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PREFACE

In numerous communities where night schools and extension
classes have been started or planned, or where men wished to
study privately, there has been difficulty in finding suitable
textbooks. No books were available in English, which brought
together the fundamental subjects of mathematics and element-
ary science and the principles and practice of pulp and paper
manufacture. Books that treated of the processes employed
in this industry were too technical, too general, out of date, or so
descriptive of European machinery and practice as to be unsuit-
able for use on this Continent. Furthermore, a textbook was
required that would supply the need of the man who must study
at home because he could not or would not attend classes.

Successful men are constantly studying; and it is only by
studying that they continue to be successful. There are many
men, from acid maker and reel-boy to superintendent and mana-
ger, who want to learn more about the industry that gives them a
livelihood and by study to fit themselves for promotion and in-
creased earning power. Pulp and paper makers want to under-
stand the work they are doing—the how and why of all the
various processes. Most operations in this industry are, to some
degree, technical, being essentially either mechanical or chemical.
It is necessary, therefore, that the person who aspires to under-
stand these processes should obtain a knowledge of the under-
lying laws of Nature through the study of the elementary sciences
and mathematics, and be trained to reason clearly and logically.

After considerable study of the situation by the Committee
on Education for the Technical Section of the Canadian Pulp
and Paper Association and the Committee on Vocational Educa-
tion for the Technical Association of the (U. S.) Pulp and Paper
Industry, a joint meeting of these committees was held in Buffalo
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vi PREFACE

in September, 1918, and a Joint Executive Committee was ap-
pointed to proceed with plans for the preparation of the text, its
publication, and the distribution of the books. The scope of the
work was defined at this meeting, when it was decided to provide
for preliminary instruction in fundamental Mathematics and
.Elementary Science, as well as in the manufacturing operations
involved in modern pulp and paper mill practice.

The Joint Educational Committee then chose an Editor,
Associate Editor, and Editorial Advisor, and directed the Editor
to organize a staff of authors consisting of the best available men
in their special lines, each to contribute a section dealing with his
specialty. A general outline, with an estimated budget, was
presented at the annual meetings in January and February, 1919,
of the Canadian Pulp and Paper Association, the Technical
Association of the Pulp and Paper Industry and the American
Paper and Pulp Association. It received the unanimous approval
and hearty support of all, and the budget asked was raised by
an appropriation of the Canadian Pulp and Paper Association
and contributions from paper and pulp manufacturers and allied
industries in the United States, through the efforts of the
Technical Association of the Pulp and Paper Industry.

To prepare and publish such a work is a large undertaking;
its successful accomplishment is unique, as evidenced by these
volumes, in that it represents the cooperative effort of the Pulp
and Paper Industry of a whole Continent.

The work is conveniently divided into sections and bound into
volumes for reference purposes; it is also available in pamphlet
form for the benefit of students who wish to master one part
at a time, and for convenience in the class room. This latter
arrangement makes it very easy to select special courses of
study; for instance, the man who is specially interested, say, in
the manufacture of pulp or in the coloring of paper or in any
other special feature of the industry, can select and study the
special pamphlets bearing on those subjects and need not study
others not relating particularly to the subject in which he is
interested, unless he so desires. The scope of the work enables
the man with but little education to study in the most efficient
manner the preliminary subjects- that are necessary to a
thorough understanding of the principles involved in the manu-
facturing processes and operations; these subjects also afford an
excellent review and reference textbook to others. The work
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is thus especially adapted to the class room, to home study,
and for use as a reference book.

It is expected that universities and other educational agencies
will institute correspondence and class room instruction in
Pulp and Paper Technology and Practice with the aid of these
volumes. The aim of the Committee is to bring an adequate
opportunity for education in his vocation within the reach of
every one in the industry. To have a vocational education
means to be familiar with the past accomplishments of one’s trade
and to be able to pass on present experience for the benefit of
those who will follow.

" To obtain the best results, the text must be diligently studied;
a few hours of earnest application each week will be well repaid
through increased earning power and added interest in the daily
work of the mill. To understand a process fully, as in making
acid or sizing paper, is like having a light turned on when one
has been working in the dark. As a help to the student, many
practical examples for practice and study and review questions
have been incorporated in the text; these should be conscientiously
answered.

The Editor extends his sincere thanks to the Committee and
others, who have been a constant support and a source of in-
spiration and encouragement; he desires especially to mention
Mr. George Carruthers, Chairman, and Mr. R. S. Kellogg,
Secretary, of the Joint Executive Committee; Mr. J. J. Clark,
Associate Editor, Mr. T. J. Foster, Editorial Advisor, and Mr.
John Erhardt of the McGraw-Hill Book Company, Inc.

The Committee and the Editor have been genecrously assisted
on every hand; busy men have written and reviewed manuscript,
and equipment firms have contributed drawings of great value
and have freely given helpful service and advice. Among these
kind and generous friends of the enterprise are: Mr. O. Bache-
Wiig, Mr. James Beveridge, Mr. J. Brooks Beveridge, Mr. H.
P. Carruth, Mr. Martin L. Griffin, Mr. H. R. Harrigan, Mr.
Arthur Burgess Larcher, Mr. J. O. Mason, Mr. Elis Olsson, Mr.
George K. Spence, Mr. Edwin Sutermeister, Mr. F. G. Wheeler,
and American Writing Paper Co., Dominion Engineering Works,
E. I. Dupont de Nemours Co., F. C. Huyck & Sons, Hydraulic
Machinery Co., Improved Paper Machinery Co., E. D. Jones
& Sons Co., A. D. Little, Inc., National Aniline and Chemical
Works, Process Engineers, Pusey & Jones Co., Rice, Barton &
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Fales Machine and Iron Works, Ticonderoga Paper Co., Waterous
‘Engine Works Co., and many others.
J. NEWELL STEPHENSON,
- Editor
For THE
Joint Execurive CoMMITTEE ON VocaTioNAL EpucaTioN,

GEORGE CARRUTHERS, Chairman, R. 8. KeLLoGG, Secretary,
T. L. CrossLEY, G. E. WILLIAMSON, C. P. WinsLow.

Representing the Technical Sec- Representing the Technical As-
tion of the Canadian Pulp and Paper sociation of the (U. 8.) Pulp and -

Association Paper Industry.
T. L. CrossLEY, Chairman, GeorgE E. WiLLiaMsoON, Chairman,
GEORGE CARRUTHERS, HuagHr P. BAKER,
A. P. CoSTIGANE, Henry J. GuiLp,
DaN DAVERIN, R. 8. KELLOGG,
C. NeLsoN GaIN, .Orro KrEss,
J. N. STEPHENSON. W. 8. Lucey,

C. P. WiNsLow.
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SECTION 1

MECHANICS AND
HYDRAULICS

By J. J. CLARK, M.E.
(PART 1)

STATICS

NEWTON’S THREE LAWS OF MOTION

1. Mechanics is that branch of science that treats of forces and
their action on bodies to produce equilibrium or motion. Me-
chanies is usually treated under two main headings: statics and
dynamics.

Statics treats of forces that produce equilibrium; that is, of the
conditions that cause a body to be at rest or to be in uniform recti-
linear motion when acted on by forces. Dynamics treats of the
motion and change of motion of bodies when acted on by forces.

2. Force was defined in Elements of Physics, and was there
shown to be equivalent to a push or a pull. Throughout this
Section, under the head of Statics, forces will be considered as
equal to equivalent weights; that is, a force of, say, 10 pounds will
be considered as equivalent to a weight of 10 pounds.

3. Comparison of Forces.—In order to compare forces, it is
necessary to know four things regarding every force, viz.:

(a) The magnitude of the force (the value of the equivalent
weight).

(b) The line of action of the force (the right line along which
the force tends to move the point of application).

(¢) The direction along the line of action.

(d) The point of application (the point of the body at which
the force acts or may be considered as acting).

The necessity for the fulfillment of these four requirements will
be made evident by what follows.

il 1
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2 MECHANICS AND HYDRAULICS §1

4. Representing a Force by a Line.—A right line combined
with an arrowhead will completely represent a force. Thus, in
Fig. 1, if B is the point of application, the arrowhead
indicates that the force acts from B toward A, along BA, the
line of action—the line along which the force tends to move the
point of application. Now,if the length of the line be such that its
length multiplied by some number will give a product having the

same value numerically as the

c A number of pounds weight that

the force equals, then the line

BA represents the force com-

pletely. If the length of BA is,

say, .97 in., and 1 inch repre-

3 p sents 60 pounds, BA represents

Fra. 1. .97 X 60 = 58.2 1b. the magni-

tude of the force. The arrow-

head shows that the force acts from B toward A; if it acted

from A toward B, the direction of the arrowhead would be

reversed, and would then point toward B. The line BA is

called the line of action or action line, and like all right lines,
is indefinite in extent.

To draw a force, first draw the line of action; locate on this line
the point of application; place an arrowhead on the line, to
indicate the direction in which the force tends to move the point
of application; and, lastly measure off in the given direction a
length that will represent the magnitude of the force. Thus,
suppose several forces are to be laid off to a scale of 60 Ib. =1
in.; if one of these forces were 58.2 lb., its point of application
were B (Fig. 1) its line of action BA, and its direction from B
toward A, draw a line through B parallel to BA (it will coincide
‘'with BA in this case), place the arrowhead as shown,
and measure off 58.2 + 60 = .97 in. from B; then BA
will represent the force. If the magnitude of this force had
been 150 1b., the length of the line to the same scale would be
150 = 60 = 2.5 in.

Suppose it were desired to draw a force of 114 lb. at right
angles to BA, acting toward and at the point C, the scale being
the same as before. From C, draw CD at right angles to BA,
lay off from C 114 <+ 60 = 1.9 in. = CD, draw the arrowhead
pointing toward C, and DC represents the force. (The line is
read in the same direction that the force acts.) '




§1 NEWTON’S THREE LAWS OF MOTION 3

5. Three Laws of Motion.—The laws connecting force and
motion were first stated by Sir Isaac Newton (1642-1727), the
discoverer of the law of universal gravitation; they are called
Newton’s three laws of motion. These laws were first stated in
Latin, and consequently the wording in English by different
authors varies slightly. As here stated, the language is that of
J. Clerk Maxwell, one of the greatest of modern mathematicians
and scientists.

First Law.—Every body perseveres in its stale of rest or of moving
uniformly in a straight line, except insofar as it 18 made to change
that state by external forces.

This law means that if a body is free to move in any direction
and has motion, the direction of motion will be a straight line
and the velocity will be uniform. To change the direction of the
motion or to change the velocity requires that some force or forces
outside of the body (external forces) act on the body; no force
acting within the body (internal force) can have the slightest
effect in changing the motion of a body, either in direction or
velocity. The reason that a locomotive moves is because the
steam, an internal force, moves the piston, which causes the
connecting rod to turn the crank and with it the drivers; the
friction between the drivers and the rails causes the locomotive
to move ahead. All the forces are here internal forces except
the friction, which is an external force. If the rails were per-
fectly smooth, there would be no friction, and the locomotive
would not move. It is to be understood that change of motion
here means change either in direction or velocity or both.

The first law of motion is frequently called the law of inertia
(see definition of inertia in Elements of Phystcs), and it states
that only the action of an external force can change the state of
rest or of motion of any body. The law does not apply, of
course, to gases, all of which expand and fill vessels of any size,
no matter how large, but it does apply to every liquid and solid.

8. Second Law.—Change of motion is proportional to the im-
pressed force, and takes place in the direction in which the force is
tmpressed.

This law may otherwise be stated as follows: change of motion
i8 proportional to the acting force, whether it act alone or in com-
bination with other forces, and whether the body be at rest
or in motion; and the acting force tends to move the body in the
direction of its action line.
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According to this law, if a body is acted on by two or more
forces, the final result will be the same, however the forces act.
That is, the forces may all act simultaneously or one may act,
then another, and so on until all have acted. For example, if a -
stone be thrown in a horizontal direction from a height, say a
height of 20 feet, and another stone be dropped from the same
height at the same instant, both will strike the ground at the
same time, because the acceleration due to gravity being the
same and the height of the stones above the ground being the
same, gravity acts with the same specific force (force per unit of

[

Fia. 2.

mass) on both stones and pulls them to the ground in the same
time. The force acting to make one stone move in a horizontal
direction is at right angles to the force of gravity (a vertical force)
and has no influence in altering the effect produced by gravity.
Referring to Fig. 2, let O be the stone acted on by the horizontal
force F, and let OC be the height of the stone above the ground;
let ¢ be the time it takes the other stone to fall through the height
OC. Now suppose the force F is just sufficient to cause the
stone to strike the ground at B. Draw BA vertical and OA
horizontal, the two lines intersecting at A; then OABC is a
rectangle, and AB = OC; also, OA = CB. If gravity did not
act, the force F would carry the stone to A in the time ¢; but
since gravity does act during the entire time ¢ and produces a
variable velocity (acceleration) downwards, the path of the body
will be the curved line OB. One stone travels a much greater
distance than the other, but they both travel the same vertical
distance under the action of gravity.

That both stones will strike the ground at the same time may
be easily proved by direct experiment.
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7. Third Law of Motion.—Reaction is always equal and oppo-
sile to action, that i8 to say, the actions of two bodies upon each other
are always equal and in opposite directions.

‘This law may otherwise be stated thus: to every action (force)
there is always opposed an equal action (foxce), called the re-
action, which has'the same line of action as the acting force, but
is opposite in direction.

Examples of this law are everywhere. A book rests on a table;
the book presses against the table, and the table reacts and presses
against the book. This is readily seen in the case of a mass of
soft dough or putty; the reaction flattens it out at the surface of
contact and changes the shape throughout the mass. One cannot
lift one’s self by pulling on one’s boot straps, because the pres-
sure of the fingers against the straps is balanced by the force
(reaction) with which the straps press against the fingers, one set
of forces acting upwards and the other set downwards. This
explains why, in accordance with the first law, an internal force
cannot change the motion of a body. Unless great care is exer-
cised, a person cannot jump from a small row boat in open water;
the downward force exerted on the boat has a reaction, but the
force opposing the movement of the boat is so small that, unless
the jump is a vertical one or very nearly vertical, the boat will
move from under him and he will fall into the water. If the boat
is immovable, however, then the jump can be made, because the
reaction will then be balanced by an equal force holding the
boat.

The whole science of mechanics rests on the principles just
explained in connection with the three laws of motion; and since
frequent applications will be made of these principles, further
discussion of them will not be given here.

COMPOSITION AND RESOLUTION OF' FORCES

COMPOSITION OF FORCES

8. Definition.—By composition of forces is meant the process
of finding a single force that will have the same effect on the body
as the several forces that are considered as acting onit. Unless
otherwise stated, all forces will be considered as acting in the same
plane, and their lines of action will be assumed to pass through
the center of gravity of the body.
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The single force that is equivalent in effect to the action of
several forces is called the resultant of those forces. The method
of finding the resultant of two forces will first be considered.

9. When Two Forces Have the Same Line of Action.—In Fig. 3,
let BA and DC represent in magnitude and direction two forces,
of 156 and 108 Ib. respectively, the lines of action being parallel
and the point of application being A’. Asindicated by thearrows,

4_<__l!.¢_l!.________.,

L
®
A
u\

Fia. 3.

both forces act in the same direction. Through A’, draw B’A’
parallel to BA = 156 lb. If the scale is 1 in. = 80 lb., make
B’A’ equal in length to 156 + 80 = 1.95 in. Place an arrow-
head on B’A’, as shown. Since DC has the same direction as BA,
produce A’B’, lay off B’D’ = 108 <+ 80 = 1.35 in., and place the
arrowhead on D'B’ = D'C’, as shown. Then D’A’ = 156
+ 108 = 264 Ib., is the resultant of the two forces, and it will
produce the same effect on the body as the two forces.

If, however, one of the forces, say DC be refersed, so that the
two forces act in opposite directions, draw B’A’ (Fig. 4) as before;
then, if A’ is the point of application, lay off B’'D’ =DC= D'C'.

Evidently, D’C’ destroys

4A—— <188 5 , part of the force B'A’,
p108®, _, the remaining part D'A’=
: , B’A’ — D’C’ being the

catt o > g' resultant, which is equal in
' Fio. 4. magnitude to 156 — 108 =

48 1b. The result is similar
in effect to the action of two forces, one of 156 Ib. acting on one
side of a body and another of 108 lb. acting in the opposite
direction on the other side of the body. The greater force tends
to make the body move in the direction in which the force acts,
and its value is equal to the original force minus the opposing
force. The method of drawing the resultant for this case is
indicated in Fig. 4. :

If care has been exercised in drawing Figs. 3 and 4, it will be
found that the length of D’A’ in Fig. 3 is 3.3 in.; and since 1 in.
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= 801b.,, D’A’ = 3.3 X 80 = 264 1b. Similarly, D’A’ in Fig. 4
will be found to have a length of .6 in., and D’A’ = .6 X 80
= 48 lb.

10. When Two Forces Have Different Lines of Action.—Let
the magnitudes of the two forces be the same as before, both
having the same point of application, but with the directions
indicated by BA and DC in Fig. 5. If O is the point of applica-
tion, draw OE parallel to BA; using the same scale as bef?m,

make OF = 156 <+ 80 = 1.95 in., and place the arrowhead as
shown. Through O, draw F'F. If arrowheads are placed on
OF' and OF, it remains to be determined which of these two seg-
ments of F'F is to be taken as representing DC. This point is
settled by always drawing the two forces so that both will act
toward or both away from the point of application. Here OF and
OE both act away from the point O; but OF' acts toward O,
while OE acts away from O; hence, make OF = 108 + 80
= 1.35in. Now draw EG parallel to OF and FG parallel to OF;
they intersect in G, and the four lines make up the parallelogram
OEGF. From O, the point of application, draw the diagonal 0G,
and OG will represent the resultant in magnitude, direction, and
position; in other words, it represents the resultant completely.
This result follows at once from the second law of motion;
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because the force BA would carry the body from O to E, and the
force DC would carry the body from E to G, EG being equal to
OF = DC. Measuring OG, its length is found to be 1.2 in.;
hence, the magnitude of the resultant is 1.2 X 80 = 96 lb., and
its direction is from O toward G.

If the direction of one of the forces, as DC, be reversed, draw
OF = BA from the point of application O, as before; then,
referring to Figs. 5 and 6, the force CD must be laid off in the
direction OF’, making OF = CD if both forces are to act away
from 0. Complete the parallelogram as shown in Fig. 6 and
draw the diagonal OG, which is the resultant, between the two
forces OE and OF. Measuring OG, its length is found to be
3.1 in., which multiplied by the scale gives 3.1 X 80 = 248 Ib.,
the magnitude of the resultant. The direction of this resultant
is from O toward G.

11. To understand why the resultant is so much larger when
the forces act as in Fig. 6, suppose EOF to be a flexible rope and O
to be a round pin; a pull on the end E of 156 lb. and on the end
F of 108 1b. will produce a pressure on the pin of 96 Ib. in the case
of Fig. 5, and the pressure will tend to move the pin in the direc-
tion OG, the resultant. In the case of Fig. 6, the pull on the pin

_i8 248 pounds, and tends to move the pin in the direction OG,
the resultant. If the two parts of the rope, OE and OF, were
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parallel, the resultant would be parallel to both forces, and its
magnitude would then be the sum of the two forces, or 156 + 108
= 264 lb. As the ends of the rope spread outwards, the pull on
the pin becomes less and less, until when the two parts of the rope
become one, their center lines coinciding, as in F'OF, Fig. 5, the
pressure on the pin becomes 0, and there is no tendency for the
pin to move except in the direction of the greater of the two
forces acting along the same line. In Fig. 6, the two parts of the
rope are more nearly parallel than in Fig. 5; consequently, there
is a greater pressure on the pin in the case of Fig. 6 than in the
case of Fig. 5.

ExaupLE.—Referring to Fig. 7, P is a pulley around which a rope is
passed, one end of the rope being fastened to a staple in the floor and the
other end having a weight W of 54 lb. attached to it; what is the pressure
on the axle O of the pulley and in what direction does it act?

SovruTioN.—The force of 54 1b. is transmitted to every part (section) of
the rope, and must therefore exert a pull on the staple A of 54 1b. By the
third law of motion, the staple pulls on the rope with an equal and opposite
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force (reaction) of 54 lb.; consequently, the part AB of the rope is pulled
by the staple with a force of 54 lb. in exactly the same manner as though
the staple were replaced by a force of 54 lb. acting in the direction BA.
To draw the parallelogram of forces, it is convenient to produce AB and
WC (B and C being the points of tangency of the rope and pulley) until
they intersect in D. Assume D to be the point of application and lay off
DF = DE = 541b. If ascale of 1in. = 30 1lb. beselected, DE = DF = §}
= 1.8 in. Complete the parallelogram by drawing EG parallel to DF and
FG parallel to DE; they intersect in G; draw DG, and it will be the resultant,
it will act from D towards G, and will pass through the center of the axle O.
Measuring DG, its length, in this case, is 3.5 in.; hence, the magnitude of the
resultant is 3.5 X 30 = 105 lb., and it has the direction DG through the
center of the axle. Ans.

Norx.—It may happen in some cases that when the lines on a cut are measured accu-
rately, their Iengthn will be found to differ slightly from the lengths specified in the text.
This is caused by the fact that the original drawing was made to a larger scale than that

given in the text and the engraver did not reduce to the exact sise specified. The meas-
urements recorded in the text are correct, however.

If the reader is doubtful about the correctness of the above
reasoning, let him tie a string to a small weight, say the handle
of a flatiron; lift the weight by pulling on the end of the string.
Now tie the free end of the string to a nail or staple in the floor
and raise the weight by means of a round stick, say a broom
handle, by allowing the string to pass over the stick. He will
note that it will require about twice as much of an effort as when
he lifted the weight by pulling on the string.

Fia. 8.

12. Triangle of Forces.—Referring to Fig. 5, the diagonal
(resultant) OG divides the parallelogram into two equal triangles
OEG and OFG; the sides OF and FG are equal, the sides OF and
EG are equal, and the side OG is common. Since EG is parallel
to OF, it must be parallel also to DC; hence, if OE be drawn
parallel to BA, O being the point of application, and the length
of OF be made such that it will represent to some scale 156 lb.,
it will represent the force BA fully. Now, having drawn OF
= BA parallel to BA, draw EF from E, Fig. 8 (a), parallel

™
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to DC, and make it equal to 108 1b. Joining O and F, the triangle
OEF is equal in all respects to the triangle OEG, Fig. 5.; in other
words, OF is the resultant of the forces OE = BA and FE = DC.

To determine whether E'E or EF shall represent DC, note that
in the triangle of forces and the polygon of forces (to be described
presently), the sides representing forces follow one another so
that, at any common meeting point, as E in Fig. 8 (a), the arrow-
head on one force points toward the point of intersection and on
the other force away from the point of intersection. Note that
this is contrary to the rule for the parallelogram of forces. Hence,
it is necessary to draw the line representing the second force from
E to F; then OF points toward E and EF away from E; if drawn
from E’ to E, both forces.point toward E. The application of
common sense will show whether two forces are acting so that
one tends to increase or decrease the effect of the other.

To determine the direction of the resultant, start with the
point of application or the point that corresponds to it in the
triangle, the point O in this case, and go around the triangle
(as though tracing it) until the starting point O is reached; then
make the arrowhead point in the opposite direction. Thus,
starting at O, move to E, then to F, then to O; hence, the arrow-
head must point in the opposite direction, from O toward F.

Fig. 8 (b) shows the application of the triangle of forces to the
case of Fig. 6. OE is parallel and equal to BA, EF is parallel and
equal to CD, and OF is the resultant. Either force may be
drawn first; thus, drawing OE’ parallel and equal to CD, and
E'F parallel and equal to BA, OF is the resultant, as before.
OE’ points toward E’, E'F away from E’, and the resultant OF
points from O toward F, which is opposite to the general direction
OE'FO around the triangle.

It will be noted that in the parallelogram of forces, the lines
of action of all the forces and of the resultant pass through the
point of application; but, in the triangle of forces, the second
force does not pass through this point; it is, however, parallel to
the line of action of the force passing through the point of
application.

The triangle of forces is a simpler figure to construct than the
parallelogram of forces, and the principle can be better adapted to
finding the resultant of more than two forces. It will give the
resultant correct in magnitude, direction, and position, and that
is all that is required.
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13. The Polygon of Forces.—Suppose five forces, all in the
same plane, to act on the point O, Fig. 9, in the directions indi-
cated by the arrowheads, and to have the magnitudes indicated.
The line of action of the resultant will pass through O, and it is
required to determine its magnitude and direction. Adopting
a scale of 1 in. = 200 Ib., through any convenient point O, draw

Fia. 9.

OA parallel to one of the forces, say OM = 235 lb. Make the
length of OA 235 < 200 = 1.175 in. From A, draw AB parallel
to the force ON (any other force might have been selected),
and make the length of AB 155 + 200 = .775 in. Selecting
another force, say 0Q, draw BC parallel to 0Q and makeitslength
210 + 200 = 1.05in. From C,draw CD parallel to PO and makeits
length 180 <+ 200 = .90in. From D, draw DE parallel to SO and
make its length equal to 170 <+ 200 = .85 in. As there are now
no more forces, join E and O, and EO will represent the resultant



§1 COMPOSITION AND RESOLUTION OF FORCES 13

in magnitude; its direction will be from O toward E, in the op-
posite direction to that of the forces around the polygon OAB-
CDEOQO. Draw OT through the point of application, make it
equal in length to OE, place the arrowhead so it points from T
toward O, and TO represents the resultant in magnitude, direc-
tion, and position; it will produce the same effect on the body as
the five forces MO, ON, PO, OQ, and SO. Finally, check up
the sides of the polygon to be sure all the forces are included in
direction and magnitude.

That this method of finding the resultant is correct is easily
shown. The resultant of MO and ON is R’ = OB, and its direc-
tion is from O to B, combining this resultant with one of the other
forces, as 0Q, the resultant of R’ = OB and 0Q = BC is R"”
= 0C, and its direction is from O to C; hence, R" is the resultant
of the three forces OA, AB, and BC. Combining R’ with one
of the other forces, as PO, the resultant is R””’ = OD, and its
direction is from O to D; hence, R’’’ is the resultant of the four
forces MO, ON, 0Q, and PO. Finally, combining R’ with the
last remaining force SO, B = OE is the resultant of all the forces,
and its direction is from O to E. Measuring OE, its length is
found to be 1.875 in., in this case; consequently, its magnitude
is 1.875X 200 = 375 1b.

14. The polygon OABCDEOQ is called the force polygon.
When drawing it, it does not matter what force is used to begin
with or the order in which the forces are
taken; if the drawing is accurately made,
the resultant will be of the same length
and will have the same direction, the
only difference being in the shape of the
polygon. Thus, in Fig. 10, the force MO
was selected to begin with, as before;
then FG = PO, GH = 0Q, HI = SO,
and IJ = ON were drawn, the resultant &
being OJ. If the two force polygons
OABCDEO and OFGHIJO are drawn to
the same scale of forces on the same sheet,
it will be found that OJ and OE are
parallel and that their lengths are equal. Fia. 10.

This must be the case, since all five '
forces may be replaced by the single force TO, the resultant, and
the resultant can have but one value.
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ExaupLE.—Fig. 11 is a scale drawing showing an arrangement of three
pulleys over which a rope passes in the manner indicated. What pull at
the free end G is required to raise the weight W = 84 pounds, and what is
the resultant force acting on the axle 0" of the middle pulley?

SoLuTiON.—Assuming that there is no friction between the rope and
the pulleys and that no force is required to bend the rope, the pull at G is
exactly the same as the force exerted by the weight W, or 84 Ib. This force
is transmitted through the entire rope between W and G and exists at any
section between those points. The pull due to W isindicated in the different

ﬁEEl
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parts of the rope by the arrowheads a, b, d, and f; the reactions, or pull due
to G are indicated by the arrowheads, g, ¢, ¢, and a’. There are, therefore,
two forces of 84 Ib. each acting on the middle pulley, one along CB from C
toward B and the other along DE from D toward E; A4, B, C, D, E, and F are
the points of tangency of the rope and pulleys. From 0", the point of
application, draw O"'P parallel to CB; if a scale of, say, 1 in. = 100 lb. be
adopted, the length of O”P is 84 + 100 = .84 in. From P, draw PQ
parallel to DE and make its length the same as O”’P. Join Q and 0’,and
0"Q is the resultant in magnitude, direction and position. Measuring
0"Q, its length is found to be 1.225 in., in this case. Hence, the resultant
0"Q = 1.225 X 100 = 122.5 b, Ans.

The same result might have been obtained by means of the parallelogram
of forces, but the method of triangle of forces is simpler and the figure is
easier to draw.

Fia. 11.

RESOLUTION OF FORCES

16. Resolving a Force into Two Components.—Let ABC,
Fig. 12, be a horizontal plane surface, on which rests aneiron
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block H. Suppose the surface to be smooth and frictionless
and to be hinged at B, so that the part BC can be raised and
occupy positions making various angles with the horizontal.
Let the weight of the block be 30 1b.; then, when in the position
BC, the whole weight of the block presses downwards against
BC with a force of 30 lb., and there is no tendency for the block
to move in any other direction. If, now, the surface BC be
raised to the position BC’, carrying the block with it, the block
will tend to slide down toward B, and the pressure against the
plane will be less than before. If raised still farther, to BC”,
there will be a still greater tendency for the block to slide down,

13

Fia. 12,

 and the pressure against the plane will be still less also. When
the plane has reached the position BC’’’ and is vertical, the entire
force due to the weight of the block urges it downwards, and there
is no pressure against the plane. The only force acting on the
block is the force of gravity, which is in this case 301b.;but when
the plane is in positions C’ and C”, there is a force acting parallel
to the plane, which tends to move the block downwards. To
find this force for position C’, draw ON vertical through O, the
center of gravity of the block, and make it equal to 30 pounds
to some scale; if the scale is 1 in. = 401b., the length of ON = 30
+40 = .75 in. Through O, draw OR parallel to BC’, and
through N, draw NR perpendicular to BC’; then, ON may be
considered as the resultant of two assumed forces, OR and RN.
The force OR represents the force urging the block down the
plane, and the force RN represents the force with which the block
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presses against the plane, and both may be measured to the same
scale as that used to lay off ON.

The force ON is said to be resolved into two forces, called
components, OR and EN. The components OR and RN might
have been drawn in any direction, so long as they intersect, but
if the pressure against the plane and the force acting down the
plane are desired, they must be drawn as here described. For
instance, if OR’ be taken as representing in magnitude the force
acting to move the block down the plane, join R’ and N; then,
OR’ and R'N are components of ON. But R’'N may be resolved
into the two components R’R and RN, R’R coinciding with the
action line OR and destroying the portion RR’ of OR’, thus
leaving the force acting down the plane as OR, the value previ-
ously found. Similarly, if OR” be taken as the force acting
down the plane, join R’ and N; then RN may be resolved into
the two components R”’R and RN. Since R”R and OR" have
the same line of action and act in the same direction, the total
force urging the block down the plane is OR’’ + R”R = OR,
as before.

For the position C’’, draw OS parallel to and PS perpendicular
to BC'’; then OS is the component of the force OP that urges the
block down on the plane and SP is the component that presses the
block against the plane. For the position C”/, 0Q is the compo-
nent urging the block down the plane; its value is the total force,
30 1b., and there is no component perpendicular to the plane; in
other words, this component is 0, because the component parallel
to the plane coincides with the resultant.

16. The foregoing serves to explain why it is, in general, harder
to push a wheelbarrow than to pull it. Thus referring to Fig.
13, let the circle represent the wheel, O the center of the axle,
and AO the center line of the handles; suppose the ground MN
to be level and that A’O is parallel to MN. Usually, the center
line of the handles is above the horizontal A’O, in which case,
let BO represent to some scale the force exerted in pushing the
barrow with its load; its direction is indicated by the arrowhead
a. Resolve this force into the horizontal and vertical components
BC and CO, which act in the directions indicated by the arrow-
heads b and ¢. The load carried by the barrow acts downward
also; hence, this load is increased by a force represented in
magnitude by the component CO. If, on the contrary, the bar-
row is pulled, and OD, acting in the direction indicated by the
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arrowhead a’, represents the force exerted through the handles in
pulling it, resolve OD into the horizontal and vertical components
ED and OE, which act in the directions indicated by the arrow-
heads b’ and ¢. Here OF acts upwards, and counteracts a part
of the load, which acts downwards; this makes the force exerted
through the handles less than when pushing the barrow.

If the center line of the handles were horizontal, it would evi-
dently make no difference whether the barrow were pushed or

‘\\ li’
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pulled, since there would then be no vertical component, the
entire force acting in a horizontal direction. If the line of action
were in the position A”’O, below the horizontal, the conditions
would be reversed and it would be easier to push than to pull;
the vertical component then acts upwards against the load, when
pushing, as indicated by the arrowhead ¢”.

17. When several forces act on a body and their lines of action
all pass through a common point, the forces are said to be concur-
rent and are called concurrent forces. If the forces are con-
current, they can always be replaced by a single resultant. Thus,
the five forces in Fig. 9 are concurrent and can be replaced by the
single resultant 70, which is also concurrent with the five
forces at the point O.

Since any number of concurrent forces has a single resultant,
it follows that a single force may be resolved into any number of
components; thus, if it were so desired, the resultant OE in
Fig. 9 might be resolved into the forces OA, AB, BC, CD, and
DE; then assuming a common point of application O, the forces
may be drawn as indicated in the left-hand part of the figure.
Usually, however, a force is resolved into two components only,
and it usually happens that the total force acting in some par-

ticular direction is required. In such case, from one end of the
2
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given force, a line is drawn parallel to the required direction and
from the other end, a line is drawn perpendicular to the line first
drawn. The distance from the point of intersection to the end
of the line representing the force, measured in the required direc-
tion, is the magnitude
of the desired com-
ponent measured to
the same scale as the
given force. Thus,in
Fig. 11, if it were
desired to find the
force tending to lift
the middle pulley
vertically, find the
resultant 0’Q as be-
fore; from O', draw
0"Q’ vertical (the
, desired direction) and
from Q, draw QQ’ per-
pendicular to 0”Q’;
then 0"’Q' = 118 1b.
is the force that tends
i e Sl M to move the pulley
vertically upward,
and Q'Q = 33 lb.isa
force that tends to
move the pulley side-
wise in a horizontal
direction. The action
of both these com-
ponent forces tends
Fia. 14. to move the pulley
along the line 0Q,
and it would move along this line if the pulley were not restrained,
that is, kept in place by some means, in this case, the bearings
that enclose the axle of the pulley.

ExampLE.—Referring to Fig. 14, ABC is a bracket attached to a vertical
wall; from the vertex B, a weight of 500 lb. is suspended, what forces act in
the arms AB and BC and in what direction?

SoLuTioN.—S8electing a scale of say 1 in. = 250 lb., draw ON vertical
and make its length 500 + 250 = 2in. From O, draw OM parallel to AB;

'——QT
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from N, draw NM parallel to CB; then OM represents (to the same scalc)
the force acting in the arm A B, and its direction is from 4 to B; MN rep-
resents the force acting in the arm CB, and its direction is from B to C.
There is, therefore, a pull in the arm A B and a pushin the arm CB. 'Measur-
ing OM and MN and multiplying by the scale, 250, the force in A B is found
to be 515 pounds, and the force in CB is found to be 5§90 pounds. Ans.

Referring again to Fig. 14, if OM be resolved into its hori-
zontal and vertical components PM and OP, and MN be also
resolved into its horizontal and vertical components QN and
MQ, it will be noted that MQ is parallel and equal to PN, and
gince OP and MQ act in the same direction, the total downward
force due to the components OM and MN is OP + PN (= MQ)
= ON = 500 lb., as it should. ;

That the total force acting in AB is represented by OM is
easily shown. The force acting in AB due to the weight W of
500 1b. is found by drawing OS parallel to AB (coinciding with
OM) and NS perpendicular to OS; then W(= ON) exerts a
force OS, acting from O to S as indicated by the arrowhead b, in
the arm AB. But this arm is also acted on by a component of the
force acting in the arm AB. Considering ON (= W) and OS
as two separate and distinct forces, their resultant is SN, which
acts from S toward N, as indicated by the arrowhead ¢. This
resultant force SN may be resolved into the two components
SM and MN, which act in the directions indicated by the arrow-
heads f and a. Then, the total force acting in AB is equal to
0S8 + SM = OM. That the force acting in OM is greater than
that due to the weight W will be apparent when it is considered
that the weight W produces a downward force in MN, acting
from M toward N; this produces a reaction at N that acts from
N toward M, which can be resolved into the two components
NS and SM. In asimilar manner, it can be shown that the total
force in BC acting from B to C is represented by MN.

Note that PM, the horizontal component of OM, and QN the
horizontal component of M N, areequal in magnitude, but opposite
in direction; this fact will be referred to later. (Art. 29.)

18. The Equilibrant.—Referring again to Fig. 9, the resultant
of the five concurrent forces is T70. Produce TO to T”, making
OT’ equal to TO. The action of the five forces, as represented
by the resultant T'O, tends to move the body along the line O7".
If, now, a force T"O acting from T” toward O and equal in magni-
tude to TO be applied to the body, it will counteract the result-
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ant 7O completely, and the body will have no tendency to move,
that is, it will be in equilibrium under the action of
the six forces MO, ON, PO, 0Q, SO, and T'0O. This force T°0,
required to produce equilibrium, is called the equilibrant; it is
always equal and opposite to the resultant. In the force
polygon, the force T'O will be represented by EO, and its direc-
tion will be represented by an arrowhead pointing from E
toward O. There will then be no resultant, because the poly-
gon is closed and there will be no' side to draw to complete
it. In Fig. 10, the equilibrant is JO, acting from J toward O.
Note that the equilibrant has the same general direction around
the polygon as the other forces.

Whenever the force polygon closes, there is no resultant; but
when the polygon does not close, it must be made to close, as in
Figs. 9 and 10, and the closing side is the resultant. A force
equal and opposite to this is the equilibrant. Therefore, to
produce equilibrium, the force polygon must close. This statement
is & very important law.

QUESTIONS

(1) When rowing a boat, what causes the boat to move? Explain in
accordance with the laws of motion the effect produced by the oars.

(2) What is the force called that is equal and opposite to the resultant,
and how is it determined?

(3) S8how that the principles governing the composition and resolution
of forces are a direct consequence of the second law of motion.

(4) What is meant by concurrent forces, and when are forces said to
concur?

(5) State the third law of motion, and give a practical illustration showing
how it is applied.

(6) Suppose four forces to concur at a given point. Draw lines to indi-
cate their directions (which may be selected at pleasure), and mark on them
their magnitudes (state the scale chosen); then construct the force polygon
and find the magnitude and direction of the equilibrant.

(7) Draw a line in any direction except vertically or horizontally, make
its length represent a force to some convenient scale, and resolve this force
into two components, one component perpendicular to the other and equal
in magnitude to one-sixth the force; what is the value of the other
component? Ans. .986 given force.

b N
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MOMENTS AND COUPLES
MOMENTS

19. Turning Force or Torque.—Fig. 15 shows a round iron bar
of uniform cross section and density throughout and balanced on
a knife edge over its center of mass (center of gravity), thus mak-
ing OA = OB. At points C and D, near either end, and equally
distant from O, equal weights W and Z are suspended. The

weight Z tends to make the .
bar revolve about O as a Co R
center in the direction of L=

the hands of a watch; the
weight W tends to cause
the bar to rotate about the
same center O in a direc-
tion opposite to that of
the hands of a watch.
Since the two weights are equal and their distances from O are
also equal, the tendency to rotate in one direction is counter-
acted by an equal tendency to rotate in the other direction, with
the result that the bar and the weights are in equilibrium.

20. When looking at a revolving body, the plane in which it
revolves, called the plane of rotation, is assumed to be perpendic-
ular to the line of vision (like the dial of a watch or clock); if the
rotation is in the direction of the hands of a watch or clock, it is
called clockwise or right-hand rotation; but, if in the opposite
direction, it is called counterclockwise or left-hand rotation.
Further, right-hand rotation is usually considered as positive or
+ and left-hand rotation as negative or —. In Fig. 15, Z tends
to produce right-hand rotation, and W tends to produce left-hand
rotation.

21, If W, Fig. 15, be moved to the position W’, it is evident
that the tendency to right-hand rotation will be greater than the
tendency to left-hand rotation; but, by increasing the weight of
W until the bar again balances, the two rotative effects will again
be equal, and since they are opposite in direction, the system will
be in equilibrium.

As can be readily proved by experiment, the turning forces will
be equal numerically when the weight on one side of O multi-

. e

Fia. 15.
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plied by its distance from O equals the weight on the other side
multiplied by its distance from O; that is,

ZXL=WXL=W XL =W'XL" = ete.

Hence, to find W’ when Z, L, and L’ are known, ZL = W'L/,
from which

w =2
For example, if Z = 24 1b.,, L, = 15 in,, and L’ = 12 in.,
,_ 24 X15 _
W = o = 30 Ib.

The product Z X L is called the moment of Z about O as a
center; the moment of W about O is WL; of W’ about O is W'L’;
etc. The point O is called the center of moments (sometimes
called the origin of moments), and is the point about which the
force is supposed to turn the body.

22. Unit of Measurement of a Moment.—The moment of any
force about any point assumed as the center of moments is the
product of the force by the length of the perpendicular drawn

from the center (origin) to the line of action

B of the force. In Fig. 15, the lines of action
,l/%f of the various forces are all vertical and
N the perpendiculars from O, the origin, are

“{'0 ~4 " consequently horizontal. In Fig. 16, four

\ forces A, B, C, and D are represented in

x D direction, position, and magnitude, the last

being indicated by the full lines. Suppose

Fia. 16. that it were required to find the moments

of these forces about a specified center of moments 0. Draw Oa

perpendicular to the line of action of 4, Ob perpendicular to the

line of action of B, Oc perpendicular to the line of action of C, and

Od perpendicular to the line of action of D; then, denoting right-

hand rotation by + and left-hand rotation by —, the moment of

A about O is +A X Oa; of B, +B X 0b; of C, —C X Oc; and
of D, —D X Od.

When the English system of units is used, forces are generally
measured in pounds or tons and distances in inches or feet; hence,
the unit employed for measuring torques (moments of forces)
is the inch-pound, the foot-pound, or the foot-ton. Since these
same units are used for measuring work and energy, some writers
express the unit of torque as pound-inch, pound-foot, or ton-foot, to
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distinguish these units from those used in measuring work and
energy. The names of the units, then, have entirely different
meanings, according to whether the unit of linear measure pre-
cedes or follows the other unit; thus, the foot-pound means the
product of a force by the distance through which it acts, while
the pound-foot means the product of a force and the perpendicu-
lar distance between the action line of the force and the center
of moments. The term foot-pound, however, is frequently used,
irrespective of the manner in which the force acts.

23. Condition for Equilibrium.—If the forces acting on a body
are not concurrent, they will cause the body to rotate, unless the
sum (algebraic sum) of the moments is 0; thus, in Fig. 15, if
W =2,Z XL — W XL = 0,and the bar, with its two weights,
is in equilibrium. If ZL — WL’ = 0 or if ZL — W"L"” = 0,
the bar, with its weights, is still in equilibrium. In Fig. 16,
suppose all four forces to act in the same plane and that this
plane is horizontal; suppose also that O is some point in a body
acted on by the four forces; then the rotative effect (torque)
about O is determined by the equation A X Oa + B X Ob
—CXO0c—DX0d=0. If the left-hand member is equal to 0,
the body is in equilibrium, insofar as any turning effect is con-
cerned; but if it is not equal to 0, then the value of the left-
hand member will be the turning effect about the point O, and
its sign will indicate whether the body tends to turn clockwise or
counterclockwise. For example, suppose A = 22 1b.,, B = 35
1b., C = 30 Ib., and D = 26 lb.; also, suppose Oa = 10 in., Ob
= 12in.,0¢c = 9 in., and Od = 6.5in.; then, 22 X 10 + 35 X 12
— 30 X9 — 26 X 5.5 = 220 + 420 — 270 — 143 = +227 in.-lb.
Since the sign of the moment is +, the body tends to turn clock-
wise. The sum (algebraic) of all the moments is called the re-
sultant moment; hence, if the resultant moment is zero (0), the
body has no tendency to rotate.

24. It matters not where the origin of moments is taken, the
resultant moment always has the same value. This is evident,
since the resultant moment must (or ought to) equal the resultant
moment when the origin is taken at the center of mass (center
of gravity); otherwise, changing the origin would change the
torque produced by the forces without changing the magnitude
or direction of the forces or their distances from the center of
mass, which is absurd. As an example, refer to Fig. 15. Here
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there is a system of three forces (not considering the weight of the
bar), viz., W and Z acting downwards and the reaction of the
knife edge O acting upwards; the reaction is evidently equal
to the sum of W and Z. Suppose the origin of moments be taken
in the center line of the bar and a in. from C, the point of inter-
section of the center line of AB and the action line of W; denote
this point by C’ and suppose it to be located between O and O.
The distance of O from C’ is L — a; the distance of D from C’ is
L — a+ L = 2L — a; the weight Z tends to produce a positive
rotation about C’ as a center, and the weight W and reaction R
at O tend to produce negative rotation about C’. “Therefore,

Z@2L — a) — R(L — a) — Wa

is the resultant moment. But Z = W and R = 2W; substitut-
ing these values for Z and R, the resultant moment is
WQL—a)—2W(L—a)—Wa=2WL—Wa—2WI+2Wa—Wa = 0,
which is the same result as was obtained before; that is, the sys-
tem is in equilibrium.

In Fig. 16, if the origin be taken at some point other than O,
the value found for the resultant moment will be exactly the
same as when the origin is taken at O.

25. The perpendicular from the origin of moments to the
action line of the force is called the arm of the force or, frequently,
the moment arm. If the origin be taken any where on the action
line of a force, the moment of that force will be zero, because” the
arm will be zero, and the moment, which is the product of a force
and its arm, will be the product of a force by 0.

26. A body is in complete equilibrium when (a) the resultant
of all the forces is equal to zero, and (b) when their resultant
moment is equal to zero. If the resultant moment equals zero,
but the resultant of the forces is not equal to zero, then, if free
to move, the body will move in a straight line, along the action
line of the resultant, and every point of the body will describe
a right line parallel to the line described by the center of gravity
of the body; the body is then said to have a movement of trans-
lation, If the body is free to move and the resultant of the forces
acting on it is zero, but the resultant moment is not zero, the body
will have no movement of translation; it will simply rotate about
an axis passing through its center of gravity. If neither the
resultant force nor the resultant moment is equal to zero, and
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the body is free to move, the body will move in a straight line,
along the action line of the resultant, and will rotate as it moves;
it is then said to have a combined movement of rotation and trans-
lation. The movement of translation in the last case is not
affected in any way by the movement of rotation, and vice versa.
The foregoing statements are best exemplified by means of an
example.

