; in domestic economy, however, hy the ordinary method of extraction, the entire quantity is never dissolved, bout one-third being left in the leaves; for instance, 100 grains of gunpowder tea infused in 10 lbs of water, yielded 31 grs . of extract, containing 5 per cent. of theine. The ordiary extract of tea contains the volatile oil, the theine combined with tannic acid, besides um and some other extractive matters. The whole of the oil of tea would be lost by boiling; with lukewarm or cold water, little or notheine would be extracted. The combinaion of theine with tanic acid can only be properly extracted by pouring boiling water pon tea in close vessels, and the aromatic oil mains at the same time in solution in the ater without being volatilized. A good deoction of tea, as, is well known, becomes urbid on cooling, and is covered with a skin aused by the separation of the tannate of caused
theine.

Sicientific American. $^{\text {and }}$

 tion up one dollar's worth.
H. V., of Albany-We have got your engravings
all executed, but the state of our all executed, but the state of our columm
J. C. H., of N. Y.-The gloss is all put on shirts by
hand ironing, women Some spermaceti is mixed with the starch. We do not like such a gloss on shirts.
H. F. R., of N. C.- We have very carefully examsesses novelty of a patentable character. We cannot apprehend any objection to its operation. We will await your further action in the premises before taking steps to prepare the papers. The safety valve
is old and well known. It is the common kind in ase.
G. H. B., of B. Island.-Your idea in respect to not like the plan so well as the old way. We not believe that it could be introduced generally. T. C., of N. Y.-We have investigated the subject of your complaint against the People's Washing and conducted as it could be where there are so many to patronize it, and such a diversity of characters as nd whe bathers of water, at wers not stipulated to a certain amount to draw the water themselves. And the consequence was a great deal of pure precious croton water was through the carelessness of the user
B S., of N. Y.-We hope you may be able to sustain your just claims against any combination which not care to publish.
L. W. H., of Me.-As you can make a model of your invention verycheap, we advise you to do so
and send it to us for further examination. The ketch is too imperfect to afford us a clear knowledge W. M. L of L ngine such as you require.
J. P. N., of N. Y.-We do not perceive any novel features in either of your springs. The inverted
eliptic spring has been tried substantially the same as your's. We cannot recommend them as novelties A. ,
ally covered by Hibbard's patent.
W. W. W., of Wis.-The patent.
is received, and will be duly examined. The novelgeneral surroundings.
G. T., of Me.-Your plan for recovering lost anchors, \&c., has been presented to us a number of
times, but it will not operate well, as the water orms part of the circuit.
G.F. McL. \& Co., of Mass.-We have used a neat weather, but we did not like it. The McIntoshes, as they were called, which were so much in vogue 16 years ago, w
very neat.
J. V. D., of Geo.-Ranlett's Architect is perhaps
the best work you could obtain, as it is devoted to cottage architecture and landscape gardening. The
2 volumes bound, $\$ 12$, in sheets, $\$ 10$. It . Price in ent by mail.
P. L., of N. Y.-If, as you say, your invention is or a patent. We can recommend no proper perso to you at present, should we learn of any one wishing to become interested, your case will demand our attention.
hipps, Hallo. B. Wickersham, 312 Broadway, or gs. Wilson's \& Co., 398, can turnish your rail Wheeler, Wilson \& Co., Watertown, Conn., are A. J. M., of S. C.-A small steam engine is the bes power you can employ.
W. F. W., of La.-You had better send us a smal pare the drawings. The publicity will not operat against its success in respect to a patent. We should suppose $\$ 50$ would cover all costs attending an ap plication. If you are not prepared to go forward
perhaps you had better file a caveat, and await un il your invention is completed. The government ee is $\$ 20$, and a drawing and description will be re and description.
J. S. P., of Pa.-Yours will be attended to ne week, it came a little too late for this number.
J. E. P., of Phill as not been discovered. We have seen the circ used to measure a circle in a straight line, but that not what is wanted. Of the many plans proposed to solve what is termed the quadrature of the circt.
not one is worth anything for practical purposes.
J. E., of R. I.-We do not find anything in Gilroy's ing a ment like it. A patent could in all probability be
published in England, treating of the Calcareou Minerals, but we have not seen a copy for some time
H. Bailliere, 392 Broadway, is an importer of scien$\left.\begin{aligned} & \text { ifice books, and could doubtless furnish you such }\end{aligned} \right\rvert\, \begin{aligned} & \text { hand } \\ & \text { paid, } \\ & 41\end{aligned}$

