

practice of navigation at sea

CONTAINING

ALL THE DETAILS NECESSARY TO EN̉̉ABLE THE MARINER TO BECOME A GOOD PRACTICAL NAVIGATOR.

【LLUSTRATED BY A NEW MODE OF

ENGRAVED DIAGRAMS AND FIGURES,

DESIGNED WITH THE INTENTION OF MECHANICALLY INSTRUCTING THE LEARNER IN THR . MEANING AND USE OF THE VARIOUS

Problevs in Navigation and nautical astronomy,
IN ROGM OF THE TEDIOUS SOLUTIONS OF GEOMETRY AND TRIGONOMETRY. THE USUAL TABLES ARE GIVEN WHICH ARE INDISPENSABLE IN A WORK OF THIS KIND,

SOME OF WHICH ARE IMPROVED, AND NEW ONES INTRODUCED FOR THE FIRST TIME, WITH A VIEW OF SHORTENING THE

LABOR OF COMPUTATION.
the whole being
expressly adapted for the use of seamen.

BY CAITAIN WILLIAM THOMS,
TWENTY-FIFTII EDITION.

NEWTORK:
PRINTED FOR THE AUTHOR AND SOLD BY JOHN BLISS \& CO.,

NAVIGATION WAREHOUSL, '28 FRONT STREET, NEIT YORK ; F. A. ASHTON, 259 WINTHLOP STREET, BROOKLIN, and aid the principal nautical bookstores in new Iork and

THROUGHOUT THE UNION.

做ntered according to Act of Congress, in the Year One Thousand Eight Hundred and Eighty BY WILLIAM THOMS,
 In the office of the Librarian of Congress at Washington.

TO TIIE

COMMANDERS; OFFICERS, AND SEAMEN,

EMPLOYED IN THE
MERCIIANT MARINE OF THE UNITED STATES.
\widetilde{U} IJis 将olume,
(THE FIRST ATTEMPT OF THE KIND BY A MEMBER OF THAT SERVICE,) IS RESPECTFULLY DEDICATED,

THE AUTHOR

PREFACE.

This work is intended exclusively for the use of seamen, and has been compiled by the author from an experience of more than twenty-five years, in the practice of navigating a ship at sea, in nearly all parts of the world. Consequently, a competent knowledge has been acquired, during that period, of what is actually required to be known, in order to become an expert practical navigator. This work is, therefore, confined to the practice at sea ; that is, navigation proper, or that which has reference to the ship's place on the ocean.
Thus knowing what is required, and also the distaste which seamen have for long and tedious calculations. I have endeavored to simplify the various rules and tables, and to strike out all unnecessary matter, which is not required, and in the room of which, introduced diagrams of the rarious cases, which will convey mechanically the whole state of the case to the mind of the reader at once.
The tedious and unprofitable solutions of geometry and triginometry are, therefore, abolished, together with the tables of the logarithms of numbers, which are never used at sea, even by those persons who have previously studied the subject, and who have eventually to fall back upon the method now used in this work.

The sailings are therefore explained by diagrams, and worked out by inspection of the traverse table: only, the same as we actually do at sea, and which is correct enough for all practical purposes; thus relieving the learner from the embarrassment of having several methods given of doing the same thing.

The names of the parts of the diagram are inserted against them, which makes it easier to comprehend the meaning of the case, and will be found an improvement upon the cold system of marking them alphabetically for the purpose of reference.

Every diagram in this work is drawn on the same scale, that is, with the chord of 60°, taken from the plane scale, (and which is in general use on board ship.) Instructions are also given how to construct the diagrams, so that the learner may teach hinsself in a mechanical manner, and which will give him more insight into the nature of the problem than the study of geometry and trigonometry will.
In Parallel and Middle Latitude Sailings, diagrams of semi-hemispheres are introduced, showing the contraction of the meridians towards the poles, and the comparative length of the degrees of lougitude in the various parallels of latitude. And in Mercator's Sailing, a diagram showing the meridians all parallel to each other, and the expansion of the degrees of latitude towards the poles.

Current sailing is gone into at some length, and rules given as they are applied in the practice at sea, in this difficult branch of the study.

Taking departures, or ascertaining the ship's place by the bearing of the land, is introduced, and a table given to find the ship's position by two bearings of the same object, having the course and distance sailed between them. This will be found very useful to a ship coasting along shoren mer distance off shore can be easily found by the use of this table; and upon the same principle ther distance off shore may be ascertained by projecting the accompanying diagram.

The time of high water is found by the usual rules, and is only an approximation. Local tude table only can show the time of high water with any degree of certainty. The navigator will naturally consult those tables in preference to ar.y general rule, where accuracy is required.

A short account of the prevailing winds and currents in the various parts of the world are introduced, chiefly derived from my own experience, and will be found interesting and useful to ne young navigator.
The cause and effect of hurricanes are also explained in a short and familiar manner, and practical rules given to avoid their fatal effects, illustrated by diagrams of the storm circles in both North and South latitude, and which, by giving the subject a little attention, will be easily understood. The rules given to avoid the focus, and the general handling of a ship, on approach ing the verge of the storm circle, the falling of the barometer, etc., are also derived from my own experience, the facts having been recorded in the journals l have kept of many voyages, where they prevail.

The usual rules are given for the construction of a general chart on Mercator's projection, illustrated by a diagram chart of part of the North Atlantic Ocean. The use of it is explained, and a number of questions proposed, and the answers given, so as to enable the learner by himself to obtain a thorough knowledge of this most important subject.

Rules are also given to construct a coasting chart on a large scale, illustrated by a diagram, and the use of it explained, under all the possible circumstances in which a ship may be placed, and questions and answers given in like manner, which will be found of much importance to the learner

The manner of sounding with the lead recommended, on a ship's approaching the coast in thick weather, and the method of tracing out her track, by soundings, on the chart, when no observations of the heavenly bodies can be obtained, and will be found of much service to the young navigator.

Nautical astronomy is then introduced, containing the various methods of finding the ship's place on the ocean from astronomical observations, and commences with a diagram of the solar system, showing the real state of the case, and the motion of the earth, and of those planets onty which are used in navigation, round the sun.

Nautical astronomy is then defined, and diagrams of the sphere given, showing the case reversed and the earth is treated as a mere speck in the centre of the universe, and all the heavenly bodies revolving round it, the spectator being supposed to be situated at an immense distance to the Eastward of it.

These diagrams will be found of great importance in giving the learner a mechanical knowledge of the nature of the circles and angles supposed to be drawn in the heavens, and will show at once the meaning of the various terms used in nautical astronomy, and which any amount of description would fail to do without them. The manner of constructing those diagrams, from the use of the plane scale, and the measuring of the various circles and angles, are also given, with the view of exercising the learner, and to impress the figure on his mind; and they are generally so arranged that the description is given on the page facing them.

The projection of the heavens in two hemispheres, shows at once the nature of the right ascension and declination of the heavenly bodies, the sun's path in the heavens, the signs of the zodiac, etc.

And the diagram of motion round the pole will give a distinct idea of the movement of the hour angles of the heavenly bodies in an opposite direction to their movements in right ascension.

As it is of much importance to seamen to be able to find the latitude from the meridian altitude of a star, I have introduced several diagrams, showing the nature of a meridian altitude, and how It may be computed, and also a new table, containing the meridian passages of those stars of the first magnitude which are senerally used at sea, for every third day throughout the year, by which means a person otherwise unacquainted with the stars in the heavens may be enabled to rind any star on the meridian without knowing it, and find his latitude thereby.
The planets are also found by the same method, having the time they pass the meridian from the Nautical Almanac.
Diagrams showing the effect of the dip of the horizon, refraction, and parallax, which is fully -xplained on the opposite page

A diagram showing the manner of observing altitudes of the hesvenly bodies and the nature of the correction for semi-diameter.

The instruments of navigation and nautica. astroncmy are then explained, and the manner of reading off and adjusting them.

The use of the quadrant for taking altitudes, and the sextant for measuring angular distances detween the sun and the moon, or the moon and stars, are fully explained, together with a now method of causing the moon to measure her own distance from the sun or a star.

The artificial horizon is explained, and a diagram showing the cause of the double reflection, this being a most useful instrument for rating a chronometer on shore, when the sea horizon is not visible.
The use of the chronometer is now explained, and the various practical rules given for its management on board ships at sea, which will be found of great service to the young navigator.

The azimuth compass is next explained, and the manner of taking azimuths and amplitudes, as practiced at sea.

Then follow remarks on the action of the barometer and thermometer, derived from experience in the use of these instruments for the last twenty-five years. The action of the new or Aneroid Barometer is also explained.
The sun being the most important of all the heavenly bodies on which observations are made, the manner of correcting his declination is first introduced, and the latitude deduced from his meridian altitude, illustrated by diagrams of all the various cases, which will give the learner a complete insight into the meaning and nature of finding the latitude, not only by the sun, but by the meridian altitude of any other heavenly body.

Finding the latitude by an altitude of the sun out of the meridian, is then introduced, having the time from noon, or, which may be deduced from the Greenwich time by chronometer, and by the help of a new table for that purpose, a correction is found, which, added to the observe altitude, gives the meridian altitude. The latitude is then found in the usual manner.

The latitude is also found by two altitudes of the sun, misnamed double altitudes, by a new method of using the hour angle of the lesser altitude, to which is applied the interval of time between the observations, corrected for the ship's change of longitude in time, and the result is the inner hour angle, or the time from noon, at which the greater altitude was observed, it now becurnes the same case as if only one altitude had been observed. This will be found a more direct and casier mode of solving the problem than by the old and tedious methods of double altitudes given in works of this kind.

A method is also glven of finding the latitude by measuring the change of altitude of any of the heavenly bodies on the prime vertical in one minute of time; and this portion of altitude found in a table constructed for the purpose, will point out the latitude corresponding, within certain limits.

The latitude by the meridian altitude of the moon is found in the usual manner, only it is much simplified by the introduction of a new table, containing the correction for the moon's parallax in altitude, given in minutes and tenths of minutes, and taken out for the nearest degree of apparent altitude and the nearest minute of parallax, which is sufficiently near enough for all practical purposes. Because, if the Greenwich time be not accurately known, the moon's declination cannot be found within ten times the amount of the difference between this table and the most rigorous method of finding this correction, a new table is also given to correct the moon's declination to the Green wich date.

The method of finding the planets on the meridian, and the latitude obtained from their meridian altitudi, also the mode of finding the stars on the meridian, further explained, with the manner of finding the latitude from their meridian altitudes fully explained, and which may be putin practice by any person, otherwise unacquainted with the stars in the heavens, ty simply following the direc. tions g^{\prime} ven in this work. The manner of finding the latitude by the meridian altitude of the pole star, buth above and below the pole, and the usual table for finding the latitude by that star at any other time of the night, which has beal constructed for this year, but will serve for several jears hereafter.

A method of finding the correct latitude in the night time, when the horizon is often obscured and doubtful, by observing stars both North and South of the meridian, and can be practiced in either hemisphere, will be found of great use, from its extreme simplicity, as will also the finding of the latitude by the moon, planets, or stars out of the meridian. For instance, if the latitude is required to be known at twilight, (which is the best time for taking altitudes of the stare, the horizon being then distinctly visible, it may happen that there are no stars on the meridian at that time. Now, if an altitude of a star, which is nearest to the meridian, be observed, and the apparent time of the observation noted. (as in the case of the sun,) the apparent time at ship may be deduced from the Greenwich time by chronometer, it is easy to find the star's distance from the meridian, (which with the sun is the time from noon,) and is used in the tables in the same manner, by which means we obtain a correction to be added to the observed altitude of the star Thence the meridian altitude is obtained and the latitude is found as correctly as if the meridian altitude had been actually observed.
The finding the variation of the compass at sea by amplitudes and azimuths, is now introducea, illustrated by diagrams showing the real state of the case, and also why the variation is called easterly and westerly.

Then follows a diagram showing the effect of local attraction on a ship's compass, the manner of detecting the same, and the best means of remedying the error, and remarks on fixing up; statidard compass.

Diagrams showing the nature of hour angles, and the terms used in the computation, clearly explained, and the apparent time at ship found from a set of altitudes of the sun, the corresponding time being noted by a watch or chronometer, as is usually done at sea. The time tables used in this work are simply the co-secants for degrees and minutes of the polar distance, the secants for the latitude, the co-sines of the half sum, and the sines of the difference or remainder.

The apparent time from the preceding noon or midnight, in the case of the sun, or the hour anglea of the other bodies, may be taken out at once from these tables.

The logarthms in these tables are also used for other purposes in this work. The old standard tables of lngarithms, sines, tangents, secants, etc., are not required.

Finding the time at sunrise and sunset is illustrated by diagrans showing the nature of the case, and the degree of dependence to be placed thereon.

The method of finding the apparent time at noon from equal altitudes of the sun, is also introduced, and is valuable from its extreme simplicity.

The finding the time on shore by the use of the artificial horizon.
The mode of finding the time at sea by an altitude of the moon, planets, and stars, and also the manner of finding any particular planet or star in the heavens at any given time, when above the horizon; in like manner, the name of any star of the first magnitude, or planet, whose altitude has been nbserved, may be known.

After thus having given all the various modes of finding the time at ship, the longitude by chronometer is then gone into, and every possible case is taken notice of and exemplified, first by the sun, in which the cases are all worked out in full, and every necessary correction fully explained, to which are added the practical rules as they are worked out at sea. A new table is here added, to correct the longitude by chronometer, when the latitude used in computing the time at ship is proved to have been in error; thus saving the time and trouble of working \mathbf{i} over again.

The longitude by chronometer is found at sun rising and setting, and also from equal altitude at noon, and from the altitudes of the moon, planets, and stars. The mode is also given of combining observations of two different bodies, with the view of finding both latitude and longitude by chronometer. at the same instant of time.

Sumner's method is now introduced, explained and exemplified, according to the mode I have been in the habit of using myself at sea, and illustrated by a diagram, showing its great utility and use to the navigator, when the ship is approaching land or a danger.

The method of rating chronometers at sea, from time 'o time during the voyage, when in sight of land, is fully explained and exemplified, and also when in port, either by the sea or by an
artuficial horizon. This is worthy the attention of navigators who carry chronometers, from the fact that chronometers generally alter their rate after being received on board, and acquire what is termed a sea rate, and which is easily ascertained by the above method.
In treating of lunar observations, diagrams have been introduced, showing the nature of the correcti:ns required in clearing the lunar distance, and a case projected exhibiting the relative positions of the two bodies in the heavens, and the hour angle of one of them used in finding the time at ship.

The various methods of observing and writing down this observation is given as practiced at sea, and distances exemplified in a.i the various cases, between the sun and moon, and between the moon and planets and stars.

In clearing the lunar distance, one method only has been adopted, which is that by Lyons, and is nearly the same as that given in Thompson's Tables, and which I have found from experience to be the most simple and casiest understood of any mode now in use, and is correct enough in practice.

Much precision in clearing the lunar distance is not aimed at in this work, therefore many tedious corrections are omitted, which only tend to embarrass the navigator, and which are seldom applied in practice, and from the nature of errors in observing the distance itself, they do not seenı to be required.

The lunar observation in this work is therefore considered only as a means of detecting any very gross error in the longitude by chronometer, during a long voyage.

A method is here also given of finding the longitude by a lunar observation on shore, one altitude being observed in the artificial horizon, and the other computed.

I have also introduced a new method of my own, which I have often used at sea, which is that of finding the longitude by measuring the moons declination, illustrated by diagrams of the meridian altitudes of the moon and a star. The principle of this method is simply to observe the distance between the bodies on the meridian. Then the star's declination being known, (taken from the almanac or table,) furnishes the moon's declination. Or, the meridan altitudes of the bodies being observed, (though not necessarily on the meridian together,) the star's declination applied to the difference of the altitudes, gives the moon's declination. Now, where this declination so measured is found in the nautical almanac, will give the Greenwich time. Then the difference between this time and the mean time of the moon's passing the meridian of the ship, is the longitude in time, etc.

The method of working days works and keeping the ship's reckoning at sea, adapted to the present age, is thoroughly explained and exemplified, and the various rules given in the first part of this work are now applied, as are also those in nautical astronomy, to find her position from celestial observations.

The method of navigating a ship is now introduced, showing the mode of applying all the details which have been previously gone through, and many useful suggestions given, which have been derived from my own experience of a sea life, and will be found of service to the young navigator in times of peril and danger.

Amongst which the rules given for avoiding a collision on ships meeting each other at sea, will be found of great importance, and should be thoroughly understood by every seaman. I have, therefore, put them into a practical shape. These rules are recognized by courts of law in deciding cases of collision.
The method of keeping a log-book is explained, and various remarks made thereon, exemplified y a harbor \log, the manner of keeping the \log at sea by civil time, and also in the usual modo by sea time. The whole is then wound up by the journal of a voyage in a clipper ship, in which every circumstance is noted in the log-book, as it would actually be done at sea, and showing the care and circumspection necessarily required in navigating a fast-sailing vessel, from the fact that an error in the course of such a vessel will produce an error in the dead reckoning, in one day's run, of from two to three times the amount greater than what the same error in the course of \& dow-sailing vessel would produce.

Many new tables have been introduced into this work, with the view of shortening the comps
tations, and they are so arranged as to be easily referred to in practice, the one following the other as they are required to be used at sea.

The tables usually given in works of this kind are rejected, except those only which have e direct bearing upon the practice of navigation at sea.

The tables containing the times of high water at full and change, the variation of the compass in early all parts of the world, deduced from actual observation at sea, and the very important one
\boldsymbol{f} the position of places, which is taken from the best English authorities on those subjects, in which the principal headlands, ports and islands only are given, with the view of enabling the navigator to verify his chronometer on sighting the land at any time during the voyage, or rating it while in port, the position of shoals, etc., are not given, the navigator will naturally look for information on this subject from his chart, which will furnish the most proper and correct delineation of their extent and position, which cannot be obtained from a table.

From the foregoing prefatory remarks, it will be perceived that no very great amount of mathematical knowledge is required, beyond the common rules of arithmetic, to become a good practical navigator.

Practical navigation does not, therefore, consist of a tedious set of alculations, with a view of obtaining a very nice precision at any given time, but in the tact with which the navigator can single out and employ the heavenly bodies, in finding his ship's position therefrom, either by day or by night, and by increasing the number of observations, serve as a check upon each other, and thus verify her position in short intervals of time, in the shortest and simplest manner possible, having a due regard at the same time to its general correctness; and which has been the aim of this work to accomplish.

Having been engaged for some years in the instruction of seamen in navigation, I find that the chief difficulty lies in the fact that the generality of them cannot spare time sufficient on shore for the purpose of studying, and that they are obliged to pick up scraps of it here and there, as they best can, from whatever book falls in their way; and not being able to discriminate between what i really useful in practice or otherwise, many of them form very erroneous ideas, in their laudable attempt at self-instruction.

Therefore the chief inducement I had in writing this work, was to place it within their reach. divested of everything but what has a direct bearing on the practice at sea, whereby they might instruct themselves with greater ease than formerly, as it will lead them step by step from the lowest up to the highest branches of the science, and it embraces everything that is required to form a good practical navigator.

Here I may remark, that the entire work has been computed and written by myself, from the observations and memoranda contained in the journals of many voyages I have made to nearly all parts of the world, the examples having been reduced to the present year of 1854 , for the sake of uniformity ; and to accommodate those persons who may not have an almanac for that year at band, I have added a table of extracts from the Nautical Almanac, containing the data for working the examples.

Seamen will please to bear in mind that the work has been written by one of themselves, and with a sincere desire for their improvement and instruction, and should it meet with their approval, (equal to the amount of labor bestowed on it ,) would leave nothing more to be desired.

And, without meaning any disrespect to the generality of navigators, I may add, that from my swn experience I know that there are many who are very deficient, not from the want of the sapacity of becoming so, but from the want of the proper means of instruction, and which would seem to verify the words of the ancient sage, on being interrogated by the youth. "My son," said he, "when you come to the years of manhood, you will be astonished to find how little wisdom is used in the governing of the world."

1 cannot close the preface to a work of such immense labor, without soliciting the indulgence of the reader to any errors or inaccuracies which may have unavoidably crept in, notwithstanding the extreme care 1 have taken in revising the work over several times, both before and after com. mitting it to the press. I, however flatter myself that few will be found to exst of muol importance.

WILLIAM THOMS.

CONTENTS.

Inmodoorion to the Practice of Navigation at Sea.
PAGEDiagran of the Earth-ite description and dimen-sious.
Definition of the imaginary Circles on the Earth'ssurface-Latitude, etc., explained.號do. do. Longitude explained.
Diagram of the Eart. is two Henispheres
Definition of Plane $\quad \underline{a}$ and the properties of aRight-angled Irexplained.Instruments of Navigan on defined and explained.. .Mariner's Cornpass, and a Table of the Angles eachpoint makes with the Meridian.
The Sailings-Great Circle described on the Chart.
Plane Sailing, by Projection and InspectionQuestions for Exercise in Plane Sailing.9
Traverse Sailing by Projection and Inspection. 13Parallel Sailing by Projection and Iuspection, with\& Table showing the number of minutes andseconds of Departure contained in one degreeof Longitude, fur ever'y degree of Latitude....
Middle Latitude Sailing by Projection and InspectionQuestions for Exercise in Case 1st, Mid. Lat. Sailingdo. do. in Case 2d, Mid. Lat. SailingMercator's Sailing by Projection and Inspection. ...Questions for Exercise in Cas' 1 st, Mercator's Sailingdo. do. in Case 2d, Mercator's SailingCurrent Sailing explained.
Queations for Fuercise in
Questions for Exercise in Curent Sailing.1820

Taking Departures, or finding the Ship's Position from the Bearing of known objects on the Land
Table for finding the Ship's Position by two Bearings of the same object on the Land, with the Rules
Projection of a case of finding the Ship's Position by two Bearings.
Questions for Exercise in finding the Ship's Fosition from Bearings34
Tides-Description and Cause of explained. 36
First Method of fioding the Time of High Water. 36
Second Methor of finding the Time of High Water. 37Winds in different parts of the Work described...
Curreuts of the Ocean described. 3938
Hurricanes-their Nature and Cause described. 41
Diagram of the Storm Cirele in North Latitude. 42
do. do. South Latitude... 43
Remarks on Hardling a Ship in a Hurricane 44
The Construction of Jercator's Chart 46
Diagram of a Chart of Part of the Atlantic Ocean,
and Ship's Track
Construction of a Consting Chart ou a large scale. 47
-The I'se of Mercator's CLurt, Pricking off the Ship,Shaping a Course, etc.
Questions fur Exercise in Using the Chart. 48 49
Use of the Coasting Chart and Questions for Exer- cise. 511Snuolinge on the Corst with Remarks iboreon5232

NEUTICAL ASTRONOMY.

Diagrams, showing the Dip, Refraction and Parallax64Definitions of the Dip, Refraction and Parallax. 67
Diagram, showing the manner of taking Altitudes 68
The Instrtaments of Nautical Astronomy explained 69
To Adjust the Quadrant. 70
To Measure Altitudes with the Quadrant. 71
To Adjust the Sextant. 72
To find the Index Error of the Sextant. 73
The Use of the Sextant in measuring Angular Dis- tances 74
To find any Heavenly Body (used in the Lunar Dis-tance) by computing its Distance from theMoon.
75
Remarks on Telescopes, and a New Method of tak- ing Lunars. 76
The Artificial Horizon explained. 77
Diagram, showing the principles of the Artificial Horizon. 78
The Chronometer explained-stopping, setting ago- ing, etc. 79
General Remarks on the Use of the Chronometer. 80
The Azimuth Compass explained-Taking Azi- muths and Amplitudes. 81
Use of the Thermometer, and General Remarks ou the same 82
Use of the Barometer, and Practical Remarks on the same 88
To Correct the Sun's Deelination, with Remarks... 84
Questions for Exercise in Correcting the Declination 85
Finding the Latitude by the Sun's Meridian Alti- tude. 86
Diagrams and Examples of finding the Latitude by the Sun. 87
Questions for Exercise 88
Diagram of the sun in the Zeuith, and Examples. .Finling the Latitude by observing the Sun's centre89
89Sextant

Finding the Latitude by a Meridian Altitude of the san below the Pole
1acs54
55
Description of the Planets used in Navigation. 56
Definition of Nautical Astronomy. 57
Projection of the Heavens in two Hemisphere 60
Signs of the Zodiac, and the Change in the Seasons explained 61
round the Pole 69
Definitions of Time 63
Diagrams, showing the Method of finding the Stars in the heavens from their computed Altitudein the heavens from
sun below the Pole

Fin:ling the Latitude on Shore by the Artificial

 HorizonAGE

Firding the Latitude by the Sun out of the Meridian92

Questions for Exercise in finding the Latitude out
of the Meridian.
of the Meridian. 94
Finding the Latitude by two Altitudes of the Sun. 96
Quenturn tol Exercise in finding the Latitude by iwo Altitudes 99
Fhotug the Latitude from the Sun's change of Alti-tude on the Prime Vertical, with a Table con-taining the Sun's change of Altitude in oneminute of time for every degree of Latitude. .
Finding the Latitude by the Meridian Altitude of$10 n$
the Mwou 101
The bloo.
The bloo. Examples of finding the Latitude by the Moon... 103
Finding the Latitude by the Meridian Altitude of a Planet 104
Examples of finding the Latitude by a Planet 105
Finding the Latitude by the Meridian Altitude of a Star. 106
Ta find the Star in the heavens from its computed Altitude and Meridian Passage............... 1 107
Examples of finding the Latitude by a Star.
Finding the Latitude by the Meridian Altitude of the Pole Star, and also at any other time whenvisible.109
Finding the Latitude by the Meridian Altitude of two Starr, North aud South of the Meridian, when the horizon is obscured 110
Finding the Latitude by an Altitude of a Star out of the Meridian 111
To compute the Logarithm of the Latitude and De- clination when the latter exceeds 25° 112
Finding the Latitude by two Stars, one of them out of the Meridian. 118
Finding the Latitude by an Alritude of the Moon out of the Meridian 114Finding the Latitude by an Altitude of a Planet outof the Meridian..115
Diagrum of an Amplitude, und solved by Inspec- tion. 116
Finding the Varistion of the Compass by an Ampli- tude. 117
Diagrsin of an Aximuth, and Rule for computing the same 118
Finding the Variation by an Azimuth. 119
Diagram, showing the Effect of Local Attraction on the Ship's Compasa 120
Remedy, when Local Attraction exists on board Ship at Sea 121
Finding the Time at Sea by the Sun. 122
Diagrams of the Hour Angles, with North and South Declinations 123
Method of Observing Altitudes of the Sun for Time, and General Rules for finding the Time at Ship, with Examples 124
Dlagram of the Hour Angles, when both the Sun and the Ship are on the Equator, with Exam- ples of finding the Time 127
Finding the Time by the Sun's Rlsing or Setting. 128
Diagrams of the Hour Angles at Rising or Setting. 128
Finding the Time from Equal Altitudes of the Sun near Noon 130
Finding the Time on Shore by the Artificial Horizon 131
Finding the Time by an Altitude of the Moon. 132
Finding the Time by an Altitude of a Planet 134
Finding the Time by an Altitude of a Star. 136
Remarks on finding the Longitude by Chronometer 138
Finding the Lungitude by Chronometer by the SunExamples of the Ship crossing the Opposite Merid-ian to Grcenwich148
To Oorrect the Longitude at Noon, when the Lati-tude warked with is in error.144

Finding the Longitude oy Chronometar at Sunrise or Sunset

146
Finding the Longitude by Cbronometer at Noon, from Equal Altitudes........................... by the Chrommeter sy the Moon.148

Finding the Latitude by a Star, and the Longitude by Chronometer by Planet.
Finding the Lougitude by Chronometer, and the Variation of the Compass by an Azimuth. from the same Altitude of the Sup
Finding the Ship's Positior at Sea by Sumner'sMethod.151
Diagram of Sumner's Method. 153
Continuation of the same Example. 154
Ratiug the Chronometer at Sea. 15
Examples in West Longitude 156
do. East Longitude 158
Rating the Chronometer on Shore. 159
Questions for Exercise in finding the Longitude by Chrouometer 160
Lunar Observations. Diagram showing the Effect of Parallax on the Lunar Distance 161
Remarks ou Lunar Observations. 162
Methods of Observing a Lunar, with or without as- sistants. 168
Diagrams of a Lunar Observation 164
Finding the Longitude by a Lunar Olservation bythe Sun.165
do. do. Luuar Observnion by a Slar. 167
do. do. do. by a Planet 168
To find the Error in the Meas. .nstance. 169The Bodies being too near the ...tridian to get thecorrect time from their Altitude. Time foundafterwards and applied170
Rule to Compute the Altitude of any heavenly body 172
To Compute the Altitudes at the time of observing the Distance. 173
Finding the Longitude by Lunar Observations on Shore.. 174
New Method of finding the Longitude from the measurement of the Mon's Declination. 176
Diagram of the Moon and a Star on the Meridian.. 177
New Metbod of finding the Lungitude from the Me- ridian Altitudes of the Moon and a Star...... 178
Diagram of the Meridian Altitudes of the Moon and
Star 179
Method of Keeping a Ship's Reckoning at Sea 180
The Log Board explained 181 181
Allowing for Leeway and Variation. 182
Remarks on Keeping the Reckoning at Sea 188
Rules for Working a Day's Work. 184
Example of a Day's Work, outward bound. 185
do. do. at Sea. 18ε
do. do. inward bound 187
Finding the Departure and Longitude from EqualDistances of Sun or Star from the Meridian ..188
Navigating the Ship, application of the above Rules,189
etc. do Indications of Stormy weather, diseovery of Danger. 189
Rules to Prevent Collision on meeting Ships at Sea, etc. 19)
Lying to under a Drag. Construction of a Tempo- porary Rudder 191
Making the Land. Signs of Land being near. 198
Methods of Keeping the Log-Book. 193
Keeping the Harbor Log, outward bound 194
Method of Keeping the Log-Book in Civil Time 195
Usual Method of Keeping the Log in Sea Time, ex-emplified in a Journal from Santa Cruz to StJohn's.19
Abstract of the Journal 508

NOTICE TO THE THIRD EDITION.

This edition has been further revised and corrected; and a new and complete set of Tablea, for finding the Time at Ship (and thence the Longitude by Chronometer), have been added.

NOTICE TO THE SECOND EDITION.

This work has been reviscd and corrected, and an addition made of a separate Explenat tion of the Tables, and it is hoped that no error of importance will now be found to exist. It may be necessury here to say, that the author, in writing this work, did not consider a separate Explanation of the Tables requisite, as he had been particular in explaining them in different parts of the work when they were used. But as some navigators have recommended it, the following has been added, which will be found usefill, as by glancing over them you can rapidly see, what the book contains, where the tables can be found, how and where they are used.

EXPLANATION AND USE OF THE TABLES.

Note.-The number of the page, which is placed 8^{n} the same line with the number of the table, refers to the second part of this work, where the table will be found, and the numbers of pages in the margin refer to the first part of this work, where the table is used and explained.

TABLES I. AND II.-Page 1 to 61.

Difference of Latitude and Departure.

These tables are of very extensive use in Navigation, affording an easy and expeditious method of solving problems in right-angled plane trigonometry, and consequently applicable to every variety of sailing. Table 1. contains the difference of latitude and departure (in whole numbers and tenths) answering to distances not exceeding 300, and for courses to every point of the compass. Table Il. is of the same nature and extent, but for courses consisting of whole degrees. The courses are set down at the top of the pages when they do not exceed 4 points or 45 degrees, and at the bottom when they are greater than these quantities; and it must be observed that when the course is taken from the top of the page, the diff. of Lat. and $D_{e p}$. must be taken'from the top also, but when the course is taken from the bottom the diff. of Lat. and Dip. must be taken from the bottom. Hence, wnen these tajles are applied in Purullel or Mildle Latitude sailing the co. lat. or co. mici. lat. is taken as a course, the departure or meridional distance is found in the Dep. coinmn, and the difference of longitude in the Dist. column. In Mercator's sailing, the meridional difference of latitude is taken out in the Lat. column, and difference of longitude in the Dep. column. When any of the given parts (excepting the courses,) exceed the limits of the table, any aliquot part, as a half, third, fourth, \&c., is to be taken; and those found cor responding are to be multiplied by the same figure that the given number is divided by.

> TABLE III.-Page 62 тo 67.
> Meridional Parts.

This table is used in resolving problems by Mercator's sailing, and in construsting sharts on Mercator's projection. The meridional parts are to be taken out for the degrees answering to the given latitude, at the top or bottom, and for the minutes at Page 18 to 24.

Page $2 \overline{3}$ 1028. oither side column.

> 1* TABLE IV.-Page 68.
> Mean Refraction

This table contains the mean refraction of the heavenly bodies, in minutes and secon ts, at a mean state of the atmosphere, and corresponding to their observed altiludes This correction is always to be substracted from the observed altitude of the

Page 25
to 28. whject.

Page 67 and 80.
*2 TABLE V.-FAge 69.

Dip of the Horizon

The corrections taken out from this table, answering to the height of the eye, above the sea in feet, are to be subtracted, from an altitide taken by a fore observation, or added to those taken by a back one.

$$
\text { *3 TABLE VI.-Page } 69 .
$$

Sun's Parallax in Altitude.
Page 67 This correction is to be taken out opposite the Sun's altitude, and is always ad and 86. ditive to it.

* Note-The joint offect of the oorrections taken from these three tables, together with the Sun's semi-diameter \therefore be taken at once from Table IX. When the altitude of the Sun's lower limb is triken by a fore observation.

> TABLE VII.-Page 69.
> Moon's Augmentation.

Paye 101.
The Moon's apparent horizontal semi-diameter, as given in the Nautical Almanacs, is to be increased by a number of seconds, called the augmentation, taken out from this table, answering nearest to her altitude. Note.-In practice this is seldom used, except in. working a Lunar. See page 165 .

TABLE VIII.-Page 69.

Dip at Different Distances.

Page 90.
When that part of the horizon immediately under the Sun is obstructed by land ${ }^{\text {r }}$ estimated distance from the land in miles in the side column) instead of Table V.

$$
\text { TABLE IX.-P } \mathrm{P}_{\triangle G E} 70 .
$$

To Correct the Observed Altitude of the Sun's Lower Limb.

Page 86.
This table is intended to simplify the usual method of correcting the observed altituds of the Sun's lower limb, when taken by a fore observation, by showing the correcparallz. parallax. These corrections k ing computed to minutes and tenths, the tenths may easily be reduced to seconds by multiplyıng them by six. In this table the Sun's semi-diameter is assumed at 16 minutes, and its variation from that quantity in each month of the year, given at the bottom of the table, is to be applied to the corrections found in the table according to the sign + or - prefixed it.

TABLE X.-Page 71 and 72.

Sun's Declination.
The Sun's declination is given in this table in degrees and minutes for the years 1854-55-56-57, at noon on each day of the year under the meridian of Greenwich; but will answer for several subsequent years, by applying the corrections from Table XII.

$$
\text { TABLE XI.-Page } 73 .
$$

To Correct the Sun's Declination for Longitude and for Time.

TABLE XII.-Page 73.

Correction of the Sun's Declinatiin every 4 years.

This table is intended to correct the Sun's declination given in Table X., for the change that takes place in periods of four years. See note below the table.

TABLE XIII.-Page 74.

> Sun's Right Ascension.

The Sun's mean right ascension contained in this table, is to be taken out with the month at the top, and the day in the side column. When great accuracy is necessary, it must be taken from Nautical Almanac.

TABLE XIV.--Page 74.
 Equation of Time and Table of Corrections.

The Equation of time for apparent noon at Greenwich, is given in this table for the yeare 1854-55-56 and '57, and which will answer nearly for sixteen years. A table adjoining is given for correcting the Equation of time for Longitude and for time. This table is entered with the daily change of the variation at the top, and the Longitude at the left side, (or if for time, at the right side) and the angle of meeting points out the correction in sec. and tenths of sec. to be applied as directed at the bottom of the table. Note.-Rule for correcting the Equation of time from the Nautical Almanac is given at page 124.

$$
\begin{aligned}
& \text { Table XV.-Page is to so. } \\
& \text { For Finding the Latitude out of the Meridian. }
\end{aligned}
$$

This table was first calculated and published by the author in a separate form, (called Thom's Tables) but on writing this work was introduced in it; it is divided into

Page 9s. five parts, and explained at Page 93.

TABLE XVI.—Page 81 то 83.

Apparent Time of Sun's Rising and Setting.

This table is entered with the declination at the top and the latitude at the side, and the angle * meeting will point out the time of rising and setting from the top when the Latitude and doclination are of the same name, or from the bottom when they are of contrary names.

To Find the Time of Rising and Setting of any other Celestial Object.

This table also exhibits half the time that an object continues above the horizon in the column of Sett., and half the time that it continues below in the column of Ris., from the top of the page, when the latitude and declination of the object are of the same name, and from the bottom when they are of contrary names. Therefore, to find the time of the object's rising, subtract half the time that it continues above the horizon, from the time of its passing the meridian, and to find the time of setting add half the time that it continues above the horizon to the time of its passing the meridian. Note.-The rule for computing the meridian passage of the Stars is given it page 111. Table XVIII. also gives the Mn. Passages of the Stars Page 85 to 90.

Moon's M. P., Page 101. Stur's M. P., Page 106. Planet's M. P. Page 115.

TABLE XVII.-Page 84.

Altitudes by which the Apparent Time may be found with the greatest accuracy.

When the latitude and declination of an object are of the same name, by entering this table with the declination at top or bottom, and the latitude at the side, the angle of meeting Page 122 points nut the altitude of the object nearly, when it is in the prime vertical, or at its nesrest approach thereto, and which is the best altitude for ascertaining the apparent time. When the latitude and declination of an object are of contrary names the object is nearest the prime vertical, when in the horizon, but an altitude less than 6° or 7° stould not be used on account of the uncertainty of refraction at low altitudes.

TABLE XVIII.-Page 85 to 90.
For finding the Apparent Time of 24 Principal Stars passing the Meridian throughowt the Page 106. year.

Dage 106.
TABLE XIX.-Page 91.
Right Ascension and Declination of 24 Principal Stars.
TAbLE XX.-Page 91.
For Correcting the Observed Altitude of a Star or Planet.
Page 108.
This table contains the corrections in minutes and tenths to be subtracted from the observed altitude of a Star or Planet to find its true altitude, being the joint effect of refraction and dip of the norizon.

TABLE XXI.—Page 92.
To find the Latitude by an Altitude of the Polar Star.

Pag 109 and 71.

This table is explained on its own page, and on the right hand column is the varia tion of the correction in 10 years, which is to be substracted from the correction for that period of time.

TABLE XXII.-Paoe 93.
For Correcting the Time of the Moon's M. Passage at Greenwich to the time of her passing over any other Meridian.

This table is entered with the daily variation of Moon's M. Passage to the nearest minute at the top, and the longitude of the place in the left side column, and the angle

Page 101. of meeting points out the minutes to be added to the time of Moon's passing the Meridian of Greenwich in west longitude or subtracted in east. The sum or remainder will be the time of ber passing the Meridian of the place.

TABLE XXIII-Pag 94.
For Reducing the Moon's Declination to the Greenwich Time of the Observation.
Page 102.
This table is only used with an Almanac that has the Moon's Declination given for every noon and midnight.

TABLE XXIV.-Páae 95.
To Correct the Moon's Semi-diameter and Horizontal Parallax.
Page 101. This table is explained at Page 95, below the table.
TABLE XXV.-Page 96.
Page 102.
To Correct the Moon's Apparent Altitude.
TABLE XXVI.-Page 97.
To Turn Time into Degrees or Degrees into Time.
This table is entered with degrees in one column, and opposite the time correspond
Page 140. ing is found.

TABLE XXVII.-Page 98 то 106.

Logarithms of the Latitude and Polar Distances.

This table contains Logs. of latitude and polar distance for finding the time, and
Page 123. thence the longitude by chronometer. The latitude in degrees is taken from the top and mile from left hand side, the polar distance in degrees is taken from the bottom and miles from right hand side, except when the polar distance is above 90°. it is then taken from the top.

EXPLANATION AND USE OF THE TABLES.
TABLE XXVIII.-Pagr 107, 115.
Logarithins of the Half Sum and Difference.
This table contains the Logs. of the half sum and difference for finding the time, and thence the longitude by chronometer. The half sum is tan'gn from the top and

Page 12t difference from bottom.

TABLE XXIX.-Page 116 ro 124.
Logarithms of Apparent Time or Hour Angle.
For explanation, see note at bottom of page 125, first part of this work.
Paye 128.
TABLE XXX.-Page 125.
For Correcting the Longitude by Chronometer for the effect of an error in the Latitude used un finding Time.

This table saves the trouble of working the sights over again at noon, when you
Page 144 find you have used a wrong latitude in finding the time at sas in the morning.

TABLE XXXI.-Page 126 тo 137.
Logarithms of the Apparent Lunar Distance.
This table contains the Logs. sines and Logs. tangent of the apparent lunar distances. Page 165.
TABLE XXXII.-Page 138 to 152.
Logarithms of the First and Second Corrections.
This table contains the first and second corrections to be applied to the apparent distance.

Page 165.
TABLE XXXIII.-Page 154 to 205.
Logarithms of the Third Correction.
This table contains the third correction to be added to the first and second correotions and apparent Lunar distance to find the true distance.

TABLE XXXIV.-Page 206 to 220.
Proportional Logarithms.
This table is explained at bottom of page 133, first part of this work.
Page 133
TABLE XXXV.-Page 221, 222.

> Amplitudes.

This table is intended to expedite the method of finding the variation of the compass. Page 196.
TABLE XXXVI.-Page 223 то 225.
Extracts from the Nautical Almanac.
This table contains extracts from the Nautical Almanac for the year 1854, for the purpose of working out the examples given in this work.

TABLE XXXVII.-Page 226 and 227.
Variation of the Compass.
This table contains the approximate variation of the compass, and is to be entered with the side, and the angle of meeting points out the degrees of variation and is marked east or west. The longitude is given for every 10 degrees, and the latitude for every 2 degrees. If the variation be required for any intermediate position, it may be found by taking |the mean be tween the two or four variations which are given for places on each side of the required position.

TABLE XXXVIII.—Page 228 to 230.

Times of High Water at the principal Ports.

This table contains the times of high water at the full and change of the moon. It is alphabetiaally arranged, and entered accordingly; when opposite the name of the place, will be found the time of high water.

> TABLE XXXIX.-PAoE 231 то 243.
> Position of Places.

This table contains the Latitudes and Longitudes of the most prominent places in the world; the manner of finding any required place, supposing its situation nearly known-needs no explanation.
table XL.-Page 244 to the find.
Positions of Places.
In this Table the Latitudes and Longitudes of Places has been extended, and some places or, lmoortance (omitted in Table XXXIX) have been inserted.

TABLE AT PAGE 18-First Part of this Work:
Page 18.
Shows the number of minutes and seconds contained in each degree, or 60 mile of longitude, for every degree of latitude.

> TABLE AT PAGE 32-First Part of this Work.

Page 32. For finding the distance of an object by two bearings and the distance sailed between them.
This table is particularly useful to coasters.
table at Page 37-First Part of this Work.

Page 37.
This table is used for finding the time of high zoater at any place by correcting for the moon's horizontal parallax.

TABLE AT PAGE 100 - First Part of this Wory.
To find the Latitude from Sun's change of Altitude.
Page 100.
This table contains the Sun's change of altitude in one minute of time fur every degree of latitude when on the Prime Vertical.

TABLE AT PAGE 153-Second Part of this Wore.

This table contains the Sun's change of altitude in one minute of time for every degree of lati sude when not on the Prime Vertical.

JAMES H. BROWNLOW

PRACTICAL NAVIGATION.

INTRODUCTION.

Navigation is the art of conducting a ship from one port to another, throngh the wide and trackless ocean, with the greatest safety, in the shortest time possible, and to find her position on the globe st any given time.

To be able to do this, the mariner is required to have a knowledge of certain imaginary circlea, supposed to be drawn on the surface of the earth, together with the most practical and easy method of finding a ship's position thereon, from the course steered by the compass, and her distance sailed, and also the course and distance to her intended port. This constitutes what is called Navigating by Dead Reckoning; but as it is liable to be greatly in error, even in short distances run, from many causes (which will be explained in this work), it cannot therefore safely be depended on.

Consequently, the mariner must have some other resource to apply to, with the view of ascertaining his ship's true position. This can only be derived from the observations of the heavenly bodies; but to do this, he is required to have a knowledge of certain imaginary circles supposed to be drawn in the heavens, corresponding to those already supposed to be drawn on the earth's surface; by which means he obtains the positions of the heavenly bodies themselves, in the same manner as the position of the ship is indicated by the circles on the earth : and it will be the object of this work to instruct him how to find his ship's position, from the observations of any of the heavenly bodies which may be visible, either by day or by night, and avoiding all the tedious details and intricate calculations which are not necessary, thereby saving much valuable time and labor; the results, by this method, having been found from actual experience to be sufficiently accurate for all practical purposes.

In this work the mariner will therefore not be required to go through a tedious training in decimal and logarithmical arithmetic, nor is it required that he should have a previous knowledge of either geometry or trigonometry, which are usually given in works of this kind; all the matter which treats on those subjects is therefore discarded, except such part of it as has a direct bearing on the practice of navigation at sea.

All that is then required of him is to have a previous knowledge of the common rules of arithmetic; that is, addition, subtraction, multiplication, division, the rule of three, and the practice of aliquot parts; or that amount of education only which would be required to fit a person to ful61 the ordinary business of life.

In the room of the above-mentioned discarded matter, Diagrams or figures of the subject under consideration will be introduced in their proper places, and the explanation of each Diagram facing it on the same or opposite pages, thereby enabling the learner to comprehend mechanically the whole case at one view.

The construction and use of both General and Coasting Charts, with the manner of taking Soundings on the Coast, the prevailing Winds and Currents in different parts of the world, and Storms and Hurricanes, will all be explained, and practical rules given to avoid the latter, derived from actual experience. The Instruments of Navigation will also be explained, and the manner of adjusting, correcting, and using them at sea.

In treating of Nautical Astronomy, the subject will be illustrated by Diagrams, and the cases proved by projection only, in the room of going into the tedious solutions of Spherical Trigonometry, except in those cases where a Rule is required; and much new matter on this subject will be introduced, in connection with the use of the Chronometer. Many new Tables will also be -ntroduced, with a view of shortening the labor in the computations.

Although this work is intended to treat only on those subjects which have reference so the place of the Ship on the Ocean, nevertheless much useful matter will be found which will be interesting to the young officer, in regard of Navigating the Ship. The who.e being original matter, which the author of this work has derived from 2 personal experieuce of nore than a quarter of a century, in Navigating Ships to nearly all parts of the world. The work will be closed with the methods of Keeping a Log-Book, exemplified by a sournal of a Voyage, with remarks on tha same, as would actually be done at sea.

DIAGKAM OF THE EAR'TH,

Finowng wts inclination to the Plane of its Orbit of $23^{\circ} 28^{\prime}$, and the imaginary Carcles drawn or, is
Fig. 1.

DESCRIPTION AND DIMENSIONS OF THE EARTH.

The Polar Diameter is 7899, and the Equatorial Diameter 7926 miles; the latter being the greatest, is cansed by the revolution of the Earth on its axis, and as the greater portion of the surface is covered with water, it recedes from the poles towards the Equator, until its tendency to run back towards the poles just balances the effects of the centrifugal force. This causes the Equatorial Diameter to be about 27 miles greater than the Polar Diameter. If the Earth should stop revolving on its axis, the water at the Equator would cottle away towards the Poles until it assumed the form of a Globe as near as possible. Thus, large portions of land in the Torrid Zone which are now covered by the ocean would be left dry, and new conti. nonts and islands formed.

The Polar Axis is not perpendicular, but inclines to the plane of its orbit at an angle of $23^{\circ} 28^{\prime}$, and performs its revolution round the sun in one year, or 365 days 6 hours, or at the rate of 68,000 miles an hour; at the same time it performs its daily revolution round its axis at the rate of 15° to the hour-equal to 900 miles, or 15 miles in 1 minute of time.

Latitude is measured in Degrees, Minutes, and Seconds from the Equator towards the Poles, from which It is 90° distant; each Degree contains 60 Minutes, and each Minute contains 60 Seconds. 1 Minute or Nautical Mile contains 6082 feet, or 1013 fathoms, and therefore a Second is about 101 feet, or 17 fathoms nearly.

The Circumference of the Earth at the Equator is 360 Degrees of the same length as the Degrees of Latitade; consequently, Degrees of Latitude and Longitude are the same length on the Equator. But on sailing North or South from the Equator, the Meridians contract, and the Degrees of Longitude beoome less, (bat still contain or are divided into 60 minutes,) until they finally meet at the Poles, where there is no Longitude.
The Earth revolves from West to East, which is the ranse of all the heavenly bodies appearing to rise in the East and set in the West.

GEOGRAPHY,

 LS APPLIED TO THE PRACTICE OF NAVIGATION AT SEA.

 LS APPLIED TO THE PRACTICE OF NAVIGATION AT SEA.}

DEFINITIONS.

Practical Navigation relates to two methods, independent of each other-the first is that usually called Dead Reckoning, and the other by Astronomical Observations; but in practice they are generally carried on together, as a check upon each other.

The first of these methods requires a knowledge of the imaginary lines and Circles on the surface of the Glohe, or Earth, which we inhabit, and which turns round once in every 24 hours; the line round which it revolves, and which is the shortest diameter, is called the Polar Axis, and drawn between the North and South Poles
90° from the Poles is the great Circle, called the Equator, passing round the earth and dividing it into two equal parts, or Hemispheres. At all places on this circle the sun rises and sets at 60^{\prime} clock all the year round, and the days and nights are equal, being divided into 12 hours each.

A Meridian is a circle passing through both poles, and cutting the Equator at right angles. Places situated on this Circle are said to be on the same meridian North or South of each other

Latitude is the distance from the Equator, measured in Degrees and Minutes, on a meridian towards the North or South Poles, and named accordingly.
The Co-latitude is the difference between a given Latitude and 90°, or the Pole.
Parallels of Latitude are Circles parallel to the Equator, running East and West. Places on this circle are said to lie on the same parallel of latitude.

The Difference of Latitude of two places is the portion of the meridan included between their parallels.
The Difference of Latitude of a Ship is therefore the distance she makes good in a North or South direcuon.

It is evident that when two places are on the same side of the Equator, their difference of Latitude is found by subtracting the lesser latitude from the greater, and that when they are on opposite sides of the Equator, that is, when one place is in North Latitude, and the other in South Latitude, the sum of their Latitudes is the difference of Latitude.

EXAMPLE 1.

Find the difference of Latitude between New York nd Charleston, S. C.

$$
\begin{aligned}
& \text { New York, Latitude..... } 40^{\circ} 43^{\prime} \mathrm{N} . \\
& \text { Charleston...." } \because \ldots . .3246 \mathrm{~N} \\
& \text { Difference of Latitude. . } .^{\circ} 57^{\prime} .
\end{aligned}
$$

EXAMPLE 2.
Find the difference of Latitude between Cape Henry nd Cape St. Roque.

$$
\begin{aligned}
& \text { Cape Henry, Latitude. } 36^{\circ} \text { ธ6 } 6^{\prime} \mathrm{N} \text {. } \\
& \text { Cape St. Roque.." "..5 } 28 \mathrm{~S} \text {. } \\
& \text { Difference of Latitude . } 42^{\circ} 24^{\prime} \text {. }
\end{aligned}
$$

EXAMPLE 8.

A ship sails from Latitude $50^{\circ} 19^{\prime} \mathrm{N}$. to $48^{\circ} 12^{\prime} \mathrm{N}$. find ber difference of Jatitude.

Latitude left. $50^{\circ} 19^{\prime} \mathrm{N}$.
Latitude in.
Differeuce of Latitude..... $48 \quad 12 \mathrm{~N}$.
EXAMPLE 4.
A ship sails from Latitude $1^{\circ} 11^{\prime}$ N. to $0^{\circ} 13^{\prime} \mathrm{S}$, find her differeuce of Latitude.

Latitude left. 1°
Latitude in.
11^{\prime}
N.
N
.
Difference of Latitude $1^{\circ} 24^{\prime}$ or 84 miles

Notz.-When a Ship in north latitude sails North, she evidently increases her latitude, and so likewise when in south atitude she salls South, because in these cases she increases her distance from the Equator, at which the latitudo begins.
But if in north latitude she sails South, or in south latitude she sails North, she diminishes her latitude; hence, when one latitude and the difference of latitude are given the ether atitude is'easily found.

EXAMPLE 1.
A Ship from $43^{\circ} 30^{\prime}$ S. sails 219 miles South, required ser latitude in.

$$
\begin{aligned}
& \text { Latitude left. } t 3^{\circ} 30^{\prime} \mathrm{S} \text {. } \\
& \text { Diff of Lat. } 219 \text { divided by } 60=339 \mathrm{~S} \text {. } \\
& \text { Latitude in. } 47^{\circ} 9^{\prime} \mathrm{S} \text {. }
\end{aligned}
$$

EXAMPLE 2.

A Ship from latitude $43^{\circ} 11^{\prime} \mathrm{N}$. makes 194 milen sonthing, required her latitude in.

Latitude left. $43^{\circ} 11^{\prime} \mathrm{N}$.
Difference of Latitude $\ldots . .194-\frac{314}{}$ Latitude in
$39^{\circ} 57^{\prime} \mathrm{N}$

EXAMPLE 3.
A Ship from Latitude $1^{\bullet} 3^{\prime} \mathrm{N}$. sails 123 milea South required her latitude in.

Difference of Latitude $123-23$ S

Nort.-The Ship being in $1^{\circ} 8^{\prime}$, or 63 miles N . of the Equator, mant evidently be in South Latitude after making 128 miles sonthing.
Thus, in subtracting one of the quantities from the owner, the difference takes the name of the groater.

Longitude is tho distance measured on the Equator, between the Moridian of a given place and another, ealled the first meridian. The choice of a first meridian is arbitrary. The Americans, English, and other nations adopt Greenwich Observatory in England as the first Meridian.

The Longıtude of a place is named East or West, according as it is East or West of Greenwich, as far as 880°, and which is the opposite meridian to Greenwich, or one-half of the circumference of the Earth. A Ship sailing East beyond 180° East Longitude, would then be in West Longitude, and sailing West beyond 180° West Longitude, would then be in East Longitude.

Longitude is measured either in Degrees, Minutes, and Seconds, or in Time, that is, in Hours, Minutes, and Seconds, each hour being equal to 15°; for the Sun, which regulates the time, returns to the same meridian again after describing a complete circle, or 360°, in 24 hours, and 15° multiplied by 24 , makes 360°.

The Difference of Longitude of two places is the portion of the Equator included between their meridians. To measure, therefore, the difference of Longitude between two places, we must follow down their meridians to the Equator, and then take the included portion of the Equator itself,

The Degrees of Latitude and Longitude are of the same length on the Equator; but as the meridians contract and meet at the Poles, the greater the Latitude the Degrees of Longitude become less; that is, the space contained in a Degree of Longitude becomes less as the Latitude increases, until at the Poles the Longitude ceases altogether.

When two places are on the same side of the first meridian, their difference of Langitude is found by subtracting the lesser from the greater.

When two places are on opposite sides of the first meridian, that is, when one place is in East Longitude and the other in West Longitude, the sum of their Longitudes is the difference of Longitude.

When one Longitude is East and the other West, and their sum exceeds 180°, subtract from 360° wilh give their difference of Longitude.

EXAMPLE 1.

Fiad the difference of Longitude between Now York and Charleston, S. C.

$$
\begin{aligned}
& \text { New York, Longitude......74 } 4^{\circ} 0^{\prime} \mathrm{W} \text {. } \\
& \text { Charlenton. ... } " \frac{79}{64} \mathrm{~W} \text {. } \\
& \text { Difference of Longitudo.... } 5^{5} 54^{\prime} .
\end{aligned}
$$

EXAMPLE 2.

Find the difference of Longitude between the Caps of Food Hope and Oape St. Roque.

Cape of Good Hope, Longitude $18^{\circ} 30^{\prime} \mathrm{E}$ Oape St. Roque........ ".... $35 \quad 17^{\prime}$ W. Difference of Longitude. $\overline{63^{\circ} 47^{\prime}}$.

EXAMPLE 3.

A Ship ails from Longitude $50^{\circ} 10^{\prime}$ W. to $60^{\circ} 30^{\prime}$ W, find the difference of Longitude.

Longiturle left. $50^{\circ} 10^{\prime} \mathrm{W}$. Longitude in. 60 30 W. Difference of Longitude. . $\overline{0^{\circ} 20^{\prime}}$.

EXAMPLE 4.

A Ship sails from Longitude $5^{\circ} 40^{\prime}$ W. to $2^{\circ} 10^{\prime} \mathrm{E}$ and her difference of Longitude.

> Longitude left. $5^{\circ} 40^{\prime} \mathrm{W}$.
> Longitude in. $\frac{10}{\mathrm{E}}$.
> Difference of Longitude. . $7^{\circ} 50^{\circ}$.

EXAMPLE б.

Find the difference of Longitude between New York and Manilla.

New York, Longitude.	74°	$1^{\prime} \mathrm{W}$.
Manilla.........	121	
Sum	195°	3^{\prime}.
Subtract from	360	0.
Difference of Longitud	164°	57^{\prime}

Nors.-A Ship in East Longitnde ssiling East, or in West Longitude ssiling West, increases her Longitude, bיrt it East Longitude sailing West, or in West Longitude sailing East, she dimicishes her longitude; and when the Lung xde exceed 180°, subtract it from 860 , will give the Longitade in of a contrary name.

EXAMPLE 6.

A Ship from Longitude $85^{\circ} 25^{\prime}$ W. sails East $3^{\circ} 40^{\prime}$, find the Longitade in.

Longitude lef. $85^{\circ} 25^{\prime}$ W.
Difference of Longitude $3 \quad 40 \mathrm{E}$.
Iongitude in. $\overline{81^{\circ} 45^{\prime}} \mathbf{W}$.

EXAMPLE 7.
A Ship from Longitude $179^{\circ} 32^{\prime}$ E. sails East $2^{\circ} 30^{\prime}$, find the Longitude in.

Fic. 4.
dIAGRAM OF THE RIGHT-ANGLED TRIANGLR.

PRINCIPLES OF THE RIGHT-ANGLED TRIANGLE.

Thy Course steered is the angle between the Meridian and the Ship's head ; the Course made good is the angle between the Meridian and the Ship's real track on the ocean.

The Course is reckoned from the Meridian accordingly, North or South towards the East or West, if lese. than eight points, or 90 Degrees.

The Course is measured in points of $11^{\circ} 15^{\prime}$ each, or in Degrees and Minutes.
The Rhumb line is the Ship's track when crossing all the Meridians at the same Angle.
The Distance between two places: or the Distance sailed by the Ship on a certain course, is measured is autical miles of 60 to the Degree of Latitude, each containing 6,082 feet.
Three such miles make a League.
The Departure is the Distance madc good by the Ship due East or West, or the distance she departs from her first Meridian, and are always of the same length as the miles of Distance, or difference of Latitude, it is also called Easting or Westing, and always expressed in miles. When a Ship sails East or West she makes no difference of Latitude.

The difference of Latitude is the space contained between two parallels of Latituda, and is counted on the meridian. When a ship sails North or South she makes no Departure.

Taking a departure means taking the bearing of any object by compass, or its angle with the Meridıan, and estimating its distance from the Ship on leaving the land.

The above figure represents a case in Plane Sailing, in which all the above terms are explained. The thick lines form a Right-Angled Triangle, of which the Perpendicular is the Difference of Latitude. The Base, the Departure ; the Angle between them is a Right $\Lambda n g l e$, or 90°; and the Hypothenuse is the Distance sailed; the Angle between the Hypothenuse and the Perpendicular is the Course reckoned from. the Meridian; and the opposite Angle is found by subtracting it from 90°; bccause these two Angles are equal to the Right Angle. or 90°. We have now the four terms of a Right-Angled Triangle, corresponding. to the Course, Distance, Difference of Latitude, and Departure, and by the well-known properties of that Ggure, any two of which being given, the other two can readily be found by the rules given for projecting the case; and to obviate the labor of calculating the terms by Logarithms, Tables have been long in use containing all that is necessary for solving the problems, sufficiently accurate for the purpose intended They are called the Traverse Tables, and the quantities are taken out by inspection; and as this is the method invariably used at sea, all the other methods are neglected, and never used even by those who have a thorough knowledge of Trigonometry, and many navigators consider them a useless appendage to a work on Practical Navigation.

INSTRUMENTS OF NAVIGATION.

The Instruments used in Navigation are the Compass, the Log, and Glass. The former shows the diroe Hon of the Ship's track, and by means of the latter her distance run is measured.

The Log Ship is a small triangular-shaped piece of wood, one side being loaded so as to cause it to arim upright; sometimes a funnel-shaped bag is used instead. This is attached to the line in such a manner that when the glass has run out, and the line checked, one of the corners (being fastened by a peg of wood or bone), is released, or the bag reversed, which allows it to be easily hauled on board again. At 12 or 15 ththoms from the Log Ship the line is marked with a strip of Rag; this is called the Stray line, which enables the Log to go clear of the Ship before the time is counted, or the Glass turned. From this mark the line is measured and divided into Knots and Half Knots, and marked at each Knot with a bit of string with the number of Knots upon it.

The length of a Knot depends upon the number of seconds which the Glass measures.

Fic. 5.
THE MARINER'S COMPASR.

As the Ship's Course is sometimes expressed in Points and sometimes in Degrees, the following T'abm aill bo found useful for reference.

north and east.	north and west.	south asd east.	SOTTH AND WEST.	POINTS.	D. M. e.
North.	North.	Surh.	South.	0	- "
N. ${ }^{\text {E }}$	N. $\frac{1}{4}$ W.	$\text { S. } \frac{1}{4} \mathrm{~F}$	S. ${ }^{\frac{1}{2} \text { W. }}$	+	24845
N. E.	N. +W	$\text { S. } \mathrm{E} \text {. }$	S. W W	1	53730
N. ${ }^{\text {E }}$.	N W.	S. $\frac{1}{4} \mathrm{E}$.	S. 是W.	$\frac{1}{2}$	82615
$\text { N. by E. } \mathrm{N} \text { by }+\mathrm{E}$	N. be W.	S. by E.	S. by w.	1	111500
N. by E. $\frac{1}{2}$ E,	N by W. W.	S. by E. $\frac{1}{4} \mathrm{E}$.	S. by W. $\frac{1}{*}$.	14	14.345
N. by E.ter	N. by W. W.	S. by E. 1 E.	S. by W. ${ }^{\frac{1}{2} \text { W. }}$	11	165230
	N.by W.tw.	S by E. E .	S. br w. F W.	1	194115
N. N. E. $\frac{1}{4}$ E.	N. N.W. 1 W	S. S. E. + .	S. S. W. S. S. W \& W.	$\begin{aligned} & 24 \\ & \hline \end{aligned}$	223000
N. N.E.tE.	N. N. W. ${ }^{\frac{1}{3} \mathrm{~W}} \mathrm{~W}$	S. S. E. E.	S S. W. ${ }^{\text {S }}$ W.	2	25 28 28
N. N E. ${ }_{\text {E }}$ E.	N. N.W. W.	S.S.E. E.	S S. W. ${ }^{\frac{3}{4} \text { W. }}$	2	305615
N. E. by N.	N. W. by N.	S. E. by S.	S. W. by S.	3	334500
N. E. \boldsymbol{N} N.	N. W. ${ }^{\text {I }}$	S. E \ddagger S.	S. W. ${ }^{\text {S }}$ S.	$3 \frac{1}{2}$	363345
N. E. ${ }^{\text {N }}$.	N. W. ${ }^{\frac{1}{8}}$	S.E. S	S. W. $\frac{1}{2} \mathrm{~S}$.	31	392230
N. E. $\frac{1}{1}$ N.	N. W. $\frac{1}{4}$ N.	S. E. 18.	S. W. $\frac{1}{4}$ S.	$3{ }^{3}$	421115
N. E.	N. W.	8. E.	S.W. W.		450000
N. E. $\frac{1}{4}$ E.	N. W. ${ }^{\text {W }}$ W.	S. E. $\frac{1}{4}$ E.	S. W. \ddagger W.	44	474845
N. E. E E.	N. W. ${ }^{\frac{1}{3} \text { W. }}$	S. E. ${ }_{2}^{4} \mathrm{E}$.	S. W. ${ }^{\text {W }}$ W.	4	503730
N. E. E.	N. W. w.	S.E. $\frac{1}{2}$ E.	\therefore W. + W.	42	539615
N. E. by E.	N. W by W.	S. E. by E.	8. W. by W.	5	561500
N. E. by E. $\frac{1}{\text { E }}$.	N. W. by W ${ }^{\text {d }}$ W.	S. E. by E. \& F.	S. W. by W. ${ }^{\frac{1}{4} \text { W. }}$	54	59345
N. E. by E. ${ }_{\text {E }}$	N. W. by W. W.	S. E. by E + E.	S. W. by W. ${ }^{\frac{1}{2} \text { W. }}$	51	615230
N. E. by E. F .	N. W. by W. W.	S. E. by E. $\frac{1}{4}$ E.	S. W. by W. ${ }^{\text {a }}$ W.	5	644115
B.N.E.	W.N.W.	E.S.E.	W. S. W.	6	673000
E. by N. N .	W. be N. i N	E.by S. ${ }^{\text {S }}$ S.	W. by s. ${ }_{\text {W }}^{\text {S }}$ S.	64	701845
E.by N. N .	W. by N. $\frac{1}{2}$ N.	E. by S. $\frac{1}{\text { S }}$.	W. by S. S .	63	73. 730
E. by N. N .	W. by N. $\frac{1}{4} \mathrm{~N}$.	E. by S $\frac{1}{5}$.	W. by S. $\frac{1}{4} \mathrm{~S}$.	6	755615
E by N	W. by N.	E. by S.	W. by 8.	7	78450
E. ${ }^{\text {a }}$ N.	W. ${ }^{\text {W }}$ N.	E. IS.	W. ${ }^{\text {a }}$ S	74	8133.5
E. ${ }_{\text {E }}$.	W W .	E. $\frac{1}{2} \mathrm{~S}$.	W. S.	71	842236
Sast.	Wext.	East.	West.	8	900000

The length of a nautical mile being about 6,080 feet, the 30 Second Glass should have a longth of E^{\prime} as aearly 51 feet To determine the length of Knot to any length of glass, the Rule is, as 30 Seconds in to 51 feet, so is 28 Seconds to the Knut of 47 feet, and so on.

But in practice a 45 feet length of Knot is found to correspond best with a 28 Second Glass. The difference is caused by the Log Ship coming home when hove, ana 47 feet gives the Distance run too small.

Before the line is measured it should be well stretched, and then made wet. Nails should be placed in the Deck at the proper length of the measured Knot, so as to verify the marks frequently, as the line is liable either to stretch or run up.
Sometimes the Knots and half Knots only are inserted in the Log Board, but in general the Knot is divided into 10 fathoms, and the odd fathoms inserted for handiness in adding up. This fathom is noi B feet, but the tenth part of the Knot only.
The Log line, after being thus measured, is fastened to a Reel and wound up, ready for use. The manner of heaving the Log can only be learned at. Sea, but it may be useful to remark that the line is faked in the hand, not coiled, and the Log Ship is to be thrown well out to Leeward of the Ship's wake, and in such a manner that it may take hold of the water at once, and that before a heavy Sea the line should be paid out rapidly when the Stern is rising, and retarded a little when the Stern is falling.

Whichever length of Glass is adopted, there should always be another of half the length, usually called the short glass, and used when the Ship is going rapidly through the water, as only half of the length of line is required, and by doubling the number of Knots run out, the same result is obtained as if the whole line had been used.

The Glass should be kept dry, and verified occasionally with the second hands of a Chronometer.

THE COMPASS.

The Mariner's Compass consists of a circular card, the edge being divided into 32 Points, Halr Points and Quarter Points, and into 360 Degrees.

The four principal points, or, as they are called, the cardinal points, are North, Soulh, East, and Wesh, the East being towards the right when facing the North.

A farther description of this well-known Instrument is not required, except that in North Latitude the North Pole of the magnetized bar is drawn or attracted in that direction, and in South Latitude the South Pole is attracted towards the South. The Dip, or attraction towards the centre of the Earth is greatest in bigh Latitudes, and is 'requently the cause of a sluggish movement of the Card in common compasses The magnetic pole dipping, a balance-weight of Sealing-Wax or other substance is required at the othes end of the bar, to make it swing freely round, which can be removed again in low Latitudes. The pin on which the card is balanced sometimes becomes blunt by constant use, which can be sharpened with a fino srained file or a set stone.

The Lubber's Point is a perpendicular mark in the centre of the forward part of the Compass Bowel and represents the line of the Ship's Keel, (or a line parallel to it) By endeavoring to keep a given poin' of the Compass card at this mark, constitutes what is called steering a course by Compass.

THE VARIATION OF THE COMPASS.

The Needle points to the Magnetic North, which in few parts of the world agrees with the true Nerth, the difference between them is called the Variation of the Compass. See page 116.

The Variation is named Easterly when the North end is drawn towards the East of the true North, and Westerly when drawn to the Westward. The variation is different in different places, and is constantly though slowly changing.

To correct compass courses and bearings for variation, if the variation is Easterly, apply it to the right hand of the Compass course or bearing. When Westerly, apply it to the left hand, looking towards the point representing the given course or bearing.

A True course or bearing is reduced to the Compass course or bearing by applying the variation the contrary way.

LOCAL ATTRACTION.

The Compass in every Ship is more or less affected by the Iron used in her construction, and by Iron on board as cargo. It is most sensibly felt when the Ship's head is East or West, because in North Latitnde the North Point is drawn forward, and the reverse in South Latitude; but when her head is North and South, the Magnetic and true meridians nearly coincide with the disturbing force, situated in the forward part of the Ship, and the effect is not so sensible. It may be detected by taking frequent observations to find the variation of the Compass, (which will include the Local Attraction;) then the difference betweon that and the variation laid down on the Chart will be the Local Attraction. Tr:s subject will be found treated of more at length at page 120.

PRACTICAL NAVIGATION.

[NTRODUCTION TO THE SAILINGS.

The Methods used in navigating a Ship by Dead Reckoning are the Plane and Traverse Sailıngs, Paral Lol, Middle Latitude, and Mercator Sailings; Current Sailing being merely a modification of the others, als of which will be explained and exemplified under their proper heads.

It has not been deemed necessarily within the soope of this work to include Great Circle Sailing, simply because the track of a Ship, as given by the general rules in Great Circle Sailing, cannot be practically adopted by a Sailing Vessel, from many causes which it is not necessary here to explain, and which hae been the cause of leading many vessels astray that had adopted it.

A Ship may, however, adopt a modification of the Track on the Great Circle without reference to any seneral rules, as follows:

Great Circle Sailing supposes a Ship to Sail on a circle on the Earth's surface, having the Centre of the Earth as a Centre. When a Ship sails true North or South, she sails on the Are of a Great Circlo; and when she sails true Fast or West on the Equator, she also sails on the Arc of a Great Circle, because these Circles have the Earth's Centre for a Centre; but in sailing on a straight Rhumb line in any other direo tion, which, although it may appear perfectly straight on the Chart, nevertheless, if her positions at Noon were laid off on a Terrestrial Globe, it would be found that she had described a Curve with its back towards the Equator, and been sailing on a Small Circle. Now the object to be attained in Great Cirole Sailing is to adopt a curve or track on the Chart, the back of which shall be turned towards the Pole of that Latitude in which she is Sailing. Then, supposing her positions at Noon to be laid off on the Globe as before, it will be found that she has been sailing on a circle which has the centre of the Earth as a centre, the distance measured between any two places on this Great Circle is the least distance between them; but, as before observed, this is not always practical. A modification may be adopted by tracing upon a Chart of the intended voyage a curved Track from Port to Port, having its back towards the North in North Latitude, or towards the South in South Latitude, and whioh shall keep the Ship free from being entangled with the Land, and at the same time placing her in the most favorable position to take advantage of the prevailing Winds and Currents.

The manner of doing this is simply to draw 2 line between the two places on the Chart, and to mark the extent ω which the curve may be judiciously made on the polar side of the middle of that line; then through these three points trace a curved line, which will approximate to that of a Great Circle. Now it is evident that to sail on this curved track, the course must be shaped accordingly, and that it will be required to be reshaped or changed at the end of every 60 or 100 miles of Distance run by the Ship. The extent of this curve must be greatest in high Latitudes, and on crossing the Equator it changes to the opposite side of the straight line. See the Great Circle track from Santa Cruz to St. Johns, on the Chart al Dage 44

PLANE SAILING.

Plane Sailing is the Art of Navigating a Ship on plane surface, supposing the surface of the Earct w on an extended plane, and the meridians all parallel to each other. This supposition is nearly true fon amall portions of the Earth's surface, and for a considerable space on each side of the Equator.

But as the Meridians contract in Sailing from the Equator towards the Poles, the sides of the Right Augled Triangle do not bear the same relation to each other on large portions of the Earth's surface.

Plane Sailing also supposes the parallels of Latitude to be at right angles to the Meridians, and th tongth of a degree on the Mcridian, Equator, and parallels of Latitude, everywhere equal.

CASE I. ,
The Course and Distance given to find the Difference in Latitude and Departure.
Example.-A Ship from Latitude $48^{\circ} 30^{\prime}$ N. Sails North-East by North 300 miles. Required he Latitude and Departure from thée Meridian.

BY PROJECTION ON THE PLANE SCALE.

Fig. 6.

Draw a horizontal line representing the parallel of Latitude sailed from; then with the Chord of $6 \mathbf{C l}^{\prime}$ in che dividers, and one foot on this line, describe a Semicircle; divide this Semicircle into equal parts of 0^{n} each, (or a Quadrant); divide the right hand Quadrant into 8 equal parts, whieh transfer to 2 line drawn acrose the Quad:ant, will give the line of Rhumbs. Divide the left hand Quadrant into 9 equal parts, and transfer thern to a line drawn across the Quadrant in like manner, will give the line of Chords. Those flgures are always drawn so that the upper part represents the North, and the ship is supposed to sail from the centre on a given course towards the circumference or horizon. the course North-East by North, 300 miles given. Taks 3 points from the line of Rhumbs and lay it off from the North towards the East, and draw the Rhumb line, which will represent the Ship's Course, and on which measure off the Distance Sailed; this will give the Ship's place. Draw a parallel of Latitude through this place, and through the Meridian sailed from, and the spaee between the Parallels of Latitude is the Difference of Latitude made, measured on the Meridian. fraw a Meridian through the Ship's place parallel to the Meridian sailed from, and the space between the Meridians is the Departure made.

BY INSPECTION. TRAVERSE TABLE.

Courae North-Enst by North, or 3 Points, and Distance 300 miles. In the Traverse Table gives

Latitude left

Notx. - These Tables contain four terms, any two of which being given, the other two can be found by inspeeson. nd it mast be observed that in using these Tables the terms Distanoo, Latitude, Departure, must be found at the top, if the Course is found there: bnt if the Course is found at the bottom, thoso names or terms must be found at the bottom Thus, the Course North-East by North, or 8 Points, is found at the top, and the columns headed Latitude and Departare so to be nsed from the top, and against Distance 800 stands Difference of Latitude 249.4, and Departare 166.7. In practice, should the tenths be less than 5 , we throw them away; if more than 5 , we call the sum one mile more.
When the Distance is more than 800 , or if any of the other terms be too great for the Tables, we take one balf, one shird, one-fourth, or one-tenth, and multiply the terms thas found by the same quantity that they were redaced by.

CASE II.

The Difference of Latztude and Course given to find the Distance and Dep..:'ure.

Example-A Ship from Latitude $52^{\circ} 39^{\prime}$ North, sails South-West by South until her Latitude observed $48^{\circ} 30^{\prime}$ North. Reguired the Distance run and her Departure from the Meridian.

Fic. 7.

Latitude left. $52^{\circ} 39^{\prime} \mathrm{N}$.
Latitude in. . $\frac{48^{\circ} 30}{4^{\circ} 9^{\prime}} \mathrm{N}$.
Diff. of Lat.. . . $\frac{649 \text { miles. }}{}$

PROJECTION BY THE PLANE SCALE.

Draw a horizontal line to represent the parallel of Lats. tude Sailed from; then with the Chord of 60° in the divi. ders, and one foot on this line as a Centre, make the Aro of a Circle towards the left hand downwards, which will represent the Southwest Quadrant. Take 90° in the dividers, and with one foot on the line where it joins the Circle, extend the other downwards, and mark the Circle. A line drawn through this mark to the Centre will form a Right Angle with the other line, and represents the Meridian sailed from. Lay off the Difference of Latitude on this Meridian towards the South, and draw the parallel of Latitude come to. Take 3 Points from the line of Rhumbs, and lay it off from the Meridian South, towards the West, and draw the Rhumb line, and where it cuts the parallel of Latitude is the Ship's place, and gives her Distance Sailed. Draw a line parallel to the Meridian through the Ship's place, will give the Meridian come to, and the space between the Meridians is the Departure,

BY INSPECTION. TRAVERSE TABLES.

I open the Table at a 3-Point Course, and find the Difference of Latitude 249 miles in its column, (a ne top of the page, marked Latitude,) and against it, in the Distance column, stands 300 miles, the Dis tance required, and opposite, in the column marked Departure, stands the Departure required, 167

> CASE III.

The Difference of Latitude and Departure given to find the Course and Distance.

Example-A Ship from Latitude $32^{\circ} 81^{\prime}$ North sails between the South and East until her Latitude in is $30^{\circ} 10^{\prime}$ North, having made 265 miles of Departure. Required her Course and Distance sailed.

Fia. 8.

PROJECTION BY THE PLANE SCALE.
Draw a Horizontal line to represent the parallel of Latitude sailed from, then with the Chord of 60° a the dividers, and one foot on this line as a Centre, make the Arc of a Circle towards the right hand downwards, and which will represent the South-Fast quarter of the Compass. Take 90° in the dividers, and with one foot on the line where the circle meets it, extend the other downwards, and mark the Circle; ther a line drawn through this mark to the Centre will form a Right Angle with the other line, and represent the Meridian salled from. Lay off the Difference of Latitude, $141,0,1$ the Meridian som tlee parallel of Latitude salled from downwards, or towards the South. and draw the parallel of Latiz: de come to.

From the meridian line towards the East, or right hand, lay off the Departure, 265 miles, and draw the meridian come to parallel with it. Thell where this meridian cuts the parallel of Latitude come to is the Ship's place. Draw the Rhumb-line between the Ship's place and the centre, which will give the Distanot Sailed ; and where this line cuts the Circle will be the Course $5 \frac{1}{\frac{1}{2}}$ Points measured from the meridian line, or from the South towards the East.

BY INSPECTION. TRAVERSE TABLES

With the difference Latitude 141, and the Departure 265, I enter the Table for Points, and I find then - agree nearly to the Course $5 \frac{1}{2}$ Points, and the Distance opposite is 300 miles.

Or, in the Table for Degrees the nearest is 264.9 and 140.8 , which gives the Course Sailed 62° E., and istance 300 miles. The Departure being the greatest the Course is found at the bottom of the page

CASE IV.

The Difference of Latitude and Distance Sailed, given, to find the Course and Departure.
A Ship from Latitude $38^{\circ} 20^{\prime} \mathrm{N}$. sails 296 miles between the North and West, until the Latitude ob m.rred was $40^{\circ} 13^{\prime} \mathrm{N}$. Required her Course and Departure.

Fig. 9.

PROJECTION BY THE PLANE SCALE.

Draw a horozontal line representing the parallel of Latitude sailed from. Then with the Chord of 80° in the dividers, and one foot on this line as a Centre, draw the Arc of a Circle to the left hand upwards, which will represent the N. W. quarter of the Compass. Take 90° in the dividers, and with one foot or this line where the circle meets it, extend the other upwards and mark the circle, draw a line through this mark to the centre, and it will form a Right Angle with the other line and will represent the meridian sailed from. Lay off the Difference of Latitude, 113 , on this meridian line from the parallel of Latitude sailed from towards the N. and draw the parallel of Latitude come to. Take the Distance 296 miles in the dividers, and with one foot on the centre extend the other and cut the parallel of Latitude come to, which is the Ship's place. Draw the Rhumb line between the Ship's place and the Centre, and where it cuts the circle shows the Angle of the Course N. 6 points W. Through the Ship's place draw a line par allel to the meridian sailed from, which will be the meridian come to, and the space between the meridian ss the Departure.

BY INSPECTION. TRAVERSE TABLES.

With the Distance 296 miles and Difference Latitude 113, I enter the Table for Degrees, and find them. 10 agree between 67° and 68°, or, N. $67^{\circ} 30^{\prime}$ W., and the Departure 274. The manner of doing it is thus I take the Distance 296 miles and the nearest Difference Latitude greater than the one sought, is found to be 115.7 at Course 67°, and the nearest less Difference Latitude 110.9 at Course 68°. The half between them is the course required. The Departure at Course 67° is 272.5 , and at 68° is 274.4 . The mean or half between the two is 274 , nearly, which is the Departure required.

Or, enter the Table of Points with Distance 296 and Difference Latitude 113. The nearest to it, 113.3. gives a six point Course, and the corresponding Departure is 273.5 .

Notr.-In all those cases where the Course is required, consider whether the Difference of Latitude or the Departare Is the greatest. If the Departure is the greatest, the Course is found at the bottom of the page; but if the Departare
Is the least of the two, the course will be found at the Top of the page.
Because those Tables are calculated as far as Four Points or 45° at the Top, for Distance, Difference of Latitude, and
Departure; they then commence at the Bottom of the page, and go backwards for the remaining Points or Degrees of
the Quadrant, and the angle of the Churse being greater, the Latitude and Departure columns are reverned at tha Bow

- and marized accordinglv.

CASE V.
The Course and Departure given to find the Distance and Difference of Latitude.
Exayple-A Ship from Lat. $2^{\circ} 7^{\prime} \mathrm{N}$ sails South-West by West half West until she has made 850 mila a Departure. Required her Latitude in and Distance Sailed.

Fig. 10.

Latitude left $2^{\circ} 7^{\prime} \mathrm{N}$.
Diff. of Lat... 3 7 \mathbf{S}.
Latitude in. . $\overline{1^{\circ} 0^{\prime}} \mathbf{8}$

PROJECTION BY THE PLANE SCALE.

D.aw a horizontal line to represent the parallel of Latitude sailed from. Take the Chord of 60° in the dividers, and with one foot on this line as a Centre, make the Are of a Circle towards the left downwards, which will represent the South-West quarter of the Compass. Take 90° in the dividers, and with one foot on the line where the Circle joins it, extend the other and mark the Circle. A line through this mark to the Centre will form a Right Angle with the other line, and which will represent the Meridian saiied from. Take $5 \frac{1}{2}$ Points from the lime of Chords, and lay it off from the South towards the West, and mark it on the Circle. Draw the Khumb line through this mark to the Centre, and it will form an Angle with the Meridian or the Course.

Lay off the Departure 350 miles from the Meridian towards the Wcst, and draw the Meridian cone to parallel with the other; then where it cuts the Rhumb line is the Snip's place. Extend the dividers be tween this place and the Centre, will give the Distance sailed 396 miles. Through the Ship's place draw the parallel of Latitude come to. and the space netween the parallcls of Latitude is the Difference of Latitude, 187 , or $3^{\circ} 7^{\prime}$ South, and the Latitude in is $1^{\circ} 00^{\prime}$ South. In this case the Ship has crossed the Equator.

BY INSPECTION. TRAVERSE TABLES.

Find the Course $5 \frac{1}{2}$ Points at the bottom of the page of the Table for Points. Take half the Dcparture, 350 miles, which is 175 , in its column, the nearest to it, is 174.6 ; opposite, in the Distance column, stand 198, and in the Latitude column 93.3 , which is half the Distance and half the Departure, which, being doubled gives the whole Distance, 396 miles, and the whole Difference of Latitude 186.6, or divided by 60 , $3^{\circ} 7^{\prime}$ South. The Latitude sailed from was $2^{\circ} 7^{\prime}$ North, which, subtracted from the Difference of Laticude made, gives the Latitude in $1^{\circ} 0^{\prime}$ South, and the Ship in this case has crossed the Fqualor

CASE VI.

The Distance and Departure given to find the Course and Difference of Latitude

Example-A Ship from Latitude $1^{\circ} 0^{\prime}$ South sails between the North and East 396 miles, until her Departam - 850 miles. Required the Course steered and her Latitude in.

Fig. 11.

PROJECTION BY THE PLANE SCALE

Draw a horizontal line to represent the parallel of Latitude sailed from. Take the Chord of 60° in the dividers, and with one foot on this line as a centre, malse the Are of a circle towards the right hand upwards, which will represent the North-East quarter of the Compass. Take 90° in the dividers, and with one foot on this line where the Circle joins it, extend the other upwards, and mark the Circle. A line drawn through this mark to the Centre will form a Right Angle with the other line, and which will represent the Meridian sailed from. Lay off the Departure 350 miles from the Meridian towards the right on the East, and draw the Meridian come to parallel with the other. Take the Distance, 396 miles, in the dividers, and with one foot on the centre, extend the other, and cut the Meridian come to, which will be the Ship's place. Draw the Rhuinb line between the Ship's place and the centre, and where it cuts the Circle will be the Course North $5 \frac{1}{2}$ Points East, and measured on the line of Rhumbs. Through the Ship's place draw the parallel of Latitude come to, and the space between the parallels is the Difference of Latitude, 187 miles, or $3^{\circ} 7^{\prime}$, the Latitude in being $2^{\circ} 7^{\prime}$ North.

In this case the Ship has crossed the Equator.

BY INSPECTION. TRAVERSE TABLES.

Take half the Distance, 198, and half the Departure, 175. Seek in the Tables till opposite the former, the nearest to the latter is found to be 174.6, adjoining to which stands half the Difference of Latitude, 93.3, which doubled is 186.6 , or $3^{\circ} 7^{\prime}$ North, from which subtract the Latitude left, $1^{\circ} 0^{\prime}$ South, gives the Catiude in $2^{\circ} 7^{\prime}$ North, and the Departure being greater than the Difference of Latitude, the Course in lound at the bottom of the page to be North $5 \frac{1}{2}$ Points East, or North 62° E. in the Table for Degrees.

The above Six cases comprehend all the varieties of Plane Sailing, but as it is of great mportance ts have a thorough knowledge of the princıples of Plane Sailing before going into the other Sailings, (because it is used in all the other Sailings,) and also to exercise the learner in the use of the Traverse Tables, the following questions are given for exercise

Question 1. A Ship from Latitude $36^{\circ} 30^{\prime}$ North sails South-West by West 420 miles. Required her Latitude in and her Departure from the Meridian.

Answer. Latitude in $32^{\circ} 37^{\prime}$ North, and Departure 349. 2 West.
Question 2. A Ship from Latitude $3^{\circ} 54^{\prime}$ South sails North-West West until her Latıtude in is $2^{\circ} 14$ North. Required her Distance run and Departure made good.

Answer. Distance 618 miles, and Departure 496.4 West.
Question 3. A Ship from St. Helena, in Latitude $15^{\circ} 55^{\prime}$ S sails South-South-East $\frac{1}{2}$ East till she has made 115 miles of Departure. Required her Latitude in and the Distance run.

Answer. Latitude in $19^{\circ} 30^{\prime}$ South, and Distance 244 miles.
Question 4. A Ship from Latitude $28^{\circ} 20^{\prime}$ North sails between the North and East 486 miles, and finds by Observation that she is in Latitude $32^{\circ} 17^{\prime}$ North; what Course has she steered, and what Departure has she made?

A nswer. Course N. 61° East, or North-East by East $\frac{1}{2}$ East nearly, and Departure 425 East.
Question 5. A Ship sails between the North and West 170 Leagues from a Port in Latitude $38^{\circ} 42^{\prime}$ North until her Departure be 98 leagues. Required her Course and Latitude in.

Ansirer. Couise North 35° West, or North-West by North $⿻$ \& West nearly, and Latitude in $45^{\circ} 40^{\prime}$ North.

Question 6. A Ship from Sandy Hook in Latitude $40^{\circ} 28^{\prime}$ North, sails between the South and East until her Latitude observed is $38^{\circ} 20^{\prime}$ North, and having made 100 miles Departure. Required the Course and Distance Sailed.

Answer. Course South 38° East, Distance 163 miles.
Question. 7. A Ship off Cape Henry in Latitude $36^{\circ} 56^{\prime}$ North, is bound to Bermuda, in Latitude $38^{\circ} 19^{\prime}$ North, and which lays 552 miles to the Eastward of the Cape. Required her Courso and Distance to it.

Answer. Sourse South 63° East, or South-East by East $\frac{1}{2}$ East nearly, and the Distance 618 miles.
Question 8. Five Days ago we were in Latitude $3^{\circ} 10^{\prime}$ North, and since then have sailed on a SouthWest Course, at the rate of 10 knots an hour. Required the Latitude in and the Departure made to the Westward.

Answer. The Latitude in is $10^{\circ} 59^{\prime}$ South, and the Departure made is 849 to the Westward.
Question 9. A Ship from Latitude $4^{\circ} 10^{\prime}$ South is bound to a Port in Latitude $3^{\circ} 10^{\prime}$ North, and bearing trom the Ship North-North-West. Required how far that Port lies to the Westward, and the Ship's Distance from it.
answer. The Port lies 183 miles to the Westward, and the Distance is 478 miles.
Question 10. Required the Bearing and Distance between Neversink Light in Latitude $40^{\circ} 24^{\prime}$ North and the Island of Porto Rico in Latitude $18^{\circ} 29^{\prime}$ North, and which lies 413 miles to the Eastward of the former.

Answrr. The Bearing is South $17^{\circ} 30^{\prime}$ East, or South by East $\frac{1}{2}$ East, and tle Distance 1,380 milet.

TRAVERSE SAILING.

This 18 a variety of Plane Sailing in which the Ship makes two or more Courses in succession, and the mothod of reduoing these several Courses and Distamies into a single Course and Distance is called worsing - Traverse.

TO WORK A TRAVERSE

Make a Table, and divide it into six columns; in the first of these set down the several Courses, and opposite to them, in the second column, their corresponding Distances. The third and fourth columns are to be marked North and South at the top, and are to contain the Differences of Latitude. The fifth and sirth are to be marked East and West, and to contain the Departures.

Find the Difference of Latitude and Departure corresponding to each Course and Distance by the method of Plane Sailing. Set these down opposite the Distance in their proper coilimns, that is, if the Difference of Latitude is north, it must be placed \ln the North column, and if South in the South column, and that if the Departure is Easterly it musit be placed in the East column, and if Westerly it must be placed in the West column. When the Course is due North, South, East, or West, set down the Distance in that column answering to it. Add up the columns of Northing, Southing, Easting, and Westing, and set down the sum of each at the bottom, then the difference between the sums of the North and South columns will be the whole difference of Latitude made good, of the same name as the greater, and the Difference between the sums of the East and West columns is the whole Departure made good of the same name as the greater; then with the whole difference of Latitude and Departure made good, find the direct Course and Distance.

EXAMPLE 1.

A Ship takes her Departure from an Island in Latitude $35^{\circ} 10^{\prime}$ North, the centre of which bare West-North-West 10 miles, and sailed on the following Courses; North-East 30 miles, West by North 50 miles, South-South.West 36 miles, East 20 miles, South 14 miles, East by North 50 miles, and South.West by West 70 miles. Required her Latitude in, the Course and Distance made good, and the bearing and Distance of the Island.

TRAVERSE TABLE.

coursra.		diff. of lat.		departure.	
	diat.	NORTH.	sOUTH.	EA8T.	WEst.
Bearing W. N. W...					
Opposite Pt. E. S. E.	10		3.8	9.2	
N. E.	30	21.2		21.2	...0
W. by N..	50	9.8		49.0
S. S. W..	36		33.3		18.8
East..	20			20.0	. .
South.	14		14.0	-•...	
E. by N.	50	9.8		49.0	-
S. W. by W........	70		38.9		58.2
		40.8	90.0 40.8	99.4	121.0 99.4
Diff of Lat. made. 49.2 S., d Dep. made 21.6					
Lat, of the Island................... 3510 N. West.					
Lat. of the Ship.....	$34^{\circ} 21^{\prime} \mathrm{N}$.		

With the Difference of Latitude 49.2, and Departure 21.6, seek in the Table for the nearest correspooding sams, which are found to be 49.3 and 22.0 , and opposite to them stands the Distance, 54, in itw column. and the Course is found at the top of the page, because the Departure is less than the Differenoe of Laritade. The Course made good 'n this case is South 24° West, or South-South-West \ddagger West nearly, and the Distance 54 miles.
The Bearing of the Island from the Ship is just the reverse of the Course made good, that is, North 24° East, because the Departure was taken from it, and the Distance is the same as the Distance made good by the Ship, which is 54 mules.

PROJECTION BY THE PLANE SCALE.

Fig. 12.

With the Chord of 60° describe a Circle. Take 90° in the dividers, and mark the circumference of it into four equal parts, representing the Points of the Compass, and mark it North at the top, South at the bottom, East on the Right, and West on the left hand, and mark the Centre as the place of the Island. Tare the bearing North 6 Points West, in the dividers, from the line of Rhumbs and lay it off from the North towards the West, and draw a line to the Centre, which, prolonged to the opposite side, will pass through the Ship's place to South 6 Points East. Take the distance of the Ship from the Island, 10 miles, in the dividers, and lay it off from the centre on this line, which will be the Ship's place at the time of taking her departure. Take 4 Points in the dividers, and lay it off from the North towards the East, and mark it on the Circle; lay the edge of the parallel ruler over this mark, and that of the Centre, and transfer thi Course to the Ship's place, and draw a line in that direction; take 30 miles, in the dividers, and lay it off from the Ship's place of departure on this line, and which will be the Ship's second place after completing her first Course and Distance.

In like manner, lay off all the other Courses and Distances. Then draw a parallel of Latitude throagh the last place of the Ship, and where it cuts the Meridian will be the Difference of Latitude made, 49. Draw a line from the Centre to the Ship's place, and where it cuts the Circle will be the Course mado good, measured from the South 24° West, and the Distance, 54 miles. A line drawn through the Ship's place, parallel to the Meridian of the Island, will give the Meridian come to, and the space between them is the Departure, 22 miles. The bearing of the Island from the Ship is the opposite point to the Course made good North 24° East; the Distance from the Island is 54 miles, which is equal to the Distance made good.

EXAMPLE 2.

A Ship fruts Latitude $43^{\circ} 10^{\prime}$ North, is bound to a port in Latitude $42^{\circ} 20^{\prime}$ North, and whieh lies 50 miles to tuWestward of the Ship. But by reason of contrary winds, and other causes, she has sailed on the following Coursee, ris. : N. N. W. 30 miles, E. S. E. 30, South 20 , W. $\frac{1}{2}$ S. 39, S. E. 15 , and W. by S. 22 . Required the Bearing and Distance of the Port irom her first position, her Course and Distauce made good, ber Latitude come to, aud tan Course and Distance to her iuteuded Port.

TRAVERSE TABLE.

		diff. lat.		DEP.	
cotrses.	DIST.	NORTH.	south.	East.	WEST
N. N. W.	30	27.7			11.5
E. S. E.	30		11.5	27.7	
South.	20		20.0		
W. $\frac{1}{2}$ S.	89		3.8		38.8
S. E.	15		10.6	106	
W. by S.	22		4.5	21.6
		27.7	50.?	38.3	71.9
			27		38.3

To find the Bearing and Distance of the Port from the Ship's first position.

$$
\begin{aligned}
& \text { Lat. of the Ship. . . } 43^{\circ} 10^{\prime} \mathrm{N} \text {. } \\
& \text { Lat. of the Port. ...42 } 20^{\prime} \mathrm{N} \text {. } \\
& \text { Diff. Lat.. - } 50 \text { Dep. } 50 \text {, } \\
& \text { Gives the Bearing. S. W } \\
& \text { And the Distance. } 70 \text { miles }
\end{aligned}
$$

Diff. Lat.
225 S Dep.
Lat. left,
$43^{\circ} 10^{\prime} \mathrm{N}$.
and Dep...33.6 W., gives the Course made good, S. 56° W., or S.W. byW and the Distance 40 miles.
Lat. come to......... $42^{\circ} 47^{\prime}$. To find the Bearing and Distance of the intended Port. Take the whole Diff. of Lat. between the Ship's 1st position and that of the Port, which is 50 miles, and the whole Departure 50. From which subtract the Diff. Lat. made good. \qquad and Dep. made good. ...34.
Leaves the Difference of Latitude to make. 27 " and the Dep. to make... 16
These agree in the Tables to the Course 31°, or $9 \frac{9}{4}$ points, nearly, and the Distance 31 miles; and as the intonded
Port lies to the South and West of the Ship, she nust steer S. 31^{8} W., or S. S. W. 量 W., 31 milss.
PROJECTION BY THE: PLANE SCALE.
Fig. 13.

Draw a figure as in the preceding example, the Ship's position being in the Centre. Uraw her paraliel of Latitude and her Meridian; from the Centre lay off the first Course North 2 Points West 30 miles; lay off 6 Points from the South towards the East for the second Course, and mark it on the Circle. Lay the parallol ruler over this mark and the centre, and transfer this Course to the Ship's place, and draw a line, on which lay off the Distance, 30 miles. Lay off the other Courses and Distances in like manner, and at the end of the last one is the Ship's place. From the Ship's place draw a line to the Centre, which will be the Distance made good, 40 miles, and the Angle which this line makes with the Meridian is the Course made good South 5 Points West. Through the Ship's place, draw the parallel of Latitude como to, and the space between the parallels of Latitude is the difference of Latitude made good, 23 miles. Draw a Merdian line through the Ship's place, and the space between the Meridians is the Departure made good, 34 miles.

Take the Difference of Latitude between the Latitude sailed from, and the Latitude of the intended Port, 50 miles. Lay this off to the South on the Meridian sailed from, and draw the parallel of Latitude of the Port on this line. Lay off 50 miles, which the Port lies west of the Meridian of the Ship, and draw the Meridian of the Port; where these lines intersect cach other, is the intended Port. Draw a line between the intended Port and the Ship's place, will give the Distance from it, 31 miles, and the Angle between this line and the Meridian of the Ship will be the Course. Lay the ruler along this line, and transfer it to the Centre, and where the edge of the ruler cuts the Circle is the measurement of the Course South 31° West to her intended port. Draw a line between the Port and the Ship's first position in the Centre, will give its Distance, 70 miles, and the Angle between this line and the Meridian of the Ship is the bearing of the Port, which is South-West.

EXAMPLE 3.

A Ship from a Port in Latitude $38^{\circ} 42^{\prime}$ North, bound to another Port, situated in Latitude $36^{\circ} 32^{\prime}$ North, and 137 miles to the Eastward, sails on the following Courses; South hy West $\frac{1}{2}$ West 55 miles, SouthWest by South $\frac{1}{2}$ West 37 miles, South 60 miles, East-South-East 40 miles, South-East by South t East 32 miles, and North-East by East $\frac{1}{2}$ East 58 miles. Required her Course and Distance made good, her present Latitude, and the direct Course and Distance to her intended Port.

Answer. The Course made good is South $23^{\circ} 30^{\prime}$ East, and the Distance 169 miles, the Latitude in $\mathbf{3 6}^{\circ}$ 7^{\prime} North the Course to the intended Port North 70° East, and the Distance 74 miles.

EXAMPLE 4.

A Ship takes her Departure from Cape Henry Light House, in Latitude $36^{\circ} 56^{\prime}$ North, bearing West-North-West 7 leagues, bound to the Island of Bermuda, in Latitude $32^{\circ} 19^{\prime}$ North, and which lies 552 miles to the Eastward of the Cape, but by reason of contrary winds has sailed on the following Courses: NouthEast by East 50 miles, South-South-East 40 mles, South 20 miles, East 60 miles, East by North $\frac{1}{2}$ North 30 miles, North-East $\frac{1}{2}$ East 40 miles, and East by South $\frac{1}{2}$ South 50 miles. Required the Difference of Latitude and Departure made good, her direct Course and Distance made good, her present Latitude and the Bearing and Distance of Bermuda Island.

coursea.	DIst.	NORTH	south.	EAST.	WES
E. S. E.	21		8.0	19.4	
S. E. by E.	50		27.8	41.6	
S. S. E.	40		37.0	15.3	
South.	20		20.0		
East.	60			60.0	
E. by N. $\frac{1}{2}$ N.	30	8.7		28.7	
N. E. $\frac{1}{2}$ E.	40	25.4		30.9	
E.by. S. $\frac{1}{2}$ S.	50		14.5	47.8	
		34	107.3 34.1	243.	Eas
Difference of Lat. made good is			73.2 and Dep. 243.7, gives		
or $1^{\circ} 13^{\prime} \mathrm{S}$. the Course and Dis-					
Latitude of Cape Henry.... 36 66 N				by S. $\frac{1}{2}$ S. 254 miles.	
Latitude of the Ship. ${ }^{35^{\circ} 43^{\prime} \mathrm{N}}$					

Latitude of Cape Henry $36^{\circ} 56^{\prime} \mathrm{N}$.
Latitude of Bermuda... $32 \quad 19 \mathrm{~N}$.

$$
60
$$

Whole Diff. of Latitude $\overline{277 \text { S., and Dep. } 552 \mathrm{E} .}$ Diff. of Latitude made. . 73 S., and Dep. 244 E.
Leaves Diff of Lat..... $\overline{204}$ and Dep... . $\overline{308}$ milee to make.
One-tenth of these Sums are found to agree nearly to a Course of 56° and the Distance corres. ponding 370 miles.
The true Bearing of Bermuda from the Ship is, therefore, South 56° East, or South-East by Eust nearly distant 370 miles.

PARALLEL SAILING.

In Plane Sailing the Earth is considered to be an extended plane, and the Mpridians all parallel to eacn other, and the length of a Degree everywhere equal, which supposition will give just conclusions, so far as the Course, Distance, Difference of Latitude and Departure are concerned; because a Ship, when sailing on a Rhumb line, makes equal Angles with the Meridian.
But as the Earth is a Globe or Sphere, and the Meridians meet at the Poles, it is evident that the Dis. tance between any two Meridians must vary in every Latitude; their greatest Distance being at the Equator on which the Difference of Longitude is measured; hence the difference of Longitude always exceeds the Departure or Meridian Distance, (except on the Equator. where they are the same), in proportion as the given places are situated farther from the Equator.

The following Table, showing the number of Minutes and Seconds contained in each Degree or 60 miles of Longitude for every Degree of Latitude, will be found useful.

Lat.	MIN. SEC.	Lit.	min. sec.	lat.	min. sec.	lat.	min. sec.	lat.	min. sec.
-	"	-	, "	-	' 11	-	' 11	-	, "1
1	59.59	19	56.44	37	47.55	55	34.25	73	17.33
2	59.58	20	56.22	38	47.15	56	33.30	74	16.33
3	59.55	21	56.00	39	46.38	57	32.41	75	15.31
4	59.51	22	55.38	40	45.58	58	31.48	76	14.31
5	59.46	23	55.14	41	45.17	59	30.54	77	13.30
6	59.40	24	54.49	42	44.35	60	30.00	78	12.28
7	59.33	25	54.23	43	43.53	61	29.06	79	11.27
8	59.25	26	53.56	44	43.10	62	28.10	80	10.28
9	59.16	27	53.28	45	42.26	63	27.15	81	9.24
10	59.06	28	52.59	46	41.41	64	26.18	82	8.21
11	58.54	29	52.29	47	40.55	65	25.22	83	7.19
12	58.41	30	51.58	48	40.09	66	24.24	84	6.16
13	58.28	31	51.26	49	39.22	67	23.26	85	6.14
14	58.14	32	50.53	50	38.44	68	22.28	86	4.12
15	57.58	33	50.19	51	37.46	69	21.30	87	3.09
16	57.41	34	49.45	52	36.57	70	20.31	88	2.02
17	57.23	35	49.09	53	36.07	ヶ1	19.32	89	1.03
18	57.04	36	48.33	54	35.18	72	18.33	90	0.00

DIAGRAM
Showing the Contraction of the Meridians from the Equator towards the Pole, and the Parallels of Lat tude crossing the Meridians.

Fig. 14.

Parallel Sailing is the method of finding the Distance between two places in the same Parallel of Latitude when their difference of Longitude is known, or of finding the difference of Longitude answering to the Distance or Departure made good when a Ship sails due East or West. Distance sailed and Departure are the same thing in Parallel Sailing.
Note.-This Sailing is particularly useful in making a small or low Island, in which case it is usual to run into the Lutitude, and then steer East or West, care being taken that the Ship is on the proper side of the Meridian of the Leland.

CASE I.
The Difference of Longitude between two Places, both in one Parallel of Latitude, given, to find their Disiance

EXAMPLE

A Ship ir the Latitude of $32^{\circ} \mathbf{y}^{\prime} \mathrm{N}$. and Longitude $69^{\circ} 50^{\prime} \mathrm{W}$., and bound to Bermuda, in the same Latitude, and Congitude $64^{\circ} 50^{\prime} \mathrm{W}$, what distance must she run to the Eastward to arrive at the Island 1

BY INSPECTION.

$$
\begin{aligned}
& \text { Longitude of the Ship. } \left.69^{\circ} 50^{\prime} \mathrm{W} .\right) \\
& \text { Longitude of Bermuda. } \frac{\left.64^{\circ} 50^{\prime} \mathrm{W} .\right\}}{5^{\circ} 0^{\prime}}
\end{aligned}
$$

60
Rule.-Take the Parallel of Latitude 32° as a Course and the Difference of Longitude in miles 300 in the Distance Column, and the Distance (or Departure) 254.4 will be tound in the Latitude Column. The Ship has, therefore, to run 254 miles to the Eastward to arrive at the Lsland.

CASE Il.
The Distance between two places given, both in the same Parallel of Latitude, to find the Difference of Lon. gitude.

EXAMPLE.

A Ship from the Island of Bermuda, in Latitude $32^{\circ} 9^{\prime} \mathrm{N}$. and Longitude $64^{\circ} 50^{\prime} \mathrm{W}$, saila due W. 254 miles Required her Longitude in.
Rous.-Take the Parallel of Latitude 32° as a Course, and the Distance, 254, in the Latituae Ooluncn, and tine Difference of Longitude will be found in the Distance Column, 300 miles.

> Longitude of Bermuda. . $64^{\circ} 50^{\circ} \mathrm{W}$.
> Diff. Long. made $300 \ldots-\frac{5}{\mathrm{~W}} \mathrm{~W}$.
> Longitude in....69 $50^{\prime} \mathrm{W}$

CASE III.
The Difference of Longitude and Distance between two places in the same Paraiiel of Latitude given, to find the Latitude of that Parallel.

EXAMPLE.

A Ship sails due East 254 miles, and then finds she has altered bar Longitude $\mathbf{3 0 0}$ miles. Required the Paralled of Latitude she sailed in.

Rour-Seek in the Tables until the Difference of Longitude, 300, is found in the Distance Column, and the Distance ailed, 254, is found in the Latitude Column; then the Course 32°, at the top of the page, will be the Parallel of Latit'sde sailed in, because 254 is found in the Column beaded Latitude at the top of the page.

QUESTION FOR FXXERCISE.

A Ship from Latitude $48^{\circ} 39^{\prime} \mathrm{N}$. and Longitude $60^{\circ} 10^{\prime} \mathrm{W}_{\text {, }}$ sails due Weati 350 miles. Required her Longitude in
With Latitude 48°, and half the Distance, 175 , (the whole being 100 great for the Tables,) in the Latitude Column, I find half the Difference of Longitude, 262, in the Distance Column. Then, with Latitude 49° as a Course, and Distance 175 in the Latitude column, I find 267 in the Distance column. Add these Differences of Longitude together, and take their half Sum for the Difference of Longit ide, corresponding to the Latitude $48^{\circ} 30^{\prime}$, which doubled will give the required Difference of Longitude. $529=8^{\circ} 49^{\prime} \mathrm{W}$ and Longitude in $68^{\circ} 59^{\prime} \mathrm{W}$., as follows:

Latitude 48° difference Longitude 263	
Latitude 49° difference Longitude 267	
	$\longdiv { 5 2 9 }$
Half Difference of Longitude	264.5
	2
Whole Difference of Longit	529.0
Which divided by 60° gires.... $\overline{8^{\circ} 49^{\prime}} \mathrm{W}$.	
Longitude left.	6010
Longitude in	$\widehat{68}{ }^{\circ} 59^{\prime}$

MIDDLE LATITUDE SAILING.

This method is founded upon the same principle as Parallel Salling; that is, of converting the Depart are into Difference of Langitude, and Difference of Longitude into Departure. When the Ship's Courst Lies obliquely across the meridians, that is, when, besides Departure, she makes Difference of Latitude she leaves a certain Parallel of Latitude and arrives at another, the Space or Departure between the Meridians sailed from and come to differ, the one being greater than the other, and it is evident neither of these Departures can be used singly, to find the Difference of Longitude.

Bat if we take the Middle Parallel of Latitude between the Latitudes sailed from and come to, we got the middle Departure between them. In the greater Latitude the Departure is less, and in the less Latitude the Departure is greater, than the Departure corresponding to the Middle Latitude. Hence this method, which is compounded of Plane and Parallel Sailings, is called Middie Latitude Sailing.
The Middle Latitude is half the Sum of the two Latitudes when they are of the same name. Near the Equator: when the Latitudes are of contrary names, no sensible error can arise from taking the Departure itself, made good from day to day as the Difference of Longitude, because the Degrees of Latitude and Longitude are of the same length on the Equator, and the latter is only diminished by 1 mile at the 10 th Parallel of Latitude; therefore in practice at Sea. Longitude and Departure may be considered the same for several Degrees on each side of the Equator.

In using the Traverse Tables, it is enough to take the Latitude for the nearest Degree.
In greater distances between places whose Latitudes are of contrary names, the proper rule is to take half the greater Latitude as the Middle Latitude.* (See the annexed Diagram.)

The Difference of Longitude found by this Sailing is true at the Equator, and very nearly true for short distances in all Latitudes, especially when the course is nearly East or West. In High Latitudes, when the Distance is great and the Course oblique, the error becomes considerable; but the result may be made nearly true by subdividing the Distance Sailed into small portions, and finding the Difference of Longitude for each portion separately, and then adding the whole together.

In like manner the Bearing and Distance between places near the Equator by this Sailing are correct But in High Latitudes the result cannot be rendered accurate by subdividing the Distance into small portions, as above, because it is not known. Such cases are truly solved by Mercator's Sailing

DIAGRAM,

Fig. 15

* Or add together the half of the greater Latitude to the half of the less Latitude, and their half sum will the the Midde Latitzde required. See als: the Note at page 28.

CASE I.
One Latit ade and Longitude, Course and Distance given, to find the Difference of Latitude and Longitude.
EXAMPLE 1.
A Ship from Latitude $52^{\circ} 6^{\prime} \mathrm{N}$. and Longitude $35^{\circ} 6^{\prime}$ W. sailed S. W. by W. 256 m iles. Required her Latitude and Longitade in.

Course S. 5 pts. W.
Distance 256 miles, $\}$ gives the Diff. Lat.) 142 and the Dep. 212.9 , the half, 106.4 , taken in the Latitude
룽 Diff. Lat........ 142 S .
Departure..... 213W.
Lat. in. $49^{\circ} 44^{\prime} \mathrm{N}$.
Diff. Long... . $5^{\circ} 38^{\prime}$ W.
Long. in. . . . $40^{\circ} 44^{\prime} \mathrm{W}$. Diff. Lat.. $\overline{2^{\circ}} 22^{\prime} \mathrm{S}$. Col. of Mid. Lat. 51°. as a Course, then Half Diff. of Lat. left. $52^{\circ} 6^{\prime} \mathrm{N} . \quad$ Long. is found in the Dist. Column to be 199
Lat. in. . $\overline{49^{\circ} 44^{\prime}}$
Sum... 101.50
Mid. Latt. $\overline{50^{\circ} 55^{\prime}}$

Diff. Long. made. . $\frac{\overline{5338}}{5^{\circ} 38^{\prime}} \mathrm{W}$. Long. left. 356 W. Long. in. \qquad $\overline{40^{\circ} 44^{\prime}} \mathbf{W}$.

The Difference of Latitude and Departure are found as in Plane Sailing. The Latitude in, and thence the Middle Latitude, by adding the two Latitudes together, and taking their half Sum for the Middle Latitude. The Departure being too great for the Tables, the half is taken. Then, with Middle Latitude as a Course and half the Departure in the Latitude column, half the Difference of Longitude is found in the Distance column. This being doubled and divided by 60 gives Degrees and Minutes. Ship in West Longitude sailing West, add Difference of Longitude to Longitude left.

This is the usual case at Sea in working a day's work.

Two Latitudes and Course given, to find the Distance and Difference of Longitude

EXAMPLE 2.

A Ship from Latitude $49^{\circ} 44^{\prime}$ N. and Longitude $40^{\circ} 44^{\prime}$ W, sails N. E. by E. until by observation she is in Late tude $52^{\circ} 8^{\prime} \mathrm{N}$. Required her Distance run and Longitude in.

Course N. 5 pts. E.
Dist. 958
Smmmary.
Diff. Lat.. 142 N .
感 Dep...... 213 E
Lat. Ob. $52^{\circ} 6^{\prime}$ N.
Diff. Long. $5^{\circ} 38^{\prime} \mathrm{E}$
Lon in. . $35^{\circ} 6^{\prime} \mathrm{W}$.

Lat. left . . $48^{*} 44^{\prime} \mathrm{N}$.	Lat left. . . $49^{\circ} 44^{\prime} \mathrm{N}$
Lat. in $52^{\circ} 6 \mathrm{~N}$.	Lat. in..... 52 N
$2^{\circ} 22$	Sum. . . . 10101.50
60	Mid. Lat. . . $\overline{50^{\circ} 55^{\prime}}$

Course 5 pts. and 142 Difference Latitude in its column gives the Dep.)213 and Dist. 256.,
Mid. Lat 51° as a Course, and half the Departure, 106.5 in the Lat Column, balf the Diff. of Long. is found in the Dist. Column to be 169

$$
\begin{aligned}
& \\
& \text { Diff. of Long. . . . }
\end{aligned} \frac{\frac{2}{5^{\circ} 338}}{5^{\prime}} \mathrm{E} .
$$

In a fast-sailing ship, where it is found difficult to measure the Ship's rate of sailing by the Log, thie Example may be used with adrantage.

Two Latitudes and Distance given, to find the Course and Difference of Longitude.

EXAMPLE 3.

A Ship from Latitude $3^{\circ} 20^{\prime} \mathrm{N}$. and Longitude $22^{\circ} 30^{\prime}$ W., runs for 4 days between the South and West, at the rate of 10 knots an hour, and then by observation finds her Latitude to be $10^{\circ} 40^{\prime} \mathrm{S}$. Requred the Course and the Longitude in.

Lat. left. . . $3^{\circ} 20^{\prime} \mathrm{N}$.	Greater Lat..... $10^{\circ} 40^{\prime}$ S. Ruc. . 4 days.
Lat. in. . . 1040 S .	The balf of which, $5^{\circ} 20^{\prime}$ 24
Diff. of Lat. ${144^{\circ} 0^{\prime}}^{\prime}$	to be taken as Mid. Lat $\overline{96}$ hour

CourseS $29^{\circ} \mathrm{W}$
خ Dist. 960
Diff. Lat..... 840 S.

Lat. in. . . 1040 S .
Diff. of Lat. $\overline{14^{\circ} 0^{\prime}}$
60

10 knote an bour.
Dep........ 165 W. The 10 th part of 840 Differ. Latitude and 10th part of the Distance, $\overline{960}$, are fcund to Lat in.... $10^{\circ} 40^{\prime} \mathrm{S}$. agree at Course $\mathrm{S} .29^{\circ} \mathrm{W}$, and gives the tenth part of the Departure, 46.5 , then witho $\begin{array}{lll}\text { Diff. Long.. } 7 & 47 \mathrm{~W} & \text { half the greater Lat. } 5^{\circ} \text { for the Middle Latitude as a Course, and the to nth part of the } \\ \text { Long. in. } 30 & 17 & \mathrm{~W}\end{array}$

Dep., 46.5 , in the Latitude column, the tenth part of the Diff. of Long. is found in the

Distance column to be 46.7, and the whole is 467
$\begin{array}{lll}\text { Diff. Long. } & 7^{\circ} 47^{\prime} \\ \mathrm{W} . \\ \text { Long. left } & 22 \quad 30 \\ \text { Long. in } & 80^{\circ} 17^{\prime} \mathrm{W} \\ & \end{array}$
By this Example it appears that there are only 2 miles difference between the Departure and the Mifer onee of Longitude as found in the run of nearly 1000 mil 3 .

One Latitude, Course and Distance given in a Hiog Latitude, to find the Latıtude and Longitude an.

EXAMPLE 4.

A Shıp from Latitude $58^{\circ} 30^{\prime}$ S. and Longitude $178^{\circ} 10^{\prime} \mathrm{W}$, sails S. W. by W. 300 miles. Required Ler Correet Latitude and Longitude in. By taking Short Distances run, and also the same by the Whole Distance run, in the asual way.

traverse table.	D. LıT.	dep.	longitude table.			
Course. ${ }_{\text {List. }}$	S.	W.	Lat. Left.	Lat. in	Mi. L. Lat.	Dif. Long. made
S. W. by W. 50 ". 50 " 50 " 50 " 50 S. W. by W. 300 Diff. Lat. $2^{\circ} 47$ Lat. left $58^{\circ} 30$ Lat. in $61^{\circ} 17$ Mid. Lat. $\overline{59^{\circ} 54}$	$\begin{array}{r} 27.8 \\ 27.8 \\ 27.8 \\ 27.8 \\ 278 \\ 27.8 \\ \hline 166.8 \\ \hline \text { S. Dep. } \end{array}$ S. S. The Whong	41.6 41.6 41.6 41.6 41.6 41.6 249.6 24.8 ff. Lon hort D List in is.	$\begin{array}{r} 58^{\circ} 30^{\circ} \\ 5858 \\ 5926 \\ 5954 \\ 6022 \\ 6050 \\ \\ \\ \hline 249.5 \\ \begin{array}{r} 2 \\ \frac{499.0}{8} \\ \hline 8^{\circ} \end{array}{ }^{19} \mathrm{~W} . \end{array}$ nces give \qquad		$\begin{array}{lr} \dot{5} 8^{\circ} & 44^{\prime} \\ 59 & 12 \\ 59 & 40 \\ 60 & 8 \\ 60 & 36 \\ 61 & 4 \end{array}$ Diff. Long. S. Long	

In this Erample, by taking Short Distances on the same Course and finding the Difference of Longitude corresponding to each, and adding the whole together, there appears to be a difference of 3 miles between shat and the Difference of Longitude found from the whole Course and Distance, the former being the correct Difference of Longitude, the Distance in this Example not being great.

One Latitude, Course and Departure given, to find the Latitude and Longitude in.

2XAMPLE 5.
A Ship from Latitude $38^{\circ} 40^{\prime}$ S. and Longitude $1^{\circ} .15^{\prime} W_{\text {, }}$ sails N. E. $\frac{1}{8}$ E. intil her Departure is 250 milea Required the Latitude and Longitude in.

Course....4t pts. and half the Departure, 125, gives half the Dist. 162, and half Diff. Lat. 102.8
p Dist....... 324
Diff. Lat.. . 206
Dep.. 250
Lat. in. . $35^{\circ} 14^{\prime} \mathrm{S}$.
Diff. Long. $5^{\circ} 14^{\prime} \mathrm{E}$.
Long. in. $.3^{\circ} 59^{\prime} \mathrm{E}$

Mid. Lat. 37° and half the Dep. 125 -D. Long. 157
Diff. of Long... $\frac{\frac{2}{5^{\circ} 14^{\prime}}}{\frac{314}{}} \mathrm{E}$
Long. left $1^{\bullet} 15^{\prime} \mathrm{W}$.
Long. in. $3^{\circ} 59^{\prime} \mathrm{E}$.

Diff. Lat. $\frac{\frac{2}{205.6}}{\frac{8^{\circ} 96^{\prime}}{\prime}}$
Lat. left. $38^{\circ} 40^{\prime} \mathrm{S}$.
Lat, in........ $\overline{35^{\circ} 14^{\prime}} \mathbf{S}$.
Sum......... $\overline{78^{\circ} 54^{\prime}}$
Mid. Lat. . . $\overline{86^{\circ}} \mathbf{5 7}$

QUESTIONS FOR EXERCISE.

Question 1.-A Ship from Latitude $25^{\circ} 35^{\prime}$ N. and Longitude $60^{\circ} \mathrm{W}$., sails N. N. E. 296 miles. Re quired her Latitude and Longitude in .

Answer.-Latitude in $30^{\circ} 9^{\prime} \mathrm{N}$. and Longitude $57^{\circ} 52^{\prime} \mathrm{W}$.
Ques. 2.-A Ship from Latitude $3^{\circ} 10^{\prime} \mathrm{N}$. and Longitude $25^{\circ} 0^{\prime}$ W. sails on a S. W. by S. Course until her Latitude observed was $2^{\circ} 16^{\prime} \mathrm{S}$. Required the Distance run and Longitude in.

Ans.-The Distance run is 392 miles and the Longitude in $28^{\circ} 38^{\prime} \mathrm{W}$.
Ques. 3.-A Ship from Latitude $30^{\circ} 15^{\prime} \mathrm{S}$. and Longitude $178^{\circ} 10^{\prime}$ E., sails on a N. E. Course untıl her Departure is 150 miles. Required the Distance run and the Latitude and Longitude in.

Ans.-Distance sailed 212 miles, Latitude in $27^{\circ} 45^{\prime} \mathrm{S}$. and Longitude in $178^{\circ} 58^{\prime} \mathrm{W}$.
Ques 4.-A Ship from Sandy Hook, in Latitude $40^{\circ} 28^{\prime} \mathrm{N}$. and Longitude $74^{\circ} 0^{\prime} \mathrm{W}$., sails between the South and East until her Latitude observed is $37^{\circ} 6^{\prime}$ N. and her Departure made good is 500 miles. Required the Course and Distance sailed and the Longitude in.

Ans.-Course S. 68° E., Distance 540 miles, and the Longitude in $63^{\circ} 16^{\prime} \mathrm{W}$

CASE II
Two L ritudes and Longitudes given: to find the Bearing and Distance.