Fig. 17 (a) shows a brick that is acted upon by three
forces U, T, and 8, all acting in the plane M N, which is shown as

Fia. 17.

aplane of symmetry. The line BC is 8 in. long, and the magni-
tudes, positions, and directions of the forces with reference to this
line are indicated in Fig. 17 (b). The force polygon is shown in
Fig. 17 (c), the resultant R being determined in magnitude and
direction, and it now remains to determine its position .with
reference to the other forces. Take O, the point of intersection
of the action line of U with BC as the origin of moments; the
moment of U will then be zero. The sum of the moments of the
three forces about O is U X 04+ T X 2 + S X Oa; measuring
0Oa, the arm of S with reference to O, it is found to be 5.63 in.;
hence, the sum of the moments is 0 + 10 X 2 + 15 X 5.63
= 104.45 lb.-in. This must equal the moment of the resultant

«
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about 0. The value of the resultant, as determined by measure-
ment from the force polygon is34 1b.  Since its arm isnot known,
represent it by z; then,

104.45

34 Xz=104450rz = 34 - 3.07 in.

From O, draw a line Oe perpendicular to R or to a line parallel
to R, the resultant, and lay off Oe = 3.07 in.; through ¢, draw a
line parallel to R, make its length equal 34 Ib. to the scale used,
and it will represent the resultant in magnitude, direction, and
position.

It will be observed that the resultant intersects the line BC
between M, the middle point, and the end B. As shown in Fig.
17 (b), this will tend to make BC revolve counterclockwise about
M ; but as shown in Fig. 17 (a), it will tend to revolve the brick
clockwise (when the dial of the clock is horizontal and face up)
about the center of gravity of the brick, which is directly under
the point M in Fig. 17 (b). This may also be proved by calcu-
lation and measurement. Thus, in Fig. 17 (b), taking M as the
center of moments, the arm of U is M¢ = 3.19 in.; the arm of T
is Mf = 1.51in.; the arm of S is Md = 2.6 in.; and the arm of R
is Mb = 0.42 in.; then, the sum of the moments of the forces is

—12X319—-10X 15415 X 2.6 = —14.28

the negative sign showing that the brick tends torevolve counter-
clockwise about M. It will be observed that the moment of the
resultant is —34 X .42 = —14.28, which is the same as the
resultant moment previously found. The effect produced by
the three forces acting on the brick is to make it move so that
the path of its center of gravity will coincide with the action
line of the resultant R; at the same time, the brick will revolve
clockwise about its center of gravity, when viewed from a point
to the right of the face BC, Fig. 17 (a). The value of the force
causing the movement of translation of the center of gravity is
34 Ib., and the value of the moment or torque causing rotation
is 14.28 1b.-in.

27. Resultant of Parallel Forces.—The principles employed
in the example of the last article are used in finding the position of
the resultant of parallel forces, a problem that is constantly aris-
ing in connection with the loads on becams and girders. The
method can be best understood by application to a specific case.
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Referring to Fig. 18, let AB be a beam 24 ft. long, supported
at its ends and carrying five loads, M = 420 lb., N = 280 lb., P
=160 1b., @ = 300 lb., and S = 640 lb., the loads being in the
positions indicated. Suppose the beam is ina horizontal position,
is of uniform cross-section throughout, and that it weighs 32 1b.
per foot. It is required to find the position of the resultant and
the reactions R, and R of the supports.

The beam is acted on by 8 forces, the five forces just mentioned,
the weight of the beam, all of which act vertically downwards,
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and by the reactions of the two supports, which act vertically
upwards. The weight of the beam may be considered as a force
equal in magnitude to the weight, and whose action line passes
through the center of gravity of the beam; and since the beam
has a uniform cross-section, the center of gravity will lie in its
middle section, equally distant from either end. The weight
of the beam is represented by W in the figure, situated 12 ft. from
either end, and its magnitude is 32 X 24 = 768 lb. Since
M, N, P, @, S, and W are parallel and they all act in the same
direction, the magnitude of their resultant is equal to their sum,
or 4204+ 280+ 160 + 300 + 640 4+ 768 = R = 2568 lb. In
order that the beam may not move downward under the action
of this resultant force, the sum of the reactions R, and R, must
equal the resultant, or R; + Rz = 2568 Ib. To find the value
of the reactions, take a point on one of the reactions, say R, as
the origin of moments; then the moment of this reaction will be
zero and the other reaction can be found from equation

420 X 3 4+ 280 X 8 4 160 X 14 4 300 X 17 + 640 X 20
+768 X 12 — Ry X24 =0 (1)

*°
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Solving this equation for R, R: = %@ = 1369 1b. The sum
of the moments of all the forces equals zero, because the system
is in equilibrium. Since R, + R, = 2568, R, + 1369 = 2568,
and R, = 2568 — 1369 = 1199 lb. Or, R, may be found by
taking the origin of moments on the action line of R;, in which
case, ’

R, X 24 — 420 X 21 — 280 X 16 — 160X 10 — 300 X 7
—640 X4 —-768 X12=0 (2)

. 28776

from which, R, = o = 1199 lb., as before. Now, to find
the position of R, the resultant, take some convenient point as
the origin of moments, say a point on R,. The sum of the
moments about this point was found above to be 32,856 1b.-ft.
for the downward forces; this must equal the resultant R multi-
plied by the arm, which is the normal distance from R, to R;
representing the arm by z, R X = = 32,856, or z = %&%
= 12.794 ft. = 12 ft. 9% in. very nearly. Had the origin been
taken at any other point, say on N, R X £ = 768 X 4 + 160
X 64+ 300 X 94 640 X 12 — 420X 5 = 2568 X z, from which
z = 12,312 + 2568 = 4.794 ft., the distance of R from N; the
distance from R, is 4.794 + 8 = 12.794 ft., as before.

The position of the resultant R may be found in a somewhat
casier manner by considering the reactions R, and R. instead
of the loads. Thus, taking the origin of moments on R,, the
forces acting on the beam may be considered as R,, R and R,
which produce equilibrium, and

R X0+ RXz—R:X24=0;
from which, since R = 2568, and R, = 1369,
2= BOXH 12704 1n,

the same result as previously found.

COUPLES

28. Moment of a Couple.—When a body is acted on by two
equal parallel forces acting in opposite directions, the two forces
are said to form a couple or to constitute a couple. Thus, in
Fig. 19 (a), the forces P and Q are parallel and equal and they act
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in opposite directions; hence, they form a couple. The perpen-
dicular distance AB between the forces is called the arm of the
couple, and is denoted by the dimension a.

The moment of a couple is the resultant moment of the two
forces about some point as the origin of moments. Taking O as
the origin, the moment of the couple is

PXO0A+QXOB
Since Q = P, this expression becomes .
P X0OA+PX0OB=POA+OB)=PXAB =Pa

1

4

£ (a) P ®)
Fia. 19.

If O’ be taken as the origin, the moment of the couple is
PX0OA—-QXOB
Since P = Q, this expression becomes
PXO0A—-PXO0B=P(0OA-0B) =P X AB = Pa
Therefore, the moment of a couple is equal to the product of one of
the equal forces and the arm of the couple.

A practical illustration of a couple is shown in Fig. 19 (b), which
may be considered as representing the steering wheel of an auto-
mobile, the hands are supposed to be at A and B; then, when one
hand pulls down as much as the other pushes up, two equal and
opposite forces are exerted on the wheel, forming a couple whose
arm is the diameter of the wheel.

29. Couples Produce Rotation Only.—The only effect pro-
duced on a body by the action of a couple is rotation; it has no
tendency to move the center of gravity of the body and, therefore,
produces no movement of translation. No single force and no
combination of concurrent forces (which will have, of course, a
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single resultant) can produce equilibrium in a body acted on by a
single couple; the rotative action may be destroyed, but the
force will produce a movement of translation, and the body will
not be in equilibrium. The only way that equilibrium can be
produced in a body acted on by a single couple is to introduce
another couple having an equal moment and tending to rotate
the body in the opposite direction.

Another illustration of a couple is afforded by the conditions
illustrated in Fig. 14. The moment of W about C as the origin
is equal to W X BD. In the force polygon, OM’ ( = PM) and
QN, which are parallel components acting in opposite directions,
constitute a couple that is equivalent to the couple produced
by the moment of W (see Art. 30), the arm being AC; hence,
OM’ X AC = W X BD. This couple tends to produce right-
hand rotation; but it is resisted and equilibrium is produced by
the reactions at A and C, indicated by the arrows S and T', which
act in opposite and parallel directions, and produce a couple
whose arm is AC, its moment being S X AC or T X AC, S and
T being equal.

The reason that the moment of the couple produced by W
isequal to OM’ X AC = QN X AC is that the force acting in AB
can be resolved into the two components OM’ and M'M = OP;
the force acting in BC can be resolved into the two components
NQ and MQ = PN. OM'’ and QN are equal and opposite
parallel forces, and they constitute a couple whose arm is the
distance AC. Likewise, the sum of the forces OP and PN is
ON = W, which acts at N and creates a reaction NO whose
magnitude is equal to W. This force (reaction) is equal, parallel,
and opposite to the force W acting at B, and the two constitute
a couple whose arm is the distance BD, and the moment, of which
is W X BD. This is not a different couple from the one pre-
viously mentioned, but another expression for the turning effect
produced by the load W. Consequently, OM’X AC = W X BD
= moment of couple produced by W.

30. Difference between a Moment and a Couple.—Referring
to Fig. 20, let P be a force; then the moment of this force about
O as the origin is P X a. Through the origin 0, draw Q and @’
to represent two equal and opposite forces parallel to P and both
equal to P. Since Q and Q' are equal and opposite and concur-
rent, they have no effect in moving the body, and the body will
be in the same state of rest or motion whether acted on by these
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forces or not. But, the force @ and the force P constitute a
couple whose moment is P X a, and the force Q' tends to move
the body in the direction indicated by the arrowhead. The mo-
ment of the couple is the same as the moment of the force; hence,
the moment of the force P is equivalent to a couple having an
equal moment and a force equal and parallel to P acting through
the origin of moments. The two forces constituting the couple are
equal to P, and the arm of the couple is

the perpendicular distance from the ?' p
origin to the force P. i Y
It will thus be seen that a moment i o |

tends to produce both rotation and trans-
lation, while a couple produces rotation
only. For instance, referring to Fig. 19
(b), take O as the origin of moments and
suppose only one of theforces, say Q, Fie. 20.
acts on the wheel. The turning force
(torque) produced by Q is Q X OB, and @ also produces a
pressure + Q' on O that tends to move the entire wheel in
the direction of the arrowhead on Q. If P only acts on
the wheel, the torque produced by P is P X OA, and P also
produces a pressure — P’ on O that tends
to move the wheel in the direction of the
arrowhead on P’. If both forces act at
the same time, the resulting effect is @ X
l OB+ Q¢ +PX0A — P =POA +
Q

SRR X

——3
5 N

2

OB) = P X AB, since @ = P and @ =
P'. @ and P’ are given opposite signs
® because they act in opposite directions,
and since both act on the same point,
they destroy each other, leaving the
couple to act on the wheel. When
either force acts separately, it tends to

- g

h ]
Q
coccmees

D

P,T rotate the wheel and to move it in the
direction of the force; but when both

. F21 forces act together, they tend only to

1G. .

rotate the wheel about its center.

1f one of the parallel forces is greater than the other and the
center of moments (origin) is taken midway between the two
forces, the action of the two forces produces a couple, whose
moment i8 one-half the sum of the two forces multiplied by the
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perpendicular distance between the action lines of the forces,
and a parallel force, whose value is equal to the difference of
the forces, acting at the center of moments in the direction of the
greater force. Thus, referring to Fig. 21, let P and Q be parallel
forces, acting as shown, and let AB be the perpendicular distance
between their action lines. Then, if 0A = OB, the moment Q
X OB is equivalent to the couple formed by Q and @', whose arm

is OB = ATB, and the downward force Q" = Q. The moment P

X 0A is equivalent to the couple formed by P and P’, whose arm
AB

is OA = -5 and the upward force P’ = P. The resultant
about O as the center of moments is (taking upward forces as
+ and downward forees as —)

AB AB AB
QX5 —-Q"+PX5 +P'=Q+P)5 -@Q-P)
=4Q+P)XAB— (Q — P)
The negative sign before the parenthesis simply indicates that
when @ is greater than P, the resultant force acts downwards,
which is the direction of the greater force Q.

QUESTIONS

(1) What is (a) a moment; (b) a couple? (c) what effect do they produce
on the body on which they act?

(2) What is the difference in the effects produced by a moment and a
couple? :

(c) Suppose three forces, not concurrent to act on a body; will the result-
ant have the same or a different value than if they concurred, all three
forces acting in the same or parallel planes?

SIMPLE MACHINES

THE LEVER

381, Classes of Simple Machines.—A machine may be defined
as any contrivance for altering the position of a body. If the
position of a body is changed, the position of its center of gravity
is also changed; that is, the position in space occupied by the
center of gravity has been changed. The path of a body from
one position to another is always taken as the line described by its
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center of gravity. A machine may also cause a body to rotate,
and if the position of the body is not changed it rotates about
an axis passing through the center of gravity.

A machine that consists of but one moving part is called a
simple machine. Machines containing more than one moving
part, no matter how complicated they may be, consist of com-
binations of two or more simple machines.

Simple machines may be divided into the following six classes
or types: levers, pulleys (including gears), the wheel and azle,
tnclined planes, wedges, and screws. As will subsequently appear,
there are really but two classes—the lever and the inclined
plane—the other four types being but modifications of these two.

32, Classes of Levers.—A lever is a rigid bar or frame which
turns about a point, knife edge, or pin (when jointed) under the
action of a force (called the power) and in turning moves a body

i | “3—} ’_lﬁ
¥ () ®) © .
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(called the weight or load). The knife edge, pin, or other
_bearing, about which the rotation occurs, is called the fulerum.
The perpendicular distance from the fulerum to the line of action
of the force is called the power arm, and the perpendicular dis-
tance from the fulcrum to the line of action of the weight or load
is called the weight arm. In Fiz. 22 (a), AB is a lever, which
turns about O under the action of F, thus moving W. Here O is
the fulecrum, F is the force or power, and W is the weight or load

hence, OA is the power arm and OB is the weight arm.

In accordance with the relative positions of the fulerum, power,
and weight, levers are divided into first class, second class, and
third class. When the fulcrum is between the power and the
weight, as in (a), Fig. 22, the lever is of the first class; a common
example is a pair of shears or pincers. Here there are really two
equal levers, which consist of two blades or jaws and handles
that turn on the pin that connects them. The pin is the fulerum,
the power (force) is applied to the handles, and the body (or
object) is cut by the blades or squeezed by the jaws, and consti-
tutes the weight or load.

3
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When the fulecrum is at one end of the lever and the power is
applied at the other end, the lever is of the second class; see Fig.
22 (b). A common example is a lemon squeezer or a nut cracker,
another case of two equal levers, which are joined by a pin at
one end; the force is applied at the other end, and the lemon or
nut, which is placed between the pin (fulerum) and the line of
action of the force (power), takes the place of the weight or load.
This figure also shows the principle of the lighter bar (lever) on
a beater. The pin is represented by O, the weight of the roll by
W (usually at or near the center of the lever), and screw and hand
wheel by F. This class of lever is also used on the paper-
machine presses.

When the fulerum is at one end of the lever and the weight
orload or the other end, with the power between, the lever is of the
third class; see Fig. 22 (c). A common example is a pair of tongs,
which consist of two levers joined by a pin at one end, the load
to be lifted being held by the pressure of the other two ends; the
power (squeeze) that forces the two free ends together is applied
between the ends.

38. Analysis of the Lever.—Fig. 23 represents a lever of the
first class. It consists of a straight bar having a uniform rec-
tangular cross-section and
turning on a pin O, which
acts as a fulcrum. Holes
2p” drilled at A and B permit
pins to be placed in them,
from which links can be sus-
pended. When weights W
and P are attached to the
other ends of these links, they
will hang in such manner that
the forces they represent will
act vertically and will therefore be parallel. All forces are
considered as acting through the centers of the holes and pins,
the weight of the lever being neglected for the present. Draw
the horizontal line A’’OB’’ through O.

Taking O as the origin of moments, the necessary condition for
equilibrium is P X 0b — W X Oa = 0,0orP X Ob = W X Oa;
that is, the power mulliplied by the power arm equals the weight
multiplied by the weight arm. This is the law of the lever, and
applies in all cases, whatever the class, as will be shown presently.

QB

Fia. 23.
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If the power be applied at B, and it is desired to find what
weight W can be raised by application of a given force (power) P
with the lever in the position shown, solve the above equation for
W, obtaining

0b :
W=PX Oa (1)

Or, if the weight is known and it is desired to find the power
required, solve the equation for P, obtaining

Oa
P=WX 0b (2)
Expressed in words, the product of either force and its arm
divided by the other arm gives the other force.

34. As the end B moves downwards the end A moves upwards,
and when the lever reaches the position shown by the dotted
lines,

Oa’
P-WX—O—b, (a)

When the center line of the lever is horizontal and occupies the
position A’’B",
OA ”n
P=WX OB" (b)
It can easily be proved by geometry that the three ratios in the
last three expressions for P are equal; that is,

Oa Oa’ 04"

08"

For, since the triangles OaA and ObB are similar right triangles,
Oa — 9_‘1 . — ” _ ’” . _O_a
0t = 0B’ but OA = OA” and OB = OB”; consequently, Ob

” ’ ”n
= (O)—g—,, In the same manner, it can be shown that g——z, = g—g,—,
Since the two left-hand members of these two equations are
equal to the same thing, they are equal to each other, and

Oa _0d' _ 04"

ob 0Ob  OB”

In other words, when the lines of action of the power and weight
are parallel, it is not necessary to measure the perpendicular dis-
tance from the fulcrum to the action lines; simply measure on a
straight line through the fulerum the distances from the fulcrum
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to the points of application of the power and weight—the dis-
tances OA and OB; then,
04 - OB
P—Wxﬁ,and W=PX(—)71'
The distances OA and OB are called the lever arms.

ExampLE.—The distance from the end of a crowbar to the point (line)
on which it rests is 14 in., and the entire length of the crowbar is 5 ft.;
if a downward pressure of 120 lb. be applied to the end of the long arm,
what pressure will be exerted at the end of the short arm, that is, what load °
can be lifted by the crowbar?

SoruTioN.—The length of the crowbar is 5 ft. = 60 in.; the length of the
longarmis 60 — 1.5 = 58.5in. Thelong arm in this case is the power arm
and the short arm is the weight arm; hence,

W =120 x?—%5 = 46801b. Ans.

36. Referring again to Fig. 23, angle AOA’= BOB’. Let
60 (Greek letter theta) be the measure of these angles in radians;
then, the lengths of the arcs AA’ and BB’ are 0A X 6 and OB X 6,

. . . 04 X0 04
respectively, and their ratios are OB X0 _ OB In other words,
the ratio of the lengths of the arcs passed through (the distances
passed through) by the points of application of W and P is
equal to the ratio of the lever arms of W and P. Hence, the
law of the lever may be stated thus:

The power multiplied by the distance through which it moves is equal
to the weight multiplied by the distance through which it moves.

It is to be understood that the paths moved through by the
two points of application must be similar in their nature; there-
fore, it is usual to measure them in vertical lines. With this
understood, suppose the load in the example of the last article
raised the weight } in., how far would P move downwards?
Applying the law just stated, the power is 120 1b., the weight is
4680 1b., the distance moved through by the weight is .25 in., and,
letting = represent the distance moved through by the power,

120 X z =4680x.25,or:c=W=9.75in.

Note that what is gained in power i3 lost in distance; that is,
although the power is increased from 120 lb. to 4680 lb., the
distance is decreased from 9.75 in. to .25 in. This fact is uni-
versally true of any machine, no matter how complicated it may
be The law just given is also true of any machine, provided all
resistances due to friction, etc. are neglected.
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The foregoing conclusions may also be obtained by applying
the principle of work. Thus, a machine merely alters the manner
of doing work; no machine can give out more energy (work)
than it receives or is expended on the machine. The work done
by the lever is the lifting of the weight through a distance, and
the work expended in doing this is the power exerted through a
distance. In the case last cited, the power of 120 Ib. is exerted
through a distance of 9.75 in., and the work expended is 9.75
X 120 = 1170 in.-lb.; the work done by the lever is .25 X 4680
= 1170 in.-lb. Therefore, as before, the power multiplied by
the distance through which it moves equals the weight multiplied
by the distance through which it moves. The weight may be
replaced by a resistance; in which case, the force multiplied
by the distance through which it acts is equal to the resistance
multiplied by the distance through which it is overcome.

86. If two levers are joined by a pin on which they can turn,
as indicated by the full and dotted lines in Fig. 23, and the two
ends B and B’ are forced toward each other, the action is exactly
the same as that of a pair of pincers, and an object held between
A and A’ will be squeezed or compressed. The pressure exerted
on the object can be found by applying formula (1), Art. 33,
because one of the levers may be regarded as fixed, the other one
moving, the fixed lever furnishing the reaction.

If the arms OA and OA’ have cutting edges, the action of the
levers is then the same as that of a pair of shears such as are
used for cutting tin and sheet metal, where great force must be
applied to the blades. If the arms OB and OB’ have cutting
edges and the power is applied at A and A’, the action is that of
a pair of ordinary shears such as are used for cutting paper,
cloth, etc., where but little power is applied to the blades. Note
that in the first case, the cutting is slow, since the blades have
only a slight movement; in the second case, the cutting is fast,
because the blades are long and move through a great distance
as compared with the distance moved through by the handles.
Here, again, what is gained in power is lost in distance, and vice
versa.

37. Let S, be the distance moved through by the power and
S» the distance moved through by the weight; then, P X S,
= W X 8., from which,

S

W=PXS—":— (1)
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If time be considered, it is evident that P moves through
S, in the same time that W moves through S.. Letting ¢ rep-

resent the time, the velocity of P is ST’; the velocity of W is'ST",
Sy

and the ratio of the velocities is o = 57 = r, in which  is the

t
value of the ratio.

The ratio r = 2_: = ;:;:::: ::;;;l; l:ln(:",e:s is called the velocity
ratio; and in any machine, the weight that can be lifted or the
resistance that can be overcome i3 always equal to the power multi-
plied by the velocily ratio; that is,

W =P (2)

Consequently, if the velocity ratio of a machine is known,
the resistance that can be overcome by the application of a force
P is equal to the product of the velocity ratio and P (neglecting
frictional resistances). Further, if the velocity ratio is known
and it is desired to know what power is required. to overcome a
certain resistance, divide the resistance by the velocity ratio.
Thus,

|4
P== ®3)

The velocity ratio is always equal to the power arm divided
by the weight arm (see Art. 36).
Examprz.—When the velocity ratio of a certain machine is 13.6, what

force is required to overcome a resistance of 968 lb.?
SoLuTioN.—Applying formula (3),

968
P = 1_3.—6 = 71.16 +1b. Ans.

38. Fig. 24 (a) represents in diagrammatic form a lever of the
second class and Fig. 24 (b) represents similarly a lever of the
third class. The laws and principles just given for a lever of
the first class also apply to levers of the second and third classes.
For, taking the fulcrum O as the origin of moments, the condition
of equilibrium for (a) when the lever is in the position OB’
is PXOB'"— W XO0A” =0,0or PXOB"' =W X 0A”. In
(b),P X OB"” = W X OA”. Therefore, in both cases, the power
multiplied by the power arm equals the weight multiplied by
the weight arm, which is the same result as was obtained for
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the case of Fig. 23. The other laws and principles may be ob-
tained in the same manner as was done in connection with Fig. 23.

It is to be noted that the velocity ratio is equal to r = g—f in

both cases; but in (a), r is
always greater than 1,
while in (b), r is always
less than 1. Moreover,
OB in (a) and OA in (b)
represent the entire length
of the lever. Hence, with
a lever of the second class,
the power is always less
than the weight (or resis-
tance); in a lever of the
third class, the power is
always greater than the
weight; and in a lever of
the first class, the power
may be greater than, equal
to, or less than the weight,
according to whether the
power is applied to the
long arm, whether the arms are equal, or whether the power is
applied to the short arm.

39. If in Fig. 24 (a), OB and OB’ represent the center lines of
two levers that are hinged at O, the action of bringing them to-
gether corresponds exactly to that of a nut cracker, the nut being
placed at A. If the length OB of the levers is 6 in. and the nut is
placed at A, 1 in. from O, a pressure of 12 pounds at the ends of
the handles will produce a pressure (squeeze) on the nut of 12
X 68 =721b. Here P =121b.andr = =

Similarly, if OA and OA’ in (b) represent the center lines of
two levers hinged at O, the application of a force between O and
A and O and A’ corresponds exactly to the action of a pair of
tongs.

A practical example of a lever of the second class is the lever of
a safety valve, shown diagrammatically in Fig. 25. OAB is the
lever, V is the valve, VA is the valve stem, and W is a weight
(here to be considered as the power), which can be placed

Fia. 24.
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anywhere between A and the free end of the lever; the lever is
hinged at 0. The steam pressure underneath the valve tends
to force it upwards, and this is resisted by the weight, which acts
through the lever and tends to force the valve down. Whenever
the upward force acting at A exceeds the downward force at A,
the valve opens, steam escapes, and its pressure no longer in-
creases; this is why it is called a safety valve.
ExampLE.—Referring to Fig. 25, the distance OA of the valve stem

from O is 4} in.; the diameter of the valve seat pressed against by the
steam is 4 in., the steam pres-

® sure is required not to exceed

Py L 70 Ib. per sq. in., and the

o * la weight of the ball hung at Bis

E 90 lb.; at what distance OB

Tiam W  from B should the ball be

70 1d p;f %0 b hung, neglecting the weight of
og. in. the lever and valve?

Fra. 25. SoLuTioN.—First find the

total pressure exerted on the
bottom of the valve. The area of the valve touched by the steam is .7854
X 4* = 12.5664 sq. in. The steam pressure being 70 lb. per sq. in. the
total upward pressure on the lever at A is 12.5664 X 70 = 879.648 lb.
Letting z represent the distance OB, the power arm, the power is W = 90
Ib., the weight is the force to be exerted at A = 879.648 Ib., and the weight
arm is 4.5 in. Then, applying the principle of the lever, power multiplied
by power arm = weight multiplied by weight arm,

90 X z = 879.648 X 4.5, or z =WTX“

It will be noticed that if it were required to find what steam
pressure will raise the valve when the weight is placed at a
certain distance from O, the lever is then of the third class, since
the power will be between the fulerum and the weight. The
above example may be solved just as readily by applying the
principle of moments. Thus, for equilibrium, letting y = the
total steam pressure and taking O as the origin, y X 4.5 — 90
X 44 = 0; from which y = 879.648 lb., as before, the weight
being 44 in. from O.

40. Observe that a lever must be acted upon by at least three
forces: the power; the weight, load, or resistance; and the reac-
tion of the fulcrum. When the weight of the lever is considered,
levers of the second and third classes have at least four forces
acting upon them, and a lever of the first class has at least five
forces acting on it, since in the latter case, the weights of the
two lever arms act to turn the lever about the fulcrum in opposite

=44in. Ans.
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directions. The safety valve lever in Fig. 25 has five forces
acting on it: the steam pressure, which acts upwards and repre-
sents W; the weight, which acts downwards and represents P;
the reaction R of the fulcrum, which acts downwards, the weight
L of the lever, which acts downwards at the center of gravity;
and the weight V of the valve, which acts downwards at the center
of the stem. Suppose the weight W of the lever in Fig. 25, is
36 Ib., that its length is 48 in., and that it is of uniform cross-
section throughout, and suppose the weight V of the valve and
stem is 33 1b. Then, taking O as the center of moments, the
moment of R will be 0, the distance of the center of gravity of
the lever from O is 48 = 2 = 24 in. Equilibrium will occur
when
435X 45436 X24 +90 Xz — 879.648 X 4.5 =0

Solving for z, z = 3073(')666 = 34.21 in., very nearly. The value
previously found for z was 44 in., in Art. 39. The difference,
#4 - 3421 = 9.79 in. shows the error caused by neglecting the
weight of the lever and the valve. The reason for the error
being so large in this particular case is because the weight of the
lever is very large compared with the load W. In most cases
that arise in practice, the weight of the lever is small compared
with the load, and the error is also small—so small that it can
usually be neglected.

Whenever the lever is acted upon by more than three forces
and all are taken into consideration, the method of moments
must be used to find W or P.

41, Straight and Bent Levers.—If the action lines of the weight
(load or resistance) and the power are parallel, as in all cases
previously considered, the lever is called a straight lever, because
the perpendiculars drawn from the fulcrum to the lines of action
are parts of a straight line. The shape of the lever itself is not
considered, and the lever may be straight, bent or curved. In
Fig. 26, (a) and (b) are straight levers, because OA and OB lie
in the same straight line, the action lines of P and W being parallel.
In (@), the lever itself A’OB’ is curved, while in (b) it is bent,
forming what is called a bell-crank A’OB’. The levers shown at
() and (d) are bent levers, because the perpendiculars OA and
0B make the broken line AOB. In (c), the lever itself A’OB’ is
also bent, but in (d), the lever OA B’ is straight.

In all cases of levers, whether bent or straight, OA and OB,
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Figs. 24-26, are called the weight arm and power arm respect-
ively, and the power multiplied by the power arm equals the
weight multiplied by the weight arm, neglecting the weight of the
lever.

ExampLE.—Referring to the example of Art. 34, suppose the weight of the
crowbar were 30 lb. and that its center of gravity were 23 in. from the end

nearest the fulerum; what pressure would be exerted 1% in. from one end by’
reason of a force of 120 Ib. exerted at the other end?

)

. 4

(d)

Fia. 26.

SoLuTioN.—The fulerum is 1.5 in. from the weight end and 58.5 in. from
the power end; the weight of the bar acts at a distance of 23— 1.5 = 21.5in.
from the fulcrum. The three forces mentioned are supposed to be parallel.
Then,

120 X 58.5 + 30 X 21.5 — W X 15 =0

Solving for W, W = 7—;——.?55 = 51101b. Ans.

The result obtained in Art. 34 when the weight of the crowbar
was neglected was 4680 lb.; hence, the error was 5110 — 4680
= 430 1b. Here the weight of the crowbar acts in the same
direction as the power and thus increases the power. The re-
sult obtained is not quite correct, because the weight of the
weight arm was not considered and acts in the opposite direc-
tion. The result obtained is thus a little too large, but the
error is so small that it may be neglected.

42. Compound Levers.—When a series of levers is so arranged
that a force applied to one is transmitted to another, the arrange-
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ment is called a compound lever, and is commonly seen on paper
machines, calenders, etc. A system of three levers acting as a
compound lever is shown diagrammatically in Fig. 27. The
levers in this case are all straight levers of the second class, such
as are used for adding pressure to calenders, etc. and O, 0"/, and
0’ are their fulcrums; the power is applied at P and the weight
or pressure is exerted at W. The free end of the power arm of
the second lever is connected to the power arm of the first
lever by the link W’P’; the link WP connects the second
and third levers in a similar manner. The power arms of the
levers are represented by a’, a’’, and a’”’ and the weight arms by
b, b, and b'”’. The pressure exerted downward, as in this case,

. 4
e

g

P 4

vy

o w
1
Fia. 27

or the weight that could be raised by the first lever is (neglecting
friction and the weight of the lever) W’ = P X Z;, which becomes

the force P’ acting on the end of the second lever; hence, the

second lever could exert a pressure, or raise a weight W’
n ”n
a

’
=P X %,—, =PX %X 37» Which becomes the force P” acting on

the third lever. The third lever, therefore, can exert a pressure,

" ’ " wm
a a a

or raise a weight W’ = P"" X 5= P X %, X b_”XF’_’ =W.
Clearing this equation of fractions,
anlxallxalll=belxbllxblll’

that is, in any compound lever, the product of power and all the
power arms is equal to the product of the weight and all the
weight arms. Note that the links WP’ and W''P’’ exert no in-
fluence on the ratio of P and W; they merely transmit the force
from one lever to the next.

.
V'l
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43. The velocity ratio of the compound lever is equal to the
product of all the power arms divided by the product of all the
weight arms; denoting the velocity ratio by r,

_a’' Xda' Xa" Xete.
/ x bll x bll' X etc'

If, for some reason, it is not practicable to measure the lengths
of the power and weight arms, but the distance moved by W
when P moves a certain distance is known, then,

distance power moves

distance weight moves

Observe that this last equation is the same as was given in
Art. 373 it is true of any machine. That it must be true follows
at once from the principle of work; viz., a machine can give out
no more work than is imparted to it. The work done in operat-
ing the machine is equal to the power multiplied by the distance
through which it moves; the work done by the machine is equal to
the weight multiplied by the distance through which it moves; if
friction, the weight of the moving parts, etc. be neglected, these
two works must be equal, and

power X distance moved = weight X distance moved

whence,

r =

distance power moves
distance weight moves

W = weight = power X =PXr,

from which, p =T

But, from the last equation of Art. 42,
W al x aII x all’
P ¥ X5 X"
Theref. , _a’' X a"” Xa'" X etc.
Q eiore, = b X b7 X b7 X ete.

ExamprE.—If the lengths of the power arms of a compound lever are
25 in., 20 in., 36 in., and 28 in., and the lengths of the corresponding weight
arms are 7 in., 6 in., 12.5 in., and 5 in., (a) what theoretical weight will
a force (power) of 60 lb. raise? (b) what is the velocity ratio? (c) if the
power moves 64 in., how far will the weight move?

SoLuTION.—(a) From the last equation of Art. 42,

60 X 25 X 20 X306 X28 =W X7X6X125X5
from which, W = 60 x 20 X 20 X33 X 38 _ 6 5 192 = 11,5201b. An.
(b) The velocity ratio is the value of the above fraction, or 192. Ans.
(¢) Bince r = distance power moves 102 = 64
distance weight moves’ distance weight moves

from which, distance weight moves = 1o, = }in. Ans.

—~
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When the word “theoretical” is used in such expressions as
theoretical power, theoretical weight, etc., it méans the power,
weight, etc. when all hurtful resistances are neglected. In this
example, it means to neglect friction, weight of levers, etc.

As another example showing a practical application of a com-
pound lever, see Fig. 28, which represents the mechanism for
moving the valves, reversing the engine, etc. of a locomotive.

Fia. 28.

When I is pushed against H, the latch J is raised, and the handle
H is then free to turn in either direction about the pin O’. Sup-
pose it moves in the direction of the arrow P. The link AB is
connected to the handle H at A, and when H moves AB moves
also; this makes the handle a lever of the second class with ful-
crum at ’. BO” is keyed to a small shaft, to which is also keyed
the cranks CO” and FOQ”, all three cranks being moved (turned)
when the link AB moves. The link CD connects the crank CO”’
with the bell crank DO’’E, and this latter raises the link EG
against the resistance offered by the valves, etc., and which here

P

P
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corresponds to the weight W. S is a spring pressing against F
and resisting the effort of P on H to move H. Now neglecting
the weights of the levers, all frictional resistances, etc. suppose the
resistance offered by the valves, etc. is equivalent to a weight W
of 420 1b. and that the resistance offered by the spring is 180 lb.,
what force P is required to move the handle H?

Using the dimensions given in the figure, the power arm of H
is 56 in., and the weight arm is 13.5 in. The arms BO"’ and CO"”
move through arcs of circles that are proportional to the radii
CO” and BO”; they constitute what is virtually a bent lever
whose weight arms and power arms are equivalent (propor-
tionally) to the distances CO’”’ and BO”, respectively. The same
is true of the bell crank, the power arm being DO’ and the
weight arm O’’E. Hence, neglecting the spring S for the present,
the whole arrangement is a compound lever whose power arms
have lengths of 56 in., 30 in., and 20 in., and whose weight arms

have lengths of 13.5 in., 22 in., and 25 in. Therefore, the

. .. 56 X 30 X 20 .
velocity ratio is ‘1‘ = 35X22X 2 4§3. Since W =P, P

=v—:7 = 420 + 4§} = 92.81 lb. = pull on handle required to
move the valves, etc. But, before the valves can move, a re-
sistance of 180 1b. due to the spring S must be overcome. The
spring is actuated by the crank O”F (which with O”’B makes
another bell crank), the link AB, and the handle H ; this combi-
nation makes another compound lever whose power arms are
O’P = 56 in. and 0"’"B = 30 in., and whose weight arms are 0'A

= 13.5 in, and O”’F = 2} = 2.25 in. The velocity ratio of this
56 X 30

compound lever is 55X 225~ 558 = 1. Whence, P = g
= 180 + 554% = 3.25 lb. Therefore, the total force P is 92.81
+ 3.25 = 96.06 1b.

As will be noted, the entire system of levers consists'of two com-
pound levers, one actuating the valves and the other the spring.

EXAMPLES

(1) (a) How many classes of levers are there? (b) Give an example of a
lever of the second class not mentioned in the text? (c) Can the velocity
ratio of a lever of the third class be greater than 1?

(2) (a) If the fulcrum is at one end of the lever and the power at the other
end, with the weight between, to what class does the lever belong? (b) If the
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length of this lever is 7 ft. and the distance from the fulerum to the weight is
6 in.; what power will be required to lift a load of 672 1b.? Ans. 48 lb,

(3) (a) What is a straight lever? (b) a bell crank? (c) a compound lever?
Hlustrate by a sketch.

(4) The arms of a bell crank make an angle of 120° with each other; one
arm is 4.5 in. long and the other is 11.5 in. long. If the action lines of the
power and weight are parallel and the weight is moved by the short arm,
what weight can be moved by application of a power of 27 Ib.? To what
class does this lever belong? Ans. 69 1b.

(8) (@) To what is the velocity ratio of a lever or any other machine equal?
(b) what is the velocity ratio of the bell crank in Question (4)? Ans. (b) 2§.

(6) The lengths of the power arms of a compound lever are 94 in., 12 in.,
8 in. and of the weight arms 3} in., 4}in., 3 in.; what is (a) the velocity ratio?
(b) what power must be applied to raise a load of 1800 1b.?

(a) 194¢%
Ana. { (b) 94.367 Ib.

(7) If a beater roll weighing 12,0001b. with the shaft and pulley is placed so
that each end of the shaft rests at the center of a lever of the second class,
what weight is supported by each fulecrum? Consider the roll to be midway
between the bearings. Ans. 3000 lb.

(8) What power would be required on each side of the beater if the center
of gravity of the roll, shaft and pulley, which weigh 13,000 lb. is 5 ft. from
the center of one bearing and 8ft. from the center of the other, supposing the
center of shaft to be 30 in. from the fulcrum and power to applied 70in. from
the fulecrum? Each lever (lighter bar) is assumed to weigh 300 lb., to be of
uniform cross section, and to be 70 in. long.

Ans { 2293 Ib.
* | 3579 1b.

(9) Extra pressure is put on a paper mill calender by means of compound
levers composed of two simple levers, each lever being of the second class
and having a power arm of 65 in. and a weight arm of 6} in. (a) What
pressure is added on each side of the machine if the weight (power) is
120 1b.? (b) What is the extra pressure per inch width of the calender,
if the rolls are 60 in. long at the face?

4 { (a) 12000 Ib.
(b) 400 1b.

THE PULLEY

44. The Fixed Pulley.—A pulley is a wheel, which may be
rigidly connected to an axle, so that when the pulley turns the
axle turns also, or it may turn freely on the axle. The pulley is
usually grooved around its circumference, and a rope, cord, or
chain passes over the pulley and lies in the groove; if the pulley
is not grooved, a band or belt is used. Fig.29 (a) shows what
is termed a fixed pulley, because it has no movement of trans-
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lation—its axis always remains in the same relative position. S
is the pulley; M is the axle; the part T, whatever its shape, that
holds the pulley and contains the bearing for the axle to turn in
is called the block (in machinery usually called the hanger); the
pulley itself is frequently called the sheave; the entire combina-
tion of block, sheave, and rope is called the tackle, though com-
monly called the block and tackle.

(a)

46. When the fixed pulley is used to raise loads, as indicated
diagrammatically in Fig. 29 (b), the load is suspended from one
end of the rope and the power is supplied at the other end. The
arrangement is essentially the same as that of alever of the first
class with equal arms, the axis O being the fulcrum, the diameter
AB being the lever, and the radii 0OA and OB being the lever
arms. Taking O as the origin of moments, P X OB = W
X OA; or, since OB = OA, P = W. Therefore, no matter what
the diameter of the pulley, if friction and other hurtful resistances
are neglected, the velocity ratio of a fixed pulley is always r

= % = 1, since W always equals P. The only effect produced

by a fixed pulley is to change the direction of the force. Thus, in
the figure, the force instead of acting upwards to raise the weight
W, acts downwards.

Furthermore, it makes no difference whether the action lines
of P and W are parallel or not, P always equals W. For instance,
referring to Fig. 29 (c), W still acts vertically, but P acts in the
direction BP. Taking O as the origin of moments, P X OB
= W X OA, or P = W, since OB = OA. Again, the distance
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hence, the velocity ratio is 1, and P = W. The same is true
when P acts in the direction B’P’ or in any other direction that
will keep the rope in contact with the pulley. The resultant
pressure on the bearing, however, is different for different direc-
tions of the action line of P. Thus, in (b),itisP 4+ W = 2P;in
(c), if CA represent W and CB (AD) represent P, the resultant
force on the bearing at M is CD; and if C’A’ represent W and
A’'D’ represent P, the resultant is C’'D’. Since C’D’ is the
hypotenuse of a right triangle having equal legs, assuming that
C'P’ is horizontal and C’'W is vertical, C'D’ = C’A’ X V/2
= 4v/2 X P. Evidently, C'D’ is less than CD.

46. The Movable Pulley.—A movable pulley is one that moves
when the load moves, the load being suspended from the block,

Fia. 30,

see Fig. 30 (a). One end of the rope is attached to a beam or
other point of support and the other end is free. When a force
P is applied to the free end, it moves up, and the pulley and
weight also move up. The distance moved by P will be twice
that moved by W; because, suppose that the pulley be raised
(lifted) with its load say 6 in., P remaining stationary. Then,
the diameter BO in (b), will occupy the position B’O’,and B’B
4

~

-
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=00 = 6 in; in other words, the slack in the rope will be 6 +6
= 12 in., and to take up this slack, it will be necessary for P to
move 12 in. But W has moved only 6 in.; hence, the velocity

ratiois r = 162 =2, and W = 2P.

This same result may be arrived at in another way. Suppose
that the pulley were replaced by a lever whose center line is the
diameter OB. The power acts at B, the weight at A and the
fulcrum is at O; hence, the lever will be of the second class.
Taking O as the origin of moments, P X OB = W X OA, from
which, W =P X gg =P X 2 = 2P, since OB = 2 X OA.

47. Movable pulleys are usually arranged so that the free
end of the rope passes over a fixed pulley, as shown at (b) or (¢),
Fig. 30. The block of the fixed pulley is
called the fall block. One end of the rope
may be attached to the fall block,.as at (c)
or it may be attached at any fixed point, as
S at (b); in either case, P will move through

twice the distance that W moves, and the

\\y sheave (pulley) in the fall block has no effect
M on P other than to change its direction.

Note particularly that in the case of the
fixed pulley, Fig. 29, the weight is sustained
# by only one part of the rope, while in the
F

%

»

-
N

Q case of the movable pulley, Fig. 30, the

weight is sustained by two parts of the rope,

E
OC and BD. The free end EP is not con-
sidered; it is a part of BD.
48, The Differential Pulley.—The differ-
¢  ential pulley is shown in Fig. 31. There

N
o
w

are three sheaves, M, N, and @, M and N
being in the fall block and @ in the movable
block. Because of the heavy loads that it
Fio. 31. lifts, chains are generally used instead of ropes

in the tackle of this class of pulleys. Sheaves

M and N are keyed to the same axle, and when M turns, N
and the axle turn also. The chain is an endless one, but the
part DG corresponds to the free end. Beginning at G and
going upwards, the chain passes over the pulley M (which is
fixed), then passes down around the movable pulley, up over
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the pulley N (which is also fixed), and finally down and joins the
free end at G. It will thus be seen that both DG and CH are
free ends. It will also be noted that the diameter of M is
slightly greater than that of N, with the result that as the
chain winds up on M and unwinds on N, there is a difference
between the winding and unwinding, whence the name differ-
ential as applied to this arrangement.

The difference between the winding and unwinding is the
difference between the circumferences of M and N, which is pro-
portional to the difference of the radii of M and N, or R — 1,
when R = OA, the radius of M, and r = OB, the radius of N.
The movable block Q is supported by the parts AE and BF of the
rope; hence, the load will move only one-half the distance repre-
sented by the difference between the winding and unwinding for
a given movement of P. Therefore, since any movement of
P will be proportional to the radius R of the pulley M, the
distances moved through by the weight and power will be

proportional respectively to E ; T and R, and
PxR=WxE 7
The velocity ratio r, is
°* P R-r
the power is
_WR-=1)
2R 2)
and the weight is
2PR
W=r—r @)

These equations might have been derived in another manner, as
follows: Taking O as the origin of moments, note that the force P
tends to produce right-hand rotation; the weight W is supported
by the parts AE and BF of the rope, both acting downwards;
the downward force in AE tends to produce left-hand rotation
and the downward force in BF tends to produce right-hand
rotation; therefore, for equilibrium, since the forces acting in AE

W . .
and BF are equal, and are equal to o (neglecting the weight of
the block @Q and its sheave)

PXR+!;{XT—2VXR=0
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. _WR-1)

from which, P = )
2PR
and W = I_e'_—;‘

It may be mentioned that the chain is kept from slipping by
means of notches cut into, or by teeth projecting from, the cir-

cumference of the sheaves.

ExampLE.—What load can be raised with a differential pulley if the
diameter of the larger sheave is 13 in. and of the smaller sheave 12 in.
by a force P of 60 lb., neglecting the weight of the movable block and all
hurtful resistances? What is the velocity ratio?

SoLuTioN.—If desired, the diameter may be substitutecli) in formulas

L R 2 D
(1), (2), and (3) in place of the radius, since R-+r"D 4-D=4
272
n which D and d are the diameters of the larger and
smaller sheaves. Therefore, applying formula (3),
_2X60X13 _
W = —-ig—__lz 1560 1b. Ans.
and, by formula (1),
_2x13
™= 13— 12 26 Ans.
W 1560
or, r.—F——60—=26.

49. Combination of Pulleys.—When the
blocks contain two or more sheaves and a single
rope passes around all of them, the arrangement
is called a combination of pulleys. The sim-
plest form of such an arrangement is shown in
diagrammatic outline in Fig. 32. The fall block
F contains two sheaves A and B, and the mova-
ble block M contains one sheave C. One end
of the rope is attached to the movable block;
the rope then passes over sheave A around
sheave C, and up over sheave B, which simply
changes the direction of the power P.

It will be noted that the load is supported by three parts of
the rope, designated by a, b, and ¢. The free end d does not
count, since it is merely an extension of the part ¢; it changes
the direction of P from a force acting upwards to one acting
downwards. Each of the parts a, b, and ¢ sustains an equal

Fig. 32.

part of the load, or %,; conscquently, P = %—’ and W = 3P.

|
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The velocity ratio is EVI—, = %—,13 = 3. If, therefore, the weight

to be lifted is 450 1b., the theoretical force P that is required to
miseitis% = 150 Ib.

This same result may be obtained as follows: Suppose the
block C to be raised a inches, then there will be a in. of slack in
g, b, and ¢. To take up this slack, it will be necessary for P to

move 3 X a in. = 3a in. Hence, when W moves a in., P moves

3a in., and the velocity ratio is v—;,’ =r= 1%0 = 3, from which W

= 3P.

