sicientific American.

THE ADVOCATE OF INDUSTRY, AND JOURNAL OF SCIENTIFIC, MECHANICAL AND OTHER IMPROVEMENTS.

SCIENTIFIC AMERICAN CIRCULATION 11,000.

1128 Fulton Street, New York (Sun Building,) and 13 Court street, Boston, Mass. By Munn \& Company. The Principal Office being at New York
wKRMS-- $\$ 2$ a year- $\$ 1$ in advance, and the remainder in 6 montins. EO-See advertisement on last page.

poetru.

THE POOR VOTER.

They knew that I was poor, And they thought that I was base, And would readiiy endure To be covered with disgrace They judged me of that tribe Who on dirty mammon dote, So the g offered me a bribe For my vote

My vote-it is not mine
To de with as I will,
To be cast like pearls to swine, For these wallowers in ill.
It is my country's due,
And I'll cast it while I can,
For the honest and the true,
Like a man.
Ah no ! I'll hold wy vote As a treasure, and a trustMy dishonor none shall quote When I'm mingled with the dust. And my children, when I'm gone, Shall be strengthened by the thought
That their father was notone, To be bought.

A Christian lifig.

He envied not the pomp and power Of kings in their triumphant hour, The deeds that win a lofty name, The songs that give to bards their fame.

He sighed not for gold that shines In Guinea's brooks, in Ophir's mines ; He stood not at the festivals Of nobles in their gorgeous halls,
He walked onearth as wood-streams pass Unseen beneath the freshen'd grass ;His were pure thoughts, and humble faith, A blameless life, and tranquil death.

He kept, in days of strife and wrath, The Christian's straight and narrow path But weep thou not:-we must not weep, When they, who rest in Jesus, sleep.

MY MOTHER'S SMILE.

My mother's smile! how oft in sleep It lies like sunshine on my heart, Till when I wake, I wake to weep That aught so lovely should depart.

I sometimes sit and dream of fame, But when I foolishly the while Would link its glories to my name, I smile a sad reproving smile.
As o'er I number, one by one,
Through all my youth's misguided years,
The things which I should not have done, How darkly dim that smile appears!

But wheu I hush my bosom's wrath, Or smooth beneath the pilgrim's feet The weary and uneven path-
0 , then that smile is heavenly sweet !
When last I kissed my mother's brow, She called me a poor orphan child, And with me in my spırit now
Is the last smile she ever smiled.

BARKER'S TORTUOUS PADDLE WHEEL.

${ }^{3}$ This engraving is a representation of a new plan for propelling vessels, invented bs Mr Benjamin Barker, of Ellsworth, Maine, and which he names the "Inclined Turtuous Paddle." The above engraving is taken from a small model, and its nature will be readily understood. It is a kind of screw and paddle combination applied to the stern, the paddle oeing somewhat broader at one end. This is a vertical view. A is the interior of the vessei, B B, the sides, D D, are shafts of the paddles, C C is the frame work for the bearings of the shafts, F F , are the paddles of an angular form. These paddles are inclined to each axis respectively at an angle of about ten degrees-with the interior edge inclined at a somewhat less angle than the exte rior edge, in proportion as it is nearer the axis, thereby giving the paddle its tor tuous form. E E, are cranks for driving D D, by shafts from the engine. As the virtue of this method will much depend on the speed, cog wheels will have to be used, so that the paddle shafts may have a greater speed than the main shafts.
If power be applied to the cranks causing the wheels to revolve and the paddles move towards the centre, as these are immersed in waterandinclined in their axis of motion, a speed will be given to a vessel-in the opinion of the inventor-greater than by any

Preservatien of Butter.

The method used by the Tartars consists in fusing the butter in a water bath, at a temperature of 190° Farenheit, and retaining it quiescent in that state until the gaseous matter has settled, and the butter become clear; it is then to be decanted, passed through a cloth, and cooled in a mixture of salt and ice, or at least in spring water, without which it would crystallize, and not resist so well the action of air. Preserved in close vessels and in cold places, it may be kept for six months as good as it was on the first day, especially if the upper part be excepted. If, when used, it be beaten up with one sixth of cheese, it will have all the appearance of fresh butter. The flavour of rancid butter may be removed almost entirely by similar melting and coolings.

The Copper Ore from Cliff Mine, Lake Superior, is being smelted at Pittsburg, Penn. It yields from eighty to ninety per cent pure copper, in addition to a small quantity of silver.
other method of propulsion. Many plans o propulsion have been tried and set aside, and for that reason there are few who will express an opinion, but from beholding an experiment. Experiment indeed is the only true test of utility. Yet the screw has its de fenders and friends and many eminent men believe it to be superior to the paddle wheel The paddle wheel again has its triends, and we must say they are not yet driven to the defensive, in regard to its merit. This combination propeller of Mr. Barker is different from any that we have seen proposed. The only resemblance to it to our knowledge is that of Daniel Bernoulli, and his differed materially in the arrangement, which was not so good. Bernouili's plan consists of planes immersed in the water parallel to the sides of the vessel and turued in a collar which moved in a plane perpendicular to the keel, and which were thus to move the vessel for ward. It requires both time and many expe ments to perfect every invention, and there are some things about this that may be modified for the better, such as a greater incline of dip in each wheel, but when we talk about these things, we should not forget that " Morgan's Paddle Wheel" that lay dormant so long on the other side of the Atlantic, is now coming into general use although it was long neglected and despised.

Chinese method of making Sheet Lead.
The method of making sheet-lead employed by the Chinese, is carried on by two menOne is seated on the floor, with a large flat stone before him, and with a moveable flat stone-stand at his side. His fellow workman stands beside him with a crucible filled with melted lead, and having poured a certan quantity upon the stone, the other lifts the moveable stone, and, dashing it on the fluid lead, presses it out into a tlat and thin plate, which he instantly removes from the stone A second quantity of lead is poured in a similar manner, and a similar plate formed, the process being carried on with singular rapi dity. The rough edges of the plates are then cut off, and they are soldered together for use.

It appears, from a return just made to Parliament, that the deciared value of Britısh machinery and millwork, exported from the United Kingdom in the year ended on the 5 m of January last, was $£ 1,263,015$.

RAIL ROAD NEWS.

Norwich and worcester Ralifoad. The Norwich and Worcester Railroad Company have sold their boats, the Worcester, Cleopatra and Knickerbocker, to Drew, Newton, Coit \& Co. by which operation the debt of the Company has been reduced some $\$ 200$, 000. The Directors are introducing econo my into the management of the road, which will make a very large reduction in the yearly expenses.
The Broad and Narrow Guage of Rall Roads.
The value of the broad and narrow guage, so far as profit and loss in concerned, seems to be in favor of the narrow, as being less expensive according to the practical working of both systems. The question in a mercantile light has lately been examined in England by commissioners appointed for the purpose. It is to be hoped that the New York and Erie may prove an exception to this conclusion, at least, that it may be equally profitable as any other line.

A Funny Rallroad Accldent.

On S:a urday evening the 2 d inst. as the last train of cars from Lowell was approaching Boston two of the hindermost cars accidentally parted from the train in Medford, about five miles distant. . The occurrence was not discovered, however, until after the conductor had supped in the city and returned to the depot, when he was astonished to find that two of his cars, containing some 100 passengers each were " among the missing!" He instantly dispatched a locomotive on the return track, and the lost cars, with their population, were brought into the city after a cetention of about an hour and a halt, by this both a. musing and vexatious oversight.

Tribute of Respect.

By the Reading Pa., Herald, we learn that the mechanics at Reading R. R. machine shop have presented Mr. L, J. itk, the master machinist, with a splendid silver pitcher and silver goblets as a mark of esteem. The present is a magnificent one. The pitcher and roblets are beautifully chased with figures representing railroad cars, with a figure of the patent steam hammer invented by Mr. Kirk. We take great pleasure in noticing such instances of good will among mechanics and their employers. The utmost good feeling and good will in workshops among the whole of the hands is a source of great pleasure. More work is done and done better in such shops.

Current of Niagara.

The current of the Niagara river for the first five hundred feet below the Suspension Bridge, runs at the rate of nineteen miles per hour; for the next eight hundred feet it runs at the rate of twenty five miles per hourgiving an average of about twenty-three miles per hour for the first quarter of a mile below the bridge.

Iron Dross Flags.

In extensive furnaces and iron works, the dross or slag collects and is thrown out as useless. A French machinist, some years ago, devised the plan of making a good use of this material. He accordingly laid moulds, or forms in a situation to allow the dross to flow into them. The drose is allowed to cool very gradually, so as to render it tough; and to affect this, the forms are placed so as to zessive a portion of che surplus flame of the furnace. The inventor thus forms flag stones, blocks for bailditg, or for paving and other aseful urposes, and they have been found to be very durable and convenient ; exhibiting a hardness in many instances superior to grahardn
nite.

Destructive Fires.
If we spoke in reference to judgments of ar appalling nature, we might distinctly point t" the devastating fires that have lately scourgec several cities of our land. Not long sinct one sixth of Albany fell a prey to the devour ing element, and on Sunday morning last a destructive fire laid over two hundred build. ings in the city of Brooklyn in ashes. Lives have been lost at all of these fires and this is the most heart rending circumstance cornect. ed with these calamities. One of the most dis tressing events that ever occurred was the burning of the splendid packet ship Ocear: Monarch in the English Channel, the news of which was brought out by the Hibernia. No less than 151 human beings perished, some by the flames, others by falling spars, and others drowned.

Shok oct an Earthquabce.

Two shocks of an earthquake were felt in in this city and vicinity, on Friday night last week about half past ten o'clock. The first shock was very slight, lasting nearly a minute It was more of a tremulous motion than a shock. About one minute after, another shock was felt-a short, quick, jerking, undulating motion, accompanied by a rumbling noise, like a heavy vehicle passing rapidly ver the pavement The second or principal shock lasted only five or six seconds. In New Jersey its duration is stated to have been eight or ten secouds. On Long Island, the second shock and the sound appeared to come from the north, passing southward.
We telt the shock with terrible distinctness and had it been 1843, we would have been thinking about Father Miller. We believe however, that the shocks were from the south west, in the great line of the galvanic current. The resistance to the current must have been towards the North East.

Coal and Gold.

From the annnal report of the Director of the U.S. Mint, it appears that the value of all the gold coined in the U. S. mints for twenty four years prior to 1847 , was $\$ 12,741$, 653, or somewhat exceeding the average sum of halt a million a year--a very considerable addition to the stock of American wealth; but it appears from the returns of the coal trade in Pennsylvania that the value of this commodity brought to market in that State is annually equal to the above large amount :the last year, for example, the value of her anthracite brought down to tide-water-nearly $3,000,000$ tons-was actually equal to the value of all this gold dug up in the South during the whole twenty-four years. From this it appears that our Northern (Maryland as well as Pennsylvania) coal mines are more valuable gold mines than those of the South.

A Mexican Churn.

The Mexicans have a peculiar churn, which may probably suit a certain class of community right well. It puts all others far in the back ground, as it has the merit of delivering the butter fresh at the doors of their customers. It is described thus:
"Twotin cans are enclosed in a green cow bide, the size to correspond to the quantity of sailk. The hide on drying will shrink and adhere to the cans. These cans are partly filled with tililk, and placed on a hard trotting horse like saddle bags; a person then mounts the hosse and rides seven or eight miles moto the city; the motion of the horse eflecis the separation of the butter from the milk, and the rider has only to pocket the cash for bis butter and buttermink and wend his way home at his leisure.

So scarce are laborers in Australia, that the waggoris in which copper ore is conveged from the mines to Adelaid, where it is ship. ped to England, are diven by boys between ten and fifteen years of age.