EXAMPLE]

Required the Bearing and Distance between Cape Heury, in Latitude $36^{\circ} 56^{\prime} \mathrm{N}$. aud Longitude $76^{\circ} 0^{\prime} \mathrm{K}$, and the Island of Bermuda, in Latitude $32^{\circ} 18^{\prime} \mathrm{N}$. and Longitode $64^{\circ} 50^{\prime} \mathrm{W}$.

Role.-With Middle Latitude $34^{\circ} 30^{\prime}$ as a Course, taken out first with 34° and theu with 35°, and the tenth part of the Difference of Lougitude, 67.0, in the Distance Columns, the teuth part of the Mean Departure, 55.2, will be found in the Latitude Columns. Then with this Departure, 55.2, and the tenth part of the Difference of Latitude, 27.8, enter the Tnbles again, and where they are found to agree in their columns, gives the Course at the bottom of the page, 63°, because the Departure is greater than the Differeuce of Latitude, and the correspondiug Distance opposite is 61.5, which multiplied by 10 gives the Whole Distance, 615 miles.

Hence the Bearing of Bermuda fiom the Cape is S. 63° E., because the Latitude and Longitude of the former in to the Soutbward and Eastward of the latter, aud the Distance berween them is 615 miles.

Two Latitudes and Longitudes given, to find the Course, Distance and Departure.

EXAMPLE 2

A Ship from Latitude $30^{\circ} 15^{\prime} \mathrm{N}$. and Longitude $45^{\circ} 20^{\prime} \mathrm{W}$., sails between the North and West until by otservation she is in Latitude $33^{\circ} 45^{\prime} \mathrm{N}$. and Longitude $50^{\circ} 10^{\prime} \mathrm{W}$. Required the Course and Distance made good, and her Departure from the Meridian.

 Sum....... $\overline{64.0} 60$ Nid..... 04
Liff. Lat.. . . $\overline{210 \mathrm{~N}}$.
as a Course, and 290 in the Distance column gives the Departure in the Latitude column 245.9. Then with half the Difference of Latiude, 105 , and half the Departure, 123, found in their columns, where they agree nearest, and the Course must be taken from the bottom of the page at 50°, (because the Departure is greater than the Difference of Latitude, and half the Distance is found opposite to be 161, which doubled gives $\mathbf{3 2 2}$ miles. Hecce the True Course and Distance sailed is $\mathrm{N} .50^{\circ} \mathrm{W}$, or $\mathrm{N} . \mathrm{W}$. $\frac{1}{2} \mathrm{~W}, 322$ miles, and the Departure from the Meridian 246 miles.

One Latitude and Longitude, with the Difference of Lc:anue and Departure given, to find the Latitude and Longitude in, and the Bearing and Distance of the Intended Port.

EXAMPLE 3.

Abstract

A Sbip from Montauk Point, in Lat. $41^{\circ} 4^{\prime} \mathrm{N}$. and Longitude $71^{\circ} 51^{\prime} \mathrm{W}$., and bound to Santa Cruz (one of the Cape Verd Islands) in Latitude $17^{\circ} 2^{\prime} \mathrm{N}$. and Longitude $25^{\circ} 15^{\prime} \mathrm{W}$, sails between the South and East until she han made 800 leagues of Southing and 400 leagues of Easting. Required the Latitude and Longitude in_{n}. snd the Course and Distance to her intended port.

Course. .S. $53^{\circ} \mathrm{E}$.	Diff. Lat. 300 Leagues.
Dist. 1500 miles sailed.	3

$\xlongequal[\text { Dist. } 1500 \text { miles sailed. }]{\underline{\text { Diff. Lat. in miles. }} \quad \frac{3}{900}}$ Dep. in miles. $\frac{3}{1200}$

Lat. of the Ship $26^{\circ} 4^{\prime} \mathrm{N}$.

* Santa Cruz 172^{\prime} N. Lat. $26^{\circ} 4^{\circ}$ N.

Diff. Lat. $9^{\circ} 2^{\prime}$
Diff. Lat.. ... $\frac{60}{542}$

Lat. $17 \quad 2 \mathrm{~N}$.
Sum $43^{\circ} 6^{\prime}$
Mid. Lat. $21^{\circ} 33$

Long. of Ship $47^{\circ} 51^{\prime} \mathrm{W}$.
"Santa Cruz 25 15 W
Diff. Long. . . $\overline{22^{\circ} 36^{\prime}}$

The tenth part of the Departure, 120, found in the Lat. column, of the Middle Latitude, 33 , gives the 10 th part of the Diff. Long. in Dist, column, 143. Middle Lat. 34°, in like manner gives 145 , the mean of which is 144 this multiplied by 10 gives the proper

Diff. of Long.) 1440 miles.
Diff. Long..
Diff. of Long. 1440 miles.
Long. of Montauk Point. 7151 W.
Loug. of the Ship $47^{\circ} 51^{\prime} \mathrm{W}$. Diff. Long. 135.6 in the Dist. column, the tenth part of the Departure 126, is found in the Lat. column. Then with the tenth part of the Difference Latitude 54.2, and the Departure 126 the Course to Sania Cruz is found to be S. 67° E. or E. S. E., and the Distance 1370 miles.

Note.-The rule in the Epitomes, which directs that half the Difference of Latitude between two places on opposite sides of the Equator must be used for the Middle Latitude, being incorrect, (as may be perceived by inspecting Fig. 15, page 20,) the deficiency is supplied by the following Rule : (See Example 4, which is worked out in the following page.) Add the half of the Greater Latitude to the half of the Less Latitude, and take their half Sum for the Middle Latitude. If one Latitude be great and the other small, take the half of the Greater Latitnde alone for the Middle Latitude. The Example referred to comes out exactly the same by Mercator's Sailing, which proves this Rule to be correct. But when the Ship sails a greater distance on one side of the Equator than on the other, a greater weight should be given to thas Latitude which corresponds to the greater distance. (See the Last Example in this Sai' ing.)

Two Ploces, whose Latitudes and Longitudes are of contrary names, given, to find the correct Bearing and Distance between them.

EXAMPLE 4.

Required the Bearing and Distance between New York, in Latitude $40^{\circ} 43^{\prime} \mathrm{N}$. and Longitude $74^{\circ} 0^{\prime} \mathrm{W}$, snd the Cape of Good Hope, in Latitude $34^{\circ} 22^{\prime} \mathrm{S}$. and Longitude $18^{\circ} 30^{\prime} \mathrm{E}$.
Lat. of New York. ... $40^{\circ} 43^{\prime} \mathrm{N}$. Half of the greater Lat..... $20^{\circ} 21^{\prime} \quad$ Long. of New York. ... $74^{\circ} 0^{\prime}$,
" Cape G. Hope.. 8422 S. ". " less Lat......... 1711
$\quad \begin{array}{ll}60 \\ & \text { Half Sum for Mid. Lat.................. } 18^{\circ} 46^{\prime}\end{array}$
Diff. Lat in miles. . . $\overline{4505}$

In this Example we have to take the 100th part of these Sums to get into the Tables, as follows: With Middle Latitude 19° as a Course, and the 100 th part of the Difference of Longitude. 55.5, in the Distanco Column. By taking parts we get the Departure in the Latitude Column, 52.45. Then with this Departure and the 100 th part of the Difference of Latitude, 45.05 , enter the Table again, and they are found to agree to the Course 49°, and Distance 69°. Multiply this Distance by 100 , which is the Distance required.

Hence the Bearing of the Cape from New York is S. 49° E., or S. E. $\frac{1}{2}$ E., nearly, and that of New York from the Cape N. $49^{\circ} \mathrm{W}$., or N. W. $\frac{1}{2} \mathrm{~W}$. Distance 6900 miles.

This Example, worked by Mercator Sailing, comes out the same as above; but by the Old Rule, half the Difference of the Latitudes in this case would be $3^{\circ} 10^{\prime}$ for the Middle Latitude; which is manifestly incorrect.

The following Example, thongh not of much practical utility, may exercise the learner.

EXAMPLE 5.

A Skip from $36^{\circ} 32^{\prime}$ North Latitude sails between the Soutn and West until she has made 480 miles of Departure and 560 miles Difference of Longitude. Required her present Latitude, Course steered and Distance run.

Ruse.-Enter the Table with the 10th part of the Departure, 48, in the Latitude Columo, and the 10 th part of the Difference of Longitude, 56 , in the Distance Column, they are found to agree to the Course at the Top of the page, 31°, and which is the Middle Latitude the ship has sailed in. Take the Difference between this Middle Latitude and the Latitude left, which is $5^{\circ} 32^{\prime}$, and subtract it from the Middle Latt!ude, because the ship has been sailing South, will give the present Latitude, $25^{\circ} 28^{\prime} \mathrm{N}$.

Take the Difference between the Latitudes sailed from and come to, which is 664, an. $\mathrm{I}_{\text {the }}$ Departure, 480, enter the Tables with the tenth part of the Difference of Latitude, 66.4, aud the Departure, 48.0, found in their respective columns, the Course is found to be 36°, and the Distance 82 , which multiplied by 10 gives 820 . Hence the Latitude in is $25^{\circ} 28^{\prime} \mathrm{N}_{\text {, }}$, and the Course $\mathrm{S} .36^{\circ} \mathrm{W}$, or S . W. $\frac{8}{4} \mathrm{~S}$, Distance 820 miles.
Diff. Long. 56 and Dep. gives the Mid. Lat, $31^{\circ} 0^{\prime} \quad$ Lat. left. $36^{\circ} 32^{\prime} \mathrm{N}$.
Lat. left.. $36 \quad 32^{\prime}$ Lat. in... $25 \quad 28 \mathrm{~N}$.
Diff. between Mid. Lat. and Lat. left. $5^{\circ} 32^{\prime} \mathrm{N} . \quad-11^{\circ} 4^{\prime}$
Mid. Lat. $31 \quad 0 \quad 60$
Lat. iu..$\overline{25^{\circ}} 28^{\prime}$ N. Diff. Lat. 664 and Dep. $480=$ Course S. $36^{\circ} \mathrm{W}$., Dist. 820 m

QUESTIONS FOR EXERCISE.

Question 1.-A Ship from Latitude $60^{\circ} 10^{\prime} \mathrm{N}$. and Longitude $30^{\circ} 15^{\prime} \mathrm{W}$., is bound to a Port in Latitude $49^{\circ} 10^{\prime} \mathrm{N}$. and Longitude $50^{\circ} 10^{\prime} \mathrm{W}$. Required the Course and Distance.

Answer.-The Course is S. $46^{\circ} \mathrm{W}$., or S. W., nearly. Distance 950.
Ques. 2.-A Ship on the Equator, in Longitude $25^{\circ} 40^{\prime} \mathrm{W}$., and bound to the Port of Rio Janeiro, and wishing to shape a Course for Cape Frio, in Latitude $23^{\circ} 1^{\prime} \mathrm{S}$. and Longitude $41^{\circ} 50^{\prime} \mathrm{W}$. Required the correct Course and Distance to it.

Ans.-The Course is S. 35° W., or S. W. by S., nearly, and Distance 1685 miles.
Ques. 3.-Required the Bearıng and Distance betwepn the Cape Verd Islands, (say Cape St. Anthony, ${ }^{\text {b }}$ in Latitude $17^{\circ} 12^{\prime} \mathrm{N}$. and Longitude $25^{\circ} 19^{\prime} \mathrm{W}$., and the Island of St. Helena, in Latitude $15^{\circ} 55^{\prime} \mathrm{S}$. and $5^{\circ} 45^{\prime}$ West Longitude.

Ans.-Bearing is S. $30^{\circ} 30^{\prime}$ E., and Distance 2300 miles
Ques.4.-Required the Bearing and Distance between Cape Horn, in the Latitude of $55^{\circ} 59^{\prime}$ S. and Low gitude $67^{\circ} 16^{\prime} \mathrm{W}$., and San Francisco, in Latitude $37^{\circ} 48^{\prime} \mathrm{N}$. and Longitude $122^{\circ} 21^{\prime} \mathrm{W}$.

Ans.-The Bearing is N. 27° W., and the Distance 6300 miles.
Nors.-In the last Example, half the greater Latitude is taken as a Middle Latitude, and which is increased by 89 meanase the greatest distance had to be ran to the Sonthward of the Equator. The Middle Latitude allowed is 80

MERCATOR'S SAILING.

This Sailing is used for the same purposes as Middle Latitude Sailing, and is more correct in long dustances, except when the Course is large; that is, near the East or West points.

Mcreator Sailing is the Art of finding on a Plane Surface the position of a Ship, which shall be true in Course, Distance, Latitude and Longitude.

This method is derived from the Projection of Mercator's Chart, in which the Degrees of Lorgitudn are every where equal, the Degrees of Latitude expand towards the Poles, and the Parallels, Meridians, and Rhumb Lines are all represented by straight lines. In Middle Latitude Saıling the Meridians contraot and meet at the Poles, and the length of the Degrees of Longitude also decrease from the Equator towards the Poles. But in Mercator Sailing the Meridians are all parallel to each other. and a Degree of Longitude is 60 miles in length, measured on the Equator, in all parts of the World. To remedy this, the Degrees of Latitule are expanded from the Equator towards the Poles, and the miles of Latitude grow larger; so that in the Latitude of 60° the miles of Latitude are twice the length they are on the Equator, and the Degree of Longitude is only 30 of these miles long; near the Pole one mile of Latitude is nearly the length of 60 miles on the Equator, and the Degree of Longitude only 1 mile long. But as the Polar Seas are not navigable much above 80°, Charts or Tables on this projection are rarely published beyond that parallel.

DIAGRAM OF MERCATOR'S SAILING,

Shoreing the Expansion of the Parallels of Latitude for every 10 Degrees, and the Meridians (or Paralles of Longitude) all Parallel bo each other at 10 Degrees Distance.

Fig. 16.

PROJECTED BY THE FOLLOWING TABLE,
And the Measurements taken from the Degrees on the Equator.

	10	to 20		0	2.		2 d			2	25
"	20	to 30	\cdots	1	28	"	3 d	"	"	3	28
${ }^{\prime}$	30	to 40	"	3	43	"	4 th	"	.		48
"	40	to 50	"	7	54	"	5 th		-	57	54
\cdots	50	to 60	"	15	27	،	6 th	"	"	7.	27
\cdots	60	to 70	"	29	26	"	7 th	*	"		26
\cdots	70	to 80	*	59	35	-	Sth	«	*	138	35

T'o find the Meridianal Difference of Latitude. When the Latitudes are of the same name, take tho difference of the Meridianal Parts for the two Latitudes. When of contrary rames, take the sam of the Maridianal Parta.

CASE I.
Une Latitude und Longitude; Course and Distarce given, to find the Latitude and Longitude on.

EXAMPLE 1.

A Ship from Latitude $52^{\circ} 6^{\prime}$ N. and Longitude $35^{\circ} 6^{\prime}$ W, sails S W. by W. 256 miles. Required her Latitude and Longitude in.

Here, as in Middle Latitude Sailing, the Difference of Latitude and Departure are found from the Coarse and Distance by the rules in Plane Sailing.

Course S. 5 pts. W,
and $D_{\text {sstance }} 256$ miles

Rule.-With the Course 5 points, nud the Meridianal Difference of Latitude 225 in the Difference of Latitude columu, (here we find it to be two great for the Tables,) we take the half, 112.5 . Then half the Diff. of Longitude. 168.8. is found against it in the Dep. Columu, which doubled gives the whole Diff. of Long.) 337.6

Two Latitudes and Course given, to find the Distance and Difference of Longitude.

EXAMPLE 2.

A Ship from Latitude $49^{\circ} 44^{\prime}$ N. and Longitude $40^{\circ} 44^{\prime}$ W., sails N. E. hy E until by observation she is in Lats tude $52^{\circ} 6^{\prime}$ N. Required ber Distance run and Longitude iu.

Rule-With the Course 5 pts. and the Diff. of Lat. 142 in its column, then opposite to it in the Dist. Column stande the Distance, 256 miles. Again, with the same Course, 5 points, and half the Merid. Diff. of Latitude, 112.5, takea in the Latitude column, then balf the Differeuce of Longitude, 168.8, is found in the Departure column. which doubled gives the whole Difference of Lougitude, 337.6, or, $5^{\circ} 38^{\prime} \mathrm{E}$

Two Latitudes and Distance given, to find the Course and Difference of Longitude
EXAMPLE 3.
A Ship from Latitude $8^{\circ} 20^{\prime} \mathrm{N}$. and Longitude $22^{\circ} 30^{\prime}$ W., runs 4 days between the South and West until her Latitude observed is $10^{\circ} 40^{\prime} \mathrm{S}$. Her rate of sailing was 10 knots an hour. Required the Course she has made and her Longitude in.

Lat. left	$3^{\circ} 20^{\prime} \mathrm{N}$.	Merid. parts. ... 200	4 days.
Lat in.	$10^{\circ} 40^{\prime} \mathrm{S}$	Merid. parts. . . 644	24 hours
Diff of Lat.	$\begin{gathered} 14^{\circ} 0^{\prime} \\ 60 \end{gathered}$	Mer. Diff Lat. . 844	96 hours. 10 knota

Rule-Enter the Table with the tenth part of Diff Lat, $\overline{84.0}$, and the tenth part of the Distance, $\overline{96.0}$ milea,and they will be found to agree at Cuurse 29°. Again, with the same Course, 29°, and the tenth part of the Meridianal Difference of Latitude, 84.4, in the Latitude column, then the tenth part of the Difference of Longitude is found is the Departure column 47, which multiplied by 10 gives, 470 , the whole Difference of Longitude.

Diff. Long. in Degrees. $\overline{70}_{7^{\circ}}^{50^{\prime}} \mathrm{W}$.
Long. left. $22^{\circ} 30^{\prime} \mathrm{W}$.
The Course steered is S. $29^{\circ} \mathrm{W}$. and Longitude in. $.80^{\circ} 20^{\prime} \mathrm{W}$.
Note.-The above three Examples are the same as are used in Middle Latitude Sailing, and the answers come out the same by Mercator's, and all the others may be done in the same way; observing that we mast use the Two Terms given, as in a case of Plane Sailing. Then with the Course made good, and the Meridianal Difference of Latitude found in the Latitude column, the Difference of Longitude required is found opposite to it, in the Departure column.

EXAMPLE 4.

A Ship from Latitude $38^{\circ} 40^{\prime} \mathrm{S}$. and Longitude $1^{\circ} 15^{\prime} \mathrm{W}$., sails N . E. $\frac{1}{2}$ E. until her Departure 18250 muea Required the Latitude and Longitude in.
The Conrse $4 \frac{1}{2}$ points, and half the Departure, 125 , in its column, half the Difference of Latitude is found to bo 102.8 in its columu, which doubled gives 205.6 , or $3^{\circ} 26^{\prime}$, and the Latitude in $35^{\circ} 14^{\prime}$ S. Find the Meridianal Differ ence of Latitude, which is 258 . Then with the same Course, $4 \frac{1}{2}$ points, and half the Meridianal Difference of Lati tude. 129. half the Difference of Longitude, 156.9, is iound in the Departim aolumn. The whole Difference of Longitude is 313.8 , or $8^{\circ} 14^{\prime}$, and the Longitude in $3^{\circ} 59^{\prime}$ East.

CASE II.
Two Lattrudes and Longitudes given, to find the Bearing and Distance.

EXAMPLE 1.

Required the Bearing and Distance of Cape Henry, in Latitude $36^{\circ} 56^{\prime} N$., and Longitude $76^{\circ} 0^{\prime} \mathrm{W}_{4}$ and the Idea - Bermuda, in Latitude $32^{\circ} 18^{\prime} \mathrm{N}$, and Longitude $64^{\circ} 50^{\prime} \mathrm{W}$.

Row.e-Seek in the Tables with the tenth part of the Meridian Difference of Latitude 38.8, and the tenth part of the Difference of Longitude 67.0 until they are found to agree in the Latitude and Departure columns, as if they were Difference of Latitude and Departure. If the Difference of Longitude be greater than the Meridian Difference of Latitude, the Course must be taken from the bottom of the page, but if less, from the top. They are found to agree in this case nearly to the Course, 63°. Then, with the tenth part of the proper Difference of Latitude, 27.8, in its column on the same page, will be found opposite to it, in the Distance column, the teuth part of the Distanoa, 61.5, which, multiplied by 10 , gives the whole Distance, 615 iniles. Hence, the Bearing is South 63° Bast, becauso Bermuda lies towards the South and East from the Cape, and the Distance is 615 miles.

Two Latitudes and Longitudes given, to find the Course and Distance.

EXAMPLE 2.

A Ship from Latitude $30^{\circ} 15^{\prime} \mathrm{N}$., and Longitude $45^{\circ} 20^{\prime} \mathrm{W}$., sails between the North and West until, by observation, she is in Latitude $33^{\circ} 45^{\prime}$ North, and Longitude $50^{\circ} 10^{\prime}$ West. Required the Course and Distance made grod.

$$
\begin{aligned}
& \text { Lat. left. } 30^{\circ} 15^{\prime} \mathrm{N} . \text { Merid. parts. } 1906 \text { Long. left. } 45^{\circ} 20^{\prime} \mathrm{W} .
\end{aligned}
$$

$$
\begin{aligned}
& \text { Diff. Lat. in miles. . } \frac{60}{210} \quad \text { Diff. Long. in miles. . } \frac{60}{290}
\end{aligned}
$$

Ruce-Seek in the Table, with half the Meridian Difference of Latitude, 123.5, and half the Difference of Longitude, 140 , and the nearest are found together at the Course 50°. Again, with this Course, 50°, and half the Differance of Latitude, 105, found in its column, then half the Distance is found opposite to it in the Distance column, 168 which doubled, gives the whole Distance 326 miles.

Hence, the Course made good is $\mathrm{N} .50^{\circ} \mathrm{W}$, or N. W. $\frac{1}{3}$ W. nearly. Distance 326 miles.
I'oo Places whose Latitudes and Longitudes are of contrary names, given, to find their Bearing and Distance between them.

EXAMPLE 3

Required the Bearing and Distance between New York, in Latitude $40^{\circ} 43^{\prime}$ North, and Longitude $74^{\circ} 00^{\prime}$ West, and the Cape of Good Hope, in Latitude $34^{\circ} 22^{\prime} \mathrm{S}_{\text {, }}$ and Longitude $18^{\circ} 30^{\prime} \mathrm{E}$.

Rele.-Take the 100 th part of the Meridian Difference of Latitude, 48.77 , and the 100 th part of the Difference of Longitude, 55.50 , and seek in the Table until they are found to agree as Difference of Latitude and Departure, which give the Co.irse, 49°. Again, with this Course and the 100 th part of the proper Difference of Latitude, 45.05, taken in the Latitu le column, then the Distance, 69, will be found opposite to it, which, multiplied by 100, givee the Thole Distance, 6910 miles, and the Bearing South 49° East, or S. E $\frac{1}{\frac{1}{2} \text { E. nearly. }}$

One Latitude, 'Vourse and Difference of Longitude given, to find the Distance and Difference of Latisude

EXAMPLE 4.*

A Ship from Latitude $34^{\circ} 29^{\prime}$ North sails South 41° West till her Difference of Longitude is 682 milea Required ar present Latit ide and Distance sailed.
Rule-Enter the Table with the Course 41° and the tenth part of the Difference of Longitade, 68.2, in the Dop Lumn, opposite to which, in the Latitude column, stands the Meridian Difference of Latitude, 78.5.

Lat. left. $34^{\circ} 29^{\prime}$ N. Merid. parts. 2207
Merid. Diff of Lat. . 785 Subtracted from the Merid. parte of Lat. boft
Gives the Lat. in $23 \quad 3^{\prime} \mathrm{N}$ - Merid parts. $\overline{1422}$ of the Lak in.
Diff of Lat . . . $\overline{11^{\circ} 26^{\prime}}$
60
Vouren 41°, and D. J. $\overline{686}$ in the Lat. column, gives the Distance 910 milea

- This Example cannot be solved by Middle Latitude Builing.

QUESTIONS FOR EXERCISE.

Question 1. Required the Course and Distance from the Cape of Good Hope in Lat. $34^{\circ} 24^{\prime}$ S., and Long. $18^{\circ} 32^{\prime}$ E. to the Island of St. Helena in Lat. $15^{\circ} 55^{\prime} \mathrm{S}$., and Long. $5^{\circ} 44^{\prime} \mathrm{W}$.

Answer. By Middle Lat. Sailing the Course is N. 50° W., and Distance 1725 miles. By Mercator Sail ing the Course is N. 50° W., and Distance 1725 miles.

Question 2. A Ship from Lat. $60^{\circ} 10^{\prime} \mathrm{N}$. and Long. $30^{\circ} 15^{\prime} \mathrm{W}$. is bound to a port in Lat. $49^{\circ} 10^{\prime} \mathrm{N}$ and Long. $50^{\circ} 10^{\prime} \mathrm{W}$. Required the Course and Distance.

Answer. By Middle Lat. Sailing the Course is S. 46° W., or S. W. nearly, and Distance 950 milee. By Mercator Sailing the Course is S. 46° W., or S. W. nearly, and Distance 950 miles.

Question 3. A Ship on the Equator in the Long. of $25^{\circ} 40^{\prime} \mathrm{W}$., and bound to the port of Rio Janeiro. Required to shape a Course to Cape Frio in Lat. $23^{\circ} 1^{\prime} \mathrm{S}$., and Long. $41^{\circ} 59^{\prime} \mathrm{W}$. Find the Course and Distance to it.

Answer. By Middle Lat. Sailing the Course is S. 35° W., Distance 1685 miles. By Mercator Sailing the Course is South $34^{\circ} 40^{\prime}$ W., Distance 1683 iniles.

Question 4. Required the Bearing and Distance between Cape St. Anthony (one of the Cape Verd Islands) in Lat. $17^{\circ} 12^{\prime} \mathrm{N}$. and Long. $25^{\circ} 19^{\prime} \mathrm{W}$., and the Island of St. Helena in Lat. $15^{\circ} 55^{\prime} \mathrm{S}$. and Long. $5^{\circ} 44^{\prime} \mathrm{W}$.

Answer. By Middle Lat. Sailing the Bearing is S. $30^{\circ} 30^{\prime}$ E., Distance 2300 miles. By Mercator Sailing the Bearing is $\mathrm{S} .30^{\circ} 0^{\prime}$ E., Distance 2295 miles.

Question 5. Required the Bearing and Distance between Cape Horn in Lat. $55^{\circ} 59^{\prime}$ S. and Long. $67^{\circ} 16^{\prime}$ W.. and San Francisco in Lat. $37^{\circ} 48^{\prime}$ N., and Long. $122^{\circ} 21^{\prime} \mathrm{W}$.

Answer. By Middle Lat. Sailing the Bearing is N. 27° W.: Distanoe 6310 miles. By Meroator Sailing the Bearing is N. 27° W., Distance 6300 miles.

Question 6. A Ship from Lat. $29^{\circ} 47^{\prime}$ N., and Long. $24^{\circ} 36^{\prime}$ W. sails S. S. W. W. 320 leagues. Bequired her present Latitude and Longitude.

Answer. By Middle Lat. Sailing the Lat. in is $16^{\circ} 4^{\prime}$ N., and Long. $33^{\circ} 36^{\prime}$ W. By Mercator Sailing the Lat. in is $16^{\circ} 4^{\prime} \mathrm{N}$. and Long. $33^{\circ} 34^{\prime} \mathrm{W}$.

In the preceding examples, both by Middle Latitude and Mercator Sailing, we have always supposed the Ship to sail on a direct Course, but when she makes more than ons Course they must be reduced to a single Coursci by the Traverse Table, and the Latitude and Longitude found as in the following example.

Suppose a Ship from Latitude $32^{\circ} 36^{\prime} \mathrm{N}$. and Longitude 61 45^{\prime} W., sails N. E. 36 miles, N. by W. 14, N. E. by E. $\frac{1}{2}$ E. 58 , N. by E. 42, and E. N.E. 29. Required her Latitude and Longitude in

BY MERCATOR SAILING.

Lat. left $32^{\circ} 36^{\prime}$ N. Mer. Parts, 2071
Diff. Lat 119, or 1 69
Lat. in $\overline{34^{\circ} 35}$ Mer. Parta, 2214
Mer. Diff. Lat 143
Lat. left. 3236 Dep. $\overline{109.0}$ in the Lat. Diff. of Lat. 118.8 and Dep. 109, gives the course $42^{\circ} 30^{\prime}$
Lat. in. $\overline{3+35}$ Column the D. Long. 131.

This course and the Mer. diff. of Lat. 143 in the Lat. cot umn, the Diff. of Long.) 131 is found is the I)ep. cwiumn Is found in the Dist. col. Long. left. . . 6145 W . Long. in $\overline{59^{\circ} 34} \mathrm{~W}$.

CURRENT SAILING.

Ourrent Sailing is the most perplexing subject connected with Navigation, on account of the uncertannty 6 their direction and velocity. Even those which are ascertained to exist and are well established, have oeen known to change theil rate of running frequently, and sometimes even to run in a ecntrary direction.

The only safeguard is for the Navigator to be constantly on the alert, and to obtain his Ship's Position from Celestial observations (when the weather will permit) as often as possible in the course of the 24 hours, both by day and night, from the altitudes of the Sun, Moon, Planets or Stars, and comparing her position so found with that given by the Dead Reckoning from time to time; the difference between which will point out the direction and velocity of the Current from, the effect it has had upon the Ship's Course and Distance as given by the Compass and Log, provided the Compass is free from local attraction.*

When a Ship is sailing in a known Current, the Course is sometimes changed so as to counteract its effect as much as possible, so that the vessel may be continued on her required Course. Or, when a Ship crosses a known Current obliquely, the direction or set of the Current is taken as a Course, and its velocity or drift per hour as a Distance, and which is entered in the Traverse Table, along with the Courses and Distances the vessel may have made during that day.

CASE I.

Given, the effect of a Current acting on a Ship. Required, its Direction and Velocity.

EXAMPLE 1.

A Ship from Latitude $39^{\circ} 25^{\prime} \mathrm{N}$. and Longitude $65^{\circ} 10^{\prime} \mathrm{W}$., by Observation and Chronometer, and on the following day the Latitude in was $36^{\circ} 40^{\prime} \mathrm{N}$. and Longitude $62^{\circ} 30^{\prime} \mathrm{W}$., by Observation and Chronometer; the Dead Reckoring carefully kept from her pusition at the preceding noon, gave the Latitude in $36^{\circ} 02^{\prime} \mathrm{N}$. and Longitude $63^{\circ} 18^{\circ}$ W. Required the Set (or direction) aud Drift of the Current per hour.

Lat. left. $39^{\circ} 25^{\prime}$ N. Lat. left. $39^{\circ} 25^{\prime}$ N. Long. left. $65^{\circ} 10^{\prime}$ W. Long. left. $65^{\circ} 10^{\prime} \mathrm{W}$. Last. by Obe..... $36 \quad 40^{\prime}$ N. Lat. by D. Reck.. 36 02' N. Long. Chron.. ... 6230 W. Long. D. Reck.... 6318 W. Diff. Lat by Obs. $2^{\circ} 45$, S. D. Lat. by D. R.. $\overline{3}^{\circ} 2^{\prime}{ }^{\prime}$ S. D. Lon. by Chron. $2^{\circ} 40^{\prime}$ E. D. Long. by D. R. $1^{\circ} \frac{10}{52}$ E. " by Obs... 2 45 S .
D. Long. by Cliron. 240

Ship Set to the Northward. 38 miles. Ship Set to the Eastward. 48 m .
[of Longituda
Middle Latitude 38° and Difference of Longitude 48^{\prime} in the Distance column, gives the Departure 38 in the Latitade column. Then the Difference of Latitude, 38 miles, and the Departure, 38 miles, gives the Course or Set of the Ourrent N. 45° E., and the Drift or Velocity 64 miles in 24 hours, or at the rate of $2 \frac{1}{4}$ miles an hour.

EXAMPLE 2.

At 6 A. M. the Latitude observed was $23^{\circ} 10^{\prime} \mathrm{N}$. and Longitude $55^{\circ} 10^{\prime} \mathrm{W}$., and at 6 P. M. the Latitude observea Was $22^{\circ} 08^{\prime} \mathrm{N}$. and the Longitude by Chronometer $54^{\circ} 01^{\prime} \mathrm{W}$. In the interval the Ship had made a Course good 3. $60^{\circ} \mathrm{E}$, and the Distance run by Log, 116 miles, wheh gives the Latitude in $22^{\circ} 12^{\prime} \mathrm{N}$. and Longitude $53^{\circ} 22^{\circ} \mathrm{W}$ by Dead Reckoning. Required the Set and Velocity of the Curreat.
Lat. in at 6 P. M. by Observa......... $22^{\circ} 03^{\prime} \mathrm{N}$. Long. by Chron. at 6 P.M..... $04^{\circ} 01^{\prime} \mathrm{W}$.
by Dead Reckon.. $22 \quad 12$
by Dead Reckon....... $53 \quad 22$
Ship set to the Southward.9 miles. Ship Set to the Westward........39 miles of Longitude.
With Middle Latitude 23° as a Course, and Difference of Longitude 39 miles, the Departure 35.9 is obtained Then with Difference of Latitude 9, and Departure 36, the Course or Set of the Current is found to be $\mathrm{S} .76^{\circ} \mathrm{W}$, or E. by S. $\frac{8}{4} \mathrm{~S}_{\text {, }}$ true, and the Distance, or Drift of the Current, 37 miles in 12 bours, or 3 knots an hour, nearly.

EXAMPLE 3.

A Ship in the Gulf of Florida, in Latitude $25^{\circ} 44^{\prime}$ N. and Long. $79^{\circ} 28^{\prime}$ W., the Gun Key Lights in sight, bearing East distant 18 miles, shaped a true North Course at 8 o'clock in the evening, her rate of sailing all night being 6 knots an hour. At midnight the Latitude oberved by Stars North and South of the Meridian was $26^{\circ} 24^{\prime} \mathrm{N}$, and at 4 A . M. the Latitude observed by Meridian altitude of the Moon was $27^{\circ} 08^{\prime}$ N., and at. 6 A . M. the Latitude observed by the planet Venus was $27^{\circ} 28^{\prime} \mathrm{N}$. and the Longitude by Chronometer $79^{\circ} 20^{\prime} \mathrm{W}$. Required the Veloeity of the Stream at the various intervals, and the direction and drift of the Current from 8 o'clock in the evening until 6 o'clock next morning.
Conree from 8 P.M. to Mid't, North. 24 miles. From Midnight to 4 A. M. Dist. run.......... 24 milen Lat. left, $25^{\circ} 44^{\prime}$ N., Lat. obs. $26^{\circ} 24^{\prime}$ N., Diff. ... 40
Northerly Set in 4 hours 16 miles.
Position of the Ship at 9 P. M, Lat............ $25^{\circ} 44^{\prime} \mathrm{N}$.
"at $6 \mathrm{~A} . \mathrm{M}_{n}$ Iat........... $\frac{27 \quad 28}{1^{\circ} 44^{\prime}}$
Lat. Mid. $26^{\circ} 24^{\prime} \mathrm{N}_{n}$ Lat 4 A.M. $27^{\circ} 8^{\prime} \mathrm{N}_{\text {, }}$ Diff. 44
Northerly Set in 4 bours. 20 mile
Loug.. $79^{\circ} 28^{\prime} \mathrm{W}$,
Long.. 79 W.
Diff. Long.. 8 equal to 7 miles Dep
Diff. Lat. by observation in miles... $\overline{104}$
Dist. run from 8 P.M. to 6 A.M., 10 h. at 6 knots 60
Ship Set to the Northward................ 44 miles, and to the Eastward 7 miles. This gives the Course or true direction of the Current N. $9^{\circ} \mathrm{E}_{\boldsymbol{\rho}}$ and the Distance or Drift in 10 hours, 45 miles, or at the rate of $4 \frac{1}{2}$ milee an hour.

[^0]When a Current is ascertaned to exist, either from recent observations or from the proximity of the Ship Position to where a certais Current runs, whose rate and drift is known, it is allowed for in the dav's work es follows :

> CASE II.
> The Direction and Velocity of a Current given, to find its effect on the Ship. EXAMPLE 1.

A Ship from Latitude $39^{\circ} 25^{\prime} \mathrm{N}$. and Longitude $65^{\circ} 10^{\prime} \mathrm{W}$., by observation and chronometer, makes a Conrer pood S. $23^{\circ} 30^{\prime}$ E., and Distance 222 miles, until the Noou of the following day, during which time a Current hau Been setting to the N. E. (true) at the rate of 22_{2}^{-}miles per bour. The Latitude observed at Noon was $36^{\circ} 40^{\prime} \mathrm{N}$ and Longitude by Chronometer $62^{\circ} 30^{\circ}$ W. Required the position of the Ship by Dead Reckoning, allowing for the Corrent.

cotrese.	DIST.	NORTH.	south.	EAET.
South $23^{\circ} 30^{\prime}$ East.	. 222.		203.	. 88
N. E. Current 24 h. at $2 \ddagger$ knots drift.	.54:			. 38

Diff. Lat.. . $38 .$. . . . 203 S........ Dep. 126 with M. Lat 88 38 N. gives the Diff. Long.. . 160 $\overline{) 165}$ or $2^{\circ} 40^{\circ}$ E
 Lat. left. .. 39 25 N. Long. by D. Rec. $62^{\circ} 30^{\prime}$ W. Position of the Ship at Noon, Lat. in......................... $\overline{36^{\circ} 40^{\prime}}$ N. by Dead Reckoning. EXAMPLE 2.
A Ship fromLatitude $23^{\circ} 10^{\prime} \mathrm{N}$. and Longitude $55^{\circ} 10^{\prime} \mathrm{W}$., sails 12 hours on a true Course S. $60^{\circ} \mathrm{E}$., 115 milem and during which time a Current has been setting her to the W. by S. $\frac{1}{6}$ S. (true) at the rate of 3 knots an hour Required the Latitude and Longitude in.

CASE III.

Given, the Bearing and Distance of the Port, and the Set and Rate of the Current, it is required to shape the Course so as to keep the Port on the same bearing.
Rune.-When the Bearing of the Port and the Set of the Current are nearly at right angles to each other, or the Ourrent sets obliquely across its direction, take their Sum. But when it runs in the same or opposite directions, take: the Difference.

With this Sum, (or what it wants of 16 points, or 180°, if it exceeds 8 points, or 90°,) or Difference as a Course, and the Rate of the Current as a Distance, find the Departure.

With this Departure as Departure, and the rate of the Ship's Sailing as a Distance, find the Course.
This Course being applied to the bearing of the port on the opposite side to that towards which the Current is drifting the Ship, gives the Course required.

EXAMPLE 1.

The Port bears S. 45° W., the Current sets S. E. by S., or S. 34° E., 3 miles an hour, the Ship's rate of sailing 10 knots an hour. Required to shape the Course so as to keep it on the same Bearing.
Bearing of the Port S. $45^{\circ} \mathrm{W}$.
Current oblique... S. 34 E.
Take their Sum, 7°, as a Course, and rate of the Current, 3 miles, as Distance, gives the Departure, 2.v. This Departure and the rate of the Ship, 10 miles, as Distance, gives the Course, 17°. This applied to the right or added to the bearing, 45°, gives the Course, $\mathrm{S} .62^{\circ} \mathrm{W}$.; because in facing towards the S . W. the running of the Current is towards the B. E. by S., or to the left of the bearing of the Port.

EXAMPLE 2.
The Port bears N. 45° E., the Current South, 3 knots, rate of sailing 8 knote. Shape the Courseso as to keep the Purt on the same bearing.
South giving no angle, the first Course is 45°, which with Distance, 3 knots, gives Departure, 2. The Distance, or rate of sailing, 8 and Departure, 2 , gi-es Course, 15°, which applied to the left of the bearing, gives $\mathrm{N} .80^{\circ} \mathrm{E}$; beause in facing towards the \mathbf{N}. E. the (lurrent is setting to the right of the bearing.

EXAMPLE 3.

Tho Port bears E., the Currant sets S. W. by S., 3 knots, rate of sailing 4 knots. East is 8 points, or 90°, whack is one of the opposite quarters to S. W. The Difference between them, which is 5 points, as a Course, and Distance 8, the rate of the Current gives the Departure. 2.5. This Departure, and Distanee, 4, (the rate of the ship, given the Course, 39°. . which applied to the left of East, the bearing of the Port, gives the Course to be steered N. 51° E

$$
\text { EXAMPLE } 4 .
$$

The Port bears N. 82° E., the Current S. 10° W. 4 knots, Ship's rate of sailing 3 knots. N. E. and S. W. being opposite pointa, the Difference is 72°, as a Course, and rate of Current 4, as Distance, gives Departure, 5.8 Thio Leparture being greater than the ship's rate of sailing, 3 knots, which is impossible, shows that the Ship caunot maintain the beabing of the Fori

OF THE SHIP'S POSITION.

TAKING DEPARTURES, OR FINDING THE POSITION OF THE SHIP FROM THE BFARING OF KNOWN OBJECTS ON THE LAND.

CASE I.
By a single Bearing and estimated Distance.
Set the Bearing by the Compass, and estimate the Distance off. This is the common mothod, and a person may soon acquire the tact of estimating Distances with much precision by adopting the following fuggestion: Compare the Distance required, in your mind, with the known Distances of the surrounding objects, in a locality which is well-known and familiar to you, and take the one that seems to correspond nearest to the required Distance.

Rour. To find the ship's Position, take the opposite point to the bearing of the object, correct for magnetio variation. Enter the Traverse Table with it as a oourse and the estimated distance, and find the Diff. Lat. and Dep. Take from the Table of Positions the Latitude and Longitude of the object. Apply the Diff of Lat. to that Lat बhich will give the Lat. of the ship. Then with Mid. Lat, as a course, and the Dep., find the Diff of Long. This spplied to the Long. of the object will give the Long. of the ship.

EXAMPLE 1.

The light-house on Neversink bore W. by N. $\frac{1}{2}$ N. 20 miles. Magnetic Variation $\frac{1}{2}$ point Westerly. Required the position of the ship.
Bearing W. by N is N. Lat, of Neversink. $40^{\circ} 23^{\prime} \mathrm{N}$. Long. of Neversink. $73^{\circ} \mathrm{D} 9^{\prime} \mathrm{W}$ Opposite pt. E. by S. $\frac{1}{2}$ S. Var. $\frac{1}{\text { p }}$ pt. E. b. S. 20 m D L. $0 \quad 4$ S. Dep. 196 E. Mid. Lt. 40° gives D. La. $0 \quad 26$ E

Latitude of Ship $\overline{40^{\circ} 19}{ }^{1} \mathrm{~N}$. Longitude of Ship.................. $\overline{73^{\circ} 38^{\prime}} \mathrm{W}$.

EXAMPLE 2.

Barnegat light-house bore N. $\frac{1}{2} \mathrm{E} .12$ miles. Variation $\frac{1}{2}$ pt. Westerly. Required the position of the ship. (Thin \checkmark useful in rateing a chronometer.)
 Lat. of Barnegat. 3946 N. Longitude. $746^{\prime} \mathrm{W}$ Latitude of the Ship. $\overline{89^{\circ} 34^{\prime}} \mathrm{N}$. Long. of Ship.744 $\mathbf{6}^{\prime} \mathrm{W}$

EXAMPLE 3.
Neversink light-houses bore by compass $W \frac{1}{\frac{1}{2}} \mathrm{~N} .20$ miles. Variation $\frac{1}{8}$ point W . Required the position of dhip.
Bearing W. $\frac{1}{8}$ N. Opposite pt. E. $\frac{1}{2}$ S. Var. $\frac{1}{2}$ pt. W. - E. $20 \mathrm{~m}=$ D. Lat. $0^{\circ} 0^{\prime} \quad$ Dep. $20 \mathrm{MI} . \mathrm{L} .40^{\circ}$-D.L. $0^{\circ} 26^{\prime}$ ㅍ Lat. of Neversink 4028 N. Long. of Neversink...... 7389 W. Lat. of the Ship $40^{\circ} 23^{\prime}$ N. Long. of the Ship. $73^{\circ} 38^{\prime} \mathrm{W}$.
A ship on leaving the land and commencing a voyage, her departure is taken from the bearing of an object whose position is known, and its estimated distance off, similar to the above, the opposite point to which is taken as a course, and being corrected for the variation of the compass, it is ontered into the Traverse Table, along with the other courses and distances the vessel has sailed, up to the following noon. Hor position is then deduced from the Latitude and Longitude (taken from the Table of Positions) of the object she took her departure from.

CASE II.
By two Rearings of different Objects at right angles to each other.
Rous To find the Ship's position, the object bearing true East or West, gives the Ship'e Latitude, and the me pearing true North or South gives the Ship's Longitude, because she is on the same parallel of Latitude as the brmer, and on the aame meridian as the latter.

EXAMPLE

Barnegat light-house bore N. $\frac{1}{\frac{1}{2}} \mathrm{E}_{\mathrm{m}}$ and Little Egg Harbor light W. $\frac{1}{3}$ N. Required the position of the Ship. Bearing N. $\frac{\mathrm{E}}{\mathrm{E}}$ Var. $\frac{1}{8} \mathrm{pt}$ - true North. Long. of Barnegat......74 $74^{\circ} 6^{\prime} \mathrm{W}$. $\}$ Long. of the Ship $74^{\circ} 6^{\prime} \mathrm{W}$ Bearing W. $\frac{1}{\frac{1}{2}}$ N. Var. $\frac{1}{2}$ pt. W. - true West. Lat. of Egg Har. Light. . 3930 N. \} Lat of the Ship...ss 80 N.

CASE III.

The Latitude of the Ship and the Bearing of a known Object given.

Rule. Enter the Traverse Table with the True Bearing of the object as a Course, and the Diff. Latiturle hetrean he Ship and the object in its column. The Distance will be found in its column-that is, the Distauce in the cbjeet
rom the Ship.

EXAMPLE.
The Latitude observed was $40^{\circ} 10^{\prime}$ N. At the same time Neversiuk Highland bore N. W. $\frac{1}{2}$ W. by Compam, a『. W. by W. true. Required the Ship's distance off.

True Bearing N. W. by W. or 5 points. Latitude of Neversink $40^{\circ} 23^{\prime} \mathrm{N}$.
Latitude of the Ship $40^{\circ} 10^{\prime} \mathrm{N}$.
True Bearing 5 points as a Course and Diff. Latitude 13^{\prime} gives the Distance off 24 milea

FINDING THE SHIP'S POSITION FROM TWO BEARINGS OF THE SAME OBJECT.

CASE IV

Fiven the Bearing and Distance of the nearest Object from the Ship, and the Bearing and Distance of snothee from the first Object, to find the Bearing and Distance of the second Object from the Ship.

EXAMPLE

The Bearing and Distauce of Neversink Light-house from Fire Island is known to be W. S. W., true, 37 miles. Tha jint at right angles to that Bearing is N. N. W. The ship having Fire Island Light ou that Bearing. (allowing th rariation of the Compass), and distant 15 miles, required the Bearing and Distance of Neversink.

Enter the Traverse Table with 37 miles as Departure and 15 as Difference of Latitude, which will give the Course 6 points and the Distance 40 miles. Add this 6 points to the bearing of Fire Island, which was N. 2 points W., and the bearing of Neversink will be obtained N. 8 puints W., or due West, distant 40 miles.

TABLE FOR FINDING THE DISTANCE OF AN OBJECT BY TWO BEARINGS, AND THE DISTANCE BETWEEN THEM.

Role 2 st. To find the Distance of the object when the last Bearing was taken, enter the table with the number of pcints at the top, coutained between the first Bcaring and the ship's head, and the number of Points at the side cor taised between the secoud Bearing and the ship's head. At the angle of meeting take out the tabular number which multiply by the number of miles of Distance made good by the ship. The result is the Distance in milea off dhore at the time the last Bearing was taken.

Role 2d. Tu find the Distance wheu the first Bearing was observed, enter the table with the differece between these Bearings and 16 points; the second Bearing in this case must be taken from the top, and the first Bearing from the side column. Take out the tabular number corresponding and multiply it by the number of miles of Distance made good by the ship. The result is the Distauce of the ship off shore at the time of the first Bearing.

CASE 1.

Finding the Ship's Position from two Bearings of the same Object.

EXAMPLE 1.

At 8 P. M. Fire 1 hhnd Light bore N. W. $\frac{1}{2}$ N. by Compass. Ship's course W., at the rate of 7 knots an hour, and at 10 P. M. the same light bore N. N. E. $\frac{1}{2}$ E. Required her Distance off at both stations.
$\left.\begin{array}{l}\text { ist Bearing N. W. } \frac{1}{2} \text { N. } \\ \text { Course West. }\end{array}\right\}$ Angle $4 \frac{1}{2}$ pts.
Taken at the top of the Table.

2d Bearing N. N. E. $\frac{1}{2}$ E. Course Wist,
Taken at the side of the table.

Dist, sailed 2 h's at 7 knots $-\frac{14 \mathrm{~m}}{336}$

The Tabular Number multiplied by 14 , the Distance sailed, and the two right hand figures struck off (being $\frac{84}{11.76}$
Decimals) gives the Distance off at 10 P. M. 11量 miles nearly, or
To find the distance off at 8 P. M.,
The first angle being $4 \frac{1}{2}$ points, the second angle $10 \frac{1}{3}$ points

The Tabular number is 0.95
Taken at the sid of the Table $\overline{11 \frac{1}{2}}$ " Taken at the top $\overline{5 \frac{1}{2}}$ " $\quad \overline{380}$
Givas the distance off at S P. M. $19 \frac{1}{4}$ miles, or $\overline{18.30}$

EXAMPLE 2

At 6 P. M. Barnegat Light came in sight, bearing by compass S. W. by W. Ship sailed on a S. by W. $\frac{\mathrm{W}}{}$ W wourse, at the rate of 8 knots an hour, whit a 2 -knot tide in her favor, mitil 7 h 3 nm P. M., when the same lught was observed to bear N. W. by W. Required her distance off at both stations.
$\left.\begin{array}{ll}\text { lst. bearing S. W. by W. } \\ \text { Course S. by W. } \frac{1}{2} \text { W. }\end{array}\right\}$ Angle $3 \frac{1}{2}$ pts. $\left.\begin{array}{l}2 d \text { bearing N. W. by W. } \\ \text { Course S. by W. } \frac{1}{2} \text { W. }\end{array}\right\}$ Augle $9 \frac{1}{2}$ pts Takeu al tae top of the Table.

To und the distance off at 6 P. M.,

Che firt angle was	$3 \frac{1}{2}$	points,	ed angle
subsact from	16	"	Sub. from
16			

The Tabular Number is found to be 1.0 .
Distance made good

Taken at the side of the Table, gives the Tabular Number....... 0.64
Distance sailed in $1 \frac{1}{2}$ hours.. 12 miles. Multiply by 15
Add for tide.
. 3 $-\overrightarrow{345}$
Distance made grod. $\overline{15}$ miles. 6.

The ship's distance off the Light at 7 h 3 m P. M. is 10 f milea, or $\overline{10.85}$

PROJECTION OF THE ABOVE EXAMPLES,

 Shunoing the Distances found by the Tables to be correct, as measured in the Diagram.Fig. 17.

FINDING THE SHIP'S POSITION FROM TWO BEARINGS OF THE SAME OBJECT.

CASE II.

Given, two Bearings by Compass of an Object on Shore, with the Distance sailed between them, to find lae Ship's correct Position in Latitude and Longitude.

This case is useful in finding the Sea Rate of the Chronometer. (See page 155.)
EXAMPLE 1.
At 5 o'clock A. M., Neversink Light-House bore by Compass W. by S. $\frac{1}{2}$ S. Ship then sailed on a S. $\frac{1}{2}$ W. Course at the rate of $5 \frac{1}{\frac{1}{2}}$ knots an hour, until 7 A. M., when the same object bore N. W. by N., variation $\frac{1}{\frac{1}{8} \text { point Weat }}$ Required, the Ship's Latitude and Longitude at the time of each Bearing.
The 1st Bearing W. by S. $\frac{1}{2}$ S. by Compass. $2 d$ Bearing N. W. by N. by Compass.

Distance off at time of 2 d Bearing at $7 \mathrm{~A} . \mathrm{M}$................. $\overline{10.67}$ miles.
The op. pt. to the 2 d Bear. is S. E. $\frac{1}{3} \mathrm{~S}$., Dist. $10 \frac{1}{2}$ miles, gives D.L. $0^{\circ} 8^{\prime}$ S., and Dep. $6.7=$ D. Long... $0^{\circ} 8^{\prime} 45^{\prime \prime} \quad \mathbf{E}$ Lat of Neversiuk,........ $40 \quad 24$ N. Long. of Neversink. 78 б8 48 At 7 A. M. the Lat of the Ship was $\overline{40^{\circ} 16^{\prime}}$ N. and Long................ $73^{\circ} 50^{\prime} \underline{9}^{\prime \prime}$ W.

To find the Position of the Ship at $5 A M$., or time of the 1 st Bearing.

The Ship having made a true South Course, she has sailed on the Meridian of $73^{\circ} 50^{\prime} 3^{\prime \prime}$ West, and was in the same Longitude at 7 A. M. as at 5 A. M., and her Difference of Latitude is equal to the Distance sailed.

EXAMPLE 2.
At Noon the N. W. end of St. Anthony (one of the Cape Verde Islands) bore S. E. by E. by Compass. Shij, then mailed on a South Course, at the rate of 10 knots an hour, until 4 P. M., at which time it bore N. E. by E. $\frac{1}{8}$ E, the Magnetic ∇ ariation bere being $1 \frac{1}{3}$ points Westerly. Required the Lat. and Long. of the Ship at the time of each Bearing.

The 1st Bear. S. E. by E. by Compass.
Cor. for $1 \frac{1}{3}$ pts. W. var. -E . by S. $\frac{1}{2} \mathrm{~S}$. $\}$
$\left.\begin{array}{l}\text { Cor. for } 1 \frac{1}{2} \text { pts. W. var. }=\mathrm{E} \text { by S. } \frac{1}{2} \text { S. } \\ \text { Course South, corrected, }\end{array}\right\}$ Angle by E. 5 pts.
Tabular Number. .
4 hours at 10 knots.
\qquad
\qquad

2d Bear. N. E. by E. $\frac{1}{3}$ E. by Compass.
Cor. for $1 \frac{1}{2}$ pts. var. $=\mathrm{N}$. E .
True Course....S. by E. $\frac{1}{8}$ E. $\}$ Angle $10 \frac{1}{2}$ pls.
....... 0.94
Dist.. 40

Dist. off at the time of the 2d Bear. at 4 P. M.. $\overline{37.60}$ miles.
The op. pt. to the 2 d Bear.is S. W., and Dist. $37 \frac{1}{2}$ miles, gives D. L. $0^{\circ} 26^{\prime} 30^{\prime \prime} \mathrm{S}$. Dep. $26.5=\mathrm{D}$. L. $0^{\circ} 27^{\prime} 40^{\prime \prime} \mathrm{W}$
Lat. of the N. W. Point of St. Anthony....... $17 \quad 12 \quad 0$ N. and Long. do.... $25 \quad 19 \quad 0 \quad$ W
At 4 P. M. the Lat of the Ship was. $\overline{16^{\circ} 45^{\prime} 30^{\prime \prime}} \mathrm{N}$. and Long.. $\overline{25^{\circ}} 46^{\prime} 40^{\prime \prime} \mathrm{W}$

Io find the Position of the Ship at Noon, or time of 1st Bearing

The 1st Δ ngle was.... 5 points. 2d Angle was.... $10 \frac{1}{2}$ points.
Subtract from........16" Subtract from...16 "16 Tabular No... 1.00
Take......11 points at the side of the Table, and.$\overline{5} \frac{1}{3}$ at the top. $\}$ Dist. sailed... 40
Dist. off at time of 1st Bearing, or Noon. $\overline{40.00}$ miles.
The op. pt. to the 1 st Bear. is W. by N. $\frac{1}{2}$ N., and Dist. $40 \Rightarrow$ D. L. $0^{\circ} 11^{\prime} 36^{\prime \prime} \mathrm{N}$. Dep. 38.3 W. $=$ D. Long. $0^{\circ} 40^{\prime} \mathrm{W}$ Lat. N. W. Point of St. Anthony is........ $\frac{17}{17^{\circ}} 1200 \mathrm{~N} . \quad$ Long.... 2519 W Lat. of the Ship at Noon was......... $\overline{17^{\circ} 23^{\prime} 36^{\prime \prime}} \mathrm{N}$. Long.... $\overline{25^{\circ} 59^{\prime}} \mathrm{W}$

This method of finding the Position of the Ship when in sight of Land, by two bearings of the same objoct, will be found of great value, when a cross-bearing cannot be obtained. All that is necessary to do, is to select an object, the position of which is given in the Table of Latitudes and Longitudes, and to take a correct bearing of it by the Ship's Compass, and note the time by Watch; and after the bearing has altered not less than 3 points, take a 2d bearing and note the time by the Watch. Thus having the interval of time between the 1 st and $2 d$ bearings, and the rate of sailing per hour, the Distance sailed im the interval may easily be obtained, and the Ship's correct Latitude and Longitude found, as explained in the above Examples, at either of the Bearings.

This will be found of importance wnen the Ship's Chronometers require to be verified, at times during a voyage, when in sight of any known land. Because if the Sights are taken for Time, the Bearing of the Land can be taken at the samc time, and another Bearing taken either before or after that time, with the Course and Distance run in the interval, will give the Ship's exact Latitude an L Longitude at the time the Sights were taken.

TIDES.,

The Tidal Wave is caused by the joint Attractions of the Sun and Moon, but chiefly of the latter body, whereby the Sea is raised or drawn up by that power, in the form of a Swelling Wave, and following the motion of the Moon round the Earth. advances at a prodigious rate. This Water does not, however, partake of any onward motion, but merely rises and falls. The motion of a Tide Wave is represented by the Auttering of an Awning or the shaking of a Sail.

If the Earth was entirely covered with water, the Course of this Wave would be from the East towards the West; but as large Continents and Islands exist, which obstruct its free passage, it diverges into other directions, and the meeting with those obstructions causes the water to acquire a motion conforming to the direction in which the land lies; but still, to a certain extent, under the governing influence of the Sur and Moon, and branching off in all directions until it finds its level.

The Interval of time which the Moon takes in passing the Meridian of any place, and returning to the same again. consists of 24 hours 49 minutes, being the length of a Lunar day. This occasions two floods and two ebbs of the Tide Wave in that time. Therefore one flood and one ebb will occupy about 12 hours 24 minutes, and the Flood tide will run 6 hours 12 minutes, and the Ebb in a contrary direction the same lenciti of time.

But as the Moon comes to the Meridian nearly an hour later every day, the time of High Water is that much later every day. When it is High Water on the shore, or when the Tide has done rising, it continues rumning longer in the offing. Three hours longer is called Tide and Half Tide, onc hour and a half longer, Tide and Quarter Tide.

On the day of the full and change of the Moon, the time of High Water is noted at the various Ports and places of the World, and published in a Table, and which is called the E.tablishment of the Port or placo And all that would require to bedone to find the time of High Water on any other given day, would be to add the time of the Moon's Meridian passage to the Extablishment of the Port. But on account of the irregular influence of the Sun and Moon, and other canses, together with the effect of gales of wind in accelerating or retarding the times of High Water, an approximate result only can be obtained from auy general rule. In some parts of the world Local Tide Tables are constructed, containing the times of High Water at the various places on that Coast, predicted from long experience of tidal observations, and which is of great importance to vessels which are about to enter a Harbor where there is a great rise and fall of the Tide. In many parts of the world there is very little rise and fall; nevertheless, the tide runs with considerable velocity.

And where a Bay or Inlet is exposed to the Set of the Flood Tide, which not having any outlet, the water naturally rises to a great height, as we see in the case of the Bay of Fundy, and other places. In inland Seas, such as the Mediterranean, Baltic, \&c., which are composed of narrow stripes of water, there is not sufficient room for the formation of the Tidal Wave; consequently, the tides there are scarcely perceptible.

In some rivers, which, on account of the great quantity of water they discharge, run longer and with greater velocity on the ebb, the flood tide is thereby lept back, until accumulating strength, it rises like a wall above the lcvel of $t, e b b$, and advancins: n the form of a Crested Wave, rushes upwards with great strength until it finds its level. This phenomena is called the Bore of the Tide.

When the Sun and Moon are on the Meridan together, their actions concur, and the tide is higher than at any other time. The same holds good when they are in opposition to each other. These highest tides are called Spring Tides, and occur a day or two after New and Full Moon. But when the Sun and Moon are 90° apart, their actions, or power of attractivi, neutralize each other, and the tide is lower than at other times. These are called the Neap Tides.

The highest tides happen in the month of Jañary; bocause the Earth is nearer to the Sun and Moon then, than at any other time of the year ; consequently, the hignest Spring Tides happen in that month.

When the Moon's Declination is 0, the tides are equally high on that day ; and while the Moon has North Declination the higest tides are in the Northern Hemisphere, when she is above the horizon, and the reverse when her Declination is South. The Tides rise highest at places where the Moon is in the zenith; they are also highest at the Equator and lowest at the Poles.

The common method of finding the time of High Water is as follows:

1. TO FIND THE MOON'S AGE.

[^1]
TO FIND THE TIME OF THE MOON'S PASSING THE MERIDIAN

Rour-Multiply the Moon's Age by 8, and point off the right figure under the days, then the left hand figura, an Ggures, will be the hours, and multiply the right hand figure (which was pointed off) by 6, will be the minutes paet moon when the Moon passes the Meridian. If the hours exceed 12, subtract 12 sours from it. which will be the time of her Morning passage.

TABLES FOR FINDING THE MOON'S AGE

the epact of the year.																			
185s.	1854. 1855.		1856.	1857.	1858.	1859.	1860. 1861.			1862	1863. 1864		1865.		1866.	1867. 1868.			8. 1869
d. h. 20. 1	d. 1. b. 	$\longdiv { \text { d. } \mathrm { h } . }$	$\left\|\begin{array}{c} \text { d. } \mathrm{h} . \\ 23.10 \end{array}\right\|$	d. h . 4.12	$\begin{aligned} & \text { d. h. } \\ & 15.3 \end{aligned}$	$\begin{gathered} \mathrm{d.} \mathrm{~h} . \\ 25.17 \end{gathered}$	d. b . 7.21	$\underset{18.12}{\text { d. h. }}$		$\begin{aligned} & \text { d. b. } \\ & 29.8 \end{aligned}$	$\begin{array}{lll} \text { d. h. } & \text { d. b. } \\ 10 . & 6 & 21.21 \end{array}$		$\begin{aligned} & \text { d. h. } \\ & 2.23 \end{aligned}$		$\begin{gathered} \text { d. b. } \\ 13.15 \end{gathered}$	$\begin{gathered} \text { d. b. } \\ 24.6 \end{gathered}$	$\begin{aligned} & \text { d. h. d. d. } \\ & \text { 6. } 816.28 \end{aligned}$		
the epact of the month.																			
Ján.		eb.	March.	Apr		May.	June.		Jul	ly.	Aug.	Se	ept.		Oct.	Nov			de.
d. h 0. 0	${ }_{\text {d. }} 1$.	h.	d. h. 29.11	d. 1.10		$\begin{aligned} & \text { d. h. } \\ & 1.21 \end{aligned}$	d. b. 3. 8		$\begin{aligned} & \text { d. } \\ & 3.2 \end{aligned}$	h. 20	$\begin{aligned} & \text { d. h. } \\ & \text { 5. } 7 \end{aligned}$	$\begin{aligned} & \text { d. } \\ & 6.1 \end{aligned}$	h. 18		$\begin{aligned} & \text { d. b. } \\ & 7 . \\ & \hline \end{aligned}$	d. h. 8.17		$\begin{aligned} & \text { d. } \\ & 9 . \end{aligned}$	h. 4

TO FIND THE TIME OF HIGH WATER.-lst Method.

Role.-To the time of the Moon's Meridian passage on the given day, add the time of High Water at the given place on the Full and Change days, or, as it is called, the Establishment of the Port. Their Sum is the time of High Water past noon on the given day. If this Sum exceed 12 hours 24 minutes, which is the interval betweed each succeeding tide, subtract 12 hours 24 minutes from it; or, if it exceed 24 hours 48 minutes, subtract 24 hows 48 minutes from it, and the remainder will be the time of High Water in the afternoon of the given dav.

EXAMPLE 1.

Required, the time of High Water at Sandy Hook, October 2, 1854, (Civil time.)

D. H	ग.н.
Epact for the Year, 1854, is. 1.3	Moon's Age, October 2, 1854................. 10.8
" " Month, October,. 7.5	Multiply by........ 8
Day of the Month, October,. 2.0	8h. '2.16
Moon's Age. 10.8	6
	Moon's Meridian Passage................ 8 8h. 16
	Establislment of Sandy Hook. 7 7 35
	Time of High Water in the morning. 1551
	Subtract........ 1224
	Time of High Water at Sandy Hook. . . $3 \mathrm{SL.27}$ in the afternoon

EXAMPLE 2.

Required, the time of High Water at Cape Henry, December 6th, 1854, (Civil time.)

$$
\text { Do. do. in the evening. 8h. } 18
$$

As this Rule gives only a rough estimate of the Time of High Water, and may be as much as two hours in error, caused by the variation in the time of the Moon's daily passage over the Meridian, and which aries from about 40 minutes to 66 minutes, at different times n the year. This Rule assumes the interval f her Meridian passage to be 48 minutes or four-fifths of all hour. It, however, may be useful when -here is no Nautical Almanac at hand.
The Second Method is more to be depended on. In this case the Moon's Meridian Passage at Greenwich is taken from the Nautical Almanac, and corrected to the time of her passing the Meridian of the Ship, and which is further corrected for her Horizontal Parallay by the annexed Tables.

FINDING THE TIME OF HIGH WATER.-2d Method.

R:Ln Take out the time the Moon passes the Meridian at Greenwich from the Nautical Almanac, for the day required, and apply the Equation of time the contrary way to the precept at the head of the column, which will be the apparont time al Greenwiel of her Meridian passage. Enter the side table with the Longitude of the place
and take oat a number of minutes, to be adoed to the Meridian passage if the Longitude be Weat but subtracted if East, will be the App. time of the Moon's Meridian passage at the place. Take out the Moon's Hor. Parl aearest to this time on the given day, from the Nautical Almanaa. Enter the Table below, with the time of the Meridian passage at the side and the Hor. Parl. at the top, and take out a correction to be applied as directed in the table, to the apparent time of the Moon's Meridian passage at the place, to which add the establishment of the port and the result is the time of High Water in the afterooon, if less than 12 bours. If it exceed 12 hours, it is the time of High Water next morning ; and to obtain the time for P. M. on the present day, subtract 12 h .24 m . from it If the sum exceeds 24 hours, it is the apparent time of High Water P. M. the next day. For the P. M. of the pro posed day, subtract 24 h . 48 m .

$\begin{array}{\|l\|l\|} \hline \text { Long. } & \text { Corr. } \\ \text { of the } \\ \text { in } \\ \text { Place. } & \text { Min. } \\ \hline \end{array}$		table for finding the time of high water.											
-			Moon's Horizontal Parallax.				Moon's Mer. Passage	Moon's Mer. Passage.	Moon's Horizontal Parallax.				
10	1		54^{\prime}	56^{\prime}	58^{\prime}	60^{\prime}			54^{\prime}	56^{\prime}	58^{\prime}	60^{\prime}	
20 30	8 4		Add	Add	Sub.	Sub.							
40	5	h m	h m	$b \mathrm{~m}$	h m	b m	h m	b m	h m	h m	h m	h m	h m
50	6		06	02			120	650	045	042	040	038	1850
60	8		Sub.	Sub.				70	037	035	034	033	190
70	9	020	0	04	06	07	1220	710	029	028	028	027	1910
80	10	040	08	010	011	012	1240	720	022	022	022	022	1920
90	12	10	015	016	017	017	180	730	015	015	016	017	1630
100	13	120	022	022	022	022	1320	740	08	0	011	012	1940
110	14	140	029	028	028	027	1340	750	0	08	16		1950
120	15	20	037	035	033	032	140		Add	Add	Add		
130	17	220	043	041	038	037	1420	80		04	01	01	$20 \quad 0$
140	18	240	0 5C	046	044	042	1440					Add	
150	19	30	056	052	049	046	150	820	017	012	08	05	2020
160	21	320	$1 \begin{array}{ll}1 & 3\end{array}$	057	053	051	1520	840	029	022	017	013	2040
170	22	340	18	12	057	054	1540	90	031	024	019	015	210
180	23	40	118	16	1	058	160	930	036	029	023	019	2130
		430	118	111	15	$1 \begin{aligned} & 1 \\ & 1\end{aligned}$	1630	100	035	0 0	022	018	220
		50	121	113	17	$1 \begin{array}{ll}1 & 3\end{array}$	$17 \quad 0$	1030	030	023	018	015	2230
		530	118	111	1	$1 \begin{array}{ll}1 & 2\end{array}$	$17 \quad 30$	110	023	017	013	010	230
		60	113	16	$1 \begin{array}{ll}1 & 1\end{array}$	058	180	1130	015	010	06	0	2330
		620	$1 \begin{array}{ll}1 & 2\end{array}$	056	053	050	1820	12			Sub.	Sub.	
		640	053	049	046	044	1840	120			01	03	240

EXAMPLE 1.

Required the time of High Water at Sandy Hook, Oct. 2d, 1854. (Sea tıme.)	
Moon's Mer. Passage Oct. 1st, N. A............ . 8b 11 m	Moon's Hor. Parl. at time of the Mer. passage is 59'. Ther
Equa of Time the contrary way, add.......... 10	with the Mer. pass at the side of the table, and between
Apparent time of Meridian passage. $\overline{8 \mathrm{8h} \mathrm{21m}}$	58 and 60 at the top, the Corr. is........... 0 Oh lim
Long. of Sandy Hnok $74^{\circ} \mathrm{W}$, add. 10	to be added to the Meridian passa
App. time of the M. Mer. pass, at Sandy Hook. $\overline{8 \mathrm{~h}} 31 \mathrm{n}$	
	Time of High Water in the morning. $\overline{16 \mathrm{~h} 16 \mathrm{~m}}$ Subtract.
t Sandy Hook, Apparent time of High	3h 52m.

EXAMPLE 2.
Required the time of High Water at Cape Henry, December 6th, 1854. (Sea time.)

WINDS.

The fivilowng short description of the prevailing Winds may be found useful, in the absence of the regu. alar sailing directions for the voyage, which should contain all the necessary information on this head:

The Farth revolving on its axis from West to East. together with the great heat near the Equator, caused by the Sun being always vertical in some part or other of the Torrid Zone, produces the Trade Winds.

The motion of the Earth causes the Wind to blow from East to West, whilst the cold air rushing in from the North and South towards the heated air in the Tropics; produces the N. E. and S. E. Trade Winds, and which blow continually in those directions Their limits extend to about 30° on each side of the Equator, but near to the coasts of America and Africa they extend to 34° sometimes. The limits of the Trade Winds are very variable, even in the same months of the year. When the Sun has great North Declination, their limits are considerably to the Northward of where they are found when the Sun has great South Deelination. In the month of June, for instance, the Northern limit of the N. E. Trade may be found in about 30° North Latitude, and the Southern limit of the same in about 10° North of the Equator. A space of calms and rain-squalls intervene. Until the Northern limit of the S. E. Trade is reached in about 4° North of the Equator, its Southern limit at this season extends only to about 20° South of the Equator.

In the month of December, when the Sun has great South Declination, the Nortnern limit of the N. E. Trade Wind may be expected in about 20° North Latitude, and its Southern limit in about 4° North of the Equatc:. A space of calms and rain-squalls intervene, and the Northern limits of the S. E. Trade will be found in about 2° North of the Equator, and the Southern limit about 30° South Latitude. It appears, then, that the limits vary to the extent of 10° in 6 months, and that the Northern limit of the S. E. Trade Wind is always found to the Northward of the Equator.

Ships cross the region of calms, \&c., between the Trades, quicker bound North, than they do when bound South, by reason of the airs of wind being more favorable.

Ships on approaching the limits of the Trade Wind. fall in with squally weather and heavy rains, a sure indication of a change. On entering the Northern limit of the N. E. Trade, the wind will be found far to the Northward; but as you advance South, the Wind will draw more to the Eastward. And in like manner, the S. E. Trade is found far to the Southward, and draws more to the Eastward as you advance.

Ships bound to the Southward should endeavor to cross the Equator in about Long. $25^{\circ} \mathrm{W}$., because they will meet the S. E. Trade sooner than they would if farther to the Eastward. They must, however, be careful not to go too far to the Westward before crossing the Equator, on account of meeting the S. E. Trade Wind far to the Southward, which heads them off to the Westward, and because of the Equatorial Current, which sets in towards the coast of Brazil. But in a fast sailing Ship this may be much modified. When the vessel is caught in the variable weather which exists between the N. E. and S. E. Trade Winds, the rale is to keep on that tack in which she makes the most Southing on, so as to get out of it as quickly as possible.

Far to the Eastward, along the coast of Africa, the S. E. Trade is changed to a S. W. Wind, which blows with little variation throughout the year in that direction, interrupted at times by violent tornadoes, and the Harmattan or East Wind, close to the coast.

A ship taking this Eastern passage to the Cape of Good Hope, would certainly have to beat the whole way, though an advantageous slant is sometimes obtained when the Wind veers at the quarterly changes of the Moon.

After losing the S . E. Trade, the usual variable Winds are met with, but the most prevailing one 18 from the S. W. When a Ship is bound to the East Indies or Australia, the best parallel of Latitude for running down her Longitudc to the East is $39^{\circ} 0^{\prime}$ S., because there the Westerly Winds prevail, and the weather is not so tempestuous as it is farther South. (See remarks on Great Circle Sailing. Page 6.)

If bound to India, and having reached $70^{\circ} 0^{\prime}$ E. Longitude, they steer more to the North, and fall in with the Southern limit of the S. E. Trade in about $90^{\circ} \mathrm{E}$. The limits of the Trade Winds here are governed by the same laws as they are in the Atlaniic Ocean, but do not blow so steadily. The space between the Northern limits of the S. E. Trade and the Equator is occupied by a Wind which blows 6 months, that is, from May to October, from the Eastward and called the Easterly Monsoon, and the other 6 months of the rear in an opposite direction, and then called the Westerly Monsoon.

After crossing the liquator and bound up the Bay of Bengal, the region of the resular Monsuons is reached The S. W. Monsoon commences in May, and brings rain and squally weather, which continues 6 months or until October. The N. E. Monsoon then commences, and during its continuance, from October to May (the other six months of the year), fine dry weather prevails on all the coasts of India. The Monsoons vary their direction according to the locality of the place at which they blow. This includes the China and Arabian Seas. At the changes of the Monsoons, terrific hurricanes frequently occur in all these localitios.

In the Pacific Occan, the South East Trade Wind is found to blow very steadily, with fine screne weather, and its limits are about the same as in the Atlantic Ocean. Not so, however, with the North East Trade; it is generally found light and variable, and hangs far to the Northward, especially when the Sun has great North Declination.

Ship's bound to California generally cross the Equator in about 112° West Longitude; but they seldom find the North East Trade blow with the same, force as it does in the Atlantic.

These are the principal winds which blow with any degree of certainty; but where there are largo Islands or Continents within the limits of the Trade Winds, the surfaces of which becoming violently heated by the tropical Sun, causes the regular wind to diverge into a local Trade.

THE CURRENTS OF THE OCEAN.

The Trade Wind blowing continually in one direction, causes the water on which they act to acquire a movement in the same direction. This is called a Current; but as neither the direction nor the velocity of a Current continues uniform, it becomes one of the most perplexing problems in Navigation, in making the proper allowance for the effect it may have had on the vessel's course. The only true method is to keep a careful account of the Ship's way by Dead Reckoning, and compare this frequently with the place of the Ship by Celestial observations. The Set and Drift of the Current may thus be ascertained, and proper allowance made until next observations. (See Current Sailing, page 29.)

There are several Currents known to exist in various parts of the world. The one known as the Florida Stream, originates in the Trade Winds which force the Water in towards the West India Islands, and between which it passes into the Gulf of Mexico; but not finding an outlet there, it rushes out between Cape Florida shore and the Islands of Cuba and Bahama, pursuing its course to the North, nearly parallel with the coast of the United States; it then diverges to the Eastward and crosses the Atlantic. One part of it is supposed to enter the Straits of Gibraltar, and the other to proceed along the Coast of Africa. Passing the Cape Verde Islands, it rushes along the S. E. Coast into the Gulf of Guinea.

It is then called the Guinea Current, and which runs to the Eastward, between this Coast and the Equator, until it strikes the South Coast of Africa, by which cause and the prevailing winds together it is forced in and blended with the great Equatorial Current which sets West to the South of th. Equator. The author of this work has frequently seen the extraordinary phenomena of these two great Ocean Rivers brushing past each other, side by side, the dividing line marked by a streak of foam, exactly on the Equator.*

It will be perceived that what is called the Fiorida Stream makes a complete circuit of the Ocean. For by joining this Current, which is formed by the South East Trade Wind, it is again precipitated into the Gulf of Mexico.

The Velocity of the Florida Stream is governed by the force of the Trade Winds and the obstruction it meets with from local causes. About 4 knots an hour is the usual rate of the Bahamas ; but as it proceeds to the North and East it becomes less.

But the most interesting fact of its retaining its heat acquired in the tropics, and preserving its borders from mixing with the surrounding Sea, is very extraordinary.
This is of great use to Seamen; because by ascertaining the temperature of the Sea water by the Thermometer, he knows whether he is within the influence of the Stream or not.

The Sea-weed floating about, usually called the Gulf weed, which although brought down by the Stream, is not always an indication of being in it.
The Polar Current is supposed to have its origin in Behring's Straits. in the North Pacific Ocean, and suns South through Davis' Straits into the North Atlantic.

Rennels' Curreut runs across the month of the British Channel towards the North West, and is caused by the water escaping out of the Bay of Biscay, which had been forced in by continued gales of wind from the West.

The action of the Trade Winds in the Indian Ocean produce a Current which sets North West into the Arabian Sea, and having no outlet, the waters make their escapc out again in two divisions, one runs to the South East along the Malabar Coast and past the Island of Ceylon, and again joins the Equatorial Current running to the Westward. The other division runs out along the East Coast of Africa, between that Coast and the Island of Madagascar. Pursuing its course to the South West, it passes along the cdge of the Agulhas Bank and romnd the Cape of Good Hope; it then runs to Northward and joins the Equato:ial Current which runs to the Westward in the Atlantic Ocean. That part of the Current which sets round the Cape of Good Hope is called the Agulhas Current, and its velocity varics from 5 knots to 0 , and a Current has been found someti nes to run in the opposite direction.

A Ship bound to the Eastward should keep in about the Latitude of 40° South when rounding the Cape By that means they will avoid the Current setting to the Westward. On the other hand, a Ship bound to the Westward should endeavor to get into this Current by steering for the coast to the Eastward of the

[^2]Cape. In Westerly gales the Current running against the wind makes the Sea run heary and dangeroua But a Ship may find smoother water by standing in for the Agulhas Bank and keeping on it until the gale moderate in the offing. Two Ships becalmed near each other, one may be in the Agulhas Current and the other on its Bank, and it frequently happens that in the course of two or three hours the one in the Current is swept away to the Westward, out of sight of the other, without any visible cause; and before the nature and effect of this Current was understood by Navigators, it gave rise to the superstitious story of the Flying Dutchman.
The Trade Winds in the Pacifio Ocean also form a Current which runs to the Westward, and ther between the North and West, until it strikes the Coast of China. One division then running throug the Indian Archipelago joins the Westerly Current in the Indian Ocean, and the other sets toward Berhing's Straits. Ships bound to California cross the Equator in about 112° West, which is too far to tho Eastward, because the effect of the North East Trade Wind is deadened by its proximity to the Continent of Nor 1 America, which has exactly the same effect on the North East Trade here (that is, of causing light wincs from the North and baffling weather) as there is found in the South East Trade in the proximity to the Continent of Africa, where light Southerly winds are found to prevail, and baffling weather; but on getting further to the Eastward they have the regular Trade. Consequently, if Ships were to cross the Equator in the Pacific Ocean in about 130° West Longitude, they would find a steady fresh North East Trade, be enabled to oross it quickly, and then afterwards run down their Easting in a high Latitude, where both wind and current would be found more favorable.

In the Mediterranean Sea, there exists the curious phenomena of its receiving the Currents from the Black Sea, and large rivers running into it, besides the regular Current from the Atlantic Ocean, which flows in through the Straits of Gibraltar. Those waters have no visible outlet ; but they are known to make their escape out into the Atlantic Ocean through the Straits of Gibraltar, underneath the Current which rans in on the surface. This has been proved by vessels which have been sunk at rome distance inside of the Straits, the wrecks of which were afterwards cast on shore to the Westward, or cutside of the ontrance.

The submarine mountains rising from the bottom of the Sea, the tops of which are siv,os ririble in the form of Shoals or Rocks, are no doubt the fertile cause of many of the extraordinery Cuirents whinh are met with at Sea. Because a body of water striking these elevations at right aiglos would bo turned out of its original course, and rising to the surface, pursue one which would be paras'el with the Mountais range.

This is a subject, however, of which very little knowledge can ever be obtaincl; at least to be of an : beveft to Navigators. Becaurs the effect produced by the surface Current which acts on the Ship woed be just as uncertain an ever.

HURRICANES

Abstract

Hurricanes are caused bv a porion of the Atmosphere becoming volently heated, and thereby acquiring - elrcular motion around a center or focus, (at which the air is stationary,) and around this Focus the wind rashes with great viodence. The Meteor has also a progressive motion to the Westward, at a rate varying from 12 to 30 miles an hour.

The diameter of these Meteors vary from 100 to 300 miles. The wind blows with the greatest fuly near the centre or Focus, and there also the Shifts of wind are most rapid. Towards the circumferonce the wind has less force and the shifts of wind are longer. The places most subject to Hurricanes are the Northern limits of the North East Trade Wind, to the Eastward of the meridian of the West India Islands in the North Atlantic Ocean, and the Southern limits of the South East Trade, to the Eastward of the meridian of the Island of Mauritius, in the South Atlantic. Hurricanes also occur in the Bay of Bengal and its vicinity, at the change of the Monsoons in May and October.

Those in the China Seas are called' Ty-foongs, and are produced from the same cause. These Hurricanes, or Meteors, are governed by certain Laws, and which are of the greatest importance to Seamen to have a knowledge of. Thanks to Colonel Reed, Mr. Peddington, and other scientific men, who have, by patient investigation, traced out and explained the nature of those destructive Meteors, and given rules whereby they may be avoided : or, at least, by which a vessel may suffer the least from their effects.

The following Remarks, which are derived from the experience of Hurricanes in both Hemispheres, in which the theory and practice are combined, may be of snma service, when the more regular Book on Stormı w not at hand.

hURRICANES IN NORTH LATITUDE.

These commence on the Northern limits of the North East Trade wind, in August and September, and travelling to the Westward, visit the West India Islands, and thence pursue a North East course parallel with the Gulf Stream, along the Coast of the United States of North America. The diameter of this Meteor varies from 100 to 200 miles , and its progress at the rate of about 17 miles an hour. But the most distinctive feature of this Hurricane is, that the wind blows in a Circle from Right to Left, (or, as Seamen would say, the Left-handed way;) around a Focus or Centre, the centre itself being a calm space. The changes of wind near the Focus are very rapid and blow with destructive violence ; hence our chief care is to avoid this Focus. The Focus of t'sese Meteors can be easily ascertained from the direction in which the Hurricane Wind is blowing at the time, and also points out on which side of the Storm Circle the Ship is. Suppose the Ship to have entered the Storm, and has the wind at East, Barometer 29, and falling. The Rule is, Turn your back to the Wind, and the Left hand will point to the Focus, bearing South, and by referring to the Diagram on the next page, it will be perceived that the Ship is on the Northern verge. Now, if a Ship is to the Eastward of the West India Islands, by standing to the Northward she will get out of its range; or by heaving to on the Port Tack, with her head to the Southward, (in the direction of the Focus,) the wind as it veers from right to left will be found to draw aft, and the Ship will luff up. and Bow the Sea with safety. But heaving to on the opposite tack would ensure her destruction. Because the wind veering would head the Ship off, and she would be laid in the trough of the Sea; and in such cases the violence of the wind is so great that to wear round on the other tack would be found to be impossible. The effect on a Ship standing to the Southward with this Easterly wind, would be a fall of the Barometer and an increase of the Storm; and as long as she carries sail she is rushing towards the Focus, and almost certain destruction. The most dangerous part of this Storm Circle is its Western side. You will then have the wind at North. By turning your back to the Wind, your left hand points to the East, and which is the bearing of the Focus. Now, as the Meteor in this locality is travelling to the Westward, it is evident it will overtake the Ship in its course, unless she gets out of its path. The Rule in this case is, to bear away under what sail the vessel can carry towards the South East, and then to heave to on the Port Tack, allowing the Meteor to pass to the North West of her.

As before mentioned, the path of these Hurricanes, after leaving the limits of the North Fast Trade Wind, is towards the North East, and a Ship having the wind at East, the Focus would bear South as before, and the Ship is then on the Northern verge of the advancing Storm. Now, by steering about 50 miles to the North West, and then heaving to on the Port Tack as before, the Meteor will pess to the Eastward of her, and when the wind has veered to the North East she will have the

Focus bearing South East, and be at right angles to its path. But if this cannot be done un account of her proximity to the land, heave to on the Port Tack. Advantage of gaining an offiing at the com. mencement of the Storm, when the wind is at South or South East, may be done by running off to the Eastward as long as sail can be carriea, and thon Wearing Ship, heave to on the Port Tack, and by that means the Focus will pass to the Westward of her position. But crossing in front of the advancing Storm is always attended with danger because the Ship may be taken aback before she gets to the Eastward of its path.
The Barometer should be carcful, watched when in the vicinity of those Latitudes where Hurricanes may be expected, and when it falls rapidly to 29.50 , the weather threatening, and the clouds of a bluish, gloomy appearance. the Ship is then on the verge of the Storm Circle, and the Focus may be at least 150 miles distant. As the Focus is approached the Barometer will fall to 29.20 inches at 100 miles distant; to 28.40 at about 50 miles distant, and to 28.00 at about 30 miles distant. At or near the Focus itself it falls as low as 27.00 inches sometimes

DIAGRAM 27 THE STORM GLRTT, ${ }^{2}$ 'N NORTH LATITUDE.

Fig. 18.

RULES TO AVOID THE FOCUS
Turn your back to the Wina, and your Left hand will point to the Foctus.

Guricane Wind.	Bearing of the Focus.	When the Path is to the W.N.W.	When the Path is to the N. E.
Wind at Enst. " N. E. $"$ North. " N. W. " West. " S. W. " South. " S. E.	Focus South. " S. E. " East. " N. E. " North. " N. W. " West. " S. W.	Heave to on the Port Tack.do.do.Run 50 m's to the S'd, and heave to.Heave to on the Port Tack.do. do. do. do. do. do. do. do. do. do. do. do.	

hURricanes in south latitude

The Harricanes in the South Atlanno Ocean commence near the Southern Simits of the S. E. Trade Wind, to the Eastward of the Island of Mauritius, and pursue a course to the Westward. They are generally expected in the months of February or March. The diameter of these Meteors vary from 150 to 300 miles, and their rate of progression is from 12 to 30 miles an hour. The distinctive features of these Hurricanes are, that the wind blows in a circle, around a focus, from left to right (or the right-handed way as seamen call it), consequently the Rule for finding the focus of the Hurricane in South Latitude is to urn your back to the Wind, and the right hand will point to the centre. Those in the Bay of Bengal and Mhina Seas being in North Latitude, revolve the left-handed way, same as in the North Atlantic. So that in meeting one of these Hurricanes. it must be considered, in the first place whether the Ship is in North or South Latitude, and then to act accordingly. If the Ship is in South Latitude, the rule is to heave to on the Starboard Tack, with her head towards the Focus ; and supposing the Wind at East, the right hand will point to the Focus bearing North. The Ship would then be on the Southern verge of the Storm Circle, and as the VFind veers to the Southward she will luff up and bow the sea. The Barometer acts in a amilar manner as before stated.

DIAGRAM OF THE STORM CIRCLE IN SOUTH LATITUDE.
Fic. 19.

RULES TO AVOID THE FOCUS.
Turn your back to the Wind, and your Right hand will point to the Foeks.

Harrieune Wind.	Bearing of the Focus.	Wher tha Path is to the W. S. W.	When the Path is to the S. \mathbf{B}
	Focis bears South. "" " S. W. " " West. $"$ " N. W. " " North. $"$ " N. E. " " East. S. E.	Heave to on the Starboard Tack. do do do do do do do do Run 50 miles to $\mathrm{N} . \mathrm{W}$. and heave to. Heare to on the Starboard Tack. do do	Heave to on the Starboard Tack do do do Run 50 miles to the S. W. and heavo to Heare to on the Starboard Tack do do do

Nors. The Hurricanes in the Sonth Atlantic, after leaving the Latitude of 80° S. recurve to the S. E. A Ship meot rag these Hurricanes in a higher Latitude would be in their direct path, when she has the Wind at N. E., because on tarning your back to the Wind, the right hand will point to the Focus bearing N. W., and ita path being 8. E wit overtale her unless she gets out of its way by running off 50 miles to the S . W.

REMARKS ON HURRICANES.

The iollowing remarks on handling a Ship in a Hurricane, may be found useful: When a Ship it epproaching the locality of Hurricanes, the Barometer should be carefully watched, and when it has fallen rapidly from about 30 inches to 29 20, the Ship is then on the verge of a Storm Circle. At the same time the weather will appear threatening, with heavy, bluish-looking clouds in the sky. At other times, it sets in with small rain, and the Wind increases gradually. Now is the time to consider which side of the Storm Circle the Ship is on, from the direction in which the Wind is then blowing, by the rules already given for that purpose.

The most severe Hurricanes, espectally those in the Indian Ocean and China Seas, generally give notice of their approach by the rapid falling of the Barometer about an inch, when no other indications in tho ky are visible, at from 12 hours to 48 hours before the verge of the Storm reaches the Ship. And in this case no time should be lost in preparing the Ship to encounter it, by sending down on deck all the light spars and rigging, and the studding-sails out of the tops, rigging in the flying-jib and standing-jib booms, securing the boats and hatchways, and the sails (which are furled to the yards) with double gaskets, because after the Hurricane sets in, the violence of the Wind is so great that it will be found impossible for men to go aloft or to do any work whatever. Upon the same principle the Ship's place in the Storm Circle should be ascertained as soon as possible, and arrangements made for her safety by running out of its path, if necessary, before the wind has increased to that degree that no sail can withstand, or to heare to on the proper tack.
Instances have been known of Ships getting into the Storm Circle, and been obliged to scud before the Wind under bare poles, and changing their Course as the Wind veered, and have been kept scudding round the Focus for several days together, and only got liberated after the Meteor had spent itself, and found themaelves several hundreds of miles to the Westward of where they had entered it.

A Transport Ship, with troops on board, from Ceylon, bound to the Island of Mauritius, fell in with one of those Hurricanes on the 26 th of March. At midnight the Barometer had fallen to 28.90. Wind blow ing hard at West. And the captain, not being acquainted with the theory of storms, the Ship was kept on her course to the S. S. W. 50 miles, and next day the centro of the Hurricane burst upon her, and threw her completely on her beam ends. All three masts went by the board, and she righted a little. The wreck of the masts alongside knocked off her rudder, and caused her also to leak badly; and so severe was the Hurricane and sea that the men were frequently washed from the pumps, the Ship laying all the time in the trough of the sea, and her decks were continually swept. For three days this Hurricane continued, and during all that time the hatches had to be kept carefully closed to prevent her going down. And when the storm abated so that the hatches could be raised a little, 14 of the soldiers were found dead by suffocaton from the want of fresh air in the hold.
Now there is not a shadow of a doubt but this was caused by the ignorance of the captain, in allowing dhe Ship to stand on to the S. S. W. 50 miles, after the Barometer had fallen to 28.90 , and which placed bel right in the centre of the Hurricane.

By referring to the Diagram for South Latitude, it will be seen that with the Wind at West, the Ship would be on the Northern verge of the Storm Circle, and the rule applied, of turn your back to the Wind and the right hand points to the centre. The right hand in this case points to the Snuth, and which was the course the vessel steered for 50 miles, which brought her into the centre of the Hurr.jane. Now it may be pointed out how she not only could have escaped all this disaster, but actually to have made a fair wind out of part of this Hurricane, as follows: Suppose her to have run off E. N. E. or East with her Westerly Wind, until she raised her Barometer to 29.20 , which she would have quickly done. She might then have hauled gradually to the Southward as the Wind veered to the North and N. E., and thus pass round behind or to the Eastward of the storm, and as the Meteor was advancing at the rate of perhaps 30 miles an hour to the W. S. W. it would have soon passed her locality.

At all events, by sacrificing say 150 miles, by running out of her course to the Eastward, she wonld have sooner got clear of it and without damage. Or by heaving to at once with her head to the Southward on the starboard tack, when the Barometer had fallen to 29.30 , she would then have been on the outer verge of the Storm Circle, and allowed the storm to pass by her.
The path of the Hurricanes in the N. Atlantic Ocean being near the coast of America, the same advantage (that is, to get behind the storm) is not always practical for the want of sea room to perform the necessary evolut ons in. But supposing a case of a Ship falling in with a Hurricane to the Eastward of the West India lslands, when bound to the Northward. The Barometer has fallen rapidly to 29 inches. Wind at West Under close reefs. Apply the rule, turn your back to the Wind, and the left hand will point to the focus bearing North, in the very direction the vessel is steering.
On referring to the Diagram for North Latitude, it will be perceived that the Ship is on the Southern verge of the Storm Circle, and the barometer at 29 inches would place her within 60 miles of its centre. Now, as before observed, if she has sea-room, she may not only escape the effects of the storm, but make a fair Wind out of part of this Hurricane by running off to the Eastward with her Westerly Wind, until the Barometer rises, which it will soon do, to 29.20. She may then haul gradually to the Northward as the Wind veers to the S. W. and South, and thus continue on her course.

4 Ship falling in with a Hurricane off the coast of the United States, its path being then to the N. E, the same difficulty occurs again, that is, the want of sea-room. But suppose a case. A Ship bound to the S. E. has the Barometer fallen rapidly to 29 inches. Wind at N. E. Under close reefs. Now turn your back to the Wind, and the left hand will point to the Focus bearing S. E., distant about 60 miles, and in the very direction the Ship is steering, and 60 miles more of a run, will plunge her right into its centre.

On referring again to the Diagram for North Latitude, it will be perceived that the Ship is on the Northwestern verge of the Storm Circle, and to escape its effects and turn part of it into a fair Wind, run off to the S. W. with this N. E. Wind, until the Barometer rises to 29.20 , which it will soon do, and theu haul cradually to the S E. as the Wind veers to N. and N W., thus passing round behind the Meteor

The distance which a Ship would require to run iat right angles to her course) before sno raised the Barometer to 29.20 , would probably be about 100 miles, and which would take her 10 hours to perform, as the rate of 10 knots an hous. But she would soon make up the lost time when the wind veers so that bie cash ieganan her pione. curino.
iran sne Deen hove to in the first case when the Barometer fell to 29 inches, with her head to the Northward, on the Port tack, the Meteor would have passed to the Northward of the Ship on its path towarda the W. N. W., and the Wind as usual would have veered to the S. W. and South. and she would then lufir ap and bow the sea, but would be kept perhaps two or three days in the storm.

And in the second case, by heaving to under the same circumstances. the storm would pass to the Sonthcentward of che ship, on its path towards the N. E. ; and the Wind veering to thu North and N. W., she wouid luff up as before, but would also he kept 2 or 3 days in the storm laid in

'THE CONSTRUCTION AND USE OF MERCATOR'S CHART.

Abstract

As the surface of the Globe is round, while that of the paper is flat, every chart exhibiting any extent of surface is necessarily an artificial construction, or, as it is called, projection of the real state of things.

The Charts used in navigation are those on Mercator's Projection, because on this alone the track of a Ship always steering the same course appears a straight line; and thus all calculations respecting the Latitude and Longitude of a Ship steering a course which cuts all the Meridians at the same angle, are reduced to the utmost simplicity.

On Mercator's Chart all the Meridians are parallel and the degrees of Longitude are all equal, and of the same length throughout, as a degree of Latitude is on the Equator. The degrees of Latitude are unequal, being extended at each Latitude beyond their proper lengths, in the same proportion as the degree of Longitude are diminished on the Globe towards the Poles.

The miles of Lati+nde are consequently increased towards the Poles, so that in the Latitude of 60° a: degree of Longitude will measure 30 of these miles only, and near the Poles 1 mile of Latitude is equal to a degree of Longitude.

TO CONSTRUCT A CHART ON MERCATOR'S PROJECTION.

Heving first dotermined the limits of the proposed Chart, that is, the number of degrees of Latitude and Longitude it is to contain, and the degree of each it is to commence from, take out the Meridional parts fom Table III, corresponding to each degree of Latitude within the intended limits, and find the difference between the Meridional parts of each succeeding degree, or every fifth degree (if the scale is small.) Roduce the difference of the iveridional parts into degrees by dividing them by 60 . Draw a line at the bottom margin of the paper, to represent the parallel of the least Latitude, on which lay off the proposed anmber of Degrees of Longitude, taken from a scale of equal parts, or the space to be occupied by the Longitude can be divided into equal parts. Draw another line at the top margin parallel to the bottom one, and divide it also into the like number of equal parts. This top line or parallel of Latitude must be drawn at a distance from the bottom one equal to the Meridional Difference of Latitude between the extreme Latstuden, taken from the scale of Longitude, which must previously be graduated to Degrees and Minutes.

Take the Meridional Difference of Latitude between the least Latitude and the next fifth degree, from .he graduated scale of Longitude, and lay it off on both sides from the parallel of least Latitude upwards, and draw the parallel of Latitude line for that degree. In like manner lay off the next fifth degree, and draw its parallel of Latitude, and draw the Meridians through overy fifth degree of Longitude at top and bottom.

Draw Compasses, showing the Rhumb-lines at convenient places on the Chart, and the principal pointe of the coasts are then laid down according to their Latitude and Longitude, and the coast-line filled in by hand. The variation of the Compass, and other matters that are usually inserted, are then introduced.

EXAMPLE.

Required to construct a Cbart, extending from 29 degrees West Longitude to 60 degrees Weat Longitude fons freenwich, and from the Equator to 50 degrees North Latitude.

Take ont the Meridional parts for every fifth degree with their Difference as follows:

Latitudes.	Merid. Parts.	Differences.			
5°	300	300	-	5°	0^{\prime}
10	603	303	-	5	8
15	910	307	-	5	7
20	1225	315	-	5	15
25	1550	325	-	5	25
80	1888	338	-	5	38
35	2244	356	-	5	66
40	2623	379	-	6	19
45	3030	407	-	6	47
50	3474	444	-	7	24

Divide the oottom line into 40 equal parts, which will represent the Degrees of Longitude on the Equator. Form Boale of miles 60 to the Degree; take the first Difference $5^{\circ} 0^{\prime}$ in the Compasses, and lay it off from the Equation mhoth siden, and draw the parallel of 5°; from this parallel lay off the next Difference $5^{\circ} 3^{\prime}$, and an on

TOFACE PACE ETG
Fie. 28.

Fuc 81

TO CONSTRUCT A PARTICULAR CHART ON A LARGE SCALE

When the Chart does not commence at the Equator, bat is to serve for a portion of a coast contained between two parallels of Latitude on the same side of the Equator, draw a line at the bottom margin of the papor, to represent the least parallel of Latitude.

Divide the given inches to the Degree, (according to the scale required,) into 60 equal parts, which will represent miles of Latitude.
Now enter the Traverse Table with the least Latitude as a Course, and find the length of a Degree of Longitude in that parallel ; that is, take 60 minutes of Longitude in the Diacance Column, and in the Latitude Column will be found the length of the Degree of Longitude, in miles.

Take this length of the Degree of Longitude in the dividers from the scale of miles of Latitude, and lay off on the bottom margin line as many Degrees of Longitude as required in the Chart, and divide each into 60 equal parts, and draw Meridians at each side.

Enter Table III., and take out the Meridional parts for each Latitude, beginning with the least Latituda and take the Differ. between that and the next greater. Take this Meridional Difference of Latitude in the dividers from the graduated Scale of Longitude, and lay it off on each Meridian from the bottom margin line, or least parallel of Latitude, and draw the next greater parallel of Latitude. From this last parallel of Latitude lay off the Meridional Difference of Latitude between that and the next, and draw the neri parallel of Latitude, and so on, to the extent required. Divide the greatest parallel of Latitude, at the top, into the same number of Degrees and Minutes of Longitude as at the bottom margin, and draw Merid. ians through each Degree of Longitude, and number the Degrees of Longitude (whenever the Latitude is North of the Equator, and the Longitude West from Greenwich,) from Right to Left, and vice versa.

When the Chart is to be bounded by Parallels of Latitude on different sides of the Equator, to the extent of a for Degrees only, the Degrees of Latitude and Longitude being of the same length, we first draw the Equator and lay off the Degrees of Latitude (according to the scale required) North and South of it, and draw the Parallels of Latitude. The Degrees of Longitude on the Equator are then made of the same length, and the Meridians drawn as before. This is called a Plane Chart, and can only be thus constructed near the Equator. Having thus drawn and graduated the Parallels of Latitude and the Meridians of Longitude, the Latitudes and Longitudes of places are laid down, and the coast-lines sketched by hand. Rocks and shoals are then inserted, with the depth of water at low water, spring tides, the setting of the tides, the times of high water, full and change, variation of the compass, \& 80 ; and one or more Compasses are insarted in the most convenient parts of the Chart.

EXAMYZZ.

Required to construet a Chart between the Latitudes of 40° and 43° North and the Lergitude of 69° and 78 West from Greenwich, on a Scale of 2 inches to the Degree of Latitude. (See Fig. 21.)

Draw a line at the bottom margin of the paper to represent the parallel of 40°, iake 2 inches from the Plane Scale and divide it into 60 equal parts, representing miles of Latitude. Enter the Traverse Table with Latitude 40° as a Course, and 60 miles of Longitude in the Distance Column. Then in the Latitude Column opposite will be found 46 miles, the required length of a Degree of Longitude in that parallel of Latitude. Now take this 46 miles in the dividers, from the two inch scale, and lay off 3° of Longitude, divide them into 60 miles each, and draw a Meridian line at each side. Enter Table III., and take out the Meridional parts for each Latitude, beginning with the least, as follows:

Lat. 40°	Merid. Parts. 2623	
*.......... 41	do. 2702	Diff.79- $1^{\bullet}{ }^{\text {1 }} 19^{\prime}$
..... 42	do. 2782	" $80-120$
. . 43	do. 2863	* $81-121$

Now take $1^{\circ} 19^{\prime}$ in the dividers, from the Scale of Longitude, and lay it off on the Meridian lines from the parallel of least Latitude, 40°, and draw the parallel of 41°. In like manner, from the parallel of 41° day off $1^{\circ} 20^{\prime}$, and draw the parallel of 42°, and $1^{\circ} 21^{\prime}$ laid off will give the parallel of 44°. Divide this last parallel of Latitude into Degrees and Minutes of Longitude, the same as the parallel of 40° at the bottom margin, and draw the Meridian lines. Divide the Degrees of Latitude into 60 miles each, and number the Degrees of Longitude from Right to Left, because the Longitude is West from Greenwion.
Lay off the Latitudes and Longitudes of the most prominent parts of the Coust, and fill in the Coas line by hand, \&c.

THE USE OF MERCATOR'S CHART.

TO PRICK OFF THE SHIP'S PLACE ON THE CHART.

Lay the edge of the parallel ruler along the nearest parallel of Latitude line, and move one : its sider until its edgo is over the Degree and Minute of Latitude required, and as near as possible to tio required Longitude. Draw a pencil line, which will represent the Ship's parallel of Latitude. Take the Longitude with a pair of dividers from the scale, one foot being on the nearest less Meridian, and the other at the Degiee and Minute required. Then with one foot on that Meridian, extend the other along the Ship's parallel of Latitude, and mark the spot, which is the Ship's place required.

Or, lay the edge of the parallel ruler along the nearest less Meridian line, and move one of its sides until the edge is over the Degree and Minute of Longitude required, and transfer the same to the Ship's parallel of Latitude. Draw a pencil line, and at the intersection of these two lines will be the Ship's place. (See Chart, Fig. 20, page 46.)

EXAMPLE.

Lay off the Ship's position on the Chart, Latitude $19^{\circ} 30^{\prime} \mathrm{N}$. and Longitude $42^{\circ} \mathrm{W}$.
The nearest less parallel of Latitude is 15°; a ruler on this, and moved up to Latitude $19^{\circ} 30^{\prime}$ on the Graduated Scale, gives the Ship's paralleI of Latitude. Then with one foot of the dividers on the neares less Meridian of 40° on the Scale of Longitude, and the other extended to 42°, transferred to the Ship's par aliel of Latitude, points out the Ship's place.

This is done at least once every day at noon, and being connected together with a pencil line, shows the Ship's track on the Chart from day to day.

TO SHAPE A COURSE ON THE CHART.

Lay the edge of the parallel ruler over the Ship's place and the place she is bound to. Move the ruley orer the Chart until its edge is placed over the centre of the nearest Compass, which will give the True Course. Then, if the variation of the Compass is Westerly, it must be allowed to the Right hand of this True Course, but if Easterly, to the Left hand of the True Course, will give the Course required to steer bs Compass.

EXAMPLE 1.

A Ship in Latitude $19^{\circ} 30^{\prime}$ and Longitude 42° W., is required to shape a Course by Compass to St. Antonio, one of the Oape Verde Islands. (See Chart, Fig. 20, page 46.)

Lay the Ruler over the Ship's place and that of the Island, and move the edge of it over the centre of the nearest Compass, gives the True Course E. \mathcal{F}. The variation of the Compass being $1+$ points Westerly, which, allowed to the Right hand, gives the Compass Course required E. S. E.

EXAMPLE 2.

Required the Course to the mouth of the River Δ mazon from the same position.

Lay the ruler over the Ship's place and that of the River Amazon, and refer it to the centre of the Compass as before, will give the True Course S. S. W. The Variation being $\frac{1}{2}$ point Easterly, which allowad to the Left hand gives the Compass Course required S. by W. $\frac{1}{2}$ W.

TO MEASURE THE DISTANCE BETWEEN TWO PLACES ON THE CHART.

When the places lie nearly North or South of each other, their Difference of Latitude is the Distance required. Extend the feet of the dividers to the places, and refer this extent to the Scale of Latitude between the parallels, and count the number of Degrees and Minutes contained, which multiplied by 60 (and taking in the odd Minutes. will be the Distance required.

EXAMPLE 1.

[^3]When :he places he nearly East or West, or on the same parallel of Latitude, extend wo feet of the dividers between the places, and refer this extent to the Scale of Latitude, holding the cehtre or joint of the dividers directly over their parallel of Latitude, so that each foot may reach to equal distances from it. Count the number of Degrees and Minutes contained between the feet of the dividers, which multiply by 60, (and taking in the odd Minutes) will be the Distance required. But if the Distance is too great for the dividers, take, say 10° from the scale (5° on each side of the parallel of Latitude) find how many times this extent of 10° can be obtaincd between the places. Then contract the dividers and measure the remainder, lolding the centre of the dividers over the parallel of Latitude as before, and count the number of Degrecs and Minutes they contain. Add this to the number of tens of degrees already measured, which multiplicd by 60 (and taking in the odd Minutes) will give the Distance required.

EXAMPLE 2.
Required the Bearing and Distance of the Island of Barbadoes from the Isle of Brava, one of the Cape Verde Lslands, in nearly the same parallel of Latitude.

Answer.-The True Bearing is W. \ddagger S., and $\frac{1}{2}$ a point Westerly variation allowed to the Right hand, gives the Compass bearing W. $\frac{1}{8} \mathrm{~N}$. The distance being too great to be measured at one time, take 10° in the dividers, 5 on each side of the parallel of Latitude, and with one foot of the dividers on Brava, it will take 3 times this extent, or 30°, to reach near to Barbadoes. Then the rernainder of the distance taken in the dividers, will be found to measure 4°. Total 34°; which multiplied by 60, gives the Distance, 2040 miles.

When the places lie obliquely, neither being in the same Latitude or Longrtude.
Find the Middle Latitude between the places. Take the distance between them in the dividers, and refer it to the graduated Scale of Latitude, holding the centre or joint of the dividers directly over the Middle Parallel of Latitude, so that each foot may reach to an equal distance from it, and count the Degrees and Minutes contained in the dividers, and proceed as before. But if the Distance be too great to be taken in the dividers, take an equal number of degrees on each side of the Middle Parallel of Latitude, and proceed as in the last Example.

EXAMPLE 3.

Required the Bearing and Distance of St. John's, Newfoundland, from St. Antonio, one of the Cape Verde Islands
Answer.-The True Bearing is N.W. $\frac{1}{2}$ N., and 2 points of Westerly variation allowed to the Right hand, gives the Compass bearing N. by W. W. The Middle Parallel of Latitude is 32°. Take 10° in the dividers, that is, 5 on each side of 32°, from the Scale of Latitude, and with one foot on St. Antonio, 3 times this extent, or 30°, will reach short of St. John's. The remainder of the Distance taken in the dividers, middled again at 32°, will give 9° more, or 39°, which multiplied jy 60, gives the Distance required, 2340 miles. (See Chart, Fig. 20, page 47.)

THE COURSE AND DISTANCE GIVEN, TO FIND THE LATITUDE AND LONGITUDE IN.

Allow the variation on the Compass Course steered to the Left hand, if the variation is Westerly, but to the Right hand if Easterly, will give the True Course. Lay the edge of the parallel ruler over the centre of the nearest Compass on this Course, and transfer it to the Ship's place of departure. and draw a pencil track. Take the Distance run from the Scale of Latitude, middled on the Middle Parallel of Latitude the Ship has sailed in, and lay it off on the track, which will be the Ship's place. Take the Distance in the dividers between it and the nearest less Parallel of Latitude line, and refer it to the Scale of Latitude, will give her Latitude in. In like manner, take the Distance between the Ship's place and the nearest less Meridian line, and refer it to the Scale of Longitude, will give her Longitude in.

EXAMPLE.
A Ship from Barbadoes sails N. E. by Compass 300 miles. Variation of the Compass a point Easterly Required her Latitude and Longitude in.

Answer.-The True Course is N. E. $\frac{1}{2}$ E.; the variation being allowed to the Right hand, because it is Easterly, and the Distance, 300 miles, or 5°, taiken in the dividers, from the Scale of Latitude, to the Northward of the Parallel of Barbadoes, and laid off on this N. E. E. Track, will give the Ship's place. The nearest less Parallel of Latitude line is 15°. A parallel ruler laid on this line, and moved up to the Ship's place, and then referred to the Sale of Latitude, will give her Latitude in, $16^{\circ} 20^{\prime} \mathrm{N}$. The nearest less Meridian line is 55°, and the Difference in like manner referred to the Scale of Longitude, gives her Longitude in, $55^{\circ} 40^{\prime}$ West. Or the Latitude may be ascertained by taking the Difference between the Ship' place and the nearest less parallel of Latitude, 15°, in the dividers, and applying it to the Scale of Latitude, gives her Latitude in, $16^{\circ} 20^{\prime}$. And in like manner the Longitude is found by taking the Difference botween the Ship's place and the nearest less Meridian line, 15°, in the dividers, and applying it to the Seale of Longitude, gives the Longitude in, $55^{\circ} 40^{\prime} \mathrm{W}$.

USE OF THE COASTING CHART

To fina the Ship's Position from the Latitude Observed and the Bearing of the Land by Compass

Roire-Place the edge of the ruler along the nearest less Parallel of Latitude line, and move it up to the requined ane on the Scale of Latitude, and draw a pencil line, which will be the Ship's Parallel of Latitude. Correct the "Compass bearing by allowing the Variation as before directed, which will give the True Bearing of the object. Plave the edge of the ruler over the centre of the nearest Compass, and transfer this True Bearing to the object by moving the ruler until its edge is placed over it, and draw a pencil line, and where this line cuts the Ship's Parallel of Latitnde is the Ship's place. By this means her Longitnde in and Distance off the object is ascertained.

EXAMPLE.

A Ship observed her Latitude to be $40^{\circ} 45^{\prime} \mathrm{N}$. At the same time Montank Point Light Honse bore by Compasa N. W. $\frac{8}{4}$ N. Variation $\frac{8}{4}$ point Westerly. Required her Distance off the Point and her Longitude in. iSoe Chart. Fig. 21, page 47.)

Answer.-Having drawn the Parallel of Latitude line of $40^{\circ} 43^{\prime} \mathrm{N}$., allowing the variation on the Compass bearing, gives the true bearing N. W. A line drawn in that direction from Montauk Pomt intersects the Parallel of Latitude and gives the Ship's place. Her Distance off being 30 miles. and her Longitude in $71^{\circ} 22^{\prime} \mathrm{W}$.

To find the Ship's Position from the Cross Bearing of two Objects on the Land.

Runs-Take the Bearings by the Compass, and correct them for the Variation, as before directed, which will give the True Bearings. Place the edge of the ruler over the centre of the nearest Compass, and transfer this Tru Bearing to the objects. Draw pencil lines from each, and where they cross each other is the Ship's place.

EXAMPLE

Montauk Point bore N. W. $\frac{1}{4}$ N, and the East end of Block Island N. N. E. $\frac{8}{4}$ E. Variation 4 point Weaterly Required the Distance off each object, and the Latitude and Longitude in.

Answer.-The True Bearing of Montauk Point is N. W. and Block Island N. N. E. The former 1811 aniles, and the latter 14 miles distant from the Ship. Latitude in $40^{\circ} 56^{\prime} \mathrm{N}$. and Longitude in $71^{\circ} 40^{\prime} \mathrm{W}$.

Having the Ship's Correct Position from Cross Bearings, to Shape a Course along Shore, or to clear a Shoal, or other Danger. (See Chart. Fig. 21, page 47.)

Role.-Place the edge of the ruler over the Ship's place, and in a direction which will lead the Ship olear of danger, move the ruler along and place its edge over the centre of a Compass, which will give the True Course Then, if the variation is Westerly, allow it to the Right hand of this True Course, will give the Compasa Course required to steer; but if the variation is Easterly, allow it to the Left hand of the True Course.

EXAMPLE

Required to shape a Course from the position found by Crose Bearing in the last Example, so as to pass clear hrough midway between Nantucket and its Shoals, and the Distance to run until abreast of the New sunth Sinna!

Answer.-The True Course to pass midway is E. N. The variation of a point to the Right gives the Compass Course, East. The Distance to the South Shoal in the dividers, and middled on the Parallel of Latitude, 41°, gives the Distance off, 80 miles.

The Latitude by Observation and Soundings given, to find the Ship's Position.

Rule.-Place the ruler on the nearest Parallel of Latitude line, and move it up to the required latutede, and draw a pencil line, which will represent the Ship's Parallel of Latitude. Then where the Soundinge olvinine are found to agree with that laid down in the Chart, is the Ship's place.

EXAMPLE

[^4]Answer.-Her Longitude in at the time of Sounding was $78^{\circ} 20^{\prime} \mathrm{W}$, and her Dietance off the High and of Noversunt was 78 miles.

To fow the Distance by two Bearings of the same Objert naving the Course ana Distance Run between them.
Rour Take the Bearing by the Compass, and note the time by watch, and after the first Bearing has been altered at least 3 points, take a seoond Bearing and sote the time by watch. Ascertuin the True Course the vessel ham made, and the Distance run in the interval tetween the Bearings. Allow the variation on the Compass Bearinga, and find the True Bearings, which lay off on the Chart as in the former exanyples, und draw pencil lines. Lay the ruler over the Course made good, and take the Distance run in the dividers. Move the edge of the ruler up on the two lines, antil the points of the dividers reach to both lines at the edge of the ruler, aud draw a pencil line, and the result is the Ship's Distance off the object at the time of each Bearing, and also her Latitude and Longitude is at those times.

EXAMPLE 1.

At 8 A. M., Cape Cod bore by Compass S. S. W. $\frac{8}{4}$ W., and at, 10 A. M. it bore W. by S. $\frac{1}{2}$ S. Course steered E. by S. $\frac{1}{4}$ S. Rate of Sailing 10 knots an hour Variation $\frac{8}{4}$ of a point Westerly. Required the Ship's Distanco off at the time of both Bearings

Answer.-The first Bearing S. S. W. W. Corrected for variation is S. S. W. The second Bearing W $^{\circ}$ by S. \ddagger S., corrected is W. S. W., and laid off on the Chart : then the Course stcered E. by S. \& S., corrected for rariation is E. $\frac{1}{2}$ S., and the Distance run in the interval, 20 miles, applied to the Ship's track drawn across the two lines of Bearings. gives her Distance off at 3 A. M., 13 miles, and her Distance off at 10 A. M. 27 miles. (See Chart, Fig. 21, page 47.)

EXAMPLE 2.

At 6 P. M. Barnegat Light came in sight, bearing by Compass S. W. by W. Ship sailed on a S. by W. $\frac{1}{\frac{1}{2} \text { W }}$ Course, at the rate of 8 knots an hour, with a two knot tide in her favor until 730 P . M., when the same Light Was observed to bear N. W. by W. Variation $\frac{1}{\frac{1}{2} \text { a point Westerly. Required her distance off at the time of both }}$ Bearinge

Answer.-The Bearings corrected are S. W. $\frac{1}{2}$ W. and N. W. by W. $\frac{1}{2}$ W. The True Course S. by W., and the Distance run in the interval of $1 \frac{1}{2}$ hours 1 s 12 , to which add 3 for the effect of the Tide, making 15 miles. The projection of this case on the Chart by the above rule gives her Distance off Barnegat at -P. M. $15 \frac{1}{2}$ miles : and at $7 \odot, 10 \downarrow$ miles. See Fig. 1%, page 33.)

EXAMPLE 3.

At 6 A. M. Neversink Light Houses bore by Compass W. by S. $\frac{1}{2}$ S. Ship then sailed on a S. $\frac{1}{2}$ W. Course, at the rate of $\delta \frac{1}{2}$ knots an hour, until 7 A. M., when the same object bore N. W. by N. Required the Sbip's Latitude and Longitude in at the time of both Bearings.

Answer.-The Variation of $\frac{1}{2}$ point allowed, gives the True Bearings W. S. W., and N. W. $\frac{1}{2}$ N. The True Course South. and the Distance run in the interval of 2 hours, is 11 miles. This projected on the Chart in like mamuer as the last example, gives the position of the Ship at 5 A . M., Lat. $40^{\circ} 26^{\prime} \mathrm{N}$., Lon. ${ }^{\prime} 3^{\circ} 51^{\prime}$ W.: and al 7 A. M., Lat. $40^{\circ} 15^{\prime}$ N., and Lon. $72^{\circ} 51^{\prime} \mathrm{W}$.

EXAMPLF 4

At noon the N. W. end of St. Anthony (one of the Cape Verde Islands) bore S. E. by E. by Compass. Ship then siled on a South Course by Compass at the rate of 10 knots an hour, until 4 P. M, at which time it bore N. E. by E. The Variation here being $1 \frac{1}{5}$ points Westerly. Required the I atitude and Longitude of the Ship at the time of both Bearings.

Answer.-The True Bearings are E. by S. $\frac{1}{2}$ S. and N.E. $\frac{1}{2}$ N. The True Course S. by E. $\frac{1}{2}$ E., and the Distance run in the interval of 4 hours is 40 miles. This projected on the Chart in like manner as the last, gives the Ship's position at noon. Latitude $17^{\circ} 23^{\prime} \mathrm{N}$., Longitude $25^{\circ} 59^{\prime} \mathrm{W}$; and at 4 P . M. Latitude $16^{\circ} 45^{\prime} \mathrm{N}$., Longitude $25^{\circ} 46^{\prime} 40^{\prime \prime} \mathrm{W}$.

Norr.-Theae two last examples are very useful when it is required to find the Ship's exact rusition when altituden ase takell for the purpose of verifying the Chronometer from time to time during the voyage, and in escortaining ite arror on (deanwich Mean Time and daily rats, and which will he frand fully explained at page 155.

SOUNDINGE

The Soundings marked on the Chart are those at low water spring tides, and the depth is noted in. fathoms (or in feet in some of the harbor plans), and the nature of the bottom inserted.

As the Ship's place on the Chart can be determined by the Latitude observed and the Soundings laid down in that parallel of Latitude, it may also be determined within certain limits by a systematio manner of Sounding on approaching the land in foggy weather or in dark stormy nights, which is always a proper precaution, however correctly the reckoning may have been kept, because near the shore the Ship is under the influence of either Tides or Currents, which may, in the course of a few hours, set her considerably out of her proper course.

To obviate this, take Soundings early (when Soundings can be obtained), say at noon. The Ship's position by observation being then marked on the Chart, the Soundings as laid down at the Ship's place may be compared with the depth obtained from Sounding. This may be taken as a point of Departure. Then the Course and Distance sailed, say every 4 hours, projected on the Chart, may be verified by the Soundings at the end of every 4 hours. and in the event of thick weather setting in (as is often the case in making the land) any deviation from the proper Course and Distance allowed, may be at once detected. Even althu'jgh ne vessel retains her proper Course, it gives greater confidence in the Reckoning, and does away with all doubl and anxiety on the subject.

But, as before observed, this system of Sounding must be commenced early, so that the various Soundings obtained may be compared with each other, and also with those laid down on the Chart, from which a judgment may be formed of the Ship's plaee from the track of Soundings she has passed over.

Single Soundings taken without any reference to each other, are seldom of any use, and only tend to perplex the subject, except when the Latitude is known, or when the Ship comes suddenly into shoal water

REMARKS ON SOUNDING WITH THE LEAD.

There are two Leads used for Sounding, the Hand Lead, weighing 14 pounds, and attached to about 88 fathoms of line, and the Deep-Sea Lead, weighing 28 or 30 pounds, and attached to 100 fathoms or more of line wound on a reel, and a small Lead of 5 or 6 pounds is sometimes used in shoal water. The lower end of these Leads have a hole in which a lump of tallow is inserted, for the purpose of adhering to the bottom of the sea and bringing up a portion of it for examination. This is called Arming the Lead.

The Hand Lead is only used in shallow water, and the Leadsman standing in the main channels, throws it as far forward as he cau, swinging it once or twice over his head if necessary, to give it increased force, and endeavoring to draw the line tight from the Lead at the instant the Ship, by her progress, places him directly over it. The hand Lead descends about 10 fathoms in the first 6 seconds, hence when the vessel is going fast it is often difficult to get Soundings, unless her way is deadened.

