TF
200
W4
1903

Copyight №
COPYRIGHT DEPOSTT.

Iq 289170

 $8=$ - P4.

$$
x-60 n 1
$$

WORKS OF
PROF. WALTER L. WEBB
PUBLISHED BY
JOHN WILEY \& SONS.
Railroad Construction.-Theory and Practice.
A Text-book for the Use of Students in Collegesand Technical Schools. Second Edition, Reset andEnlarged. 16 mo . $\mathrm{xvi}+676$ pages and 232 figures andplates. Morocco, $\$ 5.00$.
Problems in the Use and Adjustment of Engineer=ing Instruments.
Forms for Field-notes; General Instructions for Extended Students' Surveys. $1 \in$ mo. Morocco, \$1.25.

RAILROAD CONSTRUCTION.

THEORY AND PRACTICE.

A TEXT-BOOK FOR THE USE OF STUDENTS IN COLLEGES AND TECHNICAL SCHOOLS.

BY
WALTER LORING WEBB, C.E., Associate Member American Society of Civil Engineers; sometime Assistant Professor of Civil Engineering in the University of Pennsylvania;
etc.

SECOND EDITION, REVISED AND ENLARGED. FIRST THOUSAND.

NEW YORK : JOHN WILEY \& SONS.

London : CHAPMAN \& HALL, Limited.
1903.

THE LIBRARY OF CONGRESS,

Two Copies Received
MAR 301903
Copyright Entry
Mar. 23-1903
CLASS a XXi. No. $55_{\text {copy }} 75$

Copyright, 1899, 1903, BY

WALTER LURING WEBB.

PRESS OF

BROOKLYN, N. Y.

PREFACE TO FIRST EDIIION.

The preparation of this book was begun several years ago, when much of the subject-matter treated was not to be found in print, or was scattered through many books and pamphlets, and was hence unavailable for student use. Portions of the book have already been printed by the mimeograph process or have been used as lecture-notes, and hence have been subjected to the refining process of class-room use.

The author would call special attention to the following features:
a. Transition curves; the multiform-compound-curve method is used, which has been followed by many railroads in this country; the particular curves here developed have the great advantage of being exceedingly simple, and although the method is not theoretically exact, it is demonstrable that the differences are so small that they may safely be neglected.
b. A system of earthwork computations by means of a sliderule (which accompanies the volume) which enables one to compute readily the volume of the most complicated earthwork forms with an accuracy only limited by the precision of the cross-sectioning.
c. The "mass curve" in earthwork; the theory and use of this very valuable process.
d. Tables I, II, III, and IV have been computed ab novo. Tables I and II were checked (after computation) with other tables, which are generally considered as standard, and all discrepancies were further examined. They are believed to be perfect.
e. Tables V, VI, VII, and IX have been borrowed, by permission, from "Ludlow's Mathematical Tables." It is believed that five-place tables give as accurate results as actual field
practice requires. Tables VIII and X have been compiled to conform with Ludlow's system.

The author wishes to acknowledge his indebtedness to Mr . Chas. A. Sims, civil engineer and railroad contractor, for reading and revising the portions relating to the cost of earthwork.

Since the book is written primarily for students of railroad engineering in technical institutions, the author has assumed the usual previous preparation in algebra, geometry, and trigonometry.

Walter Loring Webb.

> University of Pennsylvania, Philadelphia, Jan. $1,1900$.

PREFACE TO SECOND EDITION.

Since the issue of the first edition the author has conferred with many noted educators in civil engineering, among them the late Professors E. A. Fuertes and J. B. Johnson, regarding the most desirable size of page for this book. The inconvenience of the octavo edition for field-work was found to be limiting its use. It was therefore decided to recast the whole work and reduce the page from "octavo" to "pocket-book" size. Advantage was then taken of the opportunity to revise freely and to add new matter. The original text has now been almost doubled by the addition of several chapters on structures, train resistance, rolling stock, etc., and also several chapters giving the fundamental principles of the economics of railroad location. Those who are familiar with the late Mr. Wellington's masterpiece, "The Eccnomic Theory of Railway Location," will readily appreciate the author's indebtedness to that work. Eut while the same general method has been followed, the author has taken advantage of the classification of operating expenses adopted by the Interstate Commerce Commission, has used the figures published by them (which were unavailable when Mr. Wellington wrote), and has developed the theory on an independent basis, with the exception of a few minor details. Those who deny the utility of such methods of computation are referred to $\S \S 367,426$, and elsewhere for a practical discussion of that subject.

The author's primary aim has been to produce a "text-book for students," and the subject-matter has therefore been cut down to that which may properly be required of students in
the time usually allotted to railroad work in a civil-engineering curriculum. On this account no extended discussion has been given to the multitudinous forms of various railroad devices in the chapters on structures. The aim has been to teach the principles and to guide the students into proper methods of investigation.

January, 1903.

TABLE OF CONTENTS.

CHAPTER I.
 RAILROAD SURVEYS.

PAGE
Reconnoissance 1

1. Character of a reconnoissance survey. 2. Selection of a gen- eral route. 3. Valley route. 4. Cross-country route. 5. Moun- tain route. 6. Existing maps. 7. Determination of relative elevations. Barometrical method. 8. Horizontal measurements, bearings, etc. 9. Importance of a good reconnoissance.
Preliminary surveys 9
2. Character of a survey. 11. Cross-section method. 12. Cross-sectioning. 13. Stadia method. 14. "First" and "sec- ond" preliminary survey.
Location surveys 1
3. "Paper location." 16. Surveying methods. 17. Form of Notcs.
CHAPTER II.
ALIGNMENT.
Simple curves 19
4. Designation of curves. 19. Length of a subchord. 20. Length of a curve. 21. Elements of a curve. 22. Relation be- tween T, E, and 4 . 23. Elements of a 1° curve. 24. Exercises. 25. Curve location by deflections. 26. Instrumental work. 27. Curve location by two transits. 28. Curve location by tangential offsets. 29. Curve location by middle ordinates. 30. Curve location by offsets from the long chord. 31. Use and value of the above methods. 32. Obstacles to location. 33. Modifications of location. 34. Limitations in location. 35. Determination of the curvature of existing track. 36. Problems.
Compound curves. 3837, Nature and use. 38. Mutual relations of the parts of a com-pound curve having two branches. 39. Modifications of location.40. Problems.
PAGE
Transition curves 4341. Superelevation of the outer rail on curves. 42. Practicalrules for superelevation. 43. Transition from level to inclinedtrack. 44. Fundamental principle of transition curves. 45.Multiform compound curves. 46. Required length of spiral. 47.To find the ordinates of a 1°-per- 25 -feet spiral. 48. To find thedeflections from any point of the spiral. 49. Connection of spiralwith circular curve and with tangent. 50. Field-work. 51. Toreplace a simple curve by a curve with spirals. 52. Applicationof transition curves with compound curves. 53. To replace a com-pound curve by a curve with spirals.
Vertical curves.6154. Necessity for their use. 55. Required length. 56. Formof curve. 57. Numerical example.
CHAPTER III.
EARTHWORK.
Form of excavations and embankments 65
5. Usual form of cross-section in cut and fill. 59. Terminal pyramids and wedges. 60. Slopes. 61. Compound sections. 62. Width of roadbed. 63. Form of subgrade. 64. Ditches. 65. Effect of sodding the slopes, etc.
Earthwork surveys 73
6. Relation of actual volume to the numerical result. 67. Prismoids. 68. Cross-sectioning 69. Position of slope-stakes. 69a. Setting slope-stakes by means of "automatic" slope-stake rods.
Computation of volume 7970. Prismoidal formula. 71. Averaging end areas. 72. Middleareas. 73. Two-level ground. 74. Level sections. 75. Numeri-cal example, level sections. 76. Equivalent sections. 77. Equiv-alent level sections. 78. Three-level sections. 79. Computationof products. 80. Five-level sections. 81. Irregular sections.82. Volume of an irregular prismoid. 83. True prismoid correc-tion for irregular prismoids. 84. Numerical example; irregularsections; volume, with true prismoidal correction. 85. Volumeof irregular prismoid, with approximate prismoidal correction.86. Illustration of value of approximate rules. 87. Cross-section-ing irregular sections. 88. Side-hill work. 89. Borrow-pits. 90.Correction for curvature. 91. Eccentricity of the center ofgravity. 92. Center of gravity of side-hill sections, 93. Exam-ples of curvature correction. 94. Accuracy of earthwork com-putations. 95. Approximate computations from profiles.
Formation of embankments 11196. Shrinkage of earthwork. 97. Allowance for shrinkage.98. Methods of forming embankments.
Computation of haul. 11ϵ99. Nature of subject. 100. Mass diagram. 101. Properties
PAGEof the mass curve. 102. Area of the mass curve. 103. Value ofthe mass diagram. 104. Changing the grade line. 105. Limit offree haul.Elements of the cost of earthwork.124106. General divisions of the subject. 107. Loosening. 108.Loading. 109. Hauling. 110. Choice of method of haul depend-ent on distance. 111. Spreading. 112. Keeping roadways inorder. 113. Repairs, wear, depreciation, and interest on cost ofplant. 114. Superintendence and incidentals. 115. Contractor'sprofit. 116. Limit of profitable haul.
Blasting. 139117. Explosives. 118. Drilling. 119. Position and directionof drill-holes. 120. Amount of explosive. 121. Tamping. 122.Exploding the charge. 123. Cost. 124. Classification of ex-cavated material. 125. Specifications for earthwork.
CHAPTER IV.
TRESTLES.
7. Extent of use. 127. Trestles $v s$. embankments. 128. Twoprincipal types.149
Pile trestles 151
8. Pile bents. 130. Methods of driving piles. 131. Pile- driving formulæ. 132. Pile-points and pile-shoes. 133. Details of design. 134. Cost of pile trestles.
Framed trestles 157
9. Typical design. 136. Joints. 137. Multiple-story con- struction. 138. Span. 139. Foundations. 140. Longitudinal bracing. 141. Lateral bracing. 142. Abutments.163143. Stringers. 144. Corbels. 145. Guard-rails. 146 Ties ontrestles. 147. Superelevation of the outer rail on curves. 148.Protection from fire. 149. Timber. 150. Cost of framed timbertrestles.
Design of wooden trestles 169151. Common practice. 152. Required elements of strength.153. Strength of timber. 154. Loading. 155. Factors of safety.156. Design of stringers. 157. Design of posts. 158. Designof caps and sills. 159. Bracing.
CHAPTER V.
TUNNELS.
Surveting. 179
10. Surface surveys. 161. Surveying down a shaft. 162. Underground surveys. 163. Accuracy of tunnel surveying. Design. 184
11. Cross-sections. 165. Grade. 166. Lining. 167. Shafts.168. Drains.
PAGE
Construction. 189169. Headings. 170. Enlargement. 171. Distinctive featuresof various methods of construction. 172. Ventilation during con-struction. 173. Excavation for the portals. 174. Tunnels vs.open cuts. 175. Cost of tunneling.
CHAPTER VI.
CULVERTS AND MINOR BRIDGES.
12. Definition and object. 177. Elements of the design. 197
Area of the waterway 198
13. Elements involved. 179. Methods of computation of area.180. Empirical formulæ. . 181. Value of empirical formulæ. 182.Results based on observation. 183. Degree of accuracy required.Pipe culverts.202184. Advantages. 185. Construction. 186. Iron-pipe culverts.187. Tile-pipe culverts.
Box culverts. 206188. Wooden box culverts. 189. Stone box culverts. 190. Oldrail culverts.
Arch culverts. 210191. Influence of design on flow. 192. Example of aroh-cul-vert design.
Minor openings 211193. Cattle-guards. 194. Cattle-passes. 195. Standard stringerand I-beam bridges.
CHAPTER VII.
BALLAST.
14. Purpose and requirements. 197. Materials. 198. Cross-sections. 199. Methods of laying ballast. 200. Cost........... . 215
CHAPTER VIII.
TIES AND OTHER FORMS OF RAIL SUPPORT.
15. Various methods of supporting rails. 202. Economics ofties220
Wooden ties 221203. Choice of wood. 204. Durability. 205. Dimensions.206. Spacing. 207. Specifications. 208. Regulations for layingand renewing ties. 209. Cost of ties.
Preservative processes for wooden ties 225210. General principle. 211. Vulcanizing. 212. Creosoting.213. Burnettizing. 214. Kyanizing. 215. Wellhouse (or zinc-tannin) process. 216. Cost of treating. 217. Economics oftreated ties.

TABLE OF CONTENTS.
zage
Metal ties. 231218. Extent of use. 219. Durability. 220. Form and dimen-sions of metal cross-ties. 221. Fastenings. 222. Cost. 223.Bowls or plates. 224. Longitudinals.
CHAPTER IX.
rails.
225. Early forms. 226. Present standard forms. 227. Weightfor various kinds of traffic. 228. Effect of stiffness on traction.229. Length of rails. 230. Expansion of rails. 231. Rules forallowing for temperature. 232. Chemical composition. 233.Testing. 233a. Proposed standard specifications for steel rails.234. Rail wear on tangents. 235. Rail wear on curves. 236.
CHAPTER X.
RAIL-FASTENINGS.
Rail-joints 249
237. Theoretical requirements for a perfect joint. 238. Effi- ciency of the ordinary angle-bar. 239. Effect of rail-gap at joints. 240. Supported, suspended, and bridge joints. 241. Failures of rail-joints. 242. Standard angle-bars. 243. Later designs of rail- joints. 243a. Proposed specifications for steel splice-bars.
Tie-plates 255
244. Advantages. 245. Elements of the design. 246. Methods. of setting.
Spikes 258
247. Requirements. 248. Driving. 249. Screws and bolts. 250. Wooden spikes.
Track-bolts and nut-locks 261
251. Essential requirements. 252. Design of track-bolts. 253. Design of nut-locks.
CHAPTER XI.
switches and crossings.
Switch construction 265
254. Essential elements of a switch. 255. Frogs. 256. To find the frog number. 257. Stub switches. 258. Point switches. 259. Switch-stands. 260. Tie-rods. 261. Guard-rails.
Mathematical design of switches 272
262. Design with circular lead rails. 263. Effect of straight frog- rails. 264. Effect of straight point-rails. 265. Combined effect of straight frog-rails and straight point-rails. 266. Comparison of the above methods. 267. Dimensions for a turnout from the outer side of a curved track. 268. Dimensions for a turnout from the inner side of a curved track. 269. Double turnout from a
page
straight track. 270. Two turnouts on the same sile. 271. Con-necting curve from a straight track. 272. Connecting curve froma curved track to the outside. 273. Connecting curve from acurved track to the inside. 274. Crossover between two parallelstraight tracks. 275. Crossover between two parallel curvedtracks. 276. Practical rules for switch-laying.
Crossings 294277. Two straight tracks. 278. One straight and one curvedtrack. 279. Two curved tracks.
CHAPTER XII.
MISCELLANEOUS STRUCTURES AND BUILDINGS.
Water stations and water supply 299280. Location. 281. Required qualities of water. 282. Tanks.283. Pumping. 284. Track tanks. 285. Stand pipes.
Buildings. 304286. Station platforms. 287. Minor stations. 288. Sectionhouses. 289. Engine houses.
Snow structures. 309
290. Snow fences. 291. Snow sheds.
Turntables 311
CHAPTER XIII.
YARDS AND TERMINALS.
293. Value of proper design. 294. Divisions of the subject 313
Freight yards 314295. General principles. 296. Relation of yard to main tracks.297. Minor freight yards. 298. Transfer cranes. 299. Trackscales.
Engine yards 321
300. General principles.
Passenger terminals 323
CHAPTER XIV.
block signaling.
General principles. 324
301. Two fundamental systems. 302. Manual systems. 303. Development of the manual systems. 304. Permissive blocking. 305. Automatic systems. 306. Distant signals. 307. Advance signals.
Mechanical details. 330
308. Signals. 309. Wires and pipes. 310. Track circuit for automatic signaling.

CHAPTER XV.

rolling stock.
PAGE
Wheels and rails 335311. Effect of rigidly attaching wheels to their axles. 312.Effect of parallel axles. 313. Effect of coning wheels. 314.Effect of flanging locomotive driving wheels. 315. Action of alocomotive pilot-truck.
LOCOMOTIVES.
General structure. 342
316. Frame. 317. Boiler. 318. Fire box. 319. Coal con- sumption. 320. Heating surface. 321. Loss of efficiency of steam pressure. 322. Tractive power.353323. Tyr as of running gear. 324. Equalizing levers. 325.Counterbal ncing. 326. Mutual relations of the boiler power,tractive power and cylinder power for various types. 327. Lifeof locomotives.
CARS.
328. Capacity and size of cars. 329. Stresses to which carframes are subjected. 330. The use of metal. 331. Draft gear. 332. Gauge of wheels and form of wheel tread.365
TRAIN-BRAKES.
333. Introduction. 334. Laws of friction as applied to this
\qquad
Mechanism of brakes. 372335. Hand-brakes. 336. "Straight" air brakes. 337. Auto-matic air brakes. 338. Tests to measure the efficiency of brakes.339. Brake shoes.
CHAPTER XVI.
TRAIN RESISTANCE.
340. Classification of the various forms. 341. Resistances internal to the locomotive. 342. Velocity resistances. 343. Wheel resistances. 344. Grade resistance. 345. Curve resistance. 346. Brake resistances. 347. Inertia resistance. 348. Formulæ for train resistance. 349. Dynamometer tests. 350. Gravity or "drop" tests378

CHAPTER XVII.

COST OF RAILROADS.

351. General considerations. 352. Preliminary financiering. 353. Surveys and engineering expenses. 354. Land and land
damages. 355. Clearing and grubbing. 356. Earthwork. 357. Bridges, trestles and culverts. 358. Trackwork. 359. Buildings and miscellaneous structures. 360. Interest on construction. 361. Telegraph lines. 362. Detailed estimate of the cost of a line of road

PART II.

> RAILROAD ECONOMICS.

CHAPTER XVIII.

INTRODUCTION.
363. The magnitude of railrcad business. 364. Cost of transportation. 365. Study of railroad economics-its nature and limitations. 366. Outline of the engineer's duties. 367. Justification of such methods of computation

CHAPTER XIX.

THE PROMOTION OF RAILROAD PROJECTS.
368. Method of formation of railroad corporations. 369. The two classes of financial interests, the seourity and profits of each. 370. The small margin between profit and loss to the projectors. 371. Extent to which a railroad is a monopoly. 372. Profit resulting from an increase in business done; loss resulting from a decrease. 373. Estimation of probable volume of traffic, and of probable growth. 374. Probable number of trains per day. Increase with growth of traffic. 375. Effect on traffic of an increase in facilities. 376. Loss caused by inconvenient terminals and by stations far removed from business centres. 377. General principles which should govern the expenditure of money for railroad purposes.

CHAPTER XX.

OPERATING EXPENSES.
378. Distribution of gross revenue. 379. Fourfold distribution of operating expenses. 380 . Operating expenses per train mile. 381. Reasons for uniformity in expenses per train mile. 382. Detailed classification of expenses with ratios to the total expense. 383. Elements of the cost (with variations and tendencies) of the various items
PAGE
Maintenance of way 424384. Item 1. Repairs of roadway. 385. Item 2. Renewal ofrails. 386. Item 3. Renewal of ties. 387. Item 4. Repairsand renewals of bridges and culverts. 388. Items 5 to 10 . Re-pairs and renewals of fences, road crossings, and cattle guards-of buildings and fixtures-of docks and wharves-of telegraphplant; stationery and printing; and "other expenses."
Maintenance of equipment 427389. Item 11. Superintendence. 390. Item 12. Repairs andrenewals of locomotives. 391. Items 13,14 , and 15 . Repairs andrenewals of passenger cars, of freight cars, and of work cars. 392.Items $16,17,18$, and 19. Repairs and renewals of marine equip-ment, of shop machinery and tools; stationery and printing; otherexpenses.
Conducting transportation. 248393. Item 20. Superintendence. 394. Item 21. Engine androundhouse men. 395 . Item 22. Fuel for lacomotives. 396.Items 23, 24, and 25. Water supply; oil, tallow, and waste; othersupplies for locomotives. 397. Item 26. Train service. 398.Item 27. Train supplies and expenses. 399. Items 28, 29, 30, and31. Switchmen, flagmen, and watchmen, telegraph expenses;station service; and station supplies. 400 . Items 32,33 , and 34.Switching service-balance; car mileage-balance; hire of equip-ment. 401. Items 35,36 , and 37 . Loss and damage; injuries topersons; clearing wrecks. 402. Items 38 to 53.

CHAPTER XXI.

DISTANCE.

403. Relation of distance to rates and expenses. 404. The conditions other than distance that affect the cost; reasons why rates are usually based on distance432
Effect of distance on operating expenses, 433405. Effect of slight changes in distance on maintenance of way.406. Effect on maintenance of equipment. 407. Effect on con-ducting transportation. 408. Estimate of total effect on expensesof small changes in distance (measured in feet); estimate for dis-tances measured in miles.Effect of distance on receipts440409. Classification of traffic. 410. Method of division of throughrates between the roads run over. 411. Effect of a change in thelength of the home road on its receipts from through competitivetraffic. 412. The most advantageous conditions for roads formingpart of a through competitive route. 413. Effect of the variationsin the length of haul and the classes of the business actually done.414. General conclusions regarding a change in distance. 415.Justification of decreasing distance to save time. 416. Effect ofchange of distance on the business done.

CHAPTER XXII.

CURVATURE.

PAGE
417. General objections to curvature. 418. Financial value of the danger of accident due to curvature. 419. Effect of curvature on travel. 420. Effect on operation of trains.

445
Effect of curvature on operating expenses 449
421. Relation of radius of curvature and of degrees of central angle to operating expenses. 422. Effect of curvature on maintenance of way. 423. Effect of curvature on maintenance of equipment. 424. Effect of curvature on conducting transportation. 425. Estimate of total effect per degree of central angle. 426. Reliability and value of the above estimate.
Compensation for curvature.
427. Reasons for compensation. 428. The proper rate of compensation. 429. The limitations of maximum curvature.

CHAPTER XXIII.

GRADE.
430. Two distinct effects of grade. 431. Application to the movement of trains of the laws of accelerated motion. 432. Construction of a virtual profile. 433. Use value and possible misuse. 434. Undulatory grades; advantages, disadvantages, and safe limits.

460
Minor grades.
435. Basis of cost of minor grades. 436. Classification of minor
grades. 437. Effect on operating expenses. 438. Estimate of
the cost of one foot of change of elevation. 439. Operating value
of the removal of a hump in a grade.

Ruling grades. .
440. Definition. 441. Choice of ruling grades. 442. Maximum train load on any grade. 443. Proportion of traffic affected by the ruling grade. 444. Financial value of increasing the train load. 445. Operating value of a reduction in the rate of the ruling grade.
Pusher grades. 481
446. General principles underlying the use of pusher engines. 447. Balance of grades for pusher service. 448. Operation of pusher engines. 449. Length of a pusher grade. 450. Cost of pusher engine service. 451. Numerical comparison of pusher and through grades.
Balance of grades for unequal traffic. 489
452. Nature of the subject. 453. Computation of the theoretical balance. 454. Computation of relative traffic.

CHAPTER XXIV.

THE IMPROVEMENT OF OLD LINES.
455. Classification of improvements. 456. Advantages of relocations. 457. Disadvantages of re-locations. 493
Reduction of virtual grade.... 496
458. Obtaining data for computations. 459. Use of the data obtained. 460. Reducing the starting grade at stations.
Appendix. The adjustments of instruments 501
Tables.
I. Radii of curves 512
II. Tangents, external distances and long chords for a 1° curve 516
III. Switch leads and distances 519
IV. Transition curves. 520
V. Logarithms of numbers 523
VI. Logarithmic sines and tangents of smail angles. 543
VII. Logarithmic sines, cosines, tangents, and cotangents. 546
VIII. Logarithmic versed sines and external secants. 591
IX. Natural sines, cosines, tangents and cotangents. 637
X. Natural versed sines and external secants 642
XI. Reduction of barometer reading to $32^{\circ} \mathrm{F}$ 647
XII. Barometric elevations. 648
XIII. Coefficients for corrections for temperature and humidity 648
XIV. Capacity of cylindrical water-tanks in United States standard gallons of 231 cubic inches. 301
XV. Number of cross ties per mile 396
XVI. Tons per mile (with cost) of rails of various weights 397
XVII. Splice bars and bolts per mile of track. 398
XVIII. Railroad spikes. 398
XIX. Track bolts 398
XX. Classification of operating expenses of all railroads 425
XXI. Effect on operating expenses of changes in distance 439
XXII. Effect on operating expenses of changes in curvature. 453
XXIII. Velocity head of trains 463
XXIV. Effect on operating expenses of changes in grade. 472
XXV. Tractive power of locomotives. 475
XXVI. Total train resistance per ton on various grades. 477
XXVII. Cost of an additional train to handle a given traffic 480
XXVIII. Balanced grades for one, $\mathrm{two}_{\mathrm{s}}$ and three engines 485
XXIX. Cost per mile of a pusher engine 488
XXX. Useful trigonometrical formulæ. 649
XXXI. Useful formulæ and constants. 651
Index 653
1.8
Q1.

$$
4
$$

RAILROAD CONSTRUCTION.

CHAPTER I.

RAILROAD SURVEYS.

The proper conduct of railroad surveys presupposes an adequate knowledge of almost the whole subject of railioad engineering, and particularly of some of the complicated questions of Railroad Economics, which are not generally studied except at the latter part of a course in railroad engineering, if at all. This chapter will therefore be chiefly devoted to methods of instrumental work, and the problem of choosing a general route will be considered only as it is influenced by the topography or by the application of those elementary principles of Railroad Economics which are self-evident or which may be accepted by the student until he has had an opportunity of studying those principles in detail

RECONNOISSANCE SURVEYS.

I. Character of a reconnoissance survey. A reconnoissance survey is a very hasty examination of a belt of country to determine which of all possible or suggested routes is the most promising and best worthy of a more detailed survey. It is essentially very rough and rapid. It aims to discover those salient features which instantly stamp one route as distinctly superior to another and so narrow the choice to routes which are so nearly equal in value that a more detailed survey is necessary to decide between them.
2. Selection of a general route. The general question of running a railroad between two towns is usually a financial rather
than an engineering question. Financial considerations usually determine that a road must pass through certain more or less important towns between its termini. When a railroad runs through a thickly settled and very flat country, where, from a topographical standpoint, the road may be run by any desired route, the "right-of-way agent" sometimes has a greater influence in locating the road than the engineer. But such modifications of alignment, on account of business considerations, are foreign to the engineer's side of the subject, and it will be hereafter assumed that topography alone determines the location of the line. The consideration of those larger questions combining finance and engineering (such as passing by a town on account of the necessary introduction of heary grades in order to reach it) will be taken up in Chap. XIX, et seq.
3. Valley route. This is perhaps the simplest problem. If the two towns to be connected lie in the same valley, it is frequently only necessary to run a line which shall have a nearly uniform grade. The reconnoissance problem consists largely in determining the difference of elevation of the two termini of this division and the approximate horizontal distance so that the proper grade may be chosen. If there is a large river running through the valley, the road will probably remain on one side or the other throughout the whole distance, and both banks should be examined by the reconnoissance party to determine which is preferable. If the river may be easily bridged, both banks may be alternately used, especially when better alignment is thereby secured. A river valley has usually a steeper slope in the upper part than in the lower part. A uniform grade throughout the valley will therefore require that the road climbs up the side slopes in the lower part of the valley. In case the "ruling grade"* for the whole road is as great as or greater than the steepest natural valley slope, more freedom may be used in adopting that alignment which has the least costregardless of grade. The natural slope of large rivers is almost invariably so low that grade has no influence in determining the choice of location. When bridging is necessary, the river banks should be examined for suitable locations for abutments

[^0]and piers. If the soil is soft and treacherous, much difficulty may be experienced and the choice of route may be largely determined by the difficulty of bridging the river except at certain favorable places.
4. Cross-country route. A cross-country route always has one or more summits to be crossed. The problem becomes more complex on account of the greater number of possible solutions and the difficulty of properly weighing the advantages and disadvantages of each. The general aim should be to choose the lowest summits and the highest stream crossings, provided that by so doing the grades between these determining points shall be as low as possible and shall not be greater than the ruling grade of the road. Nearly all railroads combine cross-country and valley routes to some extent. Usually the steepest natural slopes are to be found on the cross-country routes, and also the greatest difficulty in securing a low through grade. An approximate determination of the ruling grade is usually made during the reconnoissance. If the ruling grade has been previously decided on by other considerations, the leading feature of the reconnoissance survey will be the determination of a general route along which it will be possible to survey a line whose maximum grade shall not exceed the ruling grade.
5. Mountain route. The streams of a mountainous region frequently have a slope exceeding the desired ruling grade. In such cases there is no possibility of securing the desired grade by following the streams. The penetration of such a region may only be accomplished by "development"-accompanied perhaps by tunneling. "Development" consists in deliberately increasing the length of the road between two extremes of elevation so that the rate of grade shall be as low as desired. The usual method of accomplishing this is to take advantage of some convenient formation of the ground to introduce some lateral deviation. The methods may be somewhat classified as follows:
(a) Running the line up a convenient lateral valley, turning a sharp curve and working back up the opposite slope. As shown in Fig. 1, the considerable rise between A and B was surmounted by starting off in a very different direction from the general direction of the road; then, when about one-half of the desired rise had been obtained, the line crossed the valley and continued the climb along the opposite slope. (b) Switch-
back. On the steep side-hill $B C D$ (Fig. 1) a very considerable gain in elevation was accomplished by the switchback $C D$. The gain in elevation from B to D is very great. On the other hand, the speed must always be slow; there are two complete stoppages of the train for each run; all trains must run backward from C to D. (c) Bridge spiral. When a valley is so narrow at some point that a bridge or viaduct of reasonable length can span the valley at a considerable elevation above the

Fig. 1.
bottom of the valley, a bridge spiral may be desirable. In Fig. 2 the line ascends the stream valley past A, crosses the stream at B, works back to the narrow place at C, and there crosses itself, having gained perhaps 100 feet in elevation. (d) Tunnel spiral (Fig. 3). This is the reverse of the previous plan. It implies a thin steep ridge, so thin at some place that a tunnel through it will not be excessively long. Switchbacks and spirals are sometimes necessary in mountainous countries, but they should not be considered as normal types of construction. A region must be very difficult if these devices cannot be avoided.

On Plate I are shown three separate ways (as actually constructed) of running a railroad between two points a little over three miles apart and having a difference of elevation of nearly

PLAT'E I.

Phat'E I.

(To face page 4.)

1100 feet. At A the Central R. R. of New Jersey runs under the Lehigh Valley R. R. and soon turns off to the northeast for about six miles, then doubles back, reaching D, a fall of about 1050 feet with a track distance of about 12.7 miles. The L. V. R. R. at A runs to the westward for six to seven miles,

Fig. 2.
then turns back until the roads are again close together at D. The track distance is about 14 miles and the drop a little greater, since at A the L. V. R. R. crosses over the other, while at D they are at practically the same level. From B to C the distance is over eleven miles. From A directly down to D the C. R. R. of N. J. runs a "gravity" road, used exclusively for freight, on which cars alone are hauled by cable. The main-line routes are remarkable examples of sheer "development." Even as constructed the L. V. R. R. has a grade of about 95 feet per mile, and this grade has proved so excessive for freight work that the company has constructed a cut-off (not shown on the map) which leaves the main line at A, nearly parallels the C. R. R. to C, and then running in a northeasterly direction again joins the main line beyond Wilkesbarre. The grade is thereby cut down to 65 feet per mile.

Rack railways and cable roads, although types of mountain railroad construction, will not be here considered.
6. Existing maps. The maps of the U. S. Geological Survey are exceedingly valuable as far as they have been completed. So far as topographical considerations are concerned, they almost dispense with the necessity for the reconnoissance and "first preliminary" surveys. Some of the State Survey maps will give practically the same information. County and township maps can often be used for considerable information as to the relative horizontal position of governing points, and even some approximate data regarding elevations may be obtained by a study of the streams. Of course such information will not dispense with surveys, but will assist in so planning them as to obtain the best information with the least work. When the relative horizontal positions of points are reliably indicated on a map, the reconnoissance may be reduced to the determination of the relative elevations of the governing points of the route.
7. Determination of relative elevations. A recent description of European methods includes spirit-leveling in the reconnoissance work. This may be due to the fact that, as indicated above, previous topographical surveys have rendered unnecessary the "exploratory" survey which is required in a new country, and that their reconnoissance really corresponds more nearly to our preliminary.

The perfection to which barometrical methods have been brought has rendered it possible to determine differences of elevation with sufficient accuracy for reconnoissance purposes by the combined use of a mercurial and an aneroid barometer. The mercurial barometer should be kept at "headquarters," and readings should be taken on it at such frequent intervals that any fluctuation is noted, and throughout the period that observations with the aneroid are taken in the field. At each observation there should also be recorded the time, the reading of the attached thermometer, and the temperature of the external air. For uniformity, the mercurial readings should then be "reduced to 32° F." The form of notes for the mercurial barometer readings should be as follows:

Time.	Merc. Barom.	Attached Therm.	Reduction to 32° F.	External Therm.	Corrected reading.
7.00 A. м.	29.872	72°	-.117	73°	29.755
$: 15$.866	73.5	.121	75	.745
$: 30$.858	75	.125	76	.733
$: 45$.859	76	.127	77	.723

The corrections in column 4 are derived from Table XI by interpolation.

Before starting out, a reading of the aneroid should be taken at headquarters coincident with a reading of the mercurial. The difference is one value of the correction to the aneroid. As soon as the aneroid is brought back another comparison of readings should be made. Even though there has been considerable rise or fall of pressure in the interval, the difference in readings (the correction) should be substantially the same provided the aneroid is a good instrument. If the difference of elevation is excessive (as when climbing a high mountain) even the best aneroid will "lag" and not recover its normal reading for several hours, but this does not apply to such differences of elevation as are met with in railroad work. The best aneroids read directly to $\frac{1}{10}$ of an inch of mercury and may be estimated to $\frac{1}{1000}$ of an inch-which corresponds to about 0.9 foot difference of elevation. In the field there should be read, at each point whose elevation is desired, the aneroid, the time, and the temperature. These readings, corrected by the mean value of the correction between the aneroid and the mercurial, should then be combined with the reading of the mercurial (interpolated if necessary) for the times of the aneroid observations and the difference of elevation obtained. The field notes for the aneroid should be taken as shown in the first four columns of the tabular form. The "corrected aneroid" readings of column 5 are found by correcting the readings of column 3 by the mean difference between the mercurial and aneroid when compared at morning and night. Column 6 is a copy of the "corrected readings" from the office notes, interpolated when necessary for the proper time. Column 7 is similarly obtained. Col. 8 is obtained from cols. 4 and 5, and col. 9 from cols. 6 and 7, with the aid of Table XII. The correction for temperature (col. 11), which is generally small unless the difference of elevation is large, is obtained with the aid of Table XIII. The elevations in Table XII are elevations above an assumed datum plane, where under the given atmospheric conditions the mercurial reading would be $30^{\prime \prime}$. Of course the position of this assumed plane changes with varying atmospheric conditions and so the elevations are to be considered as relative and their difference taken. [See the author's "Problems in the Use and Adjustment of Engineering In-
(Left-hand page of Notes.)

Time.	Place.	Aneroid.	Therm.	Corr. Aner.	Corr. Merc.
$7: 00$		Office	29.628	73°	\cdots
$7: 10$	$\Delta 0$	29.662	72°	29.789	29.755 $7: 30$ $7: 50$
	saddle-back	29.374	63°	29.501	29.748
river cross.	29.548	70°	29.675	29.720	

struments," Prob. 22.] Important points should be observed more than once if possible. Such duplicate observations will be found to give surprisingly concordant results even when a general fluctuation of atmospheric pressure so modifies the tabulated readings that an agreement is not at first apparent. Variations of pressure produced by high winds, thunder-storms, etc., will generally vitiate possible accuracy by this method. By "headquarters" is meant any place whose elevation above any given datum is known and where the mercurial may be placed and observed while observations within a range of several miles are made with the aneroid. If necessary, the elevation of a new headquarters may be determined by the above method, but there should be if possible several independent observations whose accordance will give a fair idea of their accuracy.

The above method should be neither slighted nor used for more than it is worth. When properly used, the errors are compensating rather than cumulative. When used, for example, to determine that a pass B is 260 feet higher than a determined bridge crossing at A which is six miles distant, and that another pass C is 310 feet higher than A and is ten miles distant, the figures, even with all necessary allowances for inaccuracy, will give an engineer a good idea as to the choice of route especially as affected by ruling grade. There is no comparison between the time and labor involved in obtaining the above information by barometric and by spirit-leveling methods, and for reconnoissance purposes the added accuracy of the spirit-leveling method is hardly worth its cost.
8. Horizontal measurements, bearings, etc. When there is no map which may be depended on, or when only a skeleton map is obtainable, a rapid survey, sufficiently accurate for the purpose, may be made by using a pocket compass for bearings and a telemeter, odometer, or pedometer for distances. The telemeter [stadia] is more accurate, but it requires a definite clear
(Right-hand page of Notes.)

Temp. at headqu.	Approx. field read.	Approx. headq. read.	Diff.	Corr. for temp.	Diff. elev.
$\overline{75}$	$\overline{1}$	-	-	-	-
75°	192	230	- 38	$\overline{-(+2)}$	-40
77	297	244 256	+213 $+\quad 41$	$+(+10)$ $+(+2)$	+223 $+\quad 43$
				($+43$

sight from station to station, which may be difficult through a wooded country. The odometer, which records the revolutions of a wheel of known circumference, may be used even in rough and wooded country, and the results may be depended on to a small percentage. The pedometer (or pace-measurer) depends for its accuracy on the actual movement of the mechanism for each pace and on the uniformity of the pacing. Its results are necessarily rough and approximate, but it may be used to fill in some intermediate points in a large skeleton map. A handlevel is also useful in determining the relative elevation of various topographical features which may have some bearing on the proper location of the road.
9. Importance of a good reconnoissance. The foregoing instruments and methods should be considered only as aids in exercising an educated common sense, without which a proper location cannot be made. The reconnoissance survey should command the best talent and the greatest experience available. If the general route is properly chosen, a comparatively low order of engineering skill can fill in a location which will prove a paying railroad property; but if the general route is so chosen that the ruling grades are high and the business obtained is small and subject to competition, no amount of perfection in detailed alignment or roadbed construction can make the road a profitable investment.

PRELIMINARY SURVEYS.

10. Character of survey. A preliminary railroad survey is properly a topographical survey of a belt of country which has been selected during the reconnoissance and within which it is estimated that the located line will lie. The width of this belt will depend on the character of the country. When a railroad is to follow a river having very steep banks the choice of location is sometimes limited at places to a very few feet of width
and the belt to be surveyed may be correspondingly narrowed. In very flat country the desired width may be only limited by the ability to survey points with sufficient accuracy at a considerable distance from what may be called the "backbone line" of the survey.
II. Cross-section method. This is the only feasible method in a wooded country, and is employed by many for all kinds of country. The backbone line is surveyed either by observing magnetic bearings with a compass or by carrying forward

Fig. 4.
absolute azimuths with a transit. The compass method nas the disadvantages of limited accuracy and the possibility of considerable local error owing to local attraction. On the other
hand there are the advantages of greater simplicity, no necessity for a back rodman, and the fact that the errors are purely local and not cumulative, and may be so limited, with care, that they will cause no vital error in the subsequent location survey. The transit method is essentially more accurate, but is liable to be more laborious and troublesome. If a large tree is encountered, either it must be cut down or a troublesome operation of offsetting must be used. If the compass is employed under these circumstances, it need only be set up on the far side of the tree and the former bearing produced. An error in reading a transit azimuth will be carried on throughout the survey. An error of only five minutes of are will cause an offset of nearly eight feet in a mile. Large ázimuth errors may, however, be avoided by immediately checking each new azimuth with a needle reading. It is advisable to obtain true azimuth at the beginning of the survey by an observation on the sun or Polaris, and to check the azimuths every few miles by arimuth observations. Distances along the backbone line should be measured with a chain or steel tape and stakes set every 100 feet. When a course ends at a substation, as is usually the case, the remaining portion of the 100 feet should be measured along the next course. The level party should immediately obtain the elevations (to the nearest tenth of a foot) of all stations, and also of the lowest points of all streams crossed and even of dry gullies which would require culverts.
12. Cross-sectioning. It is usually desirable to obtain contours at five-foot intervals This may readily be done by the use of a Locke level (which should be held on top of a simple five-foot stick), a tape, and a rod ten feet in length graduated to feet and tenths. The method of use may perhaps be best explained by an example. Let Fig. 5 represent a section perpendicular to the survey line-such a section as would be made by the dotted lines in Fig. 4. C represents the station point. Its elevation as determined by the level is, say, 158.3 above datum. When the Locke level on its five-foot rod is placed at C, the level has an elevation of 163.3. Therefore when a point is found (as at a) where the level will read 3.3 on the rod, that point has an elevation of 160.0 and its distance from the center gives the position of the 160 -foot contour. Leaving the long rod at that point (a), carry the level to some point (b) such that the level will sight at the top of the rod. b is then on the 165 -
foot contour, and the horizontal distance $a b$ added to the horizontal distance $a c$ gives the position of that contour from the center. The contours on the lower side are found similarly. The first rod reading will be 8.3 , giving the 155 -foot contour.

Fig. 5.
Plot the results in a note-book which is ruled in quarter-inch squares, using a scale of 100 feet per inch in both directions. Plot the work UP the page; then when looking ahead along the line, the work is properly oriented. When a contour crosses

Fig. 6.
the survey line, the place of crossing may be similarly determined. If the ground flattens out so that five-foot contours are very far apart, the absolute elevations of points at even fifty-
foot distances from the center should be determined. The method is exceedingly rapid. Whatever error or inaccuracy occurs is confined in its effect to the one station where it occurs. The work being thus plotted in the field, unusually irregular topography may be plotted with greater certainty and no great error can occur without detection. It would even be possible by this method to detect a gross error that might have been made by the level party
13. Stadia method. This method is best adapted to fairly open country where a "shot" to any desired point may be taken without clearing. The backbone survey line is the same as in the previous method except that each course is limited to the practicable length of a stadia sight. The distance between stations should be checked by foresight and backsight - also the vertical angle. Azimuths should be checked by the needle. Considering the vital importance of leveling on a ralroad survey it might be considered desirable to run a line of levels over the stadia stations in order that the leveling may be as precise as possible; but when it is considered that a preliminary survey is a somewhat hasty survey of a route that may be abandoned, and that the errors of leveling by the stadia method (which are conpensating) may be so minimized that no proposed route would be abandoned on account of such small error, and that the effect of such an error may be easily neutralized by a slight change in the location, it may be seen that excessive care in the leveling of the preliminary survey is hardly justifiable.

Since the students taking this work are assumed to be familiar with the methods of stadia topographical surveys, this part of the subject will not be further elaborated.
14. "First" and "Second" preliminary surveys. Some engineers advocate two preliminary surveys. When this is done, the first is a very rapid survey, made perhaps with a compass, ar d is only a better grade of reconnoissance. Its aim is to rap.dly develop the facts which will decide for or against any proposed route, so that if a route is found to he unfavorable another more or less modified route may be adopted without having wasted considerable time in the survey of useless details. By this time the student should have grasped the fundamental idea that both the reconnoissance and preliminary surveys are not surveys of lines but of areas; that their aim is to survey only those topographical features which would have a deter-
mining influence on any railroad line which might be constructed through that particular territory, and that the value of a locating engineer is largely measured by his ability to recognize those determining influences with the least amount of work from his surveying corps. Frequently too little time is spent on the comparative study of preliminary liñes. : A line wíll be hastily decided on after very little study; it will then be surveyed with minute detail and estimates carefully worked up, and the claims of any other suggested route will then be handicapped, if not disregarded, owing to an unwillingness to discredit and throw away a large amount of detailed surveying. The cost of two or three extra proliminary surveys (at critical sections and not over the whole line) is utterly insignificant compared with the probable improvement in the "operating value" of a line located after such a comparative study of preliminary lines.

LOCATION SURVEYS.

15. "Paper location." When the preliminary survey has been plotted to a scale of 200 feet per inch and the contours drawn in, a study may be made for the location survey. Disregarding for the present the effect on location of transition curves, the alignment may be said to consist of straight lines (or "tangents") and circular curves. The "paper location" therefore consists in plotting on the preliminary map a succession of straight lines which are tangent to the circular curves connecting them. The determining points should first be considered. Such points are the termini of the road, the lowest practicable point over a summit, a river-crossing, etc. So far as is possible, having due regard to other considerations, the road should be a "surface" road, i.e., the cut and fill should be made as small as possible. The maximum permissible grade must also have been determined and duly considered. The method of location differs radically according as the lines joining the determining points have a very low grade or have a grade that approaches the maximum permissible. With very low natural grades it is only necessary to strike a proper balance between the requirements for easy alignment and the avoidance of excessive earthwork. When the grade between two determined points approaches the maximum, a study of the location may be begun by finding a strictly surface line which will connect those
points with a line at the given grade. For example, suppose the required grade is 1.6% and that the contours are drawn at 5 -foot intervals - It will require 312 feet of 1.6% grade to rise 5 feet. Set a pair of dividers at 312 feet and step off this interval on successive contours. This line will in general be very irregular, but in an easy country it may lie fairly close to the proper location line, and even in difficult country such a surface line will assist greatly in selecting a suitable location. When the larger part of the line will evidently consist of tangents, the tangents should be first located and should then be connected by suitable curves. When the curves predominate, as they generaily will in mountainous country, and particularly when the line is purposely lengthened in order to reduce the grade, the curves should be plotted first and the tangents may then be drawn connecting them. Considering the ease with which such lines may be drawn on the preliminary map, it is frequently advisable, after making such a paper location, to begin all over, draw a new line over some specially difficult section and compare results. Profiles of such lines may be readily drawn by noting their intersection with each contour crossed. Drawing on each profile the required grade line will furnish an approximate idea of the comparative amount of earthwork required. After deciding on the paper location, the length of each tangent, the central angle (see $\$ 21$), and the radius of each curve should be measured as accurately as possible. Since a slight error made in such measurements, taken from a map with a scale of 200 feet per inch, would by accumulation cause serious discrepancies between the plotted location and the location as afterward surveyed in the field, frequent tie lines and angles should be determined between the plotted location line and the preliminary line, and the location should be altered, as may prove necessary, by changing the length of a tangent or changing the central angle or radius of a curve, so that the agreement of the check-points will be sufficiently close. The errors of an inaccurate preliminary survey may thus be casily neutralized (see §33). When the preliminary line has been properly run, its "backbone" line will lie very near the location line and will probably cross it at frequent intervals, thus rendering it easy to obtain short and numerous tie lines.
16. Surveying methods. A transit should be used for alignment, and only precise work is allowable. The transit stations
should be centered with tacks and should be tied to witnessstakes, which should be located outside of the range of the earthwork, so that they will neither be dug up nor covered up. All original property lines lying within the limits of the right of way should be surveyed with reference to the location line, so that the right-of-way agent may have a proper basis for settlement. When the property lines do not extend far outside of the required right of way they are frequently surveyed completely.

The leveler usually reads the target to the nearest thousandth of a foot on turning-points and bench-marks, but reads to the nearest tenth of a foot for the elevation of the ground at stations. Considering that $\frac{1}{10 \sigma \overline{0}}$ of a foot has an angular value of only 7

FORM OF NOTES.
[Left-hand page.]

Sta.	Alignment.	Vernier.	Tangential Deflection.	Calculated Bearing.	Needle.
54					
53 \odot +72.2	P.T.	$9^{\circ} 1.1^{\prime}$	$18^{\circ} 22^{\prime}$	N $54^{\circ} 48^{\prime} \mathrm{E}$	N $62{ }^{\circ} 15^{\prime} \mathrm{E}$
52		757			
51	$$	615			
$\odot 50$	\bigcirc	433			
49	$\begin{aligned} & 3 \times \\ & \text { U } \\ & \text { N } \end{aligned}$	251			
48	$\stackrel{\square}{\square}$	109			
$\bigcirc+32$	P.C.	0°			
46				N $36^{\circ} 26^{\prime} \mathrm{E}$	$\mathrm{N} 44^{\circ} \quad 0^{\prime} \mathrm{E}$

seconds at a distance of 300 feet, and that one division of a levelbubble is usually about 30 seconds, it may be seen that it is a useless refinement to read to thousandths unless corresponding care is taken in the use of the level. The leveler should also locate his bench-marks outside of the range of earthwork. A knob of rock protruding from the ground affords an excellent mark. A large nail, driven in the roots of a tree, which is not to be disturbed, is also a good mark. These marks should be clearly described in the note-book. The leveler should obtain the elevation of the ground at all station-points; also at all sudden breaks in the profile line, determining also the distance of these breaks from the previous even station. This will in-
[Right-hand page.]

clude the position and elevation of all streams, and even dry gullies, which are crossed

Measurements should preferably be made with a steel tape, care being taken on steep ground to insure horizontal measurements. Stakes are set each 100 feet, and also at the beginning and end of all curves. Transit-points (sometimes called "plugs" or "hubs") should be driven flush with the ground, and a "witness-stake," having the "number " of the station, should be set three feet to the right. For example, the witness-stake might have on one side " $137+69.92$," and on the other side " P C $4{ }^{\circ} \mathrm{R}$," which would signify that the transit hub is 69.92 feet beyond station 137, or 13769.92 feet from the beginning of the line, and also that it is the "point of curve" of a " 4° curve" which turns to the right.

Alignment. The alignment is evidently a part of the location survey, but, on account of the magnitude and importance of the subject, it will be treated in a separate chapter.
17. Form of Notes. Although the Form of Notes cannot be thoroughly understood until after curves are studied, it is here introduced as being the most convenient place. The right-hand page should have a sketch showing all roads, streams, and property lines crossed with the bearings of those lines. This should be drawn to a scale of 100 feet per inch-the quarterinch squares which are usually ruled in note-books giving convenient 25 -foot spaces. This sketch will always be more or less distorted on curves, since the center line is always shown as straight regardless of curves. The station points ("Sta." in first column, left-hand page) should be placed opposite to their sketched positions, which means that even stations will be recorded on every fourth line. This allows three intermediate lines for substations, which is ordinarily more than sufficient. The notes should read up the page, so that the sketch will be properly oriented when looking ahead along the line The other columns on the left-hand page will be self-explanatory when the subject of curves is understood. If the "calculated bearings" are based on azimuthal observations, their agreement (or constant difference) with the needle readings will form a valuable check on the curve calculations and the instrumental work.

CHAPTER II.

ALIGNMENT.

In this chapter the alignment of the center line only of a pair of rails is considered. When a railroad is crossing a summit in the grade line, although the horizontal projection of the alignment may be straight, the vertical projection will consist of two sloping lines joined by a curve. When a curve is on a grade, the center line is really a spiral, a curve of double curvature, although its horizontal projection is a circle. The center line therefore consists of straight lines and curves of single and double curvature. The simplest method of treating them is to consider their horizontal and vertical projections separately. In treating simple, compound, and transition curves, only the horizontal projections of those curves will be considered.

SIMPLE CURVES.

18. Designation of curves. A curve may be designated either by its radius or by the angle subtended by a chord of unit length. Such an angle is known as the " degree of curve" and is indicated by D. Since the curves that are practically used have very long radii, it is generally impracticable to make any use of the actual center, and the curve is located without reference to it. If $A B$ in Fig. 4 represents a unit chord (C) of a curve of radius R, then by the above definition the angle $A O B$ equals D. Then

Fig. 7.

$$
\begin{gather*}
A O \sin \frac{1}{2} D=\frac{1}{2} A B=\frac{1}{2} C . \\
\therefore R=\frac{\frac{1}{2} C}{\sin \frac{1}{2} D}, \tag{1}
\end{gather*}
$$

or, by inversion,

$$
\begin{equation*}
\sin \frac{1}{2} D=\frac{C}{2 R} \tag{2}
\end{equation*}
$$

The unit chord is variously taken throughout the world as 100 feet, 66 feet, and 20 meters. In the United States 100 feet is invariably used as the unit chord length, and throughout this work it will be so considered. Table I has been computed on this basis. It gives the radius, with its logarithm, of all curves from a $0^{\circ} 01^{\prime}$ curve up to a 10° curve, varying by single minutes. The sharper curves, which are seldom used, are given with larger intervals.

An approximate value of R may be readily found from the following simple rule, which should be memorized:

$$
R=\frac{5730}{D} .
$$

Although such values are not mathematically correct, since R does not strictly vary inversely as D, yet the resulting value is within a tenth of one per cent for all commonly used values of R, and is sufficiently close for many purposes, as will be shown later.
19. Length of a subchord. Since it is impracticable to measure along a curved arc, curves are always measured by

Fig. 8. laying off 100 -foot chord lengths. This means that the actual are is always a little longer than the chord. It also means that a subchord (a chord shorter than the unit length) will be a little longer than the ratio of the angles subtended would call for. The truth of this may be seen without calculation by noting that two equal subchords, each subtending the angle $\frac{1}{2} D$, will evidently be slightly longer than 50 feet each. If c be the length of a subchord subtending the angle d, then, as in Eq. 2,

$$
\sin \frac{1}{2} d=\frac{c}{2 R}
$$

or, by inversion,

$$
\begin{equation*}
c=2 R \sin \frac{1}{2} d . \tag{3}
\end{equation*}
$$

The nominal length of a subchord $=: 100 \frac{d}{\bar{D}}$ For example, a nominal subchord of 40 feet will subtend an angle of $\frac{40}{100}$ of D°; its true length will be slightly more than 40 feet, and may be computed by Eq. 3. The difference between the nominal and true lengths is maximum when the subchord is about 57 feet long, but with the low degrees of curvature ordinarily used the difference may be neglected. With a 10° curve and a nominal chord length of 60 feet, the true length is 60.049 feet. Very sharp curves should be laid off with 50 -foot or even 25 foot chords (nominal length). In such cases especially the true lengths of these subchords should be computed and used instead of the nominal lengths.
20. Length of a curve. The length of a curve is always indicated by the quotient of $1004 \div D$. If the quotient of $\Delta \div D$ is a whole number, the length as thus indicated is the true length-measured in 100 -foot chord lengths. If it is an odd number or if the curve begins and ends with a subchord (even though $\Delta \div D^{\circ}$ is a whole number), theoretical accuracy requires that the true subchord lengths shall be used, although the difference may prove insignificant. The length of the arc (or the mean length of the two rails) is therefore always in excess of the length as given above. Ordinarily the amount of this excess is of no practical importance. It simply adds aninsignificant amount to the length of rail required.

Example. Required the nominal and true lengths of a $3^{\circ} 45^{\prime}$ curve having a central angle of $17^{\circ} 25^{\prime}$. First reduce the degrees and minutes to decimals of a'degree. ($100 \times 17^{\circ} 25^{\prime}$) $\div 3^{\circ} 45^{\prime}=1741: 667 \div 3.75=464444$. The curve has four $100-$ foot chords and a nominal chord of 64.444 The true chordshould be 64.451. The actual arc is

$$
17^{\circ} .4167 \times \frac{\pi}{180^{\circ}} \times R=464.527
$$

The excess is therefore $464.527-464: 451=0.076$ foot.
21. Elements of a curve. Considering the line as running from A toward B, the beginning of the curve, at A, is called the point of curve $(P C)$. The other end of the curve, at B, is
called the point of tangency $(P T)$. The intersection of the tangents is called the vertex (V).

Fig. 9. The angle made by the tangents at V, which equals the angle made by the radii to the extremities of the curve, is called the central angle (4). $A V$ and $B V$, the two equal tangents from the vertex to the $P C$ and $P T$, are called the tangent distances (T). The chord $A B$ is called the long chord ($L C$). • The intercept $H G$ from .the middle of the long chord to the middle of the arc is called the middle ordinate (M). That part of the secant GV from the middle of the arc to the vertex is called the external distance (E). From the figure it is very easy to derive the following frequently used relations:

$$
\begin{align*}
T & =R \tan \frac{1}{2} \Delta \tag{4}\\
L C & =2 R \sin \frac{1}{2} \Delta \tag{5}\\
M & =R \operatorname{vers} \frac{1}{2} \Delta \tag{6}\\
E & =R \text { exsec } \frac{1}{2} \Delta \tag{7}
\end{align*}
$$

22. Relation between $\boldsymbol{T}, \boldsymbol{E}$, and Δ. Join A and G in Fig. 9. The angle $V A G=\frac{1}{4} \Lambda$, since it is measured by one half of the arc $A G$ between the secant and tangent. $A G O=90^{\circ}-\frac{1}{4} \Delta$.

$$
\begin{gather*}
A V: V G:: \sin A G V: \sin V A G ; \\
\sin A G V=\sin A G O=\cos \frac{1}{4} \Delta ; \\
T: E:: \cos \frac{1}{4} \Delta: \sin \frac{1}{4} \Delta ; \\
T=E \cot \frac{1}{4} \Delta . \tag{8}
\end{gather*}
$$

The same relation may be obtained by dividing Eq. 4 by Eq. 7 , since $\tan \alpha \div \operatorname{exsec} \alpha=\cot \frac{1}{2} \alpha$.
23. Elements of a I° curve. From Eqs. 1 to 8 it is seen that the elements of a curve vary directly as R. It is also seen to be very nearly true that R varies inversely as D. If the elements of a 1° curve for various central angles are calculated and tabulated, the elements of a curve of D° curvature may be approximately found by dividing by D the corresponding elements of a 1° curve having the same central angle. For small
central angles and low degrees of curvature the errors involved by the approximation are insignificant, and even for larger angles the errors are so small that for many purposes they may be disregarded

In Table II is given the value of the tangent distances, external distances, and long. chords for a 1° curve for various central angles The student should familiarize himself with the degree of approximation involved by solving a large number of cases under various conditions by the exact and by the approximate methods, in order that he may know when the approximate method is sufficiently exact for the intended purpose. The approximate method also gives a ready check on the exact method.
24. Exercises. (a) What is the tangent distance of a $4^{\circ} 20^{\prime}$ curve having a central angle of $18^{\circ} 24^{\prime}$?
(b) Given a $3^{\circ} 30^{\prime}$ curve and a central angle of $16^{\circ} 20^{\prime}$, how far will the curve pass from the vertex? [Use Eq. 7.]
(c) An 18° curve is to be laid off using 25 -foot (nominal) chord lengths. What is the true length of the subchords?
(d) Given two tangents making a central angle of $15^{\circ} 24^{\prime}$. It is desired to connect these tangents by a curve which shall pass 16.2 feet from their intersection. How far down the tangent will the curve begin and what will be its radius? (Use Eq. 8 and then use Eq. 4 inverted.)
25. Curve location by deflections. The angle between a secant and a tangent (or between two secants intersecting on an arc) is measured by one half of the intercepted arc. Beginning at the $P C$ (A in Fig. 10), if the
first chord is to be a full chord we may deflect an angle VAa ($=\frac{1}{2} D$), and the point a, which is 100 feet from A, is a point on the curve., For the next station, b, deflect an additional angle $b A a$ ($=\frac{1}{2} D$) and, with one end of the tape at a, swing the other end until the 100 -foot point is on the line $A b$. The point b is then on the curve. If the final chord $c B$ is a subchord, its additional deflec-

Fig. 10. tion $\left(\frac{1}{2} d\right)$ is something less than $\frac{1}{2} D$. The last deflection $(B A V)$ is
of course $\frac{1}{2} \Delta$. It is particularly important, when a curve begins or ends with a subchord and the deflections are odd quantities, that the last additional deflection should be carefully computed and added to the previous deflection, to check the mathematical work by the agreement of this last computed deflection with $\frac{1}{2} \Delta$.

Example. Given a $3^{\circ} 24^{\prime}$ curve having a central angle of $18^{\circ} 22^{\prime}$ and beginning at sta. $47+32$ to compute the deflections. The nominal length of curve is $18^{\circ} 22^{\prime} \div 3^{\circ} 24^{\prime}=18.367 \div$ $3.40=5.402$ stations or 540.2 feet. The curve therefore ends at sta. $52+72.2$. The deflection for sta. 48 is $\frac{68}{100} \times \frac{1}{2}\left(3^{\circ} 24^{\prime}\right)$ $=0.68 \times 1^{\circ} .7=1^{\circ} .156=1^{\circ} 09^{\prime}$ nearly. For each additional 100 feet it is $1^{\circ} 42^{\prime}$ additional. The final additional deflection for the final subchord of 72.2 feet is

$$
\frac{72.2}{100} \times \frac{1}{2}\left(3^{\circ} 24^{\prime}\right)=1^{\circ} .2274=1^{\circ} 14^{\prime} \text { nearly. }
$$

The deflections are

As a check $9^{\circ} 11^{\prime}=\frac{1}{2}\left(18^{\circ} 22^{\prime}\right)=\frac{1}{2} \Delta$. (See the Form of Notes in § 17.)
26. Instrumental work. It is generally impracticable to locate more than 500 to 600 feet of a curve from one station. Obstructions will sometimes require that the transit be moved up every 200 or 300 feet. There are two methods of setţing off the angles when the transit has been moved up from the PC.
(a) The transit may be sighted at the previous transit station with a reading on the plates equal to the deflection angle from that station to the station occupied, but with the angle set off on the other side of 0°, so that when the telescope is turned to 0° it will sight along the tangent at the station occupied. Plunging the telescope, the forward stations may be set off by deflecting the proper deflections from the tangent at the station occupied

This is a very common method and, when the degree of curvature is an even number of degrees and when the transit is only set at even stations, there is but little objection to it. But the degree of curvature is sometimes an odd quantity, and the exigencies of difficult location frequently require that substations be occupied as transit stations. Method (a) will then require the recalculation of all deflections for each new station occupied. The mathematical work is largely increased and the probability of error is very greatly increased and not so easily detected. Method (b) is just as simple as method (a) even for the most simple cases, and for the more difficult cases just referred to the superiority is very great.
(b) Calculate the deflection for each station and substation throughout the curve as though the whole curve were to be located from the PC. The computations may thus be completed and checked (as above) before beginning the instrumental work. If it unexpectedly becomes necessary to introduce a substation at any point, its deflection from the $P C$ may be readily interpolated. The stations actually set from the $P C$ are liocated as usual. Rule. When the transit is set on any forward station, backsight to any previous station with the plates set at the deflection angle for the station sighted at. Plunge the telescope and sight at any forward station with the deflection angle originally computed for that station. When the plates read the deflection angle for the station occupied, the telescope is sighting along the tangent at that station-which is the method of getting the forward tangent when occupying the PT. Even though the station occupied is an unexpected substation, when the instrument is properly oriented at that station, the angle reading

Fig. 11. for any station, forward or back, is that originally computed for it from the PC. In difficult work, where there are obstructions, a valuable check on the accuracy may be found by sighting backward at any visible station and noting whether
its deflection agrees with that originally computed. As a numerical illustration, assume a 4° curve, with 28° curvature, with stations $0,2,4$, and 7 occupied. After setting stations 1 and 2 , set up the transit at sta. 2 and backsight to sta. 0 with the deflection for sta. 0 , which is 0°. The reading on sta. 1 is 2°; when the reading is 4° the telescope is tangent to the curve, and when sighting at 3 and 4 the deflections will be 6° and 8°. Occupy 4 ; sight to 2 with a reading of 4°. When the reading is 8° the telescope is tangent to the curve and, by plunging the telescope, 5,6 , and 7 may be located with the originally computed deflections of $10^{\circ}, 12^{\circ}$, and 14°. When occupying 7 a backsight may be taken to any visible station with the plates reading the deflection for that station; then when

Fig. 12.

Fig. 13.
the plates read 14° the telescope will point along the forward tangent.

The location of curves by deflection angles is the normal method. A few other methods, to be described, should be considered as exceptional.
27. Curve location by two transits. A curve might be located more or less on a swamp where accurate chaining would be exceedingly difficult if not impossible. The long chord $A B$ (Fig. 12) may be determined by triangulation or otherwise, and the elements of the curve computed, including (possibly) subchords at each end. The deflection from A and B to each point may be computed. A rodman may then be sent (by whatever means) to locate long stakes at points determined by the simultaneous sightings of the two transits.
28. Curve location by tangential offsets. When a curve is very flat and no transit is at hand the following method may be used (see Fig. 13): Produce the back tangent as far forward as necessary. Compute the ordinates $O a^{\prime}, O b^{\prime}, O c^{\prime}$, etc., and the abscissæ $a^{\prime} a, b^{\prime} b, c^{\prime} c$, etc. If $O a$ is a full station (100 feet), then

$$
\begin{array}{ll}
O a^{\prime}=O a^{\prime} & =100 \cos \frac{1}{2} D, \text { also }=R \sin D ; \\
O b^{\prime}=O a^{\prime}+a^{\prime} b^{\prime} & =100 \cos \frac{1}{2} D+100 \cos \frac{3}{2} D, \\
& \quad \text { also }=R \sin 2 D ; \tag{9}
\end{array}
$$

etc.

$$
\left.\begin{array}{rr}
a^{\prime} a= & 100 \sin \frac{1}{2} D, \text { also }=R \text { vers } D ; \\
b^{\prime} b=a^{\prime} a+b^{\prime \prime} b & =100 \sin \frac{1}{2} D+100 \sin \frac{3}{2} D, \\
\text { also }=R \text { vers } 2 D ; \tag{10}\\
c^{\prime} c=b^{\prime} b+c^{\prime \prime} c & =100\left(\sin \frac{1}{2} D+\sin \frac{3}{2} D+\sin \frac{5}{2} D\right), \\
\text { also }=R \text { vers } 3 D ;
\end{array}\right\}
$$

etc.
The functions $\frac{1}{2} D, \frac{3}{2} D$, etc., may be more conveniently used without logarithms, by adding the several natural trigonometrical functions and pointing off two decimal places. It may also be noted that $O b^{\prime}$ (for example) is one half of the long chord for four stations; also that $b^{\prime} b$ is the middle ordinate for four stations. If the engineer is provided with tables giving the long chords and middle ordinates for various degrees of curvature, these quantities may be taken (perhaps by interpolation) from such tables.

If the curve begins or ends at a substation, the angles and terms will be correspondingly altered. The modifications may
be readily deduced on the same principles as above, and should be worked out as an exercise by the student.

In Table II are given the long chords for a 1° curve for various values of Δ. Dividing the value as given by the degree of the curve, we have an approximate valuc which is amply close for low degrees of curvature, especially for laying out curves with $h_{t h}$ out a transit. For example, given a $4^{\circ} 30^{\prime}$ curve, required the ordinate $O c^{\prime}$. This is evidently one half of a chord of six stations, with $\Delta=27^{\circ}$. Dividing 2675.1 (which is the long chord of a 1° curve with $\Delta=27^{\circ}$) by 4.5 we have 594.47 ; one half of this is the required ordinate, $O c^{\prime}=297.23$. The exact value is 297.31, an excess of . 08 , or less than .03 of 1%. The true values are always slightly in excess of the value as computed from Table II.

Exercise. A $3^{\circ} 40^{\prime}$ curve begins at sta. $18+70$ and runs to sta. $23+60$. Required the tangential offsets and their corresponding ordinates. The first ordinate $=30 \cos \frac{1}{2}\left(\frac{30}{100} \times 3^{\circ} 40^{\prime}\right)=$ $30 \times .99995=29.9985$; the offset $=30 \sin 0^{\circ} 33^{\prime}=30 \times .0096=$ 0.288 . For the second full station (sta. 20) the ordinate $=$ $\frac{1}{2}$ long chord for $\Delta=2\left(1^{\circ} 06^{\prime}+3^{\circ} 40^{\prime}\right)$ with $D=3^{\circ} 40^{\prime}$. Dividing 476.12, from Table II, by $3 \frac{2}{3}$, we have 129.85 . Otherwise, by Eq. 9 , the ordinate $=30 \times \cos 0^{\circ} 33^{\prime}+100 \cos \left(1^{\circ} 06^{\prime}+1^{\circ} 50^{\prime}\right)$ $=30.00+99.87=129.87$. The offset for sta. $20=30 \sin 0^{\circ} 33^{\prime}+$ $100 \sin \cdot\left(1^{\circ} 06^{\prime}+1^{\circ} 59^{\prime}\right)=0.238+5.12=5.41$. Work out similarly the ordinates and offsets for sta. 21, 22, 23, and $23+60$.
29. Curve location by middle ordinates. Take first the simpler case when the curve begins at an even station. 'If we consider (in Fig. 14) the curve produced back to z, the chord $z a=$ $2 \times 100 \cos \frac{1}{2} D, A^{\prime} a=100 \cos \frac{1}{2} D$, and $A^{\prime} A=a m=z n=100 \sin \frac{1}{2} D$. Set off $A A^{\prime}$ perpendicular to the tangent and $A^{\prime} a$ parallel to the tangent. $A A^{\prime}=a a^{\prime}=b b^{\prime}=c c^{\prime}$, etc. $=100 \sin \frac{1}{2} D$. Set off $a a^{\prime}$ perpendicular to $a^{\prime} A$. Produce $A a^{\prime}$ until $a^{\prime} b=A^{\prime} a$, thus determining b. Succeeding points of the curve may thus be determined indefinitely.

Suppose the curve begins with a subchord. As before $r a=A m^{\prime}=c^{\prime} \cos \frac{1}{2} d^{\prime}$, and $r A=a m^{\prime}=c^{\prime} \sin \frac{1}{2} d^{\prime}$. Also $s z=A n^{\prime}=$ $c^{\prime \prime} \cos \frac{1}{2} d^{\prime \prime}$, and $s . A=z n^{\prime}=c^{\prime \prime} \sin \frac{1}{2} d^{\prime \prime}$, in which $\left(d^{\prime}+d^{\prime \prime}\right)=D$. The points z and a being determined on the ground, $a a^{\prime}$ may be computed and set off as before and the curve continued in
full stations: A subchord at the end of the curve may be located by a similar process.
30. Curve location by offsets from the long chord. (Fig. 16.) Consider at once the general case in which the curve commences with a subchord (curvature, d^{\prime}), continues with one or more full

chords (curvature of eaci, D), and ends with a subchord with curvature $d^{\prime \prime}$. The numerical work consists in computing first $A B$, then the various abscissæ and ordinates. $A B=2 R \sin \frac{1}{2} A$.

$$
\begin{align*}
& \begin{array}{l}
\begin{array}{ll}
A a^{\prime}=A a^{\prime} & =c^{\prime} \cos \frac{1}{2}\left(\Delta-d^{\prime}\right) ; \\
A b^{\prime}=A a^{\prime}+a^{\prime} b^{\prime} & =c^{\prime} \cos \frac{1}{2}\left(\Delta-d^{\prime}\right)+100 \cos \frac{1}{2}\left(\Delta-2 d^{\prime}-D\right) ; \\
A c^{\prime \prime}=A a^{\prime}+a^{\prime} b^{\prime}+b^{\prime} c^{\prime} & =c^{\prime} \cos \frac{1}{2}\left(\Delta-d^{\prime}\right)+100 \cos \frac{1}{2}\left(\Lambda^{\prime}-2 d^{\prime}-D\right) \\
& \quad+100 \cos \frac{1}{2}\left(\Delta^{\prime}-2 d^{\prime \prime}-D\right) ;
\end{array} \\
\begin{aligned}
\text { also } & \\
\quad=A B-B C^{\prime} \quad & =2 R \sin \frac{1}{2} \Delta-c^{\prime \prime} \cos \frac{1}{2}\left(\Delta-d^{\prime \prime}\right) .
\end{aligned}
\end{array} \tag{11}\\
& a^{\prime} a=a^{\prime} a \quad=c^{\prime} \sin \frac{1}{2}\left(\Delta-d^{\prime}\right) ; \\
& b^{\prime} b=a^{\prime} a+m b=c^{\prime} \sin \frac{1}{2}\left(4-d^{\prime}\right)+100 \sin \frac{1}{2}\left(1-2 d^{\prime}-D\right) \text {; } \\
& \left.c^{\prime} c=b^{\prime} b-n b=c^{\prime} \sin \frac{1}{2}\left(\Delta-d^{\prime}\right)+100 \sin \frac{1}{2}(\lrcorner-2 d^{\prime}-D\right) \tag{12}\\
& -100 \sin \frac{1}{2}\left(\Delta-2 d^{\prime \prime}-D\right) ;
\end{align*}
$$

The above formulæ are considerably simplified when the
curve begins and ends at even stations. When the curve is very long a regular law becomes very apparent in the formation of all terms between the first and last. There are too few terms in the above equations to show the law.
31. Use and value of the above methods. The chief value of the above methods lies in the possibility of doing the work without a transit. The same principles are sometimes employed, even when a transit is used, when obstacles prevent the use of the normal method (see § $32, c$). If the terminal tangents have already been accurately determined, these methods are useful to locate points of the curve when rigid accuracy is not essential. Track foremen frequently use such methods to lay out unimportant sidings, especially when the engineer and his transit are not at hand. Location by tangential offsets (or by offsets from the long chord) is to be preferred when the curve is flat (i.e., has a small central angle Δ) and there is no obstruction along the tangent, or long chord. Location by middle ordinates may be employed regardless of the length of the curve, and in cases when both the tangents and the long chord are obstructed. The above methods are but samples of a large number of similar methods which have been devised. The choice of the particular method to be adopted must be determined by the local conditions.
32. Obstacles to location. In this section will be given only a few of the principles involved in this

Fig. 17. class of problems, with illustrations. The engineer must decide, in each case, which is the best method to use. It is frequently advisable to devise a special solution for some particular case.
a. When the vertex is inaccessible. As shown in § 26 , it is not absolutely essential that the vertex of a curve should be located on the ground. But it is very evident that the angle between the terminal tangents is determined with far less probable error if it is measured by a single measurement at the vertex rather than as the result of numerous angle measurements along the curve, involving several positions of the transit and comparatively short sights Some-
times the location of the tangents is already determined on the ground (as by bn and am, Fig. 17), and it is required to join the tangents by a curve of given radius. Method. Measure $a b$ and the angles $V b a$ and $b a V . \quad \Delta$ is the sum of these angles. The distances $b V$ and $a V$ are computable from the above data. Given Δ and R, the tangent distances are computable, and then $B b$ and $a A$ are found by subtracting $b V$ and $a V$ from the tangent distances. The curve may then be run from A, and the work may be checked by noting whether the curve as run ends at B-previously located from b.

Example. Assume $a b=54682$; angle $a=15^{\circ} 18^{\prime}$; angle $b=18^{\circ} 22^{\prime} ; D=3^{\circ} 40^{\prime}$; required $a A$ and $b B$.
$\Delta=15^{\circ} 18^{\prime}+18^{\circ} 22^{\prime}=33^{\circ} 40^{\prime}$

Eq. (4)

$$
\begin{aligned}
& \text { R (3 } \left.{ }^{\circ} 40^{\prime}\right) \ldots \ldots \\
& \tan \frac{1}{2} \Delta=\tan 16^{\circ} 50^{\prime} \ldots \ldots . \ldots . . . \\
& T=472.85 \text {. } \\
& 2.6747 \overline{2} \\
& a b \\
& 2.7378 \overline{4} \\
& \log \sin 18^{\circ} 22^{\prime} \ldots \ldots . \ldots \\
& \text { co-log } \sin 33^{\circ} 40^{\prime} \ldots \\
& a V=310.81 \ldots \ldots \\
& A V=472.85 \\
& a A=162.04
\end{aligned}
$$

$a V=a b \frac{\sin 18^{\circ} 22^{\prime}}{\sin 33^{\circ} 40^{\prime}}$

$$
\begin{aligned}
& \log \sin 15^{\circ} 18^{\prime} \\
& 9.4213 \overline{9} \\
& \text { co-log } \sin 33^{\circ} 40^{\prime} \\
& b V=260.29 \\
& 2.41545 \\
& B V=472.85 \\
& b B=212.56
\end{aligned}
$$

b. When the point of curve (or point of tangency) is inaccessible. At some distance ($A s$, Fig 18) an unobstructed line $p n$ may be run parallel with $A V . \quad n v=p y=A s=R$ vers a.

$$
\begin{aligned}
\because \text { vers } \alpha & =A s \div R . \\
n s & =p s=R \sin a .
\end{aligned}
$$

At y, which is at a distance $p s$ back from the computed position of A, make an offset $s A$

Fig. 18. to p. Run $p n$ parallel to the tangent. A tangent to the curve at n makes an angle of a with $n p$. From n the curve is run in as usual

If the point of tangency is obstructed, a similar process, somewhat reversed, may be used. β is that portion of Δ still to be laid off when m is reached. $t m=t l=R \sin \beta . \quad m z=t B=l x=R$ vers β.
c. When the central part of the curve is obstructed. a is the central angle between two points of the curve between which a chord may be run. a may equal any angle, but it is preferable that a should be a multiple of D, the degree of curve, and that the points m and n should be on even stations. $m n=2 R \sin \frac{1}{2} a$. A point s may be located by an offset $k s$ from the chord $m n$ by a similar method to that outlined in $\S 30$.

The device of introducing the dotted curve $m n$ having the same radius of curvature as the other, although neither necessary nor advisable in the case shown in Fig. 19, is sometimes the best method of surveying around an

Fig. 19. obstacle. The offset from any point on the dotted curve to the corresponding point on the true curve is twice the "ordinate to the long chord," as computed in $\S 30$.
33. Modifications of location. The following methods may be used in allowing for the discrepancies between the "paper location" based on a more or less rough preliminary survey and the more accurate instrumental location." (See § 15.) They are
also frequently used in locating new parallel tracks and modifying old tracks.
a. To move the forward tangent parallel to itself a distance x, the point of curve (A) remaining fixed. (Fig. 20.)

$$
\begin{gather*}
V^{\prime} h=B^{\prime} r=x^{\prime} . \\
V V^{\prime}=\frac{V^{\prime} h}{\sin h V V^{\prime}}=\frac{x}{\sin \Delta} . . . \tag{13}\\
A V^{\prime}=A V+V V^{\prime} .
\end{gather*}
$$

The triangle $B m B^{\prime}$ is isosceles and $B m=B^{\prime} m$.

$$
\begin{gather*}
R^{\prime}-R=O^{\prime} O=m B=\frac{B^{\prime} r}{\operatorname{vers} B^{\prime} m B}=\frac{x^{\prime}}{\operatorname{vers} \Delta} . \\
\therefore R^{\prime}=R+\frac{x^{\prime}}{\operatorname{vers} \Delta} . \tag{14}
\end{gather*}
$$

The solution is very similar in case the tangent is moved inward to $V^{\prime \prime} B^{\prime \prime}$. Note that this method necessarily changes the

Fig. 20.

Fig. 21.
radius. If the radius is not to be changed, the point of curve must be altered as follows:
b. To move the forward tangent parallel to itself a distance x, the radius being unchanged. (Fig. 21.) In this case the whole
curve is moved bodily a distance $O O^{\prime}=A A^{\prime}=V V^{\prime}=B B^{\prime}$, and moved parallel to the first tangent $A V$

$$
\begin{equation*}
B B^{\prime}=\frac{B^{\prime} n}{\sin n B B^{\prime}}=\frac{x}{\sin \Delta}=A A^{\prime} . \tag{15}
\end{equation*}
$$

c. To change the direction of the forward tangent at the point of tangency. (Fig. 22.) This problem involves a change (a) in

Fig. 22. the central angle and also requires a new radius. An error in the determination of the central angle furnishes an occasion for its use.

$$
R, \Delta, a, A V, \text { and } B V \text { are known. }
$$

$$
\Delta^{\prime}=\Delta-a .
$$

$B s=R$ vers $\Delta . \quad B s=R^{\prime}$ vers Δ^{\prime}.

$$
\begin{equation*}
\therefore R^{\prime}=R \frac{\text { vers } \Delta}{\text { vers }(\Delta-\alpha)^{\circ}} \text {. } \tag{16}
\end{equation*}
$$

$$
A s=R \sin \Delta . \quad A^{\prime} s=R^{\prime} \sin \Delta^{\prime} .
$$

$$
\begin{equation*}
\therefore A A^{\prime}=A^{\prime} s-A s=R^{\prime} \sin \Delta^{\prime}-R \sin \Delta \text {. } \tag{17}
\end{equation*}
$$

The above solutions are given to illustrate a large class of problems which are constantly arising. All of the ordinary problems can be solved by the application of elementary geometry and trigonometry.
34. Limitations in location. It may be required to run a curve that shall join two given tangents and also pass through a given point The point (P, Fig. 23) is assumed to be determined by its distance (VP) from the vertex and by the angle $A V P=\beta$.

It is required to determine the radius (R) and the tangent distance $(A V) . \quad \Delta$ is known.

$$
\begin{aligned}
P V G & =\frac{1}{2}\left(180^{\circ}-\Delta\right)-\beta \\
& =90^{\circ}-\left(\frac{1}{2} \Delta+\beta\right) . \\
P P^{\prime} & =2 V P \sin P V G \\
& =2 V P \cos \left(\frac{1}{2} \Delta+\beta\right) . \\
P S V & =\frac{1}{2} \Delta .
\end{aligned}
$$

$$
\therefore S P=V P \frac{\sin \beta}{\sin \frac{1}{2} 4} .
$$

Fig. 23.

$$
\begin{align*}
& A S=\sqrt{\overline{S P} \times S P^{\prime}}=\sqrt{\overline{S P\left(S P+P P^{\prime}\right)}} \\
& =\sqrt{V P \frac{\sin \beta}{\sin \frac{1}{2} \Lambda}\left[V P \frac{\sin \beta}{\sin \frac{1}{2} \Lambda}+2 V P \cos \left(\frac{1}{2} \Delta+\beta\right)\right]} \\
& =V P \sqrt{\frac{\sin ^{2} \beta}{\sin ^{2} \frac{1}{2} d}+\frac{2 \sin \beta \cos \left(\frac{1}{2} \Lambda+\beta\right)}{\left.\sin \frac{1}{2}\right\rfloor}} . \\
& S V=V P \frac{\sin \left(\frac{1}{2} A+\beta\right)}{\sin \frac{1}{2} d} . \\
& A V=A S+S V \\
& =\frac{V P}{\sin \frac{1}{2} \Lambda}\left[\sin \left(\frac{1}{2} J+\beta\right)+\sqrt{\sin ^{2} \beta+2 \sin \beta \sin \frac{1}{2} \Delta \cos \left(\frac{1}{2} \Delta+\beta\right)}\right] . \tag{18}\\
& R=A V \cot \frac{1}{2} A .
\end{align*}
$$

In the special case in which P is on the median line $O V$, $\beta=90^{\circ}-\frac{1}{2} \Delta$, and $\left(\frac{1}{2} \Delta+\beta\right)=90^{\circ}$. Eq. 18 then reduces to

$$
A V=\frac{V P}{\sin \frac{1}{2} \Delta}\left(1+\cos \frac{1}{2} \Delta\right)=V P \cot \frac{1}{4} \Delta,
$$

as might have been immediately derived from Eq. 8.
In case the point P is given by the offset $P K$ and by the distance $V K$. the triangle $P K V$ may be readily solved, giving the distance $V P$ and the angle β, and the remainder of the solution will be as above.
35. Determination of the curvature of existing track. (a) Using a transit. Set up the transit at any point in the center of the track. Measure in each direction 100 feet to points also in the center of the track. Sight on one point with the plates at 0°. Plunge the telescope and sight at the other point. The angle between the chords equals the degree of curvature.
(b) Using a tape and string. Stretch a string (sav 50 ficet long) between two points on the inside of the head of the outer rail. Measure the ordinate (x) between the middle of the string and the head of the rail. Then

$$
\begin{equation*}
R=\frac{\text { chord }^{2}}{8 x}(\text { very nearly }) . \tag{19}
\end{equation*}
$$

For, in Fig. 24, since the triangles $A O E$ and $A D C$ are similar,
$A O: A E:: A D: D C$ or $R=\frac{1}{2} \overline{A D^{2}} \div x$. When, as is usual, the are is very short compared with the

Fig. 24. radius, $A D=\frac{1}{2} A B$, very nearly. Making this substitution we have Eq. 19. With a chord of 50 feet and a 10° curve, the resulting difference in x is .0025 of an inch-far within the possible accuracy of such a method. The above method gives the radius of the inner head of the outer rail. It should be diminished by $\frac{1}{2} g$ for the radius of the center of the track. With easy curvature, however, this will not affect the result ky more than one or two tenths of one per cent.

The inversion of this formula gives the required middle ordinate for a rail on a given curve. For example, the middle ordinate of a 30 -foot rail, bent for a 6° curve, is-

$$
x=900 \div(8 \times 955)=.118 \text { foot }=1.4 \text { inches. }
$$

Another much used rule is to require the foreman to have a string, knotted at the center, of such length that the middle ordinate, measured in inches, equals the degree of curve. To find that length, substitute (in Eq. 19) $5730 \div D$ for R and $D \div 12$ for x. Solving for chord, we obtain chord $=61.8$ feet. The rule is not theoretically exact, but, considering the uncertain stretching of the string, the error is insignificant. In fact, the distance usually given is 62 feet, which is close enough for all purposes for which such a method should be used.
36. Problems. A systematic method of setting down the solution of a problem simplifies the work. Logarithms should always be used, and all the work should be so set down that a revision of the work to find a supposed error may be readily done. The value of such systematic work will become more apparent as the problems become more complicated. The two solutions given below will illustrate such work.
a. Given a 3° curve beginning at Sta. $27+60$ and running to Sta. $32+45$. Compute the ordinates and offsets used in locating the curve by tangential offsets.
b. With the same data as above, compute the distances to locate the curve by offsets from the long chord.
c. Assume that in Fig. $17 a b$ is measured as 217.6 feet, the
angle $a b V=17^{\circ} 42^{\prime}$, and the angle $b a V=21^{\circ} 14^{\prime}$. Join the tangents by a $4^{\circ} 30^{\prime}$ curve. Determine $b B$ and $a A$.
d. Assume that in a case similar to Fig. 18 it was noted that a distance $(A s)$ equal to 12 feet would clear the building. Assume that $\Delta=38^{\circ} 20^{\prime}$ and that $D=4^{\circ} 40^{\prime}$. Required the value of α and the position of n. Solution:

$$
\begin{aligned}
& \text { vers } \alpha=A s \div R \quad A s=12 \quad \log =1.07918 \\
& R \text { (for } 4^{\circ} 40^{\prime} \text { curve) } \\
& \underline{a=8^{\circ} 01^{\prime}} \\
& n s=R \sin a \\
& \log =3.0892 \overline{3} \\
& \log \text { vers } \alpha=7.98994 \\
& \log \sin a=9.1444 \overline{5} \\
& \log R=3.0892 \overline{3} \\
& \log =2.23369
\end{aligned}
$$

e. Assume that the forward tangent of a $3^{\circ} 20^{\prime}$ curve having a central angle of $16^{\circ} 50^{\prime}$ must be moved 3.62 feet inward, without altering the P.C. Required the change in radius.
f. Given two tangents making an angle of $36^{\circ} 18^{\prime}$. It is required to pass a curve through a point 93.2 feet from the vertex, the line from the vertex to the point making an angle of $42^{\circ} 21^{\prime}$ with the tangent. Required the radius and tangent distance. Solution: Applying Eq. 18, we have

$$
\begin{aligned}
& 2 \\
& \beta=42^{\circ} 21^{\prime} \\
& \frac{1}{2} d=18^{\circ} 09^{\prime} \\
& \left(\frac{1}{2} \Delta+\beta\right)=60^{\circ} 30^{\prime} \\
& .20667 \\
& \log \sin ^{2} \beta=9.65688 \ldots . .45382 \\
& \begin{array}{r}
29.81987 \ldots \\
9.9099 \overline{3} \ldots \\
\hline . .66049 \\
\hline .81271
\end{array} \\
& \text { - nat. } \sin 60^{\circ} 30^{\prime} \ldots \ldots \frac{.870 \overline{3}}{1.683 \overline{0}} \\
& . \log =\overline{\overline{0.22610}} \\
& V P=93.2 \ldots \ldots \ldots \ldots . . \log =\frac{1.9694 \overline{1}}{2.1955 \overline{1}} \\
& \log \sin \frac{1}{2} \Delta=9.4934 \overline{6} \\
& \text { Tang. dist. } A V=503.36 \ldots \ldots . . \text {. } \log =2.70205 \\
& \log \cot \frac{1}{2} \Delta=10.48437 \\
& R=1536.1 \ldots \ldots \ldots \ldots \ldots . \log =3.18642 \\
& D=3^{\circ} 44^{\prime}
\end{aligned}
$$

COMPOUND CURVES.

37. Nature and use. Compound curves are formed by a succession of two or more simple curves of different curvature. The curves must have a common tangent at the point of compoind curvature (P.C.C.). In mountainous regions there is frequently a necessity for compound curves having several changes of curvature. Such curves may be located separately as a succession of simple curves, but a combination of two simple curves has special properties which are worth investigating and utilizing. In the following demonstrations R_{2} always represents the longer radius and R_{1} the shorter, no matter which succeeds the other. T_{1} is the tangent adjacent to the curve of shorter radius (R_{1}), and is invariably the shorter tangent. Δ_{1} is the central angle of the curve of radius R_{1}, but it may be greater or less than Δ_{2}
38. Mutual relations of the parts of a compound curve having two branches. In Fig. 25, $A C$ and $C B$ are the two branches of

Fig. 25.
the compound curve having radii of R_{1} and R_{2} and central angles of Δ_{1} and Δ_{2}. Produce the arc $A C$ to n so that $A O_{1} n=\Delta$. The chord $C n$ produced mist intersect B. The line $n s$, parallel to CO_{2}, will intersect BO_{2} so that $\mathrm{Bs}=s n=\mathrm{O}_{2} \mathrm{O}_{1}=R_{2}-R_{1}$. Draw $A m$ perpendicular to $O_{1} n$. It will be parallel to $h k$.

$$
\begin{align*}
& B r=s n \text { vers } B s n=\left(R_{2}-R_{1}\right) \text { vers } \Delta_{2} ; \\
& m n=A O_{1} \operatorname{vers} A O_{1} n=R_{1} \operatorname{vers} \Delta ; \\
& A k=A V \sin A V k=T_{1} \sin \Delta ; \\
& A k=h m=m n+n h=m n+B r . \\
& \therefore T_{1} \sin \Delta=R_{1} \operatorname{vers} \Delta+\left(R_{2}-R_{1}\right) \text { vers } \Delta_{2} . \tag{20}
\end{align*}
$$

Similarly it may be shown that

$$
\begin{equation*}
T_{2} \sin \Delta=R_{2} \text { vers } \Delta-\left(R_{2}-R_{1}\right) \text { vers } \Delta_{1} . \tag{21}
\end{equation*}
$$

The mutual relations of the elements of compound curves may be solved by these two equations. For example, assume the tangents as fixed (Δ therefore known) and that a curve of given radius R_{1} shall start from a given point at a distance T_{1} from the vertex, and that the curve shall continue through a given angle Δ_{1}. Required the other parts of the curve. From Eq. 20 we have

$$
\begin{align*}
R_{2}-R_{1} & =\frac{T_{1} \sin \Delta-R_{1} \text { vers } \Delta}{\operatorname{vers} \Delta_{2}} \\
\therefore R_{2} & =R_{1}+\frac{T_{1} \sin \Delta-R_{1} \operatorname{vers} \Delta}{\operatorname{vers}\left(\Delta-\Delta_{1}\right)} \tag{22}
\end{align*}
$$

T_{2} may then be obtained from Eq. 21.
As another problem, given the location of the two tangents, with the two tangent distances (thereby locating the $P C$ and $P T$), and the central angle of each curve; required the two radii. Solving Eq. 20 for R_{1}, we have

$$
R_{1}=\frac{T_{1} \sin \Delta-R_{2} \text { vers } \Delta_{2}}{\text { vers } \Delta-\operatorname{vers} \Delta_{2}}
$$

Similarly from Eq. 21 we may derive

$$
R_{1}=\frac{T_{2} \sin \Delta-R_{2}\left(\operatorname{vers} \Delta-\operatorname{vers} \Delta_{1}\right)}{\text { vers } \Delta_{1}} .
$$

Equating these, reducing, and solving for R_{2}, we have

$$
\begin{equation*}
R_{2}=\frac{T_{1} \sin \Delta \text { vers } \Delta_{1}-T_{2} \sin \Delta\left(\text { vers } \Delta-\text { vers } \Delta_{2}\right)}{\text { vers } \Delta_{2} \text { vers } \Delta_{1}-\left(\text { vers } \Delta-\operatorname{vers} \Delta_{1}\right)\left(\text { vers } \Delta-\text { vers } \Delta_{2}\right)} . \tag{23}
\end{equation*}
$$

Although the various elements may be chosen as above with considerable freedom, there are limitations. For example, in Eq. 22, since R_{2} is always greater than R_{1}, the term to be added to R_{1} must be essentially positive-i.e., $T_{1} \sin \Delta$ must be greater than R_{1} vers Δ. This means that $T_{1}>R_{1} \frac{\operatorname{vers} \Delta}{\sin \Delta}$, or that
$T_{1}>R_{1} \tan \frac{1}{2} \Delta$, or that T_{1} is greater than the corresponding tangent on a simple curve. Similarly it may be shown that T_{2} is less than $R_{2} \tan \frac{1}{2} 4$ or less than the corresponding tangent on a simple curve. Nevertheless T_{2} is always greater than T_{1}. In the limiting case when $R_{2}=R_{1}, T_{2}=T_{1}$, and $\Delta_{2}=\Delta_{1}$.
39. Modifications of location. Some of these modifications may be solved by the methods used for simple curves. For example:
a. It is desired to move the tangent $V B$, Fig. 26, parallel to itself to $V^{\prime} B^{\prime}$. Run a new curve from the P.C.C. which shall reach the new tangent at B^{\prime}, where the chord of the old curve

Fig. 26.

Fig. 27.
intersects the new tangent. The solution is almost identical with that in § 33, a.
b. Assume that it is desired to change the forward tangent (as above) but to retain the same radius. In Fig. 27

$$
\begin{align*}
\left(R_{2}-R_{1}\right) \cos \Delta_{2} & =O_{2} n ; \\
\left(R_{2}-R_{1}\right) \cos \Delta_{2}^{\prime} & =O_{2}^{\prime} n^{\prime} . \\
x=O_{2} n-O_{2}^{\prime} n^{\prime} & =\left(R_{2}-R_{1}\right)\left(\cos \Delta_{2}-\cos \Delta_{2}^{\prime}\right) . \\
\cos \Delta_{2}^{\prime} & =\cos \Delta_{2}-\frac{x}{R_{2}-R_{1}} \cdot . . \tag{24}
\end{align*}
$$

The P.C.C. is moved backward along the sharper curve an angular distance of $\Delta_{2}{ }^{\prime}-\Delta_{2}=\Delta_{1}-\Delta_{1}{ }^{\prime}$.

In case the tangent is moved inward rather than outward, the solution will apply by transposing Δ_{2} and $\Delta_{2}{ }^{\prime}$. Then we shall have

$$
\begin{equation*}
\cos {A_{2}}^{\prime}=\cos A_{2}+\frac{x}{R_{2}-R_{1}} . \tag{25}
\end{equation*}
$$

The P.C.C. is then moved forward.
c. Assume the same case as (b) except that the larger radius comes first and that the tangent adjacent to the smaller radius is moved. In Fig. 28

$$
\begin{aligned}
& \left(R_{2}-R_{1}\right) \cos \Delta_{1}=O_{1} n ; \\
& \left(R_{2}-R_{1}\right) \cos \Delta_{1}^{\prime}=O_{1}^{\prime} n^{\prime} \\
& x=O_{1}^{\prime} n^{\prime}-O_{1} n \\
& =\left(R_{2}-R_{1}\right)\left(\cos \Delta_{1}^{\prime}-\cos \Delta_{1}\right) .
\end{aligned}
$$

$\cos {\Delta_{1}}^{\prime}=\cos \Delta_{1}+\frac{x}{R_{2}-R_{1}}{ }^{\circ}$
The P.C.C. is moved forward along the easier curve an angular distance of $\Delta_{1}{ }^{\prime}-\Lambda_{1}=\Delta_{2}-\Delta_{2}{ }^{\prime}$.

Fig. 28.

In case the tangent is moved inward, transpose as before and we have

$$
\begin{equation*}
\cos \Lambda_{1}^{\prime}=\cos \Lambda_{1}-\frac{x}{R_{2}-R_{1}} \ldots \cdot \cdots \cdot \tag{27}
\end{equation*}
$$

The P.C.C. is moved backward.
d. Assume that the radius of one curve is to be altered without changing either tangent. Assume conditions as in Fig. 29. For the diagrammatic solution

Fig. 29. assume that R_{2} is to be increased by $O_{2} S$. Then, since R_{2}^{\prime} must pass through O_{1} and extend beyond O_{1} a distance $O_{1} S$, the locus of the new center must lie on the are drawn about O_{1} as center and with $O S$ as radius. The locus of $O_{2}{ }^{\prime}$ is also given by a line $O_{2}{ }^{\prime} p$ parallel to $B V$ and at a distance of R_{2}^{\prime} (equal to S...P.C.C.) from it. The new center is therefore at the intersection $O_{2}{ }^{\prime}$. An are with radius $R_{2}{ }^{\prime}$ will therefore be tangent at B^{\prime} and tangent to the old curve produced at new P.C.C. Draw $O_{1} n^{\prime}$ perpendicular to $O_{2} B$.

With O_{2} as center draw the arc $O_{1} m$, and with $O_{2}{ }^{\prime}$ as center draw the arc $O_{1} m^{\prime} . \quad m B=m^{\prime} B^{\prime}=R_{1}$.

$$
\begin{gather*}
\therefore m n=m^{\prime} n^{\prime}=\left(R_{2}{ }^{\prime}-R_{1}\right) \text { vers } \Delta_{2}{ }^{\prime}=\left(R_{2}-R_{1}\right) \text { vers } \Delta_{2} . \\
\therefore \text { vers } \Delta_{2}^{\prime}=\frac{\left(R_{2}-R_{1}\right)}{\left(R_{2}{ }^{\prime}-R_{1}\right)} \text { vers } \Delta_{2} \ldots . \tag{28}\\
\\
O_{1} n=\left(R_{2}-R_{1}\right) \sin \Delta_{2} ; \\
\\
O_{1} n^{\prime}=\left(R_{2}{ }^{\prime}-R_{1}\right) \sin \Delta_{2}^{\prime} .
\end{gather*}
$$

This problem may be further modificd by assuming that the radius of the curve is decreased rather than increased, or that the smaller radius follows the larger. The solution is similar and is suggested as a profitable exercise.

It might also be assumed that, instead of making a given change in the radius R_{2}, a given change $B B^{\prime}$ is to be made. Δ_{2}^{\prime} and $R_{2}{ }^{\prime}$ are required. Eliminate $R_{2}{ }^{\prime}$ from Eqs. 28 and 29 and solve the resulting equation for $\mathcal{A}_{2}{ }^{\prime}$. Then determine $R_{2}{ }^{\prime}$ by a suitable inversion of either Eq. 28 or 29.

As in $\S \S 32$ and 33 , the above problems are but a few, although perhaps the most common, of the problems the engineer may meet with in compound curves. All of the ordinary problems may be solved by these and similar methods.
40. Problems. a. Assume that the two tangents of a compound curve are to be 348 feet and 624 feet, and that $\Delta_{1}=22^{\circ} 16^{\prime}$ and $A_{2}=28^{\circ} 20^{\prime}$. Required the radii.

$$
\left[4 n s . R_{1}=326.92 ; R_{2}=1574.85 .\right]
$$

b. A line crosses a valley by a compound curve which is first a 6° curve for $46^{\circ} 30^{\prime}$ and then a $9^{\circ} 30^{\prime}$ curve for $84^{\circ} 16^{\prime}$. It is afterward decided that the last tangent should be 6 feet farther up the hill. What are the required changes? [Note. The second tangent is evidently moved outward. The solution corresponds to that in the first part of $\S 39, c$. The P.C.C. is moved forward 16.39 feet. If it is desired to know how far the $P . T$. is moved in the direction of the tangent (i.e., the projection of $B B^{\prime}$, Fig. 28, on $V^{\prime} B^{\prime}$), it may be found by observing that it is equal to $n n^{\prime}=\left(R_{2}-R_{1}\right)\left(\sin \Delta_{1}-\sin \Delta_{1}^{\prime}\right)$. In this case it equals 0.65 foot, which is very small because A_{1} is nearly 90°. The value of $1_{2}\left(46^{\circ} 30^{\prime}\right)$ is not used, since the solution is independent of the value of J_{2}. The student should learn to recognize
which quantities are mutually related and therefore essential to a solution, and which are independent and non-essential.」

'TRANSITION CURVES.

41. Superelevation of the outer rail on curves. When a mass is moved in a circular path it requires a centripetal force to keep it moving in that path. By the principles of mechanics we know that this force equals $G v^{2} \div g R$, in which G is the weight, v the velocity in feet per second, g the acceleration of gravity in feet per second in a second, and R the radius of curvature. If the two rails of a curved track were laid on a level (transversely), this centripetal force could only be furnished by the pressure of the wheel-flanges against the rails. As this is very objectionable, the outer rail is elevated so that the reaction of the rails against the wheels shall contain a horizontal component equal to the required centripetal force. In Fig. 30, if ob represents the reaction, $o c$ will represent the weight G, and ao will represent the required centripetal force. From similar triangles we may write $s n: s m::$ ao :oc. Call $g=32.17$. Call $R=5730 \div D$, which is sufficiently accurate for this purpose (see

Fig. 30.
§ 19). Call $v=5280 V \div 3600$, in which V is the velocity in miles per hour. $m n$ is the distance between rail centers, which, for an $80-\mathrm{lb}$. rail and standard gauge, is 4.916 feet $s m$ is slightly less than this. As an average value we may call it 4.900 , which is its exact value when the superelevation is $4_{4}^{\frac{3}{4} \text { inches. Calling }}$ $s n=e$, we have

$$
\begin{gather*}
e=\operatorname{sm} \frac{a o}{o c}=4.9 \frac{G v^{2}}{g R} \frac{1}{G}=\frac{4.9 \times 5280^{2} V^{2} D}{32.17 \times 3} \frac{600^{2} \times 5730}{} \\
e=.0000572 \mathrm{~V}^{2} D . ~ . ~ . ~ . ~ . ~ . ~ \tag{30}
\end{gather*}
$$

It should be noticed that, according to this formula, the required superelevation varies as the square of the velocity, which means that a change of velocity of only 10% would call for a change of superelevation of 21%. Since the velocities of trains over any road are extremely variable, it is impossible to adopt
any superelevation which will fit all velocities even approximately. The above fact also shows why any over-lefinement in the calculations is useless and why the above approximations, which are really small, are amply justifiable. For example, the above formula contains the approximation that $R=5730 \div D$. In the extreme case of a 10° curve the error involved would be about 1%. A change of about $\frac{1}{2}$ of 1% in the velocity, or say from 40 to 40.2 miles per hour, would mean as much. The error in e due to the assumed constant value of $s m$ is never more than a very small fraction of 1%. The rail-laying is not done closer than this. The following tabular form is based on Eq. (30):

SUPERELEVATION OF THE OUTER RAIL (IN FEET) FOR VARIOUS VELOCITIES AND DEGREES OF CURVATURE.

Velocity in Miles per Hour.	Degree of Curve.									
	1°	2°	3°	$4^{\text {c }}$	5°	6°	7°	8°	9°	10°
30	.05	.10	.15	.20	.26	.31	.36	.41	.46	.51
40	.09	.18	.27	.37	.46	.55	.64	.73	.82	
50	.14	.29	.43	1.57	.71	.86			.	
60	.20	.41	.62	.82			.			

42. Practical rules for superelevation. A much used rule for superelevation is to "elevate one half an inch for each degree of curvature." The rule is rational in that e in Eq. 30 varies directly as D. The above rule therefore agrees with Eq. 30 when V is about 27 miles per hour. However applicable the rule may have been in the days of low velocities, the elevation thus computed is too small now. The rule to elevate one inch for each degree of curvature is also used and is precisely similar in its nature to the above rule. It agrees with Eq. 30 when the velocity is about 38 miles per hour, which is more nearly the average speed of trains.

Another (and better) rule is to "elevate for the speed of the fastest trains." This rule is further justified by the fact that a four-wheeled truck, having two parallel axles, will always tend to run to the outer rail and will require considerable flange pressure to guide it along the curve. The effect of an excess of superelevation on the slower trains will only be to relieve this flange pressure somewhat. This rule is coupled with the limitation
that the elevation should never exceed a limit of six inchessometimes eight inches. This limitation implies that locomotive engineers must reduce the speed of fast trains around sharp curves until the speed does not exceed that for which the actual superelevation used is suitable. The heavy line in the tabular form (§41) shows the six-inch limitation.

Some roads furnish their track foremen with a list of the superelevations to be used on each curve in their sections. This method has the advantage that each location may be separately studied, and the proper velocity, as affected by local conditions (e.g., proximity to a stopping-place for all trains), may be determined and applied.

Another method is to allow the foremen to determine the superelevation for each curve by a simple measurement taken at the curve. The rule is developed as follows: By an inversion of Eq. 19 we have

$$
\begin{equation*}
x=\text { chord }^{2} \div 8 R \tag{31}
\end{equation*}
$$

Putting x equal to e in Eq. 30 and solving for "chord," we have

$$
\begin{align*}
\text { chord }^{2} & =.0000572 V^{2} D S R \\
& =2.621 V^{2} . \\
\text { chord } & =1.62 \mathrm{~V} . \quad \text {. . } \tag{32}
\end{align*}
$$

To apply the rule, assume that 50 miles per hour is fixed as the velocity from which the superelevation is to be computed. Then $1.62 V=1.62 \times 50=81$ feet, which is the distance given to the trackmen. Stretch a tape (or even a string) with a length of 81 feet between two points on the inside head of the outer rail of the outer head of the inner rail. The ordinate at the middle point then equals the superelevation. The values of this chord length for varying velocities are given in the accompanying tabular form.

Velocity in miles per hour...	20	25	30	35	40	45	50	55	60
Chord length in feet........	32.4	40.5	48.6	56.7	64.8	72.9	81.0	89.1	97.2

The following tabular form shows the standard (at one time) on the N. Y., N. H. \& H. R. R. It should be noted that the elevations do not increase proportionately with the radius, and that they are higher for descending grades than for level or
ascending grades. This is on the basis that the velocity on curves and on ascending grades will be less than on descending grades. For example, the superelevation for a $0^{\circ} 30^{\prime}$ curve on a descending grade corresponds to a velocity of about 54 miles per hour, while for a 4° curve on a level or ascending grade the superelevation corresponds to a velocity of only about 38 miles per hour.

TABLE OF THE SUPERELEVATION OF THE OUTER RAIL ON CURVES. N. Y., N. H. \& H. R. R.

Degree of curve.	Level or ascending grade.	Descending grade.
$0^{\circ} 30^{\prime}$	inches.	inches.
100	$1{ }^{1}$	$1{ }^{3}$
115	13	2
130	2	21
145	21	$2 \frac{1}{2}$
200	$2{ }^{\frac{3}{8}}$	$2 \frac{3}{4}$
215	$2{ }^{\text {s }}$	3
230	$2 \frac{7}{8}$	37
245	3	$3 \frac{3}{8}$
300	31	$3{ }^{3}$
$\begin{array}{ll}3 & 15 \\ 3 & 30\end{array}$	-3 ${ }^{3} 8$	${ }_{4}^{37}$
345	$3{ }^{3}$	$4 \frac{1}{8}$
400	4	$4 \frac{1}{2}$

43. Transition from level to inclined track. On curves the track is inclined transversely; on tangents it is level. The transition from one condition to the other must be made gradually. If there is no transition curve, there must be either inclined track on the tangent or insufficiently inclined track on the curve or both. Sometimes the full superelevation is continued through the total length of the curve and the "run-off" (having a length of 100 to 400 feet) is located entirely on the tangents at each end. In other practice it is located partly on the tangent and partly on the curve. Whatever the method, the superelevation is correct at only one point of the run-off. At all other points it is too great or too small. This (and other causes) produces objectionable lurches and resistances when entering and leaving curves. The object of transition curves is to obviate these resistances.

On the Lehigh Valley R. R, the run-off is made in the form of a reversed vertical curve, as shown in the accompanying figure. According to this system the length of run-off varies
from 120 feet, for a superelevation of one inch, to 450 feet, for a superelevation of ten inches. Such a superelevation as ten inches is very unusual practice, but is successfully operated on that road. The curve is concave upward for twothirds of its length and then reverses so that it is convex upward.

TABLE FOR RUN-OFF OF ELEVATION OF OUTER RAIL OF CURVES.
Drop in inches for each 30 -foot rail commencing at theoretical point of curve.

	${ }_{8}^{\prime \prime}$	${ }^{1 \prime}$	$\frac{3}{8 \prime}^{\prime \prime}$	$\frac{1}{2}{ }^{\prime \prime}{ }^{\frac{5}{8}}$	5" ${ }^{\prime \prime}$	$3^{\frac{3}{1 \prime}}{ }^{\frac{7}{8}}$	$8^{\prime \prime} 1^{\prime \prime}$	$1 \frac{1}{8 \prime}$	11"	$18^{\prime \prime}$	1"	$7_{8 \prime \prime}$	年"		" ${ }^{\frac{1}{2}}$	\| 3	"		"			-
1"		30	30																30			120
$2^{\prime \prime}$..	30													3	3			3			150
$3^{\prime \prime}$		-30				30.						${ }_{3}^{30}$		30	.	3	${ }^{3}$		- 3			180
$4{ }^{\prime \prime}$		- 30		30		. ${ }^{3}$	30 -30					30	30	30	3		. 3		3			240
$5^{\prime \prime}$	\cdots	通30		30				30			30 30			3								270
$7{ }^{\prime \prime}$		30		30			30	30		30	30			3			30		30			330
$8{ }^{\prime \prime}$		30		30		30		30	30	30	30		30				30					360
$9{ }^{\prime \prime}$	30			30		30	30	30		30	30	30	30	30			0		30			420
	30		30	.. 3			30	30	30	30					3							450

The figure (and also the lower line of the tabulated form) shows the drop for each thirty-foot rail length. For shorter lengths of run-off, the drop for each 30 feet is shown by the corresponding lines in the tabular form. Note in each horizontal line that the sum of the drops, under which 30 is found, equals the total superelevation as found in the first column. For example, for 4 inches superelevation, length of curve 240 feet, the successive drops are $\frac{1^{\prime \prime}}{4}, \frac{1^{\prime \prime}}{2}, \frac{7^{\prime \prime}}{3}, \frac{77^{\prime \prime}}{8}, \frac{5}{8^{\prime \prime}}, \frac{1^{\prime \prime}}{2}, \frac{1^{\prime \prime}}{4}$, and $\frac{1}{8}{ }^{\prime \prime}$ whose sum is 4 inches. Possibly the more convenient form would be to indicate for each 30 -foot point the actual superelevation of the outer rail, which would be for the above case (running from the tangent to the curve) $\frac{11^{\prime \prime}}{8}, \frac{3^{\prime \prime}}{8}, 7^{\prime \prime}, 1 \frac{1}{2} \frac{1}{\prime \prime}^{2 \frac{3}{8}}$, $3 \frac{1}{4}^{\prime \prime}, 33^{\prime \prime}, 4^{\prime \prime}$.
44. Fundamental principle of transition curves. If a curve
has variable curvature, beginning at the tangent with a curve of infinite radius, and the curvature gradually sharpens until it equals the curvature of the required simple curve and there becomes tangent to it, the superelevation of such a transition curve may begin at zero at the tangent, gradually increase to the required superelevation for the simple curve, and yet have at every point the superelevation required by the curvature at that point. Since in Eq. (30) e is directly proportional to D, the required curve must be one in which the degree of curve increases directly as the distance along the curve. The mathematical development of such a curve is quite complicated. It has, however, been developed, and tables have been computed for its use, by Prof. C. L. Crandall. The following method has the advantage of great simplicity, while its agreement with the true transition curve is as close as need be, as will be shown.
45. Multiform compound curves. If the transition curve commences with a very flat curve and at regular even chord lengths compounds into a curve of sharper curvature until the desired curvature is reached, the increase in curvature at each chord point being uniform, it is plain that such a curve is a close approximation to the true spiral, especially since the rails as laid will gradually change their curvature rather than maintain a uniform curvature throughout each chord length and then abruptly change the curvature at the chord points. Such a curve, as actually laid, will be a much closer approximation to the true curve than the multiform compound curve by which it is set out. There will actually be a gradual increase in curvature which increases directly as the length of the curve.
46. Required length of spiral. The required length of spiral evidently depends on the amount of superelevation to be gained, and also depends somewhat on the speed. If the spiral is laid off in 25 -foot chord lengths, with the first chord subtending a 1° curve, the second a 2° curve, etc., the fifth chord will subtend a 5° curve, and the increase from this last chord to a 6° curve is the same as the uniform increase of curvature between the chords. The same spiral extended would run on to a 12° curve in $(12-1) 25=275$ feet. The last chord of a spiral should have a smaller degree of curvature than the simple curve to which it is joined. If the curves are very sharp, such as are used in street work and even in suburban trolley work, an increase in degree of curvature of 1° per 25 feet will not be sufficiently rapid, as
such a rate would require too long curves. $2^{\circ}, 10^{\circ}$, or even 20° increase per 25 feet may be necessary, but then the chords should be reduced to 5 feet. Such a rapid rate of increase is justified by the necessary reduction in speed. On the other hand, very high speed will make a lower rate of increase desirable, and therefore a spiral whose degree of curvature increases only $0^{\circ} 30^{\prime}$ per 25 feet may be used. Such a spiral would require a length of 375 feet to run on to an 8° curve, which is inconveniently long, but it might be used to run on to a 4° curve, where its length would be only 175 feet. Three spirals have been developed in Table IV, each with chords of 25 feet, the rate of increase in the degree of curvature being $0^{\circ} 30^{\prime}, 1^{\circ}$ and 2° per chord. One of these will be suitable for any curvature found on ordinary steam-railroads.
47. To find the ordinates of a I°-per-25-feet spiral. Since the

Fig. 31. first chord subtends a 1° curve, its central angle is $0^{\circ} 15^{\prime}$ and the angle $a Q V$ (Fig. 31) is $7^{\prime} 30^{\prime \prime}$. The tangent at a makes an angle of 15^{\prime} with $V Q$. The angle between the chord $b a$ and the tangent at a is $\frac{1}{2}\left(30^{\prime}\right)=15^{\prime}$, and the angle $b a b^{\prime \prime}=\frac{1}{2}\left(30^{\prime}\right)+15^{\prime}$ $=30^{\prime}$. Similarly

$$
\text { the angle } c b c^{\prime \prime}=\frac{1}{2}\left(45^{\prime}\right)+30^{\prime}+15^{\prime}=67^{\prime} 30^{\prime \prime}=1^{\circ} 07^{\prime} 30^{\prime \prime} \text {, }
$$

and the angle $d c d^{\prime \prime}=2^{\circ} 0^{\prime}$.
The ordinate $a a^{\prime}=25 \sin 7^{\prime} 30^{\prime \prime}$, and

$$
Q a^{\prime}=25 \cos 7^{\prime} 30^{\prime \prime} .
$$

$$
Q b^{\prime}=Q a^{\prime}+a^{\prime} b^{\prime}
$$

$$
=Q a^{\prime}+a b^{\prime \prime}
$$

$$
=25\left(\cos 7^{\prime} 30^{\prime \prime}+\cos 30^{\prime}\right) .
$$

$$
b b^{\prime}=b^{\prime} b^{\prime \prime}+b b^{\prime \prime}
$$

$$
=25\left(\sin 7^{\prime} 30^{\prime \prime}+\sin 30^{\prime}\right) .
$$

Similarly the ordinates of c, d, etc., may be obtained.
48. To find the deflections from any point of the spiral. $a Q V=7^{\prime} 30^{\prime \prime}$. Tan $b Q V=b b^{\prime} \div Q b^{\prime} ;$ tan $c Q V=c c^{\prime} \div Q c^{\prime}$; etc. Thus we are enabled to find the deflection angles from the tangent at Q to any point of the spiral.

The tangent to the curve at c (Fig. 32) makes an angle of

Fig. 32.
$1^{\circ} 30^{\prime}$ with $Q V$, or $c m V=1^{\circ} 30^{\prime} . Q c m=c m V-c Q m$. The value of $c Q m$ is known from previous work. The deflection from c to Q then becomes known.
$a c m=c m V-c a p=c m V-c a q-q a p . \quad c a q$ is the deflection angle to c from the tangent at a and will have been previously computed numerically. qap=15'. acm therefore becomes known.

$$
\begin{aligned}
b c m & =\frac{1}{2} \text { of } 45^{\prime}=22^{\prime} 30^{\prime \prime} \\
d c n & =\frac{1}{2} \text { of } 60^{\prime}
\end{aligned}=30^{\prime} .
$$

$e c n=e c d^{\prime \prime}-n c d^{\prime \prime}, n c d^{\prime \prime}=c m V, \tan e c d^{\prime \prime}=\left(e e^{\prime}-d^{\prime \prime} d^{\prime}\right) \div c^{\prime} e^{\prime}$, all cf which are known from the previous work.

By this method the deflections from the tangent at any point

Fig. 33.
of the curve to any other point are determinable. These values are compiled in Table IV. The corresponding values of these angles when the increase in the degree of curvature per chord length is 30^{\prime}, and when it is 2°, are also given in Table IV.
49. Connection of spiral with circular curve and with tangent. See Fig. 33.* Let $A V$ and $B V$ be the tangents to be connected

[^1]by a D° curve, having a suitable spiral at each end. If no spirals were to be used, the problem would be solved as in simple curves giving the curve $A M B$ Introducing the spiral has the effect of throwing the curve away from the vertex a distance $M M^{\prime}$ and reducing the central angle of the D° curve by 2ϕ. Continuing the curve beyond Z and Z^{\prime} to A^{\prime} and B^{\prime}, we will have $A A^{\prime}=B B^{\prime}=M M^{\prime} . \quad Z K=$ the x ordinate and is therefore known. Call $M M^{\prime}=m$. $A^{\prime} N=x-R$ vers ϕ. Then
\[

$$
\begin{equation*}
m=M M^{\prime}=A A^{\prime}=\frac{A^{\prime} N}{\cos \frac{1}{2} \Delta}=\frac{x-R \text { vers } \phi}{\cos \frac{1}{2} \Delta} . \tag{33}
\end{equation*}
$$

\]

$N A=A A^{\prime} \sin \frac{1}{2} \Delta=(x-R$ vers $\phi) \tan \frac{1}{2} \Delta$.

$$
\begin{align*}
V Q & =Q K-K N+N A+A V \\
& =y-R \sin \phi+(x-R \operatorname{vers} \phi) \tan \frac{1}{2} \Delta+R \tan \frac{1}{2} \Delta \\
& =y-R \sin \phi+x \tan \frac{1}{2} \Delta+R \cos \phi \tan \frac{1}{2} \Delta . . \tag{34}
\end{align*}
$$

When $A^{\prime} N$ has already been computed, it may be more convenient to write

$$
\begin{align*}
V Q & =y+R\left(\tan \frac{1}{2} \Delta-\sin \phi\right)+A^{\prime} N \tan \frac{1}{2} \Delta . \tag{35}\\
V M^{\prime} & =V M+M M^{\prime} \\
& =R \operatorname{exsec} \frac{1}{2} \Delta+\frac{x}{\cos \frac{1}{2} \Delta}-\frac{R \operatorname{vers} \phi}{\cos \frac{1}{2} \Delta} . \tag{36}\\
A Q & =V Q-A V \\
& =y-R \sin \phi+(x-R \text { vers } \phi) \tan \frac{1}{2} \Delta . \tag{37}
\end{align*}
$$

Example. To join two tangents mahing an angle of $34^{\circ} 20^{\prime}$ by a $5^{\circ} 40^{\prime}$ curve and suitable spirals. Use 1°-per- 25 -feet spirals with five chords. Then $\phi=3^{\circ} 45^{\prime}, x=2.999, \frac{1}{2} \Delta=17^{\circ} 10^{\prime}$, and $y=124.942$.
[Eq. 33]
[Eq. 36]
[Eq. 35]

50. Field-work. When the spiral is designed during the original location, the tangent distance $V Q$ should be computed and the point Q located. It is hardly necessary to locate all of the points of the spiral until the track is to be laid. The extremities should be located, and as there will usually be one and perhaps two full station points on the spiral, these should also be located. Z may be located by setting off $Q K=y$ and $K Z=x$, or else by the tabular deflection for Z from Q and the distance $Z Q$, which is the long chord. Setting up the instrument at Z and sighting back at Q with the proper deflection, the tangent at Z may be found and the circular curve located as usual, its central angle being $\boldsymbol{\Delta}-2 \phi$. A similar operation will locate Q^{\prime} from Z^{\prime}.

To locate points on the spiral. Set up at Q, with the plates
reading 0° when the telescope sights along $V Q$. Set off from Q the deflections given in Table IV for the instrument at Q, using a chord length of 25 feet, the process being like the method for simple curves except that the deflections are irregular. Jf a full station-point occurs within the spiral, interpolate between the deflections for the adjacent spiral-points. For example, a spiral begins at Sta. $56+15$. Sta. 57 comes 10 feet beyond the third spiral point. The deflection for the third point is $35^{\prime} 0^{\prime \prime}$; for the fourth it is $56^{\prime} 15^{\prime \prime}$. $\frac{10}{2} \frac{0}{5}$ of the difference $\left(21^{\prime} 15^{\prime \prime}\right)$ is $8^{\prime} 30^{\prime \prime}$; the deflection for Sta. 57 is therefore $43^{\prime} 30^{\prime \prime}$. This method is not theoretically accurate, but the error is small. Arriving at Z, the forward alignment may be obtained by sighting back at Q (or at any other point) with the given deflection

Fig. 34.
for that point from the station occupied. Then when the plates read 0° the telescope will be tangent to the spiral and to the succeeding curve. All rear points should be checked from Z. If it is necessary to occupy an intermediate station, use the deflections given for that station, orienting as just explained for Z,
checking the back points and locating all forward points up to Z if possible.

After the center curve has been located and Z^{\prime} is reached, the other spiral must be located but in reverse order, i.e., the sharp cu.vature of the spiral is at Z^{\prime} and the curvature decreases toward Q^{\prime}.
51. To replace a simple curve by a curve with spirals. This may be done by the method of $\S 49$, but it involves shifting the whole track a distance m, which in the given example equals 0.87 foot. Besides this the track is appreciably shortened, which would require rail-cutting. But the track may be kept at practically the same length and the lateral deviation from the old track may be made very small by slightly sharpening the curvature of the old track, moving the new curve so that it is wholly or partially outside of the old curve, the remainder of it with the spirals being inside of the old curve. It is found by experience that a decrease in radius of from 1% to 5% will answer the purpose. The larger the central angle the less the change. The solution is as indicated in Fig. 34.

$$
\begin{align*}
O^{\prime} N & =R^{\prime} \cos \phi+x . \\
O^{\prime} V & =O^{\prime} N \sec \frac{1}{2} \Delta \\
& =R^{\prime} \cos \phi \sec \frac{1}{2} \Delta+x \sec \frac{1}{2} \Delta . \\
m & =M M^{\prime}=M V-M^{\prime} V \\
& =R \operatorname{exsec} \frac{1}{2} \Delta-\left(O^{\prime} V-R^{\prime}\right) \\
& =R \operatorname{exsec} \frac{1}{2} \Delta-R^{\prime} \cos \phi \sec \frac{1}{2} \Delta-x \sec \frac{1}{2} \Delta+R^{\prime} . . \tag{38}\\
A Q & =Q K-K N+N V-V A \\
& =y-R^{\prime} \sin \phi+\left(R^{\prime} \cos \phi+x\right) \tan \frac{1}{2} \Delta-R \tan \frac{1}{2} \Delta \\
& =y-R^{\prime} \sin \phi+R^{\prime} \cos \phi \tan \frac{1}{2} \Delta-\left(R-x_{0}\right) \tan \frac{1}{2} \Delta . \tag{39}
\end{align*}
$$

The length of the old curve from Q to $Q^{\prime}=2 A Q+100 \frac{\Delta}{D}$.
The length of the new curve from Q to $Q^{\prime}=2 L+100 \frac{\Delta-2 \phi}{D^{\prime}}$; in which L is the length of each spiral.

Example. Suppose the old curve is a $7^{\circ} 30^{\prime}$ curve with a central angle of $38^{\circ} 40^{\prime}$. As a trial, compute the relative length of a new 8° curve with spirals of seven chords. $\phi=7^{\circ} 0^{\prime}$; $\frac{1}{2} \Delta=19^{\circ} 20^{\prime} ; R$ (for the $7^{\circ} 30^{\prime}$ curve) $=764.489 ; R^{\prime}$ (for the 8° curve) $=716.779 ; x=7.628$.
[Eq. 38]
[Eq. 39]

The length of the old curve from Q to Q^{\prime} is

$$
\begin{aligned}
100 \frac{\Delta}{D} & =100 \frac{38.667}{7.5}= \\
2 A Q & =2 \times .71 .432=
\end{aligned}=. \quad . \quad . \quad \frac{142.864}{658.420}
$$

New curve: $100 \frac{\Delta-2 \phi}{D^{\prime}}=100 \frac{38.667-14.000}{8.0}=308.333$

$$
\begin{array}{r}
\quad=\frac{350.000}{658.333} \\
\quad \text { Difference in length }=2 \times 175
\end{array}
$$

Considering that this difference may be divided among 22 joints (using 30 -foot rails) no rail-cutting would be necessary. If the difference is too large, a slight variation in the value of the new radius R^{\prime} will reduce the difference as much as necessary. A truer comparison of the lengths would be found by comparing the lengths of the ares.
52. Application of transition curves to compound curves. Since compound curves are only employed when the location is limited by local conditions, the elements of the compound curve should be determined (as in §§ 38 and 39) regardless of the
transition curves, depending on the fact that the lateral shifting of the curve when transition curves are introduced is very small. If the limitations are very close, an estimated allowance may be made for them.

Methods have been devised for inserting transition curves between the branches of a compound curve, but the device is

Fig. 35.
complicated and usually needless, since when the train is once on a curve the wheels press against the outer rail steadily and a change in curvature will not produce a serious jar even though the superelevation is temporarily a little more or less than it should be.

If the easier curve of the compound curve is less than 3° or 4°, there may be no need for a transition curve off from that branch. This problem then has two cases according as transition curves are used at both ends or at one end only.
a. With transition curves at both ends. Adopting the method of $\S 49$, calling $\Delta_{1}=\frac{1}{2} \Delta$, we may compute $m_{1}=M M_{1}{ }^{\prime}$. Similarly, calling $\Delta_{2}=\frac{1}{2} \Lambda$, we may compute $m_{2}=M M_{2}{ }^{\prime}$. But $M_{1}{ }^{\prime}$ and $M_{2}{ }^{\prime}$ must be made to coincide. This may be done by moving the curve $Z^{\prime} M_{1}{ }^{\prime}$ and its transition curve parallel to $Q^{\prime} V$ a distance $M_{1}{ }^{\prime} M_{3}$, and the other curve parallel to $Q V$ a distance $M_{2}{ }^{\prime} M_{3}$. In the triangle $M_{1}{ }^{\prime} M_{3} M_{2}{ }^{\prime}$, the angle at $M_{1}{ }^{\prime}=90^{\circ}-\Delta_{1}$, the angle at $M_{2}^{\prime}=90^{\circ}-\Delta_{2}$, and the angle at $M_{3}=\Delta$.

Then $\quad M_{1}{ }^{\prime} M_{3}=M_{1}{ }^{\prime} M_{2} \frac{\sin \left(90^{\circ}-\Delta_{2}\right)}{\sin \Delta}=\left(m_{1}-m_{2}\right) \frac{\cos \Delta_{2}}{\sin \Delta^{2}}$.
Similarly $M_{2}{ }^{\prime} M_{3}=M_{1}{ }^{\prime} M_{2}{ }^{\prime} \frac{\sin \left(90^{\circ}-\Lambda_{1}\right)}{\sin \Delta}=\left(m_{1}-m_{2}, \frac{\cos \Delta_{1}}{\sin \Delta}.\right\}$
b. With a transition curve on the sharper curve only. Compute $m_{1}=M M_{1}{ }^{\prime}$ as before; then move the curve $Z_{1} M_{1}{ }^{\prime}$ parallel to $Q^{\prime} V$ a distance of

$$
\begin{equation*}
M_{1}^{\prime} M_{4}=m_{1} \frac{\cos \Delta_{2}}{\sin \Delta} \tag{41}
\end{equation*}
$$

The simple curve $M A$ is moved parallel to $V A$ a distance of

$$
\begin{equation*}
M M_{4}=m_{1} \frac{\cos \Delta_{1}}{\sin \Delta} \tag{42}
\end{equation*}
$$

If Δ_{1} and Δ_{2} are both small, $M_{1}^{\prime} M_{4}$ and $M M_{4}$ may be more than m_{1}, but the lateral deviation of the new curve from the old will always be less than m_{1}.
53. To replace a compound curve by a curve with spirals. The solution is somewhat analogous to that of § 51. Compute m_{1} for the sharper branch of the curve, placing $\Delta_{1}=\frac{1}{2} \Delta$ in Eq. 38. Since m_{1} and m_{2} for the two branches of the curve must be identical, a value for $R_{2}{ }^{\prime}$ must be found which will satisfy the determined value of $m_{2}=m_{1}$. Solving Eq. 38 for R^{\prime}, we obtain

$$
\begin{equation*}
R^{\prime}=\frac{R \text { vers } \frac{1}{2} \Delta-m \cos \frac{1}{2} \Delta-x}{\cos \phi-\cos \frac{1}{2} \Delta} \tag{43}
\end{equation*}
$$

Substituting in this equation the known value of $m_{1}\left(=m_{2}\right)$ and calling $R^{\prime}=R_{2}{ }^{\prime}, R=R_{2}$, and $\Delta_{2}=\frac{1}{2} \Delta$, solve for $R_{2}{ }^{\prime}$. Obtain the value of $A Q$ for each branch of the curve separately by Eq. 39, and compare the lengths of the old and new lines.

Example. Assume a compound curve with $D_{1}=8^{\circ}, D_{2}=4^{\circ}$, $\Delta_{1}=36^{\circ}$, and $\Delta_{2}=32^{\circ}$. Use 1°-per- 25 -feet spirals; $\phi_{1}=7^{\circ} 0^{\prime}$; $\phi_{2}=1^{\circ} 30^{\prime}$. Assume that the sharper curve is sharpened from $8^{\circ} 0^{\prime}$ to $8^{\circ} 12^{\prime}$.

[Eq. 43]
[Eq. 39]

[Eq. 39]

For the length of the old track we have :

$$
\begin{aligned}
100 \frac{\Delta_{1}}{D_{1}}= & 100 \frac{36^{\circ}}{8^{\circ}}
\end{aligned}=450 .
$$

For the length of the new track we have:

$$
\begin{aligned}
& 100 \frac{\Delta_{1}-\phi_{1}}{D_{1}^{\prime}}=100 \frac{29^{\circ}}{8^{\circ} .20}=353.659 \\
& 100 \frac{\Delta_{2}-\phi_{2}}{D_{2}^{\prime}}=100 \frac{30^{\circ} .5}{4^{\circ} .023}=758.140
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
\text { Length of new track } & =\overline{1361.799}
\end{aligned} \\
& \text { Excess in length of new track }=\frac{1361.340}{0.459} \text { feet. }
\end{aligned}
$$

Since the new track is slightly longer than the old, it shows that the new track runs too far outside the old track at the P.C.C. On the other hand the offset m is only 1.136 . The maximum amount by which the new track comes inside of the old track at two points, presumably not far from Z^{\prime} and Z, is very difficult to determine exactly. Since it is desirable that the maximum offsets (inside and outside) should be made as nearly equal as possible, this feature should not be sacrificed to an effort to make the two lines of precisely equal length so that the rails need not be cut. Therefore, if it is found that the offsets inside the old track are nearly equal to m (1.136), the above figures should stand. Otherwise m may be diminished (and the above excess in length of track diminished) by increasing $R_{1}{ }^{\prime}$ very slightly and making the necessary consequent changes.

VERTICAL CURVES.

54. Necessity for their use. Whenever there is a change in the rate of grade, it is necessary to eliminate the angle that would be formed at the point of change and to connect the two grades by a curve. This is especially necessary at a sag between two grades, since the shock caused by abruptly forcing an upward motion to a rapidly moving heavy train is very severe both to the track and to the rolling stock. The necessity for vertical curves was even greater in the days when link couplers were in universal use and the "slack" in a long train was very great. Under such circumstances, when a train was moving down a heavy grade the cars would crowd ahead against the engine. Reaching the sag, the engine would begin to pull out, rapidly taking out the slack. Six inches of slack on each car would amount to several feet on a long train, and the resulting jerk on the couplers, especially those near the rear of the train, has frequently resulted in broken couplers or even derailments. A vertical curve will practically eliminate this danger if the curve is made long enough, but the rapidly increasing adoption of close spring couplers and air-brakes, even for freight trains, is obviating the necessity for such very long curves.
55. Required length. Theoretically the length should depend on the change in the rate of grade and on the length of the longest train on the road. A sharp change in the rate of grade requires a long curve; a long train requires a long curve; but since the longest trains are found on roads with light grades and small changes of grade, the required length is thus somewhat equalized. It has been claimed that a total curve length equal to one-third of the train length for each tenth of a per cent of change of rate of grade will certainly prevent the rear of the train from crowding against the cars in front, but such a length is admittedly excessive. Half of this length is probably ample and one-fourth of it is probably safe. Therefore, we may say, taking the even fraction $\frac{1}{10}$ rather than $\frac{1}{12}$,

> length of vertical curve $=($ length of longest train $) \times($ change of rate of grade in per cent $).$

For example, assume a change of rate of grade of 2%; assume that the longest train will be about 720 feet. Then, by the
above rule, the length of curve should be $720 \times 2=1440$ feet. Such rules are seldom if ever applied except in the most approximate way. On many roads a uniform length of only 400 feet is adopted for all vertical curves. The required length over a hump is certainly much less than that through a sag. Added length increases the amount of earthwork required both in cuts and fills, but the resulting saving in operating expenses will always justify a considerable increase.
56. Form of curve. In Fig. 36 assume that A and C, equi-

Fig. 36.
distant from B, are the extremities of the vertical curve. Bisect $A C$ at e; draw $B e$ and bisect it at h. Bisect $A B$ and $B C$ at k and l. The line $k l$ will pass through h. A parabola may be drawn with its vertex at h which will be tangent to $A B$ and $B C$ at A and C. It may readily be shown $*$ from the properties of a parabola that if an ordinate be drawn at any point (as at n) we will have
or

$$
\begin{gather*}
s n: \text { eh }(\text { or } h B):: \overline{A m}^{2}: \overline{A e},^{2} \\
s n=e h \frac{\overline{A m}^{2}}{\overline{A e}^{2}} \quad \cdot \cdot \cdot \tag{44}
\end{gather*}
$$

In Fig. 36 the grades are necessarily exaggerated enormously. With the proportions found in practice we may assume that ordinates (such as $m t$, $e B$, etc.) are perpendicular to either grade, as may suit our convenience, without any appreciable error. In the numerical case given below, the variation of these ordinates from the vertical is $0^{\circ} 07^{\prime}$, while the effect of this variation on the calculations in this case (as in the most extreme cases) is absolutely inappreciable. It may easily be shown that the angle $C A B=$ half the algebraic difference of the rates of grade. Call the difference, expressed in per cent of grade, r; then $C A B=\frac{1}{2} r$. Let $l=$ length (in "stations" of 100 feet) of the line $A C$, which is practically equal to the horizontal

[^2]measurement. Since the angle $C A B$ is one-half the total change of grade at B, it follows that $B e=\frac{1}{2} l \times \frac{1}{2} r \quad$ Therefore
\[

$$
\begin{equation*}
B h=\frac{1}{8} l r . \tag{44a}
\end{equation*}
$$

\]

Since $B h$ (or $e h$) are constant for any one curve, the correction $s n$ at any point (see Eq. 44) equals a constant times $A m^{2}$.
57. Numerical example. Assume that B is located at Sta. $16+20$; that the curve is to be 1200 feet long; that the grade of $A B$ is -0.8%, and of $B C+1.2 \%$; also that the elevation of B above the datum plane is 162.6 . Then the algebraic difference of the grades, $r,=1.2-(-0.8)=2.0 ; l=12 . \quad B h=\frac{1}{8} l r$ $=\frac{1}{3} \times 12 \times 2=3.0$. A is at Sta. $10+20$ and its elevation is $162.6+(6 \times 0.8)=167.4 ; C$ is at Sta. $22+20$ and its elevation is $162.6+(6 \times 1.2)=169.8$. The elevation of Sta. 11 is found by adding $s n$ to the elevation of s on the straight grade line. The constant ($e h \div \overline{A e}^{2}$) equals in this case $3.0 \div 600^{2}={ }_{1 \frac{1}{2} \frac{1}{0000}}$. Therefore the curve elevations are

DEMONSTRATION OF EQ. 44.
The general equation of a parabola passing through the point n (Fig. 36) may be written
from which

$$
\begin{aligned}
& y^{2}+y_{n}^{2}=2 p\left(x+x_{n}\right) \\
& x_{n}=\frac{y^{2}}{2 p}+\frac{y_{n}^{2}}{2 p}-x .
\end{aligned}
$$

When $x=x_{A}, y=y_{A}$, and we have

$$
x_{n}=\frac{y_{A}^{2}}{2 p}+\frac{y_{n}^{2}}{2 p}-x_{A}
$$

The general equation of a tangent passing through the point A may be written

$$
\begin{aligned}
y y_{A} & =p\left(x+x_{A}\right) \\
x & =\frac{y y_{A}}{p}-x_{A} .
\end{aligned}
$$

from which
When $x=x_{s}, y=y_{s}\left[=y_{n}\right]$, and we have

$$
\begin{aligned}
x_{s} & =\frac{y_{n} y_{A}}{p}-x_{A} . \\
\overline{s n}=x_{n}-x_{s} & =\frac{y_{A}^{2}+y_{n}^{2}-2 y_{n} y_{A}}{2 p} \\
& =\frac{\left(y_{A}-y_{n}\right)^{2}}{2 p}=\frac{\overline{A m}^{2}}{2 p}, \\
2 p & =\frac{y_{A}^{2}}{x_{A}}=\frac{\overline{A e}^{2}}{\overline{e h}} . \\
\therefore \quad \overline{8 n} & =\overline{e h}_{\overline{A m}^{2}}^{A_{A e}^{2}} .
\end{aligned}
$$

This proves the general proposition that if secants are drawn parallel to the axis of x, intersecting a parabola and a tangent to it, the intercepts between the tangent and the parabola are pioportional to the square of the distances (measured parallel to y) from the tangent point.

CHAPTER III.

EARTHWORK.

FORM OF EXCAVATIONS AND EMBANKMENTS.

58. Usual form of cross-section in cut or fill. The normal form of cross-section in cut is as shown in Fig. 37, in which $e \ldots g$ represents the natural surface of the ground, no matter

Fig. 37.
how irregular; $a b$ represents the position and width of the required roadbed; $a c$ and $b d$ represent the "side slopes" which begin at a and b and which intersect the natural surface at such

Fig. 38.
points (c and d) as will be determined by the required slope angle (β).

The normal section in fill is as shown in Fig. 38. The points c and d are likewise determined by the intersection of the re-
quired side slopes with the natural surface. In case the required roadbed ($a b$ in Fig. 39) intersects the natural surface, both cut

Fig. 39.
and fill are required, and the points c and d are determined as before. Note that β and β^{\prime} are not necessarily equal. Their proper values will be discussed later.
59. Terminal pyramids and wedges. Fig. 40 illustrates the general form of cross-sections. when there is a transition from cut to fill. $a \ldots g$ represents the grade line of the road which

Fig. 40.
passes from cut to fill at d. sdt represents the surface $\mathrm{F}=$ ofile. A cross-section taken at the point where either side of the roadbed first cuts the surface (the point m in this case) will usually be triangular if the ground is regular. A similar cross-section should be taken at o, where the other side of the roadbed cuts the surface. In general the earthwork of cut and fill terminates
in two pyramids. In Fig. 40 the pyramid vertices are at n and k, and the bases are $1 h m$ and opq. The roadbed is generally wider in cut than in fill, and therefore the section lhm and the altitude \ln are generally greater than the section $o p q$ and the altitude $p k$. When the line of intersection of the roadbed and natural surface (nodkm) bccomes perpendicular to the axis of the roadbed (ag) the pyramids become wedges whose bases are the nearest convenient cross-sections.
6o. Slopes. a. Cuttings. The required slopes for cuttings vary from perpendicular cuts, which may be used in hard rock which will not disintegrate by exposure, to a slope of perhaps 4 horizontal to 1 vertical in a soft material like quicksand or in a clayey soil which flows easily when saturated. For earthy materials a slope of $1: 1$ is the maximum allowable, and even this should only be used for firm material not easily affected by saturation. A slope of $1 \frac{1}{2}$ horizontal to 1 vertical is a safer slope for average earthwork. It is a frequent blunder that slopes in cuts are made too steep, and it results in excessive work in clearing out from the ditches the material that slides down, at a much higher'cost per yard than it would have cost to take it out at first, to say nothing of the danger of accidents from possible landslides.
b. Embankments. The slopes of an embankment vary from $1: 1$ to $1.5: 1$. A rock fill will stand at $1: 1$, and if some care is taken to form the larger pieces on the outside into a rough dry wall, a much steeper slope can be allowed. This method is sometimes a necessity in steep side-hill work. Earthwork embankments generally require a slope of $1 \frac{1}{2}$ to 1 . If made steeper at first, it generally results in the edges giving way, requiring repairs until the ultimate slope is nearly or quite $1 \frac{1}{2}: 1$. The difficulty of incorporating the added material with the old embankment and preventing its sliding off frequentiy makes these repairs disproportionately costly.
6r. Compound sections. When the cut consists partly of earth and partly of rock, a compound cross-section must be made. If borings have been made so that the contour of the rock surface is accurately known, then the true cross-section may be determined. The rock and earth should be calculated separately, and this will require an accurate knowledge of where the rock "runs out"-a difficult matter when it must be deter-
mined by boring. During construction the center part of the earth cut would be taken out first and the cut widened until a sufficient width of rock surface had been exposed so that the rock cut would have its proper width and side slopes. Then the earth slopes could be cut down at the proper angle. A"berm" of about three feet is usually left on the edges of the rock cut as

Fig. 41.
a margin of safety against a possible sliding of the earth slopes. After the work is done, the amount of excavation that has been made is readily computable, but accurate preliminary estimates are difficult. The area of the cross-section of earth in the figure must be determined by a method similar to that developed for borrow-pits (see § 89).
62. Width of roadbed. Owing to the large and often disproportionate addition to volume of cut or fill caused by the addition of even one foot to the width of roadbed, there is a natural tendency to reduce the width until embankments become unsafe and cuts are too narrow for proper drainage. The cost of maintenance of roadbed is so largely dependent on the drainage of the roadbed that there is true economy in making án ample allowance for it. The practice of some of the leading railroads of the country in this respect is given in the following table, in which are also given some data belonging more properly to the subject of superstructure.

It may be noted from the table that the average width for an carthwork cut, single track, is about 24.7 feet, with a minirium of 19 feet 2 inches. The widths of fills, single track, average over 18 feet, with numerous minimums of 16 feet. The widths for double track may be found by adding the distance between track centers, which is usually 13 feet.

* (2×5) signifies two dilches each 5 feet wide; the following cases should be interpreted similarly.
WIDTH OF ROADBED FOR SINGLE AND DOUBLE TRACK-SLOPE RATIOS-DISTANCES BETWEEN TRACK CENTERS.

Road.	Single Track.		Double Track.		Slope Ratios.		Distance Between Track Centers.
	Cut.	Fill.	Cut.	Fill.	Cut.	Fill:	
A., T. \& Santa Fé	$\left\{\begin{array}{l}28^{\prime} \text { earth } \\ 22^{\prime} \text { rock }\end{array}\right.$	20			$1: 1$	1.5:1	
Chicago, Burlington \& Quincy. .	${ }_{14+}(2 \times 5) *$	16	$28+(2 \times 5)$	30	$\frac{1}{4}: 1$ $1.5: 1$	1.5:1	14^{\prime}
Chicago, Milwaukee \& St. Paul.. .	$18+(2 \times 6)$	20 to 24	$31+(2 \times 6)$	33 to 37	$1.5: 1$	$1.5: 1$	13^{\prime}
C.. C., C. \& St. Louis.	$20+(2 \times 4)$	20	$33+(2 \times 4)$	33	1.5:1	1.5 : 1	13^{\prime}
Illinois Central...					1.5:1	$1.5: 1$	
Erie.	$\stackrel{20^{\prime}}{ } 8^{\frac{1}{2}}{ }^{\prime \prime}$	$20^{\prime} 8 \frac{1}{2}^{\prime \prime}$		$33^{\prime} 8{ }^{\frac{1}{2 \prime \prime}}$	1.5:1	1.5:1	13^{\prime}
Lehirh Valley ${ }^{\text {Lake Shore \& Michigan Southern. }}$	$14+(2 \times 3.5)$	16	$27+(2 \times 3.5)$ $33+(2 \times 7.25)$	30 32	$1: 1$ $1.5: 1$	1.5: $1.5: 1$	$13{ }^{\prime}$ 13^{\prime}
Louisville \& Nashville..........	$13+(2 \times 4.5)$	16	$33+(2 \times 7.25)$	32	1.5: 1	$1.5: 1$ $1.5: 1$	13
Michigan Central.			$(33+2 \times 2.5)$	33	1.5 : 1	$1.5: 1$	13^{\prime}
N. Y., N. H. \& H				30	1.5:1	1.5: 1	12^{\prime}
	$\int 21^{\prime} 2^{\prime \prime}$ earth	$17^{\prime} 2^{\prime \prime}$	$34^{\prime} 2^{\prime \prime}$ earth	$30^{\prime} 2^{\text {, }}$	1.5:1	1.5:1	13^{\prime}
Norfolk \& Western	$\left\{16^{\prime}\right.$ rock		29' rock	. $\{$	$\frac{1}{4}{ }_{1}^{2}:{ }_{1}$		13^{\prime}
Pennsylvania \{	$19^{\prime} 2^{\prime \prime}$ light traffic $27^{\prime} 2^{\prime \prime}$ heavy	$\begin{aligned} & 19^{\prime} 2^{\prime \prime} \\ & 19^{\prime} 2^{\prime \prime} \end{aligned}$		$31^{\prime} 4^{\prime \prime}$	1.5:1	1.5: 1	$12^{\prime} 2^{\prime \prime}$
Union Pacific	$14+(2 \times 3.5)$	16	$31^{\prime} 4^{\prime \prime}+(2 \times 4)$	314	1. $: 1$	$1.5: 1$	

63. Form of subgrade. The stability of the roadbed depends largely on preventing the ballast and subsoil from becoming saturated with water The ballast must be porous so that it will not retain water, and the subsoil must be so constructed that it will readily drain off the rain-water that soaks through the hallast. This is accomplished by giving the subsoil a curved form, convex upward, or a surface made up of two or three planes, the two outer planes having a slope of about 1:24 (sometimes more and sometimes less, depending on the soil) and the middle plane, if three are used, being level. When a circular form is used, a crowning of 6 inches in a total width of 17 or 18 feet is generally used. Occasionally the subgrade is made level, especially in rock-cuts, but if the subsoil is previously compressed by rolling, as required on the N. Y. C. \& H.R.R. R., or if the subsoil is drained by tile drains laid underneath the ditches, the necessity for slopes is not so great. Rock cuts are generally required to be excavated to one foot below subgrade and then filled up again to subgrade with the same material, if it is suitable.
64. Ditches. "The stability of the track depends upon the strength and permanence of the roadbed and structures upon which it rests; whatever will protect them from damage or prevent premature decay should be carefully observed. The worst enemy is water, and the further it can be kept away from the track, or the sooner it can be diverted from it, the better the track will be protected. Cold is damaging only by reason of the water which it freezes; therefore the first and most important provision for good track is drainage." (Rules of the Road Department, Illinois Central R. R.)

The form of ditch generally prescribed has a flat bottom $12^{\prime \prime}$ to $24^{\prime \prime}$ wide and with sides having a minimum slope, except in rock-work, of $1: 1$, more generally $1.5: 1$ and sometimes $2: 1$. Sometimes the ditches are made V-shaped, which is objectionable unless the slopes are low The best form is evidently that which will cause the greatest flow for a given slope, and this

Fig. 42. will evidently be the form in which the ratio of area to wetted perimeter is the largest. The semicircle fulfills this condition better than any other form, but the nearly vertical sides would be difficult to maintain. (See Fig. 42.) A ditch, with a flat bottom and such
slopes as the soil requires, which approximates to the circular form will therefore be the best.

When the flow will probably be large and at times rapid it will be advisable to pave the ditches with stone, especially if the soil is easily washed away. Six-inch tile drains, placed 2^{\prime} under the ditches, are prescribed on some roads. (See Fig. 43.) No better method could be devised to insure a dry subsoil. The ditches through cuts should be led off at the end of the cut so that the adjacent embankment will not be injured.

Wherever there is danger that the drainage from the land above a cut will drain down into the cut, a ditch should be made near the edge of the cut to intercept this drainage, and this ditch should be continued, and paved if necessary, to a point where the outflow will be harmless. Neglect of these simple and inexpensive precautions frequently causes the soil to be loosened on the shoulders of the slopes during the progress of a heavy rain, and results in a landslide which will cost more to repair than the ditches which would have prevented it for all time.

Ditches should be formed along the bases of embankments; they facilitate the drainage of water from the embankment, and may prevent a costly slip and disintegration of the embankment.
65. Effect of sodding the slopes, etc. Engineers are unanimously in favor of rounding off the shoulders and toes of embankments and slopes, sodding the slopes, paving the ditches, and providing tile drains for subsurface drainage, all to be put in during original construction. (See Fig. 43.) Some of the highest grade specifications call for the removal of the top layer of vegetable soil from cuts and from under proposed fills to some convenient place, from which it may be afterwards spread on the slopes, thus facilitating the formation of sod from grassseed. But while engineers favor these measures and their economic value may be readily demonstrated, it is generally impossible to obtain the authorization of such specifications from railroad directors and promoters. The addition to the original cost of the roadbed is considerable, but is by no means as great as the capitalized value of the extra cost of maintenance resulting from the usual practice. Fig. 43 is a copy of
designs * presented at a convention of the American Society of Civil Enginecrs by Mr. D. J. Whittemore, Past President of the Society and Chief Engineer of the Chi., Mil. \& St. Paul

Fig. 43.-" Whittemore on Railway Excavation and Embankments" Trans. Am. Soc. C. E., Sept. 1894.
R. R. The "customary sections" represent what is, with some variations of detail, the practice of many railroads. The " pro-

[^3]posed sections" elicited unanimous approval. They should be adopted when not prohibited by financial considerations.

EARTHWORK SURVEYS.
66. Relation of actual volume to the numerical result. It should be realized at the outset that the accuracy of the result. of computations of the volume of any given mass of earthwork has but little relation to the accuracy of the mere numerical work. The process of obtaining the volume consists of two distinct parts. In the first place it is assumed that the volume of the earthwork may be represented by a more or less complicated geometrical form, and then, secondly, the volume of such a geometrical form is computed. A desire for simplicity (or a frank willingness to accept approximate results) will often cause the cross-section men to assume that the volume may be represented by a very simple geometrical form which is really only a very rough approximation to the true volume. In such a case, it is only a waste of time to compute the volume with minute numerical accuracy. One of the first lessons to be learned is that economy of time and effort requires that the accuracy of the numerical work should be kept proportional to the accuracy of the cross-sectioning work, and also that the accuracy of both should be proportional to the use to be made of the results. The subject is discussed further in § 94.
67. Prismoids. To compute the volume of earthwork, it is necessary to assume that it has some geometric form whose volume is readily determinable. The general method is to consider the volume as consisting of a series of prismoids, which are solids having parallel plane ends and bounded by surfaces which may be formed by lines moving continuously along the edges of the bases These surfaces may also be considered as the surfaces generated by lines moving along the edges joining the corresponding points of the bases, these edges being the directrices, and the lines being always parallel to either base, which is a plane director. The surfaces thus deve'oped may or may not be planes. The volume of such a prismoid is readily determinable (as explained in § 70 et seq .), while its definition is so very general that it may be applied to very rough ground. The "two plane ends" are sections perpendicular to the axis of the road. The roadbed and side slopes (also plane) form three of
the side surfaces. The only approximation lies in the degree of accuracy with which the plane (or warped) surfaces coincide with the actual surface of the ground between these two sections. This accuracy will depend (a) on the number of points which are taken in each cross-section and the accuracy with which the lines joining these points coincide with the actual cross-sections; (b) on the skill shown in selecting places for the cross-sections so that the warped surfaces shall coincide as nearly as possible with the surface of the ground. In fairly smooth country, crosssections every 100 feet, placed at the even stations, are sufficiently accurate, and such a method simplifies the computations greatly; but in rough country cross-sections must be interpolated as the surface demands. As will be explained later, carelessness or lack of judgment in cross-sectioning will introduce errors of such magnitude that all refinements in the computations are utterly wasted.
68. Cross-sectioning. The process of cross-sectioning consists in determining at any place the intersection by a vertical plane of the prism of earth lying between the roadbed, the side slopes, and the natural surface. The intersection with the road-

Fig. 44.
bed and side slopes gives three straight lines. The intersection with the natural surface is in general an irregular line. On smooth regular ground or when approximate results are acceptable this line is assumed to be straight. According to the irreg-
ularity of the ground and the accuracy desired more and more "intermediate points" are taken.

The distance (d in Fig. 44) of the roadbed below (or above) the natural surface at the center is known or determined from the profile or by the computed establishment of the grade line. The distances out from the center of all "breaks" are determined with a tape. To determine the elevations for a cut, set up a level at any convenient point so that the line of sight is higher than any point of the cross-section, and take a rod reading on the center point. This rod reading added to d gives the height of the instrument (H. I.) above the roadbed. Subtracting from H. I. the rod reading at any "break" gives the height of that point above the roadbed (h_{l}, k_{l}, h_{r}, etc.). This is true for all cases in excavation. For fill, the rod reading at center minus d equals the H . I., which may be positive or negative. When negative, add to the "H. I." the rod readings of the intermediate points to get their depths below "grade"; when positive, subtract the "H. I." from the rod readings.

The heights or depths of these intermediate points above or below grade need only be taken to the nearest tenth of a foot, and the distances out from the center will frequently be sufficiently exact when taken to the nearest foot. The roughness of the surface of farming land or woodland generally renders useless any attempt to compute the volume with any greater accuracy than these figures would imply unless the form of the ridges and hollows is especially well defined. The position of the slopestake points is considered in the next section. Additional discussion regarding cross-sectioning is found in § 92.
69. Position of slope-stakes. The slope-stakes are set at the intersection of the required side slopes with the natural surface, which depends on the center cut or fill (d). The distance of the slope-stake from the center for the lower side is $x=\frac{1}{2} b$ $+s(d+y)$; for the up-hill side it is $x^{\prime}=\frac{1}{2} b+s\left(d-y^{\prime}\right) . \quad s$ is the "slope ratio" for the side slopes, the ratio of horizontal to ver tical. In the above equation both x and y are unknown. Therefore some position must be found by trial which will satisfy the equation. As a preliminary, the value of x for the point $a=\frac{1}{2} b$ $+s d$, which is the value of x for level cross-sections. In the case of fills on sloping ground the value of x on the down-hill side is greater than this; on the up-hill side i^{t} is less. The difference in distance is s times the difference of elevation. Take a
numerical case corresponding with Fig. 45. The rod reading on c is $2.9 ; d=4.2$; therefore the telescope is $4.2-2.9=1.3$ below grade. $s=1.5: 1, b=16$. Hence for the point a (or for level ground) $x=\frac{1}{2} \times 16+1.5 \times 4.2=14.3$. At a distance out of 14.3 the ground is seen to be about 3 feet lower, which will not only require $1.5 \times 3=4.5$ more, but enough additional distance so that the added distance shall be 1.5 times the additional drop. As a first trial the rod may be held at 24 feet out and a reading of, say, 8.3 is obtained. $8.3+1.3=9.6$, the depth of the point below gradc. The point on the slope line (n) which has this depth below grade is at a distance from the center

Fig. 45.
$x=8+1.5 \times 9.6=22.4$. The point on the surface (s) having that depth is 24 feet out. Therefore the true point (m) is nearer the center. A second trial at, 20.5 feet out gives a rod reading of, say, 7.1 or a depth of 8.4 below grade. This corresponds to a distance out of 20.6. Since the natural soil (especially in farming lands or woods) is generally so rough that a difference of elevation of a tenth or so may be readily found by slightly varying the location of the rod (even though the distance from the center is the same), it is useless to attempt too much refinement, and so in a case like the above the combination of 8.4 below grade and 20.6 out from center may be taken to indicate the proper position of the slope-stake. This is usually indicated in the form of a fraction, the distance out being the denominator and the beight above (or below) grade being the numerator; the fact of $c u t$ or fill may be indicated by C or F. Ordinarily a second trial will be sufficient to determine with sufficient accuracy the true position of the slope-stake. Experienced men will frequently estimate the required distance
out to within a few tenths at the first trial. The left-hand pages of the note-book should have the station number, surface clevation, grade elevation, center cut or fill, and rate of grade. The right-hand pages should be divided in the center and show the distances out and heights above grade of all points, as is illustrated in § 84. The notes should read up the page, so that when looking ahead along the line the figures are in their proper relative position. The "fractions" farthest from the center line represent the slope-stake points.

69a. Setting slope-stakes by means of "automatic" slopestake rods. The equipment consists of a specially graduated tape and a specially constructed rod. The tape may readily be prepared by marking on the back side of an ordinary 50 -foot tape which is graduated to feet and tenths. Mark " 0 " at " $\frac{1}{2} b$ " from the tape-ring. The same tape may be used for several values of " $\frac{1}{2} b$ " by placing the zero at the maximum distance $\frac{1}{2} b$ from the ring. Then graduate from the zero backward, at true scale, to the ring.' When $\frac{1}{2} b$ is less than this maximum, the tape will not be used clear to the ring. In general, the tape must be so held that the zero is always $\frac{1}{2} b$ from the center stake. Mark off "feet" and "tenths" on a scale proportionate to the slope ratio. For example, with the usual slope ratio of $1.5: 1$ each "foot" would measure 18 inches and each "tenth" in proportion.

The rod, 10 feet long, is shod at each end and has an endless tape passing within the shoes at each end and over pulleys-to reduce friction. The tape should be graduated in feet and tenths, from 0 to 20 feet-the 0 and 20 coinciding. By moving the tape so that 0 is at the bottom of the rod-or (practically) so that the 1-foot mark on the tape is one foot above the bottom of the shoe, an index mark may be placed on the back of the rod (say at 15 -on the tape) and this readily indicates when the tape is "set at zero."

The method of use may best be explained from the figure and from the explicit rules as stated. The proof is given for two assumed positions of the level.
(1) Set up the level so that it is higher than the "center" and (if possible) higher than both slope-stakes, but not more than a rod-length higher. On very steep ground this may be impossible and each slope-stake must be set by separate positions of the level.
(2) Set the rod-tape at zero (i.e., so that the 15 -foot mark on the back is at the index mark).
(3) Hold the rod at the center-stake•(B) and note the reading (n_{1} or $n_{i 2}$). Consider n to be always plus; consider d to be plus for cut and minus for fill.
(4) Raise the tape on the face side of the rod $(n+d)$. Applied literally (and algebraically), when the level is below the roadbed (only possible for fill), $(n+d)=\left(n_{2}+\left(-d_{f}\right)\right)=n_{2}-d_{f}$. This being numerically negative, the tape is lowered $\left(d_{f}-n_{2}\right)$. With level at (1), for fill, $(n+d)=\left(n_{1}+\left(-d_{f}\right)\right)=\left(n_{1}-d_{f}\right)$; this being positive, the tape is raised. With level at (1), for cut, the tape is raised $\left(n_{1}+d_{c}\right)$. In every case the effect is the same as if the telescope were set at the elevation of the roadbed.

Fig. 45a.
(5) With the special distance-tape, so held that its zero is $\frac{1}{2} b$ from the center, carry the rod out until the rod reading equals the reading indicated by the tape. Since in cut the tape is raised $(n+d)$, the zero of the rod-tape is always higher than the level (unless the rod is held at or below the elevation of the road-bed-which is only possible on side-hill work), and the reading at either slope-stake is necessarily negative. The reading for slope-stakes in fill is always positive.
(6) Record the rod-tape reading as the numerator of a fraction and the actual distance out (read directly from the other side of the distance-tape) as the denominator of the fraction.

Proof. Fill. Level at (r). Tape is raised $\left(n_{1}-d_{f}\right)$. When rod is held at C_{f}, the rod reading is $+x$, which $=r_{f_{1}}-\left(n_{1}-d_{f}\right)$. But the reading on the back side of the distance-tape is also x.

Fill. Level at (2). Tape is raised ($n_{2}-d_{f}$), i.e., it is lowered $\left(d_{f}-n_{g}\right)$. When rod is held at C_{f}, the rod reading is $+x$, which
similarly $=r_{f_{2}}-\left(n_{2}-d_{f}\right)=r_{f_{2}}+\left(d_{f}-n_{2}\right)$. Distance-tape as before.

Cut Level at (I). Tape is raised $\left(n_{1}+d_{c}\right)$. When rod is held at C_{c} the rod reading is $-z$, which $=r_{c_{1}-}-\left(n_{1}+d_{c}\right)$, i.e., $z=\left(n_{1}+d_{c}\right)-r_{c_{1}}$. The distance-tape will read z.

Side-hill work. It is easily demonstrated that the method, when followed literally, may be applied to side-hill work, although there is considerable chance for confusion and error, when, as is usual, $\frac{1}{2} b$ and the slope ratio are different for cut and for fill.

The method appears complicated at first, but it becomes mechanical and a time-saver when thoroughly learned. The advantages are especially great when the ground is fairly level transversely, but decrease when the difference of elevation of the center and the slope-stake is more than the rod length. By setting the rod-tape " at zero," the rod may always be used as an ordinary level rod and the regular method adopted, as in § 69. Many engineèrs who have thoroughly tested these rods are enthusiastic in their praise as a time-saver.

COMPUTATION OF VOLUME.

70. Prismoidal formula. Let Fig. 46 represent a triangular prismoid. The two triangles forming the ends lie in parallel planes, but since the angles of one triangle are not equal to the corresponding angles of the other triangle, at least fwo of the surfaces must be warped. If a section, parallel to the bases, is

Fig. 46.
made at any point at a distance x from one end, the area of the section will evidently be

$$
A_{x}=\frac{1}{2} b_{x} h_{x}=\frac{1}{2}\left[b_{1}+\left(b_{2}-b_{1}\right) \frac{x}{l}\right]\left[h_{1}+\left(h_{2}-h_{1}\right) \frac{x}{l}\right] .
$$

The volume of a section of infinitesimal length will be $A_{x} d x$, and the total volume of the prismoid will be *

$$
\begin{align*}
& \int_{0} A_{x} d x=\frac{1}{2} \int_{0}^{l}\left[\cdot b_{1}+\left(b_{2}-b_{1}\right) \frac{x}{l}\right]\left[h_{1}+\left(h_{2}-h_{1}\right) \frac{x}{l}\right] d x \\
& =\frac{1}{2}\left[b_{1} h_{1} x+\left(b_{2}-b_{1}\right) h_{1} \frac{x^{2}}{2 \bar{l}}+b_{1}\left(h_{2}-h_{1}\right) \frac{x^{2}}{2 l}\right. \\
& \left.+\left(b_{2}-b_{1}\right)\left(h_{2}-h_{1}\right) \frac{x^{3}}{3 l^{2}}\right]_{0}^{l} \\
& =\frac{1}{2}\left\{b_{1} h_{1} l+\left[\left(b_{2}-b_{1}\right) h_{1}+b_{1}\left(h_{2}-h_{1}\right)\right] \frac{l}{2}+\left(b_{2}-b_{1}\right)\left(h_{2}-h_{1}\right) \frac{l}{3}\right\} \\
& =\frac{l}{2}\left[\frac{1}{3} b_{1} h_{1}+\frac{1}{8} b_{1} h_{2}+\frac{1}{6} b_{2} h_{1}+\frac{1}{3} b_{2} h_{2}\right] \\
& =\frac{l}{6}\left[\frac{1}{2} b_{1} h_{1}+\frac{1}{2} b_{1}\left(h_{1}+h_{2}\right)+\frac{1}{2} b_{2}\left(h_{1}+h_{2}\right)+\frac{1}{2} b_{2} h_{2}\right] \\
& =\frac{l}{6}\left[\frac{1}{2} b_{1} h_{1}+4\left(\frac{1}{2} \cdot \frac{b_{1}+b_{2}}{2} \cdot \frac{h_{1}+h_{2}}{2}\right)+\frac{1}{2} b_{2} h_{2}\right] \\
& =\frac{l}{6}\left[A_{1}+4 A_{m}+A_{2}\right], \tag{45}
\end{align*}
$$

in which A_{1}, A_{2}, and A_{m} are the areas respectively of the two bases and of the middle section. Note that A_{m} is not the mean of A_{1} and A_{2}, although it does not necessarily differ very greatly from it.

The above proof is absolutely independent of the values, absolute or relative, of b_{1}, b_{2}, h_{1}, or h_{2}. For example, h_{2} may be zero and the second base reduces to a line and the prismoid becomes wedge-shaped; or b_{2} and h_{2} may both vanish, the second base becoming a point and the prismoid reduces to a pyramid. Since every prismoid (as defined in §67) may be reduced to a combination of triangular prismoids, wedges, and pyramids, and

[^4]since the formula is true for any one of them individually, it is true for all collectively; therefore it may be stated that *

The volume of a prismoid equals one sixth of the perpendicular distance between the bases multiplied by the sum of the areas of the two bases plus four times the area of the middle section.

While it is always possible to compute the volume of any prismoid by the above method, it becomes an extremely complicated and tedious operation to compute the true value of the middle section if the end sections are complicated in form. It therefore becomes a simpler operation to compute volumes by approximate formulæ and apply, if necessary, a correction. The most common methods are as follows:

7r. Averaging end areas. The volume of the triangular prismoid (Fig. 46), computed by averaging end areas, is $\frac{l}{2}\left[\frac{1}{2} b_{1} h_{1}+\frac{1}{2} b_{2} h_{2}\right]$. Subtracting this from the true volume (as given in the equation above Eq. 45), we obtain the correction

$$
\begin{equation*}
\frac{l}{12}\left[\left(b_{1}-b_{2}\right)\left(h_{2}-h_{1}\right)\right] . \tag{46}
\end{equation*}
$$

This shows that if either the h 's or b 's are equal, the correction vanishes; it also shows that if the bases are roughly similar and b varies roughly with h (which usually occurs, as will be seen later), the correction will be negative, which means that the method of averaging end areas usually gives too large results.
72. Middle areas. Sometimes the middle area is computed and the volume is assumed to be equal to the length times the middle area. This will equal $\frac{l}{2} \times \frac{b_{1}+b_{2}}{2} \times \frac{h_{1}+h_{2}}{2}$. Subtracting this from the true volume, we obtain the correction

$$
\begin{equation*}
\frac{l}{24}\left(b_{1}-b_{2}\right)\left(h_{1}-h_{2}\right) \tag{47}
\end{equation*}
$$

As before, the form of the correction shows that if either the h 's or b 's are equal, the correction vanishes; also under the usual conditions, as before, the correction is positive and only one-half as large as by averaging end areas. Ordinarily the labor involved in the above method is no less than that of applying the exaet prismoidal formula.

[^5]73. Two-level ground. When approximate computations of earthwork are sufficiently exact the field-work may be materially reduced by observing simply the center cut (or fill) and the natural slope a, measured with a clinometer. The area of such a section (see Fig. 48) equals
$$
\frac{1}{2}(a+d)\left(x_{l}+x_{r}\right)-\frac{a b}{2} .
$$

But

$$
x_{l} \tan \beta=a+d+x_{l} \tan a,
$$

from which

$$
x_{l}=\frac{a+d}{\tan \beta-\tan a} .
$$

Similarly,
Substituting,

$$
x_{r}=\frac{a+d}{\tan \beta+\tan a} .
$$

$$
\begin{equation*}
\text { Area }=(a+d)^{2} \frac{\tan \beta}{\tan ^{2} \beta-\tan ^{2} a}-\frac{a b}{2} \ldots . \tag{48}
\end{equation*}
$$

The values $a, \tan \beta, \tan ^{2} \beta$ are constant for all sections, so that it requires but little work to find the area of any section.