Tne Hot Springs of Arkansas. In the State of Arkansas there are some ingular springs which some nedical virtues and are a subject of no little vonder. They are in Hot Springs Co., about 30 miles west of Little Rock, on a creek, which empties into the Washita river, 6 miles listant, in latitude $31 \frac{1}{2}$. The creek, which ises $i n$ the mountains some 4 miles above, winds its way between two hills, running north and south, with a valley between, and which is in some places fifty, and in some one hnndred yards wide. On the side of one of the hills, which is very precipitous, and rises to the height of 100 feet the Hot Springs break out in various positions, from the maryin of the creek to the summit of the hill. The number of Springs is said to be about 75 or 80 , within a space of 500 yards, but the number is not uniform, new springs breaking and old ones filling up. There are numerous cold water spriugs within a few yards of the hot ones. The heat of the wa ter is sufficient to scald a hog or foctl, to boil eggs or wash cloths, without the aid of fire.
The creek is so much heated by the springs that horses and cattle will not drink of it for a mile below. The United States claim the a mile below. The United States claim the
Hot Springs as a reservation; individuals claim them under pre-emption. The consequence is, that only temporary improve ments are made, or will be made, until the
title is confirmed. These Springs are destintitle is confirmed. These Springs are destined to attract great attention for their invaluable healing properties, as well as natural cu riosity. In the same vicinity is the Magnetic Cove, a large bed of magnetic rock, and the Crystal Mountain, where beautiful crystals of various forms are found. In several of the mountains are found the best quarries of whetstone known in the United States.

Mrs. Fry's Rules.

First, never lose any time; I do not think that lost which is spent in amusement or re. creation, some time every day; but always be in the habit of being employed. Second, never err the least in truth. Third, never say an ill thing of any person, when I can ay a good thing of them : not onlv to speak charitably, but feel so. Fourth, never be irritable or unkind to any body. Fitth, never indulge in luxuries that are not necessary. Sixth do all things with consideration, and when my path to act right is more difficult, feel confidence in that power alone which 18 able to assist me, and exert my own powers as far as they go

Flowers and the Law of Gravity.

 As an instance of the adaptation between the the force of gravity and forces which exist in flowers-some flowers grow with the hollow of their cups upwards; others " hang the pensive head," and turn the opening down. ward. The positions in these cases depend upon the length and flexibility of the stalk which supports the flower, or in the case of euphorbia, the germen. It is clear that a very slight alteration in the force of gravity, or in the stiffness of the stalk, would entirely alter the position of the flower-cups, and thus make the continuation of the spectes impos. sible. We have, therefore, here a little me chanical contrivance, which would have been frustrated if the proper intensity of gravity had not been assumed in the rekoning. An earth, greater or smaller, denser or rarer than the ore on which we live, would require a change in the structure and strength of the footstalks of al! the little flowers that hang their heads under our hedges. There is some thing curious in thus considering the whole mass of the earth, from pole to pole, and from circumference to centre, as employed in keeping a sinowdrop in the position most suit ed to the promotion of its vegetable health.Martin Goldsborough, Eiq., of Talbot couny, Md. has a farm containing about 240 acres of cleared land, which divided into three fields makes 80 acres each. Having accurately laid off one acre, and measured it, it was found to yield the enormous quantity of fifty odd bushels of wheat-and if the balance should give the same yiend, it will be upward; of 4,000 bushels on eighty acres.
In 1847, there were 740 patents granted in England, and the fees amounted to $\boldsymbol{£} 32,977$

Many Perpetual Reses.
roses, "waste its sweetness" by allowing it carry all its blossoms in the month of June Now to have the perpetual rose fully enjoyed, it should not be allowed to bloom at all in rose season. Roses are so common then that it not at all prized while olooming, from midsummer to November it is highly prized by all persons.
The way to grow it in perfection, is to pinch out, as soon as visible, every blossom bud that appears at the first crop, say from the middle of May to the middle of June. This reserves all the strength of the plant for the after bloom; and accordingly you have large clusters of roses in July, August, September October, and those who have not tried this stopping system can have no idea of, La Rein, Madame Laffay, Compte de Paris, and the Dutchess of Sutherland are particularly superb varieties under this treatment. Indeed they may be recommended as among the best in the perpetuals.

international Postage.

Mr. Bancroft, the American Minister in England, has written home that there are reasons for believing that an international postage law will be agreed upon shortly,-a universal ocean penny postage we hope; at preent the expence of foreign letters are beauti ful tases upon the people of both nations.

Soda Manafacture.

A new factory to make soda is about to be started at Birmingham near Pittsburg. We are glad to see this. Soda is much used in the manufacture of glass and we are determined to urge the manufacture of Plate Glass at home. We shall describe the process with illustrations in our next volume.

Death or Berzellus.
A letter from Stockholm, Sweden, announces the death. on the 7th of August, of the illus. trated chemist Berzelius, aged 69 years.
Berzelius was a great man and his name is familiar to every one who has taken an interest in modern chemistry.

Drinking in the daxk.
It is reported chete is a young lady residing in Coeymans, county of Albany, N. Y., who eighteen months ago drank with water in the dark, a small suake, since which time her body has grown nearly as large as a barrel, and the physicians attending ber say the snake now is about the size of a man'sarm. Al fudge.

Pletorial National Library
The publishers, Wm. Simmons \& Co., No 12 School st., Boston, have kindly favored us with the September number of the above magazine, which we have perused with much interest. Each number contains 52 pages, is full of original engravings, and published monthly at \$2 per annum.

New Project for Reporting.
A corps of Phonographers, reporters and compositors, is about to be organized in Philadelphia, to do the Congressional reporting. The duty of the compositors will be to set up the type directly from the report, and it is said that this is not only feasible but has been often done.
On the evening of the 7th ult. two balloons started at thesame moment from the Cremorne Gardens, London, for a race, each containing four persons. The weather being clear and favorable, the sight was very interesting. Lieut. Gale commanded the "Royal Cremone," and Mr. Gybson the "Royal Albert." The ascent was imposing and magnificent; they kept so near together that the voyagers could hear each other's voices. They attained an altitude of a mile and a half and descended without accident, near to each other, about sixteen miles from London.

A new spring of iodine has been discovered between Tueltz and Heilbroun (Bavaria); it is supposed to communicate with that of Adesuppos

Ireland pays some $\$ 3,500,000$ iere amom, or the support of a clurch establishment, ia which not over 700,000 of her people feel

TO CORRESPONDENTE.

"J. M. of Pa."-We have forgotten what your question was in regard to the mandril. When you write again please tell us. We are obliged to you for the drawing you sent, and shall probably have them engraved during the volume. You can obtain all the information you desire relative to Parker"s Water Wheel, by directing a letter to O. H. Parker Esq., care Sutton \& Smith, Philadel. phia.
"F. G. of Long Island."一The Prairie Plough made at Chicago, is the invention you have probably heard of. Its cost is about $\$ 25$ we think, but as to its capabilities we are uninformed.
"S. N. P. of Mo."-There is no question of the practicability of your plan, but there is of its utility. No boat would use it. A slight derangement would prevent its operation, and as every part of an engine should be daily cleaned, the person cleaning it would be likely some day, to set a screw wrong Of all means for preventing explosion in boilers, resulting from low water therein, the steam whistle alarm is the best. This invention, an engraving of which appeared in the Scientific American a few weeks since, is fast coming into use. We shall make no charge but should be glad to have you use endeavors to obtain for us a few subscribers in your place.
"G. V. of Rhode Island;"一We do not know where the gentleman you refer to resides.
"H. G. of Pa."-All the information you desire will be published before long in the Scientific American.
"T. E. S. of Pa."-The air chamber placed on water pipes near the orifice for discharge, has long been known and is in common use. You could not obtain a patent
"L. M. W. of N. Y."-Your plan tor a Corn Sheller is new, we believe. We understand the principle and consider it good. The $\$ 3$ you enclosed came duly to h and.
" J. F. M. of Pa.-Your improvement for spirit lamps is not new. It is in common use and you could not obtain a patent.
" R. R. of Penn.-The copal must be made without oil. For this purpose it must be mixed with borax, and then it will dissolve in pure alcohol or turpentine. Tritarate the wo in a mortar before using the alcohol which should be heated with the mixture in a long necked bottle. The balsam will then mix as one to three, when a litle warm. This is the direction we have got.
" Z. C. of Iowa."-Your plan for working cranks for paddle wheels is different, but not half so good as that in common use. We have lways considered that atmospheric air was necessary to produce butter. Some valuable nformation upon all the subjects you have named will be published during volume 4. We cannot tell the whole cost of the patent thll we see the model of the thing to be patented.
-R. S. I. of R. I."-We shall have several hundred copies of vol. 3 bound which will be :eady tor delivery in about 2 weeks. Price $\$ 275$.
"W. S. of Vt."-Mr: Z. Parker is at present residing at Philadelphia.
We have several communications on hand, which are necessarily delayed. We will attend to them as soon as possible.

A Characterisilc Present.

A splendid plough has been presented by some agriculturalist, to Hon. J. W. Farally, member of Congress from Crawford, Pa., for his defeat of the attempt to have Wood's plough again patented; Wood being dead some twenty years, and speculators baving the matter in their own hands. Now only that Mr. Farally sifted this case to the bottom, we believe that the patent would have been obtained The Bill passed the Semate, but was nailed to the floor of the House.

The question between Mr. Ellet, enginecr, and the directore of the Niagna öridge Comany as to who shall receive the have mining from passengers who cross the temporray bridge, has been referred for legal decision Wagons weighing two tons have crossed it.

