gicntific American.

THE ADVOCATE OF INDUSTRY, AND JOURNAL OF SCIENTIFIC, MECHANICAL AND OTHER IMPROVEMENTS.
$\mathfrak{b}_{\mathfrak{o l} .3}$ 3.
New 11oxk, August 19, 18 廷各.
No.

SCLENTIFIC AMIERICAN CIRCULATION 11,000.

At 128 Fulton Street, New York (Sun Building,) and 13 Court Street, Boston, Mass.
By Munn \& Company.
The Principal Office being at New Yor
TERMS---\$2 a year- $\$ 1$ in advance, and the remainder in 6 months.

ploctry.

What are riches, glory, pride
Laurel-wreath, or jewelled crown, When upon lift's troubled tide, Wery, wayworn man goes down :What are mankind's dearest pleasures, But the fitfnl meteor's gleam ?-
What his grandeur?-what his treasures?
Moonlight on a mountain stream.
Soon we quit life's busy path,
For silence of the grave,-
Soon the banner, mighty death, O'er the proudest head shall wave,Soon the dweller in the hall And the child of peasent birth Like the forest leaves shall fall Mingling with their mother earth.

Prince and peasant, priest and kingLike the little flowers that blush On the bosom of the spring Time's unsparing toot shall crush. What! O what is pleasure then ! Can it hush our woes to sleep
Can it still the throb of pain
Rankling in the bosom deep ?
When the brightest cloud that swims, Vision-like, across the sky,
Stays the summer's burning beams, As it floats unheeded by :Then shall glittering gems of earth Bid our sorrows cease to flowTo the joyous laugh of mirth, Change the thrilling pang of woe. giving.
The sun gives ever; so the earthWhat it can give so much 'tus worth, The ocean gives in many waysGives paths, gives fishes, rivers, brays, So, too, the air, it gives us breath, When it stops giving, comes in death

Give, give, be always giving,
Who gives not is not living The more you give, The more you live.

God's love hath in us wealth unheaped Ouly by giving is it reaped ;
The body withers, and the mind,
If pent in by a selfish rind,
Give strength, give thought, give deeds, give pelf,
Give love, give tears, and give thyselt. Give, give, be always giving
Who gives not is not living. The more we give The more we live.

Kindness.
Oft unknowingly the tongue
Touches on a cord so aching,
That a word or accent wrong, Pains the heart almost to breaking; Many a tear of wounded pride, Many a fault of human blindness,
Has been soothed or turned aside By a quiet voice of kindness.
Geologists mark two periods in the hiswory of animals now living, one when marine ani mals were created, and the other when fresk water animals appeared.

LANE'S LAST IVACHINE.

This engraving is taken from a rough model of a machine sent to us by Abner and Charles Lane, of Killingworth, Connecticut, represented to be a new invention. The motion and changing gearing is not displayed, as the model only shewed the parts.
Description.-This is a vertical view of the machine, as seen looking down upon it from above. The letter A represents the frame, and the upper and lower figures represent the lasts to be turned and the cutting tool with the pattern-the upper the rough mate. rials, the lower the cutting tool and pattern last. The upper figure is a large revolving spindle wheel-or it may be narned a double drum in which spindles are fixed as the axis of motion to secure the rough blocks to be turned into lasts. B, is the main shaft of this double drum, and R, drum for a band to propel it from a wheel or engine. M, represents the spindles to secure the lasts in the revolving drum. L, represents the rough wood to be turned into lasts. O, represents the side circular plates of the drum, and as the blocks
will have to be shifted as each phase of the lasts are turned during one entire parallel motion of the cutter C, the cog wheels N , on each spindle, are to do this, but we cannot show nordescribe how it is done, although one of the most important points, as all turning depends entirely upon correct changing gear. The machine professes to turn from a pattern last H, along which the cutter moves parallel with the axis of the pattern lastso as to communicate the form of the same to the rough materials on the revolving spindles. It will be observed that the cutter must have a very particular motion as it does not go over the whole surface of the rough materials during

Asparagus.

This universal vegetable is supposed to be a native of Great Britain, where it is found on banks of sandy soil contiguous to the sea, growing luxuriantly under the salt breezes. -Cultivators have found that salt brine, or a the Fall, before they have their final dressing proves very beneficial to its growth. Although it is not considered a very nutritious vegetable, yet it occupies a considerable pro-
every revolution of the same on their axis. The cutting is done by a slide I I, to which the cutter C, and cutter head D, are attached, and the which shifting motion is regulated by a pall K, catching into J, a cong whee?, which moves the axis of the pattern last. The pattern is retained by guides E F, which guide the cut ter to turn the pattern of the last, the said guides moving the cutter to cut the same inequalities or forms out of rough pieces on the spindles of the wheeis, being guided to do so by the guides and the cutter pressed towards the blocks by an eliptic steel spring U, and a weight G, hung to hold the guides to the pattern. Q, are moveable spindle braces for shifting the turned lasts. S, is a screw shaft to move the slide with the cutter regularly from leit to right, and it is revolved by a strap from a drum T, connected with a drum on a revolving shaft below. P P , is the hub of the spindle wheel, or as we have named it, the double spindle drum. The inventors in their communication say, that " this represents the cutter moving horizontally from one end of the last to the other, cutting a section through lengthwise on the rough materials corresponding to the section on the pattern. When the pattern and rough materials to be turned on their axis one fourth of a revolution, (though at the corners of the lasts they may be turned more than at the more flat parts,) the cutter then passing back and so on" Messrs. Lane also mention that they " have a contrivance to prevent the rniddle portion of a slim article, like an axe helve or spoke from ap proaching too near the cntter by centrifugal force."
The inventors have taken measures to get a patent.
portion of every garden, and is extensively cultivated for market, some growers having eight or ten acres under culture at once. No doubt is entertained by experienced gardeners that in a very few years it will be increased tenfold.
An explosion of a weak steam pipe lately took place on board the steamboat Highland Mary at St. Louis, Mo. by which six persons were more or less scalded.

RAIL ROAD NEWS.

Boston and Montreal Railroad. The Boston, Concord and Montreal Railroad is open to Sanbornton bridge, 18 miles from Concord. It will be opened to Lake Village 12 miles trom Sanbornton bridge this month. Up to the fourth of July, when the portion of the road in operation had been opened but about two months, and the great summer travel to the White Mourtains could hardly be said to have commenced, it had earned 10 per cent. on the cost-about $\$ 216,000$-be. sides laying up in a surplus of $\$ 2,000$ or $\$ 3,000$ and paying expenses of running cars, together with other outlays. It is estimated that the extension will be effected to Plymouth by the close of the year.

Lowell and Lawrence Rallroad.
The Lowell and Lawrence, Mass., road is now doing a good business, both in freight and passengers. For the first week the passengers fares exceeded the highest previous estimates by $\$ 300$. At the Lowell end freight is accumulating so rapidly that it will be found necessary to put on a heavy freight train and engine. Stony Brook road also has already a lucrative custom. It has been leased to the Nashua and Lowell Railroad for 99 years and is considered good stock. Massachussetts has nine hundred miles of railroad in operation, in which $\$ 40,000,000$ are invested. The income for last year excceded $\$ 5,200,-$ 000 .

Hydraulie kingine.
There is an engine now in use at the AIbert Dock, Liverpool, England, which is war: thy of notice. It has two cylirders lying at an angle with each other, and the water is applied to each piston alternately like a steam engine. The water is conveyed in two pipes, the one from an elevation of 420 feet above the river and the other 230 feet, so that there is a differeuce ot elevation between the two reservoirs of 190 feet, and a corresponding difference of pressure in the water supplied by each which is equal to 82 lbs . on the square inch. The engine is connected by branch pipes, with both the main pipes, so that the pistons are acted upon by the greater pressure of one main pipe on the one side, and the lesser on the other, so that it is consequently put in motion by a force equal to the difference between the two pressures. The water is rendered available for the use of the city, and the valves are of the slide kind with very wide ports. Both high speed and easy motion have been attained.

The Leather Wood.
A correspondent of the Boston Cultivator relates the following interesting particulars respecting the Leather Wood shrub which is found in many districts of our country.
" The shrub is remarkable for its soft and very light wood, and exceedingly strong and fibrous bark, which abounds in mucilage. -It posesses the siagular power of healing wounds made upon it by forming a new bark over the fractured part, instead of growing from the side; and the new woed closing over the wound, as is the case in other trees and shrubs.

This new bark adapts itself to all the inequalities of surface next to the wood but is: smooth on the outside."
He noticed one brarch which had been split down five or six inches, by the snow, dividing it into equal parts. A new bark had formed over each part, and on cutting them crosswise all the roughest of the fracture was distinctly visible.

At New Haver, Conn., by horing to a depth of forty feet, through the wharf, salt water, and soil, and sinking an iron tube to that depth fresh water, pure and sweet, hows up through the tube so abundant that it cannot be exhausted by two pumps.

New Steam Pump.
The Baltimore papers spealk highly of a new Steam Pump lately invented by Mr. W. Fulton, and pronounce it to be the best pump ever invented for many purposes. The peculiarity of the construction of "the pump consists in several particulars, of which the promisent are the form of the barrels and the minent are the form of the barrels and the
mode by which they are constructed; the mode by which they are constructed; the whereby but half the number usual in double acting pumps is required, and the stationary valves' seat within the pump thus entirely dispensed with. The pump is thus constituted a continuous pipe, diverging in the form of an ellipsis flattened at the sides; the water being drawn in at the middle of one of the flat sides and expelled at the middle of the other, traversing the pump without check or interruption ; thus no power lost at all, the necessity of alternating the momentum of the water in opposite directions, as is the case in double acting pumps of the ordinary construction, being entirely superseded.
The pistons, of which there are four, are moved by two pump rods connected with the piston rod of the steam cylinder, by means of
a cross-head of wronght iron, the moving a cross-head of wronght iron, the moving
parts beng thus reduced to the most simpie parts beng thus reduced to the most simpie construction. The engine occupies the centre of the ellipsis, the piston rod passing through one end thereof, so as to connect with the cross-head. The steam valve is worked the cross-head. The steam valve is worked
by a very simple arrangement, "plungers," by a very simple arrangement, "plungers,
or pistons, being introduced through the cylinder heads, which being partly moved by the piston recerve the direct action of the steam. in order to complete the requiste ac tion of the valve."
From the universal necessary employment of pumps, no other kind of machines have presented so many different modifications and applications of mechanical principles, as the result of inventive minds to improve upon such usetul machines Among the many good pumps at present employed, hundreds of oth-
eis that have been invented, have been laid ers that have been invented, have been laid
aside on account of a deficiency in practical aside on account of a deficiency in practical
economy. It is now only the severe test ot the crucis experimentum that will satisfy the public. But who is he that believes we the public. But who is he that believes we
are at the end of hydraulic improvements ? are at the end of hydraulic improvements?
Not a man of common sense. The great 1 m Not a man of common sense. The great 1 m -
provements made in pumps during the last century is an evidence of what may be accomplished during the present. "Invention begets invention."

Grain Planters.

