amateur 73 radio

Editor-Publisher
Wayne Green W2NSD/1
Managing Editor
Ken Sessions K6MVH/1

STAFF

Associate Editor Jim Kyle K5JKX

WTW Editor

Dave Mann K2AGZ

FM Editor

Mike Van Den Branden
Advertising
Diane Shaw
Roci Billings
Aline Coutu

Advertising Representatives
 Bill Fields

Manfred Meisels
Andrew McCreight

Art Director

Roger Block

Graphic Arts

Nancy Estle
Jan Wozmak
Composition
Ruthmary Davis
Karen Mellor

Drafting

R. K. Wildman W6MOG

Wayne Peeler K4MVW
T. M. Graham W8FKW

Subscriptions
Dorothy Gibson

The amateur radio market has been too small to really encourage the Japanese to tool up for massive competition until just recently. Now we are seeing more and more Japanese products appearing in the ads.
The first major import was the Yaesu sideband transceiver was a well made unit and quite competitive with the American made equipment. Next came Heñry's Tempo. Now Kenwood, one of the top names in hi-fi manufacturing, is now being imported by Henry Radio and should also become a very popular unit.

In the FM field the best known imports are the Inoue (imported by Varitronics), Telecomm, and Standard. Drake has just announced an imported transceiver designed specially for them.

Can the Japanese drive the U.S. manufacturers out of business? They've done a pretty noss? job of it in other areas good job of it in other areas facturing ball bearings, manufacturing, ball bearings, etc., so it is entirely possible that they might be able to take over a good portion of the U.S. ham market.

Should U.S. manufacturers go complaining to Washington and ask for protection as the makers of shoes and clothing have? Students of the complex import-export situation tell us

The result of this is a product turned out at a price that is extremely competitive almost everywhere in the world in just about any field they wish to tackle. The Japanese government helps by limiting or even prohibiting any competition from outside Japan, thus giving the companies a captive home, market as a starter. This has been quite effective as anyone familiar with the camera, clothes, automobile, radio, television, and hi-fi markets will attest.

The car market is an interesting example of the ability of the Japanese to develop a strong export market. In 1955 Japan exported two cars. Just two. In 1960 this was up to 7000 cats exported to all countries. In 1965 they exported 101,716 Toyotas and Datsuns, of which 27,460 came to the U.S. In 1966 they sent 53,272 to the U.S. It only went up to 71,625 in 1967 , a slow year, and up to 172,728 in 1968 . In 1969 this was up to 168,070 passenger was up to 168
cars to the U.S!

A similar pattern occurred in the camera field, the transistor radio field, and others. Will this happen to the amateur radio business? The pattern certainly seems to be repeating itself.

Women's Lib II

My editorial comments on the Lib movement were not in
by Herter's the world over. The word "Point" on name was originally put in to indicate the value in beaver skins. Order out a pair today. .."

The description goes on to explain that only the most expensive bull-hide leather is used and that only one hide in 200 is free enough from tick bites and flaws to go into these shoes.

The price of these fantastic shoes? Only $\$ 14.95$. Who could pass up a bargain like that? Not me, for sure. I sent off for a pair and found them to be the most comfortable shoes I had had in years. I used them for hiking yeaund New Hampshire wore them on my safari in Africa wore them around the world, wore themed to wear and continued to They showed no signs of wear ing out in any way.

Comfortable shoes have been difficult for me to find in the past so I had gotten in the practice of getting a second pair of any shoes that worked out well. I sent for a second pair of Herter's shoes and put them on the shelf. The first pair is now about five years old, has been worn almost every day, has taken me out on hunting trips through mud, rain, snow, moun tain climbing, hikes, and still fit comfortably, with no sign of wearing out or coming apart at the seams. The second pair is
still up on the shelf. I may not live long enough to get to them. How is 220 Coming?

The prospects look bright for the Radio Today petition to open several hundred channels in the middle four MHz of the amateur 220 MHz band for a hobby-type amateur license which would be based upon a knowledge of rules and regulations only.

CB Magazine has come out in support of the petition (now known as RM-1633), adding a proposed change which would permit AM as well as the proposed FM operation. I can only assume that this is because the editor is not that familiar with FM for the use of AM would go long way towards duplicating a long way towards duplicating the chaos now heard on 11 meters. To me AM idea is supposed to make it simpler to use units which would convert CB gear to the new band. This can be done, of course, but the extra cost of having the converter provide the desired FM would be slight and the advantages manifold.

S-9 Magazine seems to like the idea also, but in their usual ly underhanded way they as cribed the petition to our greed which, if I read them rightly has no known bounds. This is incorrect. Our greed knows bounds.
...W2NSD/1

Circulation

Phil Price
Comptroller
Georgiana Sage

Publications

Jeff Parsons
Biff Mahoney Hal Flagg

Traffic

Taylor Sage
Propagation
John Nelson

73 Magazine is published monthly by 73 Inc., Peterborough, New Hampshire $\$ 6$ for one year in North America and U.S. Zip Code areas overseas, $\$ 7$ per one year elsewhere. Two years $\$ 10$ in years \$14, and \$16 overseas years $\$ 14$ and $\$ 16$ overseas. Peterborough, N.H. and at ad ditional mailing offices. Printed at Menasha, Wisconsin 54952 U.S.A. Entire contents copyright 1970 by 73 Inc., Peterborough, N.H. 03458.
Phone: 603-924-3873. We could hassle you about sub tions, bugging possible advertisers and all that, but we won't. If you want to go through the next month with one of the blackest curses known to man on your head then all you have to do is ignore 73. .do not subknow that you thought they were out of the ham business because they have not advertised in 73 in over ten years. Go ahead and risk a curse so powerful that it could well have a serious effect even upon your family two generations later.
hat the minute the U.S. sets up estrictions on imports we can expect a rash of ditto from other countries and that the result will be far worse than any possible benefits we migh gather from restricting imports. gather from restricting imports The problem is Japan, of course line to reciprocate the Japanes ine to reciprocate the Japanes protective systery items.

Perhaps Drake has the best compromise, having their FM unit built in Japan and marketed here by their organization?

Why is it that the Japanese are able to compete so tellingly with U.S. companies? Most of the ICs are being made in the U.S. This means that the Japanese firm must by ICs from us, import virtually all of the raw materials, and then ship the finished product all the way back to us. In addition to the ocean or air freight on the product there is the markup of the importer, plus import taxes. In spite of all this expense, the imported products are, still mporte picedur bly pro units of eomparable quality own units of thi possible?
how is this
The secret is, of course, the whole Japanese way of life. The productivity of the Japanese worker is far beyond that of most any other worker in the world. He joins a company for life and devotes his life to that company. He plans his own time so as to be sure that he will bring the best of health and energy to his job. He and his union work with management to effect the most efficient production of the product using the latest automation techniques (as opposed to many U.S. unions which do everything possible to prevent automation).
ny way intended to cast asper sions on any gals, and particular y not our ex-editor Kayla, who did a man-sized job of tiding 73 over a very rough period.

Consumer Protection Department

One of the most delightful books in the 73 library is a catalog from Herter's in Waseca, Minnesota. This sporting goods mail order firm puts out a 650 -page catalog that is highly entertaining. If you believe the catalog, just about everything they carry is the finest available anywhere at any price. Many of the items are made specially for Herter's and their described magnificence is overwhelming.

Strangely, though I have suc cumbed to many of their des criptions, I have yet to catch criptions, 1 them exaggerating. For instance Hudson Bay One Point Shoes Mun's Bay One Point Shoes Men's. These are described as the finest Oxford cut wilderness shoe procurable. Made of hand worked leather. Require no break-in. These world famous custom shoes are entire ly hand cut and hand made. They are the French Canadian Moccasin in Sauvage shoe and not quite a newcomer. They have been proven the best for nearly two centuries. Do not mistake these famous shoes for so-called 'sport moccasins' production made of cheap leather Such shoes stretch out of shap and come apart under rough use and will ruin your feet on rough terrain Hudson Bay one Poin Shoes are made for guides, for Shoes are made for guides, for est rangers, trappers, game war dens, timber cruisers, scalers and other professional outdoor people who want a low shoe for summer wear. Hudson Bay shoes are now solely distributed

The Cover: Jodi WA1JYV - our cover girl - can be found just about any time on 50.55 MHz usually mobile. Her VW bug has a Lafayette HA 460 crammed into its innards and sports a Saturn-6 halo. Jodi's halo doesn't show up well in bright sun. . and this angel's technical statistics are classified.

ontents

18 A relaxed DXpedition to Luxembourg G3BID
22 Try DXing the World the HARD WAY! Around the world in 90 frustations.Split Phones - A DX Operating Aid
\qquadYou've got two ears? Why not use them both?
Can Ham Radio Manufacturing Survive?Maybe.
45 Heath Tener Modification . K8JLK Bigger fuse.
46 Testing the RP Electronics Compressor Staff Cheapest way to double your power.
48 For the Love of a Ham. Show this ham . WB6AOF Show this to a wife (your own, preferably)
50 Duty Cycle Duty Factor. .
this.
It is your duty to read this. An FM article? You bet!
56 Getting Hep to ICs . K6MVH Pun intended.
Voices from the Past . Staff Ten, thirty, fifty years ago today.
Basics of Surplus FM . WB2AEB Another FM article? What else?
66 A Parabolic Beam for 10, 15, or 20 Meters WA2SJZ Big.
The Galaxy FM 210 . K2ULR Even more FM? Right! U.S. made, too.
Lightning as it Affects Ham Radio Patzsch It affects, believe us, it affects.
76 IC Receiver Accessory
Inverted Attic Antennas \qquad TVI from the mystery neighbor
Double Balanced Mixers . K3PUR The heart of SSB
A Quick and Permanent Tool Marker K5JKX Tom Swift and his Electric Pencil.
There is a Santa. . But! . W6LJZ Think before you pray.
A New Start from Washington . W8G An insider refutes QST December editorial
Amateur Study Guide Supplement. Q \& A special with no A's.

Features
2 Radio Amateur News Page Editorials
8 Caveat Emptor

10 Letters
78 New Products 110 Propagation Chart 112 Advertiser Index

CLAMS U.S. UNFAR!

For years the Japanese electronics industry has been the target of U.S. charges of "dumping." or selling items in the United States at prices that are below the market price in Japan. The effect of such tactics, say U.S. manufacturers, is to squeeze legitimate businesses here out of competition. But dustry industry has been poohpoohing the cries or ignoring them altogether. But now the tide has changed a bit according to a series of news items in Business Week, a McGraw-Hill publifacturers of integrated circuits are finding themselves squeezed out even in sales within Japan-- and they're accusing American firms of the same "dumping" tactic. They say American IC and transistor manufacturers are dumping large quantities of semiconductors on the market panese to compete.
Toshiba's president, Toshio Doko, said his firm has had to cut its prices sharply to compete with U.S. IC prices. Industry spokesmen here, however, label the "dumping" charge as ridicuproduction efficiency. In the production efficiency. In the duction and higher product re-

SALEM CIVIL DEFENSE GOES FM
The Salem RACES mobile units Defense antenna system which fense RACES communications are equipped with Galaxy gives coverage for the town and team with their mobile radio proved to give excellent cover- Defense Sector headquarters. Marsh, CD Director, Merle Cenage throughout the town. Civil Salem is thought to be the first tner W8AOT, Samuel Burke Defense communications act as town in New Hampshire to go WA1MOF, Warren Martel back up units for police and fire completely FM for Civil Defense K1RCT, William Loeffler departments when needed as communications. Shown in W1PFA, Communications Direc well as a separate communi- front of the Salem police sta- tor, Donald Alexander W1UFK cations network to be used in tion, which also houses Salem Radio Officer, Anthony Coco any local emergency. In the rear civil defense headquarters, are K11LB, Radio Officer, and Ken-
of the photo is the new Civil members of the Salem civil de- neth Cheverie, W1QKG.

HAM HELPS SAVE A LIFE

New Orleans (AP)-A New Orleans ham radio operator's quick action enabled doctors to get snake-bite serum and save the life of a Colombian youth. that he had talked by radio with a ham in Cucuta, Colombia, who had told him that the 5 -year-old child had received the serum.
saved saved the little boy's life, "Mr. Treadaway quoted the Colombian ham as saying. "They say won't have to amputate his leg.,
won't have to amputate his leg.
Mr. Treadaway was on his short-wave radio when James H. Stiles, the Colombian ham, broke in on his frequency and asked for help in getting the serum
Mr. Treadaway made contact with the United States Public an official called the hospital's outpatient clinic in Miami and had the serum flown to Colombia.

FCC SUSPENDS
liability, individual IC prices have been dropping.

According to one of the Business Week news items, Japanese consumers have been set made in Japan to sell (in Japan) for $\$ 500$, can be purchased in the United States for about $\$ 200$. While this may the Japanese consumer, it has proved a real thorn in the side of U.S. manufacturers, who must either make their own sets to compete with the imports, or give up the manufacturing of them altogether and join the mporting game themselves. American is not surprising that Amexican electronics manuthe shoe is on the other foot.

HaM'SCALL ReSCUES STRANOED FaMILY

Heber City, Utah AP) - A North Carolina ham radio operator recently relayed listress signals from northcountry and helped in the rescue of a Salt Lake City couple and their two children.

The authorities said that Mr. and Mrs. Phillip Gordon and their children were stranded on a mountain road when their pickup camper got stuck in mud.

Distress signals from their short-wave radio were unable to each nearby Heber City or Salt Lake City because of the mountains. So Mr. Gordon aimed the signals eastward where they were picked up in North Carolina

Carolina ham, who was not identified, radioed an operator in American Fork who then relayed the message to Floyd Witt. The family was rescued.

FAMED EME SITE

 TO BE DISMANTLED
by WA $3 A J R$

Bill Smith (W3GKP) was the first ham radio operator to make EME (moonbounce) on 2304 MHz , and he didn't do it with an ordinary dipole. As the photo shows, it takes a real of the big dish can be estimated of the big dish can be estimated
by comparing it with Bill himself, who is standing at the fower right. In this picture, he is actually closer to the camera than the dish itself.

According to Smitty, he will be leaving the area soon, and the The dish? It goes with Smitty of course!

MOON REPEATER TO PERMIT INTERCONTINENTAL UHF QSOs

by N. K. Marshall W6010/2 The design, development, and test of an operational prototype now in progress and final con struction of a flight model is imminent. When completed, NASTAR hopes to have NASA carry the Moonray repeater to the moon via one of the remaining Apollo missions. One of our astronauts will emplace and activate is to have a continuously operational repeater for a period of one year or longer.
Moonray's primary purpose is to serve as a free-access UHF repeater for worldwide line-ofsight amateur communication 450 MHz band. A secondary function will be its capability to serve as an emergency backup
voice communication link for
our astronauts in the event of an box. Three retractable legs wil unlikely (but possible) break- be used for support and leveling. down or failure of their regular The up-link frequency will be ray can also be used as a lan- 430.1 MHz . A 10 kHz passban ding-site relocation beacon for on both links will accept all homing-in on the site at some modes of modulation and/or later date. If the laser experi- transmission. ment is successful, location ac-

Moonray I will contain a highly sensitive low-noise receiver, a signal processor, an identifier, a timer-cyclersequencer, six to eight channels of telemetry, and a laser receiver with optics. Power will be supplied by an isotope-fueled thermoelectric generator having a controls, antenna. pointing system and all auxiliary devices will be self-contained. The final package will be a metal cylinder about the size of an oatmeal

Moonray's call sign will be the identifier SS in Morse code minutes along with every 10 sequence. Repeater operation will be on a continuous-duty basis with only one-minute in terruptions each 10 minutes. Amateur ground stations should have high-gain antennas capable of tracking the moon low-noise 430.1 MHz crystalble, tunable i-f's. Detailed info on Moonray is available, from NASTAR, Box T, Syosset, LI NY 11791.

LICENSE OF WB4GTG

Obscenity, Out-of-Band, and Other Violations Cited.

The FCC moved to suspend the Advanced class lisence of Brad McGann (WB4GTG) after noting a number of alleged order from the Commission, the licensee allegedly committed the following infractions of Amateur Rules and Regulations:
Transmitting a false call sign; operating on frequencies that are reserved for Extra class operators; operating his equipment band: operating his phone station in portions of the $80-$ meter band that are reserved for CW transmissions only; transmitting 'obscene, indecdent, or profane words, language, or meaning" in violation of Section 97.125 of the amateur rules; willfully and other ham radio operators; and broadcasting of communications that were intended for reception by the general public.
In a quotable understatement, the FCC report said McGann's alleged actions were not serving the public "interest the conclusion of the federal report, an order of suspension "It is ordered under authority contained in Section the Communic), and (E) of 1934 ammuncations Act or 0.332 of rules that the Advanced elas amateur operator license of Bradford Y. McGann is sus pended for the remainder of the 1973) term. . ." (till September 1973).

тоине Hanerserysill !

by Jesse G. Ball,
In announcing the annual summer picnic and hamfest the said: "Jump in your car, cycle, truck, or plane and come to our picnic and meet the whole gang.

Hamfest mobile: (L to R) Joe, Jesse (W 6BFO), Paul (WA6 VRT), and Gil (WA 6ULA) thought up novel way to get to a California hamfest Holding the call-letter flag is Jim (WA6MYJ).

QSL MANAGER OF THE MONTH

The very attractive Mary Ann Crider Scott's QSL Manaer of the Month, has taken on QSL manager duties for some thirteen stations over the last year and a half. These stations $n c l u d e$ CTIOF CTILN CTZAA CT2AP CR6GA, and CEO AE -op. Father Dave, along
with several others now QRT, with several others now QR , irs eight months of her activity as a Novice. During this time she acquired a WAC and a WAS along with 86 countries. She has to this date added 207 countries to this total and now has 285 confirmed. Her awards have also grown
WNPX.
WACe
 and Uncle Dave delivering drugs ment cancer victim. First ship had to be made. The second shipment arrived in less than sixteen hours.

SENTRY GETS BID FOR WORLDWIDE EXHBBIT

Sentry Manufacturing Co., a Chickasha, Oklahoma electronics has been selected by the U. S. Department represent the latest state of electronic technology at "Electr-
onica CA 1970 " a worldwide industry fair held in Europe every two years. The only firm so honored from Oklahoma, it is one of two in the Southwest to be invited to exhibit its proMunts at Germany. The event is the most widely attended elec. tronics fair in Europe and draws worldwide attendance to see the latest product state-of-the-art advances in the industry.
Sentry will display its line of precision crystals, precision temperature-compensated oscil-
their trouble racked moon trip. Don Abel, president, and Peter Warren, sales manager, will attend the show. Abel revealed for the first time publicly that series of quartz crystals devel oped as timing elements in wrist watches. "It will be the most accurate timing system for wris watches known," he said.

60\% EXPANSION FOR HEP LINE

Motorola has introduced 109 new semiconductors through HEP distributors to the hobby service and radio amateur mar-

WAZ, WPW (worked Portugal world) to mention just a few. She is a member of YL International SSBers and YLRL
Mary Ann and her husband Charles W3GE, an amateur of 32 years, have three children and two grandchildren. They including Jordan, where she op, ncluding Jordan, where she opstation.
As QSL Manager of the Month, Mary Ann was awarded the "golden microphone" trophy. Nominations for QSL Manager of the Month should be sent to Scott's QSL Service, 77055 . They should include a short summary of why the manager deserved to receive the award.

NEW VHF XSTR!

Lawndale, Calif. TRW Semiconductors announces the industry's most powerful 150 MHz communications transistor. The new unit, type PT6729, delivers 120 W rf power output with a 6 dB gain from a 28 V source. Package is a 4-lead diamond
configuration. For technical deconfiguration. For technical detor Division, Communications Transistor Plant, 14520 Aviation Blvd., Lawndale CA 90260.

Operation Goodwill, the Christmas service sponsored jointly by the Times-Union and Uncle Dave Marks of the dio is usually dormant durin the summer months.
But the disastrous earthquake in Peru has activated a large-scale response from the Albany area through radio contacts, established by "Uncle Dave" and Operation Goodwill. Albany Rotary Club and scores of other volunteers who have been donating and shipping money and supplies to the earthquake victims, thousands of dollars worth of aid has been transmitted.

WHAT'S HAPPENING ON 220 MHz ?

by K $6 M V H$
There's a fellow out in California who's publishing a monthly in that state on 220 MHz . He says that the active groups in California would like to encourage other amateur 220 operators to speak up about what they're doing in their own areas, so that a rationale can be developed for the exchange of ideas and information
The fellow's name is Don Farwell (WA6GYD), and his newsletter is currently being disinterested ops. If his circulation improves as a result of this little blurb, you can bet he'll start charging a subscription fee - it costs money to mail things these days. So why not get on his mailing list now and get the advantages of learning what circuits the 220 boys are using. In adarion to short technical artcarries some classified ads and just enough of the hometown gossip to keep his sheet interesting.

A first aid shipment from Albany was sent from Albany it had arrived in Lima, Peru, just two days later. The Lima, Rotary Club is responsible for distribution of the funds and supplies sent by local Rotarians.
The most important needs now are for building shelters, tents, blankets, medicine and money, according to the relief workers. More than sixty Alfunds following a Thursday appeal by Uncle Dave.
Quoting a report from Albany's Times-Union, "It is encouraging to know that Operation Goodwill and its thousands of supporters can be ,counted on at a time of tragedy

EMPTY SHACK

Death has claimed Stanley Roberts (G6QS). Roberts was the first British amateur operator to work every one of the United States. According to his widow, the G6QS station was active every day. "Hamming was his life, she said. Stanley's felaggrieved by his passing.

Ninth Wheaton Swap ' n 'Shop The Wheaton Community Radio Amateurs (WCRA) will hold their ninth annual Mid-Winter ruary 21,1971 at the DuPage County Fair Grounds, Wheaton, Illinois. Hours -8:00 a.m. to 5:00 p.m. \$1.50 donation at the door. Send SASE for advanced tickets to Box QSL, Wheaton, Illinois. Refreshments and unlimited parking. Bring your own tables. Free colfee and donuts electronic hobbyists, friends, and commercial exhibitors are, cordially invited. Contact John Stockberger (W9THI).
lators and its "Covistor," the
tradename coined for its highly tradename coined for its highly coefficient resistors that are used in computers.

The relatively
homa electronics firm is engine ering-minded and recently gained national attention when it supplied critically needed crystals under emergency conditions to aid the last minute air-ground communications with assure a safe splashdown after

SSTV WORLDWIDE

"CQ Elettronica" Magazine proposes and sponsors the 1 st held on Feb. 7 (0700-1400 GMT) and Feb, $13(1600-2300$ GMT). Suggested SSTV frequencies are $3.740,7.050,14.230$,
$21.100,28.100 \mathrm{MHz}$, A pix exchange is necessary, though the message number may be given by voice.
A two-way contact with a station receives one point (total points will be the number of individual stations contacted) No extra points will be allowed on different bands. A multiplier of 5 points is given for each continent worked. Score logs must contain: date, time (GMT), band, call sign, message number
To encourage those who have no SSTV transmitting gear a special prize will be awarded for the best collection of photographs of received SSTV pictures. Prizes: 1 st prize-One silver thaler of Maria Theresa, 2nd Drize - A free 12 month's subscription to

All logs must be received by 28 th February 1971 . They should be sent to Prof. Franco Fanti (I1LCF), Via Dallolio, 19 40139 Bologna, Italy.
kets, accounting for a 60% increase in the electronic firm's number of HEP semiconductors. integrated circuits, rf power transistors, FETs, Triacs, SCRs, Darlington amplifiers, and highcurrent rectifiers" says Art Baldensperger, Motorola HEP sales manager. "Several replacements for Japanese and other oreign transistors have also been added to the HEP line. These and other devices are all Motorola's HEP Cross Reference Motorola's HEP Cross Reference
Guide and Catalog HMA07." The HMA07 catalog lists 27,000 replacements for over device type numbers, available dhrough authorized HEP suppliers.

HEP is Motorola's sales program for making semiconductor
devices readily available to experimeters and hams through a nationwide network of authorized suppliers.

40 m PHONE CITATIONS

Somewhere an FCC monitoring station employee apparently noticed in the fine print Part 97, Appx 2, Resolution tions are permitted to use the $7100-7300 \mathrm{kHz}$ part of the 40 m amateur band as long as they do not direct their transmissions into region II (North and South America). He surmised there from that U.S. amateurs should in turn not communicate on 40 m with the other two regions. received advisory notices after making contacts with European amateurs cross-band between the U.S. phone band and the European phone band (below 7100 kHz). Naturally, a scream went up that was heard clearly in the hallowed halls of the FCC Amateur Division in Washington quickly things got straightened out the Fed decided that contacts with European phone stations are still permitted on 40 m phone.

COCOS-KEELING

If you still need VK9YR you 14.250 at for Chris around QSL to VK6RU.

MACQUARIE ISLAND

Watch for the two ops on this rremote spot using the call VKQ LD, reported on around to ZL2AFZ.

NEED NAURU?

Derrik C21GB will be there until the end of May. He operates mostly on Tuesdays and 09007 You'll have to call him on CW and get him to tune up for you on sideband. Another station is due to be active from Nauru before long, so don't worry too much if you have a hard time getting C21GB.

WAVE/ WACAN RULES

Toronto's Nortown ARC (VE3NAR) is the sponsor of two long established and internation ally famous AWARDS - WAVE (Worked All E) and RAules are listed Allow.

Rules for WAVE Award. Produce QSL cards to verify,
QSO with 2 different stations QSO with 2 different stations on 2 different bands in each of the following 9 provinces: Prince Edward Island (VE1), Nova Scotia (VE1), New Brunswick (VE1), Quebec (VE2), OnSaskatchewan (VE5) Alberta (VE6), British Columbia (VE7); cards from Yukon and or Northwest Territories (VE8) may be substituted for British Columbia (VE7). All contacts must be made from an area within a radius of 150 miles of one point mit the 18 QSL cards with $\$ 1$ or 10 IRCs. Cards will be returned.

6th ARKANSAS QSO PARTY

The North Arkansas Amateur Society of Harrison announces its sixth Arkansas QSO Party and invites all amateurs to participate.
RULES:
(1) The time will be the $30-$
hour period from 2200 GMT January 23 to 0400 GMT January 25.
(2) Arkansas stations score 1 point per contact and multiply by the number of states, Canatries worked during the contest period.
(3) Outside stations score 5 points for each Arkansas station worked and multiply the total by the number of counties in Arkansas worked during the per(4).
(4) Stations may be worked once on each band and each
(5) A certificate will be awarded to the highest-scoring station in each state, Canadian Province and foreign country with 100 or (6) more points.
(6) General Call: "CQ ARK". Arkansas CW stations should identify themselves, by signing tions should say "A Phone sta-
ling. Suggested frequencies (plus or minus 5) will be; CW 3560 , $7060,14,060,21,060,28,060$; SSB: $3960,1260,14,300$, $7175,21,110$.
(8) Arkansas stations send QSO number, RS(T) and county. All other send QSO number, RS(T) and state, province or country. (9) Logs and scores must be postmarked no later than February 9 and sent to the North Arkansas Amateur Radio Society, c/o J. K . Fancher, Jr.,
W5weE, 407 Skyline Terrace, Harrison AR 72601.

On artd on, like Tennysor's brook, goes the Big Brag. The depended upon to voice con sistently this parting over and over again, that since th 'League's in its Heaven, all's right with the world." It's all very confusing
lead paragrap November issue, the ${ }_{6}^{\text {ead paragraph } s t a t e s}$.meaning our ARRL, and all its attlliated clubs, and all the other amateur radio societies in the world, and the Internationa Amateur Radio Union.' Is i not remarkable how deftly the editorialist has expunged from existence the hundreds of thou sands who are not members of of masterly executed strokes of his pen together with a few appropriate hooplas and an ab racadabra or two, he has rendered them allhors de com bat and persona non grata! By viewing them as nonmembers of these organizations, he con consequently beyond the pal of "organized amateur radio, What would happen, one won ders, if in similar fashion the major political parties were to be silly enough to dismiss as unimportant and not deserving of inclusion in their deliberative strategy all voters who wer unorganizegularly registered in one of the preferred parties? They would fail to win elec tions, and they would atrophy due to their short-sightedness

Don't misunderstand me please. I do not mean to imply that the U.S. delegation to the forthcoming international con interests of those hams who are not members of the League, the clubs, etc.; probably the opposite is true. In fact, I cannot conceive of any delegation from any other country repre sented, which wil be more firmiy committed to the prin ciples which will favor amateu the constant failure to acknow ledge publicly that there are
matter, how about DJ or JA? I and when you have contacted you were not particuarly sure cerned with the composition of the government, the politica persuasion or the past history of these countries. In fact, I cannot think of any amateur who would spurn a contact with a BY if he happened to hear one despite Th

The point I'm trying to raise of Max certain gent by the name his call Sherr, who did not sign and fulminating letter in our November issue, is that if an amateur were to insist upon al his contacts conforming to a pore he might find himself in a posi tion of isolation

> of isolation To regard
unwavering oppos position of Hussein, the fact is out (not only here by Wayne Green, but by the Society of Friends (Quakers) who are cer tainly no apologists for politica repression), Hussein is one
who are seriously attempting to steer a moderate course in the baffling crisis in that unhappy
area of the world. I strongyy suspect, and I put it to you, that Mr. Sherr is not a bit interested gard all Arabs as enemies, for his letter is filled with half-truth innuendo, and outright false hood.

Apart from his departure from factual accuracy, Mr. Sherr gives the distinct impression avoid all contact with those with whom we disagree, or whose politics are reprehensible to us. He leaves no doubt tha he suffers with a pronounced allergy.. Arabs. In this connec tion it is interesting to note tha JY1 has been actively sought 4 X 4 s , who would surely more legitimate reasons for avoiding him than does Mr Sherr! If Israeli hams can find

1430 , but as late as 2300 or so at times. Sid likes lists and has
been helped at times by 7 Z 3 AB . QSL to Box 253 , Medani, Sudan. Sid appreciates help, so try and give him a hand when you hear the big boys starting to crush him in their unmerciful way.

TRAGEDY IN TONGA

VR5DK is now being operated by the widow of WA6DKW, who suffered a heart attack while on a DXpedition there in early November. Darlene has Gene passed away. Gene Souligny and his wife erating from Tonga for about three weeks. QSL to the W6 bureau.

MALI

What may possibly be the first legitimate DX operation from Mali took place in early November when DJ6QT and
DJ1QP went on with the call TZ2AB. They contacted Lloyd TZ2AB. They contacted Lloyd fruitless months in 1967 trying to arrange for a license, that theirs was the very first license ever issued by the Mali government. This raises some questions perhaps better not asked of one or two previous "expeditions" a short time from Mali and then went on to operate as XT2AB from Upper Volta and TY@ACD in Dahomey. Good show.

THE GAMBIA

Look for ZD3D around 21.410 at $1800-2000$ Tuesdays
and 14.225 around 2200 Z . and 14.225 around 2200 Z . tacts, sometimes a list. QSL to VE2DCY. Good luck.

Rules for WACAN Award (for duce QSL WAVE Award). Prowith 2 different stations on 2 different bands in each of the following 3 sections. Labrador and or Newfoundland (VO), and or Northwest Territories (VE8). Submit the 6 QSL cards, WAVE award No. and $\$ 1$ or 10 IRCs. Cards will be returned.

CASCADES CLUB REVIEWS CRASH DRILL

A simulated airplane crash and emergency alert review was the primary topic of discussion a the latest monthly meeting of the Cascades Amateur Radio Society. CARS members were stationed at Parkside High School the site of the simulated crash, pathic Hospitals. Utilizing mobile and portable ham radio equipment, they provided the only two-way communication between the various hospitals and the emergency site.
Jackson County civil former director in charge of the drill director in charge of the drill, vided by CARS members was much improved over former drills. This was the first civil defense drill in which CARS members participated.

Two CARS members were present at each location, and ment on the 10 m band ment on the 10 m band
Radio communications for der adverse conditions. wide ham radio cons. A worlding literally thousands of ama teur radio operators was being held on the same simulat emergency frequene simulated emergency frequency. This fact that they could operate under less-than-ideal emergency con ditions and maintain effective two-way communications.

FRESNO DXERS MEET
The annual Fresno DX convention will be held on January 30 and 31. For registration inGlass, 14910 Bascom, Frank Gatos, CA 95030.

W8 Swappers!

Blossomland Amateur Radio Association's 4th annual auction and Swap-Shop will be held at seph-Benton Harbor, Mich, Sunday, March 14th 9:00 a.m. to 4:00 p.m. Hot Food. Prefer to do your own selling? Rent one of our swap tables. If that fails let our skilled auctioneer put your gear on the block. Direct Joseph MI 49085.

WADSKP SUSPENDED

The FCC has released an order suspending the amateur license of Thomas Berryhill. In a fullpage report disclosed to 73 News, the FCC's legal advisory chief, J. Russel Smith, said that Berryhill (WAQSKP) appeared to have violated a number of that rules. The order alleged radio station WAQSKP without identifying it at the beginning and end of each single transmission or exchange of trans missions and at proper intervals, and that he operated on the frequencies $7320,7325,7360$ 7415 and 7450 kHz , all of which are out of the band 'It is ordered, under the authority contained in Section $303(\mathrm{~m})(1)(\mathrm{A})$ of 'he Communications Act of 1934.
indeed great numbers of hams the ability to distinguish beWhose presence on the face of tween ham radio and politics, nored in the writings of this between the two by what worthy gentleman, as though stretch of the imagination, and they simply did not exist. If the League, as it is often wont to proclaim, would like to grow in membership, and assuming that such growth would involve those who are presently licensed, rather than those yet to come, this neglectful oversight is hardly likely to endear it
(ARRL) and impel them with any burning desire to join us.

The last part of the editorial reads, ". .your membership in the League helps immeasurably in this defense. . "" (meaning amateur privileges; my definition' "without it, and the support of tens of thousands of your fellow members, the outless favorable to our cause." If this is true, then how much stronger would this cause be served if the League would make itself aware that there is a body of amateurs actually func tioning - living and breathing, and yes, operating their stations - who are not even con mentioned within the context of an editorial relating directly to their privilege also.
One constantly hears outraged and indignant accusations of attempting to undermine the ARRL. One is constantly sus pected of tearing down the foundations of the League in order to help a certain nameless specific unmentionable magazine. But not one of these zealous guardians, the protectors of the League against the unprincipled attack of these dastardly and treasonous villains, ever stands up in defense of the huge ody within the amateur comLeague. It is, as I said, very League. It is, as

When did you last work on
stretch of the imagination, and casuistry does Mr. Sherr justify his rigidity of attitude and his overtly expressed bigotry?
Another significant part of his ill-considered diatribe, however, is his condemnation of editorials which go beyond the
ordinary scope of ham radio per se. This is strange indeed per se it is precisely this which he does when he denigrates the amateur operator, JY1, simply because he happens also to be the king of the Hashemite King om of Jordan! How come he suddenly goes in another direcradio station is concerned and that's okay but when Wayne Green does it, that's wrong?

So far as his refusal to di vulge his call because he fears that assassins or terrorists may seek reprisals against him, this is merely an indication of his defears of reprisal are pretty close to that condition known in abnormal psychology as paranoia

It is a mighty good thing for verybody that most of the leaders of both sides in this terrible Mideast crisis, are not similarly motivated by rabid hatred, and are seeking some there is a lot of power play diplomacy and pressure politics going on that is nothing new to international affairs. But if the leaders in that area were as rigid and unyielding in their approach, war would be inevitable. Any refusal to put aside prejudice and an insistence on bludgeoning the opposition into result: a holocaust which will solve nothing. Mr Sherr ha failed to do his homework. His facts" leave me completely un convinced of anything except
his blind, unreasoning bigotry.

A
ne Green for President? t a radio club meeting in Long Island, I had the - chance to meet with Harry tor of the ARRL, and to discuss with him some of the problems and good points of the League. The discussion set me to thinking about the needs of the League and its responsibilities to members and amateurs in general. The upshot was an idea that I think is not only sensational, but a panacea for the ills of our

First, ask, "Where does the
fall short?" I won't deign to go into that question, because nearly all amateurs have different views. But following up with, "What can be done to improve amateur radio as well as the League's representation of some startling insight and prospective answers.

For example, Wayne Green contends that amateur radio should be represented in Washington by a lobby. Few hams would dispute that. Wayne thinks a public relations firm ing a new awareness of ham radio to the general public. This, too, makes good sense. Wayne feels that the League's executive directors should be made more responsive to the needs and demands of the members - that the League should be the voice

The FM Scene
What is 146.96? When you order crystals for a local FM channel or repeater, then suddenly realize that you're transmitting a few kilohertz away from the crystal manufacturer. And don't write nasty letters to the manufacturer of the iransceiver you're using. The problem? More often than not, it's a case of "double standards." What is accepted as being 146.94 in Chicago, for example, is several landers call .94 . The same has been proving true for repeaters and channels all over the country, much to the consternation of crystal and transceiver manufacturers. Before you complain to anyone about a crystal or oscillator being off frequency, do something positive about nels. By "something positive," I mean that you should check frequencies with not less than two items of professional test equipment.
Standards for Tones, Current standards for amateur repeater use revolve around the concept of 150 Hz spacing between tone "channels." The 150 Hz spacing allows a safe "guard" band between tone frequencies to insure that users of one repeater do not trigger the facilities of another when units drift or fre quencies are off a bit. The con-

Cavat Emptor?

Price -

- commercial
ads; $\$ 10$ per 25 words for non-
words
for business venture. No display ads or agency discount. Include your check with order.
Deadine for ads is the 1 st of the month two months prior to publication. For ex
maple: January 1st is the deadline for the maple: January 1 st is the deadline for the
March issue which will be mailed on the 10th of February. Type copy. Phrase and
punctuate exactly as you wish it to appear punctuate exactly as you wish it to appear,
No all-capital ads. We will be the judge of suitability of ads. Our responsibility for
errors extends only to printing a correct ad errors extends only to printing a correct ad
in a later issue. For $\$ 1$ extra we can maintain a reply box for you. We cannot
check into each advertiser, so Caveat Emp. chec
tor.

OSCILLOSCOPE HEWLETT PACKARD 170 B professional instru-
ment DC-20MHZ dual channel probes ment DC-20MHZ dual channel probes new $\$ 950$. Bobby L. Duke K5DZM,
13526 Pyramid Dr., Dallas TX 75234 .

100 USED TV CAMERAS excellent for ATV. Running condition $\$ 125$
each; "as is" condition $\$ 75$ each. Shipped in 10 days. Don Heringhaus WA8ZRZ Rural Route 1 Box 77 ,
Ottawa OH 45875 .
QUICK-COAX 2 METER COAXIA ANTENNA KIT. All parts and step by structions 37ϕ A. C. McIntosh, Jr.
P.O. Box 572 , Mundelein IL 60060.

450 MHZ FM BASE, RCA 20 watts, C.O.R., A-F Hybrid for repeat, Disc Meter, Multi-position Meter, Table Top
Units, $\$ 125$. K2LIU, R.D. 3, Freehold

SELL: Swan 350C with AC Supply asking \$350, Swan DC Module \$40 vertical Antenna $\$ 35$; Budd Code Prac-
tice Oscillator $\$ 10 ;$ John Fearon, 3384 tice Oscillator \$10; John Fearon, 3384
Peachtree Rd., N.E., Suite 705, Atlanta GA 30326. W4W KP.
NEED FOLLOWING ISSUES OF 73 to complete my collection. March
1963 Dec. 1963 , June 1966 July 1966 . Fance Lee 58078 .7th Ave. E., West Fargo, ND 58078.

CLASSIFIED,ETC.

DERRICK ELECTRONICS will not be undersold on new Swan, Drake, GalCheck around, then write, Box 457

MODEL 19 TELETYPE, good opera-(20.2)-234-4678 for sale or trade K1SDX 3,2727
ington DC 20008.
SELL: HQ215 for $\$ 295$; Sencore FE16 With HV probe, new for $\$ 75$. M. C. CA 91016 .

WANTED: Phono record or tape recording of Catholic High Mass sung in Write: WA7NSO, 501
Centralia, WA 98531 .
MSI-DTL INTEGRATED CIRCUITS: Guaranteed new - gates 56ϕ, F6F 72ϕ
MSI $\$ 2$, dual lamp drivers $\$ 1.60-$ other inexpensive parts. Mitch-Lan Electronics Co.. Dept. 7371 P.O. Box
4822 , Panorama City CA 91402 .

MOTOROLA 80D: 12 volt transceive freq: $\$ 60$ or trade for Motorola 450 Mhz base. Ed Pores, WA2ZBV, 16 Dorehe
11030.
"1971 TESTS-ANSWERS" for FCC "irst and Second Class License. -plus$\$ 9.95$. Satisfaction guaranteed. Com-
mand, Box $26348-\mathrm{S}$, San Francisco CA 94126.