The line is marked as follows: Blue at 3, White at 5, Red at 7, Leather at 10, Blue at 13, White at 15 , Red at 17 , and 2 knots at 20 fathoms. These numbers are called Marks, and the intermediate ones Deeps. For example: In obtaining 7 fathoms, the Leadsman calls out, "By the Mark seven." In 8 fathoms, "By the Deep eight." The fathom is divided into a half and quarters. 7t fathoms are called "and a quarter eeven," $7 \frac{1}{2}$ fisthoms "and a half seven," $7 \frac{1}{}$ fathoms "a quarter less eight."

In heaving the Deep-Sea Lead, it is carried forward to the weather cat-head, (and sometimes to the lee cat-head if the Ship is making much leeway.) The line being passed forward to windward an mutside of all, the Ship's way is then reduced, if necessary, and the Lead dropped, and as soon as i is felt to strike the bottom the line is hauled in a little and the bottom struck again. The mark ab the surface of the water is then examined and the depth of water ascertained, allowing for the streaming of the line, caused by the vessel's drift when hove to, and which sometimes amounts to 10 fathoms to the 100 of line run out.
I. Sounding in deep water in small vessels, wnich drift to leeward rapidly upon losing their way, it is best to drop the Lead before the headway ceases, and to cause the vessel to gather stern-way, so as to pass over the Lead, which will thus have descended through a considerable depth perpendicularly.

The deep-sea line is manked at each 10 fathoms by the corresponding number of knots. and with a singlo knot at each five fathoms. The error in Sounding is generally in eroess, because the line can m_{9} ely he stretched straight from the Lead.

A Jead-line should be well stretched and thoroughly wetted before it is measured and marked, beoaveo it has a tendency to shrink up on being used; and it should afterwards be verified from time to timo, to ascertain whether the marks remain correct.

Soundings on board of Steam vessels may be made with more accuracy than on board of Sailing. rossels; because they can be kept stationary while the line is running out by the aid of their wheels.

Many inventions have been tried from time to time to obviate the inconvenience of rounding the Ship ω when under a press of sail for the purpose of Sounding. And amongst them may be mentioned as the best, Massey's Lead, Burt's Buoy and Nipper, and Ericeson's Lea'd.

Massey's Lead registers the depth of water descended through, by wheel-work, set in motion by a fl acted on by the water as it descends. But in great depths this fly is liable to be crushed.

In Burt's Buoy and Nipper, the line being rove through a spring-catch in the buoy, the Lead is dropped (and the buoy afterwards) into the water. The line then cbntinues to run through the catch till the Lead reaches the bottom, or is checked by a pull, when the catch firmly seizes the line attaching the buoy to it at the depth descended through it by the Lead.

Ericcson's Lead measures the depth of water by the space into which the air, (contained in a grase tube and reservoir within the Lead,) is condensed by the pressure of the water. The depth is indicated on a graduated scale by the height to which the water rises in the tube.

These instruments require a great deal of care and circumspection in their management. For anstance, by raising and lowering them alternately, they will be made to show the depth in excess, and they mant be lowered gradually to the surface of the water. Moreover, they are all liable to get sut of order in stormy weather, which is the very time they are most wanted. From these considerations, they have not come much into use amongst merchant vessels, the commanders of which preferring the old and safo method of sounding by the Deep-Sea Lead and Line, and which is more to be relied on in eaces of emergency.

In thick blowing weather, when a Ship is approaching the Coast, common prudence would diotave that she should be under easy sail; and by the exercise of a little seamanship, Soundings can always be obtained sufficiently accurate to ensure the veroll's safety, from the use of their old and frmiliar friend the Deep-Sea Lead and hue

NAUTICAL ASTRONOMY.

DIAGRAM OF THE SOLAR SYSTEM, SHOWING THE PLANETARY ORBITS RCUND THE SUN.

Fig. A.

EXPLANATION OF THE FIGURE.

The Arrows show the direction in which they revolve rourd the Sun in the centre

No. 1. Orbit of Mercury.
" 2 . " of Venus.
" 3. " of The Earth and her Moon.

No. 4. Orbit of Mars.
" 5 . " of Jupiter.
" 6 . " of Saturn.

The Solar System is that in which our Earth is placed, and in which the Sun is supposed to be fixed in she centre, with several bodies, called Planets, similar to our Earth, revolving round him at different discances from him and from each other, and which shine by the light borrowed from the Sun.

The fixed Stars are supposed tn be Suns which shine by their own light. and situated in the heavens at:
wuoh an immense distance from our system that it is found impossible to measure, or the human mind to conceive it.

While the Earth and Planets are thus rovolving round the Sun, from West to East, thoy hare aleo. a motion round their own axis in the same direction, and which, in the case of the Earth, producer. our day and night.

Although to a spectator placed in the Sun, the Planets would appear to move in due ordor about. him from West to East, yet to a spectator on the Earth their apparent motions appear to bo vors irregular. Sometimes they appear to move from West to East, and then to stand still. Then they seem to move from East to West, and after standing some time they again move from West to East, and so on continually. This is easily detected by noticing the relative positions of a Planet and a fixed Star in the heavens on a certain night, and tlien again at an interval of a fow nights after. This is caused oy tho Earth not being in the centre of the system.

Thit is the real state of the case. But in conformity with the impression on the mind of the spectator, that the heavenly bodies appear to rise in the East and set in the West, (which in reality 18 causcd by the Earih's motion on its axis in a contrary direction, and in treating of Nautical Astronomy as applied h. the purposes of Navigation, we suppose the Earth to be placed in the centre of the Universe, (See Fig. 1, page 56,) and that the Sun and all the other heavenly bodies revolve round it. This supposition accorde with the senses of the spectator, which grpatly simplifies the whole matter, and the conclusions arrived at come to the same thing.

DESCRIPTION OF THE PLANETS: THEIR MAGNITUDE AND DISTANCE FROM THE SUN

The Sun is the great centre of our System, and is 890,000 English miles in diameter, and he turns once round on his axis from West to East in 25 days 10 hours.
There aro upwards of 17 Planets which revolve around the Sun as a centre, but many of these are avisible to the naked eye. Some of them have satellites or moons, which revolve round them, and being atractea to it, they are carried round the Sun along with the Planet, as in the caso of our Earth and aloon.
Cut of all this number of Planets and Moons, only 5 can be made serviceable in the Practice of Navigawon at Sea, viz: Venus, Mars, Jupiter, Saturn, and the Moon. Mercury being always too near the Sum is seld m seen on account of the sunlight, and the others are too small or too remote, and shine with such a feeble light that they can only be seen and distinguished by using good telescopes on shore.
l'ke path which the Planets describe round the Sun is called their Orbits. Mercury and Venus aro alled Inferior Planets, because their orbits are within that of the Earth, while the Earth, Mars, Jupiter, nd Saturn are called Superior Planets, because their orbits include that of the Earth.
Mercury is a small Planet; his diameter being only 3.200 miles. His distance from the Sun 37 millions 0° miles, and he performs his revolution in his orbit in 87 days 23 hours.

Venus is the brightest of all the Planets. Her diameter is 7,687 miles. Her distance from tho Sun 69 millions of miles. and she performs her revolution in her orbit in 224 days 17 hours. On being viewed through a telescope she appears horned sometimes, like our Moon. When this Planet is in the Western jart of her orbit she rises before the Sun, and is then called the Morning Star. When in the Eastern, she 1 ines after sunset, as the Evening Star.
The Earth is the next Planet in the system, the mean diameter of which is about 7,913 miles. (Nee sescription of the Earth at page 2d.) Its distanco from the Sun is 95 millions of miles, and its period of ryolution in it orbit, 365 days 6 hours nearly; or one year, which produces the change in our seasons, and annung on its axis in 23 hours and 56 minutes, produces our day and night.

The Earth is attended by a satellite or moon, whose diameter is 2,161 miles, and her distance from the sentre of the Earth is 240,000 miles. She goes round her orbit in 27 days 8 hours; but reckoning from change to change, in $29 \frac{1}{2}$ days, and she turns round on her axis in the same time, but always presents the same side to the Earth. And as she shines by the reflected light of the Sun, sho appears differently according as she is situated with regard to him. When she is on the same side, her dark side is turned towards the Earth and is then invisible. This is called New Moon. When she is on the opposite side, her light side is turned towards the Earth. It is then said to be Full Moon.

Mars is the next Planet to the Earth. His Diameter is 4,189 miles. His d.stance from the Sun is 144 millions of miles. He performs his revolution in his orbit in about 687 days, and turns on his axis once in 24 hours 40 minutes. Mars may le easily distinguished from the other Planets, by his red appearance, whicl. is supposed to be caused by his dense atmosphere.

Eleven small Planets revolve between the orvits of Mars and Jupiter, but as they are of no servico to Navigation, it is useless to describe them.

Jupiter is the next and largest of all the Planets, and is easily distinguished by his peculiar magnitude and light. His diameter is 89,170 miles. His distance from the Sun 494 millions of miles He performs his revolution in his orbit in 4,332 $\frac{1}{2}$ days, or 12 years nearly, and he turns on his axis once in 9 hours and 56 minutes. This Planet is attendod by 4 satellites or moons, but is invisible to the naked eye. In viewing Jupiter through a telescope, these moons make a beautiful appearance, together with the belt over bis equator, supposed to be caused by the swiftness of his diurnal motion, in drawing his clouds and vapors into that form.

Saturn is the remotest of all the Planets which are useful in Navigation, and may be distinguished by his pale and feeble light. His diameter is 79,042 miles. His distance from the Sun is about 900 millions of miles. He performs his revolution in his orbit in 29 years 167 days, and turns on his axis once in 10 hours 16 minutes, and is attended by 7 moons. This Planet is different from all the others when viewed through a telescope, being furnished with a broad double luminous ring, which appears intended to increa the quantity of light received from the Sun, and which, on account of his vast distance from that body must be very feeble.

DIAGRAM Ō THF. SPHERE,

Drawn on the Plane of the Meridian in 45° Nor*. Latrum

Fig. 1.

The Spectator is supposed to be situated at a great distance East of the Earth, and booking towards the Weat having North on the Right and South on the Left.

TO CONSTRUCT THE FIGURE.

Take 60° from the line of Chords on the Plane Scale, and describe a carcle, whioh will reproent the Ciroular Dome of the Heavens, and from the centro draw a lesser circle, which will represent the Earth in the centre of the Sphere. Draw a horizontal line through the centro, which will out the Earth in two halves, and represents the Rational Horizon. Draw another line perpendicular to it, which will divide the Heavens inin four equal parts of 90° each. This line or circle is called the Prime Vertical, and passes through the East and West points in the centre. The top or point overhead is called the Zenith, which is 90° from the Rational Horizon; and the bottom or point under foot is called the Nadir, also 90° from the Rational Horizon.

Take 45° from the line of Chords, and with one foot of the dividers on the Right hand of the Horizon, lay it off npwards, and draw a line from thence through the centre, will represent the Elevated Pole of the Heavens and the Earth's Polar Axis. At 90° from the Pole draw the Celestial Equator through the centre also, and it will be perceived that the Poles of the Heavens coincide with the Poles of the Earth, and the Celestial Equator coincides with the Equator of the Earth.
Take $21 \frac{1}{2}^{\circ}$ from the line of Chords, and with one foot of the dividers on the Left hand of the Horizon lay it off upwards, will be the Sun's place on the Meridian to the South of the spectator. This is ralled the Celestaal Meridian, and passes through the Poles of the Heavens. Lay $21^{\circ}{ }^{\circ}$ off in like manner the the Right ; then take $21 \frac{1}{3}^{\circ}$ from the line of semi-tangents on the Plane Scale, and lay it off from the onntre apwards, and through these three points describe a circle, which is called a Parallel of Altitude, and whioh in this care is the Parallel of the Sun's Meridian Altitude, and is always measured from the Qational Horizon Parallels of Altutudes are narallel with, the finrizou.

DEFINITIONS.

Thes relates to finding the place of the Ship on the surface of the Earth from observations of the heavenry bodies.

To the spectator at the suriace of the Earth the heavens appear to form a vault, or the upper half of a hollow sphere, of which he is the centre. The Earth itself, or the ground or Sea on which he standa, occupying the lower half. And supposing the North Pole Star to represent the Elevated Pole of the heavens. or the polar axis of the Earth cxtended to the heavens, that part of it which is situated 90° from the Polar Star will be the Celestial Equator, or the Great Circle which passes round the heaven from East to West, the half of which only is above the horizon of the spectator, unless he is standing on the North Pole of the Earth; then the Celestial 'Equator would extend around and coincide with his horizon, and the North Pole Star would then be seen directly over head. At the South Pole, the Cefestial Equator would also be in the horizon, and the North Polar Star under his feet. From which it is easy to imagine circles drawn in the heavens corresponding to those drawn on a terreatrial globe.

A spectator conceives himself standing on the surface of the globe, with his feet toward the centre. Now, suppose he were to descend to the centre. and the upper half of the Earth, or globe, to bo cut off horizontally, that is, parallel with the horizon, the surface of the lower half globe so exposod, and being produced on all sides to meet the concave Celestial sphere, is called the Rational Horizon. Every point of the Earth's surface has, therefore, a different rational horizon. But all these horizons meet in the centre of the Earth. (See Fig. 1.)

Celestial observations taken at the surface, are reduced to the centre of the Earth; therefore the observer is supposed to be at the centre of the Earth. This is necessary in the case of the Moon, because she is near the Earth, and the Sun, and some others. But the fixed Stars being at such an immense distance from the Earth, its magnitude is nothing in comparison, so that the spaoe detween the contre, and the surface, or the Earth's semi-diameter, would produce no change whatover in the places of the Stars in the heavens. Therefore, in drawing figures for general purposes, the Earth is considered a a mere speok in the centre of the Sphere, and its magnitude entirely neglected.

The Zenith is the point vertically over the spectator's head, and distan: 99° from the rational horizon at ornry point.

The point opposite the Zenith, or under the spectator's feet ou the other side of the centre, is called un Nadir.

The Pole of the heavens is the point which remains fixed, while the rest of the Celestial surtace woen abovo the horizon appear to revolve. That Pole which is above the horizon, is called the Eleratod Pole.

The Celestial Equator is 2 great circle passing round the heavens, at 90° distance from the Poles, in the same plane as the Earth's Equator.

Tho Celestial Meridian is a circle passing through the Poles of the heavens, in the same plane as the Terrostrial Meridian.

Circles of Altitude are oircles passing through the Zenith, and vertical at the place of the observer, and are measured from tho Horizon towards the Zenith.

The Prime Vertical is the vertical eircle passing through the East and Wost points in the centre, and appears as a straight line.

Zonith Distance is the distance of any heavenly body from the Zonith. The Zenith Bistance is therefore the Difference between the Altitude and 90°.

DIAGRAM OF IHE SPHERE.

Drawn on the Plane of the Meridian in 45° North Latitude.

Fig. 2.

In this Figure the Earth is supposed to be a mere Point in the Centre, and the Spectator stuated at a gread distance to the Eastward of it.

TO CONSTRUCT THE FIGURE.

Construct this figure in the same manner as in the preceding one. Then take $23^{\circ} 28^{\prime}$ (the extent of the Sun's Declination North or South of the Equator) from the line of Chords, and lay it off on both sides of the Celestial Equator on the Meridian Circle, and take the same quantity, $23^{\circ} 28^{\prime}$, from the line of Scmitangents, and lay it off on both sides of the Equator on the Earth's axis. Then through these three points on each side of the Equator describe a Circle, which will be the Sun's Parallels of Declination North and South of the Equator. Suppose the Sun on the Prime Vertical, in the one case, having North Declination, and in the Horizon, in the other case, having South Declination. A Circle drawn from the Poles through these two points, will be the Time Circle, and which will cut the Equator at right angles. Take the Distance between it and the Meridian Circle, will give the measurement of the hour angle from Noon on the line of semi-tangents backwards 67°, or 4 hours 28 minutes. The Sun being on the Prime Vertical in the one case, and rising or setting in the other.

The Sun being on the Prime Vertical Circle, which in this case is also his Azimuth Circle, and which euts the horizon at right angles, is measured on the horizon, towards the Polar side of the Meridian Circle, and in this case measures 90°, on the line of semi-tangents.

A Circle drawn from the Zenith to the Nadir, through the Sun's place in the horizon, is called the Amplitude Circle, and which cuts the horizon at right angles. The Distance between it and the centre, or the East and West points, measured on the line of semi-tangents, gives the Amplitude, 34°, North, in the one case, because the Declination is North, and South in the other case, because the Declination is South.

])FFINITIONS.

The Dechnation of a Heavenly Body is the portion of the Meridian contained letween the Equator and the body. It is reckoned from the Equator, and is therefore either North or South. (See Fig. 2.)

Parallels of Declination are circles parallel to the Equator. Thus Declination is reckoned from the Celestial Equator, as Latitude on the surface of the Earth is reckoned from the Terrestrial Equator, and as both these circles are in one and the same plane, Dcelination and Terrestrial Latitudo correspond.

Polar Distance is an Arc of the Meridian contained between a Celestial body and the Pole, or the Angular Distance of a body from the Pole. When the Latitude and Declination are of the same name, the Polar Distance is the difference between the Declination and 90°, because the distance from the Pole to the Equator 18 90°. When the Latitude and Declination are of contrary names, the Polar Distance is the sum of the Declination and 90°.

The Azimuth of a Celestial body is an Angle at the Zenith contained between the Meridian Circle of the place of the spectator and the Circle of Altitude passing through the body. It is reckoned to begin from that part of the Meridian Circle which is on the Polar side of the Zenith, that is, from the North in North Latitud?: and from the South in South Latitude. The Supplement or Difference between it and 180° is frequenly used for convenience, and reckoned from the opposite point. The Azimuth is measured by an Are of :he Horizon contained between the Meridian Circle of the place and the Circle of Altitude of the body, tuwards the East in the Morning and the West in the Afternoon. The Ship's Course is the Azimuth of the Slup's head, and reckoned from the North or South. So also is the bearing of an object its Azimuth.

When a body is on the Prime Vertical its Azimuth is 90°.
The Amplitude of a body is an Arc of the Horizon contained between a Celestial body at rising or setting, and the Prime Vertical Circle, or the East and West points. Amplitude is reckoned from the East or West towards the North when the Declination of the body is North, and towards the South when the Declination is South.

The Latitude, or Distance of the observer from the Terrestrial Equator, is measured on the Celestiad Sphere and is the Distance of his Zenith from the Celestial Equator. When the object is to the South of the observer, his Zenith is to the North of the body, and is called North Zenith Distance. When the object is North of the observer, his Zenith is to the South of the body, and is called South Zenith Distance. Therefore, when the Declination and Zenith distance are of the same name, their sum is the Latitude of that name; and when of contrary names their difference is the Latitude of the same name as the greater of the two.

The Elevation of the Pole above the Harizon is equal to the Latitude of the place, and the Altitude of the uppermost point of the Equator on the Meridian is equal to the Co-Latitude, or the difference between the Latitude and 90°. By noting this, and also that the Equator passes through the East and West points, it is easy, in looking to wards the Heavens, to figure in the mind, roughly, the position of this circle. This ic often found useful in identifying a Star by means of its Declination, which is measured from the Equator.

Tne Hour Angle of a Celestial body is an Angle at the Pole contained between the Meridian Circle of the place and the Celestial Meridian or Time Circle, which passes through the body, and cuts the Equator at right angles, and is measured by an Arc of the Equator contained betwecn the Meridian Circle of the place and the Time Circle which passes through the body, and in the case of the Sun gives the apparent time from noon, or his distance from the Meridian. reckoned at the rate of 15° to the hour.

Thus in figure $2 d$ we have the Co-Altitude, Co-Latitude, and Polar Distance; three sides of a Spherical Triangle given to find the Angle at the Pole, which is measured on the Equator.

The Hour Angle is thus measured on the Delestial Equator, in the same way as Longitude is moasured on the Terrestrial Equator.

DEFINITJONS

The path on which the Sun appears to move, or the great Circle which he seems to describe in the Heavens, is called the Ecliptic.

The Ecliptie is divided into twelve Signs, or portions of 30° each, called lies Signs of the Zodiac, whicin torm means a space or belt of 8° wide on each side of the Ecliptic, in which the older discovered Planets and the Moon appeared to move, and to which they were cofnfined. The Signs, taken in the order in whech the Sun moves through them, that is, in the contrary direction to the apparent diurnal motion, are as follows:
r Aries, (The Ram.)
४ Taurus, (The Bull.)
ㅍ Geinini, (The Twins.)
of Cancer, (The Crabs.)
Ω Leo, (The Lion.)
п Virgo, (The Virgin.)
\bumpeq Libra, (The Balance.)
M Scorpio, (The Scorpion.)
f Sagittarius, (The Archer.)
V Capricomus, (The Goat.)
$\sim \sim$ Aquarius. (The Water Bearer.)
f Pisces, (The Fiskes.)

Besides this perpetual motion from West to East, the Sun is always changing his Declination, whi th varies between $23^{\circ} 28^{\prime}$ N., and $23^{\circ} 28^{\prime}$ S., and he crosses the Equator twice in ono year, namely: about the 21 st of March, he is then entering the first point of Aries, and commences the Astronomical Year, and proceeds into North Declination. He crosses again about the 22d of September, and is then said to be in Libra, and proceeds into South Declination.

When the Sun crosses the Equator, he rises and sets at $6 o^{\prime}$ clock in all parts of the world. At tlese times, therefore, the days and nights are everywhere equal.

The Sun attains his greatest North Declination about the 21 st of June; he is then in the Tropic of Cancer; and his greatest South Declination about the 22d of December; he is then in the Tropic of Capricorn.

Since it is Summer on that side of the Equator on which the Sun is, and Winter on that side on whieb te is not, the Seasons in South Latitude are reversed.

The Common or Civil Year, as most convenient for tre affairs of life, includes the succession of the seasons. It is therefore the interval in which the Sun leaves any Parallel of Declination, and returns to it again, and is called a Tropical Year. Its length, that is, the average length of a number of such yeara, is 365 days 5 hours 48 minutes 6 seconds of Common or Mean Time. The beginning of this Tropical Year commences on the 1st of January.

Declination being the Distance of any Heavenly Body: North or South, of the Celestial Fquator, it is used in determining the position of the Fixed Stars, exactly as Latitude is used in determining places on the Earth's surface.

Right Ascension of a Celestial Body is an Arc of the Celestial Equator included between the first point of Aries and the Celestial Meridian of the body, and is reckoned from West to East. Circles of Right Ascension are drawn from the Poles through the body; and cutting the Celestial Equator at right angles.
The Celestial Equator is divided into 360° of Right Ascension, which, at the rate of 15° to the hour make also 24 hours of time. Thus Right Ascension is reckoned on the Celestial Equator, exactly as Lon gitude of places on the Earth is reckoned on the Terrestrial Equator. The first point of Aries being used as a first Meridian, and from which the Right Ascension of all the Heavenly Bo ${ }^{\circ}$ ies are reckoned in hours and minutes, the same as the first Meridian of Greenwich is used to reckon the Longitude from, in Degrees and Minutes.
Right Ascension is therefore used in determining the places of the Heavenly Bodies, and is their distance in time from the first point of Aries.

Sidereal Time begins when the first point of Aries is on the Meridian, and is counted through the 84 mours, till the same point returns again, which is called a Sidereal Day, and consists of 23 hours 56 munates 4 second of Common or Mean Time.

The Hour Angle of the first point of Aries is the Right Ascension of the Meridian.

DIAGRAM,

Showing the Motion of the Heavenly Bodies round the Pole: drawn on the Plane of the Celestaal Eq̣uaton

Fig. 4.

th the Figure the Spectator is supposed to be standing on the North Pole, facing toward the South, having East on the Right hand and West on the Left.

to construct the figure.

Take 60° from the Chords and describe a circle which will represent the Celestial Equator. Draw a perpendicular line to represent the Meridian. Make γ the first point of Aries, and mark the Hours of Right Ascension round the Equator from Right to Left. according to the progression of the Heavenly Bodies, which is, from East to West. Mark the Sun, whose Right Ascension from the first point of Aries is VII h. Then the Sun's Hour Angle West of the Meridian at M is 3 hours.

The first point of Aries having passed the Meridian 7 hours before the Sun. the Sun's Hour Angle added to it gives Xh . as the Right Ascension of the Meridian, or, as it is called, the Sidereal Time, which com mences when the first point of Aries is on the Meridian, and is counted through the 24 hours, until it again comes to the same Meridian.
Suppose a Star, whose Right Ascension is XIX h., which has passed the opposite Meridian at N., its Hour Angle is 15 h ., counted from the Meridian round by the West, which, together make 34 h ., from which subtract 24 h ., gives Xh. for the Right Ascension of the Meridian; or, if counted to the Eastward, its Hour Angle from the Meridian is 9 h . Subtracted from XIX (its Right Ascension) gives the same.

Suppose the Moon's Right Ascension to be XIII, and her Hour Angle 21 h , which together make 34, from which subtract 24 hours, gives the Right Ascension of the Meridian as before, X h. Or the Moon's distance from the Meridian to the East being 3 h., subtracted from her Right Ascension, gives the same.

From the above figure it will be perceived that the Celestial bodies in their diurnal motion in the Heavens are continually forming Angles with the Meridian around the Pole from West to East, caused by the -otatory motion of the Earth on its ax's, contrary to their motion in Right Ascension, which is from Eass w West. and which is caused by the Earth revolving round the Sun.

All Hour Angles, which are differences of Rigı.t Ascension of the Meridian and that of a Celesoial body, may ue considered as portions of Sidereal Time. The interval of time in which a body describes an Hour Angle, depends on the rate at which its Right ascension changes.

The Earth's motion round its axis being perfectly uniform, becomes the reai standard of a uniform measure of time. But as any Star passes the Meridian nearly 4 minutes earlier every night, the beginning of the Sidereal Day has no connexion with that of the sommon, or Civil Day, as determined by light and darkness

The Hour Angle of the Sun, reckoned always Westward from the Meridian. is Apparent Time. Thu when the Sun's Meridian has passed over 45° of the Celestial Equator to the West,ward of the meridian of the place, it is said to be 3 hours Apparent Time.

The interval between the Sun's passing the Meridian on one day and the next, or the apparent Solar Day, is not always of the sume length, the difference being sometimes half a minute between one day and the next. But the time for general use must unite the two advantages of being regulated by the Sian and of being perfectly uniform. The mean, or average day of 24 hours, must therefore be an average taken of all the days in the year. That is, such a day as the Sun would regulate if he moved uniformly in Right Ascension, or the time a Solar Clock would show, when set at 0 hours, 0 minutes, 0 seconds, at the instant the Sun was on the first point of Aries, and keeping uniform time until his return to the same point, would again show 0 hours, 0 minutes, 0 seconds.

This average day is called the Mean Solar Day, and the time thus regulated, is called the Mean Time.
The Sun being generally either behind or in advance of the position which he would have occupied if he had moved uniformly, Apparent Time is in general either fast or slow of Mean Time. The correction for this irregularity, that is, the Difference between the Sun-Dial and the Solar Clock, is called the Equation of Time. Mean Time is, therefore, deduced from Apparent Time, by applying the correction for the Equation of Time taken from the Nautical Almanac.

Suppose O to be the place of the Sun, in Fig. 4, at 3 P. M. Apparent Time, and m the place he would ∞ if he moved uniformly. Then the space between O and m, is the Equation of Time, and $M m$, the Mean Time from Noon. The Equation is here additive to Apparent Time, as is the case from January to March, and from July to August.

Referring to Fig. 4 again. While the Sun and Aries revolve, the Sun moves contrary to the diurna rotation, or is always increasing his Right Ascension by nearly 1° a day. The complete revolution of \uparrow constitutes a Sidereal Day, that of O an Apparent Solar Day, and that of m a Mean Solar Day.

After 24 Sidereal hours, the Sun has still to describe about 1°, or one 360 th of 24 Sidereal hours, or 4 ondereal minutes. Thus the Solar Day is longer than the Sidereal Day by about 4 minutes. The Mean Solar day being divided into 24 hours, the Sidereal Day is 23 hours, 56 minutes, 4 seconds of such a day.

Since the Sun passes over 15° of the Circle in one Mean hour, he arrives at the Meridian of a place 15° West of M one hour after he has passed M, that is, at one o'clock of the time at any place, or all places of which $N M$ is the Meridian. In like manner, he passes a Meridian 15° East of M one hour before he srrives at M, that is, when the time at M is 110^{\prime} clock in the forenoon, or 23 hours after the noon of tha day before.

Thus the beginning of the day, and therefore the hour of the day at one place differs from that of anuther place by the difference of Longitude of the places. The time at the Easternmost of the two being in advance of, that is, greater than the time at the other. Hence, when the Mean Time at two places at the same instant are known, their Difference of Longitude is determined, and also the relative positions of their Meridians.

The Civil Day is dated from Midnght, and the 12 hours are computed twice over. The Astronomica Day is dated from Noon, and runs through the 24 hours. Civil Time is cenverted into Astronomieal Time ty diminishing it by 12 hours.

DIAGRAM.
Showing the method of finding the Stars in the Heavens from their Meridian Altitudes.
Fimd the Meridiun Altitude of the Star Aldebaran in the Latitude of 45° Norty Fig. 5.
Drawn on the Plane of the Meridian.

TO CONSTUCT THF FlGURE.
With the Chord of 60 describe a semi-circle, and draw the Horizontal and Prime Vertical lines at Right Angle to each other. Elevate the Polar Axis equal to the Latitude of $45^{\circ} \mathrm{N}$., and draw the Equator at Right Angles to it. Lay off the Star's Declination, $16^{\circ} 13^{\prime}$, on the Meridian to the North of the Equator, which will be the place of the Star, and its Distance measured from the Horizon, is the Altitude required. Now, as the Elevation of the upper end of the Equator above the Horizon, is equal to the Co-Latitude of the place, which is North, and the Deolination of the Star being also North, their Sum is the Meridiaw ltitude of the Star, $61^{\circ} 13^{\prime}$, South of the observer, because his Latitude is North.

Find the Meridian Altitude of the Star Antares im the Latitude of 30° North.
Fig. 6.
Drawn on the Plane of the Prime Vertical

TO CONSTRUCT THE FIGURE.
With the Chord of 60°, describe a semi-circle as before, which will represent the Prime Vertiaal Circle Draw the Rational Horizon line, and at right angles to it from the centro, draw the Meridan line or Circle. The Spectator is now facing the South. The Prime Vertical Circle passes through the East point of the Horizon on the Left, and through the West point of the Horizon on the Right.

The Elevation of the Celestial Equator above the Horizon being equal to the Co-Latitude, take 60° the Co-Latitude) from the line of semi-tangents, and lay it off on the Meridian line. Then through this point, and the East and West points of the Horizon, draw the Celestial Equator. From the line of somitangents take the Star's Declination, $26^{\circ} 6^{\prime}$ South, (measured from 60° backwards,) and lay it off from the Equator towards the South point of the Horizon on the Meridian line, and draw the Parallel of Declinatinn parallel to the Equator. Then where it crosses the Meridian line is the Star's place, and its Altitude above the Horizon is $33^{\circ} 54^{\prime}$ South, measured on the line of semi-tangents; and where the Parallel of Declinatier outs the Horizon shows the places of the Stan's rising and setting.

Find the Meridian Altitude of Canopùs, ik the Latitude of 33° Sotia.
Fig. 7.

TO CONSTRUCT THE FIGURE.

Having drawn this Figure as in Figure 5, elevate the Polar Axis equal to the Latitude of 30° South, an draw the Equator at Right Angles to it. From the Equator, lay off the Star's Declination, $52^{\circ} \mathbf{2 7}^{\prime}$, on the Meridian towards the South, which will be the place of the Star, and its distance from the nearest Horizom is its Meridian Altitude South.
In this case, the elevation of the upper end of the Equator above the Horizon being equal to the Co-Latitude of 60° South, and the Declination of the Star $52^{\circ} 27^{\prime}$ South, both of the same name, their Sum 118° 87^{\prime} oxceeds 90°, must be subtracted from 180°, gives the Meridian Altitude of the Star $67^{\circ} 33^{\prime}$, reckoned from the South point of the Horizon.

Find thr Meridin Altitude of Castor in the Latitude of 10° North

Fig. 8.

TO CONSTRUCT THE FIGURE.
Elevate the Polar Axis equal to the Latitude of 10° North, and draw the Equator at right angles to it rom the Equator lay off the Declination of the Star, $32^{\circ} 18^{\prime}$, on the Meridian towards the North, whioh will be the Star's place. Then its distance from the nearest Horizon is its Meridian Altitude.

In this case, the Sum of the Co-Latitude 80° North, and the Star's Declination $32^{\circ} 18^{\prime}$ North, is $118^{\circ} 8^{\prime}$, which oxceeds 90°, must be subtracted from 180°, gives the Altitude $67^{\circ} 42^{\prime}$ North.
Thus having the computed Altitude of any Star on the Meridian, the Star itself is found by setting the index of the instrument to this Altitude and facing towards the South or the North, as the case may be, and the Star will be seen on the Horizon.

On referring to Figure 4, the time at which the Stars pass the Meridian is easily computed by subtraeting the Sun's R. Ascension from the Star's R. Ascension, (increasing the latter by 24 hours, if necessary), wilh be the apparent time of its Meridian passage. For example: Supfose a Star, whose R. A. is XIX in Pig. 4 ; the Sun's R. A. same time is VIIh the diffarance 19 h or Midnighe ie the fime the Stes oassad the Murldian or N

Fig. 9.

CORRECTIONS OF THE ALTITUDES OF THE HEAVENLY BODIES OBSERVED AT SEA

Dip of the Horizon is the Angle through which the Sea Horizen appears depressed, in consequence of the elovation of the spectator's eye above the Sea level.

Suppose the observer's eye to be at e (in the figure for Dip of the Horizon) and a perpendicular line drawn to his zenith. Then a line drawn at right angles to it will be the True Horizontal Line. But hus eye being elevated above the Sea, his vision extends over the curvature of the Earth's surface, in the direction of the Visible Horizon, or the dividing line between the Sea and Sky. And as the Altitudes of all Heavenly Bodies are measured to this line, it is evident that the Altitudes so obtained are too great by the amount of the angle of the Dip of the Horizon contained between the True and the Visible Horiznns. The distance of the Sea Horizon from the observer is about 6 miles when the eve is elevated 30 feet above the Sea; and if it were possible to observe an Altitude with the eye at the surface of the Sea. as at S. there would be no correction required for Dip. because the True and the Visible Horizons are in the same hmp: and the Rational Horizon is considered r. he also on the same line.

The Dip of the Horizon at different arons is given in Table V for that purpose, and is always sub tractive from the observed Altitude.

Sejruction.

The rays of light proceediug from Heavenly Body when not in the zenith, in traversing the Earth's atmosphere, become belic or ofracted more and more, on approaching the surface of the Earth towards the perpendicular, which causes all the bodies to be seen above their true places in the Heavens consequently the observed Altitudes are too great by the amount of the Refraction. The rays of light proceeding from the Sun at L (in the figure for Refraction), entering the atmosphere at A, becoming hent upwards as it proceeds, the spectator sees the object at U, and the difference between the True and the Apparent places of the Sun is the amount of Refraction. The Refraction is 0 at the zenith, because the rays of light penetrate directly downwards, and are not bent out of their course. At the Horizon the Refraction is about 34^{\prime}, because the rays of light enter the atmosphere obliquely, so that all bodies. (except the Moon), when on the Horizon, are raised that much above their true place. In the figure the lower © appears in his true place below the Horizon, but the rays of light entering the atmosphere at m are oent npwards or refracted, and the O is seen above his true place in the Horizon. Refraction diminishes as :he Altitudes increase from the Horizon to the Zenith, and the correction for Refraction is givas in Table IV for that purpose, and is always subtractive from the observed Altitude.

Parallax.

As before observed, the Earth is :onsidered as a mere point in the centre of the Sphere, as regards the Stars, which are situated a great distance from it, but with respect to the Sun. Moon, and Planets, the Earth's semi-diameter musi be taken into consideration in measuring the Altitudes of these bodies, especially the Moon, which is the nearest to the Earth. Parallax, therefore, is the depression of a Heavenly body, in consequence of its being seen from the surface instead of from the centre of the Farth, and the nearer any Heavenly body is to the Farth, the greater is the Angle of Depression

The Moon, to an observer at the surface, would appear to be situated in the Heavens at A, (in the figure for Parallax), but to an observer at the centre, her place would be at T, her true place in the heavens; and the difference between the two places is called her Horizontal Parallax, and which ir always greatest at the Horizon. Again, to an observer at the surface, the Moon would appear at a, but to an observer at the centre of the Earth she woald be at r.bar true place in the Heavens. The difference between these two places is called her Parallax in Altitude. The Sun and Planets being at a greater distance from the Earth have only a very small parallax. S and P represent the Parallax of the Sun and Planet. When a body 4 in the Horizon its Parallax is greatest The Sun's Parallax is only $9^{\prime \prime}$, while the Moon's Parallax is above 1° sometimes. But when a body is on the Zenith, tw Parallax is 0, because it is seen in the same line from the centre as from the surface as at Z. The Sun's Parallax in Altitude is given in Tably Vl.

The Moon's Horizontal Parallax, which is in perpetual change, and the Parallay of the Planotia. are given in the Nautical Almanac.

DIAGRAM,
showing the Manner of Measuring the Altitudes of the Heavenly Bodies af Sea, and the Correction fop Semi-diameter.

Fig. 10.

Thim igure reprements the different methods of observing the Altitudes of the Sun and Moon by bringing their upper or lower limbs in oontact with the Horizon.

No. 1 is an Altitude of the Sun's lower limb brought in contact with the Horizon. This is the asual method practised at Sea, being the most simple and correct mode of doing it. His semi-diameter added gives his observed Central Altitude.

No. 2 is an Altitude of the Sun's upper limb brought in contact with the Horizon. This is only remorteo to in the event of the lower limb boing hidden by clouds. His semi-diameter subtracted gives his observed Central Altitude.

No. 3 is an Altitude of the middle of the Sun brought down to the Horizon. This kind of observation is only used when his limbs are so ill-defined, in consequence of the sky being overcast, as in the case when he shines through a rain-cloud, that no observation can be made with them; the body of the Sun, however, may be visible. By a little practice this method may be turned to a good account in finding the Latitude of the Ship, in the room of a better. At all events. it is more to be trusted to than the Latitude by Dead Reckoning. In this case no semi-diameter is allowed, because the Central Altitude is observed.

No. 4 is an Altitude of the Moon's lower limb brought in contact with the horizon. In this case the Moon's somi-diameter added, gives her observed Central Altitude.

No. 5 is an Altitude of the Moon's upper limb brought in contact with the Horizon. This is necessary when her horns are turned downwards, and in this case, her semi-diameter subtracted gives her observed Central Altitude.

No. 6 is an Altitude of a Star or Planet bisected on the Horizon. This gives its observed Central Altitude.

Tne semi-diameter of the Sun is given in the Nautical Almanac throughout the year. His greatest semi-diameter is $16^{\prime} 18^{\prime \prime}$, at the time the Earth is nearest to the Sun, in December; and his least is $15^{\prime} 45^{\prime \prime}$, at the time the Earth is farthest from the Sun, in June. But in dealing with Altitudes, we generally allow 16^{\prime} as his mean semi-diameter throughout the year.

The Moon's semi-diameter is also given in the Nautical Almanac for the nearest noon and midnight al Greenwich, because it changes very rapidly, her greatest being about $16^{\prime} 48^{\prime \prime}$, and her least about $14^{\prime} 43^{\prime \prime}$, so that it is necessary to take it from the Almanac when great accuracy is required. But in general the soan of the extremes, which is about 16^{\prime}, is taken as the Moon's semi-diameter.
The Stars and Planets require no correction of the Altitude for semi-diameter.

INSTRUMENTS OF NAUTICAL ASTRONOMY.

DESCRIPTION, ADJUSTMENTS, AND USE OF THE QUADRANT AND SEXTANT.

These are instruments for measuring angles between two objects, by bringing the reflected image of one of them in contact with that of the other seen direct. They are also necessary for obsorving Altitudos of the heavenly bodies at Sea, where the spectator has no fixed point of reference except the horizon. (See Fig. 10.)
On Shore this fixed point is obtained by means of the Artificial horizon, when the Soa horizon is odstructed by the land.
The Quadrant contains an Arc of more than 45°, or the eighth part of a Circle; but on account of the double reflection it measures a few degrees more than 90°. The Arch, or Limb, is divided into degroes, and numbered from Right to Left. These are subdivided into 3 parts of 20 minutes each, which aro again subdivided into single minutes, by means of a scale at the end of the Inder. The Index is a flat braus bar that turns on the centre of the instrument. When moved forward in measuring Altitudes the acrew behind -lamps it to the limb. and the tangent screw is then used to make the contact.
The Nonius is a scale fixed to the lower part of the Index bar, and is sometimes called a Vornior. Thus is a portion of an Are having the same centre, and divided into one part more than an equal portion of the Arc itself, and is used for making more minute divisions on the Arch. which may be beat explained by the following

Σ XAMPLE

Suppose a division on the Arch to be one-third of 1°, or 20^{\prime}, and the Vernier to be equal iu length to 19 divisions, or 380^{\prime}, and divided into 20 equal parts, then each of the divisions on the Vernier is one-twentieth of 380^{\prime}, that it 19', and therefort the difference between one division on the Arch, or 20^{\prime}, aud one on the Vernier, is 1'.

Now, suppnse the beginning of the Vernier at 0 to coincide with the beginning of the Arch at 0 , then the first of if o dividing lines of the Vernier falls short of the first dividing line of the Arch by 1^{\prime}. Therefore, ii tl - .es are made to coincide, the Vernier must be advanced 1', and to make the next dividing line or 2 on the Vernier, coincide it must be advanced again, and so on until the division of 20^{\prime} on the Arch is all gone through. Hence, for an angle on the Arch, the number of divisions counted on the Vernier before the coincidence is arrived at, is the number of minutes to be added to the division of the Arch next behind the 0 on the Vernier. For an angle off the Arch, it must be read from the opposite end of the Vernier

TO READ OFF AN ALTITUDF.

Look at the 0 , or beginning of the Verner, and ascertain how many degrees and divisions it has passed on the Arch, counting the first division 20^{\prime}, the second 40^{\prime}, and then look along the divisions, or linon, on the Vernier until one of them is found to coincide with a division, or line, on the Arch, which being counted from the 0 , or beginning of the Vernier, towards the left, 18 the number of minutes to be added to that division on the Arch which is the nearest to the right of the 0 on the Vernier, and which will be the Altitude required.
In some Quadrants the Vernier is divided into 40 equal parts, and the Angles can then be read of to half minutes. or $3 n^{\prime \prime}$

TO ADJUST A QUADRANT.

To Set the Index Glass Perpendicular to the Plane of the Instrument.

Move the Index to about 45° on the Arch, and holding the instrument in a horizontal position, face upwards, look obliquely into the Index Glass, and ascertain if the true and reflected images of thee Arch are in the same straight line; if so, the Glass is adjust. But if the reflection seems to droop from the Arch itself, the Glass leans back; if it rise upwards, the Glass leans forward. The position is rectified by the screws on the back.

To Set the Horizon Glass Parallel to the Index Glass.

Set the 0 on the Vernier at 0 on the Arch, and clamp the Index; hold the instrument vertically, and look through the sight-vane at the horizon, or any other well-defined and distant object. Then, if the reflected and the true horizons appear in the same straight line, the Glass is adjust. But if the horizons do not concide, use the lever on the under side of the instrument until they are made to do so. This adjustment ought to be tried before and after every observation.

To Set the Horizon Glass Perpendicular to the Plane of the Instrument.

Having previously made the above adjustment, incline the instrument on one side as much as possibl Then, if the horizon seen through the sight-vane continues to form one unbroken line, the Glass is adjust. But if the reflected horizon appears to separate from that seen direct, then the Glass wants rectifying. If the face of the instrument is upwards, and the reflected Sea appears higher than the real Sea, you must slacken the screw before the Horizon Glass and tighten that behind it. But if the reflected Sea appears lower, the opposite screws must be used. Care must be taken in this adjustment to loosen one screw before the other is screwed up, and to leave the adjusting screws tight. Some instruments have their adjusting screws differently constructed, but a little practice will soon enable a person to adjust them.

The graduation of the Arch should commence at a certain point. When this is not the case, the Inder Error, as it is called, must be measured.

The point at which the graduation of the Arch is supposed to begin, is that at which the Index stands when the mirrors. or glasses, are parallel, as is the case when the image of a distant object is seen to ooinade with the object itself. The Index Error, therefore, is merely the orror of the place of the beginning of the divisions, and affects all angles alike.

TO FIND THE INDEX ERROR

By the Horizon.

Hold the instrument vertically, and make the image of the horizon concide with the horizon itself, a iccurately as possible

Then. if the 1 ill the Veruier stands at the 0 on the Arch, there is no Index Error. Suppose it stood at 2 oll the Arch. that is, to the Left of the 0 on the Arch, then the Index Error is that much subtractive. but if it slamds at 2^{\prime} off the Arch. that is, to the Right of the 0 on the Arch, then it is that much additive to all anoles taken by the instrument.

> By the Sun.

If the Havrinminl has no Shade for the Horizon Glass, take the opportunty when the Sun is veited over by thm clouds. athl use them as a substitute for Shades. Hold the instrument vertically, and look through the sight-vane directly at the Sun, and make the reflected sun cover the one seen direct. Then if the 0 on the Vermer stands al 0 on the Arch, there is no Index Error. ()therwise it is found as before explained.

For the purposes of adjusting an instrunent, objects should be used which are at least 1 mile distant; because at a nearer object the distance between the glasses produce a sensible parallax, and the coincidence hoes not tuke place

MANMEK OF MEASURING ALTITUDES WITH THE QUADRANT

To Observe the Sun's Altitude at Sea.

Ser ' ne irdex at 0, and put down a screen or shade before the Index Glass. Hold the instrument in a rertical position, and direct the sight through the sight-vane and Horizon-Glass to that part of the horizon which is directly under the Sun. Now move the Index onwards with the left hand, and the image of the Sun will appear to descend towards the horizon. Give the instrument a slow motion from side to side, round the line of sight, and the Sun will appear to sweep the horizon, and it must be made just to touch it at the lowest part of the arch. This gives the Observed Altitude of his lower limb. It is best to commence the obs \quad rvation some time before the Meridian Altitude is expected, and to continue observing until his greatest Altitude is obtained, unless the watch has been previously regulated and the apparent time at the ship knuwn.
This last Altitude is sometimes near enough, but for accuracy, having made a rough contact as above, put in the telescope, previously set to distinct vision by looking through it at the horizon, and the tube may be marked at the proper focus of the observer's eye. The image being now magnified, the contact is made more correctly. Clamp the Index, and make the contact perfect by turning the Tangent Screw. This is the method generally used in taking Altitudes for time.

The Tangent Screw should be kept nearly middled when not in use, and the contact should be made in the centre of the field of view of the telescope.

To Observe the Altitude of a Star.

Turn up the sight-vane or unship the telescope. Set the Index at 0 , and direct the sight to the star, ane look with botn eyes, as close to the sight-vane or color of the telescope as possible, and move the Inder onwards, when the reflected star will be seen to descend, and which must be followed by the eye until it finally reaches the horizon. Now give the instrument a slow motion from side to side, round the line of sight, and the Star will appear to sweep the horizon, which it must be made to touch at the lowest part of the arch

To find any particular star on the Meridian, the readiest way is to compute the Meridian Altitude, (Sob pages 64 and 106) and set the Index to it. Then with both eyes, as before observed, look towards that part of the horizon indicated, and the proper star will be seen on or near it. Continue to observe it, until it
tains its greatest Altitude. By this means it is impossible to mistake the star, because no other can be on the Meridian at that time.

The Altiturle of Planets

May be observed in the day time, even when the Sun is considerably above the horizon, for though they are invisible to the naked eye, they may readily be found by computing their Meridian Altitude, (see page 104), and set the Index to it. Screw in the telescope, and direct the sight to the true North or South polate of the horizon at the time it passes the Meridian, and the Planet will be plainly seen on or near it.

To Observe an Altitude of the Moon.
The same directions may be followed as given for the stars, to bring her down to the horizon, and the telescope afterwards used in making the contact. But sometimes, when she is faintly seen, it is better te use both eyes without the telescope. Her upper limb must be observed when her norns are downwarde, and care must be taken, in making the swecp for the horizon, that her limb just touches it at the lowest part of the arch.

The best time for making observations of the Moon and Stars is at twilight, for then the horizon 18 dis. tuctly visible; but in cloudy weather at night long dark shadows are sometimes projected on the ses which. in the case of the Moon. renders it difficult to ascertain the real horizon under her.

THE SEXTANT

The Sextant is constructed upon the same principle as the Quadrant, and contains an Arc of more than 60° of a circle, but on account of the Double Reflection, it measures Angular Distances of more than $\mathbf{1 8 0}^{\circ}$. The Arch or limb is divided into degrees, and the degrees into 6 equal parts of 10^{\prime} each. The Vernier is generally cut to $10^{\prime \prime}$, for the purpose of minute readings, which is thus explained: Suppose a division on the Arch to be of 1° or 10^{\prime}, and the Vernier to be equal in length to 590 of such divisions, or $9^{\circ} 50^{\prime}$, bul divided into 600 equal parts. Then each of the divisions on the Vernier is $\frac{1}{600}$ part less than the 591 divisions on the Arch. Therefore the difference between one division on the Arch and one on the Verniel is $10^{\prime \prime}$. As the Vernier contains $600^{\prime \prime}$, it is divided into 10 equal parts or minutes, and the minute into 6 equa! parts of $10^{\prime \prime}$ each.

Now suppose the f or beginning of the Vernier, and the 0 or beginning of the Arch to coincide; then the first of the dividing lines of the Vernier fall short of the first dividing line of the Arcle by $10^{\prime \prime}$. If we make these lines coincide, we advance the Index and Vernier 10". Again, to make the second dividing line of each to coincide, we must move the Vernier to $20^{\prime \prime}$, and so on to $30^{\prime \prime}, 40^{\prime \prime}, 50^{\prime \prime}$, and then to 1^{\prime}. Therefore to make 1^{\prime} on the Vernier coincide with 1^{\prime} on the Arch, we must advance the Index or Vernier 1^{\prime}. Hence for an angle on the Arch the number of divisions counted on the Vernier before we arrive at a coincidence is $10^{\prime \prime}, 20^{\prime \prime}, \& c c$., to be added to the division of the Arch next behind the f or to the right of the beginning of the Vernier. For an angle off the Arch we must read from the opposite end of the Vernier and from left to right.

The scale on which these divisions are marked is generally made of silver, and in consequence of their minuteness a magnifying glass must be used in reading thern off, which is fixed to the Inder bar for that purpose.

The Adjustment of the Sextant is done in exactly the same manner as that described of the Quadrant The only addition is the following:

To set :he Line of Sight of the Telescupe parallel to the Plane of the Instrument.

This is a very important matier, because when the Inverting Telescope is used, as in the case of measuring the Lunar Distance, any defect in this adjustment causes a considcrable error in the measurement of the angle, and always makes it too great.

Place the two wires of the Inverting Telescope parallel to the plane of the instrument. Select two distant objects about 120° apart from each other, such as two stars, or the Sun and Moon, and make an exact contact at the lower wire, or that nearest the instrument. Now move the instrument so as to throw the image in contact upon the upper wire. If the contact is still perfect, (the images continuing the sume in the middle of the field), the adjustment is perfect; but if they have separated, the object end of the telescope droops towards the plane of the instrument; if they overlap, it rises from the plane of the instrument. Tho position of the telescope is rectified by the screws in the collar.

The adjusting screws are never to be touched, except from necessity, and then with the greatest possible caution.

When two screws work against each other, care must be taken in tightening one to loosen the other If necessary.

The sides of the colored glasses are sometimes not exactly parallel, and the shades may cause an error in the angle. It is, therefore, prudent to find the error of each shade or combination of shader from eotual tricl.

TO FIND THE INDEX ERROR BY MEASURING THE SUN'S DIAMETER.

The Index Error of an instrument being merely the error of the place of the Beginning of the divisicme - hen all the Mirrors or Glasses are periectly adjusted, and it affects all angles alike.

To Measure the Sun's Diameter.

Screw in the Inverting Telescope and adjust it to direct vision; turn up the proper Shades, place the f on the Vernier, about 40^{\prime} to the Right of 0 , on the Arch, and clamp the Index. 'Then, holding the instrument norizontally, bring the direct and reflected Suns in exact contact by the use of the tangent sorew, and read off the minutes and seconds, counting from the opposite or Left end of the Vernier, which call off the Arch.

Next place the f of the Vernier about 40^{\prime} to the Left of 0 , on the Arch, and make the contact of the two Sun's as before, and read off the minutes and seconds in the usual way, which call on the Aroh, and set it under the first reading; then half the difference of the two readings will be the Index Error, which is additive to all angles taken with the Sextant, when the Reading to the Right of 0 is greater than the Reading to the Left of 0, but subtractive when the reading to the Left is the greatest. If the two readings are equal there is no Index Error to the instrument. The direet and reflected Suns will appear througb the Inverting Telescope thus :

When the Vernier is to the Right of 0 on the Arch.
Reffected Sun. Direct Sun.

When the Vernier is to the Left of 0 on the Arch.

Direct San. Reflected Sun.

Suppose the following Observations were taken to determine the Index Error :

EXAMPLE 1.
1st Jan., 1854. Reading.off $31^{\prime} 55^{\prime \prime}$
do.......... on 3315 $\frac{\overline{1120}}{.0^{\prime} 40^{\prime \prime}}$ Sub.

Because the reading on the Arch is greater than the reading off.

EXAMPLE 2.

31st Jan, 1854. Reading. off $28^{\prime} 40^{\prime \prime}$
no 1854. Reading. off $28^{\prime} 40^{\prime \prime}$
do......... on $\frac{3120}{2^{2} 20}$
Index Error. $\frac{1^{\prime} 10^{\prime \prime}}{}$ Add.

Because the reading off the Arch is greater than the reading on.

When both Readings are on the Arch, (which ean only happen when the Index Error exceeds half a degree,) the Index Error is the Mean of the two, and subtractive, but when both Readings are off the Areh. the Index Error is the mean of the two additive.

To prove that the contacts were made correctly, add the Readings together and divide their Sum by 4, and the quotient should be equal to the Sun's semi-diameter as given in the Nautical Almanac for the ahove days of the month.

In Example 2, the Sum of the Readings is $65^{\prime} 00^{\prime \prime}$ Which divided by 4 gives the Semi...... $\overline{16^{\prime} 15^{\prime \prime}}$

These agrce ncarly with that given in the Almanac, namely, $16^{\prime} 18^{\prime \prime}$ on the 1 st, and $16^{\prime} 15^{\prime \prime} .7$ on the 31 st. It may, therefore, be presumed that the contacts were correctly made.

In this manner the error of cach colored glass, or Shade, may be found by first measuring the Sun's diameter at the time when there is a thin veil of clouds over his disc, (which will answer the purpose of Shades,) and ascertain the Index Error as in the above Examples (without using any Shade.) Then to measure it again, using, say, the Green Shadcs. If these two measured diameters agree, the Green Shades are correct. If they do not, then their difference is the error of the Grcen Shades, which must be applied to the Index Error, when they are used. In like manner, the Red Shades, or any combination of Red and Green, may be proved by using them in measuring the diameter, and afterwards comparing them with that which was measured without the Shades.

USE OF THE SEXTANT.

To Observe the Angular Distance between the Sun and Moon.

When the Distance between them is zonsiderable, tind their approximate distance in the Nautical Almanac, corresponding to the Greenwich Time of the observation, (by simply turning the Ship's Longitude into Time, by Table XXVI., and adding it to the Time at the Ship in West, or subtracting it in East Longıtude.) Now set this approximate distance on the Sextant, turn up one or more of the Shades before the Index Glass, according to the brightness of the Sun. Screw in the Plane Tube into its collar. Then, holding the Sextant (with its face upward when the Sun is to the Right hand of the Moon, or downward when the Sun is to the Left,) with its Plane in the line of Sight of the two objects, and direct the Sight to the Moon, and the Sun's image will be seen near to it. Make the contact roughly. Take out the Tube and screw in the Inverting Telescope, and adjust it to distinct vision, placing the wires parallel to the Plane of the instrument. Raise the Telescope (by the screw behind) to the transparent part of the Horizon Glass. Then, directing the Sight through the Telescope to the Moon, holding the instrument as before directed, make the contact perfect by means of the tangent screw, at the same time moving the Sextant round the axis of the Telescope, by which means the Sun will appear to pass slowly by the Moon, and the contact be more accurately made. Observing always that the point of contact of the limbs should be as near the centre of the field of the Telescope (that is, in the middle between the four wires) as possible.

Reading off the Angle.

Ascertain the nearest degree on the Arch to the Right of the f, or the beginning of the Verner, then the nearest division of the degree on the Arch. Then look along the Vernier, and ascertain whick line concldes with the line on the Arch, then the minutes to the Right of where the coincidence takes place must be added to the division of the degree, and the seconds are counted to the Lefo of the nearest minute on the Vernior up to the place of coincidence.

EXAMPLE,

Of finding the Approximate Central Distance between the Sun and Moon.

February 7th, 1854. At 8 hours 20 minutes A. M., Sea Time, in Longitude of $70^{\circ} 0^{\prime}$ West. Required the Ap proximate Central Distance of the Sun and Moon.

Time of Observation.8h. 20m. A.M. Add. 12h.	The Distance in N. A. at Noon is $117^{\circ} 47^{\prime} 51^{\prime \prime}$ Ard at IIIh.. 119828	West.
From the preceding Noon $\overline{20 \mathrm{~h} .20 \mathrm{~m}}$.	The Moon's Motion in 3b. is 1° 20 $0^{\prime} 87^{\prime \prime}$	Increasing.
Long. 70° in Time. $4 \mathrm{4h} .40 \mathrm{~m}$.	G. T. being 1h. from Noon, or equal to $\frac{1}{8}$ of it ... $26^{\prime} 52^{\prime \prime}$	
25 h .00 m .	Which added to the Distance at Noon...... $117^{\circ} 47^{\prime} 51^{\prime \prime}$	
Subtract.... 24 h .	Gives the required Distance at 8 b . 20 m . A.M. $1 \overline{18^{\circ}} 14^{\prime} 48^{\prime \prime}$	

Greenwich Time, Feb. 7 th 1 h .00 m .
Now put this on the Arch of the Sextant as follows: Advance the Index until the f on the Vernier ha: passed the stroke of 118°, and also the first division, or 10^{\prime}, of the adjoining degree on the Arch. Ther look along the Vernier, and make the 5^{\prime} on it coincide with one of the divisions on the Arch. The instrument will then have on it $118^{\circ} 15^{\prime}$, or even 118° is near enough for the purpose of bringing the objects into the field of view. Accuracy is not, therefore, required when the Sun is used. After bringing the nearest limbs in contact, screw in the Telescope, and proceed as directed. In this case, the Sun being to the Right of the Moon, (in North Latitude.) the instrument is held with its face upwards, in the line of Sight, and the Telescope directed to the Moon, when the Sun will appear inverted, or on the Left of the Moon.

In South Latitude, by direct view, the Sun will be on the Left of the Moon, and the Sextant must be held sace downwards, and the Sight directed to the Moon.

TO OBSERVE THE DISTANCE BETWEEN THE MOON AND A STAR.

Tarn the Ship's Longitude into time oy Table XXVI, and add it to the time at the Ship in West Longitude, or subtract it in East, will give the approximate time at Greenwich. Look into the Nautical Almanak amongst the Lunar Distances, against the day of the month, and find the given Star's distance from the Moon corresponding to this Greenwich time. Put this distance on the Arch of the Sextant. Turn up one of the green shades before the Index-glass; then holding the plane of the instrument in the line of sight between the Moon and Star, with its face upwards when the Moon is to the Right of the Star, or downwards when the Moon is to the Left of the Star. Direct the sight through the ring of the collar towards the Star, (without using the Telescope), and the Moon's image will be seen near the Star. Move the Index so as to bisect the Star on the bright limb of the Moon. Now screw in the Inverting Telescope, and adjust it to distinct vision, and make the contact perfect by means of the tangent screw, at the same time moving the Arch of the Sextant slowly up and down, by which motion the bright limb of the Moon will appear to pass the Star, and the contact be more accurately made, and which should always be done as nearly az possible in the centre of the field of the telescope. The angle being read off will give the observed distance between the Star and the Moon's bright limb.

In the Nautical Almanac, headed Lunar Distance, the Sun, Stars, and Planets are marked according ar they are East or West of the Moon. By attending to this and having the approximate distance on the Arch of the Sextant corresponding to the Greenwich time, any Lunar Star may be easily found by a person ntherwise unacquainted with the stars in the heavens, because no other one in that direction will correspond - it in distance.

EXAMPLE

Of Finding a Lunar Star.

January 31 st, 1854 , at 10 h .25 m . P. M. Sea Time, in Longitude $60^{\circ} 0^{\prime}$ W. Required the approximate distaren between the Moon and the Star Aldebaran

Time of Observation. . . .10b 25 m Long. $60^{\circ} \mathrm{W}$. in time. . . . 4	Distance of Aldebaran Do. do.	$\text { XVh... } 835359$	East of the Moon.
Greeawich time Jan. 20th $\overline{14 \mathrm{~h} 25 \mathrm{~m}}$	Mıon's motion in 3	$1^{\circ} 44^{\prime} 39^{\prime \prime}$	5
$\underline{12}$	G. Time past Midnight	2h 25 m	Pro. Log. 0939
t	Pro. of Dist. to be subtr From the Dist. at Midui	$1^{\circ} 24^{\prime} 18^{\prime \prime}$ $85 \quad 38 \quad 28$	Pro. Log.. $\widehat{3294}$
s	the Moun	$84^{\circ} 14^{\prime} 10$	10 h 25 m

It is necessary to be as exact as possible in finding the approximate distance between the Moon ard a Star, for very often it is the only security we have for employing the right star. Now put $84^{\circ} 14^{\prime}$ on the Arch, as follows: Advance the Index until the f on the Vernier has passed the Stroke for 84°, and also that of the first division or 10^{\prime} of the adjoining degree. Then look along the Vernier and make 4^{\prime} on it coincide with some line on the Arch, which will be the required distance. The Star being Fast or to the left of the M Mon (in North Latitude), the Sextant must be held with its face upwards in the proper line of sight, and the sight directed through the collar in the direction of the Star. Then if it be the right Star it will appear on the face of the Moon. Bring it in contact with her bright limb, screw in the Inverting Telescope, and the contact is then made perfect by the tangent screw as before directed.

In South Latitude the same Star will be to the right of the Moon, and the Sextant must be held face downwards, and as a general rule the sight must be directed to the dimmest object, and the orightest or orought to it

REMARKS ON MEASURING THE LUNAR DISTANCE.

Of the Inverting Telescope.

On mooourt of all the objects seen through this Telescope being mverted, and the difficulty of keepina them in the teld of view in consequence of the motion of the Ship at Sca, which is extremely puzzling for learner, because when the instrument is not held steady they always appear to go out of view on the wring sids. This however can only be remedied by practice and by shifting the instrument in the opposite directio? to what he would do if they were seen direct. We are obliged to submit to this ennnyance, because of the superior power derived from the Inverting, to what could be obtained trom a Direct Telescope, of the ssme length. Besides, the cross parallel wires, which are so useful in the Inverting Telescope, could not be used in a common one.

Of the Common Telescope.

Those who fiud a difficulty in observing with the Inverting Telescope may find a good substitute in thr Common one. For although its power is not so great, if the contact is made as near as possible in the centre of the field, by a little practice a very fair result may be obtained, if distances are observed East and West of the Moon, and the mean of the Longitudes taken.

The Proper Place of the Ship for taking the Observation,

Is as near as pnssible to the midships of the vessel, because there her motic. is the least felt, and when whe rolls heavy going before the wind, if the yards were braced forward a litl!, it would help to keep her steady until the observation is completed.

The observer should place himself firmly in a corner, and sit or lie down on the deck, whichever is most convenient, so that the least bodily effort may be required to steady himself. The following method I have found of great utility, which does not require the tangent screw to be touched at all, when the contact takes place, consequently both hands can be used to hold and steady the instrument, and the whole atten tion is directed to the time of the sontact. It also does away with what is called the springing of the Index Bar, (after the contact is made with the tangent screw), which is the case even in the best instruments:

NEW METHOD OF MEASURING THE LUNAR DISTANCE.

When the Distance is Increasing (which may be known by inspecting the N. A.), and the Near Limbs to be Observed,

Set the Index of the Sextant so that the objects may overlap each other a little, and watch for the instant when the Moon, by her motion in the heavens, brings the limbs in contact. Note the time and read off the angle. Advance the Index 1^{\prime}, and then watch as before for the contact. Now, as the Moon advances to the Eastward in the heavens at the rate of about 1^{\prime} in two minutes of time, this will give time to read off the angles and to note down the observation. Then having advanced the Index another 1', proceed as before, until the required number of distances are observed.

Distance Increasing, and the Far Limb of the Moon to be Observed.

By advancing the Index 1^{\prime}, the Star will appear separated from the Moon's Limb. The contact is then watched for, and the observation made in the same manner as the above.

Distance Decreasing, and the Near Limbs to be Observed.

Set the Index so that the limbs may appear a little separated, and watch for the contact taking place. Note the time and read off. Then set back the Index 1^{\prime}, and watch the contact as before. Note the time and read off, and so on.

Distance-Decreasing, and the Far Limb to be Observed.

[^5]
THE ARTIFICIAL HORIZON.

Whsn an observer has not the advantage of a Sea Horizon for the purpose of measuring Altitudes of the neavenly bodies, or when, for instance, the Ship is in port and the Sea Horizon obstructed by the land around, he is obliged to use an Artificial one, and which is used for finding the Latitude of the place, and also for rating the Chronometer, \&c. (See Fig. 11, page 78.)

An Artificial Horizon is variously constructed, but the general principle, is to produce a perfectly level surface. The most simple is that of a pool of water on a calm day, or a basin containing water. But the most common in use is a trough filled with quicksilver, and protected from the wind by a roof, in which are fixed two glasses, ground perfectly plane and parallel.

Another kind has a plate of glass in the trough, which, when the quicksilver is poured in, floats on the surface, and a roof is not required. But these kind of instruments are troublesome, in having to pour in and out the quicksilver every time they are used. Besides, there is a soum or film gathers on the surface of the fluid. This, however, may be prevented from running into the trough, by holding the bottle bottom up, while it is poured out.

Tar, Treacle, and Oil have been tried for this purpose, but they do not give satisfaction; especially when exposed to the strong heat of the Sun, because the fluidity varies from unequal expansion.

The best and cleanest kind of Horizon is a brass circular box, of about 5 inches in diameter, supported on three screw legs, having a thick plate of glass glazed into its rim. The under surface of this glass is unpolished, and a space left between it and the bottom, this space being nearly filled with spirits of wine, leaving a small portion vacant, so as to produce an air bubble, and which bubble, by the use of the screws is brought under the centre of the glass. This centre must be ascertained from actual trial, and marked, so that the bubble can always be placed under it. The strong heat of the Sun will cause the spirits to expand, but a screw plug is fixed at the side, which can be taken out, and a small bell-shaped funnel put in its place to receive the surplus spirits caused by expansion. This instrument, together with a pocket Sextant, will form a portable Observatory, valuable to those who may have occasion to travel much inland.

When one of these instruments is used, it must be placed on firm ground, and the observer, facing towards the Sun, walks backwards until he sees the direct image of the Sun reflected on the surface of the Artificial Horizon. Then, turning down the Shades over both the Index and Horizon Glasses of the Sextant, he directs his sight through the Collar of the Telescope at the reflected image in the Artificial Horizon, at the same time advancing the Index Bar, when the reflected image from the Sextant will appear to descend. He now brings the lower limb of this Sun in contact with the upper limb of the direct Sun already seen. The Telescope is then screwed in and the observation made. It is thus necessary to bring the limbs in contact, before using the Inverting Telescope, as a security against using the wrong limbs.

The Image of a heavenly body reflected from the surface of a fluid at rest, appears as much below the true horizonal line as the object itself appears above it. The Angular Distance, measured between the object and its image, is, therefore, Double the Altitude. And in halving the Angle shown by the instruinent. we halve at the same time all the errors of the observation.

DESCRIPTION AND USE OF THE ARTIFICIAL HORIZON.

The folsowing Diagram will illustrate the Method of Observing Altitudes with an Artificial Horazon
Fig. 11

In taking Altitudes for Time, the Sun will appear to rise or fall with double the velocity he would other wise do, when observed with the natural horizon.

When the Sun is rising, the observer is obliged to approach nearer to the Artificial Horizon, according as the Altitude increases. On the other hand, when the Sun is falling, he is obliged to increase his distance from it, according as the Altitude decreases. And when the Sun's Altitude is at 12°, or 14°, it becomes difficult to .eep sight of the images reflected in the Horizon, and with Altitudes below this, it is generally mpractic ole, on account of the slanting direction of the Sun's rays.

An Alsitude of the Sun, or other heavenly body, may be obtained by this instrument to the extent of 60°; that is, tc 120° by reflection, this being generally the limits of the Scale on the Arch of the Sextant. In Low Latitudes, therefore, it is often impossible to observe with the Artificial Horizon any heavenly body whose Altitude exceeds 60°, unless we use a Sextant of superior power.

The Latitude may, however, be obtained near the Equator, by cloosing a Star of the first magnitude, whech has great North or South Declination, and whose Meridian Altitude is less than 60°. In computing the Meridian Altitude of a Star, for the purpose of observing with the Artificial Horizon, we have only to double the computed Altitude found by the Rule at page 66, and place it on the Arch of the Sextant. Face towards the Star, and walk backwards until the Star's image appears reflected in the Horizon. Then direct the sight through the Collar of the Telescope of the Sextant at the Horizon, and, holding the instrument vertically, the two Stars will be seen in contact with or near to each other, (at the time of its Meridian passage.) They are now brought in contact, and kept so until the greatest Altitude is obtained. This gives security that the right Star has been observed.

In observations taken with this instrument, it must be remembered that no Dip is to be allowed for, as 2 the case of using the Sea Horizon. (See pages 92.131, and 159. for Observations with this Instrument.)

THE CHRONOMETER.

The Chronomter is a superior kind of Watch, constructed so as to keep as near as possible a Uniform or Mean Time. It is set generally to the Mean Time at Greenwich, and its Daily Rate ascertained, that is, what it is gaining or losing on this Uniform or Mean Time. This instrument is of great value to the Navigator, principally in determining the Longitude at Sea, and other useful purposes in Navigation, because if the Mean Time at Greenwich (where the Longitude is reckoned from) be known from consulting the Chronometer, and the Mean Time at the Ship be known from observation at the same instant of time, this difference of time turned into degrees and minutes at the rate of 15° to the hour of Time, is the Longitude of the Ship.

The followins cemarks will be found useful in managing this instrument:
When a Cb^{-}onometer is received on board, it should be screwed down in a safe and proper place, at a distance from. all iron substances, and where it is not likely to receive any sudden shock or jerk, and there it must remain during the voyage, and wound up regularly every morning before breakfast.

In winding, the key should be turned steadily, and about half a turn taken each time, and it should be wound close up. After winding, it should be examined, and if close up, the Index Hand on the face of it will stand at 0 . Ascertain, also, that it has not stopped after being wound up.

When a Chronometer is wound up after running down, it is set agoing by giving it a small horrzontal circular motion.

When a Chronometer stops it generally alters its Rate.
The hands of a Chronometer must not on any account be touched, either before or after it is set agoing The proper way to set it to Greenwich Time is as follows: Look at what hour, minute and second the hands of the Chronometer has stopped at, and note it down. Turn the Ship's Longitude into Time, and subtract it from that Time if the Longitude is West, or add it to that Time if the Longitude be East, anc the result is the computed Mean Time at the Ship. Now have your Watch previously regulated to the exact Mean Time a+ the Ship found by observation, and when the hands of the Watch arrive exactly at this computed Mean Time at the Ship, set the Chronometer instantly agoing. If the Longitude of the Ship be correct, then the Chronometer will show the same Greenwich Mean Time as before it stopped

For exampie. Suppose the Chronometer to have stopped at 10 h .20 m .10 sec . Ship's Longitude by account. being $65^{\circ} \mathrm{W}$., or 4 h .20 m ., subtracted from 10 h .20 m .10 sec., leaves 6 h .0 m .10 sec. Now, having had the Watch requlated in the afternoon to the mean time at Ship, I wait until the hands of the Watel show 6 h .0 m .16 sec ., and then set the Chronometer instantly agoing.

Again: Suppose the Chronometer to have stopped at 5 h .40 m .20 sec . The Ship's Longitude by account being $110^{\circ} 20^{\prime}$ East, or 7 h .21 m .20 sec . This added to 5 h .40 m .20 sec , produces 13 h .1 m . 40 sec ., or 1 h .1 m .40 sec . past Noon for the computed Mean Time at the Ship. Now, having had the Watch previously regulated in the morning to Mean Time at the Ship, I wait until the hands of the Watch come to 1 h .1 m .40 sec . and then set the Chronometer instantly agoing.

In taking the time from the face of the Chronometer, the Second Hand is first noted, then the Minute Hand, and lastly the Hour Hand.

Any common Watch which has a Second Hand will do for taking the time when making observations, but it must be compared with the Chronometer, both before and after the Observations are made, and its Rate, if any, allowed for.

EXAMPLE.

Suprose the Chronometer showed.11h. 20 m .10 sec.
And at the same time the Watch showed. . $8 \quad 10 \quad 0$
The Difference is called the Comparison.. $\overline{3 \mathrm{~h} .10 \mathrm{~m} .10 \mathrm{sec}}$.

Again the Chronometer showed... 11 h .30 m .15 se Watch showed. 8 . 80 5
Comparison. 3h. 10m. 10see

Ir this case the comparison must be added to the Mean of the Times shown by the Watch when the Altitudes were observed, which will give the time by Chronometer when the Altitudes were observed, jusl the same as if the time of each Altitude had been noted from the face of the Chronometer. In comparing the Watch with the Chronometer, the best metl od is to wait until the Sccond Hand of the Watch comes to 60 seconds, which completes the minute, and at that instant note the number of seconds which the Hand of the Chronometer shows, and then the minute and the hour.

It will also save some trouble if the Altitudes are taken at the instant the Second Hand of the watch bas completed the full minute. This serves as a check on the measured change of the Sun's Altitude ir one minute of time, and wheh is unis rm (See the Table on page 100.)

REMARKS ON THE CHRONOMETER.

Chronometers, when sent on board of Ships, are provided with a Certificate of their Error ; that is what they are fast or slow of Greenwich Mean Time on a certain day of the month, and also their Dally Rate, that is, what they are gaining or losing on Mean Uniform Time. Consequently, the Greenwich Time can easily be computed for any subsequent period of time, by multiplying the Daily Rate by the number of days elapsed, and applying it to the original Error. And if Chronometers always kept a uniform steady Rate they would answer every purpose required of them. But unfortunately, they do not always keep a steady Rate, at least not the Rate given in the Certificate, or the Shore Rate, as we call it. For it is found by experience that after Chronometers have been placed on board Ships their Ratcs change, caused, no doubt, by the magnetic action of the iron on board the vessel on the steel work of the Watch, and also by the change of temperature in the weather during the voyage. And as this is difficult to remedy on board a merchant vessel, it becomes necessary to find the Sea Rate at the earliest convenient opportunity, and to verify it from time to time during the voyage. The method of doing this will be found in its proper place under the head of Rating the Chronometer at Sea. (See page 155.)

This method is simply to ascertain the Error of the Chronometer on Greenwich Mean Time when the Ship is in sight of land, the position of which is well laid down. And the difference in the Error ascertained at one place and the next, divided by the number of days elapsed between the observations, is the Sea Rate. Or, when the Ship is in port, and the Sea Horizon visible, the Rate may be found by comparing it with M. Time. Or the Artificial Horizon may be used on shore, the times of the Altitudes being taken by a Watch, which, as before explained, must be compared with the Chronometer, both before and after the observations are made, and its Rate (if any) allowed. Rating Chronometers by the Artifical Horizon is a more correct method than by the Sea Horizon, because of the haze and change of Dip, which sometimes effects the latter.

When there are several Chronometers on board a vessel, the one which keeps the most uniform Rate is taken as a standard one, and with which all the others are compared. The cause which alters the Rate of one Chronometer may likewise alter the Rate of another, so that the agreement of any number of Ckronometers cannot be admitted as evidenee of the truth of the time which they show. One good Chro nometer, in the hands of a competent person to manage it, is sufficient for almost any voyage.

THE AZIMUTH COMPASS.

The Azimuth Compass is of a superior construction to the Steering Compass, and is particularly adapted for observing Bearings.

It is fitted with vertical Sight Vanes for the purpose of observing objects elevated above the horizon. In one of these Vanes there is a long and very narrow slit, and in the other is an opening of the same kind, out wider, and having a wire up and down the middle of it exactly opposite to the slit.

The Card is similar to those of the Steering Compass, with this difference only, that a sircular ring of silvered brass, divided into four times 90°, or 360°, circumscribes the eard.

To Observe the Sun's Amplitude.

Turn the Compass Box, until the Vane containing the magnifying-glass is directed towards the Sun, and antil the bright speck or rays of the Sun (collected by the magnifying-glass) falls upon the slit in the other Vane. If the Card vibrates considerably at the time of observation, take the middle between the extreme vibrations for the Observed Amplitude.

Or the sight may be directed through the dark glass towards the Sun, which must be bisected by the wire in the other Vane.

A common spare Steering Compass may be made a very good substitute when a Ship is not furnished with an Amplitude Compass, (and which is frequently the case), as follows: Place the Compass Box as near the Binnacle as possible, and in such a position that the Sun at Rising or Setting may be seen over it. Now take a Plane Scale or a thin straight-edge, and place it over the centre of the Card in the direction of the Sun. Look along the edge of the Scale and see that the far end of it points to the Sun's centre. Then the point, or fraction of a point of the Compass. which is under the edge of the Scale, will be the Observed Amplitude, which must always be reckoned from the East or West points towards the North or South

The observation should be made when the Sun's lower limb appears somewhat more than his semi diameter above the horizon, because, on account of the Refraction of the atmosphere his centre is then really in the horizon.

To Observe the Sun's Azimuth.

In observing the Azimuth of the Sun his Altitude is required to be taken at the same nstant of tim with a Quadrant, in order to obtain his True Azimuth.

Raise the magnifying-glass to the upper part of the Vane, and move the box, with the magnifying-glas, to the Sun, until the bright speck falls on the other Vane, or on the line on the horizontal bar. The divisions being then read off will be the Sun's Magnetic Azimuth.

If the Card vibrates considerably at the time of observation, take the middle between the extreme vibrations.

The Azimuth is counted generally from the North point of the Compass in North Latitude, and from the South point of the Compass in South Latitude. Towards the East in the morning, and towards the West in the afternoon.

But sometimes, for convenience sake, it is counted from the South in North Latitude, and from the North in South Latitude.

In high Latitudes, the Sun's Azimuth may be observed at Noon at the instant he is on the Meridian, that is, when he is true South or North, and the difference between that and the Azimuth bearing by Compass gives the magnetic variation at once.

But to do this it is recessary to have the Watch previously regulated to Apparent Time at the Ship, so that the Sun's Azimuth may be observed at the instant the Watch shows 12 o'clock, because the Sun then is True South in North Latitude, and True North in South Latitude. And supposing the Bearing by the Azimuth Compass to have been South also, there would, in that case, be no variation. On the other hand, if the Bearing by the Azimuth Compass was S. $22^{\circ} 30^{\prime} \mathrm{W}$., then there would be that amount of Magnetic Variation Westerly. But if the Bearing of the Azimuth Compass had been S. $82^{\circ} 30^{\prime}$ E., there would be that amonnt of Magnetic Variation Easterlv.

INSTRUMENTS USED IN NAVIGATION.

DESCRIPTION AND USE クF THE THERMOMETER.

Fahrenhsit's Thermometer is used on board of Ships for the purpose of registering the temperature of the Doean at the surface, and also the temperature of the Air on the pen Sea. The Zero, or commencement of the Scale, begins at 32°, or the Freezing-point, and is counted upwards and downwards, according as the column of mercury expands or contracts. When the temperature or heat increases it rises, but when the temperature decreases, or, (which is the same thing), the cold increases, it falls, and the degree opposite th top of the mercury is the reading required. When it is below 32° it is said to stand so many degreen below the Freezing-point; and during the Winters in the Aretic or Polar regions; the mercury itself freezes from the intense cold.

The Thermometer is a most useful instrument in giving warning of the Ship's approach to Ice in thick foggy weather. This is simply done by drawing a bucket of water from alongside and plunging the Thermometer into it at regular intervals in the day, during the voyage, and the readings noted down. And, when it is found that the temperature of the water has fallen, on approaching a locality where Ice may be expected to be fallen in with, the observations should be repeated every few minutes. And should the mercury in the tube keep sinking, you may conclude that the Ship is approaching Ice, and the precaution should be taken at once to shorten sail. For if it be in the Winter season, and the Thermometer has fallen to 34°, she will then be only half a mile off the Ice. If in the Sum ner season, and the Thermometer has fallen to 42°, she will then be about the same distance off, and on a nearer approach the glass will fall still lower. But when the Ship has passed the Ice, the Thermometer will gradually rise again.

In the month of June, near the Bank of Newfoundland, the Thermometer had fallen suddenly from 48° to 42°. Ship was then running with Studding-sails set on both sides. in very thick weather. They were immediately taken in and the Courses hauled up, when the white glare of an immense Iceberg was seen right ahead, and she had to be hauled to the wind in order to pass clear to the windward of it at less than a quarter of a mile distant; so that by a timely reference to this useful instrument the Ship was rescued from imminent danger.

The temperature of the Ocean is higher in deep water, than it is in shoal water near the land, or on banks. Hence, a Ship on approaching land, or on Soundings, the Thermometer falls from 2° to 6°, except on a high bold shore with deep water close to it, when it is not so apparent. The difference of temperature on and off the Banks of Newfoundland is 5°.

Currents in the Ocean coming from high Latitudes have their water colder than those which come from low Latitudes, which accounts for the variation in the temperature of the surface water, out on the open Sea

On a Ship entermg the Eastern edge of the Florida stream, the water will be found to be from 5° to 8° warmer, and after crossing it and leaving its Western edge, the adjoining Sea will be found that much colder, and when she gets on soundings, several degrees colder still. So that a careful observer will al ways be warned of his approach to the coast of the United States of America, by consulting this useful instrument ill thick weather, when no Celestial observations can be obtained.
The Plate of the Thermometer should be made of Ivory or Metal, so that the tube will be less liable io break, and it should be fixed in a square metal box, the bottom of which, as high as the mark 30°, should be water-tight, so that in examining the degree of temperature, the bulb may be kept immersed in the water The remainder of the length should be open in front, with only two or three cross bars to ward off any accidental blow. It would be better to have a spare one alsn, fixed up in some safe part of the ship, in the shade, out of the wind, and in as dry a place as possible, ". egister the temperature of the air, while the -ther may be used for the water.

DESCRIPTION AND USE OF THE BAROMETER.

The Barometer is used on board of Ships for the purpose of foretelling the state of the weather. By the p. ossure of the Atmosphere acting on a column of Mercury, contained in a glass Tube, which has a Scale a wached to it, marked in inches, and a sliding Vernier, the top of which being set at the height of the Murcurial column, gives the measurement in inches, and hundredth parts of an inch. In North Latitude it stands highest with N. E. winds, and lowest with S. W. In South Latitude it stands highest with S. E. wiuds, and lowest with N. W.
about the commencement of a Storm, in North Latitude, from the S. W., with rain, the Barometer gegins to fall. and continues to fall as the Storm increases; and when it stops and begins to rise, the rain w.ll soon cease, and a shift of wind to the Northward may be expected; but it may continue to blow hard until the Barometer rises to 30 inches.

In Shuth Latitude, N. W. winds bring rain, with a falling Barometer; but it rises with Southerly winds. If it rises slowly and gradually, good weather may be expected to follow; but if it rises rapidly, the weather will continue unsettled and stormy.
ln general, before a heavy fall of snow or sleet, the Barometer falls very low, and the wind commences to biow from the quarter in which it generally stands the highest in fine weather, and after the fall of snow it rives rapidly.

Rut there are many curious exceptions to these general rules; for I have seen the Barometer steady at 30 inches, with the wind blowing hard at S. W., with heavy rain falling for several days together, Ship bengg then in a high Northern Latitude. But the secret of this turned out to be, that an Easterly wind was at hand, which followed the S. W. wind, and continued blowing for several weeks afterwards.

I'he never-failing sign of bad weather is, when daylight breaks high over head, and the clouds to leowaid look heavy and near ; also, when the Sun rises or sets with a lurid red glare. These appearances sliuuld be taken in connexion with the action of the Barometer, before a proper opinion can be formed of the kind of weather that may be expected to follow.

The Barometer generally stands about 30 inches in the fine serene weather experienced in the Tropics, except between the Trade Winds, when it falls a little during the rainy weather which prevails there. But, if it falls rapidly near the Northern or Southern limits of the Trade Winds, (that is, between the Latitudes of 20° and 30°,) down to 29.50, there is a Hurricane at hand, and by referring to the Diagrams of the Storm Circle, at pages 43 and 44, measures must be taken at once for the safety of the Ship, where it will be porceived that, with the Barometer at 29.50 , the Ship will be about 150 miles distant from the Focus, when it falls to $29.20,100$ miles off ; to 28.40. 50 miles off; and at the Focus itself it will stand at 27 inches. When the Ship increases her distance from the Focus the Barometer will rise ; so that it is a most valuable instrument in the locality of Hurricanes.

THE ANEROID BAROMETER.

This anstrument is constructed so that the pressure of the Atmosphere acts upon a metalic spring, consected with a vacuum, and turns a band to the Right, answering to the rising of the Barometer, and to the Left when it is falling. It has a round face, similar to a Chronometer, and the Inches are marked on it and counted in the same manner as the Mercurial one. This instrument is very sensitive and exact, very superior to the old ones, which are sometimes difficult to read off, on account of the Mercury plunging up and down in the tube, when the Ship has violent motion.

I have used this instrument myself for some years, and in a great many instances it has given me warning of a coming Hurricane more than 24 hours in advance. It is also more portable, and can be hung up, or Fluced ally where about a Ship's cabin, or in a place where it would be inconvenient to swing a Mercurial ane.

NAUTICAL ASTRONOMY.

Having thus given a short description of the principal instruments used in Nav gating a Ship, we now proceed to find the Ship's place on the Ocean from Astronomical Observations, and commence with finding the Latitude from the Meridian Altitude of the Sun. The Correct Declination of the Sun must be found at the time of Observation, as follows:

The Sun's Declination, found in Table X, to the nearest minute, is calculated for every Noon at Greenwich, for several years in advance, and which will answer for every fourth year afterwards, by applying a small correction found in the adjoining Table; or it may be taken from the Nautical Almanac.

When the Ship is on the Meridian of Greenwich, no correction is required, and the Declination standing against the day of the month may be taken out and applied at once, because it is Noon at the Ship and Noon at Greenwich at the same instant of time. But when a Ship is on a Meridian to the Eastward or Westward of Greenwich, that is, when her Longitude is East or West from Greenwich, the Declination must be corrected for the Change of Declination corresponding to the Longitude in time ; because when it is Noon at the Ship, in 15° East Longitude, it wants 1 hour of being Noon at Greenwich, and when it is Noon at the Ship, in 15° West Longitude, it would be 1 hour past Noon at Greenwich. This correction amounts to a considerable quantity when the Longitude is great, and when the Sun changes his Declinatior sapidly in the months adjoining March and September.

RULE

For Correcting the Sun's Declination at Noon.

Enter Table XI with the Longitude at the side column and the Declination at the top, and the angle of meeting points out the correction to be applied, according to the precepts at the bottom of the Table.

EXAMPLE 1.
Required the Sun's Correct Declination on the 1st of March, 1854, at the end of the Sea Day, in the Longitude of 80° West.
The Sun's Declination, March 1st, at Greenwich, at the end of the Sea Day, or the begiuning of the day in the Nautical Almanac, by Table X, i
$\ldots 7^{\circ} 35^{\prime} \mathrm{S}$ Correction for the Declination in Table XI, for Longitude 80° West, is. Sub. 5 (Because the Long. is West and Declination Decreasing.) Gives the Correct Declination. $\overline{7^{\circ} 88^{\prime}} \mathbf{S}$.

EXAMPLE 2.

Required the Sun's Correct Declination on the 1st of April, 1854, at the end of the Sea Day, in the Longitude of 90° East.
The Sun's Declination, April 1st, at Greenwich, by Table X, is. 4 $4^{\circ} 32^{\prime}$ N The Correction for the Declination in Table XI, for Long. 90° East, is $5^{\prime} .8$

Note. -The Corrections in Table XI, are expressed in minutes and tenths of minutes, and it is usual in practice that when the tenths exceed 5 , we call the minutes one more, but when the tenths are less than 5 , they are net used at all But when greater accuracy is required, multiply the tenths by 6 , which will give seconds of Declination.
It may also be remarked here, that the Declinations, or any other quantity found in the Nautical Almanac, are all aalculated for Astronomical Time at Grcenwich ; and that the Astronomical Day begins 24 hours after the Sen Day, and 12 hours after the Civil Day, and is counted through the 24 hours.
Hence the Noon of the Civil Day, (or that used by the generality of mankind,) the Beginning of the Astronomical Day, and the End of the Nautical Day, take place at the aame period of time.
There is no reason why this absurd system of kecping Sea Time should be continued; because it is just as easy k keep Civil Time, commencing the day at Midnight, and the Day's Work could still be reckoned from Noon to Noon, as before. The only difference would be, that one half of it would appear in the preceding day's Log, (where it really bolongs,) end the other half in the following. Many Logs aso now kept on this principle. (See page 195.)

To Correct the Sun's Declination to any Time of the Day.

When the Declination is required at any other time than at the Noon of the Ship, a farther correction is necessary: because, for instance, an observation of the Sun made at 4 hours, cither before or afler the Nonn of the Ship, his Declination must be corrected for the change of Declination in that time.

RULE

Correct the Declinatıon for N con as in the foregoing Examples., 'Then enter Table XI again, with the time from Noon at the Ship in the side column, and the Declination at the top, and the angle of meeting points out the correction in mimates and tenths, to be applied according to the precept at the bottom of the Table.

EXAMPLE. 3.

Required to find the Sun's correct Declination on the 1st of March, 1854, at 8h 10 m in the forenoon, Sea Acruul in the Longitude of 80° West.

EXAMPLE 4.

Required to find the Sun's correct Declination on the 1st of April, 1854, at 7h 20 m in the forenoon, Sea Account - the Longitude of 90° East.

EXAMPLE 5.

Required to find the Sun's Declination on the 21st of March, 1854, at 5 h 20 m in the afternoon, Sea Account, in the Long. of 120° West.

March 21st, Sea Account, is March 20th. Declination at Greenwich Noon, Table X, is $0^{\circ} 10^{\prime} \mathrm{S}$. Decreasing.
Correction for the Declination, in Table XI, for Long. $120^{\circ} \mathrm{W}$. is $7^{\prime} 8^{\prime \prime} \ldots .$. . . Sub.
(Because the Long. is West, and the Decl. Decreasing), gives Decl. at Noon......... $\overline{0^{\circ}} \mathbf{2}^{\prime} \mathrm{S}$.
Correction for 5 h 20 m , or the time from Noon, in Table XI, is $5^{\prime} 2^{\prime \prime}$............ . . . Sub.
5
Here the Decl. has changed from S. to N., and the Diff. is the Decl. at 5h 20 m. P. M. $\overline{0^{\circ} 3^{\prime}} \mathrm{N}$.
Hence, the rule in this case is, that when the Correction Subtractive, exceeds the Declination, the differ ence is the Declination of a contrary name.

EXAMPLE 6.

Required to find the Sun's correct Declination on the 23 d of September, 1854 , at 10 h 0 m , in the forenoon. is Long. $15^{\circ} 0^{\prime}$ East.

The Sun's Declination on the 23d September, at Greenwich Noon, is................. 0° 3' S. Increasing.
Correction for the Declination in Table XI, for Long 15° East,. Sub.
(Because the Long. is East, and the Declination Increasing.) Declination at Noon. . . $\overline{0^{\circ} \quad 2^{\prime}} \mathrm{S}$.
Correction for 2 h 0 m , or the time from Noon, Table XI.......................... Sub. ${ }_{2}$
(Because the Time was before Noon and the Decl. Increasing.) Correct Decl. at $10 \mathrm{~h} . \overline{0^{\circ} 0^{\prime}}$ Sun on the Equa

To Correct the Sun's Declination to the Greenwich Time of Observation.

RULE

Turn the Ship's Long. into Time by Table XXVI, and add it to the time at the Ship, in West Longitude, or uubtract in East. The result will be the Greenwich Time of the observation. If it is before Noon at Greenwich, subtract it from 12 h ; if afternoon, it is the required Time. Take out the Declination against the day of the month, from Table X. Then enter Table XI with this time from Greenwich Noon, in the side column, aud the Declination at the top, and at the angle of meeting will be the required correction, to be applied according to the precept at the bottom of the Table for Time.

Suppose, as in Example 3d, the time at Ship to be $8 \mathrm{~h} 10 \mathrm{~m} \mathrm{~A} \mathrm{M}. \mathrm{Long}. 80^{\circ} \mathrm{W}$., in time, is 5 h 20 m , which, added, makes 13 h 30 m , less 12 h , gives 1 h 30 m , the Greenwich time past Noon, which, with the Declination $7^{\circ} 35^{\prime}$, gives the Correction 1^{\prime} subtractive. and the cor:ect Deslination is $7^{\circ} 34^{\prime} \mathrm{S}$

Latitude by the meridian alritude of the sun.

Lutitude is the Distance of a place from the Equator either North or South, and is measured by an Aro of the Meridian contained between the Zenith of the observer and the Celestial Equator. Hence, if the disiance of any heavenly body from the Zenith, when on the Meridian, be known, and its Declination found in Table X, that is, the number of degrees and minutes it is to the Northward and Southward of the Celestial Equator, the Latitude may thence be found.

As the Pole round which the Celestial Bodies appear to revolve, remains always in the same fixed place in the heavens, from whatever point of the Earth's surface it is viewed, its elevation at any particular place is always the same, and the Celestial Equator is 90° from it. When the observer changes his Latitude he changes the distance between his Zenith (which moves with him) and the Pole. He therefore changes the Altitude of the Pole above the Horizon, and which is always equal to the Latitude of the place. The position of the Celestial Equator is changed in like manner. (See Figure 12th, next page.)

The simplest and most efficient manner of determining the Latitude is by measuring the Meridian Alt) tude of the Sun with a Quadrant, at the time he attains his greatest Altitude. It is then Apparent Noon at the Ship.

To Find the Latitude from the Meridian Altitude of the Sun.

RULE

Read off the Observed Altitude from the Quadrant, and write it down. In practice, three Corrections only are required to be applied to the Sun's Observed Altitude, viz: The Semi-diameter, taken at 16 ', the Dip found iv Table V, and the Refraction found in Table IV. The Sun's Parallax, being small, is omitted.

If the lower limb be observed, we find his central Altitude by adding the Semi-diameter 16^{\prime}, and subtracting the Dip and Refraction; or by subtracting the Dip and Refraction from 16', and adding the balance, which comes to the same thing.

In Table [X, the balance of all the corrections may be taken out at once by inspection, as follows Enter the Table, with the Observed Altitude, at the side, and the hoight of the eye above the Sea, in feet, at the top, and at the angle of meeting will be the Correction required in minutes and tenths, and which is always additive when the lower limb is observed. When the tenths amount to more than .5 , we call the minutes 1' more, but if less than .5, we throw them away, and the result is the True Central Altitude. But if greater accuracy be required, multiply the tenths by 6, will give seconds of Altitude.

If the Sun's upper limb be observed, the whole of the Corrections are to be subtracted, which will give the True Central Altitude.

If the Sun's centre itself be observed, as in figure 10, No. 3, the Semi-diameter is not required to beallowed for. In that case, the Dip and Refraction together, subtracted, will give the True Central Altirude.

Subtract the Sun's True Central Altitude from 90°, will give the Zenith Distance. Then if the Sun bear South when on the Meridian, mark his Zenith Distance North, and if he bear North, mark his Zenith Distance South.

Take out the Sun's Declination from Table X, and correct it for the Longitude of the Ship by Table XI Write it down under the Zenith Distance, and mark it North or South, as named in Table X: or, if taken from the Almanac, in the page containing the day of the month.

Then if the Zenith Distance and Declination be both North or both South, their sum is the Latitude of that name. But if one be North and the other South, their difference is the Latitude of the same name as the greater of the two.

Nori. When the horizon ander the Sun is obstructed by land, the Correction for Dip mast be taken from Table VIII, when at loss distance from the Shore than 6 miles.

EX.AMPLE 1.

Projection of the Meridian Altitude.

Fig. 12.

Role.-With the Chord of 60° describe a semi-circle, to represent the concave Arch of the beavens, and draw the Rational Horizon. Lay off the Sun's Altitude, 27°, on the Left. Take the Declination, $23^{\circ} \mathrm{S}$., in the dividers, (from the line of Chords,) and with one foot in the Sun's place, extend the other towards the Zenith, (because the Declination 18 South) which will mark the place of the upper end of the Equator on the Meridian Circle. Now draw the Equator through the centre and the Polar Axis at right angles to it. Mark the Zenith at 90° from the horizon, and draw a line from it through the centre, and where it cuts the Earth's surface is the place of the Observer. His Latitude is measured on the Meridian, and is the Distance of his Zenith from the Celestial Equator, which, on the line of Chords, measures 40°, and the Elevation of the North Pole, 40° above the horizon, is equal to the Latitude of the place. Hence the Distance of the Observer from the Equator of the Earth, which is 40°, is his Latitude North.

By Computation.

Sun's Declination, Jan. 1st, Table X, $\ldots \ldots \ldots . .23^{\circ} 1^{\prime}$ S. Correction Table XI, Long. 80 W......... Sub. \qquad
Corr. Declination at Noon of the Ship........ $\overline{23^{\circ} 0}$ S.

EXAMPLE 2.

June 1st, 1854. In the Long. of 90° E., the Meridian Altitude of the Sun's Lower Limb was observed to be 69° 45', bearing S., Index Error 3^{\prime}, additive. Height of the eye above the Sea, 20 feet. Required the Latitude in.

Projection of the Meridian Altitude.
Fig. 13.

Role.- Proceed, as in the last Example, to draw the figure. Then lay off the Sun's correct Altitude, 70° on the left. Take the Declination, $22^{\circ} \mathrm{N}$., in the dividers, and with one foot in the Sun's place, extend the other downwards, (because the Declination is North.) which will mark the upper end of the Equator. Now draw the Equatorand the Polar Axis as before. A line drawn from the Zenith, let fall on the Earth's surface, and through the centre, will be the place of the Observer, and his Latitude is the Distance of the Celestial Equator from his Zenith, which measures 42° on the line of Chords, and the Elevation of the Pole is equal to the Latitude.

Finding the Latitude by the Meridian Altitude of the Sun.

> BY COMPUTATION.-(See Example 2.,

Sun's Observed Altitude, Lower Limb. $69^{\circ} 45^{\prime} \mathrm{S}$.	Declination, June 1st, 1854, Table X, . . $22^{\circ} 8^{\prime}$ R
Serni-diam.16' Index Error,. Add.. . 3	Corr. in Table XI, Long. $90^{\circ} \mathrm{E}$ - . Sub.. 2
	Sun's Corr. Dec., Noou of Ship.......... $22^{\circ} 1$ ' N
Balance of Corr... .. 12 Add.. ... 12	
Sun's true Central Altitude. $\begin{gathered}70^{\circ} 0^{\prime} \\ 900\end{gathered}$	
Sun's Correct Deelination. 221 N .	
Latitude in. $42^{\circ} 1^{1} \mathrm{~N}$.	

EXAMPLE 3.

July 22d, 1854. In Long. 25° West, the Meridian Altitude of the Sun's Lower Limb was $89^{\circ} 1^{\prime}$ South. Height of the eye, 18 feet. Required the Latitude in.

EXAMPLE 5.

Aug. 7th, 1854. In Long. $112^{\circ} \mathrm{W}$., the Meridian Altitude of the Sun's Lower Limb was $74^{\circ} 27^{\prime}$ North. Required the Latitude in.
Obs. Alt. Sun's Lower Limb. $74^{\circ} 27^{\prime}$ N.
Corr. from Table IX, 12
True Central Altitude. $\overline{74^{\circ} 39^{\prime}}$
Zenith Distance. $15^{\circ} 2 \mathrm{~L}^{\prime} \mathrm{S}$.
Declination, Table X, 7 th Aug., $16^{\circ} 28^{\prime} \mathrm{N}$.
Corr., Table XI, Lon. 112° W., Sub... 5
1623 N.
Latitude in . $1^{\circ} 2^{\prime} \mathrm{N}$.

EXAMPLE 7.

March 20th, 1854. In Longitude $160^{\circ} \mathrm{W}$., the Meridian Altitude of the Sun's Lower Limb was $32^{\circ} 58^{\prime} \mathrm{N}$. Required the Latitude.
Obs. Alt. Sun's Lower Limb. $32^{\circ} 58^{\prime} \mathrm{N}$.
Correction, Table IX, Add. . 10 True Central Altitude. $\overline{33^{\circ} 8^{\prime}}$ Zenith Distnnce. $56^{\circ} 52^{\prime} \mathrm{S}$.

EXAMPLE 4.

July 23d, 1854. In Long. $27^{\circ} \mathrm{W}$., the Meridian Alti tude of the Sun's Lower Limb was $88^{\circ} 4^{\prime} N$. Height of the eye, 18 feet. Required the Latitude.

EXAMPLE 6.

Aug. 8th, 1854. In Long. 140° East, the Meridian Altitude of the Sun's Lower Limb was $72^{\circ} 46^{\prime} \mathrm{N}$. Required the Latitude.
Obs. Alt. Sun's Lower Limb. $72^{\circ} 46^{\prime} \mathrm{N}$.
Correction, Table IX \qquad
\qquad True Altitude. $\overline{72^{\circ} 58^{\prime}} \mathrm{N}$
Zeuith Distance............... $\overline{17^{\circ} 2^{\prime}}$ S.
Declination, Aug. 8th, Table X, $\left.\quad 16^{\circ} 11^{\prime}\right\} 1618 \mathrm{~N}$
Corr Table XI, for Lon. $140^{\circ} \mathrm{E}$., . . Add 7
Latitude in. $9^{\circ} 44^{\prime} \mathrm{S}$.

EXAMPLE 8.

Mareh 21st, 1854. In Long. $1.75^{\circ} \mathrm{E}$., the Meridian Alt tude of the Suu's Lower Limb was $40^{\circ} 20^{\prime} \mathrm{N}$. Required the Latitude.
Obs. Alt. Sun's Lower Limb was. $40^{\circ} 20^{\prime} \mathrm{N}$
Correctiou, Table IX, Add. . 11
True Altitude.................. . $40^{\circ} 31$
Zenith Distance. $49^{\circ} \overline{2} 9^{\prime}$ S.
Declination, Table X, March 21st, $\left.0^{\circ} 14^{\prime} \mathrm{N}.\right\} 0^{\circ} 2^{\prime} \mathrm{N}$ Corr., Table XI, Lon. 175° E., Sub. 12

Latitude ir. $\overline{49^{\circ} 27^{\prime}} \mathrm{S}$.

In the above Examples the height of the eye above the Sea is supposed to be about 16 or 18 feet, which answers very well for vessels of common size ; but in very large Ships the height of the eye will be con siderably above that. On the other hand, in small vessels the height of the eye will be much less than 16 feet above the Sea. The Dip, found in Table V, or the height of the eye, in Table XI. unnsi be regulated ecordingly

FINDING THE Latitude by the meridian altitude of the sun.

When the Sun's True Central Altitude is 90°, he is in the Zenith, and the correct icclination for tu day is the Latitude of the same name as the Declination.

When the Declination is $0^{\circ} 0^{\prime}$, the Zenith Distance is the Latitude of a contrary name to the Beariug of the Sun when on the Meridian.

When the Zenith Distance and Declination are equal, but of contrary names, the Ship is on th Equator.

When the Sun is in the Zenith, and his Declination $0^{\circ} 0^{\prime}$, the Ship is on the Equator, which the follow. ing Diagram will show.

Fig. 14.

nthis Figure, the Sun appears in the Zenith, and his Declination at the same time being $23^{\circ} 28^{\prime} \mathrm{N}$. from the Equator, is the Latitude of that name, and which is equal to the elevation of the Pole above the Horizon. Now suppose the Sun to be on the Equator, then his Zenith Distance would be $23^{\circ} 28^{\prime} \mathrm{N}$., which is also the Latitude. Again: Suppose the Equator to coincide with the Zenith; then both North and South Poles would appear in the Horizon, and which is the case when the Ship is on the Equator. Again : if the Sun has, say $23^{\circ} 28^{\prime} \mathrm{S}$. Declination, his Zenith Distance in this case would be $23^{\circ} 28^{\prime} \mathrm{N}$., which being equal and of contrary names, the Ship would be also on the Equator.

When the Sun is in the vicinity of the Zenith, it is often difficult to observe his Altitude, in consequence of not knowing on which side of it he will pass the Meridian. But if the Watch be previously regnlated to Apparent Time it will be found of great service in indicating the exact time, that is, 12 o'clock, when the Sun will be on the Meridian, because his motion is then very quick, and he requires to be carefully watched to obtain his proper Altitude. It may, however, be obtained to nearly 90° in this way, by the exercise of a little care.

It is nevertheless advisable to verify the Latitude so obtained, by an observation of a Planet or a Star taken at twilight, when the Horizon is distinctly seen, and for which there are good opportunities to bo fmind during the fine serene weather in the tropics.

To Find the Latitude by Observing the Sun's Centre.

When the Sun shines through watery clouds his limbs may not be distinctly visible, but a good obsorva. tion may still be obtained by bringing his middle down to the Horizon. (See page 68, Fig 10.) The observation is then worked as follows:

EXAMPLE 9.

Observed Meridian Alt, of the Sun's Centre. . $10^{\circ} 10^{\prime} \mathrm{N}$
Dip 4, Refraction 5,
Sur's True Central Altitude. $\overline{10^{\circ} 1^{\prime}}$
Zenith Distance. $59^{\circ} 59^{\prime} \mathrm{S}$.
Declination, June 21st,................................ 23 27 N.
Ship off Cape Horn, Latitude in.............. $\overline{56^{\circ} 32^{\prime}} \mathrm{S}$

EXAMPLE 10.
Observed Merid. Altitude of the Strn's Centre. $60^{\circ} 14^{\prime} \$$ Dip 4, Refraction 1,...........Sub. \qquad Sun's True Central Altitude.. $\overline{60^{\circ} 9^{\prime}}$
Zenith Distance. $\overline{29^{\circ} 51^{\prime}} \mathrm{N}$. Declination, December 21st, 23 27 S
Latitude in. $6^{6^{\circ} 24^{\prime}} \mathrm{N}$

TO FIND THE LATITUDE FROM A BACK OBSERVATION WITH A SEXTAN1

RULE.

Brong the Lower Limb of the Sun in contact with the Back Horizon, and subtract the Angle so obtained froms $180^{\circ} 0^{\circ}$, which will give the Meridian Altitude of the Upper Limb Subtract the difference between the Dip and the Semi diameter, (usually taken as 12^{\prime}), and the result is the True Central Altitude. In thiz case, no Correction for Refraction is required, because the Sextant can ouly measure about 120° of an Angle, the supplement of which is 60° of an Altitude, (for which no Correction for Refraction is required in Practice at Sea.) This method is useful is bow Latitudes when the Horizon uuder the Sun is ubstructed by the land.

DIAGRAM OF A BACK OBSERVATION.

Fig. 15.

EXAMPLE 11

the Angle of the Sun's Lower Limb from a back Obnervation with a Sextant, was $119^{\circ} 32^{\prime}$ on the Meridian, the observer facing towards the North. The correct Declination at the same time was $20^{\circ} 10^{\prime} \mathrm{N}$. Required the Latitude.
Observed Angle Sun's Lower Limb. $119^{\circ} 32^{\prime} \mathrm{N}$. Subtract from. $\frac{180 \quad 0}{60^{\circ} \frac{18^{\prime}}{}}$ Sun's Meridian Altitude, Upper Limb...... $60^{\circ} 28^{\prime} \mathrm{S}$. Semi-diameter 16^{\prime} and Dip 4', subtract Corr. \qquad
Sun's True Central Altitude................. $\overline{60^{\circ} 16^{\prime}}$
Subtracted from 90°, gives the Zenith Distance $\overline{29^{\circ} 44^{\prime}} \mathrm{N}$. Correct Declination........................... 20 N. Latitude in. $\frac{20 \quad 10 \mathrm{~N}}{49^{\circ}} 5$

EXAMPLE 12.

The Angle of the Sun's Lower Limb from a Back Ob servatiou with a Sextant was $100^{\circ} 25^{\prime}$ on the Meridian, the observer facing towards the South. The Correct Do clination at the same time was $22^{\circ} 15^{\prime} \mathrm{N}$. Required the Latitude.
Observed Angle Sun's Lower Limb. $100^{\circ} 25^{\prime} \mathrm{S}$.
Subtract from. 180
Sun's Meridian Altitude, Upper Limb. $\overline{79^{\circ} 35^{\prime}} \mathrm{N}$ Semi-diameter 16^{\prime} and Dip 4', subtract Corr. $\quad 12$ Sun's True Central Altitude. $79^{\circ} 23^{\prime}$
Subtracted from 90°, gives the Zenith Distance $10^{\circ} 37^{\prime} \mathrm{S}$ Correct Declination. $22^{\circ} 15^{\prime} \mathrm{N}$
Latitude in. $11^{\circ} 38^{\prime} \mathrm{N}$

To Find the Latitude from an Altitude by the Shore Horizon

When the Ship is less than 6 miles from the Shore under the Sun, when on the Meridian, his Lowe: Limb is brought down to the line which divides the Sea and Land, and a Correction for Dip taken from Table VIII, to be used in the room of the Dip usually taken from Table V.

EXAMPLE 13.

With the Bearing of the Land find the Distance off, by come one of the Rules given at pages 32 and 33 , or by the Soundiugs on the Chart.

Suppose the Distauce off shore to be 1 mile and the Observed Altitude to be $60^{\circ} 11^{\prime} \mathrm{S}$; height of the eye 18 feet: Correct Declination $20^{\circ} 10^{\prime} \mathrm{N}$. Required the Latitude.
Observed Alt Lower Limb to the Sea Line. ...60 $10^{\circ} \mathrm{S}$. Semid. 16^{\prime}, Dip at 1 mile. Trb. V III, is 11^{\prime}, Add Diff. 5^{\prime}
Sun's True Central Altitude. $60^{\circ} 16^{\prime}$
Subtracted from 90°, gives Zeuith Distauce.. . $29^{\circ} 44^{\prime} \mathrm{N}$. Correct Declination............................ 20 10 N. Latitude in.
$.49^{\circ} 54^{\prime} \mathrm{N}$.

EXAMPLE 14.

Find the Distance off shore from the Bearing of the Land, as before directed, and the correct height of the eye above the Sea level.
Suppose the distance off shore to be $\frac{1}{2}$ a mile, and the Observed Altitude to be $79^{\circ} 35^{\prime}$; height of the eye 26 feet; Correct Decliuation $22^{\circ} 15^{\prime} \mathrm{N}$. Required the Latitude.
Observed Alt. Lower Limb to the Sea Line. . . $79^{\circ} 35^{\prime} \mathrm{N}$ Semid. 16^{\prime}, Dip at $\frac{1}{2}$ m., in Tab VIII, is 28^{\prime} Sub. Diff. 12
Sun's True Central Altitude................. $\overline{79^{\circ}} 23^{\prime}$
Subtracted from 90°, gives the Zenith Dist... $10^{\circ} \frac{7^{\prime}}{37^{\prime}}$ S Correct Dechatation................................ 22 15 N
Latitude in. $\frac{.2215}{.11^{\circ} 38^{\prime}} \mathrm{N}$

TO FIN」 THE LATITUDE FROM A MERIDIAN ALTITUDE BELGW THE POLE

When the differcnce between the Dcclination of a body and 90°, or the Polar Distance, is less than the Latitude of the place, and they are both of the same name, the object comes to the opposite Meridian without setting, and passes that Meridian below the Pole. If the Altitude be then observed, the Latitude may oe found as follows:

Rous.-Correct the Observed Altitude as usual, and to the true Central Altitude, add the Difference between the Declination and 90°, or the Polar Distance. The Sum will be the Latitude of the same name as the Declination.

In High Latitudes, in the Summer time, the Sun does not set for many days, and the Latitude ray be sotained from hie Meridian Altitude twice in the 24 hours; that is, at Neon and Midnight.

DIAGRAM

Of the Meridian Altitude Below the Pole.

Fig. 16.

In this Figure the true Meridian Altitude of the Sun at Noon is $33^{\circ} 28^{\prime}$ South, and which, worked ou. in the usual manner, gives Latitude $80^{\circ} 0^{\prime}$ North, (on the coast of Spitzbergen,) and the Latitude from the Meridian Altitude at Midnight, is found as follows.

EXAMPLE 15.

June 21:4, 1854. Sea Time at Miduight on the enast of Spitzer,bergen, the Merid. Altitude of the Sun's Lower Limb was 川nerved to be $13^{\circ} 17^{\prime} \mathrm{N}$. Height of the eye, 6 feet; Loug. iu, 17° East. Required the Latitude in. Obs. Alt. Suris Lower Limb $13^{\circ} 17^{\prime}$ N. Correction, Table IX, to be adden 10

$$
\text { True Central Altitude. } \overline{13^{\circ} 27^{\prime}}
$$

Declination, Juve 2uth,. $23^{\circ} 27^{\prime}{ }^{\prime}$ N.
Corr. for Long. 17° East 0
Corr: 12 h past Noun. \qquad
Correct Declination. $\overline{23^{\circ} 27^{\prime}}$)
Sebtract from $\left.93^{\circ} \quad 0 \quad 0 \quad\right\}=66^{\circ} 33^{\prime} \mathrm{N}$.

EXAMPLE 16

May 16th, 1854. Sea Time at Milnight the observed Merid Allitude of the Sun's Lower Limb was $8^{\circ} 53^{\prime} \mathrm{N}$ Height of the eye, 15 feet. Ship off Verlugen Hook, iv Long. $16^{\circ} 50^{\prime}$ East. Required the Latitude in.

Correction, Table IX, to he added 6
True Central Altitude.......... $8^{\circ} 69^{\prime}$
Declination, May 15th.... 18° 51' N.
Corr. for Long. $16^{\circ} 50^{\prime}$ East,. Sub.. 1
Corr. for 12 h . past NoonAdd. 7
Correct Deliuation......... $\left.\overline{18^{\circ} 57^{\prime}}\right\}-71^{\circ} 3^{\prime} \mathrm{N}$

Notz.-Thas Rulé applies likewise to the Polar and other Stars, which have great North Deolination, examplea of which will be found at page 109 ; and it must be nuderstond that although the forecoing Examples and Diagrama of Nautical Astronomy are generaliy constructed for North Latitude, and the North Pole elevated above the horizon, by oversing the fignre, that is, by elevating the Soutn Pole, the Rules are the same, cnly substituting South for Ncrth The Spectator is then supposed to be situated at a great dis'sance to the Westward of the Earth and facing towards tho hast having South on his Right and North on his Lett.

FINDING THE LATITUDE ON SHORE BY THE ARTIFICIAL HORIZON.

When the Sea Horizon is obstructed by the Land, the Latitude may be found by an Artificial Horizor on shore, (a description of which is given at pages 78 and 79 ,) in places where the Sun's Meridian 1 litituan does not exceed 60°; because in observing with this instrument, the angle is doubled, that is, 60° of Altitude would require an angle of 120° on the Arch of the Sextant, and the Arch of common Sextants dc not extend much beyond 120°.

RULE.

Bring the Limbs of the Sun in contact, and when he has attained his greatest Altitude read off the angle, to whick apply the Index Error of the Sextant, and take half the angle for the Meridian Altitude of his Lower Limb, to which add the Sun's semi-diameter, and subtract the Refraction, will give his true Central Altitude. The Latitule is then found in the usual manner.

TXAMPLE 17.

Jan. 20th, 1854. At New York the observed Angle of the Sun's Lower Limb in the Artificial Horizon, on the Meridian, was $57^{\circ} 57^{\prime} 20^{\prime \prime}$ S., the Index Error of the Sextant being 2^{\prime} subtractive. Required the Latitude
Ohe Angle Sun's Lower Limb......... $57^{\circ} 57^{\prime} 20^{\prime \prime} \mathrm{S}$. Index Error.Sub. . 20 Apparent Angle. $57^{\circ} 55^{\prime} 20^{\prime \prime}$
Half the Angle is the Sun's Mer. Alt.... $28^{\circ} 57^{\prime} 40^{\prime \prime} \mathrm{S}$. Sun's semid, N. A.. . Add. \qquad $\begin{array}{lc}\text { App. Central Altitude ... } & 29^{\circ} 13^{\prime} 57^{\prime \prime} \\ \text { Refraction, Table IV, Sub. } & 141\end{array}$ Sun's True Ceutral Alit. . . $\overline{29^{\circ} 12^{\prime} 16^{\prime \prime}}$ Sub. from 90°, gives the Zen. Distance. $60^{\circ} 47^{\prime} 44^{\prime \prime} \mathrm{N}$. Sun's Dec., Jan. 20th, N.A., $20^{\circ} 7^{\prime} 38^{\prime}$ S.

- Cor. for Lon. $74^{\circ} \mathrm{W}$, iu

Table XI, \ldots. Sub. $2.6=236$ Latitude of New York. ... $40^{\circ} 42^{\prime} 42^{\prime \prime} \mathrm{N}$.

EXAMPLE 19.

June 21st, 1854. At the North Cape of Europe the observed Angle of the Sun's Lower Limb in the Artificial Horizon, on the Meridian, was $84^{\circ} 5^{\prime} 36^{\prime \prime}$ S. No Index Error in the Sextant. Required the Latitude.
Obs. Angle Sun's Lower Limb $84^{\circ} 5^{\prime} 36^{\prime \prime} \mathrm{S}$.
Half the Sum is the Sun's Mer. Alt. $\overline{42^{\circ}}{\frac{2}{} 2^{\prime} 48^{\prime \prime}}^{\prime \prime}$
Sun's semi-diam, N. A.. 1546
Sun's App. Altitude.....$\overline{42^{\circ}} 18^{\prime} 34^{\prime \prime}$
Refractiou, Table IV...... 12
Sun's True Central Alt.... $42^{\circ} 17^{\prime} 32^{\prime \prime} \mathrm{S}$. $90 \quad 00 \quad 00$ Zenith Distance. $\overline{47^{\circ}} \overline{42^{\prime} 2 S^{\prime \prime}} \mathrm{N}$
Declination, June 21 st. No Corr. required. 232732 N. Latitude of the North Cape, $\overline{71^{1}}{ }^{\circ} \overline{10}^{\prime} 0^{\prime \prime} \mathrm{N}$.

EXAMPLE 18.

March 30th, 1854. At Valparaiso Fort the observed Augle of the Sun's Lower Limb in the Artificial Horizon, on the Meridan, was $105^{\circ} 44^{\prime} 10^{\prime \prime} \mathrm{N}$., Index Error of the Sextant being $1^{\prime} 30^{\prime \prime}$, additive. Required the Latitude.
Obs. Angle Sun's Lower Limb. $105^{\circ} 44^{\prime} 10^{\prime \prime} \mathrm{N}$ Index Error........Add 130
A pparent Angle. $\overline{105^{\circ} 45^{\prime} 40^{\prime \prime}}$
Half the Angle is the Sun's Mer. Alt. . $52^{\circ} 52^{\prime} 50^{\prime \prime}$ Suu's semid., N. A.. . Add
Apparent Central Alt....
Refraction, Table IV, Sub.
True Central Alt $\overline{53^{\circ}-8^{\prime} 9^{\prime \prime}} \mathrm{N}$.
Sub. from 90°, Gives the Zeuith Dist... $36^{\circ} \overline{51^{\prime} 51^{\prime \prime}} \mathbf{S}$ Sun's Dec., March 30th . . $3^{\circ} 45^{\prime} 22^{\prime \prime}$ N.
$\left.\begin{array}{l}\text { Corr. for Lon. } 72^{\circ} \text { W., in } \\ \text { Table XI, Add } 4^{\prime} .5 \text {, or } 430\end{array}\right\}$
Latitude of Valparaiso Fort, $\overline{33^{\circ}} \overline{1^{\prime} 59^{\prime \prime}} \mathrm{S}$

EXAMPLE 20.

Sept. 1st, 1854. At Antipoder. Islaud, in Lat. $49^{\circ} 35^{\prime}$ S., Lon. $179^{\circ} 2^{\prime}$ E.. the observed Angle of the Su's Lower Limb, on the Meridian, in the Artificial Horizou, was 63° $21^{\prime} 10^{\prime \prime}$ N. Nı Iudex Error. Required the Latitude.
Obs. Angle Suı Lower Limb. $63^{\circ} 21^{\prime} 10^{\prime \prime} \mathrm{N}$
Half the Angle 18 the Sun's Mer. Alt.... $\overline{31^{\circ} 40^{\prime} 35^{\prime \prime}}$
Sun's semid., N. A.... Add. $15 \quad 53$
Sun's App. Altitude. $\overline{31^{\circ} 56^{\prime} 28^{\prime \prime}}$
Refractiou, Table IV, Sub 133
Sun's True Central At. $\overline{31^{\circ} 54^{\prime} 55^{\prime \prime}} \mathrm{N}$
Sub. from 90°, Gives the Zeuith Dist..... $\overline{\boxed{8} 8^{\circ} 5^{\prime} 5^{\prime \prime}} \mathrm{S}$
Sun's Dec., Sept.1st, N.A. $8^{\circ} 19^{\prime} 18^{\prime \prime}$ N.
Cor.Long. 179° E.,Ta.XI.Add 11$\} 83018 \mathrm{~N}$
Latitude of Antipodes Island. $\overline{49^{\circ} 34^{\prime} 47^{\prime \prime}} \mathrm{S}$.