A correspondent of the Genesee Farmer writing from Augusta, Georgia, says that a corn planter manufactured by Mr. Bachelder of Baltim ore, has been used there this season with great success With it a hand and mule can put in well 100 acres in ten days. It drops and covers the seed, and rolls the ground.
Great care is taken to have each kernel in the exact line of the row, and no seed nearer than three inches to its fellow, in the same hill, where more than one stock 13 permitted to grow. The rows are worked only one way on the bottoms, and stand from Sive to six feet apart. By having every stem of corn in a straight line, the hills can be plowed close on either side, so as to stir all the land and not use the hoe at all. To hoe corn is an expensive operation, and by doing as stated, no weeds or grass can grow, the crop is alike clean, beautiful and abundant at the harvest. As five good hands with Bachelder's planters can plant 500 acres in ten day-, the after culture constitutes the principal labor of mak ing this gran. The corn is plowed out with three small plows set in gang and drawn by a single mule twice in each row-turning the three shallow furrows towards the hilis or drilis, as the case may be. A raulk is Jefi between the rows of from 12 to 20 inches. which is cut up and mostly left near its old position-lurned alittle to the right and lett-
with a sharp cutting instrument something
like a s buzzard, like a'buzzard.' Notwithstanding the rows of corn are six feet apart, the mule has to pass only three times between each to till well the whole ground once over. In this way a field is gone over three or four times in the course
of a season. As a general thing, the corn crop on the Savannah is very goed this year

Two New Mineral

Miedjidite is a mineral named in honor of he reigning Sultan of Turkey, Abdel Medjid, who exhibits a most decided patronage of both the Arts and Sciences-certainly much more than any of his predecessors The other mineral is termed Liebigite. Both were found associated with a specimen of pitchblende from the neighborhood of Adrianople, Turkey ; it was quite impure and a portion of it contained crystals of copper pyrites. On he surface ef this pitchblende, beside the two minerals in question, there existed crystals of sulphate of lime and a little oxide of iron. Medjidite, is composed of sulphate of uranium and lime, and is of a dark amber color, trans. parent, of imperfect crystaline structure, and fracture vitreous, although the surfaces exposed are sometimes of a duli yellow color, arising from the loss of water. It is found on the surface of the pitchblende associa ed in some places with crystals of sulphate of lime. -Its hardness is about $2 \cdot 5$-specific gravity not jet known. Prof. Smith, of South Carolina, Geologist to the Sultan of Turkey, describes it in a recent communication to Silliman's Journal, and observes that, so far
as the snall quantity then at his disposal, enabled him to make out its composition, it wouldappear to be a salt similar to Liebigite, with less water, and sulphuric instead of carbonic acid, the acid being derived from the decomposition of the pyrites associated with he pitchblende. Liebigite is a carbonate of uranium and lime, and is not found crystalized,
but appears in the form of a concretion, having an apparent cleavage in one direction. It is of a beautiful apple-green color and transparent with a vitreous fracture. The mineral admits of ready separation irom the pitchblende, and, owing to its color and transparency, is easily reed rom the smallest portion of toreign matter. Chemical analyses show the presence of water, carbonic acid, lime and uranium.

Caol Procedings of the Oriental Ladies.
During the hottest months, when the thermometer is often at the height of 120 degrees Farenheit, the ladies wear a silken garment and slippers but no stockings. At night it is the custom to sleep on the terrace, at the top of the house, in the open air, the ladies, the men, the children, and the domestics, having each their separate terraces. Strange as it
may sound, it is by no means an uncommon may sound, it is by no means an uncommon
practice with the ladies in Bagded, in the practice with the ladies in Bagded, in the night clothes in cold water, which is slung up for this purpose, in skins, in order to keep it as cool as possible. Having done this they put them on, wringing wet, and again retire to their beds of palm branches, to enjyy refreshing slumbers. Notwithstanding this practice, rheunatism is rarely heard of in that country.

The Flemish Mode of Uuring Hams.

The ham is cured in brine and saltpetre and romatic herbs, viz:-a few bay leaves, wild hyme, a handful of juniper berries, and a little garlic. It is steeped for about six weeks, and then dried in the smoke of a common chimney, over a wood fire. When wanted
for dressing it is buried in the ground for for dressing it is buried in the ground for the addition of some aromatic herbs in the water. After boiling, the bone is taken out, and the ham is pressed under a heavy weight. As a corollary to the dressing, it may be added hat it offen happens that the ham when produced at the table, disappears at one sitting.

Phenomenon of lusects.
A short time ago in Dayton, Onio, after the amps were lighted in the evening, clouds of htue white fies resembling the "miller" duttered round the light, danced for a few moments, when each one deposited two egrs and expined They could have been gathered up a maskets full the neat morning.

Holden's Dollar Magazine.
The September number of this Magazine has just been laid upon our table. We have frequently noticed this work as the most commendable of our Monthlies at any price, and can only say the present number fully equals those of July and August. The view of Hastings is a most beautiful wood engraving the size of a full page, and the portrait of glorious Tom Moore, of ballad memory, just and excellent as a poitrait and engraving. Besides these there is a capital likeness of the celebrated Rev. Heary Ward Beecher, views of the Bishop Bridge Norwich, Stratford Church by moonlight, together with numerous humurous and fancıful engravings of a smaller size. As an illustrated Magazine it is unquestionably superior to any similar publication we ave ever seen, resembling some of the best specimens of English wood engraving. There is no necessity of particulaizing the different Tales, Sketches, Essays and Reviews of this number. The letter press is excellent as it ver is, and justifies the new title claimed for his Magazine by Mr. Holden-lhe Blackwood of America. There are not too many love tories though they are really " stories which re stories," and will do more to elevate the standard of American literature than an overlowing of romantic trash. This Magazine commands readersand will have them. Published by C. W. Holden, 109 Nassau street, New York.

Lhw Stave Disser and Jointer.
The Commercial of Wilmington, N. C. of August 3, gives a very flattering account of he operatiun of Mr. Law's Stave Dresser and Jointer, engravings of which have already appeared in our columns. The Commercial says :-
The Staves are taken as they come to hand from an ordinary pile of all widths, sizes and shapes, and being placed in the dresser are carried forward by the follower, under a pair of weighted levers, and between two setts of revolving cutters, which plane very smoothly both faces of the Stave at the same time The Jointer immediately follows, and reeives the Staves as they come from the dresser, they are then placed by hand in their proper position in the jointer and are carried in a curved line, by a dog attached to a swivel on an endless chain, pass the first saw, and are jointed on that side; the next saw stands some distance beyond on the opposite side, and by the simple moving of a lever, is placed before the Stare reaches it, to the proper width, and joints the side. The Staves are beautifully and handsomely dressed and jointed at the rate of 6 to 7 per minute.
Mr. Law deserves much credit for his persevering efforts in introducing it among

The Spider's Thread.

That any creature could be found to fabricate a net, not less ingenious than that of the fisherman, for the capture of its prey; that it should fix it in the right place, and then patiently await the result, is a proceeding so strange that, if we did not see it done daily before our eyes by the common house-spider and garden spider, it would seem wonderful. But how much is our wonder increased when we think of the complex fabric of each single thread, and then of the mathematical precision and rapidity with which, in certain cases, the net itself is constructed; and to add to all this, as example of the wonders which the most common things exhibit when carefully examined, the net of the garden-spider consists of two distinct kinds of silk. The threads formıng the concentric circles are composed of a silk much more elastic than that of the rays, and are studded over with minute globules of a viscid gum, sufficiently adhesive to retain any unwary fly which comes in contact with it. A net of average dimensions is estimated by Mr. Blackwall to contain 87,360 of these globules, and a large net of fourteen or sixteen inches in diameter, 120,000 ; and yet such a net will be completed by one species (Eperiaa poclica) in about forty minutes, on aa averabe, if no interruption occurs!
A new locomotive has lately arrived a Montreal from Duadee, Scotland, and roa 50 miles per hour.

Devonshire Butter. acellent excellent
fullows:--
Scald your cream in a zinc pall, over charcoal fire, but do not let it boil. When the cream is cold, say the next morning, take it off with the hand. Put the cream into a wide wooden bowl ; stir it with the hand for ten or fifteen minutes, and the butter will be the saine as out of a churn, and to be dealt with the same. A cow that will make one pound of butter per day, that is seven pounds a week, if the cream is scalded, will make nine pounds in the seven days. Great care must be taken not to let any dust rest upon the cream. Connoisseurs in butter making say that butter ought always to be churned in an apartment the temperature of which is between thirty and sixty degrees. At sixty cegrees, butter is obtained in the largest quantity, and at fifty-two degrees, of the bestquality. These facts are of high practical importance to those interested in dairy economy.

The Crops.
Throughout the whole United States there are the most flattering accounts of abundant crops.

The crops through Ohio are unprecedented. It is estimated that this State will yield this year, $25,000,000$ busiels of wheat, over ne-third more than ever before in one year Throughout England and Ireland, the crops ever looked better and there were no appear ances of the potatoe rot. Therefore we may not expect to export much during this and the next year. We hope not to hear people talking of hard times, when there is plenty in the land.

Winchester, Va. Iron Works.
The Viryiman states that the numerous wagons passing through that townloaded with pig iron, and the quantities of that metal deposited at their depot, show that the furnaces around Winchester are in full blast. It mentions foor works, and says that new life ha been infused within a few years into the iron business of Virginia.
The Hagerstown Herald of Freedom, speaking of a Horse Power, just built by Mr. Samuel H. Little of that town, which is designed for thrashing, separating and cleaning grain all at the same time ; says it is constructed upon the most simple principles, being free from complicated works, is not liable to become disorded, and will be a great deside:atum with farmers and others using thrashing machines. It will take from the sheaf two hundred bushels of wheat, and prepare it for he mill in one day, with the aid of butseven hands.

Branch Mint at New Orleans
The following is the amount of coinage at at the mint in New Orleans during the months of June and July. In June, Gold, 3500 Ea gles, $\$ 35,000$. Silver, 200,000 Half Dollars, $\$ 100,000-$ total $\$ 135,000$. In July, Gold, 2000 Eagles, \$20,000; Silver, 360,000 Half Dollars, $\$ 180,000$-total $\$ 200,000$. Total duing the mouths of June and July, $\$ 335,000$.

To Destroy Files.

Mix in a saucer, a table-spoonfull of cream, half as much ground black pepper, and a teaspoonful of brown sugar. This will attract and kill flies without danger of poisoning children.

The Legislature of Wisconsin has passed through every stage a bill exempting the homestead of a family trom sale on execution for debt. The area exempted, is torty acres in the country, or a quarter of an acre in the village. The final vote in the Senate stood 4 to 5 ; in the House, 33 to 25 .
On the 26 th ult., at New Orleans, a flatboat freighted with coal, when descending the river, was struck by lightning opposite the Bon-net-Carre, St. John the Baptist Parish, and sunk immediately, with three men on board. So sudden was the disaster, that no assistance could be rendered them.
Letters from Missouri state that the hemp crop will be very poor this season; and that although more ground has been sown this year than last, yet the amount received will be less.

