amateus 98 eradio

Editor-Publisher

 Wayne Green W2NSD/1
Managing Editor

 Ken Sessions K6MVH/1
STAFF

Associate Editor
Jim Kyle K5JKX
WTW Editor
Dave Mann K2AGZ

FM Editor

Mike Van Den Branden
Advertising
Diane Shaw
Roci Billings
Aline Coutu

Advertising Representatives

Bill Fields
Manfred Meisels
Andrew McCreight

Art Director

Roger Block
Graphic Arts
Nancy Estle
Jan Wozmak
Composition
Ruthmary Davis
Karen Mellor

Drafting

R. K. Wildman W6MOG Wayne Peeler K4MVW T. M. Graham W8FKW

Subscriptions

Dorothy Gibson

. . a de W2NSD/I

NEVER SAY DIE

The most serious attempt ever recently took place.

Industry insiders intimate that this scheme was cooked up by the publisher of S 9 (also pubishes CQ mag azine. Since this was virtually admitted in a recent CQ editorial there seems little reason to doubt the reports.

S9, which has proposed such gems as sending empty beer cans to senators to impress them with the importance of CB , apparently has been feeling a need for more circulation and promoted the idea of throwing the amateurs out of half of the 2 meter band and turning it over exclusively to the CB gang. More manufacturers than you might think went along with this plan and it was backed by the most powerful CB industry group in the country.

This was not a plan for developing more amateurs, but purely and simply a scheme for selling more CB sets and more CB subscriptions.

The 2 meter band was opened in early 1946, just after the end of World War II, when the old $21 / 2$ meter band was taken away. $21 / 2$ meters was the first amateur band returned after the war, but the many radar (SD radar) and other units using the band during wartime were still around and the amateur band had to be moved up to 144 MHz from 112 MHz .

By late 1946 this band was in heavy use with simple modulated oscillators and superregenerative receivers. As more and more military surplus was released, crystal control became the order of the day. By the early 1950 s CR-522s, ARC-1s, and several other surplus sets were just about every-

It wasn't long before Galaxy had plenty of room for five times that about anywhere. They can talk with started turning out a nice little FM unit number ... or more ... before crowd- each other through the repeaters, or be mported from others were bing ing may become a serious proble to too the world.
turned to a rush, as virtually every ham many repeaters being on one channel The systems being developed on 2 m equipment manufacturer entered the or too few being tone operated, but today will probably be used when FM market. None of these companies only a few of the many channels in this amateur satellites and moon relay stawere doing this for fun - all this gear segment of the band have been used in tions are an ordinary fact of life. was being produced because amateurs were turning to 2 m FM by the thousands.

Much has been written about this totally new type of ham operation, so that won't be rehashed here. The development of FM nets, the erection of hundreds of repeaters, and the fascination of this new type of operation started the biggest move to a new mode since the sideband revolution in the mid-50s.
Virtually all of this FM activity is taking place in the $146-147 \mathrm{MHz}$ segment of the 2 m band. Though there are perhaps 20,000 active FM'ers in this band at present, there is still
any area and lots more wait unused. the disaster that might come about if emasculate 2 meters leaked out at the this band minute and, hopefully, the effor this band were taken away from the was stopped - at least temporarily
amateurs and turned over to CB, one The proposal for the 220 wonders what possibly over to CB, one going through the minds that cooked up the plan to do away with a good part of 2 m . The expansion of FM on 2 m may well be one of the best things that has ever happened to amateur radio. The emergency uses of this service are almost unlimited and could well do away with lower frequency nets. Think of the CD possibilities when low-powered hand transceivers can, through repeaters, be used jus

The proposal for the 220 MHz hobby class amateur license took a lot of the steam out of the push to take away 2 meters. Indeed, this may have been the deciding factor that kept the 2 meter proposal from being made.

Write to the publisher of S9 and CQ and tell him what you think of the plan to chop up two meters. Do what you can to stop this once and for all. Silence on your part means that you either agree that two should be given

THE WORLD OF FWM

Repeater Proposal RM-1725
The FCC now has before it a petition for repeater rulemaking that should go a long way toward pleasing everyone, When one repeater group proposed mandatory tones a long time back, lots of other repeater groups screamed bloody murder - they didn't want to be tied down to restrictions that clearly weren't necessary in thei rural areas. When another in their group, even earlier proposed that auto matic relay stations be allowed to mate without a continuous monitor on the UHF control frequency the
ting. That's life.
One very effective method for separating the sheep from the goats is through the use of access tones. Now, a repeater user must transmit a specific tone before the repeater will respond to his transmissions. And if gibberish starts coming through the repeater or foul language, or interference, or general abuse - the transmitting station will have no out. He can no longer claim innocence because he had to transmit that initial tone that would cause him to be repeated.

Clearly, the responsibility for a re-

Ken Sessions K6MVH

$.34 / .94$ as wèll as other combinations, why not just expand? If there is already a repeater within your range that's using the .34 frequency as an input, forget it! Be the first in your area to use $.16 / .76$

There's a great deal to be said for 16/.76. Not only is it a standard frequency pair separated by the stan dard 600 kHz spacing, but it allows the repeater users to get a little something extra when they crystal up their trans ceivers. They'll already have 94 direc and $34 / .94$ if they've bought one of the more popular of the new units

CONTENTS

Metal Locator, W6HDM.
Varactors
RTTY I.
SSTV I, W4UMF
ATV, K2OJL.
RTTY II, W1OER.
FM, VE2BZK
Organization, WA 3BKC.
FM Converter, K1CL
SSTV II,WB2EIV
Code Oscillator, K6MVH.
Beeper, K1ZJH.
1-Tube Transmitter, W9HBF General VI, Staff.
Phone Patch Settings, W4NVK RTTY III, WB2TCC.
Perf-Board Terminals, K5LLI Tuning Verticals, W5QKO Low-Ohm Meter, W3YCZ. Gus Watcher, W9SDK
where. Then came the day of the Gonset Communicator . . the Goony Boxes ... they were everywhere, by the thousands. Never had a piece of ham gear been as popular as this little transceiver. By the mid-50s there were over 10,000 active 2 meter ops!

The opening of the band to the Technician and Novice licensees did in no way slow down the activity on 2 meters. But the opening of 6 meters did. The techs rushed to 6 meters almost en masse and, armed with Heathkit Lunchboxes, 6 meter Goony Boxes, and a sprinkling of Clegg gear, they proliferated. And 2 m began to fade away.

Gonset brought out the Sidewinder for 2 meters . . . it fell on its face. Never more than a handful of pioneers made the sideband scene on two. The incompatibility of the SSB gear with communicators further disrupted the band, giving both groups fewer people

Up abo
hing begin 146 MH there was some first there were a few hardy ops that set up shop, and found only a few others to talk with The AM and SSB groups couldn't break in and talk with the FM boys, so they kept up their life in the lower part of the band and ignored the FM'ers.

Next, the FCC shoved the Novices off 2 meter phone and the $145-146$ MHz segment of the band really became deserted much of the time. The seasoned oldtimers still chatted down along the low end of the band, but they never listened for the Techs of No the country, with the southern California area probably being the only California area probably being the only real exception.
At this time great quantities of commercial wideband FM gear became available FM was on in 2 meters. The rush to FM was on in earnest. Rule changes for the commercial services obsoleted they swiftly fel into amateur hands at
fraction of their commercial prices
That brings us up to about 1968. As the commercial gear supply dried up and used gear began to disappear from the surplus ads in the ham magazines, manufacturers and importers began to take a closer look at the ham market.

FCC winced. They weren't about to turn a bunch of unmonitored stations method of operation was unprece dented in the amateur service for on thing; and for another, who would be held responsible when things weren't going according to the book?
This new petition, officially labeled RM-1725, could be the first step toward sensible legislation involvin epeaters. In essence, the proposed rule says that those who use repeater should be responsible for what goes out on the repeater transmit fre quency - provided that those user have a means for commanding the repeater to be actuated (as with tone access).

Put differently, toned repeaters would not be required to be monitored mans the UHF control rig. Repeater that remain carrier-operated would stil be required to have a continuous UHF control licensee monitoring at all time he repeater is in use.
Basis for Reasoning. At first glance, the petition might sound prejudicial to toned repeaters. But this ain't the case t all. Here's why. Take the case of purely carrier-operated repeater for example. Any station that happens across the repeater input frequency whether he be AM CW, TV RTTY what-have-you - gets repeated. If the station is not FM, all that comes out of the repeater is garbage. Who should be responsible for tying a chunk of specrum up for long periods and domina ing an otherwise useful repeater chan fellow who's transmitting the teletyp on the who's transmitting the teletyp of a mot question If the fellow transmitting the teletype claims in nocence in that he was transmittin nocence knowledge of the fact that he was being wepet what could you way? And if the interfering station' transmissions weren't Andering station reason, should the repeater owner be eas, should nput station is making illegal trans nput station is making illegal trans transmissions. If someone uses your ransmissions. If someone uses you tation to transmit dirty words, you the ama is who does extent tha
peater's output can logically be placed where it belongs - in the hands of the users. But to carry out an overall sense e designility, the repeats safety features to show the FCC that when things begin to go awry, the users themselves can initiate commands that cause the repeater to shut down. A timer on the transmitter B-plus relay, for example, should shut down the repeater when a transmission exceeds 3 minutes. Then, if the carrier-operated elay gets stuck down (intentionally or on purpose), or if something goes wrong with the repeater control circuitry, the whole system will turn itself off automatically. A user noticing an illegal transmission need but transmit a continuous signal for 3 minutes to shut things off,

A 5-second timer connected to the repeater's tone decoder could likewise cause shutdown in the event that the repeater's output deviates from the rules. Thus, any of the tone-equipped user stations could assert temporary but effective control over the repeater until the prime licensee could be notified and repairs begun.

You can't make much of a case for no-monitor operation of untoned repeaters, though. Someone has to be responsible for what's happening. And f. the station being repeated can beg pater, how could he logically be held peater, houle for what happens on its output?
itput?
oned repeaters in a proposal that says and that simple carrier-operated sys tems should be. The proposal seems very sound to me. And well it should, since I am the one who initiated the proposal in the first place.

Coordination of Repeater Frequencies
Part of the source of problems in a number of portions of the country for a repeater that operates on the $34 / .94$ pair. It's nice to have repeaters on $34 / .94$, because you can travel here and there and be assured of some degree of standardization. But some degree or standardization. But today most mod most modern transceivers come equipped with enough channels to give you
available to the amateur. When they add the $.16 / .76$ pair, they'll also have the capability of crosswiring the .34 transmit crystal and the .76 receive crystal to a fourth position on the frequency switch so they can work through any of the many southeast and upper midwest machines that use the $.34 / .76$ combination. At least give it some thought.

I am in a pretty fair position here at 73 to be of considerable help if your group or any other needs advice with respect to frequency coordination Inasmuch as 73 publishes a periodic repeater directory, I am one of the firs to be informed of new repeaters going up. So if you want to install a repeater why not check with me to see what other frequencies are in use in your area; chances are I'll have accurate and up-to-date information. You're under no obligation to follow my suggestions of course, but I can steer you clear of frequencies that might interfere with repeaters that are already under way. And if there is a trend toward a certain pair of frequencies in your area of the country I can let you know those trends so you can make your repeate compatible with those Such compati bility does enhance the usefulness of repeaters.

When you let me know of you intent to put up a repeater, I can mail you a list of the repeaters that ar woun a couple of hundred miles of you. And if you don't like the pair of at least be in a position to you we your own based on what's happening on the own based on what's happening on th spectrum in question.

Things to Come

I'm no prophet, but I'll bet I can predict the future of certain aspects of the VHF FM world. Look for CQ to claim it is responsible for getting amateur FM started big. Look for the ARRL to put up an official League Repeater. Look for lots and lots of FM articles in all the ham magazines from now on. And look for an onslaught of new FM transceivers at better and
better prices. Look for the ex-publisher better prices. Look for the ex-publishe of FM to make another try. And look for new names in the field of manufacturing of equipment designed to complement existing FM stations.

LOSES OPERATOR PRIVILEGES

By an FCC order, Armond J. Rolle was threatening language over the air. Rolle had
directed to show cause why the license for been unable to use the repeater station of the radio station W9FCE should not be revoked St. Louis Repeater Club on occasions because people told him to get off the air; he had been
"cussed at"; had music played; and otherwise cussed at. He once reported such violations to
harassed
the FCC: a field representative came to St
 in respect thereto at a hearing. By a second - dodo ssep uepluypol inajeur s, गाoy dopio
 cations Act of 1934, subject to his right to request a hearing on the matter. Rolle did
request the hearing, which was held in East St . Louis, Illinois, on September 15, 1970, on
 of criminal defamation for having communi-
 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
 abusive, and indecent nature. The proposed station revocation

 are contrary to the public interest, con-
venience, and necessity standards of Sections 301 and 307 (a) of the Act. The operator's the actions described were contrary to the public interest, convenience, and necessity
Rolle's license was therefore suspended. Evidence

은둥
弗象 Rolle himself maintained continuous tapes when his barn burned. Whition,
station logs for the period in question,
 impersonating him. He also alleged there was
"personal grudge" between himself, La Busier and one other named amateur. He acknow
iedged the conversation with his aunt, Mrs
Stolle, but denied some of the specific state
for about 10 years, has known Rolle for about
the same length of time and has exchanged communications with him. At times, these
come communications were normal, but at others Rolle was transmitting foul and obscene state ments concerning La Busier, his wife and child, other amateurs, and threats to people.
Accordingly, La Busier made tape recordings, Accordingly, La Busier made tape recordings
talked to law enforcement officers, and filed the criminal charges on which Rolle was convicted. La Busier also introduced a handwritten letter, dated October 29, 1969, which he had received from Rolle. The letter, writ-
ten in advance of a serious operation which he was about to undergo, may generally be described as a confession of improper conduct toward La Busier and other ham operators, and a request for forgiveness.
Mrs. La Busier, also an amateur, identified various portions of the transcript of which she at the time, identifying the voice of W9FCE as that of Rolle's. Mrs. La Busier was the subject of the defamatory remarks which led to Rolle's conviction, and on other occasions as well, including threats of bodily harm. The cated by the transcript of December 16, 1968, when Mrs. La Busier, in retaliation, threatened to "blow that beady little head of yours Rolle's) right off your shoulders,"

Mrs. Stolle, an aunt of Rolle's identified a strated with Rolle on December 16,1968 , in a transmission from the La Busier station, for tatements he had been making and in whic he described himself as "dead drunk." She urther confirmed threats which Rolle had mame io "get" or "do harm" to La Busier, his revoked - specifically that he would bomb heir houses.
Mrs. Familton, another amateur, described number of transmissions by Rolle, whose
voice she recognized of the same nature as hose in the FCC exhibit, and independently erified several of the instances in that trans ript, inch:ding threats against the lives of herself and other members of the St. Louis Repeater Club. She also described an instance and he apologized for the things he had said explaining that he had teen under a considerable strain and not feeling well. She also escribed an instance before Rolle's con ad made a test call, Rolle came on she haracterized her as a "fat old whore." Again hile her family was on an automobile trip during which her four children became boisterous, her husband made a transmission from their mobile unit, at the conclusion of which Rolle came on and characterized the children
as a "buncl of bastards." The St. Louis Repeater Club, of which she is secretary, had expelled Rolle from membership because of his conduct on the air.
Rolle's Defense
Rolle, testifying in his own behalf, catemissions, or that he had ever used obscene or

Findings of Fac
Rolle, using station W9FCE, did make the show cause order. The statements include transmissions which Rolle himself conceded to be obscene; much profanity, defamatory statements of the nature on which he was prosecuted, and the "llowing nature
oday when you were at that house only thing I didn't want to hurt Harold Weiss. Luckily, he was standing there or I woulda hurt a whole bunch of other people. That ". . . She see me me
cause I carry a .25 automatic on me at all times. And I know how to use it
"Stupid, got something to tell you. You're gonna have an accident between Godrey and here - some way, somehow. But you're gonna have an accident and it's gonna be fatal." I ever see any of youse in person, I'm gonna blow your damn heads off. ..." golly, you won't much longer," These statements (all from FCC staff Exhibit 2) are against a background of Mr . Rolle's formidable appearance, which is described in the record as "unusually large in height and weight." Rolle is described as being
6 ft 11 in . tall and weighing in excess of 400 pounds, which is compatible with the observations of the hearing examiner.

Conclusions

The Bureau concluded that respondent's actions are not consistent with the purposes clearly, as charged, contrary to the public cleary, as charged, contrary to the public
interest, convenience, and necessity. Also, as charged, it was concluded that these actions
would warrant the Commission in refusing to would warrant the Commission in refusing to
grant an application filed by respondent for grant an application filed by respondent for
an amateur radio license. With respect to an amateur radio license. With respect to
respondent's plea for clemency, the Bureau contended that due to the complete lack of candor exhibited through denial and subsequent admission of the matters charged, the
defense of effects of drugs and alcohol is not a defense of effects of drugs and alcohol is not a
mitigation of the offense. Pointing to the mitigation of the offense. Pointing thature of the transmissions, the Bu reau urged the imposition of the most severe sanctions available - revocation of the station license and suspension of the operator license. Respondent, on the other hand, urged that
he not be penalized for having exercised his he not be penalized for having exercised his
righi to a hearing, as he feels the Bureau suggested. The proposed findings then discuss Rolle's physical and mental makeup, largely in terms not supported by the record. The record did verify, however, that threats Rolle had made were subsequently denied or forgotten by him; he worried a lot about having
his license revoked; and he has difficulty finding employment because of his huge bulk
character, and financial, technical and other," it appears to have activated only the citizen-
ship and technical requirements (Sections ship and technical requirements (Sections) While Rolle's actions are clearly not compatible with the basis and purpose of amateur radio service (Section 97.1), the hearing exam-
iner found nothing in the regulations which iner found nothing in the regulations which
would authorize a refusal to issue a station license to Rolle, notwithstanding his reprehensible conduct, so long as he possessed an operators license, nor did the Bureau cite any. action is taken parapet (d) placed a this action is taken, paragraph (d), placed a spe-
cific burden of proof on the Commission, or in this case, the Bureau. The Bureau has not sustained that burden of showing a prope basis for the revocation of the station license.

The Surprise Kicker
The proposed findings cited no regulation cation elsewhere in the record. The allegation of inconsistency with the general standard of Section $307(\mathrm{a})$ of the Act does not meet the
test of Section $303(\mathrm{~m})(1)(\mathrm{A})$ As in the instance of the station license, the show cause order omitted reference to the specific prohibition dealing with profane or obscene words, language or meaning, Section
$303(\mathrm{~m})(1)(\mathrm{D})$ Frederick Denniston, there is 0 Examine hibition against the use of amateur radio for criminal purposes, which, if here present,
would be conclusive in view of Rolle's crim would be conclusive in view of Rolle's criminal conviction for certain of the acts here involved
The show cause order cited the making by Rolle of "communications of a threatening, abusive and/or indecent nature," and the
proposed findings of the Bureau conclude that proposed had, in fact, done so. This quoted language is a modification of the language of the
statute and Section 97.119 of the Rules and Regulations against "obscene indecent or profane" as used in 28 USC 2464, which both the show cause order and the Bureau eschew, but the Bureau did not explain such a shift in language.
A revi
A review of Part 97 convinced the hearing examiner that Rolle's conduct had at least
violated Section 97.115 prohibiting the transmission of music, Section 97.125 prohibiting willful and malicious interference, and Section
97.119. The Bureau substitute, which it employed in the show substitute, which it employed in the show cause order, and the
language of Section 97.119 , however, have one word in common - "indecent"' - one definition of which is "morally unfit to be seen or heard." Rolle's language clearly met this test, and the hearing examiner so con-
cluded. To that extent, the "cause for the proposed suspension" required by Section $303(\mathrm{~m})(2)$ had been properly given and was sustained by the record.
The FCC report summarized: "... the Bureau would revoke the station license on a charge of there being warrant for refusal to
grant a license on an original application. The regulations, however, do not specify any basis regulations, however, do not specify any basis
on which an original application could be
actively triggers it with tone. The fact that the user station does have tone would be suf-
ficient to asssure that he is monitoring the repeater output. If the repeater then malfunctions - or its emissions are contrary to the requirements of Part. 97 - the user station can shut off his tone equipment to keep further
peater. peater.
Othe
clude tranethods of repeater shutdown intime perismission of a carrier for a specified continuous (say 3 minutes), transmission of a seconds), or the simple actied period (say 10 any transmission for a specified period (say 5 minutes). When the repeater is thus shut down, the repeater control licensee can be notified and repairs can be initiated. If the no-monitor proposal is passed by the cant advance in repeater rulemaking since the log-signing requirement was dropped several
years ago.

Blind Ham Uses Repeater
 To Report Blaze

A QRRR was placed on the WA1KFY re1970 by W1FCJ, a sightless amateur who reported a fire in his building with accompanying heavy smoke. There was no telephone in the apartment and the FM transceiver was WIELU and WAINPT, who called the Cambridge (Mass.) fire and police departments. W1FCJ remained at his rig until the police arrived and was one of the last persons to be evacuated from the building. There were no njuries, but damage was extensive and heavy
losses were suffered by W1FCJ and several other occupants.
refused in the light of the conduct involved; nor does the Bureau indicate a basis outside The charge with respect to the action. license is violation of statute or Commission regulation but the specifications of the charge, "threatening" and "abusive," are found in neither. While the word "indecent" is in the charge and is in Section 9.119 of the Rules, the avoidance of citation to Section $303(\mathrm{~m})(1)(\mathrm{D})$, dealing specifically with "indecent" language on the air, raises substantial doubt as to whether a proper basis has been shown for suspension of the operator license. Surely, the general public and especially the amateur radio operators, who as disclosed here, are entitled to better protection in the form of clear-cut regulations and supporting procedures to eliminate such activities,"
The license for amateur radio station nician amateur radio operator license issued to Armond J. Rolle was SUSPENDED until November 1, 1971
nd the U.S. - all the foreign lands receive better marks for improving their product
over the past decade than did the U.S. Thie best endorsement went to Japan, with 65% of the national sample and 79% of the higlincome sample asserting that Japanese goods
are better than they were 10 years ago. In are better than they were 10 years ago. In
contrast, only 33% of the national sample and contrast, only 33% of the national sample and
27% of the high-income respondents noted mprovement in U.S. goods. Furthermore mprovement in d.S. goods. Furthermore. can-made prodicts are not as high in quality as they were a decade ago. This is, by far, the largest negative vote given any of the four nations. Even while believing that the quality of U.S. products are declining, Americans still have the greatest amount of confidence in domestically produced goods. Of eight pro-
ducts areas surveyed -mostly in the elecducts areas surveyed - mostly in the elec
tronics field - only Japan and West Germany approach the U.S. in making products with comparable acceptance to American consumers.
In ne
In nearly all products areas surveyed in the
Newsweek study, the U.S. maintains a comNewsweek study, the U.S. maintains a com-
manding lead over its nearest competitors in both national and high-income samples. In the area of color TV, 76% of the national sample has a "great amount of confidence" in the
U.S. product. 25% for U.S. product, 25% for second-place Japan.
For black-and-white TV the U.S. has a 79% vs For black-and-white TV the U.S. has a 79% vs
32% "great confidence" lead over secondplace Japan. In the category of radio, hi-fi and tape recorders, the U.S. lead over second place Japan is 69% vs 48%. The U.S. tops
second-place West Germany in watches 62% vs second-place West Germany in watches 62% vs
41%, in small household appliances 72% vs 41%, in small household appliances
19% and in automobiles 69% vs 37%.
For further information of this survey and for a demographic analysis of its findings, contact John G. Pontius, Newsweek Home Product Advertising Manager, a

FCC REPORTS ISSUED

Volume 19 of the Second Series of FCC Reports is now available to the public from ernment Printing Office, Washington, D.C. 20402. Volume 19, covering the period from contains 1,140 pages and is priced at \$6 contains 1,140 pages and is priced
(catalog number 1970 O-LT $374-783$).
The complete FCC report now consists of the first series of 41 bound volumes dating from July 17, 1934, to June 30, 1965; the
second series of 19 volumes covering the second series of 19 volumes covering the
period July 9,1965 to October 17, 1969. period July 9,1965 to October 17, 1969.
Volumes 42 through 45 (covering documents not previously printed in the reports, Safety and Special Radio Services, and Common Carrier Matters) are now in preparation. A cumulative index-digest of Volumes 1 through
15 of the second series is available from the 15 of the second series is available from the
Government Printing Office for $\$ 7.50$; a similar index to the first series will be prepared.

FCC PROPOSES HIGHER SPEEDS FOR RTTY
Use of higher speeds of 75 and 100 words per minute for amateur radio teleprinter opera-
tion has been proposed by the Commission in tion has been proposed by the Commission in
an amendment to Part 97 (Amateur Radio an amendment to Part 97 (Amateur Radio
Service) rules. The present rules permit a speed of 60 words per minute.
The increase was requested by Keith B. Peterson (W8SDZ) and R. Bruce Peters (WB2LRS), who contended that the present commercial teleprinter standards include faster operating models as well as 60 words per
minute machines; that the present maximum frequency shift of 900 Hz would not be exceeded, and the higher speed would stimulate the development of new amateur skills and techniques.
The Commission said it believed the use of Radio Service, in keeping with commercial equipment standards now in use, is desirable and that since increased speeds can bo obained within limits of the present bandwidth operation was not anticipated
Comments are requested by March 1, 1971, and reply comments by March 22, 1971 Action by the Commission December 16, 1970, by Notice of Proposed Rule Making
RM-1392 1538). Commissioners Burch Chairman), Bartley, Robert E. Lee, H. Rex Lee and Wells.

New Motorola Hep
 Functional Circuits

An all-new series of Motorola HEP audio functional integrated circuits are designed to provide a complete audio system for mos ham/experimenter projects.
The HEP audio functional circuits are
available in three power output levels. HEP type $\mathbf{C} 6004$ provides IW of audio and is priced at $\$ 2,60$. Type C6005 provides a minimum of 2 W and is priced at $\$ 4.35$. The
4 W functional audio circuit is HEP type 4 W functional audio circuit is HEP type
C 6006 and sells for $\$ 5.60$. All are high-gain devices; they include a preamp and provide full rated output with an input signal in the 10 to 15 mV range. The circuits can be used with 4,8 , or 16 -ohm speakers. Mail-order
source for Motorola HEP devices is: source for Motorola HEP devices is:
Circuit Specialists Co. Box 3047, Scottsdale Circuit Specialists Co. Box 3047, Scottsdale
AZ 85257 .

Fem-Foto of the Month

Mrs. Nelda Reifsteck (WA9XYZ) became interestec in amateur radio as a byproduct of CD activities. She acquired a Novice license in May 1968, and shortly thereafter built a
Heath HW16 transceiver. In May 1970, she license. Again faced with the need of a radio, she built the Heath SB-102 transceiver.
Nelda is active in civil Nelda is active in civil defense work,
il of Chat the Women's Civil Derense Counof the Illinois Women's Civil Defense Council She is reportedly the first woman in either received certificates for completing the civil defense courses in communications, medical self-help, mass feeding, home study course, and package disaster hospital training.

All ARRL Directors Reelected

All incumbent directors running for remore planning and thought are put into the
and Midwest directors will not, I believe, be running again, so changes in those divisions
seem inevitable. Will it be a change for the

RTTY NET FORMED
There has now been formed a new section

HAM NETWORK AIDS IN MEDICAL EVACUATION

Albrook AFB, C.Z., Nov, $25-$ An international network of amateur radio operators
in Venezuela. Ecuador, Colombia, New in Venezuela, Ecuador, Colombia, New
Jersey, and the Canal Zone provided the emergency communications needed to arrange United States Air Forces Southern Command (USAFSO) Band on a good will tour in Maracaibo, Venezuela.
SSgt. Jerald O. Roys, a drummer with the fair in Maracaibo was discovered on Ning a ber 18 to be suffering from a possible ruptured spinal disk.
Immediate communication with the Canal Zone was necessary to ensure that the aircraft
due to pick up the band the following day was equipped with a special stretcher and proper medical personnel and equipment
When efforts to contact the Canal Zone through routine government channels were frustrated by uncontrollable delays, band 1 station operator.
sinney, an announcer and station operator.
MSgt. Oscar B
interpreter with the band, and a ham himself, contacted a Maracaibo eye doctor, Dr. JoséR. Apitz Rhode, YVIEL, who checked into the encompassing hams listening in eastern North America, Central America, and South Amer-
ica. YV1EL checked in to the net control, a ica. YV1EL checked in to the net control, a
ham in Bogota, with "urgent" traffic for the Canal Zone.

When the Bogota control station put out a call for the Canal Zone, he found that he was unable to contact anyone. However,
WA2CFA, Mr. Selig Rachles, in Clifton, New

Jersey, called in to explain that he could reach messanal Zone and voluntecred to relay any messages.
With thi With this contact, YVIEL and WA2CFA contacted KZ5FH, Robert McClain, at Coco
Solo on the Atlantic side of the Canal Zone, and the three stations went off the net to try to set up a relayed' phone patch to the Air Force headquarters on the Pacific side of the Zone. While the relay proved workable, phone lines between the Atlantic side of the Canal
and the Pacific side are so poor that a phone patch was not feasible. Meanwhile, and without the knowledge of the other three stations, HC 2 HV , Helen Jones, in Guayaquil, Ecuador, had been listening to
the unraveling drama and the frustrated comthe unraveling drama and the frustrated com-
munication efforts. Helen contacted a Canal Zone station on the Pacific side of the Isthmus and directed him to the frequency upon which the original three hams were attempting to patch their emergency traffic,
KZSEE, TSgt. Ernest Wachter, came to their frequency and checked in. Sergeant Wachter who lives four blocks from the Air Force headquarters successfully completed the phone patch and the medical attendant and emergency equipment arrived with the
aircraft the following day aircraft the following day.
When the aircraft returned to the Canal Zone, Sgt. Roys was gently carried from the
plane to an awaiting ambulance which was to take him to Gorgas Memorial Hospital. As the sergeant was lifted into the ambulance he managed a smile for his pretty wife, despite the pain, and rode to the hospital little
cognizant of the international cooperation of cognizant of the international cooperation of
amateur radio operators who came to his aid the night before.

DX BRIEFS. . .

A2CAK, Des, Box 23, Gaberones, Botswana, on atations in Botswana. C2IAA Nauru active stations in Botswana, C21AA, Nauru,
on $14130 / 0600 \mathrm{Z}$, call on CW and he'll move up the band. CE9AT, South Shetlands, Rene, QSL to CE3RR. CT2AK, Jose, Azores, QSL to VE7BWG, on 7030/0830Z. CT3AS, Ma-
deira, QSL RSGB, on $14213 / 2200 \mathrm{Z}$. EA9EJ, Justo, only active operator in Rio de Oro, no Friday \& Saturdays. FPQCA, St. Pierre, $14203 / 2130 Z$, QSL to K20JD. HS1ABU, Thailand, Clay, QSL to W5ZG, on
$14203 / 1230 Z$. KH6NR/Kure, $14230 / 21295$,

Clipperton, Anyone?

While Clipperton (FO8) seems to be the most wanted country these days, there are several difficulties ahead for any projected
operation from here. You'll find this little French dot on your world map in the Pacific if you look south of Baja California and west
of Costa Rica. There is nothing anywhere near it. The weather and the seas pose a problem even in the best months of September and October. Waves that run as high as 40 ft at times and steady winds of $15-40 \mathrm{mph}$ add to beautiful coral reef, which makes landing

1971 elections, it will be possible to g east one new face! Let's give it a try.
To run for director an amateur must be 2 or over, hold a General Class or better licens ARRL for at least four years before the date ofection. If you know of any amateurs in our area who meet these stringent specifimateur and also have enough of an interest in year stint as an ARRL director, it is time right now to start planning the campaign.
Incumbent directors have a tremendous advantage over a newcomer. The average League member votes for the chap that he has at least heard of before ... and this usually
turns out to be the present director. To counter this a new man must spend several months getting around to clubs introducing himself and finding out what they want from him in the way of representation at HQ during meeting.
With your help we can all have a bigger and much better ARRL but we must get new aces into those director chairs before any changes are even remotely possible. The 1971 election of directors will give you an opporDakota, Delta, Great Lakes, Midwest, Pacific, Southeastern and Canadian divisions. Some of those, such as the Southeastern, are in un-
believable need of improvement. The Yacitic

Chicargo Area

Hams Hold "Hamboree"
The Chicago Suburban Radio Association, a not-for-ppofit organization, will hold its an-
nual "Hamboree" on March 21, 1971, at the nual "Hamboree" on March 21, 1971, at the
Operating Eingineers Hall, 9200 West Joliet Operating Lingineers Hall, 9200 West Joliet
Road, La Grange, (Countryside Illinois. All Hance of 3000 to 5000 is expected, based on previous years.
previous years. to Dean C. Ford (WA9SEF) Program Chairman, 805 S . Stone Avenue, La Grange, Illinois, the latest amateur radio major manufacturers and Hams. All Hams are invited to come out and display or sell any products or items they wish free of charge.
The exhibit hall has 10,368 square feet of The exhibit hall has 10,368 square fect of
exhibit space. Ample paved parking space will exhibit space. Ample paved parking
also be available at no added charge.
Drawings for three grand prizes valued at be held during the one-day Hamborec. All those who attend will be eligible for the drawings. A donation of the door is the admission charge. Advance tickets for only $\$ 1$ per person, or a savings of 50 cents, may be purchased from:

Mr. Wilson Thomas (W9KWA)
4017 Vernon Avenue
Brookfield, Illinois 60513
better? That is up to you The man you run for directol must be by the months if there is even the slightest question that can be raised. No person is eligible who is commercially engaged in the manufacture, sale or rental of radio apparatus capable of being used in radio communications, is commercially or governmentally engaged in frequency allocation planning or implemen-
tation, or is commercially engaged in the tation, or is commercially engaged in the
publication of radio literature intended in whole or in part for consumption by radio amateurs.
Petitions
Petitions for nomination must have a
minimum of ten names of full members of the ARRL in good standing members of the standing should extend to beyond the date for voting in November to be on the safe side. Get the petitions in as early as you can because the Executive Committee may drag out the acceptance of your candidate for several
months... or longer. One candidate in this last election was held up almost a year, with the decision being rendered a few days before elections, much too late for any possible
campaigning. Do you suppose they didn't campaigning. Do you suppose they
want this chap in? You bet they didn't! want this chap in? You bet they didn't!
Even the most vested of interests can be changed if you decide that you are going to take matters into your own hands. Let's work toward getting some new directors, eh?
radioteletype. The essential statistics for the net ar
Time
Frequ 1800 EST (2300 Z) $\begin{array}{lr}\text { Meets } & \text { Monday through Sunday } \\ \text { First Net }\end{array}$ Sunday, January 10, 1971
All through traffic will be-handled through the Buckeye Net (CW) representative but dependable liaison must exist with both Buckeye Net and Ohio Single Sideband Net. At present only about han of the available
positions are filled so there is still plenty of room if you wish to volunteer for either an
NCS or Liaison NCS or Liaison position. The net roster calls for a total of seven NCS stations and fourteen liaison stations weekly.
The details of net
The details of net operation are as follows. 1800 EST. The call-up will be by radioteletype. Stations will then check in by CW. The CW running speed of the net will be 13 WPM but the NCS is instructed to slow down if a
station is having difficulty. We do not want to station is having difficuity. We do not want to
make CW an obstacle in what is essentially a RTTY net. Any directions given by the NCS are to be in CW and acknowledgement of QNI will be in CW. Traffic itself is to be sent on
RTTY. The two stations involved in handling RTTY. The two stations involved in handling
the traffic have the option of either obtaining the traffic have the option of either obtaining
fills by CW or RTTY, whichever is most convenient. Tapes and reperf should be utilized whenever possible to speed up net business. Most small amounts of traffic will be handled on the net frequency but for large amounts of point to point traffic, the two
stations should be sent off net frequency by the NCS. A more complete discussion of RTTY traffic handling as it will be done on
the net may be found in The Radio A mateur's the net may be found in The Radio A mateur's
Operating Manual. Incidentally, a "confirm" line at the end of the text repeating the addressee's name and all numbers in the address and text will be expected so please in

ORP 1Oth ANNIVERSARY OSO PARTY

Starts: 0000 GMT Saturday March 13, 197
Ends: 2300 GMI Sunday March 21, 1971
This contest is open to all amateurs, whether
they are members or not of ORP ARC INTL. they are members or not of QRP ARC INTL This contest is for CW only, and all are eligible for awards.
Exchanges: Members: RST, ARRL section or country, QRP number. Nonmembers: RST
ARRL section or country, Power, NM (non nembers).
Frequencies: $\mathrm{CW}-3540,7040 \quad 14065$ 21040.
21100.