American Arts and Einglish Generosity. Although the fellowing article is somewh long, we trust that it will be read attentively England is a nation so truly great, that she might well afford to be somewhat generous. In whatever is splendid of arts or of armsfor all that has tended to promotethe physical welfare of our race, or that has contributed to elevate the dignity of our nature, she stands justly pre-eminent. And it can be a matter of regret, only, that distinctions so justly due, and so freely conceded,-distinctions, we are sure, which no true American would either deny or diminish,-should have of their lustre tarnished by her assumption of honors which belong to others-honors are and could add not a cubit to her lofty stature, and could
only deprive a generous rival of an elevation only deprive a generous rival of an elevation
which she seeks in due progress to attain which she seeks in due progress to attain Yet we believe that there has been scarcely Englishmen have not claimed as their own The steam engine, our own exclusively, if Rebert Fulton was an American, has been appropriated by Englishmen as being, in its essence, British discovery. The compound blow-pipe, one of the most useful inventions of American science, has been denied to us altogether by some of the chemists of England; and while unable to deprive us of the fame of the "magnetic telegraph," she has yet destroyed the grace of a generous concession, by attempting to show that Mr. Morse was largely indebted for his original ideas to others. It has fared the same way in the learned professions. Operations in surgery, first performed by Dr. Physic, of Philadel-phia-but the sound of which he did not care to send forth into all lands,-were afterwards repeated in London, and then trumpeted in "The Lancet," an English journal, as evidences of the ever pre-eminent rank of British surgery. And a lawyer of Westminster hall has just published, under his own name, a Treatise upon Evidence, which copies so large a part of the work on the same subject by Professor Greenleaf, of Harvard University, that no American bookseller has dared to reprint it less he might incur the penalties of volating the copyright. But the most bold of all the British assumptions of American genius which we have yet seen, is that of Blanchard's well known "Machine for Turning frregular Forms," a modification, as some of our readers may know, of the turning lathe, by which the workman is able to re-produce, out of ivory, metal, marble, or other hardsubstance, an exact fac-simile, reduced or enlarged to
any size, of any irregular figuie which can be inserted in the machine; and by which the most elamorately wrought pendants of flowers, alto and basso relievos of involved groupings, and statuettes of the minutest size, can be cut after any given model, by the com monest workman, by a horse, or by steam, with a delicacy, expressiveness, precision and perfection, which it is not too much per-
haps to say could not be achieved on so small a scale by the chisel of Mr. Powers hitaself. Of the American priority of this invention, we will speak directly. In the meantime, let us mention that a recent number of the London Art Union lauds and magnifies, as a new and wonderful proof of British genius, a machine just patented in England, by which it is announced that "any solid form can be copied which the mind of the artist can conceive, or the hand execute," and felicitates its readers upon the astounding intelligence that "statuetts of the most finished form, retaining the delicate touches which are the charm of their originals," can be carved by this newly invented lathe. Now, for the benefit of our English frends, we beg to inform them that the invention of our modest countryman, Mr. Thomas Blanehard, of Buston, has been known and used by American mechanics and men of science, for about 30 years; that it has been thrice patented by Congress, and its publicity, as Americans supposed, thus reasonably secured; that the origiality of Blanchard's iavention has been
repeatedly established by Judge Story, and repeatedly established by Judge Story, and
other eminent jurists, of whose opinions we dare not suppose Englishmen to be entirely ignorant Indeed, a specification of the invention was published, if we remember, about the year 1820, in the well-known London
"Journal of Arts and Sciences." The invention itself, in its application to cutting gun-stocks, has long been in use in the public armory works of the Uuited States a Springfield, and other places visited by vas numbers of English travellers in this country and we may even say that its merit has been acknowledged by "as handy men as ever trod on neat's leather," since a vast proportion of
all the shoe lasts of our country are cut by it. In its application to the fine arts Mr. Blanchard's name has not been so extensively known only because the fine arts are so much less profitable in our couutry than the useful; but for years and years past, his machine has cut, at nis fuctory in Boston, statuettes from marble, and caneos and intaglios from shell, with the precision and beauty of Italian hand work. Any of our readers who may visit his factury there or the office of Mr. A. K . Carter, at Newark, N. J., to whom Mr. Blanchard, we are told, has assigned his patent or those regions, may see statuettes of Webster, Clay, Gen. Taylor, Judge Woodbury, and other gentleraen, which will justify the eulogy which the London Art Union bestows upon the productions of the British machine. The machines, in short, are identical, the only difference being that the American one is about thirty years the oldest.
The history of men of genius is too often a sad one! They pass their own lives in esearches and labors, of which others alone derive the beaefits. They generally fail to gain bread. It is too bad not to let them bave glory
[The above article is trom a late number of McMakin's Model Courier, which came to us marked for particular examination. It is much longer for our columns, as an extract-than we are in the habit of selecting, but we could not condense it without altering it for the worse. The English invention which is the subject of the above article, was noticed on page 240 this volume Scientific American. We stated at the time, our apprehension that It would conflict with American patents. We have never seen the machine, but the principle of it as described to us, appears to be the ame as Blanchard's. The motions are difie ent this far, that the cutter wheel of the Engish revolves in a stationary frame, and pattern and rough material to be turned, move horizontally and revolve at the same time. Now Blanchard's machine is superior to this but is he same in principle; for the difference is imply this, that Blanchard's cutter moves orizontally carrying the cutter wheel from end to end of the lathe while the pattern and rough material revolve in a swinging frame The cutter wheel however, has not an eccenric motion as we hastily mentioned in our last, baving somehow overlooked the error; but it may be said to cut eccentrically, as it cuts cut or turns any form whatever of the pattern. We like to give "honor to whom honor is due," and we agree in sentiment and with the general tone of the above article, but he author has made a mistake in altributing o Robert Fulton the invention of the steam engine. The first engine that Robert Fulton employed on the Hudson was built in Birwinghain by the celebrated James Watt.What would we not give to have that steamoat a nd engine with us now, what memenos of two great men.) Robert Fulton was the first successful steamboat inventor, no man can rob him of that honor.
As it respects American and English inventions, the English journalists have blamed us tor stealing their inventions, as is stated in he above article. The Scientific American was snarled at last year by Mr. Johnstone of he Glasgow Practical Mechanic, and blamed for" taking British inventions, and tacking Yankee names to them."
Now this we have never done toour knowledge, we always give the inventor his due let him belong to what country he may. But to carry out the "free trade" principle of Mr. Johnstone, he published futzserald's cannon rom the Scientific American without saying a word about where he got it, and this after having blamed us for the same practice. We do not pretend to enlighten the able editor of the Practical Mechanic in scientific matters, out we certainly can in temper, candor and

In some things the British are our superiors -in others we are their superiors. In tools and wood work, we surpass them, in heav machinery, they are ahead of us. This how ever, cannot be long, for we have a wic it only wants a few rich men, like Mr. Collins of this city, fo invest capital for a few years in constructing large steam vessels, \&c. when our supremacy will be heralded in mechanısm as in politics "Westward th star of empire takes its way."

Congreve Rockets.

The rocket is a cylinder of ron, differing nothing in shape or proportion from the paper rocket used in fire works; it is also furnished with a stick as they are, and fired in the same way. The difference and the secret, whatever it may be, is in the composition, which, though in appearance is like an ordinary gun-powder paste, is of so firm a consistence, as to equal in hardness the iron which surrounds it. The diameier of the argest rocket hitherto used in bombardment, was eight inches ; of the smallest used in field service something less than three inches; in all cases the length of the cydinder is eight times its diameter. The flight of rackets, too, varies between one thousand and two thousand five hundred yards in proportion to their size. Those intended for a bombardment are usually armed with shells, containing twenty pounds of powder, and a strong iron case o combustible matter, whose violence is inexinguishable. For field service, they are either armed with shells, or the top of the rocket formed into a mortar, which may be be made to discharge at any period of its fight, from fifty to two hundred musket balls. Three field rockets may easily be car ied by an infantry soldier, and they need n other apparatus for firing them than such as may be made from six muskets and a halbert should not a bank or wall present a more convenient stand. No rocket of more than three hundred pounds has yet been used even in bombardments; but some time ago, Sir W:liam Congreve, the iaventor, proposed the use of rockets exceeding a ton in weight; these were to carry each several barrels of gunpowder in a massive base of steel; wherever they stuck, the impetus of their prodigious weight would force them indifferently through earth and mason work; thus heaving into the very centre of the enemy's fortification a mine whose explosion would leave but little trace of the curtain, tower or bastion on which it should alight.

ntrodaction to a Phulosopher.

I must relde the circumstances of $m y$ first introduction to the learned Protessor Cramer since they were truly original. He had a country house in the suburbs; and when I called to pay my respects, I was told I should find him in his garden. I heard toe sound of laughter and merry voices as I approached, and saw an elderly gentleman bent forwards in the middle of a walk, while several boys were playing leap-frog over him. A lady who stood by him said, as soon as she pereived me, "Cramer, Steffens is there." "Well (he said, without moving,) leap then. was delighted with the new mode of introduction to men of science, took my leap clean over him, and then turred round to make my bow and compliments. He was delighted; and as my good leap also won the hearts ot the young people, I was at once admitted as an acquaintance in the happy circle. Notwithstanding this quaint reception, Cramer was a man of deep reflection, with all the quiet manner of a true philosopher. - Steflens' Journey to Paris.

Test for the Parity of Wine

Put into a phial sixteen grains of sulphuret of lime, (prepared by exposing to a red heat, in a covered crucible, equal weights of powdered lime and suiphur) and twenty grains of super-tartrate of potass (cream of tartar) Fill the phial with water, cork it well, and shake it occasionally, for the space of ten
rainutes. Separate the clear liquid by dirainutes. Separate the clear liquid by dr cantation, and preserve ion of this liaror, fresh bottle for use. A portion of this liqnor, resh
prepared, when added to wine containing lead, produces a blackish precipitate.

Printing in Amerlca.
The first paper mill in America was erected in Boston. in 1730, the legislature of Massachushetts granting aid. The first typefoundry was established at German-town, Pennsylvania, several years before the Revolution, from which the Bible and other works were printed in the German language. As late as 1810 there were but three type-foundries in the United States. The first printingpress in the colonies, and for twenty years the only one in North America between the Gulf of Mexico and the Frozer Ocean, was established at Camrbidge, in 1638. It was nearly a century later, (1727,) before the Virginia colonists permitted a press to be set up. Rev. Jesse Glover procured the press used at Cambridge, by contributions of friends of learning and religion in Amsterdarn and in England, but died on his passage to the new world. Stephen Day was the filst printer, and as such received a grant of 300 acres of land. The third book published was "The Psalms in Metre." In 1661, the New Testament and Baxter's Call translated by Elliot into Indian language, were printed, at a cost of some $£ 1,200$. The whole Bible was printed in 1663. The nation speaking this language is now extinct. The first Newspaper printed in the North America colonies was called "The Boston News-Letters," and was issued in 1740 , by John Campbell, a Scotchman, who was postmaster and a bookseller at Boston. Sometimes it had one advertisement, and often none. After fourteen years, when 300 were sold, the publisher announced that his weekly half sheet being insufficient to keep up with the foreign news, he should issue an extra sheet each tortnight; which expedient he annnunces, after a year, has enabled the " NewsLetter" to recover elght months of the thirteen that it was behind in the news from Europe; so that those who would hold on the next January, (five months,) might expect to have all the arrearages of intelligence from the old world " needful for to be known in these parts." After sixteen years, the publisher gives notice that copies of the "News Letter" would be " printed on a whole shee of writing paper, one half of which would be blank, on which letters might be written etc.

Such was the infancy of newspaper enterprise in this country. What a change since then. Could John Campbell step into the office of one of the "dailies," with its press rolling out 8,000 or 10,000 sheets in an hour, what would be his emotions?

Harding the Painter

We finci the followirg pleasant notice of Mr Chester Harding, in Catlin's recent work. "The next morning, at the hour named found me at the door of the palace, where my name was recognized, and I at once was ushered into the apartment of the Duke [the Dulse of Sussex], where I found him in his arm charr, wrapped in his morning gown of white flannel, and his head covered with cap of black velvet richly embroidered with gold. He rose and took me by the hand in a cordial manner, and instantly led me to another part of the room, in front of a portrait hanging on the wall.. 'There,' said he, 'do you know that face?" 'Very well,' sand I ; 'that is the portrait of John Hunter; it is an admirable likeness, and looks to me like a picture by one of our Am rican artists. If I had met it any where else but in this country I should have said it was by Harding, one of our most valued portrait painters.' 'Well,' said he you know that portrait too, do you ?' 'Very well ; that is his royal highness the Duke of Sussex.' 'Well,' said the Duke, now 1 will tell you, they were both paintedby Mr. Harding. Harding is a great favorite of mine, and a very clever artist."

The Drnisurd and Snake.
Two gentlmer coming up St. Louis street, New Orleanc, had their attention excited by peculic roise at the corner of Franklin and the firme: strect. Loaking about, they found , drunken man lving in the gutter, with a srake wound round his body. They despatched the snake, which measured eleven feet in length, and bad the man taken care of. Some will no doubt be calling this a snake story,-the same here.

ZNew $\mathfrak{I n v e n t i o n s . ~}$

Improved Parasols.

A patent has been secured lately for an im provement in ladies' parasols whereby a circular spring of india rubber is applied to the ribs, which performs wonders in the fashionable world. A small ring of the vulcanized india rubber is placed around the ribs at the point at which they meet at the apex of the parasol; when the ribs are expanded the elasic power of the ribs enables it to be stretch. ed, se as to suit the exigency, while its power of contraction is so great that it forces the ribs together and keeps them compressed. By touching a spring at the handle, the ribs ex pand to the utmost tension in a moment. The peacock has long bore away the palm of vic tory for a sudden show of his fan like showy plumage, but here comesart in the shape of a new parasol, and eclipses the oriental bird in a twinkling.

New Coffee Pot.