Bramah's Planing machinery

(Continued from our last.)
"Fifthly, When I use upright shafts for the purpose of carrying the cutter frames as above described, I do not mean that the above described, I do not mean that the
lower end or point of such shafts shall come in confact with, or reston, the bottom of the step or box in which they stand; neather do I mean that such said shafts rest or turn on any stationed unaltered point at rest, but the pivot or lower point of the shaft shall actually rest and turn on a fluid body, such a oil, or any other fluid proper for that purpose, a considerable portion of which is always to be kept between the lower point of the siaf and the bottom of the step in which it works The said shafts may be either raised or de pressed at pleasure to any required altitude, by means of a greater or less quantity of the said fluid being confined, as aforesaid, between the end of the shaft and the bottom of the step. This device I deem of great conseqnence in the fabrication of all kinds of Ma chinery, where massy and heavy loaded upright shafte are used; and I perform it in the following manner; that is to say, the lower part of the shaft must be turned perfectly smooth and cylindrical to a height something above the greatest distance or length the shaft will ever be required to be raised or depressed when in use. This part of the sbatt I immerse or drop into a bollow cylinder, which fits its circumference near enough to allow freedom of motion, but sufficiently fitted to prevent shake. This cylinder I call the step cyliader, which must be of a length nearly equal to that of the cylindrical part of the shaft above mentioned, so that when the point of the shaft rests upon the bottom of the cylinder, the parallel or cylindrical part may be sometimes above the top as upper end of the step cylinder. In the upper end of this step cylinder I make a stuffing box, by means of a double cupped leather or other materials surrounding the cylindrical part of the shaft, in such a way as will cause the junction, when the shaft is passed through it, to remain water tight under any pressure that may be felt from the efforts of the fluid, retained above mentioned, to make its escape upwards through this part which I have called the stuffing box, when the shaft with all its load is passed through it, and immersed in the cylinder below. When this is done, the injection pipe of a small forcing pump, similar to those I use in my patent Press, must form a junction with the step cylinder in some part below the stuffing box; then the pump being worked, the oil or other fluid injected by it will, by pressing in all directions, cause the shaft to be raised from the rest on the bottom of the cylinder, and to be slided up through the stuffing box just the same as the piston of my patent Press; and by this means the shaft with all this incumbrance, and Whatever may be its weight, may be raised to any given point at pleasure, and at the same time it will be left resting on the fluid under it, whatever the quantity or thickness of such fluid may be between its points and the bottom of the step cylinder. By this means the shaft, with all its incumbent load as aforesaid, should it even amount to hundreds or thonsands of tons, can be easily raised and depressed to any required point at pleasure by the alternate injection or discharge of the fluidu used, exactly the same as performed by my patent Press as aforesaid; and at the same timat all friction will be avoided, except that of the stuffing box which will be comparative ly triding to that which would result from the reating of such a shaft on the bottom of the step in the usual way. Thus will be gained ine properties above stated; and in addition Whereto, I think it may be inferred, that provided the stuffing box is kept perfectly fluid tight, such a shatt thus buoyed u; by and and turning in a proper fluid, may contınue Working for years, or perhaps hundreds of years, without a fresh supply of oil, or what ever other fluid substance is found the most proper to apply.
*Sixthly, the material that is to be cut anad made true must be firmly fixed on a platforsm or frame, made to slide with perfect traith, either on wheels or in grooves, \&c., simalar to those frames in a saw-milr, on wibich the timber is carried to the saws.

These frames must be moved in a steady, progressive manner, as the cutter frameturns round either by the same power which to answer best in practice. This motion also must be under the power of a regulator ; so that the motion of the sliding frame may be properly adjusted according to the nature of properly adjusted according to the nature
the work. The motion of the cutter frames must also be under the cotrol of a regulator; so that the velocity of the tool in passage over the work may be made quicker or slower, as rnuch work may respectively require, to cause the cutter to act properly and to the best advantage.

T'o be contirued.)

For the Scientific American,

 of MaehCrasses.
Fifty years ago wages were no better, in act less than at the present day and the comforts and luxuries of life far more difficult to obtain. Articles needed by the poor man cost in those days of comparative freedom from machinery, from twice to three times what hey do now, and often more ; and you wil find that the greatest reductions are in those articles to which machinery has been most successfolly applied. There is no article of uxury or comfort to which machn.ied which the poor man cannot now get more for a day's labour than he could before such application of machinery. Salt is now less than one third, ron less than one half, shirtings and calicoes and cloth generaily from one half to oue fourth Pins, needles tions.
Forty years ago such articles of use or ornament as locks were scarcely known, and could be afforded by the rich only. Farmeis waggons were chiefly sleds, their houses cabins, their chairs stools and benches, bueaus pins drove in the wall or poles hung across, and their windows often an old shee or blanket. Nails and glass cost money in those days, and labor commanded little!
Since Machinery has been applied,-better roads, turnpikes, railroads, all of which are a species of machinery, have been construct ed. Steam has been made to propel the boat and the great ship, and to give power to the mill, to the jenny and the loom. Production in many articles has been more than trebled, and every thing the laborer needs has fallen, while his wages have raised or remained stationary. The clock which the farmer had not and could not afford, now adorns the mantel of his poorest tenant, and summons him to his meals.
There have been less improvements in agricuitural implements than in machinery Cor manufacturing purposes, but this is the age of improvement. Let Machinery be applied to husbandry also. Let bread and meat be as cheap as clothing, and if the distribu tion is not as equal as it might be, let us rejoice, that if the rich man has more, so also the poor man much more.
The cottager has now by the aid of machinery here, what great kings have not in Africa, and what the kings of England had not before the introduction of machinery. The great Alfred sat upon a three legged stool, while many an English or American tenant now re clines on a gilded sofa. If the poor of England and America are not so well off as they chinery that hinery is not much greater misery, and the reforms which they need are chiefly governmental and social.

Santonine.

This is an alkolold to which attention has been for some time directed by M. Voillemier as an anthelnintic, and with satisfactory results. M. Pinel, a pharmaceutist of Paris, has incorporated it in biscuits, in which form it is most advantageously administered.These biscuits have a pleasant taste, slightly bitter, and from three to four are the dose for an adult, and two for children. This dose is sufficient to expel the worms. This medicine does not produce colic or purge, but seems to act as a poison to the worms.
Iron jilipes are proven by the pressure of

Gutta Percha Thread.

The following is a description of the mode of making this gum into thread for the mak ing of paper and cloth, as recently secured by patent to Richard Brooman, of London, for the United States.
To prepare the gutta percha for being manufactured into thread it is mixed up with about three parts of caoutchouc for every six parts of the gutta percha, and when it is desired to have the thread of a particular color, as red or blue, it is mixed in kneading with coloring matter requisite for the purpose. The gutta percha having been treated in the foregoing manner, is converted into thread by the machine represented in Figs. 2, 3 and 4.

2^{304}

Fig. 2, is a vertical section of the machine; rig. 3, a plan view ; and fig. 4, a horizontal section on the line A B, of fig. 2, looking from below. a, is a tank, containing cold water ; b, a clinder firmly secured to the die-box c, by bolts, which serve to fasten both the cylinder and die-box to the top of the tank; d, a piston that works in the cylinder b; and e, a series of pipes placed in a row across the dic-box: the bore of these pipes is represen ted as being circular, but it may be square, or any form, according to the shape required to be given to the thread. f, is a pipe for admit300° team of a hightempe in order to he $300^{\circ} \mathrm{F}$.) into the die-box, in order
the same; and g, is a pipe for carrying off the the sam
steam.

The piston being withdrawn from the cy linder, and the roll of prepared gutta percha introduced, the piston is then replaced and forced steadily down upon the gutta percha, which, being suftened at the lower end by the heat of the die-box, escapes through the pipes e, in a series of threads. These threads, as they become cooled by the water in the tank, pass beneath a roller h, and are thence conducted to and wound upon a set of revolving reels i, mounted in bearings at the other end of the tank. The threads are only slighti stretched in the act of reeling on the reels but they are afterwards transierred to a second set of reels, and, when being reeled thereon, are stretched out by hand after the manner of hand spinning, that is, by working the thread between the fingers and thumb, to about four times their original length. The threads are then wound off on bobbins ready for use.
The threads thus produced, may be applied to the manufacture of piece goods, either by themselves or in combination with threads of silk, cotton, flax or wool ; and such combinations may be made by covering the gutta percha thread with silk, cotton, flax or wool, and then weaving it into piece goods, or by interweaving it, in the naked state, with other threads.
A strong and perfectly waterproof fabric may be formed by laying a number of gutta percha threadsside by side upon a foundation of cotton, linen, or other textile tabric, and passing them between heated rollers, which has the effect of cementing the threads firmly to the fabric and to each other ; and by using threads of different colours and sizes, every variety of striped patterns may be given to to the fabric.
An article resembling diaper or mosaic Work may be produced by laying gutta-percha threads of different colors in rows, one above the cther, and cemencing each row to the one beneath, by a solution of gutta-percha or transversely into sheets of the required thickness.

The gutta-percha threads may be u.sed in manufacturing of ribbons and other narrow goods, instead of the organzine silk now em ployed for the warp of such articles, especially galloons, doubles, and ferrets, used for bindings, bands, \&cc.
A paper, difficult to tear (and consequently suitable for documents exposed to much wear such as bills of exchange, share certificates \&c., and for wrappers and envelopes), may be made by interposing, between two sheets of pulp, threads of gutta-percha, laid cross wise, like network, an inch or more apart.

The Boomering.

This is the name of a curious instrument used as an offensive weapon by the blacks of Australia, and in their hands, it performs most wonderful and magic actions, surpassing our ideas of possibility, and would be perfect ly incredulous, were the accounts not certified by respectable and truthful witnesses. A late resident of that strange country, named Wm. Haygarth, has published a work in which he describes some of the feats performed by the Boomering. The instrument itself is a thin curved piece of wood varying from two to three feet in length and about two inches broad-one side is slightly rounded, the other quite flat. To be thrown it is held by the right hand with the flat side of the instru ment facing outwards. An Australian black can throw this whimsical weapon so as to cause it to describe a complete circle in the air or, to give the reader a better idea of what is meant, he would stand in front of a tolerajly large house, on the grass-plot before the door, and send his boomering completely round the building, from left to right ; that is to say, i would, upon leaving his hand, vanish round the right corner, and reappearing at the left, eventually tall at his feet. The whole circumference of the circle thus described is frequently not less than two hundred and fifty yards and upwards, when hurled by a strong arm : but the wonder lies wholly in its encircling properties, and not in the distance to which it may be sent.
When forcibly thrown, its course is very rapid equalling the speed of an arrow for about fifty yards, until it arrives at the point where it first begins to alter its course ; thence it continues its career at about half speed, and so gradually flies with dimınishing impetus, until, as usual, it returns to the spot whence it started. Its flight is not anlike that of a bird; and, occasionally, when great strength has been exerted, it hovers tor a few moments before it falls to the ground, and, continuing its rotary motion, remains in other respects quite stationary, much in the same way as a humming top when it goes to sleep on the ground. A deephurtlingsound accompaniee ground. A deenhurting sound accompanie
its course; during the whole of which it reits course ; during the whole of which it re-
volves with such rapidity as to appear like a wheel in the air.
By holding it at the opposite extremity, so as to bring the flat side on the left hand, a circle may be described in the other direction e. from left to right, for the flat must always be the outer side. But the prettiest evolution it can be made to perform is the following :It is thrown with a tendency downwards; upon which, after having gone some twenty yards, one point of it tips the ground, three times successively, at intervals of about the same distance, rebounding with a sound like the twang of a harp-string; meanwhile it still continues its circular course, until, as before, it returns to the thrower. This feat is more difficult to accomplish than that of sending it through the air, and requires all the thrower' skill : there is one precise distance, and no other, at which it should first strike the ground for if it does so tuo forcibly, its progress is wholly arrested; and if, on the other hand, it is rot sufficiently depressed and fails to come in contact with the ground, its courseis then completely altered; for, shortly after passing the place where it ougkt to have rebounded,
it begins torise, and towers up in the air to the height of about fifty feet, whence it falls down almost perpendicularly.

A new steam engine of 40 horse power has been erected at Joliet, Illmois, to drive the woolen factory there. The low state of water in the river has led to this, which shows the owners can work full tume.

Nacw Inventions.

New Locomotive for ascending Steep
 Grades.

