gicientific American.

THE ADVOCATE OF INDUSTRY, AND JOURNAL OF SCIENTIFIC, MECHANICAL AND OTHER IMPROVEMENTS.
tol. 3.
New 1ork, Tuly 29, 18 亿8.
2No. \%ร.

SCIENTIFIC AIMERICAN CIRCULATION 11,000

 published weekly. At 188 Fulton Street, New York (Sun Building,) and 13 Court Street, Boston, MasBy Mrunn \& Company.
The Principal Office being at New York

pactru.

ROGER THE POET'S WISH.

Mine be a cot beside the hill
A bee-hive's hum shall soothe my ear A willowy jrook, that turns the mill
With many a fall shall linger near.
The swallow oft beneath my thatch, Shall twitter from her clay-built nest ; Oft shall the pilgrim lift the latch, And share my meal, a welcome guest.

Around my ivied porch shall spring, Each fragrant flower that drinks the dew And Lucy, at her wheel, shall sing, In russet gown and apron blue.

The village church among the trees, Where first our marriage vows were giv'n With merry peals shall swell the breeze, And point with taper spire to heaven.
JAMIESS ON THE STORMY SEA. Ere the twilight bat was flitting, In the sunset at her knitting, Sang a lovely maiden, sitting Underneath her threshold tree And ere diaylight died before us, And the vesper star shone o'er us, Fitful rose her tender chorus,
" Jamie's on the stormy sea."
Warmly shone the sunset glowing, Swee ${ }^{\prime}$ ly breath'd the young flowers blowing Earth, with beauty overflowing,
Seemed the home of love to be As those angel tones ascending, With the scene and season blending, Ever had the same low ending,
" Jamie's on the stormy sea."
Curfew bells remotely ringing, Mingled with that sweet voice singing, And the last red ray seemed clinging, Lingering on tower and treeNearer as I came, and nearer, Finer rose the notes and clearer, Oh, 'twas heaven on earth to hear her"Jamie's on the stormy sea."

Blow ye west winds ! blandly hover O'er the bark that bears my lover ; Gently blow and bear him over

To his own dear home and me; For, when night winds bend the willow, Sleep forsakes my lonely pillow, Thinking of the lonely billow" Jamie's on the stermy sea."

H ow could I but list, but linger, To the song and near the singer, Sweetly wooing Heaven to bring her Jamie from the stormy sea.
And while yet her lips did name me, Forth I sprang, my heart o'ercame me-
" Grieve no more, sweet, I am JamieHome returned to love and thee"

True Virtue.

There is no virtue that adds so noble a charm to the first traits of beau'y, as that which exerts itself in watching over the tranquility of an aged parent. There are no tears that give so noble a lustre to the cheek of innocence, as the tears of filial sorrow.

IMPROVEMENTS IN

DIMINISHING DRAUGHT AND FRICTION ON CARRIAGES

Our readers may remember having seen accounts of a series of paddles being used on an endless chain moving over friction pullies along the side of a steam boat, as a superior mode of propulsion to that of the paddle wheel. We venture, however, to make the assertion, that to no mind but that of Mr. Wrigg, of Upper Holloway, England, was the idea ever entertained of propelling carriages upon the same principle. As we like to present things new to our readers so that they might see both the toolish and useful of modern as well as old invention, we request attention to this singular and lately patented invention, and we have no doubt but the query will be made, "how does such patents pay where so much is paid does such patents pay where so much is paid
for them ?" It is a subject of wonder to ourfor them ?
selves, but that they do pay is beyond a doubt. Thisinvention is alleged to diminish draught and friction in carriages and other conveyances, by constructing every description of carriage in such a manner, and providing it with such appendages that its weight shall always be borne by rails attached to the carriage, resting or moving on one or more of an endless chain of friction wheels caused to revolve by the traction or propulsion of the carriage, in a longitudinal direction, whether such carriage move on prepared or unprepared ground or not, and whether it is propelled by steam or any other power.
Fig. 1, represents a side e'evation of a carriage, constructed according to this invention a a, the carriage framing; C C, are solid cranked axles which revolve in brasses, $b b$; D D, are deeply flanged tumblers, made fast to hollow axles, $c c$, which encircle the solid axles C C ; E E, are links of the endless chain or series of railway friction wheels, F F , which with their pedestals, revolve round the tumblers D D; G G, is a frame fixed between the tumblers, to which the stationary rails, V , are attached, and which frame may be either flanged or plane. A side elevation of one of the axles, C C, together with transverse elevation of one of the tumblers D D, are separately given on an enlarged scale, in figs. 2 and 3. C, is the crank axle, and c, the hollow axle, which encircles it; D, is the
umbler which is firmly attached to the hol ow axie, $c ; d d$, are the flanges ; f, is clutch oy which the hollow axle, c, may be made fast to, or detached from, the solid axle C, at pleasuie; g g, are tappets attached to the tumblers, in such positions that as the tumbler revolves they catch into the links E E, of the endless chain, the links of which fit into the space between the flanges $d d$, and rest upon the surfaces $e e$; one one side of the inner flange, d, there is a friction drum h, which is in one piece, attached to the tumbler, D, and revolves with it ; from this drum a belt is carried to a level which is under the control of the conductor of the carriage, so that when the tumbler is freed from the main axle, C , by the application of the clutch, f, as aforesaid, the conductor can, by acting on the belt and friction drum, very quickly check the speed of the tumbler, or bring it to a state of rest. The space intervening between the two opposite sets of wheels berag appropriated to the accommodation of passengers or goods, or it the carriage is not designed to afford such accommodation to be employed in drawing or propelling passenger and goods vehicles, the intervening space may be occupied by the steam engine or other motive agent employed. M N T and V, are the parts of the machinery, by which the two parts of the carriage are coupled with each other, the run shown by the engraving being the fore part of the machine. M, is a pinion fixed to part of the machise. M , is a pinion fixed to
the underneath side of one of the cross pieces of the frame a, which is common to both; the action of which is prolonged upwards through the cross piece and terminates in a hand lever $\mathrm{N} ; \mathrm{T}$, is a cog-wheel attached to the top of the frame-work, a, represented by the engraving, into which the pinion M , takes ; V , is a circular ring levelled outwards, which fits into the corresponding level edge raised on the top face of the cogwheel, and is mac'e fast at top to the carriage frame, a; X X, are buffers which act against spiral springs, coiled around their respective shafts, which shafts play into sockets attached to the side of the frame

For Figs. 2, 3 and 4, see page 356.
The London Athenæum of a recent date, contains a history of the visit of a British naval officer and party to this remarkable body of water. The party traversed it in a boat and took various soundings in it, none of which indicated that unfathomableness which it is customary to attribute to this sea; the greatest depth being less than two hundred fathoms. Nothing else of interest can be elicited corcerning it.

RAIL ROAD NEWS.

Chicago and Gaiena Railroad.

Messrs. Ogden, and Turner, of Chicago. have returned to that place from the East, having the iron for the above road. A portion of it is already on the way, and it is contemplated to have 15 or 20 miles of the road, westward from Chicago, in active operation the present season. This work is one of no inconsiderable importance, not only to Chicago but to the Lake interests.
The earnings of the Long Island Railroad for the first nineteen days of July are 10,800 dollars, showing about the same results as during the same time last year.
The Macon and Western Railroad Company of Georgia have declared a dividend of $\$ 2$ per share.

A Church turned into a Railroad.
The ancient collegiate church of Edinburg, has been purchased by the North British Railway Company for a wagon shed. The tombs of the Scottish Queens, which will have to be removed, will cost the company seventeen thousand pounds.
So much for dead men's bones. A dead king is no more than new Railroad Car .

The telegraph from Portland to Bangor, is going rapidly forward. They are putting up the posts along the whole route. It is to be extended to Calais, during September, when the people of New Brunswick and Nova Scotia will probably be prepared to complete the last link to Halifax.

A Cat taking a Railioad Ride. A. remarkable joupgey was pertormed by a cat on the Auburn and Rochester Railroad a few days since. As the freight train east, stopped at the several way stations, the mew ing of a cat was heard, and on reaching Fish er's an investigation was gone into, resulting in the discovery that a cat was within one of the plate wheels, which were hollow, and having three openings about the size of a man's fist. Poor Puss had made her way in to one of these holes before the starting of the train, and being unable to make her escape had been carried fifteen miles, making in that distance 14,666 revolutions. On being relieved from her uncomfortable position she manifested no particular uneasiness, but took it very coolly. We venture to say, that none of her race have ever performed a similar feat.

Rock Sait for Horses.

For horses or cattle when tied up, a piece four or six pounds weight should be put in the manger or trough for them to lick at pleasure, as servants often neglect to mix it with their food: but when in the field or yard, one large lump in a bucket will be sufficient -Sheep should never be without several pieces in a long trough, so that several can get to it at the same time. The expense :s so very trifling, that the owners are amply rewarded by seeing their stock thriving so well.

Singular Restitution of a Bible.
During the war which resulted in our na tional independence, a band of English soldi ers landed at Elizabeth Town Point, marched to Elizabeth Town, and plundered the viilage. A Mrs. - was sitting at her window with an infant in her arms, reading her Bible. It was an old family Bible, contain ing the family records of births, marriages, deaths, \&c. This lady and child were shot through the window, the house plundered, and the bible carried away. Now, strange and the bible carried away. Now, strange
as it may seem, some eight years since, said as it may seem, some eight years since, said
Bible was returued to the descendants of the Bible was returued to the descendants of the family, after an interval of some sixty year
How it came, or where it had been, none of the family know.

Patent Offiee Business
We mentioner in our last that we should call attention in this number to the charges, \&c. preferred against the Hon Mr. Burke, the Commissioner of Patents, by Assistant Examiner, Dr. Clinton. As these charges are now the subjec of investigation by a \cdot Committee of the House of Representatives, we forbear to say a word or express an opinion relative to the one side or the other. We have always been guided by a strict regard for fair even-handed justice, and this is to be expec-even-handed justice, and this is to be expec-
ted from the Committee. Therr decision will ted from the Committe
be given in due time.
It will perhaps throw some light upon the subject to many to be informed that the charges against the Commissioner have beer twice already set aside in the Commissioner's favor, once by a board of Comm; ssion, and once by the Grand Jury. One of the charges against the Commissioner, is for allowing Mr. Vattethe Commissioner, is for allowing Mr. Vatte-
mere copies of patents to be carried to Eumere copies of patents to be carried to Eu-
rope. As many do not know who Mr. Vatterope. As many do not know who Mr. Vatte-
mere is, we would state that he is a French gentleman, and a devoted lover of science, and has presented valuable scientific works to a great number of our libraries. If the reciprocation of these tavors by our government was wrong, then the Commissioner has been the first to present his own charge, for in his Report to Congress on the 1st of January last, he tells the whole story himself. At present we will say no more upon the subject.

Old Chemical Theories Revived.
Some of our readers, may, perhaps remem. Some of our readers, may, perhaps remem-
ber the leading outlines of a theory which originated with the celebrated Berthollet whiist he joined in the retinue of the youthful conqueror of the Mamelukes-the theory of mass as influencing the piay of chemical affinities. The instance cited by the great French chemist it will be remempered, was the assumed decomposition of chloride of sodium by carbonate of lime in the Nitre lakes of Egypt, giving rise to carbonate of soda and chloride of calcium, the reverae of that which would
have been obtained in the laboratory,-a re. have been obtained in the laboratory,--a re-
sult which was accounted for on the supposult which was accounted for on the suppo-
sition that the large mass of carbonate of lime present in the banks of the lake enabled it to overcome the weaker chemical affinity of that earth for chlorine than of sodium for the same element. This theory has long been discarded, because it was thought to be disaccordant with the atomic theory, a necessity which we never could see; and now, we observe that M. Gerhardt has in the course of certain inquiries concerning the nature of subsalts, recognized the theory of Berthol let once more.

New Surveying Instrument.
Mr. Walter M Wilson, C. E, down in the old Bay State, has invented an instrument for surveying and taking distances, equal if not superior in every respect to that mentioned in No. 43 Sci. Am., as having lately been invented in Scotland. We shall give a more detailed account of this invention in another number.

Taking a Likeness.