A new coffee pot, named a French coffee maker, hasjust appeared, and for warm weather is a most useful and beautitul invention Itconsists of a cup of the capacity of a pint placed upon a metal plate, upon which spirits of wine being ignited will boil the coffee in a very short time, the cup having been supplied with water, and a small quantity of ground coffee. The effects of the heat not only produces coffee, but actually causes to run in a small spout issuing from the side We do not know where these coffee pots are made, having only heard of their exist ence. We are positive that improvements in cooking utensils might be made so as to cook with flame of gas, and if gas could be supplied at a cheap rate to private families, great saving would be effected. The gas consumed for cooking would be no more expen sive than charcoal, and the trouble and disa greeable kindling of furnaces would be entire ly dispensed with. In point of cleanliness the gas would certainly supersede the coal, although it might cost more. There are great improvements yet to be made in domestic econumy.

New Kuitting Machine
Mr. O. C. Phelps of Mass, has recently made some very important improvements in the knitting machine, whereby stockings may be knit whole, legs and all, without seam.

Improved Strainer for Palls.

Mr William Cooley, of Geneva, N. Y. has invented and applied for a patent for new and aseful improvement of attaching a straine to milk pails, which appear to be as valuable as the improvements which have lately been made on churns. His plan is to have the strainer fit on to a tube or spout on the pail by a screw or slide, so that it can be put on and taken off at pleasure, thus rendering the strainer easier cleaned and at the same time one strainer will answer a number of pails better than a seive and at one. fith the expense.

New method of Silvering Glass.

The London Atheneum states that a Mr Drayton of Regent street, that city, has discovered a new process of silvering glass which will entirely do away with the old, injurious, and dilatory process of silvering by mercury and tin. Nor is this its only advantage. The silvering is richer in its texure than that produced by the old process; and it may be touched with the finger and still left untarnished. This important improvement is produced by a solution of nitrate of silver in water and spirit mixed with ammonia and the oils of cassia and of cloves. Some of the glass thus silvered is extremely beautiful.

floating Tunnel.

One of the most extraordinary plans sub mitted for the approval of the French Aca demy of Sciences is that of M. Ferdinand, en gineer, who proposes to construct a floating tunnel from Calais to Dover, for the wires of the electric telegraph, and large enough to be traversed by small locomotives, for the conveyance of passengers. The plan was referred to one of the members of the academy for examination
A tunnel for the wires of the electric tele graph across a channel only 25 miles broad we believe to be perfectly practicable and require nogreat genius to conceive or construct, but a floating tunnel for locomotives is as proposterous as it is useless.

Process for preserving milk for any

This process, invented by a
 samed Kirkoff, consists in evaporating new milk by a very gentle fire, and very slowly, untıl it is reduced to a dry powder. This powder is to be kept in bottles carefully stopped. When it is to be employed, it is only necessary to dissolve the powder in a sufficient quantity of water. According to M. Kirkoff, the milk does not lose by this process any of its peculiar flavour.

Artificial Preparation of Ice.
After numerous triais made by M. B. Mujlink with different salts, for the purpose of converting water contained in a tin vessel into ice, during their solution, he ultimately gave the preference to a mixture of four ounces of nitrate of ammonia, four ounces of sub. carbonate of soda, and four ounces of water. This mixture in three hours produces ten ounces of ice, while with the mixture of sulphate of soda and muriatic acid, he obtained ce only after seven hours.
mprovements in Blasting.

This engraving represents an iron wedge wad, invented for the purposes of blasting by Elizur Wolcott, of Thompsonville, Connecticut. Those who are acquainted with blasting will immediately perceive that it is a new and beautiful improvement.
The improvement consists in employing a circular wad with side wedges which fit into grooves-one on each side. A, is the iron wad, and B B, are the side wedges. C, is the handle of the wad. When the wad is seated upon the blast the wedges and wad fit the bore exactly, for the grooves are so cut, as will be seen by the dotted lines, that the wedges ñt the dotted lines correctly. But whenever the charge is ignited, A is driven up as seen in the engraving-and the wedges expand, acting in an inverted manner from the way in which the common wedge is used, and the blast by this means rives and splits the rock in a lateral direction, in a most effectual manner. The higher A is driven upwads the greater is the expanding power exerted on the wedges, for the space between the lever ends of the wedges decreases as the wedge ends expand. Measures have been taken to secure a patent.

New Steam Frigate A new steam frigate of 50 guns was latel lanched at Glasgow, Scotland. Her engines are different from any ever constructed there
before, at least as applied to steamboats-but are not new here. They are of the horizontal kind of 580 horse power and drive a screw of 16 feet 6 inches in diameter and 18 feet pitch. The cylinders are 84 inches diameter with a four foot stroke and calculated to make 30 revolutions per minute. The engines were made by R. Napier, Esq. and are said to be beautitul in workmanship, but on a trial of her speed she only made about eight and a half miles per hour, so it appears she is a miserable sailer, although her hull is allowed to be the finest in the British navy.

Friction Roller.
Fiex 1.
 be superior to friction wheels. The rollers must be turned and fitted wth the utmost exaciness and care. In figures 1 and 2 as seen here, are represented a box and circular plate for friction rollers which shew how they are arranged with the journal and a shaft and the offices they perform.

A, fig 1., is the iron plate bolted to the frame and the interior of the box is represented by the rollers surrounding B, the journal arranged at equal distance in the box moving with only a small part of their ends in contact with the ring as represented by C.The rollers must be all of the exact diameter and perfectly true, and must fill up all the space between the journal and the ring. -These rollers roll round with B, their velocity being in proportion to the diameters of the journal and the ring, the journal resting in the centre supported by the six rollers. The plates of this box are useful to prevent the rollers from shifting their position, and the ends of the rollers are made a little convex. This plan of friction rollers have but little perceivable friction when in motion but the are apt to get out of order, if dust get admitted, and if there are inequalities in the hardness of the rollers, they are apt to be wore flat in some places by the gudgeon and then they become an evil instead of a be nefit.

Cypress Wine.

To eighty pints of water add ten pints of the juice of elder berries. The berries are to be lightly pressed : each pint of the liquid will contain three ounces of juice, and to the whole quantity add two ounces of ginger and one ounce of cloves. Boil the whole for an hour. Skim the liquid and pour it into a vessel which should contain the whole, throwing in a pound and a half bruised grapes, which leave in the liquor until the wine is of a fine colour. This wine bears such a resemblanee in colour, flavour, and aroma to the best Cyprus wine, that the most experienced Parisian connoisseurs have been decerved by it.

New bind of Fence

In some parts of Wisconsin they are making fences as original and new as the state itself and the material is gravel of medium coarse ness, and sand, with the addition of sufficient lime to convert the mass into mortar; and this in the state of mortar is poured between boards confined so as to form a mould for the asceuding wall. It is a cheap building mate rial for houses, and it is the prevailing impression that it will be durable.

A Good Disinfectant.
A liquid made up of four ounces of the nitrate of lead and two pounds of water, is sald to be excellent for the purpose of disinfecting to be exceilent for the purpose of di
the emianations from animal matter.

LIST OF PATENTS

SSUED from the united states patent office,
For the week ending Sept 5, 1348.
To Joseph J. Barronowski, Empire of Russia, for improvement in calculating machines Patented in the U S. Sept. 5, 1848. In France Nov. 25, 1847.
To Joseph Fillemier, of Philadelphia, Pa. for improvement in cutting Veneers into figures. Patented Sept 5, 1848
To Warren Jenks, of Schroon, N. Y. for improvement in method of setting Steel Traps Patented Sept. 5, i\$48.
To Benjamin H. Latrobe, of Baltimore, Md, for Compound Rail for Railroads. Pa tented Sept. 5, 1848.
To John Ormiston, of Waterford, Ohio, for improvement in Ploughs. Patented Sept. 5, 1848.

To Alonzo D, Perry, of New York City, for a Portable Lock. Patented Sept. 5, 1848.
To Edward J. Stearns, of Ellicott's Mills, Md., for improved Selt-acting Railand Switch. Patented Sept. 5, 1848.
To Jonathan W. Whitney, of Buffalo, N. Y. for improved Axle Tree. Patented Sept. 5 1848.

To E. B. Bigelow, of Boston, Mass., for improvement in apparatus for stretching and drying cloth. Patented Sept. 5, 1848
To Robert Criswell, jr., of Chambersburg. Pa., for improvement in the Cultivator Point Patented Sept. 5, 1848.
To George Sweetland, New Haven, Coana. or improvement in Pulp Machines, Paented Sept. 5, 1848.
To John M. Pratt, of Dudley, Mass., for im. provement in the mode of incorporating Flocks with Flannel, \&c. Patented Sept. 5, 1848.

INVENTOR'S CLAIMS

Valves of Water Rams

H. P. M. Birkinbine, Philadelphia, Pa., for improvement in valves of water rams. Patented Aug. 15, 1848. What he clams therein as new, is, first, the construction of the valve in the manner described, so as to enclose a water cussion between the moving and stationary parts, and also, the cup or air chamber within the valve to relieve it from the shock it is otherwise subject to. Secondly, he claima the safety valve in a diagram, orin the piston. by which the safety and perfect working of he parts are insured.

cultivators.

Nathan Baker, Flowerfield. Mich., for improvement in cultivators. Patented Aug. 15, 1848. What he claims as new is the mamer of arranging the wheels diagonally to the car. riage or main frame

Bee Hives.

Oren Stoddard, Busti, N. Y., for improve. ment in bee hives. Patented Aug. 15, 1848. What he claims as his improvement is the manner of preventing robbery by means of the trap.

Solyman Merrick, Springfield, Mass., for improvement in Scre Wrenches. Patented Aug. 15, 1848. What he claims is the manner of making and arranging the contiguous binding faces of the jaws, consisting, first, in making them not parallel to each other, but so as to form an angle when the jaws are brought in close conjunction; second, in roughening one of the faces and making the other strooth.

Remember this.

The best Patent Agency is at the Scientific Angrican cffice. All who have uccasion to take out Patents will please bear this in mind, as they will thereby save themselves much time and moaey.

NEW YORK, SEPTEMBER 16, 1848.
Our The end of the Volume. Our subscribers must now arrange their numbers and get them bound. Those who cannot get them bound conveniently, should fold all their numbers nicely together and stitch them with a stout linen thread, cover ing all with a strong sheet of pasteboard. The Scientific American is now the Repository of American Art and it would have been of grea benefit to our Country had such a paper been in existence twenty years ago. We do not speak thus in reference to any merit of the paser,-it speaks for itself—but we refer dis tinctly to it as a medium to disseminate knowledge of American invention and spread abroad a peculiar kind of information. Many a subscriber has saved a great deal of time and money by finding something in our columns, which he had sought for in vain elsewhere It has often happened too, that many a man has found out to his sorrow that some invention which he had wished to patent had previously been described in our columns. He might havesaved both time and money had he been a subscriber As a cheap paper of the kind we would inform our readers that there is nothing like it in the world, five and six dollars per annum is the price of all the monthly magazines devoted to Science or Art and here we present more matter in one year fo two dollars than any Scientific perodical doe for three times that sum. Those who wish to estimate the value of the Scientific American have but to look over their back numbers. In them they will find much with which they would not part with for ten times what the have paid.