During the afternoons of Thursday and Friday of last week, a very neat operative mode of a locomotive and tender, weighing 1300 pounds, was exhibited on a steep model railroad, in the lot between 22 d and 23 d streets, 4 th avenue, this city. The engine is differently constructed from any other, and its principal object is for the ascension of steep inclines, so as to lessen the great expense of deep cuts, \&c. in the building of railroads. We saw the model operate well upon an in cline of 276 feet in the mile. It was perfect ly under the control of the engineer during the ascent and descent of the grade, and it carried a load in triumph as heavy as could be done by any other engine of equal power on a level track, barring the increase of welgh in the load being elevated above the centre of gravity. The locomotive has four cylinders, two on each side, one above the other, The lower cylinders are the same as those in com mon use and perform the same offices. The upper cylinders are connected by the piston rod to cranks fixed on a shaft placed a shor distance behind the driving wheels and the crank works outside of the driver. The top cylinders are never used but for ascending inclines, and therefore are operated by sepa rate valves. On the shaft or axle driven by the top cylinders there are two bevel wheel fixed near the middle; these mesh into two other cog wheels fixed on two stubby verti cal shafts firmly secured to the frame of the engine by suspension sockets. On the lower ends of the said vertical shafts are friction wheels, one on each shaft. It will therefore be observed that when the top cylinders are in operation, the shaft by the bevel and co wheels keens the two friction whee's in tion running inwards to wards the centre, and as there is an elevated central rail placed on the incline, the locomotive is thereby enabled to climb up the steep by the friction wheels pressing and rolling on the central rail, upon the same principle that a mariner climbs to the summit of the royal-mast of a ship. It will also be observed that there is no possible chance of the locomotive running backward by any weight which it may have to drag, as each cog on the bevel wheels acts the part of a brake. We believe that we have described this invention in so plain a manner (which we always try to do) that every person who reads will understand. It is far superior to rack rails and cog wheels biting into them, which have been tried to accomplish the same object. The locomotive is the invention of Mr. G. E. Sellers, of Cincinnati, Obio, and the model is on its way to England. The only objection to it there, will be the great weight of the four cylinders placed on the outside, which from the great speed on English Railways, will give a dangerous rocking motion to the engine-but this can be avoided by placing the two cylinders inside of the wheels. The whole invention does great cre dit to Mr. Sellers and is another noble tribute of American genius.

New Machine for Straightening Card

 Wire.The Worcester, (Mass) Telegraph, -tates that Mr W. B. Smith of that place, hasinvented a new and valuable machine for straightening the wire used in the manufacture of cards, which perfectly straightens all wire for cards that may be put through it, at cne operation. By the old method the wire had frequently to be put through three and four times. Its particular mode of operation, and its difference from other machines in use; whether it is cheaper or not, we cannot teli, but will endeavor to describe it at some future time, as it is represented to be a very valuable invention.

A New Invention.

The St. Louis Era states that Mr. Gilbert The St. Louis Era states that Mr. Gilbert
Vanmarier is now in that city, with a planand Vanmarier is now in that city, with a planand
drawing of an invention for which he claims drawing of an invention for which he claims
great powers and advantages. It is to run a great powers and advantages. It is to run a
wheel by weights, which are adjusted by the wheel itself-thus making it a self-propelling machine, capable of running as long as the material lasts. He is endeavoring to raise means to construct a model, and solicits subscriptions for that purpose.
These anventions can surely be tried at but little expense on a small scale, and we would recommend all inventors to do this before they bring their inventions before the public. Real utility is now the order of the day and the plan we recommend will save all mortification it there is a failure, which is often the case.
mprovement in Nall Manuracture. A machine has been recently put in operaion by the British and Foreign Nail Company, London, which is highly spoken of by the English Journals. The nails are said to be of a first class description, possessing all the qualities of the finest hammer nails,
though produced at an expense which will enable them to be sold at a lower price thar is paid for the most common cut nails. It seems that the whole nail, head, body, and point is made at the same time, and simply by one operation of the machine The eatimates which are apparently prepared with great care, and founded upon the present prices of iron and nalls, show a return of more than 40 per cent
Now we want to know if there are any machines in America for making wrought iron nails, and if they are in operation. We have had not a few letters making inquiries about such machines.

```
sarinelnvention.
```

A lieutenant in the British Navy has invented a " Peril Indicator," to show when steamers or otherships are running into shoal water. -The apparatus consists of two bars, which project ten feet below the keel of the vessel, and as soon as they touch ground, they spring up on a level with the keel and ring a bell, which warns the engineer that he must reverse the engines and drive the ship astern.

LIST OF PATENTS
issued from the united states patent office,
For the week ending August 10, 1848. To David Culver, of New York City, for improvement in Registers for Hot Air Furnaces. Patented Augast 10, 1848.
To Walter Hunt, of New York City, for method of attaching a ball to a wooden cartridge. Patented August 10, 1848.
To Ezekiel O. P. Andrews, of Boston, Mass. for Spring Clutch applied to a Rudder head. Patented August 10, 1848.
To Walter Hunt, of New York City, assignor to George A. Arrowsmith, of New York City, for Loaded Ball. Patented August 10, 1848.
To James Renton and James H. Crane, of Newark, N. J., for improvement in the closed Bloomery Fire. Paterted August 10, 1848.

To Rıchard J. Gatling, of Murphreesborough, N. C, for improvement in machines for Sowing Seed, \&c. Patented August 10, 1848.

To Henry G. Clark, of Boston, Mass, for or improvement in Air-heating Stoves. Patented August 10, 1848. Ante-dated Feb. 10, 1848.

To A. G. Gilbert, of the Parish of Ascension, La., for improvement in arranging and combining Valves of Steam Engines. Patented August 10, 1848.

designs.

To F. W. Allen, of Waterford, N. Y., for Design for Stoves. Patented August 10, 1848. To Ezra Ripley, of Troy, N. Y., assignor to Johnson \& Cex, of Troy, N. Y., tor De sign for Stoves. Patented August 10, 1848. To Ezra Ripley, of Troy, N. Y. assignor to Johnson \& Cox, of Troy, N. Y., for Design for Stove Plate. Patented August 10, 1848.

INVENTOR'S CLAIMS.

Candies.

To John A, and Alfred F. Jones, of Lexington, Ky . for improvement in machines for Dipping Candles. Patented 16th May, 1848. Claim - Having thus fully described our can-dle-making machine, what we claim therein as new, and desire to secure by Letters Patent, is, first: The constructing the candle rods in two pieces and the manner of supplying them with candle wicks, substantially as herein set forth.
We also claim the use of the large vertical rotating reel, combined with the series of small rotating reels, suspended at the extremities of its arms and with the swinging frames that receive the candle rods suspended from the extremities of the arms of the small reels, arranged and operating substantially as herein set for:h.
We also claim the combination of the tallow box and dipping board, with the large rotating reel, the series of small reels and swinging frames suspending the candle rods, substantially in the manner herein set forth.
We a!so claim the connecting of the tallow box to the platform or base of the machine by means of hinges at its sides and ends, for the purpose of preserving the box in undeviating horizontal position, whilst it is being raised and lowered.

Churns.
To Willis H. Johnson and Thomas Lewis, of Springfield, Ill. for improvement in Atmospheric Churns. Patented 9th May, 1848. Claim.-What we claim as our invention, and desire to secure by Letters Patent, is the process of making butter by the combined action of the hollow rotary shaft and the radial arms as aforesaid, the arms agitating the cream and diffusing the air through the same simultaneously, as herein set forth.

NEW YORK, AUGUST 19, 1848.
Sclentific Economy and Polltical Eico nomy.
The political ferment among all classes and in all nations at the present moment, display not only excited and gnawing appetites for something novel, but affords opportunity to contrast the right with the wrong, and to exhibit by contrast the benefits conferred upon the world by physical, in comparison with political science.
It is not a little amusing to the man who pursues the "even tenor of his way," in the severe pursuits of abstract study, to take up a newspaper and read some of the numerous speeches and orations delivered at public meet ings. In them he hears of thrones toppled to the dust and of princes and potentates in ex ile. He takes up the map of empires and looks for vacant thrones, out he beholds thrones not yet emptied and Europe with no a king less than she had ten years ago. Loui Phillippe takes now his morning cup of cof fee as a private gentleman in England, but the Duke of Cumberland now drinks his Port in Hanover as king of the Hanoverians, Louis Phillipe is no less than what he has been, and the condition of all classes in Europe is no better at least, nor different from what it was half a century ago, so far as their condi tion relates to political science. It is very dif ferent, however, with respect to the condi tion of all classes now in civilized countries, from what it was balf a century ago, but the changes have been produced by physical science. No act of Legislature or Parliament ever invented a Printing Press, an engine, a steamboat, a spinning jenny, a loom, a rail road or telegraph, or made any improvement whatever in Science or Art ; and yet is it not to these discoveries that we are indebted for cheap newspapers and cheap reading, one of the greatest of blessings ? The mechanic at the present day wears a finer coat than Bluff Henry VIII. did, and the artisan of New York treads on a softer carpet than did old Queen Bess. Time and space, we may say, are annihilated by the steamboat and telegraph, and not a word about the way to do this can be found in either Smith or Montagu. We do not mean to disparage the services and acts of eminent statesmen, "they are all honorable men," but we feel it to be our duty to bring before the public now and again, the claims that science has upon the gratitude of ail men, and especially at this time when the world is drowned with the din of popular harangues and exciting orations that lead one man to look upon his fellow with ill will and hatred. The first great duty of one man to another, is to do unto h:m as he would be done by. The man who does not do this, should not find fault with others. The next thing is to acquirecorrect views upon all questions relative to the welfare of man generally, and then to seek by intelligence and moral worth to soar higher and higher towards "s perfection's sacred heights."
In reference to what political economists and scientific men (inventors) have done to better the condition of universal man, we may well say that the former have had all the glory, the latter have "done all' the deeds,"-political economy treats of something that may yet be done to better the condition of menscientific economy can proudly point to what it has done.

Mechanical Drawings.

In a paragraph, last wed, stating that Inventors and others who wished to secure patents, would find it to therr interest to have their business transacted through the Scienti fic American office, we omitted to state that Mechanical Drawings of all kinds are executed by us on moderate terms. Experienced draughtsmen only are employed by us.

Wooden Rallroads.

Mr. Clowes, of Sullivan County in this State, has published some essays showing the advantages and economy of building railroads altogether of wood-wooden rails and wooden sleepers. The opinions of Mr . Clowes are en sleepers. The opinions of Mr. Clowes are
good and worthy of attention. Where timgood and worthy of attention. Where tim-
ber is so abundant and cheap, as it is in our ber is so abundant and cheap, as it is in our
country, we think that railroads of this kind would not only be of great benefit, especially to our farmers in the rural districts, but would be of great benefit to our mechanics and merchants who dwell in our cities and villages also. The roads in our agricultural districts are not good, although the timber is abundant. Now just let some main tracks of strong, deep and broad wooden rails be laid through the most central and densely populated parts of the country, as auxillaries to the main lines of the iron tracks, and let broad wheeled locomotives, built upon the plan of Mr. Sellers described in another page of this paper, be placed upon the wooden tracks, so as to carry at a cheap rate the agricultural products of our farmers to market, and great benefits would thus be conferred both upon our rura and municipal population. It frequently costs more to bring agricultural products to marke than the original price at the farmer's dwel ling. Every improvemeat, therefore, that cheapens transit, is certainly a be nefit to every class of our citizens.

Thi sent to us from the inventor and patentee, Mr. John R. Warrington, of Damascoville, Ohio. It is constructed with a cast iron bed plate containing a series of inclined radial grooves in which are placed cast iron selfadjustıng sliding strippers, and a circular opening E, in the centre, placed over a cor responding opening in a bench A, as seen in the cut, in which is placed a tube that passes
through the screen C, attached to the lower through the screen C, attached to the lower side of the bench. The bed plate is enclosed by a cast iron dome-shaped curb D, contain-
ing a series of square holes for the projection of the upper ends of the strippers represented by F. The operator takes ears of corn and puts their small ends in the circular holes G G, formed by the lower ends of the strippers when the strippers are moved so as to suit the increasing diameter of the cob. As the cob descends the corn is taken off by the strippers and inclined back to the holes G in the bench t hrough which it falls upon the screen C, and passes off at the lowar end into a vessel, free from the chaff and dust. The machine is very simple, weighing only about five pounds, and can be sold for a trifling sum, and the inventor assures us that it will shell with one man from 4 to 7 bushels of corn per hour.
Application for rights and other particulars, may be made to the inventor at the above mentioned place.

New Volcano.