The Reading Gazette tells an amusing stor) of a tall, green youth from the courtr, applying at that office to have his likeness taken. The editor sent him upstairs to the daguerreotypist; but, instead of stopping at the se cond story, he contınued on to the third and got among the printers: and upon asking whether they took likenesses there, and getting an answer in the affirmative, the "devil" proceeded at unce to the work. His face was carefully " rolled," and made as black as printer's ink could make it; but he "bolted," when t'ey attempted to put him "to press," and rushed inte the street in a most pitiable condition.
A new woolen factory has just been com pleted in Lapeer County, Michigan. It begins operations wit') nine hundred sacks of
$\left\lvert\, \begin{gathered}\text { Successfui Treatment of Cholera in Cir- } \\ \text { cassla. } \\ \text { At a recent meeting of the Medico-Botani. }\end{gathered}\right.$ At a recent meeting of the Medico-Botani cal Society of London, Mr. Guthrie read letters which had been received from Prince Woronzow, the Commander-in-Chief of the Russian forces in Circassia, and from Di. An dreosky, his physician, detailing a new and successful plan of treating this formidable disease. It would appear that the Prince's attention was first drawn to the matter by no ticing that a certain regiment of Cossacks suffered but slightly from cholera as compared with the other troops. On inquiry of the Colonel, he learned that the recovery of the Cossacks was attributed to the use of an elix ir called the Elixir of Woronege-a prepara tion of a somewhat quackish description, the principal important ingredient of which was naphtha. Dr. Andreosky, finding the quantity of elixir in possession of the Colonel to be but small, determined to try naphtha by itself. He first used in mild cases of the cholera and choluraic diarrhœa, proving successful with these, he administered it in the more found it effected a cure even during the most extreme collapses. The dose which he gave was from 10 to 15 and 20 drops in a glassful of wine, repeated if the first dose did not remain on the stomach, or if the symptoms required it, which was not often the case. The naphtha used in the Russian army is not the ordinary naphtha of the shops, but the mineral naphtha obtained from Beker on the shores of the Caspian. It should be of a whit or rose color, and used without previously un dergoing the process of distillation.

Bencfits or Walking.
Dr. Urwin, in his book on irental Diseases says: Last week I conversed with a veteran in literature and years, whose powers of mind no one can question, however they may differ from him in speculative points. This gentleman has preserved the health of his body and the soundness of his mind through a long course of muitifarious and often depressing circumstances, by a steady perseverence in the habit of walking every day. He has survived fur a very long period, almost all the
literary characters who were his contempoliterary characters who were his contempoaries, at which his own writings excited nuch public attention; almost all of them have dropped into the grave one after another while he has continued on in an uninterrupt ed course, but they were men of far less regular habits, and, I am obliged to add, of much less equanimity of mind; but the preservation of his equanimity has, I verily believe, been ensured by the unvaried practice to which I have referred, and which in others would prove equally available, if steadily and perseveringly pursued.

To Prevent Madness in Dogs.
On the under side of the tongue of every dog, running from the tip, where it is the largest, of an oblong form, down towards the root, about two and a half inches, where it
connects with a vein, may be found a whitish connects with a vein, may be found a whitish which is the virus or poison. In blood dogs it is always swollen, and in some way, eith. er by bursting or some other process, fills. er by bursting or some other process, fills.
the mouth with the virus which is always communicated to the wound inflicted by their teeth. The gland can be easily removed by slitting the skin about half an inch, by a lancet or penknife, and drawing it out with he fingers or a pair of forceps.
The preventive of all, however, is to destroy as many dogs as possible. For every ten dogs living, there is not one needed, and it is a divertation of humanity, to see lacies fondling and carrying lap-dogs in their gentle arms -The affection for the canine species ady-like, indeed.

Newspapers.

There are no newspapers in Syria or Per sia; and in Egypt, the Barbary States and other countries, including $40,000,000$ speaking the Arabic language, there is but one newspaper in the native tongue, and but three or four in the French or English, showing that there is nothing favorable in Mahommedanism

Remedies against Moths.
It is an old custom with some housewives to throw into their drawers every year, a num-
ber of fir cones, ander the idea that their strong resinous smell might keep away the moth. Now, as the odor of these cones is due to turpentine, it occurred to Reaumur to try the effect of this volatile liquid. He rubbed one side of a piece of cloth with turpentine, and put some grubs on the other; the next day they were all dead, and strange the next day they weie all dead, and strange
to say, they had voluntarily abandoned their sheaths. On smearing some paper slightly with oil, and putting this into a bottle with some of the grubs, the weakest were immediately killed; the most vigorous struggled vioently for two or three hours, quitted their sheaths and died in convulsions. It was soon buncantly evident that the vapor of oil or pirits of turpentine acts as terrible poison to he grubs. Perhaps it may be said that even this remedy is worse than the disease, but as Reaumur justly observes, we keep away from a newly painted room, or leave off for a few days a coat from which stains have been removed by turpentine, why therefore can we not once a year keep away for a day or two from rooms that have been fumigated with turpentine?
It is however surprising, how small a quantiy of turpentine is required; a small piece of paper or linen just moistened therewith, and put into the wardrobe or drawers a single day, wo or three times a year, is a preservation against moths. A small quantity of turpentine dissolved in a little spurits of wine (the vapor of which is also fatal to the moth) will entirely remove the offensive odor, and yet be a sufficient preservative. The fumes of burning paper, wool, linen, feathers, and of leather, are also effectual, for the insects perish in any thick smoke; but the most effectual smoke is that of tobacco. A coat smelling but slightly of tobacco is sufficient to preserve a whole drawer. We trust our fair readers will not scold us for thus affording their hus. bands or lovers an additional excuse for perpetuating a bad habit. The vapor of turpen tine and the smoke of tobacco are also effectual in driving away flies, spiders, ants, earwigs, bugs and fleas. The latter tormenters so abundant in Mexico.

Ivy on Bulldings.

It is a mistaken idea that ivy renders structure damp, and hastens its decay, on the contrary, nothing so effectually keeps the building dry, as may be seen by examining beneath the ivy after rain, when it will be found that the walls are dry, though everything around is deluged with wet. Its exaberant and web-like roots, issuing as they do from every portion of the branches, and running all over the surface on which it grows, bind everything together that comes within their reach with such a firm and intricate lacework, that not a single stone can be removed from its position without first tearıng away its protecting safeguard." In proot of this we refer to ruins of ancient castles and buildings; " for while in those parts of the structure that have not the advantage of this protection all has gone to utter decay, where the ivy has hrown its preserving mantle everything is comparatively perfect and fresh, and oftentimes the very angles of the sculptured stone are found to be almost as sharp and entire as when first

Nobles in a Quandram
Gen. Narvaez has summoned to his residence the Dukes De Oruna, de Medina Celı, and other leading nobles, to ask them for pecuniary assistance to carry on the governdress signed by them to the Q'eeen of Spain dress signed by them to the Q'leen
offering their "lives and property,"
The grandees, however, said they could not render any, and that, when the address was signed by them at the request of Narvaez
they did it only with the idea of giving moral they did it only with the idea of giving moral force to the government.

Death of Chateaubriand
M. de Chateaubriand, the celebrated patriot, author and traveller, (who was in this country half a century since, expired in Paris on the 5th of July. He has lift ten MS. volumes of remoirs. Coateaubrian l was a philosopher and a devout Christian.

Wm. H. Brown of this City, is building a mammoth Steamboat for the North River regular line - She is to be called the New World, will be 400 feet in length; her shaft, made of scrafs of wrought iton, welded together by great labor, is alreads finished.-It weighs $32,360 \mathrm{lbs}$.

Relief of Asthma.

Obtain some common blotting paper and saturate it tholoughly in a solution of Saltpetre (nitre,) and dry it carefully before a slow fire, or in the rays of the sun. On retiring to oed at night, igrite a small piece and place it, burning, on a plate ur piece of sheet zinc or
iron in your bed room. In many cases this iron in your bed room. In many cases this
has enabled persons painfully afflicted to enjoy their rest.

Tetegraphic Gambling.

The New Orleans Delta gives an account of a victim of a gambling house in that city, who, getting into a rage at his bad luck, knocked over the table, and discovered divers wires, by means of which intelligence was conveyed by a confederate to the player, in order to enable him to plunder his victim more effectually

New Crops.

New cotton was received at New Orleans on the 13 th inst. The sample consisted of two full blown bolls from a plantation at Bayou.Sara. Flattering accounts are received from every quarter relative to the abundance of the crops. The potatoe rot has appeared in some places but if flour is cheap, the wet and dear potato may be laid aside for a year to recruit itself.

Spots on the Sun.
A very large cluster of spots has just appeared, says a London paper, on the eastern margin of the Sun, which are moving onward toward the center of its disk. This cluster is visible to the naked eye, and is one of the largest ever observed, its length being calculated at 140,000 miles, and its breadth at 20,000 miles.

The cotton mills are suspending work in every direction. Besides a number in New England, all in Delaware countr, Pennsylvania, several at Manayunk, and one at Phœnixville have stopped. The Phœnix nail works, that were recently destroyed by fire, will not be rebuilt at present.

A gentleman has been engaged by the East India Company to proceed to China and procure for them live specimens and seeds of the Tea plant, for use in their Tea plantations in the Himmaleh Mountains.

Great numbers of sheep and cattle have lately been shipped from New South Wales to New Zealand, in which latter colony several flock-masters have already began to grow wool for exportation to England.

A tenth planet, belonging to the group which revolve between Mars and Jupiter, has ust been discovered by Professor Kaiser, of Leyden. It is calculated that this planet performs its revolutions round the sun in three years and eight months.

The telegraph charges in England are but very little higher than those of the United States, and are said to be so much more correct, as to be worth the difference. We musn't be beat in the lightning line no how.

The Southern Telegraph wire having been relaid in the River despatches are received at the New York Office direct. The wire is co vered with Gutta Percha, which works suc cessfully in water as a non-conductor.
Several farmers in the vicinity of Boston have dug up their whole crop of potatoes, in the hope of checking the disease, which has appeared among them
Considerable quantities of the gum gathered from the cowrie, or New Zealand pine-tree have been ship ped to the United States by the settlers at Auckland and Nelson.
Specimens of trystalized salt, from the Great Salt Lake of California, have been re cently dep sited in the Congressional Library Roorn at Washington.

Novel Method of Construc

A nev idea has been started by Mr. Gas. pard Cipri, surveyor of the Paris and Orleans Railway, and which he terms the " hydroelectric process, for feeding the combustion in the fire places of locomotives and steam engines" Having been aware of the loss of heat in the locomotive as at present constructed, he studied carefully the necessary means of preventing this, and found, as he says, by the aid of a very simple process, that all combustion can be fed by the vapor of water, in place of the air of the atmosphere. The following are the scientific facts on which the prineipl s based

1. The difference between the vapors and the gases having been falsely given, for a long time, by the facts constantly exhibited in the physical sciences. Thus the bodies which are present in a state of gas, are the bodies in state of vapor, and vice versa
2. The vapor of water, or rather the gas of water, arising from two volumes of hydrogen, and one volume of oxygen, is a fluid which powerfully developes combustion, either by its chemical properties, or by the proportion of volume in which the mixtures of the two gases are present, which form the vapor of water.
3. The vapor of water, in coming into contact with electricity, undergoes almost a dis. junction, or a repulsion, between the two gases which compose it. By an unknown cause, this repulsion between the elements of the vapor of water is alcnost necessary, in order that this same vapor might become a powerful supporter of combustion.
4. Ignition, or the flame which arises from the combustion of a body, is an electrical phenomenon.
To carry out these principtes, he proposes to construct his boiler grate in such a manner, that a current of stean can be passed underneath the grating, and the communication with the atmosphere be cut off after first lighting the fire; when the combustion will be fully supported, and much greater heat developed. He considers the following advantages will be obtained
5. No tender is required. 2 The fire place is in the centre of the liquid mass, which is required to quickly heat. 3 . The boiler, with all its heated surfaces, is placed between the fire place and the warm water, which serves to supply it. 4. The water, which supplies the wants of the boiler, by surrounding these heated surfaces, completely absorbs the caloric, which in the locomotives in actual use, is lost in the air. 5. No firemen are required.
He also proposes to use coalinstead of coke, and all the gaseous products to mix with the steam, and be condensed in a reservoir which surrounds the boiler and supplies it; while the volatile oils contained in this fuel form a useful greasing substance to the moving parts. From the application of the smoke and gaseous products of combustion as a moving powr, he assumes the following advantages -
6. The employment of the tension of the smoke and the gaseous products of combustion, so that they mix with the steam, and assist to put into movement the engine by means of their tensile force.
7. Economical employment of all the heat, which, in the locomotives at present in use, once developed, passes off in complete loss in the air, by passing through the sides of the fire place and the tubes.
8. Suppression of chimney; whence it follows, that tunnels and bridges might be constructed of less height, and therefore at a diminished cost.
9. It becomes impossible for the tubes of the boiler to be stopped up. The inventor considers his new system produces a saving of expense of at least one-third over that at present in use.