A

Experience is the best teacher in alithings, and we are learning by experience to construct steamers for ocean navigation. Our first transatlartic steamer, the Washington, is inferior in point of speed, But she will pay for herseif; Yankee energy will do this. The United States is a superior sailer to the Washington, and aithough a fine vessel, the Franklin will, we think, from the construction of her engines, surpass her and all others. Last week there was launched the Georgia at this port, for the New Orleans line, and from her dimensions, and the character of her engines, she will no doubt be a first class vessel, unsurpassed by any other whatever. She is of tremendous proportions, being 251 feet long, depth of hold 25 feet; having 49 feet beam, and about 2700 tons burden, 900 tons more than the America. The engines of the vessel are side lever marine, with cylinders 85 inches in diameter, and 8 feet stroke, having 2 engines and 4 boilers. The arrangement for the boilers is somewhat novel, two fore and two abaft the pngines. The solidity of the timber and the strength of fastening, are greater than any vessel ever launched; the thickness through the bilge of the vessel is 32 inches. The floor timbers are 20 inches deep, placed closely together and belted lengthwise. The outside planks are 6 inches thick, the inside ceiling of the vessel is 6 inches, and the clamp streaks 7 inches. The deck beams are 12 by 15 , and 13 by 15 inches, all secured with knees resting on the water ways of the ship.
The eagines, which are of the most substantial workmanship, work entirely under deck. We should have preferred to have seen the bore of the cylinders 95 inches in diameter, instead of 86 . There appears to be no standard of proportion between the stroke and bore among engineers and yet it appears to us, that there must be a geometrical relationship. Observation might lead to the discovery of definite proportions. America is yet destined to have an excellent steam nayy, and in our opinion it would be folly to build any more mere sailing ships or frigates of
war. Steamships are the toast for active and effective service. It was the opinion of Sir Sydney Smith - not the essaynst-but the great sailor and general, that the large ships of war in the British navy, would yet be transformed into coal luggers for the steamships.

Kyantzed Ships.

A correspondent recently gave in your papaper some valuable facts in regard to a plank road in Tennessee. He said the sleepers were kyanized, and, besides being thereby rendered proof against moisture, were entirely preservme at once that if the timbers and planks of ships were kyanized, they would be rendered stronger, more durable and more economical. The great expence now incurred for repairs would be saved, the interior wood work would not become worm eaten, and copper sheathing would be unnecessary, since water would not affect the planking, neither would barnacles, sea worms and insects fasten more readily upon the uncovered bottom than thes oow do upon the sheathing, if as much, since the indurating liquid would be poisonous to hem.
The suggestion may not be new though have never seen it before. W. F. L.
There is a process patented in England by a chemist named Payne, which has been highly prased both as a wood preservative from decay, and from being destroyed by fire. The process, is to exhaust the air from the pores f the wood and introduce a liquid that wil orm an insoluable salt in the wood. Fur ordinary purposes, in the first instance, solution ot sulphate of iron, (copperas) and then one of muriate of lime are in jected, these, by double decomposition, torm sulphate o lime and muriate of iron. When the timbe is required to be uninflammable, alum as well s iron, is injected. When tumber is required to be proof against worms sulphuret of barytes and sulphate o. iron, or of alumina both or either of the latter, are used.
The wood to be saturated, is first placed into a cylinder resembling one of our high pressure boilers; from this the air is exhausted commonly, by introducing steam, and then ef fecting its condensation, when a vacuum is produced, or where steam cannot be conveni ently applied, the same result can be obtain ed, but at a greater expense of labour, by means of the air pump. When the interstices of the wood are exhausted of the air which they contain, the solution of copperas is first introduced, and in order more effectually to penetrate the body of the wood, throughout powerful pressure is applied by the agency of the force pump. Another vacuum is then obtained in the cylinder, when the second so lution is forced into the timber in a similar manner, aud the two combining, at once produce an insolve le substance, with which the pures of the wood is thoroughly charged throughout.
Many parts of vessels have been prepared with wood preservatives and the only portion of the Royal George and the piles of the old London Bridge, found to be sound, were those impregnated with oxide of iron and a calcare ous matter imbibed from the sea water, whilst the remaining portions were either destroyed or rotted.
The utility of Payne's process has been fully tested. The British government has ex tensively adopted it, in the construction of the new Houses of Parliament and the Bri tish Museum.
Many of our vessels use salt as a preserva tive, running it between the planking through proper orifices. The fine packet ship Patrick Henry is treated with some bushels of it, a the end of every voyage.
Payne's process has been so highly extolled by some of our London exchanges, that we are forced to be prudent in our opinion of its merits and properties but consider it with mo derate views as being very good.

Are you trying?

With our last issue we sent to every subscriber a prospetcus for our new volunae, with the request that all would try to obtain a fen additional names. We hope each one will endeavor to send us three subscribers, and thus receive the gift which we offered

The Crank.
Perhaps there is no piece of mechanism so famous in controversial story, as the crank especially as it regards its qualities for con verting reciprocating into circular motion Eminent engineers have combatted from dawn till eve upon this point, then sheathed their swords for lack of argument. We have brought up the subject to this time just to indulge in the expression of a few ideas on the subject more of a practical than a theoretical nature. Fig. 1.

Fig 1 represents the crank driven by the reciprocating motion of the connecting rod which communicates a circular motion to the fly wheel, and some heroes have beheld one half of the power lost by the dead points, (a perpendicular line with the centre of gravity) All the controversies that we have read upon this mooted point, were wonderfully mystic in signification, and we have beheld with grief many a pocr fellow get into a fog of his own calculations, out of which he could not arch except backwards with his eyes shut.

This is a cut of two cranks whereby a re ciprocation motion may be communicated to work a pair of pumps by the circular motion of the shaft of a water wheel. We have seen a neat little engine (upright) dispense with the walking beam by having a broad wheel on each ide of the crank, the piston being connected with the crank, the broad wheels fixed on the raming answered well for band wheels to communicate the power of the engine to other machinery by straps.
As it respects the true value of the crank, he question without going into any figures on the subject. just lies in this litt'e point "what is the better plan ?" Can any person, has any person been able to show a simpler and better plan as a substitut for the crank? Not one There then is an end to the argument, and after all what loss is there but in the friction, and the motion of the crank is ust as natural as any other motion, and as a piece of mechanism it has no superior in its own place Men could not run any faster ir they had legs made of wheels; and no greater tribute was ever paid to the beauty and utilitv of the crank combined with the steam ngine, than that of James Watt when he aid down his sun and planet wheels, and adapted the simple crank.

The Mississippi Valley.

Upon the Mississippi river and the tributary treams are now about 500 steamboats, with apacity to carry, at one trip, near two hun dred thousand tons. Assuming that these boats will make an average of thirty-six trips in the year, they would transport seven millions two hundred thousand tons ! Vast as is now the trade upon these rivers, it is small to what it will be Of the land drained by this great river, not more than one-tench of it is in cultivation. when the nine cenths now not cultivated shall be brought into now not cultivated shall be brought into
tenth, the demard for tonnage for its transit, compared with the present, will be as nine to one; so that five thousand steamboats will then be required upon the waters that now empley five hundred. It is also fair to presume that the constantly improving husbandry of the West will, at no distant period, double the production of lands, a large majority of which are under the most careless cultiva tion. In this latter case ten thousand steamboats would be required on the Mississippi river and its tributary streams
Supposing that five thousand of these boats should run beloa the mouth of the Ohio and above New Orleans, and that each boat should pass a given point, say Natchez, once a week, 714 boats would pass that point each day, 30 boats each hour, or a single boat every two minutes ; every four minutes one boat would ascend and the other would descend the river so that a boat descending the river at the rate of ten miles to the hour, would meet thirty ascending boats: and one descending at the rate of twenty miles to the bour, would meet sixty ascending boats. Time, which has more than verified the prediction that the trip from Orleans to Lousiville would be made in te days, will also more than realize these calculations. Calculations made upon the future powers and resources of this country have always been too small

Akoriginal Industry

By the census of Indian tribes, which is now in the process of being taken, says the Union, it is shown that the seven small bands of Ottowas about Michilimackinack, numbering about 700 souls, who rely wholly on agriculture for a subsistence, have raised during the last season 25,000 bushels of corn and 40 , 000 bushels of potatoes. They also made the past spring 325,000 pounds, or over 147 tons, of maple sugar ; which is worth at the Mackinaw market, seven cents per pound making $\$ 52,750$ on sugar alone. Corn is worth at the same place, 50 cents and potatoes 371.2 cents per bushel. This single example shows what the Indian tribes could do for themselves were they all to make bold appeal to agriculture for a living, and abandon the chase.

Massachusetts Carpets.

There have been manufactured at the large carpet factories in Roxbury, belonging to Henry Pettes \& Co, within the year com mencing August 1, 1847, and ending Augus 1, 1848, upwards of two hundred and fifty thousand yards of carpeting
This large quantity has all been sold at their warehouse in Boston
They manufacture all descriptions of in grain and three ply carpets, tapestry Brussels and velvet pile carpets and rugs

Unprecedented Demand for Oid Papers.

 At the commencement of the present volume of the Scientific American we had nearly one thousand complete setts of the preceding volume on hand. Since that time we have had 500 copies of those setts bound, and the balance have been ordered by mail and sent in sheets. We are now obliged to inform our patrons that we are unable any longer to furnish complete setts in sheets, and that we have but fifty more copies left, which are bound. The price of the remaining fifty copies which are left will be hereafter $\$ 3$ per copy (neatly bound,) or we can furnish a few more copies in sheets, minus Nos. $1,10,16$, 17 and 46 , at $\$ 2$ per sett. All the numbers of the third volume can be bad yet, at the sub. scription price.
THE

CIENTIEIC AMERICAN

Persons wishing to subscribe for this paper rected (post paid) to

MUNN \& COMPANY,
Publishers of the Scientific American, Ner

York City

Terms.-\$2 a year; ONE DOLLAR IIt ADVANCE-the remainder in 6 months Postmasters are respectfully requested to eceive subscriptions for this Paper, to whom a discount of 25 per cent will be allowed.
Any person sending us 4 subscribers for 6 months, shall receive a copy of the paper for the same length of time

I

Animal mechanisin 163
Arriculturist, interesting to 165
Artisans in Paris 195 America, resources of 197 Aiadubon 204
ctive pursuits 230 Ankles and wrists 240 Astronomy, new lights on 254 Attraction, effects of 2
Australian wheat 259 Agriculture, appropriations for
277 Artesiaia Well at Venice, 281 Artesiain well at vemice,
Asparagus, bottling 288
Ancient work on mechanics Ancient work on mechanics 309
Atmospheric pressure $3 ; 8$ Asparagus 377 Animalcules, origin of 395
A merican Artsaud Briush Ge A merican Arts aud Briush Ge A nerosigiual Industry 413 Angry Words 73
A Lover's Logic 193 A Lover's Logic 193
Adau's Last Efforts 201
A Mother's Blessing 249 A Mother's
A Cren 239
A Wish A Wish 31
A Play up A Play upon Words
A Christian Life 409 B
$\begin{gathered}\text { Burning glass, the Indian and } \\ \text { the } 11\end{gathered}$ Bank bills, preventing the alButter, preserving 74 Brick, new kind of 76
Bridge, splendid 86 Blankets, new mode of scouring 99 Brahamical wonders 155
Bunk note paper, threaded 162 Bell casting 238
Brat, Browning gun barrels 240
Bridge over the Ollio at Wheeling, Va. . 246
Bone pens 364 Brick kilns 33 Bronzing 376
Boomering, the 379 Buomering, the 379
B Breking 8, 162 Bread 72
Blue, to dye 107 Blue, to dye 107
Bengal lights 128
Blue, new 136
Blue color for stamping patterns on cloth 144
Beat root sugar 144 Black varnishes 160 vation of 176
Bezoin acid 240 Puilding composition 27 Bones, to whiten 312 Bread adulterated with alum, to Bu'ter, preservation of 409 Reehives 412
Boston mecha Boston mechanic's fair 20
Boot erimping machine 20, 140 Boot crimping machine 20,14 Eng. 28, 60
Bull's chimney top, Eng. 28
Brick machine, 36, 156,260 Brick machine, 36, 156,
Boot tree and last 36 Blind fustener 58, 180 Box turning machine 60 Boot Patterns 69
Bevel gearias, Eng. 64 Baskets, imp. 8 Burclar and fire alarm, Eng. Biscuit machinery 11 Biscuit inachinery 110
Bedsteads imp. in, Eng. 3 figs. 116
Blowpipe 140 Brake and safety wheels, self
acting 16.4 Barmumis power loom improve
ments. Engs. 3 figs. 177 ments, Engs. 3 figs. 17
Burring maclines 130 Burring machines 130
Blow pipes, designs for imp'd
Engs. 2 figs. 188 Bridge roofs, 193
Bevel wheel Bridge roost, 198
Bevel wheel coupling 200
Bridges 204, 208, 211 Bridges 204, 208, 211
Bed ton, ventilating Bed top, ventilating 220
Balloon ship 234 Brace pad, Eng. 2 figs. 252
Buliet inaking 252 Bog cutters 260
Bain's telegraph, Eng. 3 figs.
261, 273,396 Barrelhdressing machine 276
Button mould machine 284 Boot crimps 300 Brick munufacture 318
Belting for natuctinery 325
Buring Burring, carding, and combing
wool machines 331 Boot planes 332 Boiter feeder, simple 332
Balance valves for steam Balance val
gines 324
Bentz unlra
Bentz unlranning machine 34
Brick presses in Brick presses, inp. in 348
braiting maetines, Fitzgeralds Braiding m
348
pis