VHF-UHF COMMUNICATIONS RE400 Mc .750 discrete frequencies selected with external switch box. Design Similar to ARC-27, but much smaller. $\$ 18,350$. Good for conversion or parts. Salvage value much more than my
price of $\$ 25$. Send for detailed information. Money back guarantee. Richard W. Solomon, 19 Pierce Road, Watertown MA 02172 .

HEATH SB 301, SB 401, \$275. each HEATH SB 301, SB $401, \$ 275$. each
or $\$ 525$ both. Three 10 sections Rohn
No. 25, $\$ 15$ each. Ken, WB6BNU, 19400 Sorenson No. 131, Cupertino CA 95014
UTAH AREA the size of Delaware and
Rhode Island with 80 families served Rhode Island with 80 families served
by independent telephone company by independent telephone company system. Broad ham background useful.

THE 20th ANNIVERSARY DAYTON THE 20th ANNIVERSARY DAYTON 24,1971 at Wampler's Dayton Harra Arena. Technical sessions, exhibits,
hidden transmitter hunt and an interhidden transmitter hunt and an intermation write Dayton Hamvention, Dept. 7, Box 44, Dayton OH 45401. MAKE MILLIONS? Hundreds? Sell Instant Gourmet Kits (eight herbs and to local gift shops, stores. Dandy fift item for friends, businesses, travelers. Why be poor? List for $\$ 5$, your cost borough NH 03458 .
WEST COAST HAMS buy their gear rom Amrad Supply Inc. Send for flyer. 1025 Harrison St. Oaklan
$94607.451-7755$ area code 415 .

73 Lifetime Subscription

A LIFE subscription to 73 costs $\$ 73$. By comparison with life subs to other magazines this is quite a bargain With inflation going the way it is, and no hint of it stopping, plus the unending raises in postal rates, that $\$ 73$ could be gobbled up in a very
of all amateurs, but not disconnected from the brain of those amateurs. Wayne feels that the League should take complete regislation is passed that is detrimental to the will of those mentividuals represented by the League. And he has expressed many more such attitudes that make him rank high with amateurs in general.

So the thought occurred to me that if the League is failing So miserably in its duties, and ures and pinpoint them, why not replace the general manager of the League with Wayne himof th?
Fantastic, you say? Not
really, if you think about it. For really, if you think about it. For years, concerned amateurs have been writing Wayne, asking that he do something to help save ward spiral. If he would accept an appointment by the League directors, this would provide the ideal means by which he could help. Instead of giving lip service to the duties of the League, he could get in there and make it happen.

There are 16 directors. If a quorum of them got together, they could fire John Huntoon active amateur, an experienced leader, and a concerned member of the League, Wayne Green would not refuse to serve.

I mentioned my thoughts to Wayne. The whole idea, he said, was almost incredible. Of course he'd serve, but the problems
involved would be manifold. What about 73 , for example?

Well, what indeed! 73 and QST could be combined. The problem would certainly not be insurmountable. When you get down to the nitty-gritty, you see that if as few as nine directors decided that Wayne Green could do more for amateur radio than John Huntoon, the switch

What do you think?
yentional tone frequencies in use for amateurs are 1650 , $1800,1950,2100,2250,2400$, fore adoptins any frequency be sure to check the frequencies in use by other repeaters within your operating range.
Repeater Directory. The April issue will be spotlighting FM. directory is out of date byeater so we'll be publishing a whole new one. We want it to be as accurate as possible, so if your repeater wasn't listed last time, send us the details now! Give us call sign, in/out frequencies. tone requirements, etc. Don't year before another directory can be published. This is positively your last chance to have your repeater listed. Don't put it off any longer.

New Books

Canadian Amateur Radio Regulations Handbook, published by the Canadian Amateur Radio Federation, P.O. Box 334, Toronto 550, Ontario, Canada. Price $\$ 2.55$ postpaid.

Of special interest to amateurs in the U.S. is the section on non-resident amateur radio operators who are planning to visit Canada.

Certainly every Canadian amateur should get a copy of this complete guide to Canadian regulations. Despite the low price, this is a big fat book; a good buy on poundage alone. Canadians can be proud of the job that the CARF has done on this book.

HAPPY NEW YEAR

FROM ALL OF US AT 73

RECEIVERS: RBA, RBB, RBC with power supply and cable Also,
R-511ARC, $190-550 \mathrm{kc}$, -509 ARC R-51ARC, $190-550 \mathrm{kc}$, R-509ARC
$108-135 \mathrm{mc}$ OASE other items. Lisaius,
116 Orton Road, W. Caldwell NJ 07066
FOR SALE. Drake TR6 with AC4 Supply, $\$ 500$. SX42, $\$ 50$. John Ash-
ton K8F, 737 Bryson St., Youngs-
town, OH 44502 .
LAST CALL FOR 1963 73. Bound
volumes of 1963 , regularly $\$ 15$, while
they last only $\$ 7.50$. Act now! 1963 was a very good year. 73 Magazine,
Peterborough NH 03458 .
Peterborough SAW PUZZLES WANTED. Lover
of those wooden jig saw puzzles is of those wooden jig saw puzzles is around in your attic or closet. There used to be thousands and thousands of you have some that you would like to find a good home for, write to Wayne Green Peterborough's most avid. jig
saw fan, Peterborough NH 03458 . State price, if any.
SELL: SB-301 with s.s.b and c.w.
tion and in A No. 1 working order.
$\$ 225$ or best offer. Norm Hanks

SLOW-SCAN

TECH MANUALS - R-390/URR,
R-390A/URR, BC-639A, USM-24C,
BC-348J, URM-25D, OS-8C/U,
UNN 12 , $4 P M-45$,
IP-173/U, TS-323/UR, TS
$\$ 5.50$ each. T. Consalvo, 4905 Roanne
Drive, Washington DC 20021.
CLEGG ZEUS - CLEGG INTERCEPTOR. Very nice condition. Manuals, Spare Finals. Prepaid \$449. Collectors
items: NC81X NC100: Good. H. Snyder WQNVE, Route 3, Fremont NB 68025.

KNOW your frequency Lampkin meters, 105 B frequency, $111 \mathrm{PPM}, 205 \mathrm{~B}$
Modulation. $\$ 600$. All or separate. Modulation. $\$ 600$ All or separate.
K8ILR, RR No.1, Box 29-A, Suttons Bay, Mi 49682.

FM 210 CRYSTALS: Receive
and 146.76
146.82 . Transmit
146.22,

FOR SALE: Eico 720 90w cw xmtr,
Eico Modulator, Lafay ette He-74 vfo and a Heath Hw-172m xcrr. Best offer only. J. Gawronsk
Athol MA 01331 .
by W2NSD/I
Ron, of EKY Video Vision (the EKY is from W2EKY), stopped up at the 73 HQ and demonstrated his new SSTV monitor unit. This is a complete monitor using his circuit boards and selling for $\$ 298$ in complete ready-to-use form.

We watched a demonstration of pictures sent on 20 m and were favorably impressed. While Ken and I do not quite share Ron's enthusiasm (he believes that SSTV will be as popular as SSB in a few years), we do think that it is bound to become popular, rivaling RTIY perhaps.

It takes eight seconds for each picture to come through, so it isn't exactly moving pictures. And by the time the bottom of the picture is being scanned the top of the picture is fairly well faded out, even with
the long P7 phosphor of the scope tube. Still, if you shade the tube you can see the picture. It has about 120 lines as compared with 440 for commercial television, which reduces the definition somewhat (like about one-fourth) and the picture is made up of black and greens, with no shades of gray which further reduces the definition.

The two main methods of sending the pictures are either through a regular television cam era with one frame being used every eight seconds, or by a flying-spot scanner. The camera can send live pictures, albeit nonmoving. The scanner sends only photographs and drawings. The scanner has the advantage of being a lot less expensive to hook up.
few short years. Early life sub scribers to 73 have already saved a bundle.

A few fellows write in worrying that they might not live long enough to make it worthwhile. Let's ignore the fact that a life subscription to 73 seems to be one of the best insurance policies yet devised . .out of about 600 lifers we have had but one die. One in ten years!

73 , as just about anyone who has visited our offices will testify, is a philanthropic enter prise. The top staffers here all could make far more money working at other jobs, but are devoting their life to the maga zine because they feel that it is mportant. Your life subscription to 73 helps out. It helps us to be able to run more pages in the magazine. . it helps us to be able to put a few more iron curtain hams on the gratis mailing list. . .and it tells us that you like our work and have confidence in us.

If you have a spare $\$ 73$ around now, the chances are that you have provided for your family and that an extra ten or twenty dollars are not going to make much difference. You are gambling with the money, but even if you lose you win in the long run for your money will be well used. Can you ask much more than that?

When you reach the next world the important things will be those acts of good that you have done. A life subscription to 73 is not going to hurt one little bit when you are trying to balance out some of those rotten things you've done. Invest in the future, either way, with a life subscription to 73 .

LETTERS

HOMEBREW FM RECEIVER A number of hams in this area have been trying to design a multichannel, solid-state, 2 me ter FM mobile receiver. We have expectantly watched 73 Maga while burning out transistors and ICs in ơur own experiments. We recently purchased a number of surplus 10.7 MHz i-f strips and would hope to utilize them if possible. Any consideration given by you or your staff to
this problem would be greatly this problem would be greatly appreciated.

Don WA9YFI

59 Morningside, St. Paul MN

We have several receiver arti cles currently "in edit," one of which is an extremely sensitive minuature.

HOT TIP

Having trouble burning the cord on your soldering iron by tip? Wrap the cord with Scotch number 27 glass tape: this tape is also good insulation for cords in places where the wire may be exposed to heat.

Orville W5PGG
1435 King Clarksdale MS
Charlie (photo) is presently active on all bands from Yaounde Cameroun, West Af where he signs K4PHY. He has also operated as DL5IX and
$\mathrm{K} 4 \mathrm{PHY} / \mathrm{YV} 5$. He plans to be active from Yaounde for at least o more years.

Box 626 , Hickory NL Mgr)

The only hope of those against incentive licensing is to Mr. Green is cognizant of what this unpopular regulation has created for the amateur and he is making an honest conscien tious effort to change it. My immediate concern is not with posals but what he is doing now posals but what he is doing now bucking a million-dollar com bine such as the ARRL but his determination and tenacious fortitude should make him ormidable and respected op ponents. With the radio ama eurs support I believe him cap changes to the radio service in spite of the ARRL, irresponsible do-nothing atti tude. Harry W2SAD
196 Madison, Mt. Holly NJ
Now let's get down to brass tacks. "Why don't you gel your and nominated? (it can be done) ions."
I think you have an excellent magazine -,especially with its many technical articles, but the don't believe is helping much Maybe you'd make a good bal ance on the board. Then maybe you can do something, but just he constant hammering with words hasn't done much good. I you can't get nominated over in our district.
ut ansinct

Your staff has certainly writ en the most qualified series on obtaining higher license. I am ertain I (totally disabled) would never have obtained my Advanced class license without he study series. I learned even more than was necessary to get ARRL because. I believe I can have more effect in than out Come on Wayne - more action will help quench the sarcastic officials at ARRL.

Hank WA7JAQ

Australia has a ham dropout problem too \& again I regret to The yout SSB is the problem 40 and 80 meter AM phone, and wants to work DX. He can't Not on AM anyway. He can do it on CW, but many of them don't. And you have to have ham as 3 choices. He can spend at least 10 weeks' wages \& buy an SSB rig. He can build an SSB rig. He can forget the whole dea. Some buy gear. One or two build SSB rigs; the rest jus fade away. The young hams with financial problems quit.
SSB is progress, and we must CB DX on AM is a problem here, as it is in the USA. As long as it is the only DX you can work on AM phone, it will continue to be a problem. May be we should force CB into SBB one in-all in! We have the problems; does.anyone have the answers?
Victoria, Australia Victoria, Aus

Here at work three of us get different U.S. magazines which latest 73 to arrive there appeared an article "What's hap pened to Hamdom". My congrats to the author as he appears one of the few ready to speak up in favor of QRP. As an the answer appears to be in educating the newcomers, the Novices \& anyone who will listen that high power is no necesarry.
Educate them to join the QRP ARC (and I am not nember) whose members will not tolerate more than 100W They believe, too, in home brewing their gear \& then dragging every erg possible out.
65 W have never used more than 65 W but it has scored me 187 countries! OK, so we don't have content with but finding a blank spot in the spectrum is just as
detect radiation by radar, ultra sonics, magnetics, etc. There ar echoes to the effect that eve kings and
in UFOs.
50 Croftend, Gla gow, Scotland
Our ham national league is having some big trouble now available spare time for the m few weeks. (We have a loca Huntoon, I'm afraid).

Anyway, I hope to have an article soon with an interview with one of our telecommunica tions authorities

Flavio PY1CK, Rio de Janeiro

ARTICLES

Your article, "A Low-cos RF Wattmeter' on Page 7 (Nov, 1970 issue) at the top of second column after the word assume, should be $4 W$ is full scale meter indication in watts" changed "reading to ind read; people do.

You'd better change it back Webster and I agree that "read ing" is a noun that means "data indicated by an instrument.

Though 73 is an amateur radio magazine that normally costs a dollar a month it is vastly superior to anything of fered by its British counterpart even though these are somewha cheaper. The broad exchange o ideas and ample technical materstyle so typically American is very good value. I am doing some restudying by fol lowing your study series.
B.G.E.,G3RJX,213 Perry Wood Great Barr,Birmingham
I simply could not believe the mistake made by K1CLL on is a classical error; when you use one-half a centertapped trans former winding you do not ob tain one-half the impedance! his article he uses half of a 125
hat has existed in our hobby
or too long - a lack of com
Keep on printing all those letters to the editor. Especially like the idea of printing the writer's mailing address - how many times I've seen letters and thought "Boy, I'd like, to tell that guy a thing or two.,
Page is good. General magazin Page is good. General magazint why not group all the ads together in one part of the magazine?? Think most hams read he ads as well as the articles, in some cases more so. Would make it easier when I wish to have to page through the whole magazine - the Ad Index helps here but I can't always rememeer the advertiser's name, sometimes just a particular product I want, which may have little relation to the advertiser's name. gang is doing a good job.
ry W7FOQ,
Box 345 , Moro OR
Your editorials and comments by your other writers are letter but don't seem to get the time. I do feel that a registered lobbyist in Wash. D.C. is important. I agree completely with the comments re CB made last month by the K2 on your staff. Howard Furst,

Box 246 m El Toro CA

I've built almost everything K2TKN or K1CLL have ever written about. The 6 and 2 linear (page 8, April, 1966) is the easiest thing I've ever built, and VHF construction I've ever seen - clear, simple concise that's the way Bill Hoisington wrote it I'm sure. This amplifier, incidentally, works like a charm, and I've built a few for friends without workshops.

Being about a year behind in my reading, it was only today read "Light Naturally Runs

SCOPE STAND
Here's a picture of an osciloscope, stand that I find prac chair that I bought from the "GoodWill" for 75 d . My modifications are the side pieces and the angle across the back. I'm
sure that others will have better sure that others will have better ideas for alterations.

I also have bought surplus grocery store racks at the Good-
Will to put signal generator \& other equipment on, to leave the bench clear for my projects. Just takes patient shopping to find something that the equip ment will fit into, and be at the right height.

John W7SCU
1944 8th Ave,Seattle WA

A NEW LEAGUE

Great going on the license info. When is Wayne going to volunteer to start a new ARRL? fair sum if he'll tackle the job.
Scott WB6USM

We need a new organization to support our hobby? I personnaly had been thinking along unfortunately, I'm one of the silent majority. I, for one, would be most happy to see a new organization developed.
Also having seen 73 grow from that small underdog to the present day monthly inforhave the management and inteligence to successfully do the organizing and developing.
Needless to say I would probNeedless to say I would probably break my neck trying to get my application in to become the first official member. As for raising the enormous amount of
money to finance all of this, well, I'll have to leave that to your fine team or some other ham with a lucrative scheme, How about it, men? Wouldn't
your morale be higher if you belonged to a club and could be centrally united to better our
great hobby in this universe? great hobn R. Snow WB9DBC/9

Box 112 Camp Douglas WI

Maybe your suggested ap proach is right. See "Mr. Virgo Himsel edritorial on New .Ken

ARRL is basically a good and highly useful service and ama eur organization. It has a tremendous potential which seems to be lying dormant. If all of the ARRS who wanted to improve etters and at election times, we could be represented and make t an organization with a rea "fraternity" attitude from all its members. Maybe I'm too naive If this is so, I'm willing to work for forming a new club, but one big voice in FCC's ear would be etter than one small one.

ROM AROUND THE WORLD

It is now about 10:30 p.m here, and all I hear is QRM on today was warm; almost "shirt sleeve" weather with 18 in snow that fell Friday while we were here.
HBOXKZ, are many here HBOXKZ, KQ, SF, etc HBOXSF is DL4WJ (John Wil son) - we drove up in my VW cabin and I am fully set up in my wagon as you see in the photo. I have TR4, Hustler an ennas, heater, stove, food, etc. and sleeping bag. I sit here in back and operate all day \& night with ac power from the house We are about 5000' here just and below the Hotel Graflei. HBOXKQ is above us at the Graflei about 1000' higher. HBOXKZ is below us in the town.
The trip is about a 6 hour drive for me. I live in Zweibrucken, Germany, as DL4VA WA 4 WME in Huntsville, Alabama. HBO is not rare any more as many Ds and HB9s come here all the time.

Hugh Vandegrift F甲UG
hard whether you're using a KW ohm winding and says that the
impedance obtained is 62.5 ohms. Not so! The correct value use 200 W or less \& this seems to is 31.25 ohms (one-quarter of frequently aren't much better print something about this. I than the QRP station he is wish I had a dime for every time working. I have seen this error - I would GO LOW \& have fun. Get the be a rich man!
new comers interested \& warn Clyde Wade, 312 S. Cedar, Little them off QRO \& let's get ham- Rock AR.
dom back into better shape.
South Australia

For the information of U.S. DX'ers, Europeans are limited mostly to about 15 W de input. Be a sport and use your cherConsider it this way. When you need it, you have it. And that is a nice feeling. But only use it in extreme cases. Give the other face of the "Ugly American" again.
I. was last year working PAOWEJ from a Swedish ship in the Caribbean. I had my wife aboard, and the transceiver functioned more as a social link than a DX gun. So orten station calling "the European station come again, the other station please sit by." The "Ugly Americans', came back straightaway, 40 dB over 9. Plenty of them. It is difficult in these circumstances to maintain politeness. This happened so often that winded up by calling please can stations." This is what American hams are doing! In Europe they have a saying which goes like this: "The one who fits the shoe, puts it on." Although it loses much in translation, the meaning is probably QSI'd by most of you. I would be pleased if 73 would print this morely a European haim. n.
W. deVries PAOWEJ

I'd be interested to know about apparatus used by

EDITORIALS

More W2NSD, K6MVH K2A any others that will stim late people to think. By present ing these writers and their differing opinions you are going a
long way toward filling a void
Back in 1966 when linally madaed to subscribe to a ham of QST, CQ, and 73 to see what was best. I have been receiving a then - even though my ticket has lapsed - because of the and the light-hearted attitude between the pages. Now how about a "here's how I did it" column? Few of us are qualified piece. Yet we all have some good ideas to share on how to proceed with a specific operawon or a brainstorm insigh the column never comes to be, orchids, roses, and welwitcha blossoms to the magazine and the dedicated group which put Charles, 7918 Lamon, Skokie

Looks like your Printer' current $73-1$ exorcised in the single transposed line, misTight editing for which many of you will share the credit. Nice going!

Jake WB2PAP, Stewart AFB,NY
We're verry carfull about such things.

Down" by K1CLL. Really interesting! Can you run some more some sort of ey do, please use some sort of eye-catching deright away!
John WA2LJK

How about us printing a per sonal note to you on the front cover?

FREE SPEECH

The "free speech" contro versy brings to mind an incident of several years ago. I lived in ,
small town, and we had (don't most small towns?) a swimming hole. We got a new minister in our church who was young enough to enjoy life with young people. One day he and I went swimming, and were recognized tough guy. As we approached, we heard some of the most vile talk imaginable. We came within speaking distance and Mr. T. G said "I didn't recognize you Reverend, or I ,would have been more careful." I never wil orge way you want, but I don' have to answer you that way.' The next Sunday Mr. T. G started a habit of church atten dance, and his everyday lan guage improved.
I think we should all be guided by our knowledge of what is socially acceptable.
Box 5153 , Birmingham AL
Even though I am a 16 yr old, 6-month Novice, I am also late in sending the coupons (they're great), but I finally took the time tonight to mail them all. The sudden reason was an attempt to get on 40 meters which became so sickening gave up. I hope I'm not too late. I think your editorials and news pages, are fantastic, esand also George's (W4PZS) on the League, etc. It also helped me to decide to write this letter don't like the 220 MHz idea at all. Can't win 'em all.
 QUARTER OF A CENTURY OF MANUFACTURING KNOW-HOW, 1946 TO 1971

CELEBRATING OUR 25th YEAR

Classic Line

Multi-Band Beams

MODEL CL-33
10,15, \& 20 meters
Designed to provide the extra gain for working hard-to-reach DX. Incorporates the exclusive Mosley patented ${ }^{60}$ Balanced Capacitive Matching'. Features include six Trap-Master traps with resonant frequency stability, improved boom for even wider element spacing. Stainless Steel hardware. Fits up to $2^{\prime \prime}$ mast. Use with most heavy duty rotors. The CL-33 is designed for 1000 watts AM/CW or 2000 watts P.E.P. SSB.

Aminesar S Social

Free QSO Index

Keep track of over 200,000 contacts. Recall in seconds whether you have contacted a station before, and if so, the operators name. The deluxe Mosley QSO Index will never increase in size or weight and is light enough, only 28 ounces, to carry with you on those field day operations. This unique QSO Index will provide you with hours of pleasure and it is yours free with the purchase of any one of the Mosley Antennas shown here.

Free offer expires December 31, 1971.

The most widely used 3 -element beam in the amateur universe. The TA-33 features the Mosley ${ }^{00}$ TrapMaster" traps, known for rugged construction and resonant frequency stability under all weather conditions. Power rated: 2000 watts P.E.P. SSB.

MODEL TA-33Jr.
10, 15, \& 20 meters
The TA-33Jr incorporates the same famous 'Trap-Master' performance found in the TA-33 at a reduced price. Offering a power rating of 1000 watts P.E.P. SSB.

10, 15, \& 20 meters

The Classic 36, incorporating the Mosley superior feed system 'Balanced Capacitive Matching'. This wide-spaced, six-element beam employs 4 operating elements on 10 meters, 3 operating elements on 15 meters and 3 operating elements on 20 meters. Automatic bandswitching is accomplished through Mosley designed high impedance paralleled resonant "Trap-Circuits".

The improved electrical balance, "Balanced Capacitive Matching," combines with optimum spacing to provide maximum gain, increased bandwidth for greater efficiency in performance.
MODEL CL-203
Designed for full power, the new Classic 203 will out-perform many four to six element arrays. The Classic Feed System, combined with optimum spacing to provide maximum gain, increased bandwidth and rugged construction, offers the most in 3 -element, 20 meter beam performance.

1) New Six-Band Mobile Antenna System

A unique mobile antenna system offering the greatest number of money-saving options ever available in the amateur radio market. Your choice of $6,10,15,20,40$, and $75 / 80$ meters. Select from five new interchangeable coils, all of which are especially designed for the thrifty, economyminded Ham.
Each "Rode-Master" coil is precision wound on phenolic form, housed and sealed in a durable, water-proof phenolic case and power rated for 200 watts AM; 400 watts P.E.P. SSB. VSWR $1.5 / 1$ or better at resonance on each band.
The upper whip section of the "Rode-Master" Support-Mast is a Six-meter antenna, adjustable for the entire 6 meter band and may be purchased separately. The lower section of the mast has a host of features that include provisions for bumper or deck mounting. A break-over (hinge) to lower and swivel, align and secure antenna to gutter rail.
"RODE-MASTER"
6 meter antenna
Models 10 meter coil MD-6 MD-10 15 meter coil MD-15 20 meter coil MD-20 40 meter coil MD-40 75/80 meter coil MD-78 Matching Network

For a top signal needed to push through 40 meter QRM, the Mosley Signal Master S-402 will do the trick! This 100% rust-proof 2 -element beauty constructed of rugged heavy-wall aluminum is designed and engineered to provide the performance you need for both DX hunting and relaxing in a QRM free rag-chewing session. Beam is fed through coupling, resulting in an excellent match over the entire bandwidth.

TRAP
 Multi - Band Verticals

MODEL RV-3C
Three band vertical for 10,15 , and 20 meters. RV-3C features automatic bandswitching and low angle radiation. Complete with guy line, "Cycolac" base, coax fitting and all necessary hardware.

MODEL RV-4C

Mosley RV-4C, vertical antenna is ideal for installation where space is an important factor. Designed for $10,15,20$, and 40 meters. With automatic bandswitching. Entirely self-supporting.

$10,15, \& 20$ meters
The voice of authority! This widespaced 6 -element configuration employs 4 operating elements on 10 meters, 3 operating elements on 15 meters, and 3 operating elements on 20 meters. Automatic bandswitching is accomplished through the Mosley exclusively designed high impedance paralleled resonant "Trap-Circuits".

Mosley, manufacturer of quality TV Antenna Accessories for nearly a Quarter of a Century.
Write Dept. 198TV for free Booklet! 'How to Improve Your TV Picture'

VIETNAM

On behalf of the entire Army Mars Station, AB8AQ located in thank you for sending us your publication. Being in the northseem to get very few magazines or newspapers, and are always grateful for any periodicals we get. But working in the Mars Station and being a former ham myself, it is particularly enjoyable to receive your magazine.
Mr. Alex Scherer, W9EU and A9EU, wrote us and reported that you had sent us the issues. And we do want to thank you for them.
All of would far prefer to be home, and in less than a year we will be. But while anyone is so far away from home it is always a comfort to know that someone back in the States is going time spent here a little more pleasant. Once again we say

thank you.

AB8AQ 8 th RRFS

APO S.F. 96308

Our station received your 73 Magazine yésterday. We would like to thank you for thinking of us GIs over here in Vietnam. We will be looking forward for the November 73 Magazine along with QST. The magazine will be a great help to us over here in trying to get our general the States we have a better understanding of basic radio theory. Most of the personnel in our station are trying for our general ticket, so 73 Magazine along with QST will help us toward our goal of being in league with the hams all over the world.

Tony, Mac, and Petty AB8AAV
We got your copy of 73 and we enjoy it much. I find it as helpful here as I did when I got
it at home. We all want to thank it at home. We all want to thank
you much for the copies. Also for the great work you are doing for us over here. My greetings the station but from all U.S. servicemen here in Vietnam.

Larry AB8AAS

I do not think the 220 band should be used as a refuge for cBerl-intended $C B$ program ploded in complete chaos. would hate to see the ham bands exploited in the same way. Also, this thing could start a trend which would eventually teur and Citizens Radio. CB was never intended to be used for but nevertheless it is being used for a "ham" band for persons who are too lazy to study and become a legal ham. In our society there are certain individuals whose aims are to corrupt or destroy whatever they can, to see how much they can large percentage of the CB population are these type of people. Have you listened to the CB band lately? What do you hear? I hear pseudonyms instead of call signs, operators boasting about the performance of linears. Do you think these individuals will reform and become fraternity? Will they give up that linear to become a "hobby ham" or will they carry their present ways into the ham bands? Will we see the 220 band evolve into what the 11 m band is today? If it does, perhaps we could give them part of 40 or
80 m . In my opinion such an idea would only attract the somewhat undersirable portion of the CB population, not the legal users. The CBer who uses his rig for business or personal use will stay on the CB band. Why invite trouble into the ham bands? Why chance earning the same reputation that the CB building the one we have? Another point, would the band be self-policing? If so, why isn't the
$C B$ band self-policing? Why would a CBer who is using the CB band illegally suddenly become conscious of the exisience
of the rules? Concerning the proposed test, I think that any individual who is seriously interested in radio as a hobby should be able to pass the General

Your comments recently in the additional requirements you 73 about the general public not knowing the difference between CB and ham operators sure hit many times that the public has no idea of the difference. Even my wife didn't know the difference until after we were married!

Cal W9ZTK, Mendota IL I also sincerely doubt, that the present "better ops" on
11 m would move to 220 MHz . The decreased range from base to mobile would discourage a move. Our from making such self-policing to a large extent but let's not be giving the CB'ers credit for this as this is a ham band. I seem to get the idea that we should move all the "good
guys" to 220 and let the present guys con continue on 11. What assurance do we, have that only 220 and who is going to determine whether he is a "good guy" or a "bad guy'? With the seems to me that for every one that moved to 220 he would be quickly replaced on 11 m .

Bob WA0PVM
I've been thinking about this ever since I read of your pro posal of the "Hobby" band. I think this should be revised. 11 m for DX. The best way to alleviate this problem is to push for the removal of the CB band from 27 MHz and move it to 220 MHz . Then take the hobbyists and put them on 27 MHz . Amateurs could use this band also as a police force and also to help convert these hobbyists to

Rick Brown WNOZQX
I would be grateful if you would print that an $\mathrm{SB}-33$ was stolen from my car on Oct. 17. Identifying features are: serial
number 103327; meter face is number illuminated by a square of light that lights up only the center portion of the meter scale; also
suggest. With the majority of us 'pirates" it's not the money, we the pleasure of hamming we are prepared

J.C., Melbour

tanding Hobby idea is out
done about the conditions we
are now putting up with on the way to do it honorably It might seem to be hams that this is the easy way out for the FCC but doing it this way a lot of "Good business for the actions of of skip-talking crowd now on 27 MHz. Many have great interest in radio but are afraid to tackle the chore of being a ham be the test and that the gear is expensive. Allowing this type of individual to take advantage of the proposal made by FCC he would be broken into radio the right way instead of being suck Once into the mess on 11 m . fear of the FCC the with no can relax and enjoy himself he can maybe even join the loca ham clubs and be able to see the true picture of full advantage of upgrading to higher class license. Doxid McCallum,

I am in support of the Hobby class license - especially the fre quencies involved. I would hate to lose it like we did 11 m . hope that maybe we can get the ARRL to support it in which more attention would be given by the FCC.
Darwin WA@HEY',
I have been thinking about
RM-1633 and the more I think about it the better I like it. One thing I have wanted to do in the past is tak home to my wife like most home from work. Like most women, she is not electronics, so there is not much hope that she will ever get a

1011 fiasco among other things. He and I know the thinking behind its introduction.
the Noo bad you fellows up in the Northeast don't get the word. somethin

Do us serious hams a favor will you? Hold the B.S. down to one page so there'll be more room for tech articles.

John Conley W7ZFB
Okay, John, We've got it down to one page now. But you might foldout next month? hmmm .

I have a Collins KWM-2 trans 11 meter band without modifi cation. What's so unusual about the Swan?

949 1st St., Albermarle NC

The Swan editorial is surely misplaced. It either belongs in the April Fool issue or in the CB teur would either write or believe in what you had to say The name calling you did reminds me of what K 6BX had to say to Kennedy Space Center ARS a while back. So I will put K6MVH in the same category as most have done that lunatic from California, even though I well known and liked in FM circles. Concerning the Swan 1011: What amateur in his right mind would spend that much money on a rig that works only on a band that will be dead soon? The last time 10 'went dead' they even made rigs without 10 m capability. What ama listen 30 minutes to a guy with call letters "Mickey Mouse" to find out how far away he is, so that he can go operate on 10 m ? Let's face it, there is more money in the inegal CB marke than in the amateur market and Swan wanted to take advantage your CB magazine that only one
exam. If he is going to use vfo's an electrolytic in the power regular ham license. The Hobby in two hundred CB'ers has the ment, he should be able to demonstrate that he possesses the necessary fundamenta knowledge of basic electronics. Ron WA9YUJ,

Box 71, Albany IL

Re the proposal for a Hobby the idea of phone only was the idea of phone only was pronounced prejudice agains Ctivity on 220 MHZ is a able one. I had been toying with a similar idea for the last two or three years. It was prompted by the almost complete lack of activity on the 220 band in this part of the world. My suggestion was to open the whole 220 band license. No phone would be permitted, but these new hams could start by sending code to contact other people. Instead of practicing at home on a key and copying meaningless code which becomes a chore and task, have beginners practice code by actually sending to one The equipment would have to be certified by the FCC, so that commercial equipment would generally have to be used. would be crystal-controlled. I would be installed and checked out by a qualified Extra-clas radio amateur. The idea behind the whole thing would be to create interest in code by actual
ly communicating, populating the band, and yet have quality transmission. But only CW! The phone portion of the transmit ter would be disabled and seal ed. I think 220 band would be the ideal band for a learner.

1227 Addis

73's recent proposal for a
-code license for 220 left me no-code license for 220 left me
cold, so I must do the same for cold, so I must do the same for you as regards renewal. This is
the first ham magazine I have feel about the 220 proposal.
Dick W9QW'T
supply is held in place with piece of blue nylon monofila ment fish line. If located, please contact me at 617-527-1346, o
Newton Police (617-244-1212) Eric K1NUN,
41 Prentiss Rd, Newton Ctr MA
Sorry, we don't print that ind of info.

I am a "pirate" and if you haven't already thrown this let e in the wastebasket I would my briged if you would accept practical proposal on page 10 of the July 73 regarding Hobby censing. Typically, I suspect, am a family man in my early us with a few dollars to spare radio, therefore "CB" (?) is the only way to have a go. Station procedure is relatively simple but the theory and practica haven't had any past experience with electronics. Frankly. don't enjoy being a "pirate" and I am certain that my many by license we could buy decen commercial rigs, and proudly erect that dream antenna in stead of operating our clandes ables and makeshift whips. Leg alizing would sort out the genuine operators from the frivolous lads. Unfortunately, in Australia the only "CB" channe available is 27.240 MHz with a 1 watt maximum, so you can magine the mess. Instead o have a $420-450 \mathrm{MHz}$ band, how ever few of our amateurs use it. Surely we could use FM equipment on part ame basic manne as Wayne has proposed. In my business I run a licensed and all that is basically required o go that is basically required the license fee. It seems reasonable therefore to propose a simi Class licensing with, of course
regular ham license. The Hobby cause it will allow hams to do this type of thing (which now can be done only with CB) RM-1633 will increase the versatility of ham radio.

Roy W5PAG

4748 DeBeers, El Paso TX

SWAN SONG
I just finished reading "Mr irgo Himself" editorial in No vember issue. I can't say that gree with you when you said ourselves. It seems to me tha company the size of Swan would do at least a little marke esearch before spending a lot of money on a project such as the 011. I think that we are not as guilty of a shameful act as Swan s of making a mistake. The fact hat swan discontinued the hat "ham opinion" was taken into consideration. If "ham opinion" is blamed for the dis continuance of the Swan 1011 perhaps we could use our pens o help bring the cost of the lools of our hobby down to a major stumbling block to would-be amateurs. Right now we are trying to get more youngsters interested in ham ra dio. When they look at the cost of new equipment, the impres sion is that ours is a really expensive hobby. This stops a ot of them cold, or worse yet ment is traded more often and is available at lower cost.
Bob WA8IMO,
230 Moore, Avon Lake OH
I seldom write letters since Im primarily interested in tech
at and the rest be damned,
carbage I just had to drop you a ine. That had me rolling on the floor, clutching my sides. I'm iggling as I write this
By the way, had a nice QSO weeks ago. We discussed the
in two hundred CB'ers has the The ad said that the transmit the relay switching circuits, the rest of the electronics is already built in for the CB mod. I agree often with your magazine's criticism of the ARRL and believe you recently mentioned their deaf ear or something to that eoncerning the 1011 in the wastebasket is typical of ARRL nonobjective thinking. I sin cerely hope that I have made my point; I don't often waste ime writing nasty letters and d rather spend it reading the many excellent articles in 73 Ambrose
38 E. Sanford, Auburn AL
May I offer a mild objection o your editorial in November 3, which concerned the presproduction of the 1011 trans ceiver? You say the CB'er could not modify the 1011 for trans mit use on 11 m . They wouldn't have to! Amateur Electronic ready has the unit listed in their catalog, "modified by AES to transmit on 11 m for use outside of U.S." I see the same relation here as selling illegal drugs. It's ike saying "let me sell you this dope, but it's illegal to take." I believe one of the things a ham has had to be proud of is the his own.bbands. I think this is what has been done in the Swan 1011 case. I do not believe this was the intention of Swan. I have a Swan rig and can vouch or very fair dealings from these people. However, they have in the 1011 a ready-made (minus a ew "special modifications") il already too-long list being promoted by money-hungry dealers. Gene WA5ETK, Box 381, Texico NM
(More letters: p. 108

RADIO BOOKSHOP BIG DEALS
 73 USEFUL TRANSISTOR

BOOKS!

ADVANCED CLASS STUDY GUIDE Up-to-the-minute simplified theory, written with mind. This unique book covers all aspects of the theory exam for the Advanced Class license and has helped hundreds of hams to sail through the exam 10. nothing else like it in print. $1001 \dot{H}$. Hardbound $\$ 3.95$ EXTRA CLASS LICENSE Extra Class Extra Class License Study
Guide is now available in book form as a permanent addition form as a permanent addition
to your radio library. This is the complete course that was published in 73, covering every technical phase of the new license exams for this highest class of amateur license. This also covers, in the easiest-to-understand form, just about every technical the First Class Radiotelephone exam. This is the first study course ever published that is written so the newcomer to radio can understand it. With this book you can face the FCC exams knowing that you with no fear of rewritten questions. $1002 \ldots \ldots$ ppd USA $\$ 4.95$ VHF ANTENNAS This handbook is a complete collection of up-to-date information
about VHF and UHF antennas, with design hints, construction and theory. If you've been wondering what array you need, this book will give you enough background to make the right decision. 1003
to
COAX HANDBOOK Invaluable book for the ham or the lab and for everyone else who doesn't want to have to keep a whole library on hand for reference. or even manufacturer for coax spec 1005

CIRCUITS If you've been looking for a transistor circuit there is a circuit in this are that will give you a head start. t covers circuits for audio receivers, transmitters and test equipment.
$1006 \ldots .$.

NCX-1000

SIMPLIFIED MATH math seare MATH Does This easy-to-understand book explains the simplified nential system of arithmetic simple formulas, logarithms, and their application to the ham shack.
1007
$\$ 50 d$

AMATEUR TEST AND MEASUREMENTS By W5REZ. Using VOM, Scope VTVM, ers amateur users, of test equipment in the ham station 208 pages, softbound. Interestingly written, covers tuning receivers, all kinds of trans mitters, etc. Invaluable for 1012 hamshack.
$\$ 5.50$
ELECTRONICS FOR THE AMECTRONICS FOR THE bound book, 272 pages. Covers entire theory needed for passing amateur licenses. Fine book for instructors, and for amateurs wanting a refresher course before exposing themsleves to the FCC examiners lardbook books look nice and 1013

NATIONAL NCX-1000 TRANSCEIVER Transistor ized transceiver (except for watts, yet is just a bit larger han ordinary transceiver! Complete kilowatt ham staion in one small, light unit Tested by 73 staff and found o be a really great unit. The world of transistors and ICs makes it possible to have a ham station in one small unit Not much larger than normal transceiver yet runs solid 1000 watts. Extremely sensitive processed speech for maximum umphs when wanted everything you need in one little package. Only tubes are driver and final. The NCX- 1000 lists for $\$ 1100$ and s an unusual bargain at that ew days and under brand new factory warranty, is available to the first $\$ 700$ check received.

GR 1105

G.R. FREQUENCY MEASURING EQUIPMENT TYPE 1105A This primary frefrom 1 Hz to over 100 MHz with an accuracy of one cycle up to 10 MHz . This is a aboratory standard used primarily for calibrating other equipment. This is the last Sord in frequency standards Send for details.