We apprehend that Mr. Cipri's invention will end in vapor. In the first place he uses coal to raise up the steam, then he uses the steam to supply the place of coal, else he could not do away with the " tender." The condensing of the gaseous products to save the oil contained therein, for lucubrative purposes, is certainly a brightidea. Why not consume the gaseous product to propel the engine and
sing apparatus? The idea of using steam to feed combustion is just as sensible as using
fire to extınguish fire. The London Mining Journal says, that if Mr. Cipri's invention is carred into effect, " it will produce a revo lution in the principle of the locomotive."We have no doubt of this. It will produce one revolution in a locomotive and then a dead halt. Of the many plaus proposed fur locomotive propulsion, we know of none to supersede the plans at present applied, unless hot air be made to usurp the place of steam the water cistern would then be laid aside and this much dead weight saved. We had thought that the tension of smoke as a propelling power, was now obsolete. A few years ago, a gentleman in this city spent some thousands of dollars in vain upon such a project. He secured a patent which cost him $\$ 500$ as a fee he being an English Engineer, and it is no worth a single straw.

For the Seientific American
 lectricity and Color

If white paper is moistened with a solution of the cyanide of potassium and a very mi nute portion of the salts of tin in a liquid state, and then submitted to the action of galvanic battery, the paper will become a beautitul blue. Betore submitting the pape to the action of the battery but prepared with the cyanide, it is a light green, but the galvanic current instantly changes this color to the blue. This is the principle of Mr. Bain's Printing Telegraph, and for which he has ap plied for letters patent at our Patent Office which application is now the s ibject of a controversy with a Caveat of Professor Morse's and regarding which there have been some strange rumors in Washington about the secrecy of "the confidential archives." In 1832 a Mr. Davy, in London, proposed a prining telegraph upon the principle of the cur rent changing the colors of chemically prepa red fabrics. This is one evidence of the agen cy of electricity in the art of printing.
There is a certain style of calico printing founded upon a like principle,-it is named " steam and spirit colurs." It is nothing more than to print certain substances upon cloth. in which a portion of the salts of tin forms a leading ingredient, and afterwards roll the cloth upon cylinders, or steam cans, as the are called, and submit the goods to the action of steam heat for some hours. When the goods are printed the colors are scarcely discernable, but when they come out of the steam cans they are bright, full and beautitul Every color, and every shad ϵ of color, is produced in this manner. We believe that elec tricity, (which we know is greatly developed in steam,) is the great agent in the raising of spirit colors. In fact, the whole science o electrotyping, (the deposition of motals from therr solutions by galvanism,) has a strong family resemblance to the electro telegraph printing; the cyanides are used most advania geously in both processes. In the steam co lors of calico printing - the same agent is un doubtedly working mysteriously beartiful in the steam can and from a dull almost imper ceptible blotch on the pieces when they go in the steam box, we behold them coming out clear and brilliant. The same agent undoubt edly presides over the manipulations of the dyer, but there are very few operatives who are acquainted with abstract science, although
the majority of them well know that according to the degrees of heat to which a catchecu brown may be submitted, a difference of twenty or thirty' shades is perceptible, and although they all well know that if chrome yellows are submitted to the action of hot lime water, a deep orange is produced, yet there are few who are aware of the oxidising process in dye ing similar to the preparation of sulver solu
tions for electro gilding. ions for electro gildıng.
The process of steam colors in printing, is applied to every kind of fabric, but perhaps it so advantageously and beautifully applied as to the preparation of warps for carpets. The invention of Whytock and the production of the finest vel vet carpets of every pattern and by the use of only one kind of weft, instead of one for every color as in the old process, is a very simple affair. The pattern of carpet is printed like calicoes, full on the warp, rolled upon a roller and then submitted
to the action of steaming. After this the warp is put in the loom and the weaver just weave his cloth with two treadles like plain weaving.

R. Bartholomew.

For the Scientific American

A horse power is usually taken as being equal to the raising of 33,000 pounds one foot minute, or, if the measure of speed be taken in seconds, it will give 550 pounds raised one foot a second, for a horse power. Some the English engines are now calculated by a divisor of 66,000, and thus mistaken views have been conveyed and imbibed regarding heir power.
The power of mill-gear or machinery is es imated as equal to that of raising any given number of pounds, one foot per minute or per second.
To find the stress or strain upon a belt a any time, divide the given power required to operate any given complement of mill-gear and machinery, by the number of feet per second, or per minute, (as you choose to reckon it) that the belt runs, and the quotient will be the number of pounds per second or per minute of stress upon the belt. This amount divided by one or the other of the foregoing numbers (as the case may be,) will give the horse power of the belt.
Example: Suppose the power found by a dynanometer to be equal to 66,000 pounds raised one foot per minute, and the belt to run 3000 feet a minute, what is the stress upon the belt?
The 66,000 divided by 3000 will give 22 pounds stress only, or if the belt runs 300 eet a minute, the stress would be 220 pounds.
This mode of calculation will answer well nough for common purposes, and it will be observed that there is economy in running belts at a high velocity. There may be a greaer loss in tear and wear, and the maximum velocity for profit is certainly desirable inforation.
To insure the most economical use, and ongest durability of a belt, it should never be loaded with more than one half the extreme wer that it would carry.
A belt of $2 \frac{1}{2}$ inches wide, running at a ve locity of 1200 feet a minute, will be well adapted to carry a horse power; and a belt of 5 inches wide of similar material and speed may be rated at three horse powers. For as the width of belt is increased, its speed is increased more than in a given ratio.
The reason that a belt of double the width of another, will sustain more than double the stress, may be that a belt first fails at its edges, and a belt of 5 inches wide has no more edges exposed to wear, strain, and consequent fai ure, than one of half the width.

or the Scientific American
 Electrie Light.

I have long since thought that a useful light might be made by the multiplication of suc cessive sparks from an electric machine or battery. I have not seen a galvanic battery which would afford a spark sufficiently brilliant for my purpose, and the expense atterding the use of such a battery would be objectionable; unless Mr. Staites or some late invenor has overcome that difficulty, I cannot apply it to my purpose.
I find the desideratum described in your 2d vol. No. 40, page 316, constructed by Mr. Monson, Paris, yielding a spark nine inches ong and not affected by Hygrometric chanees. I propose to put a machine of that description in motion by clock-work, by self-created electro magnetic power, or otherwise, and pass the sparks in quick succession (a brake being used) over one side, and then the then of a glass plate or plates (ten feet square if you please,) both sides of which are dotted ver with metallic points-near enough togeher to attract the electric fluid from one to nother in succession-causing a spark at each interval between the matallic dots, by which means an infinite number of sparks can be 1 roduced at every instant of time. Non conducting projections from the surface of the plate, and between the lines of points, the use of minute glass tupes, exhausted receivers, scc. will readily occur to your mind. F.S.

Reprove thy triend privately ; commend
im publicly

Chinese Dellcacies.
Oils are oxtracted from the olive, sesame cotton seed, several kinds of cabbage, pork fat, and fish, which together with the castor oil, are all used for culinary purposes. The use of the latter for any purpose other than a medicine, is, I should suppose, peculiar to the Chinese; it is expressed through a cullender, and, when tresh, has not the aroma that it afterwards acquires. Ducks' eggs are in great requisition, and in order to meet the demand for them, great numbers are kept on all the navigable rivers and canals, in floating poultry houses. They are under very remarkable discipline, they go out to feed, and return home with remarkable expedition, and at a word from their masters will do almost anything that can be required of them; he stands meanwhile at the entrance, and flogs the straggler and rewards the foremost. They are never allowed to hatch their own eggs, almost all towns having ovens for that purpose. The eggs of ail birds are used, but those of the ducks are salted in the shells, as is the flesh also, for sea stores-Considerable quantities of fish are salted and dried. The collared eel is very fine, but ṇone are thrown way, even the blubber is eaten, as are watersnakes, frogs, toads, shell fish of every species, tortoises, stails, gelatinous worms, and izards. The various grains are used in making unleavened bread, (not unlike a muffin in appearance,) cooked on the side of a p(rt 1 ble oven, and generally by steam, together with pastry of divers sorts, among which are some very similar to Europeans, as wafer, sponge cakes, \&c., which would be palatable enough were it not for the introduction of a lump of pork fat, discoverable only by the uninitiated, at a most disagreeable period. The introduction of pork fat into these articles of Chinese gastronomy is unive:sal and disgusting. Imported are ginseng, a kind of liquorice, which was formerly a royal monop, and could only be grovn on the emperor's property in the north, but has latterly been introduced from Canada, and some parts of the United States; and birds' nests of the sea swallow, a transparent substance, in appearance somewhat resembling a gum, rick oned a great deficacy, and sold at very high prices. I have seen four or five, when very clear, weighing only three or four ounces each, sell for thirty dollars. They are brought from the islands of the Eastern Archipelago, as likewise are beches de-mer, or sea-slugs, brown-looking snails, about six or seven inch es long.-They are an expensive luxury, a are the exotic dainties of roes, sounds, tripe fins and tails of sharks. "In fact, a Chinaman will eat ever.ything but his own father " -Forbe's Five Years in China.

Induence of Nature.

All men need sometimes to be alone, and to be quiet. It is good for one to open his eyes and heart to the influences of the natural world. In the solitude of nature, man's yoice is silent only that dıvine voices may be heard There, if it is sometimes difficult to do good actions, it is also difficult not to think good thoughts. What we think of is demtermine very much by what obtrudes itself upon the senses. On the wharf, or the exchange, with the sights and sounds of tusiness on ev ery side, one's thoughts turn naturally into the channels in which flow the thoughts all around him. In the country, what one hears and sees suggests entire'y different medita tions. The universal harmony stills its fret ed passions. All the objects which the eye rests on, speaks of infinite wisdom, and providential care. The atmosphere which he breathes is as healthy for the soul, as it is for the body. He goes out at " eventide, to meditate;" and heaven and earth transfigured as their true glories are revealed, he returns feeling that he has been standing in the tem ple of the Most High.

A Voluntary Tax.
Scotland only pays half a million a year o the income-tax fund, while England paya four millions; yet her free church can raise annually $\boldsymbol{£} 350,000$ for the advancement of Christianity, while wealthy Englard, in proportion to her abilities as compared with those sum.

2New Inventions.

Locomotive for Inclined Planes
We have seen a sketch of an improved L comotive for ascending inclined planes, the invention of Mr. S. A. Beardsley, of New York State, which promises to be of much utility The novelty consists in the application to the rails of levers, worked by the cranks of the driving wheels. We shall not now enter in to a further account of the invention as w expect soon to publish an engraving of the same, with a full description.

New Grates for Stoves.

Mr. Rosewell Hilson, of Halfmoon, N. Y., has invented a singular grate for stoves which he has recently patented. It consists in the construction and arrangement of an Archimi dean screw, gradually contracting it ard placing it so as to receive air at each revolution for the purpose of rendering the column elastic.

Another Grate Furnace.
The above leads us to notice the spherical Grate and the Hot Air Furnace, recently pa tonted by Mr. Robert Wilson, of Albany, N Y. which has been so highly extolled. As this is the time for our Stove Manufacturers to be getting up their patterrs, we believe tha this hot-air furnace would be a good projec to enter into. There are no less than six new claims embraced in his patent, and it acts a a ventilator as well as a beater, a quality possessed by it singularly, and therefore a grand object to all the lovers of health and comfort

New Dlving Bell.

Experiments were made at Boston, with new diving bell, the invention of a Mr . Ri chards, a Boston mechanic. It fully answer ed the anticipations of the inventor. It is ca pable of descending to the depth of one hun dred feet or more. At a depth of twelve fee newspapers could be easily read within the bell. The inventor is about to further test it capabilities in an examination of the wrec of the boat Alabama, on Cape Cod.

Lung Protector.

An invention has iately appeared in Louis ville, Kentucky, named as above, and descri bed as follows: It consists of a small air cy linder, with a valve at each end, one working inward, when the air is inhaled, and the other outward, when the air is exhaled, th inhaling valve being surrounded by a woolen net work, through which the air is filtered In case of injurious gasses, a flexible tube runs from the inhaling valve along the leg to near the floor, by which the worker inhales only the lower part of the column of air and avoids the smoke and gases.