Fig. 47.
As this method of cross-sectioning implies considerable approximation, it is generally a useless refinement to attempt to com-

Fig. 48.
pute the vorume with any greater accuracy than that obtained by averaging end areas. It may be noted that it may be easily proved that the correction to be applied is of the same form as that found in § 71 and equals

$$
\frac{l}{12}\left[\left(x_{l}^{\prime}+x_{r}^{\prime}\right)-\left(x_{l}^{\prime \prime}+x_{r}^{\prime \prime}\right)\right]\left[\left(d^{\prime \prime}+a\right)-\left(d^{\prime}+a\right)\right],
$$

which reduces to

Corr. $=\frac{l}{6}\left\{\left[\left(a+d^{\prime}\right) \frac{\tan \beta}{\tan ^{2} \beta-\tan ^{2} \alpha^{\prime}}-\left(a+d^{\prime \prime}\right) \frac{\tan \beta}{\tan ^{2} \beta-\tan ^{2} a^{\prime \prime}}\right]\left[d^{\prime \prime}-d^{\prime}\right]\right\}$.
When $d^{\prime \prime}=d^{\prime}$ the correction vanishes. This shows that when the center heights are equal there is no correction-regardless of the slope. If the slope is uniform throughout, the form of the correction is simplified and is invariably negative. Under the usual conditions the correction is negative, i.e., the method generally gives too large results.
74. Level sections. When the country is very level or when only approximate preliminary results are required, it is sometimes assumed that the cross-sections are level. The method of level sections is capable of easy and rapid computation. The area may be written as

$$
\begin{equation*}
(a+d)^{2} s-\frac{a b}{2} . \tag{50}
\end{equation*}
$$

Fig. 49.
This also follows from Eq. 48 when $a=0$ and $\tan \beta=\frac{1}{s}$. s here represents the "slope ratio," i.e., the ratio of the horizontal projection of the slope to the vertical. A table is very readily formed giving the area in square feet of a section of given depth and for any given width of roadbed and ratio of side-slopes.

The area may also be readily determined (as illustrated in the following example) without the use of such a table; a table of squares will facilitate the work. Assuming the cross-sections at equal distances ($=l$) apart, the total approximate volume for any distance will be

$$
\begin{equation*}
\frac{l}{2}\left[A_{0}+2\left(A_{1}+A_{2}+\ldots A_{n-3}\right)+A_{n}\right] . \tag{51}
\end{equation*}
$$

The prismoidal correction may be directly derived from Eq. 46 as $\frac{l}{12}\left[2\left(a+d^{\prime}\right) s-2\left(a+d^{\prime \prime}\right) s\right]\left[\left(a+d^{\prime \prime}\right)-\left(a+d^{\prime}\right)\right]$, which reduces to

$$
\begin{equation*}
-\frac{l s}{6}\left(d^{\prime}-d^{\prime \prime}\right)^{2} \quad \text { or } \quad-\frac{b}{12} \frac{b}{a}\left(d^{\prime}-d^{\prime \prime}\right)^{2} \tag{52}
\end{equation*}
$$

This may also be derived from Eq. 49, since $\alpha=0, \tan \alpha=0$, and $\tan \beta=2 a \div b \quad$ This correction is always negative, showing that the method of averaging end areas, when the sections are level, always gives too large results. The prismoidal correction for any one prismoid is therefore a constant times the square of a difference. The squares are always positive whether the differences are positive or negative. The correction therefore becomes

$$
\begin{equation*}
-\frac{l}{12} \cdot \frac{b}{a} \Sigma\left(d^{\prime} \sim d^{\prime \prime}\right)^{2} \tag{53}
\end{equation*}
$$

75. Numerical example: level sections. Given the following center heights for the same number of consecutive stations 100 feet apart; width of roadbed 18 feet; slope $1 \frac{1}{2}$ to 1 .

The products in the fifth column may be obtained very readily and with sufficient accuracy by the use of the slide-rule described in §79. The products should be considered as $(a+d)(a+d) \div \frac{1}{s}$. In this problem $s=1 \frac{1}{2}, \frac{1}{s}=.6667$. To apply the rule to the first case above, place 6667 on scale B over 89 on seale A, then opposite 89 on scale B will be found 118.8 on seale A. The position of the decimal point will be evident from an approximate mental solution of the problem.

The above demonstration of the correction to be applied to the approximate volume, found by averaging end areas, is introduced mainly to give an idea of the amount of that correction. Absolutely level sections are practically unknown, and the error involved in assuming any given sections as truly level will ordinarily be greater than the computed correction. If greater accuracy is required, more points should be obtained in the cross-sectioning, which will generally show that the sections are not truly level.
76. Equivalent sections. When sections are very irregular the following method may be used, especially if great accuracy is not required. The sections are plotted to scale and then a uniform slope line is obtained by stretching a thread so that the undulations are averaged and an equivalent section is obtained. The center depth (d) and the slope angle (α) of this line can be obtained from the drawing, but it is more convenient to measure the distances (x_{l} and x_{r}) from the center. The area may then be obtained independent of the center depth as follows: Let $s=$ the slope ratio of the side slopes $=\cot \beta=\frac{b}{2 a}$. (See Fig. 50.) Then the

$$
\begin{align*}
\text { Area } & =\frac{1}{2}\left(\frac{x_{l}+x_{r}}{s}\right)\left(x_{l}+x_{r}\right)-\frac{x_{r}}{s} \frac{x_{r}}{2}-\frac{x_{l}}{s} \frac{x_{l}}{2}-\frac{a b}{2} \\
& =\frac{x_{l} x_{r}}{s}-\frac{a b}{2} \tag{54}
\end{align*}
$$

The true volume, according to the prismoidal formula, of a length of the road measured in this way will be

$$
\frac{l}{6}\left[\frac{x_{l}^{\prime} x_{r}^{\prime}}{s}-\frac{a b}{2}+4\left(\frac{x_{l}^{\prime}+x_{l}^{\prime \prime}}{2} \frac{x_{r}^{\prime}+x_{r}^{\prime \prime}}{2} \frac{1}{s}-\frac{a b}{2}\right)+\frac{x_{l}{ }^{\prime \prime} x_{r}{ }^{\prime \prime}}{s}-\frac{a b}{2}\right]
$$

If computed by averaging end areas, the approximate volume will be

$$
\frac{l}{2}\left[\frac{x_{l}^{\prime} x_{r}^{\prime}}{s}-\frac{a b}{2}+\frac{x_{l^{\prime \prime}} x_{r}{ }^{\prime \prime}}{s}-\frac{a b}{2}\right]
$$

Subtracting this result from the true volume, we obtain as the correction

$$
\begin{equation*}
\text { Correction }=\frac{l}{6 s}\left(x_{l}^{\prime \prime}-x_{l^{\prime}}\right)\left(x_{r}^{\prime}-x_{r}^{\prime \prime}\right) . \tag{55}
\end{equation*}
$$

This shows that if the side distances to either the right or left are equal at adjacent stations the correction is zero, and also that if the difference is small the correction is also small and very probably within the limit of accuracy obtainable by that method of cross-sectioning. In fact, as has already been shown in the latter part of § 75 , it will usually be a useless

Fig. 50.
refinement to compute the prismoidal correction when the method of cross-sectioning is as rough and approximate as this method generally is.
77. Equivalent level sections. These sloping "two-level" sections are sometimes transformed into "level sections of equal
area," and the volume computed by the method of level sections (§74). But the true volume of a prismoid with sloping ends does not agree with that of a prismoid with equivalent bases and level ends except under special conditions, and when this method is used a correction must be applied if accuracy is desired, although, as intimated before, the assumption that the sections have uniform slopes will frequently introduce greater inaccuracies than that of this method of computation. The following demonstration is therefore given to show the scope and limitations of the errors involved in this much used method.

In Fig. 50 , let d_{1} be the center height which gives an equivalent level section. The area will equal $\left(a+d_{1}\right)^{2} s-\frac{a b}{2}$, which must equal the area given in $\S 76, \frac{x_{l} x_{r}}{s}-\frac{a b}{2} . \quad s=\frac{b}{2 a}$.

$$
\begin{align*}
& \therefore\left(a+d_{1}\right)^{2} s=\frac{x_{l} x_{r}}{s}, \\
& \text { or } \quad a+d_{1}=\frac{\sqrt{x_{l} x_{r}}}{s} . \tag{56}
\end{align*}
$$

To obtain d_{1} directly from notes, given in terms of d and α, we may substitute the values of x_{l} and x_{r} given in §73, which gives

$$
\begin{equation*}
a+d_{1}=(a+d) \frac{\tan \beta}{\sqrt{\tan ^{2} \beta-\tan ^{2} \alpha}}=\frac{a+d}{\sqrt{1-s^{2} \tan ^{2} \alpha}} . \tag{57}
\end{equation*}
$$

The true volume of the equivalent section may be represented by

$$
\frac{l s}{6}\left[\left(a+d_{1}^{\prime}\right)^{2}+4\left(\frac{a+d_{1}^{\prime}}{2}+\frac{a+d_{1}^{\prime \prime}}{2}\right)^{2}+\left(a+d_{i}^{\prime \prime}\right)^{2}\right] .
$$

From this there should be subtracted the volume of the "grade prism" under the roadbed to obtain the volume of the cut that would be actually excavated, but in the following comparison, as well as in other similar comparisons elsewhere made, the volume of the grade prism invariably cancels out, and so for the sake of simplicity it will be disregarded. This expression for volume may be transposed to

$$
\frac{l s}{6}\left[\frac{x_{l}^{\prime} x_{r}^{\prime}}{s^{2}}+4\left(\frac{\sqrt{x_{l^{\prime}} x_{r}^{\prime}}}{2 s}+\frac{\sqrt{x_{l^{\prime \prime}} x_{r}^{\prime \prime}}}{2 s}\right)^{2}+\frac{x_{l^{\prime \prime}} x_{r}^{\prime \prime}}{s^{2}}\right] .
$$

The true volume of the prısmoid with sloping ends is (see § 76)

$$
\frac{l}{6}\left[\frac{x_{i}^{\prime} x_{r}^{\prime}}{s}+4\left(\left(\frac{x_{i^{\prime}}+x_{l^{\prime \prime}}}{2}\right)\left(\frac{x_{r}^{\prime}+x_{r}^{\prime \prime}}{2}\right) \frac{1}{s}\right)+\frac{x_{l}^{\prime \prime} x_{1}^{\prime \prime}}{s}\right]
$$

The difference of the two volumes

$$
\begin{align*}
= & \frac{l}{6 s}\left(x_{l}{ }^{\prime} x_{r}{ }^{\prime}+x_{l}{ }^{\prime \prime} x_{r}{ }^{\prime}+x_{l} x_{r}{ }^{\prime \prime}+x_{l}{ }^{\prime \prime} x_{r}{ }^{\prime \prime}-x_{l}{ }^{\prime} x_{r}^{\prime}\right. \\
& \left.-2 \sqrt{x_{\iota}{ }^{\prime} x_{r}^{\prime} x_{i}^{\prime \prime} x_{r}{ }^{\prime \prime}}-x_{l}{ }^{\prime \prime} x_{r}{ }^{\prime \prime}\right) \\
= & \frac{l}{6 s}\left(\sqrt{x_{l} x_{r}^{\prime \prime}}-\sqrt{x_{l}^{\prime \prime} x_{r}^{\prime}}\right)^{2} \tag{58}
\end{align*}
$$

This shows that "equivalent level sections" do not in general give the true volume, there being an exception when $x_{l}{ }^{\prime} x_{r}{ }^{\prime \prime}=x_{l}{ }^{\prime \prime} x_{r}{ }^{\prime}$. This condition is fulfilled when the slope is uniform, i.e., when $a^{\prime}=a^{\prime \prime}$. When this is nearly so the error is evidently not large. On the other hand, if the slopes are inclined in opposite directions the error may be very considerable, particularly if the angles of slope are also large.
78. Three-level sections. The next method of cross-sectioning in the order of complexity, and therefore in the order of

Fig. 51.
accuracy, is the method of three-level sections. The area of the section is $\frac{3}{2}(a+d)\left(w_{r}+w_{l}\right)-\frac{a b}{2}$, which may be written
$\frac{\dot{3}}{2}(a+d) w-\frac{a b}{2}$, in which $w=w_{r}+w_{l}$. If the volume is com. puted by averaging end areas, it will cqual

$$
\begin{equation*}
\frac{l}{4}\left[\left(a+d^{\prime}\right) w^{\prime}-a b+\left(a+d^{\prime \prime}\right) w^{\prime \prime}-a b\right] . \tag{59}
\end{equation*}
$$

If we divide by 27 to reduce to cubic yards, we have, when $l=100$,

$$
\text { Vol } \left.1_{1}, \ldots . .\right)=\frac{25}{2}\left(a+d^{\prime}\right) w^{\prime}-\frac{25}{2} \frac{2}{7} a b+\frac{25}{27}\left(a+d^{\prime \prime}\right) w^{\prime \prime}-\frac{25}{2} \frac{5}{7} a b
$$

For the next section

$$
\operatorname{Vol}_{\left(, \ldots, \ldots, j^{\prime}\right.}=\frac{25}{2}\left(a+d^{\prime \prime}\right) w^{\prime \prime}-\frac{25}{2} \frac{5}{7} a b+\frac{25}{2}\left(a+d^{\prime \prime \prime}\right) w^{\prime \prime \prime}-\frac{25}{27} a b
$$

For a partial station length compute as usual and multiply result by $\frac{\text { length in feet }}{100}$ The prismoidal correction may be obtained by applying Eq 46 to each side in turn For the left side we have

$$
\begin{aligned}
& \frac{l}{12}\left[\left(a+d^{\prime}\right)-\left(a+d^{\prime \prime}\right)\right]\left(w_{l^{\prime \prime}}-w_{l^{\prime}}\right), \text { which equals } \\
& \frac{l}{12}\left(d^{\prime}-d^{\prime \prime}\right)\left(w_{\iota}^{\prime \prime}-w_{l^{\prime}}\right) .
\end{aligned}
$$

For the right side we have, similarly,

$$
\frac{l}{12}\left(d^{\prime}-d^{\prime \prime}\right)\left(w_{r}^{\prime \prime}-w_{r}{ }^{\prime}\right)
$$

The total correction therefore equals

$$
\begin{aligned}
& \frac{l}{12}\left(d^{\prime}-d^{\prime \prime}\right)\left[\left(w_{l}^{\prime \prime}+w_{r}^{\prime \prime}\right)-\left(w_{l}^{\prime}+w_{r}^{\prime}\right)\right] \\
= & \frac{l}{12}\left(d^{\prime}-d^{\prime \prime}\right)\left(w^{\prime \prime}-w^{\prime}\right) .
\end{aligned}
$$

Reduced to cubic yards, and with $l=100$,

$$
\begin{equation*}
\text { Pris. Corr. }=\frac{25}{81}\left(d^{\prime}-d^{\prime \prime}\right)\left(w^{\prime \prime}-w^{\prime}\right) \text {. } \tag{60}
\end{equation*}
$$

When this result is compared with that given in Eq. 55 there is an apparent inconsistency. If two-level ground is considered as but a special case of three-level ground, it would seem as if
the same laws should apply. If, in Eq. 55, $x_{r}{ }^{\prime}=x_{r}{ }^{\prime \prime}$, and $x_{l^{\prime \prime}}$ is different from $x_{l^{\prime}}^{\prime}$, the equation reduces to zero; but in this case d^{\prime} would also be different from $d^{\prime \prime}$; and since $x_{l}{ }^{\prime}+x_{r}{ }^{\prime}$ would $=w^{\prime}$, and $x_{l}{ }^{\prime \prime}+x_{r}{ }^{\prime \prime}=w^{\prime \prime}$ in Eq. 60, $w^{\prime \prime}-w^{\prime}$ would not equal zero and the correction would be some finite quantity and not z cro. The explanation lies in the difference in the form and volume of the prismoids, according to the method of the formation of the warped surfaces If the surface is supposed to be generated by the locus of a line moving parallel to the ends as plane directors and along two straight lines lying in the side slopes, then $x_{l^{\text {mid. }}}$ will equal $\frac{1}{2}\left(x_{i^{\prime}}{ }^{\prime}+x_{t^{\prime}}{ }^{\prime \prime}\right)$, and $x_{r}{ }^{\text {mid }}$. will equal $\frac{1}{2}\left(x_{r}{ }^{\prime}+x_{r}{ }^{\prime \prime}\right)$, but the profile of the center line will not be straight and $d^{\text {midd. will }}$ not equal $\frac{1}{2}\left(d^{\prime}+d^{\prime \prime}\right)$. On the other hand, if the sarfaces be gencrated by two lines moving parallel to the ends as plane directors and along a straight center line and straight side lines lying in the slopes, a warped surface will be generated each side of the center line, which will have uniform slopes on each side of the center at the two ends and nowhere else This shows that when the upper surface of earthwork is warped (as it generally is), two-level ground should not be considered as a special case of three-level ground. This discussion, however, is only valuable to explain an apparent inconsistency and error. The method of two-level ground should only be used when such refinements as are here discussed are of no importance as affecting the accuracy.
An example is given on the opposite page to illustrate the method of three-level sections.
In the first column of yards

$$
\begin{aligned}
& 210=\frac{25}{2} 5(a+d) w=\frac{25}{2} \times 7.3 \times 31.1 ; \\
& 507,734, \text { etc., are found similarly; } \\
& 595=210-61+507-61 ; \\
& 448=\frac{40}{100}(507-61+734-61) ; \\
& 602=\frac{60}{100}(734-61+392-61) ; \\
& 449=392-61+179-61 .
\end{aligned}
$$

For the prismoidal correction,

$$
\begin{aligned}
-20 & =\frac{2 \overline{5}}{81}\left(d^{\prime}-d^{\prime \prime}\right)\left(w^{\prime \prime}-w^{\prime}\right)=\frac{25}{81}(2.6-8.1)(42.8-31.1) \\
& =\frac{20}{8} \frac{1}{1}(-5.5)(+11.7) .
\end{aligned}
$$

For the next line, $-3=\frac{40}{100}\left[\frac{25}{81}(-2.6)(+8.7)\right]$, and similarly for the rest. The " F " in the columns of center heights, as well

Station.	Center.	Left.	Right.	$a+d$	w			$d^{\prime}-d^{\prime \prime}$	$w^{\prime \prime}-w^{\prime}$	Pris. Corr.	$x_{l} \sim x_{r}$	$\frac{V\left(x_{l} \sim x_{r}\right)}{3 R}$	Curv. Corr.*				
17	$2.6 F$	$\frac{10.6 F}{22.9}$	$\frac{0.8 F}{8.2}$	7.3	31.1	210					14.7	$+1$					
18	$8.1 F$	$\frac{15.8 F}{30.7}$	$\frac{3.4 F}{12.1}$	12.8	42.8	507	595	-5.5	+11.7	-20	18.6	+3	+4				
$+40$	10.7F	$\frac{20.2 F}{37.3}$	$\frac{4.8 F}{14.2}$	15.4	51.5	734	448	-2.6	$+8.7$	- 3	23.1	+6	+4				
19	$6.4 F$	$\frac{14.0 \mathrm{~F}}{28.0}$	$\frac{2.1 F}{10.1}$	11.1	38.1	392	602	+4.3	-13.4	-11	17.9	+2	+5				
20	$3.7 F$	$\frac{5.8 F}{15.7}$	$\frac{0.2 F}{7.3}$	8.4	23.0	179	44.9	+2.7	-15.1	-13	8.4	+1	+3				
Roadbed, 14^{\prime} wide in fill. Slope $1 \frac{1}{2}$ to 1 .				$\begin{array}{ll}\text { Approx. Vol. } & =2094 \\ \text { Pris. corr. } & =47\end{array}$						-47			+16				
$a=\frac{b}{2 s}=\frac{14}{3}=4.7 ;$								True Vol. = 2047 (disregarding curv. corr.)*									
$\frac{25}{27} a b=61 .$				*For the derivation of the curvation correction, see § 93.													

as in the columns of "right" and "left," are inserted to indicate fill for all those points. Cut would be indicated by "C."
79. Computation of products. The quantities $\frac{25}{27}(a+d) w$ and $\frac{25}{27} a b$ represent in each case the product of two variable terms and a constant. These products are sometimes obtained from tables which are calculated for all ordinary ranges of the variable terms as arguments. A similar table computed for $\frac{25}{81}\left(d^{\prime}-d^{\prime \prime}\right)\left(w^{\prime \prime}-w^{\prime}\right)$ will assist similarly in computing the prismoidal correction. Prof. Charles J. Crandall, of Cornell University, is believed to be the first to prepare such a set of tables, which were first published in 1886 in "Tables for the Computation of Railway and Other Earthwork." Another easy method of obtaining these products is by the use of a sliderule. A slide-rule has been designed by the author to accompany this volume.* It is designed particularly for this special work, although it may be utilized for many other purposes for which slide-rules are valuable. To illustrate its use, suppose $(a+d)=28.2$, and $w=62.4$; then

$$
\frac{25}{27}(a+d) w=\frac{28.2 \times 62.4}{1.08}
$$

Set 108 (which, being a constant of frequent use, is specially marked) on the sliding scale (B) opposite 282 on the other scale (A), and then opposite 624 on scale B will be found 1629 on scale A, the 162 being read directly and the 9 read by estimation. Although strict rules may be followed for pointing off the final result, it only requires a very simple mental calculation to know that the result must be 1629 rather than 162.9 or 16230. For products less than 1000 cubic yards the result may be read directly from the scale; for products between 1000 and 5000 the result may be read directly to the nearest 10

[^6]yards, and the tenths of a division estimated. Between 5000 and 10000 yards the result may be read directly to the nearest 20 yardis, and the fraction estimated; but prisms of such volume will never be found as simple triangular prisms--at least, an assumption that any mass of ground was as regular as this would probably involve more error than would occur from faulty estimation of fractional parts. Facilities for reading as high as 10000 cubic yards would not have been put on the scale except for the necessity of finding such products as $\frac{2}{2}{ }_{7}^{5}(9.1 \times 9.5)$, for example. This product would be read off from the same part of the rule as $\frac{25}{2}(91 \times 95)$. In the first case the product (80.0) could be read directly to the nearest .2 of a cubic yard, which is unnecessarily accurate. In the other case, the product (8004) could only be obtained by estimating $\frac{4}{20}$ of a division.

The computation for the prismoidal correction may be made similarly except that the divisor is 3.24 instead of 1.08 . For example, $\frac{35}{1}(5.5 \times 11.7)=\frac{5.5 \times 11.7}{3.24}$. Set the 324 on scale B (also specially marked like 108) opposite 55 on scale A, and proceed as before.
80. Five-level sections. Sometimes the elevations over each cdge of the roadbed are observed when cross-sectioning. These are distinctively termed "five-level sections." If the center, the slope-stakes, and one intermediate point on each side (not necessarily over the edge of the roadbed) are observed, it is termed an "irregular section." The field-work of cross-sectioning five-level sections is no less than for irregular sections with one intermediate point; the computations, although capable of peculiar treatment on account of the location of the intermediate point, are no easier, and in some respects more laborious; the cross-sections obtained will not in general represent the actual cross-sections as truly as when there is perfect freedom in locating the intermediate point; as it is generally inadvisable or unnecessary to employ five-level sections throughout the length of a road, the change from one method to another adds a possible element of inaccuracy and loses the advantage of uniformity of method, particularly in the notes and form of computations. On these accounts the method will not be further developed, except to note that this case, as well as any other, may be solved by dividing the whole prismoid into triangular prismoids, computing the volume by averaging end areas, and computing
the prismoidal correction by adding the computed corrections for each elementary triangular prismoid.

8r. Irregular sections. In cross-sectioning irregular sections, the distance from the center and the elevation above "grade" of every "break" in the cross-section must be observed. The area of the irregular section may be obtained by computing the area of the trapezoids (five, in Fig. 44) and subtracting the two external triangles. For Fig. 44 the area would be

$$
\begin{aligned}
\frac{h_{l}+k_{l}}{2}\left(x_{l}-y_{l}\right) & +\frac{k_{l}+d}{2} y_{l}+\frac{d+j_{r}}{2} z_{r}+\frac{j_{r}+k_{r}}{2}\left(y_{r}-z_{r}\right) \\
& +\frac{k_{r}+h_{r}}{2}\left(x_{r}-y_{r}\right)-\frac{h_{l}}{2}\left(x_{l}-\frac{b}{2}\right)-\frac{h_{r}}{2}\left(x_{r}-\frac{b}{2}\right)
\end{aligned}
$$

Fig. 44.
Expanding this and collecting terms, of which many will cancel, we obtain

$$
\begin{align*}
\mathrm{AREA}= & \frac{1}{2}\left[x_{l} k_{l}\right.
\end{align*}+y_{l}\left(d-h_{l}\right)+x_{r} k_{r}+y_{r}\left(j_{r}-h_{r}\right) .
$$

An examination of this formula will show a perfect regularity in its formation which will enable one to write out a similar formula for any section, no matter how irregular or how
many points there are, without any of the preliminary work. The formula may be expressed in words as follows:

Area equals one-half the sum of products obtained as follows :
the distance to each slope-stake times the height above grade of the point next inside the slope-stake;
the distance to each intermediate point in turn times the height of the point just inside minus the height of the point just outside;
finally, one-half the width of the roadbed times the sum of the slope-stake heights.

If one of the sides is perfectly regular from center to slopestake, it is easy to show that the rule holds literally good. The "point next inside the slope-stake" in this case is the center; the intermediate terms for that side vanish. The last term must always be used. The rule holds good for three-level sections, in which case there are three terms, which may be reduced to two. Since these two terms are both variable quantities for each cross-section, the special method, given in § 78, in which one term $\left(\frac{a b}{2}\right)$ is a constant for all sections, is preferable. In the general method, each intermediate "break" adds another term.
82. Volume of an irregular prismoid. If there is a break at one cross-section which is not represented at the next, the ridge (or hollow) implied by that break is supposed to "vanish" at the next section. In fact, the volume will not be correctly represented unless a cross-section is taken at the point where the ridge or hollow "vanishes" or "runs out." To obtain the true prismoidal correction it is necessary to observe on the ground the place where a break in an adjacent section, which is not represented in the section being taken, runs out. For example, in Fig. 52, the break on the left of section $A^{\prime \prime}$, at a distance of $y l^{\prime \prime}$ from the center, is observed to run out in section A^{\prime} at a distance of $y l^{\prime}$ from the center. The volume of the prismoid, computed by the prismoidal formula as in § 70, will involve the midsection, to obtain the dimension of which would require a laborious computation. A simpler process is to compute the volume by averaging end areas as in § 81 and apply a prismoidal correction. To do this write out an expression for each end area similar to that given in Eq. 61. The sum of these areas times $\frac{l}{2}$ gives the approximate volume. As before,
for partial station lengths, ${ }^{*}$ multiply the result by $\frac{\text { length in feet }}{100}$. There will be no constant subtractive term, $\frac{25}{27} a b$, as in $\S 78$. The true prismoidal correction may be computed, as in $\S 83$, or the following approximate method may be used: Consider the irregular section to be three-level ground for the purpose of

Fig. 52.
computing the correction only. This has the advantage of less labor in computation than the use of the true prismoidal correction, and although the error involved may be considerable in individual sections, the error is as likely to be positive as negative, and in the long run the error will not be large and generally will be much less than would result by the neglect of any prismoidal correction.
83. True prismoidal correction for irregular prismoids. As intimated in $\S 82$, each cross-section should be assumed to have the same number of sides as the adjacent cross-section when computing the prismoidal correction. This being done, it permits the division of the whole prismoid into elementary triangular prismoids, the dimensions of the bases of which being given in each case by a vertical distance above grade line and by the horizontal distance between two adjacent breaks. The summation of the prismoidal corrections for each of the elementary triangular prismoids will give the true prismoidal correction. Assuming for an example the cross-section of Fig. 44, with a cross-section of the same number of sides, and with dimensions
similarly indicated, for the other end, the prismoidal correction becomes (see Eq. 46)

$$
\begin{aligned}
& \frac{l}{12}\left[\left(h l^{\prime}-h l^{\prime \prime}\right)\left[\left(x l^{\prime \prime}-y l^{\prime \prime}\right)-\left(x l^{\prime}-y l^{\prime}\right)\right]+\left(k l^{\prime}-k l^{\prime \prime}\right)\left[\left(x l^{\prime \prime}-y l^{\prime \prime}\right)-\left(x l^{\prime}-y l^{\prime}\right)\right]\right. \\
& +\left(k l^{\prime}-k l^{\prime \prime}\right)\left(y l^{\prime \prime}-y l^{\prime}\right)+\left(d^{\prime}-d^{\prime \prime}\right)\left(y l^{\prime \prime}-y l^{\prime}\right)+\left(d^{\prime}-d^{\prime \prime}\right)\left(z_{r}^{\prime \prime}-z_{r}^{\prime}\right) \\
& +\left(j_{r}^{\prime}-j_{r}^{\prime \prime}\right)\left(z_{r}^{\prime \prime}-z_{r}^{\prime}\right)+\left(j_{r}^{\prime}-j_{r}^{\prime \prime}\right)\left[\left(y_{r}^{\prime \prime}-z_{r}^{\prime \prime}\right)-\left(y_{r}^{\prime}-z_{r}^{\prime}\right)\right] \\
& +\left(k_{r}^{\prime}-k_{r}^{\prime \prime}\right)\left[\left(y_{r}^{\prime \prime}-z_{r}^{\prime \prime}\right)-\left(y_{r}^{\prime}-z_{r}^{\prime}\right)\right] \\
& +\left(k_{r}^{\prime}-k_{r^{\prime \prime}}^{\prime \prime}\right)\left[\left(x_{r}^{\prime \prime}-y_{r^{\prime \prime}}^{\prime \prime}\right)-\left(x_{r}^{\prime}-y_{r^{\prime}}\right)\right]+\left(h_{r^{\prime}}^{\prime}-h_{r^{\prime \prime}}\right)\left[\left(x^{\prime \prime}-y_{r^{\prime \prime}}^{\prime \prime}\right)-\left(x_{r}^{\prime}-y_{r}^{\prime}\right)\right] \\
& -\left(h_{l^{\prime}}-h_{l^{\prime \prime}}\right)\left[\left(x_{l^{\prime \prime}}-\frac{b}{2}\right)-\left(x_{l^{\prime}}-\frac{b}{2}\right)\right] \\
& \left.-\left(h_{r}^{\prime}-h_{r}^{\prime \prime}\right)\left[\left(x_{r}^{\prime \prime}-\frac{b}{2}\right)-\left(x_{r}^{\prime}-\frac{b}{2}\right)\right]\right]
\end{aligned}
$$

Expanding this and collecting terms, of which many will cancel, we obtain

$$
\begin{align*}
\text { Pris.Corr } & =\frac{l}{12}\left[\left(x_{l} l^{\prime \prime}-x_{l}{ }^{\prime}\right)\left(k_{l}-k_{l} l^{\prime \prime}\right)+\left(y_{l}^{\prime \prime}-y_{l}{ }^{\prime}\right)\left[\left(d^{\prime}-k_{l} l^{\prime}\right)-\left(d^{\prime \prime}-h_{l}^{\prime \prime}\right)\right]\right. \\
& +\left(x_{r}{ }^{\prime \prime}-x_{r}^{\prime}\right)\left(k_{r}{ }^{\prime}-k_{r}{ }^{\prime \prime}\right)+\left(y_{r}^{\prime \prime}-y_{r}^{\prime}\right)\left[\left(j_{r}^{\prime}-h_{r}{ }^{\prime}\right)-\left(j_{r}^{\prime \prime}-h_{r}{ }^{\prime \prime}\right)\right] \\
& \left.+\left(z_{r}{ }^{\prime \prime}-z_{r}^{\prime}\right)\left[\left(d^{\prime}-k_{r}{ }^{\prime}\right)-\left(d^{\prime \prime}-k_{r^{\prime}}{ }^{\prime \prime}\right)\right]\right] . \quad . \quad . \quad \tag{62}
\end{align*}
$$

By comparing this equation with Eq. 61 a remarkable coincidence in the law of formation may be seen, which enables this formula to be written by mere inspection and to be applied numerically with a minimum of labor from the computations for end areas, as will be shown (§84) by a numerical example. For each term in Eq. 61, as, for example, $y_{r}\left(j_{r}-h_{r}\right)$, there is a correction term in Eq. 62 of the form

$$
\left(y_{r}^{\prime \prime}-y_{r}{ }^{\prime}\right)\left[\left(j_{r}^{\prime}-h_{r}^{\prime}\right)-\left(j_{r}^{\prime \prime}-h_{r}{ }^{\prime \prime}\right)\right] .
$$

Each one of these terms $\left[y_{r}{ }^{\prime \prime}, y_{r}{ }^{\prime},\left(j_{r}{ }^{\prime}-h_{r}{ }^{\prime}\right)\right.$, and $\left.\left(j r^{\prime \prime}-h_{r}{ }^{\prime \prime}\right)\right]$ has been previously used in finding the end areas and has its place in the computation sheet. The summation of the products of these differences times a constant gives the total true prismoidal correction in cubic yards for the whole prismoid considertd.

The constant is the same as that computed in $\S 78$, i.e., $\frac{2}{8} \frac{5}{1}$.
84. Numerical example; irregular sections; volume with true prismoidal correction. (See page 98.)

Roadbed 18 feet wide in cut; slope $1 \frac{1}{2}$ to 1.

Sta.	Center $\left\{\begin{array}{l}\text { cut } \\ \text { or } \\ \text { fill. }\end{array}\right.$	Left.			Right.	
19	$0.6 c$	$\frac{3.6 c}{14.4}$	$\left(\frac{2.3 c}{8.2}\right)$	$\left(\frac{1.8 c}{6.0}\right)$	$\frac{0.1 c}{4.2}$	$\frac{0.4 c}{9.6}$
18	$2.3 c$	$\frac{4.2 c}{15.3}$	$\frac{6.8 c}{8.4}$	$\frac{3.2 c}{5.2}$	$\left(\frac{1.9 c}{3.6}\right)$	$\frac{1.2 c}{10.8}$
17	$7.6 c$	$\frac{8.2 c}{21.3}$	$\frac{10.2 c}{17.4}$	$\frac{8.0 c}{6.1}$	$\left(\frac{5.8 c}{8.0}\right)$	$\frac{4.2 c}{15.3}$
+42	$10.2 c$	$\frac{12.2 c}{27.3}$	$\left(\frac{123 c}{22.0}\right)$	$\frac{126 c}{8.2}$	$\frac{6.2 c}{7.5}$	$\frac{8.4 c}{21.6}$
16	$6.8 c$	$\frac{8.9 c}{22.4}$		$\frac{7.6 c}{12.0}$	$\frac{3.2 c}{4.1}$	$\frac{2.6 c}{12.9}$

The figures in the bracket $\left(\frac{12.3 c}{22.0}\right)$ mean that it was noted in the field that the break, indicated at Sta. 17 as being 17.4 to the left, ran out at Sta. $16+42$ at 22.0 to the left. By interpolation between 8.2 and 27.3 the height of this point is computed as 12.3 . The quantities in the other brackets are obtained similarly. These quantities are only used when the computation of the true prismoidal correction is desired. They are not needed in computing the volume by averaging end areas, nor are they used at all if the prismoidal correction is to be obtained by assuming (for this purpose) the ground to be three-level ground.

In the tabular form on page 99 the figures within the braces ($\underbrace{\sim}$) are nот used in computing the volume, but are only used to obtain the differences of widths or heights with which to compute the true prismoidal correction. It may be noted, as a check, that the volume, computed from these figures in the braces, is the same as that computed from the other figures The figures within each brace (or bracket) constitute a group which must be used in connection with a group which has the same number of points, on the same side of the center, in the next cross-section, previous or succeeding. In the column of "Yards" under "True pris. corr.," we have, for example, $(-5)=\frac{42}{100}(-7+0-8+3)$.
85. Volume of irregular prismoid, with approximate prismoidal correction. If the prismoidal correction is obtained approxi-

VOLUME OF IRREGULAR PRISMOID, WITH TRUE PRISMOIDAL CORRECTION.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Sta.} \& \multirow{2}{*}{Width.} \& \multirow{2}{*}{Height.} \& \multicolumn{2}{|c|}{\multirow{2}{*}{Yards.}} \& \multicolumn{3}{|c|}{True pris. corr.}

\hline \& \& \& \& \& $w^{\prime \prime}-w^{\prime}$ \& $h^{\prime}-h^{\prime \prime}$ \& Yards.

\hline 16 \& $$
\begin{gathered}
\mathrm{L}\left[\begin{array}{c}
22.4 \\
12.0 \\
12.9 \\
4.1
\end{array}\right] \mathrm{R} \\
9.0
\end{gathered}
$$ \& 7.6
-2.1
3.2
4.2
11.5 \& $$
\begin{array}{r}
158 \\
-\quad 23 \\
40 \\
16 \\
96
\end{array}
$$ \& , \& \& \&

\hline +42 \& $$
\begin{gathered}
\mathrm{L}\left[\begin{array}{c}
27.3 \\
8.2 \\
\mathrm{~L}\left\{\begin{array}{l}
27.3 \\
22.0 \\
8.2 \\
21.6 \\
7.5
\end{array}\right] \mathrm{R} \\
9.0
\end{array}, ~ . ~\right.
\end{gathered}
$$ \& 12.6
-2.0
12.3
0.4
-2.1
6.2
1.8
20.6 \& $$
\begin{array}{r}
319 \\
-\quad 15 \\
\\
124 \\
13 \\
172
\end{array}
$$ \& 378 \& $$
\begin{array}{r}
+4.9 \\
-3.8 \\
\\
+8.7 \\
+3.4
\end{array}
$$ \& -5.0
-0.1

-3.0

+2.4 \& $$
\begin{array}{r}
-7 \\
0 \\
\\
-8 \\
+3 \\
(-5)
\end{array}
$$

\hline 17 \& $$
\begin{gathered}
\mathrm{L}\left[\begin{array}{c}
21.3 \\
17.4 \\
6.1 \\
15.3 \\
8.0
\end{array}\right\} \mathrm{R} \\
15.3] \mathrm{R} \\
9.0
\end{gathered}
$$ \& $\begin{array}{r}10.2 \\ -0.2 \\ -2.6 \\ 5.8 \\ 3.4 \\ 7.6 \\ 12.4 \\ \hline\end{array}$ \& \[

$$
\begin{array}{r}
201 \\
-\quad 3 \\
-\quad 14 \\
\\
107 \\
103
\end{array}
$$
\] \& 584 \& -6.0

-4.6
-2.1
+6.3
+0.5 \& +2.1
+0.6
+0.5
+0.4

-1.6 \& $$
\begin{array}{r}
-4 \\
-1 \\
0 \\
-1 \\
0 \\
(-3)
\end{array}
$$

\hline 18 \& $$
\begin{gathered}
\mathrm{L}\left[\begin{array}{c}
15.3 \\
8.4 \\
5.2 \\
10.8] \mathrm{R} \\
10.8 \\
3.6
\end{array}\right\} \mathrm{R} \\
9.0
\end{gathered}
$$ \& 6.8

-1.0
-4.5
2.3
1.9
1.1
5.4 \& 95
$-\quad 7$
$-\quad 22$
23

45 \& 528 \& -6.0
-9.0
-0.9
-4.5 \& +3.4
+0.8
+1.9

+5.3 \& $$
\begin{aligned}
& -6 \\
& -2 \\
& -1 \\
& -7 \\
& \\
& (-16)
\end{aligned}
$$

\hline 19 \& $$
\begin{gathered}
\mathrm{L}[14.4 \\
\mathrm{L}\left\{\begin{array}{c}
14.4 \\
8.2 \\
6.0 \\
9.6 \\
4.2
\end{array}\right] \mathrm{R} \\
9.0
\end{gathered}
$$ \& 5.4

0.6
2.3
1.8
-1.7
0.1
0.2

4.0 \& $$
8
$$

$$
\begin{array}{r}
1 \\
1 \\
33
\end{array}
$$ \& 177 \& -0.9

-0.2
+0.8
-1.2
+0.6 \& +4.5
+0.8
+2.8
+1.8

+0.9 \& $$
\begin{array}{r}
-1 \\
0 \\
-1 \\
-1 \\
0 \\
(-3)
\end{array}
$$

\hline \multicolumn{2}{|l|}{} \& \multicolumn{2}{|l|}{Approx. vol. True pris. corr} \& $$
\begin{array}{r}
1667 \\
-27 \\
\hline 1640
\end{array}
$$ \& bic yar \& \& -27

\hline
\end{tabular}

mately, by the method outlined in § 82 , the process will be as shown in the tabular form on page 100 . Not only is the numerical work considerably less than the exact method, but the discrepancy in cubic yards is almost insignificant.
86. Illustration of value of approximate rules. The tabulation on page 100 shows that when the volume of an irregular prismoid is computed by averaging end areas and is corrected L. of C.

VOLUME OF IRREGULAR PRISMOID，WITH APPROXIMATE PRISMOIDAL CORRECTION．

Sta．	W＇th	H＇ght			Cen． Height．	Total width	$d^{\prime}-d^{\prime \prime}$	$w^{\prime \prime}-w^{\prime}$	Approx． pris．corr
16	22.4	7.6	158		＋6．8	35.3			
	12.0	－2．1	158 -23 40						
	4.1 9.0	4.2 11.5	16 96						
＋42									
	27.3 8.2	12.6 -2.0	319 -15		＋10．2	48.9	－3．4	＋13．6	－14
	21.6	6.2	124						
	7.5	1.8	13						
	9.0	20.6	172	378					（－6）
17	21.3	10.2	201		$+7.6$	36.6	＋2．6	-12.3	－10
	15.3	7.6	107						
	9.0	12.4	103	584					(-6)
18	15.3	6.8	95		$+2.3$	26.1	$+5.3$	-10.5	－17
	8.4	－1．0	－ 7						
	10.8	-4.5 2.3	-22 23						
	10.0	5.4	4.5	528					（－17）
19	14.4	0.6			$+0.6$	24.0	$+1.7$	-2.1	－1
	9.6 4.2	0.1	1						
	9.0	4.0	33	177					(-1)

Approx．volume $=1667$
-30
Approx．pris．corr．$=-30$
Corrected volume $=\overline{1637}$ cubic yards
by considering the ground as three－level ground（for the pur－ poses of the correction only），the error for the different sections

Sections．					Error．		Error．
$16 \ldots \ldots 16+42$	373	378	－ 5	－ 6	－1	396	－23
$16+42.17$	581	584	－ 3	－6	－3	577	＋ 4
17．．．．．． 18	512	528	－16	－17	－1	463	＋49
18．．．．． 19	174	177	－ 3	-1	＋2	147	$+27$
	1640	1667	-27	－30	－－3	1583	$+57$

is sometimes positive and sometimes negative，and in this case amounts to only 3 yards in 1640 －less than $\frac{1}{5}$ of 1% ．If the
prismoidal correction had been neglected, the error would have been 27 yards-nearly 2%. The approximate results are here too large for each section-as is usually the case. If points between the center and slope-stakes are omitted and the volume computed as if the ground were three-level ground, the error is quite large in individual sections, but the errors are both positive and negative and therefore compensating.
87. Cross-sectioning irregular sections. The prismoids considered have straight lines joining corresponding points in the two cross-sections. The center line must be straight between two cross-sections. If a ridge or valley is found lying diagonally across the roadbed, a cross-section must be interpolated at the lowest (or highest) point of the profile. Therefore a "break" at any section cannot be said to run out at the other section on the opposite side of the center. It must run out on the same side of the center or possibly at the center. Very frequently complicated cross-sectioning may be avoided by computing the volume, by some special method, of a mound or hollow when the ground is comparatively regular except for the irregularity referred to.
88. Side-hill work. When the natural slope cuts the roadbed there is a necessity for both cut and fill at the same cross-section.

Fig. 53.
When this occurs the cross-sections of both cut and fill are often so nearly triangular that they may be considered as such without great error, and the volumes may be computed separately as triangular prismoids without adopting the more elaborate form of computation so necessary for complicated irregular sections. When the ground is too irregular for this the best plan is to
follow the uniform system. In computing the cut, as in Fig. 53: the left side would be as usual; there would be a small center cut and an ordinate of zero at a short distance to the right of the center. Then, ignoring the fill, and applying Eq. 61 strictly, we have two terms for the left side, one for the right, and the term involving $\frac{1}{2} b$, which will be $\frac{1}{2} b h_{l}$ in this case, since $h_{r}=0$, and the equation becomes

$$
\text { Area }=\frac{1}{2}\left[x_{l} k_{l}+y_{l}\left(d-h_{l}\right)+x_{r} d+\frac{1}{2} b h_{l}\right] .
$$

The area for fill may also be computed by a strict application of Eq. 61, but for Fig. 54 all distances for the left side are zero and the elevation for the first point out is zero. d also must be

Fig. 54.
considered as zero. Following the rule, § 81, literally, the equation becomes

$$
\operatorname{Area}_{(\text {Fill })}=\frac{1}{2}\left[x_{r} k_{r}+y_{r}\left(o-h_{r}\right)+z_{r}\left(o-k_{r}\right)+\frac{1}{2} b\left(o+h_{r}\right)\right],
$$

which reduces to

$$
\frac{1}{2}\left[x_{r} k_{r}-y_{r} h_{r}-z_{r} k_{r}+\frac{1}{2} b h_{r}\right] .
$$

(Note that x_{r}, h_{r}, etc., have different significations and values in this and in the preceding paragraphs.) The "terminal pyramids" illustrated in Fig. 40 are instances of. side-hill work for very short distances. Since side-hill work always implies both cut and fill at the same cross-section, whenever either the cut or fill disappears and the earthwork becomes wholly cut or wholly fill, that point marks the end of the "side-hill work," and a cross-section should be taken at this point.
89. Borrow-pits. The cross-sections of borrow-pits will vary not only on account of the undulations of the surface of the

Tig. 55.
ground, but also on the sides, according to whether they are made by widening a convenient cut (as illustrated in Fig. 55) or simply by digging a pit. The sides should always be properly sloped and the cutting made cleanly, so as to avoid unsightly roughness. If the slope ratio on the right-hand side (Fig. 55) is s, the area of the triangle is $\frac{1}{2} s m^{2}$. The area of the section is $\frac{1}{2}\left[u g+(g+h) v+(h+j) x+(j+k) y+(k+m) z-s m^{2}\right]$. If all the horizontal measurements were referred to one side as an origin, a formula similar to Eq. 61 could readily be developed, but little or no advantage would be gained on account of any simplicity of computation. Since the exact volume of the earth borrowed is frequently necessary, the prismoidal correction should be computed; and since such a section as Fig. 55 does not even approximate to a three-level section, the method suggested in § 82 cannot be employed. It will then be necessary to employ the exact method, $\S 83$, by dividing the volume into triangular prismoids and taking the summation of their corrections, found according to the general method of § 71 .
90. Correction for curvature. The volume of a solid, generated by revolving a plane area about an axis lying in the plane but outside of the area, equals the product of the given area times the length of the path of the center of gravity of the area. If the centers of gravity of all cross-sections lie in the center of the road, where the length of the road is measured, there is absolutely no necessary correction for curvature. If all the cross-sections in any given length were exactly the same and therefore had the same eccentricity, the correction for curvature would be very readily computed according to the above principle. But when both the areas and the eccentricities vary from point to point, as is generally the case, a theoretically exact
solution is quite complex, both in its derivation and application Suppose, for simplicity, a curved section of the road, of uniform cross-sections and with the center of gravity of every crosssection at the same distance e from the center line of the road The length of the path of the center of gravity will be to the length of the center line as $R \pm e: R$. Therefore we have True vol.: nominal vol. :: $R \pm e: R . \quad \therefore$ True vol. $=l . A \frac{R \pm e}{R}$ for a volume of uniform area and eccentricity. For any other area and eccentricity we have, similarly, True vol. ${ }^{\prime}=l A^{\prime} \frac{R \pm e^{\prime}}{R}$. This shows that the effect of curvature is the same as increasing (or diminishing) the area by a quantity depending on the area and eccentricity, the increased (or diminished) area being found by multiplying the actual area by the ratio $\frac{R \pm e}{R}$. This being independent of the value of l, it is true for infinitesimal lengths. If the eccentricity is assumed to vary uniformly between two sections, the equivalent area of a cross-section located midway between the two end cross-sections would be $A_{m} \frac{\left(R \pm \frac{e^{\prime}+e^{\prime \prime}}{2}\right)}{R}$. Therefore the volume of a solid which, when straight, would be $\frac{l}{6}\left(A^{\prime}+4 A_{m}+A^{\prime \prime}\right)$, would then become

$$
\text { True vol. }=\frac{l}{6 R}\left[A^{\prime}\left(R \pm e^{\prime}\right)+4 A_{m}\left(R \pm \frac{e^{\prime}+e^{\prime \prime}}{2}\right)+A^{\prime \prime}\left(R \pm e^{\prime \prime}\right)\right]
$$

Subtracting the nominal volume (the true volume when the prismoid is straight), the

$$
\begin{equation*}
\text { Correction }= \pm \frac{l}{6 R}\left[\left(A^{\prime}+2 A_{m}\right) e^{\prime}+\left(2 A_{m}+A^{\prime \prime}\right) e^{\prime \prime}\right] . \tag{63}
\end{equation*}
$$

Another demonstration of the same result is given by Prof. C. L. Crandall in his "Tables for the Computation of Railway and other Earthwork," in which is obtained by calculus methods the summation of elementary volumes having variable areas with variable eccentricities. The exact application of Eq. 63 requires that A_{m} be known, which requires laborious computa-
tions, but no error worth considering is involved if the equation is written approximately

$$
\begin{equation*}
\text { Curv. corr. }=\frac{l}{2 R}\left(A^{\prime} e^{\prime}+A^{\prime \prime} e^{\prime \prime}\right), \tag{64}
\end{equation*}
$$

which is the equation generally used. The approximation consists in assuming that the difference between A^{\prime} and A_{m} equals the difference between A_{m} and $A^{\prime \prime}$ but with opposite sign. The error due to the approximation is always utterly insignificant.

9r. Eccentricity of the center of gravity. The determination of the true positions of the centers of gravity of a long series of irregular cross-sections would be a very laborious operation, but fortunately it is generally sufficiently accurate to consider the cross-sections as three-level ground, or, for side-hill work, to

Fig. 56.
be triangular, for the purpose of this correction. The eccentricity of the cross-section of Fig. 56 (including the grade triangle) may be written

$$
\begin{equation*}
e=\frac{\frac{(a+d) x_{l} x_{l}}{2} \frac{(a+d) x_{r}}{3}-\frac{x_{r}}{3}}{\frac{(a+d) x_{l}}{2}+\frac{(a+d) x_{r}}{2}}=\frac{1}{3} \frac{x_{l}{ }^{2}-x_{r}^{2}}{x_{l}+x_{r}}=\frac{1}{3}\left(x_{l}-x_{r}\right) . \tag{65}
\end{equation*}
$$

The side toward x_{l} being considered positive in the above demonstration, if $x_{r}>x_{l}, e$ would be negative, i.e., the center of gravity would be on the right side. Therefore, for three-level
ground, the correction for curvature (see Eq. 64) may be written

$$
\text { Correction }=\frac{l}{6 R}\left[A^{\prime}\left(x_{l}^{\prime}-x_{r}^{\prime}\right)+A^{\prime \prime}\left(x_{l}^{\prime \prime}-x_{r}^{\prime \prime}\right)\right] .
$$

Since the approximate volume of the prismoid is

$$
\frac{l}{2}\left(A+A^{\prime}\right)=\frac{l}{2} A^{\prime}+\frac{l}{2} A^{\prime \prime}=V^{\prime}+V^{\prime \prime}
$$

in which V^{\prime} and $V^{\prime \prime}$ represent the number of cubic yards corresponding to the area at each station, we may write

$$
\begin{equation*}
\text { Corr. in cub. yds. }=\frac{1}{3 \tilde{R}^{\prime}}\left[V^{\prime}\left(x_{l}^{\prime}-x_{r}^{\prime}\right)+V^{\prime \prime}\left(x_{l}^{\prime \prime}-x_{r}{ }^{\prime \prime}\right)\right] . \tag{66}
\end{equation*}
$$

It should be noted that the value of e, derived in Eq. 65, is the eccentricity of the whole area including the triangle under the roadbed. The eccentricity of the true area is greater than this and equals

$$
e \times \frac{\text { true area }+\frac{1}{2} a b}{\text { true area }}=e_{1} .
$$

The required quantity ($A^{\prime} e^{\prime}$ of Eq. 64) equals true area $\times e_{1}$ which equals (true area $+\frac{1}{2} a b$) $\times e$. Since the value of e is very simple, while the value of e_{1} would, in general, be a complex quantity, it is easier to use the simple value of Eq. 65 and add $\frac{1}{2} a b$ to the area. Therefore, in the case of three-level ground the subtractive term $\frac{25}{27} a b$ (§ 78) should not be subtracted in computing this correction. For irregular ground, when computed by the method given in $\S \S 81$ and 82 , which does not involve the grade triangle, a term $\frac{2 \pi}{2} a b$ must be added at every station when computing the quantities V^{\prime} and $V^{\prime \prime}$ for Eq. 66.

It should be noted that the factor $1 \div 3 R$, which is constant for the length of the curve, may be computed with all necessary accuracy and without resorting to tables by remembering that

$$
R=\frac{5730}{\text { degree of curve }}
$$

Since it is useless to attempt the computation of railroad earthwork closer than the nearest cubic yard, it will frequently
be possible to write out all curvature corrections by a simple mental process upon a mere inspection of the computation sheet. Eq. 66 shows that the correction for each station is of the form $\frac{V\left(x_{l}-x_{r}\right)}{3 R} .3 R$ is generally a large quantity-for a 6° curve it is 2865 . $\left(x_{l}-x_{r}\right)$ is generally small. It may frequently be seen by inspection that the product $V\left(x_{l}-x_{r}\right)$ is roughly twice or three times $3 R$, or perhaps less than half of $3 R$, so that the corrective term for that station may be written 2,3 ; or 0 cubic yards, the fraction being disregarded. For much larger absolute amounts the correction must be computed with a correspondingly closer percentage of accuracy.

The algebraic sign of the curvature correction is best determined by noting that the center of gravity of the cross-section is on the right or left side of the center according as x_{r} is greater or less than x_{l}, and that the correction is positive if the center of gravity is on the outside of the curve, and negative if on the inside.

It is frequently found that x_{l} is uniformly greater (or uniformly less) than x_{r} throughout the length of the curve. Then the curvature correction for each station is uniformly positive or negative. But in irregular ground the center of gravity is apt

Fig. 57.
to be irregularly on the outside or on the inside of the curve, and the curvature correction will be correspondingly positive or negative. If the curve is to the right, the correction will be positive or negative according as ($x_{l}-x_{r}$) is positive or negative; if the curve is to the left, the correction will be positive or nega-
tive according as $\left(x_{r}-x_{l}\right)$ is positive or negative. Therefore when computing curves to the right use the form ($x_{l}-x_{r}$) in Eqs. 66 and 68; when computing curves to the left use the form ($x_{r}-x_{l}$) in these equations; the algebraic sign of the correction will then be strictly in accordance with the results thus obtained.
92. Center of gravity of side-hill sections. In computing the correction for side-hill work the cross-section would be treated as triangular unless the error involved would evidently be too great to be disregarded. The center of gravity of the triangle lies on the line joining the vertex with the middle of the base and at $\frac{1}{3}$ of the length of this line from the base. It is therefore equal to the distance from the center to the foot of this line plus $\frac{1}{3}$ of its horizontal projection. Therefore

$$
\begin{align*}
e & =\left[\frac{b}{2}-\frac{1}{2}\left(\frac{b}{2}+x_{r}\right)\right]+\frac{1}{3}\left[x_{l}-\left(\frac{b}{2}-\frac{1}{2}\left(\frac{b}{2}+x_{r}\right)\right)\right] \\
& =\frac{b}{4}-\frac{x_{r}}{2}+\frac{x_{l}}{3}-\frac{b}{12}+\frac{x_{r}}{6} \\
& =\frac{b}{6}+\frac{x_{l}}{3}-\frac{x_{r}}{3} \\
& =\frac{1}{3}\left[\frac{b}{2}+\left(x_{l}-x_{r}\right)\right] \cdot . \cdot . \cdot . \cdot \tag{67}
\end{align*}
$$

By the same process as that used in § 91 the correction equation may be written

Corr. in cub. yds. $=\frac{1}{3 R}\left[V^{\prime}\left(\frac{b}{2}+\left(r_{l^{\prime}}-x_{r}{ }^{\prime}\right)\right)+V^{\prime \prime}\left(\frac{b}{2}+\left(x_{l} l^{\prime \prime}-x_{r}{ }^{\prime \prime}\right)\right)\right]$.
It should be noted that since the grade triangle is not used in this computation the volume of the grade prism is not involved in computing the quantities V^{\prime} and $V^{\prime \prime}$.

The eccentricities of cross-sections in side-hill work are never zero, and are frequently quite large. The total volume is generally quite small. It follows that the correction for curvature is generally a vastly larger proportion of the total volume than in ordinary three-level or irregular sections.

If the triangle is wholly to one side of the center, Eq. 67 can still be used. For example, to compute the eccentricity of the triangle of fill, Fig. 57, denote the two distances to the slope-
stakes by y_{r} and $-y_{\text {! }}$ (note the minus sign). Applying Eq. 67 literally (noting that $\frac{b}{2}$ must here be considered as negative in order to make the notation consistent) we obtain

$$
e=\frac{1}{3}\left[-\frac{b}{2}+\left(-y_{l}-y_{r}\right)\right],
$$

which reduces to

$$
\begin{equation*}
e=-\frac{1}{3}\left[\frac{b}{2}+y_{l}+y_{r}\right] . \tag{69}
\end{equation*}
$$

As the algebraic signs tend to create confusion in these formulæ, it is more simple to remember that for a triangle lying on both sides of the center e is always numerically equal to $\frac{1}{3}\left[\frac{b}{2}+\left(x_{l} \sim x_{r}\right)\right]$, and for a triangle entirely on one side, e is numerically equal to $\frac{1}{3}\left[\frac{b}{2}+\right.$ the numerical sum of the two distances out]. The algebraic sign of e is readily determinable as in § 91.
93. Example of curvature correction. Assume that the fill in $\S 78$ occurred on a 6° curve to the right. $\frac{1}{3 \bar{R}}=\frac{1}{2865}$. The quantities 210,507 , etc., represent the quantities $V^{\prime}, V^{\prime \prime}$, etc., since they include in each case the 61 cubic yards due to the grade prism. Then

$$
\frac{V\left(x_{l} \sim x_{r}\right)}{3 R}=\frac{210(22.9-8.2)}{2865}=\frac{3101.7}{2865}=+1 .
$$

The sign is plus, since the center of gravity of the cross-section is on the left side of the center and the road curves to the right, thus making the true volume larger. For Sta. 18 the correction, computed similarly, is +3 , and the correction for the whole section is $1+3=4$. For Sta. $18+40$ the correction is computed as 6 yards. Therefore, for the 40 feet, the correction is $\frac{{ }^{4} 0}{100}(3+6)=3.6$, which is called 4 . Computing the others similarly we obtain a total correction of +16 cubic yards.
94. Accuracy of earthwork computations. The preceding methods give the precise volume (except where approximations are distinctly admitted) of the prismoids which are supposed to represent the volume of the earthwork. To appreciate the accuracy necessary in cross-sectioning to obtain a given accuracy in volume, consider that a fifteen-foot length of the cross-section, which is assumed to be straight, really sags 0.1 foot, so that the cross-section is in error by a triangle 15 feet wide and 0.1 foot high. This sag 0.1 foot high would hardly be detected by the eye, but in a length of 100 feet in each direction it would make an error of volume of 1.4 cubic yards in each of the two prismoids, assuming that the sections at the other ends were perfect. If the cross-sections at both ends of a prismoid were in error by this same amount, the volume of that prismoid would be in error by 2.8 cubic yards if the errors of area were both plus or both minus. If one were plus and one minus, the errors would neutralize each other, and it is the compensating character of these errors which permits any confidence in the results as obtained by the usual methods of cross-sectioning. It demonstrates the utter futility of attempting any closer accuracy than the nearest cubic yard. It will thus be seen that if an error really exists at any cross-section it involves the prismoids on both sides of the section, even though all the other cross-sections are perfect. As a further illustration, suppose that cross-sections were taken by the method of slope angle and center depth (§73), and that a cross-section, assumed as uniform, sags 0.4 foot in a width of 20 feet. Assume an equal error (of same sign) at the other end of a 100 -foot section. The error of volume for that one prismoid is 38 cubic yards.

The computations further assume that the warped surface, passing through the end sections, coincides with the surface of the ground. Suppose that the cross-sectioning had been done with mathematical perfection; and, to assume a simple case, suppose a sag of 0.5 foot between the sections, which causes an error equal to the volume of a pyramid having a base of 20 feet (in each cross-section) times 100 feet (between the cross-sections) and a height of 0.5 foot. The volume of this pyramid is $\frac{1}{3}(20 \times 100) \times 0.5=333$ cub. ft. $=12$ cub. y ds. And yet this sag or hump of 6 inches would generally be utterly unnoticed, or at least disregarded.

When the ground is very rough and broken it is sometimes
practically impossible, even with frequent cross-sections, to locate warped surfaces which will closely coincide with all the sudden irregularities of the ground. In such cases the computations are necessarily more or less approximate and dependence must be placed on the compensating character of the errors.
95. Approximate computations from profiles. As a means of comparing the relative amounts of earthwork on two or more proposed routes which have been surveyed by preliminary surveys, it will usually be sufficiently accurate to compare the areas of cutting (assuming that the cut and fill are approximately balanced) as shown by the several profiles. The errors involved may be large in individual cases and for certain small sections, but fortunately the errors (in comparing two lines) will be largely compensated. The errors are much larger on side-hill work than when the cross-sections are comparatively level. The errors become large when the depth of cut or fill is very great. If the lines compared have the same general character as to the slope of the cross-sections, the proportion of side-hill work, and the average depth of cut or fill, the error involved in considering their relative volumes of cutting to be as the relative areas of cutting on the profiles (obtained perhaps by a planimeter) will probably be small. If the volume in each case is computed by assuming the sections as level, with a depth equal to the center cut, the error involved will depend only on the amount of side-hill work and the degree of the slope. If these features are about the same on the two lines compared, the error involved is still less.

FORMATION OF EMBANKMENTS.

96. Shrinkage of earthwork. The evidence on this subject as to the amount of shrinkage is very conflicting, a fact which is probably due to the following causes:
97. The various kinds of earthy material act very differently as respects shrinkage. There has been but little uniformity in the classification of earths in the tests and experiments that have been made.
98. Very much depends on the method of forming an embankment (as will be shown later). Different reports have been based on different methods-often without mention of the method.
99. An embankment requires considerable time to shrink to its final volume, and therefore much depends on the time elapsed between construction and the measurement of what is supposed to be the settled volume.
P. J. Flynn quotes some experiments (Eng. News, May 1, 1886) made in India, in which pits were dug having volumes of 400 to 600 cubic feet. The material, when piled into an embankment, measured largely in excess of the original measure-ment-as is the universal experience. The pits were refilled with the same material. As the rains, very heavy in India, settled the material in the pits, more was added to keep the pits full. Even after the rainy season was over, there was in every case material in excess. This would seem to indicate a permanent expansion, although it is possible that the observations were not continued for a sufficient time to determine the final settled volume.

On the contrary, notes made by Mr. Elwood Morris many years ago on the behavior of embankments of several thousand cubic yards, formed in layers by carts and scrapers, one winter intervening between commencement and completion, showed in each case a permanent contraction averaging about 10%.

All authorities agree that rockwork expands permanently when formed into an embankment, but the percentages of expansion given by different authorities differ even more than with earth-varying from 8 to 90%. Of course this very large range in the coefficient is due to differences in the character of the rock. The softer the rock and the closer its similarity to earth, the less will be its expansion. On account of the conflicting statements made, and particularly on account of the influence of methods of work, but little confidence can be felt in any given coefficient, especially when given to a fraction of a per cent, but the consensus of American practice seems to average about as follows:

$$
\begin{gathered}
\text { Permanent contraction of earth. about } 10 \% \\
\text { " } \quad 40 \text { to } 60 \%
\end{gathered}
$$

These values for rock should be materially reduced, according to judgment, when the rock is soft and liable to disintegrate. The hardest rocks, loosely piled, may occasionally give even
higher results. The following is given by several authors as the permanent contraction of several grades of earth:

Gravel or sand	about	8\%
Clay.	'6	10\%
Loam.	،	12\%
Loose vegetable surface soil.		15\%

It may be noticed from the above table that the harder and cleaner the material the less is the contraction. Perfectly clean gravel or sand would not probably change volume appreciably. The above coefficients of shrinkage and expansion may be used to form the following convenient table.

Material.	To make 1000 cubic yards of embankment will require	1000 cubic yards measured in excavation will make
Gravel or sand. Clay. Loam Loose vegetable soil Rnck, large pieces. small	1087 cubic yards	920 cubic yards
	11113 ، ${ }_{1}$	8800 "، ${ }^{900}$
	1176 ، "	850 "
	714 "،	1400 "، "،
	$\underset{\text { measured in excavation }}{62}$	of embankment.

97. Allowance for shrinkage. On account of the initial expansion and subsequent contraction of earth, it becomes necessary to form embankments higher than their required ultimate form in order to allow for the subsequent shrinkage. As the shrinkage appears to be all vertical (practically), the embankment must be formed as shown in Fig. 58. The effect of shrink-

Fig. 58.
age should not be confounded with that of slipping of the sides, which is especially apt to occur if the embankment is subjected
to heavy rains very soon after being formed, and also when the embankments are originally steep. It is often difficult to form an embankment at a slope of $1: 1$ which will not slip more or less before it hardens.

Very high embankments shrink a greater percentage than lower ones. Various rules giving the relation between shrinkage and height have been suggested, but they vary as badly as the suggested coefficients of contraction, probably for the same causes. As the fact is unquestionable, however, the extra height of the embankment must be varied somewhat as in Fig. 59 , which represents a longitudinal section of an embankment.

Fig. 59.

As considerable time generally elapses between the completion of the embankment and the actual running of trains, the grade $a d$ will generally be nearly flattened down to its ultimate form before traffic commences, but such grades are occasionally objectionable if added to what is already a ruling grade. With some kinds of soil the time required for complete settlement may be as much as two or three years, but, even in such cases, it is probable that one-half of the settlement will take place during the first six months. The engineer should therefore require the contractor to make all fills about 8 to 15% (according to the material) higher than the profiles call for, in order that subsequent shrinkage may not reduce it to less than the required volume.
98. Methods of forming embankments. When the method is not otherwise objectionable, a high embankment can be formed very cheaply (assuming that carts or wheelbarrows are used) by dumping over the end and building to the full height (or even higher, to allow for shrinkage) as the embankment proceeds. This allows more time for shrinkage, saves nearly all the cost of spreading (see Item 4, § 111), and reduces the cost of roadways
(Item 5). Of course this method is especially applicable when the material comes from a place as high as or higher than grade, so that no up-hill hauling is required.

Another method is to spread it in layers two or three feet thick (see Fig. 60), which are made concave upwards to avoid

Fig. 60.
possible sliding on each other. Spreading in layers has the advantage of partially ramming each layer, so that the subsequent shrinkage is very small. Sometimes small trenches are dug along the lines of the toes of the embankment. This will frequently prevent the sliding of a large mass of the embankment, which will then require extensive and costly repairs, to say nothing of possible accidents if the sliding occurs after the road is in operation. Incidentally these trenches will be of value in draining the subsoil. When circumstances require an embankment on a hillside, it is advisable to cut out "steps" to prevent a possible sliding of the whole embankment. Merely ploughing the side-hill will often be a cheaper and sufficiently effective method.

Fig. 61.
Occasionally the formation of a very high and long embankment may be most easily and cheaply accomplished by building a trestle to grade and opening the road. Earth can then be
procured where most convenient, perhaps several miles away, loaded on cars with a steam-shovel, hauled by the trainload, and dumped from the cars with a patent unloader. On such a large scale, the cost per yard would be very much less than by cidinary methods-enough less sometimes to more than pay for the temporary trestle, besides allowing the road to be opened for traffic very much carlier, which is often a matter of prime financial importance. It may also obviate the necessity for extensive borrow-pits in the immediate neighborhood of the heavy fill and also utilize material which would otherwise be wasted.

COMPUTATION OF HAUL.

99. Nature of subject. As will be shown later when analyzing the cost of earthwork, the most variable item of cost is that depending on the distance hauled. As it is manifestly impracticable to calculate the exact distance to which every individual cartload of earth has been moved, it becomes necessary to devise a means which will give at least an equivalent of the haulage of all the earth moved. Evidently the average haul for any mass of earth moved is equal to the distance from the center of gravity of the excavation to the center of gravity of the embankment formed by the excavated material. As a rough approximation the center of gravity of a cut (or fill) may sometimes be considered to coincide with the center of gravity of that part of the profile representing it, but the error is frequently very large. The center of gravity may be determined by various methods, but the method of the " mass diagram" accomplishes the same ultimate purpose (the determination of the haul) with all-sufficient accuracy and also furnishes other valuable information.
100. Mass diagram. In Fig. 62 let $A^{\prime} B^{\prime} \ldots G^{\prime}$ represent a profile and grade line drawn to the usual scales. Assume A^{\prime} to be a point past which no earthwork will be hauled. Such a point is deternined by natural conditions, as, for example, a river crossing, or one end of a long level stretch along which no grading is to be done except the formation of a low embankment from the material excavated from ample drainage ditehes on each side. Above the profile draw an indefinite horizontal line ($A C \prime n$ in Fig. (62), which may be called the "zero line." Above every station point in the profile draw an ordinate (above or be-
low the zero line) which will represent the algebraic sum of the cubic yards of cut and fill (calling cut + and fill -) from the point A^{\prime} to the point considered. The computations of these ordinates should first be made in tabular form as shown below. In doing this shrinkage must be allowed for by considering how much embankment would actually be made by so many cubic yards of excavation of such material. For example, it will be found that 1000 cubic yards of sand or gravel, measured in place (see § 97), will make about 920 cubic yards of embankment; therefore all cuttings in sand or gravel should be discounted in about this proportion. Excavations in rock should be increased in the proper ratio. In short, all excavations should be valucd according to the amount of settled embankment that could be made from them. Place in the first column a list of the stations; in the second column, the number of cubicyards of cut or fill between each station and the preceding station; in
 the third and fourth columns, the kind of material and the proper shrinkage factor; in the fifth column, a repetition of the quantities in cubic yards, except that the excavations are diminished (or increased, in the case of rock) to the number of cubic yards of settled embankment which may be made from them. In the sixth column place the algebraic sum of the quantities in the fifth column (calling cuts + and fills -) from the startingpoint to the station considered. These algebraic sums at each station will be the ordinates, drawn to some scale, of the mass curve. The scale to be used will depend somewhat on whether
the work is heavy or light, but for ordinary cases a scale of 5000 cubic yauds per inch may be used. Drawing these ordinates to scale, a curve $A, B, \ldots G$ may be obtained by joining the extremities of the ordinates.

Sta.	Yards $\left\{\begin{array}{l}\text { cut }+ \\ \text { fill }\end{array}\right.$	Material.	Shrinkage factor.	Yards, reduced for shrinkage.	Ordinate in mass curve.
$46+70$					0 $+\quad 175$
478	+ 195 $+\quad 1792$	Clayey soil	- 10 ner cent	a $+\quad 175$ +1613	(175 $+\quad 1788$
$+60$	+ 614	، 6	- 10	$+\quad 553$	+1788 $+\quad 2341$
49	- 143			- 143	+ 2198
50	- 906			- 906	+ 1292
51	- 198.5			- 1985	- 693
52	- 1721			- 1721	- 2414
+ 30	- 112			- 112	- 2526
	$+\quad 177$ $+\quad 180$	Hard rock	+60 per cent	+ 283 $+\quad 289$	- 2243
$54+70$	+180 $+\quad 59$	"، ${ }^{\text {c }}$	+60	$+\quad 283$ $+\quad 59$	- 1954
$54+42$	- $\quad 52$			$+\quad 52$ $-\quad 71$	- 2006
$5.5+42$	$\begin{array}{r}71 \\ \hline+\quad 276\end{array}$			$\begin{array}{r}71 \\ \hline+\quad 249\end{array}$	-2077 -1828
5.5 56	+ $\quad 276$ +1242	Clayey sel	- 10 per cent	$+\quad 249$ +1118	- 1828 $-\quad 710$
57	+1302		10 "	+1172	$+\quad 462$

1or. Properties of the mass curve.

1. The curve will be rising while over cuts and falling while over fills.
2. A tangent to the curve will be horizontal (as at B, D, E, F, and G^{\prime}) when passing from cut to fill or from fill to cut.

3 When the curve is below the "zero line" it shows that material must be drawn backward (to the left); and vice versa, when the curve is above the zero line it shows that material must be drawn forward (to the right).
4. When the curve crosses the zero line (as at A and C) it shows (in this instance) that the cut between A^{\prime} and B^{\prime} will just provide the material required for the fill between B^{\prime} and C^{\prime}, and that no material should be hauled past C^{\prime}, or, in general, past any intersection of the mass curve and the zero line.
5. If any horizontal line be drawn (as $a b$), it indicates that the cut and fill between a^{\prime} and b^{\prime} will just balance.
6. When the center of gravity of a given volume of material is to be moved a given distance, it makes no difference (at least ineoretically) how far each individual load may be hauled or how any individual load may be disposed of. The summation
of the products of each load times the distance hauled will be a constant, whatever the method, and will equal the total volume times the movement of the center of gravity. The average haul, which is the movement of the center of gravity, will therefore equal the summation of these products divided by the total volume. If we draw two horizontal parallel lines at an infinitesimal distance $d x$ apart, as at $a b$, the small increment of cut $d x$.at a^{\prime} will fill the corresponding increment of fill at b^{\prime}, and this material must be hauled the distance $a b$. Therefore the product of $a b$ and $d x$, which is the product of distance times volume, is represented by the area of the infinitesimal rectangle at $a b$, and the total area $A B C$ represents the summation of volume times distance for all the earth movement between A^{\prime} and C^{\prime}. This summation of products divided by the total volume gives the average haul.
7. The horizontal line, tangent at E and cutting the curve at e, f, and g, shows that the cut and fill between e^{\prime} and E^{\prime} will just balance, and that a possible method of hauling (whether desirable or not) would be to " borrow" earth for the fill between C^{\prime} and e^{\prime}, use the material between D^{\prime} and E^{\prime} for the fill between e^{\prime} and D^{\prime}, and similarly balance cut and fill between E^{\prime} and f^{\prime} and also between f^{\prime} and g^{\prime}.
8. Similarly the horizontal line hklm may be drawn cutting the curve, which will show another possible method of hauling. According to this plan, the fill between C^{\prime} and h^{\prime} would be made by borrowing; the cut and fill between h^{\prime} and k^{\prime} would balance; also that between k^{\prime} and l^{\prime} and between l^{\prime} and m^{\prime}. Since the area ehDkE represents the measure of haul for the earth between e^{\prime} and E^{\prime}, and the other areas measure the corresponding hauls similarly, it is evident that the sum of the areas ehDkE and ElFmf, which is the measure of haul of all the material between e^{\prime} and f^{\prime}, is largely in excess of the sum of the areas $h D k, k E l$, and $l F m$, plus the somewhat uncertain measures of haul due to borrowing material for $e^{\prime} h^{\prime}$ and wasting the material between m^{\prime} and f^{\prime}. Therefore to make the measure of haul a minimum a line should be drawn which will make the sum of the areas between it and the mass curve a minimum. Of course this is not necessarily the cheapest plan, as it implies more or less borrowing and wasting of material, which may cost more than the amount saved in haul. The comparison of the two methods is quite simple, however. Since the amount
of fill between e^{\prime} and h^{\prime}. is represented by the difference of the ordinates at e and h, and similarly for m^{\prime} and f^{\prime}, it follows that the amount to be borrowed between e^{\prime} and h^{\prime} will exactly equal the amount wasted between m^{\prime} and f^{\prime}. By the first of the above methods the haul is excessive, but is definitely known from the mass diagram, and all of the material is utilized; by the second method the haul is reduced to about one-half, but there is a known quantity in cubic yards wasted at one place and the same quantity borrowed at another. The length of haul necessary for the borrowed material would need to be ascertained; also the haul necessary to waste the other material at a place where it would be unobjectionable. Frequently this is best done by widening an embankment beyond its necessary width. The computation of the relative cost of the above methods will be discussed later (§ 116).
9. Suppose that it were deemed best, after drawing the mass curve, to introduce a trestle between s^{\prime} and v^{\prime}, thus saving an amount in fill equal to $t v$. If such had been the original design, the mass curve would have been a straight horizontal line between s and t and would continue as a curve which would be at all points a distance $t v$ above the curve $v F m z f G g$. If the line $E f$ is to be used as a zero line, its intersection with the new curve at x will show that the material between E^{\prime} and z^{\prime} will just balance if the trestle is used, and that the amount of haul will be measured by the area between the line Ex and the broken line Estx. The same computed result may be obtained without drawing the auxiliary curve txn ... by drawing the horizontal line $z y$ at a distance $x z(=t v)$ below $E x$. The amount of the haul can then be obtained by adding the triangular area between Es and the horizontal line $E x$, the rectangle between st and $E x$, and the irregular area between $v F z$ and $y \ldots z$ (which last is evidently equal to the area between $t x$ and $E \ldots x)$. The disposal of the material at the right of z^{\prime} would then be governed by the indications of the profile and mass diagram which would be found at the right of g^{\prime}. In fact it is difficult to decide with the best of judgment as to the proper disposal of material without having a mass diagram extending to a considerable distance each side of that part of the road under immediate consideration.
102. Area of the mass curve. The area may be computed most readily by means of a planimeter, which is capable with reasonable care of measuring such areas with as great accuracy
as is necessary for this work. If no such instrument is obtainable, the area may be obtained by an application of "Simpson's rule." The ordinates will usually be spaced 100 feet apart. Selert an even number of such spaces, leaving, if necessary, one or more triangles or trapezoids at the ends for separate and independent computation. Let $y_{0} \ldots y_{n}$ be the ordinates, i.e., the number of cubic yards at each station of the mass curve, or the figures of "column six" referred to in § 100. Let the uniform distance between ordinates ($=100$ feet) be called 1, i.e., one station. Then the units of the resulting area will be cubic yards hauled one station. Then the

$$
\begin{equation*}
\text { Area }=\frac{1}{5}\left[y_{0}+4\left(y_{1}+y_{3}+\ldots y_{(n-1)}+2\left(y_{2}+y_{4}+\ldots y_{(n-2)}+y_{n}\right] .\right.\right. \tag{70}
\end{equation*}
$$

When an ordinate occurs at a substation, the best plan is to ignore it at first and calculate the area as above. Then, if the difference involved is too great to be neglected, calculate the area of the triangle having the extremity of the ordinate at the substation as an apez, and the extremities of the ordinates at the adjacent stations as the ends of the base. This may be done by finding the ordinate at the substation that would be a proportional between the ordinates at the adjacent full stations. Subtract this from the real ordinate (or vice versa) and multiply the difference by $\frac{1}{2} \times 1$. An inspection will often show that the correction thus obtained would be too small to be worthy of consideration. If there is more than one substation between two full stations, the corrective area will consist of two triangles and one or more trapezoids which may be similarly computed, if necessary.

When the zero line (Fig. 62) is shifted to $e E$, the drop from $A C$ (produced) to E is known in the same units, cubic yards. This constant may be subtracted from the numbers ("column 6 ," § 100) representing the ordinates, and will thus give, without any scaling from the diagram, the exact value of the modified ordinates.
ro3. Value of the mass diagram. The great value of the mass diagram lies in the readiness with which different plans for the disposal of material may be examined and compared. When the mass curve is once drawn, it will generally require only a shifting of the horizontal line to show the disposal of the material by any proposed method. The mass diagram also shows the
extreme length of haul that will be required by any proposed method of disposal of material. This brings into consideration the "limit of profitable haul," which will be fully discussed in §116. For the present it may be said that with each method of carrying material there is some limit beyond which the expense of hauling will exceed the loss resulting from borrowing and wasting. With wheelbarrows and scrapers the limit of profitable haul is comparatively short, with carts and tram-cars it is much longer, while with locomotives and cars it may be several miles. If, in Fig. 62, eE or $E f$ exceeds the limit of profitable haul, it shows at once that some such line as hklm should be drawn and the material disposed of accordingly.
104. Changing the grade line. The formation of the mass curve and the resulting plans as to the disposal of material are based on the mutual relations of the grade line and the surface profile and the amounts of cut and fill which are thereby implied. If the grade line is altered, every cross-section is altered, the amount of cut and fill is altered, and the mass curve is also changed. At the farther limit of the actual change of the grade line the revised mass curve will have (in general) a different ordinate from the previous ordinate at that point. From that point on, the revised mass curve will be parallel to its former position, and the revised curve may be treated similarly to the case previously mentioned in which a trestle was introduced. Since it involves tedious calculations to determine accurately how much the volume of earthwork is altered by a change in grade line, especially through irregular country, the effect on the mass curve of a change in the grade line cannot therefore be readily determined except in an approximate way. Raising the grade line will evidently increase the fills and diminish the cuts, and vice versa. Therefore if the mass curve indicated, for example, either an excessively long haul or the necessity for borrowing material (implying a fill) and wasting material farther on (implying a cut), it would be possible to diminish the fill (and hence the amount of material to be borrowed) by lowering the grade line near that place, and diminish the cut (and hence the amount of material to be wasted) by raising the grade line at or near the place farther on. Whether the advantage thus gained would compensate for the possibly injurious effect of these changes on the grade line would require patient investigation. But the method outlined shows how the mass
curve might be used to indicate a possible change in grade line which might be demonstrated to be profitable.
105. Limit of free haul. It is sometimes specified in contracts for earthwork that all material shall be entitled to free haul up to some specified limit, say 500 or 1000 feet, and that all material drawn farther than that shall be entitled to an allowance on the excess of distance. It is manifestly impracticable to measure the excess for each load, as much so as to measure the actual haul of each loas' The mass diagram also solves this problem very readily. Let Fig. 63 represent a pro-

Fig. 63.
file and mass diagram of about 2000 feet of road, and suppose that 800 feet is taken as the limit of free haul. Find two points, a and b, in the mass curve which are on the same horizontal line and which are 800 feet apart. Project these points down to a^{\prime} and b^{\prime}. Then the cut and fill between a^{\prime} and b^{\prime} will just balance, and the cut between A^{\prime} and a^{\prime} will be needed for the fill between b^{\prime} and C^{\prime}. In the mass curve, the area between the horizontal line $a b$ and the curve $a B b$ represents the haulage of the material between a^{\prime} and b^{\prime}, which is all free. The rectangle $a b m n$ represents the haulage of the material in the cut $A^{\prime} a^{\prime}$ across the 800 feet from a^{\prime} to b^{\prime}. This is also free. The sum of the two areas $A a m$ and $b n C$ represents the haulage entitled to an allowance, since it is the summation of the products of cubic yards times the excess of distanc: hauled.

If the amount of cut and fill was symmetrical about the point
B^{\prime}, the mass curve would be a symmetrical curve about the vertical line through B, and the two limiting lines of free haul would be placed symmetrically about B and B^{\prime}. In general there is no such symmetry, and frequently the difference is considerable The area $a B t n m_{i}$ will be materially changed accord ing as the two vertical lines $a m$ and $b n$, always 800 feet apart, are shifted to the right or left. It is easy to show that the area $a B b n m$ is a maximum when $a b$ is horizontal. The minimum value would be obtained either when m reached A or n reached C, depending on the exact form of the curve. Since the position for the minimum value is manifestly unfair, the best definite value obtainable is the maximum, which must be obtained as above described. Since $a B b n m$ is made maximum, the remainder of the area, which is the allowance for overhaul, becomes a minimum. The areas $A a m$ and $b C n$ may be obtained as in $\S 102$. If the whole area $A a B b C A$ has been previously computed, it may be more convenient to compute the area $a b b n m$ and subtract it from the total area.

Since the intersections of the mass curve and the "zero line" mark limits past which no material is drawn, it follows that there will be no allowance for overhaul except where the distance between consecutive intersections of the zero line and mass curve exceeds the limit of free haul.

Frequently all allowances for overhaul are disregarded: the profiles, estimates of quantities, and the required disposal of material are shown to bidding contractors, and they must then make their own allowances and bid accordingly. This method has the advantage of avoiding possible disputes as to the amount of the overhaul allowance, and is popular with railroad companies on this account. On the other hand the facility with which different plans for the disposal of material may be studied and compared by the mass-curve method facilitates the adoption of the most economical plan, and the elimination of uncertainty will frequently lead to a safe reduction of the bid, and so the method is valuable to both the railroad company and the contractor.

ELEMEN'S OF THE COST OF EARTHWORK.
(The following analysis of the cost of earthwork follows the general method given in the well-known papers published by

Ellwood Morris, C.E., in the Journal of the Franklin Institute in September and October, 1841. Numerous corroborative data have been obtained from various other sources, and also figures on methods not then in vogue.)
106. General divisions of the subject. The variations in the cost of earthwork are caused by the greatly varying conditions under which the work is done, chief among which is character of material, method of carriage, and length of haul. Any general system of computation must therefore differentiate the total cost into such elementary items that all differences due to variations in conditions may be allowed for. The variations due to character of material will be allowed for by an estimate on loozz light sandy soil, and also an estimate on the heaviest soils, suc: as stiff clay and hard-pan. These represent the extremes (ercluding rock, which will be treated separately), and the cost 0 ? intermediate grades must be estimated by interpolating between the extreme values. The general divisions of the subject will be:*

1. Loosening.
2. Loading.
3. Hauling.
4. Spreading.
5. Keeping roadways in order.
6. Repairs, wear, depreciation, and interest on cost of plant.
7. Superintendence and incidentals.
8. Contractor's profit.

By making the estimates on the basis of $\$ 1$ per day for the cost of common labor, it is a simple matter to revise the estimates according to the local price of labor by multiplying the final estimates of cost by the price of labor in dollars per day.
107. Item i. Loosening. (a) Ploughs. Very light sandy soils can frequently be shovelled without any previous loosening, but it is generally economical, even with very light material, to use a plough. Morris quotes, as the results of experiments, that a three-horse plough would loosen from 250 to 800 cubic yards of earth per day, which at a valuation of $\$ 5$ per day would make the cost per yard vary from 2 cents to 0.6 cent. Trautwine estimates the cost on the basis of two men handling a twohorse plough at a total cost of $\$ 3.87$ per day, being $\$ 1$ each for
the men, 75 c . ior each horse, and an allowance of 37 c . for the plough, harness, etc. From 200 to 600 cubic yards is estimated as a fair day's work, which makes a cost of 1.9 c . to 0.65 c . per yard, which is substantially the same estimate as above. Extremely heavy soils have sometimes been loosened by means of special ploughs operated by traction-engines.
(b) Picks. When picks are used for loosening the earth, as is frequently necessary and as is often done when ploughing would perhaps be really cheaper, an estimate $*$ for a fair day's work is from 14 to 60 cubic yards, the 14 yards being the estimate for stiff clay or cemented gravel, and the 60 yards the estimate for the lightest soil that would require loosening. At $\$ 1$ per day this means about 7 c . to 1.7 c . per cubic yard, which is about three times the cost of ploughing. Five feet of the face is estimated \dagger as the least width along the face of a bank that should be allowed to enable each laborer to work with freedom and hence economically.
(c) Blasting. Although some of the softer shaly rocks may be loosened with a pick for about 15 to 20 c. per yard, yet rock in general, frozen earth, and sometimes even compact clay are most economically loosened by blasting. The subject of blasting will be taken up later, §§ 117-123.
(d) Steam-shovels. The items of loosening and loading merge together with this method, which will therefore be treated in the next section.
108. Item 2. Loading. (a) Hand-shovelling. Much depends on proper management, so that the shovellers need not wait unduly either for material or carts. With the best of management considerable time is thus lost, and yet the intervals of rest need not be considered as entirely lost, as it enables the men to work, while actually loading, at a rate which it would be physically impossible for them to maintain for ten hours. Seven shovellers are sometimes allowed for each cart; otherwise there should be five, two on each side and one in the rear. Economy requires that the number of loads per cart per day should be made as large as possible, and it is therefore wise to employ as many shovellers as can work without mutual interference and without wasting time in waiting for material or carts. The figures obtainable for the cost of this item are unsatisfactory on
account of their large disagreements. The following are quoted as the number of cubic yards that can be loaded into a cart by an average laborer in a working day of ten hours, the lower estimate referring to heavy soils, and the higher to light sandy soils: 10 to 14 cubic yards (Morris), 12 to 17 cubic yards (Haskoll), 18 to 22 cubic yards (Hurst), 17 to 24 cubic yards (Trautwine), 16 to 48 cubic yards (Ancelin). As these estimates are generally claimed to be based on actual experience, the discrepancies are probably due to differences of management. If the average of 15 to 25 cubic yards be accepted, it means, on the basis of $\$ 1$ per day, 6.7 c. to 4 c. per cubic yard. These estimates apply only to earth. Rockwork costs more, not only because it is harder to handle, but because a cubic yard of solid rock, measured in place, occupies about 1.8 cubic yards when broken up, while a cubic yard of earth will occupy about 1.2 cubic yards. Rockwork will therefore require about 50% more loads to haul a given volume, measured in place, than will the same nominal volume of earthwork. The above authorities give estimates for loading rock varying from 6.9 c . to 10 c . per cubic yard. The above estimates apply only to the loading of carts or cars with shovels or by hand (loading masses of rock). The cost of loading wheelbarrows and the cost of scraper work will be treated under the item of hauling.
(b) Steam-shovels.* Whenever the magnitude of the work will warrant it there is great economy in the use of steam-shovels. These have a "bucket" or "dipper" on the end of a long beam, the bucket having a capacity varying from $\frac{1}{2}$ to $2 \frac{1}{2}$ cubic yards. Steam-shovels handle all kinds of material from the softest earth to shale rock, earthy material containing large boulders, tree-stumps, etc. The capacity of the larger sizes is about 3000 cubic yards in 10 hours. They perform all the work of loosening and loading. Their economical working requires that the material shall be hauled away as fast as it can be loaded, which usually means that cars on a track, hauled by horses or mules, or still better by a locomotive, shall be used. The expenses for a steam-shovel, costing about $\$ 5000$, will average about $\$ 1000$ per month. Of this the engineer will get $\$ 100$; the

[^7]fireman $\$ 50$; the cranesman $\$ 90$; reparrs perhaps $\$ 250$ to $\$ 300$; coal, from 15 to 25 tons, cost very variable on account of expensive hauling; water, a very uncertain amount, sometimes costing $\$ 100$ per month; about five laborers and a foreman, the laborers getting $\$ 1.25$ per day and the foreman $\$ 2.50$ per day, which will amount to $\$ 227.50$ per month. This gang of laborers is employed in shifting the shovel when necessary, taking up and relaying tracks for the cars, shifting loaded and unloaded cars, etc. In shovelling through a deep cut, the shovel is operated so as to undermine the upper parts of the cut, which then fall down within reach of the shovel, thus increasing the amount of material handled for each new position of the shovel. If the material is too tough to fall down by its own weight, it is sometimes found economical to employ a gang of men to loosen it or even blast it rather than shift the shovel so frequently. Noncondensing engines of 50 horse-power use so much water that the cost of water-supply becomes a serious matter if water is not readily obtainable. The lack of water facilities will often justify the construction of a pipe line from some distant source and the installation of a steam-pump. Hence the seemingly large estimate of $\$ 100$ per month for water-supply, although under favorable circumstances the cost may almost vanish. The larger steam-shovels will consume nearly a ton of coal per day of 10 hours. The expense of hauling this coal from the nearest railroad or canal to the location of the cut is often a very serious item of expense and may easily double the cost per ton. Some steam-shovels have been constructed to be operated by electricity obtained from a plant perhaps several miles away. Such a method is especially advantageous when fuel and water are difficult to obtain.
109. Item 3. Haduling. The cost of hauling depends on the number of round trips per day that can be made by each vehicle employed. As the cost of each vehicle is practically the same whether it makes many trips or few, it becomes important that the number of trips should be made a maximum, and to that end there should be as little delay as possible in loading and unloading. Therefore devices for facilitating the passage of the vehicles have a real money value.
(a) Carts. The average speed of a horse hauling a twowheeled cart has been found to be 200 feet per minute, a little slower when hauling the load and a little faster when returning
empty. This figure has been repeatedly verified. It means an allowance of one minute for each 100 feet (or "station") of "lead-the lead being the distance the earth is hauled." The time lost in loading, dumping, waiting to load, etc., has been found to average 4 minutes per load. Representing the number of stations (100 feet) of lead by s, the number of loads handled in 10 hours (600 minutes) would be $600 \div(s+4)$. The number of loads per cubic ya- measured in the bank, is differentiated by Morris into three classes, viz.:

3 loads per cubic yard in descending hauling;

Attempts have been made to estimate the effect of the grade of the roadway by a theoretical consideration of its rate, and of the comparative strength of a horse on a level and on various grades. While such computations are always practicable on a railway (even on a temporary construction track), the traction on a temporary earth roadway is always very large and so very variable that any refinements are useless. On railroad earthwork the hauling is generally nearly level or it is descendingforming embankments on low ground with material from cuts in high ground. The only common exception occurs when an embankment is formed from borrow-pits on low ground. One method of allowing for ascending grade is to add to the horizontal distance 14 times the difference of elevation for work with carts and 24 times the difference of elevation for work with wheelbarrows, and use that as the lead. For example, using carts, if the lead is 300 feet and there is a difference of elevation of 20 feet, the lead would be considered equivalent to $300+(14 \times 20)=580$ feet on a level.

Trautwine assumes the average load for all classes of work to be $\frac{1}{3}$ cubic yard, which figure is justified by large experience. Using one figure for all classes of work simplifies the calculations and gives the number of cubic yards carried per day of 10 hours equal to $\frac{600}{3(s+4)}$. Dividing the cost of a cart per day by the nurnber of cubic yards carried gives the cost of hauling per yard. In computing the cost of a cart per day, Trautwine refers to the practice of having one driver manage four carts, thus making a charge of 25 c . per day for each cart for the driver.

75 c . is allowed for the horse, which is supposed to be the total cost, including that for Sundays and rainy days. 25 c. more is allowed for the cart, harness, repairs, etc., thus making a total cost of $\$ 1.25$ per day. Some contractors employ a greater number of drivers and expect each to assist in loading. There is found to be no saving in total cost per yard, while the chances of loafing are perhaps greater. Morris instances five actual cases in which the cost of the cart (reduced to the basis of $\$ 1$ per day for labor) varied from $\$ 1.37$ to $\$ 1.48$. The items of these costs were not given.

Since the time required for loading loose rock is greater than for earthwork, less loads will be hauled per day. The time allowance for loading, etc., is estimated by Trautwine as 6 minutes instead of 4 as for earth. Considering the great expansion of rock when broken up (see § 97), one cubic yard of solid rock, measured in place, would furnish the equivalent of five loads of earthwork of $\frac{1}{3}$ cubic yard. Therefore, on the basis of five loads per cubic yard, the number of cubic yards handled per day per cart would be $\frac{600}{5(s+6)}$.

$$
\begin{equation*}
\text { Cost per yard in cents }=\frac{125 \times 5(s+6)}{600} \tag{71}
\end{equation*}
$$

(b) Wagons. For longer leads (i.e., from $\frac{1}{3}$ to $\frac{2}{3}$ of a mile) wagons drawn by two horses have been found most economical. The wagons have bottoms of loose thick narrow boards and are unloaded very easily and quickly by lifting the individual boards and breaking up the continuity of the bottom, thus depositing the load directly underneath the wagon. The capacity is about one cubic yard. The cost may be estimated on the same principles as that for carts.
(c) Wheelbarrows. According to Trautwine, the speed of moving wheelbarrows may be considered the same as for carts, 200 feet per minute; the time spent in loading and dumping is $1 \frac{1}{4}$ minutes, and in addition about $\frac{1}{10}$ of the time is wasted in short rests, adjusting the wheeling planks, etc. On the basis of $\$ 1$ per day for labor, an allowance of 5 c . for the barrow, and 14 loads per cubic yard, the cost of hauling per cubic yard (computed on the same principles as above) will be

$$
\begin{equation*}
\frac{105 \times 14(s+1.25)}{600 \times 0.9} \tag{72}
\end{equation*}
$$

For rockwork the number of loads per cubic yard is estimated as 24 , and the time spent in loading, etc., estimated at $1.6 \mathrm{~min}-$.utes instead of 1.25 minutes, which makes the estimate

$$
\begin{equation*}
\text { Cost per cubic yard }=\frac{105 \times 24(s+1.6)}{600 \times 0.9} \tag{73}
\end{equation*}
$$

(d) Scrapers.* Scrapers, or scoops, are especially useful in canal work, and also for railroad work when a low embankment is to be formed from borrow-pits at the sides, when the distance does not exceed 100 feet, nor the vertical height 15 feet. The slope should not exceed 1.5 to 1 . Under these conditions scraper work is cheaper than any other method. Scooping may be done all in one direction, in which case two half-turns are made for each load moved; or it may be done in both directions (from both sides on to a bank, or, in canal work, from the center to each bank), in which case one load is hauled to each half-turn. The capacity of the scoops (the "drag" variety) is $\frac{1}{10}$ cubic yard; the time lost in loading, unloading, and all other ways per load (except in turning) will average $\frac{2}{3}$ minute; the time lost in each half-turn (semi-circle) is $\frac{1}{3}$ minute; the speed of the horses may be estimated as 70 feet of lead per minute, the lead being here considered as the sum of the vertical and horizontal distances, and the estimate including the time of going and returning. If a represents the sum of the horizontal and vertical distances, the number of cubic yards handled per day of 10 hours by "side-scooping" will be

$$
0.1\left(\frac{600}{\frac{a}{70}+1 \frac{1}{3}}\right), \quad \text { which equals } \quad \frac{4200}{a+93 \frac{1}{3}} .
$$

For "double-scooping" the formula becomes

$$
0.1\left(\frac{600}{\frac{a}{70}+1}\right), \quad \text { which equals } \quad \frac{4200}{a+70}
$$

Dividing the cost of a scraper per day (estimated at $\$ 2.75$) by the number of yards handled per day gives the average cost per yard.

* Condensed from Journ. Franklin Inst., Oct. 1841, by Morris.

Except in very loose sandy soil it is best to plough the earth first, which will cost about 1 c. per yard. (See § 107.) Dragscrapers are now made chiefly of steel, and their capacity is more nearly 0.15 cubic yard. Wheeled scrapers, having a capacity of about 0.5 cubic yard, are frequently used with even greater economy and for greater distances, as they are cheaper than carts up to 250 or 300 feet of lead. Both drag- and wheelscrapers are best operated in gangs of perhaps 10 , using extra or "snap" teams to help load, and a few extra men to help in loading and unloading. The average cost of one scraper per day may thus be easily calculated and the average number of cubic yards handled per day computed as above, from which the cost per yard may be estimated.
(e) Cars and horses. The items of cost by this method are (a) charge for horses employed, (b) charge for men employed strictly in hauling, (c) charge for shifting rails when necessary, (d) repairs, depreciation, and interest on cost of cars and track. Part of this cost should strictly be classified under items 5 and 6 , mentioned in § 106, but it is perhaps more convenient to estimate them as follows:

The traction of a car on rails is so very small and constant that grade resistance constitutes a very large part of the total resistance if the grade is 1% or more. For al ordinary grades it is sufficiently accurate to say that the grade resistance is to the gross weight as the rise is to the distance. If the distance is supposed to be measured along the slope, the proportion is strictly true; i.e., on a 1% grade the grade resistance is 1 lb . per 100 of weight or 20 lbs . per ton. If the resistance on a level at the usual velocity is $\frac{1}{1 \frac{1}{2} \pi}$, a grade of $1: 120(0.83 \%)$ will exactly double it. If the material is hauled down a grade of $1: 120$, the cars will run by gravity after being started. The work of hauling will then consist practically of hauling the 'empty cars up the grade. The grade resistance depends only on the rate of grade and the weight, but the tractive resistance will be greater per ton of weight for the unloaded than for the loaded cars. The tractive power of a horse is less on a grade than on a level, not only because the horse raises his own weight in addition to the load, but is anatomically less capable of pulling on a grade than on a level. In general it will be possible to plan the work so that loaded cars need not be hauled $u p$ a grade, unless an embankment is to be formed from a low
borrow-pit, in which case another method would probably be advisable. These computations are chiefly utilized in designing the method of work-the proportion of horses to cars. An example may be quoted from English practice (Hurst), in which the cars had a capacity of $3 \frac{1}{3}$ cubic yards, weighing 30 cwt. empty. Two horses took five "wagons" $\frac{3}{4}$ of a mile on a level railroad and made 15 journeys per day of 10 hours, i.e., they handled 250 yards per day. In addition to those on the "straight road," another horse was employed to make up the train of loaded wagons. With a short lead the straight-road horses were employed for this purpose. In the above example the number of men required to handle these cars, shift the tracks, etc., is not given, and so the exact cost of the above work cannot be analyzed. It may be noticed that the two horses travelled $22 \frac{1}{2}$ miles per day, drawing in one direction a load, including the weight of the cars, of about $57,300 \mathrm{lbs}$., or 28.65 net tons. Allowing $\frac{1}{1 \frac{1}{0}}$ as the necessary tractive force, it would require a pull of 477.5 lbs ., or 239 lbs . for each horse. With a velocity of 220 feet per minute this would amount to $1 \frac{1}{2}$ horse-power per horse, exerted for only a short time, however, and allowing considerable time for rest and for drawing only the empty cars. The cars generally used in this countiy have a capacity of $1 \frac{1}{2}$ cubic yards and cost about $\$ 65$ apiece. Besides the shovellers and dumping-gang, several men and a foreman will be required to keep the track in order and to make the constant shifts that are necessary. Two trains are generally used, one of which is loaded while the other is run to the dump. Some passing-place is necessary, but this is generally provided by having a switch at the cut and running the trains on each track alternately. This insures a train of cars always at the cut to keep the shovellers employed. The cost of hauling per cubic yard can only be computed when the number of laborers, cars, and horses employed are known, and these will depend on the lead, on the character of the excavation, on the grade, if any, etc., and must be so proportioned that the shovellers need not wait for cars to fill, nor the dumping-gang for material to handle, nor the horses and drivers for cars to haul. Much skill is necessary to keep a large force in smooth running order.
(f) Cars and locomotives. $30-\mathrm{lb}$. rails are the lightest that should be used for this work, and $35-$ or $40-\mathrm{lb}$. rails are better. One or two narrow-gauge locomotives (depending on the length
of haul), costing about $\$ 2500$ each, will be necessary to handle two trains of about 15 cars each, the cars having a capacity of about 2 cubic yards and costing about $\$ 100$ each. Some cars can be obtained as low as $\$ 70$. A force of about five mea nnd a foreman will be required to shift the tracks. The trackshifters, except the foreman, may be common laborers. The dumping-gang will require about seven men. Even when the material is all taken doun grade the grades may be too steep for the safe hauling of loaded cars down the grade, or for hauling empty cars up the grade. Under such circumstances temporary trestles are necessary to reduce the grade. When these are used, the uprights and bracing are left in the embankmentonly the stringers being removed. This is largely a necessity, but is partially compensated by the fact that the trestle forms a core to the embankment which prevents lateral shifting during settlement. The average speed of the trains may be taken as 10 miles per hour or 5 miles of lead per hour. The time lost in loading and unloading is estimated (Trautwine) as 9 minutes or .15 of an hour. The number of trips per day of 10 hours will equal $\frac{10}{\frac{1}{5} \text { (miles of lead) }+.15}$ or (miles of lead)+.75. . Of course this quotient must be a whole number. Kinowing the number of trains and their capacity, the total number of cubic yards handled is known, which, divided into the total daily cost of the trains, will give the cost of hauling per yard. The daily cost of a train will include
(a) Wages of engineer, who frequently fires his own engine;
(b) Fuel, about $\frac{1}{4}$ to 1 ton of bituminous coal, depending on work done;
(c) Water, a very variable item, frequently costing $\$ 3$ to $\$ 5$ per day;
(d) Repairs, variable, frequently at rate of 50 to 60% per year;
(e) Interest on cost and depreciation, 16 to 40%.

To these must be added, to obtain the total cost of the haui,
(f) Wages of the gang employed in shifting track.
110. Choice of method of haul dependent on distance. In light side-hill work in which material need not be moved more than 12 or 15 feet, i.e., moved laierally across the roadbed, the earth may be moved most cheaply by mere shovelling. Beyond 12 feet scrapers are more economical. It about 100 feet drag-
scrapers and wheelbarrows are equally economical. Between 100 and 200 feet wheelbarrows are generally cheaper than either carts or drag-scrapers, but wheeled scrapers are always cheaper than wheelbarrows. Beyond 500 feet two-wheeled carts become the most economical up to about 1700 feet; then four-wheeled wagons become more economical up to 3500 feet. Peyond this cars on rails, drawn by horses or by locomotives, become cheaper. The economy of cars on rails becomes evident for distances as small as 300 feet provided the volume of the excavation will justify the outlay. Locomotives will always be cheaper than horses and mules providing the work to be done is of sufficient magnitude to justify the purchase of the necessary plant and risk the loss in selling the plant ultimately as second-hand equipment, or keeping the plant on hand and idle for an indefinite period waiting for other work. Horses will not be economical for distances much over a mile. For greater distances locomotives are more economical, but the question of "limit of profitable haul" (\$116) must be closely studied, as the circumstances are certainly not common when it is advisable to haul material much over a mile.
ili. Item 4. Spreading. The cost of spreading varies with the method employed in dumping the load. When the earth is tipped over the edge of an embankment there is little if any necessary work. Trautwine allows about $\frac{1}{4}$ c. per cubic yard for keeping the dumping-places clear and in order. This would represent the wages of one man at $\$ 1$ per day attending to the unloading of 1200 two-wheeled carts each carrying $\frac{1}{3}$ cubic yard. 1200 carts in 10 hours would mean an average of two per minute, which implies more rapid and efficient work than may be depended on. The allowance is probably too small. When the material is dumped in layers some levelling is required, for which Trautwine allows 50 to 100 cubic yards as a fair day's work, costing from 1 to 2 cents per cubic yard. The cost of spreading will not ordinarily exceed this and is frequently nothingall depending on the method of unloading. It should be noted that Mr. Morris's examples and computations (Jour. Franklin Inst., Sept. 1841) disregard altogether any special charge for this item.
ii2. Item 5. Keeping Roadways in order. This feature is important as a measure of true economy, whatever the system of transportation, but it is often neglected. A petty saving in
such matters will cost many times as much in increased labor in hauling and loss of time. With some methods of haul the cost is best combined with that of other items.
(a) Wheelbarrows. Wheelbarrows should generally be run on planks laid on the ground. The adjusting and shifting of these planks is done by the wheelers, and the time for it is allowed for in the 10% allowance for "short rests, adjusting the wheeling plank, etc." The actual cost of the planks must be added, but it would evidently be a very small addition per cubic yard in a large contract. When the wheelbarrows are run on planks placed on "horses" or on trestles the cost is very appreciable; but the method is frequently used with great economy. The variations in the requirements render any general estimate of such cost impracticable.
(b) Carts and wagons. The cost of keeping roadways in order for carts and wagons is sometimes estimated merely as so much per cubic yard, but it is evidently a function of the lead. The work consists in draining off puddles, filling up ruts, picking up loose stones that may have fallen off the loads, and in general doing everything that will reduce the traction as much as possible. Temporary inclines, built to avoid excessive grade at some one point, are often measures of true economy. Trautwine suggests $\frac{1}{10}$ c. per cubic yard per 100 feet of lead for earthwork and $\frac{2}{10} \mathrm{c}$. for rockwork, as an estimate for this item when carts are used.
(c) Cars. When cars are used a shifting-gang, consisting of a foreman and several men (say five), are constantly employed in shifting the track so that the material may be loaded and unloaded where it is desired. The average cost of this item may be estimated by dividing the total daily cost of this gang by the number of cubic yards handled in one day.
if3. Item 6. Repairs, Wear, Depreciation, and Interest on Cost of Plant. The amount of this item evidently depends upon the character of the soil-the harder the soil the worse the wear and depreciation. The interest on cost depends on the current borrowing value of money. The estimate for this item has already been included in the allowances for horses, carts, ploughs, harness, wheelbarrows, steam-shovels, etc. Trautwine estimates $\frac{1}{4}$ c. per cubic yard for picks and shovels. Depreciation is generally a large percentage of the cost of earth-working
tools, the life of all being limited to a few years, and of many tools to a few months.
114. Item 7. SUPERINTENDENCE AND INCIDENTALS. The incidentals include water-carriers, trimming cuts to grade, digging the side ditches, trimming up the sides of borrow-pits to prevent their becoming unsightly, etc. These last operations yield but little earth and cost far more than the price paid per cubic yard. Morris allows 1 c . per cubic yard for this item; Trautwine allows $1 \frac{3}{4}$ to 2 c . for it; while others combine items 6 and 7 and call them 5% of the total cost, which method has the merit of making the cost of items 6 and 7 a function of the character of soil and length of lead.

II5. Item 8. CONTRACTOR'S Profit. This is usually estimated at from 6 to 15%, according to the sharpness of the competition and the possible uncertainty as to true cost owing to unfavorable circumstances. The contractor's real profit may vary considerably from this. He often pays clerks, boards and lodges the laborers in shanties built for the purpose, or keeps a supply-store, and has various other items both of profit and expense. His profit is largely dependent on skill in so handling the men that all can work effectively without interference or delays in waiting for others. An unusual season of bad weather will often affect the cost very seriously. It is a common occurrence to find that two contractors may be working on the same kind of material and under precisely similar conditions and at the same price, and yet one may be making money and the other losing it-all on account of difference of management.
ri6. Limit of profitable haul. As intimated in $\S \S 103$ and 110 , there is with every method of haul a limit of distance beyond which the expense for excessive hauling will exceed the loss resulting from borrowing and wasting. This distance is somewhat dependent on local conditions, thus requiring an independent solution for each particular case, but the general principles involved will be about as follows: Assume that it has been determined, as in Fig. 62, that the cut and fill will exactly balance between two points, as between e and x, assuming that, as indicated in § 101 (9), a trestle has been introduced between s and t, thus altering the mass curve to Est.xn... Since there is a balance between A^{\prime} and C^{\prime}, the material for the fill between C^{\prime} and e^{\prime} must be obtained either by "borrowing" in the immediate neighborhood or by transportation from the excavation
between z^{\prime} and n^{\prime}. If cut and fill have been approximately balanced in the selection of grade line, as is ordinarily done, borrowing material for the fill $C^{\prime} e^{\prime}$ implies a wastage of material at the cut $z^{\prime} n^{\prime}$. To compare the two methods, we may place against the plan of borrowing and wasting, (a) cost, if any, of extra right of way that may be needed from which to obtain earth for the fill $C^{\prime} e^{\prime}$; (b) cost of loosening, loading, hauling a distance equal to that between the centers of gravity of the borrow-pit and of the fill, and the other expenses incidental to borrowing M cubic yards for the fill $C^{\prime} e^{\prime} ;(c)$ cost of loosening, loading, hauling a distance equal to that between the centers of gravity of the cut $z^{\prime} n^{\prime}$ and of the spoil-bank, and the other expenses incidental to wasting M cubic yards at the cut $z^{\prime} n^{\prime}$; (d) cost, if any, of land needed for the spoil-bank. The cost of the other plan will be the cost of loosening, loading, hauling (the hauling being represented by the trapezoidal figure Cexn), and the other expenses incidental to making the fill $C^{\prime} e^{\prime}$ with the material from the cut $z^{\prime} n^{\prime}$, the amount of material being M cubic yards, which is represented in the figure by the vertical ordinate from e to the line $C n$. The difference between these costs will be the cost, if any, of land for borrow-pit and spoil-bank plus the cost of loosening, loading, etc. (except hauling and roadways) of M cubic yards, minus the difference in cost of the excessive haul from $C e$ to $x n$ and the comparatively short hauls from borrow-pit and to spoil-bank.

As an illustration, taking some of the estimates previously given for operating with average material, the cost of all items, except hauling and roadways, would be about as follows: loosening, with plough, 1.2 c., loading 5.0 c., spreading 1.5 c ., wear, depreciation, etc., 25 c., superintendence, etc., 1.5 c.; total 8.95 c . Suppose that the haul for both borrowing and wasting averages 100 feet or 1 station. Then the cost of haul per yard, using carts, would be (§ $109, a)[125 \times 3(1+4)] \div 600$ $=3.125 \mathrm{c}$. The cost of roadways would be about 0.1 c . per yard, making a total of 3.225 c. per cubic yard. Assume $M=10000$ cubic yards and the area Cexn $=180000$ yards-stations or the equivalent of 10000 yards hauled 1800 feet. This haul would cost $[125 \times 3(18+4)] \div 600=13.75$ c. per cubic yard. The cost of roadways will be $18 \times .1$ or 1.8 c ., making a total of 15.55 c . for hauling and roadways. The difference of cost of hauling and roadways will be $15.55-(2 \times 3.225)=9.10$ c. per yard or $\$ 910$
for the 10000 yards. Offsetting this is the cost of loosening, etc., 10000 yards, at 8.95 c., costing $\$ 895$. These figures may be better compared as follows:

These costs are practically balanced, but no allowance has been made for right of way. If any considerable amount had to be paid for that, it would decide this particular case in favor of the long haul. This shows that under these conditions 1800 feet is about the limit of profitable haul, the land costing nothing extra.

blasting.

117. Explosives. The effect of blasting is due to the extremely "rapid expansion of a gas which is developed by the decomposition of a very small amount of solid matter. Blasting compounds may be divided into two general classes, (a) slowburning and (b) detonating. Gunpowder is a type of the slowburning compounds. These are generally ignited by heat; the ignition proceeds from grain to grain; the heat and pressure produced are comparatively low. Nitro-glycerine is a type of the detonating compounds. They are exploded by a shock which instantaneously explodes the whole mass. The heat and pressure developed are far in excess of that produced by the explosion of powder. Nitro-glycerine is so easily exploded that it is very dangerous to handle. It was discovered that if the nitro-glycerine was absorbed by a spongy material like infusorial earth, it was much less liable to explode, while its power when actually exploded was practically equal to that of the amount of pure nitro-glycerine contained in the dynamite, which is the name given to the mixture of nitro-glycerine and infusorial earth. Nitro-glycerine is expensive; many other explosive chemical compounds which properly belong to the slow-burning
class are comparatively cheap. It has been conclusively demon. strated that a mixture of nitro-glycerine and some of the cheaper chemicals has a greater explosive force than the sum of the strengths of the component parts when exploded separately. Whatever the reason, the fact seems established. The reason is possibly that the explosion of the nitro-glycerine is sufficiently powerful to produce a detonation of the other chemicals, which is impossible to produce by ordinary means, and that this explosion caused by detonation is more powerful than an ordinary explosion. The majority of the explosive compounds and "powders" on the market are of this character-a mixture of 20 to 60 per cent. of nitro-glycerine with variable proportions of one or more of a great variety of explosive chemicals.

The choice of the explosive depends on the character of the rock. A hard brittle rock is most effectively blasted by a detonating compound. The rapidity with which the full force of the explosive is developed has a shattering effect on a brittle substance. On the contrary, some of the softer tougher rocks and indurated clays are but little affected by dynamite. The result is but little more than an enlargement of the blast-hole. Quarrying must generally be done with blasting-powder, as the quicker explosives are too shattering. Although the results obtained by various experimenters are very variable, it may be said that pure nitro-glycerine is eight times as powerful as black powder, dynamite (75% nitro-glycerine) six times, and guncotton four to six times as powerful. For open work where time is not particularly valuable, black powder is by far the cheapest, but in tunnel-headings, whose progress determines the progress of the whole work, dynamite is so much more effective and so expedites the work that its use becomes economical.
118. Drilling. Although many very complicated forms of drill-bars have been devised, the best form (with slight modifications to suit circumstances) is as shown in Fig. 64, (a) and (b). The width should flare at the bottom (a) about 15 to 30%. For hard rock the curve of the edge should be somewhat flatter and for soft rock somewhat moze curved than shown, Fig. 64, (a). Sometimes the angle of the two faces is varied from that given, Fig. 64, (b), and occasionally the edge is purposely blunted so as to give a crushing rather than a cutting effect. The drills will require sharpening for each 6 to 18 inches depth of hole, and will require a new edge to be worked every 2 to 4 days.

For drilling vertical holes the churn-drill is the most economical. The drill-bar is of iron, about 6 to 8 feet long, $1_{4}^{\prime \prime \prime}$ in diameter, weighs about 25 to 30 lbs ., and is shod with a piece of steel welded on. The bar is lifted a few inches between each blow, turned partially around, and allowed to fall, the impact doing the work. From 5 to 15 feet of holes, depending on the character of the rock, is a fair day's work-10 hours. In very soft rocks even more than this may be done. This method is

Fig. 64.
inapplicable for inclined holes or even for vertical holes in confined places, such as tunnel-headings. For such places the only practical hand method is to use hammers. This may be done by light drills and light hammers (one-man work), or by heavier drills held by one man and struck by one or two men with heavy hammers. The conclusion of an exhaustive investigation as to the relative economy of light or heavy hammers is that the lighthammer method is more economical for the softer rocks, the heary-hammer method is more economical for the harder rocks, but that the light-hammer method is always more expeditious and hence to be preferred when time is important.

The subject of machine rock-drills is too vast to be treated here. The method is only practicable when the amount of work to be done is large, and especially when time is valuable. The machines are generally operated by compressed air for tun-nel-work, thus doing the additional service of supplying fresh air to the tunnel-headings where it is most needed. The cost per foot of hole drilled is quite variable, but is usually somewhat less than that of hand-drilling-sometimes but a small fraction of it.
119. Position and direction of drill-holes. As the cost of drilling holes is the largest single item in the total cost of blasting, it is necessary that skill and judgment should be used in so
locating the holes that the blasts will be most effective. The greatest effect of a blast will evidently be in the direction of the "line of least resistance." In a strictly homogeneous material this will be the shortest line from the center of the explosive to the surface. The variations in homogeneity on account of laminations and seams require that each case shall be judged according to experience. In open-pit blasting it is generally easy to obtain two and sometimes three exposed faces to the rock, making it a simple matter

DRILL HOLES IN T.UNNEL HEADING Fig. 65. to drill holes so that a blast will do effective work. When a solid face of rock must be broken into, as in a tunnel-heading, the work is necessarily ineffectual and expensive. A conical or wedgeshaped mass will first be blown out by simultaneous blasts in the holes marked 1, Fig. 65; blasts in the holes marked 2 and 3 will then complete the crosssection of the heading. A great saving in cost may often be secured by skilfully taking advantage of seams, breaks, and irregularities. When the work is economically done there is but little noise or throwing of rock, a covering of old timbers and branches of trees generally sufficing to confine the smaller pieces which would otherwise fly up.
120. Amount of explosive. The amount of explosive required varies as the cube of the line of least resistance. The best results are obtained when the line of least resistance is $\frac{3}{4}$ of the depth of the hole; also when the powder fills about $\frac{1}{3}$ of the hole. For average rock the amount of powder required is as follows:

Line of least resistance Weight of powder....	$\begin{aligned} & 2 \\ & \frac{1}{4} \mathrm{ft} . \\ & \mathrm{lb} . \end{aligned}$	${ }_{2}^{4} \mathrm{ft}$. 2 lbs.	6 $6 \frac{3}{4} \mathrm{ft}$	$\begin{array}{r} 8 \\ 16 \mathrm{ft} . \\ \mathrm{lbs} . \end{array}$

Strict compliance with all of the above conditions would require that the diameter of the hole should vary for every case. While this is impracticable, there should evidently be some variation in the size of the hole, depending on the work to be done. For example, a $1^{\prime \prime}$ hole, drilled $2^{\prime} 8^{\prime \prime}$ deep, with its line of least resistance 2^{\prime}, and loaded with $\frac{1}{4} \mathrm{lb}$, of powder, would
be filled to a depth of $9 \frac{1}{2}^{\prime \prime}$, which is nearly $\frac{1}{3}$ of the depth. A $3^{\prime \prime}$ hole, drilled 8^{\prime} deep, with its line of least resistance 6^{\prime}, and loaded with $6 \frac{3}{4} \mathrm{lbs}$. of powder, would be filled to a depth of over $28^{\prime \prime}$, which is also nearly $\frac{1}{3}$ of the depth. One pound of blastingpowder will occupy about 28 cubic inches. Quarrying necessitates the use of numerous and sometimes repeated light charges of powder, as a heary blast or a powerful explosive like dynamite is apt to shatter the rock. This requires more powder to the cubic yard than blasting for mere excavation, which may usually be done by the use of $\frac{1}{4}$ to $\frac{1}{3} \mathrm{lb}$. of powder per cubic yard of easy open blasting. On account of the great resistance offered by rock when blasted in headings in tunnels, the powder used per cubic yard will run up to 2,4 , and even 6 lbs . per cubic yard. As before stated, nitro-glycerine is about eight times (and dynamite about six times) as powerful as the same weight of powder.
121. Tamping. Blasting-powder and the slow-burning explosives require thorough tamping. Clay is probably the best, but sand and fine powdered rock are also used. Wooden plugs, inverted expansive cones, etc., are periodically reinvented by enthusiastic inventors, only to be discarded for the simpler methods. Owing to the extreme rapidity of the development of the force of a nitro-glycerine or dynamite explosion, tamping is not so essential with these explosives, although it unquestionably adds to their effectiveness. Blasting under water has been effectively accomplished by merely pouring nitro-glycerine into the drilled holes through a tube and then exploding the charge without any tamping except that furnished by the superıncumbent water. It has been found that air-spaces about a charge make a material reduction in the effectiveness of the explosion. It is therefore necessary to carefully ram the explosive into a solid mass. Of course the liquid nitro-glycerine needs no ramming, but dynamite should be rammed with a wooden rammer. Iron should be carefully avoided in ramming gunpowder. A copper bar is generally used.
122. Exploding the charge. Black powder is generally exploded by means of a fuse which is essentially a cord in which there is a thin vein of gunpowder, the cord being protected by tar, extra linings of hemp, cotton, or even gutta-percha. The fuse is inserted into the middle of the charge, and the tamping carefully packed around it so that it will not be injured. To
produce the detonation required to explode nitro-glycerine and dynamite, there must be an initial explosion of some easily ignited explosive. This is generally accomplished by means of caps containing fulminating-powder which are exploded by electricity. The electricity (in one class of caps) heats a very fine platinum wire to redness, thereby igniting the sensitive powder, or (in another class) a spark is caused to jump through the powder between the ends of two wires suitably separated. Dynamite can also be exploded by using a small cartridge of gunpowder which is itself exploded by an ordinary fuse.
123. Cost. Trautwine estimates the cost of blasting (for mere excavation) as averaging 45 cents per cubic yard, falling as low as 30 cents for easy but brittle rock, and running up to 60 cents and even $\$ 1$ when the cutting is shallow, the rock especially tough, and the strata unfavorably placed. Soft tough rock frequently requires more powder than harder brittle rock.
124. Classification of excavated material. The classification of excavated material is a fruitful source of dispute between contractors and railroad companies, owing mainly to the fact that the variation between the softest earth and the hardest rock is so gradual that it is very difficult to describe distinctions between different classifications which are unmistakable and indisputable. The classification frequently used is (a) earth, (b) loose rock, and (c) solid rock. As blasting is frequently used to loosen "loose rock" and even "earth" (if it is frozen), the fact that blasting is employed cannot be used as a criterion, especially as this would (if allowed) lead to unnecessary blasting for the sake of classifying material as rock.

Earth. This includes clay, sand, gravel, loam, decomposed rock and slate, boulders or loose stones not greater than 1 cubic foot (3 cubic feet, P. R. R.), and sometimes even "hard-pan." In general it will signify material which can be loosened by a plough with two horses, or with which one picker can keep one shoveller busy.

Loose rock. This includes boulders and loose stones of more than one cubic foot and less than one cubic yard; stratified rock, not more than six inches thick, separated by a stratum of elay; also all material (not classified as earth) which may be loosened by pick or bar and which "can be quarried without blasting, although blasting may occasionally be resorted to,"

Solid rock includes all rock found in masses of over one cubic yard which cannot be removed except by blasting.

It is generally specified that the engineer of the railroad company shall be the judge of the classification of the material, but frequently an appeal is taken from his decisions to the courts.
125. Specifications for earthwork. The following specifications, issued by the Norfolk and Western R R., represent the average requirements. It should be remembered that very strict specifications invariably increase the cost of the work, and frequently add to the cost more than is gained by improved quality of work.

1. The grading will be estimated and paid for by the cubic yard, and will include clearing and grubbing, and all open excavations, channels, and embankments required for the formation of the roadbed, and for turnouts and sidings; cutting all ditches or drains about or contiguous to the road; digging the foundation-pits of all culverts, bridges, or walls; reconstructing turnpikes or common roads in cases where they are destroyed or interfered with; changing the course or channel of streams; and all other excavations or embankments connected with or incident to the construction of said Railroad.
2. All grading, except where otherwise specified, whether for cuts or fills, will be measured in the excavations and will be classified under the following heads, viz.: Solid Rock, Loose Rock, Hard-pan, and Earth.

Solid Rock shall include all rock occurring in masses which, in the judgment of the said Engineer Maintenance of Way, may be best removed by blasting.

Loose Rock shall include all kinds of shale, soapstone, and other rock which, in the judgment of the said Engineer Maintenance of Way, can be removed by pick and bar, and is soft and loose enough to be removed without blasting, although blasting may be occasionally resorted to; also, detached stone of less than one (1) cubic yard and more than one (1) cubic foot.

Hard-pan shall consist of tough indurated clay or cemented gravel, which requires blasting or other equally expensive means for its removal, or which cannot be ploughed with less than four horses and a railroad plough, or which requires two pickers to a shoveller, the said Engineer Maintenance of Way to be the judge of these conditions.

Earth shall include all material of an earthy nature, of whatever name or character, not unquestionably loose rock or hardpan as above defined.

Powder. The use of powder in cuts will not be considered as a reason for any other classification than earth, unless the material in the cut is clearly other than earth under the above specifications.
3. Earth, gravel, and other materials taken from the excavations, except when otherwise directed by the said Engineer Maintenance of Way or his assistant, shall be deposited in the adjacent embankment; the cost of removing and depositing which, when the distance necessary to be hauled is not more than sixteen hundred (1600) feet, shall be included in the price paid for the excavation.
4. Extra Haul will be estimated and paid for as follows: whenever material from excavations is necessarily hauled a greater distance than sixteen hundred (1600) feet, there shall be paid in addition to the price of excavation the price of extra haul per 100 feet, or part thereof, after the first 1600 feet; the necessary haul to be determined in each case by the said Engineer Maintenance of Way or his assistant, from the profile and cross-sections, and the estimates to be in accordance therewith.
5. All embankments shall be made in layers of such thickness and carried on in such manner as the said Engineer Maintenance of Way or his assistant may prescribe, the stone and heavy materials being placed in slopes and top. And in completing the fills to the proper grade such additional heights and fulness of slope shall be given them, to provide for their settlement, as the said Engineer Maintenance of Way, or his assistant, may direct. Embankments about masonry shall be built at such times and in such manner and of such materials as the said Engineer Maintenance of Way or his assistant may direct.
6. In procuring materials for embankments from without the line of the road, and in wasting materials from cuttings, the place and manner of doing it shall in each case be indicated by the Engineer Maintenance of Way or his assistant; and care must be taken to injure or disfigure the land as little as possible. Borrow-pits and spoil-banks must be left by the Contractor in regular and sightly shape.
7. The lands of the said Railroad Company shall be cleared to the extent required by the said Engineer Maintenance of

Way, or his assistant, of all trees, brushes, logs, and other perishable materials, which shall be destroyed by burning or deposited in heaps as the said Engineer Maintenance of Way, or his assistant, may direct. Large trees must be cut not more than two and one-half ($2 \frac{1}{2}$) feet from the ground, and under embankments less than four (4) feet high they shall be cut close to the ground. All small trees and bushes shall be cut close to the ground.
8. Clearing shall be estimated and paid for by the acre or fraction of an acre.
9. All stumps, roots, logs, and other obstructions shall be grubbed out, and removed from all places where embankments occur less than two (2) feet in height; also, from all places where excavations occur and from such other places as the said Engineer Maintenance of Way or his assistant may direct.
10. Grubbing shall be estimated and paid for by the acre or fraction of an acre.
11. Contractors, when directed by the said Engineer Maintenance of Way or his assistant in charge of the work, will deposit on the side of the road, or at such convenient points as may be designated, any stone, rock, or other materials that they may excavate; and all materials excavated and deposited as above, together with all timber removed from the line of the road, will be considered the property of the Railroad Company, and the Contractors upon the respective sections will be responsible for its safe-keeping until removed by said Railroad Company, or until their work is finished.
12. Contractors will be accountable for the maintenance of safe and convenient places wherever public or private roads are in any way interfered with by them during the progress of the work. They will also be responsible for fences thrown down, and for gates and bars left open, and for all damages occasioned thereby.
13. Temporary bridges and trestles, erected to facilitate the progress of the work, in case of delays at masonry structures from any cause, or for other reasons, will be at the expense of the Contractor.
14. The line of road or the gradients may be changed in any manner, and at any time, if the said Engineer Maintenance of Way or his assistant shall consider such a change necessary or expedient; but no claim for an increase in prices of excavation
or embankment on the part of the Contractor will be allowed or consídered unless made in writing before the work on that part of the section where the alteration has been made shall have been commenced. The said Engineer Maintenance of Way or his assistant may also, on the conditions last recited, increase or diminish the length of any section for the purpose of more nearly equalizing or balancing the excavations and embankments, or for any other reason.
15. The roadbed will be graded as directed by the said Engineer Maintenance of Way or his assistant, and in conformity with such breadths, depths, and slopes of cutting and filling as he may prescribe from time to time, and no part of the work will be finally accepted until it is properly completed and dressed off at the required grade.

CHAPTER IV.

TRESTLES.

126. Extent of use. Trestles constitute from 1 to 3% of the length of the average railroad. It was estimated in 1889 that there was then about 2400 miles of single-track railway trestle in the United States, divided among 150,000 structures and estimated to cost about $\$ 75,000,000$. The annual charge for maintenance, estimated at $\frac{1}{8}$ of the cost, therefore amounted to about $\$ 9,500,000$ and necessitated the annual use of perhaps $300,000,000$ ft . B. M. of timber. The corresponding figures at the present time must be somewhat in excess of this. The magnitude of this use, which is causing the rapid disappearance of forests, has resulted in endeavors to limit the use of timber for this purpose. Trestles may be considered as justifiable under the following conditions:
a. Permanent trestles.
127. Those of extreme height-then called viaducts and frequently constructed of iron or steel, as the Kinzua viaduct, 302 ft. high.
128. Those across waterways-e.g., that across Lake Pontchartrain, near New Orleans, 22 miles long.
129. Those across swamps of soft deep mud, or across a riverbottom, liable to occasional overflow.
b. Temporary trestles.
130. To open the road for traffic as quickly as possible-often a reason of great financial importance.
131. To quickly replace a more elaborate structure, dèstroyed by accident, on a road already in operation, so that the interruption to traffic shall be a minimum.
132. To form an earth embankment with earth brought from a distant point by the train-load, when such a measure would cost less than to borrow earth in the immediate neighborhood.
133. To bridge an opening temporarily and thus allow time to learn the regimen of a stream in order to better proportion the
size of the waterway and also to facilitate bringing suitable stone for masonry from a distance. In a new country there is always the double danger of either building a culvert too small, requiring expensive reconstruction, perhaps after a disastrous washout, or else wasting money by constructing the culvert unnecessarily large. Much masonry has been built of a very poor quality of stone because it could be conveniently obtained and because good stone was unobtainable except at a prohibitive cost for transportation. Opening the road for traffic by the use of temporary trestles obviates both of these difficulties.
134. Trestles vs. embankments. Low embankments are very much cheaper than low trestles both in first cost and maintenance. Very high embankments are very expensive to construct, but cost comparatively little to maintain. A trestle of equal height may cost much less to construct, but will be expensive to maintain-perhaps $\frac{1}{8}$ of its cost per year. To determine the height beyond which it will be cheaper to maintain a trestle rather than build an embankment, it will be necessary to allow for the cost of maintenance. The height will also depend on the relative cost of timber, labor, and earthwork. At the present average values, it will be found that for less heights than 25 feet the first cost of an embankment will generally be less than that of a trestle; this implies that a permanent trestle should never be constructed with a height less than 25 feet except for the reasons given in § 126. The height at which a permanent trestle is certainly cheaper than earthwork is more uncertain. A high grade line joining two hills will invariably imply at least a culvert if an embankment is used. If the culvert is built of masonry, the cost of the embankment will be so increased that the height at which a trestle becomes economical will be materially reduced. The cost of an embankment increases much more rapidly than the height-with very high embankments more nearly as the square of the height-while the cost of trestles does not increase as rapidly as the height. Although local circumstances may modify the application of any set rules, it is probably seldom that it will be cheaper to build an embankment 40 or 50 feet high than to permanently maintain a wooden trestle of that height. A steel viaduct would probably be the best solution of such a case. These are frequently used for permanent structures, especially when very high. The cost of maintenance is much less than that of wood, which makes the
use of iron or steel preferable for permanent trestles unless wood is abnormally cheap. Neither the cost nor the construction of iron or steel trestles will be considered in this chapter.
135. Two principal types. There are two principal types of wooden trestles-pile trestles and framed trestles. The great objection to pile trestles is the rapid rotting of the portion of the pile which is underground, and the difficulty of renewal. The maximum height of pile trestles is about 30 feet, and even this height is seldom reached. Framed trestles have been constructed to a height of considerably over 100 feet They are frequently built in such a manner that any injured piece may be readily taken out and renewed without interfering with traffic. Trestles consist of two parts-the supports called "bents," and the stringers and floor system. As the stringers and floor system are the same for both pile and framed trestles, the "bents" are all that need be considered separately.

PILE TRESTLES.

129. Pile bents. A pile bent consists generally of four piles driven into the ground deep enough to afford not only sufficient vertical resistance but also lateral resistance. On top of these piles is placed a horizontal "cap." The caps are fastened to the tops of the piles by methods illustrated in Fig. 66. The method of fastening shown in each case should not be considered as applicable only to the particular type of pile bent used to illustrate it. Fig. 66 (a and d) illustrates a mortise-joint with a hard.• wood pin about $1 \frac{1^{\prime \prime}}{4}$ in diameter. The hole for the pin should be bored separately through the cap and the mortise, and the hole through the cap should be at a slightly higher level than that through the mortise, so that the cap will be drawn down tight when the pin is driven. Occasionally an iron dowel (an iron pin about $1 \frac{1}{2}^{\prime \prime}$ in diameter and about $6^{\prime \prime}$ long) is inserted partly in the cap and partly in the pile. The use of drift-bolts, shown in Fig. 66 (b), is cheaper in first cost, but renders repairs and renewals very troublesome and expensive. "Split caps," shown in Fig. 66 (c), are formed by bolting two half-size strips on each side of a tenon on top of the pile. Repairs are very easily and cheaply made without interference with the traffic and without injuring other pieces of the bent. The smaller pieces are more easily obtainable in a sound condition; the
decay of one does not affect the other, and the first cost is but little if any greater than the method of using a single piece. For further discussion, see § 136.

For very light traffic and for a height of about 5 feet three vertical piles will suffice, as shown in Fig. 66 (a). Up to a height

Fig. 66.
of 8 or 10 feet four piles may be used without sway-bracing, as in Fig 66 (b), if the piles have a good bearing. For heights greater than 10 feet sway-bracing is generally necessary. The outside piles are frequently driven with a batter varying from $1: 12$ to $1: 4$.

Piles are made, if possible, from timber obtained in the vicinity of the work. Durability is the great requisite rather than strength, for almost any timber is strong enough (except as noted below) and will be suitable if it will resist rapid decay. The following list is quoted as being in the order of preference on account of durability:

1. Red cedar	5. White pine	9. White oak	12. Black oak
2. Red cypress	6. Redwood	10. Post-oak	13. Hemlock
3. Pitch-pine	7. Elm	11. Red oak	14. Tamarac
4. Yellow pine	8. Spruce	(

Red-cedar piles are said to have an average life of 27 years with a possible maximum of 50 years, but the timber is rather
weak, and if exposed in a river to flowing ice or driftwood is apt to be injured. Under these circumstances oak is preferable, although its life may be only 13 to 18 years.
130. Methods of driving piles. The following are the principal methods of driving piles:
a. A hammer weighing 2000 to 3000 lbs. or more, sliding in guides, is drawn up by horse-power or a portable engine, and allowed to fall freely.
b. The same as above except that the hammer does not fall freely, but drags the rope and revolving drum as it falls and is thus quite materially retarded. The mechanism is a little more simple, but is less effective, and is sometimes made deliberately deceptive by a contractor by retarding the blow, in order to apparently indicate the requisite resistance on the part of the pile.

The above methods have the advantage that the mechanism is cheap and can be transported into a new country with comparative ease, but the work done is somewhat ineffective and costly compared with some of the more elaborate methods given below.
c. Gunpowder pile-drivers, which automatically explode a cartridge every time the hammer falls. The explosion not only forces the pile down, but throws up the hammer for the next blow. For a given height of fall the effect is therefore doubled. It has been shown by experience, however, that when it is attempted to use such a pile-driver rapidly the mechanism becomes so heated that the cartridges explode prematurely, and the method has therefore been abandoned.
d. Steam pile-drivers, in which the hammer is operated directly by steam. The hammer falls freely a height of about 40 inches and is raised again by steam. The effectiveness is largely due to the rapidity of the blows, which does not allow time between the blows for the ground to settle around the pile and increase the resistance, which does happen when the blows are infrequent. "The hammer-cylinder weighs 5500 lbs ., and with 60 to 75 lbs . of steam gives 75 to 80 blows per minute. With 41 blows a large unpointed pile was driven 35 feet into a hard clay bottom in half a minute.' Such a driver would cost about $\$ 800$.

The above four methods are those usual for dry earth. In very soft wet or sandy soils, where an unlimited supply of water
is available, the water-jet is sometimes employed. A pipe is fastened along the side of the pile and extends to the pile-point. If water is forced through the pipe, it loosens the sand around the point and, rising along the sides, decreases the side resistance so that the pile sinks by its own weight, aided perhaps by extra weights loaded on. This loading may be accomplished by connecting the top of the pile and the pile-driver by a block and tackle so that a portion of the weight of the pile-driver is continually thrown on the pile.

Excessive driving frequently fractures the pile below the surface and thereby greatly weakens its bearing power. To
 prevent excessive "brooming" of the top of the pile, owing to the action of the hammer, the top should be protected by an iron ring fitted to the top of the pile. The "brooming" not only renders the driving ineffective and hence uneconomical, but vitiates the value of any test of the bearing power of the pile by noting the sinking due to a given weight falling a given distance. If the pile is so soft that brooming is unavoidable, the top Fig. 67. should be adzed off frequently, and especially should it be done just before the final blows which are to test its bearing-power.

In a new country judgment and experience will be required to decide intelligently whether to employ a simple drop-hammer machine, operated by horse-power and easily transported but uneconomical in operation, or a more complicated machine working cheaply and effectively after being transported at greater expense.
131. Pile-driving formulæ. If $R=$ the resistance of a pile, and s the set of the pile during the last blow, w the weight of the pile-hammer, and h the fall during the last blow, then we may state the approximate relation that $R_{s}=w h$, or $R=\frac{w h}{s}$. This is the basic principle of all rational formulæ, but the maximum weight which a pile will sustain after it has been driven some time is by no means equal to the resistance of the pile during the last blow. There are also many other modifying elements which have been variously allowed for in the many proposed formulæ. The formulæ range from the extreme of empirical simplicity to very complicated attempts to allow
properly for all modifying causes. As the simplest rule, specifications sometimes require that the piles shall be driven until the pile will not sink more than 5 inches under five consecutive blows of a $2000-\mathrm{lb}$. hammer falling 25 feet. The "Engineering News formula" * gives the safe load as $\frac{2 w h}{s+1}$, in which $w=$ weight of hammer, $h=$ fall in feet, $s=$ set of pile in inches under the last blow. This formula is derived from the above basic formula by calling the safe load $\frac{1}{6}$ of the final resistance, and by adding (arbitrarily) 1 to the final set (s) as a compensation for the extra resistance caused by the settling of earth around the pile between each blow. This formula is used only for ordinary hammer-driving. When the piles are driven by a steam pile-driver the formula becomes safe load $=\frac{2 w h}{s+0.1}$. For the "gunpowder pile-driver," since the explosion of the cartridge drives the pile in with the same force with which it throws the hammer upward, the effect is twice that of the fall of the hammer, and the formula becomes safe load $=\frac{4 w h}{s+0.1}$. In these last two formulæ the constant in the denominator is changed from $s+1$ to $s+0.1$. The constant (1.0 or 0.1) is supposed to allow, as before stated, for the effect of the extra resistance caused by the earth settling around the pile between each blow. The more rapid the blows the less the opportunity to settle and the less the proper value of the constant.

The above formulæ have been given on account of their simplicity and their practical agreement with experience. Many other formulæ have been proposed, the majority of which are more complicated and attempt to take into account the weight of the pile, resistance of the guides, etc. While these elements, as well as many others, have their influence, their effect is so overshadowed by the indeterminable effect of other elementsas, for example, the effect of the settlement of earth around the pile between blows-that it is useless to attempt to employ anything but a purely empirical formula.

Examples. 1. A pile was driven with an ordinary hammer weighing 2500 pounds until the sinking under five consecutive blows was $15 \frac{1}{2}$ inches. The fall of the hammer during the last

[^8]blows was 24 feet. What was the safe bearing power of the pile?
$$
\frac{2 w h}{s+1}=\frac{2 \times 2500 \times 24}{\left(\frac{1}{5} \times 15.5\right)+1}=\frac{120000}{4.1}=29300 \text { pounds. }
$$
2. Piles are being driven into a firm soil with a steam piledriver until they show a safe bearing power of 20 tons. The hammer weighs 5500 pounds and its fall is 40 inches. What should be the sinking under the final blow?
\[

$$
\begin{aligned}
40000 & =\frac{2 w h}{s+0.1}=\frac{2 \times 5500 \times 3.33}{s+0.1} \\
& =\frac{36667}{40000}-0.1=.81 \mathrm{inch}
\end{aligned}
$$
\]

132. Pile-points and pile-shoes. Piles are generally sharpened to a blunt point. If the pile is liable to strike boulders, sunken logs, or other obstructions which are

Fig. 68. liable to turn the point, it $\mathrm{i}_{\text {s }}$ necessary to protect the point by some form of shoe. Several forms in east iron have been used, also a wrought-iron shoe, having four "straps" radiating from the apex, the straps being nailed on to the pile, as shown in Fig. 68 (b). The cast-iron form shown in Fig. 68 (a) has a base cast around a drift-bolt. The recess on the top of the base receives the bottom of the pile and prevents a tendency to split the bottom of the pile or to force the shoe off laterally.
133. Details of design. No theoretical calculations of the strength of pile bents need be attempted on account of the extreme complication of the theoretical strains, the uncertainty as to the real strength of the timber used, the variability of that strength with time, and the insignificance of the economy that would be possible even if exact sizes could be computed. The piles are generally required to be not less than $10^{\prime \prime}$ or $12^{\prime \prime}$ in diameter at the large end. The P.R. R. requ res that they shall
be "not less than 14 and 7 inches in diameter at butt and small end respectively, exclusive of bark, which must be removed." The removal of the bark is generally required in good work. Soft durable woods, such as are mentioned in § 129, are best for the piles, but the caps are generally made of oak or yellow pine. The caps are generally 14 feet long (for single track) with a cross-section $12^{\prime \prime} \times 12^{\prime \prime}$ or $12^{\prime \prime} \times 14^{\prime \prime}$. "Split caps" would consist of two pieces $6^{\prime \prime} \times 12^{\prime \prime}$. The sway-braces, never used for less heights than 6^{\prime}, are made of $3^{\prime \prime} \times 12^{\prime \prime}$ timber, and are spiked on with $\frac{3^{\prime \prime}}{8}$ spikes $8^{\prime \prime}$ long. The floor system will be the same as that described later for framed trestles.
134. Cost of pile trestles. The cost, per linear foot, of piling depends on the method of driving, the scarcity of suitable timber, the price of labor, the length of the piles, and the amount of shifting of the pile-driver required. The cost of soft-wood piles varies from 8 to 15 c . per lineal foot, and the cost of oak piles varies from 10 to 30 c . per foot according to the length, the longer piles costing more per foot. The cost of driving will average about $\$ 2.50$ per pile, or 7.5 to 10 c. per lineal foot. Since the cost of shifting the pile-driver is quite an item in the total cost, the cost of driving a long pile would be less per foot than for a short pile, but on the other hand the cost of the pile is greater per foot, which tends to make the total cost per foot constant. Specifications generally say that the piling will be paid for per lineal foot of piling left in the work. The wastage of the tops of piles sawed off is always something, and is frequently very large. Sometimes a small amount per foot of piling sawed off is allowed the contractor as compensation for his loss. This reduces the contractor's risk and possibly reduces his bid by an equal or greater amount than the extra amount actually paid him.

FRAMED TRESTLES.

135. Typical design. A typical design for a framed trestle bent is given in Fig. 69. This represents, with slight variations of detail, the plan according to which a large part of the framed trestle bents of the country have been built-i.e., of those less than 20 or 30 feet in height, not requiring multiple story construction.
136. Joints. (a) The mortise-and-tenon joint is illustrated in

Fig. 69 and also in Fig. 66 (a). The tenon should be about

Fig. 69.
$3^{\prime \prime}$ thick, $8^{\prime \prime}$ wide, and $5 \frac{1 \frac{1}{2}^{\prime \prime}}{}$ long. The mortise should be cut a little deeper than the tenon. "Drip-holes"

Fig. 70.
 from the mortise to the outside will assist in draining off water that may accumulate in the joint and thus prevent the rapid decay that would otherwise ensue. These joints are very troublesome if a single post decays and requires renewal. It is generally required that the mortise and tenon should be thoroughly daubed with paint before putting them together. This will tend to make the joint water-tight and prevent decay from the accumulation and retention of water in the joint.
(b) The plaster joint. This joint is made by bolting and spiking a $3^{\prime \prime} \times 12^{\prime \prime}$ plank on both sides of the joint. The cap and sill should be notched to receive the posts. Repairs are greatly facilitated by the use of these joints. This method has been used by the Delaware and Hudson Canal Co. [R. R.].
(c) Iron plates. An iron plate of the form shown in Fig. 72
(b) is bent and used as shown in Fig. 72 (a). Bolts passing through the bolt-holes shown secure the plates to the timbers and make a strong joint which may be readily loosened for repairs. By slight modifications in the design the method may be used for inclined posts and complicated joints.
(d) Split caps and sills. These are described in § 129. Their advantages apply with even greater force to framed trestles.
(e) Dowels and drift-bolts. These joints facilitate cheap and rapid construction, but renewals and repairs are very difficult, it being almost impossible to extract a drift-bolt, which has been driven its full length, without splitting open the pieces containing it. Notwithstanding this objection they are extensively used, especially for temporary work which is not expected to be used long enough to need repairs.

Fig. 73.
137. Multiple-story construction. Single-story framed trestle bents are used for heights up to 18 or 20 feet and exceptionally up to 30 feet. For greater heights some such construction as is illustrated in a skeleton design in Fig. 73 is used. By using split sills between each story and separate vertical and batter posts in each story, any piece may readily be removed and renewed if necessary. The height of these stories varies, in different designs, from 15 to 25 and even 30 feet. In some designs the structure of each story is independent of the stories above and below. This greatly facilitates both the original construction and subsequent repairs.

In other designs the verticals and batter-posts are made continuous through two consecutive stories. The structure is somewhat stiffer, but is much more difficult to repair.

Since the bents of any trestle are usually of variable height and those heights are not always an even multiple of the uniform height desired for the stories, it becomes necessary to make the

Fig. 74.
upper stories of uniform height and let the odd amount go to the lowest story, as shown in Figs. 73 and 74.
138. Span. The shorter the span the greater the number of trestle bents; the longer the span the greater the required strength of the stringers supporting the floor. Economy demands the adoption of a span that shall make the sum of these require-

Fig. 75.
ments a minimum. The higher the trestle the greater the cost of each bent, and the greater the span that would be justifiable. Nearly all trestles have bents of variable height, but the advantage of employing uniform standard sizes is so great that many
roads use the same span and sizes of timber not only for the panels of any given trestle, but also for all trestles regardless of height. The spans generally used vary from 10 to 16 feet. The Norfolk and Western R. R. uses a span of $12^{\prime} 6^{\prime \prime}$ for all singlestory trestles, and a span of 25^{\prime} for all multiple-story trestles. The stringers are the same in both cases, but when the span is 25 feet, knee-braces are run from the sill of the first story below to near the middle of each set of stringers. These knee-braces are connected at the top by a "straining-beam" on which the stringers rest, thus supporting the stringer in the center and virtually reducing the span about one-half.
139. Foundations. (a) Piles. Piles are frequently used as a foundation, as in Fig. 76, particularly in soft ground, and also for temporary structures. These foundations are cheap, quickly constructed, and are particularly valuable when it is financially necessary to open the road for traffic as soon as possible and with the least expenditure of money; but there is the disadvantage of inevitable decay

Fig. 76. within a few years unless the piles are chemically treated, as will be discussed later. Chemical treatment, however, increases the cost so that such a foundation would often cost more than a foundation of stone. A pile should be driven under each post as shown in Fig. 76.
(b) Mud-sills. Fig. 77 illustrates the use of mud-sills as

Fig. 77. built by the Louisville and Nashville R. R. Eight blocks $12^{\prime \prime} \times 12^{\prime \prime} \times 6^{\prime}$ are used under each bent. When the ground is very soft, two additional timbers ($12^{\prime \prime} \times 12^{\prime \prime} \times$ length of bent-sill), as shown by the dotted lines, are placed underneath. The number required evidently depends on the nature of the ground.
(c) Stone foundations. Stonc foundations are the best and the most expensive. For very high trestles the Norfolk and

Western R. R. employs foundations as shown in Fig. 78, the walls being 4 feet thick. When the height of the trestle is 72 feet or less (the plans requiring for 72^{\prime} in height a foundationwall $39^{\prime} 6^{\prime \prime}$ long) the foundation is made continuous. The sill

Fig. 78.
of the trestle should rest on several short lengths of $3^{\prime \prime} \times 12^{\prime \prime}$ plank. laid transverse to the sill on top of the wall.
r40. Longitudinal bracing. This is required to give the structure longitudinal stiffness and also to reduce the columnar length of the posts. This bracing generally consists of horizontal "waling-strips" and diagonal braces. Sometimes the braces are placed wholly on the outside posts unless the trestle is very high. For single-story trestles the P. R. R. employs the "laced" system, i.e., a line of posts joining the cap of one bent with the sill of the next, and the sill of that bent with the cap of the next. Some plans employ braces forming an X in alternate panels. Connecting these braces in the center more than doubles their columnar strength. Diagonal braces, when bolted to posts, should be fastened to them as near the ends of the posts as possible. The sizes employed vary largely, depending on the clear length and on whether they are expected to act by tension or compression. $3^{\prime \prime} \times 12^{\prime \prime}$ planks are often used when the design would require tensile strength only, and $8^{\prime \prime} \times 8^{\prime \prime}$ posts are often used when compression may be expected.
141. Lateral bracing. Several of the more recent designs of trestles employ diagonal lateral bracing between the caps of adjacent bents. It adds greatly to the stiffness of the trestle and better maintains its alignment. $6^{\prime \prime} \times 6^{\prime \prime}$ posts, forming an \times and connected at the center, will answer the purpose.
142. Abutments. When suitable stone for masonry is at hand and a suitable subsoil for a foundation is obtainable without too much excavation, a masonry abutment will be the best. Such an abutment would probably be used when masonry footings for trestle bents were employed (§ 139, c).

Another method is to construct a " crib" of $10^{\prime \prime} \times 12^{\prime \prime}$ timber,
laid horizontally, drift-bolted together, securely braced and embedded into the ground. Except for temporary construction such a method is generally objectionable on account of rapid decay.

Another method, used most commonly for pile trestles, and for framed trestles having pile foundations ($\S 139, a$), is to use a pile bent at such a place that the natural surface on the uphill side is not far below the

Fig. 79. cap, and the thrust of the material, filled in to bring the surface to grade, is insignificant. $3^{\prime \prime} \times 12^{\prime \prime}$ planks are placed behind the piles, cap, and stringers to retain the filled material.

FLOOR SYSTEMS.
143. Stringers. The general practice is to use two, three, and even four stringers under each rail. Sometimes a stringer is placed under each guard-rail. Generally the stringers are made of two panel lengths and laid so that the joints alternate. A few roads use stringers of only one panel length, but this practice is strongly condemned by many engineers. The stringers should be separated to allow a circulation of air around them and prevent the decay which would occur if they were placed close together. This is sometimes done by means of $2^{\prime \prime}$ planks, 6^{\prime} to 8^{\prime} long, which are placed over each trestle bent. Several bolts, passing through all the stringers forming a group and through the separators, bind them all into one solid construction. Cast-iron "spools" or washers, varying from 4 " to $\frac{3}{4}$ " in length (or thickness), are sometimes strung on each bolt so as to separate the stringers. Sometimes washers are used between the separating planks and the stringers, the object of the separating planks then being to bind the stringers, especially abutting stringers, and increase their stiffness.

The most common size for stringers is $8^{\prime \prime} \times 16^{\prime \prime}$. The Pennsylvania Railroad varies the width, depth, and number of stringers under each rail according to the clear span. It may be noticed that, assuming a uniform load per running foot, both the pressure per square inch at the ends of the stringers (the
caps having a width of $12^{\prime \prime}$) and also the stress due to transverse strain are kept approximately constant for the variable gross load on these varying spans.

Clear span.	No. of pieces under each rail.	Width.	Depth.
$\begin{aligned} & 10 \text { feet } \\ & 12 \\ & 14 \\ & 14 \\ & 16 \end{aligned}$	2 2 2 3	8 8 8 10 10 8	$\begin{aligned} & 15 \text { inches } \\ & 16 \ddot{ } 17 \\ & 17 \\ & 17 \end{aligned}$

144. Corbels. A corbel (in trestle-work) is a stick of timber (perhaps two placed side by side), about 3^{\prime} to 6^{\prime} long, placed underneath and along the stringers and resting on the cap. There are strong prejudices for and against their use, and a corresponding diversity in practice. They are bolted to the stringers and thus stiffen the joint. They certainly reduce the objectionable crushing of the fibers at each end of the stringer. but if the corbel is no wider than the stringers, as is generally the ease, the area of pressure between the corbels and the cap is

Fig. 80.
no greater and the pressure per square inch on the cap is no less than the pressure on the cap if no corbels were used. If the corbels and cap are made of hard wood, as is recommended by some, the danger of crushing is lessened, but the extra cost and the frequent scarcity of hard wood, and also the extra cost and labor of using corbels, may often neutralize the advantages obtained by their use.
145. Guard-rails. These are frequently made of $5^{\prime \prime} \times 8^{\prime \prime}$ stuff, notched $1^{\prime \prime}$ for each tie. The sizes vary up to $8^{\prime \prime} \times 8^{\prime \prime}$, and the depth of notch from $\frac{3}{4}{ }^{\prime \prime}$ to $1 \frac{1}{2}^{\prime \prime}$. They are generally bolted to every third or fourth tie. It is frequently specified that they shall be made of oak, white pine, or yellow pine. The joints are made over a tie, by halving each piece, as illustrated in Fig. 81. The joints on opposite sides of the trestle should be "stag-
gered." Some roads fasten every tie to the guard-rail, using a bolt, a spike, or a lag-screw.

Guard-rails were originally used with the idea of preventing the wheels of a derailed truck from running off the ends of the ties. But it has been found that an outer guard-rail alone (without an inner guard-rail) becomes an actual element of danger, since it has frequently happened that a derailed wheel has caught on the outer guard-rail, thus causing the truck to slew around

Fig. 81.
and so produce a dangerous accident. The true function of the outside guard-rail is thus changed to that of a tie-spacer, which keeps the ties from spreading when a derailment occurs. The inside guard-rail generally consists of an ordinary steel rail spiked about 10 inches inside of the running rail. These inner guard-rails should be bent inward to a point in the center of the track about 50 feet beyond the end of the bridge or trestle. If the inner guard-rails are placed with a clear space of 10 inches inside the running rail, the outer guard-rails should be at least $6^{\prime} 10^{\prime \prime}$ apart. They are generally much farther apart than this.
146. Ties on trestles. If a car is derailed on a bridge or trestle, the heavily loaded wheels are apt to force their way between the ties by displacing them unless the ties are closely spaced and fastened. The clear space between ties is generally equal to or less than their widin. Occasionally it is a little more than their width. $6^{\prime \prime} \times 8^{\prime \prime}$ ties, spaced $14^{\prime \prime}$ to $16^{\prime \prime}$ from center to center, are most frequently used. The length varies from 9^{\prime} to 12^{\prime} for single track. They are generally notched $\frac{1^{\prime \prime}}{}{ }^{\prime \prime}$ deep on the under side where they rest on the stringers. Oak ties are generally required even when cheaper ties are used on the other sections of the road. Usually every third or fourth tic is bolted to the stringers. When stringers are placed underneath the guard-rails, bolts are run from the top of the guard-rail to the under side of the stringer. The guard-rails thus hold down the whole system of ties, and no direct fastening of the ties to the stringers is needed.
147. Superelevation of the outer rail on curves. The location of curves on trestles should be avoided if possible, especially when the trestle is high. Serious additional strains are intro-
duced especially when the curvature is sharp or the speed high. Since such curves are sometimes practically unavoidable, it is necessary to design the trestle accordingly. If a train is stopped on a curved trestle, the action of the train on the trestle is evidently vertical. If the train is moving with a considerable velocity, the resultant of the weight and the centrifugal action is a force somewhat inclined from the vertical. Both of these conditions may be expected to exist at times. If the axis of the system of posts is vertical (as illustrated in methods a, b, c, d, and e), any laúral force, such as would be produced by a moving train, will tend to rack the trestle bent. If the stringers are set vertically, a centrifugal force likewise tends to tip them sidewise. If the axis of the system of posts (or of the stringers) is inclined so as to coincide with the pressure of the train on the trestle when the train is moving at its normal velocity, there is no tendency to rack the trestle when the train is moving at that velocity, but there will be a tendency to rack the trestle or twist the stringers when the train is stationary. Since a moving train is usually the normal condition of affairs, as well as the condition which produces the maximum stress, an inclined axis is evidently preferable from a theoretical standpoint; but whatever design is adopted, the trestle should evidently be sufficiently cross-braced for either a moving or a stationary load, and any proposed design must be studied as to the effect of both of these conditions. Some of the various methods of securing the requisite superelevation may be described as follows:
(a) Framing the outer posts longer than the inner posts, so that the cap is inclined at the proper angle; axis of posts vertical. (Fig. 82.) The method requires more work in framing the trestle, but simplifies subsequent track-laying and maintenance, unless it should be found that the superelevation adopted is unsuitable, in which case it could be corrected by one of the other methods given below. The stringers tend to twist when the train is stationary.
(b) Notching the cap so that the stringers are at a different
elevation. (Fig. 83.) This weakens the cap and requires that all ties shall be notched to a bevelled surface to fit the stringers, which also weakens the ties. A centrifugal force will tend to twist the stringers and rack the trestle.
(c) Placing wedges underneath the ties at each stringer. These wedges are fastened with two bolts. Two or more wedges will be required for each tie. The additional number of pieces required

Frg. 83. for a long curve will be immense, and the work of inspection and keeping the nuts tight will greatly increase the cost of maintenance.
(d) Placing a wedge under the outer rail at each tie. This requires but one extra piece per tie. There is no need of a wedge under the inner tie in order to make the rail normal to the tread. The resulting inward inclination is substantially that produced by some forms of rail-chairs or tie-plates. The spikes (a little longer than usual) are driven through the wedge into the tie. Sometimes "lag-screws" are used instead of spikes. If experience proves that the superelevation is too much or too little, it may be changed by this method with less work than by any other.
(e) Corbels of different heights. When corbels are used (see § 144) the required in-

Fig. 84. clination of the floor system may be obtained by varying the depth of the corbels.
(f) Tipping the whole trestle. This is done by placing the trestle on an inclined foundation. If very much inclined, the trestle bent must be secured against the possibility of slipping sidewise, for the slope would be considerable with a sharp curve, and the
vibration of a moving train would reduce the coefficient of friction to a comparatively small quantity.
(g) Framing the outer posts longer. This case is identical with case (a) except that the axis of the system of posts is inclined, as in case (f), but the sill is horizontal.

The above-described plans will suggest a great variety of methods which are possible and which differ from the above only in minor details.
148. Protection from fire. Trestles are peculiarly subject to fire, from passing locomotives, which may not only destroy the trestle, but perhaps cause a terrible disaster. This danger is sometimes reduced by placing a strip of galvanized iron along the top of each set of stringers and, also along the tops of the caps. Still greater protection was given on a long trestle on the Louisville and Nashville R. R. by making a solid flooring of timber, covered with a layer of ballast on which the ties and rails were laid as usual.

Barrels of water should be provided and kept near all trestles, and on very long trestles barrels of water should be placed every two or three hundred feet along its length. A place for the barrels may be provided by using a few ties which have an extra length of about four feet, thus forming a small platform, which should be surrounded by a railing. The track-walker should be held accountable for the maintenance of a supply of water in these barrels, renewals being frequently necessary on account of evaporation. Such platforms should also be provided as REFUGEbays for track-walkers and trackmen working on the trestle. On very long trestles such a platform is sometimes provided with sufficient capacity for a hand-car.
149. Timber. Any strong durable timber may be used when the choice is limited, but oak, pine, or cypress are preferred when obtainable. When all of these are readily obtainable, the various parts of the trestle will be constructed of different kinds of wood-the stringers of long-leaf pine, the posts and braces of pine or red cypress, and the caps, sills, and corbels (if used) of white oak. The use of oak (or a similar hard wood) for caps, sills, and corbels is desirable because of its greater strength in resisting crushing across the grain, which is the critical test for these parts. There is no physiological basis to the objection, sometimes made, that different species of timber, in contact with each other, will rot quicker than if only one

PLATE 11.

(To face page 168.)
kind of timber is used. When a very extensive trestle is to be built at a place where suitable growing timber is at hand but there is no convenient sawmill, it will pay to transport a portable sawmill and engine and cut up the timber as desired.
${ }^{150}$. Cost of framed timber trestles. The cost varies widely on account of the great variation in the cost of timber. When a railroad is first penetrating a new and undeveloped region, the cost of timber is frequently small, and when it is obtainable from the company's right-of-way the only expense is felling and sawing. The work per M, B. M., is small, considering that a single stick $12^{\prime \prime} \times 12^{\prime \prime} \times 25^{\prime}$ contains 300 feet, B. M., and that sometimes a few hours' work, worth less than $\$ 1$, will finish all the work required on it. Smaller pieces will of course require more work per foot, B. M. Long-leaf pine can be purchased from the mills at from $\$ 8$ to $\$ 12$ per M feet, B. M., according to the dimensions. To this must be added the freight and labor of erection. The cartage from the nearest railroad to the trestle may often be a considerable item. Wrought iron will cost about 3 c . per pound and cast iron 2 c., although the prices are often lower than these. The amount of iron used depends on the detailed design, but, as an average, will amount to $\$ 1.50$ to $\$ 2$ per 1000 feet, B. M., of timber. A large part of the trestling of the country has been built at a contract price of about $\$ 30$ per 1000 feet, B. M., erected. While the cost will frequently rise to $\$ 40$ and even $\$ 50$ when timber is scarce, it will drop to $\$ 13$ (cost quoted) when timber is cheap.

DESIGN OF WOODEN TRESTLES.

15I. Common practice. A great deal of trestling has been constructed without any rational design except that custom and experience have shown that certain sizes and designs are probably safe. This method has resulted occasionally in failures but more frequently in a very large waste of timber. Many railroads employ a uniform size for all posts, caps, and sills, and a uniform size for stringers, all regardless of the height or span of the trestle. For repair work there are practiol reasons favoring this. "To attempt to run a large lot of sizes would be more wasteful in the end than to maintain a few stock sizes only. Lumber can be bought more cheaply by giving a general order for 'the run of the mill for the season,' or 'a cargo lot,' specify-
ing approximate percentages of standard stringer size, of 12×12-inch stuff, 10×10-inch stuff, etc., and a liberal proportion of 3 - or 4 -inch plank, all lengths thrown in. The $12 \times 12^{-}$ inch stuff, etc., is ordered all lengths, from a certain specified length up. In case of a wreck, washout, burn-out, or sudden call for a trestle to be completed in a stated time, it is much more economical and practical to order a certain number of carloads of 'trestle stuff' to the ground and there to select piece after piece as fast as needed, dependent only upon the length of stick required. When there is time to make the necessary surveys of the ground and calculations of strength, and to wait for a special bill of timber to be cut and delivered, the use of different sizes for posts in a structure would be warranted to a certain extent." * For new construction, when there is generally sufficient time to design and order the proper sizes, such wastefulness is less excusable, and under any conditions it is both safer and more economical to prepare standard designs which can be made applicable to varying conditions and which will at the same time utilize as much of the strength of the timber as can be depended on. In the following sections will be given the elements of the preparation of such standard designs, which will utilize uniform sizes with as little waste of timber as possible. It is not to be understood that special designs should be made for each individual trestle.
152. Required elements of strength. The stringers of trestles are subject to transverse strains, to crushing across the grain at the ends, and to shearing along the neutral axis. The strength of the timber must therefore be computed for all these kinds of stress. Caps and sills will fail, if at all, by crushing across the grain; although subject to other forms of stress, these could hardly cause failure in the sizes usually employed. There is an apparent exception to this: if piles are improperly driven and an uneven settlement subsequently occurs, it may have the effect of transferring practically all of the weight to two or three piles, while the cap is subjected to a severe transverse strain which may cause its failure. Since such action is caused generally by avoidable errors of construction it may be considered as abnormal, and since such a failure will generally occur by a gradual settlement, all danger may be avoided by reasonable

[^9]care in inspection. Posts must be tested for their columnar strength. These parts form the bulk of the trestle and are the parts which can be definitely designed from known stresses. The stresses in the bracing are more indefinite, depending on indeterminate forces, since the inclined posts take up an unknown proportion of the lateral stresses, and the design of the bracing may be left to what experience has shown to be safe, without involving any large waste of timber.
153. Strength of timber. Until recently tests of the strength of timber have generally been made by testing small, selected, well-seasoned sticks of "clear stuff," free from knots or imperfections. Such tests would give results so much higher than the vaguely known strength of large unseasoned "commercial" timber that very large factors of safety were recommendedfactors so large as to detract from any confidence in the whole theoretical design. Recently the U. S. Government has been making a thoroughly scientific test of the strength of full-size timber under various conditions as to seasoning, etc. The work has been so extensive and thorough as to render possible the economical designing of timber structures.

One important result of the investigation is the determination of the great influence of the moisture in the timber and the law of its effect on the strength. It has been also shown that timber soaked with water has substantially the same strength as green timber, even though the timber had once been thoroughly seasoned. Since trestles are exposed to the weather they should be designed on the basis of using green timber. It has been shown that the strength of green timber is very regularly about 55 to 60% of the strength of timber in which the moisture is 12% of the dry weight, 12% being the proportion of moisture usually found in timber that is protected from the weather but not heated, as, e.g., the timber in a barn. Since the moduli of rupture have all been reduced to this standard of moisture (12%), if we take one-eighth of the rupture values, it still allows a factor of safety of about five, even on green timber. On page 172 there are quoted the values taken from the U. S. Government reports on the strength of timber, the tests probably heing the most thorough and reliable that were ever made.

On page 173 are given the "average safe allowable working unit stresses in pounds per square inch," as recommended by the committee on "Strength of Bridge and Trestle Timbers,"
the work being done under the auspices of the Association of Railway Superintendents of Bridges and Buildings. The report was presented at their fifth annual convention, held in New Orleans, in October, 1895.

Moduli of rupture for various timbers. [12\% moisture.]
(Condensed from U. S. Forestry Circular, No. 15.)

	Species.		Cross-bending.		Crush-ingend-wise.	$\begin{aligned} & \text { Crusbing across } \\ & \text { the grain. } \end{aligned}$	
No.				$\begin{gathered} \text { Modulus } \\ \text { of } \\ \text { Elasticity. } \end{gathered}$			
1	Long-leaf pine	38	12600	2070000	8000	1180	700
2	Cuban	39	13600	2370000	8700	1220	700
3	Short-leaf	32	10100	1680000	6500	960	700
4	Loblolly	33	11300	2050000	7400	1150	700
5	White	24	7900	1390000	5400	700	400
6	Red	31	9100	1620000	6700	1000	500
7	Spruce	39	10000	1640000	7300	1200	800
8	Bald cypre	29	00	1290000	6000	800	00
9	White ceda	23	6300	910000	5200	700	400
10	Douglas spruce.	32	7900	1680000	5700	800	500
11	White o	50	13100	2090000	8500	2200	1000
12	Overcup "	46	11300	1620000	7300	1900	1000
13	Post	50	12300	2030000	7100	3000	1100
14	Cow	46	11500	1610000	7400	1900	900
15	Red	45	11400	1970000	7200	2300	1100
16	Texan	46	13100	1860000	8100	2000	900
19	Willow	45	10400	1750000	7200	1600	900
20	Spanish	46	12000	1930000	7700	1800	900
21	Shagbark hickory..	51	16000	2390000	9500	2700	1100
27	Pignut " ..	56	18700	2730000	10900	3200	1200
28	White elm.	34	10300	1540000	6500.	1200	800
29	Cedar	46	13500	1700000	8000	2100	1300
30	White ash	39	10800	1640000	7200	1900	1100

154. Loading. As shown in § 138, the span of trestles is always small, is generally 14 feet, and is never greater than 18 feet except when supported by knee-braces. The greatest load that will ever come on any one span will be the concentrated loading of the drivers of a consolidation locomotive. With spans of 14 feet or less it is impossible for even the four pairs of drivers to be on the same span at once. The weight of the rails, ties, and guard-rails should be added to obtain the total load on the stringers, and the weight of these, plus the weight of the stringers, should be added to obtain the pressure on the caps or corbels.