W2NSD/1

MAGNETIC CAR SIGNS Put this easy-to-read magnetic call sign on your car when you are on a trip and meet the hams along the way, Comes the car if she doesn't want to be bothered by hams tooting at her. Send $\$ 4$ along with your call letters today!
.$\$ 4$
LAPEL BADGES Name and call identifies you at club meetings, hamfests, busted pot parties. Hand engraved by skil-
led New Hampshire craftsman with loving care. Only one lousy dollar. Send first name 1202 and
 GLOBE? RIDICULOUS! Particularly when these fabulous
Hammond globes (the best in the biz) are available at our low, low price! 13" inflatable globe (guaranteed, by the way) regularly selling for $\$ 15$, 1208 special, while they last $\$ 10$ 13 "" lighited inflatable. globe, regularly $\$ 25$ now 1209. We have a few of only $\$ 15$ stock and when they are gone,

DX STUFF

CUSTOM MADE DX CHARTS When you need a DX bearing you need it immediately. You don't want to have to look it up on a map or fiddle with a globe. These Cusom DX Charts are computer location and give the bearing and mileage for every country in the world. They are printed out by call prefix for speed of location and the capital city is indicated.
Custom DX Chart,1206ppd \$4

FABULOUS DX MAP OF THE WORLD Show visitor DX you've worked. Wal flat in mailing tube; suitable for framing: most complete map available; up-to-date world prefixes shown; color in countries as worked; shows slands, reefs, rare DX spots use colored map pins for dif1207 ferent bands.
1207 . $\$ 1$
DX HANDBOOK Includes giant world country-zone wall map. Articles on QSL design secrets, winning DX contests DXCC rules, DXpeditions, re ciprocal licensing and many more. World postage rates WAZ record lists, time charts, propagation etc. Special ham maps and bearing
must for the DXer.
$1021 \ldots \$ 3$

DIODE CIRCUITS HANDbook An invaluablifiers, mixers, detectors, modulators, FM detectors, noise limiters, AGC,
BFO/Q-multiplier, AFC, Varicap tuning audio clippers, balanced mods, fieldstrength meters, RF probes, zeners, concircuits.
1004
"TRANSISTOR PROJECTS FOR THE AMATEUR," ACTS Fection of 73 's most popular ham projects, selected by you, the readers, and edited by Paul Franon (Mr. Semiconductor himself). This has got to be the best, most authoritative, most universally appealing collection of up-to-date circuits ever published.
1010.
. $\$ 3$

FM BOOKS

FM ANTHOLOGY Vol. 1. This book is largely a col-
lection from FM Bulletin, edited by K b y MV Hin, editWA8UTB. The material is taken from the editions of Feb-
ruary 1967 through February 1968
1009.
. $\$ 3$
FM REPEATER HANDBOOK K6MVH. Book is required for all repeater operators and Only complete book on the subject. It is also one of the best selling books in amateur radio today
1010 Hardbound \$6.95
"THE BEST OF FM" A huge selection of FM Journal's finest technical and conversion in any other magainze. The concluding segments of those controversial 'CHR ICLES'! Selected FM editorICLES' Selected FM editor-
ials to show a broad view of ials to show a broad view of
the problems faced by FM'ers. This book comprises Volume II of the FM anthology, and includes an "Editor's Choice" selection of topflight articles from FM Journal, from March 1968 to May 1969.

1019

1010

EDITORS \& ENGINEERS RADIO HANDBOOK Hardbound. Latest (18th edition) by W6SAI. This is the most complete ham handbook ever pundbooks look like other books. 896 pages. 1018 . 896 pages
$\$ 13.50$
EDITORS \& ENGINEERS RADIO HANDBOOK Hard bound. W6SAI (17th edition) reduced for clearance, limited supply available for fast actin this great book before it is one forever.

LECTRONICS REFER ENCE HANDBOOK Hard bound. W6TYH handbook of basics and circuits. Complete analysis of all ssb equipment

HOW TO FIX TRANSISTOR RADIOS \& PRINTED CIR CUITS. Do you throw thos top? Was away when they ix with this manual. Worth nany times the low price. No serviceman or amateur should e without this tremendou book.
1016.
$\$ 7.95$
SCHEMATICS AVAILABLE $\$ 1$ each.
101. ARR-15 from June 96573 , page 78

2 M Guard Channel Receiver. channel Receiver
961 73 PB Transeiver, Nov 104. R508/AR
page 48 , before $\&$ after.
Buy lavishly! Order today from RADIO BOOKSHOP

GUNSMOKE

GUNSMOKE? Blow your main bunch 30 (count , bar gain burted (we hope) back is sues, all before 1968 , for the incredibly low price of $\$ 6$ postpaid (hardly pays for the postage). These are packed by slave labor (to cut costs) so please ignore notes calling for int, the bundles. 204 bundles.

SPECIAL! RARE BACK SUES The back issue of 73 you need to complete your rull set - or that has the continued article you only read the end of - can be yours for are in stock and are available for $\$ 1$ each. The exceptions that prove the rule are listed below:
Dec. $6 \dot{8}$, Nov. 69, Feb. 70, Oct.
Jan. 65 , Äpr. 65 , Jan. 6 6, Jan.
$67 . \operatorname{Din}^{2}$ Jun $6 \dot{6}^{\$ 3}$
Jan. 61, Dec.63, Jun.66, Jul.

73 BINDERS

BUY BINDERS FOR YOUR 73 and win the love of a beautiful girl. Gorgeous red binders look great on your azines from disappearing or breaking. Come with set of year stickers. Get enough binders to protect all those back issues too.

DESK PLATE
DESK CALL PLATE Up to 20 letters on a desk plate, embackground; ebony stand Looks great on rig with your name and call. Watch envy race through your neighborhood. Send along 20 well chosen letters (spaces count as letters too), include a nice fresh two dollar bill, and give mail the exquisite piece of craftsmanship.
1203.
. $\$ 2$

Latest Edition - POPULAR TUBE \& TRANSISTOR SUBSTITUTION GUIDE Brandnew updated and revised edition! The most needed substitution data for both tubes and transistors all in one handy brand-new volume! No longer substifution manual for tubes and another for transistors everyting is here in one quickreference guide. Lists 99% of the tubes and transistors you'll ever need to replace. Moreover, only readily-available and comparably-priced substiyou have to search through you have to search tranrough you'll rarely see in use, or search through pages of irrelevant material to find a substitute. Why buy a $\$ 10$ switching transistor when a 89% popular type will do the job better? devoted to tubes and four to transistors; Popular Receiving Tubes, Industrial and Commercial Tubes. American Substitutes for Foreign Tubes. Tube Base Diagrams. Popular Transistors. American Substitutes for Foreign Transistors. General Purpose Transistor Substitutes. Transistor Base Abbreviations. You'll find this guide to be one of the most practical everyday aids you've ever used. 224 pps., 8 Sections.

Softbound $\$ 2.95$
Vinyl Cover $\$ 4.95$

WORLD'S FINEST LOG
BOOK? Designed and executed by W2NSD/1, this is the most relevant amateur radio log ever designed. This is a log for today. It has a column for the date, one for time and off of each contact, a small column to indicate whether you called the station contacted space for the station call contacted, little columns for the reports, a good space for his location, a QSL column, and lots of room for notes The log is the long way on standard into pads of 125 sheets, with room for 20 contacts per page. room for 20 contacts per page. will carry you through 2500 contacts. There is a place to indicate on each sheet the band being used and the power in case these change now and then. The log pages can be numbered for file card refer ence. Why use a log book one was designed for use in the 70's and is exactly right for the DX'er, and rag chewer, or even the round-table denizen. It will work for RTTY ATV or even slow scan tele vision. Never has a log been handy as this gem. Why keep struggling with those ring binders which get all bent out of shape? Get this first really
modern log.
1210.
.only $\$ 2$ ppd.

RADID BOOKSHOP

All books and items postpaid in U.S.A. unless otherwise indicated. Send cash, check money order, etc., to:
Buy lavishly! Order today from: RADIO BOOKSHOP
Peterborough NH 03458

Iyou would like a leisurely vacation with a bit of amusing radio operation thrown in, you might consider Luxembourg.

The Grand Duchy of Luxembourg is a small country right in the middle of Western Europe. It has frontiers with Belgium, Germany, and France. It is an independent country but maintains a currency union with Belgium, which means that 1 Belgian franc equals 1 Luxembourg franc, and both Belgian and Luxembourg currency circulate freely in Luxembourg. Note, however, that the reverse is not true. Luxembourg francs are not so readily
acceptable in Belgium, so visitors are recommended to change their Luxembourg francs into Belgian francs before leaving Luxembourg.

The country is also part of the Benelux Customs Union.

For so small a country it is quite surprising what a large variety of different types of scenery, of ways of life and even of activity, it represents.

The country is far from flat. While it is not mountainous in an alpine sense, it is very hilly and has many beautiful valleys and rivers, as well as the high plateau.

Its activities vary largely.

In the southwest is the large modern steel industry. (Luxembourg is the center of the European Coal \& Steel Community). The capital city celebrated its millenium a few years ago, from which it will be clear it is a very ancient city with architecture and ruins covering many centuries. Perhaps the most remarkable feature is the very deep valley of the Alzette which divides the city into two parts, with steep cliffs overlooking the valley and where many of the medieval fortifications were built.

Further north the country varies from agricultural land to the large artificial lakes created by various dams on the rivers.

The main roads are good and fast. The minor roads are good and slow. Here is some of the most delightful leisurely motoring one could wish for with the well surfaced but narrow roads winding up such lovely valleys as the Mullertal along the Entz-Noire river in what is called Luxembourg Switzerland, the Sure Valley, the Moselle Valley (don't forget the wines).

The valleys often end in steep climbs on to a high plateau with magnificent views for miles in all directions.

The food is good and abundant. Both French and German wines are available try the Luxembourg wines grown along that stretch of the Moselle which flows in Luxembourg.

So far this reads like a travel agent's pamphlet. What has this to do with amateur radio? Plenty.

Luxembourg grants reciprocal licensing to the USA, Britain, France, Belgium, Holland, Germany, and through the " G " license to most members of the British commonwealth, as well as other countries.

Though Luxembourg is not a "rare" country by real DX standards, it is sufficiently uncommon for the LX call to be much more sought after than a W or a G, or an F or a DL call.

The varied type of country provides quite fascinating differences in propagation. From the high plateaux excellent mobile operation can be obtained to the whole world. WAC mobile could be worked in a day! Descending into one of the valleys while in QSO you may lose your contact completely, or in another
valley find you are still in contact! Portable operation from the many country hotels is good fun too.

My first portable operation took place at the Hotel Hames at Boulaide in Western Luxembourg. This is a small unpretentious hotel whose proprietor was most cooperative in every way, even accompanying me to a farmhouse next door to obtain permis-

LXISX at the Boy Scout Jamboree station LX1J^T at Ettelbruck.
sion to put the trap dipole on the farmhouse roof. One of our first QSOs was with New Zealand. He also helped arrange for my battery charger to be connected to the hotel supply to charge the mobile batteries overnight. (But bring your own charger.)

Our good friend ON4PG came over from Arlon to visit us and help with the antennas.

From there we decided to try a different location in Eastern Luxembourg where at Berdorf the Parc Hotel was also most cooperative and other antennas were

LXISL operating at Niederanven near Luxembourg airport.

LX1SI of moonbounce fame at his station at Luxembourg airport.
erected, including a mobile whip out of the hotel window working first against a quarter-wave of wire, and then against the lead roof of the hotel. Japan was worked by both methods.

It was on this occasion that my good friend ON4PG was killed in a motor accident. But not, as some rumors had it, while he was operating mobile. He did not even have a rig in the car when the accident happened.

In 1968 we went later in the year - in October. We were lucky, both with the weather and the DX conditions. We went to Beaufort in Eastern Luxembourg where the Hotel Meyer allowed us to put up three antennas: a trap dipole, a Cushcraft Ham Stik Dipole for 15 meters, and a Mini Products coaxial vertical dipole for 10,15 , and 20 meters (6 meters is not allowed in Luxembourg).

The results were most interesting. We worked into VK, ZL, and JA most mornings and the States and South America mornings and evenings. Although the hotel had a forest of TV antennas and was receiving programs from Germany, Belgium, and other places, no TVI complaints were received.

So far only HF and LF communications have been discussed, but Luxembourg is excellent country for VHF activity. Remember LXISI who made a moonbounce QSO with KP4 on $3 / 4$ meters? Here is an advanced and sophisticated amateur who is really knowledgeable on all matters of VHF. Having made his $3 / 4$ meter EME contact, he had already dismantled the rig and the antenna, preparing for better things, so I could not photograph this. He is now working meteor scatter on SSB, and has probably made the first meteor scatter SSB QSO in Europe - one with Hungary and one with SV1AB. His shack is impressive but his knowledge and understanding are far more impressive.

Nor should we forget his brother-in-law LX1DC, who put Luxembourg on the map many years ago on AM soon after World War II.

Then there is the charming gentleman who runs the PTT and administers the reciprocal licensing, LX1JW, well known at the ITU and IARU meetings.

Besides the older and more experienced amateurs there is a crop of young enthusiasts coming along. I met two amateurs who had been licensed less than a year.

Both were on SSB - LX1SL at Niederanven (whose photo appears here) and LX1SK, who is a teacher at the Diekirch High School and organized and ran the Boy Scouts Jamboree on the Air Station at Ettelbruck with a Galaxy V

Reverting once more to VHF, Luxembourg's situation and the high plateau location enable QSOs to be made on VHF with Germany, France, Belgium, Holland, Britain, Switzerland, and many other European countries. While I was there we experienced a temperature inversion which produced VHF DX in several directions. LX1SI was active on SSB on 2 meters when I called on him.

Above all, this variety of scenery, this variety of radio conditions, this variety of form of amateur activity can all be enjoyed in a leisurely fashion. The distances are remarkably short. It is but a half-hour's run from beautiful Mullertal to the capital city, or from the high plateau - with excellent

The Mini Products C4 multiband coxial vertical dipole on the Hotel Meyer at Beaufort from which G3BID/LX radiated, with the head of G3BID visible in the skylight.

DUAL GATE MOSFET PRE-AMPS

to 175 MHz . $\$ 21.95 \mathrm{ppd}$. to 300 MHz . $\$ 25.95 \mathrm{ppd}$.

- Available from 5 MHz . to 300 MHz . Bandwidth is approximately 3% of frequency.
- Voltage gain 30 to 40 DB depending on frequency.
- Two Dual Gate MOSFET amplifier stages with each having a tuned input and tuned output. Each Daul Gate MOSFET is actually an integrated cascode circuit thus giving you 2 cascode circuits equivalent to 4 triodes.
- Exceptionally low noise (2.5 DB at 175 MHz), greatly reduced cross modulation and 10 times the dynamic range (signal handling capability) of the best bi-polar transistors. Also superior to preamps using junction FETs and Single Gate MOSFETs.
- Panel mounted manual gain control.
- Type BNC input and output receptacles for minimum loss at UHF. Standard I mpedance is $50-75$ ohms.
- Carefully tuned at our laboratory with sweep generator and oscilloscope for the best bandpass characteristic.
- Full wave UHF diodes protect input transistor.
- Operates on 6 to 16 volts DC, 5 to 15 Ma .

New York City and State residents add local sales tax.

VANGUARD LABS Dept. H 196-23 Jamaica Ave., Hollis, NY 11423

Tell Our Advertisers You Saw It in 73

propagation of the region around Vianden or Boulaide - to the deep gorges of the Sure or the Entz.

The hotels in many of the little villages are good, and one's nights can be spent away from the noise of traffic and aircraft and the fumes of diesel lorries at elevations of 1500 or 2000 ft in fresh air.

The keynote is leisure. So, by logical extension, as WX is a universally accepted abbreviation for weather, LX could be accepted as an abbreviation for leisure.

G3BID

Try DXing the

The editorials in 73 about an African Safari and a trip around the world gradually got to me. My wife Jo, WA6VEJ, listened to me reading about the plans and said, "Why don't you go?" After talking with Wayne and my travel agent I could see that it would be almost impossible to get all of the visas needed in the few weeks remaining.

Jo brought me right out of the letdown by saying, "Well, that's too bad, why don't both of us go a little later on?" And there went thirteen kilobucks!

We looked over the weather for each place we wanted to visit and decided that our best compromise would be to go westward, starting in winter.

I had in mind getting on the air from as many of our stops as possible, using local equipment, as Wayne had advocated. An on-the-air discussion of the trip brought an invitation from Trevor (ZK1AR) to visit him for a few weeks in the Cook Islands and help put ZK1 back on the air in style. The license turned out to be no problem,
but the visa was contingent upon our getting confirmed reservations out of Raratonga; but, as I found out, there are no reservations out of Raratonga. They have a six-month backlog of people wanting to leave and that is a long waiting line. Well, so much for ZK1.

Letters to embassies were sometimes answered. Some countries would allow me to operate, some wouldn't. India takes $8-10$ weeks to grant a license. The Australian license was $\$ \mathrm{~A} 2.40$. I considered stopping at Norfolk Island to operate VK9RH, but then I heard that two other ops would be activating Norfolk so I decided that our time might as well be spent elsewhere to better profit. The Russian embassy was hesitant at first, but then an agreement reached by the IARU in Yugoslavia paved the way and I was able to apply through the ARRL and get UI8KAA/K6KA in Tashkent and UI8KBA/K6KA in Samarkand, complete with street addresses and signed by UA3AF. This whole thing took many
letters and phone calls to accomplish. I suppose I should have known that it was really just a big runaround, but I was optimistic. Uganda and Iran came up with permission to operate, so things looked encouraging.

Should I take along a rig or plan on using existing equipment as Wayne did on his trip? After mulling over the problems involved, I decided to leave the gear at home and do the best I could in each country. The cost of carrying along a transceiver plus all the accessories I would need to meet the conditions in a couple dozen countries was prohibitive. The rig would have to be able to operate from about 90 to 270 volts at $40-60 \mathrm{~Hz}$. Then I would need antennas, a tuner, and spare parts. It was just too much. Getting all that stuff through customs could be an expensive bore and I could just as well find myself in a position with the equipment sealed in a customs locker in one town where I had entered the country with me wanting to leave from some other city. If I had been going specifically on a DXpedition it would have been different, but in just about every place I intended to visit I would find a local amateur station set up that I could use.

Even though we started over six weeks before the trip to get our visas which would permit us to enter the countries we intended to visit, we didn't have them all by departure time and, even worse, our passports were tied up in the U.S. mail somewhere in Los Angeles or Pasadena. Just five hours before our plane left we managed to find the passports by going through 42 sacks of mail at midnight in the Pasadena office. Traveling is tiring even before you travel sometimes.

We stopped off for a breather at Anchorage and then on to Tokyo. After a few days sightseeing we went on to Hong Kong and met Pete Pitt (FS6FO), a CW man, and Tony Willis (VS6FS) of SSB fame. They hadn't heard about reciprocal licensing yet, so I had to just listen instead of operate. Drat!

Tough luck in Borneo too. Hiew Fui Siong (ex-ZC5VS) at the Posts and Telecommunications explained that there were
no active amateurs in 9 M 6 at the time. There was a nice new ham station at Labuan Island, but our luck running true to form; we were there only for a few minutes for a refueling stop. It continued in this vein at Brunei Town when we missed Mike (VS5MH), who was attending an official luncheon during our short stop. My record was kept clean even in Sarawak when we had dinner and visited Ron Skelton (9M8RS) and his wife. Ron is with Posts and Telecoms and this was not consistent with "authorized operations." We listened.

Bali was a delight as a tourist attraction, but it was the same old story hamwise. The Bali Beach Hotel is $\$ 10$ for a double room and there are 1200 staff to wait on about 80 guests spread out in the 300 rooms. There are no amateur stations.

The most active of the Singapore amateurs, Bob Snyder (9V1LP), was in Norway, but we did get together with Harry Pain (9V1MT) for dinner and the first break in our operating bad luck. Not much of a break actually, since only a few Japanese stations were coming through at the time and not one whisper from the U.S.

In Kuala Lumpur we visited Nara (9 M2LN) and his gracious wife Fatima, but again no operation on the air. Thailand turned thumbs down on an operating permit, though we did get together for dinner with John Moss (HS1WF). No luck in Burma either. In Calcutta, Renga (VU2RF) met us and took us to visit VU2DG, VU2HK, and VU2RK. We learned that a tall man and a woman in hiking clothes had been through the Calcutta airport just recently with a letter from the Maharaja of Sikkim (AC3PT) asking them to visit and operate. YA1FV contacted AC3PT a few days later and the DX newsletters mentioned others making contact.

In Nepal we visited Father Moran (9N1MM) at the St. Xavier's School. He was quite excited over the imminent arrival of a Drake exciter and linear to go with his Drake receiver. We operated his old Johnson Viking with an outboard SSB exciter for a little while, but the band again did
not open to the States until well after we had to call it a night. Father Moran proudly pointed out the red sticker on his ceiling which said, "W2NSD/1 was here." The next day, during the SSB contest, a few weak W stations were heard, but nothing was contacted.

In Agra, India, we had dinner with Col. Les King (VU2AK) and Frank Williams (WA6CLO) before going on to visit the Taj Mahal and other palaces in the area. Les had tried to get permission to operate from Sikkim, but had failed. He said that General Singh (VU2US), a member of the Rajasthan royal family, had succeeded in getting permission.

We were unable to find any amateurs in Kashmir. In Afghanistan I was able to locate Fred Vogel (YA1FV) and operate from his station as K6KA/YA for an afternoon and evening. The line voltage in Kabul swings widely and you have to keep one eye on the line meter and one hand on the Variac. Even so this is a poor place for solid-state power supplies for the line voltage can shoot up quite suddenly and wipe you out. The bulk of my contacts were with the neighboring Russian stations and no sign whatever of any U.S. breakthrough.

U18KAA/K6KA

This was sure to be the most exciting and rewarding part of the trip from the ham end. We arrived in Uzbekistan and tried to find the station I was supposed to operate. The Intourist guide said that the school had been destroyed in an earthquake and he would have to try to find out where the station had been relocated. He said he thought he could arrange for me to operate on the last evening of our visit to Tashkent, which provoked me because I had had visions of putting in four or so hours every day during our visit. He brought the Communications Minister to the hotel the next night, who agreed that I could operate as much as I wanted, at any time. He then proceeded to set up a visit to the station for me for the next day for 30 minutes! Another Intourist guide turned up the next night. He had no idea of where to find the station, but we started out in a
taxi and, by asking directions along the way, we eventually found it. The SSB rig was similar to the S-line and ran about 400W. There were about ten people present and we got into a technical discussion of the rig which gave our interpreter a terrible time. Eventually they let me sit down to operate. They had a contact all set up with UA4IF and they let me talk with him. That was it! I was absolutely furious, but polite.

In Samarkand the Intourist guide didn't even pretend to try to help me find UI8KBA. The food and water in UI8 disagreed with us and one fellow who had come up with us lost over 20 pounds during his stay. I don't think I found five bites of food a day that were edible. The beer tasted like vinegar and they ran out of bottled drinks called lemonai almost immediately. The toilets in the hotel were mostly broken and running steadily, so this was solved by just turning off the water for most of the day and night. I tuned a receiver and found that they had some way managed to have only Iron Curtain stations, with not a BBC or VOA station coming through. We had to wait three more days at the Tashkent airport hotel waiting for the rain to stop down in Kabul. This was a relatively new hotel, but it did not have a shower or bathtub in the entire building, which was eight stories high. There was just one toilet seat for men on each floor. The light fixtures were coming off the walls and my bed came apart twice during the night.

EP2GF/K6KA

Harry McQuillan (EP2BQ) met us at the Tehran airport and took us to his nice home, complete with swimming pool, up near the mountains. The local power went through 100 V drops now and then, taking along diodes on the upswings. Harry solved this with 3B28's. Ebrahim and Mary Nuban (EP2BF) had a cocktail party for us which was attended by many of the active locals including EP2AX, EP2RV, and Gerry McKee (EP2GF). I used Gerry's call during the few hours I was able to get on the air from Tehran. Later that night I took a taxi

For The Experimenter! International EX Crystal \& EX Kits

OSCILLATOR / RF MIXER / RF AMPLIFIER / POWER AMPLIFIER

MXX-1 Transistor RF Mixer
SAX-1 Transistor RF Amplifier
A small signal amplifier to drive MXX-1 mixer. Single tuned input and link output.

Lo Kit 3 to 20 MHz
Hi Kit 20 to 170 MHz
(Specify when ordering)
PAX-1 Transistor RF Power Amplifier $\$ 3.75$ A single tuned output amplifier designed to follow the OX oscillator. Outputs up to 200 mw can be obtained depending on the frequency and voltage. Amplifier can be amplitude modulated for low power communication. Frequency range 3,000 to $30,000 \mathrm{KHz}$.

BAX-1 Broadband Amplifier
\$3.75
General purpose unit which may be used as a tuned or untuned amplifier in RF and audio applications 20 Hz to 150 MHz . Provides 6 to 30 db gain. Ideal for SWL, Experimenter or Amateur.

CRYSTAL MFG. CO., INC. 10 NO. LEE OKLA. CITY, OKLA. 73102
downtown and visited Ambassador Meyer (EP3AM) at the U.S. Embassy.

We made a short visit to Lebanon, having dinner with Bill Fells (OD5EL) of Collins Radio. Bob Adams (OD5BZ) was out of town at the time, unfortunately. We drove over to the Syrian border and experienced the same delays that Wayne did while our passports were minutely inspected for any sign of an Israel visit. We forgot to bring along Rasheed YK1AA's phone number so we missed visiting with him in Damascus. We went on to Jordan and found that there was no ham activity there either. In order not to cross Israel we flew first down to Saudi Arabia and then across the gulf of Aqaba, the Sinai, and up to Cairo. From there we flew almost immediately down to Entebbe in Uganda and on a tour up through beautiful Murchison Park and a night at Paraa Lodge. Wayne described this same trip to you a few months back so I won't tell you about all the elephants, hippos, crocodiles and other game which is there in profusion.

Back in Kampala, the capital of Uganda, we found a discouraged Ernie Brice (5 X 5 AU). His Swan was defunct. I wasn't about to be frustrated by anything simple so we attacked the rig with an ohmmeter and found that one of the four diodes in the bridge rectifier lacked a high back resistance. We clipped the rectifier out of the circuit, and the radio worked satisfactorily for the three-day period. I spent as much time as I could on the air, but was limited because Ernie had to be with me and I couldn't keep him or his family up too late at night.

Ernie had a minibeam with old coax, so had put up a separate 15 m dipole. Not much seemed to come out of the minibeam on 15 and 20 . The dipole loaded on both bands, except after a heavy rain one day. Contacts on 20 m were difficult, and phone contacts were very slow, but those on 15 m CW doubled each day. Some time was used in trying to make a contact near Philadelphia for some missionaries. The scheduled stations did not appear. The ones we heard could not be raised. After the skeds, I was able to make one to five QSOs at a time, which helped to reduce the pileup QRM on
the transceiver. When several stations and their RST reports were sent with a request to QRX, everyone knew that it was useless to call until the whole group had a chance to reply. The key was over the table edge. There was no sidetone, though I could hear my pumping arm whizzing through the air. When the U.S. stations were heard, there would be only one or two at a time and no pileup. There was sporadic-E layer en route beyond Europe. At one time or another the signals covered all parts of the U.S., even in my home local telephone area. The condition was typical for northern hemisphere summer.

Ethiopia, Sudan, Greece

Moving on through Kenya, Tanzania, and some exciting scenes of Africa, we pushed for Egypt. At the Cairo airport, the tourist bureau assured us that everything was calm, that we should not cancel our two days in Luxor and three in Cairo. With the unsettlement in Cairo indicated in local and some foreign papers, we followed an Embassy recommendation to go on to Athens. This meant not seeing SU1IM, and getting into Athens with little chance that the airline communications would get us a hotel room there.

Those who were in Cairo during the next few days, which would have included us, were restricted to two darkened hotels, and had to pack in the dark for a truck ride to Alexandria in the hope of leaving by ship. Ultimately they got out. People leaving Beirut had to take only one bag, leaving the rest behind.

Athens was wonderful. There were cucumbers as well as tomatoes, good water, and chateaubriand under the Acropolis. Socrates (SV1AE) spent an hour or two at the hotel telling us of the prospects for the civilian SV1s getting back on the air.

I was able to operate a MARS station as SV $\emptyset W S$ for a day. This had the usual S-Line, but the 30S-1 linear was not connected. The $30 \mathrm{~L}-1$ on 15 m had a peculiarity of making a noise in the receiver. It was necessary to switch the filaments on and off for each transmission.

The rotary antenna was a Hy-Gain log periodic, claimed not to have much gain,

Tanzania. . .
but it had wonderful directivity. Pointed at Europe, nothing but Europeans came through; pointed at Japan, only JAs came through - with a pileup of some 500 stations. Possibly the JAs had been listening to the European calls, and were ready. Upon excusing myself and swinging the antenna, not another JA was heard. A few Ws came through as far west as W7MSF. Most success was on 15 m . This operation could have been drawn out into the evening hours, and again the next day - when we went to Delphi to hear what the Oracle had to say about DX. June conditions were not too consistent for the U.S., and anyhow Greece is not very rare. So, we got ready for our Greek Islands cruise.

We made three stops in the first 24 hours: Hydra, an interesting island with a small harbor; Santorini, a large submerged crater with recent activity from a central cone; and Crete. Bill Corbin, now SV \emptyset WL in Crete, received a message we sent at the dock, and looked for us at a museum. He and his wife came aboard for cocktails, but time was too short for a visit to the station.

Uganda. . .

Like in many ships, the scheduled departure of 8 p.m. was anticipated. We were on our way out of the harbor at $7: 20$!

When we called on the licensing activity in Athens, and met George Chapman of VOA, now SV \emptyset WK, the story was that Don Hoff had left Rhodes for home leave. The shortage of calls (one alphabet of 26 calls) led to reassigning $\operatorname{SV} \emptyset W U$ to Robert C. Smith of the Naval Communication Station near Athens. We wrote to Fred Haney (SVØWQ) about our arrival in Rhodes, which brought a disclaimer from Don who promised to meet us. All equipment had been impounded there when the political unrest came in April, and was still impounded. The civilian SV1s were still off the air in June. The Rhodes gang did not know that the $\mathrm{SV} \emptyset \mathrm{s}$ were permitted to go back on the air in May. My unofficial word was not enough to overrule the instructions to VOA from the Embassy. Office hours are early for the Athens officials; no telephone confirmation was possible that afternoon or evening. The result was a pleasant visit to Rhodes, but the expected

Pakistan. . .
operation had to be omitted to prevent offending someone should I have been incorrect. These political situations are too hot, and violation could be disastrous to amateurs, especially foreign ones, not to take every precaution before operating.

The cruise took us to Efessos in Turkey, near Izmir. It is the site of four cities over thousands of years, and of Paul's epistle to the Ephesians. Then to the island of Mykonos, and back to Athens.

After a happy four days in Vienna, and a flight on Pan-Am over a clear northern Scotland, the Greenland ice cap, the glaciated rock of Labrador, stops in New York, Orlando, and Atlanta, we arrived home. The four cartons of mail, largely $5 \mathrm{X} 5 \mathrm{AU} / \mathrm{K} 6 \mathrm{KA}$ QSLs, have been taking a bit of time. We missed a bit of DX while away, but saw a lot of it in person. It will be enough to last us a while before we try the leisurely South Pacific trip. Phoenix Islands, anyone?

Bangkok. . .

Sikkim. . .

K6KA in . . .

Santorini. . .

Kenya. . .

Khybur Pass. . .

Persepolis, Iran. . .

Bali. . .

ot two receivers? With a modified pair of phones and a simple switching unit it is possible to have both earpieces connected to receiver 1 , one earpiece connected to both receivers, or both earpieces connected to receiver 2 . This can be an advantageous listening system.

The System Explained
Putting up a second antenna for receiving is easy, but life becomes difficult when one must juggle two pairs of phones; and two loudspeakers are plain murder! Split phone working eliminates these difficulties. By using a slightly modified pair of phones and a rotary switch both earpieces can be connected to either receiver, or a single earpiece can be connected to each of the receivers at the same time. It is thus possible to monitor two channels at once or one channel on its own merely by flicking the switch.

Typícal Examples of its Use
The system has many uses and the three
examples which follow illustrate the flexibility which it offers.

Suppose that a ham wants to see what DX is coming through on 20 m CW while waiting for the local 75 m phone net to open. With split phone working he can have one earpiece connected to his main receiver on 20 m and the other connected to the spare receiver tuned to the net frequency. When the NCS calls he can throw the switch and connect both earpieces to the spare receiver, or if a rare DX station comes up in the meantime he can switch both earpieces to the main receiver.

A second example is the common occurrence when it is announced that a station visiting a rare country "will be on either 14.020 or 21.020 MHz , depending upon 'conditions'." With split phone working, both the frequencies can be monitored at the same time. The advantage is even greater if the station uses a transceiver. The receiving can be done on the spare receiver and the transceiver can be left tuned to the calling frequency.

Modifying the Phones

Figure 1 A shows a normal seriesconnected pair of phones. To modify them for split phone working, the connections must be altered to those shown in Fig. 1B.

Fig. 1. Unmodified headphones (A) and headphones modified for split phone use (B).

The new phone cord is made from a suitable length of 4 -conductor cable which has had 18 inches of its outer cover stripped from one end. The four wires thus uncovered should be split into two pairs and each pair should be twisted together. Each pair is connected to the terminals on one of the earpieces.

The other end of the cable is connected to a four-pin plug. The left earpiece should be connected to the plug so that it connects to receiver 1 as shown in Fig. 2, and the right earpiece connects to receiver 2.

The Switching Panel

Figure 2 shows the circuit of the switching panel. The main component is S 1 , a 6 -pole, 3 -position rotary switch. When the switch is in position 1, contacts S1b and S1c connect the two earpieces in series and contacts S1a and S1d connect the phones to receiver 1. At the same time contacts S1e and S1f connect R1 (a load resistor) across the output of receiver 2 to prevent possible damage to its output transformer. When the switch is moved to position 2, contacts S1a and S1b connect earpiece 1 to receiver 1 and contacts S1c and S1d connect earpiece 2 to receiver 2 . Contacts Sle and Sl'f perform no function in this position. In position 3, contacts S1b and S1c again connect the earpieces in series, contacts S1a and S1d connect the phones to receiver 2 and contacts S1e and S1f connect the load resistor across the output of receiver 1 .

Fig. 2. The circuit of the switching unit. R1 to be a $68 \Omega, 1 \mathrm{~W}$ carbon resistor for low impedance output receivers, and a $2.2 \mathrm{k} \Omega$, 1 W carbon resistor for high impedance output receivers.

Constructing and Mounting the Switch Panel

This is a simple job. The components can be assembled on a $4 \times 5 \mathrm{in}$. plywood panel or on the lid of a suitable-sized metal utility box. Internal wiring is done with insulated wire and load resistor R1 is soldered directly to the switch tags.

The mounting position of the panel will depend upon station layout. If a control console is used it can be mounted on it.

The Second Receiver

To get the best out of the system, the second receiver should give a reasonable performance. If an old receiver is brought back into service for this purpose, the following hints will help to greatly improve its performance.

Replace all decoupling capacitors in the rf, mixer, and i-f stages with new capacitors of the correct value. This means the plate, screen, and cathode decouplers should be changed. Use new capacitors, not components dug out of the junkbox. Similarly,

We have in stock over six million crystals which include types CR1A/AR, FT243, FT241, MC7, HC6/U, HC13/U, etc. Send $10 \$$ for our 1970 catalog with oscillator circuits, listing thousands of frequencies in stock for immediate delivery. (Add 10ϕ per crystal to above prices for shipment 1st class mail; 15ϕ each for air mail.)

ORDER DIRECT
with check or money order to
Special Quantity Prices
to Jobbers and Dealers

2400B Crystal Dr., Ft. Myers, Fle. 8990 I
change the af interstage coupling capacitors. If the receiver has built-in power pack, replace the smoothing capacitors. Clean up the wavechange switch with switch cleaner, and realign the receiver to the maker's instructions.

To show just what a remarkable effect changing the decoupling and af coupling capacitors in an old receiver can have, I can quote something I did a few months ago. Poking around a local junk shop I came across a 1936 HRO and bought it for $\$ 10$. When power was connected it worked, but signals were very weak, there was noticeable distortion on the af output, and the crystal gate only acted as an attenuator. Replacing all the decoupling capacitors in the rf, mixer and i-f stages brought S3 signals up to S9, and also brought the crystal gate back into proper operation. Replacing the af coupling capacitors cleared up the audio distortion, and the vintage receiver is now in use as a second receiver, regularly giving good DX contacts. The moral, of course, is that if you shop around and spend an evening working in
the shack you can get the second receiver for split phone working without having to hock the XYL's mink!

Fig. 3. Layout of the switching unit panel.

STEP UP TOTELREX Professionally Engineered Antenna Systems

Single transmission line "TRI-BAND ${ }^{\circ}$ ARRAY"

By the only test that means anything ... on the air comparison . . . this array continues to outperform all competition... and has for two decades. Here's why ... Telrex uses a unique trap design employing 20 HiQ 7500 V ceramic condensers per antenna. Telrex uses 3 opti-mum-spaced, optimum-tuned reflectors to provide maximum gain and true F / B Tri-band performance.

ONLY TELREX GIVES YOU ALL THESE FEATURES...

- Power rating 4 KW PEP... rain or shine
- Wind rating survival 110 MPH
- Patented broad-band coaxial Balun
- Heavy-duty steel gusset mounting plate
- Aluminum boom 2 in., $2^{1 ⁄ 2}$ in. O.D. $x 18 \mathrm{ft}$.
- Large diameter, . 058 wall taperswaged dural elements for minimum
weight and exceptional strength to weight ratio
- Stainless steel electrical hardware

With a Telrex Tri-band Array you get 49 lbs. of educated aluminum engineered and built to provide many, many years of performance unmatched around the world by any other make. Longest element 36 ft . Turning radius 20 ft . Shipping weight 65 lbs. Shipping container 13 in . $x 5 \mathrm{in} . \times 13 \mathrm{ft}$.
Note: If not available from your dealer, order direct. You'l get fast, personal service.

Telrex Labs are design engineers, innovators and manufacturers of the world's finest $3 / 4$ to 160 meter communication systems and accessories priced from $\$ 25$ to $\$ 25,000$.
For technical data and prices on complete Telrex line, write for Catalog PL 71.

Some thoughts from Mike Ercolino, P.E. - W2BDS, Telrex Chief Engineer . . .
"I've been in the game over 50 years (pounded brass for 25) and found out a long time ago that antennas were the weak link. We changed all that."
"Good antennas such as those we build can be ruined in two minutes by a tinker. So put 'em up and leave 'em up the way we make 'em.'"
"Our 'Big Bertha' systems cost more than a Rolls Royce. Three of our customers have bought two of them . . . that's living."

1970 Catalog of Precision
Quartz Crystals \& Electronics
for the Communications Industry,
SEND FOR YOUR COPY TODAY!

Somewhere along the line, in virtually every ham repeater in the world, you'll find a couple of Sentry crystals.
Repeater owners and FM "oldtimers" don't take chances with frequency-they can't afford to. A lot of repeater users depend on a receiver to be on frequency, rock stable... in the dead of winter or the middle of July. The repeater crowd took a tip from the commercial "pros" a long time ago-and went the Sentry Route.

That's one of the reasons you can depend on your local repeater to be there (precisely there) when you're ready to use it. FM'ers use the repeater output as a frequency standard. And for accuracy, crystals by Sentry are THE standard.

IF YOU WANT THE BEST,

 SPECIFY SENTRY CRYSTALS.
"Ask the Hams and Pros

Who Build Repeaters!"

$$
\begin{aligned}
& \text { YOUVE USED A } \\
& \text { SENTRY CRYSTAL }
\end{aligned}
$$

A SPECIAL REPORT AnTnlinnurenn_ninumus

Amateur radio has had more than its share of dropouts, as these memorable old photos attest. But things may be different before too long . . . there are subtle but definite signs of an upswing in the offing.

Ham Dropouts -
There was a time when Johnson's Viking units were the most popular items in amateur radio. But Johnson divorced hams when CB came along.

0ver the past few years informed marketing specialists and industrial advisors have warned firms against approaching the once-booming amateur radio world with new products. Even the long-time manufacturers of amateur radio gear have

Some of the staidest "old guard" manufacturers in the ham radio field are in trouble, but they're pinning their hopes on a few areas that still show promise.
fallen on bad times. The market, they've been saying, is "saturated." All the hordes of hams who were to change from AM to SSB when the technology advanced a few years back have already done so; and the changes since that time have been anything but innovative, thus minimizing the likelihood of any large-scale trade-ups on the part of the amateur fraternity.

The saturation problems have been intensified, too, by the relatively static position of the amateur radio service. Where the postwar years saw rapid and extensive growth of ham radio, the past few years have reflected a growth rate of little more than 3%. This meager percentage is actually worse than it looks, too, for it represents an actual per-capita decline in total number of active amateurs; the growth rate in the 16 -to- 35 -years-of-age group (considered the most likely candidate to become hams) has been increasing at a rate considerably in excess of the 3% figure. The last few months tend to show a faint spark of revival, however.

Make no mistake about it, some of the staidest "old guard" manufacturers in the ham radio field are in trouble. National Radio, for example, recently went into
receivership as a result of declining military orders and the drought in the amateur field. Hallicrafters expanded into the commercial two-way industry, all but forsaking its once-heavy advertising campaign directed to the ham market. Johnson, onetime ham equipment leader, sought greener grass in CB and industrial two-way fields. Collins, once the "cadillac" manufacturer in the field, hasn't added a new item to its line in more years than it cares to think about. Hammarlund's sales declined to the point where the big-time ham receiver maker could no longer justify advertising in the amateur journals. And names like Gonset, Multi-Elmac, Pierson-Holt, Harvey-Wells, Central Electronics, Waters, and others have either dropped out of the amateur business altogether or have defected to the ranks of $C B$ manufacturers.