A volcano is stated to have broken out at Awargura, an island in the Pacific, in the Friendly Group, and about twenty miles east of Vavau. Violent shocks of an earthquake have been felt at Vavau, at intervals of fifteen or twenty minutes, and other phenomena of a volcanic eruption have been observed. A gentleman named Williams, visiting the spot a few months since, observed a little above the sea-level, a vast crater from which boiling lava issued in torrents and spread over the neighbering plains, but such was the violence of the action that he was obliged to return. without having ascertained the fate of the unfortunate inhabitants.

Information respecting Reaction Water To the Editor of the Sci. American Dear Sir-In some notices of our improvments in your journal, I observe that you have stated that we were the first inventors of the reaction water wheel. This may give a wrong impression to those who are not acquainted with the subject, though you no doubt refer red to the invention of our improvement
" Barker's Mill," is strictly a reaction wheel, and has been known for nearly a century. And reaction wheels in some respects similar to ours were invented in the United States previous to 1795 ; and they are mentioned by Oliver Evans in his "Millwright's Guide," published at that time. He speaks of them as being wasteful of water; but thinks they have a value on accsunt of their running under water.
Reaction wheels were used at Zanesville, Ohio, as early as 1807, and have continued to be used there without interm:ssion to this time : and previous to our invention, considerable improvements had been made in them, at that place.
Up to 1828 these wheels were uniformly erected on vertical shafts. The wheel consisted of a solid disc or head, attached to the shaft near the lower end ; and on the outer ve:ge of this disc a series of "buckets," so called, were placed round the whole circumference. These buckets were of considerable thickness, and made of such form as to leave apertures between them for the discharge of the water, in the form of a series of jets. The number of buckets and apertures in a wheel of the common size (6 to 8 feet diameter,) was usually from 12 to 18 . On these buckets was usually from 12 to 18 . On these buckets
an annular rim was attached, of equal outer an annular rim was attached, of equal outer
diameter with the disc and of such width as just to cover the buckets, leaving between it and the shaft an annular space for the admission of the water into the wheel. The wheel being placed under the penstock, the water was conducted into it from a circular opening in the latter, through a short cylinder, of a diameter equal to the inner diameter of the annular rim.
In the earlier wheels the angle of discharge of the jets or issues was intermediate between a tangent to the outer diameter, and a radius, or 45° from the tangent ; but in the later and more improved wheels the discharge was at angle (generally) of about 30° to 35° from the tangent. The general method was to place a the wheel beneath the penstock and supply it by passing the water downwards into it but in some instances the water was conduc ted in a covered flume and passed through the cylinder in the same manner, upwards into the wheel. In all cases, previous to 1828, the water passed into the wheel moving in a direction parallel with the shaft
Our irvention consists in the following changes and new principles. 1. A modifica tion of the wheel by bringing the angle of discharge nearly to a tangent direction, reducing he number of buckets and apertures to 6 or 7 , and in greatly reducing the proportionate width of the annular rim, in the first invention, and in still further increasing the inner diameter of the rim and changing the form of the buckets and issues as an improvement.2. In combining any number of those wheels on a horizontal shaft in pairs, for the purpose
of increasing power without enlarging the diof increasing power without enlarging the di-
ameter. 3. In passing the waterinto reaction wheels, (thus modified and combined, or the common) with a lively circular spiral, or vertical motion in the direction in which the wheel moves. 4. In placing reaction wheels (modified and combined or common,) in airtight boxes or cases called "drafts," by which they may be placed at any height within the height of the head of water without loss of power.
All the reaction wheels alluded to excep Barker's, are capable of running when immer sed; and a rise in the stream does not affect auy of them only as it reduces the head of wa er.
The economical value in the use of water of the different stages of reaction wheels men tioned appears to have been Barker's Mill about 50 per cent. (though estimated variously); the reaction wheel as first used in the United States previous to 1800, about 25 per
cent; as first used in Ohio, about 28 to 30 per cent, and previous to 1828 they were gradually improved to 40 and 45 per cent; our improvement as first put into operation, about 55 o 60 parcent ; as improved at the present time, 70 to 75 per cent.

Zebulon Patiker.
Philadelphia, August 4, 1848.

Angora Wool.

The city of Angora or Engurize, was formery the centre of the production of the celebrated Eastern shawls and carpets made from the silky hair of the Angora goat. About 200,000 persons, including the manufacturers and merchants, were employed, or derived a living from this business, and the yearly exports of the article amounted to about 30,000 pieces of one or the other kind. Some years ago the Turkish Government abrogated the law prohibiting the export of the raw material ; in consequence of this the population of this flourishing city has decreased considerably, for European capitalists have bought up the raw article in large quantities and produce an article superior to that made at Angora -Austrian and English speculators have hitherto been the principal operators.
In our country, where there is every variety o؛ soil and climate, we see no reason why we should be behind in the manufacture of fine articles of apyarel. At present there is not a fine shawl made in the United States.We could breed both the Angora goat and the silk worm to make the finest of fabrics. In our Southern States, there are fields more prolific of profits, than the cotton or tobacco. Who will break up the fallow ground ?

New Depository of Columbite.
From near Limoges, France, we have spe cimens of this metal. It is altogether a new locality, and the specimens furnished have a bluish black-colour, and a density of 7,651 . Its combination is columbite acid, oxide of tin, oxide of iron, oxide of manganese (a trace) and silica. It occurs in a yellowishwhite feldspar, in a quarry near Chauteloub [It will be remembered by many that Colum bium, of which Columbite is the ore, was first discovered in an oxide found in Connecticut, near the house of Governor Juhn Winthrop at New London, and by him transmitted to Sir Hans Sloane, by whom it was deposited in the British Museum. The same metal was afterwards discovered in Sweden and called tantalum, and its ore tantalite; France also, it seems, has now become another depository of it.]
A new locomotive lately put on the Portland Railroad, Maine, run at rate of 60 miles per hour for a short time between Saco and Port. land.
Unprecedented Demand for Old Papers. At the commencement of the present volume of the Scientific American we had nearly one thousand complete setts of the preceding volume on hand. Since that time we have had 500 copies of those setts bound, and the balance have been ordered by mail and sent in sheets. We are now obliged to inform our patrons that we are unable any longer to furnish complete setts in sheets, and that we have but fifty more copies left, which are bound. The price of the remaining fifty copies which are left will be herealter $\$ 3$ per copy (neatly bound,) or we can furnish a few more copies in sheets, minus Nos. 1, 10, 16, 17 and 46 , at $\$ 2$ per sett. All the numbers of the third volume can be had yet, at the subscription price.

THE

SCIENTIFIC AMERICAN.
Persons wishing to subscribe for thes paper have only to enclose the amount in a letter di rected (post paid) to

MUNN \& COMPANY,
Publishers of the Scientific American, New York City.
Terms.--\$2 a year; ONE DOLLAR IN ADVANCE-the remainder in 5 months
Postmasters are respectfully requested to ceive subscriptions for this Paper, to whom a discount of 25 per cent will be allowed.
Any person sending us 4 subscribers for 6 months, shall receive a oopy of the paper for the same length of time

Arts, Manufactures and Machinery.

Copying by Stamping'-Coining.-Milizary or
Plates.
This principle of copying is extensively employed in the Arts. It is generally executed by means of large presses worked with a screw and heary fly-wheel. The materials on which the Copies are impressed are most frequently metals, and the process is someiimesexecuted when they are hot, and in one case when the metal
solidity and fluidity
solidity and fluidity.
The whole of the coins which circulate as money are produced by this mode of Copying. The screw-presses are either worked by manual labour, or by water, or steam power.
Medals, which usually have their figures in higher relief than coins, are produced by similar means; but a songle blow is rarely sufficient to bring them to perfection, and the compression of the metal which arises from the first blow renders it too hard to receive many subsequent blows without injury to the die. It is therefure, after being struck, removed to a furnace in which it is carefully heated red-hot and annealed, after which operation it is again placed between the dies, and receives additional blows. For large medals, and those on which the figures are very prominent, these processes must be repeated many times.
Ornaments on military accoutrements and furniture ornaments are usually made of brass, and are stamped up out of solid or sheet by placing it between dies, and allowing a heavy weight to drop upon the upper die from a height of five to fifteen feet.
Buttons embossed with crests or other devices are produced by the same means, and some of those which are plain receive their hemispherical form from the dies in which they are struck.
The heads of several kinds of nails which are portions of spheres, or polyhedrons, are also formed by these means.
A process for Copying, called, in France, Clichee is applied to medals, and in some cases to forming stereotype plates. There exists a range of temperature previous to the melting point of several of the alloys of lead, tin, and antimony, in which the compound is neither solid, nor yet fluid. In this kind of pasty state it is placed in a box under a die, which descends upon it with considerable force.
The blow drives the metal into the finest lines of the die, and the coldness of the latier immedately solidifies the whole mass. A quantity of the half melted metal is driven about by the blow in all directions, and is retained by the sides of the box in which the process is carried on. The work thus produced is admirable for its sharpness; but it has not the finished form of a piece just learing the coining press. The sides are ragged,
and it must be trimmed, atd its thickness and it must be trimmed, ald its thicknes equalized in the lathe.

Wine Making in Portugal

The grape is unquestionably the finest fruit in the world, and America posesses a variety of climate and soil unequalled by any other nation, not only for the growth of the best apples, which she now produces, but also for the best grapes, with proper cultivation and experience. Central Florida especially is peculiarly adapted for the cultivation of the vine and we hope that due attention may be paid to this subject by the citizens of that delightful region. The following account of the Wine making in Portugal by a correspon-
dent of the American Agriculturalist, whll be dent of the American Agriculturalist,
found both interesting and useful:-