Pricks, 364

Bramal's planing machine 371,
$379,387,395$
Boct heel, new 37%
Book backing macline 372
Bellows, impd. 372
Buck eve corn sheller, Eagr Buck eve co
ving, 381

Balance valve, Hill's Engs. 4
figs. 385, 388
fig
Bualla
Bala
Baul
Buil
Book

fig | Buil |
| :---: |
| Book |
| fig |
| Bla |
| 4 |
| Buf |
| B1 |
| Br |
| Br |
| Br |
| | Book backing machine, Engs 2 Blating, improvements in Eng. Buffalo and Mississippi R'd.1, Broad guage in Eng., new 25 Broad guage in Eng., new 25

Broad guage 25
Boston and Worcester
freight depot of the 118 freight depot of the 118
Broad and narrow guages 257 Broad and narrow guages 257
Boston R'd. 273
Boston and Worcester R'd. 281 Boston and Stoninglon R'd. 329
Boston and Montreal R'd. 377
Button Boston and Montreal R'd. 377
Button factory 5
Breath in man and woman, Bedrooms, useful hints about 30
Brick back logs 3 :3 Births and deaths, influence of
the periods of the day on 33
Burning wells of Kenawha, the Butter 48,102, 290, 360,403
Boston water works 49 Bibles, 51,114
Brooklyn Institute Brooklyn Institute 63
Balloon mirage 74 Balloon mirage 74
Books 75, 83
Buttons, patent 82
Belgian iron foundry, great 120
Burns, cold water for 122 Brea
Broo
Buil
Batl
Brai
Bulle
Bodi
of Ball proof garsment
Brain, the 155
Bullet proof coat
Bodily of 227
Burfering, Schiller's use Burning glass, heat of 232
Ballard Vale machine shop Boots and shoes, French po ish
for for 256
Beef stakes to
Banvard, Lng. 291 Banvard, Eng. 291
British Patents 306 Bonnets, straw
Beet, the 371 Burtal of toe Seed 121
Beauty's Eyes 297

Curiosities of art 8, 16 Cameos imperishable

 on 13Cambridge telescope, the 18 Cough, to cure a 26
Caneu engraving 56 Cotrou engraving 56
Clothes, to imp clean men's 88
Cloths, Cloths, new kind of 92
Corals 129 Coffee making 144
Cycloid, the 144 Cycloid, the 14
Chimneys 143 Clairvoyant miners 149
Colored silks, to clean Colored silks, to clean 168 Curriages 205
Clack, woaderful national 206 Chock, wondurful national 206
Chima mending 216
Candles, to make splendid 243 Candles, to make sple
Concrete walls 246

Concrete 248

Case hardening 256
Cane bottom chairs, couches,
\& c..., to restore the elasticity
of 256
Cutton raisi
Calf 261 312
Curra
Currants, prescrving 315 Cherries, preserving 315
Cameos 328 making 3itio proved method of
Corn beer 360
Candles 380
Candles 380
Copying paper 384
Chemistry
Chemistry, wonders of 8
8
Chorine gas 16
Coal $121,58,65,105,122,141$,
181, 200, $201,234,293$.
Copper ore in the South 37
Copper ore in the Sounh 3
Cholera, antidote for 70
Cholera, antidote for 70
Chrome black on wool 104 Coloring substance, new 108 Chemical discovery, progress of
109

Cobalt and mickel mine 122 | Chlorufurm |
| :--- |
| $198,2: 4$ |

Concrete for floors 136 Chrystal and water 138 Chemer, 149.197 Cough syrup 152 Cucoa, to prepare 168
Colur, fast 174 Combustion, spontaneous Chemical analysis 222 Cast iron, silvering 2299
Carburet of sulphur 248 Carburet of sylph
Cullorion. 248 Chrystallization 254
Curious experiment 250 Carbon, vegetable and animal
275

C

Cock fan 396
Corn sheller 404
Coffee Pot 40
Coffee Pot, new 412
Cultivators 412
Cultivators 412
Ceylon railway 17
Cend Cairo railway Central R'd. 65
Canıal Ohio R'd. 89
Cheltenham, opening the rail-
way to 93
way to 93
Chicago and Galena R'd. 161,
${ }_{177}^{353}$ Chamian and Ct. River R'd.
$\begin{array}{ll}\text { Cohoes and Albany R'd } & 177\end{array}$
Cocheco R'd. 185
Champlain R'd. 225
Champlain R', 'd. 225
Chicapo R'd. 241
C
Clearing, railway tracks, revol-
ving apparatus for 284
ving apparatus for 28
Cheshire R'd. 305
385 and Cleveland R'd.
Cadmus 3
Crepin
Creeping plant 8
Chinese junk, 10
Chinese junk, 10
Cunard steamers 10, 21
Cunard steamers 10, 21
Catton worm, war on the 30
Cachou Lozenges 32
Celestial phenomenon 35
Copper ore,
Copper ore, extraordinary piece
of 37
Calclating Interest 40
Cold balin
Calcu ating Interest
Cold bedrooms 40
Cotlon
Cotton in Turkey 42
Cotton in India 42, 310
Coal business at Pictou 43
Co-operative associatiou 45
Co-operative associatiou 4
Caoutchouc trade, the 50
Carpet factory 51,53
China a arts and sciences
China, arts and sciences of 56
Cabs 60
Cotton seed 61
Cepyright movement 61
Cotton crop 66
Cotton crop 66
Circulation of the blood 70
Circulation of the blood
Cholera $75,213,217,354$
Corn in bulk to estimate 76
Corn in bulk to estimate 76
Cancer, cure for 78,408
Cancer, cure
Cance
Cabba
Corn
Curry
Curry comptss 8
Coffee 86, 130
Carriage bow spring 100
Cotton manufactory 101
Catcnlus 101
Clasp catches 108
Chasp catches 108
Cundlewicks, imp. 124
Cockroaches 120
Candeaviek 152
Curk 166
Carriage hodies 172
Congressmen and the Patent
Copper mines of Mo. 173
Concrete shoath own up 176 Cleanliness 17%

Compressibility 17 Cotton 182, 241 Cbtor

Chords of a circle, table of 190
Cotton factory, first American 190
Coal
Coaltrade 194, 202
Cotton Planting 200
Consumption, 202,235
Cough, alleviation from a 202
204
Cliterns, Parker's house 217
Cheese 224
Chorofirm, sub titute for 233
Combinations, putents for 237
City amosphere on stone, effect
City atmo
of 243
Cut
Caternila 24
Congress and inve
Chernuts 258, 322
Candles 264
Clairvoyance 266
Citrrents of the ocean 266
Current of Nragara 409
Current of Nagara
Cypress Wine 412
Cypress wine 412
Crank, the 413
Carpats, Massach
Carpats, Massachusetts 413
Character of a happy Life 137
Chide Mildly the Erring 401
Daugerreotype 62
Daugerreotype 62
the 64
Diamonds converted into char-
Coal 131
Daugerreotype of the sun 138
Door knobs 148
Door knobs 148 fact for 154
Doctors, curious fat
Dentistry, imp. in 162
Drawings, to varnish 163
Drawings, to varnish 160
Damak weaving 179, 187
Divining rod, a human 179
Divining rod, a discon ery $£ 10$
Daugereutype discoven dust 248
Dianond
Dianond dust 248
Distance of the sun from the
earih 260
Daugerreotyping, imp. in 268
Darning rents, skill in 310
Dandelion, extract of 352
Dandelion, extract of 352
Dried fruits, preserving 360
Disenfecting gas 10,
Disenfecting fuid $37,213,207$
Disenfecting fluid 37, 213,
Deaffuess, cure fur 74
Deafuess, cure fur 94
Dyeiny, mpo in 190
Dygine
Dysing 280
D, ${ }^{\text {Dumofd }}$ the 289
Drub color 320
Dye silk of a gold color, to 376

Denny's axle for railroad cars Eng. 12
Dentometer 52
Dentometer 52
Deshon's shower hath, Eng. 2
figs. 110 Dredging boat 132
Drilling roads, imp'd. machine
for, Eng. 153 for, Eng. 153 (ines, instrument for, Eng. Eng. 192
m, instru
Door fastener. Traveller's 203 Drums, speed of 243 . 2 figs 248 ianometer, the, Eng. 2 fig Dyack iron furnaces 299
Deadly instrument, a 306 Deadly instrument, a 306
Double traverse motion, Eng.
323 Dredging apparatus, novel 332
Draught and fricton of Draught and fricton of carria-
ges, imp. in diminishing the
Eng 4 figs. 353,356 Diving beil 356, 389 bcdies falling
Deviation of br
from a perpendicular 357 from a perpendicu
Drill, the, Eng. 376
Dressing movement, Eng. 392
Door springs. Peck's imp. 404
DeWitt's railwsy Damages against Railroads 90
Dieteti:s 16 Dietetis $\begin{aligned} & \text { Door plates, casting } 53 \\ & \text { Daugerreotype science } 101\end{aligned}$ Daugerreotype science 101
Digestion, facts about 131 Days with nights 139 Dancing 147, imp'd node of 154
Drying corn, imp
Draugt in ploughing 154 Draught in ploughing 18
livisibility 163 Deafness 202
Degrees 202
Dysentery 313
Disinfectant, a grod 412
Electropathic operation 8
Expanding cannon ball 20
Expanding cannon ball 20
Electrotype and electro guild-
ing. Eng. 8 figs. $21,29,37,45$
ing, Eng. 8 figs. $21,29,37,45$
$53,61,69,77,85,93,101,109$,
Engraved plates 36 Experiment with a plant 80
Electricity, light from 132 Enainel fluxes 160
Experiment with a tulip 160 Experiment with a tulip 160
Enamel colors and fluxes 168 Edge touls, table of the compo-
sition of metallic baths to tem sition of metallic baths totem-
per 184 per 184
Electric fluid, gravitation of th Electric light, Stalte's 219 Engravings on white paper, to
transfer 248 Enamelling iron vessels 256 Electricity, velocity of 352 Electricity and color 355 Electrified cotton 386
Enamels for iron 388 Enamels for iron 388
Electric sparks 400 Ether 29, 155
Electrical precipitation 124
Electricity univeral
Electricity univiceral 278
Electric lingt 35 .
Extracting metals from their
ore by electricity 357 Evaporation and condensation
Enamels for iron 388
Engraving new method of 404 Electric railway 4 Envelope machine 4
Effluvia trap, Walker's Effluvia trap, Walker's 11
Expansive stean augular beans
Eng. 13
Engines, horse power of 22
Electric engine 60
Evaporation g:ate 68
Eureka cotton gin 100
Electro magnetic engine 116 Escapement, Eng. 136
Exercising children, machin Egg hatching machine 147 Eliptographic compass, Eng. Emery and sand paper, ma
chine for making 148 chine for making 148,160
 Electric Gun 17
Engix's 210
Electric impro
figs. 225 figs. 225
Economy of power in conton fac
tories, Eng. $229,237,245,254$ 261,269
Eccentric
erse, Eng. 240
Elastic whei, Eng. 2 figs. 252 Edfus raph, the Eng. 277
Engravings, conying 336
Electrical machines, substitute
for glass for 344
English railways 1, 49, 113
Eng
${ }^{\text {Engropean } \mathbf{R}^{\prime} \text { ds. } 75}$ R.ds. 57
85
Expeaditures, R'd 121
Emigranis 2 30. $37.221,242$
Enterprise 10, 29,53
Exports of the U. S 10
Eftects of paveunents on