There are still manufacturers in the amateur field, but - and this is an understatement - they haven't been getting rich. Companies like Drake, Swan, the ailing National, and Signal One are still in there pitching, but the profits don't come easily, and most of the firms admit that they're barely eking out an existence, trying to tread water until "times get better." And it looks now as if they just might.

The problems faced by ham equipment manufacturers have been compounded recently by the introduction of Japanese imports such as the Yaesu line and Henry's Tempo. Not only do these models meet American quality standards, but they set price standards as well, making it difficult for the U.S. manufacturer to compete successfully while retaining his fair share of
the profit dollar. "It's bad enough," says one American manufacturer, "for us to be faced with an already saturated market, but now we have to fight for survival in an area barely able to support us in the best of times." The manufacturer was referring to the fact that, even when ham radio was considered to be "booming," it was still not in the same league with such markets as CB and the hi-fi/stereo industry. And competition from foreign makers makes the prospects for ultimate pullout of the economic slump seem bleak.

The outlook may not be as dismal as it seems at first glance, however. Some recent trends seeem particularly encouraging to far-sighted American firms. For example, the U.S. market may have been diminishing or stagnant, but recent indications point to real improvement ahead. And the foreign
market is showing signs of a genuine growth surge. As economic conditions in other nations improve, so do interests in such comparatively leisure hobbies as ham radio. And several American manufacturers are looking to that foreign marketplace as the next major developmental area.

According to a recent article appearing in Electronic News, at least three manufacturers were eyeing the foreign market, and the fact that others were making similar overtures was implicit in the article. There is good reason to believe that U.S.
U. S. ham-equipment manufacturers could meet foreign makers head-on in their own territory.
manufacturing techniques, marketing knowhow, and technological developments could meet foreign makers head-on successfully in their own territory - thus giving the competition a taste of their own medicine.

An area that could have a dramatic and forceful influence on the ham radio fraternity is that of the somewhat controversial "hobby" band proposal. This plan, currently being considered by the FCC, would open up a portion of the 220 MHz spectrum to individuals who want to become hams but for one reason or another can't master the traditional code requirement.

Passage of the "hobby" license plan would make hams of thousands of wives who'd like to share the fun of ham radio with their husbands but who just can't spare the time or generate the interest necessary to comply with all the requirements for a General or Technician ticket. It goes almost without saying that initiation of a hobby license would bring new life into amateur radio as well as into the ham radio manufacturing industry.

There are still amateur radio operators who wonder why more ham operators would be desirable. In a 73 "letter to the editor," one ham recently wrote, "Who needs it? The more operators there are, the more interference we must contend with." The amateur lost sight of the fact that

Unable to make a go of it by sticking strictly with the ham radio field, Hallicrafters pushed off into the more lucrative commercial two-way industry. This photo shows Hallicrafters' successful 4 W pocket transceiver for commercial service. Marketing men at Hallicrafters are alleged to be considering the prospects of making a version of the unit available to the amateur VHF FM operator.

without a good "market" of hams, there would be no radio equipment industry - and without the industry there would be little if anything to attract new amateurs. And without an influx of amateurs, the ham ranks would wane. Ultimately, other radio services - ever hungry for additional spectrum - would make inroads into those remaining amateur frequencies. The result would surely mean the demise of amateur radio.

It is a fact that the so-called "appliance operator" is the life's blood of ham radio. Questionnaires published and distributed by 73 Magazine showed that more than 97% of all active amateurs are indeed appliance operators - though not exclusively.

In a nutshell, amateur radio needs the equipment manufacturers - but the radio market has shriveled to such an extent that most manufacturers feel something "really

VHF FM is proving to be a vitally need shot in the arm for ham radio.
big' is needed to properly reinflate it. The hobby band proposal holds a great deal of promise here in the U.S.

There are still other signs of salvation here at home, too. One of the most

Here's The Mobile FM AFTERBURNER

$\$ 129.95$

Delivers 50 Watts of Punch on 2 Meter FM

The Varitronics PA-50A is a completely solid state Class C RF amplifier designed specifically for use in mobile amateur FM applications. Internal RF switching makes the PA-50A useable with any amateur FM transceiver with 10 watts* output. Balanced emitter devices are employed which are completely insensitive to high VSWR or even no load conditions at its output. This handsome and ruggedly built amplifier is styled like the IC-2F transceiver, features a calibrated output meter and is supplied with mobile mounting bracket and DC cord. For the big signal on FM, try it!

SPECIFICATIONS	
*Drive Requirements	12 Watts Maximum 5 Watts Minimum
RF Output	50 Watts - Less with lower drive or input voltage
Power Requirements	13.5 VDC@ 5 Amps
Impedance	50 Ohms In/Out
Frequency	Any Portion of Amateur 2 Meter Band
Spurious Products	50DB Down
Dimensions $6^{\prime \prime} \times 7^{\prime \prime} \times 2^{\prime \prime}$

[^0]important elements of amateur growth in recent years has been the advent of the VHF FM repeater. The result of this development has been nothing less than a vital shot in the arm of amateur radio, even though not quite of the magnitude required to sustain the whole industry. American manufacturers, by experience wary of "fads," stood by while Japanese imports snatched a huge chunk of the FM equipment market, which was being shared only with the purveyors of used commercial surplus equipment. But as the surplus market dried up, and the demand for more FM gear continuedd, American manufacturers began responding.

Keenly watching the unprecedented success of Varitronics, Incorporated - which began on a shoestring and is currently the unchallenged leader in the 2 meter FM field - the U.S. industry was determined to gain a foothold. Varitronics offers a line of Japanese imports at prices that are typically American, so the profit margin was wide enough to warrant a few cautious incursions into the apparently lucrative field. Besides, according to some of the recent manufacturing newcomers, there was nothing to lose - because VHF FM is virtually the only aspect of ham radio that is exhibiting any growth at all.

The first of the American firms to try for the FM market was International Communications and Electronics Company, a small Texas corporation. But ICE dropped out of the running within a few months due to design problems, inadequate ser-

An act that's hard to follow. The Varitronics import, Model IC-2F, is a compact unit that combines transistors and ICs, packs a 10 W punch, and includes circuit that shuts down rf output when the vswr on the antenna gets uncomfortably high.

One of the newer entries in the 2 meter FM field is the 22 'er by Clegg. This unit uses vacuum tubes in the final to produce more power output than is available on most transistor types. With a tunable receiver calibrated to match existing FM channels, the 22 'er marks a departure from crystal control. To preclude the possibility of losing sales because of the lack of fixed-channel control, Clegg is also reportedly about to produce a fully synthesized receiver, which allows the operator to "dial" any FM channel between 146.04 and 146.6 .94 , retaining the desirable characteristics of crystal control without sacrificing the stability and repeatability normally lost with continuous tuning.
vicing facilities, and premature release of production models that had not been debugged fully. But the imports kept coming and were being accepted by anxious amateurs hungry to get going in this rapidly expanding field. Varitronics retained its lead, though other distributors made attempts to challenge the leader with Japanese imports of varying degrees of quality and price.

In the face of ICE's disaster and the phenomenal success of Varitronics' import line, another American firm made its debut against bets within the industry that this new upstart, World Radio Labs, would be heading for an early failure. Bu the line - Galaxy - made it. Finally an American made unit was successfully selling against the hot Varitronics line, and even though it couldn't match the Varitronics unit in performance, it sold at a price well below that of the import.

The eyebrows of other American manufacturers were raised as Galaxy continued its erosion into the market that most experts said was spoiled by "low-priced used gear and Jap imports." And before long other U.S. makers jumped in, each with improvements and innovations that

Specifications: 90 day warranty

RECEIVER The HR-2 receiver is a double conversion, superhetrodyne with highly selective ceramic filter. Frequency Range.... $144-148 \mathrm{MHz}$ Sensitivity.................. $0.35 \mu \mathrm{~V}$ (nom.) 20DB Quieting Selectivity. \qquad 6 DB Down $\pm 16 \mathrm{KC}$ 50DB Down $\pm 32 \mathrm{KC}$ Audio Output (3-4 Ω Speaker)..... 3 Watts 10% Distortion 5 Watts Maximum Channels. \qquad 6 Crystal controlled with provision for adding an additional 6 channels I.F. Frequencies..... $10.7 \mathrm{MHz} \& 455 \mathrm{KHz}$

GENERAL

Power Requirements 13.6 Volts (nominal)
Receive (Squelched). 180 MA.
Receive (Max. audio
output)....................... 800 MA.
Transmit.
2.5 Amps (max.)

TRANSMITTER

The HR-2 transmitter uses phase modulation for the ultimate in carrier stability. Built in SWR load mismatch circuitry provides protection against open and shorted antenna conditions.
Frequency Range.... $144-148 \mathrm{MHz}$
Power Output........... 10 Watts (min.) @ 13.6 VDC Modulation. \qquad Phase Modulation with automatic deviation limiting Automatic Limiting with internal adjustments from $0-15 \mathrm{KC}$ deviation
Microphone...............Plug-in, hand held, high Z Ceramic supplied
Channels 6 Crystal controlled with individual trimmer capacitors for Frequency netting

STANDARD EQUIPMENT

Built-in $4^{\prime \prime}$ Speaker
Mobile Mounting Bracket
SO-239 Antenna Connector Socket
T \& R Crystals for 146.94 MHz
PTT Ceramic Mike

Telecomm, a California company, imports the 10W unit shown here, but stocks the integral modules as well. The module boards include the receiver, transmitter, and power amplifer.

commanded the attention of the VHF FM enthusiast.

First there was Regency, with plenty of channels, lots of power, and virtually no "frills or fancy stuff." The Regency unit was priced plainly to grab Galaxy's increasing share of the market - it bore a modest retail tag of $\$ 229$ and set new standards of performance within the American radio manufacturing industry. Then Clegg, who was determined to market a transceiver that provided all the advantages of crystal control for the transmitter, but the flexibility of tunable control for the receiver, introducted its unit - with a whole new set of standards. It had a tunable receiver that was as hot as a stovetop and a transmitter that combined tubes and transistors to pump out more power than any of the competition.

The most recent entry, Drake's "Marker," is a hybrid of sorts. It is a Japanese import, but it is being marketed by an American manufacturer as a compromise between Japanese production capability and American expertise in peripheral servicing and marketing.

In spite of the growing involvement of American makers in the traditionally Jap-anese-dominated field, the inward flow of the import continues, each unit touting new concepts or features. Telecomm, for example, imports not only a conventional 2 meter FM transceiver but a complete line of receiver, transmitter, and power amplifier circuit-board "modules" as well.

And the market shows no signs of losing any activity in the near future either, even though it should get progressively more

Even those manufacturers who became disenchanted with the ham market are taking a second look.
difficult to show a profit in view of the increasing competition. Each month, several more firms announce new VHF FM gear to be made available. And even those manufacturers who looked once at the market and turned away are reportedly making a more thorough reexamination of it now. In this latter category are companies like Heath, Hallicrafters, Swan, and even Johnson. The going won't be easy for any of them, though. Yaesu is on its way with a 2 meter FM transeiver, for example, and so is Trio. And the Standard import, at one time strictly "marine," turned to the ham market and is reportedly making headway with its own expanding line. So the competition will get tougher and tougher, even though most of the manufacturers can hardly keep their delivery apace with new-unit orders.

The impact of all this in-fighting could have a dramatic and beneficial influence to the ham in terms of total value per dollar of investment. But most important of all is the fact that this flurry of activity on our VHF bands has already begun to draw more people into the ranks of ham radio. And many of the inactive oldtimers have already come out of hiding to join the swelling ranks of the FM'ers.

It is quite likely that the growth of amateurs in the VHF ranks can more than

This tiny 10W transceiver is Regency's bid for a share of the low-budget 2 meter FM transceiver market. It has a 12-channel capability and no frills. Sales price: $\$ 229$.

بh 1 بqain 400 ROTO-BRAKE

 Up to 10 Times the mechanical and braking capability of any rotator on the market!

- Handles large beams and stacked arrays with ease
- Delivers over $4,000 \mathrm{IN} /$ LBS of starting and rotating torque
- Gear train protected by husky cast aluminum housing
- Solenoid operator brake adjusted to slip at 5,000 IN/LBS to prevent damage
- Extra heavy duty machined steel gears for maximum strength
- Handsome control unit features sweep pointer over choice of three great circle maps or compass rose
- Select desired position and rotator's logic circuit brings into desired position
- Capacitor start for high torque
- Operates off 110VAC 60 cycle power source
- No blind spots-moves 380°
- Antenna automatically moves to position when control is activated
- Heavy duty mast clamp takes up to $3^{\prime \prime}$ O.D. mast
- Mounts to standard tower plate with min. of $10^{\prime \prime}$ tower leg spacing
- Mounting kits available for poles or small towers
- Universal tower mount available
- Temperature range $-30^{\circ} \mathrm{F}$ to $120^{\circ} \mathrm{F}$
- Permanently lubricated
- Requires one 5 wire cable
- Cable available from Hy-Gain 412

Buy a 400 ROTO-BRAKE from the best distributor under the sun-the one who stocks Hy-Gain!
Model No. 400
accommodate the growing list of VHF FM manufacturers. The plain fact is that at no time in the history of ham radio has this current expansion of FM interest been paralleled. Even the development of sideband in the late fifties and early sixties was incomparable in terms of adding new faces

VHF FM population is pushing

 30,000, and there's no indication of any letup.to the existing ranks. And there appears to be no end in sight!

In 1969, during the heyday of FM Journal, there were an estimated 10,000 active FM'ers. Today, there are easily more than $2-1 / 2$ times that number, and an estimated additional thousand operators appear each month. The repeater directory published by 73 Magazine (April 1970) listed some 250 active open repeaters and made reference to a large number of additional closed repeaters. An updated directory currently being prepared for the April 1971 issue of 73 already lists more than 500 repeaters, and this figure is expected to increase by no less than 25% before the publication deadline.

Also, despite the increase in the total number of open repeaters, owners of the "standby" repeaters listed in the previous directory tend to report a substantial increase in the number of user stations. These factors, and others, point to a VHF FM population that is very closely approaching the 30,000 mark - which surpasses the total circulation of two of 73's competitors!

To the great relief of manufacturers and dealers in the ham radio field, the current VHF FM boom has had little if any negative effect on the conventional amateur market. Indications are that a number of the new FM'ers are indeed from the dyed-in-the-wool low-band SSB crowd, but there is no indication that the newcoming FM'ers are deserting their old modes. Wayne Green, publisher of 73 Magazine, says he makes it a point to delve into the question at conventions, club meetings,
and at every opportunity. "It appears," he said, "that VHF FM is more or less universally taken up by the sidebander as a supplement to his hobby rather than as a replacement. Amateurs who operated on other bands before trying 2 meter FM continue to operate on the other bands. They use FM as something of an intercom among themselves to keep each other apprised of DX conditions such as rare station appearances and band openings, to maintain car-to-car communications at transmitter hunts, to pass traffic, or to participate in public service functions."

Drake's "Marker Luxury" transceiver is the latest entry into the booming 2 m FM field. Selling for about $\$ 330$, the unit comes with 12-channel capability (two sets of crystals supplied). Conservatively rated at 10 W out, the transmitter section uses transistors for all stages except final amplifier.

At this stage of the nation's economy no one will deny the very considerable medicinal effect FM has had on ham radio. As Herbert W. Gordon, a well known New England amateur radio dealer puts it, "I wonder how many of us would be able to keep afloat if it weren't for the tremendous amount of activity in VHF FM. Equipment sales in this area are leading all other amateur sales by an unbelievable margin."

Smooth sailing for the amateur radio equipment business appears now to be right around the corner. Foreign sales holds promise for many manufacturers. The FM field is attracting more every month. The amateur ranks are at long last projected to be on the upswing. There are signs that the economy of the country will be pulling out of the downward spiral. There is good evidence pointing to a favorable reaction of a hobby license for the 220 band. And semiconductor advances seem to indicate a new generation of low-cost components in the future. All these factors weigh heavily in favor of our equipment manufacturers, who have weathered the worst storm in the history of amateur radio.

H E <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">A</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">$\frac{A}{T}$</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| A |
| :--- |
| $\frac{A}{T}$ |</table-markdown></div>

TENER MODIFICATION

Dick Ellers K8JLK
426 Central Parkway SE
Warren OH 44483

Much has been written about Murphy's Law and other such disaster syndromes, but it has only been a matter of recent time that I have dared to admit the existence of the excruciating Ellers Effect.

The "effect" in action would have me put a Heath Tener in the car, start off for some mobiling, but promptly blow the 1.5 A fușe because I had forgotten to install the heavier 8 A protection required for the dc supply.

Conversely, and with greater risk, having installed the 8 A fuse, I would then use the Tener on the ac supply. The oversize fuse protection threatens total wipeout.

As the expression goes: "I may be crazy, but I am not stupid." After several decades of living with the Ellers Effect (EE) I have learned to at least try to outfoil my own forgetfulness. So I modified the Tener - a 10 -minute project any Tener owner can and should accomplish.

I cut holes in the rear chassis and case and installed a second fuseholder. I then rewired the power input circuits (see diagram) and also the output of the dc supply. I used decals to identify the fuseholders. Now both fuses are in place at all times,
and the proper fuse is automatically selected when either power supply is connected.

Another Tener modification (a matter of convenience not involving the EE) was the drilling of holes, in the cabinet top, large enough to pass tuning wands down to the rf coil slugs.

Fig. 1. Modified input wiring.

This eliminates having to remove the Tener from the case to peak these coils for different antenna arrangements.

Careful layout of these holes will mean you can drop the wand straight down onto the slug screws. But even so, you can peek through the vent grill enough to get the wand where it belongs.

Dick Ellers K8JLK \quad -

TESTING THE RP ELECIRONCS COMIPRESOOR

When the pile starts building up on a rare one you need that extra oomph to get a word or two in edgewise. Once you have your kilowatt and your three-element beam, like the others in the pile, what can you do to get that edge? It will not come as any big news that the next step is either an illegal attic antenna matching unit (with power supply) or a compressor.

Do compressors work? Of course they do! If they didn't you wouldn't see quite so many on the market. Like everything else available to us, some work better than others. The RP compressor is recommended highly in the ads so it was decided to test one at the 73 HQ station to see if the on-the-air reports were as enthusiastic as the advertising manager of RP.

In answer to a request to test, in came a little box. The RPC-3C measures $4 \times 4 \times 4$ in. and has one in-out switch on the front panel plus a screwdriver pot adjustment for level. One might wish for knobs to twiddle, but they are unnecessary and probably would only permit things to get out of whack. There are two jacks in the back, one marked in, the other unmarked, obviously "out".

The installation of the unit takes several hundred microseconds, while you plug your mike into the RPC-3C and run a patch cord to the mike input on the rig. Flip the switch to "in" and jump into the nearest pileup.

What reports did we get using the compressor? On the average one S-unit improvement was reported consistently by operators in all parts of the world. And what about distortion? This is the problem with most compressors, so particular reports were requested on speech quality.

The unit does change the sound of the voice, but no distortion was noticed or reported. Mostly it gives the voice a lot more punch.

Many articles have been written on the basics of compressors and why they give this boost to output power. Nutshelled,

they, raise the average voice level by compressing the peaks by as much as 30 dB and leaving the valleys alone. This permits a higher gain without distortion. It does not sound like hi-fi, but it sure punches through when there is interference or the signal is down in the noise.

RP has units that sell from around $\$ 20$ to $\$ 35$, depending on the model.
. . .Staff

BAND HOPPBR

SWAN MOBILE ANTENNAS

No coil changing with our Models 45 and 55 Mo bile Antennas. They cover 10, 15, 20, 40 and 75 meters with our patented vertical switch that provides 5 stops for full coverage of these bands. High radiation efficiency is provided by the high \mathbf{Q} coil.
5 BAND MANUAL SWITCHING MODEL 45 Provides coverage for all 5 bands, with manual switching.
5 BAND REMOTE CONTROL MODEL 55 Control box under car dash permits instant band changing while driving. SINGLE BAND MODEL 35
For maximum radiation efficiency, this single band design is the best. With 20
$\$ 79.50$
$\$ 129.50$ meter coil.
Coils for 15, 40 and 75 meters also available.

for the love of a

Betty J. Daniel WB6AOF 12195 Butterfield PI. Chino CA 91710

If a wife wants to share her husband's interests and be able to talk intelligently to him about his work, she must put forth her best efforts to learn all she possibly can about the things that interest him most in life.

A simple fact? Well, maybe for some wives who are married to doctors, attorneys, etc. BUT - what do you do when your husband owns and operates an industrial 2-way radio service and his hobby is "hamsville"? Ugh! I can't think of a thing that would be less interesting for a woman than learning the Morse code, much less about the electronics involved in 2 -way radios. Double ugh!

But, my self-claim to reasonable smarts and my strong desire to please my choice of mates had forced me into the woes of applying for a ham license. After all, how much could there possibly be to learning how to push a button on a mike and saying, "Fine business, OM. . ." Oh me, oh my! I had a lot to learn and then some.

I mentioned my eagerness about becoming a ham one evening to my spouse, Fred, and he grinned from ear to ear. Fortunately, we have a friend who has the class of license one needs to enable him to give and supervise someone taking the FCC exams. One phone call is all it took to get myself into the worse mess I have ever lived through in my life!

The very next evening, our friend, whom we shall call Don, appeared on our doorstep with an armload of books, paper, pencils, and application for my exam.

My first instructions were to the effect that although Don is a personal friend, if and when I took my exam, I would be strictly on my own - no cheating and no help during the test. Of course, I resented being told such a petty thing since I have

NEVER cheated on a test in my life! Well, maybe just a little, but never anything really important like getting my very own ham license.

The first thing I had to do, of course, was learn the code. The initial few dits and dahs were no problem at all; in fact, some of them were rather cute. We worked on the simple ones first, like $\mathrm{o}, \mathrm{e}, \mathrm{i}, \mathrm{s}$, and d . Groovy! No problem. Nothing to it! All was just great. If there weren't so many dahs in the middle of dits and dits in the middle of dahs, I could have stayed out of trouble. But as it was, I was becoming confused and couldn't seem to keep things in their proper order. In the first place, a dit had always been a dot and a dah had always been a dash to me. And then came the big announcement - I had to learn the entire alphabet, numbers from 0 to 9 , punctuation marks, and be able to send and receive five-letter words at the rate of five per minute!
"Forget it! I quit!" was my reaction. "I'll never be a ham." That ended my first lesson and as far as I was concerned, my last.

For three days I was teased, pestered, threatened, dared and double-dared by friend and hubby. I had chanced a few peeks at the code and before our next session with the books, I had managed to learn a few dahs and dits all by myself. Don would like to think that he alone was responsible for my code learning, but I put in many hours on my own to get it mentally entrenched.

Finally, I was ready for my code test. Don would send and I would receive. All went well. My turn to send and Don was on the receiving end. I made up a sentence and wrote it down first. It was hopeless! Don couldn't keep up with me! I guess it
was a bad case of nerves on my part because slowing down didn't affect my needed speed at all. Figuring that I had already conquered the hardest part of the test, I was eager to get started on the next phase.

I must hand it to all the male hams everywhere who have ever had to teach a female the basic fundamentals of electronics. I became bewildered, confused, argumentive, bored, tired, and completely unreasonable during the weeks of study that followed. I could see no reason why I had to learn so much. For one thing, I never intended to build my own radio; all I wanted to do is push a button and keep track of my old man. I continuously rebelled and refused to accept a simple answer for anything. I begged Don to put it all on a tape recorder so I could plug it into my ear while I was asleep. I bought a book on self-hypnotism and another on self-mental-magnetism, but nothing seemed to work. By then, I was a desperate woman.

Don had given me a deadline and it was only a week away. I was on my own, and any last-minute cramming had to be done with no help from anyone. I calmly assured myself that I would never pass the test. I was convinced that hams must be the smartest people in the world. For the first time in my life, I felt like a housewife instead of my usual self-appointed title of household engineer:

When D-day came, I woke up with a headache. Every conceivable inconvenience plagued my entire day, with a few acts of stupidity thrown in for excitement. I brought in the mail, took meat out of the freezer for supper and spent the next two hours looking for the mail again. I had put the mail into the freezer and the hamburger on my husband's desk. I was so nervous that I forgot to have a cigarette until late afternoon.

Don was invited for supper and I decided to let the men fix their own hamburgers. In my state of mind, charburgers would have been the order of the day. A plate was put before me and I couldn't eat a bite. I had to wait until everyone finished eating before starting on the test. I think Don and Fred really
enjoyed watching me squirm. They seemed to take hours eating their one lousy sandwich.

It has always been my practice to complete a test or exam as fast as possible, checking questions I'm not sure about as I go along to answer after the completion of the easier ones. It took about 45 minutes to run through and answer the questions that I knew without hesitation, another 45 minutes on the tricky ones and I was done. Don looked briefly over my test, kept a straight face and didn't say a word. The rat.

Without saying yay or nay, he mailed my test back to the FCC. I'm usually a patient person but waiting drives me up a tree. After two months, I was convinced that either (1) I must have failed or would have heard something before then, (2) the FCC decided not to issue licenses to females this year, or (3) my perfectly adorable mailman enjoyed my daily rush to the mailbox so much that he had decided to tease me a little bit.

I calmly broke my neck trying to catch the mailman on May 10, 1970, three months after my exam, to find a letter in a plain white envelope addressed to me with the call letters WB6AOF following my name. The return address was from Providence, R.I., one S.S. Dana WN1MYB, whom I had never heard of before. I learned that Dana had received his ticket and as a bonus, they sent him a spare - mine. I was elated, to say the least. I had what is commonly referred to as a typical woman's reaction - I sat down and bawled.

Now I am the recipient of literally tons of "ham mail" and I love it. I was immediately urged to join the ARRL (American Radio Relay League) and I irritate my husband monthly by stealing his copy of 73. And to top it all off, in January I can go to SAROC in Las Vegas and be officially registered to win the grand prize in the drawings.

I'll go, but I have a hunch that if I win anything, there'll be some ham in Tinyville, Maine who'll tell me the news, maybe a year or two after the drawing.

WB6AOF

Duty cycle, duty factor, what's it all about anyway? Before the war this expression was seldom heard. With the advent of radar, the expression entered our technical vocabulary. More recently, with the widespread acceptance of single sideband, the term has become part of amateur jargon.

Briefly, duty factor can be explained as "how long you hold the key down." If a ham operator were to tie the key down, and then run the output from his rig into a dummy load, the key-down time would be 100%, and likewise the duty factor.

The nearest ham equivalent to 100% duty factor is in the operation of radioteletype equipment, using frequency-shift keying. The key-down time in this mode of operation is in the neighborhood of 98%, which closely approximates our reference figure of 100%.

With hand-keyed CW emissions, the amateur may expect a duty factor of approximately 48%. This is not a hard and fast percentage, since human characteristics such as the individual "fist" enter into the picture. Commercial stations which utilize automatic keyers generally allow for 46% duty factor. This is based upon certain norms, one of which allows that the word Paris is typical of run-of-the-mill commercial radio telegraph traffic. This convention also allows for the general acceptance that one dot space (called one "baud" by the commercials) is okay for a dot, and
three bauds constitute one dash. There are allowed for automatic transmission one baud between parts of a letter, three bauds between letters, and five bauds between words. It adds up to about 46%, but most amateurs when using CW can assume 50% "duty factor" and come reasonably close.

Single sideband, suppressed carrier transmissions are generally conceded to put the lightest load of all upon the system and its power supply. Again there are no infallible rules, due to individual speech patterns, but it is generally agreed that SSB transmission may load down the equipment as little as 27%. However, a duty factor of 40% would realistically reflect typical amateur operating conditions. If some form of speech compression or limiting is used, the talk power will be increased, and the duty factor would increase a bit.

When the RTTY, CW, or SSB operator switches from send to receive, the only power consumed is the bleeder current. This current may be bled off through a fixed resistor, or the final amplifier tubes may be biased to perform this function.

Both the power supply and rf section must be taken into consideration when duty factor is being figured. With respect to receiving tubes being used for service, the ham designer may figure roughly "plus 50% " when going from consumer sweeptube ratings to amateur ICAS ratings.
. . .W2OLU

A "go-any place ... do everything" transceiver by SSMAM A 5 BAND 260 WATT SSB TRANSCEIVER WITH BUILT- IN AC SUPPLY AND LOUDSPEAKER IN ONE PORTABLE PACKAGE.

Just hook up an antenna and microphone, connect the 270 B to a power source, and you're on the air. And don't let its small size fool you. The Cygnet 270B is loaded with features that make its price tag even more attractive. Besides being a great one piece home station, it is a wonderful unit for use on business trips and vacations. The 270B will operate from auto* boat* motel room or mountain cabin...anyplace that a power source is available. The price...only $\$ 499.00$ at all Henry Radio stores.
Come on in for all of the specifications and a demonstration. If you can't come in... call or write. We'll send you the specs and, of course, we ship almost anyplace in in the world.
*A 12 volt DC converter, the model $14 A$, is available. Only $11 / 2^{\prime \prime} \times 3^{\prime \prime} \times 4^{\prime \prime}$, it simply plugs into the back and makes the 270 B fully mobile.

The Model 14A . . . \$39.50

[^1]TED HENRY (WGUOU)
BOB HENRY (WOARA)
WALT HENRY (W6ZN)

0ne of the biggest problems with an FM repeater is getting everyone's transmitters exactly on frequency. It is even more important with a narrowband input; yet, since most hams do not have ready access to a frequency meter or counter, it is rather difficult to do. This article describes a device that uses the repeater's receiver as a reference and makes it both convenient and easy for everyone to get on frequency. It is as accessible as the repeater, and in effect, is the same as having someone always monitoring the repeater receiver's discriminator voltage and giving back the reading after each transmission (but without the basic personnel problem).

Since it is always there, it allows anybody using the repeater to see how well his rig is staying on frequency.

The device is called a zero beater because it produces an audio tone which behaves in exactly the same way as a heterodyne (although it is not). The zero beater operates by monitoring the repeater receiver's discriminator voltage during a transmission and storing a representative voltage in a capacitor. When the transmission is completed, this voltage is converted to a tone, which is transmitted during the repeater's tail period (approx. 1 second). All it takes then, is two seconds to check frequency; a one-second transmission to
establish the frequency, and one second to listen to the tone. If the frequency is less than 1 kHz off, no tone will be heard. Each time the repeater is keyed, the process repeats, up to 15 seconds of repeater use. Then the zero beater is disabled until the repeater is idle for 15 seconds or more. (The disabling feature was added after the zero beater was installed because the squeaks and squawks tend to become objectionable with excessive use.)

Operation

The zero beater is built on a 4 in . square plug-in board and requires $\pm 15 \mathrm{~V}$ for operation. Referring to Fig.1, which is a schematic of the completed device, the receiver's discriminator voltage is applied through a resistance of $100 \mathrm{k} \Omega$ to the noninverting input of opamp A1. The operation of A1 is bipolar so that the polarity of the output voltage will swing positive or negative to follow the polarity of the input voltage. The output of A1 is applied simultaneously to the inverting input of A2 and to D2. The output of A2 is applied to D1. When the output voltage of A 1 is pọitive, D2 conducts and the output voltage is applied across C2 (when Q3 is normally cut off).

When the output of A1 is negative, D2 is back-biased and therefore disconnected, while the output of inverter A2 now swings positive, forward-biasing DI, and voltage appears across C2. Because of the operation of D1 and D2, the voltage appearing across C 2 is always positive regardless of the input polarity.

The output of A3 drives Q1, which in turn drives a CK1122 "Raysistor." The Raysistor consists of a tungsten filament lamp and a cadmium-sulphide photoresistor in the same package, with the lamp illuminating the photoresistor. The 8.6 V zener (D3) across C2 prevents the voltage across the lamp from becoming too high. The photoresistor portion of the Raysistor is used as a frequency determining component in a unijunction oscillator circuit (Q2).

The dark resistance of the photoresistor is high enough to prevent Q2 from oscillating. As its resistance decreases, the frequency of Q2 increases up to about 2 kHz . While a signal is being received, the frequency error seen at the discriminator is stored by C2 and, through A3 and Q1, illuminates the Raysistor lamp. At the same time, the positive voltage (A) applied

Fig. 1. Off-frequency tone generator.

to the base of Q4 causes it to conduct, shorting the emitter of unijunction Q2 to ground and preventing it from oscillating. As soon as the receiver no longer hears a signal, Q4 shuts off and allows Q2 to oscillate. During the repeater tail period, then, the tone is transmitted back. As soon as the repeater transmitter is unkeyed, a positive voltage (B) applied to Q3 causes it to conduct, discharging C 2 . C 2 must be discharged in this way because of the high input resistance of A3.

The remaining circuitry comprising Q5 through Q9 is a "timeout" control circuit which disables the zero beater after 15 sec onds of repeater use and reenables it after the repeater has been idle for 15 seconds or more. Q6 and Q7 form a flip-flop which is set or reset by Q5 and Q9. Both Q5 and Q9 are 15 -second timer circuits.

Steering control for the flip-flop is accomplished by Q8, which shorts out the timing capacitor of Q 9 when the repeater is in use. After the repeater has been in use for 15 seconds or more, Q5 completes its
timing cycle and discharges the $10 \mu \mathrm{~F}$ timing capacitor into Q6, setting the flipflop. Then the collector of Q7 goes positive, and the positive voltage coupled to the base of Q3 causes it to conduct, shorting the input of A3 to ground and disabling the zero beater.

When the repeater is inactive, point A goes to ground, Q8 is turned off, unshorting Q9's timing capacitor, and Q9 begins its timing cycle. After 15 seconds, Q9 discharges into Q7, resetting the flipflop and enabling the zero beater.

External Connections

As shown in Fig. 1, the external connections required are power, discriminator voltage, audio output, and three control voltages. The control voltages are connected to points A, B, and C on the schematic, with the conditions shown. The inactive state of all three signals is ground. In the WA1KFY repeater, the CW identification function is self-completing; in other words, the repeater stays on until the ident has completed. It is necessary to inhibit the zero beat during the ID; otherwise both will play at once. This repeater uses solid-state logic for its control functions; however, the required signals (A, B, and C) may be derived from the COR of a relay-controlled repeater.

Summary

The zero beater provides everyone using the repeater with a continued frequency check. It has proved to be a very effective and useful device. The tone reaches its highest frequency when the input error is approximately 3 kHz or greater. If the error is less than 1 kHz , no output is generated. Since the device uses the receiver's discriminator output, it is important that the repeater receiver's frequency be accurate and stable.

Other uses for the device readily suggest themselves; for example, limiter voltage could be monitored, and the tone would then indicate signal strength. It could also be used as an alarm. In either case, A2 could be eliminated along with D1 and D2, since the input polarity would not change. W1ELU \& W1IRH回

see the Mann

for the best in USED FM communications equipment

Two-Way FM Units • Walkies • Repeaters Mobile Phone • Bases • Mobiles

Here are some of the great buys at Mann...
MOTOROLA MODELST51GGV 6 meter mobile unit with accessories, 60W trans-mitter, $6 / 12 \mathrm{~V}$ vibrator powered in $15^{\prime \prime}$ housing, withor without private line feature.\$ 85
T41G 6 meter mobile unit with accessories, 30W trans- mitter, $6 / 12 \mathrm{~V}$ vibrator powered in $10^{\prime \prime}$ housing. \$ 64U51GGT 6 meter mobile unit with accessories, 60 W trans-mitter, 12V transistor powered in 10" housing.\$149
T43GGV 2 meter mobile unit with accessories, $10^{\prime \prime}$ housing. \$ 99
T53GKT 2 meter mobile unit with accessories, $20^{\prime \prime}$ housing with two separate transmitter strips with 5894 final capable of 100 W each, single recvr, power supply transistorized. $\$ 129$
U44BBT 450 MHz mobile unit with accessories, 18 W trans- mitter, 12 V transistor powered in 10" housing. $\$ 119$
U44BBT 450 MHz mobile unit as above with "PL" \$139
L44AAB 450 MHz base station, 117 V AC 18 W desktop housing. ... \$ 95
J44AAB 450 MHz base station, 117 V AC 18 W weatherproofhousing.$\$ 115$
Wired as Repeater. 135
Wired as Repeater with "PL". \$150
GE MODEL
MA/E 42450 MHz mobile unit with accessories, 18W trans-mitter, $6 / 12 \mathrm{~V}$ vibrator powered in $14^{\prime \prime}$ housing. . . . \$ 99

WRITE FOR FREE CATALOG

Mann Guarantee

Money refunded without question if equipment is returned within seven days from shipment, undamaged, freight prepaid.

Conditions of Sale
Unless otherwise specified, equipment is used, and is sold as-is. All items shipped FOB Tarzana, California. Crystals, ovens, antennas not included unless specifically stated in catalog. All equipment is sold on a first-come, first-served basis.

73 will be presenting a series of simple IC projects. This initial article serves as the introduction by describing the "basics" of IC convention and nomenclature.

Integrated circuits are here to stay and the next few years will show a massive transition in industry and consumer products to complete integration. Based on this assumption, this article has been prepared for the amateur as well as professional user of integrated circuits (ICs). It includes tips on wiring, soldering, cross referencing, and simple projects using the ICs contained in the Motorola HEP kits.

A lengthy discussion of IC construction will not be covered in detail, as this information can be found in many IC textbooks. However, in order to be better able to know the advantages and limitations of those microcircuits, the reader should know what is contained in the basic IC and how these devices differ from other solid-state components.

As the name implies, an integrated circuit is a collection of many different components. The quantity and types of components vary from one IC configuration to another. A particular IC could contain active components (transistors, diodes) and passive components (resistors, capacitors). If all the components of the circuit are contained on the same "chip" or substrate, the unit is said to be "monolithic" (single crystal). The monolithic type is the most common and the least expensive to build. Other construction types are: thin film, thick film, hybrid, multichip. A discussion of these types can be
found in almost any book that deals with the subject of ICs.

As an illustration of the extreme size reduction possible with integrated circuits, consider the Motorola 4-bit memory core, which contains 524 different components on a chip 50×70 mils. The average IC is much smaller, usually 40 mils square (1 mil $=.001 \mathrm{in}$.). As the above example indicates, the race is on to see how much circuitry can be crowded into the smallest space. This effort is known in the trade as LSI (large-scale integration). Manufacturers are already starting to produce ICs that contain FET tunnel diodes, and even power transistors!

It is unfortunate, but many people are resisting the changeover from discrete (individual) components to ICs. This resistance could largely be due to the fact that people tend to shy away from circuits they are not familiar with.

The advantages of ICs over discrete components greatly outweigh the disadvantages. Size and weight reduction are obvious advantages but cost savings should also be considered. Consider the HEP 583, which contains 21 transistors and 27 resistors. If you had to buy all these parts individually and build this unit using a breadboard or printed circuit board you would indeed feel the pinch on both your pocketbook and your time. Other disadvantages that are not so obvious are as follows:

Repetition

If you need a circuit containing $20 \mathrm{~J}-\mathrm{K}$ flip-flops, it would be a difficult task to build 20 of these, each containing 21 transistors and 27 resistors. This adds up to 420 transistors and 540 resistors! With ICs, only 20 TO-5 packages are necessary. Here is where cost, size, and time advantages come through again.
Repeatability
Because of the way ICs are constructed with components located in close proximity to each other, tolerances are much finer and parts are better matched, thus making up a device that functions as a complete unit. Power drain is lowered, there is less spurious noise pickup, and there is less noise generated within the unit.

Fig. 1. Typical IC case styles.

Fig. 2. The split supply contain four series batteries grounded at the connect point. Where possible to use, the single supply offers the advantage of simplicity.

Reliability

Many manufacturers are turning to ICs because of their high reliability. Devices built under almost clinical conditions are bound to be better than a circuit built on a workbench. As an example, consider building the electricaequivalent to the HEP 583, using the 21 transistors and 27 resistors: It would be necessary to make 80 to 90 solder connections, a real source for potential trouble.

In addition to the advantages listed, replacement is simple. Schematics are easy to read, especially for the beginner. Areas yet to be conquered in the construction of ICs are: How to built inductors, large-value capacitors, and high-value resistance on an

IC chip. It is presently necessary to connect these components externally.

ICs can be mounted on perforated board or printed-circuit board by either soldering to terminals or using sockets. Sockets are definitely recommended, especially for the hobbyist who will, generally, use the IC over and over in different applications. Constant soldering and unsoldering of the leads weakens them and could cause the wires to be broken, or internal damage could result due to excessive heat from the solder iron.