TRESTLES.
PER SQUARE INCH. RECOMMENDED BY
TIMBERS.
(ASSOCIATION OF RAILWAY CONVENTION, NEW ORLEANS, OCTOBER,

Tension.		Compression.			Transverse.		Shearing.	
		With grain.		Across grain.				
With grain.	Across grain.	End bearing.	$\begin{array}{\|c\|} \text { Column } \\ \text { under } \\ 15 \\ \text { diam- } \\ \text { eters. } \end{array}$		Extreme fiber stress	Modulus of elasticity.	With grain	Across grain.
Ten.	Ten.	Five.	Five.	Four.	Six.	Two.	Four.	Four.
1000	200	1400	900	500	1000	550000	200	1.000
700	50	1100	700	200	700	500000	100	500
1200	60	1600	1000	350	1200	850000	150	1250
1200 1000		1600	1200	300	1100	700000	150	
1000 900	50	1200	800	250	1800	600000	100	1000
900	50	1200	800	200	800	600000		
800	1200	800	200	700	600000		
1000 1000			1000				100	
$\begin{array}{r}1000 \\ 800 \\ \hline\end{array}$	50	1200	1000 800	200	800 700	700000 600000	100 100	
600			800	150	600	450000	100	600
600		1200	800	200	800	450000		
800		1200	800	200	800	350000		400°
900 700			1000 800	250 200	800	500000	150	400
700			800 800	200	750 800	350000 600000	100	

AVERAGE SAFE ALLOWABLE WORKING
THE COMMITTEE ON "STRENGTH OF BRIDGE AND TRESTLE
SUPERINTENDENTS OF BRIDGES AND BUILDINGS: FIFTH ANNUA
-.土аqu!̣ јо ри!̣
White onine.
Southern, long-leaf, or Georgia yellow pine. fir or pine;
Northern or short-leaf yellow pine.............

Canadian (Ottawa) white pine.
Canadian (Ontario) red pine.
Spruce and Eastern fir. Spruce and Eastern fir Cypress . Chestnun redwood California spruce.

This dead load is almost insignificant compared with the live load and may be included with it. The weight of rails, ties, etc., may be estimated at 200 pounds per foot. To obtain the weight on the caps the weight of the stringers must be added, which depends on the design and on the weight per cubic foot of the wood employed. But as the weight of the stringers is comparatively small, a considerable percentage of variation in weight will have but an insignificant effect on the result. Disregarding all refinements as to actual dimensions, the ordinary maximum loading for standard-gauge railroads may be taken as that due to four pairs of driving-axles, spaced $5^{\prime} 0^{\prime \prime}$ apart and giving a pressure of 25000 pounds per axle. This should be increased to 40000 pounds per axle (same spacing) for the heaviest traffic. On the basis of 25000 pounds per axle the following results have been computed:

STRESSES ON VARIOUS SPANS DUE TO MOVING LOADS OF 25000 POUNDS, SPACED $5^{\prime} 0^{\prime \prime}$ APART.

Span in feet.	Max. moment, ft. lbs.	Max. shear.	Max. load on one cap.
10	65000	38500	52100
12	103600	45000	62700
14	142400	49600	74200
16	181400	54725	85700
18	220600	60100	97900

Although the dead load does not vary in proportion to the live load, yet, considering the very small influence of the dead load, there will be no appreciable error in assuming the corresponding values, for a load of 40000 lbs . per axle, to be $\frac{40}{2} \frac{0}{}$ of $_{\text {d }}$ those given in the above tabulation.
155. Factors of safety. The most valuable result of the government tests is the knowledge that under given moisture conditions the strength of various species of sound timber is not the variable uncertain quantity it was once supposed to be, but that its strength can be relied on to a comparatively close percentage.; This confidence in values permits the employment of lower factors of safety than have heretofore been permissible. Stresses, which when excessive would result in immediate destruction, such as cross-breaking and columnar stresses, should be allowed a higher factor of safety-say 6 or 8 for green timber. Other stresses, such as crushing across the grain and shearing along the
neutral axis, which will be apparent to inspection before it is dangerous, may be allowed lower factors-say 3 to 5 .
156. Design of stringers. The strength of rectangular beams of equal width varies as the square of the depth; therefore deep beams are the strongest. On the other hand, when any crosssectional dimension of timber much exceeds $12^{\prime \prime}$ the cost is much higher per M, B. M., and it is correspondingly difficult to obtain thoroughly sound sticks, free from wind-shakes, etc. Wind-shakes especially affect the shearing strength. Also, if the required transverse strength is obtained by using high narrow stringers, the area of pressure between the stringers and the cap may become so small as to induce crushing across the grain. This is a very common defect in trestle design. As already indicated in § 138, the span should vary roughly with the average height of the trestle, the longer spans being employed when the trestle bents are very high, although it is usual to employ the same span throughout any one trestle.

To illustrate, if we select a span of 14 feet, the load on one cap will be 74200 lbs . If the stringers and cap are made of long-leaf yellow pine, which require the closely determined value of 1180 lbs . per square inch to produce a crushing amounting to 3% of the height on timber with 12% moisture, we may use 200 lbs. per square inch as a safe pressure even for green timber; this will require 371 square inches of surface. If the cap is $12^{\prime \prime}$ wide, this will require a width of 31 inches, or say 2 stringers under each rail, each 8 inches wide. For rectangular beams

$$
\text { Moment }=\frac{1}{6} R^{\prime} b h^{2} .
$$

Using for R^{\prime} the safe value 1275 lbs . per square inch, we have

$$
142400 \times 12=\frac{1}{6} \times 1275 \times 32 \times h^{2},
$$

from which $h=15^{\prime \prime} .9$. If desired, the width may be increased to $9^{\prime \prime}$ and the depth correspondingly reduced, which will give similarly $h=14^{\prime \prime} .9$, or say $15^{\prime \prime}$. This shows that two beams, $9^{\prime \prime} \times 15^{\prime \prime}$, under each rail will stand the transverse bending and have more than enough area for crushing.

The shear per square inch will equal

$$
\frac{3}{2} \frac{\text { total shear }}{\text { cross-section }}=\frac{3}{2} \frac{49600}{4 \times 9 \times 15}=138 \mathrm{lbs} . \text { per sq. inch, }
$$

which is a safe value, although it should preferably be less Hence the above combination of dimensions will answer.

The deflection should be computed to see if it exceeds the somewhat arbitrary standard of $\frac{1}{200}$ of the span. The deflection for uniform loading is

$$
\Delta=\frac{5 W l^{3}}{32 b \bar{b}^{3} E},
$$

in which $l=$ length in inches;
$W=$ total load, assumed as uniform;
$E=$ modulus of elasticity, given as $2,070,000 \mathrm{lbs}$.
per sq. in. for long-leaf pine, 12% dry, and assumed to be $1,200,000$ for green timber. Then

$$
\begin{gathered}
\Delta=\frac{5 \times 72800 \times 168^{3}}{32 \times 36 \times 15^{3} \times 1200000}=0^{\prime \prime} .37 \\
\frac{1}{200} \times 168^{\prime \prime}=0^{\prime \prime} .84,
\end{gathered}
$$

so that the calculated deflection is well within the limit. Of course the loading is not strictly uniform, but even with a liberal allowance the deflection is still safe.

For the heaviest practice (40000 lbs . per axle) these stringer dimensions must be correspondingly increased.
157. Design of posts. Four posts are generally used for single-track work. The inner posts are usually braced by the cross-braces, so that their columnar strength is largely increased; but as they are apt to get more than their share of work, the advantage is compensated and they should be treated as unsupported columns for the total distance between cap and sill in simple bents, or for the height of stories in multiple-story construction. The caps and sills are assumed to have a width of $12^{\prime \prime}$. It facilitates the application of bracing to have the columns of the same width and vary the other dimension as required.

Unfortunately the experimental work of the U. S. Government on timber testing has not yet progressed far enough to establish unquestionably a general relation between the strength of long columns and the crushing strength of short blocks. The
following formula has been suggested, but it cannot be considered as established:

$$
f=F \times \frac{700+15 c}{700+15 c+c^{2}}, \quad \text { in which }
$$

$f=$ allowable working stress per sq. in for long columns;
$F=$ " " " ، " " " " short blocks;
$c=\frac{l}{d}$;
$l=$ length of column in inches;
$d=$ least cross-sectional dimensions in inches.

Enough work has been done to give great reliability to the two following formulæ for white pine and yellow pine, quoted from Johnson's "Materials of Construction," p. 684:

Working load per sq. in. $=p=1000-\frac{1}{4}\left(\frac{l}{h}\right)^{2}$, long-leaf pine;

$$
\text { " ، " ، " } \quad \text { " }=p=600-\frac{1}{8}\left(\frac{l}{h}\right)^{2} \text {, white pine; }
$$

in which $l=$ length of column in inches, al $h=$ least cross-sectional dimension in inches.

The frequent practice is to use $12^{\prime \prime} \times 12^{\prime \prime}$ posts for all trestles. If we substitute in the above formula $l=20^{\prime}=240^{\prime \prime}$ and $h=12^{\prime \prime}$ we have $p=1000-\frac{1}{4}\left(\frac{240}{12}\right)^{2}=900 \mathrm{lbs}$.
$900 \times 144=129600 \mathrm{lbs}$., the working laad for each post. This is more than the total load on one trestle bent and illustrates the usual great waste of timber. Making the post $8^{\prime \prime} \times 12^{\prime \prime}$ and calculating similarly, we have $p=775$, and the working load per column is $775 \times 96=74400$ lbs. As considerable must be allowed for "weathering," which destroys the strength of the outer layers of the wood, and also for the dynamic effect of the live load, $8^{\prime \prime} \times 12^{\prime \prime}$ may not be too great, but it is certainly a safe dimension. $12^{\prime \prime} \times 6^{\prime \prime}$ would possibly prove amply safe in practice. One method of allowing for weathering is to disregard the outer half-inch on all sides of the post, i.e., to calculate the strength of a post one inch smaller in each dimension than the post actually employed. On this basis an $8^{\prime \prime} \times 12^{\prime \prime} \times 20^{\prime}$
post, computed as a $7^{\prime \prime} \times 11^{\prime}$ post, would have a safe columnar strength of 706 lbs . per square inch. With an area of 77 square inches, this gives a working load of 54362 lbs . for each post, or 217448 lbs. for the four posts. Considering that 74200 lbs . is the maximum load on one cap (14 feet span), the great excess of strength is apparent.
158. Design of caps and sills. The stresses in caps and sills are very indefinite, except as to crushing across the grain. As the stringers are placed almost directly over the inner posts, and as the sills are supported just under the posts, the transverse strcsses are almost insignificant. In the above case four posts have an area of $4 \times 12^{\prime \prime} \times 8^{\prime \prime}=384$ sq. in. The total load, 74200 lbs .; will then give a pressure of 193 pounds per square inch, which is within the allowable limit. This one feature might require the use of $8^{\prime \prime} \times 12^{\prime \prime}$ posts rather than $6^{\prime \prime} \times 12^{\prime \prime}$ posts, for the smaller posts, although probably strong enough as posts, would produce an objectionably high pressure.
159. Bracing. Although some idea of the stresses in the bracing could be found from certain assumptions as to windpressure, etc., yet it would probably not be found wise to decrease, for the sake of economy, the dimensions which practice has shown to be sufficient for the work. The economy that would be possible would be too insignificant to justify any risk. Therefore the usuai dimensions, given in §§ 139 and 140, should be employed.

CHAPTER V.

TUNNELS.

SURVEYING.

160. Surface surveys. As tunnels are always dug from each end and frequently from one or more intermediate shafts, it is necessary that an accurate surface survey should be made between the two ends. As the natural surface in a locality where a tunnel is necessary is almost invariably very steep and rough, it requires the employment of unusually refined methods of work to avoid inaccuracies. It is usual to run a line on the surface that will be at every point vertically over the center line of the tunnel. Tunnels are generally made straight unless curves are absolutely necessary, as curves add greatly to the cost. Fig. 85 represents roughly a longitudinal section of the

Fig. 85.-Sketch of Section of the Hoosac Tunnel.

Hoosac Tunnel. Permanent stations were located at A, B, C, D, E, and F, and stone houses were built at A, B, C, and D. These were located with ordinary field transits at first, and then all the points were placed as nearly as possible in one vertical plane by repeated trials and minute corrections, using a very large specially constructed transit. The stations D and F were necessary because E and A were invisible from C and B. The alignment at A and E having been determined with great accu racy, the true alignment was easily carried into the tunnel.

The relative elevations of A and E were determined with great accuracy. Steep slopes render necessary many settings of the level per unit of horizontal distance and require that the work be unusually accurate to obtain even fair accuracy per unit of distance. The levels are usually re-run many times until the probable error is a very small quantity

The exact horizontal distance between the two ends of the tunnel must also be known, especially if the tunnel is on a grade. The usual steep slopes and rough topography likewise render accurate horizontal measurements very difficult. Frequently when the slope is steep the measurement is best obtained by measuring along the slope and allowing for grade. This may be very accurately done by employing two tripods (level or transit tripods serve the purpose very well), setting them up slightly less than one tape-length apart and measuring between horizontal needles set in wooden blocks inserted in the top of each tripod. The elevation of each needle is also observed. The true horizontal distance between two successive positions of the needles then equals the square root of the difference of the squares of the inclined distance and the difference of elevation. Such measurements will probably be more accurate than those made by attempting to hold the tape horizontal and plumbing down with plumb-bobs, because (1) it is practically difficult to hold both ends of the tape truly horizontal; (2) on steep slopes it is impossible to hold the down-hill end of a 100foot tape (or even a 25 -foot length) on a level with the other end, and the great increase in the number of applications of the unit of measurement very greatly increases the probable error of the whole measurement; (3) the vibrations of a plumb-bob introduce a large probability of error in transferring the measurement from the elevated end of the tape to the ground, and the increased number of such applications of the unit of measurement still further increases the probable error.

16r. Surveying down a shaft. If a shaft is sunk, as at S, Fig 85, and it is desired to dig out the tunnel in both directions from the foot of the shaft so as to meet the headings from the outside, it is necessary to know, when at the bottom of the shaft, the elevation, alignment, and horizontal distance from each end of the tunnel.

The elevation is generally carried down a shaft by means of a steel tape. This method involves the least number of appli-
cations of the unit of measurement and greatly increases the accuracy of the final result.

The horizontal distance from each end may be easily transferred down the shaft by means of a plumb-bob, using some of the precautions described in the next paragraph.

To transfer the alignment from the surface to the bottom of a shaft requires the highest skill because the shaft is always small, and to produce a line perhaps several thousand feet long in a direction given by two points 6 or 8 feet apart requires that the two points must be determined with extreme accuracy. The eminently successful method adopted in the Hoosac Tunnel will be briefly described: Two beams were securely fastened across the top of the shaft (1030 feet deep), the beams being placed transversely to the direction of the tunnel and as far apart as possible and yet allow plumb-lines, hung from the intersection of each beam with the tunnel center line, to swing freely at the bottom of the shaft. These intersections of the beams with the center line were determined by averaging the results of a large number of careful observations for alignment. Two fine parallel wires, spaced about $\frac{1}{16}{ }^{\prime \prime}$ apart, were then stretched between the beams so that the center line of the tunnel bisected at all points the space between the wires. Plumb-bobs, weighing 15 pounds, were suspended by fine wires beside each cross-beam, the wires passing between the two parallel alignment wires and bisecting the space. The plumbbobs were allowed to swing in pails of water at the bottom. Drafts of air up the shaft required the construction of boxes surrounding the wires. Even these precautions did not suffice to absolutely prevent vibration of the wire at the bottom through a very small arc. The mean point of these vibrations in each case was then located on a rigid cross-beam suitably placed at the bottom of the shaft and at about the level of the roof of the tunnel. Short plumb-lines were then suspended from these points whenever desired; a transit was set (by trial) so that its line of collimation passed through both plumb-lines and the line at the bottom could thus be prolonged.

Some recent experience in the "Tamarack" shaft, 4250 feet deep, shows that the accuracy of the results may be affected by air-currents to an unsuspected extent. Two $50-\mathrm{lb}$. cast-iron plumb-bobs were suspended with No. 24 piano-wire in this shaft. The carefully measured distances between the wires
at top and bottom were 16.32 and 16.43 feet respectively. After considerable experimenting to determine the cause of the variation, it was finally concluded that air-currents were alone responsible. The variation of the bobs from a true vertical plane passing through the wires at the top was of course an unknown quantity, but since the variation in one direction amounted to 0.11 foot, the accuracy in other directions was very questionable. This shows that a careful comparative measurement between the wires at top and bottom should always be made as a test of their parallelism.
162. Underground surveys. Survey marks are frequently placed on the timbering, but they are apt to prove unreliable on account of the shifting of the timbering due to settlement of the surrounding material. They should never be placed at the bottom of the tunnel on account of the danger of being disturbed or covered up. Frequently holes are drilled in the roof and filled with wooden plugs in which a hook is screwed exactly on line Although this is probably the safest method, even these plugs are not always undisturbed, as the material, unless very hard, will often settle slightly as the excavation proceeds. When a tunnel is perfectly straight and not too long, alignment-points may be given as frequently as desired from permanent stations located outside

1ig. S6. the tunnel where they are not liable to disturbance. This has been accomplished by running the alignment through the upper part of the cross-section, at one side of the center, where it is out of the way of the piles of masonry material, débris, etc., which are so apt to choke up the lower part of the cross-section. The position of this line relative to the cross-section being fixed, the alignment of any required point of the cross-section is readily found by means of a light frame or template with a fixed target located where this line would intersect the frame when properly placed. A level-bubble on the frame will assist in setting the frome in its proper position.

In all tunnel surveying the cross-wires must be illuminated by a lantern, and the object sighted at must also be illuminated. A powerful dark-lantern with the opening covered with ground glass has been found useful. This may be used to illuminate a plumb-bob string or a very fine rod, or to place behind a brass plate having a narrow slit in it, the axis of the slit and plate being coincident with the plumb-bob string by which it is hung.

On account of the interference to the surveying caused by the work of construction and also by the smoke and dust in the air resulting from the blasting, it is generally necessary to make the surveys at times when construction is temporarily suspended.
163. Accuracy of tunnel surveying. Apart from the very natural desire to do surveying which shall check well, there is an important financial side to accurate tunnel surveying. If the survey lines do not meet as desired when the headings come together, it may be found necessary, if the error is of appreciable size, to introduce a slight curve, perhaps even a reversed curve, into the alignment, and it is even conceivable that the tunnel section would need to be enlarged somewhat to allow for these curves. The cost of these changes and the perpetual annoyance due to an enforced and undesirable alteration of the original design will justify a considerable increase in the expenses of the survey. Considering that the cost of surveys is usually but a small fraction of the total cost of the work, an increase of 10 or even 20% in the cost of the surveys will mean an insignificant addition to the total cost and frequently, if not generally, it will result in a saving of many times the increased cost. The accuracy actually attained in two noted American tunnels is given as follows: The Musconetcong tunnel is about 5000 feet long, bored through a mountain 400 feet high. The error of alignment at the meeting of the headings was $0^{\prime} .04$, error of levels $0^{\prime} .015$, error of distance $0^{\prime} .52$. The Hoosac tunnel is over 25000 feet long. The heading from the east end met the heading from the central shaft at a point 11274 feet from the east end and 1563 feet from the shaft. The error in alignment was $\frac{5}{16}$ of an inch, that of levels "a few hundredths," error of distance "trifling." The alignment, corrected at the shaft, was carried on through and met the heading from the west end at a point 10138 feet from the west end and 2056 feet from
the shaft. Here the error of alignment was $\frac{9}{16}$ " and that of levels 0.134 ft .

DESIGN.

164. Cross-sections. Nearly all tunnels have cross-sections peculiar to themselves-all varying at least in the details. The general form of a great many tunnels is that of a rectangle surmounted by a semi-circle or semi-ellipse. In very soft material an inverted arch is necessary along the bottom. In such cases the sides will generally be arched instead of vertical. The sides are frequently battered. With very long tunnels, several forms of cross-section will often be used in the same tunnel, owing to differences in the material encountered. In solid rock, which will not disintegrate upon exposure, no lining is required, and the cross-section will be the irregular section left by the blasting, the only requirement being that no rock shall be left within the required cross-sectional figure. Farther on, in the same tunnel, when passing through some very soft treacherous material, it may be necessary to put in a full arch lining-top, sides, and bottom-which will be nearly circular in cross-section. For an illustration of this see Figs. 87 and 88.

The width of tunnels varies as greatly as the designs. Singletrack tunnels generally have a width of 15 to 16 feet. Occasionally they have been built 14 feet wide, and even less, and also up to 18 feet, especially when on curves. 24 to 26 feet is the most common width for double track. Many double-track tunnels are only 22 feet wide, and some are 28 feet wide. The heights are generally 19 feet for single track and 20 to 22 feet for double track. The variations from these figures are considerable. The lower limits depend on the cross-section of the rolling stock, with an indefinite allowance for clearance and ventilation. Cross-sections which coincide too closely with what is absolutely required for clearance are objectionable, because any slight settlement of the lining which would otherwise be harmless would then become troublesome and even dangerous. Figs. 87,88 , and $89 *$ show some typical cross-sections.
165. Grade. A grade of at least 02% is needed for drainage. If the tunnel is at the summit of two grades, the tunnel grade should be practically level, with an allowance for drainage, the

Fig. 87.-Hoosac Tunnel. Section through Solid Rock.

Fig. 88.-Hoosac Tunnel. Section through Soft Ground.
actual summit being perhaps in the center so as to drain both ways. When the tunnel forms part of a long ascending grade, it is advisable to reduce the grade through the tunnel unless the tunnel is very short. The additional atmospheric resistance and the decreased adhesion of the driver wheels on the damp rails in a tunnel will cause an engine to work very hard and still more rapidly vitiate the atmosphere until the accumulation of poisonous gases becomes a source of actual danger to the engineer and

Fig. 89.-St. Cloud Tunnel.
fireman of the locomotive and of extreme discomfort to the passengers. If the nominal ruling grade of the road were maintained through a tunnel, the maximum resistance would be found in the tunnei. This would probably cause trains to stall there, which would be objectionable and perhaps dangerous.
165. Lining. It is a characteristic of many kinds of rock and of all earthy material that, although they may be selfsustaining when first exposed to the atmosphere, they rapidly disintegrate and require that the top and perhaps the sides and even the bottom shall be lined to prevent caving in. In this country, when timber is cheap, it is occasionally framed as an arch and used as the permanent lining, but masonry is always to be preferred. Frequently the cross-section is made extra
large so that a masonry lining may subsequently be placed inside the wooden lining and thus postpone a large expense until the road is better able to pay for the work. In very soft unstable material, like quicksand, an arch of cut stone voussoirs may be necessary to withstand the pressure. A good quality of brick is occasionally used for lining, as they are easily handled and make good masonry if the pressure is not excessive. Only the best of cement mortar should be used, economy in this feature being the worst of folly. Of course the excavation must include the outside line of the lining. Any excavation which is made outside of this line (by the fall of earth or loose rock or by excessive blasting) must be refilled with stone well packed in. Occasionally it is necessary to fill these spaces with concrete. Of course it is not necessary that the lining be uniform throughout the tunnel.
167. Shafts. Shafts are variously made with square, rectangular, elliptical, and circular cross-sections. The rectangular

Fig. 90.-Connection with Shaft, Church Hill Tunnel.
cross-section, with the longer axis parallel with the tunnel, is most usually employed. Generally the shaft is directly over the center of the tunnel, but that always implies a complicated connection between the linings of the tunnel and shaft, provided
such linings are necessary. It is easier to sink a shaft near to one side of the tunnel and make an opening through the nearly vertical side of the tunnel. Such a method was employed in the Church Hill Tunnel, illustrated in Fig. 90.* Fig. $91 \dagger$ shows a cross-section for a large main shaft. Many shafts have been built with the idea of being left open permanently for ventilation and have therefore been elaborately lined with masonry.

Fig. 91.-Cross-section. Large Main Shaft.
The general consensus of opinion now appears to be that shafts are worse than useless for ventilation; that the quick passage of a train through the tunnel is the most effective ventilator; and that shafts only tend to produce cross-currents and are ineffective to clear the air. In consequence, many of these elaborately lined shafts have been permanently closed, and the more recent practice is to close up a shaft as soon as the tunnel is completed. Shafts always form drainage-wells for the material they pass through, and sometimes to such an extent that it is a serious matter to dispose of the water that collects at the bottom, requiring the construction of large and expensive drains.
168. Drains. A tunnel will almost invariably strike veins of water which will promptly begin to drain into the tunnel and not only cause considerable trouble and expense during construction, but necessitate the provision of permanent drains for its perpetual disposal. These drains must frequently be so large as

[^10]to appreciably increase the required cross-section of the tunnel. Generally a small open gutter on each side will suffice for this purpose, but in double-track tunnels a large covered drain is often built between the tracks. It is sometimes necessary to thoroughly grout the outside of the lining so that water will not force its way through the masonry and perhaps injure it, but may freely drain down the sides and pass through openings in the side walls near their base into the gutters.

CONSTRUCTION.

169. Headings. The methods of all tunnel excavation depend on the general principle that all earthy material, except the softest of liquid mud and quicksand, will be self-sustaining over a greater or less area and for a greater or less time after excavation is made, and the work consists in excavating some material and immediately propping up the exposed surface by timbering and poling-boards. The excavation of the crosssection begins with cutting out a "heading," which is a small horizontal drift whose breast is constantly kept 15 feet or more in advance of the full cross-sectional excavation. In solid self-sustaining rock, which will not decompose upon exposure to air, it becomes simply a matter of excavating the rock with the least possible expenditure of time and energy. In soft ground the heading must be heavily timbered, and as the heading is gradually enlarged the timbering must be gradually extended and perhaps replaced, according to some regular system, so that when the full cross-section has been excavated it is supported by such timbering as is intended for it. The heading is sometimes made on the center line near the top; with other plans, on the center line near the bottom; and sometimes two simultaneous headings are run in the two lower corners. Headings near the bottom serve the purpose of draining the material above it and facilitating the excavation. The simplest case of heading timbering is that shown in Fig. 92, in which cross-timbers are placed at in-

Fig. 92. tervals just under the roof, set in notches cut in the side walls and supporting poling-boards which sus-
tain whatever pressure may come on them. Cross-timbers near the bottom support a flooring on which vehicles for transporting material may be run and under which the drainage may freely escape. As the necessity for timbering becomes greater, side timbers and even bottom timbers must be added, these timbers supporting poling-boards, and even the breast of the heading must be protected by boards suitably braced,

Fig. 93.-Timbering for Tunnel Heading.
as shown in Fig. 93. The supporting timbers are framed into collars in such a manner that added pressure only increases their rigidity.
170. Enlargement. Enlargement is accomplished by removing the poling-boards, one at a time, excavating a greater or less amount of material, and immediately supporting the exposed material with poling-boards suitably braced. (See Figs. 93 and 94.) This work being systematically done, space is thereby obtained in which the framing for the full cross-section may be gradually introduced. The framing is constructed with a cross-
section so large that the masonry lining may be constructed within it.
171. Distinctive features of various methods of construction. There are six general systems, known as the English, German, Belgian, French, Austrian, and American. They are so named

Fig. 94.
from the origin of the methods, although their use is not confined to the countries named. Fig. 95 shows by numbers (1 to 5) the order of the excavation within the cross-sections. The English, Austrian, and American systems are alike in excavating the entire cross-section before beginning the construction of the masonry lining. The German method leaves a solid core (5) until practically the whole of the lining is complete. This has the disadvantage of extremely cramped quarters for work, poor ventilation, etc. The Relgian and French methods agree in excavating the upper part of the section, building the arch at once, and supporting it temporarily until the side walls are built. The Belgian method then takes out the core (3), removes very short sections of the sides (4) immediately underpinning the arch with short sections of the side walls and thus gradually constructing the whole side wall. The French method digs out the sides (3), supporting the arch temporarily with timbers and then replacing the timbers with masonry; the core (4) is taken out last. The French method has the same disadvantage as the German-working in a cramped space. The Belgian and French systems have the disadvantage that the arch, supported temporarily on timber, is very apt to be strained and cracked by the slight settlement that so frequently occurs in soft material. The English, Austrian, and American methods differ mainly in the
design of the timbering. The English support the roof by lines of very heavy longitudinal timbers which are supported at comparatively wide intervals by a heavy framework occupying the

Fig. 95.-Order of Worring by the Various Systems.
whole cross-section, The Austrian system uses such frequent cross-frames of timber-work that poling-boards will suffice to support the material between the frames. The American system agrees with the Austrian in using frequent cross-frames
supporting poling-boards, but differs from it in that the "crossframes" consist simply of arches of 3 to 15 wooden voussoirs, the voussoirs being blocks of $12^{\prime \prime} \times 12^{\prime \prime}$ timber about 2 to 8 feet long and cut with joints normal to the arch. These arches are put together on a centering which is removed as soon as the arch is keyed up and thus immediately opens up the full cross-section, so that the center core (4) may be immediately dug out and the masonry constructed in a large open space. The American system has been used successfully in very soft ground, but its advantages are greater in loose rock, when it is much cheaper than the other methods which employ more timber. Fig. 90 and Plate III illustrate the use of the American system. Fig. 90 shows the wooden arch in place. The masonry arch may be placed when convenient, since it is possible to lay the track and commence traffic as soon as the wooden arch is in place. The student is referred to Drinker's "Tunneling" and to Rziha's "Lehrbuch der Gesammten Tunnelbaukunst" for numerous illustrations of European methods of tunnel timbering.
172. Ventilation during construction. Tunnels of any great length must be artificially ventilated during construction. If the excarated material is rock so that blasting is necessary, the need for ventilation becomes still more imperative. The invention of compressed-air drills simultaneously solved two diffeculties. It introduced a motive power which is unobjectionable in its application (as gas would be), and it also furnished at the same time a supply of just what is needed-pure air. If no blasting is done (and sometimes even when there is blasting), air must be supplied by direct pumping. The cooling effect of the sudden expansion of compressed air only reduces the otherwise objectionably high temperature sometimes found in tunnels. Since pure air is being continually pumped in, the foul air is thereby forced out.
173. Excavation for the portals. Under normal conditions there is always a greater or less amount of open cut preceding and following a tunnel. Since all tunnel methods depend (to some slight degree at least) on the capacity of the exposed material to act as an arch, there is implied a considerable thickness of material above the tunnel. This thickness is reduced to nearly zero over the tunnel portals and therefore requires special treatment, particularly when the material is very soft. Fig. 96 *

[^11]illustrates one method of breaking into the ground at a portal. The loose stones are piled on the framing to give stability to the framing by their weight and also to retain the earth on the

Fig. 96.-Timbering for Tunnel Portal.
slope above. Another method is to sink a temporary shaft to the tunnel near the portal; immediately enlarge to the full size and build the masonry lining; then work back to the portal This method is more costly, but is preferable in very treacherous ground, it being less liable to cause landslides of the surface material.
174. Tunnels vs. open cuts. In cases in which an open cut rather than a tunnel is a possibility the ultimate consideration is generally that of first cost combined with other financial con-

siderations and annual maintenance charges directly or indirectly connected with it. Even when an open cut may be constructed at the same cost as a tunnel (or perhaps a little cheaper) the tunnel may be preferable under the following conditions:

1. When the soil indicates that the open cut would be liable to landslides.
2. When the open cut would be subject to excessive snowdrifts or avalanches.
3. When land is especially costly or it is desired to run under existing costly or valuable buildings or monuments. When running through cities, tunnels are sometimes constructed as open cuts and then arched over.

These cases apply to tunnels $v s$. open cuts when the alignment is fixed by other considerations than the mere topography. The broader question of excavating tunnels to avoid excessive grades or to save distance or curvature, and similar problems, are hardly susceptible of general analysis except as questions of railway economics and must be treated individually.
175. Cost of tunneling. The cost of any construction which involves such uncertainties as tunneling is very variable. It depends on the material encountered, the amount and kind of timbering required, on the size of the cross-section, on the price of labor, and especially on the reconstruction that may be necessary on account of mishaps.

Headings generally cost $\$ 4$ to $\$ 5$ per cubic yard for excavation, while the remainder of the cross-section in the same tunnel may cost about half as much. The average cost of a large number of tunnels in this country may be seen from the following table:*

Materiaı.	Cost per cubic yard.				Cost per lineal foot.	
	Excavation.		Masonry.		Single.	Double.
	Single.	Double.	Single.	Double.		
Hard rock.	\$5.89		\$12.00			\$142.82
Loose rock.	3.12	3.48	9.07	10.41	80.61	119.26
Soft ground.	3.62	4.64	15.00	10.50	135.31	174.42

[^12]

A considerable variation from these figures may be found in individual cases, due sometimes to unusual skill (or the lack of it) in prosecuting the work, but the figures will generally be sufficiently accurate for preliminary estimates or for the comparison of two proposed routes.

CHAPTER VI.

CULVERTS AND MINOR BRIDGES.

176. Definition and object. Although a variable percentage of the rain falling on any section of country soaks into the ground and does not immediately reappear, yet a very large percentage flows over the surface, always seeking and following the lowest channels. The roadbed of a railroad is constantly intersecting these channels, which frequently are normally dry. In order to prevent injury to railroad embankments by the impounding of such rainfall, it is necessary to construct waterways through the embankment through which such rainflow may freely pass. Such waterways, called culverts, are also applicable for the bridging of very small although perennial streams, and therefore in this work the term culvert will be applied to all water-channels passing through a railroad embankment which are not of sufficient magnitude to require a special structural design, such as is necessary for a large masonry arch or a truss bridge.
177. Elements of the design. A well-designed culvert must afford such free passage to the water that it will not "back up" over the adjoining land nor cause any injury to the embankment or culvert. The ability of the culvert to discharge freely all the water that comes to it evidently depends chiefly on the area of the waterway, but also on the form, length, slope, and materials of construction of the culvert and the nature of the approach and outfall. When the embankment is very low and the amount of water to be discharged very great, it sometimes becomes necessary to allow the water to discharge "under a head," i e., with the surface of the water above the top of the culvert. Safety then requires a much stronger construction than would otherwise be necessary to avoid injury to the culvert or embankment by washing. The necessity for such construction should be avoided if possible.

AREA OF THE WATERWAY.

178. Elements involved. The determination of the required area of the waterway involves such a multiplicity of indeterminate elements that any close determination of its value from purely theoretical considerations is a practical impossibility. The principal elements involved are:
a. Rainfall. The real test of the culvert is its capacity to discharge without injury the flow resulting from the extraordinary rainfalls and "cloud bursts" that may occur once in many years. Therefore, while a knowledge of the average annual rainfall is of very little value, a record of the maximum rainfall during heavy storms for a long term of years may give a relative idea of the maximum demand on the culvert.
b. Area of watershed. This signifies the total area of country draining into the channel considered. When the drainage area is very small it is sometimes included within the area surveyed by the preliminary survey. When larger it is frequently possible to obtain its area from other maps with a percentage of accuracy sufficient for the purpose. Sometimes a special survey for the purpose is considered justifiable.
c. Character of soil and vegetation. This has a large influence on the rapidity with which the rainflow from a given area will reach the culvert. If the soil is hard and impermeable and the vegetation scant, a heary rain will run off suddenly, taxing the capacity of the culvert for a short time, while a spongy soil and dense vegetation will retard the flow, making it more nearly uniform and the maximum flow at any one time much less.
d. Shape and slope of watershed. If the watershed is very long and narrow (other things being equal), the water from the remoter parts will require so much longer time to reach the culvert that the flow will be comparatively uniform, especially when the slope of the whole watershed is very low. When the slope of the remoter portions is quite steep it may result in the nearly simultaneous arrival of a storm-flow from all parts of the watershed, thus taxing the capacity of the culvert.
e. Effect of design of culvert. The principles of hydraulics show that the slope of the culvert, its length, the form of the cross-section, the nature of the surface, and the form of the
approach and discharge all have a considerable influence on the area of cross-section required to discharge a given volume of water in a given time, but unfortunately the combined hydraulic effect of these various details is still a very uncertain quantity.
179. Methods of computation of area. There are three possible methods of computation.
(a) Theoretical. As shown above it is a practical impossibility to estimate correctly the combined effect of the great multiplicity of elements which influence the final result. The nearest approach to it is to estimate by the use of empirical formulæ the amount of water which will be presented at the upper end of the culvert in a given time and then to compute, from the principles of hydraulics, the rate of flow through a culvert of given construction, but (as shown in § $178, e$) such methods are still very unreliable, owing to lack of experimental knowledge. This method has apparently greater scientific accuracy than other methods, but a little study will show that the elements of uncertainty are as great and the final result no more reliable. The method is most reliable for streams of uniform flow, but it is under these conditions that method (c) is most useful. The theoretical method will not therefore be considered further.
(b) Empirical. As illustrated in § 180, some formulæ make the area of waterway a function of the drainage area, the formula being affected by a coefficient the value of which is estimated between limits according to the judgment Assuming that the formulæ are sound, their use only narrows the limits of error, the final determination depending on experience and judgment.
(c) From observation. This method, considered by far the best for permanent work, consists in observing the high-water marks on contracted channel-openings which are on the same stream and as near as possible to the proposed culvert. If the country is new and there are no such openings, the wisest plan is to bridge the opening by a temporary structure in wood which has an ample waterway (see $\S 126, b, 4$) and carefully observe all high-water marks on that opening during the 6 to 10 years which is ordinarily the minimum life of such a structure. As shown later, such observations may be utilized for a close computation of the required waterway. Method (b) may be utilized for an approximate calculation for the recuired area for the tem-
porary structure, using a value which is intentionally excessive, so that a permanent structure of sufficient capacity may subsequently be constructed within the temporary structure.
180. Empirical formulæ. Two of the best known empirical formulæ for area of the waterway are the following:
(a) Myer's formula:

Area of waterway in square feet $=C \times \sqrt{\text { drainage area in acres, }}$ where C is a coefficient varying from 1 for flat country to 4 for mountainous country and rocky ground. As an illustration, if the drainage area is 100 acres, the waterway area should be from 10 to 40 square feet, according to the value of the coefficient chosen. It should be noted that this formula does not regard the great variations in rainfall in various parts of the world nor the design of the culvert, and also that the final result depends largely on the choice of the coefficient.
(b) Talbot's formula:

Area of waterway in square feet $=C \times \sqrt{\left(\text { drainage area in acres) }{ }^{3}\right.}$. "For steep and rocky ground C varies from $\frac{2}{3}$ to 1 . For rolling agricultural country subject to floods at times of melting snow, and with the length of the valley three or four times its width, C is about $\frac{1}{3}$; and if the stream is longer in proportion to the area, decrease C. In districts not affected by accumulated snow, and where the length of the valley is several times the width, $\frac{1}{5}$ or $\frac{1}{6}$, or even less, may be used. C should be increased for steep side slopes, especially if the upper part of the valley has a much greater fall than the channel at the culvert." * As an illustration, if the drainage area is 100 acres the area of waterway should be $C \times 31.6$. The area should then vary from 5 to 31 square feet, according to the character of the country. Like the previous estimate, the result depends on the choice of a coefficient and disregards local variations in rainfall, except as they may be arbitrarily allowed for in choosing the coefficient.
181. Value of empirical formulæ. The fact that these formulæ, as well as many others of similar nature that have been suggested, depend so largely upon the choice of the coefficient shows that they are valuable "more as a guide to the judgment than as a working rule," as Prof. Talbot explicitly declares in

[^13]commenting on his own formula. In short, they are chiefly valuable in indicating a probable maximum and minimum between which the true result probably lies.
182. Results based on Observation. As already indicated in § 179, observation of the stream in question gives the most reliable results. If the country is new and no records of the flow of the stream during heary storms has been taken, even the life of a temporary wooden structure may not be long enough to include one of the unusually severe storms which must be allowed for, but there will usually be some high-water mark which will indicate how much opening will be required. The following quotation illustrates this: "A tidal estuary may generally be safely narrowed considerably from the extreme water lines if stone revetments are used to protect the bank from wash. Above the true estuary, where the stream cuts through the marsh, we generally find nearly vertical banks, and we are safe if the faces of abutments are placed even with the banks. In level sections of the country, where the current is sluggish, it is usually safe to encroach somewhat on the general width of the stream, but in rapid streams among the hills the width that the stream has cut for itself through the soil should not be lessened, and in ravines carrying mountain torrents the openings must be left very much larger than the ordinary appearance of the banks of the stream would seem to make necessary." *

As an illustration of an observation of a storm-flow through a temporary trestle, the following is quoted: "Having the flood height and velocity, it is an easy matter to determine the volume of water to be taken care of. I have one ten-bent pile trestle 135 feet long and 24 feet high over a spring branch that ordinarily runs about six cubic inches per second. Last summer during one of our heavy rainstorms (four inches in less than three hours) I visited this place and found by float observations the surface velocity at the highest stage to be 1.9 feet per second. I made a high-water mark, and after the floodwater receded found the width of stream to be 12 feet and an average depth of $2 \frac{3}{4}$ feet. This, with a surface velocity of 1.9 feet per second, would give approximately a discharge of 50

[^14]cubic feet, or 375 gallons, per second. Having this information it is easy to determine size of opening required." *
183. Degree of accuracy required. The advantages resulting from the use of standard designs for culverts (as well as other structures) have led to the adoption of a comparatively small number of designs. The practical use made of a computation of required waterway area is to determine which one of several standard designs will most nearly fulfill the requirements. For example, if a 24 -inch iron pipe, having an area of 3.14 square feet, is considered to be a little small, the next size (30 -inch) would be adopted; but a 30 -inch pipe has an area of 4.92 square feet, which is 56% larger. A similar result, except that the percentage of difference might not be quite so marked, will be found by comparing the areas of consecutive standard designs for stone box culverts.

The advisability of designing a culvert to withstand any storm-flow that may ever occur is considered doubtful. Several years ago a record-breaking storm in New England carried away a very large number of bridges, etc., hitherto supposed to be safe. It was not afterward considered that the design of those bridges was faulty, because the extra cost of constructing bridges capable of withstanding such a flood, added to interest for a long period of years, would be enormously greater than the cost of repairing the damages of such a storm once or twice in a century. Of course the element of danger has some weight, but not enough to justify a great additional expenditure, for common prudence would prompt unusual precautions during or immediately after such an extraordinary storm.

PIPE CULVERTS.

184. Advantages. Pipe culverts, made of cast iron or earthenware, are very durable, readily constructed, moderately cheap, will pass a larger volume of water in proportion to the area than many other designs on account of the smoothness of the surface, and (when using iron pipe) may be used very close to the track when a low opening of large capacity is required. Another advantage lies in the ease with which they may be inserted through a somewhat larger opening that has been

[^15]temporarily lined with wood, without disturbing the roadbed or track.
185. Construction. Permanency requires that the foundation shall be firm and secure against being washed out. To accomplish this, the soil of the trench should be hollowed out to fit the lower half of the pipe, making suitable recesses for the bells. In very soft treacherous soil a foundation-block of concrete is sometimes placed under each joint, or even throughout the whole length. When pipes are laid through a slightly larger timber culvert great care should be taken that the pipes are properly supported, so that there will be no settling nor development of unusual strains when the timber finally decays and gives way. To prevent the washing away of material around the pipe the ends should be protected by a bulkhead. This is best constructed of masonry (see Fig. 97), although wood is sometimes used for cheap and minor constructions. The joints should be calked, especially when the culvert is liable to run full or when the outflow is impeded and the culvert is liable to be partly or wholly filled during freezing weather. The cost of a calking of clay or even hydraulic cement is insignificant compared with the value of the additional safety afforded. When the grade of the pipe is perfectly uniform, a very low rate of grade will suffice to drain a pipe culvert, but since some unevenness of grade is inevitable through uneven settlement or imperfect construction, a grade of 1 in 20 should preferably be required, although much less is often used. The length of a pipe culvert is approximately determined as follows:
$$
\text { Length }=2 s(\text { depth of embankment to top of pipe })+(\text { width of roadbed }),
$$
in which s is the slope ratio (horizontal to vertical) of the banks. In practice an even number of lengths will be used which will most nearly agree with this formula.
r86. Iron-pipe culverts. Simple cast-iron pipes are used in sizes from $12^{\prime \prime}$ to $48^{\prime \prime}$ diameter. These are usually made in lengths of 12 feet with a few lengths of 6 feet, so that any required length may be more nearly obtained. The lightest pipes made are sufficiently strong for the purpose, and even those which would be rejected because of incapacity to withstand pressure may be utilized for this work. In Fig. 97 are shown the standard plans used on the C. C. C. \& St. L. Ry., which may be considered as typical plans.

Pipes formed of cast-iron segments have been used up to 12 feet diameter. The shell is then made comparatively thin, but is stiffened by ribs and fianges on the outside. The segments break joints and are bolted together through the flanges. The joints are made tight by the use of a tarred rope, together with neat cement.
187. Tile-pipe culverts. The pipes used for this purpose vary from $12^{\prime \prime}$ to $24^{\prime \prime}$ in diameter. When a larger capacity is required two or more pipes may be laid side by side, but in such a case another design might be preferable. It is frequently specified that "double-strength" or "extra-heavy" pipe shall be used, evidently with the idea that the stresses on a culvertpipe are greater than on a sewer-pipe. But it has been conclusively demonstrated that; no matter how deep the embankment, the pressure cannot exceed a somewhat uncertain maximum, also that, the greatest danger consists in placing the pipe so near the ties that shocks may be directly transferred to the pipe without the cushioning effect of the earth and ballast. When the pipes are well bedded in clear earth and there is a

UP-STREAN:END.

DOWN-STREAM END.

DOWN-STREAM END. THREE PIPES. Fig. 98.—Standard Vitrified-pipe Culvert. Plant System. (1891.)
sufficient depth of earth over them to avoid direct impact (at least three feet) the ordinary seewer-pipe will be sufficiently strong. "Double-strength" pipe is frequently less perfectly burned, and the supposed extra strength is not therefore ob-
tained. In Fig. 98 are shown the standard plans for vitrifiedpipe culverts as used on the "Plant system." Tile pipe is much cheaper than iron pipe, but is made in much shorter lengths and requires much more work in laying and especially to obtain a uniform grade.

BOX CULVERTS.

188. Wooden box culverts. This form serves the purpose of a cheap temporary construction which allows the use of a ballasted roadbed. As in all temporary constructions, the area should be made considerably larger than the calculated area §§ 179-182), not only for safety but also in order that, if the smaller area is demonstrated to be sufficiently large, the permanent construction (probably pipe) may be placed inside without disturbing the embankment. All designs agree in using heavy timbers ($12^{\prime \prime} \times 12^{\prime \prime}, 10^{\prime \prime} \times 12^{\prime \prime}$, or $8^{\prime \prime} \times 12^{\prime \prime}$) for the side walls, cross-timbers for the roof, every fifth or sixth timber being notched down so as to take up the thrust of the side walls, and planks for the flooring. Fig. 99 shows some of the standard designs as usəd by the C., M. \& St. P. Ry.

Fig. 99.-Standard Timber Box Culvert. C., M. \& Str. P. Ry. (Feb. 1889.)
189. Stone box culverts. In loealities where a good quality of stone is cheap, stone box culverts are the cheapest form of permanent construction for culverts of medium capacity, but their use is decreasing owing to the frequent difficulty in obtaining really suitable stone within a reasonable distance of the culvert. The clear span of the cover-stones varies from 2 to 4 feet. Thie required thickness of the cover-stones is sometimes
calculated by the theory of transverse strains on the basis of certain assumptions of loading-as a function of the height of the embankment and the unit strength of the stone used. Such a method is simply another illustration of a class of calculations which look very precise and beautiful, but which are worse than useless (because misleading) on account of the hopeless uncer-

PLAN
Fig. 100.-Standard Single Stone Culvert ($3^{\prime} \times 4^{\prime}$). N. \& W. R.R. (1890.)
tainty as to the true value of certain quantities which must be used in the computations In the first place the true value of the unit tensile strength of stone is such an uncertain and variable
quantity that calculations based on any assumed value for it are of small reliability. In the second place the weight of the prism of earth lying directly above the stone, plus an allowance for live load, is by no means a measure of the load on the stone nor of the forces that tend to fracture it. All earthwork will tend to

Fig. 100a.-Standard Double Stone Culvert ($3^{\prime} \times 4^{\prime}$). N. \& W. R. R. (1890.)
form an arch above any cavity and thus relieve an uncertain and probably variable proportion of the pressure that might otherwise exist. The higher the embankment the less the pro-
portionate loading, until at some uncertain height an increase in height will not increase the load on the cover-stones. The effect of frost is likewise large, but uncertain and not computable. The usual practice is therefore to make the thickness such as experience has shown to be safe with a good quality of stone, i.e., about 10 or 12 inches for 2 feet span and up to 16 or 18 inches for 4 feet span. The side walls should be carried down deep enough to prevent their being undermined by scour or heaved by frost. The use of cement mortar is also an important feature of first-class work, especially when there is a rapid scouring current or a liability that the culvert will run under a head. In Figs. 100 and 100a are shown standard plans for single and doublestone box culverts as used on the Norfolk'and Western R R.
190. Old-rail culverts. It sometimes happens (although very rarely) that it is necessary to bring the grade line within 3 or 4 feet of the bottom of a stream and yet allow an area of 10 or 12 square feet. A single large pipe of sufficient area could not be used in this case. The use of several smaller pipes side by side would be both expensive and inefficient. For similar reasons neither wooden nor stone box culverts could be used. In such cases, as well as in many others where the head-room is not so limited, the plan illustrated in Fig. 101 is a very satisfactory

Fig. 101.-Standard Old-rail Culvert. N. \& W. R.R. (1895.)
solution of the problem. The old rails, having a length of 8 or 9 feet, are laid close together across a 6 -foot opening. Sometimes the rails are held together by long bolts passing through
the webs of the rails. In the plan shown the rails are confined by low end walls on each abutment. This plan requires only 15 inches between the base of the rail and the top of the culvert channel. It also gives a continuous ballasted roadbed.

ARCH CULVERTS.

191. Influence of design on flow. The variations in the design of arch culverts have a very marked influence on the cost and efficiency. To combine the least cost with the greatest efficiency, due weight should be given to the following elements: (a) amount of masonry. (b) the simplicity of the constructive work, (c) the design of the wing walls, (d) the design of the junction of the wing walls with the barrel and faces of the arch, and (e) the safety and permanency of the construction. These elements are more or less antagonistic to each other, and the defects of most designs are due to a lack of proper proportion in the design of these opposing interests. The simplest construction (satisfying elements b and e) is the straight barrel arch between two parallel vertical head walls, as sketched in Fig. 102, a. From a hydraulic standpoint the design is poor, as the water eddies around the corners, causing a great resistance which decreases the flow. Fig. 102, b, shows a much better de-

Fig. 102.-Types of Culverts.
sign in many respects, but much depends on the details of the design as indicated in elements (b) and (d). As a general thing a good hydraulic design requires complicated and expensive masonry construction, i.e., elements (b) and (d) are opposed. Design 102, c, is sometimes inapplicable because the water is

STANDARD ARCH 8 FEET SPA NORFOLK \& WES (1891)

NOTE:- IN PLACE OF BRICK ARCH, RUBBLE STONE ARCH OF SAME THICKNESS MAY BE USED
(To face page 211.)

liable to work in behind the masonry during floods and perhaps cause scour. This design uses less masonry than (a) or (b).
192. Example of arch culvert design. In Plate IV is shown the design for an 8 -foot arch culvert according to the standard of the Norfolk and Western R. R. Note that the plan uses the flaring wing walls (Fig. 102, b) on the up-stream side (thus protecting the abutments from scour) and straight wing walls (similar to Fig. 102, c) on the down-stream end. This economizes masonry and also simplifies the constructive work. Note also the simplicity of the junction of the wing walls with the barrel of the arch, there being no re-entrant angles below the springing line of the arch. The design here shown is but one of a set of designs for arches varying in span from 6^{\prime} to 30^{\prime}.

MINOR OPENINGS.

193. Cattle-guards. (a) Pit guards. Cattle-guards will be considered under the head of minor openings, since the old-

Fig. 103.-Pit Cattile-guards. P. R.R.
fashioned plan of pit guards, which are even now defended and preferred by some railroad men, requires a break in the continuity of the roadbed. A pit about three feet deep, five feet long, and as wide as the width of the roadbed, is walled up with
stone (sometimes with wood); and the rails are supported on heavy timbers laid longitudinally with the rails. The break in the continuity of the roadbed produces a disturbance in the elastic wave running through the rails, the effect of which is noticeable at high velocities. The greatest objection, however, lies in the dangerous consequences of a derailment or a failure of the timbers owing to unobserved decay or destruction by fire-caused perhaps by sparks and cinders from passing locomotives. The very insignificance of the structure often leads to careless inspection. But if a single pair of wheels gets off the rails and drops into the pit, a costly wreck is inevitable. The (once) standard design for such a structure on the Pennsylvania R.R. is shown in Fig. 103.
(b) Surface cattle-guards. These are fastened on top of the ties; the continuity of the roadbed is absolutely unbroken and

Fig. 104.-Cattle-guard with Wooden Slats.
thus is avoided much of the danger of a bad wreck owing to a possible derailment. The device consists essentially of overlaying the ties (both inside and outside the rails) with a surface on which cattle will not walk. The multitudinous designs for such a surface are variously effective in this respect. An objection,
which is often urged indiscriminately against all such designs, is the liability that a brake-chain which may happen to be dragging may catch in the rough bars which are used. The bars are sometimes "home-made," of wood, as shown in Fig. 104. Iron or steel bars are made as shown in Fig. 105. The general construction is the same as for the wooden bars. The metal bars have far greater durabliity, and it is claimed that they are more effective in discouraging cattle from attempting to cross.

Fig. 105.-Merrilid-Stevens Steel Cattle-guard.
194. Cattle-passes. Frequently when a railroad crosses a farm on an embankment, cutting the farm into two parts, the railroad company is obliged to agree to make a passageway through the embankment sufficient for the passage of cattle and perhaps even farm-wagons. If the embankment is high enough so that a stone arch is practicable, the initial cost is the only great objection to such a construction; but if an open wooden structure is necessary, all the objections against the old-fashioned cattle-guards apply with equal force here. The avoidance of a grade crossing which would otherwise be necessary is one of the great compensations for the expense of the construction and maintenance of these structures. The construction is sometimes made by placing two pile trestle bents about 6 to 8 feet apart, supporting the rails by stringers in the usual way, the special feature of this construction being that the embankments are filled in behind the trestle bents; and the thrust of the embankments is mutually taken up through the stringers, which are notched at the ends or otherwise constructed so that they may take up such a thrust. The designs for old-rail culverts and arch culverts are also utilized for cattle-passes when suitable and convenient, as well as the designs illustrated in the following section.
195. Standard stringer and I-beam bridges. The advantages of standard designs apply even to the covering of short spans
with wooden stringers or with I beams-especially since the methods do not require much vertical space between the rails and the upper side of the clear opening, a feature which is often of prime importance. These designs are chiefly used for culverts or cattle-passes and for crossing over highways-providing such a narrow opening would be tolerated. The plans all imply stone abutments, or at least abutments of sufficient stability to withstand all thrust of the embankments. Some of the designs are illustrated in Plate V. The preparation of these standard designs should be attacked by the same general methods as already illustrated in $\S 156$. When computing the required transverse strength, due allowance should be made for lateral bracing, which should be amply provided for. Note particularly the methods of bracing illustrated in Plate V. The designs calling for iron (or steel) stringers may be classed as permanent constructions, which are cheap, safe, easily inspected and maintained, and therefore a desirable method of construction.

TYPES OF PLATE GIRDER BRIDGES.

C. M. \& St.P. RY.
(Dec. 1895.)

S. 1

CHAPTER VII.

BALLAST.

196. Purpose and requirements. "The object of the ballast is to transfer the applied load over a large surface; to hold the timber work in place horizontally; to carry off the rain-water from the superstructure and to prevent freezing up in winter; to afford means of keeping the ties truly up to the grade line; and to give elasticity to the roadbed." This extremely condensed statement is a description of an ideally perfect ballast. The value of any given kind of ballast is proportional to the extent to which it fulfills these requirements. The ideally perfect ballast is not necessarily the most economical ballast for all roads. Light traffic generally justifies something cheaper, but a very common error is to use a very cheap ballast when a small additional expenditure would procure a much better ballast which would be much more economical in the long run.
197. Materials. The materials most commonly employed are gravel and broken stone. Burnt clay, cinders, shells, and small coal are occasionally used as ballast when they are especially cheap and convenient or when better kinds are especially expensive. Although it is hardly correct to speak of the natural soil as ballast, yet many miles of cheap railways are "ballasted" with the natural soil, which is then called " mud ballast."

Mud ballast. When the natural soil is gravelly so that rain will drain through it quickly, it will make a fair roadbed for light traffic, but for heavy traffic, and for the greater part of the length of most roads, the natural soil is a very poor material for ballast; for, no matter how suitable the soil might be along limited sections of the road, it would practically never happen that the soil would be uniformly good throughout the whole length of the road. Considering that a heavy rain will in one day spoil the results of weeks of patient "surfacing" with mud ballast, it is seldom economical to use "mud" if there is a
gravel-bed or other source of ballast anywhere on the line of the road.

Cinders. The advantages consist in the excellent facilities for drainage, ease of handling; and cheapness-after the road is in operation One disadvantage is excessive dust in dry weather Cinders are considered preferable to gravel in yards.

Slag. When slag is readily obtainable it furnishes an excellent ballast, free from dust and perfect in drainage qualities Some kinds of slag are objectionable on account of their deleterious chemical effect on the ties and spikes-especially on metallic ties.

Shells, small coal, etc. These comparatively inferior kinds of ballast are used for light traffic when they are especially cheap and convenient. They are extremely dusty in dry weather, break up into very fine dust, and are but little better than mud.

Gravel. This is the most common form of ballast which may be called good ballast. In 1885, the Roadmasters Association of America voted in favor of gravel ballast as against rock ballast. Although not so stated, this action was perhaps due to a conviction of its real economy for the average railroad of this country, which may be called a "light traffic" road. Gravel should preferably be screened over a screen having a $\frac{1}{2}^{\prime \prime}$ mesh, so as to screen out all dirt and the finest stones. Generally a railroad will be able to find at some point along its line a "gravelpit" affording a suitable supply. This may be dug out with a steam-shovel, screened if necessary, and sent out over the line by the train-load at a comparatively small cost.

Rock or broken stone. Rock ballast is generally specified to be such as will pass through a $1 \frac{1}{2}^{\prime \prime}$ (or $2^{\prime \prime}$) ring. Although preferably broken by hand, machine-broken stone is much cheaper. It is most easily handled with forks. This also has the effect of screening out the dirt and fine chips which would interfere with effectual drainage. Rock ballast is more expensive in first cost, and also more troublesome to handle, than any other kind, but under heavy traffic will keep in surface better and will require less work for maintainance after the ties have become thoroughly bedded. For roads with very light traffic, running few trains, at comparatively low velocities, the advantages of rock ballast over other kinds are not so pronounced. For such roads rock ballast is an expensive luxury. The amount
of traffic which will justify the use of rock ballast will depend on the cost of obtaming ballast of the various kinds.
198. Cross-sections. A depth of $12^{\prime \prime}$ under the the is gener. ally required on the best roads, but for light traffic this is sometimes reduced to $6^{\prime \prime}$ and even less. The width is generaily 1 to 2 feet less than the width of the roadbed proper-excluding ditches. If the ballast has an average width of 10 feet (12 feet at bottom and 8 feet at top) and an average depth of 15 inches (including that placed between the ties), it will require 2444 cubic yards per mile of track. The P R. R. estimates 2500 cubic yards of gravel and 2800 cubic yards of stone ballast per mile of single track. On account of the requirements of drainage the best form of cross-section depends on the kind of ballast used.

Mud ballast. Since the great objection to mud ballast lies in its liability to become soft by soaking up the rain that falls, it becomes necessary that it should be drained as quickly and readily as its nature will permit Fig. 106 shows a typical cross-

section for mud ballast It should be cromned $2^{\prime \prime}$ above the top of the tie at the center, thence sloped so as to leave a slight clearance under the rail between the thes, thence sloping down to the bottom of the tie at each end and continuing to slope down to the ditch (in cut), which shouid be $18^{\prime \prime}$ or $20^{\prime \prime}$ below the bottom of the tie.

Gravel, cinders, slag, etc. The subgrade is crowned $6^{\prime \prime}$ or $8^{\prime \prime}$ in the center, as shown in Fig. 107. The ballast is crowned

Fig. 107.-Gravel Ballast.
to the top of the tie in the center, but is sloped down to the bottom of the tie at each end This is necessary (and more
especially so with mud ballast) to prevent a possible accumulation and settlement of water at the ends of the tie, which would readily soak into the end fibers and produce decay.

Broken stone. Stone ballast is shouldered out beyond the ends of the ties so as to afford greater lateral binding. The space between the ties is filled up level with the tops. The

Fig. 108.-Broken Stone Ballast.
perfect drainage of stone ballast permits this to be done without any danger of causing decay of the ties by the accumulation and retention of water.
199. Methods of laying ballast. The cheapest method of laying ballast on new roads is to lay ties and rails directly on the prepared subgrade and run a construction train over the track to distribute the ballast. Then the track is lifted up until sufficient ballast is worked under the ties and the track is properly surfaced. This method, although cheap, is apt to injure the rails by causing bends and kinks, due to the passage of loaded construction trains when the ties are very unevenly and roughly supported, and the method is therefore condemned and prohibited in some specifications The best method is to draw in carts (or on a contractor's temporary track) the ballast that is required under the level of the bottom of the ties. Spread this ballast carefully to the required surface Then lay the ties and rails, which will then have a very fair surface and uniform support. A construction train can then be run on the rails and distribute sufficient additional ballast to pack around and between the ties and make the required cross-section.

The necessity for constructing some lines at an absolute minimum of cost and of opening them for traffic as soon as possible has often led to the policy of starting traffic when there is little or no ballast-perhaps nothing more than a mere tamping of the natural soil under the ties. When this is done ballast may subsequently be drawn where required by the train-load on flat cars and unloaded at a minimum of cost by means of a "plough" The plough has the same width as the cars and is
guided either by a ridge along the center of each car or by sho: t posts set up at the sides of the car, It is drawn from one end of the train to the other by means of a cable. The cable is sometimes operated by means of a small hoisting-engine carricd on a car at one end of the train. Sometimes the locomotive is detached temporarıly from the train and is run ahead with the cable attached to it.
200. Cost. The cost of ballast in the track is quite a variable item for different roads, since it depends (a) on the first cost of the material as it comes to the road, (b) on the distance from the source of supply to the place where it is used, and (c) on the method of handling. The first cost of cinder or slag is frequently insignificant A gravel-pit may cost nothing except the price of a little additional land beyond the usual limits of the right of way. Broken stone will usually cost $\$ 1$ or more per cubic yard If suitable stone is obtainable on the company's land, the cost of blasting and breaking should be somewhat less than this The cost of loading the ballast on to trains will be small (per cubic yard) if it is handled with steam-shovels-as in the case of gravel taken from a gravel-pit Hand-shovelling will cost more. The cost of hauling will depend on the distance hauled, and also, to a considerable extent, on the limitations on the operation of the train due to the necessity of keeping out of the way of regular trains There is often a needless waste in this way. The "mud train" is considered a pariah and entitled to no rights whatever, regardless of the large daily cost of such a train and of the necessary gang of men. The cost of broken stone ballast in the track is estimated at $\$ 125$ per cubic yard. The cost of gravel ballast is estimated at 60 c. per cubic yard in the track. The cost of placing and tamping gravel ballast is estimated at 20 c . to 24 c . per cubic yard, for cinders 12 c . to 15 c. per cubic yard. The cost of loading gravel on cars, using a steam-shovel, is estimated at 6 c. to 10 c. per cubic yard.*

[^16]
CHAPTER VIII.

TIES,

AND OTHER FORMS OF RAIL SUPPORT.

201. Various methods of supporting rails. It is necessary that the rails shall be sufficiently supported and braced, so that the gauge shall be kept constant and that the rails shall not be subjected to excessive transverse stress. It is also preferable that the rail support shall be neither rigid (as if on solid rock) nor too yielding, but shall have a uniform elasticity throughout. These requirements are more or less fulfilled by the following methods.
(a) Longitudinals. Supporting the rails throughout their entire length. This method is very seldom used in this country except occasionally on bridges and in terminals when the longitudinals are supported on cross-ties. In $\S 224$ will be described a system of rails, used to some extent in Europe, having such broad bases that they are self-supporting on the ballast and are only connected by tie-rods to maintain the gauge.
(b) Cast-iron "bowls" or "pots." These are castings resembling large inverted bowls or pots, having suitable chairs on top for holding and supporting the rails, and tied together with tie-rods. They will be described more fully later (§ 223).
(c) Cross-ties of metal or wood. These will be discussed in the following sections.
202. Economics of ties. The true cost of ties depends on the relative total cost of maintenance for long periods of time. The first cost of the ties delivered to the road is but one item in the economics of the question. Cheap ties require frequent renewals, which cost for the labor of each renewal practically the same whether the tie is of oak or of hemlock. Cheap ties make a poor roadbed which will require more track labor to keep even in tolerable condition. The roadbed will require to be disturbed so frequently on account of renewals that the ties never get an
opportunity to get settled and to form a smooth roadbed for any length of time. Irregularity in width, thickness, or length of ties is especially detrimental in causing the ballast to act and wear unevenly. The life of ties has thus a more or less direct influence on the life of the rails, on the wear of rolling stock, and on the speed of trains. These last items are not so readily reducible to dollars and cents, but when it can be shown that the total cost, for a long period of time, of several renewals of cheap ties, with all the extra track labor involved, is as great as or greater than that of a few renewals of durable ties, then there is no question as to the real economy. In the following discussions of the merits of untreated ties (either cheap or costly), chemically treated ties, or metal ties, the true question is therefore of the ultimate cost of maintaining any particular kind of ties for an indefinite period, the cost including the first cost of the ties, the labor of placing them and maintaining them to surface, and the somewhat uncertain (but not therefore nonexistent) effect of frequent renewals on repairs of rolling stock, on pussible speed, etc.

WOODEN TIES.

203. Choice of wood. This naturally depends, for any particular section of country, on the supply of wood which is most readily available. The woods most commonly used, especially in this country, are oak and pine, oak being the most durable and generally the most expensive. Redwood is used very extensively in California and proves to be extremely durable, so far as decay is concerned, but it is very soft and is much injured by "rail-cutting." This defect is being partly remedied by the use of tie-plates, as will be explained later. Cedar, chestnut, hemlock, and tamarack are frequently used in this country. In tropical countries very durable ties are frequently obtained from the hard woods peculiar to those countries. According to a bulletin of the U.S. Department of Agriculture issued some years ago, the proportions of the various kinds used in the United States are about as follows:

Oak	60\%	Chestnut 5\%	Cypress	
Pine..	20	Hemlock and Ta-	Various	1
Cedar	6	$\begin{array}{r} \text { marack.......... } 3_{3}^{3} \\ \text { Redwood } \end{array}$	Total	00\%

The limitations of timber supply have somewhat diminished the use of oak and increased the use of the softer woods in recent years.
204. Durability. The durability of ties depends on the climate; the drainage of the ballast; the volume, weight, and speed of the traffic; the curvature, if any; the use of tie-plates; the time of year of cutting the timber; the age of the timber and the degree of its seasoning before placing in the track; the nature of the soil in which the timber is grown; and, chiefly, on the species of wood employed. The variability in these items will account for the discrepancies in the reports on the life of various woods used for ties.

White oak is credited with a life of 5 to 12 years, depending principally on the traffic. It is both hard and durable, the hardness enabling it to withstand the cutting tendency of the rail-flanges, and the durability enabling it to resist decay. Pine and redwood resist decay very well, but are so soft that they are badly cut by the rail-flanges and do not hold the spikes very well, necessitating frequent respiking. Since the spikes must be driven within certain very limited areas on the face of each tie, it does not require many spike-holes to "spike-kill" the tie. On sharp curves, especially with heavy traffic, the wheelflange pressure produces a side pressure on the rail tending to overturn $i t$, which tendency is resisted by the spike, aided sometimes by rail-braces. Whenever the pressure becomes too great the spike will yield somewhat and will be slightly withdrawn. The resistance is then somewhat less and the spike is soon so loose that it must be redriven in a new hole. If this occurs very often, the tie may need to be replaced long before any decay has set in. When the traffic is very light, the wood very durable, and the climate favorable, ties have been known to last 25 years.
205. Dimensions. The usual dimensions for the best roads (standard gauge) are 8^{\prime} to $8^{\prime} 6^{\prime \prime}$ long, $6^{\prime \prime}$ to $7^{\prime \prime}$ thick, and $8^{\prime \prime}$ to $10^{\prime \prime}$ wide on top and bottom (if they are hewed) or $8^{\prime \prime}$ to $9^{\prime \prime}$ wide if they are sawed. For cheap roads and light traffic the length is shortened sometimes to 7^{\prime} and the cross-section also reduced. On the other hand a very few roads use ties 9^{\prime} long.

Two objections are urged against sawed ties: rest, that the grain is torn by the saw, leaving a woolly surface which induces decay; and secondly, that, since timber is not perfectly straight-
grained, some of the fibers are cut obliquely, exposing their ends, which are thus liable to decay. The use of a "planer-saw" obviates the first difficulty. Chemical treatment of ties obviates both of these difficulties. Sawed ties are more convenient to handle, are a necessity on bridges and trestles, and it is even claimed, although against commonly received opinion, that actual trial has demonstrated that they are more durable than hewed ties.
206. Spacing. The spacing is usually 14 to 16 ties to a $30-$ foot rail. This number is sometimes reduced to 12 and even 10 , and on the other hand occasionally increased to 18 or 20 by employing narrower ties. There is no economy in reducing the number of ties very much, since for any required stiffness of track it is more economical to increase the number of supports than to increase the weight of the rail. The decreasing cost of rails and the increasing cost of ties have materially changed the relation between number of ties and weight of rail to produce a given stiffness at minimum cost, but many roads have found it economical to employ a large number of ties rather than increase the weight of the rail. On the other hand there is a practical limit to the number that may be employed, on account of the necessary space between the ties that is required for proper tamping. This width is ordinarily about twice the width of the tie. At this rate, wifth light ties $6^{\prime \prime}$ wide and with $12^{\prime \prime}$ clear space, there would be 20 ties per 30 -foot rail, or 3520 per mile. The smaller ties can generally be bought much cheaper (proportionately) than the larger sizes, and hence the economy.

Track instructions to foremen generally require that the spacing of ties shall not be uniform along the length of any rail. Since the joint is generally the weakest part of the rail structure, the joint requires more support than the center of the rail. Therefore the ties are placed with but $8^{\prime \prime}$ or $10^{\prime \prime}$ clear space between them at the joints, this applying to 3 or 4 ties at each joint; the remaining ties, required for each rail length, are equally spaced along the remaining distance.
207. Specifications. The specifications for ties are apt to include the items of size, kind of wood, and method of construction, besides other minor directions about time of cutting, seasoning, delivery, quality of timber, etc.
(a) Size. The particular size or sizes required will be somewhat as indicated in § 205.
(b) Kind of wood. When the kind or kinds of wood are specified, the most suitable kinds that are available in that section of country are usually required.
(c) Method of construction. It is generally specified that the ties shall be hewed on two sides; that the two faces thus made shall be parallel planes and that the bark shall be removed. It is sometimes required that the ends shall be sawed off square; that the timber shall be cut in the winter (when the sap is down); and that the ties shall be seasoned for six months These last specifications are not required or lived up to as much as their importance deserves. It is sometimes required that the ties shall be delivered on the right of way, neatly piled in rows, the alternate rows at right angles, piled if possible on ground not lower than the rails and at least seven feet away from them, the lower row of ties resting on two ties which are themselves supported so as to be clear of the ground.
(d) Quality of timber. The usual specifications for sound timber are required, except that they are not so rigid as for a better class of timber work The ties must be sound, reasonably straight-grained, and not very crooked-one test being that a line joining the center of one end with the center of the middle shall not pass outside of the other end. Splits or shakes, especially if severe, should cause rejection.

Specifications sometimes require that the ties shall be cut from single trees, making

POLE TIE.

SLAB TIE.

QUARTER TIE. Fig. 109.-Methods of cutting Ties. what is known as "pole ties" and definitely condemning those which are cut or split from larger trunks, giving two "slab ties" or four "quarter ties" for each cross-section, as is illustrated in Fig. 109. Even if pole ties are better, their exclusive use means the rapid destruction of forests of young trees.
208. Regulations for laying and renewing ties. The regulations issued by railroad companies to their track foremen will generally include the following, in addition to directions regarding dimensions, spacing, and specifications given in §§ 204-207. When hewn ties of somewhat variable size are used, as is frequently the case, the largest and best are to be selected for use as joint ties. If the upper surface of a tie is found to be warped (contrary to the usual specifications) so that one or both rails do
not get a full bearing across the whole width of the tie, it must be adzed to a true surface along its whole length and not mereis notched for a rall-seat. When respiking is necessary and spikes have been pulled out, the holes should be immediately plugged with "wooden spikes," which are supplied to the foreman for that express purpose, so as to fill up the holes and prevent the decay which would otherwise take place when the hole becomes filled with rain-water. Ties should always be laid at right angles to the rails and never obliquely Minute regulations to prevent premature rejection and renewal of ties are frequently made. It is generally required that the requisitious for renewals shall be made by the actual count of the individual ties to be renewed instead of by any wholesale estimates. It is unwise to have ties of widely variable size, hardness, or durability adjacent to each other in the track, for the uniform elasticity, so necessary for smooth riding, will be unobtainable under those circumstances.
209. Cost of ties. When railroads can obtain ties cut by farmers from woodlands in the immediate neighborhood, the price will frequently be as low as 20 c for the smaller sizes, running up to 50 c for the larger sizes and better qualities, especially when the timber is not very plentiful Sometimes if a railroad cannot procure suitable ties from its immediate neighborhood, it will find that adjacent railroads control all adjacent sources of supply for their own use and that ties can only be procured from a considerable distance, with a considerable added cost for transportation. First-class oak ties cost about 75 to 80 c. and frequently much more Hemlock ties can generally be obtained for 35 c . or less.

PRESERVATIVE PROCESSES FOR WOODEN TIES.

210. General principle. Wood has a fibrous cellular structure, the cells being filled with sap or air. The woody fiber is but little subject to decay unless the sap undergoes fermentation. Preservative processes generally aim at removing as much of the water and sap as possible and filling up the pores of the wood with an antiseptic compound The most common methods (except one) all agree in this general process and only differ in the method employed to get rid of the sap and in the antiseptic chemical with which the fibers are filled One valuable feature of these processes lies in the fact that the softer cheaper woods
(such as hemlock and pine) are more readily treated than are the harder woods and yet will produce practically as good a tie as a treated hard-wood tie and a very much better tie than an untreated hard-wood tie. The various processes will be briefly described, taking up first the process which is fundamentally different from the others, viz., vulcanizing.

211 . Vulcanizing. The process consists in heating the timber to a temperature of 300° to $500^{\circ} \mathrm{F}$. in a cylinder, the air being under a pressure of 100 to 175 lbs. per square inch. By this process the albumen in the sap is coagulated, the water evaporated, and the pores are partially closed by the coagulation of the albumen. It is claimed that the heat sterilizes the wood and produces chemical changes in the wood which give it an antiseptic character. It has been very extensively used on the elevated lines of New York City, and it is claimed to give perfect satisfaction. The treatment has cost that road 25 c . per tie.
212. Creosoting. This porcess consists in impregnating the wood with wood-creosote or with dead oil of coal-tar. Woodcreosote is one of the products of the destructive distillation of wood-usually long-leaf pine. Dead oil of coal-tar is a product of the distillation of coal-tar at a temperature between 480° and $760^{\circ} \mathrm{F}$. It would require about 35 to 50 pounds of creosote to completely fill the pores of a cubic foot of wood But it would be impossible to force such an amount into the wood, nor is it necessary or desirable. About 10 pounds per cubic foot, or about 35 pounds per tie, is all that is necessary. For piling placed in salt water about 18 to 20 pounds per cubic foot is used, and the timber is then perfectly protected against the ravages of the teredo navalis. To do the work, long cylinders, which may be opened at the ends, are necessary. Usually the timbers are run in and out on iron carriages running on rails fastened to braces on the inside of the cylinder. When the load has been run in, the ends of the cylinder are fastened on. The water and air in the pores of the wood are first drawn out by subjecting the wood alternately to steam-pressure and to the action of a vacuum-pump. This is continued for several hours. Then, after one of the vacuum periods, the cylinder is filled with creosote oil at a temperature of about $170^{\circ} \mathrm{F}$. The pumps are kept at work until the pressure is about 80 to 100 pounds per square inch, and is maintained at this pressure from one to two hours according to the size of the timber. The oil is then
withdrawn, the cylinders opened, the train pulled out and another load made up in 40 to 60 minutes. The average time required for treating a load is about 18 or 20 hours, the absorption about 10 or 11 pounds of oil per cubic foot, and the cost (1894) from $\$ 12.50$ to $\$ 14.50$ per thousand feet B. M.
213. Burnettizing (chloride-of-zinc process). This process is very similar to the creosoting process except that the chemical is chloride of zinc, and that the chemical is not heated before use. The preliminary treatment of the wood to alternate vacuum and pressure is not continued for quite so long a period as in the creosoting process. Care must be taken, in using this process, that the ties are of as uniform quality as possible, for seasoned ties will absorb much more zinc chloride than unseasoned (in the same time), and the product will lack uniformity unless the seasoning is uniform. The A., T. \& S. Fé R. R. has works of its own at which ties are treated by this process at a cost of about 25 c. per tie. The Southern Pacific R. R. also has works for burnettizing ties at a cost of 9.5 to 12 c per tie. The zincchloride solution used in these works contains only 1.7% of zinc chloride instead of over 3% as used in the Santa Fé works, which perhaps accounts partially for the great difference in cost per tie. One great objection to burnettized ties is the fact that the chemical is somewhat easily washed out, when the wood again be-comes subject to decay. Another objection, which is more forcible with respect to timber subject to great stresses, as in trestles, than to ties, is the fact that when the solution of zinc chloride is made strong (over 3%) the timber is made very brittle and its strength is reduced. The reduction in strength has been shown by tests to amount to $\frac{1}{\frac{1}{2}}$ to $\frac{1}{10}$ of the ultimate strength, and that the elastic limit has been reduced by about $\frac{1}{7}$.
214. Kyanizing (bichloride-of-mercury or corrosive-sublimate process). This is a process of "steeping." It requires a much longer time than the previously described processes, but does not require such an expensive plant. Wooden tanks of sufficient size for the timber are all that is necessary. The corrosive sublimate is first made into a concentrated solution of one part of chemical to six parts of hot water. When used in the tanks this solution is weakened to 1 part in 100 or 150 . The wood will absorb about 5 to 6.5 pounds of the bichloride per 100 cubic feet, or about one pound for cach 4 to 6 tjes. The timber is allowed to soak in the tanks for several days, the general rule
being about one day for each inch of least thickness and one day over-which means seven days for six-inch ties, or thirteen (to fifteen) days for $12^{\prime \prime}$ timber (least dimension). The process is somewhat objectionable on account of the chemical being such a virulent poison, workmen sometimes being sickened by the fumes arising from the tanks. On the Baden railway (Germany) kyanized ties last 20 to 30 years. On this railway the wood is always air-dried for two weeks after impregnation and before being used, which is thought to have an important effect on its durability. The solubility of the chemical and the liability of the chemical washing out and leaving the wood unprotected is an element of weakness in the method.
215. Wellhouse (or zinc-tannin) process. The last two methods described (as well as some others employing similar chemicals) are open to the objection that since the wood is impregnated with an aqueous solution, it is liable to be washed out very rapidly if the wood is placed under water, and will even disappear, although more slowly, under the action of moisture and rain. Several processes have been proposed or patented to prevent this. Many of them belong to one class, of which the Wellhouse process is a sample. By these processes the timber is successively subjected to the action of two chemicals, each individually soluble in water, and hence readily impregnating the timber, but the chemicals when brought in contact form insoluble compounds which cannot be washed out of the woodcells. By the Wellhouse process, the wood is first impregnated with a solution of chloride of zinc and glue, and is then subjected to a bath of tannin under pressure. The glue and tannin combine to form an insoluble leathery compound in the cells, which will prevent the zinc chloride from being washed out. It is being used by the A., T. \&. S. Fé R. R., their works being located at Las Vegas, New Mexico, and also by the Union Pacific R. R. at their works at Laramie, Wyo. In 1897 Mr. J. M. Meade, a resident engineer on the A., T. \& S. Fé, exhibited to the Roadmasters Association of America a piece of a tie treated by this process which had been taken from the tracks after nearly 13 years' service. The tie was selected at random, was taken out for the sole purpose of having a specimen, and was still in sound condition and capable of serving many years longer. The cost of the treatment was then quoted as 13 c. per tie.

It was claimed that the treatment trebled the life of the tie besides adding to its spike-holding power.
216. Cost of treating. The cost of treating ties by the various methods has been estimated as follows *-assuming that the plant was of sufficient capacity to do the work economically: creosoting, 25 c. per tie; vulcanizing, 25 c. per tie; burnettizing (chloride of zinc), 8.25 c . per tie; kyanizing (steeping in corrosive sublimate), 14.6 c. per tie; Wellhouse process (chloride of zinc and tannin), 11.25 c. per tie. These estimates are only for the net cost at the works and do not include the cost of hauling the ties to and from the works, which may mean 5 to 10 c . per tie. Some of these processes have been instalied on cars which are transported over the road and operated where most convenient.
217. Economics of treated ties. The fact that treated ties are not universally adopted is due to the argument that the added life of the tie is not worth the extra cost. If ties can be bought for 25 c ., and cost 25 c . for treatment, and the treatment only doubles their life, there is apparently but little gained except the work of placing the extra tie in the track, which is more or less offset by the interest on 25 c . for the life of the untreated tie, and the larger initial outlay makes a stronger impression on the mind than the computed ultimate economy. But when ties cost 75 c . and treatment costs only 25 c ., or perhaps less, then the economy is more apparent and unquestionable. But this analysis may be made more closely. As shown in § 202, the disturbance of the roadbed on account of frequent renewals of untreated ties is a disadvantage which would justify an appreciable expenditure to avoid, although it is very difficult to closely estimate its true value. The annual cost of a system of ties may be considered as the sum of (a) the interest on the first cost, (b) the annual sinking fund that would buy a new tie at the end of its life, and (c) the average annual cost of maintenance for the life of the tie, which includes the cost of laying and the considerable amount of subsequent tamping that must be done until the tie is fairly settled in the roadbed, besides the regular trackwork on the tie, which is practically constant. This last item is difficult to compute, but it is easy to see that, since

[^17]the cost of laying the tie and the subsequent tamping to obtain proper settlement is the same for all ties (of similar form), the average annual charge on the longer-lived tie would be much less. In the following comparison item (c) is disregarded, simply remembering that the advantage is with the longer-lived tie.

	Untreated tie.	Treated tie
Original cost	40 cents	65 cents
Life (assumed	7 years	14 years
Item (a)-interest on first cost @ 4% " (b)-sinking fund @ 4\%. " (c)-(considered here as baiance	$\begin{aligned} & 1.6 \text { cents } \\ & .5 .1 \end{aligned}$	$\begin{aligned} & 2.6 \text { cents } \\ & 3.6 \end{aligned}$
Average annual cost (except item (c))	6.7 cents	6.2 cents

- On this basis treated ties will cost 0.5 cent less per annum besides the advantage of item (c) and the still more indefinite advantages resulting from smoother running of trains, less wear and tear on rolling stock, etc., due to less disturbance of the roadbed.

In Europe, where wood is expensive, untreated ties are seldom used, as the treatment is always considered to be worth more than it costs. The rapid destruction of the forests of timber in this country is having the effect of increasing the price, so that it will not be long before treated ties (or metal ties) will be economical for a large majority of the railroads of the country.
(Note added in 1902.) Some modifications of the above processes have been devised in recent years, among them being the

$$
\begin{array}{ll}
\text { Creo-resinate process-creosote, resin, and formaldehyde; } \\
\text { Water-creosote } & \text { "" }
\end{array}
$$

The Atchison, Topeka and Santa Fé R, R. has compiled a record of treated pine ties removed in 1897, '98, '99, and 1900, showing that the average life of the ties removed had been about 11 years. On the Chicago, Rock Island and Pacific R. R., the average life of a very large number of treated hemlock and tamarack ties was found to be 10.57 years. Of one lot of 21850 ties, 12% still remained in the track after 15 years' exposure.

It has been demonstrated that much depends on the minor
details of the process-whatever it may be. As an illustration, an examination of a batch of ties, treated by the zinccreosote process, showed 84% in service after 13 years' exposure; another batch, treated by another contractor by the same process (nominally), showed 50% worthless after a service of six years.

METAL TIES.

218. Extent of use. In 1894 * there were nearly 35000 miles of "metal track" in various parts of the world. Of this total, there were 3645 miles of "longitudinals" (see § 224), found exclusively in Europe, nearly all of it being in Germany. There were over 12000 miles of "bowls and plates" (see § 223), found almost entirely in British India and in the Argentine Republic. The remainder, over 18000 miles, was laid with metal cross-ties of various designs. There were over 8000 miles of metal crossties in Germany alone, about 1500 miles in the rest of Europe, over 6000 miles in British India, nearly 1000 miles in the rest of Asia, and about 1500 miles more in various other parts of the world. Several railroads in this country have tried various designs of these ties, but their use has never passed the experimental stage. These 35000 miles represent about 9% of the total railroad mileage of the world-nearly 400000 miles. They represent about 17.6% of the total railroad mileage, exclusive of the United States and Canada, where they are not used at all, except experimentally. In the four years from 1890 to 1894 the use of metal track increased from less than 25000 miles to nearly 35000 miles. This increase was practically equal to the total increase in railroad mileage during that time, exclusive of the increase in the United States and Canada. This indicates a large growth in the percentage of metal track to total mileage, and therefore an increased appreciation of the advantages to be derived from their use.
219. Durability. The durability of metal ties is still far from being a settled question, due largely to the fact that the best form for such ties is not yet determined, and that a large part of the apparent failures in metal ties have been evidently due to defective design. Those in favor of them estimate the life as from 30 to 50 years. The opponents place it at not more

[^18]than 20 years, or perhaps as long as the best of wooden ties. Unlike the wooden tie, however, which deteriorates as much with time as with usage, the life of a metal tie is more largely a function of the traffic. The life of a well-designed metal tie has been estimated at 150000 to 200000 trains; for 20 trains per day, or say 6000 per year, this would mean from 25 to 33 years. 20 trains per day on a single track is a much larger number than will be found on the majority of railroads. Metal ties are found to be subject to rust, especially when in damp localities, such as tunnels; but on the other hand it is in such confined localities, where renewals are troublesome, that it is especially desirable to employ the best and longest-lived ties. Paint, tar, etc., have been tried as a protection against rust, but the efficacy of such protection is as yet uncertain, the conditions preventing any re-newal of the protection-such as may be done by repainting a bridge, for example. Failures in metal cross-ties have been largely due to cracks which begin at a corner of one of the square holes which are generally punched through the tie, the holes being made for the bolts by which the rails are fastened to the tie. The holes are generally punched because it is cheaper. Reaming the holes after punching is thought to be a safeguard against this frequent cause of failure. Another method is to round the corners of the square punch with a radius of about $\frac{1}{8}$ ". If a crack has already started, the spread of the crack may be prevented by drilling a small hole at the end of it.
220. Form and dimensions of metal cross-ties. Since stability in the ballast is an essential quality for a tie, this must be accomplished either by turning down the end of the tie or by having some form of lug extending downward from one or more points of the tie. The ties are sometimes depressed in the center (see Plate VI, N. Y. C. \& H. R. R. R. tie) to allow for a thick covering of ballast on top in order to increase its stability in the ballast. This form requires that the ties should be sufficiently well tamped to prevent a tendency to bend out straight, thus widening the gauge. Many designs of ties are objectionable because they cannot be placed in the track without disturbing adjacent ties. The failure of many metal cross-ties, otherwise of good design, may be ascribed to too light weight. Those weighing much less than 100 pounds have proved too light. From 100 to 130 pounds weight is being used satisfactorily on German railroads. The general outside dimensions are about

the same as for wooden ties, except as to thickness. The metal is generally from $\frac{1}{4}{ }^{\prime \prime}$ to $\frac{3}{8}{ }^{\prime \prime}$ thick. They are, of course, only made of wrought iron or steel, cast iron being used only for "bowls" or "plates" (see § 223). The details of construction of some of the most commonly used ties may be seen by a study of Plate VI.
221. Fastenings. The devices for fastening the rails to the ties should be such that the gauge may be widened if desired on curves, also that the gauge can be made true regardless of slight inaccuracies in the manufacture of the ties, and also that shims may be placed under the rail if necessary during cold weather when the tie is frozen into the ballast and cannot be easily disturbed. Some methods of fastening require that the base of the rail be placed against a lug which is riveted to the tie or which forms a part of it. This has the advantage of reducing the number of pieces, but is apt to have one or more of the disadvantages named above. Metal keys or wooden wedges are sometimes used, but the majority of designs employ some form of bolted clamp. The form adopted for the experimental ties used by the N. Y. C. \& H. R. R. R. (see Plate VI) is especially ingenious in the method used to vary the gauge or allow for inaccuracies of manufacture. Plate VI shows some of the methods of fastening adopted on the principal types of ties.
222. Cost. The cost of metal cross-ties in Germany averages about 1.6 c. per pound or about $\$ 1.60$ for a $100-\mathrm{lb}$. tie. The ties manufactured for the N. Y. C. \& H. R. R. R. in 1892 weighed about 100 lbs . and cost $\$ 2.50$ per tie, but if they had been made in larger quantities and with the present price of steel the cost would possibly have been much lower. The item of freight from the place of manufacture to the place where used is no inconsiderable item of cost with some roads. Metal cross-ties have been used by some street railroads in this country. Those used on the Terre Haute Street Railway weigh 60 pounds and cost about 66 c . for the tie, or 74 c . per tie with the fastenings.
223. Bowls or plates. As mentioned before, over 12000 miles of railway, chiefly in British India and in the Argentine Republic, are laid with this form of track. It consists essentially of large cast-iron inverted "bowls" laid at intervals under each rail and opposite each other, the opposite bowls being tied together with tie-rods. A suitable chair is riveted or bolted on to the top of each bowl so as to properly hold the rail. Being
made of cast iron, they are not so subject to corrosion as steel or wrought iron. They have the advantage that when old and worn out their scrap value is from 60% to 80% of their initial cost, while the scrap value of a steel or wrought-iron tie is practically nothing. Failure generally occurs from breakage, the failures from this cause in India being about 0.4% par annum. They weigh about 250 lbs . apiece and are therefore quite expensive in first cost and transportation charges. There are miles of them in India which have already lasted 25 years and are still in a serviceable condition. Some illustrations of this form of tie are shown in Plate VI.
224. Longitudinals.* This form, the use of which is confined almost exclusively to Germany, is being gradually replaced on many lines by metal cross-ties. The system generally consists of a compound rail of several parts, the upper bearing rail being very light and supported throughout its length by other rails, which are suitably tied together with tie-rods so as 10 maintain the proper gauge, and which have a sufficiently broad base to be properly supported in the ballast. One great objection to this method of construction is the

Fig. 110. difficulty of obtaining proper drainage especially on grades, the drainage having a tendency to follow along the lines of the rails. The construction is much more complicated on sharp curves and at frogs and switches. Another fundamentally different form of longitudinal is the Haarman compound "self-bearing" rail, having a base $12^{\prime \prime}$ wide and a height of $8^{\prime \prime}$, the alternate sections breaking joints so as to form a practically continuous rail.

Some of the other forms of longitudinals are illustrated in Plate VI.

For a very complete discussion of the subject of metal ties, see the "Report on the Substitution of Metal for Wood in Railroad Ties" by E. E. Russell Tratman, it being Bulletin No. 4, Forestry Division of the U. S. Dept. of Agriculture.

[^19]
CHAPTER IX.

RAILS.

225. Early forms. The first rails ever laid were wooden stringers which were used on very short tram-roads around coalmines. As the necessity for a more durable rail increased, owing chiefly to the invention of the locomotive as a motive power, there were invented successively the cast-iron "fishbelly" rail and various forms of wrought-iron strap rails which finally developed into the T rail used in this country and the double-headed rail, supported by chairs, used so extensively in England. The cast-iron rails were cast in lengths of about 3 feet and were supported in iron chairs which were sometimes set upon stone piers. A great deal of the first railroad track of this country was laid with longitudinal stringers of wood placed upon cross-ties, the inner edge of the stringers being protected by wrought iron straps. The "bridge" rails were first rolled in this country in 1844. The "pear" section was an approach to the present form, but was very defective on account of the difficulty of designing a good form of joint. The "Stevens" section was designed in 1830 by Col. Robert I. Stevens, Chief Engineer of the Camden and Amboy Railroad; although quite defective in its proportions, according to the present knowledge of the requirements, it is essentially the present form. In 1836, Charies Vignoles invented essentially the same form in England; this form is therefore known throughout England and Europe as the Vignoles rail.
226. Present standard forms. The larger part of modern railroad track is laid with rails which are either " T " rails or the double-headed or "bull-headed" rails which are carried in chairs. The double-headed rail was designed with a symmetrical form with the idea that after one head had been worn out by traffic the rail could be reversed, and that its life would be practically doubled. Experience has shown that the wear of the
rail in the chairs is very great; so much so that when one head has been worn out by traffic the whole rail is generally useless.

Fig. 111.-Early Forms of Rails.
If the rail is turned over, the worn places, caused by the chairs, make a rough track and the rail appears to be more brittle and subject to fracture, possibly due to the crystallization that may have occurred during the previous usage and to the reversal of stresses in the fibers. Whatever the explanation, experience has

Fig. 112. - Bullheaded Rail and Chair. demonstrated the fact. The "bull-headed" rail has the lower head only large enough to properly hold the wooden keys with which the rail is secured to the chairs (see Fig. 112) and furnish the necessary strength. The use of these rails requires the use of two castiron chairs for each tie. It is claimed that such track is better for heavy and fast traffic, but it is more
expensive to build and maintain. It is the standard form of track in England and some parts of Europe.

Until a few years ago there was a very great multiplicity in the designs of "T" rails as used in this country, nearly every prominent railroad having its own special design, which perhaps differed from that of some other road by only a very minute and insignificant detail, but which nevertheless would require a complete new set of rolls for rolling. This certainly must have had a very appreciable effect on the cost of rails. In 1893, the American Society of Civil Engineers, after a very exhaustive investigation of the subject, extending over several years, having obtained the opinions of the best experts of the country, adopted a series of sections which have been very extensively adopted by the railroads of this country. Instead of having the rail sections for various weights to be geometrically similar figures, certain dimensions are made constant, regardless of the weight. It was decided that the metal should be distributed through the section in the proportions of-head 42%, web 21%, and flange 37%. The top of the head should have a radius of

Fig. 113.-Am. Soc. C. E. Standard Rail Section.
$12^{\prime \prime}$; the top corner radius of head should be $\frac{5^{\frac{5}{16}}}{}{ }^{\prime \prime}$; the lower corner radius of head should be $\frac{1}{16}{ }^{\prime \prime}$; the corners of the flanges, $\frac{1}{16}{ }^{\prime \prime}$ radius; side radius of web, $12^{\prime \prime}$; top and bottom radii of web corners, $\frac{1}{4}^{\prime \prime}$; and angles with the horizontal of the under side
of the head and the top of the flange, 13°. The sides of the head are vertical.

The height of the rail (D) and the width of the base (C) are always made equal to each other.

	Weight per Yard.												
	40	45	50	55	60	65	70	75	80	85	90	95	1 CO
A	17\%'	$2^{\prime \prime}$	$2{ }^{1 \prime \prime}$	$24^{\prime \prime}$	$2{ }^{3 \prime}{ }^{\prime \prime}$	$2{ }^{13}{ }^{\prime \prime}$	$27_{16}^{\prime \prime}$	$2{ }^{15} 2^{\prime \prime}$	2交"	$2{ }^{9} 6^{\prime \prime}$	25"	$2{ }^{111_{1 \prime \prime}^{\prime \prime}}$	23^{*}
B	${ }_{6}^{25}$	${ }^{27}$	$\frac{7}{16}$	$\frac{15}{32}$	${ }^{31}$	$\frac{1}{2}$	${ }^{\frac{3}{6} 4}$	$\frac{17}{32}$	35	${ }_{16} 9$	$\frac{9}{16}$	$\frac{9}{16}$	$\frac{9}{16}$
$C \& D$	$3 \frac{1}{2}$	$3{ }_{1}^{11}$	37	$4{ }^{\frac{1}{16}}$	$4 \frac{1}{4}$	$4{ }_{16}^{76}$	$4 \frac{5}{8}$	$1 \frac{13}{13}$	5	$5{ }^{3} 6$	$5 \frac{3}{8}$	5_{19}^{19}	53
E	$\frac{5}{8}$	${ }^{21} 1$	$\frac{11}{16}$	${ }^{23}$	$\frac{49}{64}$	$\frac{25}{32}$	$\frac{13}{16}$	$\frac{27}{32}$	$\frac{7}{8}$	$\frac{57}{64}$	$\frac{59}{64}$	$\frac{15}{16}$	$\frac{31}{32}$
F	$1 \frac{55}{64}$	$1 \frac{31}{32}$	$2{ }_{16}^{16}$	$2 \frac{11}{64}$	217	$2 \frac{3}{8}$	$2 \frac{15}{32}$	235	25	$2{ }^{3}$	$2{ }^{565}$	2684	$3{ }_{64}^{5}$
G	${ }^{1} \frac{1}{64}$	$1_{1}^{1 / 6}$	$1 \frac{1}{8}$	164	$1 \frac{7}{32}$	13^{9}	$1{ }_{3} \frac{1}{2}$	164	112	165	$1 \frac{19}{32}$	$1 \frac{14}{4} 4$	$1 \frac{15}{64}$

The chief features of disagreement among railroad men relate to the radius of the upper corner of the head and the slope of the side of the head. The radius ($\frac{5}{16}^{\prime \prime}$) adopted for the upper corner (constant for all weights) is a little more than is advocated by those in favor of "sharp corners" who often use a radius of $\frac{1}{4}$ ". On the other hand it is much less than is advocated by those

Fig. 114.—Relation of Ratl to Wheeltread. who consider that it should be nearly equal to (or even greater than) the larger radius universally adopted for the corner of the wheel-flange. The discussion turns on the relative rapidity of rail wear and the wear of the wheel-flanges as affected by the relation of the form of the wheel-tread to that of the rail. It is argued that sharp rail corners wear the wheel-flanges so as to produce sharp flanges, which are liable to cause derailment at switches and also to require that the tires of engine-drivers must be more frequently turned down to their true form. On the other hand it is generally believed that rail wear is much less rapid while the area of contact between the rail and wheel-flange is small, and that when the rail has worn down, as it invariably does, to nearly the same form as the wheel-flange, the rail wears away very quickly.
227. Weight for various kinds of traffic. The heaviest rails in regular use weigh 100 lbs . per yard, and even these are only used on some of the heaviest traffic sections of such roads as the
N. Y. Central, the Pennsylvania, the N. Y., N. H. \& H., and a few others. Probably the larger part of the mileage of the country is laid with 60 - to $75-\mathrm{lb}$. rails-considering the fact that "the larger part of the mileage" consists of comparatively lighttraffic roads and may exclude all the heavy trunk lines. Very light-traffic roads are sometimes laid with $56-\mathrm{lb}$. rails. Roads with fairly heavy traffic generally use 75 - to $85-\mathrm{lb}$. rails, especially when grades are heavy and there is much and sharp curvature. The tendency on all roads is toward an increase in the weight, rendered necessary on account of the increase in the weight and capacity of rolling stock, and due also to the fact that the price of rails has been so reduced that it is both better and cheaper to obtain a more solid and durable track by increasing the weight of the rail rather than by attempting to support a weak rail by an excessive number of ties or by excessive track labor in tamping. It should be remembered that in buying rails the mere weight is, in one sense, of no importance. The important thing to consider is the strength and the stiffness. If we assume that all weights of rails hive similar cross-section, (which is nearly although not exactly true), then, since for beams of similar cross-sections the strength varies as the cube of the homologous dimensions and the stiffiness as the fourth powers while the area (and therefore the weight per unit of length) only varies as the square, it follows that the stiffness varies as the square of the weight, and the strength as the $\frac{3}{2}$ power of the weight. Since for ordinary variations of weight the price per ton is the same, adding (say) 10% to the weight (and cost) adds 21% to the stiffness and over 15% to the strength. As another illustration, using an $80-\mathrm{lb}$. rail instead of a $75-\mathrm{lb}$. rail adds only $6 \frac{2}{3} \%$ to the cost, but adds about 14% to the stiffness and nearly 11% to the strength. This shows why heavier rails are more economical and are being adopted even when they are not absolutely needed on account of heavier rolling stock. The stiffness, strength, and consequent durability are increased in a much greater ratio than the cost.
228. Effect of stiffness on traction. A very important but generally unconsidered feature of a stiff rail is its effect on tractive force. An extreme illustration of this principle is seen when a vehicle is drawn over a soft sandy road. The constant compression of the sand in front of the wheel has virtually the same effect on traction as drawing the wheel up a grade whose
steepness depends on the radius of the wheel and the depth of the rut. On the other hand, if a wheel, made of perfectly elastic material, is rolled over a surface which, while supported with absolute rigidity, is also perfectly elastic, there would be a forward component, caused by the expanding of the compressed metal just behind the center of contact, which would just balance the backward component. If the rail was supported throughout its length by an absolutely rigid support, the high clasticity of the wheel-tires and rails would reduce this form of resistance to an insignificant quantity, but the ballast and even the ties are comparatively inelastic. When a weak rail yields, the ballast is more or less compressed or displaced, and even though the elasticity of the rail brings it back to nearly its former place, the work done in compressing an inelastic material is wholly lost. The effect of this on the fuel account is certainly very considerable and yet is frequently entirely overlooked. It is practically impossible to compute the saving in tractive power, and therefore in cost of fuel, resulting from a given increase in the weight and stiffness of the rail, since the yielding of the rail is so dependent on the spacing of the ties, the tamping, etc. But it is not difficult to perceive in a general way that such an economy is possible and that it should not be neglected in considering the value of stiffness in rails.
229. Length of rails. The standard length of rails with most railroads is 30 feet. In recent years many roads have been trying 45 -foot and even 60 -foot rails. The argument in favor of longer rails is chiefly that of the reduction in track-joints, which are costly to construct and to maintain and are a fruitful source of accidents. Mr. Morrison of the Lehigh Valley R. R.* declares that, as a result of extensive experience with 45 -foot rails on that road, he finds that they are much less expensive to handle, and that, being so long, they can be laid around sharp curves without being curved in a machine, as is necessary with the shorter rails. The great objection to longer rails lies in the difficulty in allowing for the expansion, which will require, in the coldest weather, an opening at the joint of nearly $\frac{3}{4}{ }^{\prime \prime}$ for a 60 -foot rail. The Pennsylvania R. R. and the Norfolk and Western R. R. each have a considerable mileage laid with 60 -foot rails.

[^20]230. Expansion of rails. Steel expands at the rate of .0000065 of its length per degree Fahrenheit. The extreme range of temperature to which any rail will be subjected will be about 160°, or say from $-20^{\circ} \mathrm{F}$. to $+140^{\circ} \mathrm{F}$. With the above coefficient and a rail length of 60 feet the expansion would be 0.0624 foot, or about $\frac{3}{4}$ inch. But it is doubtful whether there would ever be such a range of motion even if there were such a range of temperature. Mr. A. Torrey, chief engineer of the Mich. Cent. R. R., experimented with a section over 500 feet long, which, although not a single rail, was made "continuous" by rigid splicing, and he found that there was no appreciable additional contraction of the rail at any temperature below $+20^{\circ} \mathrm{F}$. The reason is not clear, but the fact is undeniable.

The heavy girder rails, used by the street railroads of the country, are bonded together with perfectly tight rigid joints which do not permit expansion. If the rails are laid at a temperature of $60^{\circ} \mathrm{F}$. and the temperature sinks to 0°, the rails have a tendency to contract .00039 of their length. If this tendency is resisted by the friction of the pavement in which the rails are buried, it only results in a tension amounting to .00039 of the modulus of elasticity, or say 10920 pounds per square inch, assuming 28000000 as the modulus of elasticity. This stress is not dangerous and may be permitted. If the temperature rises to $120^{\circ} \mathrm{F}$., a tendency to expansion and buckling will take place, which will be resisted as before by the pavement, and a compression of 10920 pounds per square inch will be induced, which will likewise be harmless. The range of temperature of rails which are buried in pavement is much less than when they are entirely above the ground and will probably never reach the above extremes. Rails supported on ties which are only held in place by ballast must be allowed to expand and contract almost freely, as the ballast cannot be depended on to resist the distortion induced by any considerable range of temperature, especially on curves.

23I. Rules for allowing for temperature. Track regulations generally require that the track foremen shall use iron (not wooden) shims for placing between the ends of the rails while splicing them. The thickness of these shims should vary with the temperature. Some roads use such approximate rules as the following: "The proper thickness for coldest weather is $\frac{5}{18}$ of an inch; during spring and fall use $\frac{1}{8}$ of an inch, and in the very
hottest weather $\frac{1}{1 \overline{6}}$ of an inch should be allowed." This is on the basis of a 30 -foot rail. When a more accurate adjustment than this is desired, it may be done by assuming some very high temperature (120° to $150^{\circ} \mathrm{F}$.) as a maximum, when the joints should be tight; then compute in tabular form the spacing for each temperature, varying by 20°, allowing $0^{\prime \prime} .0468$ (almost exactly $\frac{3}{64}{ }^{\prime \prime}$) for each 20° change. Such a tabular form would be about as follows (rail length 30 feet):

Temperature...	150°	130°	110°	90	70°	50°	30°	10°	-10°	-30°
Rail opening.	0	${ }^{\frac{3}{64}{ }^{\prime \prime}}$	${ }^{\frac{3}{31}}$	${ }^{9}{ }^{9 \prime \prime}{ }^{\prime \prime}$	${ }^{\frac{3}{16}}{ }^{\prime \prime}$		${ }^{\frac{9}{21}}$	${ }_{64}^{2214}$	${ }^{\frac{3}{8}}$	${ }_{64}{ }^{27}$

One practical difficulty in the way of great refinement in this work is the determination of the real temperature of the rail when it is laid. A rail lying in the hot sun has a very much higher temperature than the air. The temperature of the rail cannot be obtained even by exposing a thermometer directly to the sun, although such a result might be the best that is easily obtainable. On a cloudy or rainy day the rail has practically the same temperature as the air; therefore on such days there need be no such trouble.
232. Chemical composition. About 98 to 99.5% of the composition of steel rails is iron, but the value of the rail, as a rail, is almost wholly dependent upon the large number of other chemical elements which are, or may be, present in very small amounts. The manager of a steel-rail mill once declared that their aim was to produce rails having in them-

Carbon	0.32 to 0.40%
Silicon.	0.04 to 0.06%
Phosphorus.	0.09 to 0.105%
Manganese. .	1.00 to 1.50%

The analysis of 32 specimens of rails on the Chic., Mil. \& St. Paul R. R. showed variations as follows:

Carbon	0.211 to 0.52%
Silicon.	0.013 to 0.256%
Phosphorus.	0.055 to 0.181%
Manganese.	0.35 to 1.63%

These quantities have the same general relative proportions as the rail-mill standard given above, the differences lying mainly in the broadening of the limits. Increasing the percentage of carbon by even a few hundredths of one per cent makes the rail harder, but likewise more brittle. If a track is well ballasted and not subject to heaving by frost, a harder and more brittle rail may be used without excessive danger of breakage, and such a rail will wear much longer than a softer tougher rail, although the softer tougher rail may be the better rail for a road having a less perfect roadbed.

A small but objectionable percentage of sulphur is sometimes found in rails, and very delicate analysis will often show the presence, in very minute quantities, of several other chemical elements. The use of a very small quantity of nickel or aluminum has often been suggested as a means of producing a more durable rail. The added cost and the uncertainty of the amount of advantage to be gained has hitherto prevented the practical use or manufacture of such rails.
233. Testing. Chemical and mechanical testing are both necessary for a thorough determination of the value of a rail. 'The chemical testing has for its main object the determination of those minute quantities of chemical elements which have such a marked influence on the rail for good or bad. The mechanical testing consists of the usual tests for elastic limit, ultimate strength, and elongation at rupture, determined from pieces cut out of the rail, besides a "drop test." The drop test consists in dropping a weight of 2000 lbs . from a height of 16 to 20 feet on to the center of a rail which is supported on abutments. placed three or four feet apart. The number of blows required to produce rupture or to produce a permanent set of specified magnitude gives a measure of the strength and toughness of the rail.

233a. Proposed standard specifications for steel rails. The following specifications for steel rails are those proposed by a committee of the American Railway Engineering and Maintenance of Way Association in March, 1902:

1. (a) Steel may be made by the Bessemer or open-hearth process.
(b) The entire process of manufacture and testing shall be in accordance with the best standard current practice, and special care shall be taken to conform to the following instructions:
(c) Ingots shall be kept in a vertical position in pit-heating furnaces.
(d) No bled ingots shall be used.
(e) Sufficient material shall be discarded from the top of the ingots to insure sound rails.

CHEMICAL PROPERTIES.

2. Rails of the various weights per yard specified below shall conform to the following limits in chemical composition:

	$\left\lvert\, \begin{gathered} 50 \text { to } 59+ \\ \text { ibs. } \\ \text { per cent. } \end{gathered}\right.$	$\begin{gathered} 60 \text { to } 69+ \\ \text { lbs. } \\ \text { per cent. } \end{gathered}$	$\begin{aligned} & 70 \text { to } 79+ \\ & \text { lbs. } \\ & \text { per cent. } \end{aligned}$	$\left\lvert\, \begin{gathered} 80 \text { to } 89+ \\ \text { los. } \\ \text { per cent. } \end{gathered}\right.$	90 to 100 lbs. per cent.
Carbon	0.35-0.45	0.38-0.48	0.40-0.50	0.43-0.53.	0.45-0.55
Phosphorus shall not exceed.	0.10	0.10	0.10	0.10	0.10
Silicon shall not ex- ceed..............	0.20	0.20	0.20	0.20	0.20
Manganese	0.70-1.00	0.70-1.00	0.75-1.05	$0.80-1.10$	0.80-1.10

PHYSICAL PROPERTIES.

3. One drop test shall be made on a piece of rail not more than 6 feet long, selected from every fifth blow of steel. The testpiece shall be taken from the top of the ingot. The rail shall be placed head upwards on the supports and the various sections shall be subjected to the following impact tests:

Weight of Rail in Pounds per Yard.					Height of Drop in Feet.

If any rail break when subjected to the drop test two additional tests will be made of other rails from the same blow of steel, and if either of these latter tests fail, all the rails of the blow which they represent will be rejected; but if both of these additional test-pieces meet the requirements all the rails of the blow which they represent will be accepted. If the rails from the tested blow shall be rejected for failure to meet the requirements of
the drop test, as above specified, two other rails will be subjected to the same tests, one from the blow next preceding and one from the blow next succeeding, the rejected blow. In case the first test taken from the preceding or succeeding blow shall fail two additional tests shall be taken from the same blow of steel, the acceptance or rejection of which shall also be determined as specified above, and if the rails of the preceding or succeeding, blow shall be rejected, similar tests may be taken from the previous or following blows, as the case may be, until the entire group of five blows is tested, if necessary. The acceptance or rejection of all rails from any blow will depend upon the results of the tests thereof.

HEAT TREATMENT.

The number of passes and speed of train shall be so regulated that on leaving the rolls at the final pass the temperature of the rail will not exceed that which requires a shrinkage allowance at the hot saws of 6 inches for $85-\mathrm{lb}$. and $6 \frac{1}{8}$ inches for $100-\mathrm{lb}$. rails, and no artificial means of cooling the rails shall be used between the finishing pass and the hot saws.

TEST-PIECES AND METHODS OF TESTING.

4. The drop-test machine shall have a tup of 2000 lbs . weight, the striking face of which shall have a radius of not more than 5 inches, and the test rail shall be placed head upwards on solid supports 3 feet apart. The anvil-block shall weigh at least 20000 lbs., and the support shall be a part of, or firmly secured to, the anvil.
5. The manufacturer shall furnish the inspector, daily, with carbon determinations of each blow, and a complete chemical analysis every 24 hours, representing the average of the other elements contained in the steel. These analyses shall be made on drillings taken from a small test ingot.

FINISH.

6. Unless otherwise specified the section of rail shall be the American standard, recommended by the American Society of Civil Engineers, and shall conform, as accurately as possible, to the templet furnished by the railroad company, consistent with paragraph No. 7, relative to the specified weight. A vari-
ation in height of $\frac{1}{64}$ inch less and $\frac{1}{32}$ inch greater than the specified height will be permitted. A perfect fit of the splice-bars, however, shall be maintained at all times.
7. The weight of the rails shall be maintained as nearly as possible, after complying with paragraph No. 6, to that specified in contract. A variation of one-half of one per cent for an entire order will be allowed. Rails shall be accepted and paid for according to actual weights.
8. The standard length of rails shall be 33 feet. Ten per cent of the entire order will be accepted in shorter lengths, varying by even feet down to 27 feet. A variation of $\frac{1}{4}$ inch in length from that specified will be allowed.
9. Circular holes for splice-bars shall be drilled in accordance with the specifications of the purchaser. The holes shall accurately conform to the drawing and dimensions furnished in every respect, and must be free from burrs.
10. Rails shall be straightened while cold, smooth on head, sawed square at ends, and, prior to shipment, shall have the burr, occasioned by the saw-cutting, removed, and the ends: made clean. No. 1 rails shall be free from injurious defects and flaws of all kinds.

BRANDING.

11. The name of the maker, the month and year of manufacture shall be rolled in raised letters on the side of the web, and the number of the blow shall be stamped on each rail

INSPECTION.

12. The inspector representing the purchaser shall have all reasonable facilities afforded to him by the manufacturer to satisfy him that the finished material is furnished in accordance with these specifications. All tests and inspections shall be made at the place of manufacture, prior to shipment.

No. 2 rails.

13. Rails that possess any injurious physical defects, or which for any other cause are not suitable for first quality, or No. 1 rails, shall be considered as No. 2 rails, provided, however, that rails which contain any physical defects which seriously impair their strength shall be rejected. The ends of all No. 2 rails shall be painted in order to distinguish them.
14. Rail wear on tangents. When the wheel loads on a rail are abnormally heavy, and particularly when the rail has but little carbon and is unusually soft, the concentrated pressure on the rail is frequently greater than the elastic limit, and the metal "flows" so that the head, although greatly abraded, will spread somewhat outside of its original lines, as shown in Fig. 115. The rail wear that occurs on tangents is almost exclusively on top. Statistics show that the rate of rail wear on tangents decreases as the rails are more worn. Tests of a large number of

Fig. 115. rails on tangents have shown a rail wear averaging nearly one pound per yard per 10000000 tons of traffic. There is about 33 pounds of metal in one yard of the head of an $80-\mathrm{lb}$. rail. As an extreme value this may be worn down one-half, thus giving a tonnage of 165000000 tons for the life of the rail. Other estimates bring the tonnage down to 125000000 tons. Since the locomotive is considered to be responsible for one-half (and possibly more) of the damage done to the rail, it is found that the rate of wear on roads with shorter trains is more rapid in proportion to the tonnage, and it is therefore thought that the life of a rail should be expressed in terms of the number of trains. This has been estimated at 300000 to 500000 trains.
235. Rail wear on curves. On curves the maximum rail wear occurs on the inner side of the head of the outer rail, giving a worn form somewhat as shown in Fig. 116. The dotted line shows the nature and progress of the rail wear

Fig. 116. on the inner rail of a curve. Since the pressure on the outer rail is somewhat lateral rather than vertical, the "flow" does not take place to the same extent, if at all, on the outside, and whatever flow would take place on the inside is immediately worn off by the wheel-flange. Unlike the wear on tangents, the wear on curves is at a greater rate as the rail becomes more worn.

The inside rail on curves wears chiefly on top, the same as on a tangent, except that the wear is much greater owing to the longitudinal slipping of the wheels on the rail, and the lateral slipping that must occur when a rigid four-wheeled truck is
guided around a curve. The outside rail is subjected to a greater or less proportion of the longitudinal slipping, likewise to the lateral slipping, and, worst of all, to the grinding action of the flange of the wheel, which grinds off the side of the head

The results of some very elaborate tests, made by Mr. A M. Wellington, on the Atlantic and Great Western R. R., on the wear of rails, seem to show that the rail wear on curves may be expressed by the formula: "Total wear of rails on a d degree curve in pounds per yard per 10000000 tons duty $=1+003 d^{2}$." "It is not pretended that this formula is strictly correct even in theory, but several theoretical considerations indicate that it may be nearly so." According to this formula the average rail wear on a 6° curve wili be about twice the rail wear on a tangent. While this is approximately true, the various causes modifying the rate of rail wear (length of trains, age and quality of rails, etc.) will result in numerous and large variations from the above formula, which should only be taken as indicating an approximate Jaw.
236. Cost of rails. In 1873 the cost of steel rails was about $\$ 120$ per ton, and the cost of iron rails about $\$ 70$ per ton Although the steel rails were at once recognized as superior to iron rails on account of more uniform wear, they were an expensive luxury. The manufacture of steel rails by the Bessemer process created a revolution in prices, and they have steadily dropped in price until, during the last few years, steel rails have been manufactured and sold for $\$ 22$ per ton. At such prices there is no longer any demand for iron rails, since the cost of manufacturing them is substantially the same as that of steel rails, while their durability is unquestionably inferior to that of steel rails.

CHAPTER X.

RAIL-FASTENINGS.

RAIL-JOINTS

237. Theoretical requirements for a perfect joint. A perfect rail-joint is one that has the same strength and stiffness-no more and no less-as the rails which it joins, and which will not interfere with the regular and uniform spacing of ties. It should also be reasonably cheap both in first cost and in cost of maintenance. Since the action of heavy loads on an elastic rail is to cause a wave of translation in front of each whee!, any change in the stiffness or elasticity of the rail structure will cause more or less of a shock, which must be taken up and resisted by the joint. The greater the change in stiffness the greater the shock, and the greater the destructive action of the shock. The perfect rail-joint must keep both rail-ends truly in line both laterally and vertically, so that the flange or tread of the wheel need not jump or change its direction of motion suddenly in passing from one rail to the other. A consideration of all the above requirements will show that only a perfect welding of rail-ends would produce a joint of uniform strength and stiffness which would give a uniform elastic wave ahead of each wheel. As welding is impracticable for ordinary railroad work (see §230), some other contrivance is necessary which will approach this ideal as closely as may be.
238. Efficiency of the ordinary angle-bar. Throughout the middle portion of a rail the rail acts as a continuous girder. If we consider for simplicity that the ties are unyielding, the deflection of such a continuous girder between the ties will be but one-fourth of the deflection that would be found if the rail were cut half-way between the ties and an equal concentrated load were divided equally between the two unconnected ends. The maximum stress for the continuous girder would be but one-half of that in the cantilevers. Joining these ends with rail-joints will give the ordinary "suspended" joint. In order to main-
tain uniform strength and stiffness the angle-bars must supply the deficiency. These theoretical relations are modified to an unknown extent by the unknown and variable yielding of the ties From some experiments made by the Association of Engineers of Maintenance of Way of the P. R. R.* the following deductions were made:
239. The capacity of a "suspended" joint is greater than that of a "supported" joint-whether supported on one or three ties. (See § 240)
240. That (with the particular patterns tested) the angle-bars alone can carry only 53 to 56% of a concentrated load placed on a joint.
241. That the capacity of the whole joint (angle-bars and rail) is only 524% of the strength of the unbroken rail.
242. That the ineffectiveness of the angle-bar is due chiefly to a deficiency in compressive resistance.

Although it has been universally recognized that the anglebar is not a perfect form of joint, its simplicity, cheapness, and reliability have caused its almost universal adoption. Within a very few years other forms (to be described later) have been adopted on trial sections and have been more and more extended, until their present use is very large. The present time (1900) is evidently a transition period, and it is quite probable that within a very few years the now common angle-plate will be as unknown in standard practice as the old-fashioned "fish-plate" is at the present time.
239. Effect of rail gap at joints. It has been found that the jar at a joint is due almost entirely to the deflection of the joint and scarcely at all to the small gap required for expansion. This gap causes a drop equal to the versed sine of the arc having a chord equal to the gap and a radius equal to the radius of the wheel. Taking the extreme case (for a 30 -foot rail) of a $3^{\prime \prime}$ gap and a $33^{\prime \prime}$ freight-car wheel, the drop is about $\frac{1}{1000}{ }^{\prime \prime}$. In order to test how much the jarring at a joint is due to a gap between the rails, the experiment was tried of cutting shallow notches in the top of an otherwise solid rail and running a locomotive and an inspection car over them. The resulting jarring was practically imperceptible and not comparable to the jar produced at joints. Notwithstanding this fact, many plans have

[^21]been tried for avoiding this gap. The most of these plans consist essentially of some form of compound rail, the sections breaking joints. (Of course the design of the compound rail has also several other objects in view.) In Fig. 117 are shown a

Fig. 117.-Compound Rail Sections.
few of the very many designs which have been proposed. These designs have invariably been abandoned after trial. Another plan, which has been extensively tried on the Lehigh Valley R. R., is the use of mitered joints. The advantages gained by their use are as yet doubtful, while the added expense is unquestionable. The "Roadmasters Association of America" in 1895 adopted a resolution recommending mitered joints for double track, but their use does not seem to be growing.
240. "Supported," " suspended," and " bridge" joints. In a supported joint the ends of the rails are on a tie. If the angleplates are short, the joint is entirely supported on one tie; if very long, it may be possible to place three ties under one anglebar and thus the joint is virtually supported on three ties rather than one. In a suspended joint the ends of the rails are midway between two ties and the joint is supported by the two. There have always been advocates of both methods, but suspended joints are more generally used than supported joints. The opponents of three-tie joints claim that either the middle tie will be too strongly tamped, thus making it a supported joint, or that, if the middle tie is weakest, the joint becomes a very long (and therefore weak) suspended joint between the outer jointties, or that possibly one of the outer joint-ties gives way, thus breaking the angle-plate at the joint. Another objection which is urged is that unless the bars are very long (say 44 inches, as used on the Mich. Cent. R. R.) the ties are too close for proper tamping. The best answer to these objections is the successful use of these joints on several heavy-traffic roads
"Bridge"-joints are similar to suspended joints in that the joint is supported on two ties, but there is the important difference that the bridge joint supports the rail from underneath and
there is no transverse stress in the rail, whereas the suspended joint requires the combined transverse strength of both anglebars and rail. A serious objection to bridge-joints lies in the fact of their considerable thickness between the rail base and the tie. When joints are placed "staggered" rather than "opposite" (as is now the invariable standard practice), the ties supporting a bridge-joint must either be notched down, thus weakening the tie and promoting decay at the cut, or else the tie must be laid on a slope and the joint and the opposite rail do not get a fair bearing.
241. Failures of rail-joints. It has been observed on doubletrack roads that the maximum rail wear occurs a few inches beyond the rail gap at the joint in the direction of the traffic. On single-track roads the maximum rail wear is found a few inches each side of the joint rather than at the extreme ends of the rail, thus showing that the rail end deflects down under the wheel until (with fast trains especially) the wheel actually jumps the space and strikes the rail a few inches beyond the joint, the impact producing excessive wear. This action, which is called the "drop," is apt to cause the first tie beyond the joint to become depressed, and unless this tie is carefully watched and maintained at its proper level, the stresses in the angle-bar may actually become reversed and the bar may break at the top. The angle-bars of a suspended joint are normally in compression at the top. The mere reversal of the stresses would cause the bars

Fig. 118.--Effect of " Wheel Drop" (Exaggerated).
to give way with a less stress than if the stress were always the same in kind. A supported joint, and especially a three-tie joint (see § 240), is apt to be broken in the same manner.
242. Standard angle-bars. An angle-bar must be so made as to closely fit the rails. The great multiplicity in the designs of rails (referred to in Chapter IX) results in nearly as great variety in the detailed dimensions of the angle-bars. The sections here illustrated must be considered only as types of the variable forms necessary for each different shape of rail. The
absolutely essential features required for a fit are (1) the angles of the upper and lower surfaces of the bar where they fit against the rail, and (2) the height of the bar. The bolt-holes in the bar and rail must also correspond. The holes in the angle-plates are elongated or made oval, so that the track-bolts, which are

made of corresponding shape immediately under the head, will not be turned by jarring or vibration. The holes in the rails are made of larger diameter (by about $\frac{1_{1}^{\prime \prime}}{1}$) than the bolts, so as to allow the rail to expand with temperature.
243. Later designs of rail-joints. In Plate VII are shown various designs which are competing for adoption. The most prominent of these (judging from the discussion in the convention of the Roadmasters Association of America in 1897) are the "Continuous" and the "Weber." Each of them has been very extensively adopted, and where used are universally preferred to angle-plates. Nearly all the later designs embody more or less directly the principle of the bridge-joint, i.e., support the rail from underneath. An experience of several years will be required to demonstrate which form of joint best satisfies the somewhat opposed requirements of minimum cost (both initial and for maintenance) and minimum wear of rails and rolling stock.

243a. Proposed specifications for steel splice-bars. The following specifications for steel splice-bars were proposed in 1900 by Committee No. 1, American Section, International Association for Testing Materials.

1. Steel for splice-bars may be made by the Bessemer or openhearth process.
2. Steel for splice-bars shall conform to the following limits in chemical composition:

Per cent.

| Carbon shall not exceed. | 0.15 |
| :--- | ---: | ---: |
| Phosphorus shall not exceed. | 0.30 to 0.10 |
| Manganese. 0.60 | |

3. Splice-bar steel shall conform to the following physical qualities:

Tensile strength, pounds per square inch. 54000 to 64000
Yield point, pounds per square inch.......... 32000
Elongation, per cent in eight inches shall not be less than 25
4. (a) A test specimen cut from the head of the splice-bar shall bend 180° flat on itself without fracture on the outside of the bent portion.
(b) If preferred the bending test may be made on an unpunched splice-bar, which, if necessary, shall be first flattened and shall then be bent 180° flat on itself without fracture on the outside of the bent portion.
5. A test specimen of 8 -inch gauged length, cut from the head of the splice-bar, shall be used to determine the physical properties specified in paragraph No. 3.
6. One tensile specimen shall be taken from the rolled splicebars of each blow or melt, but in case this develops flaws, or breaks outside of the middle third of its gauged length, it may be discarded and another test specimen submitted therefor.
7. One test specimen cut from the head of the splice-bar shall be taken from a rolled bar of each blow or melt, or if preferred the bending test may be made on an unpunched splice-bar, which, if necessary, shall be flattened before testing. The bending test may be made by pressure or by blows.
8. For the purposes of this specification, the yield point shall
be determined by the careful observation of the drop of the beam or halt in the gauge of the testing machine.
9. In order to determine if the material conforms to the chemical limitations prescribed in paragraph No. 2 herein, analysis shall be made of drillings taken from a small test ingot.
10. All splice-bars shall be smoothly rolled and true to templet. The bars shall be sheared accurately to length and free from fins or cracks, and shall perfectly fit the rails for which they are intended. The punching and notching shall accurately conform in every respect to the drawing and dimensions furnished.
11. The name of the maker and the year of manufacture shall be rolled in raised letters on the side of the splice-bar.
12. The inspector representing the purchaser shall have all reasonable facilities afforded to him by the manufacturer, to satisfy him that the finished material is furnished in accordance with these specifications. All tests and inspections shall be made at the place of manufacture, prior to shipment.

TIE-PLATES.

244. Advantages. (a) As already indicated in § 204, the life of a soft-wood tie is very much reduced by "rail-cutting" and "spike-killing," such ties frequently requiring renewal long before any serious decay has set in. It has been practically demonstrated that the "rail-cutting" is not due to the mere pressure of the rail on the tie, even with a maximum load on the rail, but is due to the impact resulting from vibration and to the longitudinal working of the rail. It has been proved that this rail-cutting is practically prevented by the use of tieplates. (b) On curves there is a tendency to overturn the outer rail due to the lateral pressure on the side of the head. This produces a concentrated pressure of the outer edge of the base on the tie which produces rail-cutting and also draws the inner spikes. Formerly the only method of guarding against this was by the use of "rail-braces," one pattern of which is shown in Fig. 120. But it has been found that tie-plates serve the purpose even better, and rail-braces have been abandoned where tie-plates are used. (c) Driving spikes through holes in the plate enables the spikes on each side of the rail to mutually support each other, no matter in which (lateral) direction the rail may tend to move, and this probably accounts in large
measure for the added stability obtained by the use of tie-plates. (d) The wear in spikes, called "necking," caused by the vertical vibration of the rail against them, is very greatly reduced. (e) The cost is very small compared with the value of the added life of the tie, the large reduction in the work of track main-

Fig. 120.
tenance, and the smoother running on the better track which is obtained. It has been estimated that by the use of tie-plates the life of hard-wood ties is increased from one to three years, and the life of soft-wood ties is increased from three to six years. From the very nature of the case, the value of tie-plates is greater when they are used to protect soft ties.
245. Elements of the design. The earliest forms of tie-plates were flat on the bottom, but it was soon found that they would work loose, allow sand and dirt to get between the rail and the plate and also between the plate and the tie, which would cause excessive wear. Such plates are also apt to produce an objectionable rattle Another fault of the earlier designs was the use of plates so thin that they would buckle. The latest designs have flanges or "teeth" formed on the lower surface which penetrate the tie about $\frac{3}{4}{ }^{\prime \prime}$ to $1 \frac{3}{8}{ }^{\prime \prime}$. Opinion is still divided on the question of whether these teeth should run with the grain or across the grain. If the flanges run with the grain, they generally extend the whole length of the tie-plate-as in the Wolhaupter design. If the grain is to be cut crosswise, several teeth about $1^{\prime \prime}$ wide will be used-as in the Goldie design.

It is a very important feature that the spike-holes should be so punched that the spikes will fit closely to the base of the rail. Otherwise a lateral motion of the rail will be permitted which will defeat one of the main objects of the use of the plate.

PLATE VII

100 PER CENT JOINT.

ONZANO JOINT.

(To face page 256.)

Another unsettled detail is the use of "shoulders" on the upper surface. On the one hand it is claimed that the use of shoulders relieves the spikes of side pressure from the rail and prevents "necking." On the other hand it is claimed that if the

Fig. 121.-Tie-plates.
the plain plate is once properly set with new spikes (at least with spikes not already necked) the spikes will not neck appreciably, and that, as the shouldered plates cost more, the additional expenditure is unnecessary.

The above designs should be studied with reference to the manner in which they fulfill the requirements which have been already stated. As in the case of rail-joints, the best forms of tie-plates are of comparatively recent design, and experience with them is still insufficient to determine beyond all question which designs are the best.
246. Method of setting. A very important detail in the process of setting the tie-plates on the ties is that the flanges or teeth should penetrate the tie as far as desired when the plates are first put in position. It requires considerable force to press the teeth into a tie. In a few cases trackmen have depended on the easy process of waiting for passing trains to force the teeth
down. Until the teeth are down the spikes cannot be driven home, and this apparently cheap and easy process results in loose spikes and rails. If the trackmen neglect even temporarily to tighten these spikes, it will become impossible to make them tight ultimately. The plates are generally pounded into place with a 10 - to 16 -pound sledge-hammer. A very good method was adopted once during the construction of a bridge when a pile-driver was at hand. The bridge-ties were placed under the pile-hammer. The plates, accurately set to gauge, were then forced in by a blow from the $3000-\mathrm{lb}$. hammer falling 2 or 3 feet

SPIKES.

247. Requirements. The rails must be held to the ties by a fastening which will not only give sufficient resistance, but which will retain its capacity for resistance. It must also be cheap and easily applied. The ordinary track-spike fulfills the last requirements, but has comparatively small resisting power, compared with screws or bolts. Worse than all, the tendency to

Fig. 122.

Fig. 123.
vertical vibration in the rail produces a series of upward pulls on the spike that soon loosens it. When motion has once begun the capacity for resistance is greatly reduced, and but little more vibration is required to pull the spike out so much that redriving is necessary. Driving the spike to place again in the same hole
is of small value except as a very temporary expedient, as its holding power is then very small. Redriving the spikes in new holes very soon "spike-kills" the tie. Many plans have been devised to increase the holding power of spikes, such as making them jagged, twisting the spike, swelling the spike at about the center of its length, etc. But it has been easily demonstrated that the fibers of the wood are generally so crushed and torn by driving such spikes that their holding power is less than that of the plain spike.

The ordinary spike (see Fig. 122) is made with a square crosssection which is uniform through the middle of its length, the lower $1 \frac{3}{4}{ }^{\prime \prime}$ tapering down to a chisel edge, the upper part swelling out to the head. The Goldie spike (see Fig. 123) aims to improve this form by reducing to a minimum the destruction of the fibers. To this end, the sides are made smooth, the edges are clean-cut, and the point, instead of being chisel-shaped, is ground down to a pyramidal form. Such fiber-cutting as occurs is thus accomplished without much crushing, and the fibers are thus pressed away from the spike and slightly downward. Any tendency to draw the spike will therefore cause the fibers to press still harder on the spike and thus increase the resistance.
248. Driving. The holding power of a spike depends largely on how it is driven. If the blows are eccentric and irregular in direction, the hole will be somewhat enlarged and the holding power largely decreased. The spikes on each side of the rail in any one tie should not be directly opposite, but should be staggered Placing them directly opposite will tend to split the tie, or at least decrease the holding power of the spikes. The direction of staggering should be reversed in the two pairs of spikes in any one

Fig. 124.-Spike-driving. tie (see Fig. 124). This will tend to prevent any twisting of the tie in the ballast, which would otherwise loosen the rail from the tie.
249. Screws and bolts. The use of these abroad is very extensive, but their use in this country has not passed the experimental stage. The screws are "wood"-screws (see Fig. 125),
having large square heads, which are screwed down with a trackwrench. Holes, having the same diameter as the base of the screw-heads, should be first bored into the tie, at exactly the right position and at the proper angle with the vertical. A light wooden frame is sometimes used to guide the auger at the proper angle. Sometimes the large head of the screw bears directly against the base of the rail, as with the ordinary spike. Other designs employ a plate, made to fit the rail on one side, bearing on the tie on the other side, and through which the screw passes. These screws cost much more than the spikes and require more work to put in place, but their holding power is much greater and the work of track maintenance is very much less. Screw-bolts, passing entirely through the tie, having the head at the bottom of the tie and the nut on the upper side, are also used abroad. These are quite difficult to replace, requiring that the ballast be dug out beneath the tie, but on the other hand the

Fig. 125.

Fig. 126.
occasions for replacing such a bolt are comparatively rare, as their durability is very great. The use of screws or bolts increases the life of the tie by the avoidance of "spike-killing." It is capable of demonstration that the reduced cost of maintenance and the resulting improvement in track would much more than repay the added cost of screws and bolts, but it seems impossible to induce railroad directors to authorize a large and immediate additional expenditure to make an annual saving whose value, although unquestionably considerable, cannot be exactly computed.
250. "Wooden spikes." Among the regulations for tracklaying given in § 208, mention was made of wooden "spikes,"
or plugs, which are used to fill up the holes when spikes are withdrawn. The value of the policy of filling up these holes is unquestionable, since the expense is insignificant compared with the loss due to the quick and certain decay of the tie if these holes are allowed to fill with water and remain so. But the method of making these plugs is variable. On some roads they are "hand-made" by the trackmen out of otherwise useless scraps of lumber, the work being done at odd moments. This policy, while apparently cheap, is not necessarily so, for the hand-made plugs are irregular in size and therefore more or less inefficient. It is also quite probable that if the trackmen are required to make their own plugs, they would spend time on these very cheap articles which could be more profitably employed otherwise. Since the holes made by the spikes are larger at the top than they are near the bottom, the plugs should not be of uniform cross-section but should be slightly wedge-shaped. The "Goldie tie-plug" (see Fig. 127) has been designed to fill these requirements. Being machine-made, they are uniform in size; they are of a shape which will best fit the hole; they can be furnished of any desired wood, and at a cost which makes it a wasteful economy to attempt to cut them by hand.

TRACK-BOLTS AND NUT-LOCKS.

251. Essential requirements. The track-bolts must have sufficient strength and must be screwed up tight enough to hold the angle-plates against the rail with sufficient force to develop the full transverse strength of the angle-bars. On the other hand the bolts should not be screwed so tight that slipping may not take place when the rail expands or contracts with temperature. It would be impossible to screw the bolts tight enough to prevent slipping during the contraction due to a considerable fall of temperature on a straight track, but when the track is curved, or when expansion takes place, it is conceivable that the resistance of the ties in the ballast to lateral motion may be less than the resistance at the joint. A test to determine this resistance was made by Mr. A. Torrey, chief engineer of the Mich. Cent. R. R., using $80-\mathrm{lb}$. rails and ordinary angle-bars, the bolts being screwed up as usual. If required a force of about 31000 to

35000 lbs . to start the joint, which would be equivalent to the stress induced by a change of temperature of about 22°. But if the central angle of any given curve is small, a comparatively small lateral component will be sufficient to resist a compression of even 35000 lbs . in the rails. Therefore there will ordinarily be no trouble about having the joints screwed too tight. The vibration caused by the passage of a train reduces the resistance to slipping. This vibration also facilitates an objectionable feature, viz., loosening of the nuts of the track-bolts. The bolt. is readily prevented from turning by giving it a form which is not circular immediately under the head and making corresponding holes in the angle-plate. Square holes would answer the purpose, except that the square corners in the holes in the angle-plates would increase the danger of fracture of the plates. Therefore the holes (and also the bolts, under the head) are made of an oval form, or perhaps a square form with rounded corners, avoiding angles in the outline.

The nut-locks should be simple and cheap, should have a life at least as long as the bolt, should be effective, and should not lose their effectiveness with age. Many of the designs that have been tried have been failures in one or more of these particulars as will be described in detail below.
252. Design of track-bolts. In Fig. 128 is shown a common design of track-bolt. In its general form this represents the bolt used on nearly all roads,

Fig. 128.-Track-bolt. being used not only with the common angle-plates, but also with many of the improved designs of rail-joints. The variations are chiefly a general increase in size to correspond with the increased weight of rails, besides variations in detail dimensions which are frequently unimportant. The diameter is usually $\frac{3^{\prime \prime}}{4}$ to $\frac{7^{\prime \prime}}{8} ; 1^{\prime \prime}$ bolts are sometimes used for the heaviest sections of rails. As to length, the bolt should not extend more than $\frac{1^{\prime \prime}}{}{ }^{\prime \prime}$ outside of the nut when it is screwed up. If it extends farther than this it is liable to be
broken off by a possible derailment at that point. The lengths used vary from $3 \frac{1}{4}^{\prime \prime}$, which may be used with $60-\mathrm{lb}$. rails, to $5^{\prime \prime}$, which is required with $100-\mathrm{lb}$. rails. The length required depends somewhat on the type of nut-lock used.
253. Design of nut-locks. The designs for nut-locks may be divided into three classes: (a) those depending entirely on an elastic washer which absorbs the vibration which might otherwise induce turning; (b) those which jam the threads of the bolt and nut so that, when screwed up, the frictional resistance is too great to be overcome by vibration; (c) the "positive" nut-locks-those which mechanically hold the nut from turning. Some of the designs combine these principles to some extent. The "vulcanized fiber" nut-lock is an example of the first class. It consists essentially of a rubber washer which is protected by an iron ring. When first placed this lock is effective, but the rubber soon hardens and loses its elasticity and it is then ineffective and worthless. Another illustration of class (a) is the use of wooden blocks, generally $1^{\prime \prime}$ to $2^{\prime \prime}$ oak, which extend the entire length of the angle-bar, a single piece forming the washer for the four or six bolts of a joint. This form is cheap, but the wood soon shrinks, loses its elasticity, or decays so that it soon becomes worthless, and it requires constant adjustment to keep it in even tolerable condition. The "Verona" nut-lock is another illustration of class (α) which also combines some of the positive elements of class (c). It is made of tempered steel and, as shown in Fig. 129, is warped and has sharp edges or points. The warped form furnishes the element of elastic pressure when the nut is screwed up. The steel being harder than the iron of the angle-bar or of the nut, it bites into them, owing to the great pressure that must exist when the washer is squeezed nearly flat, and thus prevents any backward movement, although forward movement (or tightening the bolt) is not interfered with. The "National" nut-lock is a type of the second class (b), in which, like the "Harvey" nut-lock, the nut and lock are combined in one piece. With six-bolt angle-bars and 30 -foot rails, this means a saving of 2112 pieces on each mile of single track. The "National" nuts are open on one side. The hole is drilled and the thread is cut slightly smaller than the bolt, so that when the nut is screwed up it is forced slightly open and therefore presses on the threads of the bolt with such force that vibration cannot jar it loose. Unlike the "National" nut, the " Harvey "
nut is solid, but the form of the thread is progressively varied so that the thread pinches the thread of the bolt and the frictional resistance to turning is too great to be affected by vibration.

The "Jones" nut-lock, belonging to class (c), is a type of a nut-lock that does not depend on elasticity or jamming of screwthreads. It is made of a thin flexible plate, the square part of

Fig. 129.-Types of Nut-locks.
which is so large that it will not turn after being placed on the bolt. After the nut is screwed up, the thin plate is bent over so that the re-entrant angle of the plate engages the corner of the nut and thus mechanically prevents any turning. The metal is supposed to be sufficiently tough to endure without fracture as many bendings of the plate as will ever be desired. Nutlocks of class (c) are not in common use.

CHAPTER XI.

SWITCHES AND CROSSINGS.

SWITCH CONSTRUCTION.

254. Essential elements of a switch. Flanges of some sort are a necessity to prevent car-wheels from running off from the rails on which they may be moving. But the flanges, although a neccssity, are also a source of complication in that they require some special mechanism which will, when desired, guide the wheels out from the controlling influence of the main-line rails. This must either be done by raising the wheels high encugh so that the flanges may pass over the rails, or by breaking the continuity of the rails in such a way that channels or "flange spaces" are formed through the rails. An ordinary stub-switch breaks the continuity of the main-line rails in three places, two of them at the switch-block and one at the frog. The Wharton switch avoids two of these breaks by so placing inclined planes that the wheels, rolling on their flanges, will surmount these inclines until they are a little higher than the rails. Then the wheels on the side toward which the switch runs are guided over and across the main rail on that side This rise being accomplished in a short distance, it becomes impracticable to operate these switches except at slow speeds, as any sudden change in the path of the center of gravity of a car causes very destructive jars both to the switch and to the rolling stock. The other general method makes a break in one main rail (or both) at the switch-block. In both methods the wheels are led to one side by means of the "lead rails," and finally one line of wheels passes through the main rail on that side by means of a "frog." There are some designs by which even this break in the main rail is avoided, the wheels being led over the main rail by means of a short movable rail which is on occasion placed across the main rail, but such designs have not come into general use.
255. Frogs. Frogs are provided with two channel-ways or "flange spaces" through which the flanges of the wheels move.

Each channel cuts out a parallelogram from the tread area. Since the wheel-tread is always wider than the rail, the wing rails will support the wheel not only across the space cut out by the channel, but also until the tread has passed the point of the frog and can obtain a broad area of contact on the tongue of the frog. This is the theoretical idea, but it is very imperfectly

Fig. 130.-Diagrammatic Design of Frog.
realized. The wing rails are sometimes subjected to excessive wear owing to "hollow treads" on the wheels-owing also to the frog being so flexible that the point "ducks" when the wheel approaches it. On the other hand the sharp point of the frog will sometimes cause destructive wear on the tread of the wheel. Therefore the tongue of the frog is not carried out to the sharp theoretical point, but is purposely somewhat blunted. But the break which these channels make in the continuity of the tread area becomes extremely objectionable at high speeds, being mutually destructive to the rolling stock and to the frog. The jarring has been materially reduced by the device of "spring frogs"-to be described later. Frogs were originally made of cast iron-then of cast iron with wearing parts of cast steel, which were fitted into suitable notches in the cast iron. This form proved extremely heavy and devoid of that elasticity of track which is necessary for the safety of rolling stock and track at high speeds. The present universal practice is to build the frog up of pieces of rails which are cut or bent as required. These pieces of rails (at least four) are sometimes assembled by riveting them to a flat plate, but this method is now but little used, except for very light work. The usual practice is now chiefly divided between "bolted" and "keyed" frogs. In each case the space between the rails, except a sufficient flange-way; is filled with a cast-iron filler and the whole assemblage of parts

5 \leftarrow

is suitably bolted or clamped together, as is illustrated in Plate VIII. The operation of a spring-rail frog is evident from the figure. Since a siding is usually operated at slow speed, while the main track may be operated at fast speed, a spring-rail frog will be so set that the tread is continuous for the main track and broken for the siding. This also means that the spring-rail will only be moved by trains moving at a (presumably) slow speed on to the siding. For the fast trains on the main line such a frog is substantially a "fixed" frog and has a tread which is practically continuous.
256. To find the frog number. The frog number (n) equals the ratio of the distance of any part on the tongue of the frog from the theoretical point of the frog divided by the width of the tongue at that point, i.e. $=h c \div a b$ (Fig. 130). This value may be directly measured by applying any convenient unit of measure (even a knife, a short pencil, etc.) to some point of the tongue where the width just equals the unit of measure, and then noting how many times the unit of measure is contained in the distance from that place to the theoretical point. But since c, the theoretical point, is not so readily determinable with exactitude, it being the imaginary intersection of the gauge lines, it may be more accurate to measure $d e, a b$, and $h s$; then n, the frog number, $=h s \div(a b+d e)$. If the frog angle be called F, then

$$
n=h c \div a b=h s \div(a b+d e)=\frac{1}{2} \cot \frac{1}{2} F ;
$$

i.e.,

$$
\cot \frac{1}{2} F=2 n .
$$

257. Stub switches. The use of these, although once nearly universal, has been practically abandoned as turnouts from main track except for the poorest and cheapest roads. In some States their use on main track is prohibited by law. They have the sole merit of cheapness with adaptability to the circumstances of very light traffic operated at slow speed when a considerable element of danger may be tolerated for the sake of economy. The rails from A to B (see Fig. 131*) are not fastened
[^22]PLATE VIII.

SECTION THROUGM PLATE AT POINT.

SECTION THROUGH EPRING•HOUSING,
(To face pago 267.)
to the ties; they are fastened to each other by tie-rods which keep them at the proper gauge; at and back of B they are

Fig. 131.-Stub Switch.
securely spiked to the ties, and at A they are kept in place by the connecting bar (C) fastened to the switch-stand. One great objection to the switch is that, in its usual form, when operated as a trailing switch, a derailment is inevitable if the switch is misplaced. The very least damage resulting from such a derailment must include the bending or breaking of the tie-rods of the switch-rail. Several devices have been invented to obviate this objection, some of which succeed very well mechanically, although their added cost precludes any economy in the total cost of the switch. Another objection to the switch is the looseness of construction which makes the switches objectionable at high speeds. The gap of the rails at the head-block is always considerable, and is sometimes as much as two inches. A driving-

Fig. 132.-Point Sifitch.
wheel with a load of 12000 to 20000 pounds, jumping this gap with any considerable velocity, will do immense damage to the
farther rail end, besides producing such a stress in the construction that a breakage is rendered quite likely, and such a breakage might have very serious consequences.
258. Point switches. The essential principle of a point switch is illustrated in Fig. 132. As is shown, one main rail and also one of the switch-rails is unbroken and immovable. The other main rail (from A to F) and the corresponding portion of the other lead rail are substantially the same as in a stub switch. A portion of the main rail $(A B)$ and an equal length of the opposite lead rail (usually 15 to 24 feet long) are fastened together by tie-rods. The end at A is jointed as usual and the other end is pointed, both sides being trimmed down so that the feather edge at B includes the web of the rail. In order to retain in it as much strength as possible, the point-rail is raised so that it rests on the base of the stock-rail, one side of the base of the point-rail being entirely cut away. As may be seen in Fig. 133, although the influence of the point of the rail in moving the wheel-flange away from the stock-rail is really zero at that point, yet the rail has all the strength of the web and about onehalf that of the base-a very fair angleiron. The planing runs back in straight lines, until at about six or seven feet back from the point the full width of the head is

Fig. 133. obtained. The full width of the base will only be obtained at about 13 feet from the point. An $80-\mathrm{lb}$. rail is 5 inches wide at the base. Allowing ${ }^{\frac{3}{1}}{ }^{\prime \prime}$ more for a spike between the rails, this gives $5 \frac{3}{1 \prime \prime}$ as the minimum width between rail centers at the joint. The minimum angle of the switch-point (using a 15 -foot point-rail) is therefore the angle whose tangent is $\frac{5.75}{15 \times 12}=$.03914 , which is the tangent of $1^{\circ} 50^{\prime}$. Switch-rails are sometimes used with a length of 24 feet, which reduces the angle of the switch-point to $1^{\circ} 09^{\prime}$.
259. Switch-stands. The simplest and cheapest form is the "ground lever," which has no target. The radius of the circle described by the connecting-rod pin is precisely one-half the throw. From the nature of the motion the device is practically
self-locking in either position, padlocks being only used to prevent malicious tampering. The numerous designs of upright stands are always combined with targets, one design of which is

Fig. 134,-Ground Lever for Throwing A Switci.

Fig. 135.
illustrated in Fig. 135. When the road is equipped with interlocking signals, the switch-throw mechanism forms a part of the design
260. Tie-rods. These are fastened to the webs of the rails ky means of lugs which are bolted on, there being usually a hingejoint between the rod and the lug. Four such tie-rods are
generally necessary. The first rod is sometimes made without hinges, which gives additional stiffness to the comparatively weak rail-points. The old-fashioned tie-rod, having jaws fitting the base of the rail, was almost universally used in the days of stub switches. One great inconvenience in their use lies in the fact that they must be slipped on, one by one, over the free ends of the switch-rails. Sometimes the lugs are fastened to the rail-webs by rivets instead of bolts.

Fig. 136.-Forms of Tie-rods.
261. Guard-rails. As shown in Figs. 131 and 132, guard-rails are uscd on both the main and switch tracks opposite the frogpoint. Their funcrion is not oniy to prevent the possibility of
the wheel-flanges passing on the wrong side of the frog-point, but also to save the side of the frog-tongue from excessive wear. The necessity for their use may be realized by noting the apparent wear usually found on the side of the head of the guard-rail. The flange-way space between the heads of the guard-rail and wheel-rail therefore becomes a definite quantity and should equal about two inches. Since this is less than the space between the heads of ordinary (say 80 -pound) rails when placed base to base, to say nothing of the $\frac{3^{\prime \prime}}{4}$ nccessary for spikes, it becomes necessary to cut the flange of the guard-rail. The length of the rail is made from 10 to 15 feet, the ends being bent as shown in Fig. 132, so as to prevent the possibility of the end of the rail being struck by a wheel-flange.

MATHEMATICAL DESIGN OF SWITCHES.

In all of the following demonstrations regarding switches, turnouts, and crossovers, the lines are assumed to represent the gauge-lines-i.e., the lines of the inside of the head of the rails.
262. Design with circular lead-rails. The simplest method

Fig. 137. is to consider that the lead-rails curve out from the main trackrails by arcs of circles which are tangent to the main rails and which extend to the frog-point F. The simple curve from D to F is of such radius that ($r+\frac{1}{2} g$) vers F $=g$, in which $F=$ the frog angle, $g=$ gauge, $L=$ the "lead" $(B F)$, and $r=$ the radius of the center of the switch-rails.

$$
\begin{equation*}
\therefore r+\frac{1}{2} g=\frac{g}{\text { vers } F} \text {. } \tag{74}
\end{equation*}
$$

Also,

$$
\begin{align*}
B F \div B D= & \cot \frac{1}{2} F ; \quad B D=g ; \quad B F=L . \\
\therefore \quad L & =g \cot \frac{1}{2} F . \cdot . \cdot . \tag{75}\\
L & =\left(r+\frac{1}{2} g\right) \sin F ; \cdot \tag{76}\\
Q T & =2 r \sin \frac{1}{2} F . . . \tag{77}
\end{align*} .
$$

Also,

These formule involve the angle F. As shown in Table III, the angles (F^{\prime}) are always odd quantities, and their trigonometric functions are somewhat troublesome to obtain closely with
ordinary tables. The formulæ may be simplified by substituting the frog-number n, from the relation that $n=\frac{1}{2} \cot \frac{1}{2} F$. Since

$$
r-\frac{1}{2} g=L \cot F \quad \text { and } \quad r+\frac{1}{2} g=L \operatorname{cosec} F,
$$

then

$$
\begin{align*}
r & =\frac{1}{2} L(\cot F+\operatorname{cosec} F) \\
& =\frac{1}{2} g \cot \frac{1}{2} F(\cot F+\operatorname{cosec} F) \\
& =\frac{1}{2} g \cot ^{2} \frac{1}{2} F, \operatorname{since}(\cot a+\operatorname{cosec} a)=\cot \frac{1}{2} a \tag{79}\\
1 & =2 g n^{2} . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ \tag{78}
\end{align*}
$$

Also, $\quad L=2 g n$,
from which $r=n \times L$.
These extremely simple relations may obviate altogether the necessity for tables, since they involve only the frog-number and the gauge. On account of the great simplicity of these rules, they are frequently used as they are, regardless of the fact that the curve is never a uniform simple curve from switch-block to frog. In the first place there is a considerable length of the gauge-line within the frog, which is straight unless it is purposely curved to the proper curve while being manufactured, which is seldom if ever done-except for the very large-angled frogs used for street-railway work, etc. It is also doubtful whether the switch-rails (BA, Fig. 131) are bent to the computed curve when the rails are set for the switch. The switch-rails of point switches are straight, thus introducing a stretch of straight track which is about one-fifth of the total length of the lead-rails. The effect of these modifications on the length and radius of the leadrails will be developed and discussed in the next four sections.

The throw (t) of a stub switch depends on the weight of the rail, or rather on the width of its base. The throw must be at least $\frac{3}{6}{ }^{\prime \prime}$ more than that width. The head-block should therefore be placed at such a distance from the heel of the switch (B) that the versed sine of the arc equals the throw. These points must be opposite on the two rails, but the points on the two rails where these relations are exactly true will not be opposite. Therefore, instead of considering either of the two radii ($r+\frac{1}{2} g$) and ($r-\frac{1}{2} g$), the mean radius r is used. Then (see Fig. 137)

$$
\text { vers } K O Q=t \div r \text {, }
$$

and the length of the switch-rails is

$$
\begin{equation*}
Q K=r \sin K O Q . \tag{81}
\end{equation*}
$$

These relations develop another disadvantage in the use of a stub switch. The required value of $B G$, using a No. 10 frog and 80 -pound rail, is 30.1 feet-slightly more than a full rail length. It would be unsafe to leave so much of the track unspiked from the ties. Whether this is obviated by spiking down a portion of the switch-rails (virtually shortening the lead) or by moving the switch-block nearer the heel of the switch (shortening the switch-rails), but still maintaining the required throw, the theoretical accuracy of the curve is hopelessly lost.
263. Effect of straight frog-rails. A portion of the ends of the rails of a frog are free and may

Fig. 138. be bent to conform to the switchrail curve, but there is a considerable portion which is fitted to the cast-iron filler, and this portion is always straight. Call the length of this straight portion back from the frog-point $f(=F H$, Fig. 138). Then we have

$$
\begin{align*}
r+\frac{1}{2} g & =(g-f \sin F) \div \operatorname{vers} F \\
& =\frac{g}{\operatorname{vers} F}-f \cot \frac{1}{2} F \\
& =\frac{g}{\operatorname{vers} F}-2 f n . \tag{82}
\end{align*}
$$

$$
\left.\begin{array}{rl}
B F=L & =(g-f \sin F) \cot \frac{1}{2} F+f \cos F \\
& =2 g n-f \sin F \cot \frac{1}{2} F+f \cos F \\
& =2 g n-f(1+\cos F)+f \cos F \\
& =2 g n-f . \tag{83}
\end{array}\right) \cdot \cdot \cdot \cdot \cdot \cdot .
$$

Since $r-\frac{1}{2} g=(L-f \sec F) \cot F$, and

$$
\begin{align*}
& r+\frac{1}{2} g=(L-f \cos F) \operatorname{cosec} F, \\
& r=\frac{1}{2} L(\cot F+\operatorname{cosec} F)-\frac{1}{2} f \sec F \cot F-\frac{1}{2} f \cos F \operatorname{cosec} F \\
& =\operatorname{Ln}-\frac{1}{2} f\left(\frac{1+\cos f}{\sin f}\right) \text {. } \\
& r=\operatorname{Ln}-\frac{1}{2} f \cot \frac{1}{2} F \\
& =L n-f n \text {. Then from (83) } \\
& r=2 g n^{2}-2 f n \text {. } \tag{84}
\end{align*}
$$

264. Effect of straight point-rails. The "point switches," now so generally used, have straight switch-rails. This requires
an angle in the alignment rather than turning off by a tangential curve. The angle is, however, very small (between 1° and 2°), and the disadvantages of this angle are small compared with the very great advantages of the device.

Fig. 139.
$F M=\frac{g-k}{\sin \frac{1}{2}(F+a)} ;$
$r+\frac{1}{2} g=\frac{F M}{2 \sin \frac{1}{2}(F-a)}$
$=\frac{g-k}{2 \sin \frac{1}{2}(F+a) \sin \frac{1}{2}(F-a)}$
$=\frac{g-k}{\cos a-\cos F}$.
$B F=L=F M \cos \frac{1}{2}(F+a)+D N$

$$
\begin{equation*}
=(g-k) \cot \frac{1}{2}(F+a)+D N . \tag{86}
\end{equation*}
$$

265. Combined effect of straight frog-rails and straight pointrails. It becomes necessary in this case to find a curve which shall be tangent to both the point-rail and the frog-rail. The curve therefore begins at M, its tangent making an angle of a (usually $1^{\circ} 50^{\prime}$) with the main rail, and runs to H. The central
angle of the curve is therefore ($F-a$). The angle of the chord $H M$ with the main rails is therefore

$$
\begin{align*}
& \frac{1}{2}(F-a)+a=\frac{1}{2}(F+a) ; \\
& H M=\frac{g-f \sin F-k}{\sin \frac{1}{2}(F+a)} ; \\
& r+\frac{1}{2} g=\frac{H M}{2 \sin \frac{1}{2}(F-a)} \\
& =\frac{g-f \sin F-k}{2 \sin \frac{1}{2}(F+\alpha) \sin \frac{1}{2}(F-\alpha)} \\
& =\frac{g-f \sin F-k}{\cos a-\cos F} ; \tag{87}\\
& S T=2 r \sin \frac{1}{2}(F-a) \tag{88}\\
& B F=L=H M \cos \frac{1}{2}(F+a)+f \cos F+D N \\
& =(g-\underline{f} \sin F-k) \cot \frac{1}{2}(F+\alpha)+f \cos F+D N . \tag{89}
\end{align*}
$$

It may be more simple, if ($r+\frac{1}{2} g$) has already been computed, to write

$$
\begin{align*}
L & =2\left(r+\frac{1}{2} g\right) \sin \frac{1}{2}(F-a) \cos \frac{1}{2}(F+a)+f \cos F+D N \\
& =\left(r+\frac{1}{2} g\right)(\sin F-\sin a)+f \cos F+D N . \cdot \bullet \cdot \cdot \tag{90}
\end{align*}
$$

Fig. 140.
266. Comparison of the above methods. Computing values for r and L by the various methods, on the uniform basis of a

No. 9 frog, standard gauge $4^{\prime} 8 \frac{1}{2}^{\prime \prime}, f=3^{\prime} .37, k=5 \frac{3}{3}^{\prime \prime}=0^{\prime} .479$, $D N=15^{\prime} 0^{\prime \prime}$, and $a=1^{\circ} 50^{\prime}$, we may tabulate the comparative results:

	§ 262. Simple circle. Curved frograil. Curved switch-rail.	§ 263. Straight frog-rail. Curved switch-rail.	§ 264. Curved frograil. Straight switch-rail.	§ 265. Straight frog-rail. Straight switch-rail.
$\text { Deg. of } \stackrel{r}{L}$	$\begin{array}{r} 762.75 \\ 7^{\circ} 31^{\prime} \\ 84.75 \end{array}$	$\begin{array}{r} 702.00 \\ 8^{\circ} 10^{\prime} \\ 81.37 \end{array}$	$\begin{array}{r} 747.48 \\ 7^{\circ} 40^{\prime} \\ 74.00 \end{array}$	$\begin{array}{r} 681.16 \\ 8^{\circ} 25^{\prime} \\ 72.13 \end{array}$

This shows that the effect of using straight frog-rails and straight switch-rails is to sharpen the curve and shorten the lead in each case separately, and that the combined effect is still greater. The effect of the straight switch-rails is especially marked in reducing the length of lead, and therefore E.q. 78 to 80 , although having the advantage of extreme simplicity, cannot be used for point-switches without material error. The effect of the straight frog-rail is less, and since it can be materially reduced by bending the free end of the frog-rails, the influence of this feature is frequently ignored, the frog-rails are assumed to be curved, and Eq. 85 and 86 are used. (See § 276 for a further discussion of this point.)

267. Dimensions for a turnout from the OUTER side of a curved

Fig. 141.
track. In this demonstration the switch-rails will be considered as uniformly circular from the switch-points to the frog-point.

In the triangle $F C D$ (Fig. 141) we have
$(F C+C D):(F C-C D):: \tan \frac{1}{2}(F D C+D F C): \tan \frac{1}{2}(F D C-D F C)$;
but

$$
\frac{1}{2}(F D C+D F C)=90^{\circ}-\frac{1}{2} \theta
$$

and

$$
\frac{1}{2}(F D C-D F C)=\frac{1}{2} F .
$$

Also,

$$
F C+C D=2 R \quad \text { and } \quad F C-C D=g
$$

$$
\therefore \quad 2 R: g:: \cot \frac{1}{2} \theta: \tan \frac{1}{2} F
$$

$$
\because: \cot \frac{1}{2} F: \tan \frac{1}{2} \theta ;
$$

$$
\begin{equation*}
\therefore \tan \frac{1}{2} \theta=\frac{g n}{R} . \tag{91}
\end{equation*}
$$

Also,

$$
O F: F C:: \sin \theta: \sin \phi ; \quad \text { but } \quad \phi=(F-\theta)
$$

ther

$$
\begin{array}{r}
r+\frac{1}{2} g=\left(R+\frac{1}{2} g\right) \frac{\sin \theta}{\sin (F-\theta)} . \\
B F=L=2\left(R+\frac{1}{2} g\right) \sin \frac{1}{2} \theta . \tag{93}
\end{array}
$$

If the curvature of the main track is very sharp or the frog angle unusually small, F may be less than θ; in which case the center O will be on the same side of the main track as C. Eq. 92 will become (by calling $r=-r$ and changing the signs)

$$
\begin{equation*}
\left(r-\frac{1}{2} g\right)=\left(R+\frac{1}{2} g\right) \frac{\sin \theta}{\sin (\theta-F)} . \tag{94}
\end{equation*}
$$

If we call d the degree of curve corresponding to the radius r, and D the degree of curve corresponding to the radius R, also d^{\prime} the degree of curve of a turnout from a straight track (the frog angie F being the same), it may be shown that $d=d^{\prime}-D$ (very nearly). To illustrate we will take three cases, a number 6 frog (very blunt), a number 9 frog (very commonly used), and a number 12 frog (unusually sharp). Suppose $D=4^{\circ} 0^{\prime}$; also $D=10^{\circ} 0^{\prime} ; g=4^{\prime} 8 \frac{1}{2}^{\prime \prime}=4^{\prime} .708$.

A brief study of the tabular form on p. 279 will show that the error involved in the use of the approximate rule for ordinary curves (4° or less) and for the usual frogs (about No. 9) is really insignificant, and that, even for sharper curves (10° or more), or for very blunt frogs, the error would never cause damage, considering the lower probable speed. In the most unfavorable case noted above the change in radius is about 1%. On account of the closeness of the approximation the method is frequently used. The remarkable agreement of the computed values of L

with the corresponding values for a straight main track (the lead rails circular throughout) shows that the error is insignificant in using the more easily computed values.
268. Dimensions for a turnout from the INNER side of a curved track. (Lead rails circular throughout.) From Fig. 142 we have, from the triangle $D F C$,

Fig. 142.
$D F+F C ; D F-F C:: \tan \frac{1}{2}(D F C+F D C): \tan \frac{1}{2}(D F C-F D C) ;$
but

$$
\frac{1}{2}(D F C+F D C)=90^{\circ}-\frac{1}{2} \theta
$$

and $\quad \frac{1}{2}(D F C-F D C)=\frac{1}{2} F$;

$$
\therefore \quad 2 R: g:: \cot \frac{1}{2} \theta: \tan \frac{1}{2} F
$$

$$
\because \cot \frac{1}{2} F \tan \frac{1}{2} \theta ;
$$

$$
\begin{equation*}
\therefore \tan \frac{1}{2} \theta=\frac{g n}{R} . \tag{95}
\end{equation*}
$$

Fiom OFC,

$$
O F: F C:: \sin \theta:(F+\theta) .
$$

$$
\begin{align*}
\left(r+\frac{1}{2} g\right) & =\left(R-\frac{1}{2} g\right) \frac{\sin \theta}{\sin (F+\theta)} . \tag{96}\\
L & =B F=2\left(R-\frac{1}{2} g\right) \sin \frac{1}{2} \theta . \tag{97}
\end{align*}
$$

As in § 267 , it may be readily shown that the degree of the turnout (d) is nearly the sum of the degree of the main track (D) and the degree (d^{\prime}) of a turnout from a straight track when the frog angle is the same. The discrepancy in this case is somewhat greater than in the other, especially when the curvature of the main track is sharp. If the frog angle is also large, the curvature of the turnout is excessively sharp. If the frog angle is very small, the liability to derailment is great. Turnouts to the inside of a curved track should therefore be avoided, unless the curvature of the main track is small.
269. Double turnout from a straight track. In Fig. 143 the frogs F_{l} and F_{r} are generally made equal. Then, if there are

uniform curves from B^{\prime} to F_{l} and from B to F_{r}, the required value of F_{m} is obtained from

$$
\begin{equation*}
\text { vers } \frac{1}{2} F_{m}=\frac{g}{2\left(r+\frac{1}{2} g\right)}, . \tag{98}
\end{equation*}
$$

r being found from Eq. 78, in which n is the frog number of F_{l} or F_{r}.

$$
M F_{m}=r \tan \frac{1}{2} F_{m}
$$

but since $n_{m}=\frac{1}{2} \cot \frac{1}{2} F_{m}$,

$$
\begin{equation*}
M F_{m}=\frac{r}{2 n_{m}} \cdot \cdot \cdot \cdot \cdot \cdot \cdot \tag{99}
\end{equation*}
$$

Since vers $F_{l}=\frac{g}{\left(r+\frac{1}{2} g\right)^{\prime}}$,

$$
\begin{equation*}
\text { vers } \frac{1}{2} F_{m}=\frac{1}{2} \text { vers } F_{l} . \tag{100}
\end{equation*}
$$

Also, since $\left(C_{1} F_{m}\right)^{2}=\left(M F_{m}\right)^{2}+\left(C_{1} M\right)^{2}$, we have

$$
\begin{aligned}
\left(r+\frac{1}{2} g\right)^{2} & =\left(\frac{r}{2 n_{m}}\right)^{2}+r^{2} ; \\
r^{2}+r g+\frac{1}{4} g^{2} & =\frac{r^{2}}{4 n_{m}^{2}}+r^{2} .
\end{aligned}
$$

Simplifying and substituting, $r=2 g n^{2}$, we have

$$
\begin{aligned}
2 g^{2} n^{2}+\frac{1}{4} g^{2} & =\frac{4 g^{2} n^{4}}{4 n_{m}^{2}} \\
n_{m^{2}} & =\frac{n^{4}}{2 n^{2}+\frac{1}{4}} .
\end{aligned} .
$$

Dropping the $\frac{1}{4}$, which is always insignificant in comparison with $2 n^{2}$, we have

$$
\begin{equation*}
n_{m}=\frac{n}{\sqrt{ } 2}=n \times .707 \text { (approx.). } \tag{101}
\end{equation*}
$$

Frogs are usually made with angles corresponding to integral values of n, or sometimes in "half"' sizes, e.g. $6,6 \frac{1}{2}, 7,7 \frac{1}{2}$, etc. If No. $8 \frac{1}{2}$ frogs are used for F_{l} and F_{r}, the exact frog number for F_{m} is 6.01 . This is so nearly 6 that a No. 6 frog may be used without sensible inaccuracy. Numbers 7 and 10 are a less perfect combination. If sharp frogs must be used, $8 \frac{1}{2}$ and 12 form a very good combination.