80. It will be noted that the diameter of sheave 4 is less than
that of sheave B; the reason for this is that it was thought
desirable to proportion the two diameters so that the angular
velocity (which equals the velocity of a point on the circum-
ference divided by the radius) of the two sheaves will be equal.
For instance, suppose the diameters of the two shcaves were
equal, and suppose the movable block M to be raised say 1 in.
There will be a slack of 1 in. in all three plies (parts) of the rope.
To take up this slack, b must move downwards 2 in. and ¢ must
move upwards 3 in. In other words, when a point on the ply ¢
moves from e to f along the arc ef, whose length is R6, 6 being the
angle eOf in radians, a point ¢’ on ply a will move only # of this
distance, or §R8. Consequently, when the sheaves have equal
diameters, and 6’ is the arc moved through by the point on sheave
A, ¢ = §R6. To make 8’ = 6, all that is necessary is to make
the radius of A equal to $R; that is, if the diamecter of A is
two-thirds that of B, both pulleys will turn through the same
angle for any movement of P, and the angular velocities of the
two sheaves will be equal—they will both make the same number
of revolutions per minute.

51. Instead of arranging sheaves A and B so that one will be
above the other, they may be placed side by side, as in Fig. 33,
(@) and (b). In such cases, the sheaves are usually made of the
same diameter and turn on the axle, instead of being keyed to it
and turning the axle. If, however, the diameters are propor-
tioned as just described, Art. 60, then the sheaves may be keyed
to the axle.

52. Whatever the number of sheaves in the fall block or in the
movable block, the velocity ratio is equal to the number of plies
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of rope that sustains the movable block. Thus, referring to
Fig. 34, two different arrangements for six pulleys are shown.
In both cases, there are 6 plies sustaining the movable block
(and the load); consequently, the velocity ratio is 6. Another
rule for cases of this kind is: the velocity ratio is equal to the
total number of sheaves'in the fall block and movable block. In

Fic. 33. Fia. 34.

Fig. 34, the number of sheaves is 6, which is the velocity ratio; in

Figs. 32 and 33, the number of sheaves is 3, the velocity ratio.
Knowing the velocity ratio r, W = Pr, and P = V_:’_
ExampLE.—If the fall block of a block and tackle contains four sheaves

and the movable block has three sheaves, what is the velocity ratio? What

theoretical foree P must be exerted on the free end to lift 600 pounds?
SorLuTioN.—The velocity ratio is equal to the number of sheaves, or
4+4+3=17 Ans
The theoretical force is the force required to raise the weight when the
weight of the movable block, friction, and all hurtful resistances are neglected,

hence, P = I—:, = 6—(7)—(-) = 858 Ib. Ans.
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63. The Compound Pulley.—Whenever a system of pulleys
has more than one rope, it is called a compound pulley; thus, in
Fig. 35, the pulley systems (a) and (b) both have three ropes,
as indicated by a, b, and ¢. System (a), however, has four
pulleys, while system (b) has three.

To find the velocity ratio of (a), let pulley A (with weight W)
be raised say 1 in.; there will then be a slack of 1 in. in @ and 1
in. in @/, and B must
move up 1 + 1 = 2 in.
to take up this slack.
There is now a slack of
2in. in b and 2in.in ¥,
and ¢ must move up 2
+2 =4 = 2% in. to take
up the slack in a, a’, b,
and ¥’. There is now a
slack of 4 in. in ¢ and 4
in. in ¢, and P must
move down 4 + 4 =8
=2 in. to take up all
the slack. In general, if
n be the number of
ropes, the distance P
moves will be 2* times
the distance W moves;
hence, the velocity ratio
sr = 2m,

If, however, n’ = the w
number of pulleys, the (a)
number of ropesis n’— 1,
and the velocity ratio is
r=2v"1,

The velocity ratio of the arrangement shown in (b) is found in a
similar manner. Thus, if W be raised 1 in., the slack in a and a’
will be 1 in. in each ply, and B must move down 1 + 1 = 2in.
to take up this slack; but there is still a slack of 1 in. in b due the
nising of W, making the total downward movement of B 1 + 2
=3 =2 — 1in. There is now a slack of 1 + 3 =4 in. in ¢
and 3 in. in ¢/, and C must move down 4 + 3 =7 = 28 — 1 in.
to take up this slack. With this arrangement of pulleys, the

®)
Fia. 35.
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number of pulleys = the number of ropes = #, and for any num-
ber of pulleys, r = 2" — 1.

ExampLE.—What theoretical force P is required to raise a load of 500 lb.
with four pulleys arranged as in (a), Fig. 35? If the pulleys are arranged as
in (b), what theoretical force is required?

SoLurioN.—For the first case, letting n’ = the number of pulleys.
r = 27'"1 = 24-1 = 23 = §; hence, the theoretical forceis P = - = 62.5.

b, Ans.
For the second case, letting n = the number of pulleys,r = 2% — 1

= 2¢ — 1 = 15; hence, the theoretical force is P = 5% = 33t 1b. Ans.

8

THE WHEEL AND AXLE

b4. The wheel and axle consists of two pulleys rigidly attached
to a common shaft, all three parts having the same axis. The
arrangement is shown in Fig. 36. The pulley M, to which the

(a)

(d)

Fia. 36.

power is applied, is called the wheel; the pulley N, which raises
the weight, is called the axle; both wheel and axle are keyed to
the shaft @; and all three parts, M, N, and @ have a common
axis 0’'0”. Referring to (a), and taking O as the origin of
moments, P X OB = W X OA, from which

W OB _ R _2R _D

P 0A~""r~ 2 "d
in which 7, = the velocity ratio, R = radius of wheel, r = radius
of axle, D = diameter of wheel, and d = diameter of axle.

66. It is not essential that the entire wheel be a part of the

arrangement; in Fig. 36, the entire wheel was necessary, because




§1 SIMPLE MACHINES 57

two separate ropes R’ and R’’ were used, and as R’ unwinds from
M, R winds up on N, the effect produced is the same as though
the force P acted at the circumference of M and moved around
M. If the wheel M be replaced with a crank having a handle
that can be grasped with the hands and be made to turn in a
circle, as in Fig. 37, the effect will be exactly the same as that
produced by the arrangement of Fig. 36, insofar as lifting the
weight is concerned. The apparatus shown in Fig. 37 is called a

Fic. 37.

windlass. If the force is always exerted so its action line will
be tangent to the circle described by a point on the handle, it
will have exactly the same effect on the axle as is produced by the
rope acting on the wheel. The radius of the circle described is
the same as the radius of a wheel having the same diameter as the
circle.

The windlass is frequently used in combination with a block
and tackle to raise heavy loads. In such cases, let 7 be the
velocity ratio of the windlassand 7’ the velocity ratio of the block
and tackle; then the velocity ratio of the combination is

r=r Xr".

ExampLE.—Supposc the radius of the circle described by the handle
of a windlass is 15 in. and the diameter of the axle is 8 in.; suppose further
that the weight end of the rope leading from the axle forms the free end
of a block and tackle, in which the fall block contains 3 sheaves and the
movable block contains 2 sheaves, somewhat as illustrated in Fig. 38.
What is the velocity ratio of the combination? What theoretical weight
will a force of 45 1b. exerted on the handle of the windlass lift?

SoLuTioN.—The diameter of the circle described by the handle // is
15 X 2 = 30 in. The velocity ratio of the windlass is r = 3. The
number of sheaves contained in the block and tackle is 3 + 2 = 5, which
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is the velocity ratio of the block and tackle; see Art. 62, and ¥’ = 5. The
velocity ratio of the combinationisr =7 X v’ = 32 X §=18.75. Ans.
The theoretical weight that can be lifted is W = Pr = 45 X 18.76
= 843.751b. Anas.

EXAMPLES

(1) In a block and tackle con-
sisting of 3 fixed and 2 movable
pulleys, (a) what is the velocity
ratio? (b) Neglecting friction
and other hurtful resistances,
what must be the pull on the free
end to lift a load of 675 1b.?

Ans. (b) 1351b.

(2) What (a) theoretical load
can be lifted with a differential
pulley by application of a force of
90 1b., if the diameter of the
larger sheave is 11 in. and of the
smaller sheave 10} in.? (b) the
velocity ratio?

4 { (a) 26401b.
T | () 29}¢

(3) A compound pulley made
up of four pulleys arranged as in
Fig. 35(b), is required to raise a
load of 960 Ib.; what power must
be applied ? Ans. 64 1b.

(4) Referring to Fig. 38, sup-
pose that the diameter of the axle
is 84 in., the radius of the circle
described by the handle is 16 in.,
. and that the fall block and mov-
" able block each contain 3 sheaves;
(@) what is the velocity ratio?
(b) what load can be lifted by an
application of a power of 36 1b.?

(a) 221944
Ans. { (b) 813.2 — Ib.




MECHANICS AND
HYDRAULICS

(PART 1)

EXAMINATION QUESTIONS

(1) Describe (a) how a force may be represented by a line.
(b) Why is it necessary to use segments of right lines to represent
forces?

(2) Suppose a railway train to be moving with a velocity of 55
ft. per sec. and that a stone is thrown in the same direction from
the train in such a manner that it has an average horizontal
velocity of 82 ft. per sec. If the stone strikes the earth 6} sec.
after being thrown, how far will it be from'its starting point with
reference to the earth? Ans. 890.5 ft.

(3) Two forces, A = 64 1b. and B = 88 lb., have a common
point of application and act at right angles to each other; what is
the value of the resultant? Ans. 108.8 1b.

(4) A crowbar is used to lift a load placed between the ends by
raising the free end. (@) To what class does this lever belong?
(b) If the crowbar is 54 in. long and the center of the load is 23
in. from the fixed end, what power is required to lift 1350 1b.?

Ans. (b) 68.9+ 1b.

(5) Referring to the example of Art. 14 and Fig. 11, suppose
the weight W had been 125 Ib.; what would be the vertical force
tending to lift the pulley O"'? Ans. 175.6 Ib.

(6) Referring to Fig. 14, if length of AB = 3 ft. 4 in., of BC
=4 ft. 9 in., and of AC = 4 ft. 4} in., what is the magnitude of

the forces acting in the arms? A { In AB, 381 Ib.
"\ In BC, 543 Ib.

(7) Referring to Question 6, what is the moment of the couple
produced by the weight W? Ans. 1608 ft.-b.

(8) () What difference in effects is produced by a moment
59



60 MECHANICS AND HYDRAULICS §1

and by a couple, the arms being equal? (b) When is a body in
complete equilibrium under the action of forces?

(9) Referring to Fig. 18, suppose the beam is 14 ft. long, of
uniform cross-section throughout its length, and that it weighs
28 1b. per foot of length. If the beam is horizontal and is acted
on by four vertical forces A, B, C, and D, the magnitudes of
which are A = 1400 1b., B = 800 1b., C = 500 lb., and D = 1800,
what are the reactions of the supports, when A is 2 ft. from
the right-hand support, B is 3 ft. from A, C is 4 ft. from B, and D
is 4 ft. from C, and at what point does the resultant act?

Reaction of left support = 267444 Ib.
Ans {Reaction of right support = 221734 Ib.
6.345 + ft. from left end.

(10) In a lever of the third class, the distance from the fulcrum
to weight is 22 in. and from the fulcrum to the power is 9in. (a)
How far will the power move when the weight moves } in.?
(b) What is the velocity ratio? Ans { (a) .1023— in.

1 (b) 4091~.

(11) Suppose that the weight and the power were to change
places in the case of Question 10, (a¢) to what class would the
lever then belong? (b) what would be the velocity ratio?

Ans. (b) 24 = 2444+

(12) If the distance from the cutting point to the pin of a pair
of shears for cutting sheet metal is 1} in., distance from pin to
handles is 134 in., and a pressure of 26 pounds is applied to the
handles by the fingers, what is (a) the cutting force? (b) the
velocity ratio? Ans { (a) 286 1b.

L 11

(13) In a compound lever made up of four simple first-class
levers, the power arms are 12in., 9in., 11 in., and 8 in., the weight
arms are 2 in., 1 in., 1§ in., and 1} in.; what is (a) the velocity
ratio? (b) what theoretical weight can be raised when the power
is 12 1b.? Ans {(a) 965.5—

* 1 (b) 11,586— Ib.

(14) Referring to the example of Art. 39, suppose the weight of
the valve and stem to be 3 Ib. 12 oz., weight of lever is 25 lb., and
distance of its center of gravity from O is 224 in. The other
dimensions and weights being unchanged, at what distance from
O must the ball be placed so that the steam pressure shall not
exceed 75 pounds per square inch. Ans. 40.7 in. from O.
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(15) In a block and tackle, the fall block has 3 sheaves and the
movable block has two sheaves; (a) how far will the load move
when the power moves 18 in.? (b) what is the velocity ratio?

Ans { (a) 3.6. in.
L) 5

(16) If the free end of a block and tackle containing 6 sheaves
is attached to the drum of a windlass as in Fig. 38, (a) what theo-
retical load can be lifted when a force of 36 1b. is applied to the
handle, the radius of the handle being 16 in. and diameter of drum
7in.? (b) what is the velocity ratio? Ans { (a) 987.4 1b.

(b) 2734

A






MECHANICS AND
HYDRAULICS

(PART 2)

STATICS (Continued)

SIMPLE MACHINES (Continued)

THE INCLINED PLANE

56. In the three simple machines so far described, the idea of
rotation is involved and the principle of moments can be applied
to find the velocity ratios. In the case of the next three
machines, which completes the list of simple machines, rotation
i8 not a feature of their operation, and the velocity ratios must be
obtained by resolution of forces into components. The pulley
and wheel and axle may be considered as forms of levers; the
wedge and the screw may be considered as forms of the inclined
plane.

An inclined plane may be represented by a right triangle, one
leg being horizontal, the other vertical, and the hypotenuse being
the inclined plane, or slope; see Fig. 39, where AB in each case
represents an inclined plane. Assume that there is no friction
between the load W and the plane; then, if AB were horizontal,
occupying the position AC, the force representing the weight of
W would act vertically downwards, would be resisted by an equal
force acting vertically upwards, and there would be no tendency
for W to move in any direction except vertically downwards.
Moreover, the perpendicular pressure against the plane would
then be exactly the same as the weight of W. But, with AB in
the position shown, the pressure against the plane will generally
be different from the weight of W, there will be a tendency

63
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for W to slide down the plane, and this must be resisted by the
application of a force P. In accordance with the angle that ac-
tion line of the force P makes with the inclined plane, there are
three cases, viz.: when P acts parallel to the plane; when P acts
parallel to the base AC; and when P acts in aline making an angle
with the base that differs from the angle made by the plane.
Each case will be considered separately.

)
Fra. 39.

67. First Case.—Referring to Fig. 39 (a), let O be the center of
gravity of the body, whose weight is W, and OF, parallel to AB,
be the action line of P. Draw OD vertical, and make its length
represent W to some convenient scale. Draw OE perpendicular
to the plane and DE parallel to the plane. OD is then resolved
into two components OF and ED acting in the directions indi-
cated by the arrow heads. OE represents the force with which W
presses against the plane (the perpendicular pressure), while ED
represents the force urging the body down the plane and which
must be counteracted by P. QCompleting the parallelogram
ODEF, OF = ED = P = the force required to prevent W from
slipping down the plane. Considering the triangles ABC and
ODE, C and E are right angles by construction, and since 0D
and OF are perpendicular to AC and AB respectively, DOE
= BAC, and the triangles are similar. Therefore, ED : 0D
= CB :AB,or,since ED = PandOD = W,

P:W=CB:AB
W X CB

whence, P = T (l)
_PXAB
and W= CB 2)

. . . W AB
The velocity ratio is T=p = CB (3)
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In other words, where the power i3 parallel to the plane, the
veloctily ratio is equal to the length of the plane divided by the height
of the plane; and it is evident that the longer the plane in pro-
portion to its height the greater will be the velocity ratio. Also,
the steeper the plane the greater will be the power required to
raise the weight through the height CB, until, when A B becomes
vertical, the power equals the weight.

58. Second Case.—Referring to Fig. 39 (b), let the power act
in the direction OF, parallel to the base; the length and height
of the plane and the weight W of the body are the same as in (a).
As before, draw OF perpendicular to the plane; draw DE parallel
to the base; then OF represents the perpendicular pressure against
the plane and ED represents the force which, acting parallel to
the base, will move the body up the plane or, rather, keep it
from moving down the plane. The perpendicular pressure
against the plane is greater than in the first case; for, drawing
DG parallel to AB, if OD in (b) is equal to OD in (a), GE represents
this additional pressure to the same scale that OD represents W.
The reason for this additional pressure is readily seen; thus,
completing the parallelogram ODEF, OF = P = ED. But P
(= ED) can be resolved into two components, one acting parallel
to the plane (represented by GD) and the other perpendicular to
the plane (represented by GE); and since ED is greater than
GD, P in (b) is greater than P in (a).

Considering the triangles BAC and EOD, they are similar
right triangles; hence, ED :OD = CB : AC, or, since ED = P
and OD = W,

P:W =CB:AC

whence, P = —4C (1)
P X AC

and = —CE_ (2)
. .. _W _AC

The velocity ratio is T=p =CB 3)

In other words, when the power is parallel to the base, the velocity
ralio i3 equal to the length of the base divided by the height of the
plane. The velocity ratio is smaller in the second case than for
the first case; this is caused by the fact that P = ED is larger in
(b) than in (a).

5
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69. Third Case.—Suppose P to act in the direction OF, as
_ indicated in Fig. 39 (c), OF making a greater angle with the base
than AB, and W being the same as before. As before, draw OE
perpendicular to the plane and DE parallel to the line of action
of P; then OF represents the perpendicular pressure against the
plane and ED = P, the force required to hold the body in posi-
tion when acting in the direction OF. Producing OF and drawing
DG parallel to AB, DG = DE in (a). The perpendicular pressure
against the plane, represented by OE is less than OF in (a) by the
amount EG, the decrease being caused by the fact that P tends
to lift the body off the plane. This is shown by resolving DE in
(c) into two components DG and GE. Since DE is greater
than DG, the velocity ratio in (c) is less than in (a); because

when W is the same, if P is greater, the ratior = P must be less.

It is therefore evident that the velocity ratio is greater for the
first case than for either of the other two.

ExaMPLE 1.—A wagon is hauled up an inclined plane that is one-half
mile long; when the wagon reaches the top, it is 72 feet higher than when
it started. Assuming that the power moving the wagon is exerted parallel
to the plane and that the wagon and its contents weight 1800 1b., what force
is required, friction and other hurtful resistances being neglected ?

SoruTioN.—This evidently corresponds to the first case; hence, applying
formula (1), Art. 87, since one-half mile = 5280 + 2 = 2640ft.,

_ 1800 X 72 _
P = 2640 = 494 1b.  Ans.

This force of 49.1 1b., very nearly, is the force which, acting parallel
to the plane, will just keep the body from sliding down the plane, assuming
there is no friction; or, if the body is in motion up the plane and this force
acts upon it, it will keep the body in motion with a uniform velocity.

ExaMpLE 2.—Suppose the wagon in the last example had been pushed up
the plane, the direction of push being parallel to the plane’s base; what force
would be required ?

SovruTioN.—This falls under the second case; hence, apply formula (1),
Art. 58, first calculating the length of the base. Since the length of the
plane is the hypotenuse and the height of the plane is one leg of a right
triangle, the other leg, the base, is /26407 — 72? = 2639 ft. Consequently,

1800 X 72
P = 9839 49.111b. Ans.

Observe that the results are practically identical, which is
always the case when the plane is very long in comparison with
the height. For all practical purposes, when the height is not
greater than about Ysth of the length of the plane, the velocity

ratio may be taken as the same for both cases. In specifying
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the grade for railroads, sewers, rivers, roads, ‘etc., it is usual to
give it as 80 many feet per mile or as a certain per cent; the mean-
ing in such cases is that for one mile of length horizontally, the rise
is a certain number of feet, or for 100 feet horizontally, the rise is
the number of feet specified by the per cent. Thus, a grade of
26 feet per mile means a vertical rise of 26 feet for a horizontal
distance of 1 mile; also, a grade of 5 per cent means a vertical
rise of 5 ft. for a horizontal distance of 100 ft. Consequently,
according to the above, if the grade is less than 10 per cent, the
velocity ratio may be taken as the ratio of the horizontal distance
to the vertical distance without material error.

60. Discussion of Inclined Planes.—The object of an inclined
plane is to raise a load through a given vertical height by the
application of a power which is less than the force that is equi-
valent to the weight of the load; the work done, however, as is the
case with any machine, is the same as in the case of a direct lift,
because the power acts through a greater distance. Thus,
considering the first case, let I = length of plane and A = height
of plane; then P = L4 ;<—h Multiplying both sides of this
equation by [,

WX xi=wxh
But P X lis the work done by P, and W X his the work done on
the load, which is the same as that required to lift the load verti-

cally through the height A. In the second case, let b = length

of base; then, P = K{—h . Multiplying both sides of this equa-

PXl=

tion by b,
PXb=WXh

But P X b is the work done by P in moving the load, and W X h
is the work that would be done in lifting the load through the
height k. Hence, as before, the power multiplied by the distance
through which it moves is equal to the weight multiplied by the
distance through which it moves.

61. For the third case, a different value for P will usually be
obtained for every position that the load occupies on the plane.
Thus, referring to Fig. 40, suppose the load to be pulled up the
plane by means of a pulley arranged as shown. For the pom~
tion O, P is represented by D’E’; for the position 0", P is
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represented by D’*E’’; and for the position O’”’, P is represented
by D'’E’”. It will be noted that as the load approaches the top
of the plane, P becomes more nearly equal to W.

Fiu. 40.

THE WEDGE

62. In the case of the inclined plane, the load is raised through
a certain height as the result of a movement along the plane.
The wedge is a form of inclined plane, but instead of the load
moving along the plane, it has a movement, the direction of
which is always in a right line that makes the same angle with
the plane, and the plane itself moves. The shape of the wedge
is that of a triangular prism, two of the sides meeting in a sharp
acute angle, as indicated in Fig. 41 (a) and (b), where ABC is an
end view of the wedge, the sides meeting at A ; usually, the angle
BAC is smaller than here represented. Let BC be the back of the
wedge, and draw AD perpendicular to BC. Assume the power
to be applied at D; then the wedge will be acted on by three forces,
the load or resistance W acting perpendicular to the side A B, the
- reaction R acting perpendicular to the side AC, and the force P
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/ acting perpendicular to the back of the wedge. Assume that
these three forces concur at O; then the wedge will be in equili-
brium under the action of these three forces. To find the value
of these forces, let ED represent P to some convenient scale;
draw DF parallel to W, and perpendicular to AB, and draw EF
parallel to R, and perpendicular to AC. Placing the arrowheads
a8 shown, they all point in the same general direction around
the triangle, thus indicating that the forces are in equilibrium
(see Art. 18). DF represents the value of W and FE represents
the value of R, both measured to the same scale as ED.

Fra. 41.

83. Considering the triangles BAC and DFE, DF is perpen-
dicular to AB and FE is perpendicular to AC; hence, angle DFE
= BAC. Producing FD to G, DGB is a right triangle, right-
angled at G; angle GDB = CDF; GBD = 90° — GDB, and FDE
= 90° — CDF = 90° — GDB; that is, the angles GBD and FDE
are equal. Since two angles of the two triangles BAC and DFE
are equal, the third angle of the two triangles must also be
equal, and the two triangles are similar. Therefore,

P:W =BC:AB

and P:R = BC:AC
From these two proportions, c
W X B
R X BC

P="4c @
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If the sides AB and AC are equal, the triangle is isosceles,
W = R, and the velocity ratio is
LW _AB_4Ac
P BC BC
In other words, the velocity ratio is then equal to the length of
onc of the sides divided by the length of the back of the wedge.

64. The wedge shown in Fig. 41 (a) is called a double wedge;
if one side be perpendicular to the back, as in Fig 41 (b), the
wedge is called a single wedge or a simple wedge. The formulas
given in Art. 83 will apply to this case also, since the side AC
in Fig. 41 (a) then coincides with AD.

The simple wedge may be used to raise heavy loads, as indi-
cated in Fig.41 (b). Here the load M is kept from sliding down
the wedge by the reaction R’ of the wall N Suppose it is desired
to find the vertical force W’ tending to lift M. The wedge
is kept in equilibrium, as before, by the action of the power P,
the force W perpendicular to AB, and the reaction R perpendic-
ular to AC and, therefore, vertical. R acts upwards and is
exactly equal to W’ acting downwards., Draw ED to represent
P; then draw DF parallel to W, and FE parallel to R; FE repre-
sents the effect of P in raising M. The triangles ACB and FED
are similar right triangles; therefore,

P:W’' = BC:AC
W’ X BC

or P = _AC— (l)
W' AC
and r= T = "Ba (2)
Also, P : W = BC : AB, since W = DF; from which,
p= WXBC
~  AB

which is exactly the same as formula (1), Art. 63.

65. Power is usually applied to a wedge in the form of a blow
struck with a hammer or sledge. If the angle A is quite small, so
that the sides are very long compared with the back, a powerful
blow will create an immense force. It is for this reason that
wedges are so frequently used to split logs, stone, etc. This may
be illustrated by an example.

ExaMPLE.—An iron wedge having equal sides 8 in. long, and the back
of which measures 27 in. is used to split a block of stone. If struck a blow
equivalent to a power of 450 Ib., what force does the wedge exert?
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SoLuTioN.—The required force is the weight or load W. The velocity

ratio is, by formula (3), Art. 63, r = 8 + § = 32, Therefore,
W =PXr =450 X’ = 4800 1b. Ans.
From the first proportion in Art. 63,
P X AB =W X BC.

When the wedge moves in the direction DA, it must move a
distance A B, Fig. 41 (a) in order to raise the load W through a
height CB; hence, the above equation states once more that:
the power multiplied by the distance through which it moves
equals the weight multiplied by the distance through which it
moves, since the power moves through the same distance that
the wedge moves.

A thin wedge may also be used to move a weight a very small
distance, as is frequently necessary in adjusting machinery.

THE SCREW

66. The Helix.—Referring to Fig. 42 (a), ABCD represents a
cylinder on which has been wound a fine thread in such a manner
that the distance between any two consecutive turns is constant
when measured on a line parallel to the axis mn thus, bd = df = ac
= ce = ht = ij, etc. The curved line thus formed by the thread
is called a helix. A little consideration will show that a point
(as the point of a pencil) tracing the helix will in going once
around the cylinder, advance along the cylinder a distance equal
tobd = ac = hi, etc. The path of the point may be represented
by a right line in the following manner: Lay off a’t’, Fig. 42 (c),
equal in length to the circumference of the cylinder = xd = »
X AB; draw b’d’ perpendicular to a’b’, and make it equal in
length to bd = ac = ht; join b’ and d’, and a’d’ will be the devel-
opment of one turn of the helix. That this is a fact may be
proved by cutting out the triangle a’b’d’ and rolling it around
a cylinder having the diameter d = A B in such a manner that a’d’
will be perpendicular to every element of the cylinder; it will then
be found that a’d’ will coincide with the helix throughout one
turn. The distance bd = ac = ht is called the pitch of the helix.

67. The Screw and Nut.—If a groove be cut into a cylinder
in such a manner that the inside and outside edges of the groove
form helixes, the part that is left is called a screw thread, and
the entire piece is called a screw; thus, in Fig. 42 (b), is shown a
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screw, the curved projecting part being the screw thread, or
simply, the thread. The diameter d is called the diameter at top
of the thread, or outside diameter, and the diameter d’ is called the
diameter at bottom of the thread, or inside diameter.

If the same kind of a thread be cut inside a hollow cylinder whose
- inside diameter is the same as d’, and the depth of the thread

— I’
so cut is the same as on the screw, or iz—d, the result is called a

nut, and the thread on the
nut will fit the spaces be-
tween the threads on the
screw. In Fig. 42 (b), Nisa
nut. If the nut be revolved,
it will advance along the
_ screw; or, if the nut be held
N ) stationary and the screw

44 turned, the screw will travel
through the nut. Assuming
that the nut turns, a point
on the helix at the bottom of
the thread in the nut will
travel a distance represented
by a@’d’ in (¢) while the nut
travels the distance b'd’ (=
the pitch) along the axis.
The effect is exactly the same
as in the first case of the
inclined plane, the pitch of
the thread (helix) correspond-
ing to the height of the
plane and the length of the
helix corresponding to the length of the plane.

68. Classification of Screw Threads.—Screw threads are
classified according to their shape by taking a longitudinal
section through the axis; the shape of the section may be a
triangle, a square, a rectangle, or a trapezoid; the thread shown
in Fig. 42 (b) is a trapezoidal thread. When of triangular shape,
they are usually called V threads, and when the tops and bottoms
are sharp, they are called sharp-V threads. In most cases,
V threads are flattened at top and bottom to make the screw
stronger, In what is called the Whitworth thread, the V’s are

x

(c)
Fia. 42.
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rounded at top and bottom. Whatever their shape, the pitch is
the distance measured on the top of the thread parallel to the
axis between a point on a helix and the corresponding point at
the beginning of the next turn of the helix.

A right-hand thread is one that moves away from the turning
force when the screw or nut is turned clockwise, and a left-
hand thread is one that moves foward the turning force when
the screw or nut is turned clockwise. For instance, when
turning a right-hand screw with a screw-driver, if the handle
be turned clockwise, it is necessary to follow the screw with the
screw-driver, in order to keep in contact with the screw.

Screws are also classified as single-, double-, triple-, or quad-
ruple-threaded according to whether they have one, two, three, or-
Jour sets of helixes. Most multiple-threaded screws have square
threads or trapezoidal threads. The pitch is measured in the
same manner as for a single thread, as stated above; that is,
from a point on a helix along a line parallel to the axis to
where the line intersects the next turn of the same helix. Multi-
ple threads are used when the pitch is large and it is not desired
to cut the thread as deep as would ordinarily be required with a
single thread; they do not alter in any way the relations between
the power and the load; in other words, the velocity ratio is the
same as for a single-threaded screw of the same pitch.

When the pitch is less than 1 inch, screws are usually identified
as a certain number of threads per inch; the number of threads
per inch is the reciprocal of the pitch, and vice versa. Forinstance,
if the pitch is 4 in., the screw has 7 threads per inch; and if a
screw has 13 threads per inch, the pitch is ¥ in. Consequently,
to find the pitch of a screw, lay a rule along the tops of the thread
so the scale will be parallel to the axis, and then count the
number of turns (usually called the number of threads) between
one inch-mark and the next one; the reciprocal will be the pitch.
In some cases, this number may be a fraction, in which case, it is
best to count the number of threads for 2 in. or 4 in., as the case
may be. Thus, many pipe threads are 11} to the inch, but the
threaded part is seldom 2 inches long; but if 2 in. can be meas-
ured off, the number of threads in such a case would be 23, or
23 + 2 = 11§ threads per inch.

69. Velocity Ratio.—Referring to Fig. 42 (b), suppose the nut
N to carry a load; it will act parallel to the axis, and when the
nut makes one turn, the load will be moved along parallel to the
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axis a distance equal to the pitch. The power, on the contrary,
will act through a distance equal to the circumference of a
circle whose diameter is the mean between the outside diameter

and the diameter at the bottom of the thread; representing this

o _ G :
by d"”, d'’ = 7 and the distance moved through by the

power is wxd”. Letting p = the pitch, W = the load, and P
= the power,

PXxd"=WXp
wd"

whence, the velocity ratio is r = P = 3 (1)
U4
and W=P X ’% )

70. A screw or nut can be turned only through the action of a
moment or a couple, which must act through the entire circum-
ference of a circle. In the case of a screw-driver, the couple acts
on the handle; and while it is transferred to the head of the screw,
where an equal couple acts, the effect is the same as though the
screw-driver and screw were all one piece. Therefore, let d be
the diameter of the handle and p the pitch of the screw; then, the

. . d .
velocity ratio is r = % Thus, suppose the diameter of the

handle is 1} in. and the screw has 10 threads per inch; then a
force of, say 25 1b. exerted on the handle will cause a forward

pressure by the screw of W = 25 X T X125 =25 X X 125
X 10 = 981.75 1b. ro
The velocity ratio is r = = X 1.25 X 10 = 39.27 = 9821—575

If n = the number of threads per inch, n = ’—i, and p =

S|~

P .
hence, substituting n for p in formula (2) of Art. 69,

i
r=™ e )

n
And if d = the diameter of the circle through which the power
moves,

r = xdn 2)
whence, W =P X xdn 3)
which was the formula used above in calculating the power ex-
erted on the screw by the screw-driver.
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It will be noticed that the length of the screw-driver and the
diameter of the screw have nothing whatever to do with the value
of the velocity ratio, which depends entirely on the ratio of the
distances moved through by the power and weight.

71. The Screw Jack.—In most cases, screws are turned by
means of a handle, a wheel, or by a pulley or gear keyed to the
screw. Fig. 43 shows what is
called a jackscrew or screw-
jack. The stand S forms the
nut, and the screw is turned
by means of the handle H, the
load to be lifted being placed
on top of the screw. Jack-
screws are used to raise very
heavy loads, such as lifting
buildings from their founda-
tion; in such cases, the jack-
screw is placed under the load
to be lifted, and the screw is
turned until the load is raised
to the desired height. The
velocity ratio is calculated ex-
actly the same as above. Let
nn' be the axis of the screw,
call the distance from nn’ to the point of the handle where the
power is applied r; then r is the radius of the circle described

by the power, and the circumference is 2xr. The velocity ratio

. 2xr
18 2rrn = —.
P

ExamprLE.—The screw of a jackscrew has 4 threads per inch, the radius
of the circle described by P is 30 in.; what power is required to raise a load of
4500 1b.?

BoLuTiON.—The velocity ratio is r = 2xr X 30 X 4 = 240r. Therefore,

P = -';V ___4500 6 1b., nearly. Ans.

Fia. 43.

240 X 3.1416

The press rolls of paper machines are usually raised by a com-
bination of lever and screw. The bearing is carried by one arm
of a bell crank lever and the other end is moved by a screw which
draws or pushes a nut fastened to the power arm; the screw has
no motion but rotation.

o~
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72. The Endless Screw or Worm and Wheel.—Another ap-
plication of the screw is shown in Fig. 44; it is called a worm and
wheel. A worm and wheel form a part of the mechanism for
raising the roll in a beater. The screw S is called the worm and
the toothed wheel T is called the worm wheel or wheel. The
threads on the worm engage with the teeth on the wheel, and

when the worm is turned one revolu-
8 tion by means of the handle H, it

: s causes a point on the circumference
. of the wheel to turn through an arc
A equal in length to the pitch of the

worm. As shown in the cut, the
wheel carries an axle M, which winds
up a rope from which is suspended
the weight W. The whole, therefore,
is a combination of a worm and

w wheel and ‘a wheel and axle. The
worm and wheel is also called an
Fio. 4. endless screw, because the screw

may be turned any number of times
and the only effect produced is to turn the wheel, the axis of
the worm being stationary.

To find the velocity ratio of the combination, let » = PB
= radius of circle described by P, ' = OC = radius of wheel
(pitch circle of), and 7"/ = OA = radius of axle; then, velocity ratio
of worm = r, = 2xrn, velocity ratio of wheel and axle = r, =
’ ’
%, and velocity ratio of the combination = r. = 2xrn X :—,, =

/,
2—’:;—”, in which n = 1—1’ = reciprocal of pitch of screw.

ExampLE.—In the case of an endless screw and wheel and axle, what is the
velocity ratio when the radius of the handle is 14 in., radius of wheel is 12 in.,
radius of axle is 3 in., and the worm has 5 threads per inch? What theoreti-
cal weight W can be lifted when P = 151b.?

SoLuTioN.—The velocity ratio is r. =
= 560 r. Ans.

The theoretical weight W that can be lifted by an application of 15 Ib.
to the handle is

W = Pr, = 15 X 560 X 3.1416 = 26,389 Ib. Ans.

It will be observed that the velocity ratio of the worm and
wheel is very great; consequently, the distance moved by W is

2X3.1416 X 14 X 12 X 5
3
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exceedingly small compared with that moved by the power.
For this reason, the worm and wheel is much used in dividing a
given distance into very small parts; it is also used as a reducing
motion, where a high velocity is changed to a low one, as in the
mechanism for rotating digesters.

A combination of the worm, worm wheel and screw is found in
the mechanism for raising and lowering the roll of a beater.
The bearing is carried near the center of a lever of the second class;
the free end carries a fixed nut, as N, Fig. 42 (b), in which a screw,
having no vertical movement, turns; this raises or lowers the nut
and the end of the lever. The head of the screw is a worm wheel
as M, Fig. 44, which is turned by the worm S and handle H or a .
hand wheel. An enormous velocity ratio is thus obtained.

78. The Toggle Joint.—The six simple machines so far de-
scribed constitute the foundation for all machines, and any
machine, no matter how complicated, makes use of one or more of
these simple machines.

F1a. 46.

There is, however, one other device that is occasionally used,
especially in pulp or baling presses, which does not properly
come under the head of one of the six sxmple machines; it is
called a toggle joint or a knee joint, and is shown in Fig. 45.
It consists of two bars or arms of equal length and having a
common joint 0. The other end of arm S is jointed at 0’ and is
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fixed, while the other end of arm T is jointed at 0" and is free to
move along the line joining O’ and O”. The power is applied at
O in a direction perpendicular to 0’O"’; as the joint O moves down,
the joint O’ moves out, increasing the distance between 0’ and
O’ and exerting a pressure against the bearing of the joint 0",
the horizontal component of which corresponds to the load W.

To find the velocity ratio, first consider the forces acting on
joint O; these are the force (power) P and the reactions S and T
of the arms, which are equal when the arms are equal. The
directions of the reactions are indicated by the arrow heads 1
and 5. Draw AB to represent P to some convenient scale;
then draw AC and BC, parallel respectively to T and S; they
intersect at C; whence, BC = Sand CA = T. The joint 0” is
also acted on by three forces, the force T (in the direction of the
arrowhead 2), the reaction R and the reaction W, the two latter
acting in the directions indicated by the arrowheads 4 and 6.
Draw CD and AD, parallel respectively to B and W; then, CD
represents the reaction B and DA represents the reaction W,
both to the same scale that A B represents P.

The triangle O'O0” is isosceles and ACB is also isosceles.
Draw CE perpendicular to AB; it will be parallel to 0’0", and
AE = EB = 1—2) The triangles 0Q0"’ and A EC are similar right
triangles; consequently,

T:5 = 00":0Q

ol

Let 0Q = h and 00" = L then,
PL

T:§ =L:h,orT=2W

The triangles OQ0O” and CDA are also similar right triangles;
consequently,

W:T =0"Q:Lor W =

~

T X 0"Q
L
Let 0’0" = D; then, 0"'Q = ]'5) Substituting in the expression

for W the values of T and 0”’Q, and reducing,

PD
= ah (1)

2

S

=p =

2o

and
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The smaller A is in comparison with D, the distance between
the joints O’ and O”, the greater is the velocity ratio; and when
his very small, the force exerted on joint O’’ becomes enormous.
For example, suppose D = 28 in. and h = Yy in.; then r

=m = 112, and W= 112P.

EXAMPLES

(1) The length of a smooth inclined plane is 125 ft. and the height is
23 ft.; (a) what theoretical force acting parallel to the plane is required to .
keep a body weighing 2500 1b. from sliding down the plane? (b) What
work would be done by this force in pulling the body 56 ft. up the plane?

Ans { (a) 460 1b.
"1 (b) 25,760 ft.-lb,

(2) In the preceding example, suppose the force had acted parallel to the
base; (a) what work would be done in pulling the body 56 ft. up the plane?
(b) What is the magnitude of the force? (c) why is the work done in the two
cases equal? A { (a) 25,760 ft.-1b.

"1 (b) 468 Ib.

(3) A corner of a building is to be raised by driving a wedge between
the sill and the foundation. The wedge is 18 in. long, the back measures
1} in., and a pressure of 652 lb. is applied to it; (a) what load will the wedge
raise? (b) when the wedge has moved 7% in., how high has the corner
of the building been lifted ? 4 { (a) 6259 lb.

“ 1 (b) .81 —in.

(4) The jaws of a vise are forced toward each other by means of a screw
that has 6 threads per inch; if the distance between the axis of the screw and
the point on the handle where the force is applied is 12} in., (a) what pressure
will the jaws exert when the force applied to the handle is 66 1b.? (b) what
is the velocity ratio? A { (a) 30,480 lb.

“\ (b) 461.8+

(5) Suppose a screw to be attached to the back of a wedge in such manner
that when the screw moves, the wedge moves and lifts vertically a load
resting on the wedge, as the body M in Fig. 41 (b). If the screw has 18
threads per inch, its axis is horizontal, and the slope of the wedge is equiva~
lent to 12 in. horizontal to } in. vertical, how far will the body resting on the
wedge move when the screw makes glsth of a turn?  Ans. ggiypth in.

(6) In a toggle joint, the distance between the fixed joint and the movable
joint that presses against the load is 38 in., the distance between the line"
joining these two joints and the middle joint is } in.; (a) what pressure will
be exerted when a force of 84 1b. is applied to the middle joint? (b) what is
the velocity ratio? Ans { (a) 2128 Ib.

© 1 (b) 263
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BELT PULLEYS AND GEARS

74. Velocity and Speed Ratios of Belt Pulleys.—Belt pulleys
are connected and driven by belts. What is called the face of the
pulley is the part touched by the belt. The face is either flat or
else it is a little higher in the middle than at the outside; in
other words, the diameter in the middle is greater than at the
outside edges. This difference in diameter is termed the crown-
ing or crown, and its object is to keep the belt from running off
the pulley, since a belt always tends to run to the highest point
of the pulley face. When measuring the diameter of a pulley,
always take the diameter at the middle of the face, i.e., at the
top of the crown.

The principal use of belt pulleys is to transmit power; they are
seldom used to raise loads, as was the case with the pulleys pre-
viously described. The word power here has a meaning different
from that previously given to it (which was synonymous with
force), and is equivalent to rate of doing work—a certain
number of foot-pounds of work per second or per minute.
(See Art. 166.) The problems relating to belt pulleys may be
divided into two classes: (1) those relating to the velocity or
speed ratio; (2) those relating to the power that can be trans-
mitted by a belt of given dimensions, speed, and material. Only
the first class of problems will be considered here.

Fia. 46.

75. Referring to Fig. 46, suppose the pulley B to be driven
by a belt that, in turn, is driven by the pulley A. Pulley A is
then called the driver and pulley B is called the driven pulley or
driven. When pulley A is caused to turn in the direction of the
arrow, the belt is caused to move in the direction of the arrows by
reason of the friction between the belt and the pulley. The
friction of the belt on pulley B causes that pulley to turn also
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and in the same direction as pulley A. If, however, the belt
is crossed, the two pulleys will turn in opposite directions. The
velocity of the belt will be the same as the velocity of a point on
the circumference of pulley A, assuming that there is no slip
(i.e., sliding of belt on the pulley). As a point on the belt passes
around pulley B, it keeps in contact with a point directly under-
neath it on the pulley as long as the belt is in contact with the
pulley; hence, the velocity of a point on the circumference of B
is the same as on the circumference of A. In other words, the
lineal velocity of the belt and the peripheral velocity of the two
pulleys are all equal. The velocity of the belt, then, can be found
as soon as the diameter of either pulley and the number of revolu-
tions it makes per minute (r.p.m.) are known. Thus, let d

= diameter of pulley in inches; its circumference is »d inches
xd 3.1416 X d

= i—2feet =13 = .2618d ft. Let N = number of revo-
lutions per minute (r.p.m.) made by the pulley, and v = the
velocity of the belt in feet per minute; then,

v = .26184dN

For example, if the diameter of one of the pulleys is 56 in. and
it makes 180 r.p.m., the velocity of the belt is

v = .2618 X 56 X 180 = 2639 ft. per min., very nearly.

76. Since the peripheral velocity of driver and driven is the
same, it is evident that if one pulley is larger than the other, it
will make a smaller number of r.p.m. than the other. Thus, let
D = diameter of larger pulley and N the r.p.m. it makes; let d
and n be the same quantities for the smaller pulley; then,
.2618DN = .2618dn, from which

' DN = dn 1)
. . D =n
Thespeedratxoxss=§=—ﬁ 2)
Note that the last equation in formula (2) gives the proportion
D:d=n:N
that is, the revolutions per minute vary tnversely as the diameters.

T7. Referring again to Fig. 46, pulleys B and C are keyed to the
same shaft S’; pulleys D and E are keyed to the same shaft S’;
hence, pulleys B and C each make the same number of r.p.m.,
and pulleys D and E each make the same number of r.p.m.
A, C, and E are drivers and B, E, and F are driven pulleys

6
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(also called followers). Representing the diameters of 4, C,

and E, the drivers, by D’, D", D’”’, and the diameters of B, D,

and F, the followers, by d’, d’’, and d’’/, the speed ratio of pulleys
7 4

AandBis%);=s',0fCandDisg—,,= 8", and of E and F is

7
%,;,- = ¢’"’. The speed ratio of the entire combination is always
equal to the product of the speed ratios of all the separate
machines that make up the combination, or, in this case,
DI DII DI’I DIDIIDI’I
— o'/ = v Y
8 = 888 4 X a" X a" dd"d’ (1)
In other words, the speed ratio of any combination of pulleys is
equal to the product of the diameters of all the drivers divided
by the product of the diameters of all the followers. If the
number of revolutions per minute made by the first driver is
known and is represented by N, the number » made by the last
follower will be
n = 8N (2)

und if the number of revolutions per minute made by the last
follower is known, the number N made by the first driver is
n
N= 5. 3)
If the number of revolutions per minute made by the first driver
and lunt follower are known, the speed ratio of the combination
in
n

A.r (4)

1ix AaMpLe.— Referring to Fig. 46, suppose the pulleys to have thefollowing
dinmotora: A =72 in,, B =24 in,, C = 40 in., D = 30 in., E'= 20 in.,
wiidl # = Nin.; if pulley A makes 150 r.p.m., what is the speed of F? what
w the speed ratio of the combination?

HowurioN,—The speed ratio of the combination is, by formula (1),

8 =

I'he wumber of revolutions per minute made by F is, by formula (2),
n = 10 X 150 = 1500 r.p.m. Ans.

‘I'hes reanon for using the term speed ratio instead of velocity
wtio is that tho veloeity ratio is the ratio of the distance that the
power moven to the distance that the weight moves. In the
wuse of two pulleys, connected by a belt, whatever their diame-
tors, the peripheral velocities are the same, and the power and
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weight move through the same distance; hence, the velocity
ratio is always 1. But when two pulleys are keyed to the same
shaft and have different diameters, the velocity ratio is equal
to the diameter of pulley receiving the power divided by the
diameter of pulley transmitting the power that is,

d

r=%

D

Therefore, the velocity ratio of the combination in Fig. 46 is
found as follows: the velocity ratio of pulleys B and C is ' =
24
B, for C and D, and for E and F, the velocity ratio is 1; hence

30

the velocity ratio of the entire combination is 1 X %% X 3p X 1
= .9. In other words, if the belt connecting A and B exerts an
effective pull of 1 lb., the belt connecting E and F will exert an
effective pull of .9 Ib. From this it will be seen that the speeed
ratio is a very different quantity from the velocity ratio. The
speed ratio relates to revolutions per minute, while velocity ratio
relates to peripheral velocities, and determines the ratio of the
velocity of the power to the velocity of the load.