Money received on account of Patent Office ness or the week ending Saturday, June 26:

Specifications and drawings belonging to parties withe the following initials have been forwarded to
the Patent Office during the week ending Saturday, June 26

An Important Paragraph.
Whenever our friends order numbers they have missed-we always send them if we have them on
hand. We make this statement to save time and the numbers called for cannot be supplied. The Post Office Laws do not allow publishers enclose receipts; when the paper comes regular Subscribers ordering books or pamphlets are par ticularly requested to remit sufficient to pay pos-

Back Numbers and Volumes.
In reply to many interrogatories as to what back numbers and volumes of the Scientific American c
be furnished, we make the following statement: of Volumes 1, 2 and 3-none.
Of Volume 4, about 20 Nos.; price 50 cts. Of Volume 5 , all but 4 numbers, price, in sheets, $\$ 1$. of Volume 6 , all; price in sheets, $\$ 2$; bound, $\$ 2,75$ of Vol. 7, all back numbers at subscription price.

Patent Claims.

Persons desiring the claims of any invention which has been patented within fourteen years, can
obtain a copy by addressing a letter to this office; stating the name of the patentee, and enclosing on保
Patent Laws, and Guide to Inventors. We publish, and have for sale, the Patent Laws of
the United States. The pamphlet contains not only the laws but allinformation touching the rules and regulation of the Patent Office. Price 121-2 cts. per $\stackrel{\text { cops. }}{ }$

\section*{ADVERTISEMENTS.
 | Terms of Advertising. | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | ines, | or | serti | - | | | 50 cts . |
| 8 | " | " | " | | | | \$1,00 |
| 12 | " | " | " | | | | \$1,50 |
| 16 | " | " | " | | | | \$2,00 |

Advertisements exceeding 16 lines cannot be adadvertising columns at any price.
ITP All advertisements must be paid for before in-

American and Foreign Patent

 AgencyTMPORTANT TO INVENTORS.-.-The under-
enganed having for several years been extensively ngaged in procuring Letters Patent for new mecha-
nical and chemical inventions, ffertheir services
to inventors upon the most reasonable terms. All
mint usiness entrusted consultations are held with inven ventors, however, need not incur the expense of at-
tending in person, as the preliminaries can all be artending in person, as the preliminaries can all be ar-
ranged by letter. Models can be sent with safety by
oxpress or ony other convenient medium. They hould not be over 1 foot square in size, if possible.
Having Agents located in the chief cities of Europe, our facilities for obtaining Foreign Patents are
unequalled. This branch of our businessreceives the enequalala. atention of one of the memberss of the firm,
who is prepared to advise with inventors and manu-
rers at all times, relating to Foreign Patents.
MUNN $\&$ Co., Scientific American Office,
128 Fulton street. New York.
THE SATURDAY EVENING POST-" The demption," by Mrs. E. D. E. . N. Southworth, author
of "The Deserted Wife," "Shanondale,", The Discarded Daughter," etc.- Such is the title of a new
novellette about being commenced in the Saturda
vening Post, of Phil Evening Post, of Philadelphia, by that gifted writer
Mrs. Southworth. Single subscriptions $\$ 2$ a year Mrs. Southworth. single subscriptions \$2 a year
4 coppes $\$ 5$ copies $\$ 10.21$ conies $\$ 20.0$ Specimen
copies sent gratis. Address, post paid, DEACON \& copies sent tratis. Address, post paid, DEACON
PETERSON, No. 66 South Third street, Phila.
F Tor sale $\begin{gathered}\text { Toggle Joint Envelope Prest Pand and one Press fo }\end{gathered}$ atting, stamping, and piercing, with feed motion
attached, all newand in good order, by CARPENV. Y. 42 2*