The HEP 580 thru 583 (devices included a Motorola IC kit) are mW RTLs. This logic family is considered the easiest for the hobbyist, experimenter, and IC novice to "cut their teeth" on. The HEP 584, 570, 571, 572 are MRTLs - also a good family for the beginner. The HEP $553,554,556,558$ are ECLs - not the easier to work with, but the best logic family for high frequency and noise rejection.

IC Packaging

Integrated circuits can be found in a variety of packages. At the present time, there are more than 120 case types made by some 70 companies around the world. Of these many case styles, three types are dominant. (In terms of quantity of devices on the market, in a given case type, about 90% of their quantity can be found in some variation of one of these three case types). As yet, no definite standardization has been set up among the manufacturers regarding packaging, pin numbers, and locations, so carefully check the basing before you plug that IC into the socket. Three popular case styles are pictures in Fig. 1.

Use a low-wattage soldering iron! 25 to 40 watts is a good range. Excess heat could "kill" the IC.

Keep component leads short! Excess lead length could cause spurious or parasitic oscillations or no operation at all.

If you are using a power supply (other than a battery), it is a good idea to bypass the power leads. Connect a 0.05 or 0.1 capacitor from the power input to ground at or near the input terminal of the IC.

Fig. 3. Four basic logic element configurations used in IC diagrams.

Power Supplies

j For projects using 1 or 2 ICs, batteries are usually the best supply. On larger projects, an ac supply is better. The power supply requirements for the various logic functions have been standardized as follows:
RTL $3 \mathrm{AV} \pm 10 \%$ (2.6 to 3.3 V) and $3.6 \pm 10 \%(3.24$ to 3.96 V)
MwRTL $3 \mathrm{~V} \pm 10 \%$ (2.6 to 3.3 V) and $3.6 \pm 10 \%$ (3.24 to 3.96 V)
DTL $\quad 4 \mathrm{~V} \pm 10 \%$ (3.6 to 4.4 V)
MDTL $5 \mathrm{~V} \pm 10 \%(4.5-5.5 \mathrm{~V})$
VTL $\pm 4 \mathrm{~V}$ to $\pm 10 \mathrm{~V}(8-20 \mathrm{~V})$
ECL $\quad 5.2 \mathrm{~V} \pm 10 \%(4.5-5.5 \mathrm{~V})$
TTL $\quad 5 \mathrm{~V} \pm 10 \%(4.5-5.5 \mathrm{~V})$
HTL 18 V
Obviously, batteries in some of these odd voltage ranges are not available: however, experimentation has categories as follows: many of the devices were found to work well from 1.5 to 12 V! Very few did not - but after all, they are only rated from 2.6 to 4 V (approximately). This makes it possible to use many of these ICs over a wide voltage range. Usually an IC rated at 3.2 V minimum works well on 3 V and one rated at 5.5 V maximum works at 6 V .

ICs can be connected in one of two ways, using one or two supplies. The dual
or split supply is most common in linear circuits. The two supplies are shown in Fig. 2.

There are some applications where the split supply is advantageous but generally it involves more complicated circuitry. The novice in ICs is likely to be a novice in the area of computer logic also. The logic symbols are to digital ICs what schematic symbols are to resistors, capacitors, etc. Some of the more common types are shown in Feb. 3. These symbols have recently been standardized by the government. Before that time, each manufacturer had his own set of symbols.

Basic Logic Types

Most computers work on the binary principle. Binary stands for "two",- two states or conditions, which are either on or off, high or low or 1 and 0 .) Consider the condition where we have zero or near zero volts at the input to a gate, flip-flop, amplifier, etc; with positive logic it is an off condition. If this voltage goes positive, let's say to 1 or 2 V , it is now in an on condition.

The common functions in digital ICs are:

- Gates - control the passage of signals.
- Buffer-amplifies power of signals to be able to drive more units.
- Inverter - reverses the logic from + to - or - to +.
- Expander - affords additional inputs to a gate.

Fig. 4. Basic gates with their input/output waveforms.

FM 2 Meter UHF 6 Meter GENERAL ELECTRIC . . . RCA . . . MOTOROLA

When it comes to great used mobile communications equipment, we wrote "the book" . . . Send for a free copy of "the book" (our new catalog).

Here are only a few of our LOW PRICES:
2 METERS
GENERAL ELECTRIC MA/E33 6 or 12 volts, 30 watts
Vibrator Power Supply with accessories
$\$ 148.00$
MOTOROLA X43GGV, New Low Price, Special Model in $10^{\prime \prime}$ case, 30 watt, transmitter narrow band, receiver wide band, vibrator powered, 2 freq. transmitter, and transistor powered 2 freq. "Private Line" receiver (single squelch), less reeds,
complete accessories \$108. In quantities of ten \$88.
6 METERS
MOTOROLA FMTR140D, 6 or 12 volts, 60 watt, wide band.
Dynamotor Power Supply
$\$ 48$. $\$ 58$.
Transmitter Narrow Band $\$ 68$.
Fully Narrow Band
complete with accessories (less accessories deduct \$15)
GENERAL ELECTRIC PRE-PROGRESS 4ER6 RECEIVER, ET5 OR ET6 TRANSMITTER
30 or 60 watts (as available), 6 or 12 volts, including all accessories $\$ 28$.

UHF

MOTOROLA... T44A6A with accessories $\$ 38$.
T44AAV with accessories $\$ 48$.
RCA CMU15A . . 15 watts, minus accessories $\$ 18$.

For Your Convenience SCHEMATIC DIGESTS. (Post Paid)
G.E. SCHEMATIC OUTLINE AND INTERCONNECTION DIAGRAMS FOR GE 2-WAY FM RADIOS.
Vol. 1 Pre-Progress Line ('49-'55) $25-50 \mathrm{MHz} 72-76 \mathrm{MHz}$ Vol. 2 Pre-Progress Line ('49-'55)
$150-170,405-425 \mathrm{MHz}, 450-570 \mathrm{MHz}$ \qquad each volume $\$ 4.50$ MOTOROLA FM SCHEMATIC DIGEST revised edition to 1960

Fig. 5. Basic amplifier and flip-flop configurations.

- Adder - provides the summ and carry operations on two input signals.
- Shift Registers - provides bistable storage.
- Flip-flop - provides division or count. One flip-flop divides by 2 , provides one output change in state for every two input charges.
Gates. This function comes in a wide variety of configurations. There are $2,3,4$, or more inputs and 4 categories as follows:
- And: When all inputs go to 1 , output will go to 1 .
- Nand: Output will be 1 except when all inputs go to 1 .
- Or: When any input goes to 1 , output will be 1 .
- Nor: Output will be 1 except when any input goes to 1.

Nand and nor differ from and and or in that inversion has taken place. Refer to Fig. 4. Note the small o at the input or output of some of the examples. This o indicates that inversion has taken place.

Gates can be connected to operate in a wide variety of applications other than those for which they were designed. Some applications are free-running multivibrators, bistable, one-shot, amplifiers, and audio mixers.

Occasionally the time arises when the hobbyist needs something in the way of gates other than what he has or what is available. For example, you need a 3 -input gate and you have a 4 -input gate; simply ground one input. Ground two inputs to obtain a 2 -input gate. If you have a dual 2 -input gate, such as the HEP 580, and you need a 4 -input gate, tie pins 6 and 7 together and this becomes the output; inputs are then on pins $1,2,3$, and 5 .

Amplifiers. In digital work it is referred to as a buffer. Its original use is to increase "fan-in" or "fan-out" capability; that is, the number of other units that can be connected in parallel to the input (fan-in) or output (fan-out). By adding proper external biasing it is possible to connect this unit to linear (audio-rf) usage.

Flip-Flop. There are a number of types of flip-flops available. As mentioned previously, a flip-flop (multivibrator) can be "made up" by cross connecting two gates. The R-S flip-flop is one example. The J-K flip-flop is similar but has the added function known as "clock input" shown as "T" on the logic block of Fig. 5.

Fundamentally, flip-flops divide by two. By proper connection, division by $3,4,5$, etc. can be obtained using a few ICs as shown in Fig. 6.

Fig. 6. Flip-flops connected as dividers.

```
    the all "NEW"
    CRYSTAL. CALIBRATOR
    -100-50-25 - KC Markers
        - Zero Beat to WW V
        - Uses New }100\mathrm{ KC Crystals
        (included in all units)
        -Glass Epoxy Boards
        - Very Compact
                2" x 3' x 1/2"
                -3.5 V. Operation
                $1295
                    with
                    100 KC
                CRYSTAL
```


INTEGRATED CIRCUITS
FACTORY FRESH - NO REJECTS W/SPEC. SHEET

FAIRCHILD - MOTOROLA

MC 780P DECADE	50
MC 767P QUAD LATCH	\$3.50
MC 9760P DECODER DRIVER	\$5.50

ARN-30 108-135 mc tunable receivers. High frequency version of the famous command receivers. Listen to local airport frequency or convert to 2 mc . New with schematic and operating instructions \$19.95

Western Union facsimile machines send and receive pictures and memos. Works on 115 v 60 cycles. Shipped with auto-start, auto-phase \& pos-4-pos, conversion instructions \$19.95 each

Telfax paper $2 d$ each, 1000 for \$12.95.

1-NL g40S READ OUT TUBE and SOCKET USES:

- FREQUENCY COUNTER
- digital voltmeter
- TIME INTERVOLTMETER
- DIGITAL CLOCK (has facilities for dividing by six for clock)

Voices from the PAST

50 YEARS AGO AMATEURRADIO

Amateur radio operators virtually beat the sun across the continent during the recent daylight tests when a message starting promptly at dawn on the East coast, reached Los Angeles, Cal., before the sun appeared above the Pacific horizon. Favorable transmitting conditions were met which made the trans-continental trip possible in one hour and twenty-five minutes with but two relays.

An early start clinched the laurels for D. McR. Parsley, operator of amateur station 4 FT at Wilmington, N . C. It left Wilmington at 6:15 A.M., Eastern Standard Time, and reached Los Angeles at 4:40 A.M., Pacific Standard Time. The message read: "Are you all set for the Transpacific tests? Answer at once." After being relayed by amateur stations 5PB and 6AWT, it was received by B. Sano, of 855 S . Birch Street, Los Angeles

Ten messages were started from either coast and according to the incomplete logs that have arrived at the League headquarters, many of these dropped by the wayside on account of the necessity for constant relaying under unfavorable daylight conditions. Several hundred amateurs participated in the tests. One message starting from the East coast read: "A drop of the Atlantic ocean goes with this message; return with the salt of the Pacific."

Salinas, California, is reported by W6CLV to be an isolated 112-224 megacycle area. On his monthly trek to S.F., he found that W6PIO Alameda, W6TFZ PNQ San Francisco and W6PYH Oakland are new - at least to him.

W6QLZ says that his $21 / 2$ meter signals seem to have less fading than 5 (but are received on a converter with superregen detector at OVK so there is some a.v.c. action present). Clyde is trying to get W3HJQ/6 up before daylight for dx schedules because signals are good then
even when they are only 50 percent in the evening. This phenomenon is familiar to many who have had experience with low atmosphere bending.

30 YEARS AGO RADIO

At luncheon in April, W4EDD made the observation that during his travels he has found that the majority of hams interested in 112 megacycles are relatively new at it - for which reason the majority of articles about $21 / 2$ meter equipment should be elementary "how to build it" stories about relatively inexpensive equipment. How about grinding out a few, fellows, to help out the newcomers?

10 YEARS AGO

The production of a new and strange kind of variable capacitor recently came to the attention of the writer. This capacitor takes the form of a semiconductor, is about the size of a germanium diode, and is available in sizes from 7 to 100 mmfd . The strange thing about this little gadget is that the capacity is a function of a dc bias voltage impressed across it. The manufacturer, Pacific Semiconductors Inc., Culver City, California, use a standard voltage of four volts as the 100% capacity rating point. It may be seen from the curve in Fig. 1 that at zero voltage the capacity is about 250% and at 100 volts the capacity has dropped to 20% of the 4 volt value. Caution: A reverse polarity voltage should never be used and any superimposed ac peak must not go on the other side of zero.

As soon as you get the full import of the above you begin to get ideas. The "Varicap," for such is its trade name, has many possibilities. The first one the writer thought of was an FM modulator.

Electrically, the FM base station is exactly the same as a mobile, except for the power supply. Usually, the transmitter and receiver "strips" are absolutely identical in the mobile and base version of the same series.

Physically, the base station can come in many forms. First of all, the common desk
model is quite popular. This may be the best version for the ham because some desk models have an external mike gain control, modulation meter, and built-in clock. Rigs such as the trunk mounted mobile may have only a volume, squelch, on-off and channel switch.

You can either have the controls right on the unit itself or have a remote control head at the operating desk. Still another type of base station is the type mounted in the weather-proof housing. This is really nothing but an outdoor relay-rack type panel. At some sites, the whole station is located a couple of hundred feet up the tower in this type of housing. This is ideal for the remote transmitter-receiver or repeater type setup. (I'd like to see someone do this with their KWM-2).

Since base stations are more scarce than mobiles, you can figure on paying about 25% more than the identical mobile for your base. It's a simple case of product in demand.

Since FM operates on fixed channels, being on frequency is especially important. Crystal controlled receiving, as well as transmitting equipment, is the key to this reliability.

Let's now say that we have a crystal controlled transmitter and receiver. Good... now we have half the battle licked. As you may or may not know, the frequency at which the crystal operates depends on the load capacitance of the input of the oscillator. When ordering crystals, be sure to get one which is designed especially for your oscillator's capacitance. If the capacitances are not matched, you will be off frequency. There is a good side to this story, however. In just about all commercial FM rigs, you will find a small ceramic trimmer either in parallel or series with the crystal. This "rubbering" capacitor is used to get you exactly on frequency. To tune the transmitter to the frequency, you need a receiving station with a $50-0-50 \mu$ a meter plugged into the discriminator jack. If you know that the receiving station is on frequency, simply turn the "rubbering" capacitor until the receiving station indicates that his meter
reads zero. You do this while transmitting with no modulation. For tuning an off frequency receiver with an on frequency transmitter, the procedure is the same, but you read the receiver's meter while turning the receiver's capacitor.

Crystal ovens are often used on FM. The purpose of an oven is to keep the crystal at a constant temperature to keep it always on frequency. With an oven, even on the coldest mornings, you will be exactly on frequency within a matter of minutes. These ovens have a single temperature between 60° and $85^{\circ} \mathrm{C}$ in which the crystal is placed. The ovens usually come in either one or two crystal models. When using ovens, be sure that the crystal is designed for that temperature. Used ovens run between $\$ 1.00$ and $\$ 3.50$, but sometimes surplus rigs come with them.

You must use very high quality crystals. Don't even consider using surplus. The prices usually run between $\$ 4$ and $\$ 7$ for a $.0025 \%$ crystal. These crystals are also made to order. When ordering, specify holder type, load capacity, oven temperature (if used), crystal frequency and formula as well as operating frequency, afc or non-afc circuit, and radio model number. In any event, you can never include too much information.

When changing frequencies with these commercial rigs it is not just a simple case of having all the crystals go to one rotary switch and then to the oscillator. Since being on frequency is of the utmost importance, a separate oscillator and "rubbering" capacitor is provided for each crystal. Many rigs use just one half of a 12AT7, for example, for one frequency, then switch cathode circuits to use the other half for the other frequency. However, with most rigs the most frequencies you can normally have is two frequencies transmit and two frequencies receive. To go through a repeater, you will normally need one frequency for receiving and two frequencies for transmitting. In some areas, however, the repeater output is not located on the main channel and you may need two frequencies for receiving also. ELECTRONICS SOLID STATE TONE BURST ENCODERS
(TO THE FREQUENCIES OF YOUR CHOICE)

ROSS AND WHITE CO., Electronics Dept. 73-1 50 West Dundee Rd., Wheeling, III. 60090
Gentlemen:
Send me model__ tone burst encoder Xcvr make__Model
Check or money order enclosed. Please set frequencies for
Send additional information. Check \square
Name

If you are looking for high performance in a beam antenna at a reasonable price, this parabolic beam antenna for 10,15 , or 20 meters might be the answer. It works on the same principle as the corner reflector antenna. Figure 1 shows a 1 in . aluminum tubing configuration shaped like part of a circle. The aluminum tubing is 20 ft long before being shaped as shown in Fig. 1. The aluminum tubing is bent so that 100 degrees appears between points A, B, and C.

Fig. 1. The curve should be kept uniform.
Figure 2 shows another piece of alumi num tubing bolted at right angles to the original tubing (ABC). This additional tubing is identical to that shown in Fig. 1 and is shown as a straight line (DBE). The aluminum shown in DBE in Fig. 2 is actually bent into the same configuration
as tubing ABC of Fig. 1. Bare copper wire is used to strengthen the elements ABC and DBE as shown in Fig. 2. Also, this wire is needed to support the aluminum sheet metal shown in Fig. 3.

Fig. 2. Copper wire forms the basic framework.

Fig. 3. With the addition of shaped sheets of aluminum, the dish begins to look like an antenna.

Fig. 4. The driven element can be any goodquality quarter-wave whip. Keep the whip insulated from the reflector and feed it with 50Ω line.

The sheet metal shown in Fig. 3 is approximately 0.04 in . thick. You will need a roll about 80 ft long. This will act as a giant reflector element giving the antenna a 40 dB front-to-back ratio.

Figure 4 shows the driven element FG. This may be any good quality vertical antenna such as the hustler series by Newtronics. It must be resonant on 10,15 , or 20 meters. (Aluminum rod DBE of Figs. 2 and 3 is not shown in Fig. 4.) The driven element (FG) must be insulated from the rest of the antenna system. This may be done with plastic sheets and tape. The driven element (FG) should be kept at feast $1 / 4 \mathrm{in}$. away from the rest of the system at point B of Fig. 4. The antenna is fed with standard 52Ω coax cable. The feedpoint (F) should be bolted and taped carefully. The shield of the coax should be connected to a nonrotating portion of the reflecting segment of the antenna system. Forward gain will vary anywhere from 14 to 25 dB depending on the type of driven element used and the frequency band it is used on. Generally, the higher frequency bands (10 and 15 meters) will deliver improved performance. The dimensions given for the reflecting portion of the antenna may be the same for each band.

Good DX results have been obtained with this antenna with low power and a tower only 20 ft high.

Antenna Noise Bridge (an-'ten-a noiz brij), n, Omega- t System's name for a specialized testing device that checks your antenna system for resonant frequency and coaxial impedance.

An entirely new concept in antenna testing, it not only replaces VSWR bridges with a more economical system, but it is also more reliable, and easier to use.

Obtain maximum efficiency by determining the resonant frequency forany type of antenna, fixed or mobile, with the solid state, self-contained Antenna Noise Bridge . . . and match your system for the best reception ever.

Available in two models . . . the TE7-01 for $1-100 \mathrm{MHz}$ range, priced at $\$ 29.95 \ldots$ the TE7-02 for $\mathbf{1 - 3 0 0} \mathbf{~ M H z}$ range, priced at $\$ 39.95$.

Sold only through authorized dealers of amateur and citizen's band radio supplies. For additional information, write: Omega-t Systems, 300 Terrace Village, Richardson, Texas 75080

omega-t systems incorporated

Henry Radio's ENWood

Never before has there been an amateur receiver and transmitter like the KENWOOD R-599 solid state receiver and T-599 hybrid transmitter. The wait is over ... the promise of the transistor has been fulfilled. KENWOOD promises to be the new pacesetter in the field of short wave radio equipment . . . setting new standards of performance, reliability, flexibility, high styling, and value. Deliveries start in November. Order yours today. Become the proud owner of the world's most technologically advanced amateur Receiver/Exciter combination.
The R-599 Receiver
$\$ 298.00$

The T-599 Transmitter \$345.00

Henry Radio's

TEMPO "ONE"

The Tempo "ONE" SSB transceiver represents the culminating achievement of many years of experience in the amateur radio field. Modern design, superb performance, sturdy construction, outstanding reliability . . . at a surprisingly low price makes the Tempo "ONE" the best buy in transceivers today. Please come in or write for complete specifications.

The Tempo "ONE" $\$ 298.00$ AC/one, 110-220 volt $50 / 60$ cycle power supply ... $\$ 99.00$ DC/one, 12 volt DC power supply . . $\$ 107.00$

Henry Radio's 2K-3

The 2K-3 in a few short years has established itself as pre-eminent among amateur linear amplifiers. The reason is simple. It is designed and built better. And above all, the $2 \mathrm{~K}-3$ is truly "Linear" . . . Why not own the best - treat yourself to the big clean signal of the 2K-3.

The 2K-3 (console or desk model). . \$745.00

Now. meet Henry Radio . . .

Plus a large staff of highly qualified sales and service personnel pledged to serve you. Henry Radio carries large stocks of all major brands. We take trade-ins, sell used equipment and offer better terms because we carry our own financing. Our reconditioned equipment carries a 15 day trial, 90 day warranty and may be traded back within 90 days for full credit toward the purchase of new equipment. Export inquiries solicited. Also, military, commercial, industrial, and scientific users . . . please write for information on our custom line of high power linear amplifiers and RF power generators.

If you ever had any doubts that FM as a mode for amateur operation was here to stay, you may quietly put that doubt to rest forever. A quick glance at the advertisements and articles in the amateur magazines should show you the impact that VHF FM operation is having on ham radio today. There are many concerns that are selling used police and taxi two-way gear and a number of small and large equipment manufacturers that are making gear strictly for amateur use. Until recently the only ready-made gear available for VHF FM operation was the stuff manufactured by the commercial and public safety two-way radio companies: Motorola, GE, RCA, Kaar, and a dozen or more others. Bargains were and still are commonplace in second-hand gear that has been retired from commercial service. But much of this gear is ten years or more old, designed with vacuum tubes, powered by
uynamotors, and strictly for mobile use. Some conversion is necessary for amateur use, depending on what frequency you are going to use and whether or not you plan to use it in your car.

Now, however, there are a number of completely transistorized units on the market, designed solely for amateur use, fully wired and ready to plug in and operate. Generally, these units have been of Japanese manufacture, designed for FM operation on 2 meters, running somewhere between 1 and 10 watts output. Most cost $\$ 250$ or more, but are selling quite well nonetheless. Galaxy Electronics has not only come out with a 2 meter FM transceiver that has features similar to the Japanese-made units on the market, but has incorporated the best feature of all, as far as Japanese electronic equipment is concerned: low price. Galaxy has beaten
the transistor technology of Tokyo at its own game by undercutting the price of even the least expensive Japanese rig by $\$ 50$. And mind you, the FM-210 is all-American, parts and labor.

The FM- 210 has a trim and deceptively simple look to it. It almost looks more like a control head than a complete transceiver. On the front panel there are concentric controls for off-on-volume and squelch, receive channel, and transmit channel. Also there is a pilot lamp and mike jack for PTT hi- Z mike. To open up the unit, all you have to do is remove four sheet-metal screws on the bottom of the case and slide the entire chassis out of the cabinet. The cabinet, incidentally, is very rugged, being made of very heavy gage metal.

Inside, you find four printed circuit boards and some chassis-mounted wiring. One board is the front end and first mixer, another the i-f section and detector, a little one in the back is receiver audio, and the last board contains transmitter audio, oscillator-doubler, doubler, and the varicap modulator. Another doubler, the driver, and power amplifier are mounted on the chassis proper. Mounted on the back wall is a heavy duty T / R relay, antenna connector, and power plug.

The final transistor, by the way, has a separate power lead for its collector supply running to the power plug. That's so you can run 28 V on the final collector for extra power. In fact, that's what is done in the AC-210 power supply for fixed station (or mobile) use. The AC-210 is available as an accessory for $\$ 40$. The transceiver requires $14-16 \mathrm{~V}$ dc for power, but works nicely on a 12 V storage battery. If you plan to use the FM-210 primarily for fixed use, you could build your own ac supply, or better yet, get an old storage battery to power the rig. That way, you still have a rig on the air during a power failure. For mobile use, however, that 16 V rating is very comforting, especially if you're not sure exactly how much voltage is coming out of your car's generator or alternator.

Receiver Section

The receiver section starts with a 2N5485 FET rf amplifier feeding another

2N5485 operating as the first mixer. A third and fourth 2N5485 serve as oscillator and tripler to drive the mixer. A third and fourth 2N5485 serve as oscillator and tripler to drive the mixer. From the mixer the incoming signal is fed to a 2 N 3855 i-f amplifier operating at 10.7 MHz . Then, the signal is heterodyned by a 2 N 3855 mixer down to 450 kHz . A 2 N 2926 is the crystal-controlled second oscillator. The signal is now fed into a 4-pole filter which is adjusted at the factory for optimum FM reception. The filter is used to provide the selectivity necessary to eliminate adjacent-channel QRM. After filtering, the signal is fed to a pair of 2 N 2926 s , which provide the needed i-f gain to drive the limiters. Yes, there are TWO limiters!

Following the limiters is a novel fixed-tuned discriminator built around a Clevite ceramic resonant component. The detected audio is fed through two stages of amplification provided by another pair of 2 N 2926 s and then to a 2 N 3638 audio driver and a D42C1-D43C1 matched "complementary pair" transistor output stage, which drives the built-in speaker.

According to the manufacturer, the receiver sensitivity is rated as $0.5 \mu \mathrm{~V}$ for 12 dB SINAD and $1.0 \mu \mathrm{~V}$ will give 20 dB quieting. At my QTH, with a homebrew groundplane about 25 feet in the air, I heard a mobile station in New York City, about 35 miles away. His signal was noisy, but Q5 nonetheless. And this was a "direct" signal - no repeater. Speaking of repeaters, I've been able to key up two different repeaters from my fixed location, and one of them from the car. All this with full-quieting signals at the repeater's receiver. Not bad for only a few watts, eh?

Transmitter Section

The transmitter section begins with a two-stage audio amplifier (a pair of 2N2926s) driving a 2 N 4916 clipper. There are controls on the printed circuit board for clipping depth (mike gain) and modulation deviation (clipper output level). Following the clipper, the audio is processed by an active filter. A 2 N 2926 Y and a 2 N 4916 serve in the active filter
section. Modulation of the transmitter is accomplished by an MV1628 varicap in series with the transmitter's crystal.

A single 2 N 3563 serves as the transmitter oscillator and first doubler, followed by a 2 N 3904 second doubler, 2N442 third doubler, 2N4427 driver, and a 2N5641 power amplifier. The final is rated for 10 W output at frequencies up to 500 MHz , so you are not pushing it at all when you run the $\mathrm{FM}-210$ on 12 V . According to the instruction manual, the transmitter is tuned up for operation, with the crystals supplied, into a 50Ω resistive load. That means that you shouldn't have to touch anything inside the transmitter if you use a groundplane or coaxial type antenna and stay within a half megahertz or so from 146.94. The transmitter is fairly broadbanded: I can switch between 146.34 and 146.94 with no appreciable change in output.

Channel Selection

Channel selection for the three possible receive and three possible transmit frequencies is accomplished by two frontpanel switches. Notice that there are two selectors: one for transmit, one for receive. This is a very flexible arrangement since it enables you to choose any combination of receive and transmit frequencies for which you have crystals. The FM operator will quite often transmit on a different frequency from the one on which he is receiving. This is the procedure when using an FM repeater, for example. For those times when your friendly local repeater is out of service, all you have to do is switch your transmit frequency to the repeater output channel and you are all set to operate "simplex." At this point, however, you will appreciate the value of a repeater, unless your QTH happens to be on top of a mountain. For strictly local contacts it's a good idea to operate simplex anyway, so that you won't tie up the repeater when you don't really need it. The extra receive frequencies are especially useful if you plan to operate mobile and do a lot of traveling to different cities; not all repeaters are set up to transmit on 146.94 - some are on 146.88 or 146.76 . It all depends on what
the local clubs have decided should be the proper channel for their particular area. And, too, some areas have several repeaters in service.

The FM-210 comes with crystals for transmitting and receiving on 146.94 MHz ., the nationwide standard FM channel, so you should be able to talk to someone as soon as you wire up the power connector and hook the rig up to an antenna. However, I'm sure you will want to avail yourself of your local repeater, so find out what the input and output frequencies are and order the proper crystals.

The entire transceiver is very well constructed, and it is obvious that a good deal of thought has gone into the design of the rig, especially when you inspect the insides and look over the schematic. If your local dealer will let you, open it up and take a look at the guts of the thing! Americanmade components of good quality are used throughout and all rf transistors (except the final) are mounted in sockets, just in case you do something nasty to this fine little rig. Make sure, though, that all transistors are firmly seated in their respective sockets. They could loosen up in shipment or during excessively bumpy mobile operation. Layout of components is neat and very accessible, should service ever be needed.

The FM-210 is a fine little rig - at home both in the car and in the shack. Its only real limitation is its low power: over a long haul, you'll have a rough time of it. Most of the boys with commercial gear are running at least 30 W or more. And that's 30W output. But for local QSOs and contacts through a repeater, the FM-210 can't be beat.

One final note: each of the dozen or so hams to whom I have shown the intruction manual for the FM-210 has been very impressed with the quality of the book: it is easy to read, indexed, spiral bound to lie flat, and tells everything you need to know - even where to order crystals. And the schematic is very large. It's a foldout about three feet long, clearly drawn, and easy to read. You have to see it to appreciate it.
. . .K2ULR ${ }^{-1}$

RECONDITIONED HAM EQUIPMENT

10 Day Free Trial (Lose only Shipping Charges) 30 Day Guarantee Full Credit Within 6 Months on Higher Priced New Equipment EZ Terms-Convenient REVOLVING Charge Payment Plan Order Direct from this Ad!
AMECO
CB-6 ($28-30 \mathrm{Mc}$ if) $\$ 17$ CN-144 (50-54 if) 29 PCLP preamp supply 24 PT preamp PS-1 AC supply TX-62 VHF Xmtr

B \& W
5I SB-B SSB adapt $\$ 109$
381 TR switch 19
424 low-pass
BUD
FCC-90B 100 kc cal\$ 12
CENTRAL ELECT.
QT-1 Anti-trip
Model B slicer
Model B slicer
GC-I compreamp DQ Q-multiplier CLEGG/

SQUIRES-SANDERS 66'er 6 m Xcvr 169 99^{\prime} er 6 m Xcvr 69 417 AC sup. mod. 75 Interceptor Rec $\$ 249$ Interceptor B Rec 325 Allbander HF tuner 69 Venus 6 m SSB xmtr 199 416 AC supply 75 SS Booster
SS-IV Band Scanner 275 COLLINS 75A-2 Receiver $\$ 219$ Speaker (Al, A2. A3) 9 75S-1 Receiver 325 75S-1 w blanker 375 755-3 Receiver
32S-1 Xmtr 325-3 $\times \mathrm{mtr}$ 312B-4 Contro 35 ID - 2 mount $516 \mathrm{~F}-2 \mathrm{AC}$ supply 115 $516 \mathrm{E}-2 \mathrm{DC}(28 \mathrm{v}) \quad 95$ MP-I DC supply
R. L. DRAKE 2AC calibrator 2B Receiver 2BQ spkr Q-mult. 2C Receiver 2CQ spkr Q-mult. SW-4A Receiver R-4 Receiver R-4A Receiver MS-3 speaker SC-6 6 m converter CC-1 conv.console TR-3 Transceiver 375 DC-3 DC supply T-4 Reciter MN-2000 matcher 149 TC-6 xmit.conv. 189

EICO

730 Modulator 753 SSB Xcvr
751 AC supply

ELDICO
TFP-1 patch
SSB-1000 $\$ 25$ ELMAC
PMR-7 Receiver $\$ 59$

PMR-7	
PMR-8	Receiver
	59

GLOBE/GALAXY/WRL Scout Deluxe xmtr \$ 49 LA-1 Lin. Xmtr 69 King 500A Xmtr SB-175 SSB \times mtr V. 10 VFO

Galaxy III
Galaxy il Y..ve 29 Galaxy V Mk II 269 Galaxy V Mk III GT-550 Xevr
AC-35 AC supply AC-400 AC supply RV- 550 Rem. VFO RX-I Remote VFO VX-35 VOX
VX-35C VOX
CAL-35 Calibrator SC-35 Speaker SC-550 Speaker 2000 Linear-sup Duo-Bander Xcvr Rejector AC supply GONSET
Comm 16 m Comm 1116 m GC-105 2 m Xcyr 2 m Linear II 901 A AC supply 910A 6 m Xcvr 911A AC supply 913 A 6 m Linear G-76 Transceiver G-76 AC supply G-76 DC supply G-77 Transmitter GSB-I 00 Xmtr Super 12

HALLICRAFTERS
S-38D Receiver SX-88 Receiver SX-117 Receiver S-200 Receiver SX-130 Receiver SX-146 Receiver R-46 Speaker R-50 Speaker HT- 32 Xmtr HT-32A Xmer HT-33A Linear HT-37 Xmtr HT- $46 \times \mathrm{mtr}$ SR-150 Xcvr SR-150 Xcyr
PS-150-120 AC sup MR-150 rack SR-500 Xcvr P-500AC AC sup HA-4 Keyer

HAMMARLUND

HQ-100 Receiver $\$ 99$
HO-100C Receiver 109

HQ-100AC Rec 139 HQ-110 Receiver HQ-110C Receiver HQ-11OAC Rec HQ-170C Receiver HQ-170A Receiver HQ-170AC Rec 239 HQ-170A immunizer 259 HQ-180 Receiver 239 HQ-IBOAC Rec 349 SP-600JX-26 rack
mt.) Receiver S-100 Speaker S-200 Speaker S-200 Speaker
$H X-500$ Xmtr HXL-1 Linea HK-IB Keyer Noise Silencer

HEATHKIT

GR-64 Receiver \$ 39
HR-20 Receiver RX-1 Receiver SB-300 Receiver SB-301 Receiver XC-2 2 m conv. XC-6 6 m conv. SBA $300-36 \mathrm{~m}$ conv SBA. $400-42 \mathrm{~m}$ conv. TX-1 Transmitter HX-10 Transmitter HA- 10 Linear
HA-20 6 m Linear HW- 3220 m Xcvr HP-24 AC supply HP- 24 AC S
VF. 1 VFO HW-29A (Six'er) VHF-1 (Seneca) HRA-10-1 Calibrator HW-18-3 160 m Xcvr 119

HEWLETT-PACKARD 4IOBR rk.mt. VTVM

HICKOCK
Cardomatic Tube
Tester
$\$ 175$

HUNTER

1000A Linear sup $\$ 199$ 2000A Linear 299
ICE (as-is)
ICE-1 2 m Xevr $\$ 75$
JOHNSON
122 VFO
Ranger 1
Valiant I
Valiant II
SSB Adaptor
Pacemaker
$5 \quad 19$

189

maker	175

275 w 225
6 N2 VHF Xmtr ${ }^{85}$
TR switch 19
Signal Sentry 100kc Calibrator

KNIGHT

T-150A Xmtr $\$ 69$

T-175 6/10m Linear 69

LAFAYETTE

HE-62 10 m VFO $\$ 19$
HA-90 VFO
HE-50A VFO
HE-50A 10 m Xcrr 59 HA-500 Receiver 69
MILLEN
90651 A GDO $\$ 75$
NATIONAL
NC-125 Receiver $\$ 79$ NC-303 Receiver 239 XCU-300 calibrator 9 NCX-3 Xcvr 169
NCXA AC supply 75 VX-501 Remote VFOI 25 200 Transceiver 239 $\begin{array}{lr}200 \text { Transceiver } & 239 \\ \text { AC-200 AC supply } & 59\end{array}$ NCX-500 Xcvr 299 HRO-500TS spkr. 30
OMEGA-T
TE7-01 noise bridge $\$ 15$
P\&H
LA-400C Linear $\$ 99$
PARKS
50-1 6 m Conv. $\$ 15$
POLYTRONICS
PC- 66 m X cVr $\quad \$ 149$
SIDEBAND ENGINEERS
SB-33 Transceiver $\$ 179$
SBI-DCP Inverter 29
SB2-DCP Inverter 35

SBI-LA Linear 159 SB-34 Transceiver 279 SB2-VOX 19
SB3-XC Calibrator 15 SB2-MIC Mike

SWAN

SW-117 AC supply $\$ 65$
SW-240 Xcvr (iate) $\quad 169$ 400 Transceiver 189 406 B VFO 50 406 B VFO 75 420 VFO 95
VX-I VOX
350 Xevr (late) 289
500 Transceiver 349
500 C Xcvr 389
117XC AC supply 80
NS-I noise silencer 24
405X MARS osc. 29
2506 m Xcvr 239
250C 6m Xeve 339
TV-2 2 m Transverter
(specify 14 or 50) 225
FP-I phone patch 34
U. S. C.

Z-200A Digital V.M. $\$ 85$ Z-200A (rk. mt.) 75

UTICA
650 6 m Xevr VFO \$89 650A 6 m Xcvi VFO 99

WATERS
369A Reflectometer $\$ 75$
361 Codax keyer

> The items listed below are brand-new and carry the full manufacturers New Equipment Warranty. Some items have been on display but most are Factory Sealed.
> ND $=$ New Display \quad FS $=$ Factory Sealed
> BTI Reg. Now
> LK-2000HD Linear
> EICO
> 751 AC supply : 751 AC supply - wired 752 DC supply 752 DC supply -wired $\$ 895 \$ 695$ F.92K AM-FM Tuner kit FS

SIGNAL/ONE
Reg. NOW
CX-7 Transceiver
ND $\$ 2195$ \$1750

SWAN

Reg. NOW
410 C Remote VFO for 500 C 405 MARS osc. for 350500 TV-2 2 m Xmit conv. 260 Transceiver FS $\$ 115 \$ 100$ $\begin{array}{lrr}\text { FS } & \text { S115 } & \$ 100 \\ \text { FS } & 45 & 35\end{array}$ FS $295 \quad 225$ FS 435369 VARITRONICS - New Close-out Reg. Now FDFM- 212 vdc 2 m FM Xcvr (5 watts
input) with BP-1 Battery Pak $\$ 262 \$ 199$ FM20M Mobile Linear for above $150 \quad 89$ FM20BM Base Linear \& AC supply $235 \quad \mid 25$

The BIGGEST - The BEST - In the MIDWEST
AMATEUR ELECTRONIC SUPPLY 4828 West Fond du Lac Ave. Milwaukee, Wis. 53216 Phone (414) 442-4200
STORE HOURS: Mon \& Fri 9.9 Tues, Wed \& Thurs $9-530$ Sat 9.3

Back during the war, when the inventive German mind was finding front line uses for amplifiers in telephony work, with two wires inserted into the earth some 200 feet apart, an enemy operator listened to Allied telephone messages by amplifying the small induced currents in the earth picked up by the wires. No record exists of how effective the means of spying turned out to be except that the operator heard curious whistles and wanted to know where they came from. The whistle was found to be caused by the lightning in a storm, or lightning not necessarily associated with a storm. This led to the discovery that at any instant there are about 1800 lightning storms on the globe.

We live in an area where the frequency of lightning storms is very great compared to the "average" location. Some 90 of the 360 days per year may find thunderstorms in the area.

What, then should we do? Let's turn to the insurance companies and the electrical code to find some answers and back to Benjamin Franklin to find others. If you research any particular project you will find that the basic physics and chemistry were well known a hundred years ago but the hardware may not have been readily available to the average person at that time.

In 1752 printer B. Franklin wrote many letters in regard to the properties of lightning, and the greater share of the buildings
in Philadelphia were protected by the rod he "invented" and improved. There was some discussion in the scientific circles of the day regarding the use of a point on the rod versus a simple overhead protective wire such as the power companies use today. One school of thought held that the pointed rod would actually cause lightning strokes more often than the spherical terminal would, yet the spherical would offer the same protection in case of a stroke.

The power companies have found that if ground wires are kept above the "hot" lines, there is a protective factor involved. As a proof that this is not always effective, GE puts out a gadget we should all have on the service entrance to the house. It is a lightning arrestor costing about \$8, available from the local electric supply house. It is intended to prevent a stroke which hits the lines and causes a "bump" in voltage to pass down the lines from entering your home. This protects all the equipment you have plugged into the outlets and also the lighting you have in the home.

First, let's talk about the destructive effects of lightning. If it strikes a tree, the current through the tree may cause the temperature of the sap to go to 27,000 degrees. This, of course, destroys the tree because the steam cannot escape fast enough to the atmosphere - so it "blows" the tree, or maybe just the bark. The same happens in a building where the reinforcing rods do not have electrical connection; the
lightning jumps the gap and causes steam to be emitted which causes great damage to the particular portion that gets hot.

There is another peculiarity we should be cognizant of: If you have a rubbercovered 14 -gage wire on the antenna lead-in, the copper may be completely disintegrated, and the rubber not destroyed. This has been observed and also investigated in the laboratory. Knowlton, writing in the Handbook for Electrical Engineers, says high current peaks may shatter trees without setting fire to them, while a succession of the current peaks may well cause a fire. High-current shorttime discharges passed through a 14 -gage rubber-covered wire can eliminate the wire but leave the rubber apparently undamaged. Hollow or flat conductors may be crushed by high lightning currents owing to both heating and magnetic effects.