[^6]*The Correction for the Declination in Table X1 being in minutes and tenths of a minute, by multiplying the tenthe by © W3 get seconds of Declination

By one Altitude of the Sun and the Time from Noon.

It frequently happens that the Meridian Altitude of the Sun is lost. in consequence of cloudy weatner eoming on, and that he may be visible both before and after he passes the Meridian. In either case, if an Altitude be then observed, and the Apparent Time at the Ship known, the Latitude may still be found as correct as aṭ Noon.

To facllitate this computation, a Table has been constructed so that the required Logarithms can be taken out by inspection, for the purpose of finding the number of Minutes of Altitude which the Sun has to rise, when the observation is made before Noon, or what he has fallen, when made in the Afternoon. In both eases this Correction is additive to the Sun's Observed Altitude, which will give his Meridian Altitude, or what it would have been if observed at that place.

Table XV, in Five parts, is given for this purpose, and explained as follows :

PART I

Contains the Logarithm of the Hour Angle, or the time from Noon, and extends to 64 m .30 sec . 1 his being sufficient for the common purposes of Navigation, and within which the observation must be made according to the limits given in Part V, (except in a very high Latitude in the Winter months, and where ferr Ships frequent.) This part is entered, with the minutes and the nearest seconds, from Noon, and opposite to it stands the Logarithm, to which annex the Index found at the top of the table.

PART II

Contans the Logarithm of the Latitude by the Dead Reckoning, and the Sun's Declination when they are of the same name. The Latitude extends to 60°, and the Declination to 23°. This part is entered with the Latitude by Dead Reckoning at the side, and the Declination at the top. The Angle of meeting points sut the required Logarithm. When the minutes of the Latitude and Declination amount to nearly half a degree, takg out the nearest Logarithm preceding and the nearest Logarithm following it, add them t-gethes and take their half sum for the required Logarithm.

PART III

Contains the Logarithm of the Latitude and the Declination, when they are of contrary names, and is entered in the same manner as the other.

PART IV

Contains the Sum of the Logarithms of the time from Noon, and that of the Latitude and Declination, opposite to which stands the required correction, to be added to the observed Altitude.

PART V

Contans the limits of the Time from Noon, at which the Observation can be relied on. It is entered with the Declination at the top, (according as it is of the same or of contrary names to the Latitude), and the Latitude at the side, and the angle of meeting points out the time from Noon, at which the observation should be made, and it must not greatly exceed this time, especially near the Equator. And it will be perceived by this Part, that in low Latitudes the Observation must be made nearer to Noon than in high Latitudes. This table is, therefore, of the greatest utility in high Latitudes; and where, also, it is oftenest required, on account of the stormy weather which generally prevails there, when the Meridian Altitude can veldom be obtained.

This method of find ng the Latitude will, therefore, be found very useful when an Altitude can be stained near Noon, (but which is generally considered by seamen as useless after their Meridian Altitude has been lost), and although a Ship at Sea is almost continually changing her time, if the time of the Observation be noted by a good watch, which may have been regulated previously to Apparent Time at the Ship, then the differcnec of Longitude made in the interval since it was last regulated, turned into time, and subtracted from the time by watch, if the Ship has been sailing West, or added to it when sailing East, will give the Apparent Time of the Observation; which, if before Noon. subtracted from 12 hours, will give the time irom Noon, A. M.; otherwise it will be the time from Noon, P. M. (See Example 6, page 95.) Or the watch inay be regulated by equal Altitudes near Noon, as in Example 5.
But the most correct mode; is, to find the Apparent Time at Ship from the Greenwich Time by Chronomoter. The Ship's Longitude being generally known within a few minutes of the truth, which turned into time and applied to the Greenwich Time, furnishes the Apparent Time of the Observation as follows -

- Find the Latitude by one Altzlude of the Sun, having the Apparent Time from Noon deduced from the Greenwich Time by Chronometet.

RULE FOR FINDING THE TIME.

Note the Time of the Observation by Chronometer, and find the Greenwich Time by applying its error. Turn the Ship's Longitude in (at the time of the Observation) into Time, and subtract it from the Greenwich Time in West Longitude, or add it to the Greenwich Time in East Longitude, will give the Mean Time of the Observation at the Ship. To this Mean Time apply the Equation of Time the contrary way to what is direeted in the precept at the head of the collumn in the Nautical Almanac for Apparent Time aud the result is the Apparent Time of the Observation at the Ship, which, if before Noon, must be subtracted from $12 h$, (or from 24 b if above 12 h .) will give the time from Noou, A. M, otherwise it is the required Time from Noon, P. M.

THE OBSERVATION.

Observe an Altitude of the Sun near the limits of the time from Noon, given in Part 5th, Table XV, and note the Timie by the Watch or Chronometer, and find the time from Noon as previously directed. Fiud the Latitude in by Dead Reekouing to the nearest balf derree, and correct the Sun's Declination to the time of the Ohservation an usual, but to the vearest half degree is evough for the tables.

RULE FOR USING TABLE XV.

Enter Part 1st with the Time from Noon, and take out its Logarithm.
Enter Part 2d when the Latitude aud Declination are of the same name, or
Euter Part 3d when they are of contrary names, and take out the Log. as cxplaived in the preceding page. Add م⿰gether these $t w o$ Logarithms, and find their sum io Part 4th, against which will be fom the Correction required in Minutes, or Degrecs and Minutes, and whieh must alvays be added to the Sun's Observed Altitude, and the result is the Sun's Meridiau Altitude, or, what it would have been if observed ou the Meridian at the place at which the observa tion was made.
The Latitude is now found in the usual manner, which will be that of the Ship at the time of the Observation and may be brought up to Noon by applying the Difference of Latitude made in the interval.

EXAMPLE 1.

Feb. 25th, 1854, a Ship at Sea in Latitude by Dead Reckoning about $38^{\circ} \mathrm{N}$., and Lung. $76^{\circ} 31^{\prime} \mathrm{W}$., by Chro., an Altitude of the Sun's L. Limb was olserved to be 41° 44^{\prime} S. P. M., and the Greenwich Time by Chro. 5h 53 m 57 sec. P. M. at Greenwich. Requred the Latitude in.

․ M. 8 .

Green. Time by Chro. 55357 Decl. Feb. $25 \ldots 9^{\circ}$ 5' S . Ln. $76^{\circ} 30^{\prime}$ W. iu time 560 Corr. Table XI.. 5 Mean Time at Ship. ${ }^{-} 4757$ Corr. Deel...... $\overline{9}^{\circ} 0^{\prime} \mathrm{S}$. Equa. of Time... Sub. 1316 Equ. of T., N. A., 13 ml 16 s App. Time from Noon $34+1=$ Log. 7.757 Part 1st. Lat. 38° N., Deel. 9° S.. Leg. 0.328 Part 3 d . Cors: in Part 4th.... $0^{\circ} 42^{\prime}$ Log. 8.085 Table XV. Obs. Alt. L. Limb. .. 4144 S .
Meridian Altitnde. . . $\overline{42^{\circ} 26^{\prime}}$
Corr. Table IX...Add
11
$42^{\circ} 37^{\prime}$
Sun's Ceutral Alt.. . . $\overline{42^{\circ} 37^{\prime}}$
Zenith Distance.. $\frac{30 \quad 0}{47^{\circ} 23^{\prime}} \mathrm{N}$.
Correct Deelination.. 90 S .
Latitude in.......... $\overline{3} 8^{\circ} 23^{\prime}$ N. at 35 min . past Noon.
D. Lat. made since $\mathbf{N} \quad 5$ to the Ne irthward.

Latitude in.... ... $\overline{38^{\circ} 18^{\prime}}$ at Nom.

EXAMPLE 2

March 15th, 1854, a Ship at Sea, in Latitude $44^{\circ} 30^{\circ}$ N., by Dead Reekoning. and Loeg. $60^{\circ} 30^{\prime}$ W. by Chron the Sun's observed Altitude was $42^{\circ} 20^{\prime}$ S., A. M. The Grecuwich Time by Cho. was 3 h 31 m 9 sec . P. M. The course to Noon was S. W. true, going 9 knots. Required the Latitucle in at Noon.
H. M. \&.

Green. Time by Chro... 3319 Deel., Mareh $15.2^{\circ} 9^{\prime} \mathrm{S}$ Add. 1200 Corr. T. XI.Sub. 4
For the purpose of Sub. $\overline{15} 319$ Correct Deel..$\overline{2^{\circ} 5^{\prime}} \mathrm{S}$. Ln. $60^{\circ} 3 u^{\prime} \mathrm{W}$. in time. 420
Mean Time at Ship. . $\overline{11} 299$ Equa. Time N. A. 9m 9a
Equa. of Time. . .Sub. 99
App. Time at Ship... $\overline{11} 200 \mathrm{~A} . \mathrm{M}$.
Sub. from. $12 \quad 0 \quad 0$
Time from Nonn. 400
Log. ${ }^{291}$ Purt lat
Lat. $44^{\circ} 30^{\prime}$ N., Decl. $2^{\circ} \mathrm{S}$.
Log. $0.2: 44$ Part 3 d .
Corr. in Part 4 th $\ldots . . .0^{\circ} 51^{\prime}$ Log. 8175 Table \mathbf{X}^{\prime} : Obs. Altitude L. Limb. . 4220 S .
Meridian Altitude. $\overline{43^{\circ}}{ }^{11^{\prime}}$
Corr. Table 1X......Add 11
Sun's Central Altitude. . $43^{\circ} 22^{\prime}$
Sub. from $90^{\circ}-$ Zen. Dist. $46^{\circ} 38^{\prime}$ is.
Correct Declination... 2 5 S.
Latitude in. $\overline{44^{\circ} 33^{\prime}}$ N. at 40 m before Nons Course S. W. 6 m.gives D. Lat. 4 to the Southward
Latitude in. $44^{\circ} 29^{\prime} \mathrm{N}$. at Noon.

FINDING THE LATITUDE OUT OF THE MERIDIAN.

EXAMPLE 3.

Oct. 20th 1854. In Latitude by Dead Reckoning about $40^{\circ} 0^{\prime}$ S., Long. by Chro. $62^{\circ} \mathrm{E}$, the Sun's Obs. Alt. was $59^{\circ} 30^{\prime}$ N. P. M. The Greenwich Time by Chronometer was 19 h .55 m .54 s . A. M. The Course since Noun was S. S. E, going 12 knots an hour. Required the Latitude in at Noon.
H. M. B.

Green.Time by Chr, 195854 Dec., Oct. 20... $10^{\circ} 20^{\prime} \mathrm{S}$. Lon. 62° E. in time.. 48 Cor., Ta. XI, Sub. 4

24654 Cor. Dec..... $\overline{10^{\circ} 16^{\prime}} \mathrm{S}$. Subtract.... 2400
Mn. Time at Ship.. 654 Equa. Time,N. A. $15^{\prime} 6^{\prime \prime}$ Eq. of Time,. . Add.. $15 \quad 6$
Ap. Time from Noou. 22 m .0 s . Log 7.362 Part 1st.
Lat. 40° S. and Dec. $10^{\circ} \mathrm{S} . \quad$ Log 0.480 Part 2 d.
Cor. in Part 4th, Add $0^{\circ} 24^{\prime}=\log .7 .842$ Table XV.
Obs. Alt.. 59 30 N.
Mer. Altitude.... $\overline{59^{\circ} 54^{\prime}} \mathrm{N}$.
Corr., Table IX, Add 12
True Altitude. ... $\overline{60^{\circ} 6^{\prime}} \mathrm{N}$.
Zenith Dist....... $\overline{29^{\circ} 54^{\prime}} \mathrm{S}$.
Declination...... 1016 S .
Latitude in. $\overline{40^{\circ} 10^{\prime}}$ S. at 22^{\prime} past Noon.
S.S.E. 4 m. =D.Lat. $\quad 4$ to the South'd since Noon.

Latitude. $\overline{40^{\circ}} 6^{\prime}$ S. at Noou.

EXAMPLE. 5

June 22d, 1854. Ship near the Equator, equal Altisudes were taken to correct the Watch.
Altitude A.M. $66^{\circ} 4^{\prime}$ N. Time by Watch. ...11h. 48 m .
do. P.M. 664 N. do. do....12 18
Watch is 3 min . fast of Apparent Time.) $\overline{24 \quad 6}$
12 h .3 m .
Required the Latitude in at the time of the P.M. Altitude.
Time by Watch, P.M.....0h. 18 m .
Watch fast of App. Time. 3
App. Time from Noon $\ldots \overline{0} \overline{\mathrm{~h} .15} \mathrm{~m} . \log 7.029$ Part 1st.
Lat. $0^{\circ} 0^{\prime}$, Dec.. $23^{\circ} \mathrm{N}$ Lng 0.673 P'art 2 d .
Corr. Part 4th, . Add $017^{\prime}=\operatorname{Lug} 7.702$ Table XV. Obs Altitude........ 66 4 N .
Merid. Altitude . . . $\overline{66^{\circ} 2} 1^{\prime} \mathrm{N}$.
Cor., Table IX, Add.
True Altitude $66^{\circ} 33^{\prime} \mathrm{N}$.
Zenith Distance $\overline{23^{\circ} 2 \tau^{\prime}} \mathrm{S}$.
Declination......... $23 \quad 27 \mathrm{~N}$.
Latitude.... $\overline{0}^{\circ} 0^{\prime}$

EXAMPLE 4.

July 5 th, 1854. In Lat. by Dead Reckoning about 80 S., and Long. $90^{\circ} 36^{\prime}$ E.. by Chro., the Sun's Obs. Alb wasp $15^{\circ} 47^{\prime}$ N., A.M. The Greenwich Time by Cro. was 17h. 1m. 47 s . A.M. The Course to Noon was N.En going 10 knots an hour. Required the Latitude at Noon.
H. M. s .

Green. T'e by Chr., 17147 Dec., July 5.... $22^{\circ} 49^{\prime} \mathrm{N}$.
Lon. $90^{\circ} 36^{\prime}$ E.iu time, 6224 Cor., Ta.XI, Add 2
M. T'e at Ship,A.M. $\overline{23411}$ Cor. Dec. $\overline{22^{\circ} 51} \mathrm{~N}$

Equa. of tme. Sub.
411^{\prime}
Sub. fr. 24 h . $=$ Ap.T. $\overline{230 \quad 0}$ Equa., N. A. ... $4^{\prime} 11^{\prime \prime}$
Ap. T. fm Noon.. 1 h. 0 m .0 o . Log 8.231 Part 1st.
Lat. 50° S., aud Dec. 23° N. Log 0.093 Part 3d.
Cor., Part 4th,. Add $\overline{1^{\circ} 13^{\prime}}=\log \overline{8.824}$ Table XV
Obs. Altitude.... $15 \quad 47^{\prime} \mathrm{N}$.
Mer. Altitude.... $\overline{17^{\circ}} 0^{\prime} \mathrm{N}$.
Corr., 'Table IX, Add 9
True Altitude .. $17^{\circ} 9 \mathrm{~N}$.
Zenith Distance . . $\overline{79^{\circ} 51}$ ' S.
Declination...... 22 51 N .
Latitude... $5 \overline{0^{\circ}} 0^{\prime}$ S. at 11 o'clock A. M.
Co. N.E. 10 m . = D.Lat. 7 to the Northward.
Latitude. . . $4 \overline{9^{\circ} 53^{\prime}}$ S. at Noon.

EXAMPLE 6.

Nov. 15 th, 1854 . In Latitude about $56^{\circ} 5^{\prime} \mathrm{N}$., Lumy. $15^{\circ} \mathrm{W}$., an Altitude of the Sun was observed in the afternoon to be $14^{\circ} 7^{\prime} \mathrm{S}$. Time shown by the watch, 1 h .8 m .46 s m which had been regulated in the morning, since which time the Ship had made 64' of Longitude to the Weatward. Required the Latitude in at the time of the Alti tude.

Time of Alt. by Watch.......1h. 8m. 46s.

* D.Lon. ma. 64' W. in time, Sub. 416

App. Time at Ship, P. M.... 1h. $4 \mathrm{~m} .30 \mathrm{~s} . \log .8 .294$
Lat. 56° N., and Dec.. $18 \frac{1}{2}$ S. Log. 0.042
Corr. in Part 4th. Add $\overline{1^{\circ} 14^{\prime}} \quad-$ Lig. 8.336
Obs. Altitude $14 \quad 7 \mathrm{~S}$. Table XV.
Merid. Altitude $\overline{15^{\circ} 21}$ S. Dec..... $1 \overline{8}^{\circ} 30^{\prime} \mathrm{S}$. Corr., Table IX. : Add 8 Corr...Add 1
True Altitude...... $\overline{15^{\circ} 29^{\prime}} \mathrm{S} . \quad$ Cor. Dec. $\overline{8^{\circ} 31} \mathrm{~S}$.
Zenith Distance $\overline{74^{\circ} 31}{ }^{\prime} \mathrm{N}$.
Dechnation.......... 1831 S .
Latitude in $\ldots . \overline{5} 6^{\circ} \overline{0}^{\prime} \mathrm{N}$. at 1 h .4 m . P. M

QUESTIONS FOR EXERCISE.

Question 1st.-Dec. 11th, 1854. The Latitude by Dead Reckonng was about $50^{\circ} 0^{\prime} \mathrm{N}$., and the Long1 tude by Chronometer $41^{\circ} 20^{\prime} \mathrm{W}$. An Altitude of the Sun was observed in the forcnoon to be $15^{\circ} 28^{\prime} \mathrm{S}$ and the time by Chronometer 13 h .40 m .6 s, P. M., which was fast of Greenwich 3 m .20 s . The Course until Noon was S. by W., going 8 knots. Required the Latitude at the time of the Altitude and at Noon.

Answer.-Latitude at 10 h .58 m ., or time of Altitude, was $50^{\circ} 4^{\prime} \mathrm{N}$., and at Noon, $49^{\circ} 56^{\prime} \mathrm{N}$.
Ques. 2d.-August 27 th. The Latitude by Dead Reckonng was $35^{\circ} 30^{\prime} \mathrm{N}$., and Long. $75^{\circ} \mathrm{W}$. An Altitude of the Sun was observed to be $63^{\circ} 59^{\prime} \mathrm{S}$. at 20 minutes past Noon, apparent time at the place Ship running to the Northward, going 9 knots. Required the Latitude as before.

Ans -Latitude at 20 minutes past Noon was $35^{\circ} 27^{\prime} \mathrm{N}$. Latitude at Noon, $35^{\circ} 24^{\prime} \mathrm{N}$.

* When the Difference of Longitude made in time is East, it must be added to the Time by Watoh.

TO FIND THE LATITUDE BY TWO ALTITUDES OF THE SUN, (USUALLY CALLED DOUBLE ALTITUDES,)

Having the Measured Interval of Time between the Observations by the Watch.

This method will be found more simple and useful than the old and tedions methods of Double Altitudes osually given in works of this kind, many cases of which are of very doubtful utility, besides the time spent in working them out.

The principle of this method is simply to find the Sun's Hour Angle at the time the Altitude was observed, which was farthest from the Meridiar, and to measure the interval of time elapsed between it and another Altitude observed near the Meridian, by a good Watch or Chronometer. This interval of time being then corrected for the Ship's change of Longitude in time, and applied to the Outer Hour Angle, the difference between them is the Inner Hour Angle, and which is the Apparent Time from Noon. The observation then becomes the same as if only one Altitude had been observed, and the limits aro the same as in the last case.
The Time so found is only an approximation, because the Latitude is not known, but it is near enough for this purpose. And as every Navigator, now-a-days, is supposed to know how to find the time at Sea, nothing new is required to be learned. The Rule for finding the time at Sea is given at page 124.

When both Altitudes are Observed in the Forenoon.

RULE.

When the Sun 18 at a proper distance from the Meridian, or on the Prime Vertical, that is, when he bears nearly true East or West, take an Altitude, and note the time by a good.going Watch, or the Chronometer. Take another Altitude nearer Noon. abunt the limits given in Part 5th, Table XV, and note the time by the same Watch, and find the Interval of Time elapsed between the observations.

Correct the lesser Altitude by Table IX. Compute the Latitude in by the Dead Reckoning at the tim the lesser Altitude was observed, and also the Sun's Declination, and find his Polar Distance. Then, with the true Altitude, Latitude, and Polar Distance, find the Sun's Outer Hour Angle. If the Ship has been stationary during the Interval, or been sailing due North or South, no correction of the Interval is necessary. But if she has made Easting or Westing, then find the Departure the Ship has made in the Interval, from her true Course and Distance made good, and the corresponding Difference of Longitude. Turn this Difference of Longitude made into Time, by Table' XXVI, and add it to the Interval if the Ship has been sailing East, or subtract it from the Interval if she has been sailing West, will give the correct Interval of Time between the observations; then the Difference between this corrected Interval, and the Sun's Outer Hour Angle, will give the Inner Hour Angle, at the time the greater Altitude was observed, and the result is the Apparent Time from Noon. The Latitude is thence found in exactly the same manner as if only one Altitude had been observed near Noon.

When the Lesser Altitude is Observed Before and the Greater Altitude in the Afternoon.

The Interval is found in the same manner, and the Outer Hour Angle subtracted from it, gives the lnner Hour Angle, whieh will be the Apparent Time past Noon at the Ship.

When Both Altitudes are Observed in the Afternoon.*

Take an Altitude near Noon, about the limits in Part 5th, Table XV, and another when the Sun is at a Distance from the Meridian, and find his Hour Angle as before, from which subtract the Interval, will give the Inner Hour Angle past Noon.

When the Lesser Altitude is Observed After Noon, and the Greater Altitude Before Noon.*

The Interval is found in the same manner, and the Outer Hour Angle subtracted from it, gives the Inner Hour Angle, which will be the Apparent Time from Noon, A. M., at the Ship.

Hence it is easy to ascertain at once whether the observations have been made on the same, or on oppositn sides of the Meridian, by comparing the Outer Hour Angle with the Interval of timo between the obser. vations. If the Interval bo less, they must have been taken on the same side, that is, both in the forenoon, or both in the afternoon. If greater, they must have been taken on opposite sides of the Meridian, that is, one Altitude has been taken in the forenoon and the other in the afternoon.

* When both Altitudes are observed in the Afternoon, or the Greater Altitudc before Noon, and the Lesser Altitude after Noon, the difference of Long. in time made in the interval, should be added to the interval, if the course has been Westerly, or subtracted from the interval, if the course has been Easterlv.

Examples of Finding the Latitude by two Altitudes of the Sun,

(Usually called Double Altitudes.)

EXAMPLE 1

April 1st, 1854, the Latitude in was $36^{\circ} 48^{\prime} \mathrm{N}$., and the Long. $60^{\circ} \mathrm{W}$. by Dead Reckoning. In the morning, at 7b 28 m per Watch, the Sun's Observed Altitude was $20^{\circ} 10^{\prime}$. Ship then sailed on a True S. E course, going 9 knots an hour, until 11 h 30 m per Watch, when another Altitude of the Sun was observed to be $57^{\circ} 28^{\prime} \mathrm{S}$. Required the Latitude of the Ship at the time of the last Altitude, aud at Noon.

Obserred Altitude L. Limb $20^{\circ} 10^{\circ}$	
Corr. Table IX.Add 9	Time of Greater Alt... 1130 Cor.Ln. $60^{\circ} \mathrm{W}$., T. XI, Add 4
True Altitude. $\overline{2019}$	Interval of T. by watch. 42 Corr. Decl. Noon....... 486
Latitude. 3648 Log. 0.09651	Rate of Sailing. 9 k's Cor. $4 \mathrm{~h} 32^{\prime}$ before N. Sub. 4
P. Distance. 8528 Log. 0.00136	Distance Sailed. $\overline{36 \mathrm{~m} .}$ Corr. Decl. at 7h $28 \mathrm{mm.}. \overline{432} \mathrm{~N}$
Sun 14235	(${ }^{\text {a }}$
贯Sum............. $7118 \mathrm{Log}$.	Polar Distance.. $\overline{85^{\circ} 28^{\prime}}$
True Altitude.. 2019	
Difference. 5059 Log. 4.89040	Course S. E. $36 \mathrm{~m} .$, Dep. 25.5, D. Long. 32^{\prime} in time. 0 h 2 m 8 s Add
Onter Hour Augle.... 4h 31m 41s $=9.49425$	Interval of Time by Watch................... 420
Correct Interval....... 4 4 8	Correct Interval of Time.. $!$. 4 4h 4in 8s
Inner H. Angle, A. M.. ${ }^{27 \mathrm{~m} \mathrm{33}} \mathrm{Log} .7 .555$	Part 1st
Lat. $36 \frac{1}{2}^{\circ}$ N, Decl. $4 \frac{1}{2}^{\circ} \mathrm{N}{ }^{\text {a }}$ Log. 0.481	Part 2d.
Corr. in Paut 4th.Add $0^{\circ} 37^{\prime}=$ Log. 8.036 Greater Altitude. 5728	Table XV.
Meridian Altitade. $\overline{58^{\circ} 5^{\prime}} \mathrm{S}$.	Course S. E., Dist, in 27 min .4 miles gives D. Lato to Noon $0^{\circ} 3^{\prime} \mathrm{S}$
Corr. Trable IX. 11	Latitude at 27 m before Noon. 3620 N
True Central Altitude... $58^{\circ} 16^{\prime} \mathrm{S}$.	Latitude at Noon. ..$^{86^{\circ} 17^{\prime}} \mathrm{N}$

From 90° Zen. Dist. . . . $\overline{31} 44^{\prime} \mathrm{N}$.
Corr. Decl. Noon 436 N . The Watch in this case was 2 m 27 s fast at time of Greater Altitude Latitule. $\overline{36^{\circ} 20^{\prime}}$ N. at 27 miuutes before Noon.

EXAMPLE 2.

15th March, 1854 , In Latitude $44^{\circ} 42^{\prime} \mathrm{N}$., and Long. $50^{\circ} \mathrm{W}$. by Dead Reckoning. In the morning at 9 h 10 m per Watch, the Sun's Observed Altitude was $25^{\circ} 8^{\prime}$. Ship then sailed on a True W. S. W. course, going 8 knots ab hour, until 1 b 11 m , per Watch, iu the afternoon, when the Sun's Observed Altitude was $42^{\circ} 30^{\prime} \mathrm{S}$. Required the Latitude in at the time of the P. M. Altitude, and also at Noor.

Observed Altitude L. Limb $25{ }^{\circ} 8^{\prime}$	Time of Lesser Altitude $\begin{gathered}\text { H. } \\ 9\end{gathered}$
Corr. Table \mathbb{X}.Add 10	Time of Greater Alt. 1h \} 1311 Corr. Lou. 50° W... .Sub. 3
True Altitude........... $\overline{2518}$	1 m add $12 \mathrm{~h}=\ldots .$.$\} \mathrm{V}^{66}$
Latitude. 4442 Log . 0.14825	Interval of T. by watch. . 41 Corr. 3h before Noon Add. 3
Polar Distance. 92.9 Log. 0.00031	Rate of Sailing. 8 ks. Decl. at 9h A. M..
Sum.................... $\overline{1629}$	Distance sailed........ $\overline{32 \mathrm{nn} .}$, 90
$\frac{1}{2}$ Sum. $\overline{81}_{815}^{5}$ Log. 4.19033	Polar Distance. $\overline{92^{\circ} 9^{\prime}}$
Difference. 5547 Log. 4.91746	
Outer Hour Angle. . . $3 \mathrm{l} 21 \mathrm{~m} 6 \mathrm{~s}=\overline{9.25635}$	Dep. $30=$ D. Lon. in time. $\}$ oh 2 m 528 Sub
Correct Interval....... 3588	Interval of Time by watch.... $4 \quad 0$
Inner Houl Augle..... $\frac{37 \mathrm{~m} 28}{28}$ Log. 7.813 Latitude $44 \frac{1}{2}^{\circ} \mathrm{N}$. Decl. 2° S..Log. 0.293	Part 1st. Part 3d.
Corr. Part 4th.Add $0^{\circ} 44^{\prime}$ Log. $\overline{8.106}$ Greater Altitude........... 4230	Table XV.
Meridian Altitude........ $\overline{43^{\circ} 14^{\prime}} \mathrm{S}$	Course W. S. W. 5 miles since Noou D. Lat. $0^{\circ} 2^{\prime}$
Curr. Table IX.......Add 11	Latitude at 37m past Noon.............. 4430
True Central Altitude. $43^{\circ} 25^{\prime} \mathrm{S}$.	
$\left.\begin{array}{r}\text { Deel. Noon } 2^{\circ} 6^{\prime} \text {, Corr. for } \\ 37 \mathrm{~m} \text { Sub. 1......... }\end{array}\right\} \quad 2 \quad 5$ 内. The W	in this case was 33 m 588 fast at the time of the Greater Altituda
Latitade. $\overline{44^{\circ}} \overline{30^{\prime} \mathrm{N}}$. at 37 mi	ates past Noon.

Nore. In the 1st Example, 10 miles of en error in the Latitude, in working the Honr Angle, wonld produce an orror in the time of about 9 seconds, and which does not affect the Corr. for Altitude.
In the $2 d$ Example, 10 miles of ar error in the Latitude, in working the Hour Angle, would prodoc $\cdot \boldsymbol{y}$ arror of 4
wonds in the time from Noon, and an error of only $1^{\prime} 80^{\prime \prime}$ in the Correction for Altitude

FINDING THE LATITUDE BY TWO ALTITUDES OF THE SUN,

(Usually called Double Altitudes.)

EXAMPLE 3.

Nov. 30th, 1854, Ship off Cape Horn, in Latitude $56^{\circ} \mathrm{S}$, Long. $80^{\circ} \mathrm{W}$, by the Dead Reckoning. In the after aoon, at 0 h 36 m 52 s , per Watch, the Observed Altitude of the Sun was $54^{\circ} 49^{\prime} \mathrm{N}$. Ship then sailed on a True N W. by W. Course, going 10 knots an hour, until 4 h 47 m 41 sec., by the same Watch, when the Sun's Observed Altitude was $26^{\circ} 38^{\prime}$. Required the Latitude at the time of the Greater Altitude, aud at Noon.

Lesser Altitude Observed.. $26^{\circ} 38^{\prime}$	
Corr. Table IX....... Add 10	by Watch......\} \mathbf{y}^{4741} Cor. Ln. $80^{\circ} \mathrm{W}$. Tab. XI Add ${ }^{2}$
True Altitude. $\overline{2648}$	
Latitude by Dead Reck.... 5538 Log. 0.24835	Interval Time by W. 41049 Cor. for 4 h 47 m past Noon Add 2
Polar Distance........... 68 16 Log. 0.03202	Say. $4 \frac{1}{4}$ hours Decl. Time of Lesser Alt. $\overline{21} \frac{44}{44} \mathrm{~S}$
Sum. $\overline{150} 4$	Rate of Sailing.. 10 knots $\quad 90 \quad 0$
$\frac{1}{2}$ Sum. 7521 Log. 4.40297	Distance Sailed. . . .42 miles. Polar Distance. $\overline{68^{\circ} 16^{\prime}}$
Difference. 48 33 Log. 4.87479	
Outer Hour Angle..4b $\overline{55 m} 41 \mathrm{~s}=\overline{9.55813}$ Correct Interval.	Course N. W. by W. 42 miles $\}$ in time. Add oh 4 m 12 s Dep. $35=$ D. Lou. $=63 .$.
Time past Noon....... $\overline{40 \mathrm{~m} 40 \mathrm{~s}} \mathrm{Log} .7 .895$	Part 1st. Interval of Time by Watch. $410 \quad 49$
Lat. 56° S., Decl. 22° S.. Log. 0.268	Part 2d. Correct Interval of Time. 4 4h 15m 1s
Corr. Part 4th...... Add $0^{\circ} 50^{\prime}=\log .8 .163$ Greater Alt. Observed. . 5449	Table XV.
Merid. Alt. $\overline{5 \overline{55}{ }^{\circ} 39^{\prime}} \mathrm{N}$.	Course N. W. by W. 7 miles, since Noon, gives - D. Lat. $0^{\circ} 4^{\prime}$
Corr. Table IX......Add 11	Latitude in at 41 m past Noon. 555° ह62 S.
	Latitude in at Noun.. $\overline{55^{\circ}} 56^{\prime} \mathrm{S}$
Zenith Distauce.. $34^{\circ} 10^{\prime} \mathrm{S}$. And the	Watch in this case was 3 m 48 s slow, at the time of the Greater Al^{+}
Decl. at Noon. 2142 S .	
Latilude. $\overline{55}^{\circ} 52^{\prime}$ S. at 0 h 41 mp	ast Noon.

EXAMPLE 4

August l0th, 1854, Ship off the Cape of Good Hope, in Latitude $38^{\circ} 20^{\prime}$ S., and Long. $20^{\circ} 10^{\prime}$ E. by the Dead Reckoning. At 11 h 28 m in the foreuoon, the Sun's Observed Altitude was $35^{\circ} z^{\prime}$ N. Ship then sailed due East, going 8 knota, until 4b 21 m 29 s in the afternoon, when the Sun's Observed Altitude was $10^{\circ} 8^{\prime}$. Required the Latitude in at the time of the A. M. Altitude, and also at Noou.

Lesser Altitude Observed... $10^{\circ} 8^{\prime}$	
Corr. Table IX....... Add 7	by Watch....... $\}^{11} 280$ Corr. 20° E. Long...-Add 1
True Altitude............ 1015	Time of Lesser Alt. $\{162129$ Declination Noon....... 1588
Lat. Dead Reckoning..... 3820 Lug. 0.10545	4 h 21 m 29 s add 12 h)
Polar Distance 10535 Log. 0.01627	Interval Time by W. 45329 Decl. Time of Lesser Alt.: $\overline{1535}$
Sum. 15410	Say............. 5 hours. $90 \quad 0$
$\frac{1}{2}$ Sum. 777^{5} Log. 4.34934	Rate of Sarling.. ... 8 Polar Distauce. $1 \overline{05^{\circ} 35^{\prime}}$
Alt tude................. 1015	Distance sailed. . . . 40 miles.
Difference. 6650 Log 4.96349	Course True East 40 miles - D. Lon. 51 ' in time 0 h 3 m 24 s Sut
Outerr Hour Angle.... 4h $\overline{11 \mathrm{~mm} 298}=\overline{9.43455}$	Interval of Time by Watch. 4.53829
Cor eet Interval....... 450 50	Correct Interval of Time.................... 4 4 50 m 5 s
Time before Noon. 38 m 36 s Log. 7.851 P Lat $38 \frac{1}{2}$ S., Decl. $15 \frac{1}{2}$ N. Log. 0.271 P	$\left.\begin{array}{l} \text { Part 1st } \\ \text { Part 3d } \end{array}\right\} \text { Table XV. }$
Corr. Part 4th........Add $0^{\circ} 46^{\prime}$ Log. $\overline{8.122}$	
Greater Altitude Observed. $35 \quad 2$	Ship's Course having been due East, she is on the arme Paralld
Meridian Altitude. $\overline{35^{c}} \overline{48}^{\prime} \mathrm{N}$. Corr. Table IX. Add 11	of Latitude at Noon, $38^{\circ} 23^{\circ}$
True Altitude. $\overline{35^{\circ}} \overline{59}{ }^{\prime} \mathrm{N}$	
Zenith Distance............ $54^{\circ} 1^{\prime}$ S. In this Decl. Noon................ 15 38 N.	case the Watch was 6 m 36 s fast at the time of the Greater Altutuce
Latitude................$^{38^{\circ}} \frac{23^{\prime}}{\text { S. at } 11 \mathrm{~h} 21 \mathrm{n}}$	m 24s in the forenoon.

[^7]
finding the latitlide by two altitudes of the sun

QUESTIONS FOR EXERCISE.

Qucstion 1 st.- October 20th, 1854. Ship becalmed in Latitude $50^{\circ} 9^{\prime} \mathrm{N}$., and Longitude $30^{\circ} \mathrm{W}$ by Dead Reckoning. In the afternoon at 0 h .34 m ., per watch, the Sun's observed Altitude, Lower Linib, was $29^{\circ} 5^{\prime}$ S., and at 2 h .46 m . it was $19^{\circ} 54^{\prime}$. Required the time from Noon, when the greater Altitude was observed, and the Latitude in.

Airswer.-The time from Noon, when the greater Altitude was observed, is 0 h .28 m .46 s ., and the Latitude in at that time was $50^{\circ} 3^{\prime} \mathrm{N}$.

Qucs. 2d.-February 25 th, 1854. In Latitude $51^{\circ} 2^{\prime}$ N., Longitude $45^{\circ} \mathrm{W}$. ., by Dead Reckoning. In the afternoon, at 0h. 33 m ., the Altitude of the Sun's Lower Limb was $28^{\circ} 53^{\prime} \mathrm{S}$. Ship then sailed to the Eastward 20 miles, and at 2 h .43 m . P. M., it was $19^{\circ} 44^{\prime}$. Required the error of the Watch, and the Latitude at the time of the greater Altitude.
Ans.-The time from Noon, when the greater Altitude was observed, was 0 h .40 m .11 s Watch was 7 m .11 s . slow, and the Latitude in $51^{\circ} 17^{\prime} \mathrm{N}$.

Ques. 3d.-January 6th, 1854. In Latitude $58^{\circ} 25^{\prime}$ S., and Longitude 138° E., (at Noon, by Dead Reckoning.) At 11 h .2 m. . A. M., per watch, the Altitude of the Sun's Lower Limb was $52^{\circ} 13^{\prime} \mathrm{N}$. Ship th3n sailed on a S. S. W. $\frac{1}{2}$ W. Course, (true,) going 8 knots an hour until 4 h .50 m . P. M., when his Altitude was $28^{\circ} 10^{\prime}$. Required the correct time from Noon, when the greater Altitude was observed, the Latituda in at that time, and the Latitude at Noon, brought on by the Dead Reckoning.

Ans.-The time from Noon, when the greater Altitude was observed, was 1 h .1 m .58 s . A. M. Latitude in at that time $58^{\circ} 30^{\prime} \mathrm{S}$. The Difference of Latitude made to Noon was $7^{\prime} \mathrm{S}$., and the Latitude in at Noon was $58^{\circ} 37^{\prime}$ S. (In this case, at the time of the lesser Altitude, the Sun was on the Prime Vertical.)

Ques. 4th.-August 30th, 1854. In Latitude $12^{\circ} 43^{\prime}$ S., and Longitude 93° W., Dead Reckoning, at 11 h . 45 m .12 s ., A. M., the observed Altitude of the Sun's Lower Limb was $67^{\circ} 44^{\prime}$ N. Ship sailed S. W. by W., going 4 knots an hour, until 1 h .15 m .12 s ., P. M., (both times being noted by the same watch,) when the Altitude was $62^{\circ} 0^{\prime}$. Required the time from Noon, when the greater Altitude was observed, and the Latitude in.

Ans.-The time from Noon was 0 h .20 m .22 s ., A. M., and the Latitude observed at that time was $12^{\circ} 32^{\prime} \mathrm{S}$.

Note.-In Low Latitudes, the Lesser Altitude may be taken much nearer to Noon than in High Latitudes; because there the sun's motion is much quicker, and the 'lime is more correctly found in Low Latitudes; but in all cases the Greater Altitade should be observed as near to Noon as the limits required in Part 5th, Table XV

Should there happen to be a very great difference between the Latitude so found, and that by the Dead Rerkoning at the time of the greater Altitude, the Latitude used in finding the Outer Hour Angle must be corrected accordingly, and the case worked over again, and the Inner Hour Angle found anew, which will give the correct Latitude.

In the above Examples the height of the eye is taken at 16 or 18 feet above the Sea level.

TO FIND THE A ATITUDE FROM THE SUN'S CHANGE OF $/$ LTITUUE.

This Table contains the Sun's Change of Altitade in One Minute of Time for every Degree of Latitude
When on the Prime Vertical.

Lat.	Change of Alt.		Change of Alt.	L.t	Change of Alt.	Lat.	of Ait.										
		12	14.41	22	13.54	32	12.4	42	11.1			62			. 38		
3	14.58	13	14.37	23	13.48	33	12.35	43	10.59	53	9.2	63	6.48	73	4.23	83	50
,	14.58	14	14.34	24	13.42	34	12.26	44_{1}	10.48	54	8.49	64	6.34	74	4. 8	84	1.34
	14.57	15	14.30	25	13.36	35	12.17	45	10.37	55	8.36	65	6.20	75	3.53	85	1.18
6	14.56	16	14.26	26	13.29	36	12. 8	46	10.26	56	8.23	66	6. 6	76	3.38	86	1.
7	14.54	17	14.21	27	13.22	37	11.59	47	10.15	57	8.10	67	5.52	77	3.23	87	0.46
8	14.51	18	14.16	28	13.15	38	11.50	48	10.3	58	7.57	68	5.38	78	3.8	88	0.30
9	14.4	19	14.11	29	13. 8	39	11.40	49	9.51	59	7.44	69	5.24	79	2.52	89	0.15
10	14.46	20	14. 6	30	13. 0	40	11.30	50	9.39	60	7.30	70	5. 9	80	2.36	90	0.

When the Sun, or any other heavenly body; is on the Prime Vertical, that is, when it bears true East or ${ }^{W}$ Vest, its change of Altitude is then greatest. If its change of Altitude in one minute of time be then measured with a Sextaut, to the nearest second, the Latitude corresponding to it will be found in the above Table This method depends entirely upon the accuracy with which the change of Altitude is measured, and cannot be much depended on, even in High Latitudes, where the change of Altitude in one minute of time, between any two degrees, differ the inost.
It is merely given here to illustrate the subject. The Table itself, however, will be found useful when we want to know the change of Altitude of any heavenly body when bearing East or West; for instance, in observing Altitudes for Time, it may be used as a check on the difference of the observed Altitudes in a given time, and which should agree with the change of Altitude in one minute of time given in the above Table, according to the Latitude of the place of observation.

But as the heavenly bodies only pass the Prime Vertical above the horizon when the Latitude of the place and the Declination of the body are of the same name, (as in the case of the Sun in the Summer time,) the change of Altitude will be slower when they are of contrary names, and in this case the quickest change will take place when the Altitude is from 5° to 10° above the horizon, but there are always some one or other of the heavenly bodies on the Prime Vertical. which may be observed.

To find the Latitule from the Change of the Sun's Altitude in One Minute of Time.

RULE

Observe with a Sextaut an Altitude of the Sun, when he bears true East or West, and note the full moute oy the Watch. Three minutes afterwards, observe auother Altitude, at that exact time. Divide the Differeuce of tho Observed Altitudes by the number of minutes elapsed, will give the Change of Altitude in 1 minnte of time, with *hich enter the above Tnble, opposite to which will stand the Latitude required.

EXAMPLE 1

The Sun's Change of Altitude in 1 minute, and bis tearing East (passing the Meridian to the Southward) given. But veither the Declination nor the Latitude by account known. Required the Latitude in.
T. by Watch. . 5 h 20 m . 1 st Alt. $14^{\circ} 17^{\prime} 40^{\prime \prime}$

Sun's Change of Alt. in 1 minute. $\overline{11^{\prime} 30^{\prime \prime}}$
Whech correspouds to Lat. . $40^{\circ} 0^{\prime} \mathrm{N}$. in the 'Table.

EXAMPLE 2.

Required to find the Latitude by the Sun's Change ot Altitude in 1 minute of time, when on the Prime Ver tical, having passed the Meridian to the North of the Observer.
T. by Watch. . 5 h .4 m . 1st Alt.. $2^{\circ} 6^{\prime} 20^{\prime}$
do. do...5 7 2d Ait. $20 \quad 3723$
3 m) ${ }^{28^{\prime}} 57^{\prime \prime}$ Diff. of A 悼 Sun's Cbange of Alt. in 1 minute. $\overline{9^{\prime}} \overline{39^{\prime \prime}}$ Which corresponds to Lat. . $50^{\circ} 0^{\prime} \mathrm{S}$. in the Tabla

The Latitude may be found from the Meridian Altitude of the Moos, upon the same principle as tbat by the Sun. But as the Moon's Declination changes very rapidly, we mus: know tho exact Greervich dato at which the Observation is made, in order to correct her Declination to that date.

The Moon's Declination is given in the large Nautical Almanaes for every hour of the day at Greenwich and her change of Dechmation in seconds for every 10 minutes between the hours, so that the Correction can easily be computed.

In the small Almanacs, it is only given for every Noon and Midnight at Greenwich, and we take the proportional part of her change in Declination, corresponding to the hours and minutes past the nearest Noon or Midnight, or enter Table XXIII with the Diff. in 12 h at the side, and the tinne past Noon or Midnight at the top, and take out the Correction.

But if the Longitude of the Ship be not known, the correct Declination cannot be computed, consequently the Latitude cannot be found by the Moon.

Ships, however, which carry good Chronometers, have their Longitude always tolerably correct; hence, the Latitude found by the Moon, in that case, can be depended on, and is sufficiently near the truth for all practical purposes.

The Moon teing nearer the Earth than any other heavenly body, her place in the heavens is greatly affected by Parallax; that is, she always appears below her true place in the heavens, by the amount of her Parallax in Altitude. This Correction is given in Table XXV, (and which includes the correction for the Refraction of the Atmosphere), and is always additive to the Apparent Altitude.

The Moon's Semi-diameter and Horizontal Parallax is given in the Nautical Almanac tor every Noon and Midnight at Greenwich, and are generally taken out for the nearest Noon or Midnight corresponding to the Greenwich date of the Observation.

When the Moon is in the Zenith, she is nearer to the observer than when in the Horizon, by the amount of the Earth's Semi-diameter ; hence, her Diameter is augmented, or appears $16^{\prime \prime}$ larger than when in the Horizon. This Correction is given in Table VII, but is seldom used in the practice of finding the Latitude at Sea.

The first thing required to be done is to find at what time the Moon passes the Meridiam of Greenwich. in the Nautical Almanac, on the day before the Sea Date, and correct it to the time she passes the Meridian of the Ship; because, as the Moon is constantly advancing to the Eastward in the Heavens, she will pass any Meridian to the Eastward of Greenwich sooner in the day, or a Meridian to the Westward later in the day, by a certain number of minutes. Therefore, in West Longitude we take out the Meridian passage on that and the following day, but in East Longitude, on that and the preceding day, and take their difference, which is the daily variation of the Moon's passing the Meridian. Enter Table XXII with the daily variation at the top, and the Longitude of the Ship in the side column, and at the angle of meeting will be the number of minutes required, which must be added to the time of ner Meridian passage on the day before the Sea Date, if the Longitude be West, or subtracted, if East, will give the Mean Time at her passing the Meridian of the Ship.

This correction may also be found by adding 2 minutes of time for every 15° of Longitude which the Ship is to the Westward of Greenwich, to the Mean Time of her passing the Meridian of Greenwich (by the Nautical Almanac), or subtracting the same when the Longitude is East, will give the Meau Time of her passage at the Ship.

Here it may be remarked, that as the Watch is generally regulated to Apparent Time at Snip, and is referred to in ascertaining the time to begin the observation, these two times may differ as much as $1 \in$ minutes sometimes, and the observation is frequently lost; that is, the Moon has passed the Meridian hefore the observation has been begun. To prevent this happening, take out the Equation of Time given in the Nautical Almanac, and apply it to the Mean Time of passing the Meridian at the Ship the contrary way to what is directed in the precept at the head of the column for Apparent Time, and the result is the Apparent Time of her passing the Meridian at the Ship. Then if the Watch be regulated to Apparent rime at the Ship, it will show the exact time at which the Moon will pass the Meridian, because all the heavenly bodies pass the Meridian at Apparent Time.

Having thus found the Mean Time of the Moon's Meridian passage at the Ship, as directed above

2. To Find the Greenwich Date.

Turn the Ship's Longitude into Time by Table XXVI, and add it to the above time, if the Longitude be West, or subtract it if the Longitude be East. The Sum or Difference will be the time at Greenwict (usually called the Greenwich Date) when the Moon passes the Meridian of the Ship. But should the sum exceed 24 hours, subtract 24 hours from it, and add one day to the Greenwich Date. On the other band, when the Longitude is subtractive, and greater than the time of Passing the Meridian, add 24 hours to the latter, for the purpose of subtraction, and take one day from the Greenwich Date.

3. To Correct the Semi-diameter and Horizontal Parallax

From the Nautical Almanac take out the Moon's Semi-diameter and Horizontal Parallax for the nearest Noon or Midnight corresponding to this Greenwich Date, and correct them if required by Table XXIV, and to the Moon's Semi-diameter add her augmentation found in Table VII. (But this is seldom necessary.)

4. To Find the Apparent Altitude.

Add the Difference between the Moon's Semi-diameter and the Dip of the Horizon found in Table $\bar{\nabla}$ to the Observed Altitude of her Lower Limb, or subtract their Sum if the Upper Limb be observed, will give the Moon's Apparent Central Altitude. (See remarks on taking Altitudes at page 71.)

5. To Find the Moon's True Altitude.

Enter Table XXV with the Moon's Horizontal Parallax at the top, and her Apparent Altitude at the side, and take out the Correction for her Parallax in Altitude, and which is always additive to her Apparent Altitude.

6. To Correct the Declination by the Large Nautıcal Almanac.

To correct the Moon's Declination, taken from the large Nautical Almanac, take out the Declination fo. the day and hour corresponding to the Greenwich Date. And when there are odd minutes, take out the Diff. of Declination in 10 minutes, found in the side column opposite, and wnich is expressed in seconds and hundred parts of a second; and when the hundredths are more than $5 u$, cail the seconds one more, but. if less, throw them away. Multiply the seconds by the odd minutes, and strike off the right hand - figure ; then divide by 60 , will give the Correction in minutes and seconds. If the Declination is increasing, add this Correction, but if it be decreasing, subtract it.

7. To Correct the Declination by the Small Nautical Almanac.

To Correct the Moon's Declination taken from the small Nautical Almanac, take out the Declination for the nearest Noon or Midnight, if the Greenwich Date be exactly at Noon or Midnight ; but if not, take it out for the nearest Noon or Midnight preceding, and the nearest Noon or Midnight following, the Greenwich Date, and take their difference, which will be that for 12 hours.
Enter Table XXIII with the difference for 12 hours at the side, and the hour from Noon or Midnight at the top, and take out the Correction. If there are odd minutes, enter the right hand side of the table with the odd minutes at the top and the difference for 12 hours at the side, and take out the Correction. Add the Sum of these Corrections to the Declination at the preceding Noon or Midnight, if the Declination is increasing, but subtract it if decreasing, will give the Moon's correct Declination at the time of the obser vation.

But when the Declination, taken from the Nautical Almanac, for the preceding Hour or the Noon or Midnight, is decreasing, and the correction subtractive exceeds it, the difference is the Declination of a contraru name

8. To Find the Latitude.

Thus having the Moon's Correct Altitude, and her Correct Declination, the Latitude is found by the same rule as for the Sun's Meridian Altitude. That is: Subtract the True Altitude from 90°, will give the Zenith Distance of a contrary name to the Moon's Bearing. Place the Correct Declination under it. Then if they are both North or both South, their Sum is the Latitude of that name; but if one be Nortb and the other South, their difference is the Latitude of the same name as the greater of the two

EXAMPLE 1

July 12th, 1854, Sea Time, in the Longitude of $75^{\circ} \mathrm{W}$, the Meridian Altitude of the Moon's Lower Limb was observed to be $40^{\circ} 35^{\prime} \mathrm{S}$. Height of the eye 18 feet. Required the Latitude of the Ship.

July 12th is July 11th, Astronomical Time.	Mean Time of Mer. Pass. at Ship....14h 10m
Moon's Mer. Passage, July 11th,...........13b 58m	Equa. of Time N. A. applied con. way Sub. 5
On the following day, July 12th. $14 \quad 56$	App. Time by Watch of Merid. Pass.. $\overline{14 \mathrm{~h} 5 \mathrm{~m}}$
Long. $75^{\circ} \mathrm{W}$., and daily variation.. 58 m in Tab	Or at 2 h 5 m in the morning.
Gives the Correction to be added.......... 0h 12m To the Meridian Passage, July 11th. 1358	Moon's Hor. Parl. at Mid. July : 1 th. . . $600^{\prime} 0^{\prime \prime}$
Mean Time of the Mer. Passage at Ship...14h 10 m	Observed Altitude Moon's L. Limb $40^{\circ} 35^{\prime}$ S
Long. $75^{\circ} \mathrm{W}$. in time. Add 5 5 0	$\left.\begin{array}{l}\text { Semid, at Midnight } 16^{\prime} \\ \text { Dip of the Horizon } 4^{\prime}\end{array}\right\}$ Add Diff. 12
Greenwich Date, July 11th............. 19h 10m	Moon's A pparent Altitude. $\overline{40^{\circ} 47^{\prime}}$
Less 12h, gives the time past Midnight. . . $\overline{7 \mathrm{hh} \mathrm{10m}}$	Moon's A pparent Altitude......... $40^{\circ} 47^{\prime}$ Corr. for Alt. iu Table XXV.. Add
Moon's Declination at Midnight, July 11th.. $21^{\circ} 21^{\prime} \mathrm{S}$. Moon's Declination at Noon, July 12th.... 19 S	
Diff. of Declination in 12 hours.......... ${\frac{2}{} 2^{\circ} 12^{\prime}}^{\text {and }}$ a the	Zenith Distance. $\overline{48^{\circ} 29^{\prime}{ }^{\prime} \mathrm{N}}$
Time from Miduight 7 h 10 m , $\}$ in Table XXIII = Corr. \qquad	Correct Declination. Latitude in. \qquad

EXAMPLE 2.

April 25th, 1854, Sea Time, in the Longitude of 80° Enst, the Meridian Altitude of the Moon's Upper Linut wio obeerved to be $67^{\circ} 36^{\prime}$ N. Height of the eye 21 feet Required the Latitude of the Ship.

April 25th is April 24th, Astronomical Time.	Mean Time of passing the Mer. at Ship. . 22h 38m
Moon's Mer. Passage April 24th,.............22h 43m	Equa. of Time, N. A., applied contr'y way. Add 2
- Long. $80^{\circ} \mathrm{E}$, which, at the rate of $\left.\begin{array}{l}\text { m to every } 15^{\circ}-\text { Corr. }\end{array}\right\}$.. . Sub. 10	App. Time of the Merid. passage. $\overline{22 \mathrm{~h} 35 \mathrm{~m}}$ Less.
Mean Time of the Mer. Pass. at Ship.22h 33m Long. $80^{\circ} \mathrm{E}$ in time. Sub. 520	App. time by Watch of the Mer. passage. . $\overline{10 \mathrm{~h} 55 \mathrm{~m}} \mathrm{~A}$.
Greenwich Date, April 24th....................17h 13 m Less.	$0{ }^{\prime \prime}$
Time past Midnight at Greenwich. 5h 13	Moon's Obs. Altitude Upper Limb. $67^{\circ} 88^{\prime}$ Semid. Midnight...15' $31^{\prime \prime}$ \} Sub. the Sum..... 20
Moon's Decl. Midnight, April 24th, $0^{\circ} 51^{\prime}$ S. Moon's Decl. Noon, April 25th, 2 2' N.	Dip of the Horizon. 428 App. Altitude. \qquad $\overline{67^{\circ} 16^{\prime}}$
Diff. of Decl. in 12 hours. ${\frac{2}{}{ }^{\circ} 53^{\prime}}^{\prime}$	Corr. for Altitude,
$\left.\begin{array}{l}\text { And time from Midnight } 5 \mathrm{~h} 13 \mathrm{~m} \text { in Table } \\ \text { XXIIL, Corr.. }\end{array}\right\}$ Sub. $1^{\circ} 15^{\circ}$ XXIIL, Corr. \qquad	Moon's True Central Altitude. $6.67^{90}{ }^{90}$
Declination at Midnight decreasing. 0 51 S.	Zenith Distance . $\mathbf{2 2}^{\circ}{ }^{22^{\prime}}$ S
Correct Decl at the time of Observation.. $0^{\circ} 24^{\prime} \mathrm{N}$.	Correct Declination. 024
	Latitude in. $211^{\circ} 58^{\prime}$

[^8]Correction of the Declination (used in the above Examples), taken from the iarge Nautical Almanue

EXAMPLE 1.

EXAMPLE 2.

Decl. April 24, 17h.... $0^{\circ} 21^{\prime} \quad 8^{\prime \prime}$ N. Diff. 10 m 14450 Decl. Increasing... Add $8 \quad 8$ Correct Declination.. . . $0^{\circ} 24^{\prime} 11^{\prime \prime} \mathrm{N} . \quad-\overline{80) 188.5}$ Correction for 10 minutes. $\overline{8^{\prime} 8^{\prime \prime}}$

QUESTIONS FOR EXERCISE

Question 1.-April 5th, 1854, Sea Time, in Longitude $30^{\circ} 44^{\prime}$ W., the Meridian Altitude of the Moon's Upper Limb was $75^{\circ} 15^{\circ} \mathrm{S}$. Height of the eye 18 feet Raquired the Latitude of the Ship.

Answer.-Latitude in $40^{\circ} 58^{\prime} \mathrm{N}$.
Question 2.-April 2d, 1854, Sea Time, the Observed Altitude of the Moon's Lower Limb was $54^{\circ} 39^{\prime} \mathrm{S}$. in Low gitude $60^{\circ} \mathrm{W}$. Required the Latitude in.

Ancome.-LLatitude in $54^{\circ} 31^{\prime} \mathrm{N}$.
Chestion 3.-A pril 13th, 1854, Sea Time, the Observed Altitude of the Movn's Upper Limb wae $30^{\circ} 20^{\prime} \mathrm{S}$. is Longitude $: n^{\circ} \mathrm{W}$. Required the Latitude in

Anower-Iatitude in $54^{\circ} 18^{\prime} \mathrm{N}$.

TO FIND THE LATITUDE BY THE MERIDIAN ALTITUDE OF A PLANET.

The Latitude may be found from the Meridian Altitude of the Planets upon the same principle as that by the Sun and Moon.

Their Declinations are given in the Nautical Almanac for the Noon at Greenwich, for every day of the month throughout the year.

When their Declinations change slowly, they may be taken out for the Noon of the day at once by inspection. But when there is a considerable change in their Declinations between the Noon of one day and the next, we must correct the Declination to the Greenwich time of Observation, in a similar nıanner as is done in the case of the Moon, except that their Meridian Passage is taken from the Nautical Almanac and used without being corrected, as the Mean Time of their passing the Meridian at Greenwich, is near enough for general practice at Sea.

But to find the Apparent Time, or the Actual Time, they do pass the Meridian by the watch, (regulated to Apparent Time at Ship), the Equation of Time must be applied to the time of passage taken from the Nautical Almanac, the contrary way to what is directed in the precept at the head of the column for Equa tion of Time, in the same manner as it is done in the case of the Moon, so as the Observation may not be lost in consequence of being too late in beginning it.

To Find the Planets in the Heavens when on the Meridian.

RULE.

1. Find at what time a Planet will pass the Meridian in the Nautical Almanac, select one in preference which will be on the Meridian at twilight, because then the Horızon is distinctly visible; or even when the Sun is several degrees above the Horizon, some of them may be observed, though invisible to the nakea eye, and they are found as follows:

Apply the Equation of Time, as before directed, to the Mean Time of their passage in the N. A., will цive the Apparent Time of their passage at the Ship, and the Watch must be previously regulated to Apparent Time, or its error known.
2. Subtract the Latitude by Dead Reckoning from 90°, and the remainder will be the Co-Latitude. Take out the Declination or that Planet from the Nautical Almanac, which passes the Meridian at the proposed time. Then if the Co-Latitude and its Declination are of the same name, take their sum, but if of contrary names, take their difference, for the Meridian Altitude of the Planet.

Now put this Computed Altitude on the Arch of the Sextant, and if in the day time, screw in the Inverting Telescope, (otherwise use the Direct one), and look towards the South point of the Horizon when the Latitude is North, and inwards the North point of the Horizon when the Latitude is South, and the Planet will be distinctly seen, through the Telescope, on or near it.

But when the Sum of the Co-Latitude and Declination exceed 90°, it must be subtracted from 180°, and the Planet must be looked for in the North point of hie Horizon, in North Latitude, and in the South point of the Horizon in South Latitude.

Bring the Planet in contact with the Horizon, and when it attains its greatest Altitude, read off the Areh, and find the Latitude as follows:

To Compute the Latitude from the Meridian Altitude of a Planet.

RULE

Subtract the Sum of the Refraction and Dip, found in Tables IV and V, from the Observed Altitude, will give the True Altitude, which, subtracted from 90°, gives the Zenith Distance of the contrary name to the Planet's Bearing. Take from the N. A. the Declination, and correct it if required. Then, if the Zenith Distance and Declination are of the same name, their Sum, but if of contrary names, their Differ. snce. is the Latitude of the same name as the reater of the two

TO COMPUTE THF MERIDIAN ALTITUDE OF THE PLANETS.

EXAMPLE 1.

January 2d, 1854. Sea Time. Required the Apparent Tima, and the Altitude at which the plnnet Venus will pass the Meridian. Ship off the Cape of Good Hope, in Latitude $34^{\circ} 0^{\prime} \mathrm{S}$, and Longitude $18^{\circ} 0^{\prime} \mathrm{E}$.
M Pas. N.A., Jan. 1st, 3 h .15 m . M. Time at Greenwich. Equ of Time, . .Sub. \qquad
M. Pass, at Ship. . . $\overline{3 h .11} \mathrm{~m}$. App. Time P. M.
M. Pas, N.A., Jan.1st, 3h. 15 m . Dec., N'n, Jan.1st, $13^{\circ} 5^{\prime}$ S. Lon. 18° E. in T, Sub. 12 do. Jau. 2d, 1240 S. Greenwich Date... 2 h .3 m . Change in 24 h . - 25
Lat. of Ship. . . . $34^{\circ} \overline{0^{\prime}} \overline{\mathrm{S}}$. Pro. for $2 \mathrm{~h} . . . \mathrm{Sub} \overline{2^{\prime}}$
$900 \quad$ Dec., Jan. 1st, 13° b $^{\prime}$
Cor. Lat.. $\overline{56} \bar{\sigma}^{\circ} 0^{\prime}$ S. Cor. Dec.... $\overline{13^{\circ}} 3^{\prime}$ S.
Dec. Venus...... 13 3 S.
Compu. Alt..... $\overline{69^{\circ}} \overline{3^{\prime}}$ of Venus at 3 h .11 m . P. M.
Put this Altitude on the Sextant and look towards the North point of the borizon, (the Latitude being South.)

EXAMPLE 3,

April 14th, 1854. Sca Time. Required the Apparent Fime, and the Altitude at which the planet Jupiter will pass the Meridian. Ship on the Equator, in Longitude 25° West.
M. Pas. N.A.,Ap. $13 \mathrm{th}, 18 \mathrm{~h} .24 \mathrm{cn}$. M. Time at Greenwich. Equ. of Time. .Sub. \qquad 1
M. Pass. at Ship. ...18h. $231 \mathrm{n}_{n}$ or 6 h .23 m . A. M. by Watch.
M. Pass. April 13...18h.24ın. Dec., April 13 th, $21^{\circ} 7^{\prime} \mathrm{S}$. Lon. 25° W. in T.,Add 140 do. April 14th, 216 S . Greenwich Date. . $\overline{20 \mathrm{~h} .} 4 \mathrm{~m}$. Change of Dec. $24 \mathrm{~h} .1^{\prime}$

Pro. for 20h. Sub. $=1$
Lat. of Ship $0^{\circ} 0^{\prime} \mathrm{Co}$-Lat. $90^{\circ} 0^{\prime}$ Dec., Ap. $13,21^{\circ} 7^{\prime}$
Add Dee. of Jupiter.... 216 S . Cor. Dec. $\overline{21^{\circ} 6^{\prime}}$ $1 \overline{11^{\circ} 6^{\prime}}$
Subtract from 1800
Computed Altitude. $68^{\circ} 54^{\prime}$ of Jupiter at 6 h. 23^{\prime} A.M.
Put this Altitude on the Sextant and look towards the South point of the horizon, (because the Declination is

EXAMPLE 2.

June 7th, 1854. Sea Time. Required the Apparent Time, and the Altitude at which the planet Mars will pass the Meridian. In Latitude $40^{\circ} 20^{\circ} \mathrm{N}$, and Long tude 75° West.
M. Pas. June 6th, N.A.. 6h. 2m. M. Time at Greenwich Equa. of Time. . . . Add 2
M. Pass. at Ship. .. $\overline{6 \mathrm{~h} .4} \mathrm{~m}$. App. Time, P. M.
M.Pass. N.A.,June 6th, 6h. 2m. Dec., June 6th, $7^{\circ} 26^{\prime}$ N. Lon. 75° W. in T., Add 5 do. June 7th, 713 Greenwich Date... 11h. 2 m . Change in 24h. . . 12^{\prime}
Lat. of Ship. . . $40^{\circ}{ }^{20}$ N. Pro. for $11 \mathrm{~h} .$. Sub. 5^{\prime}
Co-Latitude. $\frac{90 \quad 0}{49^{\circ} 40^{\prime}} \mathrm{N}$. $\quad \begin{aligned} & \text { Dec., June 6,..7 } 7^{\circ} 25^{\prime} \\ & \text { Cor.Dec,.... } 7^{\circ} 20^{\prime} \\ & \mathrm{N}\end{aligned}$ Dec. of Mars.... $7 \quad 20 \mathrm{~N}$.
Computed Alt.. . $\overline{57^{\circ}} 0^{\prime}$ of Mars at 6 h .4 m . P. M.
Put this Altitude on the Sextant and look towards the South point of the horizou, (the Latitude being North.)

EXAMPLE 4.

Feb. 2d, 1854. Sea Time. Required the Apparent Time, and the Altitude at which the plavet Saturn will pass the Meridian in Latitude $30^{\circ} 20^{\prime} \mathrm{N}_{\text {, }}$, and Longitude $76^{\circ} 30^{\prime} \mathrm{W}$.
M. Pass. Feb. 1st. 6h. 46 m . M. Time at Greenwich Equa. of Time. .Sub. 14
Mer. Pass. at Ship. . . $\overline{6 \mathrm{~h} .32} \mathrm{~m}$. App. Time, P. M.
M. Pass. Feb. 1st. . . . 6h 46 m . Dec.,N.A., Fe.1st. $17^{\circ} 4^{\prime} \mathrm{N}$ Lon. $76^{\circ} 30^{\prime}$ W. in T. $5 \quad 6$ do. Feb. 2 d .174 N Greenwich Date. . . $\overline{11 \mathrm{~h} .52} \mathrm{~m}$. No Cor. for Dec. required. Lat, of Ship. . . $30^{\circ}-20^{\prime} \mathrm{N}$.
Co-Latitude. . $\frac{.59^{\circ} \quad 0}{40^{\prime}} \mathrm{N}$
Dec. of Saturn. 174 N .
Computed Alt. $\overline{76^{\circ} 44^{\prime}}$ of Saturn at 6h. 32 m . P M.
Put this Altitude on the Sertant, and look towards the South point of the horizon, (because the Lat is North.)

To find the Latitude from the Meridian Altitude of the Planets.

EXAMPLE 1.

Jan. 2d, 1854. Sea Time. The observed Altitude of the planet Venus was $69^{\circ} 7^{\prime}$ N. in Longitude 18° East. Required the Latitude.

EXAMPLE 3.

April 14th, 1854. Sea Time. The observed Altitude of Jupiter was $68^{\circ} 58^{\prime} \mathrm{S}$., in Lungitude 25° West. Required the Latitude.

EXAMPLE 2.

June 7th, 1854. Sea Time. The observed Altitude or Mars was $57^{\circ} 4^{\prime} \mathrm{S}$, in Longitude 75° West. Required the Latitude.

Observed Altitude of Mars. $57^{\circ} 4^{\prime} \mathrm{S}$.
Dip 4. Ref. 1.............................. . Sub. δ
True Altitude . $\overline{56^{\circ} 59^{\prime}}$
Zenith Distance. ${\bar{~} 3^{\circ} 3^{\circ}}^{\prime}$ N
Declination 7 . 20 N

EXAMPLE 4.
February 2d, 1854. Sea Time. The observed Altitude of Saturn was $76^{\circ} 48^{\prime} \mathrm{S}$., in Longitude $76^{\circ} 30^{\prime}$ Weet Required the Latitude.

Observed Altit	$76^{\circ} 48^{\prime} \mathrm{S}$
Dip 4. Ref. 0	+
True Altitude.	$\overline{766^{\circ} 44^{\prime}}$
Zeuith Distance	$\overline{18^{\circ} 16^{\prime}} \mathrm{N}$
Declination	174 N
Latitude	$\overline{80^{\circ} 20^{\prime}}$

TO FIND THE LATITUDE BY THE MERIDIAN ALTITUDE OF A ST.AR.

The Latitude may be found by the Meridian Altitude of a fixed Star, upon the same principio as that by the Sun.

1. Table XIX contains the Right Ascensions and Declinations of 24 of the principal Fixed Stars, for the jear 1854, and the annual variation or change of the same. So that this Table may serve for future jears, by simply multiplying the number of years elapsed by the amount of the annual variation, and applying it according to the sign of addition (f), or subtraction (-), to the Sums taken from the Table.

2. To Find what Star will Pass the Meridian at any Given Hour of the Day,

Enter Table XVIII, with the Day of the Month at the top, and follow down the column until we come to the required hour, opposite to which will stand the name of the Star. But as the Meridian passages in this Table are only given for every third day, should the day required be between those which are marked at the head of the column, take it out for the nearest day preceding the required day, and subtract 4 minutes for each intermediate day.

The times shown in this Table are only approxımations, but are sulficiently near enough for the purpose of finding the Latitude by the Stars.

By the assistance of this Table, the method of finding the Latitude by the Meridian Altitude of a Star will be greatly facilitated; for when we know at what time, nearly, a Star will pass the Meridian, and the approximate Altitude at that time, there can be no difficulty in making the requisite observation to determine the Latitude. These opportunities occur frequently in the course of a clear night, and may b . put in practice by any person otherwise unacquainted with the Stars in the heavens, by reference to the Figures at pages 65 and 66 , and the following Rules.

3. To Compute the Meridian Altitude of a Star.

Subtract the Latitude by Dead Reckoning, (at the proposed time of observation,) from 90°, will give the som. plement of the Latitude, or Co-Latitude, of the place of observation. Take out the Star's Daclination frory Table XIX, and correct it for the years elapsed since 1854. Then, if the Co-Latitude and its Declination art of the same name, take their Sum, but if of contrary names, take their Difference for the Meridjan Altitude. and the Star will be found in the South part of the heavens when the Latitude is North, and ir tho Nortu part when the Latitude is South. But when the Sum exceeds 90°, subtract it from 180°; ine remainder will be the Altitude, and the Star will be found in the North part of the heavens in Norta Laticude, and in the South part in South Latitude. (See remarks on taking Altitudes of the Stars, at page 71.)

4. To Find the Star from its Computed Altitude and Meridian Passige.

Set the Index of the Quadrant to the Computed Altitude, and at a few minutes before the time of its Meridian passage, direct the sight towards the North or South points of the horizon, as shown above, and the reflected image of the Star will be perceived in the Horizon Glass, upon or near the horizon, which being brought in contact with it, and kept so until it arrives at its greatest, or Meridian Altitude, the angle is then read off the Quadrant.

There is not the least danger of mistaking the Star, as no other will have the same Meridian Altitude at that time. (See remarks at page 71.)

The best time for observing Altitudes of Stars is at twilight, for then the horizon is distinctly visible, and the Latitude may be found as correctly as by the Sun. But in dark nights an error of from 5 to 10 miles in the Altitude may be made, in consequence of the obscurity of the horizon. To obviate this, the Latitude should be found from an Altitude of a Star to the Southward, and anuther to the Northward, and the half Sum of the two Latitudes thus found will be the correct one This will be further explained in the following Examples.

FINJING THE LATITUDE BY THE MERIDIAN ALTITUDE OF A STAR

The Meridian passages of the Stars shown in Table XVIII, being for Apparent Astronomical Time which commences at Noon, one day before the Sea Day begins, and the hours are counted in succession throughout; so that when Sea Time is used, the Tables must be entered with the date one day less than Sea Time.

If Civil or Common Time is used, the hours less than 12 will be the time past Noon on that day (and which are the same as Astronomical Time.) But when the hours are greater than 12, subtract 12 hours from it, and it will be the time on the morning of the following Civil Day, and which commences at Midnight. Because the Noon of the Civil Day, the beginning of the Astronomioal Day, and the end of the Sea Day, takes place at the same period of time.

To Find the Stars in the Heavens from their Computed Altitude.

EXAMPLE 1.

Feb. 28th, 1854, Sea Time, in Latitude by D. R. $40^{\circ} 10^{\prime}$ N. Required what Star will be on the Meridian at twilight in the evening, and its Computed Altitude.

On referring to Table XVIII, and taking the date one day less, or Feb. 27th, I find the Star Aldebaran will pass at 5 h 48 m P . M.
Latitude by Dead Reck. $40^{\circ} 10^{\prime} \mathrm{N}$.
Subtract from. 90 0
Co-Latitude $\overline{49^{\circ}} 50^{\prime} \mathrm{N}$.
Declination Table XIX... 1613 N .
Computed Altitude... ... $\overline{66^{\circ} 3^{\prime}}$. I now set the Index of the Quadrant to this Altitude, and face towards the South, because the Latitude is North. Flatten down the Sight Vane, and using both eyes, the Star Aldebaran will be distinctly seen upon, or near the Horizon.

EXAMPLE 3.

March 21st, 1854, Civil Time, in Latitude by D. R. $0^{\circ} 30^{\prime} \mathrm{S}$. Required to find a Star in the evening at twilight.

In Table XVIII, I find that the Star Sirius passes the Meridian at 6 h 34 m P. M.

$$
\text { Latitude by Dead Reck... } 0^{\circ} 30^{\prime} \mathrm{S} \text {. }
$$

Subtract from. $90 \quad 0$
Co-Latitude $\overline{89^{\circ} 30^{\prime}} \mathrm{S}$.
Declination, Table XIX.. $16 \quad 31 \mathrm{~S}$. $\overline{106^{\circ} 1^{\prime}}$
Subtract from............ $180 \quad 0$
Computed Altitude....... $\overline{73^{\circ}} \overline{59^{\prime}}$ towards the South.

EXAMPLE $\sqrt{6}$.

May 2d, 1854, Sea Time, in Latitude by D. R. $20^{\circ} 0^{\prime}$ N. Required at what Time and Altitude the Star Vega *ill pass the Meridian.

[^9]
EXAMPLE 2.

March 1st, 1854, Sea Time, in Latitude by D. R. 38° $10^{\prime} \mathrm{N}$. Required what Star will pass the Meridian at twilight in the morning, and its Computed Altitude.

On referring to Table XVIII, and taking the date one day less, or February 28th, I find that the Star Antarea will pass on the 27 th , at 17 h 40 m , from which I subtract 4 minutes, gives 17 h 36 m , and less 12 h gives 5 h 38 m , the time it passes in the morning.
Latitude by Dead Reck..... $38^{\circ} 10^{\prime} \mathrm{N}$.
Subtract from. 90 0
Co-Latitude $\overline{51^{\circ} 50^{\prime}} \mathrm{N}$.
Declination, Table XIX.... 26 S.
Computed Altitude. $\overline{25^{\circ}} 44^{\prime}$. Set the Index to this Altitude, and face towards South in North Latitude and the Star will be found as before.

EXAMPLE 4.

March 26th, 1854, Civil Time, in Latitude by D. B $30^{\circ} 25^{\prime} \mathrm{S}$. Required to find a Star in the morning twi. light.

In Table XVIII, I find that the Star Veça passes the Meridian at 18 h 90 m , on the 24 th, from which I subtract 8 minutes, gives 18 h 12 m , and less 12 h gives 6 h 12 m , its passage in the morning.
Latitude by Dead Reck. $30^{\circ} 25^{\prime} \mathrm{S}$.
Subtract from. $\frac{90 \quad 0}{50^{\circ}-35^{\prime}}$
Co-Latitude.
Declination, Table XIX
38
39
39
N.
Computed Altitude..... $\overline{20^{\circ} 56^{\prime}}$ towards the North.

EXAMPLE 6

June 22d, 1854, Sea Time, Ship on or near the Equa. tor. Required at what Time and Altitude the foot Star of the Suathern Cross will pass the Meridian.

On the 21st June, by Table XVIII, it passes the Meridian at 6 h 21 m in the evening.
Latitude by Dead Reck.. $0^{\circ} 0^{\prime}$
Co-Latitude.
$\begin{array}{cc}0^{\circ} & 0^{\prime} \\ 90^{\circ} & 0^{\prime}\end{array}$
Declination, Table XIX. $62 \quad 17 \mathrm{~S}$
Computed Altitude. $\overline{27^{\circ}} 43^{\prime}$ towards the South because the Declination is South. The Cross almays passes the Meridian erect.

[^10]
to find the latitude by the meridian alititude of a star．

RULE．

Frow the Observed Altitude of the Star，subtract the Dip of the Horizon，and the Refraction，taken from Table IV and V ；or the Sum of these Corrections may be taken out at once from Table XX，by entering it with the height of the eye at the top，and the Observed Altitude at the side，and the Angle of meeting is the required Correction， wlways subtractive from the Observed Altitude，will give the Star＇s True Altitude，which，subtracted from 90° ，gives the Zenith Distance．Then，if the Star bears South，mark the Zenith North，and if the Star bears North，mark the Zenith Distance South．

Take out the Star＇s Decliuation from Table XIX，and correct it for the years elapsed since 1854，as before shown， and mark it North or South．

Then，if the Zenith Distance and Declination are of the same name，take their Sum，but if they are of contrary names，take their Difference，for the Latitude，of the same name as the greater of the two．

EXAMPLE 1.

Feb．28th，1854，Sea Time，at 5h 48 m P．M．，the Ob－ served Altitude of the Star Aldebaran was $66^{\circ} 7^{\prime} \mathrm{S}$ ． Required the Latitude．

EXAMPLE 8.

March 21st，1854，Civil Time，at 6 h 34 m P．M．，the Ob－ cerved Altitude of the Star Sirius was 74 $\mathbf{3}^{\circ}$ S．Height of eye 18 feet．Required the Latitude．

EXAMPLE 5.

May 2d．1854，Sea Time，at 3h 59 m A．M，the Ob－ served Altitude of the Star Vega was $71^{\circ} 26^{\prime} \mathrm{N}$ Height of the eye 20 feet．Required the Latitude．

[^11]
EXAMPLE 2.

March 1st，1854，Sea Time，at 5 h 36 m A．M．，the Ob served Altitude of the Star Antares was $25^{\circ} 50^{\prime} \mathrm{S}$ ．Ro quired the Latitude．

$$
\begin{aligned}
& \text { 㐘's Observed Altitude.. } 25^{\circ} \text { б } 0^{\prime} \mathrm{S} \text {. } \\
& \text { Corr., Table XX (} 16 \text { feet) Sub. } 6 \\
& \text { True Altitude. } 25^{\circ} \frac{6}{44^{\prime}} \\
& \text { Zeuith Distance. } \frac{90}{64^{\circ}} \frac{0}{16^{\prime}} \mathrm{N} \text {. } \\
& \text { Declination, Table XIX.... } 26 \quad 6 \text { S. } \\
& \text { Latitude Observed.......... } 38^{\circ} \overline{10^{\prime}} \mathrm{N} \text {. at } 5 \mathrm{~h} 36 \mathrm{~m} \text { A. 造. }
\end{aligned}
$$

EXAMPLE 4.

March 26th，1854，Civil Time，at 6h 12 m A．M．，the Observed Altitude of the Star Vega was $21^{\circ} 2^{\prime} \mathrm{N}$ ． Height of the eye 15 feet．Required the Latitude

娄＇s Observed Altitude．．．．．．．． $21^{\circ} \quad 2^{\prime} \mathrm{N}$
Corr．，Table XX．．．．．．．．．．Sub．
True Altitude．．．．．．．．．．．．．．$\overline{20^{\circ}} \overline{56^{\prime}}$
Zenith Distance．．．．．．．．．．．．$\overline{69^{\circ} 4^{\prime}}$ S．
Declination，Table XIX．．．．．． 88 N．
Latitude Observed．．．．．．．．．．．．$\overline{30^{\circ}} \overline{25^{\prime}}$ S．at 6h $12 \mathrm{~m} \mathrm{A.M}$.

EXAMPLE 6.

June 22d，1854，Sea Time，at 6 b 21m P．M．，the Ob－ served Alt．of the font Star of the Southern Cross was $27^{\circ} 50^{\prime}$ S．Height of eye 25 feet．Required the Latitude．

粪＇s Obscrved Altitudc．．．．．． $27^{\circ} 50^{\prime} \mathrm{S}$ ．
Corr．，Table XX．．．．．．．．．．．． 7
True Altitude．．．．．．．．．．．$\overline{27^{\circ}} \frac{73^{\prime}}{}$
Zenith Distance．．．．．．．．．．．．．$\overline{62^{\circ}} \frac{17^{\prime}}{} \mathrm{N}$ ．
Declination，Table XIX．．．． $62^{\circ} 17^{\prime} \mathrm{S}$ ．
Ship on the Equator．．．．．．． $0^{\circ} 0^{\prime}$ at 6 h 21 mP ．M．

QUESTIONS FOR EXERCISE．

Quest． 1 st．－A pril 2d，1854，Sea Time，what Star，and at what Time and Altitude will it pass the Meridian abous Twilight in the evening，in Latitude $42^{\circ} 25^{\prime} \mathrm{N}$

Anscer．－The Star Castor，April 1st，at 6b 43 m ，and its Meridian Altitude is $79^{\circ} 47^{\prime} \mathrm{S}$ ．
（vurst．2d，April 2d，1854，Sea Time，the Meridian Altitude of the Star Castor was observed to be $79^{\circ} 49^{\prime} \mathbf{8 n}_{\text {，}}$ st th 43 m in the evening．Herght of the eye 16 feet．Required the Latitude．

Ansuct．－Latitude Observed $42^{\circ} 27^{\prime} \mathrm{N}$ ．

TO FIND THE LATITUDE BY THE MERIDIAN ALTITUDE OF THE POLE STAK

RULE

Correct the Observed Altitude for Dip and Refraction by Table XX．Take out the Pole Star＇s Declination from Table XIX，and correct it for the years elapsed since 1854，and subtract its Declination from 90° ，will give ita Polar Distance；then the Sum of the true Altitude and Polar Distance is the Latitude，when observed below the Pole，but the Difference between them is the Latitude when obseryed above it．

To find when the Pole Star passes the Meridian below the Pole，we add half the interval of its revolution，which is 11 h .58 m ．，to the time at which it passes the Meridian above the Pole，found in Table XVIII，and subtract 24 bours from it，if it exceede that quantity

EXAMPLE 1.

July 2d，1854．Sea Time．At 6 h .20 m ．in the even－ ing the Meridian Altitude of the Pole Star（below the Pole）was oberved to be $43^{\circ} 10^{\prime}$ ．Height of the eye， 20 feet Required the Latitude．
By Table XVIII，it passes the Merid．at 18 h ． 26 m ．A．M． Obs．Alt．Pole 番． $43^{\circ} 10^{\prime} \quad$ Dec．，Table XIX， $88^{\circ} 32^{\prime} \mathrm{N}$ ． Cor，Tab．XX．．Sub． 5
True Alt．．．．．．．． $43^{\circ} 5^{\prime} \quad$ Polar Dist．．．．．．$\overline{1^{\circ}} 28^{\prime}$ Polar Dist．．．．Add． 128
Iatitude in．．．．$\overline{44^{\circ} 83^{\prime}} \mathrm{N}$ ．

EXAMPLE 2.

July 21st，1854．Sea Time．At 5h．9m．in the morn－ ing，the Meridian Altitude of the Pole Star（above the Pole）was observed to be $32^{\circ} 28^{\prime}$ ．Height of the eye， 16 feet．Required the Latitude．
By Table XVIII，it passes the Merid．at 17h． 9 m ．A．M． Obs．Alt．Pole 潾． $32^{\circ} 28^{\prime} \quad$ Dec．，Table XIX， $88^{\circ} 32^{\prime} \mathbf{N}$ Cor．，Tab．XX，Sub． 5
True Alt．．．．．．．．．$\overline{32^{\circ} 23^{\prime}} \quad$ Polar Dist．．．．$\overline{1^{\circ} 28^{\prime}}$
Polar Dist．．Sub． 128
Latitude in．．．．．$\overline{30^{\circ} 55^{\prime}} \mathrm{N}$ ．

To Find the Latitude by the Pole Star at any Hour in the Night．

RULE．

To the Sun＇s Right Ascension，taken from Table XIII，add the time since Noon，when the Altitude was observed The Sum（rejecting 24 hours if it exceeds that quantity）will be the Right Ascension of the Meridian，with which enter Table XXI，and take out the correction，to be applied as directed in that Table，and the Sum，or remainder， will be the required Latitude．

Remarks on Finding the Latitude by the North Pole Star．

This method of finding the Latitude by the Pole Star is only an approximation，and may deviate two or three miles from the truth ：but from its extreme simplicity it is well adapted to the practice of Seamen，is cases where an error of a mile or two can be of no material consequence．

If the time at the Ship is not known，that is，if the Watch has not been previously regulated at the time of the Altitude，the Apparent Time at Ship may be deduced from the Greenwich Time by Chronometer， by turning the Ship＇s Longitude into time，and subtracting it in West Longitude，or adding it in East，will give the Mean Time at Ship，and the Equation of Time applied the contrary way will give the Apparent Time at Ship．In general，a few minutes error in the time will not affect the result．

To Find the North Pole Star Itself

The North Pole Star is easily found in the heavens，from the direction of the two large Stars in the coulter of the Plough，that well－known eonstellation，which is perpetually wheeling round the Pole of the beavens，so that these two Stars，or Pointers，always point to the North Pole Star a a centro．The Pole Star itself is only a dim object，of the second or third magnitude，and it requires good silvered mirrors in the Quadrant to obtain a tolerable observation，and the glasses should be wiped clean betore．the observation is sommenced．（See remarks on taking Altitudes of the Stars，page 71．）

EXAMPLE． 1.

January 21st，1854．Sea Time．At 8 h .25 m ．P．M． the Altitude of the Polar Star was observed to be $38^{\circ} 15^{\prime}$ ． Height of the eye， 18 feet．Required the Latitude．
筫＇s Obs．Alt．．．．． $38^{\circ} 15^{\prime}$ App．Time at Ship． 8 h .25 m ． Cor，Tab．XX，Sub． 5 Sun＇s R．A．Jan． 20 th， $20 \quad 9$ True Alt．．．．．．．．$\overline{38^{\circ} 10^{\prime}}$ R．A．Meridian．．．$\overline{28 \mathrm{~h} .34 \mathrm{~m}} \mathrm{~m}$ ． Cor，Ta．XXI，Sub． 0 Б3 Less．．．．．．．．．．．．．．．． 240
Latitude iu．．．．$\overline{27^{\circ} 17^{\prime}}$ N．R．A．of Meridian．． 4 h .34 m ．

EXAMPLE 2.

February 11th，1854．Sea Time．The Greenwich Time by Chronometer heing 21 h .30 m ．，in Longitude 60° $0^{\prime} \mathrm{W}$ ．，an Altitude of the Pole Star was observed to be $32^{\circ} 45^{\prime}$ ．Height of the eye， 20 feet．Required the Lat－ itude．
粦＇s Obs．Alt．．．． $32^{\circ} 45^{\prime} \quad$ Gr．T．by Chro．．．． 21 h .30 m ． Cor．，Tab．XX，Suh． 6
True Alt．．．．．${ }^{32^{\circ} 39}{ }^{\prime}$
Cor．，Ta．XXI，Add 118
M．Time at Ship．．$\overline{17 \mathrm{~h} .30 \mathrm{~m}}$
Eq．of Time．．Sub． 15
Latitude in ．．．$\overline{33^{\circ} 57}$ N．App．Time at Ship． 77 h ． 15 m ．
Sun＇s R．A．Feb．l0th，21 36 38 h .51 m
Less．．．．．．．．．．．．24h． 0
R．A．of Meridian．$\overline{14 \mathrm{~h} .51 \mathrm{~m}}$

FINDING THE LATITUDE BY THE MERIDIAN ALTITULE OF TWO STAK.

In the Northern Hemisphere.

In the night time, as before observed, errors in the observed Altitudes of the Stars are liable to be made in consequence of the obscurity of the horizon.

But if we observe one Altitude of a Star to the Southward and another to the Northward, (and although they may both be in error, the one error will balance the other; that 18 , the Latitude found from the Altitude of both Stars may be erroneous, but if we add the two Latitudes together, their half Sum will be the correct Latitude.

EXAMPLE

March 19th, 1854. Sea Time. At 10h. 10m. P. M, Apparent Time at Ship, the Meridian Altitude of the Star Regulus was observed to be $64^{\circ} 7^{\prime}$ South, and at the same time the Altitude of the Pole Star was $37^{\circ} 57^{\prime}$ North Height of the eye, 18 feet. Required the Latitude.
Obs. Alt. of the 潾 Regulus. $64^{\circ} 7^{\prime}$ S. Obs. Alt. Pole 潾........... $37^{\circ} 57^{\prime}$ App. Time at Ship...... 10h. 10 m .
Cor., Table XX.....Sub.. 5 Cor., Table XX.........Sub. 5 Sun's R. A., March 18th.. 23h. 51

Zenith Dist $\frac{64}{25^{\circ} 58^{\prime}}$ N.
Dec., Table XIX. 12 41' N.
Lat. by Regulus. $\overline{38^{\circ} 39^{\prime}}$ N.
The Altitudes were $7 \frac{1}{3} m$. too great.

True Alt.................. $\overline{37^{\circ} 52^{\prime}} \quad \overline{34 \mathrm{~h} .1 \mathrm{~m}}$
Cor, Table XXI.Add $1 \quad 2$
Lat. by Pole Star......... $\overline{38^{\circ} 54^{\prime}}$ R. A. of the Meridian. ... $\overline{10 \mathrm{~h} .} \mathrm{m}$.
Lat. by Regulus........... $38 \quad 39$
Sum. $) \sqrt[77^{\circ} 33^{\prime}]{38^{\circ}}$
Correct Latitude $\overline{38^{\circ} 46^{\prime}} 30^{\prime \prime}$ N. at $10 \mathrm{~h} .10 \mathrm{~m} . \mathrm{P} . \mathrm{M}$

In the Southern Hemisphere.

There are no Stars near the Pole which will answer the same purpose as the North Pole Star. Conse. quently, we have to observe-the Meridian Altitudes of two Stars in opposite directions, but which do not pass the Meridian at the same period of time. (The difference of their Meridian passages is shown in Table XVIII.) So that the Altitude of the first Star observed must be reduced to the place where the second was observed, by applying the difference of Latitude the Ship has made in that interval of time, by the following simple Rule, and which is founded on the fact that when a Ship sails South she rises all the Stars in that direction, that is, their Meridian Altitudes increase, while those to the North gradually sink, that is, their Meridian Altitudes decrease; and in sailing North, those to the North are raised, while the Stars to the South decline, by a quantity equal to the Difference of Latitude she has made in a given time.

RULE

Entcr the Traverse Table with the Course and Distance made good in the interval between the times of the Stars passing the Meridian, and take out the Difference of Latitude made in that interval, and apply it as follows:

Ship sailing South. Altitude of the first Star observed,
Ship sailing North. Altitude of the first Star observed,
\int to the Southward, Add Difference of Latitude to it. to the Northward, Sub. do. do. from it. to the Northward, Add do. do. to it. to the Southward, Sub do do from it

EXAMPLE.

March 13th, 1854. Sea Time. At 12h. 50 m . the Meridian Altitude of the foot Star of the Southeru Cross wite abserved to be $61^{\circ} 47^{\prime}$ South. Ship's Course S. W., (true,) going 10 knots; and at 1 h .48 m . the Meridian Altitudo of Spica was $66^{\circ} 35^{\prime}$ North. Required the Latitude.
Mer. Pass. of the Cross. . . 12h. 50 m . First Obs Alt. S. Cross. . . $61^{\circ} 47^{\prime}$ S. Obs. Alt. of Spica. 66 $6^{\circ} 35^{\prime} \mathrm{N}$. do. of Spica.13 48 m . Cor. for Dift: Lat.....Add. I^{7} Cor., Table XX.... Sub. 5
Interval of time.......... $\overline{0 \mathrm{~h} .58} \mathrm{~m}$. $\overline{61^{\circ} 54^{\prime}}$

Course S.W., Dist. 10 gives D.Lat. 7 S. True Alt................... $61^{\circ} 49^{\prime}$ Dec., Table XIX......... 1024 S
Zenith Dist.. $\overline{28^{\circ} 11^{\prime}}$ N. Latitude by Spica. $\overline{33^{\circ} 54^{\prime}} \mathrm{S}$
Dec., Table XIX 62 17 S.
Latitude by the S. Cross. . $34^{\circ} 6^{\prime} \mathrm{S}$.
do. by Spica. $33 \quad 54 \mathrm{~S}$.
Sum.................... $\sqrt{68^{\circ} 0^{\prime}}$
Correct Latitude........ $\overline{34^{\circ} 0^{\prime}} \mathrm{S}$. at 1 h .48 m . or time of the last Altatuae

The Altitudes in this case have been too great by 6 minntes, and which is generally the case in observing Alttudes of Stars in the night time

FINDING THE LATITUDE BY AN ALTITUDE OF A STAR OUT OF THE MERIDIAN．

The Latitude may be found by an Altitude of a Star out of the Meridian，upon the same principle an the method given at page 94，by the Sun，using the Star＇s Distance from the Meridian in the room of the time from Noon．

And it is necessary；in this case，（in obtaining a correct result），to compute the Star＇s Meridian passage， in the room of taking it from Table XVIII．

RULE

Turn the Ship＇s Longitnde into Time，and add it in West Longitude，or subtract in East，to or from the Apparent Time of Observation，reckoned from the preceding Noon，will give the Greenwich Time，nearly．Or the Greenwich Time may be found at once from the Chronometer．Take out the Sun＇s Right Ascension from the Nantical Almanac one day less than the Sea Date，and correct it to the Greenwich Time by multiplying the difference for 1 hour by the time from Greenwich Noon，and add it to the Right Ascension at the preceding Noon，（because it is aiways nereasing．）Take ont the Star＇s Right Ascension，and correct it，if required．Then subtract the Sun＇s Right Ascen． sion from the Star＇s Right Ascension，（increasing the latter by 24 hours，if necessary，for the purpose of subtraction）． and the remaiuder will be the correct Apparent＇Time of the Star＇s Meridian passage．

The limits of the time from the Meridian passage of the Star，are the same as the time from Noon by the Sun，given in Part 5．Table XV，and the rules for using the Tables are the same as given at page 94.

If the time of the Altitude of the Star is noted by the Watch，it must be previously regulated，or its error on Apparent Time known．

The Chronometer may be used to find the Apparent Time of Observation，as at page 94.

EXAMPLE 1

Feb．28tb，1854．Sea Time，in Latitude by Dead Recǐ－ oning，about $40^{\circ} 10^{\prime} \mathrm{N}$ ．，and Longitude $60^{\circ} \mathrm{W}$ ，at 6 h 5 m P．M．．the Observed Altitude of the Star Aldebaran was $65^{\circ} 43^{\prime} \mathrm{S}_{0}$ ；height of the eve 18 feet；the Watch show－ ing the correct Apparent Time．Required the Latitude．

Feb．27th，the Sun＇s R．A．，N．A．Noon．．．．．22h 40 m 59 s
 $\left.\begin{array}{l}\text { Loug．} 60^{\circ} \mathrm{W} . \overline{4}-\frac{0}{1 \mathrm{~h}}=9 \mathrm{~s} \times 10 \mathrm{~h}= \\ \text { Green．Date．} 10 \mathrm{~h} \\ 5 \mathrm{~m} \\ \hline\end{array}\right\} \begin{array}{r}1 \quad 30 \\ \hline \text {＇s Correct R．A．．．22h } 42 \mathrm{~m} 29 \mathrm{~s}\end{array}$ Green．Date．$\overline{10 h} 5 \mathrm{~m}$＇s Correct R．A．．．$\overline{22 \mathrm{~h} 42 \mathrm{~m} 29 \mathrm{~s}}$ $\left.\begin{array}{l}\text { 潾＇s R．A．} 4 \mathrm{~h} 27 \mathrm{~m} 32 \mathrm{~s} \\ \text { Increased by } 24 \mathrm{~h}_{\mathrm{h}} \mathrm{C}\end{array}\right\} 28 \quad 27 \quad 32$
＊Aldebaran＇s Mer．Passage．．．．．．．．．．．．．．． 5 5h 45 m 3s
Apparent Time of Observation．．．．．．．．．．．．． $6 \quad 5 \quad 0$
Time past the Meridian．．．．．．．．．．．．．．．．．．．．． 19 m 57 s

Corr．for Altitude．．．Add $0^{\circ} 24^{\prime}$ Log．$\overline{7.838}$
＊＊＇s Obs．Altitude．．．．．． 6543
Meridian Altitude．．．$\overline{60^{\circ} 7^{\prime}} \mathrm{S}$ ．
Corr．，Table XX．．．Sub．
True Altitude．．．．．．．．．$\overline{66^{\circ} \boldsymbol{\varepsilon}^{\prime}}$
Zenith Distance．．．．．．.$\overline{23^{\circ}} 58^{\prime} \mathrm{N}$ ．
Declination．．．．．．．．．．．．． 16 N．
Latitude in．．．．．．．．．．．． $40^{\circ} 11^{\prime}$ N．at 6 b 5m P．M．

EXAMPLE 2.

March 22d 1854，Sea Time，in Latitude by Dead Keek oning about 38° N．，and Longitude $45^{\circ} \mathrm{W}$ ．，an Altitude of the Star Sirius was observed to be $34^{\circ} 36^{\prime} \mathrm{S}$ ．，when the Greenwich Time by Chro．was 9 h 3 m P．M ：height of the eye 18 feet．Required the Latitude．
Marcb 21st，Sun＇s R．Asceu．，N．A．，at Noon Oh 2m 5s

Mer．T．at Ship．$\overline{6 \mathrm{~h}} 3 \mathrm{~m}$ 0s 其＇s R．Ascen． $6 \quad 38 \quad 43$
$\begin{array}{lll}\text { Equa of Time．Sub．} 7 & 15 & \text { 番＇s Mer．Pas．} 6 \mathrm{~h} 35 \mathrm{~m} \\ 17 \mathrm{~s}\end{array}$
App．T．at Ship． 5 h 55 m 45 s or T．of Obs． $5 \quad 55 \quad 45$
Time before passing the Meridian．．．．．．．．．．． 39 m 32g
$\left.\begin{array}{c}\text { Time before Mer．Pass．39m 32s } \\ \text { Part lst．．．．．．．．．．．．．．．．．．．．．．．．．．．．}\end{array}\right\}$ Log． 7.869

Corr．for Altitude．．．．Add $0^{\circ} 47^{\prime}$ Log．$\overline{8.137}$
米＇s Observed Altitude．．．． 3436
Meridian Altitude．．．．．．．．$\overline{35^{\circ}} 23^{\prime} \mathrm{S}$ ．
Corr．，Table XX．．．．．．Sub b
True Altitude．．．．．．．．．．$\overline{35^{\circ} 18^{\prime}}$
Zenith Distance．．．．．．．．$\overline{54^{\circ}} \overline{42^{\prime}} \mathrm{N}$ ．
潫＇s Decl．，Table XIX．．． 16 31 S．
Latitude in．．．．．．．．．．．．．$\overline{38^{\circ} 11^{\prime}}$ N．at 5 h 56 mP ．M．

The same Examples as above，worked with the Star＇s Meridian Passage takcn from Table XVIII．

Mer．Passage of Aldebaran，Feb．27，Tab．XVIII 5h 48 m
Time of Observation．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 6
Time past the Meridian．．．．．．．．．．．．．．．．．．．．． 17 m
＊past the Mer． 17 m Part list．．．．．．．．．．．．．．．．．．． 7.138
$\left.\begin{array}{l}\text { Lat．} 40^{\circ} \text { N．，洣＇s Decl．} 16^{\circ} \mathrm{N} . . \\ \text { Part } 9 \text { d．．．．．．．．．．．．．．．．．．．．}\end{array}\right\}$ Log． 0.559 ．
Corr．fir Altitude 17^{\prime} ．

$$
\text { 20 } 2+0
$$

Hence an error of nearly 3 minutes of time in the Meridian Passage of Aldebaran would produce an trror of 7^{\prime} in the Correction for Altitude．
And an error of 1 m 32 s of time in the Meridian Passage of Sirius would produce an error of 3^{\prime} in the
Correction＇r Altitude．
Mer．Passage of Sirius，March 21，Table XVIII．61 84ra
Time of Observation．．．．．．．．．．．．．．．．．．．．．．．．．．．．． $5 \quad 56$
Time before passing the Meridian．．．．．．．．．．．．．．． 3800
Time before Mer． 38 m Part 1st．．．Log． 7.536
Lat． 38° N．，Decl． $16 \frac{1^{\circ}}{}{ }^{\circ}$ S．Part 3d．Lng． 0.266 Table $X P$
Corr．for Altitude 44^{\prime} ．．．．．．Log．$\overline{8.102}$

FINDING THE LATITUDE BY AN ALTITUDE OF A STAR OUT OF THE MERIDIAN．

As the Parts 2d and 3d of Table XV are only calculated for objects whose Declinations do not exceed 25° ：therefore，when the Declination of a Star exceeds that quantity，the Logarithm of the Latitude and Declination must be computed as follows：

RULE．

Compute the Meridian Altitude of the body by adding its Declination to the Co－Latitude，when they are of in ne name，or taking their Difference when of contrary names．Enter Table XXVIII with the Latitude and the Declination，（as if they were Half Sums），and take out three figures of these Logarithins with their Indices．Enter Table XXVII，with the Meridian Altitude，（as a Latitude），and take out its Logarithm iu like manner，and write under it the constant Logarithm 0．301．Add these four Logarithms together，and their Sum（rejecting 10＇s in the Index），will be the Logarithm of the Latitude and Declination required．

EXAMPLE 1.

Required the Logarithm for Lat． $48^{\circ} 30^{\prime} \mathrm{N}$ ，and the Dechuation of the Star Castor $32^{\circ} 12^{\prime} \mathrm{N}$ ．

Latitude．．．．．．． $48^{\circ} 30^{\prime} \mathrm{N}$ ．as a half Sum．．．．Log． 4.821
Subtract from．．． $90 \quad 0 \quad$（Table XXVIIII．）
Co－Latitude．．．．$\overline{41^{\circ} 30^{\prime}} \mathrm{N}$ ．
葉＇s DecL．．．．．．． $32 \quad 12$ N．as a half Sum．．．．Log． 4.927
$\left.\begin{array}{r}\text { Mer．Altitude．} . \overline{73^{\circ} 42^{\prime}} \text { S．as a Lat．，Table } \\ \text { XXVII．．．．．．．．}\end{array}\right\}$ Log． 0.552
Constant．
Log． 0.301
Required Computed．．．．．．．．．．．．．．．．．．．．Log．$\overline{0.601}$

EXAMPLE 3.

March 31st，1854，Sea Time，Latitude by Dead Reck－ oning $48^{\circ} 30^{\prime} \mathrm{N}$ ．，Long． $30^{\circ} \mathrm{W}$ ．，the Observed Altitude of the Star Castor was $73^{\circ} 1^{\prime}$ S．，and the Greenwich Time by Chronometer 8 h 28 m 49 s ，Required the Latitude．

March 30th，Sun＇s R．A．，in N．A．，Noon．．Oh 34 m 48 s G．T．＇by Chro．8h 28 m 49 s Cor．for G．T． Lon． 80° W．$\}$

in time．．$\}$| 2 | 0 | 0 |
| :--- | :--- | :--- |
| | \circ | Cor．R．A．．$\overline{0 h 36 m ~ 4 s}$ | M．T．at Ship．$\overline{6 \mathrm{~h} 28 \mathrm{~m} \mathrm{49s}}$ 㐘＇s R．Ascen．．． $7 \quad 25 \quad 17^{\prime}$ Equa．．．Sub． 4 36＊＇s Mer．Pass．．． $6 \mathrm{~h} 49 \mathrm{~m} \mathrm{13s}$ $\Delta \mathrm{pp}$ ．Time．．．6h $24 \mathrm{~m} \overline{13 \mathrm{~s}}$ App．T．of Obs．． $6 \quad 24 \quad 13$ Time before the Meridian Passage．．．．．．．．．． 25 m 0s

掣＇s Dist．fm．the Mer． 25 m ，Part 1st，Tab．XV．Log． 7.478 Lat． $48^{\circ} 30^{\prime}$ N．，Decl． $32^{\circ} 12^{\prime}$ N．，Computed．．Log． 0.601 Part 4th．Corr．for Altitu le．．．．．．Add $0^{\circ} 41^{\prime}$ Log．$\overline{8.074}$ ＊＇s Observed Altitude． \qquad Meridian Altitude．．．．．．．．．．．．．．．$\overline{73}^{\circ} \frac{12^{\prime}}{}$ S．
Corr，Tuble XX．．．．．．．．．．．．．．．．．．Sub． 4
True Altitude．．．．．．．．．．．．．．．．．．．．．． $78^{\circ} 88^{\circ}$
Zenith Distance．．．．．．．．．．．．．．．．．．．． $16^{\circ} 22^{\prime}$ N．
＊＇s Declination．．．．．．．．．．．．．．．．．．．．．．．．． 8212 N．
Latitude Obsrrved．．．．．．．．．．．．．．．．．． $48^{\circ} 34^{\prime} \mathrm{N}$ ．
At 6h 24m 18s P．M．

EXAMPLE 5.

Required the Logarithm for Latitude $10^{\circ} 0^{\prime} \mathrm{S}$ ，and the Declination of the Star Dubbe $62^{\circ} 32^{\prime} \mathrm{N}$ ．

Latitude $10^{\circ} 0^{\prime} \mathrm{S}$ ．as a half Sum
Log． 4.993
Sub．fm． $90 \quad 0$
Co－Lat．．$\overline{80^{\circ} \mathrm{n}^{\prime}} \mathrm{S}$ ．
Decl．．．．． 6282 N．as a half Sum．．．．．．．．．．．LLog． 4.664
Mer．Alt． $17{ }^{-28^{\prime}} \mathrm{S}$ ．as a Latitude．．．．．．．．．．．．Log． 0.021
Constant．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．Log． 0.301
Required Computed．．．．．．．．．．．．．．．．．．．．．．．Log． 9.979

EXAMPLE 2.

Required the Log．for Lat． $38^{\circ} 25^{\prime}$ S．，and the Decl of the foot Star of the Cross $62^{\circ} 17^{\prime} \mathrm{S}$ ．

Latitude．．．．．． $88^{\circ} 25^{\prime}$ S．as a half Sum．．．．Log． 4.894 Sub．from．．．．． $90 \quad 0$（Table XXVIII．）
Co－Latitude．．．${51^{\circ}}^{\circ} 35^{\prime} \mathrm{S}$ ．
Decl．．．．．．．．．．．． $62 \quad 17$ S．as a half Sum．．．Log． 4.667 $113^{\circ} 52^{\prime}$
Subtract from．．． $180 \quad 0$
Mer．Altitude．． $66^{\circ} 8^{\prime}$ S．as a Lat．，Table $\left.\begin{array}{c}\text { XXVII．．．．．．．}\end{array}\right\}$ Log． 0.398
Constant．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．Log． 0.301
Required Computed．．．．．．．．．．．．．．．．．．．．．Log．$\overline{0.255}$

EXAMPLE 4.

Jan．2d，1854，Sea Time，in Lat．by Dead Reckoning $38^{\circ} 25^{\prime}$ S．，Long． $30^{\circ} \mathrm{E}$ ．，the Obs．Alt．of the foot Star of the Southern Cross was $65^{\circ} 41^{\prime} \mathrm{S}$ ．，and the Greenwich Time by Chro．16h 2 m 40s．Required the Latitude．

Jan．1st，Sun＇s R．A．，in N．A．，Noon．．．．．．．．18h 47m 6s G．T．by Chro．．16h 2m 40s Cor．for G．T． Long． $30^{\circ} \mathrm{E}$ ．$\}$ \qquad $16 \mathrm{~h} \times 11 \mathrm{~s}=\}$ in time．．．．$\} \begin{array}{ll} & 0 \\ & 0\end{array}$
© s Cor．R．A．．$\overline{18 \mathrm{~h} 50 \mathrm{~m}} \overline{2 \mathrm{~s}}$ M．T．at Ship．． 18 h 2 m 40 s 潾＇s R．A．．．．
Equa．of T．．Sub．$\quad 3 \quad 51 \quad 12 \mathrm{~h} 18 \mathrm{~m} 31 \mathrm{~s}\} \begin{array}{llll}36 & 18 & 81\end{array}$
App．Time．．．．$\overline{17 \mathrm{~h} 58 \mathrm{~m} 49 \mathrm{~s}}+24 \mathrm{~h}=\ldots)$
蕃＇s Mer．Раяs．$\overline{17 \mathrm{~h} ~ 28 \mathrm{~m}}$ 298
App．T．of Obs． $17 \quad 58 \quad 49$
Time past the Meridian．．．．．．．．．．．．．．．．．． $80 \mathrm{~m} \mathrm{20s}$

Corr．for Altitude．．．．．．．．Add $0^{\circ} 27^{\prime} \log . \overline{7.896}$
蒌＇s Obs．Altitude．．．．．．．．． 6541
Meridian Altitude．．．．．．．．．．$\overline{66^{\circ}}{ }^{8}$ S．
Corr．，Table XX．．．．．．．．．Sub． 4
True Altitude．．．．．．．．．．．．．．$\overline{66^{\circ} 4^{\prime}}$
Zenith Distance．．．．．．．．．．．．．．$\cdot \overline{23^{\circ} 56^{\prime}}$ N．
Declination．．．．．．．．．．．．．．．．． 62 17 S．
Latitude Observed．．．．．．．． $38^{\circ}{ }^{21}$＇ S ．

EXAMPLE 6.

Required the Log．ior Latitude $40^{\circ} 27^{\prime} \mathrm{S}$ ，and the Declination of the Star Canopus $52^{\circ} 37^{\prime} \mathrm{S}$ ．

Latitude $40^{\circ} 27^{\prime}$ S．as a half Sum．．．．．．．．．．Log． 4.881 Sub．fm．． $90 \quad 0$
Co－Lat．．．．$\overline{49^{\circ}} 33^{\prime} \mathrm{S}$ ．
Decl．．．．．． $52-\frac{37}{100^{\circ}}$ S．as a half Sum
Log． 4.788
Sub．fm． $180 \quad 0$
Mer．Alt． $77^{\circ} \frac{50^{\prime}}{}$ S．as a Latitude．．．．．．．．．．Log． 0.678
Constant．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．Log． 0.301
Reanired Computed ．．．．．．．．．．．．．．．．．．．．Lng．$\overline{0.641}$

FINDING THE LATITUDE BY TWO STARS，ONE OF THEM OUT OF THE MERIDIAN．

As before observed，a single Altitude of a Star for Latitude，on a dark night at Sea，is al ways of a doułt ful character，in consequence of the obscurity of the horizon；but which may be remedied by observing twe Stars on opposite sides of the Meridian．But as no two Stars pass the opposite Meridians at the same period of time，the Ship may have changed her place in the interval of their passing，and a correction must be applied to the first Altitude，to reduce it to the place where the second was observed，（an Example of which is given at page 110．）But when we want to find the Latitude at once from the Altitude of two Stars on opposite sides of the Meridian，we observe the Meridian Altitude of one，and directly afterward observe the Altitude of the other，（not on the Meridian，）and note the time by the Watch or the Chronometer，and reduce it to the Meridian，（as in the Examples on the preceding page．）The limits must be the samo as that given in Part 5th，Table XV．

EXAMPLE 1.

February 12th，1854．Sea Time．In Latitude，by Dend Reckoning，about $40^{\circ} 9^{\prime}$ S．，and Longitude $25^{\circ} 16^{\prime} \mathrm{W}_{\text {．}}$ the Meridian Altitude of the Star Spica was observed to be $60^{\circ} 34^{\prime}$ North，and at the same time the Altitude of the foot Star of the Cross was $66^{\circ} 10^{\prime}$ South．Greeuwich Time by Chronometer， 15 h .34 m .20 s ．Required the Lat tude

Feb． 11 th．Sun＇s R．Asceu．，N．A．．．．．21h．39m．28s．．．Diff．for 1h．．．． 9 s ．
Greenwh Time by Chr． 15 h .34 m .20 k ．
Long． $25^{\circ} 16^{\prime}$ W．in T．．． $1 \quad 41 \quad 4$
Mean Time at Ship．．．．$\overline{13 \mathrm{~h} .53 \mathrm{~m} .16 \mathrm{~s}}$ ．
Equa of T，contrary，Sub． $14 \quad 32$
pp．Time at Ship．．．13h． 38 m .44 s ．

	Time before Mer．Passage．
	Lat． 40° S．，Dec． $62^{\circ} 17^{\prime}$ S．，computed
	Cor．for Alt．．．．．．．．．．．．．．．．．．．．．．．Add $1^{\circ} 43^{\prime}$
True Alt．．．．．．．．．．．．$\overline{60^{\circ} 30^{\prime}}$	Obs．Alt．粦 S．Cross．．．．．．．．．．．．．．．．．． 6610
Zenith Dist．．．．．．．．．．．．．$\overline{29^{\circ} 30^{\prime}} \mathrm{S}$ ．	
Dee．Spica ．．．．．．．．．．．． 1024 S．	Cor，Table XX ．．．．．．．．．．．．．．．．．．Sub． 4
Lat．Obs．by 类 Spica．．．．$\overline{39^{\circ} 64^{\prime}} \mathrm{S}$.	True Alt．．．．．．．．．．．．．．．．．．．．．$\overline{\frac{67^{\circ}}{} \overline{\frac{49}{} 2^{\circ}} 1{ }^{11^{\prime}} \text { N }}$
	Lat．by S．Cross．．．．．．．．．．．．．．．．．．$\overline{40^{\circ}-\frac{1}{6}}$ S．

EXAMPLE 2.

March 2d，1854．Saa Time．In Latitude，by Dead Reckoning，about $40^{\circ} 30^{\prime}$ South，and Longitude $75^{\circ} 30^{\circ}$ East， the Meridian Altitude of the Star Sirius was observed to be $66^{\circ} 14^{\prime}$ North，and at the same time the Altitude of the Star Canopus was $77^{\circ} 36^{\prime}$ South．Greenwich Time by Chronometer， 3 h .0 m .24 s ．Required the Latitude．

	March 1st，Sun＇s R．A．in N．A．．．．． 22 h .48 m ． 30	s．
Gr．Time by Chro．．．．．．3h．0m．24s．	Cor．for Greenwich Time ．．．．．Add 27	Green．Time．．．．Sb
Lon． $75^{\circ} 30^{\prime}$ E．in time． $5 \quad 2$	Correct R．Ascen．．．．．．．．．．．．．$\overline{22}$ h． 48 m .57	Cor．．．．．．．$\overline{278}$
Mean Time at Ship ．．．$\overline{8 \mathrm{~h} .}$ ．2m．248．	＊${ }^{\text {\％Canopus R．A．} 6 \mathrm{~h} .20 \mathrm{~m} .44 \mathrm{~s} \text { ．Add } 24 \mathrm{~h} .30 \quad 20 \quad 44}$	
Equa．of T，contrary，Sub． $12 \quad 37$	do．Mer．Passage ．．．．．．．．$\overline{7 \mathrm{~h} .31 \mathrm{~m} .47 \mathrm{~s} .}$	
App．Time at Ship．．．．$\overline{7 \mathrm{~h} .49 \mathrm{~m} .47 \mathrm{~s}}$ ．	Time of Obs．．．．．．．．．．．．．．．．． 7 79 47	（Table XV．）
Mer．Alt．of 粦Sirius．． $66^{\circ} 14^{\prime} \mathrm{N}$ ．	Time before Mer．Passage ．．．．．． 18 m ． 0 ．	Log．${ }^{\text {7 }}$ ． 188
Mer．Alt．of 稱 Sirius．． $66{ }^{\circ} 14^{\prime} \mathrm{N}$. Cor．．Table XX ．Su ．	See Example 6th，page 112，of Computing the．	Log． 0.641
True Alt．．．．．．．．．$\overline{66^{\circ} 10}$		Log．$\overline{7.820}$
Zenith Dist．．．．．．．．．． $\mathrm{23}^{\circ} \overline{50}{ }^{\prime} \mathrm{S}$ ．		
Dee Sirius ．．．．．．． 16 31 S．	Cor．，Table XX ．．．．．．．．．．．．．．．．．．Sub． 4	
Lat．Obs，by Sirius ．．$\overline{40^{\circ} 21}$＇S．		
do．by Canopus． $40 \quad 32 \mathrm{~S}$ ．	Zenith Dist．．．．．．．．．．．．．．．．．．．．．$\overline{12}^{\bar{\sigma} 5^{\prime}} \mathrm{N}$.	
Sum ．．．．．．．．．．．${ }^{\left.\frac{1}{2}\right) 80^{\circ} 53^{\prime}}$	Dec．Canopus ．．．．．．．．．．．．．．．．． 52 57 ${ }^{\text {S }}$ S．	
Correct Latitude $\quad 40^{\circ} \frac{26^{\prime}}{30^{\prime \prime}} \mathrm{S}$ ．	Lat．Obs．by Canopus．．．．．．．．．．．．．$\overline{40^{\circ}} \overline{32}^{\prime} \mathrm{S}$ ．	

[^12]
F:ND.NG THE LATITUDE BY AN ALTITUDE OF THE MOON OUT OF THE MERIDIAN.

The Latitude may be found by an Altitude of the Moon, taken either before or after she passes the Meridian, within the limits of Part 5th, Table XV, upon the same principle as that by the Sun and Stara as follows :

RULE

To Find the Apparent Time of the Observation.

1. Note the Greenwich Time by Chronometer, when the Altitude was observed. Turn the Ship's Longitude anto Time. Subtract in West or add in East Longitude, will give the Mean Time at Ship. Apply the Equation of Time the contrary way to what is directed for Apparent Time in the column of the Nautical Almanac, and we have the Apparent Time at Ship at which the observation was made.

To Find the Time of the Moon's Meridian Passage.

2. Take out the Moon's Meridian Passage from the Nautical Alunanac, against the day of the month, and correct it by Table XXII, which will give the Mean Time of her passing the Meridian of the Ship, to which apply the Equation of Time the contrary way, as above directed, and the result will be the Apparent Time of her passing the Meridian of the Ship.

To Find the Moon's Distance from the Meridıan.

3. Now take the difference between the Apparent Time of her passing the Meridian of the Ship and the Apparent Time of the Observation, with which enter Part 1st, Table XV, as a time from Noou, and take out its Logarithm.

To Find the Correction for Altitude.

4. Correct the Moon's Declination, taken from the Nautical Almanac, to the Greenwich time of the observation by the Rules given at page 102, No. 6, with which, and the Latitude by Dead Reckoning, proceed as before to find the Correction, (as in the case of the Sun and Stars,) to be added to the observed Altitude. The Latitude is then found in the usual way

Sometimes the Meridian Altitude of the Moon is lost, in consequeuce of being too late in beginning the observation. The Latitude may, however, still be obtained as correctly as by the Meridian Altitude, by the above method, if the Longitude of the Ship can be ascertained within a few miles of the truth.

EXAMPLE.

Jnne 3d, 1854. Sea Time. In Latitude, by Dead Reckoning, $49^{\circ} 25^{\prime}$ North, and Longitude $45^{\circ} \mathrm{W}$, the observed Altitude of the Moon's Lower Limb was $56^{\circ} 29^{\prime}$ South, before her Meridian passage, and the Greenwich time by Ohronometer, 7 h .56 m .0 s . Height of the eye, 24 feet. Required the Latitude of the Ship.

$$
\text { D's Dec. Noon, } 18^{\circ} 24^{\prime} \mathrm{N}_{\bullet} \text {, June 2d. }
$$

D's Mer. Pas., June 2d, N.A., 5h. 21 m . Green. Time by Chro... 7h. 56 m . 0s. Mhinight,.... 1619 June 3d,..... $6 \quad 5 \quad$ Lon. $45^{\circ} \mathrm{W}$. in time... $3 \quad 0 \quad 0 \quad$ Change in $12 \mathrm{~h} .2^{\circ} 5^{\prime}$) Tab.XXII, Lon. 45° W.,D.Varia. 44 m . Mn. Time at Ship. $\overline{4 \mathrm{~b} .56 \mathrm{~m} . ~ 0 \mathrm{~s} . ~ G . ~ T . ~ f r o m ~ N o o n, ~} 8 \mathrm{~h}$. $\}-1^{\circ} 22^{\prime}$
 Mer. Pass., June 2d..... 5h. 21m.0. App. Time of Obs..... 4 h. 58 m .22 s . Dec.. Nown, June $2 \mathrm{~d} . . .$. M.Time of M.Pas. at Ship, $\overline{5 \mathrm{~h} .26 \mathrm{~m} .0 \mathrm{~s} .}$ App. Time of M. Pass. $\frac{5}{5} \quad 28 \quad 22$ D's Cor Dec............. $17^{\circ} 2^{\prime} \mathrm{N}$

Equa of T., contra. Add 222 Moon's Dist. from Mer.. $\overline{0 \mathrm{~h} .30 \mathrm{~m} .} 0 \mathrm{ss} \log .7 .631$
App. Time of Mer Pas.. . 5h. 28m. 22s. Lat. D. R. $49^{\circ} 25^{\prime} \overline{\text { N., Dec.. . } 0^{\circ} 17^{\prime} \mathrm{N}}$. Log. $\left.^{2} 0.367\right\}$ Table XV

Cor.for Alt..Add 0 . $34-\ldots .$. Log. 7.998
Obs. Alt. D's L. Limb ... 56 29 S.
Mer. Alt............. ${\overline{57} 7^{\circ} 3^{\prime}}$
D's semid. 15, Dip 5, Add 10
App. Alt.............. $\overline{57}{ }^{\circ} 13{ }^{\prime}$
$\left.\begin{array}{c}\text { Cor. for Hor. Par. } 55^{\prime} \text {, Alt. } \\ 57^{\circ} \text {, Table XXV,. Add }\end{array}\right\} 029$
D s True Alt. $57^{\circ} 42^{\prime} \mathrm{S}$.
Zeuith Distance $\overline{32^{\circ} 18^{\prime}} \mathrm{N}$.
Correct Dec. 17 2 N.
Lat. Observed. $\overline{49^{\circ} 20^{\prime}}$ N. at 5h. 28 m . P. M.