78. Suppose that the revolutions per minute of the first driver
were known, say a pulley on the main shaft that makes110r.p.m.,
and that it were desired to drive a small emery wheel at 2200
r.p.m. There are two countershafts the diameter of the pulley
on the emery-wheel shaft must not be smaller than 6 in., and the
diameters of the other pulleys must not exceed 36 in. It is
required to find a set of pulleys that will produce the desired

result. The first step is to find the speed ratio of the combina-
tion; this is, by formula (4) of Art. 77, s. = 21-% = 20. The
arrangement of pulleys and shafts is shown in Fig. 47, M being
the main shaft, C’ and C’’ the countershafts, and E the emery-
wheel shaft. It is now necessary to find three numbers which,
when multiplied together, will give a product of 20; these num-
bers will be the speed ratios of the parts of the combination. Itis
desirable, though not necessary, that the three numbers be of
approximately the same value; if they were exactly the same,
they would be equal to v/20 = 2.714. Taking one of the num-
bers as 2.5, 20 + 2.5 = 8; calling one of the other two numbers
3, 8 + 3 = 2}; hence, the three speed ratios may be taken as

The velocity ratio of pulleys D and E is 7" = gg ; for A and
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2}, 3, and 24, and their product i8 20 = r.. Taking the diameter
of the emery-wheel pulley as 6 in., and assuming that the speed
ratio of the emery-wheel pulley and of the pulley driving it is
21, the diameter of the latter pulley is6 X 24 = 16 in. Taking
the diameter of the pulley on the main shaft as 30 in., because 30
is divisible by 2.5, the diameter of the first follower is 30 +2.5
= 12 in. The diameter of the driver on the first countershaft
may also be taken as 30 in., because it is divisible by 3 (the

F1o. 47.

remaining specd ratio), and because it is desirable to have two
pulleys of the same size, the diamcter of the follower on the
second countershaft is 30 =~ 3 = 10 in. To prove that these
sizes are correct, the speed ratio of the combination is
L _30X30X16 _ 0
¢ 12 X 10 X6
and 110 X 20 = 2200 r.p.m., the desired speed of the emery
wheel.

79. Gear Wheels, or Gears.—A gear wheel, or gear (as it is
usually termed), is a wheel having tecth on its circumference, as
shown in Fig. 48 (a). The circle P corresponds to the outside
circle of the wheel, which would be in contact with the belt in the
case of a pulley, and is called the pitch circle. A part of each
tooth projects beyond the pitch circle and is called theaddendum,
and the circle A marking the tops of the teeth is called the
addendum circle. A part of each tooth extends below the
pitch circle and is called the root, and the circle R marking
the bottoms of the teeth is called the root circle. These circlesare
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imaginary, in that they are not shown on the gears, but they must
be shown on working drawings giving dimensions for making the
gears. .

80. Pitch of Gears.—What is called the circular pitch of a gear
is the distance from the edge (or center) of one tooth to the
corresponding edge (or center) of the next tooth, measured on
the pitch circle; it is the length of the circular arc aa’ or bb’,

(@)

Fic. 48.

Fig. 48 (a). Let d = diameter of pitch circle, n = number of
teeth in the gear, and p. = the circular pitch; then, since the
teeth must be equally spaced around the gear,

xd

Pe=7 1

What is called the diametral pitch is the number of teeth in the
wheel divided by the diameter of the wheel, the diameter being
expressed in inches. Let ps = diametral pitch, d = diameter of
gear in inches, and n = number of teeth; then,

Pa= : 2

Note that circular pitch is a length, while diametral pitch is a
ratio; the diameters of gears are always expressed in inches when
the English system of measures is used. Thus, a gear having 72
teeth and a diameter of 12 in. will have a circular pitch of p.
=T >7<2l2 = .5236 in., and the diametral pitch will be ps = g
=6. The latter result may be expressed as 6 teeth per inch of
diameter, but a gear having this diametral pitch would usually
be called a 6-pitch gear.

The relation between the diametral pitch and the circular
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pitch is easily found. Thus, from formula (2)’1%4 = %; sub-

stituting this value of % in formula (1),

P =~ )

= ¢
from which Pda = 7 (C))]
For instance, in the last paragraph, the diametral pitch of the
gear was 6 and the circular pitch was .5236; then, .5236 X 6
= 3.1416 = =.

When making a drawing of a gear, it is necessary to use the
circular pitch and to lay off this distance on the pitch circle;
hence, if the diametral pitch is known, the circular pitch can be

found by dividing » by the diametral pitch. Thus, the circular

pitch of an 8-pitch gear will be 3°l; 16 _ .3927 in.

81. Shape of Teeth.—The sides of a gear tooth are curved
surfaces as indicated in Fig. 48 (¢). A cross section through the
tooth perpendicular to the axis of the gear will usually have an
outline similar to that shown at (a) or (b). This outline, called
the tooth profile, has been given different shapes by different
designers, but in most cases, it belongs to one of two systems of
gear teeth, the cycloidal system and the involute system. In
the cycloidal system, the profile is made up of two curves; the
upper part ab, Fig. 48 (b), is a segment of an epicycloid, and the
lower part ac is a segment of a hypocycloid. These are frequently
called double-curved teeth. In the involute system, the entire
profile is a single curve, which isa segment of an involute of a circle.
These are frequently called single-curved teeth. Lack of space
prevents further discussion of these shapes.

82. Velocity Ratio of Gears.—When two gears having the
same pitch and the same kind of profiles are so placed that their
axes are parallel and a tooth of one gear fits the space between
two teeth of the other gear, they are said to be in mesh. If one
gear is caused to turn, each of its teeth presses in turn against
the teeth of the other gear and causes it to turn also. If the
gears are properly placed, the two pitch circles will be tangent
to each other, as shown in Fig. 48(d). The lineal velocities of
the two pitch circles will be equal, one gear will turn in the opposite
direction from that of the other, and the result will be exactly
the same as though the gears were pulleys driven by a crossed

‘
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belt, the diameters of the pulleys being the same as the diameters
of the pitch circles of the gears. The velocity ratio of two gears
in mesh is always 1, because the peripheral velocities are alike
and the pressure exerted by the teeth in contact is the same on
both gears. The case is exactly the same as that of a compound
lever with the fulcrum in the center of both levers; the weight
lifted will then be exactly equal to the power exerted. If,
however, there are two gears keyed to the same shaft and they
have different diameters, then the velocity ratio will be equal to
the diameter of the pitch circle of the gear receiving the power
(a follower) divided by the diameter of the pitch circle of the gear
transmitting the power (a driver) representing these diameters by
D and d respectively,

d
=D ¢))]

If the pitch diameters of the gears are not known, it is usually
difficult to determine them accurately; but it is easy to count
the number of teeth in a gear. Since the number of teeth is
directly proportional to the diameter, let N = number of teeth
in the driver and n = number of teeth in the follower; then

n

T=Jv (2

The speed ratios are found in exactly the same manner as in
the case of belt pulleys, substituting the number of teeth instead
of the diameters in the formulas of Art. T7. Thus, formula
(1) becomes

NIN’INIII

8. = ”;Tnl—ln"lil_ (3)

83. Idlers.—If three gears are in mesh, so that gear A meshes
with gear B, and gear B meshes with gear C, the only effect
produced by gear B is to change the direction of rotation of gear
C; it has no effect on the speed ratio or on the velocity ratio,
and for this reason is called an idle gear or idler. In the case
of four gears A, B, C, and D in mesh, B and C will be idlers, and
D will turn in the same direction as though it meshed with gear
A. The reason for using two idlers is to obviate the use of two
large gears, which would be necessary if the distance between the
shafts remains the same.

84. Gear Trains.—Referring to Fig. 49, the circles C, D, E,
and F, represent the pitch circles of gears, and circles 4, B, G and
H represent belt pulleys. Pulley B and gear C are keyed to the
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same shaft, as also are gears D and E, and gear F and pulley G.
A set of gears connected in this manner form what is called a
train of gears, a gear train, or simply a train. Since a gear
is equivalent to a pulley having the same diameter as the pitch
circle of the gear, if it is desired to find the speed ratio of the
combination, the product of the diameters and number of teeth
of the drivers divided by the product of the diameters and number
of teeth of the followers will equal the speed ratio. Thus,
suppose the diameters of the drivers 4 and G are 60 in. and 15,

F1a. 49.

of the followers B and H are 48 in. and 24 in., number of teeth in
the drivers C and E is 16 and 12, and in the followers D and F is
36 and 30; then, :
R =60X16X 12XI5=1%
" 48 X 36 X 30 X 24
If, therefore, pulley A make 180 r.p.m., pulley H will make
180 X oy = 25 r.p.m.

To find the velocity ratio of the combination, pulley B and
gears D and F are followers, gears C and E and pulley G are
drivers, and the velocity ratio of the combination is

L _48X36X30 o
16X 12X 15
Hence, if the effective pull of the belt connecting A and B is 200
lb., the load W that can be lifted is 200 X 18 = 3600 Ib.
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86. Kinds of Gears.—The gears so far described are called
spur gears; the axes of these gears are always parallel. When

N

(s)
S

W

S

Z

[ ————
7

(o)

)

Fia. 50.

the axes lie in the same plane and intersect, as shown at (b),
Fig. 50, the gears are called bevel gears. When one gear turns
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inside the other, as shown at (a), Fig. 50, the gears are called
internal, or annular, gears. When one gear has a flat face, as in
(¢), it is called a crown gear. The wheel in the case of a worm
and wheel is called a worm gear. In all these cases, except the
last, the speed ratio may befound by taking theratio of the number
of teeth in the gears that mesh. When the axes do not lie in the
same plane and do not intersect as shown at (d), Fig. 50, the gears
are called helical gears, though frequently, but erroneously, they
are called spiral gears. The teeth of helical gears have helical
syrfaces; that is, the edges of certain sections taken through the
tceth will be helices instead of right lines. Helical gears may be
(and are) used to connect shafts whose axes are parallel, and also
those which intersect, being used in place of spur and bevel gears;
a worm gear is a special case of a helical gear. The speed ratio
of helical gears depends upon the design, which varies, and rules
for determining it must be omitted here. A straight bar with
teeth cut in it to mesh with a spur gear is called a rack; see (e),
Fig. 50. The spur gear that meshes with the rack is called a
pinion. The smaller of any two gears in mesh is also com-
monly called the pinion gear or pinion.

FRICTION

86. Kinds of Friction.—Up to this point, it has been assumed
that equilibrium was produced by the action of active forces, and
that the slighest increase ¢« decrease in any one of the forces
would result in causing the body to move, since the equilibrium
would then be destroyed. In actual practice, however, this is
not the case, since a passive force, called friction is always pres-
ent and always acts on any body in motion. It must be over-
come before any motion can result. A simple experiment will
show some of the effects and laws of friction.

Referring to Fig. 51, an iron block of weight W is shown resting
on top of a wooden table, the table being flat and level (horizon-
tal). The block has the shape of a prism, the three dimensions
ab, ac, and ad being different. A string is attached to the block,
passes over a small pulley, and a weight w is attached to the other
end of the string. The weight w may be a pail into which sand
or water can be poured until its weight is just sufficient to cause
the block to move. If there were no friction, the weight w would
be extremely small; theoretically, it would be 0. On trying
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the experiment, however, it will be found that w is always a
measurable quantity, and its magnitude represents the force of
friction.

It will likewise be found that if the weight of W be increased,
say by placing another and equal weight on top of the block, the
weight w must also be increased the same amount; for instance,
if W be doubled, w will also be doubled, and the force of friction
will be twice as great as before. Since the pressure exerted by
the block is normal (perpendicular) to the surface of the table
top, one of the laws of
friction is thus made
evident: friction ts di-
rectly proportional to the
normal pressure exerted
by a body sliding on
another body.

Friction of the kind
just mentioned is called
sliding friction, and is
always created when
one body slides on an-
other. When a body
rolls on another body, as
when a wheel rolls on a flat surface, or when a ball rolls on a flat
surface or in a bearing, another kind of friction is created, called
rolling friction. Again, when water or other liquid or fluid flows
through a pipe or channel, it meets with a resistance, called fluid
friction. _

87. Cause of Friction.—Friction is caused by thefact that every
surface, no matter how smooth it apparently may be, is really a
succession of little humps and depressions, as may be seen when
examined under a microscope. Consequently, when one surface
moves over another, the result is somewhat like drawing a heavy
wagon over a rough and rocky road. It is important to note
that friction does not exist except when there is motion; the force
of friction, therefore, never tends to produce motion, but always
tends to prevent or destroyit. Friction alwaysactscontrary to the
force that produces the motion. Since a force cannot act on a
body without producing some effect on it, and since the force of
friction never tends to produce motion, what does it do to the
body on which it acts? the answer to this question is heat! Again,

Fia. 51.
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since the friction exists as long as the body moves, the result is
the same as though a force acted through a distance, that is,
work is done; and this work is changed into heat energy. Ordi-
narily, the heat thus created will be dissipated into the surround-
ing atmosphere; but, if the velocity of the moving body is high
and the pressure is considerable, the bodies in contact will become
heated, especially in the case of journals and their bearings, the
result being that the journals become quite hot, which causes
them to expand, thus increasing the normal pressure. This
increases their temperature, causes them to expand still more,
and 8o on, the final result being that the bearings may melt or the
journals may stick, thus stopping the machine.

88. Coefficient of Friction.—Let P = the normal pressure and
F = the force of friction; then, the ratio of F to P is called the
coeflicient of friction, which is usually represented by the Greek
letter s (pronounced mu). From this definition,

F
B = 1‘5 (l)
Referring to Art. 88 and Fig. 51, P
= W and F = w; hence, in the case
there described,
w

w
If, then, the coefficient of friction
and the normal pressure are known,
the force of friction can be found,
since, by formula (1),
F = pP 2
89. Experimental Determination
of the Coefficient of Friction.—The
“ coefficient of friction may be de-
termined in the manner previously
described; but it is not easy, because there is friction between
the string and the pulley and between the pulley journals and
their bearings. These last two factors may be eliminated in
the following manner: Referring to Fig. 52, suppose the iron
block to rest on a horizontal plane surface, which is the upper
surface of a board CD or other material that is to be tested and

Fia. 52.
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glightest increase in the angle D’CD will cause the block to move
down the plane. This angle is called the angle of friction, and
experiment shows that for the same materials, with the contact
surfaces in the same condition, this angle is constant; that is, it
has the same value regardless of the normal pressure. Draw OA
to represent the weight of the block, which acts vertically down-
wards; then BO, drawn perpendicular to the surface, represents
the reaction on the block, and AB, parallel to the surface, rep-
resents the force that keeps the block from moving. These
three forces produce equilibrium; OB, equal and opposite to BO,
is the normal pressure, and A B is the force of friction, both to the
same scale that OB represents the weight. Let P = the normal
pressure and F = the force of friction; then,

F:P=AB{:U(3)B
or F=P><—0—B
But, F=PXu
b _AB
ence, k= 0B

The triangle OBA is a right triangle, right-angled at B, and the
angle AOB = D'CD, the angle of inclination of the surface to
the horizontal. In trigonometry, the ratio of the side opposite
an acute angle of a right triangle to the other short side is called
the tangent of the angle; hence, the tangent of the angle O

(expressed as tan O) is tan O = gg, and

u = tanO = tan D'CD

Therefore, if a table giving the values of the tangents of angles
is at hand, and the angle of inclination haé_been found by experi-
ment, the tangent of this angle will be the coefficient of friction.
Thus, for a cast-iron block sliding on an oak surface, it will be
found that the angle D’CD is about 26°; the tangent of 26° is
.4877; hence, the coefficient of friction of cast iron on oak is .49,
to two significant figures, which is close enough for all practical
purposes.

90. The coefficient of friction is frequently, perhaps usually,
expressed as a per cent. In the case just mentioned, the co-
efficient of friction of cast iron on oak would then be 49 per cent.

Referring to Art. 88, it was shown that u = v—';; from which,
w = uW
-

~
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Hence, the weight w required to move the block in Fig. 51,
neglecting the friction of the pulley and rope or string, is

w = 49W

In this case, therefore, the power required to move the block
is almost half as much as the weight of the block, instead of be-
ing 0, as heretofore assumed. It is evident, then, that friction
plays a very important part in the operation of machines.

91. Laws of Sliding Friction.—Considered from a mathemat-
ical standpoint, the following laws are only approximately
true, but for most purposes in practice, they may be accepted as
true.

1. Friction varies directly as the normal pressure. This law
was mentioned in Art. 86.

2. Friction is independent of the area of the surfaces in con-
tact. By this is meant that if the block be stood on any of its
sides, Fig. 51, the friction will be exactly the same as in the posi-
tion shown. The reason for having a large bearing surface is
to reduce the wear, not to reduce the friction, which depends
on the normal pressure only.

3. Friction is independent of the velocity of the moving body.
This means that if the iron block have a velocity of, say, 2 ft.
per sec., the friction will be the same as though it had a velocity
of 10 ft. per sec. In other words, friction acts as a constant re-
tarding force, decreasing the total moving force by the amount
of the force of friction. For very low speeds or for very high
speeds, this law does not hold; but, for ordinary speeds, it is
exact enough for practical purposes.

4, Friction of rest is greater than friction of motion. That
is, a greater force is required to overcome friction when a body is
at rest than is required to overcome friction when a body is in
motion. This is explained by supposing that when a body is
at rest, it settles, as it were, its projections fitting into the hollows
of the surface on which it rests, thus requiring a greater force
to overcome the friction than when the body is already in motion.

6. Friction is less between surfaces of different materials than
between those of the same material. This law is only approxi-
mately true. In the case of wood on wood, metal on wood, or
wood on metal, 4 will be different according to whether the grain
runs parallel or at right angles to the direction of motion. Also,
the friction of A on B is not usually the same as that of Bon 4;

-
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that is, the friction of cast iron on brass, for example, is not
exactly the same as the friction of brass on cast iron.

6. Friction is greater between rough surfaces than between
smooth surfaces. Consequently, friction may be diminished
by polishing the surfaces in contact; also, by placing between
them a lubricant, such as oil, grease, graphite, etc.

92. Journal Friction.—Journal friction is a special case of
sliding friction, the journal sliding around its bearing. Usually,
the journal presses against only '
one half of the bearing, as indi-
cated in Fig. 53, the other half
being merely a cover. The
total load on the bearing may be
represented by P, and it is dis-
tributed over the surface ABCD,
being greatest at B and 0 at A
and C. The average pressure
on the bearing per unit of area,
called the bearing pressure, is Fio. 53.
equal to P divided by the projected area of the journal JJ'.
Thus, let d = diameter of journal and [ = length of journal;
then, the projected area = ld, andP

=l
in which (when ! and d are measured in inches) py is the bearing
pressure per square inch.

Assuming that the bearings are well and properly lubricated,
the value of p, must not exceed about 800 Ib. per 8q. in.; otherwise,
the lubricant will be forced out, the hearings will heat, and the
lining, which is generally of some soft material (brass, Babbitt
metal, phosphor bronze, etc.) will melt or will expand so much as
to cause .the journal to stick.

93. Rolling Friction.—Rolling friction is very much less than
sliding friction; for this reason, roller bearings and ball bea'.m'lgs
are used when feasible whenever it is desired to reduce the friction
as much as possible. As with sliding friction, rolling friction is
directly proportional to the normal pressure. Let W = the
weight of the wheel and any load that it may carry, Kr= €O-
efficient of rolling friction, r = radius of wheel, ro}ler or ball,
and P = force required to overcome the rolling friction; then,

rolling friction = u,W = P
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The force P is assumed to act at the center of the wheel, and the
wheel turns about the point of contact 4, Fig. 54, as a center.
For a very slight movement, therefore, A may be taken as the
origin of moments, and the moment
of Pdbout A is Pr. In order to
produce equilibrium, it is necessary
for this turning moment to be
counterbalanced by an equal and
opposite moment, which may be

Fia. 54. considered to be represented by
W, W being the force and u, the arm of the moment. Plac-
ing these two moments equal to each other,

Pr = uW
'W
or P = T

This formula shows that the greater the radius of the wheel,
the smaller will be the value of P, the force required to overcome
the friction.

The coefficients of rolling friction vary from .001 to about
.005. It is said to be noted that while sliding friction can be
reduced by means of lubricants, this is not so with rolling friction;
but, nevertheless, the harder and smoother the surfaces in con-
tact the less will be the rolling friction. ’

EFFICIENCY

94. Theoretical Power Required to Lift Load.—It will be
evident from what has preceded that the actual force neces-
sary to raise a load by means of a machine is greater than that
required to produce equilibrium when all hurtful resistances are
neglected, because whenever there is movement there is friction,
and friction may be considered as a force that is acting in opposi-
tion to the power; hence, a greater power is required to raise a
load than would be required if there were no friction. The power
required when friction and other hurtful resistances are neglected
is called the theoretical power; representing it by P and the
actual power by P, the ratio of the theoretical power to the actual
power is called the efficiency of the machine. The efficiency is
almost invariably represented by the Greek letter n (pronounced
ayta): hence,

P
7l=}7r
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For instance, suppose in the case of a block and tackle, the
theoretical force, as found by calculation, required to raise a cer-
tain load is 32 lb., while the actual force required to raise the
same load is 40 lb.; then, the efficiency is

n = 2—% = .8, or 809

As in the case of the coefficient of friction, efficiencies are
generally expressed as a per cent.

96. Hurtful Resistances.—A hurtful resistance is any force
that tends to oppose the motion or impede the action of a
machine and which is not considered in finding the velocity ratio.
For example, referring to the gear and pulley train of Fig. 49,
Art. 84, pulleys A and B are not considered when calculating the
velocity ratio; but when finding the efficiency of the entire com-
bination, they must be considered, because they increase the
number of hurtful resistances. If all the hurtful resistances are
here considered, they must include the journal friction of pulleys
A and H and of the shafts carrying the three sets of gears, the
force required to bend the belts around the pulleys, the effect of
centrifugal force on the belts, the friction of the belts on the
pulleys in case of the belts slipping, the friction of the gear teeth,
the bending of the rope around pulley H, and one or two others
that are never considered in practice, because their effects are
so small that they are neglible or cannot be measured. It is
evidently a very difficult matter to measure accurately all the
hurtful resistances. In the case of Fig. 49, the best plan to pursue
would be to ascertain what pull on the belt connecting pulleys
A and B is required to raise the weight W; call this pull P’.

The theoretical pull is %’, where r = the velocity ratio of the

.. . P
combination; then, the efficiency may be taken asn’ = 3;. The
P

actual efficiency n will probably differ slightly from %’, but the
difference is so slight that it may be entirely neglected in practice.

96. Efficiency of any Combination of Machines.—The effi-
ciency of any combination of machines is equal to the product
of the efficiencies of each machine making up the combination;
the efficiency of any set of combinations is equal to the product
of the efficiencies of each separate combination. For example,
suppose that a steam engine drives a main shaft, several counter-
shafts, and, finally, a rotary drying furnace. If the efficiency of

7
-

p
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the engine (running without connection to the main shaft) is
n' = 859, of the shafting, pulleys, etc., i8 "’ = 929, and of the
furnace with its gears, etc., is v’’’ = 909, the efficiency of the
entire combination is ‘

n=n'n"v""" = .85 X .92 X .90 = .7038 = 70.38%

97. Another Method of Computing Efficiency.—Instead of
computing the efficiency by finding the ratio of the theoretical
power to the actual power required to raise a load, it is frequently
more convenient to find the ratio of the works; that is, suppose
the power to act through.a distance s’ and that this causes the
load to be raised (or the resistance to be overcome) through a
distance s’’; the work done on the machine is Ps’; the work done
by the machine is Ws”/, W representing the load or resistance

overcome; then,
Wws"”

1= Py ¢))
The value of the efficiency obtained by this method is exactly

the same as by the previous method. For, let r = the velocity
ratio; then, s’ = §'’r; P is the actual power, and corresponds to

P’ in the formula of Art. 94; L = P of Art. 94; hence,

r

Lid
W W _r P
TP TPr TP TP

Therefore, if the work supplied to the machine be denoted by
I’, and the work done by the machine by L,

=L@

The value of the efficiency obtained by formulas (1) and (2)
and the formula of Art. 94 is called the mechanical efficiency.

EXAMPLES

(1) The flywheel of an engine is 84 in. in diameter and makes 160 r.p.m.;
it connects by belt with a 56-inch pulley on the main shaft; (a) how many
revolutions per minute does the main shaft maker A 38-inch pulley
on the main shaft drives a 28-inch pulley on the countershaft; (b) how many
r.p.m. does the countershaft make? A 36-inch pulley on the countershaft
drives a 12-inch pulley on a band saw; (c¢) how many r.p.m. does the 12-inch
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pulley make? (d) what is the velocity ratio of the combination? (e) the
speed ratio? (a) 240 r.p.m.
(b) 30844 r.p.m.
Ans. { (c) 92554 r.p.m.
(d) 1.21 -
. (e) 5.786 —

(2) A main shaft makes 180 r.p.m. and a pulley on the spindle of a lathe
makes 30 r.p.m.; if the pulley is 18 in. in diameter, find diameters of a set
of pulleys for the main shaft and countershaft. What is the (a) speed ratio?
(8 the velocity ratio of the combination? Ans. (a) }§.

(3) What is (a) the addendum circle? (b) the root circle? (c) the pitch
circle?

(4) The diametral pitch of a spur gear is 5, (a) what is the circular pitch?
(b) If the gear has 40 teeth, what is its diameter?

/ (a) .6283 in.
"L (b) 8in.

(5) What is (a) the cause of friction? (b) what should be the greatest
bearing pressure per unit of projected area?

(6) In a gear train, the number of teeth in the drivers D’, D, D’ is
16, 36, and 30 respectively; the number of teeth in the followers F’, F",
F'” is 32, 90, and 18 respectively; what is (a) the speed ratio of the combina-
tion? (b) the velocity ratio? /(@) 18
. L (b) 23¢

(7) In the last Question, suppose gear F’’’ is keyed to the leadscrew of a
lathe and gear D’ is keyed to the lathe spindle; the leadscrew works in a nut
attached to the carriage, and when the leadscrew turns, the carriage moves;
how far will the carriage move when gear D’ makes one turn? The lead-
screw has 6 threads per inch. Ans. 1% in,

(8) If the efficiencies of the various mechanisms that make up a machine
are 929, 87%, 6633%, and 96%, what is the efficiency of the machine?

Ans. 51.23 - %,

Ans

Ans.

CENTER OF GRAVITY

CENTER OF GRAVITY OF LINES

98. Definition.—Suppose ABCD, Fig. 55, to be a thin, flat,
iron plate having the shape of a rectangle and lying in a horizontal
plane. Suppose further that this plate be divided into a very
large number of little squares, all equal; then, the weight of
each square may be represented by w. If the number of squares
i8 n, the weight of all the squares will be nw, and this must
equal W, the weight of the plate. The weight w of one of these
squares represents a vertical force that is exerted on the square

ONd QDA
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by the action of gravity; these forces are all parallel and equal,
and are indicated by the little arrows. Each little arrow, which
completely represents a force, acts at the geometrical center of
the square whose weight it represents. There are, therefore,
n parallel forces acting on the plate; the resultant of these parallel
forces is nw = W = R, and it now remains to be shown how to
find the position of this resultant.

Bisect the rectangle by drawing pq parallel to A B; also bisect
it by drawing mn parallel to BC; these two lines are axes of
symmetry and intersect in O
the geometrical center of the
rectangle. Moreover, O is
also the point through which
the line of action of the re-
sultant B must pass, in this
case, because, if the plate be
assumed to be balanced on a
knife edge extending along
pq, it is evident that the
forces on the right of pg will exactly balance those on the left
of pq, the case being exactly the same as that of a lever with
equal arms; hence, the resultant must pass through some point
on pg. For the same reason, it must also pass through some
point on mn; it must, therefore, pass through their point of
intersection 0. If, then, the plate be suspended from the
point O, either by placing a pivot directly under O or by
attaching a string to the plate directly over O, the plate will
balance; that is, it will, when stationary and when so placed,
lie in a horizontal plane. The slightest increase in weight any-
where, no matter how small or where situated, will cause the
plate to tip, the extra weight causing that part on which it lies
to tip downwards.

The point O is called the center of gravity of the plate; its
nature is such that if any right line be drawn through O in the
plane of the plate, the moment of the part of the plate on one
side of the line is equal to the moment of the part on the other
side of the line. It is for this reason that the intersection of any
two such lines determines the center of gravity of an area.

99. The Right Line.—A right line may be considered as the
axis of a straight wire. If such a wire be balanced on a knife edge,
the point on the axis directly over the knife edge will be the mid-
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dle point of the axis, the case being exactly the same as that of
a lever with equal arms; hence, the center of gravity of a right
line is a point on the line midway between its ends, that is, the
center of the line.

100. The Broken Line.—To find the center of gravity of a
broken line, as ABCDEF, Fig. 56, the easiest method is the fol-
lowing: bisect each of the lines AB, BC, etc.in O, P, @, R, and S,
and these points will be centers of gravity of the lines composing
the broken line. Through one of these points, as O, draw a

F

e ———f - ———

=

-
|

Fi6. 56.

horizontal line OX, called the axis of X, and a vertical line OY,
called the axis of Y. These lines are also called the axis of
abscissag and the axis of ordinates, respectively. From O, P,
Q, etc. draw perpendiculars to OX and OY, and denote the lengths
of these perpendiculars by i1, ¥s, ¥s, etc. and by z,, s, z,, ete.
Let I, L, b, etc. denote the lengths of AB, BC, CD, etc. Let
v denote the distance of the center of gravity of the entire line
from OX, and let z denote the distance of the center of gravity
of the entire line from OY; then,

b+ by + Lys + l4y4__+ ete.

= T L F b+ b L+ et M
_ Lz + bzs + lxs + Ly + ete.
M\d = 11 + l: + l; + l4 + etc. (2)

' For example, suppose that I, ls, ls, etc. equal 1.76 in., 1.55
In., 1.08 in., 1.37 in., 1.60 in., that y,, ys, ¥s, etc. equal O in., .52 in.,

R N N
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1.04 in., .96 in., 1.31 in., and that z,, ., zs, ctc. equal O in.
1.50 in., 2.67 in., 3.65 in., 4.53 in.; then,

_ 1.76X0 +1.55X.5241.08X1.04+1.37X.96+1.60X1.31

- 1.76+1.55+1.08+1.37+1.60 '

= .726 in,
_ 1.76X0+1.55X1.50+1.08 X2.67+1.37X3.65+1. 60X4 53

T 1.76+1.55+1.084+1.374+1.60

= 2372 in.

Nore.—It will be observed that the distances r, and y, are equal to 0 in

Fig. 56, because the axes of X and Y pass through the center of gravity of
. the segment AB.

To locate the center of gravity O, on the drawing, lay off on OY
Op = y = .726 in., draw pg parallel to OX, and lay off pOo =
z = 2.372 in. Or, lay off on OX, On’ = 2.372 in., draw n'm
parallel to OY, and lay off n’O¢ = y = .726 in.

101. Formulas (1) and (2) of the last article are so important
that a rather full discussion of them is advisable. While a line,
no matter how long, has no weight, it is assumed that each of
the short lines that forms a part of the broken line has a certain
weight that is proportional to its length. The entire line thus
tends to turn about the line OX as an axis, called the axis of
moments. The moment of any one of these lines about OX as
an axis is therefore equal to its length multiplied by the distance
of its center of gravity from OX; and the sum of these moments
is the numerator in formula (1). It is now assumed that the
moment of the entire line, which is equal to its entire length
multiplied by the distance of its center of gravity from OX is
equal to the sum of the moments of the individual parts of the
line, and experiment shows this to be true. Consequently,
letting y = distance of center of gravity of entire line from OX,
8ﬂd L = length of this linc, L = l[ + lz + l; + l4 + ls + ete.;
whence, L X y = Ly, + ly: + Lys Ly + Lys + ete., and

y = Ly, + lzﬁ Lys + lys + Lys + ete.
L

which is the same as formula (1).

The line also tends to turn about the line OY as an axis, and
by proceeding in exactly the same manner as above, exchanging
the distances z, i, zs, etc. for y, y,, ys, ete., it will be found that

= ban ot bzs + 1aza + Lz + Lz + ete.
L
which is the same as formula (2).
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102. It will be noted that the center of gravity of the line does
not lie on the line, but at a point 0. If the broken line be as-
sumed to be the center line of a round, fine wire, of such stiffness
that it will not bend under its weight, and that it be connected
to the point Oy by fine wires a0, and bO, that have no weight,
but will support the wire L, this wire will be in equilibrium when
supported at Oo; hence, Oy is the center of gravity of the wire
L, and, consequently, of the broken line that forms its center
line. The line, however, will balance on a knife edge laid along
pq or mn, and their intersection is the point O.,.

There are many cases where the center of gravity lies entirely
outside of the line, area, or body. In all such cases, the center
of gravity may be considered as the point in which the entire
length, area, or mass of the body or system of bodies may be
concentrated to produce equilibrium.

103. When drawing the axes of moments OX and OY, it is
advisable, when practicable, to draw them through a center of
gravity of one of the lines; then the distance from this point to
the axis of moments is 0, ¥ )
and one of the terms in the
numerator of the formula Fl]
will disappear, thus mak- i E
ing the calculation easier. ‘
These axes may be drawn
anywhere, and it is not
necessary that they be at
right angles to each other,
provided the lines drawn
through the centers of
gravity of the individual
lines are parallel to the axes; but it is customary and easier to
draw one horizontal and the other vertical, as shown in Fig. 56.
Should the centers lie on both sides of either or both axes, the
moments on one side of an axis must be considered as positive
and those on the other side as negative, since they tend to
turn the line in opposite directions. This may be avoided
by selecting the position of the axes so that the centers of
gravity of the individual parts will all lie on the same side of
either axis.

It may also be observed that it is not necessary to draw thelines
PP”, QQ", etc., because the lengths of these lines are equal to
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the distances OP’, 0Q’, etc., which may be measured instead
of the former lines.

ExampLE.—In Fig. 57, let OX and OY be the axes of moments, and let the
lengths of AB, BC, etc. be .93 in., .93 in., 1.02 in., 2.03 in., and 1.60 in.; let
P, Q, etc. be the centers of gravity of the individual lines, and PP’ = 1.46in.,
Q@ = 1.67 in.,, RR’ = 1.04 in., 88’ = 1.33 in., and TT' = 2.30 in.; let
OP’ = .87 in., 0Q' = 131 in.,, OR' = 1.%4 in., 08’ = 2.72 in., and OT’
= 2,53 in. Find the position of the center of gravity Oy of the broken line
ABCDEF. Also, draw parallel axes through R, and find the position of Op
with reference to these axes, and show that it has the same position with
reference to the broken line as in the first case.

SoruTioN.—The total length of the broken line is .93 + .93 + 1.02
+ 2.03 + 1.60 = 6.51 in. Then,

y= .93 X1.46+.93 X1.67+1.02 X1.04+2.03 X1.33+1.60X2.30 _ 1.590 in.

6.51

z= .93 X.674.93 X1.31+1.02 >6(15i)4+203 X2.7241.60 X2.53 = 2.057 in.

Lay off On = 2.067 in., draw nm parallel to OY, and lay off nO, = 1.59
in.; then, O, is the center of gravity of the broken line ABCDEF.

Through R, draw RX’ and RY’ parallel to OX and OY; then the distances
PP, QQ", etc. are equal to PP’ — PP’ = PP’ — RR’, QQ"" = QQ' — RR',
etc. Similarly, RP"" = OP’ — OR' = —R'P',RQ" = 0@’ — OR’' = —-R'Q
RS” = OS’' — OR’ = R'S’,and RT” = OT' — OR’ = R'T’. The work of
performing these subtractions is most conveniently arranged as follows:

PP’ =1.46 —1.04 = .42in. RP" = .67 —1.94 = —1.27in.
QQ"’" =167 —1.04 = .63in. RQ” =1.31 —1.94 = — .63in.
88" =1.33 -1.04 = .29in. RS" =2.72 - 1.94 = .78 in.
TT" =2.30 — 1.04 = 1.26 in. RT" =253 —1.94 = .59 in.

The distance of R from the point of intersection of the axes is 0.
Substituting these values in the formulas,
_:93X.424.93X.63+1.02X0+2.03 X.29+1.60 X1.26

v 6.51 =.550 in.
= 93X —1.274.93 X —.63+16-(;21X0+2.03 X.7841.60 X.59 = .117 in.
C Lay off Rn' = 2z’ = 117 in.; it falls on
00 mn, because Rn’ = R'n, and OR’ + R'n
. o . =1.94 +.117 = 2.057 in. = On = z; hence,
4 B on nm, lay off n'Op, = .550 in.; then n0O,

=nn' +n'0y = RR' +17'0, = 1.04 4 .550

= 1500 = y. From this it is seen that

either calculation gives the same position

for the center of gravity Oo. It is to be

Fia. 58. noted that distances measured to the right

of RY’ are positive or +, while those mea-

sured to the left are negative or —; those measured from RX’ upward are
positive or +, while those measured downward are negative or —.

104. The Circular Arc.—In Fig. 58, let ACB be a circular are
whose length = I, chord = ¢, radius = r, and whose center is O.
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Draw OD bisecting the chord; it will also bisect the arc and will
be an axis of symmetry of the arc. The center of gravity must

therefore lie on the bisecting radius OC; its distance from the

. TC
center O is 7 or

00,=7

Denoting the angle AOB by », | = rv, when v is in radians,
and

00,="=2 (2

™
o -
If v be measured or expressed in degrees, v = ;—rg—o’ and
00, - 18 _ 5138
0 v
For a semicircle, ¢ = 2r and v° = 180°; therefore,
180 X 2r _
00, = =X 180 .63662r 4)

ExampLE.—If the chord of an arc is 10.74 in. long and the angle at the
center is 127° how far is the center of gravity from the center of the arc?

SoLuTioN.—Applying formula (3),
00, =57:298 X 10.74
127

104. Regular Curved Lines.—For a closed curve of regular
outline as a circle or ellipse, or any plane curve having two or
more axes of symmetry, the center of gravity will be at the inter-
section of the axes of symmetry. This same statement applics
to any plane figure, as a regular polygon, having two or more
axes of symmetry.

105. Irregular Curved Lines.—There is no general method for
finding the exact position of the center of gravity of an irregu-
lar curved line, a part or all of which curved. The approxi-
mate method is difficult of application, and since the center of
gravity of such a line is very seldom required, the method is
omitted.

= 4.845in. Ans.

CENTER OF GRAVITY OF PLANE AREAS

108. Symmetrical Areas.—The center of gravity of any plane
area that has two axes of symmetry lies at the point of intersec-
tion of those axes; thus, the area of the figure shown in Fig. 59
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has two axes of symmetry mn and pq, and the center of gravity
lies at O,, the point of intersection of these axes. The figure
really has any number of axes of symmetry, since any line
drawn though the point O, will be an axis of symmetry with re-
spect to the point Op. From this, it is evident that, since any
regular polygon may be inscribed in a circle, the center of gravity
of any regular polygon also lies at the center of the circumscrib-
m ing circle, because a circle has any number of
) axes of symmetry, all of which intersect at
= the center.
In general, any figure that has two axes of
symmetry has an infinite number of them
q with respect to a point, the point being the
' < E center of gravity; by two axes of symmetry
is usually meant two axes at right angles to
each other.

i 107. Rectangles and Regular Polygons.—
Since an axis of symmetry bisects the figure,
" the distances from an axis to corresponding

Fra. 59. symmetrical points on either side of the axis
are equal (by definition of symmetry). Consequently, if a line
be drawn through the center of gravity of a rectangle parallel
to the two long sides, the distance from this line to either long
side is one-half the short side, since the line is an axis of symme-
try; similarly, if a line be drawn through the center of gravity
parallel to the two short sides, the distance of this line from the
short sides will he one-half the long side. Thus, if b be a long
side and d a short side, the distance of the center of gravity

from cither the long side will be g, and the distance from cither

short side will be ;

For a regular polygon, the distance from the center of
gravity to any side is equal to the apothem (the distance
from the center of the circumscribed circle to the middle point
of a side.)

108. The Triangle.—If a line be drawn from any vertex of a
triangle to the middle point of the side opposite (thus bisecting
that side), the line is called a medial line. Every triangle has
three medial lines, as Aa, Bb, Ce, Fig. 60; and it is proved in
geometry that these three medial lines intersect in a common
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point O, It is also proved in geometry that O.a = %‘—‘, that
O = %b, and O, = %c But, O, is the center of gravity of
the triangle; hence, the center of gravity of any triangle may be
found by drawing a medial line, as Bb, and then measuring back
a distance b0, on this line equal to one-third of its length. Or,
draw any two medial lines; their point of intersection will be
the center of gravity. Thus, the point of intersection of Bb and
Aa is O,, the center of gravity of the triangle.

Let Bd = h, the altitude of the triangle, and let O¢ be the
normal distance from the center of gravity to the base AC; then

Ope = g The same result will be obtained if either of the other

two sides be taken as the base.
If b = length of base AC, area of triangle = A = bé!; from

. 24 . h
which, A = 3 Since O = 3

24
T3
a formula that may be used to calculate the normal distance
of the center of gravity from any side when the length of the
side and the area of the triangle are known. For example, if
the area of a triangle is 11.4 sq. in. and the length of one of the

Oee
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sides'is 6.5 in., the normal distance of the center of gravity from
that side is
2X 114
3 X 6.5

109. The triangle will balance on a knife edge laid along any
one of the medial lines, as Bb, Fig. 60. This may be proved as
follows: The two triangles BCb and BAb have equal areas; they
have the same base Bb, the altitude of one is Cm and of the other
An, and Cm = An, since the triangles CMb and Anb are equal,
both being right triangles, and side Ab = side Cb by construction;
hence, the areas of BCb and BAb are equal, having equal areas
and equal bases. The moment of BAb about the moment axis

= 1.17 in.

Bb is area X %‘; the moment of BCb about the same axis is

area X CTm ; these two moments are numerically equal, but tend

to turn the triangle in opposite directions; hence, the triangle
will balance on Bb. In the same manner it can be shown that
it will balance on Aa and Cec.

110. The Trapezoid.—To find the center of gravity of a trape-
zoid by construction, let BC and AD be the parallel sides of the

B @ ¢
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trapezoid ABCD, Fig. 61. Bisect these sides in G and H, and
draw GH. Produce one of the parallel sides in either direction
until its length equals the sum of the two parallel sides; thus,
make CE = AD, and BE = BC + AD. Produce the other
parallel side in the opposite direction until its length also equals
the sum of the parallel sides, that is, make AF = BC, and DF
= AD + BC. Join E and F; then the point of intersection O,
with GH is the center of gravity of the trapezoid.

To find by calculation the normal distance Oee of the center
of gravity from the longer of the two parallel sides, let '
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= length of longer side AD, I” = length of shorter side BC, and
h = altitude Bd = normal distance between the parallel sides;
then, '

_ @+ 1A

Ooe - 3(ll + l") (1)

ExampLE.—The lengths of the parallel sides of a trapezoid are 6.3 in. and
9.7 in.; if the altitude is 5.2 in., what is the distance of the center of gravity
from the longer side? )

SoLuTioN.—Substituting in the formula the values given,

_(2X63+9.752

O = “3B7+863)
A special case, and one that occurs with considerable fre-
quency, is when one of the sides of the trapezoid is perpendicular
to the two parallel sides, as in Fig. 62. Here AD is 3
perpendicular to the parallel sides AB and CD. /Y/w

= 2.416 in. Ans.

This figure may be called a semi-rectangular trape-
zoid. The distance of the center of gravity Oofrom
CD is given by the preceding formula; the distance
from AD, the perpendicular side, may be found
by the following formula, in which I; = the longer
and l; = the shorter of the two parallel sides: 4 p

_B+ub+§
0b=St+w @

ExampLE.—If the length of shorter side of a semi-rectangular trapezoid is
61 in., of the longer side 84 in., and the altitude (perpendicular distance
between the parallel sides), is 6} in., what is the distance of the center of
gravity from the longer side? also from the perpendicular side?

SovuTiON.—Applying formula (1),

_ (2 X 6.25 + 8.5)5.375
- 3(8.5 + 6.25)

" . N ]
S

Fi1a. 62.

(2% = 2.661 —in. Ana.

Applying formula (2),
Ob = 8.5* 4 8.5 X 6.25 + 6.25*
3(8.5 + 6.25)

To locate the center of gravity, draw b’b parallel to CD and at a distance
from it equal to 2.55 in.; draw a’a perpendicular to CD (and parallel to A D)
and at a distance from AD of 3.72 in.; the point of intersection of these two
lines will be the center of gravity O,.

If desired, formula (2) may be written as follows, a form that is
somewhat easier to calculate,

0 = 4((h + 1 —

=3.716+in. Ans.

Lils
L+ @
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Substituting in this formula the values given in the last

example,
8.5 X 6.25 .
O =} (85 + 6.25 — m) = 3.716+ in.

111, Any Quadrilateral.—Divide each of the four sides of the
quadrilateral, see (a) and (b), Fig. 63, in three equal parts, thus
locating the points 1, 1 on either side of the vertex C, 2, 2 on
either side of the vertex B, etc. Through these four pairs of
points, draw lines which, by their intersections, form a parallelo-

Fia. 63.

gram abed. The intersection of the diagonals of the parallelo-
gram locates the point O,, which is the center of gravity of the
quadrilateral. This construction may be applied to the trape-
zoid, if desired, instead of the one given in Art. 110. There is no
formula for calculating the distance of O,, the center of gravity,
from one of the sides, in terms of the sides. If it is desired to
calculate the position of the center of gravity, it must be done
by the method of Art. 113,

-
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112. The Sector and Segment of a Circle.—Let AOB, Fig. 64,
be any sector of a circle and ACB a segment, both sector and
segment having the same central angle
v. Both have one common axis of sym-
metry, the radius OC perpendicular to
the chord AB; hence, the center of
gravity of either must lie on OC. For
the sector, let » = central angle in
degrees, 8§ = the same angle in radians, »
= radius of arc, ¢ = AB = chord of arc,
! = length of arc, A = area of sector;
then, the distance of O/, the eenter of
gravity of the sector, from the center of the arc is

_ 2 _38.197c _2rc _ rc 1)
30 v 3l 34

For the segment, the distance of Oy, the center of gravity,

from the center of the arc is

c.’!
00! = ——-, - .
° 6rl — 3c\/4r? — ¢?
c? c?
- === = - (2)

104727 — 3cV4rt — ¢r 124

In formula (1), A = area of sector; in formula (2), A = arca
of segment.

ExaMpLE.—On a certain drawing, the central angle (measured with a
protractor) was found to be about 54°, the radiusis 15} in., and the chord
was found to be 146 in.; find the distances from the center of the arc of

the centers of gravity of the sector and segment.
S8oLvuTioN.—Using formula (1) to find the center of gravity of the scctor,
,_ 38.197 X 145%
00= =%
Using formula (2) to find the center of gravity of the segment,
"vo_ (145)% ~
10472 X 1557 X 54 — 3 X 14&V4 X 1558 — (14,4)?
= 14.52 in. Ans.