THEODOLITES, RAILROAD TRANSITS copes, Telescopes, Electro-Magnetic Machines, Gal-
vanic Batteries, Daguerreotype aparatus, Barome-
ters, Thermometfers, \&c. Manufactured and for sale
wholesale and

STEAM ENGINE FOR SALE-A five horse perior locomotivive boiler, all in perfect order, will be
sold at a bargain. Inquire of J. H. BURNETT, 308
Bro
$W_{\text {(single cylinder will do) for making rolls for }}^{\text {ANTED }}$ hand spinning. Any person having one to dispose of

A ARON KillBORN, 4 Howard street, New HaA ven, Ct., manufactures Steam Engines, Shafting,
Presses, Fan Blowers, Lathes, Planers, Artesian
Wells, Cain and Force Pumps, Pipe, Heating AppaTO BOOT AND SHOE MANUFACTURERS - The undersigned has invented a new and, he
believes, a very useful improvenent in revolving
heels for boots and shoes, which he is desirous of seeling or out, entire, sto mana, whacturers is or osirous oo
selhers inte-
rested rested. Parties wishing to learn the particulars can
address MORLEY \& SONS, No. 20 Union st., Brook-
lyn, I. I.
1*
TO INVENTORS-The subscribers will enter into furnishing Drawings, Patterns, and Models, believ-
ing that they have one of the most thorough and sci-
entific men, in that line of business, to be found in New York. Their object is meresty, to be found in up tine,
they not having sufficient work of their own to kee, him in steady employment, and of don ot like to have have
him leave for fear they could not obtain his serviess when required. Apply at Dunlop's Manufactu
turing Emporium,

MPORTANT TO IRON FOUNDRIES-The and 405 Cherry st., Nan. N., will furnish the Aerosta
tic Fan Blower at $\$ 55$, and with patent fitting a
t 65 that produce sufficient blast for the largest a tic Fan Blower at \$55, and with patent fitting at
$\$ 65$, that produce suffient blast for the largest au-
pola, melting 3 and 4 tons of iron per hour ; taking pola, meating 3 and 4 tons of iron per hour ; taking
less than one half the power of those now in use,
that cosst from $\$ 80$ te $\$ 100$ The wings. being only
about an inch in width (planned upon entirely new that cost from $\$ 80$ to $\$ 100$. The wings. being only
about an inch in width (planned upon entirely new
and mathematical principles), produce double the and mathematical principles), produce double the
blast with half the power of other bowers. War-
ranted in all cases, or they may be returned and the
money refuded.

FXCELLENT SAW GUMMERS FOR SALE Litreet, Nery y.

- low, by G. A. KIRTLAND,
205
South
41

A Chinery, hydraulics, and mill work, can find a A chinery, hydraulics. and mill work, can find a
desirable location by addressing GEO. T. McLAUTH
LIN \& C0., 108 State street Boston.

D inches. Ready sales their best recommendation.

MRYLAND INSTITITTE FAIR-The Board
Fifth An Manal Eers of this Institute will hold the
oxhibition in the Grand Saloon of the Fifth Annual Exhibition in the Grand Saloon of the
Institute Builing, in the city of Baltimore, com-
Inencing on the 4th day of October next mencing on the 4th day of October next. The great
facility thus aforded for a splendid display of Ame-
rican Manufactures, they hope, will be a sufficient rican Manuf actures, they hope, will be a sufficient
inducement for the Manufacturers, Mechanis, Ar-
tists, Inventors, and others throughout the United inducement for the Manuracturers, Mechanics, Ar-
tists, Inventors, and others throughout the United
States, to contribute such specimens of their industry, skill, and ingenuity as shall be alike honorable
and creditable to the mechanical genius and refined taste of the country. The Hall will be open for the
reception of goods on Monday the 27th Sept. next,
from which time to Thursday night, Sept. 30 , artictes
it intended for competition and premium must be depo-
sited. The balanee of the week will be devoted to
the reception of articles intended for exhibition only, free of charge. After which time depositors will
be subject to a chargeo 50 cents to \$1. On Mon-
do day, Oct. 4, at 7 orclock, P. M., the Exhibition will
beopen forthe reception of visitors. Circulars con-
taining the regulations and arrangements establishtaining the regulations and arrangements establish-
ed by the Standing Committee on Exhibitions, can
be had by addressing (post-paid) JOHN S. SELBY, Actuary of the Maryland Institute, by whom any in-
formation required will be promptly given. 397