QUESTIONS FOR EXERCISE.

[^13]FINDING THE LATITUDE BY AN ALTITUDE OF A PLANET OUT OF THE MERIDIAN.

The Latitude may be found by an Altitude of a Planet out of the Meridian, upon the same principla, and in a similar manner, as that by the Moon.

RULE

To Fion the Apparent Time of Observation.

1. Note the time by Chronometer, when the Altitude of the Planet was observed, and from which, deduce the Apparent Time of the Observation, as directed on the precediug page.

To Find the Time of the Planet's Passing the Meridian.

2. Take out the Planet's Meridian Passage from the Nautical Almanac, against the day of the month, as nsual and apply the Equation of Time the contrary way to what is directed for Apparent Time, in the column of the Nautical Almanac, which will give the Apparent Time of its passing the Meridian of the Ship.

To Find its Distance from the Meridian.

3. Now take the Difference between the Apparent Tine of its passing the Meridian of the Ship, and the Apparent Time of the Observation will be the Planet's Distam? from the Meridian iu time, the Logarithm of which find in Part 1st, Table XV.

To Find the Correction for Altitude.

4. From the Nantical Almanas take out the Planet's Declination, and correct it to the Greenwich Time of the Observation, in a similar manner as at page 104, with which, and the Latitude by Dead Reckoning, take out the Logarithm from Parts 2d or 3d, Table XV. The Sum of these two Logarithms, in Part 4th, gives the Correctio for the Altitude required, which is always additive.

EXAMPLE 1.

Sept. 25 th, 1854, Sea Time, in Latitude by Dead Reck. $44^{\circ} 25^{\prime} \mathrm{N}$., Longitude by Chronometer $65^{\circ} \mathrm{W}$., an Altitude of the Planet Jupiter was observed to be $21^{\circ} 52^{\prime} \mathrm{S}$. (before the Mer. Passage), Greenwich Time by Chronometer, $10 \mathrm{~h} 34 \mathrm{~m} 16 \mathrm{~s}, \mathrm{P} . \mathrm{M}$. Height of the eye 18 feet. Required the Latitude.

EXAMPLE 2.

Jan. 29th, 1854, Sea Time, in Latitude by Dead Reckoning, $25^{\circ} 10^{\prime}$ S., Long. by Chronometer $0^{\circ} 0^{\prime} 0^{\prime \prime}$, an Alt. of the Planet Saturn was observed to be $47^{\circ} 9^{\prime} \mathrm{N}^{\prime}$. (past the Meridiau), Greenwich Time by Chronometer 7 h 31 m 38 s , and the height of the eye 18 feet. Required the Latitude.
 Long. in time...... $0 \quad 0 \quad 0 \quad$ Equa. of T... 1316 $\left.\begin{array}{l}\text { Mean T. at Ship...7h } 31 \mathrm{~m} 38 \mathrm{~s} \text { App. T. of } \\ \text { Equa. of Time.Sub. } \quad 13 \quad 16 \text { Passage }\end{array}\right\} \begin{aligned} & 6 \mathrm{~h} 48 \mathrm{~m} \quad 2 \mathrm{a}\end{aligned}$ $\left.\begin{array}{c}\text { App. T. of Obs. } \\ \text { at Ship....... }\end{array}\right\} \overline{7 \mathrm{hb} 18 \mathrm{~m} 22 \mathrm{~s}}$ Decl. Saturn $17^{\circ} 2^{\prime} \mathrm{N}$ App Time of Pass.6h 48m 2s
Time past Mer.... $30 \mathrm{~m} 20 \mathrm{~s} \quad$ Log. 7.641 Table
Lat. 25° S., Decl. 17° N. Log. 0.413$\}$ XV
Corr. for Altitude. Add $0^{\circ} 39^{\prime}$ Log. $\overline{8.054}$

Corr., Table XX......... Sub. 5
True Altitude. $\overline{47^{\circ}} \frac{53^{\prime}}{} \mathrm{N}$.
Zenith Distance. $42^{\circ} \frac{17^{\prime}}{} \mathrm{S}$.
Declinatiou. 17 2 N .

Difference of all the preceding Examples, where the Chronometer is used in deducing the Apparent time at Ship, the tained, and the time the Altitude of the body was observed for Latitude, must be applied, by the rules in Middle Latitude Sailing, in order to get as near as possible the correct Longitude of the Ship at the time the Altitude of the body was observed; bearing in mind that for every 1^{\prime} of error in the Longitude, there will be a corresponding error of 4 seconds in time in deducing the Apparent Time at Ship from it. In general, when sights for Chronometers are taken, both morning and afternonn, the error in the Ship's Longitude, brought on by the Dead Reckoning, will rarely exceed 5 milcs. And it will be perceived that in thus finding the Latitude from bodies out of the Meridian, the Chronometer renders valuable assistance in finding the Apparent Time at Ship, at the time the Altitude was observed, when it would be diftecult to get it otherwise.
Many of the foregoing Examples of finding the Latitude from the Meridian Altitace of the Stars, are given for Twiight, because the horizon is then distinctly visible, and the observation can be depended on. But it sometimes hap pens that there are no Stars on the Meridian at Twilight. In that case, if an Altitude be observed at Twilight, either before or after it passes the Meridian, and the time noted by Chronometer, the Latitude is found by the preceding rules as correctly as if its Meridian Alitude had been observed. In the two last Examples, the Planet Jupiter passed tha Meridian after darkness had set in, but his Altitudr was obtained in good Twilight, 50 minutes before that time. Satura had passed the Meridian in strong Sun-light, and 30 minutes afterwards, or as soon as he became visible, his Altibzd *as observed and the Latitude found as above.

FINDING THE VARIATION OF THE COMPASS BY AN AMPLITUDE

An Amplitude means the Distance of any Heavenly body from the True East or Weat points of the Horizon at Rising or Setting, and is found by inspection in Table XXXV, by entering it with the Latitude of the Ship at the side, and the Declination of the body at the top, and at the angle of meeting will be the required Amplitude in degrees and minutes, to be called East in the morning and West in the evening, and towards the North or South, according as the Declination of the body is North or South, as the following gigure will show.

DIAGRAM

$$
\text { Of an Amplitude in } 45^{\circ} \text { North Latitude. }
$$

Fig. 17.

This Figure represents the North Pole of the Heavens elevated above the Horizon equal to the Latituas of the place, and the Celestial Equator at Right Angles to it. The line drawn perpendicular to the Horizon is called the Prime Vertical Circle, and which passes through the East and West points in the centro. The dotted Circles on each side of the Equator are the Sun's Parallels of Declination North and South. The Circles from the Zenith passing through the Sun's place in the Horizon, are called Amplitude Circlem, and measure the Sun's Amplitude or Distance from the East or West points of the Horizon.

Hence, it will appear that the Sun and all the other Heavenly Bodies Rise and Set to the Northward of the East and West points, when their Declinations are North, and that they Rise and Set to the Southward of the East or West points when their Declisations are South.

EXAMPLE 1.

June 21st, 1854. Required the Sun's True Amplitude at Rising and Setting, in Latitude $45^{\circ} \mathrm{N}$.

Answer.-The Sun's Declination on the 21st of June is $23^{\circ} 28^{\prime}$ N., with which and the Latitude 45°, the true Amplitude is found in Table XXXV, at Rising, to be E. 34° $18^{\prime} \mathrm{N}$., and at setting W $34^{\circ} 18^{\prime} \mathrm{N}$.

EXAMPLE 3.

March 21st, 1854. Required the Sun's True Amplitude
Rising and Setting, in Latitude $45^{\circ} \mathrm{N}$.
Answer.-The Sun being on the Equator, his Declination is 0°; he therefore Rises and Sets in the East and West poiuts of the Horizon.

EXAMPLE 2

December 21st, 1854. Required the Sun's True Am plitude at Rising and Setting, in Latitude $45^{\circ} \mathrm{N}$.

Answer.-The Sun's Declination on the 21st of Dee is $23^{\circ} 28^{\prime} \mathrm{S}$., with which and Latitude 45°, the True Am plitude is found in Table XXXV, at Rising, to be E. 84 18^{\prime} S., and at Setting, W. $34^{\circ} 18^{\prime} \mathrm{S}$.

EXAMPLE 4.

Sept. 21st, 1854. Required the Sun's True Amphtuar at Rising and Sctting, in Latitude $45^{\circ} \mathrm{N}$.

Answer.-The Sun being on the Equator, his Declina tion is 0°; he therefore Rises and Sets in the East and West points of the Horizon.

FINDING THE VARIATION OF THE COMPASS BY AN AMPLITUDE.

The manner of observing the bearing of the Sun, or other heavenly body, at rising or setting, by an Amplitude Compass. and other remarks connected with the observation, will be found at page 81.
When the Magnetic Amplitude, or bearing of the body by the Compass, and the True Amplitude, are both on the same side of the East or West points; that is, when they are both North or both South, their difference is the Variation of the Compass.

But when one is North and the other South, their Surn is the Variation, and the following Diagran mill show whether the Var ion is Easterly or Westerly.

DIAGRAM, 。
Showing Easterly and Westerly Variation

Fig. 18.

EXAMPLE 1.

April 2d. 1854. In Jatitude $38^{\circ} 30^{\prime}$ North, Longmtude 52° Weat, the Sun was observed to Set by Ccmpass W. 22° N. Required the Variation of the Compasa,

April 2d, Sun's Declination $4^{\circ} 55^{\prime} \mathrm{N}$. and Lat. $38^{\circ} 30^{\prime} \mathrm{N}$. In Table XXXV, gives the True Ampli...W. $\overline{6} 25 \mathrm{~N}$. Sun's bearing by Compass at Setting.....W. W. $22 \quad 0$ N. Magnetic Variation. or $1 \frac{1}{3}$ points, (nearly,) \ddot{W} esterly.

EXAMPLE 2.

Oct. 8th, 1854. In Latitude 40° South, Longitude 76 West, the Sun was observed to Rise by Compass E. 9° N. Required the Variation of the Compass.

Oct. 8th, Sun's Declination $5^{\circ} 52^{\prime} \mathrm{S}$. and Lat. $40^{\circ} 0^{\prime} \mathrm{S}$
In Table XXXV, gives the True Ampli. E. $7 \quad 51 \mathrm{~S}$ Bearing by Compass at Rising.......... E. E. 90 N.
Magnetic Variation $\overline{16^{\circ} 51^{\prime}}$ E
or $1 \frac{1}{\frac{1}{2}}$ points Easterly.

Taking the 1st Example, and referring it to the abnve Figure, it will be perceivea that both Amplitudes are to the North of the West Point, their difference is therefore the Variation; and looking towards the Sun's bearing by the Compass, the true Amplitude is on the left of the Compass bearing; the variation is, therefore, Westerly.

In the 2d Example, (and referring it to the same figure,) one Amplitude is on the North and the other on the South of the East Point, and their Sum is the variation.

And looking towards the bearing of the Sun by Compass, the true Amplitude is to the right of the Compass bearing; the tariation is, therefo:e, Easterly.

And in the lst Example, if we make the Compass bearing coincide with the North point in the above Figure, the true Amplitude will then be on the West side of the North; hence it is called Westerly variatuon. And in the 2 d Example, in like mazner, the true Amplitude will be on the East side of the North, terice it is called Easterly variation.

In the above Examples the Latitude used is that broughton from Noon by Dead Reckoning, and the Sun's Declination taken out for the nearest Noon, but if greater accuracy is required. the Declination must be cor sected to the time of the observation, by Table XI; but this is seldom necessary at Sea.

QUESTIONS FOR EXERCISE

Question lst.-July 3d, 1854. In Latitude $9^{\circ} 36^{\prime}$ South, the Sun's bearing by Compass at Rising was E. $12^{\circ} 42^{\prime} \mathrm{N}$. Required the Variation.

Answer.-The True Amplitude is E. $23^{\circ} 22^{\prime}$ N., and the Variation $10^{\circ} 40^{\prime}$ Westerly.
Question 2d.-Sept. 21st, 1854. In Latitude $26^{\circ} 32^{\prime}$ North, the Sun's bearing by Compass at Sottins was West $6^{\circ} 15^{\prime}$ South. Required the Variation.

Answer.-The True Amplitude is W. $1^{\bullet} 7^{\prime}$ N.. and the Variation $7^{\circ} 22^{\prime}$ Easterlv.

FINDING THE VARIATION OF THE COMPASS FROM AN AZIMUTH.

An Azimuth means an Angle at the Zenith, contained between the Meridian of the Observer and a Circh A Altitude passing through the body.

DIAGRAM

Of an Azimuth in $38 \frac{1}{2}^{\circ}$ North Latitude.
Fig. 19.

Ir this Figure the Sun's True Altitude is 25°, his Declination 17° South, and the Latitude $38^{\circ} 30^{\circ}$ North; and 't will be perceived that the Co-Altitude, or the Sun's distance from the Zenith, the Polar Distaneo, and the Co-Latitude are given, which form the three sides of an Oblique Spherical Triangle, to find the Angle of Azimuth at the Zenith, which is measured on the Horizon by a Circle of Altitude paesing through the hody, and cutting the Horizon at right angles. The Azimuth Angle in the above Figure is measured from the North point of the Horizon. because the North Pole of the heavens is elevated, and it contains $141^{\circ} 46^{\prime}$: but for convenience' sake its Supplement is generally used, that is, what it wants of 180°, and is reckoned from the opposite point of the Horizon. because the Sun is South of the observer in North Lati tude, and North of the observer in South Latitude.

RULE.

Correct the Sun's observed Altitude by Table IX. Correct the Sun's Declination by Table XI, and find his Polar Distance by adding the Declination to 90°, when the Latitude and Declination are of contrary names, or taking the difference between it and 90° when they are of the same uame.
Then add together the Sun's Polar Distance, his True Altitude, and the Latitude. Take balf their Sum, and take the difference between the half Sum and the Polar Distance, which call the difference.
Enter Table XXVII, and take out the Log. Secant of the Altitude, and also the Log. Secant of the Latitude. Bnter Table XXVIII, and take out the Log. Co-Sine of the Half Sum and the Loy. Co-Sine of the Difference. Add together these four Logs., and their Sum found in Table XXIX, will give an angle in time. Turn this into Degrees aud Minutes by Table XXVI, which will be the Angle of Azimuth required. To be reckoned from the South in North Latitude, and fiom the North in South Latitude ; towards the East in the morning, and towards the West in the afternoon.

The Magnetic Azimuth having been observed by the Azimuth Compass, as directed at page 81, at the the time of taking the Altitude. Then the difference between the True Azimuth and the Magnetic Azimuth, (both of which being reckoned from the same Meridian,) is the Variation of the Compass when they are on the same side of the Meridian, that is, both East or both West; but when one is East and the other West, their Sum is the Variation

Finding the Variation at Noon.

In Hıgh Latitudes, where the Sun's Meridian Altitude is low, the variation may be found at Noon, from the Magnetic Azimuth observed. But to do this, it is necessary to have the watch previonsly regulated to Apparent Time at the Ship, 80 that the Sun's Azimuth bearing may be observed at the instant the watch shows 12 o'clock; because the Sun is then True South in North Latitude, and True North in Souih Latitude. And supposing the bearing by the Azimuth Compass to have been South also, there would in that case ve no variation. On the other hand, if the bearing by the Azimuth Compass was $\mathrm{S} .22^{\circ} 30^{\prime} \mathrm{W}$., then there would be that amount of Magnetic Variation Westerly ; but if the bearing by Azimuth Compasa ad been S. $22^{\circ} 30^{\prime}$ E., then there would be that amount of Magnetic Variation Easterlu.

EXAMPLE 1.

February 2d, 1854, Sea Time, in Latitude $38^{\circ} 30^{\prime}$ N., Longitude $60^{\circ} \mathrm{W}$., the Altitude of the Sun's Lower Limb was observed to be $24^{\circ} 50^{\prime}$, and his Maguetic Azimuth S. $16^{\circ} 0^{\prime}$ E., at about 9 h 30 m in the forenoon. Height of the eye 18 feet. Required the Variation of the Compass.

DIAGRAM,
 Showing Easterly and Westerly Variation.

Fig. 20.

In the above figure, (to the left), both Azimuths are on the same side of the Meridıan, and their Diffee ence is the Variation Westerly, because the True Azimuth is to the Left of the Magnetic Azimuth.

EXAMPLE 2.

April 16th, 1854, Sea Time. in Latitude $40^{\circ} \mathrm{N}$., Longitude $120^{\circ} \mathrm{W}$., the Observed Altitude of the Sun was $32^{\circ} 15^{\circ}$ Magnetic Azimuth S $57^{\circ} 22^{\prime}$ W., at about 3 P. M. Required the Variation.

April 15th, Sun's Declination............... $9^{\circ} 45^{\prime} \mathrm{N}$.	Sun's Observed Altitude Lower Limb. $32^{\circ} 15^{\circ}$
Corr., Long. 120° W., Table XI, $\left.7^{\prime}\right\} \ldots .$. Add 10	Corr., Table IX. Add 10
Corr. for 3 h past Noon......... 3 \}...Add 10	Sun's True Altitude. ${ }^{32^{\circ} 25}$
Sun's Correct Declination.¢ $9^{\circ} 50$ 90	
Sun's Polar Distance. $\overline{80^{\circ} 5^{\prime}}$	
Correct Altitude. 3225	. Log. Secant \} Table XXVII 0.0785%
Latitude. 40 . 0	... Log. Secant $\}$ Table XXVII $0.1157{ }^{\text {d }}$
Sum. $\overline{152^{\circ}} \frac{1}{30}$	
Half Sum. ..$^{76^{\circ}} \frac{15^{\prime}}{}$	
Difference. $3^{3}{ }^{\circ} 50^{\prime}$.Log. Co-Sine $\}$ Table XXVIII $\begin{aligned} & \text { igpogs }\end{aligned}$
Angle in Time 4 h 58 m 10 s , Table XXIX. $\log \overline{9.56485}$
Turned into space by Table XXVI, gives	True Azimuth. S. $74^{\circ} 33^{\prime}$ W.
	Magnetic Azimuth.S. $57^{\circ} 22^{\prime}$ W.
	Magnetic Variation............ $17^{\circ} 11^{\prime}$ Easterly

EFFECT OF LOCAL ATTRACTION ON THE SHIP'S COMPANS.

This is a very important matter for investigation, and should be attended to at the earliest possibleopportunity, because, in consequence of not knowing that Local Attraction existed on board, many vessela have been wrecked from that very cause.

There being large quantities of Iron now used in the construction of Ships, besides the quantities which they carry to and fro, and stowed in different parts of the vessel as cargo, renders every Ship liable to aave her Compasses deranged by Local Attraction. And the general effect which Iron: situated in tlin torward part of a vessel, has on the Compass, is to draw the North end of the Needle forward in North Latatude, and the South end of the Needle forward in South Latitude, and which the following Diagram will bhow.

DIAGRAM,

Nhowing the Effect of Local Attraction.
Fig. 21.

When the Attracting Force is Forward.

In the above figure, the dotted line will show the course intended to be steered, which in the one case us Bast. But the North end of the Needle being drawn forward from the effect of the Local Attraction, faused by the Iron forward acting on it), the Ship is actually going E. by S.: and in the other case, teering West, the North end of the Needle being drawn forward in like manner, the Ship is actually going W. by S.

Now suppose the Ship to steer North, the North end of the Needle will point in the direction of the disturbing force, and which being then on the same line as the Magnetic Meridian, no Local Attraction will te perceptible.

Hence, when the Ship's head is at North or South, little or no deviation will be found in the Compass: but when lier head is at East or West, or nearly so, the greatest deviation may be expected. The above figure is drawn for North Latitude, but by substituting South for North, it will answer for South Latitude. In that case, the South end of the Needlc is drawn forward from the effect of Local Attraction, and in steering East, in the one case, the Ship would actually be going E. by N.; and in the other case, steering West. the Ship would actually be going W. by N. •

When the Attracting Force is Abaft.

We have atherto been considering the case where the Attracting Force is situated forward in the vesse ont it sometimes happens that it is situated abaft the Steering Compass, as in the case of some Steamships, where the Steering Apparatus is placed in the forward part of the vessel ; and in this case, on referring to she figur in North Latitude steering East, the North end of the Needle is drawn aft, when the Ship would zctually be going E. by N. Again, in steering West, the North end of the Needle being drawn aft, the Ship wriald actually be going W. by N.

In South Latitude, and supposing the disturbing force to be abaft the Compass, the South end of the Needle is drawn aft, and in steering East the Ship would be going E. by S., and in steering West, she would be going W. by S.

Having thus shown the effect of Local Attraction on board Ship, the most practical remedy derived from axperience in this inatter, is as follows:

FINDING THE LOCAL ATTRACTION ON BOARD SHIPS AT SEA.

Contrivances to Counteract Local Attraction not to be Depended on.

Many contrivances have been proposed to countcract the Local Attraction on board Ships where it is tnown to exist, but none of them can be depended upon under all circumstances; especially in merchant vessels, where it is liable to vary at different times, and from the fact that the Poles of the Magnetio Needle change thei \cdot attracting power on entering the Southern Hemisphere.

Mode of Detecting Local Attraction.

The simplest mode of detecting Local Attraction on the Ship's Steering Compass at Sea, is to observe an Amplitude, that is, to take the bearing of the Sun at rising, by it, as directed at page 81, and find the variation of the compass by the Rules given at page 116, at the time the Ship's head is in a Northerly or Southerly direction by the Compass. Repeat the operation at Sunset, at the time the Ship's head is in an Easterly or Westerly direction. Then, if the variations so found agree within one degree of each other allowing for a probable error in the observations,) it may be concluded that there is no Local Attraction of any consequence on board.

But if they do not so agree, the difference will be the amount of the Local Attraction which exist on board. Always providing that the variation found when the Ship's head was at North or South, agrees with that laid down on the newest Charts.

By ascertaining the variation from bearings taken by the Steering Compass for one situated near the Binnacle) with the Ship s head in any given direction, we have the whole amount of the deviation of the Compass from the true Meridian due to the course on which the vessel is then steering. This includes both Variation and Local Attraction, and is the proper quantity to be allowed in correcting the course steerea to a True Course. And when the course has been changed, the variation should again be found in like manner, and applied in the room of that taken from the Charts.

Local Attraction may also be detected by the bearing of objects on the Land, when, after allowing th. variation proper to the place, they do not agree with the True Bearings. The Steering Compass will also show Local Attraction when the Ship appears to sail within 5 points of the wind on the one tack, and 7 points from the wind on the other.

The Binnacle.

One Steering Compass only should be used, because when there are two near each other, the one attracts the other, and the Binnacle should be constructed so as to prevent improper substances (such as irole) being placed therein.

On Fixing the Standard Compass as a Remedy

When Local Attraction is decidedly known to exist on board, the only proper remedy is to fix up a Standard Compass on some part of the vessel's deck, which shall be frec from all Local Attraction. This can only be ascertained from actual trial, and in some Ships the Standard Compass requires to be raised 3 or 6 feet, more or less, above the deck. In general, the most convenient place for fixing it. is on the Centre Line of the Quarter Deck, where the true direction of the Ship's head, or the bearing of the land, can at any time be easily ascertained. Observations of Amplitudes or Azimuths should also be made with this Compass, if it be provided with proper sight-vanes, otherwise with the Azimuth Compass on its site.

The Course must be shaped by the Standard Compass, and when the Ship's head is exactly in the proper direction by the Standard Compass, note the direction of her head by the Steering one, and which will be the approximate Course required to steer by that Compass, in order to allow for the effect of the Local Attraction. and the difference between the two Compasses is the anount of the Local Attraction on board, iso long as the Ship's head continues in the same direction,) but on changing the Course this difference between the two Compasses will be found to vary according as her head approaches to or recedes from the Magnetic Meridian. When the Ship's head is at North or South they will be found to agree nearly, because the disturbing force is on the same line as the Magnetic Meridian, and the greatest difference will be found when her head is at East or West, as previously explained. Consequently, when it is required to change the Ship's course, she is brougn: to her proper course by the Standard Compass, and the direction of her head then shown by the Steering one is the approximate course required to steer. The correctness of the Standard Compass may be further verified by taking Amplitudes, \&c., with the Ship's head on all the noints of the Compass; then, if the variation so found agree with that assigned to the place of observatio.: and with each other, the Compass is correct. All bearings should be taken with this Compasm, ard the courses made good by this Compass, when the Ship is close-hauled, must be entered on the Log Doard, in the room of those by the Steering one.

FINDING THE TIME AT SEA

It will be necessary here again to premise that there are three different modes of reckcning Time, with respect to the commencement of the day, viz., Civil, Astronomical, and Nautical.

The Civil Day,

Which is that used by the generality of mankind, begins at Midnight and ends at the Midnight following. It is divided into two equal parts of twelve hours each. The first is marked A. M, signifying before Noon, and the latter P. M., or afternoon.

The Astronomical Day

Begins 12 hours after the Civil Day, that is, at Noon, or when the Sun's centre is on the Meridian, and ends at the following Noon; and it is reckoned through the 24 hours, from Noon to Noon; and what are called the morning hours of the common day are by Astronomers reckoned in succession from 12, or midnight, to 24 hours. So that 8 o'clock on the morning of June 5th, Civil Time, is by Astronomers called June 4th, at 20 hours.

The Nautical, or Sea Day,

Commences at Noon, or 12 hours before the Civil Day, and 24 hours before the Astronomical day, and ends at the Noon of the Civil Day, and at the beginning of the Astrononical Day. It divided into two parts of 12 hours each; the former being marked P. M. and the latter A. M., so that occurrences which bappened, for instance, on Sunday, the 10th, afternoon, Civil Time, are entered in the Log as Monday, the 11 th, P. M.

Hence it appears that the Noon of the Civil Day, the Beginning of the Astronomical Day, and the End of the Nautical Day take place at the same period of time.

Time, as inferred from observations of the Sun, is denominated Apparent and Mean Solar Time.

> Apparent Time,

Is that which is immedıately derived from the Sun, either from the middle of the times of his Equms Altitudes, that is at Apparent Noon, or by observing his Altitude at a proper distance from the Meridian

> Mean, or Uniform Time,

Is that shown by Clocks, or Watches, which keep a constant, uniform time throughout the year.
The reason of these two different modes of dividing Time is explained in Figure 4, page 62, and 18 saused oy the unequal motion of the Earth in her orbit, combined with the inciination of its axis to the plane of the Ecliptic.

The difference between Apparent and Mean Time is called the Equation of Time, and amounts to over 16 minutes sometimes. It is computed for the Noon at Greenwich, and set down on page 1st of the Nautical Almanac, against the day of the month, throughout the year, and the precept at the head of the solumn shows whether it must be added to or subtracted from Apparent Time, to obtain Mean Time.

The Greenwich Date,

Or the Mean Time at Greenwich, is referred to, because it is for the Time at this Meridian that the -lements of Astronomical calculations (which are in perpetual change) are given in the Nautical Almanac.

The Greenwich Date is therefore always expressed in Mean Time, (unless the contrary is notified.) and it may be defined as being the time at Greenwich, corresponding to any given time elsewhere, and in takiug observations at Sea, the Noon at Greenwich is referred to, in order to find on which side of Greenwish Noor the observation has been made

Note.-In observing Altitudes for time, the observation should be made when the body is on or near the Prime vor tical, that is, when it bears true East or West ; hecanse then, crrors in both the Latitude of the observer and of the Altitude observed, produce the least effect on the Hour Angle.
In gelieral, the change of Altitude should not be less than 6 minutes to 1 minute of time. An error of 1 minate in the Altitude would then produce an error of abont 10 seconds in time. In High Latitudes, an error in the Latitude produces a great effect on the Hour Angle.
On the other hand, in the Tropics the time can be more correctly determined when the body is at less than an hour from the Meridian than when at several hours from it in High Latitudes.

FINDING THE APPARENT TIME FROM AN ALTITUDE OF THE SUN.

This is one of the most important problems in Nautical Astronomy, and for the solution of which we require to have the Altitude and Polar Distance of the body, and the Latitude of the place of observation, being three sides of an Oblique-Angled Spherical Triangle given, to find the Hour Angle at the Pole, and which is measured on the Celestial Equator, between the Mcridian and the Time Circles.

Diagram of an Hour Angle. Latitude and Declination of the Same Name.
Fif. 22.

Diagram of an Hour Angle. Latitude and Declination of Contrary Names.
Fif. 23.

In Figare 22, the Sun is on the Prıme Vertical, the Latitude and Decinnation being of the same name, the Declination subtracted from 90°, gives the Polar Distance.

In Figure 23, the Latitude and Declination being of contrary names, the Declination added to 90°, give the Polar Distance.

RULES FOR USING THE TABLES.

1st. Add together the Sun's True Altitude, the Polar Distance, and the Latitude of the place of Observation, find the Half Sum, and the Difference between the Half Sum and the Sun's True Altitude.

2d. To the Logs. of the Polar Distance. and Latitude found in Table XXVII, add the Logs. of th.e Half Sum and Difference found in Table XXVIII, and the Sum of these four Logs., found in Table XXIX, will give the Sun's Hour Angle, at the Top of the Page. and which is also the Apparent Time from Noon, when the Altitude is observed in the Afternoon. But when the Altitude is observed in the Forenoon, the Apparent Time from the preceding Noon or Midnight, is found at the Bottom of the page.

EXAMPLE 1.

Figure 22. Given the Sun's True Altitude, 37°, Polar Distance, $66^{\circ} 33^{\prime}$, and Latitude $40^{\circ} 43^{\prime} \mathrm{N}$. Required the Hour Ancle.

EXAMPLE 2.

Figure 23. Given the Sun's True Altitude, $13^{\circ} 26$ the Polar Distance, $113^{\circ} 27^{\prime}$, and Latitude 40° North Required the Hour Angle.
Sun's True Altitude. $18^{\circ} 26^{\prime}$
Polar Distance. 11327 Log. 0.03744
Latitude in. 40 00 Log. 0.1157
Sum $1 \overline{66^{\circ}}{ }^{\circ}{ }^{53^{\prime}}$
Half Sum $\overline{83^{\circ}}{ }^{97^{\prime}}$. . . .Log. 4.05717
Sun's 'True Altitude. 1326
Difference. $\overline{70^{\circ} 1^{\prime}}$.... .Log. 4.97308
Huar Angle \quad. 3 $\overline{\mathrm{h} .3 \mathrm{~m} .55 \mathrm{~s}} . \quad$. 9.18339

FINDING THE TIME AT SEA BY THE SUN.

Methoo of Observing Altitudes for Time.

Hold the instrument with the right hand and the watch in the left; bring the Sun's Lower Limb in. contact with the Horizon, and clamp the Index, and at the instant the Second-hand of the watoh has coinpleted the full minute, bring the Sun's limb in contact by using the Tangent screw; note the Time by the watch and read off the Altitude, and write them down. When the Second-hand of the watch has again completed the full minute, take the Altitude, \&c., as before, and write them down. This may be repeated three or five times. In general, three Altitudes, and their corresponding times, is sufficient. If the difference between the Altitudes, or the Sun's change of Altitude in one minute of time, correspond with each other, it is a guarantee that the Altitudes have been correctly observed; but if they do not so agree. add them together, and divide by the number taken, will give the mean of the Altitudes corresponding to the middle of the times they were taken, which may be taken as the correct observed Altitude

EXAMPLE.

A. M., 21 st June, in Latitude 40° North.

Alt. L. Limb. . . $37^{\circ} 13^{\prime} \quad 0^{\prime \prime}$ Time by Watch, 3 h .58 m .

$25 \quad 30$
$38 \quad 0$
$37^{\circ} 25^{\prime}-30^{\prime \prime}$

Obe. Altitude... $\overline{37^{\circ} 25^{\prime} 30^{\prime \prime}}$ Time....... $\overline{3 \mathrm{~h} .59 \mathrm{~m}}$.
This Altitude has been correctly taken.

EXAMPLE.

P. M., December 21st, in Latitude 40° North. Alt. of L. Limb.... $13^{\circ} 26^{\prime} \quad$ Time by Watch, 3 h . 3 m

Obs. Altitude..... $\frac{33^{\circ} 18^{\prime}}{} 20^{\prime \prime}$ Time. $\frac{3 \mathrm{~h} .4 \mathrm{~m}}{}$
The above Altitudes have not been correctly taken

To Find the Apparent Time, and thence the Mean Time, at Ship.

RULE.

To Correct the Altitude.

1 Add the Correction, taken from Table IX, to the Sun's Observed Altitude, will give nis True Central Altitua

To Find the Greenwich Date

2. Turn the Ship's Longitude into Time, by Table XXVI, and Add it to the Time of the Observation by Watch a Weat Longitude, or Subtract it in East will give the approximate Greenwich Time, which, if before Noon, Subtract it frum 12h. will give the Time from Greenwich Noon, A. M., otherwise it is the Time from Noon, P. M.

To Correct the Declination.

3. Take out the Sun's Declination from the Nautical Almanae, against the Day of the Month, and the Differenua or Change of the Declination in one hour, found in the adjoining column. Multiply this Difference for 1 hour by the Time from Greenwich Noon, and divide by 60, willgive the Correction in Minutes and Seconds.

To Corrcct the Equation of Time.

4 Take out the Equation of Time from the Nautical Almanac in like manner, and the Difference. or Change of Equation in one bour, (which is given in Decimal parts of a Thousand,) found in the adjoining colnmn. Multiply. this I lifference for 1 hour by the Time from Greenwich Noon, and strike off the Right-band figure, prefix a Decimad poin to the Left of the next two figures, which are now buudredth parts of a second, and the figure to the Left-band Swouds of Time, and is the required correction.

For Applying the Corrections for Declination and Equatıon.

- Inspect the columns in the Naution Almanac, and ascertain whether they are Increasing or Decreasing.

Greenwioh Time. Before Noon. Declination or Equation. ! Increasing, Subtract,
Greenwich Time. After Noon. Declination or Equation.................. \{ Tncreasing, Adl, to or from the Declination, or the Equation of Time, takeu from the page in the Nautical Almanac, will give them Oarrected to the Greenwich Tine of the Observation.

To Find the Sun's Poar Distance.

B subtract the Declination from 90°, when the Latitude and Deglination are of the same name. or Add the Deols anvuls ho 90° when they are of contrary names

FINDING THE APPARENT TIME, AND THENCE THE MEAN TIME, AT SHIP.

To Correct the Latitude to the Time of the Observation.

7. The usual mode of doing this at Sea, is to find the Difference of Latitude the Ship has made in the interval be tween the time the Sights were taken and Noon, (the correct Latitude having been obtained from the Sun's Meridian Altitude), and applyng it to the Latitude Observed, according to the course the vessel has been stearing, vis :

> Sights taken before Noon, in North Latitude $\left\{\begin{array}{l}\text { Sailing North, Subtract Difference of Latituda } \\ \text { Sailing South, Add Difference of Latituda. }\end{array}\right.$ $\left\{\begin{array}{l}\text { Sailing North, Add Difference of Latitude. } \\ \text { Sailing South, Subtract Difference of Latitude }\end{array}\right.$

Which will give the correct Latitude of the Ship at the time of the Sights. To apply this Rule in South Latitude we substitute South for North.

Thus having the Sun'a True Altitude, Polar Distance, and the Correct Latitude of the place of Observation, find the Apparent Time by the Rule for using the Tables already given at page 123.

To the Apparent Time apply the Equation of Time as directed in the precept at the head of the column headed Equation of Time, in the Nautical Almanac, by Adding or Subtracting it, and the result is the Mean Time at the Ship.

EXAMPLE 1.

$4 \mathrm{n}^{\prime}$ 80th, 1854 , (Noon at Sea), in Longitude by Dead Reckoning $25^{\circ} 0^{\prime}$ W., the Observed Altitude of the Sun a 1 wer Limb was $22^{\circ} 7^{\prime}$. Time by Watch, 7 h 6 m in the Morning. Ship thed sailed od a true N. E. by E. Course, 85 miiss, until Nonn, when the Latitude observed was $36^{\circ} 32^{\prime}$ N. Required the error of the Watch on both Appan at and Mean Time.

$\left.\begin{array}{l}\text { T. by... } \\ \text { Watch. }\end{array}\right\} 760$
Watch......0m.jef fast of Mean Time.
And Watch. 2 m 10 s slow of Apparent Time.

[^14]
finding the time at sea by the sun

EXAMPLE 2.

April 30th, 1854 , (Noon at Sea), in Latitude by Observation $36^{\circ} 32^{\prime} \mathrm{N}$. Longitude $24^{\circ} 26^{\prime}$ W., the Sun's Observed ltitude was $18^{\circ} 48^{\prime}$. Time by Watch, 5h 30 m in the afternoon, and the Ship had sailed since Noon on a true E. N. E. course, distance 29 miles. Required the Error of the Watch on both Apparent and Mean Time.

Obs. Altitude..... $13^{\circ} 48^{\prime}$ Time by Watch P. M. . 5 h 50 m 0s Decl. April 30th. $14^{\circ} 45^{\prime} 31^{\prime \prime}$ N. Diff. for $1 \mathrm{lh} 46^{\prime \prime}$ Corr., Table IX... $\quad 8$ Lon. $24^{\circ} 26^{\prime}$ W. in time $1 \quad 37$ 44s Decl. Increasing, Add 522 7 h

Latitnde. $36 \quad 43$ Log. 0.09604
$125^{\circ} 48^{\prime}$
Half Sum....... $62^{\circ} 54^{\prime} \log .4 .65853$
Difference.. $48^{\circ}{ }^{58^{\prime}}$ Log. 4.87756
App. Time...5h $\overline{34 \mathrm{~m}}$ 38 Log. $\overline{9.646} \overline{88}$
Equa.....Sub. 256
Mean Time. . . 5 h 31 m 7 s
T. by Watch... $5 \quad 30 \quad 0$

Watch...... 1 m 7 s slow of Meau Time, and 4 m 3s slow of Apparent Time

EXAMPLE 3.

March 26th, 1854 , (Noon at Sea), in Latitude by observation $12^{\circ} 21^{\prime}$ S., Longitude $65^{\circ} 30^{\prime}$ E., the Sun's Observed Altitude was $25^{\circ} 25^{\prime}$. Time by Watch 7 h 47 m in the forenoon. Ship had sailed on a N. W. Course, true, 17 miles, since the Sights were taken, until Noon. Required the Error of the Watch on both Apparent and Mean Time.

Obs. Altitude.... $25^{\circ} 25^{\prime}$		Time by..	Decl. 26th Mar. $2^{\circ} 1$	$11^{\prime} 40^{\prime \prime}$	Diff. for 1	59
Corr., Table IX.. 10		Watch A. M. $\}^{7}$	Corr. Sub	821	Timefm	8 ${ }^{\text {b }}$
True Altitude.... $25^{\circ} 35^{\prime}$		Jon $65^{\circ} 3.0^{\prime}$ E. $\}_{4} 22$	Correct Decl. . 2°	$3^{\prime} 19^{\prime \prime}$		472 "
Polar Distance... 923	Log. 0.00028	in time.... $\}^{4} 22$	90	$0 \quad 0$		29
Latitude......... 1233	Log. 0.01050	G. Time A. M. 3h 25 m	Polar Distance 92°	$3^{\prime} 19^{\prime \prime}$		$\overline{60) 501^{\prime \prime}}$
$130^{\circ} 11^{\prime}$		Sub. from. ... 12			Corr. for Decl	1. $8^{\prime} 21^{\prime \prime}$
$65^{\circ} 6^{\prime}$	Log. 4.62432	T. fm G. Noon 8h 35m	Equation. .	m 50s:02	Diff. for lb	
$39^{\circ} 81^{\prime \prime}$	Log. 4.80366		Corr.. ...Add	$6 \cdot 52$		8 ${ }^{\text {b }} \mathrm{b}$
Apl. Time.... 7 h 47 m 9 s	Log. 9.43876		Correct Equa.. 5 n	m 56s* 64		6144
Equa..... Add $5 \quad 57$		rse N. W. 17 miles, D. La	t. $0^{\circ} 12^{\prime}$			384
Meau Time... $7 \mathrm{7b} 53 \mathrm{~m}$ 6s		ude by Obs, at Noon.	$\underline{12} 21 \mathrm{~S}$	Corr	r. for Equa	$6 \cdot 5$

T. by Watch.. $7 \quad 47 \quad 0 \quad$ Lat. in at time of Sights...... $12^{\circ} 33^{\prime \prime} \mathrm{S}$.

Watch...... $\quad 6 \mathrm{~m}-68$ slow of Mean Time, and 0 m 9 s slow of Apparent Time.

qUESTIONS FOR EXERCISE.

Quest. $18 t$. - May 12th, 1854, (Noon at Sea), in Latitude Observed at Noon $47^{\circ} 50^{\prime}$ N., Longitude by Dead Reckon$\operatorname{ing} 50^{\circ} 30^{\prime} \mathrm{W}$. In the morning the Sun's Observed Altitude was $34^{\circ} 5^{\prime}$. Timo by Watch 8 b 6 m A. M. The Ship had made 4' of Diff. Latitude to the Southward since the Sights were taken. Required tha Error of the Watch.

Answer.-The Apparent Time is 8 h 5 m 39 s , and Watch fast 0 m 21 s . Mean Time 8 h 1 m 47 s , and Watch fast 4 m 18 s .

Quest. 2d.-On the same day as above, in Latitude $47^{\circ} 50^{\prime} \mathrm{N}$. ., Longitude $50^{\circ} 30^{\prime} \mathrm{W}$., in the Afternoon the Sun's Observed Altitude was $10^{\circ} 14^{\prime}$. Time by Watch $6 \mathrm{~h} 17 \mathrm{~m}^{\prime}$ P. M. The Ship had sailed on a true W. by S. $\frac{1}{2}$. . Course, 52 miles since Noon. Required the Errol of the Watch as before.

Answer.-The Apparent Time is 6 h 18 m 16 s . Watch slow 1 m 168 . Mean Time, 6 h 14 m 23 s . Watoh fast 2 m 37 s .

Quest. 3 -June 1st, 1854 , (Noon at Sea), in Latitude $39^{\circ} 25^{\prime} \mathrm{S}$. by Observation, and Longitude $90^{\circ} \mathrm{E}_{\mu}$ at Noon. In the Morning the Observed Altitude of the Sun was $12^{\circ} 15^{\prime}$. Time by Watch 8 h 35 m A. M. The Ship had eailed on a true S. E. Course, 28 miles, until Noon. Required the Error of the Watch.

1nswer.-The Apparent Time is 8 h 34 m 56 s . Watch fast 0 m 4 s . Mean Time 8 h 32 m 20 s . Watch fast 2 m 40 s .

Notr.-In the foregoing Examples, and also those which follow, the height of the eye is supposed to be 18 feet ahove the Sea level.
Noon at Sea means the end of the Sea Day, and which also corresponds to tne beginning of the Astronomical Day and to the Noou of the Civil Day.

FINDING THE APPARENT TIME AT SEA BY THE SUN, WHEN THE SHIF IS ON THF EQUATOR.

When the Ship is on the Equator, and the Sun is also on the Equator, that is, when his Declination a 0, the Poles of the Heavens are in the Horizon and the upper end of the Celestial Equator is then in the Zenith, and the Sun rises and sets vertically.

DIAGRAM

Of the Hour Angles on the Equator.

Fig. 24.

In this case, the Sun's change of Altitude is 15^{\prime} in one minute of Time, or 15° in one hour, throughout the entire day. The time can, therefore, be as correctly found near the Meridian, that is, near Noon, as it can at any other time of the day, and an error in the Latitude, in working out the time, does not affect tho result.

It will be perceived by this figure, that when a Ship sails to the Southward, after leaving the Equator, she raises the South Pole of the Heavens, and that in sailing North from the Equator, she raises the North Pole, and that the Polar Distance and Hour Angles are always measured from the elevated Pole. But in this case, both Poles being in the Horizon, and the Sun on the Equator, his Polar Distance 90°, and the Hour Angles, (measured on the Equator), are the same at both Poles.

If we therefore observe the Sun's Altitude at any period of the day, under the above circumstances, and after correcting it in the usual manner, to obtain the True Central Altitude, and then subtract it from 90°, we have the Sun's Hour Angle at once, in space, which, turned into degrees and minutes by Tablo XXVI, will give the Apparent Time at the Ship in the afternoon, and subtracting it from 12 h , will give the Apparent Time in the forenoon.

EXAMPLE 1.

Latitude and Declination 0; the Sun's Observed Altitude in the forenoon was $74^{\circ} 48^{\prime}$. Required the Apparent Time at the Ship.
Obs. Altitude L. Limb. $74^{\circ} 48^{\prime}$
Corr, Table IX,.............. $\frac{12}{75^{\circ}} \frac{12}{0^{\prime}}$
Sun's true Atitude.70 $\quad 90$
Hour Angle in space. \qquad $. \frac{.15^{\circ} 0^{\prime}}{}=1 \mathrm{~h}$, or $11 \mathrm{~h} \mathrm{A.M}$.

EXAMPLE 2.

Latitude and Declination 0; the Sun's Observed Altrtude was $29^{\circ} 50^{\prime}$ in the afternoon. Required the Apporent Time at Ship.

This may be verified by the Time Tables, as follows \cdot

True Altitude.	$75^{\circ} 0^{\prime}$	
Polar Distance.	. 900	Log. 0.00000
Latitude.	0	Log. 0.00000
Sum.	.$\overline{165^{\circ} 0^{\prime}}$	
Half Sum.	. $82^{\circ} 30^{\prime}$	Log. 4.11570
Altitude.	$75 \quad 0$	
Difference.	$7^{\circ} 30^{\prime}$	Log. 4.11570
Apparent Time	$11 \mathrm{hom0s}$	Log. 8.23140

True Altitude.	$30^{\circ} 0^{\prime}$	
Polar Distance.	900	Log. 0.00000
Latitude.	00	Log. 0.00000
	$\overline{120^{\circ} 0^{\prime}}$	
Half Sum.	$60^{\circ} 0^{\prime}$	Log. 4.69897
Altitude	$30 \quad 0$	
Difference	$30^{\circ} 0^{\prime}$	Log. 4.69897
Apparent Tine	$\overline{0 \mathrm{~m} \mathrm{Os}}$	Log. 9.39794

FINDING THE APPARENT TIME WHEN THE SUN IS RISING OR SETTING.

This method is upon the same principle as that of measuring the Hour Angle from the Elevated Pole but in the room of observing his Altitude above the Horizon with a Quadrant, we observe with a Spy. Glass the contact of either of his Limbs with the Horizon at Rising or Setting, and note the time by the watch

RULE

When the Lower Limb is Observed.

Take the Difference between the Sun's Semi-diameter, N. A., and the Mean Horizontal Refraction, $34^{\prime} 17^{\prime \prime}$, to shich add the Dip of the Horizon, found in Table V. Call this the Correstion.
Correct the Declination, and fiur. the Polar Distance, as usual. Also correct the Latitude to the place of Obser vation by the rules already given.

Add together the Latitude and Polar Distance, from which subtract the above Correction. Take half this Sum, to which add the same correstion and call it the Differense The Apperent Time is then found by the usual Rule 0 working the time by 'ors Tht

DIAGRAM

> If the Sun's Hour Angle at Rising Setting. $$
\text { FIg }^{2} 25 .
$$

This figure represents the elements for computing the Hour Angle in the usual manner, being the three Ides of an Oblique Angled Spherical Triangle, viz: the Co-Latitude $51^{\circ} 18^{\prime}$, the Polar Distaace $108^{\circ} 51^{\prime}$, and the Co -Altitude 90°, to find the Hour Angle at the Pole, and which, measured on the Equator, is 74° $37^{\prime} 30^{\prime}$, or, in time, 4 h 58 m 31 s.

EXAMPLE 1.

dan. 25th, 1854, (Nown at Sea), the Latitude Observed was $38^{\circ} 0^{\prime}$ N., and Longitude $104^{\circ} \mathrm{W}_{\text {, at }}$ Noon. Ship then sailed N. E. 60 miles, when the Sun's Lower Limb was observed to set at 5 h 3 m 25 s by the Watch. Required its error on Apparent and Mean Time.

FINDING THE APPARENT TIME WHEN THE SUN IS RISING OR SETTING

RULE.

When the Upper Limb is Observed

ddd logether the Horizontal Refraetion, $34^{\prime} 17^{\prime \prime}$, the Sun's semi-diameter, Nautical Almanac, and the Dip of the Borizon, in Table V. Call this Sum the Correction.
Correct the Declination and Latitude as before, and find the Sun's Polar Distance.
Add together the Latitude and Pular Distance, from which subtract the above Correation. Take Half this Sum 0 which add the same Correction, and call it the Difference.
The Apparent Time is then found by the usual Rule for working the Tables.

DIAGRAM
Of the Sun's Hour Angle at Rising or Setting.
Fig. 26.

This Figure is explained in the same manner as the last, except that the Latitude and Declination being: both North, the Sun's Hour Angle exceeds 6 hours when Rising or Setting, and measures $101^{\circ} 57^{\prime}$ on the Equator, or in Time is 6 h .47 m .48 s ., which subtracted from 12 hours gives Apparent Time, 5 h .12 m i8s. A. M.

EXAMPLE 2

June lst, 1854. (Noon at Sea.) In Latitude $25^{\circ} 0^{\prime}$ North, and Longitude 60° East, by Dead Reckoning from the receding Noon, the Sun's Upper Limb was observed to Rise at 5 h .17 m . Os. by the Watch. Required its Error on: apparent and Mean Tine.
甘. Ref. $34^{\prime} 17^{\prime \prime}$ less Par. $9^{\prime \prime}$, . $34^{\prime} 8^{\prime \prime}$ Time by Watch........ 5h. 17 m . 0s. Dec., N. A., $22^{\circ} 3^{\prime} 23^{\prime \prime}$ N. Dif. $1 \mathrm{~h} .20^{\prime \prime}$

Latitude in at Suarise. $25^{\circ} \quad 0^{\prime}$.... Log. 0.04272
Polar Distance. 68 $\frac{68}{08^{\circ}}-\cdots$. . Log. 0.03283
Sum . $\overline{93^{\circ}-0^{\prime}}$
Correction. Sub.
$\frac{+54}{\frac{92^{\circ}}{6^{\prime}}}$
Half Sum
$\overline{46^{\circ}} 3^{\prime}$
+54
Log. 4.84138
Correction
Add
Difference. $-\frac{16^{\circ} 57}{57}$

. . . . Log. 4.86377
Equation of Time.
Mean Time at Ship...do. $\overline{5 \mathrm{~h} .} \frac{2}{9 \mathrm{~m}}-\frac{36}{36 \mathrm{~b}}$
Time by Watch $5 \quad 17 \quad 0$
Watch Fasti of Mean Time. ... - $\overline{7 \mathrm{~m} .24 \mathrm{~s}}$. and Fast of Apparent Time 4m. 48.
Notr. - The reason why these Corrections marked thus t are nsed, will be evident from the fact that when the Sun'm
Lower Limb tonches the Horizon, at Rising or Sctting, his centre is actually 22 minutes belono fact that when the Sun'a Limb touches it he is a whole diameter, or 32 minutes more below it; whicn together make 54 minates. This, as before
expainsd at page 67, is caused hy the Refraction of the Atmosphere.
aseful, and may be depended on within 20 seconds or 5^{\prime} Ref the truth. Mirage at the Horizon. It is, however. very

FINDING THE APPARENT TIME FROM EQUAL ALTITUDES OF THE SUN NEAR NOON.

This is a very convenient and simple mode of finding the Apparent Time at Noon, or when the Sun in on the Meridian, that is, at 120^{\prime} 'clock Apparent Time at the Ship; and as it is independent of Latitude and Declination, and all the other corrections, it is a useful check on the more regular method of finding the time.

This observation can be depended on in Low Latitudes, because the Sun's change of Altitude is very rapid near the Meridian. But in High Latitudes the Sun's change of Altitude near the Meridian is very slow, especially in the Winter months; hence an error in the time of observation, in the latter case, may be committed which may render it worthless.

Besides, the greater the distance of the observer from the Equator, the time from Noon, at which the Altitude is observed, must be greater, (because the correctness of the Time so found depends entirely upon the rapidity with which the Sun rises and falls.) This involves a tedious system of corrections, for the Ship's change of place and the Sun's change of Declination in the interval between the observations, and which is unnecessary labor, because the Time can be found as correctly by one of the Altitudes in the usual manner.

When a Ship sails due East or West in the interval between the Altitudes, in that case it becomes a question of time only. But when she makes much Northing or Southing, it is evident that the same Altitudes will no longer give the correct Middle Time at Apparent Noon. The error in the P. M. Altitude will be equal to the difference of Latitude made in the interval. Therefore the Rule is, when sailing towards the Sun, we must increase the A. M. Altitude which is on the Quadrant, by advancing the Index of the instrument equal to the difference of Latitude made in the interval.

But in sailing from the Sun, we must decrease the A. M. Altitude by screwing back the Index equal to the difference of Latitude made in the interval; and when the Sun falls to that Altitude in the afternoon. we note the time by the same watch by which the time of the A. M. Altitude was noted.

Limits of the Time from Noon.

The. Altitudes should not be taken nearer to Noon than in the proportion of One Minute of Time for every Degree of Latitude the Ship is North or South of the Equator.

The Observation.

Observe an Altitude of the Sun's Lower Limb according to the above limits before Noon. Note the tim ov the Watch, and clamp the Index of the instrument. When the Sun's Lower Limb falls again to the came Altitude in the afternoon, note the time by the watch.

RULE.

Add together the two times, and take their Half Sum for the Middle Time. If the Middle Time is exactly 12 nours, the Watch is correct for Apparent Time; because, at the instant of this Middle Time by the Watch, the Sun 4 on the Meridian and it is A pparent Noon, or 12 o'clock, Apparent Time at the Ship.

But should this Middle Time exceed 12 hours, then the excess is what the Watch is Fast of Apparent Time.
If the Middle Time be less than 12 hours, then what it woants of 12 hours is what the Watch is Slow of Apparent Time. And by applying the correct Equation of Time, in the usual manner, to Apparent Noon, or 12h., we have the Mean Noon at Ship, the difference between which and the Middle Time is the error of the Watch on Mean Time.

EXAMPLE 1.

April 2d, 1854. In Latitude $5^{\circ} 52^{\prime}$ North, and Longitude 28° West, at 11 h .54 m . by the Watch, the Sun's Altitude was $85^{\circ} 40^{\prime}$ A. M., and at 12 h .20 m . by the same Watch, he had fallen to the same P. M. Required the error of the Watch on both Apparent and Mean Time.
Sun's Alt... $85^{\circ} 40^{\prime}$ A. M. Time by Watch, II h. 64 m . Same P. M. do. do. 12 20
Equa. of T. . 3 m .41 s 71 Dif. 750 Sum....) $\overline{24 \mathrm{~h} .14 \mathrm{~m}}$. Corr. ..Sub. 1.50 Long. 2h. Nid. Time, $1 \overline{2 \mathrm{~h} .7 \mathrm{~m}}$. Equa. . Add $\overline{3 \mathrm{~m} .40 \mathrm{~s}} \quad 1 \cdot \overline{000}$ App. Noon, $12 \quad 0$
Ap. N'u, 12h. $0 \quad 0$
Watch Fast, $\overline{0 \mathrm{~h} .7 \mathrm{~m}}$.
Mn. N'n, 121.3408.
Mid. T.. 1270
Watch. . - 3m.20s. Fast of Mean Time.

EXAMPLE 2.

April 16th, 1854. In Latitude 30° North, Longitude 45° East, at 11 h .20 m . by Watch, the Sun's Altitude was $68^{\circ} 20^{\prime} \mathrm{A}$. M., and at 12 h .34 m . by the same Watch, be had fallen to the same Altitude P. M. Required the error of the Watch on both Apparent and Mean Time. Sun's Alt.. . $68^{\circ} 20^{\prime}$ A. M. Time by Watch, 11 h .20 m Same P.M. do. do. 1234
Equa. of T.. . 0m. $11 \mathrm{~s} \cdot 87$ Dif. 603 Sum. ... $\overline{23 \mathrm{~h} .54 \mathrm{~m}}$
Corr....Sub. $\quad 1.80 \quad 3 \mathrm{~h}$. Mid.Time, 11 h .57 m Equa...Sub. $0 \mathrm{~m} . \overline{10 \mathrm{~s}}$. $\quad \overline{1.80^{9} 9}$ Ap. Noon, 120
Ap. N'n. 12h. 0
Watch Slow, 0h. 8m.
Mn. N'n. 11h. 59 m . 50 s .
Mid. T.. . $11 \quad 57$
Watch. ... $2 \mathrm{~m} .5 \mathrm{C} . \mathrm{g}$. Slow of Mean Time

Note-It is not necessary to read off the Altitude if the Index of the instrament remains untouched, because we have only to wait uutil the Sun falls again to the same Altitude in the afternoon, unless the Ship makes much Northing or bouthing in the interval, when it must be corrected as aboje. But to guard agajnst accident, or if the instrumont is required for use in tho interval, we have only to read it off and write it down, and set the Index to the same Altitude again, ready for the P. M. Altitude, and in case of cloudy weather neveral Altitudes, and their corresponding times, hould be takon before Noon, as a reserve.

FINDING THE TIME ON SHORE FROM ALTITUDES BY THE ARTIFICIAL HORIZON.

As a full description of the method of taking Observations with this Instrument is given at pages 77 and 78, it will only be necessary here to give a few Examples of finding the Apparent Time, and thence the Mean Time, on Shore.

EXAMPLE 1

March 5th, 1854, at New York, in Latitude $40^{\circ} 42^{\prime} 42^{\prime \prime} \mathrm{N}$., and Longitude $74^{\circ} 0^{\prime} 1^{\prime \prime} \mathrm{W}$., the following Altituden were observed by au Artificial Horizon in the Morning, to ascertain the Error of the Watch on Mean Time.

EXAMPLE 2

October 20th, 1854, at the Cape of Good Hope, in Latitude $34^{\circ} 22^{\prime} \mathrm{S}_{n}$ and Longitude $18^{\circ} 30^{\prime}$ E., the following Altitudes were observed by an Artificial Horizon in the Afternoon, to ascertain the Error of the Watch on Mean Time.

Half Sum.............. $\overline{66^{\circ}} 7^{\prime} 45^{\prime \prime} \operatorname{Log.~} 4.60711$
True Altitude.......... 181640
Difference. $\overline{47^{\circ} 51^{\prime} 5^{\prime \prime}} \log .4 .87008$
App. Time at the Place $\overline{4 \mathrm{th} 59 \mathrm{~m} 303}$ Log. $9.5 \overline{6765}$
Equa. of Time. . . .Sub. \qquad
4 h 441123
Time by Watch. $4 \quad \overline{5} 9 \quad 23$
Watch............... 15 m 0s fast of Mean Time at the place.

FINDING THE TIME AT SEA FROM AN ALTIT UDE OF THE MOON.

The Apparent, and thence the Mean Time, at Ship, may be found by an Altitude of the Moon at a die tance from the Meridian.

In the first place we must have the exact Greenwich Date at the time of the observation at the Ship, in order to reduce her Semi-diameter, Horizontal Parallax, Right Ascension, and Declination taken from the Nautical Almanac to that time, and as before stated at Page 101, (in the case of finding the Latitude by the Moon's Meridian Altitude,) if the Longitude of the Ship be not known, neither the Latitude nor the Time can be found by the Moon. But in cases where a Ship carries a good Chronometer, the Longitude can at any time be found tolerably correct by applying the Difference of Longitude made by Dead Reckoning to the Longitude last found by Chronometer.

The Moon's Observed Altitude must be corrected as usual, to obtain her centre, and another correction for her Parallax in Altitude, and which is always additive to her Apparent Altitude, because she alwavs sppears below her true place in the heavens. (See page 67.)

RULES FOR COMPUTING THE VARIOUS CORRECTIONS.

To Find the Greenwich Date.

1st. Turn the Ship's Longitude into Time by Table XXVI, and add it to the Mean Time at the Ship, (at the time the observation was made), in West, or subtract it in East Longitude, will give the Greenwich Date, which must be always one day less than the Sea Date. Or it may be more correctly found by noting the times of the Altitudes by Chronometer, which, after allowing for its error on Greenwich Time, will give the required Greenwich Date.

To Correct the Moon's Altitude.

2d. Take from the Nautical Almanac the Moon's Semi-diameter and Horizontal Parallax, for the nearest Noon or Midnight corresponding to the Greenwich Date. Then if the Moon's Lower Limb be observed, ald the difference between the Dip of the Horizon and her Semi-diameter to the Observed Altitude. But if her Upper Limb be observed, subtract their Sum, will give the Moon's Apparent Central Altitude.

3d. Enter Table XXV with the Apparent Altitude at the sidc, and the Horizontal Parallax at the top, and take out the Correction, which is expressed in Minutes and tenths of Minutes, and proportion it, if required, for the odd Minutes of Altitude, and the odd Seconds of Parallax. This correction is always additive, and will give the Moon's True Altitude.

To Correct the Moon's Right Ascension.

Abstract

4th. When the large Nautical Almanac is used, and the Greenwich Date, for the full hour, the Right Ascension is found opposite that hour; but when there are odd Minutes, take the Difference between that and the following hour, and apply the proportion of this difference, corresponding to the odd Minutes, to the Right Ascension at the preceding hour, according as it is increasing or decreasing, will give the Moon's correct Right Ascension.

5th. When the small Almanac is used, and the Greenwich Date exactly at Noon or Midnight, take out the Right Ascension found opposite. But when it is between them, take it out for the nearest Noon or Midnight preceding, and the nearest Noon or Midnight following this Greenwich Date, and take their Difference, which will be that for 12 bours, and note the number of Hours and Minutes which the Greenwich Date is past Noon or Midnight. Then say, as 12 hours is to the Difference in 12 hours, so is the Greenwich Time past Noon or Midnight to the required correction, which, applied to the Right Ascensios at the preceding Noon or Midnight, according as it is increasing or decreasing, will give the Moon's correct Right Ascension. (See the Note on the next page.)

To Correct the Moon's Declination.

6th. When the large N. Almanac is used, proceed by the rule alrcady given at page 102, No. 6, for correcting the Moon's Declination when on the Meridian.

When the small Nautical Almanac is used, proceed in like manner by Rule No. 7, on the same pager and the result will be the Moon's correct Declination, corresponding to the Greenwich Date.

To Find the Moon's Polar Distance.

7th. When the Latitude and the Moon's Dcclination are of the same name, the Difference between her Declination and 90° is her Polar Distance. But when of contrary names, their Sum is her Polar Distanoe

To Correct the Latitude to the Time of Observation.

8th. Enter the Traverse Tables with the Course and Distance made good, and find the Difference of Latitude the Ship has made since the last Observation for Latitude was obtained, and apply it by the Rule given at page 125, which will give the correct Latitude in

To Find the Moon's Hour Angle.

9th. Thus having the Moon's True Altitude, Polar Distance, and the Latitude of the place, procced (as with the Sun) to find the Moon's Hour Angle. or her Distance from the Meridian, (which with the Sun is the time from Noon.) this being added to the Moon's Right Ascension, if the Moon be to the Westward of the Meridian, or subtracted from it if the Moon be to the Eastward, the Sum, or remainder, will be the Right Ascension of the Meridian.

To Correct the Sun's Right Ascension.

10th. Take out the Sun's Right Ascension and the Difference for 1 hour from the Nautical Almanac, multiply this Difference by the Time from Greenwich Noon, and add this correction to the Right Ascension, taken from the Nautical Almanac, (because the Sun's Right Ascension is constantly increasing,) will give the Sun's correct Right Ascension.

To Find the Apparent Time at Ship

11th. From the Right Ascension of the Meridian, (increased by 24 hours, if necessary,) subtract the Sun's eorrect Right Ascension, and the remainder will be the Apparent Time.

To Correct the Equation of Time.

12th. Take out the Equation of Time from the Nautical Almanac, and the Difference for 1 hour, and correct it by the Rules given at page 124, will give the correct Equation of Time.

To Find the Mean Time at Ship.

13th. Apply the correct Equation as directed in the precept at the head of the column in the Nautical Almanac, to the Apparent Time, by adding or subtracting it, and the result is the Mean Time at the Ship

EXAMPLE

March 10th, 1854. At Noon the Latitude observed was $38^{\circ} 15^{\prime}$ North, Longitude by account $60^{\circ} 45^{\prime}$ West. Ship bad sailed N. E. (true) 40 miles since Noon, when the observed Altitude of the Moon's Lower Limb was $40^{\circ} 32^{\prime}$ to the Eastward of the Meridian, and the Greenwich Time by Chronometer 9h. 44m. 37s. P. M. Required the time at Ship.
Obs. Alt. D's L. Limb. $40^{\circ} 32^{\prime}$ Gr. Time by Chro...... 9h. 44m. 37s. D's Dec., Noon. $24^{\circ} 14^{\prime} \mathrm{N}$.
Semid. 15', Dip 4.... 11 Midnight. 23 4
 D's True Alt. $\overline{41^{\circ} 23^{\prime}}$ Lat. at time of Sights.... $\overline{38^{\circ} 43^{\prime}} \quad$ Dec., Noon. .. 2414 N
Polar Dist........... 6642Log. 0.03695 D's Cor. Dec.. . $23^{\circ} 18^{\prime} \mathrm{N}$
Latitude. $38 \quad 43$....Log. 0.10777
Sum $146^{\circ} 48^{\prime}$
Half Sum. $\overline{73^{\circ} 24^{\prime}}$. . . .Log. 4.45589
Difference $\overline{32^{\circ} 1^{\prime}}$. . . .Log. 4.72441
is Hour Augle $\overline{3 \mathrm{~h} .38 \mathrm{~m} .53 \mathrm{~s}}$. Log. 9.32502
D's R. Ascen.. . $8 \quad 33 \quad 53$
K.A. of the Mer.. 4 h .54 m .85 s . Suu's R. A. 23h. 21 m . 53s. Dif. 1h. 88.

D's R. A. Noon. . 8h. 12 m .21 s.
Midnight. $8 \quad 38 \quad 26$
Say as $12 \mathrm{~h} .-26 \quad 5 \mathrm{~m}-9 \mathrm{~h} .45 \mathrm{~m}$.
R. A. M. Increa. $\overline{28 \mathrm{~h} .54 \mathrm{~m} .35 \mathrm{~s}}$. Corrected. $\overline{23 \mathrm{~h} .23 \mathrm{~m} .23 \mathrm{~s}}$. Sun's R. Ascen. $23 \quad 23 \quad 23$
App. T. at Ship $\overline{5 h} 31 \mathrm{~m} .12 \mathrm{~s}$. Equation. . $10 \mathrm{~m} .31 \mathrm{~s} \cdot 55$ Dif, 1 h .665
Eq. of T.. . Add $10 \quad 25 \quad 6 \cdot 65 \quad 10$
665.0 Pro. Log...... Oh. 21 m . 128. Cor. for 9 h .45 m
's R.A.at N'n $8 \quad 12 \quad 21$
D 's Cor. R.A. $\overline{8 \mathrm{~h} .33 \mathrm{~m} .39 \mathrm{~s}}$.

[^15]
FINDING THE TIME AT SHIP FROM AN ALTITUDE OF A PLANET.

The Time may be found as correctly by an Altitude of a Planet at a distance from the Meridian at twilight, as by the Sun, and the name of the Planet of which the Altitude is observed may be easily ascertained, if we refer to the Diagrams and Rules for finding the Meridian Altitudes of the Stars, at pages 64 and 65. There it will be perceived that the Elevation of the upper end of the Celestial Equator is equal to the Co-Latitude of the place. Now, it is easy to imagine a semicircle in the heavens, (in an opposite direction to the Elevated Pole,) to be elevated equal to the Co-Latitude of the place, and that this semicircle pabses through the true East and West points of the Horizon, which will represent the Celestial Equator, and that if the Planet is seen to the North of this semicircle, it must have North Declination, otherwise South, and to note by its bearing whether it is to the Eastward or Westward of the Meridian. Now inspect the Nautical Almanac on that day of the month, and find which of the Planets agree with the above Declination, and find the time of its Meridian passage. If it be observed to the Eastward, it will pass the Meridian later than the time of observation, but if it be observed to the Westward, it will have passed the Meridian earlier than the time of observation. And bearing in mind that all the heavenly bodies rise and set to the Northward of the true East and West points, when their Declinations are North, otherwise to the Southward of these points when their Declinations are South; and that in High Latitudes, when the Declination is of the same name as the Latitude, the Planets will have a high Altitude, and they pass the Prime Vertical above the Horizon. But when the Latitude and Declination are of contrary names, their Altitudes wil be low, and they pass the Prime Vertical below the Horizon, or set before they reach it.

RULES

For Computing the Corrections.

1st. Find the Greenwich Date by turning the Ship's Longitude into Time, by Table XXVI, and add it to the Time at Ship in West Longitude, or subtract it in East ; or it may be found from the Chronometer, and to be called always one day less than the Sea date.

To Correct the Planet's Observed Altitude.

2d. Enter Table XX with the Height of the eye at the top, and the observed Altitude at the side, and take out the correction for Dip and Refraction, which is always subtractive.

To Correct the Planet's Declination.

3d. Take out its Declination from the Nautical Almanac for the nearest Noon preceding the Greenwich Date, (except when the Change of Declination is small it may be taken for the nearest Noon of the Greenwich Date,) and also for the Noon of the following day, and take their Difference. Then say, as 24 hour is to the Difference in 24 hours, so is the time past Noon at Greenwich to a proportional part, which applied to the Declination at the preceding Noon, according as it is increasing or decreasing, will give the Planet's Correct Declination.

To Find the Planct's Polar Distance.

4th. When the Latitude and Declination are of the same name, the difference between the Declination and 90° is the Polar Distance; otherwise, their Sum is the Polar Distance.

To Correct the Latitude to the Time of Observation.

5th. Find the Difference of Latitude the Ship has made, and apply it to the Latitude last observed.

To Find the Hour Angle of the Planet.

6th. Having thus the True Altitude, Polar Distance, and the Latitude of the place, proceed as with the sun to find the Planet's Hour Angle, or Distance from the Meridian, (which with the Sun is the time from Noon.)

To Correct the Planet's Right Ascension.

7th. Take out the Right Ascension from the Nautical Almanac for the Noon preceding the Greenwich Date, and also for the nearest Noon following it, and take their Difference; then say, as 24 hours is to the Difference in 24 hours, so is the time past Noon at Greenwich to a proportional part, which applied to the Right Ascension at the preceding Noon, according as it is increasing or decreasing, will give the Correct Right Ascension.

To Find the Right Ascension of the Meridian.

8th. If the Planet be to the Eastward of the Meridian, subtract its Hour Angle from its Right Ascension, bat if to the Westward of the Meridian, add its Hour Angle to its Right Ascension, will give the Right Ascension of the Meridian.

To Correct the Sun's Right Ascension.

8. Take out the Sun's Right Ascension and the difference for 1 hour from the Nautical Almanac, mults ply the difference for 1 hour by the time from Greenwich Noon, and add this correction to it.

To Find the Apparent Time at Ship.

10. From the Right Ascension of the Meridian, (increased by 24 hours if required,) subtract the San's correct Right Ascension, and the remainder will be the Apparent Time at Ship.

To Find the Msan Time at Ship.

11. Take out the Equation of Time from the Nautical Almanac, and correct it as usual, and apply it to the Apparent Time, according to the precept at the head of the column, and the result is the Mean Time at the Ship. (See the Rules at page 124.)

EXAMPLE 1.

April 7th, 1854 Sea Time. In Latitude $28^{\circ} 26^{\prime}$ North, and Longitude $70^{\circ} 0^{\prime}$ West, at twilight in the morning the observed Altitude of the Planet Venus, was $24^{\circ} 21^{\prime}$ to the Eastward of the Meridian Greenwich Time by Chronometer, $22 \mathrm{~h} .16 \mathrm{~m} .5 \mathrm{~s} . \quad$ Required the Apparent and Mean Time at Ship. Elevation 16 feet.
Obs. Alt. Venus, $24^{\circ} 21^{\prime} \quad$ Dec. Venus, April 7th...... $6^{\circ} 7^{\prime}$ S. Gr. Time by Chro........22h. 16m. 5s Cor, Tab. XX, Sub. 6
Venus T. Alt.. . $\overline{24^{\circ} 15^{\prime}}$
Polar Distance of Venus... $96^{\circ} 7^{\prime}$
Polar Dist. 967 .Log, 0.00248
Latitude 2826 . Log. 0.05583 Ven. R. A. $\} 22 \mathrm{~h} .27 \mathrm{~m} .28 \mathrm{~s}$,
Surn. $148^{\circ} 48^{\prime}$
Ap. 6th
Half Sum $\overline{74^{\circ} 24^{\prime}}$. Log. $\left.4.42962 \begin{array}{c}\text { Ven. R. A. } \\ \text { Ap. 7th }\end{array}\right\} 222944$
Difference $50^{\circ} 9^{\prime}$. Log. 4.88521
Venus H.An. $3 \mathrm{~h} .52 \mathrm{~m} .35 \mathrm{~s} . \log 9.37314$
Say as 24 h . is to 2 m .16 s .80 is 22 h .16 m .
Gr Date, April 6th. . . . 22 h . 16 m .5 m
R.Ascen. $22 \quad 29 \quad 34$
R.A. of Mer. $\overline{18}$ h. 36 m. 59 s.

Sun's R. A. $1 \quad 3 \quad 38$
App. Time $\overline{17 \mathrm{~h}} .33 \mathrm{~m} .21 \mathrm{~s}$.
Equa.. Add $\quad 2 \quad 14$
Mo. Time. $\overline{17 \mathrm{~h}} 35 \mathrm{~m} .35 \mathrm{~s}$. from Noon, 1.9324 Pro. Log. Cor $=2 \mathrm{~m}$. 6s. Bubtract . . $12 \quad 0 \quad 0 \quad$ [Ap. 6th.
10.0000 by Pro. Logs.
0.8751 P. Log. of 24 h .,Table XXXIV. Eq. of Time. . $2 \mathrm{~m} .30 \mathrm{~s} \cdot 50$ Dif. $1 \mathrm{~h} . .725$
9.1249 Arith. Complement.
1.8999 P. Log of 2 m .16 s.
0.9076 P. Log. of 22 h .16 m .

Mo. Time. $\overline{5 \mathrm{~h}} .35 \mathrm{~m} .3$ อ̄. from mid- Venus R. A., April 6th. 22 h .27 m .28 s . night, or on the morning of the Correct R. Ascen.... $22 \overline{\mathrm{~h} .29 \mathrm{~m} .34 \mathrm{~s}}$. 7th April, Civil Time.

EXAMPLE 2

Dec. 6th, 1854. Sea Time. The Latitude at Noon was $38^{\circ} 10^{\prime}$ South, and the Longitude by Chronometer $92^{\circ} 50^{\circ}$ East Ship then salled S. W. (true) 40 miles, when the Altitude of the Planet Jupiter observed was $36^{\circ} 10^{\prime}$ to the Westward of the Meridian, at 7 h .15 m . by the Watch, at twilight in the evening. Required the error of the Watab on Apparent and also Mean Time, at Ship. Elovation 16 feet.
Jup'r's Obs. Alt. $36^{\circ} 10^{\prime} \quad$ Time by Watch....... 7h. 15 m .0 os.
Oor, Tab. XX, Sub. 5
True Alt. . $36^{\circ} 5^{\prime}$
Polar Dist. 6845 .Log. 0.03058
Lon. $92^{\circ} 14^{\prime} \mathrm{E}$ in time. $6 \quad 8 \quad 56$ Eq. of Time. $9 \mathrm{~m} 12 \mathrm{~s}^{\circ} 43 \mathrm{Dif}$ 1hl. 049
Green. Date, Dec. 5th . . 1h. 6m. 4s. Correction.. 1.04
Latitude. 3838 Log. 0.10726 Jupiter's Dec. N'n, Dec. 5th, $21^{\circ} 15$ ' S.
Sum $143^{\circ} \frac{28^{\prime}}{}$
Hnlf Sum. . . . $71^{\circ} 44^{\prime}$. Log. 4.49615 Jupiter's Polar Bist. $\overline{68^{\circ} 45^{\prime}}$
Difference ... $\overline{35^{\circ} 39^{\prime}}$. Log. 4.76554 Sun's R. A. 16h. 46 m . 366. Dif. 1h.11a
Jup.'s H.A. 4h Om. $29 \mathrm{~s} . \log .9 .39953$ Correction. $0 \quad 0 \quad 11$
R. Ascen. $19 \quad 67 \quad 15$
R.A. of Mer. $\overline{23 \mathrm{~h} .57 \mathrm{~m} .44^{\prime}}$

Sun's R. A. $16 \quad 46 \quad 47$
Ap.T. at S'p, $\overline{7 \mathrm{~h}} .10 \mathrm{~m} .57 \mathrm{~s}$.
Eq, of Trsub. $\quad 9 \quad 11$
Mn . Time, $\overline{7 \mathrm{~h} .1 \mathrm{~m} .46 \mathrm{~s}}$
T. by watch $7 \quad 15 \quad 0$
W. fast M. T. 13 m .14 s .

Lat. Obs. at N'n $38^{\circ} 10^{\prime} \mathrm{S}$. Long..... $92^{\circ} 50^{\prime} \mathrm{E}$. Say as 24 h . is to 51 s . 80 is 1 h .6 m Co.S.W. $40=$ D.L. 28 S. Dep. 28 -D.L. 36 W. Lat. time sights, $38^{\circ} 38^{\prime} \mathrm{S}$. Long..... $92^{\circ} 14^{\prime} \mathrm{E}$.

$$
\begin{aligned}
& \text { App. Time at Ship.... 7h. 10m. 578. } \\
& \text { Time by Watch } 7 \quad 150 \\
& \text { Watch fast of App. T.. O2. 4m. 3s. }
\end{aligned}
$$

Sun's R. A. 1h. 0m. 18s. Dif. 1h....9a Corr.....Add $3 \quad 20$ G.T. 22th
Corrected. 1h. $\overline{3 \mathrm{~m} .38}$ s $\quad 198$

$$
\begin{array}{r}
\frac{2}{60)} 200 \\
\hline
\end{array}
$$

3 m .20 s .

FINDING THE TIME AT SHIP FROM AN ALTITUDE OF A STAR.

The Time may also be found as correctly by an Altitude of a Star at a distance from the Meridian, twilight, as by the Sun; and the name of the Star of which the Altitude is observed, may be found in like manner as the Planets, by referring to the Diagrams and Rules for finding the Meridian Altitude of the Stars, at pages 64 and 65. The names of any of the Stars, in Table XIX, when observed out of the Meridian, may be found by imagining a point in the heavens, in an opposite direction to the elevated Pole, which is equal in Altitude to the Co-Latitude of the place. This point will represent the Upper part or Elevation of the Celestial Equator. Then suppose a semicircle drawn from thence through the true East and West points of the Horizon, will represent the Celestial Equator.

Then all the Stas seen to the Northward of this semicircle will have North Declination. and those seen to the Southward of it will have South Declination, and it can at once be determined whether the Star observed has North or South Declination. Now estimate its distance in Degrees from this supposed line or Equator, and enter Table XIX, and find which of the Stars corresponds nearest to this estimated Declination.

The bearing of the Star will show whether it be to the Eastward or Westward of the Meridian. Now enter Table XVIII with the day of the month, and find at what time it would pass the Meridian on that day. Then, if the Star be to the Eastward when observed, and $1 t$ is the proper Star, the Table wil? give its Meridian passage later in the day; but if observed to the Westward, it will give it earlier in the day. Thus the Declination and Meridian passage will point out the name of the Star.

And as before stated, all the Stars having North Declination rise and set to the Northward of thr true East and West points of the Horizon, while those having South Declination rise and set to the Southward of the East and West points.

And in High Latitudes, when their Declinations are of the same name as the Latitude, their Altitudes are high, and they pass the Prime Vertical, that is, they pass the East or West points above the Horizon. But when the Latitude and their Declinations are of contrary names, their Altitudes are low, and they do not reach the East or West points (at rising or setting) when above the Horizon.

RULES

For Computing the Corrections.

1. Turn the Ship's Longitude into Time, and add it to the Time by Watch, in West Longitude, or oubtraot it in East, will give the Greenwich Date.

To Correct the Star's Observed Altitude.

2. Take out the Correction from Table XX, and subtract it from the observed Altitude, will give the Star's true Altitude.

To Correct the Star's Declination.

3. Take out the Star's Declination from Table XIX, and the annual Variation; multiply this by the number of years elapsed since 1854 , and divide by 60 , if above $60^{\prime \prime}$, will give the correction in Minutes and Seconds, and apply it according to the sign of addition $(+$) or subtraction (-) found in the Table.

To Find the Star's Polar Distance.

4. When the Latitude and Declination of the Star are of the same name, the Difference between the Declination and 90° is the Polar Distance, otherwise their Sum is the Polar Distance.

To Find the Laitude at the Time of Observation.

5. Find the Difference of Latitude the Ship has made, and apply it to the Latitude last observed.

> To Find the Star's Hour Angle.

6 Having thus the True Altitude and Polar Distance of the Star, and the Latitude of the place, proseed as with the Sun to find the Star's Hour Angle, or Distance from the Meridian, (which with the Sun is the time from Noon.)

To Correct the Star's Right Ascension.
7. Take out the Star's Right Ascension from Table XIX, and the annual Variation; multiply this by the number of years elapsed sinee 1854 , and divide by 60 , (if above 60 s ., will give the correction, which - always alditive.

FINDING THE TIME AT SHIP FROM AN ALTITUDE OF A STAR.

To Find the Right Ascension of the Meridian.

8. If the Star be to the Eastward of the Meridian, subtract its Hour Angle from its Right Ascension. Bat if to the Westward, add its Hour Angle to its Right Ascension, will give the Right Ascension of the Meridian

To Find the Sun's Right Ascension.

- Take ont the Sun's Right Ascension, and the Difference for 1 hour, from the Nautical Almanae, for the Noon of the Greenwich Date. Multiply the Difference for 1 hour by the time from Greenwich Noon, and divide by 60 (if above 60). This Correction is always additive.

To Find the Apparent Time at Ship.

10. From the Right Ascension of the Meridian, (increased by 24 hours, if necessary), subtract the Sun's Correct Right Ascension, and the remainder is the Apparent Time.

To Find the Mcan Time at Ship.

11. Take out the Equation of Time, and the Difference for 1 hour from the Nautical Almanac, and correct it to the Greenwich Date by the rules at page 124, and apply it to the Apparent Time, according to the precept at the bead of the column in the Nautical Almanac, by adding or subtracting it, nod the result is the Mean Time at Ship

EXAMPLE 1.

February 10th, 1854, Sea Time, in Latitude $40^{\circ} 10^{\prime} \mathrm{N}$., Lougitude $68^{\circ} 20^{\prime} \mathrm{W}$., in the Eveuing Twilight, the Obm Altitude of the Star Sirins was $12^{\circ} 29^{\prime}$ to the Eastward of the Meridian. The Time by Watch was 5h 28 m . Re quired the error of the Watch on both Apparent and Mean Time. Elevation 16 feet.

Gum. $159^{\circ} \quad 2^{\prime}$

Half Sum. $\overline{79^{\circ} 31^{\prime}}$ Log. 4.25995
Vifference. $\overline{67^{\circ}} \overline{10^{\prime}} \mathrm{L}$ Lig. 4.96456
Sirius's Hour Angle ... $3 \mathrm{~h} \overline{48 \mathrm{~m}} \mathbf{4 0 \mathrm { B }} \mathrm{Log} .9 .35962$
oni ius's Right Ascen.... $6 \quad 38 \quad 43$
A. Ascen. of the Mer. . 2 h 50 m 3s
Add. $24 \quad 0 \quad 0$

Sun's R. A, Feb. 9th 21h 31m 34s Diff. 1h......... 10
Add $1 \quad 40 \quad 10$

Correct Right Ascen. $\overline { 2 1 \mathrm { h } 3 3 \mathrm { m } \mathrm { 14s } } \quad 6 0 \longdiv { 1 0 0 }$ $1 \mathrm{~m} \mathrm{40s}$

Add. $24 \quad 0 \quad 0$
Time by Watch.... 5 h 28 m 0 s
dncreaseá R. A. M.....26h 50 m 3s
Sun's i. Adcen. $21 \quad 33 \quad 14$
App. Time at Ship. ... $\overline{5 \mathrm{sk} 16 \mathrm{~m} 49 \mathrm{~s}}$
Equation.Add $14 \quad 32$
Mean Time at Ship.. $\overline{5 \mathrm{~h}} 81 \mathrm{~m} 21 \mathrm{~B}$
Apparent Time..... $5 \quad 16 \quad 49$
Watch fast........ $\overline{0 h 11 m} \overline{118}$ of Apparent Time.
Time by Watch.... 5h 28 m 0s
Meau Time........ 5 31 21
Watch slow........ $\overline{0 \mathrm{~h}} \overline{3 \mathrm{~m} 21} \mathrm{~s}$ of Mean Time.

EXAMPLE 2.

May 13th. 1854. Sea Time. Ship's position at the preceding Noon was Latitude $37^{\circ} 44^{\prime} \mathrm{S}$, Longitude $68^{\circ} 9^{\prime} \mathrm{E}$ She then sailed E. S. E., 120 mi'les, until 4 h 40 m A. M., when the Altitudes of Antares was observed $42^{\circ} 36^{\prime}$, to the Westward. Required the erner if the Watch on both Apparent and Mean Time. Elevation 18 feet.

FINDING THE LONGITUDE BY CHI_()NOMETFR.

The Cause of a Ship Losing or Guining Time.

Having thus given all the most practical methods of finding the Time at Sea, it will be necessary, befors proceding to find the Longitude, to premise, that when a Ship sails Westward she loses Time: that is, the Time shown by the Watch, which was regulated to Apparent Time on the preceding day, will be in advance of that found by observation on the following day. And that when a Ship sails Eastuard she gains Tine that is, the Time shown by the Watch, which was regulated to Apparent Time on the preceding day, wil: be behind that found by observation on the following day.

The Rotation of the Earth is the Cause of the Difference of Time between Places.

'ithe velocity of the Earth's rotation on its axis from West to East, is 360° in 24 hours of time, or at the rate of 15° to the hour, and 1° to every 4 minutes. It is evident that any place that lies Eastward of another place, will come sooner under the Sun, or will have the Sun earlier on the Meridian, consequently the hour of the day will be in advance of the other. On the other hand, any place that lies to the Weswward of another place, will be later in coming under the Sun. or will have the Sun later on the Meridian, consequently the hour of the day will be behind that of the other. Thus, at a place, say Greenwich Observatory, situated 74°, or 4 h 56 m in time, to the Eastward of New York. when it is Noon at Grecnwleh, it wants 4 h 56 m of being Noon at New York; and when it is Noon at New York it is 4 h 56 m past Noon at Greenwich. And at a place, say San Franciseo, situated 48°, or 3 h 12 m in time, to the Westward ef New York, when it is Noou at San Francisco it is 3 h 12 m past Noon at New York, and when it is Noon at New York, it wants 3 h 12 n of being Noon at San Francisco. Hence the difference of Time between any two places, indicates their difference or Longitude.

Longitude Reckoned from the Meridian of Greenwich.

Longitude is reckoned from a first Meridian, and in this work we use the Meridian of Greenwleh as first Meridian, and from which the Longitude is reckoned F.astward 180° and Westward 180°, which together are equal to the circumference of the globe.

On Circumnavigating the Globe, steering West, Ship loses one Day.

Abstract

Suppose a Ship to sail from Greenwich, with her Chronometer accurately set to Greenwich Mean Time, and steering to the Westward, when she has made 15° oí Longitude the Mean Time at the Ship will be found to be 1 hour behind that by the Chronometer. She has therefore lost 1 hour of time. And supposing the Ship to continue her course to the Westward until she reaches the Longitude of $180^{\circ} \mathrm{W}$., the Mean Time at the Ship will be 12 hours behind that of the Chronometer, and she will have lost 12 hours in time. The Ship being now in East Longitude, and continuing her course to the Westward, her Longitude decreases, and finally, when she arrives again on the Meridian of Greenwich, (after circumnavigating the Globe) it will be found that the Mean Time al the Ship is 24 hours behind the Mean Time at Green wich, consequently she has lost one entire day on the voyage.

On Circumnavigating the Globe, steering East, Ship gains one Day.

On the other hand, a Ship sailing East from Greenwich, under the same circumstances, when she has made 15° of Longitude, the Mean Time at the Ship will be found to be 1 hour in advance of the Greenwich Time by Chronometer, and she has therefore gained 1 hour of time. And continuing her course to the Eastward until she reaches, the Longitude of 180° E., the Mean Time at the Ship will be 12 hours in advance of the Greenwich Time by Chronometer, and she will have gained 12 hours of time. Being now in West Longitude, and continuing her course to the Eastward, her Longitude decreases, and finally, when she arrives again on the Meridian of Greenwich, (after circumnavigating the Globe), it will be found that the Mean Time at the Ship is 24 hours in advance of the Mean Time at Greenwich, consequently ehe has gained one entire day on the voyage.

In Circumnavigating round by the West, one Day is subtracted from the Greenwich Date.

In the case of Circumnavigating, the general practice is, that when on reaching the opposite Meridıan to Greenwich, (or the Longitude of $180^{\circ} \mathrm{W}$.), in sailing round by the West, into East Longitude, and with the view of making the general rule applicable, wheh is, that the Greenwich Time should be the least in Last Longitude, we subtract one day from the Greenwich Date. so that when the Ship arrives again on the Meridian of Greenwich, the time at Shp, and the Greenwich Time by Chronometer will conncide.

In Circumnavzgating round by the East, one Day is Added to the Greenwich Date.

In Circumnavigating round by the East, the general practice is, that on reaching the opposite Meridia» to Greenwich, or the Longitude of 180° E., thence passing into West Longitude, and with the view of making the general rule applicable, which is, that the Greonwieh Time should be the greatest in West Longitude, we add one day to the Greenwich Date, and on the Ship's arrival again on the Meridian of Freenwich: the time at Ship will coincide with the Greenwich Time by Chronometer.

On Ascertaning the Greenwich Tine from the Chronometer.

As only $\mathbf{1 2}$ hours are given on the face of the Chronometer, it shows only the time after Noon or Mid. night, therefore when it is A. M. at Greenwich, by adding 12 hours to it, we have the time since the praceding Noon.
If it shows P. M. at Greenwich, the Noon of the present day will be the preceding Noon at Greenwich. or the begiming of the Astronomical day, which, with the day of the month prefixed, is called the Green wich Jate.

To know whether the Time by Chronometer is P. M. or A. M. at Greenwich.

To the Astronomical Mean Time at the Ship (which is found by taking one day from the Sea Date, and counted through the 24 hours), add the Ship's Longitude in time in West Longitude, or subtract it in Eavt. the Sum or Difference will be the Mean Time at Greenwich. If it be less than 12 hours, the face of the Chronometer will show P. M. at Greenwich; but if the Greenwich Time be more than 12 hours, the face of the Chronometer will show A. M. at Greenwich, to which we must add 12 hours to get the Time from the ureceding Noon.

Longitude is the Difference of Time between two Meridians, and how Found.

I will be perceived, from the above remarks that Longitude is merely a question of the difference of Time between two Meridians. If we, therefore, have the correct Mean Time at the first Meridian - + Greenwich, shown by a Chronometer, we can at any time find the Longitude of the Ship by simply taking the difference between the Mean Time at Greenwieh and the Mean Time at the Ship, found by any of the methods already given in this work, which, turned into Degrees and Minutes, by Table XXVI, is the Ship. Longitude

Them, if the Greenwich Time be greater than the time at the Ship, the Longitude is West; but if the Greenwich Time is the least, the Longitude is East.

When one of the Times is P. M. and the other A. M. on the same day, we must add 24 hours to that at P M., and take their difference for the Longitude in time.

Aud when the P. M. and A. M. Times fall on different dates, their difference, counted from their precediug Noons, is the Longitude in Time.

Rate of a Chronometer.

The Chronometer would therefore be a most useful instrument, were it to keep a steady uniform rate throughnut the voyage, and nothing more would be required ; but as this is seldom the case, (see remarku at Pages 79 and 80), it is necessary that it should be verified from time to time during the voyage, in order to ascertain its error on Greenwich Mean Time, at the place of observation, and its present rate. The manner of doing this will be found at page 155.

Method of Keeping an Account of the Rate,

Calculate the daily error of the Chronometer on Greenwich Mean Time by applying the Rate for each day for several days in advance, and write it on the margin of the Nautical Almanac, each day's error opposite the day of the month. So that the error of the Chronometer can be taken out and applied at once from the same page that the Sun's Declination and Equation of Time are taken from. This will be found a very convenient mode, and save some time and trouble.

To Find the Accumulated Error of a Chronometer, after a lapse of Time.

Multuply the Daily Ratc, which is generally given in Seconds and Tenths of Seconds, by the dayz apsed since the last Rate was ascertained, and divide by 60 , (if it is above 60), will give the accumulaLed Rate, in. Ilinutes and Seconds. This applied to the original error,

$$
\text { When the Chronometer is }\left\{\begin{array}{l}
\text { Fast, and the Daily Rate Gaining, Add, } \\
\text { Slow, and the Daily Rate Gaining, Subtract, } \\
\text { Fast, and the Daily Rate Losing, Subtract, } \\
\text { Slow, and the Daily Rate Losing, Add, }
\end{array}\right.
$$

Wil give the whole error of the Chronometer on Greenwieh Mean Time on that day; and it applied the same manner as for a coinmon watch, and requires no explanation.

Mode of Observing Altitudes.

In taking Altitudes of any of the Heavenly Bodies, for the purpose of finding the time at the Ship, the times by Chronometer at which they were observed, must be noted, and the Altitudes are then added together and divided by the number taken. The times by Chronometer are in like manner added together, and divided by the number taken. This gives the Mean of the Altitudes, and the Mean of the Times iby Chronometer. By this mode we are supposed to obtain a more correct result by taking the Arithmetical Mean of the Altitudes than can be obtained from one Altitude alone. At all events, it prevent mistakes in the readings off. (See also the method given at page 124.)

The Times at wohich the Altitudes were observed to be taken by a Watch.

As the Chronometer must, or no account, be removed from the place where it has been fired for the royage, it may not be couvenient to note the time direct from the Chronometer at the time of taking the Altitudes, and in that case we use a Hack or common Watch, furnished with a Second Hand, with which the Times of the Altitudes are taken. It is then immediately afterwards compared with the Chronometer, and their difference noted. This difference being then applied to the Mean of the Times by Watch, at Which the Altitudes were observed, will give the Time of the Altitudes by Chronometer. Its error being then applied, we have the Greenwich Time.

The Mean Time at Ship by an Altitude of the Sun is then found in exactly the same manuer as that given at page 124, using the Greenwich Time by Chronometer, in making the Corrections, in the room of the approximate Greenwich Time. The following is an example of the whole process, as is usually done at Sea, and both Latitude and Longitude found at Noon.

EXAMPLE 1.

March 6th, 1854 (at the end of the Sea Day), a Ship which sailed from her last port 5 days previously had the following observations in the morning: The Error of her Chronometer on Greenwich Time, March 1st, was 0h 2 m 14 s fast, and the Daily Rate 2 s and 6-10 gaining. Ship sailed N. W. 50 miles until Noon, when the Sun's Meridian Altitude observed was $45^{\circ} 32^{\prime} \mathrm{S}$., and the Longitude by Dead Reckoning being about $54^{\circ} \mathrm{W}$. Required her Latitude and Longitude in at Noon.

Sun's Obs. Altitude L. Limb. $\begin{array}{rrr}10^{\circ} & 12^{\prime} \\ 0 & 22 \\ 0 & 35\end{array}$	$\begin{array}{lll} \begin{array}{cc} 7 h & 11 \mathrm{~m} \\ \hline \end{array} \mathbf{2 4 8} \\ 0 & 12 & 30 \\ 0 & 13 & 50 \end{array}$
3) 69^{\prime}	3) 37 m 449
Mean of the Altitudes. - $10^{\circ} 23^{\prime}$.	Mean of the Times by Watch.......... $\overline{7 \mathrm{7h} \mathrm{12m} \mathrm{35s}}$
Corr., Table IX........ Add	Comparison Chro. fast of Watch........... $349 \quad 54$
Sun's 'True Altitude. $10^{\circ} 30^{\prime}$	Time by Chronometer A. M........ ... 11h 2m 298
Sun's Polar Distance.......... 9541 Log. 0.00214	Accumulated Error Fast. Sub. $\quad 27$
Latitude................... $38 \quad 5$ Log. 0.10396	Greeuwich Time from Midnight......... $\overline{11 \mathrm{~h} 0 \mathrm{~m} 2 \mathrm{c}}$
Sum...................... . $144^{\circ} 16^{\prime}$	Add. 12
Half Sum. 7 $^{72^{\circ} 8^{\prime} \text { Log. } 4.48686}$	Greenwich Date, March 5th............. 23 h 0 m 2 s
Difference..................... $\overline{61}{ }^{\circ} 38^{\prime}$ Log. 4.94445	Mer. Alt. Obs...... $45^{\circ} 32^{\prime}$ S. Diff. Decl. $1 \mathrm{~h}=58$
Apparent Time............19h 12m 24 s Log. $9.53 \mathrm{~F}^{4} 1^{-1}$	Corr., Table IX..Add 11 Cor. for Ln. $54^{\circ} \mathrm{W} .3 \frac{1}{2} \mathrm{~h}$
Equation of Time.....Add $11 \quad 32$	True Altitude...... $\overline{45^{\circ} 43^{\prime}} 17{ }^{\prime \prime}$
Mean Time. 19h 23m 56s	
Greenwich Time....... $23 \quad 0 \quad 2$	Declination...... . 5 37 S. 60)203"
Longitude in Time........ 3h 36m $6 \mathrm{~s}=54^{\circ} 1^{\prime} 30^{\prime \prime} \mathrm{W}$	Lat. at Noon...... $\overline{38^{\circ} 40^{\prime}}$ N. Corr........ $3^{3^{\prime} 23}{ }^{\prime \prime}$
Departure made to Noon, 35' = Diff. Long. 450 W	Course N. W. 50 m D. L. 35 Decl5 $5^{\circ} 40^{\prime} 0$ S.
Long. of the Ship at Noon. $\overline{544^{\circ} 46^{\prime} 30^{\prime \prime} \mathrm{W}}$	Lat. at Sights. $\overline{38^{\circ} 5^{\prime}}$ N. Decl. . . . $5^{\circ} 36^{\prime} 37^{\prime \prime} \mathrm{S}$.
To find the Comparison. Time by Chronometer. .11 h 5 m 548	Sun's Dec. Noon, March 6th. $5^{\circ} 40^{\prime} \quad 2^{\prime \prime}$ S. Diff $1 \mathrm{~h} . .58^{\prime \prime}$ Corr. Ih before Noon. . Add 58
Time by Watch. 76	Corrected Dec............ $5^{\circ} 41^{\prime} 0^{\prime \prime}$
Comparison Chro. fast of Watch........... 3h 49m 54s	$90 \cdot 0$
To find the Error of the Chronometer.	Polar Distance. $95^{\circ} 41^{\prime} 0^{\prime \prime}$
Chronometer fast March 1st...............0h 2m 14s	Equation of Time..........11m 31s 74 Diff. 1h 60-2
Days elapsed 5, daily rate 2s 6-10-...... 13.	Corr. 1h before Noon....Add $\quad 60$
Accumulated Error........................0h 2m 27s	Correct Equa. 11m 32s 34

RULE FOR TURNING TIME INTO LONGITUDE BY COMPUTATION.

Turn the Hours into Minutes, and divide by 4. This gives Degrees, Minutes, and Seconds.
Fexample. -3 h 36 m 6 s is 216 m 6 s , which, divided by 4 , gives $54^{\circ} 1^{\prime} 30^{\prime \prime}$.
RULE FOR TURNING LONGITUDE INTO TIME BY COMPUTATION.
Multiply the Longitude by 4. This turns the Degrees into Minutes of Time (which, divided by 60, gives Houra
and Minutes), the Minutes of Longitude into Seconds of Time, and the Seconds of Longitude into Thirds of Time.
Example.-Longitude $54^{\circ} 1^{\prime} 30^{\prime \prime}$, multiplied by 4 , gives $216 \mathrm{~m} 6 \mathrm{~s}=3 \mathrm{~h} 36 \mathrm{~m} 6 \mathrm{~s}$.

F'INDING THE LONGITUDE BY CHRONOMETER FROM THE SUN'S ALTITUDE.

Referring to the 1st Example, it will be perceived that the Time shown by the face of the Chronometes W 11 h 2 m .29 s ., and the accumnlated Error subtracted, would give the Greenwich Time from midnight, 11 h .0 m .2 s . The Mean Time at Ship, from the preceding miduight, being 7h. 23m. 56 s ., their Difference, 3 h .36 m .6 s ., is the Longitude in time. This mode of reckoning the two times from the same midnight if frequently done at Sea, because it is more convenient than to reckon them from the preceding Noon. The result in either case is the same. The Time from Noon, A. M., in the one case is found by stbtracting it from 24 hours, and in the other from 12 hours.

In the Example referred to, the time from Noon is 1 hour, and the difference of the Sun's Declination and Equation of Time for 1 hour, in the column of the Natical Almanac, is the correction required, tc he applied as directed at page 124 , No. 7 .

RULE

For Correcting the Sun's Declination at Noon of the Ship by the Nautical Almanac.

Multiply the difference for 1 hour by the Longitude in Time, and divide by 60, if required, will give the correction in Minutes and Seconds, to be applied to that taken from the Nautical Almanac, as follows:

In West Longitude and Declination
$\left\{\begin{array}{l}\text { Increasing, } \\ \text { Decreasing, } \\ \text { Subtract, } \\ \text { Increasing } \\ \text { Subtract, }\end{array}\right.$
In East Longitude and Declination
Decreasing, Add,

RULE

To Reduce the Longitude by Chionometer at I'ime of Sights ti Noor

lake the I a^{\prime} tude in as a Course, and the Departure made in the interval, in the Latitude column, the Hfference of Longitude is found in the Distance column. Apply this as follows:

$$
\begin{aligned}
& \text { 'Jbservation taken in the morning, in West Longitude }\left\{\begin{array}{l}
\text { Sailing West, Add, } \\
\text { Sailing East, Subtract, }
\end{array}\right. \\
& \text { Observation taken in the afternoon, in West Longitude }\left\{\begin{array}{l}
\text { Sailing West, Subtract, } \\
\text { Sailing East, Add. }
\end{array}\right.
\end{aligned}
$$

To or from the Longitude by Chronometer, will give the Longitude in at Noon.
By substituting East for West. the same Rule may be applied in East Longiude.

EXAMPLE 2

April 2d, 1854. (End of the Sea day.) The Latitude observed was $30^{\circ} 37^{\prime}$ North. Ship then sailed S. E. (true) 50 iniles, when the following observation was made is the afternoon, the Error of her Chronometer on Greenwidb Mean Time, on the 23 d of March, was ascertained to be 0 h .9 m .31 s . fast, and the daily rate $3 \mathrm{~s} 4-10 \mathrm{th}$ losing. Roquired her Longitude in at time of Sights and Noon.

Nort.-The Longitude obtained from Morning Altitudes and brought on to Noon, very seldom ugrees with the Lone gitude obtair ed from Afternoon Altitudes and reduced back to Noon. This is supposed to be caused by unequal rofraction in the Atmospbere, together with errors in the observed Altitudes, errors in the Instruments, and that of as moorrect Latitude used in the computstion.

FINIING THE LONGITUDE BY CHRONOMETER FROM THE SUN'S ALTITUDא

EXAMPLE 3.

May 20th, 1854. (Eud of the Sea day.) A Ship being in South Latitude, and in about 77° East Longituda, n the moruing the Mean of several Altitudes of the Suu was observed to be $12^{\circ} 10^{\prime}$, and the Time by the Watch 8 B 10 m .20 s ., which, on being compared, was found to be fast of the Chronometer 5 h 15 m 38 s , and on the 30th April this Chronometer was found to have beell slow on Greenwich Mean Time Ob 5 m 10s, and the rate losing daily 4 sec. and 7 -10th. Ship then sailed on a S. E. Courso (true) 20 miles, until Noon, when the Sun's Meridiau Altitude rbserved was $33^{\circ} 14^{\prime} \mathrm{N}$. Required her Latitude and Longitude in at Nonn.

Sun's Obs. Alt. $12^{\circ} 10$
Cor., Tab. IX. 8
True Alt..... $\overline{12^{\circ} 18^{\prime}}$
Polar Dist... 10954
Latitude..... 3625
Sum. $\overline{158^{\circ} 37^{\prime}}$
Half Sum ... $79^{\circ} 18 \frac{1^{\prime}}{2}$
ᄀifference ... $67^{\circ} \quad 0 \frac{\frac{1}{2}^{\prime}}{}$
App. T... 20h $\overline{13 \mathrm{~m} 5 \mathrm{~s}}$
Eq. of T.. $\quad 3 \quad 47$
Mn. Time $\overline{20 \mathrm{~h}} 9 \mathrm{~m} \mathrm{18} \mathrm{s}$
Gr. Time $15 \quad 1 \quad 26$
Lon. in T. $5 \mathrm{~h} 7 \mathrm{~m} 52 \quad 76^{\circ} 58^{\prime} 0^{\prime \prime} \mathrm{E}$.
$\left.\begin{array}{l}\text { Dep. made } \\ \text { to Noon }\end{array}\right\} 14 \ldots \infty$ D.IL $17^{\prime} 30$
$\underset{\substack{\text { Lon. of Ship } \\ \text { at Noon }}}{\}} \ldots \ldots \ldots . .77^{\circ} 15^{\prime} 30^{\prime \prime} \mathrm{E}$.

Eq. of Time. . $3 \mathrm{~m} 46 \mathrm{~s} \cdot 15$ Dif. 1h. $\cdot 140$
Correction. . Add 1 26 Bef. N. 9h
Correct Eqa. $\overline{3 \mathrm{~m}} 47 \mathrm{~s} \cdot 41$ Corr. $1 \cdot \overline{26 \cdot 0}$

Time by Watch. 8h 10m 20s
Comparison............ $515 \quad 38$ To find the Comparison.
Face of Chro. A. M...... 2 h 54 m 42 s Time by Chronometer. . 2 h 57 m 42 s
Accum. Error......Add $\quad 6 \quad 44$ Time by Watch......... $8 \quad 13 \quad 2 \Omega$ Log. 0.02674 Accum. Error...... Add $\quad 6 \quad 44$
Log. 0.09435 G. T. from Mid.. $\overline{3 \mathrm{~h}} \frac{1 \mathrm{~m} 26 \mathrm{~s}}{}$
Add $12 \mathrm{~h} 0 \quad 0$ Chro. Slow, April 30th....0h 5m 10a Log. 4.26840 Gr. Date, May 19th.... $\overline{15 h} 1 \mathrm{~m} 26 \mathrm{~s}$ Days elapsed $20 \times 4 \mathrm{~s} .7-10$ th $\Rightarrow 134$ Log. 4.96405 Subtract from $24 \quad 0 \quad 0 \quad$ Accumulated Error....... 0h 6 m 44 a Log. $\overline{9.35354}$ Time Before Noon.... $\overline{8 h} \overline{58 \mathrm{~m} \mathrm{34}}$

Meridian Altitude. $33^{\circ} 14^{\prime}$ N. Dif. Dec. $1 \mathrm{~h}=31^{\prime \prime}$

	11	Long.. . $77^{\circ}=5 \mathrm{~h}$
	$\overline{33^{\circ} 25^{\prime}}$	$6 \overline{01155}$
Zenith Distance.	$56^{\circ} 35^{\prime} \mathrm{S}$.	$\overline{2^{\prime} 35^{\prime \prime}}$
Declination.	$19 \quad 56 \mathrm{~N}$.	Dec.. $19^{\circ} 58^{\prime} 19$
Lat. of Ship at Noon	${ }^{36}{ }^{\circ} 39^{\prime} \mathrm{S}$.	$\overline{19^{\circ} 55^{\prime} 44^{\prime \prime}} \mathrm{N}$
Course S. E. 20 miles. Dif	14	
Latitude at Time of Sights	$36^{\circ} 25^{\prime} \mathrm{S}$.	

EXAMPLE 4.

Uctober 10th, 1854. (End of the Sea day.) Latitude observed at Noon $20^{\circ} 41^{\prime}$ South, Longitude in by Dead Reckoning $179^{\circ} 30^{\prime}$ East, at Noon. Ship had sailed N. E. 54 miles since Noon, when the Mean of several Altitudes of the Sun was observed to be $18^{\circ} 45^{\prime}$. Time by Watch 4 b 40 m 35 s , which. ou being compared with the Chronometer, was found to be fast of the Chronometer 0 h 14 m 22 s , and on the 10 th of September this Chronometer was slow oi Greenwich Mean Time Oh 10 m 26s., and gaining 5s. 2-10th per day. Required the Longitude of the Ship at the tume of the Sights and at Noon.

Note.-In the 4th Example the Ship has crossed the Meridian of 180° Enst, in the interval between Noon and tho Wine the Sights were taken in the afternoon, haviug passed from East into Weat Longitude, and if bound to the Fass ward, we would add one day to the Greenwich Date. (See page 139.)

EXAMPLE 5.

Angust 5th, 1854 (end of the Sea day,) a Ship being iu North Latitude and about 179° West Longitude. In the Morning the Sun's observed Altitude was $35^{\circ} 6^{\prime}$, and the Time from the Face of the Chronometer was 8 h 89 m 22s. (being P. M. at Greenwich,) which was fast of Green. M. T. Oh 30 m 35 s . Ship theu sailed due West 48 mile antil noon, when the Suu:s Meridian Altitude observed was $76^{\circ} 11^{\prime} \mathrm{S}$. Required the Ship's Latitude and Longitude .n at Noon.

$35^{\circ} 6^{\prime}$	Time by Chrouometer.............. 8 ch 39 m 22 s
Cu:r, Table IX......... Add. 11	Chronometer fast of Greenwich. $30 \quad 35$
True Altitude.. $\overline{35}^{35^{\circ} 17^{\prime}}$	
Polar Distance. 78 48 Log. 0.01925	24h 0m 08
Latitude.................... 30 30 Log. 0.06468	Greenwich Date Aug. 4th.......... $\overline{32 \mathrm{~h}} 8 \mathrm{8m} 478$
Sum. $138^{\circ} 51{ }^{\circ}$	
Half Sum. $6.69^{\circ} 26^{\prime}$ Log. 4.54567	Meridian Altitude..........76 ${ }^{\circ} 11^{\prime}$ S. Dif. Dec. $41^{\prime \prime}$
Difference.$^{34^{\circ}}{ }^{9} 9^{\prime}$ Log. 4.74924	
$\begin{aligned} & \text { Apparent Time............... } \overline{205^{\circ} 44^{\prime}} \log \overline{9.37884} \\ & \text { Equation of Time.Add } \\ & 5 \quad 43 \end{aligned}$	True Altitude. $\frac{76^{\circ} 23^{\prime}}{13^{\circ} 37^{\prime}}$ N. $\quad \frac{60) 492}{8^{\prime} 12^{\prime \prime}}$ Zenith Distance...........
Mean T. Ship Aug. 4 . . . 20 h 11m 278	Declination.............. $\frac{16 \quad 53}{20^{\circ} 50^{\prime \prime}}$ S. $\frac{17^{\circ} \quad 1^{\prime} \quad 0 \quad \mathrm{~S}}{\mathrm{D}^{\prime} 10^{\circ} 51^{\prime} 48^{\prime \prime}} \mathrm{S}$
Green. Date, Aug. 4...... $32 \quad 8 \quad 47$	Latitude at Noon. $30^{\circ} 30^{\prime}$ N, D. $16^{\circ} 51^{\prime} 48^{\prime \prime \prime} \mathrm{S}$
Longitude in Time........11h $57 \mathrm{~m} 20 \mathrm{~s}=179^{\circ} 20^{\prime} \quad 0^{\prime \prime} \mathrm{W}$. Departure made to Noon, $48=$ Diff. Long. 5545 W .	Sun's Declination. $17^{\circ} 1^{\prime} 2^{\prime \prime} \mathrm{N}_{\text {, }}$ Dif. 1b $41^{\prime \prime}$
Reckoned West from Greenwich. $\overline{180^{\circ} 15^{\prime} 45^{\prime \prime} \mathrm{W}}$. Sul. from. \qquad .360 $0 \quad 0$	Correction.Sub. $\frac{5}{}$ Correct Declination....... $16^{\circ} 55^{\prime} 34^{\prime \prime} \mathrm{N} . \quad \frac{8 \mathrm{~h}}{\mathrm{~m}^{328}}$
Long. of the Ship at Noon. $179^{\circ} 44^{\prime} 15^{\prime \prime} \mathrm{E}$.	Polar Distance90 0 0 73° 4^{\prime} $26^{\prime \prime}$
Nore.-Here the Ship has crossed the Meridian of 180°	
West, between the time the Sights were taken and Noon,	Equation of Time..... 5m $448 \cdot 64$ Dif. Ih 0.258
she is now in East Longitude. We therefore Sub-	Corr....................Sub. $\mathrm{L}^{\text {-06 }}$ - 8 b
tract one day from the Greenwich Date, if the Ship is bound West. See page 139.	Correct Equation. $\overline{5 \mathrm{~m} 42 \mathrm{~s} \cdot 58}$

EXAMPLE 6

November 28th, 1854, (end of the Sea day,) the Sun's Altitude in the Forenoon was observed to be $50^{\circ} 25^{\prime}$, wher the Face of the Chronometer showed 9 h 33 m 10 s A. M. at Greenwich, and which was correct for Greenwich Mean Time. Ship then sailed E. by N. 31 miles, when the Sun's Meridiau Altitude observed was $68^{\circ} 23^{\prime} \mathrm{S}$. Required the Ship's Latitude and Longitude at Noon.

Note.-Here the Ship has crossed the Meridian of

Greenwich, between the time the Sights were taken and
Noon, from West into East Longitude.

QUESTIONS FOR EXERCISE.

Quest. 1. July 20th, 1854. In the Morning the Sun's observed Altitude was $33^{\circ} 19^{\prime}$, when the Face of the Chron shiwed 9 h 28 m 40 s A. M. at Greeu., and which was fast 0 h 5 m 47 s S . Ship sailed ou a S. S. W. $\frac{1}{2}$ W. Course 32 mile antil Noon, when the Lat. Obs. was $26^{\circ} 27^{\prime}$ N. Required the Loug. of the Shipat the time of the Sighte and at Noon Answer.-Longitude at time of Sights $21^{\circ} 12^{\prime} \mathrm{W}$., and at Noon $21^{\circ} 29^{\prime} \mathrm{W}$.
Quest. 2. September 25th, 1854. In the Afternoon the Sun's observed Altitude was $18^{\circ} 20^{\prime}$. Time by the Chron Th 7m 38s, being P. M. at Greeuwich, aud which was fast 011 m 2s. The Latitude observed at Noon was $37^{\circ} 57^{\prime}$ \$ and the Course was E. N. E. 29 miles since Noon. Required the Loug. in at the time of the Sights aud at Noon.

Answer.-Longitude al time of the Sights $64^{\circ} 49^{\prime} \mathrm{E}$, aud at Noon $64^{\circ} 15^{\prime} \mathrm{E}$.

TO CORRECT THE LONGITUDE BY CHRONOMETER AT NOON WHEN THE LATITUDE is in error.

In the ioregoing Six Examples the Latitude used in computing the time at Ship has meen deduced from the Latitude by Observation at Noon, and when the Altitudes are observed in the morning we have in that case to wait until Noon, before the Ship's position can be accurately ascertained.

And as it is sometimes of importance to know the Longitude by Chronometer as soon as possible aftor the Sights are taken in the morning, within a few minutes of the truth, we have in that case to use the Latitude by Dead Reckoning from the preceding Noon in working the Time, and which may be considerably in error, and as before explained at page 122, greatly affects the Hour Angle. (except when the Sun is on the Prime Vertical.) so that after finding the eorrect Latitude we have to work it over again.

To save all this trouble Tables A and B, No. XXX., are given for the purpose of eorreeting the Longitude oy Chronometer, brought on to Noon for the effect of an error in the Latitude used in computing the time at the Ship, and all we have to do is to take out the Correction for the Longitude from the Tables, (which is expressed in minutes and seconds) for each mile of Latitude. This, multiplied by the number of miles of error in the Latitude worked with, gives the whole correction to be applied to the Lengitude brought on ω Noon, and the result is the correct Longitude of the Ship at Noon.

RULE

For Using Table XXX.

Enter Table A with the Latitude worked with at the side, and the Hour Angle at the Top, and at the Angle of meeting take out the Correction.

Enter Table B with the Declination at the Side and the Hour Angle at the Top, and at the Angle of meeting take out the Correction.

When the Latitude and Deelination are of the same name, the difference between the Corrections found in Tables A and B is the Correction of Longitude for each mile of Latitude in error. And Note whether the Correction found in Table A be greater or less than that found in Table B.

When the Latitude ond Declination are of contrary names the Sum of the Corrections in Tables A and B is the Correction of Longitude for each mile of Latitude in error.
Multiply the Correction for Longitude by the number of miles of error in the Latitude, which will ε ive the whole Correction for Longitude.

To Apply this Correction

When the Corrections in Tables A and B are subtractive and the one found in Table A is less than the one in Table B, apply the Correction as follows :

Latitude worked with being too Small, Add in West Longitude, Subtract in East.
Latitude worked with being too Great, Subtract in West Longitude, Add in East.
When the Corrections in Tables A and B are additive, and also when the Correction in Table A is greater than that in Table B, Subtractive, as follows :

Latitude worked with being too Small, Subtract in West Longitude, Add in East.
Latitude worked with being too Great, Add in West Longitude, Subtract in East.
To or from the Longitude by Chronometer, brought on to Noon by the Dead Reckoning, will give the Ship's Correct Longitude by Chronometer at Noon.

EXAMPLES

In Using the Tables.

Lat worked with $30^{\circ} 30^{\prime} \mathrm{N}, \mathrm{H}$. A. 3 h 15 m Tab. A $-31^{\prime \prime}$	
Dec. $22^{\circ} 30 \mathrm{~N}$. (same name) H. A. 3h 15 m Tab. B	$33^{\prime \prime}$
The Diff. is the Corr. for each mile of Lat	$\varepsilon^{\prime \prime}$
Lat. workel with found to be too smalio.	10
Whole Corr. for Long. to be	
Long by Chro. brought on to Noon. . . . 60°	
Corr. Long by Chro. at Noon.	

The Latitude and Deelination being of the same name the Difference of the Correetions in the Tables is the Correction Additive, breause the Latitude was too small and the Ioongitude West.

Lat. worked with $50^{\circ} 10^{\circ}$ N., H. A. 2h 45 m Tab. A $1^{\prime} 21^{m}$ Dec. 23° S. (eontrary names) H. A. 2 h 45 m Tab. B $39^{\prime \prime}$ The Sum is the Corr, for each mile of Lat...... $\overline{2^{\prime}} 0^{\prime \prime}$ Lat. worked with found to be too great. 10
Whole Corr. for Long. to be Subtracted. 20^{\prime} Long. by Chro. brought on to Noon. $30^{\circ} 14^{\prime} \mathrm{W}$. Correct Long. by Chro. at Noon. $\overline{29^{\circ} 54^{\prime} \bar{W}}$

The Latitude and Deelination being of contrary names the Sum of the Correction in A and B is the Correction Subtraetive, beeause the Latitude was too great and the Longitude West.

r CO CORRECT THE LONGITUDE BY CHRONOMETER AT NOON WHEN THE LATITUDE IS IN ERROR

EXAMPLE 9.

March 6th, 1854. (End of the Sea day.) At about 7 b 30 m in the morning, the Sun s observed Altitude was 10° as', and the Greenwich Time by Chronometer $11 \mathrm{~h} 0 \mathrm{~m} 2 \mathrm{~s}, \mathrm{~A} . \mathrm{M}$., or 23 h 0 m 2 s , from the preceding Noon. The Lati tude in by the Dead Reckouing from the preceding Noou was $37^{\circ} 53^{\prime}$ North. Ship then sailed N. W. (true) 50 milea anitil Noon, when the Latitude observed was $38^{\circ} 40^{\prime}$ North. Required the Error in the Latitude with which tha Time at the Ship was found, and the correct Longitude by Cbronometer at Noon.

Gr. Date, March 5th. 23 h . 0 m 28	
	Polar Dist. 9 95 ${ }^{\circ} 40$
	Equa. of Time. . $\overline{11 \mathrm{~m} 32 \mathrm{~s}}$
True Course to Noon N. W. 50, D. Lat. 35^{\prime} N. and Dep. 35 W Lat. by D. Reckon. at time of Sights. . . $37^{\circ} 53^{\prime} \mathrm{N}$.	
Lat. by D. Reckon. at Noon. $388^{\circ} 28$	
Lat. by Observation. 3840	
Error in the Latitude worked with $\overline{12}$ ' too small.	
Lat. worked with 38° and H. A. 4 h 48 m in Table A. Corr. $15^{\prime \prime}$ Dec. $5^{\circ} 40^{\prime}$ of (contrary names) H.A. 4 h 48 m in Tab. B. Corr. 6	
Their Sum as the Correction per mile. $21^{\prime \prime}$ Number of miles error in the Latitude................. 12	
$6 \longdiv { 6 0) ^ { 2 5 2 } }$	
Whole Correction for Longitude $4^{4^{\prime} 122^{\prime \prime}}$	
Agreeing within $3^{\prime \prime}$ of the Long. in Example 1st, page 140.	

EXAMPLE 10.

May 20th, 1854. (End of the Sea day.) At about 8 o'clock in the moruing, the Sun's observed Altitude wao $12^{\circ} 10^{\prime}$, and the Greenwich Time by Chronometer $3 \mathrm{~h} 1 \mathrm{~m} 26 \mathrm{~s}, \mathrm{~A}$. M., or 15 h 1 m 26 s , from the preceding Noon. The Latitude in by the Dead Reckoning from the preceding Noon was $36^{\circ} 40^{\prime} \mathrm{S}$. Ship then sailed S. E. (true) 20 milee until Noon. when the Latitude observed was $36^{\circ} 39^{\prime}$ S. Required the Error in the Latitude used in finding the Time at the Ship, and the correct Longitude by Chronometer at Noon.