Season of the Vintage-Weather.-The time at which the vintage commences on the Douro, varies from the beginuing of Sep.tember to the middle of October, according to the nature of the season, whether wet or dry, hot or cold. As the rosy skins of the grape swell with luscious juice when approaching richness, they are daily watched -every change in the sky is observed-and the anxious vine grower prays that no rain may fall to rot the tender fruit, and fill threatening clouds appear, the careful and
more timid commence gathering their grapes
ere they are fully ripe; the wise and bold, ere they are fully ripe; the wise and bold,
with more sagarity, allow theirs to hang, in with more sagarity, allow theirs to hang, in
hopes of return of sunshine; but when the vintage has once commenced, time is invaluable to all. At this period there are employed in the whole Port-wine district, at least 20,00 Gallegoes and half as many Portuguese men, women, and children.
Gallegos.-The Gallegos are hard-working countrymen, generally honest, from Gall icia, in Spain, who leave their homes in search of employment in the Portuguese vineyards and larger towns, as porters, water car riers, and ther inferior grades of servitude. They are most parsimonious in disposition, often subsisting on a dried herring and a piece of black bread for each meal, and sleeping in some wretched hovel at night hardly fit for brutes. As soon as the vintage is ended, they return to their mountain homes, with five or ten dollars in pocket, which has been received as wages : or, perhaps, after years of toil, now and then an instance occurs, where one has accumulated $\$ 100$ to $\$ 200$, and retire his native land to end his days in ease.
The WinePress and Tonels.-The place in which the wine is made and pressed, is a lad in Portuguese a lagar. It consists of from two to three feet deep, formed of mas. sive stone work, laid in cement, being raised considerably above the ground, and sheltered by a roof, supported on masonry, or posts At one side of the tank, generally in a lower building, there are large oaken tuns (tonels,) often holding thirty pipes, so situated that the wine may fiow freely into them through a moveable gutter provided for the purpose. About midway above the tank, there is a heavy wooden beam, thrty or forty feet in length, confined at one end by a kind of socket, nearly on a level with the top of the tank, and weighed down at the other end by a large stone attached to a screw. When the men can no longer exact anything from the husks of the grapes, by treading, planks, or followers, areplaced beneath this beam, and by the aid of the large stone and screw the last remaning juice is pressed out.
While the men are carrying the grapes from the hill sides, and in emptying their baskets into the tanks, a boy stands, bare-legged, in the center, levelling the bunches with a rake, as they are thrown in, so as to form an even surface. As soon as the tank is filled with grapes, from twenty to forty men jump in, with their trowsers rolled up, and commence treading, or rather dancing, to the sound of fidales, guitars, fifes and drums, accompanied by the wild chorus of their own roices, for the space of two days and as many nights, with six hours rest between each eighteen, till the skins of the grapes are per. fectly bruised, so as to extract every particle fectly bruised, so as to extract every particle
of their color, and their juice is completely expressed.
Fermentation.-After the men retire from the tank, the juice, husks and stalks are allowed to ferment together from two to six days. In the mean time, the husks and stalke rise ot the surface of the liquid and form a compact mass ; the color is still further extracted from the skins; and the stalksimpart that astringent quality so much admired by all lovers of good Port wine.
Previeus to drawing off the wine from the press into the tonels, it is of a dark, muddy color, sweet, nauseous, and sickening. The eriod at which it is thus drawn. on, is the the wrat the rich and generous qualities At this critical moment, the future success of the operation almost entirely depends; for, in consequence of the richness of the Douro grape the fermentation is generally so active, that, if suffered to remain toolong in the press, it will be converted into a bitter liquid, unfit to drink, and of little or no value, except for making into vinegar. Therefore, in order to retain those highly-prized qualities, it is absoutely necessary to add brandy to the juice betore that stage which causes bitterness begins. Nothing, however, can enable one to judge of this critical point, except long experience and a perfect knowledge of the busiBr
be, added to the richer and finer Port wines, hich are intended for long keeping; for, from heir very nature, they will overwork them selves, and, by exhausting their own strength,
will ultimaiely be destroyed. 'T's true, the will ultimaiely be destroyed. 'Tis true, the
grapes from which the richest of these wines are obtained, when hung up in the sun to dry, become cumplete masses of saccharine matter, or sugar; bat this property is only possessed by those grown in positions most exposed to the sun, andafford that luscious and fruity flavor, of which no other wine can boast. With the poorer and more watery grapes, the fermentation, although less violent, will vork out the little saccharine matter they contain, which will entirely disappear, in time, and a light, dry wine will be formed, requiring but little brandy to preserve it for the very eason, that it possesses fewer good qualities preserve. Thus, the commonest green wine f Portugal will keep only a year without brandy, after which, it turns to vinegar.
It must not be supposed, however, that, because brandy is added to wine, it there remains; for, in reality it is lost by evaporation, in a very short time, particularly in hot weather, and consequently, when the wine is drunk, its strength has in no way increased, but diminished by age.

Forthe Scientific American.

The Salt Lake or the Rocky Mountains.
On one of the southern spurs of the Rocky Mountains, there is a valley full of geological wonders and curiosities, and is at present surrounded with a romantic interest, as being the place where that strange people, the Mormons, have taken up their residence. It is well hnown that a peculiar religion founded in the enthusiastic nature of a great number of men and women of all nations, separated the Mormons from all other people in the State of Illinois, where they once had a flourrshing colony. It is also well known that persecution on the one hand and bigoted religious feeling on the other, expelled the Mormons from the borders of our Republic. Taking up their march like the Israelites of old, they have become dwellers in a strange land. Wandering forth from the United States, they took up their line of march for the far, far West, and a portion of them have settled in a valley of Californa, in which there is a lake of salt water, so salt that it is impossible for a man to sink himself in it above his arm-pits, and after bathing there awhiie and drying himself he will be encrusted over. Into this lake there empties a fresh water river cold and sparkling from the snowy mountains, and which the Mormons have named the Jordan, in the striking coincidence of that river flowing into the Dead Sea. There is no rain in that part of the world, and the land is watered by turning the cooling brooks from their "water courses," among the fields. They have no need of ice houses as they dwell only four miles from the region of snow and the water does not get warm before it is dancing at their doors. There are also hot springs on the mountain, boiling hot continually, thus indicating subterranean fires which will one day banish the Mormon from that land by a far fiercer tempest than that enmity which drove them from our midst. The hot waters rush out in great volumes. The water has a sulphurous smell but is of a clear blue color, and the people go there to bathe for various diseases. There are but few natural fruits in the valley, but the soil will bring forth an abundance by good cultivation, and there the strange Mormon may enjoy the fruit of his toil in peace, if he be peaceful himself. From this religious outcast Saxon race there will spring a stock, which in the course of two centuries will be found to possess rone of the characteristics of their forefathers. Religion and climate produce strange mutations in the physical and mental economy of men.

Anew Operation for Dearness.

M. Bonnatout of Parıs, a military surgeon, gave an account before the British Academy of Sciences, at a recent session, of a method used by him in cases of deafness, to discover whether the nerve of sound has lost all its susceptibility. He has ascertained that the skull is a good conductor of vibration, and that it it be struck by vibrating objects, the nerve of the ear is acted upon whenever its

Wedicated to the $\mathcal{N} . Y$. Scientific American One of the finest instances of compensation in the world is tound in the perpetual renor ation and purification of the air we breathe. Nothing else more beautifully illustrates the saying of the wise Hebrew, that all the works of the most High are made two and two and set one against the other.
The animal kingdom lives by breathing as well as by eating. From man down to the sponge, all animals eat and breathe. By breathing we mean that they absorb oxygen from the air, and retura an equal volume of carbonic acid gas,-composed of the oxygen they had absorbed and carbon from their blood. This supplies their animal heat, it is in fact the burning of charcoal, as internal fuel. Men do this breathing in their lungs fishes in their gills, insects by little tubes; al creatures in some manner absorb oxygen, and return carbonic acid.
But carbonic acid is deadly poison to animal life. All animate things therefore are perpetually robbing the air of its power to give them life, and flling it with poisonou gas.
Mark now the beauteous arrangement. All vegetable things absorb this carbonic acid, and return an equal volume of oxygen gas retaining the carbon to the growth of then own substance. From the oak down to the minute conferva, known only to the micros minute conferva, known only to the micros-
copiceye, all plants have this only source of carbon, in the stores of carbonic acid in the air absorbed by the water and carried to the leaves, or growing tissue.
Again, all animal things live, directly or indirectly on vegetable things. Thus, then does the perpetual movement of nature run through its grand and simple chords. Plants are the food of animals, and purify the air for animals to breathe Animals live upon plants, and restore to the air the food for plants to feed upon. Who was the Master composer that arranged so wide and deep a har mony ?

The above artic
The above article is taken from the $P h i$ ladel phia Cit.y Item, " dedicated to the Scientific American," and the train of ideas so beautifully woven together was no doubt suggested by reading some article which appear ed in our columns. Truly may we say, He is a Master composer who has arranged in har mony all the works of Creation. Beautiful is the allusion of Sacred Writ to the period when this world was wheeled in harmony amid the music of the rolling spheres, "when the morning stars sang together." There is also another harmorious arrangement in Cr ation besides the adaptations of one thing to another, and that is, the exact position or col locations of created things, - their relative place as well as their relative nature. This view of the matter is handled in a most masterly manner by Chalmers in his Bridgewater Essay, but in no display of physical law do we find more to admire, in the wisdom and goodness manifested to man, than in the renov tion and purification of the atmosphere a elucidated by the above article.

New York, August 11, 1848. To the Editor of the Scientific American. Srr :-Will you allow me to ask through your wide spread journal, what the difference is in the rovement with regard to the fric tion of a pump box that is attached to a spear, (or what is sometimes called a plunger,) whe ther the pump remains stationary and the box or plunger moves up and down in the pump, or whether the pump is turned lower end up and moved up and down while the box or plunger remains stationary fastened at the bottom. The question is barely with regard to the friction around the inside of the pump where the stufing moves in order to raise the water. Your answer to the above to decide a dispute or difference of opinion between a sci entific West Point Engineer and a Mechanic, through your puper, will much oblige,

Your friend, A Mechanic
" Mechanic" is informed that there is no difference in the friction. Truly, he must be a very scientific Engineer who would assert that the turning a pump bottom side up causes an increase of friction between the tube of the pump and the stuffing box

TO CORRESPONDENTS
"G. E. of Philadelphia."-We do not know ow you may get one of the French Sewing Machines from London. We gave the place where they were sold and the name of the agent. The Cumbridge machine did not answer the purpse, and although we have seen two that operated very well in this city, yet we could not candidly recommend them. There is some little improvement wanted yet and thatimprovement is to fasten every back stitch by itself, for by the chain loop stitch, if one is missed in a seam, we would pity the por man and his pants crossing a fence, at a ball, or on general training day.
B. J. of Va."-We are afraid that your cylinder with the keys, will infringe on House's patent. The paper is prepared with a solution of the bichromate of potash and a very minute portion of the nitrate of iron mixed along with it. It is put on with a sponge-the paper made thoroughly damp not too wet,) and is of a light green color after the solution is put on. It is good to add a little ammonia to the solution. The color is the test for use. It must not be suffered to dry, or the current will not affect it. This you know, as it is the moisture that makes the paper a conductor.
"W. H. of Mass."-A ram will throw water 10 feet high with a two frot head, but the quantity discharged must be through a pipe a little mure than six times less in the bore than the supply tube, but you will perceive that he height to which the water may be thrown salso independent of this rule, for a two foot fall, if conducted in a tube for 100 yards, will certainly throw the water higher than if conducted only 20 yards. The weight of the descending column is the main point, and the load upon the valve must never be so great a to force the supply water to the level o the fountain, but as near to it as possible.

A R. of N. H."-There is a reported secret here for the speed'y drying of unboiled oil in paint. We are not positive of the fact. Litharge and sugar of lead are the best driers -turpentine destroys the lustre of the oil, as with oil it forms a soap, but little is required. "T. S. of N. Y."-A good overshor would be the best for you under 14 feet fall.
" J. A. S. of Tenn."-We shall notice your engine next week.

Princlptes or Zoology.
This is a work just published by Gould, Kendal \& Linculn, of Washington street Boston. It is not a mere book, but it is 2 worka real work in the form of a book. It is a record of the labours and discoveries of Professor Agassiz-(a name to sell any book,) and of A. A. Gould, a name not unknown to fame. Zoology is an interesting science and hele is treated with a masterly hand. The history, anatomical structure, the nature and habits of numberless animals, are described in clear and plain language and illustrated with innumerable engravings. It is a work adapted to colleges and schools, and no young man should be without it.

Illuminated Pictorlal Directory. This is the title of a new work-original in design and arrangement and executed in a manner creditable to the genius and skill of its designers and publishers, Jones, Newman \& Ewbank, Lithographers, No, 128 Fulton street, next door to ourselves. The plan of the Directory, is to give front views of the buildings and streets of the Empire City. Front views of the buildings on both sides of the streets, so plain and well colored are given on each page that any person may read New York as it is for 25 cents per number. To architects, merchants and strangers, it is one of the most original, entertaining and instructive of works.

A New The Machlie
A prize has been awarded to Mr. J. S Whitehead of Preston, England, by the Agricultural Socrety for a new machine which may be easily turned the whole day by one man, who also may fill the box, while a boy cuts the tiles off and carries them away. The frut of the boxis large enough to receive a die-plate, with seven 11.4 meh or five 2 inch tiles in width, and if placed one upon another twenty 11.4 inch or nine 2 iuch thes. It makes all descriptions of tiles.

Aduertiscments.

6f- This paper sirculates in every State in the Union, and is seese principally by mechanics and manufacturers. Hence it may be considered the best medium of advertising, for those who import or manufacture machinery, mechanics tools, or such wares Thefew advertisements in this paper are regarded with much more attention than those in closely printed dailies.
Advertisenents are inserted in this paper at the following rates

TERMS:-CASH IN ADVANCE.