PRESQUE ISLE HAMFEST
Don't forget to mark your calendars for ARC puts on its big hamfest. Advance info can be obtained from Box 1021, Erie, PA 16512.

Sudan. TA3HC, Horace, $28590 / 1500 \mathrm{Z}$, QSL to Xeleel. Note: no legal TA stations as yet
so do not QSL to Turkey. TR8VW, 28595 QSL to Box 5050 , Libreville, Rep. Gabon. Do not mention radio on envelope! VP2K X, St.
Kitts, QSL RSGB. VQ9SM, Chagoes, Jacky, 14231/1600Z, QSL to JAQCUV. Also try him 0100-0200 same frequency. YBQAU, Tom, 14058/1100Z, QSL Box 2761, Djarkata, Indonesia. YK1AA, Rasheed, is back on the air
Fridays and Saturdays from Fridays and Saturdays from Damascus, $28590 / 1800$ Z, QSL to Box 680, Manzini Swaziland, Africa. ZK1AA, Cook Island,
$14080 / 0400 \mathrm{Z}, \mathrm{QSL}$'s. $5 \mathrm{U} 7 \mathrm{AR}, 21073 / 1800 \mathrm{Z}$ QSL to Box 442, Niamey, Niger. 8J1RL Showa Base, Antarctica. K3QOS/KB6, Canton Island, Odus, $14225 / 1500 \mathrm{Z}$, listen $0500-0700 \mathrm{Z}$ also. QSL to K3QOS K6AZD/KB6, 14330-35, Norm, 0300-0530Z, QSL K6AZD. KH6AZB/KB6 is also on Canton, up on 10 m . UAQYT, $14055 / 0200 \mathrm{Z}$, in
zone 23 (as are all UA9Y-stations). OSL Box 60, Kzyzl, Tuvinian ASSR, USSR. TR8DG Guy, $14210 / 2330$, VP8LR Falkland Islands,
$14214 / 2300$ Z, Tony, QSL to WB4FIN. Lac cadives expedition set for February 14 th with trying for this one for years and finally got permission. Few DXers don't need this one so you should be able to hear the pileups even
with your receiver turned off. ZD7BB St. with your receiver turned off. ZD7BB, St.
Helena Island, Eric, $14205 / 0030 Z$, medium rare these days, QSL c/o Post Office, St. Helena. ZD7SD, Bill, $14210 / 2100 \mathrm{Z}$, QSL $14220 / 0200-0400 \mathrm{Z}$ weekends, QSL ZM4NH, very rare. ZS2MI on again with new operator
Fanie, 14192 (listening 14200) 0330Z. Fanie, 14192 (listening 14200) 0330Z Any DF info appreciated Deadline for next issue 20th of month
an additional power multiplier as follows:
100 W input X1, $25-100 \mathrm{~W}$ input X15 $5-25 \mathrm{~W}$ input X2, $1-5 \mathrm{~W}$ output X3, below 1 W output X 4 ; the total is your final score.
Awards: Certificates will be awarded to the highest scoring station in each ARRL section
or country. Certificates will also be awarded or country. Certificates will also be awarded wide (KH6, KL7 DX). The lowest power station in contest submitting a log showing at least three genuine skip contacts.

Logs: Logs must be readable, show date/time of QSO worked, exchanges sent and received, band used, emission type, equipment, power and computation of score. Include a declaration that all rules were observed, and send to Elmer J. Worth K3YNN, 946 Franklin Street, Reading PA 19602. Also if anyone wishes information on the QRP ARC it may be obtained by sending a self-addressed stamped
extremely precarious. Past visitors have managed to jump onto the wreckage of an LST
just off shore. Many unsuccessful attempts have been made to land on Clipperton, only
to be foiled by winds, high seas, and un to be foiled by winds,
believeable ocean currents.
To further complicate the problems, recent reports from commercial fishermen in the area indicate that two French naval vessels arc there, one a minesweeper type and the other a
helicopter ship. Fishermen approaching the helicopter ship. Fishermen approaching the
island are headed off. There appears to be a crew ashore working and living on the island with a new bunker under construction. It is also reported that those in authority to give
permission to land are extremely difficult to permissio
contact.

The last time Wayne Green visited the Clipperton licensing authorities in Tahiti (in 1966) he found his FO8AS Clipperton license to still be valid. Since then he has not had the time or the money to organize an expedition,
but has been in contact with others interested in the trip hoping to be able to go along in the trip, hoping to be able to go
Nothing is definitely in the wind as yet..

Swap 'n' Shops

The 4th annual Blossomland Amateur Radio Auction and Swap ' n ' Shopl will be held
Sunday, March 14, 1971 at the Shadowland Ballroom, Silver Beach Amusement Park, Benton Harbor-St. Joseph, Michigan. Doors open at 9 AM EST.
Over 1000 amateurs turned out last year for Southwestern Michigan's fastest growing
ham event ... and went away with carloads of good gear (and money). This annual auction has grown from less than 100 attendance in
1968 to over 1000 1968 to over 1000 and this year promises to be a lot bigger!
Half an acre of indoor space will be
available for the Swap ' n ' Shop and auction to avaiable for the Swap 'n' Shop and auction to
accommodate the trailerlaods of bargains that will show up. Hot food... indoor restrooms acres of free parking ... drive-up
unloading... you name it and we've got it. unloaing.... you name it and we ve got it.
Coming from out of town? Just follow Interstate 94 into Benton Harbor - St. Joseph from the east or west; get on U.S. 31-33 if you're coming from the south or north.

Check your schedule and shack now
and be at the Benton Harbor Ham Auction on Sunday, March 14. You really can't afford to miss it!
The Huron Valley Amateur Radio Association 4th annual Swap ' n ' Shop will be held on at the Pioneer High School, Stadium and Main Streets across from the University of Michigan football field, in Ann Arbor, Michigan. Adequate free parking, easy access, an auction,
and many surprises. Talk-in on 146.94 FM and many
door. For furt is $\$ 1.25$ in advance, $\$ 1.50$ at the 2729 Packard Road, Ann Arbor, Michigan.

Price $-\quad \$ 2$ per 25 words for non-

- commercial ads; $\$ 10$ per 25 words for business venture. No display ads or agency discount. Include your check with order. two months prior to publication. For ex-
maple: January 1 st is the deadline for the
March issue which will be mailed on the Moth of February. Type copy. Phrase and
10the
punctuate exactly as you wish it to appear punctuate exactly as you wish it to appear,
poo all-capital ads. We will be the judge of
suitability of adds. Our responsibility for suitability of ads. Our responsibility for
errors extends only to printing a correct ad
in a later issue. For $\$ 1$ extra we can maintain a reply box for you We cannot check

MOTOROLA FM-2 meters; U43GGT, 40 watts output, transistor supply, very clean. with cables and control head, less crystals.
S145, 80D Transmitter strip - S15. Sensicon A Receiver $\$ 20$. Complete 80D, Dynamotor P.O. Box 587, Manchester CT 06040 .

IMPORT AND SAVE $\$ \$ s$. Japanese ham gear catalog- $\$ 2.00$ (Refundable). Over 60 rigs ilLacey's Spring, Alabama, 35754.
JIG SAW PUZZLES WANTED. Lover of those wooden iig saw puzzles is looking for
any that might be still around in your attic or closet. There used to be thousands and thousands of them so there must be a few left. If you have some that you would like to find a borough's most avid jig saw fan, Peterborogh

OHIO. Intercity Radio Club is holding their Annual Ham Auction Friday Feb 5 at the Naval Training Center, 170 Ashland Rd., on U.S. Route 42, in Munsfield, Ohio. Look,
swap, buy at $7: 30$ P.M., Auction at 8:00 P.M. Eats. Eldon Heck W8PO, Rt 2, Box 195, Shelby OH 44875.
WAYNE, LIN, KEN and the entire staff of 73 wish you a superbly joyous Groundhog's Day,
Washington's Birthday and Lincoln's Birthday. Frankly, unless you have a currently valid subscription, only a few of us have good wishes for the rest of the days of the month. Our very best wishes can be obtained on a temporary basis by means of a gift subscrip-
tion for a friend.

HEATH SB-310 RECEIVER,mint, profes sionally aligned, deluxe SSB crystal, plug in
crystal for 15 M novice band, $\$ 235$. William L. Reeve WB9DVV, 335 No. Elmwood Lane, Palatine IL 60067.
ELECTRIC ORGAN, basic spinet kit, transistorized, known make, limited supply, send RR 2 Box 52 A , Angola in 46703 ,
TINY LIKE-NEW HANDIE-TALKIE. HT 220 OMNI; Motorola's latest pocket transceiver.
About $61 / 2$ watts rf out, two tone fregs (1950 and 2100 Hz); crystaled and operating on 146.34/146.94 and 146.94 "direct." Receiver very sensitive ($0.25 \mu \mathrm{~V}$ for 20 dB of quieting). Includes Ni -Cad battery and new Motorola
charger, $\$ 550$ cash. Ken Sessions K6 MVH 73 charger. $\$ 550$ cash. Ken Sessions K6MVH, 73
Magazine, Peterboro NH 03458. Phone 603 $924-3873$ (at work).
MAGAZINES. Fifty year personal collection of ham radio and photo publications. Also gear. SASE, Jack Stuart W53G, Box 991, E1 Paso TX 79946.
SWAP excellent R-390/URR for 5 -band trans ceiver plus $\$ 375$. Will pay shipping anywhere
Roland Guard K4EPI, 750 Lily Flagg Road Huntsville AL 35802
2M FM GALAXY FM210 with AC power booster and two sets of crystals and manual
$\$ 195$. John Stiles K7DGV, Box 114, Sweet grass MT 59484.
WANTED: COLLINS 51 J 4 or 51 S1 receive in good condition. M. Eisenber, P.O.Box 5171, los Angeles Ca 90055

FOR SALE: H.T. 37 excellent cond. $\$ 160$ Viking Valiant $\$ 75$, excellent, with mike fo P.T.T. SX101 MK III, extremely clean $\$ 90$. All FOB. Phone 904 264-2738. R. L. Sturgis
WB4BYJ. WB4BYJ.
VHF DISCONE ANTENNAS. New surplus AS-408/U discone antenna covers 200 to 400 Hajdu, 41 Ledge Lane, Stamford CT 06905
FOR SALE: John F, Rider Radio Trouble shooter Manuals, Vols. I to 17, approx. 75 such as RCA, Philco, Zenith and others Simpson 325 Signal generator, Eico 425 Scope, Eico 360 Sweep Generator, Heathkit Signal Tracer, 25 Relays and other parts. The whole works for $\$ 400$ FOB Bronx NY. Tel $212652-2416$ (evenings). Jack Naimann, 20 E. Mosholu Pkwy, Bronx NY 20467

FOR SALE, highest offer takes following ppd.: Knight TR-108
Heath HWA-meter transceiver with
H. HG-303 75-watt 10-80 meter transmitter: Eico HF-81 stereo preamp, 488 electronic switch, 1020 power supply, 221 VTVM,
$950-$ BRC comparator and bridge 460 scope; $950-\mathrm{B}$ RC comparator and bridge, 460 scope;
Heath MP-10 12 -volt to 110 -volt inverter SG-8 signal generator, TC-3 tube checker Ballantine 314 audio VTVM; Fisher 50-C-4 mono preamp; Ten-Tec PM-3 transceiver with AC-5 antenna tuner. Also for sale, complete professional home burglar/fire alarm system, description, Pete Stark, Box 209, Mt. Kisco NY 10549.

1971 AMATEUR ALLOCATIONS

> TECHNICIAN

CW \& PHONE: $50.1-54.0,145-147$,

> GENERAL

CW: 1800-2000*, 3525-3800, 3900-4000, $7025-7200, \quad 7250-7300, \quad 14.025-14.200$, $14.275-14.350,21.025-21.250$,
$21.350-21.450$.
$28.0-29.7$,
$50.1-54.0$, 144-148, 220-225, and up.
PHONE: 1800-2000*, 3900-4000,
 144.1-148, 220-225, and up.

ADVANCED
CW: 1800-2000*, 3525-3800, 3825-4000, $7025-7300,14.025-14.350$,
$21.025-21.250,21.275-21450,28,0-29.7$ 50.1-54.0, 144-148, 220-225, and up. PHONE: 1800-2000* $3825-4000$, $\begin{array}{lll}7200-7300, & 14.200-14,350, \\ 21.275-21.450, & 28.5-297, & 50.1-540,\end{array}$ $21.275-21.450 .28 .5-29.7$
$144.1-148,220-225$, and up.
CW: 1800-2000* EXTR
CW: 1800-2000*, 3500-4000, 7000-7300, $14.00-14.350,21.000-21.450,28.0-29.7$,
$50.0-54.0,144-148,220-225$, and up.
PHONE: 1800-2000*, $3800-4000$, $7200-7300,14.200-14.350$, 144.1-148.

MILITARY SURPLUS. All new. Electronics, devices, components. Compare and save. Catalog $10 ¢$ (stamps or coin). Electronic Systems,
P.O. Box 206, New Egypt NJ 08533 .

LISTING SERVICE- Gear to sell? Need rig? Sellers- S1.00. Lists information year. Buyersfree. SASE brings details. Listing Service, Box
1111, Benton Harbor MI 49022 .

73 Everywhere
1 guess you people at 73 never realized how popular your magazine really was. They even popular your magazine really was. They even
named beer taverns and billiard parlors and barber shops after this famous rag. It seems hat after they built N.J. state highway 72 they had to name the next one " 73 "
E. L. Klein Jr. WB4AYE/2

Think!

1 like 73 technically and informationally and occasionally editorially. Ken and Wayne stirred up with their sometimes caustic comments. THINK and then ACT! If you believe in a program, proposal or whatever, don't jus sit back and let George, Joe, Tom, Dick or
Harry do it - do it yourself! I happen to be Harry do it - do it yourself! I happen to be
one of those who agree with incentive licensing. It got me off my duff to get the Advanced, and when I finish the three courses 1 am currently enrolled in I plan to go-for Extra. My field is administration, so anything 1 know about amateur radio is strictly self-
taught or taught by my fellow hams more taught or taught by my fellow hams more
generously blessed with talent. For me it comes hard, but I will make it.
Please advise your readers that 1 have answered nearly all the QSLs received for KM6DU/KH6 (Kure Island) and anyone who has not received theirs by this time should answer sometime after March, as I will be in transit until then. I answer all cards received, SASE/IRC or not. A number of cards have probably been lost in the mail, a not uncommon occurrence from indications. One party after his fourth try wanted to know if I really
existed. Sorry 'bout that. A few have referenced QSOs for times/dates KM6DU was not on the air either from Kure or Midway either a mistake or a pirate.

Hal Thompson
Roseburg OR 97470

After reading Never Say Die and Letters in the December issue 1 am forced to add m about FM oriented Early last spring 1.es appearing to the exclusion of all others. At this writing, the FM ; and while the balance in article subject matter is better than it was it is still slanted to a small segment of ham activity.
A quick check of total pages shows 1970 to be behind 1969 by almost a full issue. This "alone is bad enough but when you delete the redeeming value.
It would seem that Mr. Sessions is more qualified to conduct the Radio Today side of the business with perhaps a monthly FM of the enterprise to someone with the knowledge, desire, and capability of conducting a magazine devoted to amateur radio. Perhaps it would not allow trips to Jordan and the like but I am convinced that Wayne's personal and selection of subject mecessary to the edjiting

Bill Turner WAgAB
Compare 73's 1970 page count with our nearest compentro and you in find we 're still way ahead. Why not give FM a go, Bill. Five will get you ten you'll get hooked, too.

WANT TO BUY: TS239 (LaVoie 239) manual. David Potter, 2844 San Gabricl, Austin

FOR SALE. HT 37 \$150, NC 270 \$75, both for \$200. Johnson TR Switch S15. Charles E Bailey W9HUX, 915 Doolin, Jacksonville IL 62650
G. E. POCKET RECEIVERS Mode SB03VE6. Operates with tone or normal
squelch, Exc. condition $\$ 50$, Lou Miniver WA7KRP, 1975 No. Yellowstone, Idaho Falls 1D
GET YOUR "FIRST!" Memorize, study "1970 Test-Answers" for FCC First "Class
License, plus "Self-Study Ability Test." Proven. \$5.00. Command, Box 16348-S, San Fraco

FLYING HAMS: Trade your excess gear for avionics equipment. All lines available in the box or installed in your aircraft. All fully
warranted. Interested in all lab test equipwarranted. Interested in all lab test equip-
ment, ham or military type gear. Powell Avioincs, FAA Repair Station \#711-1, Box
106, Fayetteville NC 18302. 919-484-0236, nite 483-9.426.

MANUALS-.- R-390/URR, R-390A/URR, USM-24C, BC-639A, SP-600JX, BC-348JNQ, URM-25D, UPM-45, UPN-12, OS-8C/U,
CV-591A/URR, BC-779B, TS-186D/UP CV-591A/URR, BC-779B, TS-186D/UP
TS-587B/U, $\$ 6.50$ each. S. Consalvo, 490 Roanne Drive, Washington DC 20021.

GALAXY FM210 with AC210, mobile anten na, microphone, xtals and FET preamp. \$250 or best offer. WB2DMU, 4767 Lake Rd., Bur

NTLGRATED CIRCUITS - new, guaranteed DTL - gates, F6F, lamp drivers. MSI - 1 of 10 decoder, 4 BIT SR. T ${ }^{2}$ L MID '71- other components, Mitch-Lan Electronics, Dept.
7371 , P.O. Box 4822, Panorama City CA 91412.

WANTED: Coil Sets E, F, and $A D$ for
Receiver National H.R.O. 60 . Write or call 4 Receiver National H.R.O. 60 . Write or call 4
PM. Pat Rapuano, 32 Seneca Rd., Seneca Falls PM. Pat Rapuano, 32 Seneca Rd.,
NY 13148. Phone $315-568-8866$.

NEW 4-1000 A, socket, chimney, and filament Xformer, \$110. RCA CV-57 Converter, Almost new \$75. PCA-2T Panadaptor, 455 kc Lonnie St., Oceanside CA 92054.

THE 20th ANNIVERSARY DAYTON HAMVENTION will be held on April 24, 1971 at Wampler's Dayton Harra Arena. Technical ses-
sions, exhibits, hidden transmitter hunt and an sions, exhibits, hidden transmitter hunt and an
interesting program for the XY L. For information write Dayton Hamvention, Dept 7, Box 44, Dayton OH 45401

LAST CALL FOR 1963 73. Bound volumes $\$ 7.50$ Act now! 1963 was a they last only 73 Magazine, Peterborough NH 03458 .

FOR SALE: Heath "Sixer" with push-to-talk output meter, power supply, halo antenna WB2WYO 713 or best ofer. Bud Michaels

M FM. MOTOROLA D43GGV. Excellent condition with crystals, preamp and tuned up
transmit $146.34,146.94$, receive 146.94 . $\$ 85$. transmit $146.34,146.94$, receive 146.94 . $\$ 85$.
Motorola R394 receiver with AC power tuned Motorola R 394 receiver with AC power tuned
with crystal, spare tubes $146.94, \$ 35$. John L. Sielke K3HLU/4, 320 S . Macarthur Ave., Panama City FL 32401
SELL mint, A-1 Collins KWM-2, AC supply and speaker, $301-1$. Belongs to estato of the late K4FLI. Mike Burkhead, RFD 1, Hender-

RECEIVERS: RBA, RBB, RBC with power | supply and cable. Also, R-511ARC, |
| :--- |
| $190-550 \mathrm{kc}, \mathrm{R}$. 509 ARC | other items. J. Lisaius, 116 Orton Rd W Caldwell NJ 07006.

MAKE MILLIONS? Hundreds? Sell Instant Gourmet Kits (eight herbs and spices in stores. Dandy gift item for friends, businesses, travelers. Why be poor? List for $\$ 5$, your cost NH 03458 . Instant Gourmet, Peterborough NH 03458

DERRICK ELECTRONICS will not be undersold on new Swan, Drake, Galazy, Hy-Gain or Mosley equipment. Check around, then write,
Box 457, Broken Arrow, OK 74012 .

MODEL 19 TELETYPE, good operating condition, for sale or trade. (202)-234-4678, P. S. Richter K1SDX/3, 2727 29th.St. N.W., Washington DC 10008.
WEST COAST HAMS ouy their gear from Amrad Supply Inc. Send for flyer. 1025
Harrison St., Oakland CA 94607. 451 -7755, Harrison St., Oakland CA 94607. 451-7755, area code 415
WANTED - Duplexer for 148.01 MHz . Receive, 143.9 Miz transmit. State manufacturer, condition, model and price. Legare
Hairston WA4VNN, 1013 Pecan Drive, Monroeville AL 36460 .
SALE THREE ELEMENT TRI-BAND FIBERGLASS QUAD ANTENNA with aluminum cross arms, tee and instruction book. Originally purchased from U.S. Fiberglass Co. Sixteen foot aluminum boom and quad antenna book added free, \$105 cash. FOB L. P.
Thomason W4GVT, Jacksonville FL 32225 , DERRICK ELECTRONICS HAS ANTEN NAS. We'll give the best deals on Hy-Gain Mosley, Cushcraft, Rohn, Tri-Ex, Easy-Way, Tristao. Box 457, Broken Arrow OK 74012.

FOR SALE OR TRADE RCA 450 trans istorized $12-\mathrm{V}$ unit, two freq rec \& tran in WBSCDJ, Route 4, Box 75A1, Shawnee OK 74801.

GSB-2SSB SOLID STATE TRANSCEIVER perfect condition, no trades, best offer. Bob Gilmartin, 1715 Diana Blvd, Merritt Island FL 32952.

LETTERS

Many thanks for acting so promptly on my Ticket to Court and Win. It came with Traffic days of my request and I am delighted to say that it gave me the courage and know-how to so to court and defend myseli.
My performance would never have won
Oscars but it won from the judge a most y Oscars but it won fro
easant "case dismissed."
Mahalo to you and my best alohas.
Tom Doyle
Wish I'd got off that easy. Narrowly missed setting hanged.

What's Been Happening?

Living in Wyoming and devoting my time to educational TV and radio I have kinda lost amateur Extra ticket I have not been on the air for about 3 years. Several questions have come to mind over the years which I'm sure
your mag will help answer - such as: Does the your mag will exist? Do we still have 80 \& 40 meters or do we now operate on some SHF freq. etc. etc. It seems most hams around here are not aware of operation below 144 MHz and are working very hard putting in repeaters
etc. etc. in order to communicate a hundred miles or so. I mentioned lower frea but they looked at me like I was stupid! I must admit am not knowledgeable on current amateur happenings. Please fill me in

Dave Worley W7BQY
Three years? Little has changed. ARRL, last we heard, is still around. Repeaters are becoming epidemic - better look into it. Wayne

FM Clubs

I read your magazine every month and especially enjoy articles related to FM operation on 2 meters.

Can you tell me what amateur radio clubs are located in the New York City metrometer FM as their sole method of operation and what repeater stations are in the Brooklyn/Btonx, New York area, in addition to their frequencies.
I want to join up with a local club and communications on the ham frequencies.

Douglas Townsend
The Rockefeller University
Can't say about the clubs. For repeaters, you have several: K2OOP on. $221.82 ; K 1 T K J$
on $25 / .73 ; \mathrm{K} 2 \mathrm{HOI}$ and others on .341 .76 ; simplex on 94.

Wayne for League Manage
1 think Wayne Green is about the only person who can save ham radio. At least he is
the only one who seems to be really trying. I don't think too much of K2AGZ sometimes (very often) but I suppose you have to have someone controversial on the staff (someone else, that is, so the guys let up on Wayne bit).

Mike Czuhajewski WA8MCQ

What's The Beef?

I have only read a few of your magazines, but I can tell at a glance you are 100% ant ARRL. What's the big beef? If you don't like can do it better and have the support of the majority, start your own proup and send people to Washington, etc. If the League has so much money you ought to be able to raise much more because you have so many on your side. I have only been in ham radio a few
months, and all I know is that if I get my General or Advanced ticket it will be because of books and helps put out by the League.
I was copying WIAW code practice and a bunch of lids got right on freq. and loaded up and sent a bunch of gibberish (not one call
sign so anyone would know who they were) just to louse up W1AW. That really takes "brains". You ANTI people make me sick. You are just like these kids that are against the Establishment, but don't have any reasonable alternatives, except to tear down and
destory. Sure the ARRL isn't perfect, but until you blowhards get off your soap boxes and start a better League, it is the only thing we've got

Thanks for letting me blow off a little steam.

Jim Nilson WN9ETH
Rockford IL
Where do you think ham radio would be today if the League was allowed to go
unchecked? If the League had its way in uncheckea? Ihe League had its way in phone.

New Repeater?
For a while I have heard a rumor that someone is putting one on the TV tower on Mt. Ascutney. Ascutney is visible from my house and results should be very fine, but 1 can't ind out if such a repeater is indeed in operation or the frequenc?

Bill Deal KICLD
Mt. Ascutney repeater is WAIKGM and operates by relaying FM signals from 146.16
to 146.76 MHz . The coverage is superb states).

RADIO BOOKSHOP BIG DEALS

BOOKS!

ADVANCED CLASS STUDY GUIDE Up-to-the-minute simplified theory, written with the beginning radio amateur in all aspects of the theory exam for the Advanced Class license and has helped hundreds of hams to sail through the exam \because.nothing else like it in print. $1001 \dot{H}$. . . . Hardbound $\$ 6.95$ EXTRA CLASS LICENSE STUDY COURSE BOOK The Extra Class License Study Guide is now available in book form as a permanent addition to your radio library. This is the complete course that was
published in 73 , covering every technical phase of the new license exams for this highest class of amateur license. This also covers, in the easiest-to-understand form, just about every technical question likely to be asked on the First Class Radiotelephone exam. This is the first study course ever published that is writen so the new comer to this book you can face the FCC exams knowing that you understand the theory and with no fear of rewritten questions.
ppd USA \$4.95
VHF ANTENNAS This handbook is a complete collection of up-to-date information about VHF and UHF antennas, with design hints, construction and theory. If you've you need, this book will give you enough background to make the right decision.
1003.
.$\$ 3$
COAX HANDBOOK Invaluable book for the ham or
the lab and for everyone else who doesn't want to have to keep a whole library on hand for reference... or even worse, have to write to the manufactuxer for coax spec. 1005

73 USEFUL TRANSISTOR CIRCUITS If you've been looking for a transistor circuit to do a special job, chances are there is a circuit in this book that will give you a head start it covers circuits for audio equipment. equipment.

SIMPLIFIED MATH Does math scare you? It shouldn't This easy-to-understand book explains the simplified exponential system of arithmetic simple formulas, logarithms and their application to the 1007 shack.
. 50 ¢

1004

NCX-1000

W2NSD/1

NATIONAL NCX-1000 TRANSCEIVER Transistorized transceiver (except for driver and final) runs 1000 watts, yet is just a bit larger than ordinary transceiver! Complete kilowatt ham station in one small, light unit. Tosted by 73 staff and found to be a really great unit. The makes it possible to have a complete kilowatt all band ham station in one small unit! Not much larger than normal transceiver yet runs solid 1000 watts. Extremely sensitive, processed speech for maximum umphs when wanted, everything you need in one driver and final. The NCX-1000 lists for $\$ 1100$ and is an unusual bargain at that price. The 73 test unit, used a few days and under brand new factory warranty is available to the first $\$ 700$ check received.

CR 1105

G.R. FREQUENCY MEA SURING EQUIPMENT TYPE 1105 A This primary frequency standard will measure from 1 Hz to over 100 MHz with an accuracy of one cycle u_{0} to 10 MHz. This is a marily for standard used pri equipment. This is the las word in frequency standards. Send for details. Special. last.
1013
$\$ 1995$

MAGNETIC CAR SIGNS Put this easy-to-read magnetic call sign on your car when you are on a trip and meet the hams along the way. Comes right oif when the XYL drives the car, if she doesn't want to be bothered by hams tooting at her. Send $\$ 4$ along with your cal
1201.

LAPEL BADGES Name and call identifes you at club meetings, hamfests, busted pot parties. Hand engraved by skilled New Hampshire craftsman with loving care. Only one and call. 1202 ...

A HAMSHACK WITHOUT A GLOBE? RIDICULOUS! Particularly when these fabulous Hammond globes (the best in the biz) are available at our low, low price! 13 "' inflatable way) (guaranteed, by the now special, while they last 1208 special, while they last $\$ 10$ 13 " lighted inflatable. globe, regularly $\$ 25$ now 1209.

We have a few of these in stock and when they are gone, that's it!

DX STUFF

CUSTOM MADE DX DX bearing you you need it mediately. You don't want to have to look it up on a map or fiddle with a globe. These Custom DX Charts are computer printouts for your exact shack ocation and give the bearing and mileage for every country in the world. They are printed out by call prefix for speed of indicated. Custom DX Chart, 1206 ppd $\$ 4$

FABULOUS DX MAP OF THE WORLD Show visitors sized (23 ${ }^{\prime \prime}$ x $\left.31^{\prime \prime}\right)$; shipped flat in mailing tube; suitable for framing; most complete map available; up-to-date world prefixes shown; color in countries as worked; shows use colored map pins for different bands.
207.

DX HANDBOOK Includes giant world country-zone wall map. Articles on QSL design secrets, winning, DX contests ciprocal licensing and many more. World postage rates WAZ record lists, time charts, propagation, etc. Special ham maps and bearing charts. A must for the DXer.

DIODE CIRCUITS HAND BOOK An invaluable reference ook. covers rectifiers, mix detectors, noise limiters, AGC BFO/Q-multiplier, AFC, Vari cap tuning audio clippers, balanced mods, fieldstrength me trol circuits, etc, 111 different 1004 circuits.
'TRANSISTOR PROJECT FOR THE AMATEUR", lection of 73's most popular ham projects, selected by you the readers, and edited by Paul Franon (Mr. Semiconductor himself). This has got to be the best, most authoritative most universally appealing col ection of up-to-date circuits ever published.
$1010 . . .$.

FM BOOKS

FM ANTHOLOGY Vol. 1. This book is largely a coled by K67MVH and WA8 UTB. The material is taken from the editions of Feb ruary 1967 through February
1009
FM REPEATER HANDBOOK K6MVH. Book is required for all repeater operators and Only complete book on the subject. It is also one of the best selling books in amateur radio today.
1010Hardbound \$6.95
"THE BEST OF FM" A huge selection of FM Journal's fin esticlechnical and conversion in any other magainze. The concluding segments of those controversial CHRON ICLES" Selected FM editor the problems faced by FM'ers. This book comprise ${ }^{\text {b }}$ Volume II of the FM anthon sy, and includes an "Editor's Choice" selection of topflight articles from FM Journal, from March 1968 to May 1969.

1019

1010

EDITORS \& ENGINEERS RADIO HANDBOOK Hard bound. Latest (18th edition) by W6SAI. This is the most complete ham handbook ever handbooks look like comic books. 896 pages. $\$ 13.50$

EDITORS \& ENGINEERS RADIO HANDBOOK Hard ound. W6SAI (17th edition) reduced for clearance, limited supply available for fast acting this great book before it is gone forever.