PATENT ALARM WHISTLEE-Indicators for speaking pipes, for the use of hotels. steamships,
factories, store-houses, private dwellings, etc. etc. This instrument is intended to supersede the use of
the bell, being more simple in its arrangement, more eff ective in its operation, and much less liable to get ing pipe, it requires no lengthy wires in its use,
which are continually getting out of order or breat ing. There have been several hundreds of them fit
ted up in this city and vicinity with the greatest suc
cess. They can be attached to pipes cess. They can be attached to pipes, which are al-
ready fitted up without domage eo buildings, and for
much less than the cost of a bell, and warranted to operate. The public are invited to call and examine
them at the factory of the patentees.

WOOLCCCKS \& OSTRANDER.		
State and County Rights for sale.	57 Ann stret, New York.	
40		

TRON FOUNDERS MATERIALS-viz.: good Sea Coal, Anthracite Charcoal, Soapstone, and
Black Lead Facings. English and Scotch patent Fire
Bricks-plain arch and circular, Sand and Fire Clay. Iron and brass moulding sand;
Core sand and flour ; always on hand and for sale by G. O ROBERTSON, 135 Water street (corner
Pine), N. Y.
406^{*}

TO CARPENTERS AND DEALERS INPA the Patent in No 37 vol. 7 of the the Shientific
illustrated 10 American, will be sold cheap to a cash customer, or
the owner of the patent will sell single states (not
in smaller quantities) if desired. The invention is in smaller quantities) if desired. The invention
a good one ; the claims are broad, and it is not an
iniringement of any existing patent, as decided by parties who have investigated the matter thorough at. or particulars concerning the purchase of rights,
cti., address "DESAIX," box 773, P. O., New York
City.

CTHES FOR BROOM HANDLES, Etc.-We Dcontinue to sell Alcott's Concentric Lathe, which
is adapted to turning Windsor Chair Legs, Pillars,
Rods and Rounds; Hoe Handles, Fork Handles and Braom Handles.
This Lathe is capable of turning under two inches diameter, with only the trouble of changing the dies
and pattern to the size required. It will turn smooth over swells or depressions of 3 -4 to the inch and
Fork as smoothly as on a straight line-and does
excellent work. Sold without frames for the low excellent work. Sold without frames for the low
price of \$25-boxed and shipped with directions for
setting up. Address (post.paid) MUNN \& CO.

竍

Pronterg paten graduativg vavis

 Troy, N. Y. - The subuseriber build stiteam Engines

 engines furnished cheaper than can be had elle-
where, of the same quality.
30tf
 modele and and draughtss of of furt dieseription of of reseseses
mith the
and

L RONARD'g MACHERERY DEPOT, 109

 andity and manuracturest artioles, and a superior

Patent car axle lathe- tam now ma Parataturing and have for sale, the abovo athes;

Manufacture of Trifles.

A correspondent of an eastern paper thus writes of the manufactories at Waterbury, Conn. :-
" Has your father or grandfather got a pair of old gilded epaulets not marked - Waterbury?' Open your jacknife, and see if ' Waterbury' is not cut into the blade. Turn over a large ancient, or small modern gilded, over a large ancient, or small modern gilded,
or even yellow button, and 'Waterbury' can be spelled around its margin. Look at your wife's-I mean-no matter-hooks and eyes, and see them grin 'Waterbury,' as they pul hard at each other. There's the end of your cane, the bitts in your horse's mouth, the tool you curry him with, the metal trimmings of your umbrella, the lock of your trunk, and all the unthinkable little bits of metallic civilization, comfort and ornament, that ever were used or seen, hailing from ' Waterbury.'. Only think of a five story brick building, covering more ground than Greenfield Common, all full of heavy and light machinery, costing anywhere from twenty to fifty thousand dollars, with fifty men and boys making suspender buckles! Go to another, where steam puffs off from a thirty horse engine, and you hear a roaring and crashing, as if fifty thousand trip-hammers were pounding the Rocky Mountains, and you find men very busy in getting out those sixpenny pieces of iron that tip the ends of the handles of cheap knives and forks. There is another concern hissing and snapping, with its $\$ 5,000$ worth of machines that pull in long coils of wire, and turn out the eyes used in the wood and horn but-tons-nothing else-and so you may go from one great shop to another, till you break down in utter amazement at the millions so profitably invested in manufacturing just nothing at all."