It is tor the purpose of protecting the health of operatives who mav be engaged in labo which exposes them to the gas of charcoal.

There is no use of the inhaling vaive. silk handkerchief tied loosely over the mouth and nostrils and kept a little moist will answer the purpose without a valve.
In connection with noticingthis contrivance we would call the attention of those persons who live in situations prolific with billious diseases, and state that diseases may be often prevented if care was taken to cover the mouth and nose with a thin silk handkerchief whenever they go abroad in the mornings before the dew has taken flight, or in the evening when the sun has set and the dew is falling.

Lighting Strcet Lamps by Eilectricity. It $1 s$ proposed to light up the city of Londo all at one instant. This is to be done by ha ving one stop cock for the main pipe, to let on and shut off the gas, and to have a wire connected with every lamp to send an electric current to ignite the gas. It appears to us, that before this project can be carried out some charcoal dust or its equivalent is necessary at all the ignition points.

Morse and Pratt's Rallway Brake.

 Morse and Pratt's Railway Brake, a cut of which appeared in No. 40 Scientific American, is also designed to be operated by the conductor of a Railway train, if need be, from the end of the cars. This was omitted in the engraving, but the plan will be easily undertood by referring to the cut. The shatt that perates the lever can be connected with a hain over the top of the cars and by pulling on that, the shaft descends and the lever ope-
rates the brake wheels, arresting the momen

 tum of the cars.Mr. L. A. Spalding Machine.
Lect N Y , N. Y., has erected one of Mr. S. Bentz's Unbranning Machines, and it has operated with great satisfaction. There is a gain of twelve and a half per cent of fine flour.An apparatus for a mili of eight run of stones will not cost more 'han 500 dollars, exclusive of the patent right.
mpiovenents in dininishing draught and friction on carriages.

From the preceding description, the manner in which progression is given to the carriage will be understood. Previous to start ing, some of the pedestals of each chain of riction wheels are resting on the ground, while all the rest are wound round the tumblers; and the entire weight of the carriage is sustained by such of the friction wheels as are in direct contact with the rails. In the case of the forepart, there should not be more han one wheel in contact with the rails at a time, in order that the guiding part of the vehicle may turn with ease ; and with this view the rails are made short, and rounded off at the end. When rotary motion is given to the main axles, C, by animal or steam power, and thereby to the tumblers D , the carriage slides forwards by means of the rails attached to it, on the friction wheels beneath, while simultaneously therewith a revolving motion is im parted to each of the endless chain of wheels which brings one wheel after another in coninual succession under the rails, producing thus, all the effect of one continuous rail. The oiling of the axles and bearings is effected by

The above engraving represents a plan of a hand engine for cutting the teeth of sman wheels. A, shows the arbor on which the wheel to be cut is fixed. B, is the cutter. C, a toothed wheel worked by the handle E, and taking into the pinion D, which being hung on the same axis as the cutter B, imparts to it a velocity proportionate to the number of teeth in the wheel C, and the pinion D. F, is alever handle by ineans of which the swinging frame may be gradually depressed as the cutter B is brought intooperation, or raised when it has performed its work. G, is the horizontal adjustiug screw. H, the division plate. I, the index or pointer. The divisions of the circle, represented above by dots on the plate, are commonly $360,300,150,90,60, \& c$. The only true and accurate method of circular division, is by the tangent and endless screw.They have been successfully applied to the wheel cutting engine.
an oil box of peculiar construction, one such box being attached to the brass bearing of each axle, a sectional elevation of which is shown at fig. 4, of the engraving. A a, is the box which is filled to about the height shewn, $B b$, is a lid which is screwed on to a ring which projects from the side of the box; C is a neck by which the box is screwed into the brass bearings $\mathrm{O} ; \mathrm{D} d$, a tube which is passed down through the neck C, to the axle C, and carried upwards a little way above the level of the oil in the box ; E e, are hreads of cotten, which being inserted at one end into the tube, $\mathrm{D} d$, and dipping at the other into the oil, supply by capillary attracfion, a constant flow of oil to the axle ; $\mathbf{F} f$, is a circular rack raised on the tops of the brass bearings, and secured to the neck of the oil cup, which takes into the rack $\mathrm{F} f$, and holds the box fast when screwed into its place The advantage of this oil box is, that no supply of oil can be given to the axle except when the box is nearly vertical, and that there can be no escape of the oil except in the direction of the axle.

Artificial Marble.

There is an establishment in London where sculptors may work in chalk, and it be afterwards convertible into the hardest marble while every mark of the chisel is preserved. The inventor is Mr. Wm. Hutchinson, who has secured a patent ard he can make Plaster of Paris, Bath fire stones, and other sorts of stone, chalk, wood, pasteboard, and, in fact every other material is rendered as hard as metal, receiving the most brilliant polish, and made absolutely imperishable from atmos pheric action.
The purposes to which this patent can be applied, are innumerable. The first idea of the patentee was the induration of the softer and more common and almost useless stones for the purpose of paving ; but so complete was his success that he soon took a loftier view, and has rendered the operation not only applicable to all common purposes for which stone and slates are used in buildingsuch as paving, both internal and external window sills, cisterns ${ }^{\text {fittings of dairies, \&c. }}$ but now applies the operation to all the hig er works of art. Plaster of Paris casts, of the most elaborate designs, in bust, relievos, architectural ornaments, fonts and ornamental flooring for churches, trellis work for balconies, ornamental inkstands, \&c., are rendered imperishabie by the operation of the elements, and as hard and tough as metal.
A slab of soft fine sand stone, so soft that it might be rubbed into powder by the handwas rendered hard as granite, and rung like a bell; numerous Plaster of Paris ornaments and busts, metamorphosed into bronze, granite, and party-colored marbles-drain, water and gas pipes, made from Bath stone, chalk or paper, hard as granite, and polished internally like marble; in fact, the results of the operations are said to be most extraordinary. and one of the greatest discoveries of the age

LIST OF PATENTS
issued from the united states patent office,
For the week ending July 18, 1848.
To Gilbert Jessup, of Newark, N. J., for improvement in Threshing Machines. Paten ted July 18, 1848.
To Edward Lynch, of Brooklyn, N. Y. for improvement in Evaporators and Condensers Patented July 18, 1848.

To James Root, of Cincinnati, Ohio, for im provement in Cooking Stoves. Patented July $18,1848$.
To Zenas Marshal Crane, of Dalton, Mass. for improvement in Machinerg for cutting Pa per. Patented July 18, 1848
To George L. Wright, of Springfield, Mass or improvement in Machinery for cutting Paper. Patented July 18, 1848.
To Mark Wilder, of Peterborough, N. H. for improvement in Machinery for cutting Paper. Patented July 18, 1848.
To Thomas S. Sprakeman, of Philadelphia, Penn., for improvement in the combination of Springs with the back chain of Carts, \&c.Patented July 18, 1848.
To Erastus T. Sprout, of Springville, Penn for improvement in combined carriageSprings Patented July 18, 1848.
To Nathaniel Waterman, of Boston, Mass., for improvement in portable Cooking Stoves. Patented July 18, 1848.

To Jeremiah D. Green, of Troy, N. Y., for Design for Stoves. Patented July 18, 1848. re-issue.
To Laban, Sumner R. and Cushing B. Morse of Athol, Mass., assignees of Laban Morse and Whitman T. Lewis, of Athol, Mass., for improvement in Air Distributors for chambers o combustion. Patented 16th May, 1846. Re issued July 18, 1848.

INVENTOR'S CLAIMS.

Atmospheric Churns.

To Nathan Chapin, of Cortlandt Village New York, for improvement in Atmosphe ric Churns. Patented 9th May, 1848. Claim -What I claim as my invention and desire to secure by Letters Patent, is forming the paddles of the revolving wheels with buckets, of the peculiar shape above described, for the purpose of raising the cream nearly to the top of the churn, and discharging it through the air therein admitted through the aperture in the lid, as well as breaking up the cream by the revolving of the buckets through the cream, by which the butter is produced in a short period of time ; said buckets conveying the air to near the buttom of the churn and discharging it through and amongst the cream by which the oxygen of the air is brought in. to close contact with the fatty substances of the cream, and by which they arecaused to incorporate readily into a solid mass in the form of butter, as herein fully set forth.

Horse Rakes.
To M. W. Lyman, of Philadelphia, Penn. for improvement in Horse Rakes. Patented 16th May, 1348. Claim.-What we claim as our invention, and desire to secure by Letter Patent, is the method, substantially as herein described, of raking and elevating, and delivering it into a wagon or other receptacle by means of the rake frames, so jointed or other wise connected with the wagon as to admit of being elevated to raise and discharge the hay into the box of the wagon or any other receptacle, as described.

The Geographical Society of London has awarded to Capt. Wilkes, of the U. S. Navy, a gold medal in testimony of his valuable discoveries and contributions to Science. Mr. Bancroft received the medal to forward to the distinguished Captain

NEW YORK, JULY 29, 1848.
Value of the Mechanical Classes. It is an old saying, that " republics are ungrateful." This is often too true, but no less true of republics than other governments Despotic, monarchical and oligarchial governments have been far deeper stained with acts of ingratitude, than republics. It is not by monuments reared in splendor so statesmen and warriors that we can estimate the depth of a nation's gratitude or a nation's patriotism. No, no, it is not by these, but rather in the absence of neglect, and in justice done to the deserving obscure, than in the heaped up glories showered down upon the memory of great and distinguished men. This is particularly true of the mechanical classes of every country, and especially those of Great Britain. The most enthusiastic admirer of England may talk as he pleases of the glories and victories of "old England," and the names of Nelson and Wellington may be shouted with the most bursting enthusiasm, yet where would have been their victories and where their mighty fleets and well provided armies, i Hardgreave had not invented the spinning jenny? It was the mechanical genius, mecha nical skill and industry of the operatives of Great Britain that made her wealth, and ena bled her to equip the armies of Austria, Russia and Prussia, to meet and vanquish the " Great Captain." Only for the wealth which flowed into England's coffers by the sale of her manufactures, she would be a poor coun try indeed, for she has not the natural capaci ties of agricultural greatness, but her mecha nics have made her a great country, and the men to whom she is most indebted, (with but very few exceptions, sprung not from her no. bles and aristocratic classes, but from her humble industrious poor. Ha:dgreave was a poor operative, Arkwright was a barber, and Dr. Cartwright, the inventor of the power loom, was by no means of high descent James Watt, the immortal improver of the steam engine, was but a poor mechanic, and Telford, the great architect, and Rennie, the great civil engineer, were mechanics, and George Stevenson, the successful locomotive improver and engineer, was but a working operative. To her living mechanics England is still indebted as she is to those that are departed. Stevenson is still strong and energetic, and so is Bain, the greatest of England's living electrical engineers, and he too is a mechanic.Now, what ve want to exhibit, in calling at. tention to these things, is, the neglect, the oversight displayed by governments in their readiness to honor other classes who are not so deserving. We know that a Herschell and a Rennie have been knighted, but where in the whole history of England can we find a man made a Peer of the 1 ealm, unless he has thundered in the Paliament house, or thundered on the battle field. Blood and eloquence have been passports to the dignity of the peerage, while the mechanic might invent (and has invented) and raise England from the "dirt to the deity" in manufacturing greatness, still he is not considered equal to the rich and idle droneish class of exclusive titleage. The of fices, too, of emolument and distinction, are exclusively the rich men's patrimony, and this is the crushing weight that is druving so many excellent mechanics to this country, and which will be the means in the course of twenty years more of destroying the cotton and the looms of Manchester and Glasgow to whirl and whisk on the banks of many of the now lonely streams of Georgia and Alabama, instead of the banks of the Clyde and the Irwell.
In calling attention to the ingratitude of ano ther government, we do not say that this is a indwental question, but it is evidence of the feeling in thuse classes who by inheritance are
managers of government. This is just as true of all other governments, even our own, as it is of Britain, although that country presents the greatest contrast.
If we look to the many offices and the persons who fill them at our own fireside (if we may use the expression) we will find that we can point the finger to that management which necessarily belongs to all political or ganizations, and say as said the prophet to Da vid, " thou art the man." Let these reflec tions be weighed well by all those who wish well for their country, and let there be more encouragement to the worthy of our producing classes irrespective of any thing but real worth. There is no doubt but our mechani. cal classes are more comfortable than those under any other government, and they meet with more encouragement, still no one can doubt but there is yet room for improvement. Let us then prove to the world as a nation, that towards all deserving classes of our citizens, the Great American Republic is the most grateful of nations.

pendicular.