Sixertific Amexifan.

icity					
ng					
city uni					
ct					
e for					
ectric '					Oscillating window shade rol-
patent, an 373					
ges 398				$\begin{aligned} & 356 \\ & \text { Mechanical magnetism } 370 \end{aligned}$	Oval, instrument for drawing an Eng. 272
$\text { Fossil Lion } 6$	${ }_{\text {Guy }}^{\text {Gua }}$		Lightning, chemical effects of 45		
ntain pens 116					
Fires, steam for extinguishing2					
	Grait and seed planter, Pratt's impovent, Eng. 217	Human har 24	Licrss $36,98,372$	Iass. R'ds. 297	pijles $氵 24,332$ ue tenion, Bells, Eng. 2
			Lever, a new 75 Lead pipe machinery 92 Law's stave joiuting machine, Eng. 105, (ix Lo omutive improved 115	lagnetic Te egraph 9, 21,41,	
				153, 162, 170, 233, 241, 266 153, 162, 183, $337,261,370$	Olio and Miss. Ret. 210, 217 Overland and Ciwciuati R'd
Freaing mixtures without ice.					
			Law's stave dresser and jointer	Mutter, the divisibility of 27 Mallable shatt tug 84	
					R'd. 241. Ohio and Pa. R’d. 265
			Law's stave dresser, Eng. 124 Last ma hine, Eng. 148, 245,		hio and Pa. R•d. 265
				Mining 42, 58, 169 Musk 48	
$\underset{334}{ }$ Fire proof clay for crucibles	Galvaniczpectacles 308 Glass for amps 326 Glass watr pioes 340		Life preserver, a new 217 Lever valve envine. Eng. 228	Mechanics' industrial association 69	Order destroyer 147
		Illuminated vacuum, the 320			
			Lard and uillump, Eng. 244	Mining in the old world, prog- ress of 78	Ocaan, tenperature of the 163
	Grates ior tovesGas meter, Marsh's, Eng.35i Granjean's scerew cutter Eag 368	96, 189, 200, 229 Ink from printed paper, extrac-	Lever pross 293 Labor caving ma-hine 293	Mattresses and cushions 124 Marine mill 132	owder detonating with a pur-
Fire bricks, machine for making 20					
		ting 16 16 58 154	Li , huning exhuster 008 Loom, new 316		
				Mind, an elevated 134 Meclianical college and expori-	Polmyra tree, the 30
Flax breaking, Reutching andhackling machine 92		Irun		Manufacturing skill, the current	
	${ }_{273}^{\text {Great }}$				
			Lo omotive enцines 355保 prote tor 356	Mechani,'s institutes, mission of 181	nets 35,
Fout stove, improved 92, 116 Flouring mill, portable 116 Fire arms, improved 123 Friction polisher, Eng 136 Fildles, mprovement in 180 Flax spinning, improvements in 180	Greenock ra	Indellible ink 280,384 Incunbustibie wash 392 Inclined door and gate butt, im- proved 68			
			L		
	Guano, how the'eruvians use G11	Inclined planes, improved me. thod of ascending and descending 84	Lilliputiun licerontive engine 84 Liabilites of railroads 185		
Fiying and wharve coupling,					
Iones's 196	Grain, weight of:Geollogy systemikers 29a	Ice accumulator, Duton's 84 ron chimney pieces 204	Lousville and Frankfort R'd.	sugar, Canada 289	Paring, inw
ney printing, roller far 294					
		1uclined planes, machine for 268 1 mportant invention 274		Mechanie's itssociations 317	
	Grout, cure for the 38	Jron planing manchine, Env, 297	,	Mechanical classes, value of 356	ssing paper, imp. in 188
		Iron piles, hollow 324 Iron, improverments in the ma-	Locomution 29,178Latehes 36	$\begin{aligned} & \text { Man and machinery } 395 \\ & \text { Metioud of masiug Sheet Lead, } \end{aligned}$	Plane messurumeri192
Flour chest and tlour packer combined, 274	Green geese, to latn Grafting 216 Gas pipes 228			Chinese 4us	(ercela
		Iron, improvernents in the manature of, Eng. 2 figs. 332 Invalid's bed 387	Lead pumps and pipes 125 Lime kilns 132		
Fire escape ladder 292, 316 Flower pots, improvements in Eng, 292	Cas pipes 223 Geullegical 230		Lime kilns 132 Labeels, illustrated window 142		icture glasses with gold, to ornament 289
	GuttGutaCor	$\underset{\text { Irregular firms, machine for }}{\text { torning, Ens }}$	Lord Russe 150		inting warps, 300
				Niagara suspension bridge 66, 73, 145, 189 Nature and art, the relations of 69	
Filtering water, improvements in 348	(Girard Colle ene 326	tarning, Eng 401 Iron ruils for roads 5Indianopolis railway 57	Loconnotives, consumption of		Pencil drawings, preserving 384Plate glass 3 3 Plate glass 3:9
				Nature and art, the relations of 69 New mineral in the usaful arts	
Fire annihilator 364 Fan Ilasts, jumprovement in 388 Fist hooks, patent 406	Gutta percha 376 Horticultural feat 8 Horse, to ascertain thage of a	Iron tumel 58 luclined planes and tunnels of Anerican \mathbf{R}^{\prime} ds. 81	Longitude by the telegraph 190 l.ongitude, finding the 192 Caven the function of 916	Niellometallic engraving 291	$\underset{\text { Paints }}{ } \begin{aligned} & \text { chith an enamel surface }\end{aligned}$
Friction wheels, Engs. 2 figs. 408		American R 'ds. 81 India R ubber felt for railways	Leaves, the function of 216	Nitre lakes of Egypt 315 Nova Scotia, iron mines of 341 Nitrate of silver 352	Peat composit ion 32
Friction Roller, Eng. 412 French R'd. 1, 17, 31	Horse, to ascertain thage of a	Ilinois central R'd. 193 lowa R'd. 217	Lukuin 246 Letters patent, origin of 301		
	Heights which camote measured, to ohtain 32 Hail formation of 182				
		lowa R Inetia 3	Luckjaw, cure for $3 \geqslant 8$ Locd Russe's telescope 36;	Noiseless wheel 28 Nevins'ecracker and bisuit ma-	$\begin{aligned} & \text { Pants, ettects of ditferent col- } \\ & \text { oreal lights on } 91 \\ & \text { Peppermint, dillation und } \end{aligned}$
$\underset{241}{ }{ }_{21}$ Prakiort and Lexington $\mathrm{R}^{\prime} \mathrm{d}$.	Hail, formation us Horse shoe Magnet 20 Husk Mattresses 260 Haemutinon, discovery* 272 Hothouses, utility of bliglass		Last machine, inventor of the	Nevinse crasker and bis uit machine, 2 Engs. 57, 257	
				New and usefulinvention Nauti al improvement 10 Nevins dough mixing and kneading machine, Ens. 270	Plumbers cement 192 Pottassium, blasting of 248 Print to the sarfice of wood, to transfer a 230
		Indgo and cotton 114 Insect's architects 118			
			M		
	Thyirueng gas 24, 32 Hydruphoblia, cure for 67	ly $\begin{aligned} & \text { Ivory } 162 \\ & \text { nada } \\ & \text { rubber goods, man }\end{aligned}$	Mect	Nail matufacture 330	
				New Rerdid	
of 55					
Friction	Hydraulic engine 12, 37				
Fluur, a alulteration					
		Iroin			
Pive mmilitiator 204					
			Melicine, a alute		
Fruts,					
Calvanized spring					
Guad, makin, 24					

Physiology 109 Propelling vessels, novel meth- od of 116	Rotary pump, Eng. 44, 187 Rope and pulley, Eng. 48
Pottery machine, agricultural,	
Power 2 figs	
Power licom 1	R
Padde wheel 196, 292, 364	
${ }^{\text {Percussion powder, Eng. }} 197$	Railw
${ }^{\text {Power Loom shuttle }}$ Pneumatic regulator, Eng. 220,	
Power in eotton Factories, eco-	
nomy of Eng. 229	Railroad brake 124,
Pneumatic telegraph and amnun-	Rail, a newly invented 130 Rock driller, Wightman
Pile	
Percolating	Re
${ }^{\text {Paine's steambuat }}$	
Parallel vis	
Parailel Rule, 2 Engs. 288, 304	
Pins, manuf. of 290	R
Pianos 008	
Pratt and Morse's railroad brake Engs.' 2 figs. 313, 356	Railroad car brake, E
Paper folder 324,364	Railwa
Preumatic steam gurge 348	Richmond's patent co
Pneumatic steam guage 348 Pumps for vessels 349	Rotary gymnastic wh
Pad	Rotar
Planing machines, Bentham's	plo
Pedemotive carriage, Eng. 5	Reetilinear and circular motion,
Printin	Ru
ns for making	Railway switches 308, 396
Power to raise water, to od	
	Re
${ }_{\text {Parasol }}$	
Paddle wheel tortuous, Barker's	Regu
Eng. 409	
Preparation	
Preserving Mik, a 412	
Plank roads 81, 221	Ro ary engine, Tremper's, Eng
Phil. R'd. 289	Radiators, 388
	tion, Eng. 400
$\underset{813}{ }{ }_{\text {Pitsturgh }}$ and Connelsville \boldsymbol{R} 'd	
Penn. line 329	
Penn. central R	
Paterson and R	
er M. Deshong, Er	Railw
Patent office, the 13,141	
Perstvera	R R survey 33 Y
	Rnilw
Plauts, instinct of 48	R'd. sale 41 dins
Power of enduring heat 48	R'd. bridge
Patent cases 61, 69: 125, 189, 253,317	
Poulty fatenin	
Platinium in France 82	Rivet
rk and beef packing cs	
pearance of marble, to give 120	R'd route to the Pac Richmond and ohio
	Railway items 97
	R'd. iron, ingir
Printing, the inventor of 143	
nts and patent laws 181	R'ds. of the U. 5161
Patent laws and electric telegraphs 183	R'ds. on the weather,
Paris neademy of sciences 192	
Paper mill in New Haven,	R'd bridge,
Phosphorescent lodies 234	Ra
ing, new kind of 226	Rotary boot
Potatoes 238, 881	Rasping dye woo
	Rail roads and steam
gogranhical	
Pemican 251	Rattlestrake
nt infringement 25%	Rer
ato	Ro
Pench trees, prunng of ${ }^{\text {Patan }}$	Rainhow 11
$\begin{aligned} & \text { aten } \\ & 317 \end{aligned}$	bread
Potato diseas	${ }_{\text {R }}$
Paper hanui	Ramsey the
隹	Riding in cars 237
nato garden, mod	Report of the patents 245
Petrification poonds 360	Red lot mi
	Recovery of the appar red rulcs fur 399
Quills for writing. manufactu	ned, rulcs for 392
inin	Sh
ebe	
dicksinds, clephawts in 150	Silver, ductility of 40
answers 160 R	Stylographic engraving 45
Re	Suspension
veting 1	Saw
Rifles, glasse	Steam buner 92,186
	Ships, hage
Rife, the Amentan	Suap minua
Roof, chen ${ }^{\text {a }}$	painted handscapes 152
Rain, prevalence	Equaring th
Russian intk powder if	Sitiken sails for ships 164
Indigo bhee, rebeipt for an ash vat for dyeing 130	Strange elock, antique 1×2 Sewers 183
of comprosition	Sun, intare of
Raw hides. tanming 212	
Rosin, oil from 300°	stlip building 236
dium 323	Sterl frum Iron and to soften
an urificisal pearls 3×3	
al blue	Sc
vet machins 4,340	
Rope machine 20, 172 Rocking chair and fan 36	goords 272 Steel and iron, to clean 272