Sun's Obs. Alt......... $12^{\circ} 10^{\prime}$	
Corr, Table IX....Add 8	
True Alt. $\overline{122^{\circ}}{ }^{18^{\prime}}$	
Polar Dist. 10954	Log. 0.02674
Latitude 3640	Log. 0.09576
Sum. $158^{\circ} 5$	
Half Sum. $79^{\circ}{ }^{\circ} 0^{\prime}$	Log. 4.26335
Difference $\overline{67^{\circ} 8^{\prime}}$	Log. 4.96445
且. A. 3 h 46 m . Ap. T.. 20 h 14 ml 0 s	Log. 9.35030
Equa. of Time. .Sub.. $\quad 347$	
Mn. Time at Ship. . $20 \mathrm{~h} \overline{10 \mathrm{~m} \mathrm{13}}$	
Green. Time. 1 1ō 126	
Dep. made to Noon 14'=D. Long. made. $17^{\prime} 45^{\prime \prime}$ E.	
Correct I.ong. by Chro at Noon.	. $\overline{77^{\circ} 15^{\prime} 30}{ }^{\prime \prime} \mathrm{E}$

This agrees exactly with the Long. in Example 3.

G. T. by Chro., A. M. 3h Im 26s Same as Ex.3d, page 14\% Add $120 \quad 0$ Sun's Dec. cor. $19^{\circ} 54^{\prime} \mathrm{N}$.		
Gr. Date, May 19th, 10 h lm 26 s		
		Polar Dist.. . $\overline{109^{\circ} 54^{\prime}}$
Equa	ation of Time.	. 3 m 47 s

True Course to N'n S. E. 20 miles. D. L. $0^{\circ} 14^{\prime}$ Dep. 18 Lat. by D. Reck. at the time of Sights. 3640
Lat. by D. Reckon. at Noon $\overline{36}^{\circ}{ }^{\circ} \overline{54}$ S.
Lat. by Cbs. at Noon. 36 . 39 S.
Error in the Latitude worked with $\overline{15^{\prime}}$ too great
Lat.worked with 37° S. H. A. 3 h 46 m in Tab. A. Corr. $30^{\prime \prime}$ Dec. 20° N. (con. name) H. A. 3 h 45 m Table B. Corr. 26
Their Sum is the Correction per mile......... $\overline{566^{\prime t}}$
Number of miles of error in the Latitude...... 15
56
$6 0 \longdiv { 8 4 0 ^ { \prime \prime } }$
Whole Correction for Longitude
.Sub...
$14^{\prime} 0^{\prime \prime}$

Note.- When it is of irsportance to know the Ship's trne position at Noon directly the Latitude is observed, Table XXX will be found of great service.
For instance, after Seven Bells we can estimate the Course and Distance the Ship will have made to Noon nem enough, so as to work up the day's work and find the Latitade by Dead Keckoning, and also to bring ap the approxmate Longitude by Chronometer to Noon.
Then the instant the Latitude by Observation is determined, the Error of the Latitude by Dead Reckoning can be foand, aud the approximate Longitude by Chronometer corrected, as in the above Examples.

This Table will also show at once the effect of an error of one mile of Latitude in produciug an error in the Longa
tode by Chronometer in any given Latitude; and it will be perceived that an error of this kind has the greatest effeot
. Migh Latitudes.

TO FIND THE LONGITUDE BY CHRONOMETER AT SUNRISE OR SUNSET.

The method of finding the Time at the Ship from the Sun's Rising or Setting is given at pages 128 and 129, and the same Examples will answer the purpose of finding the Longitude by Chronometer; becausu we have only to compare the Watch with the Chronometer, and thence find the Greenwich Time at which the Sun rose or set, or the Time may be taken at once from the Chronometer without the Watch. Then the difference between the Mean Time so found at the Ship, and the Greenwich Time by Chronometer is ther Longitude in Time.

EXAMPLE 1.-(See page 128.)

Jan. 25th, 1854. Latitude in $38^{\circ} 42^{\prime}$ North, the Sun's Lower Limb was observed to Set, by Watch. at 5 h 3 m 25 s , which, on being compared with the Chronometer, was found to be 7 h 7 m 11 s slow of the Chronometer. The Mean Time at the Ship was found to be $5 \mathrm{~h} 11 \mathrm{~m} \mathrm{16s}$, and the error of the Chronometer on Greenwich Mean Time 3 m 20a too fast. Required the Longitude of the Ship.
Tima by Watch at Sunset................. 5 h 3m 25s
Watch Slow of Chronometer.............. 7 7 71
Time by Chron. at Sunset12h 10m 36s
Chron. fast of Greenwich Mean Time....... 3 20s
Graen. Mean Time at Sunset.................1 $\overline{2 \mathrm{~h} \quad 7 \mathrm{ml6}}$

Green. Mean Time at Sunset, Jan. 25th. . 12h 7 m 16s Mean Time at Ship do Jan. 25th.. 511 16s Long. of the Ship at Sumset, $104^{\circ} 0^{\prime}$ W. $=6 \mathrm{~h} 56 \mathrm{~m} \mathrm{og}$

EXAMPLE 2.-(Same as at page 129.)

June 1st, 1854. In Latitude 25° North, the Sun's Upper Limb was observed to Rise at the instant the Time moted on the Face of the Chronometer was 1 h 6 m 12 s A. M. at Greenwich, aud which was Slow of Greenwich Mean Time 2m 24s. The Mean Time at the Ship was found to be $5 \mathrm{~h} 9 \mathrm{~m} \mathrm{36s}$, the Ship being in East Longitude. Required the Longitude of the Ship.

Time by Chronometer at Sunrise 1 lh 6 m 12 s , being A. M. at Greenwich.
Chronometer Slow of Greenwich Mean Time 24
Greenwich Mean Time from Midnight, June 1st............. $\overline{1 \mathrm{~h} 8 \mathrm{~m} \mathrm{36}}$ or May 31st. . 13h 8m 36s

Mean Time at the Ship from Midnight, June 1st.............. $5 \quad$| 5 |
| :--- |$\quad 36$ or May 31st.. $17 \quad 9 \quad 36$

Longitude of the Ship at Sunrise, $60^{\circ} 1 \bar{o}^{\prime} 0^{\prime \prime} \mathrm{E}=4 \mathrm{~h} 1 \mathrm{~m} 0 \mathrm{~B}$

As no reflecting instrument is required in this Observation, (we use in its room the common Spy-Glass, its accuracy, therefore, rests entirely upon the instant of time noted by the Chronometer at which the Sun's Upper Limb at rising, or his Lower Limb at setting, touches the horizon. This is liable to a small error, cometimes, in consequence of unequal refraction and mirage at the horizon. (See Note at page 129.)

The Latitude of the Ship may also be determined by an Altitude of a Star or Planet at twilight, and the Ship's position found as correctly as at Noon, as follows :

Enter Table XVIII with the day of the month, and find what Star will pass the Meridian a few minutes before Sunrise, or after Sunset; or inspect the Nautical Almanac, and find what Planet will pass the Meridian about that time, as directed at page 104, No. 2.

Compute the Altitude, and find the Star as directed at page 106, No. 3, or find the Planet as directed at page 1.04, No. 3, and observe the Meridian Altitude.

EXAMPLE

Uf Finding the Latitude at Sunset by a Star.-(See Example 1st.)

January 25th, 1854. (End of the Sea day.) The Latitude at Sunset being required, we look into Table XVIIL and fiud the nearest Star on the Meridian to be the N. Pole Star, whioh passes at 4 h 37 m , and is not vizible on account of the Sun-light, but at 5 b 15 m , or 15 m after Suuset, its Altitude was observed to be $40^{\circ} 13^{\prime}$. We ford tix Latitude $\therefore 0$ be $38^{\circ} 42^{\prime}$ Nurth. (See this method at page 109.)

EXAMPLE

Of Finding the Latitude at Sunrise by a Star.-(See Example 2d.)

June 1st, 185\%. (End of the Sea day.) The Latitude at Sunrise being required, we first add 12 bours to the Apparent 'fime at Ship, 5 h 12 m , which gives the App. Astron. Time, May $81 \mathrm{st}, 17 \mathrm{~h} 12 \mathrm{~m}$, aud on refornigg to Table XVIII, we find that the Star Gruis passes the Meridiall at 17 h 24 m , or 12 m after Sunrise, and try computing the Meridinn Altitude, and setting the Index of the Quadrant at $17^{\circ} 20^{\prime}$, the Star will be found at that Altitude in the South point of the horizon at a few minutes before Sunrise, and supposing the observed Altitude to have been $17^{\circ} 27^{\prime}$, the Latitude in would be $25^{\circ} 0^{\prime}$ North

Note.-As the change o Altitude of these two Stars, when near the Meridian, is veryslow, an error of a few minatem ta the time at the Ship wil se of no momennence. Hence both the Latitade aud Longitude of the Ship may be found Gy Observatiou, at Suurise : Sunset.

FINDING THF LUNUITUDE BY CHRONOMETER AT NOON FROM EQUAL ALTITUDFS OF THF SUN

The method of finding the Apparent Noon at the ship irom Equal Altitudes of the Sun near the Meridian and thence the Mean Noc n, is given at page 130, and in finding the Longitude by Chronometer at Norn, wo have only to compare the. Watch with the Chronometer, and apply the comparison to the middle Time by the $\mathrm{W}_{i}{ }^{\text {chl }}$, which will give the time by Chronometer at apparent Noon. Or if we Note the time by Chre nomet, - Then the Sun's Altitude is the same both before and after Noon, the middle of the times is the time by Chronometer, at apparent Noon, (See Note at the bottom of the page,) to which its error on Greenwioh, appliod as usual, gives the Greenwich time by Chronometer, when it is Noon at the Ship.

The only Uorrection nevessary in this case is for the Equation of Time, which must be Corrected as usual to the Greenwich Time by Chronometer, and applied as directed in the Nautical Almanac to Apparent Noon, will give the Mean Noon at the Ship. Then the difference between the Mean Noon at Ship and the Greenwich Meari Time by Chronometer is the Longitude in time, which turned into Degrees and Minutes by Table XXVI., is the Longitude of the Ship at Noon.

EXAMPJE 1.-(See Page 180.)

April 2d, 1854. (Eud of the Sea day.) The Altitude of the Sun's L. Limb was observed to be $85^{\circ} 40^{\prime}$ at a few mioutes before Noon. Time by Chrowometer 1 h 46 m 10 s P. M. at Greenwieh, and when the Sun fell again to the sarne Altitude in the Afte. ioon, the Time by Chronometer was 2 h 12 m 16 s , and its Error 3m 33s Fast. Required the Longitude by Chronom sier at Noon.

Sun's Observed Altitude. . do............... . do.....	$\begin{aligned} & \text { A. M. } 85^{\circ} 40^{\prime} \\ & \text { P. M. } 8540 \end{aligned}$	Time by Chronometer. . . lh 46 m 10s P. M. at Green. do..........do......... 21216 do. do.
Equa. of Time April 2d. 3 m 41 s -71	Diff. 1h 750	d) 3 h 58 m 26 s
Corr,.... Sui $\quad 1 \quad 15$	2 h	Time by Chron. lh 59 ml 13 s at App. Noun Chro. Fast of Green., Sub. 333
Correct Equation. Add Am 40s 21 App. Noon at Ship.. Oh 0	1.50 .0	Green. Mean Time...... 1 lh 55 m 408
Meau Noon at Ship...... $\overline{\text { 0h 3m 408 }}$		Mean Noor at Ship...... $\frac{0}{\ln 52 \mathrm{~m}}-\frac{40}{08}=28^{\circ} 0^{\prime} \mathrm{W}$ at No Lod. of the Ship in time..

EXAMPLE 2.-(See Page 130.)

April 16th, 1854. (End of the Sea day.) The Altitude of the Suns L. Limb was observed to be $68^{\circ} 20^{\prime}$, Time by the Watch 11 h 20 m in the Forenoon, and when the Sun had fallen to the same Altitude again in the Afternoon, the time by the Watch was 12 h 34 m 6 s , which on being compared was found to be 3 h 0 m 23 s Fast of the Chronometer, and the Error of the Chronometer on Greenwich Meau Time was 3 m 10s too Slow. Required the Longitude by Chronometer at noon.

Degree of Dependence.

This method, as before observed at page 130 , is most suitable for Low Latitudcs ranging to 30° on each side of the Equator. Because when the Ship makes much way, and the interral between the Altitudes i great, the First Altitude will not be equal to the Second, on account of the Ship's change of place of Obervation and the Sun's change of Declination. Except when she Sails due East or West, in that case it becomes a question of Time only, and does not affect the result.

[^16]
FINDING THE LATITUDE BY THE SUN, AND THE LONGITUDE BY こHRONOMETER, BY THE MOON'S ALTITUDE AT NOON.

When the Sun is on the Meridian, his Altitude determines the Latitude, and when the Moon is at a proper distance from the Meridian her Altitude will give the Time at the Ship, and thence the Longitude y Chronometer at Noon.
Or the Moon may be on the Meridian, when her Altitude will give the Latitude, and an Altitade of the Sun at the same time will give the Longitude by Chronometer.

Or Altitudes of the Moon, Planets or Stars taken in like manner will give both Latitude and the Longitude by Chronometer at the same time.

The advantage of this method is that the Latitude bemg correctly known at the time of taking the Sights for Chronometer, the Altitudes of the object for Time may be taken nearer to the Meridian than otherwise, without producing an Error in the H. Angle, always providing that their change of Altitude be not less than 6^{\prime} in one minute of time.

EXAMPLE BY THE SUN AND MOON AT NOON.

March 24th, 1854. (End of the Sea day.) The Latitude observed from the Meridian Altitude of the Sun wan $40^{\circ} 10^{\prime} \mathrm{S}$., and at the same time the Altitude of the Moon's Upper Limb was observed to be $41^{\circ} 40^{\prime}$ to the Westward of the Meridian, and the Greenwich time by Chronometer was 17h 48m 27s. Required the Longitude in by Chronometer at Noon.

Obs. Altitude D's Up. Limb..... $41^{\circ} 40^{\prime}$	Green. Time by Cbron, March 23.. 17 lh 48 m 276
Semid 16', Dip. 4^{\prime}.........Sub. 20	$12 \quad 0 \quad 0$
Hor. Parl. 59' and Altitude..... $\overline{41^{\circ} 20^{\prime}}$	Green. Time past Midnight. 5 5h 48m 27ı
Gives the Corr., Table XXV..... 43	
True Altitude. $\overline{42^{\circ} 3^{3}}$	
Polar Dist.................. . . . 6653 Log. 0.03635	Su' Cor A Add $\frac{2}{0 \mathrm{l}} \frac{42}{48} \quad \frac{18 \mathrm{~h}}{60) 169}$
Latitude Observed. $\underbrace{40 \quad 10}$ Log. 0.11681	Sun's Cor. R. A. 0h 12m 4s ${ }^{\text {60)162 }}$
	Corr.. ${ }^{2 m 428}$
	D's Declination March 23d, Mid............. $23^{\circ} 51$ S.
lifference. $\overline{32^{\circ} 30^{\prime}}$ Log. 4.73022	do March 24th, Noon............ . 22 20 S.
D's Hour Aagle, West. 3 Sh 34m 37 s Log. 9.30891	Difference of Declination in............12b $=1^{\circ} 3 \mathrm{a}^{\prime}$
D's R. Ascen. $20 \quad 38 \quad 20$	Corr., Table XXIII. $0^{\circ} 44^{\prime}$
R. Ascen. of the Meridian... 24 h 12 m 57 s	Declination at Mid. 23 51
Sun's K. Ascen. Sub. $0 \quad 12$ 4	Correct Declination. 2 23 $3^{\circ} 7^{1} \mathrm{~S}$.
App. Time at Ship.24h 0m 53s	
Equation of Time......Add. 6 ¢ $\quad 31$	D's Polar Distance.. ${ }^{66^{\circ} 53}$
Mean T. at Ship, March 23...24h 7 m 248	
G. M. T. by Chr. March 23.... $17 \quad 48 \quad 27$	D's R. A. Mar. 23d . ..20h 23 m 53 s at Mid.
Longitude in Time.. 6h 18m 57s	Mar. 24 th. . $20 \quad 53 \quad 47$ at Nom.
Longitude of the Ship..... $94^{\circ} 44^{\prime} 15^{\prime \prime}$ E. at Noon.	Say as 12 h is to 29 m 548 so is 5 h 48 m T. from Mid Pro. Log. of 12h, Table XXXIV. 1.1761
	Arith. Comp. $\overline{8.8239}$
Equation of Time. $6 \mathrm{~m} 458 \cdot 27$ 766	Pro. Log. of $29 \mathrm{~m} 54 \mathrm{~s}0 .7796$
Oorr.. Add 138.79 18b	Pro.Log. of 5h 48m........... 1.4918
Correct Equation................. 6 m 31 s 48 13.78.8	R. Ascen. at Mid. $\frac{1}{1.0953}$ Corr. 14 h 23 m 53 53
	D's Correct R. Ascen. 20 h 38 m 20

Finding the Latitude by a Planet, and the Longitude by Chronometer by the Moon's Altitude at the same time. QUESTION.

October 3d, 1354. In North Latitude and West Longitnde at Twilight in the evening the Meridian Altiturde of the Planet Jupiter was observed to be $39^{\circ} 8^{\prime}$ S. About the time the Altitude of the Moon's L. Limb was $13^{\circ} 19^{\circ}$ East of the Meridian, and the Greenwich Time by Chronometer, October 3d, 11h 23 m 52 s P. M. Required the Latitude by Observation and the Longitude by Chronometer.

Answer.-In this case the Correct Altitude of the Moon is $14^{\circ} 24^{\prime}$, her Polar Distance $102^{\circ} 28^{\prime}$, her Hour Angle 4 h 23 m 40 s , R. A. 22 h 52 m 43 s, R. A. of the Meridian 18 h 29 m 3 s , the Sun's R. A. 12 h 88 m 19s, Apparent Time at Ship 5h 50m 44 s P. M., and the Mean Time 5h 39 m 40 s . The Latitude observed $28^{\circ} 16^{\prime}$ N., and Longitude by Chronometer $86^{\circ} 3^{\prime}$ West.

Note.-1 way perhaps be necessary here to repeat the remarks already made at pages 101 and 104, wnich is, that the Meridian nanueres of the Moon and Planets are given in the Nantical Almanac for Mean Time, and which must be turned into Apparent Time by Applying the Equation of Time the contrary way to what we wonld do in turning Apparent into Mean Time.
In the case of the Planet Jupiter in the above Question he passes the Meridian by the Almanac at 6 h 31 m . The Eqnation of Time, 11 m , added, gives the Apparent Time 6 h 41 m , at which be passes the Meridian, or that shown by a Watch regulated to Apparent Time at the Ship. The Moon's Meridian passage is found in like manner.

-INDING THE LATITUDE BY A STAR, AND THE LONGITUDE BY CHRONOMETER, BY A PLANET.

EXAMPLE

A prid 2d, 1854. (End of the Sea day.) In North Latitude and West Longitude, the Meridian Altitude of thr: Star Castor was observed to be $77^{\circ} 52^{\prime}$ North, and at the same time the Altitude of the Planet Saturn was $37^{\circ} 53^{\prime}$ tc the Westwurd of the Meridian in the evening twilight, ans the Greenwich Tine by Chronometer was 10 b 58 m 10a P. M. Required the Latitude in and the Longitude by Cbrouometer.

Mer. Alt. 潾 Castor $77^{\circ} 52^{\prime}$ N. Obs. Alt. Sate $37^{\circ} 53^{\prime}$	G. T. by Chro. 10 h 58 m 10 s Dec. Sat. $18^{\circ} 10$
Corr, Tab. XX,Sub. $\frac{4}{77^{\circ} 48^{\prime}} \quad$ Corr.Tab. AX, Sub. 5	
	Polar Dist.. $7^{71} 50$
*'s Dec. $1854 \ldots 32^{\circ} 12 \mathrm{~N}$ Lat. Obs..... 20 0 Log. 0.02701	
	Saturn's R. A. A ${ }^{\text {rri}}$
at the time Castor passed the Merid., or at 6 h 40 m Difference ... $\frac{64^{\circ} 49^{\prime}}{27} \mathrm{l}^{\prime} \mathrm{Log} \cdot \mathrm{Log} .4 .62892$	Say as 24 h is $\mathrm{m}^{26} \mathrm{~s}$, so is 11 h to the Culructice oh Om 128
P. M. Sat. H. Angle 3h $41 \overline{\mathrm{~m} 50 \mathrm{~s}}$. Log. $\overline{9.33543}$	Right Ascen., April 3a...... 3 47 15
R. Ascen..... $3 \quad 47 \quad 27$	Correct Right Asceu. 3h i7m 27s
R. A. of Mer.. 7 h 29 m 17 s Sun's R. A. . . $0 \quad 47 \quad 22$	Sun's R. A. April 2d.. Ob 45 m i 3 s , $\mathrm{D}_{1} \stackrel{1}{ } 1 \mathrm{~h}, ~ 99$
App. Tinue. . 6b 4111 55s	Correction...... Add 1 39 110
Equa... Add $3 \quad 33$	Correct R. Ascen..... Oh 47 m 22 s
Mean Time at Ship. 6 h 45 m 28s Gr. M. T. by Chro. . $10 \quad 58 \quad 10$	
Long. of Ship $63^{\circ} 10^{\prime} 30^{\prime \prime}$ W. -4 h 12 n 428 at 6 h 41 in 55 s [P. M.	Correct Equa. $3 \mathrm{mm3s} \cdot 47 \quad 8 \cdot 8 \cdot 25 \cdot \mathrm{C}$

Finding the Latitude in and the Longitude by Chronometer at the same time by Two Stars.

EXAMPLE

Angust 22d, 1854. (End of the Sea day.) In South Latitude and East Longitudg, the Meridian Altitude of the Star Aldebaran was $63^{\circ} 26^{\prime}$ North, and at the same time the Altitude of the Star Sirius was $53^{\circ} 47^{\prime}$ East of the Meridian, at twilight in the morning, and the Greenwich Time by Chronometer vas, Octo3er $21 \mathrm{st}, 14 \mathrm{~h} 57 \mathrm{~m} 4 \mathrm{ls}$ Required the Latitude iu and the Longitude by Cbronometer.

Finding the Latitude in by the Moon, and the Longitude by Chronometer, by a Star.

QUESTION.

Nebruary 7th, 1854. (End of the Sea day.) In North Latitude and West Longitude, the Meridian Altitude of the Moon's Lower Limb was observed to be $63^{\circ} 9^{\prime}$ South, and at the same time the Altitude of the Star Regulus waa $21^{\circ} 47^{\prime}$ to the Eastward of the Meridian at about 8 o'clock in the evening, and the Greenwich Time by Cbronome ter, Feb. 7th. 8 h 56 m 40 s . Required the Latitude in and the Longitude by Chronometer.

Answer.-The Moon's Correct Altitude is $63^{\circ} 45^{\prime}$ South, her Dechnntion $24^{\circ} 14^{\prime}$ North, and the Latitude in 50° 99° North. The Star Regulus' Polar Distance $77^{\circ} 19^{\prime}$, his H. Ancle 4 h 44 m 51 s , his Right Ascension 10 h 0 m 35 s. the Right Ascension of the Meridian 5b 15 m 44 s , (to be increased by 24 h ,) the Sun's Right Ascension 21 h 25 m 0 cs , the Apparent Time at Ship 7h 50 m 38 s P. M., the Mean Time at Ship 8h 5 m 5s, and the Longitude in by Chromomater $12^{\circ} 53^{\prime} 45^{\prime \prime}$ Wert.

FINDING THE LONGITUDE BY CHRONOMETER, AND THE SUN'S TRUE \& MUTH, BY THE SAME ALTITUDE.

This is a very convenient mode of finding the Variation of the Compass, the Sun's True Azimuth being obtained from the same Altitude used in working the time for Chronometer, and which may be practiced every day at Sea, with only the additional trouble of taking the Sun's bearing by the Azimuth Compass at the time the Sights are taken, as directed at page 81, and also the Rule for working an Azimuth at page 118. By this method we have only to take out the Log. Secant of the Altitude as a Latitude, at the top of the page, and the Log. Co-Sine of the Difference between the Polar Distance and the Half Sum, as a Half Sum. The Logs. Sccant of the Latitude and Co-Sine of the Half Sum serving for both Hour Angle and Azimuth, and the Angle in Time in the latter case turned into space by Table XXVI, will give the Sun's True Azimuth.

EXAMPLE 1.

July 12th, 1354. (End of the Sea day.) In Latitude $39^{\circ} 25^{\prime}$ North, Longitude by Dead Reckoning $72^{\circ} 0^{\prime}$ West the Sun's observed Altitude in the morning was $35^{\circ} 38^{\prime}$, bearing by the Azimuth Compass South $81^{\circ} 30^{\prime}$ East, and the Greenwich Time by Chronometer Oh 48m 43s P. M. at Greenwich. Required the Variation of the Compass and the Lougitude in by Chronometer.

Sun's Obs. Alt... . $35^{\circ} 38^{\prime}$	G. Time by Cbro. 12 h 48 m 43 s Reckoned from Midnight.
Corr, Table IX. Add 10	
True Altitude . . $\overline{35}^{35^{\circ}}{ }^{48^{\prime}}$. Alt. . . $35^{\circ} 48^{\prime}$	Log. Secant. . . . 0.09094 Sun's Correct Dec. . $22^{\circ} 0^{\prime}$ N.
Polar Distance .. $68 \quad 0$ Log. 0.03283 P.Dist. $68^{\circ} 0^{\prime}$	$90 \quad 0$
Latitude $\quad 3925$ Log. 0.11207	Same Log. . . . 0.11207 Pnlar Dist........ $\overline{68^{\circ} 0^{\prime}}$
Sum. $143^{\circ} 13^{\prime}$	
Half Sum...... $\overline{71^{\circ} 37}$ ' Log. 4.49882 H.Sum $71{ }^{\circ} 37^{\prime}$	Same Log. 4.49882 Correct Equa.....5m 15 s
Difference $\overline{35}^{\circ}{ }^{49}{ }^{\prime}$ Log. 4.76730 Diff.. $3^{\circ} 37^{\prime}$	Log. Co-Sine . . . 4.99913
App. Time.... $7 \mathrm{~h} \overline{55 \mathrm{n}} \overline{58 \mathrm{~s}}$ Log. $\overline{9.4110}$	$9.70096=$ Angle $6 \mathrm{~h} \mathrm{1m} \mathrm{3s}$
Equation..Add $\quad 5 \quad 15$	
Mean Time ... $\overline{8 \mathrm{~h} \quad 1 \mathrm{~mm}}$ 138	Magnetic Azimuth. \qquad
Long. in Time $\frac{4 \mathrm{l}}{} \mathbf{4 7 \mathrm { m }} \frac{43}{30 \mathrm{~s}} \rightarrow 71^{\circ} 52^{\prime} 30^{\prime \prime} \mathrm{W}$. Long.	

EXAMPLE 2.

Sept. 6th, 1854. (Ena of the Sea day.) Iu Latitude $36^{\circ} 6^{\prime}$ South, Longitude by Dead Reckoning $10^{\circ} 30^{\prime}$ East. the Suu's observed Altitude in the afternoon was $12^{\circ} 38^{\prime}$, bearing by Compass N. $44^{\circ} \mathrm{W}$., and the Greenwich 'Time by Chronometer 3h 52 m 14 s P. M. at Greenwich. Required the Variation of the Compass and the Longitude in by Chronometer.

Sun's Obs. Alt.. .. $12^{\circ} 38^{\prime}$	
True Alt. ${ }^{\text {a }}$..... $\overline{12}^{\circ} 46^{\prime}$	Alt. . . $12^{\circ}{ }^{46}{ }^{\prime}$
Polar Distance... 9625 Log. 0.00273	P. Dist. 9625
Latitude. 366 Log. 0.09259	
$\overline{145^{\circ} 17^{\prime}}$	
Half Sum. $\overline{72^{\circ} 39^{\prime}}$ Log. 4.47452	H. Sum $72^{\circ} 39{ }^{\prime}$
Difference $\overline{59^{\circ} 53^{\prime}}$ Log. 4.93702	Diff. . . $2 \overline{3^{*} 46^{\prime}}$
App. Time. . .4h $\overline{36 \mathrm{~m} \mathrm{138}}$ Log. $\overline{9.50686}$	
Equa......Sub. 145	
Mean Time. . $4 \mathrm{4h}$ 34m 28s	
G. T. by Chrw 3 52 14	
	East Long

G. Time by Chro. 3h 52m 14s Past Noou at Greenwich

Log. Secant.	0.01087	Correct Dec.	$6^{\circ} 25^{\prime} \mathrm{N}$	
Same Log. 0.09259		Polar Dist.		
Same Log. . Log. Co-Sine	4.47452	Correct Equa		4
	4.96151			
	9.53949	=Angle 4h 48		

Angle 4 h 48 m 25 s , Table XXVI, True Az N. $72^{\circ} 6^{\prime} \mathrm{W}$ Magnetic Azimuth...........N. 44 J W Magnetic Variation $\overline{28^{\circ} 0^{\prime}}$ [Westert,

FINDING THE SHIP'S POSITION AT SEA BY SUMNER'S METHOD

This Method consists in a new use or application of a Single Altitude observed for the Longitude b Chronometer, and is very useful when a Ship is near the Land, especially in high Latitudes, where the weather is generally unsettled and the observations for Latitude uncertain. The method is also best adapted for High Latitudes, because the Sun's change of Azimuth is more rapid there than in Low Latitudes, and the greater the change of Azimuth in a given time the more accurately the Ship's position can be defined.

In the Tropics when the Sun rises, passes the Meridian, and sets Vertically, the Ship's position cannot be found by this method.

Having been in the habit of using this method at Sea for many rears, I can testify to its great utility in defining a Ship's place on the Chart, when she is near the Land or a danger, and Captain Sumner deserve great credit in maning its value known to Seamen.

I propose here to give a sketch of his method as done in the practice at Sea, which may be found useful to those who have not seen his book, where they will find the whole matter fully explained, and which ought to be in the possession of every practical Navigator.

Explanation of Sumner's Method.

In some cases where the Latitude is not correctly known the Longitude by Chronometer cannot be correctly found, as explained in the Note at page 122 of this work, and it is on this wory circumstance, and the naving the correct Greenwich Time by Chronometer, that the method is founded.

Suppose an Altitude of the Sun to be observed in the Forenoon, and the Longitude by Chronometer found in the usual manner, the Longitude so found will correspond to the Latitude worked with. The samo Altitude worked with another greater or less than the first Latitude, the Longitude so found will correspond to the Latitude worked with in like manner, so that for each point of Latitude, with a given Altitude, there will correspond a certain point of Longitude and no other.

These several points or positions laid off on the Chart in their respective Latitudes and Longitudes, and a line drawn through them, the ship will be somewhere on this line, providing the Chronometer is right and the Latitude assumed is not very greatly in error.

If this line produced passes though any point of Land, the true bearing of this Land from the Ship is shown; and thus, though neither the Latitude nor the Longitude of the Ship is correctly known, yet the true bearing of any place on the Land which lies in the direction of either end of the line joining the two positions is certainly known. A line drawn perpendicular to the above mentioned line, towards the side on which the Sun is, shows the True Azimuth of the Sun.

This is easily understood, because the several Latitudes and Longitudes laid off by means of the same Altitude, constitute a curve of equal Altitude, and the observer in moving so as to keep the Sun at the same Altitude, would keep him always on the bearing at right Angles to the direction of his own motion.

The effect of an error in Altitude is easily shown by considering that the place of any part of the circle of equal Altitude on the Chart move 3 a mile for each 1^{\prime} of error of Altitude, and thus the corrected position of the line will be parallel to that already down, and distant from it the amount of the error of Altitude.

When the coast trends parallel to the line of equal Altitudes, the distance of the Ship from the shore is ascertained, though her absolute place 18 uncertain, provided always that the Ship is really not far from her supposed Latitude, and that the Chronometer is right.

When a single Altitude is observed near Noon the parallel of equal Altitude is evidently near the parallel of Latitude on which the Meridian Altitude would place the Ship, and the bearing of Land nearly East or West is very nearly ascertained. On the other hand, when the Sun is near the East, or West points, the line of equal Altitude lies nearly North or South, and its position in Longitude depends entirely on the Chronomecer. Also errors of Altitude affect the Longitude by Chronometer most when near Noon, in which case it can have no influence on the bearing of Land near East or West.

As a Single Altitude gives thus the line on which the Ship is, a Second Altitude gives a second line except when the Sun is Vertical and has no change of Azimuth. In this case only one line can be projected on the Chart, which will always lie North and South.

The intersection of the second line with the first is the Ship's true place, and the place of the antersecticn is more decisively marked as the two lines he more at Right Angles to each other, and as the Sun is perpendicular to each of the said lines at the time the Altitude was observed, from which they were com puted, they will cross each other more nearly at Right Angles, when the Sun has the greatest change o. Azimuth.

Having obtaired an Altitude of the Sun and the Greenwich Time by Chronometer, compute the Latitude in by Dead Reckoning. Take a Latitude, say 30^{\prime}, to the Southward of the Dead Reckoning, with which and the True Altitude, and the Sun's Polar Distance, find the Longitude by Chronometer as usual.

Again, take a Latitude, say 30^{\prime}, to the Northward of the Latitude by Dead Reckoning; and with the same Altitude and Polar Distance find another Lougitude in by Chronometer.

Jay off these two positions on the Chart and Draw a pencil line between them, which, extended to any Land in the vicinity, will give the true bearing of that place from the Ship, or if the Land trends parallel with the line it will give the Ship's distance from the Shore. At an hour or two or more after the first Altitude was taken, or when the change of Azimuth exceeds 2 points, take another Altitude, and with the same Latitudes and Polar Distance find two other positions. A line drawn between them will cross the first line, which will be the Slip's true place in Latitude and Longitude by Chronometer.
But if the Ship has changed her place between the Ooservations, lay off the True Course and Distance Sailed in the interval, from any part of the first line, and through the point so obtainet, draw a line parallel to the first line projected, and at the intersection of this line with the second, is the Ship's true place in Latitude and Longitude.

EXAMPLE.

December 10th, 1854. A ship in Latitude, bj Dead Reckoning, $37^{\circ} \mathrm{N}$., and Running for Cape Henry, at about 8 o'clock in the Morning observed the Sun's Altitude to be $9^{\circ} 35^{\prime}$, and the Greenwich Time by Chronometer 1 lh 5 m 55 s P. M. at Greenwich, and after Sailing W. by S. True 20 miles, a second Altitude was observed to be $27^{\circ} 10^{\prime}$, Greenwich Time by Chronometer 3 h 39 m 16s. Required the Bearing of or Distance from the Landin the vicinity, at the time of each Altitude, and also the Ship's Correct Latitude and Longitude in at the time of the last Altitude.

Latitude and Longitude in at the Time of the Last Altitude.

See the Projection on the Chart, next page.

The positions by the first Altitude laid off ${ }^{\prime}$ and the first line drawn between them strikes the Shore ebout 10 miles to the Southward of Currituck Inlet, hence the true bearing of that part of the Shore is \mathbb{S}. W. $\frac{1}{2}$ S., and the Coast of Maryland is 38 miles distant in a N. W. direction.
The Positions by the Second Altitude laid off and the second line drawn between them passes through Cape Henry. Hence its true bearing is W. by $\frac{8}{4}$ S. from the Ship.
The Ship's True Course and Distance W. by S. 20 miles, being now laid off from the first line and a line drawn parallel to it, then where it cuts the second line, is the Slip's True place (at the time of the last Altitude), in Latitude $37^{\circ} 13^{\prime}$ N. and Longitude $75^{\circ} 8^{\prime}$ W., and distant from Cape Henry 50 miles.
A line drawn parallel to the Course made in the interval, through the True place of the Ship, back to the first line will show the Ship's place on that line, when the tirst Altitude was observed, in Latitude $37^{\circ} 18 \mathrm{~m} \mathrm{~N}$.and Longitude $74^{\circ} 43^{\prime}$ W. Hence the Ship's Latitude by Dead Reckoning was found to have been 18 miles in Error, or that much too far to the Northward of her proper position, in running for Cape Henry.

Fic. 27.

PROJECTION OF SUMNER'S METHOD ON THE OHART.

FINDING THE SHIP'S POSITION AT SEA BY SUMNER'S METHO:

The Ship's place may be found in the same manner in the Afternoon, should the Latitude not have beer obtained from an observation.

The Altitude observed in the Afternoon is worked with the same two Latitudes unless she has made much Northing or Southing in the interval, but the Decl. and Equa. of Time is generally corrected to the time of observation, and two positions are again found, which laid off on the Chart, and a line drawn between them, will give the bearing of the Land or the distance off, as the case may be. The Course and Distance made good in the interval, laid off as before, and another line drawn parallel to the former, will cut the last line projected, at the Ship's true place.

But when the Ship has been sailing in the same direction as the former line it is not necessary to lay off either Course or Distance, because the place of intersection of the two lines as above, will give both.

Thus the Ship's place on the Chart may be found every hour of the Day from Sunrise to Sunset, (Seo the method at page 128,) if his change of Azimuth be sufficiently rapid to cause the lines projected on the Chart to cross each other at an angle

By this method also the Ship's position may be found every hour of the Night by using the Stars, or Planets, that is, finding the Longitude by Chronometer, by them, using two assumed Latitudes as with the Sun. But unfortunately the Horizon is generally so obscured at night that not much dependence can be placed on the Altitudes observed.

In laying off the Course and Distance run in the interval between two Altitudes, when the Ship is in a Tide-way or Current, the Set and Drift of which is known, it can easily be allowed for, by forming a small traverse Table, composed of the true Course and Distance sailed, and the True Set and Drift of the Current. Then the Difference of Latitude and Departure made good will give the Course and Distance made good, which is then laid off as usual.

CONTINUATION OF THE FORMER EXAMPLE

Abstract

Decemoer 10th, 1854. No observation for Latitude having been obtained, the Ship had been hauled up W. S. W ou the bearing of Cape Henry, (from the Altitude which had been obtained about an hour before Noou), and at 1) 30 m in the Afternoon another Altitude was observed to be $26^{\circ} 15^{\prime}$. Greenwich Time by Chronometer 6h 24 m 38 m having run in the interval W. S. W. True 25 miles, and been Set by the tide in the same direct on 5 miles. Required her true place on the Chart and her Bearing and Distance from the Land in the vicinity.

Sun's 3d Obs. Alt. $26^{\circ} 15^{\prime}$ G. T. by Chr. 6h 24 m 38s

The above positions being laid off on the Chart as before directed, and a ..ne drawn through them, w.ls e found to pass over the Light-House on Smith's Island, near to Cape Charles, and as the Ship has been aailing on the line of bearing of Cape Henry, obtained from the lant Altitude, po parallel line is required to be drawn nor Distance laid off in this case, because at the intersection of the two last lines is the true place of the Ship, at the time of the last Altitude.

It now appears from the above that the Light-House on Smith's Islan hears from the ship W. N. W. nearly 12 miles. and Cape Heury IV. S. W. rea 22 miles.

Hence if the Chronometer is right, and the raaimer sla, wase mbiacts will soon becoine vixible frum the deck.

RATING THE CHRONOMETER AT SFA.

As Chronometers are frequently found to alter their rates after having been a few days ou beds. $\mathcal{A}_{\text {, as }}$ explained at page 80 , they should be verified from time to time during the voyage, or in other word, the Sea rate should be found at every convenient opportunity, which is easily done in the followisk casiner : When a Ship is leaving port, if the weather permit, a set of Altitudes should be carefully touitil foth a Sextant, and the Times noted by Chronometer, or by the Watch, if found more convenient, in use usual manner of taking Sights, as explained at page 124, or at page 140, and the Sextant should bo $1: \boldsymbol{e r}^{*}$ ously idjusted, and its Index error, if any, applied to the Mean of the Altitudes, (see page 73,) and the same Sextant should be always used for taking the Altitades for the purpose of rating the Chronometer, so as to insure a uniform result throughout the voyage.

The Ship's position at the time of the Sights must be carefully ascertained from Cross Bearinge of objects on the land, by an Azimuth Compass, as directed at page 31, or by the Chart, at page 53. But if Cross Bearings cannot be obtained, run the Ship into the Meridian of ary Cape, Light-House, or other object on the land, the position of which is well laid down; that is, get it to bear True North or South, (the variation of the Compass being allowed for in advance, which can easily be done when the Ship is passing it, and take a set of Altitudes at that instant indicated by the Compass.

The Ship will then be in the Longitude of that place, and her Distance from it is the correction to be applied to the Latitude of the place to find the Latitude of the Ship, according as she is to the North or South of it. In working out the time in this case, we must use the seconds in the computation, and take out the proportional parts of their Logs., and which is easily done by considering what proportion the numter of odd seconds bears to a minute, such as $30^{\prime \prime}$ is $\frac{1}{2}, 20^{\prime \prime}$ is $\frac{1}{3}$, or 15 is $\frac{1}{4}$ of $60^{\prime \prime}$. Then take the difference between the Log. of the nearest preceding minute, and that of the following minute, and apply the corresponding $\frac{1}{2}, \frac{1}{3}$. or $\frac{1}{4}$ of this difference to the preceding Log. according as it is increasing or decreasing, or multiply the difference by the odd seconds and divide by 60 , will give the proportion required.

The Mean Time at the Ship is found in exactly the same manner, only it is more carefully done. The Ship's Longitude being then turned into Time by Table XXVI, and added to the Mean Time at the Ship, in West Longitude, or substracted from it in East. will give the Greenwich Mean Time of the Observation. Then the Difference between the Greenwich Mean Time so found and the time shown by Chronometer at the time of the Observation, is the error of the Chronometer on Greenwich Mean Time, and is fast or slow accordingly.

The error so found may differ considerably from that given by the Shore rate. However, note the Sea error so found; and the date of the Observation, and at the next favorable opportunity when land is in sight, repeat the observation, and find the error anew. Then, if the two errors have continued the same after the lapse of several days, the Chronometer is running on Greenwich Mean Time, but if the errors differ, then the difference is the amount of what the Chronometer has gained or lost in the interval between the timea of Observations, which divided by the number of days elapsed into seconds and tenths of seconds, will give the daily rate gaining or losing accordingly.

EXAMPLE

Of Proportioning the Logs. to the Odd Seconds.

P. Dist.. $98^{\circ} 20^{\prime} 20^{\prime \prime \prime}$ Log. of $98^{\circ} 20^{\prime}$ is $0.0046198^{\circ} 21^{\prime}$ Log. 0.00463 Diff. 2 pro. for $20^{\prime \prime \prime}$ is 1 Additive $=0.00468$

Lat.... $36^{\circ} 10^{\prime} 28^{\prime \prime}$ Log. of $36^{\circ} 10^{\prime}$ is $0.09296^{\circ} 36^{\circ} 11^{\prime}$ Log. 0.09306 Diff. 10 pro. for $28^{\prime \prime \prime}$ is 5 Additive $=0.09301$
H. Sum. $77^{\circ} 31^{\prime} 40^{\prime \prime}$ Log. of $77^{\circ} 31^{\prime}$ is $4.3347777^{\circ} 32^{\prime}$ Log. 4.33420 Diff. 57 pro. for $40^{\prime \prime}$ is 38 Subtract. -4.33439

Diff. . . . $55^{\circ} 58^{\prime} 45^{\prime \prime}$ Log. of $56^{\circ} 58^{\prime}$ is $4.9234356^{\circ} 59^{\prime}$ Log. 4.92351 Diff. 8 pro. for $45^{\prime \prime}$ is 6 Additive -4.92349
This Example is merely given for the purpose of showing the nature of the proportions of the Logs. required for the odd seconds, and which have a considerable effect on the time when working for the nearest second. In practice we just take the difference betwcen the Logs. as they stand in the Table, and apply the proportons mentally as we write them down. This saves considerable time, and the learner. by a attic oies ase of his mental cowers will soon acnuire the habit of doinc the same with ease

HATING THE CHRONOMETER AT SEA.

EXAMPLE 1.

March 10th, 1854. A Ship bound out from New York Harbor, observed the following set of Altitudes and Times by Chronometer; her True Position at the same time being found from the bearing of the land, as follows Required the Error of the Chronometer on Greenwich Mean Time. Elevation $18 \frac{1}{2}$ feet.

Ruris Obs Alt.. $10^{\circ} 15^{\prime} 20^{\prime \prime}$	T. by Ch.0b 16 m 24 s	Neversink Light-H. bore W. $\frac{8}{4}$ N. 4 miles, or True West.
A. M.... $10 \quad 2630$	$\begin{array}{llll}0 & 17 & 26\end{array}$	Sandy-Hook Light-House N.W. 7 " or "N.W. ${ }^{\text {a }}$ W
$\begin{array}{llll}10 & 37 & 50\end{array}$	$0 \quad 18 \quad 28$	The Float Light Vessel N. $\mathrm{l}_{\text {星 E. } 3 \text { " or " North. }}$
3) $79^{\prime} 40$	3) 5 mm 18 s	These Bearings laid off on the Chart gives the Ship's
Mn. of the Alt.. $10^{\circ} 26^{\prime} 33^{\prime \prime}$	Mn.of T8.0h $\overline{17 \mathrm{~m} 26 \mathrm{~s}}$	True position at the time of the Sights,
Index Error. Sub. 2	by Chron.	Latitude in $40^{\circ} 23^{\prime} 40^{\prime \prime} \mathrm{N}$. Longitude $73^{\circ} 55^{\prime} \mathrm{W}$
Semid....... $16^{\prime} 7^{\prime \prime} \overline{10}^{10^{\circ}} \overline{24^{\prime} 33^{\prime \prime}}$		And the Longitude in Time 4 h 55 m 40 s .
$\left.\left.\begin{array}{l} \text { Dip } 4^{\prime} 12^{\prime \prime} \\ \text { Ref. } 4^{\prime} 59^{\prime \prime} \end{array}\right\}-9^{\prime} 11^{\prime \prime}\right\} \text { Add } 656$		
True Alt............. $\overline{10^{\circ} 31^{\prime} 29^{\prime \prime}}$		Sun's Dec. at Noon...... $4^{\circ} 6^{\prime} 30^{\prime \prime}$ S. Diff. 1h. $\frac{1}{6}$) 59
Pular Dist........... 94615	Log. 0.00111	Correction Sub. 15
$40 \quad 23 \quad 40$	Log. 0.11827	Correct Dec. $4^{\circ} 6^{6^{\prime} 15}{ }^{\prime \prime}$
$145^{\circ} 1^{\prime} 24^{\prime}$		$90 \quad 0$
$72^{\circ} 30^{\prime} 42$	Log. 4.47787	Polar Distance $94^{\circ} 6^{\prime} 15^{\prime \prime}$
$61^{\circ} 59^{\prime} 13^{\prime \prime}$	l.og. 4.94589	
Ap. I. at Ship....... 7 h 10m 12s	Log. 9.54314	Correction....... Sub. 16 -
Equa........... Add $\frac{10 \quad 31}{}$		Correct Equation $\overline{10 \mathrm{~m} \mathrm{318} 39}$
		Come Equan 10m 31-30
Long. in Time. $4 \quad 55 \quad 40$		
$12 \mathrm{~h} \mathrm{16m} 23 \mathrm{~s}$		Green. Time of the Observation. . 0 h 16 m 2.5
Less....... . $12 \quad 0 \quad 0$		Time of the Obs. by Chron.0 $17 \quad 26$
sr. Mn. Time........ 0h 16m 238		Chron. Fast of Gr. Mean Time. lin 3s March 10th

EXAMPLE 2.

Heuce the Chronometer is this day. March 25th. Fast of Greenwich $0 \mathrm{~h} 1 \mathrm{~m} \mathrm{41s}$, , and gaining 2 s and 5 -10th and 1-88 * a tenth per day.

[^17]
EXAMPLE 3

April Lat 1854. A Ship off Cape Cod, bearing S. $9^{\circ} \mathrm{W}$. by Compass 3 miles distant, in the erening observed the Bunis Meau Alutude to be $6^{\circ} 39^{\prime} 28^{\prime \prime}$. Ou the Prime Vertical, Index Error $1^{\prime} 20^{\prime \prime}$ Additive, Maguetio Azimuth 8. $99^{\circ} 20^{\circ} \mathrm{W}_{\text {, }}$ and Time by Cbrouometer loh 22 m 30 s. Required the Error of the Chronometer ou Greenwich Mean Time and the Magnetic Variation. Elevation 16 feel.

Sun's Obs. Alt. $6^{\circ} 39^{\prime} 28^{\prime \prime}$ Tine by Chro. 10 h 22 m 30 s . Bearing of Cape Cod by Compass it $9^{\circ} \mathrm{W}$.

$\left.\left.\begin{array}{l}\operatorname{Dip} .3^{\prime} 53^{\prime \prime} \\ \text { Ref. } 7^{\prime} 36^{\prime \prime}\end{array}\right\}=11^{\prime} 29^{\prime}\right\}$ Add ± 32
True Altitude. $6^{\circ} 45^{\prime \prime} 20^{\prime \prime}$
Polar Distunce........... 85 18 12 Log. 0.00146 $85^{\circ} 18$
Latitude. 42 2 54 Log. 0.12955
$134^{\prime} 5^{\prime} 56^{\prime \prime}$
Half Sum
... $67^{\circ} 4.28^{\prime \prime}$
Differeuce. $\overline{0^{\circ} 19^{\prime}} 8^{\prime \prime} \log 493892 \overline{18^{\circ}} \overline{14^{\prime}}$ Log. 4.97763 Polar Dis. . $\overline{85^{\circ} 18^{\prime} 12^{\prime \prime}}$
App. Time at Ship.....5и40in $32 \mathrm{~s}=\log . \overline{9.6} \overline{6048} \quad \overline{9.70075}=6 \mathrm{~h} \quad 0 \mathrm{~m} 563=T r u e \mathrm{Az}$ S. $90^{\circ} 14^{\prime} \mathrm{W}$.
Equation.Add 3 52 Maguetic Azimuth...... S. 99 20 W.
Mean T. at Ship.5h 44 m 24 s Eq. of T. 3 m 59 s .84 Dif. lh 755 Magnetic Variation........ $\overline{9^{\circ} 6^{\prime} \mathrm{W}} \mathrm{l}$ ly Long in Time......... $440 \quad 13$ Corr., Sub. $7{ }^{80}-10 \frac{1}{3}$
Time at Greeewich. . $\overline{.10 \mathrm{~h} 24 \mathrm{~m} \mathrm{3is}}$ Cor. Equ. $3 \overline{\mathrm{~m} 52}-4$ - $\overline{7 \cdot 80.2}$
Time by Cbron....... $10 \quad 22 \quad 30$
Heace the Chron. is 0h 2 m 7 Ts Slom of Green. Mean Time. April lst, and the Magnetic Variation 9° Westerly and as the Magnetic Variation found by the Azimuth agrees uearly with that known to exist off Cape Cod, it may be cuncluded that there is no Local attraction in that part of the vessel where the Compass stood when the Bearing were taken.

EXAMPLE 4.

April $21 \mathrm{st}, 1854$. The Isle of Corro, one of the Azores Islands, in sight bearing S. $24^{\circ} \mathrm{W}$ by Compass Distant 16 milea, in the evening the Sun's Mean Observed Altitude was $18^{\circ} 38^{\prime} 9^{\prime \prime}$. Index Error $1^{\prime} 20^{\prime \prime}$ Additive, Time by Chronometer 7 h 4 m 59 s , and the Magnetic bearing of the Sun at Setning was W. $39^{\circ} 45^{\prime} \mathrm{N}$. Required 'he Error and the Daily rate of the Chron, since leaving Cape Cod on the lst of April and the Magoetio Varia hug Elevation 18 feet

Sun 3 Observed Altitude,.. . $18^{\circ} 38^{\prime} 9^{\prime \prime}$ Time by Chron. 7 h Om 598	
Index Error.Add 120	
Semid. $\left.15^{\prime} 57^{\prime \prime}\right) \overline{18^{\circ} 39^{\prime} 29^{\prime \prime}}$	Bearing of Corvo by Compass........ . .S. $34^{\circ} \mathrm{W}$
Dip... $\left.4^{\prime} 8^{\prime \prime \prime} ; 6^{\prime} 53^{\prime \prime}\right\}$ add 94	Variation of the Compass............... 24 West'ly.
Ref... $\left.\left.2^{\prime} 45^{\prime \prime}\right\}=6^{\prime} 53^{\prime \prime}\right\}$ Add	True Bearing South. ..Dist. ${ }^{15^{\prime}} \quad 0$
True Altitude. 1 18 $\overline{8^{\circ} 48^{\prime}} \overline{88^{\prime \prime}}$	Lat. of Corvo. $39^{\circ} 41 \mathrm{~N}$. Long. $313^{\prime} \mathrm{W}$.
Polar Distauce......... 78 \% 27 Log. 0.00951 Lat. of the Ship.......... $39^{\circ} 56^{\prime}$ N. In time 2 h 4 m 120	
Latitude. ©............... ${ }_{139} \frac{56}{} \frac{0}{} \quad$ Log. 0.11552	Sun's Declination, Noon... $11^{\circ} 50^{\prime} 36^{\prime \prime} N_{\text {n }}$ Dif. $1 \mathrm{~h}=51^{\prime \prime}$
Half Sum. $6 \underline{68^{\circ} 24^{\prime \prime} 0^{\prime \prime}}$ Log. 4.56599	Currect Dec.............. $11^{\circ} 56^{\prime} 33^{\prime \prime} \quad-\frac{5}{5^{\prime}} \frac{77^{\prime \prime}}{}$
Difference. $49^{49^{\circ} 35^{\prime} 27^{\prime \prime}} \log 4.58168$	Polar Distance. $\frac{78^{\circ}}{} \frac{3^{\prime}}{} \frac{27^{\prime \prime}}{}$
Apparent Time at Ship.. 5h 1113 27s $=$ Log. $9.57 \overline{245}$ Equation..........Sub. 124	
Mean Time at Ship......5h 0m 3s	Equa of Time................ 1m 20s 6 Dif. 1h- 514 Corr...Add 3 . 55 7h
Mean Time at Green..... ih 4in 15 ºs Tinue by Chron. 7 б9	Lat. 40° and Dec $12^{\circ} \mathrm{N}$ gives Tr...
Chr. Slow of G. April 21 st 3 ml 16 s	Maguetic Ampli. at Sunset. \qquad W. 3945 N
Chr. Slow of G. April lst. $\quad 7$	Maguetic Variation. 24 $^{\circ}$ Wes'ly
Accumulated Errur..... $\operatorname{lin}_{60} 98$	

Days Elapsed. $2^{(1)} 6^{5} 9 \mathrm{~m}$ (3s and 4-10th and $\frac{1}{8}$ Daily Rate Losing, and Slow this day $5 m 1$ ae

$$
\begin{aligned}
& \frac{60}{20) 90 \ln (4} \\
& -\frac{80}{\frac{1}{2} \frac{0}{0}\left(\frac{1}{2}\right.}
\end{aligned}
$$

[^18]
RATING THE CHRONOMETER.

EXAMPLE κ

'September 7th, 1854. Ship off the Cape of Good Hope. The Magnetic Variation Observed from an Ampliturle at Sunrise was found to be 30° Westerly, and when the Lion's Head bore N. $30^{\circ} \mathrm{E}$ by Compass, Distant 30 milen the Sun's Mean Altitude was ooserved to be $11^{\circ} 31^{\prime} 49^{\prime \prime}$ in the Morning. Time by Chronometer 6h 8 m 10 s from Midnight. Required the error of the Chronometer on Green. Mean Time. Elevation 18 feet.

Sun's Observed Altitude. . $11^{\circ} 311^{\prime} 49^{\prime \prime}$	T. by Chr. 6h 8m 10s	Bearing of the Lion's Head. N. 30° E.
Semid........ $1555{ }^{\prime \prime \prime}$ \} Add 7 17	Reckoned from Mid't.	Magnetic Variation.. 30 Weat'ly.
D. $4^{\prime} 8^{\prime \prime}$ R.4'30" $\left.=838\right\}^{\prime \prime}$		True Bearing North 30 miles.
True Altitude..... ${\overline{11}{ }^{\circ} 39^{\prime} 6^{\prime \prime}}^{\prime \prime}$		Lat. Lion's Head. $.33^{\circ} 56^{\prime}$ S. Long. $18^{\circ} 24^{\prime} \mathrm{E}$,
Polar Distance.......... 9612 l	Log. 0.00255	Lat. of the Ship. . $34^{\circ} 26^{\prime} \mathrm{S}$. in Time $\overline{1 \mathrm{~h} 13 \mathrm{~m} 36 \mathrm{~s}}$
Latitude............... $34 \quad 26 \quad 0$	Log. 0.08366	
$142^{\circ} 17^{\prime} 8^{\prime \prime}$	Sun's	Dec. Noon.... $6^{\circ} 6^{\prime} 26^{\prime \prime}$ N. Dif. 1h $56^{\prime \prime}$
Half Sum. 7 71 ${ }^{\circ} 8^{\prime} 34^{\prime \prime}$	Log. 4.5095 Cor	Add. 586 T. fr. Noon 6h
Difference. ${\text { 59 }{ }^{\circ} 29^{\prime} 28^{\prime \prime}}^{\prime \prime}$	Log. 4.93528 Corre	ct Decl............. $\overline{6^{\circ} 12^{\prime} 2^{\prime \prime}} \quad \overline{60) 336}$
App. Time at Ship........ $\overline{7 \mathrm{~h} ~ 14 \mathrm{~m}} \overline{50 \mathrm{~s}}$ Equa.............Sub. $\quad 1 \quad 57$	Jug. 9.53100 Polar	Distauce........... $96^{\circ} 12^{\prime} 2^{\prime \prime} \quad \overline{5^{\prime} 36^{\prime \prime}}$
Mean Time at Ship $\overline{7 \mathrm{hb} \mathrm{12m}} \overline{538}$	Equ	of Time.............. $2 \mathrm{~m} 2 \mathrm{~s} \cdot 14$ Dif. $1 \mathrm{~h} \cdot 849$
Long in Time.......Sub. $113 \quad 36$		Sub. $\quad 5 \cdot 09 \mathrm{~T}$. fr. Noon 6b
Green. Mean Time....... 5h 59m 178 Time by Chron. 6810	Corre	Equ............ 1 mm 578 ${ }^{515}$ 509.4
Error of the Chron....... 8 m 5	Past of Green Mean	this day, September 7th

EXAMPLE 6

September 30th, 1854. Ship in Sight of St. Paul's Island, in the Indian Ocean, the Variation of the Compass ω per Amplitude, being 21° Westerly, and when the centre of the Island bore $\mathrm{S} .21^{\circ} \mathrm{W}$. by Compass, Distant 25 miles, the Sun's Observed Altitude was $8^{\circ} 25^{\prime} 15^{\prime \prime}$ in the Morning, the Time by Chronometer being 1 h 21 m 2 s , reckoned from Midnight, or 13 h 21 m 28 from the preceding Noon. Required the error of the Cbronometer on Greerwich Mean Time, and its rate since leaving the Cape of Good Hope on the 7th of September. Elevation 19 feet.

\qquad
188

hATING THE CHRONOMETER ON SHORE.

When a Ship is in Port, and the Sea Horizon visible from the deck, and the Sun is at a proper distance from the Meridian, the Rate of the Chronometer nay, be found in a similar manner to the foregoing Examples ; or the differenceof its Error on the Mean Time at the place, ascertained after the lapse of several days, will give uts Rate per day. When the Sea Horizon is not visible from the Ship's deck, it may happen that rood Sights can ve obtained from the Sea-beach. In that case, compare the Watch (with which the Time ie intended to be taken) with the Chronometer, before leaving the vessel, and also ou the return on board. If the comparisons are the same, then the Watch has no rate, but if they differ, the difference is the e:rur of the Watch in the interval. Hence its rate may be found, (unless the Chronometer has itself ? very large rate,) a proportion of which must be applied to the Time by the Watch when the Altitudes vere observed.
The elcvation of the Observer's eye above the Sea-level must also, in this case, be carefully ascertained, π order to apply the proper correction for the Dip of the Horizon, found in Table V. An Example of dongg this is not necessary, as it is worked in the same manner as in the preceding Examples.

By the Artificial Horizon.

The use of this instrument is fully explained at pages 77 and 78 , and the manner of finding the Time is given at page 131. It is, therefore, considered unnecessary to give any more Examples of the same, and we proceed to give a case of Rating the Chronometer from the Mean Time at the Place, supposed to have been obtained from either of the above methods.

EXAMPLE 1.

October 3d, 1854. A Ship lying in the Port of Rio Janeiro, her correct position by bearing was Latitude $22^{\circ} 54$ South, Longitude $43^{\circ} 9^{\prime}$ West. At 8 h 30 m 25 s A. M, Mean Time at the place, a Chronometer showed 11h 33 m 12 s Required its Error on Greenwich Meau Time.

EXAMPLE 2.

nov. 2d, 1854. At Rio Janeiro, Ship in the same position as before, the Mean Time at the place was 8 b 10 m 6. A. M.. the same Chronometer showed 11b 14m 7s. Required its Error on Greenwich Mean Time, and its Rate sinoa Ootober 3d, at which time it was 10 m lls too fast.

Mean Civil Time at Rio Janeiro, Nov. 2d.	$\begin{array}{ccc} 8 \mathrm{~h} & 10 \mathrm{~m} & 5 \mathrm{~s} \\ 12 & 0 & 0 \end{array}$
Mean Astronomical Time, Nov. 1st	20h 10m ös
Longitude of the Ship $43^{\circ} 9^{\prime} \mathrm{W}$. in Time. Add.	$2 \quad 52 \quad 36$
Mean Astronomical Time at Greenwich, Nov. 1st. .	23h 2 m 418
Astronomical Time by Chronometer, Nov. 1st.	$\begin{array}{lll}23 & 14 & 7\end{array}$
Chronometer Fast of Greeowich Mean Time, Nov. 2d.... do. do.	$\begin{aligned} & \ln 268 \\ & 10 \quad 11 \end{aligned}$
Accumulated Error.	$\operatorname{lim~}_{60} 15 \mathrm{~s}$
Number of days elapsed	
The Chronometer is this day Fast of Greenwich 11m 268. .	$\overline{150(5}$
And gaining 2 sea. 5-10th per day	150
	0

Nork.-In East Longitude, the Longitude in Time mast be subtracted from the Mean Astronomical Tiras at the plane, to obtain the Greenwich Mean Time; because the Time at Greenwich mast always be the least in East longr

FINDING THE LONGITUDE BY CHRONOMETER.

Having thus given all the various methods of finding the Longitude hy Chronometer which are of preo tical utility, and also the manner of Rating the same, both at Sea and on Shore, this part of the s ihjeot will be closed by the following Examples for Exercise.

QUESTIONS FOR EXERCISE.

Questron 1st.-April 30th, 1854. (Noon at Sea.) In North Latitude, and $24^{\circ} 30^{\prime}$ West Loingitude. in the morning, the observed Altitude of the Sun was $22^{\circ} 7^{\prime}$. Greenwich Time by Chronometer 8 h 46 m 10 s , reckoned from midnight. Ship then sailed N. E. by E. (True Course) 35 miles until Noon. when the Sun's Meridian Altitude observed was $68^{\circ} 3^{\prime}$ South. Required the Ship's Latitude and Longitude in at the time of the Sights, and also at Noon.

Answer.-Latitude $36^{\circ} 13^{\prime}$ N., Longitude $25^{\circ} 11^{\prime} \mathrm{W}$. at time of Sights, and Latitude $36^{\circ} 32^{\prime}$ N., Longitude $24^{\circ} 35^{\prime}$ W. at Noon.

Ques. 2d.-April 30th, 1854. (Noon at Sea.) Latitude observed at Noon $36^{\circ} 32^{\prime}$ North. In the afternoon the Sun's observed Altitude was $13^{\circ} 48^{\prime}$. Greenwich Time by Chronometer 7 h 7 m 15 s . Ship had sailed E. N. E. (True Course) 30 miles since Noon. Required the Latitude and Longitude in at time of the Sights, and also the Longitude of the Ship reduced back to Noon.

Ans.-Latitude at time of Sights $36^{\circ} 43^{\prime} \mathrm{N}$., Longitude $24^{\circ} 2^{\prime} \mathrm{W}$., and Longitude at Noon $24^{\circ} 37^{\prime} \mathrm{W}$.
Ques. 3d.-March 26th, 1854. (Noon at Sea.) In South Latitude, and $66^{\circ} 30^{\prime}$ East Longitude, by aocount. In the morning the Sun's observed Altitude was $25^{\circ} 25^{\prime}$. Time by the face of the Chronometer 3 h 29 mI 1 s , or which. reckoned from the preceding Noon is, March $25 \mathrm{th}, 15 \mathrm{~h} 29 \mathrm{~m} 1 \mathrm{~s}$ Astronomical Time, the Chronometer being 2 m 24 s fast of Greenwich Mean Time. Ship then sailed N. W. (True) 17 miles until Noon, when the Sun's Meridian Altitude observed was $75^{\circ} 20^{\prime}$ North. Required the Latitude and Longitude in at the time of the Sights and at Noon.

Ans.-Latitude $12^{\circ} 32^{\prime}$ S., Longitude $66^{\circ} 37^{\prime} \mathrm{E}$ at time of Sights, and Latitude $12^{\circ} 20^{\prime} \mathrm{S}$., Longitude 66° $24^{\prime} 30^{\prime \prime} \mathrm{E}$. at Noon.

Ques. 4th.-March 10th, 1854. (Noon at Sea.) In North Latitude, and $60^{\circ} 45^{\prime}$ West Longitude, the Sun's Meridian Altitude observed at Noon was $47^{\circ} 32^{\prime}$ South. Ship then sailed Ngrth East (True) 40 miles, and in the afternoon the Moon's observed Altitude, Lower Limb, was $40^{\circ} 32^{\prime}$ to the Eastward of the Meridian, and the Green wich Time by Chronometer was 9 h 41 m 21 s . Required the Latitude and Longitude in at Noon, and also the Latitude and Longitude in at the time of the Moon's Altitude.

Ans.-Latitude observed $38^{\circ} 14^{\prime} \mathrm{N}$, Longitude $60^{\circ} 33^{\prime} \mathrm{W}$. at Noon, and Latitudo $38^{\circ} 42^{\prime}$ N., Longitude $59^{\circ} 57^{\prime} \mathrm{W}$. at the time of Sights.

Ques. 5th.-April 7th, 1854. (Noon at Sea.) In North Latitude, and West Longitude, at twilight in the morning, the Meridian Altitude of the Star Vega was observed to be $79^{\circ} 51^{\prime}$ North, and at the same time the Altitude of the Planet Venus was $24^{\circ} 21^{\prime}$ to the Eastward of the Meridian, the Greenwich Time ky Chronometer being 10 h 15 m 55 s from midnight, or April 6 th, 22 h 15 m 55 s from the preceding Nools Required the Latitude and Longitude in at the time of the Sights.

Ans.-Latitude observed $2026^{\prime} \mathrm{N}$., Longitude by Chronometer $70^{\circ} 5^{\prime} \mathrm{W}$.
Ques. 6th.-February 10th, 1854. (Noon at Sea.) In North Latitude and West Longitude, at twiligl.t in the evening; the observed Altitude of the Star Sirius was $12^{\circ} 27^{\prime}$ to the Eastward of the Meridian, ard the Greenwich Time by Chronometer was $10 \mathrm{~h} 4 \mathrm{~m} \mathrm{41s}$, and at $1 \frac{1}{2}$ hours afterwards the Meridian Altituc.e of the Star Aldebaran was observed to be $66^{\circ} 16^{\prime}$ South. Ship had sailed on a true S. W. Course 12 miles in the interval. Required the Latitude in by Observation, and the Latitude and Longitude in at time of Sights.

Ans.-Latitude observed by 洋 Aldebaran $40^{\circ} 1^{\prime} \mathrm{N}$. Latitude in at time of Sights $40^{\circ} 10^{\prime} \mathrm{N}$., and Longitude $68^{\circ} 23^{\prime} \mathrm{W}$. at the time of the Sights

Ques. 7th.-A Chronometer which was $10 \mathrm{~m} \mathrm{14s}$ Fast of Greenwich Mean Time at New York, on the 10 th of March, 1854 , showed $3 \mathrm{~h} 0 \mathrm{~m} \mathrm{53s}$, when the Mean Time at Calcutta was $8 \mathrm{~h} 40 \mathrm{~m} \mathrm{10s} \mathrm{A}. \mathrm{M.}$, 12th of June, 1854, in Longitude $88^{\circ} 17^{\prime}$ E., or in Time 5 h 53 m 8 s . Required its Error on Greenwich Mean Time, and its Rate since leaving New York.

Ans.-Its Error on Greenwich Mean Time is 13 m 51 s . Accumulated Error 3m 37s. The number of dave elapsed 94, and its daily Rate 2 sec. 3-10th gaining since leaving New York.

'I HE LUNAR OBSERVATION

Means the measurement of the Angular Distance of the Moon from certain Celestial bodies, and as the Moon is constantly advancing to the Eastward in the heavens, at the rate of about 1^{\prime} in 2 minutes of time, sbe overtakes and passes all the other Celestial bodies in her progress, they appearing to remais stationary in the heavens.

The Moon's distance from the Sun, and a few bright Stars and Plancte, are calculated for the end of every 3 hours, (except during about 6 days at the time of each New Moon,) and given in the Nautical Almanac for the Mean Time at Greenwich. The observation of this distance from any part of the Earth' surface, affords the means of determining the Greenwich Mean Time, the difference between which and the Mean Time at the Ship, is the Longitude in Time. This constitutes a Lunar Observation.

If the distance between the Moon and the other body were the same to the spectator, whether viewed at the surface or from the centre of the Earth, there would be nothing more to do than to measure the distance, (with an instrument,) and to find from the Nautical Almanac the Greenwich Time corresponding to it, and to compare this with the Time at the place. But the Refraction of the Atmosphere has the tendency to raise the Sun, a Star, or a Planet, above its true place in the heavens, and the effect of Parallax is to make them appear lower; the latter has, however, very little effect, in consequence of their great distance. (See explanation given at page 67.) On the other hand, the Moon being near the Earth, her Parallax in Altitude is greater than her Refraction, and which causes her to appear beiow her true place in the heavens.

Hence the Apparent Distance between the Moon and the other body differ from the True Distance, as will be seen in the following Diagram.

DIAGRAM,

- Showing the Effect of Parallax on tne Lunar Distance.

Fig. 28.

As the Moon must always be raised, and the Sun or Star lowered, to obtain their true places, the Star to the right in the above Figure being higher than the Moon, it is evident that by raising her the True Dratance will be less than the Apparent Distance.

Again, the Star to the left being lower than the Moon, by raising her the True Distance will be greater than the Apparent Distance

And it is evident from the above, that the difference between the True and the Apparent Distancen depend almost entirely on the correction of Altitudes.
It is therefore useful to bear in mind, as a check against gross mistakes, that the True and Apparent Distances carnot differ by more than the Sum of the Corrections of Altitude. Again, when the Moon's Altitude is equal or less than that of the other body, the True Distance is less than the Apparent Distance. But the contrary does not always hold good when the Moon's Altitude is greater than the other body

THE LUNAR OBSERVATION

Is the only independe.st method of finding the Longitude which is practical at Sea, and it requires grear practice to measure the distance successfully. (See the Use of the Sextant, and the Remarks on Measuring the Lunar Distance, at pages 72 to 76 .) And the application of so many small corrections as are necesgary, when accuracy is required, even with extraordinary care and some skill, it is scarcely possible to arrive at extreme precision, although the observation may have been made on shore, with the best instruments ; and it is recorded by practical surveyors, and other scientific men, entitled to great credit, that the Mean Longitude deduced from several thousands of Lunar Distances, taken equally on both sides of the Moon at one season of the year, have differed from 10^{\prime} to 12^{\prime} from the Mean Longitude deduced from an equal number of Lunar Distances taken in like manner at a different season of the year.

And from my own experience in observing Lunar Observations at Sea, during the course of many years, I am entirely of the same opinion.

The Lunar Observation is certainly an excellent mode of detecting any very gross error in the Chronometer, and is valuable on that account alone, and also for correcting the Dead Reckoning within certain limits; but I am satisfied that a Chronometer cannol be rated by Lunars at Sea, though some authors of Nautical works persist in the contrary opinion.

The most rapid change of distance between the Moon and a body is $1^{\circ} 48^{\prime}$ in three hours, and the effect of an error of 1^{\prime} of distance is $\mathbf{2 5}^{\prime}$ of Longitude, or that of $15^{\prime \prime}$ error of Distance is 6^{\prime} of Longitude in the most favorable case.

An error in the observed Altitudes, however minute, also affects the True Distance. Then there are the orrors in the Shades or Screens, and the parallelism of the Telcscope, all which are explained at page 72 and rules given to correct them; and lastly the errors in the Tables, however small, from which the cor rections are taken.

It is usual to take Lunar Distances both East and West of the Moon, and to take the Middle of the Longitudes so found for the True Longitude. This may compensate to a certain extent for some of the errors, but it may nevertheless be several minutes of Longitude from the truth. It is, however, more likely to be correct than either of the others.

From the above facts it would appear that in general the Longitude by set of Lunar Distances is liable to be in error, even with the greatest care and by the most practical observer. This error may not exceed 10^{\prime}, and is in general much less ; but even this amount of precision is a very valuable acquisition to a Ship on a long voyage, and which may not have had an opportunity of verifying her Chronometer by the sight of land. For, if after several sets of Distances have been taken, both East and West of the Moon, and the Longitude deduced from each set differ considerably from the Longitude by Chronometer, and they all point in the same direction, that is, either all to the Eastward or all to the Westward of the Chronometer, it may be concluded that the Chronometer is in error to the amount of nearly the difference between them. And in the case of a Chronometer thus changing its error and rate, it would be unsafe to trust to it during the remainder of the voyage. And as the following method of observing and working a Lunar Observation may be done with nearly as little time and trouble as that of finding the Longitudc by Chronometer, and in the case of the Chronometer breaking down at Sea, the Longitude may be found sufficiently near for all practical purposes by the Lnnar method, bearing in mind that in Low Latitudes she Dcgrees of Longitude are large, and where an error of a few minutes of Longitude would be most con spicuously seen, the weather is generally clear and fine, and the land may be seen at a considerable dis. tance off.

On the other hand, in High Latitudes the Degrees of Longitude are small, and where an error of a few minutes of Longis.:de occupy only a small portion of space, or miles of Departure, consequently they world buve ress effect 0: the Ship's Distance from the shore than it would in Low Latitudes.

THE LUNAR OBSERVATION.

In taking a Lunar Observation, two assistants may beremployed to observe the Altitudes of the objecta, While the principal observer is taking their Distance, and a fourth notes the Times of each by a Watch or Chronometer.

The Observation is then written down in the following order. (See page 76.)

June 3d, 1854. In the Afternoon.

Times by Watch. . 2 h : $u \mathrm{~m}$ 56s Sun's Altitude. . $49^{\circ} 45^{\prime}$

2	58	0	do.	4917
3	0	4	do.	$48 \quad 49$
3$) 8 \mathrm{~h} 54 \mathrm{~m}$	0			

Mn of the Times.. $\overline{2 \mathrm{~h} 58 \mathrm{~m} 0} \mathrm{Sun's}$ Obs. Alt.... $49^{\circ} 17^{\prime}$

Height of the Eye, 18 feel.
Moon's Alt., L. L., . $41^{\circ} 10^{\prime}$ Dist. Θ and D. . $87^{\circ} 41^{\prime} 20^{\prime \prime}$ do. $\quad 0 \quad 32$ To the Westward $0 \quad 42 \quad 20$ do. $\quad \frac{0 \quad 54}{3996} \quad 0 \quad 4320$
Moon's Obs. Alt. . $\overline{41^{\circ} 32^{\prime}}$ Mean Obs. Dist. $87^{\circ} 42^{\prime}-20^{\prime \prime}$

When no assistants are at hand, one person may take the whole observation himself ; indeed it is more satisfactory to do so than to have to trust to others, because it is very rarely possible that the Altitudes of the bodies can be seized at the instant of taking the Distance. By adopting the following method the observer will be independent of all assistants, and learn by experience to trust entirely on himself in using the instruments with precision.

Being prepared with two Quadrants to measure the Altitudes of the bodies, and a Sextant to measure their Distance, all previously adjusted, (or their errors known,) and a Watch to note the Time. Set the Index of the Sextant roughly to the Approximate Distance. (See page 74 or 75 .) Set the Indices of the Quadrants roughly to the Approximate Altitudes of the two bodies. Then, holding the Watch in the hand, or place it where the movement of the second hand can be distinctly seen, take an Altitude of one of the bodies, (generally the one farthest from the Meridian,) at the instant the second hand of the Watch has completed the full minute, and note down the Time and the Altitude of that body opposite. Take up the other Quadrant and observe the Altitude of the other body at the time the second hand of the Watch has completed the next two minutes, and note down the Time and Altitude as before. Now take the Sextant and bring the Limbs of the objects in contact, at the instant the second hand of the Watch has completed the next two minutes, and note down the Time and the observed Distance. Shift backward or forward the Index of the Sextant 1^{\prime}, (as directed at page 76,) and await the contact; note the Time and Distance down as before. Shift the Index again 1^{\prime} in the same direction, and note the time of contact as before, Mree Distances being sufficient. Take up the Guadrant and observe the Altitude of that body which was last observed, at the completion of the next two minutes, which note down as before, and finish with observing again the Altitude of the first body observed, at the expiration of the next following two minutes. rhus there will be a uniformity of Time between the Observations, which will render it easy to reduce them all to the Mean of the Times at which the Distance of the bodies were observed, as follows .

Form of Writing down the Observation.

June 3d, 1854. T. by Watch 2 h 52 m 0 s Alt. of the Sun....... $50^{\circ} 41^{\prime} 0^{\prime \prime}$ Height of the Eye, 18 feet.

To Reduce the Altitudes to the Mean of the Times that the Distance was Observed.
To Find the Sun's Altitude.
To Find the Moon's Altutude.

Time of 1 st Alt. 2 h 52 m Alt. $50^{\circ} 41^{\prime}$ T. 1st Alt. 2 h 52 m Time of 1 st Alt. 2 h 54 m Alt. $40^{\circ} 48^{\prime}$ T. 1st Alt. 2 h 54 m " 2 d Alt. $3.4 \quad$ Alt. $47 \quad 53 \quad \mathrm{Mn}$. of T's $2 \quad 58$ Say as 12 n is to $\overline{2^{\circ} 48^{\prime}} \mathrm{So}$ is 6 m 6 m being half of 12 m , and the Difference of Alti-
tude being $2^{\circ} 48^{\prime}$, the half of which subtract $1^{\circ} 24^{\prime}$
1st Alt. Obs. (and decreasing) was. 5041
Sun's Alt at the Mean of the Times $49^{\circ} \overline{17}^{\prime}$
 4 in being half of 8 m , and the Difference of Altitude heing $1^{\circ} 28^{\prime}$, the half of which addded $0^{\circ} 44$ 1st Alt. (iucreasing) was . 4048 Moon's Alt, at the Mean of the Times41 $1^{\circ} 88^{\circ}$

Hence we have the following Observation -
Mc a of the Times by Watch. 2 h 58 m 0s Suns Alt.. $49^{\circ} 17^{\prime}$ Moon's A $41^{\circ} 32^{\prime}$ Dist. © ard D. $87^{\circ} 48^{\prime} 30^{\prime \prime}$

TO FIND THE APPAREN'厂 ALTITUDES OF THE BODIES AND THEIR APPAREN'T DISTANCE.

- Add 12^{\prime} to the Observed Altitude of the Sun and Moon, and add their Semidiameter to the Observed Distance Bun's Obs. Alt. $.49^{\circ} 17^{\prime}$ Moon's Obs. Alt., L. L.. $41^{\circ} 32^{\prime}$ Obs. Distance of Sun and Moon. $87^{\circ} 42^{\prime} 20^{\prime \prime}$ Sun's App. Alt. $\frac{12}{49^{\circ} 29^{\prime}}$ Moon's App. Alt. . . . $41^{\circ} \frac{12}{44} \quad$ Sun's Semid. $15^{\prime} 48^{\prime \prime}$ D's Aug. Semi. $15^{\prime} 21^{\prime \prime}$. Sum $31 \quad 9$

June 3d, 1854. At 2 h 58 m P. M., Latitude iu 30° North, Longitude, Dead Reckoning, $70^{\circ} \mathrm{W}_{n}$ the Sun's Declin tion $22^{\circ} 21^{\prime}$ North, the Moon's Declination $12^{\circ} 28^{\prime}$ N., given to Project the Figure.

DIAGRAM OF A LUNAR, Drawn on the Plane of the Meridian.

Fif. 29.

In this Figure the Sun is on the Prime Vertical: to the Westward of the Meridian, and his Hour Angle measured on the Equator gives the Apparent Time of the Observation, 2 h 58 m P. M. The Moon having zearly the same Hour Angle to the Eastward of the Meridian, appears to a spectator situated at a great distance to the Eastward of the Earth, (which is in the centre,) to be nearly in the same line of bearing, sut the following Figure, drawn with the objects facing the spectator, will place them in a better point of new for showing the nature of the case.

DIAGRAM OF A LUNAR, Drawn on the Plane of the Prime Vertical.

Fig. 30.

In this last Figure both bodies are seen on the Prime Vertical, East and West of the Meridian, their Altitudes are laid off from the line of Chords, and their Apparent Central Distance measures on the scale $88^{\circ} 13^{\prime} 29^{\prime \prime}$. Now, it is evident that by raising the Moon (which the correction for Parallax does) we bring the Moon nearer the Sun, while the correction for Refraction increases the Distance by lowering the bodies; but as the former has more effect than the latter, the Moon's True Distance, according to the Figure, is less than the Apparent Central Distance. This quantity is found by the Rules given on the aext page, and which is termed Clearing the Lunar Distance.

[^19]
TO FIND THE APPARENT ALTITUDES AND DISTANCE.

Turn the Longitude by Dead Reckoning into time by Table XXVI, and aaa it to the Time at the Ship n West Longitude or subtract it in East, will give the Approximate Time at Green wich. Prefix the day of the month one day less than the Sea date, and call it the Greenwich Date.

* Take out the Moon's Semidiameter and Horizontal Parallax from the Nautical Almanac and correot them to the Greenwich Date by Table XXIV, and to the Moon's Semid. add her Augmentation, taken from Table VII.

To the observed Altitude of the Sun and Moon's Lower Limbs add 12'. But if the Moon's Upper Limb De observed, subtract 20^{\prime}, and if a Star be observed, subtract $4^{\prime} 4^{\prime}$.

Take out the Sun's Semid. from the Nautical Almanac and add both it and the Moon's Augmentation Semidiameter to the observed Distance, will give the Apparent central Distance.

If a Star be observed, add the Moon's Augmentation Semidiameter to the observed Distance if the nearest Limbs be observed, but subtract it if the farthest Limbs be taken, will give the apparent Distance.

If one of the bodies be at a sufficient distance from the Meridian, correct its Apparent Altitude for refraction by Table IV, but if the body be the Moon, by Table XXV, will give its true Altitude, with which find the Mean Time at the Ship as usual; but if both bodies are too near the Meridian an Altitude taken afterwards will give the Error of the Watch on Mean Time at the Ship, which must be farther corrected for the Difference of Longitude in Time the Ship has made in the interval; but it is much more convenient and correct to time tho observation, so that one of the Altitudes of the bodies, (the Sun or a Star is proferred) observed with the distance, may also be used to find the Time at the Ship.

To Clear the Lunar Distance.

RULE

1. To the Pro. Log. of the Moon's Horizontal Parallax, Table XXXIV, add the Log. Co-Secant of tes Apparent Altitude of the Sun or Star, taken from the bottom of Table XXVII, and the Log. Sine of the Apparent Distance found in Table XXXI, their Sum will be the Log. of the first correction.
2. To the Pro. Log. of the Moon's Horizontal Parallax already found, add the Log. Co-Secant of the Moon's Apparent Altitude, taken from the bottom of Table XXVII., and the Log. Tangent of the Apparent Distance found in Table XXXI, their Sum will be the Log. of the second correction.
3. Take the first and second corrections from Table XXXII, and place them under the Apparent Distance
4. Take the third correction from Table XXXIII, and after applying to it the correction taken from Table P, on the same page, (which is only used when the Sun is observed) and place it under the Second correction, add all these corrections to the Apparent Distance, and their Sum, rejecting 10 degrees, will be the truo Distance.

EXAMPLE 1.

June 3d, 1854. In Latitude $30^{\circ} u$ N., Longitude by Dead Reckoning $69^{\circ} 54^{\prime}$ W, the Time by Watch was 2 h 68m, Sun's observed Altitude $49^{\circ} 17^{\prime}$, Moon's observed Altitude L. L, $41^{\circ} 32^{\prime}$, and the observed Distance $87^{\circ} 42^{\prime} 20^{\prime \prime}$. (See page 164.) Required the true Distance, the Greeu. Mean Time, the Mean Time at Ship, and the Longitude in

Norz.-The manner of n3ing the Tables for clearing the Lanar Distance are the same as nsually done with others, anc requires nc explanation, and in Table XXXII directions are given on the face of the Table for taking outt and applying the corrections, and in Table P also the precept Add or Sabtract to or from the correction in Table XXXIll, ara civen en the face of the Table.

[^20]
having the true lunar distance, To find the corresponding greenwich TIME.

Find in the Nautical Almanac the two distances between wnich the True Distance falls. Take out the first of these and set it down under the True Distance, and note down the hour taken from the head of the same column, and also its Prop. Log., found opposite in the Nautical Almanac.
Take the Difference between the two Distances thus set down, with which enter Table XXXIV, and take out the Pro. Log. of the Difference ; from this, Subtract the Pro. Log. takeli from the Nautical Almanac, the remainder is the Pro. Log. of a portion of Time to be Added to the Hour taken from the head of the column, and the result is the Greenwich Mean Time.

To Find the Mean Time at the Ship, and thence the Longitule.

I'he Sun being at a proper Distance from the Meridian, in this case, at the tume the Distance was observed the Mean Time at the Ship is found from his Apparent Altitude, after correcting it for Refraction by Table IV, as follows:

The Difference between the Meai Time at the Ship and the Greenwich Time by observation is the Longitude in Tine, which turned into Space by Table XXVI, or it may be computed by the rule given at the bottom of dage 140, and the result is the Longitude of the Ship at the time of the observation.

REMARKS.

If the times of the observation are taken by a Chronometer, or which is the same thing, the time of the Distance by Chronometer obtained from a comparison with the same Watch used in taking the times of the observation, and the Error of the Chronometer on Greenwich Mean Time applied to it, we have the Greenwich Time by Chron. at the time of the observation; then if it agrees nearly with the Greenwich cime found by the Lunar Distance, the correctness of the Chronometer is confirmed within certain limits ; but should they differ considerably after several observations, it may be concluded that the Chronometer nas altered its rate.
The learner should practice measuring the Lunar Distance when in Sight of Land, or when lis Longitude 8 well known, and by that means establish a confidence in himself. But he must not feel discouraged hould it happen that his first attempts fall very wide of the truth, (as is generally the case,) but by a steady perseverance, and profiting by his former errors, he will, after carcfully perusing the instructions given at pages from 72 to 76 , soon acquire the habit of measuring the Distance tolerably correct. And it is easy to know whether the Distance measured has been too great or too small by simply inspecting the columns of the Nautical Almanac and finding whether the Distance between the bodies is increasing or decreasing: if increasing and the Greenwich Time by Lunar too great, when compared with the Greenwich Date, found as above, then the Distance observed has been too great by the amount of the Difference of Time, say as 3 hours is to the Difference in 3 hours, so is this Difference of Time to a proportion of Space, will give the amotut of the Error. When the Distance is decreasing and the Greenwich Time by Lunar too great, then the Distance observed has been too small. and the amount is found in like manner and vice versa. (See the Rules on pages 169 and 169.)

FINDING THE LONGITUDE BY LUNAR OBSERVATION．

Distance between the Moon and a Star．

In the preceding Example the Sun＇s Distance was observed W．of the Moon，and in the following Observa－ tion the Star＇s Distance is observed East of the Moon，for the purpose of showing the manner of connecting the two Longitudes so deduced，in order to obtain the Mean of the two at the time of the last Observation．

EXAMPLE 2.

June 3d，1854．On the evening of the same day as in the preceding Example，the following Distances were observed of Antares，East of the Moon，and East of the Meridian．Ship bad sailed from Latitude 30° North，and Longitude $69^{\circ} 52^{\prime} 45^{\prime \prime}$ West，by last Lunar．Course S．E．（true） 40 miles．Required the Longitude in，and also the Mean of the two Longitudes，at the time of the last Observation．

The Altitudes are now reduced to the Time of the Mean Distance by Pro．Logs．as follows：

> To Find the Star's Altitude.

н м． E ．в．м．8．
r．of 1st Alt． 75130 1st Alt． $12^{\circ} 57^{\prime}$ T．1st Alt． 75130 ＂ 2 d Alt． $8 \quad 359$ 2d Alt． $15 \quad 27$ Mn．of T＂s 75745
Then say as $\overline{1229}$ is to $2^{\circ} 30^{\prime}$ so is $\overline{615}$ 12m 29s Pro．Log． 1.1589
Arith．Compli．．．．．． 8.8411
$2^{\circ} 30^{\prime}$ Pro．Log．．． 0.0792
6 n 15 s Pro．Log． 1.4594 1st Alt．Obs．increas． $12^{\circ} 57^{\prime}$
$\overline{0.3797}$ Pro．Log．of the Corr． $115^{\prime \prime}$
Alt．of Antares at the Time of the Mean Dist．．．．$\overline{14^{\circ} 12^{\prime}}$

To Find the Moon＇s Altitude．
H．M． 8.
н．м．
T．of 1 st Alt． 75340 1st Alt． $60^{\circ} 27^{\prime}$ T． 1 st Alt． 75340 $\begin{array}{ll}\text {＂} 2 \mathrm{~d} \text { Alt．} \frac{8}{158} \\ \text { Then say as } & \frac{2 \mathrm{~d} \text { Alt．} 59 \quad 31}{818} \text { is to } \frac{\mathrm{M} \text { ．of T＇s }}{56} \text { so } \frac{7545}{45}\end{array}$ 8m 18s Pro．Log． 1.3362
Arith．Compli．．．．． 8.6638
$0^{\circ} 56^{\prime}$ Pro．Log．．． 0.5071
4 m 5 s Pro．Lug． 1.6443 1st Alt．Obs．decreas． $60^{\circ} 27^{\prime}$
$\overline{0.8152}$ Pro．Log of the Corr． 02^{\prime} Alt．of the Moon at the Time of the Mean Dist．．．$\overline{59^{\circ} 58}$ To Find the Greenwich Date and the Necessary Preparations for Clearing the Distance．

н．M．s．
Time at the Ship． 75745 Co．S．E． $40=$ D．L． $0^{\circ} 28^{\prime}$ Dep． $28^{\prime}=$ D．L． $0^{\circ} 32^{\prime} 45^{\prime \prime}$ E．D＇s Sem．Mid． $15^{\prime} 13^{\prime \prime}$ H．Par． $55^{\prime} 45^{\prime}$ L．in $69^{\circ} 20^{\prime}$ W．in T． 43720 Lat．Left．．．．．． 30 0 Lon．by Lunar 695245 W ．Aug． 13 Corr． 1^{\prime} Gr．Date，June 3d，$\overline{1235} 5$ Lat．In．．．．．．． $29^{\circ} 32 \mathrm{~N}$ ．＂brought on $69^{\circ} \overline{20^{\prime} 0^{\prime \prime}} \mathrm{W}$ ．Aug．Semid．$\overline{15^{\prime} 26^{\prime \prime}}$ H．Par．$\overline{5^{\prime} 46^{\prime}}$

to the Hour of the preceding Distance，N．A． $12 \quad 0 \quad 0$
Greenwich Mean Time $\overline{12 \mathrm{~b} 32 \mathrm{~m} \mathrm{33s}}$ at the Time of the Distance．
To Find the Mean Time at the Ship，and thence the Longitude．
App．Alt．of Antares ．．．．． $14^{\circ} 7^{\prime}$ Gr．Date，June 3d，12h 35m Sun＇s R．A scen．． 4 h 44 ml 13s Dif．1h．10s $\times 12 \mathrm{~h} 3 \mathrm{~g}^{\circ}$ Corr．for Ref．．．．．．．．．Sub．$\frac{4}{14^{-3}}$ ，Correction．．．．．．．．． 2
＊＇s True Alt．．．．．．．．．．．．$\overline{14^{\circ} 3^{\prime}}$＇Sun＇s Corr．R．A．$\overline{4 \mathrm{~h} 46 \mathrm{~m} \mathrm{18}} \mathrm{s}$
Polar Distance ．．．．．．．．．．． 116 Log． 0.04671 Equa．．．2m 13s
Latitude．．．．．．．．．．．．．．．． 29 29 Log． 0.06045 Corr．．．．． 5 澲＇s Right Ascen．1854．．．．16h 20 m 24
$\overline{159}{ }^{\circ} 41^{\prime} \quad$ Corr．Eq．$\overline{2 m} 8 \mathrm{~s}$
Half Sum ．．．．．．．．．．．．$\overline{79^{\circ}} \overline{50^{\prime}}$ Log． 4.24677 米＇s Decliastiou， $1854 \ldots . .266^{\circ} 6^{\prime} \mathbf{8}$
Difference ．．．．．．．．．．． $65 \quad 47$ Log． 4.96000
H．Aus．of 颗 East $\left.\begin{array}{c}\text { of the Meridian }\end{array}\right\} 3 \mathrm{~h} 35 \mathrm{~m} 58 \mathrm{~s}$ Log． 9.31393
＊＊s R．Ascen．．．．．．． $16 \quad 20 \quad 24$ Mean Time at Greenwich by Lunar．．．．．．．．．．．．．．．．．．．．．．． 12 h 82m 88n
R．A．of the Merid．$\overline{12 \mathrm{~h} 44 \mathrm{~m} \mathrm{26s}}$
Sun＇s R．Ascen．．．．． 44618
App．Time ．．．．．．．． 7 h 58 m 8 s
Equation of Time ．Sub． 28
Mean Tine at Ship．7h 66m 0s

FINDING THE LONGITUDE BY LUNAR OBSERVATIONS.

Distance Observed between the Moon and a Pianet.

EXAMPLE 3.

Joly 3d, 1854. In Latitude $39^{\circ} 25^{\prime}$ South, Longitude by Dead Reckoning about 80° East, at 8 h 80 m P. M Apparent Time at Ship, the observed Altitude of the Planet Jupiter was $31^{\circ} 35^{\prime}$ East of the Meridian, the observea Altitude of the Moon's Lower Limb $38^{\circ} 51^{\prime}$, and the observed Distance between the centre of Jupiter, East of the Moon, and the Moon's remote Limb was $102^{\circ} 31^{\prime} 43^{\prime \prime}$. Index Error $1^{\prime} 30^{\prime \prime}$, subtractive, and the Greenwich Mean Time by Chronometer; being correct, was 3 h 14 m 28 s . Required the Longitude in by the Lunar Distance, and the Frror (if any) of the measured Distance.

Preparation for Clearing the Distance.

Green. Time or Date, hy Chron July 3d,. . . 3h 14m 28s

Obs. Dist. D's remote Limb. $102^{\circ} 31^{\prime} 43^{\prime \prime}$
Index Error.	.Sub. $\quad 130$
Obs. Distance	\ldots. $102^{\circ} 30^{\prime} 13^{\prime \prime}$
Moon's Aug. Semid.	Sub. 1542
Apparent Distance.	. $102^{\circ} 14^{\prime} 31^{\prime \prime}$

$\left.\begin{array}{l}\text { Moon's Semid. Noon } 15^{\prime} 31^{\prime \prime} \text { and H. Par.......... } 56^{\prime} 49^{\prime} \\ \text { Corr'. Gr.Date } 2^{\prime \prime} \\ \text { Augm. } 9\end{array}\right\} \begin{aligned} & \text { Add } 11 \\ & \text { Corr. Gr. Date.. Add }\end{aligned}$
Aug. Semid...... $\overline{15^{\prime} 42^{\prime \prime}}$ Hor. Par.. $5 \overline{6^{\prime}} \overline{55^{\prime \prime}}$
Obs. Alt. Jup.. .. $31^{\circ} 35^{\prime}$ Obs. Alt. \mathbf{S}^{\prime} s L. L... . $38^{\circ} 51^{\prime}$ Dip Sub. $\frac{4}{31^{\circ}} \frac{12}{31^{\prime}}$ Corr............ Add 12 App. Alt. Jup... $\overline{31^{\circ}} \overline{31^{\prime}}$ App. Alt. of the D ... $\overline{39^{\circ} 3^{\prime}}$
To Clear the Distance.

To Find the Time at Ship, and thence the Ioagritua'e.
App. Alt. of Jupiter... $31^{\circ} 31^{\prime}$ Green. Date. 3 h 14 m 28 s Sun's R. A. Noon. . 6h 48 m 34 s Dif. $1 \mathrm{~h} .10 \mathrm{~s} \times 3 \frac{1}{\mathrm{~h}} \mathrm{~h}-33 \mathrm{n}$ Refraction....... Sub. 2

Corr.. Add $\quad 32$
True Alt. of Jupiter... $31^{\circ} 29^{\prime}$ East of the Meridian. Corr. R. Ascen... .- $\overline{6} \overline{4} \overline{49 \mathrm{~m}} 6 \mathrm{~s}$
Polar Distance 6821 Log. 0.03177
Latitude. $\frac{3925}{139^{\circ} 15}$, Log. 0.11207
Half Sum. $\overline{69^{\circ} 88^{\prime}} \log .4 .54161$
Difference $\overline{38^{\circ}{ }^{\circ}}{ }^{\prime}$ Log. 4.79079
H. Angle of Jup. E. $4 \mathrm{~h} 25 \mathrm{~m} 23 \mathrm{~s} \log \cdot \overline{9.47624}$
R. A. of Jupiter.... $19 \quad 44 \quad 23$
R. A. of the Merid.. 15 h 19 m 0

Sun's R. Ascen...... $6 \quad 49 \quad 6$
App. Time at Ship. 8h $29 \mathrm{~m} \mathrm{54s}$
Jup. Dec... $21^{\circ} 39^{\prime}$ S. Jun. R. Ascen.... $19 \mathrm{~h} \leqslant 4 \mathrm{~m} 26 \mathrm{~s}$
Polar Dist.. $\frac{90 \quad 0}{} 68^{\circ} 21^{\prime} \quad$ Cor. Gr. Date. . Sub. \quad Coriect R.A. . . $\overline{10 h} \frac{8}{44 \mathrm{~m}}{ }^{281}$

Equa. of Time.Add 351

Mn. Time at Ship. . 8 h 33 m 458
Mean Time at Ship 8 83 85

To Find the Amount of Error in the Measurement of the Lunar Distance.

$$
\begin{aligned}
& \text { Here the Correct Greenwich Time by Chronometer given being........ }{ }^{3 \mathrm{~h}} 14 \mathrm{~m} 28 \mathrm{~s} \\
& \text { Aud the Greenwich Time by Lunar being } 3^{13} \frac{46}{42} \\
& \text { Hence their Difference in Time is....... }
\end{aligned}
$$

The Greenwich Time by Lunar being too small, and the Distance between the bodies decreasing, the [iat once sbserved has been too great, the amount of which is found as follows:

Take from the N. A. the Pro. Log. of the Difference of Distance in 3 bours, (already found,)... 0.2618
Place under it the Pro. Log. of the Difference in Time, which is $\mathbf{4 2 s} \mathbf{2 . 4 1 0 2}$
Their Sum. ... $\overline{2.671 n}$
48 the Pro. Log. of a portion of Space, $0^{\circ} 0^{\prime} 28^{\prime \prime}$, and which is the error of the measured Distance having been too greal
The error of the measured Distance may also be found, as before observed, when in sight of land, the position of which is well laid down, by first finding the Ship's true position by bearings of the land, and turning her Longitude into Time and adding it to the Mean Time at the Ship in West Longitude, or subtracting it in East, will give the true Greenwich Time. Then the comparison between this and the Greenwich Time by the Lunar Observation, as in this case, affords the learner the means of judging of the correctness of his observed Lunar Distance.

In observing with the Planets, the usual practice at Sea is to bisect the middle of the Planet on the sound limb of the Moon. This saves the trouble of allowing for the semidiameter of the Planet.

FINDING THE LONGITUDE BY LUNAR OBSERVATIONS.

EXAMPLE 4.

Jaly 4th. 18ö4. In Latitude $40^{\circ} 20^{\prime} \mathrm{S}$., Longitude at abont $81^{\circ} 30^{\prime}$ E., at 2 h 52 m 0 s P. M. Apparent 'rime at the Ship. the Sun's olserved Altitude was $15^{\circ} 0^{\circ}$, the Moon's observed Altitude Lower Limb $29^{\circ} 11^{\prime}$, and the Sun's Discance West of the Moon $100^{\circ} 12^{\prime} 24^{\prime \prime}$, Index Error $2^{\prime} 30^{\prime \prime}$ Additive, the Greeuwich Time by Chronometer, July 3 \mathbf{a}_{1} 21 h 30 m 3 s , and which was known to be correct. Required the Longitude ia by the Lunar Distance, and also thm Error (if any) of the measured Distance.

Preparation for Clearing the Distance.

To the Hour of the preceding Dist. Naut. Almavac.............. 21 h 0
Green Mean Tin 3 by Lunar. 2lh 29m 25s

To Find the Time at the Ship and thence the Longitude.

The Greenwich Time by Lunar being too Small and the Distance between the bodies increaswe Me Ilis. eance observed has been too Small, and the amount is found as follows:

Set down the Pro. Log. of the Difference of the Distance in 3 hours (already found) 0.2876
And place under it the Pro. Log. of the Difference 38 s in Time. 2.4536
Their Sum. $\overline{2.7412}$
athe Pro. Log. of a portion of Space $0^{\circ} 0^{\prime} 20^{\prime \prime}$, and which is the Error of the Measured Distance, having be toe anall.

Hence the following Rule.
Lunar Distance Increasing. $\left\{\begin{array}{l}\text { Greenwich Time by Lunar too Great= Distance Observed is too Grodu }\end{array}\right.$
Lunar Distance Increasing. $\{$ Greenwich Time by Lunar too Small= Distance Observed is too Sm\&/
Lunar Distance Decreasing. $\left\{\begin{array}{l}\text { Greenwich Time by Lunar too Great=Distance Observed is too Smal? }\end{array}\right.$
or the amrunt of the Firror found as above.

FINDING THE LONGITUDE BY LUNAR , BSERVATION.

EXAMPLE 5.

The Bodies being too near the Meridian the Mean time at Ship is found Afterwards by an Altitude of the Sun, and showing the Manner of Applying it.
August 15th, 1854 , or August 14th, 17 h 28m 0s Apparent Astronomical Time by Watch, in Latitude $10^{\circ} 23^{\prime} \mathrm{N}$. Longitude $20^{\circ} 15^{\prime} \mathrm{W}$. the observed Altitude of the Star Aldebaran was $69^{\circ} \mathbf{2 4}$, the Moon's Altitude L. Limb on the Meridian $83^{\circ} 24^{\prime}$, and the observed Distance Moon's nearest Limb $19^{\circ} 15^{\prime} 6^{\prime \prime}$. Index Error $1^{\prime} 45^{\prime \prime}$ Additive. The Course and Distance made good was W. by S. 9 miles, until 18 h 14 m 28 s Astron. Time by the same Watch, when the Sun's observed Altitnde was $5^{\circ} 23^{\prime}$. Required the Latitude in by the Moon's Aititude, the Meau Time by the Sun's Altitude, and the Longitude in at the Time of the Lunar Distance.

Preparation for Clearing the Distance.
App. Astron. T. att Ship, Aug, 14th. 17h 28m Moon's Semid Mid. $15^{\prime} 15^{\prime \prime}$ and Hor. Par. Mid ... 55' 52' Long. $20^{\circ} 15^{\prime}$ W. in Time.... Add. $\frac{121}{182}$ Corr. for 7 hours.Sub. $\frac{3}{-15^{\prime} 12^{\prime \prime}}$ Corr. for 7h.Sub. $\frac{13}{55^{\prime}}$ Greenwich Date, August 14th..... $\overline{18 \mathrm{~h} 49 \mathrm{~m}}$
East of the Moon.
Moon's Aug.............Add 15
Aug. Semid. $15^{15^{\prime} 27^{\prime \prime}}$

 Moon's Aug. Semid. $\frac{15 \quad 27}{\overline{9^{\circ}} 32^{\prime} 18^{\prime \prime}}$ 潾's App. Altitude......... $\overline{69^{\circ} 20^{\prime}} \quad$ D's App. Alt. ... $\overline{88^{\circ} 86^{\prime}}$ Apparent Distance.

To Clear the Distance

To the Hour of the preceding Dis. N. A. ... $18 \quad 0 \quad 0$
Greenwich Mean Time by Lunar. 18 h 50m 51s
To Find the Latitude by Observation and the Mean Time at the Ship when the Distance was Observed.
Time by Watch..... 18h 14m 28s Sun's Dec. Noon, August 15 th... $14^{\circ} 6^{\prime}$ N

Mean Time. $\overline{18 \mathrm{~h} 16 \mathrm{~m} 29 \mathrm{~s}}$ at Ship.

To Find the Mean Time at Ship at the Time the Distance was Observed.

Fake the Difference between the Times shown by the Watch or Chronometer at the Time the Distance was observed and the Time the Altitude of the Sun was observed, which call the Interval Turn the Difference of Longitude (made in the Interval) into Time, and Subtract it from the Interval if Sailing West or add it to Intenval when Sailing East, will give the Correct Interval. Subtract the Correct Interval from the Nivean Time obtained from the Sun's Altitude, and the result is the Mean Time at Ship at the Time th Lunar Distance was observed ; then the Difference between the Grcenwich Mean Time found by Lunar an this Mean Time at Ship reduced back, is the Longitude of the Ship in Time.

EXAMPLE IN THE ABOVE CASE.

FINDING THE LONGITUDE BY LUNAR OBSERVATIONS.

The Sun being too near the Meridian, the Time is found by the Moon's Altitude.

EXAMPLE 6.

August 15th, 1854, or Angust 14th, at 22h 30 m Apparent Astronomical Time at Ship, the Moon's observed Altitude, Upper Limb, West of the Meridiau, was $18^{\circ} 88^{\prime}$, Sun's Altitude $67^{\circ} 28^{\prime}$, and his observed Distance Eant of the Mon $91^{\circ} 7^{\prime} 44^{\prime \prime}$. Index error $1^{\prime} 45^{\prime \prime}$, additive. The face of a Chronometer at the same time showed $0 h$ lum 23s. The Ship sailed S. W. (true) 15 miles until Noon, when the Latitule observed was $9^{\circ} 56^{\prime}$ N., the Lougitude by account at the same time being $21^{\circ} 30^{\prime}$ West. Required the Longitude by Luaar Observation, and supposing it to be correct, the error of the Chronometer on Greenwich Mean Time, and also the Longitude by Lunar brought up to Noon by the Dead Reckoning.

Preparation for Clearing the Distance.

App. Time at Ship, August 14th, ... 22 h 30 m	Moon's Semid. Noon . . . 15'	$9^{\prime \prime}$ and Hor. Par. Noon. . . . 65' $30^{\prime \prime}$
Long. $21^{\circ} 30^{\prime \prime}$ W. in Time....... Add 126	Augment......... Add	5
Greenwich Date, Aug. 14th $\overline{23 \mathrm{~h} 56 \mathrm{~m}}$	16^{\prime}	$14^{\prime \prime}$

To Clear the Distance

To Find the Mean Time at the Ship, and thence the Longitude.

App. Alt. of the Moon.... $18^{\circ} 18^{\prime}$ Time by Face of the Chro. Oh 10 m 28 s . D's R. A. Noon, Aug. 15th, 8h 16 m 29: Cor.for Alt., Table XXV, Add 49

D's True Alt........... $\overline{19^{\circ}{ }^{\prime}}$'s Dec. Noon, Aug. 15th, $17^{\circ} 38^{\prime} \mathrm{N}$.
's Polar Dist.......... 7222 Log. 0.02090	Polar Dist.............. 7222

Latitude 10 Log. 0.00681
Polar Dist............... 7222

Suns R. A. Noon, Aug. 16th,... 9h 98 m 34
Equa of Time, Noon. . . 4m 16 s.
D 's H. A. West of Mer. $4 \mathrm{~h} 52 \mathrm{~m} \quad 0 \mathrm{~s}=\mathrm{Log} .9 .54879$
D's R. Ascen. . . Add $3 \quad 16 \quad 29 \quad$ Course to Noon S. W. 15 miles D. Lat. 11' Dep. 11'—D.Lon.-0 $0^{\circ} 11^{\prime}$
1R. A. of the Merid. 8h 8m 29a Add $24 \quad 0 \quad 0$ $32 \mathrm{~b} \mathrm{8m} \mathrm{29}$
Sun's R. Ascen. . Sub. $9 \quad 38 \quad 33$
App. Time at Ship. . 22h 29m 56s
Equan of Time. Add $\quad 4 \quad 16$
Mean Time at Ship. $22 \mathrm{~h} \mathrm{34m} \mathrm{12}$ s

To Find the Error of the Chronometer.
Time by Chronometer when the Distauce was Observed.... Oh $10 \mathrm{~m} 28 s$ Psst Noon, Aug. 15th. Greenwich Mean Time by Lunar . $0 \quad 0 \quad 0$ or Noon of Aug. 15th. Hence the Chronometer is Fast of Green. Mean Time..... $\overline{0 h 10 m 23 s}$

In this case, if the Time at Ship had been found from the Sun's Altitude, the error in the Time woula be 8 seconds too great, the Sun being too near the Meridian.

The Moon being the lower body in this case. by raising her the True Distance $1848^{\prime} 43^{\prime \prime}$ less than the Apparent Distance. (See Figure 30.) And as before observed, the Difference between the Apparent ana the True Distance can never exceed the Sum of the correction for Altitude. (That is, the Moon's parallar in Altitude, found in Table XXV, and Sun or Star's correction for Refraction, found in Table IV.) When the difference between the observed and the true Distance exceeds that quantity, it may be concluded t" wine gross error has been committed in the Clearing of the Lunar Distance.

In OOMPUTE THE ALTITUDES OF THE OBJECTS AT THE TIME THE DIS'IANCE WA OBSERVED,

Having the Correct Apparent Time. the Latitude of the Place. and the Approximate Lorgitude.

l. fometimes happens at Sea, in taking a Lunar Observation, that the Altitude of olle or both of tn s objects are lost in consequence of cloudy weather coming on. In that case, if the Apparent Time at thShip, and the correct Latitude of the place are known, the Apparent Altitudes of the ohjects may be coms ated as follows.

RULES

To Compute an Altitude.

1st. If the Time at Ship is not known, and a Chronometer at hand, (and its error on Greenwich known, take tne Greenwich Time by Chronometer at the time of the Distance, from which subtract the Longitude in Tine in West, or add it in East Longitude, will give the Mean Time at the Ship. From the Nautical Almarac take out the Equation of Time, and apply it to this Mean Time the contrary way to what is directue in the column for Apparent Time, and the result is the Apparent Time at the Ship at the time the Distance was observed.

If an Altitude of one of the objects has been observed at a proper Distance from the Meridian, the Apparent Time can at once be found from its Altitude.

Or, the Watch may be corrected to Apparent Time by an Altitude taken either before or after the Lunat Distance has been observed, allowing for the difference of Longitude in Time, made in the interval.

If the Apparent Time at Ship is A. M., add 12 hours to it ; but if P. M., both will then be the Apparent Astronomical Time from the preceding Noon, which must be dated one day less than the Sea account ; if the Civil day is used, and the Apparent Time is A. M., date it also one day less, but when P. M. dete it the same as Civil Time.

2d. Find the Hour Angle of the object, which, if it be the Sun, is the Apparent Time from the nearest Noon. If the object be the Moon or a Planet, find the Greenwich Date as usual and from the Nautical Almanac take out their Right Ascensions and Declinations, and correct them to the Greenwich Dato ; but if the object be a Star, take out its Right Ascension and Declination from Table XVIII, and correct tha Sun's Right Ascension taken from the Nautical Almanac to the Greenwich Date.

Add the Sun's Right Ascension to the Apparent Time, their Sum (less 24 hours, if it exceed that quantity: will be the Right Ascension of the Meridian, the difference between which and the Right Ascension of the object in Time will be its Hour Angle; write under it the Latitude and the Declination of the object.

3d. Then, if the Latitude of the place and the Declination are both of the same name, that is, both Noluk or both South, their difference will be the Meridian Zenith Distance ; but if one be North and the othez South, their Sum will be the Meridian Zenith Distance.

4th. Add together the Logs. of the Hour Angle, found in Table XXIX, the Log. Co-Sines of the Latitude and Declination, from the top of Table XXVIII, and the Log. Secant of the Meridian Zenith Dintance, from the top of Table XXVII. The Sum of these 4 Logs., (rejecting 10 from the Index,) found in Table XXIX, will give an Arch in Time.

5th. Turn this Arch in Time into Degrees, \&c., by Table XXIX, and from the top of Table XXVII take out its Log. Secant, which add to the Log. Secant of the Meridian Zenith Distance, (already found, the Sum will be the Log. Co-Secant of the True Altitude of the object, found at the bottom of Table XXVII.

6th. As the Apparent Altitudes are used in correcting a Lunar Distance, it is necessary to reduce tho Trus Altitudes thus found as above to the Apparent Altitudes. When the object is the Sun, Fianet, or a Star, this is simply the correction for Refraction, taken from Table IV, which must be added to the True Altitude. Their Sum will be the Apparent Altitude.

But when the object is the Moon, enter Table XXV with the Moon's Tiue Altitude at the side, asd her Horizontal Parallax at the top, and take out her correction for Altitude. This subtracted from the True Altitude will give her Apparent Altitude.

In the night time, at Sea, a Lunar Distance may often be correctly observed, while the Altitudes of the objects may be in great uncertainty from the obscurity of the horizon; and in the case of the Mon, is cloudy weather, long, dark shadows are sometimes projected on the Sea under her, which renders it impos. sible to obtain her Altitude correctly. In that case, the Altitudes may be computed by the above Kules. But it rarely happens that a time cannot be chosen to observe the Altitudes correet enoush for Clearing the Lunar Distance, as precision in the Altitudes is not necessary, and thus savino the heary addifonal ealculations of Altitudes in working a Lunar Observation.

To Find the Sun＇s Altitude．

To Find the Moon＇s Altitude．

Required to compute the Mon＇s Altitude at the time of the Distance observed，in Example 2d，page 167，the Apparent Time at Ship being．June 3d， 7 h 57 m 45 s ，the Latitude iu $29^{\circ} 32^{\prime} \mathrm{N}$ ．，and Longitude by Acet． $69^{\circ} 20^{\prime} \mathrm{W}$ ． to find the Moon＇s Appareat Altitude．

App，Time at Ship，June 3d．．．7h 57 m 45 s App．Time at Ship．．．．．．．．．7b 58 m Sun＇s R．A．at Noon，4h 44m 18 s Sun＇s R．Ascen．．．．．．．．．．．．．．．． $4 \quad 46 \quad 18$ Lon． $69^{\circ} 20^{\prime}$ W．in Time Add $4 \quad 37$ Corr．for 12 h 35 m Add 2 ón R．A．of the Meridim．．．．．．．．$\overline{12 h 44 m} 03 \mathrm{~s}$ Greenwich Date，June $3 \mathrm{~d} . .1 \overline{2 \mathrm{~h} 35 \mathrm{~m}}$ Suns Correct R．A．．$\overline{4 \mathrm{~b} 46 \mathrm{n} 18 \mathrm{~s}}$ Moou＇s R．Ascen．．．．．．．．．．．．．． 11 13

 Meridiau Zenith Distauce．．．．．$\overline{18^{\circ}} \overline{5^{\prime}}$－Sce．．．．Table XXVII 0.022000 .02200
Arch．in Time．．．．．．．．．．．．．．．1h $34 m$ 11s Log．．．．Table XXLX 8.61946
Iurued into degrees by Tab．XXVI $23^{\circ} 33^{\prime}$ Sec．．．．Table XXVII at Top $0.03757 \quad$ D＇s Dec．Mid．． $11^{\circ} 35^{\prime} \mathrm{N}$ Moon＇s True Altitude．．．．．．． $60^{\circ} 38^{\prime} \mathrm{Co}$－Sec．Table XXVII at bottom $\overline{0.05977}$ Corr． 35 m ．．Sub 8
Moon＇s Apparent Alt．．．．．．．．$\overline{60^{\circ} 11^{\prime}}$ at Time of the Dist．See Ex．2d，page 167.

To Find a Star＇s Altitude．

Required to compute the Altitude of the Star Aldebaran at the Time of the Distance．in Example 5th，page $1^{\prime}\left(u_{1}\right.$ the Apparent Time at Ship being，August $14 \mathrm{th}, 17 \mathrm{~h} 28 \mathrm{~m} 0 \mathrm{~s}$ ，the Latitude in $10^{\circ} 23^{\prime} \mathrm{N}$ ．，and Longitude by Acct $20^{\circ} 15^{\prime} \mathrm{W}$ ，to find the Star＇s Apparent Altitude．

App．T．at Ship，Aug． 14 th．．．．17h 28 m 0s App．Time at Ship．．．．．．17h 28 m Sun＇s R．A．Noon，Aug．14， 9 h 34 m 48 s
\qquad 93758 Lung． $20^{\circ} 15^{\prime}$ W．in T．． 121 Cor．for G．Date 18 bl 49 m Add 310 27 h 5 m 58 s Green．Date，Aug．14．．．－18h 49 m Sun＇s Correct R．A．．．．．9h 37 m 58 Sub． $240 \quad 0$
R A．of the Meridiar．．．．．．$\overline{3}$ h 5 m 58 s
粪＇s R．Ascen．．．．．．．．．．．．．．．． 42732
粦＇s Hour Angle．．．．．．．．．．1h 21 m 3．s Log．Table XXIX 8.49601 洣＇s Dec．Tab．XIX．．． $16^{\circ} 13^{\prime} \mathrm{N}$
＊＇s Declination．．．．．．．．．．．．．．． $16^{\circ} 13^{\prime} \mathrm{N}$ ．Co－Sine Table XXV15I 4.98237
Latitude．．．．．．．．．．．．．．． 10 23＇N．Co－Sine＇T＇able XXVIII 4.99288
Meridian Zenith Dist．．．．．．． 5° ธ0 0^{\prime} Scc．．．．Table XXV11 0．00225＝0．00225
Arch in Time．．．．．．．．．．．．1h 19 m 27s Log．．．Table XXIX 8.47346
Tur．into degrees by T．XXVI $19^{n} 5 \mathscr{2}^{\prime} \ldots$ ．．Sce．．．．Table XXVII at Top．．．． 0.02665
＊＇s True Altitude．．．．．．．．． $69 \quad 20 \ldots$. Co－Sec．Table XXVII at bottom $\overline{0.02890}$
Uurr．for Ref．．．．．．．．．．．．Add 0
＊＇s App．Altitude．．．．．．．． $69^{\circ} 20^{\prime}$ at the Time of the Dist．See Ex．5，page 170.
It may be remarked here that considerable care is required in correcting the R．A．and Deciinations to the Green．Date，and also in having the Apparent Time correct，especially when the object is near the Prime Kertical，but an Error in the Latitude at that time will not much affect the result，and when the object in near the Meridian any probable Error in the Tine will not much affect the computation，but an Error in the Latitude will cause nearly an equal Error in the computer Altitude．

Nore．－An Error of 2^{\prime} or 3^{\prime} in the Alitude of a Star has more effect in producing an Error in the True Lanar Distance in some cases than an Error of 10^{\prime} iu the Moon＇s Altitude would have．This is important to bear in mind in working a Lunar Observation．

FINDING THE LONGITUDE BY LUNAR OBSERVATINNS ON SHURE.

A Lunar Observation may be taken on Shore by the aid of an Artificial Horizon for ubserving the Sun a Altitude (see pages 77 and 78) only; the Altitude of the Moon can be computed by the preceding ruses, and the observations should be taken when the Sun is at a proper Distance from the Meridian with the view of obtaining the Tine at the place, from the same Altitude observed with the Distance.

The Observation

Compute the Approximate Distance as directed at page 74, ready for use, and proceed first to observe a: Altitude of the Sun in the Artificial Horizon, note down the Time and the Altitude, set the Index of the Sextant to the Approximate Distance, and when brought into the field of view bring the Limbs in contac:, note down the time and the observed Distance, proceed to take any odd number of Distances and their cor. responding Times, as recommended at page 76, and finish with an Altitude of the Sun, noting down the Time as before.

Find the Mean of the Times of the Distance and the Mean of the Distances, and the Difference between the Times of the Altitudes and the Difference of the Altitudes: then say, as the Difference of the Times is to the Difference of the Altitudes, so is the portion of Time between the Time of the first Altitude and the Mean of the Times of the Distance to a portion of Altitude, which Added or Subtracted to or from the first Altitude, according as it is Increasing or Decreasing, will give the Sun's Altitude at the Time of the Mean Distance.

Having the Sun's observed Altitude, the Latitude of the place (which may be obtained in like manner by the Sun's Meridian Altitude, see page 92,) and the Approximate Longitude, proceed to find the Apparent Time as in the Examples at page 131 .

Having the Apparent Time at which the Distance was observed, compute the Moon's Apparent Altitude (by the Rule at page 172), and proceed to work the Lunar as before:

EXAMPLE OF WRITING DOWN THE OBSERVATION

September 26th, 1854. At 3 h 57 m 15 s P. M. Mean Time at New York, in Latitude $40^{\circ} 42^{\prime} 42^{\prime \prime} \mathrm{N}$., and Longitude $74^{\circ} 0^{\prime} 15^{\prime \prime} \mathrm{W}$., the following observation was made to find the Longitude.

To Find the Sun's Altitude at the Time of the Mean Distance and thence the Time at the Place.