Many experiments have been tried to find out the amount of deviation from the perpendicular of bodies falling from a certain dis. tance, and the whole of the experiments that have yet been made prove conclusively that there is a departure from the perpendicular line, and the greater the distance or space fallen through, the greater the deviation. Professor, Oersted, has lately made some vey interesting experiments in one of the mines in Cornwall nearly a quarter of a mile in depth, which go far to confirm the experiments of Rutch, made at Freeberg, in a pit 450 feet deep. It is a singular fact, that the departure of falling bodies from the perpendicular line is towards the South, and in fair experiments both with bullets and plummets, in falling through a space of 1,359 feet, there was a devistion to the South ten inches from the plumbline. At one time the calculations of mathematicians was in favor of a deviation of falling budies towards the east. This opinion was tormed from the knowledge of the rotation of the earth from west to east each point in or upon her describing an arc proportional to its distance from the axis, but experiments show that the deflection is towards the south, and therefore the curvature to the south from the plumb line in falling bodies, is in exact proportion to the distance from the centre of gravity, from which the body falls. The following is Prof. Oer steds theory explanative of these experiments, and it appears both plausible and sound.
If falling bodies be acted upon only by the gravitating and tangential forces, the plane in which any falling body moves will be in dicated by two lines, one line joining the point from which the body falls and the cen tre of gravity, and the other a line at right angles to this line forming a tangent to that part of the circle of latitude, which is situated in the falling body at the instant it begins to move. Taking the earth as a perfect sphere and the centre of gravity coinciding with the geometrical centre, this plane will cui the earth in a great circle, and is, of course sta tionary, that is, it does not rotate with the earth. Now, while a falling body is moving forward and downward in this plane, the point from which it fell is moving round in the circle of latitude; and the line joming that point and the centre of gravity lies no longer in this plane, but has described part of the surface of a cone round the axis of the earth; consequently the falling body must be some distance outside this cone, and to the south of the vertical line passing through the point from which it fell.

The Crops

The caterpillar has appeared upon the coton plant in Texas. In South Carolina, corn and cotton promise well; and the oat crop now harvested has been excellent. Hay is nearly destroyed in the eastern and middle states, by the late rains, which have also incrop of Delaware never looked better. The sugar crop of Louisiana has been seriously injured by excessive rain. In Canada the crops

Metals from Eiectricity.

The deposition of metals from their solu tions by an electric current, was first applied by Professor Jacobi, of St. Petersburg, to the working of gold and silver in the Ural mountains. The same pinciple was applied by others to the deposition of all the metals, but not on a large scale with economy, because the metals must first be reduced by some pow erful solvent before they can be deposited by the current. The expense for dissolving and depositing copper by this process was found to be very great, and beside when copper is dissolved it is more cheaply separated trom the dross by precipitation than by deposition. In 1842 M . Becquerel applied another mode of extracting metals from their ores by taking advantage of the calo-ific effects of the e'ectric current. Gold and silver ores were moistened and made pasty, and a helix of platinum wire contaning within it a number of smal crucibles of clay and charcoal were bedded in the mixture and the extremes of the coil be ing attacked to the terminals of a galvanic battery, the current of electricity thereby generated raised the platinum wire to a white heat which fused the ore and disengaged the metal, the latter dropping into the crucibles placed for its reception. This process, however, is not so profitable as ingenious, for it is
just a substitution of electricity for coal, something like burning water to create heat and light from the combustion of heat and light in another form.
In 1844, a Mr. A. Wall obtained a patent for applying electricity to iron while in a state of fusion to decarbonize the metal and make wrought iron, but this did not refer to the extracting of metal from its ore. James Napier, a practical mechanic, was the first to discover and direct attention to a true and economical mode of separating copper from its ore by electricity. His process is to bring the ore into a fluid condition by heat and then throw in some lime or soda as a flux. A black lead crucible is then prepared with an internal coating of fire clay wash reaching nearly to the bottom, which must be left untouched. The ore mixed with a necessary amount of flux is placed in the crucible, and the whole placed in an ordinary furnace. A galvanic battery of any kind having an intensity of five pair of plates is then placed in readiness to act upon the fluid mass. A rod of iron is then attached to the zinc terminal and a similar one to the copper one, having a disc of iron or coke on its disengaged extremity just so large as to enter the crucible without touching its sides. To complete the circuit the $\mathrm{d}_{1} \mathrm{sc}$ is lowered into contact with the surface of the fluid and the end of the rod proceeding from the zinc terminal is brought into contact with the outside of the crucible. The heat being kept up the current is kept in action for about two hours, the length of time varying with the quantity of ore and the power of the battery. In the cousse of the operation, the metal is precipitated to the bottom and separated from the slag. Were nogalvanic current passed through the ore and its flux, the same mixture might remain unaffected with the heat. For manufacturing purposes, it is only necessary to have the bottom of the furnace paved with blacklead tiles or some other nonconducting fireproof substance. The materi als to be operated on are placed in the fur nace and fused and the bottom connected with the zinc end of the battery and the surface with the copper by a plate of iron or coke in od proce with it and connected with an iron subjected to this process should first be roasted to drive off as much sulphur from them as possible. This is a process for those who wish pure iron to try as an experiment. There is no metal so sensitive as iron and regarding which, so many opinions exist.This electro-smelting process is applicable to fusi metals that are capable of being held in usion by fluxes, and only one-sixteenth of zinc is used up in the battery for one of cop per gained, and the metal is very pure.
" the centre of each rose upon the tree, Through or stem has pushed forward, producing other

Copying and Writing Telegraph. Our reader in rom changes, in No. 30 Scientific American, giving some account of a new copying telegraph, we intimated (because we saw clearly through it,) that it was a modification of Bain's printing Telegraph, a full description of which is to be found in No 35. The invention of the copying telegraph was credited oy the London Spectator to a Mr. Bakewell, but the following letter of Mr. Bain, will shew that our riews were correct and founded upon an unerstanding of its many applications.

Eleciric Telegraph Office, London. Having just returned from America, my at tention has been called to an article copied from the Spectator into your widely circulated Journal, containing a notice of the "Copying Telegraph," which is erroneously described as invented by a Mr. Bakewell. Permit me to inform your readers that the invention Is not at this time new,-neither is Mr. Bake well the inventor. The "Copying Telegraph" was invented by me in 1842, and patented in the year following. Patents were also secued for the invention in Scotland. France and Belgium. The English patent is now the property of the Electric Telegraph Company, who purchased it from me. The toreign paents are still in my own hands.
The "Copying Telegraph" is capable of ransmitting the fac simile of any communication in writing or printing, or of any other figure, including a profile of the "human face divine," so that the physiognomy of a runaway could be sent to all the outports of the kingdom in two or three minutes. This Teleg:aph has not yet bee 1 put in practice, from the circumstance of its requiring greater accuracy in the machinery, and more perfect insulation of the wire, than has yet been attainable for great distances; but these are not insurmountable, and daily progress is making towards the necessary perfection in this de partment of the yet infart secience of Electric Communication. I am, \&sc.
June 5.
A. Bain.

We believe that there is a diepute relative to the granting of a patent to Mr. Bain for the United States, by an interfering Caveat of Protessor Morse. It may throw light upon the subject and be information to our Patent Office, to state that Professor Wheatstone, of London, also disputed Bain's right to a patent in England, but the Professor was completely overborne by the weight of evidence on the part of Mr. Bain, and a pamphlet was pub. lished upon the subject by a Mr. James Findlay. This was in 1843.
Mr. John L. Stephens, the distinguished traveller and author, has discovered a favorable route from Chagres to Panama, forty miles in Jength.
Unprecedented Demand for Old Papers. At the commencement of the present volume of the Scientific American we had nearly one thousand complete setts of the preceding volume on hand. Since that time we have had 500 copies of those setts bound, and the balance have been ordered by mall and sent in sheets. We are now obliged to inform our patrons that we are unable any longer to furnish complete setts in sheets, and that we have but fifty more copies left, which are bound. The price of the remaining fifty copies which are left will be hereatter $\$ 3$ per copy (neatly bound,) or we can furnish a few more copies in sheets, minus Nos. 1, 10, 16, 17 and 46, at $\$ 2$ per sett. All the numbers of the third volume can be had yet, at the subscription price.

THE
CIENTIFIC
Persons whing AMERICAN. Persons wishing to subscribe for this paper rected (post paid) to

Publisher of York City
Terms.-\$2 a year; ONE DOLLAR IN ADVANCE-the remainder in 6 months Postmasters are respectfully requested to eceive subscriptions for this Paper, to whom discount of 25 per cent will be allowed. Any person sending us 4 subscribers for 6 months, shall receive a copy of the paper for
the same length of time

Arts, Manufactures and Ma chinery.

Copying by various kinds of Printing.
The Art of Printing, in all its numerous de partments, is essentially an Art of Copying. Under its two great divisions, Printing from hollow lines, as in coppe:-plate, and printing from surface, are comprised numerous arts.
In copper-plate printing, the copies are made by transferring by pressure a thick ink from the hollows and lines cut in the copper to sheets of paper. An artist will sometimes exhanst the labor of one or two years upon engraving a plate, which will not, in some cases, furnish above five hundred copies in a state of perfection
Engraving on steel is in most respects si milar to engraving on copper, except that the number of copies is far less limited. A Bank-note engraved as a copper-plate will not give above three thousand impressions without a sensible deterioration. Two impressions from a Bank-note engraved on steel were examined by one of the best artists of the present day, and he could not say, with any confidence which was the earliest impression One of these was a proof from among the first thousand, the other was taken after between seventy and eighty thousand had been printed.
Music is printed from Pewter Plates, on which the characters have been impressed by steel punches. The metal being much softer than copper is liable to scratches, which detain a small portion of the iak. This is the reason of the dirty appearance of printed music. A rew process has recently been invented by Mr. Coper, by which this inconve nience will be avoided. The improved me thud, which gives sharpness to the charac ters, is still an art of copying; but it is effected by surface printing.
In calico printing from cylinders, many of the patterns are Copies by printing from copper cylinders about four or five inches in diameter, on which has been previously engraved the desired pattern. One portion of the cylinder is exposed to the ink whilst an elastic scraper of stuffed leather, by being pressed forcibly against another part, it removes all superfluous ink from the surface previous to its reaching the cloth. A piece of calico of twenty-eight yards in length rolls through this press in four or five minutes.