Rotary pump, Eng. 44, 187
Rope and pulley, Eng. 48
Riffe, the 52, 91
Rooking chair 52
Railway carriage brakes 60
Rock drillers, improvements in
68
Rotary steam engines 75 , 170.
Railway engines and carriages
improvement in 102
Rail car spring 116
Rock driller 122
Railroad brake 124, 300
Raick a newly invented
Vaughan's, Eng. 3 figs. 132 ,
Revolving shuttle box 149
149, $744,182,259,270,381$
Reciprocating circular and rec-
tilin ear motion, End
tilinear wotion, Eng. 152
Rotary corn dryer 156
Rolling machine 196
Railroad car brake, Eng. 196,
260
Railway alarm 203
Richmond's patent collar 213
Rotary gymnastic whecl,
224 gymastic wheel, Eng
Rotary engine propelled by explosive gas 244
Rogue wate 250
Eng. 272
Rug weaving, Eng. 283
Railroad chairs 298 Railroad chairs 298
Railway switches 303,396 Ress pavement 319 (ilinear motion and circular,
 Rat trap, new, Eng. 324

Stemmand gases, 301
Some plant 312 Soap blant 312
Salt, medical use
Salt spring 327
Salt spring 327
Subterranean gasometer 331
Soap tree 334
Silicum 374
Stuyn Stantotine 379
Smelting copper ore by electri-
city 400
Steam engine. improvement in
the. $44,18,204$
Scleneble ${ }^{2}$'s steam engine 4
Spiral holt 4 Schneble y's
Spiral holt
Sofas 4, 76
Stetheseope, the 11
Steam plough 12
Stump wachine 20
Self cle
Suithsonian Institute 53, 157,
322
Sitt water worm 58
St. John's Mechanic's Institute
58

Scientific discovery 65
Steam printing, introduction of
S6

Steam rotted hemp 67 Singing mouse 82 S

Sausages 82
Silvershop, queer 86
Sensations in the air 88 :
Suspender backles 100
$\left\{\begin{array}{l}\text { Suspender buckles } 100 \\ \text { Steam chronology } 101 \\ \text { Silver } 109\end{array}\right.$
Siver 109
Scrubbing brushes 116
Smithson bequest
Smithson bequest, the 11
Sawdust, value of 123
Strange patent i24
Strange patent 124
Shooting fish, the 128
Spliting rock, curious
Sipliting rock, curious mode of
130
Steam and water power 133
Steam and water power 133
Steam in manufacturiug, valu
of 133
Steam 139192
Steam 139192
Sponges 144
Solt
St
Stean boilers, explosions of 157
165198210252266
165198210252266
Ships, new light for 158

Se wers and cerspools 162 Snow, color of 163

Sun, ex posure to the 174
Sicientific memoranda 179192
Scientific Knowledge 189
Science and its language 181
Sleeniog 182
Spots in the Sun 195322 Spots in the
Stockings 198
Sea Spray
Syphor condenser 9\%
S.ew arrangements, Eng, 104
Smow plow locomotive 108
Saw mill improrements 108
Solf acting leg 109
Ecrew movement, Eng. 120
S.crew movement, Eng. 120
Subinerged wind propeller 126

Eubinerged wind
Safety valve 130

Strert cleanme methine Bish-

Soles nischine for witting 172
Sp inning mathine 172
Steam yourer Guage 173
Sham Wawgon 203
Shat Tower 205
State mechanical repository 213
State mechanical rep
Stays, origin of 217
Screw driver 228
Sound visible 230
Sound destroyed by sound 240
Science and labor 261
Silk, manufa ture of 282330
Sik, manufa ture of 282330
Surveying 308
Sun flower, the 314

Selling an invention bef
patent is secured 317
patent is secured
Steam boilers 318
Saw setter 322
Shingle manufactory 325
Sleepers for plank roads 325
Sleepers for plank road
Sand paper 332
toms. ansomtion of 14
Rainbow 114
Rve bread baker 180
Rincid butter, tosweeten 181
Rigging of vesses. 193
Rimey the first steambat bait

Riding in cars 237

Report of the commissioner of Stean boilers, ale | Sm for 24, |
| :---: |

Red hot magnet, a 250
Recovery of the and $\begin{aligned} & \text { Screw and paidla wheel } 249\end{aligned}$

Rocking chani and fan 36
Rotary applied to sleamborts 37

Eatety bik 180
Sieam ana the stean engine 14
Fand papre. matives for mau-

Street lamps by electricity,
lighting 360
Speak not har
Strive on 49
Saturday Night 121
Speak Niagara 193
Sing on!
${ }^{\text {Sing }}$
Telograph posts 4
Theriaph posts 4
Tin and zinc, the motive
of 32
Time and longitude 10
Thermometers 107
Tanning, 116
Turning 13:?
Turning 13:
Teeth, artificiial 180
Turning bowls 188
Telegraphic improvement 210
228,277
Telegrap invention 220
212,917
Telegraph invention 220
Tempering 240
Tegraping 240
Tracing paper 240, 384
Tren Top rollers for spinning mill's
frames \&c, painting 248
Tromato, new use of the 956
Tomato, new use of the 256
Tapestry, carpets, rugs, \&c.
manufacture of, Engs. 6 fig
Tapestry, carpets, rugs,
manufacture of, Engs. 6 fig
262.677
Thimbles 402
Thimbes
Tin inon \&c. $10.9,10$
Turpentine $61,918,393$
Turpentine $61,218,338$
Turpentine distilery, the 69
Tea, chemical analysis of 80
Teathace 82
Tbunder powder 128
Thipoli $148 \quad 170$
Tripoli 148,170
Suw mill gearing, impro
Shirt collar, patent 316

Stave, jointing 316 Steam builer

Steam binlers, hints on 325
Spenking exegrapb 329
Stuffing boxes. inprer. in 332
Stean

phip pump, working. Enes. 336
Steam hamer cngine, Eng. 337
Steam hammer cngine, Eug. 337
Sheet metal bending 364 ,
Shingle shaving mechine 364
Shingle shaving mechine 364
Sponsn 332
Eawing irregular shapes 372

Touth powder 256
Turpentine for poison 266
Tinpentine for poison 260
Tir ant pith, oil from 306
Twat pitch, oil from
Tmaed leadpipes 395
Tomato Ketchup 408
200 mution, 3 Engs. 22
Threshing machine, Ene 36
$\quad 396$
Thompson's
n's life b

Threshing and cleaning machine 60° Transferring circular motion, Eng. ε_{8} Topsail reefer 116 Transfer of speed, Eng. 120 Teller \& Dillenbach's vertical water wheel, Engs. 2 figs. 140 Traverse and oblique motion, Eng. 144 Turning lathe, improv. in 148 Thermometer churn 164 Turning irregular surfaces, machine for 172 Traversing bar 232 Telegraphic instrument 243 Traversing drum, Engs. 2 figs. 256

White lead with oil, action of
Wool with animal substance
to dye 136
White lead paint 244
Wisconsin copper ore 245
Whiskey from grain 290
Whiskey from grain 290
Wood coloring 296
Wiod coloring 296
312
3 , to restore sour or sharp
$\underset{\text { Wash for buildings }}{330}$ Wood patterns, varrisish for 336
Winder's hydraulio engine, 1
Weather strins, patent 4
Whiffletrees 20
Wood's patent 25
Water wheels,
Whater wheels, eng. 28, 34, 56
7608
Wool burring machine 44
Wheat mill 59
Wheat mill 52
Washing machines, 68,76,148
Winnowing marhines 68
Winnowing marhines 68
Window blind fasteners 92
Weaving looms, improrov, in 94
Wnite's fire engines 94
Wind
Winte's fire engines 94
Wheel gearing, eng. 112
Wheel gearing, eng. 112
Werd mill ship, eng. 2 figs. 113
West and Thompson's coupling
joint and rang. 124.129, 230
Warlike invention 180
Warlike invention 180
Washers, machine for cuttin
Water ram 133
W
Water velocipede, eng. 136
Wrought nails, machine for ma-
king, 140
Water conveyance, first patent
for 148
Wind mill, eng. 152
Wooden arn1, ens
Wooden arm, eng. 168
Wind engine 176 .
Windlass, improved, eng. 188
W oodber:'y's improved grain se-
parator, engs. 2 figs. 207, 212
Wheels. eng. 216
Wheat dibbling mach
Windmill, the 232
Window sash fasteners 252
Water, diseharge of, eng. 252
Woodworth's patent 269, 926 ,
Wrench improved 274
Whe fence 285, 206
Whistle
Whistle, railway and steambout
eng. 289
Water cement 292
Weaving, fancy 299, 307
Water, fower 338
Water, hower of 338
Watch chain 339
Water pressure, eng. 344
Warp, dressing, eng. 352
Woode
Warps, ressing, eng. 352
Winden railroads, 38 L
eng. 384 modification of the
Window blinds 388
Wrought iron nails by
nought iron nails by machi-
nagon ty 309 , machine for re-
Western R'd. 1, 97
Whitney's R'd. $27.105,257$
Westey's R'd. 27. 105, 257
Western Atlantic R'd. 177
Wabash R'd 185
Worcester and Nashus R'd
393
Wet Land, Improvement of 4
Wool in Ohio 5
Water 646
Wonders of Science 19
Water Power, new 36
Water Works of Marsaille 49
Wants 56
Warts 56
$W_{\text {a gou }}$ Shelving 70
Whilkey 83
Wild Geese, Ducks, \&o 106
Wheel Tires, Heativg 108
Western and Cotton wreparing 124
Whooping Congh 123
Whote Mel and fine Ficur 141
Whaling Business 162
Wind, indirect action of Eng 3
fing 173
Weights and Measures 176
Weights and Measures 176
Washing Establishment 194
Winds, Currents \&sc
Winds, Currents, \&cc., Charts of
195
Oods set on fire by steam 202
Winder Garden 210

Water in Sea Cask and Cistern
216 inds of Ohio 235
Water. Power of 242
Water, Power of 242
Water Cure 257
Window Sash Fasteners 252
Wondsworth's Patent, Claim of
E69
Waste Steam, new use of 288
W ool and Corton cleaning 308
Woos and Cotton cleaning
White Blackberries 360
Wheat and Bram 381
Water Rams, vanves of 412
Y
Yellow color, to dye 72. 328
Yea and nay machine 20z, 204
Zinc 130, 168^{2}
Young Nen 134349
Yeast, German 160 He and good books 186
Young
Zonolegy 306
Zigzag antion, eng. 352
The Lint of Patents for each
week will be found on the Fourth page of the ps ther.
Tnis paper conntains the List of Tnis paper contains the List of
Patente from the week ending Patents from the weak ending
September $18 \mathrm{th}, 1847$, to the
week ending Septernber 5.1848 .
Pages 76 and $i 7$ are misprin-
ted 75 snd 76 . Articles on these
pages are marked in the Inder
pages are narked in the Inde
the $:$ ame as if the pages 75 an
76 were pages 76 and 77 .