ELECTRONICS REFERENCE HANDBOOK Hardbound. W6TYH handbook of basics and circuits. Complete analysis of all ssb equipment.

HOW TO FIX TRANSISTOR RADIOS \& PRINTED CIRCittle. Do you throw those stop? Wasted money! Easy to fix with this manual. Worth many times the low price. No serviceman or amateur should be without this tremendous book.
1016.
$\$ 7.95$
SCHEMATICS AVAILABLE $\$ 1$ each.
101. ARR-15 from June 1102. AR, page 78. 2 M Guard Channel Receiver. 2 M Guard 1103. SSB Transeiver, Nov. 196173 Page 23. June 1965 1104. R508/ARC, June 1965 page 48 , before \& after.
Buy lavishly! Order today from: RADIO BOOKSHOP Peterborough NH 03458

GUNSMOKE? Blow your mind on our back issue bargain bunch, 30 (count em) sues, all before 1968 , for the incredibly low price of $\$ 6$ postpaid (hardly pays for the postage). These are packed by slave labor (to cut costs) so please ignore notes calling for into the bundles. 1204
.$\$ 6$
SPECIAL! RARE BACK ISSUES The back issue of 73 you need to complete your full set-or that has the conthe end of a mere pittance! Most issues are in stock and are available for $\$ 1$ each. The exceptions that prove the rule are listed below:
Dec.68, Nov.69, Feb.70, Oct.
Jan. 65 , Äpr. 65 , Jan. $\dot{6} \dot{6}$, Jan.
Jan. 61, Dec. 63 , Jun. 66 , Jul.

73 BINDERS

BUY BINDERS FOR YOUR 73 and win the love of a binders look great on your shelves and also keep the magazines from disappearing or breaking. Come with set of year stickers. Get enough binders to protect all those back issues too
1205 $\$ 4$

DESK PLATE

DESK CALL PLATE Up to 20 etters on a desk plate, emossed white letters on walnut ackground; ebony stand Looks great on rig with your name and call. Watch envy ace through your neighbor hood. Send along 20 well chosen letters (spaces count a etters too, include a nice resh two dollar bin, and give mail the exquisite piece of raftsmanship.
1203
. . $\$ 2$

Latest Edition - POPULAR TUBE \& TRANSISTOR SUB STITUTION GUIDE Brand new updated and revised edi tion! The most needed substiution data for both tubes and ransistors all in one handy drand-new vave to refor longe substifution manual for tubes and another for transistors everyting is here in one quick reference guide. Lists 99% o the tubes and transistors you'l ever need to replace. More over, only readily-available and comparably-priced subst rou have to search through ists of tubes and transistors you'll rarely see in use, or search through pages of irrele vant material to find a substi tute. Why buy a $\$ 10$ switching transistor when a 89 popular ype wins 8 bo the job better? devoted to tubes and four to transistors; Popular Receiving Tubes, Industrial and Com mercial Tubes. American Sub stitutes for Foreign Tubes Tube Base Diagrams. Popular Transistors. American Substi tutes for Foreign Transistors General Purpose Transistor Diagrams and Manufacturer Abbreviations. You'll find this suide to be one of the most practical everyday aids you'v ever used. 224 pps., 8 Sec tions. 1022

Softbound \$2.95

WORLD'S FINEST LOG BOOK? Designed and executed by W2NSD/1, this is the most relevant amateur radio \log ever designed. This is a log for today. It has a column for the date, one for time and off of each contact, a small column to indicate whether you (or CQ) or not, a good wide space for the station call contacted, little columns for the reports, a good space for his location, a QSL column, and lots of room for notes The log is the long way on standard into pads of 125 sheets, with room for 20 contacts per page. The whole book of log sheets will carry you through 2500 contacts. There is a place to indicate on each sheet the band being used and the power in case these change now and then. The log pages can be numbered for file card reference. Why use a $\log _{5}$ book
designed in the 1920 s? this one was designed for use in the 70's and is exactly right for the DX'er, and rag chewer, or even the round-table denizen. It will work for RTTY, ATV or even slow scan television. Never has a log been
made available which is as handy as this gem. Why keep struggling with those ring binders which get all bent out of shape? Get this first really modern log.
.only $\$ 2$ ppd.

RADID BOOKSHOP

All books and items postpaid in U.S.A. unless otherwise indicated. Send cash, check, money order, etc., to:
Buy lavishly! Order today from: RADIO BOOKSHOP
Reterborough NH 03458

NFW Irving M. Gottlieb W6HDM 931 Olive Street Menlo Park CA 94025
 APPROACH for the metallocator

During the past several years, a number of metal locators have been described in technical literature. An excellent example is the constructional article which appeared in the July '67 issue of Popular Electronics. The design philosophy of these locators has been directly inherited from vacuum-tube technology; it has generally been found that a decided upgrading in performance could be reliably attained from the mere conversion to solid-state circuitry. Nonetheless, I have long felt that a little imagination might be profitably unleashed toward a somewhat different approach to the electronic detection of metallic objects. After ruling out "change for change's sake," the reasoning evolved as follows: The transistor AM radio has become such a popular item that actual replacement is now the accepted "servicing" method. Why not use the very considerable amplification available from even the most inexpensive of these sets? And, to make the project just a bit challenging, why not stipulate that no surgery of any kind be permitted on the set?

Shortly after formulation of this idea, it was discovered that a superficially similar approach had been anticipated and implemented by others. However, in all situations investigated, there was either dependency upon a broadcast station, or modification of the radio's circuitry. These techniques were rejected as undesirable. One, then, was left with the clear objective of developing a scheme which would enable
the deployment of any transistor radio in an arrangement capable of providing a response to metallic objects: This would be accomplished without electrical connection to the set, and would involve no operational dependency on broadcasting stations. (An added feature of such stipulations is that the radio could be immediately used for its intended function if so desired.) Not only were these objectives achieved in a straightforward manner, but performance definitely exceeds that generally obtained from the conventional locator. The ensuing discussion describes the theoretical and practical reasons why this is so:

Fig. 1. Block diagram depicting basic concept of locator. The two oscillators are "radiationcoupled" to receiver's i-f channel. Converter plays no role in this scheme, and tuning is of no consequence except that it is desirable to be tuned between stations to avoid their interference. ference.

Principle of Operation

The principle of operation involves "immersion" of the transistor radio in two electromagnetic fields. Both of these fields are at frequencies within the passband of the i-f amplifier of the radio. (Because of the proximity of the oscillators which generate these fields, we have considerable latitude with respect to where these frequencies enter the response curve of the i-f amplifier.)

The field produced by one oscillator is at a fixed frequency during a search for a metallic object. This frequency is generated by the reference oscillator (Fig. 2) and consists of the circuitry associated with Q2. The field produced by the other oscillator (Fig. 3) is subject to "pulling" by the effect of eddy currents induced in a

Fig. 2. Schematic diagram of reference oscillator. This oscillator is situated inside the box on the handle.
metallic object when it is approached by the exploratory loop. If the two frequencies are initially different by an audio frequency, say 1 kHz , a change of pitch will be heard from the radio speaker. The audio tone is actually a heterodyne product of the two interacting frequencies, and is generated by the second detector of the radio. One might say we have harnessed one of the ancient plagues of the superheterodyne circuit, the "birdie." But, unlike inadvertent ones, this deliberately created birdie is extremely strong and stable.

It will be noted that the customary multiturn wire loop has been replaced by a single turn of sturdy copper tubing Those with experience in the construction and operation of locators will quickly grasp the significance of this innovation. Not only is the winding to a wire loop attended by

Fig. 3. Loop oscillator schematic. This oscillator is situated directly between the ends of the single-turn loop.
danger of shorted turns and difficulty in reproducing an author's results, but such loops often contribute greatly to the overall . instability of the locator. Usually, physical disturbances, difficult to avoid during exploration, cause abrupt frequency shifts, thereby masking the sought response. Indeed, despite the continuing controversy over optimum loop size and exploration frequency, the major impediment of detection sensitivity has always been mechanical and electrical instability. For this reason, the single-turn loop is, in itself, a worthwhile improvement. Moreover, because of the extremely low impedance of such a loop, no electrostatic shielding is necessary! Thereby, we avoid degradation of sensitivity from the eddy currents induced in a shield.

Prelude to Construction

The locator is comprised of three basic functional blocks: the loop oscillator, the fixed oscillator, and the transistor radio. From a constructional viewpoint, we are concerned primarily with the two oscillators. Our involvement with the transistor radio is simply the mechanical one of providing a suitable mounting for it on the handle of the locator. If we are successful with the oscillators, their fields will penetrate the radio and the locator will be operational. So, let us commence with the loop oscillator.

It has already been mentioned that the loop oscillator uses a single turn of copper tubing in its resonant tank. Another unique feature is the physical location of transistor Q1 and associated components. These are
situated on a PC board (Fig. 4) directly between the ends of the loop (Fig. 5) so that we do not have the usual separation between active element and tank circuit. This, too, enhances stability and sensitivity.

The inside diameter of the nearly complete circle of copper tubing is 12 in . Approximately 2 in . of space is allowed between the ends. This space is occupied by the PC board containing the remaining parts of the loop oscillator.

The use of a high-beta transistor and Mylar capacitors results in a sure-fire and stable oscillator in the 450 kHz region, despite the extremely low impedance of the single-turn tank circuit. The tubing should be protected by some type of sleeving ("spaghetti" or heat-shrinkable tubing).

Reference oscillator - inside view with cover plate removed.

Fig. 4. Loop oscillator (circuit side).

Fig. 5. Mounting block, showing association with loop oscillator and handle.

Oscillator

The reference oscillator utilizes transistor Q2 in a Colpitts circuit similar to that of the loop oscillator. A quality air variable capacitor is provided for frequency adjustment. Such a capacitor is greatly superior in mechanical and electrical stability to the movable-core inductors commonly used in metal locators. However, relatively small tuning-range results from its use. This is actually desirable from the standpoint of stability. Because the large tuning range associated with a movable-slug inductor is not obtained, it is mandatory that the prescribed components, or their equivalents, be selected both for the reference oscillator and the loop oscillator. On the other hand, the reproducibility of the loop oscillator renders it unnecessary to incorporate a wide tuning range for the reference oscillator. The reference oscillator circuit board (Fig. 6) is situated on the handle, adjacent to the transistor radio. A single 9 V battery powers both oscillators. As with the loop oscillator, it is very important that all components be securely

Fig. 6. Reference oscillator (circuit side).
mounted. This requirement tends to "come along for the ride" as a consequence of the printed-circuit board. In the event a different construction technique is used, it should be realized that any relative movement of the components or connecting wires can diminish the usable sensitivity.

PC board and loop ends are attached to clear plastic block. This block also supports the handle. (Speaker cord goes to battery and switch which are contained in the handle-mounted reference oscillator box.)

Notes on Operation

Before commencing operation, it is essential that it be understood that broadcasting stations do not play any part in production of the search tone. Indeed, the reception of a station constitutes interference and tends to mask the pitch variation which signifies proximity of a metallic object. Therefore, the radio must be tuned to a spot between stations, or preferably set at the extreme low frequency end of its tuning range. In any event, when the loop oscillator and the reference frequency

Transistor radio is strapped to box; a single turn of copper tubing makes the exploratory loop. The novel principle of operation renders unit independent of stations, nondirectional, and highly stable. Overall result is enhanced sensitivity and exceptional ease of operation.
oscillator are within an audio frequency of one another, that audio frequency will be heard over the entire tuning range of the radio. Also, there are no directivity effects; neither the pitch nor the amplitude of the tone changes with orientation of the locator until one approaches a metal object with the exploratory loop.

Three modes of operation are possible, depending upon whether the reference oscillator is adjusted slightly above, equal to, or slightly below the frequency of the

See your DEALER for DRAKE products

\author{
ANTENNAS-HAM BAND
 144 MHz 2 meter band, omnidirectional, horizontally polarized, use - Fixed \& Mobile Ham, Civil Defense and M.A.R.S. All solid copper, RG 8/U cable.

 \section*{STANDARD one or two ANTENNAS HIGH GAIN four - eight antennas}
 [^0]
 Send Certified Bank Gilian \& Company Check or Money
 105 Orchard St. Watertown, Mass. 02121
}
loop oscillator. I favor the third-mentioned mode, with the tone adjusted to the $500-1000 \mathrm{~Hz}$ region. Then an approach to a metallic object will cause a rise in pitch. This locator is entirely free of "pulling" between the two oscillators which, in conventional locators, often causes a marked reduction in sensitivity.

Troubleshooting

If, with the transistor radio strapped to the reference oscillator box, adjustment of the variable capacitor does not bring forth the audio tone, both the reference oscillator and the loop oscillator should be checked for oscillation. This is easily accomplished by means of an oscilloscope. Probe the base of Q1 and Q2; if there is no evidence of oscillation, make a methodical investigation of the connections, the components, battery polarity, etc.

The most probable cause will involve the ability of the reference oscillator to tune sufficiently close to the frequency of the loop oscillator. This could come about if the Mylar capacitors associated with the tank circuits deviate more than the pre-
scribed $\pm 10 \%$. Obtain three capacitors with the following capacities: .01, .03, and .047 $\mu \mathrm{F}$. Parallel one of these at a time with the . $33 \mu \mathrm{~F}$ capacitor in the loop oscillator. Each time tune the variable through its range. (The radio should be tuned to the low frequency end of its range and its volume control fully advanced during this troubleshooting procedure.)

If results are still not forthcoming, remove the additional capacitor and go through a similar procedure by connecting three different capacitors across the upper $.0022 \mu \mathrm{~F}$ capacitor in the reference oscillator circuit (Fig. 2). These capacitors should be 100,330 , and 470 pF , respectively.

A considerable frequency range will have been covered by these two procedures, and a loud bell-like heterodyne is certain to be produced if all circuitry is properly installed.

I investigated 12 new 2N3565 transistors for the loop oscillator. All but one proved to be vigorous oscillators. The marginal one was found to have the lowest beta of the dozen; this one showed a beta of 130 for a collector current of 1 mA . All the rest displayed values within the range of 220 to 480 .

Additional Notes

The cover plate for the reference oscillator should be made of fiber glass, Vector board, Lucite, or other insulating material. Metal must not be used.

Polycarbonate or polystyrene capacitors of the specified tolerance could be used in place of the Mylar capacitors in the tank circuits of both oscillators. However, the metalized versions of any of these dielectrics should not be used.

The fact that no shielding of the loop is required can be readily demonstrated by putting one's finger on the "hot" end of the loop. A negligible change in the pitch of the audio-tone is produced. This, of course stems from the extremely low impedance of the loop. Conversely, it is, as desired, very sensitive to electromagnetic disturbance of its resonant frequency.
. . W6HDM $=$

For The Experimenter! International EX Crystal \& EX Kits

OSCILLATOR / RF MIXER / RF AMPLIFIER / POWER AMPLIFIER

Type EX Crystal

Available from $3,000 \mathrm{KHz}$ to $60,000 \mathrm{KHz}$. Supplied only in HC 6/U holder. Calibration is $\pm .02 \%$ when operated in International ox circuit or its equivalent. (Specify frequency)

OX OSCILLATOR

Crystal controlled transistor type. Lo Kit 3,000 to $19,999 \mathrm{KHz}$ Hi Kit 20,000 to $60,000 \mathrm{KHz}$ (Specify when ordering)

\$295

SAX-1 Transistor RF Amplifier
$\$ 3.50$
A small signal amplifier to drive MXX-1 mixer. Single tuned input and link output.

Lo Kit 3 to 20 MHz
Hi Kit 20 to 170 MHz
(Specify when ordering)
PAX-1 Transistor RF Power Amplifier $\$ 3.75$ A single tuned output amplifier designed to follow the OX oscillator. Outputs up to 200 mw can be obtained depending on the frequency and voltage. Amplifier can be amplitude modulated for low power communication. Frequency range 3,000 to $30,000 \mathrm{KHz}$.

BAX-1 Broadband Amplifier
\$3.75
General purpose unit which may be used as a tuned or untuned amplifier in RF and audio applications 20 Hz to 150 MHz . Provides 6 to 30 db gain. Ideal for SWL, Experimenter or Amateur.

CRYSTAL MFG. CO., INC.
10 NO. LEE OKLA. CITY. OKLA. 73102

Practical circuit applications using that strange diode: the varactor

by Bill Mengel

The varactor is a simple two-terminal device extending dependable operation in the VHF, UHF, as well as microwave frequencies by utilizing the voltage-variable capacitance of a pn junction. The varactor provides a way of tuning circuits, multiplying and dividing frequencies, controlling frequencies, and performing other functions. A varactor, which is a special-purpose junction diode, has been designed to make its junction capacitance useful; it is because of this property of a varactor that capacitance, which is an unavoidable nuisance in conventional diodes, is purposely cultivated into the varactor. The basic configuration for the varactor is shown in the illustration below.

The operating portion of a varactor is in the region where a conventional diode would be considered to be cut off - principally in the region between forward conduction and reverse breakdown. In most cases, the varactor is reverse-biased since in this state it draws a minimum of current, making it essentially voltage-operated. The behavior of the pn junction of the varactor at different applied bias potentials is as follows:

ZERO BIAS - At zero bias, the contact potential is determined by the semiconductor. There is no change in capacitance and no current flowing at this time.

FORWARD BIAS - When forward-biased, high forward current flows as the external voltage applied is in series with the contact potential. The contact potential decreases thus increasing the capacitance.

REVERSE BIAS - When reverse-biased, the external voltage applied is in parallel with the contact potential. The contact potential increases, extremely low reverse current flows, and the capacity decreases.

The property of being able to vary the capacitance by changing the applied voltage enables the varactor to do the work of a conventional variable capacitor many times its size. The capacitance of a varactor varies inversely as the reverse voltage, and directly as the forward voltage. It may also be noted that the capacitance of a varactor also varies nonlinearly. Varactors also have a Q approaching that of air trimmer capacitors, so they could be used in such locations as rf front ends and high-efficiency multipliers as well as other normally sensitive circuits.

The varactor diode by itself is unique in frequency multiplying and dividing. First, the rf signal itself is the only power required to operate the varactor. Secondly,
the varactor, by distorting the input signal develops an output rich in harmonics. Thirdly, a varactor can provide a means of high power output at frequencies normally beyond the limits of present power transistors. In frequency multiplication, it is only a matter of placing a tuned circuit (tuned to the input frequency) on one side of the varactor and placing another tuned circuit on the other side tuned at the desired harmonic. As shown in Fig. 1, the input circuit is tuned to frequency f. The output of this circuit is then fed to the varactor where it is distorted. This distorted output is then fed into an output circuit tuned to frequency $f(n)$ out.

Fig. 1. Frequency multiplication.

In typical frequency doublers, efficiencies as high as 90% - as compared to the 50% efficiency of conventional tubes and transistors - can be realized. This can be attributed to the fact that a varactor dissipates very little power and has low loss. A properly designed varactor multiplier does not generate noise. However, parametric oscillations can occur from highly overdriven varactors or from unwanted

Fig. 2. Postdoubler multiplication.
idler resonances. A bias resistor Rb (shown in the above diagram) will usually have a value of from 68 K to 270 K . The higher values of resistance make the circuit more efficient while the lower values of resistance make the circuit operate more linearly.

Since average capacitance varies with input power applied, some detuning will occur if the input power to a multiplier using a varactor is changed appreciably. All frequency multipliers beyond a doubler require an idler circuit for maximum efficiency. An idler circuit is used to reinforce the output frequency of a multiplier. This is done in the following manner. The current developed by the idler circuit is added to the fundamental current to form the harmonic current. The tuned frequency of an idler is generally set to one harmonic below the output frequency, as illustrated in Fig. 2.

A basic example will now illustrate the principles of operation of a typical varactor circuit. Our problem is that we want to take a present signal of, say, 150 MHz and develop an output of 450 MHz .

Referencing Fig. 3, capacitors C_{2} are used to match the input and ouput of the tripler to the input and output impedances. With an input frequency of 150 MHz , the input filter is tuned to a frequency of 150 MHz . A type 1 N 4387 varactor is chosen. This varactor is capable of 60% efficiency at 450 MHz (offering a power output of

Fig. 3. Varactor tripler circuit.

18 watts with an input of 30 watts). The idler circuit is tuned to one harmonic below the output frequency. In this case the idler should be tuned to resonate at 300 MHz . The bias resistor is chosen as 100 K so the circuit will operate linearly. The output circuit is then tuned to resonate at the desired output frequency (450 MHz). After alignment, it is a good idea to repeat the funing procedure because there is almost always some interaction between stages.

Another use for the varactor is in the development of an FM signal. By rectifying a modulated signal and applying that fluctuating voltage to the terminals of a varactor. we could use the changing capacitance of the varactor to cause frequency deviation of an oscillator. Hence, the development
of frequency modulation via the varactor. Also, by properly proportioning the fluctuating audio voltage going into the varactor with respect to the oscillator, either narrowband or wideband FM may be obtained, as shown in Fig. 4.

In the circuit of Fig. 4, a rectified audio voltage is introduced at the potentiometer which can be adjusted to allow the required frequency deviation whether it be wideband or narrowband. The charging and discharging of capacitor C_{1} through resistor R_{1} applies a fluctuating voltage on the anode of the varactor. This fluctuating voltage will cause the capacitance capabilities of the varactor to vary, thereby pulling the oscillator off its center frequency.

As mentioned earlier, the property of being able to vary the capacitance of a varactor by varying the input voltage enables it to do the work of a conventional variable capacitor. One great advantage as opposed to conventional tuning is miniaturization. A typical varactor for this type of service in most cases is about the size of a small signal diode (1N34, for example) and this is many times smaller than even

Fig. 4. Frequency Modulation using the varactor.
the smallest variable tuning capacitor. In cases where larger values of varactors are needed than is available, parallel operation is feasible. However, it must be kept in mind that both the minimum and the maximum capacitance capabilities are increased with parallel operation. Multistage tuning that at one time required a large ganged variable capacitor can now be controlled by a single small variable potentiometer by varying the dc control voltage to the varactor. The illustrations of Fig. 5 show a typical circuit using a varactor for tuning along with a circuit utilizing varactors for multistage tuning.

Fig. 5. Varactor tuning.

In the case of an FM receiver, a varactor can be utilized to regulate the amount of drift of the local oscillator by compensating for that drift and, in a sense, locking it on frequency. This type of circuit is commonly known as automatic frequency control or simply AFC.

What occurs in a typical AFC circuit (Fig. 6) is this: A correction voltage developed in the discriminator circuit is directed to a varactor through a filtering network. Any error in tuninio will result in a voltage change at the discriminator and it is this change that is used to alter the capacitance of the varactor to compensate for that

Fig. 6. Varactor afc circuit.
error. This changing capacitance is then used to complement the final tuning of the oscillator to lock it on frequency.

The possibilities of a varactor in communciations applications are almost limitless. Scan-tuning, a technique that once required many complicated circuits, is now simplified by a varactor: With scan-tuning. band sweeping is accomplished by applying a fluctuating voltage from a sawtooth oscillator. The sweeping rate is then predetermined by the frequency of that sawtooth oscillator.

This article just briefly illustrates how the varactor, a comparative newcomer to the field of semiconductors, opens the door to simplifying and improving many different types of electronic circuits.

Mengel

VARACTORS and VVC's

for Amateur Radio Service in Voltage Controlled Oscillators, AFC, remote tuning, variable filters. . .Try the NEW WAY TO TUNE.

EASTRON CORP.
25 Locust St. Haverhill, MA 01830

PICK YOUR PERFORMANCE

\#4. 4 qgaingalaxy FM-210 2 Meter Transceiver

Capability...That's what you purchase from Hy-Gain/Galaxy. Top performance from the first mass produced 2 meter transceiver. Fixed or mobile, the FM- 210 will provide maximum pleasure with minimum investment. And all American made too! No parts problems and backed by Hy-Gain's famous Customer Service!
Top performing transceivers coupled with your choice of the world's best 2 meter antennas means a winning combination with capability...

SPECIFICATIONS:

Transmitter:

- Frequency Range: $143-149 \mathrm{MHz}$
- Antenna Impedance: 50 ohms nominal
- Power Requirements: 12-14v DC
- Transmitter: 5 watts (10 w with AC- 210 power booster)
- Microphone: High Z
- Deviation: Adjustable narrow or wide band with clipper filter also adjustable for optimum clipping lever

Receiver:

- Sensitivity: SINAD .5 uv for 12 db
- Quieting: 1 uv provides 20 db
- Squelch: Continuously adjustable
- Modulation Acceptance: FM wide band (narrow band available on special request)
- RF Circuitry: FET front end and duo conversion for minimum cross modulation and overload
- IF Frequency: 10.7 MHz and 455 KHz .
- Frequency Control: 3 channel transmit, 3 channel receive. (146.94 MHz furnished) Transmit and receive frequencies independent of each other
- Audio Output: 3 watts from internal $3.2^{\prime \prime}$ speaker

Order \#813. Price $\$ 229.50$

AC-210 POWER BOOSTER

Use the AC-210 on $115 v A C$ or $12 v$ DC to provide AC operation and 10 watts input. Supplied with mounting brackets for permanent mobile installation. Order \#814. Price $\$ 49.00$.

MMB MOBILE MOUNTING BRACKET

Mounting bracket provides positive mounting and quick disconnect for easy removal. Between half of the mount is removable when not being used to conserve space.
Order \#816. Price \$5.95

IN A WINNING COMBINATION

The fugaingalaxy PA-210 2 Meter 35 Watt Mohile Amplifier

This all new ruggedized solid state two meter mobile amplifier provides 35 watts output to greatly increase your communication range. The PA-210 is a must for areas where no repeater is available. The PA-210 is designed as a companion for the FM-210. (When used as a system, the AC-210 power booster is not required.) A unique circuit protects the output transistor from voltage spikes and surges. All change over relay functions are internal and controlled by FM-210 circuitry through a connecting cable.

SPECIFICATIONS:

- Input Voltage: 12 v DC, negative ground only
- Power Input: 60 watts
- Power Output: 35 watts
- Frequency Range: 143 MHz to 149 MHz
- Operation: Class C
- Drive Requirements: $51 / 2$ watts required for 35 watts output (the PA-210 provides operating voltages to the FM-210 for high power operation)
- Antenna Requirements: 50 ohms unbalanced

Order \#815. Price \$149.95
HY-GAIN 764 5/8 WAVE GAIN ANTENNA FOR TWO METER MOBILE
Model $7645 / 8$ wave antenna with 3 db gain professional mobile antenna for two meters provides the highest gain and best matched performance (52 ohms) than any other mobile antenna on the market. Handles 110 watts and is constructed of 17-7 ph stainless steel with chrome plated hardware. It features an etched copper matching coil on a G10 epoxy fiberglass board. Exclusive claw mount fits any size hole $3 / 8$ to $3 / 4^{\prime \prime}$. Easy installation and high power capability. Supplied with 22^{\prime} of RG-58/U'coax and PL-259 connector.
Order \#764. Price $\$ 28.50$
Hy-Gain 764 Gain Antenna for 2 Meter Mobile

A clean AFSK unit

When it came time to put my new SSB transmitter on RTTY, it was apparent that using the microphone pick for AFSK input was the most desirable method. While there are dangers in this method concerning noncompliance with FCC regulations regarding purity of emission, it was decided that the advantages of being able to use the VOX circuits for switching and being able to transceive on RTTY would make this approach worthwhile. Since the transmitter uses a steep-skirted bandpass filter, it was felt that such a system could yield good results. Indeed, the method of CW generation is introduction of an audio tone into the audio stages.

After conducting a search of the available literature, the following list of desirable qualities for an AFSK circuit was made:

- Negligible harmonic generation
- Freedom from keying transients
- Ability to reverse shift
- Equal mark and space amplitude
- Wide and narrow shift capability
- Ability to use low and high frequency tones
- Easy to build and align

Of all the circuits examined, only that designed by K3NIO and described by Irv-n Hoff ${ }^{1}$ appeared to meet all of the first five criteria. Unfortunately, this design did not give information for using this unit on the low-frequency tones required by most of the transmitters that are adequate for this mode of FSK generation. The circuit is somewhat more complex to build than most of the AFSK units now in use, which may have discouraged its construction by many amateurs.

As a result of this analysis, I came up with a new circuit (Fig. 1). Construction may be simplified by the use of a printed-circuit board. The use of inexpensive integrated circuits further simplifies construction. Information is given for use with $2125 / 2975$ and $1475 / 2325 \mathrm{~Hz}$ tone pairs. The latter tone pair was chosen as optimum from the

COMPARE FEATURES ... COMPARE PRICES...

In fact, we defy you to find a better value for your equipment dollar. The R-599, pictured above, boasts features, specifications and styling you won't find in any other receiver. So, whichever is more important - quality or price - the Kenwood R-599 wins hands down. Look at these features... they're standard! (1) MODE - Permits reception of CW, LSB, USB, AM, AM with noise limiter, or FM. (2) FUNCTION - Selects receiver position between: Standby, Monitor signal from T-599, Slow AGC, Fast AGC, 100 KHz or 25 KHz calibrator. (3) DIAL - $1 / 2 \mathrm{KHz}$ readout, 25 KHz on subdial.(4) PRESELECTOR -Adjusts R-599 for maximum gain on desired receiving frequency by tuning for maximum s -meter reading. (5) BAND $-160,80,40,20,15,10$ meters (286 meters with accessory converters). (6) RIT - Allows off-set tun-
ing of receiver when Kenwood units are operated in transceive configuration. (6) SQUELCH - Allows squelch feature for receiver, turns RIT off by pulling knob out. (7) VFO SELECT - Chooses VFO of either unit in transceive operation or allows each VFO to operate independently. (7) SELECTIVITY - Automatically selects appropriate filter for selected mode or choose 2.5 KHz filter for LSB and USB, 500 Hz filter for CW, 5 KHz filter for AM (and AM with noise limiter), and 25 KHz filter for FM.
The S-599 speaker $\$ 14.50$ - CC-29 2 meter converter $\$ 29.50$. CC-69 6 meter converter $\$ 29.50$.
The Kenwood T-599 hybrid transmitter, the perfect match, offers the same degree of perfection... SSB, AM and CW, all amateur bands 3.5 MHz to 29.7 MHz . Only $\$ 345.00$.

ORDER YOURS TODAY...FROM ANY OF THESE FINE DEALERS:

HENRY RADIO • 11240 W. Olympic Blvd. • Los Angeles, Calif. 90064 • (213) 477-6701 B Butler 1, Missouri 64730 - (816) 679-3127 口 931 N. Euclid • Anaheim, Calif. 92801 • (714) 772-9200
AMATEUR ELECTRONIC SUPPLY • 4828 S. Fond du Lac Avenue - Milwaukee, Wisconsin 53216 • (414) 442-4200 AMATEUR RADIO CENTER • 2805 N. E. Second Avenue • Miami, Florida 33137 • (305) 374-4101
DOUGLAS ELECTRONICS • 1118 S. Staples • Corpus

Christi, Texas 78404 • (512) 883-5103
HERBERT W. GORDON COMPANY • Woodchuck Hill Road - Harvard, Massachusetts 01451 • (617) 456-3548 HARRISON - Rte. 110 at Smith - Farmingdale, N.Y.
11735 • (516) 293-7990 -8 Barclay St. • New York City - BArclay 7-7922 $\square 139-20$ Hillside • Jamaica, N.Y. • RE 9-4101
JOHN RICHARDT, W2WIY • Rte. 46 P.O. Box 154 • Great Meadows, N.J. $07838 \cdot(201) 637-4107$

standpoint of minimizing spurious signal generation in a transmitter with a 2.1 kHz bandpass filter.

Circuit Description

The basic scheme of frequency generation for this circuit is the same as that designed by K3NIO. A free-running unijunction transistor multivibrator is used as a frequency-shifted pulse generator running at twice the desired frequency. This pulse train is divided by two in an IC Flip-flop, forming a constant-amplitude square wave of the desired frequency. The square wave is then filtered in a five-pole Butterworth low-pass filter which suppresses all odd harmonics above the fundamental frequency (even harmonics are not present in a square wave). The frequency of the oscillator is shifted by switching an additional resistance from supply voltage to the emitter of the unijunction. This provides more charging current to the capacitor and results in a higher-frequency pulse train. The actual switching is done using a P-channel FET as a switch to achieve the very high off resistance necessary for easy adjustment of the shift. The FET is driven by a differential amplifier which senses the keying loop circuit. This diffamp is used as a current-switching discriminator and allows us to reverse shift very easily by interchanging the input leads. The switching threshold is approximately +2 V at the input, which may be conveniently obtained from the TTY loop supply current passing through a series resistor.

The power supply (not described here) is merely a single-ended 12 V supply. Regulation is not particularly critical, and the current drain is only 55 mA .

Fig. 2. Base diagrams.

Construction

The AFSK unit, with the exception of power supply, frequency determining potentiometers, and input coupling circuit, is built on a plug-in printed-circuit board which should be available from the Harris Co. ${ }^{2}$ Pay particular attention to align the key on the semiconductor components with the key on the circuit board and you can't go wrong. If you are not using the printed board, pay close attention to the basing diagrams given in Fig. 2. The 88 mH coils are the surplus telephone loading toroids and are readily available at very reasonable prices. ${ }^{3}$

Since reversing shift is not normally done after initial installation, the switch for this function may be omitted if desired. In my own unit, the plug-in socket was wired so that turning the board over in the socket reverses the shift.

Alignment

After applying power to the unit from a suitable source the operate/standby switch should be put to "operate." With the reversing switch in normal, the $25 \mathrm{k} \Omega$ potentiometer should be adjusted for the low tone. Next, apply approximately 4 V to the input. A jumper from the cathode of the zener to the input will do. Now adjust the $100 \mathrm{k} \Omega$ potentiometers for the narrow and wide shift high tones. That's all there is to it!

Keying circuit

The keying circuit in use at my station is shown in Fig. 3. Many other schemes can be used; however, they should be examined to make sure that they will not place over 6 V on the input of the differential amplifier. If in doubt, my own simple protection scheme is good insurance.