Other authors speak of the magnetic effects and the distortion to the point of disintegrating circular conductors such as pipes. Again to Knowlton - the largest conductor known to have completely burned through by a stroke is a 4 -gage solid copper conductor. He is speaking of the ground wire over a power line used to intercept the stroke and to conduct its current to ground without sufficient potential developing to cause a flashover between the ground wire or tower and the conductors.

The Britannica offers several interesting comments:

1. Experiments on power lines at high altitudes suggest that if we were at an altitude of 18,000 to $20,000 \mathrm{ft}$, we would not have any strokes of lightning taking place. The 100 kV line from Denver to Argentine pass (1 mile to $13,500 \mathrm{ft}$) was found to have much less lightning stroke current as altitude increased.
2. Strokes seen but not heard: With an upward initial leader stroke, not followed by downward leader current peaks, the rate of rise and decay of current may be slow enough so that the sound of thunder is not heard. On this basis thunderless strokes would only occur on high buildings.
3. Persons struck by lightning have been revived by artificial respiration. The result of being struck is electric shock and burns, or both.
4. Trailing antennas from planes is likely to increase the possibility of a stroke, and antennas pulled by planes are sometimes destroyed by lightning.
Suppose you have a tower on the top of your home and you want to protect yourself. What now?

Using the above references and others, the following list was compiled.

1. Place a GE protector on the incoming power line at the service entrance. Cost is $\$ 8$.
2. Find two points in which to connect the down wires to ground, such as a metal waterpipe. Dig up these two locations and determine that the pipe is metal and in suitable condition to connect the wires to them. They should be on opposite sides or ends of the home. If pipe is not available, ground rods must be driven. These should be $5 / 8 \mathrm{in}$. copper-coated.
3 . Use 4 -gage stranded copper wire for the down wires. Cost is about $\$ 20$ per 100 feet.
3. The best installation will have at least two down conductors and they will be at opposite ends of the building to be protected. This provides an overhead wire that will umbrella the whole house.
4. String the down wire along the house and bring it down so that the current will take the most direct path to ground possible (no short bends). Bond each end to the pipe or the rods with clamps in a location so that they may be checked occasionally to see that they are sound mechanically. The wire is stranded for two reasons: First, the stroke is fast enough so that we may consider it a stroke of 25 kHz or greater frequency. Remember, the more surfaces, the greater the current-handling capability. Therefore, the current tends to travel in the outer part of the conductor. Second, the stranded wire is more resistant to accidental cutting.
5. Go back and bond to the antenna and then look around to see which of the projections above the house are of metal and are within 6 ft of the ground wire. These might be vent pipes or chimneys, etc. Connection from the ground wire to these metal pipes is necessary so that there will be no current jumping the gap. Remember that it is the current jumping that creates an arc and therefore heats and causes fires. A bond wire prevents this from happening.
6. The books suggest you run the down wire outside the home. I ran mine inside on the basis that the wire can be made more direct to the ground connection and the conductivity of the copper is better than that of any other material the lightning will pass in its travels. Some books agree with this. It is also a means of reducing corrosion, making the installation more pleasing to the eye, and reducing the possibility of someone cutting it down as an act of vandalism. The disadvantages are that the wire is hard to string through the narrow openings, and the bonding must include the ductwork in the attic.
7. If air terminals are used, they should be high enough to prevent danger of fire from the arc.
8. A cloud passing over the area will cause an area of several miles to be charged as it moves. This means an electric current in the ground. As it passes over your area, the wires will also be charged. For this reason it is best not to leave the antenna hanging loose. Ground the lead wires, or install an arrester.
9. Remember that connections can be batteries and will cause corrosion if made of dissimilar metals. Use only accepted connectors and cable clamps. They will be clearly marked Cu or $\mathrm{Cu} / \mathrm{A} 1$ if both metals. Make all materials mechanically secure to prevent loss of protection.

WarOnPoverty!

You can help fight a really serious poverty pocket in New Hampshire by sending in your subscription today to 73 . Not only will this give you the warm feeling deep inside knowing that you have helped someone in need, but it will also bring you bounteous blessings.

1. You will save tremendously on the highly overpriced individual-copy cost of \$1.
2. You will not have to worry about your dealer running out of copies just before you get there.
3. Many other blessings too numerous to mention.

Tax Deductible

A subscription to 73 is such an extraordinary act of generosity that it should be deductible. Unfortunately, it isn't. It is generous to yourself, bringing you unfettered joy and enthusiasm for an entire year, spread out just enough to whet the etc. It is generous to the poor underprivileged employees of 73 who are eking out their lives, anxiously awaiting each and every subscription with grasping fingers. It is generous to the State of New Hampshire, for the only taxes in this fine state are on profits and, there is always the distant possibility that your subscription might be the one which would edge 73 out of the red and into the tax-paying bracket. This, unfortunately, is a slim possibility.

Name
Call
Address
City
State _ Zip
\square New subscription
\square \$6 One year
$\square \$ 14$ Three years \qquad
Foreign: add $\$ 1$ per year.
73 Magazine • Peterborough NH 03458

[^2]
I6

 REEFIVER ACEESSORY
Readily available

Motorola HEP units are featured in this compact accessory unit, although other ICs may also be used. The unit is designed to plug into the headphone jack of any receiver (or transceiver) and provide tunable af selectivity, agc and sufficient audio power for direct loudspeaker operation.

Audio frequency integrated circuits provide the opportunity to develop very useful circuit functions-in many instances at a far lower cost than would be possible using discrete components. On the other hand, the inherent nature of the IC housing and the conditions under which it must operate also make the practical realization of a circuit using IC's, in some instances, just as complicated as a circuit using discrete components. This seeming contradiction was experienced by the author in developing the receiver

Power amplifier IC mounted in heat sink is shown on left. FET and associated components are at upper right side of heat sink. Other components are conveniently arranged around dual stage FET. Potentiometers shown on right are miniature type mounted directly on perforated board stock.

accessory unit described in this article. So, even if one has no immediate need to build the unit described, it may prove interesting to still read about and appreciate some of the considerations involved in the use of audio integrated circuits.

General

The accessory unit described was designed as a compact, solid-state unit that could be plugged into a medium to high impedance headphone jack and function as a self-contained unit to provide tunable af selectivity, agc and about 1 watt of power for direct loudspeaker operation. By the addition of a few diodes a simple noise limiter can also be added. For compactness and simplicity, only a resistor-capacitor network was used without any inductive elements to obtain audio selectivity. The resultant selectivity is not as sharp as that provided by a bulky inductor but is quite usable on CW, especially with a transceiver that already contains a steep-skirted crystal or mechanical SSB filter. The fact that the af selectivity is tunable also adds to its usefulness. The agc feature is not absolutely necessary but was added since many transceivers, although their avc cannot be disabled as such, do not provide full agc on CW when the rf gain control is at some intermediate setting, as would be normal if one were using the rf gain on CW as the "volume" control while tuning. The audio output amplifier was included to eliminate the need for going back into the receiver in order to use its audio output stage. Thus, no modification whatever is required to the receiver and the accessory unit can simply be unplugged from the headphone jack when it is not desired for operation.

Circuit

A block diagram of the accessory unit is shown in Fig. 1. The basic stage functions are relatively simple. The incoming audio is split into two parts, each going $1 / 2$ of the HEP592 (a hobbyist version of the MC1535 dual operational amplifier sold as a stereo preamplifier). One section of the HEP592 serves as a level detector with an adjustable threshold. When the positive going portion of the input signal exceeds the threshold level, an output voltage is produced which when rectified is coupled to the gate of a

HEP801 FET. The drain-source resistance of the FET is normally quite low but increases to several thousand ohms with increasing negative gate-source potential. This wide resistance variation is used to regulate the gain of the power amplifier IC. This "forward" method of obtaining agc is somewhat different from the usual "backward" method where part of the final output af voltage is rectified and then used to control the gain of a preceeding stage. However, it works just as well and with some experimentation of the circuit time constants, it may even appeal to some as providing more responsive agc action than the "backward" system.

The other section of the HEP592 serves as a tunable af filter. Advantage is taken in constructing the filter circuit of the fact that most "operational amplifier-turnedhobbyist" IC's provide a differential input. That is, so-called inverting (-) and noninverting (+) inputs. A portion of the input signal is fed to the non-inverting input. The other input is coupled to the output via a tunable audio filter which passes all audio frequencies except the one to which it is set. Thus, all other audio frequencies are fed back to the input to oppose wall input frequencies except one frequency. The overall result is an audio peaking stage at the one frequency to which the audio filter is set.

Fig. 1 Block diagram of accessory unit stage functions. Other similar IC operational amplifiers can be used to perform the same functions.

NewProducts

Automatic ID in Electronic "Fist"

Curtis Electro Devices has announced an advanced mnemonic integrated circuit keyer in ${ }^{-}$ corporating an automatic solid-state identification message generator in addition to the basic "Electronic Fist" circuitry. A custom integrated circuit read-only memory, febricated on a single silicon chip less than 0.1 in . square, controlled by three complex medium-scale ICs, provides permanent memory to generate the repetitive calls used by radio amateurs in normal and contest operation.

As an example, the selector might select any one of the three sequences below from a single memory:

- CQ CQ DE WA6JNJ K
 - CQ FD CQ FD DE WA6JNJ K - DE WA6JNJ K

Three auto-stop selections allow continuous cycling or a choice of two stopping points. In the manual mode, the keyer provides $8-50 \mathrm{wpm}$ paddle or squeeze keying with dot memory,

independent weight control, and iambic character generation. A tap on the straight key of a Brown Bros. CTL combination key initiates the automatic program at the exact speed and weight employed by the operator in the "manual" mode. At 20 wpm, a full sequence takes 15 seconds. The sequence terminates either automatically or by a tap on the dash paddle. The unit will operate both grid block and cathode keyed rigs. Power supply, monitor and speaker are built-in. All cables and connectors are provided. The EK-39M mnemonic unit, available either from dealers or direct, is priced at $\$ 179.95$ complete except for the individually tailored plug-in memory which is ordered directly from the factory per user message instructions. It is priced at $\$ 59.95$. For more information, write Curtis Electro Devices, Box 4090, Mountain View CA 94040.

HEP Replacement Kit

A new universal kit of semiconductors that will replace over 6300 different semiconductor type numbers is now available to service dealers from Motorola's HEP suppliers throughout the country. The kit contains 50 of the fastestmoving replacement semiconductors, according to Motorola HEP sales manager Art Baldensperger. Ten HEP 254 s , germanium PNP generalpurpose transistors; ten each of the HEP 53,54 and 55 silicon NPN transistors; and ten HEP 170 s ($2-5 \mathrm{~A}, 1 \mathrm{kV}$ silicon rectifiers) in Motorola's "Surmetic" package. HEP is Motorola's sales program for making semiconductor devices readily available to the hobbyist-experimenter and to professional service dealers through a nationwide network of authorized suppliers. Motorola Semiconductors, 5005 E. McDowell Rd, Phoenix AZ 80536.
(cont. on page 80)

The power amplifier stage is necessary to raise the output level to drive a small loudspeaker and produces about $3 / 4$ watt output.

The wiring diagram of the unit is shown in Fig. 2. A 10 K potentiometer is used with the agc portion of the HEP 592 IC to set the threshold value at which age action starts. It can either be brought out as a panel control or left as a trimmer adjustment. The tunable af filter is of the bridged-T type. As shown, a three-unit potentiometer is needed to cover the complete audio range up to a few thousand cycles. One could possibly make only two of the resistor legs variable, but the frequency range will be restricted to a few hundred cycles over which the network is effective. Fig. 3A shows an alternative filter network which can be connected between terminals 7 and 10 of the HEP 592 and which requires only one potentiometer. It is rated to be effective from 70 to 10,000 cycles, but only the components specified should be used.

Fig. 3B shows a simple noise limiter which can be connected either before or after the HEP 592. Advantage is taken of the fact that the IC units are operated with a dual-polarity power supply to allow biasing of the diodes for symmetrical clipping.

Fig. 3. Simpler audio notch filter (A) requiring only one potentiometer. Capacitors are Aerovox type P123ZNG. Symmetrical noise clipper (B) which can be used at input to unit or at input to power amplifier (pin 4).

Fig. 2. Wiring diagram of accessory unit. Resistors are $1 / 2$ watt. Triple section potentiometer used in audio filter is IRC type 45D502MD502MD202.

Construction

The photograph shows one construction layout possible for the unit. Basically, the circuit components are grouped around each IC and directly soldered together. The potentiometers for the agc and af filter are mounted directly on the perforated board stock. The potentiometers shown are actually of a miniature type but normal, less expensive $1 / 4$ inch shaft types are quite adequate. Also, although not shown, an IC socket should be used for the HEP592 unit, instead of directly wiring it, for protective purposes.

The use of the HEP 593 power amplifier appears simple from Fig. 2 and although its connections are not involved, its placement in a unit does present some problems. A heat sink must be used and Motorola specifically advises against the simple slip-on fin-type head sinks available for TO-5 transistor cases. They suggest a 2 inch $\times 2$ inch $\times 1 / 8$ inch piece of aluminum with a center hole drilled to snugly fit over the transistor case. Not having any material available, the author used a heat sink found on a surplus IBM computer board. The index tab was removed

HATRY ELECTRONICS

500 Ledyard St., Hartford, Conn. 06114 203-527-1881

See CORKY, WIKXM or WARD, WIWRQ

ANTENNA STUFF

In 100 foot rolls only
450 ohm open wire. Per 100 feet
300 ohm open wire. Per 100 feet
$\$ 4.95$ 4.65

Standoff-Mast or Screw-In .19
Mast straps
In 100 ft . interconnected coils
18 Copperweld. Per 100 feet
\$ 1.19
14 Copperweld. Per 100 feet.
.2 .95
12 Copperweld. Per 100 feet
3.99

14 Copper-Solid. Per 100 feet 4.29

12 Copper-Solid. Per 100 feet. .5 .79
Times T4.50 L/loss 8 U. Per foot 18
New Tronics Cliff Dweller $75 / 40$ - 1 only . 125.00
Swan TV2 50 mHz NEW! 1 ONLY.
225.00

Glass Line guy wire. Per 100 feet 500 Ibs Test . 3.79
Glass Line guy wire. Per 100 feet 1000 Ibs Test $\mathbf{5 . 8 5}$
Hy-Gain Balun. Each . 14.95
W2AU Balun. Each 12.95
Blitz Bugs. Each
4.95

All major lines of Amateur gear - Rohn \#25 towers and accessories - Coaxial switches - Dow Key relays - Greene Baluns - New-Tronics Hustler Mobile - All antenna insulators in stock - Regency Scanners and HR-2 FM Transceiver.
(Canadian Amateurs Send U.S. Funds Only) FOB Hartford
Please Include Postage
CONNECTICUT'S OLDEST HAM STORE
AT LAST
A SPEECH COMPRESSOR THAT REALLY WORKS

- Low distortion circuit
- 5-10 dB improvement in TALK POWER .
- Fully wired \& tested not a kit
- Several models to choose from
- Works with phone patch

- Quality construction includes Silicon transis-
tors, FETs, Glass circuit boards
- FULL WARRANTY - ONE YEAR
- Performance second to none
- INTRODUCTORY LOW PRICES -
\$22.50 - \$34.95
(Illinois residents add 5\% Sales Tax)
- Write for specifications and information sheets (FREE)
Demonstration Tape cassette available (\$2.00 deposit)

The Fantastic Dimmer

Voltaic International Corp. of Dallas, Texas, announces a solid-state electronic lamp dimmer socket. The entire dimmer circuitry is contained within what appears to be an ordinary lamp socket. However, the Volt-A- Lite, using an ordinary bulb, provides a full range, if lighting antensity from a low glow to fullorilliance. By it modernizes lamps, provides dramatic contrasts in home or office decor, and adds warmth, friendliness, and a relaxed atmosphere to any room. The Volt-A-Lite can be set low for a night light, adjusted to dim for watching TV or for parties or for romantic dining, turned to bright for reading, or adjusted to any level to suit any individual eyesight.

The money-saving features of the Volt-A-Lite far exceed its cost. To begin with, it does away with costly, short-life, 3 -way bulbs, which are almost twice the cost of standard bulbs. The Volt-A-Lite lowers electric bills, too, by permitting lower light intensities when desired. Volt-ALite makes bulbs last longer, also, because the lamp dimmer socket always comes on at an extremely low level and feeds the current to the filament gradually. This reduces the damaging surge, of high current through a cold filament, that causes bulbs to burn out.

Installation is simple - just like the installation of an ordinary lamp socket. It requires only a screwdriver to remove the old socket and to attach the ends of the lamp cord to the two screw-terminals on the Volt-A-Lite.

The Volt-A-Lite operates at maximum efficiency with a $150 \mathrm{~W}, 120 \mathrm{~V}$ bulb but lower wattage bulbs can be used if desired.

The Volt-A-Light is Underwriter Laboratory recognized and is fully guaranteed, both parts and workmanship, for one year from the date of purchase. It's been overload-tested at twice its rating and has performed perfectly through 10,000 complete on-off cycles at its rated load. It does not heat up and does not interfere with radio or TV. It even has a current-limitng fuse element
from the HEP 593 and a clean contact area between the flange of the IC and the heat sink established. The IC was then glued into place. Overall, the relatively low voltage gain (18-35) of the IC power amplifier, its cost and the necessity of using a heat sink does not compare too favorably with using two larger case audio transistors which do not require heat sinks at the 1 watt level.

Two 9 volt transistor batteries were used to power the unit shown. The battery potential slightly exceeds the 8 volt operating voltage recommended for the units but seems to cause no difficulty.

Adjustment \& Operation

There are no real adjustments that should be necessary if proper layout procedures are followed. Some experimentation of the feedback resistors in the agc amplifier circuit may be necessary to obtain the best action and "bread-boarding" the circuit initially will save time later. The IC's did show some tendencies toward instability if too much coupling were allowed to exist between the various input and output circuits. This is understandable when one realizes that

so that the Volt-A-Lite components are not damaged when the bulb burns out. The Volt-ALite is available by mail for $\$ 4.95$ from Voltaic International Corp., 7701 N. Stemmons Freeway, Dallas TX 75247.

IC Duplexer

A new Motorola duplexer, the MCH5890, operates at frequencies between 400 and 500 MHz with up to 40W input. The MCH5890 features a typical 0.1 dB transmit-mode insertion loss and a typical 25 dB transmit-mode isolation figure. Although its primary purpose is as a transmit/receive switch, the MCH5890 will find use as a monitor network in transmitter circuits, as the sampling unit in afc or agc circuits. or other related communication applications. Motorola Semiconductor Products Inc., Box 20912 Phoenix AZ 85036.
although the IC's are called "audio" type, their actual response extends up to several hundred khz. So, an rf feedback loop can exist which will overload the units but yet not produce an audible indication.

In operation, the receiver af output level is adjusted to produce adequate audio output, but not to the point of overloading the unit. The agc threshold control is set as desired to produce the best agc action when going from a weak to a strong signal.

Summary

Various other operational or audio type IC's can be used for this type of accessory unit so long as the device ratings are not exceeded. The main criteria is that the agc/af filter IC have differential inputs. One could, of course, also use separate IC's for these functions, each with a differential input.

Such a unit adds a significant degree of improvement to the operating possibilities of a SSB transceiver used on CW which does not have real provisions for CW reception. It also provides some very interesting exercise and experience in the many versatile uses to which IC's can be put.

W2EEY

Hardly an issue of any ham radio magazine comes out without some description of a simple and efficient antenna system. I have spent years constructing various types of these systems with varying degrees of success. There is the matter of optimum height, but very often we find limitations as to the area and level at which the antenna can be strung. Then again, weather has much to do with our ambition, especially during the winter with the temperatures hovering around zero, and the snow six feet deep. Rain and the hurricane seasons play their part in delaying the fun of experimenting with the new antenna ideas.

The antennas described below eliminate most if not all of these problems. They also fill certain needs peculiar to the ham fraternity. All of the units are built in the attic of a private home, and are compact, inexpensive, and easy to put up. They are as concealed as an antenna can be for those
who need this for esthetic or other reasons. As to height, they are built into the topmost portion of the house and many towers do not go much higher. The big advantage is that you can work on them winter or summer, and no storms can affect them.

My first inspection of the attic showed me that I could not cram in a full-size half-wave antenna in the bands from 10 meters and below. The attic was built with a peaked roof held up by heavy beams. I decided to bend my dipoles on these wooden beams with the apex at the top. The result was the inverted-V dipole antenna.

My interest at the time was to fire up on 15 meters. I was not getting good results with the ordinary dipoles and folded dipoles I had set up outside.

For more rigid mounting and possible broader band operation, and the fact that
they are easy to mount, I decided to use ordinary thin-wall electrical conduit for the elements of the antenna. These come in the half-inch size at a standard length of 10 ft and are quite inexpensive. The 10 ft length is short for 15 meters, but with the addition of end-loading or center-loading coils I hoped to be able to get the antenna to resonate within the 15 m band.

Fig. 1.

The configuration of the elements is shown in the diagram in Fig. 1. The attic beams happen to be exactly 96 degrees from the apex. Each 10 ft element was mounted on two ceramic standoff insulators placed at either end of the tubing. To hold the tube to the standoff a 4 in . strip of scrap aluminum was wrapped around the conduit. The ends of the strip were drilled to accept a screw which tied the strip to the standoff as shown in Fig. 2.

The ends of the coax cable can be soldered directly to the apex elements. However, if it is desirable to change the coax cable to other antennas, coax connectors will make it simpler and less expensive.

Spacing between the two pipes at the apex was found to be better at 7 in . Finding the correct center-loading inductance took quite a bit of time and experimentation. An ordinary length of hookup wire $183 / 4$ inches long soldered between the soldering lug and the center conductor of the coax junction (Fig. 1) gave the lowest swr readings. Figure 3 shows a picture of the apex connections.

I made a few swr checks before trying the antenna and was pleasantly surprised to find them very low.

10m Attic Antenna

I used the attic V antenna on 15 m for two years and was so amazed at the results that I decided to see how a 10 meter version (Fig. 4) would work out. No center loading was found necessary. I drilled the element ends and tapped for $8-3.2$ serews and soldering lugs. I connected the coax directly to the apex ends of the elements as shown in Fig. 5.

In cutting the conduit, I found that a pipe cutter did a better job than a hacksaw. The cut ends are cleaner and do not require filing as they would after being cut by a hacksaw. Figure 6 shows how the cutter is used.

Fig. 2. Strips of aluminum hold the element to the ceramic standoffs.

Fig. 3. 15 meter inverted- V apex connections.

Neulfor $_{\text {from }}$ Nytronics.

100 assorted Mylar, Polystyrene, Paper, Tantalum and other capacitors in a wide variety of capacitance and voltage ratings in convenient kit form from one of the largest electronic component manufacturers in the United States. A hundred handy uses in every box for the Design Engineer, Lab Technician, Ham Operator, Electronics Student, TV and Radio Repairman. Picofarads to Microfarads at your fingertips!

Some of these capacitors sell for as much as 10 to 20 Dollars each at regular prices. In kit form, you pay only 10 cents apiece!

Send for your Nytronics Cap Kit today! If check or money order acsompanies your order, we pay shipping cost. Or we'll ship C.O.D. at your request. Fill in the coupon below, and mail with check or money order now! Your'Cap Kit will be in the mail within seven days.
CAP KIT
NYTRONICS, INC.
Orange Street
Darlington, S.C. 29532

Please send me \qquad CAP KITS at $\$ 10.00$ each.

- Check or money order enclosed.
- Ship C.O.D.

MAILING ADDRESS:
Name
St., P.O. Box
City, State \& Zip

Fig. 4.

Fig. 5. 10 meter inverted V connections at apex.

20m Attic Antenna

After the successful operation of the two antennas was assured, a more ambitious attempt was made to put a 20 m inverted V in the attic. This involved the use of loading coils at both the element ends and the center apex. A diagram of the layout with dimensions for the antenna is shown in Fig. 7.

Two 10 ft half-inch conduits were installed on the attic beams using ceramic standoffs. Spacing between the two pipes

Fig. 6. Using pipe cutter to trim $1 / 2^{\prime \prime}$ conduit.

Fig. 7. Antenna layout.
at the apex was set at $41 / 2$ inches. At the far ends of the conduit a coupling unit was attached to each element.

Two 6 in. lengths of half-inch conduit were cut and a hole was drilled about $1 / 2$ in. from one end and $1-1 / 8$ inch from the other end. A metallic standoff was mounted at the hole $1-1 / 8$ inch from the end while a ceramic standoff was placed at the other end.

A B\&W air inductor $13 / 4$ inch in diameter (9 turns per inch) was cut to eight turns and mounted on the two standoffs. Construction details are shown in Fig. 8.

When completed, these units are plugged into the conduit coupling with the metallic standoff closest to the antenna

Fig. 9. Coil mounted on antenna element.

Fig. 10. Center loading at apex of 20 meter inverted V antenna.
diameter) was mounted between the coax fitting and the soldering lug. Figure 10 shows the mounting at the apex. A switch is also pictured which I used to vary the inductance of the center loading coil when adjusting the antenna for swr.

Fig. 8. End loading coil for 20 meter inverted V.
element as shown in Fig. 9. At the apex one of the elements was flattened and drilled to accept a coax fitting. The other element was drilled to accept an $8 / 32$ and soldering lug.

At the apex a 5 -turn $\mathrm{B} \& \mathrm{~W}$ coil ($13 / 4 \mathrm{in}$.

In my own station I use a coaxial switch to change antennas. I estimate the total cost for the three antennas at less than $\$ 15$, which is quite good for a three-band instat-change antenna system.
... W2SF

Regularly...\$ 12.95 / A STEAL at \$ 10.

The Radio Handbook is by far the biggest and the best handbook in print. Here is your chance to get this great book at a substantial discount, if you act fast. We have a limited quantity on hand and when they are sold that will be the end of the bargain.

The Radio Handbook is the only handbook that has all original material rather than just reprints of magazine articles. The hundreds of construction projects were built specially for this handbook by top amateur radio builders. Hardbound, with some 850 pages of theory, construction projects, and reference data covering every aspect of amateur radio.

. . . a sellout
at radio stores from coast to coast! Want to build a repeater? Or improve your existing site?
Whether you're a newcomer or an oldtimer, you'll find "The Radio Amateur's FM Repeater Handbook" to be the most valuable repeater aid you can get.
The Repeater Handbook contains 208 pages of useful, hard-to-comeby information, and it's written in an interesting, personal vein.

GET BOTH OF THESE GREAT HANDBOOKS - ONLYs 15.0

Use the coupon to order the Radio Handbook, the FM Repeater Handbook, or the special twobook package.
\qquad Radio Hndbk I enclose \$10 \square FM Repeater Hndbk 1 enclose $\$ 6.95$

F. Dale Williams K3PUR

Audio Motive Co.
State College PA 16801

Although the heart of the singlesideband system, the balanced mixer or modulator, did not originate with SSB, it certainly became more well known to the amateur fraternity when this mode of transmission became popular. In the way of background for the newcomers to amateur radio, or review for the Extra and Advanced classes, the common, singleended mixer or converter produces three output frequencies. These consist of the original carrier or local oscillator frequency and the two sidebands - products of the sum and difference frequencies of the carrier and modulation. The balanced mixer produces only the two sidebands, the carrier frequency being greatly attenuated by the conversion process. The advan-

Fig. 1. Telephone company ring modulator.
tage of the balanced mixer is obvious for SSB operation since we need only to provide a filter to get rid of the unwanted sideband before passing the signal to the final of the transmitter. Balanced mixers are not limited to sideband transmitter use, but find applications throughout the electronic world.

Common Configurations

In Fig. 1 the circuitry of the ring modulator used by telephone companies for many years in landline communications is shown. The older models used metallic copper oxide diodes in the ring formation with balanced input and output transformers. Besides the high signal loss

Fig. 2. Balanced bridge modulator.

RING MODULATOR W/O BALANCED TRANSFORMERS
Fig. 3. Ring modulator without balanced transformers.
encountered with these types of diodes and the expensive balanced transformers, the frequency range of the transformers is about 50 kHz . Note that a 100Ω resistor is still used to "balance out" any component variations. Although a high ratio of input vs local oscillator level is necessary to drive this circuit, the output will show a local oscillator attenuation of at least 60 dB .

Less efficient is the bridge type of balanced modulator shown in Fig. 2. Balanced transformers are still necessary in this type of configuration and the diodes should be matched. The signal is effectively shorted by application to opposite sides of the bridge in the balanced condition. The presence of an audio signal unbalances the bridge allowing a double sideband to appear at the output. Carrier isolation may approach 50 dB with matched components.

The most expensive components of the balanced mixers shown in Figs. 1 and 2 are the balanced transformers. In designing a circuit without balanced transformers we not only cut the cost significantly, but also have the oportunity of utilizing an rf input of the desired transmitter output frequency for single band operation, or a

2-DIODE RING BALANCED MODULATOR
Fig. 4. 2-diode ring balanced modulator.
frequency more easily converted for multiband operation. A common balanced modulator without balanced transformers, for ham use, is shown in Fig. 3. Notice that the matched diodes are connected in a ring rather than a bridge configuration. Good shielding procedures and matched components give a typical carrier attenuation of $40-45 \mathrm{~dB}$.

It is not necessary to use four diodes to form a balanced modulator. As shown in Fig. 4, a two-diode balanced mixer in ring formation is also possible. However, the

double-balanced mixer module
Fig. 5. Double-balanced mixer module.
circuit lacks the efficiency and carrier suppression possible with the previously discussed modulators.

Thus far we haven't said anything about the possibility of obtaining signals from the output of the balanced mixer other than the double sidebands and the attenuated carrier. Good efficiency and low distortion are possible by driving the mixer with a signal much higher in frequency than the input, and of greater amplitude. The general rule of thumb states that a ratio of $10: 1$ should be used. Thus, the higher the input amplitude, the greater must be the signal to drive the bridge. Consequently, undesired mixing products are found at the output. Fortunately, the even harmonics are suppressed by the 180 -degree phase shift operation of the circuit, leaving only the odd harmonics. Of these, the third order harmonics will be the strongest but should be easily attenuated by the following sideband filter. In other types of mixers, such as the single mixer or unbalanced modulator, both even and odd harmonics are present at the output.

Within the last few years, the balanced mixer has taken on a more modern appear-

Over 250 Pieces of USED EQUIPMENT on SALE

Be sure to check this list-over $\$ 20,000$ worth of good used Receivers, Transmitters and Transceivers offered at these reduced prices! While the stock lasts - let us serve you?

We have Signal One CX7's in stock ready to ship

Sandy Jackson mgr - T.T.Freck W4WL
FRECK RADIO \& SUPPLY COMPANY
38 BILTMORE AVENUE ASHEVILLE, NORTH CAROLINA 28801

RF MULTIMETER -1 mv , to 1 v . D-C and RF to 1 Ghz.; VSWR 1.35 \& 3.00 full scale: 0 to 60 dB .; many other features: Model RFM-1
VSWR BRIDGE SET - Precise swept frequency or cw VSWR measurement to 2 Ghz .; includes bridge, termination, and mismatches: Model RCS-1.
BROADBAND RF AMP -30 dB . gain minimum 10 to $150 \mathrm{MHz} ; 10 \mathrm{~dB}$. gain minimum to 500 MHz ; noise figure is 6 dB . maximum: Model BBA-1.
PREMIUM RF AMP - Same as above but with low noise transistors and selected components; noise figure is 3 dB . maximum: Model BBA-1P.
BROADBAND DETECTORS - Coaxial RF detectors in BNC type male and female; high efficiency; 1 MHz . to $1 \mathrm{GHz} . \pm 1 \mathrm{~dB}$. Módel CRD-1,2.
PEAK-N-NOTCH FILTER - Tunable by front panel contral from 100 to 2500 Hz .; 25 dB . peak or notch selectable by switch; unity voltage gain; will drive phones or small speaker: Model PNN-1.
Write for More Information and Discount Prices
RADIATION DEVICES CO.
P.O. Box 8450, BALITMORE, MD. 21234

ARNOLD'S ENGRAVING Personalized

ELECTRIC
ON-THE-AIR SIGN WITH CALL

Metalłex Lapel Bar - \$1.50 Metaltex Tie Clip - \$2.25 ARNOLD'S ENGRAVING
2041 Linden St.
Ridgewood, N.Y. 11227

ROTARY QSL FILE! $\$ 8.00 \mathrm{ppd}$. in USA

- Keeps QSL's always handy, clean, and easy to find in clear plastic pockets (size: $3^{1 / 2}$ x $5^{1 / 2}$ inches. Flip knob to turn to new cards. Small enough to fit on smallest operating table. Swivel base permits viewing easily from any direction. Always at arm's length and handy to station operator. File will hold up to 500 cards with complete convenience, without mounting in pockets which can't fall off. Saves wall space for certificates - Ruggedly built with plastic base and knobs, completely assembled - Model HR-8 is shipped complete with pockets included for 160 cards in each file. File holds up to 500 cards. Refills are available at an additional low cost. A practical addition to any shack whether 'old timer' or beginner!
M-B PRODUCTS \& SALES 1917 No. Lowell. Ave.
ance, and in some cases, advanced design in the form of integrated circuitry. Much of this change has come about as a result of new or improved components such as the Schottky barrier diode, toroid coil forms, and transistors with greater parameter ranges, notably FETs and MOSFETs. Probably the first new development which contributed to more efficient balanced mixers was the availability of matched diodes bearing a single type number and at a cost which put them in easy reach of the amateur and experimenter.

A number of companies began to offer encapsulated balanced mixers using matched components for less conversion loss and balanced transformers with toroid cores for better isolation. These doublebalanced mixers ranged in frequency from 200 kHz to 500 MHz with insertion losses typically on the order of 7 dB and carrier or local oscillator isolation figures of $30-40 \mathrm{~dB}$. The advantages of such a module included no dc power required, relatively economical when compared to iron core balanced transformers, and ease of circuit board mounting. In addition, these modules found application as frequency converters, product detectors,

Fig. 6. Double balanced mixer as product detector.
phase detectors, voltage controlled attenuators, and summing networks, to name a few. The double-balanced mixer modules assume the general circuit of Fig. 5. In general, the input/output impedances are 50Ω and the output is dc tapped. This latter characteristic allows the module to be used in such applications as a voltagecontrolled attenuator, whereas an incorporated coupling capacitor would preclude such operation. A product detector designed with a double-balanced mixer is

VOLTAGE VARIABLE ATTENUATOR
Fig. 7. Voltage variable attenuator.
shown in Fig. 6. This circuit has the advantage of immunity to large signal overloading, but requires a high injection level.

A voltage-variable attenuator can be made by varying the conduction of the double-balanced mixer with applied voltage, as shown in Fig. 7. A potential of 1 V is enough to provide approximately 40 dB attenuation. Due to the series connected diodes of the mixer, current should be limited to less than 60 mA . For practical purposes, the attenuation/voltage ratio will not be linear. However, a front panel control can be calibrated to provide the attenuation readout.

Although conversion loss is unavoidable when using diode configurations, transistors lend themselves readily to doublebalanced mixer circuits which not only overcome the conversion loss, but also exhibit some gain. The cross-coupled transistor circuit shown in Fig. 8 also does away with the costly balanced transformer. Operation of this circuit is similar to multivibrator action. One transistor is always on while the other is off. As the phase of the carrier wave changes, the on/off state of the transistors also changes, producing a pulse across the common collector load. When the balance control is

Fig. 8. Transistor double-balanced mixer.

Be a PIONEER in HAM TV

 .. .huild your own camera!

Model X-1A, series D

* Speciol foctory-discount price. Regular $\$ 129.95$. \$36.00. Frices postpoid. Dial 402-987-3771
13TH \& BROADWAY, N.
"Ham TV...the picturesque way to communicate!" HOWE TELECASTING is an exciting fanily type hobby Write or call for FREE catalog of kits, plans, etc.

FM Schematic Digest

a collection of MOTOROLA SCHEMATICS
Alignment, Crystal, and Technical Notes covering 1947-1960 136 pages $11 \frac{1}{2^{\prime \prime}} \times 17^{\prime \prime}$ ppd $\$ 6.50$
S. Wolf 1100 Tremont Street Boston, Massachusetts 02120

THE EASY WAY!

- No Books To Read
- No Visual Glmmicks To Distract You
- Jusi Listen And Learn

Based on modern psychological techniques-This course will take you beyond 13 w.p.m. In LESS THAN HALF THE TIMEI
Album eontalns threo $12^{\prime \prime}$ Available on magnetic
$\mathrm{LP}^{\prime} \mathrm{s} 21 / 2 \mathrm{hr}$. Instruction tape, $\$ 9.95$ Cassette, $\$ 10.95$

EPSILON [5 RECORDS

508 East Washington St., Arcola, Illinois 61910
properly adjusted to null the carrier, the output signal will consist of upper and lower sidebands of the two input signals. The undesired sideband and the even harmonics of the inputs are removed by the following sideband filter. Input impedance for the transistor double-balanced mixer is approximately 50Ω while the output impedance approaches 600Ω. A local oscillator/signal ratio of $10: 1$ is maintained for best efficiency. Isolation of carrier/ signal/output when using this circuit, requires short lead lengths and shielded cables. Building the entire circuit in a shielded "black box" with coax connectors may add 10 dB to the carrier/output isolation. A conversion gain of $5-10 \mathrm{~dB}$ is possible, but most efficient operation usually produces no more than 3 dB gain.

Even the telephone companies are modernizing their modulator circuitry by replacing the diode ring modulators used for so many years. A number of mảnufacturers of integrated circuits are producing interesting designs on monolithic substrates of single chips, the whole can being less than the size of a quarter. Amperex Corporation has been producing its silicon monolithic ring modulator/demodulator since 1967. It is known as the TAB101 integrated circuit, and consists of four transistors on a single chip enclosed in a TO-74 can. A possible balanced mixer circuit utilizing the TAB101 is shown in Fig. 9.

Double-balanced mixer applications are limited only by one's initiative. A closedcircuit TV system transmitting terminal as seen in Fig. 10, allows inexpensive short-

Fig. 9. Integrated circuit balanced mixer.
link transmission. The double-balanced modulator provides double sideband signals of 4.5 MHz bandwidth which are transmitted by cable to terminal equipment.

CLOSED CIRCUIT TV TRANSMITTER
Fig. 10. Closed circuit TV transmitter.
Mototola claims to be first with a true linear, 4 quadrant multiplier integrated circuit. The MC 1595 integrated circuit is designed for uses where the output voltage is a linear product of the two input voltages. Some examples of possible applications include digital multiplication, division, square roots, mean square, and frequency doubling. It may also be used as a balanced modulator/demodulator, amplitude modulator, or electronic gain control.

Motorola has also recently managed to produce an FM demultiplex circuit on a single chip. Although production is limited to Scott for their tuners, such circuits promise to be both readily available and economical in a very short time.

Due to the high input impedance, low power supply voltage and current required, and versatility of such integrated circuits, they are easy to breadboard and provide a solution to bench design. Instead of a small pile of different transistors, now all you need is the IC and a small pile of resistors and capacitors.

Bibliography

Stoner, "New Sideb́and Handbook."
Motorola, MC1595 Data Sheet.
Geisler, Electronics Designer's Casebook, Electronics, October 17, 1966.
Amperex, TAB101 Data Sheet, August 1967.
Fisk, "Double-Balanced Mixers," Ham Radio, March 1968.
Unknown, "Balanced Modulators," Ham Radio, May 1968.

K3PUR

Quick ared Permanemt

TOOL MAREER

The craftsman is proud of his tools, the saying goes, and with the price of tools nowadays it makes good sense to mark them well, proud or not.

Here's a trick borrowed from professional electronics service engineers which makes it easy to mark tools or any other metal objects quickly yet permanently.

Simply take an ordinary wooden pencil and sharpen it draftsman-style, with a long exposed lead (Fig. 1). Next, rig up a 24 V transformer with a utility plug on the primary so that it can be plugged in, and flexible test leads terminated in alligator clips on the secondary winding. The transformer should be rated for at least 1 A , and the higher the current rating the better but we used one of the bargain specials sold by Radio Shack which happened to be left over from a +24 V power supply that never got built, rated at 900 mA .

Fig. 1. An ordinary draftsman's pencil with an extended point will serve as the basic "engraving" device. The lead must protrude enough to allow connection of a clip-lead "electrode."

Connect one of the alligator clips to the tool or other metal object to be marked, and the other clip to the exposed lead of the pencil (Fig. 2). Now, using the pencil just about like any other pencil, write your name or other identifying mark on the tool.