For a semicircle, formulas (1) and (2) reduce to

' e 00y = 22X 2 _Ar

00 = 00, =30= 3s —31—.42441r 3)
113. Any Plane Area.—If the figure has an axis of symmetry,

the center of gravity lies on that axis; if it has two axes of sym-

metry, the center of gravity lies at their point of intermection.

If the figure has such a shape that the center of gravity cannot be

Fia. 64.

= 9.96 in. Ans.
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found by the methods previously given, but can be subdivided
into triangles, rectangles, etc. whose centers of gravity can be
found, the center of gravity of the entire figure can be found by
the method of moments, as explained in Art. 100, substituting

Fig. 65.

areas for lengths in formulas (1) and (2). The process is best
illustrated by examples. .

Referring to (a), Fig. 65, which represents a trapezium, divide
it into two triangles by drawing one of the diagonals, say OA.
Take OA as the base of both triangles, and draw and measure the
altitudes Cm and Bn. Draw medial lines and locate the centers
of gravity Oy’ and O of the triangles. Taking the side OC as
the axis of X, draw a perpendicular to OC at O for the axis of Y,
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and measure the distances of O’ and O,” from the axes; these
distances, together with the length of the base OA and the alti-

tudes, are all marked on figure.
Area of triangle OBA = 14252—X24 = 17.1 sq. in.
Area of triangle OCA = M%szl = 57.71 sq. in.

Area of trapezium = 17.1 + 57.71 = 74.81 sq. in.
17.1 X 4.5 4+ 57.71 X 2.75

Then, y = Opa = 7481 = 3.15in. Ans.
and z = O = 11X 5‘*‘7“'; 8";7'71 X818 _ 786in. Ans.

As another example, take the area shown in (b), Fig. 65.
This area i8 a trapezoid from which a semicircular segment
has been cut out, as shown. The figure is symmetrical about the
radius OA, which is taken as the axis of Y, the base BC being
taken as the axis of X. The area of the figure = area of trape-
zoid — area of semicircle. Taking the moments of these areas
as they stand, letting A = area of figure, A’ = area of trapezoid,
A" = area of semicircle, 000 = distance of c.g. (center of
gravity) of A from BC, the axis of X; 0’0 = distance of c.g. of
A’ from BC; and 0,”’0 = distance of c.g. of A" from BC,

A X 00 =A"X0/0—- A" X 0,0
’ U n /|
from which, 0°0=A X 040 — 4" X 0,0

A
Area of trapesoid = 22 150 5 9 120,375 sq. in. = 4/
Area of semicircle = } »X 5.25? = 43.295 sq. in. = A"
Area of figure = 120.375 — 43.295 = 77.08 sq. in. = 4
(2 X 8.25 + 18.5)9 .
/\ = =
000 = 3825 1 i85y — 392 in.
0,0 = 42441 X 5.25 = 2.228 in. (See Art. 112.)
Then, 040 = 120.375 X 3.925 — 43.295 X 2.228___ 4.878 in.
77.08
Ans.
Note that whenever an area is subtracted, its moment is also
subtracted.
ExampLB.—Fig. 66 is a working drawing of a plane sectional area; find
the position of the center of gravity.
SoLuTioN.—Let A = area of figure, B = area of trapezoid abed, C = area

of trapezoid efgh, D = area of parallelogram ht¢, E = area of parallelogram
8
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gj, F = area of rectangle seqr, G = area of trapezoid knml, and H = area of

quadmntepq;then,A-B—-C—D-—E’+F—G+H=9'i42ﬂ

X 10.5 —-8'875—-;1L12—5 X4 —3.25 X175 —3.25 X1.75 + 6.5 X 11.25

~25 4 ;- 12 X 3.5 + tr X 6.5 = 129.94 — 40 — 5.69 — 5.69 + 73.13 —37.63

+ 33.18 = 147.24 8q. in. Taking the position of the moment axes OX and
OY as shown, OX being sr produced, find the distances of the centers of
gravity of these areas from the axes as follows: Distance of c.g. of B from

Y ¢
o
.
==
8
.§,§ 2 IW’WE . r
F 2 ' Z /
3 i 4 0
; w3 L
~ o poe 70700 R
! bl |
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. 2 X 9.25 5.5)10. '
OX =4 + g—ﬁﬁé%ll%?)l—é = 8.808 in.; c.g. of B from OY = 15.5
9.25 X 15.5

—c.g.of Bfromsp=155—14((9.25 + 15.5 — ) = 0.181in.;c.g.

2475
(2 X 8.875 + 11.125)4 .
38875 ¥ 11.125) = 8.925 in.; c.g. of C from

oY =155 — }(8.875 + 11125 w}

of C from OX =7 +

= 10.479 in.; c.g. of

20
D from OX =11 + 1-2745 = 11.875; c.g. of D from OY = 155
~ 88D A 4TS g 688 in.; cg. of B from OX = 4 + 1.25 + LB - s
in; cg of E from OF = 155 — “2 LI 5565 00 of #
from OX = llégé = 5.625in.; c.g. of F fromOQY = 15.5 -{—(12§ = 18.75in.;
c.g. of G from OX = 2.5 + } (9.5 + 12 — ?—3-14-31—2—) = 7.809 in.; cg.
of G from OY =17 + -(2~:(;'§—: 1122))35 = 18.682 in.; c.g. of H from e,
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measured along et, which bisects arc pg and makes an angle of 45° with

38.197 X 2
eg and ep, is (by formula 1, Art. 113) —8—-?;065 V2 = 3.901 in., since

the chord of a quadrant is r4/2; the distance of this point from ep or eg
is 3.901 X v/} = 2.759 in.; hence, c.g. of H from O0X = 11.25 + 2.759
= 14.009; and distance of c.g. from OY = 15.5 + 2.759 = 18.259 in.
Consequently, the distance of the center of gravity of the figure from OX
is
129.94 X 8.808 —40 X 8.925 — 5.69 X 11.875 — 5.69 X 8.125 + 73.13 X 5.625 — 37.63 X 7.899 +33.18 X 14.009
724

=8.585in. Ans.

The distance from OY is )
129.94 X 9.181—40 X 10.479—5.60 X 8.688 — 5.60 X 5.563 +73.13 X 18.75 — 37.63 X 18.682 +33.18 X 18.259
147.24

=13.359 in. Ans.

CENTER OF GRAVITY OF SOLIDS

114. Simple Solids.—As stated in Elementary Applied Mathe-
matics, if a solid have three planes of symmetry, one of which is
at right angles (perpendicular) to the other two, the point of
intersection of the three planes is the center of gravity of the solid.
Hence, the center of gravity of
a right prism whose bases are
regular polygons is at the middle
point of the axis; this is also true
for a right cylinder whose bases
are circles or ellipses. For an
oblique prism (or oblique cylin-
der) whose bases are any plane
figure, find the center of gravity
of both bases, join them by a
right line, and the center of grav-
ity will lie at the middle point of
theline. Thus, referring to (a), Fig. 67,0'0" istheline joining the
centers of gravity of the two bases of the prism. A plane parallel
to the two bases and midway between them will be a plane of
symmetry and must contain the c.g. of the prism; this plane
intersects 0’0" in O, the c.g. of the prism.

If a right cylinder be cut by a plane making an angle with
the base, called a truncated cylinder, as in (b), Fig. 67, the center
of gravity will no longer lie in the axis mn. Let k' = AB, the
longest element of the truncated cylinder, h’’ = CD, the shortest
clement (which will be diametrically ‘opposite AB), and r = the

(a)
Fia. 67.
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radius of the base AC. The center of gravity will lie in a line EF
parallel to the axis, EF cutting BD and AC and lying between the
axis and the longest element AB. Let z = distance between EF
and mn; then,

_r(k — &)

- 4(’!’ + h") (1)

Let y = distance of center of gravity Oo from the base = O.E;

4

then,
_ hl + h'l r(hl p— hII) _ h’ + hll + 2: (2)
4 8(h + h”) 4
The value of z in formula (2) is the value calculated by formula
(1).

ExaupLE.—The radius of the base of a truncated right cylinder is 47 in.,
the length of the longest element is 108 in. and of the shortest element
80 in.; how far is the c. g. from the axis? how far is it from the base?

SoLuTioN.—The distance of the c. g. from the axis is, by formula (1),
_ 47(108 —80)
~ '4(108 + 80)
The distance of the c. g. from the base is, by formula (2),

108 +-80 +2 X 1.75
y= 4

z = 1.75 = 1} in. Ans.

=47} in. Ans.

115. Pyramid and Cone.—The center of gravity of a pyramid
or cone lies in the line joining the vertex with the c.g. of the base

,I

Fiu. 68.

and at a distance from the base equal to one-fourth the altitude.
Referring to Fig. 68, let O’ be the c.g. of the base; draw SO’, and

make 0'Op = 540—, and Op will be the center of gravity of the

—
-\ pyramid S-ABCD. To ldcate it practically, draw the altitude
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SE or S'E’ (if E does not fall outside the base), lay off EF (or
E'F) = S4-—E, and pass a plane MN through F parallel to the base;

it intersects SO’ in O,, the center of gravity of the prism (or cone).
The line F'FO, will lie in this plane.

116. The Frustum.—Referring to Fig. 68, let the area of the
upper base of a frustum of a pyramid or cone be A", of the lower
base A’, and the altitude h; then, the distance y of the c.g. from
the lower base (= QG in the figure) is

_(A'+2VAA" + 3A"> h
( A"+ VAA"+ A" ] 4

If the frustum is that of a right cone with circular bases, let
R = radius of lower base and r = radius of upper base; then

- (B AINE
V=R ¥R+ 4

ExampLE.—How far from the lower base is the center of gravity of a
frustum of a cone of revolution if the radius of the lower base is 19}{ in., of

the upper base 1214 in., and the altitude is 14 in.?
SoLuTioN.—Substituting in formula (2),

_ (1925 + 2 X 1025 X 125 + 3 X 12,5\ 14 _ .
v ( 19.25° + 19.25 X 12.5 + 12.5° ) g = 602—in. Ans.

117. Rectangular Prismoid.—Fig.
69 represents a prismoid whose
bases are rectangles. Let AB = b/,
AD =d',A’'B’ = b",and A'D' =d".

If O’ and O” are the centers of
gravity of the bases, the c.g. of the
prismoid lies in 0’0" at a distance y
from the lower base. Letting k =
the altitude of the prismoid, Fia. 69.
(-bldl + 3b"dl, + bl_dll + blldl) b (l)
2bldl + 2blldll + bldll + b/ld' 2

ExaMPLE.—Suppose the dimensions of a rectangular prismoid are as
follows: b’ = 34.5 in., &’ = 21.25 in., b’ = d’’ = 16.5 in., and A = 40 in.
What is the distance of the c.g. from the lower base?

SovLuTioN.—Substituting in the formula the values given,

345 X21.25 +3 X16.5? +34.5 X 16.5 +16.5 X 21.25

V= 2X345X21.26 +2 +16.5° +34.5 X 16.6 + 16.6 X 21.25
=16.854 in. Ans,

(0))
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If the upper base be a line only and parallel to ABand CD of the
lower base, the side AD = BC = 0, and the prismoid becomes a
wedge, in which case, formula (1) reduces to

U "
v= (%%‘bp) 2 @
and if b’ = b",
PR

117. Solid of Revolution.—In general, the position of the cen-
ter of gravity of a solid of revolution can be found only approxi-
" mately, the best practical method being to apply Simpson’s

, rule as indicated in the following:

This rule was applied to areas in

e 10" 110" Elementary Applied Mathematics, but

Bf :’ 1%, ""’ it can be applied equally well to
,: :: ‘:, volumes by dividing the given volume
7, 100 7727 into any even number of parallel
v, slices, making them all of the same
Ta | thickness, by passing parallel planes
through the solid at equal distances
apart; the areas of the sections thus
formed are substituted in the formula
instead of the ordinates yo, ¥1, ¥s,
etc. Thus, referring to Fig. 70, sup-
pose the outline to represent the projection of a solid on the
plane of the paper. The lines AA’, BB’, CC’, etc. represent the
projections of plane sections at equal distances apart. Let h =
altitude 0’0”; then; if n = number of slices (n must be an

J

15.75%
"; - 6
;l <
q

n
Fia. 70.

even number), the thickness of each slice is ;:’ which is equal

to h in the formula of Simpson’s rule. Referring to the figure,
let area of bottom section = A,, of the next section A,, of the
next A,, etc.; then the volume of the solid is

V= Aok At aA L+ A At 40

+2(A:+ A+ Ac+ - - - - Any)] (1)

"This formula may be applied to any solid, provided the slices

are taken sufficiently thin, but for most purposes 8 or 10 will be
sufficient.

If the solid be one of revolution, 0’0"’ will be the axis of revolu-

tion, the sections will all be circles having radii ro, ry, 73, 74, ete.
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and the areas will be #r3, xrf, xrl, etc. Substituting these
values for Ay, A4,, Aj, etc. in the above formula, it reduces to

V=§',lr%+r£+4(ﬁ+r§+:%+ SRIT ¥ <))

2+ iR+ Rl @

The dots in formulas (1) and (2) indicate missing terms; thus,
when n = 12, 2; = v}, 77 5 = }), and the missing terms are
73, 3, and 7.

ExaupLE.—Referring to Fig. 70, the dimensions marked on the horizontal
lines are the lengths of the radii; find the volume of the solid.

SoLuTioN.—The number of slices is 8; hence,n =8,n —1 =7,n —2 = 6,
and formula (2) becomes, for this case,

14 =3%8-[r3+r:+4(r:+r:+r:+r,’) +203+ri+ 1)l

Substituting the dimensions given in the figure,

V = 3;43“-;—);—29 [9® 4 11® + 4(7.1% + 8.7* + 12.9* + 12.5%)
+2(7* + 11.5* + 13.1?)] = 9198.6 cu. in. Ans.
To find 0’0 = y, Fig. 70, the distance of the center of gravity
of the solid from the plane JK, use either of the two following
formulas, in which the letters represent the same quantities as
in the two formulas of the preceding article:

_h[nd.+4(A,+34,454:+ - +Z-‘1AH)
T n|Ado+4.+4(4, +Aa+As+ . +An—l)
+ 2(2A=+4A.+6A.+ e +n—2A,__2_)]
+ 2(A2+A4+Ao+ “+ An)
[nr,.+ 403 + 33+ 52+ - -+ n—lrn-n)
r2+r,.+4(r2+r2+r2+ +r2_,)
+2(2T2+4T4+67'6+ : +7-tT2T?._2_)]
+ 234 rit -+ i)

ExampLE.—Using the dimensions given, find the center of gravity of the
solid shown in Fig. 70.

SoLuTtioN.—8ince the solid is one of revolution, the c.g. must lie on mn,
the axis of revolution. Substituting in formula (2) the values indicated in
the figure,

26 [8 X 11 + 4(7.1* + 3 X 8.7* + 6 X 12.9" + 7 X 12.5%)
”’s[ 9"+ 11° + 4(7.1° + 8.77 + 12.9° + 12.5Y)
+2(7 + 4 X 11.5* + 6 X 13.1%) -
o LS 3 1319 =15.746 in. = 0’0,. Ana.

118. Center of Gravity of a System of Bodies.—Referring to
Fig. 71, let A and B be any two bodies whose centers of gravity
are known; for convenience, suppose them to be spheres, in

s




120 MECHANICS AND HYDRAULICS §1

which case, the centers of gravity will be at the centers of the
spheres. Suppose further that they are connected by a line
AB having no weight; then, if the system were balanced on a
ALB knife edge, the reaction of the knife edge

— ) will be A + B and the moments of the
: 25 1b. balls about the knife edge will be equal

4 ) .8) and opposite, exactly the same as in the
s — 48" case of a lever of the first class. Let z

Fa. 71. = the distance from the c.g. of the larger
weight to the balancing point. For
equilibrium, taking A as the origin of moments and ! as the dis-
tance between the centers of gravity of the two bodies, B X1
= (A + B)z, from which
Bl
“A+B
The point z is called the center of gravity of the system; in other
words, if the two bodies were replaced by a single body of a
weight equal to their combined weight and whose center of
gravity was located at O (40 = x), it would have the same
effect as that of the two bodies. )

120. If there are more -than two bodies, find the center of
gravity of two of them; measure the distance from this point to
the c.g. of one of the other bodies, and repeat the calculation,
using the combined weight of the two bodies and the weight of
the third body. Proceed in this manner until all the bodies have
been used. If the weights are not known, the volumes of the
bodies may be used instead, providing the bodies are of the same
density.

Referring to Fig. 72, a system of four bodies is shown, and the
weights and distances between their centers of gravity is indi-
cated. To find the distance of the center of gravity of the system

from the c.g. of the largest body, proceed as follows: Consider-
30 X 29

ing the two smallest bodies first, z = 30 + 160 =4.6 — in
=(0’B. Measuring the distance O’C, it is found to be about 37 in.
Considering the weight of both bodies to be concentrated at 0’,

their combined weight is 30 + 160 = 190 lb., and the distance

190 x 37 . ,
of the c.g. of the system from C is 100 + 340 = 13.3 in. = O"'C.

Measuring the distance O”’D, it is found to be about 43 in.
Considering the weight of the three bodies to be concentrated
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at O’’, their combined weight is 190 + 340 = 530 lb.é 4:6nd l‘:il;e
distance of the c.g. of the entire system from D is 53T—+>-<T£',T)
= 9.88 in. If greater accuracy were required, the measurements
would be made more carefully and accurately.

F1a. 72.

121. It is frequently desired to find the distance of the center
of gravity of the system from a plane, as P or @ or both, Fig. 72.
Suppose the distances of the four bodies from these planes to be
as indicated, the distances between the centers of gravity of the
bodies not being given in this case. Let y represent the distance
of the c.g. of the system from plane Q. Then, taking the mo-
ments of the weights relative to this plane

A+B+C+D)Xy=AXp+BXy2+CXys+ DXy
in which y,, ya, etc. are the distances of A, B, etc. from plane Q.
Hence,

_AXn+BXys+CXys+ DXy 1)
y A+B+C+D
Similarly, letting z,, z,, etc, represent the distances of A, B,
etc. from the plane P, the distance z of the c.g. of the system
from this plane is
z=_AX:Bl+BX$z+C_X-‘Ca+DX34 (2
A+B+C+D
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Substituting in these formulas the values indicated in Fig. 72,

30 X 50 + 160 X 28 + 340 X 38-+950 X 62 _ :
v= 30 + 160 + 340 + 950 52.568 in.

and
30 X 40 + 160 X 54 + 340 X 58+ 950 X 25
r= 1480

The following example illustrates a case that frequently arises
in practice, and while not a direct application of the principle of
this article, it will be appropriate.

ExampLe.—Referring to Fig. 73, which respresents a safety-valve lever,
it is required to find what steam pressure in pounds per square inch will just
balance the downward forces exerted by the ball, the weight of the lever, and
the weight of the valve and stem, the positions being as indicgted. tl'he
lever is of steel, having a uniform thickness of } in. and a specific weight
of .2836 lb. per cu. in.

= 36.020 in.

156 10,

Fia. 73.

SovLuTioN.—Since great refinement is not necessary in this case, draw
a line c'd’ parallel to c¢d and assume that the part abe’d’ is equal in area
and weight to abcd when ad’ = ad. This is not absolutely true, but is
sufficiently exact for all practical purposes, and it greatly lessens the work
of calculation. Now find the weight of that part of the lever to the right
of ¢’d’. To do this, it is first necessary to find the length of ¢’d’, which is
readily obtained as follows: If a line be drawn from f parallel to ed, the area
edcf will be divided into a rectangle and a triangle, the base of the latter
being 4.125 — 1 = 3.125 in. Since the triangles fgc and fg’c’ are similar,
cg:cg =fg:fg, or

' 3.125 :z = (60 + 2.5) : (60 — 2.5)

from which, z = 2.875 in. = ¢’g’, and ¢'d’ = 2.875 + 1 = 3.875 in. The
area of the trapesoid cd'ef = >¥0 L 5 575 = 140.16 sq. in. The
volume of the lever to the right of ¢’d’ = 140.16 X {, and the weight is
140.16 X .875 X .2836 = 34.8 —1lb. Since thelever isof uniform thickness.
the center of gravity will lie in the middle plane, and the c.g. of that part to
the right of c’d’ will be opposite the c.g. of the trapezoid ¢’d’ef, at a distance
from ¢'d’ = % X §7.5 = 23.1 in. The weight of the ball
and the rod from which it is suspended is 166 Ib., and this acts downwards
through the center of gravity of the ball, The weight of the valve and stem
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acts on the steam only and has no effect on the lever; hence, the force P
required to balance the effect of the downward forces acting on the lever is
determined by the equation (taking O as the center of moments) P X 6.5
— 34.8 X (23.1 + 2.5) — 156 X 48 = 0, from which P = 1289 1b. To
this must be added the weight of the valve and stem, making the total
upward pressure that must be exerted by the steam to balance the downward
forces on the lever 1289 + 4.75 = 1293.75. The area (of valve) pressed
against by the steam is 72 X .7854 = 38.4846, say 38.48 8q.in. Therefore,
the pressure per square inch is 1293.756 + 34.48 = 33.6 Ib. per sq. in.

Ans.

STABILITY

122, Static Equilibrium.—A body is said to be in static equi-
librium when it is at rest and has no tendency to change its
position. If a force act on such a body for an instant only
(such a force is called an impulse), and the result of this impulse
is to displace the center of gravity of the body very slightly, the
body will either continue to move in the direction of the acting
force or it will tend to return to its former position. In the first
case, the body is said to be in unstable equilibrium, and in the
second case, it is said to be in stable equilibrium.

Referring to Fig. 74(a), ABCD is a truncated cylinder; suppose
the c.g. to belocated at Oy, and that the weight of the body be repre-
sented by theline P, which acts through the center of gravity. An
impulse F acting at C tends to turn the cylinder about the point 4,
the c.g. moving along the arc Oym. As Oo moves along the are,
the distance between this point and the horizontal line AD
increases until the point a, which is the intersection of the arc
by a vertical line through A, is reached; this is shown more
clearly by the view at the side, where O’¢m’ represents the arc
slightly exaggerated, and O’yn’ is a horizontal line through 0’,.
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If, therefore, the effect of the impulse is to move the body only a
part of the distance Ooa, the body will fall back to its original
position as soon as the impulse has ceased to act; hence, the body
is in stable equilibrium. Referring to Fig. 74(b), the vertical
line through O, passes through the point A; if an impulse F act
at C, the slightest movement of the center of gravity O, along
the arc Ogm causes the distance between Oo and A D to decrease,
and gravity will cause the body to fall; hence, for this case, the
body is in unstable equilibrium. Here it will be noted that the
points A and E coincide. For the case shown at (c), the point
E falls entirely without the base; any movement of Oy toward
the left decreases the distance between it and AD, and the body
will not even stand in the position shown, but will fall as soon
as it is released; it is therefore in unstable equilibrium.

123, The matter may be viewed in another way. Referring to
(a), let P be a force acting through the center of gravity O,, the
length of P representing the weight of the cylinder. Take A as
the origin of moments; then, according to Art. 30, the force P is
equivalent to an equal force P’ acting through A and to the couple
P,Q (Q = P) whose arm is AE. This couple tends to produce
right-hand rotation, which is resisted by the re-action of the base;
hence, if the cylinder is subjected to the action of gravity only,
it will stand and will be in stable equilibrium. In (b) thereis no
couple, since the arm (= AE) is 0; the body will stand, but
the slightest force acting in the direction of F will cause it to fall;
it is therefore in unstable equilibrium. In (c), the couple tends
to produce left-hand rotation, and as there is nothing to resist it,
the body will turn about the point A and fall.

From the foregoing, it is evident that if the vertical through
the center of gravity falls within the base, the body will stand
and be in stable equilibrium; if the vertical through the center
of gravity cuts the edge of the base, the body will stand, but
the slightest blow will cause it to fall, and it is in unstable equilib-
rium; if the vertical through the center of gravity falls without
the base, the body will not stand, and is in unstable equilibrium.
Further, if for any movement of the body, the center of gravity
is raised, the body is in stable equilibrium; but if it falls, it is
in unstable equilibrium.

124, If for any movement of the body, the c.g. moves in a plane
parallel to the plane of the base, it is said to be in neutral equi-
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librium ; for instance a sphere rolling on a plane surface, a right
cone rolling on a plane surface. Such a body has no tendency to
fall or to return to its former position; it stays where “put,”
and it is in neither stable nor unstable equilibrium. Any
body rotating about its center of gravity is in static neutral
equilibrium.

From the foregoing, it will be evident why leaning towers do
not fall.

Y
3
& " 3
——14.3~ 1.7
r — v »
v 7 3
o AN st’Y " 2 .
C \’
A je—11.1" »
Fie. 75.
Fia. 76.
EXAMPLES

(1) Referring to Fig. 75, find the center of gravity of the broken line
ABCDEF with reference to the axes OX and OY. Note that OX passes

through the c.g. of CD and OY passes through the c.g. of AB.
Ans. {z = 12.4in.
y= 2.3in,
(2) The chord of a circular arc is 18,% in. and the angle at the center is
106° 15’; where is the center of gravity of the arc? Anas. 9 in. from center.

(3) The area of a triangle is 17.6 8q. in., and the length of one of the sides
is 81 in. How far from that side is the center of gravity? Ans. 1.341 in.
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(4) Fig. 76 represents a plane section, fully dimensioned. Find the dis-
tance of the center of gravity from AB and AD. It will be noted that by
drawing the dotted line ab, the section may be considered as the area of
rectangle ABCD—area of rectangle abcd—area of traperoid ebgf—area of
trapezoid ghij—area of circle whose center is 0. Take AB and AD as the
axes of X and Y, respectively Ans { z = 10.914 in.

‘ly = 6.574in.

(5) Find the center of gravity of a truncated right cylinder of revolution,
the longest element of which is 13} in., the shortest element is 9% in., and
the diameter is 11% in, 4 {z = 2204 in.

ns. .
y = 5.89in.

(6) How far from the lower base is the center of gravity of a frustum of a
cone whose upper base has a diameter of 134 in., diameter of lower base is
21 in., and altitude is 8} in.? Ans. 3.537—in.

(7) Find the center of gravity of a wedge whose base is a rectangle, the
sides of which are 141 in. and 64 in. The length of the upper edge, which
is parallel to the long side of the base is 9 in., and the altitude of the wedge
is 164 in. Ans. 5.154—in. from base.



MECHANICS AND
HYDRAULICS

(PART 2)

EXAMINATION QUESTIONS

(1) If the length of the base of an inclined plane is 46 ft. and
the height of the plane is 38 ft., what theoretical force acting
parallel to the base is required to keep a body weighing 4600 1b.
from sliding down the plane? Ans. 3800 1b.

(2) Referring to Question 1, (a) what work must be expended in
moving the body from the bottom to the top of the plane? (b)
If the coefficient of friction is .21, what is the force of friction, it
being considered as acting parallel to the plane?

Ans (a) 184,800 ft.-1b.
"1 (b) 1253 1b.

(3) The velocity ratio of a certain machine is 3.6. By experi-
ment, it is found that an application of a power of 170 lb. will
overcome & resistance of only 492 lb.; what is the efficiency of
the machine? Ans. 80.49,.

(4) The diameter of the handle of a screwdriver is 14 in., its
length is 11 in., the diameter of the screw is 4 in., and the number
of threads per inch is 6; (a) what theoretical pressure will be
applied to the end of the screw when a turning force of 46 pounds
is imparted to the handle of the screwdriver? (b) what will be
the actual pressure if the efficiency is 56%? (c) what is the
velocity ratio? (a) 867 1b.

Ans. { (b) 485.5 Ib.
A (c) 18.85—

(5) In a gear and pulley train, the diameters of the driving
pulleys are 66 in. and 18 in., the diameters of the follower pulleys
are 42 in. and 24 in., the number of teeth in the driving gears are
92, 72, and 68, and the number of teeth in the followers are 46,
48, and 64; (a) what is the speed ratio? (b) the velocity ratio?

127
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(c) what is the number of revolutions per minute made by the

first driving pulley if the second follower pulley makes 526 r.p.m.?

The order of pulleys and gears is to be taken as here given; that

i8, the- first driving gear is keyed to the same shaft as the first

follower pulley, the first follower gear and second driving gear
are keyed to the same shaft, etc. (a) 3.757—
Ans. { (b) .732+

() 140 r.p.m.

(6) When pulling a load up an inclined plane, why must the
power be greater (a) when it acts parallel to the base than when
it acts parallel to the plane? (b) if it requires a greater power
in one case than in the other, why is the work done in pulling a
body a given distance along the plane the same in both cases, in
accordance with the definition that work equals force multiplied
by the distance through which it acts?

(7) In a toggle joint, the distance between the line joining the
centers of the outside joints and the center of the middle joint is
1§ in., and the distance between the centers of the outside joints
is 54} in. (a) What power must be applied to the middle joint
to cause the movable joint to exert a pressure of 1350 1b.? (b)
what is the velocity ratio? Ans {(a) 161 Ib.

" (b) 8.385—

(8) If the diametral pitch of a spur gear is 24, what (a) is the
circular pitch? (b) If the diameter of the gear is 28 in., how
many teeth has it? Ans (a) 1.2566in.
*| (b) 70 teeth

(9) When the diametral pitch is used, it is customary to make
the addendum of a tooth equal to the reciprocal of the pitch;
what must be the diameter of the blank from which the gear is
cut when the diametral pitch is 2} and the number of teeth is
80? The diameter of the blank is evidently the same as the
diameter of the circle described by a point on the outside of a
tooth. Ans. 32.8 in.

(10) If the length of a wedge is 15 in. and the thickness at the
head is 2} in., (@) what force must be applied to thehead to make
the sides exert a pressure of 630 1b.? (b) what is the velocity
ratio? Ans (a) 1051b.

“L(®) 6

(11) What is (a) a left-hand screw? (b) if you hold a screw in

your hand, how can you tell whether it is right- or left-handed?
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(12) Explain the difference between the speed ratio and the
velocity ratio of a train of pulleys and gears?

(13) The addendum for gears cut according to the cycloidal
system is quite commonly taken as .3p., that is {%ths of the cir-
cular pitch. If the pitch circle of a spur gear is to be 12} in. in
diameter and the gear is to have 40 teeth, what (a) will be the
circular pitch? (b) what should be the diameter of the blank?

4 { (a) .9621 in.
" () 12.8273 in.

(14) The velocity ratio of a certain machine is 2.25 and its
efficiency is 91%; what power must be applied to raise a load
of 336 1b.? Ans 164.1 1b.

(15) From the dimensions given in Fig. 1, calculate to
three decimal places the lengths of the line segments that form
the broken line ABCDEFG, locate their centers of gravity with
respect to OA and OH as axes of moments, and calculate z’ and
v/, the distances of the center of gravity of the broken line,
from OH and OA. Ans z’ = 6.753 in.

"y = 17.238 in.

l ,I. .'_i 0; ; T IT

D 8 = "
¢ 0 F G|
o "I ” “n 5" o} ” ”/I

Fia. 1.

~ (16) Referring to Question 15, calculate z” and y”, the dis-
tances of the center of gravity of the area AOHG, from OH
and OA. Ans {(a) 2’ = 3.544 in.
“1(6) ¢’ = 16.812 in.

(17) The screw of a jackscrew has 5 threads per inch; the
length of the handle from the axis of the screw to the joint where
the power is applied is 16 in.; (a) what load can be raised by a
power of 75 1b. if the efficiency is 46%? (b) what is the velocity
ratio? A { (a) 17,342 Ib.

(b) 502.66—
9
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(18) The worm of a worm and wheel has 4 threads per inch,
the diameter of the pitch circle of the wheel is 13 in., the
diameter of the axle keyed to the same shaft as the wheel is
5% in. The worm is turned by applying a couple to a wheel
rigidly connected to the worm and 10 in. in diameter. If one
of the equal forces oonstituting the ocouple is 18 Ib., (a) what
theoretical load can be raised ? (b) if the load actually raised is
only 4560 lb., what is the efficiency ? (c¢) what is the velocity
ratio of the combination ? (a) 10,693 Ib.
(b) 42.65%
(c) 297

(19) In Fig. 2, AB and CD are ares of circles and OF bisects
them. From the dimensions given, find the distance y, O, being
the center of gravity of the area A BCD.

Ans.

Ans. y = 1.65 in.

Fra. 2.

(20) The diameter of the lower base of a right conical frustum
is 12.6 in., of the upper base 7.4. in., and the altitude is 6.8 in.;
how far is the center of gravity from the lower base?

Ans. 2.824—in.



MECHANICS AND
HYDRAULICS

(PART 3)

DYNAMICS

MOTION AND VELOCITY

125. Dynamicsis that branch of mechanics that relates to bodies
in motion but not in equilibrium; that is, the motion is variable,
the velocity increasing or decreasing as the result of forces acting
on the bodies. Dynamics is also called kinetics, though the two
terms have a slightly different meaning.

GRAPHICAL REPRESERTATION OF MOTION

126. Uniform Velocity.—Velocity may be represented by a line,
in the same manner as force. While velocity is measured by a
compound unit, as one foot per second, one mile per hour, ete.,
the time element is always unity—one second, one hour, etc.—
with the result that the velocity is the number of feet, miles, ete.
traveled in the unit of time, and may be represented by a right
line whose length is the distance (space) moved in the unit of
time. By selecting the proper scale, the line may be made of any
desired length. Placing an arrowhead on the line will indicate
the direction in which the body is moving. Thus, in Fig. 77,
suppose a body is moving along the line OY with a velocity of 18
ft. per sec. If a scale of 12 ft. = 1 in. be selected, a line 00’
= 18 + 12= 1.5 in. will represent 18 ft. per sec., the arrowhead
indicates that the body is moving in the direction from O to O’
(the direction of motion or of velocity), and O is the point from
which it starts. Therefore, 00’ completely represents the mo-
tion of a body that starts from O and moves with a uniform veloc-
ity of 18 ft. per sec. in the direction 00’.

131
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127. Uniform velocity may also be represented by a geometrical
figure—a rectangle. For, referring to Fig. 77, draw OX and OY
at right angles to each other. Lay off on OX a series of equal
spaces, 01, 12, 23, etc., each space representing one unit of time,
say one second. Through each of the points, draw lines parallel
to OY, and lay off on these lines distances la, 2b, 3¢, ete. to rep-

resent the velocity at the time indicated
o— e d s by the division mark on OX; thus, at the
; end of one second, the velocity is la, at
\ A
|
4

A L A the end of two seconds, the velocity is
2b, etc. Pass a line through the points
x 0, a, b, etc.; then, the length of a line
drawn from any point on OX parallel to
0Y and included between OX and Of
will be the velocity at the instant indicated by the point on 0X;
for instance, at the point 4, which indicates 4 sec. after starting,
the velocity is 4d.

When the velocity is uniform, all the lines 00, 1a, 2b, etc. have
the same length; hence, O’f is a right line parallel to OX, since
every point in O’f is at the same distance from OX, which is one
of the definitions of parallel lines. This is the kind of line drawn
by a tachometer (speed indicator) on a paper machine running at
a constant speed. The area of the rectangle is 06 X 00’
= time X velocity, or

Fie. 77.

A=tXv
when A = area, { = time, and v = velocity. Letting s = dis-

tance (space) traveled in time ¢, ¢ ='§ for uniform velocity.
Substituting this value of v in the above equation,
A=tx§=s

that is, the area of the rectangle represents the distance (space)
traveled in time ¢. To make this last statement true, however, it
is necessary that the distances representing ¢ and » be measured
in the same units. Thus, if ¢ is in minutes and v is in feet per
minutes, and the scale adopted is 12 ft. = 1 in., then, v in.
=1ft.,and % in. must also be taken as representing 1 min. When
this is done, the area in square inches multiplied by 122 = 144
(the square of the scale, as it i8 called) will give the distance or
space traveled in the time {. As an example, suppose the veloc-
ity of paper on a paper machine is 440 ft. per min. and that the
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scale is 100 ft. = 1in. At the end of, say 9 min., the distance to
be laid off on OY would be 9 + 100 = .09 in., the distance along
OY = 440 = 100 = 44 in., and the area of the rectangle = .09
X 4.4 = .396sq. in. Multiplying this by the square of the scale,
-396 X 100* = 3960 ft. = s, the distance traveled by a point on
the paper in 9 min. = the length of the sheet of paper made in
9 min. That this result is correct is easily seen, since space
= velocity X time (8 = o) = 440 X 9 = 3960 ft.

The area of paper made in time £ is obtained by multiplying s,
the length of sheet made in time ¢, by the width of the sheet.

128. Variable Velocity.—When the velocity is different at
different time intervals, it is said to be variable. For example,
suppose a railway train that is running at 36 miles per hour to be
brought to a stop. The speed (velocity) will decrease from 36
mi. per hr. (52.8 ft. per sec.) to 0; assuming that it takes, say,
10 sec. to stop, the velocity of the train passes through every con-
ceivable value between 52.8 and 0 ft. per sec. during this inter-
val of 10 sec.; the velocity probably has a different value also
at every instant of this interval. At some particular instant, the
velocity 18, say, 28 ft. per sec.; this means if the velocity were to
become uniform at that instant, the train would then travel 28
ft. in one second. In all cases of variable velocity, the velocity at any
instant 18 the velocity the body would have if the velocity became
uniform at that instand.

129. Variable velocity may also be represented by a geometri-
cal figure; thus, referring to Fig. 78 (a), draw OX and QOY, as

) by ’

(a) ®
Fia. 78.

before, and suppose, for convenience, that the velocity at the start
is 0. As in the case of uniform velocity, lay off the times along
OY, making O1 = 12 = 23, etc., and draw la, 2b, 3¢, etc., making
their lengths equal the velocities at the instants indicated by 1,
2, 3, etc. By taking the time intervals sufficiently small, a
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curve may be drawn through the points O, a, b, etc., as shown.
The velocity at any instant may be found by laying off O
equal to the time interval from the starting point O, drawing
t't” parallel to OY, and measuring the length of ¢¢”; this length
will be the velocity at the instant indicated by #'.

Let v, be the average velocity between O and, say, 6; then, ¢
X va = 8 = the space traveled by the body in the time ¢ = 06.
But v, is the area of the rectangle O6mn, and this must equal the
area Of6 under the curve, because », is the mean of all the lines
1a, 2b, 3¢, etc. and both figures have the same base 06. To find
the value of v,, find the area of Of6 by Simpson’s rule (see Element-
ary Applied Mathematics) and divide it by the length 06, the

quotient will be the value of v,. Since 4 =0,t, and va=f ,
= fx t=s,

that is, the area under the curve represents the space traveled by
the body, the samescale being used to lay off the times and veloci-
ties.

130. Suppose the increase (or decrease) in velocity is constant;
then the curve will become a right line, as shown by the line Of
in Fig. 78 (b). Here the increases in velocity are represented
by la = 2'b = 3’c = etc., thus making the triangles Oal, ab2’,
bed’, ete. equal, with the result that O6f is a right triangle. The
line mn, which denotes by its distance from OX the average

(mean) velocity, coincides in this case with ¢6’”/, because 3¢ = %‘f
and the area of the triangleis 4 = m =06 X %[

131. Acceleration.—As stated in Physics, acceleration is rate of
change in velocity. If the change in velocity is uniform, the rate
of change (acceleration) is also uniform. * Thus, referring to Fig.
78 (b), the change in velocity during the first second is la, an
increase in this case. During the second second, the gain in
velocity is 2’b; during the third second, the gain is 3’c; ete. Since
this change is uniform, these gains divided by the time (1 second)
are also uniform, and la = 2’b = 3’'c = etc. Consequently, the
acceleration is uniform and is represented by la = 2'b = 3’y
= etc. Let a = acceleration in feet per second per second, or
feet per second? (see Physics), » = velocity in feet per second, s
= distance (space) passed through in feet, and ¢ = the time in




§1 MOTION AND VELOCITY 135

seconds; then, since la = the velocity and also the acceleration,
the velocity at the end of 1 sec. equals the acceleration during
that second. At the end of 6 sec., the velocity is 6 X a; at the
end of ¢ sec., the velocity is ¢ X a; hence,
v =al (1)

Thus, in the figure, f6’ = 6’6"’ = 6’6’’’ = etc.; whence, 6f = v
=6 X6'f=tXa=al. The area of the triangle is ¥ X 06
X 6f = } X t X »,and since the area represents the space passed -
through by the body in the time ¢, 4 X ¢t X v = g,

and s = 4ot (2
Substituting in (2) the value of v given in (1), 8 = 4 X at X ¢, or
' 8 = }at? (3)

In formulas (1), (2), and (3), the acceleration is uniform, which
is usually the case in practice. Cases in which the acceleration
i8 not uniform seldom occur and will not be considered here. It
may be mentioned, however, that the line Of will not be straight
in such cases, but will be a curve as shown in Fig. 78 (b); here the
accelerations la, 2'b, 3'c, etc. are not equal, and the three formu-
las just given do not apply.

132. If in any case of variable velocity, the velocity is decreas-
ing instead of increasing, the acceleration is said to be negative;
in Fig. 78 (b), for example, the velocity might decrease from 6f
to 0, but if the acceleration were the same numerically, the space
passed over would be the same as before. "‘Thus, during the first
second, the velocity decreases by the amount f6’, the accelera-
tion; during the second second, the velocity decreases 5’ = 6’6",
etc. until at the end of 6 seconds, it becomes 0.

Negative acceleration is sometimes called retardation.

133. Initial Velocity.—If a body is already in motion, the
velocity that it has at .the instant that the time begins to be
considered is called the initial velocity. Referring to Fig. 79,
suppse the initial velocity = v, and that the body has a constant
acceleration a, which increases the velocity of the body. Lay
off 00’ equal to vo; draw O’X’ parallel to OX; lay off 01, 12, 23,
etc., to represent 1 sec., 2 sec., 3 sec., etc., draw la, 2b, 3c, etc.
parallel to OY and intersecting 0’X’ in 1/, 2/, 3', etc.; lay off 1'a
=a, 2'b = 2a, 3"’c = 3a, etc. (since the acceleration a is
uniform), and the 1a, 2b, 3¢, etc. will be the velocities at the end
of 1 sec., 2 sec., 3 sec., etc. The area OO'f6 represents the space
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passed through in 6 sec. and 6f represents the velocity at the
end of 6 sec., which is called the final velocity. The figure OO’f6
is a trapezoid, and its area is 00 ;- 6f X 06. Let 00’ = v, 6f
= p, 06 = t; then, s, the space passed through in time ¢ is

_ Vo + v

s———2——Xt (1)

That is, if a body have an initial velocity and a constant (uni-
form) acceleration, the space passed through in a time ¢ is equal
to one-half the sum of the initial and final velocities multiplied
by the time.

f
e __| o’
a7 __ls'_ __le*
Z_ 8" le”
b 4 4 -
===
a _1_ 4 -
’ -~
dF- - x’
Te v s s ve v lve
1 Ed 3 4 & L X
Fra. 79.

Referring again to Fig. 79, 6f = 6h + hf = 00" 4 hf = v

+ at, since if O’h =t, hf = at. Therefore, the final velocity is
v = 0o + at (2)

The space 8 is also equal to O0’h6 + O’hf = vt + }at?; that is,
8 = vof + %at? 3)

If the velocity is decreasing, a will be negative, and the two
formulas become

v=19— al 4)
and 8 = vt — dal? (5)

If the initial velocity, the acceleration, and the distance passed
through are known and it is desired to find the final velocity,
combine formulas (1) and (2) as follows:

v — Vo

From formula (2), t = T substituting this value of ¢ in
e TRV Sl D ol LN ;
formula (1), 8 = - - o X e = 2a from which

v=+v+2as  (6)
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If a is negative, formula (6) becomes

v = Vvo—2as ©))

Having found », the time may be found by applying formula
(1) or formula (2).

ExampLE 1.—If a body have an acceleration of 8.2 ft. per sec.?, what will
be its velocity at the end of 12.6 sec.? How far will it travel in that time?
The body is assumed to start from a state of rest.

SoLuTioN.—By formula (1), Art. 181.

v = 8.2 X 12.6 = 103.32 ft. per sec. Ans.
By formula (3), Art. 181,
s =4 X82X12.6! = 650.9 + ft. Ans.
Or, by formula (2), same article,
s = } X 103.32 X 12.6 = 650.9 + ft., as before.

ExampLE 2.—A body having an initial velocity of 125 ft. per sec. is
brought to rest, the constant acceleration being 6.8 ft. per sec.? What will
be its velocity at the end of 10 sec.? In what time will the velocity be 0?
How far will it have traveled when the velocity is 5 ft. per sec.?

SoLuTioN.—By formula (4) above, the velocity at the end of 10 sec. is

=125 — 6.8 X 10 = 57 ft. per sec. Ans.

To find the time required to bring the body to rest, use the same formula,

making » = 0; then,
0=125 —-68 Xt
. 125
from which, t = 68 = 18.38 sec. Ans.
The same result would be obtained by using formula (1), Art. 181,
To find the space traveled when the velocity is 5 ft. per sec., first find the
time required for the velocity to decrease to 5 ft. per sec. By formula (4)

above, since v = § and v, = 125,
5 =125 — 6.8 X¢ort =6—8- = 174} se
Then, by formula (1) above,
- 1252+ 5 X 1734 = 1147 ft., very nearly. Ans.

The last result might have been obtained by applying formula (5), since
s =125 X 1744 — 4 X 6.8 X (17}4)* = 1147 ft., as before.

ExampLE 3.—A certain elevator hoists a load 450 ft. in 10 sec. Suppose
it takes 2 sec. to accelerate the load to full speed; that the speed is then
uniform until the elevator begins to stop; that it takes 1} sec. to stop;
and that the acceleration is uniform in both cases. What (a) is the accelera-
tion when getting up to full speed? (b) the acceleration when stopping?
(¢c) the uniform velocity? (d) the distance passed through until uniform
velocity is reached? (e) the distance passed through in stopping? (f) the
distance passed through while the velocity is uniform?

BoLuTioN.—The conditions are shown by the diagram (not drawn to scale)
in Fig. 80. The length of the line OC represents 10 sec., and is divided into
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10 equal parts. Let 02 = 2 sec. = the time ¢, during which the load is
accelerated; AB =10 — (2 + 1.5) = 6.5 sec. = time ¢, during which
the velocity is uniform; DC = 1.5 sec. = time ¢; during which the elevator
is being stopped. Let &, = distance passed through in time ¢,; s; = distance
passed through in time t,; and s, = distance passed through in time ¢,.
Then, s = s, + 83 + 8 = 450 ft., the total distance. Let a be the accelera-
tion during time ¢,; the calculation then proceeds as follows:

(@) & = dat] = }a X 2 = 2a. The uniform velocity between A and B
is the velocity at the end of time t,; denoting this by v, v = af; = a X 2

2

o % 4 X
¢ Y .
e ‘s ™

= 2a; hence, 83 = vt = 2a X 6.5 = 13a. The acceleration a’ between B

and C is @’ ='-':- (see formula 1, Art. 181), or @’ = f_ag 54_3_0; whence,

& = 4a' g = % X 539 X 1.5? =§23. Therefore,
a=a1+az+ca=2a+l3a+3—;-450

from which @ = 274" ft. per sec®. Ans.
(b) Since 27,% = 392 a’ = $ X 8% = 400 = 368 ft. per scc.? Ans.
(¢) The uniform velocity between A and B is the velocity at the end
of the time ¢,, which was found above to be 2a; hence,
v=2a=2x300 =900 = 546 ft persec. Ana.
(d) As found above, s; = 2a = 2 X 27y = 54,8 ft. Ans.