KEYING CIRCUIT CONNECTION
Fig. 3. Keying circuit connection.
Conclusions
This AFSK unit represents an advance over many other desigs which have been offered. Its freedom from keying transients and harmonic generation should help clean up some of the signals heard on the band presently. The presentation of a design for the lower tone pair should allow use with many transmitters without modification. Economy semiconductors and integrated circuits are used, and the cost of building the unit with all new parts should be about $\$ 10$. Certainly a clean signal is worth that! If you like your circuits "ready printed," you can send a $\$ 2.50$ check to American Photo Etch Co., Box 2627, South San Francisco CA 94080. If you'd rather do your own, check the board and component layouts in Figs. 4 and 5.

[^1]

Barker \& Williamson

 Now Offering Waters Protax ${ }^{\text {™. }}$ COAXIAL SWITCHES
WITH AUTOMATIC GROUNDING

..automatically grounds entire antenna system when the rig is not in use!

MODEL 375
6-Position rear-mounted (axial connectors)

MODEL 376 5-Position side-mounted (radial connectors)

Precision built by B \& W to the same standards that escalated our coaxial switch line to its present enviable position in the field.

[^2]
An SSTV Patch Box

Theodore Cohen W4UMF
8603 Conover Place
Alexandria VA 22307

Fig. 1. Patch box schematic.

The subcarrier FM slow-scan television (SSTV) standard most widely adopted in the United States (Macdonald, 1961) permits SSTV equipment to be used with any device designed for the audio frequencies. Thus, a basic SSTV system consisting of a monitor (Macdonald, 1964; Cohen, 1967) and a video source (Vidicon camera: Macdonald, 1965; Taggart, 1968; Hutton 1969; Flying Spot Scanner [FSS]: Hutton 1967; Pattern generator: Hutton, 1969) can be used, and often is used, in conjunction with a communications receiver, transmitter, audio tape recorder, and telephone. With the possibility that six or more pieces of equipment may be involved in SSTV operations at a given station, a requirement
exists for a versatile, efficient means of interconnecting the various equipment inputs and outputs. The slow-scan TV patch box described below is designed to provide this patching capability. While in principle similar to the SSTV switching network described by Taggart (1968), this patch box includes:

1. provisions for patching signals between a monitor, video source, communications receiver, transmitter, two-channel (stereo) tape recorder, and a telephone;
2. a phone patch and attendant meter for signal level monitoring;
3. inter-stage transformer coupling; and 4. background audio monitor.

General Comments

The patch box schematic is given in Fig. 1. The author's unit, built in a Bud "Portacab" (Model WA-1540) is shown in Fig. 2. For efficient interstage coupling, transformers are used between the major system elements. The input/output impedances characterizing equipment at the author's installation are shown in Table I, together with the transformers employed.

Transformers chosen represent a compromise between the characteristic impedances of the various pieces of equipment, and the design factors of the high-quality, inexpensive line of Argonne transformers.

Wiring is noncritical, though shielded audio cable should be used for the lead to the transmitter's microphone jack. All switches, gain controls, and the VU meter
are mounted on the front panel; the transformers, fixed-value T-pads, and speaker are mounted on the top of the subchassis (Bud, AC-402; see Fig. 2). All input/output leads (except those for the telephone) terminate in jacks which are mounted on the rear panel of the subchassis. The RCA phono jack was chosen as the patch box standard, not only for its small size, but also for its widespread application in audio equipment. Bypass capacitors are recommended for each input and output jack; these capacitors (. 001 to $.01 \mu \mathrm{Fd}$) should be mounted at the jacks. with leads kept as short as possible. In cases where severe rf feedback is encountered, rf chokes may also have to be installed in the input/output leads.

The patch box is completely passive. Thus, no power source is required.

Table I. Characteristic impedances and transformers employed.

EQUIPMENT	INPUT IMPEDANCE	OUTPUT IMPEDANCE	ARGONNE TRANSFORMER
Video source		1 K	
Monitor	600		
Tape recorder			
Channel 1	10K	8	IN: AR-109 (10K: 2 K CT)
Channel 2	10K	8	OUT: AR-137 (8:1K CT)
Telephone	600	600	AR-162 (500 CT:500 CT)
Receiver		8	AR-137
Transmitter	50K	.-...-.............-	AR-129 (50K: 1 K)
Background			
monitor	8	AR-137

Fig. 2. Front and interior views of patch box. Extra RCA phono jacks are provided on the rear panel for multiple outputs (if desired).

Fig. 3. Generalized diagram - T-pad attenuator.

Circuit Details

Though the logic behind the design and operation of the patch box is largely selfevident, a number of comments are warranted.

The output of the author's vidicon SSTV camera is slightly over 3 volts RMS. This is considerably larger than that required to drive the monitor's FET input amplifier. Thus, a T-pad attenuator (Fig. 3) is inserted between the camera and monitor, here designed to reduce the input voltage to the monitor by a factor of 6 . To protect the tape recorder's input circuits, all recorder inputs are attenuated by a factor of 20 . As T-pads other than those used here may be required, design criteria for the T-pads are given below:

Let $\mathrm{k}=\mathrm{E}_{\mathrm{in}} / \mathrm{E}_{\text {out }}$, and define Z to be the characteristic line impedance. Then:

$$
\begin{aligned}
& \mathrm{R}_{1}=\frac{\mathrm{Z}(\mathrm{k}-1)}{(\mathrm{k}+1)} \\
& \mathrm{R}_{2}=\frac{2 \mathrm{Zk}}{\left(\mathrm{k}^{2}-1\right)}
\end{aligned}
$$

Phone patches used in SSTV communications rarely need be more complicated than that shown in Fig. 1. Two $1 \mu \mathrm{Fd}$ high-quality (Mylar) capacitors provide for dc isolation and line balance. The transformer provides a single-ended line to the patch box, and a balanced line to the telephone. A conventional audio T-pad (IRC TP500A, Mallory T500 or T600) is used to set the telephone line level, this level monitored on the inexpensive VU meter provided.

As shown in Fig. 1, SSTV signals are fed directly to the transmitter's microphone input. Examination of Fig. 2, however, will show that panel space is available (lower left) for a switch and microphone jack.

Installation of the switch and jack as shown in Fig. 4 further enhances the versatility of the patch box, allowing the operator to choose easily between video and live oral signals.

Fig. 4. Alternate SSTV-microphone input circuit. The switch and microphone jack may be mounted on the lower left portion of the front panel.

To protect the tape recorder's output transistors, an 8.2 ohm resistor is automatically switched into the unused channel's output. Additional protection of the tape recorder's output circuitry is assured by using the minimum playback gain required. Subcarrier FM SSTV is a constant-level mode, and unless playback gain is minimized, output transistors and transformers will overheat and be destroyed. To protect the tape recorder during SSTV recording sessions, place the recorder selector switch in the PAUSE or RECORD position only when you are about to record. Further, the individual recorded segments should be kept short. For practical reasons, an SSTV picture is usually not repeated more than 10 times (most SSTV'ers get bored after viewing the same picture twice). Thus, with the 8 -second frame period employed, a typical recorded segment should be less than $11 / 2$ minutes long. Most tape recorders will handle a constant-level input signal for this period of time.

Conclusions

The patch box described has been in use at the author's station for over two years. During that period, it has been found to greatly facilitate tape record and playback sessions. Further, it has proven indispensible for local SSTV operations where the camera, monitor, tape recorder, and telephone are frequently employed in various combinations.

Those desiring further information on slow-scan television are referred to the liter-

ature in $73, Q S T$, and $H R$. You are also invited to join one of the many slow-scan groups which meet near 14230 kHz , Saturdays, at 1900 GMT (1400 EST). The author can usually be found by contacting W4ABY or K6BL/4.

References

Cohen, T.J., An Economical Slow-Scan TV Monitor, 73, July, 1967.
Hutton, L.L., A Slow-Scan TV Picture Generator, 73, October, 1967.
Hutton, L.I., A Fast-Scan Vidicon in the Slow-Scan TV Camera, 73, February, 1969.
Hutton, L.I., A Slow-Scan Television Signal Generator, 73, July, 1969.
Macdonald, C., S.C.F.M.-An Improved System for Slow-Scan Image Transmission, QST, January, February, 1961.
Macdonald, C., A Compact Slow-Scan TV Monitor, QST, March, 1964.
Macdonald C., A Slow-Scan Vidicon Camera, QST, June, July, August, 1965.
Taggart, R.E., A Slow-Scan Patch Box, A5, May, 1968.

Taggart, R.E., Slow-Scan with Regular Vidicons, in, Technical Correspondence, QST, December, 1968.

508 East Washington St., Arcola, Illinois 61910

508 East Washington St., Arcola, Illinois 61910
. . W4UMF

CQ, CQ, CQ, this is K3FEN, Richboro, Pennsylvania, beaming northeast, calling CQ, monitoring 439.25 FM and by for a call.

K3FEN, this is K2OJL-pix looks good, Taylor, go ahead.

Well, well, well, good evening, James, thanks for the call. Excellent pix tonight, as usual, but take the camera off that Playboy Bunny ...No-on second thought, leave it where it is!

Sound far-fetched? Think it's a pipedream that can't be accomplished except by hours and days and months of complex technical effort? Not so! To make an ATV QSO as commonplace as a 2 meter QSO, a couple of days of effort and 100 bucks will get you on the air, with darn good pix and sound, and with the ability to transmit and receive over a range of about 50 miles. I should add that here in the greater New Jersey-New York area we now have a number of stations, all with pictures and reasonable strengths who enjoy nightly ATV QSOs. And they're all having a ball doing it.

I had been contemplating TV at this level for 15 years, and with what seems like a bare minimum of work, really fantastic results were achieved. There just wasn't all that complexity to it.

Basic requirements for completing TV stations are:
(1) Lots of enthusiasm.
(2) Lots of cold beer.

This article is intended to stimulate interest and subsequent operation of this
beautiful mode by those who already have thought about it and were not really aware of new stations on the air.

I could discuss how much pleasure we have all derived from looking at one another as well as talking to one another. But I hope you will discover this for yourself. We have 18 stations, an outgrowth of four original anchormen who coerced, enticed, and frankly used bigger hammers on the heads of the skeptics ...who otherwise would be calling their heads off trying to raise Aunt Zelda on the five-meter band.

Well, I hope I have elicited your interest, because now we come to the main purpose of this article, which will be my attempt to illustrate the most economically feasible way to insure your success on A5.

After a year or so of playing with various combinations of antennas, preamps, converters, receivers, cameras, transmitters, video modulators, rf amplifiers, I have arrived at what is a simple and effective station setup, easily afforded by the average ham, and easily put together into a working system. Let's divide the station into three basic systems: receiver, transmitter, and antenna.

Antennas

Good reliable reception and transmission at 440 MHz requires a high-gain, wide-bandwidth antenna. Most of the fellows are using the new Cushcraft 20 -element DX array in combinations of

20,40 , or 80 elements at heights of $50-80$ feet, fed with low-loss coax which matches the antenna impedance of 50Ω as well as the output of a 50Ω transmitter. Largediameter "hardline" (available from Deane Kidd, K7ZIR, in Beaverton, Oregon, in 55 ft coils at a cost of $\$ 20$) exhibits a loss of less than 0.5 dB at 450 MHz . It is waterproof, conforms to any structure, can be bent and filled with bottled gas to eliminate moisture. RG-9 is also good at these frequencies, slightly better than ordinary RG-8, which will exhibit approximately 5 dB loss per 100 ft .

As the video portion of the signal must be 10 dB above the audio, for best results, I urge that you obtain the best coax you can, terminating preferably with Type N or BNC fittings at every point in the system. Though almost any antenna will work, I recommend the collinear because of its reliable gain and bandwidth. Remembering Sam Harris' adage, "If your antenna didn't fall down last winter, it wasn't big enough," I suggest that the bigger and the higher, the better.

Transmitters

Probably the easiest way to get on TV is by converting a 450 MHz commercial FM transceiver, such as an RCA CMU-10 or 15, using 5894s in the final, a GE "Pre-Prog,"
or a Motorola T-44 (both with 2C39s). These units are available complete with receiver, transmitter, crystal ovens, and dc power supply for around $\$ 35$.

Tuning the transmitter is not much more complicated than obtaining a crystal for the frequency you desire to work. Here in the tri-state area of New Jersey, New York, and Pennsylvania, we are using 439.25 MHz . It is a reasonably simple matter to adjust the various stages in the transmitter with the help of a VOM, which will plug right into existing test points. The tuneup procedure involves about a halfhour of time.

Once you have obtained approximately 15 W of rf output from the strip, all that remains to be done - and don't let it scare you - is building the video modulator. W6QUI has designed an excellent twotransistor video modulator which can be built at a cost of approximately $\$ 10$, including a printed circuit board available from Tom O'Hara (W6ORG) at a cost of $\$ 3.50$. It uses only a handful of solid-state components and has been found to be capable of reliably modulating the 2C39 final. Simply run a lead (the shorter the better) from the output of the video modulator to the grid of the final, and apply 100 V dc (regulated) to the video modulator.

Fig. 1. This block diagram shows the true simplicity of a typical ATV station.

Messy and mickey mouse, but when all the jumper wires are connected and the zip-cord extensions are plugged in, it really works.

All that remains to complete the transmitting side of the stage is a camera. TV cameras are available from many sources and range in price from approximately $\$ 50$ for a used Jap camera, to $\$ 300$ for a new one, and $\$ 100$ to $\$ 1000$ for a good-quality U.S.-made type. All of the modern small transistor cameras produce enough peak-to-peak voltage to drive the modulator (about 2 V).

After you have the system on the air and are monitoring, it's a good idea to sample some of the rf through a video detector, coupled to either a scope or a video monitor so that you can watch the off-the-air picture as you play with the beam control on the camera, the video modulator gain control, and the tuning controls on the transmitter. This will insure that you are watching the actual picture you are transmitting, rather than an overloaded TV set which will tend to distort the picture.

Incidentally, just connect a carbon mike to the microphone input on the transmitter, as the strip serves for both FM and AM, the function of transmitting video and audio simultaneously on the same frequency. The separation of audio and video is done at the receiver.

Receiver

The receiving setup is even easier to organize and get working, particularly with GE or RCA receiver strips. Very simply, it's just a question of obtaining a crystal at
the proper frequency, plugging it into the crystal oven, applying voltage, and tuning the various stages for best received signal, or by letting anyone with a frequency meter and a signal generator tweak each stage for maximum. Ed. Note: T-44s can be a pain, though. Even though they're probably the best performance-wise, you may have a tough time getting the right crystal. Some T-44s use a 10 MHz crystal, others use a 30 MHz rock. And the actual crystal frequency will depend on the frequency of the second oscillator, which varies from unit to unit.

A nice feature of the Motorola is that its receiver strips have an i-f output at 64 MHz , and through a coupling capacitor and with a small piece of coax (72Ω) you can pump this signal into channel 4 of any TV set and get good resolution and gain. A balun at the TV set antenna terminals will transform the unbalanced 75Ω up to 300Ω balanced, to match the TV tuner. This system will allow you to use the squelch already on the receiver strip so that with your TV set off, you can always hear an ATV'er break the receiver.

Incidentally, you can use the transmitreceive relay already incorporated in the transmitter strip, for one-switch operation or push-to-talk, as you like.

So, there it is, and inexpensive, reliable amateur TV system that many fellows are using, and with which they are having the time of their ham radio lives. My own future plans call for color transmission with stereo sound and the use of video tape. A repeater is now being built which will serve the three-state area - so, as you can see, the action is there. All you have to do is get in on it.

Any of the ATV'ers would be glad to demonstrate their equipment in operation as well as give you a hand with any problems you may incur.

Don't let this article be just another thing. Go out and get the parts, put it together, and make it work. Then you will be able to get a good look at my secretary, WB2PQZ. She's an avid ATV'er herself and a real doll . . and she will be glad to give you a demonstration.
. . . K2OJL■

Specifications: 90 day warranty

RECEIVER

The HR-2 receiver is a double conversion, superhetrodyne with highly selective ceramic filter.
Frequency Range.... $144-148 \mathrm{MHz}$
Sensitivity................ $0.35 \mu \mathrm{~V}$ (nom.) 20DB Quieting
Selectivity.................6DB Down $\pm 16 \mathrm{KC}$
50DB Down $\pm 32 \mathrm{KC}$
Audio Output
(3-4 ! Speaker).... 3 Watts 10\% Distortion
5 Watts Maximum
Channels
6 Crystal controlled with provision for adding an additional 6 channels
I.F. Frequencies..... $10.7 \mathrm{MHz} \& 455 \mathrm{KHz}$

TRANSMITTER

The HR-2 transmitter uses phase modulation for the ultimate in carrier stability. Built in SWR load mismatch circuitry provides protection against open and shorted antenna conditions.
Frequency Range.... $144-148 \mathrm{MHz}$
Power Output.......... 10 Watts (min.) @ 13.6 VDC
Modulation. \qquad Phase Modulation with automatic deviation limiting Automatic Limiting with internal adjustments from $0-15 \mathrm{KC}$ deviation Plug-in, hand held, high Z Ceramic supplied 6 Crystal controlled with individual trimmer capacitors for Frequency netting

STANDARD EQUIPMENT

Built-in 4" Speaker
Mobile Mounting Bracket
SO-239 Antenna Connector Socket
T \& R Crystals for 146.94 MHz
PTT Ceramic Mike
only $\$ 200$ Amateur

The tuning indicator shown in Fig. 1 operates directly from the receivers audio output. It can be used "as is" if audio is taken from the high impedance phone output of the receiver. If a lowimpedance speaker output is used then an $8 \Omega / 10 \mathrm{k} \Omega$ step-up transformer will be required to insure an adequate signal amplitude at the grid of V1.

An inexpensive two-shadow "tuning eye" tube is used. One plate tunes in mark for RTTY or white in the case of FAX. The other plate tunes in space for RTTY or black for the other mode. Two sets of filters are used using either 88 mH toroids or 100 mH television-type inductors. The FAX filters are resonant at 2300 Hz (white) and 1500 Hz (black) respectively. RTTY filters are tuned to 2125 and 2975 Hz . An additional 2295 Hz filter ins included for tuning in narrow-shift RTTY.

Filter tuning is most critical of course and should be within a few hertz. You can either purchase the tuned filters from hams engaged in the business or tune your own if equipment is available. If you decide to tune the filters, a frequency counter, stable audio oscillator, and high-impedance elec-
tronic voltmeter with good frequency response is required. The equipment setup is shown in Fig. 2. $1 \mathrm{M} \Omega$ resistor is used between the oscillator and the tuned circuit under test to insure that a high Q is maintained.

Fig. 1. Double-eye tuning indicator.

Most audio oscillators have a fairly low-impedance output (on the order of 500Ω) which would decrease the Q of the tuned circuit. As a result, the tuning would be broad. The capacitor (Fig. 2) should be a high-grade Mylar type. Tolerance of the capacitor is not critical since tuning will depend on adding or subtracting turns

from the inductor or varying the tuning slug if a 200 mH TV width control is used.

Table I shows capacitor values for 88 and 200 mH inductors. Set the audio oscillator to the desired filter frequency with the aid of the frequency counter. Vary the oscillator amplitude until the voltmeter (ac scale) indicates an arbitrary voltage. A low-amplitude output from the oscillator is preferred to minimize the possibility of saturating the inductor. Tune the filter for a maximum indication on the voltmeter. This insures parallel resonance.

Because of the high Q of 88 mH toroids it might be necessary to swamp it with a low-value resistor, allowing slightly broader tuning. TV width coils if used, are broad enough, making the resistor unnecessary. However, if 88 mH toroids are used, place a 150Ω resistor in a series with one leg of each inductor. If the filters are too sharp, stations with shifts slightly divorced from the standard will be out of the bandpass and not received. The described technique can also be used for tuning RTTY demodulator filters.

When an RTTY station is received and the receiver is tuned to mark (2975 Hz), one of the tuning-eye shadows will close. A space signal will close the other shadow. The white or black transmission from FAX

Table I.

Frequency, Hz	L, mH	$\mathrm{C}, \mu \mathrm{F}$
1500	88	.125
2125	88	.068
2295	88	.047
2300	88	.047
2975	88	.033
1500	200	.047
2125	200	.022
2295	200	.022
2300	200	.022
2975	200	.015

(2300 and 1500 Hz) will close its respective shadow. Shadow width is controlled by the $10 \mathrm{k} \Omega$ potentiometer which varies the grid drive at V1.

It will be found that the indicator is an adjunct to any RTTY or FAX demodulator.
... W1OER■

Being quite active on two meter FM, I've recently felt a need to add some versatility to my setup by installing a remote control system from my mobile to base station. The circuits I came up with are extremely stable and reliable through wide temperature and voltage variations. The encoder and decoder are equally usable for subcontrol of conventional tonecontrolled in-band repeaters.

Encoder

The encoder is a standard LC feedback type, and is as stable and accurate as the quality of the components used in the collector circuit. I used a standard 88 mH toroid for the inductance, and then figured out C_{1} and C_{2} from $f=1 /(2 \pi \sqrt{L C})$ where f is frequency in hertz, L is inductance in henrys, and C is capacitance in farads. The capacitors are in a ratio of $1: 1$ to get a high Q, so after arriving at $10(\mathrm{Cl})_{2} / 11(\mathrm{Cl})=\mathrm{C}$

Bob Kertesz VE2BZK

7794 Kildare Rd.
Cote St. Luc 268, Quebec

Somewhere along the line, in virtually every ham repeater in the world, you'll find a couple of Sentry crystals.

Repeater owners and FM "oldtimers" don't take chances with frequency-they can't afford to. A lot of repeater users depend on a receiver to be on frequency, rock stable...in the dead of winter or the middle of July. The repeater crowd took a tip from the commercial "pros" a long time ago-and went the Sentry Route.
That's one of the reasons you can depend on your local repeater to be there (precisely there) when you're ready to use it. FM'ers use the repeater output as a frequency standard. And for accuracy, crystals by Sentry are THE standard.

> IF YOU WANT THE BEST, SPECIFY SENTRY CRYSTALS.

I You've USED A. SENTRY CRYSTAL

 Who Build Repeaters!"SENTRY MANUFACTURING COMPANY Crystal Park, Chickasha, Oklahoma 73018

to get the value of Cl , then multiply the result by 10 to determine the value of C 2 . For those who are mathematically lazy, 88 $\mathrm{mH}, 2 \mu \mathrm{~F}$ and $0.22 \mu \mathrm{~F}$ will give you approximately 1000 Hz . Use at least 10% mica capacitors for C_{1} and C_{2}; otherwise, you will have stability problems. The transistor can be just about any general purpose NPN you have around. The output should be connected to your mike input, and the control adjusted to give about $5-10 \mathrm{kHz}$ deviation.

Decoder

The decoder is a twin-tee circuit followed by a dc amplifier. The input level control can be brought down to give you a bandwidth as narrow as $\pm 30 \mathrm{~Hz}$! The two input diodes clip the incoming signal to a maximum value of 0.2 V peak to peak; they can be any general-purpose germaniums.

The output of the decoder is rectified and fed to a standard dc amplifier; the relay in the collector of Q_{2} is the one I had in my junkbox, so you might have to experiment with the value of R_{5}; the relay should close at about 6 V and $6-10 \mathrm{~mA}$.

The input should be connected to the discriminator output of the receiver. The input pot should be set up so that the relay closes reliably every time the encoder is keyed; it helps to have a friend stay home to adjust it while you drive around. A $30-50 \mu \mathrm{~F}$ capacitor can be connected after the diode to give a turn-on time delay of 3 to 5 seconds; this will not be applicable to standard repeaters, but it could prove quite beneficial for remote control for those of you who have friends with strange senses of humor. With the capacitor in the circuit, an audio generator sweeping your frequency will not trip the decoder.

A heavy duty relay must be connected at the output, since the contacts on a sensitive relay are rated at only a couple of watts; a ratchet relay can also be used for latching on-off operation.

One final note: If you are going to use the system through an open repeater, be discreet. It is very annoying for people monitoring the frequency to hear tone bursts coming through; and finally, be sure to ID each time you use the unit.
...VE2BZK

Here's The Mobile FM AFTERBURNER

 $\$ 129.95$

Delivers 50 Watts of Punch on 2 Meter FM

The Varitronics PA-50A is a completely solid state Class C RF amplifier designed specifically for use in mobile amateur FM applications. Internal RF switching makes the PA-50A useable with any amateur FM transceiver with 10 watts* output. Balanced emitter devices are employed which are completely insensitive to high VSWR or even no load conditions at its output. This handsome and ruggedly built amplifier is styled like the IC-2F transceiver, features a calibrated output meter and is supplied with mobile mounting bracket and DC cord. For the big signal on FM, try it!

SPECIFICATIONS *Drive Requirements ... 12 Watts Maximum 5 Watts Minimum	
RF Output	. 50 Watts - Less with lower drive or input voltage
Power Requirements	13.5 VDC@ 5 Amps
Impedance 50 Ohms In/0ut
Frequency	Any Portion of Amateur 2 Meter Band
Spurious Products	. 50DB Down
Dimensions	$6^{\prime \prime} \times 7^{\prime \prime} \times 2{ }^{\prime \prime}$

Contrary to popular belief, the most efficient method of organization is no organization whatsoever. In the case of a personal magazine collection, if you could remember the precise location of every article you have accumulated, you would never waste time hunting for a particular schematic, or putting the copy back in its "proper place." Since most of us do not have perfect memories, some organization is necessary to find the information we need in the mess we accumulate. The important thing to remember is: the more organized (and complicated) a system is, the less efficient it will be.

Indexes are remarkably inefficient devices for using information. A typical index assigns each article an individual position and locating file card. To use the index as efficiently as possible, one must keep both the magazines and the file cards in order. Additionally, when one is interested in information on a single topic, there is generally a separate magazine to find for each article, and a page to mark so one can refer back to it. Many of these articles will be useless and the magazines
must all be replaced in order when the project is complete, or if the library is to be used again.

The method I use requires a minimum of organization as well as the wholesale destruction of the magazines in order to separate the individual articles. For those of us who enjoy collecting the complete set of magazines, this thought is like being against apple pie, motherhood, and The American Way. Nevertheless, information you cannot find is useless, so if you want to keep your magazines intact, I suggest you start in on your first thousand file cards, while the rest read on.

All pages of each important article must be removed from the magazine and stapled together. Each article should be marked on the top of the first page with filing subject (and magazine and date, if not printed in the article itself). All articles of the same subject are placed in a manila file folder which is filed alphabetically according to subject. The topics should be carefully chosen for their ideas, or underlying principles rather than their English names. For example, in one file labeled "mixers" I
keep articles on rf mixers, rf converters, AM modulators and demodulators, and other related devices. Af mixers are filed in my "hi-fi stereo" folder, and other systems of modulation are also filed separately. Those articles which are redundant or not worth keeping are discarded with the advertising, but make sure to keep everything you could ever possibly want. The volume of the information will be reduced at least by half, and probably more.

Occasionally an article is important in more than one area, so a note must be placed in one file that the article exists in another file, or (wonder of wonders) a duplicate made. Often, articles destined for different files contain a common page. These could be handled in several ways, but I hate to separate the pages of any article, so I bind these articles together, marking the topics of interior article(s) on the first page. Then the whole thing is filed under the subject of the most important article, using notes again where necessary. It is important that the system be kept manageable; when a folder fills up, it is time to discard some useless articles in the folder, or start a new subdivision of information.

This system pays for itself in the blinding speed with which one can find the details of a particular idea or design (even if you have forgotten where and when you read it), but there is more. All articles in similar fields are filed together, which is a tremendous advantage; if you want to build a converter, all important articles on converters are in one place. In one folder might be schematics of the most recent UHF converters, old VLF converters, as well as articles on conversion theory and design.

The disadvantage of the system lies in not being able to identify a specific magazine per se. This would be a major disadvantage to a library with many published indexes at their disposal, but for the individual who wants to use the information, the disadvantage is mostly imaginary. If the article is important, it will be in the proper file.
. . WA3BKC ■

Over 250 Pieces of USED EQUIPMENT on SALE

Be sure to check this list-over $\$ 20,000$ worth of good used Receivers, Transmitters and Transceivers offered at these reduced prices! While the stock lasts - let us serve you?

We have Signal One CX7's in stock ready to ship
Sandy Jackson mgr - T.T.Freck W4WL
FRECK RADIO \& SUPPLY COMPANY 38 BILTMORE AVENUE ASHEVILLE, NORTH CAROLINA 28801

QRX QRL! No new repair jobs can be accepted until further notice.

PANTRONICS OF VIRGINIA, INC.
P.O. Box 209

Annandale, Virginia 22323

4-1000A FILAMENT TRANSFORMERS
7.5 VCT @ 21 AMPS 117 VAC PRIMARY $3 \frac{3}{4}{ }^{\prime \prime} \mathrm{H}, 41 / 2^{\prime \prime} \mathrm{W}, 3112^{\prime \prime} \mathrm{D}$. NET WT. 8 LBS.

\$14.95 PPD

PETER W. DAHL CO.
5325 Annette Ave.
EL PASO, TEXAS 79924 Tele:915-751-4856

LARGEST ASSORTMENT of BRAND NAMES

You can save enormous amounts of money while choosing from a complete line of transceivers, receivers, transmitters, etc.

WE HAVE EVERYTHING IN HAM GEAR
SAVE MONEY ORDER BY MAIL
CB Radio Co., Inc.
89 Aspen Rd.
Swampscott, Mass. 01901
617-598-9700

Tell our advertisers you saw it in 73! (Even if you didn't.)

220 MHz 9
 Bill Hoisington K1CLL
 Far Over Farm
 Peterborough NH 03458

This article describes a low cost, twotransistor converter for use on the 220 MHz band, using any of the "police band" FM receivers that cover 146 to 180 MHz .

The availability of these pocket receivers, made by the Nagasaki Hardware Co., in the Not-So-Far-East-Now, was highlighted by K9STH in 73 Magazine, July 1970, page 44. A recent proposal to open up 220 MHz for no-code hobbyists prompted the building of a foundation converter as an almost instant means of seeing what could be done today with low-cost solid-state 220 MHz rigs. The Allied-Radio Shack Model A-2587 was used as the i-f, discriminator, and af, on about 170 MHz . This is the output frequency of the converter being described when using a 50 MHz crystal in the oscillator.

The A-2587 receiver uses a miniature telephone jack for the 50Ω antenna connection, but as long as it works, who is to say no? The insertion of this "antenna plug" into the antenna jack on the receiver also cuts off the extendable antenna very nicely.

After removing the telephone plug from one of those little plastic-wrapped white earphones that always accompany a Jap
receiver, I converted it to an "RCA phono" adapter, making up the 170 MHz connection between the converter and the receiver.

Figure 1 shows the converter circuit using a Motorola HEP 56 transistor, good for 750 MHz use, as the mixer, and a HEP 55 for the 50 MHz oscillator.

No attempt to achieve low-loss high efficiency was made, because the later

Fig. 1. Schematic, 220 to 170 MHz FM converter.

RECONDITIONED HAM EQUIPMENT

A 10 Day Free Trial (Lose only Shipping Charges) 30 Day Guarantee Full Credit Within 6 Months on Higher Priced New Equipment EZ Terms-Convenient revolving charge Payment Plan Order Direct from this Ad!

AMECO	
CB-6 (28-30Mc if)	
CN-144 (50-54 if)	
CLP preamp sup	
PT preamp	
PS-1 AC supply	
TX-62 VHF Xmtr	99
SISB-B SSB ad	
381 TR switch	
424 low-pass	
FCC-90B 100ke cal\$ 12	
CENTRAL ELECT.	
-1 Anti-trip	
-del B slicer	
GC-1 compreamp	
DQ Q-multiplier	
CLEGG/	
SQUIRES-SANDERS	
6 'er 6 m Xevr	169
'er 6 m Xcvr	
17 AC sup. mod.	75
interceptor Rec	\$249
Interceptor B Rec	325
Illbander HF tuner	9
Venus 6 m SSB xmtr	
416 AC supply	
S Booster	49
SS-IV Band Scanner 275	
COLLINS	
75A-2 Receiver	\$219
Speaker (AI, A2, A3) 9	
755-1 Receiver	325
S-I w blanker	75
S-3 Receiver	25
2S-1 Xmtr	5
S-3 Xmtr	575
2B-4 Control	149
1D-2 mount	
6F-2 AC suppiy	
16E-2 DC (28v)	95
MP-I DC supply	
R. L. DRAKE	
AAC	
2B Receiver	189
2BQ spkr Q-m	9
2C Receiver	189
Q spkr Q-mul	4
-4A Receive	
-4 Receiver	275
-4A Receiver	299
MS-3 speaker	2
SC-6 6 m converter	9
C-1 conv.console	9
R-3 Transceiver	5
C-3 DC supply	5
-4 Reciter	5
N-2000 matcher	49
TC-6 xmit.conv.	
EICO	
730	
753 SSB Xcvr	29
1 AC su	

CB-6 (28-30Mc if) \$ 17 CN-I 44 (50-54 if) 29 PCLP preamp supply 24 S- 1 AC 49
8

SBI-LA Linear $\quad 159$ SB-34 Transceiver 279 SB2-VOX
SB3-XC Calibrator 15
SB2-MIC Mike 9

SWAN

SW-117 AC supply \$65 SW-240 Xcvr (iate) 169 400 Transceiver 189 406 B VFO - 50 410 VFO $\quad 75$ $\begin{array}{ll}410 \text { VFO } \\ 420 \text { VFO } & 75 \\ \end{array}$ VX-I VOX 15 $350 \times \mathrm{cvr}$ (late) 289 500 Transceiver 349 500 C Xcvr 389
II7XC AC supply 80 NS-1 noise silencer 24 405X MARS osc. 29 2506 m Xevr 239 250 C 6 m Xcvr 339 TV-2 2 m Transverter
(specify 14 or 50) 225
FP-f phone patch 34
U. S. C.