In printing from perforated sheets of metal very thin brass is sometimes perforated in the form of letters, usually a name; this is placed on any substance which it is required to mark, and a brush dipped in some paint is passed over the brass. Those parts which are cut admit the paint, and thus a copy of the name appears on the substance below.
This method, which affords rather a coarse copy, is sometimes used for paper with which rooms are covered, and more especially for the borders. If a portion is required to match an old pattern, this is, perhaps, the mest economical way of producing it
The beautiful red cotton handkerchiefs dyed at Glasgow have their pattern given to them by a process similar to this, except, that instead of printing from a pattern the reverse operation, that of discharging a part of the color from a cloth already dyed, is performed. A number of handkerchiefs are
pressed with immense force between two plates of metal, which are similarly perforated with round or lozenge-shaped holes, according to the intended pattern. The upper plate of metal is surrounded by a rim, and a fluid which has the property of discharging the red dye is poured upon that plate. This liquid passes through the holes in the metal, and also through the calico; but owing to the great pressure opposite all the parts of the plates not cut away, it does not spread itself beyond the pattern. After this the handkerchiefs are washed, and the pattern of each is a copy of the perforated metal plate used i the process

The other department, or that of printing from surface, is of more frequent application in the arts.
In printing from wooden blocks, a block is
med; the design being sketched upon it, the ber. The original which supplies the copies workmancuts away with sharp tools every part except the lines to be represented in the impression. This is exactly the reverse of the process of engraving on copper, in which every line to be represented is cut away The ink instead of filling the cavities cut in the wood is spread upon the surface which remains, and is thence transferred to the paThe printing from moveable type is an art important in its influence of all the arts of Copying. It possesses a singular peculiarity which arises from the immense subdivisio of the parts which form the pattern. Afte that pattern has furnished thousands of copie the same individual elements may be arran ged again and again in other forms and thus
furnish multitudes of originals, from each of furnish multitudes of originals, from each of which thousands of their copied impression may flow.
Printing from sterreotype is a mode of pro ducing copies very similar to the preeeding but as the original pattern is incapable of change, it is applied only to cases where an extraordinary number of copies are demanded or where the work consists of figures, and it is of great importance to ensure accuracy ndividual alterations may be made in it, and thus mathematical tables may, by the gradu al extirpation of error, at last become perfect. This mode of producing copies possesses, in common with that by moveable types, the ad vantage of being capable of being used in conjuction with wood cuts, a union frequently of importance, and which is not so readily ac omplished with engravings on copper.
Calico printing from blocks is a mode of Copying by surface printing from the ends of small pieces of copper wire, of various forms fixed into a block of wood. They are all of one uniform height, about the eighth part of an inch above the surface of the wood, and are arranged by the maker into any required pattern. If the block be placed upon a piece ot nine woollen cloth, on which ink of any color has been uniformly spread, the projecting copper wires recesve a portion which they give up when applied to the calico to be printed. By the tormer method of print ing on calico, only one color could be used;
but by this plan, after the flower of a rose, or example, has been printed with one set of blocks, the leaves may be printed of anothcoler, by a different set.
To print oil-cloth after the canvass, which forms the basis of oil-cloth, has been covered with paint of one uniform tint, the remainder of the processes which it passes through are a series of copying by surface printing rom patterrs formed upon wooden blocks ve y similar to those employed by the calico printer. Each color requires a set of blocks and those oil-cloths with the greatest variety of colors are most expensive
There are several other varieties of print ing which we shall briefly notice as Arts of copying; which although not strictly surface printing, yet are more allied to it, than to that rom copper plates.
In one of the modes of performing letter copying, a sheet of very thin paper is damped and placed upon the writing to be copied. The two papers are then passed through a rolling press, and a portion of the ink from ne paper is transferred to the other. The writing is of course reversed by this process: but the paper to which it is transterred being hin, it is vissible on the other side, in an uninverted position.
Another mode of copying letters is by placing a sheet of paper covered on both sides with a black substance prepared from lampblack, between a sheet of thin paper, and the paper on which the letter to be dispatched is to be written. It the upper or thin sheet be written upon by any hard pointed substance, the words written with this style will be impressed from the black paper upon both those adjoining it. The translucency of the upper sheet, in this instance, is necessary to obviate the inconvenience of the reversing of the writing. Both of these arts are very limited in their extent, two or three being the very utmost number of repetitions that they will allow.
Lithographic printing is another mode of producing copies almost unlimited in num-
is a drawing on which supplies the copies materials that when water is poured over the stone it shall not wet the lines of the drawing When a roller covered with printing ink is passed over the stone, the water prevents it from adhering to the uncovered portions; while the ink used in the drawing is of such a nature that the printing ink adheres to it. In this state, if a sheet of paper be placed on , and it is then passed under a press, the printing ink is transferrad to the paper, lea ving the ink used in the drawing adhering to the stone.

Roads of the ancient Peruvians.
The public works of the Peruvians are a mong the most magnificent and wonderful that have ever existed on the earth. The traveller still finds the remains of temples, fortresses, terraced mountains, great military roads, aqueducts, and other public works, which astonish him by their number, the massive characier of the materials, and the grandeur of the cesigns. Among these their great roads were probably the most remarka b. There were many of these roads, traversing the different parts of the kingdom; but the most considerable were the two which extended from Quito to Cuzo, and thence South towards Chili. One of these roads passed over the grand plateau, and the other along the lowland on the borders of the ocean. The former was much the most difficult achievement, and no doubt a work of far greater labor than the road over the Alps. It was carried over pathless wastes, buried in snow; galleries were cut for leagues through living rocks; rivers and frightful chasms were passed by means of bridges which swung suspended in the air ; precipices were scaled by stairways cut in the native bed ; ravines of hideou depth were filled up with solid masonry ; in short, all the difficulties which beset a wild and mountainous country, and which might appal the most courageous engineer of moderi times, were encountered and successfully overcome. The length of this road is vari ously estimated from fifteen hundred to two thousand miles. It was built of heavy flags of freestone, and in some parts at least, covered with a bituminous cement, which time ha made harder than the stone itself. In some places where the ravines were filled up with masonry, the mountain torrents, wearing on it for ages, have forced a passage through the base, and left the superincumbent mass-such is the cohesion of tire materials-still spanning the valley like an arch.
Ingenious bridges, made of the tough fibres of the magney, were thrown over the boldes of the streams. These osiers were woven into cables of the thickness of a man's body These buge ropes, when stretched across the water, were secured in immense buttresses of stone, raised on the opposite banks. Severa! of these cables, bound together, formed a bridge, which, when covered with plank, and de fended by a railing, afforded a sate passage for the traveller. The length of these aerial bridges; sometimes exceeding two hundred feet, caused them to dip with an alarming inclination towards the center, while the motion given by the traveller occasioned an oscillation still more frightful, as his eye andered over the dark abyss of waters, whic foamed and tumbled many fathoms beneath Yet those light fabrics were crossed without fear by the Peruvians, and they are still re tained by the Spaniards over those deep and impetuous streams which are impassible by

other means.

The other great road of the Incas, lay through the level country between the Andes and the ocean. The land was low and sandy, but the road was over a causeway, raised on a high embankment of earth, deferded on either side by a parapet of clay, and trees an ordoriferous shrubs were planted along the margin, regaling the sense of the traveller with their perfumes, and refreshing him by their shade.
All along these highways, caravansaries, or tambos, as they were called, were erected, a the distance of ten or twelve miles from each other, for the accommodation of travellers. scale, consisting of a fortress, barracks, and
other military works. These were evidently intended for the accommodation of the impe rial armies, when on their march through the courtry. These costly and admirable work have been left by the Spaniards to fa!l into decay, but their broken ruins still bear ev dence of their primitive grandeur.

Leisure Hours for Working Men.

We have always been in favor of shortening the hours of labor, and closing stores early, in order to give clerks and mechanics the bene fits of evening study and instruction. If they do not achieve it in that way, how are they to acquire knowledge-when and where ar they to cultivate the mind and improve the faculties? They understand these things in England, and improve upon the understand ing. Therethe Mechanics who have improved their time, can rise in the world. One of the leading Editors of the Western Review, and the most brilliant writer of the age, was a coo per. One of the principal Editors of a Lond on daily journal was a baker; one of the best reporters of the London Times was a stone mason; one of the most eloquent Mınisters in London, was a blacksmith; Josep h Hume wa a sailor, and then an apothecary. There is an army of working men now holding high intellectual positions in England.-S? have many great Americans sprang from plough boys and mechanics, but they have had time to improve themselves-leisure to cultivate their minds. This is what our clerks, ou apprentices, our laborers want.- They ought not to labor from dawn until late at nightthey are jaded and fatigued, they become exhausted, and have no strength or inclination for study.

The Emperor of Renssia's framily.
The family of the Emperor Nicholas conisting of four sons and three daughters, were brought up from the cradle by English nurses and governesses, under the superintendence of an old Scotch woman, who was the under hurse to the present Emperor in his infancy This individual held the rank of a general of ficer, (tor everything in Russia is measured by a military scale,) and had been decorated with the order of St. Andrew ennobled and enriched. This woman nevertheless, went a bare-legged servant-girl to Russia, some five and ifty years ago, with a Scotch trader's fa mily, who turned her adrift in St. Petersburg A lucky chance procured her the station of an under nursery maid in the Emperor Paul's family, when she was placed about the person of the present Emperor to teach him to speak English? His attachment for her was so great, that when he was married, he placed her at the head of his nursery establishment where she has gone through all the military gradations of rank to her present one of gen. eral.

A Newspaper

A man eats up a pound of sugar, and the pleasure he has enjoyed is ended: but the information he gets from a newspaper is treasured up in the mind, to be enjoyed anew and to be used whenever occasion or inclination calls for it. A newspaper is not the wis dom of one man, or two men; it is the wis dom of the age, and of the past ages too.
A family without a newspaper is aiway half an age behind the times in general infor mation, besides they never think much, or find much to talk about. And then there are little ones growing up in ignorance, without ny taste for reading.
Besides all these evils, there's the wife, who, when her work is done, has to sit down with ker hands in her lap, and nothing to amuse her, or divert her mind from the toils and cares of the domestic circle. Who, then, would be without a newspaper?-Benjamin Franklin.

A Huge Animal.

A large elephant was lately shot in Liverpool, England, and when they were dissecting him afterwards, upon driving a knife into his stomact, the gas therein exploded with a report like that of a six pounder, Two ounces of prussic acid had no effect to poison the animal. He was of such gigantic dimenions that three persons have stood within his skull since he was dissected.

TO CORRESPONDENTS.
"M. G. of N. Y."-The sale of patterns of any patented machine does not confer author ity upon the purchaser of the right to manufacture. The right to make, sell and use, is only conferred by a bill of sale, and there is a certain form of the Bill of sale or assignment, which must be registered in the Patent Office within three months after date of sale.
"A H. of N. Y."一We have heard of a di vining rod for discovering silver ore, bnt have no faith in one. It is impossible that there can be one. The only influence of that kind is magnetic, and a magret will indicate iron ore more ready than any other.
If your water is pure, that is, if it comes through gravel, or sand, or rock, the lead pipe is perfectly safe. First try the tests we have given, as the lead pipe is the most dura ble. The earthen pipes are not so durable, unless sunk deep and free from the influenca of the frost, and your part of the country is ities.
"L. A. S. of N. Y."-The inventor of the hydraulic apparatus to which you reter, lives in Hagerstown, Maryland. D. Winder is the name. We are of opinion that nothing will answer your purpose, but a powerful force pump. But if you direct a letter to Mr. Winder, you will get all the proper information, such as price and capacity.
"R.V.I. of N. J."一We would advise you toget a steam engine about 12 horse power. You will find it more profitable than a water wheel in your situation, where there is a scarcity of water for two or three months every year.
" L. M. of Mass."-You can get mechanics in Boston and many other places in the old Bay State, who can fit up and take charge of all kinds of machinery, and invent new improvements too.
"I. S. W. of Ala."-An answer will appear next week
" G. C. of N. H."-"W. Y. of Ill."-and "J. K. mail.
S. T. of Pa."-You can find all the information you desire regarding the Patent Laws in Vol. 2, Scientific American. We cannot republish it at your request, when you can find it there
"V. W. R. of Va "-The transmission of elect
"W. M. D. of Maine."-Application has been made lately for a smoke consumer with the use of the blower for that purpose, aud by delay your patent may be lost.
"R. V. L. of N. Y."-It is a new and useful invention, and there can be no doubt of your securing a patent.
"S. J. of Md."—We are not in the habit of giving such information to thuse who are not subscribers We would not ask you to do a day's work for us without pay. You would snuff at the proposal. "Dothen to others as you would be done by."
We have received another excellent article faom the pen of William Montgomery, Esq. which will appear next week.
We have also recerved an able article on the Nova Scotia Mines, which will likewise ap pear next week.

Arial Speculation.
Dr. Solomon Andrews, " President of the Inventors' Institute at Perth Amboy," advertises that he has invented a car for the "Navigation of the Atmosphere," which, when constructed, will be 100 feet long, 40 wide, and 32 high. In order to raise the means to construct it, building lots ntar the institute areoffered for sale. Will this scheme be as great a humbug as the Inventors' Institute o the Kidd bubble.

Western Literary Emporium

No. 2, for August, of this useful and beautiful monthly is now before us. It contains a beautiful steel engraving of the Colliseum at Rome, and the literary articles are far above mediocrity-they ex hibit talent, judgment and sound sense, the latter quality a treasure indeed in these days. It is published at Cincin. nati, by J. R. Barne9.

Union Magazine.

The August number of this superb month y is upon our table-a beautiful mezotin engraving by Sadd, ornaments the first leaf, and a splendid line engraving by Henshel wood the second. There are several other fine wood engravings, which ornament its pages containing an original piece of music engraved expressly for the Magazine.-The Union has some of the best contributors thi country produces, and although we have not had an opportunity to peruse this number's contents fully, we can judge from former ones and the list of contributors this month, that that department is in harnoony with the engravings.

The Literary American.
This is a new weekly paper published in his city, by J. P. Quackenboss, and is got up in a very neat form.

Patent Agency.