If it becomes necessary to use other frogs because the right combination is unobtainable, it may be done by compounding the curve at the middle frog. F_{l} and F_{r} should be greater than $\frac{1}{2} F_{m}$. If equal to $\frac{1}{2} F_{m}$, the rails would be straight from the middle frog to the outer frogs. In Fig. 144, $\theta_{1}=F_{l}-\frac{1}{2} F_{m}$. Drawing the chord $\overline{F_{l} F_{m}}$,

$$
\begin{gather*}
{\overline{K F_{l} F_{m}}=F_{l}-\frac{1}{2} \theta_{1}=F_{l}-\frac{1}{2} F_{l}+\frac{1}{4} F_{m}=\frac{1}{2}\left(F_{l}+\frac{1}{2} F_{m}\right) ;}_{\overline{F_{l} F_{m}}=\frac{\overline{K F_{m}}}{\sin \overline{K F_{l} F_{m}}}=\frac{g}{2 \sin \frac{1}{2}\left(F_{l}+\frac{1}{2} F_{m}\right)} ; .}^{\overline{K F_{l}}=\overline{K F_{m}} \cot \overline{K F_{l} F_{m}}=\frac{1}{2} g \cot \frac{1}{2}\left(F_{l}+\frac{1}{2} F_{m}\right) ; .} \\
\begin{array}{r}
\left(r_{1}+\frac{1}{2} g\right)=\frac{\overline{F_{l} F_{m}}}{2 \sin \frac{1}{2} \bar{\theta}}=\frac{g}{4 \sin \frac{1}{2}\left(F_{l}+\frac{1}{2} F_{m}\right) \sin \frac{1}{2}\left(F_{l}-\frac{1}{2} F_{m}\right)} \\
\quad=\frac{\frac{1}{2} g}{\cos \frac{1}{2} F_{m}-\cos F_{l}} .
\end{array} \tag{102}
\end{gather*}
$$

If three frogs, all different, must be used, the largest may be selected as F_{m}; the radius of the lead rails may be found by an inversion of Eq. 98; F_{m} may be located in the center of the tracks by Eq. 99; then each of the smaller frogs may be located

Fig. 144.
by separate applications of Eq. 172 or 103, the radius being determined by Eq. 104.
270. Two turnouts on the same side. In Fig. 145, let O_{1} bisect $O_{2} D$. Then $\left(r_{1}+\frac{1}{2} g\right)=\frac{1}{2}\left(r_{2}+\frac{1}{2} g\right)$; also, $O_{1} O_{2}=O_{1} F_{l}$ and $F_{r}=F_{l}$.

$$
\begin{align*}
\text { vers } F_{m} & =\frac{g}{r^{\prime}+\frac{1}{2} g}=\frac{2 g}{r+\frac{1}{2} g} \tag{105}\\
\qquad B F_{m} & =\left(r^{\prime}+\frac{1}{2} g\right) \sin F_{m} . \tag{106}
\end{align*}
$$

It may readily be shown that the relative values of F_{r}, F_{l}, and F_{m} are almost identical with those given in $\S 269$; as may be

Fig. 145.
apparert when it is considered that the middle switch may be regarded simply as a curved main track, and that, as developed
in § 267, the dimensions of turnouts are nearly the same whether the main track is straight or slightly curved.
271. Connecting curve from a straight track. The "connecting curve'" is the track lying between the frog and the side track where it becomes parallel to the main track ($F S$ in Fig. 146 or 147). Call d the distance between track centers. The angle $F O_{1} R=F \quad$ (see Fig. 146). Call r^{\prime} the radius of the connecting curve. Then

$$
\begin{align*}
\left(r^{\prime}-\frac{1}{2} g\right)=\frac{d-g}{\operatorname{vers} F} ; & (107) \\
& F R=\left(r^{\prime}-\frac{1}{2} g\right) \sin F \tag{108}
\end{align*}
$$

Fig. 146.

If it is considered that the distance $F R$ consumes too much track room it may be shortened by the method indicated in Fig. 151.
272. Connecting curve from a curved track to the OUTSIDE. When the main track is curved, the required quantities are the

Fig. 147.
radius r of the connecting curve from F to S, Fig. 147, and its length or central angle. In the triangle $C S F$

$$
C S+C F: C S-C F:: \tan \frac{1}{2}(C F S+C S F): \tan \frac{1}{2}(C F S-C S F) ;
$$

but ${ }_{2}(C F S+C S F)=90-\frac{1}{2} \psi$; and, since the triangle $O_{1} S F$ is isosceles, $\frac{1}{2}(C F S-C S F)=\frac{1}{2} F$;

$$
\begin{aligned}
\therefore \quad 2 R+d: d-g & :: \cot \frac{1}{2} \psi: \tan \frac{1}{2} F \\
& :: \cot \frac{1}{2} F: \tan \frac{1}{2} \psi ;
\end{aligned}
$$

$$
\begin{equation*}
\therefore \quad \tan \frac{1}{2} \psi=\frac{2 n(d-g)}{2 R+d} . \tag{109}
\end{equation*}
$$

From the triangle $\mathrm{CO}_{1} F$ we may derive

$$
\begin{align*}
& r-\frac{1}{2} g: R+\frac{1}{2} g:: \sin \psi: \sin (F+\psi) ; \\
& r-\frac{1}{2} g=\left(R+\frac{1}{2} g\right) \frac{\sin \psi}{\sin (F+\psi)} . \tag{110}
\end{align*}
$$

Also

$$
\begin{equation*}
F S=2\left(r-\frac{1}{2} g\right) \sin \frac{1}{2}(F+\psi) . \tag{111}
\end{equation*}
$$

273. Connecting curve from a curved track to the INSIDE.

Fig. 148.
As above, it may readily be deduced from the triangle CFS (see Fig. 148) that

$$
(2 R-d):(d-g):: \cot \frac{1}{2} \psi: \tan \frac{1}{2} F,
$$

and finally that

$$
\begin{equation*}
\tan \frac{1}{2} \psi=\frac{2 n(d-g)}{2 R-d} . \tag{112}
\end{equation*}
$$

Similarly we may derive (as in Eq. 110)

$$
\begin{equation*}
\left(r-\frac{1}{2} g\right)=\left(R-\frac{1}{2} g\right) \frac{\sin \psi}{\sin (F-\psi)} . \tag{113}
\end{equation*}
$$

Also

$$
\begin{equation*}
F S=2\left(r-\frac{1}{2} g\right) \sin \frac{1}{2}(F-\psi) . . \tag{114}
\end{equation*}
$$

Two other cases are possible. (a) r may increase until it becomes infinite (see Fig. 149), then $F=\psi$. In such a case we may write, by substituting in Eq. 112,

$$
\begin{equation*}
2 R-d=4 n^{2}(d-g) . \tag{115}
\end{equation*}
$$

This equation shows the value of R, which renders this case possible with the given values of n, d, and g. (b) ψ may be greater than F. As before (see Fig. 150)
$2 R-d: d-g:: \cot \frac{1}{2} \psi: \tan \frac{1}{2} F ;$

$$
\tan \frac{1}{2} \psi=\frac{2 n(d-g)}{2 R-d}
$$

the same as Eq. 112, but

Fig. 149.

$$
\begin{equation*}
r+\frac{1}{2} g=\left(R-\frac{1}{2} g\right) \frac{\sin \psi}{\sin (\psi-F)} . \tag{116}
\end{equation*}
$$

Fig. 150.
Problem. To find the dimensions of a connecting curve running to the inside of a curved main track; number 9 frog, $4^{\circ} 30^{\prime}$ curve, $d=13^{\prime}, g=4^{\prime} 8 \frac{1}{2}{ }^{\prime \prime}$.

Solution.

Eq. 112.

$$
\begin{aligned}
& d=13.000 \\
& g=4.708 \\
&(d-g)=8.292 \\
& \hline
\end{aligned}
$$

$$
R=1273.6=
$$

$$
2 R=2547.2
$$

$$
2 R-d=2534.2
$$

$\log (2 R-d)=3.40384$

Eq. 116.

$$
R=1273.6
$$

$$
\left(R-\frac{1}{2} g\right)
$$

$$
\begin{aligned}
\frac{1}{2} g & =\frac{2.35}{1271.25}
\end{aligned}
$$

$\left(\Psi-F^{\prime}\right)=1373^{\prime \prime}, \log =3.13767$
4.68557
$\log \sin (\Psi-F)=7.82324$
Eq. 114.
$\frac{1}{2}(\Psi-F)=686 .{ }^{\prime \prime} 5 \ldots 2.83664$
$\sin \frac{1}{2}(\Psi-F)=\frac{4.6855 \overline{7}}{7.52221}$

$$
\begin{aligned}
& \log 2 n=1.2552 \overline{7} \\
& \log (d-g)=.91866 \\
& \operatorname{co-log}(2 R-d)=6.59616 \\
& \log \tan \frac{1}{2} \Psi=8.7700 \overline{9} \\
& \frac{1}{2} \Psi=3^{\circ} 22^{\prime} 14^{\prime \prime} \\
& \Psi=6^{\circ} 44^{\prime} 28^{\prime \prime} \\
& F=6^{\circ} 21^{\prime} 35^{\prime \prime} \\
&(\Psi-F)=0^{\circ} 22^{\prime} 53^{\prime} \\
& \hline \log \left(R-\frac{1}{2} g\right)=3.10423 \\
& \log \sin \Psi=9.0696 \overline{0} \\
& \sin (\Psi-F)=2.17676 \\
&\left(r+\frac{1}{2} g\right)=22418.0 \ldots 4.3505 \overline{9} \\
& r=22415.6 \\
& d=0^{\circ} 15^{\prime}
\end{aligned} \quad \begin{aligned}
2 \ldots 0.30103 \\
\hline\left(r-\frac{1}{2} g\right)=22413.3 \ldots 4.3505 \overline{0} \\
\sin \frac{1}{2}(\Psi-F) \ldots 7.5222 \overline{1} \\
F=149.19 \ldots \ldots .17375
\end{aligned}
$$

274. Crossover between two parallel straight tracks. (See Fig. 151.) The turnouts are as usual. The crossover track may be straight, as shown by the full lines, or it may be a reversed curve, as shown by the dotted lines. The reversed curve shortens the total length of track required, but is somewhat objectionable. The first method requires that both frogs must be equal. The second method permits unequal frogs, although equal frogs are preferable. The length of straight crossover track is $F_{1} T$.

$$
\begin{align*}
& F_{1} T \sin F_{1}+g \cos F_{1}=d-g \\
& F_{1} T=\frac{d-g}{\sin F_{1}}-g \cot F_{1} . \tag{117}
\end{align*}
$$

The total distance along the track may be derived as follows:

$$
\begin{align*}
D V & =2 D F_{1}+F_{2} Y=2 D F_{1}+X Y-X F_{2} ; \\
X Y & =(d-g) \cot F_{1} ; \quad X F_{2}=g \div \sin F_{2} ; \\
\therefore \quad D V & =2 D F_{1}+(d-g) \cot F_{1}-\frac{g}{\sin F_{2}} . \cdots \tag{118}
\end{align*}
$$

If a reversed curve with equal frogs is used, we have

$$
\begin{align*}
\operatorname{vers} \theta & =\frac{d}{2 r} ; . \tag{119}\\
D Q & =2 r \sin \theta \tag{120}
\end{align*}
$$

also

Fig. 152.
If the frogs are unequal, we will have (see Fig. 152)

$$
\begin{align*}
& r_{2} \text { vers } \theta+r_{1} \text { vers } \theta=d ; \\
& \therefore \quad \text { vers } \theta=\frac{d}{r_{1}+r_{2}} ; \tag{121}
\end{align*}
$$

also the distance along the track

$$
\begin{equation*}
B_{2} N=\left(r_{1}+r_{2}\right) \sin \theta . \tag{122}
\end{equation*}
$$

Problem. A crossover is to be placed between two parallel straight tracks, $12^{\prime} 2^{\prime \prime}$ between centers, using a No. 8 and a No. 9
frog, and with a reversed curve between the frogs. Required the total distance between switch-points (the distance $B_{2} N$ in Fig. 152).

Solution. If straight point rails and straight frog rails are used, the radii, r_{1} and r_{2}, taken from the middle section of Table III, are 527.91 and 681.16.

Eq. 122.
$r_{1}=527.91$
$r_{2}=681.16$
$r_{1}+r_{2}=1209.07$

Eq. 122.
vers $\theta=\frac{d}{r_{1}+r_{2}}$

$$
\begin{array}{rlrl}
d=12^{\prime} 2^{\prime \prime}=12.16, & \log & =1.08517 \\
\theta-8^{\circ} 08^{\prime} 06^{\prime \prime} & \log \left(r_{1}+r_{2}\right) & =3.08245 \\
\log \text { vers } \theta & =8.00272
\end{array}
$$

$$
\log \left(r_{1}+r_{2}\right)=3.08245
$$

$$
\log \sin \theta=9.15077
$$

$$
\log 171.09=\overline{2.233 \varrho \overline{2}}
$$

The length of the curve from $B_{2}=100(\theta \div d)=100\left(8^{\circ} 08^{\prime} 06^{\prime \prime} \div\right.$ $\left.8^{\circ} 25^{\prime}\right)=96.65$. The length of the other curve is $100\left(8^{\circ} 08^{\prime} 06^{\prime} \div\right.$

Fig. 153.
$\left.10^{\circ} 52^{\prime}\right)=74.86$. As a check, $96.65+74.86=171.51$, which is slightly in excess of 171.09, as it should be.
275. Crossover between two parallel curved tracks. (a) Using a straight connecting curve. This solution has limitations. If one frog (F_{1}) is chosen, F_{2} becomes determined, being a function of F_{1}. If F_{1} is less than some limit, depending on the width (d) between the parallel tracks, this solution becomes impossible. In Fig. 153 assume F_{1} as known. Then $F_{1} H=g$ sec F_{1}. In the triangle $H O F_{2}$ we have

$$
\begin{align*}
& \sin H F_{2} O: \sin F_{2} H O:: H O: F_{2} O ; \\
& \sin F_{2} H O=\cos F_{1} ; \quad H F_{2} O=90^{\circ}+F_{2} ; \\
\therefore \quad & \sin H F_{2} O=\cos F_{2} . \\
H O= & R+\frac{1}{2} d-\frac{1}{2} g-g \sec F_{1} ; \quad F_{2} O=R-\frac{1}{2} d+\frac{1}{2} g ; \tag{123}
\end{align*}
$$

$\therefore \cos F_{2}=\cos F_{1} \frac{R+\frac{1}{2} d-\frac{1}{2} g-g \sec F_{1}}{R-\frac{1}{2} d+\frac{1}{2} g}$.
Knowing F_{2}, θ_{2} is determinable from Eq. 91. Fig. 153 shows the case where θ_{2} is greater than F_{2}. Fig. 154 shows the case where it is less. The demonstration of Eq. 123 is applicable to

Fig. 154.
luth figures The relative position of the frogs F_{1} and F_{2} may be determined as follows, the solution being applicable to both Figs. 153 and 154:

Then

$$
H O F_{2}=180^{\circ}-\left(90^{\circ}-F_{1}\right)-\left(90^{\circ}+F_{2}\right)=F_{1}-F_{2} .
$$

$$
\begin{equation*}
G F_{1}=2\left(R+\frac{1}{2} d-\frac{1}{2} g\right) \sin \frac{1}{2}\left(F_{1}-F_{2}\right) . \tag{124}
\end{equation*}
$$

Since F_{2} comes out any angle, its value will not be in general that of an even frog number, and it will therefore need to be made to order.
(b) Continuing the switch-rail curves until they meet as a reversed curve. In this case F_{1} and F_{2} may be chosen at pleasure (within limitations), and they will of course be of regular sizes and equal or unequal as desired. F_{1} and F_{2} being known, θ_{1} and θ_{2} are computed by Eq. 95 and 91. In the triangle $O O_{1} O_{2}$ (see Fig. 155)

$$
\text { vers } \psi=\frac{2\left(S-O O_{2}\right)\left(S-O O_{1}\right)}{\left(O O_{2}\right)\left(O O_{1}\right)}
$$

in which

$$
\begin{gathered}
S=\frac{1}{2}\left(O O_{1}+O O_{2}+O_{1} O_{2}\right) ; \\
O O_{1}=R+\frac{1}{2} d-r_{1}, \\
O O_{2}=R-\frac{1}{2} d-r_{2}, \\
O_{1} O_{2}=r_{1}+r_{2} ; \\
\therefore S=\frac{1}{2}\left(2 R+2 r_{2}\right)=R+r_{2} ; \\
S-O O_{2}=R+r_{2}-R+\frac{1}{2} d-r_{2}=\frac{1}{2} d ; \\
S-O O_{1}=R+r_{2}-R-\frac{1}{2} d+r_{1}=r_{1}+r_{2}-\frac{1}{2} d ;
\end{gathered}
$$

Fig. 155.

$$
\begin{align*}
& \text { vers } \dot{\psi}=\frac{d\left(r_{1}+r_{2}-\frac{1}{2} d\right)}{\left(R-\frac{1}{2} d+r_{2}\right)\left(R+\frac{1}{2} d-r_{1}\right)} ; . . . \tag{125}\\
& \sin O O_{2} O_{2}=\sin \psi \frac{O O_{1}}{O_{1} O_{2}}=\sin \psi \frac{R+\frac{1}{2} d-r_{1}}{r_{1}+r_{2}} ; \tag{126}\\
& O_{2} O_{1} D=\dot{\psi}+O_{1} O_{2} O \text {; } \tag{127}\\
& N F_{2}=2\left(R-\frac{1}{2} d+\frac{1}{2} g\right) \sin \frac{1}{2}\left(\psi-\theta_{1}-\theta_{2}\right) . \tag{128}
\end{align*}
$$

Although the above method introduces a reversed curve, yet it uses up less track than the first method and permits the use of ordinary frogs rather than those having some special angle which must be made to order.

Problem. Required the dimensions of a crossover on a $4^{\circ} 30^{\prime}$ curve when the distance between track centers is 13 feet. The frog for the outer main track (F_{1} in Fig. 155) is No. 9; F_{2} is No. 7. Then $R=1273.6 ; R_{1}$, for the inner main track, $=1280.1 ; D_{1}=$ $4^{\circ} 29^{\prime} ; R_{2}=1267.1 ; D_{2}=4^{\circ} 31^{\prime} ; r_{1}=$ radius for $\left(d_{1}+D_{1}\right)^{\circ}$ curve $=$ radius for $\left(8^{\circ} 25^{\prime}+4^{\circ} 29^{\prime}\right)$ curve $=445.09 ; r_{2}=$ radius for $\left(d_{2}-D_{2}\right)^{\circ}$ curve $=$ radius for $\left(14^{\circ} 27^{\prime}-4^{\circ} 31^{\prime}\right)$ curve $=577.53$. (See §§ $267-$ 268.)

Eq. 125.
$r_{1}+r_{2}-\frac{1}{2} d=1016.12$;
$R-\frac{1}{2} d+r_{2}=1844.63 ; \quad \log =3.26586 ;$
$R+\frac{1}{2} d-r_{1}=835.01 ; \quad \log =2.92169 ;$

Eq. 126.
$r_{1}+r_{2}=1022.62$;

Eq. 127.
Lead from switch point No. 1 up to $F_{1}=72.20 ; \theta_{1}=\frac{72.20}{100} d^{\prime}$, where d^{\prime} corresponds to the radius ($R+\frac{1}{2} d-\frac{1}{2} g$) or 1277.75; $d^{\prime}=4^{\circ} 29^{\prime} ; \theta_{1}=3^{\circ} 14^{\prime}$.

Lead from switch point No. 2 up to $F_{2}=61.65 ; \theta_{2}=\frac{61.65}{100} d^{\prime \prime}$, where $d^{\prime \prime}$ corresponds to the radius ($R-\frac{1}{2} d+\frac{1}{2} g$) or 1269.45; $d^{\prime \prime}=4^{\circ} 31^{\prime} ; \quad \theta_{2}=2^{\circ} 47^{\prime}$.
Eq. 128.

$$
\begin{aligned}
2 ; \log & =0.30103 \\
R-\frac{1}{2} d+\frac{1}{2} g=1269.45 ; \log & =3.1036 \overline{1} \\
\frac{1}{2}\left(\psi-\theta_{1}-\theta_{2}\right)=0^{\circ} 44^{\prime} 48^{\prime \prime} ; \log \sin & =8.11497 \\
N F_{2}=33.08 . \quad, \quad \log 33.08 & =1.5196 \overline{1}
\end{aligned}
$$

Length of curve with radius $r_{1}=100 \frac{13^{\circ} 38^{\prime} 09^{\prime \prime}}{12^{\circ} 54^{\prime}}=105.70$;

$$
\text { " " " " " } r_{2}=100 \frac{6^{\circ} 07^{\prime} 34^{\circ}-54^{\prime \prime}}{\prime}=61.67 \text {; }
$$

Total length of curve between switch points $=167.37$.
As a check, the sum of the two leads and $N F_{2}$ equals (72.20+
$61.65+33.08)=166.93$, which is a little less than the length of the curve, as it should be.

Note that the point of reversed curve is placed $.02^{\prime}\left(=\frac{1^{\prime \prime}}{4}\right)$ beyond the frog point F_{2}. If the computations had apparently indicated the point of reversed curve coming between the frog point and the switch point, it would have shown the impracticability of the combination of No. 7 and No. 9 frogs with this particular degree of curve, gauge of track, and distance between track centers. If both frogs were made No 9 , the total length of track between switch points would be increased to over 188 feet and the point of reversed curve would be nearly at the middle point. This shows that the frog numbers should be nearly equal, but also shows that there is some choice "within limitations."
276. Practical rules for switch-laying. A consideration of the previous sections will show that the formulæ are comparatively simple when the lead rails are assumed as circular; that they become complicated, even for turnouts from a straight main track, when the effect of straight frog and point rails is allowed for, and that they become hopelessly complicated when allowing for this effect on turnouts from a curved main track. It is also shown (§267) that the length of the lead is practically

Fig. 140.
the same whether the main track is straight or is curved with such curves as are commonly used, and that the degree of curve of the lead rails from a curved main track may be found with
close approximation by mere addition or subtraction From this it may be assumed that if the length of lead (I) and the radius of the lead rails (r) are computed from Eq 87 and 90 for various frog angles, the same leads may be used for curved main track: also, that the degree of curve of the lead rails may be found by addition or subtraction, as indicated in $\S 267$, and that the approximations involved will not be of practical detriment In accordance with this plan Table III has been computed from Eq. 87, 88, and 90 . The leads there given may be used for all main tracks, straight or curved. The table gives the degree of curve of the lead rails for straight main track; for a turnout to the inside, add the degree of curve of the main track; for a turnout to the outside, subtract it.

If the position of the switch-block is definitely determined, then the rails must be cut accordingly; but when some freedom is allowable (which never need exceed 15 feet and may require but a few inches), one rail-cutting may be avoided. Mark on the rails at B, F, and D (see Fig. 140) ; measure off the length of the switch-rails $D N$; offset $\frac{1}{2} g+k$ from N for the point S. The point H may be located (temporarily) by measuring along the rail a distance $F H(=f)$ and then swinging out a distance of $f \div n$ (n being the frog number). $H T=\frac{1}{2} g$ and is measured at right angles to $F H$. Points for track centers between S and T may be laid off by a transit or by the use of a string and tape. Substituting in Eq. 31 the value of R and of $\operatorname{chord}(=S T)$, we may compute $x(=d b)$. Locate the middle point d and the quarter points $a^{\prime \prime}$ and $c^{\prime \prime}$. Then $a^{\prime \prime} a$ and $c^{\prime \prime} c$ each equal three-fourths of $d b$. Theoretically this gives a parabola rather than a circle, but the

Fig. difference for all practical cases is too small for measurement.

Example. Given a main track on a 4° curve; a turnolit to the outside, using a number 9 frog; gauge $4^{\prime} 8 \frac{1^{\prime}}{}{ }^{\prime \prime} ; f=3^{\prime} .37$; $k=5 \frac{3^{\prime \prime}}{}{ }^{\prime \prime} ; D N=15^{\prime} 0^{\prime \prime}$ and $a=1^{\circ} 50^{\prime}$. Then for a straight track r would equal 631.16 [$\left.d=9^{\circ} 05^{\prime}\right]$. For this curved track d will be nearly $\left(9^{\circ} 05^{\prime}-4^{\circ}\right)=5^{\circ} 05^{\prime}$, or r will be 1131.2. L for the straight track would be 72.20 ; but since the lead is slightly increased (see § 267) when the turnout is on the outside of a curve, L may here be called 72.5. $F H=f=3^{\prime} .37 ; f \div n=$ $3.37 \div 9=0^{\prime} .375=4^{\prime \prime} .5$. H, T, and S may be located as de-
scribed above. $S T$ may be measured on the ground, or it may be computed from Eq. 88, giving the value of 53.80 feet for straight track. Since it is slightly more for a turnout to the outside of a curve, it may be called 54.0. Then $x=d b=$ $\frac{54.5}{8 \times 1131.2}=0.322$ foot, and $a a^{\prime \prime}$ and $c c^{\prime \prime}=0.24$ foot.

CROSSINGS.

277. Two straight tracks. When two straight tracks cross each other, four frogs are necessary, the angles of two of them

being supplementary to the angles of the other. Since such crossings are sometimes operated at high speeds, they should be
very strongly constructed, and the angles should preferably be 90° or as near that as possible. The frogs will not in general be "stock" frogs of an even number, especially if the angles are large, but must be made to order with the required angles as measured. In Fig. 157 are shown the details of such a crossing. Note the fillers, bolts, and guard-rails.
278. One straight and one curved track. Structurally the crossing is about the same as above, but the frog angles are all unequal. In Fig. 158, R is known, and the angle M, made by the center lines of the tracks at their point of intersection, is also known.
$M=N C M . \quad N C=R \cos M$.
$\left(R-\frac{1}{2} g\right) \cos F_{1}=N C+\frac{1}{2} g ;$
$\therefore \cos F_{1}=\frac{R \cos M+\frac{1}{2} g}{R-\frac{1}{2} g}$.
Similarly

$$
\begin{align*}
& \cos F_{2}=\frac{R \cos M+\frac{1}{2} g}{R+\frac{1}{2} g}, \tag{129}\\
& \cos F_{3}=\frac{R \cos M-\frac{1}{2} g}{R+\frac{1}{2} g}, \\
& \cos F_{4}=\frac{R \cos M-\frac{1}{2} g}{R-\frac{1}{2} g},
\end{align*}
$$

$$
\left.\begin{array}{l}
F_{3} F_{4}=\left(R+\frac{1}{2} g\right) \sin F_{3}-\left(R-\frac{1}{2} g\right) \sin F_{4} ; \tag{130}\\
H F_{4}=\left(R-\frac{1}{2} g\right)\left(\sin F_{4}-\sin F_{1}\right)
\end{array}\right\}
$$

279. Two curved tracks. The four frogs are unequal, and the angle of each must be computed. The radii R_{1} and R_{2} are known; also the angle $M . \quad r_{1}, r_{2}, r_{3}$, and r_{4} are therefore known by adding or subtracting $\frac{1}{2} g$, but the lines are so indicated for brevity. Call the angle $M C_{1} C_{2}=C_{1}$, the angle $M C_{2} C_{1}=C_{2}$, and the line $C_{1} C_{2}=c$. Then

$$
\frac{1}{2}\left(C_{1}+C_{2}\right)=90^{\circ}-\frac{1}{2} M
$$

and

$$
\begin{equation*}
\tan \frac{1}{2}\left(C_{1}-C_{2}\right)=\cot \frac{1}{2} M \frac{R_{2}-R_{1}}{R_{2}+R_{1}} \tag{131}
\end{equation*}
$$

C_{1} and C_{2} then become known and

$$
\begin{equation*}
c=C_{1} C_{2}=R_{2} \frac{\sin M}{\sin C_{1}} . \tag{132}
\end{equation*}
$$

In the triangle $F_{1} C_{1} C_{2}$, call $\frac{1}{2}\left(c+r_{1}+r_{4}\right)=s_{1} ; s_{2}=\frac{1}{2}\left(c+r_{2}+r_{4}\right)$;

Fig. 159.
$s_{3}=\frac{1}{2}\left(c+r_{1}+r_{3}\right)$; and $s_{4}=\frac{1}{2}\left(c+r_{2}+r_{3}\right)$. Then, by formula 29, Table XXX,

Similarly

$$
\operatorname{vers} F_{1}=\frac{2\left(s_{1}-r_{1}\right)\left(s_{1}-r_{4}\right)}{r_{1} r_{4}} .
$$

$$
\text { vers } F_{2}=\frac{2\left(s_{2}-r_{2}\right)\left(s_{2}-r_{4}\right)}{r_{2} r_{4}}
$$

$$
\operatorname{vers} F_{3}=\frac{2\left(s_{3}-r_{1}\right)\left(s_{3}-r_{3}\right)}{r_{1} r_{3}}
$$

$$
\operatorname{vers} F_{4}=\frac{2\left(s_{4}-r_{2}\right)\left(s_{4}-r_{3}\right)}{r_{2} r_{3}} .
$$

$$
\sin C_{1} C_{2} F_{4}=\sin F_{1} \frac{r_{3}}{c}
$$

$$
\sin C_{1} C_{2} F_{2}=\sin F_{2} \frac{r_{4}}{c} ;
$$

$\therefore \quad F_{2} C_{2} F_{4}=C_{1} C_{2} F_{4}-C_{1} C_{2} F_{2}$,
$\sin F_{1} C_{1} C_{2}=\sin F_{1} \frac{r_{1}}{c} ;$
$\sin F_{2} C_{1} C_{2}=\sin F_{2} \frac{r_{2}}{c}$,
$\therefore \quad F_{1} C_{1} F_{2}=F_{1} C_{1} C_{2}-F_{2} C_{1} C_{2} ;$
from which the chords $F_{1} F_{2}$ and $F_{2} F_{4}$ are readily computed.
$F_{1} F_{2}$ and $F_{2} F_{4}$ are nearly equal. When the tracks are straight and the gauges equal, the quadrilateral is equilateral.

Problem. Required the frog angles and dimensions for a crossing of two curves ($D_{1}=4^{\circ} ; D_{2}=3^{\circ}$) when the angle of their tangents at the point of intersection $=62^{\circ} 28^{\prime}$ (the angle M in Fig. 159).

Solution

$$
\begin{aligned}
& R_{1}=1432.7 ; R_{2}=1910.1 ; \\
& r_{1}=R_{2}+\frac{1}{2} g=1910.1+2.35=1912.45 ; \\
& r_{2}=R_{2}-\frac{1}{2} g=1910.1-2.35=19 \mathrm{C} 7.75 ; \\
& r_{3}=R_{1}+\frac{1}{2} g=1432.7+2.35=1435.05 ; \\
& r_{4}=R_{1}-\frac{1}{2} g=1432.7-2.35=1430.35 .
\end{aligned}
$$

Eq. 131.
$\log \cot \frac{1}{2} M=0.21723$
$\log =2.67888$
$R_{2}-R_{1}=477.4$;
$R_{2}+R_{1}=3342.8 ; \log =3.52411 ; ~ c o-\log =6.47589$
$\frac{1}{2}\left(C_{1}-C_{2}\right)=13^{\circ} 15^{\prime} 07^{\prime \prime} ; \tan 13^{\circ} 15^{\prime} 07^{\prime \prime}=9.37200$
$\frac{1}{2}\left(C_{1}+C_{2}\right)=58^{\circ} 46^{\prime} \quad\left[\frac{1}{2}\left(C_{1}+C_{2}\right)=90^{\circ}-\frac{1}{2} M\right]$

$$
\begin{aligned}
& C_{1}=72^{\circ} 01^{\prime} 07^{\prime \prime} \\
& C_{2}=45^{\circ} 30^{\prime} 53^{\prime \prime}
\end{aligned}
$$

Eq. 132.
$\log R_{2}=3.28105$ $\log \sin M=9.9477 \overline{9}$

$$
\log \sin C_{1}=9.97825 ; c o-\log =\underline{0.02175}
$$

$c=C_{1} C_{2}=1780.7$;
$\log C_{1} C_{2}=3.2505 \overline{9}$
Eq. 133.

. 7	$c=1780.7$
$r_{1}=1912.45$	$r_{2}=1907.75$
$r_{4}=1430.35$	$r_{4}=1430.35$
$2 \longdiv { 5 1 2 3 . 5 0 }$	25118.80
$s_{1}=2561.75$	$s_{2}=2559.40$
$-r_{1}=649.30$	$s_{2}-r_{2}=651.65$
$r_{4}=1131.40$	$-r_{4}=1129.05$

[^23]\[

$$
\begin{aligned}
& c=1780.7 \\
& r_{2}=1907.75 \\
& r_{3}=1435.05 \\
& 2 \longdiv { 5 1 2 3 . 5 0 } \\
& s_{1}=2561.75 \\
& s_{4}-r_{2}=654.00 \\
& s_{4}-r_{3}=1126.70 \\
& \overline{\log 2=0.30103} \\
& \left(s_{1}-r_{1}\right) ; \quad \log 649.30=2.81244 \\
& \left(s_{1}-r_{4}\right) ; \log 1131.40=3.0536 \overline{1} \\
& \mathrm{co}-\log =6.71841 \\
& \mathrm{co}-\mathrm{log}=6.84456 \\
& \log \text { vers } 62^{\circ} 25^{\prime} 31^{\prime \prime}=9.73006 \\
& \overline{\log 2=0.30103} \\
& \left(s_{2}-r_{2}\right) ; \quad \log 651.65=2.8140 \overrightarrow{1} \\
& \left(s_{2}-r_{4}\right) ; \log 1129.05=3.0527 \overline{1} \\
& c o-\log =6.71948 \\
& \text { co-log }=6.84456 \\
& \log \text { vers } 62^{\circ} 33^{\prime} 55^{\prime \prime}=9.73189
\end{aligned}
$$
\]

$\log 2=0.30103$
$\left(s_{3}-r_{1}\right) ; \log 651.65=2.81401$
$\left(s_{3}-r_{3}\right) ; \log 1129.05=3.05271$
$r_{1}=1912.45 ; \quad \log =3.28159$;
$r_{3}=1435.05 ; \log =3.15686$;
$F_{3}=62^{\circ} 21^{\prime} 57^{\prime \prime} ;$
$r_{2}=1907.75 ; \quad \log =3.28052$;
$r_{3}=1435.05 ; \quad \log =3.1568 \overline{6}$;
$F_{4}=62^{\circ} 30^{\prime} 14^{\prime \prime} ;$
$\begin{aligned} \operatorname{co-log} & =6.71841 \\ \operatorname{co}-\log & =6.84 .313\end{aligned}$
$\begin{aligned} c o-\log & =6.71841 \\ c o-\log & =6.84313\end{aligned}$
\log vers $62^{\circ} 21^{\prime} 57^{\prime \prime}=9.7293 \overline{0}$
$\overline{\log 2=0.30103}$
$\left(s_{4}-r_{2}\right) ; \log 654.00=2.81558$
$\left(s_{4}-r_{3}\right) ; \log 1126.70=3.05181$
$\operatorname{co-} \log =6.71948$
$c o-\log =6.8431 \overline{3}$
\log vers $62^{\circ} 30^{\prime} 14^{\prime \prime}=9.7310 \overline{3}$

As a check, the mean of the frog angles $=62^{\circ} 27^{\prime} 54^{\prime}$, which is within $6^{\prime \prime}$ of the value of M.

Eq. 134. $\quad \log \sin F_{4}=9.9479 \overline{4}$

	$\log c=3.2505 \overline{9} ;$	$\begin{aligned} \log r_{3} & =3.1568 \overline{6} \\ \operatorname{co}-\log c & =6.74940 \end{aligned}$
$C_{1} C_{2} F_{4}=45^{\circ} 37^{\prime} 51^{\prime \prime} ;$		$\sin C_{1} C_{2} F_{4}=9.85421$
		$\log \sin F_{2}=9.9481 \overline{8}$
		$\log r_{4}=3.15544$
		co-log c $=6.7494 \overline{0}$
$C_{1} C_{2} F_{2}=45^{\circ} 28^{\prime} 17^{\prime \prime}$;		$\sin C_{1} C_{2} F_{2}=\overline{9.85303}$
$\boldsymbol{F}_{2} \mathrm{C}_{2} F_{4}=45^{\circ} 37^{\prime} 51^{\prime \prime}-45^{\circ} 28^{\prime} 17^{\prime \prime}=0^{\circ} 09^{\prime} 34^{\prime \prime}$.		
		$\log 2=0.30103$
		$\log r_{2}=3.28052$
	$\frac{1}{2}\left(0^{\circ} 09^{\prime} 34^{\prime \prime}\right)=0^{\circ} 04^{\prime} 47^{\prime \prime}$;	; $\log \sin =\left(\begin{array}{l}4.6855 \overline{7} \\ 2.45788\end{array}\right.$
$F_{2} F_{4}=5.309 ;$		$\log F_{2} F_{4}=0.72500$
Eq. 135.		$\sin F_{1}=9.9476 \overline{3}$
		$\log r_{1}=3.28159$
		co-log c $=6.74940$
$F_{1} C_{1} C_{2}=72^{\circ} 10^{\prime} 22^{\prime \prime}$		$\sin F_{1} C_{1} C_{2}=9.97863$
		$\sin F_{2}=9.9481 \overline{8}$
		$\log r_{2}=3.28052$
	-	co-log c $=6.7494 \overline{0}$
$F_{2} C_{1} C_{2}=71^{\circ} 57^{\prime} 38^{\prime \prime} ;$$F_{1} C_{1} F^{\prime}=72^{\circ} 10^{\prime} 29^{\prime \prime}-71^{\circ} 57^{\prime} 38^{\prime \prime}=0^{\circ} 12^{\prime} 44^{\prime \prime}$		$\sin F_{2} C_{1} C_{2}=\overline{9.97811}$
$F_{1} C_{1} F_{2}=72^{\circ} 10^{\prime} 22^{\prime \prime}-71^{\circ} 57^{\prime} 38^{\prime \prime}=0^{\circ} 12^{\prime} 44^{\prime \prime}$.		
		$\log 2=0.30103$
		$\log r_{4}=3.15544$
	$\frac{1}{2}\left(0^{\circ} 12^{\prime} 44^{\prime \prime}\right)=0^{\circ} 06^{\prime} 22^{\prime \prime}$;	$\log \sin =\left(\begin{array}{l} 4.6855 \overline{7} \\ 2.5820 \overline{6} \end{array}\right.$
$F_{1} F_{2}=5.298 ;$		$\log F_{1} F_{2}=\overline{0.72411}$

As a check, $F_{2} F_{4}$ and $F_{1} F_{2}$ are very nearly equal, as they should be.

CHAPTER XII.

MISCELLANEOUS STRUCTURES AND BUILDINGS.

WATER-STATIONS AND WATER-SUPPLY.

280. Location. The water-tank on the tender of a locomotive has a capacity of from 2500 to 5000 gallons-sometimes less, rarely very much more. The consumption of water is very variable, and will correspond very closely with the work done by the engine. On a long down grade it is very small; on a ruling grade going up it may amount to 150 gallons per mile in exceptional cases, although 60 to 100 gallons would be a more usual figure. Nominally a locomotive could run 40 miles or more on one tankful, but it would be impracticable to separate the waterstations by such an interval. On roads of the smallest traffic, 15 to 20 miles should be the maximum interval between stations; 10 miles is a more common interval on heavy traffic-roads. But these intervals are varied according to circumstances. In the early history of some of the Pacific railroads it was necessary to attach one or more tank-cars to each train in order to maintain the supply for the engine over stretches of 100 miles and over where there was no water. Since then water-stations have been obtained at great expense by boring artesian wells. The individual locations depend largely on the facility with which a sufficient supply of suitable water may be obtained. Streams intersecting the railroad are sometimes utilized, but if such a stream passes through a limestone region the water is apt to be too hard for use in the boilers. More frequently wells are dug or bored. When the local supply at some determined point is unsuitable, and yet it is necessary to locate a water-station there, it may be found justifiable to pipe the water several miles. The construction of municipal water-works at suitable places along the line has led to the frequent utilization of such supplies. In such cases the railroad is generally the largest single consumer and obtains the most favorable rates. When possible, water-stations are located at regular stopping points and at division termini.
281. Required qualities of water. Chemically pure water is unknown except as a laboratory product. The water supplied by wells, springs, etc., is always more or less charged with calcium and magnesium carbonates and sulphates, as well as other impurities. The evaporation of water in a boiler precipitates these impurities to the lower surfaces of the boiler, where they sometimes become incrusted and are difficult to remove. The protection of the iron or steel of a boiler from the fierce heat of the fire depends on the presence of water on the other side of the surface, which will absorb the heat and prevent the metal from assuming an excessively high temperature. If the water side of the metal becomes covered or incrusted with a deposit of chemicals, the conduction of heat to the water is much less free, the metal will become more heated and its deterioration or destruction will be much more rapid. An especially common effect is the production of leaks around the joints between tubes and tube-sheets and the joints in the boiler-plates. Such injury can only be prevented by the application of one (or both) of two general methods- (a) the frequent cleaning of the boilers and (b) the chemical purification of the water before its introduction into the boiler. Although "manholes" and "handholes'' are made in boilers, it is physically impossible to clean out every corner of the inside of a boiler where deposits will form and where they are especially objectionable-on the tube-sheets. Such a cleaning is troublesome and expensive.

Chemical purification is generally accomplished by treating the water before it enters the boiler. The reagents chiefly employed are quicklime and sodium carbonate. Lime precipitates the bicarbonate of lime and magnesia. Sodium carbonate gives, by double decomposition in the presence of sulphate of lime, carbonate of lime, which precipitates, and soluble sulphate of soda, which is non-incrustant. When this is done in a purifying tank, the purified water is drawn off from the top of the tank and supplied pure to the engines. The precipitants are drawn off from the settling-basin at the bottom of the tank. This purification, which makes no pretense of being chemically perfect, may be accomplished for a few cents per 1000 gallons. It is used much more extensively in Europe than in this country, the Southern Pacific being the only railroad which has employed such methods on a large scale. Reliance is frequently placed on the employment of a "non-incrustant" which is introduced
directly into the boiler. When no incrustation takes place the accumulation of precipitant and mud in the bottom of the boiler may be largely removed by mere "blowing cff" or by washing out with a hose.

American practice may therefore be summarized as follows: (a) Employing as pure water as possible; (b) cleaning out boilers by "blowing off"' or by washing out with a hose or by physical scraping at more or less frequent intervals or when other repairs are being made; (c) the occasional employment of nonincrustants; (d) the occasional chemical treatment of water before it enters the tender-tank.
282. Tanks. Whatcver the source, the water must be led or pumped into tanks which are supported on frames so that the bottoms of the tanks are about 12 feet above the rails. Wooden

TABLE XIV. - CAPACITY OF CYLINDRICAL WATER-TANKS IN UNITED STATES STANDARD GALLONS OF 231 CUBIC INCHES.

$\begin{gathered} \text { Height } \\ \text { in } \\ \text { feet. } \end{gathered}$	Diameter of tank in feet.							
	10	12	14	16	18	20	22	24
6	3525	5076	6909	9024	11421	14101	17062	20305
7	4113	5922	8061	10528	13325	16451	19905	23689
8	4700	6768	9212	12032	15229	18801	22749	27073
9	5288	7614	10364	13536	17132	21151	25592	30457
10	5875	8460	11515	15041	19036	23501	28436	33841
11	6463	9306	12667	16545	20939	25851	31280	37225
12	7050	10152	13819	18049	22843	23201	34123	40609
13	7638	10998	14970	19553	24746	30551	36967	43994
14	8225	11844	16122	21057	26650	32901	39810	47378
15	8813	12690	17273	22561	28554	35251	42654	50762
16	9400	13536	18425	24065	30457	37601	45498	54146
17	9988	14383	19576	25569	32361	39951	48341	57530
18	10575	15229	20728	27073	34264	42301	51185	60914
19	11163	16075	21879	28577	36168	44652	54028	64298
20	11750	16921	23031.	30081	38071	47002	56872	67682
21	12338	17767	24182	31585	39975	49352	59716	71067
22	12925	18613	25334	33089	41879	51702	62559	74451
23	13513	19459	26485	34593	43782	54052	65403	77835
24	14101	20305	27637	36097	45686	56402	68246	81219
25	14688	21151	28789	37601	47589	58752	71090	84603

tanks having a diameter of 24 feet, 16 feet high, and with a capacity of over 50,000 gallons are frequently employed. Iron or steel tanks are also used.

In Table XIV is shown the capacity of cylindrical water-tanks in United States standard gallons of 231 cubic inches. From
this table the dimensions of a tank of any desired capacity may readily be found. Two or more tanks are sometimes used rather than construct one of excessive size. The smaller sizes shown in the table are of course too small for ordinary use, but that part of the table was filled out for its possible conveniense otherwise. On single-track roads where all engines use one track the tank may be placed $8^{\prime} 5^{\prime \prime}$ from the track center; this gives sufficient clearance and yet permits the use of a single swinging pipe which will reach from the bottom of the tank to the tender manhole. In Fig. 160 is illustrated

Fig. 160.-W ater-tank.
one form of wooden tank. They are preferably manufactured by those who make a special business of it and who by the use of special machinery can insure tight joints. When it is inconvenient to place the tank near the track, or when there is a double track, a "stand-pipe" becomes necessary. See § 285. One of the most difficult and troublesome problems is to prevent freezing, particularly in the valves and pipes Not only are the pipes carefully covered but fires must be maintained during cold weather. When the pumping is accomplished by means of a steam-pump, supplied from a steam-boiler in the pump-house under the tank, coils of steam-pipe may be employed to heat the water or to heat the pipes Partial protection may be obtained by mearis of a double roof and double bottom, the spaces being filled with sawdust or some other non-conductor of heat.
283. Pumping. The pumping is done most reliably with steam-pumps or gas-engines, although hot-air engines,'windmills, and even man-power are occasionally employed. Economy of operation requires that the water-stations shall be so located that each tank shall be used regularly and that each pump shall be regularly operated for maintaining the water-supply. On the other hand, the pump should not be required to regularly work at night to maintain the supply and should have an excess capacity of say 25%. When a tank is but little used, it will still require the labor of an attendant, and his time will be largely wasted unless he can be utilized for other labor about the station. In recent years gasoline has been extensively employed as a fuel for the pumping-engines. The chief advantages of its use lies in the extreme simplicity of the mechanism and the very slight attention it requires, which permits their being operated by station-agents and others, who are paid $\$ 10$ per month extra, instead of paying a regular pumper $\$ 35$ per month. "Screenings," "slack coal," etc., are used as fuel for steam-pumps and may frequently be delivered at the pump-house at a cost not exceeding 30 cents per ton, but even at that price the cost of pumping per thousand gallons, although dependent on the horizontal and vertical distances to the source of supply and to the tank, will generally run at 2 cents to 6 cents per 1000 gallons. In many cases where steam plants have been replaced by gasoline plants, the cost of pumping per 1000 gallons has been reduced to one third or even one fourth of the cost of steam pumping. Of course the cost, using windmills, is reduced to the mere maintenance of the machinery, but the unreliability of wind as a motive power and the possibility of its failure to supply water when it is imperatively needed has made this form of motive power unpopular. (See report to Ninth Annual Convention of the Association of Railway Superintendents of Bridges and Buildings, Oct. 1899.)
284. Track tanks. These are chiefly required as one of the means of avoiding delays during fast-train service. A trough, made of steel plate, is placed between the rails on a stretch of perfectly level track. A scoop on the end of a pipe is lowered from under the tender into the tank while the train is in motion. The rapid motion scoops up the water, which then flows into the tender tank. The following brief description of an :nstallation on the Baltimore \& Ohio Railroad between Baltimore and

Philadelphia will answer as a general description of the method. The trough is made of $\frac{9}{16}{ }^{\prime \prime}$ steel plate, $19^{\prime \prime}$ wide; $6^{\prime \prime}$ deep, and has a length of 1200 feet. There is riveted on each side a line of $1 \frac{1}{8}{ }^{\prime \prime} \times 2^{\prime \prime} \times 1^{\prime \prime}$ angle bars. These angle bars rest on the ties. Ordinary track spikes hold these angle bars to the ties, but permit expansion as with rails. The tanks are firmly anchored at the center, the ends being free to expand or contract. The plates are 15 feet long and are riveted with $\frac{7}{16}$ " rivets, 20 rivets per joint. At each end is an inclined plane $13^{\prime} 8^{\prime \prime}$ long. If the fireman should neglect to raise the scoop before the end of the tank is reached, the inclined plane will raise it automatically and a catch will hold it raised. Water is supplied to the tanks by a No. 9 Blake pump having a capacity of 260 gallons per minute. During cold weather, freezing is prevented by injecting into the side of the tanks, at intervals of 45 feet, jets of steam, which come through $\frac{1}{8}{ }^{\prime \prime}$ holes. Two boilers of 80 and 95 H.P. are required for pumping and to keep the water from freezing. During warm weather an upright 25 H.P. boiler suffices for the pumping. The cost of installation was about $\$ 10,000$ to $\$ 11,000$, the cost of maintenance being about $\$ 132.50$ per month.
285. Stand-pipes. These are usually manufactured by those who make a specialty of such track accessories, and who can ordinarily be trusted to furnish a correctly designed article. In Fig. 161 is shown a form manufactured by the Sheffield Car Co. Attention is called to the position of the valve and to the device for holding the arm parallel to the track when not in use so that it will not be struck by a passing train. When a stand pipe is located between parallel tracks, the strict requirements of clearance demand that the tracks shall be bowed outward slightly. If the tracks were originally straight, they may be shoved over by the trackmen, the shifting gradually running out at about 100 feet each side of the stand-pipe. If the tracks were originally curved, a slight change in radius will suffice to give the necessary extra distance between the tracks.

buildings.

286. Station platforms. These are most commonly made of planks at minor stations. Concrete is used in better-class work, also paving brick. An estimate of the cost of a platform of paving brick laid at Topeka, Kan., was $\$ 4.89$ per 100 square feet when
laid flat and $\$ 7.24$ per 100 square feet when laid on edge. The curbing cost 36 cents per linear foot. Cinders, curbed by timbers

Fig. 161.-Stand-pipe.
or stone, bound by iron rods, make a cheap and fairly durable platform, but in wet weather the cinders will be tracked into
the stations and cars. Three inches of crushed stone on a cinder foundation is considered to be still better, after it is once thoroughly packed, than a cinder surface.
Elevation.-The elevation of the platform with respect to che rail has long been a fruitful source of discussion. Some roads make the platforms on a level with the top of the rail, others $3^{\prime \prime}$ above, others still higher. As a matter of convenience to the passengers, the majority find it easier to enter the car from a high platform, but experience proves that accidents are more numerous with the higher platforms, unless steps are discarded altogether and the cars are entered from level platforms, as is done on elevated roads. As a railroad must generally pay damages to the stumbling passenger, they prefer to build the lower platform. Convenience requires that the rise from the platform to the lowest step should not be greater than the rise of the car steps. This rise is variable, but with the figures usually employed the application of the rule will make the platform $5^{\prime \prime}$ to $15^{\prime \prime}$ above the rail.

Position with respect to tracks.-Low platforms are generally built to the ends of the ties, or, if at the level of the top of the rail, are built to the rail head. Car steps usually extend $4^{\prime} 6^{\prime \prime}$ from the track center and are $14^{\prime \prime}$ to $24^{\prime \prime}$ above the rail. The platiorm must have plenty of clearance, and when the platform is high its edge is generally required to be $5^{\prime} 6^{\prime \prime}$ from the track center.
287. Minor stations. For a complete discussion of the design of stations of all kinds, including the details, the student is referred to "Buildings and Structures of American Railroads," by Walter G. Berg, now Chief Engineer of the Lehigh Valley Railroad. The subject is too large for adequate discussion here, but a few fundamental principles will be referred to.

Rooms required. An office and waiting-room is the minimum. A baggage-room, toilet-rooms, and express office are successively added as the business increases. In the Southern States a separate waiting-room for colored people is generally provided. It used to be common to have separate waiting-rooms for men and women. Experience proved that the men's wait-ing-room became a lounging place and smoking-room for loafers, and now large single waiting-rooms are more common even in the more pretentious designs, smoking being excluded. The office usually has a bay wiadow, so that a more extended view
of the track is obtainable. The women's toilet-room is entered from the waiting-room. The men's toilet-room, although built immediately adjoining the other in order to simplify the plumbing, is entered from outdoors. Old-fashioned designs built the station as a residence for the station-agent; later designs have very generally abandoned this idea. "Combination" stations (passenger and freight) are frequently built for small local stations, but their use seems to be decreasing and there is now a tendency to handle the freight business in a separate building.
288. Section-houses. These are houses built along the right-of-way by the railroad company as residences for the trackmen. The liability of a wreck or washout at any time and at any part of the road, as well as the convenience of these houses for ordinary track labor, makes it all but essential that the trackmen should live on the right-of-way of the road, so that they may be easily called on for emergency service at any time of day or night. This is especially true when the road passes through a thinly settled section, where it would be difficult if not impossible to obtain suitable boarding-places. It is in no sense an extravagance for a railroad to build such houses. Even from the direct financial standpoint the expense is compensated by the corresponding reduction in wages, which are thus paid partly in free house rent. And the value of having men on hand for emergencies will often repay the cost in a single night. Where the country is thickly settled the need for such houses is not so great, and railroads will utilize or perhaps build any sort of suitable house, but on Southern or Western roads, where the need for such houses is greater, standard plans have been studied with great care, so as to obtain a maximum of durability, usefulness, comfort, and economy of construction. (See Berg's Buildings, etc., noted above.) On Northwestern roads, protection against cold and rain or snow is the chief characteristic; on Southern roads good ventilation and durability must be chiefly considered. Such houses may be divided into two general classes-(a) those which are intended for trackmen only and which may be built with great simplicity, the only essential requirements being a living-room and a dormitory, and (b) those which are intended for families, the houses being then distinguished as "dwellinghouses for employees.
289. Engine-houses. Small engine-houses are usually built rectangular in plan. Their minimum length should be some-
what greater than that of the longest engine on the road. They may be built to accommodate two engines on one track, but then they should be arranged to be entered at either end, so that neither engine must wait for the other. In width there may be as many tracks as desired, but if the demand for stalls is large, it will probably be preferable to build a "roundhouse." Reetangular engine-houses are usually entered by a series of parallel tracks switching off from one or more main tracks, no turn-table being necessary. If a turn-table is placed outside (because one

Fig. 162.-Engine-house.
is needed at that part of the road) enough track should be allowed between the house and the turn-table so that engines may be quickly removed from the engine-house in case of fire without depending on the turn-table to get them out of danger.

Roundhouses. The plan of these is generally polygonal rather than circular. The straight walls are easier to build; the construction is more simple, and the general purpose is equally well served. They may be built as a part of a circle or a complete circle, a passageway being allowed, so that there are two entrances instead of one. When space is very limited a roundhouse with turn-table will accommodate more engines in proportion to the space required (including the approaches) than a rectangular house. The enlarged space on the outer side of each segment of a roundhouse furnishes the extra space which is needed for the minor repairs which are usually made in a roundhouse. One disadvantage is that supervision is not quite so easy or effec-
tive as in rectangular houses. Of course such houses are used not only for storing and cleaning engines, but also for minor repairs which do not require the engine to be sent to the shops for a general overhauling.

Construction. The outer walls are usually of brick. The inner walls consist almost entirely of doors and the piers betwcen them, although there is usually a low wall from the top of the door frames to the roof line, which usually slopes outward so as to turn rain-water away from the central space.

Roofs. Many roofs have been built of slate with iron truss framing, with the idea of maximum durability. The slate is good, but experience shows that the iron framing deteriorates very rapidly from the action of the gases of combustion of the engines which must be "fired" in the houses before starting. Roof frames are therefore preferably made of wood,

Floors. These are variously constructed of cinders, wood, brick, and concrete. Brick has been found to be the best material. Anything short of brick is a poor economy; concrete is very good if properly done but is somewhat needlessly expensive.

Ventilation. This is a troublesome and expensive matter. The general plan is to have "smoke-jacks" which drop down over the stack of each engine as it reaches its precise place in its stall and which will carry away all smoke and gas. Such a movable stack is most easily constructed of thin metal-say galvanized iron-but these will be corroded by the gases of combustion in two or three years. Vitrified pipe, cast iron, expanded metal and cement, and even plain wood painted with "fireproof" paint, have been variously tried, but all methods have their unsatisfactory features. (For an extended discussion of roundhouse floors and ventilation see the Proc. Assoc. of Railway Supts. of Bridges and Buildings for 1898, pp. 112-135.)

SNOW STRUCTURES.

290. Snow-fences. Snow structures are of two distinct kinds-fences and sheds. A snow-fence implies drifting snowsnow carried by wind-and aims to cause all drifting snow to be deposited away from the track. Some designs actually succeed in making the wind an agent for clearing snow from the track where it has naturally fallen. A snow-fence is placed at right angles to the prevailing direction of the wind and 50 to 100 feet away from the tracks. When the road line is at right angles to
the prevailing wind, the right-of-way fence may be built as a snow-fence-high and with tight boarding. Hedges have sometimes been planted to serve this purpose. When the prevailing wind is oblique, the snow fences must be built in sections where they will serve the best purpose. The fences act as wind breakers, suddenly lowering the velocity of the wind and causing the snow carried by the wind to be deposited along the fence. Portable fences are frequently used, which are placed (by permission of the adjoining property owners) outside of the right-of-way. If a drift forms to the height of the portable fence the fence may be replaced on the top of the drift, where it may act as before, forming a still higher drift. When the prevailing wind runs along the track line, snow-fences built in short sections on the sides will cause snow to deposit around them while it scours its way along the track line, actually clearing it. Such a method is in successful operation at some places on the White Mountain and Concord divisions of the Boston \& Maine Railroad. Snow-fences, in connection with a moderate amount of shoveling and plowing, suffice to keep the tracks clear on railroads not troubled with avalanches. In such cases snow-sheds are the only alternative.
291. Snow-sheds. These are structures which will actually keep the tracks clear from snow regardless of its depth outside. Fortunately they are only necessary in the comparatively rare situations where the snowfall is excessive and where the snow is liable to slide down steep mountain slopes in avalanches. These avalanches frequently bring down with them rocks, trees, and earth, which would otherwise choke up the road-bed and render it in a moment utterly impassable for weeks to come. The sheds are usually built of $12^{\prime \prime} \times 12^{\prime \prime}$ timber framed in about the same manner as trestle timbering; the "bents" are sometimes placed as close as 5 feet, and even this has proved insufficient to withstand the force of avalanches. The sheds are therefore so designed that the avalanche will be deflected over them instead of spending its force against them. Although these sheds are only used in especially exposed places, yet their length is frequently very great and they are liable to destruction by fire. To confine such a fire to a limited section, "fire-breaks" are made-i.e., the shed is discontinued for a length of perhaps 100 feet. Then, to protect that section of track, a V-shaped deflector will be placed on the uphill side which will deflect all
descending material so that it passes over the sheds. Solid crib work is largely used for these structures. Fortunately suitable timber for such construction is usually plentiful and cheap where these structures are necessary. Sufficient ventilation is obtained by longitudinal openings along one side immediately under the roof. "Summer" tracks are usually built outside the sheds to avoid the discomfort of passing through these semitunnels in pleasant weather. The fundamental elements in the design of such structures is shown in Fig. 163, which illustrates some of the sheds used on the Canadian Pacific Railroad.

Fig. 163.-Snow-sheds-Canadian Pacific Railroad.
292. Turn-tables. The essential feature of a turn-table is a carriage of sufficient size and strength to carry a locomotive, the carriage turning on a pivot of sufficient size to carry such a load. The carriage revolves in a circular pit whose top has the same general level as the surrounding tracks. The carriages were formerly made largely of wood; very many of those still in use are of cast iron. Structural steel is now universally employed for all modern work and since the construction of the carriage and the pivot is a special problem in structures, no further attention will here be paid to the subject, except to that part which the railroad engineer must work out
-laying out the site and preparing the foundation. The minimum length of such a carriage (and therefore the diameter of the pit) is evidently the length over all of the longest engine and tender in use on the road. Usually 60 -foot turn-tables will suffice for an ordinary road, and for light-traffic roads employing small engines, 50 feet or even less may be sufficient. Many of the heavier freight engines of recent make have a total length of about 65 feet; therefore 70 -foot turn-tables are a better standard for heavy-traffic roads. A retaining-wall should be built around the pit. The stability of this wall immediately under the tracks should be especially considered. The most important feature is the stability of the foundation of the pivot, which must sustain a concentrated pressure, more or less eccentric, of perhaps 150 tons. When firm soil or rock may be easily reached, this need give no trouble, but in a soft, treacherous soil a foundation of concrete or piling may be necessary. If the soil is very porous, it may be depended on to carry away all rain-water which may fall into the pit before the foundations are affected, but when the soil is tenacious it may be necessary to drain the subsoil thoroughly and carry off immediately all surface drainage by means of subsoil pipes which have a suitable outfall.

The location of the turn-table in the yard is a part of the general subject of "Yards," and will be considered in the next chapter.

CHAPTER XIII.

YARDS AND TERMINALS.

293. Value of proper design. A large part of the total cost of handling traffic, particularly freight, is that incurred at terminals and stations. In illustration of this, consider the relative total cost of handling a car-load of coal and a car-load (of equal weight) of mixed merchandise. The coal will be loaded in bulk on the cars at the mines, where land is comparatively cheap, and the cars grouped into a train without regard to order, since they are (usually) uniform in structure, loading, and contents. When the terminal or local station is reached they are run on tracks occupying property which is usually much cheaper than the site of the terminal tracks and freight-houses; they are unloaded by gravity into pockets or machine conveyors and the empty cars are rapidly hauled by the train-foad out of the way. On the other hand, the merchandise is loaded by hand on the car from a freight-house occupying a central and valuable location, the car is hauled out into a yard occupying valuable ground, is drilled over the yard tracks for a considerable aggregate mileage before starting for its destination, where the same process is repeated in inverse order. In either case the terminal expenses are evidently a large percentage of the total cost and, once loaded, it makes but little difference just how far the car is hauled to the other terminal. But the very evident increase in terminal charges for general merchandise over those for coal (large as they are) gives a better idea of the magnitude of terminal charges.

Many yards are the result of growth, adding a few tracks at a time, without much evidence of any original plan. In such cases the yard is ant to be very inefficient, requiring a much larger aggregate of drilling to accomplish desired results, requiring much more time and hence blocking traffic and finally adding greatly to the cost of terminal service, although the fact of its being a needless addition to cost may be unsuspected or not fully appreciated. An unwillingness or inability to spend money for
the necessary changes, and the difficulty of making the changes while the yard is being used, only prolong the bad state of affairs and an inefficient makeshift is frequently adopted. Assume that an improvement in the design of the yard will permit a saving of the use of one switching engine, or for example, that the work may be accomplished with three switching engines instead of four. Assuming a daily cost of $\$ 25$, we have in 313 working days an annual saving of $\$ 7825$, which, capitalized at 5%, gives $\$ 156,500$, enough to reconstruct any ordinary yard.*
294. Divisions of the subject. The subject naturally divides itself into three heads-(a) Yards for receiving, classifying, and distributing freight cars, called more briefly freight yards; (b) yards and conveniences for the care of engines, such as ash tracks, turn-tables, coal-chutes, sand-houses, water-tanks, or water stand-pipes, etc., and (c) passenger terminals.

FREIGHT YARDS.

295. General principles. It should be recognized at the start that at many places an ideally perfect yard is impossible, or at least impracticable, generally because ground of the required shape or area is practically unobtainable. But there are some general principles which may and should be followed in every yard and other ideals which should be approached as nearly as possible. Nevertheless every yard is an independent problem. Before taking up the design of freight yards, it is first necessary to consider the general object of such yards and the general principles by which the object is accomplished. These may be briefly stated as follows:
296. A yard is a device, a machine, by which incoming cars are sorted and classified-some sent to warehouses for unloading, some sent to connecting railroads, some made up for local distribution along the road, some sent for repairs, and, in short a device by which all cars are sent through and out of the yard as quickly as possible.
297. Except when a road's business is decreasing, or when its equipment is greater than its needs and its cars must be stored, efficiency of management is indicated by the rapidity with which the passage of cars through the yard is accomplished.
298. When a yard is the terminal of a "division," the freight

[^24]trains will be pulled into a "receiving track" and the engine and caboose detached. The caboose will be run on to a "caboose track," which should be conveniently near, and the engine is run off to the engine yard. If the train is a "through" train and no change is to be made in its make-up, it will only need to wait for another engine and perhaps another caboose. If the cars are to be distributed, they will be drawn off by a switching engine to the "classification yard."
4. The design of a yard is best studied by first picking out the ladder tracks and the through tracks which lead from one division of the yard to another. These are tracks which must always be kept open for the passage of trains, in contradistinction to the tracks on which cars may be left standing, even though it is only for a few moments, while drilling is being done. Such a set of tracks, which may be called the skeleton of the yard, is shown by heavy lines in Fig. 164. Each line indicates a pair of rails. The tracks of the storage yards are shown by the lighter lines.
5. There is a distinct advantage in having all storage tracks double-ended-except "team tracks." Team tracks are those which have spaces for the accommodation of teams, so that loading or unloading may be done directly between the cars and teams. To avoid the necessity of teams passing over the tracks, these are best placed on the outskirts of the yard and consist of short stubsidings arranged in pairs. But storage tracks should have an outlet at each end so as to reduce the amount of drilling neces sary to reach a car which may be at the extreme end of a long string of cars. This is done usually by means of two "ladder" tracks, parallel to each other, which thus make the storage tracks between them of equal length.
6. The equality of length of these storage tracks is a point insisted on by many, but on the other hand, trains are not always of uniform length even on any one division. Loaded trains and trains of empties will vary greatly in length, and the various styles and weights of freight engines employed necessitate other variations in the weights and lengths of trains hauled. With storage tracks of somewhat variable length a larger percentage of track length may be utilized, there will be less hauling over a useless length of track, and (assuming that the plot of ground available for yard purposes has equally favorable conditions for yard design) more business may be handled in a yard of given area.

Fig. 164.-Plan of the New Shops and Yards of the Colorado \& Southern Railway at Denver.

7 Yards are preferably built so that the tracks have a grade of 0.5%-sometimes a little more than this-in the direction of the traffic through the yard. This grade, which will overcome a tractive resistance of 10 pounds per ton, will permit cars to be started down the ladder tracks by a mere push from the switching engine. They are then switched on to the desired storage track and run down that track by gravity until stopped at the desired place by a brakeman riding on the cars
8. Although not absolutely necessary, there is an advantage in having all frog numbers and switch dimensions uniform. No. 7 frogs are most commonly used. Sharper-angled frogs make easier riding, less resistance and less chance of derailment, but on the other hand require longer leads and more space. No. 6 and even No. 5 frogs are sometimes used on account of economy of space, but they have the disadvantages of greater tractive resistance, greater wear and tear on track and rolling stock, and greater danger of derailment.
296. Relation of yard to main tracks. Safety requires that there should be no connection between the yard tracks and the main tracks except at each end of the yard, where the switches should be amply protected by signals. Sometimes the main tracks run through the yard, making practically two yards-one for the traffic in either direction-but this either requires a double layout of tracks and houses (such as ash tracks, coal-chutes, sandhouses, etc.), or a very objectionable amount of crossing of the main-line tracks. The preferable method is to have the main line tracks entirely on the outside of the yard. A method which is in one respect still better is to spread the main tracks so that they run on each side of the yard. In this case there is never any necessity to cross one main track to pass from the yard to the other main track; a train may pass from the yard to either main track and still leave the other main track free and oper. The ideal arrangement is that by which some of the tracks cross over or under all opposing tracks. Ry this means all connections between the yard and the main tracks may be by "trailing" switches; that is, trains will run on to the main track in the direction of motion on that main track. Of course all this applies only to double main track.

An important element of yard design is to have a few tracks immediately adjoining the main tracks and separate from the yard proper on which outgoing trains may await their orders to take

Fig. 165.-Minor Freight Yard.
the main track. When the orders come, they may start at once withont any delay, without interfering with any yard operations, and they are not occupying tracks which may form part of the system needed for switching.
297. Minor freight yards. The term here refers to the substations, only found in the largest cities, to which cars will be sent to save in the amount of necessary team hauling and also to relieve a congestion of such loading and unloading at the main freight terminal. The cars are brought to these yards sometimes on floats (as is done so extensively at various points around New York Harbor), or they are run down on a long siding running perhaps through the city streets. But the essential feature of these yards is the maximum utilization of every square foot of yard space, which is always very valuable and which is frequently of such an inconvenient shape that a great ingenuity is required to obtain good results. There is generally a temptation to use excessively sharp curves. When the radii are greater then 150 feet no especial trouble is encountered. Curves with radius as short as 50 feet have been used in some yards. On such curves the long cars now generally used make a sharper angle with each other than that for which the couplers were designed and special coupler-bars become necessary. The two general methods of construction are (a) a series of parallel team tracks (as previously described and as illustrated further in Fig. 165), and (b) the "loop system," as is illustrated in Fig. 166.
298. Transfer cranes. These are almost an essential feature for yards doing a large business. The transportation of builtup girders, castings for excessively heavy machinery, etc., which weigh five to thirty tons and even more, creates a necessity for machinery which will easily transfer the loads from the car to the truck and vice versa. An ordinary "gin-pole" will serve the purpose for loads which do not much exceed five tons. A fixed framework, cevering a span long enough for a car track and a team space, with a trolley traveling along the upper chord, is the next design in the order of cost and convenience. Increasing the span so that it covers two car tracks and two team spaces will very materially increase the capacity. Making the frame movable so that it travels on tracks which are parallel to the car tracks, giving the frame a longitudinal motion equal to two or three car lengths, and finally operating the raising and traveling mechanism by power, the facility for rapidly disposing of
East 135th St.

Fig. 166.-Minor Freight Yatd on a Harbor Front.
heavy articles of freight is greatly increased. Of course only a very small proportion of freight requires such handling, and the business of a yard must be large or perhaps of a special character to justify and pay for the installation of such a mechanism. Figs. 165 and 166 each indicate a transfer crane, evidently of the fixed type.
299. Track scales. The location of these should be on one of the receiving tracks near the entrance to the yard, but not on the main track. It is always best to have a "dead track" over the scales-i.e., a track which has one rail on the solid side wall of the scale pit and the other supported at short intervals by posts which come up through the scale platform and yet do not touch it. These rails and the regular scale rails switch into one track by means of point rails a few feet beyond each end of the scales. The switches should be normally set so that all trains will use the dead track, unless the scales are to be operated. It has been found possible in a gravity yard to weigh a train with very liitle loss of time by running each car slowly by gravity over the scales and weighing them as they pass over.

ENGINE YARDS.

300. General principles. Engine yards must contain all the tracks, buildings, structures, and facilities which are necessary for the maintenance, care, and storage of locomotives and for providing them with all needed supplies. The supplies are fuel, water, sand, oil, waste, tallow, etc. Ash-pits are generally necessary for the prompt and economical disposition of ashes; enginehouses are necessary for the storage of engines and as a place where minor repairs can be quickly made. A turn-table is another all but essential requirement. The arrangement of all these facilities in an engine yard should properly depend on the form of the yard. In general they should be grouped together and should be as near as possible to the place where through engines drop the trains just brought in and where they couple on to assembled outgoing trains, so that all unnecessary running light may be avoided. In Figs. 164 and 167 are shown two designs which should be studied with reference to the relative arrangement of the yard facilities.

Fig. 167.-Engine Yard and Shops, Urbana. Ill.

PASSENGFR TERMINALS.

(Passenger terminals are one of the logical subdivisions of this chapter, but their construction does not concern one engineer in a thousand. The local conditions attending their construction are so varied that each case is a special problem in itself-a problem which demands in many respects the services of the architect rather than the engineer. The student who wishes to pursue this subject is referred to an admirable chapter ir " Buildings and Structures of American Railroads," by Walter G. Berg, Chief Engineer of the Lehigh Valley Railroad.)

CHAPTER XIV.

BLOCK SIGNALING.

GENERAI، PRINCIPLES.

301. Two fundamental systems. The growth of systems of block signaling has been enormous within the last few yearsboth in the amount of it and in the development of greater perfection of detail. The development has been along two general lines: (a) the manual, in which every change of signal is the result of some definite action on the part of some signalman, but in which every action is so controlled or limited or subject to the inspection of others that a mistake is nearly, if not quite, impossible; (b) the automatic, in which the signals are operated by mechanism, which cannot set a wrong signal as long as the mechanism is maintained in proper order. The fundamental principles of the two systems will be briefly outlined, after which the chief details of the most common systems will be pointed out.
302. Manual systems. Any railroad which has a telegraph line and an operator at all regular stations may (and generally does) operate its trains according to the fundamental principles of the manual block system even though it makes no claim to a block-signal system. The basic idea of such a system is that after a train has passed a given telegraph- or signal-station, no other train will be permitted to follow it into that "block" until word is telegraphed from the next station ahead that the first train has passed out of that block. With a double-track road the operation is very simple; trains may be run at short intervals with long blocks; with an average speed of 30 miles per hour and blocks 5 miles long, trains could be run on a ten minute interval (nearly). A road with any such traffic would, of course, have much shorter blocks, and, practically, they would need to be considerably shorter.

With a single-track road the operation is much more complex, since the operator must keep himself informed of the move-
ments of the trains in both directions. The ratio of length of block to train interval would be only one half (and practically much less than half) what it could be with a double-track road When such a system is adhered to rigidly, it is called an absolute block system. But when operating on this system, a delay of one train will necessarily delay every other train that follows closely after. A portion, if not all, of the delay to subsequent trains may be avoided, although at some loss of safety, by a system of permissive blocking. By this system an operator may give to a succeeding train a "clearance card" which permits it to pass into the next block, but at a reduced speed and with the train under such control that it may be stopped on very short notice, especially near curves. One element of the danger of this system is the discretionary power with which it invests the signalmen, a discretion which may be wrongfully exercised. A modification (which is a fruitful source of collisions on single-track roads) is to order two trains to enter a block approaching each other, and with instructions to pass each other at a passing siding at which there is no telegraphstation. When the instructions, are properly made out and literally obeyed, there is no trouble, but every thousandth or ten thousandth time there is a mistake in the orders, or a misunderstanding or disobedience, and a collision is the result. The telegraph line, a code of rules, a corps of operators, and signals under the immediate control of the operators, are all that is absolutely needed for the simple manual system.
303. Development of the manual system. One great difficulty with the simple system just described is that each operator is practically independent of others except as he may receive general or specific orders from a train-dispatcher at the division headquarters. Such difficulties are somewhat overcome by a very rigid system of rules requiring the signalmen at each station to keep the adjacent signalmen or the train-dispatcher informed of the movements of all trains past their own stations. When these rules (which are too extensive for quotation here) are strictly observed, there is but little danger of accident, and a neglect by any one to observe any rule will generally be apparent to at least one other man. Nevertheless the safety of trains depends on each signalman doing his duty, and a little carelessness or forgetfulness on the part of any one man may cause an accident. The signaling between stations may be done by
ordinary telegraphic messages or by telephone, but is frequently done by electric bells, according to a code of signals, since these may be readily learned by men who would have more difficulty in learning the Morse code.

In order to have the signalmen mutually control each other, the "controlled manual" system has been devised. The first successful system of this kind which was brought into extensive use is the "Sykes" system, of which a brief description is as follows: Each signal is worked by a lever; the lever is locked by a latch, operated by an electro-magnet, which, with other necessary apparatus, is inclosed in a box. When a signal is set at danger, the latch falls and locks the lever, which cannot be again set free until the electro-magnet raises the latch. The magnet is energized only by a current, the circuit of which is closed by a "plunger" at the next station ahead; just above the plunger is an "indicator," also operated by the current, which displays the words clear or blocked. (There are variations on this detail.) When a train arrives at a block station (A), the signalman should have previously signaled to the station ahead (B) for permission to free the signal. The man ahead (B) pushes in the "plunger" on his instrument (assuming that the previous train has already passed him), which electrically opens the lock on the lever at the previous station (A). The signal at A can then be set at "safety." As soon as the train has passed A the signal at A must be set at "danger." A further development is a device by which the mere passage of the train over the track for a few feet beyond the signal will automatically throw the signal to "danger." After the signal once goes to danger, it is automatically locked and cannot be released except by the man in advance (B), who will not do so until the train has passed him. The "indicator" on B 's instrument shows "blocked" when A 's signal goes to danger after the train has passed A, and B 's plunger is then locked, so that he cannot release A 's signal while a train is in the block. As soon as the train has passed A, B should prepare to get his signals ready by signaling ahead to C, so that if the block between B and C is not obstructed, B may have his signals at "safety" so that the train may pass B without pausing. The student should note the great advance in safety made by the Sykes system; a signal cannot be set free except by the combined action of two men, one the man who actually operates the signal and
the other the man at the station ahead, who frees the signal electrically and who by his action certifies that the block immediately ahead of the train is clear.

A still further development makes the system still more "automatic" (as described later), and causes the signal to fall to danger or to be kept locked at danger, if even a single pair of wheels comes on the rails of a block, or if a switch leading from a main track is opened.
304. Permissive blocking. "Absolute" blocking renders accidents due to collisions almost impossible unless an engineer runs by an adverse signal. The signal mechanism is usually so designed that, if it gets out of order, it will inevitably fall to "danger," i.e., as described later, the signal-board is counterbalanced by a weight which is much heavier. If the wire breaks, the counterweight will fall and the board will assume the horizontal position, which always indicates "danger." But it sometimes happens that when a train arrives at a signal-station, the signalman is unable to set the signal at safety. This may be because the previous train has broken down somewhere in the next block, or because a switch has been left open, or a rail has become broken, or there is a defect of some kind in the electrical connections. In such.cases, in order to avoid an indefinite blocking of the whole traffic of the road, the signalman may give the engineer a "caution-card" or a "clearance card," which authorizes him to proceed slowly and with his train under complete control into the block and through it if possible. If he arrives at the next station without meeting any obstruction it merely indicates a defective condition of the mechanism, which will, of course, be promptly remedied. Usually the next section will be found clear, and the train may proceed as usual. On roads where the "controlled manual" system has received its highest development, the rules for permissive blocking are so rigid that there is but little danger in the practice, unless there is an absolute disobedience of orders.
305. Automatic systems. By the very nature of the case, such systems can only be used to indicate to the engineers of trains something with reference to the passage of previous trains. The complicated shifting of switches and signals which is required in the operation of yards and terminals can only be accomplished by "manual" methods, and the only automatic features of these methods consist in the mechanical checks
(electric and otherwise), which will prevent wrong combinations of signals. But for long stretches of the road, where it is only required to separate trains by at least one block length, an automatic system is generally considered to be more reliable. As expressed forcibly by a railroad manager, "an automatic system does not go to sleep, get drunk, become insane, or tell lies when there is any trouble." The same cannot always be said of the employés of the manual system.

The basic idea of all such systems is that when a train pes a signal-station (A), the signal automatically assumes the " r, Bi ger" position. This may be accomplished electrically, pirtm matically, or even by a direct mechanism. When the t. n reaches the end of the block at B and passes into the next $u ; F$. the signal at B will be set at danger and the signal at A wil f set at safety. The lengths of the blocks are usually so gios that the only practicable method of controlling from I_{10} mechanism at A is by electricity, although the actual mol iif power at A may be pneumatic or mechanical. At one tivi the current from A to B was carried on ordinary wires. T isa method has the very positive advantage of reliability, defir os resistance to the current, and small probability of short-circt ind ing or other derangement. But now all such systems use 10 : rails for a track circuit and this makes it possible to detect t id presence of a single pair of wheels on the track anywhere in $t \mathrm{~g}$ block, or an open switch, or a broken rail. Any such circus ", stances, as well as a defect in the mechanism, will break short-circuit the current and will cause the signal to be set in danger. To prevent an indefinite blocking of traffic owing a signal persistently indicating danger, most roads employii ${ }_{7}$ such a system have a rule substantially as follows: When a trai finds a signal at danger, after waiting one minute (or mor depending on the rules), it may proceed slowly, expecting t find an obstruction of some sort; if it reaches the next bloc without finding any obstruction and finds the next signal clear, it may proceed as usual, but must promptly report the case to the superintendent. Further details regarding these methods will be given later. See $\S 310$.
306. "Distant" signals. The close running of trains that is required on heavy-traffic roads, especially where several branches combine to enter a common terminal, necessitates the use of very short blocks. A heavy train running at high speed
mn hardly make a "service" stop in less than 2000 feet, while he curves of a road (or other obstructions) frequently make difficult to locate a signal so that it can be seen more than a ew hundred feet away. It would therefore be impracticable o maintain the speed now used with heavy trains if the engineer had no foreknowledge of the condition in which he will find a signal until he arrives within a short distance of it. To jvercome this difficulty the "distant" signal was devised. This ceed about 1800 or 2000 feet from the "home" signal, and Werloeked with it so that it, gives the same signal. The dis${ }_{\mathrm{d}}$ signal is frequently placed on the same pole as the home ${ }^{1}$ l of the previous block. When the engineer finds the ${ }_{\mathrm{C}}$ nt signal "clear," it indicates that the succeeding home pl is also clear, and that he may proceed at full speed and expect to be stopped at the next signal; for the distant cal cannot be cleared until the succeeding home signal is red, which cannot be done until the block succeeding that ear. A clear distant signal therefore indicates a clear track two succeeding blocks. When the engineer finds the distant al blocked, he need not stop (providing the home signal is ${ }_{r} r$). It simply indicates that he must be prepared to stop she next home signal and must reduce speed if necessary. nay happen that by the time he reaches the succeeding home fal it has already been cleared, and he may proceed without nping. This device facilitates the rapid running of trains, (h no loss of safety, and yet with but a moderate addition to signaling plant.
fo7. "Advance" signals. It sometimes becomes necessary locate a signal a few hundred feet short of a regular passen--station. A train might be halted at such a signal because , was not cleared from the signal-station ahead-perhaps a le or two ahead. For convenience, an "advance" signal ay be erected immediately beyond the passenger-staticn. i ne train will then be permitted to enter the block as far as the advance signal and may deliver its passengers at the station. The adrance signal is interlocked with the home signal back of it, and cannot be cleared until the home signal is cleared and the entire block ahead is clear. In one sense it adds another block, but the signal is entirely controlled from the signal station back of it.

MECHANICAL DETAILS.

308. Signals. The primitive signal is a mere cloth flag. A better signal is obtained when the flag is suspended in a suitable place from a fixed horizontal support, the flag weighted at the bottom, and so arranged that it may be drawn up and out of sight by a cord which is run back to the operator's office. The next step is the substitution of painted wood or sheet metal for the cloth flag, and from this it is but a step to the standard semaphore on a pole, as is illustrated in Fig. 168. The simple flag, operated for convenience with a cord, is the signal employed on thousands of miles of road, where they perhaps make no claim to a block-signal system, and yet where the trains are run according to the fundamental rules of the simple manual block method.

Semaphore boards. These are about 5 feet long, 8 inches wide at one end, and tapered to about 6 inches wide at the hinge end. The boards are fastened to a casting which has a ring to hold a red glass which may be swung over the face of a lantern, so as to indicate a red signal. "Distant" signal-boards usually have their ends notched or pointed; the "home" signal-boards are square ended. The boards are always to the right of the hinge when a train is approaching them. The "home" signipls are generally painted red and the "distant" signals green, although these colors are not invariable. The backs of the boards are painted white. Therefore any signal-board whi 1 appears on the left side of its hinge will also appear white, and is a signal for traffic in the opposite direction, and is therefore of no concern to an engineman.

Poles and bridges. When the signals are set on poles, they are generally placed on the right-hand side of the track. When there are several tracks, four or more, a bridge is frequently built and then each signal is over its own track. When switches run off from a main track, there may be several signal-boards over one track. The upper one is the signal for the main track and the lower ones for the several switches. In Fig. 169 is shown a "bridge" with its various signal-boards controlling the several tracks and the switches running off from them.
"Banjo" signals. This name is given to a form of signal, illustrated in Fig. 170, in which the indication is taken from the
(To face page 330.)

Fig. 168.—Semaphores.

(To face page 330.)

Fig. 170.-"Banjo " Signals.
color of a round disk inclosed with glass. This is the distinctive signal of the Hall Signal Company, and is also used by the Union Switch and Signal Company. The great argument in their favor is that they may be worked by an electric current of low voltage, which is therefore easily controlled; that the mechanism is entirely inside of a case, is therefore very light, and is not exposed to the weather. The argument urged against them is that it is a signal of color rather than form or position, and that in foggy weather the signal cannot be seen so easily; also that unsuspected color-blindness on the part of the engineman may lead to an accident. Notwithstanding these objections, this form of signal is used on thousands of miles of line in this country.
309. Wires and pipes. Signals are usually operated by levers in a signal-cabin, the levers being very similar to the reversinglever of a locomotive. The distance from the levers to the signals is, of course, very variable, but it is sometimes 2000 feet. The connecting-link for the most distant signals is usually No. 9 wire; for nearer signals and for all switches operated from the cabin it may be 1 -inch pipe. When not too long, one pipe will serve for both motions, forward and back. When wires are used, it is sometimes so designed (in the cheaper systems) that one wire serves for one motion, gravity being depended on for the other, but now all good systems require two wires for each signal.

Compensators. Variations of temperature of a material with as high a coefficient as iron will cause very appreciable difference of length in a distance of several hundred feet, and a dangerous lack of adjustment is the result. To illustrate: A fall of $60^{\circ} \mathrm{F}$. will change the length of 1000 feet of wire by

$$
1000 \times 60 \times .0000065=0.39 \text { foot }=4.68 \text { inches } .
$$

A much less change than this will necessitate a readjustment of length, unless automatic compensators are used. A compensator for pipes is very readily made on the principle illustrated in Fig. 171. The problem is to preserve the distance between a and d constant regardless of the temperature. Place the compensator half-way between a and d, or so that $a b=c d$. A fall of temperature contracts $a b$ to $a b^{\prime}$. Moving b to b^{\prime} will cause c to move to c^{\prime}, in which $b b^{\prime}=c c^{\prime}$. But $c d$ has also shortened to $c^{\prime} d$; therefore d remains fixed in position. To ayoid
too great angular motion, one such compensator should be used for each 500 feet. If a line 1000 feet long is to be provided for, two compensators would be used, 250 feet from each end. Note that in operating through a compensator the direction of motion changes; i.e., if a moves to the right, d moves to the left, or if there is compression in $a b$ there is tension in $c d$, and

Fig. 171.-Standard Pipe Compensator.
vice versa. Therefore this form of compensator can only be used with pipes which will withstand compression. It has seemed impracticable to design an equally satisfactory compensator for wires, although there are several designs on the market.

Guides around curves and angles. When wires are required to pass around curves of large angle, pulleys are used, and a length of chain is substituted for the wire. For pipes, when the curve is easy the pipes are slightly bent, and are guided through pulleys. When the angle is sharper, "angles" are used. The operation of these details is self-evident from an inspection of Fig. 172.
310. Track circuit for automatic signaling. The several systems of automatic signaling differ in the minor details, but
nearly all of them agree in the following particulars. Λ cur:ent of low potential is run from a battery at one end of a section through one line of rails to the other end of the section, then through a relay, and then back to the battery through the other

Fig. 172.-Deflecting-rods.
line of rails. To avoid the excessive resistance which would occur at rail joints which may become badly rusted, a wire suitably attached to the rails is run around each joint. In order to insulate the rails of one section from the rails at either end and yet maintain the rails structurally continuous, the ends of the rails at these dividing points are separated by an insulator and the joint pieces are either made of wood or have some insulating material placed between the rails and the ordinary metal joint. The bolts must also be insulated. When the relay is energized by a current, it closes a local circuit at the signal-station, which will set the signal there at "safety." The resistance of the relay is such that it requires nearly the whole current to work it and to keep the local circuit closed. Therefore, when there is any considerable loss of current from one rail to the other, the relay will not be sufficiently energized, the local circuit will be broken, and the signal will automatically fall to danger. This diversion of current from one rail to the other before the current reaches the relay may be caused in several ways: the presence of a pair of wheels on the rails anywhere in the section will do it; also the breakage of a rail; also the opening of a switch anywhere in the section; also the presence of a pair of wheels on a siding between the "fouling point" and the switch. (The "fouling point" of a siding is that point where the rails first commence to approach the main track.) In Fig. 173 is shown all of the above details, as well as some others. It A, R, and the "fouling point" are shown the in-
sulated joints. The batteries and signals are arranged for

Fịg. 173. train motion to the right. When a train has passed the points near A, where the wires leave the rails for the relay, the current from the "track battery" at B will pass through the wheels and axles, and although no electrical connection is broken, so much current will be shunted through the wheels and axles that the weak current still passing through the relay is not strong enough to energize it against its spring and the "signalmagnet" circuit is broken, and the signal A goes to "danger." At the turnout the rails between the fouling point and the switch are so connected (and insulated) that a pair of wheels on these rails will produce the same effect as a pair on the main track. This is to guard against the effect of a car standing too near the switch, even though it is not on the main track. When the train passes B, if there is no other interruption of the current, the track battery at B again lenergizes the relay at A, the signal-magnet circuit at A is closed, and the signal is drawn to "safety."
(The present edition has omitted several subdivisions of this general subject, notably the "staff system," used chiefly in England, and all discussions of "interlocking" which is an essential feature of the operation of large terminal yards. A future edition may supply these deficiencies, although an exhaustive treatment of the subject of Signaling would require a separate volume.)

CHAPTER XV.

ROLLING-STOCK.

(It is perhaps needless to say that the following chapter is in no sense a course in the design of locomotives and cars. Its chief idea is to give the student the elements of the construction of those vehicles which are to use the track which he may design-to point out the mutual actions and reactions of vehicle against track and to show the effect on track wear of variations in the design of rolling-stock. The most of the matter given has a direct practical bearing on track-work, and it is considered that all of it is so closely related to his work that the civil engineer may study it with profit.)

WHEELS AND RAILS.

311. Effect of rigidly attaching wheels to their axles. The wheels of railroad rolling-stock are invariably secured rigidly to the axles, which therefore revolve with the wheels. The chief reason for this is to avoid excessive wear between the axles and the wheels.

Any axle must always be somewhat loose in its journals. A sidewise force P (see Fig. 174) acting against the circumference of the wheel will produce a much greater pressure on the axle at S and S^{\prime}, and if the wheel moves on the axle, the wear at S and S^{\prime} will be excessive. But when the axle is fitted to the wheel with a "forced fit" and does not revolve, the mere pressure produced at S is harmless. When two wheels are fitted tight to an axle, as in Fig. 175, and the axle revolves in the jour-

Fig. 174. nals $a a$, a sidewise pressure of the rail against the wheel flange will only produce a slight and harmless increase of the journal pressure Q, although at Q there is sliding contact. Twist-
ing action in the journals is thus practically avoided, since a small pressure at the journal-boxes at each end of the axle suffices to keep the axle truly in line.

Fig. 175.

Fig. 176.

On the other hand, when the wheels are rigidly attached to their axles, both wheels must turn together, and when rounding curves, the inner rail being shorter than the outer rail, one wheel must slip by an amount equal to that difference of length. The amount of this slip is readily computable:

$$
\begin{equation*}
\text { Longitudinal slip }=\frac{2 \pi a^{\circ}}{360^{\circ}}\left(r_{2}-r_{1}\right)=\frac{2 \pi g}{360^{\circ}} a^{\circ}=C a^{\circ}, \tag{136}
\end{equation*}
$$

in which C is a constant for any one gauge, and $g=$ the track gauge $=\left(r_{2}-r_{1}\right) . \quad$ For standard gauge (4.708) the slip is .08218 foot per degree of central angle. This shows that the longitudinal slipping around any curve of any given central angle will be independent of the degree of the curve. The constant (.08218) here given is really somewhat too small, since the true gauge that should be considered is the distance between the lines of tread on the rails. This distance is a somewhat indeterminate and variable quantity, and probably averages 4.90 feet, which would increase the constant to .086 . The slipping may occur by the inner wheel slipping ahead or the outer wheel slipping back, or by both wheels slipping. The total slipping will be constant in any case. The slipping not only consumes power, but wears both the wheels and the rail. But even these disadvantages are not sufficient to offset the advantages resulting from rigid wheels and axles.
312. Effect of parallel axles. Trucks are made with two or three parallel axles (except as noted later), in order that the axles shall mutually guide each other and be kept approximately
perpendicular to the rails. If the curvature is very sharp and the wheel-base comparatively long (as is notably the case on street railways at street corners), the front and rear wheels

Fig. 177.

Fig. 178.
will stand at the same angle (a) with the track, as shown in Fig. 177. But it has been noticed that for ordinary degrees of curvature, the rear wheels stand radial to the curve (see Fig. 178), and for steam railroad work this is the normal case. When the two parallel axles are on a curve (as shown), the wheels tend to run in a straight line. In order that they shall run on a curve they must slip laterally. The principle is illustrated in an exaggerated form in Fig. 179. The wheel tends to roll from a toward b. Therefore in passing along the track from a to c it must actually slip laterally an amount $b c$ which equals $a c \sin a$.

Fig. 179.

Let $t=$ length of the wheel-base (Figs. 177 and 178); $r=$ radius of curve; then for the first case (Fig. 177), $\sin a=t \div 2 r$; for the second and usual case (Fig. 178), $\sin \alpha=t \div r$; for $t=5$ feet and $r=$ radius of a 1° curve, $a=0^{\circ} 03^{\prime}$ for the second case. a varies (practically) as the degree of curve. The lateral slipping per unit of distance traveled therefore equals $\sin \alpha$. As an illustration, given a 5 -foot wheel-base on a 5° curve, $a=0^{\circ} 15^{\prime}$, $\sin \alpha=.00436$, and for each 100 feet traveled along the curve the lateral slip of the front wheels would be 0.436 foot. There would be no lateral slipping of the rear wheels, assuming that the rear axle maintained itself radial.

From the above it might be inferred that the flanges of the forward wheels will have much greater wear than those of the rear wheels. Since cars are drawn in both directions about equally, no difference in flange wear due to this cause will occur, but locomotives (except switching-engines) run forward almost
exclusively, and the excess wear of the front wheels of the pilotand tender-trucks is plainly observable.

For a given curve the angle a (and the accompanying resistance) is evidently greater the greater the distance between the axles. On the other hand, if the two axles are very close together, there will be a tendency for the truck to twist and the wheels to become jammed, especially if there is considerable play in the gauge. The flange friction would be greater and would perhaps exceed the saving in lateral slipping. A general rule is that the axles should never be closer together than the gauge.

Although the slipping per unit of length along the curve varies directly as the degree of curvature, the length of curve necessary to pass between two tangents is inversely as the degree of curve, and the total slipping between the two tangents is independent of the degree of curve. Therefore when a train passes between two tangents, the total slipping

Fig. 180. of the wheels on the rails, longitudinal and lateral, is a quantity which depends only on the central angle and is independent of the radius or degree of curve.
313. Effect of coning wheels. The wheels are always set on the axle so that there is some "play" or chance for lateral motion between the wheel-flanges and the rail. The treads of the wheel are also " coned." This coning and play of gauge are shown in an exaggerated form in Fig. 180. When the wheels are on a tangent, although there will be occasional oscillations from side to side, the normal position will be the symmetrical position in which the circles of tread $b b$ are equal. When centrifugal force throws the wheel-flange against the rail, the circle of tread a is larger than b, and much larger than c; therefore the wheels will tend to roll in a circle whose radius equals the slant height of a cone whose elements would pass through the unequal circles a and c. If this radius equaled the radius of the track, and if the axle were free to assume a radial position, the wheels would roll freely on the rails without any
slipping or flange pressure. Under such ideal conditions, coning would be a valuable device, but it is impracticable to have all axles radial, and the radius of curvature of the track is an extremely variable quantity. It has been demonstrated that with parallel axles the influence of coning diminishes as the distance between the axle increases, and that the effect is practically inappreciable when the axles are spaced as they are on locomotives and car-trucks. The coning actually used is very slight (see Chapter XV, § 332) and has a different object. It is so slight that even if the axles were radial it would only prevent the slipping on a very light curve-say $\mathrm{a}^{\prime} 1^{\circ}$ curve.
314. Effect of flanging locomotive driving-wheels. If all the wheels of all locomotives were flanged it would be practically impossible to run some of the longer types around sharp curves. The track-gauge is always widened on curves, and especially on sharp curves, but the widening would need to be excessive to permit a consolidation locomotive to pass around an 8° or 10° curve if all the drivers were flanged. The action of the wheels on a curve is illustrated in Figs. 181, 182, and 184. All small truck-wheels are flanged. The rear drivers are always flanged and four-driver engines usually have all the drivers flanged. Consolidation engines have only the front and rear drivers flanged. Mogul and ten-wheel engines have one pair of drivers blank. On Mogul engines it is always the middle pair. On ten-wheel engines, when used on a road having sharp curves, it is preferable to flange the front and rear drivingwheels and use a "swing bolster" (see §315) ; when the curvature is easy, the middle and rear drivers may be flanged and the truck made with a rigid center. The blank drivers have the same total width as the other drivers and of course a much wider tread, which enables these drivers to remain on the rail, even though the curvature is so sharp that the tread overhangs the rail considerably.
315. Action of a locomotive pilot-truck. The purpose of the pilot-truck is to guide the front end of a locomotive around a curve and to relieve the otherwise excessive flange pressure that would be exerted against the driver-flanges. There are two classes of pilot-trucks--(a) those having fixed centers and (b) those having shifting centers. This second class is again subdivided into two classes, which are radically different in their action- $\left(b_{1}\right)$ four-wheeled trucks having two parallel axles
and $\left(b_{2}\right)$ two-wheeled trucks which are guided by a "radiusbar." The action of the four-wheeled fixed-centered truck (a) is shown in Fig. 181. Since the center of the truck is forced

Fig. 181.-Fixed Center Pilot-truck.
to be in the center of the track, the front drivers are drawn away from the outer rail. The rear outer driver tends to roll away from the outer rail rather than toward it, and so the effect

of the truck is to relieve the driver-flanges of any excessive pressure due to curvature. The only exception to this is the case where the curvature is sharp. Then the front inner driver may be pressed against the inner rail, as indicated in Fig. 181. This limits the use of this type of

Fig. 183.-Action of Shifting Center. wheel-base on the sharper curves. The next type- $\left(b_{1}\right)$ four-wheeled trucks with shifting centers-is much more flexible on sharp curvature; it likewise draws the front drivers away from the outer rail. The relative position of the wheels is shown in Fig. 182, in which c^{\prime} represents the position of center-pin and c the displaced truck center. The structure and action of the truck is shown in Fig. 183. The "center-pin" (1) is supported on the "truck-bolster" (2), which is hung by the "links" (4) from the "cross-ties" (3). The links are therefore
in tension and when the wheels are forced to one side by the rails the links are inclined and the front of the engine is drawn inward by a force equal to the weight on the bolster times the tangent of the angle of inclination of the links. This assumes that all links are vertical when the truck is in the center. Frequently the opposite links are normally inclined to each other, which somewhat complicates the above simple relation of the forces, although the general principle remains identical.

The two-wheeled pilot-truck with shifting center is illustrated in Fig. 184. The figure shows the facility with which

Fig. 184.-Two-wheeled Truck-Shifting Center.
an engine with long wheel-base may be made to pass around a comparatively sharp curve by omitting the flanges from the middle drivers and using this form of pilot-truck. As in the previous case, the eccentricity of the center of the truck relative to the center-pin induces a centripetal force which draws the front of the engine inward. But the swing-truck is not the only source of such a force. If the

Fig. 185.-Action of Twowheeled Truck. "radius-bar pin" were placed at O^{\prime} (see Fig. 185), the truckaxle would be radial. But the radius-bar is always made somewhat shorter than this, and the pin is placed at O, a considerable distance ahead of O^{\prime}, thus creating a tendency for the truck to run toward the inner rail and draw the front of the locomotive in that direction. This tendency will be objectionably great if the radius-bar is made too short, as has been practically demonstrated in cases when the radius-bar has been subsequently lengthened with a resulting improvement in the running of the engine.

LOCOMOTIVES.

GENERAL STRUCTURE.
316. Frame. The frame or skeleton of a locomotive consists chiefly of a collection of forged wrought-iron bars, as shown in Figs. 186 and 187. These bars are connected at the

Fig. 186.-Engine-frame.
front end by the "bumper" (c), which is usually made of wood. A little further back they are rigidly connected at $b b$ by the cylinders and boiler-saddle. The boilers rest on the frames at aaaa by means of "pads," which are bolted to the fire-box, but which permit a free expansion of the boiler along the frame. This expansion is sometimes as much as $\frac{5}{16}$ ". On a "consolidation" engine (frame shown in Fig. 187) it is frequently

Fig. 187.-Engine-Frame-Consolidation Type.
necessary to use vertical swing-levers about $12^{\prime \prime}$ long instead of "pads." The swinging of the levers permit all necessary expansion. At the back the frames are rigidly connected by the iron "foot-plate." The driving-axles pass through the "jaws" $d d d d$, which hold the axle-boxes. The frame-bars have a width (in plan) of $3^{\prime \prime}$ to $4^{\prime \prime}$. The depth (at a) is about the same. Fig. 186 shows a frame for an "American" type of locomotive; Fig. 187 shows a frame for a "Consolidation" type (see § 323).
317. Boiler. A boiler is a mechanism for transferring the latent heat of fuel to water, so that the water is transformed from cold water into high-pressure steam, which by its expansion will perform work. The efficiency of the boiler depends largely on its ability to do its work rapidly and to reduce to a minimum the waste of heat through radiation. The boiler contains a fire-box (see Fig. 188), in which the fuel is burned. The gases of consumption pass from the fire-box through the numerous boiler-tubes into the "smoke-box" S and out through the smoke-stack. The fire-box consists of an inner and outer
shell separated by a layer of water about $3^{\prime \prime}$ thick. The exposure of water-surface to the influence of the fire is thus very complete. The efficiency of this transferal of heat is somewhat indicated by the fact that, although the temperature of the gases in the fire-box is probably from 3000° to $4000^{\circ} \mathrm{F}$., the temperature in the smoke-box is generally reduced to 500° to

Fig. 188.-Locomotive-boiler.
$600^{\circ} \mathrm{F}$. If the steam pressure is 180 lbs ., the temperature of the water is about $380^{\circ} \mathrm{F}$., and, considering that heat will not pass from the gas to the water unless the gas is hotter than the water, the water evidently absorbs a large part of the theoretical maximum. Nevertheless gases at a temperature of $600^{\circ} \mathrm{F}$. pass out of the smoke-stack and such heat is utterly wasted.

The tubes vary from $1_{4}^{3 \prime \prime}$ to $2^{\prime \prime}$, inside diameter, with a thickness of about $0^{\prime \prime} .10$ to $0^{\prime \prime} .12$. The aggregate cross-sectional area of the tubes should be about one eighth of the grate area. The number will vary from 140 to 250 . They are made as long as possible, but the length is virtually determined by the type and length of engine.
318. Fire-box. The fire-box is surrounded by water on the four sides and the top, but since the water is subjected to the boiler pressure, the plates, which are about $\frac{-5}{16}{ }^{\prime \prime}$ thick, must be stayed to prevent the fire-box from collapsing. This is easily accomplished over the larger part of the fire-box surface by having the outside boiler-plates parallel to the fire-box plates and separated from them by a space of about $3^{\prime \prime}$. The plates are then mutually reld by "stay-bolts." See Fig. 189. These $^{\text {el }}$ are about $\frac{7}{8}{ }^{\prime \prime}$ in diameter and spaced $4^{\prime \prime}$ to $4 \frac{1}{2}{ }^{\prime \prime}$. The $\frac{3}{16}{ }^{\prime \prime}$ hole,
drilled $1_{1}^{1 \prime \prime}$ deep, indicated in the figure, will allow the escape of steam if the bolt breaks just behind the plate, and thus calls attention to the break. The stay-bolts are turned down to a diameter equal to that at the root of the screw-threads. This method of supporting the fire-box sheets is used for the two sides, the entire rear, and for the front of the fire-box up to the boiler-barrel. The "furnace tube-sheet"-the upper part of the front of the fire-box-is stayed by the tubes. But the top of the fire-box is troublesome. It must always be covered with water so that it will not be "burned" by the intense heat. It must therefore be nearly, if not quite, flat. There are three general methods of accomplishing this.

Fig. 189.
Fig. 190.
(a) Radial stays. This construction is indicated in Fig. 190. Incidentally there is also shown the diagonal braces for resisting the pressure on the back end of the boiler above the firebox. It may be seen that the stays are not perpendicular to either the crown-sheet or the boiler-plate. This is objectionable and is obviated by the other methods.
(b) Crown-bars. These bars are in pairs, rest on the side furnace-plates, and are further supported by stays. See Fig. 191.
(c) Belpaire fire-box. The hoiler above the fire-box is rectangular, with rounded corners. The stays therefore are perpendicular to the plates. See Fig. 192.

Fire-brick arches. These are used, as shown in Fig. 193, to force all the gases to circulate through the upper part of the fire-
box. Perfect combustion requires that all the carbon shall be turned into carbon dioxide, and this is facilitated by the forced circulation.

Water-tables. The same object is attained by using a watertable instead of a brick arch-as shown in Fig. 191. But it has
the further advantages of giving additional heating-surface and avoiding the continual expense of maintaining the bricks. One

Fig. 192.-"Belpaire" Fire-box. Half-section through $A B$.

Half-section through $C D$.
feature of the design is the use of a number of steam-jets which force air into the fire-box and assist the combustion.

Fig. 193.-Fire-brick Arch.

Fig. 194.-Wootten Fire-box.

Area. Fire-boxes are usually limited in width to the practicable width between the wheels-thus giving a net inside width of about 3 feet and a maximum length of 10 to 11 feetthis being about the maximum distance over which the firemen can properly control the fire. About 37 square feet is the maximum area obtainable except when the "Wootten" firebox is used-illustrated in Fig. 194. Here the grate is raised above the driving-wheels and has (in the case shown) a width of $8^{\prime} 0 \frac{1}{3}{ }^{\prime \prime}$. The fire-box area is over 76 square feet. Note that two furnace-doors are used.
9. Coal consumption. No form of steam-boiler (except a boiler for a steam fire-engine) requires as rapid production of steam, considering the size of the boiler and fire-box, as a
locomotive. The combustion of coal per square foot of grate per hour for stationary boilers averages about 15 to 25 lbs . and seldom exceeds that amount. An ordinary maximum for a locomotive is 125 lbs . of coal per square foot of grate-area per hour, and in some recent practice 220 lbs , have been used. Of course such excessive amounts are wasteful of coal, because a considerable percentage of the coal will be blown out of the smoke-stack unconsumed, the draft necessary for such rapid consumption being very great. The only justification of such rapid and wasteful coal consumption is the necessity for rapid production of steam. The best quality of coal is capable of evaporating about 14 lbs . of water per pound of coal, i.e., change it from water at 212° to steam at 212°; the heat required to change water at ordinary temperatures to steam at ordinary working pressure is (roughly) about 20% more. From 6 to 9 lbs. of water per pound of coal is the average performance of ordinary locomotives, the efficiency being less with the higher rates of combustion. Some careful tests of locomotive coal consumption gave the following figures: when the consumption of coal was 50 lbs . per square foot of grate-area per hour, the rate of evaporation was 8 lbs . of water per pound of coal. When the rate of coal consumption was raised to 180, the evaporation dropped to 5 lbs . of water per pound of coal. It has been demonstrated that the efficiency of the boiler is largely increased by an increased length of boiler-tubes. The actual consumption of coal per mile is of course an exceedingly variable quantity, depending on the size and type of the engine and also on the work it is doing-whether climbing a heary grade with its maximum train-load or running easily over a level or down grade. A test of a 50 -ton engine, running without any train at about 20 to 25 miles per hour, showed an average consumption of 21 lbs . of coal per mile. Statistics of the Pennsylvania Rail road show a large increase (as might be expected, considering the growth in size of engines and weight of trains) in the average number of pounds of coal burned per train-mile-some of the figures being 55 lbs . in 1863, 72 lbs . in 1872, and nearly 84 lbs. in 1883. Figures are published showing an average consumption of about 10 lbs . of coal per passenger-car mile, and 4 to 5 lbs. per freight-car mile. But these figures are always obtained by dividing the total consumption per train-mile by the number of cars, the coal due to the weight of the engine
being thrown in Wellington developed a rule, based on the actual performance of a very large number of passenger-trains, that the number of pounds of coal per mile $=21.1+674$ times the number of passenger-cars. The amount of coal assigned to the engine agrees remarkably with the test noted above For freight-trains the amount assigned to the engine should be much greater (since the engine is much heavier), and that assigned to the individual cars much less, although the great increase in freight-car weights in recent years has caused an increase in the coal required per car.
320. Heating-surface. The rapid production of steam requires that the hot gases shall have a large heating-surface to which they can impart their heat. From 50 to 75 square feet of heating-surface is usually designed for each square foot of grate-area. A more recently used rule is that there should be from 60 to 70 square feet of tube heating-surface per square foot of grate-area for bituminous coal. 40 or 50 to 1 is more desirable for anthracite coal Almost the whole surface of the fire-box has water behind it, and hence constitutes heatingsurface. Although this surface forms but a small part of the total (nominally), it is really the most effective portion, since the difference of temperature of the gases of combustion and the water is here a maximum, and the flow of heat is therefore the most rapid. The heating-surface of the tubes varies from 85 to 93% of the total, or about 7 to 15 times the heating-surface in the fire-box. Sometimes the heating-surface is as much as 2300 square feet, but usually it is less than 2000 , even for engines which must produce steam rapidly.

Some of the most recent locomotives have greatly exceeded these figures. One just constructed for the New York Central and Hudson River Railroad has the following figures heatingsurface, 3500 sq. ft : grate-area, 50 sq ft ; cylinders, $21^{\prime \prime} \times 26^{\prime \prime}$; total weight, 176000 lbs ; weight on drivers, 95000 lbs. ; drivers, $79^{\prime \prime}$ diameter; with 85% of the boiler pressure, it developed an adhesion of 24700 lbs ., which represented a factor of adhesion of $\frac{1}{3.85}$

Another rule used by designers is that the engine should have 1 sq ft of heating-surface for each 50 of 60 lbs of weight, efficiency being indicated by a low weight. For the above engine the ratio is 53
321. Loss of efficiency in steam pressurc. The effective work done by the piston is never equal to the theoretical energy contained in the steam withdrawn from the boiler. This is due chiefly to the following causes:
(a) The steam is "wire-drawn," i.e., the pressure in the cylinder is seldom more than 85 to 90% of the boiler pressure. This is due largely to the fact that the steam-ports are so small that the steam cannot get into the cylinder fast enough to exert its full pressure. It is often purposely wire-drawn by partially closing the throttle, so that the steam may be used less rapidly.
(b) Entrained water. Steam is always drawn from a dome placed over the boiler so that the steam shall be as far above the water-surface as possible, and shall be as dry as possible. In spite of this the steam is not perfectly dry and carries with it water at a temperature of, say, 361°, and pressure of 140 lbs . per square inch. When the pressure falls during the expansion and exhaust, this hot water turns into steam and absorbs the necessary heat from the hot cylinder-walls. This heat is then carried out by the exhaust and wasted.
(c) The back pressure of the exhaust-steam, which depends on the form of the exhaust-passages, etc. This amounts to from 2 to 20% of the power developed.
(d) Clearance-spaces. When cutting off at full stroke this waste is considerable (7 to 9%), but when the steam is used expansively the steam in these clearance-spaces expands and so its power is not wholly lost.
(c) Radiation. In spite of all possible care in jacketing the cylinders, some heat is lost by radiation.
(f) Radiation into the exhaust-steam. This is somewhat analogous to (b). Steam enters the cylinder at a temperature of, say, 361°; the walls of the cylinder are much cooler, say 250°; some heat is used in raising the temperature of the cylinderwalls; some steam is vaporized in so doing; when the exhaust is opened the temperature and pressure fall; the heat temporarily absorbed by the cylinder-walls is reabsorbed by the exhaust-steam, re-evaporating the vapor previously formed, and thus a certain portion of heat-energy goes through the cylinder vithout doing any useful work. With an early cut-off the loss due to this cause is very great.

The sum of all these losses is exceedingly variable. They are usually less at lower speeds. The loss in initial pressure
(the difference between boiler pressure and the cylinder pressure at the beginning of the stroke) is frequently over 20%, but this is not all a net loss With an early cut-off the average cylinder pressure for the whole stroke is but a small part of the boiler pressure, yet the horse-power developed may be as great as, or greater than that developed at a lower speed, later cut-off, and higher average pressure
322. Tractive power The work done by the two cylinders during a complete revolution of the drivers evidently $=$ area of pistons \times average steam pressure \times stroke $\times 2 \times 2$. The resistance overcome evidently $=$ tractive force at circumference of drivers times distance traveled by drivers (which is the circumference of the drivers) Therefore

$$
\text { Tractive force }=\left\{\begin{array}{c}
\text { area pistons } \times \text { average steam pressure } \\
\times \text { stroke } \times 2 \times 2 . \\
\text { circumference of drivers }
\end{array} .\right.
$$

Dividing numerator and denominator by π (3 1415), we have

$$
\text { Tractive force }=\left\{\begin{array}{l}
(\text { diam piston })^{2} \times \text { average steam } \tag{137}\\
\text { pressure } \times \text { stroke }
\end{array},\right.
$$

which is the usual rule Although the rule is generally stated in this form, there are several deductions In the first place the net effective area of the piston is less than the nominal on account of the area of the piston-rod. The ratio of the areas of the piston-rod and piston varies, but the effect of this reduction is usually from 1.3 to 1.7% No allowance has been made for friction-of the piston, piston-rod, cross-head, and the various bearings This would make a still further reduction of several per cent. Nevertheless the above simple rule is used, because, as will be shown, no great accuracy can be utilized.

The tractive force is limited by the adhesion between the drivers and the rails, and this is a function of the weight on the drivers. Under the most farorable conditions this has been tested to amount to one-third the weight on the drivers, but such a ratio cannot be depended on Wellington used the ratio one-fourth The Baldwin Locomotive Works in their "Locomotive Data" give tables and diagrams based on $\frac{1}{4}, \frac{9}{40}$,
and $\frac{1}{5}$ adhesion. As low a value as $\frac{1}{6}$ or even $\frac{1}{7}$ is occasionally used, but such a low rate of adhesion would only be found when the rails were abnormally slippery. In a well-designed locomotive the tractive force, as computed above, and the tractive adhesion should be made about equal. The uncertainty in the coefficient of adhesion shows the futility of any refinement in the computation of the tractive force.

It is only at very slow speeds that an engine can utilize all of its tractive force. When running at a high speed, the utmost horse-power that the engine can develop will only produce a draw-bar pull, which is but a small part of the possible tractive force. Power is the product of force times velocity. If the power is constant and the velocity increases, the force must decrease. This fact is well shown in the figures of some tests of a locomotive. The dimensions were as follows: cylinders, $18^{\prime \prime} \times 24^{\prime \prime}$; drivers, $68^{\prime \prime}$; weight on drivers, 60000 lbs.; heatingsurface, 1458 sq. ft.; grate-area, 17 sq. ft. During one test the average cylinder pressure was 83.3 lbs . (boiler pressure, 145); 14 -inch cut-off and throttle $\frac{3}{4}$ open). By the above formula (137),

$$
\text { Tractive force }=\frac{18^{2} \times S 3.3 \times 24}{68}=9525 \mathrm{lbs} .
$$

At $\frac{1}{4}$ adhesion the tractive force was 15000 lbs ; even at $\frac{1}{3}$ adhesion, it would be 12000 lbs . This shows that at the speed of shis test (26.3 in . per hour) scarcely more than $\frac{2}{3}$ of the tractive power was utilized. A still more marked case, shown by another test with the same engine, taken when the speed was 53.4 miles per hour, indicated an average cylinder pressure of 37.2 lbs., the throttle being $\frac{1}{8}$ open and the valves cutting off at $8^{\prime \prime}$. In this case the tractive power, computed as before, equals 4254 lbs., about $\frac{1}{14}$ of the weight on the drivers and about $\frac{1}{3}$ of the tractive force which is possible at slow speeds. In the first case, the tractive power (9525) times the speed in feet per second (38.57) divided by 550 gives the indicated horsepower, 668. In the second case, although the tractive forces developed was so much less, the speed was much greater and the horse-power was about the same, 606.

The above figures illustrate some of the foregoing statements regarding loss of efficiency. In both cases the steam was wiredrawn. The boiler pressure was $145 \mathrm{lbs} .$, but when the throttle
was only $\frac{3}{1}$ open and the steam was cut-off at $14^{\prime \prime}$ ($24^{\prime \prime}$ stroke) the average steam pressure in the cylinder was reduced to 83.3 lbs . With the throttle but $\frac{1}{3}$ open and the valves cutting off at $8^{\prime \prime}$ ($\frac{1}{3}$ of the stroke), the average pressure was cut down to 37.2 lbs .-about $\frac{1}{4}$ of the boiler pressure. Note that the heat-ing-surface per square foot of grate-area ($1458 \div 17=86$) is very large (see § 320). Note also that the horse-power developed divided by the grate-area (17) gives 39 and 36 H.P. per square foot of grate-area. This is exceptionally large- 25 or 30 being a more common figure.

The maximum tractive power is required when a train is starting, and fortunately it is at low velocities that the maximum tractive force can be developed. The motion of the piston is so slow that there is but little reduction of steam pressure, and the valves are generally placed to cut off at full stroke. For the above engine, with 145 lbs. boiler pressure, the absolute maximum of tractive force is $\frac{18^{2} \times 145 \times 24}{68}=$ 16581 lbs . Of course, this maximum would never be reached unless the boiler pressure were increased. A common rule is to consider that the average effective cylinder pressure for slow speed and full stroke will be 80% of the boiler pressure. This would reduce the tractive force to the (nominal) value of 13265 lbs., and the corresponding cylinder pressure would be 116 lbs . per square inch. With an effective cylinder pressure of about 131 lbs. the tractive power is 15000 lbs ., which is $\frac{1}{4}$ of the total weight on the drivers. This illustrates the general rule, stated above, that the cylinders, drivers, and boiler pressure should be so proportioned that the maximum tractive force should about equal the maximum adhesion which could be obtained.

As another numerical example, the dimensions of a recently constructed heavy consolidation engine are quoted. The cylinders are $24^{\prime \prime} \times 32^{\prime \prime}$; diameter of drivers, $54^{\prime \prime}$; total weight of engine and tender, 391400 lbs .; weight of engine, 250300 lbs ; weight on drivers, 225200 lbs .; capacity of tender, 7500 gallons; the boiler has 406 tubes, $2_{1}^{1 \prime \prime}$ in diameter and 15^{\prime} long; firebox, $132^{\prime \prime} \times 40^{1 \prime 2}$; heating-surface of tubes, 3564 sq. ft.; of fire-lgox, 241 sq. ft.-total, 3805 sq. ft.; boiler pressure, 220 lbs . per square inch. Applying Eq. 132, we may compute 75093 lbs . as the absolute maximum of tractive power. In fact this is an unattainable limit, for reasons before stated. The trac-
tive force is given as 63000 , which corresponds to an effective c!linder pressure of about $185 \mathrm{lbs} .$, about 84% of the boiler pressure. This tractive force is 28% of the weight on the drivers, a tractive ratio of $1: 3.6$.

RUNNING GEAR.

323. Types of running gear. (a) "American." This was
 once the almost universal type for $\bigcirc \quad \square$ both passenger and freight service. It is still very commonly used for passenger service, but it is not the best form for heavy freight work.
(b) "Columbia." Four drivers, one pair of pilot-truck wheels and one pair of trailing wheels behind the drivers. The low trailing
 wheels permit a desirable enlargement of the fire-box. This is a recent type, used exclusively for passenger service.

has four wheels instead of two.
(d) "Mogul." These are used for both passenger and freight service, but are not well adapted for either high speed
 or great tractive power.
(e) "Ten-wheel." Similar to d except that the pilot-truck ค has four wheels instead of that of d.
(f) "Consolidation." The present standard for freight service. It permits great tractive power without excessive
 concentrated loads on the track.
(g) Switching-engines. These have four or six (and exceptionally even eight or ten) drivers and no truck-wheels. They are only adapted for slow speed when a maximum of tractive power is needed. Sometimes the water-tank and even a small fuel-box is loaded on. Since fuel is always near at hand for a yard-engine, the fuel-box need not be large.
(h) "Double-enders." As explained in § 315, truck-wheels are needed in front of the drivers to guide them around curves. If an ordinary engine is run backward, the flanges of the rear
drivers will become badly worn, and if the speed is high, the danger of derailment is considerable. In suburban service,
 when the runs are short, it is preferable to run the engines forward and backward, rather than turn them at each end of the route. Therefore a pilot-truck is placed at each end.
(i) "Miscellaneous types." Almost every conceivable combination of drivers and truck-wheels has been used. The "Mastodon" is similar to the "Consolidation" except that the pilot-truck has four wheels instead of two. The "Decapod" has ten driving-wheels. The "Forney" (named after the inventor) has been very extensively used on elevated roads. The weight of the boiler and machinery is carried on four drivingwheels; the engine-frame is extended so as to include a small tank and fuel-box, the weight of which is chiefly supported by a truck of two or four wheels. They run best when running "backward," i.e., tender first.
324. Equalizing-levers. The ideal condition of track, from the standpoint of smooth running of the rolling stock, is that the rails should always lie in a plane surface. While this condition is theoretically possible on tangents, it is unobtainable on curves, and especially on the approaches to curves when the outer rail is being raised. Even on tangents it is impossible to maintain a perfect surface, no matter how perfectly the track may have been laid. In consequence of this, the points of contact of the wheels of a locomotive, or even of a fourwheeled truck, will not ordinarily lie in one plane. The rougher and more defective the track, the worse the condition in this respect. Since the frame of a locomotive is practically rigid, if the frame rests on the driver-axles through the medium of springs at each axle-bearing, the compression of the springs (and hence the pressure of the drivers on the rail) will be variable if the bearing-points of the drivers are not in one plane This variable pressure affects the tractive power and severely strains the frame. Applying the principle that a tripod will stand on an even surface, a mechanism is employed which virtually supports the locomotive on three points, of which one is usually the center-bearing of the forward truck. On each side the pressure is so distributed among the drivers that even iî a driver rises or falls with reference to the others, the load carried by each driver is unaltered, and that side of the engine
rises or falls by one nth of the rise or fall of the single driver, where n represents the number of wheels. The principle involved is shown in an exaggerated form in Fig. 195. In the diagram, $M N$ represents the normal position of the frame when the wheels are on line. The frame is supported by the hanger: at a, c, f, and h. $a b, d e$, and $g h$ are horizontal levers vibrating about the points H, K, and L, which are supported by the axles. While it is possible with such a system of levers to make $M N$ assume a position not parallel with its natural position, yet, by an extension of the principle that a beam balance loadcd with equal weights will always be horizontal, the effect of raising or lowering a wheel will be to move $M N$ parallel to itself.

Fig. 195.-Action of Equalizing-levers.
It only remains to determine how much is the motion of $M N$ relative to the rise or drop of the wheel.

The dotted lines represent the positions of the wheels and levers when one wheel drops into a depression. The wheel center drops from p to q, a distance m. L drops to L^{\prime}, a distance m (see Fig. 195, b) ; M drops to M^{\prime}, an unknown distance x; therefore $a a^{\prime}=x ; b b^{\prime}=x ; c c^{\prime}=x ; d d^{\prime}=3 x=e e^{\prime} ; f f^{\prime}=x$; $\therefore g g^{\prime}=5 x ; \quad h h^{\prime}=x ; \quad L L^{\prime}=\frac{1}{2}\left(g g^{\prime}+h h^{\prime}\right)=\frac{1}{2}(6 x)=m ; \quad \therefore x=\frac{1}{3} m$; i.e., MN drops, parallel to itself, $1 / n$ as much as the wheel drops, where n is the number of wheels. The resultant effect caused by the simultaneous motion of two wheels with refer-
ence to the third is evidently the algebraie sum of the effects of each wheel taken separately.

The practical benefits of this device are therefore as follows:
(a) When any driver reaches a rough place in the track, a high place or a low place, the stress in all the various hangers and levers is unchanged.
(b) The motion of the frame (represented by the bar $M N$ in Fig. 195) is but $1 / n$ of the motion of the wheel, and the jar and vibration caused by a roughness in the track is correspondingly reduced.

The details of applying these principles are varied, but in general it is done as follows;
(a) American and ten-wheeled types. Drivers on each side form a system. The center-bearing pilot-truck is the third point of support. The method is illustrated in Fig. 196.
(b) Mogul and consolidation types. The front pair of drivers is connected with the two-wheeled pilot-truck (as illustrated in Fig. 197) to form one system. The remaining drivers on each side are each formed into a system

The device of equalizers is an American invention. Until recently it has not been used on foreign locomotives. The necessity for its use becomes less as the track is maintained with greater perfection and is more free from sharp curves. A locomotive not equipped with this device would deteriorate very rapidly on the comparatively rough tracks which are usually found on light-traffic roads. It is still an open question to what extent the neglect of this device is responsible for the statistical fact that average freight-train loads on foreign trains are less in proportion to the weight on the drivers than is the case with American practice. The recent increasing use of this device on foreign heavy freight locomotives is perhaps an acknowledgment of this principle.
325. Counterbalancing. At very high velocities the centrifugal force developed by the weight of the rotating parts becomes a quantity which cannot be safely neglected. These rotating parts include the crank-pin, the crank-pin boss, the side rod, and that part of the weight of the connecting-rod which may be considered as ratating about the center of the crank-driver. As a numerical illustration, a driving-wheel $62^{\prime \prime}$ in diameter, running 60 miles per hour, will revolve 325 times per minute. The weights are:

Crank-pin 110 lbs.
boss. 150
One-half side rod. 240
Back end of connecting-rod 190 "
Total. 690 lbs.

If the stroke is $24^{\prime \prime}$, the radius of rotation is $12^{\prime \prime}$, or 1 foot. Then

$$
\frac{G v^{2}}{g r}=\frac{690 \times 4 \pi^{2} 1^{2} \times 325^{2}}{32.2 \times 1 \times 60^{2}}=24821 \mathrm{lbs} .,
$$

which is half as much again as the weight on a driver, 16000 lbs . Therefore if no counterbalancing were used, the pressure between the drivers and the rail would always be less (at any velocity) when the crank-pin was at its highest point. At a velocity of about 48 miles per hour the pressure would become zero, and at higher velocities the wheel would actually be thrown from the rail. As an additional objection, when the crank-pin was at the lowest point, the rail pressure would be increased (velocity 60 miles per hour) from 16000 lbs. to nearly 41000 lbs., an objectionably high pressure. These injurious effects are neutralized by "counterbalancing." Since all of the above-mentioned weights can be considered as concentrated at the center of the crank-pin, if a sufficient weight is so placed in the drivers that the center of gravity of the eccentric weight is diametrically opposite to the crank-pin, this centrifugal force can be wholly balanced. This is done by filling up a portion of the space between the spokes. If the center of gravity of the counterbalancing weight is $20^{\prime \prime}$ from the center, then, since the crank-pin radius is $12^{\prime \prime}$, the required weight would be $690 \times \frac{12}{20}=414 \mathrm{lbs}$.

In addition to the effect of these revolving parts there is the effect of the sudden acceleration and retardation of the reciprocating parts. In the engine above considered the weights of these reciprocating parts will be:

> | Front end of connecting-rod. 150 lbs. |
| :--- |
| Cross-head. |
| 174 |
| Piston and piston-rod. |
| |
| Total. |
| 624 |

Assume as before that the reciprocating parts may be considered as concentrated at one point, the point P of the diagram in Fig. 198. Since the motion of P is horizontal only,

Fig. 198.-Action of Counterbalance.
the force required to overcome its inertia at any point will exactly equal the horizontal component of the force required to overcome the inertia of an equal weight at S, revolving in a circular path. Then evidently the horizontal component of the force required to keep W in the circular path will exactly balance the force required to overcome the inertia of P. Of course $W=P$. But a smaller weight W^{\prime}, whose weight is inversely proportional to its radius of rotation, will evidently accomplish the same result. In the above numerical case, if the center of gravity of the counterweights is $20^{\prime \prime}$ from the center, the required weight to completely counterbalance the reciprocating parts would be $624 \times \frac{12}{2}=374.4$ lbs. This counterweight need not be all placed on the driver carrying the main crank-pin, but can be (and is) distributed among all the drivers. Suppose it were divided between the two drivers in the above case. At 60 miles per hour such a counterweight would produce an additional pressure of 11211 lbs . when the counterweight was down, or a lifting force of the same amount when the counterweight was up. Although this is not sufficient to lift the driver from the rail, it would produce an objectionably high pressure on the rail (over 27000 lbs.), thus inducing just what it was desired to avoid on account of the eccentric rotating parts. Therefore a compromise must be made. Only a portion (one half to three fourths) of the weight of the reciprocating parts is balanced. Since the effect of the rotating weights is to cause variable pressure on the rail, while the effect of the reciprocating parts is to cause a horizontal wobiling or "nosing" of the locomotive, it is impossible to balance both. Enough counterweight is introduced to partially neutralize the
effect of the reciprocating parts, still leaving some tendency to horizontal wobbling, while the counterweights which were introduced to reduce the wobbling cause some variation of pressure. By using hollow piston-rods of steel, ribbed crossheads, and connecting- and side-rods with an I section, the weight of the reciprocating parts may be greatly lessened without reducing their strength, and with a decrease in weight the effect of the unbalanced reciprocating parts and of the "excess balance" (that used to balance the reciprocating parts) is largely reduced.
Current practice is somewhat variable on three features:
(a) The proportion of the weight of the connecting-rod which should be considered as revolving weight.
(b) The proportion of the total reciprocating weight that should be balanced.
(c) The distribution among the drivers of the counterweight to balance the reciprocating parts.
An exact theoretical analysis of (a) shows that it is a function of the weights and dimensions of the reciprocating parts. The weight which may be considered as revolving equals *

$$
W_{1}\left(\frac{r^{2}+k^{2}-r d\left(1+\frac{r}{l}\right)}{l^{2}-r^{2}}\right)+W_{: \frac{r^{2}}{l^{2}-r^{2}}},
$$

in which $r=$ radius of the crank, $l=$ length of connecting-rod, $k=$ distance of center of gyration from wrist-pin, $d=$ distance of center of gravity from wrist-pin, $W_{1}=$ weight of connectingrod in pounds, and $W_{2}=$ weight of piston, piston-rod, and crosshead in pounds; all dimensions in feet. An application of this formula will show that for the dimensions of usual practice, from 51 to 57% of the weight of the connecting-rod should be considered as revolving weight.
The principal rules which have been formulated for counterbalancing may be stated as follows:

1. Each wheel should be balanced correctly for the revolving parts connected with it.
2. In addition, introduce counterbalance sufficient for 50% of the weight of the reciprocating parts for ordinary engines, increasing this to 75% when the reciprocating parts are excessively heavy (as in compound locomotives) or when the engine

[^25]is light and unable to withstand much lateral strain or when the wheel-base is short.
3. Consider the weight of the connecting-rod as $\frac{1}{2}$ revolving and $\frac{1}{2}$ reciprocating when it is over 8 feet long; when shorter than 8 feet, consider $\frac{6}{10}$ of the weight as revolving and $\frac{4}{10}$ as reciprocating.
4. The part of the weight of the connecting-rod considered as revolving should be entirely balanced in the crank-driver wheel.
5. The "excess balance" should be divided equally among the drivers.
6. Place the counterbalance as near the rim of the wheel as possible and also as near the outside of the wheel as possible in order that the center of gravity shall be as near as possible opposite the center of gravity of the rods, etc., which are all outside of even the plane of the face of the wheel.

In Fig. 199 is shown a section of a locomotive driver with the cavities in the casting for the accommodation of the lead which is used for the counterbalance weight. Incidentally several other features and dimensions are shown

Fig. 199.-Section of Locomotive-driver. in the illustration.
326. Mutual relations of the boiler power, tractive power, and cylinder power for various types. The design of a locomotive includes three distinct features which are varied in their mutual relations according to the work which the engine is expected to do.
(a) The boiler power. This is limited by the rate at which steam may be generated in a boiler of admissible size and weight. Engines which are designed to haul very fast trains which are comparatively light must be equipped with very large grates and heating surfaces so that steam may be developed with great rapidity in order to keep up with the very rapid consumption. Engines for very heavy freight work are run at very much lower velocity and at a lower piston speed in spite of the fact that more strokes are required to cover a given distance and the demand on the boiler for rapid steam production is not
as great as with high-speed passenger-engines. The capacity of a boiler to produce steam is therefore limited by the limiting weight of the general type of engine required. Although improvements may be and have been made in the design of fireboxes so as to increase the steam-producing capacity without adding proportionately to the weight, yet there is a more or less definite limit to the boiler power of an engine of given weight.
(b) The tractive power. This is a function of the weight on the drivers. The absolute limit of tractive adhesion between a steel-tired wheel and a steel rail is about one third of the pressure, but not more than one fourth of the weight on the drivers can be depended on for adhesion and wet rails will often reduce this to one fifth and even less. The tractive power is therefore absolutely limited by the practicable weight of the engine. In some designs, when the maximum tractive power is desired, not only is the entire weight of the boiler and running gear thrown on the drivers, but even the tank and fuel-box are loaded on. Such designs are generally employed in switching-engines (or on engines designed for use on abnormally heavy mountain grades) in which the maximum tractive power is required, but in which there is no great tax on the boiler for rapid steam production (the speed being always very low), and the boiler and fire-box, which furnish the great bulk of the weight of an engine, are therefore comparatively light, and the requisite weight for traction must, therefore, be obtained by loading the drivers as much as possible. On the other hand, engines of the highest speed cannot possibly produce steam fast enough to maintain the required speed unless the load be cut down to a comparatively small amount. The tractive power required for this comparatively small load will be but a small part of the weight of the engine, and therefore engines of this class have but a small proportion of their weight on the drivers; generally have but two driving-axles and sometimes but one.
(c) Cylinder power. The running gear forms a mechanism which is simply a means of transforming the energy of the boiler into tractive force and its power is unlimited, within the practical conditions of the problem. The power of the running gear depends on the steam pressure, on the area of the piston, on the diameter of the drivers, and on the ratio of crank-pin radius to wheel radius, or of stroke to driver diameter. It
is always possible to increase one or more of these elements by a relatively small increase of expenditure until the cylinders are able to make the drivers slip, assuming a sufficiently great resistance. Since the power of the engine is limited by the power of its weakest feature, and since the running gear is the most easily controlled feature, the power of the running gear (or the "cylinder power") is always made somewhat excessive on all well-designed engines. It indicates a badly designed engine if it is stalled and unable to move its drivers, the steam pressure being normal. If it is attempted to use a freightengine on fast passenger service, it will probably fail to attain the desired speed on account of the steam pressure falling. 'The tractive power and cylinder power are superabundant, but the boiler cannot make steam as fast as it is needed for high speed, especially when the drivers are small. The practical result would be a comparatively low speed kept up with a forced fire. If it is attempted to use a high-speed passenger-engine on heavy freight service, the logical result is a slipping of the drivers until the load is reduced. The boiler power and cylinder power are ample, but the weight on the drivers is so small that the tractive power is only sufficient to draw a comparatively small load.

These relations between boiler, cylinder, and tractive power are illustrated in the following comparative figures referring to a fast passenger-engine, a heavy freight-engine, and a switch-ing-engine. The weights of the passenger- and freight-engines are about the same, but the passenger-engine has only 72% of

Kind.	Cylinders.	Total W ght.	Wt. on Driv'rs	Heating Surface, sq. ft.	Grate area sq. ft.	Steam Pres- sure in Boiler.	$\begin{aligned} & \text { Stroke. } \\ & \hline \text { Diam. } \end{aligned}$ Driver.
Fast passenger.	$19^{\prime \prime} \times 24^{\prime \prime}$	126700	81500	1831.8	26.2	180	$\frac{24}{78}=.31$
Heavy freight.	$20^{\prime \prime} \times 24^{\prime \prime}$	128700	112600	1498.3	31.5	140	$\frac{24}{50}=.48$
Switcher.	$19^{\prime \prime} \times 24^{\prime \prime}$	109000	109000	1498.0	22.8	160	$\frac{24}{50}=.48$

the tractive power of the freight. But the passenger-engine has 22% more heating-surface and can generate steam much faster: it makes less than two thirds as many strokes in covering a given distance, but it runs at perhaps twice the speed
and probably consumes steam much faster. The switchengine is lighter in total weight, but the tractive power is nearly as great as the freight and much greater than the passengerengine. While the heating-surfaces of the freight- and switch-ing-engines are practically identical, the grate area of the switcher is much less; its speed is always low and there is but little necessity for rapid steam development.

While these figures show the general tendency for the relative proportions, and in this respect may be considered as typical, there are large variations. The recent enormous increase in the dead weight of passenger-trains has necessitated greater tractive power. This has been provided sometimes by using "Mogul" and "ten-wheel" engines, which were originally designed for freight work. On the other hand, the demand for fast freight service, and the possibility of safely operating such trains by the use of air-brakes, has required that heavy freight-engines shall be run at comparatively high speeds, and that requires the rapid production of steam, large grate areas, and heating surfaces. But in spite of these variations, the normal standard for passenger service is a four-driver engine carrying about two thirds of the weight of the engine on the drivers, which are very large; the normal standard for freight work is the "consolidation," with perhaps 90% of the weight on the drivers, which are small, but which must have the pony truck for such speed as it uses; and finally the normal standard for switching service has all the weight on the drivers and has comparatively low steam-producing capacity.
327. Life of locomotives. The life of locomotives (as a whole) may be taken as about 800000 miles or about 22 to 24 years. While its life should be and is considered as the period between its construction and its final consignment to the scrap pile, parts of the locomotive may have been renewed more than once. The boiler and fire-box are especially subject to renewal. The mileage life is much longer than formerly. This is due partly to better design and partly to the custom of drawing the fires less frequently and thereby avoiding some of the destructive strains caused by extreme alterations of heat and cold. Recent statistics give the average annual mileage on twenty-three leading roads to be 41000 miles.

CARS.

328. Capacity and size of cars. The capacity of freight-cars has been enormously increased of late years. About thirty years ago the usual live-load capacity for a box-car was about 20000 lbs. In 1893 the standard box-car, gondola-cars, etc., of the Pennsylvania Railroad on exhibition at the Chicago Exposition, had a live-load capacity of 60000 lbs . and a dead weight of 30000 to 33000 lbs With a full load, the weight on each wheel is nearly 12000 lbs , which equals or exceeds the load usually placed on the drivers of ordinary locomotives. But now cars with a live-load capacity of 80000 lbs . are almost standard, $100000-\mathrm{lb}$. cars are very common, and even larger cars are made for special service. (See Fig. 200.)

The limitation of the carrying capacity for some kinds of freight depends somewhat on the amount of live load that can be carried within given dimensions; for the cross-section of a car is limited to the extreme dimensions which may be safely run through the tunnels and through bridges as at present constructed, and the length is somewhat limited by the difficulty of properly supporting an excessively heavy load, distributed over an unusually long span, by a structure which is subjected to excessive jar, concussion, compression, and tension. The cross-sectional limit seems to have been scarcely reached yet, except, perhaps, in the case of furniture and carriagecars, whose load per cubic foot is not great. The usual width of freight-cars is about 8 to 9 feet, while parlor-cars and sleepers are generally 10 feet wide and sometimes 11 feet. The highest point of a train is usually the smoke-stack of the locomotive which is generally 14 feet above the rails and occasionally over 1.5 feet. A sleeping-car usually has the highest point of the car about 14 feet above the rails. Box-cars are usually about 8 feet high (above the sills), with a total height of about $11^{\prime} 3^{\prime \prime}$. Refrigerator-cars are usually about 9^{\prime} high and furniture-cars about 10^{\prime} above the sills, the truck adding about $3^{\prime} 3^{\prime \prime}$. The usual length is 34 feet, but 35 to 40 feet is not uncommon. Passenger-cars (day coaches) are usually 50 feet long, exclusive of the end platforms and weigh 45000 to 50000 lbs. Sixty passengers at 150 pounds apiece (a high average) will only add 9000 lbs. to the weight. A parlor-car or sleeper is generally about 65 feet long exclusive of the platforms, which add about $6^{\prime} 6^{\prime \prime}$. The weight is anywhere from 60000 to 80000 lbs .

The weight of the 25 or 30 passengers it may carry is hardly worth considering in comparison.
329. Stresses to which car-frames are subjected. A car is structurally a truss, supported at points at some distance from the ends and subjected to transverse stress. There is, therefore, a change of flexure at two points between the trucks. Besides this stress the floor is subjected to compression when the cars are suddenly stopped and to tension when in ordinary motion, the tension being greater as the train resistance is greater and as the car is nearer the engine. The tension is sometimes relieved by means of continuous drawbars (see §331), but this affords no relief against impact during compression, which is really more destructive. The shocks, jars, and sudden strains to which the car-frames are subjected are very much harder on them than the mere static strains due to their maximum loads if the loads were quiescent. Consequently any calculations based on the static loans are practically valueless, except as a very rough guide, and previous experience must be relied on in designing car bodies. As evidence of the increasing demand for strength in car-frames, it has been recently observed that freight-cars, built some years ago and built almost entirely of wood, are requiring repairs of wooden parts which have been crushed in service, the wood being perfectly sound as regards decay.
330. The use of metal. The use of metal in car construction is very rapidly increasing.. The demand for greater strength in car-frames has grown until the wooden framing has become so heavy that it is found possible to make steel frames and trucks at a small additional cost, the steel frames being twice as strong and yet reducing the dead weight of the car about 5000 lbs., a consideration of no small value, especially on roads. having heavy grades. Another reason for the increasing use of metal is the great reduction in the price of rolled or pressed steel, while the cost of wood is possibly higher than before. The advocates of the use of steel advise steel floors, sides, etc. For box-cars a wooden floor has advantages. For ore and coal-cars an all-metal construction has advantages. (Fig. 201.) In Germany, where steel frames have been almost exclusively in use for many years, they have not yet been able to determine the normal age limit of such frames; none have yet worn out, The life is estimated at 50 to 80 years.

Fig. 200.-100,000-lb. Box Car.

Fig. 201.-Steel Coal Car.

Fig. 202.-Wooden Box Car; Steel Frame.
(To face page 366.)

Brake-beams are also best made of metal rather than wood, as was formerly done. Metal brake-beams are generally used on cars having air-brakes, as a wooden beam must be excessively large and heavy in order to have sufficient rigidity.

Truck-frames (see Fig. 203), which were formerly made principally of wood, are now largely made of pressed steel. It makes a reduction in weight of about 3000 lbs . per car. The increased durability is still an uncertain quantity.

Fig. 203.
331. Draft-gear. These are of necessity made with springs for all passenger- and freight-cars. Coal-jimmies are often fastened together by links dropped over hooks, but the larger coal-cars require springs to absorb the shocks. There is a considerable theoretical advantage in "continuous draft-gear," i.e. having a rod (or pair of rods) running continuously from end to end of the car so that there shall be no tensile stress on the car-body itself. But there are several objections in practice. (a) The draft-rod, if there is but one, should be in the center line of the car, i.e. pass through the two truck-centers and the king-pins, which is impracticable. This difficulty is sometimes obviated in an objectionable way by running the drawbar above the truck-center. A better method is to use a pair of rods. (b) The rod is of no value during compression, and (it is the compression a car receives by minor collisions during switching which produces maximum injury to the car-body and the draft-gear. (c) The rod is much more liable to injury and requires much more expensive repairs when injured.

The older method is to bolt the beams holding the draftgear to the under side of the car-body. This form is objectionable owing to the fact that the push and pull, being transmitted through the car-body, act eccentrically, tend to loosen the draft-beams from the car-body, and in case of a violent collision have been known to actually buckle the car-body upward (the cars being "flats"). The fastening of the draftgear to the car-body has been made more secure by using castiron keys, then still more so by running the beams back to the "transoms" (the heavy cross-beamis which support the car and transfer its weight to the trucks), then by making a double center sill extending through the length of the car. Another device is to run the draft-gear through the end sill and then the line of push and pull running through the car-frame instead of under it, the car-frame can furnish its maximum resistance.
332. Gauge of wheels and form of wheel-tread. In Fig. 204 is shown the standard adopted by the Master Car Euilders' Association at their twentieth annual convention. Note the normal position of the gauge-line on the wheel-tread. In Fig. 114, p. 238, the relation of rail to wheel-tread is shown on a smaller scale. It should be noted that there is no definite position where the wheel-flange is absolutely "chock-a-block" against the rail. As the pressure increases the wheel mounts a little higher on the rail until a point is soon reached when the resistance is too great for it to mount still higher. By this means is avoided the shock of unyielding impact when the car sways from side to side. When the gauge between the inner faces of the wheels is greater or less than the limits given in the figure, the interchange rules of the Master Car Builders' Association authorize a road to refuse to accept a car from another road for transportation. At junction points of railroads inspectors are detailed to see that this rule (as well as many others) is complied with in respect to all cars offered for transfer.

TRAIN-BRAKES.

333. Introduction. Owing to the very general misapprehension that exists regarding the nature and intensity of the action of brakes, a complete analysis of the problem is considered justifiable. This misapprehension is illustrated by the common notion (and even practice) that the effectiveness of

Fig. 204 M.C.B. Standard wheel tread and axle.

Fig. 204.-M. C. B. Standard Wheel-tread and Axle.
braking a car is proportional to the brake pressure, and therefore a brakeman is frequently seen using a bar to obtain a greater leverage on the brake-wheel and using his utmost strength to obtain the maximum pull on the brake-chain while the car is skidding along with locked wheels.

When a vehicle is moving on a track with a considerable velocity, the mass of the vehicle possesses kinetic energy of translation and the wheels possess kinetic energy of rotation. To stop the vehicle, this energy must be destroyed. The rotary kinetic energy will vary from about 4 to 8% of the kinetic energy of translation, according to the car loading (see § 347). On steam railroads brake action is obtained by pressing brake-shoes against car-wheel treads. As the brakeshoe pressure increases, the brake-shoes retard with increasing force the rotary action of the wheels. As long as the wheels do not slip or "skid" on the rails, the adhesion of the rails forces them to rotate with a circumferential velocity equal to the train velocity. The retarding action of the brake-shoe checks first the rotative kinetic energy (which is small), and the remainder develops a tendency for the wheel to slip on the rail. Since the rotative kinetic energy is such a small percentage of the total, it will hereafter be ignored, except as specifically stated, and it will be assumed for simplicity that the only work of the brakes is to overcome the kinetic energy of translation. The possible effect of grade in assisting or preventing retardation, and the effect of all other track resistances, is also ignored. The amount of the developed force which retards the train movement is limited to the possible adhesion or static friction between the wheel and the rail. When the friction between the brake-shoe and the wheel exceeds the adhesion between the wheel and the rail, the wheel skids, and then the friction between the wheel and the rail at once drops to a much less quantity. It must therefore be remembered at the outset that the retarding action of brakeshoes on wheels as a means of stopping a train is absolutely limited by the possible static friction between the braked wheels and the rails.
334. Laws of friction as applied to this problem. Much of the misapprehension regarding this problem arises from a very common and widespread misstatement of the general laws of friction. It is frequently stated that friction is independent
of the velocity and of the unit of pressure. The first of these so-called laws is not even approximately true. A very exhaustive series of tests were made by Capt. Douglas Galton on the Brighton Railway in England in 1878 and 1879, and by M. George Marié on the Paris and Lyons Railway in 1879, with trains which were specially fitted with train-brakes and with dynagraphs of various kinds to measure the action of the brakes. Experience proved that variations.in the condition of the rails (wet or dry), and numerous irregularities incident to measuring the forces acting on a heavy body moving with a high velocity, were such as to give somewhat discordant results, even when the conditions were made as nearly identical as possible. But the tests were carried so far and so persistently that the general laws stated below were demonstrated beyond question, and even the numerical constants were determined as closely as they may be practically utilized. These laws may be briefly stated as follows:
(a) The coefficient of friction between cast-iron brake-blocks and steel tires is about .3 when the wheels are "just moving"; it drops to about .16 when the velocity is about 30 miles per hour, and is less than .10 when the velocity is 60 miles per hour. These figures fluctuate considerably with the condition of the rails, wet or dry.
(b) The coefficient of friction is greatest when the brakes are first applied; it then reduces very rapidly, decreasing nearly one third after the brakes have been applied 10 seconds, and dropping to nearly onc half in the course cf 20 seconds. Although the general truth of this law was established beyond question, the tests to demonstrate the law of the variation of friction with time of application were too few to determine accurately the numerical constants.
(c) The friction of skidded wheels on rails is always very much less than the adhesion when the wheel is rolling on the rail-sometimes less than one third as much.
(d) An analysis of the tests all pointed to a law that the friction developed does not increase as rapidly as the intensity of pressure increases, but this may hardly be considered as an established law.
(e) The adhesion between the wheel and the rail appears to be independent of velocity. The adhesion here means the force that must be developed before the wheel will slip on the rail,

The practical effect of these laws is shown by the following observed phenomena:
(a) When the brakes are first applied (the velocity being very high), a brake pressure far in excess of the weight on the wheel (even three or four times as much) may be applied without skidding the wheel. This is partly due to the fact that the wheel has a very high rotative kinetic energy (which varies as the square of the velocity, and which must be overcome first), but it is chiefly due to the fact that the coefficient of friction at the higher velocity is very small (at 60 miles per hour it is about .07), while the adhesion between the wheel and the rail is independent of the velocity.
(b) As the velocity decreases the brake pressure must be decreased or the wheels will skid. Although the friction decreases with the time required to stop and increases with the reduction of speed, and these two effects tend to neutralize each other, yet unless the stop is very slow, the increase in friction due to reduction of speed is much greater than the decrease due to time, and therefore the brake pressure must not be greater than the weight on the wheel, unless momentarily while the speed is still very high.
(c) The adhesion between wheels and rails varies from .20 to .25 and over when the rail is dry. When wet and slippery it may fall to .18 or even .15 . The use of sand will always raise it above .20 , and on a dry rail, when the sand is not blown away by wind, it may raise it to .35 or even .40 .
(d) Experiments were made with an automatic valve by which the brake-shoe pressure against the wheel should be reduced as the friction increased, but since (1) the essential requirement is that the friction produced by the brake-shoes shall not exceed the adhesion between rail and wheel, and since (2) the rail-wheel adhesion is a very variable quantity, depending on whether the rail is wet or dry, it has been found impracticable to use such a valve, and that the best plan is to leave it to the engineer to vary the pressure, if necessary, by the use of the brake-valve.

MECHANISM OF BRAKES.

335. Hand-brakes. The old style of brakes consists of brakeshoes of some type which are pressed against the wheel-treads
by means of a brake-beam, which is operated by means of a hand-windlass and chain operating a set of levers. It is desirable that brakes shall not be set so tightly that the wheels shall be locked, and then slide over the track, producing dat places on them, which are very destructive to the rolling-stock and track afterward, on account of the impact occasioned at each revolution. With air-brakes the maximum pressure of the brake-shoes can be quite carefully regulated, and they are so designed that the maximum pressure exerted by any pair of brake-shoes on the wheels of any axle shall not exceed a certain per cent. of the weight carried by that axle when the car is empty, 90% being the figure usually adopted for passenger-cars and 70% for freight-cars. Consider the case of a freight-car of 100000 lbs . capacity, weighing 33100 lbs , or 8275 lbs . on an axle, and equipped with a hand-brake which operates the levers and brake-beams, which are sketched in Fig. 205. The dead weight on an axle is 8275 lbs.; 70% of

Fig. 205.-Sketch of Mechanism of Hand-brake.
this is 5792 lbs., which is the maximum allowable pressure per brake-beam, or 2896 lbs . per brake-shoe. With the dimensions shown, such a pressure will be produced by a pull of about 1158 lbs. on the brake-chain. The power gained by the brakewheel is not equal to the ratio of the brake-wheel diameter to the diameter of the shaft, about which the brake-chain winds, which is about 16 to $1 \frac{1}{2}$. The ratio of the circumference of the brake-wheel to the length of chain wound up by one complete turn would be a closer figure. The loss of effi-
ciency in such a clumsy mechanism also reduces the effective ratio. Assuming the effective ratio as 6:1 it would require a pull of 193 lbs . at the circumference of the brake-wheel to exert 1158 lbs. pull on the brake-chain, or 5792 lbs . pressure on the wheels at B, and even this will not lock the wheels when the car is empty, much less when it is loaded. Note that the pressures at A and B are unequal. This is somewhat objectionable, but it is unavoidable with this simple form of brakebeam. More complicated forms to avoid this are sometimes used. Hand-brakes are, of course, cheapest in first cost, and even with the best of automatic brakes, additional mechanism to operate the brakes by hand in an emergency is always provided, but their slow operation when a quick stop is desired makes it exceedingly dangerous to attempt to run a train at high speed unless some automatic brake directly under the control of the engineer is at hand. The great increase in the average velocity of trains during recent years has only been rendered possible by the invention of automatic brakes.
336. "Straight" air-brakes. The essential constructive features of this form of brake are (1) an air-pump on the engine, operated by steam, which compresses air into a reservoir on the engine; (2) a "brake-pipe" running from the reservoir to the rear of the engine and pipes running under each car, the pipes having flexible connections at the ends of the cars and engine; (3) a cylinder and piston under each car which operates the brakes by a system of levers, the cylinder being connected to the brake-pipe. The reservoir on the engine holds compressed air at about 45 lbs. pressure. To operate the brakes, a valve on the engine is opened which allows the compressed air to flow from the reservoir through the brake-pipe to each cylinder, moving the piston, which thereby moves the levers and applies the brakes. The dejects of this system are many: (1) With a long train, considerable time is required for the air to flow from the reservoir on the engine to the rear cars, and for an emergency-stop even this delay would often be fatal; (2) if the train breaks in two, the rear portion is not provided with power for operating the brakes, and a dangerous collision would often be the result; (3) if an air-pipe coupling bursts under any car, the whole system becomes absolutely he!pless, and as such a thing might happen during some emergency, the accident would then be especially fatal.

This form of brake has almost, if not entirely, passed out of use. It is here briefly described in order to show the logical development of the form which is now in almost universal use, the automatic.
337. Automatic air-brakes. The above defects have been overcome by a method which may be briefly stated as follows: A reservoir for compressed air is placed under each car and the tender; whenever the pressure in these reservoirs is reduced for any reason, it is automatically replenished from the main reservoir on the engine; whenever the pressure in the brakepipe is reduced for any cause (opening a valve at any point of its length, parting of the train, or bursting of a pipe or coupler), valves are automatically moved under each car to operate the piston and put on the brakes. All the brakes on the train are thus applied almost simultaneously. If the train breaks in two, both sections will at once have all the brakes applied automatically; if a coupling or pipe bursts, the brakes are at once applied and attention is thereby attracted to the defect; if an emergency should arise, such that the conductor desires to stop the train instantly without even taking time to signal to the engineer, he can do so by opening a valve placed on each car, which admits air to the train-pipe, which will set the brakes on the whole train, and the engineer, being able to discover instantly what had occurred, would shut off steam and do whatever else was necessary to stop the train as quickly as possible. The most important and essential detail of this system is the "automatic triple valve" placed under each car. Quoting from the Westinghouse Air-brake Company's Instruction Book, "A moderate reduction of air pressure in the train-pipe causes the greater pressure remaining stored in the auxiliary reservoir to force the piston of the triple valve and its slidevalve to a position which will allow the air in the auxiliary reservoir to pass directly into the brake-cylinder and apply the brake. A sudden or violent reduction of the air in the trainpipe produces the same effect, and in addition causes supplemental valves in the triple valve to be opened, permitting the pressure from the train-pipe to also enter the brake-cylinder, augmenting the pressure derived from the auxiliary reservoir about 20%, producing practically instantaneous action of the brakes to their highest efficiency throughout the entire train. When the pressure in the brake-pipe is again restored to an
amount in excess of that remaining in the auxiliary reservoir, the piston- and slide-valves are forced in the opposite direction to their normal position, opening communication from the trainpipe to the auxiliary reservoir, and permitting the air in the brake-cylinder to escape to the atmosphere, thus releasing the brakes. If the engineer wishes to apply the brake, he moves the handle of the engineer's brake-valve to the right, which first closes a port, retaining the pressure in the main reservoir, and then permits a portion of the air in the train-pipe to escape. To release the brakes, he moves the handle to the extreme left, which allows the air in the main reservoir to flow freely into the brake-pipe, restoring the pressure therein."
338. Tests to measure the efficiency of brakes. Let v represent the velocity of a train in feet per second; W, its weight; F, the retarding force due to the brakes; d, the distance in feet required to make a stop; and g, the acceleration of gravity (32.16 feet per square second); then the kinetic energy possessed by the train (disregarding for the present the rotative kinetic energy of the wheels) $=\frac{W v^{2}}{2 g}$. The work done in stopping the train $=F d . \quad \therefore F d=\frac{W v^{2}}{2 g}$. The ratio of the retarding force to the weight,

$$
\frac{F}{W}=\frac{v^{2}}{2 g d}=.0155 \frac{v^{2}}{d} .
$$

In order to compare tests made under varying conditions, the ratio $F \div T$ should be corrected for the effect of grade (+ or -), if any, and also for the proportion of the weight of the train which is on braked wheels. For example, a train weighed 146076 lbs. , the proportion on braked wheels was 67%, speed 60 feet per second, length of stop 450 feet, track level. Substituting these values in the above formula, we find ($F \div \dot{W}$) $=.124$. This value is really unduly favorable, since the ordinary track resistance helps to stop the train. This has a value of from 6 to 20 lbs . per ton, averaging say 10 lbs . per ton during the stop, or .005 of the weight. Since the effect of this is small and is nearly constant for all trains, it may be ignored in comparative tests. The grade in this case was level, and therefore grade had no effect. But since only 67% of the weight was on braked wheels, the ratio, on the basis of all the
wheels braked, or of the weight reduced to that actually on the braked wheels, is $0.124 \div .67=0.185$. This was called a "good" stop, although as high a ratio as 0.200 has been obtained.
339. Brake-shoes. Brake-shoes were formerly made of wrought iron, but when it was discovered that cast-iron shoes would answer the purpose, the use of wrought-iron shoes was abandoned, since the cast-iron shoes are so much cheaper. A cheap practice is to form the brake-shoe and its head in one piece, which is cheaper in first cost, but when the wearing-surface is too far gone for further use, the whole casting must be renewed. The "Christie" shoe, adopted by the Master Car Builders' Association as standard, has a separate shoe which is fastened to the head by means of a wrought-iron key. The shoe is beveled $\frac{1^{\prime \prime}}{4}$ in a width of $3 \frac{3}{8}{ }^{\prime \prime}$ to fit the coned wheel. This is a greater bevel than the standard coning of a car-wheel. It is perhaps done to allow for some bending of the brakebeam and also so that the maximum pressure (and wear) should come on the outside of the tread, rather than next to the flange, where it might tend to produce sharp. flanges. By concentrating the brake-shoe wear on the outer side of the tread, the wear on the tread is more nearly equalized, since the rail wears the wheel-tread chiefly near the flange. This same idea is developed still further in the "flange-shoes," which have a curved form to fit the wheel-flange and which bear on the whecl on the flange and on the outside of the tread. It is claimed that by this means the standard form of the tread is better preserved than when the wear is entirely on the tread. The Congdon brake-shoe is one of a type in which wroughtiron pieces are inserted in the face of a cast-iron shoe. It is claimed that these increase the life of the shoe.

CHAPTER XVI.

TRAIN RESISTANCE.

340. Classification of the various forms. The various resistances which must be overcome by the power of the locomotive may be classified as follows:
(a) Resistances internal to the locomotive, which include friction of the valve-gear, piston- and connecting-rods, journal friction of the drivers; also all the loss due to radiation, condensation, friction of the steam in the passages, etc. In short, these resistances are the sum-total of the losses by which the power at the circumference of the drivers is less than the power developed by the boiler.
(b) Velocity resistances, which include the atmospheric resistances on the ends and sides; oscillation and concussion resistances, due to uneven track, etc.
(c) Wheel resistances, which include the rolling friction between the wheels and the rails of all the wheels (including the drivers) ; also the journal friction of all the axles, except those of the drivers.
(d) Grade and curve resistances, which include those resistances which are due to grade and to curves, and which are not found on a straight and level track.
(e) Brake resistances. As shown later, brakes consume power and to the extent of their use increase the energy to be developed by the locomotive.
(f) Inertia resistances. The resistance due to inertia is not generally considered as a train resistance because the energy which is stored up in the train as kinetic energy may be utilized in overcoming future resistances. But in a discussion of the demands on the tractive power of the engine, one of the chief items is the energy required to rapidly give to a starting train its normal velocity. This is especially true of suburban trains, which must acquire speed very quickly in order that
their general average speed between termini may be even reasonably fast.
341. Resistances internal to the locomotive. These are resistances which do not tax the adhesion of the drivers to the rails, and hence are frequently considered as not being a part of the train resistance properly so called. If the engine were considered as lifted from the rails and made to drive a belt placed around the drivers, then all the power that reached the belt would be the power that is ordinarily available for adhesion, while the remainder would be that consumed internally by the engine. The power developed by an engine may be obtained by taking indicator diagrams which show the actual steam pressure in a cylinder at any part of a stroke. From such a diagram the average steam pressure is easily obtained, and this average pressure, multiplied by the length of the stroke and by the net area of the piston, gives the energy developed by one half-stroke of onc piston. Four times this product divided by 550 times the time in seconds required for one stroke gives the "indicated horse-power" Even this calculation gives merely the power behind the piston, which is several per cent. greater than the power which reaches the circumference of the drivers, owing to the friction of the piston, piston-rod, cross-head, connecting-rod bearings, and driving-wheel journals. (See §322, Chapter XV.) By measuring the amount of water used and turned into steam, and by noting the boiler pressure, the energy possessed by the steam used is readily computed. The indicator diagrams will show the amount of steam that has been effective in producing power at the cylinders. The steam accounted for by the diagrams will ordinarily amount to 80 or 85% of the steam developed by the boiler, and the other 15 or 20% represents the loss of energy due to radiation, condensation, ctc. From actual tasts it has been found that the power consumed by an engine running light is about 11% of that required by the engine when working hard in express freight service. But since the engine resistances (friction, etc.) are increased when it is pulling a load, it was estimated, after allowing for this fact, that about 15 or 16% of the power developed by the pistons was consumed by the engine, leaving about 84 to 85% for the train.
342. Velocity resistances. (a) Atmospheric. This consists of the head and tail resistances and the side resistance. The head
and tail resistances are nearly constant for all trains of given velocity, varying but slightly with the varying cross-sections of engines and cars. The side resistance varies with the length of the train and the character of the cars, box-cars or flats, etc. Vestibuling cars has a considerable effect in reducing this side resistance by preventing much of the eddying of air-currents between the cars, although this is one of the least of the ad vantages of vestibuling. Atmospheric resistance is generally assumed to vary as the square of the velocity, and although this may be nearly true, it has been experimentally demon strated to be at least inaccurate. The head resistance is gen erally assumed to vary as the area of the cross-section, but this has been definitely demonstrated to be very far from true. A freight-train composed partly of flat-cars and partly of boxcars will encounter considerably more atmospheric resistance than one made exclusively of either kind, other things being equal. The definite information on this subject is very unsatisfactory, but this is possibly due to the fact that it is of little practical importance to know just how much such resistance amounts to:
(b) Oscillatory and concussive. These resistances are considered to vary as the square of the velocity. Probably this is nearly, if not quite, correct on the general principle that such resistances are a succession of impacts and the force of impacts varies as the square of the velocity. These impacts are due to the defects of the track, and even though it were possible to make a precise determination of the amount of this resistance in any particular case, the value obtained would only be true for that particular piece of track and for the particular degree of excellence or defect which the track then possessed. The general improvement of track maintenance during late years has had a large influence in increasing the possible train-load by decreasing the train resistance. The expenditure of money to improve track will give a road a large advantage over a competing road with a poorer track, by reducing train resistance, and thus reducing the cost of handling traffic.
343. Wheel resistances. (a) Rolling friction of the wheels. To determine experimentally the roliing friction of wheels, apart from all journal friction, is a very difficult matter and has never been satisfactorily accomplished. Theory as well as practice shows that the higher and the more perfect the
elasticity of the wheel and the surface, the less will be the rolling friction. But the determination, if made, would be of theoretical interest only.

The combined effect of rolling friction and journal friction is determinable with comparative ease. From the nature of the case no great reduction of the rolling friction by any device is possible. It is only a very insignificant part of the total train resistance.
(b) Journal friction of the axles. This form of resistance has been studied quite extensively by means of the measurement of the force required to turn an axle in its bearings under various conditions of pressure, speed, extent of lubrication, and temperature. The following laws have been fairly well established: (1) The coefficient of friction increases as the pressure diminishes; (2) it is higher at very slow speeds, gradually diminishing to a minimum at a speed corresponding to a train velocity of about 10 miles per hour, then slowly increasing with the speed; it is very dependent on the perfection of the lubrication, it being reduced to one sixth or one tenth, when the axle is lubricated by a bath of oil rather than by a mere pad or wad of waste on one side of the journal; (3) it is much lower at higher temperature, and vice versa. The practical effect or these laws is shown by the observed facts that (1) loaded cars have a less resistance per ton than unloaded cars, the figures being (for speeds of about 10 to 20 miles per hour):

For pass	41bs. per
empty freight	6
stree	10 "
freigh	

(2) When starting a train, the resistances are about 20 lbs. per ton, notwithstanding the fact that the velocity resistances are practically zero; at about 2 miles per hour it will drop to 10 lbs . per ton and above 10 miles per hour it may drop to 4 lbs . per ton if the cars are in good condition. (3) The resistance could probably be materially lowered if some practicable form of journal-box could be devised which would give a more perfect lubrication. (4) It is observed that freight-train loads must be cut down in winter by about 10 or 15% of the loads that the same engine can haul over the same track in summer. This is due partly to the extra roughness and inelasticity of the
track in winter, and partly to increased radiation from the engine wasting some energy, but this will not account for all of the loss, and the effect, which is probably due largely to the lower temperature of the journal-boxes, is very marked and costly. It has been suggested that a jacketing of the journalboxes, which would prevent rapid radiation of heat and enable them to retain some of the heat developed by friction, would result in a saving amply repaying the cost of the device.

Roller journals for cars have been frequently suggested, and experiments have been made with them. It is found that they are very effective at low velocities, greatly reducing the starting resistance, which is very high with the ordinary forms of journals. But the advantages disappear as the velocity increases. The advantages also decrease as the load is increased, so that with heavily loaded cars the gain is small. The excess of cost for construction and maintenance has been found to be more than the gain from power saved.
344. Grade resistance. The amount of this may be computed with mathematical exactness. Assume that the ball or cylinder (see Fig. 206) is being drawn up the plane. If W

Fig. 206.
is the weight, N the normal pressure against the rail, and G the force required to hold it or to draw it up the plane with uniform velocity, the rolling resistances being considered zero or considered as provided for by other forces, then

$$
G: W: h: d, \quad \text { or } \quad G=\frac{W h}{d} ;
$$

but for all ordinary railroad grades, $d=c$ to within a tenth of 1%, i.e., $G=\frac{W h}{c}=W \times$ rate of grade. In order that the student may appreciate the exact amount of this approximation the percentage of slope distance to its horizontal projection is given in the following tabular form:

Grade in per cent.	1	2	3	4	5
Slope dist.$\times 100 \ldots \ldots$.	100.005	100.020	100.045	100.080	100.125
hor. dist.					
Grade in per cent.	6	7	8	9	10
Slope dist.$\times 100 \ldots . .$.	100.180	100.245	100.319	100.404	100.499

This shows also the error on various grades of measuring with the tape on the ground rather than held horizontally. Since almost all railroad grades are less than 2% (where the error is but .02 of 1%), and anything in excess of 4% is unheard of for normal construction, the error in the approximation is generally too small for practical consideration.