The small arc which strikes between the carbon tip of the lead and the metal work
surface etches away the metal of the tool, leaving a permanent mark wherever the pencil passes so long as the arc remains struck. It takes a bit of practice to learn to hold the pencil just far enough from the metal to maintain the arc, but you should achieve excellent results by the second try. Take caution - the lead gets hot, and if you keep things going too long the wood of the pencil may burst into flame. Everything cools down more rapidly than a soldering gun, though, when you move the lead away from the work.

Fig. 2. When a fairly high voltage exists between the work and the marker, you can strike a thin arc and use it to trace your copy.

The pencil lead vaporizes during the course of the process and leaves a heavy black mark on the metal. This is not the permanent mark you need; it should be washed away with solvent or wiped off with a dry rag. Beneath the black film, you should find a row of tiny craters, one for each half-cycle of the 60 Hz power as the pencil lead moves over the work - they are the permanent marking.

In addition to using this trick for marking tools and occasionally identifying terminals on breadboard chassis, we found it most convenient for writing identification on the many keys which burden our pockets. You will probably think of many other uses, now that you know about it.

K5JKX

yes, there is a Santa, and I'm going to tell you all about it. It was getting close to Christmas as I picked up a back issue of 73. Naturally, no one in his right mind ever begins reading from the front cover straight through to the last page, and I am no exception to this phenomenon in the habits of the American reader. I had read the Never Say Die editorial, and after pondering for a while Wayne's words of wisdom I let my fingers stroll idly where they would among the pages, stopping now and then to read an article about sunspots, carrier (in my SSB signal; never!
or nearly never!!) suppression, or that upstart new VHF mode.

Now, I can't tell you exactly when it was or how it happened, but, I must have begun to read the advertisements aloud to myself. Let me warn you now: never do that, and if you do be sure you never say, "Boy, wouldn't that be great to have. Why, every ham in the country would give his eyeteeth to own one of these!"

A few of my friends (even Wayne Green) talk from time to time about ESP. I don't know much about ESP, nor about how it works. Therefore, I must leave it to the gentle reader to decipher in his own mind the probable explanation for these things. Meanwhile, back to the 73 Magazine and how I found out about Santa.

If you do decide to comment aloud while you're reading the delightful ads, be
absolutely certain that you take your time. Don't rush into the experience without due thought and sufficient concentration.

By this time, you may be thinking that this is much ado about very little. Please read on! What transpires here may someday happen to you. As I have said, I can't rightly recall just how I happened to be reading aloud certain comments on the delightful items displayed in between the articles of 73. I had perused with silent longing the "Quality People." Rohn, the largest tower manufacturers in the United States, are best known for foldover and crank-up towers. I don't own a Rohn; I don't even own a tower! On page 113, I literally drooled, as I read about the Classic 36, six element, 10, 15, and 20 meter beam by Mosley Electronics. I don't own a beam any more. I don't even own a rotor, let alone a rotor like the Ham-M listed on page 112.

I had noted all the goodies listed between pages 112 to 122 . I might have mentioned aloud that I would like to own a tower, a rotor, a brand new National or Galaxy transceiver, a Swan Cygnet, or even a Henry linear. I even remember thinking that Wayne had done a fine job of listing the products of his advertisers.

Perhaps it was the wonder of it all that great parade of electronic perfection lined up before me; I may have even pictured them, one and all set in their
rightful places side by side in my humble shack. The tower and rotor excepted, my shack wouldn't hold them, but how nice they would appear standing in the yard with the Mosley tri-bander atop and pointed toward Europe.

In thinking back now, had you asked me about Santa, whether I believe in him or not, I would have given you the standard answer. After all who can say how many youngsters read the words of truth as they are expressed in 73? But and here's the rub - I never gave it a thought that he of all persons would be listening as I read those precocious ads. Who knows now what treasures might now be installed in my shack? Surely, I could have been the envy of hams on either side of the Pacific and the Atlantic not to mention the Antarctic.

Just as I had thumbed the pages of 73 to page 21 , someone handed me a BLT (bacon, lettuce, and tomato sandwich). I munched away enjoying the savory treat when suddenly my eyes lit upon the Dow-Key advertisement. Imagine my thoughts as I read about the SP6T, remote 115 V ac. One could install this remote controlled relay atop his tower, and with but one length of coax feed six separate antennas one at a time to the rig sitting in the shack. "Wow," I think I said. "Oh, double wow! That must be the ham gift for the ham that has everything." Note carefully what I say next. "Boy, I wish I had one of those."

As it turns out they were fateful words. In my stocking (I have unusually large feet) on Christmas morning. . .you guessed it; a real genuine, shiny, brand new DowKey SP6T, remote 115 V ac six-position relay.

There is a Santa. He was listening. Can you imagine my surprise when I looked in my stocking? No tower, no rotor, no beam, not even any fancy ham gear, still I'm the proud possessor of one of the finest relays ever made.

By the way, OM, if you know anyone who owns a Rohn tower, has a Ham-M rotor, and uses a Mosley Classic beam, but doesn't own an SP6T by Dow-Key, will you ask him to get in touch with me?

oscillator/monitor
 - makes an audible tone to monitor the RF of any CW transmitter from 10 Mw to 1 Kw \& 100 Kc to 1000 Mc , using only an $8^{\prime \prime}$ pickup antenna. - can be self-triggered for code practice or the testing of solid state components and circuits. - aids in tuning up © testing RF oscillator and power circuits. - 4 transistor, 2 diode circuit, speaker, tone adjust, AA pencell, test tips, $8^{\prime \prime}$ ant., E magnetic base. e cabinet is 16 gauge black \& clear anodised aluminum, $3.4 \times 2.3 \times 1.2^{\text { }}$ US made \& guaranteed for 1 year.

WE PAY CASH FOR TUBES
 Lewispaul Electronics, Inc. 303 West Crescent Avenue Allandale, New Jersey 07401

Belonging to the ARRL is rather like being a stockholder of a large corporation where you have the privilege and duty to be constructively critical. Notice the word "rather" was used because a large corporation would not countenance the things that have been going on. When you are losing your shirt, losing your image, your growth has stopped, young people are not interested, your people are getting old, and no new blood is entering, when people are using and taking your bands, when your ranks are divided, when you are running a publishing house and not tending to your basic objectives, when every other service that has an interest in using rf spectrum has a representative and lobby in Washington, when you buttonhole a senator and ask him what he knows about amateur radio and you draw a blank, when you have a board meeting where the cards are stacked so that the present ARRL headquarters crew can have time to prepare a defense, and two CB publications, one of which is owned by the same group who owns a ham magazine, recommends taking part of our 2 meter band - things just cannot be right. Believe me, if this were a large corporation, heads would roll and changes would occur.

In the days of Hiram Percy Maxim, when we were not running a publishing house and book store, things went along
pretty well. Along with Maxim, came A.A. Herbert, who also was dedicated. Then another name entered the picture, K.B. Warner, and the controversy started within our ranks. As you look back, you can see the jockeying for power within the ARRL headquarters personnel with Mr. Warner succeeding and bringing up his favored few.

It is interesting to note that as you read "200 Meters and Down" and "Fifty Years of the ARRL," they are all good guys, everything was sweetness and light, no controversy - yet the truth of the matter is that these written documents are both by ARRL members who were headquarters people. For you newcomers, controversy
swarmed around K.B. Warner, former editor of QST and officer of the ARRL, and his strong methods of ramrodding what he thought was best.

Those Warner days were hectic days. During that period a lot of dedicated hams beat their heads against the wall, just as many are doing today. The Chicago Amateur Radio Club and the Egyptian Radio Club got together and elected two directors. A west coast group got together and published a magazine and printed the other side of the story, but they were not strong enough to effect a change. Their efforts faltered and the ARRL succeeded in killing them off. You don't read about this
history in any of the ARRL history publications.

A good deal of the Warner philosophy and work still remains: stacked board meeting agenda, headquarters knowing all the answers, everyone more interested in running a publishing house than saving our bands, without them we don't need a $\$ 2$ million headquarters building, the ARRL, and its headquarters people.

It is easy to be critical; it's more difficult to supply the answers. You must define the problem before you try to solve it. With this thought in mind, let's suggest a few answers to some of the more obvious problems.

Board Meetings

Why hold them behind closed doors? Why not handle them like a good corporation does? Let's have a report on the status of our hobby at a meeting where every member can attend and vote. What's wrong with democracy? Let's have a good old stockholders meeting like some of the more stormy recent auto company meetings where effective changes were made by the rank and file. How about having a session at the meeting, for open discussion, for the good of ham radio? What's wrong with hearing from some of the brilliant minds found in our ranks? If you cannot set up a stockholders meeting (since we are all stockholders of the ARRL, each should have his voting right on all facets of our business), the very least that should happen is that a new method for handling board meetings be set up so that an inflexible agenda is thrown out and that directors can bring any subject to the floor without being called out of order. All hams should belong to the ARRL; and that takes me neatly into my next subject.

A House Divided

The ARRL represents less than 50% of the total number of amateurs. Thus, how can it truthfully claim to represent ham radio? If you published the same article in all three ham radio publications, you still would not reach all the hams. To make matters worse, even within the ARRL, due to poor leadership at headquarters (or
perhaps lack of it) our own ranks are divided. The FCC, with whom we coexist, has lost some of its respect for the ARRL. What do you do to solve this problem? Unfortunately, this problem of a house divided ties very closely into our failing image, the lack of knowledge about amateur radio of the general public and our Washington representatives and foreign governments. The answer to this problem just screams "Public Relations."

Let's hire a public relations man and have his first duty to establish a mailing list of all hams and tell them the ARRL story (of course we've got to clean house before we can tell the story). His first objective is to have all hams belong to the ARRL. In addition to supplying us with the usual handy dandy public relations kit on how to write stories for newspapers he would be the clearing house for important contributions to amateur radio and would disseminate this information nationally. His next duty is to establish a congressional mailing list, a foreign hams mailing list, and others. He does this from his office in Washington. He lunches with FCC and congressional people daily. He takes the train to New York and gets acquainted at the UN and tells the amateur radio story there along with stories from foreign counterparts of the ARRL. This would be the first step in moving our headquarters to Washington, where it should have been in the first place.

Washington Headquarters

With a Washington headquarters, this would be a good time to separate the publishing house from the ARRL, and perhaps QST could then print both sides of the story just as Broadcasting Magazine does for the National Association of Broadcasters. Broadcasting Magazine is the bible of broadcasters and presents a very good version of all sides of each problem. The magazine is separate, owned by another source, specializes in broadcast news, and really is the voice for broadcasting. Incidentally, both the magazine and the National Association of Broadcasters are in Washington, not Newington, Conn.

While we are on the subject of a lobby in Washington, a little insight as to the magnitude of lobbying can be obtained by reading the Congressional Record, Volume 115 \#83, dated Wed. May 21, 1969. There are over 5000 names listed, many fine companies and many associations, all in Washington where the action is - not in the wonderful quaint little town of Newington, Conn. where the action ain't. As you go through the names, you find hundreds that could be drooling over the valuable spectrum we occupy. Now pick up the May 1970 Yellow Pages of the Washington telephone directory. There are eight pages of associations and as you meander through them you find hundreds that are associated with some use of the radio spectrum. Take a look at Broadcasting Magazine yearbook for 1970 and find pages of consulting engineers who make their living getting spectrum for their clients, and pages of Washington lawyers doing the same thing. Do any of them have a Newington address? NO! They are where the action is, not where the inaction is. Funny thing, in 5000 lobbyists, 8 pages of people associated with lobbying, scads of pages of people representing spectrum users - not a single mention of amateur radio! So let's have the board of directors look into separating the publishing business from ARRL. Let QST be the official organ for all, repeat all, amateurs, and at the same time, make a start at Washington representation by establishing a public relations office. Why doesn't the board of directors establish a study group looking toward these goals?

Our Bands are Diminishing

Take a look at the following chart. The heavy load of amateur radio is carried in the $160,80,40$, and 20 meter bands. Yet, see what has happened here over the years in terms of total bandwidth.

Band meters)	1927	1938	1946	1963
160	500 kHz	285 kHz	300 kHz	200 kHz
80	500	500	500	500
40	1000	300	300	300
20	2000	400	400	350

This chart does not tell the whole story. Forty meters is practically useless at nught due to the intruders in our bands, all there by agreement of the U.S. with no objections at the proper time by the ARRL. Had we had a group whose sole job is to hold our bands, they might have been able to stop many of these intruders before they went on.

This loss of bands is a subject in itself. There is a crying need for a complete plan of attack, not only to keep our bands, but to expand our privileges. The ARRL spent a paltry $\$ 100,000$, which was eaten up by a few trips to Europe. The broadcasters, only one of the many groups lobbying for spectrum have within their own National Association of Broadcasters (NAB), at least seven very powerful and active lobbies. Their clear-channel AM radio association and the association for maximum service telecasters spend millions to keep their place in the spectrum. We, as amateurs, don't even recognize the full magnitude of the problem. We do not have a permanent group whose sole job is to conserve our radio spectrum.

What's in a Name?

Good business dictates that your name is important. If possible it should reflect your image. Corporations spend millions advertising their trademark and name. Some of the larger, after years of using the same trademark, recognize that to keep in tune with the times they must change. RCA, for instance, has dropped the little dog sitting in front of the phonograph and in addition streamlined their trademark. We hams, in the USA, have doggedly hung on to ARRL. Our British friends have a real slick title, RSGB - Radio Society of Great Britain. The RSGB really reflects the amateur image a great deal more realistically than the ARRL. Amateur has two meanings, one has a nasty intonation, and the other truly reflects our basic purpose; but the general public whom we must sell in order that they will let us keep our bands, always look at us in the derogatory manner. Why not follow Great Britain and use the Radio Society of the USA, or the Institute of Amateur Radio or some other more useful descriptive title. A name is important as that always hits the general public in every news release. As part of our new image let's discard the old and come up with a new name that is in tune with
the times. There is nothing sacred about ARRL; if RCA can drop their doggie after selling it for 35 years, I guess we can do the same.
Everyone resists change
The old ARRL dog must learn new tricks or it will be dead. Corporations that have resisted change have long since been buried. The business highway is strewn with the dead bodies of companies who resisted change. We just cannot afford to be like the company that wouldn't stop manufacturing buggy whips. We are living in a dynamic, changing society. Communication is reshaping the world, and we are part of this communication revolution. We desperately need leaders who will not resist change and who have the moxy to fight for change.

Summary

It is obvious that the ARRL needs changes to get in tune with the times. It is also obvious that we must support the ARRL or some new name, as a total group. Divided we can be conquered, united we stand a good chance to survive. Let's ask the embarrassing questions and be sure we give realistic answers. You cannot cure a person who has an ingrown toenail when you diagnose his problem as a cold. The first step is to recognize that a problem exists and then define it and then solve it. I'd like to start with the first question, what is in a name? Next question, what's our purpose in life and in our nation? Next, should QST and ARRL be one and the same? How do we get all amateurs to support one action? Do we need Washington and world representation? Do we have a future? What future? What part will we play in the 1880s? Is there really a problem or is it normal to have less than 50% of the hams belonging to ARRL?

My last comment, and this is strictly personal: For years I have been advocating change because I recognized it was necessary. It is my feeling that the ARRL headquarters people just sit back and hope that I and the others who have been advocating change will run out of steam. What they don't realize, or perhaps don't care, is that if things don't change, they will be out of jobs. The ARRL will be defunct, their pension will be gone, and they will have to live on social security like the rest of us.

W8GI■

Rush Order To: RADIO amateur Callbook, Inc. Dept. B 925 Sherwood Drive, Lake Bluff, III. 60044

FIrom time to time, the Federal Communications Commission adopts new questions to use in the amateur license exams. 73 has tried to keep up with the FCC in incorporating the new questions into the published "study guide" series, but of course this cannot always be possible. The Extra class series, for example, has already been published, as has the Advanced. This chapter of our series, then, contains a complete list of all FCC study questions. These questions will provide the update needed to complete the formerly published courses, and will provide a preview of questions yet to be covered in the current General class series.

If you're studying for your FCC exam, now is a good time to de ermine whether or not you're ready for the trip to the FCC office. To help you along, we'll not present answers - paraphrased or otherwise - this time around. If you can answer the questions presented here, you're certainly ready to tackle the real thing. If you can't answer
them, it's time to go back to your bookcracking. Got your pencil ready?

NOVICE STUDY QUESTIONS

1. What is the maximum input power permitted to the final stage of the transmitter in a station licensed to the holder of a Novice Class license or operated by such an operator?
2. What is the maximum penalty for a violation of the rules and regulations of the Federal Communications Commission?
3. On what frequency bands may the holder of a Novice Class license operate an amateur radio station?
4. On what frequency bands may the holder of a Novice Class license operate an amateur radiotelephone station?
5. What is the \log of an amateur station, and what information must it contain? How long must it be preserved?
6. For how long is an amateur Novice Class license valid and may it be renewed?
7. What are the rules and regulations regarding the transmission of improper language, false signals, or malicious interference?
8. What are the rules and regulations regarding purity and stability of emissions?
9. How must the transmitting frequency of a station licensed to the holder of a Novice Class license be controlled?
10 . What are the rules and regulations regarding the measurement of the frequencies of the emissions of an amteur radio station?
10. Who may be permitted to operate the transmitter of an amateur radio station licensed to the holder of a Novice Class license?
11. When may an amateur radio station be used by a person who does not hold a valid license?
12. What is the maximum permissible percentage of modulation of an amateur radiotelephone station?
13. At what intervals must an amateur station be identified by the transmission of its call sign? May any transmission be made without identification of the station?
14. When is notice of portable or mobile operation required to be given, and to whom in each case?
15. What are the recognized abbreviations for: kilocycles, megacycles, Eastern Standard Time, Greenwich Mean Time, continuous wave, frequency modulation, amplitude modulation?
16. What is the relationship between a fundamental frequency and its second harmonic; its third harmonic; etc.?
17. What is the relationship between a cycle, a kilocycle, and a megacycle?
18. What instrument is used to measure: electrical potential; electrical current; electrical power; electrical energy?
20 . What is the purpose of: a modulator; an amplifier; a rectifier; a filter?
19. What is meant by: amplification; modulation; detection; attenuation?
20. What is the purpose of: a radiofrequency choke; an audio-frequency choke; a filter choke?
21. How is the actual power input to the tube or tubes supplying energy to the antenna of an amateur transmitter determined?
22. Why is a rectifier and filter required in the plate power supply system of an amateur transmitter when operated from alternating current?
23. What is a frequency multiplier?
24. What are the undesirable effects of over-modulation in radiotelephony?
25. What is a "parasitic" oscillation?
26. What is a "key-click filter" and when should it be used?
27. What is Ohm's Law?

30 . What is the relationship between the frequency and wavelength of a radio wave if its velocity in space is 300 million meters per second?
31. What symbol is used in the Amateur Rules to designate amplitude modulated telegraphy without the use of modulating audio frequency (on-off keying)?
32. What is the ruling regarding eligibility for re-examination?
33. What factors are commonly responsible for h armonic radiation and what practical means can be used to detect and correct such condition?
34. How are radio signals transmitted over great distances?
35. International radiocommunication by way of amateur stations is subject to what restriction(s)?
36. What functions do capacitors perform?
37. Why are height limitations placed on antenna structures for amateur stations?
38. What methods are available for determining whether the transmitter output frequency is within the authorized frequency band?
39. What is the most likely defect of a tube which has proper heater voltage at the tube socket, but which fails to warm up?
40. What precaution(s) can be taken to reduce the possiblity of shock hazard in electrical equipment?
41. The plate voltage to the final stage of an amateur transmitter is n ormally measured between what points in the circuit;
42. When is one way communication permissible?
43. What is a Hertz? kiloHertz? MegaHertz?
44. What are some correct ways to call and answer other amateur stations via telegraphy?
45. What are some common Q signals and what purposes do they serve? What do QRA, QRM, QRN, QRS, QRT mean when transmitted as questions via telegraphy?
46. What important functions do diodes perform?
47. What units are used to measure capacitance?
48. How are transistors made, used, and diagramed? What are some common transistor parameters?
49. Why is impedance matching necessary?
50. What is chirp and how can it be remedied in a c.w. transmitter?

GENERAL CLASS STUDY QUESTIONS

1. Questions based on Part 97 of the Commission's rules.
2. Of what use is a bleeder resistor in amateur equipment?
3. Define skin effect. How can this phenomena be minimized?
4. List some operating procedures which can be employed to minimize interference and congestion of the amateur bands.
5. Describe the operation and usage of a cathode follower.
6. How does frequency tolerance affect band edge operation?
7. What is impedance matching and why is it important?
8. How is the plate circuit efficiency of a vacuum tube determined?
9. What is amplitude modulation (AM)? How is the intelligence conveyed in an AM signal?
10. What is meant by the ripple frequency of an a. c. power supply voltage?
11. What is a third party agreement?
12. How does a zener diode operate and of what use is it in amateur equipment?
13. Define standing wave ratio (SWR). How can the SWR of a line be determined? How are the SWR of a line and its characteristic impedance related? Name some factors that affect the characteristic impedance of an airinsulated parallel-conductor transmission line.
14. What is meant by the maximum plate dissipation of a vacuum tube?
15. What is a decibel?
16. What is a harmonic? List ways of minimizing harmonic generation in frequency doublers, vacuum tube amplifiers, transmission lines, and antennas.
17. What is a crystal resonator?
18. How do electolytic capacitors operate and why are they widely used in power supply circuitry?
19. What symbols does the Commission use to designate how the main carrier of a signal is modulated?
20. What are some possible causes of excessive plate current in a Class C power amplifier?
21. List several characteristics of a vertical quarter-wavelength antenna.
22. What is TVI? How can it be remedied if the amateur station is at fault? If the TV receiver is at fault?
23. How can transistors be used in electronic equipment? What is the beta of a transistor? Compare the elements of a transistor to a vacuum tube's
24. What is meant by percentage of modulation? What is the maximum legal limit to which an amateur transmitter can be modulated?
25. Describe briefly how oscillators operate. What are the most common types of oscillators and how do they differ from each other?
26. Why is a center-tap return connection employed on the secondary of a transmitting tube's filament transformer?
27. Define OHM'S law. How does it relate to resistive and reactive impedance?
28. Describe ways of equalizing the reverse voltage drops across series connected silicon diodes.
29. What is the maximum legal d.c. power that can be delivered to the final amplifier of an amateur transmitter? How is this power determined?
30. Define instantaneous power, average power, sideband power, audio power, and peak envelope power. How is each related to the voltage and current that produced it? How is each related to the unmodulated carrier power?
31. What is meant by the bandwidth of a signal? Compare the maximum necessary bandwidth occupied by a cw signal, an SSB signal, a double sideband signal, and an ordinary voice signal.
32. What is neutralization and how does it contribute to proper amplifier operation? What procedure should be followed to properly neutralize an r.f. amplfiier?
33. What are the distinguishing features between series tuned and parallel tuned resonant circuits? How is the resonant frequency determined? Define the " Q " of a resonant circuit.
34. How does an a.c. power supply produce a d.c. voltage? Distinguish between a choke-input and a capacitorinput filter and compare their operating characteristics. What is dynamic regulation and how can it be improved? How do the output voltages of a full-wave center-tapped and a full-wave bridge rectifier compare?
35. How do resistors combine in parallel and in series to give total resistance? Capacitors? Inductors?
36. How does voltage division occur across series connected resistors? Capacitors? Inductors?
37. What does it mean to connect circuit elements in series? in parallel?
38. What is inductive reactance? Capacitive reactance? How is their value determined? How do like reactances combine in series? In parallel?
39. Describe the transmissions characteristics of the amateur bands below 30 Mc / s. List several propagation factors that influence signal transmission and reception in these bands.
40. List the basic stages of a conventional superheterodyne receiver and tell what function each stage performs.
41. How is the approximate length of a half-wave dipole related to its resonant frequency? Compare the operating characteristics of a half-wave dipole and a grounded antenna.
42. What do high- and low-pass constant-k filter circuits using balanced and unbalanced pi- and T-sections look like?
43. How can amateur equipment be protected from lightning discharge?
44. What are the basic stages of a single sideband (SSB) receiver and transmitter and what purpose does each serve?
45. List the three main classes of amplifier operation and explain the use for which each class is best suited.
46. What are "images" in a receiver?
47. What is meant by "flat-topping" of a single sideband signal and what are some possible causes of it?
48. What does grid current flow in a Class A amplifier indicate?
49. Briefly discuss how a multiband "trap" antenna operates.
50 . How can the power input to the final amplifier of an SSB transmitter be determined?
50. Compare the operating features of the grounded grid and grounded cathode amplifiers.
51. How is the bandwidth of an FM signal related to the bandwidth of the modulating audio signal?

ADVANCED CLASS STUDY QUESTIONS

1. Questions based on part 97 of the Commission's Rules which governs the Amateur Radio Service.
2. What is meant by the Standing Wave Ratio (SWR) of a transmission line? What is a good indication that a high SWR is present on a transmission line? Where is the best point on a long transmission line to measure the SWR?
3. What methods are most commonly used to generate single sideband signals? Draw a block diagram of the filter method showing all essential stages. How can a low frequency SSB signal be converted to the desired transmitting frequency? On what frequencies do SSB transmissions become more difficult? List some of the advantages SSB proides over double sideband operation.
4. How do the voltage, current, and impedance behave along a transmission line with an SWR of 1 ?
5. What are harmonics? How can the generation of excessive harmonics be avoided? Which class of amplifier operation is most favorable to the generation of hamonics?
6. What factors affect the state of ionization of the atmosphere?
7. What types of emissions can be received with selectible sideband receivers?
8. The ratio of the peak envelope power to the average power in a SSB signal is primarily dependent on what factor?
9. How can receiver sensitivity and selectivity be improved?
10. How close to the edges of a certain amateur band can you safely operate a VFO c.w. transmitter if you are using a frequency meter having maximum possible error of 0.01 percent?
11. A transmission line that feeds an antenna has a power loss of 10 dB . If 10 watts are delivered to the transmission line input, how much power is delivered to the antenna? List possible causes of power loss. How can the SWR of the line be made as low as possible?
12. How do parastic oscillations affect circuits? What can be done to prevent or eliminate parastics?
13. What is backwave radiation? How can it be eliminated?
14. Define maximum usable frequency.
15. A resistor, capacitor and inductor each have 100 ohms of resistance or reactance. What is the equivalent series impedance of these three elements? How would the addition of a reactive element to a purely resistive circuit affect the sum of the voltage drops around a closed loop in the circuit?
16. What do oscilloscope patterns showing 33%, and 75% modulated signals without distortion look like? Show trapezoidal and AM envelope patterns.
17. What are some common types of oscillators employed in amateur equipment? How can each be identified in circuit diagrams? What part does feedback play in these oscillators? What points in the circuits should be coupled to provide good feedback? What affect would a reactive load have on an oscillator's output frequency? What can the value of the d.c. voltage across an oscillator's grid-leak resistor reveal about the oscillator's performance?
18. Why is neutralization important in amplifiers? What points in an amplifier circuit should be coupled to provide good neutralization?
19. When is an amplifer operating Class A? Class B? Class C? In which amplifier stages of an amateur transceiver are these classes normally used?
20. What happens to even-order products in r.f. linear amplifiers?
21. What is the third party agreement? What countries have such agreements with the United States?
22. What are lissajous figures in oscilloscope operation? How are the lissajous loop patterns produced on the face of a scope related to the frequencies applied to the scope's plates?
23. How are bypass capacitors used? How should their impedance compare with the elements they shunt?
24. How can TVI caused by crossmodulation be remedied? Where in a TV receiver should a TVI filter be mounted to best reduce television interference?
25. How can SSB signals be amplified with little or no distortion?
26. A superheterodyne receiver having an intermediate frequency of $455 \mathrm{kc} / \mathrm{s}$ is to be adjusted to receive a signal on $3900 \mathrm{kc} / \mathrm{s}$. What frequencies can the oscillator be set to, to give a beat signal at the intermediate frequency?
27. What factors affect the peak envelope power of a transmitter?
28. How does a full wave bridge rectifier operate? What does the schematic diagram of a full wave bridge rectifier circuit using solid state components look like?
29. When can a low pass filter be installed in a coaxial cable without causing a large power loss at the fundamental frequency?
30. What standard formula is used to determine the resonant frequency of an antenna? How can the resonant frequency of an antenna be increased? Decreased? Compare the center impedance characteristics of the inverted V , the half-wave dipole, and the folded dipole antennas.
31. A 70 ohm half wave antenna operating on a frequency of $7300 \mathrm{kc} / \mathrm{s}$ is to be matched to a 50 ohm transmission line. Calculate the characteristic impedance of a quarter wave matching section and the physical length of the antenna at the frequency given. What is the SWR between the antenna and transmission line without a matching section?
32. Power dissipation in what part of a transistor warrants careful observance of power ratings?
33. Define the shape factor and selectivity of a crystal lattice bandpass filter. How are the shape factor and the selectivity related?
34. Compare the pentode, tetrode, and triode for use in an r.f. amplifier stage. Give advantages and disadvantages of each.
35. What is meant by describing a radio wave as horizontally or vertically polarized? Which type is most suitable for sky and ground wave propagation? How should an antenna be mounted to best receive each of these types of radio waves?
36. Which amateur band is the most suitable for daytime communication over a distance of about 200 miles? What amateur frequencies between 7 and $148 \mathrm{Mc} / \mathrm{s}$ inclusive, are most affected by weather conditions?
37. Should a voltmeter have high or low internal circuit resistance? Explain .
38. A transformer with 115 volts applied across the primary terminals has a primary to secondary turns ratio of 10 to 1 . If a 5 ohm load is connected to the transformer secondary, the reflected primary impedance is what? How much voltage appears across $1 / 2$ of the turns of the primary? What factors determine whether or not a transformer having a center-tapped high voltage winding can be used in a bridge rectifier circuit?
39. What functions does a variable-mu tube perform in an r.f. amplifier stage of a receiver?
40. Compare transistors and tubes. What are the advantages and disadvantages of each?
41. How do noise limiters operate? Where should they be positioned in a receiver to be most effective?
42. How do inductors combine in series and in parallel? Capacitors in series and parallel? Resistors in series and parallel?
43. Define frequency deviation in FM transmissions.
44. How does the peak-envelope power (PEP) input of an amplifier used for cw compare to the PEP of an SSB amplifier when using the maximum legal d.c. power? During the application of the single-tone test to a linear amplifier, how does the average power input to the amplifier relate to the PEP produced?
45. What are the advantages and disadvantages of using the same antenna for receiving and transmitting?
46. What is the vacuum tube counterpart of a (1) grounded-base circuit; (2) grounded emitter circuit; (3) grounded collector circuit?
47. How does the sunspot cycle affect wave propagation? What are the best frequencies to use for day and night, short and long distance communications during the cycle?
48. How does automatic gain control operate? When can it be used for SSB operation? CW operation?
49. How should a linear amplifier be adjusted for linear operation?
50 . How is the power output of a 100% modulated AM signal related to the carrier power?
50. Why does a type 6146 tube have 3 prongs connected to the cathode?
51. What parameters affect the directional pattern of a beam antenna?
52. What are some precautionary measures that should be taken before replacing faulty circuit elements?
53. Compare the operating characteristics of wirewound and carbon type resistors.
54. List ways of protecting amateur equipment from damage induced by electrical storms.
55. Define single and double conversion. What is an intermediate frequency (i.f.)? In a receiver, how does the image frequency relate to the desired signal frequency?
56. Explain why the grid wiring in an r.f. transmitter should be as far removed as possible from the plate circuitry.
57. What is a dummy antenna? How can it be of use to amateur operators?
59 What is meant by percentage of modulation? What determines if a carrier wave is under- or over-modulated?
58. What affect would a self-oscillating buffer stage have on a transmitter's output frequency?
59. What is meant by the "effective value" of a voltage? "Peak to peak value"?
60. What is a wave-trap? Draw some common wave-trap configurations.
61. What circuit condition is indicated by a high direct current reading in the grid meter in the final Class C amplifier stage of a transmitter?
62. Briefly discuss the advantages and disadvantages of using paper, mica, air, and ceramic type capacitors. What happens to a circuit when a capacitor develops a leakage resistance?
63. Discuss the characteristics of a series resonant circuit; a parallel resonant circuit.

EXTRA CLASS STUDY QUESTIONS

1. What are sideband frequencies? During 100% sinusoidal amplitude modulation, what percentage of the average power is in the sidebands? How is the sideband power related to the percentage of modulation?
2. Who do the modulation envelopes of amplitude-modulated waves with 75%, 100%, and greater than 100% modulation look like?
3. How may a limiter be employed in an FM receiver?
4. What precaution(s) should be taken when measuring the rectified grid voltage in an oscillater with a d.c. voltmeter?
5. What is meant by frequency shift keying and how is it accomplished?
6. Why is there a practical limit to the number of stages that can be cascaded to amplify a signal?
7. What are A5 and F5 emissions? On what amateur frequencies can be emissions be transmitted? Can A5 emission be transmitted satisfactorily using one sideband only?
8. How does amateur TVI usually affect television reception?
9. Describe briefly the basic sections of a single sideband (SSB) transmitter. In what section of a properly operating SSB transmitting system is distortion most liekly to originate? In what section is nonlinearity most likely to originate?
10. Define what is meant by the time constant in a resistance-capacitance circuit? How is the time constant determined?
11. How does a squelch circuit operate? Draw a commonly used squelch circuit.
12. Ah oscilloscope is used to study the relationship between the input and output of an amplifier produced by a voice signal. How would the scope pattern display a linear relationship between the input and output signals?
13. Draw a block diagram of an RTTY system showing the primary function of each stage. What is the proper way of identifying an RTTY transmission? What is the most widely used frequency difference between the mark and space frequencies in a conventional RTTY transmitter?
14. How can the two-tone test output of a linear amplifier be used to tell if a transmitter is working properly? Show scope patterns for optimum, overdriven, and underdriven amplifer conditions.
15. Define the alpha cut-off frequency of a transistor. How is this parameter of use in circuit design?
16. What are inductive and capactive reactance? How are their phase angles related? How does their reactance affect actual power dissipation in a circuit?
17. How does the positioning of a powdered iron tuning slug affect the frequency of the oscillator it is tuning?
18. Define the deviation ratio in a frequency modulated signal.
19. What type of signal will be produced when the output of a reactance modulator is coupled to a Hartley oscillator and multiplied in frequency?
20. How would the reception of a single sideband signal be affected if the carrier is not completely suppressed? How can spurious signals in the output of the mixer stage of an SSB transmitter be suppressed?
21. How does the best frequency oscillator affect the tuning of a single sideband signal?
22. Can a lossy transmission line be used to transmit signals? Explain.
23. How can you distinguish between a product and an envelope detector?
24. How can a receiver be adjusted for SSB reception when the receiver does not have a product detector?
25. How do mica and paper dielectric bypass capacitors compare at different frequencies?
26. Discuss the advantages and disadvantages of electrolytic versus paper filter capacitors.
27. Where in a receiver circuit should a limiter/blanker stage be placed to provide maximum utility?
28 , What frequency should a crystal oscillator circuit be tuned to for maximum stabilițy?
28. What are microwave frequencies? What type of oscillator is commonly used to generate microwaves?
29. What are some of the factors that affect the field strength of a signal from a radiated antenna?
30. What factors determine the frequency at which a quartz crystal will oscillate? List some of the advantages of using crystals in amateur equipment.
31. Explain the properties of a quarterwave section of r.f.transmission line. How would these properties change if the output ends of the section were short-circuited?
32. How should a wave trap be connected to a receiving antenna circuit to attenuate an interfering signal?
33. Why are synchronizing pulses transmitted with television signals?
34. How may an amateur check his transmitter for spurious sidebands?
35. How can the safe power input to a crystal oscillar circuit be determined?
36. Define the term decibel. How is the decibel used for voltage and power calculations?
37. How are the emitter, base, and collector of a transistor biased for amplifier operation? How are they biased for cutoff (open circuit) and saturation (short circuit)?
38. How do N-P-N type transistors differ from the P-N-P type? How does their bias differ?
39. How can the output circuit of a transmitter be adjusted to increase or decrease its coupling to the antenna system?
40. How do filters attenuate harmonic emissions?
41. List several advantages and disadvantages each for Class A, Class B andClass C amplifier operation.
42. What are some different types of noise voltages encountered in amateur receivers? How is each type generated.
43. What are current and voltage characteristics along a transmission line when it is matched and mismatched?
44. How do receivers for remote control of objects and regular type communications receivers differ in basic operation?
45. What is the vacuum tube counterpart of a (1) grounded-base circuit; (2) grounded emitter circuit; (3) grounded collector circuit?
46. What useful functions does a balanced modulator perform in a radio transmitter?
47. How does the directivity of an unterminated "V" antenna and parasitic beam antenna compare?
48. If a crystal lattice bandpass filter has bandwidths of $3 \mathrm{kc} / \mathrm{s}$ at the 60 dB points and $1.5 \mathrm{kc} / \mathrm{s}$ at the 6 dB points, calculate the shape factor. At what frequency is the best shape factor achieved in a crystal lattice filter?
49. What would happen if the grid-bias supply of a Class C modulated amplifier was suddenly short-circuited?
50. How do trimmer and padder capacitors affect the low and high frequencies in receiver tuning?
51. What is the phase relation between the input and output signals in the com-mon-emitter, common-base, and com-mon-collector transistor circuits?
52. How can a transmitter be tested for self oscillation? What precautions should be observed during testing?
53. How can unwanted VHF resonances in a transmitter amplifier be moved from

TV channel frequencies?
55. A 70 ohm transmission line is connected to a 35 ohm antenna. Calculate the standing wave ratio (SWR), the reflection coefficient, and the percent reflected power. If 10 amperes are flowing in the antenna terminals, what is the current in a transmission line node? How is the SWR related to the forward and reverse current flow?
56. What is a grid-bias amplifier? Should the source of fixed bias have a high or low internal resistance? Explain.
57. Of what importance is the signal-tonoise ratio of a receiver? At what radio frequencies is this ratio most important?
58. What are Aurora-reflected VHF signals? If such a signal is heard, what does it sound like?
59. What is meant by percentage of modulation? What determines if a carrier wave is under- or over-modulated?
60. How does a cathode-ray tube operate? What magnitude of voltage is normally used to bias the plates of a cathode-ray tube? What purpose does this magnitude of bias voltage serve?
61. What are some causes of the excessive production of harmonics in r.f. amplifiers? How can these causes be remedied?
62. What effect does a transmission line which is not properly terminated have on the plate tank circuit of a transmitter?
63. How are reactance tubes used?
64. How do phasing condensers help stabilize cyrstal filter circuits?
65. What means may be employed to measure low frequencies? High frequencies? VHF and UHF?
66. How are grounded-grid amplifiers usea in electronic circuits? List some advantages and disadvantages of their use. Describe the input impedance characteristics of a grounded-grid amplifier.
67. What constitutes a parasitic antenna element?
68. What is the image-response of a receiver? How can it be reduced?
69. What is a third party agreement? What countries have agreements with the United States?
70. What effect will extending the lowfrequency audio response of a signal have on the design of an SSB transmitter?
71. List some different types of beam antennas.
72. What radiotelephone transmitter operating deficiencies may be indicated by a decreasing antenna r.f. current during

VHF-UHF
 CRYSTAL CONTROLLED CONVERTERS
 Model 432CA - \$64.95 \rightarrow
 Available for 50 through 432 MHz . Silicon ac Power Supply. Write for detailed Data
 JANEL Sheets or order direct, specifying i-f frequency.
 LABORATORIES
 P.O. Box 112, Succasunna, NJ 07876

SLOW SCAN TV

Now for the first time an S.S monitor designed for your own custorn installation. Available in 3 economy kits. KIT 1 P.C. Boards only (2 rei) ea. S 9.95 KIT 2 P.C. Boards (Both) \& all parts (unwired) \$ 80.00 KIT 3 P.C. Boards Wired \& tested
Power Supply Kit - No chassis S 125.00

Complete Monitor in handsome calsinet
S 54.95 \$298.00 All kils twhe tyise with instructions
CRTs, Power Supplies, and cabmets not inclucled
E.K.Y. VIDEO VISION CO. Box 15, Stockholm NJ 07460

Hi-Sensitivity Wide-Band AM/FM RCVR

38-1000 MHz: AN/ALR-5 consists of brand new Tuner//Converter CV-253/ALR in original factory pack and an exc., used, checked OK \& grtd. main rcvr R-444 modified for $120 \mathrm{v}, 50 / 60 \mathrm{hz}$. Packed with each tuner is the factory checkout sheet. The one we opened showed SENSITIVITY: 1.1 uv at $38.3 \mathrm{mhz}, 0.9$ at $133 \mathrm{mhz}, 5$ at $538 \mathrm{mhz}, 41 / 2$ at $778 \mathrm{mhz}, 7$ at $1 \mathrm{ghz} ; \mathrm{w} / \mathrm{book}$ \& pwr-input plug, all for
275.00
R-390/URR Revr: Collins xtl-zero-beating;
driftless receiver, grtd 100% perfect $\mathbf{7 9 5 . 0 0}$

R-390A/URR has mech. filters, grtd perfect . . 995.00

Regul. Pwr Sply for Command, LM, Etc.