(e) As found above, 8; = 329 =3 X A0 =450 = 40H ft. Ans.

(f) As found above, 8; = 13a = 13 X 30 = 2§00 = 354,% ft. Ans.
Note that s, + 82 + 8 = 54,% + 364,% + 40} = 450 ft., as it should.

Note further that the area of the figure OABC (a trapezoid) is 152)(—00
X BD = 95—-2'-—1-(—) X 49¢ = 450, the total distance passed through. By

using fractions in the calculation instead of decimals, more exact results
can be obtained, which is especially desirable when checking the result.

ExaMpPLE 4.—A body has an initial velocity of 40 ft. per sec.; it is uni-
formly accelerated for 6 sec., at the end of which time, its velocity is 12 ft.
per sec. What is (a) the uniform acceleration? (b) what is the distance
passed through during the 4th second?
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SoLuTiOoN.—Applying formula (2) above, v = 12, v, = 40, ¢ = 6; hence,

(@) 120 =40 +a X 6,0ra ’1200_40

(b) The velocity at the end of 3 sec. isv = 40 + 13} X 3 = 80 ft. per sec.
The velocity at the end of 4 sec. is v = 40 + 13} X 4 = 93} ft. ;p(eir seS%
By formula (1) above, the space passed through in 8 sec.is s = +

2
X 3 = 180 ft.; thespwepaasedthroughin4sec.'m4o -'2-9& X 4 = 2664 ft.

Therefore, the distance passed through in the fourth second is 266§ — 180
= 863 ft. Ans.

ExaMpPLE 5.—A body (as an automobile) having a velocity of 80 ft. per
sec. is brought to rest in 200 ft. Assuming the acceleration to be uniform,
(a) in what time will the body be stopped? (b) what is the acceleration?

SoLuTiOoN.—By formula (2), Art. 181, 8 = }ut, from which ¢ = -2;8 ; there-

2 X 200
fore, t = 30 -= §sec. Ans.

= 13} ft. per sec.? Ans.

(b) By formula (1), Art. 181, v = at, from which a = :3 - 8%) = 16 ft. per

sec.! Ans.

ExampLe 6.—If a body have a uniform acceleration of 28 ft. per sec.?
in what time will it pass through a distance of 450 ft., starting from rest ?

SoLuTioN.—By formula (3), Art. 181, s = # aff, from which { = \Ea
- X 450 _ _
\/2 28 5.67 — sec. Ans.

134. In order to tell which of the foregoing formulas to use in
any particular case, first consider what quantities are given and
which one i8 required; then select the formula that contains
these quantities. Referring to the last example, the accelera-
tion a and the space 8 are given, and the time ¢ is required; the
only formula containing these three quantities and no others is
formula (3) of Art. 131. Again, referring to example 4, the
initial velocity is given, the final velocity is calculated, the time
is known, and the space is required; the only formula containing
%, v, t, and 8, and no other quantities, is formula (1) of Art. 133,
which is therefore used.

These formulas expressing the relation between time, space,
velocity, and acceleration are very important; it is therefore well
to study Arts. 129-133 very carefully. It will also be an
advantage to memorize the formulas.
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EXAMPLES

(1) A body is moving at the rate of 36 ft. per sec. It is then acted upon
by a steady force for 12} sec. that gives it a uniform acceleration; when
the force ceases to act, the velocity is 154 ft. per sec. (a) What was the
acceleration? (b) what was the distance passed through while the body
was being accelerated ? 4 { (a) 9.44 ft. per sec.?

° | (b) 1187.5 ft.

(2) While moving through a distance of 1000 ft., the velocity of a body
decreases uniformly from 248 ft. per sec. to 52 ft. persec. (a) What was the
negative acceleration? (b) How many seconds did it take for the body to
pass through 1000 ft.? (c) what was the distance passed through during
the 5th second? (@) —29.4 ft. per sec.?

Ans { (b) 63¢ sec.
(c) 86.3 ft.

(3) Referring to example 3, Art. 188, suppose that the time ¢, required to
accelerate the load to the mean velocity had been 2} sec. and the time
required for stopping had been 2 sec.; what is (a) the acceleration when
getting up to full speed? (b) the acceleration when stopping? (c) the
uniform velocity? (d) the distance passed through until maximum velocity
is attained? (e) the distance passed through in stopping? (f) the distance
passed through while velocity is uniform? (a) 23.226 ft. per sec.?
(b) 29.03 ft. per sec.?
(c) 58.06 ft. per sec.
(d) 72.58 ft.

(e) 58.06 ft.
(f) 319.36 ft.

(4) A body starting from rest is acted upon for 8 sec. by a steady force
that gives the body an acceleration of 48 ft. per sec.? At the end of the
8th second, the force is reduced and the acceleration is also reduced, the
acceleration after 8 sec. being 32 ft. per sec. How far does the body move
in 12 sec.? Note that the velocity at the end of 8 sec. becomes the initial
velocity at the instant that the acceleration becomes 32 ft. per sec.?

Ans. 1792 ft.

(5) The velocity of a body increases uniformly from 80 ft. per sec. to
320 ft. per sec. If the acceleration is 20 ft. per sec.?, (a) through what dis-
tance does the body pass? (b) what time was required?

Ans. { (a) 2400 ft.

Ans.

(b) 12 sec.
(6) A paper machine is running at the rate of 8 ft. per sec. The weight
of the paper is to be changed so the velocity is increased uniformly to 360
ft. per min. in 80 seconds. (a) What is the acceleration? (b) How many
feet of paper will be of variable weight due to the speed change?
A { (a) .0125 ft. per sec.?
1 (b) 440 ft.
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COMPOSITION AND RESOLUTION OF VELOCITIES

136. Resolution of Velocities.—It was stated in Physics that
all motion is relative; consequently, velocity is also relative. For
example, suppose a body is moving northeast with a uniform
velocity of 48 ft. per sec.; it has a certain velocity north and also
east, and since the northeast direction makes an angle of 45° with
both the east and north directions, the relative velocity north is
48X V3 = 48 X §1/2 = 33.94 ft. per sec.; the relative velocity
cast is also 33.94 ft. per sec. In other words, the original velo-
city in a northeast direction has been resolved into two com-
ponent velocities, one north and the other east. The case is
exactly similar to the resolution of forces.

136. Composition of Velocities.—Suppose a ship is moving in
the direction A B, Fig. 81 (a), with a uniform velocity of 30 ft. per
sec. and that when a man standing on the deck is directly over

D

A

’
®) b
Fia. 81.

the point A on a rock underneath the ship, he starts to run across
the deck in the direction AC, with a velocity of 20 ft. per sec.
At the end of, say 4 sec., the man will have run 20 X 4= 80 ft.;
if the ship had not been moving, he would have reached the point
C, and AC would equal 80 ft., the distance from A. But, in
4 sec., the ship will have moved 30 X 4 = 120 ft., and relative
to the point A, the man will be at D, when CD = AB = 120 ft.
Also, his direction relative to the point A will be along the diago-
nal AD of the parallelogram ABDC. At the end of 1 sec., he
would be at 1’; at the end of 2 sec., at 2'; at the end of 3 sec.,
at 3, ete., 1’1, 2’2, and 3’3 all being parallel to AB. Relative
to the fixed point on the rock, the distance moved by the man is
represented by AD, measured to the same scale as AB and AC;
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and since the time was 4 sec., his velocity relative to the fixed
point is AD <+ 4 = g + ¢t = v, in which 8 = the distance (space)
AD and ¢ = the time in seconds. Consequently, if AB and AC
represent velocities to some scale, AD also represents a velocity,
and to the same scale, in both magnitude and direction. AD is
called the resultant velocity or the resultant of the velocities AC
and AB.

137. It will be noted that in the case just given, the direction
in which the man runs has a component parallel to the direction
of the ship; that is, drawing CE perpendicular to AB, the com-
ponent AE equals the distance BF, DF being perpendicular to
AB. But BF is the additional velocity in the direction AB over
the velocity of the ship. In other words, the velocity AD may
be resolved into a component velocity AF and another component
velocity FD normal to AB; in which case, AF = AB + BF.

If the man had started at A and had run in exactly the opposite
direction, as indicated by AC’ in Fig. 81 (b), the velocity repre-
sented by AC’ would have a component EC’ opposed to the velo-
city of .the ship. At the end of 4 sec., the man would be at D’
relative to the point A on the rock, and AD’ would represent the
resultant velocity. AD’ may be resolved into the component
velocities AE and ED’; and the velocity of the man relative to
the point on the rock is equal to C'D’ (= AB) — EC’ = ED'.
In the first case, the velocity of the man relative to A and in the
direction AB is AF, while in the second case, it is ED’.

The same rules govern the composition and resolution of
velocities that apply to forces; either the triangle or parallelo-
gram of velocities may be used, but it is necessary that the
velocities be uniform.

138. Absolute Velocity.—As regards bodies belonging to the
earth, the velocity of a body relative to a fixed point on the earth
is called the absolute velocity of the body. As was pointed out
in Physics, there is really no such thing as absolute motion; but,
except in astronomical calculations, all movements with which
man is concerned pertain to the earth or to bodies on or within
the earth, and it is therefore convenient and proper to define
absolute velocity as above. In the last article, the absolute ve-
locity of the man was his velocity relative to the fixed point on
the rock. In Art. 136, the absolute velocity of the body north-

,“east was 48 ft. per sec., and the absolute velocity north (and also
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east) was 33.94 ft. per sec. A statement of this kind always im-
plies that the velocity is relative to a fixed point on the earth’s
surface, the earth being supposed to be stationary, unless other-
wise especially stated.

139. Combination of Uniform and Variable Velocity.—A body
may have a uniform motion and at the same time have a variable
motion in another direction; the most common example of this is
the case of a falling body when to the body is given a motion
making an angle with a vertical line. Thus, referring to Fig.
82, suppose a body is moving in the direction OC with a velocity
of 100 ft. per sec. and that when it
reaches the point O, it begins to fall
under the action of gravity; it will oo 509 ft Ber 0%
not fall straight down, but will '
continue to move in the general i
direction of OC while, falling, in . @
accordance with the first law of
motion. The downward velocity /4
will be constantly accelerated,
with the result that the path is a
curve Oab. . . h, which can be B '
ghown by higher mathematics to
be a curved line called a parabola.
The constant acceleration is g = @ = 32.16 ft. per sec.?, and in 8
sec. the body will fall through a distance = 8 = §af* = } X 32.16
X 8 = 1029 ft. = 08’ in Fig. 82, neglecting the resistance of the
air. At the same time, the body will have moved in the direc-
tion OC a distance = 08 = 8’ = vt = 100 X 8 = 800 ft. The
resultant of these two motions is the path Oab. . . h, and the
velocity at any point along this path will be equal to the length
of the path from O to that point divided by the time it takes to
reach that point.

Suppose a railway train is moving at the rate of 70 ft. per sec.
and a baseball is thrown from it in a horizontal direction at right
angles to the direction of the train, with a velocity of 90 ft. per
sec. The ball will continue in the general direction of the train
with a uniform velocity of 70 ft. per sec.; it will also have a
uniform velocity of 90 ft. per sec. at right angles to the other
uniform velocity; and it will fall toward the ground with a con-
stant acceleration of 32.16 ft. per sec.? The resultant of these
three velocities will be a parabola whose plane makes an angle

Fia. 82.
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of 52° 7’ 30" with the direction of motion of the train. The
resultant of the two uniform velocities will be a right line, and a
vertical plane containing this line will also contain the path of
the body, which will be a parabola. When a man steps from a
moving train, he has the same absolute velocity as the train; on
coming in contact with the earth, he is brought to a sudden stop,
which has the same effect on his body as though he were impelled
forwards with a push, the strength of which will depend upon the
velocity of the train. By running in the same direction as the
train, he brings himself gradually to rest and diminishes the effect
of the push; or, if he jumps backwards, i.e., in a direction oppo-
site to that of the train, he will diminish, perhaps destroy entirely,
his absolute velocity in the direction of the train. Even when
the train is moving quite slowly, the result may be a bad fall
if proper precautions are not taken.

FALLING BODIES

140. Formulas for Falling Bodies.—A body descending from a
higher level to a lower one under the influence of gravity is
called a falling body; if there is nothing to oppose the motion,
as when a body falls in a vacuum, the body is said to fall freely
or it is called a freely-falling body. When it falls in air, it
meets with a resistance that increases as the velocity increases,
but this resistance is not uniform. There is also a resistance due
to the buoyant action of the air, which for short heights of fall
may be considered as uniform, but not for great heights, because
the density of the air decreases with the altitude. However, in
practice, when the velocity acquired is not very great (height of
fall is comparatively small) and the density of the body is great
enough to make the buoyant effect of little account, bodies are
treated as freely falling when meeting with no other resistances.
For instance, a stone dropped from the top of a high building will
be considered as a freely falling body in what follows.

141, A body is caused to fall by reason of a constant force
acting on its mass; the force is called gravitation, and it produces
a constant acceleration, which is always denoted in works on
mechanics by g. "As was pointed out in Physics, the value of g
varies with the latitude and altitude (distance above sea level)
of the place where the body falls. The international Standard
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for g is 980.665 cm. per sec.? = 32.1741 ft. per sec.2, which corre-
sponds very closely to latitude 45° at sea level. For latitude of
New York, the value of g is very closely 32.16 ft. per sec.2, and
this value will be used in all future calculations, unless otherwise
specially stated. The constant 1/2g occurs very frequently,
in calculations pertaining to falling bodies; unless otherwise
specially stated, its numerical value will be taken as 8.02.

142, While the formulas of Arts. 131-188 may be used for
solving any problem pertaining to freely falling bodies, it is
customary to represent the height of fall by A and the accelera-
tion by g, in which case the formulas mentioned become

v = gt = 32.16¢ (1)
v =/2gh = 8.02/h (2)
v =99+ gt = vy + 32.16¢ 3)
h =3t 4)
h = 3gi* = 16.08:2 (5)
h = vot + 3gt? = vot + 16.08¢2 (6)
h = 3(vo + v)t (7
3
h= ;—g = .015547v? (8)
t= 3 = .031095v (9)
2h
t=3 (10)
t = \/’7" - 24938/ (11)
v ="+ 2gh (12)

The last formula (which corresponds to formula 6 of Art
133), is derived as follows: from (3), t = = v“,
(7), h = ¥(vo + v)t; substituting the value of ¢, h = }(v + vo)
— 3 N
(v —gv.;) v % s — y; from which, »? = 2gh + v} and v
v3 + 2gh. This formula is useful when it is desired to
find the velocity with which a body would strike the ground
when thrown downward from a known height h with an initial
velocity p,. While all twelve formulas are used, it is probable
that formulas (1), (2), (6), (8), and (11) are most frequently .

employed. In practice, .0155 is usually sufficiently accurate in
10

; from formula
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(8), .031 in (9), and .25 in (11), because of the limit of accuracy
in measuring some factor.

143. If a body move upward instead of downward, it must
have an initial velocity; this velocity will carry the body to
a height indicated by formula (8), which is the velocity that would
be attained by falling through the height A, the value obtained
by applying formula (2), which is another way of writing formula
(8). When the body has reached the height A, it stops, but not
for any measurable length of time, since it immediately begins to
fall, and on striking the earth, will have the same velocity o
that it had on starting upwards; that is, the two velocities would
be equal but for the resistance of the air. They are assumed to be
equal in practice, when the velocity v, is not too great. In the
case of a rifle or cannon ball, the velocity is so great that the
resistance of the air must be considered, if the range is to be
calculated with any degree of exactness. Applications of formulas
(1)-(12) will now be shown by several examples. It may be re-
marked that it is useless to calculate results correct to more than
four significant figures when g = 32.16.

ExaMPLE 1.—A stone is dropped from the top of the Woolworth building
which is, say, 800 ft. above the ground; (a) how long will it take for the

stone to reach the ground? (b) with what velocity will it strike?
SoruTioN.—(a) Here h and g are known; hence, use formula (11) to find ¢,

and ¢ =\/2'7" = .240381/800 = 7.054— sec. Ans.

(b) The velocity may now be calculated by either formula (1) or by
formula (2); using formula (2), v = v/2gh = 8.024/h = 8.024/800 = 226.8
ft. per sec. Ans.

ExaMpLE 2.—A baseball is thrown vertically upward with a velocity of
90 ft. per sec.; (a) how high will it rise after leaving the hand? (b) how
long before it returns to the point from which it started ?

SoruTioN.—(a) Here v and g are given and k is to be found; hence, using

formula (8), h = %’; = .0155470* = 015547 X 90* = 251.9ft. Ans.

(b) The time will be twice the time required for the ball to fall through
the height %; hence, either formula (9), (10), or (11) may be used. Using
formula (9), ¢ = 3 = .031095v = .031095 X 90 = 2.7986, say 2.8 sec.; and
the total time is 2.8 X 2 = 5.6 sec. Ans.

ExampLE 3.—In order to find the depth of a deep well, a stone is dropped
within it, the time that elapses between the instant of starting and the
sound of its striking is accurately measured, and is found to be 3.5 sec.
Taking the velocity of sound in air as 1090 ft. per sec., what is the depth
of the well? Calculate only to the nearest foot.
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SoLuTioN.—The total time is 3.5 sec. The time required for the sound
to reach the ear is equal to the depth of the well & divided by the velocity of

h . L h 3815 — h
sound, or 1090° hence the time of falling is 3.5 — 1090 = 1090 L
Using formula (5), k = jgt* = 16.08 (31139_6.—’.)’ = h. Squaring, trans-

posing, and combining terms,
h* — 81517h = —14554225, from which h = 179 ft. Anas.

To prove that the result is correct, the time required for the sound to
travel 179 ft. is 179 + 1090 = .164 sec.; the time required for the stone to

fall 179 ft. is ¢ = 7" = .249381/770 = 3.336 sec., and the total time is

3.336 + .164 = 3.500 sec., as it should.

ExampLE 4.—If a body be thrown downwards with a velocity of 60 ft.
per sec., what will be its velocity on striking the ground 600 ft. below?

SoLuTioN.—Evidently formula (12) must be used in this case; conse-
quently, v = +/p3 + 2gh = v/60° + 2 X 32.16 X 600 = 206.4 ft. per sec.

Ans.

144. Projectiles.—Any freely moving body is a projectile;
examples are a rifle bullet, a’ baseball, a jet of water, all moving
freely through the air. For a body to become a projectile, it must
have an initial velocity and must be acted on only by gravity
and the resistance of the medium through which it passes, as
air or water. A heavy (dense) body moving freely through still
air at a comparatively low velocity may be considered as acted
on only by gravity, and the resistance of the air may be neglected;
the path of every such body is a parabola, except when moving in
a vertical line. If the direction of the initial velocity be hori-
zontal, as in Fig. 82, and the body falls downwards under the
influence of gravity, the body will describe the path Oab. . .h,
which is one-half of a parabola, the other half being on the other
side of 08’ and symmetrical to the half shown. The distance 8'A,
which is the horizontal distance between the starting and stopping
points, is called the range. The range is evidently equal to the
time required for the body to fall through the height 08’ multi-
plied by the initial velocity. For instance, if the time required
to pass through the height 08’ is 8 sec. and the initial velocity is
100 ft. per sec., the range, when the direction of the initial
velocity is horizontal, is 8 X 100 = 800 ft.

146. Let hM be a tangent to the parabola at h, and suppose
that the body start from the point A with an initial velocity vo in
the direction of the tangent AM. Resolve into two compohents,
one horizontal and the other vertical, the initial velocity vo, as
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indicated in Fig. 83, the angle A being equal to the angle M4 in
Fig. 82. If the value of 9, be such that the horizontal component
vy equals the initial horizontal velocity along OC in Fig. 82, and

4 '

Fic, 83.

Y

the vertical component vy equals the velocity ac-
quired in falling through the height A = 08’, then
the projectile on leaving the point h will follow
the path hgf. . .0, Fig. 82, which is identically
the same, but in the reverse direction, asOabc. . . k.
On reaching the point O, all movement in a verti-
cal direction ceases; the horizontal movement
continues, however, and as the projectile falls, it
describes the other half of the parabola. The time
in falling is the same as the time in rising; hence,
the range is twice a8 great as is the case in Fig. 82.

In Fig. 84, suppose the initial velocity has the direction AM,
the projecctile starting from A. The path described will be the
parabola ABC; the range is AC; and the greatest height is OB.

Y

S

i

N

Vo

P

o ¢ 7 X
Fio. 84.

To find the values of the height OB and the range AC, let EF
represent, to scale, the initial velocity V, EF being the direc-
tion in which the projectile starts and coinciding with or parallel

P RN

N
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to AM, the tangent. Resolve V into two components, EG
= V), the horizontal velocity, and GF = V., the vertical ve-

locity; measure Vi and V,; then, by formula (8), Art. 142,

2
= %;— = .015547 V,? = OB. Knowing the value of h = OB,

the time required for the projectile to ascend this height may be
found by (9) or (10); using formula (9), ¢t = %—' = .031095 V,.

The time that the projectile is in the air will be twice this, or
T = 2t, and this multiplied by the horizontal velocity gives
range = AC =r = 2t V).

The angle which the tangent AM (the direction of the projec-
tile at starting) makes with the horizontal (angle M AC) is called
the angle of elevation.

1486. In general, there are two angles of elevation that will give
the same range for the same initial velocity. Since ACB, Fig.
83, is a right triangle, B = 90° — A; consequently, if A = the
angle of elevation, an angle of elevation = 90° — A will give the
same range for the same initial velocity vo = V. Thus, referring
to Fig. 84, if the range is AC when the angle of elevation is MAC
and the initial velocity is V, the range will still be AC when the
angle of elevation is NAC = 90° — MAC = MAY. The path
of the projectile in the first case will be the parabola ABC; in
the second case, the path will be AB’C. This fact can be readily
proved by means of a garden hose; if the water leaves the nozzle
in the direction AN, the range will be exactly the same as when
it leaves the nozzle in the direction AM.

When the angle is 45°, the range will be a maximum, because
90° — 45° = 45° and there is only one angle that will give the
same range. In Fig. 84, PAC’ = 45° the range is AC’ and the
greatest (maximum) height for this range is O’D.

In practice, the foregoing facts are not true for high velocities,
such as those attained by rifle bullets and cannon shots, whose
velocities vary between, say, 2000 and 3000 ft. persec. The
path is then no longer a parabola, the maximum range is attained
when the angle of elevation is considerably less than 45°, and for
a high angle of elevation the maximum height is so great that
the air is less dense and offer less resistance than when the
smaller angle is used.

ExampLE.—Suppose a baseball player can throw a ball with an initial
velocity of 120 ft. per sec.; what is the greatest distance the ball can travel,
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the range being measured on a horizontal line passing through the point
at which the ball left his hand? What would have been the range if the
angle of elevation had been 60°?

SoLutioN.—Referring to Fig. 84, if angle FEG is 45°, FG = EG = V
X §v/2,t =.031095V X /2, and r = EG X 20 = V X } v/2 X .031095 V
X $v/2 X 2 = .031095V* = .031095 X 120 = 447.8 ft. Ans.

If angle of elevation MEG =60°, FG =V, =V X }+/3, EG =V,
=14V, and r = .031085 X V X $v3 X2 X } V =.031095V* X }/3
= 387.8ft. Anas.

If the angle of elevation is 90° — 60° = 30°, the range will also be 387.8 ft.

The maximum height that the ball rises in each case is, By formula (8),
Art. 142, for the first case, h = .015547 (}1/2 X V)* = .015547 X }
X 120* = 111.9 ft.; for the second case, h = .015547(}/3 X V)* = 015547
X § X 120* = 167.9 ft.; for the third case, b = .0155647 (4 X V)* = .015547
X } X 120* = 55.97 ft.

ExaMPLE 2.—A jet of water issues from an orifice in a horizontal di-
rection’ with a velocity of 113 ft. per sec.; if the center of the orifice is 10
ft. 3 in. above the ground, what is the range?

SoLuTioN.—By formula (11), Art. 142, ¢ = 42—? =.24938+/h = .24938

4v/10.25 = .80191 sec., the time it will take the water to fall from the center
of the orifice to the ground. Therefore, the range is r = vt = 113
X .80191 = 90.62 ft. Ans.

147. The path of a projectile is frequently called its trajectory;
and the higher the initial velocity the flatter will be the trajectory
between two points. If a gun be pointed directly at the point
it is desired to hit, the ball will necessarily strike below that
point; for this reason, the sights are “raised,” thus causing the
gun to aim at a point above the point it is desired to strike. This
adjustment of the sights is made according to the range and the
velocity of the bullet.

ANGULAR VELOCITY AND ACCELERATION

148. Angular Velocity.—If a body in motion be acted upon by
a force, its velocity may change or its direction may change or both
may change. In the case of a projectile, both the direction and
velocity change; this fact is indicated by the curved path and the
further fact that the distances passed over in equal times are
different. According to the first law of motion, the body must
move in a right line unless acted upon by an external force; in the
case of a projectile, the external force is the force of gravity.

Suppose a ball M to rest on a horizontal frictionless plane, with
its center connected to a fixed pivot 0, Fig. 85 (a), by a string CO.

i
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If, now, the ball be struck a sharp blow in a direction parallel
to the plane and perpendicular to CO, it will move in a circle
having O for its center and CO for its radius; the velocity will be
proportional to the effect of the blow, and if there is no friction
or other resistances, the ball will move forever in the circle, and
with undiminished velocity. The reason for this is that the
direction of motion at any point is a tangent to the circle at that
point; thus, for the point C, the direction of motion (velocity) is
the same as that of the tangent MA, and if it were not for the
string, the ball would move in the direction CA, when moving

()

(a)
Fia. 85.

clockwise around the circle; in other words, if the string were cut
at the instant the ball reached the point C, it would then continue
in the direction CA,and with the same velocity that it had when it
reached the point C. The ball is caused to move in a circle as
the result of a pull exerted by the string; and since this pull is
radial, its direction is that of the radius CO. But the radius
drawn from the center to any point of a circle is perpendicular
(normal) to the circle and to the tangent at that point. This is
likewise true of any other point of the circle; hence, the pull
exerted by the string is always perpendicular to the tangent, that
is, to the direction of motion, and therefore has no influence in
changing the velocity along the circle. Consequently, if the
body meets with no resistances, such as friction, the atmos-
phere, etc., it will move forever with undiminished peripheral
velocity.

If v = the linear (= peripheral) velocity in feet per second, r
= the radius in feet, and n = number of revolutions per second,
v = 2xrn. Let w (Greek letter omega) = the number of radians
turned through in one second; then, since one revolution = 2»
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radians, w = 2wn radians per second, which is called the angular
velocity of the ball. Comparing the two velocities,

w:y = 2r :2xr
from which, v

W= -
r

That is, the angular velocity is equal to the linear velocity divided
by the radius of the arc in which the body moves; and the linear
velocity is equal to the angular velocity multiplied by the radius,

= or v = rw. For example, suppose a flywheel makes 150

~ r.p.m.; the angular velocity is w = 2rn = 2 X 3.1416 X %0

=15.708 radians persecond. If theradiustoa pointon the outside

of the rim is 90 in., » = 2r X?g X %0 = 117.81 ft. per sec.
Then w = g = 2;%8-1 = 15.708 rad. per sec., as before. Also,
12

gince v = wr, ¢ = 15.708 X ?—g = 117.81 ft. per sec.

149. If the body move in a curve that is not a circle, as A B, Fig.
85 (b), the angular velocity is determined in the following manner:
suppose the body to be at the point a and its linear velocity to be
v’; suppose the body to move a very short distance (preferably,
an infinitely small distance) to a’; then that part aa’ of the path
may be considered as an arc of a circle, the radius being 0’a and
the center 0'. Then O’ is called the instantaneous center for
the minute arc aa’, and O'a = ' is called the radius of curvature;
a tangent to the radius at a will be perpendicular to the radius of

curvature O’'a = r’. The angular velocity at a is then o’ = :_1,!

In a similar manner, let O” be the instantancous center for the
point b, v'’ and 7"’ the linear velocity and radius of curvature
7’

corresponding to b; then, o” = g,, ; etc. The tangents am, bn,

and cp indicate the direction of the linear velocity at a, b,
and ¢, respectively. In the case of a body moving in a circle, the
instantaneous center is always the center of the circle, the radius

of curvature is always the radius of the circle, and w =g, v being

the linear velocity at any point. In what follows, only uniform
velocity in a circle will be considered.
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150. Radial Acceleration.—Referring again to Fig. 85 (a), the
ball is acted upon by a force due to the pull of the string; so long
as the angular velocity remains constant, this force also remains
constant; and since a constant force always produces a constant
acceleration, there is a constant acceleration directed toward
the center. The ball, however, gets no nearer the center, be-
cause the acceleration is just sufficient to keep the ball moving
in its circular path, and this is always the case, regardless of the
form of the path. The manner of deriving the expression for
the value of the acceleration toward the center, which may be
termed the radial acceleration, is somewhat too technical to be
given here; but, letting ¢+ = the linear velocity, w = the angular
velocity, and r = the radius,

. . v?
radial acceleration = .= rw?

FORCE AND MOTION

MOMENTUM

161. Force Required to Stop a Moving Body.—It was shown
in Phystcs that if f = force in pounds, m = mass of body moved,
w = weight of body moved, and e = acceleration of moving
body, the force required to give the body an acceleration a is

f=ma (1)

If a body having a certain velocity » is brought to rest under
the action of a constant force, it will have a constant negative
acceleration —a, which will be the same in value as the accelera-
tion required to give the body the velocity + when starting from 0;
hence, the force required to bring the body to rest by making its
velocity decrease uniformly from v to 0 with a constant accelera-
tion a is also f = ma. By formula (1), Art. 131, v = a¢, from

which a = >- Substituting this value of a in formula (1), above,
t
=m X 7 or
f ,,
ft =my 2)

that is, the force required to bring a body having a velocity v to
rest in a time ¢ multiplied by the time is equal to the mass of the
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body multiplied by the velocity. Since m = %, formula (2) may
be written,
Jt = €))

If w is in pounds, » in feet per second, ¢ in feet per second per
second, and ¢ in seconds, f will be in pounds; if w is in kilograms
(or grams), v in centimeters per second, g in centimeters per
second per second, and ¢ in seconds, f will be in kilograms (or
grams).

ExampLE 1.—A body weighing 128 pounds is started from rest under
the action of a force and is given a velocity of 40 ft. per sec. in 3 sec.;
neglecting friction and other resistances, what force was required ?

SovruTioN.—Solving formula (3) for f,

wo _ 128 X 40

ExampLE 2.—What force is requlred to give a body weighing 280 lb
an acceleration of 12.4 ft. per sec.??
SoLuTioN.—Since the acceleration is known, use formula (1), and

»32;?6 X 12.4 = 107.96, say 108 1b. Ans.

162. Formula (2) of the last article is the fundamental formula
of dynamics; it is so important that the expressions on either
side of the sign of equality have been given special names; that on
the left-hand side, ft, is called the time effect; that on the right-
hand side, my, is called the momentum of the body. For any
moving body, the mass multiplied by the velocity is called the
momentum; the force required to stop the body in a given time
ie the time effect; if the time is one second, then the momentum is
equal to the force,and momentum may be defined as the force that
is required to stop a moving body in one second. This definition
must be clearly understood; it is the steady (constant) force
which, acting for one second will bring the body to rest, and it is
equal to the mass of the body multiplied by its velocity in linear
units per second. Thus, if a body weighing 448 kilograms have
a velocity of 36 meters per second, its momentum (since 36 m.

. 448 448
= 3600 cm.) will bemv=980665><3600 980665><36

=1644.6—. If this body were brought to rest by a steady force
acting for one second, the value of the force would be 1644.6
kilograms. Note that when g is taken as 980.665 cm. per sec.?,
the velocity must be in centimeters per second; but if the velocity

wo
g

S =ma=
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is in meters per second, g may be taken as 9.80665 meters per
sec.?

There i8 no name for the unit of momentum; if, however, the
weight be taken as 1 lb., the velocity as 1 ft. per sec., and the
unit of g as 1 ft. per sec.?, then

llb.x%
mv=7=—1“.—‘=l]h.><1880.

1 sec.?
that is, the unit may be called the pound-second. For the time
effect of the other side of the sign of equality, ft = 11b. X 1 sec.,
which agrees with the unit for momentum. In the metric sys-
tem, the unit of momentum will be the gram-second or kilogram-
second, according to whether the weight of the body is taken in
grams or kilograms.

ExaumpLe.—A locomotive with its train weighs, say, 500 tons. Starting
from rest, it gets up a speed of 30 miles per hour in just 4 minutes; if the
acceleration be assumed to be constant, (a) what steady force must be ex-
erted, neglecting all resistances? In other words, what force in addition
to that required to overcome the resistances must be exerted to enable the
locomotive and its train to get up to speed? (b) At 50 miles per hour
what is its momentum?

SovLuTioN.—(a) Reducing the tons to pounds, minutes to seconds, and
miles per hour to feet per second and using formula (3) of Art. 161, after
solving for f,

wo 500 X 2000 X 30 X 5280
ngt. -32.16x4x60x60xw-57001b.,verynenrly. Ans,

(®) At 50 miles per hour, the momentum is

wv 500 X 2000 X 50 X 5280
mo - = 32.16 X 60 % 60 = 2,280,265 lb.-sec. Ans.

153. Generating Motion by Weights.—When motion in two
- or more bodies is due to the action of gravity on one of the
bodies, the force causing the movement is, in general, easily
found, and when divided by the mass of all the bodies moved,
gives a quotient that is the acceleration of each of the moving

bodies. Thus, from formula (1), Art. 161, a = #; hence, if the

force causing the movement is known and the mass moved by
this force is also known, the acceleration can be found. The
two problems that follow will make this clear.

Problem 1.—In Fig. 86, a weight is shown resting on the top
of a table, which will be assumed to be a perfectly smooth hori-
zontal plane surface; attached to the weight P is a cord, which °
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passes over a pulley and has weight W at the other end. If the
part ab of the cord is horizontal and all resistances are neg-
lected, find (a) an expression for the acceleration in terms of P
and W; (b) find the tension in the cord in terms of P and W;
if P =451b. and W = 72 lb., what is (c) the acceleration? (d)
the tension in the cord?

(a) W is caused to move downwards by the action of gravity,
but gravity does not directly move P because the force that

Fia. 86.

gravity exerts on P is counteracted by the reaction of the table;
consequently, since P must move to the right when W moves
downwards, the total mass moved by the action of gravity on

‘Wis W+P + mass of cord 4 mass of pulley (in turning). The
last two elements may be neglected in the present case, and the

mass moved may be considered as L ;I- P The force producing
this movement is the weight of W; hence, the acceleration is
S _Ja_ Wg_
a_m_w—W-l-P' Ans.
W+P

Here f =w and m = r)

(b) If there were no friction (as is here assumed), and W were
to move downwards with a uniform velocity, there would be
no tension in the cord, because, since ab is horizontal and P moves
in a horizontal direction, there is no component force acting up-
ward. The conditions are exactly the same in respect to the
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force acting on P as though the cord were cut and a force equal
to that required to accelerate P were applied to the free end.

The mass moved would then be :—), and this multiplied by the

acceleration, the value of which was found above, equals the
force required to accelerate P, and is equal to the tension in ab
= T; it also equals the tension in cd, since the tension of the
string is the same throughout. Therefore,
—cma=Ex Vo __ PW
Te=m= o X g P~ w+p
(c) Since P = 451b.and W = 72 1b,,

_ Wg _72X3216 _
= WrP~ T2 - 19.79 ft. per sec.? Ans.

. . . Pg
If P and W are interchanged, the acceleration is W+ P

45 X 32.16
= B FT2 - 12.37 — ft. per sec.?
(d) The tension of the cord is

7= PW 45X 72

W+P 45472

If P and W be interchanged, the tension of the cord will be
exactly the same as before, because,
although the mass of the body on the
table will then be greater, the accelera-
tion will be less, and in the same pro-
portion. If friction be considered, this
will not be true, since the force of
friction will be greater in the latter
case than in the former.

Problem 2.—Suppose that the weight
P be suspended at one end of the cord
as shown in Fig. 87; neglecting all
resistances, find (a) the acceleration,
(b) the tension in the cord, the weights Fie. 87.

of P and W being the same as in Problem 1.
" (a) The moving force is evidently equal to W — P, since W
and P act in opposite directions. If W = P, there will be no
motion, since the system will then be in static equilibrium. As
the result of the action of this force, P and W both move, and
since the force is constant, both bodies receive a constant accel-

Ans.

= 27.694 1b. Ans.
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eration. The mass moved is —W—;-—P, consequently, the accel-

cration is
fg _ (W—P)yg (72— 45)32.16
T W+P - 72+ 45

= 7.422 — ft. per sec.?
Ans.
(b) The tension of the cord will be equal to the tension in ab,
and this evidently equals the weight of P + the force required to
accelerate P; that is, since the mass of P is 7

(W —P)yg W-—P
T = P+ ><a—P+ XWwip =

Clearing the nght-hand member of fractions, combining and

reducing,
_ 2PW 2 X45XT72_
T = WP~ 12445 - 55.384 Ib. Ans.

It will be observed that the tension of the cord is here twice
as great as in the arrangement of Problem 1; note, also, that

interchanging the two bodies P and W will produce no other

effect than to reverse the direction of rotation of the pulley.

Considering the expression a = %%, the acceleration a

a =

may be made as small as desired by making the difference be-
tween the weights of W and P sufficiently small. 1t is by means
of a device of this kind that an accurate measurement of a can
be made experimentally; and when a is known, the value of ¢
can be found at once. Thus, suppose the pulley is very light
and that its journals turn on ball bearings, thus practically
eliminating friction; suppose further that the cord is a fine silk
thread, that W = 2 ounces, and P = 1.9 ounces. If, now, by
accurate measuring and timing devices, it is found that W falls

3.96 ft. in 3.1 scc. then, by formula (3), Art. 181, a = 22

l!
= 153—?;9—6 = .8241 ft. per sec.? The expression found above for
(W —P)g. a(W + P)

the acceleration is a = WP ; from which g = W—P "

Substituting the value of a, as just found, and W and P,
= 8142—1_%2—1:%&) = 32.14 ft. per sec.?

a very close approximation to the value of g at a place where

f-‘\i
%
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g = 32.16. The true value of g is one of the most important
constants used in science.

164. Effect of Friction.—Friction always opposes the motion;
for most cases that arise in practice, it may be regarded as a
constant force acting in direct opposition to the force producing
the motion. Thus, referring to Problem 1, of the last article,
suppose the coefficient of friction is u = .22 between P and the
table top; then the normal pressure is P, and a force equal to
22P must be exerted before any movement can occur. Neglect-
ing the friction of the pulley and cord, the force producing motion
is W — .22P, and the acceleration is, the mass moved being the
same as before, a = (W;’ +ull:)g _ (72 gg 4)_(44;)32.16
= 17.07— ft. per sec.? If the weights P and W be interchanged,

_(P—uW)g _ (45 — .22 X 72)32.16 _
¢="prw - 35+ 72 = 8.015+4 ft. per sec.?

To find the tension of the cord, the force required to move P
and give it the acceleration due to the action of W is uP + ga;

substituting the value of a just found,
_ P _(W—uP)yg (14 puPW _ (1+.22)45 X 72
T=wP+o X 5P =" W+P ~ 72445
. = 33.78 Ib.

The same value for T will be found if the weights are inter-
changed.

If it is desired to take into account the friction of the pulley
also, the problem becomes indeterminate, because the normal
pressure on the pulley bearing cannot be found until the tension
in the cord is known. This may be approximated as closely as
is desired by calculating T when the friction of the pulley is
neglected; taking the value thus obtained as the tension, find
the normal pressure on the bearing, and calculate the friction;
this added to T will give a value T”, which will be quite near the
actual value of the tension. A repetition of the process will give
a value T that is very near the correct value. Thus, the re-
sultant of the tensions in ba and cd, Fig. 86, evidently has the
direction ef; bef = cef = 45°; and ¢f = T+/2. Taking the value
of T just found, and assuming that the coefficient of friction for
the bearing is .02, the force of friction for the pulley is .02 X
33.784/2 = .96— lb. This does not increase the tension in ab,
the part of the cord between the pulley and P, but it does increase
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the tension in the part cd of the cord. The effective pull exerted
by W is, calling the force of friction of the pulley f, W — uP —f,
since the friction of the pulley and the friction of P must be over-
come before there can be any movement. The acceleration,

therefore, is a’ = (W —uP — f)g’ and the tension in ab is 7"

P4 py Py W—ub— )g _ 1+ wPW —
flg_(A+u Pf

(1 + wPW Pjy x 45 X .96

- L - = _ 23 X .96

= W+ P WP =33.78 5172 = 33.41 Ib. The

tension in cd is 33.41 + .96 = 34.37 Ib.

It will be noted that the tension in the part ed of the cord is
greater than in ab; this evidently must be so, because the fric-
tion of the pulley must be overcome before there can be any
tension (pull) in ab. The result last obtained is accurate enough
for all practical purposes. Note the difference between the re-
sults obtained when friction is considered and those obtained in
Art. 163, when friction was neglected. There is also a small
force required to make the pulley turn; another small force is
required to bend the cord, to overcome the friction between the
cord and the pulley, and the very small resistance offered by
the atmosphere, though these latter are generally neglected in
practice.

In the case of Fig. 87, the same method of procedure would be
followed. The pressure on the pulley bearing (which is vertically
downwards) may be assumed to be twice the tension as calcu-
lated in Problem 2 of the last article, or 2 X 2PW il

’ W+P W+P
If the coefficient of friction be taken as x’ = .02, as before, the
effective force causing acceleration will be ~W — P - f,in which f
is the force of friction and equals

W XAPW _ . 02 X4 X45XT72_
wxp 7 B +72 - 22t
The acceleration is a’ = (WW_I: f)g and the tension in ab
- P (W—-P—-fyg _ ZPW—Pf _ 2PW
s T P+gx WP = "WF¥P " W+pP
pr 45 X .22 o
WP =55.38 — m = 55.30 1b. The tension in cd is

then 55.30 + .22 = 55.52 1b. It will be noted that there is not
nearly so much difference here as in the preceding case; this is
because there is only one source of friction, and the coefficient

P
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is very small, the result being that the force of friction is small
as compared with that due to the weight sliding on the table
top.

166. Motion on an Inclined Plane.—Let ABC, Fig. 88, be an
inclined plane whose length is [ and height is &, and on which
rests a body M that is free to move down the plane. Suppose
the weight of the body is P, represented by the vertical line oa,
which resolves into two components ba and ob; then ba represents
the force urging the body down the plane and ob represents the

A
normal pressure against the plane. The triangles ACB and oba

.. . ab BC
are similar; whence, the proportion oa =~ 4B But, oa = P,

AB = I, and BC = h; letting ab = f, the force urging the body
down the plane, and substituting in the proportion,
f A Ph

=por f= T

Fia. 88.

P

The mass of the body is g; hence, since a = '%, the acceleration
Ph

down the plane is a = ;-,— = g—;l, friction and other resistances
ra

being neglected. From formula (3), Art. 181, ¢ = \/258 if ¢ is
the time it takes the body to descend the entire length of the

,21 ,212 _ ,2
plane, then 8 = [, and ¢ = @ = \Ngh = l ah The velo-
l

city of the body when it reaches 4, the bottom of the plane, is
1
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= 0 x z\j% = \/2gh. If the body fell freely from B

to C, its velocity on reaching C will be v = 1/2gh, which is ex-
actly the same as that acquired in sliding down the plane. The
time, however, will be different in the two cases. Thus, let
t.= the time required to fall through the height A, and let ¢
= the time required to slide down the plane; then, since v = gt

=al,t =_ga_t=g_t =%l=£xt. In other words, the time re-

quired for a body to slide down a smooth frictionless plane is
equal to the time required for the body to fall through the
height of the plane multiplied by the ratio of the length of the
plane to the height of the plane

The fact that the velocity is the same no matter how the body
travels from a point of higher level to one of lower level is an
extremely important principle in dynamics.

166. If the friction be considered, these results will, of course,
be modified. Referring to Fig. 88, let s = the coeficient of
friction; then, the effective force f’ acting in the direction oc
willbef/ = f—pu X ob. From the similar triangles oba and ACB,

£=j—g, from which, ob=leAC. But AC = /F— R

in the last article, the value of f was found to be f = ﬁ ; hence,
f’—ﬂ—“Pv — h? =7 h—y\/ — h%), and the accelers-

tionlsa—ig—— p\/l’ h?).

Suppose, for example, that angle A = 45°; then I = h/2,
and 2 = 2h?, Substituting these values in the last expression i
32.16 ‘

for a, and assuming that p = .18, a = e (h — .184/287— 1)

= §\271§(1 — .18) = 18.65 ft. per sec.?

Neglecting friction, the value of a is

fg _ gh = §2‘1_6_><_h = 22,74 ft. per sec.?

|
If the angle A = 30°, I = 2h, and \
a= :}_22’%6 (h — .18V/4h*— h* = 11.07 ft. per sec.?
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Neglecting friction, the value of a is

h 32.16 X h
= %- = T = 16.08 ft. per sec.?
The ratio of the two accelerations in the first case is ;—ggi

= .826 —, and in the second case, ié—g% = .688+. It is evi-
dent that the angle A may be decreased until there will be no
motion at all; this angle is the same as the angle of friction,
which was previously defined.

167. From what has been stated in Arts. 164-166, the reader
will obtain a good idea of the effects of friction in retarding mo-
tion. It is not advisable to pursue the subject further in an
elementary work of this kind. It may be stated that in connec-
tion with the operation of machines, the friction of the separate
parts as they move relatively to one another is seldom considered,
the resistances being all grouped and considered as a whole in
ascertaining the efficiency of the machine. The subject of effi-
ciency was discussed in Arts. 94-97.

CENTRIFUGAL FORCE

1568. Central Forces.—Whenever a body moves in a curved
path instead of a right line, it is caused to do so by the action
of a force normal to the direction of motion, or else the acting
force has a component acting in this direction. As was shown
in connection with Fig. 85, a very short part of the path may be
considered as a circular arc; then this normal force becomes a
radial force, which acts toward the instantaneous center. Forces
that act toward or away from a center are called central forces,
and any force acting toward a center hasreceived the special name
of centripetal force. Referring to Fig. 85 (a), suppose the body
to move in a circle, with a uniform angular velocity = w. The
force exerted by the string, and which pulls on the ball, is the

. centripetal force. The reaction of the ball on the string is called
the centrifugal force. The centrifugal force being a reaction
only, it does not cause or tend to cause motion, but the centripe-
tal force actually produces motion toward the center. If the
ball revolve fast enough, the string will break, and the ball will
no longer move in a curve, but in a right tangent to the circle
that forms its path; whence the phrase “flying off at a tangent.”
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Although the centripetal force is the active force, still the centri-
fugal force is equal and opposite to it, and both originate and
cease at the same instant; and any motion that the body may
have after they have ceased to act is due to the linear velocity
that it had while moving in the curved path.

169. Formulas for Centrifugal Force.—It was stated in Art.
160 that the radial acceleration when a body moves in a circle

2
is = = ru?, in which r is the distance from the center of the circle
to the center of gravity of the revolving body, v is the linear and

- . w is the angular velocity of the center of gravity of the revolving

body. Multiplying this by the mass of the body, the product
will be the centripetal force = the centrifugal force = F.