Z-200A Digital V.M. $\$ 85$ Z-200A (rk. mt.) 75

UTICA
6506 m Xevr VFO \$ 89 650A 6 m Xcvr VFO 99 WATERS
369A Reflectometer $\$ 75$ 361 Codax keyer

The items listed below are brand new and carry the full manufacturers New Equipment Warranty. Some items have been on display but most are Factory Sealed.
ND = New Display
FS = Factory Sealed
BTI
Reg. NOW
LK-2000HD Linear
EICO
751 AC supply kit
751 AC supply wired
752 DC supply kit
Reg. NOW

752 DC supply - wired FS 1095 HFT-92K AM-FM Tuner kit FS 6439

SIGNAL/ONE
Reg. NOW
CX-7 Transceiver
ND $\$ 2195 \quad \$ 1750$

SWAN

Reg. NOW 410C Remote VFO for 500 C FS $\$ 115 \$ 100$ 405 MARS osc. for 350500
TV-2 2 m Xmit conv.
260 Transceiver
FS 295
360C Xansceiver (no supply)
$\begin{array}{lll}\text { FS } & 435 & 369 \\ \text { FS } & 420 & 370\end{array}$
VARITRONICS - New Close-out Reg. Now FDFM- 212 vdc 2 m FM Xcvr (5 watts
input) with BP-I Battery Pak \$262 \$199 FM20M Mobile Linear for above $150 \quad 89$ FM20BM Base Linear \& AC supply $235 \quad 125$

The BIGGEST - The BEST - In the MIDWEST

AMATEUR ELECTRONIC SUPPLY 4828 West Fond du Lac Ave. Milwaukee, Wis. 53216 Phone (414) 442-4200

STORE HOURS: Mon \& Fri 9.9 Tues Wed \& Thurs 9-5 30 Sat. 9.3

installation of one or more low-noise figure rf stages is assumed.

At any VHF shack with a crystal within the 48 to 54 MHz range on hand, this unit can be assembled, wired, and tested easily in a day. The only thing to watch for, as always with an i-f near the signal frequency, is oscillator harmonics getting into the front end. The third harmonic at 150 MHz is pretty loud when you do tune across it (which you do not need to do, by the way). This harmonic can be dropped 20 to 30 dB by use of a series 50 MHz filter in the oscillator injection line, but was not found necessary here.

A small minibox will contain all the parts for this converter if you want to make a permanent unit out of it. It can also be made to fit flat on the back of the A-2587 receiver case if you want.

Generous use was made of Arco trimmers, and hand-wound coils did the rest, with nothing critical showing up, except that emitter oscillator injection was a must. Base injection at 50 MHz into a 220 MHz mixer did not work well at all.

A signal generator, 170 MHz tuned circuit (see Fig. 2), diode detector, and voltmeter were used to tune up the circuits and adjust the couplings. If you try and use the receiver as the i-f while doing this, you may succeed, but I find that the sensitivity tends to mask the desired results. Suit yourself on that. When you get a good solid de signal out of the diode tuned to 170 MHz your converter and i-f output circuit are really working.

For new readers the 170 MHz diode detector is shown in Fig. 2. It also tunes up to 450 MHz , and will go down to 144 as well with slightly smaller dimensions and a 35 or 50 pF capacitor, thus covering three amateur bands.

Fig. 3. 220 MHz breadboard antenna.

Coils for all schematics are listed in the following chart:

Coil	Wire N	No. of turns	Length of coil	Diam. of coil	Position
L1	22 insul	2	$1 / 4^{\prime \prime}$	3/8"	End of L2
L2	18	$31 / 2$	$1 / 2^{\prime \prime}$	3/8"	
L3	bare 18	4	3/4'	3/8'	
L4	bare 22	2	1/4'	3/8"	End of L3
L5	insul	15	3/8"	on 6/32 paper tube	Tap in senter

Fig. 2.

it's a whole new ball game! Now. buy SWAN amateur equipment at

 For more than a year now, American manufacturers and distributors of amateur radio equipment have been faced with a growing challenge from imported products, which in most cases are being sold
on a direct basis from importer to user.
After considerable deliberation, Swan has decided to meet this challenge by offering a new dual sales policy for 1971.
This new program permits us to substantially reduce prices for the entire line and also include the valuable customer relationship provided by knowledgeable distributors. Thus with no sacrifice in Swan's high standards of engiheering, reliability, and craftsmanship we can now offer our products for prices which are more than competitive with any foreign-made equipment.

Write for the complete 1971 Swan catalog. We invite you to select either of the following purchase plans.

PURCHASE PLAN NO. 1

Direct purchase from our East Coast branch or from pur factory in California, without trade-in; payment by check or money order or through Master Charge or BankAmericard, or arrange your own financing with your local bank. Freight prepaid by Swan.

PURCHASE PLAN NO. 2

For those who wish to trade or arrange for individual financing, purchase through your local Swan dealer. Dealer prices will reflect a mark-up of approximately 10%, similar to the normal differential between catalog and store prices.

Smban
ELECTRONICS
305 Airport Road
Oceanside, California 92054
A Subsidiary of Cubic Corporation

Because of the lack of inexpensive electrostatic deflection CRTs on the surplus market and the impracticability of electrostatic deflection on CRTs larger than 5 in., I managed to apply magnetic deflection to my SSTV station. Magnetic deflection tubes such as the 5FP7 and $7 \mathrm{BP} 7^{1}$ are currently inexpensive and available in large quantities on the surplus market; therefore, they extend themselves to use by amateurs on SSTV with limited resources.

The heart of my magnetic deflection system is the deflection yoke, which needs some explanation. The yoke is a radar type which was to be used in an electronic (rather than mechanical) rotary sweep system ${ }^{2}$. The square yoke is a more common older version, and the round yoke is a newer version manufactured by Atlas Coil Co. for RCA. However, both types are electrically identical. The coils have between 60 and 300 ohms dc resistance, and they have a common red wire to which B+ is connected (Fig. 1).

These coils, though seldom advertised, are rather inexpensively acquired from surplus dealers because of their supposed uselessness. My neighborhood surplus dealer had 15 of these yokes selling for $\$ 2$ apiece. If you're unable to obtain these coils locally, try writing some of the mail order dealers about them; chances are they'll have some. If this fails, I am able to
supply a limited quantity at $\$ 2$ apiece plus postage. You might also be able to obtain an assembly which contains them, such as the BC-1092. One word of caution: Make sure the coils are for the electronic system. The best way to be sure of this, if they're in a radar unit, is to check around the neck of the tube for a selsyn; if there isn't one, you're probably in luck.

Standard 55-degree deflection coils for TV are too inefficient at the scanning frequency to be used with anything less than 200 mA of current. However, they may lend themselves nicely for transistor work.

The deflection amplifier tubes aren't critical. Any tube capable of handling the required current can be used. To determine the required deflection current you can put a low voltage dc supply and a meter on the coils, as shown in Fig. 2. Bring up the voltage ($6-12 \mathrm{~V}$) until the beam is fully deflected from the center to one side and that current is your required deflection current. The B+ common on the coil can be found by a resistance check since all four coils have identical resistance.

In MacDonald's SSTV monitor ${ }^{3}$ it was necessary to change R10 from $50 \mathrm{M} \Omega$ to $30 \mathrm{M} \Omega$ to get adequate vertical deflection on a 7 in. tube. The $.006 \mu \mathrm{~F}$ coupling capacitor from pin 1 of the vertical trigger to pin 1 of the vertical discharge tube should be increased to $.05 \mu \mathrm{~F}$ to discharge

STEP UPTOTELREX Professionally Engineered Antenna Systems

Single transmission line

By the only test that means anything... on the air comparison . . . this array continues to outperform all competition... and has for two decades. Here's why . . . Telrex uses a unique trap design employing 20 HiQ 7500 V ceramic condensers per antenna. Telrex uses 3 opti-mum-spaced, optimum-tuned reflectors to provide maximum gain and true F/B Tri-band performance.

ONLY TELREX GIVES YOU ALL
 THESE FEATURES...

- Power rating 4 KW PEP... rain or shine
- Wind rating survival 110 MPH
- Patented broad-band coaxial Balun
- Heavy-duty steel gusset mounting plate
- Aluminum boom 2 in., $21 / 2 \mathrm{in}$. O.D. $x 18 \mathrm{ft}$.
- Large diameter, . 058 wall taperswaged dural elements for minimum

"TRI-BAND ARRAY"

weight and exceptional strength
to weight ratio

- Stainless steel electrical hardware

With a Telrex Tri-band Array you get 49 lbs. of educated aluminum engineered and built to provide many, many years of performance unmatched around the world by any other make. Longest element 36 ft . Turning radius 20 ft . Shipping weight 65 lbs . Shipping container 13 in . $x 5$ in. x 13 ft .
Note: If not available from your dealer, order direct. You'l get fast, personal service.

Telrex Labs are design engineers, innovators and manufacturers of the world's finest $3 / 4$ to 160 meter communication systems and accessories priced from $\$ 25$ to $\$ 25,000$.

For technical data and prices on complete Telrex line, write for Catalog PL 71.

Some thoughts from Mike Ercolino, P.E. - W2BDS, Telrex Chief Engineer . . .
"I've been in the game over 50 years (pounded brass for 25) and found out a long time ago that antennas were the weak link. We changed all that."
"Good antennas such as those we build can be ruined in two minutes by a tinker. So put 'em up and leave 'em up the way we make 'em.'
"Our 'Big Bertha' systems cost more than a Rolls Royce. Three of our customers have bought two of them . . . that's living."

C3 due to the higher charging voltage. Transformers T3 and T4 in the video circuit can be changed to a plate-to-push-pull-grids ($1: 2$ ratio) interstaged transformer since breakdown voltage no longer is a critical factor.

Fig. 1. Radar deflection yoke.

Fig. 2. Coils must be mounted on CRT and the CRT must have the same postaccelerator voltage as your monitor will supply.

The input to the deflection circuit should be at the junction of the $27 \mathrm{k} \Omega$ resistors in the cathode circuit of V7.

The 200Ω wirewound balance control should be set so that nearly equal currents are drawn by each tube. This can be determined easiest by temporarily adjusting the bias controls for maximum resistance, grounding the grids, and removing screen voltage. Then adjust the control to approximately equal voltage on the cathode.

The $500 \mathrm{k} \Omega$ bias controls should be set by feeding a 15 Hz signal into the amplifiers and putting a scope on the cathodes of the output tubes. (On the 15 Hz amplifier one end of the cathode bypass has to be removed temporarily.) Adjust the
bias control for the best sawtooth wave forms on the scope. Since the vertical signal is practically dc $(.075 \mathrm{~Hz})$, the 15 Hz signal will have to be temporarily used in making the bias adjustments for the vertical deflection amplifier. Slight balancing can be made with the bias controls, if required, as long as the waveform doesn't change too much.

If a 5 in. tube is used it may be necessary to increase the screen resistor to lower the sweep of the unit, or a $100 \mathrm{k} \Omega$ 2 W pot could be wired in if a gain control is desired. If a larger CRT is used it will be necessary to increase plate voltage and perhaps change tubes, depending on how much deflection is needed. Keep in mind that if a larger CRT is used it must have approximately a 55-degree deflection angle.

The high voltage required for the electrostatic CRTs can be eliminated, although a 4 to 8 kV (depending on CRT) postaccelerator rf supply will have to be built. An alternate circuit for the -120 V line in the monitor is shown. The rf supply is fairly straightforward; C1 and L1 are resonant at approximately 15.750 kHz . Almost any horizontal output tube can be used for V3. For a 5FP7 only 4 kV is needed so the booster diode can be eliminated. If greater than 8 kV is needed for the CRT it may be necessary to put some inductance in (where the TV set's deflection coils were connected) to make up for not connecting the TV set's deflection coils, or if this doesn't help, a voltage doubler can be used. Just add another 2-turn link for the filament of the other rectifier.

The new voltage divider string for most magnetic deflection tubes is shown in Fig. 3 and needs no explanation. The $.01 \mu \mathrm{~F}$ capacitor is connected to the grid of V1 to supply vertical retrace blanking, and can be moved to the plate of V2 if more blanking is required. If this capacitor is connected to the grid of V1, a 600 V unit will do well; otherwise, a 3 kV unit will be needed because of the inductive kick of the deflection coil when the vertical sync pulse comes.

For focusing of the CRT a permanent magnet unit with a centering control would

be best. If an electronic focus is desired, the circuit in Fig. 4 can be used for most focus coils. Do not be tempted to connect this to the 250 V line since this is arrived at by a dropping resistor, and the changing current of the focus coil with adjustment will vary the 250 V line.

Fig. 4. Electronic focusing circuit.

As for the B+ power supply, remember it will have to supply an additional 160 mA for the deflection amplifiers so make sure the transformer can handle it. Also make sure the supply is filtered well enough so ripple doesn't appear.

If this type of deflection is wanted for a flying-spot scanner such as K7YZZ's ${ }^{4}$ it could be done by using the circuit in Fig. 5. I suggest that this cathode follower be used even if you are using an electrostatic tube. I encountered too great a voltage imbalance on my electrostatic deflection amplifiers to get them to operate linearly.

I would also suggest the use of a blue filter on the face of the CRT, if a P7 phosphor is used, such as "surprise pink"

HORIZONTAL DEFLECTION

Fig. 5. Modifications for using magnetic or electrostatic deflection on K7YZZ's flying-spot scanner.
(the surprise is that it's blue) or "steel blue." These gels can be bought for 40ϕ from a theatrical supply house.

Also, mount the photomultiplier tubes at least 4 or 5 in . away from the card and slightly on an angle as shown in Fig. 6. This is to reduce shading. If the PMT is going to look directly at the CRT, mount it at least 8 in. away to reduce parallax. In any case,

Digital

Frequency Meter

- Monitors your "transmitted" signal
- Measures Khz and Mhz
- Operates with any exciter-transmitter
(1 to 600 watts-up to 30 Mhz)
- Large-bright "Nixie" display
- 100 Hz Readout

FM-6 Kit \$139.50

Micro-Z Co.

Box 2426 Rolling Hills, Calif. 90274
make sure the boxes containing the CRT and PMT are light-tight. Paint the insides flat black and use felt or foam rubber to fill in any gaps in the wood joints.

Remember that in the monitor driven sweep is employed. Therefore, it will be necessary to be receiving an SSTV picture for a raster to be displayed. If a test tape is needed you can send me or most other hams on SSTV a 3 in. blank tape with the speed you wish it recorded at (3 and $3 / 4$ ips usually) and I will record you some pictures. (Also, if you require a tape of the three audio tones I can record that for you, but please include return postage.) I would also like to hear from other hams building SSTV or fast-scan TV equipment. If any difficulties in constructing this equipment are encountered feel free to write me.

I hope this article will help you get on SSTV with as little difficulty as possible. I would like to thank Doug (WB2UDF) and Bob Beach (WB2WRX) for their support on the project.

These deflection yokes are essentially identical even though their configurations differ. The square yoke is the older type. The round one, relatively modern, is manufactured for RCA.

Fig.6. Photomultiplier positioning and optical system layout.

References:

[^3]
better than the "Hot-Water 100" ...and a nickel cheaper

NEW
 Heathkit ${ }^{\circ}$ HW-101...

World's best low cost rig is now even better. The Hams at Heath have done it again ... by adding important new performance features to the famous HW-100 ... without adding to the price. That's Heathkit value ... and this is the rig...
Improved receiver circuitry now delivers 0.35 uV sensitivity for $10 \mathrm{~dB} \mathrm{~S}+\mathrm{N} / \mathrm{N}$.
Improved dial drive mechanism. New ball-bearing drive assembly provides a 36 to 1 knob to dial turning ratio ... delivers 34 velvet-smooth knob revolutions per 500 kHz band segment.
Front panel switch selection of SSB or CW filters. Now choose the built-in 2.1 kHz or optional 400 Hz filter with just a flip of a switch.
Plus all the features that made the " 100 " the world's most popular transceiver. Add it all up and you've got the new HW-101... a lot more rig for a little less money. From the Hams at Heath, of course.
Kit HW-101, 23 lbs. $\$ 249.95^{*}$
Kit HP-23A, AC supply, 19 lbs. \$51.95*
Kit HP-13A, DC supply, 7 lbs. \$69.95*
SBA-301-2, 400 Hz CW filter, 1 lb \$21.95*
SBA-100-1, mobile mount, 6 lbs. $\$ 14.15^{*}$
HW-101 SPECIFICATIONS - RECEIVER: Sensitivity: Less than 0.35 microvolt for 10 dB signal-plus-noise to noise ratio for SSB operation. SSB selectivity: 2.1 kHz minimum at 6 dB down; 7 kHz maximum at 60 dB down (3.395 MHz filter). CW selectivity: (with optional SBA-301-2 CW crystal filter installed); 400 Hz min. @ 6 dB down; 2.0
kHz max. @ 60 dB down. Input: Low impedance for unbalanced coaxial input. Output impedance: 8 ohm speaker, and high impedance headphone. Power output: 2 watts with less than 10% distortion. Spurious response: Image and IF rejection better than 50 dB . TRANSMITTER: DC power input: SSB, (A3J emission) 180 watt PEP (normal voice, continuous duty cycle). CW, (A1 emission) 170 watts (50% duty cycle). RF power output: 100 watts on 80 through 15 meters; 80 watts on 10 meters (50 ohm nonreactive load). Output impedance: 50 ohm to 75 ohm with less than $2: 1$ SWR. Oscillator feed-through or mixer products: 55 dB below rated output. Harmonic radiation: 45 dB below rated output. Transmit-receive operation: SSB: PTT or VOX. CW: Provided by operating VOX from a keyed tone, using grid-block keying. CW side-tone: Internally switched to speaker or headphone in CW mode. Approximately 1000 Hz tone. Micraphone input: High impedance with a rating of -45 to -55 dB . Carrier suppression: 45 dB down from single-tone output. Unwanted sideband suppression: 45 dB down from single-tone output at 1000 Hz reference. Third order distortion: 30 dB down from twotone output. RF compression (TALC*): 10 dB or greater at .1 mA final grid current. GENERAL: Frequency coverage: 3.5 to $4.0 ; 7.0$ to $7.3 ; 14.0$ to $14.5 ; 21.0$ to $21.5 ; 28.0$ to 28.5 ; 28.5 to $29.0 ; 29.0$ to $29.5 ; 29.5$ to 30.0 (megahertz). Frequency stability: Less than 100 hertz per hour after 30 minutes warmup from normal ambient conditions. Less than 100 Hz for $\pm 10 \%$ line voltage variations. Modes of operation: Selectable upper or lower sideband (suppressed carrier) and CW. Dial calibration: 5 kHz . Calibration: 100 kHz crystal. Audio frequency response: 350 to 2450 Hz . Transistors: MPF105 FET-VFO; 2N3393Voltage regulator. Rear apron connections: CW Key jack; 8 ohm output; ALC input; Power and accessory plug; RF output; Spare. Power requirements: 700 to 850 volts at 250 mA with 1% maximum ripple; 300 volts at 150 mA with . 05% maximum ripple; -115 volts at 10 mA with $.5 \%$ maximum ripple; 12 volts AC/DC at 4.76 amps. Cabinet dimensions: $1413 / 11^{\prime \prime} \mathrm{W} \times 65 / 16^{\prime \prime} \mathrm{H} \times 133 / 8^{\prime \prime} \mathrm{D}$.
*Triple Action Level Control ${ }^{\text {IM }}$

FREE '71 CATALOG

Describes these and over 300 other Heathkits. Save up to 50% by building them yourself. Use coupon and send for your FREE copy!
\qquad

HEATH COMPANY, Dept. 11-2
Benton Harbor, Michigan 49022

Schlumberger company \square Enclosed is \$ \qquad plus shipping.
Please send model (s)
\square Please send FREE Heathkit Catalog.
Name \qquad
Address
City \qquad Zip \qquad Prices \& specifications subject to change without notice. *Mail order prices; F.O.B. factory.

Solid-State QRP Projects

by EDWARD M. NOLL, W3FQJ. Building QRP equipment offers the ham a wonderful opportunity to gain familiarity with solid-state technology, since these rigs include transistors and/or integrated circuits. The low-cost units described have power ratings from less than 100 milliwatts up to about 20 watts; both cw and phone rigs are included. Order 24024, only.
$\$ 4.25$

Semiconductor Amateur Projects

by LOUIS M. Dezettel, w5REz. For the ham who still takes pride in using his hands and head, here are projects for 16 useful, moneysaving accessories, using easy-to-build semiconductor circuitry. Units are for measuring equipment, adding power and convenience, converters, etc.
Order 24025, only
\$4.95

73 Dipole and Long-Wire Antennas

by EDWARD M. NOLL, W3FQJ. Includes dimensions, configurations, and detailed construction data for 73 different types of wire antennas. Appendices describe construction of noise bridges, line tuners, and data on measuring resonant frequency, velocity factor, and SWR. Order 24006, only
$\$ 4.50$

73 Vertical, Beam, and Triangle Antennas

by EDWARD M. NOLL, W3FQJ. Describes the design and construction of 73 different antennas used by amateurs. Each has actually been built and air-tested by the author. Appendices cover construction of noise bridges and antenna line tuners, as well as measurement methods. Order 24021, only.
\$4.95

Electronics for the Amateur

by LOUIS M. DEZETTEL, W5REZ. Written specifically for the amateur, this book clearly discusses radio-wave propagation as it applies to amateur band frequencies, reception and transmission pertaining to ham equipment, and the special field of antennas and how to feed them. Contains all the information required to pass the theory sections of the FCC exams. Order 24022, only . . $\$ 7.95$

18th Edition of the famous E\&E RADIO HANDBOOK

by william I. Orr. w6sai. Completely updated edition of the famous communications book that is the electronics industry standard for engineers, technicians, and advanced amateurs. Explains in authoritative detail how to design and build all types of radiocommunications equipment. Includes ssb design and equipment, RTTY circuits, latest semiconductor circuits, IC's, and special circuitry. Order 24020, only
$\$ 13.50$

Radio Amateur's F-M Repeater Handbook

by ken sessions, Jr., K6mvh. The definitive work on the vital and virtually undocumented subject of amateur f-m repeaters. Chapters include: Preparing and obtaining sites for repeaters; How to build a repeater; and Repeater applications. Includes an $\mathrm{f}-\mathrm{m}$ repeater directory. Order 24008, only
\$6.95

Amateur Tests and Measurements

by Louis m. Dezettel, w5rez. Shows how to accomplish virtually all performance tests on amateur transmitters, receivers, and antennas, and how to make required adjustments. Order 24007, only
$\$ 5.50$

Ham and CB Antenna Dimension Charts

by edward m. noll, w3FqJ. Tabulates dimension data in feet and inches for all the popular antenna configurations. Charts are so subdivided that an antenna can be dimensioned for a specific frequency range according to license class and mode of operation. Order 24023, only
$\$ 1.95$
Order from your electronic parts distributor or send coupon below.

EDITORS and ENGINEERS

Howard W. Sams \& Co., Inc., Dept. 73-2

4300 W. 62nd St., Indianapolis, Ind. 46268
Send me the following books: Nos.
\square Send Free 1971 Sams Book Catalog
Name
PLEASE PRINT
Address
City
ty _State__Zip

BUID AN 8 TRANSISTOR

 CODF OScillisior WITH UUST 1 ICAcode practice oscillator is practically always a simple affair. But with a good IC, such as Motorola's HEP 570, the project can be made even simpler while the circuitry itself - within the integrated circuit - stays complex enough to assure plenty of audio gain, good stability, and excellent quality of tone.

The oscillator described here was designed by experts at Motorola, who allowed for four "discrete" stages, each with a two-transistor capability, within the framework of the lone flatpack IC package. One of the nicest features of the HEP 570 as the oscillator element is its economy of external parts. Apart from the power switch, the telegraph key, the speaker, and the battery, the only additional components required are two resistors, a pot, and three capacitors. What could be simpler?

Construction is as simple as the schematic (Fig. 1) makes it seem. One item not shown on the schematic, however, could make the job easier and save the insecure builder a great deal of grief: a
suitable socket for the IC. An advantage of using IC sockets is that if all does not go well right off, the IC remains isolated from the rest of the circuit while changes are incorporated. Also, most hams use their ICs again and again, for any number of appropriate projects. Soldering of an IC directly into a circuit will seriously curtail its universal utility. The package can't stand too many solder/unsolder operations before the leads give out. But with a socket, the IC stays like new and may be used in as many projects as the builder has sockets for. And changing the IC from one project to another is no more difficult than making a tube change in an old-fashioned rig.

Your junkbox will undoubtedly yield the resistors and capacitors necessary to complete the oscillator project, but it is unlikely that you'll find the right speaker kicking around the shack. Since the output of the amplifier/oscillator is in the vicinity of 50Ω, a standard "intercom-type" speaker is required. If the expense of such a speaker proves a bit much, there are

Fig. 1. Schematic of the "8-transistor" code practice oscillator made with a Motorla HEP 570 IC.

Fig. 2. If the distance between operating stations is held down to a reasonable value a CW intercom setup can be made with two or more code oscillators. If you've got kids in the family who can't find time to practice their code for the Novice exam, this arrangement is sure to turn the trick.
other routes that might prove entirely satisfactory, such as scrounging up matching transformers that can be used to drive either a speaker or an external amplifier arrangement.

One method that has proved adequate is to use an ordinary low-voltage power transformer to couple from the IC to the speaker. A transformer with a primary winding of 120 V and a secondary of 12 V provides a reasonable approximation of the proper turns ratio, and will deliver a fairly healthy audio signal to a 3.2Ω voice coil. Since power-handling capability is no consideration, you can use the smallest physical size of transformer you can get your hands on. The only disadvantage with this approach is that it plays hob with any attempt toward miniaturization.

A small chunk of perforated board makes an ideal mounting bed. If the small intercom speaker is in your list of "availables," you can easily mount the whole affair in an enclosure no larger than a tiny portable radio. If you have to use
the power transformer, you'll have to just poke around for a chassis with enough bulk to accommodate everything.

An obvious "extra" that will enhance the usefulness and attractiveness of your oscillator are matching jack and plug for the sending key. This will also simplify the use of another code oscillator for two-way operation.

To couple a pair of code oscillators for two-way use, it is better to parallel the keys rather than the speakers themselves. This approach keeps each unit from the labor of driving more than its fair share of the load. Figure 2 illustrates an excellent room-to-room interconnect method that has already been used to bring two new Novices to the bands. (Learning the code is fun if there is some incentive to study; and a room-to-room CW intercom will work wonders with harmonics who might otherwise be reluctant to practice.)

Motorola HEP Semiconductor Devices

NEW FUNCTIONAL ICs

C6004 1-W Audio Power Amp. . . $\$ 2.60$ C6005 2-W Audio Power Amp . . . $\$ 4.35$ C6006 4-W Audio Power Amp. . . $\$ 5.60$ C6010 W'band Amp-RF-IF-Audio \$1.59 C6001 FM IF Diff. Amp \$2.09

Popular HEP-590 High Freq. Amp. for RF-IF-Mixers Direct Conversion RcvrBalanced Modulator-Product Detector-VFO-etc.
$\$ 3.99$

DIGITAL INTEGRATED CIRCUITS
HEP-556 MECL 3-input Gate . . $\$ 1.79$ HEP-558 MECL J-K Flip-Flop . . $\$ 2.39$ HEP-580 RTL Dual 2-input gate ... 95 HEP-582 RTL Dual Buffer 99 HEP-583 RTL J-K Flip-Flop . . . $\$ 1.49$

NEW TTL INTEGRATED CIRCUITS

C3000P Quad 2-input NAND Gate $\$ 1.82$ C3002P Quad 2-input NOR Gate . . $\$ 2.10$ C3020P Dual 4 -input NAND Gate. $\$ 1.82$ C3041P BCD to DEC Decoder. . . $\$ 9.50$ C3050P AND-OR-INVERT Gate. . $\$ 1.85$ C3073P Dual J-K Flip-Flop. \$3.90
HEP-56 SILICON NPN HIGH
FREQUENCY TRANSISTOR
great for VHF/UHF RFIF Amps-
Mixers-Oscillators up to 700 MHz
BV ${ }_{\text {cbo }} 30 \mathrm{~V}, \mathrm{I}_{\mathrm{c}} 100 \mathrm{~mA} \ldots \ldots \ldots . . \$ 1.44$

SILICON TRANṠISTORS HEP-50 NPN 100 MHz HEP-52 PNP 100 MHz 95

SILICON RF POWER
HEP-75 NON 1WPo@ 175 MHz . $\$ 2.95$ S3001 NPN 5W Po @ 175 MHz .. $\$ 3.75$
S3008 NPN 1.5W Po @ $200 \mathrm{MHz} \$ 2.18$ JUNCTION FETS
$\begin{array}{ll}\text { HEP-802 } & \text { N-channel RF........ } \$ 1.59 \\ \text { HEP-801 } & \text { N-channel Audio } \$ 1.59\end{array}$ DUAL-GATE FETS
F2004 VHF RF Amp-Mixer $\$ 2.50$ F2007 VHF RF Amp-Mixer; Diode Protected LOWNOISE 2.6 dB @ $200 \mathrm{MHz} \$ 1.65$

HEK-3 RADIO AMATEUR KIT Contains (2) HEP-590, (1) HEP-570 plus book with 10 Ham Projects. $\$ 5.95$

HEK-2 FET EXPERIMENTERS KIT Contains HEP-801, HEP-802, HEP 50, Hep-51 and Instructions for 9 Projects.

FREE PROJECT BOOKLETS

 HMA-32 IC ProjectsHMA-33 FET Projects HMA-36 Ham Projects
HMA-37 Handyman Projects
Send self-addressed stamped envelope for free project booklets . . or request with your HEP order

HEP BOOKS

HEP-400 Solid State Projects . . 50
HEP-407 IC Projects $\$ 1.00$
HEP-408 FET Projects \$1.00
HEP-414 Power Circuits Book\$2.00

WE CAN SUPPLY ANY HEP DEVICE

PLEASE INCLUDE 25d FOR POSTAGE WITH ORDER

CIRCUIT

SPECIALISTS CO.
BOX 3047
SCOTTSDALE, AZ. 85257
FACTORY AUTHORIZED HEP DISTRIBUTOR

Thousands of Parts

E ELECTRONIC PARTS \& EQUIPMENTS S See us U Builders for Bargains (no fliers) DOW TRADING CO. INC.

1829 E. Huntington Drive
Duarte CA 91010 - 213-357-3763

Peter J. Bertini KlZJH
257 Elm Street
Windsor Locks CT 06096

THE

㴻

BEEP

Meet the Beeper! A small transmitter, a light flasher circuit and a multivibrator combined into one integral unit. The Beeper's unique circuitry utilizes eight transistors to send out a tone-modulated six
meter signal to any nearby receiver. Interested in how the Beeper can be used?

The Beeper is ideal for hidden transmitter hunts, since its off-on transmitting cycle adds to the difficulty of getting a fix on the

Fig. 1. Schematic for the Beeper. All resistors are $1 / 2$ watt.
see the Mannfor the best in USED FMcommunications equipment
Two-Way FM Units • Walkies • Repeaters Mobile Phone • Bases • Mobiles
Here are some of the great buys at Mann..
MOTOROLA MODELS
T51GGV 6 Meter mobile unit with accessories, 60W transmitter, 6/12V vibrator powered in $15^{\prime \prime}$ housing. 85
T41GGV 6 Meter mobile unit with accessories, 30W transmitter, 6/12V vibrator powered in 10" housing. \$ 64
T43GGV 2 Meter mobile unit with accessories, 30W transmitter, 6/12V vibrator powered in 10" housing. 99
X53GAD 2 Meter mobile unit with accessories, 2 separate 60W transmitters with single rcvr 6/12V Dynamotor 20" case. 69
U44BBT 450 MHz mobile unit with accessories, 18 W transmitter, 12 V transistor powered in 10" housing. \$119GE MODELS
MA/E 42450 MHz mobile unit with accessories, 18 W transmitter, $6 / 12 \mathrm{~V}$ vibrator powered in 14" housing. \$ 99
MT 42 450 MHz mobile unit with accessories, 18 W transmitter, 12 V transistor powered in 14" housing. \$125RCA MODEL
CPC R2A Personal Fone portable receiver complete with schematic diagram. \$ 15
WRITE FOR FREE CATALOG

Mann Guarantee

Money refunded without question if equipment is returned within seven days from shipment, undamaged, freight prepaid.

Conditions of Sale

Unless otherwise specified, equipment is used, and is sold as-is. All items shipped FOB Tarzana, California. Crystals, ovens, FOB Tarzana, California. Crystals, ovens, antennas not included unless specifically
stated in catalog. All equipment is sold on a first-come, first-served basis.
P.O. Box 138, 18669 Ventura Blvd., Tarzana, Calif. 91356
hidden unit. Amateur rocketeers should find this circuit ideal for use in larger-sized rockets. A miniaturized Beeper located in the nose-cone of a downed, lost rocket would aid greatly in finding it.

The Beeper emits a tone-modulated six meter carrier which cycles off and on. The heart of the unit is the transmitter which consists of a 2 N 706 overtone oscillator followed by a 2 N 708 amplifier. The transistors used in the transmitter are not critical. Literally any NPN rf transistor can be used with good results. I tried an epoxy transistor from a scrapped uhf tuner in the final. The output increased 25%. The output is normally 100 milliwatts or better.

Even though the duty cycle on the transistors is light in the Beeper due to the rf cycling, the transistors do get quite warm if the flasher circuit is jumped out of the circuit. In any case, a simple heatsink can be made for the amplifier with a pair of tin snips and some aluminum stripping. The crystal oscillator uses a 50.385 MHz overtone crystal. I was able to get several from a surplus crystal outlet for $\$ 1.60$ each. The crystal I used doesn't use a socket, but is wired into the circuit. Leave at least $1 / 2$ inch of wire on each lead and use heat sinks when soldering. Excessive heat will ruin these crystals and an ounce of care may save you $\$ 1.60$ plus postage. Sockets were used for the transistors in my unit since I wanted to try the several kinds I had on hand to find which would give the best results.