If the rate of grade is $1: 100, G=W \times \frac{1}{10}$, i.e., $G=20 \mathrm{lbs}$. per ton; \therefore for any per cent. of grade, $G=(20 \times$ per cent. of grade $)$ pounds per ton. When moving up a grade this force G is to be overcome in addition to all the other resistances. When moving down a grade, the force G assists the motion and may be more than sufficient to move the train at its highest allowable velocity. The force required to move a train on a level track at ordinary freight-train speeds (say 20 miles per hour) is about 7 lbs . per ton. A down grade of $\frac{7}{20}$ of 1% will furnish the same power; therefore on a down grade of 0.35%, a freight-train would move indefinitely at about 20 miles per hour. If the grade were higher and the train were allowed to gain speed freely, the speed would increase until the resistance at that speed would equal W times the rate of grade, when the velocity would become uniform and remain so as long as the conditions were constant. If this speed was higher than a safe permissible speed, brakes must be applied and power wasted. The fact that one terminal of a road is considerably higher than the other does not necessarily imply that the extra power needed to overcome the difference of elevation is a total waste of energy, especially if the maximum grades are so low that brakes will never need to be applied to reduce a dangerously high velocity, for although more power must be
used in ascending the grades, there is a considerable saving of power in descending the grades. The amount of this saving will be discussed more fully in Chapter XXIII.
345. Curve resistance. Some of the principal laws will be here given without elaboration. A more detailed discussion will be given in Chapter XXII.
(a) While the total curve resistance increases as the degree of curve increases, the resistance per degree of curve is much greater for easy curves than for sharp curves; e.g., the resistance on the excessively sharp curves (radius 90 feet.) of the clevated roads of New York City is very much less per degrec of curve than that on curves of 1° to 5°. (b) Curve resistance increases with the velocity. (c) The total resistance on a curve depends on the central angle rather than on the radius; i.e., two curves of the same central angle but of different radius would cause about the same total curve resistance. This is partly explained by the fact that the longitudinal slipping will be the same in each case. (See § 311, Chapter XV.) In each case also the trucks must be twisted around and the wheels slipped laterally on the rails by the same amount 1°. (See § 312, Chapter XV.)
346. Brake resistances. If a down grade is excessively steep so that brakes must be applied to prevent the train acquiring a dangerous velocity, the energy consumed is hopelessly lost without any compensation. When trains are required to make frequent stops and yet maintain a high average speed, considerable power is consumed by the application of brakes in stopping. All the energy which is thus turned into heat is hopelessly lost, and in addition a very considerable amount of steam is drawn from the boiler to operate the air-brakes, which consume the power already developed. It can be easily demonstrated that engines drawing trains in suburban service, making frequent stops, and yet developing high speed between stops, will consume a very large proportion of the total power developed by the use of brakes. Note the double loss. The brakes consume power already developed and stored in the train as kinetic or potential energy, while the operation of the brakes requires additional steam power from the engine.
347. Inertia resistance. The two forms of train resistance which under some circumstances are the greatest resistances to be overcome by the engine are the grade and inertia resist-
ances, and fortunately both of these resistances may be computed with mathematical precision. The problem may be stated as follows: What constant force P (in addition to the forces required to overcome the various frictional resistances, etc.) will be required to impart io a body a velocity of v feet per second in a distance of s feet? The required number of foot-pounds of energy is evidently Ps. But this work imparts a kinetic energy which may be expressed by $\frac{W v^{2}}{2 g}$. Equating these values, we have $P s=\frac{W v^{2}}{2 g}$, or

$$
\begin{equation*}
P=\frac{W v^{2}}{2 g s} \tag{138}
\end{equation*}
$$

The force required to increase the velocity from v_{1} to v_{2} may likewise be stated as $P=\frac{W}{2 g s}\left(v_{2}{ }^{2}-v_{1}^{2}\right)$. Substituting in the form:la the values $W=2000 \mathrm{lbs}$. (one ton), $g=32.16$, and $s=$ 5280 feet (one mile), we have

$$
P=.00588\left(v_{2}{ }^{2}-v_{1}{ }^{2}\right) .
$$

Multiplying by $(5280 \div 3600)^{2}$ to change the unit of velocity to miles per hour, we have

$$
P=.01267\left(V_{2}{ }^{2}-V_{1}{ }^{2}\right)
$$

But this formula must be modified on account of the rotative kinetic energy which must be imparted to the wheels of the cars. The precise additional percentage depends on the particular design of the cars and their loading and also on the design of the locomotive. Consider as an example a box-car, 60000 lbs . capacity, weighing 33000 lbs. The wheels have a diameter of $36^{\prime \prime}$ and their radius of gyration is about $13^{\prime \prime}$. Each wheel weighs 700 lbs . The rotative kinetic energy of each wheel is 4877 ft .-lbs. when the velocity is 20 miles per hour, and for the eight wheels it is $39016 \mathrm{ft} . \mathrm{lbs}$. For greater precision (really needless) we may add 192 ft .-lbs. as the rotative kinetic energy of the axles. When the car is fuily loaded (weight 93000 lbs.$)$ the kinetic energy of translation is $1,244,340 \mathrm{ft} .-\mathrm{lbs}$.; when empty (weight 33000 lbs .) the energy is 441540 ft ..lbs. The rotative kinetic energy thus adds (for this particular car) 3.15% (when the car is loaded) and 8.9% (when the car is empty) to the kinetic energy of translation. The kinetic
energy which is similariy added, owing to the rotation of the wheels and axles of the locomotive, might be similarly computed. For one type of locomotive it has been figured at about 8%. The variations in design, and particularly the fluctuations of loading, render useless any great precision in these computations. For a train of "empties" the figure would be high, probably 8 to 9%; for a fully loaded train it will not much exceed 3%. Wellington considered that 6% is a good average value to use (actually used 6.14% for "ease of computation'"), but considering (a) the increasing proportion of live load to dead load in modern car design, (b) the greater care now used to make up full train-loads, and (c) the fact that full train-loads are the critical loads, it would appear that 5% is a better average for the conditions of modern practice. Even this figure allows something for the higher percentage for the locomotive and something for a few empties in the train. Therefore, adding 5% to the coefficient in the above equation, we have the true equation

$$
\begin{equation*}
P=.0133\left(V_{2}{ }^{2}-V_{1}{ }^{2}\right), \tag{139}
\end{equation*}
$$

in which V_{2} and V_{1} are the higher and lower velocities respectively in miles per hour, and P is the force required per ton to impart that difference of velocity in a distance of one mile If more convenient, the formula may be used thus:

$$
\begin{equation*}
P_{1}=\frac{70.224}{s}\left(V_{2}^{2}-V_{1}^{2}\right), \quad . \quad . \quad . \tag{140}
\end{equation*}
$$

in which s is the distance in feet and P_{1} is the corresponding force.

As a numerical illustration, the force required per ton to impart a kinetic energy due to a velocity of 20 miles per hour in a distance of 1000 feet will cqual

$$
P_{1}=\frac{70.224(400-0)}{1000}=28 \mathrm{lbs} .
$$

which is the equivaient (see § 344) of a 1.4% grade. Since the velocity enters the formula as V^{2}, while the distance enters only in the first power, it follows that it will require four times the force to produce twice the velocity in the same distance, or that with the same force it will require four times the distance to attain twice the velocity.

As another numerical illustration, if a train is to increase its speed from 15 miles per hour to 60 miles per hour in a distance of 2000 feet, the force required (in addition to all the other resistances) will be

$$
P_{1}=\frac{70.224(3600-225)}{2000}=118.50 \mathrm{lbs} . \text { per ton. }
$$

This is equivalent to a 5.9% grade and shows at once that it would be impossible unless there were a very heavy down grade, or that the train was very light and the engine very powerful.
348. Formulæ for train resistance. These are generally given in one of the forms

$$
\left.\begin{array}{l}
R=f V+c \ldots \ldots .(a) \tag{141}\\
R=f V^{2}+c \ldots \ldots .(b)
\end{array}\right\}
$$

in which R is the resistance per ton, f is a coefficient to be determined, V is the velocity in miles per hour, and c is a constant, also to be determined. These formulæ disregard grade and curve resistances, inertia resistance, and the active resistance (or assistance) of wind, as distinct from mere atmospheric resistance. In short, they are supposed to give the resistance of a train moving at a uniform velocity over a straight and level track, there being no appreciable wind. Both formulæ are empirical, since the resistances do not vary either directly or as the square of the velocity. Some resistances vary nearly as the square and some nearly as the first power.

The quantity c represents the journal friction and rolling friction, and these are assumed to be constant, although careful tests of journal friction show that its variation with velocity is irregular (see § 343). This shows that such simple formulæ must always be inaccurate, but some formule have been suggested, having either of these general forms, which agree very closely with the results of actual tests.
(a) Searles's formula,
$R=4.82+.00536 V^{2}+\frac{.00048 V^{2} \text { (wt. of eng. and tender) }}{}{ }^{2}$
in which $R=$ total resistance in pounds per ton and V is the velocity in miles per hour. This formula does not take account of any difference in the form of the train (whether box-cars or
flats), which would have a great influence on the atmospheric resistance; neither does it take into account the relation of length to weight, or whether the cars are loaded or empty. Nevertheless the results agree very closely with the determinations of actual train tests. If the resistance is computed according to this formula for a given class of engine (e.g., a heavy consolidation), and for various lengths of train, it is found that the resistance per ton of the gross weight of the train is much less when the train is long, and for a train of ordinary length the resistance hardly increases as fast as the velocity until the velocity is great.

According to this formula, a heavy consolidation engine drawing forty loaded freight-cars would have to overcome a resistance of about 8.2 lbs . per ton of the gross weight of the train at a velocity of 20 miles per hour. At a velocity of 10 miles per hour this resistance drops to about 5.7 lbs . per ton. And so the value of 8 lbs per ton, used by Wellington in his computations of the total power of locomotives on grades, may be considered a safe figure, especially as the velocity at critical places may be assumed to be reduced as much as necessary.
(b) Wellington's formulce,

$$
R=\left\{\begin{array}{l}
3.9+.0065 V^{2}+\frac{.57 V^{2}}{W} \ldots \text { for loaded flat-cars } \tag{143}\\
3.9+.0075 V^{2}+\frac{.64 V^{2}}{W} \ldots \text { for loaded box-cars } \\
6.0+.0083 V^{2}+\frac{.57 V^{2}}{W} \ldots \text { for empty flat-cars } \\
6.0+.0106 V^{2}+\frac{.64 V^{2}}{W} \ldots \text { for empty box-cars }
\end{array}\right\} .
$$

Notice in these formulæ the additional journal resistance (indicated by the constant term) for unloaded cars. The last term evidently indicates the atmospheric resistance. The middle term allows for the oscillatory resistances. Assuming the constant term and the coefficients to have been correctly determined, these formulæ should be better than Searles's, since a choice of formulx can be made depending on the conditions. A train consisting partly of box-cars and partly of flat-cars will have a higher resistance than is shown by any of the above
formulæ (and not a mean value), on account of the increased atmospheric resistance acting on the irregular form of the train.
(c) Engincering News formula,

$$
\begin{equation*}
R=\frac{V}{4}+2 \tag{144}
\end{equation*}
$$

This formula belongs to class (a), Eq. 141. Its very simplicity makes it valuable for general use, but like the succeeding formula, it does not take account of variations in the form of the train, which have a very material influence on the train resistance.
(d) D. K. Clark's formula,

$$
\left.\begin{array}{l}
R=\frac{V^{2}}{171}+8 \ldots \ldots \ldots(\text { for tons of } 2240 \mathrm{lbs} .) \tag{145}\\
R=.00522 V^{2}+7.14 \ldots(\text { for tons of } 2000 \mathrm{lbs} .)
\end{array}\right\}
$$

This is a very old formula, and is mentioned because all of Clark's formulæ carry much weight. But in this case the formula is quite defective. The constant term (7.14) representing the journal and rolling friction is too large and thus the formula gives too large a resistance at low velocities; the coefficient of $V^{2}(.00522)$ is less than in the other formulx, and so at very high velocities the figures would be less than those given by Searles's or Wellington's formulæ, and less than the results of actual tests. For mean velocities the figures accord fairly well with those given by the other formulx and by actual tests.
(e) Baldwin Locomotive Works formula. The Baldwin Locomotive Works have adopted a formula of their own as the result of the experience they have been able to accumulaté. It is stated

$$
\begin{equation*}
R=\frac{V}{6}+3 . \tag{146}
\end{equation*}
$$

It is claimed that this formula agrees well with actual tests, and in fact is based on the results of tests, but it evidently cannot allow for known variations in the length or character of the train. As a general formula for locomotives which are to pull any kind of a load, the formula is of more value for practical use than Searles's or Wellington's.

- In Plate IX is shown graphically the resistance per ton of
four trains according to these five formulæ. For purposes of comparison of the formulæ, the weight of engine and total weight of cars is made the same for the four trains. The resistance would therefore be the same by formulæ (a), (c), (d), and (e). The differences would only appear when applying Wellington's formula. Assume the following as train-loads:

When applying any of these formulæ, due allowance must be made for grade and curve resistances, inertia resistances, and the possible retarding influence of a high wind must be considered if it is a question of the power of a locomotive of given type to draw a given load up a given grade.
349. Dynamometer tests. These are made by putting a "dynamometer-car" between the engine and the cars to be tested. Suitable mechanism makes an automatic record of the force which is transmitted through the dynamometer at any instant, and also a record of the velocity at any instant. One of the practical difficulties is the accurate determination of the velocity at any instant when the velocity is fluctuating. When the velocity is decreasing, the kinetic energy of the train is being turned into work and the force transmitted through the dynamometer is less than the amount of the resistance which is actually being overcome. On the other hand, when the velocity is increasing, the dynamometer indicates a larger force than that required to overcome the resistances, but the excess force is being stored up in the train as kinetic energy. Grade has a similar effect, and the force indicated by the dynamometer may be greater or less than that required at the given velocity on a level by the force which is derived from, or is turned into, potential energy. Therefore the resistance indicated by the dynamometer of a train will not be that on a level track at uniform velocity, unless the track is actually level and the velocity really uniform.

Dynamometer tests under other circumstances are therefore of no value unless it is possible to determine the true velocity at any instant and its rate of change, and also to determine the grade, Of course, the grade is easily found, An

(To face page 390.)

110

allowance for an increase or decrease of kinetic or potential energy must therefore be made before it is possible to know how much force is being spent on the ordinary resistances.
350. Gravity or "drop" tests. Dynamometer tests require the use of a dynamometer which is capable of measuring a force of several thousands of pounds, and which therefore cannot determine such values with a close percentage of accuracy, especially if the force is small. A drop test utilizes the force of gravity which may be measured with mathematical accuracy. The general method is to select a stretch of track which has a uniform grade of about 0.7% and which is preferably straight for two or three miles. On such a grade cars with running gear in good condition may be started by a push. The velocity will gradually increase until at some velocity, depending on the resistances encountered, the cars will move uniformly. The only work requiring extreme care with this method is the determination of the velocity. If the velocity is fluctuating, as it is during the time when it is of the greatest importance to know the velocity, it is not sufficient to determine the time rquired to run some long measured distance, for the average velocity thus obtained would probably differ

Fig. 207.-Loss in Velocity-head.
considerably from the velocity at the beginning and end of that space. If the train consists of five cars or more, the velocity may be determined electrically (as described by Wellington in his "Economic Location," etc., p. 793 et seq.) from the automatic record made on a chronograph of the passage of the first wheel and the last, the chronograph also recording auto-
matically the ticks of a clock beating seconds. From this the exact time of the passage of the first and last wheels of the train of cars may be determined to the tenth or twentieth of a second.

Velocity-head. From theoretical mechanics we know that if a body descends through any path by the action of gravity, and is unaffected by friction, its velocity at any point in the direction of the path of motion is $V=\sqrt{2} \overline{2 g h}$. If the body is retarded by resistances, its velocity at any point will be less than this. If $A M$, Fig. 207, represents any grade (exaggerated of course), then $B J, C K$, etc., represent the actual fall at any point. Let $B F$ represent the fall h_{1}, determined from $h_{1}=\frac{v_{1}{ }^{2}}{2 g^{\prime}}$, in which v_{1} is the actual observed velocity at J. Then $J F=$ the velocity-head consumed by the resistances between A and J. If the train continucs to K, the corresponding h_{2} is $C G$; the remaining fall $G K$ consists of $G N(=J F$, which is the velocityhead lost back of J) and $N K$, the velocity-head lost between J and K. At some velocity $\left(V_{n}\right)$ on any grade, the velocity will not further increase and the line $A F G H I$ will then be horizontal and at a distance $\left(h_{n}\right)=E I$ below $A \ldots E$. The grade $A M$ is the "grade of repose" for that velocity $\left(V_{n}\right)$; i.e., it is the grade that would just permit the train to move indefinitely at the velocity V_{n}. The broken line $A F^{\prime} G H I$ should really be a curve, and the grade of repose at any joint is the angle between $A M$ and the tangent to that curve at the given point. The "grade of repose" by its definition gives the total resistance of the train at the particular velocity, or multiplying the grade of repose in per cent. by 20 gives the pounds per ton of resistance. Thus being able to determine the total resistance in pounds per ton at any velocity, the variation of total resistance with velocity may be determined, and then by varying the resistances, using different kinds of cars, empty and loaded, box-cars and flats, the resistances of the different kinds at various velocities may be determined.

CHAPTER XVII

COST OF RAILROADS.

351. General considerations. Although there are many elements in the cost of railroads which are roughly constant per mile of road, yet the published reports of the cost of railroads differ very widely. The variation in the figures is due to several causes. (a) Economy requires that a road shall be operated and placed on an earning basis as soon as possible. Therefore the reported cost of a road during the first few years of its existence is somewhat less than that reported later. This is well illustrated when a long series of consecutive reports from an old-established road is available; nearly every year there will be shown an addition to the previous figures. And this is as it should be. The magnificent road-beds of some old roads cannot be the creation of a single season. It takes many years to produce such settled perfect structures. (b) A large part of the variation is due to a neglect to charge up "permanent improvements" as additions to the cost of the road. For the first few years of the life of a road a great deal of work is done which is in reality a completion of the work of construction, and yet the cost of it is buried under the item "maintenance of way." For example, a long wooden trestle is replaced by an earth embankment and a culvert. Since the original trestle is to be considered a temporary structure, the excess of the cost of the permanent structure over that of the temporary structure should evidently be considered as an addition to the cost of the road. But if the filling-in was done slowly, a few train-loads at a time, and the work scattered over many years, the cost of operating the "mud-train" has perhaps been buried under "maintenance" charges. (c) The reports from which many of the following figures were taken have not always analyzed the items of cost with the same detail as has been here attempted, and to that is probably due many of the variations and apparent discrepancies.

The various items of cost will be classified as follows:

1. Preliminary financiering.
2. Surveys and engineering expenses.
3. Land and land damages.
4. Clearing and grubbing.
5. Earthwork.
6. Bridges, trestles, and culverts
7. Trackwork.
8. Buildings and miscellaneous structures.
9. Interest on construction.
10. Telegraph line.
11. Item I. Preliminary Financiering. The cost of this preliminary work is exceedingly variable. The work includes the clerical and legal work of organization, printing, engraving of stocks and bonds, and (sometimes the most expensive of all) the securing of a charter. This sometimes requires special legislative enactments, or may sometimes be secured from a State railroad commission. It has been estimated that about 2% of the railway capital of Great Britain has been spent in Parliamentary expenses over the charters. These expenses are usually but a small percentage of the total cost of the enterprise, but for important lines the gross cost is large, while the amount of money thus spent by organizations which have never succeeded in constructing their roads is sometimes enormous.
12. Item 2. SURVEYS and Engineering Expenses. The comparison of a large number of itemized reports on the cost of construction shows that the cost of the "engineering" will average about 2% of the total cost of construction. This includes the cost of surveys and the cost of laying out and superintending the constructive work. The cost of mere surveying up to the time when construction actually commences has been variously quoted at $\$ 60, \$ 75$, and even $\$ 150$ per mile. In exceptional cases the surveying for a few miles through some gorge might cost many times this amount, but $\$ 150$ per mile may be considered an ordinary maximum for difficult country. On the other hand, much construction has been done over the western prairies after hasty surveys costing not much over $\$ 10$ per mile.
13. Item 3. LaNd and Land Damages. The cost of this item varies from the extreme, in which not only the land for
right-of-way but also grants of public land adjoining the road are given to the corporation as a subsidy, to the other extreme, where the right-of-way can only be obtained at exorbitant prices. The width required is variable, depending on the width that may be needed for deep cuts or high fills, or the extra land required for yards, stations, etc. A strip of land 1 mile long and 8.25 feet wide contains precisely 1 acre. An average width of 4 rods (66 feet), therefore, requires 8 acres per mile. On the Boston \& Albany Railroad the expenditure assigned to "land and land damages" averages over $\$ 25000$ per mile. Of course this includes some especially expensive land for terminals and stations in large cities. Less than $\$ 300$ per mile was assigned to this item by an unimportant 18 -mile road.
14. Item 4. Clearing and Grubbing. The cost of this may vary from zero to 100% for miles at a time, but as an average figure it may be taken as about 3 acres per mile at a cost of say $\$ 50$ per acre. The possibility of obtaining valuable timber, wnich may be utilized for trestles, ties, or otherwise, and the value of which may not only repay the cost of clearing and grubbing, but also some of the cost of the land, should not be forgotten.
15. Item 5. EARTHWORK. This item also includes rockwork. The methods of estimating the cost of earthwork and rockwork have been discussed in Chapter III. The percentage of this item to the total cost is very variable. On a western prairie it might not be more than 5 to 10%. On a road through the mountains it will run up to 20 or 25%, and even more. The item also includes tunneling, which on some roads is a heavy item.
16. Item 6. Bridges, Trestles, and Culverts. This item will usually amount to 5 or 6% of the total cost of the road. In special cases, where extensive trestling is necessary, or several large bridges are required, the percentage will be much higher. On the other hand, a road whose route avoids the watercourses may have very little except minor culverts. On the Boston \& Albany the cost is given as $\$ 5860$ per mile; on the Adirondack Railroad, $\$ 2845$ per mile. Considering their relative character (double and single track), these figures are relatively what we might expect,
17. Item 7. Trackwork. This item vill be considered as including everything above subgrade, except as otherwise itemized.
(a) Ballast. With an average width, for single track, of 10 feet and an average of 15 inches, 2444 cubic yards of ballast will be required. The Pennsylvania Railroad estimate is 2500 yards of gravel per mile of single track. At an estimate of 60 c. per yard, this costs $\$ 1500$ per mile. Broken-stone ballast must be filled out over the ends of the ties and therefore more is required; 2800 cubic yards of broken stone at $\$ 1.25$ per yard in place will cost $\$ 3500$ per mile.
(b) Ties. Ties cost anywhere from 80 c . down to 35 c . and even 25 c . At an average figure of 50 c ., 2640 ties per mile will cost $\$ 1320$ per mile of single track. The cheaper ties are usually smaller and more must be used per mile, and this tends to compensate the difference in cost.

The following tabular form is convenient for reference:
TABLE XV.-NUMBER OF CROSS TIES PER MİLE.

Spacing center to center.	Number per 30^{\prime} rail.	Number per mile.
18 inches	20	3520
20 ،	18	3168
21 ،	$17 \frac{1}{7}$	3017
22.5 "	16	2816
24 ، ${ }^{\text {c }}$	15	2640
25.71"،	14	2464
27 ، ${ }^{\text {c }}$	$13{ }^{1}$	2347
30 ،	12	2112

(c) Rails. The total weight of the rails used per mile may best be seen by the tabular form.

A convenient and useful rule to remember is that the number of long tons (2240 lbs.) per mile of single track equals the weight of the rail per yard times $\frac{11}{7}$. The rule is exact. For example, there are 3520 yards of rail in a mile of single track; at 70 lbs . per yard this equals 246400 lbs., or 110 long tons (exactly); but $70 \times \frac{11}{7}=110$.

Any calculation of the required weight of rail for a given weight of rolling-stock necessarily depends on the assumptions which are made regarding the support which the rails receive from the ties. This depends not only on the width and spacing

TABLE XVI.-TONS PER MILE (WI'H COST) OF RAILS OF VARIOUS WEIGHTS.

Weight in lbs. per yd.	Tons (2240 lb.) per mile of single track.	Cost at $\$ 26$ per ton.	Cost at $\$ 30$ per ton.	Weight in lbs. per yd.	> Tons (2240lb.) per mile of single track.	Cost at $\$ 26$ per ton.	Cost at $\$ 30$ per ton.
8	12.571	\$326.86	\$377.14	65	102.143	\$2655.71	\$3064.29
10	15.714	408.57	471.43	66	103.714	2696.57	3111.43
12	18.857	490.29	565.71	67	105.286	2737.43	3158.59
14	22.000	572.00	660.00	68	106.857	2778.29	3205.79
16	25.143	653.71	754.20	70	110.000	2860.00	3300.00
20	31.429	817.14	942.86	71	111.571	2900.86	3347.14
25	39.286	1021.43	1178.57	72	113.143	2941.71	3394.29
30	47.143	1225.71	1414.29	73	114.714	2982.57	3441.43
35	55.000	1430.00	1650.00	75	117.857	3064.29	3535.71
40	62.857	1634.29	1885.71	78	122.571	3186.86	3677.14
45	70.714	1838.57	2121.43	80	125.714	3268.5 '	3771.43
48	75.429	1961.14	2262.86	82	128.857	3350.29	3865.71
50	78.571	2042.86	2357.14	85	133.571	3472.86	4007.14
52	81.714	2124.57	2451.43	88	138.286	3595.43	4148.57
56	88.000	2288.00	2640.00	90	141.429	3677.14	4242.86
57	89.571	2328.86	2687.14	92	144.571	3758.86	4337.14
60	94.286	2451.43	2828.57	95	149.286	3881.43	4478.57
61	95.857	2492.29	2875.71	98	154.000	4004.00	4620.00
63	99.000	2574.00	2970.00	100	157.143	4085.71	4714.29

About two per cent. (2%) extra should be allowed for waste in cutting.
of the ties (which are determinable), but also on the support which the ties receive from the ballast, which is not only very uncertain but variable. No general rule can therefore claim any degree of precision, but the following is given by the Baldwin Locomotive Works: "Each ten pounds weight per yard of ordinary steel rail, properly supported by cross-ties (not less than 14 per 30 -foot rail), is capable of sustaining a safe load per wheel of 2240 pounds." For example, a consolidation locomotive with 112600 lbs . on 8 drivers has a load of 14075 lbs . per wheel. This divided by 2240 gives 6.28 . According to the rule, the rails for such a locomotive should weigh at least 62.8 lbs. per yard.
(d) Splice-bars, track-bolts, and spikes. These are usually sold by the pound, except the patented forms of rail-joints, which are sold by the pair. In any case they are subject to market fluctuations in price. As an approximate value the following prices are quoted: Splice-bars, 1.35 c. per pound; track-bolts, 2.4 c.; spikes, 1.75 c . The weight of the splicebars will depend on the precise pattern adopted-its crosssection and length. For a $45-\mathrm{-lb}$. rail an angle-bar whose original weight in the rolled section is 6.3 lbs . per foot might
be used. A pair 21 inches long would weigh 21.5 lbs . For a $70-\mathrm{lb}$. rail an angle-bar section weighing 9 to 12 lbs . per yard would be used. A pair of the $10-\mathrm{lb}$. section, with the long 44 -inch 6-hole bar, used by the Michigan Central Railroad, would weigh about 70 lbs. Angle-bars suitable for a $100-1 \mathrm{lb}$. rail will weigh about 14 to 16 lbs. per foot. The following tables will be useful for reference.

TABLE XVII.-SPLICE-BARS AND BOLTS PER MILE OF TRACK.

Length of rail.	Number of pairs of splicebars.	Number of bolts required.	
		4-hole splice.	6-hole splice.
24 feet	440	1760	2640
25 "	422	1688	2532
26 ،	406	1624	2436
$27 \times$	391	1564	2346
28 "	377	1508	2262
30 "	352	1408	2112
33 ،	320	1880	1920

TABLE XVIII.—RAIIROAD SI'IKES.

Size measured under head.	Average number per keg of 200 pounds	Ties 24" between centers, 4 spikes per tie, number per Mile.		Suitable weight of rail.
		Pounds.	Kegs.	
	375	5632	28.16	45 to 100
$5^{\prime \prime} \times{ }^{\prime \prime}{ }^{\prime \prime}{ }^{\prime \prime}{ }^{\prime \prime} \times \frac{1}{2}{ }^{\prime \prime}$	400 450	5280 4692	26.40 23.46	$40{ }^{40}$ " 56

TABLE XIX. TRACK-BOLTS.
Average number in a keg of 200 pounds.

Size of bolt.	$\begin{aligned} & \text { Square } \\ & \text { nut. } \end{aligned}$	Hexagonal nut.	Suitable rail.
$3^{\prime \prime} \times{ }^{\frac{3}{4 \prime}}$	250	270	
$3^{33_{1}^{\prime \prime}}{ }^{\prime \prime} \times{ }^{\prime \prime}{ }^{\prime \prime}{ }^{\prime \prime}$	243	261	
$3{ }^{\frac{1}{2}{ }^{\prime \prime}} \times{ }^{\prime \prime} \times{ }^{\frac{3}{4 \prime \prime}}$	236	253	
	229 222	234	
$33^{\frac{1}{2}}{ }^{\prime \prime} \times \times$ ¢ ${ }^{\prime \prime}$	170	180	and up-
$3{ }^{3 \prime}{ }^{\prime \prime} \times{ }^{\frac{7}{8}}$	165	175	ward.
$4{ }^{\prime \prime} \times{ }^{\prime \prime}{ }^{\prime \prime}$	161	170	
$4{ }^{\frac{1}{4}{ }^{\prime \prime}} \times{ }^{\prime \prime}{ }^{\frac{7}{8}}{ }^{\prime \prime}$	157	165	
$4{ }^{\frac{1}{2}}{ }^{\prime \prime} \times{ }^{\frac{7}{8}}$	153	160	

(e) Track-laying. Much depends on the force of men employed and the use of systematic methods; $\$ 528$ per mile is the estimate employed by the Pennsylrania Railroad. $\$ 500$ per mile is the estimate given in § 362 .
359. Item 8. Buildings and Miscellaneous Structures. Except for rough and preliminary estimates, these items must be individually estimated according to the circumstances. The subitems include depots, engine-houses, repair-shops, waterstations, section- and tool-houses, besides a large variety of smaller buildings. The structures include turn-tables, cattleguards, fencing, road-crossings, overhead bridges, etc. The detailed estimate, given in § 362, illustrates the cost of these smaller items.
360. Item 9. Interest on Construction. The amount of capital that must be spent on a railroad before it has begun to earn anything is so very large that the interest on the cost during the period of construction is a very considerable item. The amount that must be charged to this head depends on the current rate of money on the time required for construction and on the ability of the capitalists to retain their capital where it will be earning something until it is actually needed to pay the company's obligations. Of course, it is not necessary to have the entire capital needed for construction on hand when construction commences. Assuming money to be worth 6%, that the work of construction will require one year, that the money-may be retained where it will earn something for an average period of six months after construction commences, or, in other words, it will be out of circulation six months before the road is opened for traffic and begins to earn its way, then we may charge 3% on the total cost of construction.

36i. Item io. Telegraph LiNes. This evidently depends on the scale of the road and the magnitude of the business to be operated. In the following estimate it is given as $\$ 200$ per mile, which evidently is intended to apply to the business of a small road.
362. Detailed estimate of the cost of a line of road. The following estimate was given in the Engineering News of Dec. 27, 1900, of the cost of the Duluth, St. Cloud, Glencoe \& Mankato Railroad, 157.2 miles long.

The estimate is exactly as copied from the Engineering News. There are some numerical discrepancies. Item 26 should evi-
dently be based on the sum of the first 25 items, and item 27on the sum of the first 26. The figures in parentheses () arededuced from the figures given.

1. Right-of-way: 1905.3 acres (12.12 acres per mile) @ $\$ 100$ per acre $\$ 190530$
2. Clearing and grubbing. 144 acres (0.916 acre per mile) @ $\$ 50$ per acre. 7200
3. Earth excavation. 1907590 cu. yds. (12135 cu. yds. per mile) (a) 15 c. 286138
4. Rock excavation. 5100 cu. yds. (32.44 cu. yds. per mile) @ 80 c. 4080
5. $\{$ Wooden-box culverts. 508300 ft . B.M. @ $\$ 30$ per M. . $\$ 15249$
6. $\{$ Iron-pipe culverts: 879840 lbs. @ 3c. per lb............ . 26395 41644
7. $\{$ Pile trestling: 4600 lin. ft. @ 35 c. per lin. ft. 1610 $\{$ Timber trestling. 509300 ft. B.M. @ $\$ 30$ per M. 15279 16889
8. $\{$ Bridge masonry: 5520 cu. yds. @ $\$ 8$ per cu. yd. 44160
9. $\left\{\begin{array}{l}\text { Bridges, iron, } 100 \text { spans. } 2000000 \text { lbs. @ } 4 \text { c. per lb... } 80000 \quad 124160\end{array}\right.$
10. Cattle-guards 8750
11. Ties (2640 per mile). 419813 (159.02 M.) @ 35 c. 146935
12. Rails (70 lbs. per yd.): 110 tons per mile, 17492.2 tons (159.02 M.) $@ \$ 26$ 384797
13. Rail sidings (per yd.): 110 tons per mile, 3300 tons (30 M .) @ $\$ 26$ 85800
14. Switch timbers and ties. 3300
15. Spikes: 5920 lbs. per mile, 1107040 (187 M.) @ 1.75. c. per lb. 19373
16. Splice-bars. 2635776 lbs. @ 1.35 c. per lb. 35583
17. Track-bolts (2 to joint (?)): 188458.3 lbs. @ 2.4 c. per lb 4520
18. Track-laying 187.2 miles @ $\$ 500$ per mile. 93600
19. Ballasting • 2152 cu. yds. per mile, 402854 (187.2 M.) @ 60 c 24.1712
20. Turn-out and switch furnishings 6450
21. Road-crossings, 68040 ft. B.M. @ $\$ 30$ per M. 2041
22. Section and tool-houses, 16 @ $\$ 800$ 12800
23. Water-stations 15000
24. Turn-tables, 6 @ $\$ 800$ 4800
25. Depots, grounds, and repair-shops 78000
26. Terminal grounds and special land damages 150000
27. Fencing, 314 miles ($\$ 150$ per mile). 47100
28. Engineering and office expenses (5% of $\$ 1984458$) 99222
29. Interest on construction (3% of $\$ 2083680$) 62510
30. Rolling-stock ($\$ 5000$ per mile). 786000
31. Telegraph line: 157 miles @ $\$ 200$ per mile 31400

Average cost per mile ready for operation, $\$ 19467$.
Approximate cost of 130 miles from St. Cloud to Duluth, estimated at $\$ 23000$ per mile.
Approximate cost of entire line from Albert Lea to Duluth, 287.2 miles, $\$ 6050340$ ($\$ 21060$ per mile).

PART II.

RAILROAD ECONOMICS.

CHAPTER XVIII.

INTRODUCTION.

363. The magnitude of railroad business. The gross earnings of railroads for the year ending June 30, 1899, were over $\$ 1,300$,000,000 . This is greater than the combined value of all the gold, silver, iron, wheat, and corn produced by the country. The following figures (to the nearest million of dollars) gives the value of various crops for 1899, according to the current U. S. Yearbook of Agriculture:

About 929000 persons (about one eightieth of the population) were directly employed by the roads for a compensation of about $\$ 523,000,000$. Probably $3,000,000$ to $4,000,000$ people were supported by this. Beside all these, probably 5,000,000 employés were kept busy in occupations which are a more or less direct result of railroads, e.g., locomotive- and car-shops, rail-mills, etc. We may therefore estimate that perhaps $20,000,000$ people (or, say, one fourth of our population) are supported by railroads or by occupations which owe their chief existence to railroads.

The "number of passengers carried 1 mile" was $14,591,327,613$. Calling the population of the United States $75,000,000$ for round
numbers, it means an average ride of 195 miles for every man, woman, and child.

The "tons carried 1 mile" were $123,667,257,153$, or nearly 1650 ton-miles per inhabitant. The payments made to the railroads averaged over $\$ 17$ per inhabitant.

Turning to a dark side of the picture, we find that the traffic was carried on at a cost of 7123 killed and 44620 injured. This averages one killed every hour and a quarter and one injured every twelve minutes. Of these large numbers, the "passengers" comprised but 239 and 3442 respectively. The remainder were employés and "others," the "others" consisting largely of "trespassers."

The actual bona-fide cost of the railroads of the country cannot be accurately computed (as will be shown later), but the capital, as represented by stocks and bonds, represents $\$ 11,033,954,898$, or about $\$ 147$ per inhabitant. This is roughly about one sixth of the total national wealth.

The above figures may give some idea of the magnitude of the interests involved in the operation of railroads. No single business in the country approaches it in capital involved, earnings, number of people affected, or effect on other business.
364. Cost of transportation. The importance of railroads may be also indicated by their power of creating cheap transportation. Less than one hundred years ago local famine and overabundant harvests within a radius of a few miles were not unknown. When the transportation of goods depended on actual porterage by human beings, as has been the case but recently in the Klondike, the transportation of 100 lbs .20 miles might be considered an average day's labor. At $\$ 1$ per day, this equals $\$ 1$ per ton-mile. In 1899 the railroads transported freight at an average cost to the public of 0.724 c. per ton per mile, and the feeding of Europe with wheat from Manitoba has become a commercial possibility. In 1899 passengers paid an average charge of 1.925 c . per mile, and a trip of 1000 miles inside of 24 hours is now common.
365. Study of railroad economics-its nature and limitations. The multiplicity of the elements involved in most problems in railroad construction preclude the possibility of a solution which is demonstrably perfect. Barring out the comparatively few cases in this country where it is difficult to obtain any practicable location, it may be said that a comparatively
low order of talent will suffice to locate anywhere a railroad over which it is physically possible to run trains. It may be very badly located for obtaining business, the ruling grades may be excessive, the alignment may be very bad, and the road may be a hopeless financial failure, and yet trains can be run. Among the infinite number of possible locations of the road, the engineer must determine the route which will give the best railroad property for the least expenditure of moneythe road whose earning capacity is so great that after paying the operating expenses and interests on the bonds, the surplus available for dividends or improvements is a maximum.

An unfortunate part of the problem is that even the blunders are not always readily apparent nor their magnitude. A defective dam or bridge will give way and every one realizes the failure, but a badly located railroad affects chiefly the finances of the enterprise by a series of leaks which are only perceptible and demonstrable by an expert, and even he can only say that certain changes would probably have a certain financial value.
366. Outline of the engineer's duties. The engineer must realize at the outset the nature and value of the conflicting interests which are involved in variable amount in each possible route.
(a) The maximum of business must be obtained, and yet it may happen that some of the business may only be obtained by an extravagant expenditure in building the line or by building a line very expensive to operate.
(b) The ruling grades should be kept low, and yet this may require a sacrifice in business obtained and also may cost more than it is worth.
(c) The alignment should be made as favorable as possible; favorable alignment reduces the future operating expenses, but it may require a very large immediate outlay.
(d) The total cost must be kept within the amount at which the earnings will make it a profitable investment.
(e) The road must be completed and operated until the "normal" traffic is obtained and the road is self-supporting without exhausting the capital obtainable by the projectors: for no matter how valuable the property may ultimately become, the projectors will lose nearly, if not quite, all they have invested if they lose control of the enterprise before it becomes a paying investment.

Each new route suggested makes a new combination of the above conflicting elements. The engineer must select a route by first eliminating all lines which are manifestly impracticable and then gradually narrowing the choice to the best routes whose advantages are so nearly equal that a closer detailed comparison is necessary.

The ruling grade and the details of alignment have a large influence on the operating expenses. A large part of this course of instruction therefore consists of a study of operating expenses under average normal conditions, and then a study of the effect on operating expenses of given changes in the alignment.
367. Justification of such methods of computation. It may be argued that the data on which these computations are based are so unreliable (because variable and to some extent noncomputable) that no dependence can be based on the conclusions. This is true to the extent that it is useless to claim great precision in the computation of the value of any proposed change of alignment. Suppose, for example, it is computed that a given improvement in alignment will reduce the operating expenses of 20 trains per day by $\$ 1000$ per year. Suppose the change in alignment may be made for $\$ 5000$, which may be obtained at 5% interest. Even with large allowances for inaccuracy in the computation of the value, $\$ 1000$, it evidently will be better to incur an additional interest charge of $\$ 250$ than increase the annual operating expenses by $\$ 1000$. Moreover, since traffic is almost sure to increase (and interest charges are generally decreasing), the advantage of the improvement will only increase as time passes. On the other hand, if the improvement cannot be made except by an expenditure of, say, $\$ 50000$, the change would evidently be unjustifiable. When the interest on the first cost is practically equal to the annual operating value of the proposed improvement, there is evidently but little choice; no great harm can result from either decision, and the decision frequently will depend on the willingness to increase the total amount invested in the enterprise.

To express the above question more generally, in every computation of the operating value of a proposed improvement, it may always be shown that the true value lies somewhere between some maximum and some minimum. Closer calcula-
tions and more reliable data will narrow the range between these extrene values. According as the interest on the cost of the proposed improvement is greater or less than the mean of these limits, we may judge of its advisability. The range of the limits shows the uncertainty. If it lies outside of the limits there is no uncertainty, assuming that the limits have been properly determined. If well within the limits, either decision will answer unless other considerations determine the question. And so, although it is not often possible to obtain precise values, we may generally reach a conclusion which is unquestionable. Even under the most unfavorable circumstances, the computations, when made with the assistance of all the broad common sense and experience that can be brought to bear, will point to a decision which is much better than mere "judgment," which is responsible for very many glaring and costly railroad blunders. In short, Railroad Economics means the application of systematic methods of work plus experience and judgment, rather than a dependence on judgment unsys. tematically formed. It makes no pretense to furnishing mechanical rules by which all railroad problems may be solved by any one, but it does give a general method of applying principles by which an engineer of experience and judgment can apply his knowledge to better advantage. To the engineer of limited experience the methods are invaluable; without such methods of work his opinions are practically worthless; with them his conclusions are frequently more sound than the unsystematically formed judgments of a man with a glittering record. But the engineer of great experience may use these methods to form the best opinions which are obtainable, for he can apply his experience to make any necessary local modifications in the method of solution. The dangers lie in the extremes, either recklessly applying a rule on the basis of insufficient data to an unwarrantable extent, or, disgusted with such evident unreliability, neglecting altogether such systematic methods of work.

CHAPTER XIX.

THE PROMOTION OF RAILROAD PROJECTS.

368. Method of formation of railroad corporations. Many business enterprises, especially the smaller ones, are financed entirely by the use of money which is put into them directly in the form of stock or mere partnership interest. A railroad enterprise is frequently floated with a comparatively small financial expenditure on the part of the original promoters. The promoters become convinced that a railroad between A and B, passing through the intermediate towns of C and D, with others of less importance, will be a paying investment. They organize a company, have surveys made, obtain a charter, and then, being still better able (on account of the additional information obtained) to exploit the financial advantages of their scheme, they issue a prospectus and invite subscriptions to bonds. Sometimes a portion of these bonds are guaranteed, principal and interest, or perhaps the principal alone, by townships or by the national government. The cost of this pre-- liminary work, although large in gross amount if the road is extensive, is yet but an insignificant proportion of the total amount involved. The proportionate amount that can be raised by means of bonds varies with the circumstances. In the early history of railroad building, when a road was projected into a new country where the traffic possibilities were great and there was absolutely no competition, the financial success of the enterprise would seem so assured that no difficulty would be experienced in raising from the sale of bonds all the money necessary to construct and equip the road. But the promoters (or stockholders) must furnish all money for the preliminary expenses, and must make up all deficiencies between the proceeds of the sale of the bonds and the capital needed for construction.
"In theory, stocks represent the property of the responsible owners of the road, and bonds are an encumbrance on that
property. According to this theory, a railroad enterprise should begin with an issue of stock somewhere near the value of the property to be created and no more bonds should be issued than are absolutely necessary to complete the enterprise. Now it is not denied that there are instances in which this theory is followed out. In New England, for example, as well as in some of the Southern States, there are a few roads represented wholly by stock or very lightly mortgaged. But this theory does not conform to the general history of railway construction in the United States, nor is it supported by the figures that appear in the summary. The truth is, railroads are built on borrowed capital, and the amount of stock that is issued represents in the majority of cases the difference between the actual cost of the undertaking and the confidence of the public expressed by the amount of bonds it is willing to absorb in the ultimate success of the venture." *
"The same general law obtains and has always obtained throughout the world, that such properties (as railways) are always built on borrowed money up to the limit of what is regarded as the positive and certain minimum value. The risk only-the dubious margin which is dependent upon sagacity, skill, and good management-is assumed and held by the company proper who control and manage the property." \dagger
369. The two classes of financial interests-the security and profits of each. From the above it may be seen that stocks, bonds, car-trust obligations, and even current liabilities represent railroad capital. The issue of the bonds "was one means of collecting the capital necessary to create the property against which the mortgage lies." The variation between these interests lies chiefly in the security and profits of each. The current liabilities are either discharged or, as frequently happens, they accumulate until they are funded and thus become a definite part of the railroad capital.

The growth of this tendency is shown in the following tabular form:

The bonded interest has greater security than the stock, but less profit. The interest on the bonds must be paid before any money can be disbursed as dividends. If the bond interest

[^26]| Railroads in the United States. | June 30, 1888. | | June 30, 1898. | |
| :---: | :---: | :---: | :---: | :---: |
| | Amount, millions. | Per cent. | Amount, millions. | Per cent. |
| Stocks. . | 3864 | 47.5 | 5311 | 44.6 |
| Funded deli | 3869 | 47.6 | 5510 | 46.3 |
| Current liabilities, etc. | 396 | 4.9 | 1087 | 9.1 |

is not paid, a receivership, and perhaps a foreclosure and sale of the road, is a probability, and in such case the stockholder's interests are frequently wiped out altogether. The bondholder's real profit is frequently very different from his nominal profit. He sometimes buys the bonds at a very considerable discount, which modifies the rate which the interest received bears to the amount really invested. Even the bondholder's security may suffer if his mortgage is a second (or fifth) mortgage, and the foreclosure sale fails to net sufficient to satisfy all previous claims.

On the other hand, the stockholder, who may have paid in but a small proportion of his subscription, may, if the venture is successful, receive a dividend which equals 50 or 100% of the money actually paid in, or, as before stated, his entire holdings may be entirely wiped out by a foreclosure sale. When the road is a great success and the dividends very large, additional issues of stock are generally made, which are distributed to the stockholders in proportion to their holdings, either gratuitously or at rates which give the stockholders a large advantage over outsiders. This is the process known as "watering." While it may sometimes be considered as a legitimate "salting down" of profits, it is frequently a cover for dishonest manipulation of the money market.

For the twelve years between 1887 and 1899 about two thirds of all the railroad stock in the United States paid no dividends, while of those that paid dividends the average rate varied from 4.96 to 5.74%. The year from June 30, 1898, to June 30, 1899, was the most prosperous year of the group, and yet nearly 60% of all railroad stock paid no dividend, and the average rate paid by those which paid at all was 4.96%. The total amount distributed in dividends was greater than ever before, but the average rate is the least of the above group because many roads, which had passed their dividends for many previous
years, distinguished themselves by declaring a dividend, even though small. During that same period but 13.35% of the stock paid over 6% interest. The total dividends paid amounted to but 2.01% of all the capital stock, while investments ordinarily are expected to yield from 4 to 6% (or more) according to the risk. Of course the effect of "watering" stock is to decrease the nominal rate of dividends, but there is no dodging the fact that, watered or not, even in that year of "good times," about 60% of all the stock paid no dividends. Unfortunately there are no accurate statistics showing how much of the stock of railroads represents actual paid-in capital and how much is "water." The great complication of railroad finances and the dishonest manipulation to which the finances of some railroads have been subjected would render such a computation practically worthless and hopelessly unreliable now.

During the year ending June 30, 1898 (which may in general be considered as a sample), 15.82% of the funded debt paid no interest. About one third of the funded debt paid between 4 and 5% interest, which is about the average which is paid.

The income from railroads (both interest on bonds and dividends on stock) may be shown graphically by diagrams, such as are given in the annual reports of the Interstate Commerce Commission. They show that while railroad investments are occasionally very profitable, the average return is less than that of ordinary investments to the investors. The indirect value of railroads in building up a section of country is almost incalculable and is worth many times the cost of the roads. It is a discouraging fact that very fow railroads (old enough to have a history) have escaped the experience of a receivership, with the usual financial loss to the then stockholders. But there is probably not a railroad in existence which, however much a financial failure in itself, has not profited the community more than its cost.
370. The small margin between profit and loss to projectors. When a railroad is built entirely from the funds furnished by its promoters (or from the sale of stock) it will generally be a paying investment, although the rate of payment may be very small. The percentage of receipts that is demanded for actual operating expenses is usually about 67%. The remainder will usually pay a reasonable interest on the total capital involved. But the operating expenses are frequently 90 and even 100% of
the gross receipts. In such cases even the bondholders do not get their due and the stockholders have absolutely nothing. Therefore the stockholder's interest is very speculative. A comparatively small change in the business done (as is illustrated numerically in § 372) will not only wipe out altogether the dividend-taken from the last small percentage of the total receipts and which may equal 50% or more of the capital stock actually paid in-but it may even endanger the bondholders' security and cause them to foreclose their mortgage. In such a case the stockholders' interest is usually entirely lost. It does not alter the essential character of the above-stated relations that the stockholders sometimes protect themselves somewhat by buying bonds. By so doing they simply decrease their risk and also decrease the possible profit that might result from the investment of a given total amount of capital.
371. Extent to which a railroad is a monopoly. It is a popular fallacy that a railroad, when not subject to the direct competition of another road, has an absolute monopoly-that it controls "all the traffic there is" and that its income will be practically independent of the facilities afforded to the public. The growth of railroad traffic, like the use of the so-called necessities or luxuries of life, depends entirely on the supply and the cost (in money or effort) to obtain it. A large part of railroad traffic belongs to the unnecessary class-such as traveling for pleasure. Such traffic is very largely affected by mere matters of convenience, such as well-built stations, convenient terminals, smooth track, etc. The freight traffic is very largely dependent on the possibility of delivering manufactured articles or produce at the markets so that the total cost of production and transportation shall not exceed the total cost in that same market of similar articles obtained elsewhere. The creation of facilities so that a factory or mine may successfully compete with other factories or mines will develop such traffic. The receipts from such a traffic may render it possible to still further develop facilities which will in return encourage further business. On the other hand, even the partial withdrawal of such facilities may render it impossible for the factory or mine to compete successfully with rivals; the traffic furnished by them is completely cut off and the railroad (and indirectly the whole community) suffers correspondingly. The "strictly necessary" traffic is thus so small that few railroads could pay
their operating expenses from it. The dividends of a road come from the last comparatively small percentage of its revenue, and such revenue comes from the "unnecessary" traffic which must be coaxed and which is so easily affected by apparently insignificant "conveniences."
372. Profit resulting from an increase in business done; loss resulting from a decrease. In a subsequent chapter it will be shown that a large portion of the operating expenses are independent of small fluctuations in the business done and that the operating expenses are roughly two thirds of the gross revenue. Assume that by changes in the alignment the business obtained has been increased (or diminished) 10%. Assume for simplicity that the operating expenses on the revised track are the same as on the route originally planned; also that the cost of the track is the same and hence the fixed charges are assumed to be constant for all the cases considered. Assume the fixed charges to be 25%. The additional business, when carried in cars otherwise but partly filled will hardly increase the operating expenses by a measurable amount. When extra cars or extra trains are required, the cost will increase up to about 60% of the average cost per train mile. We may say that 10% increase may in general be carried at a rate of 40% of the average cost of the traffic. A reduction of 10% in traffic may be assumed to reduce expenscs a similar amount. The effect of the change in business will therefore be as follows:

	Business increased 10\%.	Business decreased 10%.
Operating exp. $=67$	$67(1+10 \% \times 40 \%)=69.68$	$67(1-10 \% \times 40 \%)=64.32$
Fixed charges $=28$	28.00	
95	97.68	92.32
Total income. . 100	Income. 110.00	Income. 90.00
Available for dividends.	Available for dividends............ . 12.32	Deficit. 2.32

In the one case the increase in business, which may often be obtained by judicious changes in the alignment or even by better management without changing the alignment, more than doubles the amount available for dividends. In the other case the profits are gone, and there is an absolute deficit. The above is a numerical illustration of the argument, previously
stated, of the small margin between profit and loss to the original projectors.
373. Estimation of probable volume of traffic and of probable growth. Since traffic and traffic facilities are mutually interdependent and since a large part of the normal traffic is merely potential until the road is built, it follows that the traffic of a road will not attain its normal volume until a° considerable time after it is opened for operation. But the estimation even of this normal volume is a very uncertain problem. The estimate may be approached in three ways:

1 st. The actual gross revenue derived by all the railroads in that section of the country (as determined by State or U.S. Gov. repoits) may be divided by the total population of the section and thus the average annual expenditure per head of population may be determined. A determination of this value for each one of a series of years will give an idea of the normal rate of growth of the traffic. Multiplying this annual contribution by the population which may be considered as tributary gives a valuation of the possible traffic. Such an estimate is unreliable (a) because the average annual contribution may not fit that particular locality, (b) because it is very difficult to correctly estimate the number of the true tributary population especially when other railroads encroach more or less into the territory. Since a rough value of this sort may be readily determined, it has its value as a check, if for nothing else.

2 d . The actual revenue obtained by some road whose circumstances are as nearly as possible identical with the road to be considered may be computed. The weak point consists in the assumption that the character of the two roads is identical or in incorrectly estimating the allowance to be made for observed differences. The method of course has its value as a check.

3d. A laborious calculation may be made from an actual study of the route-determining the possible output of all factories, mines, etc., the amount of farm produce and of lumber that might be shipped, with an estimate of probable passenger traffic based on that of like towns similarly situated. This method is the best when it is properly done, but there is always the danger of leaving out sources of income-both existent and that to be developed by traffic facilities, or, on the other hand, of overestimating the value of expected traffic. In the
following tabular form are shown the population, gross receipts, receipts per head of population, mileage, earnings per mile of line operated, and mileage per 10,000 of population for the whole United States. It should be noted that the values are only averages, that individual variations are large, and that only a very rough dependence may be placed on them as applied to any particular case.

Year.	Population (estimated).	Gross receipts.	Receipts per head of population.	Mileage. \dagger	Earnings per mile of line operated.	Mileage per 10,000 population. \ddagger
1888	60,100,000	\$910,621,220	\$15.15	136,884	\$6653	94
1839.	61,450,000	964,816,129	15.81	153,385	6290	25.67
1890.	*62,801,571	1051,877,632	16.75	156,404	6725	26.05
1891.	64,150,000	1096,761,395	17.10	161,275	6801	26.28
1892.	65,500,000	1171,407,343	17.89	162,397	7213	26.19
1893.	68,850,000	1220,751,874	18.26	169,780	7190	26.40
1894.	68,200,000	1073,361,797	15.74	175,691	6109	26.20
1895.	69,550,000	1075,371,462	15.46	177,746	6050	25.97
1896.	70,900,000	1150,169,376	16.22	181,983	6320	25.78
1897.	72,350,000	1122,089,773	15.53	183,284	6122	25.53
1898.	73,600,000	1247,325,621	16.95	184,648	6755	25.32
1899.	74,950,000	1313,610,118	17.53	187,535	7005	25.25
1900.	*76,295,220	1480,673,054	19.41	190,406	7776	24.96

* Actual.
\dagger Excludes a small percentage not reporting "gross receipts." \ddagger Actual mileage.

The probable growth in traffic, after the traffic has once attained its normal volume, is a small but almost certain quantity. In the above tabular form this is indicated by the gradual growth in "receipts per head of population" from 1888 to 1893. Then the sudden drop due to the panic of 1893 is clearly indicated, and also the gradual growth in the last few years. Even in England, where the population has been nearly stationary for many years, the growth though small is unmistakable. On the other hand the growth in some of the Western States has been very large. For example, the gross earnings per head of population in the State of Iowa increased from \$1.42 in 1862 to $\$ 10.00$ in 1870 , and to $\$ 19.46$ in 1884 .

There will seldom be any justification in building to accommodate a larger business than what is "in sight." Even if it could be anticipated with certainty that a large increase in
business would come in ten years, there are many reasons why it would be unwise to build on a scale larger than that required for the business to be immediately handled. Even though it may cost more in the future to provide the added accommodations (e.g. larger terminals, engine-houses, etc.), the extra expense will be nearly if not quite offset by the interest saved by avoiding the larger outlay for a period of years which may often prove much longer than was expected. A still more important reason is the avoidance of uselessly sinking money at a time when every cent may be needed to insure the success of the enterprise as a whole.
374. Probable number of trains per day. Increase with growth of traffic. The number of passenger trains per day cannot be determined by dividing the total number of passengers estimated to be carried per day by the capacity of the cars that can be hauled by one engine. There are many small railroads, running three or four passenger trains per day each way, which do not carry as many passengers all told as are carried on one heavy train of a trunk line. But because the bulk of the passenger traffic, especially on such light-traffic roads, is " unnecessary" traffic (see § 371) and must be encouraged and coaxed, the trains must be run much more frequently than mere capacity requires. The minimum number of passenger trains per day on even the lightest-traffic road should be two. These need not necessarily be passenger trains exclusively. They may be mixed trains.

The number required for freight service may be kept more nearly according to the actual tonnage to be moved. At least one local freight will be required, and this is apt to be considerably within the capacity of the engine. Some very light-traffic roads have little else than local freight to handle, and on such there is less chance of economical management. Roads with heavy traffic can load up each engine quite accurately according to its hauling capacity and the resulting economy is great. Fluctuations in traffic are readily allowed for by adding on or dropping off one or more trains. Passenger trains must be run on regular schedule, full or empty. Freight trains are run by train-despatcher's orders. A few freight trains per day may be run on a nominal schedule, but all others will be run as extras. The criterion for an increase in the number of passenger trains is impossible to define by set rules. Since it should always
come before it is absolutely demanded by the train capacity being overtaxed, it may be said in general terms that a train should be added when it is believed that the consequent increase in facilities will cause an increase in traffic the value of which will equal or exceed the added expense of the extra train.
375. Effect on traffic of an increase in facilities. The term facilities here includes everything which facilitates the transport of articles from the door of the producer to the door of the consumer. As pointed out before, in many cases of freight transport, the reduction of facilities below a certain point will mean the entire loss of such traffic owing to local inability to successfully compete with more favored localities. Sometimes owing to a lack of facilities a railroad company feels compelled to pay the cartage or to make a corresponding reduction on what would normally be the freight rate. In competitive freight business such a method of procedure is a virtual necessity in order to retain even a respectable share of the business. Even though the railroad has no direct competitor, it must if possible enable its customers to meet their competitors on even terms. In passenger business the effect of facilities is perhaps even more marked. The pleasure travel will be largely cut down if not destroyed. It is on record that a railroad company once ordered the manager of a station restaurant to largely increase the attractions at that restaurant (as a method of attracting traffic) and agreed to pay the expected resulting loss. The net result was not only a large increase in railroad business (as was expected), but even an increase in the profits of the restaurant.
376. Loss caused by inconvenient terminals and by stations far removed from business centers. This is but a special case of the subject discussed just in the preceding paragraph. The competition once existing between the West Shore and the New York Central was hopeless for the West Shore from the start. The possession of a terminal at the Grand Central Station gave the New York Central an advantage over the West Shore with its inconvenient terminal at Weehawken which could not be compensated by any obtainable advantage by the West Shore. This is especially true of the passenger business. The through freight business passing through or terminating at New York is handled so generally by means of floats that the disadvantage in this respect is not so great. The
enormous expenditure (roughly $\$ 10,000,000$) made by the Pennsylvania R. R., on the Broad Street Station (and its approaches) in Philadelphia, a large part of which was made in crossing the Schuylkill River and running to City Hall Square, rather than retain their terminal in West Philadelphia, is an illustration of the policy of a great road on such a question. The fact that the original plan and expenditure has been very largely increased since the first construction proves that the management has not only approved the original large outlay, but saw the wisdom of making a very large increase in the expenditure.

The construction of great terminals is comparatively infrequent and seldom concerns the majority of engineers. But an engineer has frequently to consider the question of the location of a way station with reference to the business center of the town. The following points may (or may not) have to be considered, and the real question consists in striking a proper balance between conflicting considerations.
(1) During the early history of a railroad enterprise it is especially needful to avoid or at least postpone all expenditures which are not demonstrably justifiable.
(2) The ideal place for a railroad station is a location immediately contiguous to the business center of the town. The location of the station even one fourth of a mile from this may result in a loss of business. Increase this distance to one mile and the loss is very serious. Increase it to five miles and the loss approaches 100%.
(3) The cost of the ideal location and the necessary right of way may be a very large sum of money for the new enterprise. On the other hand the increase in property values and in the general prosperity of the town, caused by the railroad itself, will so enhance the value of a more convenient location that its cost at some future time will generally be extravagant if not absolutely prohibitory. The original location is therefore under ordinary conditions a finality.
(4) To some extent the railroad will cause a movement of the business center toward it, especially in the establishment of new business, factories, etc., but the disadvantages caused to business already established is permanent.
(5) In any attempt to compute the loss resulting from a location at a given distance from the business center it must be
recognized that each problem is distinct in itself and that any change or growth in the business of the town changes the amount of this loss.

The argument for locating the station at some distance from the center of the town may be based on (a) the cost of right of way, thus involving the question of a large initial outlay, (b) the cost of very expensive construction (e.g. bridges), again involving a large initial outlay, (c) the avoidance of excessive grade into and out of the town. It sometimes happens that a railroad is following a line which would naturally cause it to pass at a considerable elevation above (rarely below) the town. In this case there is to be considered not only the possible greater initial cost, but the even more important increase in operating cost due to the introduction of a very heavy grade. To study such a case, compute the annual increase in operating expenses due to the additional grade, curvature, and distance; add to this the annual interest on the increased initial cost (if any) and compare this sum with the estimated annual loss due to the inconvenient location. The estimation of the increase in operating expenses is discussed in a subsequent chapter. The loss of business due to inconvenient location can only be guessed at. Wellington says that at a distance of one mile the loss would average 25%, with upper and lower limits of 10 and 40%, depending on the keenness of the competition and other modifying circumstances. For each additional mile reduce 25% of the preceding value. While such estimates are grossly approximate, yet with the aid of sound judgment they are better than nothing and may be used to check gross errors.
377. General principles which should govern the expenditure of money for railroad purposes. It will be shown later that the elimination of grade, curvature, and distance have a positive money value; that the reduction of ruling grade is of far greater value; that the creation of facilities for the handling of a large traffic is of the highest importance and yet the added cost of these improvements is sometimes a large percentage of the cost of some road over which it would be physically possible to run trains between the termini.

The subsequent chapters will be largely devoted to a discussion of the value of these details, but the general principles governing the expenditure of money for such purposes may be stated as follows:

1. No money should be spent (beyond the unavoidable minimum) unless it may be shown that the addition is in itself a profitable investment. The additional sum may not wreck the enterprise and it may add something to the value of the road, but unless it adds more than the improvement costs it is not justifiable.
2. If it may be positively demonstrated that an improvement will be more valuable to the road than its cost, it should certainly be made even if the required capital is obtained with difficulty. This is all the more necessary if the neglect to do so will permanently hamper the road with an operating disadvantage which will only grow worse as the traffic increases.
3. This last principle has two exceptions: (a) the cost of the improvement may wreck the whole enterprise and cause a total loss to the original investors. For, unless the original promoters can build the road and operate it until its stock has a market value and the road is beyond immediate danger of a receivership, they are apt to lose the most if not all of their investment; (b) an improvement which is very costly although unquestionably wise may often be postponed by means of a chear temporary construction. Cases in point are found at many of the changes of alignment of the Pennsylvania R. R., the N. Y.,'N. H. \& H. R. R., and many others. While some of the cases indicate faulty original construction, at many of the places the original construction was wise, considering the then scanty traffic, and now the improvement is wise considering the great traffic.

CHAPTER XX.

OPERATING E.XPENSES.

378. Distribution of gross revenue. When a railroad comprises but one single property, owned and operated by itself, the distribution of the gross revenue is a comparatively simple matter. The operating expenses then absorb about two thirds of the gross revenue; the fixed charges (chiefly the interest on the bonds) require about 25 or 30% more, leaving perhaps 3 to 8% (more or less) available for dividends. A recent report on the Fitchburg R. R. shows the following:

Operating expenses.	\$5,083,571	69.1%
Fixed charges.	1,567,640	21.3\%
Available for dividends manent improvements	708,259	9.6\%
Total revenue	\$7,359,470	100.0\%

But the financial statements of a large majority of the railroad corporations are by no means so simple. The great consolidations and reorganizations of recent years have been effected by an exceedingly complicated system of leases and sub-leases, purchases, " mergers," etc., whose forms are various. Railroads in their corporate capacity frequently own stocks and bonds of other corporations (railroad properties and otherwise) and receive, as part of their income, the dividends (or bond interest) from the investments.

In consequence of this complication, the U. S. Interstate Commerce Commission presents a "condensed income account" of which the following is a sample (1899):

Gross earnings from operation (received by station-agents, etc).	\$1,313.610,118
Less operating expenses (fuel, wages, etc.)	856.968,999
Income from operation.	456,641,119
Income from other sources (lease of road, stocks, bonds, etc.).	148.713,983
Total income.	605,355,102

Total deductions from income (interest, rents for lease of road, taxes, etc.).	441 200,289
Net income.	164,154,813
Total dividends (including 'other payments')	111,089,936
Surplus from operation	53,064,87.7

In the above account an item of income (e.g. lease of road) reported by one road will be reported as a "deduction from income" by the road which leases the other.

The above statement may be reduced to an income account of all the railways considered as one system. We then have

Operating expenses.	\$856,968,999	
Salaries and maintenance of leased lines (really operating expenses, but considered above as fixed charges against the leasing lines). \qquad	595,192	
	857,564,191	64.1\%
Net interest and taxes.	295,098,014	22.0\%
Available for dividends, adjustments, and improvements.	186,992,909	13.9\%
	1,339,655,114	100.0\%
Gross earnings from operation.	1,313,610,118	
Clear income from investments (i.e., the balance of intercorporate payments and receipts on corporate investments).	26,044,996	
	1.339,655,114	

Of the $\$ 186,992,909$, the amount disbursed as dividends to outside stockholders (besides that paid to railroads in their corporate capacity) was $\$ 94,273,796$. This left a balance of $\$ 92,719,113$ "available for adjustments and improvements." Of this part was spent in permanent improvements, part was advanced to cover deficits in the operation of weak lines and more than half was left as "surplus," i.e. working capital.

The percentages of the gross revenue which are devoted to operating expenses, fixed charges, and dividends are not necessarily an indication of creditable management or the reverse. Causes utterly beyond the control of the management, such as the local price of coal, may abnormally increase certain items of expense, while ruinous competition may cut down the gross revenue so that little or nothing is left for dividends. A favorable location will sometimes make a road prosperous
in spite of bad management. On the other hand, the highest grade of skill will fail to keep some roads out of the hands of a receiver.
379. Fourfold distribution of operating expense. The distribution of operating expenses here used is copied from the method of the Interstate Commerce Commission. The aim is to divide the expenses into groups which are as mutually independent and distinet as possible-although, as will be seen later, a change in one item of expense will variously affect other items. The groups are:
Average value.1. Maintenance of way and structures.20.662\%The values for five years have an extreme range ofabout 1.2%. The subdivisions of this group and ofthe others will be given later.
2. Maintenance of equipment. 16.892\%Extreme range of 1.834%. The tendency has beenfor this item to grow larger, not only in absolute amountbut in percentage of total expenditure.
3. Conducting transportation.57.793\%This item has been growing relatively less. During(and immediately after) the panic of 1893 , the main-tenance of way and of equipment was made as smallas possible, which made the cost of conducting trans-portation relatively larger. During the recent moreprosperous years deficiencies of equipment have beenmade up, making this item relatively less.
4. General expenses 4.653\%
A nearly constant item.100.000%

The above percentages represent the averages given by the reports for the five years from 1895 to 1899 inclusive.
380. Operating expenses per train-mile. The reports of the U. S. Interstate Commerce Commission give the average cost per train-mile for every railroad in the United States. Although there are wide variations in these values, it is remarkable that the very large majority of roads give values which agree to within a small range, and that within this range are found not only the great trunk lines with their enormous train mileage, but also roads with very light traffic.

In the following tabular form is shown a statement taken from the report for 1898 of ten of the longest railroads in the United States and, in comparison with them, a corresponding statement
regarding ten more roads selected at random, except in the respect that each had a mileage of less than 100 miles. Although the extreme variations are greater, yet there is no very marked difference in the general values for operating expenses per train-mile, or in the ratio of expenses to earnings. The averages for the ten long roads agree fairly well with the averages for the whole country, but there would be no trouble (as is shown by some of the individual cases) in finding another group of ten short roads giving either greater or less average values than those given. And yet the tendency to uniform values, regardless of the mileage, is very striking.

The constancy of the average cost per train mile for several years past may be noted from the following tabular form.

The enforced economies after the panic of 1893 are well shown. The reduction generally took the form of a lowering of the standards of maintenance of way and of maintenance of

Year.	Average cost per train-mile.
1890	96.006
1892.	95.707 96.580
1893.	97.272
1894.	93.478
1895.	91.829
1896.	93.838
1897.	92.918
1898.	95.635 98.390
1899.	$\underline{98.390}$
	95.165

equipment. The marked advance from 1897 to 1898 and to 1899 was largely caused by the necessity for restoring the roads to proper condition, replenishing worn-out equipment and providing additional equipment to handle the greatly increased volume of business.

In looking over the list, it may be noted that the cases where the operating expenses per train-mile and the ratio of expenses to earnings vary very greatly from the average are almost invariably those of the very small roads or of "junction roads" where the operating conditions are abnormal. For example, one little road, with a total length of 13 miles and total annual operating expenses of $\$ 5342$, spent but $22 \frac{1}{1} \mathrm{c}$. per train-mile, which precisely exhausted its earnings. As another abnormal case, a road 44 miles long spent $\$ 3.81$ per train-mile, which was nearly fourteen times its earnings. In another case a road 13 miles long earned $\$ 7.76$ per train-mile and spent $\$ 6.03$ (78%) on operating expenses, but the fixed charges were abnormal and the earnings were less than half the sum of the operating expenses and fixed charges. The normal case, even for the small road, is that the cost per train-mile and the ratio of operating expenses to earnings will agree fairly well with the average, and when there is a marked difference it is generally due to some abnormal conditions of expenses or of earning capacity.
381. Reasons for uniformity in expenses per train-mile. The chief reason is that, although on the heary-traffic road everything is kept up on a finer scale, better roadbed, heavier rails, better rolling stock, more employees, better buildings, stations, and terminals, etc., yet the number of trains is so much greater that the divisor is just enough larger to make the average
cost about constant. This is but a general statement of a fact which will be discussed in detail under the different items of expense.
382. Detailed classification of expenses with ratios to the total expense. The Interstate Commerce ${ }^{\text {Commission now }}$ publishes each year a classification with detailed summation for the cost of each item. These summations are made up from reports furnished by railroads which have (in the reports already made) represented about 94% of the total traffic handled. In the annexed tabular form (Table XX) are shown the percentages which each item bears to the total. The character of the changes from year to year in these ratios is very instructive and will be considered in the detailed discussion of the items which will follow.

Table XX is copied from the Interstate Commerce Commission report for 1899, pp. 88-90.
383. Elements of the cost (with variations and tendencies) of the various items. The I. C. C. report for the year ending June 30, 1895, was the first to include the distribution of expenses according to the present classification. The number of reports since then are too few to be of much value in determining the tendency to variation of the several items, and similar calculations made in previous years have by no means an equal reliability. Nevertheless the items as given are reliable and may be utilized, as far as any such computations are to be depended on, in estimating future expenses. A great deal of very interesting and instructive information may be derived from a study of the variations of these items, but the chief purpose of this discussion is to point out those elements of the cost of operating trains which may be affected by such changes of location as an engineer is able to make. There are some items of expense with which the engineer has not the slightest concern-nor will they be altered by any change in alignment or constructive detail which he may make. In the following discussion such items will be passed over with a brief discussion of the sub-items included.

MAINTENANCE OF WAY.

384. Item r. Repairs of Roadway. The item of repairs of roadway is very large-about half of the total cost of main-
 proportion of each class to totili, classified for the vears ending june 30,1899 to 1895.

Jtem.	Amount.	Per cent,				
	1899.	1890.	1898.*	1897.†	1896.	1895. ${ }^{\text {S }}$
2. Rephewals of rails.	$\begin{array}{r}\$ 87,307,140 \\ 10.76 \% \\ \hline 8.381\end{array}$	10.320 1.322	10.643 1.391	10.644	10.738 1.4 4.4	10.235 1.199
3. Renewals of ties..	2 $3,623,325$	2.901	3.232	3.357	3.025	2.918
4. Repuirs and renewals of bridges and culverts.	19,335,860	2.374	2.512	2.472	2.265	2.268
5. Repairs and renewals of fences, roat crossings, sigus, mat cattle-guards.	3,968.408	487	. 237	. 509	[1]	. 520
G. Repairs and renewals of buildings and fixtures:	17.762.120	2.181	1.957	1.545	1.704	1.618
7. lepains and renewals of locks ami wharves.	2,070,098	.254,	. 245	. 231	. 270	. 235
8. Repairs and rencwals of telegraph.	1,1,53,408	.142	.137	. 126	. 135	$\bigcirc 13.4$
9. Statinnery and primion	208	.1126	. 1125	.024	.027	. 033
16. Uther expenses..	3,628.539	. 4.46	. 348	. 318	.372	.304
Total.	8169,825,054	20.853	21.028	20.972	20.6331	10.824
Maintenance of equipment :						
11. Superintendence....	\$5, 147.586	. 632	. 6.56	. 667	660	699
12. Hepmirs and renewals of locomotives	50,555,26.4	6. 208	5.887	5.663	5.978	5.660
13. Repairs and renewals of pascenger ears.	17.693.13.1	2.164	2.188	2.263	2.216	2.211
14. Repairs ami renewats of freight cars...	$57,320.521$	7.038	7.210	6.376	7.193	6.108
		. 210	. 159	. 140	. 145	. 121
16. Remars and renewals of marine equip-	2.012 .478	.2.47	242	.215	173	167
17. Repaimand renewals of shop machinery : Itid tools.	4.167.998	.512	. 486	.17.8		.153
18. Stationery mal printing	320,26,	. 1940	. 1138	. 139	(14)	.171
10. Ohlier expenses.	4,429,987	. 54.4	. 1973	.500	. 40	. 469
Total.	814:3,294,445	17 , 39.3	17.3359	16,352	17.391	15.761

Item.	Amount.	Yer cent.				
	1803.	1.809.	1398.*	1897.+	1896. \ddagger	1895.8
Conducting transportation:	S14,392,691					
20. Superintendencc. Enco..	78.913 .978	9.694	9.644	1.845	1.731	1.718 9.917
22. Fuel for locometives.	77.187 .3344	9.478	9.457	9.392	9.669	10.408
23. Water-supply for locomotives. ..	5,038,615	. 619	. 6.16	. 67%	. 691	. 724
24. Oil, tallow, and waste for locombtives.	2.022 .095	. 359	. 355	.37-4	. 379	. 413
25. Other supplies for locomotives.	$1.438 .05-1$. 177	-136	.160	. 289	. 200
26. Train service.	$61.756,607$ 12.439 .65	7.583	7.600	7.589	7.784	7.993
27. Train supplies and expenses. . ${ }^{\text {a }}$	12,439,675	1.527	1.525	1.508	1.556	1.520
28. Switehmen, flagmen, and whtch-	33.791,383	4.149	4.1080	4.17 J	4.120	4.160
29. Telegraph expenses.	15,525. 23, ${ }^{3}$	1. 906	1.915	2.000	1.978	2.078
30. Slation service	61.160 .733	7.511	7.ins	8.002	7.710	8.112
31. Station supplies... ${ }^{\text {3 }}$, ${ }^{\text {a }}$	$\begin{aligned} & 5.664,11+5 \\ & 2.895 \end{aligned}$	- 696	. 692	. 751	. 794	. 876
32. Swithing charges, ba	16.895 897.903	2.350	2. $\begin{array}{r}\text {-3.31 } \\ 2\end{array}$	$\begin{array}{r}327 \\ 2.203 \\ \hline\end{array}$	2.350	.344 2.096
34. Hire of equipment, ba	1-993,088	-. 368	2.117 .342	$\begin{array}{r}2.203 \\ \hline 2.19\end{array}$	2.051 .322	2.096 .384
35. Loss and damage.	5,976.182	. 734	.706	. 692	.77)	. 78.4
?: 6 limuries to person	7.116 .212	. ST 4	. 882	. 874	. 810	. 045
37. Clearing wreeks.	1.197 .903	. 147	. 130	-123	. 126	. 130
38. Operating marine equip	7,065,668	. 868	. 958	. 931	. 826	. 848
39. Advertising.	3.569 .073	. 438	- 117	. 128	. 417	429
10. Outside agencie	$1+.507 .499$	1.781	1.762	1.727	1.567	1.623
41. Conmmissions,	1.580 .909	. 194	. 181	. 158	. 168	. 154
12. Stockyards and elevators.	936,939	115	-15is	. 140	. 126	116
43. Rents for tracks, yards, aud terminals	15,482,170	1.901	1.914	1.95 .3	1.746	1. 29
44. Rents for buildings and other property...	3,967 35.5	. 187				
45. Stationery and printing	5.107 .066	. 027	. 583	. 633	.616	.589
16. Other expenses	5,456,377	. \%1)	. 62.1	. 387	. 517	. Gi69
Total.	S $4134,450,584$	57.033	54.194^{\prime}	57.020	57.362	59.460
(ieneral expenses						
17. Salarics of general officers.	39,535.-186	1.171	1.19,i	1.233	1.213	
48. Salaries of clerks and attentants.	10,86.4,401	1.33:	1.33 .4	1.368	1.409	1.385
49. General office expenses and supplies.	2.373 .912	. 292		. 301	. 311	. 315
Co. Insurance.	3.032.885	. 37	. 395	-. 136	. 4.46	. 487
51. Law expenses . . .	5.753 .372	.750	. 6.55	. 791	.725	.806
22. Stationery and printing (general offices)						. 172
93. Other expenses.	$3.8: 38.987$.471	- 410	$\begin{array}{r}.663 \\ .462 \\ \hline\end{array}$	165 .344	.172 .457
Total	\$36,819,716	4.521	4.419	4, 756	4.613	4.955
Recapitulation of expenses						
it. Maintename of way and structures.						
55. Mantenance of equipio	169.294 .054	20.853	21.028	20.942	20.634	19.824
56. Combucting transportation	464.450 .55	54.03:3	57.194	57.920	17.391 57.362	15.761 59.460
i7. Cieneral expenses. .	36,819,716	4.521	+ 41491	4.756	4.613	59.400 4.955
Grand totalit	981-1.389,709	100.006	100.000	100.000	100.000	100.000

[^27]cost about constant. This is but a general statement of a fact which will be discussed in detail under the different items of expense.
382. Detailed classification of expenses with ratios to the total expense. The Interstate Commerce 'Commission now publishes each year a classification with detailed summation for the cost of each item. These summations are made up from reports furnished by railroads which have (in the reports already made) represented about 94% of the total traffic handled. In the amexed tabular form ('Table XX') are shown the percentages which each it.em bears to the total. The character of the changes from year to year in these ratios is very instructive and will be considered in the detailed disenssion of the items which will follow.

Table CX is copied from the Interstate Commerce Commission report for 1890 , pp. $S S-90$.
383. Elements of the cost (with variations and tendencies) of the various items. The 1. C. C. report for the year ending June 30, 1895, was the first to include the distribution of expenses according to the present classification. The number of reports since then are too few to be of much value in determining the tendeney to variation of the several items, and similar calculations made in previous years have by no means an equal reliability. Nevertheless the items as given are reliahle and may be utilized, as firr as any such computations are to le depended on, in estimating future expenses. A great deal of very interesting and instructive information may be derical from a study of the variations of these items, but the chief purpose of this discussion is to point out those elements of the cost of operating trains which may be affected by such changes of location as an engineer is able to make. There are some itcms of expense with which the eugineer has not the slightest concem-nor will they be altered by any change in alignment or constructive detail which he may make. In the following diseussion such items will be passed over with a brief discussion of the sub-items included.

MANTENANCE OF WAY.

384. Item i. Repairs of Roadway. The item of repairs of roadway is very large-about half of the total cost of mais-

tenance of way and structures. It includes the cost of frogs, switches, switch-stands, and interlocking signals. The distribution and laying of ties and rails, ballasting and tamping track, ditching, weeding, widening and protecting banks, the maintenance of snow-fences, dikes, and retaining walls, are also included. In short, any expense of maintaining the roadbed in condition which cannot be definitely assigned to one of the next few items will generally belong to this item-except perhaps those of item 10 (q.v.). The larger part of such items of expense is labor, and the variations will largely depend on the fluctuations in the wages of trackmen. Formerly these were much higher than now. About fifteen years ago they had dropped to what Wellington considered to be a permanent average of $\$ 1.25$ per day. In 1893 it had dropped to $\$ 1.22$, then in 1897 and 1898 to $\$ 1.16$. In 1899 it was raised to $\$ 1.18$.

In 1899 the average cost of this item per mile of main track was about $\$ 480$, but this figure, after all, is of but little value because, for the reason already given in general in $\S 381$, it will be found that the cost for any road varies almost exactly as the train-mileage and will average very closely to 11c. per trainmile, whether the traffic be heavy or light.
385. Item 2. Renewal of Rails: This item may be considered as having been withdrawn from the previous item simply because it is one of the largest of the single items and because its cost is very readily determined. It includes the cost of the rails, their inspection, and their delivery (but not their distribution). The item shows a large percentage of variation, the figures (percentage of total expenses) being 1.322, $1.391,1.546,1.444$, and 1.499 by the last five reports. The drop from 1.546 in 1897 to 1.391 in 1898 was just 10%. These fluctuations are due first to that considerable fluctuation in the price of rails which railroads can hardly expect to escape, and secondly to variations in the standard of maintenance caused first by hard times, which are then followed by unusual expenditures in good times, or by the expenditures absolutely essential to restore the track to its former condition. The item includes all rails wherever used, whether on main track, siding, repair track, gravel track, on wharves or coal-docks, and even includes guard-rails. But it does not include any rail attachments such as joints, frogs, switches, etc. The rate of rail wear under various conditions has already been discussed in Chapter IX.
386. Item 3. Renewal of Ties. As with the previous item, this item is simply a detachment from the general item, repairs of roadway. As with rails, the cost of laying and distributing the ties is not included, but the cost of tie-plates and tie-plugs, also chemical treatment for preservation, if such is used, is included in this item. While the cost will vary considerably between different roads on account of first cost, kind of wood, climate, etc., the item for any one road for a period of years cannot vary greatly, unless there is a marked change in the standard of maintenance. The actual cost of such work has already been discussed in Chapter VIII.
387. Item 4. Repalrs and Renewals of Bridges and Culverts. This item includes not only the maintenance cost of all bridges, trestles, viaducts, and culverts, but of all piers, abutments, riprapping, etc., necessary to maintain them, and even the cost of operating drawbridges. The locating engineer is not concerned with this item, except as he may consider that some distance which is to be added (or cut out) has the average number of culverts and bridges. With culverts and small bridges there would be little or no error in such an assumption, but if there were any large bridges on the portion of track under discussion, they would need special consideration.
388. Items 5 to ro. Repairs and Renewals of Fences, Road Crossings, and Cattle-Guards-Of Buildings and Fixtures-of Docks and Wharves--Of Telegraph Plant; Stationery and Printing; and "Other Expenses." These items in the aggregate amount to but 3% of the average cost per train-mile. The fluctuations have so small an effect on the average cost per train-mile that they may be neglected. In item 5 are included not only those things which are specifically mentioned, but also those structures which in general are not directly affected by the running of trains. For example, "road crossings" include not only the maintenance of highway crossings at grade, but also overhead highway crossings and whatever a railroad may have to pay for the maintenance of a bridge by which another railroad crosses it. On the other hand, the maintenance of a bridge by which a railroad crosses another road (highway or railroad) is charged to bridges. The effect (if any) of these items on any changes in construction which an engineer may make will be specifically discussed in the succeeding chapters.

MAINTENANCE OF EQUIPMENT.

389. Item if. Superintendence: This item includes those fixed charges in superintendence which do not fluctuate with small variations in business done. It includes the salaries of superintendent of motive power, master mechanic, master car-builder, foremen, etc., but does not include that of road foremen of engines nor enginemen. In a general way the item is proportional to the general scale of business of the road, but does not fluctuate with it.
390. Item 12. Repairs and Renewals of Locomotives: This item must be studied by the locating engineer in order to determine the effect on locomotive repairs and renewals of an addition to distance (considered in Chapter XXI), the effect (chiefly in wheel wear) of a reduction in curvature (considered in Chapter XXII), or the effect of grade (considered in Chapter XXIII). In studying the effect of grade, the policy of adopting heavier locomotives and the effect of this on this item must also be considered. This item includes the expenses of work whose effect is supposed to last for an indefinite period. It does not include the expense of cleaning out boilers, packing cylinders, etc., which occurs regularly and which is charged to item 21, round-house men. It does include all current repairs, general overhauling, and even the replacement of old and worn-out locomotives by new ones to the extent of keeping up the original standard and number. Of course additions beyond this must be considered as so much increase in the original capital investment. As a locomotive becomes older the annual repair charge becomes a larger percentage on the first cost, and it may become as much as one fourth and even one third of the first cost. When a locomotive is in this condition it is usually consigned to the scrap-pile; the annual cost for maintenance becomes too large an item for its annual milcage. The effect on expenses of increasing the weight of engines is too complicated a problem to admit of precise solution, but certain elements of it may be readily computed. While the cost of repairs is greater for the heavier engines, the increase is only about one half as fast as the increase in weight-some of the sub-items not being increased at all.
391. Items 13, 14, 15 . Repairs and Renewals of Passenger Cars, of freight Cars, and of Work Cars. Λ s with engine repairs, the item excludes consumable supplies (oil, waste, illuminating oil or gas, ice, etc.), but includes in general all items necessary to maintain the cars up to the full standard of condition and number, and even to replace old worn-out cars by new. When, as is frequently the case with both cars and locomotives, the new rolling stock is larger, better, and of a higher standard than that which is replaced, the difference in cost should be added to capital investment. The chief concern of the locating engineer regarding this item is the effect on car repairs of additional distance, of variations in curvature (affecting wheel wear chiefly), and of grade (affecting the draft-gear and general wear and tear). These items will be considered under their proper heads in the following chapters.
392. Items 16, 17, 18, and 19. REPAIRS and Renewals of Marine Equipment-Of Shop Machinery and Tools; Stationery and Printing; Other Expenses. The location of the road along the line has no connection with the maintenance of marine equipment. The maintenance of shop machinery and tools can only be affected as the work of repairs of rolling stock fluctuates, and of course in a much smaller ratio. No change which an engineer can effect will have any appreciable influence on this item.

The other items are too small and have too little connection with location to be here discussed except as it may be considered that they vary with train mileage, which an engineer may influence (see Chapter XXIII, Grades).

CONDUCTING TRANSPORTATION.

393. Item 20. SUPERINTENDENCE. As with item 11, this item is not subject to minor fluctuations in business, but only varies with changes in the general scale of the business of the road.
394. Item 21. Engine and Round-house Men. This item includes the wages of engineers, firemen, and also all men employed around the engine-houses except those who are making such repairs as should be charged to maintenance of equipment (item 12). The item is a large one, but is only affected by one class of change of location-a difference in length of line. The
wages of the round-house men constitute but a small percentage of this item, and the wages of the enginemen vary almost directly as the mileage. On very short roads, where the number of round trips which may properly constitute a day's work is definitely limited and on which there is but little night or Sunday work, the wages may be practically by the day, and a variation in length of several hundred feet or even a few miles in the length of the road may make practically no difference in the wages paid. But on the larger roads, operated by divisions, on which (especially in freight work) there is no distinction of day or night, week day or Sunday, the varying length of divisions is equalized by calling them $1 \frac{1}{3}$ or $1 \frac{1}{4}$ runs, a "run" usually being considered as about 100 miles. The enginemen are then paid according to the number of runs made per month. The effect on this item of variations in distance is discussed more fully in Chapter XXI.
395. Item 22. FUEL FOR LOCOMOTIVES. The item includes the entire cost of the fuel until it is placed in the engine-tender. The cost therefore includes not only the first cost at the point of delivery to the road, but also the expense of hauling it over the road from the point of delivery to the various coaling stations and the cost of operating the coal-pockets from which it is loaded on to the tenders. Although the cost is fairly regular for any one road, it is exceedingly variable for different roads. Roads running through the coal regions can often obtain their coal for eighty or ninety cents per ton. Other roads far removed from the coal-mines have been compelled to pay six dollars per ton. In the three succeeding chapters there will be considered in detail the effect on fuel consumption of variations in location. It will be shown that fuel consumption is quite largely independent of distance and the number of cars hauled.
396. Items 23, 24, and 25. Water-SUPPly; Oil, Tallow, and Waste ; OTHER SUPPLIES FOR LOCOMOTIVES: The cost of the water-supply is quite largely a fixed charge except where it is supplied by municipalities at meter rates. The consumption of all these supplies will vary nearly as the engine-mileage.
397. Item 26. Train Service. This item is one of the largest single items and includes in general the wages of all the train-hands except the enginemen. As with enginemen, they are paid according to the number of runs. The item is therefore of importance to the locating engineer from the one
standpoint of distance, and even then only when the variation in distance which is considered will affect the classification of the run and therefore the rate of pay for that run.
398. Item 27. Train Supplies and Expenses. These include the large list of consumable supplies such as lubricating oil, illuminating oil or gas, ice, fuel for heating, cleaning materials, etc., which are used on the cars, and not on the locomotives. The consumption of some of these articles is chiefly a matter of time ;-in other cases it is a function of the mileage.
399. Items 28, 29, 30, and 31. SWitchmen, Flagmen, and Watchmen; Telegraph Expenses; Station Service; and Station Supplies. These items will be proportional to the general scale of business of the road, but are independent of small fluctuations in business. The main items are obvious from the titles. Many sub-items, which are very small or are of occasional or accidental occurrence, are also included under these items for lack of a better classification.
400. Items 32, 33, and 34. Switching Charges-Balance; Car Mileage-Balance; Hire of Equipment. The first of these is a charge paid by a road to other corporations for switching done for the road. The locating engineer is not concerned with this item.

Car Mileage. This is a charge paid by a road for the use of the cars (chiefly freight cars) of another road. To save the rehandling of freight at junctions the policy of running freight cars on to foreign roads is very extensively adopted. Since the foreign road receives (ultimately) its mileage proportion of the freight charge, it justly pays the home road a rate which is supposed to represent the value of the use of a freight car for so many miles. The foreign road then loads up the freight car with freight consigned to some point on the home road and sends it back, again paying mileage for the distance traveled on the foreign road, a proportional freight charge having been received for that service. By a clearing-house arrangement the various roads settle their debit and credit accounts with each other by the payment of a balance. Such is the simple theory. In practice the cars are not sent back to the home road at once, but wander off according to the local demand. As long as strict account is kept of the movements of every car and the home road is paid a charge which really covers the value of such service, no harm is done the home road except
that sometimes, when business has suddenly increased, the home road cannot get enough cars to handle its business. The value of a car is then abnormally above its ordinary value and the home road suffers for lack of the rolling stock which belongs to it. The charge being paid according to mileage, any variations of distance have a direct bearing on this item.

Hire of Equipment. This may refer to locomotives or cars which are hired for a special service, or, on very poor roads, it may refer to equipment, which is hired rather than purchased. The locating engineer has no concern with this item.
401. Items 35, 36, and 37. Loss and Damage; Injuries to Persons; Clearing Wrecks. These expenses are fortuitous and bear no absolute relation to road-mileage or train-mileage. While they depend largely on the standards of discipline on the road, even the best of roads have to pay some small proportion of their earnings to these items. The possible relation between curvature and accidents is discussed in Chapter XXII, but otherwise the locating engineer has no concern with these items.
402. Items 38 to 53. All of the remaining items (for a list of which see $\S 382$) are of no concern to the locating engineer. They are either general expenses (such as taxes) or are special items (such as the operation of marine equipment) which will not be changed by variations in distance, curvature, or grades which a locating engineer may make. They will not therefore be further discussed.

CHAPTER XXI.

DISTANCE.

403. Relation of distance to rates and expenses. Rates are usually based on distance traveled, on the apparent hypotheses that each additional mile of distance adds its proportional amount not only to the service rendered but also to the expense of rendering it. Neither hypothesis is true. The value of the service of transporting a passenger or a ton of freight from A to B is a more or less uncertain gross amount depending on the necessities of the case and independent of the exact distance. Except for that very small part of passenger traffic which is undertaken for the mere pleasure of traveling, the general object to be attained in either passenger or freight traffic is the transportation from A to B, however it is attained. A mile greater distance does not improve the service rendered; in fact, it consumes valuable time of the passengers and perhaps deteriorates the freight. From the standpoint of service rendered, the railroad which adopts a more costly construction and thereby saves a mile or more in the route between two places is thereby fairly entitled to additional compensation rather than have it cut down as it would be by a strict mileage rate. The actual value of the service rendered may therefore vary from an insignificant amount which is less than any reasonable charge (which therefore discourages such traffic) and its value in cases of necessity-a value which can hardly be measured in money. If the passenger charge between New York and Philadelphia were raised to $\$ 5$, $\$ 10$, or even $\$ 20$, there would still be some passengers who would pay it and go, because to them it would be worth $\$ 5, \$ 10$, or $\$ 20$, or even more. Therefore, when they pay $\$ 2.50$ they are not paying what the service is worth to them. The service rendered cannot therefore be made a measure of the charge, nor is the service rendered proportional to the miles of distance.

The idea that the cost of transportation is proportional to
the distance is much more prevalent and is in some respects more justifiable, but it is still far from true. This is especially true of passenger service. The cost of transporting a single passenger is but little more than the cost of printing his ticket. Once aboard the train, it makes but little difference to the railroad whether he travels one mile or a hundred. Of course there are certain very large expenses due to the passenger traffic which must be paid for by a tariff which is rightfully demanded, but such expenses have no relation to the cost of an additional mile or so of distance inserted between stations. The same is true to a slightly less degree of the freight traffic. As shown later, the items of expense in the total cost of a trainmile, which are directly affected by a small increase in distance, are but a small proportion of the total cost.
404. The conditions other than distance that affect the cost; reasons why rates are usually based on distance. Curvature and minor grades have a considerable influence on the cost of transportation, as will be shown in detail in the next two chapters, but they are never considered in making rates. Ruling grades have a very large influence on the cost, but they are likewise disregarded in making rates. An accurate measure of the effect of these elements is difficult and complicated and would not be appreciated by the general public. Mere distance is easily calculated; the public is satisfied with such a method of calculation; and the railroads therefore adopt a tariff which pays expenses and profits even though the charges are not in accordance with the expenses or the service rendered.

An addition to the length of the line may (and generally does) involve curvature and grade as well as added distance. In this chapter is considered merely the effect of the added distance. The effect of grade and curvature must be considered separately, according to the methods outlined in succeeding chapters. The additional length considered is likewise assumed not to affect the business done nor the number of stations, but that it is a mere addition to length of track.

EFFECT OF DISTANCE ON OPERATING EXPENSES.

405. Effect of slight changes in distance on maintenance of way. With a few unimportant exceptions all the items of expense under maintenance of way and structures (see § 407)
will be increased directly as any increase in distance. This must certainly be true for items $1,2,3$, and 5 , which alone comprise about three fourths of the total expense for maintenance of way. If we assume that the proposed change of length involves no difference in the number of bridges, culverts, buildings, and fixtures, docks and wharves, we may consider items 4,6 , and 7 to be unaffected. This will generally be true for small changes in length, measured in feet. For larger differences, measured in miles, items 4 and 6 will vary nearly as the distance. The same may be said of items 9 and 10. The cost of maintaining the telegraph line will probably be increased about 60% of the unit cost. The effect of changes in distance on these various items of maintenance of way (as well as the other items of expense of a train-mile) will be tabulated in § 408.
406. Effect on maintenance of equipment. The relation between an increase in length of line and the expenses of items $11,15,17,18$, and 19 are quite indefinite. In some respects they would be unaffected by slight changes of distance. From other points of view there is no reason why the expenses should not be considered proportionate to the distance. For example, the added track will probably require as much work from the construction train as any other part of the road and is therefore responsible for as much of the "repairs and renewals of work-cars"-item 15. Fortunately all of these items are so small, even in the aggregate, that little error will be involved by either decision. It will therefore be assumed that these items are affected 100% for large additions in distance and but 50% for small additions.

Item 16 is evidently unaffected.
Item 12. Locomotives deteriorate (1) with age; (2) by expansion and contraction, especially of the fire-boxes, when fires are drawn and relighted; (3) on account of the strains due to stopping and starting; (4) the strains and wear of wheels due to curved track; (5) the additional stresses due to grade and change of grade; and (6) on account of the work of pulling on a straight level track. Observe that the first five causes have no direct relation to an addition of mere distance (the possible curvature or grade incident to the additional distance being a separate matter). How much of the total deterioration is due to the last cause? Wellington attacks this problem as follows: the records of engine-repair shops readily furnish
the proportionate cost of the repairs of boiler, running-gear, etc. An estimate is then made of the effect of each cause on each item. For example, the boiler is responsible for 20% of the repairs and renewals. Of this 7% (say one third) is assigned to "terminal service, getting up steam, making up trains," 4% to curvature and grades, 2% to "stopping and starting at way stations," and the other 7% to "distance on tangent between stations." The other items are treated similarly. Wellington says, "As this [subdivision of expenses] has been done with great care to get the best attainable authority for each (which it would occupy too much space to give in detail), the margin for possible error is not great enough to be of moment, although no absolute exactness can be claimed for it." His final estimate is that distance is responsible for 42% of the total cost of repairs and renewals. This value will therefore be used for all additional distances, great or small.

Items 13 and 14. The causes of deterioration of both passenger and freight cars may be classified exactly as above-omitting merely cause 2-the expansion and contraction due to firing. Considering that a large part of the repairs of freight cars is due to the draft-gear and brakes, which are affected chiefly by the heavy strains due to stopping and starting and to grades, while the repairs of wheels are largely due to the wear of wheels on curves, it is not surprising that he allows only 36% of the cost of repairs and renewals of freight cars to be due to straight distance. He made no direct estimate for passenger-cars, but points out the fact that the maintenance of the seats, furniture, and ornamentation make up much more than half the cost of passenger-car repairs. A large part of such deterioration is due to age and the weather, although that of the seats is largely a function of passenger wear and therefore of distance traveled. Although the items of deterioration in passenger cars is very different from those of freight cars. yet if a similar calculation is made for passenger cars it will be found that the final figure is substantially the same as for freight cars and will here be so regarded.
407. Effect on conducting transportation. Item 20. This is evidently unaffected by small or even considerable additions to distance.

Item 21. Theoretically, train wages should vary as mileage. On the larger roads, where, especially in the freight service,
there is little or no distinction of day or night, week-day or Sunday, it is practically impossible to hire the trainmen to work between certain definite hours of the day and pay them accordingly, as is done with factory employees. As explained in Chapter XX, § 394, the system usually adopted of paying trainmen is such that small changes of distance (measured in feet) would not affect train wages. The wages of round-house men would not be affected under any condi $\stackrel{i}{ } \mathrm{ions}$, and those of the enginemen and of the trainmen (item 26) would not generally be affected unless the change of distance is very great-perhaps ten miles. Since items 21 and 26 are both very large, it will not do to ignore this item or to average it. The pay of round-house men is about 7% of item 21. We may therefore say that if the change in distance is so great that trains wages will be affected, item 21 will be affected 93% and item 26 will be affected 100%. For shorter changes of distance they will be unaffected.

Item 22. A surprisingly large percentage of the fuel consumed is not utilized in drawing a train along the road. Part of this loss is due to firing up, part is wasted when the engine is standing still, which is a large part of the total time. The policy of banking fires instead of drawing them reduces the injury resulting from great fluctuations in temperature, but the total coal consumed is about the same and we may therefore consider that almost a fireboxful of coal is wasted whether the fires are banked or drawn. The amount thus wasted (or at least not utilized in direct hauling) has been estimated at 5 to 10% of the whole consumption. Experiments* have shown that an engine standing idle in a yard, protected from wind, well jacketed, etc., will require from 25 to 32 lbs . of coal per hour simply to keep up steam. It has been found that the fastest express trains will lose one fourth of their total time between termini in stops, and freight trains on a single-track road will generally spend four hours per day on sidings. The waste of coal from this cause is estimated at 3 to 6% of the total consumption. The energy consumed in stopping and starting is very great. A train running 30 miles per hour has enough kinetic energy to move it on a level straight track more than two miles. Every time a train running at 30 miles per hour is stopped, enough energy is consumed by the brakes to run

[^28]it from one to two miles. When starting, it will require an equal amount of work to restore that velocity, in addition to the ordinary resistances. It has been shown that on the Manhattan Elevated Railroad, where stops will average every three eighths of a mile, this cause alone will account for the consumption of nearly three fourths of the fuel. Of course on ordinary railroads the proportion is not nearly so great, but it is probably as much as 10 to 20% as an average figure. For a through express train making but few stops the figure would be small, except for the effect of "slow-downs." For suburban trains the proportion would be abnormally high. The fuel required to overcome the added resistances due to curvature and grade are of course exceedingly variable, depending on the particular alignment of the road considered. An approach to the truth may be made by considering the average curvature per mile for the roads of the United States and the average grades, and computing, by the methods given in subsequent chapters, the extra fuel consumed on account of such average conditions, and these items will apparently be responsible for 3% due to curvature and about 15% due to grades. Summarizing the above we have:

Firing.	5 to	10\%	
Wasted while still.	$3^{\prime \prime}$	6%	
Stopping and starting.	$10^{\prime \prime}$	20\%	
Average curvature.	$3^{\prime \prime}$	3%	
Average grade.	$15{ }^{\prime \prime}$	15\%	
	36	$\overline{54}$	
Direct hauling.	64 "	46	Average, 55\%
	100	100	

This shows that the addition of mere straight level distance would not increase the consumption of fuel more than 55% of the average consumption per mile.

Items 23, 24, and 25. If water is paid for by meter, the cost is strictly according to consumption, which would vary almost according to the number of engine-miles. When supplied from the company's own plant, as is usually the case, a slight increase will not appreciably affect the cost. Nothing is wasted during firing or while the engine is still. The use is therefore more nearly as the mileage, and the cost for an additional mile
may be considered as 50% of its average cost per train-mile. Items 24 and 25 will be considered similarly. Fortunately these items, whose variation with additional distance is somewhat obscure and variable, only aggregate a little over 1% of the cost of a train-mile and therefore a considerable percentage of error is of little or no importance.

Item 26. (See comments on item 21.)
Item 27. This item, as well as many other small items that follow, will be irregularly affected by a small increase in distance. It would appear equally wrong to say that they would be unaffected or to say that they will vary directly as the mileage. 50% will be allowed.

Item 28. The necessity for flagmen and watchmen varies in general as the mileage. An addition in distance is less apt to increase the number of switchmen. 50% of this item will be added.

Item 29. Telegraph expenses include the wages of operators (unaffected), and the special expenses due to offices and telegraph stations and to operating the line-the maintenance of the line being charged to item 8 . This item will be but little affected, if at all, by additional distance, but 20% will be allowed. Items 30, 31, 32, and 34 are unaffected. Items $33,35,36$, and 37 are affected 100%. Items 38 to 46 are unaffected.

The "general expenses" (items 46 to 53) will be unaffected.
408. Estimate of total effect on expenses of small changes in distance (measured in feet); estimate for distances measured in miles. According to the accompanying compilation the cost of operating additional distance will be about 35% of the average cost per train-mile when the additional distance is small, but will be about 56% if the additional distance is several miles. The figures may also be considered as the saving in the operating expenses resulting from a shortening of the line.

The average cost of a train-mile during the years from 1890 to 1899 varied from 91.8 c. to 98.4 c., with an average value of 95.2 c . On this basis the above figures become 33.2 and 53.3 cents per train-mile respectively. Some trains run 365 days per year, others but 313. The tendency is toward the larger figure and it will therefore be used in these calculations. The added cost per daily train per year for each foot of distance is

$$
\frac{33.2 \times 365 \times 2}{5280}=4.59 \mathrm{c}
$$

When the distance is measured by miles the added cost per daily train per year for each mile of distance is:

$$
53.3 \times 365 \times 2=\$ 389 .
$$

Table xxi.-Effect on operating expenses of great (and small) changes in distance.

		Per cent affected.		Cost per mile.		$\begin{aligned} & \dot{8} \\ & \text { z } \\ & \text { g } \\ & \pm \\ & \hline \end{aligned}$		Per cent affected.		Cost per mile.	
		$\begin{aligned} & \text { تٌ } \\ & \text { だ } \end{aligned}$		Great.	Small.					Great.	Small.
	10.596	100	100	10.60		26	22.454	100	0	15.04	5.94
2	10.596 1.440	100	100	1.32	1.32	27	1.528	50	50	7.72 .76	${ }^{0}$
3	3.093	100	100	3.09	3.09	28	4.136	50	50	2.07	2.07
4	2.378	100	0	2.38	0	29	1.974	20	20	. 39	. 39
5	. 523	100	100	. 52	. 52	30	7.818	0	0	0	0
6	1.865	30	0	. 56	0	31	. 762	0	0	0	0
7	. 247	0	0	0	0	32	. 345	0	0	0	0
8	. 135	60	60	. 08	. 08	33	2.094	100	100	2.09	2.09
9	. 027	100	0	. 03	0	34	. 333	0	0	0	0
10	. 358	100	0	. 36	0	35	. 738	100	100	. 74	. 74
	20.662			18.94	15.61	36 37	. 883	100	100	. 13	. 13
11	. 650	50	0	. 32	0	39	. 426				
12	5.879	42	42	2.47	2.47	40	1.692				
13	2.209	36	36	. 80	. 80	41	. 171				
14	6.765	36	36	2.44	2.44	42	. 130	0	0	0	0
15	. 155	100	50	. 15	. 08	43	1.848				
16	. 209	0	0	0	0	44	. 492				
17	. 490	100	50	.49	. 25	4.5	. 610				
18	. 040	100	50	. 04	. 02	46	. 619				
19	. 495	100	50	. 50	. 25		57.703			29.89	13.00
	16.892			7.21	6.31						
20	1.761	0	0	0	0	48					
21	9.781	93	0	9.10	0	49					
22	9.681	55	55	5.32	5.32	50	¢ 4.653	0	0	0	0
23	. 671	50	50	. 34	. 34	51					
24	.276	50	50	. 19	. 19	52					
25	. 184	50	50	. 09	. 09	53					
	22.454			15.04	5.94		100.000			55.97	34.92

Light-traffic roads are more apt to run their trains on week days only, and a corresponding reduction should be made in these cases.

Regarding the accuracy of the above computations, it should be noted that the most uncertain items are generally the smallest, and that even the largest variations that can reasonably be
made of the above figures will not very greatly alter the final result. A numerical illustration of the value of saving distance will be given later.

EFFECT OF DISTANCE ON RECEIPTS.

409. Classification of traffic. There are various methods of classifying traffic, according to the use it is intended to make of the classification. The method here adopted will have reference to its competitive or non-competitive character and also to the method of division of the receipts on through traffic. Traffic may be classified first as "through" and "local"through traffic being that traveling over two (or 'more) lines, no matter how short or non-competitive it may be; "local" traffic is that confined entirely to one road. A fivefold classification is however necessary-which is:
A. Non-competitive local-on one road with no choice of routes.
B. Non-competitive through-on two (or more) roads, but with no choice.
C. Competitive local-a choice of two (or more) routes, but the entire haul may be made on the home road.
D. Competitive through-direct competition between two or more routes each passing over two or more lines.
E. Semi-competitive through-a non-competitive haul on the home road and a competitive haul on foreign roads.

There are other possible combinations, but they all reduce to one of the above forms so far as their essential effect is concerned.
410. Method of division of through rates between the roads run over. Through rates are divided between the roads run over in proportion to the mileage. There may be terminal charges and possibly other more or less arbitrary deductions to be taken from the total amount received, but when the final division is made the remainder is divided according to the mileage. On account of this method of division and also because non-competitive rates are always fixed according to the distance, there results the unusual feature that, unlike curvature and grade, there is a compensating advantage in increased distance, which applies to all the above kinds of traffic except one (competitive local), and that the compensation is sometimes sufficient to make the added distance an actual
source of profit. It has just been proved that the cost of hauling a train an additional mile is only 35 to 56% of the average cost. Therefore in all non-competitive business (local or through) where the rate is according to the distance, there is an actual profit in all such added distance. In competitive local business, in which the rate is fixed by competition and has practically no relation to distance, any additional distance is dead loss. In competitive through business the profit or loss depends on the distances involved. This may best be demonstrated by examples.

4II. Effect of a change in the length of the home road on its receipts from through competitive traffic. Suppose the home road is 100 miles long and the foreign road is 150 miles long. Then the home road will receive $\frac{100}{100+150}=40 \%$ of the through rate.

Suppose the home road is lengthened 5 miles; then it will receive $\frac{105}{105+150}=41.176 \%$ of the through rate. The traffic being competitive, the rate will be a fixed quantity regardless of this change of distance. By the first plan the rate received is 0.4% per mile; adding 5 miles, the rate for the original 100 miles may be considered the same as before; and that the additional 5 miles receive 1.176%, or 0.235% per mile. This is 59% of the original rate per mile, and since this is more than the cost per mile for the additional distance (see § 408), the added distance is evidently in this case a source of distinct profit. On the other hand, if the line is shortened 5 miles, it may be similarly shown that not only are the receipts lessened, but that the saving in operating expenses by the shorter distance is less than the reduction in receipts.

A second example will be considered to illustrate another phase. Suppose the home road is 200 miles long and the foreign road is 50 miles long. In this case the home road will receive $\frac{200}{200+50}=80 \%$ of the through rate. Suppose the home road is lengthened 5 miles; then it will receive $\frac{205}{205+50}=80.392 \%$ of the through rate. By the first plan the rate received is 0.400% per mile; adding 5 miles, there is a surplus of 0.392 , or 0.0784 per mile, which is but 19.6% of the original rate.

At this rate the extra distance evidently is not profitable, although it is not a dead loss-there is some compensation.
412. The most advantageous conditions for roads forming part of a through competitive route. From the above it may be seen that when a road is but a short link in a long competitive through route, an addition to its length will increase its receipts and increase them more than the addition to the operating expenses.

As the proportionate length of the home road increases the less will this advantage become, until at some proportion an increase in distance will just pay for itself. As the proportionate length grows greater the advantage becomes a disadvantage until, when the competitive haul is entirely on the home road, any increase in distance becomes a net loss without any compensation. It is therefore advantageous for a road to be a short link in a long competitive route; an increase in that link will be financially advantageous; if the total length is less than that of the competing line, the advantage is still greater, for then the rate received per mile will be greater.
413. Effect of the variations in the length of haul and the classes of the business actually done. The above distances refer to particular lengths of haul and are not necessarily the total lengths of the road. Each station on the road has traffic relations with an indefinite number of traffic points all over the country. The traffic between each station on the road and any other station in the country between which traffic may pass therefore furnishes a new combination, the effect of which will be an element in the total effect of a change of distance. In consequence of this, any exact solution of such a problem becomes impracticable, but a sufficiently accurate solution for all practical purposes is frequently obtainable. For it frequently happens that the great bulk of a road's business is non-competitive, or, on the other hand, it may be competitive-through, and that the proportion of one or more definite kinds of traffic is so large as to overshadow the other miscellaneous traffic. In such cases an approximate but sufficiently accurate solution is possible.
414. General concıüsions regarung a change in distance. (a) In all non-competitive business (local and through) the added distance is actually profitable. Sometimes practically
all of the business of the road is non-competitive; a considerable proportion of it is always non-competitive.
(b) When the competitive local business is very large and the competitive through business has a very large average home haul compared with the foreign haul, the added distance is a source of loss. Such situations are unusual and are generally confined to trunk lines.
(c) The above may be still further condensed to the general conclusion that there is always some compensation for the added cost of operating an added length of line and that it frequently is a source of actual profit.
(d) There is, however, a limitation which should not be lost sight of. The above argument may be carried to the logical conclusion that, if added distance is profitable, the engineer should purposely lengthen the line. But added distance means added operating expenses. A sufficient tariff to meet these is a tax on the community - a tax which more or less discourages traffic. It is contrary to public policy to burden a community with an avoidable expense. But, on the other hand, a railroad is not a charitable organization, but a money-making enterprise, and cannot be expected to unduly load up its first cost in order that subsequent operating expenses may be unduly cheapened and the tariff unduly lowered. A common reason for increased distance is the saving of the first cost of a very expensive although shorter line.
(e) Finally; although there is a considerable and uncompensated loss resulting from curvature and grade which will justify a considerable expenditure to avoid them, there is by no means as much justification to incur additional expenditure to avoid distance. Of course needless lengthening should be avoided. A moderate expenditure to shorten the line may be justifiable, but large expenditures to decrease distance are never justifiable except when the great bulk of the traffic is exceedingly heavy and is competitive.
415. Justification of decreasing distance to save time. It should be recalled that the changes which an engineer may make which are physically or financially possible will ordinarily have but little effect on the time required for a trip. The time which can thus be saved will have practically no value for the freight business-at least any value which would justify changing the route. When there is a large directly competitive
passenger traffic between two cities (e.g. New York to Philadelphia) a difference of even 10 minutes in the time required for a run might have considerable financial importance, but such cases are comparatively rare. It may therefore be concluded that the value of the time saved by shortening distance will not ordinarily be a justification for increased expense to accomplish it.
416. Effect of change of distance on the business done. The above discussion is based on the assumption that the business done is unaffected by any proposed change in distance. If a proposed reduction in distance involves a loss of business obtained, it is almost certainly unwise. But if by increasing the distance the original cost of the road is decreased (because the construction is of less expensive character), if the receipts are greater, and are increased still more by an increase in business done, then the change is probably wise. While it is almost impossible in a subject of such complexity to give a general rule, the following is generally safe: Adopt a route of such length that the annual traffic per mile of line is a maximum. This statement may be improved by allowing the element of original cost to enter and say, adopt a route of such length that the annual traffic per mile of line divided by the average cost per mile is a maximum. Even in the above the operating cost per mile, as affected by the curvature and grades on the various routes, does not enter, but any attempt to formulate a general rule which would allow for variable operating expenses would evidently be too complicated for practical application.

CHAPTER XXII.

CURVATURE.

417. General objections to curvature. In the popular mind curvature is one of the most objectionable features of railroad alignment. The cause of this is plain. The objectionable qualities are on the surface, and are apparent to the non-technical mind. They may be itemized as follows:
418. Curvature increases operating expenses by increasing (a) the required tractive force, (b) the wear and tear of roadbed and track, (c) the wear and tear of equipment, and (d) the required number of track-walkers and watchmen.
419. It may affect the operation of trains (a) by limiting the length of trains, and (b) by preventing the use of the heaviest, types of engines.
420. It may affect travel (a) by the difficulty of making time, (b) on account of rough riding, and (c) on account of the apprehension of danger.
421. There is actually an increased danger of collision, derailment, or other form of accident.

Some of these objections are quite definite and their true value may be computed. Others are more general and vague and are usually exaggerated. These objections will be discussed in inverse order.
418. Financial value of the danger of accident due to curvature. At the outset it should be realized that in general the problem is not one of curvature vs. no curvature, but simply sharp curvature vs. easier curvature (the central angle remaining the same), or a greater or less percentage of elimination of the degrees of central angle. A straight road between termini is in general a financial (if not a physical) impossibility. The practical question is then, how much is the financial value of such diminution of danger that may result from such eliminations of curvature as an engineer is able to make?

In the year 1898 there were 2228 railroad accidents reported by the Railroad Gazetie, whose lists of all accidents worth reporting are very complete. Of these a very large proportion clearly had no relation whatever to curvature. But suppose we assume that 50% (or 1114 accidents) were directly caused by curvature. Since there are approximately 200,000 curves on the railroads of the country, there was on the average an accident for every 179 curves during the year. Therefore we may say, according to the theory of probabilities, that the chances are even that an accident may happen on any particular curve in 179 years. This assumes all curves to be equally dangerous, which is not true, but we may temporarily consider it to be true. If, at the time of the construction of the road, $\$ 1.00$ were placed at compound interest at 5% for 179 years, it would produce in that time $\$ 620.89$ for each dollar saved, wherewith to pay all damages, while the amount necessary to eliminate that curvature, even if it were possible, would probably be several thousand dollars. The number of passengers carried one mile for one killed in 1898-99 was $61,051,580$. If a passenger were to ride continuously at the rate of sixty miles per hour, day and night, year after year, he would need to ride for more than 116 years bcfore he had covered such a mileage, and even then the probabilities of his death being due to curvature or to such a reduction of curvature as an engineer might accomplish are very small. Of course particular curves are often, for special reasons, a source of danger and justify the employment of special watchmen. They would also justify very large expenditures for thier elimination if possible. But as a general proposition it is evidently impossible to assign a definite money value to the danger of a serious accident happening on a particular curve which has no special elements of danger.

Another element of safety on curved track is that trait of human nature to exercise greater care where the danger is more apparent. Many accidents are on record which have been caused by a carelessness of locomotive engineers on a straight track when the extra watchfulness usually observed on a curved track would have avoided them.
419. Effect of curvature on travel. (a) Difficulty in making time. The growing use of transition curves has largely eliminated the necessity for reducing speed on curves, and even when the speed is reduced it is done so easily and quickly by means
of air-brakes that but little time is lost. If two parallel lines were competing sharply for passenger traffic, the handicap of sharp curvature on one road and easy curvature on the other might have a considerable financial value, but ordinarily the mere reduction of time due to sharp curvature will not have any computable financial value.
(b) On account of rough riding. Again, this is much reduced by the use of transition curves. Some roads suffer from a general reputation for crookedness, but in such cases the excessive curvature is practically unavoidable. This cause probably does have some effect in influencing competitive passenger traffic.
(c) On account of the apprehension of danger. This doubtless has its influence in deterring travel. The amount of its influence is hardly computable. When the track is in good condition and transition curves are used so that the riding is smooth, even the apprehension of danger will largely disappear.

Travel is doubtless more or less affected by curvature, but it is impossible to say how much. Nevertheless the engineer should not ordinarily give this item any financial weight whatsoever. Freight traffic (two thirds of the total) is unaffected by it. It chiefly affects that limited class of sharply competitive passenger traffic-a traffic of which most roads have not a trace.
420. Effect on operation of trains. (a) Limiting the length of trains. When curvature actually limits the length of trains, as is sometimes true, the objection is valid and serious. But this can generally be avoided. If a curve occurs on a ruling grade without a reduction of the grade sufficient to compensate for the curvature, then the resistance on that curve will be a maximum and that curve will limit the trains to even a less weight than that which may be hauled on the ruling grade. In such cases the unquestionably correct policy is to "compensate for curvature," as explained later (see $\S \S 427,428$), and not allow such an objection to exist. It is possible for curvature to limit the length of trains even without the effect of grade. On the Hudson River R. R. the total net fall from Albany to New York is so small that it has practically no influence in determining grade. On the other hand, a considerable portion of the route follows a steep rocky river bank which is so crooked that much curvature is unavoidable and very sharp curvature
can only be avoided by very large expenditure. As a consequence sharp curvature has been used and the resistance on the curves is far greater than that of any fluctuations of grade which it was necessary ti use. Or, at least, a comparatively small expenditure would sieffice to cut down any grade so that its resistance would be less than that of some curve which could not be avoided except at an enormous cost. And as a result, since the length of trains is really limited by curvature, minor grades of 0.3 to 0.5% have been freely introduced which might be removed at comparatively small expense The above case is very unusual. Low grades are usually associated with generally level country where curvature is easily avoidedas in the Camden and Atlantic R. R. Even in the extreme case of the Hudson River road the maximum curvature is only equivalent to a comparatively low ruling grade.
(b) Preventing the use of the heaviest types of engines. The validity of this objection depends somewhat on the degree of curvature and the detailed construction of the engine. While some types of engines might have difficulty on curves of extremely short radius, yet the objection is ordinarily invalid. This will best be appreciated when it is recalled that the "Consolidation" type was originally designed for use on the sharp curvature of the mountain divisions of the Lehigh Valley R. R., and that the type has been found so satisfactory that it has been extensively employed elsewhere. It should also be remembered that during the Civil War an immense traffic daily passed over a hastily constructed trestle near Petersburg, Va., the track having a radius of 50 feet. As a result of a test made at Renovo on the Philadelphia and Erie R. R. by Mr. Isaac Dripps, Gen. Mast. Mech., in 1875,* it was claimed that a Consolidation engine encountered less resistance per ton than one of the "American" type. Whether the test was strictly reliable or not, it certainly demonstrated that there was no trouble in using these heary engines on very sharp curvature, and we may therefore consider that, except in the most extreme cases, this objection has no force whatsoever.

[^29]EFFECT OF CURVATURE ON OPERATING EXPENSES.
421. Relation of radius of curvature and of degrees of central angle to operating expenses. The smallest consideration will show that the sharper the curvature the greater will be the tractive force required, also the greater per unit of track length will be the rail wear and the general wear and tear on roadbed and rolling stock. But it would be inconvenient to use a relation between operating expenses and radius of curvature, because even when such a relation was found there would be two elements to consider in each problem-the radius and the length of the curve. The method which will be here developed cannot claim to be strictly accurate or even strictly logical, but, as will be shown later, the most uncertain elements of the computation have but a small infuence on the final result, and the method is in general the only possible method of solution. The outline of the method is as follows:
(1) For reasons given in detail later, it is found that the expenses, wear, etc., on the track from A to B will be substantially the same whether by the route M or N. The wear, etc.,

Fig. 208.
per foot at N is of course greater, but the length of curve is less. Therefore the effect of the curvature depends on the degrees of central angle Δ and is independent of the radius.
(2) At what degree of curvature is the total train resistance double its value on a tangent? Probably no one figure would be exact for all conditions. Train resistance varies with the velocity and with the various conditions of train loading even on a tangent, and it is by no means certain (or even probable) that the ratio would be exactly the same for all conditions. As an average figure we may say that a train running at average velocity on a 10° curve will encounter a resistance due to curvature of about 10 lbs . per ton, which is the average resistance found on a level tangent. On a 10° curve therefore the resistance is doubled.
(3) A train-mile costs about so much-approximately $\$ 1.00$. Doubling the tractive resistance will increase certain items of expenditure about so much. Their combined value is so much per cent of the cost of a train-mile. A mile of continuous 10^{6} curve contains 528° of central angle. A mile of such track would add so much per cent to the average train-mile expenses, and each degree of central angle is responsible for $\frac{1}{5} \frac{1}{28}$ of this increase. Since the increase is irrespective of radius and depends only on the degrees of central angle, we therefore say that each degree of central angle of a curve will add so much to the average operating expenses of a train-mile.

The "cost per train-mile" considered above should be considered as the cost of a mile of level tangent. If we for a moment consider that all the railroads of the country were made absolutely straight and level, it is apparent that the average cost per train-mile instead of being about 95 c . would be somewhat less. The percentage should therefore be applied to this reduced value, but the net effect of this change would evidently be small.
422. Effect of curvature on maintenance of way. A very large proportion of the items of expense in a train-mile are absolutely unaffected by curvature. It will therefore simplify matters somewhat if we at once throw out all the unaffected items. Of the items of maintenance of way and structure all but the first three will be thrown out. Item 4 will be somewhat affected when bridges or trestles occur on a curve. But when it is considered what a very small percentage of this small item (2.378%) could be ascribed to curvature, since the very large majority of bridges and trestles are purposely made
straight, and since culverts, etc., are not affected, we may evidently ignore any variation in the item.

Item i. Repairs of Roadway. A very large proportion of the sub-items are absolutely unaffected. The care of embankments and slopes, ditching, weeding, etc., are evidently unaffected. The track labor on rails and ties and the work of surfacing will evidently be somewhat increased and yet it is very seldom that the length of a track section would be decreased simply on account of excessive curvature. But 528° per mile is an excessive amount of curvature. The average for the whole country is about 30° per mile, and there are very few instances of that amount of curvature (528°) in the length of a single mile. As before intimated, it is reasonable to assume that the extra work per foot on a 20° curve would be 10 times the extra work on a 2° curve, which verifies the general statement that the extra cost varies as the degrees of central angle. Considering how much of this item is independent of curvature and how little even the track labor is affected, it is possibly overstating the case to allow 25% increase for 528° of curvature in one mile.

Item 2. Renewals of Rails. Wellington says that some experiments made by himself and others made by Dr. Dudley agree in indicating that the rail wear on tangents may be considered as 1 lb . per yard per $10,000,000$ tons duty, while the extra wear on curves would be $\frac{1}{2} \mathrm{lb}$. per degree of curve per $10,000,000$ tons duty. Therefore on a 10° curve the extra rail wear would be five times as great as on a tangent and the increase would therefore be 500%. On iron rails and on inferior steel rails the wear on tangents would be larger proportionally, and this is probably the reason for Wellington's adopting an average increase of but 300%, and this same figure will be adopted.

Item 3. Renewals of Ties. Curvature affects ties by increasing the "rail cutting" and on account of the more frequent respiking, which "spike-kills" the ties even before they have decayed. Wellington estimates that a tie which will last nine years on a tangent will last but six years on a 10° curve. He adds 50% for tie renewals. He considers the decrease in tie life to be proportional to the degree of curve and therefore again verifies the general statement made above regarding the expense of curvature.
423. Effect of curvature on maintenance of equipment. Items 11, 16, 18, and 19 will be considered as unaffected.

Item 12. Repairs and Renewals of Locomotives. Curvature affects locomotive repairs by increasing very largely the wear on tires and wheels, and also the wear and strain due to the additional power required. Wellington neglected the last cause since the resistance due to curvature is so small compared to that due to even a moderate grade. He further considered that only 30% of the items of engine repairs are affected at all by curvature, and that the effect of curvature and grades on these is only $\frac{1}{3}$ or 10%, and that curvature is responsible for 60% of that, or, finally, that only 6% of engine repairs are caused by curvature as it exists. He then computed that the actual average curvature of railroads (about 30° per mile) is but $\frac{\mathrm{I}}{20}$ of the 600° (instead of 528°) in his standard mile. Therefore he said that 600° of curvature would increase engine repairs by $20 \times 6 \%$, or 120%. He acknowledges that the reasoning is not conclusive. It apparently is weak in this respect: the resistance, and also the wear, is less per degree of curve on the sharper curves than on the easier. On this account, and also because 528° of curvature is considered the standard, rather than 600°, the estimate will be cut down to 100%. (Another method of computation will be substituted for this as soon as possible.)

Items 13, 14, and 15. For similar reasons the estimates for these items will be made 100%. The effect of curvature will apply to all cars about equally.

Item 17. The repairs and renewals of shop machinery and tools will not be increased more than 50% per mile for the additional repairs required of the above equipment.
424. Effect of curvature on conducting transportation. We may at once throw out all items except $22,23,24$, and 25 , a small part of 28 , and possibly 35,36 , and 37 . This last group has already been discussed in § 418; the aggregate of the three items is but 1.752%; curvature is responsible for only a small proportion of the item, and the reduction which an engineer is able to effect would be so small that we may neglect it.

Item 28 is somewhat analogous to the above. Curvature does not affect a large part of the item, but an extreme case of curvature will occasionally require an extra watchman. Considering, however, that curvature does not in general require watch-
men, and that such cases are the unusual cases in mountainous regions where the curvature is unavoidable and not materially reducible, it would evidently be wrong to charge curvature in general with such an item, although there would be justification for it in individual cases. It will therefore be ignored.

Items 22, 23, 24, and 25. In §407, Chapter XXI, the proportion of fuel assigned to direct hauling on a tangent is computed as amounting to about 55%. Since this direct resistance is assumed to be exactly doubled, we will charge 55% for fuel. There will evidently be no error worth considering in allowing the same proportionate amount as the charge for water, oil, waste, etc.
"General expenses," items 47 to 53, are of course unaffected.
425. Estimate of total effect per degree of central angle. Compiling the above estimates we have the following tabulation:

TABLE XXII.-EFFECT ON OPERATING EXPENSES OF CHANGES IN CURVATURE.
$\left.\begin{array}{|c|c|c|c|}\hline \begin{array}{c}\text { Item } \\ \text { No. }\end{array} & \begin{array}{c}\text { Normal } \\ \text { average. }\end{array} & \begin{array}{c}\text { Per cent } \\ \text { affected. }\end{array} & \begin{array}{c}\text { Cost per mile, } \\ \text { per cent. }\end{array} \\ \hline 1 & 10.596 & 25 & 2.649 \\ 2 & 1.440 & 300 & 4.320 \\ 3 & 3.093 & 50 & 1.546 \\ 4 \\ 10\end{array}\right\}$

According to it, 528° of curvature in one mile would increase the expenses of each train passing over it by 29.78% of the average cost of a train-mile, and according to the general principles laid down in $\S 421,1^{\circ}$ of central angle of any curve, no matter what the radius, will increase the expenses by $\frac{1}{2 \frac{1}{28}}$ of 29.78%, or $.0564 \%$ per degree. Therefore the cost per year per daily train each way is (at 95 c. per train-mile)

$$
95 \times .0564 \% \times 2 \times 365=39.11 \text { с. }
$$

As a simple illustration (a more extended one will be given later), suppose that by using greater freedom with regard to earthwork the crooked line sketched may be reduced to the simple curve shown and a curvature of, say, 110° may be reduced to, say, 60°.

Note that since the extreme tangents are identical, the saving in central angle results from the elimination of the reversed

Fig. 209.
curvature and of that part of the direct curvature necessary to balance the reversed curvature. Assume that there are six daily trains each way. Then the annual saving is

$$
50^{\circ} \times .3911 \times 6=\$ 117.33,
$$

which at 5% would justify an expenditure of $\$ 2346.60$. If the extra cost of construction does not exceed this, the improvement is justifiable, and is made all the more so if the probabilities are great that the future traffic will largely exceed six trains per day. At the same time the warning regarding "discounting the future" with respect to expected traffic should not be neglected. The possible effect of change of distance has not been referred to in the above problem. In any case it is a distinct problem. According to the above sketch, the difference in distance is probably very slight, and considering the compensating character of extra distance, such small differences may usually be disregarded. The possible effect of change of grade will be discussed in the next chapter. Assuming that there is no difference to be considered on account of either grade or distance, the question hinges on the advisability of spending $\$ 2346.60$ for the improvement.
426. Reliability and value of the above estimate. It should be realized at the outset that no extreme accuracy is claimed for the above estimate. The effect of curvature is somewhat variable as well as uncertain, but such estimates have this great value. Vary the estimates of individual items as you please (within reason), and the final result is still about the same and may be used to guide the judgment. As an illustration, suppose that the item of renewals of rails is assumed to be affected 400% rather than 300%, the justifiable expenditure to avoid the curvature in the above case may similarly be computed as $\$ 2460$, an increase of less than 5%. But, after all, the real question is not whether the improvement is worth $\$ 2346$ or $\$ 2460$. The extra work involved may perhaps be done for $\$ 500$ or it may require $\$ 10000$. The above general method furnishes a criterion which, while not accurate, is so much better than a reliance on vague judgment that it should not be ignored.

COMPENSATION FOR CURVATURE.
427. Reasons for compensation. The effect of curvature on a grade is to increase the resistance by an amount which is equivalent to a material addition to that grade. On minor grades the addition is of little importance, but when the grade is nearly or quite the ruling grade of the road, then the additional resistance induced by a curve will make that curve a place of maxi-
mum resistance and the real maximum will be a "virtual grade" somewhat higher than the nominal maximum. If, in Fig. 210,

Fig. 210.
$A N$ represents an actual uniform grade consisting of tangents and curves, the "virtual grade" on curves at $B C$ and $D E$ may be represented by $B C$ and $D E$. If $B C$ and $D E$ are very long, or if a stop becomes necessary on the curve, then the full disadvantage of the curve becomes developed. If the whole grade may be operated without stoppage, then, as elaborated further in the next chapter, the whole grade may be operated as if equal to the average grade, $A F$, which is better than $B C$, although much worse than $A N$. The process of "compensation" consists in reducing the grade on every curve by such an amount that the actual resistance on each curve, due to both curvature and grade, shall precisely equal the resistance on the tangent. The practical effect of such reduction is that the "virtual" grade is kept constant, while the nominal grade fluctuates.

One effect of this is that (see Fig. 211) instead of accomplish-

Fig. 211.
ing the vertical rise from A to G (i.e., $H G$) in the horizontal distance $A H$, it requires the horizontal distance $A K$. Such an addition to the horizontal distance can usually be obtained by proper development, and it should always be done on a ruling
grade. Of course it is possible that it will cost more to accomplish this than it is worth, but the engineer should be sure of this before allowing this virtual increase of the grade.

European engineers early realized the significance of unreduced curvature and the folly of laying out a uniform ruling grade regardless of the curvature encountered. Curve compensation is now quite generally allowed for in this country, but thousands of miles have been laid out without any compensation. A very common limitation of curvature and grade has been the alliterative figures 6° curvature and 60 feet per mile of grade, either singly or in combination. Assuming that the resistance on a 6° curve is equivalent to a 0.3% grade (15.84 feet per mile), then a 6° curve occurring on a 60 -foot grade would develop more resistance than a 75 -foot grade on a tangent. The "mountain cut-off" of the Lehigh Valley Railroad near Wilkesbarre is a fine example of a heavy grade compensated for curvature, and yet so laid out that the virtual grade is uniform from bottom to top, a distance of several miles.
428. The proper rate of compensation. This evidently is the rate of grade of which the resistance just equals the resistance due to the curve. But such resistance is variable. It is greater as the velocity is lover; it is gencrally about 2 lbs . per ton (equivalent to a 0.1% grade) per degree of curve when starting a train. On this account, the compensation for a curve which occurs at a known stopping-place for the heaviest trains should be 0.1% per degree of curve. The resistance is not even strictly proportional to the degree of curvature, although it is usually considered to be so. In fact most formulæ for curve resistance are based on such a relation. But if the experimentally determined resistances for low curvatures are applied to the excessive curvature of the Nerr York Elevated road, for example, the rules become ridiculous. On this account the compensation per degree of curve may be made less on a sharp curve than on an easy curve. The compensation actually required for very fast trains is less than for slow trains, say 0.02 or 0.03% per degree of curve; but since the comparatively slow and heary freight trains are the trains which are chiefly limited by ruling grade, the compensation must be made with respect to those trains. From 0.04 to 0.05% per degree is the rate of compensation most usually employed for average conditions. Curves which occur below a known stopping-place for all trains need
not be compensated, for the extra resistance of the curve will be simply utilized in place of brakes to stop the train. If a curve occurs just above a stopping-place, it is very serious and should be amply compensated. Of course the down-grade traffic need not be considered.

It sometimes happens that the ordinary rate of compensation will consume so much of the vertical height (especially if the curvature is excessive) that a steeper through grade must be adopted than was first computed, and then the trains might stall on the tangents rather than on the curves. In such cases a slight reduction in the rate of compensation might be justifiable. The proper rate of compensation can therefore be estimated from the following rules:
(1) On the upper side of a stopping-place for the heaviest trains compensate 0.10% per degree of curve.
(2) On the lower side of such a stopping-place do not compensate at all.
(3) Ordinarily compensate about 0.05% per degree of curve.
(4) Reduce this rate to 0.04% or even 0.03% per degree of curve if the grade on tangents must be increased to reach the required summit.
(5) Reduce the rate somewhat for curvature above 8° or 10°.
(6) Curves on minor grades need not be compensated.
429. The limitations of maximum curvature. What is the maximum degree of curvature which should be allowed on any road? The true answer is probably that there is no definite limit. It has been shown that sharp curvature does not prevent the use of the heaviest types of engines, and although a sharp curve unquestionably increases operating expenses, the increase is but one of degree with hardly any definite limit. The general character of the country and the gross capital available (or the probable earnings) are generally the true criterions.

A portion of the road from Denver to Leadville, Col., is an example of the necessity of considering sharp curvature. The traffic that might be expected on the line was so meagre and yet the general character of the country was so forbidding that a road built according to the usual standards would have cost very much more than the traffic could possibly pay for. The line as adopted cost about $\$ 20,000$ per mile, and yet in a stretch of 11.2 miles there are about 127 curves. One is a 25° 20^{\prime} curve, twenty-four are 24° curves, twenty-five are 20° curves,
and seventy-two are sharper than 10°. If 10° had been made the limit (a rather high limit according to usual ideas), it is probable that the line would have been found impracticable (except with prohibitive grades) unless four or five times as much per mile had been spent on it, and this would have ruined the project financially.

For many years the main-line traffic of the Baltimore and Ohio R. R. has passed over a 300 -foot curve ($19^{\circ} 10^{\prime}$) and a 400 -foot curve ($14^{\circ} 22^{\prime}$) at Harper's Ferry. A few years ago some reduction was made in this by means of a tunnel, but the fact that such a road thought it wise to construct and operate such curves (and such illustrations on the heaviest-traffic roads are quite common) shows how foolish it is for an engineer to sacrifice money or (which is much more common) sacrifice gradients in order to reduce the rate of curvature on a road which at its best is but a second- or third-class road.

Of course such belittling of the effects of curvature may be (and sometimes is) carried to an extreme and cause an engineer to fail to give to curvature its due consideration. Degrees of central angle should always be reduced by all the ingenuity of the engineer, and should only be limited by the general relation between the financial and topographical conditions of the problem. Easy curvature is in general better than sharp curvature and should be adopted when it may be done at a small financial sacrifice, especially since it reduces distance generally and may even cut down the initial cost of that section of the road. But large financial expenditures are rarely, if ever, justifiable where the net result is a mere increase in radius without a reduction in central angle. An analysis of the changes which have been so extensively made during late years on the Penn. R. R. and the N. Y., N. H. \& H. R. R. will show invariably a reduction of distance, or of central angle, or both, and perhaps incidentally an increase in radius of curvature. There are but few, if any, cases where the sole object to be attained by the improvement is a mere increase in radius.

CHAPTER XXIII.

GRADE.

430. Two distinct effects of grade. The effects of grade on train expenses are of two distinct kinds; one possible effect is very costly and should be limited even at considerable expenditure; the other is of comparatively little importance, its cost being slight. As long as the length of the train is not limited, the occurrence of a grade on a road simply means that the engine is required to develop so many foot-pounds of wcrk in raising the train so many feet of vertical height. For example, if a freight train weighing 600 tons ($1,200,000 \mathrm{lbs}$.) climbs a hill 50 feet high, the engine performs an additional work of creating $60,000,000$ foot-pounds of potential energy. If this height is surmounted in 2 miles and in 6 minutes of actual time (20 miles per hour), the extra work is $10,000,000$ foot-pounds per minute, or about 303 horse-power. But the disadvantages of such a rise are always largely compensated. Except for the fact that one terminus of a road is generally higher than the other, every up grade is followed, more or less directly, by a down grade which is operated partly by the potential energy acquired during the previous climb. But when we consider the trains running in both directions even the difference of elevation of the termini is largely neutralized. If we could eliminate frictional resistances and particularly the use of brakes, the net effect of minor grades on the operation of minor grades in both directions would be zero. Whatever was lost on any up grade would be regained on a succeeding down grade, or at any rate on the return trip. On the very lowest grades (the limits of which are defined later) we may consider this to be literally true, viz., that nothing is lost by their presence; whatever is temporarily lost in climbing them is either immediately regained on a subsequent light down grade or is regained on the return trip. If a stop is required at the bottom of a sag, there is a net and uncompensated loss of energy.

On the other hand, if the length of trains is limited by the grade, it will require more trains to handle a given traffic. The receipts from the traffic are a definite sum. The cost of handling it will be nearly in proportion to the number of trains. Anticipating a more complete discussion, it may be said as an example that increasing the ruling grade from 1.20% (63.36 feet per mile) to 1.55% (81.84 feet per mile-an increase of about 18.5 feet per mile) will be sufficient to increase the required number of trains for a given gross traffic about 25%, i.e., five trains will be required to handle the traffic which four trains would have handled before at a cost slightly more than four-fifths as much. The effect of this on dividends may readily be imagined.

43I. Application to the movement of trains of the laws of accelerated motion. When a train starts from rest and acquires its normal velocity, it overcomes not only the usual tangent resistances (and perhaps curve and grade resistances), but it also performs work in storing into the train a vast fund of kinetic energy. This work is not lost, for every foot-pound of such energy may later be utilized in overcoming resistances, provided it is not wasted by the action of train-brakes. If for a moment we consider that a train runs without any friction, then, when running at a velocity of v feet per second, it possesses a kinetic energy which would raise it to a height h feet, when $h=\frac{v^{2}}{2 g}$, in which g is the acceleration of gravity $=32.16$. Assuming that the engine is exerting just enough energy to overcome the frictional resistances, the train would climb a grade until the train was raised h feet above the point where its velocity was v. When it had climbed a height h^{\prime} (less than h) it would have a velocity $v_{1}=\sqrt{2 g\left(h-h^{\prime}\right)}$. As a numerical illustration, assume $v=30$ miles per hour $=44$ feet per second. Then $h=\frac{v^{2}}{2 g}=30.1$ feet, and assuming that the engine was exerting just enough force to overcome the rolling resistances on a level, the kinetic energy in the train would carry it for two miles up a grade of 15 feet per mile, or half a mile up a grade of 60 feet per mile. When the train had climbed 20 feet, there would still be 10.1 feet left and its velocity would be $v_{1}=\sqrt{2 g(10.1)}=25.49$ feet per second $=17.4$ miles per hour. These figures, however, must be slightly modified on account of the weight and the revolving
action of the wheels, which form a considerable percentage of the total weight of the train. When train velocity is being acquired, part of the work done is spent in imparting the energy of rotation to the driving-wheels and various truck-wheels of the train. Since these wheels run on the rails and must turn as the train moves, their rotative kinetic energy is just as effec-tive-as far as it goes-in becoming transformed back into useful work. The proportion of this energy to the total kinetic energy has already been demonstrated (see Chapter XVI, § 347). The value of this correction is variable, but an average value of 5% has been adopted for use in the accompanying tabular form (Table XXIII), in which is given the corrected "velocity head" corresponding to various velocities in miles per hour. The table is computed from the following formula:

Velocity head $=\frac{v^{2} \text { in ft. per sec. }}{64.32}=\frac{1.4667 v \text { in m. per h. }}{64.32}=0.03344 v^{2}$ adding 5% for the rotative kinetic energy of the wheels, $0.00167 r^{2}$

The corrected velocity head therefore equals $0.03511 v^{2}$
Part of the figures of Table XXIII were obtained by interpolation and the final hundredth may be in error by one unit, but it may readily be shown that the final hundredth is of no practicable importance. It is also true that the chief use made of this table is with velocities much less than 50 miles per hour. Corresponding figures may be obtained for higher velocities, if desired, by multiplying the figure for half the velocity by four.
432. Construction of a virtual profile. The following simple demonstration will be made on the basis that the ordinary tractive resistances and also the tractive force of the locomotive are independent of velocity. For a considerable range of velocity which includes the most common freight-train velocities this assumption is so nearly correct that the method will give an approximately correct result, but for higher velocities and for more accurate results a more complicated method (given later) must be used. The following demonstration will serve well as a preliminary to the more accurate method. It may best be illustrated by considering a simple numerical example.

Assuming that a train is passing A (see Fig. 212), running at 30 miles per hour. Assume that the throttle is not changed or any brakes applied, but that the engine continues to exert the

TABLE XXIII.-VELOCITY HEAD (REPRESENTING THE KINETIC ENERGY) OF TRAINS MOVING AT VARIOUS VELOCITIES.

$\begin{aligned} & \mathrm{mi} . \\ & \mathrm{hr} . \end{aligned}$	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
10	3.51	3.58	3.65	3.72	3.79	3.87	3.95	4.02	4.10	4.17
11	4.25	4.33	4.41	4.49	4.57	4.65	4.73	4.81	4.89	4.97
12	5.06	5.15	5.23	5.32	5.41	5.50	5.58	5.67	5.75	5.84
13	5.93	6.02	6.12	6.21	6.31	6.40	6.50	6.59	6.69	6.78
14	6.88	6.98	7.08	7.19	7.29	7.39	7.49	7.60	7.70	7.80
15	7.90	8.00	8.11	8.22	8.33	8.44	8.55	8.66	8.77	8.88
16	8.99	9.10	9.21	9.32	9.43	9.55	9.67	9.79	9.91	10.03
17	10.15	10.21	10.39	10.51	10.63	10.75	10.87	10.99	11.12	11.25
18	11.38	11.50	11.63	11.76	11.89	12.02	12.15	12.28	12.41	12.55
19	12.68	12.81	12.95	13.08	13.22	13.35	13.49	13.63	13.77	13.91
20	14.05	14.19	14.33	14.47	14.61	14.75	14.89	15.04	15.19	15.34
21	15.49	15.64	15.79	15.94	16.09	16.24	16.39	16.54	16.69	16.84
22	17.00	17.15	17.30	17.46	17.62	17.78	17.94	18.10	18.26	18.42
23	18.58	18.74	18.90	19.06	19.22	19.38	19.55	19.72	19.89	20.06
24	20.23	20.40	20.57	20.74	20.91	21.08	21.25	21.42	21.59	21.77
2	21.95	22.12	22.30	22.48	22.66	22.84	23.02	23.20	23.38	23.56
26	23.74	23.92	24.10	24.28	24.46	24.65	24.84	25.03	2522	25.41
27	25.60	25.79	25.98	26.17	26.36	26.55	26.74	26.93	27.13	27.33
28	27.53	27.73	27.93	28.13	28.33	28.53	28.73	28.93	29.13	29.33
29	29.53	29.73	29.93	30.13	30.34	30.55	30.76	30.97	31.18	31.39
30	31.60	31.81	32.02	32.23	32.44	32.65	32.86	33.08	33.30	33.52
31	33.74	33.96	34.18	34.40	34.62	34.84	35.06	35.28	35.50	35.72
32	35.95	36.17	36.39	36.62	36.85	37.08	37.31	37.54	37.77	38.00
33	38.23	38.46	38.69	38.92	39.15	39.38	39.62	39.86	40.10	40.34
34	40.58	40.82	41.06	41.30	41.54	41.78	42.02	42.26	42.51	42.76
35	43.01	43.26	43.51	43.76	44.01	44.26	44.51	44.76	45.01	45.26
36	45.51	45.76	46.01	46.26	46.52	46.78	47.04	47.30	47.56	47.82
37	48.08	48.34	48.60	48.86	49.12	49.38	49.64	49.91	50.18	50.45
38	50.72	50.99	51.26	51.53	51.80	52.07	52.34	52.61	52.88	53.15
39	53.42	53.69	53.96	54.23	54.51	54.79	55.07	55.35	55.63	55.91
40	56.19	56.47	56.75	57.03	57.31	57.59	57.87	58.16	58.45	58.74
41	59.03	59.32	59.61	59.90	60.19	60.48	60.77	61.06	61.35	61.64
42	61.94	62.23	62.52	62.82	63.12	63.42	63.72	64.02	64.32	64.62
43	64.92	65.22	65.52	65.82	66.12	66.43	66.74	67.05	67.36	67.67
44	67.98	68.29	68.60	68.91	69.22	69.53	69.84	70.15	70.46	70.78
45	71.10	71.42	71.74	72.06	72.38	72.70	73.02	73.34	73.66	73.98
46	74.30	74.62	74.94	75.26	75.59	75.92	76.25	76.58	76.91	77.24
47	77.57	77.90	78.23	78.56	78.89	79.22	79.55	79.89	80.23	80.57
48	80.91	81.25	81.59	81.93	82.27	82.61	82.95	8329	83.63	83.97
49	84.32	84.66	85.00	85.34	85.69	86.04	86.39	86.74	87.09	87.44
50	87.79	88.14	88.49	88.8.)	89.20	89.55	89.91	90.26	90.61	90.97

same draw-bar pull. At A its "velocity head" is that due to 30 miles per hour, or 31.60 feet. At B it has gained 40 feet more, and its velocity is that due to a velocity head of 71.60 feet, or slightly over 45 miles per hour. At B^{\prime} its velocity is again 30 miles per hour and velocity head 31.60 feet. At C the velocity head is but 6.60 feet and the velocity about 13.7 miles per hour.

As the train runs from C to D its velocity increases to 30 miles at C^{\prime} and to over 45 miles per hour at D. At E the velocity again becomes 30 miles per hour. Although there will be some slight modifications of the above figures in actual practice, yet the above is not a fanciful theoretical sketch. Thousands of just such undulations of grade are daily operated in such a way, without disturbing the throttle or applying brakes, and the draw-bar pull, if measured by a dynamometer, would be found to be practically constant. Of course the above case assumes that

Fig. 212.
there are no stoppages and that the speed through the sags is not so great that safety requires the application of brakes. Observe that the "virtual profile" is here a straight line-as it always is when the draw-bar pull is constant. The virtual profile (in this case as well as in every other case, illustrations of which will follow) is found by adding to the actual profile at any point an ordinate which represents the "velocity head" due to the velocity of the train at that point.

As another case, assume that a train is climbing the grade $A E$ and exerting a pull just sufficient to maintain a constant velocity

Fig. 213. up that grade. Then $A^{\prime} B^{\prime}$ (parallel to $A B$) is the virtual profile, $A A^{\prime}$ representing the velocity head. A stop being required at C, steam is shut off and brakes are applied at B, and the velocity head $B B^{\prime}$ reduces to zero at C. The train starts from C, and at D attains a velocity corresponding to the ordinate $D D^{\prime}$. At D the throttle may be slightly closed so that the velocity will be uniform and the virtual grade is $D^{\prime} E^{\prime}$, parallel to $D E$.

From the above it may be seen that a virtual profile has the following properties:
(a) When the velocity is uniform, the virtual profile is parallel with the actual.
(b) When the velocity is increasing the profiles are separating; when decreasing the profiles are approaching.
(c) When the velocity is zero the profiles coincide.
433. Use, value, and possible misuse. The essential feature respecting grades is the demand on the locomotive. From the foregoing it may readily be seen that the ruling grade of a road is not necessarily the steepest nominal grade. When a grade may be operated by momentum, i.e., when every train has an opportunity to take "a run at the hill," it may become a very harmless grade and not limit the length of trains, while another grade, actually much less, which occurs at a stopping-place for the heaviest trains, will require such extra exertion to get trains started that it may be the worst place on the road. Therefore the true way to consider the value of the grade at any critical place on the road is to construct a virtual profile for that section of the road. The required length of such a profile is variable, but in general may be said to be limited by points on each side of the critical section at which the velocity is definite, as at a stopping-place (velocity zero), or a long heavy grade where it is the minimum permissible, say 10 or 15 miles per hour.

Since the velocities of different trains vary, each train will have its own virtual profile at any particular place. The fast passenger trains are generally unaffected, practically. The requirement of high average speed necessitates the use of powerful engines, and grades which would stall a heavy freight will only cause a momentary and harmless reduction of speed of the fast passenger train.

A possible misuse of virtual profiles lies in the chance that a station or railroad grade crossing may be subsequently located on a heavy grade that was designed to be operated by momentum. But this should not be used as an argument against the employment of a virtual profile. The virtual profile shows the actual state of the case and only points out the necessity, if an unexpected requirement for a full stoppage of trains at a critical point has developed, of changing the location (if a station), or of changing the grade by regrading or by using an overhead crossing. Examples of such modifications are given in Chapter XXIV, The Improvement of Old Lines.
434. Undulatory grades. Advantages. Money can generally be saved by adopting an actual profile which is not strictly uniform-the matter of compensation for curvature being here
ignored. Its effect on the operation of trains is harmless provided the sag or hump is not too great. In Fig. 214 the undulatory grade may actually be operated as a uniform grade $A G$. The sag at C must be considered as a sag, even though $B C$ is actually an up grade. But the engine is supposed to be working

Fig. 214.
hard enough to carry a train at uniform velocity up a grade $A G$. Therefore it gains in velocity from B to C, and from C to D loses an equal amount. It may even be proven that the time required to pass the sag will be slightly less than the time required to run the uniform grade.

Disadvantages. The hump at F is dangerous in that, if the velocity at E is not equal to that corresponding to the extra velocity-head ordinate at F, the train will be stalled before reaching F. In practice there should be considerable margin. Any train should have a velocity of at least 10 miles per hour in passing any summit. This corresponds to a velocity head of 3.51 feet. An extra heavy head wind, slippery rails, etc., may use up any smaller margin and stall the train. If the grade $A G$ is a ruling grade, then no hump should be allowed under any circumstances. For the heaviest trains are supposed to be so made up that the engine will just haul them up the ruling grades-of course with some margin for safety. Any increase of this grade, however short, would probably stall the train.

Safe limits. It is quite possible to have a sag so deep that it is not safe to allow freight trains to rush through them without the use of brakes. The use of brakes of course adds a distinct element of cost. To illustrate: If a freight train is running at a velocity of 20 miles per hour (velocity head 14.05 feet) and encounters a sag of 25 feet, the velocity head at the bottom of the sag will be 39.05 feet, which corresponds to a velocity of 33.3 miles per hour. This approaches the limit of safe speed for freight trains, and certainly passes the limit for trains not equipped with air-brakes and automatic couplers.

The term "safe limits" as used here, refers to the limits within which a freight train may be safely operated without the application of brakes or varying the work of the engine. Of course much greater undulations are frequently necessary and are safely operated, but it should be remembered that they add a distinct element to the cost of operating trains and that they must not be considered as harmless or that they should be introduced unless really necessary.

MINOR GRADES.

435. Basis of cost of minor grades. The basis of the computation of this least objectionable form of grade is as follows: The resistance encountered by a train on a level straight track is somewhat variable, depending on the velocity and the number and character of the cars, but for average velocities we may consider that 10 lbs . per ton is a reasonable figure. This value agrees fairly well with the results of some dynamometer tests made by Mr. P. H. Dudley, using a passenger train of 313 tons running at about 50 miles per hour. It also agrees with Searles's formulæ (based on experiments) for the resistance of a freight train with 40 cars running 25 miles per hour. Ten pounds per ton is the grade resistance of a 0.5% grade, or that of 26.4 feet per mile. On the above basis, a 0.5% grade will just double the tractive resistance on a level straight track. We may compute, as in the previous chapter, the cost of doubling the tractive resistance for one mile. But since the extra resistance is due to lifting the train through 26.4 feet of elevation, we may divide the extra cost of a mile of 0.5% grade by 26.4 and we have the cost of one foot of difference of elevation, and then (disregarding the limiting effect of grades) we may say that this cost of one foot of difference of elevation will be independent of the rate of grade. There are, however, limitations to this general proposition which will be developed in the next section.
436. Classification of minor grades. These are classified with reference to their effect on the operation of trains. In the first class are grades which may be operated without changing the work of the engine and which have practically no other effect than a harmless fluctuation of the velocity. But a grade which belongs to this class when considering a fast passenger train will belong to another class when considering a slow but heavy
freight train. And since it is the slow heavy freight trains which must be chiefly considered, a grade will usually be classified with respect to them. The limit of class A (the harmless

Fig. 215. class) therefore depends on the maximum allowable speed. The effect of a sag on speed will depend on the vertical feet of drop rather than on the rate of grade, for with the engine working as usual on even a light down grade a train would soon exceed permissible speed. Assume that a freight train runs at an average speed of 15 miles per hour with a minimum of 10 miles and a permissible maximum of 30 miles per hour. Assume that a train runs up the grade at A with a. uniform velocity of 15 miles per hour, i.e., the engine is working so that the velocity would be uniform to C. How much sag ($B B^{\prime}$) can there be without the speed exceeding 30 miles per hour?

Velocity head for 30 miles per ho	31.60
" ${ }^{\text {a }} 15$ ، 15 ،	7.90
The drop $B \dot{B}^{\prime}$ will therefore be	23.70

While each case must be figured by itself, considering the probable velocity of approach and the maximum permissible velocity, we may say that a sag of about 24 feet will ordinarily mark the limit of this class. With a higher velocity of approach even this limit will be much reduced.

The classification therefore applies to sags and humps and to the vertical feet of drop or climb which are involved, rather than to grade per se. The practical application of these principles is necessarily confined to humps or sags which are possibly removable and does not apply to the long grades which are essential to connect predetermined points of the routegrades which are irreducible except by development and which must be studied as ruling grades (see $\S \S 440-445$).

The application therefore consists in the comparative study of two proposed grades, noting the relative energy required to operate them and the probable cost. The depth in feet saved would be the maximum difference between the grades, and the classification will depend on the necessary method of operating the trains.

The next classification (B) applies to drops so deep that steam must be shut off when descending the grade, while the work required of the engine when ascending the opposite grade is correspondingly increased. The loss is not so serious as in the next case, but the inability of the engine to work continuously may result in a failure to accumulate sufficient kinetic energy to carry the train over a succeeding summit.

The third class (C) includes the grades so long that brakes must be applied to prevent excessive velocity. The loss involved is very heavy; the brakes require power for their application, they wear the brake-shoes and wheel-tires, they destroy kinetic or potential energy which had previously been created, while the tax on the locomotive on the corresponding ascending grade is very great. The ascending grade may or may not be a ruling grade.
437. Effect on operating expenses. As in Chapter XXII we may at once throw out a large proportion of the items of expense of an average train-mile. In "maintenance of way and structures" items 4 to 10 are evidently unaffected.

Item i. Repairs of Roadway. It is very plain that a large proportion of the sub-items are absolutely unaffected by minor grades. In fact it is a little difficult to ascribe any definite increase to any sub-item. The rail wear is somewhat increased and this will have some effect on the trackwork, but on the other hand the increased grade sometimes results in better drainage and therefore less work to keep the track in condition. Wellington allows 5% increase as a "liberal estimate" for class C, and no increase for the other classes.

Item 2. Renewals of Rails. Observations of rail wear on heavy grades show that it is much greater than on level tangents. But usually such heavy grades are operated by shorter trains or with the help of pusher engines, and the proportion of engine tonnage to the total is much greater than is ordinarily the case. And since an engine has much greater effect on rail wear than cars, particularly on account of the use of sand, an excess of engine tonnage would have a marked effect. But such circumstances would inevitably accompany ruling grades and not minor grades. Nevertheless the effect of the use of sand on up grades and the possible skidding of wheels on down grades will wear the rails somewhat. Even the possible slipping of the drivers, although sand is not used,
will wear the rails. Wellington allows 10% increase for class C and 5% for class B.

Item 3. Renewals of Ties. The added wear of ties might be considered proportional to that of the rails except that, as in the case of the roadbed in general, the better drainage secured by the grade will tend to increase the life of the ties. Wellington makes the estimate the same as for item $1,5 \%$ for class C and no increase for the other classes.

Maintenance of equipment. Items 11, 16, 17, 18, and 19 are evidently unaffected. Items 12 to 15 . The chief subitems of increase will evidently be the repairs and renewals of wheels and brake-shoes both for locomotives and cars. In the case of cars the draw-bar is apt to suffer from severe alternate compression and extension due to push and pull. The locomotive mechanism will suffer somewhat from the extra demands on it, and the boiler on account of the intermittent character of the demands on it. It would seem as if such effects would be quite large, but an examination of the comparative records of engine and car repairs on mountain divisions and on comparatively level divisions shows no such difference as might be expected. On this account Wellington cuts down these items to 4% for class C and 1% for class B.

Conducting transportation. As in Chapter XXI, § 407, since the resistance is assumed to be doubled, we may take the same figure (55%) as the cost of the fuel for climbing the 26.4 feet. But the total cost of both the rise and fall is to be considered. In class B, although steam is shut off, heat (and fuel) is wasted by mere radiation. This has been estimated (Chapter XXI, $\S 407$) as about 5%. Therefore we may allow 60% for class B. For class C we must allow in addition the energy spent in applying brakes, which we may assume as 5% more, making 65%. Items 23,24 , and 25 may be estimated similarly. The other items under this head as well as General Expenses are evidently unaffected.
438. Estimate of the cost of one foot of change of elevation. Collecting these estimates, we have the accompanying tabular form, showing that the percentage of increase for operating grades of class B or class C will be 6.77% and 8.56%, respectively. On the basis of an average cost of 95 c. per train-mile, the additional cost for the 26.4 feet in one mile would be 6.43 c . and 8.13 c ., or 0.24 c . and 0.31 c . per foot. For each train per
day each way per year the value per foot of difference of elevation is:

For class $B: 2 \times 365 \times \$ 0.0024=\$ 1.75$;

$$
\text { " " } C: 2 \times 365 \times \$ 0.0031=\$ 2.26 \text {. }
$$

It will frequently happen that a grade must be considered as belonging to class C for heavy freight trains, and that it belongs to class B or even class A for other trains. If no Sunday trains are run, 313 should be used instead of 365 as a multiplier in the above equations.
439. Operating value of the removal of a hump in a grade. As a simple illustration of the above, suppose that the irregular grade $A B C D$ may be cut down to the uniform grade $A D$, either by direct lowering of the track or by a modification of alignment. If a freight train, running to the left, passes C at a velocity of 15 miles per hour (velocity head, 7.90 feet) and drops

Fig. 216.
down to B (a vertical fall of 62.40 feet) without shutting off steam, its velocity head at B would be 70.30 feet and its velocity 44.8 miles per hour, which is inadmissible. Therefore the hump certainly does not belong to class A, for freight trains. Suppose that steam is shut off when passing C. Then, if we consider the average value of 0.5% as the grade which is equivalent to the normal rolling resistances, we may consider the 1.3% grade as an 0.8% grade, down which the train passes without resistance. An 0.8% grade for 4800 feet would be a drop of 38.40 feet, and the velocity head at B would be $7.90+38.40=$ 46.30 feet, and the velocity would be 36.3 miles per hour, which may or may not be considered as inadmissible for freight trains. According to the decision the grade belongs to class C or to class B. For trains moving to the right, or up grade, there is no definite criterion, but a grade of 1.3% is a severe tax on a locomotive, even if it is not a ruling grade. Ignoring its possible

TABLE XXIV.-EFFECT ON OPERATING EXPENSES OF CHANGES IN GRADE.

No.	Item (abbreviated).*	Normal average.	Class B.		Class C.	
			Per cent affected	Cost per mile	Per cent affected	Cost per mile
1	Roadway.	10.596	0	0	5	. 53
2	Rails.	1.440	5	. 07	10	. 14
${ }^{3}$	Ties........iidin......	3.093	0	. 07	5	. 15
4-10	Bridges, buildings, etc Maintenance of way.	5.533	0	. 0	0	0
		20.662		. 07		. 82
11	Superintendence... .	. 650	0	0	0	0
12	Repairs locomotives	5.879	1	. 06	4	. 23
13	Repairs pass. cars .	2.209	1	. 02	4	. 09
14	Repairs freight cars.	6.765	1	. 07	4	. 27
15	Repairs work cars..	. 155	1	. 00	4	. 06
16	Marine equipment	. 209	0	0	0	0
17	Shops. 490	0	0	0	0
19	Stat. and printing	. 040	0	0	0	0
	Other expenses..	. 495	0	0	0	0
	Main. of equip.	16.892		. 15		. 65
20	Superintendence	1.761	0	0	0	0
21	Enginemen.	9.781	0	0	0	0
22	Fuel.	9.681	60	5.81	65	6.29
23	Water.	. 671	60	. 40	65	. 44
24	Oil, etc. .	. 376	60	. 23	65	. 24
	Other supplies.	. 184	60	. 11	65	. 12
26-46	Train service, station service, etc......... . Conducting transp	35.340	0	0	0	0
		57.794		6.55		7.09
47-53	General expenses.	4.653	0	0	0	0
		100.000		6.77		8.56

* For full title of item see Table XX.
limiting effect (which is a separate matter), the value of the 33.6 feet is evidently

$$
33.6 \times \$ 2.26=\$ 75.94 \text { per daily train for class } C
$$

and

$$
33.6 \times \$ 1.75=\$ 58.80 \text { " } ، \quad \text { ، } ، \text { ، } B \text {. }
$$

Assuming that there are six daily trains each way for which the grade would be classified as C, and four others which could operate the grade as a " B " grade, the total annual cost would be

$$
\begin{aligned}
& 6 \times \$ 75.94=\$ 455.64 \\
& 4 \times \$ 58.80=\$ 235.20
\end{aligned}
$$

This annual cost, capitalized at 5%, equals $\$ 13817$, which is the justifiable expenditure to avoid the hump. Assuming that the cut would involve 300000 cubic yards, at 20 c. per cubic yard, it would cost $\$ 60000$ to make the through cut. On the above basis the cut would not be justifiable, but a small part of such cutting would so reduce the hump that it would not belong to class C for any trains, and it might even be reduced to class A. Of course other solutions are possible. A slightly different route may be chosen from B to D, involving a different distance, different curvature, and a marked reduction in the hump. The effect of all such changes must be combined and their net effect determined

RULING GRADES.

440. Definition. Ruling grades are those which limit the weight of the train of cars which may be hauled by one engine. The subject of "pusher grades" will be considered later. For the present it will suffice to say that on all well-designed roads the large majority of the grades on any one division are kept below some limit which is considered the ruling grade. If a heavier grade is absolutely necessary no special expense will be made to keep it below a rate where the resistance is twice (or possibly three times) the resistance on the ruling grade, and then the trains can be hauled unbroken up these few special grades with the help of one (or two) pusher engines. So far as limitation of train length is concerned, these pusher grades are no worse than the regular ruling grades and, except for the expense of operating the pusher engines (which is a separate matter), they are not appreciably more expensive than any ruling grade. As before stated, the engineer cannot alter very greatly the general level of the road when the general route has been decided on. He may remove sags or humps, or he may lower the natural grade of the route by development in order to bring the grade within the adopted limit of ruling grade. The financial value of removing sags and humps has been considered. It now remains to determine the financial relation between the lowest permissible ruling grade and the money which may profitably be spent to secure it.
441. Choice of ruling grade. It is of course impracticable for an engine to drop off or pick up cars according to the grades
which may be encountered along the line. A train load is made up at one terminus of a division and must run to the other terminus. Excluding from consideration any short but steep grades which may always be operated by momentum, and also all pusher grades, the maximum grade on that division is the ruling grade.

It will evidently be economy to reduce the few grades which naturally would be a little higher than the great majority of others until such a large amount of grade is at some uniform limit that a reduction at all these places would cost more than it is worth. The precise determination of this limit is practically impossible, but an approximate value may be at once determined from a general survey of the route. The distance apart of the termini of the division into their difference of elevation is a first trial figure for the rate of the grade. If a grade even approximately uniform is impossible owing to the elevations of predetermined intermediate points, the worst place may be selected and the natural grade of that part of the route determined. If this grade is much steeper than the general run of the natural grades, it may be policy to reduce it by development or to boldly plan to operate that place as a pusher grade. The choice of possible grades thus has large limitations, and it justifies very close study to determine the best combination of grades and pusher grades. When the choice has narrowed down to two limits, the lower of which may be obtained by the expenditure of a definite extra sum, the choice may be readily computed, as will be developed.
442. Maximum train load on any grade. The tractive power of a locomotive has been discussed in Chap. XV, §322. The net train load which may be placed behind any engine is the difference between the weight of the engine itself and the gross load which can be handled under the given circumstances, with a given weight on the drivers. Since the design of locomotives is so variable, it is impracticable to show in tabular form the power of all kinds of locomotives on all grades. In Table XXV are given the tractive powers of locomotives of a wide range of types and weights and with various ratios of adhesion. They may be accepted as typical figures and will serve to compute the effect of variations of grade on train lead. In Table XXVI is given the total train resistance in pounds per ton for various grades and for various values of track resistances. By a combination

TABLE XXV.-TRACTIVE POWER OF VARIOUS TYPES OF LOCOMOTIVES AT VARIOUS RATES OF ADHESION.

Kind.	Gauge.	Total weight of engine and tender.		Weight of engine only.	Weight on drivers	Tractive power when rate of adhesion is		
		lbs.	tons.			$\frac{1}{4}$.	$4{ }^{9} 0$	$\frac{1}{5}$
Amer	Nar	49,000	24.5	32,000	22,000	5,500	4,950	4,400
		80.000 81.000	40	49,000	32,000	8,000	7,200	6,400
		,000	40.5	51,000	42,000	10,500	9,450	8,400
10-wheel		87,000	43.5	55,000	42,000	10,500	9,450	8,400
Conso		62,000	31	39,000	34,000	8,500	7.650	6,800
		144,000	72	94,000	84,000	21:000	18,900	16,800
America	Stand.	104,000	52	62,000	40,000	10,000	9,000	8,000
"Chautau".		314,600	157.3	190,600	99,400	24,850	22.365	19.880
Mogul.	,	206,000	103	126,000	106,400	26,600	23,940	21,280
10-wheel	،	276,000	138	176,510	127,010	31,752	28,577	25,402
Cons	"،	214,000	107	120.000	106,000	26.509	23,850	21,200
	،	324,800	162.4	204,800	181,200	45,300	40,770	36,240

of these two tables the net train load on any grade under given conditions may be quickly determined For example, an ordinary consolidation engine having a weight of 106000 pounds on the drivers (see Table XXV) will have a tractive force of 26500 pounds under fair conditions of track, when the adhesion ratio is $\frac{1}{4}$. When climbing slowly up a grade of 1.30% the tractive resistance will be about 32 pounds per ton if the roll-ing-stock and track are fair-assuming a tractive resistance on a level of 6 pounds per ton. Dividing 26500 by 32 we have 828 tons, the gross train load. Subtracting 107 tons, the weight of the engine and tender in working order, we have 721 tons, the net load. Incidentally we may note that, cutting down the grade to 0.90% (a reduction of only 21.12 feet per mile), the resistance per ton is reduced to 24 pounds and the gross train load is increased to 1104 tons and the net load to 997 tons-an increase of about 38%.

As another numerical example, consider a contractor's locomotive (not referred to in Table XXV), a light four-wheel-con-nected-tank narrow-gauge engine, with a total weight of 12000 pounds, all on the drivers. On the rough temporary track used by contractors the tractive ratio may be as low as $\frac{1}{5}$. The tractive adhesion should thercfore be taker as 2400 pounds. Assume that the grade when hauling "empties" is 4.7% and
that the tractive resistance on such a track on a level is 10 pounds per ton. By Table XXVI, the total train resistance is therefore (by interpolation) 104 pounds per ton. $2400 \div 104=23$ tons; subtracting the weight of the engine we have 17 tons, the net load of empty cars-perhaps twenty cars weighing 1700 pounds per car.

In general, and to compute accurately the train load under conditions not exactly given in the tables, the maximum train load may be computed according to the following rule:

The maximum load behind an engine on any grade may be found by multiplying the weight on the drivers by the ratio of adhesion and dividing this by the sum of the grade and tractive resistances per ton; this gives the gross load, from which the weight of the engine and tender must be subtracted to find the net load.
443. Proportion of the traffic affected by the ruling grade. Some very light traffic roads are not so fortunate as to have a traffic which will be largely affected by the rate of the ruling grade. When passenger traffic is light, and when, for the sake of encouraging traffic, more frequent trains are run than are required from the standpoint of engine capacity, is may happen that no passenger trains are really limited by any grade on the road-i.e., an extra passenger car could be added if needed. The maximum grade then has no worse effect (for passenger trains) than to cause a harmless reduction of speed at a few points. The local freight business is frequently affected in practically the same way. All coal, mineral, or timber roads are affected by the rate of ruling grade as far as such traffic is concerned. Likewise the through business in general merchandise, especially of the heavy traffic roads, will generally be affected by the rate of ruling grade. Therefore in computing the effect of ruling grade, the total number of trains on the road should not ordinarily be considered, but only the trains to which cars are added, until the limit of the hauling power of the engine on the ruling grades is reached.
444. Financial value of increasing the train load. The gross receipts for transporting a given amount of freight is a definite sum regardless of the number of train loads. The cost of a train mile is practically constant. If it were exactly so, the saving in operating expenses would be strictly proportional to the number of trains saved. How will the cost per train

$\S 444$.