Therefore,
my? _ wo?

~ 5 = (€]
2
Also, F = mrot = 22 2
If n, the number of revolutions per minute is known, and r is

2
taken in feet, then v (in feet per second) = —g{)ﬁ = .10472rn.

Substituting this value of v in formula (1),

p o @ X (10472rn)?
T T 32.16r

Formula (3) is the one most commonly used in practice for
finding the value of the centrifugal force.

ExaumpLE.—If a ball weighing 12 1b. revolve in a horizontal plane at the
rate of 180 r.p.m., and the distance of the center of gravity of the ball from
the axis of revolution is 18 in., what is the centrifugal force, neglecting the
weight of the arm connecting the ball to the shaft about which it revolves?

SovuTioN.—Using formula (3), and remembering that r must be ex-

pressed in feet, F = .000341 X 12 X }—’; X 180t = 198.9 — lb. Ans.

= .000341wrn? 3)

160. Examples of centrifugal force are frequent in every-day
life. When a street car goes around a curve, there is a tendency
for the passenger to be thrown toward the outer rail. Where
railway trains go around curves at high speed, the outer rail
is raised, which counterbalances the centrifugal force; otherwise,
the train would either leave the track or would turn over. A
bicycle rider accomplishes the same result by bending his body
sideways, so that he leans toward the center of the curve he is

N
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traveling. When belts are run at high speed, the centrifugal force
causes the two parts (driving side and driven side) to spread
apart, thus increasing the belt strains and lessening the arc of
contact, which reduces the hold of the belt on the pulley and
decreases the driving power. When a locomotive scoops up
water from a trough between the tracks while running, the effect
is secured by centrifugal force, the water being guided in a curved
pipe from the trough to the tank; the faster the speed of the loco-
motive, the greater the centrifugal force and the more water that
will be supplied to the tank.

161. Flywheels and Disks.—When a flywheel or disk, an
emery wheel, for example, revolves at a high rate of speed, the
centrifugal force may become so great that the flywheel or disk
will burst. In the case of flywheels having arms connecting the
hub with the rim, it is not easy to calculate the exact effect of
the centrifugal force, in fact it is practically impossible. In
order to be on the safe side, it is usual to disregard the arms
and consider the rim only, in which case the effect of the
centrifugal force is to separate one half of the rim from the
other half. The weight of one-half the rim is calculated and
substituted in formula (3) of Art. 169, and the result divided by
x = 3.1416. The reason for dividing by = is that each particle
of the rim is acted on in a radial direction, and the sum of the
components normal to the plane of the section at which the
break occurs, those on one side acting in the opposite direction
to those on the other side, is equal to the centrifugal force of
one-half the rim divided by ». It is also customary to take the
radius r as the distance from the center of the shaft to the inside
of the rim, instead of calculating the center of gravity of a cross
section of the rim and using the radius to this point for ». For
cast-iron flywheels; it is not considered advisable to have the
peripheral velocity v exceed materially “a mile a minute;” it
ought at any rate to be less than 6000 ft. per min.

For flywheels and disks, therefore, the centrifugal force F’
may be expressed by the formula

, _ -000341urn® _
F' = 2 % 3.1416 — .00005427wrn? (1)

in which w = the weight of the flywheel rim or disk. For fly-
wheels, r is the radius to the inside of the rim; for disks, r is the
radius to the center of gravity of one-half the disk = .42441R,
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where R = radius of disk (see Art. 112). Substituting the value
of rin (1)
F" = .00005427w X .42441Rn* = .000023wRn? 2

in which F”’ = the centrifugal force of the disk.

Nore.—It is to be understood that the value of the centrifugal foree as
calculated by formulas (1) and (2) of this article is the force that tends to
separate one half of the flywheel rim or one half of a disk from the other
half, due to the revolution of the flywheel or disk.

ExampLe.—A certain flywheel rim has the following dimensions: outside
diameter = 14 ft., inside diameter = 12 ft. 6 in., width of face = 22 m.
If the rim has a rectangular cross-section and is made of cast iron weighing
.2604 Ib. per cu. in., what is the centrifugal force of the flywheel when
running at 120 r.p.m.?

SoLuTioN.—First calculate the weight of the rim. The mean diameter
. 14 +12.5 . . .. 14 — 125
is —5— = 13.26 ft. = 159 in. The thickness of the rim is —3

= 75 ft. = 9 in. Hence, the weight is w = x X 159 X 22 X 9 X .2604
= 25,765 Ib., and the centrifugal force is, by formula (1),
12.5

F' = .00005427 X 25,755 X—2—X 120* = 125,800 Ib. Ans.

EXAMPLES

(1) A ball weighing 5 lb. revolves in a horizontal plane; the distance from
the center of gravity of the ball to the axis of revolution is 164 in. and the
ball makes 220 r.p.m. What is (a) the centrifugal force of the ball? (b) the
linear velocity of the ball? (c) the angular velocity?

(a) 113.5—~1Ib.
Ans { (b) 31.678 ft. per sec.
(c) 23.038 radians per sec.

(2) An emery wheel runs at 1600 r.p.m.; if its diameter is 10 in., what is
the centrifugal force tending to burst it, its weight being 24 Ib.?

Ans. 5888 Ib.
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MECHANICS AND
HYDRAULICS

(PART 3)

EXAMINATION QUESTIONS

(1) A ball rolls down a frictionless plane, the height of which
is 18 ft. and length of base is 81 ft. If the ball has an initial
velocity of 44 ft. per sec., (a) what will be the velocity at the
lower end of the plane? (b) how long will it take the ball to travel
the length of the plane?

(a) 55.62+ ft. per sec.
Ans. { (b) 1.666— sec.

(2) Referring to Question 1, if the ball were caused to travel
up the plane, the other conditions being the same as before, (a)
what will be its velocity when it reaches the top? (b) how long
will it take the ball to travel the length of the plane?

(a) 27.90— ft. per sec.
Ans- 1 (b) 2.208+ sec.

(3) A heavy hammer is dropped from the top of a high build-
ing; a man stands 400 ft. from the point on the ground where it
strikes. If 6.52 sec. elapse from the time the hammer starts to
fall until the sound of the fall is heard, how high is the building?
Take the velocity of sound in air as 1090 ft. per sec.

Ans. 609 ft.

(4) An automobile traveling at the rate of 50 mi. per hr. is
stopped in 120 ft. Assuming that the force that brings the car
to a stop is a steady one, (a) what is the acceleration? (b) how
long will it take to stop the machine? A (a) 22.41 ft. per sec.?

nas.
: (b) 334 sec.

(5) A block of pulpwood, weighing 88 Ib. leaves a horizontal
overhead conveyor with a velocity of 45 ft. per min. and falls to
the level ground below in 2.1 sec. How high is the conveyor?

Ans. 70.9 ft.
167
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(6) Referring to example 3, Art. 133, suppose the height of lift
had been 625 ft. and that the total time of hoisting was 15 sec.
If 3 sec. were required to accelerate the load from rest to the mean
velocity and 2} sec. were required to stop it, then neglecting fric-
tion and other hurtful resistances, (¢) what would be the tension
in the rope at start? (b) in the middle of the hoist? (c) when
stopping? (a) 11,996 Ib.

Ans. { (b) 8,500 Ib
(c) 3,839 Ib.

(7) A stream of water issues from a nozzle in a horizontal
direction and strikes the ground 25 ft. (horizontally) from a
point vertically under the nozzle. If the nozzle is 6 ft. 9 in.
above the ground, what is the velocity of the jet?

Ans. 38.6 —ft. per sec.

(8) A ball is thrown vertically upward, and 7.8 sec. elapse
before it returns to the hand; how high did it go? Ans. 247 ft.

(9) The outside diameter of the flywheel of an engine is 92 in.,
width of face is 14 in., and thickness of rim is 54 in. Taking the
weight of a cubic inch of the metal as .28 lb., what is the centri-
fugal force tending to separate one half from the other when the
flywheel is making 250 r.p.m.? Ans. 71.625b.

(10) The dryers on a paper machine are 6 feet in diameter, if
the machine is running 900 ft. per. min how fast are the dryers
turning in revolutions per minute? Ans. 47.75 r.p.m.

(11) A beater roll, 60 in. in diameter, makes 106 r.p.m. what
is (@) the angular velocity? (b) the linear velocity of a point on the
circumference in feet per minute. Ans 11.1 radians per sec.

* | 1665 ft. per min.

(12) A shell weighing 880 Ib. is fired from a gun with a velocity
of 2150 ft. per sec.; what is its momentum? Ans. 58,837 Ib.-sec.

(13) An automobile weighing 3300 1b. is traveling at the rate of
2 mi. per min.; (a) what steady force will bring it to rest in 10 sec.?
(b) how far will it travel in being brought to rest?

Ans { (a) 1806 Ib.
1 ® ssoft.

(14) Referring to Fig. 86 and taking the coefficient of friction
between the weight and the table as .25, what is (a) the tension
in the cord when P = 112 lb. and W = 86 1b.? (b) what is the
acceleration of P? Neglect all other hurtful resistances.

Ans (a) 60.8 1b.
" (b) 2.354 ft. per sec!
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(15) A ball weighing 28 lb. revolves in a horizontal plane
against a ring, making 150 r.p.m., as in a certain type of pul-
verizers; what is the centrifugal force, if the distance between
the axis of revolution and the center of the ball is 45 in.?

Ans. 805.6 1b.






MECHANICS AND
HYDRAULICS

(PART 4)

DYNAMICS

WORK, ENERGY, AND POWER

162, Relation between Work and Kinetic Energy.—In Physics,
it was stated that emergy is the ability to do work and that
kinetic energy is energy of motion; it was also stated that energy
and work are equivalent and both are measured in the same
units.

The work done in raising a body whose weight is w through a
vertical height h is wh; the same work will be done if the body
falls through the height A, and if the body falls freely, the kinetic
energy after falling through the height A will be exactly equal to
the work that must be done to raise the body through the height
h. Let E, = the kmetlc energy; then Eg = wh By formula

(8), Art. 142, h = 2—, hence, Ex = w X %—% = }mo?, since
;3 = m. Therefore, the kinetic energy of a moving body may
be written
W’
e 2 —
Eg W 29

If v is expressed in feet per second, ¢ must be expressed in feet
per second per second; that is, the velocity element (say feet per
second) in‘g must be the same as that used to express v. The
weight w may be in pounds, grams, kilograms, or tons; in the
latter case, the unit of energy (and work) is the foot-ton, when
the unit of length is taken as the foot. The above formula will
give the kinetic energy of any moving body when its weight and
velocity are known. Thus, if a shell fired from a gun weighs
960 1b. and has a velocity on leaving the muzzle of the gun of

171
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2150 ft. per sec. (called the muzzle velocity), the energy of the

. 960 X 2150? 69,000,000
shell is E = 2% 32.16 - 69,000,000 ft.-lb. = 2000
= 34,500 ft.-tons; this is exactly equal to the amount of
work that would be required to stop the shell. If this work were
all to be turned into heat, it would be equivalent to 69,0?%0@
= 88,700 B.t.u. If the specific heat of the material composing
the shell be taken as .117, the number of B.t.u. required to
heat the shell 1degree is 960 X .117 = 112.3 B.t.u. Conse-
quently, if all the energy were expended in heating the shell, its

temperature would be raised 8181;%0 = 790° F.

Observe that if a moving body have a velecity v and lts
direction be vertically upwards, it will rise to a height h = 2_9

in falling, it can do work to the amount wh. Therefore, the
kinetic energy E; is equal to the work wh that the body can do.

163. Units of Work.—When using the English system of
measures, the unit of work is always taken as the foot-pound; it
is the work done when a force of one pound acts continuously
through a distance of one foot, and is equivalent to raising a
weight of one pound through a height of one foot. When the
C.G.S. system is used, the unit of work is called the erg, which is
the work done when a force of one dyne acts continuously through
a distance of one centimeter; in other words, 1 erg = 1 dyne-
centimeter.

The dyne is defined as the force that will give a mass of 1 gram
a velocity of 1 cm. per sec. in 1 second; that is, it will give a
mass of 1 gram an acceleration of 1 cm. per sec®. The relation
between the dyne and the pound is easily found: thus, to calcu-
late very accurately, 1 kilogram = 2.204622341 1b.; hence, 1
gram = .002204622341 lb. 1 meter = 3.28084275 ft.; hence,
1 cm. = .0328084275 ft. g = 980.665 cm. per sec®. Then,
since by formula (1), Art. 161, f = ma, and as f in this case is

» and a = 1 cm. per sec.?

1 dyne, m is 1 gram

.002204622341
1 dyne = 980.665 X .0328084275 X 0328084275

.002204622341
= 080.665 = .000002248089 1b.
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.002204622341
T 080.665 X 0328084275

= .00000007375627 ft.-lb. The erg is too small a unit for
practical work; hence, what is called the joule is used in place
of it, 1 joule being 10,000,000 = 107 ergs. Therefore,

1 joule = .7375627 ft.-lb.
since .00000007375627 X 107 = .7375627.
From the foregoing,

1 ft.-Ib. =

The erg = 1 dyne X 1 em. =

7375627 — 1359817 joules

The dyne, erg, and joule belong to what is called the C.G.S.
system of units, which is used universally by scientists and in
electrical engineering. The expression C.G.S. is an abbreviation
for centimeter-gram-second. In practical calculations, the joule
may be taken as .73756 ft.-lb. and one foot-pound may be
taken as 1.3558 joules.

164. In the metric system, the unit of work is the meter-
kilogram, which corresponds to the foot-pound in the English
system; it is the work required to raise 1 kilogram through a
height of 1 meter, and it is equal to 1 kilogram X 1 meter =
2.204622341 X 3.28084275 = 7.2330192 ft.-lb. (approximately
7.233 ft.-]lb.). The relation between the meter-kilogram
(m.-Kg.) and the erg is easily found. From the definition of

1 1
the dyne, 1 dyne = %g——.r%-g; hence, 1 erg = 983% X 1 em.

-1 gr;lsn;).)ésécm., from which, 1 gram X 1 cm. = 980.665 dynes.
Multiplying both sides of this equation by 1000,

1000 grams X 1 cm. = 1 kilogram X 1 cm. = 980665 ergs.
Multiplying both sides of the last equation by 100,

1 kilogram X 100 cm. = 1 kilogram X 1 m. = 98,066,500 ergs.
But, 1 kilogram X 1 meter = 1 meter-kilogram; hence,

1 meter-kilogram = 98,066,500 ergs = 9.80665 joules.
Now, since 1 joule = .7375627 ft.-lb.,, 1 m.-Kg. = 9.80665
X 7375627 = 7.2330192 ft.-lb., the same value that was
previously found.

1t is also evident from the above that

1 gram = 980.665 dynes,
1 kilogram = 980,665 dynes,

1
1 ft.-lb. = 72330192 = .13825485 m.-Kg.
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165. Power.—Suppose a certain machine can raise a load of
500 Ib. 6 ft. in 3 sec., and that it takes another machine 15 sec.
to accomplish the same thing. The useful work done is 500
X 6 = 3000 ft.-lb. in both cases; both machines have performed
the same work, but the first machine has done it in one-fifth
the time that it took the second machine. The first machine is
therefore more powerful than the second; it can do five times the
work in the same time, and is said to have five times the power
of the second machine.

Power is the rate of doing work; it is equal to the work done in
a certain time divided by the time. Thus, let f = the force
acting or the resistance overcome, 8 = the space through which
the force acts or through which the resistance was overcome, and
t = the time; then,

Power = fs = M

t time
Referring to the last paragraph, the power of the first machine is
500 X6 _ 1000 ft.-lb. per sec., and the power of the second

3
machine is 02 = 200 ft.b. per sec.

When using the English system of units, the unit of power is
generally taken as 1 foot-pound per second or 1 foot-pound per
minute, the work being measured in foot-pounds and the time
being taken in seconds or minutes. For example, suppose a man
can exert an average force of 30 Ib. on the handle of a windlass
for 55 sec.; if the radius of the handle is 16 in., and he makes
20 complete turns of the handle during the time stated, how
many units of power does he expend? Here, the force acts

through a distance of 2 X 16 X 3.1416 X 20 + 12 = 167.55 ft.
30 X 167.55

Hence, the power expended is — 5 = 91.39 ft.-1b. per
sec. = 91.39 X 60 = 5483 ft.-lb. per min. That is, he works
at the rate of 91.39 ft.-lb. of work per sec. or at the rate of
5483 ft.-lb. of work per min.

ExaMPLE.—A man lifts a barrel of flour weighing 204 1b. 15 in. in § sec.;

what power does he exert?

204 X 15

SoLutioN.—Power = = 510 ft.-lb. per sec. Ans.

166. Horsepower.—The unit of power as above defined is too
small for measuring the power of large machines and mechanism;
that is, the resulting numbers would be too large for convenient
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use. For this reason, the practical unit for power measurement
is the horsepower, which is defined as 33,000 ft.-lb. of work per-
formed in 1 min. Letting H = the hoirsepower, f = the force
in pounds, s = the distance (space) in feet through which the
force acts, and ¢ = the time in minutes,

_ Je
H= 330000 @

If l be measured in seconds, let ¢, be the time in seconds; then

t = 6_0’ substituting this value of ¢ in formula (1),

_60fs _ fs_
33000t, 550, 2
Therefore, a horsepower may be defined as 550 ft.-lb. of work
performed in 1 second. A horsepower may also be defined as
33000 X 60 = 1,980,000 ft.-Ib. of work performed in one hour.
It is to be noted that power and horsepower are rates of doing
work; they do not mean that the time spent in doing the work is
1 sec., 1 min., or 1 hr., but that the work is proportional to the
work that would be done in those times. In the example of the

last article, the time was .5 sec., which is equal to -5

H=

60 X 60
= % br. = 65(’) I;O = } sec.; therefore, the horsepower
o q - 204 X15 204 X15

e man 8 H = syea s X 12 ~ 550 X 5 X 12

= 198000?)0;):1‘15—5; X1z = 927 + = .%% horsepower. No
man could exert so great a power for any length of time, but he
may be able to do so for a very short time. If the work were
performed by a machine, the horsepower of the machine, neglect-
ing all hurtful resistances, would be .9v% = §} horsepower; and if
the machine were to operate continuously for 1 hour at this
rate, it would perform 19800000 X .9y% = 1,836,000 ft.-lb. of
work.

167. In the C.G.S. system, the unit of power is 1 joule per
second, which is called a watt. Letting p = power, in watts, w
= work or energy, in joules, and ¢ = time, in seconds,

p=% (1)
and w = p 2
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The relation between the watt and the horsepower is easily
found. By definition, 1 watt = 1 joule per second; 1 horsepower
= 550 ft.-lb. per sec.; hence, since 1 ft.-lb. was found to equal
1.355817 joules, 550 ft.-lb. = 550 X 1.355817 = 745.69935 joules,
and 1 horsepower = 745.7 joules per second = 745.7 watts. In
practical engineering calculations, it is customary to consider
1 horsepower as equal to 746 watts. Since the watt is rather
small for a practical unit, it is customary to express the power of

large machines in terms of the kilowatt, which is 1000 watts. If
1000

the horsepower be taken as 746 watts, 1 kilowatt = 746
=1.340483 horsepower, and is commonly taken as 1.34 horsepower
or, roughly, as 1} horsepower, which is close enough for most
practical purposes. The true value, however, is 1 kilowatt

= 745.69935 — 1.341023 horsepower. Since it is a difficult

matter to measure the output of a machine with any great de-
gree of exactness, 1 kilowatt may usually be taken as equal to 1}
horsepower and 1 horsepower as § kilowatt. If greater exactness
be required,

1 kilowatt = 1.341 horsepower, and

1 horsepower = .7457 kilowatt

168. In the metric system, 1 horsepower is considered to be
75 meterkilograms per second. Since 1 m.-kg. = 7.2330192 ft.-
Ib.,

" 1 metric horsepower = 75 X 7.2330192 = 542.47644 ft.-lb. per

sec.

Therefore, the metric horsepower is only 54—2;%& = .9863208,

say 98.632% of the English horsepower. Also, 1 English horse-
550

POWEr = 54247644

horsepower = .74569935 X .9863208 = .7354988, say .7355

. . 1
kilowatt, and 1 kilowatt = 7354088 = 1.359622, say ?.3596

= 1.013869 metric horsepower, 1 metric

metric horsepower.
ExampLE.—If the output of a certain dynamo is 436 kilowatts, (a) how
many horsepower is this equivalent to? (b) how many metric horsepower?
SoruTioN.—(a) The number of horsepower would usually be estimated
as 436 X § = 581 horsepower. More accurately, it would be 436 X 1.34
=584 H.P. Very accurately, it would be 436 X 1.341 = 584.68 H.P. Anas.
(b) The metric horsepower is 436 X 1.3596 = 592.79 m. H.P. Anas.
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169. Graphical Representation of Work.—If a constant force
f act through a distance s, the work done is represented by the
product of the two factors fand s,orw = f X 8. If the length of
a rectangle be represented by s and the breadth by f, the area is
the product of these two factors, A= f X s. Consequently, if
the length of a rectangle be made equal to the distance through
which a steady force acts, to some convenient scale, and the
breadth (height) of the rectangle be made equal to the force, to
some convenient scale, as indicated in Fig. 89 (a), the area of
the rectangle will be force X distance, and this product will
represent the work done to some scale, which will be equal to

Work-fs- Area

o Distance-s
(a)

the product of the scale of force and the scale of distance. For
example, suppose a force of 68 lb. to act through a distance of
136 ft. If the scale of distances be 40 ft. = 1 in. and the scale

of forces be 30 Ib. = 1 in., OA in Fig. 89 (a) = % = 2¢% in., OC
= % = 3.4 in., and the area = 4 = 215 X 34 = 7.7¢;. The
product of the scales is 30 1b. X 40 ft. = 1200 ft.-lb.; hence,
1 sq. in. on the diagram represents 1200 ft.-b. of work. There-
fore, the work done is 7.7¢ X 1200 = 9248 ft.-lb. But, the
work done is also equal to 68 X 136 = 9248 ft.-lb., the same re-
sult as before. Evidently, the product of the scales is another
scale that shows what a square inch of area represents: thus, in the
case just mentioned, the product of the scales is 1200 ft.-lb., and
1 sq. in. = 1200 ft.-Ib.

170. If the force is not constant, the work done can still be
represented by an area. For instance, referring to Fig. 89 (b),

let OX and OY be the coordinate axes at right angles to each
12
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other. Let OC, measured on OX, represent the distance through
which the force acts; at various points a, b, ¢, etc. between O and
C (the more the better), erect ordinates aa’, bb’, cc/, etc. and
make their lengths equal the forces acting at a, b, ¢, etec.
Through these points, draw the irregular line A DEFB; then, the
area OADEFBC represents the work done while the variable
force acts through the distance OC. For, finding the area by
Simpson’s or the trapezoidal rule, and dividing it by the length
OC (actual area and actual length), the quotient will be the mean
ordinate OA’ = CB’; drawing A’B’ parallel to OX, OA’B’C is a
rectangle, and its area is necessarily equal to the area of the
figure OADEFBC = QA’ X OC = fu X 8, in which fa = the
mean ordinate OA’, which, in turn, is the average force exerted
throughout the distance OC; in other words, the work done is
equivalent to the work done by a constant force OA’ acting
through the distance OC. It is to be noted that the area of
DEF = area A’DA + B'FB; that is, the line A’B’ cuts off as
much area above the line and under the curve ADEFB as is
included between the line and the curve below it.

171. A case of steady pressure, practically speaking, is the
discharge of a steam pump; here a column of water whose
length is equal to the total height of lift is raised a distance equal
to the stroke at every stroke of the piston or plunger. A case of
varying pressure is the cylinder of a steam engine; the steam fol-
lows the piston at full pressure for a part of the stroke; it is then
cut off and expands, the pressure rapidly falling, until the ex-
haust port opens; the pressure then drops very nearly to the
pressure of the atmosphere, and remains at that pressure on the
return stroke until the exhaust port closes, when the steam is
compressed, the pressure rapidly rising, until the end of the re-
turn stroke is reached. By means of an instrument called an
indicator, a line is drawn on a sheet of paper that indicates the
pressure on the piston at every part of the stroke; the outline
80 drawn is called an indicator diagram.

An indicator diagram is shown in Fig. 90. Before any steam
is allowed to enter the indicator from the cylinder, the line AB
is drawn; this is called the atmospheric line, and it indicates the
pressure of the atmosphere. The diagram begins at C, where
the full steam pressure is on the piston urging it ahead; this con-
tinues until the point D is reached, when the steam is cut off.

/_ﬂe steam expands from D to E, where the exhaust port opens.
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F is the end of the stroke. On the return stroke, the pencil traces
the line FGHC, the exhaust port closing at H and the steam
is compressed during that part of the stroke included between
H and AC. While not strictly correct, the pressures indicated
by the line FGHC may be considered as being on the opposite
side of the piston during the forward stroke of the piston, and
as opposing the pressures indicated by the line CDEF. Hence,
the working pressures will be difference between these, and they
will be represented by lines drawn perpendicular to AB and in-

r

]

B

Fia. 90.

cluded between CDEF and FGHC. The area CDEFGHC di-
vided by the length AB gives what is called the mean effective
pressure; it is the average pressure (specific pressure) transmitted
to the crosshead. Suppose the indicator spring is such that 1
inch measured on an ordinate of the diagram represents 60 1b
per 8q. in., then, if AC is 1.97 in. long, it represents 1.97 X 60
= 118.2 Ib. per &q. in. Divide the diagram into 10 equal parts,
as shown, and find the area by Simpson’s or the trapezoidal rule
(the latter will usually be accurate enough for this purpose);
suppose the area so found is 4.42 sq. in. The line AB (length
of diagram) can generally be made to have any convenient
length; suppose that in this case, the length is 4 in. Then the
mean effective pressure is 4.42 + 4 X 60 = 66.3 lb. per sq. in.
If AM be laid off equal to 4.42 + 4 = 1.105 in. and MN be
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drawn parallel to AB, the rectangle AMNB will have the same
area as the diagram.

The pressures above AB are gauge pressures. To represent
absolute pressures, take a reading of the barometer to find what
the atmospheric pressure is; otherwise, call it 14.7, say 15, pounds
per sq. in., and lay off AA’ = }§ = 1 in. Draw A’B’ parallel
to AB; then any ordinate measured from A’B’ to the curve will
give the absolute pressure at that point. For instance, if the
point p on AB is 1.6 in. from A and the stroke of the piston is
28 in., p represents the position of the piston when it has completed

28 X 1—49 = 11.2 in. of its stroke. Draw the ordinate ab, and if

ab measures 1.64 in. and ac measures .33 in., the pressure urging
the piston ahead of this point is 1.64 X 60 = 98.4 lb. per sq. in.,
absolute, the pressure on the other side of the piston opposing
this motion is .33 X 60 = 19.8 lb. per sq. in., absolute, and the
difference = 98.4 — 19.8 = 78.6 Ib. per sq. in. is the effective
pressure urging the piston ahead and acting on the crosshead.
The length of ¢b is 1.64 — .33 = 1.31 in., and 1.31 X 60 = 78.6
Ib. per sq. in., as before.

Suppose the diameter of the piston discussed above is 22 in.
and that the engine runs at the rate of 160 r.p.m. If the engine
is double-acting, as is usually the case, it makes 2 strokes for

every revolution, or 160 X 2 = 320 strokes per minute. The
piston therefore travels BX >1<2-310 = 7464 ft. per min. The
total average pressure on the piston is .7854 X 222 X 66.3
= 25,203 lb. = the force, which in one minute acts through a
distance of 7463 ft. Consequently, the work done in 1 minute is
25203 X 7463 = 18,818,240 ft.-lb. The horsepower of the
.. 18818240

engine is, therefore, 33000 — 570.25 H.P.

Let H = the horsepower, P = the mean effective pressure
in pounds per square inch (determined from the indicator
diagram), L = length of stroke in feet, A = area of piston in
square inches, and N = number of strokes per minute; then

PLAN
33000

That this formula is correct is readily seen from the preceding
calculation. Thus, P X A is the force, L X N is the distance,
and PXAXLXN=PXLXA XN=PLAN = work done

H =
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in one minute, and this divided by 33000 is the horsepower.
This formula is very easy to remember, as the letters form the
word plan.

172. The above formula for horsepower may be given a form
that will adapt it to any machine that is operated by a fluid or
which discharges a fluid. Let P = pressure in pounds per
square foot, p = pressure in pounds per square inch, A = area
in square feet, and a = area in square inches; then the above
formula would be written

_ pLaN
H = 33000
But, A = %, from which, a = 1444 ; substituting this value
of a in the formula,
4 - M4pLAN
~ 33000

Now L X A = the volume of the cylinder in cubic feet = volume
displaced by the piston in one stroke, and L X AX N = vol-
ume in cubic feet displaced by the piston in N strokes = volume
displaced in 1 minute; representing this volume by V and sub-
stituting in the last equation,

g = 44V _ PV
~ 33000 33000
since b = P, the pressure in pounds per square foot.

144

This last formula may be applied to any machine operated
by a fluid (liquid or gas) or which discharges a fluid, p being the
average pressure of the fluid in pounds per square inch, p the
pressure in pounds per square foot, and V the volume displaced
or discharged in cubic feet per minute.

ExAMPLE 1.—A mine ventilating fan delivers 22,000 cu. ft. of air per
minute under a pressure of 4.25 lb. per sq. ft. If the efficiency of the fan is

78%, what horsepower is required to operate it?

SoruTiON.—Since the pressure is in pounds per square foot,
i = PV _ 425X 22000

33000 = 33000 = 2.833 H. P. = horsepower required
to move the air. Since the efficiency of the fan is 789, the power required
to operate it = 2.833 + .78 = 3.63 H. P. Ans.

In any problem involving horsepower or power measurements
of any kind, it is not advisable to use more than three or four
significant figures in the final result, on account of difficulties in
making accurate measurements.
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ExaMpLE 2.—An electrically driven pump raises water to.a total height
of 57 ft. If the efficiency of the pump is 84% and it delivers 90,000 gallons
of water per hour, what power in kilowatts is required to operate the pump?

SoLuTioN.—Taking the weight of a cubic foot of water as 62.4 1b.,
1 United States gal. weighs 2311;(2%2;4 = 8.34}1b. For practical purposes,
this is best taken as 8} = ¢ = 2% lb. = weight of 1 gal. of water (the
Imperial-British-gal. = 10 1b.); hence, 90,000 gal. wecigh 90000 X %*

= 750,000 lb., which is raised 87 ft.in 1 hour. Using formula (1), Art. 168,

_ 750000 X 57
33000 X 60

H = 21.6 horsepower.
Since the efficiency is .84, the horsepower required to operate the pump
is 21.6 + .84 = 25.7 H.P. Taking 1 horsepower as { kilowatt, the power
in kilowatts is 25.7 X § = 19.3 k.w. Ans.

The calculation might have been performed as follows: 90000 gal.

——l%ﬁ = 12,030 cu. ft. = the volume of water discharged.
A column of water 1 ft. square and 1 ft. high contains 1 cu. ft. and exerts a
pressure of 62.4 Ib.; hence, a column of water 1 ft. high exerts a pressure
of 62.4 1b. per sq. ft. Since the water is raised 57 ft., the total pressure

exerted is 62.4 X 57 lb. per sq. ft. Therefore, using the formula above

. PV 62.4 X 57 X 12030 . .
given, H = 33000 = 33000 X 60 = 21.6 H.P. This result is the

same as was previously found. Division by 60 is required in order to reduce
the volume per hour to volume perminute. Values have been calculated only
to three significant figures because the weight and volume of the water as
given and calculated is not correct to more than that number of figures.
In cases of this kind, greater accuracy in calculation is not only unnecessary
but it is also misleading.

173. Buying and Selling Power.—Power, or rather work, can
be bought and sold as though it were a commodity; in fact it may
be considered as a commodity, an article of commerce. Note,
however, that power is rate of doing work; it is a unit of compari-
son, not of quantity, and can consequently neither be bought nor
sold, though the term ‘“buying power’” frequently occurs in en-
gineering transactions. What is really bought and sold is work,
as will be readily apparent from the following considerations.

Suppose a man has a 10-horsepower engine, and instead of fur-
nishing his own ‘“power’’ to operate it, he buys it in the form of
steam delivered from a heating plant. Obviously, he cannot
buy 10 H.P., because the length of time he runs his engine will
determine the amount of steam used, and the engine will be rated
at 10 H.P. whether it runs for 1 second or 1 year. He may
arrange to pay a certain price for every hour that his engine runs,
in which case, the price will be based on what is called the horse-

|
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power-hour. Let H = the horsepower of the engine, w = the
w w

33000 X 60 X ¢  1980000¢
w

Ift =1hr., then H = 1080000 X 1 br. and 1 horsepower-hour

work done in ¢ hours; then, H =

= 1980000wx 1br. X 1hr.= m» Hence, in other words,
1 horsepower-hour = 1,980,000 ft.-lb. of work. Therefore, what
he really buys is work, not power. If his engine runs 8 hours each

working day, he will require 10 X 1980000 X 8 = 158,400,000
~ ft.-Ib. of work to operate it. Since this is an extremely incon-
venient number to use, it is customary to say that he uses 10 X8
= 80 horsepower-hours each day, and he will buy on that basis.
It should always be kept in mind that although one may speak of
buying “power,” what is actually bought is work.

174. In the case of a motor operated by electric current, the
power will be bought on the basis of the watt-hour or kilowatt-
hour (abbreviated to k.-w.h.). Since a watt is 1 joule per second,
a watt-second is 1 joule, a watt-hour is 1 X 60 X 60 = 3600
joules, and a kilowatt-hour is 1000 X 3600 = 3,600,000 joules.
But, 1 joule = .7375627 ft.-lb.; hence, 1 k.-w.h. = 3600000
X .7375627 = 2,655,226 ft.-lb. Or, since 1 kilowatt =1.341023
h.p., 1 k.-w.h. = 1.341023 X 1980000 = 2,655,226 ft.-lb.

EXAMPLES

(1) How many horsepower is equivalent to 256 kilowatts?

Ans. 343.3 H.P.
(2) A certain machine does work at the rate of 315 meter-kilograms per

sec. (a) what is its rating in metric horsepower? (b) in kilowatts?
Ans { (a) 42 m.H.P.

"1 (b) 3.089 k.w.
(3) The diameter of a steam-engine cylinder is 26 in., the stroke is 32 in.,
and the mean effective pressure is 72.6 lb. per sq. in., and the fly-wheel
makes 128 r.p.m.; what is (a) the horsepower of the engine? (b) what isthe
power in kilowatts? A { (a) 797.4 H.P.
"1 (b) 594.6 k.w.
(4) In a certain paper mill, a pump raises water 39 ft. and discharges
7500 gal. per hour, If the efficiency of the pump is 75%, what is (a) the
actual power of the pump in kilowatts? (b) If the pump is operated by
electricity, which is furnished at 3 cents per kilowatt-hour (k.w.-h.), and
runs an average of 40 hr. per week, how much does the electricity cost
per week ? A (a) 1.224k.w.
(b) $1.47.
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(5) If the pump in Example 4 were in a Canadian mill, the Imperial
gallon might be the unit of volume. Calculate the problem on that basis.
A { (a) 1.47 k.w.
*\ (a) $1.77

(6) How many British thermal units (B.t.u.) are equivalent to one horse-
power? (b) to one kilowatt-hour? Ans { (a) 2545—B.t.u.
“1(b) 3413—B.t.u.

(7) If the weight of an elevator and its load of pulp is 21 tons, and it hoists
the load 80 ft. in 12 sec., what horse power must be used, (a) neglecting all
hurtful resistances? (b) What is the horsepower if the total efficiency is
73%1 Ans (a) 663 H.P.
91.3 H.P.

HYDRAULICS

MEASURING FLOW OF WATER

175. Definition.—Hydraulics, which is also called hydrokinetics
and hydrodynamics, is that branch of hydromechanics that
deals with the flow of fluids. Although, properly speaking, any
liquid or gas is a fluid, it is customary to restrict the meaning
of the word hydraulics, applying the term only to the flow of
water; and this is the sense in which it is here used. The princi-
ples of hydraulics apply also to the paper pulp in water at low
concentrations, to solutions, and to some mixtures.

176. Due to various causes, some of which will soon be men-
tioned, it is practically impossible to calculate the flow of water
(or any fluid) with any high degree of accuracy. As a conse-
quence, it is not advisable to express calculated values of veloci-
ties, discharges, etc. to more than three significant figures, and
all numbers used in such calculations may and ought to be
restricted to not more than four significant figures.

177. Mean Velocity.—If a cross-section be taken of a flowing
stream and the velocity be measured at different points of the
section, considerable variation in velocities will be found; in
other words, at hardly any two points of the section will the
velocity be the same. The surface touched by the water when
flowing—the inside of a pipe, the sides and bottom of an open
channel, etc.—is called the rubbing surface; that part of the
flowing water that touches the rubbing surface is retarded by
friction, and this hinders the movement of the layer or layers
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next to it; the top surface moves at a different velocity from
that of the bottom surface, etc. For these reasons and others,
it is generally the practice to use the mean velocity in connection
with calculations pertaining to the flow. Let r. = the mean
velocity in feet per second, @ = the total quantity that flows
past the section in cubic feet, and let A = area of section in
square feet;
Q

then Um = (1)
and Q= Av, 2

If for any reason it is desired to express the area in square
inches, let ¢ = the area in square inches; then a = 1444,

and VU = —1%9 3)
and Q= tlliz 4)

ExampLE.—If a 6-inch pipe discharges 54.2 cu. ft. per min. what is the
mean velocity of the water?

SoLuTioN.—Applying formula (3), reducing the discharge to cubic feet
per second,

- 144 X 64.2
=~ .7854 X 6* X 60

In what follows, unless otherwise specially stated, all velocities
will be understood to be mean velocities.

178. While the discharge is usually calculated in cubic feet per
second or per minute, it is generally expressed in gallons per

second, per minute, per hour, or per day, particularly in com-

mercial transactions. Since 1 cu. ft. = !2132—18 = 7.48052 — gal.,

v = 4.6 ft. per sec. Ans.

the discharge can be converted into gallons by multiplying the
number of cubic feet by 7.48052. For most cases arising in
practice, results sufficiently exact are obtained by multiplying
the cubic feet by 7.48, and this value will be used hereafter. If
it be desired to convert gallons into cubic feet, divide the gallons

by 7.48 or multiply gallons by 13'%—18= .13368; it will be sufficiently

exact to multiply by.1337, and this value will be used in what
follows. It is also to be understood that the U. S. gallon is
referred to. The British, or Imperial, gallon is equal to 1.20114
U. S. gal.

ExampLE.—(a) How many gallons are equivalent to 3275 cu. ft.? (b)
How many cubic feet are equivalent to 63,800 gal.?
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SoruTioN.—(a) Since 1 cu. ft. = 7.48 gal., 3275 cu. ft. = 3275 X 7.48
= 24,497 gal., say 24,500 gal. Ans.

(b) Since 1 gal. = .1337 cu. ft.,. 63,800 gal. = 63800 X .1337 = 8,530
cu. ft. Ans.

EFFLUX THROUGH STANDARD ORIFICES

179. The Velocity of Efflux.—The word efflux means the proc-
ess of flowing; hence, eflux of water means the flow of water; it
does not mean the discharge in the sense of quantity, but simply
the flowing or discharging without regard to quantity. An
orifice is an opening in a vessel through which the water or other
fluid issues or flows.

Suppose the water to issue from a small orifice 4, Fig. 91,
in the bottom of a vessel, the velocity being v ft. per sec. (It is
understood that v = mean
velocity.) After a time ¢
sec., a quantity Q= Av cu. ft.
will have discharged, A being
the area of the orifice in
square feet. The weight of
the water will be w = 62.4Q
Ib. Suppose that as the
water flows out an equal
quantity flows into the vessel,
thus keeping the height of
the upper surface ab of the
water in the vessel above the level cd constant; represent this
height by hk;. For convenience, let the time be 1 second;
then in 1 sec., w 1b. of water have flowed into the vessel and w 1b.
will have flowed out of it. Evidently, any water that flows into
the vessel will flow out of it, if the action continue long enough;
that is w Ib. will fall from level ab to level cd, and the work it

could do is wh;. The kinetic energy of the water as it issues from
2

the orifice at level cd is w X ;—g, and this must equal the work;

Fia. 91.

2
hence, wh, = %, from which

v =/2gh; = 8.02/k,
In other words, the velocity is the same as though the water had
fallen freely through the height k,, which is equal to the differ-
ence of levels between the upper surface of the water and the
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point of discharge. This velocity is called the theoretical velo-
city of eflux; the height A, is called the hydrostatic head or,
simply, the head; and the velocity v is said to be the velocity due
to the head. ‘

If the orifice be in the side of a vessel, as at B, the head h; is
measuwred to the center of the orifice, and the velocity v, is

= vV Zgh,

If the water flows directly into the atmosphere in a horizontal
direction, as indicated, the path will be a parabola, and the range
may be calculated as in example 2, Art. 148. If a pipe be con-
nected to the vessel, so the water can flow in an upward (vertical)
direction, as shown at C, it will rise to the same level as the upper
surface of the water in the vessel, since the velocity of eflux is

due to the head h;, and this velocity will carry the water to a
height h,.

180. From the foregoing, it is plain that if the velocity of
eflux be known, the head that produces it, called the head

due to the velocity, can be found, since
2
h = 2?1

Likewise, if the head be known, the velocity of eflux can be
found.

ExaupLE.—What must be the head in order to produce a velocity of
efflux of 42 ft. per sec.?

SorvuTioN.—The head required to produce a velocity of 42 ft. per sec. is
v? 422
h '2—0=2—>-<—3‘2.—1—6- =2741t. Ans.

181. 1f the top surface of the water be subjected to an addi-
tional pressure of, say, p lb. per sq. in., as by fitting the vessel
with a piston and placing a weight on the piston, the resulting
velocity of efflux will be exactly the same as though the head had
been increased until the specific pressure on the section ab, Fig.91,

is equal to p. A column of water 1 in. square and 1 ft. high
weighs %‘;—t = .4}, say .433 lb., and this equals the specific

pressure, in pounds per square inch, exerted by water for each
foot of depth. Consequently, to produce a specific pressure of
plb., the depth of the water in feet must be p + .433 = 2.308p,
say 2.31p. Let A’ = the head in feet equivalent to this addi-
tional pressure; then

K = 2.31p (1)
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The total head, called the equivalent head, is h + A’, and
v=vV2h+h)=802vVh+h (2

The pressure, in pounds per square foot multiplied by ve-
locity in feet per minute gives available power in foot-pounds
per minute. To convert this in to horsepower, divide by 33000,

ExaMpLE.—Suppose water to stand in a cylinder 15 in. in diameter to a
vertical height of 36 ft. If the cylinder is fitted with a piston weighing
180 Ib. which rests on top of the water, and on which is laid a weight of
450 1b., what will be the velocity of eflux through a small orifice in the
bottom of the cylinder? )

SoLuTioN.—The total pressure on top of the water is 180 + 450 = 630 1b.;
the area of the pistonis .7854 X 152 = 176.7 8q. in.; and the specific

. 630 630
pressure is oo Ib. = p. Hence, A’ = 2.31 X 1767 = 8.24 ft., and
v = 8.024/36 + 8.24 = 54.5 ft..per sec. Anas.

182, Size of Orifice.—In connection with the preceding
formulas, it has been assumed that the orifice was small compared
with a section of the water taken at right angles to the direction
of eflux. Referring to Fig. 91, if the area a of the orifice 4 is less

than 2—‘3, in which A is the area of the bottom of the vessel, then
the formula of Art. 179 may be used; but, if a is equal to or
greater than 5%’ the following formula must be used:
2gh
= a 2
1-(3)

ExaMpLE.—A 22-inch round pipe is filled to a height of 84 ft.; what will

be the velocity of efflux through a round hole in the bottom, 9 in. in

diameter?
SoLuTioN.—Since areas of circles are proportional to the squares of the

h
diameters, the above formula may be written v = 8.()2\/l (d’)z
~\pt
=8.02 \/-_.'.‘_d_‘ - 8.02 .—84;9—‘ = 74.6 ft. per sec. Ans.
1~ (p) 1~ ()

188. If the orifice is in the side of the vessel, as the opening in
the head (flow) box admitting stock to the paper-machine wire,
the head on the center of the orifice (distance of center of orifice
below the upper surface of the water) must be greater than four
times the depth of the orifice. For example, suppose the orifice
is rectangular, and measures 24 in. by 40 in., with the short side
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vertical; then if the head on the center is equal to or greater
than 2.25 X 4 = 9in., the velocity of eflux may be calculated
by the formula of Art. 179. Otherwise, let A, be the head on the
bottom of the orifice, ks = the head on the top of the orifice, and
b = the breadth; then,
Q=10v/3(V/ VB = 1oy B (h — B = 53470V T~ VA,
In this formula, Q is the discharge in cubic feet per second when
b is measured in feet. It is to be noted that 4/a* = al, which
accounts for the two ways of writing the above formula.

ExaMpLe.—The slot in the flow box on a news print paper machine is
2 in. deep and 160 in. wide; the depth of stock in the flow box is 27 in.
above the center of the opening. The stock contains .5% by weight of
dry paper fiber. What is (a) the velocity of stock leaving the box? (b)
the weight of paper fed to the machine per hour? Neglect the effect of
friction and consistency of stock. The weight of a cubic foot of the stock
may be taken as 62.4 1b. .

SoruTioNn.—(a) The formula in Art. 179 is the one to use, and V
= 8.024/2.25 = 12.03 ft. per sec. = 721.8 ft. per min. Ans.

(b) The area of the slot is —2—)1(4—120 = %(—)sq. ft.; hence, the discharge is
20

) X 12.03 = 26.73 cu. ft. per sec.; and the weight of the paper fed to the
machine per hour is 26.73 X 62.4 X 60 X 60 X .005 = 30,023 1b., say
30,000 Ib. Ans.

NoTE—As will be seen later, these are theoretical figures and will be reduced by several
factors in practice.

184. Standard Orifice.—All the foregoing formulas give what
are termed theoretical results, called theoretical because they
assume conditions that never occur in practice, although the
results may be approximately correct. The discharge is greatly
influenced by the character of the edges of the orifice—whether
the edges are rounded or square, whether the side of the vessel is
thin or thick, etec. Consequently, in order to obtain accurate
results, it is necessary to have what is termed the standard
orifice.

An orifice is a standard orifice when the water flowing through
it touches only the inside edge of the opening. Three standard
orifices are shown in Fig. 92. At (a), the orifice is in a thin plate
through which the water flows without touching the wall of the
vessel; at (b) the wall of the vessel is thin, being less in thick-
ness than the diameter of the orifice, and the edges are square, as
indicated by the shape of the cross-section; at (c), the edges have
been beveled; so that the area of the opening at the outside of
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the wall is greater than at the inside, thus preventing the water
from touching the surface of the opening.