PP.106/U: Metered. Knob-adjustable 90-270 v up to 80 ma dę; also select an AC of $6.3 \vee 5 \mathrm{~A}$, or $12.6 \mathrm{v} 21 / 2 \mathrm{~A}$ or $28 \vee 21 / 2$ A. With mating output plug \& all tech.
data. Shpg. wt 50 lbs
19.50

Bargains which the above will power:
LM-(*) Freq. Meter: . $125-20 \mathrm{MHz}, .01 \%$, CW or $A M$ with serial-matched calib. book, tech. data, mating plug.
Shipping wt. 16 Ibs. 57.50
Same less calib. book . 12.50
TS-323 Freq. Meter: $\mathbf{2 0} \mathbf{- 4 8 0} \mathrm{mhz} .001 \% . \quad169 .50$ A.R.C. R22; $540-1600 \mathrm{khz}$ rcvr, same size \& shape as the popular and well-known Command revrs like the BC-453, R23/ARC5, etc. No calib. dial but we furnish spline knob with graph of turns vs freq., and all tech data, connections, etc. 17.95
A.R.C. R32: Same as above except $108-132 \mathrm{mhz}$ with Squelch ckt, very hot. W/data \& graph. 12.95

Our warehouses are bursting with good OSCILLOSCOPES, Digital Counters, Aeronautical Test Sets, Audio Test Sets, Oscillators, VIVM's, Precision Meters, Pulse Generators, Signal Generators, Differential Voltmeters, Regulated Power' Supplies, Ham Receivers, Wattmeters, Line-Voltage Regulators, etc. etc. We can't possibly begin to list everything in these ads. We have separate Catalogs for each Category of Equipment. . so please ask for your needs by the type of equipment you need! THANKS!

WE ALSO BUY! WHAT DO YOU HAVE?

Box 1220-GC, Beverly Hills, Calif. 90213
Phones: Area Code 213, Office 272-5707

4-1000A FILAMENT TRANSFORMERS

7.5 VCT @ 21 AMPS 117 VAC PRIMARY $3^{3} 4^{\prime \prime} \mathrm{H}, 4 \frac{1}{2} 2^{\prime \prime} W, 3^{11 / 2^{\prime \prime} D}$. NET WT. 8 LBS.

\$14.95 PPD

PETER W. DAHL CO. 5325 Annette Ave. EL PASO, TEXAS 79924 Tele:915-751-4856

WORLD QSL BUREAU
 5200 Panama Ave., Richmond CA USA 94804

PLAN 1. We forward your QSLs (please arrange alphabetically) to any place in World, including all foreign countries, and to or within USA, Canada, and Mexico, for 4ϕ each.
PLAN 2. You use our special \log form and send us a copy We supply QSL-make out QSL-deliver QSL, all for $8 \subset$ each

LARGEST ASSORTMENT of BRAND NAMES

You can save enormous amounts of money while choosing from a complete line of transceivers, receivers, transmitters, etc.
WE HAVE EVERYTHING IN HAM GEAR SAVE MONEY ORDER BY MAIL

CB Radio Co., Inc.
 Swampscott, Mass. 01901

89 Aspen Rd 617-598-9700

NEW G\&G GATALOG! MILTARY ELECTRONICS

AN/APR - 4Y FM \& AM RECEIVER "FB" for Satellite Tracking! High precision lab instrument, for monitoring and measuring frequency and relative signal strength, 38 to 4000 Mc . in 5 tuning ranges. For 110 v 60 cy cle AC. Built-in power supply. Original circuit diagram included. Checked out, Perfect. LIK E NEW.
$\$ 88.50$
 Perfect. LIK E NEW................
All turing units available for above.

HEADSET

Low impedance. With large chamcis ear cushions. plug. Reg. S12.50. OUR SPECIAL PRICE....... $\$ 2.95$ High impedance adaptor for above

modulation of the final r.f. amplifier?
73. What improper operating conditions are indicated by the upward or downward fluctuation of a Class A amplifier's plate current when a signal voltage is applied to the grid? How can this be corrected?
74. What improper operating conditions are indicated by the upward or downward fluctuation of a Class A amplifer's plate current when a signal voltage is applied to the grid? How can this be corrected?
75., What may be the cause of a decrease in antenna current during modulation of a Class B r.f. amplifier?
76. What determines the skip distance of radio waves?
77. How can parasitic oscillations be prevented?
78. Give some proven methods of harmonic reduction in transmitters.
79. Describe briefly some well known types of antennas and antenna systems used by amateurs which do, and do nut, reduce harmonic radiation.
80. What must the value of an inductor be to cancel a capacitive reactance of 12.6 kilohms at an operating frequency of 2 Mc / s ?
81. What is meant by "end effects" in an antenna? How can they be compensated for in half-wave antennas?
82. What are the bandwidths normally used for A1, A3 (single and double sideband), and F3 (narrowband) type emissions?
83. Describe briefly how an ac power supply produces a d.c. output voltage. Discuss the merits of using choke-input versus capacitor-input filters in power supplies. How does the leakage resistance of the capacitors affect the output voltage? Also, what is voltage regulation as related to power supplies?
84. Compare silicon and vacuum tube diodes. What is meant by the "forward voltage drop" of a conducting silicon diode?
85. What is push-pull amplifier operation?
86. For what purpose is a Q -multiplier used in amateur equipment? What major factors affect the Q of a coil? Of a circuit?
87. How can the final amplifier of a transmitter be tested for self-oscillation?
88. How does a frequency converter operate?
89. What visual observation within an operating vacuum tube's envelope would indicate that the tube is gaseous?
90. Questions based on Part 97 of the Commission's rules. ...Staff \quad

WHEN II COMES TO ANIENHA SYSIEMS...IS YOURS

a space problem? a budget problem? an applications problem? an installation problem? or simply a problem of where to buy?
Your one-stop solution is ANTENNAS, INC.
Exclusively specialists in radiating systems, complete systems or any component part
Arrays-complete or in kit form, quads, yagis, dipole assemblies, verticals-fixed or mobile, towers, masts, rotors, guy and control cable, transmission line, coax relays and switches, connectors and adaptors, test gear, technical publications, corrosion resistant hardware, corrosion proofing chemicals, insulators, installation and wiring hardware, aluminum tubing and plate, wire, and much, much more.

If your requirements are for a complete system, major components, or the smallest yet important piece of hardware-

Our prices and deliveries are hard to beat . . . anywhere.

ANIEMMS, IIIC.
 Dept. B, 512 McDonald Road Leavenworth, Kansas 66048.

ANTENNAS, INC. can be your one-stop, single-source. Write today for our catalog, $\$ 2.00$, refundable, first order.

for MINIDIUCTORS select B\&W!

send for spec sheet

BARKERRWMLLIAMSON

CANAL ST., BRISTOL, PA. 19007

WE PAY HIGHEST CASH PRICE
for Electron Tubes \& Semiconductors Immediate Payment on Unused Tubes H \& L ASSOCIATES
Elizabethport Industrial Park Elizabeth, New Jersey 07206 (201) $351-4200$

Thousands of Pärts
E ELECTRONIC PARTS \& EQUIPMENTSS
See us U Builders for Bargains (no fliers)
DOW TRADING CO. INC.
1829 E. Huntington Drive
Duarte CA 91010 - 213-357-3763
QRX QRL! No new repair jobs can be accepted until further notice.

PANTRONICS OF VIRGINIA, INC.
P.O. Box 104

Annandale, Virginia 22323
HR Loevices
Hot Carrier Diodes: HP2800
 MRTL MC790P, MC890P $\$ 2.00,10 / \$ 19.50$

MC724P, MC789P, MC792P, MC725P \$1.05, 10/\$9.50 Also available: MC723P, MC788P, MC880P, MC767P, MC9760P. OP AMP: SN72709N (DIP), SN72709L (TO-5),

Box 365 L, Urbana, Illinois 61801

ANTENNAS-HAM BAND

144 MHz 2 meter band, omnidirectional, horizontally polarized, use - Fixed \& Mobile Ham, Civil Defense and M.A.R.S. All solid copper, RG 8/4 cable.

STANDARD one or two ANTENNAS HIGH GAIN four - eight antennas
one 1.3 dB /dipole \$ 19.95
two $4.3 \mathrm{~dB} \quad 39.90$ with cable + conn. $\$ 49.40$ $\begin{array}{ll}\text { four } 7.3 \mathrm{~dB} & 79.80 \text { with cable }+ \text { conn. } \\ 104.80\end{array}$ $\begin{array}{lll}\text { eight } 10.3 \mathrm{~dB} & 159.80 \text { with cable }+ \text { conn. } & 208.54\end{array}$
Send Certified Bank Check or Money Gilian \& Company 105 Orchard St. Watertown, Mass. 02171
TWO-WAY COMMUNICATION CRYSTALS AMERICAN CRYSTAL CO.
PO Box 2366 Kansas City, MO 64142 (816-842 -5571)

must agree with the people you castigate for their pressures, which you say killed the Swansee outrage among the amateur consumer, the bread and butter of Swan Electronics. Reaction of consumers in other areas
similar to this is sorely needed. I similar to this is sorely needed. commend swan fiscontinue this equipment and exercising good judgment. knock Swan. That organization if it is not the most respected name in its field, at least repre sents a high water mark. But let's not market CB equipmen under the guise of amateur radio equipment. Call it what it is and give that segment of the market quality equipment as dependable and as legal as we now of free enterprise and free mar keting alien. But there is enough amateur radio equipment avail able already which can be put to improper use - why add more? Thank you for your patience. Keep 73 as comprehensive and as thought-provoking as it is now. I am sure it will continu to grow both in eminence and in Mike WB8BOI,

1951 Burns Ypsilanti MI

Although I agree with both your and Swan's basic premise that an 11 m monitor would be a good indication of 10 m band ust as well with a single crystal controlled CB receive channel that is busy enough to be useful and yet it is of little or no inter if Swan was not contemplating a CB market, why was the ri advertised in CB magazines? The three points brought out in your editorial are also rather faulty First, any CB'er that would spend the money to buy the converting it or finding someon who can. Second, several CB'ers have been heard on 10 m recenty (an advance patrol checking

73 is always happy to pub licize all facets of every issue feelings, and without regard for the relative repercussions of readers and/or advertisers. Perhaps some of these letters have evened the odds a bit.

You apparently don't know much about the average CB'er Not one CB'er in two hun What would have been alseep would have been: " Would have any trouble finding those two wires going to the range switch back wafer'. As to the CB'ers joining the hams on Ten': Not JOIN - but use Ten - when there were no hams on, late at night when all the hams on CB: Yup; listen some time. The guys on CB talk about their KWM-1s, and wKs all day long. Many of these guys have both ham and CB tickets, but use a code name instead. Lastly as for the innocence of Swan Why do they call it the 1011 rather than the 1050 or 310 or some such number more closely menclature? Why is the dial so well calibrated for $C B$? Why is the ac supply and speaker built-in? Why are both sidebands pro vided for, when most hamband rigs provide only one per band? Why are the CB channels numbered rather than in MHz or kHz?? Ask yourself these queswhich is to me obvious. One thing aboue your 'lunatic fringe': we're for the most part one jump ahead of you in the think department. And we seldom jump from opinion to opinion as the money interests dictate, in the manner of some of you non-lunatic types. Bravo. and sale of the Swan superpowered CB rig, because I nave spotted from the start just what the underlying purposi is be-
often tedious, thankless work? I personally knew a League director (one whom you unjustly Even though we often disagreed on some of our ideas he was an honest, and hard working individual, truly dedicating his spare time in the interests of ham radio. His only operating was in occasional MARS work. You think it is a crime, apparently, When an individual holds down a demanding job, raises a family keeps his home in repair, works damently to maintain a college official pressure to abolish it, and takes an active interest in promoting the success of a college radio club in addition to his responsibilities as a League director, when is he supposed to find time to operate? This man, whom you so thoughtlessly critized, felt it his obligation as many clubs and hamfests in his jurisdiction where he was conspicuously found listening to the ideas and suggestions of his constituents. He often had to make long trips away from his family in the pursuance of his duties, to sit long and tedious ourly money he received for those efforts was a partial payment of his gas money
Even in your more innocuous articles you seem to have to throw shit in somewhere! A prime example appears on the news page. Are you people so code? Have you invo one uses means of transmitting "smoke signaling, semaphore, drumbeating, and letter writing" via radio (other than by facsimile or ATV)? I think not! If I'm wrong, I dare you to print the mechanism in your next issue. The FCC does not test the use of the English language or snide remark was thrown in by an angered, biased, bigoted individual who would, if he had his

My feeling is that a helter skelter system of getting what reading of amateur sentiment should not be acceptable to League members. I have been nvolved in conducting adverising and consumer reaction surveys for years for a billiondollar organization. I maintain hat a uniform method must be adopted in order to come up the case of the League they let ach director spin off on his own without uniform direction Perhaps they wanted to make sure that the results would par allel their predetermined decision. Frankly, I feel certain up before the survey was even

Al W4YHB Box 1909 , Hendersonville NC

I have been progressively disllusioned with ARRL and QST In fact, I am of the opinion that ncentive licensing is one of the ew good things they have pro moted. QST has gone downhil in the past few years; in its enility it has run endless artcles on the museum, the wouffactured , ear etc. with very ittle material for the amateur. I hope that 73 doesn't mind ittle constructive criticism: lew a whole buck the other ay on my first 73 in years hoping that your initial burst of vitriol at the League had burned the aut. It is one thing to stir ation and quite another to keep harping away for years on iewpoints which are, in the final analysis, merely those of a couple of guys in New Hamphire and not divinely etched on tablets of stone. I refer, for "Nample, to the article in the Ne FCC wherein you report tha code requirements for the extra class licenses, a development which I heartily concor. Your writer then has to add the some-

You got your nerve saying hat Director Dannals hindered sonally and like him, he was nominated and elected by a single petition which proves he's best for the job or is it 73 's let you put your booth in the convention (Hudson). I see why you are against incentive licen erals there's 1 Advanced and maybe 0.6 Extras. You can really appeal to the majority (Generals) in trying to boos your magazine overnight. You know as well as I do that Ad anced with little studying is easy to obtain. I am 13 year ket. You hold one yourself. As I close this letter I remind you to be a little less greedy and be cause a man (our director) refuses to let you in, you strike him down without reason bu only to retaliate. If you think P.S. We did. See Mr. Virgo
Himself editorial, December issue.

Bravo!!! I was tickled pink when I saw your notice on dothe ARRL but not all the peo ple who claim to represent it The director mentioned is certainly not one of my favorite hams. When 1 lived on Long Island I was not able to have rig on the air. I had some mportant traffic to get out so was very curt and told me he wouldn't be able to put this traffic on any net. Somehow, i he is unable to support public service how can be represen amateur radio? Why not take a close look at all ARRL official when they come up for re must be a large number of must be a large number on with) who are not the best of al candidates for the job. Why do they get reelected? The standard answer is "They are nice guy from the good old days and they have been SCM for a long
of the illicit 10 m operators hav
been apprehended is the same a the reason that few of the boot eggers that stay on the 23 CB not kind are ever halted: they re ation that ugn to use identifitrace them the FCC can use to enough men to catch the mis takes of legal operators, much less deliberate violators that would have to be tracked down individually. Third, I know of many amateurs who would take extreme delight in loading up high-power transmitter for a couple of hours on any CB channel. the same type that willfully jam emergency traffic because they hate nets, and other nice things along the same lines.
The above did not prompt me to write this letter anywhere near as much as K6MVH's re ference to the "lunatic fringe." One of the leaders of the anti1011 movement was WA6KZI, Angeles - one of the foremost fighters for reform within the also backed by ARRL Director John Griggs, a ham whose bid for reelection is supported by 73 in the same issue in which your editorial appeared. In two fair-sized Southern California wood ARCs, there were Ingle any, members that thought the 1011 a good idea. Some of the Southland's most responsible amateurs are members of these wo clubs. And these are well informed men and women, not unatics! I consider myself a 73 supporter, so I hope you take taken - as constructive criticsm. It is a needed irritant that may someday bother the ARRL oneting really construc ive, as well as being an interesting experiment in the expression of free speech. However, I think that you should worry more than losing one your readers advertiser.
Dan WA6FQC
3630 Bentley, L.A. CA
to get a ham tícket, and with no
real reason to have business real reason to have businessfairly well clear of both services. However, there are good CB'ers that can hardly be denied. Yet the facts are that the reason self-policing doesn't work on CB is that all CB'ers have something to hide from their fellow CB'ers; so far be it from any one of
them to crack down on 'The Bobcat' working skip on a restricted channel with a huge linear, because, why, they've got a linear hidden in the attic hemselves

So much for CB; I'm in favor of not only restoring the license structure so that a General Tic ket will amount to something we NEED a paid lobby in Wash ington. Whatever happened to the IOAR? am largely in agree ment with those who oppose he ARRL; I think the ARRL is a good example of a parasite killing the host. I still can't see can have a stock portfolio!! The ARRL is phoney through and through, and the sooner all the hams find it out and act accord ingly the better off we all will

Bill K9FOV,

424 Bomberding, Lafayette IN
DANNALS, THE LEAGUE, ETC sm favor just and honest criticsm (backed by documented fact with nothing conveniently one's emotey to prove somethe type youl feelings), not what you print is often or misleading print is often eithe gerated out of proportion. No damned wonder, Dannals wouldn't be in favor of allowin you in the convention. I will no longer allow you in my home Whter my subscription expires. Why not support amateur radio and all its many and diversified ment and tear of trying to frag one of $y o u$ is a League director? Why not? Is it because you don't make enough money from it? Is it because it is hard and
me for the simple reason that the statement was so ridiculous y absurd and out of place. It is tre boring repetition of such throughout your magazine crap soon leads one to begin to doubt the veracity of anything you have to say, even if it may be true. Don't you see that if you had legitimate beefs about things, and commented truth ully about them without twist ed falsehoods, half-truths, and asinine statements, people your veracity? Your begin to doubt CW is reminiscent of the child ish AM vs SSB arguments which used to plague our phone bands

Steve Conn

2 Palstead, Westfield NJ

It is possible to express opin
ions without being vulgar, you now.

For a number of years I felt imed much of the criticism ustified, but I have changed my mind. It took only two letters to the League to realize what a shallow-minded group of so called executives are heading up he activities that are of grave mportant to amateurs around world
Why have I changed my attitude? Back in September 1 wrote a letter to the League on September issue. I specifically challenged a statement which "Was in response to this question: board, then did the League's board reject expansion (of the 'because a thorough reading of amateur sentiment showed no widespread desire for affirmative action." Then they continue ". ., at the board meeting, directors reported on sentiment within their divisions. Some had taken direct mail polls of membership opinion; some only samcouncel and similar organizational channels."

FCC does not require today's amateurs to be skilled in SUCH MUNI smolications media a drum signalling, semaphore, ing" A side from the ill-r involved in injecting editoria bias into news articles, the writ er of your article should know hat there is no media of communication totally unrelated to any other. The requirement that the Extra class be proficient in code is a good one. Anyone who (disk-jeard the voice-only do maintain communications when signals are weak, and then compared it to the real com municator who uses the key to find a clear channel, will realize that CW has definite uses, even in the phone band. If your goa with crease disk-jockey hams, cute phonetics, etc, then rigs, nical knowledge and code quirements are superfluous.
I have been looking for
rich in technical material. I had hoped that 73 would forget the politics and Wayne Green editorials, but such is not the case Those of us who, travel for a iving find Wayne's adventures very unimpressive and it seems such editorials as in the November issue - something about Women's Lib - I never did finsh it.

You people at 73 seem so very, very opinionated! You are oo certain that what you say is he ultimate, final word; you with you in such a shrill manner as to discourage all discussion You are taking all the fun out of ham radio. I note most of the etters you print are those bearng orchids, so doubt if this will see the light of day
Ben W7FNE.
Box 103, Tolovana Pk OR

Didn't the editorial make you stop and think?

Ken and Wayne
time." That's a pretty sick rea-
son to elect a fellow to office.
Don't vote unless you know the candidates. Why put in someone who will give you only mediocre representation? I really hate to see these people consistently abuse their position by exerting influence in the name of the know "rewards" sure one SCM know rewards" his friends for ways, such as making strong suggestions towards their receiving "amateur-of-the-year" awards. This is an endless list of misdoings and I won't belabor the point,

I don't mean to sound like sour grapes on the subject of the
ARRL. I have applied for life membership (same with 73). I only hope that those people who represent Newington are the best possible people for the job.

Bob Harper W1FKP

I'm enough of a prude to not enjoy hearing words used on the air except a call obscene is a picture of the napalming of jungle villagers, or the wasted bodies of African children being systematically starved, or the murder of a man defend a president or a villager is an obscenity charge which has substance, since the purveyor are doing it for money The obscenities of the ham frater nity, by comparison, are smal boys experimenting with the language. They outgrow it, or the FCC monitors can be alert ed.
A "heated discussion'", on politics, sex, or religion can't be ideas are born in the telling and f there is one thing this country needs, it is ideas, good, bad and n-between. If I can make some one think, I may make him unhappy and I suppose this is bad. But I'm unconvinced that it is.

Jack Weatherly K1ZYG
Auburnda Auburn St.

RG 196 AU 50 ohm teflon coaxial cable. Outside diameter 080" RF loss .29 db per foot at 400 Mhz . Silver plated shielding and conductor Used for internal chassis wiring, antenna coupling, RF coupling between stages, etc. Random lengths from 35 foot to 150 foot. Colors: black, red, brown, blue, grey, orange. Regular price-23d per foot. Our price $5 d$ per
oor
455 Khz ceramic filters type BF-455-A. These filters will help to sharpen the selectivity of most sets using 455 Khz IF's. Use across cathode bias resistor in place of a capacitor, or in transistorized sets, across the emitter bias resistor. Impedance is 20 ohms at 455 Khz ., DC resistance is infinite Impedance increases rapidly as you leave 455 Khz . Plan your own LC filter circuits at very low cost.
10 for $\$ 1.0025$ for $\$ 2.00$
TOROID POWER TRANSFORMERS
T-2 This toroid was designed for use in a hybrid F.M. mobile unit, using a single 8647 tube in the RF amp. for 30 watts output. Schematic included. 12 VDC pri. using 2N1554's or equivalent. Sec. \#1 500 volts DC out at 70 watts. Sec. \#2 -65 volts DC bias. Sec. \#3 1.2 volts AC for filament of 8647 tube. Sec. \#4 C/T feed back winding for 2N1554's. $1 / /^{\prime \prime}$ thick. 2% :" dia. $\$ 2.95$ ea. -2 for $\$ 5.00$ T-3 Has a powdered iron core and is built like a TV fly back transformer Operates at about 800 CPS. 12 V DC Pri. using 2N442's or equivalent. DC output of V/DBLR 475 volts 90 watts. C/T feed back winding for 2N442's

$$
\text { TRANSFORMERS } \quad \$ 2.95 \mathrm{ea} .-2 \text { for } \$ 5.00
$$

P. 7117 VAC Pri. Sec. \#1 185 VAC@ 120 ma . Sec. \#2 6.3 VAC @ $4 A$ Double Half Shell Mail Box Type. Sx 146 type. $\$ 2.75$ ea. -2 for $\$ 5.00$ P-9 117 VAC Pri. Sec. \# 900 VAC @ 300 ma . Sec. \# 2100 VAC @ 10 ma . Bias. Sec. \#3 12.6 VAC @ AMP. Wt. 161/2 lbs. Double Half Shell $\$ 4.50$ P-10 117 VAC Pri. Sec. \#1 960 VAC C.T. @ 160 ma . Sec. \#2 425 VAC C.T. and tap at 100 VAC 10 ma Bias. Sec. \#3 $12.6 \mathrm{VAC} @ 4.5 \mathrm{~A}$ Double Shell Mail Box type. Wt. 83/4 lbs.

59 cents or $\quad 3$ for $\$ 1.50$ Output transformers, all types Diamond. Imp. 15 ohms to 3.2 ohms DC OT-1 Transistor TO-3 Power
Res. Pri. 60 hm . Sec. 3 ohm .
OT-2 Pri. imp. 7000 ohm. Sec. $3-2$ and 500 ohm for Phones or 70 volt line 3 watts. Full shielded Double Half Shell.
OT-3 Pri. imp. 5500 ohms. Sec. 3.2 ohms. SC1 22 type.
All prices F.O.B. All weights listed are net. Please allow for packaging. Please allow enough for postage. We will return any extra.

JEFF-TRONICS

FINE TEST EQUIPMENT

Used, checked and guaranteed in top condition.
 Mc. with plug-in converters,
not included
H-P 185-A Sampling Scope with 187 dual-trace preamp. \& probes. 1000 Mc .
H-P 120 Scope dc to 450 Kc .
H-P $200-\mathrm{CD}$ audio oscillator 6 cps- 200 Kc Portable.
H-P 212-A Pulse Generator
H-P 202-A Low-freq. Function Generator.
Rutherford B-2 Pulse Generator.
Nems-Clarke 1412 Receiver, $215-2 \dot{6} \dot{6} 00$ Mc. Exc. con., except VU meter
missing
Gertsch CRB-2BR Complex RationBridge.
Gertsch PT-2 Standard Ratio Transformer. Portable.

Ballantine 305 Peak-to-Peak VTVM.
Ballantine 310 AC VTVM.
G-R 546-C Audio Freq. Microvolter.
G-R 736-A Wave Analyzer.
G-R 648-A Strobolux.
Berkeley 5570 Frequency Counter
0-42 Mc.
$\$ 275.00$
$\$ 400.00$
$\$ 600.00$ $\$ 125.00$

$\$ 90.00$

 $\$ 75.00$ \$800.00 $\$ 100.00$$\$ 125.00$ $\$ 125.00$
$\$ 100.00$
$\$ 80.00$ $\$ 50.00$ $\$ 45.00$ $\$ 35.00$ $\$ 100.00$ $\$ 45.00$
$\$ 250.00$
BC-221 Freq. with cal. book.
eta Electronics 301-A Microammeter. Ranges full scale. .001 to 100 microamps
Tektronix Type D plug-in, Hi-gain DC Differentia
Tektronix Type E plug-in, Low-level AC Differential. $.05 \mathrm{mv} . / \mathrm{cm}$.
$\$ 75.00$
$\$ 40.00$
$\$ 60.00$
$\$ 60.00$
Send $25 d$ for catalog of surplus test equipment, parts, new \& used ham equipment.

JEFF-TRONICS

4252 Pearl Rd. Cleveland, Ohio 44109
749-4237

PROPAGATION CHART J. H. Nelson

Good 0 Fair (open) Poor \square
January 1971

$\begin{array}{cccccccc} & & & & 1 & 2 \\ 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 10 & 11 & 12 & 13 & 14 & (15) & (16) \\ 17 & (18) & 19 & (20 & 21 & 22 & 23 \\ (24) & (25) & (26) & (27) & 28 & 29 & 30 \\ \hline \end{array}$

EASTERN UNITED STATES TO

ALASKA	14	7 A	7	7	7	7	7	7	14	21	21	21
ARGENTINA	14	7	7	7	7	7	14 A	21	21	21	21 A	21
AUSTRALIA	21	4	7 B	7 B	7	7	7 B	14 B	14 A	21	21	21
CANAL ZONE	14	7 A	7	7	7	7	14	21	21 A	21 A	21 A	21
ENGLAND	7	7	7	7	7	7 B	14	21 A	21	14	7 B	7
HAWAII	21	14	7 B	7	7	7	7	7 B	14	21	21 A	21 A
INDIA	7	7	7 B	7 B	7 B	7 B	14	14	14 B	7 B	7 B	7
JAPAN	14	7 B	7 B	7 B	7	7	7	7 B	7 B	7 B	7 B	14
MEXICO	44	7 A	7	7	7	7	7	14 A	21	21 A	21 A	21
PHILIPPINES	14	7 B	7 B	7 B	7 B	7 B	7	7	7 B	7 B	7 B	7 B
PUERTO RICO	14	7	7	7	7	7	14	21	21	21	21	14
SOUTH AFRICA	14	7 B	7	7	7 B	14	21	21	21 A	21	21	14
U. S. S. R.	7	7	7	7	7	7 B	14	21	14	7 B	7 B	7
WEST COAST	21	4	7	7	7	7	7	14	21	21 A	21 A	21

CENTRAL UNITED STATES TO:

ALASKA	21	14	7	7	7	7	7	7	14	21	21	21 A
ARGENTINA	21	14	7	7	7	7	44	21	21	21	21 A	21 A
AUSTRALIA	21	14	7 B	7 B	7	7	7	7 B	14 A	21	21	21
CANAL ZONE	21	14	7	7	7	7	44	21	21 A	21 A	21 A	2 AA
ENGLAND	7	7	7	7	7	7	7 B	44	21	14	7 B	7 B
HAWAII	21	14	7 B	7	7	7	7	7	44	21	21 A	21 A
INDIA	7	7	7 B	7 B	7 B	7 B	7 B	7	7 B	7 B	7 B	7 B
JAPAN	21	14	7 B	7 B	7	7	7	7	7	7 B	7 B	14 A
MEXICO	14	7	7	7	7	7	7	14	21	21	21	21
PHILIPPINES	21	14	7 B	7 B	7 B	7 B	7	7	7	7 B	7 B	14
PUERTO RICO	14	7 A	7	7	7	7	14	21	21 A	21 A	21 A	21
SOUTH AFRICA	14	7 B	7	7	7 B	7 B	14	21	21 A	21	21	21
U. S. S. R.	7	7	7	7	7	7 B	7 B	14	14	7 B	7 B	7 B

WESTERN UNITED STATES TO

ALASKA	21	14	7	3 A	3 A	7	7	$3 A$	7	14	21	21
ARGENTINA	21	14	14	7	7	7	7 B	14	21	21	21 A	2 A
AUSTRALIA	21 A	21	21	7 B	7	7	7	7 B	14	21	21	21
CANAL ZONE	21	14	7	7	7	7	7	14	21 A	21 A	21 A	21 A
ENGLAND	7 B	7	7	7	7	7	7 B	7 B	14 A	14	7 B	7 B
HAWAII	21 A	21	14	7	7	7	7	7	14	21	21 A	21 A
INDIA	7 B	14	7 B	7 B	7 B	7 B	7 B	7	7	7 B	7 B	7 B
JAPAN	21	14	7 B	7 B	7	7	7	7	7	7 B	7 B	14 A
MEXICO	21	14	7	7	7	7	7	14	21	21 A	21 A	21
PHILIPPINES	21 A	21	7 B	7 B	7 B	7 B	7	7	7	7	7 B	14 A
PUERTO RICO	21	14	7	7	7	7	7	14	21 A	21 A	21 A	21
SOUTH AFRICA	14	14 B	7	7	7 B	7 B	7 B	14	21	21 A	21	21
U. S. S. R.	7 B	7	7	7	7	7 B	7 B	7 B	14	7 B	7 B	7 B
EAST COAST	21	14	7	7	7	7	7	14	21	21 A	21 A	21

$A=$ Next higher frequency may be useful also.
$B=$ Difficult circuit this period.

From IBM Compufers,
Guaranteedl W/Spec Sheets
LINEAR AMPLIFIERS

702C DC Amplifier 709C Operational Amp 710C Differential Comp. 71IC Sense Amplifier

FAIRCHILD 741C HIGH PERFORMANCE

3 for \$6
Similar to 709 but frequency compensated

POPULAR "LINE LITERS"
1 Tumene Dioded 1 IN3716 for amps.ose 1-Watt Audio "IC amplifier" WC334 1 Voltage Regulator, $0-40 \mathrm{~V}$ pos 4 - 2N4409 Nixie tube drivers
1 - 15 Amp 200 PRV Triac stud
2 Unijunction transistors 2N4891
2 N-Channel plastic Fets 2N381,9 Texas
S - 3Amp 600V top hats silicon 4 - 3Amp 800 V top hats silicon
$1-2 N 3632400 \mathrm{MC}$ 3A.20W. npn sil 1 -5U4 Raytheon silicon tube 3 - ER-900 Trigger diodes, triacs 3 - ER-900 Trigger diodes, triacs.
$2-2 N 2419$ Unijunction transistors 25 GE 1 Amp silicon rects, to 1000 V 1 - 1 N2929 Tunnel diode, Centralab TO-18
4-ft Fiber Optic Lite Pipe w/jacket 10 - 1 Amp 800 piv silicon rectifiers 8 - 1 Amp 1000 piv silicon rectifiers $\begin{array}{lll}10-1 A m p \\ 8-1 A m p \\ 1000 & \text { piv silicon rectifiers ... } & 1.00 \\ 1-2 N 3055 & \text { NPN } 100 V & 15 A \\ 103 & \text { trans } & 1.19\end{array}$

EPOXY RECTIFIERS

$4000 \quad 1.35$

5000	2.25	
6000	2.96	SILICON

8000	3.50	
10000	3.95	RECTIFIERS

6-Amp SILICON	SALE	
FULL WAVE BRIDGES	PIV	Sale
		\$1.19
	100 200	1.39
	400	1.85
	600	2.15
		2.50 2.95

GIANT SALE ON NEW ITL

 TEXAS \& NATIONAL ICsGuaranteed! W/Spec Sheets Any 3-10\% Discountl
Type

Description

SALE
\square SN7400
Quad 2 Input Na
nd Ga ate \$ SALE

SN7402N
Quad 2 Input NOR Gate .88
.89
.99
N7404N Hex Inverter SN7410N Triple 3 In. NAND Gate99
.88
SNTA20N Dual 4 In. NAND Gate 8 Input NAND Gate \qquad Dual 4 In. Nand BUFFER Dual 4 In. Nand BUFFER BCD to Decimal Driver .88
4.95 SN7440N
SN7440F SN7441N SN7441N
SN7442N $B C D$ to Decimal Driver 4.95 SN7470F J-K Flip Flop J-K Flip Flop Dual J-K Master Slave Flip-Flop
Dual "D" Type Edge
Triggered Flip Flop
4 Bit Bistable Latch Ch.
\qquad 49
\square SN7474N
\qquad 2.95
$\square \begin{aligned} & \text { SN7475N } \\ & \square \\ & \text { SN7476N }\end{aligned}$
Flip Flop \qquad
\square SN7483N 4 Bit Binary Full Adder 1.49
SN7490N Decade Counter \qquad Count.......... er
SN7493N 4 Bit Binary (divide by 16) .. 3.98
..
4.98
4.50
SN7495N 4 Bit Right \& Left Register ..
Code: F - Flat Pak, N - Dual Inline

"CELESTIAL LIGHTS" 3-LEVEL FIBER OPTIC DISPLAY KIT

- 1400 multi-colored fibers - $18^{\prime \prime}$ high of brite lites - Cordless light source - Variable color control - SAFE! FUN! EDUCATIONAL!

Kit: 1400 glass fibers 2 -ft. long, accessories.

FAIRCHILD'S POPULAR "IC" TWINS - RTL. 914 \& RTL923

 SPRAGUE- $1 C^{\prime} \mathrm{S}$Your Choice
3 for $\$ 1$
908 Full Adder
909 SPRAGUE- $1 C^{\prime} \mathrm{S}$
Your Choice
3 for $\$ 1$
908 Full Adder
909 SPRAGUE- $1 C^{\prime} \mathrm{S}$
Your Choice
3 for $\$ 1$
908 Full Adder
909 SPRAGUE- $1 C^{\prime} \mathrm{S}$
Your Choice
3 for $\$ 1$
908 Full Adder
909 SPRAGUE- IC's
Your Choice
3 for $\$ 1$ SPRAGUE- $1 C^{\prime} \mathrm{S}$
Your Choice
3 for $\$ 1$
908 Full Adder
909
 SPRAGUE- $1 C^{\prime} \mathrm{S}$
Your Choice
3 for $\$ 1$
908 Full Adder
909

.O. BOX 942 A Lynnfield, Mass. 01940

Terms: add postage. Rated: net 30 , cod's 25%
Phone Orders: Wakefield, Mass. (617) 2
Retail: 211 Albion, St., Wakefield, Mass.

GATEWAY ELECTRONICS

6150 DELMAR BLVD., ST. LOUIS, MO 63112 314-726-6116

1ST LINE - FACTORY FRESH - IC'S

7400 SERIES GATES - (any type - please specify)
Dual Inline Package $\$.50$
7490 COUNTER, 7475 QUAD LATCH, 7441A NIXIE DRIVER.Ideal for building counters, digital clocks, digital voltmeters, etc
All 3 for only
$\$ 7.50$
930 SERIES DTL GATES - (any type please specify)
Dual Inline Package
. $\$.50$
7400 SERIES DUAL FLiP-FLOPS - (any type - please specify)
Dual Inline Package \$1.00
709 OP AMP IN TO-5. Used for pre-amps, RTTY TU,
and AFSK OSC.
\$1.25
NL-940 DIGITAL NIXIE TUBES Numerals 0-9 w/decimals \$4.75
5 VOLT DC REGULATED POWER SUPPLY Kit for IC projects - 1 amp output, uses LM309 voltage reg. IC protected against overload, short circuit and literally goofproof. With PC board, schematic and spec sheet.
Complete
COAX ANTENNA RELAY 115 VAC with BNC Connectors.
New packed
$\$ 5.00$
Send for catalog available now. Minimum order $\$ 5.00$. Stop in and see us when you're in St. Louis.

PEP's SPECIAL! CIRCUIT BOARD COLLOSSAL

Loaded with components up to $\$ 100.00$
value. Bought out one supply houseFIRST come-FIRST served!
All Different! All Complete! First Line Units! If you don't feel that you got your money's worth-full return guaranteed.
3 DIFFERENT GROUPINGS TO CHOOSE FROM
Group a - Actual Value \$15.00 - PEP Price \$1.25
SAMPLE A - 1: 200 diode - 7 transistors over 50 resistors - complete with board.
SAMPLE A-2: Four 1. C. Mounting Blocks - 3transistors - over 25 resistors - complete with board.
GROUP B - Actual Value \$20.00 - PEP Price \$1.75
SAMPLE B-1: 8 I. C. Mounting blocks over 50 resistors - 32 transistors over 30 diodes - complete with board.
SAMPLE B 2: 32 transistors - over 100 resistors - capaciters - over 15 diodes - completp with board
GROUP C - Actual Value $\$ 50.00$ - PEP Price $\$ 4.50$
SAMPLE C-1: 22 in-line I.C.s -
over 75 diodes - 20 trans. -
over 50 resistors - capacitors complete with board.
SAMPLE C-2: 22 in-tine I.C.s over 50 diodes - over 50 resist capacitors - complete with board
LIMITED SUPPLY! Hurry and place your order for the best buys!!!

NO SALES TAX - WE PAY POSTAGE

PARK ELECTRONIC PRODUCTS

P.O. Box 99, N. Salem, N.H. 03073

73 Reader Service Coupon

Now we don't, say that every single reader must buy every last product advertised in 73 We believe that, but we don't say it. The very least every reader can do is to put on a show of interest in the products herein advertised. To make this a simple task, even for the laziest reader (now there is a contest for you!), we have cleverly arranged the advertising index to double as a readers service coupon. All you have to do is tear it out (or photocopy it) and send it in with the appropriate boxes marked. (We have a prize for the most boxes marked ... a silent prayer of thanks from the publisher). We'll accept postcards, slips of paper, or almost anything else that lists the companies you want to hear from and your address.

No one likes to go into a store without buying something, right? It is the same with these information requests. You will be expected to buly something. Oh, it doesn't have to be a $\$ 50,000$ antenna system, but it should be something modest... a transceiver... a linear . . . you know. We'll leave the decision up to you, knowing that we can trust you to do the right thing.

And we are definitely not saying that the use of this service coupon has any curative powers, but we cannot but notice that many readers report remarkable relief from simple backache, headaches, lumbago, and acid indigestion after sending in their coupon. Why take any chances?

Advertiser Index

[^0]: Manufactured by Varitronics . . still the leaders in quality amateur FM equipment.

[^1]: Henry Radio has a great antenna package program . . . big savings. Write for literature.
 EASY FINANCING - 10% DOWN OR TRADE-IN DOWN • NO FINANCE CHARGE IF PAID IN 90 DAYS - GOOD RECONDITIONED EQUIPMENT - Nearly all makes and models. Our reconditioned equipment carries a 15 day trial, 90 day warranty and may be traded back within 90 days for full credit toward the purchase of NEW equipment. Write for bulletin. Export inquiries invited.

[^2]: Patzsch ■