GRADE.

TABLE XXVI.-TOTAL TRAIN RESISTANCE PER TON (OF 2000 POUNDS) ON VARICUS GRADES.

Grade.		When tractive resistance on a level in pounds per ton is					Grade.		When tractive resistance on a level in pounds perton is				
Rate per cent.	Feet per mile.	6	7	8	9	10	Rate per cent.	Feet per mile.	6	7	8	9	10
0.00	0.00	6	7	8	9	10	2.00	105.60	46	7	48	43	5
05	2.64	7	8	9	10	11	. 05	108.24	47	48	49	50	51
. 10	5.28	8	9	10	11	12	. 10	110.88	48	49	50	51	52
. 15	7.92	9	10	11	12	13	. 15	113.52	49	50	51	52	5.
. 20	10.56	10	11	12	13	14	. 20	116.16	50	51	52	53	5
0.25	13.20	11	12	13	14	15	2.25	118.80	51	52	53	54	55
. 30	15.84	12	13	14	15	16	. 30	121.44	52	53	54	55	50
. 35	18.48	13	14	15	16	17	. 35	124.08	53	54	55	53	57
. 40	21.12	14	15	16	17	18	. 40	126.72	54	55	56	57	58
. 45	23.76	15	15	17	18	19	45	129.36	55	56	57	58	53
0.50	26.40	16	17	18	19	20	2.50	132.00	56	57	58	59	60
. 55	29.0	17	18	19	20	21	. 55	13	57	58	59	60	61
. 60	31.68	18	19	20	21	22	. 60	137.28	58	59	60	61	62
. 65	34.32	19	20	21	22	23	. 65	139.92	59	60	61	62	63
. 70	36.96	20	21	22	23	24	70	142.56	60	61	62	63	6
0.75	39.60	21	22	23	24	25	2.75	145.20	61	62	63	64	65
. 80	42.2	22	23	24	25	26	. 80	'147.84	62	63	64	65	66
. 85	44.88	23	24	25	26	27	. 85	150.48	63	64	65	66	67
. 90	47.52	24	25	26	27	28	. 90	153.12	64	65	66	67	
0.95	50.16	25	23	27	28	29	. 95	155.76	65	66	67	68	69
1.00	52.80	26	27	28	29	30	3.00	158.40	66	67	68	69	70
. 05	55.44	27	28	29	30	31	. 05	161.		68	69	7 C	71
. 10	58.08	28	29	30	31	32	. 10	163.68	68	69	70	71	72
. 15	60.72	29	30	31	32	33	. 15	166.32	69	70	71	72	73
. 20	63.36	30	31	32	33	34	. 20	168.9	70	71	72	73	7
1.25	65.00	31	32	33	34	35	3.25	171.6	71	72	73	74	75
. 30	68.64	32	33	34	35	36	. 30	174.2	72	73	74	75	76
. 35	71.28	33	34	35	36	37	. 35	176.88	73	74	75	76	7
. 40	73.92	34	35	36	37	38	. 40	179.52	74	75	76	77	78
. 45	76.56	35	36	37	38	39	. 45	182.16	75	76	77	78	79
1.50	79.20	36	37	38	39	40	3.50	184.80	76	77	78	79	80
. 55	81.84	37	38	39	40	41	4.00	211.20	86	87	88	89	90
. 60	84.48	38	39	40	41	42	4.50	237.60	96	97	98	99	100
. 65	87.12	39	40	41	42	43	5.00	264.00	106	107	108	109	110
. 70	89.76	40	41	42	$\triangle 3$	44	5.50	290.40	116	117	118	119	120
1.75	92.40	41	42	43	44	45	6.00	316.80	126	127	128	129	130
. 80	95.04	42	43	44	45	46	6.50	343.20	136	137	138	139	140
. 85	97.68	43	44	45	46	47	7.00	369.60	146	147	148	149	150
. 90	100.32	44	45	46	47	48	8.00	422.40	166	167	168	169	170
1.95	102.96	45	46	47	48	49	9.00	475.20	186	187	188	189	190
2.00	105.60	46	47	48	49	50	10.00	528.00	206	207			210

mile vary when by a reduction in ruling grade more cars are handled in one train than before? First, compute the effect
of increasing the train load so that one less engine will handle the traffic, or, for example, that an engine can haul 11 cars instead of 10 or 44 instead of 40 -that 10 engines will do the work for which 11 engines would be required with the steeper grade. What will be the relative cost of running 10 heavy trains rather than 11 lighter trains, or, rather, what will be the extra cost of the extra engine?

Since the gross traffic to be handled is assumed to be the same, the number of cars required to handle it will also be the same whatever the number of trains, and the effect of those cars on the wear and tear of track, etc., will evidently be constant. The locomotive, on account of the greater concentration of loading of the driver wheels, damages the track (in proportion to its tonnage) much more than the cars. It has been estimated that the locomotive is responsible for one half of the track wear Such an estimate is verified by the wear of rails on steep tracks around coal-mines where standard cars are hauled by cables. If we assume that 50% of Items 2 and 3 and of that part of Item 1 which varies with tonnage is due to the locomotives, then the extra expense caused by the extra engine will be 50% of Items 2 and 3 and 50% of 25% of Item 1. The other items of maintenance of way are unaffected except that truss bridges, trestles, and the maintenance of a few buildings will be slightly affected by the extra locomotive. But the actual effect is quite indefinite and is evidently very small.

Maintenance of equipment: Engine repairs will evidently be affected according to the mileage. Throughout the ruling grade of the road (by whichever system of grades) the engines (assumed of uniform style) are working at their utmost capacity. On the lighter grades and level sections the engines will have easier work when the cars are fewer and this will have a tendency to reduce engine repairs. Suppose that by decreasing the number of cars 10% on the easy grades the engine repairs on each engine are reduced 2%. There is little or no justification for estimating the reduction to be more than this. Then on the ten engines the saving is 20% of the average charge for 1 engine. Suppose that by decreasing the number of cars 20% on the easy grades the engine repairs are reduced 4%, on the five engines they are reduced 20% again. In either case the net added cost due to the extra engine would be but 80% of the avcrage cost While the above estimate is but a guess,
yet it is very evident that the extra cost for this item is but little less than the normal charge.

Car repairs will be reduced by a decrease in the number of cars per train. The average draw-bar pull will be less, the wear and tear due to stoppage and starting will be less. This is the one item in which an increased number of trains for the same tonnage is an actual advantage. The saving per car is evidently greater when 4 trains are increased to 5 than when 10 trains are increased to 11 ; but the saving per train added on is constant. Wellington estimates the saving to be 10%. His basis of calculation is somewhat different, but it reduces to the same thing. The estimate applies chiefly to Item 14 and to Item 13 in so far as passenger trains are affected by ruling grade. The other items of maintenance of equipment are but little, if any, affected.

Conducting transportation. Items 20, 21, 26, 27, 28, 29, 30, $31,32,34,35,36,37,45$, and 46 may be considered as varying according to the train mileage. While some of them seem to have but little direct connection with train mileage, yet if a road increases its traffic from 10 trains a day to 20 trains a day all of these items seem to increase in due proportion.

Fuel, etc., for locomotives (Items 22-25) will increase nearly as the engine mileage. In either case the engines work to the limit of their capacity on the ruling grades. In either case the loss of heat due to radiation is the same. But the engines with the lighter trains work a little easier on the light or level grades. By the same course of reasoning as was given regarding engine repairs the fuel saving from the normal requirement for the extra engine will be about the same no matter whether there is an addition of one engine in 5 or 10 . The saving in fuel will be assumed at 25% of the normal consumption, or rather that the use of the extra engine adds 75% of the normal charge for fuel. The same estimate applies to items 23, 24, and 25.

Car mileage is unaffected. Items 38 to 44 will be considered as unaffected, also the general expenses.
445. Operating value of a reduction in the rate of the ruling grade. Collecting the above estimates, we have Table XXVII. To this must be added something for the capital cost of the extra engine. Assume that it costs $\$ 10000$ and that its mileage life is 800000 miles. This makes an average charge of 1.25 c . per mile. Of course the cost of operation, maintenance, and repairs
is included in the tabulated expense. 54.82% of $95 \mathrm{c} .=52.08 \mathrm{c}$. Adding 1.25 c ., we have 53.33 c .

TABLE XXVII.-COST OF AN ADDITIONAL TRAIN TO HANDLE A GIVEN TRAFFIC.

No.	Item (abbreviated).	Normal average.	Per cent affected.	Cost per cent.
1	Roadway	10.596	12.5	1.32
2	Rails. .	1. 1.440	50	. 72
${ }^{3}$	Ties. \quad iidings,	3.093	50	1.55
4-10	Bridges, buildings, etc.	5.533	0	
	Maintenance of way	20.662		3.59
11	Superintendence.	. 650	0	0
12	Repairs of locomotives.	5.879	80	4.70
13	Repairs of passenger-cars	2.209	5	. 11
15-19	Repairs of freight-cars.	6.765 1.389	10	${ }_{0} .68$
15-19	Miscellaneous.	1.389	0	
	Maintenance of equipment. . .	16.892		3.91
20	Superintendence.	1.761	100	1.76
21	Enginemen. .	9.781	100	9.78
22-25	Fuel, etc.	10.912	75	8.18
26-32	Train service, etc	24.285	100	24.28
33 $34-37$	Car mileage.	2.094 2.085	100	$\stackrel{0}{2.09}$
38-44	Miscellaneous.	5.646	0	
45-46	Stationery, etc	1.229	100	1.23
	Conducting transportation. .	57.793		47.32
47-53	General expenses.	4.653	0	0
		100.000		54.82

As a practical application of the above figures, assume that on a constructed and operated road the ruling grade on a 100mile division is 1.6%; the actual traffic affected by ruling grade is 8 daily trains with a net load of 552 tons or 4416 tons. It is found that with an expenditure of $\$ 400000$ the ruling grade may be reduced to 1.2%. Will it pay? At 1.2% grade the net load behind an 80 -ton consolidation engine, with 48 tons on the drivers, adhesion $\frac{1}{4}$, is 720 tons. The traffic (4416 tons) may therefore be hauled by 6 engines, the balance, less than 100 tons, being taken care of by lighter trains not affected by the ruling grade. Since the additional cost of the engine drawing lighter trains is 53 c . per mile, the saving by reducing from 8 engines to 6 is that due to 2 engines. The annual saving is therefore $2 \times \$ 0.5333 \times 100 \times 365=\$ 38930.90$, which capital-
ized at $5 \%=\$ 778618$. This shows that if the improvement can be accomplished for $\$ 400000$ it is worth while.

As in other similar problems, it must be reiterated that although there are some more or less uncertain elements in the above estimates, yet with a considerable margin for error in individual items the value of the whole improvement will not be very greatly altered and the estimate will be infinitely better than an indefinite reliance on rague "judgment." Of course certain items in the above estimates are somewhat variable and should be altered to fit the particular case to be computed.

PUSHER GRADES.

446. General principles underlying the use of pusher engines. On nearly all roads there are some grades which are greatly in excess of the general average rate of grade and these heavy grades cannot usually be materially reduced without an expenditure which is excessive and beyond the financial capacity of the road. If no pusher engines are used, the length of all heavy trains is limited by these grades. The financial value of the reduction of such ruling grades has already been shown. But in the operation of pusher grades there is incurred the additional cost of pusher-engine service, for a pusher engine must run tuice over the grade for each train which is assisted. It is possible for this additional expense to equal or even exceed the advantage to be gained. In any case it means the adoption of the lesser of two evils, or the adoption of the more economical method. A simple example will illustrate the point. Assume that at one point on the road there is a grade of 1.9% which is five miles long. Assume that all other grades are less than 0.92%. If pushers are not to be used the net capacity of a 107 -ton consolidation engine with 53 tons on the drivers, assuming $\frac{9}{40}$ adhesion and 6 pounds per ton for normal resistance, will be 435 tons, and that will be the maximum weight of train allowable. By using pusher engines on this one 5 -mile grade the train load is at once doubled and the number of trains cut down one half. This double load, 870 tons, can easily be hauled by one engine up the 0.92% grades. As a rough comparison, free from details and allowances, we may say:
(a) 10 trains per day over a 100 -mile division, 435 tons net per train, will require 1000 engine miles daily.
(b) 5 trains per day handling the same traffic, 870 tons net per train. with $2 \times 5 \times 5$ pusher-engine miles, will require $(5 \times 100)+(2 \times 5 \times 5)=550$ engine miles daily. There is thus a large saving in the number of engine miles and also in the number of the engines required for the work. Moreover, the engines are working to the limit of their capacity for a much larger proportion of the time, and their work is therefore more economically done. The work of overcoming the normal resistances of so many loaded cars over so many miles of track and of lifting so many tons up the gross differences of elevation of predetermined points of the line is approximately the same whatever the exact route, and if the grades are so made that fewer engines working more constantly can accomplish the work as well as more engines which are not hard worked for a considerable proportion of the time, the economy is very apparent and unquestionable. Wellington expresses it concisely: "It is a truth of the first importance that the objection to high gradients is not the work which the engines have to do on them, but it is the work which they do not do when they thunder over the track with a light train behind them, from end to end of a division, in order that the needed power may be at hand at a few scattered points where alone it is needed."
447. Balance of grades for pusher service. In the above illustration the "through" grade and the "pusher" grade are "balanced" for the use of one equal pusher. It is therefore evident that if some intermediate grade (such as 1.4%) were permitted, it could only be operated by (a) making it the ruling grade and cutting down all train loads from 870 tons to 594 tons, or (b) operating it as a pusher grade, although with a loss of economy, since two engines would have much more power than necessary. The proper plan in such a case would be to strive to reduce the 1.4% grade to 0.92%, or, if that seemed impracticable, to attempt to get an operating advantage at the expense of an increase of the 1.4% grade to anything short of 1.9%. For the increase in rate of grade would cost almost nothing, and some advantage might be obtained which would practically compensate for the introduction of a pusher grade. A nother possible solution would be to operate the 19% with two pushers, adopt a corresponding grade for use with one pusher and a corresponding ruling grade for through trains. With the above
data these three grades would be $1.90 \% 1.27 \%$, and 0.54%, obtained as follows:

Tractive power of three engines $=106000 \times \frac{9}{40} \times 3=71550$ pounds.

Resistance on 1.9% grade $=6+(20 \times 1.9)=44$ lbs. per ton.
$71550 \div 44=1626=$ gross load in tons.
$1626-(3 \times 107)=1305=$ net load in tons.
$1305+(2 \times 107)=1519=$ gross load on the one-pusher grade.
Tractive power of two engines $=47700 \mathrm{lbs}$.
$47700 \div 1519=31.40=$ possible tractive force in lbs. per ton.
$(31.40-6) \div 20=1.27 \%=$ permissible grade for one pusher.
$1305+107=1412=$ gross load on the through grade.
Tractive power of one engine $=23850 \mathrm{lbs}$.
$23350 \div 1412=16.89=$ possible tractive force in lbs. per ton.
$(16.89-6) \div 20=0.54 \%=$ permissible through grade.
It should be realized that, assuming the accuracy of the normal resistance (6 lbs .) and the normal adhesion ($\frac{9}{40}$) and with the use of 107 -ton locomotives with 53 tons on the drivers, the above figures are precisely what is required for hauling with one, two, and three engines. Other types of engines, other values for resistance and adhesion will vary considerably the gross load in tons which may be hauled up those grades, but starting with 0.54% as a through grade, the corresponding values for one and for two pushers would vary but slightly from those given. To show the tendency of these variations, the corresponding values have been computed as follows:

Adhesion.	Resistance per ton.	Load on drivers.	Through grade.	One-pusher grade.	Two-pusher grade.
	6 7 7 6 6 6 7 "،	$\begin{array}{ll}53 & \text { tons. } \\ 53 \\ 53 & ، \\ 53 & ، \\ 53 & ،\end{array}$	$\begin{array}{r} 0.54 \% \\ .54 \% \\ .54 \% \\ .54 \% \\ .54 \% \end{array}$	1.27% 1.31% 1.28% 1.26% 1.29%	1.90% 1.96% 1.93% 1.86% 1.92%

The above form shows that increasing the resistance per ton and decreasing the adhesion have opposite effects on altering the ratio of these grades, and as a storm, for example, would increase the resistance and decrease the adhesion, the changes in the ratio would be compensating although the absoiute reduction in train load might be considerable.

In Table XXVIII is shown a series of "balanced" grades on which a given net train load may be operated by means of one or two pusher engines. For example, assuming a track resistance of 6 pounds per ton, a consolidation engine of the type shown in the table can haul a train weighing 977 tons (exclusive of the engine) up a grade of 0.80%. If this is the maximum through grade, pusher grades as high as 1.70% for one pusher, or 2.46% for two pushers, may be introduced and the same net load may be hauled up these grades.

The ratios of pusher grade to through grade, as given in Table XXVIII, are exactly true only for the conditions named as to weight and type of engine, ratio of adhesion, and norma track resistance. But a little comparative study of the two halves of Table XXVIII and of the tabular form given on page 483 will show that although the net load which can be hauled on any grade varies considerably with the normal track resistance and also with the ratio of adhesion, yet the ratios of through to pusher grade, for either one or two pushers, varies but slightly with ordinary changes in these conditions. Therefore when the precise conditions are unknown or variable, the figures of Table XXVIII may be considered as applicable to any ordinary practice, especially for preliminary computations. For final calculations on any proposed ruling grade and pusher grade, the whole problem should be worked out on the principles outlined above and on the basis of the best data obtainable.
Problem: If the through ruling grade for the road has been established at 1.12%, what pusher grades are permissible? Answer: Interpolating in Table XXVIII, we may employ a grade of 2.22% if the track and road-bed are to be such that a tractive resistance of 6 pounds per ton can be expected. With a poorer track, the normal resistance assumed as 8 pounds per ton, the rate is raised to 2.27%. The increase in rate of pusher grade with increase of resistance is due to the fact that the net load hauled is less-so much less that on the pusher grade a larger part of the adhesion is available to overcome a grade resistance.
448. Operation of pusher engines. The maximum efficiency in operating pusher engines is obtained when the pusher engine is kept constantly at work, and this is facilitated when the pusher grade is as long as possible, i.e., when the heavy grades and the great bulk of the difference of elevation to be surmounted is

TABLE XXVIII.-GALANCED GRADES FOR ONE, TWO, AND THREE ENGINES.
Basis.-Through and pusher engines alike; consolidation type; total weight, 107 tons; weight on drivers, 53 tons; adhesion, $\frac{9}{40}$, giving a tractive force for each engine of 23850 lbs .; normal track resistance, 6 (also 8) lbs. per ton.

Through grade.	Track resistance, 6 lbs.			Track resistance, 8 lbs .		
	Net load for one engine in tons (2000 lbs.).	Corres pusher same	onding rade for load.	Net load for one engine in tons (2000 lbs.).	Corresponding pusher grade for same net load.	
		One pusher.	Two pushers.		One pusher.	Two pushers.
Level.	3868 tons	0.28\%	0.55%	2874 tons	0.37%	0.72\%
0.10%	2874 "	0.47%	0.82\%	2278	0.56%	0.98%
0.20%	2278	0.66%	1.08\%	1880	0.74%	1.23%
0.30%	1880	0.84%	1.33\%	1596	0.92%	1.47%
0.40%	1596	1.02\%	1.57\%	1384 '،	1.09\%	1.70\%
0.50\%	1384	1.19\%	1.80\%	1218	1.27\%	1.92\%
0.60%	1218 " ${ }^{\prime}$	1.37%	2.02\%	1085 '	1.44%	2.14\%
0.70%	1085 "،	1.54%	2.24%	977 ، ${ }^{\text {¢ }}$	1.60%	2.36%
0.80% 0.90%	977 887	1.70% 1.87%	2.46% 2.66%	887 810	1.77% 1.93%	2.56\%
1.00%	810	2.03%	2.86%	745	2.09%	
1.10%	745	2.19%	3.06\%	688	2.24%	3.15\%
1.20%	688	2.34%	3.25\%	638 ،	2.40%	3.33\%
1.30%	638 ،	2.50%	3.43\%	594 ،	2.55%	3.51\%
1.40%	594	2.65\%	3.61\%	555	2.70\%	3.68\%
1.50\%	555	2.80\%	3.78\%	521	2.85\%	3.85\%
1.60%	521 ، ${ }^{\prime}$	2.95\%	3.95\%	489 "،	2.99%	4.02%
1.70%	489 ،	3.09%	4.12%	461 '،	3.13%	4.17%
1.80% 1.90%	461 435 ،	3.23% 3.37%	4.27% 4.43%	435 ، 41	3.27% 3.42%	4.33%
2.00\%	411	3.52\%	4.59\%	330	3.55\%	4.63\%
2. 10%	390	3.65\%	4.73%	$370 \times$	3.68%	4.78\%
2.20\%	370 ،	3.78%	4.88%	352 "،	3.81%	4.92%
2.30% 2.40%	352 335	3.91% 4.04%	5.02% 5.15%	3335	3.94% 4.07%	5.05% 5.19%
2.50%	319 ،	4.17%	5.29\%	304 '،	4.20\%	5.32\%

at one place. For example, a pusher grade of three miles followed by a comparatively level stretch of three miles and then by another pusher grade of two miles cannot all be operated as cheaply as a continuous pusher grade of five miles. Either the two grades must be operated as a continuous grade of eight miles (sixteen pusher miles per trip) or else as two short pusher grades, in which case there would be a very great loss of time and a difficulty in so arranging the schedules that a train need
not wait for a pusher or the pushers need not waste too much time in idleness waiting for trains. If the level stretch were imperative, the two grades would probably be operated as one, but an effort should be made to bring the grades together. It is not necessary to bring the trains to a stop to uncouple the pusher engine, but a stop is generally made for coupling on, and the actual cost in loss of energy and in wear and tear of stopping and starting a heavy train is as great as the cost of running an engine light for several miles.

There are two ways in which it is possible to economize in the use of pusher engines. (a) When the traffic of a road is so very light that a pusher engine will not be kept reasonably busy on the pusher grade it may be worth while to place a siding long enough for the longest trains both at top and bottom of the pusher grade and then take up the train in sections. Perhaps the worst objection to this method is the time lost while the engine runs the extra mileage, but with such very light traffic roads a little time more or less is of small consequence. On light traffic roads this method of surmounting a heavy grade will be occasionally adopted even if pushers are never used. If the traffic is fluctuating, the method has the advantage of only requiring such operation when it is needed and avoiding the purchase and operation of a pusher engine which has but little to do and which might be idle for a considerable proportion of the year. (b) The second possible method of economizing is only practicable when a pusher grade begins or ends at or near a station yard where switching-engines are required. In such cases there is a possible economy in utilizing the switchingengines as pushers, especially when the work in each class is small, and thus obtain a greater useful mileage. But such cases are special and generally imply small traffic.

A telegraph-station at top and bottom of a pusher grade is generally indispensable to effective and safe operation.
449. Length of a pusher grade. The virtual length of the pusher grade, as indicated by the mileage of the pusher engine, is always somewhat in excess of the true length of the grade as shown on the profile, and sometimes the excess length is very great. If a station is located on a lower grade within a mile or so of the top or bottom of a pusher grade, it will ordinarily be advisable to couple or uncouple at or near the station, since the telegraph-station, switching, and signaling may be
more economically operated at a regular station. If the extra engine is coupled on ahead of the through engine (as is sometimes required by law for passenger trains) the uncoupling at the top of the grade may be accomplished by running the assistant engine ahead at greater speed after it is uncoupled, and, after running it on a siding, clearing the track for the train. But this requires considerable extra track at the top of the grade. Therefore, when estimating the length of the pusher grade, the most desirable position for the terminal sidings must be studied and the length determined accordingly rather than by measuring the mere length of the grade on the profile. Of course these odd distances are always excess; the coupling or uncoupling should not be done while on the grade.
450. Cost of pusher-engine service. The cost evidently depends partly on the mileage run, while some items are wholly independent of the mileage. A pusher engine, when working on grades where the conditions are fairly favorable, will accomplish a mileage of 100 to 125 miles per day, and this is about equal to that of an ordinary freight engine. Therefore such items as wages which are independent of mileage will be assumed to cost as much per mile as they do for ordinary train service. If the mileage is less than this, an extra allowance should be made.

The effect of a pusher engine on maintenance of way may be considered to be the same as that produced by an additional engine, as developed in $\S 444$. The same allowance (3.59%) will therefore be made. The cost of repairs and renewals of locomotives may be estimated the same as for other engines. Wages for engine and round-house men will be the same. There is certainly no ground for considering that the cost of fuel and other engine supplies can be materially less than the usual figures. On the return trip down the grade the engine runs almost without steam (after getting started), but, on the other hand, the engine works hard when climbing up the grade. The cost of switchmen, etc., and telegraph expenses (Items 28 and 29) will evidently add their full quota. Collecting these items, we have 36.27% or 34.46 c . for each mile run. Adding, as in § $445,1.25 \mathrm{c}$. as interest charge on the cost of the engine, we have 35.71 c . Then each mile of the incline will cost twice this or 71.42 c . for a round trip, or $71.42 \times 365=\$ 260$ per year per mile of incline per daily train needing assistance.

TABLE XXIX.-ITEMS OF THE COST PER MILE OF A PUSHER ENGINE.

No.	Items.	Normal average.	Per cent affected.	Cost per engine mile. per cent.
1	Repairs of roadway	10.596	12.5	1.32
2	Renewals of rails	1.440	50	. 72
3	Renewals of ties.	3.093	50	1.55
12	Repairs of locomoti	5.879	100	5.88
21	Enginemen	9.781	100	9.78
22-25	Engine supplies.	10.912	100	10.91
28	Switchmen, etc	4.136	100	4.14
29	Telegraph.....	1.974	100	1.97
				36.27

451. Numerical comparison of pusher and through grades. In § 445 the computation was made of the desirability of reducing a 1.6% ruling grade to a 1.2% grade. Suppose it is found that by keeping the 1.6% grades as pusher grades having a total length of 20 miles on a 100 mile division, the other grades may be reduced to a grade not exceeding 0.713% (the corresponding through grade) for an expenditure of $\$ 200000$. Will it pay? The saving by cutting down trains from 8 to 4 , computed as before, would be (see § 445) $4 \times \$ 0.5333 \times 100 \times 365=\$ 77862$. But this saving is only accomplished by the employment of pushers making four round trips over 20 miles of pusher grades at a cost of $4 \times 20 \times \$ 260=\$ 20800$.

The net annual saving is therefore $\$ 57062$, which when capitalized at $5 \%=\$ 1,141,240$.

The above estimate probably has this defect. The total daily pusher-engine mileage is but $2 \times 4 \times 20=160$, scarcely work enough for two pushers. Unless the pusher grades were bunched into two groups of about 10 miles each, two pusher engines could not do the work. If the number of trains was much larger, then the above method of calculation would be more exact even though the 20 miles of pusher grade was divided among four or five different grades. Therefore with the above data the annual cost of the pusher service would probably be much more-perhaps twice as much-and the annual saving about $\$ 36000$, which would justify an expenditure of $\$ 720000$. But even this would very amply justify the assumed expenditure of $\$ 200000$ which would accomplish this result.

The above computation is but an illustration ot the general
truth which has been previously stated. In spite of the uncertainties and the variations of many items in the above estimates it will generally be possible to make a computation which will show unquestionably, as in the above instance, what is the best and the most economical method of procedure. When the capitalized valuations of both methods are so nearly equal that a proper choice is more difficult, the question will frequently be determined by the relative ease of raising additional capital.

BALANCE OF GRADES FOR UNEQUAL TRAFFIC.

452. Nature of the subject. It sometimes happens, as when a road runs into a mountainous country for the purpose of hauling therefrom the natural products of lumber or minerals, that the heavy grades are all in one direction-that the whole line consists of a more or less unbroken climb having perhaps a few comparatively level stretches, but no down grade (except possibly a slight sag) in the direction of the general up grade. With such lines this present topic has no concern. But the majority of railroads have termini at nearly the same level (500 fect in 500 miles has no practical effect on grade) and consist of up and down grades in nearly equal amounts and rates. The general rate of ruling grade is determined by the character of the country and the character and financial backing of the road to be built. It is always possible to reduce the grade at some point by "development" or in general by the expenditure of more money. It has been tacitly assumed in the previous discussions that when the ruling grade has been determined all grades in either direction are cut down to that limit. If the traffic in both directions were the same this would be the proper policy and sometimes is so. But it has developed, especially on the great east and west trunk lines, that the weight of the eastbound freight traffic is enormously greater than that of the westbound-that westbound trains consist very largely of "empties" and that an engine which could haul twenty loaded cars up a given grade in eastbound trafic could haul the same cars empty up a much higher grade when running west. As an illustration of the large disproportion which may exist, the eastbound ton-mileage on the P. R. R. between the years 1851 and 1885 was 3.7 times the westbound ton-mileage. Between the years 1876 and 1880 the ratio rose to more than 4.5 to 1 .

On such a basis it is as important and necessary to obtain, say, a 0.6% ruling grade against the eastbound traffic as to have, say, a 1.0% grade against the westbound trafic. This is the basis of the following discussion. It now remains to estimate the probable ratio of the traffic in the two directions and from that to determine the proper "balance" of the opposite ruling grades.
453. Computation of the theoretical balance. Assume first, for simplicity, that the exact business in either direction is accurately known. A little thought will show the truth of the following statements.

1. The locomotive and passenger-car traffic in both directions is equal.
2. Except as a road may carry emigrants, the passenger traffic in both directions is equal. Of course there are innumerable individual instances in which the return trip is made by another route, but it is seldom if ever that there is any marked tendency to uniformity in this. Considering that a car load of, say, 50 passengers at 150 pounds apiece weigh but 7500 pounds, which is $\frac{1}{6}$ of the 45000 pounds which the car may weigh, even a considerable variation in the numbor of passengers will not appreciably affect the hauling of cars on grades. On parlor-cars and sleepers the ratio of live load to dead load (say 20 passengers, 3000 pounds, and the car, 75000 pounds) is even more insignificant. The effect of passenger traffic on balance of grades may therefore be disregarded.
3. Empty cars have a greater resistance per ton than loaded cars. Therefore in computing the hauling capacity of a locomotive hauling so many tons of "empties," a larger figure must be uscd for the ordinary tractive resistances-say two pounds per ton greater.
4. Owing to greater or less imperfections of management a small percentage of cars will run empty or but partly full in the direction of greatest traffic.
5. Freight having great bulk and weight (such as grain, lumber, coal, etc.) is run from the rural districts toward the cities and manufacturing districts.
6. The return traffic-manufactured products-although worth as much or more, do not weigh as much.

As a simple numerical illustration assume that the weight of the cars is 40% and the live load 60% of the total load when
the cars are "full"-although not loaded to their absolute limit of capacity. Assume that the relative weight of live load to be hauled in the other direction is but $\frac{1}{3}$. Then the gross trainload (exclusive of the locomotive) is $40+\left(\frac{1}{3} \times 60\right)=60 \%$ of the load in the other direction. Assume that the grade against the heaviest trafic is 0.9%. An 80 -ton engine with 48 tons on the drivers, $\frac{1}{4}$ adhesion, normal tractive resistance 6 pounds per ton, will haul a train of 920 tons up that grade. Of this load the cars are assumed to weigh 40%, or 358 tons, and the live load 552 tons. On the return trip the weight of the cars with their load is but $920 \times 60 \%=552$ tons, or with the engine 632 tons. This could be hauled up a 1.60% grade, assuming that the resistance was the same per ton. But $\frac{2}{3}$ of the return cars must be figured as empty; they make an added resistance of 2 pounds per ton; these cars weigh $\frac{2}{3}$ of 368 tons, or 245.33 tons. The balance of the train weighs $632-245.33=$ 386.67 tons. Then we have

$$
\begin{aligned}
& 245.33 \times 8=1962.67 \\
& 386.67 \times 6=2320 .
\end{aligned}
$$

which is the tractive force required for rolling resistances, etc. Subtracting this from the total adhesion, 24000 pounds, we have left 19717.33 pounds available for grade, or 31.2 pounds per ton, which corresponds to a 1.56% grade, which is the proper balance of grade under the above conditions.
454. Computation of relative traffic. Some of the principal elements have already been referred to, but in addition the following facts should be considered.
(a) The greatest disparity in traffic occurs through the handling of large amounts of coal, lumber, iron ore, grain, etc. On roads which handle but little of these articles or on which for local reasons coal is hauled one way and large shipments of grain the other way the disparity will be less and will perhaps be insignificant.
(b) A marked change in the development of the country may, and often does, cause a marked difference in the disparity of traffic. The heaviest traffic (in mere weight) is always toward manufacturing regions and away from agricultural regions. But when a region, from being purely agricultural or mineral, be=
comes largely manufacturing, or when a manufacturing region develops an industry which will cause a growth of heavy freight traffic from it, a marked change in the relative freight movement will be the result.
(c) Very great fluctuations in the relative traffic may be expected for prolonged intervals.
(d) An estimate of the relative traffic may be formed by the same general method used in computing the total traffic of the road (see §373, Chap. XIX) or by noting the relative traffic on existing roads which may be assumed to have practically the same traffic as the proposed road will obtain.

CHAPTER XXIV.

THE IMPROVEMENT OF OLD LINES.

455. Classification of improvements. The improvements here considered are only those of alignment-horizontal and vertical. Strictly there is no definite limit, either in kind or magnitude, to the improvements which may be made. But since a railroad cannot ordinarily obtain money, even for improvements, to an amount greater than some small proportion of the previously invested capital, it becomes doubly necessary to expend such money to the greatest possible advantage. It has been previously shown that securing additional business and increasing the train load are the two most important factors in decreasing dividends. After these, and of far less importance, come reductions of curvature, reductions of distance (frequently of doubtful policy, see Chap. XXI, § 414), and elimination of sags and humps. These various improvements will be briefly discussed.
(a) Securing additional business. It is not often possible by any small modification of alignment to materially increase the business of a road. The cases which do occur are usually those in which a gross error of judgment was committed during the original construction. For instance, in the early history of railroad construction many roads were largely aided by the towns through which the road passed, part of the money necessary for construction being raised by the sale of bonds, which were assumed or guaranteed and subsequently paid by the towns. Such aid was often demanded and exacted by the promoters. Instances are not unknown where a failure to come to an agreement has caused the promoters to deliberately pass by the town at a distance of some miles, to the mutual disadvantage of the road and the town. If the town subsequently grew in spite of this disadvantage, the annual loss of business might readily amount to more than the original sum in dispute.

Such an instance would be a legitimate opportunity for study of the advisability of a re-location.

As another instance (the original location being justifiable) a railroad might have been located along the bank of a considerable river too wide to be crossed except at considerable expense. When originally constructed the enterprise would not justify the two extra bridges needed to reach the town. A growth in prosperity and in the business obtainable might subsequently make such extra expense a profitable investment.
(b) Increasing the train load. On account of its importance this will be separately considered in § 458 et seq.
(c) Reductions in curvature and distance and the elimination of sags and humps. The financial value of these improvements has already been discussed in Chapters XXI, XXII, and XXIII. Such improvements are constantly being made by all progressive roads. The need for such changes occurs in some cases because the original location was very faulty, the revised location being no more expensive than the original, and in other cases because the original location was the best that was then financially possible and because the present expanded business will justify a change.
(d) Changing the location of stations or of passing sidings. The station may sometimes be re-located so as to bring it nearer to the business center and thus increase the business done. But the principal reasons for re-locating stations or passing sidings is that starting trains may have an easier grade on which to overcome the additional resistances of starting. Such changes will be discussed in detail in $\S 460$.
456. Advantages of re-locations. There are certain undoubted advantages possessed by the engineer who is endeavoring to improve an old line.
(a) The gross traffic to be handled is definitely known.
(b) The actual cost per train-mile for that road (which may differ very greatly from the average) is also known, and therefore the value of the proposed improvement can be more accurately determined.
(c) The actual performance of such locomotives as are used on the road may be studied at leisure and more reliable data may be obtained for the computations.
457. Disadvantages of re-locations. The disadvantages are generally more apparent and frequently appear practically
insuperable-more so than they prove to be on closer inspection. (a) It frequently means the abandonment of a greater or less length of old line and the construction of new line. At first, thought it might seem as if a change of line such as would permit, an increase of train-load of 50 or perhaps 100% could never be obtained, or at least that it could not be done except at an impracticable expense. On the contrary a change of 10% of the old line is frequently all that is necessary to reduce the grades so that the train-loads hauled by one engine may be nearly if not quite doubled. And when it is considered that the cost of a road to sul-grade is generally not more than onethird of the total cost of construction and equipment per mile, it becomes plain that an expenditure of but a small percentage of the original outlay, expended where it will do the most good, will often suffice to increase enormously the earning capacity.
(b) One of the most difficult matters is to convince the financial backers of the road that the proposed improvement will be justifiable. The cause is simple. The disadvantages of the original construction lie in the large increase of certain items of expense which are necessary to handle a given traffic. And yet the fact that the expenditures are larger than they need be are only apparent to the expert, and the fact that a saving may be made is considered to be largely a matter of opinion until it is demonstrated by actual trial. On the other hand the cost of the proposed changes is definite, and the very fact that the road has been uneconomically worked and is in a poor financial condition makes it difficult to obtain money for improvements.
(c) The legal right to abandon a section of operated line and thus reduce the value of some adjoining property has sometimes been successfully attacked. A common instance would be that of a factory which was located adjoining the right of way for convenience of transportation facilities. The abandonment of that section of the right of way would probably be fatal to the successful operation of the factory. The objection may be largely eliminated by the maintenance of the old right of way as a long siding (although the business of the factory might not be worth it), but it is not always so easy of solution, and this phase of the question must always be considered.

REDUCTION OF VIRTUAL GRADE.

458. Obtaining data for computations. As developed in the last chapter ($\S \S 432-434)$ the real object to be attained is the reduction of the virtual grade. The method of comparing grades under various assumed conditions was there discussed. When the road is still "on paper" some such method is all that is possible; but when the road is in actual operation the virtual grade of the road at various critical points, with the rolling stock actually in use, may be determined by a simple test and the effect of a proposed change may be reliably computed. Bearing in mind the general principle that the virtual grade line is the locus of points determined by adding to the actual grade profile ordinates equal to the velocity head of the train, it only becomes necessary to measure the velocity at various points. Since the velocity is not usually uniform, its precise determination at any instant is almost impossible, but it will generally be found to be sufficiently precise to assume the velocity to be uniform for a short distance, and then observe the time required to pass that short space. Suppose that an ordinary watch is used and the time taken to the nearest second. At 30 rniles per hour, the velocity is 44 feet per second. To obtain the time to within 1%, the time would need to be 100 seconds and the space 4400 feet. But with variable velocity there would be too great error in assuming the velocity as uniform for 4400 feet or for the time of 100 seconds. Using a stopwatch registering fifths of a second, a 1% accuracy would require but 20 seconds and a space of 880 feet, at 30 miles per hour. Wellington suggests that the space be made 293 feet 4 inches, or $\frac{1}{18}$ of a mile; then the speed in miles per hour equals $200 \div s$, in which s is the time in seconds required to traverse the $293^{\prime} 4^{\prime \prime}$. For instance, suppose the time required to pass the interval is 12.5 seconds. $\frac{1}{18}$ mile in 12.5 seconds $=$ one mile in 225 seconds, or 16 miles per hour. But likewise $200 \div 12.5=16$, the required velocity. The following features should be noted when obtaining data for the computations:
(a) All critical grades on the road should be located and their profiles obtained-by a survey if necessary.
(b) At the bottom and top of all long grades (and perhaps at intermediate points if the grades are very long) spaces of known
length (preferably $293 \frac{1}{3}$ feet) should be measured off and marked by flags, painted boards, or any other serviceable targets.
(c) Provided with a stop-watch marking fifths of seconds the observer should ride on the trains affected by these grades and note the exact interval of time required to pass these spaces. If the space is $293 \frac{1}{3}$ feet, the velocity in miles per hour $=200 \div$ interval in seconds. In general,

$$
\begin{equation*}
V=\frac{\text { distance in feet } \times 3600}{\text { time in seconds } \times 5280} \tag{147}
\end{equation*}
$$

(d) Since these critical grades are those which require the greatest tax on the power of the locomotive, the conditions under which the locomotive is working must be known-i.e., the steam pressure, point of cut-off, and position of the throttle. Economy of coal consumption as well as efficient working at high speeds requires that steam be used expansively (using an early cut-off), and even that the throttle be partly closed; but when an engine is slowly climbing up a maximum grade with a full load it is not exerting its maximum tractive power unless it has its maximum steam pressure, wide-open throttle, and is cutting off nearly at full stroke. These data must therefore be obtained so as to know whether the engine is developing at a critical place all the tractive force of which it is capable. The condition of the track (wet and slippery or dry) and the approximate direction and force of the wind should be noted with sufficient accuracy to judge whether the test has been made under ordinary conditions rather than under conditions which are exceptionally favorable or unfavorable.
(e) The train-loading should be obtained as closely as possible. Of course the dead weight of the cars is easily found, and the records of the freight department will usually give the live load with all sufficient accuracy.
459. Use of the data obtained. A very brief inspection of the results, freed from refined calculations or uncertainties, will demonstrate the following truths:
(a) If, on a uniform grade, the velocity increases, it shows that, under those conditions of engine working, the load is less than the engine can handle on that grade
(b) If the velocity decreases, it shows that the load is greater than the engine can handle on an indefinite length of such
grade. It shows that such a grade is being operated by momentum. From the rate of decrease of velocity the maximum practicable length of such a grade (starting with a given velocity) may be easily computed.
(c) By combining results under different conditions of grade but with practically the same engine working, the tractive power of the engine may be determined (according to the principles previously demonstrated) for any grade and velocity. For example: On an examination of the profile of a division of a road the maximum grade was found to be 1.62% (85.54 feet per mile). At the bottom and near the top of this grade two lengths of $293^{\prime} 4^{\prime \prime}$ are laid off. The distance between the centers of these lengths is 6000 feet. A freight train moving up the grade is timed at $9 \frac{2}{5}$ seconds on the lower stretch and $7 \frac{3}{5}$ seconds on the upper. These times correspond to $\frac{200}{9.4}$ and $\frac{200}{7.6}$ or 21.3 and 26.3 miles per hour respectively. It is at once observed that the velocity has increased and that the engine could draw even a heavier load up such a grade for an indefinite distance. How much heavier might the load be?

For simplicity we will assume that the conditions were normal, neither exceptionally favorable nor unfavorable, and that the engine was worked to its maximum capacity. The engine is a "consolidation" weighing 128700 pounds, with 112600 pounds on the drivers. The train-load behind the engine consists of ten loaded cars weighing 465 tons and eleven empties weighing 183 tons, thus making a total train-weight of 712 tons. Applying Eq. 140, we find that the additional force which the engine has actually exerted per ton in increasing the velocity from 21.3 to 26.3 miles per hour in a distance of 6000 feet is

$$
P=\frac{70.224}{6000}\left(26.3^{2}-21.3^{2}\right)=2.78 \text { pounds per ton }
$$

The grade resistance on a 1.62% grade is 32.4 pounds per ton. With an average train resistance of seven pounds per ton the total necessary pull for uniform velocity would be 39.4 pounds. But the engine is actually exerting an additional pull of 2.78 pounds per ton. Evidently its total load might be increased proportionately, i.e., the total train-load might equal

$$
712 \times \frac{2.78+39.4}{39.4}=762 \text { tons }
$$

This shows that 50 tons additional might have been loaded on, say, three more empties or one loaded car and one empty. An overload of a few tons would easily be made up by a very slight reduction in the velocity.

The above calculation should of course be considcred simply as a "single observation." The performance of the same engine on the same grade (as well as on many other grades) on succeeding days should also be noted. It may readily happen that variations in the condition of the track or of the handling of the engine may make considerable variation in the results of the several calculations, but when the work is properly done it is always possible to draw definite and very positive deductions.

46 c . Reducing the starting grade at stations. The resistance to starting a train is augmented from two causes: (a) the tractive resistances are usually about 20 pounds per ton instead of, say, 6 pounds, and (b) the inertia resistance must be overcome. The inertia resistance of a freight train (see §347) which is expected to attain a velocity of 15 miles per hour in a distance of 1000 feet is (see Eq. 140)

$$
P=\frac{70.224}{1000}\left(15^{2}-0\right)=15.8 \text { pounds per ton, which is the equiva- }
$$

lent of a 0.79% grade. Adding this to a grade which nearly or quite equals the ruling grade, it virtcally creates a new and higher ruling grade. Of course that additional force can be greatly reduced at the expense of slower acceleration, but even this cannot be done indefinitcly, and an acceleration to only 15 miles per hour in 1000 feet is as slow as should be allowed for. With perhaps 14 pounds per ton additional tractive resistance, we have about 30 pounds per ton additional-equiva-

Fig. 217.
lent to a 1.5% grade. Instances are known where it has proven wise to create a hump (in what was otherwise a uniform grade)
at a station. The effect of this on high-speed passenger trains moving $u p$ the grade would be merely to reduce their speed very slightly. No harm is done to trains moving doun the grade. Freight trains moving $u p$ the grade and intending to stop at the station will merely have their velccity reduced as they approach the station and will actually save part of the wear and tear otherwise resulting from applying brakes. When the trains start they are assisted by the short down grade, just where they need assistance most. Even if the grade $C D$ is still an up grade, the pull required at starting is lcss than that required on the uniform grade by an amount equal to 20 times the difference of the grade in per cent.

APPENDIX.

THE ADJUSTMENTS OF INSTRUMENTS.

The accuracy of instrumental work may be vitiated by any one of a large number of inaccuracies in the geometrical relations of the parts of the instruments. Some of these relations are so apt to be altered by ordinary usage of the instrument that the makers have provided adjusting-screws so that the inaccuracies may be readily corrected. There are other possible defects, which, however, will seldom be found to exist, provided the instrument was properly made and has never been subjected to treatment sufficiently rough to distort it. Such defects, when found, can only be corrected by a competent instrument-maker or repairer.

A warning is necessary to those who would test the accuracy cf instruments, and especially to those whose experience in such work is small. Lack of skill in handling an instrument will often indicate an apparent error of adjustment when the real error is very different or perhaps non-existent. It is always a safe plan when testing an adjustment to note the amount of the apparent error; then, beginning anew, make another independent determination of the amount of the error. When two or more perfectly inciependent determinations of such an error are made it will generally be found that they differ by an appreciable amount. The differences may be due in variable measure to careless inaccurate manipulation and to instrumental defects which are wholly independent of the particular test being made. Such careful determinations of the amounts of the errors are generally advisable in view of the next paragraph.

Do not disturd the ad.justing-Screws any more than necessary. Although metals are apparently rigid, they are really elastic and yielding. If some parts of a complicated mechanism, which is held together largely by friction, are subjected to greater internal stresses than other parts of the mech-
anism, the jarring resulting from handling will frequently cause a slight readjustment in the parts which will tend to more nearly equalize the internal stresses. Such action frequently occurs with the adjusting mechanism of instruments. One screw may be strained more than others. The friction of parts may prevent the opposing screw from immediately taking up an equal stress. Perhaps the adjustment appears perfect under these conditions Jarring diminishes the friction between the parts, and the unequal stresses tend to equalize. A motion takes place which, although microscopically minute, is sufficient to indicate an error of adjustment. A readjustment made by unskillful hands may not make the final adjustment any more perfect. The frequent shifting of adjusting-screws wears them badly, and when the screws are worn it is still more difficult to keep them from moving enough to vitiate the adjustments. It is therefore preferable in many cases to refrain from disturbing the adjusting-screws, especially as the accuracy of the work done is not necessarily affected by errors of adjustment, as may be illustrated:
(a) Certain operations are absolutely unaffected by certain errors of adjustment.
(b) Certain operations are so slightly affected by certain small errors of adjustment that their effect may properly be neglected.
(c) Certain errors of adjustment may be readily allowed for and neutralized so that no error results from the use of the unadjusted instrument. Illustrations of all these cases will be given under their proper heads.

ADJUSTMENTS OF THE TRANSI'T.

1. To have the plate-bubbles in the center of the tubes when the axz.s is vertical. Clamp the upper plate and, with the lower clamp loose, swing the instrument so that the plate-bubbles are parallel to the lines of opposite leveling-screws. Level up until both bubbles are central. Swing the instrument 180°. If the bubbles again settle at the center, the adjustment is perfect. If either bubble does not settle in the center, move the levelingscrews until the bubble is half-way back to the center. Then, before touching the adjusting-screws, note carefully the position of the bubbles and observe whether the bubbles always settle at the same place in the tube, no matter to what position the in-
strument may be rotated. When the instrument is so leveled, the axis is truly vertical and the discrepancis between this constant position of the bubbles and the centers of the tubes measure the errors of adjustment. By means of the adjusting. screws bring each bubble to the center of the tube. If this is done so skillfully that the true level of the instrument is not disturbed, the bubbles should settle in the center for all positions of the instrument. Under unskillful hands, two or more such trials may be necessary.

When the plates are not horizontal, the measured angle is greater than the true horizontal angle by the difference between the measured angle and its projection on a horizontal plane. When this angle of inclination is small, the difference is insignificant. Therefore when the plate-bubbles are very nearly in adjustment, the error of measurement of horizontal angles may be far within the lowest unit of measurement used. A small error of adjustment of the plate-bubble perpendicular to the telescope will affect the horizontal angles by only a small proportion of the error, which will be perhaps imperceptible. Vertical angles will be affected by the same insignificant amount. A small error of adjustment of the platebubble parallel to the telescope will affect horizontal angles very slightly, but will affect vertical angles by the full amount of the error.
All error due to unadjusted plate-bubbles may be avoided by noting in what positions in the tubes the bubbles will remain fixed for all positions of azimuth and then keeping the bubbles adjusted to these positions, for the axis is then truly vertical. It will often save time to work in this way temporarily rather than to stop to make the adjustments. This should especially be done when accurate vertical angles are required.
When the bubbles are truly adjusted, they should remain stationary regardless of whether the telescope is revolved with the upper plate loose and the lower plate clamped or whether the whole instrument is revolved, the plates being clamped together. If there is any appreciable difference, it shows that the two vertical axes or "centers" of the plates are not concentric. This may be due to cheap and faulty construction or to the excessive wear that may be sometimes observed in an old instrument originally well made. In either case it can only be corrected by a maker.
2. To make the revolving axis of the telescope perpendicular to the vertical axis of the instrument. This is best tested by using a long plumb-line, so placed that the telescope must be pointed upward at an angle of about 45° to sight at the top of the plumbline and downward about the same amount, if possible, to sight at the lower end. The vertical axis of the transit must, be made truly vertical. Sight at the upper part of the line, clamping the horizontal plates. Swing the telescope down and see if the cross-wire again bisects the cord. If so, the adjustment is probably perfect (a conceivable exception will be
noted later) ; if not, raise or lower one end of the axis by means of the adjusting-screws, placed at the top of one of the standards, until the cross-wire will bisect the cord both at top and bottom. The plumb-bob may be steadied, if necessary, by hanging it in a pail of water. As many telescopes cannot be focused on an object nearer than 6 or 8 feet from the telescope, this method requires a long plumb-line swung from a high point, which may be inconverient.

Another method is to set up the instrument about 10 feet from a high wall. After leveling, sight at some convenient mark high up on the wall. Swing the telescone down and make a mark (when working alone some convenient natural mark may generally be found) low down on the wall. Plunge the telescope and revolve the instrument about its vertical axis and again sight at the upper mark. Swing down to the lower mark. If the wire again bisects it, the adjustment is perfect. If not, fix a point half-way between the two positions of the lower mark. The plane of this point, the upper point, and the center of the instrumerit is truly vertical. Adjust the axis to these upper and lower points as when using the plumb-line.
3. To make the line of collimation perpendicular to the revolving axis of the telescope. With the instrument level and the telescope nearly horizontal point at some well-defined point at a distance of 200 feet or morc. Plunge the telescope and establish a point in the opposite direction. Turn the whole instrument about the vertical axis until it again points at the first mark. Again plunge to "direct position" (i.e., with the level-tube under the telescope). If the vertical cross-wire again points at the second mark, the adjustment is perfect. If not, the error is one-fourth of the distance between the two positions of the second mark. Loosen the capstan screw on one side of the telescope and tighten it on the other side until the vertical wire is set at the one-fourth mark. Turn the whole instrument by means of the tangent screw until the vertical wire is midway between the two positions of the second mark. Plunge the telescope. If the adjusting has been skillfully done, the crosswire should come exactly to the first mark. As an "erecting eyepiece" reinverts an image already inverted, the ring carrying the cross-wires must be moved in the same direction as the apparent error in order to correct that error.

The necessity for the third adjustment lies principally in the practice of producing a line by plunging the telescope, but when this is required to be done with great accuracy it is always better to obtain the forward point by reversion (as described above for making the test) and take the mean of the two forward points. Horizontal and vertical angles are practically unaffected by small errors of this adjustment, unless, in the case of horizontal angles, the vertical angles to the points observed are very different.

Unnecessary motion of the adjusting-screws may sometimes be avoided by carefully establishing the forward point on line by repeated reversions of the instrument, and thus determining by repeated trials the exact amount of the error. Differences in the amount of error determined would be evidence of inaccuracy in manipulating the instrument, and would show that an adjustment based on the first trial would probably prove unsatisfactory.

The 2 d and 3 d adjustments are mutually dependent. If either adjustment is badly out, the other adjustment cannot be made except as follows:
(a) The second adjustment can be made regardless of the third when the lines to the high point and the low point make equal angles with the horizontal.
(b) The third adjustment can be made regardless of the second when the front and rear points are on a level with the instrument.

When both of these requirements are nearly fulfilled, and especially when the error of either adjustment is small, no trouble will be found in perfecting either adjustment on account of a small error in the other adjustment.

If the test for the second adjustment is made by means of the plumbline and the vertical cross-wire intersects the line at all points as the telescope is raised or lowered, it not only demonstrates at once the accuracy of that adjustment, but also shows that the third adjustment is either perfect or has so small an error that it does not affect the second.
4. To have the bubble of the telescope-level in the center of the tube when the line of collimation is horizontal. The line of collimation should coincide with the optical axis of the telescope. If the object-glass and eyepiece have been properly centered, the previous adjustment will have brought the vertical crosswire to the center of the field of vies. The horizontal crosswire should also be brought to the center of the field of view, and the bubble should be adjusted to it.
a. Peg method. Set up the transit at one end of a nearly level stretch of about 300 ieet. Clamp the telescope with its bubble in the center. Drive a stake vertically under the eyepiece of the transit, and another about 300 feet away. Observe the height of the center of the eycpiece (the telescope being level) above the stake (calling it a); obscrve the reading of the rod when held on the other stake (calling it b); take the instrument to the other stake and set it up so that the eyepiece is
vertically over the stake, observing the height, c; take a reading on the first stake, calling it d. If this adjustment is perfect, then

$$
\begin{aligned}
& \quad a-d=b-c, \\
& \text { or } \quad(a-d)-(b-c)=0 . \\
& \text { Call } \quad(a-d)-(b-c)=2 m .
\end{aligned}
$$

When m is positive, the line points downward; " m " negative, " " upward.

To adjust: if the line points $u p$, sight the horizontal crosswire (by moving the vertical tangent screw) at a point which is m lower, then adjust the bubble so that it is in the center.

By taking several independent values for a, b, c, and d, a mean value for m is obtained, which is more reliable and which may save much unnecessary working of the adjusting-screws.
b. Using an auxiliary level. When a carefully adjusted level is at hand, this adjustment may sometimes be more easily made by setting up the transit and level, so that their lines of collimation are as nearly as possible at the same height. If a point may be found which is half a mile or more away and which is on the horizontal cross-wire of the level, the horizontal cross-wire of the transit may be pointed directly at it, and the bubble adjusted accordingly. Any slight difference in the heights of the lines of collimation of the transit and level (say $\frac{1}{4}{ }^{\prime \prime}$) may almost be disregarded at a distance of $\frac{1}{2}$ mile or more, or, if the difference of level would have an appreciable effect, even this may be practically eliminated by making an estimated allowance when sighting at the distant point. Or, if a distant point is not available, a level-rod with target may be used at a distance of (say) 300 feet, making allowance for the carefully determined difference of elevation of the two lines of collimation.
5. Zero of vertical circle. When the line of collimation is truly horizontal and the vertical axis is truly vertical, the reading of the vertical circle should be 0°. If the arc is adjustable, it should be brought to 0°. If it is not adjustable, the index error should be observed, so that it may be applied to all readings of vertical angles.

ADJUSTMENTS OF THE WYE LEVEL.

1. To make the line of collimation coincide with the center of the rings. Point the intersection of the cross-wires at some
well-defined point which is at a considerable distance. The instrument need not be level, which allows much greater liberty in choosing a convenient point. The vertical axis should be clamped, and the clips over the wyes should be loosened and raised. Rotate the telescope in the wyes. The intersection of the cross-wires should be continually on the point. If it is not, it requires adjustment. Rotate the telescope 180° and adjust one-half of the error by means of the capstan-headed screws that move the cross-wire ring. It should be remembered that, with an erecting telescope, on account of the inversion of the image, the ring should be moved in the direction of the apparent error. Adjust the other half of the error with the leveling-screws. Then rotate the telescope 90° from its usual position, sight accurately at the point, and then rotate 180° from that position and adjust any error as before. It may require several trisils, but it is necessary to adjust the ring until the intersection of the cross-wires will remain on the point for any position of rotation.
If such a test is made on a very distant point and again on a point only 10 or 15 feet from the instrument, the adjustment may be found correct for one point and incorrect for the other. This indicates that the objectslide is improperly centered. Usually this defect can only be corrected by an instrument-maker. If the difference is very small it may be ignored, but the adjustment should then be made on a point which is at about the mean distance for usual practice-say 150 feet.
If the whole image appears to shift as the telescope is rotated, it indicates that the eyepiece is improperly adjusted. This defect is likewise usually corrected only by the maker. It does not interfere with instrumental accuracy, but it usually causes the intersection of the cross-wires to be eccentric with the field of view.
2. To make the axis of the level-tube parallel to the line of collimation. Raise the clips as far as possible. Swing the level so that it is parallel to a pair of opposite leveling-screws and clamp it. Bring the bubble to the middle of the tube by means of the leveling-screws. Take the telescope out of the wyes and replace it end for end, using extreme care that the wyes are not jarred by the action. If the bubble does not come to the center, correct one-half of the error by the vertical adjusting-screws at one end of the bubble. Correct the other half by the levelingscrews. Test the work by again changing the telescope end for end in the wyes.

Care should be taken while making this adjustment to see
that the level-tube is vertically under the telescope. With the bubble in the center of the tube, rotate the telescope in the wyes for a considerable angle each side of the vertical. If the first half of the adjustment has been made and the bubble moves, it shows that the axis of the wyes and the axis of the level-tube are not in the same vertical plane although both have been made horizontal. By moving one end of the level-tube sidewise by means of the horizontal screws at one end of the tube, the two axes may be brought into the same plane. As this adjustment is liable to disturb the other, both should be alternately tested until both requirements are complied with.

By these methods the axis of the bubble is made parallel to the axis of the wyes; and as this has been made parallel to the lines of collimation by means of the previous adjustment, the axis of the bubble is therefore parallel to the line of collimation.
3. To make the line of collimation perpendicular to the vertical axis. Level up so that the instrument is approximately level over both sets of leveling-screws. Then, after leveling carefully over one pair of screws, revolve the telescope 180°. If it is not level, adjust half of the error by means of the capstan-headed screw under one of the wyes, and the other half by the levelingscrews. Reverse again as a test.

When the first two adjustments have been accurately made, good leveling may always be done by bringing the bubble to the center by means of the leveling-screws, at every sight if necessary, even if the third adjustment is not made. Of course this third adjustment should be made as a matter of convenience, so that the line of collimation may be always level no matter in what direction it may be pointed, but it is not necessary to stop work to make this adjustment every time it is found to be defective.

ADJUSTMENTS OF THE DUMPY LEVEL.

1. To make the axis of the level-tube perpendicular to the vertical axis. Level up so that the instrument is approximately level over both sets of leveling-screws. Then, after leveling carefully over one pair of screws, revolve the telescope 180°. If it is not level, adjust one-half of the error by means of the adjust-ing-screws at one end of the bubble, and the other half by means of the leveling-screws. Reverse again as a test.
2. To make the line of collimation perpendicular to the vertical axis. The method of adjustment is identical with that for the transit (No. 4, p. 505) except that the cross-wire must be
adjusted to agree with the level-bubble rather than vice versa, as is the case with the corresponding adjustment of the transit; i.e., with the level-bubble in the center, raise or lower the horizontal cross-wire until it points at the mark known to be on a level with the center of the instrument.

If the instrument has been well made and has not been distorted by rough usage, the cross-wires will intersect at the center of the field of view when adjusted as described. If they do not, it indicates an error which ordinarily can only be corrected by an instrument-maker. The error may be due to any one of several causes, which are
(a) faulty centering of object-slide;
(b) faulty centering of eyepiece;
(c) distortion of instrument so that the geometric axis of the telescope is not perpendicular to the vertical axis. If the error is only just perceptible, it will not probably cause any error in the work.

EXPLANATORY NOTE ON THE USE OF THE TABLES.

The logarithms here given arc "five-place," but the last figure sometimes has a special mark over it (e.g., $\overline{6}$) which indicates that one-half a unit in the last place should be added. For example

the value	includes all values between
.69586	$.6958575000+$ and $.6958624999 \ldots$
$.6958 \overline{6}$	$.6958625000+$ and $.6958674999 \ldots$

The maximum error in any one value therefcre does not exceed one-quarter of a fifth-place unit.

When adding or subtracting such logarithms allow a half-unit for such a sign. For example

.69586	.69586	
.10841	$.1084 \overline{1}$	$.6958 \overline{6}$
$.1294 \overline{7}$	$.1294 \overline{7}$	$.1084 \overline{\overline{1}}$
$.9337 \overline{4}$.93375	
	$.1294 \overline{7}$	

All other logarithmic operations are performed as usual and are supposed to be understood by the student.

TABLE I.-RADII OF CURVES.

Deg	0°		$1{ }^{\circ}$		2°		3°		Deg
Min	Radius.	$\log \boldsymbol{R}$	Radius.	$\log \boldsymbol{R}$	Radius,	$\log \boldsymbol{R}$	Radius.	$\log \boldsymbol{R}$	Min
0	-	∞	5729.6	3.75813	2864.9	$3.4571 \overline{1}$	1910.1	3.28105	
1	343775	$5.5362 \overline{7}$	5635.7	. 75095	2841.3	. 45351	1899.5	. 27864	
2	171887	$5.2352 \overline{4}$	5544.8	. 74389	2818.0	. 4499 立	1889.1	. 27625	
3	114592	5.05915	5456.8	. 73694	2795.1	. 44639	1878.8	. 27387	
4	85944	4.93421	5371.6	. 73010	2772.5	. 44287	1868.6	. 27151	
5	68755	4.83730	5288.9	. 72336	2750.4	. 43939	1858.5	. 26915	
6	57298	$4.7581 \overline{2}$	5208.8	$3.7167 \overline{3}$	2728.5	3.43593	1848.5	3.26681	6
7	49111	. 69117	5131.0	. 71020	2707.0	. 43249	1838.6	. $2644 \overline{8}$	
8	42972	. 63318	5055.6	. 70377	2685.9	. 42909	1828.8	. 26217	
9	38197	. 58203	4982.3	. 69743	2665.1	. 42571	1819.1	. 25988	
10	34377	. 53627	4911.2	. $6911 \overline{8}$	$\underline{2644.6}$. 42235	1809.6	. 25757	10
11	31252	4.49488	4842.0	3.68502 Z	2624.4	3.41903	1800.1	$3.2552 \overline{9}$	11
12	28648	. 45709	4774.7	. 67895	2604.5	. 41572	1790.7	. 25303	12
13	26444	. 42233	4709.3	. 67296	2584.9	. 41245	1781.5	. 25077	13
14	24555	. 39014	4645.7	. 66705	$2565 \cdot 6$. 40919	1772.3	. 24853	14
15	22918	. $3601 \overline{1}$	4583.8	. 66122	2546.6	. 40597	$\underline{1763.2}$. 24629	15
16	21486	4.33215	4523.4	3.65547	2527.9	$3.4027 \overline{6}$	1754.2	3.24407	16
17	20222	. $30582 \overline{2}$	4464.7	. 64979	2509.5	. 39958	1745.3	. 24186	17
18	19099	. 28100	4407. 5	. 64419	2491.3	-39642	1736.5	. 23967	18
19	18093	. 25752	4351.7	. 63365	2473.4	-39329	1727.8	- 23748	19
20	17189	. $2352 \overline{4}$	4297.3	. 63319	2455.7	. 39017	1719.1	. 23530	20
21	16370	4.21405	4244.2	3.62780	$2438 \cdot 3$	$3.3870 \overline{8}$	1710.6	3.23314	21
22	15626	. 19385	4192.5	. 62247	2421.1	. 38401	1702.1	. 23098	22
23	14947	. 17454	4142.0	. 61720	2404.2	. 38097	1693.7	. 22884	23
24	14324	-15606	4092.7	.61200	2387.5	- 37794	1685.4	- 22670	24
$\underline{25}$	13751	. $1383 \overline{3}$	4044.5	. $6068 \overline{6}$	2371.0	. 37494	1677.2	. 22458	25
26	13222	4.12130	3997.5	$3.6017 \overline{\overline{8}}$	2354.8	3.37195	1669.1	3.22247	26
27	12732	. 10491	3951.5	. 59676	2338.8	. 36899	1661.0	. 22037	27
28	12278	. $0891 \overline{1}$	3906.6	. 59180	2323.0	. 36804	1653.0	- 21827	28
29	11854	. 07387	3862.7	. 58689	2307.4	. 36312	1645.1	. 21619	29
30	11459	. 05915	3819.8	. 58204	$\underline{2292.0}$. 36021	1637.3	. 21412	30
31	11090	4.04491	3777.9	$3.5772 \overline{4}$	2276.8	3.35733	1629.5	3.21206	31
32	10743	. $0311 \overline{2}$	3736.8	. 57250	2261.9	. 35446	1621.8	. 21000	32
33	10417	01776	3896.8	. 56780	2247.1	. 35162	1614.2	- 20796	33
34	10111	4.00479	3657.3	. 56316	2232.5	. 34879	1606.7	. 20593	34
35	9822.2	3.99221	3618.8	. 55856	2218.1	. 34598	1599.2	. 20390	35
36	9549	3.97997	3581.1	3.55401	2203.9	3.3431 $\overline{8}$	1591.8	3.20189	36
37	9291.3	. 96807	3544.2	. 54951	2189.8	. 34041	1584.5	. 19988	37
38	9046.7	. $9564 \overline{9}$	$35 \cap 8.0$. $54506 \overline{6}$	2176.0	. 33765	1577.2	. 19789	38
39	8814.8	. 94521	3472.6	. 54065	2162.3	. 33491	1570.0	. 19590	39
40	8594.4	. $9342 \overline{1}$	3437.9	. 53629	2148.8	. 33219	1562.9	. 19392	40
41	8384.8	$3.9234 \bar{\square}$	3403.8	3.53197	2135.4	3.32949	1555.8	3.19195	41
42	8185.2	. 91302	3370.5	. 52769	2122.3	. 32630	1548.8	.18999	$\triangle 2$
43	7994.8	. 90281	3337.7	. 52345	2109.2	. $3241 \overline{2}$	1541.9	. 18804	43
44	7813.1	. 8928 2	3305.7	. 51925	2096.4	. 32147	1535.0	. 18610	44
45	7639.5	. $8830 \overline{6}$	3274.2	. 51510	2083.7	. 31883	152.8 .2	. 18417	45
46	7473.4	3.87352	3243 . 3	3.51098 ¢	2071.1	3.31621	1521.4	$3.1822 \overline{4}$	48
47	7314.4	. 86418	3213.0	. 50691	2058.7	. 31360	1514.7	. 18032	47
48	7162.0	. 85503	3183.2	. 50287	2046.5	. 31101	1508.1	. 17842	48
49	7015.9	. 84608	3154.0	. 49886	2034.4	. 30813	1501.5	. 17652	49
50	6875.6	. 83731	3125.4	. 49490	2022.4	. 30587	14.95 .0	.174¢2	50
51	6740.7	3.82871	3097.2	3.49097	$2010 \cdot 6$	$3.3033 \overline{2}$	1488.5	$3.1727 \overline{4}$	51
52	6611.1	. 82027	3069.6	. 48707	1998.9	. 30079	1482.1	. 17087	52
53	6483.4	. 81200	3042.4	. 48321	1987.3	. 29827	1475.7	. 16900	53
54	6366.3	. 80388	3015.7	. 47939	1975.9	. 29577	1469.4	. 16714	54
55	6250.	. 79591	2989.5	. 47559	1964.6	. 2932.8	1463.2	. 16529	55
56	6138.9	3.78809	2963.7	3.47183	1953.5	3.29081	1457.0	$3.163 \pm \overline{4}$	56
57	6031.2	. 78040	2938.4	. 46811	1942.4	. 28835	1450.8	. 16161	57
58	5927.2	. 77285	2913.5	. 46441	1931.5	28590	1444.7	. 15978	58
59	5826.8	. 73542	2899.0	. 46075	1920.7	. 28387	1438.7	. 15796	59
60	5729.8	. 75813	2884.9	. 45711	1910.1	. 28105	1432.7	. 15615	60

TABLE I.-RADII OF CURVES.

Deg	4°		5°		6°		$7{ }^{\circ}$		Deg
Min	Radius.	Log R	Radius.	$\log \boldsymbol{R}$	Radius,	$\log \boldsymbol{R}$	Radius.	$\log \boldsymbol{R}$	Min
0	1432.7	3.15615	1146.3	3.05929	955.37	2.98017	819.02	$2.9132 \overline{9}$	0
	1426.7	. 15434	1142.5	. 05784	952.72	. 97896	817.08	. 91226	
2	1420.8	. 15255	1138.7	. 05640	950.09	. 97776	815.14	. $9112 \overline{3}$	
3	1415.0	. 15076	1134.9	. 05497	947.48	. 97657	813.22	. 91021	
4	1409.2	. 14897	1131.2	. 05354	944.88	. 97537	811.30	. $9091 \overline{1}$	
5	1403.5	. 14720	1127.5	. 05211	942.29	. $9741 \overline{8}$	809.40	. 90816	
6	1397.8	3.14543	1123.8	$3.0506 \overline{9}$	939.72	2.97300	807.50	2.90714	
7	1392.1	. 14367	1120.2	. 04928	937.16	. 97181	805.61	. 90612	
8	1386.5	. 14191	1116.5	. 04787	934.62	. 97063	803.73	. 90511	
9	1380.9	. 14017	1112.9	. 04646	932.09	. 96945	801.86	. 90410	
10	1375.4	. 13843	1109.3	. 04506	929.57	. 96828	800.00	90309	10
11	1369.9	$3.1366 \bar{\square}$	1105.8	3.04366	927.07	2.96711	798.14	2.90208	11
12	1364.5	. 13497	1102.2	. 04227	924.58	. 96594	796.30	. 90107	12
13	1359.1	. 13325	1098.7	. 04088	$922 \cdot 10$. 96478	794.46	. 90007	13
14	1353.8	. 13154	1095.2	. 03949	919.64	. 96361	792.63	89907	14
15	$\underline{1348.4}$. 12983	1091.7	. 03811	917.19	. 96246	790.81	. 89807	15
18	1343.2	$3.1281 \overline{3}$	1088.3	3.03674	914.75	$2.9613 \bar{\square}$	789.00	2.89708	16
17	1338.0	. 12644	1084.8	. 03537	912.33	. 96015	787.20	. 89608	17
18	1332.8	. 12475	1081.4	. 03400	909.92	. 95900	785.41	. 89509	18
19	1327.6	. 12307	1078.1	. 03264	907.52	. 95785	783.62	89410	19
20	1322.5	. 12140	1074.7	. 03128	905.13	. 95671	781.84	. 89312	20
21	1317.5	3.11974	1071.3	3.02992	902.76	2.95557	780.07	2.89213	21
22	1312.4	. 11808	1068.0	. 02857	900.40	. 95443	778.31	. 89115	22
23	1307.4	. 11642	1064.7	. 02723	898.05	. 95330	776.55	. 89017	23
24	1302.5	. 11477	1061.4	. 02589	895.71	. 95217	774.81	88919	24
$\underline{25}$	1297.6	. 11313	1058.2	. 02455	893.39	. 95104	773.07	88821	25
26	1292.7	3.11150	1054.9	3.02322	891.08	2.94991	771.34	$2.8872 \overline{4}$	26
27	1287.9	. 10987	1051.7	. 02189	888.78	. 94879	769.61	. 88627	27
28	1283.1	. 10825	1048.5	. 02056	886.49	. 94757	767.90	.88530̄	28
29	1278.3	. 10663	$1045 \cdot 3$. 01924	384.21	. 94655	766.19	. 88433	29
30	$\underline{1273.6}$. 10502	1042.1	. 01792	881.95	. 94544	764.49	88337	30
31	1268.9	$3 \cdot 10341$	1039.0	3.01661	879.69	2.94433	762.80	2.88241	31
32	1264.2	. 10182	1035.9	. $01530 \overline{0}$	877.45	. 9432 2	761.11	88145	32
33	1259.6	. 10022	1032.8	. 01400	875.22	94212	759.43	88049	33
34	1255.0	. 09864	1029.7	. 01270	873.00	. 94101	757.76	.87053	34
35	1250.4	. 09705	1026.6	. 01140	870.80	. 93991	756.10	. 87858	35
36	1245.9	3.09548	1023.5	3.01010	868.60	2.93882	754.44	$2.8776 \overline{2}$	36
37	1241.4	. 09391	1020.5	. 00882	866.41	. 93772	752.80	. 87668	37
38	1236.9	. 09234	1017.5	. 00753	864.24	. 93663	751.16	87573	38
39	1232.5	. 09079	1014.5	. 00625	862.07	. 93554	749.52	. 87478	39
40	1228.1	. 08923	1011.5	. 00497	859.92	. 93446	747.89	. 87384	40
41	1223.7	3.08789	1008.6	3.00370	857.78	2.93337	746.27	2.87290	41
42	1219.4	. 08614	1005.6	. $0024 \overline{2}$	855.65	. $9322 \overline{9}$	744.66	. 87196	42
43	1215.1	. 08461	1002.7	3.00116	853.53	. 93122	743.06	87102	43
44	1210.8	. 08308	999.76	2.99989	851.42	. 93014	741.46	. 87008	44
45	1208.8	. 08155	996.87	. 99863	849.32	92907	739.86	. 86915	45
46	1202.4	$3.0800 \overline{3}$	993.99	2.99738	847.23	2.92800	738.28	2.86822	46
47	1198.2	. 07852	991.13	. 99613	845.15	92693	736.70	. 86729	47
48	1194.0	. 07701	988.28	. 99488	843.08	. 92587	735.13	. 86636	48
49	1189.9	. $07550 \overline{ }$	985.45	. 99363	841.02	. 92480	733.56	86544	49
50	1185.8	. $07400{ }^{\text {a }}$	982.64	. 99239	838.97	. 92374	732.01	86451	50
51	1181.7	3.07251	979.84	2.99115	836.93	2.92269	730.45	$2.8635 \overline{9}$	51
52	1177.7	. 07102	977.06	. 98992	834.90	. 92163	728.91	. 86267	5
53	1173.6	. 06954	974.29	. 98869	832.89	. 92058	727.37	. 88175	53
54	1169.7	. 06806	971.54	. 98746	830.88	. 91953	725.84	86084	54
55	1165.7	. 06658	968.81	. 98624	838.88	. 91849	724.31	$85992 \overline{ }$	55
56	1161.8	3.06511	966.09	2.98501	'826.89	$2.9174 \overline{4}$	722.79	2.85901	56
57	1157.9	. 08385	983.39	. 98380	824.91	. $91640 \bar{\square}$	721.28	. $85810 \overline{ }$	57
58	1154.0	. 06219	980.70	. 98258	822.93	. 91536	719.77	. 85719	58
69	1150.1	. 08074	958.03	. 98137°	820.97	. 91433	718.27	. 85629	59
B0	1146.3	. 05929	955.37	. 98017	819.02	. $9182 \overline{9}$	716.78	. 85538	60

TABLE I.-RADII OF CURVES.

Deg.	8°		9°		10°		11°		
		Log		Log		Log	Radius.	Log	
		2.8		2.					
	715.29	854	636.10	. 80	572.73	. 75795	520.88	74	
2	713.81		634.93	. 8027	571.78	75723	$520 \cdot 10$	$7160 \overline{8}$	
3	712.34	852	633.76	80192	570.84	75651	519.32		
	710.87	85178	632.60	. 80113	569.90	75579	518.54		
5	709.40	85089	63	80	568.96	.755ab	517.76	. 71413	
6	707.95	2.8500	630.29	2.79	2	$2.7543 \overline{\overline{6}}$	516.99	2.71348	
7	706.49	84911	629.14	7987	567.09	75365		71283	
8	705.05	84822	627.99	. 7979	566.16		515.44	71218	
	703.61	847	626.85	7971	56		514.68		
10	702.17	. 84644	$\underline{625.71}$	7	564.31	75151	513.91	71088	10
11	70	2.84556	62	2.79	563.38	2.75080	513.15	2.7102	
12	699.33	. 844	623.45	. 79480	562.47	. 750 C 9	512.38		
13	697.91	. 843	622.32	. 79401	561.55	. 749	511.63	70	13
14	696.50	. 84	621.20	. 7932 ³	560.64	. 748	510.87	708	
15		. 8	620.09	. 79	559.73	747	510.	70	5
16	69	2.84	61	2.79		2.7	6	2.7	16
	692	. 84	617.87	. 7908	557.92	. 746	508.61	. 70	
	690.91	. 8394	616.76	.79011	557.02	. 7458	507.86	705	
19	689.53	. 8	615.66	. 78934	556.12	. 74517	5C7.12	705	19
20	688.16		614.56	. 788	555.23	. 74447	506.38	70447	20
		2.		2.78		2.74377	505.64	. 7	
	685.42	. 83	612.38	. 78702	553.45	. 74307	$5 C 4.90$	703	22
23	684.06	. 83	611.30	. 78625	552.56	. 742	$5 \mathrm{C4} 46$	70	3
24	682.70		610.21	785	551.68	. 7416			
25					550.80	. 7409	502.69	701	25
26	680	2.83	60	2		. 7		. 7	
	678.67	. 83166	606.99	. 7831	549	. 739		. 700	
	677.34		605.93	. 7824	$548 \cdot 17$. 73892	500.51	699	
29	676.01	. 82995	604.86	7816	547.30	73823	499.78		
30	674.69	-	603.80			73754			30
				2.78		2.7	4¢8.34	. 69	
	672.06	. $8274{ }^{\text {¢ }}$	601.70	. 77938	544.71	736	497.62	696	
33	670.75	. 82856	600.65		543.86	735	496.91	696	
	669.45				543.00	73480	496.19	69	
35				. 77711	542.15	73412	495.48	695	35
		2.82		2.7	54	2.7		2.	
37	665.57		596.50	. 77561	540.45	. 73	494.07	6	
38		. 8223	595.47	77486	539.61	. 732	493.36	. 693	
	663.01	. 8215	594.44	. 77411	538.76	731	492.66	6	
40	661.74	. 8		. 77336	92	730	491.96	691	40
		2.8198	592.40	2.772		$2.7300 \overline{4}$	491.26	2.69	
	659.21	. 81902	591.38	. 771	536.25	. 729	490.56		
43	657.95	. 8181	590.37	. 7711	535.42	728	489.86	690	
44			$589 \cdot 36$	-7638	$5{ }^{53}$. 72882	480.17	-	
45	65	. 8165	588.36	. 7696	Eras. 77	. 72735	488.48	6888	
46		2.81		2.7		2.7		. 6	
47		. 8148	586.36	. 7681	532.12	72601	487.10	68701	
48	651.73	. 8140	585.36	. 767	581.30	. 725	486.42	687	
4	650.50	. $8132 \overline{4}$	584.37		530.49	724	485.73		
50		81243	5	. 76	52.9 .77	724		68579	
		2.811		2.76				2.68	
	646.84	. 8107	581.42	76449	528.05	-	483.69	.	
	645.63	. 80998	580.44	. 76376	527.25	72201			
	644.42	. 80917	579.47	. 76303	526.44	721	482.34	6833	
55	643.22	80836	578.49	. 76230	525.64	. 72069	481.67	. 68275	
		2.8075	577	2.7615	524.84	2.720		2.	
	640.83	8057	576.56	7608	524.05	. 711937	420.33	¢81	
	639.64	8059	575.60	- 76012	523.25		$479 . \varepsilon 7$		
		. 0 -	574.64	. 7			479.		
60	637.27	80432	573.69	. 75	521.67	. 7173	478.34		

TABLE I.-RADII OF CURVES.

TABLE II.-TANGENTS, EXTERNAL DISTANCES, AND LONG CHORDS FOR A 1° CURVE.

Δ	Tang.	$\begin{aligned} & \text { Ext } \\ & \text { Dist. } \\ & \text { E. } \end{aligned}$	Long LC.	Δ	Tang,	Ext. Dist. E.	Long Chord LC.	Δ	Tang,	Ext, Dist, Pt.	Lông Chord LC.
$1{ }^{\circ}$	50.00	$0 \cdot 2$	100	11	551.70	26.500	1098.3	1°		97.68	
10^{\prime}	58.34	0.297	116.67	10	560.11	27.3	4.9	10	1070		2104.7
20	66.67	0.388	133.33	20	568.53	28.137	131	20	1079	- 75	2121.1
30	75.01	0.491	150.00	30	576.95	28.974	1148.1	30	1087	02	2137.4
40	83.34	0.606	166.66	40	585.36	29.824	1164.7	40	1096.4	03	
50	91.68	0.733	183.33	50	593.79	30.686	1181.2	50	1105.1	105.60	2170.2
$\mathbf{2}^{\circ}$	100.01	0.873	199.99	12°	602.21	31.561	1197	22°	1113.7	107.24	2186.5
10	108.35	1.024	216.66	10	610.64	32.447	1214.	10	1122.4	108.90	2202.9
20	116.68	1.188	233.32	20	618.07	33.347	1231.	20	1131.	0.57	2219.2
30	125.02	1.364	249.98	30	627.50	34.259	1247.	30	1139	12.25	2235.6
40	133.36	1.552	266.65	40	635.93	35.183	1264.	40	1148.	13.95	2251.9
50	141.70	1.752	283.31	50	644.37	36.120	1280.7	50	1157.0	115.66	2268.3
3°	150.04	964	299.97	13°	652.81	37.069	1297.2	23°	1165.7	17.38	2284.6
10	158.38	2.188	316.63	10	661.25	38.031	1313.8	10	1174	19.12	
20	166.72	2.425	333.29	20	669.70	39.006	$1330 \cdot 3$	20	1183	20.87	2317.3
30	175.06	2.674	349.95	30	678.15	39.99	$1346 \cdot 9$	30	1191	22.63	2333.6
40	183.40	2.934	366.61	40	686.60	40.992	1363.4	40	1200.	124.41	2349.9
50	191.74	3.207	383.27	50	695.06	42.004	1380.0	50	1209.2	126.20	2366.2
$4{ }^{\circ}$	200.08	3.492	399.92	14°	703.51	43.029	1396.5	24°	1217.9	128.00	2382.5
10	208.43	3.790	416.58	10	711.97	44.066	1413.1	10	1226.6	129.82	2398.8
20	216.77	4.099	433.24	20	720.44	45.116	429.	20	1235	131.65	2415.1
30	225.12	4.421	449.89	30	728.90	46.178	1446.2	30	1244	133.50	2431.4
40	233.47	4.755	466	40	737.37	47.253	$1462 \cdot 7$	40	1252.	35.36	
50	241.81	5.100	483.20	50	745.85	48.341	1479.2	50	1261.5	137.23	2464.0
$5{ }^{\circ}$	250.16	5.459	499.85	15°	754.32	49.441	1495.7	25°	1270	139.11	2
10	258.51	5.829	516.50	10	762.80	50.554	1512.3	10	1279	141.01	96.5
20	266.86	6.211	533.15	20	771.29	51.679	1528.	20	1287	142.93	12.8
30	275.21	6.606	549.80	30	779.77	52.818	1545.8	30	1296	44.85	2529.0
40	283.57	7.013	566	40	788.26	53.969	561.	40	1305	46	
50	291.92	7.432	583.08	50	796.75	55.132	1578.	50	1314.0	148.75	5
6°	300	7.	599	16°	805.25	56.309	159	26°	1822.	1	8
10	308.64	8.307	616	10	813	57.498	1611.	10	1331	52.69	0
20	316.99	8.762	633.02	20	822	58.699	1627.	20	1340	154.69	2610.3
30	325.35	9.230	649.66	30	830.7	59.914	1644	30	1349	56	
40	333.71	9.710	666	40	839	61.141	1660.8	40		88	
50	342.08	10.202	682.94	50	847.78	62.381	1677.3	50	1366.8	160.76	8.9
7°	350	0.707	699	17°	856.30	63.634	1693	27°	1375.6	162.81	2675.1
10		1.224	716	10	864.82	64.900	1710	10	1384	64	
20	367	11.753	732.84	20	873.35	66.178	1726	20	1393.2	166.95	2707.5
30	375.54	12.294	749.47	30	881.88	67.470	1743	30	1402	169.04	7
40	383.91	12.847	766.10	40	890	68.774	1759	40	1410	71	9
50	392.28	13.413	782.73	50	898.95	70.091	1776.2	50	141.8	173.27	2756.1
$8{ }^{\circ}$	400.66	18.991	799.36	18°	907.49	71.421	1782	28°	1428.6	175.41	3
10	409.03	14.582	815	10	916.03	72.76	1809	10	1437	77.55	4
20	417	15.184	832.61	20	924.58	74.119	1825.5	20	1446.3	179.72	2804. 6
30	425.79	15.799	849.23	30	933.13	75.488	1842.0	30	1455	181.89	20.7
40	434.17	16.426	865.85	40	941.69	76.869	1858	40	1464	84.08	36.9
50	442.55	17.066	882.47	50	950.25	78.264	1874.8	50	1472.9	86.29	85.0
9°	450.93	17.717	899.08	19°	958.81	79.671	1891.3	29°	1481	188.51	869.2
10	459.32	18.381	915.70	10	967.38	81.092	1907.	10	1490	190.74	2885.3
20	467.71	19.058	932.31	20	975.96	82.525	1924.	20	1499	92.98	2901.4
30	476.10	19.74	948.92	30	984.53	83.972	1940	30	1508	95.25	$2917 \cdot 6$
40	484.49	20.447	965.53	40	993.12	85.431	1957.	40	1517.4	97.58	2933.7
50	492.88	21.161	982.14	50	1001.70	86.904	1973.5	50	1526.3	99.82	2949.8
10°	501	21.886		20°	1010.29	88.389	1989	30°	1535.3	202.12	2965.9
10	509.6	2.624	1015.35	10	1018.89	89.888	2006 - 3	10	1544.2	204.44	2982.0
20	518.0	23.375	1031.95	20	1027.49	91.399	2022	20	1553.1	206	2998.1
30	526	24.138	1048.54	30	1036.09	92.924	2039.	30	1562.	209.12	014.2
40	534	24.913	1065.14	40	1044.70	94.462	2055.5	40	1571.0	211.48	$3030 \cdot 2$
50	543.	25.700	1081.73	50	1053.31	96.013	2071.9	50	1580.0	213.86	3046.3
11	551.7	26.500	1098.33	21°	1061.93	97.577	2088.	31°	1589.0	216.25	3062.4

FOR A 1° CURVE．

Δ	Tang	$\begin{aligned} & \text { Dist. } \\ & \boldsymbol{E} \text {. } \end{aligned}$	$\boldsymbol{L C} .$	Δ	Tan	$\boldsymbol{E}^{\prime} .$	Long $\boldsymbol{L}, \mathbf{C}$ ．	Δ		$\begin{aligned} & \text { Ext } \\ & \text { Dist, } \end{aligned}$ $\boldsymbol{E} .$	Long LC．
				10	21.5			10			
20	1606	221.08	3094.	20				20			
30								30			
40	1624			40				40			
50	1633	228	3142	50				50			
$3{ }^{\circ}$	16			42°				52°			
10				10				10			
20	1661	35	3190	20	2218	414	4137	20	281		
	1670	238	3206	30	222			30			
40			3222.6	40				40			
50		243	A	50	22			50			
33°	169			43				53°			
				10				10			
20	1715	251	3286	20	2278	435	230	20		681.99	
30	172		3302	30	228			30			
				40				40			
50	1742			50				50			
$\overline{\mathbf{3 4}}{ }^{\circ}$	1751			44°	2314.9	449		54			
10				10				10			
20	177	267	82	20		457	323	20	29		
30	177	269	呥	30				30			
	178							40			
50	17			50	2363			50			
5°	18			45°	2373 ． 3	47	4385.3	55°	2982.7	729	
10				10				10			
20			咗	20	2392		41	20			
30	1834			30	2402						
				40				40			
50	18			50	2422.3			50			
3	18			46	2432.1			56°			
				10							
20	1880	300	57	20	245			20			
30	1889			30	2461		4523	30			
	1898			40				40			
50	1907			50	2481.4			50			
37°	191			47	24			57°	31		
				10	250			10	31		
20	193			20	2511			20			
30	1945			30	2521	$530 \cdot 13$					
40	195			40				40			
50	1963			50	254	538.18		50			5541.0
38°	197			48°	255						
	1982			10				10			
20	1991			20	2571	550	仡	20	318		
30	2000			30	258	55	470	30			
				40							
50	2019	345		50	2601		4736.9	50			
${ }^{\circ}$	20			49°				59°			
10		5		10	2621	5．	7	10			
20	204	54	385	20	2631	575.32		20	326	64	5671.8
30	20			30	26			30	327		
40	2086		888	40	265				285．	，	
50	2076			50				50			
				50°				60°			
10	2094		咗	10	2681	96	4858	10	3319	891.95	
20	2104		3950	20	2692	－	4873	20	3330		
30			3966.3	30	2702						
40	2123	380.76	3981	40	2712		4903.2	40	335	908.79	5787.3
	2132		3997	50	2722		4918.3	5	－	914.45	5801.7
$1{ }^{\circ}$	214			51				61°			5816.0

TABLE II.-TANGENTS, EXTERNAL DISTANCES, AND LONG CHORDS FOR A 1° CURVE.

Δ	Tang.	$\begin{aligned} & \text { Ext. } \\ & \text { Dist. } \\ & \text { E. } \end{aligned}$	Long Chord LC.	Δ	Tang.	Ext. Dist. te.	Long Chord $L C$.	Δ	Tang.	$\begin{aligned} & \text { Ext. } \\ & \text { Dist. } \\ & \text { Dit. } \end{aligned}$	Long Chord LC.
61°		920	581	71°	4086.9	1308.2	6654	81°	4893 . 6	1805.3	
10^{\prime}	3386.3	925.85	5830	10	4099.5	1315.5	6668.0	10	4908.0	814	7454.9
20	3397.5	931.58	5844.7	20	4112.1	1322.9	6681.6	20	4922.		7467.5
30	3408.8	937.34	5859.1	30	4124.8	1330	6695	30	4937.0	83	7480.2
40	$3420 \cdot 1$	$943 \cdot 12$	5873.4	40	4137.4	1337.7	6708.6	40	4951	研	7492.8
50	3431.4	948.92	5887.7	50	4150.1	1345.1	6722.1	50	4966.1	1852.	7505
$6{ }^{\circ}$	3442.7	954.75	5902.0	720	4162	1352.6	6735.6	82°	4980.7	2	75
10	3454	960.60	5916.3	10	4175	1360	6749	10	4995	87	7530
20	3465	966.48	5930.5	20	4188.4	1367.6	6762.5	20	5010	88	7543.1
30	3476.8	972.39	5944.8	30	4201.2	1375.2	6776.0	30	5024	891	75
40	3488.2	978	5959.0	40	4214.0	1382.8	6789.4	40	5039		-
50	3499.7	984.27	5973 . 3	50	4226.8	1390	6802.8	50	5054.3	1910	7580
63°	3511.	990.24	5987	73°	4239	1398.0	6816.3	83°	5069.2	192	759
10	3522.6	996.24	6001.7	10	4252	405.7	6829.6	10			
20	3534.1	1002 . 3	6015.9	20	4265	1413	6843	20	5099	940	7618.1
30	3545	1008.3	6030.0	30	4278	421	6856.4	30	5113	950	6
40	3557.2	014.4	6044.2	40	4291	429	6869	40	5128.9	60	
50	3568.7	020.5	6058.4	50	4304.6	436.8	6883	50	5143.9	970	4
64°	3580	$1026 \cdot 6$	6072	74°	4317.6	444.6	6896.4	84°	515	1980.4	7667.8
10	3591.9	1032.8	6086.6	10	4330.7	452.5	6909.7	10	5174.1		880
20	3603.5	1039.0	6100.7	20	4343.8	1460.4	6923.0	20	5189.3	200	7692
30	3615	1045.2	6114.8	30	4356.9	1468	6936.2	30	5204	201	770
40	3626	1051.4	6128	40	4370	1476	6949.5	40	5219		2
50	3638	1057.7	6143.0	50	4383	1484	6962.8	50	523	203	7729.5
65°	36	106	615	75°	4396.5	14	697	85°	52	20	7741.8
10	366	1070.2	617		4409.8	1500	6989.2	10	5265	20	7754.1
20	3673	076.6	6185.2	20	4423		倍	20	5281		766.3
30	3685	082.9	6199.2	30	4436	1516.7	7015	30	5296	207	
40	3697	089	6213	40	4449	524	7028	40	5311		8
50	3709	1095.7	6227.2	50	4463	15	704	50	5327		0
66°	3720.9	1102.2	6241.2	$\overline{76}$	4476	1541	7055.0	$\mathbf{8 6}^{\circ}$	5343.0	210	2
	3732	1108.6	6255.2		4489	1549	7068.2		5358.6	211	4
20	3744	1115.1	6269	20		1558	7081.3	20		2126	
30	3756	1121.7	6283	30	4516.9	1566	7094	30	5389	213	7
40	3768	1128.2	6297	40	4530	1574	7107	40	5405		863.8
50	3780	1134.8	6310.9	50	4544	1583	7120.5	50	5421	215	7876.0
67°	3792	1141.4	6324.8	\% ${ }^{\circ}$	4557.6	1591	7133.6	87°	$5437 \cdot 2$	216	7888.1
	3804	1148.0	6338	10	4571.2	1600		10		2180	
20		1154.7	6352	20	4584.8	1608		20		2191	7912.2
30	3828	1161.3	6366.4	30	4598.5	1617	7172.6	30	5484.9	2202.	7924.3
40	3840.5	1168.1	6380	40	4612.2	1625	7185.6	40	5500.9	2213	$36 \cdot 3$
50	3852	1174.8	6394.1	50	462		7198.6	50	5517.0	2224	7948.3
68°	3864.7	1181.6	6408.0	$\overline{78}$	4639.8	1643	7211.6	88°	5533.1	223	$7960 \cdot 3$
10	3876.8	1188.4	6421.8	10	4653.6	1651	7224.5	10	5549.2	2246	7972
20	3889.0	1195.2	6435	20	4667	1660	7237.	20	556	2258	7984
30	3901.2	1202.0	6449.4	30	4681.3	1669	7250.4	30	5581.6	2269	7996.2
40	3913.4	1208.9	6463	40	4695.2	167	7263.3	40	5597.8	2280	8008
50	3925	1215	64	50	47	1686.9	7276.	5	5614.2	229	8020.0
69°	3937.9	1222.7	$6490 \cdot 6$	79°	4723.2	1695	$7289 . \mathrm{C}$	$\overline{89}{ }^{\circ}$	5630.5	2303	8031.9
10	3950	1229.7	650	10	4737.2	170	7301	10	5646.9	231	8043
20	3962.5	1236.7	6518.	20	4751.	1713	7314.7	20	5663	2326	8055.7
30	3974.8	1243.7	6531.8	30	4765.3	1722	7327.5	30	5679.9	2338	3067.5
40	3987.2	1250.8	6545.5	40	4779	1731	7340.3	40	569	2349	8079.3
50	3999	1257.9	6559	50	4793.6	1740.8	7353	50	5713.0	236	8091.2
70°	4011.9	1265.0	6572	80°	4808.7	1749.9	736	$\mathbf{9 0}^{\circ}$	5729.7	237	8103.0
10	4024	1272.1	6586	10	4822	1759	7378	10	5746 . 3	2385	114
20	4036.8	1279.3	6600	20	4836	1768	7391.	20	5763.1	2397	8126
30	4049 . 3	1286.5	6613	30	4850	1777	7404	30	577	2408	
40	4061.8	1293.7	6627.3	40	4864.8	1786.7	7416.8	40	5796.7	$2420 \cdot 9$	8150
0	4074.4	1300.9	64	50	4879.2	1796.0	7429.5	50	5813.6	2432.9	8161.7
81°	4086	1308.2	66	81°	48	180	7442	91°	5830	2444.9	8173.4

TABLE III.-SWITCH LEADS AND DISTANCES.
LEAD-RAILS CIRCULAR THROUGHOUT; GAUGE $4^{\prime} 8^{\frac{1}{2}}{ }^{\prime \prime}$. See § 262.

$\begin{aligned} & \text { Frog } \\ & \text { No. } \\ & (n) . \end{aligned}$	$\begin{gathered} \text { Frog Angle } \\ \left(F^{\prime}\right) . \end{gathered}$			$\left\lvert\, \begin{aligned} & \operatorname{Lead}(L) \\ & \text { (Eq. 79). } \end{aligned}\right.$	$\begin{gathered} \text { Chord } \\ (Q T) \\ (\mathrm{Eq.} 77) \end{gathered}$	Radius of Lead-rails (r, Eq. 78).	$\log r$.	Deg Cur	$\begin{aligned} & \text { of } \\ & (d) . \end{aligned}$	Frog No. (n).
4	14	15^{\prime}	00' ${ }^{\prime \prime}$	37	37.38	150.67	2.178	38°		
4	12	40	59	42.37	42.12	190.69	. 28032	30		. 5
	11	25	16	47.08	46.85	235.42	. 37183	24	32	
5.	10	23	20	51.79	51.58	284.85	. 45462	20	13	. 5
	9	31	38	56.50	56.30	339.00	. 53020	16	58	
6.5	8	47	51	61.21	61.03	397.85	. 59972	14	26	6.5
7	8	10	16	65.92	65.75	461.42	. 66409	12	26	
7.5	7	37	41	70.62	70.47	529.69	. 72402	10	50	7.5
8	7	09	10	75.33	75.19	602.67	. 78007	9	31	
8.	6	43	59	80.04	79.90	630.36	. 83273	8	26	8.5
	6	21	35	84.75	84.62	762.75	. 88238	7	31	
9.5		01	32	89.46	89.33	849.85	. 92934	6	45	9.
10	5	43	29	94.17	94.05	941.67	2.9738 9	6	05	10
10.5	5	27	09	98.87	98.76	1038.19	3.01627	5	32	10.5
71		12	18	103.58	103.47	1139.42	. 05668	5	02	11
11.5	4	58	45	108.29	$108 \cdot 19$	了 245.36	.09529	4	36	11.5
12	4	46	19	113.00	112.90	1356.00	3.13226	4	14	12

TURNOUTS WITH STRAIGHT POINT-RAILS AND STRAIGHT FROGRAIIS: GAUGE $4^{\prime} 8^{\frac{1}{2}}{ }^{\prime \prime}$. See § 265.

$\begin{aligned} & \text { Frog } \\ & \text { No. } \\ & (n) . \end{aligned}$	$\begin{gathered} \text { Switch } \\ \text { Point } \\ \text { Angle } \\ (a) . \end{gathered}$	Ligth of Switch Point $(D N)$.	$\left\lvert\, \begin{gathered} \text { L'gth } \\ \text { of } \\ \text { Str'g't } \\ \text { Frog- } \\ \text { rail }(f) . \end{gathered}\right.$	$\begin{aligned} & \text { Lead } \\ & (I) \\ & \left(\text { Eq. }^{2}\right) . \end{aligned}$	$\begin{aligned} & \text { Chord } \\ & \text { (ST) } \\ & \text { (Eq. } \\ & \text { 88). } \end{aligned}$	Radius of Leadrails (r, Eq. 87).	$\log r$.		Frog No. (n).
	$3^{\circ} 40^{\prime}$		1.5	32.		125	2.0	$47^{\circ} 05$	
	3 ll	7.5	1.69	34.29	25.03	159.25	. 20208	$36 \quad 36$. 5
	245	10.0	1.87	41.85	29.88	197.65	. 2958	$29 \quad 22$	
5.	245	10.0	2.06	44.16	32.03	240.44	. 38100	2400	5.5
6	150	15.0	2.25	56.00	38.66	288.09	. 45953	1959	
8.	$1 \quad 50$	15.0	2.44	58.84	41.34	340.19	53172	1654	6.5
7	150	15.0	2.62	61.65	43.98	397.65	. 59950	$14 \quad 27$	
7.	150	15.0	2.81	64.36	46.50	460.00	. 66276	$12 \quad 29$	7.5
8	150	15.0	3.00	67.04	48.99	527.91	72256	$10 \quad 52$	
8.	50	15.0	3.19	69.60	51.38	600.94	. 77883	933	8.
9	150	15.0	3.37	7220	53.80	681.16	. 83325	825	
9.5	150	15.0	3.56	74.70	56.11	767.11	88486	28	9.5
10	150	15.0	3.75	77.04	58.28	858.14	. 93356	41	10
10	150	15.0	3.94	79.51	60.57	959.00	2.98182	59	10.5
11	150	15.0	4.12	81.82	62.69	1065.52	3.02756	23	11
11.5	1 50	15.0	4.31	84.09	64.78	1180.16	3.07194	451	11.5
12	150	15.0	4.50	86.16	66.67	1299.93	3.11392	424	12

TRIGONOMETRICAL FUNCTIONS OF THE FROG ANGLES (F).

Frog No. (n).	Frog Angle (F).	Nat. $\sin F$.	$\begin{aligned} & \text { Nat. } \\ & \cos \dot{F} . \end{aligned}$	\log	$\begin{aligned} & \log \\ & \cos F \end{aligned}$	\log	$\begin{aligned} & \log \\ & \text { vers } F \text {. } \end{aligned}$	$\begin{aligned} & \hline \text { Frog } \\ & \text { No. } \\ & (n) . \\ & \hline \end{aligned}$
4	$14^{\circ} 15^{\prime} 00^{\prime \prime}$	- 24615	. 969	$9.39120 \overline{0}$	$9.9864 \overline{2}$	10.59522		
4.	124049	. 21951	. 97561	. 34145	. 98927	. 6478%	. 38721	. 5
5	$\begin{array}{llll}11 & 25 & 16\end{array}$. 19802	. 98020	. 29670	. 99131	. 69461	. $29670 \overline{ }$	
5	$10 \quad 23 \quad 20$	- 18033	. 98360	. 25606	. 99282	. 73675	. 21467	5.5
6	$\begin{array}{llll}9 & 31 & 38\end{array}$	- 16552	. 98621	. 21884	. 99397	. 77513	. 13966	
6	84751	. 15294	. 98823	. 18453	. 99486	. 81033	. 07058	6.
7	1016	. 14213	. 98985	. 15268	. 99557	. 842888	8.00655	
7.5	3741	. 13274	. 99115	. 12301	. 99614	. 87313	7.94691	7
8	7 09 10	. 12452	. 99222	. $0952 \overline{2}$. $9966 \overline{0}$. 90138	. 89110	
8.5	4359	. 11724	. 99310	. 06909	99699	.92790	83864	8
9	62135	. 11077	. 99385	. 04442	. 99732	. 95289	78915	
9.5	$6 \quad 0132$. 10497	- 99448	9.02107	. 99759	97652	. 74232	9.
10	$\begin{array}{llll}5 & 43 & 29\end{array}$. 09975	. 99501	8.99891	. 99783	10.99892	. 69788	10
10.5	$5 \quad 2709$. 09502	99548	.97781	. 99803	11.02021	. 65560	10
11	$\begin{array}{llll}5 & 12 & 18\end{array}$. 09072	99588	95770	. 99880	. $04050 \overline{0}$	61528	11
11.5	45845	. 08679	- 99623	93848	. 99838	05987	57676	11.
12	44619	. 08319	99653	8.92007	9.99849	11.07842	7.53986	12

TABLE IV.-ELEMENTS OF TRANSITION CURVES.

TABLE IV.-ELEMENTS OF TRANSITION CURVES.

TABLE IV.-ELEMENTS OF TRANSITION CURVES.

TABLE V.-LOGARITHMS OF NUMBERS.

TABLE V.-LOGARITHMS OF NUMBERS.

TABLE V.-LOGARITHMS OF NUMBERS.

TABLE V.-LOGARITHMS OF NUMBERS.

TABLE V.-LOCARITHMS OF NUMBERS.

TABLE V.-LOGARITHMS OF NUMBERS.

N.	0	1	2	3	4	5	6	7	8	9	P. P.
350	54407	419	431	444	$45 \overline{6}$	469	481	$49 \overline{3}$	506	$51 \overline{8}$	
351	$530 \bar{\square}$	543	$55 \overline{5}$	568	580	592	605	617	$62 \overline{9}$	642	. $11 . \overline{2}$
352	654	666	679	691	$70 \overline{3}$	716	728	740	753	765	. 22.5
353	777	790	802	814	826	839	851	863	876	888	$\begin{array}{ll}.3 & 3.7\end{array}$
354	900	$91 \overline{2}$	925	937	949	961	974	986	$99 \overline{8}$	*010	.45 .0
355	55023	035	04.7	$05 \overline{9}$	071	084	096	108	$12 \overline{0}$	133	. $56 . \overline{2}$
355	145	157	$16 \overline{9}$	181	194	206	218	230	$24 \overline{2}$	$25 \overline{4}$. 67.5
357	267	279	291	303	315	327	340	352	364	376	. 78.7
358	$38 \overline{8}$	400	$41 \overline{2}$	$42 \overline{4}$	437	449	461	473	485	497	.810 .0
359	509	521	$53 \overline{3}$	545	558	570	582	594	606	618	.9111. $\overline{2}$
360	$630 \bar{\square}$	$64 \overline{2}$	$65 \overline{4}$	$66 \overline{6}$	$67 \overline{8}$	690	$70 \overline{2}$	$71 \overline{4}$	$72 \overline{6}$	$73 \overline{8}$	
361	750	$76 \overline{2}$	775	787	799	811	823	835	847	859	. 111.2
362	871	883	895	907	919	931	943	955	36 $\overline{6}$	$97 \overline{8}$. 22.4
333	990	*002	*01 $\overline{4}$	*02 $\overline{6}$	* 038	*050̄	*062	*074	*08 ${ }^{6}$	*098	$\begin{array}{lll}.3 & 3.6\end{array}$
354	56110	122	134	146	158	170	181	$19 \overline{3}$	205	217	. 44.8
365	229	241	253	265	277	288	300	312	324	336	. 56.0
366	348	360	372	$38 \overline{3}$	395	407	419	431	443	455	. 67.2
367	$46 \overline{6}$	$47 \overline{8}$	490	502	514	525	537	$54 \overline{9}$	561	573	. 78.4
368	585	596	608	620	632	643	655	667	679	691	. 89.6
3.69	702	714	726	738	749	761	773	785	796	808	. 9110.8
3'0	820	832	84 $\overline{3}$	$85 \overline{5}$	867	879	$80 \overline{0}$	90 $\overline{2}$	914	925	
371	937	949	961	972	984	996	*007	*019	*031	*04 $\overline{2}$. 1 1.1
372	$5705 \overline{4}$	$06 \underline{6}$	077	089	101	$11 \overline{2}$	$12 \overline{4}$	136	$14 \overline{7}$	159	. $22 \cdot 3$
373	171	$18 \overline{2}$	194	206	$21 \overline{7}$	229	240	$25 \overline{2}$	264	275	. $3 \quad 3.4$
374	287	299	310	322	$33 \overline{3}$	345	357	$36 \overline{8}$	380	391	.4) 4.6
375	403	414	$42 \overline{6}$	438	449	461	$47 \overline{2}$	484	495	507	. 5 5.7
376	519	530	542	553	565	576	588	599	611	$622 \overline{1}$. 6 6.9
377	634	645	657	$66 \overline{8}$	680	691	703	714	726	737	. 78.0
378	749	760	772	783	795	$80 \overline{6}$	818	829	841	$85 \overline{2}$. 8 9. 2
379	864	875	887	$89 \overline{8}$	909	921	$93 \overline{2}$	944	$95 \overline{5}$	967	.910.3
380	$97 \overline{8}$	990	*001	*012	*024	*035	*047	*05 $\overline{8}$	*069	* 081	
381	58 092̄	104	115	$12 \overline{6}$	138	$14 \overline{9}$	161	172	$18 \overline{3}$	195	.1) 1.1
382	$20 \overline{6}$	217	229	$24 \overline{0}$	252	263	$27 \overline{4}$	286	297	$30 \overline{8}$. 22.2
383	320	331	$34 \overline{2}$	354	365	$37 \overline{6}$	388	399	410	422	. 3 3.3
384	433	$44 \overline{4}$	$45 \overline{5}$	467	478	489	501	512	$52 \overline{3}$	535	. 4.4 .4
385	546	557	$56 \overline{8}$	580	591	602	$61 \overline{3}$	625	636	647	. 55.5
386	$65 \overline{8}$	670	681	692	$70 \overline{3}$	715	726	$73 \overline{7}$	$74 \overline{8}$	760	. $6 \quad 6.6$
387	771	782	$79 \frac{3}{3}$	804	816	827	$83 \overline{8}$	8499	861	872	. 77.7
388	883	$89 \overline{4}$	905	* $91 \frac{\overline{6}}{8}$	+ 928	-938	950	* 961	* $97 \overline{2}$	*984	8 9 8.8
389	995	*006	*017	*028	*039	*050	*062	*073	* 084	*095	. 99.9
390	$59 \quad 10 \overline{6}$	$11 \overline{7}$	$12 \overline{8}$	140	151	162	173	$18 \overline{4}$	195	$20 \overline{6}$	
391	$21 \overline{7}$	229	240	251	262	273	$28 \overline{4}$	295	$30 \overline{6}$	317	. 111.0
392	$32 \overline{8}$	339	351	362	373	384	395	4 C 6	417	428	. $22 \cdot 1$
393	$43 \overline{9}$	450	$46 \overline{1}$	$47 \overline{2}$	$48 \stackrel{3}{3}$	494	$50 \overline{5}$	516	$52 \overline{7}$	$53 \overline{8}$. 3 3.1
394	$54 \overline{9}$	560	571	$58 \overline{2}$	593	604	615	$62 \overline{6}$	$63 \overline{7}$	$64 \frac{8}{8}$. 44.2
395	659	670	681	692	703	714	$72 \overline{5}$	$73 \overline{6}$	$74 \overline{7}$	$75 \overline{8}$. 5 5. 2
396	$76 \overline{9}$	780	$79 \overline{1}$	$80 \overline{2}$	813	$82 \overline{4}$	835	846	857	868	
397	879	890	901	912	923	$93 \overline{3}$	$94 \overline{4}$	$95 \overline{5}$	* $96 \overline{6}$	* 977	. 7 7. 3
398	$98 \overline{\overline{8}}$	999	*010	*021	*032	* 043	*053̄	*064	*075	*08 $\overline{6}$. 8 8.4
399	50097	108	119	130	141	151	$16 \overline{2}$	$17 \overline{3}$	$18 \overline{4}$	195	. 9 9. $\overline{4}$
400	206	217	$22 \overline{7}$	$23 \overline{8}$	$24 \overline{9}$	$26 \overline{0}$	271	282	293	$30 \overline{3}$	
N.	0	1	2	3	4	5	6	7	8	9	P. P.

TABLE V.-LOGARITHMS OF NUMBERS.

TABLE V.-LOGARITHMS OF NUMBERS.

N.		0	1	2	3	4	5	6	7	8	9	P. P.	
450	65	$32 \overline{1}$	331	$34 \overline{0}$	350	360	369	379	389	398	408		
451		$41 \overline{7}$	425	437	$44 \overline{6}$	456	466	475	485	494	504		
452		514	523	533	542	552	562	571	581	590	600		10
453		610	619	629	638	648	657	667	677	$68 \overline{6}$	696	. 1	1.0
454		705	715	724	$73 \overline{4}$	744	753	763	772	782	791	. 2	2.0
455		801	810	820	830	$83 \overline{9}$	849	$85 \frac{8}{8}$	868	877	887	. 3	3.0
456		896	906	915	925	93른	944	953	963	$97 \overline{2}$	982	. 4	4.0
457		991	*001	*010	*020	*029	*038	*048	* C 58	* 067	*077	. 5	5.0
458	66	$08 \overline{6}$	096	105	115	124	134	143	153	$16 \overline{2}$	172	. 6	6.0
459		181	190	200	209	219	228	238	247	257	266	. 7	7.0
460		276	285	$29 \overline{4}$	304	$31 \overline{3}$	323	$33 \overline{2}$	342	351	$36 \overline{0}$.9	9.0
461		370	$37 \overline{9}$	389	$39 \overline{8}$	408	417	$42 \overline{6}$	436	445	455		
462		464	473	483	492	502	511	52 C	530	530	548		
463		558	567	577	586	595	605	614	623	633	642		
464		652	661	$67 \overline{0}$	680	689	698	708	717	726	736		
465		745	$75 \overline{4}$	764	773	782	792	801	810	820	829		$\overline{9}$
466		838 8	848	857	$86 \overline{6}$	876	885	894	904	913	$92 \overline{2}$. 1	$0 . \overline{9}$
467		931	941	950	959	968	978	987	996	*006	*015	. 2	1.9
468	67	$02 \overline{4}$	034	043	052	061	071	080	089	099	108	. 3	2.8
469		117	$12 \overline{6}$	136	145	154	$16 \overline{3}$	173	182	191	200	. 4	3.8
470		210	219	$22 \overline{8}$	$23 \overline{7}$	$24 \overline{6}$	256	265	$27 \overline{4}$	$28 \overline{3}$	293	. 6	5.7
471		302	$31 \overline{1}$	320	$32 \overline{9}$	339	348	$35 \overline{7}$	$36 \overline{6}$	376	385	.8	6. 6 7.6
472		394	403	412	422	431	44.	449	458	467	477	.9	8.5
473		486	495	504	513	523	532	54.1	550	559	$56 \overline{8}$		
474		578	587	596	605	614	623	633	642	651	660		
475		669	678	687	697	706	715	724	733	$74 \frac{2}{2}$	751		
476		760	770	779	788	797	806	815	824	833	$84 \overline{2}$		
477		852	861	870	879	888	897	$9 \mathrm{C} \frac{1}{}$	915	924	933		
478		943	952	961	970	978	988	997	*CC $\overline{6}$	*015	*024		9
479	68	$03 \overline{3}$	042	051	$060 \bar{\square}$	070	079	088	C97	106	115	. 1	0.9
480		124	133	142	151	160	$16 \overline{9}$	$17 \overline{8}$	$18 \overline{7}$	$19 \overline{6}$	205	$\stackrel{.}{ }$	1.8 2.7
481		214	$22 \overline{3}$	$232 \overline{2}$	241	250	$25 \overline{9}$	268	$27 \overline{7}$	$28 \overline{6}$	295	. 4	3.6 4.5 4,
482		304	313	322	331	340	349	358	367	376	385	. 6	5.4
483		394	403	412	$42 \overline{1}$	430	439	$44 \overline{8}$	457	466	475	7	6.3
484		484	493	502	511	520	529	$53 \overline{8}$	547	$55 \overline{6}$	565	8	7.2
485		574	583	592	601	${ }^{61} \mathrm{C}$	619	628	637	646	654	9	8.1
486		663	${ }_{76} 72$	771	${ }^{690}$	6999	$70 \frac{8}{7}$	717	$72 \frac{1}{5}$	735	744		
487		753	762	770	77 O	788	797	806	815	824	833		
488		842	851	860	868	877	886	895	904	913	922		
489		931	940	$94 \overline{8}$	957	$96 \overline{6}$	975	984	993	*02	*010		
490	69	$01 \overline{9}$	027	037	046	055	064	073	$08 \overline{1}$	$090 ̄$	$09 \overline{9}$		$\overline{8}$
491		108	117	126	$13 \overline{4}$	$14 \overline{3}$	$15 \overline{2}$	161	170	179	$18 \overline{7}$. 12	0.8 1.7
492		196	205	214	223	232	240	$24 \frac{9}{7}$	$25 \overline{8}$	267	276	. 3	2.5
493		284	293	302	311	320	328	337	346	355	$3 \mathrm{E}_{4} 4$		$3 \cdot 4$
494		372	381	390	399	4 4 8	415	425	424	443	${ }_{53}^{45} 1$		4.2
495		460	469	478	487 57	495	504	512	522	530	539		$5 \cdot \frac{1}{9}$
496		548	554	565	574	673	592	608	609	618	627		5.9
497		635 723	64 7 81	740	762	670	676	688° 775	697 784	$70 \frac{5}{7}$	710	-8	6. 8
498		723	731	740 827	749 836	. 7585	766 85	775	784	792	${ }^{80]}$		
499		810	819	827	836	845	$85 \overline{3}$	862	871	879	888		
500		897	905	$91 \overline{4}$	923	$93 \overline{1}$	$940 \overline{0}$	949	958	$96 \overline{6}$	975		
N.		0	1	2	3	4	5	6	7	8	9	P.	

TABLE V.-LOGARITHMS OF NUMBERS.

N.		0	1	2	3	4	5	6	7	8	9	P. P.
500	69	897	905	$91 \overline{4}$	923	93]	940	949	958	$96 \overline{6}$	975	
501		984	$99 \overline{2}$	*001	*010	*01 $\overline{8}$	*027	*036	*04 $\overline{4}$	*053	*06Ī	
502	70	070	079	087	096	105	$11 \overline{3}$	122	131	$13 \overline{9}$	148	9
503		157	165	174	$18 \overline{2}$	191	20 C	2С8	217	226	234	. 10.9
504		243	$25 \overline{1}$	260	269	$27 \overline{7}$	286	294	$30 \stackrel{\square}{3}$	312	32 C	. 21.8
505		329	$33 \overline{7}$	$34 \overline{6}$	355	$36 \overline{3}$	372	380	$38 \overline{9}$	398	$40 \bar{¢}$. 32.7
506		415	$42 \overline{3}$	432	441	$44{ }^{\circ}$	458	$46 \overline{6}$	475	$48 \overline{3}$	492	. 43.6
507		501	509	-518	$52 \overline{6}$	535	$54 \overline{3}$	552	560	569	578	. 54.5
508		$58 \overline{6}$	595	$60 \overline{3}$	612	620	629	637	646	654	66¢	. 65.4
509		672	680	689	697	706	714	723	731	740	$74 \bar{\varepsilon}$. 76.3
510		757	$76 \overline{5}$	774	$78 \overline{2}$	791	$79 \overline{9}$	808		825	$83 \overline{3}$. 98.1
511		842	850]	859	$86 \overline{7}$	876	88 $\overline{4}$	893	901	910	$91 \overline{\overline{8}}$	
512		927	935	944	$95 \overline{2}$	961	969	978	$98 \overline{\overline{6}}$	995	*00?	
513	71	011	020	$02 \overline{8}$	037	$04 \overline{5}$	054	$06 \overline{2}$	071	$07 \overline{9}$	088	
514		096	105	113	$12 \overline{1}$	13 C	$13 \overline{8}$	147	155	164	172	
515		180	189	197	206	214	223	231	23°	248	$25 \overline{\text { E }}$	$\overline{8}$
516		265	$27 \overline{3}$	282	290	298	307	315	324	$33 \overline{2}$	340̄	. 10.8
517		349	357	36 E	374	382	391	399	408	416	424	- 21.7
518		433	$44 \overline{1}$	449	458	$46 \overline{6}$	475	$48 \overline{3}$	491	500	$50 \overline{8}$. $32 \cdot \overline{5}$
519		$51 \overline{6}$	525	$53 \overline{3}$	542	550	$55 \overline{8}$	567	$57 \overline{5}$	$58 \overline{3}$	592	. 43.4
520		600	$60 \overline{8}$	617	$62 \overline{5}$	$63 \overline{3}$	642	$650 \overline{1}$	659	667	$67 \overline{5}$. 65.1
521		684	692	$70 \bar{\square}$	709	717	$72 \overline{5}$	734	742	$75 \overline{0}$	$75 \overline{2}$. 86.8
522		767	775	783	792	$80 \overline{0}$	808	817	825	$83 \overline{3}$	842	$.97 . \overline{6}$
523		850	858	867	875	883	891	900	$90 \overline{8}$	$91 \overline{6}$	925	
524		933	941	$94 \overline{9}$	958	$96 \overline{6}$	974	983	991	999	* $00 \stackrel{7}{7}$	
525	72	016	024	$03 \overline{2}$	040	049	057	$06 \overline{5}$	074	082	090̄	
526		098	107	115	$12 \overline{3}$	131	140	148	$15 \overline{6}$	$16 \overline{4}$	173	
527		181	$18 \overline{9}$	197	206	214	222	230	238	247	255	
528		$26 \overline{3}$	271	280	288	296	304	312	321	329	337	8
529		345	354	362	370	$37 \overline{8}$	$38 \overline{6}$	395	403	411	$41 \overline{9}$.1\|0.8
530		$42 \overline{7}$	436	444	452	$46 \overline{0}$	$46 \overline{8}$	$47 \overline{6}$	485	493	501	. 3 2. 4
531		$50 \overline{9}$	$51 \overline{7}$	526	534	542	550̄	$55 \overline{8}$	$56 \overline{\overline{6}}$	575	583	. 54.0
532		591	$59 \overline{9}$	607	615	624	632	640	648	$65 \overline{6}$	664	. 64.8
533		$67 \overline{2}$	681	689	697	705	713	$72 \overline{1}$	$72 \overline{9}$	738	$74 \frac{1}{7}$. 75.6
534		754	$76 \overline{2}$	770	$77 \overline{8}$	$78 \overline{6}$	795	803	811	819	$82 \overline{7}$. 86.4
535		835	843	851	859	868	876	884	892	900̄	$90 \overline{8}$.97 .2
536		$91 \overline{6}$	924	932	941	949	957	965	973	981	989]	
537		997	*005	*013	*021	* 030	*038	* 046	*054	*062	*070	
538	73	078	08 $\overline{6}$	094	$10 \overline{2}$	110	118	$12 \overline{6}$	134	143	151	
539		159	167	175	183	191	199	207	215	$22 \overline{3}$	$23 \overline{1}$	
540		$23 \overline{9}$	$24 \overline{7}$	$25 \overline{5}$	$26 \overline{3}$	271	$27 \overline{9}$	$28 \overline{7}$	295	$30 \overline{3}$	311	
541		$31 \overline{9}$	328	336	344	352	360	368	376	384	392	. 21.5
542		400	408	416	424	132	440	448	456	464	472	. $32 \cdot \overline{2}$
543		480	488	496	504	512	520	528	536	544	552	. 43 - 0
544		560	568	576	584	592	600	608	615	$62 \overline{3}$	631	. 5 3.7
545		639	647	655	$66 \overline{3}$	671	679	687	695	$70 \overline{3}$	711	. 64.5
546		$71 \overline{9}$	727	735	743	751	759	767	775	783	791	. $75 . \overline{2}$
547		798	$80 \overline{6}$	814	822	$83 \bar{\square}$	$83 \overline{8}$	$84 \overline{6}$	$85 \overline{4}$	862	870	.860
548		878	886	894	902	909	$91 \overline{7}$	925	933	941	949	$916 . \overline{7}$
549		957	965	973	981	989	997	*004	*012	*020̄	*028	
550		$03 \overline{6}$	044	052	060	068	$07 \overline{5}$	083	093	09 $\overline{9}$	$10 \overline{7}$	
N.		0	1	2	3	4	5	6	7	8	9	P. P.

TABLE V.-LOGARITHMS OF NUMBERS.

TABLE V.-LOGARITHMS OF NUMBERS.

N.	0	1	2	3	4	5	6	7	8	9		P.
600	77815	$82 \overline{2}$	829	837	844	851	$85 \overline{8}$	866	873	880		
601	$88 \overline{7}$	$89 \overline{4}$	902	909	916	$92 \overline{3}$	931	938	945	$95 \overline{2}$		
602	959	967	974	981	988	995	*003	*010	*017	*024		
603	78031	039	046	$05 \overline{3}$	060	067	075	082	089	096		
604		111	118	125	132	$13 \overline{9}$	147	154	161	168		
605	175	182	190	197	204	211	218	226	233	240		
606	247	254	251	269	276	283	290	297	304	311		
607 608	319	326	333 404	340	347 419	354 426	362 433	369	376	383 454	$\cdot 1$	0.7
609	$46 \overline{1}$	469	476	483	490	497	$50 \overline{4}$	$51 \overline{1}$	$51 \overline{8}$	526	$\cdot 2$	1. $\frac{5}{2}$
610	533	540	547	554	$56 \overline{1}$	$56 \overline{8}$	575	583	590	597	.4	3. 0
611	604	611	$61 \overline{\overline{8}}$	625	$63 \overline{2}$	$63 \overline{9}$	$64 \overline{6}$	654	661	668	$\cdot 6$	4. 5
612	675	682	689	696	703	710	717	725	732	739	. 78	
613	746	753	760	787	774	781	$78 \overline{8}$	795	802	810	. 8	
614	817	824	831	838	845	852	859	866	873	880		
615	887	894	901	908	915	923	930	937	944	951		
616	958	965	972	979	986	993	*000	*007	*014	*021		
617	79028	035	042	049	056	063	070	078	085	092		
618	099	106	113	120	127	134	141	148	155	162		
619	169	176	183	190	197	204	211	218	225	232		
620	239	246	253	260	267	274	281	288	295	302		
621	309	316	323	330	337	344	351	358	365	372	. 1	0.7
622	379	386	393	400	4076	414	421	428	435	442	.2	0.7 1.4
623	449	456	$53 \overline{2}$	469 53	476 ${ }^{4}$	483 553	490	497	504	511	$\stackrel{.}{ } .3$	2.1
624	518	525	532	539	546	553	629	567	574	581	. 4	2.8
626	657	664	671	678	685	692	699	706	713	720	. 5	3.5
627	727	$73 \overline{3}$	$74 \overline{0}$	747	754	761	768	775	782	789	- 6	4.2
628	796	803	810	816	823 3	830	837	844	851	858	. 8	4.9 5.6
629	865	872	879	886	892	$89 \overline{9}$	906̄	$91 \overline{3}$	$92 \overline{0}$	927	. 9	5. 6.3
630	934	941	948	954	961̄	$96 \overline{8}$	975	982	989	996		
631	80003	010	$01 \overline{6}$	$02 \overline{3}$	030	$03 \overline{7}$	044	051	058	055		
632	071	078	085	092	099	106	113	120	$12 \overline{6}$	$13 \overline{3}$		
633	140	147	154	161	168	174	181	$18 \overline{8}$	195	202		
634	209	216	$22 \overline{2}$	$22 \overline{9}$	236	243	250	257	$26 \overline{3}$	270		
635	$27 \overline{7}$	284	291	298	304	311	318	325	332	339		
636	345	352	359	366	373	380	386	393	400	407		
637	414	421	427	434	441	448	455	461	468	475	. 1	${ }^{0} \cdot \overline{6}$
639	550	457	${ }^{49} 6$	570	577	584	591	529	${ }^{53} \mathbf{0} 4$	543	. 2	1.3
640	618	625	$63 \overline{1}$	$63 \overline{8}$	645	652	$65 \overline{8}$	60^{5}	$67 \overline{2}$	679	. 4	2.6
641	686	$69 \overline{2}$	$69 \overline{9}$	706	713	719	$72 \overline{6}$	733	740	$74 \overline{\bar{E}}$	$\cdot 6$	3.9
642	$75 \overline{3}$	760	767	774	780	787	794	801	807	$81 \frac{1}{4}$.7	
643	821	828	$83 \overline{4}$	841	848	855	861	$86 \overline{\overline{8}}$	875.	882	. 8	
644	$88 \overline{1}$	895	902	909	915	922	929	936	942	949		
645	956	962	969	976	983	989	996	*003	*010	*016		
646	81023	030	$03 \overline{6}$	043	050	057	063	070	077	083		
647	090	097	104	110	117	124	130	137	144	151		
648	157	164	171	177	184	191	197	204	211	218		
649	224	231	238	244	251	258	264	271	278	$28 \overline{4}$		
650	291	298	$30 \overline{4}$	3111	318	$32 \overline{4}$	331	338	345	351		
N.	0	1	2	3	4	5	6	7	8	9		P.

TABLE V.-LOGARITHMS OF NUMBERS.

N.	0	1	2	3	4	5	6	7	8	9		P.
650	81291	298	$30 \overline{4}$	311	318	$32 \overline{4}$	$33 \overline{1}$	338	345	$35 \overline{1}$		
651	358	365	371	378	385	391	398	405	411	418		
652	425	431	438	$44 \overline{4}$	451	458	464	471	478	$48 \overline{4}$		
653	491	498	504	511	518	$52 \overline{4}$	531	538	54.	551		
654	558	564	571	577	584	591	597	604	611	617		
655	624	631	$63 \overline{7}$	644	650	$65 \overline{7}$	664	670	677	684		
656	690	697	$70 \overline{3}$	710	717	$72 \overline{3}$	730	$73 \overline{6}$	$74 \overline{3}$	$75 C$		
657	$75 \overline{6}$	763	770	776	783	789	796	803	809	816	. 1	0.7
658	$82 \overline{2}$	829	836	$84 \overline{2}$	849	855	862	869	875	882	. 1	0.7 1.4
659	888	895	901	908	915	$92 \overline{1}$	928	$93 \overline{4}$	941	948	. 3	2.1
660	954	961	$96 \overline{7}$	974	980	987	994	*000	*007	*01 $\overline{3}$. 4	2.8 3.5
661	82020	$02 \overline{6}$	033	040	04 $\overline{6}$	053	059	066	$07 \overline{2}$	079	.6 .7	4.2 4.9
662	086	$09 \overline{2}$	099	105	112	$11 \overline{8}$	125	$13 \overline{1}$	138	145	.7 .8	4.9 5.6
663	151	158	164	171	177	184	190	197	203	210	. 8	6.3
664	217	$22 \overline{3}$	230	$23 \overline{6}$	343	249	256	$26 \overline{2}$	269	275	. 9	6.3
665	282	$28 \overline{8}$	295	302	308	315	$32 \overline{1}$	328	$33 \overline{4}$	341		
666	347	354	360	367	373 3	380	$38 \overline{6}$	393	$39 \overline{9}$	406		
667	$41 \overline{2}$	419	42	432	$43 \overline{8}$	445	451	458	$46 \overline{4}$	471		
668	477	484	490	497	503	510	$51 \overline{6}$	523	$52 \overline{\text { g}}$	536		
669	$54 \overline{2}$	549	$55 \overline{5}$	562	568	575	581	588	594	601		
670	$60 \overline{7}$	614	$62 \overline{0}$	627	$63 \overline{3}$	640	$64 \overline{6}$	653	$65 \overline{9}$	666		
671	$67 \overline{2}$	678	685	691	698	704	711	$71 \overline{7}$	724	730	. 1	${ }_{0}{ }^{\mathbf{6}}$. ${ }^{\text {b }}$
672	737	$74 \overline{3}$	750	$75 \overline{6}$	763	769	$77 \overline{5}$	782	$78 \overline{8}$	795	. 1	0.6 1.3
673	$80 \overline{1}$	808	$81 \overline{4}$	821	827	834	840	$84 \overline{6}$	853	859	. 3	1.9
674	866	872	879	$88 \overline{5}$	892	898	904	911	917	924	. 4	1.6
675	930	937	943	949	956	962	*969	* $97 \frac{1}{5}$	* 982	+988	. 4	3. ${ }^{2}$
676	$99 \overline{4}$	*001	*00극	*014	*020	*027	*033	*039	*046	*052	. 6	3.9
677	$\begin{array}{ll}83 & 059\end{array}$	065	071	078	084	091	097	103	110	116	. 7	4.5
678	123	$12 \overline{9}$	136	142	148	155	$16 \overline{1}$	168	174	180	.8	4.5 5.2
679	187	$19 \overline{3}$	200	206	212	219	225	231	238	$24 \overline{4}$. 9	5.8
680	251	$25 \overline{7}$	$26 \overline{3}$	270	$27 \overline{6}$	283	289	$20 \overline{5}$	302	$30 \overline{8}$		
681	$31 \overline{4}$	321	$32 \overline{7}$	334	340	$34 \overline{6}$	353	359	$36 \overline{5}$	372		
682	378	385	391	397	404	410	416	423	429	435		
683	442	$44 \overline{8}$	455	461	467	474	480	$48 \overline{6}$	493	$49 \overline{9}$		
684	505	512	$51 \overline{8}$	$52 \overline{4}$	531	537	$54 \overline{3}$	550	$55 \overline{6}$	$56 \overline{2}$		
685	569	$57 \overline{5}$	581	588	594	600	607	613	619	626		
686	632	$63 \overline{8}$	645	651	657	664	670	$67 \overline{6}$	683	689		6
687	695	702	$70 \overline{8}$	$71 \overline{1}$	721	727	$73 \overline{3}$	740	746	752	. 1	0.6
688	759	765	771	778	784	790	796	803	809	815	. 2	1.2 1.2
689	822	828	$83 \overline{4}$	841	847	$85 \overline{3}$	859	866	$87 \overline{2}$	$87 \overline{8}$	$\cdot .3$	1.8
690	885	891	897	904	910	$91 \overline{6}$	$92 \overline{2}$	929	935	941	. 4	2.4 3.0
691	948	954	960	$96 \overline{6}$	973	979	985	992	998	*004	. 6	3.6 4.2
692	84010	017	023	029	$03 \frac{5}{8}$	042	048	054	061	067	. 8	4.2
693	073	$07 \overline{9}$	086	092	.0981	104	111	$117 \frac{7}{9}$	$12 \overline{3}$	$12 \overline{9}$. 8	4.8 5.4
694	136	143	$14 \overline{8}$	154	161	167	$17 \overline{3}$	179	186	192		5.4
695	198	204	211	217	223	220	236	242	248	254		
696	261	267	273	279	286	292	298	304	311	317		
697	$32 \overline{3}$	$32 \overline{9}$	335	342	348	35	360	367	373	379]		
698	385	392	398	404	410	$41 \overline{5}$	423	428	435	$44 \frac{1}{3}$		
699	447	454	460	$46 \overline{6}$	472	479	485	49.	497	503		
700	510	516	522	$52 \overline{8}$	53	541	547	553	$55 \overline{9}$	$56 \overline{5}$		
N.	0	1	2	3	4	5	6	7	8	9		

TABLE V.-LOGARITHMS OF NUMBERS.

N.		0	1	2	3	4	5	6	7	8	9	P. P.	
700	84	510	516	522	$52 \overline{8}$	53六	541	547	553	$55 \overline{9}$	$56 \overline{5}$		
701		572	578	584	590	596	603	609	615	62 I	627		
702		$63 \overline{3}$	640	646	652	658	634	671	677	683	689		
703		695	701	708	714	720	$72 \overline{6}$	732	739	745	751		
704		757	763	$76 \overline{9}$	776	782	788	79 슬	800	806	813		
705		819	825	831	837	843	849	856	862	868	874		
706		880	886	893	899	905	911	917	923	929	936		$\overline{6}$
707		942	948	954	960	$96 \overline{6}$	$97 \overline{2}$	979	985	991	997	. 1	${ }_{0}{ }^{6} \cdot \overline{6}$
708	85	003	009	015	$02 \overline{1}$	023	034	040	046	$05 \frac{1}{2}$	058	. 2	0.6 1.3
709		$06 \overline{4}$	070	077	083	089	095	101	107	$11 \overline{3}$	110	. 3	1.9
710		126	132	138	144	150	$15 \overline{6}$	$16 \overline{2}$	$16 \overline{8}$	$17 \overline{4}$	181	. 5	2. ${ }^{6}$
711		187	193	199	205	211	$21 \overline{7}$	$22 \overline{3}$	$229]$	236	242	. 6	$3 \cdot 9$
712		248	254	230	$26 \overline{6}$	272	$27 \overline{8}$	284	290	297	303	7	4.5
713		309	315	321	327	$33 \overline{3}$	339	345	351	357	363	.8 .9	5.2 5.8
714		370	376	382	388	394	400	$40 \overline{6}$	$41 \overline{2}$	$41 \overline{8}$	$42 \overline{4}$	$\cdot 9$	
715		430	$43 \overline{5}$	443	449	455	461	467	473	479	485		
716		491	497	503	ऽ0 $\overline{9}$	515	$52 \overline{1}$	$52 \overline{7}$	$53 \overline{3}$	540	546		
717		552	558	534	570	576	582	588	593	600	$60 \overline{6}$		
718		612	$61 \overline{8}$	$62 \overline{4}$	630	$63 \overline{6}$	642	$64 \overline{8}$	655	661	667		
719		673	679	685	691	697	703	709	715	721	727		
720		733	$73 \overline{9}$	$74 \overline{5}$	$75 \overline{1}$	$75 \overline{7}$	$76 \overline{3}$	$76 \overline{9}$	775	781	$78 \overline{7}$		
721		$79 \overline{3}$	$79 \overline{9}$	835	811	817	$82 \overline{3}$	$82 \overline{9}$	$83 \overline{5}$	841	847		6 0.6
722		$85 \overline{3}$	859	865	872	878	884	890	896	902	908	- 2	0.6 1.2
723		914	920	926	932	933	94.4	950	956	962	968	- 3	1.8
724		974	980	986	992	998	*004	*010	*016	*022	*028	. 4	1.8
725	86	034	040	043	052	058	$05 \overline{3}$	$06 \underline{9}$	075	081	$08 \frac{7}{7}$	- 5	2.4 3.0
726		$09 \overline{3}$	099	105	$11 \frac{1}{1}$	117	123	129	135	141	147	. 6	3.6
727		153	159	$16 \overline{5}$	171	177	183	189	195	201.	207	. 7	4.2
728		213	219	225	231	237	243	249	255	261	267	. 8	4.2 4.8
729		273	278	$28 \overline{4}$	290	$23 \overline{6}$	$30 \overline{2}$	$30 \overline{8}$	314	$32 \overline{0}$	$32 \overline{6}$. 8	4.8 5.4
730		$33 \overline{2}$	338	344	350	356	362	368	374	380	386		
731		$39 \overline{1}$	$39 \overline{7}$	$40 \overline{3}$	$40 \overline{9}$	415	$42 \overline{1}$	$42 \overline{7}$	$43 \overline{3}$	439	445		
732		451	457	463	469	475	481	$48 \overline{6}$	$40 \overline{2}$	$49 \overline{8}$	$50 \overline{4}$		
733		510	$51 \overline{6}$	522	528	534	540	546	552	558	563		
734		569	575	581	587	593	599	605	611	617	623		
735		$62 \overline{8}$	$63 \overline{4}$	840	$64 \overline{6}$	652	$65 \overline{8}$	664	670	675	682		
736		688	$693 \overline{3}$	699	705	711	717	723	729	735	741		
737		746	752	$75 \overline{8}$	764	770	776	782	788	794	800	. 1	- $\overline{5}$
738		805	811	817	823	829	835	841	847	852	$85 \overline{8}$. 12	1.1
739		$86 \overline{4}$	870	876	882	888	894	$89 \overline{9}$	$90 \overline{5}$	911	917	- 2	$1 . \frac{1}{6}$
740		923	929	935	941	$94 \overline{6}$	$95 \overline{2}$	958	964	970	976	. 4	$2 \cdot 2$
741		982	987	993	999	*005	*011	*017	*023	*02 $\overline{8}$	*03 $\overline{4}$. 6	$3 \cdot 3$
742	87	040	046	052	058	064	,06 $\overline{9}$	075	081	087	093	. 8	
743		099	104	110	$117 \overline{6}$	$12 \overline{2}$	128	134	140	145	151	. 8	4.9
744		157	163	169	175	180	$18 \overline{6}$	192	198	204	210		
745		215	221	$22 \overline{7}$	233	239	245	250	$25 \overline{6}$	252	268		
746		274	$27 \overline{9}$	285	291	297	303	309	314	320	326		
747		332	338	$34 \overline{3}$	$34 \overline{9}$	$35 \overline{5}$	361	367	372	$37 \overline{8}$	$38 \frac{4}{4}$		
748		390	396	402	$40 \overline{7}$	413	419	425	431	$43 \overline{6}$	$44 \overline{3}$		
749		448	454	460	$46 \overline{5}$	471	477	483	489	$49 \overline{4}$	500		
750		506	512	$51 \overline{7}$	$52 \overline{3}$	$52 \overline{9}$	535	541	$54 \overline{6}$	$55 \overline{2}$	558		
N.		0	1	2	3	4	5	6	7	8	9		

TABLE V.-LOGARITHMS OF NUMBERS.

TABLE V.-LOGARITHMS OF NUMBERS.

N.		0	1	2	3	4	5	6	7	8	9		P
800	90	309	$31 \overline{4}$	320	$32 \overline{5}$	$350 ̄$	336	341	347	$35 \overline{2}$	358		
801		$36 \overline{3}$	$36 \overline{8}$	374	379	385	$390 \bar{\square}$	396	401	40 $\overline{6}$	412		
802		417	423	428	$43 \overline{3}$	439	$44 \frac{1}{4}$	450	$45 \overline{5}$	$46 \overline{0}$	466		
803		471	477	482	488	493	498	564	509	515	520		
804		$52 \overline{5}$	531	536	542	547	552	558	563	569	574		
805		$57 \overline{9}$	585	590	596	601	606	612	617	$62 \overline{2}$	628		
806		$63 \overline{3}$	639	644	$64 \overline{9}$	655	660	666	671	$67 \overline{6}$	682		
897		687	692	698	703	709	714	719	725	730	736		
808		741	746	752	$75 \overline{7}$	762	768	$77 \overline{3}$	778	784	$78 \overline{9}$		
809		795	800	805	811	$81 \overline{6}$	$82 \overline{1}$	827	832	838	843		
810		$84 \overline{8}$	854	859	86 $\bar{\square}$	870	875	$\varepsilon 8 \overline{0}$	886	891	$89 \overline{6}$		
811		902	$90 \overline{7}$	913	918	$92 \overline{3}$	929	934	$93 \overline{9}$	945	$95 \overline{3}$	1	${ }_{0}{ }^{5}$
812		955	961	$96 \overline{6}$	971	977	$98 \overline{2}$	$98 \overline{7}$	993	$99 \overline{8}$	*003	$\cdot \cdot 1$	0.5 1.1
813	91	009	014	019	025	030	036	041	$04 \overline{6}$	052	057	$\cdot .3$	1. $1 . \frac{1}{6}$
814.		062	068	073	078	084	089	094	100	105	110	. 4	1.8
815		116	121	$12 \overline{6}$	131	137	142	147	153	$15 \overline{8}$	163	. 4	2.4
815		169	$17 \overline{4}$	179	185	190	195	201	$20 \overline{6}$	$21 \overline{1}$	217	. 6	2.7 3.3
817		222	$22 \overline{7}$	233	238	$24 \overline{3}$	249	254	259	264	270	. 7	$3 . \overline{8}$
818		$27 \overline{5}$	$280 \bar{\square}$	286	291	296	302	307	$31 \overline{2}$	318	323	.8	4.4
819		$32 \overline{8}$	$33 \overline{3}$	339	$34 \overline{4}$	349	355	360	365	371	376	. 8	4.9
820		381	$38 \overline{6}$	392	$39 \overline{7}$	$40 \overline{2}$	108	413	$41 \overline{8}$	$42 \overline{3}$	429		
821		$43 \overline{4}$	$43 \overline{9}$	445	450	$45 \overline{5}$	461	466	471	$47 \overline{\mathrm{G}}$	482		
822		487	492	497	503	508	$51 \overline{3}$	519	524	529	534		
823		540	545	550	556	561	$56 \overline{6}$	571	577	582	587		
824		592	598	$60 \overline{3}$	$60 \overline{8}$	614	619	$62 \overline{4}$	$62 \overline{9}$	635	640		
825		645	650	656	661	$66 \overline{6}$	671	677	682	687	692		
826		698	$70 \overline{3}$	$70 \overline{8}$	714	719	$72 \overline{4}$	$72 \overline{9}$	735	740	745		
827		750	756	761	$76 \overline{6}$	771	777	782	$78 \overline{7}$	792	798		
828		803	80흔	$81 \overline{3}$	819	824	829	$83 \overline{4}$	83 $\overline{9}$	845	850		
829		855	860	866	871	876	881	887	892	897	902		
830		908	913	$91 \overline{8}$	92 $\overline{3}$	92̄	934	939	944	94̄	955		
831		960	$96 \overline{\overline{5}}$	$970 \overline{1}$	976	981	986	99 $\overline{1}$	996	*002	*007		
832	92	012	$01 \overline{7}$	023	028	033	038	$04 \overline{3}$	049	054	059ㅢ	1	0.5 1.0
833		064	$06 \overline{9}$	075	080	085	090	096	101	106	$11 \frac{1}{3}$. 3	1.0
834		116	122	127	132	137	142	148	153	158	$16 \frac{3}{5}$. 4	1.0 2.0
835		$16 \overline{8}$	174	179	184	$18 \overline{9}$	194	200	205	210	215	. 4	2.0 2.5
836		220	226	231	236	241	$24 \overline{6}$	252	257	262	267	. 6	2.5 3.0
837		$27 \overline{2}$	$27 \overline{7}$	283	288	293	298	$30 \overline{3}$	309	314	319	. 6	3.0 3.5
838		324	$32 \overline{9}$	335	$34 C$	345	350	355	360	366	371	. 8	3.5 4.0
839		376	$38 \overline{1}$	$38 \overline{6}$	391	397	402	407	$41 \overline{2}$	417	423	.9	4.5
840		428	433	$43 \overline{8}$	$44 \overline{3}$	$44 \overline{8}$	454	459	464	$46 \overline{9}$	$47 \overline{4}$		
841		$47 \overline{9}$	485	490	495	$500 \bar{\square}$	505	510	$51 \overline{5}$	521	526		
842		531	$53 \overline{6}$	541	$54 \overline{6}$	552	557	562	567	572	$57 \overline{7}$		
843		583	588	593	598	603	$60 \overline{8}$	613	619	624	629		
844		634	639	$64 \overline{4}$	$64 \overline{9}$	655	660	665	670	675	680		
845		$68 \overline{5}$	691	696	701	705	711	$71 \overline{6}$	721	727	732		
846		737	742	747	$75 \overline{2}$	757	762	768	773	778	783		
847		78 B	793	798	803	809	814	819	824	829	834		
848		839	844	850	855	860	865	870	875	880	885		
84.9		891	896	901	906	911	916	921	926	931	937		
850		942	947	952	957	$96 \overline{2}$	$96 \overline{7}$	972̄	$97 \overline{7}$	$98 \overline{2}$	988		
N.		0	1	2	3	4	5	6	7	8	9		

TABLE V.-LOGARITHMS OF NUMBERS.

TABLE V.-LOGARITHMS OF NUMBERS.

N.	0	1	2	3	4	5	6	7	8	9	P. P.	
900	$9542 \overline{4}$	429	434	$43 \overline{8}$	$44 \overline{3}$	$44 \overline{8}$	453	458	463	$46 \overline{7}$		
901	472	477	482	487	492	$49 \overline{6}$	501	506	511	516		
902	520	525	530	535	540	$54 \overline{4}$	549	554	559	564		
903	569	573	578	583	588	593	597	602	6075	612		
904	617	626	6276	631	636	641	645	659	755	${ }^{660}$		
905	665	669 717	774	$67 \overline{9}$ 727	684 732	689 737	741	746	703	708		
906 907	713	7175	770	727	732	737	749	746 794	759	756 804 1		
908	80	813	818	823	827	832	837	842	847	851		
909	$85 \overline{6}$	861	866	870	875	880	885	890	894	899		
910	904	909	$91 \overline{3}$	$91 \overline{8}$	923	928	933	$93 \overline{7}$	$94 \overline{2}$	947		
911	952	$95 \overline{6}$	961	966	971	$97 \overline{5}$	$980 \overline{0}$	985	990	994	. 1	
912	999	*004	*009	*014	018	* 023	*028	*033	-037	*042	. 2	1.0
913	96047	052	056	061	066	071	123	128	132	137	. 3	1.5
916	189	$19 \overline{4}$	199	204	$20 \overline{8}$	213	218	$22 \overline{2}$	227	232	. 5	2.5
917	237	241	246	251	256	260	265	270	275	279	.7	3.5
918	284	289	293	298	303	308	312	317	322	327	.8	4.0
919	331	$33 \overline{6}$	341	345	350	355	360	364	369	374	. 9	4.5
920	379	$38 \overline{3}$	388	393	397	$40 \overline{2}$	407	412	$41 \overline{6}$	421		
921	426	430	435	440	445	$44 \overline{9}$	454	459	$46 \overline{3}$	$46 \overline{8}$		
922	473	478	482	487	492	$49 \frac{6}{3}$	501	506	511	515		
923	520	525	529	$53 \overline{4}$	539	543	548	553	558	562		
924	567	572	576	581	586	590	595	600	605	609		
925	614	619	623	628	633	637	642	647	698	$75 \frac{6}{3}$		
926	661 708	712	717	775	726	731	736	741	745	750		
928	755	$75 \overline{9}$	764	769	773	778	783	787	792	797		
929	801	806	811	815	820	825	829	834	839	843		
930	$84 \overline{8}$	853	857	$86 \overline{2}$	867	871	$87 \overline{6}$	881	885	890̄		
931	895	899	$90 \overline{4}$	909	913	$91 \overline{8}$	923	927	$93 \overline{2}$	937	. 1	0. $\overline{4}$
932	941	946	951	*955	*960	965	*016	* 972	*025	${ }_{0} 938$. 2	$0 \cdot \frac{9}{3}$
934	$97 \quad 334$	039	044	048	$05 \frac{1}{3}$	058	062	067	072	$07 \overline{6}$. 3	
935	$08 \frac{1}{1}$	086	090	095	099	104	109	113	118	123	.4	2.2
936	$12 \overline{7}$	132	137	141	146	151	155	160	164	169	. 6	2.7
937	174	178	183	188	192	197	202	206	211	215	. 7	3.1
938	220	225	229	234	235	243	248	252	${ }_{30}^{257}$	262	. 8	$3 \cdot 6$
939	$26 \overline{6}$	271	276	280	285	289	294	299	303	308	. 9	
940	313	$31 \overline{7}$	322	$32 \overline{6}$	$33 \overline{1}$	336	$34 \overline{0}$	345	$34 \overline{9}$	$35 \overline{4}$		
941	359	$36 \overline{3}$	368	373	377̄	382	$38 \overline{6}$	391	396	400̄		
942	405	409	414	419	$42 \overline{3}$	428	432	437	442	$44 \overline{6}$		
943	451	456	460	465	469	474	479	483	488	492		
944	497	502	506	511	515	520	525	529	534	538		
945	543	548	552	557	561	566	570	575	580	583		
946	589	593	598	603	6073	612	616	621	626	636		
947 948	635	685	644	${ }^{649} 6$	659	753	${ }^{662}$	713	717	722		
949	$72 \overline{6}$	731	736	740	745	749	754	$75 \overline{8}$	763	768		
950	$77 \overline{2}$	777	781	786	790̄	795	800	$80 \overline{4}$	809	$81 \overline{3}$		
N.	0	1	2	3	4	5	6	7	8	9		P.

TABLE V.-LOGARITHMS OF NUMBERS.

N.		0	1	2	3	4	5	6	7	8	9	P	
950	97	772	777	$78 \overline{1}$	786	$790 \overline{1}$	795	800	$80 \overline{4}$	809	$81 \overline{3}$		
951		818	$82 \overline{2}$	827	831	$83 \overline{6}$	841	$84 \overline{5}$	850	$85 \overline{4}$	859		
952		863	868	873	$87 \overline{7}$	882	$88 \overline{6}$	891	895	900	$90 \overline{4}$		
953		909	914	918	923	927	932	$93 \overline{6}$	941	945	950		
954		955	$95 \overline{9}$	984	$96 \overline{8}$	973	977	982	$98 \overline{6}$	991	996		
955	98	000	005	$00 \overline{9}$	014	018	023	027	032	$03 \overline{6}$	041		
956		046	050	055	059	064	068	073	077	082	$08 \overline{6}$		5
957		091	095	100	105	$10 \underline{9}$	114	$11 \frac{18}{3}$	123	127	132	1	5
958		$13 \overline{6}$	141	145	150	154	159	163	$16 \overline{8}$	173	$17 \overline{7}$. 2	1.0
959		182	$18 \overline{6}$	191	195	200	204	209	$21 \overline{3}$	218	$22 \overline{2}$	-2	1.0
960		227	$23 \overline{1}$	236	240	245	$24 \overline{9}$	$25 \overline{4}$	259	$26 \overline{3}$	268	5	2.0 2.5
961		$27 \overline{2}$	277	$28 \overline{1}$	286	290	295	299	304	$30 \overline{8}$	313		3.0 3.5
962		$31 \overline{7}$	322	$32 \overline{6}$	331	335	340	344	349	$35 \overline{3}$	358	. 8	3.5 4.0
963		362	367	371	376	380	385	$38 \overline{9}$	394	$39 \frac{8}{3}$	403	. 8	4.0 4.5
964		407	412	$41 \overline{6}$	421	425	430	434	439	$44 \overline{3}$	448	-9	
965		$45 \overline{2}$	457	461	466	470	475	479	484	$48 \overline{8}$	493		
966		497	502	50 ${ }^{\text {b }}$	511	515	520	524	529	$53 \overline{3}$	538		
987		$54 \overline{2}$	547	551	556	560	565	569	574	578	583		
968		587	592	59 ${ }^{6}$	601	605	610	614	619	$62 \overline{3}$	628		
969		$63 \overline{2}$	637	641	646	650	655	659	663	668	672		
970		677	$68 \overline{1}$	686	690]	695	699	704	$70 \overline{8}$	713	717		
971		722	$72 \overline{6}$	731	$73 \overline{5}$	740	$74 \overline{4}$	749	753	$75 \overline{7}$	762	. 1	$\begin{gathered} \text { 军 } \\ 0 . \overline{4} \end{gathered}$
972		$76 \overline{6}$	771	775	780	784	789	793	798	802	807.	. 2	0.4 0.9
973		$81 \overline{1}$	815	820	824	829	$83 \overline{3}$	838	$84 \overline{2}$	847	851	.3	1.3
974		856	860	865	869	$87 \overline{3}$	878	$88 \overline{2}$	887	891	896	. 4	1.8
975		900	905	909	914	918	$92 \overline{2}$	927	$93 \overline{1}$	936	940	. 4	2. ${ }^{2}$
976		945	$94 \overline{9}$	954	958	+963	* 967	* 971	+976	*980	* 985	. 6	2.7
977		989	994	998	*003	*007	*011	*016	*020	*025	*029	. 7	3.1
978	99	034	038	043	047	051	056	060	065	$06 \frac{9}{3}$	074	. 8	3. 6
979		$07 \overline{8}$	$08 \overline{2}$	087	$09 \overline{1}$	096	100	105	$10 \overline{9}$	$11 \overline{3}$	118	9	$4 \cdot \overline{0}$
980		$12 \overline{2}$	127	$13 \overline{1}$	136	140	145	149	$15 \overline{3}$	158	$16 \overline{2}$		
981		167	$17 \overline{1}$	176	180	$18 \overline{4}$	189	$19 \overline{3}$	198	202	$20 \overline{6}$		
932		211	215	220	224	229	$23 \overline{3}$	237	242	246	251		
983		$25 \overline{5}$	260	264	268	273	277	282	$28 \overline{6}$	290	295		
984		299	304	308	312	317	$32 \overline{1}$	326	330	335	339		
985		343	348	352	357	361	365	370	374	379	$38 \overline{3}$		
986		387	392	$39 \overline{6}$	401	405	$40 \frac{9}{3}$	414	$41 \frac{8}{8}$	423	427		
987		431	436	440	445	449	$45 \overline{3}$	458	$46 \overline{2}$	467	$47 \overline{1}$. 1	0.4
988		$47 \overline{5}$	480	$48 \overline{4}$	489	493	$49 \overline{7}$	502	$50 \overline{6}$	511	515		0.4 0.8
989		$51 \overline{9}$	524	$52 \overline{8}$	533	537	541	546	550	$55 \overline{4}$	559	. 3	1.8
990		$56 \overline{3}$	568	$57 \overline{2}$	$57 \overline{6}$	581	585	590	594	$59 \overline{8}$	603	. 4	1.6 2.0
931		607	611	616	620	625	$62 \overline{9}$	$63 \overline{\overline{3}}$	638	$64 \overline{2}$	647	. 6	2.4 2.8
992		651	655	660	664	$66 \overline{8}$	673	$67 \overline{7}$	682	686	690]	. 8	2.8
993		695	699	$70 \overline{3}$	708	712	717	721	$72 \overline{5}$	730	$73 \overline{4}$.9	3.2 3.6
994		$73 \overline{8}$	743	$74 \overline{7}$	751	756	760	765	769	$77 \overline{3}$	778		$3 \cdot 6$
995		$78 \overline{2}$	786	791	795	800	804	$80 \overline{8}$	813	817	$82 \overline{1}$		
996		$82 \underline{6}$	830	$83 \overline{4}$	83 ?	843	847	$85 ?$	$85 \overline{6}$	861	865		
997		$86 \overline{9}$	874	878	$88 \overline{2}$	887	891	805	900	$90 \overline{4}$	908		
998		913	917	922	92 h	930	935	939	943	948	95?		
999		956	961	965	$96 \overline{9}$	974	$97 \overline{8}$	$98 \overline{2}$	987	991	995		
1000	000	000	00 $\overline{4}$	008	013	017	02̄1	026	030̄	03 $\overline{4}$	039		
N.	0		1	2	3	4	5	6	7	8	9		

TABLE V.-LOGARITHMS OF NUMBERS.

N.		0	1	2	3	4	5	6	7	8	9	P. P.
1000	000	000	043	087	$13 \overline{0}$	$17 \overline{3}$	217	260	304	$34 \overline{7}$	$39 \bar{O}$	
01		434	$47 \overline{7}$	521	564	$60 \overline{7}$	651	6994	* $73 \overline{7}$	* 781	*24 ${ }^{4}$	
02	001	867	911	954	997	041	084	* 127	+171	* 214	* 259	
04		$73 \overline{3}$	777	820	863	${ }_{906}$	$\stackrel{5}{950}$	993	*036	* 079	*123	
05	002	166	$20 \overline{9}$	252	295	339	382	425	$46 \overline{1}$	$51 \overline{1}$	555	
06		598	641	684	727	770	814	857	900	943	$98 \overline{6}$	
07	003	$02 \overline{9}$	072	115	159	202	245	288	331	374	417	
08		460 891	503 934	546	590	${ }^{633} 3$	676	*149	* 762	805	848	.1 4.3 4.3 .2 8.7 8.6
09		891	934	977	020	-663	106	149	-192	* 235	278	. $313 . \overline{0} 12.9$
1010	004	$32 \overline{1}$	$36 \overline{4}$	$40 \overline{7}$	$450 \overline{1}$	$49 \overline{3}$	$53 \overline{6}$	$57 \overline{9}$	$62 \overline{2}$	665	708	
11		751	794	837	880	923	966	*008	*051	*09 ${ }^{\text {a }}$	*137	${ }_{-7} 626.125 .8$
12	005	1800	$22 \overline{3}$	$26 \overline{6}$	309	352	395	438	481	523	566	.730 .430 .1 .834 .834 .4
13		$60 \overline{9}$	652	695	738	781	824	$86 \overline{6}$	909	95	995	
14	006	038	081	123	$16 \overline{6}$	209	252	295	337	380	423	
15		486	509	551	594	637	680	$72 \overline{2}$	765	808	851	
16		893	$93 \overline{6}$	979	*22	*064	*107	*150	*193	*235	*278	
17	007	321	363	406	449	49	534	577	620	662	705	
18		748	790	833	875	918	961	* $00 \overline{3}$	*04	*089	131	
19	008	174	217	259	302	344	387	430	472	515	557	
1020		600	$64 \overline{2}$	685	728	7700	813	$85 \overline{5}$	898	9400	983	
21	009	$02 \overline{5}$	$068 \overline{8}$	111	$15 \overline{3}$	196	2388	281	$32 \overline{3}$	366	$40 \overline{8}$	
22		875	493 918	536	*003	*045	663	${ }^{7} 136$	* 172	* 715	*253	.2 8.5 8.4
24	010	300	$34 \overline{2}$	385	427	469	512	554	506	639	681	. 312.712 .6
25		724	766	$80 \overline{8}$	851	893	935	978	*020	* 062	* 105	. 41717.016 .8
26	011	147	189	232	$27 \frac{1}{4}$	316	359	401	443	486	528	. 625.525 .2
27		570	612	655	697	739	782	824	86	908	951	. 729.729 .4
28		993	*035	*077	*120	*162	*204	24	*288	*331	*373	. 834.033 .6
29	012	415	457	500	542	584	$62 \overline{6}$	668	710	753	795	. 9138.2
1030		837	879̄	921	$96 \overline{3}$	*006	*048	*090	*132	$17 \overline{4}$	$21 \overline{6}$	
31	013	258	301	343	385	427	469	$51 \overline{1}$	$55 \overline{3}$	595	637	
32		679	722	764	806	848	890	932	974	*016	*58	
33	014	100	142	184	226	268	310	352	394	436	478	
34		520	582	604	$64 \overline{6}$	$68 \overline{8}$	730	772	814	856	898	
35		940	982	-024	*066	*108	*150	*192	*234	*276	*318	
36	015	360	401	44	485	527	569	611	653		737	$4 \overline{1} 41$
37		779	820	862	904	946	988	* 030	*072			
38	016	197	235	281 699	323	364	${ }^{406}$	$844 \overline{6}$	490 908	532 950	573 99	.1 .2 8.3 8.2
			-			782	824					. 312.412 .3
1040	017	$03 \overline{3}$	075	117	158	$200 \overline{1}$	242	284	325	367	409	.4 .50 .760 .5
41		450	$49 \overline{2}$	534	576	617	$659 \overline{1}$	701	$74 \overline{2}$	784	*226	.624 .924 .6 .729 .028 .7
43	018	${ }_{28}^{86}$	909 326	${ }^{951}$	992 409	* ${ }^{031}$	${ }^{49} 9$	+117	+159	617	659	. 833 l - 232.8
44		700	742	$78 \overline{3}$	825	867	908	950	991	*033	*074	.9137.3136.9
45	019	116	158	199	241	282	324	365	407	448	490	
46		531	573	$61 \overline{1}$	656	697	739	780	822	86	905	
47		946	988	*029	*071	*112	*154	*195	*237	*	*320	
48	020	361	402	444	485	527	568	610	651	692	734	
49		775	817	858	899	941	982	*024	*065	*106	*148	
1050	021	189	$230 \bar{\square}$	272	$31 \overline{3}$	$35 \overline{4}$	396	$43 \overline{7}$	$47 \overline{8}$	520	$56 \overline{1}$	
N.	0	-	1	2	3	4	5	6	7	8	9	P. P.

TABLE V.-LOGARITHMS OF NUMBERS.

N.	0		1	2	3	4	5	6	7	8	9	P. P.	
1050	021	$18 \overline{9}$	$230 \overline{1}$	272	$31 \overline{3}$	$35 \overline{4}$	396	$43 \overline{7}$	$47 \overline{8}$	520	561		
51		$60 \overline{2}$	644	685	$72 \overline{6}$	768	$80 \overline{9}$	850̄	892	933	974	. 1	$\begin{aligned} & 4 \overline{1} \\ & 4 \cdot \overline{1} \end{aligned}$
52	022	015	057	098	$13 \overline{9}$	181	222	$26 \overline{3}$	$30 \overline{4}$	346	387	. 2	8.3
53		$42 \overline{8}$	$46 \overline{9}$	511	552	593	634	676	717	758	$79 \overline{9}$. 3	$12 . \overline{4}$
54		840	882	923	964	*005	*04 ${ }^{\text {b }}$	*088	*129	* 170	*211	. 4	16.6
55	023	252	$29 \overline{3}$	335	376	417	458	499	540	581	623	. 5	20.7
56		664	705	746	787	$82 \overline{8}$	$86 \underline{9}$	910	951	993	*034	. 6	24.9
57	024	075	116	157	198	239	280	321	$362 \overline{1}$	403	444	. 7	29.0
58		$48 \overline{5}$	$52 \overline{6}$	568	609	650	691	732	773	814	855	. 8	33.2
59		896	937	978	*019	*060	*101	*142	*183	*224	*265	. 9	$37 \cdot \overline{3}$
1060	025	306	347	388	429	$46 \overline{9}$	$51 \overline{0}$	551	$592 \overline{2}$	$63 \overline{3}$	$67 \overline{4}$		
61		715	$75 \overline{6}$	797	838	879	920	961	*002	*042	*083̄3	. 1	4.1
62	026	$12 \overline{4}$	165	$20 \overline{6}$	247	288	329	370	410	451	$49 \overline{2}$. 2	8.2
63		$53 \overline{3}$	574	615	* 656	696	$73 \overline{7}$	778	+ 819	860	901	. 3	12.3
64		$94 \overline{1}$	982̄	*02 ${ }^{3}$	*064	*105	* $14 \overline{5}$	* $18 \overline{6}$	*227	*268	* 308	. 4	16.4
65	027	$34 \overline{9}$	390	431	472	$51 \overline{2}$	$55 \overline{3}$	594	635	675	$71 \overline{6}$. 5	20.5
66		757	798	$83 \overline{8}$	879	920	961	*001	* 042	*083	* $12 \overline{3}$. 6	24.6
67	028	164	205	246	$28 \overline{6}$	327	368	$40 \overline{8}$	449	490	530	. 7	28.7
68		$57 \overline{1}$	612	$65 \overline{2}$	* 693	734	774	815	+ 856	$89 \overline{6}$	+937	. 8	32.8
69		$97 \overline{7}$	*018	*059	*099	* 140	*181	*22]	*262	*302	*343	. 9	36.9
$10 \% 0$	029	384	$42 \overline{4}$	465	$50 \overline{5}$	546	$58 \overline{6}$	627	668	$70 \overline{8}$	749		
71		789	830	870	911	951	99.2	*032	*073	* 114	*15 ${ }^{4}$. 1	40 4.0
72	030	195	$23 \overline{5}$	276	$31 \overline{6}$	357	397	438	$47 \overline{8}$	519	559	. 2	$8 \cdot 1$
73		599	640	680	721	7611	802	$84 \overline{2}$	883	$92 \overline{3}$	964	. 3	$12 \cdot \overline{1}$
74	031	00픈	044	085	$12 \overline{5}$	166	206	247	287	327	368	. 4	16.2
75		408	449	$48 \overline{9}$	$52 \overline{9}$	570	610	651	691	$73 \overline{1}$	772	. 5	$20 . \overline{2}$
76		812	$85 \overline{2}$	893	$93 \overline{3}$	973	*014	* $05 \frac{4}{4}$	*09 ${ }^{4}$	* 135	* $17 \overline{5}$. 6	24.3
77	032	215	256	296	$33 \overline{6}$	377	417	$45 \overline{7}$	498	538	578	. 7	28.3
78		619	659	$69 \overline{9}$	739	780	820	860	900	941	981	. 8	32.4
79	033	027	061	102	142	$18 \overline{2}$	$22 \overline{2}$	263	303	$34 \overline{3}$	$38 \overline{3}$. 9	$36 . \overline{4}$
1080		424	464	504	$54 \overline{4}$	584	625	665	705	$74 \overline{5}$	$78 \overline{5}$		
81		825	866	906	946	98 $\overline{6}$	*02 $\overline{6}$	*05 $\overline{6}$	*107	147	187	. 1	40 4.0
82	034	$22 \overline{7}$	267	$30 \overline{7}$	$34 \overline{7}$	388	428	468	508	548	$58 \overline{8}$. 2	8.0
83		$62 \overline{8}$	$66 \overline{8}$	$70 \overline{8}$	$74 \overline{8}$	789	829	859	909	949	989	. 3	12.0
84	035	$02 \overline{9}$	069	$10 \overline{9}$	$14 \overline{9}$	189	$22 \overline{9}$	289	309	$34 \overline{9}$	$38 \overline{9}$. 4	16.0
85		$42 \overline{9}$	470	510	550	590	630	670	710	750	790	. 5	20.0
86		830	870	510	950	990	* $02 \overline{9}$	*069	* $10 \overline{9}$	* $14 \overline{9}$	* $18 \overline{9}$. 6	24.0
87	036	$22 \overline{9}$	$26 \overline{9}$	309	$34 \overline{9}$	389	$42 \overline{9}$	469	509	549	589	. 7	28.0
88		629	669	$70 \overline{8}$	$74 \overline{8}$	$78 \overline{3}$	$82 \overline{8}$	868	908	948	988	. 8	32.0
89	037	028	068	107	147	187	227	267	307	347	$38 \overline{6}$. 9	36.0
1090		$42 \overline{6}$	$46 \overline{6}$	506	546	585	625	$66 \overline{5}$	705	745	785		
91		825	86岛	$90 \overline{4}$	944	984	*02 $\overline{3}$	*063	* $10 \overline{3}$	143	183	.1	39 3.9
92	038	$22 \overline{2}$	252	302	342	381	$42 \overline{1}$	461	501	540	$580 \bar{\square}$. 2	7.9
93		620	660	699	$73 \overline{9}$	779	819	$85 \overline{8}$	898	938	977	. 3	11.8
94	039	$01 \overline{7}$	057	$09 \overline{6}$	$13 \overline{6}$	176	216	$25 \overline{5}$	295	335	$37 \overline{4}$. 4	15.8
95		414	454	$49 \overline{3}$	533	572	612	652	691	731	771	. 5	19.7
96		810	850	890	$92 \overline{9}$	969	*008	*048	*088	*127	*167	. 6	$23 \cdot 7$
97	040	$20 \overline{6}$	246	286	325	365	404	444	$48 \overline{3}$	523	563	. 7	$27 . \overline{6}$
98		$60 \overline{2}$	* 642	681	* 721	+760	* 800	* $83 \overline{9}$	* 879	* $91 \frac{\overline{8}}{3}$	+958	. 8	31.6
99		997	*037	*07 $\overline{6}$	*116	*155	*195	* $23 \overline{4}$	*274	*313	*353	. 9	35.5
1100	041	$39 \overline{2}$	432	$47 \overline{1}$	511	$550 \bar{\square}$	590	$62 \overline{9}$	669	$70 \overline{8}$	748		
N.	0	O	1	2	3	4	5	6	7	8	9		\mathbf{P}

TABLE VI.-LOGARITHMIC SINES AND TANGENTS OF SMALL ANGLES.