Culture of Blackberries.
In New England they are making a great deal of the blackberry, which bids fair to take a high rank among the smaller fruits. Hovey's Magazine, in treating of this subject, says:-
"Since the introduction of the improved variety, about six or seven years ago; of which we have heretofore given several accounts, and whose cultivation has been so well detailed in our last volume by Captain Lovett, who $h_{\text {as }}$ been one of the most successful growers of the fruit; it has been very generally disseminated; and, the past year, many remarkably fine specimens were exhibited betore the Horticultural Society.
The liberal premiums offered for this fruit, by the Society, have had the good effect of producing very general competition; and so superior have been some of the specimens; so much larger than when first exhibited, evidently showing what care and attention will do for this as well as other fruits; that the Society have deemed it advisable to offer a high prize for a seedling, with a hope of a still further improvement; for, although what few attempts have been made in this way have not been attended with very favorable results, there is still good reason to believe that it will yield to the ameliorating influences of cultivation, as well as the strawberry, the gooseberry, or the raspberry.
So productive is this variety that, according to the authority we have quoted, a dozen of plants, when well established, yield sufficient fruit for a family of the ordinary number. Among the berries exhibited in public by Capt. Lovett and others, were some over an inch and a half long."

New Musical Instrument.
Mr. Freberhuyzer, a musician of Albany, has invented a new musical instrument, the materials used for its construction being sea shells. The exterior of the shell is not disturbed, and it retains all its rougb attractions. The mouth-piece is fitted to a screw tube adjusted at the head of the shell. Along the sides the key holes are arranged at proper intervals, and the edges carefully lined. A valve lined with velvet, hinged at one corner, covers the mouth of the shell, and is compressed or opened as the character of the music requires. At the opposite and extreme corner of the mouth, the vent is left for the egress of the
surplus air. The instrument, therefore, with the valves and keys closed, is air-tight, and
the variations in the size and natural organithe variations in the size and natural organi-
zation of the shell, furnishes the change in zation of the shell, furnishes the change in
the tone of the instrument. The music is the tone of the instrument. The music
said to be powerful and agreeable.- [Exch. [Anthony Williams, of Cornville, has invented a new musical instrument, the materials used for its construction being corn stalks. The outside maintains all its original roughness; it is perforated with a number of holes, and it has valves lined with soft leather; his neighbors have given it the name of "cornstalk flute." He discourseth sweet music with it. "Old Hundred," \&c.

Tatham's Boiler.-This engraving is transverse section of an improvement in boitransverse section of an improvement in boi-
lers invented by J. \& D. Tatham, of Rochdale, Eng., and for which they secured a patent in July last, (1851.) The boiler is constructed with three flues traversing its length. Furnaces are placed in two of these flues, $a b$, beyond which point they are contracted, and are entirely stopped up at the extreme end. A series of transverse passages $d d$, form communications from the flues, $a b$, to the third flue, c, by which the products of combustion pass into that flue. A considerable addition of heating surface is obtained, while the heat, at the same time, is more diftused in its application.
Another improvement exhibited in this figure, is in the arrangement of the furnacebars, which, on examination, it will be seen, are placed transversely to the length of the furnace, instead of longitudinally, as usual, The advantage of this arrangement is in the when worn out; they being more subject to when worn out; they being more subject to
the injurious effects of the fire than those in the injurious eff ects of the fire than those in
front. The necessity of renewing the whole front. The necessity of renewing the whole
of the bars when the back parts are worn out, is thus obviated.
Fuel-A correspondent in Wisconsin asks of us, " what is the quantity of fuel consumed in the production of steam, such as a piston working with a force of 50 lbs . to the square inch, what will be the consumption of fuel to guarantee steam to work the piston with a force of 100 lbs . to the square inch ?")
Here no reference is made to expansion or anything else, of course the consumption of fuel will just be double for the 100 lbs. to that of 50 lbs., for the very reason that the fuel has just double the resistance to overcome when we take the fuel as the unit of power. The value of fuel in boilers depends upon the quantity of water which the fuel, according to its weight, will evaporate in a given time. Every cubic inch of water transmitted in the form of steam to the cylinders produces a orce represented by a ton raised one foot
high; 33,000 lbs. is nearly 15 ths, high; $33,000 \mathrm{lbs}$. is nearly 15 tons, therefore
if 15 cubic inches of water are converted into if 15 cubic inches of water are converted into
steam per minute, or 900 cubic inches per steam per minute, or 900 cubic inches per
hour will produce a mechanical force equal to one horse. The question to ask about the consumption of fuel is, what quantity of fuel will evaporate a certain amount of water in a given time. An engine working at 100 lbs. pressure is of double power to one working at 50 lbs . on the square inch. If, then, it takes takes 7 lbs. or whatever the quantity of fuel may be, tor one horse power per hour, it certainly will take the double quantity for two horse power.
The following is a receipt for making cement for the seams of boilers:-
Take 16 parts of iron filings, free from rust;