Clark Selleck, Squire Smliec
Persons residing in the city or Brooklyn, can have
the paper left at their residences regularly, by send ing their address to the office, 128 Fulton st., 2 d floor 4 Twelve forse Steam Engine and Locomolive Boller for one haif their cost. $\mathrm{B}_{\text {ly new and in perfect ruaning order. Their cost }}^{\text {OTH }}$ when new was $\$ 1600$. The engine 1 a horizontal
one, of simpleconstruction, and is a spleudid piece
of work. The boiler is of the heaviest wrought of work. The boiler is of the heaviest wrought iron
made in the very best manner. and with proper care
will be warranted to last for lo jears. The cost of
fol fuel is 40 cents per day. The above are now ofter
ed for sale to close a concern fur $\$ 300$, cash. It is an opprtunity seldom met with. They may be sen
winh pe fect safet) to any part of the United States with pe fect safet, to any part of the United States,
and if desired, an engineer will accompany and put
themin operation. Apply to Scientific American MUNN \& COHice, New York.
au19 tf PREMIUM SLIDE LATHES, Plaving, Drilling Bolt and Geer Cutting Machines generally oo
hand and made to order at No. 42 Gold st. New york ted to give $p \rightarrow 1$ fect satisfaction, as no pains are spar ed to mike them perfect in finioh, sty le and work-
manship, and having many and decided improvemanshif, and having many and decided improve
ments are capabele of doing more and better wol
than tools generally offeced to the trade. than tools ge
aul 9 lm
GATCHELL'S IMPROVED PREMIUM HYDRALLC RMM.

 $\underset{\substack{\text { dress } \\ \text { aul } 9 \text { st }}}{ }$

Rick $\begin{array}{l}\text { A ent } \\ \text { New } \\ \text { Oork } \\ \text { city. }\end{array}$

T. J. WELLS,

MILLwRIGHT AND MACHINIST, Foot of 29th Street, N. R. New York. Manufacturer of all kinds of Saw Mill Machinery Shitting, Circular, \&c. : also, Shafting, Gearing an other machine, y
My Patent Imp
My Patent Improved Slitting Saw Mill, for slittin
Boards, Plank, \&c, may be seen in at the above-where all Planing, Sawing and Turn
ing is done in the best manuer and ou the most rea ing is done in the best manuer and on the most rea
aula 4t
sonable terms.

PREMIUM SLIDE LATHE.
THE subscriber is constantly bullding his inprov.

Coal.

$1 \begin{aligned} & \text { HE Subscriber has ronstantly for sale by the car- }\end{aligned}$ 1 go or ton allsizes of coal for MANUFActureras mines. Hazieton and spring Mouiltain, lump and
teanboat Coal. Tamaqua Chesnut for engues.-
Peach Peach Orchard and other red ash Coal. Mislothian
Virginis

HOLDEN'S IMAGAZINE. 64 Pages to each Number.
GGT This admirable monthly contains no less than
romil 12 to 28 Wood Engravings cach montb. Among ronn 12 to 23 Wood Engravings cach montb Amo
hnse of the septembernumber are views of: HASTIN SS, ENGLAND.
HASHU PYS BRIDGE, NORWH. BISH, PY BRIDGE, NORWIGH.
STRATFORD CHURUH BY MOONLIGHT. A GROUP OF ENGLISH FIIIERMEN.
PEV. THOMAS MOORE, (Portrait)
Besides these there are some seven or eight smanl
engravings. humorous, fanciful and sketchy. The the prof nision of embellishments, but ever reache the staldar, of its usual exrellence. It is decide
ly the largeet, cheapest and best mpgazine published the onf the year, makes no less than
fG8 Pages and $\mathbf{R O O}$ Rugraving Can chespness and real merit go fart thers. Now
is the time to subscribe, and commence the volume
of July. of July.
PREMIUM.
Each new subscriber, if requested of the Pub-
lisher, will receive a copy of the History of the
Hat, containing 54 pages and 3% Wood Engra'TERMS
1 copy, 1 y ear, \$1. 5 copie
pies, 15, in advance Invaria
Addiess, post paid,

TERMS.
scopies,
invariably.
Addess, post paid, CHARLES W. HOLDEN,
aul tf
lo9 Nassan st.,
Judson's Stave Dressing IMa-
chine.
Tis Machine, on which Letters Patent were
granted May granted May Ist, 1847, has been in successful
cperation for the past ear, and hundreds of thou
sands of staves have been dressed by it tis war spands of staves have been dressed by it. It is war
ranted to dress the same quantity of staves with as little power as any that can be started, also leave
the full thickness on thin edges and thin ends, and conform as near to the crooks and twis's of the tim-
eer as can be desired. The jointing of the machine ber as can be desired. The jointing of the machine
which accompanies it, has been subjected to the se-
verest test, and ponounced superior to that perforved by hand. Application for a patent on the Joint
mer has hen
ver Large quantitie. of Hogsheads and Shooks made
with taves dressed and jointed with their machmes With staves dressed and jointed with their machnnes
have been sold aud used to the entire satisfaction of the purchaser
For rightsand machines address the proprietors
st their Manufactory, Artizan street, New Haven st their Manufactory, Artizan street, New Haven
Connecticut, where machines in full operation may
be seen.
JUDSON \& PARLDEE.

To Cotton IManufacturers.

T w with his improved Cotton Willow. The fact of

 its being introduced into most of the best maill inNew England is the best proof of its exccllence It is extremely simple in its construction and wil
do more and bETTER work with a less expenditure of powerthan any other Willow; it prepares tha
cotton so much better than any other that there is cotton so much better than any other that there is
much less power and repairs needed on the suc
ceeding machinery. It is as safe from fire as a Card ard its form and action are such as to draw all ihe
aryings and dirt from the journals it will conve fyings and dirt from the journals; it will conve
the cotton to any desirable distance skort of
lt can be flacet
fean in the basenent of a mill or other poses, and wil blow the cotton into the rooms
pove. All necessary information given for placing and operation the machine in any peculiar or difit
cult situation.
ED MUND BACON Superintendent Quinebaug Manufacturing'Co.
Norwich, Conn.

Patent Agency.

HE undersigned having established permanent
agencies in tngland, Ireland. Scotland, France and Belgium (with the leading manufacturers and
inventors of which countries he is personally ac quainted, is enabled to transact all business entrus ted to his care with perfect safety and dispatch; and
such is the integrity, energy and legal ability of our
agents, that the patentee is, in ninety-mine cases out agents, that the pyatentee is, in nine ty-nine cases out
of a hundred, sure to reap a rich harvest from any
onvention which invention which passes through our hands.
Since the first of March last we have sold three Since the first of March last we have sold three
patents in Great Britain for $\$ 17,550$, and five in
irance for 38,000 francs. irence for $3,0,00$ francs.
For integrity, the undersigned refers to :--Horace For integrity, the undersigned refers to :--Horace
Greeley, Est. Tribune Buildings, New York. All letters must be rost pat, and addressed to
Clinton G. Gilroy, 71 Nassau st. New York. jy $13 \mathrm{~m}^{*}$

TAET'S PREMIUM LETTER COPYING PRESS.
The Subscriber continues to manufacture his Pre espectfully informs his fi, iends and the trade genesortment, which he offiers for sale at reduced prices.
Orders by mail will be promptly attended to Wozcester, Mass., April 11, 1848. G. C. TAFT,

Ballard's Improved Jack Screw

tented

HE advantages of this Screw for Stone Quarries,
Railroads, steam Boiler Builders, and for other purposes are superior to any other similar machine. The improvement consists in being able to use ci-
her end of the sci ew, as occasion requires. In is capable of fraising the heaviest Locomotive
with ease, being portable, strong aud powerful, and with ease, being portable, strong and powerful, and
aot likely to get out of order. Many Rairroad Companies and Boiler makers
have them in use, by whom they are highiy recommended. JACK SCREWS,
Of various sizes, powcr and price, constantly on
$\underset{\substack{\text { (20. } 7 \\ \text { mim }}}{\text { Eldridge street, near Division. }}$
Telescope for Sale
A good 66 inch Reflector, 5 inch aperture, of good

STEAM BOILER.
B antlenys patent Tubular and other Boilers
ande, hape or power, made to order, by
so
aus

Loap welded WroughtIron Trubes FOR TUBULAR BOILERS,
From 11-4 to 6 inches diameter, and any
length, not exceeding 17 feet length, not exceeding 17 feet. THESE Tubes are of the same quality and manu
facture as those extensively used in England,
Scotland, France and Germany, for Locomotive, Ma Scotland, France and Germany, for Locomotive, Ma T26 THOMAS PROSSER, Patentee,

Johnson's Improved Shingle

 MachineTHE Subscriber having received Letters Patent now ready to furnish them at short notice, and he would request all those who want a goo d machine
for sawing shingles, to call on him and examine the gles can be sawed in the same give. time than by
any other machine now in use. ugusta, Maine, Oct.1, 1847. J. G. JOHNSON.
GENERAL PATENT AGENCY.
REMOVED.
THE SUBSCRIBER has removed his Patent Agent The object of this A gency is to enable inventors to realize something for their inventions, either by the sale of Patent Goods or Patent Rights.
Charges moderate, and no charge willbe made un til the inventor realizzes something from his invention.
Letters Patent will be secured upon moderate terms. Applications can be made to the undersign
ed personally or by letter post paid.
au8 SAMUEL C. HILLS, Patent Agent.

Johnson \& Robbins,
 Consalting Eingineers and Counsellors
 GNEVL WOOD ENGRAVE

To Mill Owners

 an beend noito mation cencererning wheem had.
Patent Rights for different
$\begin{gathered}\text { Patent Rights for different States, Counties, } \mathrm{Sc}, \text { for } \\ \mathrm{m} 256 \mathrm{~m}^{*}\end{gathered}$
sale, as above.
Machinery.
$\mathbf{P}^{\text {ERsong residing in any parto of the United d Stateo }}$
 lishers of this paper. From ar extensive acquain-
tance among the principal machinists and a long ac perience in mechanical matter they have uncom-
mon facilities for the selection of the best machiner and will faithfully attend to any business entrusted
to theircare
MUNN $\&$ CO. a15

LAW'S
stave dresser and jointer. $\mathbf{T}_{\text {succesessisiligned hasation perfected and put is intave Nachine. }}^{\mathrm{HE}}$ It will Diress and sollit staves of on ali shapes,
kind and dimensions, and of promiscuous widths as Linds and dmensions, end of promiscuous widths, a
they come from a mixed pile, at the rate offrom
 are both dressed and jointed $\begin{aligned} & \text { very } \\ & \text { smoothy }\end{aligned}$ handsomely, bringing eache stave of equal widtha,
the two ends wirnour wastr or sock and perfectil to correspond with very twist or ocrok, and per withy
as ititle power in proportion to the work done, as any oter machin
ane rights (whii
For rights (which are indisputable,) or machines,
address, post paid.
N. B achin. LAW, Wilmington, N. C. N. B , A machine will be in operation in New York
or vicinity, in the course of the ensung month.
jyl 15 .