$\log \sin \phi=\log \phi^{\prime \prime}+S$.	O°	$\log \phi^{\prime \prime}$$=\log \sin \phi+S^{\prime}$
$\log \tan \phi=\log \phi^{\prime \prime}+T$.	$\log \phi^{\prime \prime}$	$=\log \tan \phi+T^{\prime}$

"	,	\mathbf{S}	T	Log. Sin.	\mathbf{S}^{\prime}	\mathbf{T}^{\prime}	Log. Tan.
$\begin{array}{r} 0 \\ 60 \\ 120 \\ 180 \\ 240 \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 3 \\ & 3 \\ & 4 \end{aligned}$	$\begin{array}{r} 4.6855 \overline{7} \\ 57 \\ 57 \\ 57 \\ 57 \\ \hline \end{array}$	$\begin{aligned} & 5 \overline{7} \\ & 57 \\ & 57 \\ & 57 \\ & 57 \\ & \hline \end{aligned}$	$\begin{array}{r} -\infty \quad \infty \\ 6.4637 \overline{2} \\ .7647 \overline{5} \\ .94084 \\ 7.0657 \overline{8} \\ \hline \end{array}$	$\begin{array}{r} 5.3144 \overline{2} \\ 4 \overline{2} \\ 4 \overline{2} \\ 4 \overline{2} \\ 42 \end{array}$	$\begin{aligned} & 4 \overline{2} \\ & 4 \overline{2} \\ & 4 \overline{2} \\ & 4 \overline{2} \\ & 4 \overline{2} \end{aligned}$	$\begin{array}{r} -\infty \\ 6.4637 \overline{2} \\ .7647 \overline{5} \\ .94084 \\ 7.06578 \end{array}$
$\begin{aligned} & 300 \\ & 360 \\ & 420 \\ & 480 \\ & 540 \end{aligned}$		$\begin{array}{r} 4.6855 \overline{7} \\ 57 \\ 57 \\ 57 \\ 57 \\ \hline \end{array}$	$\begin{aligned} & 5 \overline{7} \\ & 57 \\ & 57 \\ & 57 \\ & 57 \end{aligned}$	$7.1626 \overline{9}$.24187 .30882 .36681 .41797	$\begin{array}{r} 5.3144 \overline{2} \\ 4 \overline{2} \\ 42 \\ 4 \overline{2} \\ 42 \end{array}$	$\begin{aligned} & 4 \overline{2} \\ & 4 \overline{2} \\ & 4 \overline{2} \\ & 4 \overline{2} \\ & 4 \underline{2} \end{aligned}$	$7.1626 \overline{9}$.24188 .30882 .36681 .41797
$\begin{aligned} & 600 \\ & 660 \\ & 720 \\ & 780 \\ & 840 \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \\ & 11 \\ & 12 \\ & 13 \\ & 14 \\ & \hline \end{aligned}$	$\begin{array}{r} 4.6855 \overline{7} \\ 57 \\ 57 \\ 57 \\ 57 \\ \hline \end{array}$	$\begin{aligned} & 57 \\ & 57 \\ & 57 \\ & 57 \\ & 57 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline 7.4637 \overline{2} \\ .50512 \\ .54290 \\ .57767 \\ .60985 \\ \hline \end{array}$	$5.3144 \overline{2}$ $4 \overline{2}$ $4 \overline{2}$ $4 \overline{2}$ 42	$\begin{aligned} & 4 \overline{2} \\ & \hline \end{aligned}$	$.4637 \overline{2}$.50512 .54291 .57767 .60985
$\begin{array}{r} 900 \\ 960 \\ 1020 \\ 1080 \\ 1140 \\ \hline \end{array}$	$\begin{aligned} & 15 \\ & 16 \\ & 17 \\ & 18 \\ & 19 \end{aligned}$	$\begin{array}{r} 4.6855 \overline{7} \\ 57 \\ 57 \\ 57 \\ 57 \\ \hline \end{array}$	$\begin{aligned} & 58 \\ & 58 \\ & 58 \\ & 58 \\ & 58 \end{aligned}$	$7.63981 \overline{1}$.65784 $.6941 \overline{7}$.71899 .74248	$\begin{array}{r} \hline 5.3144 \overline{2} \\ \cdot \\ 4 \overline{2} \\ \\ 4 \overline{2} \\ \\ 42 \\ \hline \end{array}$	42 42 42 42 42	7.63982 .66785 .69418 $.7190 \overline{8}$.74248
$\begin{aligned} & 1200 \\ & 1260 \\ & 1320 \\ & 1380 \\ & 1440 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{2 0} \\ & 21 \\ & 22 \\ & 23 \\ & 24 \\ & \hline \end{aligned}$	$\begin{array}{r} 4.68557 \\ 57 \\ 57 \\ 57 \\ 57 \\ \hline \end{array}$	$\begin{aligned} & \hline 58 \\ & 58 \\ & 58 \\ & 58 \\ & 58 \\ & \hline \end{aligned}$	7.76475 .78594 .80614 .82545 .84393	$\begin{array}{r} 5.31443 \\ 43 \\ 43 \\ 43 \\ 43 \\ \hline \end{array}$	42 42 42 42 42	$\begin{array}{r} 7.76476 \\ .78595 \\ .80615 \\ .82546 \\ .84394 \\ \hline \end{array}$
$\begin{aligned} & 1500 \\ & 1560 \\ & 1620 \\ & 1680 \\ & 1740 \\ & \hline \end{aligned}$	$\begin{aligned} & 25 \\ & 26 \\ & 27 \\ & 28 \\ & 29 \\ & \hline \end{aligned}$	$\begin{array}{r} 4.68557 \\ 57 \\ 57 \\ 57 \\ 57 \\ \hline \end{array}$	$\begin{aligned} & 5 \overline{8} \\ & 5 \overline{8} \\ & 5 \overline{8} \\ & 5 \overline{8} \\ & 58 \end{aligned}$	7.86166 .87869 .89508 .91088 .92612	$\begin{array}{r} 5.31443 \\ 43 \\ 43 \\ 43 \\ 43 \\ \hline \end{array}$	$\begin{aligned} & 4 \overline{1} \\ & 4 \overline{1} \\ & 4 \overline{1} \\ & 4 \overline{1} \\ & 4 \overline{1} \end{aligned}$	7.86167 .87871 .89510 $.9108 \overline{9}$.92613
$\begin{aligned} & \hline 1800 \\ & 1860 \\ & 1920 \\ & 1980 \\ & 2040 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{3 0} \\ & 31 \\ & 32 \\ & 33 \\ & 34 \\ & \hline \end{aligned}$	4.68557 57 57 57 57	$\begin{aligned} & 5 \overline{8} \\ & 5 \overline{8} \\ & 5 \overline{8} \\ & 59 \\ & 59 \\ & \hline \end{aligned}$	$\begin{array}{r} 7.94084 \\ .95508 \\ .96887 \\ .98223 \\ .99520 \\ \hline \end{array}$	$\begin{array}{r} 5.31443 \\ 43 \\ 43 \\ 43 \\ 43 \\ \hline \end{array}$	$\begin{aligned} & 4 \overline{1} \\ & 4 \overline{1} \\ & 4 \overline{1} \\ & 41 \\ & 41 \end{aligned}$	7.94086 .95510 .96889 .98225 .99522
$\begin{aligned} & \hline 2100 \\ & 2160 \\ & 2220 \\ & 2280 \\ & 2340 \\ & \hline \end{aligned}$	$\begin{aligned} & 35 \\ & 36 \\ & 37 \\ & 38 \\ & 39 \\ & \hline \end{aligned}$	$4.5855 \overline{6}$ 56 56 $5 \overline{6}$ $5 \overline{6}$	$\begin{aligned} & 59 \\ & 59 \\ & 59 \\ & 59 \\ & 59 \end{aligned}$	$8.0077 \overline{8}$.03002 .03192 .04350 .05478	$\begin{array}{r} 5.31443 \\ 43 \\ 4 \frac{3}{4} \\ 4 \frac{3}{3} \\ 43 \\ \hline \end{array}$	$\begin{aligned} & 41 \\ & 41 \\ & 41 \\ & 4 \overline{0} \\ & 40 \\ & \hline \end{aligned}$	$\begin{array}{r} 8.00781 \\ .02004 \\ .0319 \overline{4} \\ .04352 \\ .05481 \\ \hline \end{array}$
$\begin{aligned} & 2400 \\ & 2460 \\ & 2520 \\ & 2580 \\ & 2640 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{4 0} \\ & 41 \\ & 42 \\ & 43 \\ & 44 \\ & \hline \end{aligned}$	$4.6855 \overline{6}$ $5 \overline{6}$ $5 \overline{6}$ $5 \overline{6}$ 56	$\begin{aligned} & 5 \overline{9} \\ & 59 \\ & 5 \overline{9} \\ & 60 \\ & 60 \end{aligned}$	$8.0657 \overline{7}$.07650 .08696 .09718 .10716 8	$\begin{array}{r} 5.3144 \frac{3}{3} \\ 4 \overline{3} \\ 4 \overline{3} \\ 4 \overline{3} \\ 43 \\ \hline \end{array}$	$\begin{aligned} & 4 \overline{0} \\ & 40 \\ & 40 \\ & 40 \\ & 40 \end{aligned}$	$8.0658 \overline{0}$ $.07653 \overline{3}$ $.0869 \overline{9}$ $.0972 \overline{1}$.10720
$\begin{aligned} & \hline 2700 \\ & 2760 \\ & 2820 \\ & 2880 \\ & 2940 \\ & \hline \end{aligned}$	$\begin{aligned} & 45 \\ & 46 \\ & 47 \\ & 48 \\ & 49 \\ & \hline \end{aligned}$	4.68556 56 56 56 56	$\begin{aligned} & 60 \\ & 60 \\ & 60 \\ & 60 \\ & 60 \\ & \hline \end{aligned}$	$\begin{array}{r} 8.1169 \overline{2} \\ .126477 \\ .13581 \\ .14495 \\ .15390 \\ \hline \end{array}$	$\begin{array}{r} \hline 5.31444 \\ 44 \\ 44 \\ 44 \\ 44 \\ \hline \end{array}$	$\begin{aligned} & 40 \\ & 40 \\ & 40 \\ & 39 \\ & 39 \end{aligned}$	8.11696 .12651 .13585 .14499 .15395
$\begin{aligned} & 3000 \\ & 3060 \\ & 3120 \\ & 3180 \\ & 3240 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{5 0} \\ & 51 \\ & 52 \\ & 53 \\ & 54 \\ & \hline \end{aligned}$	$\begin{array}{r} 4.68556 \\ 56 \\ 56 \\ 56 \\ 55 \\ \hline \end{array}$	$\begin{aligned} & \hline 6 \overline{0} \\ & 60 \\ & 61 \\ & 61 \\ & 61 \\ & \hline \end{aligned}$	$\begin{array}{r} 8.16268 \\ .17128 \\ .17971 \\ .18798 \\ .19610 \\ \hline \end{array}$	$\begin{array}{r} 5.31444 \\ 44 \\ 44 \\ 44 \\ 44 \\ \hline \end{array}$	$\begin{aligned} & 3 \overline{9} \\ & 39 \\ & 39 \\ & 39 \\ & 39 \\ & \hline \end{aligned}$	$\begin{array}{r} 8.1627 \overline{2} \\ .17133 \\ .17976 \\ .18803 \\ .79115 \\ \hline \end{array}$
$\begin{aligned} & 3300 \\ & 3360 \\ & 3420 \\ & 3480 \\ & 3540 \\ & \hline \end{aligned}$	$\begin{aligned} & 55 \\ & 56 \\ & 57 \\ & 58 \\ & 59 \\ & \hline \end{aligned}$	4.68555 55 55 55 55	$\begin{aligned} & 61 \\ & 61 \\ & 61 \\ & 61 \\ & 62 \\ & \hline \end{aligned}$	$\begin{array}{r} 8.20407 \\ .21189 \\ .21958 \\ .22713 \\ .23455 \\ \hline \end{array}$	5.31444 44 44 44 44	$\begin{aligned} & 39 \\ & 38 \\ & 38 \\ & 38 \\ & 38 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline 8.2041 \overline{2} \\ .21195 \\ .21964 \\ .22719 \\ .23462 \\ \hline \end{array}$

TABLE VI.-LOGARITHMIC SINES AND TANGENTS OF SMALL ANGLES.
$\log \sin \phi=\log \phi^{\prime \prime}+S$.
$\log \tan \phi=\log \phi^{\prime \prime}+T$.

"	,	S	T	Log. Sin.	\mathbf{S}^{\prime}	T'	Log. Tan.
3600	0	$4.6855 \overline{5}$	62	8.24185	$5.3144 \overline{4}$	38	8.24192
3660	1	55	62	$\begin{array}{r}.24903 \\ \hline\end{array}$	5.314 45	38	-. 24910
3720	2	55	62	. 25609	45	38	.25616
3780	3	55	62	.26304	45	37	. $2631 \overline{1}$
3840	4	55	62	. 26988	45	37	. 26995
3900	5	4.68555	$6 \overline{2}$	$8.2766 \overline{1}$	5.31445	37	8.27669
3960	6	55	63	$.2832 \overline{4}$	45	37	. 28332
4020	7	54	63	. 28977	45	37	. 28985
4080	8	54	63	. 29620	45	37	. 29629
4140	9	$5 \overline{4}$	$6 \overline{3}$. 30254	45	$3 \overline{6}$. 30263
4200	10	$4.6855 \overline{4}$	$6 \overline{3}$	$8.30879 \overline{9}$	5.31445	$3 \overline{6}$	$8.3088 \overline{81}$
4260	11	54	63	. 31495		$3{ }^{3}$. 31504
4320	12	54	64	. 32102	45	36	. 32112
4380	13	54	64	. 32701	46	36	. 32711
4440	14	54	64	. $3329 \overline{2}$	46	36	. 33302
4500	15	4.68554	$6 \underline{4}$	8.33875	5.31446	35	8.33885
4560	16	54	64	. 34450	46	35	. 34461
4620	17	54	65	. 35018	46	35	. 35029
4680	18	54	65	. $3557 \overline{8}$	46	35	. 35589
4740	19	$5 \overline{3}$	65	. 36131	$4 \overline{6}$	35	. 36143
4800	20	$4.6855 \overline{3}$	65	8:36677	$5.3144 \underline{6}$	$3 \overline{4}$	8.36689
4860	21	53	65	. 37217	46	34	. 37229
4920	22	53	65	. 37750	46	34	. 37762
4930	23	$5 \overline{3}$	66	. 38276	$4 \overline{6}$	34	. 38289
5040	24	53	66	. 38796	47	34	. 38809
5100	25	4.68553	$6 \overline{6}$	8.39310	5.31447	$3 \overline{3}$	$8.3932 \overline{3}$
5160	26	53	$6 \overline{6}$. 39818	47	$3 \overline{3}$. 39831
5220	27	53	67	. 40320	47	33	. 40324
5280	28	52	67	. 40816	47	33	. 40830
5340	29	52	67	. 41307	47	33	. 41321
5400	30	$4.6855 \overline{2}$	67	8.41792	5.31447	32	8.41807
5460	31	52	67	. 42271		32	. 42287
5520	32	52	68	. 42746	47	32	. 42762
5580	33	52	68	. 43215	48	32	. 43231
5640	34	52	$6 \overline{8}$. 43680	48	31	. 43696
5700	35	4.68552	$6 \overline{8}$	$8.4413 \overline{9}$	5.31448	31	8.44156
5760	36	52	69	. 44594	48	31	. 44611
5820	37	51	69	. 45044	$4 \frac{8}{8}$	31	. 45061
5880	38	51	69	. 45489	48	30	. 45507
5940	39	51	69	. 45930	$4 \overline{8}$	30	. 45948
6000	40	$4.6855 \overline{1}$	$6 \overline{9}$	$8.4636 \underline{\overline{6}}$	$5.3144 \overline{8}$	30	8.46385
6060	41	51	70	.46798	49	30	. 46817
6120	42	51	70	. $4722 \overline{6}$	49	30	. 47245
6180	43	51	70	.47650	49	$2 \overline{9}$.47669
6240	44	51	70	$.4806 \overline{9}$	49	29	. 48089
6300	45	4.685 50	71	8.48485	$5.3144 \overline{9}$	29	8.48505
6360	46	50	71	. 48896			. 48917
6420	47	50	71	. 49304	49	28	. 49325
6480	48	50	72	. 49708	49	28	.49729
6540	49	50	72	. 50108	50	28	. 50130
6600	50	4.68550	72	$8.5050 \overline{4}$	5.31450	$2 \overline{7}$	$8.5052 \overline{6}$
6660	51	50	72	. 50897	50	27	. 50920
6720	52	50	73	. $5128 \overline{6}$	50	27	. 51310
6780	53	49	73.	. 51672	50	27	. 51696
6840	54	49	73.	. 52055	50	$2 \overline{6}$. 52079
6900	55	$4.6854 \overline{9}$	$7 \overline{3}$	$8.5243 \overline{4}$	5.31450	$2 \overline{6}$	$8.5245 \overline{8}$
6960	56	49	74	. 52810		26	. 52835
7020	57	49	74	. 53183	51	25	. 53208
7080	58	49	74	. 5355	51	25	. 53578
7140	69	49	75	. 53918	51	25	. 53944

TABLE VI.-LOGARITHMIC SINES AND TANGENTS OF SMALL ANGLES

$\log \sin \phi=\log \phi^{\prime \prime}+S$.	2°	$\log \phi^{\prime \prime}=\log \sin \phi+S^{\prime}$
$\log \tan \phi=\log \phi^{\prime \prime}+T$.	$\log \phi^{\prime \prime}=\log \tan \phi+T^{\prime}$.	

"	,	S	T	Log. Sin.	\mathbf{S}^{\prime}	T	Log. Tan.
$\begin{aligned} & 7200 \\ & 7260 \\ & 7320 \\ & 7380 \\ & 7440 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{array}{r} 4.6854 \overline{8} \\ 4 \overline{8} \\ 48 \\ 48 \\ 48 \\ \hline \end{array}$	$\begin{array}{r} 75 \\ 75 \\ 75 \\ 76 \\ 76 \\ \hline \end{array}$	$\begin{array}{r} 8.54282 \\ .54642 \\ .54999 \\ .55354 \\ .55705 \end{array}$	$\begin{array}{r} 5.3145 \overline{1} \\ 5 \overline{1} \\ 51 \\ 52 \\ 52 \\ \hline \end{array}$	$\begin{aligned} & 25 \\ & 24 \\ & 24 \\ & 24 \\ & 23 \\ & \hline \end{aligned}$	$\begin{array}{r} 8.5430 \overline{8} \\ .54669 \\ .55027 \\ .55381 \\ .5573 \overline{3} \\ \hline \end{array}$
7500 7560 7620 7680 7740	$\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$	$\begin{array}{r} 4.68548 \\ 48 \\ 47 \\ 47 \\ 47 \\ \hline \end{array}$	$\begin{aligned} & 7 \overline{6} \\ & 77 \\ & 77 \\ & 77 \\ & 78 \\ & \hline \end{aligned}$	$\begin{array}{r} 8.56054 \\ .56400 \\ .56743 \\ .57083 \\ .57421 \\ \hline \end{array}$	$\begin{array}{r} 5.31452 \\ 52 \\ 52 \\ 52 \\ 52 \\ \hline \end{array}$	$\begin{aligned} & 2 \overline{3} \\ & 23 \\ & 2 \overline{2} \\ & 2 \overline{2} \\ & 22 \\ & \hline \end{aligned}$	$\begin{array}{r} 8.56083 \\ .56429 \\ .56772 \\ .57113 \\ .57452 \\ \hline \end{array}$
$\begin{aligned} & 7800 \\ & 7860 \\ & 7920 \\ & 7980 \\ & 8040 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{1 0} \\ & 11 \\ & 12 \\ & 13 \\ & 14 \\ & \hline \end{aligned}$	$\begin{array}{r} 4.68547 \\ 47 \\ 47 \\ 46 \\ 46 \end{array}$	$\begin{aligned} & 78 \\ & 78 \\ & 79 \\ & 79 \\ & 79 \\ & \hline \end{aligned}$	$\begin{array}{r} 8.5775 \overline{6} \\ .58089 \\ .58419 \\ .58747 \\ .59072 \\ \hline \end{array}$	$\begin{array}{r} 5.31453 \\ 53 \\ 53 \\ 53 \\ 53 \\ \hline \end{array}$	$\begin{aligned} & 22 \\ & 21 \\ & 21 \\ & 21 . \\ & 20 \end{aligned}$	$\begin{array}{r} 8.57787 \\ .58121 \\ .58451 \\ .58779 \\ .59105 \end{array}$
$\begin{aligned} & 8100 \\ & 8160 \\ & 3220 \\ & 8280 \\ & 8340 \\ & \hline \end{aligned}$	15 16 17 18 19	$\begin{array}{r} 4.6854 \overline{6} \\ 46 \\ 46 \\ 46 \\ 4 \overline{5} \\ \hline \end{array}$	$\begin{aligned} & 80 \\ & 80 \\ & 80 \\ & 81 \\ & 81 \\ & \hline \end{aligned}$	$\begin{array}{r} 8.59335 \\ .59715 \\ .60033 \\ .60349 \\ .60662 \\ \hline \end{array}$	$5.3145 \overline{3}$ 54 54 54 54	$\begin{aligned} & 20 \\ & 20 \\ & 19 \\ & 19 \\ & 19 \\ & \hline \end{aligned}$	8.59428 .59749 .60067 .60384 .60698
$\begin{aligned} & \hline 8400 \\ & 8460 \\ & 8520 \\ & 8580 \\ & 8640 \\ & \hline \end{aligned}$	20 21 22 23 24	$\begin{array}{r} 4.68545 \\ 45 \\ 45 \\ 45 \\ 45 \\ \hline \end{array}$	$\begin{aligned} & 8 \overline{1} \\ & 82 \\ & 82 \\ & 82 \\ & 83 \\ & \hline \end{aligned}$	$\begin{array}{r} 8.6097 \overline{3} \\ .61282 \\ .61589 \\ .61893 \\ .62196 \\ \hline \end{array}$	$5.3145 \overline{4}$ 54 55 55 55	$\begin{aligned} & 1 \overline{8} \\ & 18 \\ & 18 \\ & 17 \\ & 17 \\ & \hline \end{aligned}$	$8.6160 \overline{9}$.61319 .61626 .61931 .62234
$\begin{aligned} & \hline 8200 \\ & 8760 \\ & 8820 \\ & 8880 \\ & 8940 \\ & \hline \end{aligned}$	25 26 27 28 29	$\begin{array}{r} \hline 4.6854 \overline{44} \\ 44 \\ 44 \\ 44 \\ 44 \\ \hline \end{array}$	$\begin{aligned} & 8 \overline{3} \\ & 83 \\ & 84 \\ & 84 \\ & 84 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline 8.6249 \overline{6} \\ .62795 \\ .63091 \\ .63385 \\ .6367 \overline{7} \\ \hline \end{array}$	$\begin{array}{r} 5.3145 \overline{5} \\ 55 \\ 55 \\ 56 \\ 56 \\ \hline \end{array}$	$\begin{aligned} & 16 \\ & 16 \\ & 16 \\ & 16 \\ & 15 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline 8.62535 \\ .62834 \\ .63131 \\ .63425 \\ .63715 \\ \hline \end{array}$
$\begin{aligned} & 9000 \\ & 9060 \\ & 9120 \\ & 9180 \\ & 9240 \\ & \hline \end{aligned}$	30 31 32 33 34	$4.6854 \overline{3}$ $4 \overline{3}$ $4 \overline{3}$ 43 12	$\begin{aligned} & 85 \\ & 85 \\ & 86 \\ & 86 \\ & 86 \\ & \hline \end{aligned}$	$\begin{array}{r} 8.63968 \\ .64256 \\ .64543 \\ .64827 \\ .65110 \\ \hline \end{array}$	$5.3145 \overline{6}$ 56 $5 \overline{6}$ 57 57	$\begin{aligned} & 15 \\ & 14 \\ & 14 \\ & 14 \\ & 14 \\ & 14 \end{aligned}$	$\begin{array}{r} \hline 8.64009 \\ .64298 \\ .64585 \overline{5} \\ .6487 \overline{0} \\ .6515 \overline{3} \\ \hline \end{array}$
$\begin{aligned} & 9300 \\ & 9350 \\ & 9420 \\ & 9480 \\ & 9540 \\ & \hline \end{aligned}$	35 36 37 38 39	4.68543 42 42 42 42 4	$\begin{aligned} & 87 \\ & 87 \\ & 87 \\ & 88 \\ & 88 \\ & \hline \end{aligned}$	$\begin{array}{r} 8.65391 \\ .65670 \\ .65947 \\ .66223 \\ .66497 \\ \hline \end{array}$	$\begin{array}{r} 5.31457 \\ 57 \\ 57 \\ 58 \\ 58 \\ \hline \end{array}$	$\begin{aligned} & 13 \\ & 12 \\ & 12 \\ & 12 \\ & 1 \overline{1} \\ & \hline \end{aligned}$	$\begin{array}{r} 8.65435 \\ .65715 \\ .65993 \\ .66269 \\ .6654 \overline{3} \\ \hline \end{array}$
$\begin{aligned} & 9600 \\ & 9650 \\ & 9720 \\ & 9780 \\ & 9840 \\ & \hline \end{aligned}$	40 41 42 43 44	4.68542 41 41 41 41	$\begin{aligned} & 89 \\ & 89 \\ & 89 \\ & 90 \\ & 90 \\ & \hline \end{aligned}$	8.66769 .67089 .67308 .67575 .67840	5.31458 58 58 59 59	$\begin{aligned} & 11 \\ & 1 \overline{0} \\ & 10 \\ & 10 \\ & 0 \overline{9} \end{aligned}$	8.66816 .67087 .67356 .67924 .67880
$\begin{array}{r} \hline 9900 \\ 9960 \\ 10020 \\ 10080 \\ 10140 \\ \hline \end{array}$	45 46 47 48 49	$\begin{array}{r} 4.68541 \\ 4 \overline{0} \\ 40 \\ 40 \\ 40 \\ \hline \end{array}$	$\begin{aligned} & 91 \\ & 91 \\ & 91 \\ & 92 \\ & 92 \\ & \hline \end{aligned}$	$8.6810 \overline{4}$.683666 .68627 .68890 .69144	$\begin{array}{r} 5.31459 \\ 59 \\ 59 \\ 60 \\ 60 \\ \hline \end{array}$	$\begin{aligned} & 09 \\ & 0 \frac{9}{6} \\ & 08 \\ & 08 \\ & 07 \end{aligned}$	8.63154 .68417 .68678 .68938 .69196
10200 10260 10320 10380 10440	50 51 52 53 54	$\begin{array}{r} 4.68540 \\ 39 \\ 39 \\ 39 \\ 39 \\ \hline \end{array}$	$\begin{aligned} & 93 \\ & 93 \\ & 93 \\ & 94 \\ & 94 \\ & \hline 4 \\ & \hline \end{aligned}$	8.69400 .69654 .69907 .70159 .70409 8.70657	$\begin{array}{r} 5.31460 \\ 60 \\ 60 \\ 61 \\ 61 \\ \hline \end{array}$	$\begin{aligned} & 07 \\ & 0 \frac{6}{6} \\ & 06 \\ & 06 \\ & 05 \\ & \hline \end{aligned}$	8.69453 .697081 .69961 .70214 .70464
$\begin{aligned} & 10500 \\ & 10560 \\ & 10820 \\ & 10680 \\ & 10740 \\ & \hline \end{aligned}$	55 56 57 58 59	$\begin{array}{r} 4.6853 \overline{8} \\ 38 \\ 38 \\ 38 \\ 38 \\ \hline \end{array}$	$\begin{aligned} & 95 \\ & 95 \\ & 96 \\ & 96 \\ & 97 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline 8.70657 \\ .70905 \\ .71150 \\ .71395 \\ .71638 \\ \hline \end{array}$		$\begin{aligned} & 05 \\ & 05 \\ & 04 \\ & 03 \\ & 03 \\ & \hline \end{aligned}$	$\begin{array}{r} 8.70714 \\ .70982 \\ .71208 \\ .71453 \\ .71607 \\ \hline \end{array}$

TABLE VII.-LOGARITHMIC SINES, COSINES, TANGENTS,

	Lor Sin	D	g. Tan.	Com, D.	Log, Cot,	Log. Cos.	
1	$6.4637 \overline{2}$	30103			$+\infty$ 3.53 627	0.00000 0.00000	60 59.
2	6.76475		6.76475		3.23524	0.00000	58.
3	6.94084	176494	6.9408 ¹	17609 12494	3.05915	0:00 000	57
4	$7.0657 \overline{8}$		7.06578		2. 0342 I	0.00000	56
5	$7.16269 \overline{9}$		$7.1626 \overline{9}$		$2.83730 \overline{1}$	0.00000	55
6	7.24187	6695	7.24188	6694	2.75812	0.00000	54
7	$7.30882 \overline{1}$	5799	7.30882	5799	2.69117	0.00000	53
8	7.36681	5115	7.36681	5115	$2.6331 \overline{8}$	0.00000	52.
9	7.41797	5115	7.41797	5115	2.58203	0.00000	51
10	$7.4637 \overline{2}$	4575	$7.4637 \overline{2}$	45739	2.53627	0.00000	50
11	7.50512		7.50512		2.49488	0.00000	49.
12	7.54290	3476	7.54291	3776	2.45709	9.99999	48.
13	7.57767	3218	7.57767	3213	2.42233	9.99999	474
14	7.60985		7.60985	3218	2.39014	9.99 999	463
15	7.63981	2996	7.63982	2803	2.36018	9.99 999	45
16	$7.6678 \overline{4}$	2633	7.66785	2633	2.33215	9.99 999	44
17	7.69417	2482	7.69418	2482	2.30582	9.99 999	43
18	$7.7189 \overline{9}$	2482	7.71900	2482	2.28099	9.99 999	42
19	7.74248		$7.7424 \overline{8}$	2348	2.25751	$9.9999 \overline{9}$	41.
20	7.76475	2227	7.76476	2227	2.23524	9.99 999]	40
21	7.78594	2119	7.78595	2119	2.21405	9.99999	398
22	7.80614	1930	7.80615	1930	2.19384	9.99999	38
23	7.82545		7.82546	$184 \overline{1}$	2.17454	9.99999	375
24	$7.8439 \overline{3}$	1848	7.84394	184	2.15605	9.99999	36
25	7.86166		7.86167	1773	$2.13832 \overline{1}$	9.99999	358
26	7.87869		7.87871	1703	2.12129	9.99999	34
27	7.89508	1639	7.89510	1639	2.10490	9.99998	33
28	7.91088	1579	7.91089	1579	2.08910	9.99998	32
29	7.92612	1524	7.92613		$2.0738 \overline{6}$	9.99998	31.
30	7.94084	1472	7.94086	1472	2.05914	$9.9999 \overline{8}$	30
31	7.95508	1424	7.95510	1379	2.04490	9.99998	29
32	7.96887	1339	7.96889	1336	2.03111	9.99998	28
33	$7.9822 \overline{3}$	1336	7.98225	1336	2.01774	9.99998	27
34	7.99520		7.09 522		2.00478	9.99998	26
35	$8.0077 \overline{8}$	$125 \frac{8}{3}$	8.00781	1259	1.99219	$9.9999 \overline{7}$	25
36	8.02002	1223	8.02004	1223	1.97995	9.99997	24
37	8.03192	1158	8.0319 ¹	1158	1.96805	9.99997	23
38	8.04350	1158	8.04 352	1128	1.95647	9.99997	22
39	8.05478	1128	8.05481		1.94519	9.99997	21
40	$8.0657 \overline{7}$	1099	$8.06580 \overline{ }$	1072	$1.9341 \overline{9}$	9.99997	20
41	8.07650	$104 \frac{1}{6}$	8.07653	$104 \overline{6}$	1.92347	9.99997	19
42	8.08596		8.08699	1022	1.91300	9.99997	18
43	8.09718	1022	8.09721	1022	1.90278	9.99996	17
44	$8.1071 \overline{6}$	998	$8.1072 \overline{0}$	999	1.89279	$9.9999 \overline{6}$	16
45	8.11692	$97 \frac{6}{4}$	$8.1169 \overline{6}$	976	$1.8830 \overline{3}$	$9.9999 \overline{6}$	15
46	8.12 647	${ }_{9} 934$	8.12651		1.87349	9.99996	14
47	8.13581	914	8.13585	9314	1.86415	9.99996	13
48	8.14495		8.14 499	895	1.85500	9.99996	12
49	0.15390	895	8.15395	895	1.84605	9.99995	11
50	8.16268	877	$8.1627 \overline{2}$	860	$1.8372 \overline{7}$	9.99995	0
51	8.17128	$86 \frac{1}{3}$	8.17133	863	1.82867	9.99995	9
52	8.17971	827	$8.17976 \overline{6}$	843	1.82023	9.99995	8
53	8.18798	827	8.18803	812	1.81196	9.99995	7
54	8.19610		8.1961 .5	812	1.80384	9.99994	6
55	8.20407	$79 \frac{7}{2}$	8.20 412		1.79587	$9.9999 \overline{4}$	5
56	$8.2118 \overline{9}$	788	8.21195	788	1.78804	9.99994	4
57	$8 \cdot 21958$	755	8.21964	755	1.78036	9.99994	3
58	$8.2271 \frac{3}{5}$	742	8.22719	742	$1.77280 \overline{0}$	9.99994	2
59	8.73 ィгб	742	8.23462		1.76538	9.99993	1
60	8.2.4 185	730	8.24192	730	1.75808	9.99 993	0
	Log, Cos,	D	Log. ${ }^{\text {Cot, }}$	Com. D.	Log. Tan.	Log. Sin.	

TABLE VII.-LOGARITIMIC SINES, COSINES, TANGENTS,

1°	AND COTANGENTS						178°
,	l.og. Sin.	D	Log, Tan.	Com, D,	Log, Cot.	Log, Cos,	
$\begin{aligned} & \hline 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & \hline \end{aligned}$	8.24185 8.24 .903 8.25609 8.26304 8.26988 8	718 706 694 684	8.24192 8.24910 8.25616 8.26311 8.26995 8.27	$\begin{aligned} & 718 \\ & 706 \\ & 695 \\ & 684 \end{aligned}$	1.75808 1.75090 1.74383 1.73688 1.73004	$9.9999 \overline{3}$ 9.99993 9.99993 9.99992 9.99992	60 59 58 57 56
$\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 8 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \cdot 2766 \overline{1} \\ & 8 \cdot 28324 \\ & 8 \cdot 28977 \\ & 8 \cdot 29620 \\ & 8 \cdot 30254 \\ & \hline \end{aligned}$	$\begin{aligned} & 663 \\ & 653 \\ & 643 \\ & 634 \end{aligned}$	8.27669 8.28332 8.28985 8.29629 8.30263	663 653 643 634	$\begin{aligned} & 1.72331 \\ & 1.71667 \\ & 1.71014 \\ & 1.70371 . \\ & 1.69736 \end{aligned}$	$\begin{aligned} & 9.99992 \\ & 9.99992 \\ & 9.99992 \\ & 9.99991 \\ & 9.9999 \overline{1} \\ & \hline \end{aligned}$	55 54 53 52 51
$\begin{aligned} & 10 \\ & 11 \\ & 12 \\ & 13 \\ & 14 \\ & \hline \end{aligned}$	$8.3087 \overline{9}$ 8.31495 8.32102 8.32701 8.33292	$\begin{aligned} & 625 \\ & 616 \\ & 607 \\ & 599 \\ & 591 \end{aligned}$	$8.3088 \overline{8}$ 8.31504 8.32112 8.32711 8.33302	$\begin{aligned} & 625 \\ & 616 \\ & 607 \\ & 599 \\ & 591 \end{aligned}$	1.69111 1.68495 1.67888 1.67288 1.66697	$\begin{aligned} & 9.99991 \\ & 9.99990 \\ & 9.99990 \\ & 9.99990 \\ & 9.99990 \end{aligned}$	50 49 48 47 46
$\begin{aligned} & 15 \\ & 16 \\ & 17 \\ & 18 \\ & 19 \\ & \hline \end{aligned}$	8.33875 8.34450 8.35018 8.35578 8.36131 8.3687	583 575 567 560 553	$\begin{aligned} & 8.33885 \\ & 8.34461 \\ & 8.35029 \\ & 8.35589 \\ & 8.36143 \\ & \hline \end{aligned}$	583 575 568 560 553	$\begin{aligned} & 1.6611 \overline{4} \\ & 1.65539 \\ & 1.64971 \\ & 1.64410 \\ & 1.63857 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.99989 \\ & 9.99989 \\ & 9.99989 \\ & 9.99989 \\ & 9.99988 \\ & \hline \end{aligned}$	45 44 43 42 41
$\begin{aligned} & 20 \\ & 21 \\ & 22 \\ & 23 \\ & 24 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.36677 \\ & 8.37217 \\ & 8.37750 \\ & 8.38276 \\ & 8.38796 \\ & \hline \end{aligned}$	$\begin{aligned} & 539 \\ & 533 \\ & 526 \\ & 520 \end{aligned}$	$8.3668 \overline{9}$ 8.37229 8.37762 8.38289 8.38809	539 533 527 520	$\begin{aligned} & 1.63310 \\ & 1.62771 \\ & 1.62238 \\ & 1.61711 \\ & 1.61191 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.99988 \\ & 9.99988 \\ & 9.99987 \\ & 9.99987 \\ & 9.99987 \\ & \hline \end{aligned}$	40 39 38 37 36
$\begin{aligned} & 25 \\ & 26 \\ & 27 \\ & 28 \\ & 29 \\ & \hline \end{aligned}$	8.39310 8.39818 8.40320 8.40816 8.41307	514 508 502 496 491	$8.3932 \overline{3}$ $8.3983 \overline{1}$ 8.40334 8.40830 $8.4132 \overline{1}$	514 508 502 496 491	$1.60676 \overline{6}$ 1.601668 1.5966 $1.59169 \overline{9}$ 1.58678	$9.9998 \overline{6}$ 9.99986 9.99986 9.99988 9.99985	35 34 33 32 31
$\begin{aligned} & 30 \\ & 31 \\ & 32 \\ & 33 \\ & 34 \\ & \hline \end{aligned}$	8.41792 8.42271 8.42746 8.43215 8.43680	479 474 469 464	$\begin{aligned} & 8.41807 \\ & 8.42287 \\ & 8.42762 \\ & 8.43231 \\ & 8.43696 \end{aligned}$	480 475 469 464	$\begin{aligned} & 1.58193 \\ & 1.57713 \\ & 1.57238 \\ & 1.56768 \\ & 1.56304 \\ & \hline \end{aligned}$	9.99985 9.99985 9.99984 9.99984 9.99984	30 29 28 27 26
$\begin{aligned} & 35 \\ & 36 \\ & 37 \\ & 38 \\ & 39 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.4413 \overline{9} \\ & 8.44594 \\ & 8.45044 \\ & 8.4548 \overline{9} \\ & 8.45930 \\ & \hline \end{aligned}$	454 450 445 440	$\begin{aligned} & 8.44156 \\ & 8.44611 \\ & 8.45061 \\ & 8.45507 \\ & 8.45948 \\ & \hline \end{aligned}$	455 450 445 441	1.55844 1.55389 1.54938 1.54493 1.54052	$9.9998 \overline{3}$ 9.99983 9.99982 9.99982 9.99982	25 24 23 22 21
$\begin{aligned} & \hline \mathbf{4 0} \\ & 41 \\ & 42 \\ & 43 \\ & 44 \\ & \hline \end{aligned}$	$8.4636 \overline{6}$ $8.4679 \overline{8}$ 8.47226 8.47650 8.48069	436 432 428 423 419	8.46385 8.46817 8.47245 8.47669 8.48	437 432 428 424 419	1.53615 1.53183 1.52754 1.52330 1.51911	9.99981 9.99981 9.99981 9.99980 9.99980	10 19 18 16 16
$\begin{aligned} & \hline 45 \\ & 46 \\ & 47 \\ & 48 \\ & 49 \end{aligned}$	8.48485 8.48896 8.49304 8.49708 8.50108	411 407 404 400	8.48505 8.48917 8.49325 8.49729 8.50130	412 408 404 400	1.51495 1.51083 1.50675 1.50270 1.49870 1.4943	$\begin{aligned} & 9.9997 \overline{9} \\ & 9.99979 \\ & 9.99979 \\ & 9.99978 \\ & 9.99978 \\ & \hline \end{aligned}$	5 4 3 2 1
$\begin{aligned} & 50 \\ & 50 \\ & 51 \\ & 52 \\ & 53 \\ & 54 \\ & \hline \end{aligned}$	$8.5050 \overline{4}$ 8.5089 $8.5128 \overline{6}$ 8.51672 8.52055	393 389 389 386 387	$8.5052 \overline{6}$ 8.50920 8.51310 8.51696 8.52079	393 390 386 383	$1.4947 \overline{3}$ 1.49080 1.48690 1.48304 1.47921	$\begin{aligned} & 9.99978 \\ & 9.99977 \\ & 9.99977 \\ & 9.99976 \\ & 9.99976 \\ & \hline \end{aligned}$	10 9 8 7 6
$\begin{aligned} & 55 \\ & 56 \\ & 57 \\ & 58 \\ & 59 \end{aligned}$	$8.5243 \overline{4}$ 8.52810 8.53183 8.53552 8.53918	379 375 373 369 366 366	$8.5245 \overline{8}$ 8.52835 8.53208 8.53578 8.53944	376 373 370 366	1.47541 1.47165 1.46792 1.46422 1.46055	$\begin{aligned} & 9.99975 \\ & 9.99975 \\ & 9.99975 \\ & 9.99974 \\ & 9.99974 \end{aligned}$	5 4 4 2 1
60	8.54282		$8.5430 \overline{8}$	364	$1.4569 \overline{1}$	$9.8997 \overline{3}$	0
	Log, Cos,	D	Log. Cot,	Com, D.	Log. Tan.	Log. Sin.	

TABLE VII.-LOGARITHMIC SINES, COSINES, TANGENTS, 2°

TABLE VII.-LOGARITHMIC SINES, COSINES, TANGENTS,

TABLE VII.-LOGARITHMIC SINES, COSINES, TANGENTS,

TABLE VII.-LOGARITHMJC SINES, COSINES, TANGENTS,
AND COTANGENTS.
174°

TABLE VII.-LOGARITHMIC SINES, COSINES, TANGENTS, 6° AND COTANGENTS.
173°

TABLE VII.-LOGARITHMIC SINES, COSINES, TANGENTS,

	Log. Sin.		Log. Tan.		Log. Cot	Log, Cos.		P. P.
0	$9.0858 \overline{9}$		$9.0891 \overline{4}$		0.91085	9.99 675	60	
1	9.08692	102	9.09018	104	0.90981	9.99673	59	
2	9.08794	102	9.09 123	103	0.90877	9.99 672	58	6\|104 ${ }_{6} 104103102101$
3 4	9.08897 9.08999	102	9.09226	-	0.90773 0.90670	9.99670 9.99669	57	
5	9.09101	102	$0943 \overline{3}$	10	$0.9056 \overline{6}$	9.99667	55	${ }_{9} 813.8$
6	9.09202	101	9.09536	10	0.90 463	9.99 665	54	$915 \cdot 615.415 .315$
7	9.09303	101	9.09 $63 \overline{9}$	102	0.90 360	9.99 664	53	
8	9.09404	10	9.09742	02	0.90258	9.99 662	52	3052.051 .551 .050 .5
9	9.09505	101	- 09844		0.90155	9.99661	51	$4069.368 \cdot 668.067 . \frac{5}{3}$
10	9.09606	10	. 09947	10	0.90053	9.99 659̄	50	
11	9.09706		9.10 048	02	0.89951	9.99658	49	
12	9.0980	100	9.10150		$0.8984 \overline{9}$	9.99 656	48	
13	$9.0990 \overline{6}$		10252		0.89748	9.99654	47	
14	9.10006		9.10353		0.89647	9.99653	46	100 10099898
15	9.10105	99	9.10 454	10	0.89546	$9.9965 \overline{1}$	45	$6{ }^{6} 10 \cdot 010 \cdot 0 \cdot 9 \cdot 9 \mid 9.8$
16	9.10205	9	9.10555		0.89445	9.99650	44	7811.7
17	9.10303	9	9.10655	$0 \overline{0}$	0.89344	9.99648	43	
18	9.10402	9	9.10756	00	0.89244	9.99 646	42	$10{ }_{16.7}^{7}{ }_{16}{ }^{6}$
19	9.10501	-	9.10856		0.89144	$\bigcirc .99645$	41	${ }_{20} 0^{10} 33 \cdot 5$
20	$9 \cdot 10599$	98	$9 \cdot 10958$	$9 \overline{9}$. 89	-99 643	40	$3050.250 .0 \mid 49.549 .0$
21	9.10697	97	. 11055	99	. 88944	9.99641	39	$4067.066 \cdot 66.065 .3$
24	910795	$\begin{aligned} & 97 \\ & 97 \end{aligned}$	11155		8845	9.99640	38	$50183.7883 . \overline{3} 82.5181 .6$
23	9.10892	97	11254		45	9.99638	37	
24	9.10 990		9.11353		0.88646	. 99637	36	
25	9.11087	$9 \overline{1}$	11452	9	0.88548	9.99635	35	
26	9.11 184		11550	98	0.38449	$9.9963 \overline{3}$	34	$\begin{array}{lllll}97 & 97 & 96 & 95\end{array}$
27	9.11 281	$9{ }_{9}$	11649	98	88351	-99 632	33	${ }_{6}^{6}$ 9.7 $7{ }^{9.7}$
28	9.11 377	96	11747		0.88253	. 99630	32	711.411 .311 .211 .3.
29	$9.1147 \overline{3}$	96	11845	98	0.88155	. 99628	31	8 13.012.9 $12.812 \cdot 6$
30	9.11570	95	. 11943	98	. 88057	. 99627	30	$9{ }^{14.6}{ }^{14.5}{ }^{14.4} 16$
31	9.11665	96	12040	97	. 87 959	. 99625	29	
32	9.11761	95	12137		87862	99	28	
33	9.11856	95	12235		87765	. 99622	27	
$\underline{34}$	9.11952		9.12331		0.87668	9.99620	26	
35	9.12047		$9.1242 \overline{8}$		0.875710	$9.9961 \overline{8}$	25	
36	9.12 141	9	9.12525		87475	-. 99617	24	
37	9.12236		12621			9.99615	23	
38	9.12330		12717		0.87283	9.99613	22	7 94 93 92
39	9.12425		12813		87187	9.99611	2.1	
40	$9.1251 \overline{8}$		$9.1290 \overline{\overline{-}}$		0.870917	9.99610	20	7 $11.010 \cdot \overline{9} 10 \cdot 810 \cdot \frac{7}{2}$
41	$9.1261 \overline{2}$	9	13004		0.86996	9.99608	19	$812 \cdot 612.512 \cdot 412.2$
12	9.12 706	93	9.13 099		- 86900	. 99606	18	
43	9.12799	93	9.13194	$\begin{aligned} & 95 \\ & 95 \end{aligned}$	- 86805	9.99 605	17	$1015 \cdot 715 \cdot \frac{6}{6} 15 \cdot 515 \cdot \frac{3}{6}$
44	9.12892	-	9.13289		0.86710	9.99603	16	
45	$9 \cdot 12985$	93	-13 384		0.86616	9.99601	15	
4	9.13078	929	- 13478		. 86521	9. 99600	14	
47	9.13 170	92	- 13572		86427	9.99598	13	$5078.778 .3177 .5176 \cdot 6$
48	913263		-13 66		. 86333	9.99596	12	
$\underline{49}$	9.13355		9.13760		0.86239	. 99594	11	
50	$9 \cdot 13447$		9.13854		0.86146	9.99593	10	1 91 90 2 $\overline{1}$
51	9.13538	91	13947		- 86052	9.99591		
5	$9.13{ }^{630}$		9.14 041	$\begin{aligned} & 93 \\ & 93 \end{aligned}$	-85959	$9.9958 \overline{9}$	8	$7110.710 \cdot 6 \mid 10 \cdot 500 \cdot 20 \cdot 2$
53	9.13 721	1	9.14134	93	0.85 866	9.99 987	7	$812.212 .112 .00 \cdot 20 \cdot 2$
54	9.13 813		9.14227	93	0.85773	9.99586	6	$9{ }^{9} 13 \cdot 713 \cdot \overline{6} 13.500 \cdot 30 \cdot 2$
55	9.13 903	9	$9.1431 \bar{\square}$		$0.85680 \overline{ }$	9.99584	5	$1015 \cdot \overline{2} 15 \cdot \frac{1}{1} 15 \cdot 00 \cdot 3$
56	9.13 994		. 14412		- 85588	9.99582	4	$2030.530 .33^{30.0} 0 \cdot 6.60 .5$
57	9.14085	$9 \overline{0}$	14504		- 85495	9.99580		$3045.745 .545 \cdot 01 \cdot \frac{0}{4} \mathbf{0} 7$
58	9.14175	90	. 14 598		- 85403	9.99 579	2	
59	9.14265	90	9.14688		0.8531	9.99577	1	$50.76 .275 .875 \cdot 011.61 .2$
60	$9.1435 \overline{5}$		$9.14730 \overline{1}$		0.85219	9.99575	0	
	Log, Cos.	d.	Log. Cot.	c.d.	Log, Tan,	Log. Sin,		P. P.

TABLE VII.-LOGARITHMIC SINES, COSINES, TANGENTS,

	Log. Sin		Log. Tan.	c.d.	Log, Cot.	Log. Cos,				P. P.		
0	$9 \cdot 14355$				0.85219	9.99575	60					
1	$9.14445 \mid$	89	$\left\lvert\, \begin{aligned} & 9.14872 \end{aligned}\right.$	91	0.85128	9.99 973 3	59					
2 3	$\left\|\begin{array}{lll} 9.14 & 535 \\ 9.14 & 624 \end{array}\right\|$	89	$\left\|\begin{array}{lll} 9.14 & 963 \\ 9.15 & 054 \end{array}\right\|$	91	$\begin{array}{lll} 0.85 & 037 \\ 0.84 & 945 \end{array}$	$\begin{array}{lll} 9.9971 \\ 9.99 & 570 \\ 9.9 & 50 \end{array}$	58		$\begin{aligned} & 91 \\ & 9 \cdot \overline{1} \end{aligned}$		9.0	
4	9.14 624	89	9.15 145	91	0.84 854	9.99570 9.99568	56		10.7	0.6	- 5	
5	9.14802	89	$9.15236 \overline{6}$	${ }_{91}^{91}$	0.84763	9.99566	55		12.2	12.1	12.011	
6	9.14891	89	9.15327	90	0.84673	9.99564	54		$15 \cdot \frac{7}{2}$	15.1	15.013	
7	9.14980	88	9.15417	90	0.84582	9.99563	53	20	30.5	$15 . \frac{1}{3}$	0.0	
8	9.15068	88	9.15507	90	0.84492	9.99561	52		45.7	45.5	45.044	
9	9.15157	88	$\underline{9}$	9	0.84402	9.9955 S	51		61.0	50	60.059	9. ${ }^{3}$
10	9.15245	88	9.15687	89 90	$0.8431 \overline{2}$	9.99557	50		76.2	. $\overline{8}$	5.017	
11	9.15333	88	9.15777	$8 \overline{1}$	0.84222	9.99 555	49					
12	9.15 421	87	9.15867	89	0.84133	9.99 553	48					
13	$9.1550 \overline{8}$	87	$\left\|\begin{array}{ll} 9.15 & 95 \\ 0 \end{array}\right\|$	89	0.84043	9.99 552	47					
14	9.15595	87	$\begin{array}{lll} 9.16 & 045 \end{array}$	89	0.83 954	9.99 55C	46		$8 \overline{8}$		$\begin{aligned} & 87 \\ & 8.71 \end{aligned}$	
15	9.15683	87	9-15 13 ${ }^{\text {a }}$	89	0.83 865	9.99548	45	7	8.8 10.3		$8 \cdot 7{ }^{8.1} 10$	
16	9.15770 9.15857	87	9 9.16 9.16312	89	0.83776 0.83687	9.99 946	44	8	11.8	11.7	1.611	
17	9.15857	$8{ }^{87}$	9. 16312	$8{ }^{8}$	0.83687	9.99 544	43	9	13.3	13.2	13.0	
18	9.15943	${ }_{8}^{8}$	9.16401	88	0.83599	9.99 542	42	10	14.7		14.514	
19	9.16030	${ }^{8}$	9. 16489	88	0.83511	9.99541	41	20	14.7 29.5	4.	4.51	
20	9.16116	86	9.16577	88	0.83422	9.99539	40	30	44.2	44.0	43.543	
21	9.16202	86	9.16665	88	0.83334	9.99537	39	40	59.0	58.6	58.0	7.3
22	9.16288	86	$9.16{ }^{9} 53$		0. 83247	9.99 935	38		73.7	73.3	72.571	1.6
23	9.16374	85	9.16841	87	0.83 159	9.99 533	37					
$\underline{24}$	9.16460	85	$9.1692 \overline{8}$	87	0.83071	9.99531	36					
25	9.16545	85	9.17015	87	0.82984	$9.9952 \overline{9}$	35					
26	$9.16{ }^{\text {6 }}$	85	9.17103	87	0. 82897	9.99 528	34					
27	9.167161	85	$\left\|\begin{array}{ll} 9 \cdot 17 & 190 \\ 0 \end{array}\right\|$	$8{ }^{87}$	0.82810	9.99 926	33		8.5	8.5 9.9	8.4 9.8	
28 29	9.16801 9.16885	$8 \frac{8}{4}$	$\left\|\begin{array}{l\|l\|l\|l\|l\|} 9.17 & 276 \\ 9.17 & 363 \end{array}\right\|$	87	0.82723 0.82636	9.99524 9.99522	32		10.0	11.	$\begin{array}{r}9.8 \\ 11.2 \\ \hline 1\end{array}$	
30	9.16970	84	9.17450	$8 \overline{6}$	0.82550	$9.9952 \overline{0}$	30		12.8	12.7	12.612	12.4
31	9.17054	84	9.17536	86	0.82464	9.9951 ¢	29		14.2	14.1	14.011	
32	9.17139	84	9.17622	86	0.8237	9.99 516	28	30	28.5		42.0	27.6 41.5
33	9.17223	84	9.17708	$8{ }^{86}$	0.82 291	9.99 514	27	40	47. ${ }^{42}$		56	
34	9.17307	84	9.17794		0.82206	9.99 512	26		$\left\lvert\, \begin{array}{ll} 57.0 \\ 71.2 \end{array}\right.$		70.0	
35	9.17391	84	9.17880	86	0.8212 C	9.99 511	25					
36	9.17 474		9.17965	85	0.82034	9.99 509	24					
37	9.17558	83	9.18 18051	85	0.81949	9.99 507	23					
38	9.17641	83	9.18 136	85	0.81864	9.99 505	22			82	81	
39	9.17724	83	9.18221	85	0.81779	9.99503	21		$8 . \overline{2}$	$8 \cdot 2$	8.1	
40	9.17807	83	9.18306	85	0.81691	9.99501	20			-		
41	9.17890	83	9.183900	84	$0.8160 \overline{9}$	9.99 499	19					
42	9.17972	82	9. 18475	84	0.81525	9.99 997	18		12.4	$12 \cdot 3$	$\left\|\frac{12}{12} \cdot \frac{1}{5}\right\|$	
43	9.18 $\begin{gathered}18 \\ 9\end{gathered} 185$	82	9.18 559	84	$\left\|\begin{array}{lll} 0.81 & 440 \end{array}\right\|$	$\left\|\begin{array}{l} 9.99495 \end{array}\right\|$	17		13.7	137.6	13.5	
44	9.18137	82	9.18644	84	$0.8135 \mathrm{E}$	9.99493	16		$27 \cdot 5$	$\left\|\begin{array}{l} 27 \cdot \overline{3} \\ 41.0 \end{array}\right\|$	$\left\|\begin{array}{l\|l} 27.0 \\ 40.5 \end{array}\right\|$	
45	9.18219	82	9.18728	84	0.81272	9.99 $997 \overline{1}$	15		55.0	54.6	54.0	
48	$\left\|\begin{array}{ll} 9.18 & 301 \\ 9 & 18 \end{array}\right\|$	82	9.18812 9.18896	84	$\left\|\begin{array}{ll} 0.81 & 188 \\ 0.81 & 104 \end{array}\right\|$	$\left.\left\|\begin{array}{l} 9.99 \\ 9.99 \\ 9 \end{array}\right\| 8 \overline{7} \right\rvert\,$	14		68.7	68.3	${ }^{57.5}$	
47	$\left\|\begin{array}{c\|cc} 9 \cdot 18 & 38 \overline{3} \\ 9.18 & 465 \end{array}\right\|$	81		83		9.99 487	13					
49	$9.1854 \overline{6}$	81	9.19063	83	0.80 937	9. 99484	11					
50	9.18628	81	9.1914 E	83	0.80854	9.99 482	10					
51	9.18709	81	9.19229	83	0.80770	9.99 480	9			$7 . \overline{9}$ /0	210.1	
52	9. 18790	${ }_{8}^{81}$	9.19312	83	0.80687	9.99 478	8			9.30	$\frac{1}{2} 0$	
53	9.18871	80	9.19395	83	0.80604	9.99 476	7		810	0.60	. 20.2	
54	9.18 952	81	9.19 478		0.80522	9.99 474	6		911	1.90	. 30.2	
55	9.19032	80	$9.1956 \overline{0}$	82	0.8043 T	9.99 472	5		1013	. 20	30.2	
56	9.19113	80	9.19643	82	0.80357	999470	4		20	- 50	6 - 5	
57	9.19 193	80	9.19725	82	$0 \cdot 8027 \overline{4}$	9.99 468	3		3039	9.71	00.7	
58	$\left\lvert\, \begin{aligned} & 9.19273 \\ & 9 \end{aligned}\right.$		$\left\lvert\, \begin{aligned} & 9.19 \\ & 9 \\ & \hline \end{aligned} 1988\right.$		$\left\|\begin{array}{cc} 0.80 & 192 \\ 0.80 \end{array}\right\|$	$\left\lvert\, \begin{array}{ll} 9.99 & 466 \\ 9 & 99 \\ 464 \end{array}\right.$	2		40 50	6. 21	$\cdot \frac{3}{6} \frac{1}{1} \cdot \frac{0}{2}$	
59	9.19353	-	9.19889	82	0.80110	9.99 464	1		5066	6.21	. 61.2	
60	9.19433		9.19971		0.80028	9.99462	0					
	Log. Cos.	d.	Log. Cot.		Log. Tan.	Log. Sin.				P. P.		
98°						554						

TABLE VII.-LOGARITHMIC SINES, COSINES, TANGENTS,
AND COTANGENTS.
170°

TABLE VII.-LOGARITHMIC SINES, COSINES, TANGENTS,
AND COTANGENTS.
189°

	Log, Sin.	d.	Log. Tan.	c. ${ }^{\text {d }}$	Log, Cot.	Log. Co		P. P.
0	9.23967	71	9.24632		0.7	9.99335	60	
1	$9.2403 \overline{8}$	71	9.24705	73	0.75294	9.99333	59	
2	9.24 110	71	9.24779	73	0.75220	9.99330	58	$78 \cdot 6$
3	9. 24181	71	9. 24853	73	0.75147	9.99 $32 \overline{8}$	57	8 9.8 9.
4	9. 24252	71	9.24925	$7 \overline{3}$	0.75073	9.99326	56	$9111 \cdot \frac{111.010}{10}$
5	$9.2432 \overline{3}$	71	9. 25000	73	0.75000	9.99324	55	
6	9.24394	71	9. 25073	73	0. 74854	9.99321	54	
7 8	9.24465 9.2456	71	$\left\|\begin{array}{ccc} 9 \cdot 25 & 146 \\ 9.25 & 219 \end{array}\right\|$	73	$0 \cdot 74854$ 0.74781	$\left\|\begin{array}{ll} 9.99 & 319 \\ 9.99 & 317 \end{array}\right\|$	53	$4049.3{ }^{49.0} 48.6$
8	9.24536 9.24607	70	$\left\|\begin{array}{ccc} 9 \cdot 25 & 219 \\ 9.25 & 292 \end{array}\right\|$	73	$\begin{aligned} & 0.74781 \\ & 0.74708 \end{aligned}$	$\left\|\begin{array}{ll} 9.99 & 317 \\ 9.99 & 315 \end{array}\right\|$	$\begin{aligned} & 52 \\ & 51 \end{aligned}$	$50161.6161 .2{ }^{2} 60$
10	9.24677	70	9.25365	73	0.74635	9.99312	50	
11	9.24748	70	9.25437	72	0.74562	9.99310	49	त्र $7.2 \mid 7 . \overline{1} \quad 7.1$
12	9.24818	70	9.25510	7	0.74490	9.99308	48	
13	9.24888	70	9-25 582	72	0.74417	9.99306	47	
14	9.24958	70	9.25654	72	0.74345	9.9930	46	
15	9.25028		9.25727	72	0.74273	9.99301	45	1012.112 .011 .911 .8
16	9.25098	$6 \overline{9}$	9.25799		0.74201	9.99299	44	2024.124 .023 .8
17	9.25167	70	9.25871	72	0.74129	9.99 296	43	$3036 \cdot 236.035 .735 .5$
18	9.25237	69	9.25943	71	0.74 057	9.99 29 ¢	42	4048.3 [$48 \cdot 047 \cdot \overline{6} 47 \cdot \frac{3}{3}$
19	$9.2530 \overline{6}$	6	9.26014		0.73985	9.99 292	41	$5060.460 .059 .6159 . \overline{1}$
21	9.25 376	69	$\left\lvert\, \begin{array}{ll} 9.26 & 08 \\ 0 \end{array}\right.$	71	$\left\|\begin{array}{l} 0.73 \\ 0.71 \overline{3} \\ 0.73 \\ \hline \end{array}\right\|$	$\left\lvert\, \begin{array}{ll} 9.99 & 290 \\ 9.99 & 287 \end{array}\right.$	$\longdiv { 4 0 }$	
21	9.25445	69	$\left\|\begin{array}{ll} 9.26 & 158 \\ 9.26 & 229 \end{array}\right\|$	71	$\left\|\begin{array}{lll} 0.73 & 842 \\ 0.73 & 771 \end{array}\right\|$	$\left\|\begin{array}{l} 9.99 \\ 9.99 \\ 9.985 \\ 285 \end{array}\right\|$	39 38	
22	(9.25 514	69	$\left\|\begin{array}{ll} 9.26 & 229 \\ 9.26 & 300 \end{array}\right\|$	71	$\left\|\begin{array}{ccc} 0.73 & 771 \\ 0.73 & 699 \end{array}\right\|$	$\left\|\begin{array}{l} 9.99285 \\ 9.99 \\ 283 \end{array}\right\|$	38 37	
23	$\begin{aligned} & 9.25 \\ & 9.25 \\ & 9.25 \\ & \hline \end{aligned}$	69	$\left\|\begin{array}{lll} 9 \cdot 26 & 30 \\ 9.26 & 37 \overline{1} \end{array}\right\|$	71	$\left\|\begin{array}{ccc} 0.73 & 69 \\ 0.73 & 628 \end{array}\right\|$	$\left\|\begin{array}{l} 9.99283 \\ 9.99 \\ 9 \end{array}\right\|$	37 36	8 8 9.4
25	9.25 721	68	9.26443	71	0.73557	9.99278	35	$910 \cdot 610 \cdot 510 \cdot 410.3$
26	9.25790	-	9.26514	70	0.73486	9.99276	34	$20{ }_{23} 5$
27	9. $25858 \overline{8}$	68	9.26 585	71	0.73415	9.99 273	33	$3035.235 .0 \mid 34.734 .5$
28	9.25 927	68	9-26 655	70	0.73344	9.99271	32	$4047.0 \mid 46 . \overline{6} 46 . \overline{3} 46.0$
29	9.25 995		9. 2672 E		0.73274	9.99259	31	$50158.7158 . \overline{3} 157.9157 .5$
30	9.2606 ${ }^{\text {a }}$	68	$9.2679 \overline{6}$	70	0.73203	$9.9926 \overline{6}$	30	
31	9.26 131	68	9. 26887	70	0.73133	9.99 264	29	
32	9.26199	68	9.26 937	70	0.73062	9.99 262	28	
33	9-26 267	67	9.27007	70	0.72 992	9.99 259	27	
34	9. 26335	67	9.27 078	70	0.72 922	9.99 257	26	
35	9. $2640 \overline{\text { a }}$	68	9-27148	70	0.72 852	9.99 255	25	
36	9. 26470	68	9. 27218	69	0.72782	9.99 25 2	24	
37	9.26537 9.26605	67	9.27287 9.27357	70	0.72712 0.72642	9.99250 9.99248	23	
$\begin{array}{r}38 \\ 39 \\ \hline\end{array}$	$\left\lvert\, \begin{aligned} & 9.26 \\ & 9.26 \\ & 9.265 \end{aligned}\right.$	67		69	-	9.99245	21	$4045.645 \cdot \overline{3} 45 \cdot 044.6$
40	9.26 739	67	9.27 $49 \overline{6}$	$6 \frac{1}{9}$	$0.7250 \overline{3}$	9.99243	20	50157.156 .6156 .2155
41	9.26 806	67	9.27566		0.72434	9.99 240	19	$6 \overline{6} 66 \quad 6 \overline{5}-65$
42	9. 26873	$6 \overline{6}$	9-27635	69	$\begin{aligned} & 0.72365 \\ & 0 \end{aligned}$	9.99 238	18	
43	9. 26940	67	9.27 $70{ }^{4}$	69	$\begin{array}{ll} 0.72 & 295 \end{array}$	$\text { 9.99 } 236$	17	
44	9.27007	$6 \overline{6}$	9.27773		0.72 226	9.99233	16	$88^{8.8} 88.88$
45	$9.2707 \overline{3}$	66	9-27842̄		$0 \cdot 7215 \overline{7}$	9.99231	15	9 9 10.00 9.8 9.8 9.7
46	9.27 140	$6 \frac{6}{6}$	9.27911	68	0.72088	9.99 922	14	$1011.111 .010 \cdot 910.8$
47	9.27 206	66	$\left\|\begin{array}{ll} 9.27 & 980 \\ 9.28 & 049 \end{array}\right\|$	69	$\begin{array}{\|cc\|} 0.72020 \\ 0.71951 \end{array}$	$\left\|\begin{array}{ll} 9.99 & 226 \\ 9.99 \end{array}\right\|$	13	
$\begin{array}{r}48 \\ 49 \\ \hline\end{array}$	9.27272 9.27339	66	$\left\|\begin{array}{lll} 9.28 & 049 \\ 9.28 & 117 \end{array}\right\|$	$6 \overline{8}$	$\left.\begin{array}{c\|c\|c\|} 0.71 & 951 \\ 0.71 & 882 \end{array} \right\rvert\,$	$\left\|\begin{array}{cc} 9 \cdot 99 & 224 \\ 9.99 & 221 \end{array}\right\|$	12	
50	9.27405	66	9.28 186		0.71814	9.99 219	10	$50155.455 .0 \mid 54.6154 .1$
51	9.27471	66	9. 28254	68	0.71746	9.99216		
52	$9.2753 \overline{6}$	6	9. 28322	68	0.71677	9.99 214	8	
53	9. 27602	65	9.28390		0.71609	9.99 212	7	$7{ }^{6} 0.30$
54	9. 27668		9.28 459		0.71541	9.99 20	6	$880.3{ }^{1}$
55	$9.2773 \overline{3}$		9. 28527	68	0.71473	9.99 207	5	90.40 .3
56	9. 27799	65	$9.28594 \overline{4}$		0.71405	9.99 204	4	$100.40 \cdot 3$
57	9.27864		9.28662		$\left\|\begin{array}{ll} 0.7133 \overline{7} \end{array}\right\|$	$\left\lvert\, \begin{aligned} & 9 \cdot 99 \text { 202 } \\ & 1 \end{aligned}\right.$	3	200.80 .6
58	9. 27929	6	9.28730	67	0.71 270	$\left\lvert\, \begin{array}{cc} 9.99 & 199 \\ 9.99 & 197 \end{array}\right.$	2	301.21 .0
59	9.27995		9.28797	67	0.71202	9.99 197	1	401.6
60	9.28060		9.28865	67	0.71135	$9.9919 \overline{4}$	0	5012.11 .6
	Log, Cos.	d.	Log. Co		Log.	Log. Sin.		P. P.

TABLE VII.-LOGARITHMIC SINES, COSINES, TANGENTS,
AND COTANGENTS.

TABLE VII.-LOGARITHMIC SINES, COSINES, TANGENTS, 12° AND COTANGENTS.

167

TABLE VII.-LOGARITHMIC SINES, COSINES, TANGENTS,
AND COTANGENTS.
166°

TABLE VII.-LOGARITHMIC SINES, COSINES, TANGENTS,

TABLE VII.-LOGARITHMYC SINES, COSINES, TANGENTS,
AND COTANGENTS.
164°

TABLE VIl.-LOGARITHMIC SINES, COSINES, TANGENTS, 16° AND COTANGENTS.
163°

TABLE VII.-LOGARITHMIC SINES, COSINES, TANGENTS,

TABLE VII.-LOGARITHMIC SINES, COSINES, TANGENTS,

TABLE VII.-LOGARITHMIC SINES, COSINES, TANGENTS, AND COTANGENTS.
160°

19°

, Log, Sin 9.51264 9.51301
9.51337 9.51337
9.51374 9.51410 9.51447
5
6
7
8
9 9.51483
9.51
920
9.5155 $9.5155 \overline{6}$
9.51593
9.51593 $9.5162 \overline{9}$ 9.51629

9.51665 | 9.51702 |
| :--- |
| 9.51738 |

4
5
6
6
7
8
9
90

d. Wioncon

Log, Tan. \mid c. d. Log, Cot. \mid Log, Cos. \mid d. \mid

	$3 \overline{9}$	39
6	$3 \cdot \overline{9}$	$3 \cdot 9$
7	4.6	4.5
8	$5 . \overline{2}$	5.2
9	5.9	5.8
10	6. 6	6.5
20	13.1	13.0
30	19.7	19.5
40	26.3	26.0
50	32.9	32.5

> | | 37 | $3 \overline{6}$ | 36 |
| ---: | ---: | ---: | ---: |
| 6 | $3 \cdot 7$ | $3 \cdot \overline{6}$ | $3 \cdot 6$ |
| 7 | $4 \cdot 3$ | $4 \cdot 2$ | $4 \cdot 2$ |
| 8 | $4 \cdot 9$ | $4 \cdot 8$ | $4 \cdot 8$ |
| 9 | $5 \cdot 5$ | $5 \cdot 5$ | $5 \cdot 4$ |
| 10 | $6 \cdot 1$ | $6 \cdot 1$ | $6 \cdot 0$ |
| 20 | $12 \cdot 3$ | $12 \cdot \frac{1}{2}$ | $12 \cdot 0$ |
| 30 | $18 \cdot 5$ | $18 \cdot 2 \cdot 0$ | |
| 40 | $24 \cdot 6$ | $24 \cdot 3$ | $18 \cdot 0$ |
| 50 | $30 \cdot 8$ | $30 \cdot 4$ | $30 \cdot 0$ |

>	5	7

P. P1

TABLE VII.-LOGARĪTHMIC SINES, COSINES, TANGENTS,

TABLE VII.-LOGARITHMIC SINES, COSINES, TANGENTS,

| | \|Log. Sin.| | | Log. Tan. | C, | Log, Cot. | Log. Cos. | d. | | P, P. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 1 2 3 3 4 | $\begin{aligned} & 9.55433 \\ & 9.55466 \\ & 9.55498 \\ & 9.55 \\ & 93 \\ & 9.55464 \\ & \hline \end{aligned}$ | 33 32 33 33 $3 \overline{2}$ | $\left\lvert\, \begin{array}{ll} 9.58 & 417 \\ 9.58 & 455 \\ 9.58 & 493 \\ 9.58 & 531 \\ 9.58 & 56 \\ \hline \end{array}\right.$ | 38 37 38 37 37 | 0.41582
 0.41 544
 0.41 507
 0.41 469
 0.41 431 | 9.97015 9.97010 9.97005 9.97000 9.96995 9 | $\begin{aligned} & \overline{4} \\ & 5 \\ & 5 \\ & 5 \\ & \overline{4} \end{aligned}$ | $\begin{array}{r} \\ \hline 60 \\ 59 \\ 58 \\ 57 \\ 56 \\ \hline\end{array}$ | ${ }_{6}^{6}$38 38 $3 \overline{7}$ 3 |
| 5 | 9.55597 | 32 | 9.58606 | 37 | 0.41394 | 9.96991 | 4 | 55 | |
| 8 | 9.55 630 | 32 | 9.58644 | 37 | 0.41356 | 9.96986 | 5 | 54 | $88.5 . \overline{0} 5 . C-4.9$ |
| 7 | 9. 55662 | 33 | 9.58 681 | 37 | 0.41318 | 9.96981 | 5 | 53 | |
| 8 | $\left\lvert\, \begin{aligned} & 9.55695 \\ & 9.55728 \end{aligned}\right.$ | 32 | $\left\|\begin{array}{lll} 9 \cdot 58 & 719 \\ 9.58 & 756 \end{array}\right\|$ | 37 | 0.41281 0.4124 0.41 | 9.96976
 9.9691
 1 | 4 | 5 | $10.6 \cdot \frac{\overline{3}}{10} 6 \cdot \overline{2}-6 \cdot \frac{1}{3}$ |
| 10 | $9.55760 \overline{1}$ | 32 | 9.58794 | 37 | 0.41206 | $9.9696 \overline{\overline{6}}$ | 5 | 50 | |
| 11 | 9.55793 | 32 | $9.5883 \overline{1}$ | 37 | 0.41168 | 9.96961 | | 49 | $4025.3{ }^{3} 25 . C 24$ |
| 12 | 9.55826 | 32 | 9.58869 | 37 | 0.41131 | $9.9695 \overline{6}$ | $\frac{5}{4}$ | 48 | $50131.6131 .2 \mid 30 . \overline{8}$ |
| 13 | 9. 55858 | 32 | 9. 58906 | 37 | 0.41093 | 9.96952 | 4 | 47 | |
| 14 | 9.55 891 | 32 | 9.58944 | 37 | 0.41056 | 9.96947 | | 46 | |
| 15 | $9 \cdot 55923$ | | $9.58981{ }^{-1}$ | 37 | $0.4101 \overline{8}$ | 9.96942 | 5 | 45 | $3 \overline{\mathbf{6}} \quad 36$ |
| 16 | 9.55956 | | 9.59019 | 37 | 0.40981 | 9.96937 | | 44 | |
| 17 | 9.55988 | 32 | 9. 59056 | 37 | 0.40944 | 9.96932 | | 43 | 7 4.2 4.2
 8 4.8 4.8 |
| 18 | 9.56020 | 32 | 9-59 093 | 37 | 0.40906] | 9. 96927 | $\frac{5}{4}$ | 42 | |
| 19 | 9. 56053 | | 9.59131 | | 0.4086 C | 9.96 972 | | 41 | 10 6.1 6.0 |
| 20 | 9.56 085 | 32 | 9.59 168 | 37 | 0.40832 | 9.96917 | | 40 | 2012.112 .0 |
| 21 | 9.56118 | 32 | 9. 59205 | 37 | 0.40794 0.4075 0. | 9.96 912 | | 39 | 3018.2 |
| 22 | 9.569
 9.56182
 .56 | $3 \overline{2}$ | 9.59242 9.59280 | 37 | $\begin{aligned} & 0.4075 \overline{7} \\ & 0.40 \\ & 0.40 \end{aligned}$ | 9.96 907 | | 38 | 40.24 .3124 .0 |
| 23 | 9. 56182 | 32 | 9.59280 9.59317 | 37 | | 9.96 902 9.96897 | 5 | 37
 36 | $50130.430 \cdot 0$ |
| $\frac{24}{25}$ | $\frac{9.56214}{9.56247}$ | $3 \overline{2}$ | | 37 | | | 5 | $\frac{36}{35}$ | |
| 25 | 9.56 247 | 32 | $\left\lvert\, \begin{array}{ll} 9.59 & 354 \\ 9.59 & 391 \end{array}\right.$ | 37 | 0.40 646 | $\begin{aligned} & 9.96892 \\ & 9.96 \\ & 987 \end{aligned}$ | 5 | 35
 34 | |
| 26 27 | 9.56 9.56311 | 32 | $\begin{aligned} & 9.59391 \\ & 9.5942 \\ & \hline 8 \end{aligned}$ | 37 | 0.40 6081 | $\begin{aligned} & -96887 \\ & 9.96 \\ & 982 \\ & 9 . \end{aligned}$ | 5 | $\left\|\begin{array}{l} 34 \\ 33 \end{array}\right\|$ | |
| 27 | 9. 56 9.5631 9 | 32 | 9.59465 | 37 | 0.40 53立 | - 968877 | 5 | 34 32 | |
| $\begin{array}{r}28 \\ 29 \\ \hline\end{array}$ | | 32 | 9.59 50 | 37 | 0.40 497 | -96 973 | $\overline{4}$ | 31 | |
| 30 | 9.56407 | 32 | 9.59540 | 37 | 0.40460 | 9.96 868 | 5 | 30 | $\begin{array}{lllll}9 & 4.9 & 4.9 & 4.8\end{array}$ |
| 31 | 9.56439 | 32 | 9.59577 | 37 | 0.40423 | - 96863 | 5 | 29 | 10 5.5 $5 \cdot \frac{4}{8}-\frac{5}{3}$ |
| 32 | 9. 56471 | 32 | 9.59 614 | 37 | 0.40386 | . 96858 | 5 | 28 | 3016.516 .20816 .0 |
| 33 | 9.56503 | 32 | 9.59 651 | 37 | 0.40349 | - 96853 | | 27 | |
| 34 | 9.56535 | | 9.59688 | | 0.40312 | 9.96848 | | 26 | 5027.5127 .126 .6 |
| 35 | 9.56567 | 32 | 9.59 724 | 37 | 0.40275 | 9.96 843 | | 25 | |
| 36 | 9. 5659 g | 32 | 9.59761 | 37 | 0.40238 | 9.96 838 | | 24 | |
| 37 | 9. 56631 | 31 | $9.5979 \overline{8}$ | 37 | $0 \cdot 40201$ | 9.96 833 | | 23 | $3 \overline{1} 31$ |
| 38 | 9.56663 | 32 | 9. 59835 | $3 \overline{6}$ | 0.40 164 | 9.96828 | 5 | 22 | $6{ }_{6}^{6} 3 \cdot \overline{1} \mid 3 \cdot 1$ |
| 39 | 9. 56695 | 32 | 9. 59872 | 36 | 0.4012 .8 | 9.96823 | | 21 | |
| 40 | 9.56727 | 31 | 9.59 909 | 37 | 0.40091 | 9.96818 | | 20 | 8 4.2 $4 \cdot \overline{1}$ |
| 41 | 9. $5675 \overline{8}$ | 31 | 9.59946 | ${ }_{3}{ }^{3}$ | 0.40054 | 9.96813 | | 19 | |
| 42 | 9.56790] | 3 I | $\begin{aligned} & 9 \cdot 59 \\ & 0.58 \\ & 0 \end{aligned}$ | 37 | $0 \cdot 40017$ | 9. 96808 | $\frac{5}{5}$ | 18 | 10 5.2 5.1
 20 10.5 5.3 |
| 43 | - $\begin{aligned} & 9.56822 \\ & 9.56854\end{aligned}$ | 32 | $\left\lvert\, \begin{array}{ll} 9.6001 \overline{9} \\ 9.60 & 056 \end{array}\right.$ | ${ }^{3} 6$ | 0.39980 | 9.96802 9.96797 | 5 | 17 16 | |
| $\frac{45}{45}$ | 9.56 $885 \overline{5}$ | $3 \overline{1}$ | 9.60093 | 37 | 0.39907 | 9.96 792 | 5 | 15 | $4021 \cdot 0 \cdot 20 \cdot \frac{6}{8}$ |
| 46 | 9. 56917 | 31 | 9.60129 | 36 | -. $39870 \overline{0}$ | 9.96 787 | 5 | 14 | $5026.225 . \overline{8}$ |
| 47 | 9. 56949 | 31 | $9.6016 \overline{6}$ | ${ }_{3}{ }^{3}$ | 0.39 833 | 9.96 782 | | 13 | |
| 48 | 9.56980 | $3 \overline{1}$ | 9.60203 | ${ }_{3}{ }^{6}$ | 0.39797 | 9.96777 | | 12 | |
| 49 | 9. 57012 | 31 | $9.60 \quad 239$ | | 0.39760 | $9.9677 \overline{2}$ | | 11 | $610.510 .510 . \overline{4}$ |
| 50 | 9. $5704 \overline{3}$ | 31 | 9.60 276 | 36 | 0.39724 | 9.96767 | | 10 | $70 \cdot \mathrm{E} 0 \cdot 60.5$ |
| 51 | 9. 57075 | 31 | 9. $6031 \overline{2}$ | 37 | 0.39687 | 9.96762 | 5 | 9 | 80.70 .60 .6 |
| 52 | 9. $5710 \overline{6}$ | 31 | 9.60 349 | | 0.39650 | 9.96757 | 5 | 8 | 90.80 .70 .7 |
| 53 | 9. 57138 | $3 \overline{1}$ | 9. 60386 | 35 | 0. 39614 | 9.96752 | 5 | 7 | $100.90 . \overline{8} 0 . \overline{7}$ |
| 54 | 9.57169 | 3 | 9. $6042 \overline{2}$ | $3 \bar{\square}$ | 0.39577 | 3.96747 | | 6 | $201 \cdot \overline{8}]$] E $1 \cdot \frac{5}{2}$ |
| 55 | 9. 57201 | $3 \overline{1}$ | 9.60459 | ${ }^{3} \overline{6}$ | 0.8954 .1 | 3.96742 | | 5 | $302 \cdot \overline{7} 2 \cdot \frac{5}{3} 2 \cdot \overline{2}$ |
| 56 | 9. $5723{ }^{2} \overline{2}$ | 31 | 9. 60495 | | $0.3950 \overline{4}$ | 9.96737 | | 3 | $403 \cdot \overline{6} 3 \cdot \frac{3}{3} 3 \cdot \frac{0}{}$ |
| 57 | 9. 57263 | 31 | 9.60 $53 \overline{1}$ | 36 | $0.3946 \overline{8}$ | $\begin{gathered} 9.96732 \\ 0 \end{gathered}$ | $\begin{aligned} & 5 \\ & 5 \end{aligned}$ | | $504 \cdot 6 \cdot 4 \cdot 13 \cdot 7$ |
| 58 | 9.57295 9.5736 | . $3 \overline{1}$ | 9.60568 9.60604 | 36 | 0.39432 0.39395 | $\begin{aligned} & 9.96727 \\ & 9.9672 \overline{1} \end{aligned}$ | $\frac{5}{5}$ | 2 1 n | |
| 60 | 9.57357 | 31 | 9.60641 | 36 | 0.9n | - 9671 ¢ | 5 | n | |
| | Log. Cos. | d. | Log. Cot. | c.d. | 03, Tan. | ug. Sin. | d. | | P. P. |

TABLE VII.-LOGARITHMIC SINES, COSINES, TANGENTS,

	Log, Sin.	d.	Log, Tan.	c. ${ }^{\text {d }}$	Log. Cot.	Log, Cos,	d_{1}		P. P.
0	9.57357		9.60641		0.39359	$9.9671 \overline{6}$		60	
1	9.57389	31	9.60 677	36 36	$0 \cdot 39322$	$9.9671 \overline{1}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	59	
2	9. 57420	31	9.60 $71 \overline{3}$	36	0.39 286	9.96706	$\begin{aligned} & 5 \\ & \underline{\underline{5}} \end{aligned}$	58	
3	9.57451	$8 \overline{1}$	9.60750	${ }^{3} 6$	0.39 250	9.96701	$\frac{5}{5}$	57	
4	9.57482		9.60 786		0.39 213	9.96696		56	
5	$9.5751{ }^{\text {a }}$	31	9.60 822	36	0.39 177	9.96 691	5	55	7 4.
6 7	9.57544	$3 \overline{1}$	9.60 859	36	0.39141	9.96 686		54	88.4 .8
$\begin{aligned} & 7 \\ & 8 \end{aligned}$	$\left\|\begin{array}{ll} 9.57 & 576 \\ 9.57 & 607 \end{array}\right\|$	31	9. 60895	36	$\left\|\begin{array}{ll} 0.39 & 105 \\ 0.39 & 068 \end{array}\right\|$	9.96681	5	53	9 9 5.5 5.4
9	9.57638	31	- ${ }^{\text {a. } 60967}$	36	-	${ }^{\text {a }}$	5	51	0616.0
10	9.57669	31	$9.6100 \overline{3}$	36	0.38996	0.96665	5	50	3018.2
11	9.57700	31	9.61039	36	0.38960	9.96660	5	49	$40{ }_{24 \cdot 3} \mathbf{2 4 . 0}$
12	9.57731		9.61 076	36	0.38924	9.96655		48	5030.430 .0
13	9.57762	$3 \overline{0}$	9.61112	36	0.38888	9.96650	5	47	
$\underline{3}$	9.57792		9.61148	36	ก.38852	$9.9664 \overline{4}$		46	
15	$9.5782 \overline{3}$	31	9.61184	36	0.38816	$9.9663 \overline{9}$		45	${ }^{3}{ }^{3} \overline{5}^{3}{ }_{3}^{35}$
16	9.57854	31	9.61220	36 36	0.38780	9.96634	5	44	6 3.5 3. 7 4.1 4.
17	9. 57885	$3 \overline{1}$	9.61256	36	$0 \cdot 38744$	9.96 629	5	43	7 8 4.7 4.7
18	9.57916	31	9.61292	36	0.38708	9.96624	5	42	8 4.7 4 9 5.3 5
$\underline{3}$	9.57947	30	9.61 328		- 38672	-96619		41	105.95.
20	9.57977	31	9.61364	36	0.38 636	9.96 613	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	40	$20,11.8811 .6$
21	9. $58000{ }^{\text {c }}$	30	9.61400	36	$\left\|\begin{array}{lll} 0.38 & 600 \\ 0.38 & 564 \end{array}\right\|$	9.96608 9.96603			$3017 \cdot \frac{7}{6} 17 \cdot \frac{5}{3}$
22	$\left\|\begin{array}{lll} 9 . & 58 & 039 \\ 9.58 & 070 \end{array}\right\|$	31	9.61436 9.6147	36	$\left\|\begin{array}{lll} 0.38 & 564 \\ 0.38 & 528 \end{array}\right\|$	9.96603 9.96598	5	38 37	40,23.6 ${ }^{20.23 \cdot \overline{3}}$
$\begin{array}{r}23 \\ 24 \\ \hline\end{array}$	$\left(\begin{array}{lll} 9.58 & 070 \\ 9.58 & 10 \overline{0} \end{array}\right)$	$3 \overline{1}$	$\left\|\begin{array}{lll} 9 \cdot 61 & 472 \\ 9.61 & 507 \end{array}\right\|$	35	$\begin{array}{ll} 0.38 & 528 \\ 0.38 & 492 \\ \hline \end{array}$	$\begin{array}{lll} 9.96 & 598 \\ 9.96 & 593 \end{array}$	5	$\begin{aligned} & 37 \\ & 36 \end{aligned}$	50.29.6/29.1
25	9.58131	30	$9.6154 \overline{3}$	36	$0.3845 \overline{6}$	9.96587		35	
26	9.58162	${ }^{3} 1$	7.61579	36	0. 38420	9.96582	5	34	31 31
27	9.58192	30	9.61615	35	0.38385	9.96577	5	33	
28	9. 58223	30	9.61651	35	0. 383449	9.96572 9.96567	5	32	
$\underline{29}$	9. 58253		.61686		-. 38313	9.96567		31	8 4.2 9 4.7
30	9.58284	$3 \overline{ }$	9.61 722	35	0.38277	9.96561		30	10 5. 2
31	9. 58314	30	9.61758	36	0. 38242	9.96 556	5	29	$20{ }^{10} 10 \cdot 510 \cdot \overline{3}$
32	9. 583445	30	9.61794	35	$\left\|\begin{array}{ccc} 0.38 & 206 \\ 0.38 & 1.70 \end{array}\right\|$	9.96551 9.96546		28	3015.715 .5
$\begin{array}{r}33 \\ 34 \\ \hline\end{array}$	$\left\|\begin{array}{lll} 9 \cdot 58 & 37 \overline{5} \\ 9.58 & 406 \end{array}\right\|$	30	$\left\|\begin{array}{lll} 9.61 & 82 \overline{9} \\ 9.61 & 865 \end{array}\right\|$	35	- $\begin{aligned} & \text { - } 381175 \\ & 0\end{aligned}$	9.96546 9.96540 .96535	5	26	4021.020 .6
35	9.58436	30		36	0.38099	9.96535	5	25	50126.225
36	9. $5846 \overline{6}$	30	$9.6193{ }^{\text {a }}$	35	0.38063	9.96530		24	
37	9.58497	3	9.61 972	35	0.38 028	9.96525	$\frac{5}{5}$	23	$3 \overline{0} \quad 30 \quad 2 \overline{9}$
38	9.58527	30	9.62007	35	0.37992	9.96519	5	22	
39	9.58 557	30	9.f2. 043	35	0.37957	9.96 514		2.1	
40	9.58587	30	9.62 078	35	0.37921	9.96509	$\frac{5}{5}$	20	8 4.0 4.0 3.9 9 4.6 4.5 4.4
41	9.58618	30	9.62114	35	0.37886 0.37850	9.96503 9.96498	5	19	9 4.6 4.5 4.4 10 5.1 5.0 4.9
42	9.58648	$3 \overline{1}$	9.62 149	35	0.37850 0.37815	$\left\lvert\, \begin{aligned} & 9.96 \\ & 9.96 \end{aligned} 49 \overline{8} 8\right.$	5	17	2010.110 .0
43	9. 58678	30	$\left\|\begin{array}{l} 9.62185 \\ 9.62 \\ 920 \end{array}\right\|$	35	0.37815 0.3779	9.96493 9.96488	5	176	3015.2
$\frac{44}{45}$	$\frac{9.58708}{9.58738}$	30	$\left\|\frac{9.62220}{9.62 .256}\right\|$	35			5	$\frac{15}{15}$	$4020.320 .019 \cdot 6$
45	9.58738 9.58769	30	$\left\|\begin{array}{lll} 9.62 & 256 \\ 9.62 & 291 \end{array}\right\|$	35	0.37744 0.37708 0.37673	9.96482 9.96477		14	$50125.4125 \cdot 0 \mid 24.6$
47	9.58799	30	9.62327	35	0.37673	9.96472		13	
48	9.58829	30	$9.6236 \overline{2}$	35	0.37637	$9.9646 \overline{6}$		12	
49	9.58859	30	9.62397		0.37602	9.96461		11	610.510 .5
50	9.58889	30	9.62433	35	0.37567	9.96456		10	70.60 .6
51	- 58919	30	$9.6246 \frac{8}{3}$	35	0.37531	9. 96450		9	80.70 .6
52	9.58949	30	9.62503	35	0.37496	9.96445	$\frac{5}{5}$	8	90.80 .7
53	9.58979	30	9.62539	35	0.37461	9.96440	5	7	$100 \cdot 90 \cdot \overline{8}$
54	9.59009	-	9.62574	35	$\underline{0.37426}$	9.96434		6	$201 \cdot \overline{8} 1 \cdot \overline{6}$
55	$9.5903 \overline{8}$	29	9.62 609]	35	$0.37390 \overline{ }$	$9.9642 \overline{9}$		5	$30.2 \cdot 7$ - 5
56	9.59068	30	9. 62644		0.37355	9.96424		4	$403.63 \cdot 3$
57	9.59098	$2 \overline{9}$	9.62679	35	0.37320	9.96 41 ¢		3	504.6.4.1
58	9.59128	30	9.62715	35	0.37285	9.96413		2	
59	9.59158		9.62750		0.37250	9.96408		1	
60	9.59 188	30	9.62785		0.37215	9.98 402		n	
	Log. Cos.	d.	Log. Cot.	c. d	Log. Tan.	Log. Sin.	d.		P, P,

TABLE VII.-LOGARITHMIC SINES, COSINES, TANGENTS,

Log, Sin.	d.	Log. Tan.		Log, Cot.	Log, Cos.	d.		P. P.	
0	9.67161	$2 \overline{3}$	9.72567	30	0.27 432	9.94 593	$\overline{6}$	60	
1	9.67184	24	9.72598	30	0.27402	9.94587	7	59	
$\begin{aligned} & 2 \\ & 3 \end{aligned}$	9.67 208	$2 \overline{3}$	9.72628 9.72659	30	0.27371	9.94580 9.94573	6	58	
4	$\left\|\begin{array}{l} 9.67232 \\ 9.67256 \end{array}\right\|$	24	9.72659 9.72689	30	0.27341	9.94573 9.94566	7	57 56	
5	$9.6727 \overline{9}$	23	9.72719	30	0.27280	9.94560	7	55	- ${ }^{\text {a }}$
6	9.67303	24	9.72750	30	0.27250	9.94553	6	54	
7	9. 67327	24	9.72780		0.27219	9.94546		53	3.513 .513 .4
8	9.67350	23	9.72811		0.27189	9.94539	$\frac{7}{6}$	52	4.0 4.0 $3 . \overline{9}$
9	9.67374	23	9.72841	30	0.27159	9.94 533		51	
10	9.67397	24	9.72871	30	$0 \cdot 27128$	9.94526	6	50	10 $5 \cdot 1$ 5.0 4.9 10.1 10.0 9.8
11	9.67421	$2 \overline{3}$	9.72902	30	0.27098	9.94 519		49	$3015 . \frac{1}{20} 15.014$
12	9.67445	$2{ }^{3}$	9.72 932	30	0.27067	9.94 $51 \overline{2}$	$\frac{7}{6}$	48	$40{ }_{40} 20.3120 .019 .6$
13	$\left\|\begin{array}{lll} 9.67 & 46 \overline{8} \\ 9.67 & 492 \end{array}\right\|$	23	9.72962	30	0.27037	9.94 506	7	47	$50 \mid 25.425 .0124 .6$
14	9.67492	$2 \overline{3}$	9.72993	30	0.27007	9.94499		46	
15	9.67515	23	9.73 023	30	$0 \cdot 2697 \overline{6}$	9.94492	$\frac{7}{6}$	45	
16	9.67539	23	9.73053	30	0. 26946	9.94 485		44	
17	9. $6756 \overline{2}$		$\left\|\begin{array}{lll} 9.75 & 084 \\ 0 \end{array}\right\|$	30	0.26 916	9.94 478	$\frac{7}{6}$	43	
18	9. 67586	23	9.73 114	30	0.26886	9.94472	7	42	
19	9.67609		9.73144		0.26855	9.94465		41	
21	9.67633	23	9.73 174	30	0.26825	9. 94458	$\overline{7}$	40	6 2.4 7 2.8
21	9.67656 9.67679	23	9.73205 9.73235	30	0.26795 0.26765	[9.94451 9.9444	7	39	 8 3.2
23	9.67703	23	9.73265	30	0.26 73	9.94 437	$\frac{7}{6}$	37	$9{ }^{9} 3.6$
$\underline{24}$	9.67726	23	$9.73 \quad 295$	0	0.28704	9.94431		36	104.0
25	9.67750	23	9.73325	30	0.26674	9.94 424	7	35	20 80
26	9.67773	23	9.73356	30	0.26644	9.94417	$\frac{7}{6}$	34	4016.0
27	9.67796	23	9.73 386		0.26614	9.94 410		33	50120.0
28	9.67819	23	9.73416	30	$0 \cdot 26584$	9.94403	7	32	
29	9.67843	$2 \overline{1}$	9.73446		0.26553	9.94396		31	
30	$9.6786 \overline{6}$	23	$9.7347 \overline{6}$	30	0.26523	9.94390		30	
31	9.67889	23	9.73 506	30	0.26493	9.94383		29	
32	9.67913	23	9.73 736	30	0. 26463	9.94376	$\frac{7}{6}$	28	
33	9.67936	23	9.73 567	30	0.26433	9.94 369	7	27	
34	9.67959	$2 \overline{3}$	$\underline{9.73 \quad 597}$	30	0.2646	9.94362		26	
35	9.67982	23	9.73 627	30	0.26373	9.94355		25	$2 \cdot \frac{7}{1}{ }_{3} \cdot \frac{7}{0}{ }_{3} \cdot 6$
36	9.68005	23	9.73 657	30	0. 26342	9.94348		24	88
37	9.68029	23	9.73 687	30	0. 26313	9.94 341		23	3.5
38	9.68 052	23	9.73 717	30	0. 26283	9.94335	6	22	
39	9.68075		9.73 747		0.26 253	9.94328		21	3011.711
40	9.68098	$2 \overline{3}$	9.73 777	30	0.26228	9.94321		20	$4015 \cdot 615 \cdot 315 \cdot 0$
41	-9.6812 9.6814 1	23	$\left\lvert\, \begin{gathered}9.73807 \\ 9.73837\end{gathered}\right.$	30	0.26193	$\left\|\begin{array}{ll} 9.94314 \\ 0.01 \end{array}\right\|$			$50119.619 .1{ }_{18} 18.7$
$\begin{aligned} & 42 \\ & 43 \end{aligned}$	9. 68144	23	$\left\|\begin{array}{lll} 9.73 & 837 \\ 9.73 & 867 \end{array}\right\|$	30	0.26163 0.26133	$\left\|\begin{array}{lll} 9.94 & 307 \\ 9.94 & 300 \end{array}\right\|$		18	
43	9.68167 9.68190	23	$\left\|\begin{array}{cc} 9 \cdot 73 & 867 \\ 9.73 & 897 \end{array}\right\|$	30	$\left\|\begin{array}{l} 0.26 \\ 0.26 \\ 0.263 \\ 103 \end{array}\right\|$	$\left\|\begin{array}{lll} 9 \cdot 94 & 300 \\ 9.94 & 29 \overline{3} \end{array}\right\|$		17 16	
45	9.68213	23	9.73 927	30	0.26073	9.94 28 6		15	
46	9.68236	23	9.73957	30 30	0.26043	9.94279		14	
47	9.6825 9,	23	9.73987	30	0.26 013	9.94 272		13	
48	9.68 282	23	9.74 017	30	0. 25983	9.94265		12	
49	9.68305	23	9.74 047		0.25953	-. 94258		11	7 8 $0 \cdot \frac{8}{0} 90.78$
50	$9.6832 \overline{81}$	23	$9.7407 \overline{6}$	29	$0.2592{ }^{\frac{2}{2}}$	9.94251	6	10	
51	9. 68351	23	9.74 106		0.25 89	9.94245	7	8	101.11 .1
52	9. 68374	23	9.74 13 ${ }^{6}$	30	$0.2586 \overline{3}$	9.94 938	7	8	$20{ }^{2} \cdot \frac{1}{3} 2 \cdot \overline{1}$
53	9.68397	23	9.74 166	$2 \overline{9}$	0. 2583 3	9. 94.931	7	7	$303 \cdot 5$
54	9.68420	2	9.74 196		0.25804	-. 94224		6	$404 \cdot 6.6$
55	9.68443	23	9.74 226	30	0.25774	9.94 217	7	5	5015.815 .4
56	9. 6846 ¢	23	9.74256	30	0.25 744	9.94210	7	4 3 3	
57	9. 6848 ¢	23	9.74 286	$2 \overline{9}$	$\left\|\begin{array}{ccc} 0.25 & 714 \\ 0.25 & 684 \end{array}\right\|$		7	${ }_{2}$	
58	9. 68511	23	9.74315 9.74345	30	$\left\|\begin{array}{ccc} 0.25 & 68 \\ 0.25 & 654 \end{array}\right\|$	$\left\|\begin{array}{ll} 9 \cdot 94 & 196 \\ 9.94 & 189 \end{array}\right\|$	7	1	
60	$\frac{9.68534}{9.6857}$	$2 \overline{2}$	$\frac{9.74375}{}$	$2 \overline{9}$	0.25625	9.94182	7	0	
	Log. Cos.	d.	Log. Cot.		Log. Tan.	Log, Sin.	d.		P. P

TABLE VII.-LOGARITHMIC SINES, COSINES, TANGENTS,

TABLE VII.-LOGARITHMIC SINES, COSINES, TANGENTS,

TABLE VII.-LOGARITHMIC SINES, COSINES, TANGENTS.

TABLE VII.-LOGARITHMIC SINES, COSINES, TANGENTS,

TABLE VII.-LOGARITHMIC SINES, COSINES, TANGENTS, 33° AND COTANGENTS.
146°

TABLE VII.-LOGARITHMIC SINES, COSINES, TANGENTS,

TABLE VII.-LOGARİTHMIC SINES, COSINES, TANGENT:

	Log, Sin.	d.	Log, Tan.	c. d	Log, Cot,	Log, Cos.	d.			P. P.
0	9.78934		9.89281		0.10719	9.89653		60		
1	9.78950	16	9.89307	26	0.10693	9.89643	0	59		
2	9.7896 ${ }^{\text {c }}$	16	9.89 333	26	0.10667	9.89633	10	58		
4	9.78 982	16	9.89359 9.89	26	0.10 641	9.89 $62 \frac{3}{3}$	10	57		
4	9.78999	16	9.89385	26	0.10 615	9.89613	10	56.		
5	9•79 015	16	9.39 411	26	0.10 589	9.89 604	10	55		
6	9.79031	16	9. 89437	26	0.10563	9.89 594	10	54		
7	9.79 747	16	9.89 863	26	0. 10537	9.89584	10	53		
8	9.79063 9.79079	$1 \frac{1}{6}$	$\begin{aligned} & 9.89489 \\ & 9.89 \\ & 9.815 \end{aligned}$	26	$\left\|\begin{array}{lll} 0.10 & 511 \\ 0.10 & 485 \end{array}\right\|$	$\left\|\begin{array}{lll} 9.89 & 574 \\ 9.89 & 564 \end{array}\right\|$	10	52 51		6
10	9.79095	16	9.89541	26	0.10 459	9.89554	10	$\frac{51}{50}$		73.0
11	9.79111	16	9.89567	26	- 10433	9.89544	9	49		
12	9.79 127	16	9.89593	26	0.10 407	9.89534	10	48		9 3.9 3.8
13	9.79143	16	9.89 619	26	0. 10381	9.89524	10	47		10 4. ${ }^{3}-4.2$
14	9.79 159	16	9.89645	26	0. 10355	9.89514	10	46		20 8.6 ${ }^{8.5}$
15	9.79175	16	9.89671	26	0.10329	$9.8950 \overline{4}$	10	45		3013.012 .7
16	9.79 191	16	9.89 697	26	0. 10303	9.69 494	10	44		${ }_{50} 1017.31{ }^{17} 17.0$
17	9.79207	16	9.89723	26	0.10277	9. 8948 4	10	43		50.21 .6121
18	9.79 223	16	9.89 749	26	$0 \cdot 10251$	9. 89474	10	42		
19	9.79239	16	9.89775	26	0.10225	9.89464	10	41		
20	9.79 255	16	9.89801 9.89827	26	0.10199 0.10173	9.89 454	10	40		
21	9•79 2781	16	$\left\|\begin{array}{ll} 9 \cdot 89 & 827 \\ 9.89 & 853 \end{array}\right\|$	26	0.10173 0.10 0	9.89 9.89434 1	10	39 38		
23	$9.7930 \overline{3}$	16	9.89 879	26	0.10 121	9.89424	10	38 37		
24	9.79319	16	9.89905	26	0.10095	9.89 414	10	36		
25	$9.7933 \overline{5}$	16	9.89931	26	0.10069	9.89404	10	35		
26	9.79 351	16	9.89957	26	0.10043	9.89394	10	34		$1 \overline{6} 16$
27	9.79367	$1 \frac{1}{5}$	9.89 982	25	0.10017	9.89384	10	33		
28	9.79 383	16	9.90008	26	0.09991	$9.8937 \overline{4}$	10	32	7	$\begin{array}{lllll}1.9 & 1.8 & 1.8\end{array}$
29	9.79 399	16	$9.9003 \overline{4}$	26	0.09965	9.89364	10	31		2.2 2.1
30	9.79415	16	$9.90060 \bar{\square}$	26	0.09939	$9.8935 \overline{4}$	10	30		$2 \cdot 5$ 2.4 2.3
31	9.79 431	16	9.90086	26	0.09913	9.89344	10	29		$2 \cdot 7$ $2 \cdot 6$ $2 \cdot 6$
32	9.79 44 ${ }^{\text {b }}$	16	9.90112	$\begin{aligned} & 26 \\ & 26 \end{aligned}$	0.09887	9.89334	10	28		$5 \cdot 5$ 5.3 $5 \cdot 1$ 8.2 8.0 $7 \cdot 7$
33	9.79 46	16	9.90138	2	$\|0.09861\|$	9.89324	10	27		
34	9.79 478	15	9.90164	26	0.09836	9.89314	10	26		$13.713 \cdot 3{ }^{\text {a }}$ (12.9
35	9.79 794	16	9.90190	26	0.09810	9.893014	10	25		
36	9.79 510	16	9.90216 9.90242	26	0.09784 0.09758	9.89 294	10	24		
37	9.79526	15	9.90242 9.90268	26	0.09758 0.09732	9.89284 9.89 84	10	$\stackrel{23}{23}$		
38 39	9.79 557	16	9.90294	26	0.09706	9.89 264	10	21		
40	$9.7957 \overline{3}$	16	$9.9031 \overline{9}$	25	0.09680	$9.8925 \overline{3}$	1	$\frac{20}{}$		
41	9.79589		9.90345	26	0.09654	9.89243	10	19		
42	9.79 605	15	9.90371	26	0.09628	9.89233	10	18		
43	9.79 620	16	9.90397	25	0.09602	9.89223	10	17		
44	$9.7963 \overline{6}$		9.90423		0.09577	9.89213		16		
45	9.79652	15	9.90449	26	0.09551	9.89203	10	15		71.0
46	9.79 668	15	9.90475	26	0.09525	9.89193	10	14		
47	9.79 683	16	9.90501	$2 \overline{5}$	0.09499	9.89182	10	13		91.61 .51 .4
48	9.79 799	15	$9.9052 \overline{6}$	26	$0.0947 \overline{3}$	9.89172	10	12		
49	9.79 715	15	$9.9055 \overline{2}$	26	0.09447	9.89162		11		$03 \cdot 53 \cdot \overline{3} 3$. 1
50	$9.79730 \overline{1}$	16	$9.9057 \overline{8}$	26	$0.0942 \overline{1}$	$9.8915 \overline{2}$		10		0-5. 2 5.0 4 - 7
51	9.79 746	15		$2 \frac{5}{5}$	0.09395	9.89142	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	9		$10706 \cdot 66 \cdot 3$
52	9.79 762	15	$\begin{aligned} & 9.90630 \\ & 9.90 \end{aligned}$	26	$\begin{aligned} & 0.09370 \\ & 0.09344 \end{aligned}$	$\begin{aligned} & 9.89 \\ & 9 \end{aligned} 132$	10			078.7 7 - $\overline{3} 7.9$
53	$\left\|\begin{array}{l\|l\|} 9 \cdot 7977 \overline{7} \\ 9.79793 \end{array}\right\|$	16	9.90658 9.90682	26	0.09344 0.09318 0.092	9.89121 9.89111	10	7		
55	9.79809	15	$9.9070 \overline{7}$	25	$0.09292 \overline{1}$	$9.8910 \overline{1}$	10	5		
56	$9.7982 \overline{4}$	15	$9.9073 \overline{3}$	26	0.09266	9.89091		4		
57	9.79840	15	9.90759	26	0.09240	9.89 081	10	3		
58	9.79856	15	9.90785	25	0.09214	9.89 070	10	2		
59	9. 79871		9.90811		0.09189	9.89060		1		
60	9.79887		9.90837	26	0.09153	9.89050 -	10	0		
	Log. Cos,	d.	Log. Cot.	c.d	Log. Tan.	Log. Sin.	d.	,		P, P.

TABLE VII.-LOGARİTHMYC SINES, COSINES, TANGENTS,

39°

AND COTANGENTS.
140°

	Log. Sin.	d.	Log, Tan,	c. d.	Log, Cot.	Log, Cos.	d.		P, P.
0	9.79887		9.90837		0.09163	9.89050	10	60	
1	9. 79903	15	9.90 863	25	0.09137	9.89040	10	59	
2	9. 79918	15	9. 90888 ¢	26	0.09111	9.89 030	10	58	
3	9.79 934	15	9. 90914	25	0.09085	$\left\lvert\, \begin{array}{ll} 9.89 & 019 \\ 9.89 & 0 \end{array}\right.$	10	57	
4	9.79 949	15	9.90 940	2	0.09060	9.89009	10	56	
5	9.79 965	15	9.90966	26	0.09034	9.88999	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	55	
6	9.79 980		9.90 992	25	0.09008	9.88989	10	54	
7	9.79 996	15	9.91 017	26	0.08982	9.88978	10	53	
8	9.80011	15	$9.9104 \overline{3}$	26	$0.0895 \frac{6}{6}$	9.88 968	10	52	26 25
9	9.80027	15	9.91069	$2 \overline{5}$	0.08930	9.88958	10	51	$6{ }^{6} 2 \cdot 6 \mid 2.5$
10	9. 80042	15	9.91 095	26	0.08905	9.88947	10	50	$7{ }^{7} 3 \cdot 0.080$
11	9. 80058	15	9.91 121	25	0.08879	9.88937	10	49	88.3 .4 .3 .4
12	9.80 073			26	0.08853	9.88927		48	
13	9.80089 9.80104		$\left\|\begin{array}{ccc} 9 . & 91 & 172 \\ 9 & 91 & 98 \end{array}\right\|$	25	0.08827 0.08802	9.88 917	10	47	$10{ }^{10} 4 \cdot \overline{3} \cdot \frac{4 . \overline{2}}{}$
14	9.80104	15	9.91198	26	0.08802	$\frac{9.88906}{98880}$	10	46	20 $8 \cdot 6$ 8.5 30 13.0 12.7
15	9.80120 9.80135	15	9.91224 9.91	26	0.08776 0.08750	9.88896	10	45	
16	9.80 135		$\left\|\begin{array}{l\|l\|} 9.91250 \\ 0120 \end{array}\right\|$	25	0.08750	9.88886	10	44	$50121 \cdot \frac{3}{6} 17 . \frac{0}{2}$
17	9.80151	15	9.91 275	26	0.08724	9.88875	10	43	
18	$9.8016 \overline{6}$	15	9.91301	25	0.08698	9.88865	10	42	
19	9.80182	15	9.91327	25	0.08678	9.88855	-	41	
20	9.80197	15	9.91353	25	0.08647	$9.8884 \overline{4}$	10	40	
21	9.80 213	15	$9.9137 \frac{8}{8}$		0.08621	9.88834	10	39	
22	9. 80228	15	9.91404 9.91430	25	0.08595	9.88823	10	38	
23	9.80243 9.80259	15	9.91430 9.91456	26	0.08570 0.08544	9.88813 9.88803	10	37 36	
$\frac{24}{25}$	9.80 $27 \overline{4}$	15	9.91481	25	0.0851立	-9.88 792	10	$\frac{36}{35}$	
26	9.80289	15	991507	26	0.08492	9.88782	10	34	$16 \quad 1 \overline{5} \quad 15$
27	9.80 305	15	9.91533	26	0.08467	9.88 772	10	33	
28	9.80 320	15	9.91559	25	0.08441	9.88761	10	32	
$\underline{29}$	9.80335		$9.9158 \overline{4}$		0.08415	9.88751		31	8 \% $2 \cdot 1$
30	9.80 351	15	$9.91610 \overline{0}$	25	0.08389 ¢	9.88740	10	30	9 2.4 2.3 2.2 10 2.6 2.6 2.5
31	9.8036 ${ }^{\text {c }}$	15	9.91636	26	0.08364	9.88730	10	29	
32	9. 80381	15	9.91662	25	0.08338	9.88720	10	28	
33		15	$\left\|\begin{array}{lll} 9 \cdot 91 & 687 \\ 9.91 & 71 \end{array}\right\|$	26	- 0.08312	9.88 9.899	10	27	40 10. ${ }_{6} 10 \cdot \overline{3} 10.0$
35	9.80427	15	9.91739	25	0.08261	$9.8868 \overline{8}$	10	25	5013 .3112.9112.5
36	9.80443		9.91765	26	0.08235	9.88 678	10	24	
37	9. 80458	15	9.91790	26	0.08209	9.88667	10	23	
38	9.80 473	15	9.91816	25	0.08183	9.88657	10	22	
$\underline{39}$	$9.8048 \overline{8}$	15	9.91842		0.08158	9.88 $64 \overline{6}$		21	
40	9.80504	15	9.91867		$0.08132 \overline{2}$	9.88636		20	
41	9.80.519	15	$\left\|\begin{array}{lll} 9.91 & 89 \\ 9.91 & 919 \end{array}\right\|$	25	0.08106	$\overline{6} \mid 9.88625$	10	19	
42	$\left\lvert\, \begin{array}{ll} 9.80 & 53 \overline{4} \\ 9.80 & 549 \end{array}\right.$	15	$\left\|\begin{array}{lll} 9.91 & 919 \\ 9.91 & 945 \end{array}\right\|$	26	0.08 081	- $\begin{aligned} & 9.88815 \\ & 9.88604\end{aligned}$		18	
$\underline{44}$	9.80564	15	9.91970	25	0.08029	9.88594	10	16	111010
45	9.80580	15	9.91996	25	$0.08 \mathrm{CO4}$	$9.8858 \overline{3}$	10	15	${ }_{7}^{6} 11.1\|1.0\| 1 \cdot 0$
48	9.80595	15	9.92022	25	0.07978	9.88 573	10	14	$7{ }^{7} 1 \cdot \frac{3}{4} 1 \cdot 21 \cdot \frac{1}{3}$
47	9.80610	15	9.92 047	26	0.07952	9.88562		13	
48 49	$\left\|\begin{array}{ll} 9.80 & 62 \overline{5} \\ 9.80 & 640 \end{array}\right\|$	15	$\left\|\begin{array}{cc} 9.92 & 073 \\ 9.92 & 099 \end{array}\right\|$	25	$\left\|\begin{array}{c} 0.0792 \overline{6} \\ 0.07 \\ 0.01 \end{array}\right\|$	$\left.\begin{aligned} & 6.88552 \\ & 1 \\ & 9.88 \\ & 54 \end{aligned} \right\rvert\,$	10	12	$101.81 \cdot \frac{8}{8} 1 \cdot \frac{6}{6}$
50	$9.8065 \overline{5}$	15	$9.9212 \bar{a}$	25	0.0787 ¢5	9.88531	10	10	
51	9.80671	15	$9.92150 \overline{ }$	26	0.07849	9.88520	10	9	407.357 .0
52	9.80 686	15	9.92176	25	0.07824	9.88510	10	8	$5019 \cdot \overline{1} 8 \cdot \overline{7} 8 \cdot \frac{6}{3}$
53	9.80701	15	9.92201	26	0.07798	9.88499		7	
54	$9.8071 \overline{6}$	15	9.92227		0.07772	9.88489		6	
55	9.8073 I	15	9.92253	25	0.07747	9.88478 ¢	10	5	
55	9. $80744 \overline{6}$	15	9.92 278	26	0.07721	9.88467		4	
57	9. 80761	15	$\left\|\begin{array}{ccc} 9.92 & 304 \\ 9 & 92 & 330 \end{array}\right\|$	25	0.07695	$\left\lvert\, \begin{aligned} & 988457 \\ & \hline \end{aligned}\right.$		3	
58 59	9.80776	15	$\left\|\begin{array}{ll} 9.92 & 330 \\ 9.92 & 355 \end{array}\right\|$	25	$\left\|\begin{array}{l\|l\|l\|} 0.07 & 670 \\ 0.07 & 644 \end{array}\right\|$	$\left\|\begin{array}{ccc} 9.88 & 44 \overline{6} \\ 9.88 & 436 \end{array}\right\|$	10	2	
$\underline{60}$	$\frac{9.80791}{9.8080 \overline{6}}$	15	9.92 381	26	0.07618	9.88 425	10	0	
	Log. Cos.	d.	Log, Cot.	c. d.	Log. Tan	Log. Sin.	d.	,	P. P.

TABLE VII.-LOGARITHMIC SINES, COSINES, TANGENTS,

TABLE VII.-LOGARITHMIC SINES, COSINES, TANGENTS,

TABLE VII.-LOGARITHMIC SINES, COSINES, TANGENTS,

TABLE VII.-LOGARITHMIC SINES, COSINES, TANGENTS,
AND COTANGENTS.

TABLE VII.-LOGARITHMIC SINES, COSINES, TANGENTS, 44° AND COTANGENTS.
135°

TABLE VIII.

> LOGARITHMIC VERSED SINES AND EXTERNAL SECANTS.

TABLE VIII.-LOGARITHMIC VERSED SINES AND EXTERNAL
0°
SECANTS.
1°

	Log, Vers,	D	Log. Exsec,	D	Log, Vers,	D	Log, Exsec.		
0	- ${ }^{-\infty}$				6.18271		6.18278		
1	2.62642	60206	2.62642	60206	. 19707	1412	. 19714	1436	
2 3	3.22848 3.58066	35218	3.22848 3.58066	60206 35218 2498	. 21225119	13189	. 21126	1412	
3 4	3.58066 3.83054	24987	3.58066 3.83054	24987	. 222509	1368	23884	1368	
5	4.02436	19382	$4.0243 \overline{6}$	$\overline{2}$	$6.2522 \overline{3}$	1346	$6.2523 \overline{1}$	47	
	. 18272	13389	. $1827 \overline{2}$. 26549		. 26557		
7	. 31662	11598	. 31662	13389 11598	. 27856	1386	27864	1306	
8	. 43230	10230	-43260	115930	. $2914 \overline{1}$	1268	29151	1268	
9	. 53490		. 53491		30410		30419		
10	4.62342		4.62642		$6 \cdot 31660$		6.31669		10
11	. 70920	7558	. 70921	7557	. 32892	1214	- 32901	1215	
12	. 78478	$695 \overline{3}$. 78478	$695 \overline{2}$. 34107	1198	. 34116	119	12
13	. 85431	6437	.85431 .91868	6437	$\begin{array}{r}.35305 \\ .36487 \\ \hline\end{array}$	1182	$\begin{array}{r}.35315 \\ .36497 \\ \hline\end{array}$	1182	13
14	. 91868		. 91868	5439	. 36487	1166		1166	14
15	4.97860	5605	4.97861	5605	6.37653	1150	6.37663	1151	15
16	5.03466	5266	5.03466	5266	. 388803	1135	. 38814	$113 \overline{5}$	16
17	. 08732	4964	. 08732	4964	. 319938	1121	. 39949	1121	7
18	. 13696	4696	.13697 .18393	4696		1106		$110 \overline{6}$	8
19	. 18393	4455		4456		1093		1093	
20	5.22848	88	5.22849 .27087	4238	$\begin{array}{r}6.43258 \\ \hline\end{array}$	1078	6.43270 .44349	1079	1
21	. 27086	4040	. 27087	4040	4	1066	. 44	1066	21
22	. 31126	3861	. 311278	3861	. 464545	1052	. 464646	1053	23
23	$\begin{array}{r}.34987 \\ .38684 \\ \hline\end{array}$	3697	. 349885	3697	. 47496	1040	. 47509	1040	24
25	5.42230	3545	5.42231	3545	6.48524	1028	6.48537	1028	25
26	. 45636		. 45638	3407	. 49539	1016	49553	10	26
	. 48915	$315 \overline{8}$. 48916		. 50544	10	50557	100	27
23	. 52073	3048	. 52075	2088	. 51536	981	51550	982	28
29	. $5512 \overline{1}$	3048	. 55123	迷8	. 52518	981	$5253 \overline{2}$		29
30	5.58066		5.58068		6.53488	960	6.53503		30
31	- 60914	2757	. 60916	2758	. 54448	949	. 54463	950	31
32	. 63672	2672	. 63674	2672	- 55397	939	. 55413	939	32
33	. 6634	203	.66346 .68940	2593	$\begin{array}{r} \cdot 56336 \\ .57265 \end{array}$	29	. 563528	$92 \overline{9}$	33 34
34		2518	71	2517		9		919	35
	. 7	2447		2447	6.58	909	. 58	909	35
36	- 73902	2379	. 739284	2380	- 590993	900	. 59110	900	36 37 3
37	. 76282	2316	$\begin{array}{r} .76284 \\ .78601 \end{array}$	2316	. 599893	891	- 60011	891	37 38
38 39	$\begin{array}{r}.78598 \\ .80854 \\ \hline\end{array}$	2256	.78601 .80857	2256	. 608844	882	$\begin{array}{r}60902 \\ 61784 \\ \hline\end{array}$	$88 \overline{2}$	38
40	5.8305	2199	5.830	99	6.62639		6.62657		40
41	. 8519	2093	. 85201	2145	. 63503	865	. 63522		1
42	. 8729	2044	. 872935	2043	. 64359	847	. 64378	8848	42
43	. 89335	1996	. 893338	1997	$\begin{array}{r}.65206 \\ .66045 \\ \hline\end{array}$	839	${ }^{65226}$	839	43
45	5	1952	5.93288	1952		831		831	4
46	5.93284 .95193	1909	5.93288 .95197	1909	6.	82	. 68	$82 \overline{3}$	45
47	. 97061	1868	. 97065	1868		815		816	4
48	5.98890	1829	5.98894	1829	. 69323	808	68536	808	
49	$6.00680 \overline{ }$	1795	6.00685	1791	. 70124	800	. 70145	800	49
50	6.02435	17	6.02440	1755	6.70917	793	$6.7093 \overline{9}$	794	50
51	. 04155	1686	. 04160	1687	. 71703	779	. 71725	789	51
52	. 0584	1654	.05847 .07501 .09125	1654	.72482	772	. 72505	772	52
53	. 07496	$162 \overline{3}$.07501 .09125	1623	-73254	765	.73277	765	53
54	. 09120	4			. 74019	8	. 74043		54
55	6.10714	1565	$6.10719 \frac{9}{4}$	1565	$6.7477 \overline{7}$	752	6.74802	752	55
56 57	. 1227816	1537	. 12284	1537	. 7752295	745	. 756554	746	56
58	. 15327	1511	. 15333	1511	. 7701	739	. 76300	739	58
59	. 16811	1484	. 16818	1485	. 77747	733	77773	$73 \overline{3}$	58
60	6.18271	1460	6.18278	1460	6.78474	726	$\overline{6} .7850 \overline{ }$	727	60
	Log. Vers.	D	Log. Exsec.	D	Log. Vers.	D	Log. Exsec.	D	

TABLE VIII.-LOGARITHMIC VERSED SINES AND EXTERNAL 2°

SECANTS.
3°

	Log. Vers.	D	Log, Exsec.	D	Log. Vers,		Log. Exsec,		
0	6.78474		$6.7850 \overline{0}$		7.13687		$7.1374 \overline{\overline{6}}$		0
1	. 79195	717	. 79221	715	. 14168	4818	. 14228	481	
2	. 79909	7109	. 79937	709	. 14646	475	. 14707	476	
3	- 80618	703	. 80646	703	. 15122	473	. $1518 \frac{3}{3}$	474	
4	. 81322	697	. 81350	698	. 15595	470	. 15657		
5	$6.8201 \overline{9}$	692	6.82048	692	7.16066	468	7.16129	469	5
6	. 82711	$68 \overline{6}$. 82740	687	- 16534	466	-16598	466	
7	. 83398	681	. 8342707	682	. 17000	463	. 17064	464	
8	. 84079	676		676	- 17463	460	17528	$46 \overline{1}$	
8	. 84755		. 84785		. 17923		17989		
10	6.85425		6.85457	666	7.18382		$7.1844 \overline{\text { ® }}$	9	10
11	. 86091	-	. 86123	660	. 18837	453	. 18905	454	11
12	. 86751	665	. 86783	660 656	. 19291	451	. 19359	454 452	2
13	. 87407	650	. 87439	651	- 19742	448	. 19811	449	13
14	. 88057		. 88090		. 20191		20260	9	14
15	$6.8870 \overline{3}$	646	6.88737		7.20637	446	7.20707	447	5
16	. 89344	636	. 89378	636	. 21081	444	. $2115 \overline{2}$	\%	16
17	. 89988	$63 \overline{1}$. 90015	632	- 21523	440	. 21595	440	17
18	. 9061	627	. 90647	628	. 21963	437	. 22035	438	18
19	. 91239	627	. 91275	628	22400	437	. 22473		19
20	6.91862		6.91898		7.22836		$7.2290 \overline{9}$		20
21	. 9248		. 92516	614	. 23269	431	. 23343]	1
2	. 93093	$60 \overline{9}$. 93131	610	. 23700	429	. 23775	$43 \overline{1}$	2
3	. 93703	605	. 93741	6105	24129	$42 \overline{6}$. 24204	427	3
24	. 94308		. 9		. 24555		. 246		24
25	6.94		6.94		7.24		7.25		5
26	. 95506		. 95545	${ }^{5} 9$. 25402	42	. 2548	1	26
7	. 96099		. 96139		. 25823	418	. 25902	419	27
28	. 96688		. 96728		. 26241		. 26321	17	28
29	. 97272		. 97313		26658		. 2673 8		29
30	$6.9785 \overline{3}$		6.97895		7.27072		$7.2715 \overline{3}$		30
31	. 98430		98А72	574	. 27485	410	. 27567	411	1
32	. 99004		. 99046	570	27895	409	- 27978	409	32
3	$6.9857 \overline{3}$	565	$6.9961 \frac{6}{6}$	566	28304	$40 \overline{6}$	- 28387	407	33
34	7.00139		$7.0018 \overline{2}$	566	28711		. 28795		34
35	7.007		7.00		7.291		7.29200	405	35
36	. 012		. 01304	55	. 29518		. 2960	402	36
37	. 01814	555	. 01860	552	29919	${ }^{49} 9$. 30006	400	37
38	. 02366	551	. 02412	548	30319	397	- 30406	398	38
39	. 02.914		. 02960		30716		. 30804		39
40	7.03		7.03505		7.31	393	7.312	394	40
41	. 03999	541	. 04047	$53 \overline{8}$. 31505	392	. 3159	393	41
42	. 04537	534	. 04585	535	. 31897	390	. 31987	391	42
43	. 05071	$53 \overline{\text { T }}$. 05120	$53 \overline{1}$	- $32288{ }^{\text {¢ }}$	388	- 32378		43
44	. 05603	53	. 05652		. 32676				44
45	7.06130		7.06180		7.330		7.33156		45
46	. 06655	52.5	. 06706	5	. 3344	$38 \overline{3}$	-	88	46
47	. 07177	52	. 07228	522	. 3383	382	- 33926		47
48	. 07695	515	. 07747		. 3421 彦	38	$\begin{array}{r} \cdot 34309 \\ \cdot 34689 \end{array}$	380	48
49	. 08211	515	. $0826 \overline{3}$. 34593		. 34689		49
50	7.08723		$7.0877 \overline{6}$		7.349		7.350	77	50
51	. $09232 \overline{2}$	50 ¢	. 09286	509	. 35348		. 35	376	51
52	. 09739	50 ¢	. 09793	507	. 35723		. 358	374	52
53	. $1024 \overline{2}$. 10297	501	. 36097	371	. 36196	373	53
54	. 10743		. 10798	01	. 36468	37	. 36569		54
55	$7.11240 \overline{ }$	495	7.11297		7.36839	$36 \bar{\square}$	$7.36940 \overline{0}$	$36 \overline{9}$	55
56	. 11735	495	. 11792	4	. 37207	${ }_{367}$. 37310	368	56
	. 12227	489	. 12285	490	. 37574	365	. 37678	$36 \overline{6}$	57
58	. 12716	$48 \overline{6}$. 12775	487	. 379404	364	.38044 .38409	365	5
59	. 13203		. 13262	484	. 38304	362		$36 \overline{3}$	
60	7.13687	484	$7.1374 \overline{6}$	484	7.38667		7.38773		60
	Log. Vers.	D	Log. Exsec.	D	Log. Vers.	D	Log. Exsec.	1	

TABLE VIII.-LOGARITHMIC VERSED SINES AND EXTERNAL SECANTS.

TABLE VIII.-LOGARITHMIC VERSED SINES AND EXTERNAL SECANT 6° 7°

	Lg. Vers.	D	Log, Exs.		Lg. Vers.		Log. Exs.	D			P. P.
0	7.73863	241	7.74101	242	7.87238	206	7.87563	208	0		1800
	. 74104	240	$\cdot 74343$	241	. 87444	205	. 87771	207	1		$18.00 \cdot \overline{9} 0 \cdot 9$
2	- 743444	239	. 74585	241	. 87650	2 U	- 87978	207	2		$21 \cdot 01 \cdot \frac{1}{1} 1.0$
3 4 4	.7458 .7482	239		240		20		206	-		24.0 27.0 1.2 1
5	7.75060	2	7.75305	23	$7.8826 \overline{4}$	204	7.88597	206	5		30.01 .61 .5
6	. 75297	3	. 75544	238	. 88468	2	. 88803		6		60.03 .13 .0
7	. 75534	23	. 75782	238	. 88672	203	. 89008	205	7		90.c 4.78
8	. 75770		. 76019	237	. 88875	203	. 89212	204	8		$120 . C$ 150
9	. 76006		. 76256		. 89077		. 89416		9		$150 \cdot 177.97 .5$
10	7.76240̄		7.76492		7.8927	201	7.89620		10		
11	. 76475	23	- 76728		. 89481	201	- 89823	202	11		$610 \cdot \overline{8} 10 \cdot 800 \cdot \overline{7}$
12	-76708	233	$\begin{array}{r} .76963 \\ .77197 \end{array}$	234	$\begin{aligned} & .89682 \\ & .89882 \end{aligned}$	$20 \overline{0}$. 90025	2	12		71.00 .900 .9
13	.7694 .77173	232	.77197 .77431	233	. 898882	200	. 90228	201	13		81.11 .00
15	7.77405	232	7.77664	233	7.90282	199	7.90630		15		
16	. $7763 \overline{6}$	231	. 77897	232	. 90481	98	. 90831	20	16		
17	. 77867		- 78128		. 90680	19	. 91032		17		- 4.2 2- $0 \cdot 3.7$
18	. 78097	229	-78360	30	. 90878	197	. 91231		18		$05.65 .35 \cdot 0$
19	. 78326		. 78590		. 91076		. 91431		19		
20	7.78554	22	7.78820		$7.9127 \overline{3}$	97	7.91530		20		
21	- 78783	227	- 79050	229	. 91470	9	. $9182 \overline{8}$		21		$7{ }^{7}{ }^{6}$
22	. 79010	227	. 79279	228	. 91667	196	-9202	97	22		$6{ }^{-1} 90 \cdot 70 \cdot 6 \mid 0 \cdot 6$
4	. 79237	22	- 79507	228	. 91865	195	. 9222	197	23		O
$\frac{24}{25}$	+79463 7.79689	225	$\underline{.79735}$			95	- 7.9242	97	24		91.01 .00 .9
5	7.79689	22	7.79962	2	7.92253	195	7.92618	196	25		1.1-1.1 1.0
26	. 79913	22	. 80188	226	. 92448	194	. 92815		26		2.3 2.1
27	. 80138		- 80414	225	. 9264	194	-	195	27		$3.53 . \overline{2} 3.0$
29	. 80362	$22 \overline{3}$. 80636	225	. 9938	193	. 93401	-	28		- 4.64 .3 - 4.0
$\frac{29}{30}$				224		193		195			(5.815.4\|5.0
30	7.80808	2	7.81088	224	7.9	92	7.93596	94	30		
31 32	. 81031	221		223	. 933415	192	. 933984		31		$5{ }_{5}^{5}$ - ${ }^{\mathbf{4}}$
32	. 8121473	221	. 8181758	222	. 933799	191	. 939177	,	32		
34	. 81694		. 81980		. 93990		. 94370		34		. 70.600 .60 .5
35	7.81914	220	7.82201	22	7.94181	90	$7.9456 \overline{2}$	192	35		-80•70.70.6
36	. 82133	219	. 82422	22	. 94371	90	. 94754		36		. 90.80 .70 .6
37	. 82352	218	. 82642	219	. 94561	189	. 949496	191	37	30	
38	- 825780	217	. 82852	219	. 94751	189	. 951327	191	38		$\cdot \frac{7}{6}$
39	. 82788	217	. 83981		. 94940		. 95328		39		. 614.1
40	7.83005	217	7.83300		7.95129		7.95519	190	40		
41	. 83222	216	. 833185	217	. 95317	187	-95709		41		$\overline{3} 3 \quad \overline{\mathbf{T}} \quad 2$
42	- 83438	215	. 833735	217	. 95505	188	. 95898	18	42		. $\overline{3} 10 \cdot 310 \cdot \overline{2} 10.2$
4	. 8365	215	- 83952	216	. 95	187	. 960	1	43		. $400 . \overline{3} 0.300 .2$
45	. 83868						. 9		44		$40 \cdot 40 \cdot \overline{3} 0 . \overline{2}$
45	7.84083	214	7.84385	215	$7.9606 \overline{6}$		7.96465		45		. $50.40 \cdot 40 \cdot 3$
48	. 84297	213	. 84600	215	. 96253	186	. 96653	188	46	10	. $60.50 .4{ }^{1} 0.3$
47	. 84510	213	- 84815	21	- 96439	185	- 96841		47		1 1.0 $0 \cdot \overline{8} 0.6$
48	. 84723	213	. 85030	21	. 96624	185	. 97028		48	30	. 71.51 .21 .0
49	. 84935		. 85243		. 96809		. 97215		49	40	. $\overline{3} 2.01 .611 .3$
50	7.85147	21	7 -85457	21	7.96994	$18 \overline{4}$	7.97401		50		.912.5\|2.11. 6
51	. 85359	211	. 85670	21	. 97178		. $9758 \overline{7}$		51		
52	. 85570	210	. 85882	21	. 97362	83	. 97773		52		
53	. 85780	210	. 86094	211	. 97546	硅	. 97958		53		0.2 20.1
54	. 85990	10	. 86305		. 97729		. 98143		54		0.2 0.10 .0
55	7.86199	209	$7.8651 \overline{6}$	210	7.97912	182	7.98327		55		0.20 .10 .1
56	. 86408	208	. 8672	210	. 98094	82	. 98512		56		0.20 .10 .1
57	. 86616	208	. 8693	209	. 98276	82	- 98895	8	57		$0 \cdot 50.30 .1$
58	. 86823	207	. 877145	208		81		183	58		0.70-50. ${ }^{2}$
59	. 87831		54	$20 \overline{8}$		81		$18 \overline{2}$			(1.0 $1.20 \cdot 680.3$
60	7.872.38		7.87563		7.98820		7.99244		60		1.210.810.4
	Lg. Vers.	D	\|Log. Exs.	D	Lg. Vers.]	D	Log, Exs.	D			P. P,

TABLE VIII.-LOGARITHMIC VERSED SINES AND EXTERNAL SECANTS.

	Lg, Vers.	D	Log, Exs.	D	Lg, Vers.	D	Log.Exs.	D			P.		
0	7.98820	180	7.99244	182	8.09031	160	$8.0956 \overline{9}$	$16 \overline{2}$	0				
	. 990000	180	. 99427	182	. 09192	160	. 09732	162	1	${ }^{6}$	18.0	17.01	16.0
2	. 99180	179	. 99609	182	. 09352	60	. 09894	162	2	7	21.0	19.8	
3	-99360	179	. 997900	181	. 09512	59	. 10056	61	3	8	24.0	22.6	21.3
4	. 99539		7.99971	181	. 09671	159	. 10217		4		27.0	$25 \cdot \frac{5}{3}$	
5	$7.9971 \overline{8}$	178	8.00152	180	8.098300	59	$8.1037 \overline{\overline{8}}$	161	5	10	30.0	28.3	$26 \cdot 6$
6	7.99897	178	. 00332	180	. 09989	158	. 10539	160	6	20	60.0	56.6	
7	8.00075	177	. 00512	180	. 10148	158	. 10700	160	7	30	90.0	$85 \cdot$	
	. 00253	178	. 00692	180	. 10306	5	. 10860		8	40	120.0	$13 \cdot 31$	$106 \cdot \frac{6}{3}$
9	. 00431		. 00871		. 10464		. 11020		9				
10	8.00608	176	8.01050 -	178	8.10622	157	8.11180	159	10			140	
11	. 00784	176	. 01229	178	. 10779	157	. 11340	159	11		6115.0	14.0	
12	. 00961	176	. 01407	178	. $1093 \overline{6}$	157	. 11499	159	12		717.	16	
13	. 01137	176	. 01585	177	- 11093	156	- 11658	$15 \overline{8}$	13		820.	18	
14	. 01313		. 01763		. 11250		. 11816		14		922.	21	
15	8.01488	175	8.01940		$8.1140 \overline{6}$		8-11975	158	15		1025	23	
16	. 01663	175	. 02117	176	. 11562	155	. 12133	158	16		50.	46	
17	. 01838	175	. $02293 \overline{3}$	176	- 11718	155	. 12291	157	17		75.	70	
18	. 0201	74	. 02463	175	.11873 .12029	15	. 12448	157	18		0100	- 93	
19	. 02186		45				05		19			0116	
20	8.02359	17	8.02820	175	$8 \cdot 12184$	$15 \overline{4}$	8.12762	157	20				
21	. 025333	173	. 02995	175	- 123398	154	. 12919	156				9.90	
22	. 02706	172	. 03170	174	- 12492	$15 \overline{4}$. 13075	156	22		781.1	1.0	
24	. 03050	172	. 03519	74	. 12800	5	. 13387	7155	24		81.2	1.21	
25	8.03222	172	$8.03692 \overline{ }$	173	8.12954	153	$8.1354 \overline{3}$	$\overline{3} 156$	25		91.4	1.31	
26	. 03394	171	. 03866	173	. 13107	153	. 13698	55	26		10	1.51	
27	. 03565	171	. 04039		- 13260	硣	. 13854		27		30.7	4.54	
28	. 03736	170	. 04212	,	- 13413	15	- 14008		28		40.	6.0 5	
29	. 03906		. 04384		. 13565		. 14183		29		5017.9	7.517	
30	8.04076	170	$8.0455 \overline{\text { ̄ }}$	172	$8 \cdot 13717$	$\overline{7} 15$	8.14317	7154	30				
31	. 04246	$16 \overline{9}$	- 04728	$17 \overline{1}$. 13869		- 14471		31			\% ${ }^{\text {y }}$	
32	- 04416	169	. 0489	171	- 14021	151	- 14625		32		610.8	0.70.	
33	- 04585	169	. 05070	170	. 14172	151	- 14778		33		$70 \cdot 9$	0.90	
34	04754	$16 \overline{8}$. 05241		4323		. 14932		34		81.0	1.0	
35	8.04922	168	8.05411	170	$8 \cdot 1447 \overline{4}$		8.15085		35				
36	. 05090	168	. 05581	170	. 14625	150	. 15237		36		101	1.21.	
37	. 05258	167	-05751	169	. 147775	150	. 15390	${ }_{1} 152$	37		20.4	$2 \cdot 5$	
40	8.05760	167	8.06259	169	$\overline{8.15225}$	150	8.15846	152	40		50.6	6.25	
41	. 05926	166	- 06427	68	- 15374	4149	- 15997	7151	41				
42	. 06093	166	. 06595		- 15523	3149	. 16148		42		6\|0	$\overline{6} 10.6$	
43	. 06259	165	. 06763	167	. 15672	148	. 16299	$9{ }^{150}$	43		70.	$7{ }^{7} \mathbf{0 . 7}$	
44	. 06424		. 06931		. 15820		. 16450		44		80.	$\overline{8} 0.8$	
45	8.06589	165	8.07098		8.15968		8.16600	150	45		91.	0.9	
46	. 06754	165	. 07265	$16 \overline{6}$. 16116		. 16750	150	46		101.	11.0	
47	. 06919	164	. 07431	166	- 16264	147	7.16900	150	47		20.	$\frac{1}{2} 2.0$	
48	. 07083	164	.07598 .07764	166	. 16412	2147	7 l . 17195	149	48		303	$\frac{2}{3} 3.0$	
$\frac{49}{50}$. 07247	164	$\frac{.07764}{8.07929}$	165		147		149	$\frac{49}{50}$		5045.	$\begin{aligned} & 3 \\ & 4 \end{aligned} \frac{4.0}{5 \cdot 0}$	
50	8.07411 .07575	163	8.07929 .08095	65	8.16706	$\frac{6}{2} 14 \overline{6}$	8.17349 .1749	7148	50				
52	. 07738	163	. 08260		. 16999		. 17646	$\overline{6} 149$	52			5 ${ }_{0}^{5}$	
53	. 07900	162	. $0842 \overline{4}$. 17145		. 17795		53		${ }_{7}{ }^{0}$	$\frac{5}{6}$ O. 0	
$\underline{54}$. 08063		08589		.17291		. 17943		54		$8{ }_{8} 80$.	$\frac{6}{7}{ }^{0} \cdot \frac{6}{6}$	
55	8.08225	161	8.08753	163	$8 \cdot 17437$		8.18091		55		90.	80.7	
56	- 08387		. 08917		. 17582		. 18238	147	56		100	90.8	
57	. 08549	61	- 09081	163	- 17728	145	- 18386	147	57		201	8 8 1 . 6	
$\begin{array}{r}58 \\ 59 \\ \hline\end{array}$. 08710	161	.09244 .09407	163	. 178783	144	. 185883	1	58 59		30.	$\frac{5}{3}$	
60	8.09031		$8.0956 \overline{9}$	$16 \overline{2}$	8.18162		8.18827	14	6-9		50.	${ }_{6} \mathrm{Cl}_{4}$. 1	
	Lg. Vers.	\bar{D}	Log, Exs.	I	Lg. Vers.	D	Log.Exs	D	\bigcirc			P.	

TABLE VIII.-LOGARITHMIC VERSED SINES AND EXTERNAL SECANTS. 12°
13°

	Lg. Vers.		Log, Exs.		Lg. Vers.		Log, Exs.		
0	8.33950		$8 \cdot 34909$	123	8.40875		$8 \cdot 42002$		0
	$\begin{array}{r} .34070 \\ .34190 \end{array}$	120	$\begin{array}{r} 35032 \\ .35155 \end{array}$	122	$\begin{array}{r} .40985 \\ .41096 \end{array}$		$.42116$	13	1
2 3	- 3431909	19	- 3515	122	. 41206	110	42343	113	3
4	. 34429		. 35399	22	. 41317		42456		4
5	8.34549		8.35522		8.41427	110	8.42569		5
6	- 34668		- 3564	121	. 41537	110			6
7	- 34787	19	. 35765	122	41647	$10 \overline{9}$	42795	3	8
8	$\cdot 34906$	-	- 35887	$12 \overline{1}$	41757	110	42908	12	8
9	. 3502		. 36009	1		109	21		9
10	8-35143	11	$8 \cdot 36130$	12	8.41976	$10 \overline{9}$	8.43133		0
11	- 35262	118	- 36251	121	- 42086	109	. 43246		11
12	- 3538	118	- 36493	120	. 423195	09	. 433578		12
13	- 3549	118	- 3649	21		09			4
$\frac{14}{15}$	8-35734	117	8.367	20	8.425	109	8.43	112	15
16	. 35852	117	. 36855	120	. 4263	-			16
17	. 35969	17	- 36975	20	- 4278		. 439		17
18	- 36086	7	- 37095	120	- 42847	$0 \overline{8}$. 4402		18
19	. 36204		37215		42		44139		9
20	8.363	16	$8 \cdot 37335$	119	8.43064		8.44251		2
21	- 364	17	-37454	$11 \overline{9}$. 43172	108	44362		21
22	- 365	$11 \overline{6}$	- 37574	119	- 43280	108	4447		22
23	- 36671 .36787	116	- 3769	119		07		110	4
$\frac{24}{25}$	$\frac{.3670}{8.3690}$	116		19	8.	107	8.		5
25	. 37019	116	- 38050	118	- 43		. 44		26
27	. 37135		. 38169	118	. 438		. 450		27
28	- 37251		- 38287	118	- 439	10	- 4513		88
29	. 3736 6̄		38406		. 4403		. 4524		29
30	8.37482	11	8.38524	18	8.44138		8.4535		30
31	- 3759	115	- 38642	118	. 4424		. 45		31
32	- 3771		. 38760		- 44		. 4557		32
33	. 3782	115	. 38878	118	. 44458		. 4568		33
34	. 37942		. 3		44		45793		34
35	8.38057		8.39113		8.44670		$8.4590 \overline{2}$		35
	- 3817	14	. 39230	117	. 4477	105	. 46011		36
37	- 38286	114	. 3934	117	- 448	106	$.46120$	$\left\{\left\lvert\, \begin{array}{l} 10 \frac{y}{8} \\ 10 \end{array}\right.\right.$	37
38	. 38400		. $3946 \overline{4}$	117		105	46229 46338	109	$\begin{array}{r}38 \\ 39 \\ \hline\end{array}$
39	514		. 39581				. 46338		4
40	3.38628	11	8.39698	1	8.45199	105	8-46446	108	40
41	- 3874	114	. 39814	116	. 45304	105	465		41
42	- 38855	$11 \frac{1}{3}$. 39937	$11 \overline{6}$. 4540 o	105	. 4666	$10 \overline{8}$	42
43	. 38989	13	. $4004{ }^{\text {² }}$	116	. 4551		4677		43
44	. 39082		. $401 \mathrm{~m}^{\text {a }}$. 45619		46879		44
45	8.39195	113	8.4027 $\overline{\text { a }}$	116	$8.4572{ }^{\overline{4}}$		8. 46887		45
46	. 39308	113	. 40395	115	. 45829	105	$\triangle 709$		46
47	. 39421		. 40511	115	45934	-	. 1720	0	47
48	. 39534		. $4062 \overline{5}$	115	4603	0̄̇	4731	07	48
49	. $3964 \overline{6}$. 40749		46142		47417		49
50	8.3975 $\overline{1}$	112	8.4085市	15	8.46247		8.4752.5		50
5	. 39871	112	. 4097	115	. 4635		-4763		51
52	. 39983	12	. 41087	15	4645	03	4773	10	52
53	. 40095	112	. $4120 \overline{2}$. 465	10	47848		5
54	40207		41317		. 46662		. 47953		54
55	$8.4031 \overline{8}$		8.41431		$8.4676 \frac{6}{}$		8.4806		55
56	. 4043 S		. 41546	114	. $4686{ }^{\circ}$. $4816 \overline{6}$	10	56
57	-4054	1	. 41660		. 46972		48273		57
58	- 40652		. 41774	14	. 47076	03		$10 \overline{6}$	5 9
$\underline{59}$. 40764		-41888		$\frac{.47179}{}$	103			
	$\frac{\text { Q. } 40875}{\text { Lg. Vers. }}$		$\left\|\frac{8.47 n \cap \bar{n}}{\text { Log. Exs }}\right\|$		$\left\|\frac{\mathrm{R} .479 .82}{\text { Lg. Vrs. }}\right\|$		48591		6

7	14.0	
8	16.0	15.815 .7
9	18.0	17.817 .7
10	20.0	$19.819 \cdot \frac{6}{6}$
20	40.0	39.639 .3
30	60.0	59.559.0
40	80.0	79.3 78. 6
	100.0	$99 . \overline{1} 198 . \overline{3}$

> | $\mathbf{1 1 7}$ | $\mathbf{1 1 6}$ | $\mathbf{1 1 5}$ | |
| ---: | ---: | :---: | :---: |
| 6 | $11 \cdot 7$ | $11 \cdot 6$ | 11.5 |
| 7 | $13 \cdot 6$ | $13 \cdot 5$ | $13 \cdot 4$ |
| 8 | $15 \cdot 6$ | $15 \cdot 4$ | $15 \cdot 3$ |
| 9 | $17 \cdot 5$ | $17 \cdot 4$ | $17 \cdot 2$ |
| 10 | $19 \cdot 5$ | $19 \cdot 3$ | $19 \cdot 1$ |
| 20 | $39 \cdot 0$ | $38 \cdot 6$ | 38.3 |
| 30 | $58 \cdot 5$ | $58 \cdot 0$ | $57 \cdot 5$ |
| 40 | $78 \cdot 0$ | $77 \cdot 3$ | $76 \cdot 6$ |
| 50 | $97 \cdot 5$ | $96 \cdot 6$ | $95 \cdot 8$ |

114113112
$6|11.4| 11.3 \mid 11.2$
$713.313 .2 \mid 3.0$
8 15.2 $15.014 . \overline{9}$
917.16 .016 .8 $1019.018 \cdot \frac{8}{6} 18 \cdot \frac{6}{6}$ 20 38.0 37.6 37. 3 30 57.0 56.5 56.0 $4076 \cdot 075 \cdot \frac{\overline{3}}{5} 74 \cdot \frac{\overline{6}}{3}$
50|95.0194. 1 |93. 3
111110109
$6 \mid 11.111 .010 .9$
$712 . \overline{9} 12.812 .7$
8 14.8 14.6
9 16.616.5 16.3 $1018.518 \cdot 318.1$ 2037.0 36. $\overline{6} 36 \cdot \overline{3}$ 3055.5 55. 0 54. 5 $4074 \cdot 073 \cdot \frac{3}{3} 72 \cdot 6$ 50192.5 91. $\overline{6}$ /90.8
$108107 \cdot 106$ $6 \mid 10.810 .710 .6$ $712.612 .512 . \overline{3}$ $814.414 . \overline{2} 14 . \overline{1}$ $916 \cdot 216 \cdot 015 \cdot 9$ $1018.017 . \overline{8} 17 . \frac{6}{6}$ 2036.0 35. $\overline{6} 35 . \overline{3}$ 3054.053 . 5 53. 0 4072.071 .370 .6 50 90.089.1 88.3
$105104 \quad \overline{0}$ $6|10 \cdot 5| 10 \cdot 4 \mid 0 \cdot \overline{0}$
$712 . \overline{2} 12 . \overline{1} 0 . \overline{0}$
$814.013 . \overline{8} 0.0$
9 15.7 1 15. 6 0.1
10 17.517 .3 3.
$2035.034 \cdot 6$ O. 1

| 30 | 52.5 | $52 \cdot 0$ |
| :--- | :--- | :--- | :--- | :--- |
| 40 | | |
| 70.0 | 69.3 | |

$5087.586 . \overline{6} 0.4$
P. P,

TABLE VIII.-LOGARITHMIC VERSED SINES AND EXTERNAL'SECANTS.

14°							15°			
	Lg. Vers.		Log. Exs.		Lg. Vers.		Log. Exs.			P. P.
O 1 2 3 3 4	8.47282 .47384 .47487 .47590 47692 8	102 103 102 102	$\begin{array}{r} 8.4859 \overline{1} \\ .48697 \\ .48803 \\ .48909 \\ .49014 \\ \hline \end{array}$	106 106 105 105	$8.5324 \overline{2}$.53338 .53434 .53530 .53625 8.537	$\begin{aligned} & 96 \\ & 95 \\ & 96 \\ & 95 \\ & 95 \end{aligned}$	8.54748 .54847 .54946 .55045 .55144 8.5524	$\begin{aligned} & 99 \\ & 99 \\ & 99 \\ & 99 \end{aligned}$	1 1 1 2 3 4	103102101 $6 / 10.3\|10.2\| 10.1 ~$
$\begin{aligned} & 6 \\ & 7 \\ & 8 \\ & 9 \\ & \hline \end{aligned}$	$\begin{array}{r} 8.47795 \\ \hline .47897 \\ .47999 \\ .48101 \\ .48203 \\ \hline \end{array}$	102 102 102 102 102	$\begin{array}{\|r\|} \hline .49120 \\ .492251 \\ .49331 \\ .49436 \\ .49541 \\ \hline \end{array}$	105 105 105 105 105	$\begin{array}{\|r} \hline \cdot 53721 \\ .5381 \overline{6} \\ .5391 \overline{1} \\ .54007 \\ .54102 \\ \hline \end{array}$	95 95 95 95 95	$\begin{array}{\|r\|} \hline 8.5524 \overline{3} \\ .55342 \\ .55441 \\ .55539 \\ .55638 \\ \hline \end{array}$	$\begin{aligned} & 99 \\ & 99 \\ & 98 \\ & 98 \\ & 98 \end{aligned}$	5 7 7 8 9	$\begin{array}{r\|r\|r\|r} 7 & 12.0 & 11.9 & 11.8 \\ 8 & 13.7 & 13.6 & 13.4 \\ 9 & 15.4 & 15.3 & 15 . \\ 10 & 17 . & 17.0 & 16.8 \\ 20 & 34.3 & 34.0 & 33.6 \end{array}$
$\begin{aligned} & 10 \\ & 11 \\ & 12 \\ & 13 \\ & 14 \end{aligned}$	$\begin{array}{r} 8.4830 \overline{4} \\ .48406 \\ .48507 \\ .48609 \\ .48710 \\ \hline \end{array}$	101 101 101 101 101	$\begin{array}{\|r\|} \hline 8.49646 \\ .49750 \\ .49855 \\ .49960 \\ .50064 \\ \hline \end{array}$	104 105 104 104	$\begin{array}{r} 8.54197 \\ .54291 \\ .54386 \\ .54481 \\ .54575 \\ \hline \end{array}$	95 94 95 94 94	8.55736 .55834 .55933 .56031 .56129 8.562	98 98 98 98 98	10 11 12 13 14	
$\begin{aligned} & 15 \\ & 16 \\ & 17 \\ & 18 \\ & 19 \\ & \hline \end{aligned}$	$\begin{array}{r} 8.48811 \\ .48912 \\ .49013 \\ .49114 \\ .45215 \\ \hline \end{array}$	101 101 100 101	$\begin{array}{r} 8.50168 \\ .50273 \\ .50377 \\ .50481 \\ .50585 \\ \hline \end{array}$	104 104 104 104	8.54670 .54764 .54858 .54952 .55046	94 94 94 94 94 94	$\begin{array}{r} 8.5622 \overline{6} \\ .56324 \\ .56422 \\ .56510 \\ .5617 \\ \hline \end{array}$	97 98 97 97 97	15 16 17 18 19	
$\begin{aligned} & \overline{20} \\ & 21 \\ & 22 \\ & 23 \\ & 24 \end{aligned}$	$\begin{array}{r} 8.49315 \\ .49415 \\ .49516 \\ .49616 \\ .49716 \end{array}$	100	$8 \cdot 5068 \overline{\overline{8}}$.5079 .50896 .50999 .51102 .51205	$\begin{aligned} & 103 \\ & 103 \\ & 103 \end{aligned}$	8.55140 .55234 .55328 $.5542 \overline{1}$.55515	$\begin{aligned} & 94 \\ & 93 \\ & 94 \\ & 9 \frac{4}{3} \\ & 9 \frac{3}{3} \end{aligned}$	8.56714 .56812 .56909 .57006 .57103 .57200	$\begin{aligned} & 9 \overline{7} \\ & 97 \\ & 97 \\ & 97 \\ & 97 \end{aligned}$	18 20 21 23 23 24	
25 26 27 28 29	$\begin{array}{r} 8.49816 \\ .49916 \\ .50015 \\ .50115 \\ .50215 \\ \hline \end{array}$	100 100 99 100 99	$8 \cdot 51205$.51309 .51412 .51514 .51617 .51720	103 103 103 102 103	$\begin{array}{r} 8.55608 \\ .55701 \\ .55795 \\ .55888 \\ .55981 \\ \hline \end{array}$	93 93 93 93 93	8.57200 .57996 .57393 .57490 .57586 8	97 96 97 96 98	25 26 27 28 29	
$\begin{aligned} & \mathbf{3 0} \\ & 31 \\ & 32 \\ & 33 \\ & 34 \\ & \hline \end{aligned}$	$\begin{array}{r} 8.50314 \\ .50413 \\ .50512 \\ .50611 \\ .50710 \\ \hline \end{array}$	99 99 99 99 99	8.51720 .51822 .51925 .52027 .52129 .52231	$\begin{aligned} & 102 \\ & 102 \\ & 102 \\ & 102 \end{aligned}$	$\begin{array}{\|r\|} \hline 8.56074 \\ .56166 \\ .56259 \\ .56352 \\ .56444 \\ \hline \end{array}$	$\begin{aligned} & 93 \\ & 92 \\ & 92 \\ & 93 \\ & 9 \overline{2} \end{aligned}$	$\begin{array}{r} 8.5768 \overline{2} \\ .5779 \\ .57875 \\ .57971 \\ .58067 \\ \hline \end{array}$	96 96 96 96 96 95	$\begin{array}{r}30 \\ 31 \\ 32 \\ 33 \\ 34 \\ \hline\end{array}$	10 15.1 16.0 15.8 20 32.3 32.0 31.6 30 $48 \cdot 5$ $48 \cdot 0$ 47.5 40 64.6 64.0 53.3 50 80.8 80.0 79.1
35 36 37 38 39	8.50809 .50908 .51006 .51105 .51203	$\begin{aligned} & 9 \overline{8} \\ & 99 \\ & 98 \\ & 99 \\ & 98 \end{aligned}$	$8.5223 \overline{1}$.5233 .5243 .52537 $.52633^{\frac{5}{5}}$.527	$\left\|\begin{array}{l} 102 \\ 102 \\ 102 \\ 101 \\ 101 \\ 101 \end{array}\right\|$	$8.5653 \overline{6}$.56629 .56721 .56813 .56905	$\begin{aligned} & 92 \\ & 92 \\ & 92 \\ & 92 \\ & 92 \end{aligned}$	8.58163 .58259 .58354 .58450	95 96 95 96 95	35 36 37 38 39	
$\begin{aligned} & \mathbf{4 0} \\ & 41 \\ & 42 \\ & 43 \\ & 44 \\ & \hline \end{aligned}$	8.51301 .51399 .51495 .51693 .5169	$\begin{aligned} & 98 \\ & 98 \\ & 98 \\ & 98 \end{aligned}$	8.5274 C .52841 .52943 .53044 .53145	101 101 101 101 101	8.56997 .57089 $.5718 \overline{0}$.57272 $-5736 \overline{3}$	$\left.\begin{aligned} & 92 \\ & 92 \\ & 91 \\ & 91 \\ & 91 \\ & 91 \end{aligned} \right\rvert\,$	8.58641 .58736 .58832 .58927 .59022	95 95 95 95 95	40 41 42 43 44	
$\begin{aligned} & 45 \\ & 46 \\ & 47 \\ & 48 \\ & 49 \\ & \hline \end{aligned}$	$\begin{array}{\|r\|} \hline 8.51791 \\ .51888 \\ .51986 \\ .52083 \\ .52180 \\ \hline \end{array}$	98 97 97 97 97	8.53248 .53347 .53448 .53548 .53649	${ }_{101}^{101} 18$	$\begin{array}{r} 8.57456 \\ .57546 \\ .57637 \\ .5772 \varepsilon \\ .57819 \\ \hline \end{array}$	$\left\|\begin{array}{l} 91 \\ 91 \\ 91 \\ 91 \\ 91 \end{array}\right\|$	8.58117 .59211 .59306 .59401 .59495 8	95 95 95 95 95 94 94 94	45 46 47 48 49	
$\begin{aligned} & 50 \\ & 51 \\ & 52 \\ & 53 \\ & 54 \end{aligned}$	8.52277 .523741 .52568 .52665	97 97 97 96 97	$8 \cdot 5374 \overline{9}$.53850 .53950 .54050 .541 .50	$\left\|\begin{array}{l} 100 \\ 100 \\ 100 \\ 100 \\ 100 \end{array}\right\|$	8.57910 .58001 .58092 .58182 .58273	$\begin{aligned} & 91 \\ & 90 \\ & 91 \\ & 90 \\ & 900 \end{aligned}$	8.59590 59684 .59778 .59873 .59967 8	94 94 94 94 94 94 94 94	$\begin{array}{r}50 \\ 51 \\ 52 \\ 53 \\ 51 \\ \hline 55 \\ \hline\end{array}$	
$\begin{aligned} & 55 \\ & 56 \\ & 57 \\ & 58 \\ & 59 \\ & \hline \end{aligned}$	$\begin{array}{\|} \hline 8.52761 \\ .52858 \\ .52954 \\ .53050 \\ .53146 \\ \hline \end{array}$	96 96 96 96	8.54250 .54350 .54449 .54549 .54649	$\begin{array}{r} 100 \\ 99 \\ 100 \\ 99 \end{array}$	$8.5836 \overline{3}$ $.5845 \overline{3}$.58544 .58634 .58724	$\begin{aligned} & 90 \\ & 90 \\ & 90 \\ & 90 \\ & 90 \end{aligned}$	$\begin{array}{r} 8.60061 \\ .60155 \\ .60248 \\ .60342 \\ .60436 \\ \hline \end{array}$	94 94 94 94 93 94 94	55 56 57 58 59	
60	$\frac{8.5324 \overline{2}}{\text { Leg. Vers. }}$	D	$\frac{8.54748}{\text { Log. Exs. }}$	D	$\underline{8.58814}$	D	$\left\lvert\, \frac{8.60530}{\text { Log. Exs. }}\right.$	D	60	P. P.

TABLE VIII.-LOGARITHMIC VERSED SINES AND EXTERNAL SECANTS. 16°

	Lg. Vers.	D	Log. Exs.	D	Lg. Vers.	D	Log.Exs.	D			P. P.
0	8.58814		8.60530	$9 \overline{3}$	8.64043	$8 \overline{4}$	8.65984		0		93.92
1	. 58904	89	. 60623	93	. 64128	84	. 66072	88	1		$9.3{ }^{9.2} 919.1$
2	- 58993	90	- 60716	93	. 64212	84	. 66160	88	2		$10.810 \cdot 710.6$
3 4	.59083 .59173	89	. 60810	93	. 64296	84	. $66244 \overline{8}$	88	3		$12 \cdot \frac{4}{9} 12 \cdot \overline{2} 12 \cdot \overline{\frac{1}{6}}$
4	$\stackrel{.59262}{8.59}$	$8 \overline{9}$	- 8 -60	$9 \overline{3}$. 64	$8 \overline{4}$		$8 \overline{8}$	4		
6	- 59351	89	. 61089	93	. 64549	84	8.66425	87	5	20	$31.030 .6{ }^{\text {l }}$ 30.5
7	. 59441	89	. $6118 \overline{2}$	93	. 64633	84	. 66600	88	7	30	46.5 46.045 .5
8	. 59530	89	. 61275	93	. 64717	84	. 66688	87	8	40	$62.061 .3{ }^{60.6}$
9	. 59619	89	. 61368	93	. 64801	84	. 66776	87	9		77.5176.6/75.8
10	8.59708	89	8.61460	92	8.64884	83	$8.6686 \overline{3}$	87	10		
11	- 59797	89	- 61553	92	. 64968	84	. 66951	87	11		9.0\| 8.9 8.8
12	- 59886	$8 \overline{8}$	- 61645	92	- 65052	83	-67039	87	12		
13	- 59974	89	- 61738	92	-65135	83	- 67126	87	13		12.011 .811 .7
14	-60063	$8 \overline{8}$. 61830	92	. 65218	$8 \overline{3}$. 67213	87	14	9	13.513 .313 .2
15	8.60152	88	$8.6192 \overline{2}$	92	8.65302	83	8.67301	87	15	10	15.014 .814 .6
16	-60240		- 62014	92	- 65385	83	- 67388	87	16		30.0 $29 . \overline{6}$ 29.3
17	. $60322 \overline{8}$	88	- $6210 \frac{6}{8}$	92	- 65468	83	- 67475	87	17		45.044 .544 .0
18	-60417	88	-62198	92	.65551 .65634	83	.67562 .67649	87	18		$60.059 .3{ }^{58} \cdot \frac{6}{3}$
19	. 60505		. 62290	91			649				5.0174.173.3
20	8.60593	88	8.62382	92	8.65717	83	8.67736	$8{ }^{8}$	20		
21	. 60681	88	. 62474	$9{ }^{1}$. 65800	82	. 67822	87	21		87 8.7 8.685 8.5
22	- 60769	88	- 62565	$9 \overline{1}$	- 658883	82	-67909	$8 \overline{6}$	22		
23	-60857	87	- 6	91	. 656964	83	. 679896	$8 \overline{6}$	23		11.611 .4
$\underline{4}$		$8 \overline{7}$. 62	91		$8 \overline{2}$	-68169	$8 \overline{6}$			13.012 .912 .7
25	8.61032	87	8.62840	91	- 66131	82	8.68169	$8 \overline{6}$	25		14.514 .314 .1
26	-61119	87	-62931	91	-66213	82	-68255	86	27		29.0 28. $\overline{6}$ 28. $\overline{3}$
27	-61207	87	-63022	91	- 662978	82	-68341	$8 \overline{6}$	27	30	$43 \cdot 543 \cdot 0{ }^{42 \cdot 5}$
28	. 61294	87	. 631113	91	.66378 .66460	82	$\begin{array}{r}.68428 \\ .68514 \\ \hline\end{array}$	86	28		$58.057 .3{ }^{56.6}$
$\underline{29}$. 61381	87	. 63204	$9 \overline{1}$	0		68		29		72.571 .6770 .8
30	8.61469	87	8.63295	91	8.66542	82	8.68600		30		
31	. 61556	87	- 63388		- 666224	82	- 688886	85	31		$84 \quad 8382$
32	-61643	87	- 634777	90	- 66706	82	- 688772	86	32		
33	-61730	$8 \overline{6}$. 63567	90	- 66788	82	- 688858	86	33		
$\underline{34}$. 61816		. 63658		. 66870		. 68944	8	34		
35	8.61903	$8{ }^{8}$	8.63748̄	90	8.66951	$8 \overline{1}$	8.69029	86	35		
36	. 61990	$8 \frac{8}{6}$	- 633839	90	- 67033	82	-69115	85	36		
37	-62076	8 8	. 63929	90	. 67119	81	. 692201	85	37		$\begin{array}{cc}28.0 & 27.6 \\ 42.0 & 41.5 \\ 41.0\end{array}$
38 39	. 62163	$8{ }^{8}$. 644019	90	. 67196	81	. 692886	85	38 38		56.0 $55.354 . \overline{6}$
40	-62336	$8 \overline{6}$	8.84199	90	8.67359	$8 \overline{1}$	8.69457	85			70.069 .168
41	. 62422	86	.64289	90	. 67440	81	. $6954 \overline{2}$		41		
42	. 62508	86	. 64379	90	. 67521	81	. 69627	85	42		$8.1\|8.0\| 7.9$
43	- 62594	86	. 64469	$8 \frac{1}{3}$	-67602	81	- 69712	85	43		$9 . \overline{4}$ $9 . \overline{3}$ 9.2
44	. 62680	86	. 64559	8	. 67683	81	. 69798		44		10.810 .610 .5
45	8.62766	86	8.64649	89	8.67764		8.69883	84	45		$12 \cdot \overline{1} 12 \cdot \frac{0}{3} 11 \cdot \overline{8}$
46	- 62852	$8{ }^{8}$	-64738	$8{ }^{8}$. 67845	$8{ }^{81}$	- 699967	85	46		$13.513 . \frac{1}{3} 13 . \overline{1}$
47	- 62937	85	. 648218	$8 \overline{3}$. 679226	81	. 70052	85	47		
48 49	. 63023	85	. 649190	89	. 688007	8 80	. 70137	$8{ }^{8}$	48 49	30	
50	8.63194	85	8.65096	89	8.68168	$8 \overline{0}$	8.7030 $\overline{6}$	$8 \overline{4}$	50		67.566.6̄65.8
51	. 63279	85	. 65185	89	. 68248	80	. 70391	84	51		
52	. 63364	85	. 65274	89	- 68329		- 70475	84	52		
53	-63449	85	. 65363	89	. 68409	80	-70560	84	53		70.0
54	. 63534	85	. 65452		. 68489		. 70644		54		80.
55	8.63619 ̄	85	8.65541	88	$8.6856 \overline{9}$		8.7072 $\overline{8}$		55		90.1
56	-63704	85	. 65629	88	. 68650	80	. 70813	84	56		100.1
57	-63789	$8{ }^{8}$. 65718	89	. 63730	80	. 70897	84	57		200.1
58	- 63874	85	- 65809	88	-68810	$7 \overline{9}$	- 70981	84	58		$300 \cdot \overline{2}$
59	. 63959	85	. 65895	8	. 68889		. 71065		59		4 C 0.3
60	$8.6404 \overline{3}$		8.65984		$8.6896 \overline{9}$		8.71149		60		frno. 4
	Lg. Vers.	D	Log. Exs.	D	Lg, Vers.	$1)$	Log, Exs.	11			P. P.