Applications for Patents made at this office on the most reasonable terms. Neat drawings specifications, and engravings of the first character, and cheaper than anywhere else. No tices of new inventions, Agency for the sale of Patent Rights, and all business of that nature, promptly attended to. Those who have patent rights to dispose of will find a good opportunity and field for their sale-such as Horse Power Machines and Waterwheels of every description. The largest circulation in the $\begin{array}{rl} \\ z & d\end{array}$ for advertisements of inventions, \&c

Advertisements.

2G- This paper ifrculates in every State in the manufactures seen principally by mechanics an medium of advertising, for those who import or man ufacture machinery, mechanics tools, or such wares and materials as are generally used by those classes The few advertisements in this paper are regarded printed dailies.
Advertisements are inserted in this paper at the ollowing rates:

TERMS:-CASH IN ADVANCE.

Persons residing in the city or Brooklyn, can hav
the paper left at their residences regularly, by ing their address to the office, 128 Fulton st., $2 d$ dioor

To IManufacturers of Cotton, THE Subscriber, having had some 35 years expegether with building machinery of various kinds
has completed br drawings and specifications, five mprovements, (for which he is taking measures t manutacture, in labor and tools used in the east. so
that more and better goods can be produced in that more and better goods can be produced in 10
hours, than has yet been accomplished in the longest
day that any one set of hands ever labored He tee day that any one set of hands evrrul labored. He teees
confident of receiving the gratitude of ali the lads confident of receiving the gratitude of all the lady
weavers, who may have the opportunity of working his warp, yara.
He is now rea

Judson's Stave Dressing Machine.
gis Machine, on which Letters Patent were
granted May 1st, 1s47, has been in successful
 sands of staves have been aressed byit. A
ranted to dress the same quantity of staves with as
ittle poweras any thatcan be started also leave he fult thickness on thin edges and thin ends, and conform as near to the crooks and twis: s of the tim.
berascan be desired. The jointing ofthe machine
which accompaniesit, has been subjected to the sewhich accompanies it, has been subjected to the se-
verest test, and poonounced superior to that performed by hand. Ap
Large quantities of Hogsheads and Shooks made
with staves dressed and jointed with their machines ave been sold and used to the entire satisfaction of the purchasers.
For rightsand machines address the proprietors
their Manufactory, Artizan street, New Haven, st their Manufactory, Artizan street, New Haven,
Connecticut, where machines in full e seen.
New Haven, July 17,1748 . JUDSON \& PARDEE.
jy $29 \mathrm{~mm}^{*}$

U. S. School Agency

Abstract

rests of Literary Ins itutio promete the inte- furnishing The register exhibits, the. nomes of hundreds in he profession who have high testimonials from res. various capacities as Pinincipals, Professors, or Teach- ers, both in this country and in Europe Perhaps no undertaking was ever commenced under more favo- rable auspices, and with better prospects or eminent rable auspices, and with better prospects of eminent usefulness. It is now lnown from Maine to Flo- rida, and has induced an extersive correspondence, rida, and has induced an extensive coi respondence, ffording pleasing evidence that it it fast gaining affording pleasing evidence that it is fast gaining the connidence and patronage of the Literary Insti tuions of this country. The satisfaction expressed tue conddence and patronage of the Letion expressed tuions of this country. The satisfaction by our numerous respectable patrons affords high by our numerous respectable patrons affords high encouragement, for in their opinion it must succeed and encouragement, and late an important place a among the best enter er ri- ses of the age. We respectfully solicit the Circular ses of the age. We respectilully solicit the Circular of every Literary Institution in the UnMon Ior gratu- itous distribution also all communications adapted of every Literary Institution in the Union or gratu-

To Cotton Manufacturers.

The Subscriber will furnish Cotton Manufacturers
its with his improved Cotton Willow. The fact of its being introduced into most of the best mills i
New England is the best proof of its excllence t is extremely simple in its coonstruction and will
ond o more and BeTTER work with a less expenditure
of per than any other Willow; it prepares tho otton so much better than any other that there is
nuch less power and repairs needed on the suc eeding machinery. It is as safe from fire as a Card, ar.d its form and action are such as to draw all ihe
flings and dirt f rom the journals; ;it will convey the cotton to any desirable distance'sizort of 250 feet.
It can be placed in the basement of a mill or other It can be place in the basement of a mill or other ploses, and will blow the cotton into the rooms
above. All necessary information given for placing above. All necessary information given for placing
and operatiny the machine in any peculiar or difif
Eult situation. $\substack{\text { juperintendent } \\ \text { j2uinebaug } \\ \text { Manufacturing'Co. } \\ \text { Norwich, Conn. }}$

Patent Agency

The undersigned having established permanent agencies in England, lealand, scotand, France
and Belgium (with the leading manu facturers and
inventors of which countries he is personally acquainted, is enabled to transact all business entrus-
led to his care with perfect safety and dispatch; and
such is the integrity, energy and legal ability of our such is the integrity, energy and legal ability of our
agents, that the patentei agents, that the patentee is, in ninety-nine cases out
of a hundred, sure to reap a rich harvest from any
invention which passes through our hands. Since the first of March last we have sold three
patents in Great Britain for $\$ 17,580$, and five in France for 3 ,0000 francs.
For integrity, the undersigned refers to :---Hora Greeley, Esq. Tribune Buildings, New York.
CLINTON G. GILROX, Antetters must be post pan, and ardressed to
Clinton (. Gilroy, 71 Nassau st. New Y'erk. jy $13 \mathrm{~m}^{*}$

TALBOT'S PATENT REVOLVING BLIND HINGE
Important to Bullders and others.
 interior of the house without raising the sash. They
are adapted to any kind of housn or stvle of finish All communicany kind of house, or stvle of finish
the article, or of Town, County or the purchase of
tate rights, ad-
 ${ }_{j 3 \mathrm{tf}}^{\text {attended }}$

L t. talbot, Taunton, Mass.

LAW'S

STAVE DRESSER AND JOINTER
$\mathbf{T}_{\text {successiful operation his Stave Machine. }}^{\text {He undersigned hery }}$ It will Dress and Jolint Staves of all shapes,
kinds and dimensions, and of promiscuous widths, as
they come from iomied kinds and dimensions, and of promiscuous widths, as
they come from a mixed pile, at the rate of from 6 to
8 staves per' minute, fiuishing the 8 staves per minute, finishing them, before they
leave the machine, ready for the truss hoop. They
are boih dressed leave the machine, ready for the truss hoop. They
are both dressed and jointe very smoothly and
handsomely, bringing each stave of equal width at handsomely, bringing each stave of equal width at
the two end swritour wase or srock and perfectly
to correspond with very twist or crook, and with as corle poner in proportion to the work done, as
any other machine. any other machine
For rights (whic
address, post paid.
H. LAW, Wilmington, N. C. N. B A machine willbe in operation in New York
rvicinity; in the course of the ensung month.
jy15 2 m

Agricultural Implements.
fab Inventors and Manufacturers of superior Ag
icutural Impiements may find customers for theit Soods by applying at the Agricultural Warehous
S. C. HILAS \& CO. 43 Fulton st. ms

STEAM BOILER.
$\mathbf{B}_{\text {any size, shape or power, made ther order, by }}^{\text {ENTL }}$
SALIUEL C. HILLs $\&$ CO.

Lap welded WroughtIron Tubes

 for tubular bollers,From $11-4$ to 6 inches diameter, and any
length, not exceeding 17 feet.
$1 \begin{aligned} & \text { HESE Tubes are of the same quality and manu } \\ & \text { facture as those extensively used in Engiand }\end{aligned}$ Scotland, France and Germany, for L
ine and other Steam Engine Boilers. rine and other Steam Engine Boilers.
THOMAS PROSSER, Patentee,
d26 Platt atreet. New York
Johnson's Improved Shingle IMachine.
TE Subscriber having received Letter: Paten
for an improvement in the Shingle Machine, is for an improvement in the Shingle Machine, is
now readyto furnish them at short notic e, and he now ready request all those who whant a good machic e, and
would reque
for sawing shingles, to callon him and examine the or sawing shingles, to call on him and examine the
mprovements he has made, as one eight n mere shin improvements he has made, as one eight n mere shin
gles can be sawed in the same give, time than by
any other machine now in use. any other machine now in use.
Augusta, Maine, Oct. 1, 1847. J. G. JOHNSON.

GENERAL PATENT AGENCY.

REMOVED.

THE SUBSCRIBER has removed his Patent Ager cy from 189 Water to 43 Fulton street.
The object of this Agency is to enable Inventors to realize something for their inventions, either by th Charges moderate. and no charge willbe made un
tilthe inventor realizes something from his invention tilthe inventor realizzes something from hisinvention
Letters Patent will be secured upon moderat Letters Patent will be secured upon moderate
terms. Applications can be made to the undersign
ed, personally or by letter post terms. Applications can be made to the undersign
ed, pe rsonally or by letter post paid.
SA MUEL C. HLLS. Patent Agent.

Johnson \& Robbins,

Constalting Engineers and Counsellors

 Ofice on F street, opposite Patent Office, $\begin{gathered}\text { Washing } \\ \text { ton, D.C. }\end{gathered}$
the shortest notice and on the most reasonable terms

To Mill Owners.

 in successful operation in many towns in Maine Massachusetts, and Rhode Island, and are found to surpass in power and facility of adaptation any wa
ter wheel now in use. This wheel was awarded the silver medal at the Fair of the Americ an Institute
recently held in New York and a diploma at the Mechanics' Fair in Boston FULTON whels are manufactured and for sale by the Mass, - where the wheels can be seen and any infor Patent Rights for different States, Counties, Sc. for
m25 $6 \mathrm{~m}^{*}$

Machinery.

PERSONSResiding in any part of the United States
who are in want of Machines Engines, Lathes,
OR ANY DEscription of Machinery, can have their or Any deacriplion of machinfry, can have their
orders promptly executed by addressing the Pub orishers of this spaper. From ar. extensive acquain
tance among the principal machnists and ach tance among the principal machunists and a long ac
perience in mechanical matters they have uncom perience in mechanical matters they have uncom
mon facilities for the selection of the best machinery
and will faithrully atemd to any business entrusted
to their care

Stave Dressing Machine. 'THE und ersigned are manufacturing and have now Sta ves, which will dress 126 hogshead or 170 bar TWO Horser will Dovble the number
It will dress croore ind It will dress cooonep and winnirg staves to per
fection, and leave the full thickness on those will ction, and leave the full thickness on those wit
thin edge, a desideratum worthy of attention. The machine is simple. compact and durable, and has received the approval of every practical Coope
that has witnessed its operations. We warrant it to that has witnessed its operations. We warrant it to
perform FULLY EQUAL to our representation and shal

$\begin{array}{c}\text { WM } \\ \text { GEO } \\ \text { j3 } 3 \mathrm{~m}^{*}\end{array}$

have made application for a patent on a machine
for turning irregular forms, uch as lasts. spokes said machine or right, by making who intringe on said machine or right, by making or using, or other
wise, that they will be dealt with according to law.
Dana, Mass, July 3, 1845.

TO MaCHinists and business men perimertiser wants a person to join him in ex
bringing out some importan improvements in the Power Loom, which he beitieves
he can make and for the capital invested would
make are make a reasonable allowance of the right of the
same. All communicationsmust be post paid, to W
H. J., Machinist, Lawience City,

PREMIUM SLIDE LATHE

Ballard's Improved Jack Screw patented.
$\mathbf{T}_{\text {Re adrantages of this Screw for Stone Quarries, }}^{\text {Hen }}$ purposes are superior to any other similar machine.
The improvement consists in being able to use ciIt is capable of raising the heaviest Lo. with ease, being portable, strong aud power ful, and
not likely to tet out of order. not likely to get out of order.
Many lainl
have them Companies and Boiler makers
mend by whom they are highiy recom.
JACK SCREWS,
hand at the manes, mawcer and price, constantly on
and
$\underset{\text { no } 20.7}{\mathcal{N} \text { it }} 7$ Eldridge street, near Division.

Forthe Scientific American Simple Syrups.
Those who are desirous of making their own Syrups, instead of paying exorbitant prices for adulterated mixtures, may rely upon the following as being genuine.