185. The Vena Contracta.—When water issues from a stan-
dard orifice, it first contracts and then expands, as indicated in
Fig. 92; and it does this no matter what the shape of the orifice
or what its size. If a section of the stream be taken at the point
of greatest contraction, this section is called the vena contracta
or condracted vein, a name given to it by Sir Isaac Newton.
For a circular orifice or for a square orifice, the distance of the
vena contracta from the edge of the standard orifice is about one-
half the depth of the orifice, and the vertical depth of the vena

(a) w) ()
Fia. 92.

contracta is quite closely .8 that of the orifice. Consequently,
the area of the vena is about .82 = .64 that of the orifice. This
area varies slightly for different heads and different sizes of the
orifice, a fair average value being .627, which is called the coeffi-
cient of contraction. Therefore, if the coefficient of contrac-
tion be donated by c., then letting A = the area of the orifice
and v, = the actual mean velocity,

Q = cw.d
Since the average value of c. is .627,
Q = .62 A

188. The actual velocity at the vena contracta is not quite
equal to the velocity due to the head at that point. This loss in
velocity is due to the friction of the water at the edges of the
orifice and to its viscosity, water not being a perfect fluid. The
ratio of the actual velocity to the theoretical velocity due to the
head is called the coefficient of velocity. Let », = the actual

L
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velocity, v = \/2gh = velocity due to the head, and ¢, = the
coefficient of velocity; then
="
v
from which, Vo = Cot’

Substituting this value of v, in the equation of the last article,
Q = cevd = cvA

in which ¢. = ¢, X ¢,, and is called the coefficient of effiux.
From this last equation,
Q

Ce = z;

and the coefficient of eflux (also called the coefficient of discharge)
can be found experimentally by carefully measuring the dis-
charge for a certain time, calculating the theoretical discharge for
the same time by the formula @ = Av = A+/2gh, and dividing
the first result by the second. Experiments show that ¢, varies
somewhat for different heads and sizes of orifice, principally
because of variations in c,, the coefficient of velocity, which
varies from about .97 to .99. A fair average value is .98, thus
making the average value of c., the coefficient of efflux,

Co = CcCy = 627 X .98 = .61446

Taking the average value of ¢, as .615 and letting Q, = actual
discharge and letting v = v/2gh = velocity due to the hy-
drostatic head,

Q. = .6154v

ExamprLE.—Water issues from a round standard orifice, the diameter
of which is 434 in. If the head on the center of the orifice is 23 ft. 9 in.,
what is (a) the velocity of eflux? (b) the discharge in gallons per minute?

SoLuTioN.—(a) Taking the coefficient of velocity as .98, and letting v,
represent the actual velocity of efflux,

e = ¢, \/2gh = .98 X 8.02 \/23.75 = 39.1 ft. per sec. Ana.

(b) Let Q. = the actual discharge; then

2
Q. = 61540 = 615 X W X 8.024/2375 X 60 = 1593 cu. ft.

and 159.3 X 7.48 = 1191 gal. per min. Ans.

187. Discharge through a Short Tube.—If instead of discharg-
ing through a standard orifice, the discharge is through a short
tube, as shown in Fig. 93, the quantity discharged in a unit of
time is increased. The tube is straight and of the same diameter
a8 the orifice; the edges are square, as indicated at a and b; and



192 MECHANICS AND HYDRAULICS §1

the length of the tube must be at least 24 times the diameter of
the orifice. As the water enters the tube, it contracts, in the same
manner as for a standard orifice; it then expands and fills the tube
before it emerges into the atmosphere. The result is that the
average value of the coefficient of discharge is about .815, instead
of .615, the average value for a standard
orifice. For a short tube, therefore,
Q. = .8154v = 8154 \/2gh
where h = the head on the axis of the
tube.

The value of the coefficient .815 varies
somewhat with the head, which should not
exceed about 40 or 50 feet; it is smaller
for high heads than for low heads, its value
being as low as .80 for the former and as high

Fro. 93. as .83 for the latter. For heads higher than
50 feet, use .8 for the coefficient.

188. Discharge through Conical Tubes.—If instead of a straight
tube, a conical tube be used, the discharge is further increased.

(a) ®)
Fia. 94.

If the edges are sharp, as indicated at a and b, Fig. 94 (a), the
coefficient of efflux varies with the angle aob of the cone, its great-
est value being about .95 when the angle aob = 1334°. If the
edges arc well rounded, as shown in Fig. 94 (b), the coefficient of
efflux is still further increased, and may usually be taken as 1;
that is, the discharge is Q. = Q = Av = A~/2gh, in which 4
= the area of the end of the tube from which the water issues,
and h = the head on the axis of the tube.
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189. Discharge through Nozzles.—A nozzle is a cone-shaped
piece attached to the end of a pipe or hose, the tip being usually
cylindrical, as indicated in Fig. 95. The diameter D is the same
as that of the pipe or hose, and the diameter d of the tip is much
smaller. The object of a nozzle is to increase the coefficient of the
velocity of eflux, which increases the range of the water, a very
desirable result in connection with fire hose. The theoretical
velocity of efflux may be calculated by the formula of Art. 182, in
which a = area of cross-section of tip, A = area of cross-section

F1a. 95.

of pipe, and v = the velocity of eflux. Since these cross-sections
are usually circles, the formula may be more conveniently
written as follows: let d = diameter of tip, D = diameter of

pipe or hose; then, @ = }xd* = .25xd?, A = .25xD%, and az

g‘é, (D) =n?whenn = % Substituting in the formula
of Art. 182, () = n¢, and
b = o[-200
1—nt

The coefficient of velocity varies from ¢, = .97 to ¢, = .99, a fair
average being ¢, = .98; hence,
98\/ 29" = 7.864-—" 1)
1 - 1 —nt
The coefficient of eﬂlux may also be taken as .98 = c.; hence,

x X d? TR
Qo = 98ay = 98X4XIMX802J v from which (d

being taken in inches),

Q. = .0429d2, / R )

" If, instead of the head h, the specific pressure p is given, then
(by Art. 181 h = 2.31p; substituting this value of A in formulas
(1) and (2) and reducing,

= 11.95,’1 2 ®
Q. = .0652d?, / - P — 4)

13
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ExampLE.—The diameter of a fire hose is 2} in., the diameter of the
tip of the nozzle is £ in., and the pressure at the nozsle is 61 lb. per aq.
in.; what is (a) the velocity of discharge? (b) the number of gallons dis-
charged per minute? (c) neglecting the resistance of the air, to what
height will the water rise if the nozzle is pointed vertically upward?

SoruTiON.—(a) Applying formula (3), n = 5—72% = §, and
= 11. 95¢1 a = 93.9 ft. per sec. Ans.

(b) Applying formula (4),
0. = o522

The number of gallons per minute is, therefore,
.288 X 7.48 X 60 = 129 gal. per min. Ans.

(c) The height to which the water will rise is

ho=ta_ 939

29  2x3216
190.—The Venturi Meter.—This is a device for measuring the
flow of water at some point in a pipe line; it is very simple, but
_ accurate, and consists essentially of two conical surfaces (frus-
tums) joined at their small ends, as indicated in Fig. 96, where

= .288 cu. ft. per sec.

= 137 ft. Ans.

Fra. 96.

AB and BC are the two conical frustums. The angle which AB
makes with the axis may be from 12° to 15°, while the angle that
BC makes with the axis should be only about one-fourth as great,
say from 3° to 33°; this makes the angles included between 4B
and A’B’ and between BC and B’C’ 24° to 30° and 6° to 7§°,
respectively. The throat BB’ is rounded to reduce friction.
The meter is inserted in the pipe line PP’, the large ends having
the same inside diameter as the pipe, denoted by D. The
diameter at the small end, called the throat, is denoted by d.
Small pipes are inserted at 4 and B, which have gauges H and
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h at their free ends, to measure the pressures at A and B. The
water flows in the direction indicated by the arrows.

It is evident that the same amount of water flows through P’
that flows through P; denoting this by @ and letting A and a be
the areas of the sections at A and B, respectively, Q = AV
= av, where V = the velocity at A and v = the velocity at B.

Co ly, V=So=L0-—nw="2 wh -2 and
nsequently, =gV = p¥ = nv = Where n =7 an
r=—l=2. Also,v=z,=r’V.

n d n

The velocity and discharge may be calculated by formulas
(1)—(4) of the last article, v, being the velocity v in the throat
BB’, h being the difference in the heads at A and B when the
water is flowing, p being the difference in pressures indicated
by the gauges, and d being the diameter at the throat. It is
more convenient, however, to use the velocity V and diameter D
of the pipe P. Letting H = head at A, h = head at B, P
= pressure at A, p = pressure at B, then, referring to formula
(1) of the last article, h = H—h, p=P —p, d =D, v,

= :—,, and n = —; Substituting these values in formulas (1) to
(4), and reducxng/,

_ H—-h _ P—»p
V =786 1 11.95 - — (1)

= 2 H—h = 2 J - P

Q= oa20D7 [ =1 = 052D [T =2 (3)
ExAMpPLE.—A venturi meter connects to a pipe 6 in. in diameter; the

diameter of the meter at the throat is 3 in.; the pressure at the entrance

to the meter is 73.6 Ib. per sq. in., and at the throat 63.1 lb. per sq. in.

(a) With what velocity does the water enter the meter? (b) How many

gallons of water pass through the meter per minute?

SoLuTion.—(a) Applying formula (1), r -g =2 ré =24 =16 and

- 11. 95\[73&’_“3 -1 _ 10 ft. per sec. Ans.

(b) The discharge in cubic feet per second is given by formula (2).

Q = .0652 X 6 %‘_ﬁf_“ = 1.96 cu. ft. per sec.

The number of gallons passing through the meter per minute is
1.96 X 7.48 X 60 = 880 gal. per min. Ans.

Since the velocity was calculated first, the discharge might also
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have been calculated as follows: Q@ = AV = Ix 144 X 10

= 1.96 cu. ft. per sec.

In the foregoing formulas, it has been assumed, as is generally
the case, that the diameter of the meter at A is equal to the
diameter of the pipe at that point. In any case, D in the formula
is the diameter of the pipe and V is the velocity of the water as
it enters the meter.

FLOW OF WATER IN PIPES

191. Loss of Head.—When water flows through a pipe under
the influence of gravity only, the head that induces the flow is the
hydrostatic head measured by the difference of level between
the upper surface of the water at the entrance to the pipe and the
horizontal plane passed through the middle point of the section
where the water is discharged. Thus, suppose that a pipe is
connected to the bottom of a reservoir, and the depth of the
water at the entrance to the pipe is 18 ft.; if the vertical distance
between the point where the water enters the pipe and the point
at which the water is discharged is 45 ft., the hydrostatic head
is 45 + 18 = 63 ft., and this is the head that induces the flow,
provided the water is discharged freely into the atmosphere.
Suppose, however, that the water discharges into another tank
or reservoir, and that the depth of the water in the second reser-
voir above the point of discharge is 12 ft.; this acts as a head that
tends to prevent the water from entering the second reservoir—
it tends to make the water move in the opposite direction in the
pipe. Consequently, the effective hydrostatic head is 63 — 12 =
51 ft., and this is the head inducing the flow from the first
reservoir to the second. It is easy to see that the effective
hydrostatic head is the difference of level between the upper
surface of the water at entrance and the upper surface of the
water at discharge, and the length or shape (straight or curved)
of the pipe has nothing to do with the effective hydrostatic head,
which will here be called, simply, the hydrostatic head. This
consideration is of special importance where water wheels are so
situated that high water in the tailrace or river may seriously
affect the effective head on the wheels.

The velocity with which water discharges from a pipe is not the
velocity due to the hydrostatic head. As the water flows through
the pipe, it meets with certain resistances, principally friction, the

=
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effect of which is exactly the same as that of a head opposing
the flow. Denoting the hydrostatic head by k, and the head
that is equivalent to the resistances by h,, the effective head h
that causes the flow is

h = ha - hr

If A, is equivalent to all the resistances, then the velocity of

efAlux will be
v=\2gh

The head h, is called the loss of head, and it is made up of a
number of elements, some of which are:

(1) There is a loss of head when the water enters the pipe,
unless the end of the pipe is flush with the side of the reservoir
and is well rounded, which is not usually the case.

(2) As the water flows through the pipe, it rubs against the
sides of the pipe and there is a loss of head due to friction. Ex-
cept in the case of very short pipes, this is the principal loss of
head.

(3) If the pipe is suddenly enlarged or suddenly contracted, as
when water flows from a small pipe into a larger one or from a
large pipe into a smaller one, there is a loss of head due to this.

(4) Bends, particularly sharp bends and those having a short
radius, also produce a loss of head.

(5) Any obstruction of any nature whatever, such as rivets,
flanges, valve openings, or foreign substances lodged inside the
pipe, reduce the cross-sectional area and also the flow, and act
as a loss of head.

If pipes are smooth (inside), have no projecting edges, all
enlargements or contractions are made gradual, bends are well
rounded and to a large radius, then the loss of head due to fric-
tion is so great in comparison with the others that they may be
neglected in calculating the discharge.

192. Actual Velocity of Discharge.—There are so many
factors entering into and affecting the flow of water that it is
practically impossible to calculate the discharge of a pipe with
any great degree of accuracy. As the result of a large number of
experiments, carefully conducted by many different observers
and under various conditions, it has been found that the friction
loss varies directly as the length of the pipe, inversely as the
diameter, and nearly as the square of the velocity, and that it is
independent of the pressure. Many different formulas have
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been suggested for the velocity, the following being as satis-
factory as any for accuracy:

_ hd "5.36hd
v= 2‘315\}ﬂ ¥ g+ W

v = mean velocity of efflux in feet per second;

h = hydrostatic head in feet;

1 = total length of pipe in feet from the point of en-
trance to the point of discharge;

d = diameter of pipe in inches;

f = coefficient of friction. For paper stock or pulp, this
factor varies with many conditions, principally with
the consistency of the stock.

Here

It is assumed that the pipe is a straight cylindrical pipe of
uniform cross-section (diameter) throughout its length; or, if
the diameter varies, the change from one size to another is
gradual, as in the case of the venturi meter. It is also assumed
that the pipe is smooth, is either new or has been in use for but
a short time, and is made of cast iron, steel, or wrought iron.
According to Weisbach, the coefficient of friction f may be ex-
pressed by the formula

f= 01439 + 017155

Vo (2

193. Formula (1) of the last article may be used when the
length of the pipe exceeds about 60 times its diameter. The
term .1d allows for the loss of head due to entrance; and if
the entrance is well rounded and the end of the pipe does not
project into the water, this term may be neglected; it may also be
neglected if the pipe is longer than 1000 times its diameter. In
either case, the formula becomes

v =2 315\/ =\ Fﬁ“"d )

A pipe whose length is less than 3 txmes its diameter is called a
short tube, and its discharge may be calculated by the formula
of Art. 187. If the length is greater than 3 times but less than
60 times its diameter, the pipe is called a long tube or a very
short pipe; the velocity of the efflux is then given by the formula

= (.832 — d)\/2gh-— (6.67 — 032" IVE @
If the pipe is longer than 60 times its diameter but less than 1000
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times its diameter, it is called a short pipe, and the velocity of
efflux should be calculated by formula (1) of Art.192. A pipe
longer than 1000 times its diameter is called a long pipe, and
the velocity of eflux may be calculated by formula (1) above.

ExaupLE.—What is (a) the velocity of eflux from an 8-inch pipe, 24 ft.
long, under a head of 5 ft.? (b) the discharge in gallons per minute?

SoLuTION.—(a) Since 8in. = } ft"':_i = 24 + § = 36; hence, the length
of the pipe is 36 times its diameter and formula (2) must be used.

v = (6.67 — .032 X 36)\/5 = 12.34 ft. per sec. Ans.
() The discharge in cubic feet per second is Q = av = 7854d%

144
.005454d%; in gallons per second, nmnf:f”xus .0408d%; in

gallons per minute, it is .0408d% X 60 = 2.448d% = 2.448 X 8! X 12.34
= 1933 gal. per minute. Ans.

When the diameter of the pipe is taken in inches and » in feet
per second,

Q= .005454d% = ﬁdg cu. ft. per sec.  (3)
Q = .04084%v gal. per sec. (4)
Q = 2.448d% gal. per min. )

Knowing the velocity, it can be substituted in one of these
three formulas to find the discharge.

194. To calculate accurately the velocity of eflux from a long
or a short pipe by either of the two formulas just given requires
that the coefficient of friction f be known; but before f can be
determined, it is necessary to know the velocity (the very quan-
tity it is desired to find) to substitute in formula (2) of Art. 192.
This difficulty is overcome by assuming a value for f, say .024,
and calculate v; then calculate f or take it from the table below.
If this value of f is greater or less than the assumed value, re-
calculate v, using the new value of f.

COEFFICIENTS OF FRICTION FOR v IN FEET PER SECOND

v= 0.1 0.2 | 03|04 |05)| 06 07 08]09
J = .0686 ' .0527 | .0457 | .0415 | .0387 .0365| .0349 ..0336 .0325
v= 1.0 1.4 16| 18 2 3 4 V35

f = .0315

9 10 | 11| 12 | M 16

1.2 |
0300 | .0289 | .0280  .0272 | .0265 | .0243 | .0230 .OX21
7| 8 >
J=.0214 | 0209 .0205 | .0201 | .0198 | .0196 .0193l 019 0187
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ExaMpLE.—What is the velocity of efflux from a 4-inch pipe that is 740 t.
long, under a head of 58 ft.?

SoLurioN.—Here 4 in. = 1% ft., and 740 + v = 74.;‘fmisevidently

greater than 1000; hence, use the velocity formula for long pipes. Taking
/= .024,
- (8 X4
v 2.315J.024 X740 8.37 ft. per sec.
Referring to the table, the value of f for v = 8 is .0205 and for v = 9,

.0201. 8ince v will be greater the smaller f is, and since there is considerable
difference between .0240 and .0205 or .0201, try .02 for f. Then,

58 X 4 ;
o= . f. . .
v 2315\/0 740 = 9.17 ft. per second. Ans

For this value of v, f is equal almost exactly to .0200.

Had formula (1) of Art. 192 been used, the value for » would
have been

_ 58 X 4 _
v = 2.315\/.02 <740 + 1 X 4 8.73 ft. per sec.

To find the value of f for this value of v by using the table,
proceed as follows: let ¥ = the next smaller value in the table
and v’ = the next larger value; let f = the value corresponding
to v, and f”’ = the value corresponding to v”; then, letting » =
the given (or calculated) value and f = the required value,

F=r+yr=r t’i,‘_",
In the present case, v = 8.73, v’ = 8, v"’ ,f=0205 and
8.

f = .0201; hence, f = .0205 + (.0201 — 0205) 78— =.0205

— .0004 X .73 = .0202. Substituting this value of f,

58 X 4

' 2315\/0202 X740 + 1X 4
This last value of v is as close as can be obtained by the formuls;
and it will be noted that it differs quite a little from the value
9.17 — 8.67
9.17

= .055 — = 549, smaller. This may seem considerable, but the
values obtained by the different formulas recommended by the
various authorities will vary as much or more. It is safer to
use the smaller value, however, and it is therefore suggested
and recommended that formula (1) of Art. 192 be used for all
pipes the length of which is less than 5000 times the diameter.
In any case, regardless of what formula is used or by what

= 8.67 ft. per sec.

first obtained, which was 9.17 ft. per sec., being
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authority recommended, it is useless to express final results to
more than 2 significant figures, except, perhaps, when the first
figure is 1, in which case, 3 significant figures may be used, though
the last figure will probably not be accurate.

196. Interpolation.—The method given above for finding a
value intermediate between those given in a table is called the
method of interpolation or, simply, interpolation, and the formula
may be used in connection with almost any table arranged for
practical use. To illustrate the method more fully, consider
the portion of a table in the margin, which gives the total heat
of steam corresponding to a given number of inches of vacuum.

The first (left-hand) column gives the
Vacuum Total Heat vacuum in inches of mercury, and is
(Inches)  (B.t.u.) called the column of arguments; the
second column gives the total heats

fg i:gi in B.t.u., corresponding to the given
16 1136.1 Vvacuums and is called the column of
14 1138.6 functions. If the table in the last article
12 1140.7 were arranged in this same order, the
10 1142.3  yelocities would be the arguments and

the values of f would be the functions.
Suppose, now, that it were desired to find the total heat corre-
sponding to a vacuum of 15.2 in. Here the given argument
15.2 lies between 14 and 16 in the table. In all cases of this kind,
let ' =the argument next above and z”” = the argument next
below the given argument, the given argument being supposed
to be written in its proper place in the table; let ' = the func-
tion corresponding to the argument z’ and u” = the function
corresponding to the argument z’/; also, let z = the given argu-
ment and u = the required function, which corresponds to the
argument z. Then

u—w:iu —w=z-2:2"-2

From this proportion, » can be found if z is given or z can be
found if u is given; thus, solving for u,

T — /
u=u 4+ W — u) a—:,—,__zz, (1)
and solving for z,
o
=2+ @ ~2) @)

To find the value of u (the total heat) for a vacuum of 15.2 in.
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by means of the above table, z = 15.2, ' = 16, 2/’ = 14, v’
= 1136.1, u"’ = 1138.6, and u is found to be, by formula (1),

15.2 — 16

If it were desired to find the vacuum corresponding to a total

heat of 1135 B.t.u. = u, u falls between 1133.4 = u’ and 1136.1

= u'’; the corresponding values of the arguments are z’ = 18
and z'/ = 16. Substituting in formula (2),

1135 — 1133.4
1136.1 — 1133.4

When finding values of u (the function), it is useless to express
them to a greater number of significant figures than are given to
the functions in the table.

196. Quantity Discharged.—Having calculated or measured the
velocity of efflux, the discharge is found by the formula Q = Av.
In the case of pipes, the discharge is generally expressed in gallons
per minute, and may be calculated by formula (5) of Art. 193
when v is known. Substituting in this formula the value of v in
formula (1) of Art. 192,

Q = 5.667d*

= 1137.1 B.t.u.

z = 18 + (16 — 18) = 16.8 in. of vacuum.

" hd
i+ .1d

By this formula, the discharge in gallons per minute can be cal-
culated directly when the length and diameter of the pipe and the
head are known.

To find the mean velocity of eflux when the discharge
in gallons per minute and the diameter of the pipe in inches are
known, solve formula (5) of Art. 193 for v, obtaining

b= L‘f;'?g )

ExampPLE 1.—How many gallons of water will a 6-inch pipe deliver in
24 hours under a head of 170 ft., if the length of the pipe is 5780 ft.?
SoLuTrioN.—Since formula (1) requires that f be known, this must be
determined first, and this requires the calculation of the velocity v. Also,
since the length of the pipe divided by the diameter = _5@0;(_12 is greater
than 5000, formula (1) of Art. 188 may be used. Assuming that f = .024,
5.36 X 170 X 6 .
> 08 X 5780 6.27 ft. per sec. For v = 6, f = .0214, which
being smaller than the assumed value .0240, shows that the value of v will
be greater than 6.27 if .0214 were substituted for /. Taking v as, say, 6.6,

gal. per min. (1)
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f = .0211. Now v may be recalculated or formula (1) above may be applied
to find the discharge, in which case,

170 X 6 .
= 3 = 90 . .
Q = 5.667 X 6 V.0211 <5780 +1X6 590 gal. per min

= 590 X 60 X 24 = 849,600, say 850,000 gal. in 24 hours. Ans.
If it is desired to calculate f, find that f = .0213 for v = 6.27. Substitut-
.. 536 X 170 X 6
ing in formula (1) of Art. 192, v =\j‘0213 X 5780 + 1X6 = 6.65. For
v = 6.65, f = .0211, and Q will be found to have the same value as before,
since f and all the other quantities are the same. If .0211 be substituted for
f in the above formula, the value of v will be found to be 6.68, for which
7 = .0211 to four decimal places, which are all that can be relied on. Note
that a change of 2 units in the number expressed by the significant figures of
f, makes a change of 3 units in the significant figures of v; thus for f = .0213,
v = 6.65 and for f = .0211, v = 6.68. The difference between f = .0240
and the calculated value of f multiplied by § will therefore be approximately
equal to the difference between the velocities. For instance (.0240 —.0213)
X § = .00405, or, say, 41 units; since v increases when f decreases, 627 +
41 = 668, or 6.68, which is the exact value of f to 3 significant figures.
This method of approximating f from the value .0240 and calculated values
of v and f is usually exact enough for all practical purposes.
ExaupLE 2.—An 8-inch pipe discharges 1,480,000 gal. of water per day
of 24 hours; what is the average velocity of efflux? 000

SoLuTioN.—The discharge in gallons per minute is % = 1028 — gal.

per min. Substituting in formula (2) above,

v = 1085;; 1028 _ 6.58, say 6.6 ft. per sec. Anas.

197. Head Required to Produce a Given Discharge.—Sup-
pose a certain discharge is required from a pipe of a given size;
the head necessary to produce this discharge may be found by
solving formula (1) of the last article for A, obtaining

- ) e ) o

If it is desired to find the head that will produce a certain velo-
city, solve formula (1) of Art. 192 for A, obtaining.

h = 5_—;’6—d(ﬂ + .1d) = .1870" (ffi +1) @

ExampLE.—It is desired to have an 8-inch pipe discharge 1,200,000 gal.
per day of 24 hours; if the length of the pipe is 7500 ft., what must be the
head?

S8oLurioN.—The discharge per minute is —:io—xﬂ = 833 gal. The

velocity of efflux is, by formula (2) of the last article,

v = -49§5,8_>’,<_Q.3 = 5.32, say 5.3 ft. per sec.
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From the table of Art. 194, f = .0219, by interpolation, for v = 5.3. Sub-
stituting in formula (1) above.
A =( 833 )*(.0219 X 7500
5.667 X 82 8
198. To Find the Diameter of the Pipe for a Given Discharge.
If the velocity of efflux is known, the diameter is readily found
by solving formula (2) of Art. 196 for d, obtaining

_ [.4085Q
a= 2850

If, however, v is not known, neglect the term .1d in formula (1)
of Art. 196 and solve for d, obtaining

_ s flQ2
4= \3z.11h @

In order to apply this formula, it is first necessary to assume a
value for f, calculate d, then apply formula (2) of Art. 198 to find
v, and, finally, find the value of f corresponding to this v, substi-
tute in formula (2) again, and calculate d. For example, suppose
it is desired to find the diameter of a pipe that will discharge
900,000 gal, of water per day of 24 hours under a head of 80 ft.
the length of the pipe being 9600 ft. The discharge per minute is

+ .1) = 100-ft. Ans.

24 %60 = 625 gal. Assuming that f = .024, as recommended in
Art. 194, formula (2) above may be written
= 5[024Q% _ 5 Q%
d 32.11A 1340h ®)
Substituting the values given in this last formula,
_ 5[6257 X 9600
1340 X 80
Substituting this value of d in formula (2) of Art. 196,
, — 4085 X 625
8.12
From the table of Art. 194, f = .0231 for » = 3.89; hence,
substituting this value of f in formula (2),
= 5[-0231 X 9600 X 625% _

d 32.11 X 80 80+
Consequently, if the pipe is new, an 8-inch pipe will probably
answer.

199. It will be noted that in the preceding calculation, it was
necessary to extract the fifth root of a number. It is never

= 8.1 in.

= 3.89 ft. per sec.

a
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necessary .to obtain more than two significant figures for the
diameter of a pipe, because fractions of an inch rarely occur in the
diameter of a pipe as ordinarily manufactured and the largest
commercial size i8 less than 100 in. in diameter. From 1 in. to
72 in., the ordinary sizes for cast-iron or wrought-iron pipe are
as follows: 1, 2, 3, 4, 6, 8, 10, 12, 14, 16, 18, 20, 24, 30, 36, 42,
48, 54, 60, 72 inches in diameter. Therefore, in calculating the
diameter of a pipe as illustrated in the last article, if a fraction
occur in the calculated diameter, always take the commercial
size next larger than the integral part of the calculated diameter.
The diameter of the pipe as calculated will be for new pipe; but
as the pipe continues in use, the discharge for the same head will
become considerably reduced. For this reason, it would be
better to use a 10-inch pipe than an 8-inch one for the case
mentioned in the last article, if the supply is to be kept up inde-
finitely at 900,000 gal. per day. If the pipe is foul from long use,
or is quite rough (due to the corroding action of impure water or
to other causes), the coefficient of friction f should be doubled in
calculating the discharge, that is, the value 2f should be used
instead of f; this will make the discharge from a foul pipe about
709, of that from a clean pipe having the same diameter and head.
Since the fifth root is desired to only two significant figures, it
may be obtained directly from the table of powers given in
Elementary Applied Mathematics.

ExampLe.—If the head is 64 ft. and the length of the pipe is 370 ft.,
what should be the diameter to discharge 200 gal. of water per minute?
SoLuTioN.—Applying formula (3),

5 200" X 370 .
d=\/200 - 28, .
1340 X 64 8, say 3in

Since the selected value, 3 in., is relatively considerably larger than the
calculated value, 2.8 in.,, and since a 2-inch pipe will evidently be too
small, it is not necessary to calculate the diameter any closer. 1t will be
well, however, to calculate the discharge for a 3-inch pipe. Doing so, the
approximate velocity may be found roughly by formula (2) of Art. 198, in
order to determine an approximate value for f. Thus,

)= .408532( 200 _ 9 + ft. per sec.

From the table of Art. 194, f = .0201 when v = 9. Substituting in for-
mula (1) of Art. 196,

54 X3 :
= 5.667 2 = 1. .
Q = 5.667 X3 0201 X 370 + 1X3 254 gal. per min

Therefore, the 3-inch pipe will be sufficiently large. Ans.
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200. A little consideration will show that insofar as commercial
sizes of pipe are concerned, the diameter may be calculated by
formula (3) of Art. 199. It is only when exact dimensions are
required that the more refined method of Art. 198 is necessary.

Paper pulp suspended in water has a higher ccefficient of
friction than water, and the coefficient varies with the kind of
stock and its consistency. This necessitates larger pipe, pumps,
etc. than would be required for water, as is explained in the
chapter on pumps under General Mill Equipment.

EXAMPLES

(1) What is (a) the velocity of eflux from a standard square orifice, 3 in.
square, the head on the center being 18 ft. 4in.? (b) What is the discharge
in gallons per minute? Ans { (a) 33.6 ft. per sec.

L (b) 692 gal. per min.

(2) The pressure at the entrance to a venturi meter is 32.7 lb. per aq. in.
the pressure at the throat is 21.5 lb. per 8q. in., diameter at entrance is 4 in.,
diameter at throat is 1} in. What is (a) the velocity at entrance? (b) the
discharge? A { (a) 7.8 ft. per sec.

| (b) 306 gal. per min.

(3) What is the discharge through a short tube having sharp edges, if the

diameter of the tube is 2} in. and the head on the center is 18 ft. 6 in.?
Ans. 430 gal. per min.

(4) A nozzle has a diameter of 3 in. at the large end and 1{ in. at the tip.
When the pressure i8 75 lb. per 8q. in., (a) what will be the velocity of efflux?
(b) To what height can the water be thrown if the nozzle is pointed vertically
upward? (c) What is the discharge? (a) 105 ft. per sec.

Ans { (b) 170 ft.
(c) 324 gal. per min.

(5) What is (a) the velocity of efflux from a pipe 6 ft. long, 13 in. in
diameter, under a head of 18 ft. 5 in.? (b) What is the discharge?

Ans { (a) 23.0 ft. per sec.
"1 (b) 172 gal. per min.

(6) A 4-inch pipe, 1875 ft. long, discharges water under a head of 156 ft.;
what is (a) the velocity of eflux? (b) the discharge?

A { (a) 9.39 ft. per sec.
. * 1 (b) 368 gal. per min.

(7) What should be (a) the diameter of a pipe, commercial size, to discharge
2,400,000 gal. per day of 24 hours, if the length of the pipe is 14,400 ft. and
the head is 240 ft.? How many gallons per day will a pipe of this diameter
discharge under the same conditions when new?

A { (a) Diameter = 12 in.
“ 1 (b) 3,500,000 gal.

(8) What must be the head in order that a 2-inch pipe that is 1025 feet

long may discharge 3000 gal. of water per hour? Ans. 55 ft.
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HYDRAULICS

(PART 4)

EXAMINATION QUESTIONS

(1) A steam pump is rated at 28 horsepower; what (a) would

be its rating in kilowatts? (b) in metric horsepower?
Ans (a) 20.9 k.w.
*| (b) 28.4 metric h.p.

(2) The m.e.p. (mean effective pressure) as measured from an
indicator diagram of a steam engine is 65.15 lb. per sq. in.; if
the diameter of the cylinder is 28 in., length of stroke 36 in., and
revolutions per minute is 125, what is the horsepower?

Ans. 912 h.p.

(3) The power of an electric current in watts is equal to the
strength of the current in amperes multiplied by the pressure in
volts. If a dynamo deliver 65 amperes of current at 225 volts,
(a) what is the power of the current in kilowatts? (b) If the
efficiency of the dynamo is 88.6%,, what horsepower is required
to operate it? (c) If the dynamo be driven by a steam turbine
having an efficiency of 91%, what power must it generate to
operate the dynamo? (a) 14.625 k.w.

Ans ‘(b) 22.14 h.p
(c) 24.33 h.p.

(4) A paper mill has a contract with an electric power plant to
furnish current for lighting and power at the rate of 134 cents per
k.w.-h. During one week of 7 days, it burned 28 25-watt lamps,
56 40-watt lamps,and 24 125-watt lamps an average of 1114 hours
per day; (a) what was the daily cost for lighting? (b) what was
the equivalent of the work paid for in horsepower-hours?

Ane { (a) $1.195, say $1.20.
" | (b) 91.6 h.p.-hr.

(5) To what height will a 50-horsepower pump deliver 540 gal.
of water per minute, if the efficiency of the pump (allowing for
friction, leakage, etc.) is 78%,? Ans. 286 ft.

207
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(6) Water flows through a rectangularorifice 314 in. by 514 in. at
the rate of 1240 gal. per min.; what is its mean velocity? )
Ans. 21.6 ft. per sec.
(7) If the orifice in Question 7 is a standard orifice, what is the
head on the center to obtain the same discharge? ~ Ans. 19.2 ft.
(8) The nozzle of a fire hose is 3 in. in diameter at entrance and
34 in. in diameter at the tip; (a) if the head is 180 ft., what is the
velocity of discharge? (b) to what vertical height can the water
be thrown? (¢) what is the discharge?
(a) 105.7 ft. per. sec.
(b) 173.7 ft.
(c) 145.5 gal. per min.
(9) What is (a) the velocity and (b) the discharge through a
pipe 114 in. in diameter and 70 in. long under a head of 21 ft.?
Ans. { (a) 23.7 ft. per sec.
(b) 131- gal. per min.
(10) What is (a) the velocity at entrance and (b) the discharge
through a venturi meter if the head at entrance is 59 ft., head
at throat is 42 ft., diameter at entrance is 334 in., and diameter at
throat is 114 in.? A { (a) 6.06 ft. per sec.
* | (b) 182 gal. per min,
(11) What is (a) the discharge and (b) the velocity of discharge
from a 5-inch pipe, 1280 ft. long, under a head of 210 ft.?
Ans (a) 924 gal. per min,
“| (b) 15.1 ft. per sec.
(12) What commercial size of pipe should be laid to deliver
3,000,000 gal. of water to a paper mill per day under a head of

Ans.

356 ft., if the length of the pipe is 12,700 ft.? Ans. 10 in.
(13) What head is required for a 3-inch pipe, 756 ft. long, to
deliver 5000 gal. of water per hour? Ans. 16 ft.

(14) Assuming that the water in the last example were used to
drive a small turbine having an efficiency of 77.8%, what would
be the horsepower of the turbine? Ans. 0.262, say } h.p,

(15) A 450-horsepower steam engine is operated an average
of 7 hr. 24 min. for 6 days each week. Counting 52 weeks per
year, (a) what will be the cost per kilowatt-hour if the power
is bought for $36 per horsepower-year ? (b) what is the power
cost per hour of operation? A (a) $0.0209.

/-‘ ne. { (b) $7.017.



SECTION 2
ELEMENTS OF ELECTRICITY

By J. J. CLARK, M.E.
(PART D)

NATURE AND KINDS OF ELECTRICITY

INTRODUCTION

1. Purpose of Study.—The subject of electricity has been in-
cluded in this course in order that the student may understand
the application of its principles in connection with the operation
of the different electrical machines and apparatus used in pulp
and paper mills. How electricity is generated and controlled
will be explained, and such of its principles will be discussed
as will enable the student to understand the construction and .
operation of electric motors and other apparatus used about
the plant; that is, he will understand their object, how to select
them for different purposes, and what makes them ‘“‘go.” It is
beyond the scope of this work to teach the design of electrical
machinery, -but the student who has made a thorough study
of the principles here explained ought to be able to select intelli-
gently the proper machine or apparatus for any specific purpose,
to determine whether the apparatus already in use is that best
adapted to the fulfillment of the desired purpose, and should
be able to understand what is the matter with it if it get out of
order.

The connection between electricity and magnetism is extremely
close, and the student is urged to pay particular attention to the
explanations here given; a thorough understanding of the prin-
ciples of magnetism will make the subsequent part of the text
comparatively easy. More complete information relating to the
entire subject will be found in textbooks that can usually be
obtained from the local library or in the library of the engineering
department of the plant.

2 1
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STATIC ELECTRICITY

2. Nature of Electricity.—According to the Standard Diec-
tionary, electricity is ‘‘an imponderable and invisible agent
producing various manifestations of energy, and generally
rendered active by some molecular disturbance.” Imponderable
means without weight. The exact nature of electricity is not
known; many theories have been advanced, but no one of them
has been accepted as satisfactory.. Just what it is does not mat-
ter to the practical man; his only concern is to know how to
generate it, control it, and make it do useful work. He is equally
ignorant concerning the forces called gravitation, chemical
affinity, and many other of nature’s phenomena, but that does
not deter him from utilizing them to the best advantage. It is
very doubtful if he could derive any greater benefit from them
if he knew what is their ultimate cause, since he could not, in
any case, create them.

3. Generating Electricity.—There is really no such thing as
generating or producing electricity, in the sense that something
is obtained where nothing was before. Electricity is probably
all-pervasive and is in equilibrium, and it manifests itself only
when its equilibrium is disturbed by the action of mechanical
or chemical forces; when these forces are directed in a specified
and definite manner, the state of equilibrium is altered in a
specified and definite manner also, and before the state of equilib-
rium can be restored, work must be done. If properly directed,
this work may be utilized in a definite manner. The process is
exactly analogous to the action of a pile driver. When the weight
rests on the pile, everything is in equilibrium. In raising the
weight to a particular height, a certain force must be exerted;
and since this force acts through a distance equal to the height,
a certain amount of work is done in raising the weight. Now
for the system to return to its previous state of equilibrium, the
weight must be restored to its previous level—the height of the
pile—and in doing this, work may be accomplished. If the
weight is allowed to fall on the pile—by removing its support and
guiding it—the work done will be measured by the force of the
blow and the distance that the pile is driven.

Thus, when anything is done to disturb the equilibrium of the
electrical state of matter, work must be done to produce this
disturbance; and work, useful or otherwise, may be obtained as
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the result of the action. The action produces what may be
termed an electric stress, and this is what is called producing or
generating electricity. Always bear in mind the unalterable
fact that electricity is not something that can be obtained from
nothing; it is merely an agent, and gives back only what ‘it
receives. In other words, in order to obtain a certain amount of
- work or energy by means of electricity, it is necessary to do at
least as much work in producing the electric stress as is given out
when the stress is removed. For example, suppose one pulley
to drive another pulley by means of a belt. As much work must
be imparted to the driving pulley as is received by the driven
pulley; in fact, more work must be imparted to the driving
pulley, because of the hurtful resistances—friction, bending the
belt, heating the bearings, etc. So it is when electricity is the
agent; more work must be done than is obtained through the
agency of electricity.

4. Electricity is an agent (see definition, Art. 2), an extremely
useful one, and has two uses: (1) to transform energy from one
state or kind to another; (2) to transfer energy from one point
to another. By means of the dynamo, for instance, mechanical
energy may be changed into electrical energy, which, in turn,
may be used to drive a motor, heat an electric iron, light the
house, cause the release of chlorine from salt, and in innumerable
other ways. By means of wires, called conductors, electrical
energy may be conveyed long distances—many miles, in fact—
before it is again transformed and utilized.

5. Kinds of Electricity.—There is really only one kind of elec-
tricity; but since it manifests itself in two widely different forms,
in so far as their effects are concerned, it is customary to divide
it into two classes: (1) static, or frictional, electricity; (2) dynamic,
or current, electricity.

Static, or frictional, electricity is generated by friction, by
rubbing together certain unlike substances. For example, if a
stick of sealing wax be rubbed with a piece of flannel or a glass
rod be rubbed with a piece of silk, it will be found that the stick
and the rod will both attract light substances, such as pith balls,
pieces of paper, etc., the attraction being caused by the static
electricity generated by the friction. Under certain conditions,
when an electrified body is brought into contact with another
body, a spark of light will pass between the points of contact just
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before they touch. This may be well illustrated in the following
manner: let a person stand on a piece of rubber or a glass plate,
or take four glass tumblers, set them on the floor about a foot
apart in the form of a square, lay a board on top of the tumblers,
and let the person stand on the board; let a second person rub
the back of the first person (who keeps on his coat, which is pre-
sumably made of wool) with a piece of fur, say a muff; then, if
either person (or a third person) bring his finger to the skin of
the other, a spark will pass, and the skin will feel a sensation
like the prick of a pin. By continuing the rubbing, as many
sparks may be obtained as are desired. The best results are
obtained when the room is cool and the airis dry. Whenever, in
combing the hair, the hair follows the comb, this effect is produced
by static electricity. Sometimes, when walking under and near a
rapidly moving belt, the hair on one’s head will be drawn toward
the belt with a slight pull; this is also caused by static electricity.

6. Positive and Negative Electricity.—By experiment, it will
be found that there are two kinds of electrification, to which have
been given the names of positive electricity and negative electri-
city. Both kinds are always generated at the same time When
the glass rod is rubbed with silk, one kind is excited on the rod
and the other kind on the silk; that excited on the rod is called
positive electricity, and that excited on the silk is called negative
electricity. The order is reversed when the stick of sealing wax
is rubbed with flannel; here the electricity excited on the stick
is negative and that excited on the flannel is positive. These
facts can easily be proved by the circumstance that if both bodies
are electrified positively or both negatively, they repel each
other; while if one is electrified positively and the other nega-
tively, they attract each other. This fact may be stated in the
form of the following very important law:

Law.—Bodies that are similarly electrified repel one another, while
two bodies dissimilarly electrified attract each other.

It is to be noted that either kind of electrification might have
been termed positive, in which case, the other would have been
negative; but, having decided to call the kind on the glass rod
when rubbed with silk positive, or +, the kind produced on the
silk is negative, or —.

7. It is to be noted that the electricity produced by friction
stays where it is generated until it is discharged, as it is termed,
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by bringing the electrified body into contact with or near another
body. For instance, when the back of the person standing on the
tumblers has been rubbed, he will retain the electricity indefi-
nitely; but as soon as he steps on the floor or comes into contact
with another person or object in contact with the floor, the elec-
tricity is discharged. For this reason, frictional electricity is
called static electricity, the word static meaning a state of rest or
equilibrium.

8. In the case of static electricity, the resulting electric stress
is very high, but what may be called the electric quantity is
very low. As a consequence, static electricity is practically
useless as an agent for doing useful work; indeed, it is something
to be avoided in paper mills or any other place where machinery
is employed. When a moving belt passes close to a permanent
object, tiny blue sparks may frequently be seen in the dark; these
sparks are caused by the friction between the belt and the pulley,
which results in an electric stress, and causes an accumulation
of static electric charges (as they are termed), which leave the belt
by the way of the permanent object and escape to the earth, thus
restoring the equilibrium. In cases where this action takes place
to a large extent, a metal wire or bar is fixed close to the belt, to
remove these charges at a place where it is most convenient in-
stead of allowing them to escape at random. Similar effects
are observed on the winding rolls of a paper machine (because
of the friction bet ween the calenders and the paper) ; here a flexible
copper wire or a brass chain is used to remove the electric charge,
which passes along the wire or chain to the frame and thence to
the ground. If the charge be not removed, more work must be
expended in winding and unwinding the paper, on account of
the attractive forces between one layer of paper and the next
on the roll. Much of the trouble experienced by the printer
in feeding sheets of paper to the press is due to these static
charges.

Static charges of this kind are not dangerous to human life;
but if they are not removed by a wire or chain or other conductor,
they may escape to the body, head, or hand. The sudden shock
is not dangerous in itself, but it may so startle a man as to cause
him to make a quick, unusual movement, which may bring him
into contact with moving parts of a machine. These sparks are
identical in character with lightning, the only difference being
that in the case of lightning, the electrical stress is enormously
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higher. Still, sparks from a high-speed belt have been known to
ignite a wiping rag that was wet with gasoline.

9. Conductors.—An electric charge may be conveyed from one
point to another by means of what is called a conductor. While
all substances will conduct electricity, some of them conduct so
badly that for all practical purposes, they do not conduct at all;
such substances are called insulators or non-conductors. Glass,
rubber, and gutta percha are the best examples of insulators;
practically, they do not conduct electricity at all. Pure water and
air are also very poor conductors. All the metals are good
conductors, though some are far better than others; silver is the
best conductor known, and copper ranks next. As copper is
very nearly as good a conductor as silver, and is much cheaper,
it is the one most used in practice.

In the experiment in Art. 5, glass tumblers were used to keep
the clectricity from passing from the body tothe earth. The glass
being a non-conductor, the electricity remained stored in the body
until a path was made for it to escape to the earth, thus restoring
the equilibrium. The path was the body of the second man, and
the reason that it was necessary to approach so close before the
spark could take effect was because air is such a poor conductor
that the length of the path through the air had to be exceedingly
short. Had the first person stood on the floor instead of the
insulators, the electricity would have been generated as before;
but it would have been conducted to the earth, the body acting
as a conductor, as fast as formed, and no spark or other effect
could be obtained. If several persons stand on insulators, the
charge may be passed from one to another, a spark taking place
each time, until the last person touches something not insulated
from the earth. If the persons are insulated from the floor by
wearing rubber boots or having rubber soles and heels on their
shoes, the one having the charge may walk around the room and
wait indefinitely before giving the charge to anyone else, provided
no part of his body comes into contact with another object. It
should also be noted that the spark may come from any part of
the body of the person having the charge. Thus, if the second
person brings any part of his body, say a finger, to any exposed
part of the person charged, the back of the neck, hand, chin, ete.,
the spark will pass; this shows that the charge covers the entire
body, and when discharged, is concentrated and passes along
the conductor, entering it at the point of contact. Moreover,

™
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the charge concentrates and passes to the ground almost
instantaneously.

CURRENT ELECTRICITY

10. Definition.—If by some means, electricity can be supplied
as fast as it flows away, the result will be a continuous current of
electricity. This effect may be secured very simply by taking a
glass jar, Fig. 1, and partly filling it with a solution of sulphuric
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Fia. 1. current is caused by chemical

action, the acid in the solution

dissolving the zinc gradually. Electricity produced in this man-
ner is called current or dynamic electricity, because the elec-
tricity is in motion, moving (flowing) as fast as it is generated.
11. The apparatus described in the last article is called a
primary element or cell; and when two or more cells are properly
connected, t<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>