TABLE VIII.-LOGARITHMIC VERSED SINES AND EXTERNAL SECANTS. | | Lg. Vers. |
| :---: | ---: |
| $\mathbf{0}$ | $\mathbf{8 . 6 8 9 6 9}$ |
| 1 | .69049 |
| 2 | .69129 |
| 3 | .69208 |
| 4 | .69288 |
| 5 | $8.6936 \overline{7}$ |
| 6 | .69446 |
| 7 | .69526 |
| 8 | .69605 |
| 9 | .69684 |
| 10 | 8.69763 |
| 11 | .69842 |
| 12 | .69921 |
| 13 | .70000 |
| 14 | .70079 |
| 15 | 8.70157 |
| 16 | .70236 |
| 17 | .70314 |
| 18 | .70393 |
| 19 | .70471 |
| 20 | 8.70550 |

21

TABLE VIII.-LOGARITHMIC VERSED SINES AND EXTEIRNAL SECANTS. 22°
23°

	Lg. Vers.	D	Log.Exs.		Lg. Vers.	D	Log. Exs.	D				P. P.	
0	8.86223	$6 \overline{4}$	8.89506	70	8.00034	62	8.93631	67	0				
1	. 862887	64	. 89576	70	. 90096	62	. 93699	67	$\frac{1}{2}$				
2	. $8635 \overline{2}$	65	- $8964 \overline{6}$	70	. 90158	62	. 93766	67	3				
3	. 86417	65	. 897716	69	$\begin{array}{r} .90220 \\ .90282 \end{array}$	62	.93833 .83901	67	3 4			69	
4	. 86482	$6{ }^{6}$. 89786	70	. 90282	62	. 83901		4	6	7.0	6.9	6.8
5	8.86547	64	8.89856	70	8.90344	62	8.93968	67	5	8	8.1	8.0	7.9
6	. 86612	64	- 89926	$6 \overline{9}$	- 90406	61	. 944035	67	6	8	$9 \cdot 3$	9.2	9.0
7	- 86676	64	- 89995	70	. 90467	62	.94102 .94170	67	7 8	9	$10 \cdot 5$	10.3	$10 \cdot \frac{2}{3}$
8	-86741	64	$\begin{array}{r}.90065 \\ .90135 \\ \hline\end{array}$	$6 \overline{9}$. 90529	61	. 94170	67	8 9	10	$11 . \frac{6}{3}$	11.5	$11 \cdot \frac{3}{6}$
9	. 86805	$6 \overline{4}$. 90135	70	. 90591	61	$\frac{.94237}{8.94304}$	67	10	20	23.3	23.0	22.6 34.0
10	8.86870	64	8.90205	69	8.90652 .90714	62	$\left\|\begin{array}{r} 8.94304 \\ .94371 \end{array}\right\|$	67	10		$\begin{aligned} & 35 \cdot 0 \\ & 46 \cdot 6 \end{aligned}$	$\left.\begin{aligned} & 34 \cdot 5 \\ & 46.0 \end{aligned} \right\rvert\,$	
11	. 869334	64	. 9020274	69	. 90714	61	$\begin{array}{\|} .94371 \\ .94438 \end{array}$	67	11		$\frac{46 \cdot 6}{58}$	$\left.\begin{aligned} & 46.0 \\ & 57.5 \end{aligned} \right\rvert\,$	$\begin{aligned} & 45 \cdot 3 \\ & 56 \cdot 6 \end{aligned}$
12	- 86999	64	- 90344	69	. 90776	61	. 94438	67	12				
13	. 87063	64	. 90413	69	. 908378	61	. 944572	67	14				
14	. 87127	$6 \overline{4}$. 90433	$6 \bar{\square}$. 90899	61		$6 \overline{6}$				66	65
15	8.87192	64	$8.9055 \overline{2}$	69	8.90960̄	61	8.94638 .94705	67	15	6	6.7		6.5
16	. 87256	64	- 90652	69	. 91021	$6 \overline{1}$. 94705	$6 \overline{6}$	17	7	7.8		$7 \cdot 6$
17	. 8737384	64	. 906076	69	. 91144	61	$.94839$	67	18	8	$8 \cdot 9$	8.8	$8 \cdot 6$
18	$\begin{array}{r}.87384 \\ .87448 \\ \hline\end{array}$	64	$\begin{array}{r} 90760 \\ .93830 \\ \hline \end{array}$	69	. 91205	61	$\begin{array}{r} .94839 \\ .94905 \\ \hline \end{array}$	$6 \overline{6}$	19		10.0		9.7
20	8.87512	64	8.90899	69	8.91267	61	8.94972	$6 \overline{6}$	20	10	$12 \cdot \frac{1}{3}$	11.0	$10 \cdot \frac{8}{6}$
21	. 87576	64	. 90968	69	. 91328	61	. 95039	67	21	30	33.5	33.0	32.5
22	. 876400	64	. 91037	$6 \overline{9}$	-91389	61	. 95105	$6 \overline{1}$	22		44.6	44.0	$43 \cdot 3$
23	. 87704	63	. 911106	69	-91450	61	. 95172	$6 \overline{6}$	23		55.81	55.0	54.1
$\underline{24}$. 87758		. 91175		. 91511		. 95238		24				
25	8.87832	63	8.9124 ${ }^{4}$	69	8.91572	61	8.95305	66	25				
26	. 878959	64	. 9131313	68	. 91633	61	.95371 .95437	66	26			63 6.3	
27	. 878959	$6 \overline{3}$. 9131451	69	. 916945	61	. 954504	66	28	6	7.4	7.3	7.2
29	. 888086	63	. 91520	69	. 91815	60	. 95570	66	29	8	8.5	8.4	$8 . \overline{2}$
30	8.88150	63	$8.9158 \overline{\overline{5}}$	68	$8.9187 \overline{\overline{6}}$	61	$8.9563 \overline{6}$	${ }^{66}$	30	10	9-6	9.	9.3
31	. 88213	63	. 91657	68	. 91937	60	- 95703	66	31	20	21.3	21.0	20.6
32	. 88277		- 91726	68	. 91997		. 95769	66	32	30			
33	. 88340	$6 \overline{3}$. 91794	$6 \overline{8}$	- 92058	60	. 95835	66	33			42.0	
34	. 88404		. 91863		. 92119		. 95901	6	34		$53 \cdot \overline{3}$	52.5	51.6
35	8.88467	63	8.91932	$6 \overline{8}$	8.92179]	60	8.95967		35				
36	. $88530 \overline{0}$	63	. 92000	68	- 92240	60	- 96033		36				
37	. 88593	63	- 92068	68	. 92300	60	. 96099	66	37			60	59
38	- 888656	63	-92137	68	. 92361	60	. 96165	66	38	7	${ }_{7}^{6} \cdot 1$		5.9
39	. 88720		. 92205	$6 \overline{8}$. 92421	$6 \overline{1}$. 96231	66	39	7	$7 \cdot \frac{1}{7}$		6. 9
40	8.88783	63	8.92274	68	8.92487	60	8.96297	$6 \frac{6}{5}$	40	8	8.1		
41	- 888846	63	-92342	68	. 92542	60			41				
42 43	. 888909	62	. 92410	68	$\begin{gathered} .92602 \\ .92662 \end{gathered}$	60	$\begin{array}{r}.96428 \\ .96494 \\ \hline\end{array}$	65	42		$\begin{aligned} & 10 \cdot \frac{1}{3} \\ & 20 \end{aligned}$	120	${ }_{19}^{9.6}$
43	- 88971	63	. 9245488	68	. $92672{ }^{\text {a }}$	60	. 96494	66	43 44 4	30	$\begin{aligned} & 20.3 \\ & 30.5 \end{aligned}$	30.0	${ }_{29.5}^{19.6}$
44	. 89034		. 92546		. 92722		. 96560		44	40		40.0	39.3
45	8.83097	63	8.92615	68	$8.92782 \overline{2}$	60	8.96625		45		$150 \cdot \frac{0}{8}$	50	49.1
46	. 89160	63	- 92683	68	- 92842	60	. 96691		46				
47	- 89223	62	-92751	68	. 92902	60	. 96757		47				
48	. 899385	62	.92819 .92887	68		60	. 96822	65				$\overline{0}$	
$\underline{49}$. 89348	63	. 92887		. 93022		. 96888	65	49			$610 . \overline{0}$	
50	8.89411	62	8.92955	67	8.93082	59	$8.9695 \frac{3}{3}$		50			$70 \cdot 0$	
51	. 89473	62	. 93022	68	. 93142	60	. 97018		51			80.0	
52	. 89536	62	. 93090	67	. 93202	59	. 97084	65	52			90.1	
53	. 89598	62	. 93158	68	.93261	60	-97149	65	53			0	
$\frac{54}{55}$. 89660	¢ 2	. 93226	$6 \overline{7}$. 93321	$5 \overline{1}$. 97214	65	54			0	
55	8-89723	62	8.93293		8.93381		8.97280		55				
56	. 89785	62	. 93361		. 9334400	60	$\begin{aligned} & .97345 \\ & .97410 \end{aligned}$	65	56			00.3 0.0 .4	
57	- 898847	62	. 933429	67	. 933500	59	. 97410	65	57			0.4	
58 59	.89910 .89972 .09034	62	$\begin{array}{r}.93496 \\ .93564 \\ \hline\end{array}$	67	.93560 .93619	59	$\begin{array}{r}.97475 \\ .97540 \\ \hline\end{array}$	65	58				
$\underline{60}$	0 8.00034	62	$8.9353 \overline{1}$	67	3.93679	59	8.97606	65	60				
	Lg. Vers.]	D	Log. Exs.	D	Lg, Vers.	D	Log.Exs.	D				P. P.	

TABLE VIII.-LOGARITHMIC VERSED SINES AND EXTERNAL SECANTS. 24° 25°

TABLE VIII.-LOGARITHMIC VERSED SINES AND EXTERNAL SECANTS. 26°
27°

TABLE VIII.-LOGARITHMIC VERSED SINES AND EXTERNAL SECANTS. 28°
29°

	Lg. Vers.	D	Log.Exs.	1)	Lg. Vers,	D	Log.Exs.	D		P. P,		
0	9.06838	50	9.12244	57	9.09823		9.15641		0	5\% ${ }^{\text {a }}$		
1	. 068888	50	. 12302	57	. 09872	49	. 15697	56	1			
2	. 06939	50	- 12359	57	. 099220	49	- 15752	56	2			
3	. 069990	50	. 12416	57	. 09969	48	. 15808	55	3			
5	9.07091	50	9.12531	57	9.10067	49	9.15920	56	5			
6	. 07141	50	. 12588	57	. 10115	48	- 15975	55	5	20.19 .1919 .018		
7	. 07192	50	12645	57	. 10164	48	. 16031	56	7			
8	. 07242	50	. 12703	57	. 10213	49	. 16087	55	8	$4038.3{ }^{3} 38.037 .6$		
9	. 07293	50	. 12760	57	. 10261	48	. 16142	55	9	50\|47.9	47.5	47.1
10	9.07343	50	9.12817	57	9.10310	48	$9.1619 \overline{\overline{3}}$	56	10			
1	. 97393	50	. 12874	57	. $1035 \overline{8}$	48	. 16254	55	11	56 55 55		
12	. 07444	50	. 12931	57	. 10407	48	. 16309	55	12			
13	. 07494	50	- 12988	57	. 10455	48	. 16365	55	13	8 8 $\mathbf{7} \cdot \frac{5}{4}$ $\mathbf{7 . 5}$		
14	. 07544		. 13045		. 10504		. 16420		14			
15	9.07594	50	9.13102	57	$9.1055 \overline{2}$	48	9.16476		15	$10{ }^{10} 9 \cdot \frac{3}{3}-9 \cdot \frac{2}{2} 9.1$		
16	.07644	50	. 13159	57	. 10601	48	. 16531	55	16	20 18.6 18.5 18.3		
17	. 07695	50	. 13216	$5 \overline{6}$	- 10649	48	- 16587	55	17	3028.027 .727 .5		
18	. 07745	50	- 13273	57	- 10697	48	- 16642	55	18	$4037 \cdot 3{ }^{37 \cdot 0} 36 \cdot \frac{6}{8}$		
19	. 07795	50	. 13330	57	. 10746	48	. 16698		19	$50146 . \overline{6} / 46 . \overline{2} 145 . \overline{8}$		
20	9.07845	50	9.13387	57	9.10794	48	9.16753		20			
21	. 07895	50	-13444	$5 \frac{5}{5}$. 10842		. 1680 ¢	55	21			
22	. 07945	50	-13500	57	. 10890	48	. 16864	55	22			
23	. 07995	50	-13557	$5 \frac{5}{6}$. 10939	48	. 16919	55	23			
24	. 08045		. 13614		. 10987		. 16974		24	8		
25	9.08095	50	9.13671	57	9.11035	48	$9.1702 \overline{9}$	55	25			
26	. 08145	50	-13727	57	- 11083	48	. 17085	55	26	20 18.1-18.0		
27	. 08195	$4 \overline{9}$	- 13784	$5 \frac{1}{6}$	- 11131	48	- 17140	55	27	3027.2		
28	. 088244	50	- 13841	56	. 11179	48	. 17195	55	28	$4036.3{ }^{36: 0}$		
29	. 08294	50	. 13897		. 11227	48	17250		29	$50 \mid 45.445 .0$		
30	9.08344	49	9-13954	$5 \frac{7}{5}$	9.11275		9.17305		30			
31	. 08394		-14011	56	. 11323		. 17361		31	$515{ }^{5} \mathbf{5 0}$		
32	. $0844 \overline{3}$	49	. 14067	56	. 11371	48	. 17416	55	32			
33	. 08493	50	. 14124	$5 \frac{1}{6}$	- 11419	48	. 17471	55	33			
34	. 08543	5	. 14180	56	. 11467	48	. 17526		34			
35	$9.0859 \overline{2}$	49	9.14237	$5{ }^{56}$	9.11515		9.17581		35			
36	. 08642		. 14293		. 11562	47	. 17636		36			
37	. 08691	49	- 14350		. 11610	48	. 17691	55	37	$2017 \cdot 016.816 .6$		
38	. 08741	49	. 14406	56	. 11658	47	. 17746	55	38			
39	. 08790		14462		11706		. 17801		39			
40	9.08840	49	9.14519	56	9.11754		9.17856		40			
41	.08889	49	-14575		. 11801	47	. 17910	55	41	$\begin{array}{llll}\mathbf{4} & 49 & \mathbf{4} \overline{8}\end{array}$		
42	. 08939	49	. 14631	$5{ }_{5}^{6}$. 11849	48	. 17965	55	42			
43	- 08988	49	- 14688	56	. 11897	47	. 18020	54	43	7 5.8 5.7 5.6		
44	. 09087	49	. 14744	5	. 11944		. 18075	55	44			
45	9.09087	49	9.14800	56	9.11992		9.18130		45			
46	. 09136	49	. 14856	56	- 12039	47	- 18185	54	46			
47	. 09185	49	. 14913	56	. 12087	47	- 18239	55	47	${ }^{20} 16 \cdot 5 \cdot 16.316 \cdot \frac{1}{7}$		
48	. 09234	49	- 14969	56	- 12134	47	. 18294	54	48	$30{ }^{24.7}{ }^{24.5}{ }^{24 .}$		
49	. 09284		. 15025		. 12182		. 18349		49	$40 \times 33 \cdot 0$		
50	9.09333	49	9.15081	$\left\|\begin{array}{l} 56 \\ 56 \end{array}\right\|$	$9.1222 \overline{9}$		9.1840		50	50141.2140 .8140 .4		
51	. 09382		- 15137		- 12277		- 18458		51			
52	. 09431	49	- $1519 \frac{3}{3}$	56	- 12324	47	. 18513		52			
53	. 09480 -	49	- $1524 \frac{9}{9}$	56	. 12371	47	. 18567	54	53			
54	. $\mathrm{n} 952 \overline{9}$	49	. 15305		. 12419		. 18622		54			
55	$9.0957 \overline{\overline{1}}$	49	9.15361	$\begin{aligned} & 56 \\ & 56 \end{aligned}$	$9 \cdot 12466$		9.18676		55	$9{ }^{9} 7.297 .178 .0$		
56	. $0962 \overline{7}$	49	- $1541 \frac{7}{7}$	56	. 12513	47	. 18731	55	56			
57	. 09676	$4 \overline{8}$	- 15473	56	- 12560	47	- 18786	54	57	$2016.015 \cdot \overline{8} 15 \cdot 6$		
58	- 09725	49	-15529	5	- 12608		- 18840	54	58	$3024.023 \cdot \frac{7}{6} 23 . \frac{5}{3}$		
59	. 09774	49	. 15585	56	. 12655	47	. 18894	$5 \overline{4}$	$\frac{59}{60}$			
60	9.0987?		9.15641	56	9.12702	47	9.18949		60	50140.0139 .639 .1		
	Lg. Vers.	D	Log. Exs.	D	Lg. Vers.	D	Log.Exs.	D		P. P.		

TABLE VIII.-LOGARITHMIC VERSED SINES AND EXTERNAL SECANTS.

TABLE VIII.-LOGARITHMIC VERSED SINES AND EXTERNAL SECANTS.
32°

34°
35°

	Lg. Vers.	D	Log. Exs.	D	Lg. Vers.	D	Log.Exs.	D		P. P,
0	9.23290	41	$9.3143 \overline{2}$		9.25731		9.34395		0	$50 \quad 49$
1	. 23331	41	. 31482	50	. 2577	40	. 34444	49	1	
2	- 23372	41	. 31532	49	. 258811	40	- 34492	48	2	
3	. 23414	41	. 31582	50	. 25851	40	. 34541	49	3	8 6.6-6.6 6.5
4	. 23455	41	. 31632		. 25891		. 34590	49	4	
5	$9.23496 \overline{6}$	41	9.31681	49	9.25931		$9.3463 \overline{9}$	$\begin{aligned} & 49 \\ & 48 \end{aligned}$	5	
6	. 23537	41	- 31731	49	- 25971	40	. 34688	$\begin{aligned} & 48 \\ & 49 \end{aligned}$	6	${ }^{20} 16.616 .516 .3$
8	- 23579	41	- 31781	50	- $2601 \overline{1}$	$3{ }^{4} 9$	- 34737	49	7	${ }^{30} 4025 \cdot 0{ }^{24.7} 24.5$
8 9	. 23620	41	. 318381	$4 \overline{9}$	- 26051	40	- 347885	49	8	
10	9.23702	41	$9.31930 \overline{ }$	50	9.26131	40	9.34883	49		
1	. 23743	41	. 31980	49	. 26171	40	- 34932	48	10	$4 \overline{8}{ }^{-1} 48$
12	. 23784	41	- 32029	49	. 26210	49	. 34980	48	12	4.8
13	. 23825	41	- 32079	50	. 26250	40	- 34029	49	13	6.4 6.4
14	. $2386 \overline{6}$	41	. 32129	50	. 26290	40	. 35078	48	14	6.4 6.4 7.3 7.2
15	9.23907	41	9.32178	49	9.26330	40	9.35127	49	15	108.18 .0
16	. 23948	41	. 32228	49	. 26370	${ }_{3}$. 35175	48	16	2016.16 .0
17	. 23989	41	- 32277	$4 \overline{9}$	- 26409	40	- 35224	49	17	$3024 . \overline{2} 24.0$
18	- 24030	41	. 32327	50	- 26449	39	- 35273	48	18	4032.3 32.0
19	. 24071	41	. 32377		. 26489		. 35321		19	$50140 \cdot 4 / 40 \cdot 0$
20	9.24112	41	$9.3242 \overline{6}$	49	$9.2652 \overline{8}$	40	9.35370	48	20	
21	. 24153	41	- 32476	49	- 26568	${ }^{4} 9$. 35419	49	21	${ }^{41}$
22	- 24194	41	. 32525	49	- 26608	${ }_{3}{ }^{\text {a }}$. 35467	48	22	
23	- 24235	$4 \overline{1}$. 32575	49	- 26647	${ }_{3} 9$. 35516	48	23	
24	. 24275		. 32624		. 26687	¢	. 35564		24	8 5.5 5 9 6.2 6
25	$9.2431 \overline{6}$	41	$9.3267 \overline{3}$	49	$9.2672 \overline{6}$	40	9.35613	48	25	
26	. 24357	41	- 32723	49	- 26766	${ }_{3}{ }^{\text {a }}$	- 35661	48	26	$2013 \cdot \overline{8} 13 \cdot \overline{6}$
27	- 24398	$4 \overline{1}$	- 32772	$4 \overline{9}$	- 26806	$3 \overline{9}$	- 35710	48	27	3020.720 .5
28	.24438 .2447	41	.32822 .32871	49	. 268845	39	- 35758	$4 \overline{4}$	28	4027.6 27. ${ }^{\text {a }}$
		40			. 26885		- 35807		29	34.6134.
30	9.24520	41	9.32920	49	9. 26924	$3 \overline{9}$	9.35855	48	30	
31	- 24561	$4 \overline{0}$	- 32970	49	. 26964	39	- 35904	48	31	$4 \overline{0}-40$
32	- 24601	40	- 33019	49	- 27003	$3 \overline{9}$	-35952		32	
33 34	. 244642	40	+33069 .33118	49	. 27042	$3 \overline{9}$	+ 36001 .3604	48	33 34	7 4.7 4.6 8 5.4 5.3
34	. 24682	41	$\frac{.33118}{9.33167}$	$4 \overline{9}$	$\frac{.27082}{9.2712 \overline{1}}$	$3 \overline{9}$	+36049	$4 \overline{8}$	$\frac{34}{35}$	8 5.4 5.3 9 6.1 6.0
35	9.24723	40	9.33167 .33216	49	9.27121 .27161	$3 \overline{9}$	$\begin{array}{r}9.36098 \\ .36146 \\ \hline\end{array}$	48	35	$106 . \overline{7} \quad 6 . \overline{6}$
36 37	- 24764	40	- 33266	49	. 27200	39	- 36194	48	37	$20.13 \cdot 513 . \overline{3}$
38	. 24845	40	- 33315	49	. 27239	39 39	- 36243	4	38	30 20. 2 20.0
39	. 24885		. 33364	45	. 27278	39	. 36291	48	39	$40 \cdot 27 \cdot 0 \cdot 26 \cdot \frac{6}{7}$
40	9.24926	40	9.3341亏3	49	9.27318	39	9.36340	$4 \overline{8}$	40	
41	- 24966	40	- 33463	49	- 27357	$3 \overline{9}$	- 36388	48	41	$\begin{array}{ll}3 \overline{9} & 39\end{array}$
42	- 25007	$4 \overline{0}$	- 33512	49	- $2739 \overline{6}$	39	- 36436	48	42	
43	- 250478	40	- 33561	49	- 27435	39	- 36484	48	43	7 4.6 4.5
44	. 25087	40	. 33610	49	. 27475	39	. 36533	$4 \overline{8}$	44	8 \% $5 . \overline{2} 5.2$
45	9.25128	40	$9 \cdot 3365 \frac{9}{7}$	49	9.27514		9-36581	48	45	
46	- $2516 \overline{8}$	40	- 33708	49	- 27553	$3 \overline{9}$	- 36625	48	46	10 6.6 6.5
47	- 25209	40	- 33758	49	- 27592	39	- 36678	48	47	$2013 . \frac{1}{7} 13.0$
48	- 25249	40	- 33807	49	- 27631	39	. 36726	48	48	$3019 \cdot \frac{7}{3} 19.5$
49	. 25289		. 33856		. 27670		. 36774		49	$4026.3{ }^{26}$. 0
50	$\bigcirc \cdot 2532 \overline{9}$	40	9.33905	49	$9.2770 \overline{\overline{9}}$	39	9.3682 ${ }^{\text {a }}$	48	50	$5032 \cdot 9132.5$
51	- 25370		- 83954		- 27749		- 36870		51	
52	- 25410	40	- 34003	49	- 27788	39	. 36919	48	52	${ }_{6}{ }_{38}{ }^{\text {a }}$
53	- 25450	40	- 34052	49	- 27827	39	- 36967	48	53	6 7 $3 \cdot 8$ 7 4.5
54	. 25490		. 34101		. 27866		. 37015		$\frac{54}{55}$	${ }_{8} 8.5$
55	9.25531	40	9.34150	49	9.27905	39	9.37063	48	55	95
56	- 25571	40	- 34199	49	- 27944	$3 \overline{8}$	- 37111	48	56	106.4
57	- 25611	40	- 34248	49	- 27982	39	- $3715 \overline{7}$	48	57	20.12 .8
58	- 25651	40	- 342978	49	. 2802	39	- 37207	48	58	$3019 . \overline{2}$
59	. 25691	40	$\begin{array}{r}+34346 \\ \hline 9.34395\end{array}$	49		39		48	$\frac{59}{60}$	$40{ }^{40} 125 \cdot 6$
60	9.25731		9.34395		9.28099		9.37303		60	50132.1
	Lg. Vers.	D	Log, Exs.	D	Lg. Vers,	D	Log. Exs.	D		P, P.

TABLE VIII.-LOGARITHMIC VERSED SINES AND EXTERNAL SECANTS.
37°

	Lg. Vers.	D	Log.Exs.	D	Lg. Vers.	D	Log. Exs.	D	,	P. P.
0	$9.2809 \overline{9}$		9.3730 $\overline{3}$	$4 \overline{8}$	9.30398	$3 \overline{7}$	$9.4016 \overline{3}$		0	48 - 48
1	. 28138	39	- 37352	48	. 30436	37 38	. 40210	$\begin{aligned} & 47 \\ & 47 \end{aligned}$	1	
2	. 28177	38 39	. 37400	48	. 30474	38	. 40258	$\begin{aligned} & 47 \\ & 47 \end{aligned}$	2	7 5.6 5.6
3	- 28816	39	. 37448	48	. 30511		. 40305	47	3	
4	. 28255		. 37496		. 30549		. $4035 \overline{2}$		4	
5	9.28293	38	9.37544	48	9.30587	38	9.40399	$\begin{aligned} & 47 \\ & 47 \end{aligned}$	5	108.18
6	. 28332	38	. 37592	48	. 30624	37	. 40447	$4 \overline{7}$	6	$2016 \cdot \frac{1}{2} 16.0$
7	. 28371	39	. 37640	48	. 30662	38	. 40494	47	7	$3024.2{ }^{24} 24.0$
8	. 28410	$3 \overline{8}$	- 37687	48	- 30700	37	-40541	47	8	40 50 $3_{40.3} 4340.0$
9	. $2844 \overline{8}$	88	. 37735	48	. 30737	37	. $4058 \overline{8}$	47	9	50,40.4140.0
10	9.284.87	38	$9 \cdot 37783$	48	9.30775	37	9.40635	$\begin{aligned} & 47 \\ & 47 \end{aligned}$	10	$4 \overline{7} \quad 47$
11	. 285266	38	- 377831	48	-30812	37	. $4068 \overline{2}$	47	11	
12	. 285654	39	- 378787	48	- 30850	37	$.40730$	47	12	
13	. 28603	$3 \frac{1}{8}$	$\begin{array}{r}.37927 \\ .37975 \\ \hline\end{array}$	47	$\begin{array}{r} .30887 \\ .30925 \end{array}$	37	$\begin{array}{r} 40777 \\ 40804 \end{array}$	47	13	88.3 6.
$\frac{14}{15}$. 28642	$3 \overline{8}$	$\underline{.37975}$	48	$\stackrel{.30925}{\square}$. 40824		14	9 7.1 7.0 10 7.9 7.8
15	9.28680	38	9.38023	48	9.30962	37	9.40871	47	15	10 7.9 7. ${ }^{\text {¢ }}$
16	- 28719	$3 \overline{1}$	- 38071	48	- 31000		. 40918	47	16	$2015 \cdot 815.6$
17	- 28757	$3 \overline{8}$	- 38119	47	- 31037		- 40965	47	17	30 23.7 ${ }^{23 \cdot 5}$
18	. 28796	39	- 38166	48	- 31075	37	- 41012	47	18	4031.6
19	. 28835		. 38214	48	. 31112		41050	47	19	50139.6139.1
20	9.28873	38	9.38262		9.31150		$9.4110 \overline{6}$	47	20	
21	. 28912	38	. 38310	47	- 31187	37	. 41153	47	21	
22	. 28950	$3 \overline{8}$	- 38357	48	- 31224	37	. 41200	47	22	6 4.6 7 5.4
23	- 28988	$3 \overline{8}$	- 38405	47	- 31262	37	. 41247	47	23	 8 5.4 8.2
$\underline{24}$. 29027	$3 \overline{1}$. 38453		. 31299		41294	47	24	8 6.2 9 7.0
25	9-29065	38	9.38501	48	9-3133 ${ }^{\text {a }}$	37	9.41341	47	25	107.7
2	- 29104	$3{ }^{3}$	- $3854 \overline{8}$. 31374		. 41383	47	26	2015.5
27	- 29142	38	- 38596	47	. 31411	37	. 41435	47	27	3023.2
28	- 29180	38	.38644 .38692	48	- 31448	37	. 41482	47	28	4031.0
29	. 29219	$3 \overline{8}$	92	$4 \overline{7}$	1485		. 41529	$4 \overline{6}$		50138
30	0 9.29257	38	9.38739	47	9.31523	37	9.41576		30	
31	- 29295	38	- 38787	47	- 31560		. 41623	47	31	${ }^{39}{ }^{3} \overline{38}_{\overline{8}}$
3	- 29334	38	- 388834	48	- 31597	37	- 41670		32	
33	- 29372	38	- 388882	47	- 31634	37	. 41717	$4 \overline{4}$	33	7 4.5 4.5 88 5.2 5.7
34	. 29410		.38930				. 41763		34	8 5.2 5.1 9 5.8 5.8
35	9.29448	38	9.38977	47	9.31708		9.41810	47	35	9 5.8 5.8 10 6.5 6.4
36	- 29487	38	- 39025	47	. 31746		. 41857	$4 \overline{4}$	36 37	10 $\mathbf{6 . 5}$ $\mathbf{6 . 4}$ 20 13.0 12.8
38	- 29525	38	- 39072	48	- 31783	37	. 41904	47	37	3010.519 .2
38	. 29563	$3 \overline{8}$	- 39120	47	- 31820	37	${ }^{-41951}$	47	38	$40{ }_{26.0}{ }^{\text {25. }}$
39	. 29601		39168	47	. 31857	37	41998	$4 \overline{6}$	39	50\|32.5132.1
40	9.29639	38	9.39215	48	9.31894		9.42044		40	
8.1	- 29677	38	. 39263		. 31931		$.42091$		41	$383{ }^{\text {\% }}$
42	- 29715	38	. 39310	47	- 31968		$.42138$	47	42	
43	$\begin{array}{r} \\ \hline\end{array}$	38	$\begin{array}{r}.39358 \\ .39405 \\ \hline\end{array}$	47	- 32005	37	. 4212185	$4 \overline{4}$	43 44	
	9.29830	38	9.39453	$4 \overline{7}$	9.32079	37	9.42278	47	45	
	. 29868	38	. 39500	47	. 32116		. 42325		46	10 6. ${ }^{3} 6.2$
4	7.29906	38	. 39548		. 32153		. 42372	47	47	$2012.612 \cdot 5$
4	3.29944	38	. 39595	47	. 32190	37	. 42418	47	48	3019.018 .7
\%) .29982		. 39642		. 32227		. 42465	47	49	$4025 \cdot \frac{3}{6} 25 \cdot \frac{0}{2}$
5	09.30020	38	9.39690	47	9.32263		9. 42512		50	50131.6131 .2
51	- 30057	38	. 39737	47	- 32300		- 42558	47	51	
$!$	- 30095	38	- 39785	47	- 32337	$3 \overline{4}$. 42605	$4 \overline{6}$	52	$6{ }^{3} 3 \cdot 7 \mid 3 \cdot \overline{6}$
5	+ 30133	38	.39832 .39879	47	. . .32374	37	. 42652	46	54	
55	5 9.30209	38	9.39927	$4 \overline{7}$	9.32447		9.42745	$4 \overline{6}$	55	
56	 - 30247	37	- 39974	47	- 32484		.42792 .4	47	56	5.5 5.5 10 6.1 6.1
57	7 . 30285	38	. 40021	47	. 32521		. 42838	46	57	$20.12 \cdot \frac{1}{3} 12 \cdot \overline{1}$
58	-30322	38	. 40069	47	- 32558		- 42885	$4 \overline{6}$	58	3018.518 .2
59	. 30360		. 40116		. 32594		. 42931		59	40 24. 624.3
6	$0.3039 \overline{8}$		$9.4016 \overline{3}$		9.32637		9.42978		60	Frl30.8130.4
	Lg. Vers.	D	Log, Exs,	D	Lg. Vers.	D	Log, Exs.	D		P. P.

TABLE VIII.-LOGARITHMIC VERSED SINES AND EXTERNAL SECANTS.

TABLE VIII.-LOGARITHMIC VERSED SINES AND EXTERNAL SECANTS.

TABLE VIII.-LOGARITHMIC VERSED SINES AND EXTERNAL SECANTS.

TABLE VIII.-LOGARITHMIC VERSED SINES AND EXTERNAL SECANTS.
45°

TABLE VIII.-LOGARITHMIC VERSED SINES AND EXTERNAL SECANTS.

TABLE VIII.-LOGARITHMIC VERSED SINES AND EXTERNAL SECANTS. 54°
55°

TABLE VIII.-LOGARITHMIC VERSED SINES AND EXTERNAL SECANTS.

TABLE VIII.-LOGARITHMIC VERSED SINES AND EXTERNAL SECANTS,
54°
55°

TABLE VIII.-I.OGARITHMIC VERSED SINES AND EXTERNAL SECANTS.

TABLE VIII.-LOGARITHMIC VERSED SINES AND EXTERNAL SECANTS.
58°
59°

TABLE VIII.-LOGARITHMIC VERSED SINES AND EXTERNAL SECANTS.
62°
63°

	Lg. Vers.	D	Log. Exs.	D	Lg. Vers.	D	Log, Exs.	D		P. P.
0	9.72471	21	10.05310	$4 \overline{4}$	9.73720	$2 \overline{0}$	10.08015	45	0	
1	. 72492	21	. 05354	44	. 73740	20	. 08061	45	1	
2	. 72513	21	. $05539 \frac{9}{4}$	45	. 73761	21	. 08106	45	2	
3	.72534 .72555	21	. 054444	44	. 737882	$2 \overline{0}$.08151 .08197	45	3 4 4	46
5	9.72576	21	10.05534	45	9.73823	$20 \overline{0}$	$10.0824 \overline{2}$	45	5	$6{ }^{6} 4 \cdot 6 \left\lvert\, \begin{aligned} & 4.6\end{aligned}\right.$
6	. 72597	21	. 05579	45	. 73843	2	. 08288	45	6	7 5.4 5.3 8 6.2 6.1
7	. 72618	21	. 05623 3	45	. 73864	20	. 08333	45	7	${ }^{2} 6.9$
8	. 72639	21	. 05666 8	45	.73884	21	. 08379	45	8	$107.7{ }^{10} 7 \cdot 6$
9	. 72660	21	. 05713	45	. 73905	20	. 08424		9	$2015.515 . \overline{3}$
10	9.72681	$2 \overline{1}$	$10.0575 \overline{8}$	$4 \frac{4}{4}$	9.73926	20	10.08470	45	10	$3023.2{ }^{23} 0$
11	. 72701	21	. 05803	45	. 73946		. 08515	45	11	$4031 \cdot 0330 \cdot \frac{6}{3}$
12	. $727274 \overline{2}$	21	. 05848	45	. 739687		. 08561	45	12	50138.7138 .3
13	. 72743	21	. 05893	45	- 73987		. 08606	45	13	
14	. 72764	21	. 05938		. 74008		. 08652	45	14	
15	9.72785	21	10.05983	45	$9.7402 \overline{8}$	20	10.08697	46	15	
16	. 72806	21	. 06028	$4 \frac{4}{4}$	- 74049	20	. 08743	45	16	6 4.5 4.5 7 5.3 5.2
17	. 728827	$2 \overline{1}$. 06072	45	- 74069	$2 \overline{0}$. 087889	45	17	 8 5.3 5.2 6.0 6.0
18	. 72848	21	. 066117	45	. 744110	20	. 088884	45	18	8 $6 \cdot 0$ 6.0
$\frac{19}{20}$. 72869	21	$\underline{.06162}$	45	. 74	$2 \overline{0}$		46		107.6
20	9.72890	21	10.06267	45	9.74131	$2 \overline{0}$	10.08926	45	20	$2015 . \overline{1} 15.0$
21	. 72911	$2 \overline{1}$. 06252	45	. 74151	$2 \overline{0}$	- 08971	45	21	3022.7122 .5
22	. 72931	21	. 06297	45	. 74172	20	- 09017	45	22	$4030 . \overline{3} 30.0$
23	. 72952	21	. 063342	45	. 74192	20	. 09062	46	23	50137.9137 .5
24	. 72973	21	. 06387	45	. 74213		. 09108	45	24	
25	9.72994	$2 \overline{1}$	$10.0643 \overline{2}$	45	$9.7423 \overline{3}$	20	10.09154		25	
26	. 73015	21	. 06477	45	. 74254	20	. 09200	45	26	$4 \overline{4}$
27	. 73036	21	. 06522	45	- 74274	$2 \overline{0}$	- 09245	45	27	6 4.4
28	. 73057	$2 \overline{1}$. 06568	45	- 74294	$2 \overline{0}$	-09291	46	28	$7{ }^{7} 5 \cdot 2$
29	. 73077	2	. 06613	45	. 74315	$2 \overline{0}$. 09337		29	$8{ }^{8} 5.9$
30	-73098	21	10.06658	45	9.74335	20	10.09382	46	30	96
31	. 73119	$2 \overline{1}$. 06703	45	. 74356	$2 \overline{0}$. 09428	46	31	$10{ }^{7 \cdot 4}$
32	. 73140	21	. 06748	45	. 74376	20	. 09474	45	32	2014.
33	. 73161	$2 \overline{0}$. 067793	45	. 74396	$2 \overline{0}$. 09520	46	33	4022.2
34	. 73181		. 06838		. 74417	-	. 09566	$4 \overline{5}$	34	40 29.6
35	9.73202	21	$10.06883 \overline{3}$	45	9.74437	20	10.0961	45	35	
36	. 7322 3	${ }_{2}^{1}$. 06928	45	. 74458	20	. 09657	46	36	
37	. 73244	21	. 06974	45	. 74478		. 09703	45	37	21 2 $\overline{0}$
38	. 73265	$2 \overline{0}$. 07019	45	. 74498	$2 \overline{0}$. 09749	46	38	$612 \cdot 1{ }^{2} 2 \cdot \overline{0}$
39	. 73285		. 07064	5	. 74519		. 09795		39	$7{ }^{7} \cdot 2 \cdot \overline{4}-2.4$
40	$9.7330 \overline{6}$	$2 \overline{1}$	$10.0710 \overline{\bar{g}}$	45	9.74539]	20	10.09841	46	40	$8{ }^{8}$
41	. 73327	21	. 07154	45	. 74559	20	. 0988	46	41	$9{ }^{9} 3 \cdot 1$
42	- 73348	$2 \overline{1}$. 07200	45	- 74580	20	. $09932 \overline{2}$	46	42	$10{ }^{10} 3.503 .4$
43	. 73358	21	. 07245	45	. 74600	20	. 099978	46	43	$20 \quad 7 \cdot 06 \cdot \frac{8}{2}$
44	. 73389	$2 \overline{1}$. 07290	$4 \overline{5}$. 74620	$2 \bar{\square}$. 10024		44	
45	9.73410	20	10.07335		9.74641	$2 \overline{0}$	10.10070	46	45	
46	.73430	21	. 07380 -	45	. 74661	20	. 10116	46	46	5017.517 .1
47	. 73451	20	. 07426	45	. 74681	$2 \overline{0}$. 10162	45	47	
48	. 73472	21	. 07471	45	- 74702		. 10208		48	
49	. 73493	2	. 07516	4	. 74722	20	. 10254	46	49	
50	$9.7351 \overline{3}$	20	10.07562		$9.7474 \overline{2}$		10.10300	46	50	7
51	. 73535	21	. 07607	45	. 74762	20	. 10346	46	51	$8{ }^{7} 2 \cdot 6$
52	. 73555	$2 \overline{0}$. 07656	45	- 74788	$2 \overline{0}$	- 10392	46	52	$9{ }^{9} \mathbf{0}$
53	- 73575	$2 \overline{0}$. 07697	45	-74803	20	-10438	$4 \overline{6}$	53	10.3 .3
54	. 73596		. 07743	45	. $7482 \overline{3}$	20	. 10484		54	20.6
55	9.73617		10.0778 ®	45	9.74844		10.10530̄		55	$3010 \cdot 0$
56	. 73637	$2 \overline{0}$. 07834	45	. 74864	20	. 10576	46	56	4013.3
57	- 73658	21	. 07879		- 74888		-10622	46	57	$5016 . \overline{6}$
58	. 73679	$2 \overline{1}$. 07924	45	. 74904	20	-10668	46	58	
59	. 73699	20	. 07970	45	. 74924	20	. 10714	46	59	
60	9.73720	20	10.08015	45	9.74945	20	$10.10760 \overline{ }$	46	60	
	Lg. Vers.	D	Log, Exs.	D	Lg. Vers.	D	Log, Exs.	D		P, P,

TABLE VIII.-LOGARITHMIC VERSED SINES AND EXTERNAL SECANTS.
64°
65°

TABL̇E VIII.-LOGARITHMIC VERSED SINES AND EXTERNAL SECANTS. 66° 67°

	Lg. Vers,	I	Log. Exs.	D	Lg. Vers.	D	Log, Exs,	D			P. P.
0	9.77325	19	10.16393	48	9.78481	19	10.19293	49	0		
1	. 773344	19	. 16448	47	. 78500	19	. 19342	49	$\stackrel{1}{2}$		
3	. 77383	19	- 16537	48	- 78538	19	. 19439	48	3		
4	. 77402	19	. 16585	48	. 78557	19	. 19488	49	4		$\begin{array}{lll}50 & 49 \\ 5.0 & 4 . \overline{9}\end{array}$
5	9.77422	19	10.16833	48	9.78576	19	10.19537	49	5	7	5.8
${ }_{6}^{6}$. 77441	19	- 16680	48	-78595	19	- 1958 6	49	6	8	6. 6 6. 6
7	. 77461	19	-1672 ${ }^{\text {c }}$	48	- 78614	19	- 19635	49	7	9	$7 \cdot 5$ 8.4
8 9	$\begin{array}{r} .77480 \\ .77499 \end{array}$	19	. 16776	48	$\begin{aligned} & .7863 \overline{3} \\ & .78652 \end{aligned}$	19	$\begin{array}{r} \cdot 19684 \\ \cdot 1973 \end{array}$	49	8		
10	9.77519	19	10.16872̄	48	9.78671	19	10.1978	49	10		$16.6{ }^{16.5}$
11	. 77538	19	- 16920	48	. 786900	19	- 19831	49	11	40	33.3 33.0
12	. 77557	19	. 16968	48	-7870 ${ }^{\text {a }}$	19	. 19880	49	12		11.6141.2
13	. 77577	19	. 17016	48	. 78728	19	. 19929	49	13		
14	. 77596	19	. 17084	48	. 78747	19	. 19979	49	14		
15	9.77616	19	10.1711 $\overline{2}$	48	9.7876 ${ }^{\overline{6}}$	19	10.20028	49	15		49 48
16	. 77635	19	. 17160	48	. 78785	19	- 20077	49	16	7	4.9 4.8 5.7 5.6
17	- 77654	19	- 17209	48	. 78804	19	- 20126	49	17	7	$\begin{array}{lll}5 \cdot 7 & 5.6 \\ 6.5 & 6.4\end{array}$
18	-77674	19	-17257	48	. $78882 \overline{3}$	19	- 20175	49	18	9	$7 . \overline{3}$ $7 \cdot 4$
19	. 77693		. 17305	48	. 78842		. 20224		19		8.188 .1
20	9.77712	19	$10 \cdot 17353$	48	9.78861	19	$10 \cdot 2027 \overline{3}$	49	20		16. $\overline{3} 16.1$
1	. 77732	19	. $1740 \frac{1}{1}$	48	-78880	19	- 20323	49	21	30	24.524 .2
22	. 77751	19	. 17449	48	. $78889 \overline{9}$	19	- 20372	49	22	40	$32 \cdot 632.3$
23	-77770	19	- 17498	48	. 78918	18	-20421	49	23	50	0.8140.4
24	. 77790		. 17546		. 78937		. 20470		24		
25	9.77809	19	10.17594	48	9.78956	19	10.20520	49	25		
	. 77828		. 17642	48	. 78975	19	- $2056 \frac{9}{}$	49	26		
27	. 77847	19	-17690	48	. 78994	19	- 20618	49	27	6	4.8 4.7.7
28	-77867	19	. 17738	48	.79013 .79032	19	. 20668	$4 \overline{9}$	28 29	7	$\begin{array}{lll}5.6 & 5.5 \\ 6.4 & 6.3\end{array}$
$\frac{29}{30}$	$\frac{.77886}{9.7790}$	19		48	$\frac{.73032}{9.79051}$	19		49		9	$\begin{array}{ll}7.2 & 7.1\end{array}$
31	$\left\|\begin{array}{r} 9.77905 \\ \cdot 77925 \end{array}\right\|$	19	$\begin{array}{r}10.17835 \\ .17884 \\ \hline\end{array}$	$4 \frac{8}{8}$	9.79051 .79069	18	$\left\|\begin{array}{r} 10.20767 \\ .20816 \end{array}\right\|$	49	$\left.\begin{gathered} 30 \\ 31 \end{gathered} \right\rvert\,$	10	8.0
32	. 77944	19	. 17932		. 7908 ¢	19	. 20865	49	32	20	16.015 .8
33	. 7796	19	. 17980	48	. 79107	19	. 20915	49	33	30	4.023 .7
34	. 77982	19	. 18029	48	. 79126	19	. 20964		34	40	2.031.6
35	9.78002	19	10.18077	48	$9.7914 \overline{5}$	19	10.21014	49	35		
36	. 78021	19	. 18126	48	. 79164	19	. 21063	49	36		
37	. 78040	19	-18174	48	-79183	19	- 21113	49	37		$1 \overline{9} 19$
38	-78059	19	- 18222	48	-79202	18	- 21162	50	38	6	1.91 .9
39	. 78078	19	. 18271	$4 \overline{8}$. 79220	18	. 21212	-	39		$2.3{ }^{2} 2$
40	9.78098	19	10.18319	48	$9.7923 \overline{9}$	19	10.21262	49	40	8	2.62 .5
41	. 78117	19	. 18368	48	. 79258	18	. 21311	49	41		$2 \cdot \frac{9}{2} \quad 2 \cdot \frac{8}{7}$
42	. 7813156	19	. 184186	49	. 792777	18	. 21361	49	42	10	3.2 3.1 6.5 $6 . \frac{1}{3}$
43	. 781515	19	. 18465	48	- 79296	19	. 2141460	50	43 44	30	$6 \cdot 5$ 6.3 9.7 9.5
45	9.78194	19	$\underline{10.18562}$	$4 \overline{8}$	- $7.7933 \overline{3}$	18	10.21510	49	45	40	3.012 .6
46	. 78213	19	. 18611	48	. 79352	19	10.21560	50	46	50	6.215 .8
47	. 78232	19	. 18659	48	. 79371	19	. 21609	49	47		
48	. 782515	19	. 18708	48	. 79390	18	. 21659	$4 \overline{5}$	48		
49	. 78270	19	. 18757	49	. 79409	19	. 21709	49	49		
50	$9.78289 \overline{ }$	19	10.18805	48	9.79427	18	$\overline{10.21759}$	50	50		
5	. 78309	19	. 18854	48	. 794446	19	. 21808	49	51		$8{ }^{8} 2 \cdot \frac{1}{4}$
52	. 78328	19	. 18903	49	. 79465	19	. 2185	50	52		9 9 2.8
53	. 78347	19	-18951	49	. 79484	18	- 21908	$4 \overline{9}$	53		
54	. $7836 \overline{6}$	19	. 19000		. 79503		. 21958		54		0
55	9.78385	19	10.19049		9.79521		10.22008		55		9.2
56	. 78404	19	-19098	48	. 79540	$1 \overline{8}$	- 22058	50	56		0 12.3
57 58	. 7842423	19	- 19146		- 79559		- 22108	50	57		015.4
58	. 78442	19	-19195	49	. 79578	18	. 22158	50	58		
59	. 78462		. 19244	49	. 79596		. 22208		59		
60	9.78481	19	10.19293	48	9.79615	19	10.22258	50	60		
	Lg. Vers.	D	Log, Exs.	\bar{D}	Lg. Vers.	D	Log.Exs.	D_{i}			P. P.

TABLE VIII.-LOGARITHMIC VERSED SINES AND EXTERNAL SECANTS.
68°
69°

	Lg. Vers.	D	Log.Exs.	D	Lg. Vers.	D	Log, Exs,	\boldsymbol{L}			P. P.
0	9.79615	$1 \overline{8}$	$\text { \| } 10.22258 \mid$		$9.8072 \overline{8}$	$1 \overline{8}$	10.25295		0		
1	$.79634$	18	$\begin{array}{r} .22308 \\ .22358 \end{array}$	50	$.80747$	18	-25347	$5 \overline{1}$	1		$5 \cdot 3$ $5 \cdot \overline{2}$ $6 \cdot 2$
2 3	. 796651	$1 \frac{18}{18}$. 222458	50	. 8070785	18	. 2534989	51	2 3 3		6.2 6.1 7.0 7.0
+ 4	. 79690	18	- 22458	50	. 80802	18	. 25501	$5 \overline{1}$	3 4 4		7.9 7.0 7.9 7.9
5	9.79709	19	10.22508	50	$9.80820 \bar{\square}$	18	$10.2555 \overline{2}$	51	5		8.8-8.8.7
6	. 79727	19	. 22558	50	. 80839		. 25604	51	6		$17 \cdot \overline{6} 17 \cdot \frac{5}{2}$
7	. 79746	18	. 22600^{6}	50	. 80857	18	- 25655	$5 \overline{1}$	7	30	$26.5126 . \overline{2}$
8	. 79765	18	- 22658	50	. 808775	18	- 25707	$5 \overline{1}$	8	40	
9	. 79783		. $2270 \overline{8}$	5	. 80894		. 25758	51	9	50	44.143 .7
10	9.79802	18	10.22759	50	9.80912	18	10.25810	$5 \overline{1}$	10		5251
11	. 79821	18	- 22809	50	. 80930	18	. 25861	$5 \overline{1}$	11		5. 5.1
12	. $7983 \overline{9}$	19	- 22859	50	- 80949	18	- 25913	$5 \overline{1}$	12		6.0.0.0
13	. 798858	18	$.22909$	$5 \overline{0}$	$\begin{aligned} & .80967 \\ & .80985 \end{aligned}$	$1 \overline{1}$	- 25964	$5 \overline{1}$	13		6.9 6.8
14	. 79877	$1 \overline{8}$. 22960		$.80985$. 26016		14		7.878
15	9.79895	18	10.23010	50	$9.8100 \overline{3}$	18	10.26067	52	15	10	8. $\cdot \frac{6}{3}$ 8. 6
16	- 79914	19	$.23060 \overline{0}$	50	$\begin{aligned} & .81022 \\ & .81040 \end{aligned}$	$1 \overline{1}$	$\begin{array}{r} .26119 \\ .26171 \end{array}$	51	16	20	$17.3{ }^{17.1}$
17	. 799331	18	. 231161	50	. 8104050	18	. 2662217	51	17	30 40	
19	. 79970	18	.2321	50	. 81077	18	. 26274	52	19		43.3 314.9
20	9.7998 ¢	18	10.23262	50	9.81095	18	10.26326		20		
21	. 80007	18	- 23312	50	- 81113	18	. 26378	51	21		$\begin{array}{lll}51 & 50 \\ 5.1 & 5 .\end{array}$
22	. 80026	18	- 23362	50	- 81131	$1 \overline{1}$	- 26429	52	22		5.1 5.0 5.9 5.9
23	- 80044	18	-23413	50	- 81150	18	- 264831	52	23		5.9 5.9 6.8 6.7
$\underline{24}$. 80063	18	. 23463	50	. 81168		. 26533		24		7.6 7.6
25	9.80081	19	10.23514	50	$9.8118 \overline{6}$	18	10.26585	51	25	0	8.58 .4
26	. 80100	18	- 23564	50	. 81204	$1 \overline{8}$	- 26637	52	27		17.016 .8
27	. 80119	$1 \frac{8}{8}$	- 23615	50	. 81223	18	- 26689	. 52	27	30	25.5125 .2
28	. 80137	18	-23666	50	- 812412	$1 \overline{8}$. 26741	52	28	40	34.033 .6
29	. 80156	$1 \overline{8}$. 2	50	59	18	. 26793				42.5142.1
30	9.80174	18	10.23767	$5 \overline{0}$	$9.8127 \overline{7}$	18	10.26845	52	30		
31	. 80193	18	. 238817	51	. 8121295	18	. 268897	52	31 32		
32	. 80211	18	. 238919	50	. 8181332	18	. 268949	52	32		6 5.0 7 5.8
34	. 8024	18	. 23969	50	. 81350		. 27053	52	34		86.
35	9.80267	18	10.24020	$5 \overline{0}$	9.81368	18	10.27105	52	35		97
36	. 80286	18	. 24071	51	. 81386	18	. 27157	52	36		$10{ }_{20} 16$
37	. 8030	18	- 24122	50	. 81405	18	- $2720 \overline{9}$	52	37		2016.6
38 39	. 8032	18	. 24172	51	. 81423	18	. 27261	52	38 39		4033 . 3
39	. 80341	18	$\underline{.24223}$		$\underline{.81441}$	18	$\frac{.27314}{10.27366}$				50141.6
40	9.80360	18	10.24274 .24325	50	$\left\|\begin{array}{r} 9.8145 \overline{9} \\ .8147 \overline{7} \end{array}\right\|$	18	$\begin{array}{r}10.27366 \\ .27418 \\ \hline\end{array}$	52			
42	. 803787	18	. 24376	51	$\begin{array}{r} 81477 \\ .81495 \end{array}$	18	. 27470	52	42		${ }_{1}^{19} 918$
43	. 80415	18	. 24427	51	. 81513	18	- 27523	52	43		$2 \cdot 2{ }^{2}$
44	. 80434		. 24478		. 81532		. 27575		44		2.5 5.4
45	9.80452	18	10.24529	51	9.81550	18	10.22627		45		$2 \cdot 8.8$
46	. 80470	18	. 24580	51	. 81568	18	. 27680	52	46	10	3. $\frac{1}{3}$ - ${ }^{\text {d }}$ - 1
47	. 80489	18	- 24631	51	- 81586	18	- 27738	52	47	20	$6 \cdot 3$ 9.5
48	. 80507	18	- 244783	51	. 816162 立	18	. 277835	52	48	30	$12 \cdot 6$
50	$\frac{.80526}{9.8054 \overline{4}}$	18		51		18		52	$\frac{5}{50}$		15.8115 .4
50	9.805	18	10.24784 .24835	51	9.81	18	$\begin{array}{r}10.27894 \\ \hline .279\end{array}$	52	51		
52	. 8058	18	. 24886	51	. 81576	18	. 27995	52	52		
53	. 80600	18	- 24937	$5 \overline{1}$. 81695	18	- 28047	52	53		
54	. 80618		. 24988		. 81713		. 28100		54		7 1.8 8 2.4
55	$9.8063 \overline{6}$	18	$10.2503 \overline{9}$		9.81731	18	$10.2815 \overline{2}$		55		9 2.7
56	- 80655	18	- 25090	51	. 81749	18	- 28205	52	56		103.0
57	- 80673	18	- 25142	51	. 81787	18	- 28258	52	57		20.0
58	. 80692	18	. 251924	51	. 817885	18	. 288310	53	58		30.9
$\underline{59}$. 80710	18		51	$\frac{.81803}{9.81821}$	$1 \overline{8}$	$\frac{.28363}{10.28416}$	$5 \overline{2}$	$\frac{59}{60}$		
60	$\frac{9.80728}{}$	D	$\frac{10.25295}{\text { Log. Exs. }}$	D	Lg. Vers.	D	Log, Exs.	D			P. P.

TABLE VIII.-LOGARITHMIC VERSED SINES AND EXTERNAL SECANTS.

70°						71°				P. P.	
	Lg. Vers.	I	Log, Exs.	D	Lg. Vers.	D	Log. Exs.	D			
0	9.81821		10.28416		9.82894		10.3162 $\overline{9}$		0		
1	.81839	18	$\cdot 28410$	53	.82911	17	$.31684$	${ }_{5}^{5 \overline{4}}$	1	6\| $5 \cdot \overline{6} \left\lvert\, \begin{array}{ll}5 \cdot 6\end{array}\right.$	
	. 81857	18	. 28521		. 829n9	17	- 3173 ¢	54	2	$7{ }^{7} 6.6$ 6. 5	
3	. 81875	18	- 28574	53	. 82947	18	. 31793	5	3	8 7.5 7.4	
4	. 81893	18	. 28627	53	. 82964		. 31847	5	4	9 8.5 8.4	
5	9.81911	18	10.28680	52	$9.8298 \overline{2}$	18	10.31902	5	5	10 9.4 9.3	
8	.81929	18	. 28733	53	. 83000	17	. 31956	54	6	$2018 \cdot 8{ }^{18} \cdot 18 \cdot 6$	
$\begin{aligned} & 7 \\ & 8 \end{aligned}$. 8194965	18	. 288886	53	. 83017	18	- 32011	55	7		
9	. 81983	18	. 288892	53	- 83053	17	. 32120	54	8 9	50\|47.1	46.6
10	9.82001	18	10.28945	53	9.83070	$1 \overline{7}$	10.32175	54	10		
11	. $8201 \overline{\text { ¢ }}$	18	. 28998	53	.83088	18	10.32230 .3220	55	11	6) 55.5	
12	. 82037	18	. 29051	53	. 83106	17	. 32284	54	12	6 5.5 5. 7 6.5 6.	
13	. 82055	18	- 29104	5	. 83123	17	. 32339	54	13	8 7.4 7.3	
14	. 82073	18	. 29157	53	. 83141	17	. 32394	54	14	9.3 8.2	
15	9.82091 İ	18	10.29210	53	9.83159	18	10.32449		15	10 9.2 9.1	
16	. 82109	18	. 29263		. 83176	17	. 32504	5	16	$2018.518 . \overline{3}$	
17	. 82127	18	- 29316	53	. 83194	17	. 3255	55	17	3027.7 27.5	
18	. 82145	18	- 29370	53	. 83211	18	. 3261	55	18	$4037 \cdot 036 \cdot 6$	
19	. 82163	18	. 29423	53	. 8322 a		. 32668	55	19	50146.2/45.8	
20	9.82181	18	10.29476	53	9.83247	17	10.3272		20		
21	. 82199	18	. 29529		. 83264	17	. 32778	55	21	${ }^{54} 5$	
22	. 82217	18	. 29583	53	. 83282	17	. 32833	55	22		
23	. 82235	17	. 2963	53	. 83299	18	. 32888	55	23		
$\underline{24}$. 82252		. 29689		. 83317	18	. 32944		24		
25	$9.82270 \bar{\square}$	18	10.29743	53	9.83335	17	10.32999	55	25		
27	. 82288	18	- 29796	53	- 83352	17	. 33054	55	26	2018.118 .0	
27	. 82306	18	- 29850		. 83370	17	. 33109	55	27	3027.2	
28	. 82324	17	- 29903	53	. 83387	17	. 33164	55	28	4036.338 .0	
$\underline{29}$. 82342		29957		. 83405		. 33220		29	50\|45.4	45.0
30	9.82360	18	10.30010	5	$9.8342 \overline{2}$	17	10.33275		30		
31	. 82378	18	. 30064	53	. 83440	18	. 33330		31	$5 \overline{3} \quad 53$	
32	. 82396	17	- 30117	54	. 83458	17	. 33385	55	32	$\left.6{ }_{6}^{6} 5 \cdot \frac{3}{2} \right\rvert\, 5 \cdot 3$	
33	. 82413	18	- 30171	53	. 83475	17	- 33441	55	33		
34	. 82431	18	. 30225		. 83493		. 33496		34	8 7.1 7.0	
35	$9.8244 \overline{9}$	18	10.30278 ̄	5	9.83510	17	10.33552		35	98.0	
36	. 82467	17	. 30332	53	. 83528	17	. 33607		36	10 8.9 ${ }^{8} 8.8$	
37	. 82485	18	. 30386		. 83545	17	. 33663		37	$2017 \cdot 817.6$	
38	. 82503	17	. 30440	53	. 83563	17	. 33718	55	38		
39	. 82520		. 30493		. 83580	17	. 33774	55	39		
40	9.8253 $\overline{8}$	18	10.30547	54	9.83598	17	10.33829	55	40		
41	. 82555	18	. 30601	53	. 83615	17	. 33885	56	41	$5 \overline{2}$	
42	. 82574	17	. 30655	54	. 83633	17	. 33941	55	42		
43	. 82592	17	. 30709	54	. 83650	17	. 3399	5	43	$7{ }^{6} \mathbf{1}$	
44	82609		. 30763		. 83668		. 34052		44	87.0	
45	$9.8262 \overline{7}$	18	$\underline{10.30817}$	54	9.83685	17	10.34108		45	97.9	
46	. 82645	17	- 30871	54	. 83703	17	. 34164		46	108.7	
47	. 82663	18	- 30925	54	- 83720	17	- 34220	5	47	$2017 \cdot \frac{5}{2}$	
48	. 82681	17	-30979	54	. 83737	17	- 34275	56	48	3026.2	
49	. 82698 ¢		. 31033	54	. 83755		. 34331		49	$4035 \cdot 0$	
50	$9.82716 \overline{6}$	17	10.31087		$9.8377 \overline{2}$	17	10.34387		50	50143.7	
51	. 82734	18	- 31141	54	. 83790		. $34443^{\frac{3}{2}}$	56	51		
52	. 82752	17	. 31195	54	. 83807	17	. 34499	56	52		
53	. 82769	18	-31249	54	. 83825	17	. 3455	56	53	6 1.8 $1 \cdot 7$ 1.7	
54	. 82787	17	. 31303	54	. 83842		. 34611		54	7 $2 \cdot 1$ $2 \cdot 0$ $2 \cdot 0$ 8 2.4 2.3 2.0	
55	9.82805	17	10.31358	54	$9.8385 \overline{9}$	17	10.34667		55		
56	- 828233	17	- 31412	54	. 83877	17	- 34723	56	56		
57	- 828450	18	. 31466	54	. 838394	17	- 34780	56	57		
58 59	. 828858	17	$\begin{array}{r}.31521 \\ .31575 \\ \hline\end{array}$	54	. 839912	17	.34836 .34892	56	58		
60	$\frac{.82876}{9.82894}$	18	10.31629	$5 \overline{4}$	$9.8394 \overline{6}$	17	10.3494 $\overline{8}$		60		
	Lg. Vers.	D	Log, Exs.	D	Lg. Vers.	D	Log. Exs.	D		P. P.	

TABLE VIII.-LOGARITHMIC VERSED SINES AND EXTERNAL SECANTS.
72°
73°

	Lg. Vers.	1)	Log. Exs.	D	Lg. Vers,	D	Log. Exs.	D			P. P.
0	$9.8394 \overline{6}$	17	10.34948	$5 \overline{6}$	9.84980		10.38387	5	0		$616 \overline{0}$
	. 83964	17	. 35005	56	. 84997	17	. 38445	58	1		$6.1 \mid 6 . \overline{0}$
2	. 83981	17	. 35061	$5 \frac{6}{5}$. 85014	17	. 38504	$\left.\begin{aligned} & 58 \\ & 58 \end{aligned} \right\rvert\,$	2		7.1 7.0
3	. 83999	17	. 35117	56	. 85031	17	. $3856 \overline{2}$	58	3		8.18
4	. 84016		. 35174		. 85049	17	. 38621	58	4		
5	$9.8403 \overline{3}$	17	10.3523 ̄̃	56	9.85066	17	$10.3867 \overline{9}$	$5 \overline{8}$	5		10.110
6	. 84051	17	. 35286	55	. 85083	17	. 38738	58	6		20.320
7	. 840808	17	- 35343	$5 \frac{5}{6}$. 85100	17	. 38796	59	7		$30.5{ }^{3} 80$
8 9	$\begin{aligned} & .84055 \\ & .84103 \end{aligned}$	17	$\begin{array}{r} .35399 \\ .3545 \end{array}$	57	$\begin{array}{\|l\|} .85117 \\ .85134 \end{array}$	17	. 38855	58	8 9		50.8150
10		17	$\begin{array}{r}.3545 \\ \hline 10.35513\end{array}$	$5 \overline{6}$		17	$\underline{.} 10.38914$				
$\begin{aligned} & 10 \\ & 11 \end{aligned}$	9.8412	17	10.35513 .35569	56	9.85151 .85168	17	10.38973	$5 \overline{1}$	10		$60 \quad 59$
12	. 84155	17	-. 35626	$5 \overline{6}$. 85185	17	. $39090{ }^{\text {a }}$	59	11		$6.0 \mid 5$
13	. 84172	17	. 35683	57	. 85202	17	. 39149	59	13		7.0
14	. 84189	17	. 35739	56	. 85219	17	. 39208	58	14		8.07 .9
15	9.84207	17	$10.3579 \overline{6}$	$5 \frac{5}{6}$	9.85236	17	10.39267	59	15		10.09
16	. 84224	17	. 35853	57	. 85253	17	10.39326	59	16		20.019.
17	. 84241	17	. 35910	57	. 85270	17	. 39385	59	17		30.029 .7
18	. 84259		. 35967	$5 \frac{5}{6}$. 85287	17	. 39444	59	18		$40.0{ }^{39.6}$
19	. 84276	17	. $3602 \overline{3}$	56	. 85304	17	. $3950 \overline{3}$	59	19		50.0149 .6
20	9.8429	17	$10.36080{ }^{0}$	57	9.85321	17	$10.39562 \overline{2}$		20		
21	. 843110	17	- 36137	57	. 85338	17	-39621	59	21		5958
22	. 84328	17	-36194	57	. 85355	17	- 39681	59	22		5.9 6.9
23	. 843345	17	. 363025	57	. 853372	17	. 39740	$5 \overline{9}$	23		6. 8
25	9.84380	17	10.36366	57	9.8540	$1 \overline{6}$	10.39859	59			8.88
26	. 8439	17	. 36423	57	. 854	17	. 39918	59	26		9.89 .7
27	. 8441	17	. 36480	57	. 8543	17	-39977	$5 \overline{9}$	27		19.6 ${ }^{19.5}$
28	. 844431	17	-36537	57	. 8545	17	. 40037	$5 \overline{9}$	28		29.5 3 29
29	. 84449	17	. 3659	57	. 85473		. 40096	59	29		9.1148
30	9.84466	17	10.36652	57	9.85490	17	10.40156	59	30		
31	. 844	17	. 36709	57	. 85507		. 40216		31		58 57
32	. 8450	17	. 36766	57	. 85524	17	. 40275	59	32		5.8 5.7
33	. 84517	17	- 36824	57	. 85541	17	- 40335	60	33		6.76 6.7
34	. 84535		. 36881		. 85558		. 40395	60	34		7.7 7.6
35	9.84552	17	$10.3693 \overline{\overline{8}}$	57	9.85575	17	$10.4045 \overline{4}$	59			8.78 .6
36	. 8456	17	. 36996	57	$\begin{array}{r} 9.85079 \\ .85592 \end{array}$. 40514	60			9. $\overline{\frac{6}{3}}$ 9-6
37	. 8458	17	. 37054	58	. 85608		. 40574	69	37		$19 \cdot \overline{3} 19 \cdot \frac{1}{7}$
38	. 8460	17	. 37111	57	. 85625		. 40634	60	38		9.0
39	. 84620	17	. 37169	57	. 85642		. 40694	60	39		6
40	9.84638	17	$10 \cdot 37226{ }^{6}$	$\begin{aligned} & 57 \\ & 57 \end{aligned}$	$9.8565 \overline{9}$	17	10.40754		40		
41	. 8465	17	$.37284$. 85676	17	- 40814				$57 \quad 5 \overline{6}$
42	. 844678	17	$\begin{array}{r} 37349 \\ .373999 \end{array}$	57	. 856	17	. 40874	60			$5 \cdot 7 \mid 5 \cdot 5$
43	. 84470	17	$\begin{array}{r}.37399 \\ .3745 \\ \hline\end{array}$	58	. 8	16	. 40934	60	43 44		6.6
45	9.84724	$1 \overline{7}$	10.37515	58	9.857	17	10.41054	60	45		7.6 7.5 8.5 8.5
46	. 84741	17	10.37573 .	57	. 85760	17	- 411114	60	46		9.5 9.4
47	. 84751	17	. 37631	58	. 85777	17	. 41174	60	47		19.018
48	. 8477	17	. 37689	58	. 85794	17	. 41235	60	48		28.528 .2
49	. 84792		. 37747		. 85811		. 41295		49		38.037 .6
50	$9.8480 \overline{9}$	17	10.37805	$\begin{aligned} & 58 \\ & 58 \end{aligned}$	9.85827	17	10.41355		50		47.5147.1
51	. 8482	17	. 37863	58	. 85844	17	. 41416		51		
52	. 84844	17	- 37921	58	. 85861	16	. 414776		52		
53	. 84861	17	- 37979	58	. 85878	17	. 41537	60	53		
54	. 84878	17	. 38037		. 85895	16	. 41597	60	54		$\begin{array}{llll}3 & 2.0 & 1.9 \\ 2.2 & 2.2\end{array}$
55	9.84895	17	10.38095	58	9.85911	17	10.41658	61	55	0	$6{ }^{2.5} 2.5$
56	. 8491	17	. 38153	58	. 85928	17	. 41719	60	56	10	. $92 . \overline{8} 82 . \overline{7}$
57	. 8492	17	. 38212	58	. 85945	16	. 41779	60	57		5.8 5.6 5.5
58	. 8494	17	-3827n	58	- 85962	17	-41840	61	58		$8.58 . \overline{2}$
59	84963	17	. $3832 \overline{8}$. 85979		. 41901		59		. 611.511 .0
60	9.84980 -	17	10.38387	58	9. 85995		10.41962	61	60	50	.6114.71!3.7
	Lg. Vers,	D	Log, Exs.	P	Lg. Vers	D	Log. Ex	D			P. P.

TABLEVIII.-LOGARITHMIC VERSED SINES AND EXTERNAL SECANTS.

	Lg, Vers,	D	Log. Exs,	D	Lg, Vers.	D	Log, Exs.	D				P.	
0	$9.8599 \overline{5}$	17	10.41962	$6 \overline{0}$	$9.8699 \overline{2}$	$1 \overline{6}$	10.45693	$6 \overline{3}$	0		6		
1	. 86012	17	$.42022$	61	. 87009	$1 \frac{6}{6}$. 45756	63	1		6.7	$6 \cdot \overline{6}$	6.6
2	. 86029	17	. 42083	61	. $8702 \overline{5}$	16	. 45820	63	2	7	7.8	$7 \cdot \overline{7}$	7.7
3	. 86046	$1 \frac{1}{16}$. $4214 \frac{4}{4}$	61	. 87042	16	. 45884	64	3	8	8.9	$8 \cdot \overline{8}$	8.8
4	. $8606 \overline{2}$	16	. 42205	61	. 87058	16	. 45947	63	4		10.0	10.0	9.9
5	$9.8607 \overline{9}$	17	$\overline{10.4226 \overline{6}}$	61	9.8707 ${ }^{\text {¢ }}$	$1 \frac{6}{6}$	$10.4601 \overline{1}$	64	5		11.	11.1	11.0
6	. 86096	16	10.42327	61	- 87074	16	10.46075	64	5	20	$22 . \overline{3}$	22.1	22.0
7	. 86113	17	. 42388	61		16	-460	64	7	30	33.5	33.	33.0
8	. 86129	16	. 42450	61	. 87124	16	. $4620 \overline{3}$	64	8	40	$44 . \overline{6}$	44.3	44.0
9	. $8614{ }^{\text {c }}$	17	. 42511	61	. 87140	16	. 46267	64	9	50	55.8	5.4	55.0
10	9.86163	16	10.42572	61	9.87157	16	10.46331	64	10				
11	. 86179	17	. 42633	61	. 87173	16	. 46395	64	11	8	6.5	6.5	64.
12	. 86196	17	. 42695	61	. 87189	16	. 46460	64	12	7	7. 6	7.6	7.5
13	. 86213	17	. 42756	61	. 87206	16	. 46524	64	13	8	8.7	8.6	8.6
14	. 86230	17	. 42817	61	. $8722 \overline{2}$	16	. 46588	64	14	9	9.8	8.7	8.6 9.7
15	$9.8624 \overline{6}$	16	10.42879	61	9.87239	16	$10.4665 \overline{2}$	64	15	10	10.9	$10 . \overline{8}$	10.7
16	. 86263	17	. 42940	61	. 87255	16	.46717	64	16	20	21.8	21. ${ }^{6}$	21.5
17	. 86280	17	. 43002	61	. 87271	16	. 46781	64	17	30	32.7	32.5	32.2
18	. 86296	16	. 43063	61	. 87288	16	. 46846	64	18	40	43.6	43 . 3	43.0
19	. 86313	16	. 43125	62	. 87304	16	. 46910	64	19	50	54.6	54 . 1	53.7
20	9.86330	17	10.43187	61	9.87320	16	10.46975	64	20				
21	. $8634 \overline{6}$. 43249	62	. 87337	16	. 47040	5	21		64	63	63
22	. 86363	17	. 43310	61	. $8735 \overline{3}$	16	. $4710 \frac{1}{4}$	64	22	6	$6 \cdot 4$	$6 \cdot 3$	$6 \cdot 3$
23	. 86380	$1 \frac{1}{6}$. $4337 \overline{2}$	62	. 87370	16	. 47169	65	23	7	7.4	7.4	7.3
24	. 86396	16	. 43434		. 87386	16	. 47234	64	24	8	$8 \cdot 5$	$8 \cdot \overline{4}$	$8 \cdot 4$
25	9.86413	16	10.43496	62	$9.8740 \overline{2}$	16	10.47299	5	25	9	9.6	9.5	9.4
26	. 86430	17	. 43558	62	. 87419	16	. 47364	65	26	10	0	10	10.5
27	. $8644 \overline{6}$	16	. 43620	62	. 87435	16	. 47429	65	27		21.3	21.1	21.0
28	. 86463	16	. 43682	62	. 87451	16	. 47494	65	28	30	32.0	,	31.5
29	. $8647 \overline{9}$. 43744	2	. 87468	16	. 47559	65	29	40		42.3	5
30	9.86496	17	$10.4380 \overline{6}$	62	9.87484	16	10.47624	65	30				
31	. 86513	15	. $4386 \overline{8}$	62	. 87500	16	. 4768 g	65	31		$6 \overline{2}$	62	$\overline{1}$
32	. 86529	16	. 43931	62	. 87516	16	.47754	65	32	6	$6 \cdot \overline{2}$	$6 \cdot 2$	$6 . \overline{1}$
33	. 86546	16	. 43993	62	. 87533	16	. 47820	65	33	7	7.3	$7 \cdot 2$	7.2
34	. $8656 \overline{2}$	16	. 44055	62	. $8754 \overline{9}$	16	. 47885	65	34	8	$8 . \overline{3}$	$8 . \overline{2}$	8.2
35	$9.8657 \overline{9}$	6	10.44118	62	$9.8756 \overline{5}$	16	$10.47950 \bar{\square}$	65	35	9	9.4	$9 \cdot 3$	9.2
36	. 86596	16	. 44180	62	. 87582	16	. 48016	65	35	10	$10 \cdot 4$	10.3	10.2
37	. $8661 \overline{2}$	$1 \overline{6}$. 44242	62	. 87598	16	. 48081	65	37	20	20.	20	$20 \cdot 5$
38	. 86629	16	. 44305	63	. 87614	16	. 48147	65	38	30	31.2	1	7
39	. 86645	16	. 44368	63	. 87631	16	. 48213	66	39	40	41.6		
40	9.86662	16	10.44430 -	62	9.87647	16	$10.4827 \overline{8}$	5	40				
41	. 8667	17	. 44493	62	. $87653 \overline{3}$	16	. 48344	65	41				
42	. 86695	$1 \frac{7}{6}$. 44556	62	. 87679	$1 \frac{6}{6}$. 48410	66	42			1	
43	. 86712	16	. 44618	62	. 87696	16	.48476	66	43			17	
44	. 85728	16	. 44681	63	. 87712	16	. 48542		44			7	
45	9.86745	1	10.44744	62	$9.8772 \overline{8}$	16	10.48607	65	45		9	- 1	
46	. 8676 1	16	. 44807	63	. 87744	16	. 48674	66	46		1010	$\overline{1} 10$	
47	. 86778	16	. 44870	63	. 87761	16	.48740	66	47		2020	. 3.20	
48	. 86794	16	. 44933	63	. 87777	16	.48806	66	48		3030	. 530	
49	. 86811	16	. 44996	63	. 87793	16	. 48872	66	49		4040	. 640	
50	9.86827	¢	10.45059	63	$9.8780 \overline{9}$	16	$10.4893 \overline{\overline{8}}$	66	50		50150	850	
51	. 86844	16	. $4512 \overline{2}$	63	. 87825	16	. $4900 \overline{4}$	66	51				
52	. 86860	16	. $4518 \overline{5}$	63	. 87842	16	. 49071	66	52				
53	86877	16	. $4524 \overline{8}$	63	. 87858	16	.49137	$6 \overline{6}$	53	6	1.7	1.6	1.6
54	$8689 \overline{3}$	16	. 45312	6	. 87874	16	. 49204	66	54	7	2.0	1.9	1.8
55	9.86910	16	10.45375	63	9.878900	16	$10.49270 \overline{0}$	$6 \frac{6}{6}$	55	9	2.	2.5	2.4
56	. 86926	16	. 45439	63	. $8790{ }^{6}$	16	. 49337	$6 \overline{6}$	56	10	$2 \cdot \frac{5}{8}$	$2 \cdot 5$	2.4
57	. 86943		. 45502	63	. 87923	16	. $4940 \overline{3}$	67	57	20	5.6	5.5	
58	. 86959	16	. 45565	63	. 87939	16	. 49470	$6 \overline{6}$	58	30	8.	8.	8.0
$\underline{5}$. 86976		. 4.5629	6	. 87955	16	. 49537	66	59	30			0. $\overline{6}$
60	9.85992	16	10.45693	64	$9.8797 \overline{1}$		10.49604	67	60		$14 . \overline{1}$	13.7	$13 . \overline{3}$
	Lg. Vers.)	D	Log, Exs,	D	Lg. Vers.]	D	Log, Exs,	I				P. P.	

TABLE VIII.-LOGARITHMIC VERSED SINES AND EXTERNAL SECANTS.

TABLE VIII.-LOGARITHMIC VERSED SINES AND EXTERNAL SECANTS.

78°
79°

TABLE VIII.-LOGARITHMIC VERSED SINES AND EXTERNAL SECANTS.
80°
81°

	Lg. Vers.	J)	Log. Exs,	D	Lg. Vers.	D	Log. Exs.	D		P. P.	
0	9.91716	15	$10.6774 \overline{9}$	$8 \overline{6}$	9.92612	14	$10.7317 \frac{\overline{8}}{}$	95	0	90.80	
1	. 91731	15	. 67836	87	. 92626	15	. 73273	95	1	$6{ }^{6} 9.018 .0$	
2 3	. 91746	15	- 67923	87	- 92641	14	. 73368	95	2	$710 \cdot 5 \quad 9.3$	
$\begin{array}{r}3 \\ 4 \\ \hline\end{array}$. 91761	15	.68010 .68097	87	$\begin{array}{r} .92656 \\ .92671 \end{array}$	15	.73463 .73558	95	3 4 4		
5	9.91791	15	$10.6818 \overline{4}$	$8 \overline{7}$	$\stackrel{9}{9.92686}$	15	$\underline{10.73653}$	95	4		
6	. 91807	15	- 68272	87	. $9270 \overline{0}$	14	$\begin{array}{r}10.73748 \\ \hline\end{array}$	95	6	$2030.026 . \overline{6}$	
7	. 91822	15	. 68359	87	. 92715	15	- 73844	95	7	3045.040 .0	
8	. 91837	15	. 68447	87	. 92730		- 73940	96	8	4060.053 .3	
9	. 91852	15	. $6853 \overline{4}$	87	. 92745	15	. 74035	95	9	$50175.0166 . \overline{6}$	
10	9.91867	15	$10.6862 \overline{2}$	88	$9.9275 \overline{\overline{9}}$	15	10.74131		10		
11	- 91882	15	-68710	88	. 92774	$1 \frac{5}{4}$. 74227	96	11	610.910 .8	
12	.91897 .91912	15	. 6887988	88	. 927889	15	. 743424	96	12	7 7 1.00.9	
13	.91912 .91927	15	$\begin{array}{r} .68886 \\ .68975 \end{array}$	88	$\begin{array}{r} .92804 \\ .92818 \end{array}$	$1 \frac{5}{4}$.74420 .74517	96	13	8 8. 2 1.0	
14	. 91927	15	$\mid .68975$	$8 \overline{8}$. 92818		$\begin{array}{r}.74517 \\ \hline 10.74015\end{array}$	$9 \overline{6}$		91.31 .2	
15	9.91942	15	$10.6906 \overline{3}$	88	$9.9283 \overline{3}$	$1 \frac{1}{4}$	$10.74613 \overline{3}$	97	15	$101.51 \cdot \frac{3}{6}$	
17	.91957 .91972	15	$.69152$	88	$\begin{aligned} & .92848 \\ & .92862 \end{aligned}$	$1 \overline{4}$	$\begin{aligned} & .74710 \\ & .74807 \end{aligned}$	97	16	$203.02 . \overline{6}$	
17	.91972 .91987	15	. 6993240	89	. 9288627	15	.74807 .74905	97	17	304.54 .0	
19	. 92002	15	-69418	89	. 92892	14	. 75002	97	19	50\|7.5	6.6
20	9.92016	14	10.6950극	89	9.92907	15	10.75099 g	97	20		
21	. 92031	15	. 69596	89	-.92921	14	. 75197	98	21	$7{ }_{7} 6$	
22	. 92046	15	. 69686	89	. 92936	15	. 75295	98	22	$6{ }^{6} \mathbf{0} \cdot 7 \mid 0 \cdot 6$	
23	- 92061	15	. 69775	89	- 92951	14	. 75393	98	23	$780 \cdot 80.7$	
24	. $9207 \overline{6}$	15	. 69865		. 92965		. 75491	98	24		
25	9.92091	15	10.69955	$8 \overline{1}$	9.92980̄	15	$10.7558 \overline{9}$	98	25	101.11 .0	
2	. 92106	15	. 70044	9	. 92995	14	. 75688	98	26	102.3	
27	. 92121	15	-7013	90	. 93009	15	. 75786	99	27	303.53 .0	
28	. $92136 \overline{6}$	14	. 7022	90	. 93024	$1 \frac{1}{4}$. 75885	99	28	404.64 .0	
29	. 92151		. 70315		. 93039		. 75984		29	5015.85	
30	9.92166	15	10.70405	90	$9.9305 \overline{3}$	14	10.76083	99	30		
31	. 92181	15	. 70495	91	. 93068	$1 \frac{1}{4}$. 76182	99	31	54	
32	. 92196	15	. 70586	$9 \overline{1}$	- 93083	14	. 76282	100	32	$6\|0 \cdot 5\| 0 \cdot 4$	
33	- 92211	15	. 70677	91	$.93097$	15	.76382	$9 \overline{9}$	33	$70 \cdot 60 \cdot 4$	
34	. 92226	,	. 70768	1	$.93112$:76481	9	34	80.60 .5	
35	9.92240	14	10.70859	91	9.93127	14	$10.76581{ }^{1}$	100	35	$90 \cdot 70 \cdot 6$	
36	. 92255	15	. 70950	91	. 93141	14	. 76681	100	36	$100 \cdot \frac{8}{8} 0 \cdot \frac{6}{3}$	
37	. 92270	15	. 71041	$9 \overline{1}$. 93156	15	. 76782	100	37	201.61 .3	
38	. 92285	15	. 71133	$9 \overline{1}$. 93171	$1 \frac{1}{4}$. 76882	100	38	$30 \cdot 2 \cdot \frac{5}{3} 2 \cdot 0$	
39	. 92300	15	. 71224	91	. 93185		. 76983	100	39	$40{ }^{4} 4 \cdot 3 \cdot 1$	
40	9.92315	15	10.71316	91	9.93200	14	$10.77083 \overline{3}$	101	40	504.1	
41	. 923330	15	. 71408	92	. 93214	15	. 771884	101	41	$1 \overline{5} 15$	
42	- 92345	15	- 71500	92	- 93229	14	. 777286	101	42	${ }_{6} 11.51 .5$	
43	- 92360	$1 \frac{1}{4}$	-71592	92	- 93244	$1 \frac{1}{4}$	$.77387$	$10 \overline{1}$	43	7 1.8 1.7	
44	. 92374		. 71684	$9 \overline{2}$. 93258	$1 \overline{4}$. 77488 8	101	44	8 2.0 2.0	
45	9.923899	15	$10.71776 \overline{6}$		9.93273	14	10.77590	102	45	9 2.3 $2 . \overline{2}$	
46	- 92404	14	$.71869$	92	$.9328 \frac{7}{2}$		$\begin{array}{r} 77692 \\ .77794 \end{array}$	102	46	10	
47	. 92419	15	$\begin{aligned} & .71961 \\ & .72054 \end{aligned}$	93	$\begin{aligned} & .93302 \\ & .93317 \end{aligned}$	14	$\begin{array}{r} 77794 \\ .77896 \end{array}$	102	47 48	20 5.1 5.0 30 7 7	
48 49	.92434 .92449	15	$\begin{array}{r}.72054 \\ .72147 \\ \hline\end{array}$	92	. 933317	$1 \overline{4}$.77896 .77998	102	48 49	30 7.7 7.5 40 10.3 10.0	
50	$9.9246 \overline{3}$	14	$10.72240 \overline{0}$	$9 \overline{3}$	9.93346	$1 \overline{4}$	10.78101	102	50	50112.912 .5	
51	. 92478	15	. $7233 \overline{3}$	93	. 93360	14	. 782031		51		
52	. 92493	$1 \frac{5}{4}$. 72427	$9 \frac{3}{3}$. 93375	$1 \overline{4}$. $78306 \frac{6}{6}$	103	52	$6{ }_{6}^{14} 1.4$	
53	. 92508	15	.72520 .72614	93	. 933889	15	$\begin{array}{r} .78409 \\ .78513 \end{array}$	103	53 54	6 1.4 7	
54	. 92523		. 72614	$9 \overline{3}$	$\underline{.93404}$	14	$.78513$	103	$\frac{54}{55}$	8 1.9	
55	9.92538	15	$\left.10 \cdot 7270 \frac{7}{70} \right\rvert\,$	94	$\mid 9.93419$		$\begin{array}{\|c\|} 10.78616 \\ 7870 \end{array}$	104	55	9 2.2	
56 57	. 925552	15	$\begin{array}{r} 72801 \\ .72895 \end{array}$	94	$\begin{aligned} & .9343 \overline{3} \\ & .93448 \end{aligned}$	14	$\begin{array}{r} .78720 \\ .7882 \end{array}$	103		10	
57 58	. 9252587	15	$\begin{array}{r} 77895 \\ .72990 \end{array}$	94	$\begin{array}{r} .93448 \\ .93462 \end{array}$	14	$\begin{aligned} & .7882 \overline{3} \\ & .7892 \overline{2} \end{aligned}$	104	57 58	20	
59	. 92597	14	. 73084	94	. 93477	14	. 79031		59	40	
60	9.92612	15	$10.7317 \overline{8}$	94	$9.9349 \overline{1}$	4	10.79136		60	5012.1	
	Lg. Vers,	D	Log, Exs.	D	Lg. Vers.	D	Log. Exs,	D		P. P.	

TABLE VIII.-LOGARITHMIC VERSED SINES AND EXTERNAL SECANTS.

	Lg. Vers.	D	Log, Exs.	D	Lg. Vers.	D	Log. Exs,	D			P. P.	
e	9.93 .491	14	10.79136	104	9.94356	14	$10.8576 \overline{6}$	117	0			
1	. 93506	14	. 79240	105	. $943{ }^{\text {\% }}$ / 0		. 85888	117	1			
2	. 93520	14	. 79345	104	. 94384	14	. 86001	117	2			
3	. 93535	14	. 79450	105	. 94398	${ }_{1} 14$. 86119	118	3			
4	. 93549		. 79555	-	. 94413	14	. 86237		4		13.0	12.0
5	9.93564	14	10.79660	105	9.94427	14	$10.8635 \overline{5}$		5	7	15.1	14.0
6	. 93578	14	. 79766	105	- 94441	14	. 86474	118	${ }_{7}^{6}$	8	17.3	16.0
8	- 93593	14	. 79871	106	. 94456	14	. 86592	119	7		$19 \cdot 5$	18.0
8	. 93607	14	. 79977	106	- 94470	14	- 86711	119	8	10	21.6	20.0
9	. 93622		. 80083	106	. 94484	14	. 86831	119	9	20	43.3	40.0
10	$9.9363 \overline{6}$	14	10.80189	106	9.94498	14	10.869500	119	10	30	65.0	60.0
11	. 93651	$1 \overline{4}$. 80296	106	. 94512	14	. 87070	120	11		86.	80.0
12	. 93665	14	. 80402	107	. 94527	14	. 87190	120	12		08.3 11	00.0
13	. 93680	14	. 80509	107	. 94541	14	. 87310	120	13			
14	. 93694		. 80616	07	. 94555		. 87431		14			
15	9.93709	14	$10.8072 \overline{3}$	107	$9.9456 \overline{9}$	14	10.87552	121	15			
16	. $9372 \overline{3}$	14	. 80831	107	. 94584	14	$.87673$	121	16		11.0	1. 6
17	. 93738	14	. 80938	108	. 94598	14	. 87794	121	17		12.6	$1 \cdot \frac{6}{3}$
18	- 93752	14	. 81046	108	. 94612	14	. 87916	122	18		14.6	
19	. 93767		. 81154		. 94626		. 88038		19		18.3	6. 6
20	9.93781	$1 \frac{4}{4}$	10.81262	08	9.94640	14	10.88160	122	20		36.6	3.3
21	. 93796	14	. 81371	108	. 94655	14	. 88282	122	21		55.05	0.0
22	- 93810	14	. 81479	109	. 94669	14	. 88405	123	22		73.3	6. $\overline{6}$
23	-93824	14	. 81588	109	. 94683	14	. 88528	12	23		91.6	$3 . \overline{3}$
$\underline{24}$. 93839		. 81697	-	. 94697		. 88651		24			
25	9.93853	14	$10.8180 \overline{6}$	09	9.94711	14	10.88775	123	25			
26	- 938868	14	. 81916	109	. 94726	14		124	27			
27	. 938882	14	. 82025	110	. 94740	14	. 8902027	124	27		${ }^{6} 70 \cdot 30$	
2.8 29	. 938987	14	. 822245	110	.94754 .94768	14	. 8989714	$12 \overline{4}$	28 29		80.4	
30	9.93925	14	10.82356	110	$9.9478 \overline{\overline{2}}$	14	$10.8939 \overline{6}$	125	30		90.4	- 3
31	. 93940	14	. 82466	110	. 94796	14	. 89521	125	31		00.50	. ${ }^{3}$
32	. 93954	14	. 82577	111	. 94810	14	. 89647	25	32		01.0	. 6
33	. 93969	14	. 82688	111	. 94825	14	. 89773	126	33		1.5	
34	. 93983		. 82799		. 94839		. 89899		34		02.51	
35	9.93997	14	10.82910	11	9.94853	14	10.90025		35			
36	. 94012	14	. 83022	$11 \overline{1}$	- 94867	14	. 90152	127	36			
37	. 94026	14	. 83133	112	- 94881	14	- 90279	127	37		1	0
38	- 94041	14	. 83245	112	- 94895	14	. 90406	127	38		610.110	
39	. 94055	14	83358		94909	14	. 90533	12	39		$70 \cdot 10$	
40	9.94069̄	14	10.83470		9.94923	14	10.90661		40		$80 \cdot 10$. 0
41	. 94084	14	. 835833	112	. 94938	14	. 90789	$12 \overline{8}$	41		$90 . \overline{1} 10$. 1
42	.940988	14	. 83695	$11 \frac{1}{3}$. 94952	14	. 90917	129	42		$00_{0} 0.310$. 1
43	.94112 .94127	14	. 8388092	113	. 94966	14	.91046 .91175	12	43 44			.
45	9.94141	$1 \overline{4}$	10.84035	113	9.94994	$1 \overline{4}$	10.9130 ${ }^{\text {a }}$	129	45		$0 \cdot \frac{6}{6} 0$	
46	. 94155	$1 \frac{1}{4}$. 84149	114	. 95008	14	. $9143 \overline{4}$	130	46		10.810	
47	. 94170	14	. 84263	114	. 95022	14	. 91564	130	47			
48	- 94184	14	. 84377	114	. 95036	14	. 91694	130	48			
49	. 94198	14	. 84492	114	. 95050	14	. 91825		49		$\begin{aligned} & 14 \\ & 1 . \overline{4} \end{aligned}$	
50	9.94213	14	10.84607	114	9.95064	14	10.91956	131	50		1.7	
51	. 94227	14	. 84721	115	. 95078	14	. 92087		51		$1 . \overline{9}$	$1 . \overline{8}$
52	. 94241	$1 \frac{1}{4}$. 84837	115	. 95093	14	- 92218	131	52		2.2	$2 \cdot \frac{1}{3}$
53	. 94256	14	. 845952	116	. 95107	14	- 92350	$13 \overline{1}$	53	10	2.4	$2 \cdot \overline{3}$
54	94270		. 85068		. 95121	14	. 92482		54	20	4. $\frac{8}{2}$	4.6
55	9.94284	14	$10.8518 \overline{3}$		9.95135	14	$10 \cdot 9261 \overline{4}$	133	55	30		$7 \cdot \frac{0}{3}$
56	- 94299	14		11	. 95149	14	$.92747$	133	56 57		9.6.1	
57 58	. 9431313	14	$.85416$	116		14	$\begin{array}{r} .92880 \\ .93014 \end{array}$	133	57		12.111	1.6
58 59	.94327 .94341	14	. 8556492	117	.95177 .95191	14	$\begin{array}{r} \cdot 93014 \\ \cdot 93147 \\ \hline \end{array}$	$13 \overline{3}$	58 59			
60	9.94356	14	$10.8576 \overline{6}$	117	9.95205	14	10.93281	13	60			
	Lg, Vers.	D	Log, Exs.	D	Lg. Vers.	D	Log, Exs.	D			P. P.	

TABLE VIII.-LOGARITHMIC VERSED SINES AND EXTERNAL SECANTS.
84°

TABLE VIII.-LOGARITHMIC VERSED SINES AND EXTERNAL SECANTS.

TABLE VIII.-LOGARITHMIC VERSED SINES AND EXTERNAL SECANTS.

TABLE IX.-NATURAL SINES, COSINES, TANGENTS, AND COTANGENTS.
$0^{\circ}-10^{\circ}$

$10^{\circ}-20^{\circ}$

TABLE IX.-NATURAL SINES, COSINES, TANGENTS, AND COTANGENTS.
$20^{\circ}-30^{\circ}$

TABLE IX.-NATURAL SINES, COSINES, TANGENTS, AND COTANGENTS. $30^{\circ}-\mathbf{4 0}{ }^{\circ}$

$$
40^{\circ}-\mathbf{4 5} 5^{\circ}
$$

$\begin{array}{lllllllllllllll}68 & 67 & 66 & 65 & 6 \overline{4} & 64 & 63 & 62 & 6 \overline{1} & 6 \overline{0} & 5 \overline{9} & 59 & 5 \overline{8} & 58 & 5 \overline{7}\end{array}$

 $5|34.0| 33.5|33.0| 32.7|32.2| 32.0|31.5| 31.0|30.7| 30.2|29.7| 29.5|29.2| 29.0 \mid 28.7$

[^30]TABLE X.-NATURAL VERSED SINES AND EXTERNAL SECANTS.
$0^{\circ}-10$
$10^{\circ}-20^{\circ}$

	rs.	d.		d.			d.		${ }_{1}$	P. P.				
00	-00000	$\overline{0}$. 00000	0	0	. 01519	51	01542	2					
10	$.00000$	1	. 0000001	1	10	$.01570$	52	. 01595	$5 \overline{3}$		10			7
30	. 000004	$\overline{2}$. 00004	$\overline{2}$	30	. 01674	52	. 016403	54	${ }^{2} 22$	20	18	16	14
40	. 00007		. 00007	$\frac{3}{3}$	40	. 01728		. 01758	55	$4{ }^{4} 44$	40	$\begin{aligned} & 27 \\ & 36 \end{aligned}$	24	21
50	. 00010		. 00010		50	. 01782	$5 \overline{5}$. 01814	56	55	50	$\begin{aligned} & 36 \\ & 45 \end{aligned}$	32	28 35
10	. 00015	5	00015		11	01837	55	01871		66	60	54	48	42
10	. $0002 \overline{1}$	$\frac{\partial}{6}$. $0002 \overline{0}$	6	10	. 01893	5	. $0192 \overline{9}$		77	70	63	56	49
20	. 00027	$\frac{6}{7}$. 00027	$\frac{6}{7}$	20	. 01950	57	. 01988	59	88	80	72	64	56
30	. 00034		. 00034		30	. 02007	58	-02048	61	9	90	81		6
40	. 00042	8	. 00042	$\frac{8}{8}$	40	. 02066		. 02109						
50	. 00051	10	. 00051	10	50	. 02125	0	. 02171	62					
20	. 00061	10	00061	10	12	02185	61	-02234	$6 \overline{3}$				6	2 4 4
10	- 000	11	. 0007		10	. 02246	62	$.0229 \overline{7}$	65		15	12	6	4
20	. 000	$\begin{aligned} & 112 \\ & 12 \end{aligned}$	$\text { . } 00083$		20	$.02308$	62	$.02362$	65		20	16	12	8
30	. 0009	${ }_{1}^{12}$	$.00$	13	30	$.02370$	63	$\begin{array}{r} .02428 \\ .02494 \end{array}$	66		25	20	15	10
50		13			40		64	. 02	67		0	24	18	12
30	.00137		. 00137		13	02563		.02630		848	45	28	21	14
10	00		. 0		10	. 0	$\overline{6}$			915	45	36	27	18

TABLE X.-NATURAL VERSED SINES AND EXTERNAL SECANTS. $20^{\circ}-30^{\circ}$
$30^{\circ}-40^{\circ}$

TABLE X.-NATURAL VERSED SINES AND EXTERNAL SECANTS.
$\mathbf{4 0}{ }^{\circ}-50^{\circ} \quad 50^{\circ}-60^{\circ}$

TABLE X.-NATURAL VERSED SINES AND EXTERNAL SECANTS.
$60^{\circ}-70^{\circ}$

	Vers.		Exsec,					Ex	d.		P. P.
600	$\underline{.5000}$	25	51.0000			. 65	27	1.9	5		
10	- 5	25	$51.010 \overline{1}$	102	10	. 66807	$2 \overline{7}$	1.947	240		$1\|0.9\| 0.810 .7\|0.6\| 0.5$
30	- 5050	$\left\|\begin{array}{l} 25 \\ 25 \end{array}\right\|$	$\begin{array}{l\|l} 1.0204 \\ 1.0307 \end{array}$	103	30	. 6634	$\begin{array}{\|l\|} 29 \\ 27 \end{array}$	1	244		
30	. 5076	$\left(\left.\begin{array}{l} 20 \\ 25 \\ 05 \end{array} \right\rvert\,\right.$	$5{ }^{5} 1.03071$		40	. 66689	$2 \frac{1}{27}$	$\begin{aligned} & 1 . \\ & 2 . \end{aligned}$			$3{ }^{2} 2 \cdot 712.42 \cdot 11.8$
50	$.512 \overline{6}$	25	1.0519	106	50	- 6717	27	2.0458			43.63 . 2 2. 812.4
610	. 5152	25	$1.062 \overline{6}$		710	. 6744		2.0715			44.8
10	. $517 \overline{7}$	5	1.0735		10	. 6772	27	$2.097 \overline{7}$			
20	. 5203		1.084		20	. 6799	27				$87.26 .45 \cdot 64.84$
30	. 5228		1.0957		30	. 6827		$2 \cdot 1515$			$918.1 / 7.2\|6.3\| 5.4 \mid 4.5$
40	. 5	25	1.1070		40	. 6854	27	$2 \cdot 1792$			
50	. 5279		. 1184		50	. 6882	2	$\frac{2.2073}{20}$			$\underset{0.410}{\mathbf{3}}{ }_{310}^{2}$
20	. 5305	5	1.1300		720	. 6910	27	$\underline{2.2360}$	292		
10	- 5	25	1.14		10	. $6933 \overline{7}$	$2 \overline{7}$	2.2653	,		
30	. 535	$\left\lvert\, \begin{aligned} & 25 \\ & 26 \end{aligned}\right.$	$\begin{aligned} & 1.1536 \\ & 1.1657 \end{aligned}$		20	. 69965	$\begin{aligned} & 27 \\ & 28 \end{aligned}$	$\begin{aligned} & 2.2951 \\ & 2.3255 \end{aligned}$	304		41.61 .20
30	. 5380	26	$\begin{aligned} & 1.165! \\ & 1.177 \end{aligned}$		30	-6993	27	$\begin{aligned} & 2.3255 \\ & 2.3565 \end{aligned}$	310		5 2.0 1.51
50	. 5434		1.1902		50	. 7048	28	$2 \cdot 3881$			6 7 -4 1.8 $1 \cdot 2,0.65$
30	. 5460	6	1.2027		730	. $707 \overline{6}$	27	$\underline{2.4203}$			83
10	5	26	1.215		10	. 7104	27	$2.453 \overline{1}$			9
20	. 5512	26	1.228		20	. 7132	28	2.4867			
30	. 5538		1.241		30	-7160		2.520			$\overline{6}$
40	- 5564		. 254			. 7187		2.			$\overline{8}\|0 \cdot \overline{7}\| 0 \cdot \overline{6}$
50	. 5590		1.267		50	. 7215		2.5915			$21 \cdot 71 \cdot \frac{5}{2} 1 \cdot 31 \cdot \frac{1}{6} 0 \cdot \frac{9}{3}$
40	. $561 \overline{6}$		1.2811		740	.724 $\overline{3}$	28	2.6279			
10	. 5		1.		10	.7271		2.6			
20	. 5		1.3087		20	. 729					
30	. 5695		1.3228		30	- 732		2.			
40	. 5721				40	-7355		$2 \cdot 7$			
50	. 5747		1.		50	. $738 \overline{3}$		2.82.	414		.
5	5		1.3662		50	. 7412		2.8637			
10			1.		10	. 7440		2.9061			
20			1.396		20	. 7468	28	2.9	434		$1\|0 \cdot \overline{3}\| 0 \cdot \overline{2} \mid$
30	. 5		1.4114		30	. 7496		2.993			$\bar{\square}$
40	. 5879		1.4269		40	. 7524		3.			0.70
50	. 5906		1.4426		50	. 7552		3.085			
6	. $593 \overline{2}$	$2 \overline{6}$	1.4586	$16 \overline{1}$	760	. 7581		3.1335	$48 \overline{8}$		62.11 .50
10	- 5959		1.4747	164	10	. 7609		3.182	500		$72.41 . \overline{7} 1.0$
20	. 5	27	1.491		20	. 763		3.232			
40		$2 \overline{6}$	5247	16	40		2		525		
50	. 6066		1.5419		50	. 7722		3.3901			$\begin{array}{lllll}29 & 2 \overline{8} & 28 & 2 \overline{7}\end{array}$
0	. 6092		$\underline{1.5593}$		770	. 775 50		3.4454			
10	. $611 \overline{9}$	27	1.5770	179	10	. 7779		3.			
20	. $614 \overline{6}$	27	1.5949		20	. 7807		3.			11.611 .411 .21
30	. 6173		1.6131		30	. 7835		3.			11.611 .411 .211
40	. 6200		1.6316		40	. 7864		3.681			14.514 .214 .0
50	. 6227	27	1.6504		50	. 7892		3.7448	64		
0	625	27	1.6694		780	. 7921		3.8	667		23.222 .822 .422 .0
10	. 6287		$1.688 \overline{8}$		10	. $794 \overline{9}$		3.876			$26.125 .6125 .2 \left\lvert\, 24 \cdot \frac{7}{7}\right.$
20	. 6308		1.7085		20	. 7978		3.945			
30	. 6335		1.7285		30	. 8006		4.015	72		$7{ }^{\text {a }}$
40	. 6362		1.7488		40	. 8035		4.088	7		
50	. 6389	27	1.7694		50	. 8063	28	4.1636	772		$87 . \overline{6}$
90	$641 \overline{6}$	27	$1.790 \overline{4}$	213	790	. 8092	$2 \overline{8}$	4.2408	796		8.1 7.9 7.8 $7 . \overline{6}$ 10.8 10.6 10.4 10.2
10		27	1.8117		10	. 81200		4.3205	$82 \overline{1}$		$\begin{array}{llllllll}10.8 & 10 \cdot 6 & 10.4 & 10 \cdot 2 \\ 13.5 & 13.2 \\ 13.0 & 12.7\end{array}$
30	. 6	$\left[\begin{array}{l} 27 \\ 27 \end{array}\right.$	833	220	20	. 814		4.402	8		
30 40	- 6	$\begin{aligned} & 27 \\ & 27 \end{aligned}$		仡		. 82	29	4	87		$18.918 .518 .217 . \overline{8}$
50	. 6555	27	1.8006		50	. 8235		+ $4.665 \overline{3}$	904		21
00	. 6580	27	1.9238		800	8263	28	$4.758 \overline{7}$	934		24.3:23.8123.4122.9

TABLE X.-NATUHAL VERSED SINES AND EXTERNAL SECANTS.
$80^{\circ}-85^{\circ}$
$85^{\circ}-90^{\circ}$

- ,	Vers,	d.	Exsec.	d.		Vers,	d.	Exsec.	d.	P. P.
80	. 8263	$2 \overline{8}$	4.7587	$96 \overline{6}$	85	9128	29	10.4737	. 3946	
10	. 8292	29	4.8554	999	10	. $915 \overline{7}$	29	$10.868 \overline{3}$. 4229	
20	. 83321	28	4.9553	1035	20	. 91818	29	11.2912	. 4542	
30	. 83479	28	5.0588 5.1660	1072	30	. 92215	$\left\|\begin{array}{l} 29 \\ 29 \end{array}\right\|$	11.7455	. 4892	
50	. 8378		5.1660 5.2772	1111	50	. 92474	29	12.2347 12.7631	. 5284	129
810	.8435		5.392 ${ }^{\text {¢ }}$	110	860	.930 $\overline{2}$	29	13.3356	. 5725	
10	. $846 \overline{4}$	29	5.5121	11	10	. 933 Ī	29	13.9579	. 6223	
20	. 8493	28	$5.636 \overline{3}$	1242	20	. 9360	29	14.6368	. 6789	
30	. 8522	29	5.7654	1291	30	. 9389	29	15.3804	. 74386	514.714 .5
40	. 8550	28	5.8998	1343	40	. 9418	29	$16.198 \overline{4}$. 8180	617.717 .4
50	. 8579	29	6.0396	1398	50	. 9447	29	17.1026	. 9041	$720 \cdot 6$ 20.3
820	. $860 \overline{8}$	-	6. 1853	1519	870	. $947 \overline{6}$	2	18.1073	1.1230	$8{ }_{9} 23.6{ }^{23.2}$
10	. 8637	8	6.3372		10	. 9505		19.2303	1.2634	$9126.5 \mid 26.1$
20	. 8866	29	6.4957	1585	20	. 9534	29	20.4937	1.4319	
30	. 8694	28	6.6613	1731	30	. 9564	29	21.9256	1.6365	
40	. $872 \overline{3}$	29	6.8344	173	40	. 9593	29	23.5621	1.8884	
50	. 8752		7.0156		50	. 9622	29	25.4505	2. 2032	
830	. 8781	2s	72055	19	88 0	. 9651	29	$\underline{27.6537}$	2.6039	$1{ }^{1} 2 \cdot \overline{8}$
10	. 8810	28	7.4046		10	. 9680	29	30.2576		$2{ }^{2} 5 \cdot 7$
20	. 8839	29	7.6138	2198	20	. 9709	29	33.3823	$3.819 \frac{1}{2}$	38.
30	. 8868	29	7.8336	2315	30	. 9738	29	37.2015	4.7741	$4{ }_{5} 11$
40	. 8897	2	8.0651	2440	40	. 9767	29	41.9757	$6.138 \stackrel{1}{3}$	
50	. 8926	29	8.3091	2576	50	. 9796	29	48.1140	$8.184 \overline{6}$	${ }_{7} 719$
840	.8954	29	8.5667		890	. 9825	29	$\underline{56.2987}$		812.8
10	. 898 3̄		8.8391		10	. $985 \overline{4}$		$67.757 \overline{3}$		${ }_{9} 25 . \overline{6}$
20	. 9012	$\left\|\begin{array}{l} 29 \\ 29 \end{array}\right\|$	9.1275	2885 ${ }^{\text {a }}$	20	. 98883		84.9456		
30	-9981	$\left\|\begin{array}{l} 29 \\ 20 \end{array}\right\|$	9.4334	3250	30	. 9912		113.5930		
40	- 6070	29	9.7585	3460	40	. 9942	29	170.8883		
50	. 8099	29	10.1045	3460	50	. 9971	29	342.7752		
850	.912 $\overline{8}$	29	10.473\%	36	$90 \quad 0$	1.0000		∞		
	Vers.	d.	Exsec,	d.		Vers,	d.	Exsec.	d.	P. P.

TABLE XI.-REDUCTION OF BAROMETER READING TO $32^{\circ} \mathrm{F}$.

Temp. 0 Fahr.	Inches.										
	26.0	26.5	27.0	27.5	28.0	28.5	29.0	29.5	30.0	30.5	31.0
45	-. 039	$-.039$	-. 040	-. 041	-. 042	-. 042	-. 043	-. 044	-. 045	$-.045$. 046
46	. 041	. 042	. 043	. 043	. 044	. 045	. 046	. 046	. 047	. 048	. 049
47	. 043	. 044	. 045	. 046	. 047	. 048	. 048	. 049	. 050	. 051	. 052
48	. 046	. 047	. 047	. 048	. 049	. 050	. 051	. 052	. 053	. 053	. 054
49	. 048	. 049	. 050	. 051	. 052	. 052	. 054	. 054	. 055	. 056	. 057
50	. 050	. 051	. 052	. 053	. 054	. 055	. 056	. 057	. 058	. 059	. 060
51	. 053	. 054	. 055	. 056	. 057	. 058	. 059	. 060	. 061	. 062	. 063
52	. 055	. 056	. 057	. 058	. 059	. 060	. 061	. 062	. 064	. 065	. 066
53	. 057	. 058	. 060	. 061	. 062	. 063	. 064	. 065	. 066	. 067	. 068
54	. 060	. 061	. 062	. 063	. 064	. 065	. 067	. 068	. 069	. 070	. 071
55	. 062	. 063	. 064	. 065	. 066	. 068	. 069	. 070	. 071	. 073	. 074
56	. 064	. 065	. 067	. 068	. 069	. 070	. 072	. 073	. 074	. 075	. 077
57	. 067	. 068	. 069	. 070	. 072	. 073	. 075	. 076	. 077	. 078	. 080
58	. 069	. 070	. 071	. 073	. 074	. 076	. 077	. 078	. 080	. 081	. 082
59	. 072	. 073	. 074	. 075	. 077	. 078	. 080	. 081	. 083	. 084	. 085
60	. 074	. 076	. 077	. 078	. 079	. 081	. 082	. 084	. 085	. 086	. 088
61	. 076	. 077	. 079	. 080	. 082	. 083	. 085	. 086	. 088	. 089	. 091
62	. 079	. 080	. 082	. 083	. 085	. 086	. 088	. 089	. 091	. 092	. 094
63	. 081	. 082	. 084	. 085	. 087	. 088	. 090	. 091	. 093	. 095	. 096
64	. 083	. 085	. 086	. 088	. 090	. 091	. 093	. 094	. 096	. 097	. 099
65	. 086	. 087	. 089	. 090	. 092	. 093	. 095	. 097	. 099	. 100	. 102
66	. 088	. 089	. 091	. 093	. 095	. 096	. 098	. 099	. 101	. 103	. 105
67	. 090	. 092	. 094	. 095	. 097	. 099	. 101	. 102	. 104	. 106	. 108
68	. 093	. 094	. 096	. 098	. 100	. 101	. 103	. 105	. 107	. 108	. 110
69	. 095	. 097	. 099	. 100	. 102	. 104	. 106	. 107	. 110	.111	. 113
70	. 097	. 099	. 101	. 103	. 105	. 106	- 109	.110	. 112	. 114	. 116
71	. 100	. 101	. 103	. 105	. 107	. 109	. 111	. 113	. 115	. 117	. 119
72	. 102	. 104	. 106	. 108	. 110	. 112	. 114	. 116	. 118	- 120	. 122
73	. 104	. 106	. 108	. 110	.112	. 114	. 116	. 118	. 120	. 122	. 124
74	. 107	. 109	.111	. 113	. 115	. 117	. 119	. 121	. 123	125	. 127
75	. 109	. 111	. 113	. 115	. 117	. 119	. 122	. 124	. 126	. 128	. 130
76	. 111	. 113	. 116	. 118	. 120	. 122	. 124	. 126	. 128	. 130	. 133
77	. 114	. 116	. 118	. 120	. 122	. 124	. 127	. 129	. 131	. 133	. 136
78	. 116	. 118	. 120	. 122	. 125	. 127	. 129	. 131	. 134	. 136	. 138
79	. 118	. 120	. 123	. 125	. 127	. 129	. 132	. 134	. 137	. 139	. 141
80	. 121	. 123	. 125	. 127	. 130	. 132	. 135	. 137	. 139	. 141	. 144
81	. 123	. 125	. 128	. 130	. 132	. 134	. 137	. 139	. 142	. 144	. 147
82	. 125	. 128	. 130	. 132	. 135	. 137	. 140	. 142	. 145	. 147	. 149
83	. 128	. 130	. 133	. 135	. 138	. 140	. 142	. 145	. 147	. 149	. 152
84	. 130	. 132	. 135	. 138	. 140	. 142	. 145	. 147	. 150	. 152	. 155
85	. 132	. 134	. 137	. 140	. 143	. 145	. 148	. 150	. 153	. 155	. 158
86	. 135	. 137	. 140	. 142	. 145	. 148	. 150	. 153	. 155	. 158	. 161
87	. 137	. 139	. 142	. 144	. 148	. 150	. 153	. 155	-158	. 161	. 163
88	. 139	. 142	. 145	. 147	. 150	. 152	. 155	. 158	. 161	. 163	. 166
89	. 142	. 144	. 147	. 150	. 153	. 155	. 158	. 161	. 164	. 166	. 169
90			. 150	. 153	155	158	161	164	. 166	. 169	. 172
91	-. 146	$-.149$	-. 152	$-.155$	-. 158	-. 160	-. 163	$-.166$	-. 169	-. 172	-. 175

TABLE XII.-BAROMETRIC ELEVATIONS.*

B	A	$\begin{gathered} \text { Diff. for } \\ .01 \end{gathered}$	B	A	$\begin{aligned} & \text { Diff. for } \\ & .01 \text {. } \end{aligned}$	B	A	Diff. for . 01 .
Inches.	Feet.	Feet.	Inches.	Feet.	Feet.	Inches.	Feet.	Feet.
20.0	11,047	-13.6	23.7	6,423	-11.5	27.4	2,470	
20.1 20.2	10,911 10,776	13.6 13.5	23.8 23.9	6,308 6.194	-11.5 11.4	27.5 27.8	2,371	-9.9 9.9
20.2 20.3	10,776 10,642	13.4	23.8 24.0	6,194 6,080	11.4	27.6	2,272	9.9
20.4	10,508	13.4	24.1	5,967	11.3	27.8	2,075	9.8
20.5	10,375	13.8 13.3	24.2	5,854	11.3 11.3	27.9	1,977	9.8
20.6	10,242	13.8 13.2	24.3	5,741	11.3 11.2	28.0	1:880	9.7 9.7
20.7	10,110	13.2 13.1	24.4	5,629	11.2 11.1	28.1	1,783	9.7 9.7
20.8	9,979	13.1	24.5	5.518	11.1	28.2	1686	9.7 9.7
20.9	9,848	13.0	24.6	5.407	11.1	28.3	1,589	9.7 9.8
21.0	9,718	12.9	24.7	5,296	11.0	28.4	1,493	9.6 9.6
21.1 21.2	9,589 9,460	12.9 12.9	24.8 24.9	5,186 $\mathbf{5 , 0 7 7}$	11.0 10.9	28.5	1,397	9.6 9.5
21.2 21.3	9,460 9,332	12.8 12.8	24.9 25.0	5,077 4,968	10.9 10.9	28.6 28.7	1,302 1.207	9.5 9.5
21.4	9.304 9.20	12.8	25.1	4,968	10.9	28.8	1.207	9.5
21.5	9,077	12.7	25.2	4,751	10.8	28.9	1,018	9.4
21.6	8,951	12.6	25.3	4,643	10.8 10.8	29.0	924	9.4
21.7	8,825	12.5	25.4	4,535	10.8 10.7	29.1	830	9.4
21.8	8,700	12.5 12.5	25.5	4,428	10.7	29.2	736	9.4 9.3
21.9	8,575	12.4	25.6	4,321	10.7 10.6	29.3	643	9.3
22.0	8,451	12.4	25.7	4,215	10.6 10.6	29.4	550	9.3 9.2
$22 \cdot 1$	8,327	12.3	25.8 25.9	4.109	10.5	29.5	458	9.2
22.2	8.204	12.2	25.9 26.0	4,004 3.899	10.5	29.6 29.7	366	9.2
22.3 22.4	8,082 7,960	12.2	26.1	3,794	10.4	29.7 29.8	182	9.2
22.5	7,838	12.2	26.2	3690	10.4	29.9	91	9.1
22.6	7,717		26.3	3,586	10.4	30.0	0	9.1
22.7	7,597	12.0	26.4	3,483	10.3	30.1	-91	9.1
22.8	7,477	12.0 11.9	26.5	3,380	10.3 10.3	30.2	181	9.0 9.0
22.9	7.358	11.9	26.6	3,277	10.3 10.2	30.3	271	9.0
23.0	7,239	11.9	26.7	3,175	10.2	30.4	361	9.0
23.1	7,121	11.8	26.8	3,073	10.1	30.5	451	8.0
23.2	7,004	11.7	26.9	2.972	10.1	30.6	540	8.9
23.3	6,887	11.7	27.0	2.871 2770	10.1	30.7 30.8	729	8.8
23.4 23.5	6,770 6,554	11.6	27.1	2770 2,670	10.0	30.8 30.9	717	8.8
$23 \cdot 6$	6,554 6,538	-11.6	27.3	2,570	10.0 -10.0	30.9 31.0	805 -893	-8.8
23.7	6,423	-11.5	27.4	2:470	-10.0			

[^31]TABLE XIII.-COEFFICIENTS FOR CORRECTIONS FOR TEMPERATURE AND HUMIDITY.*

$t+t^{\prime}$	C	Diff. for 1°.	$t+t^{\prime}$	C	Diff. for 1°.	$t+t^{\prime}$	C	Diff. for 1°.
0°	-.1024	10.9	60°	-.0380		120°	+.0262	10.6
10	.0915	10.9	70	.0273	10.7	130	.0368	10.4
20	.0806	10.8	80	.0166	10.7	140	.0472	10.3
30	.0698	10.6	90	-.0058	10.8	150	.0575	10.2
40	.0592	10.6	100	+.0049	10.7	160	.0677	10.2
50	.0486	10.6	110	.0156	10.7	170	.0779	10.0
60	-.0380	10.6	+.0262	10.6	180	+.0879		

[^32]$\sin a \quad=\frac{1}{\operatorname{cosec} a}=\frac{\tan a}{\sqrt{1+\tan ^{2} a}}=\sqrt{\frac{1-\cos 2 a}{2}}=\frac{1}{\sqrt{1+\cot ^{2} a}}$ $=\cos a \tan a=\sqrt{1-\cos ^{2} a}=2 \sin \frac{1}{2} a \cos \frac{1}{2} a$
$=\frac{1+\cos a}{\cot \frac{1}{2} a}=\frac{2 \tan \frac{1}{2} a}{1+\tan ^{2} \frac{1}{2} a}=\mathrm{vers} a \cot \frac{1}{2} a$ ．
$\cos a \quad=\frac{1}{\sec a}=\frac{\cot a}{\sqrt{1+\cot ^{2} a}}=\frac{1}{\sqrt{1+\tan ^{2} a}}$
$=1-\operatorname{vers} a=\sin a \cot a=\sqrt{1-\sin ^{2} a}=2 \cos ^{2} \frac{1}{2} a-1$
$=\sin a \cot \frac{1}{2} a-1=\cos ^{2} \frac{1}{2} a-\sin ^{2} \frac{1}{2} a=1-2 \sin ^{2} \frac{1}{2} a$ 。
$\tan a=\frac{1}{\cot a}=\frac{\sin a}{\cos a}=\frac{\sec a}{\operatorname{cosec} a}=\frac{1}{\sqrt{\operatorname{cosec}^{2} a-1}}$
$=\operatorname{vers} 2 a \operatorname{cosec} 2 a=\cot a-2 \cot 2 a=\sin a \sec a$ $=\frac{\sin 2 a}{1+\cos 2 a}=\operatorname{exsec} a \cot \frac{1}{2} a=\operatorname{exsec} 2 a \cot 2 a$ ．
$\cot a=\frac{1}{\tan a}=\frac{\cos a}{\sin a}=\frac{\sin 2 a}{1-\cos 2 a}=\frac{1+\cos 2 a}{\sin 2 a}$ $=\sqrt{\operatorname{cosec}^{2} a-1}=\cot \frac{1}{2} a-\operatorname{cosec} a$.
vers $a=1-\cos a=\sin a \tan \frac{1}{2} a=2 \sin ^{2} \frac{1}{2} a=\cos a \operatorname{exsec} c_{\text {。 }}$
$\operatorname{exsec} a=\sec a-1=\tan a \tan \frac{1}{2} a=\operatorname{vers} a \sec a$ ．
$\sin \frac{1}{2} a=\sqrt{\frac{\operatorname{vers} a}{2}}=\frac{\sin a}{2 \cos \frac{1}{2} a}=\frac{\operatorname{vers} a \cos \frac{1}{2} a}{\sin a}$.
$\cos \frac{1}{2} a=\sqrt{\frac{1+\cos a}{2}}=\frac{\sin a}{2 \sin \frac{1}{2} a}=\frac{\sin a \sin \frac{1}{2} a}{\operatorname{vers} a}$.
$\tan \frac{1}{2} a=\operatorname{vers} a \operatorname{cosec} a=\operatorname{cosec} a-\cot a=\frac{\tan a}{1+\sec a}$.
$\cot \frac{1}{2} a=\frac{1+\cos a}{\sin a}=\operatorname{cosec} a+\cot a=\frac{\tan a}{\operatorname{exsec} a}=\frac{1}{\operatorname{cosec} a-\cot a}$ 。
vers $\frac{1}{2} a=1-\sqrt{\frac{1}{2}(1+\cos a)}$ ．
$\operatorname{exsec} \frac{1}{2} a=\frac{1}{\sqrt{\frac{1}{2}(1+\cos a)}}-1$.

TABLE XXX.—USEFUL TRIGONOMETRICAL FORMULE.
13)

$$
\begin{aligned}
& \begin{aligned}
\sin 2 a & =2 \sin a \cos a=\frac{2 \tan a}{1+\tan ^{2} a} . \\
& =\cos ^{2} a-\sin ^{2} a=1-2 \sin ^{2} a=2 \cos ^{2} a-1 \\
& =\frac{1-\tan ^{2} a}{1+\tan ^{2} a} .
\end{aligned} \\
& \tan 2 a= \\
& \quad=\frac{2 \tan a}{1-\tan ^{2} a} . \\
& \cot 2 a \quad=\frac{1}{2} \cot a-\frac{1}{2} \tan a=\frac{\cot ^{2} a-1}{2 \cot a}=\frac{1-\tan ^{2} a}{2 \tan a} . \\
& \operatorname{vers} 2 a= \\
& \operatorname{exsec} 2 a=\frac{\tan 2 a}{\cot a}=\frac{2 \tan 2 a}{1-\tan ^{2} a}=\frac{2 \sin ^{2} a}{1-2 \sin ^{2} a} . \\
& \sin (a \pm b)=\sin a \cos b \pm \cos a \sin b . \\
& \cos (a \pm b)=\cos a \cos b \mp \sin a \sin b . \\
& \sin a+\sin b=2 \sin \frac{1}{2}(a+b) \cos \frac{1}{2}(a-b) . \\
& \sin a-\sin b=2 \sin \frac{1}{2}(a-b) \cos \frac{1}{2}(a+b) . \\
& \cos a+\cos b=2 \cos \frac{1}{2}(a+b) \cos \frac{1}{2}(a-b) . \\
& \cos a-\cos b=-2 \sin \frac{1}{2}(a+b) \sin \frac{1}{2}(a-b) .
\end{aligned}
$$

Call the sides of any triangle A, B, C, and the opposite angles a, b. and c. Call $s=\frac{1}{2}(A+B+C)$.
$\tan \frac{1}{2}(a-b)=\frac{A-B}{A+B} \tan \frac{1}{2}(a+b)=\frac{A-B}{A+B} \cot \frac{1}{2} c$.
$C=(A+B) \frac{\cos \frac{1}{2}(a+b)}{\cos \frac{1}{2}(a-b)}=(A-B) \frac{\sin \frac{1}{2}(a+b)}{\sin \frac{1}{2}(a-b)}$.
$\sin \frac{1}{2} a=\sqrt{\frac{(s-B)(s-C)}{B C}}$.
$\cos \frac{1}{2} a=\sqrt{\frac{s(s-A)}{B C}}$.
vers $a=\frac{2(s-B)(s-C)}{B C}$.
Area $=\sqrt{s(s-A)(s-B)(s-C)}=A^{2} \frac{\sin b \sin c}{2 \sin a}$.

	Logarithm.
Circumference of a circle (radius $=r$) $=2 \pi r$.	
Area of a circle $=\pi r^{2}$.	
$\begin{array}{rlrl} \text { Area of sector (length of arc }=l) & =\frac{1}{2} l r . \\ & \text { " } " \quad \text { " } \quad\left(\text { angle of arc }=a^{\circ}\right) & =\frac{a}{360} \pi r^{2} . \end{array}$	
Area of segment (chord $=c$, mid. ord. $=m$) $={ }_{3}^{2} \mathrm{~cm}$ (approx.).	
Area of a circle to radius 1 ?	
Circumference of a circle to diameter 1$\}=\pi=3.1415927$	0.4971499
Surface of a sphere to diameter 1	
Volume of a sphere to radius $1=4 \pi \div 3 \quad 4.1887902$	0.6220886
j degrees $=\quad 57.2957795$	1.7581226
Arc equal to radius expressed in $\{$ minutes $=$ 3437.7467708	3.5362739
(seconds $=206264.8062471$	5.3144251
Length of arc of 1°, radius unity 0.1745329	8.2418774
Sine of one second $=0.0000048481$	4.6855749
Cubic inches in United States standard gallon $=231$	2.3636120
Weight of one cubic foot of water at maximum density (therm. $39^{\circ} .8$ F., barom. $30^{\prime \prime}$). 62.379	1.7950384
Weight of one cubic foot of water at maximum density (therm. $62^{\circ} \text { F.). } 62.321$	1.7946349
Acceleration due to gravity at latitude of New York in feet per square second \qquad	1.5073086
Feet in one metre. 3.280869	0.5159889
Metres in one foot. 0.304797	9.4840111

$$
8
$$

INDEX.

Numbers refer to sections except where specifically marked pages (p.).
Abandonment of existing track. 457, c
Abutments for trestles. ... 142
Accelerated motion, application of laws to movement of trains. 431
Accidents, danger of, due to curvature,. 418
Accuracy of earthwork computations. 94
tunnel surveying. 163
Additional business, methods of securing (or losing) it. 455
train to handle a given traffic, cost of-Table XXVII.p. 480
Adhesion of wheels and rails. 333, 334
^djustments of dumpy level-Appendix. pp. 508, 506
instruments, general principles-Appendixp. 501
transit—Appendix. pp. 502-506
wye level-Appendix . pp. 506-508
Advance signals, in block signaling . 307
Advantages of re-location of old lines. 456
tie-plates . 244
Air-brakes. 336, 337
Air resistance-see Atmospheric resistance.
Allowance for shrinkage of earthwork. 97
Amorican locomotives, frame. 316
equalizing levers. 324
running gear. 323
system of tunnel excavation . 171
Aneroid barometer, use in reconnoissance leveling. 7
Angle-bars, cost. 358, d
efficiency of. 238
number per mile of track-Table XVII p. 398
standard. 242
Asglo of slope in earthwork. 60
Apprehension of danger, effect on travel. 419, c
ARCE CULVERTS.. $191-192$
design. 191
example. 192
Area ô̂ cuskerts, computation. 178-183

654

INDEX.
Atlantic locomotives, running gear. 323
Austrian system of tunnel excavation. 171
Automatic air-brakes. 337
signaling, track circuit. 310
Averaging end areas, volume of prismoid computed by 71
Axles, effect of parallelism 312
effect of rigid wheels on 311
radial, possibilities of. 313
size of standard M.C.B 332
Balance of grades for unequal traffic 452-454
determination of relative traffic 454
general principle. 452
theoretical balance. 453
Balanced grades for one, two, and three engines-Table XXVIII p. 485
Baldwin Locomotive Works formula for train resistance 348 , e
BALLAST.-Chap. VII.
cost 200, 358, a
cross-sections. 198
laying 199
materials. 197
Banjo signals, in block signaling 308
Barometer, reduction of readings to $32^{\circ} \mathrm{F}$.-Table XI. p. 647
use of aneroid in reconnoissance leveling 7
Barometric elevations-Table XII p. 648
coefficients for corrections for temperature and humidity-Table XIII p. 648
Beams, strength of stringers considered as 156
Bearings, compass, use as check on deflections, 16, 17
in preliminary surveys 11
Belgian system of tunnel excavation 171
Belpaire fire-box. 318
Blasting 117-123
use in loosening earth 107, c
BLOCK SIGNALING.-Chap. XIV.
Boiler for locomotive. 317, 318
Boiler-power of locomotives, relation to tractive and cylinder power 326
Bolts-see Track bolts.
Bonds of railroads, security and profits 369
Borrow-pits, earthwork. 89
Bowls (or pots) as rail supports 201, 223
Box-cars, size and capacity 328
Box culverts. 188-190
old-rail. 190
stone. 189
wooden. 188
Bracing for trestles. 140, 141
design. 159
Brakes-see Train-brakes.
Brake resistances. 346
Bridge joints (rail). 240
Bridge spirals. 5
Bridges and culverts, as affected by changes in alignment 405, 422,437, 444, 450
cost of repairs and renewals 387
Bridgcs of standard dimensions for small spans 195
in block signaling. 308
Bridges, trestles and culverts on railroads, cost 357
Broken-stone ballast. 197
Burnettizing (chloride-of-zinc process) for preserving timber 213
Capital, railroad, classification of 369
returns on 369, 370
Caps (trestle), design 158
Car mileage, nature and cost-Table XX, p. 425, and 400
Cars. 328-332
brake-beams 330
capacity and size. 328
couses of deterioration, items 13 and 14 406
cost of renewals and repairs. 391
as affected by changes in alignment 406,
$423,437,444$, 450
draft-gear. 331
gauge of wheels and form of wheel-tread 332
stresses in car frames 329
truck frames. 330
use of metal. 330
wheels, kinetic energy of. 347
Cass and horses, use in earthwork 109, e
and locomotives, use in earthwork 109, f
Carts and horses, use in earthwork. 109, a
Cattle guards. 193
passes. 194
Center of gravity of side-hill sections, earthwork 92
Central angle of a curve 21
Centrifugal force, counteracted by superelevation of outer rail 41, 42
of connecting-rod, etc., of locomotive 325
Chairs as supports for double-headed rails 226
Chemical composition of rails 232,233, a
purification of water 281
Cinders for ballast 197
Circular lead rails for switches 262
Clark's formula for train resistance 348, d
Classification of excavated material. 124
Clearance card in permissive block signaling. 304
spaces in locomotives. 321
Clearing and grubbing for railroads, cost 355
Coal consumption in locomotives. 319
per car-mile 319
Columbia locomotives, running gear 323
Compass, use of, in preliminary surveys 11
Competitive traffic 409 et sei,.
rates, equality. regardless of distance 410
Compensation for curvature. 427,428
Compensation for curvature rate. 428
reasons. 427
rules for. 428
Compensators in block signaling. 309
Compound curves 37-40
modifications of location. 39
nature and use. 37
multiform, used as transition curves 45
mutual relations of the parts 38
Compound sections, earthwork. 61
Computation of earthwork 70-95
approximate, from profiles. 95
using a slide rule. 79
Conducting transportation, cost of. 393-402
as affected by changes in curvature 424
distance 407
minor grades 437
ruling grades 444
pusher engines 450
Coning wheels, effect. 313
Connecting curve from a curved track to the inside 273
from a curved track to the outside 272
from a straight track. 271
Consolidation locomotives, equalizing levers 324
frame 316
running gear 323
Constants, numerical, in common use-Table XXXI p. 651
Construction of tunnels 169-174
Contours, obtained by cross-sectioning 12
Contractors profit, earthwork. 115
Corbels for trestles 144
Cost of an additional train to handle a given traffic-Table XXVII 445
of ballast 200
of blasting. 123
of chemical treatment of timber 216
of earthwork. 106 et seq.
of framed-timber trestles. 150
of metal ties. 222
of pile trestles. 134
OF RAILROADS.-Chap. XVII. detailed estimate. 362
of rails. 236
of ties. 209
of transportation. 364
of treating wooden ties. 216
of tunneling. 175
Counterbalancing for locomotives. 325
Creosoting for preserving timber. 212
Cross-country routes-reconnoissance 4
Crossings, one straight, one curved track. 278
two curved tracks 279
Crossings, two curved tracks, numerical example. 279
two straight tracks. 277
Cross-over between two parallel curved tracks, reversed curve. 275, b
curved tracks, straight connecting curve. 275, a
straight tracks. 274
Cross-sectioning, for earthwork computations. 68
for preliminary surveys 12
irregular sections for earthwork computations. 87
Cross-sections of ballast. 198
of tunnels 164
Cross-ties-see Ties.
Crown-bars in locomotive fire-box. 318
CULVERTS AND MINOR BRIDGES.-Chap. VI. Culverts, arch. 191, 192
area of waterway 178-183
iron-pipe. 186
old-rail. 190
stone box. 189
tile-pipe. 187
wooden box. 188
CURVATURE.-Chap. XXII. compensation for. 427,428
correction for, in earthwork computations. 90-93
danger of accident due to 418
effect on cost of conducting transportation 424
of maintenance of equipment. 423
of maintenance of way 422
operating expenses of a change of 1°-Table XXII, 425
travel 419
extremes of sharp. 429
general objections. 417
of existing track, determination, 35
proper rate of compensation 428
Curve, elements of a 1° 23
location by deflections. 25
by middle ordinates. 29
by offsets from long chord. 30
by tangential offsets. 28
by two transits. 27
resistance of trains $311,312,345$
effect on cost of conducting transportation 424
maintenance of equipment. 423
maintenance of way. 422
Curves, elements of. 21
instrumental work in location. 26
limitations in location. 34
method of computing length. 20
modifications of location 33
mutual relations of elements. 22
obstacles to location 32
Curves, simple, method of designation 18
use and value of other methods of location (not using a transit). 31
Cylinder power of locomotives, relation to boiler and tractive power. 326
Deflecting rods for operating block signals. 309
Deflections for a spiral. 48
Degree of a curve 18
Design of culverts 177 et seq,
framed trestles 151-159
bracing 159
caps and sills 158
floor stringers. 156
posts. 157
nutlocks 253
pile trestles. 133
tie-plates 245
track bolts. 252
tunnels. 168
distinctive systems 171
Development, definition. 5
example, with map. 5
methods of reducing grade. 5
Disadvantages of re-locations of old lines. 457
DISTANCE.-Chap. XXI.
effect of change on business done. 416
on division of through rates 411
effect on operating expenses 405-408
justification of decrease to save time 415
relation to rates and expenses 403
Distant signals in block signaling. 306
Ditches to drain road-bed 64
Dividends actually paid on railroad stock 369
Double-ender locomotives, running gear. 323
Double-track, distance between centers. 62
Draft gear 331
"continuous". 331
Drainage of road-bed, value of 64, 65
Drains in tunnels. 168
Draw-bars 331
Drilling holes for blasting. 118, 119
Driving-wheels of locomotives. 323
section of 325
Drop tests for train resistance 350
Durability of metal ties. 219
rails. 234, 235
wooden ties. 204
Dynamometer tests of train resistance. 349
Earnings of railroads, estimation of. 373
per mile of road. 373
EARTHWORK.-Chap. III.
Earthwork computations, accuracy. 94
approximate computations from profiles 95
Earthwork computations, relation of actual volume to numerical result 66
Earthwork, cost 106 et seq., 356
limit of free haul. 105
method of computing haul. 99 et seq.
shrinkage. 96
surveys. 66-69, a
Eccentricity of center of gravity of earthwork cross-section 91
Economics, railroad, justification of methods of computation. 367, 426
nature and limitations 365
of ties. 202
of treated ties 217
Elements of a 1° curve. 23
simple curve. 21
transition curves-Table IV. pp. 520-522
Embankments, method of formation 98
usual form of cross-section. 58
Empirical formulæ for culvert area. 180
accuracy required. 183
value. 181
Engineering, proportionate and actual cost, in railroad construction 353
Engineering News formula for pile-driving. 131
for train resistance. 348, c
Engineer's duties in locating a railroad 366
Engine-houses for locomotives. 289
Enginemen, basis of wages. 394, 407
English system of tunnel excavation 171
Enlargement of tunnel headings. 170
Entrained water in steam 321
Equalizing-levers on locomotives 324
Equipment, effect of curvature on maintenance of 423
Equivalent level sections in earthwork, determination of area 77
sections in earthwork, determination of area. 76
Estimation of probable volume of traffic and of probable growth 373
Excavation, usual form of cross-section. 58
Exhaust-steam, effect of back-pressure 321
Expansion of rails 230
Explosives, amount used. 120
firing 122
tamping. 121
use in blasting. 117
Expenditure of money for railroad purposes, general principles 377
External distance, simple curve 21
table of, for a 1° curve-Table II p. 516
Factors of safety, design of timber trestles. 155
Failures of rail joints 241
Fastenings for metal cross-ties 221
Field work for locating a simple curve. 26
a spiral. 50
Fire-box of locomotive. 318
required area 318
Fire-brick arches in locomotive fire-box. 318
Fire protection on trestles. 148
Five-level sections in earthwork, computation of area 80
Fixed charges, nature and ratio to total disbursements. 378
Flanges of wheels, form 332
Flanging locomotive driving-wheels, effect. 314
Floor systems for trestling. 143-150
Formation of embankments, earthwork. 96-98
railroad corporations, method. 368
Formulæ for pile-driving 131
required area of culverts. 180
train resistance. 348
trigonometrical-Table XXX. pp. 640, 650
useful, and constants-Table XXXI. p. 651
Fouling point of a siding 310
Foundations for framed trestles 139
FRAMED TRESTLES 135-159
abutments. 142
bracing. 140, 141
cost. 150
design. 135, 151-159
foundations. 139
joints. 136
multiple stony construction 137
span 138
Frame of locomotive, construction. 316
Free haul of earthwork, limit of. 105
Freight yards. 295-299
general principles. 295
minor yards 297
relation of yard to main tracks 296
track scales. 299
transfer cranes 298
French system of tunnel excavation 171
Friction, laws of, as applied to braking trains 334
Frogs, diagrammatic design. 255
Elliot, illustrated in Piate VIMI, opposite D. 267.
for switches. 255, 256
to find frog number 256
trigonometrical functions-Table IMI, Q .519.
Weir, illustrated in Plate VIII, opposite p. 267.
Fuel for locomotives, cost of .395, 407, item 22, and Table XXas affected by changes in alignment, 407, 424,437, 444: 450
German system of tunnel excavation 171
GRADE.-Chap. XXIMI.
(see Minor grades, Pusher grades, Ruling grades). accelerated motion of trains on. 431
distinction between ruling and minor grades. 430
in tunnels 165
line, change in, based on mass diagram 104
resistance of. 344

INDEX.

Grade, undulatory, advantages, 'disadvantages, and safe limits 434
virtual. 432
use, value, and misuse 433
Grade resistance of trains. 344
Gravel ballast. 197
Gravity tests of train resistance. 350
Grate area of locomotives 318, 320
ratic to total heating surface 320
Gravity, effect on trains on grades 344
tests of train resistance. 350
Ground levers for switches. 259
Growth of railroad traffic. 373
affected by increase of facilities. 375
Guard rails for switches 261
for trestles. 145
Guides around curves and angles (signaling mechanism) 309
Gun-powder pile-drivers. 130
Hand-brakes. 335
Haul of earthwork, computation of length 99 et seq.
cost. 109, 116
limit of profitable. 116
method depending on distance hauled 110
Headings in tunnels. 169
Heating surface in locomotives. 320
Hire of equipment (rolling stock), nature of item and cost-Table XX. 400
Hoosac Tunnel, surveys for. 160,163
Hump in a grade, operating value of removal 439
I-beam bridges, standard. 195
IMPROVEMENT OF OLD LINES.-Chap. XXIV. classification. 455
Inertia resistances 347
Instrumental work in locating simple curves. 26
spirals. 50
Interest on cost of railroads during construction 360
Iron pipe culverts. 186
Irregular prismoids, volume. 82
sections in earthwork, computation of area. 81
Joints, framed trestles. 136
rail. 237-243
Journal friction of axles. 343, b
Kinetic energy of trains. 431
Kyanizing (bichloride-of-mercury or corrosive-sublimate process) for preserving timber. 214
Land and land damages, cost 354
Lateral bracing for trestles 141
Length of rails. 229
a simple curve 20
a spiral. 53
Level, dumpy, adjustments of-Appendix. p. 508
wye, adjustments of-Appendix. p. 506
Leveling, location surveys 16
Level sections, volume of prismoids surveyed as. 74
numerical example. 75
Life of locomotives. 327
Limitations in location of track 34
of maximum curvature. 429
Lining of tunnels. 166
Loading earthwork, cost 108
of trestles. 154
Local traffic, definition and distinction from through 409
Location of stations at distance from business centers, effect 376
Location Surveys-paper location. 15
surveying methods 16
Locomotives, as affected by changes in alignment 406, 423, 437, 444, 450
causes of deterioration, item 12 406
cost of renewals and repairs. 390
general structure. 316-326
life of. 327
types permissible on sharp curvature 420, b
(For details, look for the particular item.)
Logarithmic sines and tangents of small angles-Table VI p. 543
sines, cosines, tangents, and cotangents-Table VII. p. 546
versed sines and external secants-Table VIII. p. 591
Logarithms of numbers-Table V p. 523
Long chords for a 1° curve-Table II. p. 516
of a simple curve. 21
Longitudinal bracing of a trestle. 140
Longitudinals (rails). 201, 224
Loop-see Spiral.
Loosening earthwork, cost 107
Loss in traffic due to lack of facilities. 376
Magnitude of railroad business. 363
Maintenance of equipment, as affected by changes in curvature. 423
distance 406
minor grades. 437
rüling grades. 444
pusher-engines 450
cost of 389-392
Maintenance of way as affected by changes in curvature 422
distance. 405
minor grades. 437
ruling grades. 444
pusher-engines. 450
cost of 384-388
Maps, use of, in reconnoissance 6
Mass curve, area 102
properties 101
diagram, effect of change of grade line. 104
haul of earthwork. 100
value. 103
Mathematical design of switches. 262-275
Measurements, location surveys. 16
Mechanism of brakes 335-337
METAL TIES 218-223
cost 222
durability 219
extent of use. 218
fastenings. 221
form and dimensions 220
Middle areas, volume of prismoid computed from 72
ordinate of a simple curve 21
Mileage, car. 400
locomotives, average annual 327
MINOR GRADES 435-439
basis of cost. 435
classification 436
effect on operating expenses. 437
estimate of cost of one foot of change of elevation 438
operating value of the removal of a hump in a grade. 439
Minor openings in road-bed. 193-195
Minor stations, rooms required, construction 287
MISCELLANEOUS STRUCTURES AND BUILDINGS.-Chap. XII.
Modifications in location, compound curves 39
simple curves 33
Mogul locomotives, running gear. 323
Monopoly, extent to which a railroad may be such 371
Mountain routes-reconnoissance 5
" Mud " ballast 197
sills, trestle foundations 139, b
Multiform compound curves used as spirals 45
Multiple story construction for trestles 137
Myer's formula for culvert area 180
Natural sines, cosines, tangents, and cotangents-Table IX 637
versed sines and external secants-Table \mathbf{X} p. 642
Non-competitive traffic, definition 409
effect of variations in distance 413, 414
extent of monopoly 371
Notes-form for cross-sectioning 12
location surveys 17
reconnoissance 7
Number of a frog, to find 256
of trains per day, probable 374
Nut-locks, design. 253
Obstacles to location of trackwork 32
Obstructed curve, in curve location 32, c
Old lines, improvement of-Chap. XXIV rail culverts. 190
Open cuts vs. tunnels. 174
OPERATING EXPENSES.-Chap. XX. detailed classification-Table XX 382-402
effect of change of grade-439, and Table
XXIV 472
Operating expenses, effect of curvature on. 421-426
distance on 405-408
estimated cost of each additional foot-Table XXI. 408
of each additional mile-Table XXI. 408
of 1° additional of central angle -Table XXII 425
fourfold distribution. 379
per train mile. 380
reasons for uniformity per train mile. 381
(For details look for the particular item.)
Operation of trains, effect of curvature on. 420
Oscillatory and concussive velocity resistances, train 342
Ordinates of a spiral. 47
Paper locationwin location surveys 15
Passengers carried one mile. 363
Physical tests of steel splice bars 243, a
steel rails. 233, a
Picks, use in loosening earth 107, b
Pile bents. 129, 133
driving. 130
driving formulæ. 131
points and shoes. 132
trestles, cost 134
design. 133
PILE TRESTLES 129-134
Pilot truck of locomotive, action. 315
PIPE CULVERTS. 184-187
advantages. 184
construction. 185
iron. 186
tile. 187
Pipe compensator. 309
Pipes, use in block signaling 309
Pit cattle guiards. 193
Platforms, station 286
Ploughs, use in loosening earth 107, a
Point of curve. 21
inaccessible, in curve location 32, b
Point of tangency. 21
inaccessible, in curve location $32, b$
Point-rails of switches, construction 258
Point-switches. 258
Pony truck of locomotive, action 315
Portals, tunnels, methods of excavation 173
Posts, trestle, design of 157
Preliminary financiering of railroads-Chap. XIX.. and 352
Preliminary surveys-cross-section method 11
"first" and "second" 14
general character. 10

INDEX.
Preliminary surveys, value of re-surveys at critical points 14
Preservative processes for timber, cost 216
general principle. 210
methods 211-215, 217
Prismoidol correction for irregular prismoicis, approximate value. 85
true value 83
in earthwork computations, comparison of exact and approximate methods 86
formula, proof. 70
Prismoid, irregular, computation of volume 82
Prismoids, in earthwork computations 67
Profit and loss, dependence on business done 372
small margin between them for railroad promaters. 370
Profits (and security) in the two general classes of railroad obligations. 369
Profit, in earthwork operations. 115
PROMOTION OF RAILROAD PROJECTS.-Chap. XIX.
Pumping, for locomotive water-tanks. 283, 284
Pusher grades. 446-451
comparative cost 450, 451
general principles 446
required balance between throug's and pusher grades 447
required length. 449
Pusher engines, cost per mile-Table XXIX 488
operation 418
service 450
Radiation from locomotives. 321
into the exhaust-steam. 321
Radii of curves-Table I. 512
Radius of curvature (of track), relation to operating expenses 421
Rail braces. 244
expansion, resistance at joints and ties to free expansion. 251
FASTENINGS.-Chap. X.
gap, effect of, at joints 239
joints 237-243, a
"Bonzano". 243
"Cloud". 243
"Continuous". 243
"Fisher". 243
"Weber". 243
"100 per-cent". 243
"bridge". 240
effect of rail gap. 239
efficiency of angle-bar. 238
failures. 241
later designs. 243
specifications. 243, a
"supported". 238, 240
"suspended". 238, 240
theoretical requirements for perfect. 237
sections 225, 226
A.S.C.E 226
Rail sections, "bridge". 225
"bull-headed". 225, 226
compound 240
"pear" section. 225
radius of upper corner, effect 226
reversible 226
"'Stevens". 225
"Vignoles" 225
RAILS.-Chap. IX.
branding 233-a,11
cast-iron 225
cost. 236, 358, c
of, as affected by changes in curvature 422
distance 405
minor grades. 437
ruling grades. 444
pusher engines 450
of renewals of 234 235, 385
chemical composition. 232, 233, a
effect of stiffness on traction. 228
expansion. 230
stresses caused by prevention of expansion 230
rules for allowing for 231
inspection. 233- $a-12$
length 229
allowable variation. 233, $a, 8$
45- and 60-foot rails 229
No. 2. 233-a-13
physical properties $233 a, 3$
relation of weight, strength, and stiffness 228
temperature when exposed to sun 231
testing 233, 233, a
tons per mile. 358, c
wear on curves. 235
tangents 234
weight, allowable variation. 233-a-7
for various kinds of traffic 358
Rates based on distance, reasons 404
through, method of division of. 410
Receipts (railroad), effect of distance on 409-41.6
Reconnoissance over a cross-country route. 4
surveying, leveling methods 7
surveys 1-9
character of 1
distance measurements. 8
mountain route. 5
selection of general route. 2
value of high grade work 9
through a river valley 3
Reduction of barometer reading to $32^{\circ} \mathrm{F}$.-Table XI p. 647
Renewal of rails, cost of 234, 235, 385
Renewal of rails, cost of, as affected by changes in curvature 422
distance. 405
minor grades 437
ruling grades 444
pusher engines 450
Renewal of ties cost of 208, et seq. 386
as affected by changes in curvature. 422
distance. 405
minor grades 437
ruling grades. 444
pusher engines 450
regulations governing it. 208
Repairs and renewals of locomotives, cost. 390
as affected by change of dis- tance. 406
curvature 423
minor grades. 437
byruling grades 444
Repairs of roadway, cost oi. 384
as affected by changes in curvature. 422
distance. 405
minor grades 437
ruling grades 444
pusher engines 450
Repairs, wear, depreciation, and interest on cost of plant; cost for earth- work operations. 113
Replacement of a compound curve by a curve with spirals. 53
simple curve by a curve with spirals. 51
Requirements, nut-locks. 251
perfect rail-joint. 237
spikes. 247
track-bolts 251
Resistances internal to the locomotive. 341
(see Train Resistance.) 378Revenue, gross, distribution of.
Roadbed, form of subgrade. 63
width for single and double track. 62
Roadway, cost of repairs of. 384
as affected by changes in curvature. 422
distance. 405
minor grades. 437
ruling grades. 444
pusher engines 450
Roadways, earthwork operations, cost of keeping in order 112
Rock ballast. 197
Rock cuts, compound sections 61, 62
Rolling friction of wheels. 343, a
ROLLING STOCK.-Chap. XIV.
Rotative kinetic energy of wheels of train. 347, 431
Rules for switch-laying. 276
Ruling grades 440-445
Ruling grades, choice of. 441
definition. 440
operating value of a reduction in rate of 445
proportion of traffic affected by 443
Run-off for elevated outer rail 43
Running gear of locomotives, types 323
Scales, track 298
Scrapers, use in earthwork 109, d
Screws and bolts, as rail-fastenings 249
Searles's formula for train resistance 348, a
Section-houses, value, construction 288
Selection of a general route for a railroad 2
Semaphore boards, in block signaling 308
Setting tie-plates, methods 246
Shafts, tunnel, design 167
surveying 161
Shells and small coal, used as ballast 197
Shifting centers for locomotive pilot trucks, action 315
Shoveling (hand) of earthwork, cost 108, a
(steam) of earthwork, cost $108, b$
Shrinkage of earthwork. 96
allowance 97
Side-hill work, in earthwork computations. 88
correction for curvature 91
Signaling, block, "absolute" blocking. 304
automatic. 305
manual systems 302-304
permissive. 304
Signals, mechanical details. 308
Sills for trestles, design 158
Simple curves. 18-36
Skidding of wheels on rails 333, 334
Slag, used for ballast 197
Slide-rule, in earthwork computations 79
Slipping of wheels on rails, lateral 312
longitudinal. 311
Slopes in earthwork, for cut and fill. 60, 62
effect and value of sodding. 65
Slope-stake rod, automatic 69, a
Slope-stakes, determination of position 69
Sodding slopes, effect and value 65
Spacing of ties. 206
Span of trestles 138
Specifications for earthwork. 125
steel rails. 233, a
steel splice-bars 243, a
wooden ties. 207
Speed of trains, reduction due to curvature. 419, a
relation to superelevation of outer rail. 41,42
relation to tractive adhesion 334,e
Spikes, 247-250
Spikes, cost 358, d
driving. 248
number per mile of track 358, d
requirements in design 247
"wooden," for plugging spike-holes 250
Spirals, bridge and tunnel. 5
(see Transition Curves.)
Splice-bars-(see Angle-bars).Split stringers, caps, and sills.129, 143
Spreading earthwork, cost 111
Stadia method-for preliminary surveys 13
Stand pipes, for locomotive water-supply 285
Starting grade at stations, reduction of. 460
Staybolts for locomotive fire-boxes. 318
Stays, in locomotive fire-box. 318
Steam pile-drivers. 130
Steam-shoveling of earthwork. 108, b
Stiffness of rails, effect on traction 228
Stocks of railroads, security and profits 369
Stone box culverts. 189
foundations for framed trestles. 139, c
Straight connecting curve between two parallel curved tracks 275, a
from a curved main track 273
frog rails, effect on design of switch 263
point rails, effect on design of switch 264
Strength of timber 153
factors of safety. 155
required elements for trestles 152
Stringer bridges, standard, steel 195
Stringers, design 156
for trestle floors 143
Stub-switches 257
Subchord, length. 19
Subgrade, of roadbed, form 63
Superelevation of the outer rail on curves, L. V. R. R. run-off 43
on trestles 147
practical ruies 42
standard on N. Y. N. H.
\& H. R. R 42
theory 41
Superintendance, cost in earth operations 114
of conducting transportation 393
of maintenance of equipment 389
Supported rail-joints. 240
Surface cattle guards 193, b
surveys for tunneling. 160
Surveys and engineering expenses for railroads, cost. 353
accuracy 163
for tunneling 160-163
with compass. 11
Suspended rail-joints. 240
Swinging pilot truck on locomotive 315
Switchbacks 5
Switch construction 254261
essential elements 254
frogs 255,256
guard rails 261
point 258
stands 259
stub 257
tie rods 260
SWITCHES AND CROSSINGS,..Chap XI
Switches, mathematical design 262-276
comparison of methods. 266
using circular lead rails. 262
using straight frog rails 263
using straight point rails. 264
using straight frog rails and straight point rails 265
Switching engines, running gear 323
used in pusher-engine service. 448
Switch leads and distances-Table III p. 519
laying, practical rules. 259
stands. 276
TABLES. numbers refer to pages, not sections.
I. Radii of curves 512-515
II. Tangents, external distances and long chords for a 1° curve, 516-518
III. Switch leads and distances 519
IV. Elements of transition curves 520-522
V. Logarithms of numbers. 523-542
VI. Logarithmic sines and tangents of small angles. 543-545
VII. Logarithmic sines, cosines, tangents, and cotangents 546-590
VIII. Logarithmic versed sines and external secants. 591-636
IX. Natural sines, cosines, tangents, and cotangents 637-641
X. Natural versed sines and external secants 642-646
XI. Reduction of barometer reading to $32^{\circ} \mathrm{F}$. 647
XII. Barometric elevations. 648
XIII. Coefficients for corrections for temperature and humidity. 648
XIV. Capacity of cylindrical water-tanks in United States standard gallons of 231 cubic inches 301
XV. Number of cross-ties per mile 396
XVI. Tons per mile (with cost) of rails of various weights 397
XVII. Splice bars and bolts per mile of track 398
XVIII. Railroad spikes. 398
XIX. Track bolts, average number in a keg of 200 pounds. 398
XX. Classification of operating expenses of all railroads, to face p. 425
XXI. Effect on operating expenses of changes in distance. 439
XXII. Effect on operating expenses of changes in curvature 453
XXIII. Velocity head of trains. 463
XXIV. Effect on operating expenses of changes in grade 472
XXV. Tractive power of locomotives 475
TABLES.
XXVI. Total train resistance per ton on various grades. 477
XXVII. Cost of an additional train to handle a given traffic 480
XXVIII. Balanced grades for one, two, and three engines 485
XXIX. Cost per mile of a pusher-engine. 488
XXX. Useful trigonometrical formulæ. 649, 650
XXXI. Useful formulæ and constants. 651
Talbot's formula for culvert area. 180
Tamping for blasting. 121
Tangents for a 1° curve-Table II 516
Tangent distance, simple curve 21
Tanks, water, for locomotives 282
capacity of cylindrical tanks. 282
track. 284
Temperature allowances, while laying rails. 231
Ten-wheel locomotives, running gear. 323
Telegraph lines for railroads, cost 361
TERMINALS.-Chap. XIII.
inconvenient, resulting loss. 376
justification for great expenditures. 376
Terminal pyramids and wedges, in earthwork. 59
Tests for splice bars. 243, a
for rails. 233, a
to measure the efficiency of brakes 338
Three-level sections in earthwork, determination of area. 78
numerical example 78
Throw of a switch. 262
Through traffic, definition. 409
division of receipts between roads 410
effect of changes in distance on receipts 411
Tie-plates. 244-246
advantages 244
elements of design. 245
method of setting. 246
Tie rods, for switches. 260
TIES.-Chap. VIII.
cost of renewal of. 208 et seq. 386
as affected by changes in curvature 422
distance. 405
minor grades. 437
ruling grades. 444
pusher-engines. 450
metal 218-223
cost. 222
durability. 219
extent of use. 218
fastenings. 221
form and dimensions 220
number per mile of track-Table XV. p. 396
on trestles. 146
wooden. 203-217
Ties, wooden, choice oí wood. 203
construction. 207
cost. 209, 358, b
dimensions. 205
durability. 204
economics. 202
quality of timber. 207
spacing. 206
specifications. 207
Tile drains, to drain roadbed 61
pipe culverts. 187
Timber, choice for trestles 149
piles. 129
ties. 203
strength of 153
Tons carried one mile. 363
Topographical maps, use of, in reconnaissance. - 6
Track bolts, average number in a keg of 200 pounds. 358, d
cost. 358, d
design. 252
essential rcquirements. 251
number required per mile. 358, d
circuit for automatic signaling. 310
laying on railroads, cost. $358, e$
scales. 299
Tractive power of locomotives, Table XXV p. 475 and. 322
relation to boiler and cylinder power 326
Traffic, classification of 409
TRAIN-BRAKES. 333-339
automatic 337
brake-shoes. 339
general principles. 333, 334
hand-brakes. 335
straight airbrakes. 336
tests for efficiency. 338
Train length limited by curvature. 420, a
load, financial value of increasing. 444
maximum on any grade. 442
loads, methods of increasing. $455, b, 458$ et seq.RESISTANCE.-Chap. XVI.
total, per ton, on various grades-TableXXVI p. 477 and.444
service, cost of, 397 and Table. XX.
as affected by changes in alignment, 407, 424, 437,444, 450
supplies and expenses, cost of, in conducting transportation-398 and Table XX.wages-(see Train service).
Transfer cranes in freight yards. 298
Transit, adjustments of. p.p. 501-506
Transition curves 41-53
Transition curves, Table IV pp. 520-522
application to compound curves 52
field work 50
fundamental principle. 44
replacing a compound curve by curves with spirals 53
simple curve by a curve with spirals 51
required length 46
their relation to tangents and simple curves 49
to find the deflections from any point. 48
ordinates 47
Transportation, effect of curvature on conducting. 424
TRESTLES.-Chap. IV.
cost. 150
extent of use. 126
framed. 135-150
pile. 129-134
posts, design 157
required elements of strength 152
sills, design 158
stringers, design 156
timber. 149, 153
vs. embankments. 127
Trucks, car 330
four-wheeled, action on curves 312
locomotive pilot. 315
with shifting center 315
TUNNELS.-Chap. V.
cost 175
vs. open cuts 174
Tunnel cross-sections 164
design. 164-168
drains. 168
enlargement. 170
grade. 165
headings. 169
lining. 166
portals 173
shafts. 161, 167
spirals. 5
Turnout, connecting curve from a straight track 271
from a curved track to the outside. 272
to the inside. 273
double, from straight track 269
dimensions, development of approximate rule for above 267
from inner side of curved track. 268
from outer side of curved track. 267
Turnouts with straight point rails and straight frog rails, dimensions of -Table III. o. 519
two, on same side 270
Turntables for locomotives. 292
Two-level ground, volume of prismoid surveyed as 73
Underground surveys in tunnels. 162
Undulatory grades, advantages, disadvantages, and safe limits 434
Unit chord, simple curves 18
Upright switch-stands. 259
Useful formulæ and constants-Table XXXI p. 651
trigonometrical formulæ-Table XXX p. 647, 648
Valley route-reconnoissance 3
Velocity head applied to theory of motion of trains 431
as applied to determination of train resistance 350
of trains-Table XXIII. p. 463
Velocity of trains, method of obtaining 458
resistances, train. 342
Ventilation of a tunnel during construction 172
Vertex inaccessible, curve location. 32, a
of a curve. 21
Vertical curves, mathematical form. 56
necessity for use. 54
numerical example. 57
required length. 55
Virtual grade, reduction of. 458-460
profile, construction of. 432
use, value, and possible misuse 433
Vulcanizing, for preserving wooden ties 211
Wages of engine- and roundhouse-men. 394; 407, item 21
as affected by changes in align- ment. $407,424,437,444,450$
Wagons, use in hauling earthwork 109, b
Water for locomotives, chemical qualities. 281
consumption and cost 396; 407,item 23
methods of purification. 281
stations and water supply 280-285
location. 280
pumping. 283
required qualities of water. 281
stand-pipes 285
tanks. 282
track tanks. 284
table in locomotive fire-box. 318
tanks for locomotives. 282
capacity of cylindrical tanks. 282
protection from freezing. 282
way for culverts. 178-183
Watering stock. 369
Wear of rails on curves. 235
on tangents. 234
Weight of rails, 226, 227, and Table XVI. p. 397
Wellhouse (zinc-tannin) process for preserving timber. 215
Wellington's formula for train resistance. 348, b
Westinghouse air-brakes. 337
Wheelbarrows, use in hauling earthwork 109, c
Wheel resistances, train. 343
Wheels and rails, mutual action and reaction 311-315
effect of rigidly attaching them to axles 311
White oak, use for trestles 129. 149
ties 204
Wire-drawn steam 321
Wires and pipes, use in block signaling. 309
Wooden box culverts. 188
spikes, for filling spike holes 250
YARDS AND TERMINALS.-Chap. XIII. Yards, engine. 300
freight. 295-299
grade in 295
minor 297
relation to main tracks 296
transfer cranes. 298
track scales 299
value of proper design 293

got 38 hap

MAR 301903

[^0]: * The ruling grade may here be loosely defined as the maximum grade which is permissible. This definition is not strictly true, as may be seen later when studying Railroad Economics, but it may here serve the purpose.

[^1]: * The student should at once appreciate the fact of the necessary distortion of the figure. The distance $M M^{\prime}$ in Fig. 33 is perhaps 100 times its real proportional value.

[^2]: * See note at foot of p. 63.

[^3]: * Trans. Am. Soc. Civil Eng., Sept. 1894.

[^4]: * Students unfamiliar with the Integral Calculus may take for granted the fundamental formulæ that $\int d x=x$, that $\int x d x=\frac{1}{2} x^{2}$, and that $\int x^{2} d x=\frac{1}{3} x^{3}$; also that in integrating between the l^{1}.nits of l and 0 (zero), the value of the integral may be found by simply substituting l for x after integration.

[^5]: * The student should note that the derivation of equation (45) does not complete the proof, but that the statements in the fcllowing paragraph are logically necessary for a general proof.

[^6]: * The first edition of this book was octavo, and a pasteboard slide-rule, especially marked, accompanied each volume. Cutting down the size of the pages to "pocket size" prevents the incorporation of the rule with the present edition. Any slide-rule with a logarithmic unit $22^{\frac{1}{2}}$ inches long will do equally well provided that the 108 mark is specially distinguished for ready use in computing the volume and that the 324 mark is similarly distinguished for use in computing the prismoidal correction.

[^7]: * For a thorough treatment of the capabilities, cost, and management of steam-shovels the reader is referred to "Steam-shovels and Steam-shovel Work," by E. A. Hermann. D. Van Nostrand Co., New York.

[^8]: * Engineering News, Nov. 17, 1892.

[^9]: * From "Economical Designing of Timber Trestle Bridges."

[^10]: * Drinker's "Tunneling."
 \dagger Rziha, "Lehrbuch der Gesammten Tunnelbaukunst."

[^11]: * Rziha, "Lehrbuch der Gesammten Tunnelbaukunst."

[^12]: * Figures derived from Drinker's "Tunneling."

[^13]: * Prof. A. N. Talbot, "Selected Papers of the Civil Engineers' Club of the Univ. of Illinois."

[^14]: * J. P. Snow, Boston \& Maine Railway. From Report to Association of Railway Superintendents of Bridges and Buildings. 1897.

[^15]: * A. J. Kelley, Kansas City Belt Railway. From Report to Association of Railway Superintendents of Bridges and Buildings. 1897.

[^16]: * Report Ruadmasters Association. 1885.

[^17]: * Bull. No. 9, U. S. Dept. of Agric., Dịv. of Forestry. App. No. 1, by Henry Flad.

[^18]: * Bulletin No. 9, U. S. Dept. of Agriculture, Div. of Forestry.

[^19]: * Although the discussion of longitudinals might be considered to be long more properly to the subject of Ratls, yet the essential idea of all designs must necessarily be the support oi a rail-head on which the rolling stock may run, and therefore this form, unused in this country, will be briefly described bere.

[^20]: * Report, Roadmasters Association, 1895.

[^21]: * Roadmasters Association of America-Reports for 1897.

[^22]: * The student should at once appreciate that in Fig. 131, as well as in nearly all the remaining figures in this chapter, it becomes necessary to use excessively large frog angles, short radii, and a very wide gauge in order to illustrate the desired principles with figures which are sufficiently small for the page. In fact, the proportions used in the figures are such that serious mechanical difficulties would be encountered if they were used. These difficulties are here ignored because they can be neglected in the proportions used in practice.

[^23]: $r_{1}=1912.45 ; \quad \log =3.28159 ;$
 $r_{4}=1430.35 ; \log =3.155 \div 4$;
 $F_{1}=62^{\circ} 25^{\prime} 31^{\prime \prime}$;

 $$
 \begin{aligned}
 & r_{2}=1907.75 ; \quad \log =3.28052 ; \\
 & r_{4}=1430.35 ; \quad \log =3.15544 ; \\
 & F_{2}=62^{\prime} 33^{\prime} 55^{\prime \prime} ;
 \end{aligned}
 $$

[^24]: * Estimate of Mr. H. G. Hetzler, C., B. \& Q. Ry.

[^25]: * R. A. Parke, in R. R. Gazette, Feb. 23, 1894.

[^26]: * Henry C. Adams, Statistician, U. S. Int. Con. Commission.
 \dagger A. M. Wellington, Economic Theory of Railway Location.

[^27]: * Baserl on $\$ 766,332,900$ exeluting $\$ 51,640,376$ unclassified.

 \& l3:sel un $\$ 721,730,766$, excluding $\$ 51,258,278$ unelassified.

[^28]: * Wellington, Economic Theory, p. 207.

[^29]: * Seventh An. Rep. Am. Masi. Mech. Assn.

[^30]: $\begin{array}{lllllllllllllll}57 & 5 \overline{6} & 56 & 55 & 5 \overline{4} & 54 & 5 \overline{3} & 53 & 5 \overline{2} & 52 & 5 \overline{1} & 51 & 5 \overline{0} & 50 & 4 \overline{9}\end{array}$

[^31]: * Compiled from Report of U. S. C. \& G. Survey for 1881, App. 10. Table XI.

[^32]: * Compiled from Report of U. S. C. \& G. Survey for 1881, App. 10, Tables I, IV.