The modulator is a multivibrator coupled into the base of the 2 N 706 oscillator. The modulation was judged to be in the neighborhood of 75%. Unfortunately, I was unable to get enough rf to give a readable pattern on a scope. However, if the signal is strong enough to move the S-meter, it can be heard.

Both the multivibrator and the transmitter derive their operating voltage from the output of a light flasher circuit developed by RCA. The flasher circuit consists of transistors Q1, Q2, Q3, Q4, and their associated parts. Notice that while the flasher circuit uses PNP transistors, the transmitter and modulator use NPN's. Since the output of the flasher is negative, the flasher must break the negative ground return of the
modulator and transmitter. The rate of the flasher can be changed by adjusting the values of C1 and C2 until the desired rate is found. An increase in capacitance will increase the time interval between beeps. The length of the beep itself may be changed by changing the value of C 2 . If you desire to vary the tone of the beep, changing the values of C4 and C5 will do the trick. A word of caution-multivibrators are inherently rich in harmonics and, if you are not careful, you can get a pretty wide carrier out of the Beeper. With the values shown, the Beeper will be modulated by a tone of about .5 kHz with a bandwidth of less than 25 kHz . Transformer T1 tends to limit the high frequency response eliminating serious spurious sidebands.

The prototype was constructed on a springboard to aid in designing and part substitution. The finished unit was built on a small piece of Vectorboard. Care should be taken to provide a good ground for the transmitter stages. They are slightly regenerative and poor grounding may set up a feedback loop. The best way to build the unit would be for the more industrious ham to make his own circuit board. Since most of us are weekend experimenters this approach may not be too practical.

To facilitate tuning up the transmitter, the flasher circuit should be bypassed. Connect a number 47 pilot light to the rf output jack; this will serve as a dummy load and rf indicator. For the initial tuning, no more than 9 V should be used. First tune the oscillator (C10) for maximum as indicated on a nearby receiver, grid dipper (in the wavemeter mode), or a sensitive field strength meter. As you increase the capacitance, the output will become greater and then suddenly quit. Check this on a receiver, as the oscillator may break into spurious oscillation. When the point is found where the output is greatest, turn the capacitor back $1 / 8$ turn; this will insure that the oscillator will start after the voltage is removed and turned on again.

After the oscillator is tuned, proceed to adjust C 8 and C 9 for maximum output as indicated on the 47 bulb. The final tuning may interact with the oscillator so you may have to adjust both until you get the desired
results. The transmitter adjustments may affect the quality of the modulation, so listen to the signal on a receiver to make sure everything is to your satisfaction. Now connect the flasher circuit. The Beeper should start to beep off and on. If it doesn't, check the flasher output with a voltmeter; if it is okay, chances are that the oscillator is not breaking into oscillation. Readjust C10 if this is the case.

When the Beeper is connected to a 12 V volt power source, there should be enough rf present to light the 47 pilot lamp to half brilliance. My Beeper will operate with less than a volt. Don't be tempted to increase the voltage to gain more output. The unit draws 20 mA when it is not transmitting and about 150 mA while transmitting.

Never operate the Beeper without some form of load, and try to provide as good a match as possible. The modulation quality seems to be directly related to the quality of the antenna used, and a good antenna is also cheap transistor insurance. Generally, the transmitter will not have to be retuned after the initial settings are made, and the final tuning is quite broad. A quarter wavelength of wire will radiate a signal over several miles of open terrain. I was able to receive the signal two miles away from the Beeper with a Lafayette HA-650 portable transceiver using the whip antenna supplied with the HA-650. With the same setup and using the S-meter on the HA-650, I was able to locate the Beeper within a few feet of where it was hidden by a friend.

The Beeper can be put together in a few evenings. Most of the parts used are not critical, and it should be easy to find substitutes for most of them. The UTC transformer which I specified for use in the modulator may be difficult to find. If one is not available, almost any high impedance interstage transformer will work satisfactorily. If you desire, the flasher circuit and/or the modulator can be eliminated from the Beeper.

The Beeper does its job well, and it can provide its owner with many hours of fun. Why not build one and then get the local six meter group together for an old fashioned transmitter hunt? Happy Beeping!

K1ZJH

VSWR
 GUARANTEE of 1.5/1 or better

Celebrating Our 25th Year! Mosley Electronics, Inc. takes pride in introducing an Anniver-sary-Special . . . The new "RodeMaster" ${ }^{\text {, }}$ featuring a GUARANTEE of an adjustable VSWR of 1.5/1 or better at any given frequency on each band.

Designed for the economy-Minded Ham, the new "Rode-Master" offers a choice of $6,10,15,20$, $40,75 \& /$ or 80 meters. The upper telescoping Whip section doubles as a 6 -meter antenna completely adjustable for the entire band. You select from five new precision wound 400 Watt Coils for $10,15,20,40$ and $75 / 80$ meter operation.
Other Special Features:
Bumper or trunk mounting option . . . Guying device for frequency stability at highway speeds . . . Break-over (hinge) to lower antenna . . . Rotate antenna 360° in the break-over position. A convenience for easy coil insertion, whip adjustments etc. . . . DX Matching Network: Small, simple to install and operate. The real reason why Mosley can Guarantee an adjustable VSWR of $1.5 / 1$ or better.
Free QSO Index with the purchase of a complete "Rode-Master" antenna system. Get all the facts, See your Mosley dealer or write Dept. 206.

put Sifygur signal min a sill sifle PAV POWHR ALTMIFIAR

Model CS 250 $\$ 11950$

An rf sensor kicks in the amplifier when you press the-mike button. When you release the mike button the amplifier drops out of the circuit, comecting the antenna direct to the transceiver.

A snap to install. Just connect 12 V and an antenna and run a short 50Ω line between the amplifier and your FM transceiver. That's it!

Don't take our word for it . . . measure it yourself!
There is no antenna made that will give you more omnidirectional gain on 2 meters!
The COM-SPEC 129 is a proprietary design that promises you no less than 9 dB gain over an isotropic radiator in the middle of the FM band... an efficient design that gives you more gain-to-mass ratio than any other antenna ever developed anywhere.

BROADBAND-

Without tuning, adjusting, matching, the COM-SPEC 129 will give you a low vswr over the range of frequencies from 146 to 147 MHz .

SMALL-

The COM-SPEC 129's unique and efficient radiation characteristic will turn a 50 W signal into an effective radiated power of $400 \mathrm{~W} .$. yet the antenna is only 12 ft in length from end to end.

PUTS THE SIGNAL WHERE YOU WANT IT!

The 129 wastes no rf power by pumping it high into the air. The 129 packs it up, compresses it into a flat "wheel" pattern, and sends it on its way...straight out along the horizon in all directions, with a vertical beamwidth of just over 7 degrees.

RUGGED-

You'll not find a better built antenna. The 129 is sturdy, yet flexible. . .constructed of soft-sealed fiber glass. . . and built to take ice, snow, heat of the summer sun, and winds of hurricane force. For a repeater? You bet! For isolated mountaintops, the COM-SPEC 129 has

\$10950

 no equal!

73 Hollis Street, East Pepperell, Mass. 01437

STUDY GUIDE
 GENETMAL
 CLASs LICENSES

Part vi Gazintas and Gazoutas

By now it should be obvious that in this wacky world of electronics and ham radio, everything depends upon everything else - which makes it most difficult to name a single component as "the cornerstone" on which the whole setup rests.

But were it necessary to do so, the amplifier would be a prominent candidate for the position. Without amplifiers, neither radio nor any other application of electronics as we know them today could exist. Amplifiers are an essential ingredient of every oscillator, of every transmitter, and of every receiver, and in their absence we could expect little more performance than Marconi achieved seven decades back.

Because amplifiers are so essential, a number of questions on the General class examination are intended to test the applicant's knowledge of them, and many others which do not deal on the surface with amplifiers as such nevertheless require a knowledge of amplifier principles to answer.

In this chapter, we're going to discuss amplifiers, and cover the study list questions which deal directly with this subject.

Questions dealt with are:
20. What are some possible causes of excessive plate current in a class C power amplifier?
45. List the three main classes of amplifier operation and explain the use for which each class is best suited.
47. What is meant by "flat-topping" of a single sideband signal and what are some possible causes of it?
48. What does grid current flow in a class A amplifier indicate?

As usual, rather than dealing with these questions specifically, we'll rephrase them into more general ones.

For a start, let's ask "What is an amplifier?" This basic knowledge will be necessary in order to classify amplifiers into the three main classes.

We can continue by asking "How are amplifiers classified?" This is not just a rewording of question 45 , because a number of classification techniques exist, one of which has only two main classes (and which makes more sense in general than the conventional approach, though it's not the answer the FCC expects).

Once we know what we're talking about and how they are classified, we can wind up the discussion on a more practical note with "How and why do amplifiers misbehave?" In getting answers to this, we'll cover most of the more common types of problems encountered,- but we hasten to point out that it's impossible to cover all the problems, because many are highly improbable and so occur at such extended intervals that no one person could hope to list "all" the possible troubles with amplifiers. Fortunately, a solid knowledge of basic principles goes a long way toward helping cure these "rare diseases" of the circuits.

What Is An Amplifier?
Several acres of paper could be (and probably have been) covered with words in unsuccessful attempts to provide detailed answers to the question "What is an amplifier?" It gets complicated because an amplifier need not contain either tubes or transistors (although most of those you're likely to meet in amateur radio and particularly in the FCC exams do), and for that matter need not even be an electronic device!

For instance, one of the simplest imaginable amplifiers of mechanical force is a lever, or pry-bar. Our amplifiers are, in some ways, merely the electronic equivalent of levers.

In electronics, though, the range is a bit more limited, and we can define an amplifier in general as a circuit which increases the power level of an electrical signal. Most such amplifiers have at least two "ports" or sets of terminals, one for "input" and the other for "output" - and thence comes the possibly puzzling title of this installment, because some technicians with a high disregard for engineeringese like to refer to these ports as the "goes into" and "goes out of," slurring the words to "gazinta" and "gazouta."

As we've defined it here, then, an amplifier is a device with an input and an output port (Fig. 1), and any signal fed into the input will appear at higher power level at the output. This definition isn't really tight enough to get through engineering courses with, but it's good enough for everyday use.

Fig. 1. Any amplifier can be considered to be a black box with two ports, one for input and the other for output. Amplitude of signal applied to input is changed by amplifier as signal passes through to output.

AT LAST
 A SPEECH COMPRESSOR THAT REALIY WORKS

- Low distortion circuit
- $5-10 \mathrm{~dB}$ improvement in TALK POWER
- Fully wired \& tested not a kit
- Several models to choose from
- Works with phone patch

- Quality construction includes Silicon transistors, FETs, Glass circuit boards
- FULL WARRANTY - ONE YEAR
- Performance second to none
- INTRODUCTORY LOW PRICES \$22.50 - \$34.95
(Illinois residents add 5\% Sales Tax)
-Write for specifications and information sheets (FREE)
Demonstration Tape cassette available (\$2.00 deposit)

\mathbf{R}_{p} ELECTRONICS BOX 1201B CHAMPAIGN, ILL. 61820

It leads, naturally enough, to another question, though. If an amplifier boosts the power of a signal, then what, pray tell, is a "signal"? As we use the term throughout this study course, a signal is a sequence of electrical power levels which, by their variation, carry some sort of information. This information may be the mere fact that the signal is present (as in a power signal), or it may be as complex as a composite video/audio TV broadcast signal.

The reason we define signals as "sequences of power levels" rather than in terms of "voltage" or "current" variations is that voltage and current have little significance of their own when we speak of signals - only the combination of voltage and current (or power) is meaningful. For instance, a simple transformer can double the voltage present in a circuit, but it doesn't change the power level much, and the change it does introduce is loss rather than gain. Therefore a transformer is not an amplifier.

The only types of amplifiers we'll be
going into much detail about here are those which employ vacuum tubes or transistors as their "active devices" or amplifying elements, although other kinds are possible. Some of these other kinds include magnetic amplifiers, which change the coupling in special kinds of transformers, and diode amplifiers, which make use of special properties of certain special kinds of diodes. The common types, though, use tubes or transistors, and since those are the ones covered on the FCC exams, they're the ones we'll concentrate upon in this course.

In these amplifiers, the "power" characteristic of a signal which we mentioned a few lines back is of critical importance, since almost all common amplifier circuits make use of their active devices as variable resistances which "valve" steady new power from a power supply into the output circuit, under control of the input signal. We've already examined this action in vacuum tubes and in transistors. The only new point we're making now is that this variable-resistance property of the device is the normal situation in most practical amplifier circuits you're likely to run across.

As we saw much earlier, the relationship between voltage and current at any one point in a circuit may be described in terms of resistance or, more generally, impedance. Since most practical amplifiers operate with ac signals, "impedance" is the way it's specified. The characteristics of an amplifier's ports are usually described in terms of their impedance level, and either the voltage, current, or power to be applied there. With impedance specified, voltage, current, and power are virtually interchangeable units, since the current or the power may be calculated if voltage and impedance are known, and similarly voltage may be calculated if current or power and impedance are known.

This specification is usually given in terms of the maximum signal level, and it's not at all uncommon to find an amplifier's input rated in voltage/impedance while the output is rated in watts. Many hi-fi rigs, for instance, are rated for a maximum 50W
out at 16Ω, and maximum 0.5 V in at 500 $\mathrm{k} \Omega$. These port ratings are important, but they do not normally tell us much about the amplifier's performance. Performance of an amplifier is usually described in terms of gain and distortion, but this may vary depending upon the use to which the amplifier is to be put.

The gain may be given either in decibels, or as a ratio, so that it becomes difficult to compare amplifier ratings. A typical rf linear amplifier might be rated for 10 dB gain, input and output impedances of 52Ω, and require 100 W input for maximum output. Such an amplifier would produce 1 kW output (10 dB gain with input of 100W). A hi-fi rig, on the other hand, might completely neglect to mention gain and merely give output and input levels together with distortion percentages.

Regardless of ratings, any normal amplifier operates by regulating the flow of current in its output circuit. If the amplifier is intended for use as a voltage amplifier (one in which the power gain is used to step up the signal voltage rather than signal

Fig. 2. Most common amplifier output coupling circuit at audio frequencies is resistance-coupled version shown here. Lower capacitor is not obvious on most schematics since it is called a bypass capacitor, but it serves the purpose of taking output as voltage drop across load resistor.
current), the resulting variations in output current flow are converted back into voltage variations by means of a coupling device which may be a transformer, a resistance, or an impedance. Most of today's amplifiers use resistance coupling (Fig. 2); as the current through a resistor in series with the active device varies, so does the voltage drop across that resistor. This

FM 2 Meter UHF 6 Meter GENERAL ELECTRIC . . . RCA . . . MOTOROLA

When it comes to great used mobile communications equipment, we wrote "the book". . . Send for a free copy of "the book" (our new catalog).

Here are only a few of our LOW PRICES:
 2 METERS

GENERAL ELECTRIC MA/E33 6 or 12 volts, 30 watts
Vibrator Power Supply with accessories
$\$ 148.00$
MOTOROLA X43GGV, New Low Price, Special Model in 10" case, 30 watt, transmitter narrow band, receiver wide band, vibrator powered, 2 freq. transmitter, and transistor powered 2 freq. "Private Line" receiver (single squelch), less reeds, complete accessories \$108. In quantities of ten \$88.

6 METERS

MOTOROLA FMTR140D, 6 or 12 volts, 60 watt, wide band.
Dynamotor Power Supply
Transmitter Narrow Band $\$ 58$.
Fully Narrow Band $\$ 68$.
complete with accessories (less accessories deduct \$15)
GENERAL ELECTRIC PRE-PROGRESS 4ER6 RECEIVER, ET5 OR ET6 TRANSMITTER
30 or 60 watts (as available), 6 or 12 volts, including all accessories \$28.

UHF

MOTOROLA... T44A6A with accessories $\$ 38$.
T44AAV with accessories $\$ 48$.
RCA CMU15A... 15 watts, minus accessories $\$ 18$.

For Your Convenience SCHEMATIC DIGESTS. (Post Paid)
G.E. SCHEMATIC OUTLINE AND INTERCONNECTION DIAGRAMS FOR GE 2-WAY FM RADIOS.
Vol. 1 Pre-Progress Line ('49-'55) $25-50 \mathrm{MHz} 72-76 \mathrm{MHz}$ Vol. 2 Pre-Progress Line ('49 - '55)
$150-170,405-425 \mathrm{MHz}, 450-570 \mathrm{MHz}$ \qquad each volume $\$ 4.50$ MOTOROLA FM SCHEMATIC DIGEST revised edition to 1960 $\$ 6.50$
varying voltage drop is coupled out through a capacitor (to isolate the dc component of the signal) to the output port.

With transformer coupling (Fig. 3) the active device's operating current is supplied through the primary of a transformer. As this current varies, the changes induce corresponding current in the transformer secondary, which is connected to the output port.

Fig. 3. Transformer-coupled circuit shown here is sometimes used in audio amplifiers, and often employed at rf where tuned tank circuits form the transformer. Transformer can produce highest efficiency of all coupling circuits, but is more costly than a resistor and two capacitors.

Resistance coupling is normally inherently high-impedance, although certain special circuits can bring the impedance level down to low levels. Transformer coupling, on the other hand, seldom produces extremely high impedance levels. It is used primarily to produce medium- to low-impedance ports, as for instance in the output circuit of a vacuum-tube hi-fi unit where the tubes' current must drive a 16Ω load. Rf amplifiers often use transformer coupling because an rf transformer can be composed of tuned circuits for selectivity; sometimes they use impedance coupling (Fig. 4) which is similar to resistance coupling except that an rf choke (inductor) replaces the resistor.

As you can see, amplifiers operate in many different ways, even though their basic principles are all similar. Because of

Fig. 4. Impedance-coupled circuit shown here is cross between transformer and resistance coupling. Ac output signal sees high impedance at choke, and capacitors couple out the resulting voltage drop. Tube's dc power, however, is not restricted.
this, it's been found necessary to classify amplifiers into various types for study and discussion. Many classification schemes are in use, and some of them are so widely accepted that they are part of the FCC examinations.

How Are Amplifiers Classified?

Just as we have many kinds of amplifiers, we have many kinds of amplifier classifications, because amplifiers are classified into groups, each of which has some character or property in common.

We finally restricted our definition of amplifier, for this chapter at least, to "a vacuum-tube or transistor device which boosts the power of its input signal" and that in itself was a classification.

Within this classification, we could describe amplifiers according to their output coupling circuit. This would produce classifications such as "resistance-coupled," "transformer-coupled," and "impedancecoupled," which we were using only a few paragraphs back.

Another way would be on the basis of the frequency range handled by the amplifier: audio, video, rf, i-f, dc, etc.

We could divide them into voltage amplifiers, in which the power boost shows up as increased voltage with no decrease in current, and power amplifiers, in which the power boost is used directly.

All of these classifications are in wide use, but none of them attack the problems
of amplifier operating conditions directly. Thus, an rf power amplifier may be linear, or it may produce distortion, and these classifications will not help us determine why it acts as it does. To handle such needs, we must have a classification system which is based upon operating conditions - and one exists in an almost universally standard form.

Unfortunately from our point of view, one authority defines these classes in a manner which is significantly different from the definitions agreed upon by most other authorities - and most hams have learned the classes from the one unique authority. This leads to an inordinate amount of confusion, disagreement, and downright unpleasantness at times. The best way to avoid this trap is to become familiar with both sets of definitions, and to know that two different sets exist; then you can pick your set according to the other fellow's rules, and discuss theory freely.

Incidentally, the key differences between the two sets of definitions do not appear in the FCC study-list questions, so they should pose no problems during the . actual examination.

The classification system of which we speak divides all amplifiers into three broad classes, called "class A," "class B," and "class C" (Fig. 5), and goes on to define an overlap group called "class $A B$," which is a twilight zone between class A and class B.

The definitions published by engineering societies the world over, as cited in Terman's monumental text on Electronic and Radio Engineering, in the third and fourth editions of Reference Data for Radio Engineers, in Langford-Smith's Radiotron Designer's Handbook, and in Eastman's Fundamentals of Vacuum Tubes, are as follows:

Fig. 5. Comparison of class A, class B, and class C operating characteristics is shown here for "ideal" amplifiers having perfectly linear characteristics across limited range. Diagonal line represents amplifier's action. Vertical lines indicate grid bias setting of amplifier; in class A, bias splits the operating range in half, while in class B only the positive-going half of the input signal is amplified, and in class C only a part of the positive-going half makes it through. No actual amplifier has such a straight characteristic, but this illustrates the differences in the classifications.
"A class A amplifier is an amplifier in which the operating conditions are such that plate current in a specific tube flows at all times.
"A class B amplifier is an amplifier in which the grid bias is approximately equal to the cutoff value so that the plate current is approximately zero when no input signal is applied, and plate current in a specific tube flows for approximately one-half of each cycle when input signal is applied.
"A class C amplifier is an amplifier in which operating conditions are such that plate current in a specific tube flows for appreciably less than one-half of each cycle when input signal is applied and plate current is zero in the absence of input signal.
"A class AB amplifier is an amplifier in which operating conditions are such that plate current in a specific tube flows for appreciably more than half but less than the entire electrical cycle of the input signal."

We'll look at these definitions in much more detail shortly. First, however, let's

WarOnPoverty!

You can help fight a really serious poverty pocket in New Hampshire by sending in your subscription today to 73 . Not only will this give you the warm feeling deep inside knowing that you have helped someone in need, but it will also bring you bounteous blessings.

1. You will save tremendously on the highly overpriced individual-copy cost of $\$ 1$.
2. You will not have to worry about your dealer running out of copies just before you get there.
3. Many other blessings too numerous to mention.

Tax Deductible

A subscription to 73 is such an extraordinary act of generosity that it should be deductible. Unfortunately, it isn't. It is generous to yourself, bringing you unfettered joy and enthusiasm for an entire year, spread out just enough to whet the etc. It is generous to the poor underprivileged employees of 73 who are eking out their lives, anxiously awaiting each and every subscription with grasping fingers. It is generous to the State of New Hampshire, for the only taxes in this fine state are on profits and, there is always the distant possibility that your subscription might be the one which would edge 73 out of the red and into the tax-paying bracket. This, unfortunately, is a slim possibility.

Name \qquad
Call

Address

City
State Zip
> \square New subscription
> \square \$6 One year
> \square Renewal \$10 Two years
> Foreign: add \$1 per year.

73 Magazine • Peterborough NH 03458
look at the conflicting set of definitions for classes $\mathrm{A}, \mathrm{AB}, \mathrm{B}$, and C , as published in the widely circulated handbook for radio amateurs published by the ARRL (quotes are from the 1962 edition):
"A class A amplifier is one operated so that the wave shape of the output voltage is the same as that of the signal voltage applied to the grid . .
"A class AB amplifier is a push-pull amplifier with higher bias than would be normal for pure class A operation, but less than the cutoff bias required for class B . . " "
(Class B operation is defined by means of a schematic diagram and four waveforms.)
"A radio-frequency power amplifier ... can be used with an operating angle of less than 180 degrees. This is called class C operation."

It may appear that we're overemphasizing the differences in these sets of definitions, but in nearly 20 years of listening to on-the-air bull sessions get downright acrimonious simply because two people attempting to discuss amplifier operation didn't mean the same thing at all by "class A " or "class $A B$ " or "class C," we feel that the existence of multiple definitions is an essential fact to know.

The major significance of the differences is that the engineers' version is based entirely upon an operating characteristic which can be precisely measured and specified; the flow of plate current in the amplifier throughout one cycle of an input signal determines that amplifier's operating class. If plate current always flows, it's class A. If current is cut off for part of the cycle, but less than half, it's $A B$. If cutoff is for approximately half a cycle, it's B. And if cutoff is appreciably more than half a cycle, it's class C.

The "amateur" definition, on the other hand, defines each different class by means of a different characteristic. It says that a class A amplifier is one which is free of distortion (that may not be what was intended, but it's precisely the meaning of the words used in the definition, and it's the way most people read them if you listen to the resulting arguments), while a

New advanced 4-band, Communication receiver. For a beginner's price.

The new Ten-Tec RX10 receives $80-40-20-15$ meter amateur bands. Dual gate MOSFET direct conversion mixer converts signal directly to audio. Provides inherent immunity to images and "birdies." Selectivity is 2 KHz at 6 db for reception of SSB and CW. Stability-less than 100 Hz drift. Built-in oscillator for code practice or side tone monitor. Powered by 115 V AC or 12 V DC. Write for complete information, Dept. DI
BUY FROM DISTRIBUTOR OR ORDER DIRECT

7คワTEN-TEC,INC. SEVIERVILLE, TENNESSEE 37862

class AB amplifier must be push-pull, and class C applied to rf power circuits.

Obviously, we're somewhat biased in favor of the engineers' definitions. They appear to be much more precise, and should you happen to be interested in radio engineering from a career viewpoint, they'll do professionally as well as in your hobby. Now let's examine them more closely, and then see how the somewhat looser "amateur" definitions are related to those of the engineers - because in a most general and highly oversimplified way, the "amateur" definitions usually apply also.

The "class A" amplifier concept was originally intended to be that of an "ideal" amplifier which reproduced its input signal at the output, without distorting it in any way. In order to accomplish this, it would be necessary for gain to remain constant regardless of the signal level, and plate current could never cut off during the input-signal cycle (because if it did, that part of the cycle appearing at the input while current was cut off would fail to appear in the output, which would constitute distortion).

The engineers' definition of class A stems directly from one of the requirements of the "amateur definition" - but the reverse is not true. An amplifier can meet the engineers' definition even if plate current varies widely throughout the signal cycle, just so long as it never cuts off. With a wide variation of plate current, gain will also vary between wide limits, and the output signal will be distorted. In this case, the output signal will not have the exact same wave shape as the input, so the amateur definition is not fulfilled.

The class B amplifier represents an attempt to improve the efficiency of amplifier circuits, and dates from the days when radios all operated from batteries (before ac power supplies were available). A class A power amplifier cannot develop much output power in comparison with the power it takes from the power supply, since plate current must flow even when no signal is present in order to remain class A and this plate current is wasted so far as developing output is concerned. As a result, class A amplifiers normally produce a maximum of

about 1W out for every 4W drawn from the power supply.

By drawing power only half of the time and leaving the tube cut off for the other half of the input cycle, less power is wasted. On the other hand, with only half of the input signal appearing in the output, distortion of the amplified signal is extreme. Use of two tubes in a push-pull circuit reduces the distortion to acceptable limits, because while one tube is cut off the other is providing output and vice versa and the push-pull connection is necessary in order to use class B operating conditions in audio amplifiers.

In an rf power amplifier, however, distortion of the individual cycles of rf does not matter because the tuned circuits have a "flywheel" effect which irons out the distortion. "Distortion" in rf power amplifiers usually means a distortion of the signal "envelope" or modulation, and this is not affected by the class B circuit. Therefore it's possible to use single-tube class B amplifiers in transmitters, and some "linear" amplifiers operate this way.

The ideal class B circuit is about twice as efficient as the same tubes would be if operated class A; that is, it provides up to 2 W out for every 4 W taken from the power supply. This means that batteries for such a circuit would last twice as long.

The class C operating conditions are just like class B, only more so. One textbook describes them, very accurately, as "switching" operation. The tube or transistor is operated with bias so far into cutoff that plate current cannot flow except at the very peak of the input signal cycle. Thus, this class of amplifier draws very little current most of the time. On signal peaks, the tube or transistor switches from "off" to "on" and permits a brief pulse of current to flow. Since it is essentially a switch, this current pulse can have extremely high values - a full ampere isn't uncommon. The high-energy pulse causes the tuned rf output circuit to "ring" at its resonant frequency, and with another pulse coming along at the peak of every cycle, most respectable power levels can be developed.

The class C amplifier can theoretically produce as much as 3.8 W of output for every 4 W taken from the power supply, but practical circuits seldom deliver more than 3 for every 4. This is still three times as efficient as the same tube would be in class A, and since amateur power limits are set on the basis of input power rather than output power, it means you can get three times as much signal with class C .

Because of the extreme distortion and resulting need for tuned circuits, class C amplifiers are normally used only for rf power amplifiers. However, many computer circuits normally described as being "digital" or "binary" can also be considered as class C amplifiers operating on dc signals rather than rf.

In addition to the three major operating classifications of A, B, and C (class $A B$ is considered to be a cross between A and B), another operational classification is used to indicate whether grid current flows in the amplifier. This classification consists of a numeric suffix applied to the classification letter; a " 1 " indicates that grid current does not flow, while a " 2 " means that it does.

Normally, class A amplifiers are A1, and class C amplifiers are C2. Most class B amplifiers are B2. The only place the number has great meaning is with class AB , where about as many circuits operate $A B 1$ as do AB2. However, the presence or absence of grid current does not necessarily go with the operating class in all cases. It's quite possible to design a class A2 amplifier, which permits grid current to flow and yet operates class A , or a C 1 , which operates class C without any grid current.

At this point it might be well to point out another basis of classification often used, that into "linear" and "nonlinear" amplifiers (Fig. 6). A linear amplifier is one which amplifies its input signal without introducing any distortion, while a nonlinear one does introduce distortion of some type. Since nothing is perfect, all actual amplifiers are nonlinear to some degree, and therefore the term "linear" is always used in a comparative sense. A good

Fig. 6. Here we have linear and nonlinear amplifiers compared, with triangular signal waveforms instead of sine waves to make life easier for our illustrators and bring out the differences which are not obvious with sine waves. Linear amplifier, left, faithfully reproduces input signal at output. Nonlinear amplifier, right, puts bends into the straight sides of the waveform. These bends represent second-harmonic distortion. In general, any distortion is described as "nonlinear" operation.
hi-fi amplifier is linear, for instance, even though it does have some small percent distortion. In speaking of rf amplifiers for modulated signals, the distortion is measured with respect to the modulation rather than the individual rf cycles, and so a linear rf amplifier is one which does not distort the modulation rather than one which does not distort the individual cycles of the input signal.

The linear/nonlinear classification helps us to list the ways in which class A, B, and C amplifiers are used. For instance, almost all linear audio amplifiers operate in class A, which squares with the "amateur" definition of class A as being a linear amplifier. Many rf linears at low power levels also operate class A, and in general the class A operation is used almost exclusively when very low distortion is required. Most receiver circuits are class A.

Class AB and B amplifiers are widely used to produce moderate power levels with limited distortion. The output stages of many public-address amplifiers and almost all hi-fi power stages operate in class AB , and almost all SSB final linear amplifiers run as either class $A B$ or B. In addition class B amplifiers are sometimes used in

WORLD PREFIX MAP - Full color, $40^{\prime \prime} \times 28^{\prime \prime}$, shows prefixes on each country . . . DX zones, time zones. cities, cross referenced tables postpaid $\$ 1.25$
RADIO AMATEURS GREAT CIRCLE CHART OF THE WORLD - from the center of the United States! Full color, $30^{\prime \prime} \times 25^{\prime \prime}$, listing Great Circle bearings in degrees for six major U.S. cities; Boston, Washington, D.C., Miami, Seattle, San Francisco \& Los Angeles.
postpaid $\$ 1.25$
RADIO AMATEURS MAP OF NORTH AMERICA! Full color, $30^{\prime \prime} \times 25^{\prime \prime}$ - includes Central America and the Caribbean to the equator, showing call areas, zone boundaries, prefixes and time zones, FCC frequency chart, plus informative information on each of the 50 United States and other Countries.... postpaid $\$ 1.25$ WORLD ATLAS - Only atlas compiled for radio amateurs. Packed with world-wide information - includes 11 maps, in 4 colors with zone boundaries and country prefixes on each map. Also includes a polar projection map of the world plus a map of the Antarctica - a complete set of maps of the world. 20 pages. size $83 / 4^{\prime \prime} \times 12^{\prime \prime}$ postpaid $\$ 2.00$
Complete reference library of maps - set of 4 as listed above
postpaid $\$ 3.50$ See your favorite dealer or order direct.

See your

for DRAKE products
battery-operated equipment to conserve battery power; many transistorized portable radios use class B output stages for this reason.

Class C operation is confined almost exclusively to rf power amplifiers which can be nonlinear; this means, in practice, all rf power stages in a CW or FM transmitter, as well as in an AM transmitter which uses high-level modulation (if modulation is applied before the final output stage, all the following stages must be linear, requiring A, AB, or B operation). Class C is hardly ever used in SSB transmitters, since the nonlinearity would destroy the modulation of the signal.

How and Why Do Amplifiers Misbehave?

Amplifiers, like all other physical objects, faithfully follow Murphy's First Law that says, "If anything can possibly go wrong, it will." In consequence, they continually misbehave. Fortunately, an amplifier is a relatively simple device, so that only a few things in them can possibly go wrong, and the result is that most amplifier misbehavior can be traced to a fairly small number of possible causes.

However, any specific case of "wronggoing" may be due to not just one but several of the possible causes all acting together, which sometimes makes it difficult to find and fix the trouble.

One of the first things which can go wrong is for the specific amplifier to be badly designed; in this case the designer has failed to take into account all the tricky little interactions which can affect his circuit's operation, and you as an operator are just about hopelessly lost. The cure is to forget it, and start over with a properly designed amplifier (if you're the designer as well, then it's back to the drawing board with our sympathy).

Since this kind of problem, though it's the most common in the case of new or one-of-a-kind circuits, is not within the range of the FCC exam, we'll ignore it the rest of the way in and assume that the misbehaving amplifier was properly designed and built and did, in fact, work perfectly at some time before the troubles began.

Another frequent wrong-goer is the user of the equipment; in this case nothing at all is wrong with the amplifier itself, but it's being used under conditions which never were intended by the designer. This is the most frequent cause of amplifier misbehavior - and we'll get back to it in much more detail a little later.