3 parts powdered sal-ammoniac (muriate. of that dreadful disease was largely attributed ammonia) ; and two parts of flower of sulphur; mix all together intimately, and preserve the compound in a stoppered vessel, kept in a dry place, until it is wanted tor use. Then take 1 part of the mixture, add it to 12 parts of clean iron filings, and mix this new compound with so much water as will bring it to the consistence of paste, having previously added to the water a few drops of sulphuric acid. Instead of filings, turnings, or borings of cast-iron may be used; but it must be remarked, that a cement made entirely of cast-iron is not so tenacious and firm as if of wrought-iron; it sooner crumbles and breaks away. It is better to add a certain quantity, at least one-third of the latter to the former.

Palm Oil.

This oil is obtained, in Guinea and Guyana, by expressing, as also by boiling, the fruit of the evoira elais. It has an orange color, a smell of violets, a bland taste, is lighter than water, melts at $84^{\circ} \mathrm{Fah}$., becomes rancid and pale by exposure to air, dissolves in boiling alcohol, and consists of 69 parts of oleine, and 31 of stearine, in 100. It is employed chiefly for making yellow soap. It may be bleached by the action of either chlorine or oxygen gas, as also by that of light and heat.
The palm-tree, growing on the coast of Af rica, furnishes, at the base or origin of its rica, furnishes, at the base or origin of its
leaves, clusters of a yellow succulent fruit. Each of these bears some resemblance to a grape-shot. The bunches are of different sizes, and the fruit composing them of different shapes, as may be expected from their reciprocal pressure, although naturally round, when not exposed to it. The pulp of this fruit is soft, and ot a bright yellow color-it is from this that the oil is obtained. Within it lies inclosed a hard and thick-shelled stone, of a dark color, within which is contained a firm white kernel, of a pleasant oily flavor. This kernel also affords an oil, which is not yellow, but white-and not fluid, but concrete even in Africa.
The yellow palm-oil is quite fluid while in Africa, and that it is not until it has been exposed to the cold of our temperate regions that it becomes solid-whereas the oil of the kernel is always concrete, or nearly so. Both of the white and the yellow oil are obtained by expression. The latter is procured in immense quantities in Africa, where it is partly consumed by the negroes along with their rice and pepper, or tried with their fish; and partly exported to Europe, where its principle use is in the manufacture of soap and candles.
Palm oil is excellent for chapped hands and for softening the skin. It is but little used in our country yet, lard and tallow being much cheaper here. The time will come when it will be more extensively used among us, both for soap and candle. It makes a most excellent salve when combined with rosin, by heat in a clean vessel. The introduction of palm oil into Europe and its application to the usetul arts has been the means of conferring incalculable benefits upon all classes.

Singular Explosion.