1. Take of coarse sugar 10 pounds ; water 3 pints Dissolve the sugar in the water with a gentle heat.

2 Take of pure sugar 10 pounds; boiling water 3 pints. Dissolve the sugar in the water with the aid of a gentle heat.
3. In making syrups, for which neither the weight of the sugar nor the mode of dissolving it is specified, the following rule is to be observed :-Take of refined sugar reduced to a fine powder, 29 ounces; the liquor prescribed 1 pint. Add the sugar by degrees, and digest with a moderate heat, in a close vessel, until it is dissolved, frequently stirring it ; set the solution aside for twenty-four hours, take off the scum, and pour off the syrup from the feces, if there be any.
4. Take of sugar $2 \frac{1}{2}$ pounds; water a pint. Dissolve the sugar in the water with the aid of heat, remove any scum which may form, and strain the solution while hot.
5. Take of pure sugar 600 parts ; water sufficient ; whites of two eggs Beat the albumen with 3000 parts of water, and add two thirds of the mixture to the sugar in a copper vessel, together with 1000 parts of water; heat over a gentle fire until the sugar is dissolved, stirring from time to time, and taking care that it does not boil before the solution is complete; when it froths up damp the fire, and add by degrees the solution ot albumen in reserve, remove the scum from time to time, and evaporate until it has a specific gravity of 1260 while boiling.
6. Take finest white sugar 1000 parts; pure water 500 parts; prepared animal charcoal 64 parts. Dissolve the sugar in the cold water, add the charcoal, and af:er twelve hours filter the syrup through paper.
Syrups whose density is not precisely deter mined by the process should have the specific gravity 1.261 when woiling, and about 1.340 at ordinary temperatures. They should be preserved in a place the temperature of which preserved in a pla
never exceeds 55°
sarsaparilla syrups
Compound.-Take of sarsaparilla, bruised, 2 pounds; guaiacum-wood, rasped, 3 ounces; hundred-leaved roses, senna, liquorice-root bruised, each 2 ounces; oil of sassafras, oil of anise, each 5 minims; oil ot patridge berry 3 minims; diluted alcohol 10 pints; sugar 8 pounds. Macerate the sarsaparilla, guaiacum wood, roses, senna, and liquorice root in the diluted alcohol for fourteen days; then express and filter. Evaporate the tincture by means of a water-bath to four pints; filter add the sugar, and proceed in the manner directed for syrup. Lastly, having rubbed the oil with a small quantity of the syrup, mix them thoroughly with the remainder.
Compound syrup of sarsaparilla may alsn be prepared in the following manner:-
2. Take of sarsaparilla, ground into coarse powder, 2 pounds; guaiacum-wood, rasped, 3 ounces; hundred-leaved roses, senna, liquorice root, each in coarse powder, 2 ounces; oil of sassafras, oil of anise, each 5 minims ; oll of patridge berry, 3 minims; water a sufficient quantity; sugar 8 pounds. Mix the sarsaparilla, guaiacum-wood, roses, senna, and liquorice root, with three pints of water, and allow the mixture to stand for twenty-four hours.Then transfer the whole to an apparatus for displacement, and pour on water gradually until one gallon of filtered liquor is obtained Evaporate this to four pints; then add the sugar, and proceed in the manner directed for syrup. Lastly, having rubbed the oils with a small portion of the syrup mix them thoroughly with the remainder
3. Take of sarsaparilla 1000 parts ; dried flowers of borage 64 parts; hundred-leaved
roses 64 parts ; senna leaves 64 parts; anni seed 64 parts; white sugar 1000 parts; ho ney 1000 parts. Slice the sarsaparilla and in
fuse it in 6000 parts of water for 24 hours fuse it in 6000 parts of water for 24 hours boil for a quarter of an hour and strain; boi the residue with 5000 parts of water a second and a third time, and pour the last boiling de coction upon the borage, senna, roses and an niseed ; infuse for twelve hours, and express Decant all the liquors, and evaporate to 3000 parts. Allow the concentrated solution to deposit ; decant ; add the sugar and boney, and make into a syrup, which clarify with the white of eggs, and strain.
4. Simple.-Take of alcoholic extract of sarsaparilla 192 parts ; water 2000 parts ; white sugar 4000 parts. Dissolve the extract in the water with the aid of a gentle heat; filter the solution while warm, add the sugar, and form into a syrup.

Practical Receipts.

Prepared by a German Chem

 Scientific American.To Polish Fine Furniture.
The simplest and best thing for polishing fine parlor furniture is milk. After cleanin the furniture from dust and dirt, fresh milk, which has not been skımened, is apread upon the wood, which is then rubbed with a fine woolen rag, until it is completely dry. This has to be repeated several times. Milk offers, besides not producing an offensive smell, the advantage that the turniture can be used again without delay.

To Clean Oll Paint.
The best thing for cleaning oil paint is a sponge dipped in ammonia which has been co piously diluted with water. Soap dissolves the turpentine as well as the linseed oil, and not only destroys the smooth and shiny surface, but exposes also the white lead to the influence of the water and air, and is therefore not practical.

A Beautiral Art

Signor Gamberini, an Italian gentleman has commenced a new and beautiful ornamental art styled "Papiro Grophia." It consists of cutting figures of the most elaborate designs upon black glazed paper, to be thrown out in relief upon light ground. The subject is first carefully drawn out upon the reverse surface, and then cut in with such exquisite nicety as to delineate the most minute line and shade. Flowers, foliage, landscapes, and intricate groups of the antique are executed wlth almost the minuteness of finish of the engraving, and require full as much care, time, and talent.

Cheap Paint.

Take two quarts skimmed milk, 2 ounces tresh slaked lime, 5 pounds whiting; put he lime into a stoneware vessel, pour upon it a sufficienc quantity of milk to make a mixture resembling cream; the remainder of the milk is then to be added; and lastly, he whiting is then to be crumbled and spread on the surface of the fluid, in which it gradually sınks. At this period it must all be stirred in, or ground as you would other paint, and it is fit for use. There may be added any coloring matter that suits the fancy.
It is to be applied in the same manner as other paint, and in a few hours will become perfectly dry. Another coat may then be added, and so on until the work is completed.
Improved Method of Making Charcoal.
A mode of manufacturing this substance in France, is to fill all the interstices in the heap of wood to be charred, with dry powdered charcoal; then cover the whole mass with earth or sods, and burn it in the usual way By this means, much of the access of air i prevented, and a saving of ten per cent in volume, as well as weight of charcoal, wil be gained over the ordinary modes.

Preserving Dried Fruits.

The most effectual mode is, when the frui is dry, and ieady for packing away, as you put it into the barrel or sack, sprinkle it with whiskey-say at the rate of a pint to bust.el.

Cherries, raspberries, and currants have been kept for two or three years in this way We suppose any kind of spirits would answer the purpose, as the worms appear to go in
for temperance

MBCHANICAL MOVEMENTS.

This is a modification of traverse motion, produced from the revolutions of the revolving arms, which strike alternately upon blocks fixed upon the traversing bar. There is a slot in the traversing bar which allows it to move on the axle of the revolving arms. Each arm trikes the upper block and drives the bar to he right then the lower block and drives the rint, left thus operating the bar, produ bar to the left, thus operating the bar, producing a traverse from a circular motion. The principle is clear, although the contrivance is not very fine, and beside it is somewhat antique, but more valuable on that account by some.

Vertical and Horizontal Revolving Mo-
tlon. tlon.

This cut represents two pulleys placed on a vertical shaft. When the shaft is in motion, the two drums have a contrary motion from that of the shaft in one sense, and with it in another. If motion is desired to be commuricated to another vertical shaft from the one epresented, it is done by a band placed round the pulleys, across the perpendicular of the shaft.

Curious Mode of Making Butter. If I want butter only for my own breakfas lay a sheet of blotting paper, upon a plate and pour the cream upon it. In a short time the milk filters through, and the butter is formed. If I wish to expedite the operation, I turn the paper over gently upon the cream, and keep it in contact for a few moments, and then press upon it, and the butter is formed in less than two minutes. If you submit to severe pressure by a screw press, it becomes hard as when frozen. I cannot think but the simplicity of this mode of proceeding would be universally adopted, if any better material than blottıng paper could be thought of for the filter-the paper adhering too firm ly to the butter, and the finest muslin admitting the passage of the cream. A Gardner.

Hemlock Hedges.

A writer in the Gennesse Farmer describes hedge composed of the hemlock, at a nur sery in Toronto, Canada, which is 150 feet long, 5 feet high, and 3 feet thick at the base tapering gradually towards the summit. The editor of the Farmer says in a note :-
For the formation of a beautiful green hedge it (the hemlock) cannot be surpassed. It has not the power of the Norway spruce, and will not answer the purpose of fencing so well; but where great strength is not required, and ornament the chief desideratum, the Hemlock will answer admirably. The specimen our correspondent alludes to, in the Toronto nursery, has often attracted our admiration. It has been four years planted, shorn only twice, and is, at this moment, a green wall, five feet high, without a blemish-one of the most elegant enclosures for a lawn or flower garden imaginable.
Benjamin Wheeler, Esq., of Framingham, has a beautiful specimen of a Hernlock Hedge. We are not able to give a statement of its age or dimensions, but, when we saw it about two years ago, it was in a flourishing condition, and an admirable ornament to his grounds.

Corn Beer.

'Tis good and harmless, withal cheap and easily made. Boil 3 pints of corn until the skin slips : take it out of the water, and put it inte a four gallon jug or demijohn; cover the corn with water, thus to remain until fermentation has taken place, which is by bubbles rising, gas escaping; then add water,
sweetened to the taste. As the beer is drank out of the vessel, add sweetened water ever night. When the corn is first used, the drink will be sometimes thick and oily; throw this away, and add more sweetencd water. A few trials will give to any housekeeper the knowledge as to sugar, and a few days will give the quantity of sweetened water to add each nigbt, after the last draught be taken. And how many gallons of beer will these three pints of corn make during the year Multiply each day by full two gallons, and we guess you will come near it. The three pints will do for twelve months constant use.
Soft Ginger-bread to eat with Corn Beer Take 4 tea cups full of flour, 2 of molasses 1.2 cup of butter, 2 ot buttermilk, 1 of thick cream, 3 eggs. 1 table spoonful of ginger, and the same of saleratus. Mix them all togeth er, except the buttermilk and saleratus; the latter should be dissolved in the buttermilk, and added to the residue. Instead of 2 cups of rnolasses, use one of sugar and one of molasses. Bake soon after mixing, and eat warm or cold.

White Blackberries.

The Editor of the Alabama Planter, has received a eample of a white berry, of the blackberry species. The berry is stainless, sweeter than the common blackberry, and is of the color of the inside of the lemon. It is superior in every way, to the ordinary black berry. Indeed, this is infinitely beyond anything of its class, and will be sought atter as a most delicious laxury. The berries are large, abundant and beautiful on all the bushes where they grow in Alabama.

Destruetion of Mice.

A curious fact, is mentioned of the extraordinary number of 28,071 mice having been taken or caught from September to January in the Dean forest, Gloucestershire, over an area of only 1,692 acres. The successful method adopted there was boring holes in the ground, twenty inces deep, wider at the bottom than at the top, which prevented them rom getting out when once is, and into which was drop ped some food.
It has recently been estimated that all the salt of all the oceans of the world, if condensed into a solid state, would torm a mass of $9,000,000$ cubic geographical miles, more than wice as large as the whole Himalaya mountains.

This paper, the most popular publication of the kind in the world, is published weekly At 128 Fulton Street, $\mathcal{N e w}$ York, and 13 Court Street, Boston,

BY MUNN \& COMPANY.
The principal office being at New York.
The SCIENTIFIC AMERICAN is the Ad vocate of Industry in all its torms, and as a Journal for Mechanics and Manufacturers, is not equalled by any other publication of the kind in the world.
Each number contains from FIVE to SEVEN ORIGINAL MECHANICAL ENGRA. VINGS of the most important inventions; a catalogue of AMERICAN PATENTS, as issued from the Patent Office each week; notices of the progress of all new MECHANI ces of the progress of all new MECHANI-
CAL and SCIENTIFIC inventions ; instruction in the various ARTS and TRADES, with ENGRAVINGS ; curious PHILOSOPHICAL and CHEMICAL experiments ; the latest RAILROAD INTELLIGENCE in EUROPE and AMERICA ; all the different MECHANICAL MOVEMENTS, published in a series and ILLUSTRATED with more than A HUNDRED ENGRAVINGS, \&c. \&c

The Scientific American has already attained the largest circulation of any weekly mechanical journal in the world, and in this country its circulation s not surpassed by all the other mechanical apers combined.

还-For terms see inside.