The final frequent cause of trouble is failure of one or more components in the circuit. A blown tube or transistor is relatively easy to find and fix - but a bypass capacitor which has changed in value (because of age or overheating) just enough so that it no longer does its job properly may provide more than its share of hair-pulling before it's detected.

From the standpoint of the operator, the only one of these three probable causes of problems which he can do anything about is the second - misuse of the equipment. The cure for the first is to redesign the circuit, and for the third is to locate and repair the defective part. While both of these are legitimate activities for a radio amateur, neither of them is involved directly with the operating of the equipment.

Because of this, and also because misuse accounts for most of the amplifier problems and bad signals in existence at any one instant, we'll concentrate on just the one problem.

Before we can talk about "misuse" of an amplifier, we must know what the proper use for that amplifier is. For instance, the purpose of a linear power amplifier used to bring a single-sideband signal from 10 W up to 500 W is defined, and "proper use" of this particular rig would be that use which accomplishes the power amplification without distortion and unwanted spurious output signals.

In general, the amplifier's name (such as "linear," "power," etc.) together with the designer's specifications for input and output levels will tell you all you need to know about the circuit's purpose, and proper use amounts to "that use which accomplishes the purpose of the circuit."

Misuse, then, can be defined as any use which defeats the circuit's intended purpose. In most cases, this boils down to one or more of three major mistakes:

1. The amplifier is adjusted to operating conditions such as bias or voltage levels which are outside the range anticipated by the designer.
2. Input signals are applied at levels either lower or higher than the range intended by the designer.
3. More output is attempted than the designer intended the circuit to produce.

Let's see how these three mistakes affect several typical amplifier circuits. For starters, let's see what happens when a class A amplifier intended for low-distortion amplification of an audio signal is misused. Such an amplifier might be in the speechamplifier chain of any phone rig, or in a receiver.

If the amplifier's bias can be adjusted, and is set to a value higher than the designer intended, the stage will draw less current than it was designed for, and so cannot develop its rated power output (or voltage output, if it's a voltage amplifier).

Similarly, if the bias is set too low, a "normal" input signal may overcome the bias and change the operation condtion from class A to class AB. The effect of bias adjustment, then, is to reduce the allowable input and output signals -, and if the value is very far from the intended level, excessive distortion may be introduced into all signals (Fig. 7).

Fig. 7. Shown here are the effects of overbias and underbias on a class A amplifier, with a triangular input signal of maximum rated level which could be reproduced linearly were the bias proper as indicated by the " X " in the center of each amplifier transfer line. Overbias causes the nega-tive-going peaks of the signal to "bottom" against the cutoff point, which is actually class $A B$ operation, while underbias causes amplifer to saturate and flat-top the signal.

SLOW SCAN TV
Now for the
first time an
S. S. monitor
designed for
your own cus-
tom installa-
tion. Available
in 3 economy
kits.

KIT 1 P.C. Boards only (2 req.) ea.
$\$ 9.95$
KIT 2 P.C. Boards (Both) \& all parts (unwired)
$\$ 80.00$
KIT 3 P.C. Boards Wired \& tested $\quad \$ 125.00$
Power Supply Kit - No chassis $\$ 54.95$
Complete Monitor - In handsome cabinet
$\$ 298.00$
All kits tube type with instructions.
CRTs. Power Supplies. and cabinets not included.

E.K.Y. VIDEO VISION CO.

Box 15, Stockholm NJ 07460

DUAL GATE MOSFET PRE-AMPS

$$
\text { to } 175 \mathrm{MHz} \text {. } \$ 21.95 \mathrm{ppd} \text {. }
$$ to 300 MHz . $\$ 25.95 \mathrm{ppd}$.

- Available from 5 MHz , to 300 MHz . Bandwidth is approximately 3% of frequency.
- Voltage gain 30 to 40 DB depending on frequency.
- Two Dual Gate MOSFET amplifier stages with each having a tuned input and tuned output. Each Daul Gate MOSFET is actually an integrated cascode circuit thus giving you 2 cascode circuits equivalent to 4 triodes.
- Exceptionally low noise (2.5 DB at 175 MHz .), greatly reduced cross modulation and 10 times the dynamic range (signal handling capability) of the best bi-polar transistors. Also superior to preamps using junction FETs and Single Gate MOSFETs.
- Panel mounted manual gain control.
- Type BNC input and output receptacles for minimum loss at UHF. Standard Impedance is $50-75$ ohms.
- Carefully tuned at our laboratory with sweep generator and oscilloscope for the best bandpass characteristic.
- Full wave UHF diodes protect input transistor.
- Operates on 6 to 16 volts DC, 5 to 15 Ma .

New York City and State residents add local sales tax.

VANGUARD LABS

Dept. H
196-23 Jamaica Ave., Hollis, NY 11423

However, in most class A amplifiers, the bias level is not adjustable by the operator, so this particular example won't be met often in practice.

If the input signal is out of the range intended by the designer, other bad things happen. If the input signal is too weak, the probable effect would be simply low output, possibly contaminated with noise, but most class A amplifiers are intended to work with signals which range right down to the noise level anyway, so the designer has probably intended his circuit to work with input signals approaching zero volts.

When grid current flows, the input signal is distorted before it ever reaches the active device, and the distortion can't be removed later. Even if grid current does not flow, it's possible to "saturate" the active device so that it no longer changes in resistance as the input signal changes, and this too leads to distortion.

Meanwhile, the negative-going peaks of the input signal add to the operating bias, and may add to it enough to change the operating conditions to class AB instead of class A . This also produces distortion in the output signal.

Fig. 8. In this example the bias is properly set but input signal is excessive. Signal A is at maximum level, and produces linear output X. Signal B, at too high a level, runs outside the linear range and produces distorted output Y with both bottoming and flat-topping evident.

Too much input signal, on the other hand, produces all sorts of ill effects, and you can find horrible examples all over any of the bands.

When input signal level in a class A amplifier is too high, either or both of two problems arise (Fig. 8). The positive-going peaks of the input signal completely overcome the amplifier's operating bias, which permits grid current to flow. If the designer has intended grid current, and allowed for it, this is not in itself bad - but most class A amplifiers are not meant to be used this way, and so grid current in 99 out of 100 of them indicates excessive input signal.

An oscilloscope will show you which of these two problems is present in an amplifier. If the positive peaks are causing the problem, the voltage waveform of the output signal will tend to be flattened off at its negative peak; if it's the negative peak of the input signal doing the dirty work, the output signal will be flattened at its positive peak.

In either case, the cure is simple: reduce the level of the input signal. The normal control for doing so is the audio gain control on the transmitter panel, or the volume control on the receiver. If your transmitter has no audio gain control (and
many do not) you can either speak a little more softiy, or connect an attenuator pad (a sort of resistive voltage divider) between the microphone and the amplifier.

What about the output conditions? In our class A amplifier, which is normally used to provide voltage gain, this isn't usually adjustable. If it were, taking too little power out would tend to produce the same symptoms as putting in too much input signal, while attempting to get out too much power would show up as heating of all the amplifier components in addition to distortion.

Now let's see what happens when we misuse a class C rf power amplifier. For openers this time, we'll assume that it's the final output stage of a CW transmitter.

In many class C amplifiers using "fixed" bias, the bias level can be adjusted by the operator. Too low a bias level will result in low power output, and too high a bias level will generate excessive harmonic output. Most class C circuits these days, however, use a "self bias" arrangement in which the operating grid bias is developed by the flow of grid current through a "grid leak" resistor; with these, both the bias level and the input signal are set by the same control, which may be called the "drive" adjustment, or the "driver tuning."

Input signal level is not as critical with a class C amplifier as it was with class A, because we are not so concerned with signal distortion. The main thing is to have enough, without overdriving the circuit, and the designer usually specifies a broad range of operating conditions.

In circuits using self-bias, loss of drive causes loss of bias as well, with resulting high current in the amplifier stage and damage to all components in the plate circuit. For this reason it's good practice to adjust the drive level (input signal) with the amplifier plate and screen voltages turned off. If input signal is too small (too little grid current), bias will be too low and power output will be low. If it's too large (excessive grid current) harmonics will be excessive and the final-stage grid may be damaged.

With a CW transmitter, it's best to start with the amount of drive signal the de-
signer recommends. After drive is developed, plate voltage may be applied and the output adjustments made, and then drive may be reduced until power output drops by a barely perceptible amount, and advanced by some 15 to 20% from that point. This assures minimum drive while still providing rated output from the amplifier, and will probably result in an input signal level within the designer's intentions.

For an AM transmitter, this adjustment of drive and loading may not be adequate. A modulated amplifier requires enough drive to supply the modulation peaks as well as the carrier level, but we'll go into that later when we examine the modulation process.

Output signal level adjustment in a class C amplifier is the most critical adjustment of them all. It should not be attempted until the input signal level has been brought into the correct range, because the tube or transistor may be destroyed in the absence of input signal.

Most transmitters have two adjustments for output tuning, one marked "tuning" and the other marked "loading." The normal practice is to set the loading control for minimum output, then rapidly adjust the tuning control until plate current dips sharply. This dip indicates that the output tank circuit is tuned to resonance, and is acting as a high impedance.

While this is all right for tuneup, which normally is done rapidly, it can damage the equipment if extended operation is attempted with too-little power being taken out. Whether you use it or not, a 500 W amplifier is developing its 500 W worth of current and voltage swing, and if you take only 50 of them out, the rest are going to be looking for mischief inside the amplifier. Tuning coils may overheat and melt their plastic supports, or capacitors may arc over.

To take more power out, the loading control is adjusted to increase plate current, meanwhile readjusting the tuning control to keep the dip at its minimum value. The readjustment is necessary because the two controls interact; increasing the loading reduces the " Q " of the tank
circuit, and changes the reactance at the same time. This process should be continued until the amplifier is producing its rated output, and then halted.

It's possible to load most class C amplifiers until the dip disappears, but if you check with an indicating wattmeter you'll find that pretty shortly after rated power output is reached, the output power begins to fall off even though the indicated input power keeps climbing. The extra power simply goes into the amplifier to be dissipated as heat, and can damage all the components.

Notice that while "distortion" was the key result when a class A amplifier was misued, "equipment damage" is the key result in class C operation. The tipoff to problems in class C is excessive plate current. If excessive plate current can be controlled by the tuning and loading controls, it probably indicates an attempt to get too much power out of the rig. If not, it probably indicates loss of operating bias, which can be due to loss of input signal.

Of course, a badly designed rig can draw too much plate current for other reasons. If the amplifier is subject to oscillation, either self-oscillation near the operating frequency or parasitics at far removed spots in the spectrum, this can cause excessive current. Similarly, component failure which removes the input signal can cause it. But the most common cause is simply trying to get something for nothing.

How about the "linear" used with an SSB transmitter? These rigs have a reputation for being tricky, but actually they're little if any more complex than a class C rig. The major difference, in fact, is that their designers set them up to operate in class AB , and to produce as little distortion as possible between input and output.

Since the bias level is the major factor controlling which class a specific amplifier is operating in, the bias of a "linear" amplifier must be set to the level specified by the designer. Most such amplifiers have a bias control accessible to the operator, which is intended to be adjusted for some specified value of plate current with no input signal applied. If bias is too low (too much plate current), the power capabilities
of the amplifier will be reduced, and if it is too high, distortion will increase.

The input signal, also, is critical - but only at the upper end of the range. Linears are designed to accept input signals down to zero, but the maximum input signal level must not be exceeded if operation is to remain linear. Too much input signal (overdrive) causes distortion just as it does in a class A amplifier, with flattened peaks. In an rf amplifier, this distortion shows up as illegal harmonics outside the ham bands, as well as "splatter" and "buckshot" which may be within the bands but is not within the channel you are using. Such spurious signals are prohibited by FCC rules. The distortion produced by overdriving a linear amplifier is sometimes called "flattopping" the signal, but overdrive is not the only cause of flat-topped signals.

Misadjustment of the output level can also cause flat-topping and other distortion problems. A linear amplifier is more critical in its output adjustments than in any other. In order to develop rated power output, the active device (tube or transistor) must work into its rated load impedance, and this impedance is set by the output tuning and loading controls.

If the adjustments are set for too little loading (less than rated output power), the load impedance will be too high and distortion will be produced. Similarly, if the amplifier is too heavily loaded, distortion will also result. Too heavy loading produces less distortion than too light loading, however, so in case of doubt it's best to err on the side of too much loading. This should not be confused with too much output - overdriving in an attempt to get more than rated power out is a sure way to generate a bad signal.

The distortion produced by underloading shows up as "peak clipping" which is a form of flat-topping. That resulting from overloading is "intermodulation" which can put the unwanted sideband back into the signal. To guard against such problems, most operators tune up linear amplifiers with the aid of an oscilloscope, which can show them the proper combination of all input and output level adjustments.
...Staff ${ }^{\text {I }}$

SOLID STATE ENCODERS for quick and easy access to tone access repeaters

Guaranteed for one full year.

Try it for 10 days if not completely satisfied, return for a full refund.

- Puts you in a position to use FM tone burst repeaters practically everywhere. Two models to choose from. Great for mobile units.
- Easy to install. 3 wire hookup. Comes with complete installation instructions.
- Operates from a readily accessible, factory supplied, internal 9 volt battery.
- All frequencies are factory preset.
- Nominal .5 sec . tone burst length. It's quick.
- American made commercial grade components on glass epoxy printed cirucit board for maximum reliability.
- Write, wire c: call for full information.

50 W. DUNDEE RD., WHEELING, ILL. 60090 (312) 537-0060

$$
\begin{aligned}
& \text { Phone Patch Level } \\
& \text { Adjustments and } \\
& \text { Manproofing }
\end{aligned}
$$

Wow that phone patches are legal,
amateurs are given the responsibility to adjust the levels they feed into the lines of those phone systems that do not furnish or have not got interface black boxes to automatically adjust patch injection levels. Failure to adjust the levels may overdrive the phone lines and cause undesirable crosstalk on other phones sharing the same cable. Since this is usually your neighbors, crosstalk, like TVI, is close to home.

The procedure for adjusting your patch injection level is relatively simple, and may be done to a practical degree of accuracy with any ac voltmeter which can read as low as 1.5 V full scale.

First, you should understand that there are two line wires and a floating ground in most phone systems. You are only interested in the line wires, and these are generally coded green and red. In any case you can find these two with a voltmeter, since there is a residual dc voltage on the line.

To calibrate your ac voitmeter to your phone's reference level, connect a $0.1 \mu \mathrm{~F}$ capacitor in series with one lead, to block the dc but pass the ac. If your multimeter has an OUTPUT setting, use that since such a capacitor is inserted internally. Use your lowest ac scale. Then take the phone off the hook and dial the first 3 digits of your own phone number. This will drop the dial tone and give you a clear audio line. Talk into the phone in a loud voice - a little louder than you talk on the phone normally. You will see the meter needle kick
up to about 0.5 V . Notice where it kicks up to as you talk, and then hang up the phone. You have now established your reference point.

To adjust the patch level, tune your receiver to a good QRM-free signal on the band, choosing one that causes your S-meter to at least show some value larger than S2 or so. Again dial the first 3 digits of your number, and flip the patch into the line. Adjust the receiver audio gain until the ac voltmeter on the phone line kicks up about the same as it did when you calibrated it with your own voice.

When completed, mark the audio gain now at the setting you found proper for your patch. This will be the correct level for all patch use, regardless of signal S value, because any decent SSB rig holds the audio output level sufficiently accurately, through it's normal agc action, to suffice for phone patching use. If you want more precision, however, you can leave some form of capacitor-isolated meter on the patch, as a sort of VU meter.

Do not omit the capacitor, and preferably use one in each lead to prevent shorting the phone line if you have an accident with the leads.

Manproofing the Patch
If you want to make your patch foolproof, you can do this to the extent that nothing you do on your patch will cause your phone to be out of service, nor prevent its use in a normal manner. To do this, do not connect your attachment wires

WHEN II COMES TO ANTENIA SYSTEMS ... IS YOURS
 a space problem? a budget problem? an applications problem? an installation problem? or simply a problem of where to buy?

Your one-stop solution is ANTENNAS, INC.
Exclusively specialists in radiating systems, complete systems or any component part.
Arrays-complete or in kit form, quads, yagis, dipole assemblies, verticals-fixed or mobile, towers, masts, rotors, guy and control cable, transmission line, coax relays and switches, connectors and adaptors, test gear, technical publications, corrosion resistant hardware, corrosion proofing chemicals, insulators, installation and wiring hardware, aluminum tubing and plate, wire, and much, much more.

If your requirements are for a complete system, major components, or the smallest yet important piece of hardware-

Our prices and deliveries are hard to beat . . . anywhere.

AIIEMMAS, IIIC.

Dept. B, 512 McDonald Road Leavenworth, Kansas 66048.

ANTENNAS, INC. can be your one-stop, single-source. Write today for our catalog, $\$ 2.00$, refundable, first order.
directly to the phone wires. Instead, put a small electrolytic capacitor in both leads, right at the attachment point. The capacitance of these should be 2 or $A \mu \mathrm{~F}$ each, and polarize them right so they block the dc on the line. This is done by finding out which phone wire is positive, and connecting the positive lead of one of the electrolytics to this phone wire, and connect the negative end of the other capacitor to the other phone line. Now, connect the two patch wires to the two dangling ends of the electrolytic capacitors. You can now short
the patch, leave it on, etc, and you will not load the phone enough to cause more than a small decrease in its loudness.

A $2 \mu \mathrm{~F}$ capacitor is about the best value, since this causes an effective $1 \mu \mathrm{~F}$ total series capacitance in the patch line, which causes a 3 dB cutoff frequency of 300 Hz on the 900Ω line. This is an optimum match to an SSB receiver. If you decide to use these manproofing capacitors, install them before you calibrate the audio gain for patch injection, for better accuracy.

W4NVK \quad -

Put a NEW RECEIVER in your old hi-band set
for less than 17.00 (or the next best thing).

 INFORMATION AND PRICING OF PRODUCTS SHOWN.
شCraft
HIGH PERFORMANCE VHF YAGIS

TOPEKA F M ENGINEERING 3501 CROCO ROAD TOPEKA, KANSAS 66605
(913). 233.7580

FM BULLETIN (VOL.I)
Contains those rare copies of the Bulletin that nobody seems able to find any more. From the first issue of FM Bulletin to Feb 1968! Printed in chronological sequence as edited by Mike Van Den Branden (WA8UTB). $8 \frac{1}{2} \times 11 \mathrm{in}$.

FMB1

.\$3

THE BEST OF FM (VOL. II)
Contains articles from the modernized FM Journal. Includes those "great," never-before-reprinted articles, complete with photos. An impressive and valuable collection of FM data. Edited by Ken Sessions (K6MVH). $6 \times 9 \mathrm{in}$. Covers period from Mar 1968 to June 1969.
FMJ2

73 REPEATER ATLAS

Complete, up-to-date listing of all repeaters currently operating in the U.S. and Canada. Hundreds of useful facts on access info. Nearly a hundred maps showing repeater locations and repeater coverage areas. Plenty of repeater photos, too. Prepared by Ken W. Sessions, Jr., K6MVH.
RA1
$\$ 1.50$
AN INTRODUCTION TO AMATEUR FM

by Ken W. Sessions, Jr. 96 pages of information, including current standards of deviation, tone frequencies, and operating channels. Includes an updated FM repeater directory, a catalog section of ALL FM MANUFACTURERS and dealers. Plus: A complete bibliography listing all articles published since 1968 in FM Anthologies (Vols. 1 and 11), 73, HR, QST, and CQ.
IFM
\$1.50

Want to know more about Repeaters?

Want to build a repeater? Want to improve your existing repeater?

Whether you're a newcomer or an oldtimer, you'll find "The Radio Amateur's FM Handbook" to be the most valuable repeater aid you can get.

FOR THE OLDTIMER

the Handbook tells

- how to defeat desensitization
- how to calculate attenuation according to frequency spacing, antenna separation
- how to build sophisticated control systems, using

ICs, timers, relays, steppers, or Touchtone

- how to build automatic logging and identification devices
- how to build automatic phone patches

FOR THE NEWCOMER

the Handbook tells
e how to prepare for a repeater

- how to get a repeater site
- how to build a repeater
- how to keep a repeater on the air
- how to determine a prospective repeater's range
ohow to get your repeater license
The Handbook contains 208 pages of useful, hard-to-come-by information, and it's written in an interesting, personal view by Ken W. Sessions, Jr. (K6MVH) former editor of FM Journal, now managing editor of 73 .

Order from:

73, Inc.

Peterborough NH 03458

WOULDN'T

YOU LIEE TO CETT INTO

 RTTY?Richard Tashner WB2TCC 163-34 21 Road Whitestone NY 11357

Most people think RTTY is very expensive - that it takes a lot of technical skill to get rolling. Actually, provided you have a transmitter and a receiver (or transceiver that does not drift) you can get started for about $\$ 100$.

You will need three basics: a teleprinter with keyboard, a terminal unit, and a simple frequency shift keyer on your transmitter vfo.

A basic teleprinter like the Teletype Model 15 will cost about $\$ 75$. This is where most of your investment will be. This unit will, with the addition of the terminal unit and frequency shift keyer, enable you to transmit and copy RTTY. A block diagram of a basic RTTY station is shown in Fig. 1. Note that the terminal unit (sometimes referred to variously as a TU, converter, or demodulator) hooks between the teleprinter and the audio output of your speaker.

The purpose of the demodulator is as follows:

The receiver picks up two alternating tones, one relatively high pitched and the other a little lower. The lower tone is called mark and the other, space.

Different combinations of mark and space tones correspond to specific letters, numbers, and punctuation marks.

The TU has a $150 \mathrm{~V}, 60 \mathrm{~mA}$ "loop current" passing through it and the two electromagnets in the teleprinter known as selector magnets. As alternating tones come through the receiver the TU causes
the loop current to go on and off in a definite pattern corresponding to each letter received. As the loop current is broken up, the machine prints the message.

On wide-shift systems, the frequency of the mark tone is 2125 Hz and the frequency of the space tone is 2975 Hz . With narrow-shift, the mark is 2125 Hz but the space signal is 2295 Hz (a difference of only 170 cycles).

To get these tones you put on your product detector as if for CW and tune in the RTTY signal for the correct tone frequencies with the aid of an oscilloscope. When the pattern on your scope is as shown in Fig. 2 the signal is tuned in correctly. Figure 3 shows tuning too low and Fig. 4 shows tuning too high.

Fig. 1. Block diagram of RTTY station.

Transmitting RTTY

For transmitting, the keyboard is hooked up to the FSK circuit in your transmitter vfo. When a key is pressed the FSK circuit keys the vfo up and down in frequency with a definite pattern corresponding to the letter on the keyboard. There are many ways of doing this.

One way is to put the keyboard in series with the selector magnets. Then when a key is pressed the loop current is broken up the same way as when the TU breaks up the circuit on receiving. The loop supply in turn keys the FSK circuit.

Auto-Start

Some hams who have a net frequency (mostly on VHF) use a method called Auto-Start, which can prove quite handy. Suppose one person wants to send his friend a message, and both are on a net frequency. The friend leaves his receiver and terminal unit on 24 hours a day. The person who wants to send the message sends a five-second, steady mark (2125 Hz) signal. The receiver on the other end picks

GET YOUR NEW ISSUES NOW!

Over 285,000 QTHs in the U.S. edition $\$ 8.50$ Over 165,000 QTHs in the DX edition $\$ 6.50$
new edition every: MARCH 1 - SEPT. 1 JUNE 1 - DEC. 1

These valuable EXTRA features included in both editions!

- QSL Managers Around the World!
- Census of Radio Amateurs throughout the world!
- Radio Amateurs' License Class!
- World Prefix Map!
- Prefixes by Countries!
- Zips on all QTH's!
- A.R.R.L. Phonetic Alphabet!
- Where To Buy!
- Great Circle Bearings!
- International Postal Information!
- International Radio
- Plus much more!

See your favorite dealer or order direct (add 25¢ for mailing in U.S., Possessions \& Canada. Elsewhere add 50¢).

Figs. 2, 3, 4. RTTY scope patterns.
this up and the terminal unit which has a special Auto-Start circuit in it automatically turns on the motor in the teleprinter. The sending station then sends the message. At the end of the message he sends a steady five-second space signal (2975 Hz) to shut off the other station's teleprinter motor. The sending station then turns off his carrier. When the man returns from a hard day at work he goes up to his shack and reads what his friend has sent him during the day. He can reply in the same manner.

Where to Get More Information

I suggest, for those interested in getting more info on RTTY that they refer to handbooks by 73 and CQ magazines. They would also do well to get a copy of the RTTY Journal. It is put out by 'Dusty' Dunn W8CQ, PO Box 837, Royal Oak, Michigan 48068. Subscription rate is $\$ 3$ a year.

WB2TCC \quad -

Having successfully used the type of Vector board with $3 / 32$ in. perforations and the relatively large T9.4 terminals in several projects, I decided to try the type with $1 / 16$ in. perforations and the small T28 terminals for more compact circuitry when recently building a frequency counter. The counter consisted mainly of integrated circuits and a great deal of interconnecting wiring, with up to four or five wires plus the IC being connected to a single terminal. The T28 terminals didn't seem to be very well suited to my purpose, so after some experimenting I came up with this substitute. It is a simple pin-type terminal that is inexpensive, easy to make and use, and better suited for some purposes than the T28 terminals.

Making the terminals

The terminals are made of 14 -gage bare or tinned copper wire. Insulated wire is available at any hardware store, the least

The terminals are knurled by rolling them under a file.
expensive being type TW. The plastic insulation is easily peeled off with a pocket knife. Clean the wire with fine sandpaper if it is tarnished or dirty.

Cut the wire to the length desired for the terminals. I found that a $1 / 2 \mathrm{in}$. length worked well for me. To easily cut a large number of terminals to exactly the same length, simply drill a 5/64 in. (diameter) hole in any convenient material to a depth equal to the desired terminal length. Then you merely insert the wire, clip it off flush, and allow the terminal to drop from the hole.

The 14-gage wire is a loose fit in the 1/16 in.-diameter board perforations, so it must be expanded slightly to make it a snug fit. This is done by knurling it lightly at the point where it will contact the board. Place the terminal on a small block of hard wood. Press down on the proper part of the terminal with the edge of a flat file. Move the file back and forth so as to roll the terminal beneath it. A few strokes

The terminals are easily inserted with a simple tool.

The wiring side of a board from the author's frequency counter, in which over 600 of the homemade terminals were used.
using moderate pressure will raise a series of ridges such as those found on the edge of a dime, and will make the terminal a tight fit in the board. I used an 8 in . file that had an edge width of $3 / 32$ in., but any medium-cut flat file should work.

The terminals are easily inserted into the board with a simple tool. Take a piece of metal rod about 5 in . long and drill a $5 / 64 \mathrm{in}$. hole in one end to a depth equal to the length of terminal that will protrude from the board. Then place the terminal in the board, lower the tool onto the terminal, and press down firmly. Be sure to support the board near the terminal while doing this.

Advantages and disadvantages

The main advantages of using this terminal are that it will hold a large number of wires without difficulty, and you can wrap a wire around it and squeeze it tight with pliers without crushing the terminal. Also it is easy to make a good solid solder
joint because of the large contact area between the wire and terminal. The removal of a wire is very easy, even if it is at the bottom of a stack of three or four. Just heat the joint and slide the wires straight up and off the smooth surface of the terminal. The wire ends will keep their shape and can be slid back on and resoldered.

The T28 terminals are better for holding small resistors and capacitors, and require less heat to solder than the homemade type. More care is necessary, however, to prevent cold solder joints if several wires are to go into one slot.

The homemade terminals are very inexpensive, costing about 12 cents per 100 , but the time involved in making them probably nullifies any saving. In the frequency counter previously mentioned I used over 600 of the homemade terminals and about 40 of the T28 terminals, with each type doing its particular job very well.
. K5LLI■

A vertical actually makes a pretty good antenna, provided your match allows you to radiate the signal you put into it.

John G. Harder W5QKO/AI4QKO 6200 Air Base Wing APO San Francisco 96274

A11 -band vertical antennas are inexpensive space-savers which can do a surprisingly good job at their best, but often give disappointingly bad results. Newcomers are often attracted to these antennas by the cost savings over more complicated arrays, but many encounter considerable frustration in the attempt to make the unit perform as it is supposed to.

An example of this type of continuously tuned antenna is the WVG Mark II. It is basically a multisection aluminum whip in an insulated mounting which attaches to a short length of pipe for ground mounting or to a piece of TV mast for rooftop use with radials. The unit is supposedly designed to be fed with 52Ω coax. The coax shield connects to the ground rods or radials. The center rf conductor of the coax is normally tapped down on a loading coil to achieve resonance at the frequency in use, while simultaneously providing a satisfactory impedance match to the coaxial line. On 20 and above, the whip alone is usually used with direct coax feed.

Practically speaking, this procedure seldom produces a match which permits anything like a truly efficient transfer of power from the feedline to the antenna. It doesn't take much knowledge of antenna theory to understand that if the power doesn't get into the antenna, it doesn't get radiated. On some bands the coil and whip may show resonance at the desired frequency when checked with a grid dip meter, only to prove unusable because the impedances are still mismatched.

While some equipment will load into a line with a vswr of greater than $2: 1$, most manufacturers these days specify low vswr to avoid such conditions as overheating of TV sweep-tube finals and radiation of rf from the transmitter cage. The answer for some is to give up and try a more expensive antenna, such as a trap vertical. But before spending those dollars, why not try to do a better job of matching than the coil can do alone? This can be achieved by simply adding a small variable capacitance at the feedpoint, using clip leads to allow it to function as part of an LC network in series or in parallel. Using an additional tap on the coil will allow the 52Ω feed to be matched more accurately.

The exact amount of L and C needed for resonating and matching at a given frequency will depend mainly on the type of mounting and ground system in use. Before trying the matching network idea, I found that a vswr of $2: 1$ was the best obtainable on several bands. On 15 meters, the antenna was completely unusable with a vswr over $3: 1$. It was of course possible to adjust the whip length for 15 m , but band-changing became a major chore.

After use of the matching network, the results were very satisfying. It was possible to reach less than 1.3:1 on all bands, and I found that by proper placement of the coil taps I could go from 15 to 20 m with just a twist of C alone. This convenience was well worth the effort.

After matching with a standing-wave bridge connected at the feedpoint, all I had to do was mark the coil taps and positions of C , and band-changing was now possible in a matter of seconds. Besides all this, my first QSO after the job was done resulted in a good report from UA \emptyset KFG with only 150W input at my end!

Possible refinements include mounting of the whole network in a waterproof container such as a refrigerator box or plastic 3×5 card file that includes its own hinged lid. By careful choice of methods shown for setting up the network, your antenna will now work efficiently on any band from 80 through 10 m and on MARS frequencies in between.
...W5QKO/AI4QKO凹

The Low-Ohm Meter

A. Schecner W3YZC 122 Sherry Lane Apts.
Conshohocken, PA 19428

Did you ever try to get a good resistance reading on a speaker voice coil? Or an automobile ignition ballast resistor? Or a pilot light bulb, length of coax, relay contact, loading coil, identifying transformer windings, centertaps, etc.? If you have, then you've found that most ohmmeters don't have a really low resistance scale - or if they do the zero setting is unreliable and the meter scale inadequate. After years of annoyance from this problem I finally decided that a low-value ohmmeter would be a handy device to have around. In fact, applications for this meter just seem to suggest themselves. Why bother building a new version of an old instrument and not incorporate new innovations? So I came up with these requirements:

- No zeroing knob - just a "set it and forget it" calibration control.
- Linear scale reading from zero to a fixed value, rather than to infinity. What good is infinity to an ohmmeter, besides making the upper 25% or so of the scale relatively useless?
- Solid terminal connectors rather than wires with probes (optional). This would prevent poor contacts in the circuit, leading to error.
The finished version uses one size D flashlight cell, has two scales - zero to 10Ω, and zero to 1Ω. A "test" switch (momentary pushbutton) is used because of the high current requirement of the circuit. Battery life is conserved in this way.

Theory of operation

The circuit consists of a constant-
current generator (Q1) io provide a known current through the test resistance. The voltage drop across this resistance $(100 \mathrm{mV}$ maximum) is read on a meter whose internal resistance is much higher than a test resistance of 10Ω. Therefore, the meter does not load the circuit.

A bias for Q1 is established by diodes D1 and D2 and resistors R1, R2, R3, R4, and R5. Use of the diodes holds the bias level constant despite nominal decay of battery voltage. Diode D3 prevents severe overload of the meter in the absence of a test resistance. In case the test button is pressed, the meter will overload, but not much, thanks to D3.

My meter was obtained when I scrapped a Heath grid-dipper after buying a solidstate model. The meter requirements are $500 \mu \mathrm{~A}$ full scale, 200Ω resistance. A substitute may be constructed by using a more sensitive meter with a shunt, so long as the result is $500 \mu \mathrm{~A}, 200 \Omega$.

Construction

Layout is not critical, but solder connections must be solid and medium bus wire must be used. The battery connector must make tight connection with the battery. Check internal resistance by shorting the test terminals with heavy wire. Pressing the test button should give a reading of zero.

Transistor Q1 may be replaced by any one of a number of high-beta NPN types. Try what you have around and see if it works. R2 may be used to balance slight differences if another transistor is used. Calibrate by testing a precision 10Ω resistor ($0-10 \Omega$ scale) and setting the calibration control for a full-scale reading. The other scale should follow automatically.

 NEW PRODUCTS

Digital Frequency Meter

Motorola has introduced a new digital frequency meter the $S-1325 \mathrm{~A}$, with 50 mV sensitivity and eight-digit readout. The unit provides continuous frequency coverage from 50 Hz to 525 MHz in two ranges. The resolution and oscillator stability far exceed FCC requirements of two-way radios, making the unit truly obsolescence proof. The advanced modular integrated circuit design assures simple, reliable operation and ease of maintenance. A built-in deviation meter provides

total servicing capability for frequency and FM deviation measurements. For complete technical specifications, write Motorola Communications and Electronics, Inc., 1301 East Algonquin Road, Schaumburg IL 60172.