Time of the 1 st Alt.... 3 h 53 m 0 s lst Alt. $41^{\circ} 32^{\prime}$ Time of 1st Alt. 3h 53m 0s 8 m 28s Pro. Log..... 1.3276 do. 2 d Alt..... $4 \quad 1 \quad 28 \quad 2 \mathrm{~d}$ Alt. $38 \quad 33$ Mean of the T... $3 \quad 57 \quad 15$ Arith. Co.... 8.6724 Say as 8 m 28 s is to $2^{\circ} 59^{\prime} \quad$ So is $4 \mathrm{~m} 158 \quad 2^{\circ} 59^{\prime}$ Pro. Log.... 0.0024 $4 \mathrm{~m} 15 \mathrm{~s} \quad 1.6269$
Sun's Obs. Alt. Artif. Hor. $40^{\circ} \quad 2^{\prime} \quad 8^{\prime \prime}$ Time by Watch. ... 3h $57 \mathrm{~m}-15 \mathrm{~s} \quad 1^{\circ} 29^{\prime} 52^{\prime \prime}=$ Pro. Log... $\overline{0.3017}$ Index Error. Add $\quad 50$ Long. 74° W. in Time $4 \quad 56 \quad 0$ lst Alt $3132 \quad 0 \quad$ Decreasing.
Observed Angle....... $\frac{\sqrt{3}) 40^{\circ}}{2^{\prime} 58^{\prime \prime}}$ Greenwich Date... $\overline{8 \mathrm{~h} 53 \mathrm{~m} \mathrm{0}}$ Obs.Alt. $40^{\circ} 2^{\prime} 8^{\prime \prime \prime}$ at Time of Dist.
Alt. of Sun's L. Limb.. $20^{\circ} 1^{\prime} 29^{\prime \prime}$
Sun's Declination Noon.... $1^{\circ} 12^{\prime} 52^{\prime \prime} \mathrm{S}$. Dif. 1 h 88

Sun's Sem. 16^{\prime} Ref. $2^{\prime} 29^{\prime \prime}=1331$
Sun's True Altitude. $\overline{20^{\circ} 15^{\prime}} 0^{\prime \prime}$
Polar Distance. $91 \quad 21 \quad 34$ Log. 0.00012
Latitude................. . . 404242
$\overline{152^{\circ} 19^{\prime}} 16^{\prime \prime}$
Half Sum. $76^{\circ} 9^{\prime} 38^{\prime \prime} \quad$ Log. 4.37876
Difference................ $55^{\circ} 54^{\prime} 38^{\prime \prime} \quad$ Log. 4.91812
App. Time at Place.4b $6 \mathrm{~m} \quad 0 \mathrm{~m}=\log \overline{9.41783}$
Equation of Time... Sub $8 \quad 45$
Mean Tima it Place..... 8h 57 m 150

Correct Declination....... $\overline{1^{\circ} 21^{\prime} 34^{\prime \prime}} \mathrm{S}$. 60) $\overline{522}$
$\begin{array}{llll}90 & 0 & 0 & 8^{\prime} 42^{\prime \prime}\end{array}$
Polar Distance........... $9 \overline{91^{\circ} 21^{\prime} 34^{\prime \prime}}$
Equation of Time, Noon. 8m 37s -87 Dif. 1h 840 Correction...........Add 7 :56 G. Date 9k Correct Equation $8 \mathrm{~m} 45{ }^{5} \cdot 43$

TO FIND THE LONGITUDE BY LUNAR OBSERVATIONS ON SHORE

Having the Apparent Time, to Compute the Moon's Altitude at the Time of the Distance.

			D's R. A. at Noon 15h 20 m 48s At Midnight....... $15 \quad 54 \quad 24$		
R. A. of the Merid. .. $\overline{16 \mathrm{~h} 18 \mathrm{~m} \mathrm{33}}$ \% Sun's R.A. 12h'11m 12s Dif. 1b. 9 s			Diff in 12 hours... $\overline{\text { oh } 27 \mathrm{ma} 429}$		
D's R. Ascen........ $15 \quad 47 \quad 12$	Corr.....Add $1 \quad 21$	9s	Diff. 12h. Pro. Log..	,	1.1761
,'s Hour Augle..... Ob 31m 218 Log.	7.66891 R.A.. 12 h 12 m 338	60)818	Arith Comp.		8.8239
D's Declination...... $20^{\circ} 30^{\prime} \mathrm{S}$. Co-Sine	4.97159	$\overline{1 m 218}$	27 m 42 s Pro. Log.		
Latitude 40 43 N. Co-Sine	4.87964		G. D. 8 8 53 m Pro. Lu	ug. 1.3	1.3067
J's Mer Len. Dist... $\overline{611^{\circ} 18^{\prime}}$ '...Secant	$031740=0.31740$		Corr.........20m	0.9	0.9434
Arch in Time.... 0 Oh 38 m 4 s - Log.	7.83754		R. A.. $\ldots .15 \mathrm{~b} 26 \mathrm{~m} 42 \mathrm{~B}$		
In degrees........ ${ }^{9^{\circ} 31^{\prime}}=$ Secant 0.00602		D's. R. $\overline{15 \mathrm{LH}} 47 \mathrm{~m} \mathrm{128}$		
Moon's True Alt. $\ldots . . .2 \overline{8^{\circ} 21^{\prime}}=\mathrm{Co}-\mathrm{Sec}$.$\overline{0.32342}$		eclinatiou, $\overline{\text { Noon.... }}$		
Corr, Tab. XXV,.. . Sub. 049			G. Date 9hAdd	13	
Moon's App. Alt. . . . $27^{\circ} 32^{\prime}$ at the 'Ti	of the Distance.		orrect Dec.	$20^{\circ} 3$	$30^{\prime} \mathrm{S}$

Hence we have the following Observation to Clear the Distacce and find the Longitude:
Mn. Time at the place 3 h 57 m 15 s Sun's Obs. Alt. $20^{\circ} 1^{\prime}$ D's App. Alt. $27^{\circ} 32^{\prime}$ Obs. Dist. $55^{\circ} 15^{\prime} 0^{\prime}$

Mean Time	3h 57 m 15 s	Sun's Obs. Alt $\quad 20{ }^{\circ} 1^{\prime}$	D's Semid, Noon	$15^{\prime} 53^{\prime \prime}$	Hor. Par. 58 $12^{\prime \prime}$
Lon. $74^{\circ} \mathrm{W}$. in Time	456	Semid. Add 16	Corr. $2^{\prime \prime}$ and Augm. $8^{\prime \prime}$	10	Corr. G. D. ${ }_{8}$
Frr. Date, Sept. 26th	$\overline{8 \mathrm{~h} 53 \mathrm{~m} \mathrm{158}}$	Sun's App. Alt. $20^{\circ} 17^{\prime}$	D's Aug. Semid. Sun's Semid. Obs. Distance \qquad $.55^{\circ}$	$\begin{aligned} & 16^{\prime 6^{\prime}} 3^{\prime \prime} \\ & 16 \\ & 0 \\ & 15 \end{aligned}$	D's H.Par. $\overline{58}{ }^{\prime} 20^{\prime \prime}$
			App. Distance. 55°	${ }^{4} 47^{\prime}{ }^{\prime \prime}$	

Another Example of this method is not necessary, as all the various cases are already given of finding the Longitude by Lunar Observations, and it will be perceived that this is exactly the same, except in the ase of the Artificial Horizon, where no correction for the Dip of the Horizon is required in finding the Apparent Altitudes.
A person thus having a good Sextant, an Artificial Horizon, a Nautical Almanac, and an Epitome of Navigation, which together will form an excellent portable Observatory, he may, by the aid of a Compass, travel far inland, remote from numan habitations, and be able at any time, when the Sun, Moon, and Stara, are visible, to find his position ; and although the Longitude is required to be known with some degree of precision, in order to find the Greenwich Date, for the purpose of correcting the quantities taken from the Nautical Almanac, it may be remedied by working the Lunar over again, using the Longitude so found in the rooll of the Approximate Longitude first used, to find the Greenwich Date, and to correct the quan. tities taken from the Almanac anew.
Then, suppose he wishes to know in what direction any given place on the Sea-coast lies, the Truc Bearing and Distance can be found by Mercator's Saung.
The Variation of the Compass can be found at Noon, when the Sun is on the Meridian, by simply fixing a wcoden pin in a perpendicular position on the side of the compass-box, so that the shadow will be thrown over the centre of the card, this will be the True Maridian line, the difference between which and the North or South points of the Compass is the Variation. (See the Note at page 118, and the Diagram at page 119.) Or, if the Sun is too near the Zenith, it may be found in tne morning or evenitg by an amplitude, that is, if the surface of the ground is level and not very high above the Sea.. (See page 116.) The variation so found and applied to the True Rearing, will give the Compass Bearing of any given place required.

FINDITG THE LONGITUDE BY OBSERVING THE MOON'S DECLINATION.

Abstract

When the Monn and a Star are on or near the same Meridian together, the Longitude may be founa oy measuring their Distance ; because the Star's correct Declination being given in the large Nautical Almanae the Moon's Declination can be deduced therefrom.

The Greenwich Time corresponding to this Declination, taken from the large Nautical Almanac, and compared with the Mean Time at Ship at which the Observation is made, gives the Longitude of the Ship.

And as the Moon changes her Declination at the rate of about 14' in 1 hour of Time, when near the Equator, an error of $1^{\prime \prime}$ in the Observed Deelination will produce an error of 1^{\prime} of Longitude, and an error of 1^{\prime} in the Observed Declination will produce an error of 1° in the Longitude, even in the most favorable case.

This method is, therefore, not capable of much precision. Besides, it can only be used to advantage when the Moon's Declination changes rapidly, that is, when she is near the Equator; but when the Moon has great North or South Declination this method is not practicable. It may, however, be found useful in some cases, as the Observation (the objects being on the same vertical line) is much easier to take than a regular Lunar Distance.

THE OBSERVATION.

Finding the Approximate Distance.

1st. Inspect the large Nautical Almanac and find whether the Moon's Declination changes sufficiently rapid for the purpose, if so, then find at what time she passes the Meridian at Greenwich, and reduce it to the time of her passing the Meridian of the Ship,* which will be the Mean Time at the Ship. Turn the Longitude by account into Time, add it to the above Time, in West Longitude, or subtract it in East, will give the Greenwich Date. Apply the Equation of Time to the Mean Time at Ship, will give the Apparent Time at Ship. Now inspect T'able XVIlI, and find a Star which passes the Meridian at or as near this Apparent 'lime as possible. Take out the Moon and Star's Declinations from the Nautical Almanac. Then, if they are of the same name, take their difference for the Approximate Distance; but when of contrary names, take their Sum.

Finding the Proper Star.

2d. Set the Index of the Sextant to this distance, find the Star, and bring it in contact with the round limb of the Moon. Now, having the Watch previously regulated to Apparent Time at the Ship, at the instant of A pparent Time by Watch at whieh the Moon is on the Meridian, observe her Distance from the Star, and note down the Time and the Distance observed.

Corrceting the Observed Altitudes.

3d. Observe also the Altitudes of the Moon and Star roughly. If the Lower Limb of the Moon be ohserved add 12^{\prime} to it; if the Upper Limb be observed, subtract 20^{\prime}, and subtract 4^{\prime} from the Star's Altitude.

Correcting the Semidiameter and Horizontal Parallax.

4th. Take out the Moon's Semidiameter and Horizontal Parallax, correct them to the Greenwich Date, and to the Semidiameter add the Augmentation. If the near Limb of the Moon has been observed, add the augmented Semidiameter to the observed Distance, but if the far Limb has been observed, subtract it.

Finding the Moon's Parallax in Altitude.

5th. To the Secant of the Apparent Altitude of the Moon add the Pro. Log. of the Horizontal Parallaz, their Sum will be the Moon's correction for Altitude, and from Table IV take out the Refraction for her Apparent Altitude.

Applying the Correction for Parallax in Altitude.

6th. If the Moon's Altitude is less than the Star's, subtract her correction for Altitude from the Apparent Distance, and add the Refraction to it; but if the Moon's Altitude is greater than the Star's, add her correction to the Distance and subtract the Refraction from it.

Applying the Correction for Refraction.

7 th. If the Star's Altitude is less than the Moon's, add its Correction for Refraction to the Distance; but if the Star's Altitude is the greatest, subtract it, and the result will be the True Distance, if the Star is mosmer the Meridian at the same time nearly as the Moon.

Finding the Correction of the Star's Altitude when not on the Meridian.

8 th. But if the Star is not on the Meridian at the Time of the Distance, find the number of minutes, \&c., it is distant from the Meridian, by computing its Meridian passage, and find the portion of Altitude wanting of its Meridian Altitıde, by the Rules given at page 111.

To Apply the Correction for sie Star's Altitude.

9th. Then if the Star's Altitude be less than the Moon's, subtract this portion of Altitude from the Apparent Distance: but if the Star's Altitude is greater, add this portion of Altitude to it, and the resu! in the True Distance between the Moon and the Star.

[^21]
Having the True Distance between the Moon and Star to find the Moon＇s Declination．

10．Take from the Large Nautical Almanac the Star＇s Correct Dec．and mark it North ir South；the if the True Dis be less than the Star＇s Dec．the Diff．is the Moon＇s Dec．of the same name as the Star＇s

But if the True Dis．be greater than the Star＇s Decl．the Diff．will be the Moon＇s Decl．of a contran aame to the Star＇s．When the True Distance and the Star＇s Decl．are equal the Moon is on the Equator．

Having the Moon＇s Observed Declination to find the Greenwich Time and the Longitude．
11．Find in the large Nautical Almanac the two Declinations between which the observed Declination alls，and take their Difference；take the Difference also between the preceding Declination and the observed Declination．Then say as the Difference of the Declination in one hour is to one hour of Time，so is the Difference between the preceding and the observed Declinations to a portion of Time，which Added to the Hour marked opposite the preceding Declination in the Nautical Almanac，will give the Mean Time Greenwich at the time the Distance was observed．

Having the Greenwich Time to Find the Longitude．

12．The Mean Time at the Ship being found in the usual manner，and it is required to have the Watch previously regulated to Apparent Time，before commencing the observation，then by applying the Equation of Time we have the Mean Time of the Distance，the Difference between which and the Green－ wich Mean Time is the Longitude in Time，to be turned into Degrees and Minutes as usual．

The following Diagram will explain the nature of the observation．
PROJECTION OF THE MERIDIAN ALTITUDES OF THE MOON AND STAR SPICA．
Given the Latitude $26^{\circ} \mathrm{N}$ ．，Star＇s Decl． $10^{\circ} 23^{\prime}$ S．，and Dist． $9^{\circ} 44^{\prime} 21^{\prime \prime}$ ，to Find the Moon＇s Decl
Fig． 31

EXAMPLE 1.
April 14th．1851．In Latitude $26^{\circ} 2^{\prime}$ N．，Longitude by Chronometer carried on $38^{\circ} 0^{\prime} \mathrm{W}$. ，at 11 h 23 m 29 s M．T at the Ship，the observed Distance of the Star Spica from the near Limb of the Moon was $9^{\circ} 25^{\prime} 32^{\prime \prime}$ Vertically． Moon＇s observed Altitude，L．L．， $62^{\circ} 41^{\prime}$ ，and the Star＇s Altitude $53^{\circ} 13^{\prime}$ ．Required the Longitude in．
D＇s Mer．Pass．N．A．，April 14th， 11 h 18 m 0s Mean T．at Ship．．．．．．．．．．．11h 24 m 〇＇s R．A． 1 h 28 m 378 Dif．9s
 Mcan Time of Pass．at Ship．．．．．$\overline{11 \mathrm{~h} 2} 3 \mathrm{~m} 29 \mathrm{~s}$ Green．Date，April 14th．．．$\overline{13 \mathrm{~h} 56 \mathrm{~m}} \odot$＇s R．A．Ih $\overline{30 \mathrm{~m} \mathrm{438}} \overline{126}$ Equation of Time．．．．．．．．Sub．$\frac{0 \quad 15}{} \quad$ D＇s Obs．Alt．．．．．62 $41^{\circ} \quad$ 洣＇s R．A． $13 \quad 17 \quad 22 \mathrm{~s} \quad \frac{12}{2 \mathrm{~m} 68}$ Apparent Time at Ship．．．．．．．．11h $23 \mathrm{~m} \mathrm{14s}$ Corr．．．．．．．Add 12 Mer．Pass．of 潘 Spica 11 h 46 m 398
D＇s App．Alt． $62^{\circ} 53^{\prime}$ Sec．．．．．．．．．． 0.3412 D＇s App．Alt．．． $62^{\circ} 53^{\prime}$ App．T．of Obs．．．．．．． $11 \quad 23 \quad 45$
Hor．Parallax $60^{\prime} 15^{\prime \prime}$ Pro．Log．．．． 0.4753 㴽＇s Obs．Alt．．．．． $53^{\circ} 13^{\prime}$ 米＇s Dist．fr．the Mer． $22 \mathrm{~m} 54 \mathrm{~s}-7.39{ }^{\prime}$ Cor．D＇s Par．inAlt． $27^{\prime} 28^{\prime \prime}=$ Pro．Log．$\overline{0.8165}$ Corr．．．．．．．．Sub． 4 Lat． $26^{\circ} \mathrm{N}$ ．and Dec． $10 \frac{1}{8}{ }^{\circ}$ S．Log． 0.475 Obs．Dist．粦 and D nuar L． $9^{\circ} 25^{\prime} 32^{\prime \prime} \quad$ 溇＇s App．Alt．．．． $5 \overline{3^{\circ} 9^{\prime}} \quad$ Por．of Alt．wanting $+25^{\prime} 35^{\prime \prime}=\overline{7.878}$ D＇s Augm．Semid．．．．．．．A Ad $16 \quad 42$ D＇s Semid．Mid． $16^{\prime} 26^{\prime \prime}$ Hor．Par．．．．．60＇ $17^{\prime \prime}$ Jentral Distance．．．．．．．．．． 94214 Augm．．．．．．．．． 16 Cor．G．Date． D＇s Corr．for Par．in Alt．Add 2728 Augm．Semid．．．$\overline{15^{\prime} 42^{\prime \prime}}$ Hor．Par，．．．．$\overline{60^{\prime}} \frac{2}{15^{\prime \prime}}$

Ref．渔＇s Ap．Alt． $53^{\circ} 9^{\prime}$ ．．Add $\quad 0 \quad 43$－ $\overline{10^{\circ} 9} 9^{\prime} 5 \overline{6}^{\prime \prime}$
Por．of Alt，wanting of Mer． $+25^{\prime} 35$
Truc Dis．between 潘 and $9^{\circ} 44^{\prime} 21^{\prime \prime}$
＊Spica Dec．N．A．，Ap．14， $10^{\circ} 23^{\prime} 1^{\prime \prime}$ Diff．is the D＇s Obs．Dec．$\overline{0^{\circ} 38} 40$ D＇s Dec．at $13 \mathrm{~h}{ }^{2} 2621$ $\left.\begin{array}{l}\text { Diff．between the Obs．and } \\ \text { the Preceding Decl．}\end{array}\right\} \quad 12^{\prime} 19^{\prime \prime}$

S．S．Is to 1 hour．．．．．．．．．．．．．．．．．．．Pro．Log． 0.4771
S．P．Diff．betw．the Preced．and Obs．DecL 12＇19＂Pro．Log．1．1648 Portion of Time to be Added．．．．．．．．．．．．．$\overline{0 \mathrm{~h} 5} \overline{5 \mathrm{~m} 25 \mathrm{~s}}=0.5110$ Time of the preceding Declination．．．．．．．．．．．13h $0 \quad 0$
Grenwich Mean Time．．．．．．．．．．．．．．．．．．．．．．．$\overline{13 \mathrm{~h} 5 \overline{56} \text { 258 }}$
Mean Time st Ship ．．．．．．．．．．．．．．．．．．．．．．．．．．．． $11 \quad 23 \quad 29$
Longitud in ．．．．．．．．．．．． $37^{\circ} 59^{\prime} 0^{\prime \prime} \mathrm{W}=\overline{2 \mathrm{~h} 31 \mathrm{~m} 568}$

The result is a Diff．of only l^{\prime} less than that by Cbron．brought i．il by D．R．from Sights taken in the Afternowa

FINDING THE LONGITUDE FROM THE MERIDIAN ALTITUDES OF THE MOON AND A STAR

The principle of this method is the same as that in the preceding example, that is, of finding the Moon' Declination by observation; but in the room of measuring the Distance between the Moon and a Star, we take the Difference between their True Meridian Altitudes. Then the Difference between this and the Star's Declination is the Moon's observed Declination, which furnishes the Greenwich Time as before.

In this case it is not necessary that the Altitudes of the Moon and Star should be observed at the same time, though they necessarily must pass the Meridian within a short time of each other, in order to obviate the necessity of making a correction for the Ship's change of place, especially when making much Northing or Southing.

The Altitudes should be accurately observed with a Sextant to the nearest second, and at Twilight, when the Horizon is distinctly visible. This method is therefore seldom practical in the Night Time, as it depends ontirely on the accuracy of the measured Altitude.

By the method given in the 1st Example the Altitudes are not required with precision, as its accuracy depends upon the measured Distance between the Moon and the Star; an ill defined Horizon in the Night Time is therefore no detriment to the former observation.

THE OBSERVATION.

The Proper Time for Observing the Moon's Altitude.

1. The Limits are the same as in the preceding example, that is, the Time must be chosen when the Moon's change of Declination is at the greatest, and also the day on which the Moon will be on the Meridian at Twilight, which can be easily ascertained by inspecting the Nautical Almanac, and by inspecting Table XVIII, find a Star which passes the Meridian about the same time and on the same side of the Zenith.

Find the Mean Time of the Moon's Meridian passage at the Ship, to which apply the Equaticu of Time, will give the Apparent Time, and the Watch must be previously regulated to the exact Apparent Time at the Ship, (which can be easily done by an Altitude of the Sun before he sets,) because the Moon's Altitude must be observed at the instant of Apparent Time by Watch, (according to computation) at which she in on the Meridian of the Ship, and the Time and Altitude observed noted down.

Observing the Star's Altitude.

2. Find the Star by the rules given at page 106, No. 3, and the Apparent Time of its passing the Meridian oy Table XVIII. Observe its Meridian Altitude at this time, which will be indicated by the Watch, either before or after the Meridian passage of the Moon, or according to which of the objects passes the Meridian first.

Correcting the Semidiameter and Horizontal Parallux.

3. Find the Greenwich Date as usual, and take out the Moon's Semidiametor and Horizontal Parallax, correct them to the Greenwich Date, and to the Semid. add the Moon's Augmentation.

To Find the Moon's Apparent Altitude.

4. If the Moon's Lower Limb be observed add the Aug. Semidiameter, if the Upper Limb subtract it, will give the Central Altitude. Take out the Dip of the Horizon accurately from Table V, and Subtract it from the Central Altitude, will give the Apparent Altitude.

To Find the Moon's True Altitude.

5. Add the Log. Sec. of the Apparent Altitude to the Pro. Log. of the Horizontal Parallax, and therr Sum will be the Pro. Log. of the Moon's Corr. for Parallax in Altitude, which add to the Apparent Alt.

Enter Table IV with the Moon's Apparent Altitude, and take out the Refraction corresponding to it, and which must be subtracted from it, and the result is the Moon's True Altitude.

To Find the Star's True Altitude.

6. Enter the same Table with the Star's Observed Altitude, and take out the Refraction, Subtract both Dip and Refraction from the Observed Altitude, will give the Star's True Altitude.

Having the True Altitudes to Find the Moon's Declination.

7. From the Large Nautical Almanac take out the Star's correct Declination and mark it N. or S. Take the Difference between the Star's and the Moon's True Altitudes, then the Difference between this portion of Altitude and the Star's Declination is the Moon's Observed Declination.

If the Difference of the Altitudes be greater than the Star's Declination the Moon's Declination will be of a contrary name to the Star's. But if the Difference of Altitude be less than the Star's Declination the Moon's Declination will be of the same name as the Star's.

Having the Moon's Observed Declination to Find the Greenwich Mean Time.

8. Find in the Large Nautical Almanac the two Declinations between which the observed Declination falle, and take their Difference; take the Difference also between the preceding and the observed Distance ; then say as the hourly Difference is to 1 hour so is the Difference between the preceding and the observed Declinations to a portion of Time, which Added to the hour opposite the preceding Declination will give the Creenwich Mean Time at the time of the observation

FINDING THE LONGITUDE FROM THE MERIDIAN ALTITUDES OF THE MOON AND A STAR.

To Choose a Case.
Suppose it was required to find the Longitude by this method, on the evening of the 6 th of July, 1854. On inspecting the Nautical Almanac, I find that the Moon's Declination changes at the rate of $123^{\prime \prime}$ in 10 minutes of time; the Moon is also on the Meridian at twilight. And on inspecting Table XVIII, I find that the Star Arcturus will be on the Meridian about the same time. The case is, therefore, practical, and we proceed at once to find the Apparent Time at Ship, and correct the Watch.

EXAMPLE 2.

July 6th, 1854. Iu Latitude $42^{\circ} 10^{\prime}$ North, Longitude $64^{\circ} 56^{\prime}$ West, at 6 h 47 m 7 m Appareut Time at Ship by Watch, the observed Meridiau Altitude of the Moous Lower Limb was $41^{\circ} 21^{\prime} 10^{\prime \prime}$, and about 23 m afterwards the Muridian Altitude of the Star Arcturus was observed to be $67^{\circ} 52^{\prime} 15^{\prime \prime}$, the elevatiou of the eye being 18 feet. Roquired the Longitude in at the Time of the Moon's Altitude.

PROJECTION

Of the Meridian Altitudes of the Moon and the Star Arcturus.
Fig. 32.

It will be perceived by the above Diagram, that the Star's Declination (being North of the Celestial Equator) subtracted from the Difference between the Moon and the Star's Altitudes, farnishes at once the Aloon's Declination, South of the Equator.

To. Find the Longitude from the Moon's Observed Declination.
D's Mer. Pass. N. A. July 6th. 6h 42 m 30 s M. T. of Pass, at Ship 6h 51 m 30 s D's Sem. 15^{\prime} 59' H.P. $58^{\prime} 39^{\prime \prime}$ Say as 360° is to 50 m so is L. $64^{\circ} 56^{\prime} \mathrm{W}$. to $\quad 9 \quad 0 \quad$ Lon. $64^{\circ} 56^{\prime} \mathrm{W} . \operatorname{inT}$ T. $4 \quad 19 \quad 44$ Cor.G.D. $\frac{2}{15^{\prime} 57^{\prime \prime}}$ Cor. $-\frac{14}{68^{\prime} 25}$, Mean Time of Pass. Mer. at Ship $\overline{6 \mathrm{~h} 51 \mathrm{~m} 30}$ s Gr. Date, July 6th, $\overline{11 \mathrm{~h} 11 \mathrm{~m} 14 \mathrm{~s}}$

Augment... $\quad 11$
App. Time at Ship $\overline{6 \mathrm{~h} 47 \mathrm{~m} 7 \mathrm{~g}}$ Cor. Eq. of Time. . 4 m 23 s Augm. Semi. $\overline{6^{\prime} 8^{\prime \prime}}$

Althnugh the Altitudes are required to be taken with much precision, to insure a tolerable degree of accuracy by whis method, still as the errors in the Observation are not multiplied in the computation, it may be used with advanloge in fine serene weather, when the Sea is smooth, and the Dip of the Horizon is correctly ascertained, by thoos persons who may nut have had practice in the Lunar method. In this case an error of $10^{\prime \prime}$ in computing the Moon's Declination, will produce an error of 13^{\prime} in the Longitude deduced therefrom; and an error of 1^{\prime} in the Declination will produce an error of $1^{\circ} 13^{\prime}$ in the Longitude. This method is therefore most suitable for High Latitudes, where the degrees of Longitude are small, and where the actuai crror in space (that is, Departure) would be small in proportion. It is, however, much inferior to the Lunar in ρ^{4} hod as regards accuracy ; but the Observation may be useful to those who can take Altitudes accurately enough, but who make sad work at measuring a Lunar Distance

METHOD OF KEEPING A SHIP'S RECKONING AT SEA;

and the manner of writing down the same in a log book or journal

Description of the Log Slate or Board.

This is ruled in the following form, so as tn contain an exact account of the Ship's progress during the 24 hours of a Sea Day, and which commences at Noon, that is, when the Sun is on the Meridian of the Ship. The hours are counted to 12 at Midnight, and called the hours P. M. They are then reckoned over again in the same manner, until the following Noon, and called the hours A. M.

Mode of Reckoning Time.

The Sea Day begins 12 hours before the Civil Day, and 24 hours before the Astronomical Day. So that the end of the Sea Day, the beginning of the Astronomical Day, and the Middle or Noon of the Civil Day, takes place at the same period of time.

This mode of reckoning arises from the custom of seamen dating their Day's Work for the preceding 24 hours the same as the Civil Day, so that occurrences which happen, for instance, on Tuesday the 10th in the afternoon, are entered in the Log marked Wednesday the 11th, P. M., and occurrences which happer on the following morning of the Sea Day, are entered in the Log marked A. M., and which also corres ponds to the same hours of the Civil Day

What the Log Board should Contain.

The Log Boardshould contain a register of the Courses, Distances, Leeway, and the direction of the wir tacking or wearing Ship, making or shortening Sail, and other matters of importance connected with tnc Shıp'u way; and it is the duty of the officer of the Watch to mark the same regularly on the Log Slate (when in generally hung up in the Steerage for that purpose) at the expiration of each Watch, su tiac Lhe Ship's progress may be ascertained at any given hour of the day.

When land is in sight, the bearing and estimated distance of the most prominent obierts, and the time at which the bearing was taken, must be inserted, as also the particulars of speaking yessels at Sea, and any other memoranda intended to be inserted in the I og Book, as a guard against a aijp ce the memory.

Ruling of the Log Board.

The Log Board is ruled to contain seven columns; the first contains the hou-s from Noon to Nonn, being marked for every hour, similar to a Civil Day; (or sometımes it is markcd for every two hours,) in the second and third columns are inserted the rate of sailing by Log per hour, sut against the hour when the Log was hove; the fourth column contains the Courses steered by Compass; the fifth, the direction of the Wind; the sixth, the Leeway; and the seventh contains the transactions, remarks on the weather, and ther memoranda.

Setting the Watch at Sea.

[^22]THE LOG BOARD.

H.	K.	F.	courses.	WINDS.	L. w.	remares. tuesday, april lst, 1854.
1	8	3 2	S. E.	W. S. W.		P. M. Smart breezes and cloudy weather. Set studdinessails, low and aloft.
3	8	5	"	"		Stowed the anchors. Unbent and stowed the chain cables in the
4	8	7	*	"		lockers.
5	9	4	"	"		Passed several vessels bound to the Westward.
6	10		"	"		At 6h, very squally. In top gailant-studding-sails, royals and fly
7	9	5	"	"		ing-jib.
8	9		*	" ${ }^{\text {\% }}$		At 8 h , wind hauled to the Southward, with heavy rain. Took in
9	7		"	S. S. W.		all the studding-sails and braced up sharp.
10	7		"			
11	7	4	"	"		Weather gloomy and threatening.
12	6	7	"	"		At Midnight, iu top-gallant-sails, and the first reefs of the topsails.
1	7		E. by S.	S. by E.		At 2 A M. double-reefed the topsails. Strong gale and cloudy
3	6	5	East.	S. S. E.	$\frac{1}{2}$	eather.
4	6					At 4h, sent down the royal yards, and made all snug aloft.
5	6		E. N. E.	S. E.	1	
8	5	8				At 6 h , strong gale and a high sea running. Vessel shipping much
7	5		N. E.	E. S. E.	$1 \frac{1}{8}$	water on deck.
8	5					At 8 h , tacked ship to the Sonthward; more moderate weather.
9	6	5	South.	E. S. 2.	2	out double-reefs and set top-gallant-sails.
10	6	8	"			Spoke the ship Asia, from Manilla to New York, out 85 days;
11	6	9	"			all well.
12	6	5	Barom. 29	Ther. 76°		Noon. Fresh gale and clondy. Sun obscured. Magnetic variation $1 \frac{1}{2}$ points Westerly.

The above form of ruling for every hour is the most accurate mode, though sometimes another form is used, and marked for every two hours, but which is liable to cause considerable error in the reckoning, in having to double the knots marked opposite the hours, thereby doubling the error in the distance sailed. Besides, it is inconvenient for inserting the Course, when it is changed between the hours so marked.

On proceeding to work a Day's Work, the Courses by Compass are taken from the Log Board, and corrected for the Variation of the Compass and for Leeway, when she makes any. This gives the Course made good between the hours marked on the Board.

Cross off the distance below the hour at which the Course was changed, (as in the form above,) sum up the fathoms, which divide by 10^{*}, the quotient is knots, and the remainder, if above 5 , call 1 knot more, but if less than 5 , throw it away; carry the quotient to the column of knots, and their sum, contained between the hours corresponding to the Course, will be the distance run on that Course.

To Correct the Courses for Variation.

RULE.

When the Variation is
 \{ Westerly, allow it to the Left hand of the Course steered. Easterly, allow it to the Right hand of the Course steered.

To Correct the Courses for Leeway.

RULE

When the Ship is on the
Starboard Tack, allow it to the Left hand of the Compass Coursa.
\{ Port Tack, allow it to the Right hand of the Compass Course.

EXAMPLE

Of Correcting the Courses and Finding the Distance.

compass Course sterred.	varia.	L. WAy.	wind.	on whior tack.	COURSE MADE GOOD.	distanci.
S. E. from Noon to Midnight.	$1 \frac{1}{8} \mathrm{pt}$. W.		S. W.	Wind free.	S. E. by F. $\frac{1}{\frac{1}{2}} \mathrm{E}$.	100
E. by S. from Mid to 2 A.M.	" "		S. by E.	Starboard Tack.	E. $\frac{1}{\text { N }}$ N.	14
East from 2 h to 4	"	$\frac{1}{2} \mathrm{pt}$.	S. S. E.	do.	E. N EL	13
E. N. E. " 4 h to 6	"	$1{ }^{\prime \prime}$	S. E.	do.	N. E. $\frac{1}{\text { N }}$.	18
A. H. " 6 h to 8 "	"	112 ${ }^{2}$	E. S. E.	do.	N. by E.	10
South " Sh to Noon.	"		do.	Port Tack.	S. $\frac{1}{2} \mathrm{~W}$.	

* Or, consider the Sum to be tenths of a mile, uote the unit, and carry the tens to the next column, in the same manior as the Sums taken from Tables I and 11.

Finding the Variation of the Compass

The Variation of the Compass may be found by an Amplitude, (see page 116,) or by an Azimuth, 'aee page 118.). It may also be found by inspecting the Chart, or by the Variation Table. The Maguetis Griation is there laid down from actual Observation. (See Remarks, page 120.)

Allowing for Leeway.

Leeway is the effect of the lateral pressure of the Wind and Waves in forcing a vessel out of the Course she is endeavoring to make when close-hauled, and it (is the angle contained between her wake and the point of the Compass right astern) It may be ascertained after heaving the Log, and before the line is drawn in, by bringing it over a Half-Compass, constructed for that purpose, on the Taffrail, the diameter of which being at right angles to the Ship's keel, then the angle between the centre point, and the point or half point over which the line lies, will contain the number of points of Leeway the vessel is then making, providing she has been steered steadily during the time of trial. When a Ship is laying to, the middle point between what she comes up to, and falls off, is taken as the direction of her head by Compass. Tho Leeway is then estimated from the angle of her wake, as before.

As the correctness of the Reckoning in a great measure depends upon a proper allowance for Leeway, the officer of the Watch should be particular in marking it on the Log Board, or else in reckoning up the day's work, it will be found difflcult for a person who has not been on deck the whole time to make proper allowance.

Correcting the Course for Leeway and Variation.

In correcting the Courses for Variation and Leeway, imagine yourself to be in the centre of the Compam and looking towards that point which represents the Course steered.

EXAMPLES

Uf Correcting the Courses Steered for the Effect of Leeway and Variation.

Oourses steered.	winds.	on which tack.	LEEWAY.	vartation.	OOURSES MADE GOOD.
E. N. E.	N. W.	Wind free.	0	$1 \frac{1}{2}$ pts. W.	N. E. $\frac{1}{2}$ E.
W. by S.	N.W. by N.	Starboard Tack.	1 pt .	$0{ }^{1}$	W. S. W.
N. W. by N.	N. E. hy N.	$\stackrel{\text { do. }}{\text { Prem }}$	$1 \frac{1}{2}$	$2{ }^{2}$ " W W.	W. by N. $\frac{1}{2} \mathrm{~N}$.
South.	E.S. E.	Port Tack.	$2^{\frac{1}{3}}$		S. by W. \% W.
S. S. W. W.	W. S. W. S. E.	do.	${ }_{1}^{2}$	$\begin{array}{lll} 1 & \text { " } \\ l_{\frac{1}{4}} & \text { " } \\ \text { W. } \end{array}$	$\begin{aligned} & \text { N. W. by N. } \\ & \text { S. S. W. } \end{aligned}$
E. by N. West.	N. by E. N. N. W.	do. ${ }_{\text {do. }}^{\text {do. }}$ Starboard Tack.	2 $2 \frac{1}{4}$		S. E. by E. $\frac{8}{4}$ E. W. $\frac{1}{2}$ N.

In the above Examples, 6 points of an Angle is allowed between the Ship's head and the point from which the wind blows, this heing as near as a square-rigged vessel will lie to the wind when close-hauled in smooth water; but in blowing weather at Sea, it is the practice to round in the weather-braces, so that the Ship's head, though still close-hauled, is about 7 points from the wind, or as it is termed by seamen, on a Western Ocean bowling; the object being to make greater speed and less Leeway.

Fore-and-aft vessels generally lie within from 4 to 5 points of the wind, that is, a point or two higher or nearer the wind than square-rigged vessels do.

In allowing for Leeway and Variation, when they both go the same way, it may be done at once by allowing their Sum; or when in different ways, take their Difference and allow it the same way as that of the greater of the two, whether it be Variation or Leeway.

And the learner should keep the figure of the Compass-card in view while making these allowances. which will be found to greatly assist the memory.

Allowing for the Heave of the Sea.

A Ship is supposed to make Leeway only when she is close-hauled and a rough sea on. But it some--imes happens when the wind is free, a heavy beam-sea may be running, which has the effect of heaving her to leeward of the Course steered. This allowance is called the Heave of the Sea, and will rarely xceed $\frac{1}{2}$ point; because, although the waves appear to have a rolling motion, it is only the crest of the wave which advances, the great body of the water remaining stationary, rising and falling with a motion similar to the shaking of a sail.

And the greater the speed of the vessel the less will be the effect of the waves; on the other hand, the loss the speed of the vessel the greater will be the effeet of the waves in any given distance sailed ; because. the fast-sailing vessel will cross any given space in a shorter time than the slow one, and will be subjected in fewer buffetings.

So that the allowance for the Heave of the Sea must rest entirely on the judgment of the Navigator reeping in view the various circumstances of the case.

On allowing fur Currents; (see page 29,) and for a description of the Log-Line, Log-Glass, and manner of using the same, (see page 6.)

METHOI) OF KEEPING A SHIPS RECKONING AT SEA.

Allowing For Currents.

Having thus found the Courses made good and the Distance Sailed by the Log, they are entered in the traverse Table, together with the True Set of the Current as a Course, and its Drift as a Distance when the Current is actually known to exist, otherwise much caution is required. (See Remarks at page 29.)

Remarks on the First Day's Work after Leaving the Land.

If a departure has been taken from the Land, the Variation must be allowed on the Bearing b Compass, and the opposite point entered into the Traverse Table as a Course, and the estimated distance off Shore as a Distance, (see page 31) the Difference of Latitude and Departure made good is then found by a case of Traverse Sailing ; then the Difference of Latitude made applied to the Latitude left, (or in the case of taking a departure from the Land applied to the Latitude of that place,) will give the Latitude of the Ship. Then with the middle Latitude as a Course, found in Table II, and the Departure made good taken in the Latitude coiumn, the Difference of Longitude corresponding will be found in the Distance column. This applied to the Longitude left, at the preceding Noon, (or in the case of taking a Departure from the Land, applied to the Longitude of that place,) will give the Longitude of the Ship.

Cause of the Errors in the Dead Reckoning.

The Latitude and Longitude thus calculated at Noon is called by Seamen the Dead Reckoning, and it is well named, for it frequently happens that it is dead enough as regards the Ship's true position. This is caused by many circumstances, such as bad steerage, local attraction acting on the Steering Compass,(for Remarks see page 120,) unknown currents, false distance given by the Log in squally weather, errors in the Log-Line and Log-Glass, and improper allowances for Leeway and Variation.

Ascertaining the Cause of the Error in the Dead Reckoning.

When the discrepancy is great between the Ship's position by Dead Reckoning and that by Observation, a eareful Navigator will investigate the matter, and endeavor to ascertain the cause. If the Log-Line and Glass have been found correct, (see page 6) examine the Steering Compass and see that it 18 free from Local attraction, and if the Ship has been steered her proper course, and the Log has given her proper Distance run, then the discrepancy may be set down as the effect of a Current, the direction and drift of which may be found by the rules given at page 29, Case 1st, and in that case it may be allowed for 11 the next day's work, as a Course and Distance Sailed, or, it may be counteracted by altering the Ship's course. (Soo method of doing so, page 30, Case 3d.)

Allowing for Bad Steerage.

When a Ship is scudding in a Gale of wind some Navigaturs are in the habit of allowing for the heave of the sea, in forcing the vessel, as they imagine, ahead of the distance run by Log. This allowance is of very doubtful utılity. In fact, I have always found it the reverse, especially in a badly steered or bad steering Ship, because on account of her yawing about she must necessarily waste a considerable portion of her Distance run, and the Log will be found to give the Distance run in excess of the actual place os the Ship by observation, and it is usual in some cases to deduct 1 mile in 10 for bad steerage.

Heaving the Log in Steam Vessels.

In Steam Vessels the Log is found to give too much Distance. This is easily accounted for, and caused by the action of the paddle-wheels driving the water astern. The Log in this case should be hove from the paddle-boxes, outside of the influence of this current of water.

The Use of Keeping the Dead Reckoning.

iNevertheless, the Dead Reckoning even under all these disadvatages should not be neglected, as it sometimes is the only mode we have of detecting any very gross error made in deducing the Ship's position from Astronomical observations and in the detection of Currents, and other matters.

When the Dead Reckoning is Proved to be Erroneous, to take a Fresh Departure.

When the Lonitude by Dead Reckoning is proved to have been erroneous from the Sight of Land or by the Chron., the error and rate of whieh has been recently found, or by Lunar Distances nhserved on both sides of the Moon, it can answer no useful purpose in carrying it on, and a fresh Departure and Longitude shouid be adopted and then carried on as before.

Practice of some Navigators Regarding Dead Reckoning.

Some Navigators carry the Longitude by Dead Reckoning on from day to day only, as a means of com paring it with the Longitude made by Chronometer. Others again never keep any Dead Reckoning at all trusting entirely upon the Latitude observed and the Longitude by Chronometer.

Practice of Keeping the Reckoning in Fast Sailing Ships.
In fast sailing Ships the Distance run is generally estimated, and the Log seldom or ever hove, and as those Ships generally steer well, their Courso steered can be depended upon; and when the Difference of Lat. is obtained from observation, the Distance run and the Departure made good, can also be obtained by a case in Plane Sailing, and more correct than if the Distance had been measurad in the usual manner: bs the Log. (See the following rulés for working Day's works.)

METHOD OF KEEPING THE SHIP'S RECKONING AT SEA.

RULES FOR WORKLNG A DAY'S WORK.

The follow.ng rules have been collected with the view of simplifing the matter, and placed so as thes an be conveniently referred to by the learner.

Correcting the Courses Sailed.

1. Correct each Course sailed for Variation and Lee-way by the rules (page 182) already given; enter then in the Traverse Table and set against each the Distance run on that Course. If the Ship is in a Current, the Set and Drift of which is known, allow the Variation on its set, and enter it in the Traverse Table as a Course and Distance, but if its Set and Drift is uncertain, it is better to loave it out altogether ; also if the ship has taken a Departure from the Land, correct the Bearing by Compass for Variation, and enter the Table with the Opposite Point as a Course, and the estimated Distance off as a Distance.

Finding the Course Made Good.

2. Find the Difference of Latitude and Departure made good, with which enter Table II, and find the Course and Distance made good, by seeking in its columns until they are found to agree, opposite to whieh will be found the Distance in its column; and if the Departure be greater than the Difference of Latitude, the Course is taken from the bottom of the Table, but if the departure be less than the Difference of Latitude, the Course must be taken from the top of the Table.

Finding the Latitude In.

3. If the Latitude of the place from which the Ship's Departure has been taken, or yesterday's Latitude, and the Difference of Latitude made be both North or both South, their Sum will be the Latitude in of that name ; but if the Difference of Latitude be of a contrary name to the Latitude left, their Difference will be the Latitude in, of the same name as the greater of the two.

Finding the Difference of Longitude.

4. Add together the Latitude observed yesterday and the Latitude in to-day, and take their Half Sum for the middle Latitude, then with this middle Latitude (taking the nearest Degree) enter Table II, and seek for the Departure made good in the Latitude column, and the Suin standing opposite in the Distance coluinn will be the Difference of Longitude made, which divided by 60 will give Degrees and Minutes, and mark it of the same name as the Departure.

Finding the Longitude In.

5. If the Longitude of the place from which the Ship's Departure has been taken, or yesterday's Longltude, and the Difference of Longitude made be both East or both West, their Sum will be the Longitude in, of that name; but if the Difference of Longitude be of a contrary name to the Longitude left, their Difference will be the Longitude in of the same name as the greater of the two; but when their Sum exceeds 180° the Ship has crossed the opposite Meridian to Greenwich; in that case Subtract it from 360°, the remainder will be the Longiturde. in, and of a different name to the first.

Mode of Working the Day's Work when the Distance run is Unknown.

o. When the Distance run is uncertain or even altogether unknown, take the Difference of the observed Latitudes, and the Course made good, with which enter Tables I or II, as usual, and seek for the ob served Difference of Latitude in its column, and opposite to which will be found the corresponding Distance run and the Departure. Then proceed as before by rule No. 4, to find the Longitude in by Dead Reckoning

General Remarks on Keeping a Ship's Reckoning, Currents, \&ंc.
If the Latitude yesterday has been observed, the Difference of Latitude made is usually applied to it, the room of the Latitude by Dead Reckoning, and it is called the Latitude in by Dead Reckoning at Nod to-day. Then if it agrees with the Latitude in by observation to-day, the reckoning is sald to be just, but it do not so agree the Ship is said to be the amount of the Difference to the Northward or to the Southward a the Dead Reekoning. In like manner, if the Longitude by Chronometer or Lunar observation has heen ob served and brought up to Noon yesterday, and the Difference of Longitude made by Dead Reckoning being applied to it, then if it agrees with similar observations for Longitude to-day, brought up to Noon, Ifs reckoning is said to be jusi, but if they do not so agree then the Ship is said to be the amount of the Drs. ference to the Eastward or Westward of the Dead Reckoning on this day's work.

The errors of the Latitude and Longitude so found, furnish the means of Detecting the Set and Drift of the Current (always providing that the Course and Distance Sailed are correctly given,' by taking the Mid Latitude us a Course, and the Error of the Longitude in the Distance column ; then in the Latitude colomn will stand the Departure, with the Departure and the Error in the Latitude find the Course and Distance, and which will be the true Set and Drift of the Current, or in that direction in which the Ship is founn w be by observation, when compared with her place as given by the Dead Reckoning.

The Dead Reckoning should not be Altered on Slight Grounds.

The Difference of Longitude made by Dead Reckoning being applied daily to the Long. in by Dead Reckon in_{4} is carried on from the commencement of taking a Departure, independent of that by observation, and shuold not be altercd on slight grounds, because the rate of the Chron. may change or the Lunar Distance may be in Error, and the Dead Reekoning may thus be the means of detecting it; but when the Dead Ruckoning has been found to be decidedly in Error then a fresh Departure must be taken.

THE DAY'S WORK.

EXAMPLE 1.

At 1 P. M, took our Departure from Neversink Light-Houses, bearing by Compass W. N W, distant 9 miles, ana bave saled until Noon this day as per Log; the Variation of the Compass being $\frac{1}{2}$ a point Westerly, aud the Sun's Meridian Altitude observed was $66^{\circ} 30^{\prime}$ South. Required the Latitude in by Observation, be Latitude and Longa made by Dead Reckoning, and the Bearing and Distance of Wreck Hill, iu the Island of Bermuda, at Noon.

H.	E.	F.	courses.	winds.	L. W.	remares on boabd, monday, may 1 bt, 1854.
1	10	3	S. E. by S.	West.		At 1 P.M. Neversink Light-Houses bore W. N. W. 9 miles, in Latitude $40^{\circ} 24^{\prime} \mathrm{N}_{\mathrm{m}}$ Long. $73^{\circ} 59^{\prime} \mathrm{W}$., fiom which I take my Dep
3	10	6				Set the starboard studding-sails low and aloft.
4	11		"	"		Steady breeze and fiue pleasant weather.
5	10	8	"	*		Stowed the anchors and secured the boats.
6	9	4		*		
7	10		${ }^{\prime}$	"		
8	10	5	*	"		At 8h, squally-like in the South.
1	10	5	"	8.W		At 9 h , wind hauled more to the Southward. In all the studding-
10	9	8	"	S. W		sails and braced the yards up.
11	9	4	"			
12	8		S.	S. W. by S.		Miduight. Squally. Handed the light sails.
1 2	7		S. E.	S. S. W.		
3	6		S. E. by E.	S. by W.	$\frac{1}{8}$	reefs of the topsails.
4	6					At 4h, blowing fresh and a head sea.
5	5 5	4	E. S. E.	South.	1	Sun's Magnetic Beariug at rising was observed to be E. $14^{\circ} 18^{\prime} \mathrm{N}$, which gives the Magnetic Variation 5°, or about $\frac{1}{2}$ pt Westerly.
7	5		East.	S. S. E.	2	
8	5		"			At 8h, tacked ship to the Southward and set top-gallant-sails ;
9	6	5	South.	E. S. E	$1 \frac{1}{1}$	weather more moderate and clear.
10		5				At 10h, many vessels in company. Spoke the ship Jacob Bell, from
11	${ }_{6}^{6}$	5	S. E.	E. N. E.	1	Boston to Australia.
12	7	3				Noon. do. weather. Lat. Obs. $38^{\circ} 25^{\prime}$ N. Varia. $\frac{1}{4}$ pt. Westerly.

TRAVERSE TABLE.		dif. of lat.		departure.	
COURSES.	DIST.	N.	s.	E.	W.
F. by S. $\frac{1}{2}$ S.	9		$2 \cdot 6$	$8 \cdot 6$	
S. E. $\frac{1}{2}$ S.	110		85	$69 \cdot 8$	
S. E. $\frac{1}{2}$ E.	14		8	$10 \cdot 8$	
E. S. E.	12			$11 \cdot 1$	
E. $\frac{1}{2} \mathrm{~S}$.	11		$1 \cdot 1$	$10 \cdot 9$	
N. E. by E. $\frac{1}{2}$ E.	10	$4 \cdot 7$		$8 \cdot 8$	
S. by W.	13		12	.	$2 \cdot 5$
S. E. $\frac{1}{2}$ S.	14		10	$8 \quad .9$	
			125 4	$\begin{array}{\|rr\|}128 & 0 \\ 2 & 5\end{array}$	$\cdot 5$
Southing. 60)121 $0126{ }^{\circ} 4$ of Eas'g.					
Diff. of Latitude made . . . $\quad 2^{\circ} 1^{\prime} S$. Lat. of Neversink L. Houses $40^{\circ} 24^{\prime} \mathrm{N}$.					
Lat in by D. Reckoning ... $\overline{38}^{\circ} 23^{\prime} \mathrm{N}$.					
Sum of the Latitude. $78^{\circ} 47^{\prime}$					
Half Sum, or Mid. Lat.. ... $\overline{39^{\circ} 23^{\prime}}$ taken as a Co., and the Dep., $126^{\circ} 4$, in the Lat. column, and in the Dist. Col. stands the Diff. Lon. $163^{\prime} \mathrm{E}=2^{\circ} 43^{\prime} \mathrm{E}$.					
Long. of Neversink Light-Houses. 7359 W .					
Long. of the Ship by D. Reck. $71^{\circ} 16^{\prime} \mathrm{W}$.					
Difference of Latitude 121, and Departure 126, made					
good, found together in the Traverse Table, gives the					
Course made good S. 46° E., and the Distance made good 175 miles.					

To Find the Variation.

Lat. by D. Reck. at Sumrise about $38 \frac{1}{2}^{\circ} \mathrm{N}$., and Sun's Declination $15^{\circ} \mathrm{N}$, in Table XXXV, gives the true Amplitude E. $19^{\circ} 18^{\prime} \mathrm{N}$. Magnetic Amplitude at Rising E. 1418 N. Magnetic Variation $\overline{5}^{\circ} 0^{\prime}$ W

To Find the Latitude by Observation.

Sun's Mer. Altitude Observed. $66^{\circ} 30^{\prime} \mathrm{S}$.
Correction, Table IX. $\frac{12}{66^{\circ} 49^{\prime}}$
True Altitude. $\overline{66^{\circ} 42^{\prime}}$
Zenith Distance. $\overline{23^{\circ} 18^{\prime}} \mathrm{N}$.
Sun's Correct Declination. 15 . 7 N.
Latitude Observed . $\overline{38^{\circ} 25^{\circ}} \mathrm{N}$

Summary.

Course	S. $46^{\circ} \mathrm{E}$.
Distance	175
Diff. Latitude	121 S.
Departure	126 E .
Latitude by D. Keck.	$38^{\circ} 23^{\prime} \mathrm{N}$.
Latitude Úbserved	3825 N .
Diff. Longitude.	243 E
Long. by D. Reck.	7116 W

Bearing of Bermuda S. 41° E, or S. E.t S., neart (True.) Distance 484 miles.

To Find the Bearing ard Distance of Bermuda.
Lat. of the Ship by Observation.. $38^{\circ} 25^{\prime} \mathrm{N}$. Loug. $71^{\circ} 16^{\prime} \mathrm{W}$. Middle Lat. 35°, and half the Diff. Long, 193, in Lat. of Wreck Hill, Bermuda. . . 3219 Long. 6450 W. the Dist. col., gives half the Dep., 158, in the Diff. of Latitude in miles $366 \ldots=6^{\circ} 6^{\prime} \quad \overline{6^{\circ} 26^{\prime}} \quad$ Lat. col. Then half the Diff. Lat, 183, and Dep,
Sum. $70 \quad 44 \quad 60$

THE DAY'S WORK.

EXAMPLE 2.

A Ship from Latirude $85^{\circ} 42^{\prime} \mathrm{N}$. by Observation, and Longitude $51^{\circ} 2^{\prime}$ West by Chronometer, yesterday at Kron has sailed until Noon this day as per Log. The Sun's observed Altitude in the morning was $10^{\circ} 23^{\prime}$, the Green wich Time by Chronometer 11 h 0 m 2 s , or March 5 th, 23 h 0 m 2 s , and the Sun's Meridian Altitude was $45^{\circ} 32^{\prime}$. Required the Latitude and Longitude in, both by Dead Reckoning and Observation, and the Set and Drift of the Current.
In this Example the Fractional parts of the Knots are marked as 1 half knot.

н.	к.	н. к.	courses.	winds.	LL. w.	transactions on board, monday, anamin 6th, 1854.
,	10		N. W. by N.	East.		P. M. Strong gale and squally, with hail ano sleet. Vessel shipping
2 3	10	1				much water on deck. Pumps carefully attended. At 3 h , more moderate and clear weather.
3	9 10	1	"	"		At 3 h , more moderate and clear weather. At 4h, out double reefs arć set top-gallant-sails.
5	10		"	"		Signalized the ship Washington, from New York to Liverpool, out
6	10		"	"		10 days.
7	9	1	"	"		Observed the Sun to set per Compass W. 4° N., which gives the
8	9	1	"	"		Magnetic Variation $11^{\circ} 30^{\prime}$, or 1 point Westerly.
9	$i 0$		"	"		
10	9	1	"	"		At 10 h , passing squalls, with showers of hail.
11	9			"		
12	8	1	Sumı	ry.		Midnight. Gale moderating. Out all reefs and set the starboare
	9	1	Course. .	. N. W.		foretopmast-studding-sail.
2	10		Distance .	. 231		
3	10		Diff. Lat...	. 163 N.		
4	9	1	Departure Lat. D. R..	. 163 S .		At 4 A. M. set top-gallant and lower stuiding-sails, royals and flying.jib.
6	8	1	Lat. Obs...	840 N.		
7	9		Diff. Long....	324 W.		At 7h. Longitude in by Clronometer $54^{\circ} 1^{\prime} 30^{\prime \prime} \mathrm{W}$
8	10		Long. D. R	5426 W		
9	10		Lon. Chr. 54	$46^{\prime} 30^{\prime \prime} \mathrm{W}$		Unstowed the anchors and bent the cables.
10	10		Barom. 30.	Therm. 42°		Carpenter employed fixing the windlass.
11	10		Current N.	7° W.rate		Fresh breezes and clear weather. Variation 1 point Westerly.
12	10		of 1 knt. an	ur, nearly.		Noon. Cape Sable, N. S., bore N. W. $\frac{1}{4}$ N. True, Distance 750 miles.

The Ship bas been running on a N. W. by N. Course the whole 24 hours. The variation of 1 point allowed to the left, gives the True Course N. W. The knots being summed up gives 227 miles, and the 8 half knots, equal to 4 whole ones, this added to 227 gives the whole Distance 231.
Tine Course N. 4 pts. W. 231, gives D. L. 123 Dep. 163
Diff. Latitude made. $\quad 2^{\circ} 43^{\prime} \mathrm{N}$.
Lat. Observed yesterday 3542 N.
Lat. by D. Reckon. to-day $38^{\circ} 25^{\prime} \mathrm{N}$.
Sum
 Course, and the Dep., 163, in the Lat. column, the Diff. of Longitude is found in the Distance column to be 204.......................... $3^{\circ} 24^{\prime} \mathrm{W}$. Long. by Chron. yesterday $51 \quad 2$ W. Long. by D. R. since yesterday.... $\overline{54^{\circ} 26^{\prime}} \mathrm{W}$.

To Find the Set of the Current.

Lat. Obs. $38^{\circ} 40^{\prime} \mathrm{N}$. Long. by Chron. $54^{\circ} 46^{\prime} 30^{\prime \prime} \mathrm{W}$. Lat. D. R. $38 \quad 25$ N. Long. by D. R. $5426 \quad 0$ W. Error in Lat. $15^{\prime} \quad$ Error in Long. $0^{\circ} 20^{\prime} 30^{\prime \prime}$

With Latitude $3:^{\circ}$ as a Course, and Difference of Longitude $20^{\prime} 30^{\prime \prime}$, in the Dist. column, opposite to which, in the Lat. column, stands the Dep., 16^{6}. Then with Diff. of Lat. 15, and Dep. 16, the Set of the Current is found to have been N. 47° W. (true) and its Drift 22 miles.

To Find the Magnetic Variation.

Diff. Lat. made to Sunset. $0^{\circ} 42^{\prime} \mathrm{N}$.
Latitude at Noon. 35 42 N.
Latitude at Sunset $\overline{36^{\circ} 24^{\prime}}$ and the Sun's Declination corrected, $5^{\circ} 54^{\prime}$ South, found in Tabro XXXV, gives the Sun's True Amplitude, W. $7^{\circ} 30^{\prime} \mathrm{S}$ Magnetic Bearing at Sunset
W. $4 \quad 0 \quad \mathrm{~N}$

Magnetic Variation \qquad $1 \overline{1^{\circ} 30^{\prime}}$ W

Sights for Chronometer having been taken in the morn ing about 7 o'clock, the necessary corrections are made (see Example 1st, page 140.) and the Meridian Altitude having been observed, the Latitude in is found to be 38^{*} 40^{\prime}. This Latitude is then reduced back to the time the Sights were taken, and the Longitude by Chronometer found, which is then brought up to Noon by the Dead Reckoning, and in this case is $54^{\circ} 46^{\prime} 30^{\prime \prime} \mathrm{W}$. (This will be found worked out at page 140.)

Now, as there is a considerable difference between the place of the Ship by Dead Reckoning and that by Observatiou, and supposing the Course and Distance run to have been correct, we now proceed to find the Set an Drift of the Current.

[^23]
THE DAY'S WORK.

EXAMPLE 3.

A Ship from Latitude $45^{\circ} 50^{\prime} \mathrm{N}$. by observation, and Longitude by Chronometer $49^{\circ} 34^{\prime}: V$. yesterduy at Noon bas Sailed until Noon this day as per Log. An Altitude of the Sun in the Morning was observed to be $25^{\circ} 8^{\prime}$. Time by Chronometer 12 h 13 m 21 s , and whieh was Fast of Greenwieh this duy 5 m 25 s . The Weather being Foggy at Noon the Meridian Altitude of the Sun was lost for the duy, but an Altitude was obtained afterwards, and oh. served to be $42^{\circ} 30^{\prime}$, the Time by Chronmeter being 4 h 14 m 21 s . Required the Ship's pusition at Noon, both by Dead Reckoning and Observation, and the bearing and Distance of the nearest Laud.

п.	к.	II. E.	ULBEE	winds.	L. W.	remaras, wednesday, march 15 th, 18.54.
1	8		W. S.	N. W	$\frac{1}{2}$	P. M. Steady breezes and five pleasant weather, all sail set, close
2	8					
3	8		"	"		
4 5	8	1	"	"		At 4 h , Long. in by Chron. $50^{\circ} 3^{\prime} 30^{\prime \prime}$ W., and Magnetic Vari. as per Azimuth 23° or 2 points Westerly.
6	7		"			
7	7	1	"	"		arom. falling rapidly to $29^{\circ} 30^{\prime}$, Lee clouds appeared uear,
8	3		Sout	W. S. W.	3	d of a threatening appearance. Took in all the small sails,
9	3					aud double-reefed the top-sails, reefed the coursers and stowed
10	3		"	"		the jib and S. M. Sail.
11	2	1	"	"	4	Wind very unsteady and blowing in gusts.
12	2		"	"		At Midnight came ou to blow excessive hard, close-reefed the top-
1	2	1	"	,		sails and hauded the foresail, vessel laboring heavy aud shipping
2	2	1	"	"	5	much water on deck; pumps carefully attended to.
3	2		"			
4	2	1	"	"		At $4 \mathrm{~A} . \mathrm{M}$. The wind flew round to the N. W. in a heavy rain
5	4		W. S.	N. W	3	squall, and the weather cleariug up, made sail.
6	4					At 6 h , shook out the close-reefs and set the jib
7	5	1	"	"	2	At 7h, passed several fisliug vessels at auchor.
8	6	1	,	,		At 8h, out donble-reefs and set the topgallant-sails
9	7			N. by N	$\frac{1}{2}$	At 9h, sounded in 30 fathoms on the Grand Bank of Newfoundland;
10	8		"			Long. in by Chron. $49^{\circ} 58^{\prime}$.
11	8		"	"		Noou, Foggy weather, Sun obscure.
12	S					Cape Race, N. W. $\frac{1}{2}$ W. True, or N. N. W. $\frac{1}{2}$ W. by Compass 138 miles. Varation 2 points Westerly.

Lat. in. $44^{\circ} 28^{\prime} \mathrm{N}$
Sum............. $\overline{90^{\circ}} \overline{18^{\prime}}$
Mid. Lat. $45^{\circ} \frac{9^{\prime} \& ~ D e p . ~ 48 ~}{}$ Gives D. Lon. made $68^{\prime}=1^{\circ} 8 \mathrm{~W}$. Lon. by Chro. yesterday Noon 4984 W .
Long. by D. R. to-day. $\overline{50^{\circ}} \overline{42^{\prime}}$
To Find the Coirse.
The Dif Lat 816 Lat. D. R..
Ge Course made good S. 31° W., and the
Distance 94 miles.

As no Meridian Alt. has been observed to-day the Lato must be found by the reduction to the Meridian of the Alt. Obs. near Noon, either by the measured Interval of Time between the Observations, which is 4 h 1 m , as in the 2d Example, given at page 97, (this being the same case worked out) gives Latitude $44^{\circ} 32^{\prime} \mathrm{N}$, or it may be found by the method given at page 94, that is, of deducing the Time at the Ship from the Greenwich Time by Chron, as follows :

Time by Chron. ... 4 h 14m 21s Sun's Obs. Alt. P. M. $42^{\circ} 30^{\prime}$ Chrou. Fast....... 525 Corr. for Semid. \&ce 11 Green. T. by Chrou. $4 \mathrm{~h} \frac{8 \mathrm{~m}}{56 \mathrm{~s}}$ True Altitude..... $\overline{42}^{\circ}{ }^{-} 1^{\prime}$ Long. $50^{\circ} 42^{\prime}$ in T.. 32248 Sun's Dec Cor. to the
M. T. at Ship...... 0 解 46 m 8 s Green. Date...... $2^{\circ} 5^{\circ}$ Equa. Sub. $\quad 9 \quad 6$
T. Past Noon. $\frac{. .37 \mathrm{~m}}{} 2 \mathrm{~s}=$ Log. $\left.7 \cdot 813\right\}$ Table XV. Summary. Lat. $44 \frac{1}{2}^{\circ} \mathrm{N} . . .$. Dec. $^{\circ}{ }^{\circ} \mathrm{S}$..Log. 0.293$\}$ Table XV .

Course	S. $30^{\circ} \mathrm{W}$.	$8 \cdot 106$ Corr. . . . $0^{\circ} 44^{\prime}$
Dist	94	True Altitude.............. 4241
Diff. Lat...	82 S .	Meridian Altitude.. 4 43 $2 \overline{5^{\text {a }} \mathrm{S}}$
Departure.	48 W ,	Zenith Distance., $46^{\circ} 35^{\prime} \mathrm{N}$.
Lat. D. R..	$\begin{array}{llll}44 & 28^{\prime} & \mathrm{N} . \\ 44 & 32 & \mathrm{~N} .\end{array}$	Declination.................. 2 2 5 S
Liff. Long.	$\begin{gathered}44 \\ 1 \\ 1\end{gathered} 88 \mathrm{~W}$.	Lat.in at 37 m past Noon. . . . $\overline{44}{ }^{\circ} \frac{1}{30^{\prime} \mathrm{S}}$.
Long. D. R.	5042 W.	Co's \& Dis. since NoW.S.W.5m D.L. 2 N.
Lou. by Cb.	5034 W.	Lat in at Moov. $444^{\circ} 32^{\prime} \mathrm{N}$.
Barom.	29 90 The	

Having the Correct Latitude at Noon we Proceed now to Find the Longitude in by Chronometer.

The first Altitude observed was taken about 8 h 38 m in the Morning, or 3 h 22 m before Noon, and in that Interval the Ship had made a W. S. W. Course good, and Distance by Log. 27 miles; this will give the Diff. Latitude 10 and Departure 25; the Diff. Latitude 10 added to the Latitude at Noon, g.ves the Latitude in at time of the first Altitude $44^{\circ} 42^{\prime} \mathrm{N}$. The Apparent Time at Ship is thence found on be 8 h 38 m 54s, and the Mcan Time 8h 48 0s, the Difference between which and the Greenwich Time by Chronometer 12 h 7 m 56 s , is 3 h 19 m 56 s , or Longitude $49^{\circ} 59^{\prime} 0^{\prime \prime} \mathrm{W}$. at the time of the Sights. The Departure 25 turned sato Longitude is $35^{\prime} 0^{\prime \prime}$, which added to it gives the Longitude in at Noon $50^{\circ} 34^{\prime} \mathrm{N}$.

The Longitude by D. R. is therefore in Error 8^{\prime} or 3 s of Time. The Time past Noon being Corrected
37 m 31 s , t'e Correction for Altitude is 45^{\prime}, and Lat. at Noon Corrected is $44^{\circ} 31^{\prime} \mathrm{N}$.

FINDING THE LONGITUDE FROM THE OBSERVED ALTITUDES OF A BUDY ON THE PRIME VERTICAL AT EQUAL DISTANCES IN TIME FROM THE MERIDIAN

On leaving any known Longitude take an Altitude of the Sun on the Prime Vertical, that is, when he beare True East or West, which can only be in the summer time. But a Star can always be found on the Prime Vertical at any season of the year. Note or find the Apparent Time by Watch when the observation was made, say in the Morning, and find the Time before Noon, (which with the Sun is his Hour Angle.) Then observe another Altitude in the Afternoon, at the same time past Noon by the Watch. Now, if the Ship has not moved to the Eastward or Westward, that is, if she has made no Departure during the Interval, the Sun's Altitude will be the same as in the Morning. But if the Altitudes do not agree, they the Difference is the number of miles of Departure the Ship has made to the Eastward or Westward.

And in Sailing East the P. M. Altitude will be the greatest because the Ship is meeting the Sun, and in Sailing West the P. M. Altitude will be least because she is leaving him. This Departure, so obtained turned into Longitude by a case of Middle Latitude Sailing, furnishes the Difference of Longitude, whion applied to the Longitude left will give the Longitude in.

Or one Altitude can be observed on the Morning or Evening of one day, (having the A pparent Time from Noon of the observation), and exactly at the same time on the day following. The Difference between the Altitudes so observed is the Departure made good during the 24 hours, which turned into Longitude and applied to the Longitude left from day to day, will furnish an excellent check on Gross Errors in the Dead Reckoning when there is no Chronometer on board.

The daily Variation of the Equation of Time ought in strictness to be Added to the Time from Noon by Watch, at which the last Altitude should be observed, when the Equation is Decreasing, or Subtracted from it when Increasing; but as this quantity amounts to only a few seronds, it may be neglected.

In the ease of observing Stars, 3 m 56 s should be Subtracted from the Time from Noon by Watch, at which the last Altitude should be observed, when P. M., or Added to it when A. M., because the Stars are that much before the Apparent Time by the Sun every day.

EXAMPLE 1.
 Altitt de to be $37^{\circ} 24^{\prime}$, and then Sailed to the Westward, until 3 h 58 m P. M. by the same Watch, when the S'an's Alt. п яs Obs. to be $36^{\circ} 9^{\prime}$. Required the Dep. made, the Diff. of Long. and the Long. in at the Time of the last Alt.

March 30th, 1854. A Ship took her Departure from Latitude $40^{\circ} 43^{\prime} \mathrm{N}$. and Longitude 74 ${ }^{\circ}$ W, at 5h 43 mP . M, When the Sun's Altitude was observed to be $6^{\circ} 6^{\prime}$, and then having Sailed to the Eastward about 255 miles, until the aext Evening at 5 h 42 m by the same Watch, when the Sun's observed Altitude was $10^{\circ} 16^{\prime}$. Required the Deparcure made, the Differeuce of Longitude, and the Longitude in.
A * arch 30th, at 5 h 42 m P. M. Observed Altitude. $6^{\circ} 6^{\prime}$ Departure 250, Latitude $41^{\circ}=$ D. Long.) 332
do. 31st, at 5 h 42 m P. M. Observed Altitude. $10 \quad 16$ Difference of Longitude made.... $5^{\circ} 32^{\prime}$

$$
4^{\circ} 10^{\prime} \text { Longitude Left. }
$$

40
60 Longitude in. . . $\overline{68^{\circ} 28^{\prime}}$
Departure made. ... $2 \overline{0} 0$

EXAMPLE 3.

By the Stars.
April 11th, 1854. A Ship in Latitude $30^{\circ} 0^{\prime}$ N. and Longitude $65^{\circ} 0^{\prime}$ W., at 7h 8 m P. M. observed the Altitude of Aldebal an to $\mathrm{b}: 33^{\circ} 24^{\prime}$ bearing True West. She then Sailed to the Westward about 196 miles until the following Evening at 7 h 4 m 4 s by the same Watch, when the Star's Altitude was observed to be $30^{\circ} 4^{\prime}$. Required the Departure inade. Difference of Longitude, and Longitude in.

As tne Star is in advance of App. T. 3 m 56 s it must be Sub. from the Time by Watch on the following Evening 4 pril 11 th, at 7 h 8 mP . M. Star's Obs. Altitude. . $33^{\circ} 24^{\prime}$ Departure 200, Latitude $30^{\circ} 0^{\prime}$ N., Diff of Long.) 231
do 12th, at 7 h 4 m 4 P . M. Star's Obs. Alt... $\frac{30 \quad 4}{3^{\circ} 0^{\prime \prime}}$ Difference of Longitude...................... $3^{\circ} 51^{\prime} \mathrm{W}$.

$$
\text { Departure made... } \frac{60}{200} \quad \text { Longitude in.... } 688^{\circ} 51^{\prime} W
$$

NAVIGATING THE SHIP.

In the preceding Days' works are given the usual modes of finding the Ship's position at Noon by the bead Reckoning, and also the Latitude in at or near to Noon by the Sun's Altitude, and the Longitude by Chronometer, and providing the Chronometer kept a steady rate, and that those observations could be obtained every day; nothing more would be required.

But as the Sun is sometimes invisible for several days together it is evident that the Dead Reckoning mas become very erroneous during that interval, and it becomes necessary as a measure of precaution when the weather is clear at Twilight to obscrve Altitudes of the Planets or Stars, for at any time during a cleas night, Stars may be observed North and South, on or near the Meridian, (see page 110,) or the Moon either by Day or Night. (See pages 101 and 148.) The Latitude by observation and the Longitude by Chrono meter, (or by Lunar observations,) may thence be obtained hv any of these bodies in many cases as corractly as by the Sun's Altitude.

The Longitude by Chronometer may also be obtained at Sunrise or Sunset, (see page 146.) or at Noon, from equal Altitudes of the Sun. (See page 147.) In the latter method no Logs. are required, and will be round useful in deteeting any gross Error committed in working out the Time in the usual manner, but is best adapted for low Latitudes. (See Remarks, page 130.)

When the Sun is seen through watery clouds, and his Limbs not visible, a tolerable observation for Latitude may be obtained by observing lis centre, (see Diagram, page 68, No. 3, and an Exaunple of finding the Latitude by this method at page 89.)

An Altitude of any of the heavenly bodies having been obtained near the Meridian, the Latitude in be found by the Rules given in the body of this work, and although it may probably be a little in error the Time be not exactly known, it is greatly more to be depended upon than the Latitude by Dead Reeko ing, however earefully it may have been kept.

An Error of 1 point in a Ship's Course produces an Errpr in the Dead Reekoning of about 20 miles for every 100 miles run, whether produced by Local Attraction, bad Sieerage, or a Current. and it is evident that in Ships of the present day, many of which are construeted to sail twiee as fast as the old ones, that an Error in their Course steered will produce twiee the Error in their Dead Reckoning in one day's run, than would be the case in a slower sailing vessel ; and in that ease it would require greater vigilanee on the part of the commander of those vessels to ascertain their True Position as often as possible both by day and niglt, especially in the vicinity of Land or a danger. The following remarks may be found useful.

On Commencing the Voyage, 8 cc .

The first and most important matter is to examine the Binnaele and to see that no foreign artieles, suc' as iron, are deposited therem. and whether the steerage Compass is free from loeal attraction, (by the Rules givell at page 120.) At the time of taking a Departure from the Land, if possible, a set of Altitudes nt the Sun should be taken for Chronomerer to find its Error on Greenwich Mean Time, (see page 155;) and always to use the sune Sextant in observing Altitudes for rating the Chronometer.

It is the common practice at Sea to observe a set of Altitudes of the Sun at about 8 or a g'elock in the Morning; and to make all the necessary corrections ready for use, as at page 140 , and as soon as the Latitude is observed at Noon, the Latitude in at the time of the Sights can be dedueed, and thence the Longitude by Chronometer. Or the Sights can be worked out at onee, using the Latitude by Dead Reckoning from the preeeding Noon; then if it appears there is an Error in the Latitude by Dead Reckoning, the Longitude by Chronometer thus found may be corrected by Table XXX, (see pages 144 and 145,) whieh saves the labor and 1 ime of working it over again. In either case the Longitude in by Chronometer at the time of the Sights is brought up to Noon by the Dead Reckoning, and as before observed, if this could be done dail nothing more would be required for the safe navigation of a Ship on the open Sea, or in the fine seren weather in the Tropies; but when a Ship is approaching Land, or in high Latitudes, where uncertain weather prevails; the heavenly bodies are frequently obscured for several days together, it is necessary to take an Altitude of the first object that becomes visible, and to note the time by Chronometer; if $\% \sigma$ bearing is near the True North or South the Latitude may at onee be found, (by any of the Rules which are appropriatel to the Object observed, and will be found in the body of this work,) and if the Altitude of another Object can be obtained at a sufficient Distance East or West of the Meridian, the Longitude by Chronometer may be found. If the object be a Star and not known, see the method of finding the Stars at page 136, or a Planet, at page 134, and as before observed, Twilight is the proper time to observe Altitudes of the Stars. An Altitude of the Sur or Moon also, taken at any time they are visible, and the time noted by the Clironometer, is an observation of great importance to a Ship in the vieinity of the Land, and by which either the Latitude or the Longitude may be obtained, many Examples of which will be found in this work, or the Ship's postion may be determined by Sumner's Method, an Example of which is given at page 152; but as some of the Altitudes may have been observed in stormy weather, when the horizon was ill defined, and used only because no better could be obtained, the Navigator will place that degree of dependence in the result whieh the cireumstanees of the case would seem to warrant, and if doubtful they may be confirmed or rejected, as the ease may be, by another observation made under more favorable circumstances, or as in the case of finding the Latitude by the Stars N. and S. and taking the Mean of the two Latitudes. The Longitude by Chronometer may also be found by the Altitudes of Stars E. and W. and the Mean of the two Longitudes taken as the true one.

When Altitudes of the Sun have been taken in the Forenoon, as a reserve in case of losing the Meridian Altitude, that one should be used whiels is the nearest to the Meridian to find the Latitude by, and the one farthest from the Meridian to find the Longitude by Chronometer. And when the Meridian Altitude of the Sun has been observed the Latitude is usually deduced therefrom in preference to all the other observation for Latitude

When a Departure is taken from the Land, the Course is shaped on the Chart by the Rules given at page 48, and which is the True Course. The Variation of the Compass being then allowed for as directed, will give the Compass Course required to steer ; the amount of this Variation is generally given on all Charts. but ii should be rerified by observing the Variation with the Ship's head in different directions. (See page 120.)

Verifying the Chronometer.

When the Ship is passing near any Island or Headland, the position of which is well known, by Sightmg it and bringing it to bear true North or South at the time of taking a set of Altitudes, the Sea Error and Rate of the Chronometer may be found. See the method of rating Chronometer at Sea; (page 158.) and Remarks on Chronometer (at page 79.)

But if no land has been seen for many days it may be verified within certain limits by Lunar observa Lions taken East and West of the Moon, and usirg the Mean of the two Longitudes so found. 'See page les

Indications of Stormy Weather.

The height of the Barometer should be frequently noted when on the Southern limits of the S L Trade Wind, or on the Northern limits of the N. E. Trade, or in high Latitudes, where stormy weather may expected. See Remarks on Hurricanes, (page 41,) and the uses of the Barometer and Thermometer pages 82 and 83.)

Falling in with Icebergs.

An' Iceberg should always be passed to Windward, if possible, in the night time, because of the loose agments which drift faster than the body of the berg, and stream out to leeward of it, and which may eriously injure a vessel.

Discovery of a Danger.

When a Ship is going free and suddenly discovers she is runming modo danger, the best means of avoiding it is to haul to the wind on that tack on which she will most rapidly increase her distance from it; by doing so she will gain time in order to prepare for Tacking Ship. If the water should continue to shoal, and if in the night time, the proper way to extricate herself would be to steer out on the opposite course to which she was steering on its discovery ; but if that cannot be done on account of the wind, to work to Windward so as to make that Course good.

If the danger is a new discovery, its position should be ascertained by a set of observations taken as soon as possible afterwards, and its place deduced from the place of the Ship by Cross Bearings, or by two Bearings and the Distance sailed between them, by the Rules given (at page 32.) Soundings should also be taken, and the quality of the ground ascertained, which, with the particulars, must be entered in the Ship's Log-Book.

While it is necessary to be on the look out for Coral Reefs and other dangers which may grow up, or be thrown up by Seaquakes, where none formerly existed, it is no less so to guard against false alarms, for it is easy to imagine you see breakers when on the look out for thein. For instance, in Moonlight nights, when the clouds are flying, a stray moonbeam falling on the crest of a broken wave, has really all the appearance of a breaker; but if the bearing of it be taken it will be found not to appear again in the same place Clouds and Fog-banks on the horizon often resemble land, though the experienced eye of the Seanan can usually tell the difference. Whales and other large animals are frequently seen aslecp on the surface of the ocean and mistaken for rocks ; and in some parts of the ocean the surface is covered with a kind of fishspawn of yellowish-grey color, which at a distance looks like a sand-bank. On the Coast of Africa, also, about the Meridian of Greenwich, a very alarming appearance of breakers is caused by a multitude of Phosphorus Fish, and the Ship seems to be approaching a Sea of fire, and so great is the light from this cause that a book may be read on deck in the darkest night.

RULES TO PREVENT COLLISION ON SHIPS MEETING AT SEA.

Two Ships appruaching each other on opposite tacks, close-hauled, and it is doubtful which will weather the other, the Rule is that the one on the Starboard Tack keep her reach, while the one on the Pork Tack must bear up and ga under the stern of the other; but if through ignorance or stupidity the one on the Port Tack continues to keep her reach, and a collision is unavoidable, then both vessels should instantly put their helms a-lee, by which means they will be thrown in Stays, and the shock of collision, if it should take place, will be very much lessened.

Two Ships meeting each other right ahead, and steering opposite courses, both having the wind free, the rule is that both vessels Port their helms so as to pass each other on the Port side, or if one of them should be close-hauled, then it is the duty of the other, which is going free, to give way and pass under her stern.

This rule should not be too hastily adopted in the night time, when a vessel or her light is suddenly seen near to on the Starboard bow, because, in this case, were each to Port their helms they would run on board of each other.

This rule is therefore only applicable when vessels meet each other right ahead or a little on the Port bow and steam vessels, which are always supposed to be under the command of their helms, are deemed to be -siels going free.
The commanders of steam vessels say that if sailing vessels would keep their proper course on the approach of a steamer towards them, the officer in charge of those vessels would then see exactly the state of the case and steer so as to clear the sailing vessel, and thereby prevent collision; but it frequently happens that those on board the sailing vessel become alarmed and keep changing their course without any fixed principle, and thereby mutually deceiving each other as to their intentions.
Ships meeting each other at sea in a dark, stormy night, or in foggy weather, the utmost vigilance and presence of mind on the part of the officer of the watch is required to prevent collision, many melancholy instances of which frequently take place.
On a vessel or her light being reported as scen ahead, or on either bow, the officer of the watch should immediately ascertain in which direction the other vessel is steering ; if that cannot be done on account of the darkness of the night, take her bearing by the Compass : then her change of bearing in a short time will point out the direction in which she is steering, but if the bearing does not seem to change the vessel must either be coming directly towards you or you are coming up with her. If you are, a running Ship, and the vessel ahead about to cross your bow, if there is a doubt of her doing so in time, it is your duty to bear up and pass astern of her.
In the case of the vessel coming towards you, if she is on the Starboard bow and too near, Starboard your heim ; but if seen right ahead or a little on the Port bow, Port your helm; and were each to obey this rule a collision would be impossible. It is only when the one Starboards and the other Ports her helm at the same time that such takes place. The intention of one vessel should be made :nanifest to the other by a broad sheer in the direction in which she intends to pass; this will save some anriety of mind on thie subiect

All vessels in foggy weather should sound an alarm either by bell, gong, or steam-whistle, at intervals of two ol three minutes, and that the alarm should be promptly responded to by all vessels withing hearing distance. If the sound of the alarm be heard on the Starboard bow both vessels should instantly Starboard their helms. But if it is heard from right ahead or on the Port bow, both vessels should instantly Port sheir helins, and by doing so a collision would be impossible. Slacking a vessel's speed will not always prevent oollision; the only remedy is the helm, and the promptness with which it is turned in the same direction as above by both vessels. But to make this effectual we must have a universal Law, to bo edopted by Ships of all nations.

Frror in the Course of a Scudding Ship.

When the Ship is scudding in a Gale and a high Sea running, with the wind on the quarter, she is generally fonnd to have been run off to the leeward of the course intended to have been steered. This is sometimes unavoidable to prevent the sea falling on board, but more frequently caused by bad steerage, that is, by the helmaman hanging on his weather helm when the Ship is on the top of a Sea, in the room of easing it, as he ought to do, the consequence of which is, that the Ship is yawed off nearly before the wind, and runs for some time so before she can be brought up to her course again. In this case the officer of the Watch should mark on the Log-Board tha course the vessel is supposed to have made good by Compass; this will seldom amount to more than ae point to leeward of the given course, unless the vessel has beer wretchedly steered, because we maj suppose she has been kept some part of the time at or even to windward of the given course. When the vessel is running in a narrow chamel or in the vicinity of a danger, it becomes of the utmost importance that this yawing off should be guarded against, by steering a point, or whatever allowance may be deemed sufficient, to windward of the given course, or by yawing her to wind ward as much as she has been run off, so as to make the course good. This yawing of the vessel about necessarily cuts off a considerable portion of the Distance she would have run on a straight course, hence an allowance of about 1 mile in 10 is deducted from the Distance run by Log., and as before observed, an Error of 1 point in the Course steered will produce an Error in this case of 20 miles for every hundred miles of distance ren, which the Ship will be to leeward of her course.

The Proper Tack to Lay To On.

In the Remarks on Hurricanes, at pages 42 and 43, rules are given for Laying To on the Proper Tack in those cases; but as the Storms in Higher Latitudes revolve in a contrary direction to what the regularbuilt Hurricanes do-for instance, in the North Atlantic Ocean they commence generally at S. E. or South, with rain, and veer gradually round by the West to N. W. and North when the rain ceases, but the most danger is to be apprehended from a sudden shift, which frequently takes place after a heavy fall of rain from S. W. to N. W. ; in that case it is evident that the Starboard Tack is the proper one to be on. In a high South Latitude, in the South Atlantic Ocean, Storms commence at N. E. and North, with rain. as in the former case, and veer round by the West to S. W. and South when the rain ceases: sudden changes take place in the same manner from N. W. to S. W. The Port Tack is therefore the proper one to Lay To on in the latter case. (See the Acting of the Barometer in these cases, at page 83.)

Laying To under a Drag.

When a Ship has the misfortune to be dismasted, and totally unmanageable. an endeavor should be made to keep her Head to the Sea. This can be effected (circumstances permitting) by constructing a nrag, as follows :-

Lay across the Gunwale any useless spars and lumber, so that after being lashed together they mav ge easily launched overboard, to which attach as much of the wreek and heavy articles as possible, so as : sink the spars and lumber square with the surface; to each end of the spars attach the ends of a piea . chain or rope in the form of a span or bridle; now pass the end of a hawser or stream-chain out through - $\boldsymbol{\varepsilon}$ hawse-holes, and bend it on to the middle of the span, and launch the whole concern overboard, and it will be found that the Ship will ride by this Drag nearly head on to the Sea, because by the wind acting on the hull of the vessel, she will drift faster than the Drag will allow her, consequently her head is kept up to the Wind and Sea. In the meantime the crew will be enabled to work more easily in the fixing up ana rigging Jury-Masts, in consequence of the vessel having now less rolling motion.

To Construct a Temporary Rudder at Sea.

When a Ship has lost her Rudder at Sea, a temporary one may be made out of a thick spar, shaped into a Rudder-stock, and if it is made several feet shorter than the old one, it can be better secured below water. Make the Rudder with what materials are at hand, and if the upper part of the old stock has oeen saved, transfer the pintles. \&e., to the new one, placing the pintles at the same distance as before, and prep.are the Rudder-head for receiving the tiller as soon as it is shipped. Now take a piece of chain, of a sufficient length for guys, middle 1^{4} exactly, and mark both parts of it at intervals with exactly corresponding marks, take a round turn with the middle of this chain round the foot of the Rudder-stock, and cross the guy on the fore part of the Rudder, and secure it from slipping off.

Then. when the guy-lines, and the purchase for shipping it, are all prepared, launch it overboard, enter the head of the Rudder in the trunk, the guys having been previously passed round, one on each quarter (taking care that the crossing has been retained,) and passed forward, are hauled taught abreast of the main rigging, and the corresponding marks on the chain are then placed at an equal distance frem the rails on each side. After the pintles of the rudder are shipped, then clap taekles on the guys and haul thern Langht, which will bind the lower part of the Rudder to the Ship's stern-post, and at the same time allow ω to act freely.

The guys should be cleeted to the Ship's side on the first calm day, to prevent them chafing about the wash of the Sea.
The reason why the Rudder is not required the whole length is, that the lower part of it, is of no use to the Ship for steering purposes, and it is only the upper part of it that is acted upon by the water, and which has been proved in cases where a Ship, having had the lower part of her Rudder broken off at the lower gudgeon, has been steered as well as if nothing had been amiss with it.

This can be easily accounted for, when we consider the immense pressure of the Ship on the water, and that as she advances, this water, being set free from under her, rushes up her run at an angle of about 45°, and must necessarily strike the upper part of her rudder with a force greater than the actual velocity which she is going through the water.

Making the Land.

This is generally a time of much anxicty, especially in tempestuous weather, when no observations have been recently obtained, because of the uncertainty in the Reckoning; in consequence of the Ship having been probably under the influence of Currents which generally prevail near the land, and great caution is heretore required in approaching it. When Soundings can be obtained they should never be neglected. (See Remarks on Sounding, at page 52.)

When the Reckoning is doubtful, the usual practice is to get into the parallel of Latitude of the place the Ship intends to make, and then steer true East or West, as the case may be, proceeding cantiously uutil the land is seen, but care must be taken that the Ship is not too far ahead of her reckoning before falling into its parallel; as in the ease of making an island, for instance, laying West of the ship, she must be sure that she is to the Eastward of it before falling into its parallel. It is therefore safest, if there is no Chronometer on board, to keep well to the Eastward before falling into its parallel, and then to steer duc West. She will make it ahead.

When a Ship is bound to a Port on a Coast which trends North and South, the Land should be made at some point to windward of it, and which has a high and bold shore; then by ranning down the Coast the Latitude by Observation will point out her Port of Destination.

When Observations for Latitude and the Chronometer can be depended on, they should be contmued up to the latest period at which the land is expected to be seen, because of the currents or tides rear the land, and which affect the Ship's Landfall. The Observations should be verified by sounding at least once, even when the weather is clear, and compared with that laid down on the large Chart of the Coast, at or near to the Ship's Position by Observation, the bearing and distance of any part of the Coast can then be ascertained, and a Course shaped accordingly. It is usual to make some prominent headland or lighthouse In the daytime, or some well known light by night. If the Navigator is a stranger to the Coast, he will naturally consult the Sailing Directions, so as to form some idea beforehand of its appearance, or the character of the lights he may expect to see, so that when the Land is seen he may compare it with the description given of it, and also its ontline on the Chart. But to remove all doubt the Bearing of three Objects on Shore should be taken, and a cast of the Lead; then if those Bearings laid off on the Chart meet at a point as a common centre, and the Soundings also agree, there can be no farther doubt but that the Landfall is correct. This sometimes is a matter of much importance to a stranger in making the Land, because by mistaking the Land or a Light for some other on the same Coast, fatal errors have been often committed. It is therefore prudent in rest it as above mentioned, before shaping a Course to any other part of the Coast.

A Ship on approaching a Coast in theck blowing weather, where shoals lay off some distance, would naturally keep sounding as she stood in, but by mistaking the Soundings so obtained for those outside of the Shoals when they were in fact those near the Beach, and in standing off has run aground on the inside of the Shoals. This is of frequent occurrence, and caused by an error in the Reckoning; and the only remedy to guard against such an accident is to keep the Lead going until the Ship has made an offing equal to the Distance at which the Shoals lay off from the Shore.

When a Ship is caught by thick weather in a narrow channel, between Shoals, and it is not considered prudent to anchor, she is put under easy sail, and tacked or wore round every hour or half hour, as the circumstances of the case require, until the weather clears up, and she can extricate herself.

Signs of Land.

There are some Signs whereby it may be known when a Ship is approaching Land-the most infallible is that of the change in the color of the Sea from a deep blue to a pea green, (a sure indication of being on Soundings,) and from that to a muddy color as she approaches the Coast, where tree-roots and other driftwood may be met with floating about, and the coasting and fishing vessels of the country. The Bearing of the Land may also be known from the direction in which a flock of Sea-birds are seen flying at Sunset. Ducks, and other kinds of diving-birds, which do not fly far, are a sign of being near the land.

Land is seen at the greatest distance off at Sunrise or Sunset, before the vapors begin to collect around :t, in the form of clouds, which frequently hide it from view in the daytime. Tlis is called by seamen the Loorr of the Land.

METHOD OF KEEPING THE LOG-BOOK.

The Log-Book is an official Journal or Record of all the transactions which occur during the voyage of Bhip, from the time of her sailing from a port in the country to which she belongs, until her returi in a zome port again, and her cargo discharged; although it is usual to consider the voyage at an end when she is safely moored in that port, so far as regards the engagements with seamen.

It should, therefore, contain a true and faithful account of all matters connected with the duty of the Ship, of daily occurrence, both at Sea and in port. Accidents, or loss in the Ship's material sustained, and also the misconduct of cither the crew or officers, should all be entered distinctly, and in as few words as possible.

While the Ship is in port, the Harbor Log, as it is called, is kept in the common, or Civil Time at the place, the Day beginning at midnight and ending at midnight. It contains an account of the wind and weather, the number of packages received or discharged, as per Cargo Book, the quantity of stores receired on board or discharged, the number of hired laborers employed, and the general employment of the crew and when leave is granted to a portion of them to go on shore, to relurn again at a-stated time, if they do not so return, the fact should be eitered in the Log-Book, and the length of time they were absent without leave also. Any occurrence which may have a bearing upon the discipline of the Ship should be taken notice of and noted down: hecause, , 11 the case of trouble with the erew, the Log-Book is received as ovidence of the facts of the case in a Court of Justice. These entries should all be made in the evening of the day on which they occur. or on the morning of the following day, while the circumstances are fresh in the memory of the officer whose duty it is to reeord them. The Log-Book is kept by the 1st officer; but in the event of sickness, or in having been put off duty for misconduct, whoever is apponted in his rocm by the Captain) must keep the Log. Sometimes the Captain writes it himself. This is legal ennugh, providing nothing but the truth is recorded.

This is mentioned merely to show that the Chief Mate of a Ship is not justified in retaining the Log. Book after its being demanded from him by the Captain, as some Mates seem to imagine they have a right to do. The Book belongs to the Ship and to her commander.

The Sea Log may be kept in Common or Apparent Civil Time, if required. (See the Example following.) The entries commence at midnight, and are continued mutil the following midnight, having the Noon of the Sea Day in the middle of it. The Log Board is carried on from Noon to Noon, as usual, the preceding 18 hours work on the Board, that is, from the preceding Noon to midnight, and the following 12 hours, from midnight to Noon, constitute the day's work, as before; the Ship's reckoning up to Noon, in this case, appearing in the middle of the Log. This method is very convenicnt in case of referring back to dates, and is perfectly easy in practice, because we have only to copy off from the Log Board as above stated.

The old method is still, however, generally used, through the force of habit, and which is all exact copy of the form used on the Log Board. (See page 180.)

The Log-Book commences, as before observed, when the Ship is unmoored, or breaks ground, under charge of the Pilot; and the time at which he leaves the vessel is noted, and the bearing and distance of the land taken as a Departure. Suppose the Ship to have sailed in the morning of the 5th of June, and a Departure taken at 6 A. M., in writing the Log up to Noon, we would say, this day's work ends with 12 hours, (being the end of the Sea Day of June 5th,) to begin the Sea Log. The Course and Distance sailed is then reckoned up; and the Ship's position found at Noon. The Log for the afternoon is then dated the 6 th of June.

Suppose the Ship to sail and take her Departure in the afternoon at 6 P. M., we would commence the Sea Day in like manner, noting that the last Harbor Log contains only 12 hours.

On the other hand, when a Ship goes into port in the morning, the Sea Date of the Log and the Civil Date of the place being the same, the entries are continued until miduight, and we say, this day contains 36 hours, to begin the Harbor Log.

And when she goes into port in the afternoon, the entries are continucd under the same date until the followng midnight, when the same remark is made, that this day ends with 36 hours, to begin the Harbor Log.

METHOD OF KEEPING A SHIP'S LOG-BOOK IN CIVIL TIME.

We shall now proceed to give a few Examples of writing the Harbor Log, and the Log at Sea, by Civil Time and conclude this work with a short Journal of a voyage. or rather a passage, of a Ship from Santa Cruz to St. John's, N. F.

The Harbor Log.

day of the monte.	winds.	remarks on board the c. s. dauntless, lying at santa obuz.
Mouday, March 13th, 1854. Barom. 30.00	N. E. Therm. 80°	Throughout this day fresh breezes, with passing showers. Crew and 3 laborers employed taking in cargo, (as oer Cargo Book,) bending light sails, and other duty. James Collins off duty, sick.
Tuesday, March 14tb. Barom, 29.85	N. N. E. Therm. 79°	First part of this day fresh trade, and fine, middle and latter parts. Strong wind and rain squalls. 3 laborers employed. Finished taking on board cargo. Hoisted in the longboat and cleared up the decks. J. Collins returned to his duty.
Wednesday, March 15th, Barom. 30.05	E. N. E. Therm. $81{ }^{\circ}$	Throughout this day moderate and fine weather. Employed filling fresb water, beuding sails, and taking in Ship's stores, and in the eveliug got the Ship ready for Sea, and at 6 P. M. numoored, and hove up the starboard bower anchor, and hove in to 30 fathoms. Shackle on the small buwer. Discharged the laborers.

The Clipper Ship Dauntless, W. Griffen, Commander, from Santa Cruz to St. John's, N. F.

	Thursday, March 16th. Barom. 31.00		\| N. E. ${ }^{\text {(}}$ (therm. 82°			At 5 A. M. the Pilot came on board. Hove short and made sail. At 5 h 30 m weighed from the anchorage at Santa Cruz and pro ceeded to Sea. Light baffling wind aud cloudy. At 7 A. M. discharged the Pilot and made all possible sail. The steady Trade set in, with fine pleasant weather: It Noon, the N. E. end of St. Anthony Island, one of the Cape Verde Islands, bore West by Compass, 3 or 4 miles distant. Lat. Obs. $17^{\circ} 9^{\prime}$ N. Maguetic Varia. $1 \frac{1}{2}$ points Westerly.
			caurses.	winds.		. Log Kept in Civil Time.
2	5 5 5 8 9 10 10 11 12 13 18 13	1	N. W. by N.			P'. M. Fresh Trade and fine weather. Stowed the anchors, unbent the cables and put them below. At 3 h , the N. W. end of St. Authony bore $\mathrm{S} .17^{\circ} 30^{\prime} \mathrm{W}$., distant 15 miles, from which the Dep. is taken in Lat. $17^{\circ} 12^{\prime} \mathrm{N}$. Long. $25^{\circ} 19^{\prime} \mathrm{W}$. At 5 h , set the starboard studding-sails. At 6 h , the Mag. Variation at sunset was $17^{\circ} 30^{\prime}$ Westerly. Passed several ressels bouud West. At 8 h , increasing breezes and smooth water. Light squalls from passing clouds. At 10 h , in sky-sails and rounded in the weather braces. Miduight. Fresh Trade and clear weather.

The Departure is taken from theNorth West end of the Island of S. Anthony, bearing S. $17^{\circ} 30^{\prime}$ West, and the Variation $17^{\circ} 30^{\prime}$ West allowed, gives the true bearing South; the Ship is, therefore, on the Meridian of that point, distant 15 miles to the North of $1 t$. Sights being taken for Chronometer, its error on Greenwich Mean Time is found to be 01. .Om 39s too fast, and the Rate since last Observation, taken in a similar manner, 2 sec. $5-10$ th gaining. We have thence the Sca rror and Rate of it obtained. (See the Rules and Examples given at page 155.)

To shape a Course in this case, we lay the rule: over the place of th Ship and Cape St. John, N. F, and find the true Course to be N. W. $\frac{8}{8}$ N., the Variation allowed to the right gives the Compass Course required to steer N. by W. $\frac{8}{4} \mathrm{~W}$. The distance off at present is immaterial, but both Bearing and Distance may be found by a case in Middle Latitude or Mercator's Sailing.

In Ships of great speed, when working up the day's work, it will be found more corrrct to turn the Course steered into degrees, and apply the Variation, (also in degrees,)te it, and thence find the Difference
of Latitude and Departure.

The C.ipper Ship Dauntless, W. Griffen, Commander, from Santa Cruz towards St. Johns.

As sufficient examples of working a Day's work have been already given worked out, it is considered unnecessary to work out those in this Journal, the result only being given, that is, a summary of the whole, including the Latitude by Observation, and Longitude by Chronometer at Noon, the Longitude by Dead Reckoning being carried on from day to day by itself. The Difference of Longitude made is also applied to the Longitude by Chronometer on the preceding day, and placed under the Longitude by Chronometer to-day. This affords a means of comparison. In like manmer the Latitude by Dead Reckoning and that by Observation are placed under each other, which will show at any time the effect of a Current or the Errors in the reckoning.

The Variation observed agreeing with that laid down on the Chart, we conclude there is no Local Attrac. traction on board. The Courses stecred by Compass in the above Days' works are turned into Degrees and Minutes, the Variation applied gives the Truc Course in Degrees; fo instance, N. N. W. is $\mathrm{N} 23^{\circ} \mathrm{W}$. nearly, and as the Variation has increased in the first Day's work from $17^{\circ} 30^{\prime}$ to 20°, we take the Mcan, or 19°, as the roper Variation to be allowed on the whole Day's work; this added to N. 23° W. by Compass, gives the True Course N. $42^{\circ} \mathrm{W}$., with which and the Distance run, gives the D Latitude and Departure.

METHOD OF KEEPING A SHIP'S LOG-BOOK IN SEA TIME.

Havng thus given Examples of Keeping the Harbor and also the Sea Logs. in Civil Time in the com mencement of this Journal, the remainder of it will be kept in Sea Time, that is, in the usual mannes adopted on board merchant vessels.

The Clipper Ship Dauntless, IV. Griffen, Commander.

In the above Day's work it appears that the Magnetic Variation has changed from $19^{\circ} 30^{\prime}$ to 14°, during the run to the Westwari since yesterday evening at Sunset, we therefore use the mean of the two, which is 17° or $1 \frac{1}{2}$ points, ton correct the Compass Course.

An Altitude oi the Sun having been obtained at about 8 o'clock for Chronometer, and another for the Latitude near Noon, the time by Chronometer being noted at the time of each observation, the Latitude is thence found by the method given at page 94, and the Longitude by Chronometer is found by the method given at page 140. This is the simple case; or the Latitude may be found from the two Altitudes having the measured interval of Time between the observations by the method given at page 96. As the Ship has plenty of sea-room it is not necessary to resort to the method given at page 144 in this case; besides the 1st Altitude was observed at a proper distance from the Meridian, and any Error in the Latitude by Dead Reckoning would not affect the Time much, nor the Longitude by Chronometer, because the Ship is in a low Latitude.
One point of Leeway and $1 \frac{1}{2}$ points of Variation being allowed to the left of the Course by Compass, gives the True Courses, which, with the Distance run on each, gives the Difference of Latitude and Departure made good, and thence the Latitude and Longitude by Dead Reckonirg. Then the Difference of Longitude made by Dead Reckoning applied to the Longitude by Chronometer yesterday, gives the Longitudo in by Dead Reckoning since yesterday. This compared with the Longitude by Chronometer to-day shows the Ship to be 10^{\prime} of Longitude to the Westward of the Dead Reckoning. In like manner the Difference between the Latinule by Dead Reckoning and that by observation shows the Ship to be 10^{\prime} to the Southward of the Dead Reckoning. This may be accounted for in two ways that is, she must either have gone more distance than the Log has given her, or there may have been a Current setting in the direetion of her Course. It is evident it could not have been caused by an Error in the Course, because the Error in the Latitude is to the Southward of the Dead Reckoning, and the Error in the Longitude is to the West of the Dead Reckoning, or in excess; but had the Longitude by Chronometer been to the Eastward of the Dead Reckoning, or less than it, it would then have been concluded that the Error was due to the Course havan been more to the Southward than that given by Log

JOURNAL OF A VOYAGE

From Santa Cruz, (Cape Verdes,) towards Sí. John's, Newfoundland.

в.	E.	в. к.	courses.	winds.	L. W.	REMÁRES, MONDAY, MAROH 20TH, 1854
[1	10 8 8		W. S. W. N. E. by N.	$\begin{aligned} & \text { N.W. by N. } \\ & \text { N. W. } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \frac{1}{2} \end{aligned}$	At 1 P. M. the wind hauled more to the Westward. Wore ahip to the North Eastward.
	8		N. E. by N.	N. W.	$1 \frac{1}{2}$	to the North Eastward.
4	8	1	N. N. E.	N.W. by W.	11	At 4 h , strong gale and rainy weather.
	8					
${ }_{6}$	8	1	*	"		At 6h 30m, the sky eleared up to the Southward. Observed the
7	7	1	*	"		Meridian Altitude of the star Sirius, (a good observation,) which
y 9	7	1	*	"		gave Lat in $21^{\circ} 42^{\prime} \mathrm{N}$. Lat. by D. R. at same time $21^{\circ} 85^{\prime} \mathrm{N}$.
10	8		*	"		At 10 h , more moderate weather. Out double reefe of the topsailr
11	10		*	"	1	and set top-gallaut-sails over them.
12	10		"	*		Midnight. Fresh breeze and clear weather.
1	10		*	"		
	10 10		*	"		At 2 A. M, weather moderating, and the head sea going down.
4	10		"	"		At 4 h , out reefs of the courses and spanke
5	10		*	"		At 5 h 30 m , Lat by the Moon $23^{\circ} 26^{\prime} \mathrm{N} ., \mathrm{D}$ R.gave $23^{\circ} 17^{\prime} \mathrm{N}$.
6	10		*	"		At Sunrise, the Maguetic Variation observi d was $12^{\circ} 0^{\prime} \mathrm{W}$.
7	10			"		
8	10		"	${ }^{\prime}$		At 8h, Long. in by Chronometer $35^{\circ} 25^{\prime} \mathrm{W}$.
9	9			"		Watch on deck employed repairing chafing gear.
10	9		"	"		Carpenter repairing the Longboat.
11	9		"	"		
12	9		"	"		Noon. Cloudy weather; Sun obscure.

To Correct the Courses Steered in Degrees.
Comp. Course W.S.W. or S. $67^{\circ} 30^{\prime}$ W. N. E. by N. or N. $33^{\circ} 45^{\prime}$ E. N. N. E. or N. $22^{\circ} 30^{\prime}$ E. N.N E. or N. $22^{\circ} 30^{\prime}$ E Sub.L.W. $11^{\circ} 15^{\prime}$ \& Va.13 -2415 Add the Diff... 852 Add Diff.... 3152 Sub. Diff... 20
Course made good.....S.S. $\overline{48^{\circ} 15^{\prime}}$ W. N. $\overline{37^{\circ} 37^{\prime}}$ E. $\overline{26^{\circ}} \overline{22^{\prime} \text { R }} \quad$ N. $\overline{20^{\circ} 30^{\prime}}$ E.

The Courses being corrected in the above manner, and entered into the Traverse Tabla, with their respective distances, as usual, the nearest degree being then taken as the Course to find the Difference of Latitude and Departure.

This is a very important matter, and should be attended to in a fast-sailing vessel ; because an omis sion of, say 2°, in the variation allowed on the Course steered, when the distance run is great, will cause a considerable error in the Dead Reckoning. When the Course is near the Meridian, or near a Parallel of Latitude, this error will amount to 4^{\prime} in every 100 miles distance; when near 45° the error will be 2^{\prime} in every 100 miles.

In looking over this day's work, we find that at 6 h 30 m the Latitude found by the Meridian Altitude of the Star Sirius, made the Ship 7^{\prime} to the Northward of the Dead Reckoning, and at $5 \mathrm{~h} 30^{\prime}$ A. M., by the Mcridian Altitude of the Moon, she was 9^{\prime} to the Northward of the Dead Reckoning.

And that the Longitude by Chronometer made her 5^{\prime} of Longitude to the Eastward of the Dead Reck oring. She has, therefore, made less Leeway than has been allowed her, and gone more Distance thau the Log gives her; it is therefore proper to examine the Log-line; and which, on being examined, we find to be 5 feet too long at the 5 knot mark, which would be equivalent to an error of nearly $\frac{1}{2}$ a knot in usina the 14 sec. or Short Glass, giving the Distance too small. The proper length between the knots should bo 45 feet. whereas the line was found to be 46 feet, or one foot too long on each knot. A measured space of say 22 feet 6 inches, the length of the half-knot, should be marked off on the deck, and a copper nail driven in at each end of it, as a permanent measure, whereby the line may be verified occasionaily; because it is liable to shrink up as well as to stretch, when new. In fitting a new line, it should be well stretched and then thoroughly wetted, before it is measure? and marked.

JOURNAL OF A VOYAGE.

The Clipper Ship Dauntless, W. Griffen, Commander.

н.	E.	н. к.	courses.	winds.	L. w.	remarks, tuesday, march 21st, 1854.
1	10	1	N.byE. $\frac{1}{2}$ E.	N.W. by W. N.w.byw. $\frac{1}{2}$ w$\qquad$$\qquad$$\qquad$$\qquad$$\qquad$$\qquad$$\qquad$	$\frac{1}{2}$	At 28 m past Noon, Lat. Obs. $24^{\circ} 43^{\prime} \mathrm{N}$.
8	10	1				At 2 P . M., ont all reefs. Sent up the royal fards, rigged out the
8	10					flying-jib-boom, and set the sails.
4	10	1				At 4 h, the Long. in by Chronometer $35^{\circ} 0^{\prime} \mathrm{W}$.
5	10					Steady breeze and fine weather.
6	10	1				Sunset, Magnetic Variation Obs. 12°. Westerly.
7	10					At 7h $20 \mathrm{~m}, \mathrm{Mer}$. Alt. 粦 Castor. Lat. iú $25^{\circ} 56^{\prime}$ N. D. R. $25^{\circ} 54^{\prime} \mathrm{N}$.
8	10					
9	10	1				At 9 h , set the stay-sails, fore and aft.
10	11					
11	10	1				
12	11					Midnight. Steady breeze and fine clear weather.
1	10	1				
2	11					A. M. Do. weather. All possible sail set.
3	10	1				
4	11					At 4b 20 m , Mer. Alt. 潘 Antares. Lat. in $27^{\circ} 26^{\prime}$ N. D. R. $27^{\circ} 27^{\prime} \mathrm{N}$.
5	10	1				
6	11					At 6 h 38 m , Mer. Alt. D Lat. in $27^{\circ} 54^{\prime} \mathrm{N} . \quad$ D. R. $27^{\circ} 53^{\prime} \mathrm{N}$.
7	10	1				
8	11					At 8 h , Long. in by Chronometer $34^{\circ} 28^{\prime} \mathrm{W}$. An Azimuth taken
10	10	1				same time gave the Magnetic Variation 14' Westerly.
10 11	11					Employed painting the boats, de.
111	10	1				Carpenter caulkirg on deck.
12	11					Noou. Island of Fayal (Azores) N. 26° E., 650 miles.
$\begin{aligned} & \text { Vari } \\ & 13^{\circ} \end{aligned}$			$\rho^{\prime} \text { E. } \left\lvert\, \begin{aligned} & \text { Dist. } \left\lvert\, \begin{array}{l} \text { D. } \\ 253 \end{array}{ }_{25} .\right. \\ & \hline \end{aligned}\right.$		Lat. D.	

As the Meridian Altitude of the Sun was not obtained yesterday, an Altitude was taken in the afternoon, and the Tine noted by Chronometer, by which means the Apparent Time at the Ship was found to se 28 m past Noon. The Latitude being then worked out, (by the method given at page 94,) is found as above. The Ship has'made 5^{\prime} of Difference of Latitude to the Northward since Noo.1, whieh subtracted rom it, gives the Latitude in at Noon yesterday.

The Magnetic Variation having changed from 12° to 14° during the day's run, the Mean of which, 13°, oeing applied to the left hand of the Courses by Compass, after being corrected for Leeway, as shown in resterday's work, will give the True Courses.

The Difference between the Dead Reekoning and Observations to-day is much less than heretofore, being inly 2^{\prime} of Latitude to the Northward, and 4^{\prime} of Longitude to the Eastward.
The Variation was found this morning by an Azimuth, and by the same Altitude which was used for 'hronometer. (See the method of doing this at page 150.)
By inspeeting Table XVIII, against the Day of the Month, the Times of the Meridıan Passages of the siars Sirius and Antares will be found as above. Then their computed Altitudes furnish the means of inding them. (See page 106, No. 3.) The Latitudes so found, and that by the Dead Reekoning since Noon, on being compared are found to agree, nearly.

By reference to the Nautical Almanace, in the case of the Moon, the Mean Time of her passing the Meridian at Greenwich is found and reduced to the Meridian of the Ship. Then the Equation of Time subtracted, gives the Apparent Time as above. (See page 101.) The Latitude Observed and Dead Reck: ming agree, nearly.
The Ship's position being laid down on the Chart each day at Noon, as directed at page 48, and joined together with a pencil line, produces her track. When out on the open Sea, it is not necessary to note the bearing of the Land daily, but in the case of having to pass near to certain land, it is prudent to noto its Bearing and Distance at Noon, as we approach it. As in this case the Ship is heading towards the Azores Islands, we therefore find the Bearing and Distance of the nearest. Fayal bears N N. E. $\frac{1}{4}$ E. True, or N. E. $\frac{1}{2}$ N. by Compass, distant 650 miles ; and Flores, which lies West of it, bars N br E \ddagger E. or N. N. E. E. by Compass, distant 660 miles. The same may found bv the Rule in Casu $2 \dot{a}$ in Mid. dle Lativude or Mercator's Sailings

JOURNAL OF A VOYAGE

From Santa Cruz (Cape Verdes;) towards St. Johns, Newfoundlane.

	к	11. E.	courbes.	พTN์Ds.	L. w.	remaris, wednesday, march 22d, 1854.
	10	1	N. by ${ }_{4}^{\text {E. }}$ 宕 E	$\text { N.W.b.W. } \frac{1}{2} \text { W. }$	$\frac{1}{4}$	P. M. A fresh, steady breeze ; all possible sail set. Signalized the Ship South Carolina, from Liverpool, bound to Austra-
\because	11			"	"	ia, out 15 days.
$+$	11		*	"	"	At 4h, Long. in by Chron. $34^{\circ} 22^{\prime} \mathrm{W}$., and an Azimuth Obs. at
\therefore	11	1		"	*	the same time gave the Magnetic Varia. $20^{\circ} \mathrm{W}$
i	10			*		
-	11		"	${ }^{*}$	"	
\star	11		"	"	${ }_{\sim}^{4}$	At 8h, Squally ; handed the stay-sails.
	11					
111	11			"	"	At 10 b 6 m , Alt. Pl't. Mars S. gave Lat. $\left.30^{\circ} 36^{\prime} \mathrm{N}.\right\}$ Mean $30^{\circ} 41^{\prime} \mathrm{N}$
$\begin{aligned} & 11 \\ & 1: \end{aligned}$	11	1	N. E.	b	"	
1	11		${ }_{*}$.	Clear starlight night aud smooth water; set all the star-sails,
.	11		"	*	"	fore and aft.
*	11		-	"	*	
t	10	1	\cdots	"	-	At 4 A. M. Fresh brceze and showery weather.
5	11		"	-		At Sunrise the Mag. Varia. observed was $25^{\circ} \mathrm{W}$ esterly.
6	11		${ }^{*}$	${ }^{*}$	"	At 7 h 40 m, Mer. Alt. of the D Lat. in $32^{\circ} 16^{\prime} \mathrm{N}, \mathrm{D} . \mathrm{R} .32^{\circ} 17^{\prime} \mathrm{N}$.
-	11		${ }^{*}$	${ }^{\prime}$	*	Long. in by Chron. same time $33^{\circ} 42^{\prime} \mathrm{W}$.
8	11		"	"	${ }^{*}$	Employed reeving new runuing rigging and
10	11			"	"	guys and top-gallaut backstays.
11	11		"	"	"	Steady breeze and pleasant weather.
12	11		"	"	"	Noon. Island of Flores. (Azores) N. 15° E., Disr. 404 miles.
	tion		E Dist. ${ }^{\text {D }}$	D. Lat. ${ }^{\text {Dep. }}$	Lat.	R. $33^{\circ} 2^{\prime}$ N. Dif. Lon. $1^{\circ} 4^{\prime} \mathrm{E}$. Lon. Chr. 33° थ(0^{\prime} W. Bar. $29.80{ }^{-}$

The Magnetic Variation has changed eonsiderably sinee yesterday morning, at wheln time it was observed to be 14°. At 4 P. M. it had inereased to 20°, and this morning it was found to be 25°. Wo therefore take the Mean of the two Variations last found, which is $22^{\circ} 30^{\prime}$, or 2 points Westerly. as the proper Variation to be allowed on the Courses steered.

As the Ship's position by Dead Reekoning agrees very nearly with that by observations to-day, we therefore conclude that the Log is correct.

At about 10 P. M. the Altitude of the Planet Mars, observed to the Southward, gave the Latitude an above, but the niglit being dark and the horizon doubtful, an Altitude of the Polar Star was observed to the Northward, the Latitude by whieh differed 10^{\prime} from that by the Altitude of Mar3, but the Mean of the two agrees nearly with that by Dead Reekoning. (See Remarks, page 110.)

The Moon being on the Meridian at 7h 40 m , Apparent Time in the morning, ser Meriaian Altitude was observed, and at the same time Altitudes of the Sun were taken for the Chronometer, which gave the Latitude and Longitude of the Ship at that tune, as above.

The Longitude by Chronometer at Noon was found to-day by equal Altitudes of the Sun, and agrees with that brought up to Noon by the Dead Reekoning since the morning Sights were taken. The first equal Altitude was taken at 7 bells, and the time noted by Chronometer. The Index of the instrument was then screwed baek 10^{\prime}, equal to the Difference of Latitude made to the Northward in 1 hour, and when the Sun's Lower Limb fell to that Altitude, the Time by Chronometer was noted again. This method is fully explained in the Note at page 147 .

The Bearing and Distance of the adjacent Land, or that which the Ship is approaching, is again noted at Noon Io-day. The Island of Fayal bears N. E. by N. True, or N. E. by F. ; by Compass (Variation 8 points W.) Distant 400 miles; and the Island of Flores bears N. by E. \& E. True, or N. E. N. ; by Compass Distant 404 miles. That is, of a point on the Weather or Port bow of the Ship. These bear. inge are from the Chart. But if a Chart is not at hand, the Bearing and Distance of any of the Islands may be worked out by the Rules given in Case 2d, of Middle Latitude or Mercator Sailing. The Latitudes and Longitudes of the several Islands are given in the Table of Positions at the end of the work

JOURNAL OF A VOYAGE.

The Clipper Ship Dauntless, W. Griffen, Commander

The Magnetic Variation having continued the same throughout this day, that is 23° or 2 points Westerly, we allow that quantity on the Courses by Compass.

The Ship's position by observation being to the East of that by the Dead Reckoning, it is evident there must have been a Current setting her in that direction.

At Sunset the Longitude by Chronometer was observed as above, (see the Method of doing this at page 128,) and which was 7^{\prime} of Longitude to the Eastward of that by Dead Reckoning since Noon; and at 8 h 40 m A . M. the Longitude by Chronometer was 26^{\prime} to the Eastward of the Dead Reckoning since Noon.

The Latitude observed by the Star Sirius at Sunset was 1' to the Southward of the Dead Reckoning ; and at 8 h 40 m A. M. the Meridian Altitude of the Moon gave the Latitude 4^{\prime} to the Southward of the Dead Reckoning. Now, by the Method given at page 29, of finding the Current, we ascertain that in 15 hours, that is, from Sunset until, say 90^{\prime} clock next morning, the Current has set S. 79° E., E. by S. True, or S. E. by E. by the Compass, and the Drift 15 miles. or at the rate of 1 mile per hour.

Equal Altitudes taken near Nọn in the same manner as was dove yesterday, corroborates the Long. in by Chronometer at Noon as above. The whole Error in the Longitude, from Noon to Noon, caused by the Current, amounts to 30^{\prime} E., and the whole Error in the' Latitude in like manner, anounts to $5^{\prime} \mathrm{S}$. From this data we find, as before, that the Current has set E. by S. True, or S. E. by E. by Compass, 24 miles in 24 hours, or at the rate of 1 mile per hour.

This Current is supposed to be a continuation of the Gulf Stream, which, after pursuing its course along the Coast of America, branches off in the direction of the Azores Islands, and after striking the Coast of Africa turns South, passing to the East of the Cape Verde Islands, it joins the great Guinea Current on the S. W. Coast of Africa. (See the Remarks on Currents at page 39.)

The Bearing and Distance of the Isle of Flores, at Noon to-day, is N. by E. nearly, or N. E. by N. by Compass, Distant 182 miles. And suppose it was required to shape a Course so as to keep the Isiand on the same bearing, and allow for the cffect of the Current, we would proceed as follows: The Curren being found to run nearly at right angles to the bearing of the Jsland, we take the Sum of the bearing N . 10° E., and the Set of the Current S. $79^{\circ} \mathrm{E} .=89^{\circ}$ as a Course, and its rate 1 knet as a Distance gives the Departure 1^{\prime}, the Ship's rate of Sailing 8 knots, and Departure 1 , gives the Course 7°, which subtracted from N. 10° E. gives the True Course N. 3° E., and the Variation being allowed gives the Compass Courss N. N E. + E. (Ses Method of doing this at page 3), Case 3d.)