Stave Dressing Machine.
THE undersigned are manufacturing and have now
Stave operation, amachine for Dressing itived Staves, which will dress 126 hogshead or 170 bar
rel staves per hour, with onE Hokse pow ER, and with
ren

Itwilldress croork and wisDing staves to per-
fection, and leave the full thickness on those with fection, and leave the fall thickness on those with
thin edge, asideratum worthy of atention when
The machine is simple compact and durable, and has recei ved the approval on overy practarabie, and
that has witnessed its operations. We warrant it to perform fuLy EqULL to our representation and shall
be pleased to exhibit tit o all who may favor us with

TALBOTS PATENT REVOLVING BLIND HINGE.
Important to Builders and others. THEsk Hinges are for opening, closing, locking
interid compotetely reguating the blind upon the

L. T. Talbot, Taunton, Mass.

Agricultural Implements

Manufacture of Quills for Writing.
These consist usually of the feathers plucked out of the wings of geese. Dutch quills have been highly esteemed, as the Dutch were the first who hit upon the art of preparing them well, by clearing them both inside and outside from a fatty humour with which they are naturally impregnated, and which prevents the ink from flowing freely along the pens made with them. The Dutch for a long time employed hot cinders or ashes to attain this end; and their secret was pre served very carefully, but it at length trans pired, and the process was then improved. A bath of very fine sand must be kept constantly at suitable temperature, which is about $140{ }^{\circ} \mathrm{F}$.; into this, the quill end of the feather must be plunged, and left in it a few instants. On taking them out they must be strongly rubbed with a piece of flannel, after which they are found to be white and transpa rent. Both carbonate of potash in solution and dilute sulphuric acid have been tried to effect the same end, without success. The yellow tint which gives quills the air of age, is produced by dipping them for a little while in dilute muriatic acid, and then making them perfectly dry. But this process must be preceded by the sand-bath operation. The above is the French process.
Quills are dressed by the London dealers in two ways; by the one, they remain of their natural color ; by the other, they acquire a yellow tint. The former is called the Dutch method and the principal workman is called a Dutcher. He sits before a small stove fire, into which he thrusts the barrel of the quill for about a second, then lays its root quickly below his blunt-edged knife called a hook, and, pressing this firmly with the left hand, draws the quill briskly through with his righ hand. The bed on which the quill is laid to receive this pressure is called the plate. It is a rectangular smooth lump of iron, about 3 inches long, $1 \frac{1}{2}$ broad and $2 \frac{1}{2}$ thick, which is heated on his stove to about the 350th degree Fahr. The hook is a ruler of about 15 inches in length, somewhat like the patten maker's knife, its fulcrum being formed at the one end by a hook and staple, and the power of pressure being applied by the hand at the other end. The quill, rendered soft and elastic by the heat, endures the strong scraping action of the tool, and thus gets stripped of its opaque outer membrance, without hazard of being split. A skilful workman can pasi 2000 quills through his hands in a day of 10 hours.
They are next cleaned by being scrubbed by a woman with a piece of rough dog-fish skin, and finally tied up by a man in bun dles of one quarter of a hundred.
In another mode of dressing quills, they are steeped a night in decoction of turmeric, to stain them yellow ; taken out and dried in warm sand contained in a pot, then scraped by the Dutcher as above described. The first are reckoned to be the best pens, thoug the second may appear more beautitul.
Crow quills for draughtsmen, as well as swan quills, are prepared in the same way The quills plucked from well-fed living birds have most elasticity, and are least subject to be moth eaten. The best are those plucked, or which are spontaneously cast in the month of May or June, because they are then fully ripe. In the goose's wing the five exterior feathers only are valuable for writing. The first is the hardest and roundest of all, but the shortest. The next two are the best of the five. They are sorted into those of the right and the left wing, which are differently bent. The heaviest quills are, generally speaking, the best. Lately, steaming for four hours has been proposed as a good preparation.

The greatest degree of cold is obtained by the evaporation of liquefied carbonic acid gas, for the frozen carbonic acid thus afforded has a temperature of 100° degrees below zero.

Practical Receipts.
 Prepared by a German Chemist for the

 Scientific American.Fire-proof Clay ror Crucibles.
Gaffart says in No. 564 of the l'Institut, that a fre-proof clay can be artificially produced where nature does not furnish it. The want of durability in the fire is caused by the presence of metallic oxides which vitrify the clay in the fire. These oxides, such as lime, maghesia, oxide of iron and potash, can be removed by treating the clay with crude muriatic acid. It is worked with the clay into a thin paste, and after giving to the acid sufficient time to produce the necessary reaction, it is brought to a boiling heat and after the application of heat the liquid is permitted to run off. The clay is then repeatedly was hed with water and dried. Gaffart has made crucibles of a clay thus prepared in which he melted oar iron without changing or impairing them.

Method of removing the Stains of N

trate of Suver or Indelible Ink.
Wet the part stained with a strong solution of hydriodate of potash in water, which will convert the black oxide of nitrate of silver into the iodide of silver, which is of a light straw color and will not be noticed without close inspection.
The iodide of silver is soluble in a solution hyposulphite of soda, and by washing in a strong solution of it the iodide of silver will be discharged altogether.

Copying Paper.

Make a stif fointment with butter or lard and lampblack, and smear thinly and evenly over soft writing paper, by means of a prece of flannel, then wipe off the redundant portion with a piece of soft rag and dry it in a warm lace. Placeit on paper and write on it with style or solid pen. By repeating the arrang. ment, two or three copies of a letter may be obtained at once. This paper forms the ordinary Manifold Writer.

Tracing Paper.

Lay open a quire of paper of a large size, and apply with a soft brush a coat of varnish, made of equal parts of Canadd Balsam and oil of turpentine to each sheet successively and arg them on a line, and repeat the operation on fresh sheets until the proper quantity is finished. If not sufficiently transparent, a second coat of varnish may be applied as soon as the first has become quite dry. Then rub the paper with a mixture of equal parts of nut oil and oil of turpentine, and dry it immediately by rubbing it with wheat flour, then hang it on a line for 24 kours Both the bove are used to copy drawings, writings, scc. If washed over with ox gall and dried, they may be written on with ink or water colors. The paper prepared from the refuse of the flax mill, and of which bank notes are made, is also called tracing paper., and someti mes vegetable paper.

To Distinguish Oxalic Acld from Epsom Solt.
Taste the solution first ; Epsom salt is bitter, oxalic acid sour. 2d. Pour a little tincture of red cabbage into the solution, when if Epsom be present, the color will be unchanged-i oxalic acid be present, the color will be desroyed and turn of a yellowish shade. This is an easy mode of distinguishing between the two. Many accidents have occurred, from oxalic acid being given in place of salts, as the crystals of both look much alike.
When a person takes oxalic acid for salts the oest antidote is the white of eggs, it will immediately nullify the deadly effects of the acid.
Rule to Calculate the Horse Power of an Engine.
Multiply the area of the piston in square inches, by the average indicated pressure of steam in pounds. Multiply the product thus obtained, by the speed of the piston in feet per minute. The result is then to be divided by 33,000 , and $7-10$ ths of this quotient may be considered as the effective power of the en gine, deducting for friction and loss.
This is the simplest rule known, and will answer for all engines. Brunton's divisor however, is 44,000 , but 33,000 is the univer sal divisor in this country.
mechanical movements. Modification of the Windiass.

This cut displays a mechanical movement or conveying circular motion to distinct parts of the same shaft, and it also shows that from a circular motion a motion altogether different may be produced. The bucket that is lifted ir. a perpendicular direction from a well, moved by the rotary motion of the simple windlass, and it is not a little worthy of our admiration that these movements are all gov erned by mechanical laws, and where two buckets are required to be moved up and down in a well or a mine by the windlass, it is beautiful arrangement, common though it be which by one shaft and the same motion enables one bucket to descend while the other is ascending, so as to assist in the raising up the more weighty bucket. It will be observed, that by the double drums or barrels on the lower shafts, each bucket is kept free from touching the other, and the arrangement i principally to keep the ascending and descend ing buckets very steady-any person will see this, which is very necessary in mining ope rations especially

Circular from Rectilinear Motion.

It is well known that all the rectilinear mo ion produced from the pistons working in our steam engines, has to be changed into circu lar motion to propel shafts, \&c. This is ef fected by a crank connected with the shat and piston rod, or with the walking beam. Many a rotary engine has been invented to communicate by the directaction of the steam, a circular motion to the shaft and obviate all reciprocating motion. That there are many unsound ideas relative to the loss of power by the crank, is a well known fact to all practical engineers, but as it is our intention to trea on this subject fully at some future period, we forbear to discuss it at present. Suffice it to say, that the above cut explains a mechanical movement, which any one can understand, and which is as beautiful as it is of uni versal application.
To Discover if Bread is aduiterated with Alum.
The bread must be soaked in water, and to the water in which it has been soaked a little lime water should be added, when if alum be present the liquid will become milky, but if the liquid be free of alum, it will remain hmpid. It is however not a common thing to adulterate flour with chalk or alum in America, but with inferior grain which can only be detected by those who are practically acquainted with the business
To Detect Copper in Pickies and Green
Put a few leaves of tea, orsome of the pickles cut small, into a phial with two or three drachms of liquid ammonia, diluted with one halfthe quantity of water. Then shake the phial and if the most minute portion of copblue color.

How to Shoe a Vicious Horse.
A recent Contmental traveller relates the following ludicrous mode of shoeing a horse in Germany :-"As soon as breakfast was over I generally enjoyed the luxury of riding about town, and in passing the shop of a blacksmith the manner in which he tackled and shod a vicious horse amused me. On the outside of the wall of the house two rings were firmly fixed, to one of which the head of the patient was lashed close to the ground; the hind foot to be shod, stretched out to the utmost extent of the leg, was then secured by the other ring. about five feet high, by a cord which passed through a cloven hiteh, fixed to the root of the poor creature's tail. The hind foot was consequently very much higher than the head; indeed it was exalted, and pulled so heavily at the tail that the animal seemed to be quite anxious to keep his other feet on terra firma. With one hoof in the heavens, it did not suit him to kick; with his nose pointing to the infernal regions, he could not conveniently rear; and as a heavy hand was apparently pulling at his tail, the horse at last gave up the point and quietly submitted to be shod."

The Great Burman Bell.
Next to the great bell of Moscow, which weighs $444,000 \mathrm{lbs}$., is the bell of Mengoon, mentioned by Mr. Malcom, who describes the Burmese as very famous for casting bells. -Their bells are, however, disproportionally thick, but of delightful tone. The raised inscription and figures are as beautiful as any bells in the world. They do not fla:e open at the mouth like a trumpet, but are precise ly the shape of old globular wine glasses, or semi-spheroidical. There are several in the empire, of enormous size. That at Mengoon neai Ava, weighs more than 444,000 lbs. It is suspended a few inches from the ground, and like other great bells, is without a tongue.

Prescrving Pencil Drawings.

We have tried, says Dr. Holmes of the Maine Farmer, various methods of preserving drawings and writings, made by the common black lead pencil, but not with very good uccess until recently. By washing them over once with a solution of gun cotton in ether, we can nix them so firmly that India Rubber will not rub them out.

Animals which are destitute of eyes, are of inferior rank, or live under unusual circumstances, like worms.

This paper, the most popular publication of the kind in the werld, is published weekly At 128 F'ulton Street, \mathcal{N} ew York, and 13 Court Street, Boston,

BY MUNN \& COMPANY.

The principal office being at \mathcal{N} ew York.
The SCIENTIFIC AMERICAN is the Ad vocate of Industry in all its forms, and as a Journal for Mechanics and Manufacturers, is not equalled by any other publication of the kind in the world.
Each number contains from FIVE to SEVEN ORIGINAL MECHANICAL ENGRA VINGS of the most important inventions; a catalogue of AMERICAN PATENTS, as issued from the Patent Office each week; notices of the progress of all new MECHANI CAL and SCIENTIFIC inventions; instruc tion in the various ARTS and TRADES, with ENGRAVINGS ; curious PHILOSOPHICAL and CHEMICAL experiments ; the lates RAILROAD INTELLIGENCE in EUROPE and AMERIEA ; all the different MECHANICAL MOVEMENTS, published in a.series and ILLUSTRATED with more than A HUNDRED ENGRAVINGS, \&c. \&c.
The Scientific American has already attair ed the largestaic ulation of any weekly me. chanical journal in the world, and in this country its circulation s not surpassed by all the other mechanical aperscombined.
抒 For terms see inside.