On Sunday of last week, at $10 \frac{1}{2}$ P. M., an immense globe (reservoir of wind) at the Iron Works at Hudson, exploded. The report was heard some distance off, and, for a time, created much excitement. The upper part ot it was blown off, and it is thought that the globe is entirely ruined. It originally cost $\$ 11,000$, and from its position, being near the line of the Hudson River Railroad, it was looked upon as a curiosity. No person was injured, but the damage done is estimated from $\$ 15,000$ to $\$ 20,000$. Negligence on the part of some of the workmen is assigned as the cause of the explosion.

Black Rain.
On Friday morning, says the "Kilkenny Moderator," (Ireland,) between six and seven o'clock, a heavy shower, which lasted for upwards of twenty minutes, fell over the city and a considerable district adjoining. The rain proved, upon examination, to have been of almostan inky blackness, and had all the appearance of being impregnated with soot or charcoal. In the last year of the cholera we were visited by a similar shower, and in we were visited by a similar shower, and in

Pyroligneous Acid.

This acid is made by the distillation of wood in close vessels. The retorts are of cast-iron, 6 feet long, and 3 feet 8 inches in diameter. Two of these cylinders are heated by one fire, the flame of which plays round their sides and upper surface; but the bottom is shielded by fire-tiles from the direct action of the fire. Two cwts. of coal are sufficient to complete the distillation of one charge of wood; 36 imperial gallons of crude vinegar of specific gravity $1 \cdot 025$, being obtained from each retort. The process occupies 24 hours. The retort-mouth 'is then removed, and the ignited charcoal is raked out for extinction into an iron chest, having a groove round its edges, into which a lid is fitted.

Steam on the Erie Canal The steamboat Jacob Hinds, says the Lockport Democrat, passed through this village last Thursday, having in tow four of the lar gestclass of boats that can now navigate the canal, they were heavily loaded with railroad iron, and as eighty-four tons was the smallest that any of them had, the aggregate amount must have been at least three hundred and twenty-six tons. With this heavy line ot boats to drag, the steam tug moved ahead at the rate of between three and four miles an hour, notwithstanding the obstacles which the narrow and shallow water of the old canal in many places presented. It made no swell to wash the banks, but moved on smoothly, hardly breaking the stream with a riple.

Sickness on the Mississippi River.
We learn from the St. Louis papers, that there is unusual sickness and mortality among the immigrant passengers on the steamboats running from New Orleans to that city.Complaints are made that the boats are too crowded. For instance, 321 German immigrants, who came to St. Louis on the steamer Pawnee, have signed an affidavit that there were four hundred and seventy-six passengers on board, all of whom were landed at quarantine, eight of them laboring under severe attacks of illness.
These foreigners come to a strange country and the change of food, water, and climate, after a long voyage, is certainly enough to cause cholera at any season of the year.

Nudwrots

Mechanics and Manufacturers
Will find the SCIENTIFIC AMERICAN a journal exactly suited to their wants. It is issued regularly every week in Form suitable for binding. Each number contains an Oflcial List of PATENT CLAIMS, notices of New Inventions, Chemical and Mechanical ; Reviews, proceedings of Scientific Societies; articles upon Engineering, Mining, Architent Laws; Practical Essays upon all subjects tent Laws; Practical Essays upon all subjects con-
nected with the Arts and Sciences. Each Volume nected with the Arts and Sciences. Each V.olume
covers 416 pages of clearly printed matter, interspersed with from Four to Six Hundred Engravings, and Specifications of Patents. It is the REPERTORY of american invention, and is widely complimented at home and abroad for the soundness of its views. If success is any criterion of its character, the publishers have the satisfaction of believing it the first among the many Scientific Journals in the world.
Postmasters, being authorized agents for the Scientific American,.will very generally a
warding letters covering remittances.

MUNN \& CO.,
Publishers of the Scientific American
INDUCEMENTS FOR CLUBBING.
Any person who will send us four subscribers for six months, at our regular rates, shall be entitled to one copy
farnish-

Ten Copies for Six Months for
Ten Copies for Twelve Months,
Fifteen Copies for Twelve Month
Twenty Copies for Twelve Months, $\$ 8$
15
22
28 Southern and Western Money taken at par for subscriptions, or Post Office Stamps taken at their full value.
N. B. -The public are particularly warned against paying money to Travelling Agents, as none are ac credited from this office. The only safe way to ob-