Silent Sentry (SS-80H)

Because of increased demand for a reliable solid-state subaudible continuous tone encoder/ decoder that is small enough to fit internally in portable and hand-held two-way radios as well as some of the very small mobile and base station models, Alpha Electronic Services has developed the SS-80H. Measuring only $1-1 / 2 \times 1-1 / 4 \times 1 / 2$ in., it is believed that this is the smallest unit of its kind. The SS-80H meets or exceeds EIA specifications, and coupled with the frequency determining module (TN-91H), can be installed internally in equipment where space is a severe problem. Completely compatible with Private Line, Channel Guard, or other standard frequency tone quieting devices, the SS-80H also is available on special tone frequencies, allowing greater use of congested channels. Utilizing solidstate circuitry, this reliable accessory makes
possible more efficient use of two-way radio communications by relieving the user from listening to cochannel chatter. Easy installation instructions are available for all two-way radios and free engineering assistance is provided for unique or difficult applications. For information call or write IAlpha Electronic Services Inc., 8431 Monroe Ave., Stanton CA 90680.

Deviation Meter

Motorola's S-132A portable solid-state deviation meter provides direct reading measurements for fast, accurate servicing of two-way radio and other communications equipment. The advanced design of the instrument eliminates the need for complicated setup procedures. Complete and self-contained with built-in local oscillator; no other accessories are required. Two carrying handles are provided, one on top of unit and one

on rear of unit. The Motorola S-1323A contains an accurate, linear, countertype discriminator and a heavily degenerative peak-to-peak voltmeter. A highly stable conversion oscillator provides accurate measurement to 1000 MHz with low inherent residual modulation and maximum freedom from drift. An IC audio amplifier drives a speaker built into the front cover of the unit permitting off-the-air monitoring. For complete technical specifications write Motorola Communications \& Electronics, Inc. 1301 East Algonquin Road, Schaumburg IL 60172.

Dual-Frequency Subaudible Tone

The Alpha DTSS-80 two-frequency transistorized subaudible continuous tone squelch system is exceptionally useful where there exists a need to have a choice of tone frequencies for the purpose of controlling or selecting repeater stations, base stations, or mobile radio units. By a simple two-position switch the dual tone makes possible the employment of multiple repeaters increasing the range capabilities of a radio communications system. The selective calling of two base stations, two groups of mobiles, or special control functions are other uses that this versatile device can accomplish. Each DTSS-80 tone unit is comprised of a plug-in encoder/decoder board and two plug-in TN-91 frequency determining boards.

A special model is available that plugs directly into GE's MASTR mobile radio units. For information call or write Alpha Electronic Services Inc., 8432 Monroe Ave., Stanton CA 90680.

Two Capacity in CK06 Style

Capacitance values up to $2 \mu \mathrm{~F}$ can be obtained in the newest model Ceraseal ceramic capacitors. The new units incorporate the high capacities in a modified CK06 case style with a thickness of only 0.150 in. Previous capacitance values had extended only up to $1 \mu \mathrm{~F}$. In the

Photos 1 and 2 show the meter built in a Bakelite box with aluminum panel. I have measured the resistance of a loading coil of a new Hustler mobile antenna and compared it to my old beat-up one. I planned to build a dipole out of the two of them and wanted to be sure everything was okay. Resistance of the probes I used was 0.2Ω, by shorting them together, the total reading (probes + coil) was 1.0Ω. Therefore the coils were 0.8Ω.

Other uses will suggest themselves. I hope you will find this novel instrument as useful as I have.

Ceraseal series, a ceramic case encloses the unit's active layers. A thin epoxy coating is applied to the finished unit for additional protection. Use of the ceramic case, which is formed as an integral part of the capacitor before firing, results in the production of a truly solid-state capacitor featuring monolithic construction combined with complete hermeticity for use in aerospace, computer, and military applications. Aerovox Corp., New and military applic
Bed ford $M A$
$0274 l$.

Amateur Radio Varactors

A new family of high Q varactors for amateur radio service in application from i-f's up through 450 MHz . These varactors now make practical very compact equipment by replacing mechanical tuning with electronic tuning. Amateur uses include AFC, incremental tuning of transceivers, remote control, and simplified frequency modu-

. .W3YCZ
lation. Application notes and data sheets are available from the manufacturer. Prices range from $\$ 1.50$ to $\$ 6.50$ in small quantities. Eastron Corp., 25 Locust St., Haverhill MA 01830

Double-balanced MIC Mixers

A new series of double-balanced MIC (microwave integrated circuit) mixers combines lownoise performance and wide bandwidth. The mixer-preamplifier (illustrated) provides multioctave bandwidths, low IM distortion, and beamlead Schottky diodes. Available with hybrid IC preamplifiers as well as discrete component units. RHG Electronics Laboratory, Inc., 94 Milbar Blud., Farmingdale NY 11735.s,

1971 Technical and Scientific Book Catalog Available

An 80-page catalog describes over 650 hardbound and paperback books which cover virtually every technical and scientific discipline. Special sections in the catalog feature "do-ityourself' 'titles and amateur radio publications. Vocational educators and industrial training directors will find textbooks, instructor's guides, and student workbooks in the section entitled "Text and Training Materials for In-Plant and Vocational Education." Copies of the catalog are available free from Thomas J. Eastwood, Director, Advertising and Public Relations, Howard W. Sams \& Co., Inc., Indianapolis IN 46268.

oscillator/monitor
 - makes an audible tone to monitor

 the RF of any CW transmitter from 10 Mw to 1 Kw \& 100 Ke to 1000 Mc , using only an $8^{\prime \prime}$ pickup antenna. - can be self-triggered for code practice or the testing of solid state components and circuits. - aids in tuning up E- testing RF oscillator and power circuits. - 4 transistor, 2 diode circuit, speaker, tone adjust, AA pencell, test tips, $8^{\prime \prime}$ ant., Ev magnetic base. - cabinet is 16 gauge black \&- clear anodised aluminum, $3.4 \times 2.3 \times 1.2^{\prime \prime}$ US made E. guaranteed for 1 year. James Research company, dep't: AR-M 20 willits road, glen cove n.y. 11542

Electronic Parts, Tubes, Radios New \& Used Amateur Gear.

Send $25 \not \subset$ for flyer listing hundreds of bargains, and we'll add your name to our permanent mailing list.

JEFF-TRONICS

4252 Pearl Rd.
Cleveland, Ohio 44109

FM Schematic Digest

A COLLECTION OF

 MOTOROLA SCHEMATICS Alignment, Crystal, and Technical Notes covering 1947-1960136 pages $11 \frac{1}{2 \prime \prime} \times 17^{\prime \prime}$ ppd $\$ 6.50$

S. Wolf 1100 Tremont Street Boston, Massachusetts 02120

HRL Levices

Direct Positive Photoresist Kit

Vector Electronic Co. Inc., 12460 Gladstone Ave., Sylmar, Calif. has just announced the availability of two new etched circuit kits. According to the manufacturer, these kits are different than other kits now available because they make use of easy-to-make positive artwork, much of which is preprinted and in the kits, plus photo- sensitized copper-clad boards in various sizes. With the materials supplied (which includes everything except water and a photoflood bulb) the user can make sharply defined etched circuits in single or multiple quantities quickly and inexpensively in the laboratory or school without photography. Lead layouts for integrated circuits, transistors, and connector patterns are all ready for transfer to the master circuit mylar

sheet provided. The photo-sensitized copper clad board, which can be used without a darkroom is then exposed to an ultraviolet light source, a photoflood lamp, or bright sunlight to produce a copy of the Mylar circuit image. This image is quickly developed with the chemical provided. The board can then be etched in the furnished etchant that comes in a durable plastic bag which may be shaken inside a plastic box (also furnished) without leakage. Because of the agitated etching, sharply defined circuits can be produced. If a number of the same circuit boards are required, duplicates can be made quickly using the same Mylar master. Kits sell for from $\$ 8.95$ for the 32 X sampler assortment to. $\$ 24.95$ for the professional sized version model 32XA. Kits may be ordered now from the manufacturer, or purchased from the firm's distributors. Vector Electronic Co., Inc., 12460 Gladstone Ave., Sylmar CA 91342 .

Groundplane Antenna

Varitronics introduces the Redhead,-a two meter 3.4 dB gain groundplane antenna. This sturdily built, commercial-quality unit is adjustable for low vswr ofer the entire 2 meter band. Both radials and radiator are built of heavy gage aluminum conduit, and the loading coil is well protected by a metal shield which is painted red. The antenna is rated at $500 \mathrm{SSB}, 250 \mathrm{~W}$ CW, AM FM. See the Vaxitronics AS-2HG (Redhead) at your dealers. Only \$18.95.

Octave Bandwidth of New 40 W on $\mathbf{2 2 0 - 4 0 0} \mathbf{~ M H z}$

TRW Semiconductor announces a new UHF power transistor offering a state-of-the-art combination of bandwidth, power, and frequency, The family of transistors is termed "J-Zero," because internal matching circuitry reduces input reactance to essentially zero. The new hybrid transistors provide high input resistance with lower input Q. Simple input circuitry with minimum tuning allows combining for output

powers of over 100 W across the band. High volume production thus becomes practical for the first time in high-power broadband UHF equipment. Characteristics of TRW type JO-2001 are as follows: 40 watts rf power output from a 24 V source; 5 dB gain across $225-400 \mathrm{MHz}$ band; minimum efficiency of 50%. Technical details are available from $T R W$ Semiconductor Div.,14520 Aviation Blvd., Lawndale CA 90260.

Series of Highly Stable
 Oscillators Developed for Two-Way Radio Equipment

A new line of temperature-compensated oscillators that provide a direct replacement for most crystal ovens used in two-way radio communication equipment was announced by Michael Sigmon, Product Marketing Manager of Sentry Manufacturing Company.

1970 Catalog of ICs and Semiconductors

A complete line of integrated circuits and semiconductors for hybrid microelectronic fabricators is now available from Starnetics. These include the related advanced products of a number of manufacturers. Semi-conductor devices, digital and analog integrated circuits, and memory networks are covered in the offering. All products are stocked in depth and are tested and certified to current military specifications as appropriate. The catalog describing these new products is free and can be obtained by writing Starnetics, 10639 Riverside Dr., North Hollywood CA'91602.

Broadband RF Microcircuit

TRW Semiconductors has introduced a new broadband rf microcircuit amplifier, CA800. The amplifier has $5-500 \mathrm{MHz}$ bandwidth with 25 dB gain across the band. It is a universal broadbandgain block in thin-film hybrid IC form for use in 50Ω instrumentation and radio systems. With a 28 V supply, 400 mW of CW power output is achieved. TRW Semiconductor Div., 14520 Aviation Blvd., Lawndale CA 90260.

Antennas

Cush Craft has just released its new amateur antenna catalog. It includes photographs and complete specifications of more than 50 popular amateur antennas and accessories. To receive your free copy of the catalog write to Cush Craft, 621 Hayward St., Manchester NH 03103.

NEW GEG CATALOG! MILITARY ELECTRONICS

24 PAGES, crammed with Gov't Surplus Electronic Gear - the Biggest Bargain Buys in America! It will pay you to SEND 25\$ for your copy - Refunded with your first order.

BC-645 TRANSCEIVER 15 tubes, 435 to 500 Mc . Easily adapted for 2 way voice or code on Ham, Mobile, Television Experimental, and Citizens Bands. With tubes,
 Iwss power supply in factory carton, BRAND NEW.
\$16.95
SPECIAL PACKAGE OFFER: BC-645 Transceiver, Dynamotor and all accessories, including mounting, UHF Antenna Assemblies, control box, complete set of connectors and plugs. Brand New.
$\$ 26.95$
TG-34A CODE KEYER, self-contained, automatic, reproduces code practice signals from paper tape. 5 to 12 WPM Built-in speaker. Brand new with tech manual., takeup reel and AC line cord
$\$ 24.50$

AN/APR - 4Y FM \& AM RECEIVER "FB" for Satellite Tracking! High Precision lab instrument, for monitoring and measuring frequency and relative signal strength, 38 to 4000 Mc. in 5 tuning sanges. For 110 v 60 cycle AC. Built-in power supply. Original circuit diagram included. Checked out,
 Perfect. LIKE NEW. \$88.50

HEADSET

Low impedance. With large chamois ear cushions. $4-\mathrm{ft}$. cord and plug. Reg. \$12.50.

SCR-274-N, ARC-5 COMMAND SET HQ!

Freq.	Type	Exc. Complete	Used	Like
Range	New	Brand		
Rew				

ARC-R11A Modern Q-5 Receiver 190-550 Khz . $\$ 10.95$
ARC-R22 $540-1600 \mathrm{Khz}$ Receiver
with tuning graph $\$ 15.95$
R-4 ARR-2 Receiver 234-258 Mhz,
11 tubes, NEW
$\$ 8.95$
TERMS: 25\% Deposit with order, balance C.O.D. -or- Remittance in full. Minimum order \$5.00 F.O.B. NYC. Subject to prior sale and price change.
G\&G RADIO ELECTRONICS COMPANY
47 Warren St., (2nd Fl) New York, N.Y. 10007 Ph. 212-267-4605

a cheap and easy

GUS WATCHER

Tlrying to insure contacts with Gus (W4BPD) as he roamed the Indian Ocean this past summer (1970), I found a feature lacking in my nearly new SB-301 and SB-401 combo - namely, the inability to use either master oscillator in the receive mode. Only by using a separate receiver could I keep my SB-401 transmitter somewhere in Gus' rather widespread listening area and have a chance of a contact. Two receivers add to the station cost and complexity and often make difficulties for the operator, especially during those late night sessions.

An excellent article by John H. Lehman (WA8MHO) in the January 1970 QST shows how to modify the combo to achieve instant selection of two transceiver frequencies, but this involves rework of the panels which many find abhorrent and provides a function which I didn't need (switching the transceiver frequencies). Also, with only one master oscillator controlling the transmit frequency (that in the SB-401) there would be less chance of operator error.

After studying the problem, it was determined that the switch could be replaced by relays to achieve the same results. However, since we only wanted to switch the tuning arrangement for receiving, one relay in the SB- 301 could perform the necessary function.

The circuit shown in Fig. 1 was built using mainly junkbox parts, helped out by finding a suitable 117 V ac relay so that no tapping off receiver power was necessary. Keep the coax leads from the relay to the plug and socket in the SB-301 as short as possible to reduce the drive lost in the transceiver position. By proper measurement, it can be built outside the combo and then merely plugged in, letting the one coax cable which runs from the SB-301 to the SB-401 lay under the lids where it is hardly noticeable. However, if one can take the time from operating and DXing to remove the units from their cases, holes can be drilled to permit a straight-through cable run. Use coax cable which is the same as or compatible with that provided in the combo.

A Y-phono connector is plugged into the output socket of the SB-401 master oscillator. The original SB-401 lead plugs into one arm of the Y, the relay lead into the other. Although this adds several inches of coax to the transmitter oscillator output circuit, no loss in drive was detected during operation.

Operation

The SB-401 must be placed in the unlocked position as for any split frequency operation.

Fig. 1. Schematic of simple modification. Phono plug and socket in the SB-301 mate with existing socket and plug. Phono plug in the SB-401 mates with one arm of Y phono connector. Relay position shown is unenergized and receiver master oscillator is controlling frequency.

Then activating the switch to energize the relay coil (I used a two-position singlepole switch with one side a momentaryon), you can tune in the signals of those who are calling and working Gus; release the switch and you are hearing Gus.

Depending upon components used, coax lengths and previous condition of the combo, there can be some changes in drive during transceive, and an extremely strong signal may feed through faintly during receive but these are considered a minor price to pay in view of the gain in ease of operation during our Gus watching (and working) periods.

All of this for under $\$ 8$, if you procured everything. A good junkbox would make it free. I bought a small minibox and switch for $\$ 2$ and installed a neon indicator in the box. The box rests near the SB- 301 tuning knob where it is convenient for my left hand to operate as I take a quick listen for my competitors when Gus is listening.

Although this modification may not satisfy the purist, it brings results; I snagged KP6AL and VS5RG (on two bands) during its first week in operation. I hope it proves of assistance to others using this fine combo.
...W9SDK…

Color TV erystal ($3579,545 \mathrm{KH}_{\mathrm{z}}$) wire leads
$\$ 1.604$ for 5.00
Color TV erystal $\left(3579,545 \mathrm{KH}_{z}\right)$ wire leads $1000 \mathrm{KH}_{z}$ frequency standard (HC6/U) 4.5
Any CB crystal, trans. or rec.
(except synthesizer crystals)
2.50

Any amateur band crystal in FT-243 holders
(except 80-160 meters)
80 meter crystals in FT- 243 holders
1.504 for 5.00
2.50

We have in stock over six million crystals which include types CR1A/AR, FT243, FT241, MC7, HC6/U, HC13/U, etc. Send 10ϕ for our 1970 catalog with oscillator circuits, listing thousands of frequencies in stock for immediate delivery. (Add 10ϕ per crystal to above prices for shipment lst class mail; 15ϕ each for air mail.)

CRYSTALS

ORDER DIRECT
with check or money order to
Special Quantity Prices to Jobbers and Dealers

2400B Grystal Dr., Fi. Myors, Fle. 93901

GATEWAY ELECTRONICS
 6150 DELMAR BLVD., ST. LOUIS, MO 63112 314-726-6116

1ST LINE - FACTORY FRESH - IC'S

7400 SERIES GATES - (any type - please specify)
Dual Inline Package\$. 50
7490 COUNTER, 7475 QUAD LATCH, 7441A NIXIE DRIVER.Ideal for building counters, digital clocks, digital voltmeters, etc.
All 3 for only . $\$ 7.50$
930 SERIES DTL GATES - (any type please specify)
Dual Inline Package $\$.50$
7400 SERIES DUAL FLIP-FLOPS - (any type - please specify)
Dual Inline Package \$1.00
709 OP AMP IN TO-5. Used for pre-amps,
RTTY TU,
and AFSK OSC. \$1.25
NL-940 DIGITAL NIXIE TUBES Numerals $0-9 \mathrm{w} /$ decimals
5 VOLT DC REGULATED POWER SUPPL \dot{Y}
Kit for IC projects -1 amp output, uses
LM309 voltage reg. IC protected against
overload, short circuit and literally goof-
proof. With PC board, schematic and spec
sheet.
Complete
$\$ 17.95$
COAX ANTENNA RELAXY 115 VA \dot{A} ́ with BNC Connectors.
New packed . \$5.00
Send for catalog available now. Minimum order $\$ 5.00$. Stop in and see us when you're in St. Louis.

Hi-Sensitivity Wide-Band AM/FM RCVR

38-1000 MHz: AN/ALR-5 consists of brand new Tuner/tConverter CV-253/ALR in original factory pack and an exc., used, checked OK \& grtd, main rcvr R-444 modified for $120 \mathrm{v}, 50 / 60 \mathrm{hz}$. Packed with each tuner is the factory checkout sheet. The one we opened showed SENSITIVITY: 1.1 uv at $38.3 \mathrm{mhz}, 0.9$ at $133 \mathrm{mhz}, 5$ at $538 \mathrm{mhz}, 41 / 2$ at $778 \mathrm{mhz}, 7$ at 1 ghz ; w/book \& pwr-input plug, all for
275.00
${ }_{30} \mathrm{mHz}$ Panadapter for the above 97.50
R-390/URR Rcur: Collins $\times \mathrm{H}$-Zero-beating, driftless receiver, grtd 100% perfect, with book.
795.00

Regul. Pwr Sply for Command, LM, Etc.

PP-106/U: Metered. Knob-adjustable 90-270 v up to 80 ma def; also select an AC of $6.3 \vee 5 A$, or $12.6 \vee 21 / 2 A$ or $28 \vee 21 / 2$ A. With mating output plug \& all tech: data. Shpg. wt 50 lbs
19.50

Bargains which the above will power:
LM-(*) Freq. Meter: . $125-20 \mathrm{MHz}, .01 \%$, CW or AM, with serial-matched calib, book, tech. data, mating plug.
Shipping wt. 16 lbs
57.50

Same less calib, book
12.50

TS-323 Freq. Meter: $\mathbf{2 0 . 4 8 0} \mathbf{~ m h z} .001 \%$. 169.50 A.R.C. R22; $540-1600 \mathrm{khz}$ rcvr, same size \& shape as the popular and well-known Command revrs like the BC-453, R23/ARC5, etc. No calib. dial but we furnish spline knob with graph of turns vs freq., and all tech data, connections, etc. 17.95
A.R.C. R32: Same as above except $108-132 \mathrm{mhz}$ with Squelch ckt, very hot. W/data \& graphr.
12.95

Our warehouses are bursting with good OSCILLOSCOPES, Digital Counters, Aeronautical Test Sets, Audio Test Sets, Oscillators, VIVM's, Precision Meters, Pulse Generators, Signal Generators, Differential Voltmeters, Regulated Power, Supplies, Ham Receivers, Wattmeters, Line-Voltage Regulators, etc. etc. We can't possibly begin to list everything in these ads. We have separate Catalogs for each Category of Equipment. . so please ask for your needs by the type of equipment you need! THANKS!

WE ALSO BUY! WHAT DO YOU HAVE?
R. E. GOODHEART CO., INC.

Box 1220-GC, Beverly Hills, Calif. 90213 Phones: Area Code 213, Office 272-5707

WE PAY HIGHEST CASH PRICE for Electron Tubes \& Semiconductors Immediate Payment on Unused Tubes H \& L ASSOCIATES Elizabethport Industrial Park Elizabeth, New Jersey 07206 (201) $351-4200$

WE PAY CASH FOR TUBES

Lewispaul Electronics, Inc. 303 West Crescent Avenue Allandale, New Jersey 07401

RG 196 AU 50 ohm teflon cooxial cable. Outside diameter . O80" RF loss .29 db per foot at 400 Mhz . Silver plated shielding and conductor, Used for internal chassis wiring, antenna coupling, RF coupling between stages, etc. Random lengths from 35 foot to 150 foot. Colors: black, red, brown, blue, grey, orange. Reguler price-23d per foot. Our price 5 e per foot $\$ 3.00$ per 100 ft
455 Khz ceramic filters type BF-455-A. These filters will help to sharpen the selectivity of most sets using $455 \mathrm{Khz} / \mathrm{F}^{\prime} \mathrm{s}$. Use scross cathode bies resistor in place of a capacitor, or in transistorized sets, ecross the emitter bies resistor. Impedance is 20 ohms at 455 Khz ., DC resistance is infinite. Impedance increases rapidly as you leave 455 Khz . Plan your own LC filter circuits at very low cost.
10 for $\$ 1.0025$ for $\$ 2.00$
TOROID POWER TRANSFORMERS
T-2 This toroid was designed for use in a hybrid F.M. mobile unit, using a single 8647 tube in the RF amp. for 30 watts output. Schematic included. 12 VDC pri. using 2 N 1554 s or equivalent. Sec. 1500 voits DC out at 70 watts. Sec. \#2 - 65 volts DC bias. Sec. \#3 1.2 volts $A C$ for filament of 8647 tube. Sec. \#4 C/T feed back winding for 2N1554's. 1% thick. 2%." dia.
$\$ 2.95$ ea. - 2 for $\$ 5.00$
T-3 Has a powdered iron core and is built like a TV fly back transformer. Operates at about 800 CPS. 12V DC Pri. using 2N442's or equivalent. DC output of V/DBLR 475 volts 90 watts. C/T feed back winding for 2N442's

TRANSFORMERS

P. 7117 VAC Pri. Sec. 11183 , ViACFe 120 ma . Sec. \#2 6.3 VAC @ 4A. Double Half Shell Mail Box Type. SX 146 type. $\$ 2.75$ ea. -2 for $\$ 5.00$ P-9 117 VAC Pri. Sec. \# 900 VAC @ 300 ma . Sec. 2100 VAC @ 10 ma . Bias. Sec. \#3 12.6 VAC @ AMP. Wt. 16\% lbs. Double Half Shell $\$ 4.50$ P-10 117 VAC Pri. Sec. \#1 960 VAC C.T. e 160 ma . Sec. \#2 425 VAC C.T. and tap at 100 VAC 10 ma Bias. Sec. $\$ 312.6$ VAC @ 4.5A Double Shell Mail Box type. Wt. $8 \% / \mathrm{lbs}$. Output transformers, all types $\quad 59$ cents or $\quad 3$ for $\$ 1.50$ OT-1 Transistor TO-3 Power Diamond.. Imp. 15 ohms to 3.2 ohms DC Res Pri Gohm. 3 Power
Res. Pri. . 60 hm . Sec. 3 ohm .
Sec. 3-2 and 500 ohm for Phones or 70 volt line 3 watts. Full shielded Double Half Shell. OT-3 Pri. imp. 5500 ohms. Sec. 3.2 ohms. SC 122 type.

All prices F.O.B. All weights listed are net. Please allow for packaging. Please allow enough for postage. We will return any extra.

PEP's SPECIAL! CIRCUIT BOARD COLLOSSAL

Loaded with components up to $\$ 100.00$ value. Bought out one supply houseFIRST come-FIRST served!
All Different! All Complete! First Line Units! If you don't feel that you got your money's worth-full return guaranteed.
3 DIFFERENT GROUPINGS TO CHOOSE FROM
Group A - Actual Value $\$ 15.00$ - PEP Price $\$ 1.25$
SAMPLE A-1: 200 diode -7 transistors over 50 resistors - complete with board.
SAMPLE A-2: Four 1. C. Mounting Blocks - 3transistors - over 25 resistors - complete with board.
Group B - Actual Value \$20.00 - PEP Price $\$ 1.75$
SAMPLE B-1: 8 I. C. Mounting blocks over 50 resistors -32 transistors over 30 diodes - complete with board.
SAMPLE B-2: 32 transistors - over 100 resistors - capacitors - over 15 diodes - complets with board
Group C - Actual Value $\$ 50.00$ - PEP Price $\$ 4.50$
SAMPLE C.1: 22 in-line I.C.s over 75 diodes - 20 trans. over 50 resistors - capacitors complete with board.
SAMPLE C-2: 22 in-line 1.C.s over 50 diodes - over 50 resist capacitors - complete with board.
LIMITED SUPPLY! Hurry and place your order for the best buys!!!

NO SALES TAX - WE PAY POSTAGE
park electronic products
P.O. Box 99, N. Salem, N.H. 03073

73 Reader Service Coupon

Now we don＇t say that every single reader must buy every last product advertised in 73. We believe that，but we don＇t say it．The very least every reader can do is to put on a show of interest in the products herein advertised．To make this a simple task，even for the laziest reader（now there is a contest for you！），we have cleverly arranged the advertising index to double as a readers service coupon．All you have to do is tear it out（or photocopy it）and send it in with the appropriate boxes marked． （We have a prize for the most boxes marked \ldots a silent prayer of thanks from the pub－ lisher）．We＇ll accept postcards，slips of paper，or almost anything else that lists the companies you want to hear from and your address．

No one likes to go into a store without buying something，right？It is the same with these information requests．You will be expected to buy something．Oh，it doesn＇t have to be a $\$ 50,000$ antenna system，but it should be something modest．．．a transceiver．．．a linear ．．．you know．We＇il leave the decision up to you，knowing that we can trust you to do the right thing．

And we are definitely not saying that the use of this service coupon has any curative powers，but we cannot but notice that many readers report remarkable relief from simple backache，headaches，lumbago，and acid indigestion after sending in their coupon．Why take any chances？

Advertiser Index

\square Amateur Electronics 43 －Amidon 55
\square Antennas Inc． 79
－Apollo 29
\square ATV 71
ロB\＆W 25
－Callbook 71， 82
$\square C B$ Radio 41
－Circuit Spec． 55
\square Cush Craft 55
－Dahl 41
－Dow Trading 55
DDrake 14，41，71，Cover 4
－Eastron 19
ロEKY Video Vision 73
－Epsilon 29
－FM books 96
－Freck 41
－G\＆G 91
\square Gateway 93
－Gillian 14
G Goodheart 94
－Gregory 65
－H\＆L 90
－Heath 51
ㅁHal 90
－Heath 51
口Henry 23
－Hy Gain 20， 21
IInternat＇I Crystal 15
\square James 90
－Jan Crystals 93 \square Janel 25 \square Jefftronics 90
\square Lewispaul 94
Mann 57
Micro－Z 50
\square Mosley 59
National Cover 3
\square Pantronics 41
\square Park 94
\square Poly Paks 95
\square RP 63
Regency 33
Ross \＆White 77
\square Sams 52
\square Sentry 37
\square Swan 45
\square Telrex 47
－Ten Tec 69
－Topeka FM 79
Tower 94
Tristao 29
Two Way 90
Vanguard 69，73
\square Varitronics 39
\square Vibroplex 25
\square World OSL 90
$\square 73$ Products 8
$\square 73$ Subscriptions 68
－73＇s FM Library 96

MAIL TO 73 Inc．，Peterborough NH 03458

PROPAGATION CHART J．H．Nelson Good 0 Fair（open）Poor \square February 1971

 28

EASTERN UNITED STATES TO：

ALASKA	14	7	7	7	7	7	7	7	7	14	21	21
ARGENTINA	14	7	τ	τ	7	7	14A．	21	21	21	212	21
AUSTRALIA	21	14	713	713	7	7	7	148	14	14	21	21
CANAL ZONE	14	7	7	7	7	7	14	21	21	21	21	21
ENGLAND	7	7	7	7	$3{ }^{\text {a }}$	7B	14	21	21	14	71	7
HAWAII	21	14	78	7	7	7	T	28	23	21	218	21
indta	7	7	78	78	78	7 B	14	14	28	78	78	7
JAPAN	14	73	78	7	7	7	7	7	78.	78	78	14
mexico	14	7	7	7	7	7	7	14	21	21	21．3．	21
PMILIPPINES，	14	73	78	7B	7 B	7 B	7	τ	78	7 B	16	7
PUERTO RICO	14	7	7	7	7	3 A	14	21	21	21	21	14
SOUTH AFRICA	14	7	7	7	7 B	7 A	31	$21 A$	21A	21	21	14
U，S．S．R．	7	7	7	3 A	7	7 B	14	14	14	7 B	78	7
WEST COAST	21	14	7	7	7	7	7	14	21	21	21A	21

CENTRAL UNITED STATES TO：

ALASKA	21	1.4	7	7	7	7	7	7	7	14	21	21
ARGENTINA	14，	14	7	7	7	7	7	14A	21	21	21a	21
AUSTRALIA	21	14	7 B	7 B	7	7	7	7 B	14	14	21	21
CANAL ZONE	21	14	7	7	7	7	7	14A	21	21	21A	21
ENGLAND	7	7	7	3 A	3 A	7	7 B	14	21	14	78	7
HAWAII	21	14	7 B	7	7	7	7	7	7 A	21	21A	21
INDIA	7	7	7 B	7 B	7B	7 B	7 B	7	7	78	7 B	7 B
JAPAN	21	14	7B	7	7	7	7	7	7	7 B	7 B	14
MEXICO	14	7	7	7	7	7	7	14	21	21	21	21
PHILIPPINES	21	14	28	7 B	78	78	7	7	7	7B	7 B	14
PUERTO RICO	34	7	7	7	7	7	14	21	21	21	21	21
SOUTH AFRICA	14	7	7	7	TB	78	14	21	21A	21	21	14
U．S．S，R．	78	7	7	3 A	7	78	7 B	14	14	7 B	78	$7{ }^{1}$

ALASKA	21	14	7	3	3	3	1	3	7	14	21	21
argentina	21	14	14	7	3	7	7	14	21	21	21	21
aUStralia	21	21	14	7 B	7	7	7	7	7	14	21	21
Canal zone	21	14	7	7	3	7	7	14	21	21	21A	21
ENGLAND	7 B	7	7	3 A	3 A	7	7	78	14	14	78	7B
Hawall	21	21	14	7	7	7	7	7	78	21	21A．	21A
IMDIA	38	14	78	78	73	\％ 8	78	7	7	\％	7 E	78
JAPAN	21	14	73	7	3	7	7	7	7	7	7B	14
MEXICO	21	14	1	7	7	7	7	18	21	21	21A．	314
PHILIPPINES	21	14	7 A	\％B	7B	7	7	7	7	IB	7B	14
PUERTO RICO	14	7	7	\％	7	7	7	14	31	21	21.3	21
SOUTH AFRICA	14	7	7	7	7 B	2B	TB	14	31	31	31	14
U．S．S．R．	： 8	7	7	38	7	IB	78	7	\vdots	78	7 12	78
EAST COAST	21	14	\％	7	\％	7	7	14	21	21	21a	21

$A=$ Next higher frequency may be useful also．
$B=$ Difficult circuit this period．

[^0]: one $1.3 \mathrm{~dB} /$ dipole $\$ 19.95$
 two $4.3 \mathrm{~dB} \quad 39.90$ with cable + conn. $\$ 49.40$
 $\begin{array}{ll}\text { four } 7.3 \mathrm{JB} & 79.80 \text { with cable }+ \text { conn. } \\ 104.80\end{array}$ eight $10.3 \mathrm{~dB} \quad 159.80$ with cable + conn. 208.54

[^1]: References
 l. Audio Frequency-Shift Keying for RTTY, Irvin Hoff, QST: June, 1965
 2. Harris Company, 56 E. Main St., Torrington $C T$.
 3. Elliot Buchanan Assoc., 1067 Mandana Blud., Oakland CA.

[^2]: BW
 Barker \& Williamson Incorporated CANAL ST., BRISTOL, PA. 19007

 See your local dealer or write dept. D for descriptive literature.

[^3]: ${ }^{1}$ Sources for CRTs: Arcturus Electronic Corp. Fair Radio Sales Co. United Radio Co.
 ${ }^{2}$ Radar System Fundamentals, TM11-467.
 ${ }^{3}$ A Compact Slow-Scan TV Monitor, MacDonald, QST, March 1964.
 ${ }^{4}$ A Slow-Scan Television Picture Generator, Hutton, 73, October 1967.