JOURNAL OF A VOYAGE

From Santa Cruz，（Cape Verdes，）towards St．John＇s，Newfoundland．

H．	1.	H． k ．	courses．	WINDS．	L W．	remagise，friday，maroh 24te， 1854.
2	8		N．by ${ }_{\text {c．}}$ 星 E ．	N．W．by W．	$\frac{1}{2}$	P．M．Steady breeze and fine clear weather． Employed as yesterday．
2	8		＂	＂		
4	8		＂	＂		At 4h，Longitude in by Chronometer $31^{\circ} 45^{\prime} \mathrm{W}$ ．Deaa Reck．
5	8		＂	＂		$31^{\circ} 50^{\prime} \mathrm{W}$ ．An Azimnth Obs，same time gave the Var． $23^{\circ} \mathrm{W}$ ，
0	8					and at Sunset an Amplitude gave the Var； $23^{\circ} 30^{\prime} \mathrm{W}$ ．
7	8		＂	＂		At $7 \mathrm{~h}, \mathrm{Obs}$. Mer．Alt．粦 Castor．Lat．in $37^{\circ} 28^{\prime} \mathrm{N}, \mathrm{D} . \mathrm{R} .37^{\circ} 29^{\prime} \mathrm{N}$.
8	8		＂			Obs．Alt．of the Polar 潾．Lat．in $37^{\circ} 28^{\prime} \mathrm{N}$ ．
10	8			＂		
11	8		＂	${ }^{*}$		At loh，sky overcast，with rain．Handed the staysails，royals，and flying－jib．
12	8	1	＂	${ }^{*}$		Midnight．Squally，with showers of rain．
1	7	1	＂	＂		
2	8		＊	＂		At 2 A．M．，weather cleared up．Set the light sails again．
3	7	1	＂	＂		
4	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	1	＂	＂${ }^{\prime \prime}$	1	At 4 h 9 m ，Obs．M．Alt．粦 Antares．Lat． $38^{\circ} 35^{\prime} \mathrm{N}$ ．Mean $38^{\circ} 38^{\prime} \mathrm{N}$ ． Obs．Alt．of the Polar 粦．Lat． $38^{\circ} 41^{\prime}$ N．D．R． $38^{\circ} 41^{\prime} \mathrm{N}$.
6	8		N．N．E．8．8．	N．W．$\frac{1}{8}$ W．	$\frac{1}{8}$	At Sunrise，Mag．Varia．Obs． $23^{\circ} \mathrm{W}$. ，and the Long．in ky Chron
7	8					same time was $31^{\circ} 20^{\prime} \mathrm{W}$ ．D．Reckon． $31^{\circ} 42^{\prime} \mathrm{W}$ ．
8	8		，	，		At 8 h ，Long．in by Chron． $31^{\circ} 12^{\prime} \mathrm{W} .$, and at the same time
${ }^{9}$	6		N．by E． 4 E．	N．W．byW．	$\frac{1}{8}$	the Isle of Flores was seen bearing N． $23^{\circ} \mathrm{E}$ ．distant 24 miles．
10	6					Took Sights to verify the rate of the Chronometer．
11	6					Noon．Light winds and fine．The North end of the Isle of Flores
12	6					bore W．N．W．by Compass，distant 7 miles． Current E．by S．（true，）I mile an hour

Varia．${ }^{\circ}$ Course． \mid Dist．｜D．Lat．｜Dep． \mid Lat．D．R． $39^{\circ} 36^{\prime}$ N．｜Dif．Long． $0^{\circ} 18^{\prime}$ E．｜Long．Chro． $31^{\circ} 4^{\prime}$ W．${ }^{\text {Bar．} 29.50}$ $23^{\circ} \mathrm{W} . \mathrm{N} .4^{\circ} 30^{\prime}$ E． $184\left|183 \mathrm{~N} .|14 \mathrm{E}\right.$.$| Lat．Obs． 3931 \mathrm{~N}$ ；Lon．D．R． 3155 W．｜D．R．sin．yest． 3134 W．Ther． 69°

The Course was shaped，or rather the Ship lay up，N．by E．$\frac{8}{4}$ E．，and allowing $\frac{1}{2}$ a point of Leeway， she made good the Course N．N．E． 1 E．，as computed at the end of the last day＇s work，in order to coun－ teract the effect of the current and to keep the Island on the same bearing；and had she been continued on that Course until Noon，she would have closed with the Island on the above bearing．But between the hours of 5 and 8 A ．M．she was kept off 1 point，so as to be on its Meridian at $80^{\circ} \mathrm{clock}$ ，with the view of verifying the Chronometer when the Island was seen．At 8 A ．M．the Island was seen accordingly bearing N． 23° E．，distant 24 miles，and which placed the Ship exactly on its Meridian ；sights for Chro nometer being then taken，in the manner as recommended at page 155 for rating the Chronometer．Il． this case，the error of the Chronometer on Greenwieh Mean Time was found to be $0 h 10 \mathrm{~m} 59 \mathrm{~s}$ ．Its error on leaving the Cape Verdes， 8 days ago，was $0 h 10 \mathrm{~m} 39 \mathrm{~s}$ ．；consequently it has gained 20 sec ．in 8 days， and its daily rate， 2 sec． $5-10$ th gaining，（its previous rate， confirmed．

From the above method of allowing for Currents，it will be perceived that if the Set and Drift of a Current be known，it is easy to compute beforehand the precise effect it will have on the Ship＇s Course， according to her rate of sailing，so that the land may be made on any given bearing．But it must be remembered，that if her rate of sailing changes，the Course must again be computed to this change．

As before observed，the Ship had been kept off 1 point for three hours，with the view of placing her on the Meridian of the Island，in consequence of which she did not fetch it in，but was on its parallel of Lat－ ttude at Noon，and she passed 7 miles to the Eastward of its Meridian．

In working up the above day＇s work， 23° of Variation is allowed on all the Courses，after being corrected for Lee way，and which being entered in the Traverse Table，together with the true Set and Drift of tho Current，that is，E．by S． 1 knot an hour，the Dead Reckoning and the Observations taken at various times during the day，will be found to agree，as also the Dead Reckoning and the Observations at Noon．

The Longitude by Dead Reckoning，carried on from day to day since leaving the Cape Verdes，is found to be in error 51^{\prime} too far Westerly．Consequently a fresh Depa：ture is taken to－day at Noon，from the North end of the raland of Flores，bearing W．N．W．，distant 7 niles，the position of which is Latitude $38^{\circ} 32^{\prime} \mathrm{N}$ ．，Longitude $31^{\circ} 12^{\prime} \mathrm{W}$ ．

JOURNAL OF A VOYAGE.

The Clipper Ship Dauntless, W. Griffen, Commander.

No Observations have been obtained to-day, except at Sunset, when an Amplitude gave the Magnetic Pariation 25°, or $2 \frac{1}{6}$ points Westerly.
In working up this day's work, we allow for the Set of tho Current E. by S. (true) 1 knot an hour, from Noon antil 9 P. M., at which time the wind came out from the Southward, and increased into a gale, consequently, the Ship would soon run to the North Westward, where she would be out of its influence.

There is reason to apprehend that the Ship has been run off to the Northward of her Course to-day, as the Sea broke heavily on the weather quarter; and also from the fault of the helmsman hanging on his weather helm when the Ship was on the top of a Sea, thereby causing her to yaw off. But as there is plenty of Sea-room; it is not deemed necessary to make any allowance for that in this day's work. (See the Remarks on this subject at page 190.)

When the wind came fair last night the Course was shaped as above, from the position of the Ship at that time, in Latitude $39^{\circ} 44^{\prime} \mathrm{N}$., and Longitude $30^{\circ} 56^{\prime} \mathrm{W}$. Then a ruler placed over the Ship's place on the Chart and over that of St. John's, gives the True Course N. W. by W. $\frac{3}{4}$ W., and allowing $2 t$ points Variation to the right, gives the Compass Course required to steer N. W. $\frac{1}{3}$ N., and the Distance 1050 miles; or the same may be found by Case 2d, in Middle Latitude or Mercator's Sailings In 1his case, the Latitude in at 9 P. M. being $39^{\circ} 44^{\prime}$ N., and Longitude $30^{\circ} 56^{\prime} \mathrm{W}$.

In the Table of Positions is found St. John's, Latitude $47^{\circ} 34^{\prime} \mathrm{N}$., Longitude $52^{\circ} 45^{\prime} \mathrm{W}$. This gives the「rue Bearing N. 64 W., or N. W. by W. $\frac{n}{4}$ W., nearly, and the Distance 1050 , same as the Chart.

In like manner, the Bearing and Distance is found to-day at Noon to ke N. 63° W., or N. W. by W. ${ }^{\text {W W, }}$, nearly, by Compass, Distance 830 miles.

JOURNAL OF A VOYAGE

From Santa Cruz，（Cape Verdes，）towards St．John＇s，Newfoundland．

H．	к．		coursea．	winds．	L． m ．	remares，sunday，maroi 26 th， 1854.
1	15	1	N．W．$\frac{1}{\frac{1}{2}}$ N．	S．by W．		P．M．Heavy Southerly gale and a high topping sea running．
2	15	1				
3	15	1	＂			
4	15	1	＂	S．W．by S．		At 4h，more moderate ；wind inclining to Westerly Set the reefed S．M ail and mizen topail
5	16 16	1	＂	＂		Set the reefed S．M．sail and mizen topsail．
7	16		＊	＂		
8	16		＂	＂		At 8 h ，the rain ceased，and the weather made an attempt to clear up．
9	16		＂	＂		
10	16		＊	＊		At 9 h 40 m Mer．Alt．粕 Regulus．Lat．in $\left.42^{\circ} 59^{\prime} \mathrm{N}.\right\}$ Mean $43^{\circ} 5^{\prime} \mathrm{N}$ ．
11	16		＊	＂		Same time the Alt．of Pole 潘．Lat．in $43^{\circ} 11^{\prime}$ N．$\}$ D．R． $42^{\circ} 25^{\prime}$ N．
12	16		＊	＂		Midnight．Blowing hard；vessel shipping much water on deck；
1	16		＂	＂		pumps carefully attended every 4 hours．
2	16		＂	＊		
3	16		＂	＊		
4	16		＂	¢		At 4 A．M．，Mer．Alt．潘 Antares．Lat．in $43^{\circ} 46^{\prime}$ N．${ }^{\text {Mean }} 43^{\circ} 53^{\prime}$ N．
5	16		＊	\cdots		Same time the Alt．of Polar 粦．Lat．in $44^{\circ} 0^{\prime}$ N．\} D. R. $43^{\circ} 8^{\prime} \mathrm{N}$ ．
6	16		＂	＊		At 6h，gale moderating and the sea falling．Out close reefs of the
7	16		＂	${ }^{\sim}$		topsails and set the jib．
8	15		＂	＊		At 8 h ，obs．an Alt．of the Sun．Long．in by Chron． $41^{\circ} 12^{\prime} \mathrm{W}$.
9	15		＂	＂		Weather set in thick again，with mizzling rain．
10	15		＂	＂		The temperature of the Sea－water at Noon was found to be the
11	15		＂	＂		same as that of the air， 55° ．
12	15		＂	＊		Noon．Do．weather．Sun obscure．
						True bearing of St．John＇s，N． $69^{\circ} \mathrm{W}$ ．Distance 468 miles．
			rse Dist．	D．Lat．Dep．	Lat	D．R． $44^{\circ} 1^{\prime} \mathrm{N}$. Dif．Lou． $7^{\circ} 46^{\prime} \mathrm{W}$ ．Lon．Chr． $42^{\circ} 27^{\prime} \mathrm{W} .1$ Bar． 29.05
			$5^{\circ} \mathrm{W} \mid 378$	162 N． 342 W	W．Lat	Obs． 4446 N．｜Lon．D．R． 42 58W．｜D．R． \sin ．yest． $42^{\circ} 58^{\prime}$ W．｜Ther． 55°

The Variation allowed on this day＇s work is $2 \frac{1}{2}$ points Westerly．
At 9 h 40 m P．M．，the Meridian Altitude of the Star Regulus was observed to the Southward，and at the same time an Altitude of the Polar Star was observed to the Northward．The Mean of the two Lati－ tudes so found，compared with that by the Dead Reckoning，places the Ship 40＇to the Northward of tho Dead Reckoning

And at 4 A. M．，the Meridian Altitude of Autares was observed to the Southward，at the same time the Altitude of the Pole Star was observed to the Northward．The Mean of the two Latitudes places the Ship 45^{\prime} to the Northward of the Dead Reckoning．These Observations may not he very accurate，on account of the obscurity of the horizon and the heavy sea running，together with the difficulty of making the Observations，but are sufficiently near to act as a warning that the Dead Reckoning is in error，and by taking Stars North and South of the Meridian the errors in the Observation are very much diminished． For instance，the Difference in the two Latitudes given by Altitudes of Antares and the Pole Star is 14＇， jut the Mean of the two Latitudes is taken．

The Sun＇s Altitude was also obtained about 80° clock in the morning，and by using the corrected Lati－ tude in finding the Time，we get the Longitude by Chronometer as above，and which places the Ship 33^{\prime} of Longitude to the Eastward of the Dead Reckoning．These errors in the Latitude and Longitude so found，shows that the Ship＇s Course made good is about 1 point further to the Northward than the Course Dy Compass makes her；she has，therefore，been run off．

The Barometer having fallen to 29.5 ，and the weather at Noon assumed a very threatening appearance， we may look for a continuance of the gale．

The Ship is now approaching the Eastern edge of the Polar Current，in which we may expect to find large masses of Ice，brought down by it from the Polar regions．On a Ship entering this current the temper－ ature of the Sea water will be found to fall about 20° ，and may be easily ascertained by drawing a bucket of water from alongside and plunging the Thermometer into it．（See the Remarks on Currents and tho Use of the Thermometer，at page 82．）

The position of the Ship by Observation being laid off on the Chart，the bearing of St．John＇s is found to be W．by N．$\frac{4}{2}$ N．； $2 t$ points Variation allowed on that gives the Rearing by Compase N．W．，Distance 468 miles．

JOURNAL OF A VOYAGE

The Clipper Ship Dauntless, W. Griffen, Commander.

The Magnetic Variation not having been observed to-day, it is taken from the Chart, which gives 2 points Westerly.

By the decrease in the temperature of the Sea-water, as noted above, the Ship evidently entered the Polar Current soon after mid-day, the Set of which is about South by the Compass, or S. S. E. (true,) and its Drift $1 \frac{1}{2}$ knots an hour. It being desirable to get to the Northward of the Parallel of Latitude of St. John's before the wind shifts to the Northward, a Course must be shaped for that purpose. By reference to the Ship's place on the Chart, a N. W. $\frac{8}{4}$ W. True Course, and Distance 300 miles, would place her tomorrow at Noon near the Eastern edge of the Great Bank, in the Parallel of Latitude required. But to make this Course good, we must allow for the Set and Drift of the Current as follows: The Set of the Current being nearly in a contrary direction to the required Course, we take their Difference, 29 points, as a Course, and the Drift, $1 \frac{1}{2}$ knots, as a Distance, which gives the Departure, 7 -tenths. Then the average rate of sailing, say 13 knots an hour, (which the vessel is expected to make next 24 hours,) as a Distance, and with 7 -tenths as a Departure, find the Course, 3°, or $\frac{1}{t}$ of a point, which subtracted from the given Course, N. W. $\frac{8}{4}$ W., gives the required Course N.W. $\frac{1}{2}$ W.; the Variation, 2 points W., allowed, gives the Compass Course required to steer N. N. W. $\frac{1}{2}$ W. (See the Rule in Current Sailing, page 30, Case 3d.)

The Ship has passed many Icebergs to-day, and on her approach to them the Thermometer was fou=: to fall to 32°, nearly, but rose 3° after having passed them. The Mean temperature of the Sea-water in the Polar Current appeared to be 35°.

The wind having backed into the Southward again, an omen of bad weather, the sail on the Ship was reduced to the close-reefed topsails before night-fall, and a vigilant lookout kept during the night for Icebergs, as they can be seen at a considerable distance in dark weather, if a good lookout is kept for the glare os reflection, which is a peculiar kind of phosphorus light which surrounds them.

At Noon, a dense fog with heavy rain came on, and as the Barometer is rising, it indicates a shift of wind to the North ward. It was, therefore, deemed prudent to put the Ship under low canvas, in case of a sudden shift; besides, according to the Dead Reckoning, she is to the Northward of the Parallel of Latitude of the intended port.

The Bearing of St. John's at Noon to-day is S. 89° W., or W. N. W. by Compass, nearly, distant 194 miles

10l. N NAL OF A VOYAGE

From Santa Cruz, (Cape Verdes,) towards St. John's, Newfoundland.

E	L.	[1.	COURSES.	INDS.	L. W.	bemares, tuesday, mabit 28ta, 1854.
1	11		N. W. by N.	W. S. W.		P. M. Dense fug, with mizzling rain. Wind inclining to Wear erly. No ice visible.
2	11					erly. No ice visible. Bent the cables and got the anchors on the gunwale.
3 4 4	10 10	1				Bent the cables and got the anchors on the gunwale. At 4 h , sounded in 60 fathoms. Temperature of the Sea-wator 84°
4	10	$\begin{aligned} & 1 \\ & 1 \end{aligned}$				At 4 h , sounded in 60 fathoms. Temperature of the Sea-wator 84 Air 36°.
5	10	$\begin{aligned} & 1 \\ & 1 \end{aligned}$				At 6h, blowing excessive hard and heavy sea on.
7	2		Lying to.			Wore ship with her bead to the Southward. Furled the fore and
8	2		Up S. b W.	W. S. W.	6	mizen topsails, and hove to under the main-topssil.
9	2		Off S. by E.			At 9 h , less wind and a heavy fall of rain. At 10 h , the wiud changed suddenly to the Northward, in a tro
10	2 2 2		. N. W.	North.	6	At 10 h , the wiud changed suddenly to the Northward, in a tro mendous rain squall.
12	2				4	At Miduight, blowing hard, but the weather clearing up.
1	2					At 1 A. M., set the fore and mizen topsails.
2	5					At 2 h , set the reefed courses and spanker.
3	7		\%	N. by		At 3 h , out double reefs and set top-gallant-sails and jib.
4	14					At $4 \mathrm{~h}, \mathrm{Mer}$. Alt. of 滋 Antares. Lat. in $\left.47^{\circ} 29^{\prime}\right\}$ Mean $47^{\circ} 84$. .
5	15					Same time Alt. of Polar 亚. Lat. in $\left.47^{\circ} 39^{\prime}\right\}$ D. R. $47^{\circ} 85^{\prime} \mathrm{N}$.
6	15			*		At Sunrise, Mag. Varia. Obs. Was 23° Westerly.
7	15		${ }^{\prime}$	"		Out all reefs and checked in the W
8	15			"		At 8 A. M., Long. in by Chron. $51^{\circ} 18^{\prime} \mathrm{W}$.
9	15		"	"		St. John's harbor bears W. N. W. by Compass, distant 60 miles
10	15		"	"		At 10h, the land was seen in that direction.
11	15		"	"		11h, made out Signal Hill, bearing W. N. W, distant 5 leaguen
12	15			"		Noon. Ship close in with Fort Amberst. Received on board a
Current Soutb by Compass $1 \frac{1}{3}$ knots.						Pilot, and proceeded into port.
		Course Dist. S. $89^{\circ} \mathrm{W}$. 177 D. Lat. Dep. 3^{\prime} S. 177 W.				

At 1 P. M. came to with the small bower anchor in 8 fathoms water, abreast of the town of St. John's. Furled kiils and moored ship, with 45 fathoms cable on each bower anchor, and sent down top-gallant yards. Midnight. Heary rain squalls from the N. W. This day's work ends with and contains 36 hours, in order to commence the Harbor Log.

On referring to the above Log, it will be noticed that the Ship ran to the N. W. by N. until 4 P. M., when soundings were obtained in 60 fathoms water, on the North Eastern edge of the Great Bank of Newfoundland, and at 6 P. M. she was wore round with her head to the Southward, and hove to under the close-reefed main-topsail for the night, on account of the dense fog which prevailed, in case of meeting with ice; and also with the view of being on the proper tack should a sudden shift of wind from the Northward take place during the night time.
At 9 P. M. the gale began to moderate, and heavy showers of rain fell; the usual precursor of a vivlent and sudden shift of wind. The Barometer now began to rise rapidly, and at 10 , a squall from the Northward struck the Ship, and blew with great fury for about two hours, and she luffed up to the wind on the same tack, and sail was made as the wind moderated.
The sky having now cleared up, the opportunity was taken of finding the Latitude by Observation st 4 A. M., from the Meridian Altitude of Antares to the Southward, and the Altitude of the Polar Star to the Northward. The Mean of the two Latitudes so found agrees with that by Dead Reckoning, and places the Ship in the parallel of Latitude of the intended port, $47^{\circ} 34^{\prime}$ N.; consequently, it bears W. N. W. by Compass, but we must steer $\frac{1}{2}$ a point more to the Northward, in order to make the necessary allowana for Leeway and Currents.

At Sunrise, the Magnetic Variation was observed to be 23° W., and at 8 A. M. the Longitude by Chrenometer, as above, is found to be 20^{\prime} to the Westward of that by Doad Reckoning since last Observation, and by a case of Paraliel Sailing, or by the Chart, St. John's is found to bear true West, or W. N. W. by Ccmpass, distant 60 miles.

At 10 A. M., High Land was discovered ahead, and at 11 the buildings on Signal Hill, and Fort Amherst, at the entrance of St. John's Harbor, were distinctly made out, and at Noon she closed with the entrance of the Harbor, and took a Pilot on board. Thus making the Passage from Port to Port in 18 days 6 hours, and sailed a distance of 2977 miles.
In working up this day's work, the allowance for the Set and Drift of the Current, as above, (S. S. E. rue, 36 miles in 24 hours,) must be inserted in the Traverse Table, along with the other Courses ans Distancen, and the result of the day's work will be found as above.
Abstract or copy of the Ship's Position at Noon is taken from the Journal and kept on a separate shemen in the room of keeping a regular Journal. And frequently an to, and is generally ruled in the following form.

ABSTRACT OF THE FOREGOING JOURNAL.

dates.			COURSEs.	DIST.	Lat. D. R.	LONG. D. R.	LAT. OBS.	LONG. BY CHRONOM.	$\left\lvert\, \begin{gathered} \text { DO. } \\ \text { Carried on } \end{gathered}\right.$	CURRENTS.	$\begin{gathered} \text { MAG. } \\ \text { VAR. OBS. } \end{gathered}$	$\begin{aligned} & \text { BAROM. } \\ & \text { NOON. } \end{aligned}$	$\begin{gathered} \text { THER. } \\ \text { AIR.jWA } \end{gathered}$	bearing and distance of LAND at NOON.
Friday, M	arch	17 th	N. $40^{\circ} \mathrm{W}$.	287	$20^{\circ} 52^{\prime} \mathrm{N}$.	$28^{\circ} 34^{\prime} \mathrm{W}$.	$20^{\circ} 50^{\prime} \mathrm{N}$.	$28^{\circ} 40^{\prime} \mathrm{W}$.	$28^{\circ} 34^{\prime} \mathrm{W}$.		$19^{\circ} \mathrm{W}$.			
Saturday,	"	18th	N. $56^{\circ} \mathrm{W}$.	280	$23 \quad 26$	3246			$32 \quad 52$		20°.	29.50		
Sunday,	"	19th	S. $57^{\circ} \mathrm{W}$.	237	$21 \quad 17$	$\begin{array}{lll}36 & 20\end{array}$	217	$36 \quad 36$	$\begin{array}{lll}36 & 26\end{array}$		17°	29.35	78°	
Monday,	،	20th	N. $23^{\circ} \mathrm{E}$.	198	$24 \quad 23$	3457	2438	358	3513		13°	29.30	77°	
Tuesday,	"	21st	N. $8^{\circ} 30^{\prime} \mathrm{E}$.	253	2848	3415	2850	3422	3426		14°	29.80	75°	Isle Fayal N. 26° E. 650 m
Wednesd.	"	22 d	N. $12^{\circ} \mathrm{E}$.	260	$33 \quad 2$	3311	331	$33 \quad 20$	3318		$22^{\circ} 30^{\prime}$	29.50	70°	Isle Flores N. $15^{\circ} \mathrm{E} .404$ "
Thursday,	"	23 d	N. $12^{\circ} 30^{\prime} \mathrm{E}$.	223	$\begin{array}{ll}36 & 38 \\ 38\end{array}$	$\begin{array}{ll}32 & 13\end{array}$	$36 \quad 33$	3152	$32 \quad 22$	E.by S. 1 mile.	$22^{\circ} 30^{\prime}$	29.80	70°	do. N. $10^{\circ} \mathrm{E} .182$ "
Friday, Saturday,	"	24th	N. $4^{\circ} 30^{\prime} \mathrm{F}$.	184	3936	$\begin{array}{ll}31 & 55 \\ 35 & 12\end{array}$	3931	314	3134	E.by S. 1 mile.	23°	29.50	69°	do. West 7 "
Saturday, Sunday,	"	25 th	N. $60^{\circ} \mathrm{W}$.	213	4119	3512			$\begin{array}{ll}35 & 12\end{array}$		25°	29.10	65°	St. John's N. $63^{\circ} \mathrm{W} .830$ "
Sunday,	"	26 th	N. $65^{\circ} \mathrm{W}$.	378	$44 \quad 1$	4258	$44 \quad 46$	$42 \quad 27$	4258		25°	29. 5	$55^{\circ} 55^{\circ}$	do. N. $69^{\circ} \mathrm{W} .468{ }^{\prime \prime}$
Monday,	"	27 th	N. $54^{\circ} \mathrm{W}$.	286	$47 \quad 37$	$48 \quad 34$			$48 \quad 3$	S. S. E. $1 \frac{1}{2} \mathrm{~m}$.'s.	$22^{\circ} 30^{\prime}$	29.10	$34^{\circ}{ }^{\circ} 3^{\circ}$	do. S. $89^{\circ} \mathrm{W} .194 *$
Tuesday:	"	28th	S. $89^{\circ} \mathrm{W}$.	177	$47 \quad 34$	5259	$47 \quad 34$	5248	$52 \quad 28$	S.S.E. $1 \frac{1}{2}$ "	$22^{\circ} 30^{\prime}$	29.90	$44^{\circ}{ }^{\circ}{ }^{3}{ }^{\circ}$	Arrived at St. John's.

Distance sailed by Log 2977 miles. The True Bearing and Distance between Santa Cruz (Cape Verdes) in Latitude $17^{\circ} 2^{\prime} \mathrm{N}_{\mathrm{i}}$, and Longitude $25^{\circ} 15^{\prime} \mathrm{W}$. , and St. John's,
(Newfoundland,) in Latitude $47^{\circ} 34^{\prime} \mathrm{N}$., and Longitude $52^{\circ} 45^{\prime} \mathrm{W}$., is found by Mercator's Sailing to be N. $37^{\circ} \mathrm{W} ., 2295$ miles.

TABLES.

	TABLE I.-				North \ddagger West				th \ddagger E			Soutb \ddagger West		
Dist.	Lat.	Dep.	Dist.	Lat.	Dep.	Di	Lat	Dep.	Dist.	Lat	Dep.	Dist.	Lat.	Dep.
1	01.0	00.0	61	60.9	03.0	121	120.9	. 9	181	180.8	08.9	241	240.7	. 8
2	02.0	00.1	62	61.9	03.0	122	121.9	06.0	182	181.8	08.9	242	241.7	11.9
3	03.0	00.1	63	62.9	03.1	123	122.9	06.0	183	182.8	09.0	243	242.7	11.9
4	04.0	00.2	64	63.9	03.1	124	123.9	06.1	184	183.8	09.0	244	243.7	12.0
5	05.0	00.2	65	64.9	03.2	125	124.8	06.1	185	184.8	09.1	245	244.7	12.0
6	06.0	00.3	66	65.9	03.2	126	125.8	06.2	186	185.8	09.1	246	245.7	12.1
7	07.0	00.3	67	66.9	03.3	127	126.8	06.2	187	186.8	09.2	247	246.7	12.1
8	08.0	00.4	68	67.9	03.3	128	127.8	06.3	188	187.8	09.2	248	247.7	12.2
9	09.0	00.4	69	68.9	03.4	129	128.8	06.3	189	188.8	09.3	249	248.7	12.2
10	10.0	00.5	70	69.9	03.4	130	129.8	06.4	190	189.8	09.3	250	249.7	12.3
11	11.0	00.5	71	70.9	03.5	131	130.8	06.4	191	190.8	09.4	251	250.7	2.3
12	12.0	00.6	72	71.9	03.5	32	131.8	06.5	192	191.8	09.4	252	251.7	12.4
13	13.0	00.6	73	72.9	03.6	133	132.8	06.5	193	192.8	09.5	253	252.7	12.4
14	14.0	00.7	74	73.9	03.6	134	133.8	06.6	194	193.8	09.5	254	253.7	125
15	15.0	00.7	75	74.9	03.7	135	134.8	06.6	195	194.8	09.6	255	254.7	12.5
16	16.0	00.8	76	75.9	03.7	136	135.8	06.7	196	195.8	09.6	256	255.7	12.6
17	17.0	00.8	77	76.9	03.8	137	136.8	06.7	197	196.8	09.7	257	256.7	12.6
18	18.0	00.9	78	77.9	03.8	38	137.8	06.8	198	197.8	09.7	258	257.7	12.7
19	19.0	00.9	79	78.9	03.9	139	138.8	06.8	199	198.8	09.8	259	258.7	12.7
20	20	01	80	79.9	03.9	40	139.8	06.9	200	199.8	09.8	260	259.7	2.8
21	21.0	01.0	81	80.9	04.0	141	140.8	06.9	201	200.8	09.9	261	260.7	2.8
22	22.0	01.0	82	81.9	04.0	142	141.8	07.0	202	201.	09.9	262	261.7	12.9
23	23	01.1	83	82.9	04.1	143	142.8	07.0	203	202.8	10.0	263	262.7	12.9
24	24.0	01.2	84	83.9	04.1	144	143.8	07.1	04	203.8	10.0	26	263.7	13.0
25	25.	01.2	85	84.9	04.2	45	144.8	07.1	205	204	10.1	26	264.7	13.0
26	26.0	01.3	86	85.9	04.2	46	145.8	07.2	206	205	10.1	26	265.7	13.1
27	27.0	01.3	87	86.9	04.3	147	146.8	07.2	207	206	10.2	26	266.7	13.1
28	28.0	01.4	88	87.9	04.3	48	147.	07.3	208	207.7	10.2	26	267.7	13.2
29	29.0	01.4	89	88.9	04.4	49	148.8	07.3	209	208.7	10.	269	268.7	13.2
30	30.0	01	90	83.9	04.4	15	149.8	07.4	210	209.7	10.3	270	269.7	13.2
31	31.0	01.5	91	90.9	04.5	151	150.8	07.4	211	210.7	10.4	271	270.7	3.3
32	32.0	01.6	92	91.9	04.5	15:	151.8	07.5	212	211.7	10.4	272	271.7	13.3
33	33.0	01.6	93	92.9	04.6	153	152.8	07.5	213	212.7	10.5	273	272.7	13.4
34	34.0	01.7	94	93.9	04.6	154	153.8	07.6	214	213.7	10.5	27	273.7	13.4
35	35.0	01.7	95	94.9	04.7	155	154.8	07.6	215	214.7	10.5	275	274.7	13.5
36	36.0	01.8	96	95.9	04.7	15	155.8	07.7	216	215.7	10.6	276	275.7	13.5
37	37.0	01.8	97	96.9	04.8	15	156.8	07.7	217	216.7	10.6	277	276.7	13.6
38	38.0	01.9	98	97.9	04.8	158	157.8	07.8	218	217.7	10.7	27	277.7	13.6
39	39.0	01.9	99	95.9	04.9	159	158.8	07.8	219	218.7	10.7	279	278.7	13.7
40	40	02	100	99.9	04.9	160	159	07.9	220	219	10.8	280	279.7	13
41	41.0	02.0	101	100.9	05.0	161	160.8	07.9	221	220.7	10.8	281	280.7	13.8
42	41.9	02.1	10	101.9	05.0	162	161.8	07.9	2	221.7	10.9	28	281.7	13.8
43	42.9	0\%. 1	103	102.9	05.1	163	162.	08.0	23	222.7	10.9	28	282.7	13.9
44	43.9	02	104	103.9	05.1	164	163.	08.0	224	223.7	11.0	28	283.7	13.9
45	44.9	02.2	105	104.9	05.2	165	164.	08.1	225	224.7	11.0	285	284.7	14.0
46	45.	0	106	105.9	05.2	166	165.8	08.1	226	225.7	11.1	286	285.7	14.0
47	46.9	02	107	106.9	05.3	167	166.	08.2	227	226.7	11.1	287	286.7	14.1
48	47.9	02.4	108	107.9	05.3	168	167.8	08.2	228	227.7	11.2	288	287.7	14.1
49	48.9	02.4	109	108.9	05.3	169	168.8	08.3	22	228.7	11.2	289	288.7	14.2
50	49	02.5	110	109.9	05.4	17	169.8	08.3	230	229	11.3	290	289.7	14.2
51	50.9	02.5	111	110.9	05.4	171	170.8	08.4	231	230.7	11.3	291	290.6	14.3
52	51.9	02.6	112	111.9	05.5	172	171.8	08.4	232	231.7	11.4	292	291.6	14.3
53	52.9	02.6	113	112.9	05.5	173	172.8	08.5	233	232.7	11.4	293	292.6	14.4
54	53.9	02.6	114	113.9	05.6	174	173.8	08.5	234	233.7	11.5	294	293.6	14.4
55	54.	02.7	115	114.9	05.6	175	174.8	08.6	235	234.7	11.5	295	294.6	14.5
56	55.	02.7	116	115.9	05.7	176	175.8	08.6	236	235.7	11.6	2.96	295.6	14.5
57	56.9	02.8	117	116.9	05.7	177	176.8	08.7	237	236.7	11.6	297	296.6	14.6
58	57.9	02.8	118	117.9	05.8	178	177.8	08.7	238	237.7	11.7	298	2:7.6	14.6
59	58.9	02.9	119	118.9	05.8	179	178.8	08.8	23	235.7	11.	299	298.	14.7
60	59.9	02.9	120	119.9	05	180	179.8	08.	240	239.	11.8	300	299.6	4.7
Dist.	Dep.	Lat.												
	Esat $\}$ North.		E:ast t $\frac{1}{4}$ iouth			For 7t Pts.]			West $\}$ North			Weet + South		

	TABLE I．－D North $\frac{8}{3}$ East．			FERENCE OF LATITUD North 㝵 West．				AND DEPARTURE FOR 4 POINT． South 星 East．South 亲 West．						
Dist．	Lat．	Dep．	Dist．	sat．	－	ist．	Lat．	Dep．	Dist．	Lat	Dep．	Dist．	Lat．	Dep．
	01.0	00.1	61	0.3	09.0	121	119.7	17	181	179.0	26.6	241	，	35.4
2	02.0	00.3	62	61.3	09.1	122	120.7	17.9	182	180.0	26.7	242	239.4	5.5
3	03.0	00.4	63	62.3	09.2	123	121.7	18.0	183	181.0	26.9	243	$\stackrel{20.4}{ }$	7
4	04.0	00.6	64	63.3	09.4	124	122.7	18.2	184	182.0	27.0	244	241.4	8
5	04.9	00.7	65	64.3	09.5	125	123.6	18.3	185	183.0	27.1	245	242.3	35.9
6	05.9	00.9	66	65.3	09.7	126	124.6	18.5	186	184.0	27.3	246	． 3	36.1
7	06.9	01.0	67	66.3	09.8	127	125.6	18.6	187	185.0	27.4	247	244.3	36.2
8	07.9	01.2	68	67.3	10.0	128	126.6	18.8	188	186.0	27.6	248	245.3	36.4
9	08.9	01.3	69	68.3	10.1	129	127.6	18.9	189	187.0	7	249	246.3	36.5
10	09.9	01.5	70	69.2	10.3	1：30	128.6	19.1	190	187.9	27.9	250	247.3	36.7
11	10.9	01	71	70.2	10.4	131	12.	19	191	188.9	28.0	251	248.3	8
12	11.9	01.8	72	71.2	10.6	132	130.6	19.4	192	189.9	28.2	252	249.3 ！	37.0
13	12.9	01.9	73	72.2	10.7	133	131.6	19.5	193	190.9	28.3	253	250.3	37.1
14	13.8	$0 \cdot 1$	74	73.2	10.9	134	132.5	19.7	194	191.9	28.5	254	251.3	37.3
15	14.8	02．2	75	74.2	11.0	135	133.5	19.8	195	192.9	28.6	255	252.2	37.4
16	15.8	0： 3	76	75.2	11.2	136	134.5	20.0	196	193.9	28	256	253.2	37.6
17	16.8	02.5	77	76.2	11.3	137	135.5	20.1	197	194.9	28.9	257	254.2	37.7
18	17.8	02．6	78	77.2	11.4	138	136.5	20.2	198	195.9	29.1	258	255.2	37.9
19	18.8	02.8	79	78.1	11.6	139	137.5	20.4	199	196.8	29.2	259	256.2	38.0
20	19.8	02	80	79.1	11.7	140	138.5	20.5	200	197.8	29.	26	257.2	38.1
21	20.8	03	81	80.1	11.9	141	139.5	20.7	201	198.8	5	261	258.2	． 3
22	21.8	03.2	82	81.1	12.0	142	140.5	20.8	202	199.8	29.6	62	259.2	38.4
23	22.8	03.4	83	82.1	12.2	143	141.5	21.0	203	200.8	29	263	260.2	38.6
24	23.7	0：3．5	84	83.1	12.3	144	142.4	21.1	204	201.8	29.9	264	261.1	38.7
25	24.7	03.7	85	84.1	12.5	145	143.4	21.3	205	202.8	30.1	265	｜262．1	38.9
26	$\stackrel{5}{2} .7$	03.8	86	85.1	12.6	146	144.4	21.4	206	203.8	30		263.1	39.0
27	26.7	04.0	87	86.1	12.8	147	145.4	21.6	207	204.8	30	267	264.1	39.2
28	27.7	04.1	88	87.0	12.9	148	146.4	21.7	208	205.7	30.5	268	265.1	39.3
29	28.7	04.3	89	88.0	13.1	149	147.4	21.9	209	206.7	30.7	269	266.1	39.5
30	－9	04.4	90	89.0	13.2	150	148.4	22.0	210	207.7	30．8	270	267.1	39.6
31	30.7	04.5	91	90.0	13.4	151	149.4	22.2	211	208.7	31.0	271	268	39.8
32	31.7	04.7	92	91.0	13.5	15：	150.4	$2 \because .3$	212	209.7	31.1	272	269.1	39.9
33	32.6	04.8	93	92.0	13.6	153	151.3	22.4	213	210.7	31.3	273	270.0	40.1
34	33.6	05.0	94	93.0	13.8	154	152.3	22.6	214	211.7	31.4	274	271.0	40.2
35	34.6	05.1	95	94.0	13.9	155	153.3	22.7	215	212.7	31.5	275	272.0	40.4
36	35.6	05.3	96	95.0	14.1	156	154.3	22.9	216	213.7	31.7	276	273.0	40.5
37	36.6	05.4	97	96.0	14.2	157	155.3	23.0	217	214.7	31.8	277	274.0	40.6
38	37.6	05.6	98	96.9	14.4	158	156.3	23.2	218	215.6	32.0	278	275.0	40.8
39	38.6	05.7	99	97.9	14.5	159	157.3	23.3	219	216.6	32.1	279	276.0	40.9
40	39.6	05.	100	98.9	14.7	160	158.3	23.5	220	217.6	32.3	880	277.0	41.1
41	40.6	06.0	101	99.9	14.8	161	159.3	23.6	221	218.6	32.4	281	278.0	41.2
42	41.5	06.2	102	100.9	15.0	162	160.2	23.8	222	219.6	32． 6	282	278.9	41.4
43	42.5	06.3	103	101.9	15.1	163	161.2	23.9	223	220.6	32.7	283	279.9	41.5
44	43．5	06.5	104	102.9	15.3	164	162.2	24.1	224	221.6	32.9	284	280.9	41.7
45	44.5	06.6	105	103.9	15.4	165	163.2	24.2	225	222.6	33.0	285	281.9	41.8
46	45.5	06.7	106	104.9	15.6	166	164.2	24.4	226	223.6	33.2	286	282.9	42.0
47	46.5	06.9	107	105.8	15.7	167	165.2	24.5	227	224.5	33.3	287	283.9	42.1
48	47.5	07.0	108	106.8	15.8	168	166.2	24.7	228	225.5	33.5	288	284.9	42.3
49	48.5	07.2	109	107.8	16.0	169	167.2	24.8	229	226.5	33.6	289	285.9	42.4
50	49.5	d7．3	110	108.8	16.1	170	168.2	24.9	230	227.5	33.7	290	286.9	42.6
51	50.4	07.5	111	109.8	16.3	171	169.1	25.1	231	228.5	33.9	291	287.9	42.7
52	51.4	07.6	112	110.8	16.4	172	170.1	25.2	232	229.5	34.0	292	288.8	42.8
53	52.4	07.8	113	111.8	16.6	173	171.1	25.4	233	230.5	34.2	293	289.8	43.0
54	53.4	07.9	114	112.8	16.7	174	172.1	25.5	234	231.5	34.3	294	290.8	43.3
55	54.4	08.1	115	113.8	16.9	175	173.1	25.7	235	232.5	34.5	295	291.8	43.3
51	55.4	08.2	116	1147	17.0	176	174.1	25.8	236	233.4	34.6	296	292.8	43.4
57	56.4	08.4	117	$\because 157$	17.2	177	175.1	26.0	237	234.4	34.8	297	293.8	43.6
58	57.4	08.5	118	116.7	17.3	17.	176.1	26.1	238	235.4	34.9	298	294.8	437
59	58.4	08.7	119	117.7	17.5	179	177.1	26.3	239	236.4	35.	299	295.8	43.9
60	59.4	08.8	120	118.7	17.6	180	178.1	26.4	240	237.4	35.2	300	296.8	44.0
Dist，	Dep．	Lat．	Dist．	Dep．	Lat．	Dist．	Dep．	Lat．	Dis	Dep．	Lat．	Dist．	Dep．	Lat．
East $\frac{\text { North．}}{}$			East f South．			［For 7\％Pts．］			West \＆North．			West t South		

	TABLE I.-D North b. East。			North b. West.				South b. East.			South b. West.			
Dist.	Lat.	Dep.	Dist.	Lat.	Dep.	Dist.	Lat.	Dep.	Dist.\|	Lat.	Dep.	Dis	Lat.	Dep.
1	01.0	00.2	61	59.8	11.9	121	118.7	23.6	181	177.5	35.3	241	236.4	47.0
2	02.0	00.4	62	60.8	12.1	122	119.7	23.8	182	178.5	35.5	242	237.4	47.2
3	02.9	00.6	63	61.8	12.3	123	120.6	24.0	183	179.5	35.7	243	238.3	47.4
4	03.9	00.8	64	62.8	12.5	124	121.6	24.2	184	180.5	35.9	244	239.3	47.6
5	04.9	01.0	65	63.8	12.7	125	122:6	24.4	185	181.4	36.1	245	240.3	47.8
6	05.9	01.2	66	. 64.7	12.9	126	123.6	24.6	186	182.4	36.3	246	241.3	48.0
7	06.9	01.4	67	65.7	13.1	127	124.6	24.8	187	183.4	36.5	247	242.3	48.2
8	07.8	01.6	68	66.7	13.3	128	125.5	25.0	188	184.4	36.7	248	243.2	48.4
9	08.8	01.8	69	67.7	13.5	129	126.5	25.2	189	185.4	36.9	$\because 49$	244.2	48.6
10	09.8	02.0	70	68.7	13.7	130	127.5	25.4	190	186.3	37.1	250	245.2	48.8
11	10.8	02.1	71	69.6	13.9	131	128.5	25.6	191	187.3	37.3	251	246.2	49.0
12	11.8	02.3	72	70.6	14.0	132	129.5	25.8	192	188.3	37.5	252	247.2	49.2
13	12.8	02.5	73	71.6	14.2	133	130.4	25.9	193	189.3	37.7	253	24 - 1	49.4
14	13.7	02.7	74	72.6	14.4	134	131.4	26.1	194	190.3	37.8	254	249.1	49.6
15	14.7	02.9	75	73.6	14.6	135	132.4	26.3	195	191.3	38.0	255	250.1	49.7
16	15.7	03.1	76	74.5	14.8	136	133.4	26.5	196	192.2	38.2	256	251.1	49.9
17	16.7	03.3	77	75.5	15.0	137	134.4	26.7	197	193.2	38.4	257	252.1	50.1
18	17.7	03.5	78	76.5	15.2	138	135.3	26.9	198	194.2	38.6	258	253.0	50.3
19	18.6	03.7	79	77.5	15.4	139	136.3	27.1	199	195.2	38.8	25	254.0	50.5
20	19.6	03.9	80	78.5	15.6	140	137.3	27.3	200	196.2	39.	26	255.0	50.7
21	20.6	04	81	79.4	. 8	141	138.3	27.5	201	197.1	39.2	261	2560	. 9
2	21.6	04.3	82	80.4	16.0	142	139.3	27.7	202	1:8.1	39.4	20	2570	51.1
23	22.6	04.5	83	81.4	16.2	143	140.3	27.9	203	199.1	39.6	26	257	51.3
24	23	04.7	84	8. 2.4	16.4	144	141.2	28.1	204	200.1	39.8	264	258.9	51.5
25	24.	04.9	85	83.4	16.6	145	142.2	28.3	205	201.1	40.0	265	259.9	51.7
26	25	05.1	86	84.3	16.8	146	143.2	28.5	206	202.0	40.2	26	260.9	51.9
27	26.	05.3	87	85.3	17.0	147	144.2	28.7	207	203.0	40.4	26	261.9	5.2. 1
28	27.5	05.5	88	86.3	17.2	148	145.2	28.9	20	204.0	40.6	26	262.9	52.3
29	28.4	05.7	89	87.3	17.4	149	146.1	29.1	209	205.0	40.8	26	263.8	52.5
30	29.4	05.9	90	85.3	17.6	150	147.1	29.3	210	206.0	41.0	270	264.8	52.7
31	30.4	06.0	91	89.3	.8	1	148.1	29.5	21	206.9	41	271	265.8	52.9
32	31.4	06.2	92	90.2	. 9	152	149.1	29.7	212	207.9	41.	272	266.8	53.1
33	32.4	06.4	93	91.2	18.1	153	150.1	29.8	213	208.9	41.	27	267.8	53.3
34	33.3	06.6	94	92.2	18.3	154	151.0	30.0	214	209.9	41.7	27	268.7	53.5
35	34.3	0 b .5	95	93.2	18.5	155	152.0	30.2	215	210.9	41.9	27	269.7	53.6
36	35.3	07.0	96	94.2	18.7	156	153.0	30.4	216	211.8	42.1	27	270.7	53.8
37	36.3	07.2	97	95.1	18.9	157	154.0	30.6	217	212.8	42.3	277	271.7	54.0
38	37.3	07.4	98	96.1	19.1	158	155.0	30.8	218	213.8	42.5	278	272.7	54.2
39	38.3	07.6	99	97.1	19.3	159	155.9	31.0	219	214.8	42.7	279	273.6	54.4
40	39.2	07.8	100	98.1	19.5	160	156.9	31.2	220	215.8	42.9	280	274.6	54.6
41	40.2	08.0	101	99.1	19.7	161	157.9	31.4	221	216.8	43.1	281	275.6	54.8
42	41.2	08.2	102	100.0	19.9	162	158.9	31.6	222	217.7	43.3	282	276.6	55.0
43	42.2	08.4	103	101.0	20.1	163	159.9	31.8	223	218.7	43.5	283	277.6	55.2
44	43.2	08.6	104	102.0	20.3	164	160.8	32.0	224	219.7	43.7	28.4	278.5	55.4
45	44.1	08.8	105	103.0	20.5	165	161.8	32.2	225	220.7	43.9	285	279.5	55.6
46	45.1	09.0	106	104.0	20.7	166	162.8	32.4	226	221.7	44.1	286	280.5	55.8
47	46.1	09.2	107	104.9	20.9	167	163.8	32.6	227	22:. 6	44.3	287	281.5	56.0
48	47.1	09.4	108	105.9	21.1	168	164.8	32.8	228	223.6	44.5	288	282.5	56.2
49	48.1	09.6	109	106.9	21.3	169	165.8	33.0	229	224.6	44.7	289	283.4	56.4
50	49.0	09.8	110	107.9	21.5	170	166.7	33.2	230	225.6	44.9	290	284.	56.6
51	50.0	09.9	111	108.9	21.7	171	167.7	33.4	231	226.6	45.1	291	285.4	56.8
52	51.0	10.1	112	109.8	21.9	172	168.7	33.6	232	227.5	45.3	292	286.4	57.0
53	52.0	10.3	113	110.8	22.0	173	169.7	33.8	233	228.5	45.5	293	287.4	57.2
54	53.0	10.5	114	111.8	22.2	174	170.7	33.9	234	2:9.5	45.7	294	288.4	57.4
55	53.9	10.7	11.5	112.8	22.4	175	171.6	34.1	235	230.5	45.8	295	289.3	57.6
5 t	54.9	10.9	116	113.8	22.6	176	172.6	34.3	236	231.5	46.0	296	\| 290.3	57.7
57	55.8	11.1	117	114.8	22.8	177	173.6	34.5	237	232.4	46.2	297	291.3	57.9
58	56.9	11.3	118	115.7	23.0	178	174.6	34.7	238	233.4	46.4	298	292.3	58.1
59	57.9	11.5	119	116.7	23.2	179	175.6	34.9	239	234.4	46.6	299	293.3	58.3
60	58.8	11.7	120	117.7	23.4	180	176.5	35.1	240	235.4	46.8	300	294.2	58.5
Disl.	East b. North.		Enatt b South.			Dist.	$\frac{\text { Dep. }}{\text { [For 7 Pts.] }}$		$\frac{\text { Dist. }}{\text { West } b \text {. North. }}$			$\begin{array}{\|c\|c} \hline \text { Dist. } & \text { Dep. } \\ \hline \text { West } b . \text { South. } \end{array}$		Lat.

North b. East \ddagger East.				North b. West \ddagger West.				South b. East $\frac{1}{\text { d East. }}$				South b. West t West.		
Dist.	L	Dep.	Dist.		p.	Dist.	Lat.		Dist.	Lat.	Dep.		Lat.	Dep.
	0	00			14.8	12	117.4	29.4		6	44.0	241	233.8	6
2	01.9	00.5	62	0.	15.1	122	118.3	29.6	182	176.	44.2	242	234.7	58.8
3	02.9	00.7	63	61.1	15.3	123	119.3	29.9	183	177.5	44.5	243	235.7	59.0
4	03.9	01.0	64	f.2.	15	124	12	30.	184	17	44.7	2	236.7	3
5	04.9	01.2	65	3.1	15.	125	121.3	30.4	185	17	45.0	245	237.7	. 5
6	05.8	01.5	66	4.0	16.0	126	122.2	30.6	186	18	45.2	246	238.6	9
7	06	01.7	67	. 0	16.3	127	123.2	30	187	18	45.4	24%	239.6	0
-	07.8	01	68		16	128	124.2	31	188	182	45.7	248	240.6	. 3
9	08.7	02.2	69	6.9	16.8	29	125	31	189	18	45.9	249	241.5	60.5
10	09.7	02.4	70	67.9	17.0	130	126.1	31.6	190	18	46.2	250	242.5	60.7
11	1		71			131		31.8				251		
12	11.6	02.9	72	6	17	1	12	32.1	192		46.7	252		2
13	12.6	03.2	73	70	17	133	12	32.3	193		46	25	245.4	61.5
14	13.6	03.4	74	71.8	18.0	134	130.0	32.6	194	18	47	25	246	61.7
15	14.	03.6	75	72.8	18.2		131	32.	195	18	47.4	255	24	62.0
16	15.	03.9	76	73.7	18.5	136	131	33.	19	190	4	25	248.3	62.2
17	16.5	04.1	77	74.7	18.7	137	132.	33.3	197	191.	47.9	25	249.3	62.4
18	17.5	04.4	78	75.	19		13	33	198	19		258	250	.7
1	18	04.6		76.	19	139	134	33	190	19	48	25		62.9
20	19	04.9	80	7	19	140	135.8	34	200	19	48.6	260	252.2	63.2
	20		81				1368	34.3						4
22	21.3	05.3	82	79.5	19.	142	137	34.5	202	19	49.1	262	25	63.7
23	22.	05.6	83	. 5	2		135.7	S4.	20	19	49.3	263	255. 1	. 9
24	23.3	05.8	84	81.5	20.4	144	139	35.	20	197.9	49	264		64.1
25	24.3	06.1	85	82.5	20.7	145	140.	35	205	198	49	265	25	64.4
2 i	25.	06.3	86	83.4	20.9	146	141.		206	199	5	266	258	. 6
27	26.2	06.6	8	84.4	21.	147	142	35.	207	200	50	267	25	64.9
28	27.2	06.8	88	85.4	21.	148	143	36.	208	201.8	50	268		. 1
29	28.	07	89	86.3	21	149	144.5	36.2	209	202.7	50	26	260.0	65.4
3	29	07	90	87.3	21	150	14	36.4	210	203.7	51	27	261.9	65.6
	30.1			,	22.1				211	204.7	51.3		262.9	. 8
32	31.0	07.8	92	89.2	22.	152	14	36	21	205	51	272		66.1
33	32.0	08.0	93	90.2	22	153	148	3	2	206	51	273	26	66.3
34	33.0	08.	94	91.2	22.8	154	1			zu7	52	274	265.8	66.6
3.5	34.0	08.5	95	92.2	23	155	150.	37	21	208.6			266.8	66.8
36	34.9	08.7	96	93.1	23	156	151.	37	21	209.5		2\%	267.7	67.1
	35.9	09.0	9	4.1	23.6	15	15		7	210.	52	27	268.7	67.3
38	36.9	09.2	9	95.1	23.8	158	153	38.4	218	211.	53.	278	269.7	67.5
39	37.8	09.5	99	96.0	24.1	159	154.	38.6	219	212.4	53.2	279	2\%0.6	67.8
40	38.8	09.7	100	97.0	24.3	16	155	38	220	213.4		280	2~1. 6	.
		10.0									53.7			68.3
	40.7	10.		98.9				39		215	53	282	273	68.5
43	41.7	10.4	103	99.9	25.0	163	158.	39.	2	216.3	54.2	28	274.5	68.8
44	42.7	10.7	10.4	100.9	25.3	4	159.	3	224	217.		2 S	275	69.0
45	43.7	10.9		101.9	25.5		160.	40		218.3	54.7	285	276	69.2
46	44.6	11.2	06	102.8	25.8	166	161.0	40.3	$2{ }^{2}$	219.2	54.9	286	277.4	69.5
47	45.6	11.4	107	103.8	26.0	167	162.0	40.6	227	220.2		287	278.4	69.7
48	46.6	11.7	108	104.8	26.2		163.	40.		221.2	55	288	279.4	70.0
49	47.5	11.9	109	105.7	26.5	169	163.9	41.1		222.1	55.6	289	280.3	70.2
50	48.5	12.1	110	106.7	26.7	170	164.9	41.3	930	223.1	.	290		70.5
51	49.5	1	1	107.7	27.0	17		4	231	2	56.1	29	28	70.7
52	50.4	12	12	108.6	27.2	172	166.	4	2	225.0	56.	292	283	71.0
53	51.4	12.9	113	109.6	27.5	173	167.8	42.	23	226.0	56.6	293	284	71.2
54	52.4	13.1	114	110.6	27.7	174	168.8	42.3	.23	227.0	56.9	294	285.2	71.4
55	53.4	13.4	115	111.6	27.9	175	169.8	42.5	2.35	228.0	57	295	286	71.7
56	54.3	13.6	116	112.5	28.2	176	170.7	42.8	236	228.9	57.3	296	287	71.9
57	55.3	13.8	117	113.5	28.4	177	171.7	43.0	237	229.9	57.6	297	288.	72.2
58	56.3	14.1	118	114.5	28.7	178	172.7	43.3	238	230.9	57.8	298	289.	72.4
59	57.2	14.3	119	115.4	28.9	179	173.6	43.5	239	231.8	58.1	299	290.0	72.7
60	58.2	14.6	120	116.4	29.2	180	174.6	43.7	240	232.8	5 S .3	300	291.0	72.9
Dist.	Dep	Lat	Dist.	De	Lat	$\overline{\text { Dist. }}$	Dep.	Lat	Dist.	Dep.	Lat.	Dist.	Dep	Lat.
				Dep.										

TABLE I.-DIFFERENCE OF LATITUDE AND DEPARTURE FOR 1 㝵 POINTS.
North b. East \ddagger East. Nurth 6 . West $\&$ West. South b. East East. South b. West 4 West.

Dist.	Lat.	Dep.												
1	00.9	00.3	61	57.4	20.6	121	113.9	40.8	181	170.4	61.0	241	226.9	81.2
2	01.9	00.7	62	58.4	20.9	122	114.9	41.1	182	171.4	61.3	242	227.9	81.5
3	02.8	01.0	63	59.3	21.2	123	115.8	41.4	183	172.3	61.7	243	228.8	81.9
4	03.8	01.3	64	60.3	21.6	124	116.8	41.8	184	173.2	62.0	244	229.7	82.2
5	04.7	01.7	65	61.2	21.9	125	117.7	42.1	185	174.2	62.3	245	230.7	82.5
6	05.6	02.0	66	62.1	22.2	126	118.6	42.4	186	175.1	62.7	246	231.6	82.9
7	06.6	02.4	67	63.1	22.6	127	119.6	42.8	187	176.1	63.0	247	232.6	83.2
8	07.5	02.7	68	64.0	22.9	128	120.5	48.1	188	177.0	63.3	24S	233.5	83.5
9	05.5	03.0	69	65.0	23.2	129	121.5	43.5	189	178.0	(i3.7	249	234.4	83.9
10	09.4	03.4	70	65.9	23.6	130	122.4	43.8	190	178.9	64.0	$\underline{250}$	235.4	84.2
11	10.4	03.7	71	66.8	23.9	131	123.3	4	191	179.8	64.3	1	3	6
12	11.3	04.0	72	67.8	24.3	132	124.3	44.5	192	180.8	64.7	252	237.3	84.9
13	12.2	04.4	73	68.7	24.6	133	125.2	44.5	193	181.7	65.0	253	238.2	85.2
14	13.2	04.7	74	69.7	24.9	134	126.2	45.1	194	182.7	65.4	254	239.2	85.6
15	14.1	05.1	75	70.6	25.3	135	127.1	45.5	195	183.6	65.7	255	240.1	85.9
16	15.1	05.4	76	71.6	25.6	136	128.0	45.8	196	184.5	66.0	256	241.0	86.2
17	16.0	05.7	77	72.5	25.9	137	129.0	46.2	197	185.5	66.4	257	242.0	86.6
18	16.9	06.1	78	73.4	26.3	138	129.9	46.5	198	186.4	66.7	258	242.9	86.9
19	17.9	06.4	79	74.4	26.6	139	130.9	46.8	199	187.4	67.0	259	243.9	87.3
20	$\underline{18.8}$	06.7	80	75.3	27.0	140	131.8	47.2	200	188.3	67.4	260	244.8	87.6
21	19.8	07	81	76.3	27	141	132.8	47.5	201	189.3	7	261	245.7	87.9
22	20.7	07.4	82	77.2	27.6	142	133.7	47.8	202	190.2	68.1	262	246.7	88.3
23	21.7	07.7	83	78.1	28.0	143	134.6	48.:	203	191.1	68.4	263	247.6	88.6
24	22.6	08.1	84	79.1	28.3	144	135.6	48.5	204	192.1	68.7	264	248.6	88.9
25	23.5	08.4	85	80.0	28.6	145	136.5	48.8	205	193.0	69.1	265	249.5	89.3
21	24.5	08.5	86	81.0	29.0	146	137.5	49.2	206	194.0	69.4	266	250.5	89.6
27	25.4	09.1	87	81.9	29.3	147	138.4	49.5	207	194.9	69.7	267	251.4	89.9
28	26.4	09.4	88	82.9	29.6	148	139.3	49.9	208	195.8	70.1	268	252.3	90.3
29	27.3	09.8	89	83.8	30.0	149	140.3	50.2	209	196.8	70.4	269	253.3	90.6
30	28.2	10.1	90	84.7	30.3	150	141.2	50.5	210	197.7	70.7	270	254.	91.0
3	29.2	10.4	91	$85 . \%$	30.7	151	142.2	50.9	211	198.7	1.	271	205.2	91.3
32	30.1	10.8	92	86.6	31.0	152	143.1	51.2	212	199.6	71.4	272	256.1	91.6
33	31.1	11.1	93	87.6	31.3	153	144.1	51.5	213	200.5	71.8	273	257.0	92.0
34	32.0	11.5	94	88.5	31.7	154	145.0	51.9	214	201.5	72.1	274	258.0	92.3
35	33.0	11.8	95	89.4	32.0	155	145.9	52.2	215	202.4	72. 4	275	258.9	92.6
36	33.9	12.1	96	90.4	32.3	156	146.9	52.6	216	203.4	72.8	276	259.9	93.0
37	34.8	12.5	97	91.3	32.7	157	147.8	52.9	217	204.3	73.1	277	260.8	93.3
38	35.8	12.8	98	92.3	33.0	158	148.8	53.2	218	205.3	73.4	278	261.7	93.7
39	36.7	13.1	99	93.2	33.4	159	149.7	53.6	219	206.2	73.8	279	212.7	94.0
40	37.7	13.5	100	94.2	33.7	160	150.6	53.9	220	207.1	74.1	280	263.	94.3
	38.6	13	101	95.	34.	1	15	54.2	221	208.1	5	281	. 6	94.7
42	39.5	14.1	102	96.0	34.4	162	152.5	54.6	222	209.0	74.8	282	265.5	95.0
43	40.5	14.5	103	97.0	34.7	163	153.5	54.9	223	210.0	75.1	283	266.5	95.3
44	41.4	14.8	104	97.9	35.0	164	154.4	55.2	224	210.9	75.5	284	267.4	95.7
45	42.4	15.2	105	98.9	35.4	165	155.4	55.6	225	$\because 11.8$	75.8	285	268.3	96.0
46	43.3	15.5	106	99.8	35.7	166	156.3	55.9	226	212.8	71.1	286	269.3	96.4
47	44.3	15.8	107	100.7	36.0	167	157.2	56.3	227	213.7	76.5	287	270.2	96.7
48	45.2	16.2	108	101.7	36.4	168	158.2	56.6	228	214.7	76.8	288	271.2	97.0
49	46.1	16.5	109	102.6	36.7	169	159.1	56.9	229	215.6	77.1	289	272.1	97.4
50	47.1	16.8	110	103.6	37.1	170	160.1	57.3	230	216.6	77.5	290	273.0	97.7
51	48.0	17.2	111	104.5	37.4	171	161.0	57.6	231	217.5	77.8	291	274.0	98.0
52	49.0	17.5	112	105.5	37.7	172	161.9	57.9	232	218.4	78.2	292	274.9	98.4
53	49.9	17.9	113	106.4	38.1	173	162.9	5 S .3	233	219.4	78.5	293	275.9	98.7
54	50.8	18.2	114	107.3	38.4	174	193.8	58.6	234	220.3	78.8	294	276.8	99.0
55	51.8	18.5	115	108.3	38.7	175	164.8	59.0	235	221.3	79.2	295	277.5	99.4
56	52.7	18.9	116	109.2	39.1	176	165.7	59.3	236	222.2	79.5	296	278.7	99.7
57	53.7	19.2	117	110.2	39.4	177	166.7	59.6	237	223.1	79.8	297	279.6	100.1
58	54.6	19.5	118	111.1	39.8	178	167.6	60.0	238	224.1	80.2	298	280.6	100.4
59	55.6	19.9	119	112.0	40.1	179	168.5	60.3	239	223.0	80.5	299	281.5	100.7
60	56.5	20.2	120	113.0	40.4	180	169.5	60.6	240	$\underline{226.0}$	80.9	300	282.5	101.1
Dist.	Dep.	Lat.												
East North East \& Fast. East South Fast ! Eqst. [For 6f Pts.] West North Whast f West. West Sonth Wert $\frac{1}{\text { W Wort. }}$														

Di	L	Dep.	Dist.	Lat.	Dep.	Dist.	Lat.	Dep.	Dist.	Lat	Dep.	D	Lat.	Dep.
1	00.9	00.4	61	55.1	26.1	12	109.4	51.7	18	163.6	77.4	2	217.9	0
2	01.8	00.9	62	56.0	26.5	122	110.3	52.2	182	164.5	77.8	242	218.8	103.5
3	02.7	01.3	63	57.0	26.9	123	111.2	52.6	183	165.4	78.2	243	219.7	103.9
4	03.6	01.7	64	57.9	27.4	124	112.1	53.0	184	166.3	78.7	244	220.6	104.3
5	04.5	02.1	65	58.8	27.8	125	113.0	53.4	185	167.2	79.1	245	221.5	10
6	05.4	02.6	66	59.7	28.2	126	113.9	53.9	186	168.1	79.5	246	222.4	105.2
7	06.3	03.0	67	60.6	28.6	127	114.8	54.3	187	169.0	80.0	247	223.3	105.6
8	07.2	03.4	68	61.5	29.1	128	115.7	54.7	188	169.9	80.4	248	224.2	106.0
9	08.1	03.8	69	62.4	29.5	129	116.6	55.2	189	170.9	80.8	249	225.1	106.5
10	09.0	04.3	70	63.3	29.9	130	11	55	190	171.8	81.2	250	226.0	106.9
11	09.9	05	71	64.2	30.4	131	118.4	5.0	191	17.7	81.7	2	226.9	107.3
1:2	10.8	05.	72	65.1	30.8	132	119.3	56.4	192	173.6	82.1	252	227.8	107.7
13	11.8	05.6	73	66.0	31.2	133	120.2	56.9	193	174.5	82.5	253	228.7	108.2
14	12.7	06.0	74	66.9	31.6	134	121.1	57.3	194	175.4	82.9	254	229.6	108.6
15	13.6	06.4	75	67.8	32.1	135	122.0	57.7	195	176.3	83.4	255	230.5	109.0
16	14.5	06.8	76	68.7	32.5	136	122.9	58.1	196	177.2	83.8	256	231.4	109.5
17	15.4	07.3	77	69.6	32.9	137	123.8	58.6	197	178.1	84.2	257	232.3	109.9
18	16.3	07.7	78	70.5	33.3	138	124.8	59.0	198	179.0	84.7	258	233.2	110.3
19	17.2	08.1	79	71.4	33.8	139	125.7	59.4	199	179.9	85.1	259	234.1	110.7
20	18.1	08.6	80	72.3	34.2	140	126.6	59.9	200	180.8	85.5	260	235.0	111.2
2	19.0	09.0	81	73.2	34.6	141	127.5	60.3	201	181.7	85.9	261	235.9	6
22	19.9	09.4	82	74.1	35	142	128.4	60.7	202	182.6	86.4	262	236.8	112.0
23	20.8	09.8	83	75.0	35.5	143	129.3	61.1	203	183.5	86.8	263	237.7	112.4
24	21.7	10.3	84	75.9	35.9	144	130.2	61.6	204	184.4	87.2	264	238.7	112.9
25	22.6	10.7	85	76.8	36.3	145	131.1	62.0	205	185.3	87.6	265	239.6	113.3
26	23.5	11.1	86	77.7	36.8	146	132.0	62.4	206	186.2	88.1	266	240.5	113.7
27	24.4	11.5	87	78.6	37.2	147	132.9	62.9	207	187.1	88.5	267	241.4	114.2
28	25.3	12.0	88	79.6	37.6	148	133.8	63.3	208	188.0	88.9	268	242.3	114.6
29	26.2	12.4	89	80.5	38.1	149	134.7	63.7	209	188.9	89.4	269	243.2	115.0
30	27.1	12.8	90	81.4	38.5	150	135.6	64.1	210	189.8	89.8	270	244.1	115.4
3	28.0	13.		82.3	38.9	151	136.5	64.6	211	190.7	90.2	271	24	
32	28.9	13.7	92	83.2	39.3	152	137.4	65.0	212	191.6	90.6	272	245.9	116.3
33	29.8	14.1	93	84.1	39.8	153	138.3	65.4	213	192.5	91.1	273	246.8	116.7
3	30.7	14.5	94	85.0	40.2	154	139.2	65.8	214	193.5	91.5	274	247.7	117.2
35	31.6	15.0	95	85.9	40.6	155	140.1	66.3	215	194.4	91.9	275	248.6	117.6
36	32.5	15.4	96	86.8	41.0	156	141.0	66.7	216	195.3	92.4	276	249.5	118.0
3	33.4	15.8	97	87.7	41.5	157	141.9	67.1	217	196.2	92.8	277	250.4	118.4
38	34.4	16.2	98	88.6	41.9	158	142.8	67.6	218	197.1	93.2	278	251.3	118.9
39	35.3	16.7	99	89.5	42.3	159	143.7	68.0	219	198.0	93.6	279	252.2	119.3
40	36.2	17.1	100	90.4	42.8	160	144.6	68.4	220	198.9	94.1	280	253.1	119.7
4	37.1	17.5	101	91.3	43.2	161	145.5	68.8	221	199.8	94.5	281	254.0	120.1
4	38.0	18.0	102	92.2	43.6	162	146.4	69.3	222	200.7	94.9	282	254.9	120.6
43	38.9	18.4	103	93.1	44.0	163	147.4	69.7	223	201.6	95.3	283	255.8	121.0
44	39.8	18.8	104	94.0	44.5	164	148.3	70.1	224	202.5	95.8	284	256.7	121.4
45	40.7	19.2	105	94.9	44.9	165	149.2	70.5	225	203.4	96.2	285	257.6	121.9
46	41.6	19.7	106	95.8	45.3	166	150.1	71.0	226	204.3	96.6	286	258.5	122.3
47	42.5	20.1	107	96.7	45.7	167	151.0	71.4	227	205.2	97.1	287	259.4	122.7
48	43.4	20.5	108	97.6	46.2	168	151.9	71.8	228	206.1	97.5	288	260.3	123.1
49	44.3	21.0	109	98.5	46.6	169	152.8	72.3	229	207.0	97.9	289	261.3	123.6
50	45.2	21.4	110	99.4	47.0	170	153.7	72.7	230	2079	98.3	290	262.2	124.0
51	46.1	21.8	111	100.3	47.5	171	154.6	73.1	231	208.8	98.8	291	263.1	124.4
52	47.0	22.2	112	101.2	47.9	172	155.5	73.5	232	209.7	99.2	292	264.0	124.8
53	47.9	22.7	113	102.2	48.3	173	156.4	74.0	233	210.6	99.6	293	264.9	125.3
54	48.8	23.1	114	103.1	48.7	174	157.3	74.4	234	211.5	100.0	294	265.8	125.7
55	49.7	23.5	115	104.0	49.2	175	158.2	74.8	235	212.4	100.5	295	266.7	126
56	50.6	23.9	116	104.9	49.6	176	159.1	75.2	236	213.3	100.9	296	267.6	126.6
57	51.5	24.4	117	105.8	50.0	177	160.0	75.7	237	214.2	101.3	297	268.5	127.0
58	52.4	24.8	118	106.7	50.5	178	160.9	76.1	238	215.1	101.8	298	269.4	127.4
59	53.3	25.2	119	107.6	50.9	179	161.8	76.5	239	216.1	102.2	299	270.3	127.8
60	54.2	25.7	120	108.5	51.3	180	162.7	77.0	240	217.0	102.6	300	271.2	128.3
Dist.	Dep.	Lat.												
North Eastb. East East. South East b. East f East. [For 5! Pis.] North Weat b. West f West. South Weat b. West f Wert.														

North North East \ddagger East. North Nou th West \ddagger West. South South East \ddagger East. South South West \ddagger West.

st.	Lat	Dep.	Dist.		Dep.	D		Dep.	Di	Lat.	Dep.	Dis	Lat.	Dep.
1	00.	00.5	61	53.8	28.8	121	106.7	57.0	1	159.6	85.3	24	212.5	113.6
2	01.8	00.9	62	54.7	29	122	107.6	57.5	82	100.5	85.8	242	213.4	
3	02.6	01.4	63	55	29.7	123	108.	58.0	183	161.4	86.3	24	214.3	114.5
4	03.5	01.9	64	56.4	30.2	124	109.4	58.5	184	162.3	86.7	244	215.2	115.0
5	04	02.4	65	. 3	30.6	125	110.2	58.9	185	163.2	87.2	245	216.1	115
6	05.		66	58.2	31.1	6	111.	59.4	186	164.0	87.7	6	217.0	116.0
7	06.2	03.3	67	59.1	31.6	127	112.0	59.9	187	164.9	88.2	24	21	116.4
	07.1	03.8	68	. 0	32.	128	112.9	60.3	88	165.8	88.6		1	116.9
9	07.9	04.2	69	60.9	32.5	9	113.	60.	189	16.7	89.1	249	219.6	. 4
10	08.8	04	70	61.7	33.0	1:30	114.6	61	190	167.6	89.6	250	22	17.8
	09.7	05.2	71	62.6	33.5								221.4	
12	10.6	05.	72	63.5	33.9			62.2	92	16	0.5	252	222.2	118.8
13	11.5	O.	73			133	118	62.7	193	170.2	91.0	,	22	
1	12.3	06.	74	65.3	3	13	118.2	63.2	194	171.1	91.5	25	.	119.7
15	13.2	07.1	75	6.1	35.4	135	119.1	63	195	172.0	91.9	255	4.9	. 2
16	14.1	07	76	67.0	35	13	120.8	64.1	196	172.9	2.4		5.8	
17	15.0	08.0	77	67.9	36.3	13	120.8	64.6	197	173.7	. 9	25	226.7	121.1
18	15.9	08.5	78	. 8	36.		12	65.1		.	. 3	258	227.5	1.6
19	16		79	69.7	37.2	13	12	65.5		175.5	8	5	228.4	1
20	17	,	80	70.6		1	12	66.0	200	176.4	3	260	229.3	6
2			81	71.4				66.5	20					
22	19.4	10.4	8:	72	38	142	12	66.	202	178	5.2	26	23	. 5
23	20.3	10.8	83	73.2	39.1		126.	67.4	203	179	5.7	263	23	0
24	21.2	11.3	84	74.	39.6				204	179	96.2	264	23	124.4
25	22.0	11.8	85	75.0	40.1	145	127.9	68.4	205	180.8	96.6	265	233.7	. 9
26	22.9	12.3	86	75.8	40.5	146		68.8	206	181.	7.1	266	234.6	5.4
27	23.8	12.7	8	76.7	41.0		129.	69.3	207	182.	7.6	267	235.5	
28	24.7	13.2	88		41.5	14	130.5	69.8	208	18	98.1	268	236	. 3
29	25.6	13.7	89		42.0	149	131.4	70.2	209	18	. 5		. 2	6.8
30	26.5		90		42	15		70						
31	27			80.3			133.2	71.2	211		9.5		2	
32	28.2	15	92	81.1	48.4	152		71	2	18	9	27	23	128.2
	29.1	15.6	93	82.0	43.8			72	213	18	100.4	27	240.	8.7
	30.0	16.0	94	82.9	44.	15		72.6	214	188.	100.9	274	241.6	129.2
	30.9	16.5	95	83.8	44.	155	136.	73.1	215		101.4	27	242.	. 6
36	31.7	17.0	96	84.7	45.		137.	73.5	216	190.	101.	276	24.3	0.1
37	32.6	17.4	97	85.5	45.7	15	138.	74.0	217	191.4	102.	277	244	130.6
38	33.5	17.9	98	86.4	46.2	158	139.3	74.5	218	192	102.	278	245	131.0
3	34.4	18.4	99	87.3			140.2	75.0	219	193.	103.2	279	246	. 5
40	35	18.9	100	88.2			141.1	75.4	220	194.0	103	280	246.9	0
4	36.2						14				104.2		24	. 5
42	37.0	19.8	102	90.0	48.1	162	142.9	76	222	195.8	104.	28	248	
43	37.9	20.3		90.8	48.6			76.8		196.7	105	283	249	. 4
44	38.8	20.7	104	91.7	49.0	164	144	77.3	224	197.6	105.	284	250.5	133.9
45	39.7	21.2	105	92.6	49.5	65	145.5	77.8	22	198	106.	285	251.3	4.3
	40.6	21.7	106	93.5	50.0		146.4	78.3		199.3	106.5	286	252.2	34.8
47	41.5	22.2	107	94.4	50.4		147.3	78.7	227	200.2	107.0	287	253	135.3
48	42.3	22.6	108	95.2	50.9	(i8	148.2	79.2	228	201.1	107.5	288	254.0	35.8
4.	43.2	2:	109	6.1	51.4		149.0	79.7	9	202.0	107.9	289	254.9	136.2
50	44	2	110	97.0	51.9	170	149.9	80.1	23	202.8	108.4	290	255.8	7
	45.0	24					15	80.6		. 7	9		256.6	. 2
	45.9	24.5	112	98.	52	72	15	81.1	232	204.	09.4	23	.	137.6
	46.7	25.0	113		.	173	152.6	81.6	233	205.5	109.8	293	258	138.1
54	47.6	25.5	114	100.5	53.7	174	153.5	82.0	23	206.4	110.	294	250	138.6
55	48.5	25.9	115	101.4	54.2	175	154.3	82.5	235	207.3	110.8	295	260	139.1
56	49.4	26.4	116	102.3	54.7	176	155.2	83.0	236	208.1	111.2	296	261.	139.5
5	50.3	26.9	117	103.2	55.2	177	156.1	83.4	237	209.0	111.7	297	261.9	140.0
58	51.2	27.3	118	104.1	55.6	178	157.0	83.9	238	209.9	112.2	298	202.	140.5
59	52.0	27.8	119	104.9	56.1	179	157.9	84.4	239	210.8	112.7	299	263.7	140.9
60	52.9	28.3	120	105.8	56.6	180	158.7	84.9	$\because 40$	211.7	113.	300	264.6	141.4
Dist.	Dep.	Lat.	Dist.	Dep.	Lat.	Dist. 1	Dep.	Lat.	Dist.	Dep.	Lat.	Dist.	Dep.	Lat.
Noreh East b. East East. South East b. East East [For Bf Pts.] North Wett b. Wast + West. South West b. West f West.														

nist.	Lat.	Dep.	Dist.	Lat.	Dep.									
1	00.9	00.5	,	52.3	31.4	121	103.8	62.2	181	155.2	93.1	241	206.7	9
2	01.7	01.0	62	53.2	31.9	122	104.6	62.7	182	156.1	93.6	242	207.6	124.4
3	02.6	01.5	63	54.0	32.4	123	105.5	63.2	183	157.0	94.1	243	208.4	124.9
4	03.4	02.1	64	54.9	3̈2.9	124	106.4	63.7	184	157.8	94.6	244	209.3	125.4
5	04.3	02.6	65	55.8	33.4	125	107.2	64.3	185	158.7	95.1	245	210.1	126.0
6	05.1	03.1	66	56.6	33.9	126	108.1	64.8	186	159.5	95.6	246	211.0	126.5
7	06.0	03.6	67	57.5	34.4	127	108.9	65.3	187	160.4	96.1	247	211.9	127.0
8	06.9	04.1	68	58.3	35.0	128	109.8	65.8	188	161.3	96.7	248	212.7	127.5
9	07.7	04.6	69	59.2	35.5	129	110.6	66.3	189	162.1	97.2	249	213.6	128.0
10	08.6	05.1	70	60.0	36.0	130	111.5	66.8	190	163.0	97.7	250	214.4	128.5
11	09.4	05.7	71	0.8	36.5	131	112.4	67.3	1	163.8	98.2	251	215.3	129.0
12	10.3	06.2	72	61.8	37.0	132	113.2	67.9	192	164.7	98.7	252	216.1	129.6
13	11.2	06.7	73	62.6	37.5	133	114.1	68.4	193	165.5	99.2	253	217.0	130.1
14	12.0	07.2	74	63.5	35.0	134	114.9	68.9	194	166.4	99.7	254	217.9	130.6
15	12.9	07.7	75	64.3	38.6	135	115.8	69.4	195	167.3	100.3	255	218.7	131.1
16	13.7	08.2	76	65.2	39.1	136	116.7	69.9	196	168.1	100.8	256	219.6	131.6
17	14.6	08.7	77	66.0	39.6	137	117.5	70.4	197	169.0	101.3	257	220.4	132.1
18	15.4	09.3	78	66.9	40.1	138	118.4	70.9	198	169.8	101.8	258	221.3	132.6
19	16.3	09.8	79	67.8	40.6	139	119.2	71.5	199	170.7	102.3	259	222.2	133.2
≥ 0	17.2	10.3	S0	68.6	41.1	140	120.1	72.0	200	171.5	102.8	260	223.0	133.7
2	18.0	10.8	8	69.5	41.6	141	120.9	72.5	201	172.4	103.3	261	223.9	134.2
22	18.9	11.3	82	70.3	42.2	142	121.8	73.0	202	173.3	103.8	262	224.7	134.7
23	19.7	11.8	83	71.2	42.7	143	122.7	73.5	203	174.1	104.4	263	225.6	135.2
24	20.6	12.3	84	72.0	43.2	144	123.5	74.0	204	175.0	104.9	264	226.4	135.7
25	21.4	12.9	85	72.9	43.7	145	124.4	74.5	205	175.8	105.4	265	227.3	136.2
26	22.3	13.4	86	73.8	44.2	146	125.2	75.1	206	176.7	105.9	266	228.2	136.8
27	23.2	13.9	87	74.6	44.7	147	126.1	75.6	207	177.5	106.4	267	229.0	137.3
28	24.0	14.4	88	75.5	45.2	148	126.9	76.1	208	178.4	106.9	268	229.9	137.8
29	24.9	14.9	89	76.3	45.8	149	127.8	76.6	209	179.3	107.4	269	230.7	138.3
30	25.7	15.4	90	77.2	46.3	150	128.7	77.1	210	180.1	108.0	270	231.6	138.8
31	26.6	15.9	91	7.1	46.8	151	129.5	77.6	211	181.0	108.5	271	232.4	139.3
32	27.4	16.5	92	78.9	47.3	152	130.4	78.1	212	181.8	109.0	272	233.3	139.8
33	28.3	17.0	93	79.8	47.8	153	131.2	78.7	213	182.7	109.5	273	234.2	140.4
34	29.2	17.5	94	80.6	48.3	154	132.1	79.2	214	183.6	110.0	274	235.0	140.9
35	30.0	18.0	95	81.5	48.8	155	132.9	79.7	215	184.4	110.5	275	235.9	141.4
36	30.9	18.5	96	82.3	49.4	156	133.8	80.2	216	185.3	111.0	276	236.7	141.9
37	31.7	19.0	97	83.2	49.9	157	134.7	80.7	217	186.1	111.6	277	237.6	142.4
38	32.6	19.5	98	84.1	50.4	158	135.5	81.2	218	187.0	112.1	278	238.4	142.9
39	33.5	20.1	99	84.9	50.9	159	136.4	81.7	219	187.8	112.6	279	239.3	143.4
40	34.3	20.6	100	85.8	51.4	160	137.2	82.3	220	188.7	113.1	280	240.2	143.9
41	35.2	21.1	101	86.6	51.9	161	138.1	82.8	221	90.6	113.6	281	241.0	144.5
42	36.0	21.6	102	87.5	52.4	162	139.0	83.3	222	190.4	114.1	282	241.9	145.0
43	36.9	22.1	103	88.3	53.0	163	139.8	83.8	223	191.3	114.6	283	242.7	145.5
44	37.7	22.6	104	89.2	53.5	164	140.7	84.3	224	192.1	115.2	284	243.6	146.0
45	38.6	23.1	105	90.1	54.0	165	141.5	84.8	225	193.0	115.7	285	244.5	146.5
46	39.5	23.6	106	90.9	54.5	166	142.4	85.3	226	193.8	116.2	286	245.3	147.0
47	40.3	24.2	107	91.8	55.0	167	143.2	85.9	227	194.7	116.7	287	246.2	147.5
48	41.2	24.7	108	92.6	55.5	168	144.1	86.4	228	195.6	117.2	288	247.0	148.1
49	42.0	25.2	109	93.5	56.0	169	145.0	86.9	229	196.4	117.7	289	247.9	148.6
50	42.9	25.7	110	94.4	56.6	170	145.8	87.4	230	197.3	118.2	290	248.7	149.1
51	43.7	26.2	111	95.2	57.1	171	146.7	87.9	231	198.1	118.8	291	249.6	149.6
52	44.6	26.7	112	96.1	57.6	172	147.5	88.4	232	199.0	119.3	292	250.5	150.1
53	45.5	27.2	113	96.9	58.1	173	148.4	88.9	233	199.9	119.8	293	251.3	150.6
54	46.3	27.8	114	97.8	58.6	174	149.2	89.5	234	200.7	120.3	294	252.2	151.1
55	47.2	28.3	115	98.6	59.1	175	150.1	90.0	235	201.6	120.8	295	253.0	151.7
56	48.0	28.8	116	99.5	59.6	176	151.0	90.5	236	202.4	121.3	296	253.9	152.2
57	48.9	29.3	117	100.4	60.2	177	151.8	91.0	237	203.3	121.8	297	254.7	152.7
58	49.7	29.8	118	101.2	60.7	178	152.7	91.5	238	204.1	122.4	298	255.6	153.2
59	50.6	30.3	119	102.1	61.2	179	153.5	92.0	239	205.0	122.9	299	256.5	153.7
60	51.5	30.8	120	102.9	61.7	180	154.4	92.5	240	205.9	123.4	300	257.3	154.2
Dist.	Dep.	Lat.												
North	-p	Fast	Dist.	Dep.										

Dist.	Lat.	Dep.	Dist.	Lat.	Dep.	Dist.	Lat.	Dep.	Dist	Lat.	Dep.	Dist.	Lat.	Dep.
1	00.	00	61	49.0	36.3	121	97.2	72.1	181	145.4	8	2		143.6
2	01.6	01.2	62	49.8	36.9	122	98.0	72.7	182	14	105.4	242	194.4	144.2
3	02.4	01.8	63	50.6	37.5	123	98.8	73.3	183	147.0	109.0	243	195.2	144.8
4	03.2	02.4	64	51.4	38.1	124	99.6	73.9	184	147.8	109.8	244	196.0	145.4
5	04.0	03.0	65	52.2	38.7	125	100.4	\%4.5	185	148.6	110.2	245	196.8	145.9
6	04.8	03.6	66	53.0	39.3	126	101.2	75.1	186	149.4	110.8	246	197.6	146.5
T	05.6	04.2	67	53.8	39.9	127	102.0	75.7	187	150.2	111.4	247	198.4	147.1
8	06.4	04.8	68	54.6	40.5	128	102.8	76.2	188	151.0	112.0	248	199.2	147.7
-	07.2	05.4	69	55.4	41.1	129	103.6	76.8	189	151.8	112.6	249	200.0	148.3
10	08.0	06.0	70	56.2	41.7	130	104.4	77.4	190	152.6	113.2	250	200.8	. 9
11	08.8	06.6	71	57.0	42.3	13	105.2	78.0	191	153.4	113.8	,	201.6	149.5
12	04.6	07.1	72	57.8	42.9	132	106.0	78.6	192	154.2	114.4	252	202.4	150.1
13	10.4	07.7	73	58.6	43.5	13	106.8	79.2	193	155.0	115.0	253	203.2	150.7
14	11.2	08.3	74	59.4	44.1	134	107.6	79.8	194	155.8	115.6	254	204.0	151.3
15	12.0	08.9	75	60.2	44.7	135	108.4	80.4	195	156.6	116.2	255	204.8	151.9
16	12.9	09.5	76	61.0	45.3	13	109.2	81.0	196	157.4	116.8	256	205.6	152.5
17	13.7	10.1	78	61.8	45.9	137	110.0	81.6	197	158.2	117.4	257	206.4	155.1
18	14.5	10.7	78	62.7	46.5	138	110.8	822	198	159.0	117.9	258	207.2	153.7
19	15.3	11.3	79	63.5	47.1	139	111.6	82.8	199	159.8	118.5	259	208.0	154.3
20	16.1	11.9	80	64.3	47.7	14	112.4	83.4	20	160.6	119.1	260	208.8	154.9
21	16.9	12.5	81	65.1	48.3		113.3	84.0	1	4	119.7	261		155.5
\because	17.7	13.1	82	65.9	48.8	14	114.	84.	202	162.2	120.3	262	210.4	156.1
\because	18.5	13.7	83	66.7	49.4	143	114.9	85.2	203	163.1	120.9	263	211.2	156.7
24	19.3	14.3	84	67.5	50.0	144	115.7	85.8	204	163.9	121.5	264	212.0	157.3
25	20.i	14.9	85	68.3	50.6	145	116.5	86.	205	164.7	122.1	265	212.8	157.9
2	$\because 0.9$	15.5	86	69.1	51.2	146	117.3	87.0	206	165.5	122.7	266	213.7	158.5
2	21.7	16.1	87	69.9	51.8	147	118.1	87.6	207	166.3	123.3	267	214.5	159.1
2	$\because 2.5$	16.7	88	70.7	52.4	148	118.9	88.2	208	167.1	123.9	268	215.3	159.6
\because	23.3	17.3	89	71.5	53.0	149	119.7	88.8	209	167.9	124.5	269	216.1	160.2
30	$\stackrel{24}{ }$	17.9	90	72.3	53.6	150	120.5	S9.4	210	168.7	125.1	270	216.9	160.8
31	24.9	18.5	91	73.1	54.		121.3	30.0	21	169.5	125.7	27	217.7	161.4
3	25.7	19.1	92	73.9	54.8	152	12.1	90.5	212	170.3	126.3	272	218.5	162.0
33	26.5	19.7	93	74.7	55.4	153	122.9	91.1	213	171.1	126.9	273	219.3	162.6
3	27.3	20.3	94	75.5	56.0	154	123.7	91.7	214	171.9	127.5	274	220.1	163.2
35	28.1	20.8	95	76.3	56.6	155	124.5	92.3	215	172.7	128.1	275	220.9	163.8
36	28.9	21.4	96	77.1	57.2	156	125.3	92.9	216	173.5	128.7	276	221.7	164.4
37	29.7	22.0	97	77.9	57.8	157	126.1	93.5	217	174.3	129.3	277	222.5	165.0
38	30.5	22.6	98	78.7	58.4	158	126.9	94.1	218	175.1	129.9	278	223.3	165.6
39	31.3	23.2	99	79.5	59.0	159	127.7	94.7	219	175.9	130.5	279	224.1	166.2
40	32.1	23.8	100	80.3	59.6	160	128.5	95.3	220	176.7	131.1	280	224.9	166.8
41	32.9	24.		1.	60.		120.3	5	221	177.5	131.6	281	225.7	167.4
42	$\because 33.7$	25.0	102	81.9	60.8	162	130.1	96.5	222	178.3	132.2	282	226.5	168.0
43	34.5	25.5	103	82.7	61.4	163	130.9	97.1	223	179.1	132.8	283	227.3	168.6
44	35.3	26.2	104	83.5	62.0	164	131.7	97.7	224	179.9	133.4	284	228.1	169.2
45	36.1	26.8	105	84.3	62.5	165	132.5	98.3	225	180.7	134.0	285	228.9	169.8
46	36.9	27.4	106	85.1	63.1	166	133.3	98.9	226	181.5	134.6	286	229.7	170.4
47	37.8	28.0	107	85.9	63.7	167	134.1	49.5	227	182.3	135.2	287	230.5	171.0
48	38.6	28.6	108	S6.7	64.3	168	134.9	100.1	228	183.1	135.8	288	231.3	171.6
49	39.4	29.2	109	S7.5	64.9	169	135.7	100.\%	229	183.9	136.4	289	232.1	172.2
50	40.2	39.8	110	88.4	65.	170	136.5	101.3	230	184.7	137.0	290	232.9	172.8
51	41.0	30.4	111	89.2	66.1	171	137.3	101.9	231	185.5	137.6	291	233.7	173.3
52	41.8	31.0	112	90.0	66.7	172	138.2	102.5	232	186.3	138.2	292	234.5	173.9
53	42.6	31.6	113	90.8	67.3	173	139.0	103.1	233	187.1	138.8	293	235.3	174.5
54	43.4	32.2	114	91.6	67.9	174	139.8	103.7	234	188.0	139.4	294	236.1	175.1
55	44.2	32.8	115	92.4	68.5	175	140.6	104.2	235	188.8	140.0	295	236.9	175.7
56	45.0	33.4	116	93.2	69.1	176	141.4	104.8	236	189.6	140.6	296	237.7	176.3
57	45.8	34.0	117	94.0	69.7	177	142.2	105.4	237	190.4	141.2	297	238.6	176.9
58	46.6	34.6	118	94.8	70.3	178	143.0	106.0	238	191.2	141.8	298	239.4	177.5
59	47.4	35.1	119	95.6	\% 0.9	179	143.5	106.6	239	192.0	142.4	299	240.2	178.1
60	48.2	35.	120	96.4	71.5	180	144.6	107.2	240	192.8	143.0	300	241.0	178.7
Dist.	t. Dep.	Lat.	Dist.	Dep.	Lat,	Dist.	Dep.	Lat.	Dist.	Dep.	Lat.	Dist.	Dep.	Lat.
North Esat f Fist.				South East + East			[For 4 P Pts.]		North Weet West.			south West		

14 TABLE I.-DIFFERENCE OF LATITUDE AND DEPARTURE FOR $3 \frac{1}{2}$ POINTS.
North East $\frac{1}{2}$ North. North West $\frac{1}{3}$ North. South East $\frac{1}{2}$ South. South West 4 South.

Dist.	Lat.	Dep.	Dist.	Lat.	Dep.	Dist.	Lat	Dep.	Dist.	Lat.	Dep.	Dist.	Lat.	Dep.
1	00.8	00.6	6	47.2	38.7	121	93.	76.8	181	139.9	114.8	241	186.3	152.9
2	01.5	01.3	62	47.9	39.3	122	94.3	77.4	182	140.7	115.5	242	187.1	153.5
3	02.3	01.9	63	48.7	40.0	123	95.1	78.0	183	141.5	116.1	243	187.8	154.2
4	03.1	02.5	64	49.5	40.6	124	95.9	78.7	184	142.2	116.7	244		154.8
5	03.9	03.2	65	50.2	41.2	125	96.6	79.3	185	143.0	117.4	245	189.4	155.4
6	04.6	03.8	66	51.0	41.9	126	97.4	79.9	186	143.8	118.0	246	190.2	156.1
7	05.4	04.4	67	51.8	42.5	127	98.2	80.6	187	144.6	118.6	247	190.9	156.7
8	06.2	05.1	68	52.6	43.1	128	98.9	81.2	188	145.3	119.3	24ε	191.7	157.3
9	07.0	05.7	69	53.3	43.8	129	99.7	81.8	189	146.1	119.9	249	192.5	158.0
10	07.7	06.3	70	54.1	44.4	130	100.5	82.5	190	146.9	120.5	250	193.3	158.6
11	08.5	07.0	71	54.9	4	131	101.3	83.1	191	14	121.2	251	194.0	159.:
12	09.3	07.6	72	55.7	45.7	132	102.0	83.7	192	148.4	121.8	252	194.8	159.9
13	10.0	08.2	73	56.4	46.3	133	102.8	84.4	193	149.2	122.4	253	195.6	160.5
14	10.8	08.9	74	57.2	46.9	134	103.6	85.0	194	150.0	123.1	254	196.3	161.1
15	11.6	09.5	75	58.0	47.6	135	104.4	85.6	195	150.7	123.7	255	197.1	161.8
16	12.4	10.2	76	58.7	48.2	136	105.1	86.3	196	151.5	124.3	256	197.9	162.4
17	13.1	10.8	77	59.5	48.8	137	105.9	86.9	197	152.3	125.0	257	198.7	163.0
18	13.9	11.4	78	60.3	49.5	138	106.7	87.5	198	153.1	125.6	258	199.4	163.7
19	14.7	12.1	79	61.1	50.1	139	107.4	88.2	199	153.8	126.2	259	200.2	164.3
20	15.5	12.7	80	61.8	50.8	140	108.2	88.8	200	154.6	126.9	260	201.0	164.9
21	16.2	13.3	81	62.6	51.	141	109.0	89.4	20	155.4	127.5	261	201.8	165.6
22	17.0	14.0	82	63.4	52.0	142	109.8	90.1	202	156.1	128.1	262	202.5	166.2
23	17.8	14.6	83	64.2	52.7	143	110.5	90.7	203	156.9	128.8	263	203.3	166.8
2	18.6	15.2	84	64.9	53.3	144	111.3	91.4	204	157.7	129.4	264	204.1	167.5
25	19.3	15.9	85	65.7	53.9	145	112.1	92.0	205	158.5	130.1	265	204.8	168.1
26	20.1	16.5	86	66.5	54.6	146	112.9	92.6	206	159.2	130.7	266	205.6	168.7
27	20.9	17.1	87	67.3	55.2	147	113.6	93.3	207	160.0	131.3	267	206.4	169.4
28	21.6	17.8	88	68.0	55.8	148	114.4	93.9	208	160.8	132.0	268	207.2	170.0
29	22.4	18.4	89	68.8	56.5	149	115.2	94.5	209	161.6	132.6	269	207.9	170.7
30	23.2	19.0	90	69.6	57.1	150	116.0	95.2	210	162.3	133.2	270	208.7	171.3
3	24.0	19.7	91	70.3	57.7	151	116.7	95.8	211	163.1	133.9	27	209.5	171.9
32	24.7	20.3	92	71.1	58.4	152	117.5	96.4	212	163.9	134.5	272	210.3	172.6
33	25.5	20.9	93	71.9	59.0	153	118.3	97.1	213	164.7	135.1	273	211.0	173.2
34	26.3	21.6	94	72.7	59.6	154	119.0	97.7	214	165.4	135.8	274	211.8	173.8
35	27.1	22.2	95	73.4	60.3	155	119.8	98.3	215	166.2	136.4	275	212.6	174.5
36	27.8	22.8	96	74.2	60.9	156	120.6	99.0	216	167.0	137.0	276	213.4	175.1
37	28.6	23.5	97	75.0	61.5	157	121.4	99.6	217	167.7	137.7	27%	214.1	175.7
38	29.4	24.1	98	75.8	62.2	158	122.1	100.2	218	168.5	138.3	278	214.9	176.1
39	30.1	24.7	99	76.5	62.8	159	122.9	100.9	219	169.3	138.9	279	215.7	177.0
40	30.9	25.4	100	77.3	63.4	160	123.7	101.	220	170.1	139.6	280	216.4	177.6
41	31.7	26.0	101	78.1	64.1	161	124.5	102.1	221	170.8	140.2	281	217.2	178.3
42	32.5	26.6	102	78.8	64.7	162	125.2	102.8	222	171.6	140.8	282	218.0	178.9
43	33.2	27.3	103	79.6	65.3	163	126.0	103.4	223	172.4	141.5	283	218.8	179.5
44	34.0	27.9	104	80.4	66.0	164	126.8	104.0	224	173.2	142.1	284	219.5	180.2
45	34.8	28.5	105	81.2	66.6	165	127.5	104.7	225	173.9	142.7	285	220.3	180.8
46	35.6	29.2	106	81.9	67.2	166	128.3	105.3	226	174.7	143.4	286	221.1	181.4
47	36.3	29.8	107	82.7	67.9	167	129.1	105.9	227	175.5	144.0	287	221.9	182.1
48	37.1	30.5	108	83.5	68.5	168	129.9	106.6	228	176.2	144.6	288	222.6	182.7
49	37.9	31.1	109	84.3	69.1	169	130.6	107.2	229	177.0	145.3	289	1223.4	183.3
50	38.7	31.7	110	85.0	69.8	170	131.4	107.8	230	177.8	145.9	290	224.2	184.0
51	39.4	32.4	111	85.8	70.4	171	132.2	108.5	231	178.6	146.5	291	224.9	184.6
52	40.2	33.0	112	86.6	71.	172	133.0	109.1	232	179.3	147.2	292	225.7	185.2
53	41.0	33.6	113	87.4	71.7	173	133.7	109.8	233	180.1	147.8	293	226.5	185.9
54	41.7	34.3	114	88.1	72.3	174	134.5	110.4	234	180.9	148.4	294	227.3	186.5
55	42.5	34.9	115	88.9	73.0	175	135.3	111.0	235	181.7	149.1	295	228.0	187.1
56	43.3	35.5	116	89.7	73.6	176	136.0	111.7	236	182.4	149.7	296	228.8	187.8
57	44.1	36.2	117	90.4	74.2	177	136.8	112.3	237	183.2	150.4	297	229.6	188.4
58	44.8	36.8	118	91.2	74.9	178	137.6	112.9	238	184.0	151.0	298	230.4	184.0
59	45.6	37.4	119	92.0	75.5	179	138.4	113.6	239	184.7	151.6	299	231.1	189.7
60	46.4	38.1	120	92.8	76.1	180	139.1	114.2	$\because 40$	185.5	152.3	300	231.9	190.3
Dist.	Dep.	Lat.												
North East East.				South East + East.			[For $4+$ Pts.]		North West West.					

TABLE I.-DIFFERENOE OF LATITUDE AND DEPARTURE FOR 3! POINTS. 15
North East \& North. North West \ddagger North. South East 4 South. South Wes 4 South.

Dist.	Lat.	Dep.	. 1	Lat,	Dep.									
1	00.7	00.7	61	45.2	41.0	21	89.7	81.3	181	134.1	121.6	241	178.6	161.8
2	01.5	01.3	62	45.9	41.6	122	90.4	81.9	182	134.9	122.2	242	179.3	162.5
3	02.2	02.0	63	46.7	42.3	123	91.1	82.6	183	135.6	122.9	243	180.1	163.2
4	03.0	02.7	64	47.4	43.0	124	91.9	833	184	136.3	123.6	244	180.8	163.9
5	03.7	03.4	65	48.2	43.7	125	92.6	83.9	185	$13 \% .1$	124.2	245	181.5	164.5
6	04.4	04.0	66	48.9	44.3	126	93.4	84.6	186	137.8	124.9	246	182.3	165.2
7	05.2	04.7	67	49.6	45.0	127	94.1	85.3	187	138.6	125.6	247	183.0	9
8	05.9	05.4	68	50.4	45.7	128	94.8	86.0	188	139.3	126.3	248	183.8	166.5
4	06.7	06.0	69	51.1	46.3	129	95.6	86.6	189	140.0	126.9	249	184.5	167.2
10	07.4	06	70	51	47	130	96	87.3	190	140.8	127.6	2	185.2	9
11	08	07.4	71	52.6	47.7	131	7.1	88.0	191	1	128.3	251	186.0	6
12	08.9	08.1	76	53.3	48.4	132	97.8	88.6	192	142.3	128.	252	186.7	169.2
13	09.6	08.7	73	54.1	49.0	133	98.5	89.3	193	143.0	129.6	253	187.5	169.9
14	10.4	09.4	74	54.8	49.7	13	99.3	90.0	19	143.7	130.3	25	188.2	170.6
15	11.1	10.1	75	55.6	50.4	135	100.0	90.7	195	144.5	131.0	25	188.9	171.2
16	11.9	10.7	76	56.3	51.0	136	100.8	91.3	196	145.2	131.6	256	189.7	171.9
17	12.6	11.4	78	57.1	51.7	13	101.5	92.0	197	146.0	132.3	257	190.4	172.6
18	13.3	12.1	78	57.8	52.4	138	102.3	92.7	198	146.7	133.0	258	191.2	173.3
19	14.	12.8	79	58.5	53.1	139	103.0	93.3	199	147.4	133.6	259	191.9	173.9
20	14.8	13.4	80	59.3	53.7	140	103.7	94.0	200	148.2	134.3	260	192.6	174.6
21	15.6	14.	81	60.0	54.	141	104.5	4.7	201	148.9	135.0	2	193.4	. 3
22	16.3	14.8	82	60.8	55.1	142	105.2	95.4	202	149.7	135.7	262	194.1	175.9
23	17.0	15.4	$8:$	61.5	55.7	14	106.0	96.0	203	150.4	136.3	263	194.9	176.6
24	17.8	16.1	84	62.2	56.4	144	106.7	96.7	204	151.2	137.0	264	195.6	177.3
25	18.5	16.8	85	63.0	57.1	145	107.4	97.4	205	151.9	137.7	265	196.4	178.0
26	19.3	17.5	86	63.7	57.8	146	108.2	98.0	206	152.6	138.3	266	197.1	178.6
27	20.0	18.1	87	64.5	58.4	147	108.9	98.7	207	153.4	139.0	267	197.8	179.3
28	20.7	18.8	88	65.2	59.1	148	109.7	99.4	208	154.1	139.7	268	198.6	180.0
29	21.5	19.5	89	65.9	59.8	149	110.4	100.1	209	154.9	140.4	269	199.3	180.6
30	22.2	20.1	90	66.7	60.4	150	111.1	100.7	210	155.6	141.0	270	200.1	181.3
31	23.0	20.		67.4	61.1	151	111.9	101.4	211	15	141.7	27	20	182.0
32	23.7	21.5	92	68.2	61.8	152	112.6	102.1	212	157.	142.4	272	201.5	182.7
33	24.5	22.2	93	68.9	62.5	153	113.4	102.7	213	157.8	143.0	273	202.3	183.3
34	25.2	22.8	94	69.6	63.1	154	114.1	103.4	214	158.6	143.7	274	203.0	184.0
35	25.9	23.5	95	70.4	63.8	155	114.8	104.1	215	159.3	144.4	275	203.8	184.7
36	26.7	24.2	96	71.1	64.5	156	115.6	104.8	216	160.0	145.1	276	204.5	185.4
37	27.4	24.8	97	71.9	65.1	157	116.3	105.4	217	160.8	145.7	277	205.2	186.0
38	28.2	25.5	98	72.6	65.8	158	117.1	106.1	218	161.5	146.4	278	206.0	186.7
39	28.9	26.2	99	73.4	66.5	159	117.8	106.8	219	162.3	147.1	279	206.7	187.4
40	29.6	26.9	100	74.1	67.2	160	118.6	107.4	220	163.0	147.7	280	207.5	188.0
41	30.4	27.5	101	74.8	67.8	161	119.3	108.1	221	163.8	148.4	281	208.2	188.7
42	31.1	28.2	102	75.6	68.5	162	120.0	108.8	222	164.5	149.1	282	208.9	189.4
43	31.9	28.9	103	76.3	69.2	163	120.8	109.5	223	165.2	149.8	283	209.7	190.1
44	32.6	29.5	104	77.1	69.8	164	121.5	110.1	224	166.0	150.4	284	210.4	190.7
45	33.3	30.2	105	77.8	70.5	165	122.3	110.8	225	166.7	151.1	285	211.2	191.4
46	34.1	30.9	106	78.5	71.2	166	123.0	111.5	226	167.5	151.8	286	211.9	192.1
47	34.8	31.6	107	79.3	71.9	167	123.7	112.2	227	168.2	152.4	287	212.7	192.7
48	35.6	32.2	108	80.0	72.5	168	124.5	112.8	228	168.9	153.1	288	213.4	193.4
49	36.3	32.9	109	80.8	73.2	169	125.2	113.5	229	169.7	153.8	289	214.1	194.1
50	37.0	33.6	110	81.5	73.9	170	126.0	114.2	230	170.4	154.5	290	214.9	194.8
5	37.8	34.2	111	82.2	74.5	171	126.7	114.8	231	171.2	155.1	291	215.6	195.4
52	38.5	34.9	112	83.0	75.2	172	127.4	115.5	232	171.9	155.8	292	216.4	196.1
53	39.3	35.6	113	83.7	75.9	173	128.2	116.2	233	172.6	156.5	293	217.1	196.8
54	40.0	36.3	114	84.5	76.6	174	128.9	116.9	234	173.4	157.1	294	217.8	197.4
55	40.8	36.9	115	85.2	77.2	175	129.7	117.5	235	174.1	157.8	295	218.6	198.1
56	41.5	37.6	116	86.0	77.9	176	130.4	118.2	236	174.9	158.5	296	219.3	198.8
57	42.2	38.3	117	86.7	78.6	177	131.1	118.9	237	175.6	159.2	297	220.1	199.5
58	43.0	39.0	118	87.4	79.2	178	131.9	119.5	238	176.3	159.8	298	220.8	200.1
59	43.7	39.6	119	88.2	79.9	179	132.6	120.2	239	177.1	160.5	299	221.5	200.8
60	44.5	40.3	120	88.9	80.6	180	133.4	120.9	240	177.8	161.2	300	222.3	201.5
Dist.	t. Dep.	Lat.	Dist.	Dep.	Lat.									
North East + East.				South East 4 East.			[For 4t Pts.]		North West ${ }^{\text {d West. }}$			South West 4 Weest.		

16	TABLE I. North East.			North West.					South East.	ast.	South West.			
Dist.	Lat.	Dep.	Dist.	Lat.	D									
10	00.7	00.7	61	43.1	43.1	121	85.6	85.6	181	128.0	128.0	241	170.4	170
20	01.4	01.4	62	43.8	43.8	122	86.3	86.3	182	128.7	128.7	242	171.1	171.1
30	02.1	02.1	63	44.5	44.5	123	87.0	87.0	183	129.4	129.4	243	171.8	1718
40	02.8	02.8	64	45.3	45.3	124	87.7	87.7	184	130.1	130.1	244	172.5	172.5
50	03.5	03.5	65	46.0	46.0	125	88.4	88.4	185	130.8	130.8	245	173.2	173.2
6	04.2	04.2	66	46.7	46.7	126	89.1	89.1	186	131.5	131.5	246	173.9	173.9
0	04.9	04.9	67	47.4	47.4	127	89.8	89.8	187	132.2	132.2	247	174.7	174.7
80	05.7	05.7	68	48.1	48.1	128	90.5	90.5	188	132.9	132.9	248	175.4	175.4
90	06.4	06.4	69	48.8	48.8	129	91.2	91.2	189	133.6	133.6	249	176.1	176.1
100	07.1	07.1	70	49.5	49.5	130	91.9	91.9	190	134.4	134.4	250	176.8	176.8
110	07.8	07.8	71	50.2	50.2	13	92.6	92.6	191	135.1	135.1	251	177.5	. 5
120	08.5	08.5	72	50.9	50.9	132	93.3	93.3	192	135.8	135.8	252	178.2	178.2
130	09.2	09.2	73	51.6	51.6	133	94.0	94.0	193	136.5	136.5	253	178.9	178.9
140	09.9	09.9	74	52.3	52.3	134	94.8	94.8	194	137.2	137.2	254	179.6	179.6
15	10.6	10.6	75	53.0	53.0	135	95.5	95.5	195	137.9	137.9	255	180.3	1 $1 \sim 0.3$
16	11.3	11.3	76	53.7	53.7	136	96.2	96.2	196	138.6	138.6	256	181.0	181.0
17	12.0	12.0	77	54.4	54.4	137	96.9	96.9	197	139.3	139.3	257	181.7	181.7
18	12.7	12.7	78	55.2	55.2	138	97.6	97.6	198	140.0	140.0	258	182.4	182
19	13.4	13.4	79	55.9	55.9	139	98.3	98.3	199	140.7	140.7	259	183.1	183.1
20	14.1	14.1	80	56.6	56.6	140	99.0	99.0	200	141.4	141.4	260	183.8	183.8
21	14.8	14.8	81	57.3	57.3	141	99.7	99.7	201	142.1	142.1	261	184.6	184.6
22	15.6	15.6	82	58.0	58.0	142	100.4	100.4	202	142.8	142.8	262	185.3	185.3
23	16.3	16.3	83	58.7	58.7	143	101.1	101.1	203	143.5	143.5	263	186.0	186.0
24	17.0	17.0	84	59.4	59.4	144	101.8	101.8	204	144.2	144.2	264	186.7	186.7
25	17.7	17.7	85	60.1	60.1	145	102.5	102.5	205	145.0	145.0	265	187.4	187.4
$2{ }^{\circ}$	18.4	18.4	86	60.8	60.8	146	103.2	103.2	206	145.7	145.7	266	188.1	188.1
27	19.1	19.1	87	61.5	61.5	147	103.9	103.9	207	146.4	146.4	267	188.8	188.8
28	19.8	19.8	88	62.2	62.2	148	104.7	104.7	208	147.1	147.1	268	189.5	189.5
29	20.5	20.5	89	62.9	62.9	149	105.4	105.4	209	147.8	147.8	269	190.2	190.2
30	21.2	21.2	90	63.6	63.6	150	106.1	106.1	210	148.5	148.5	270	190.9	190.9
3	21.9	21.9	91	64.3	64	151	106.8	106.8	211	149.2	149.2	271	191.6	191.6
32	22.6	22.6	92	65.1	65.1	152	107.5	107.5	212	149.9	149.9	272	192.3	192.3
3	23.3	23.3	93	65.8	65.8	153	108.2	108.2	213	150.6	150.6	273	193.0	193.0
34	24.0	24.0	94	66.5	66.5	154	108.9	108.9	214	151.3	151.3	274	193.7	193.7
35	24.7	24.7	95	67.2	67.2	155	109.6	109.6	215	152.0	152.0	275	194.5	194.5
36	25.5	25.5	96	67.9	67.9	156	110.3	110.3	216	152.7	152.7	276	195.2	195.2
37	26:2	26.2	97	68.6	68.6	157	111.0	111.0	217	153.4	153.4	277	195.9	195.9
38	26.9	26.9	98	69.3	69.3	158	111.7	111.7	218	154.1	154.1	278	196.6	196.6
39	27.6	27.6	99	70.0	70.0	159	112.4	112.4	219	154.9	154.9	279	197.3	197.3
40	28.3	28.3	100	70.7	70.7	160	113.1	113.1	220	155.6	155.6	280	198.0	198.0
41	29.0	29.0	101	71.4	71.4	161	113.8	113.8	221	156.3	156.3	281	198.7	198.7
42	29.7	29.7	102	72.1	72.1	162	114.6	114.6	222	157.0	157.0	282	199.4	199.4
43	30.4	30.4	103	72.8	72.8	163	115.3	115.3	223	157.7	157.7	283	200.1	200.1
44	31.1	31.1	104	73.5	73.5	164	116.0	116.0	224	158.4	158.4	284	200.8	200.8
45	31.8	31.8	105	74.2	74.2	165	116.7	116.7	225	159.1	159.1	285	201.5	201.5
46	32.5	32.5	106	75.0	75.0	166	117.4	117.4	226	159.8	159.8	286	202.2	202.2
47	33.2	33.2	107	75.7	75.7	167	118.1	118.1	227	160.5	160.5	287	202.9	202.9
48	33.9	33.9	108	76.4	76.4	168	118.8	118.8	228	161.2	161.2	288	203.6	203.6
49	34.6	:34.6	109	77.1	77.1	169	119.5	119.5	229	161.9	161.9	289	204.4	204.4
50	35.4	35.4	110	77.8	77.8	170	120.2	120.2	230	162.6	162.6	290	205.1	205.1
51	36.1	36.1	111	78.5	78.5	171	120.9	120.9	231	163.3	163.3	291	205.8	205.8
52	36.8	36.8	112	79.2	79.2	172	121.6	121.6	232	164.0	164.0	292	206.5	206.5
53	37.5	37.5	113	79.9	79.9	173	122.3	122.3	233	164.8	164.8	293	207.2	207.2
54	138.2	38.2	114	80.6	80.6	174	123.0	123.0	234	165.5	165.5	294	207.9	207.9
55	38.9	38.9	115	81.3	81.3	175	123.7	123.7	235	166.2	166.2	295	208.6	208.6
56	39.6	39.6	116	82.0	82.0	176	124.5	124.5	236	166.9	166.9	296	209.3	209.3
57	40.3	40.3	117	82.7	82.7	177	125.2	125.2	237	167.6	167.6	297	210.0	210.0
58	41.0	41.0	118	83.4	83.4	178	125.9	125.9	238	168.3	168.3	298	210.7	210.7
59	41.7	41.7	119	84.1	84.1	179	126.6	126.6	239	169.0	169.0	299	211.4	211.4
60	42.4	42.4	120	84.9	84.9	180	127.3	127.3	240	169.7	169.7	300	212.1	212.1
Dist.	t. Dep.	Lat.	Dist.	Dep.	Lat.	Dist.	Dep.	Lat.	Dist.	Dep.	$\frac{\text { Lat. Dist. }}{\text { South West. }}$			
North East.				North West			[For 4 Pts.]		South East.					

DIFFERENCE OF LATITUDE AND DEPARTURE FOR 1 DEGREE. $0^{\mathrm{h}} 4 \mathrm{~m}$.

Dis	Lat.	Dep.	Dist.	t.	Dep.	Dist.	Lat.	Dep.	1	Lat.	Dep.	Di	Lat.	p.
1	01.0	00.0	61	1.0	O	121	121.0	02.1	1	181.0	03.2	241	241.0	04.2
2	02.0	00.0	62	62.0	01.1	122	122.0	02.1	182	18:.0	03.2	24:	242.0	04.2
3	03.0	00.1	63	63.0	01.1	123	123.0	02.1	183	183.0	03.2	24	243.0	04.2
4	04.0	00.1	64	64.0	01.1	1:4	124.0	02.2	184	I84.0	03.2	$\because 44$	244.0	04.3
5	05.0	00.1	65	65.0	01.1	125	125.0	02.2	185	185.0	03.2	$\because 45$	245.0	04.3
6	06.0	00.1	66	66.0	01.2	126	126.0	02.2	186	186.0	03.2	246	$\because 460$	04.3
7	07.0	00.1	67	67.0	01.2	127	127.0	02.2	187	187.0	03.3	247	247.0	04.3
S	08.0	00.1	68	68.0	01.2	128	128.0	02.2	185	188.0	03.3	$\because 48$	248.0	04.3
9	09.0	00.2	69	69.0	01.2	129	129.0	02.3	189	$18: .0$	03.3	$\because 49$	249.0	04.3
10	10.0	00.2	70	70.0	01.2	1:30	130.0	02.3	190	190.0	0.3 .3	250	2.50 .0	04.4
11	11.0	00.2	71	71.0	01.2	131	131.0	02.3	191	191.0	3.3	251	25 1.0	4
12	12.0	00.2	72	72.0	01.3	132	132.0	02.3	192	192.0	03.4	2.12	$25: .0$	04.4
13	13.0	00.2	73	73.0	01.3	1:33	133.0	02.3	193	193.0	03.4	25	2.53 .0	04.4
14	14.0	00.2	74	74.0	01.3	134	134.0	02.3	194	194.0	03.4	254	254.0	04.4
15	15.0	00.3	75	75.0	01.3	135	135.0	02.4	195	195.0	03.4	$\because 55$	255.0	04.5
16	16.0	00.3	76	\%6.0	01.3	136	136.0	02.4	196	196.0	03.4	256	256.0	04.5
17	17.0	00.3	77	77.0	01.3	137	137.0	02.4	197	197.0	03.4	2.8	257.0	04.5
18	18.0	00.3	78	78.0	01.4	138	138.0	02.4	198	198.0	03.5	258	255.0	04.5
19	19.0	00.3	79	79.0	01.4	139	139.0	02.4	199	199.0	03.5	25 ¢	259.0	04.5
20	20.0	00.3	80	80.0	01.4	140	140.0	02.4	200	200.0	03.5	≥ 60	260.0	04.5
21	21.0	00.4	81	.	01.4	,	141.0	02.5	I	20	03.5	261	261.0	04.6
22	22.0	00.4	S:	82.0	01.4	142	142.0	02.5	202	202.0	03.5	262	262.0	04.6
23	23.0	00.4	S3	83.0	01.4	143	143.0	02.5	203	203.0	03.5	263	263.0	04.6
24	24.0	00.4	84	84.0	01.5	144	144.0	02.5	204	204.0	03.6	264	264.0	04.6
25	25.0	00.4	85	85.0	01.5	145	145.0	02.5	205	205.0	03.6	265	265.0	04.6
26	26.0	00.5	86	86.0	01.5	146	146.0	02.5	206	206.0	03.6	266	266.0	04.6
27	27.0	00.5	S7	87.0	01.5	147	147.0	02.6	207	207.0	03.6	267	267.0	04.7
28	28.0	00.5	88	88.0	01.5	148	148.0	02.6	208	208.0	03.6	268	268.0	04.7
29	29.0	00.5	S9	S9.0	01.6	149	149.0	02.6	209	209.0	03.6	269	269.0	04.7
30	30.0	00.5	90	90.0	01.6	150	150.0	02.6	210	210.0	03.7	270	270.0	04.7
31	31.0	00.5	91	91.0	01.6	1	151.0	02.6	211	211.0	03.7	271	271.0	04.7
32	32.0	00.6	92	92.0	01.6	152	152.0	02.7	212	212.0	03.7	272	272.0	04.7
33	33.0	00.6	93	93.0	01.6	153	153.0	02.7	213	215.0	03.7	273	273.0	04.8
34	34.0	00.6	94	94.0	01.6	154	154.0	02.7	214	214.0	03.7	274	274.0	04.8
35	35.0	00.6	95	95.0	01.7	155	155.0	02.7	215	215.0	03.8	275	275.0	04.8
36	36.0	00.6	96	96.0	01.7	156	156.0	02.7	$: 16$	216.0	03.8	276	276.0	04.8
37	37.0	00.6	97	97.0	01.7	157	157.0	02.7		217.0	03.8	277	277.0	04.8
38	38.0	00.7	98	98.0	01.7	158	158.0	02.5	218	218.0	03.8	278	278.0	04.9
39	39.0	00.7	99	99.0	01.7	159	159.0	02.8	219	219.0	03.5	279	279.0	04.9
40	40.0	00.7	100	100.0	01.7	160	160.0	02.8	220	220.0	03.8	280	280.0	04.9
41	41.0	00.7	101	101.0	01.8	161	161.0	02.8	221	221.0	03.9	281	281.0	04.9
42	42.0	00.7	102	102.0	01.8	162	162.0	02.8	222	222.0	03.9	282	282.0	04.9
43	43.0	00.8	103	103.0	01.8	163	163.0	02.8	223	223.0	03.9	283	283.0	04.9
44	44.0	00.8	104	104.0	01.8	164	164.0	02.9	224	224.0	03.9	284	284.0	05.0
45	45.0	00.8	105	105.0	01.8	165	165.0	02.9	225	225.0	03.9	285	285.0	05.0
46	46.0	00.8	106	106.0	01.8	166	166.0	02.9	226	226.0	03.9	286	286.0	05.0
47	47.0	00.8	107	107.0	01.9	167	167.0	02.9	227	227.0	04.0	287	287.0	05.0
48	48.0	00.8	108	108.0	01.9	168	168.0	02.9	$2 \cdot 8$	228.0	04.0	288	288.0	05.0
49	49.0	00.9	109	109.0	01.9	169	169.0	02.9	229	229.0	04.0	289	289.0	05.0
50	50.0	00.9	110	110.0	01.9	170	170.0	03.0	230	$\underline{230.0}$	04.0	290	290.0	05.1
51	51.0	00.9	111	111.0	01.9	171	171.0	03.0	231	231.0	04.0	291	291.0	05.1
52	52.0	00.9	112	112.0	02.0	172	172.0	03.0	232	232.0	04.0	292	292.0	05.1
53	53.0	00.9	113	113.0	02.0	173	173.0	03.0	233	233.0	04.1	293	293.0	05.1
54	54.0	00.9	114	114.0	02.0	174	174.0	03.0	234	234.0	04.1	294	294.0	05.1
55	55.0	01.0	11.5	115.0	02.0	175	175.0	03.1	235	235.0	04.1	295	295.0	05.1
56	56.0	01.0	116	116.0	02.0	176	176.0	03.1	236	286.0	04.1	296	296.0	05.2
57	57.0	01.0	117	117.0	02.0	177	177.0	03.1	237	237.0	04.1	297	297.0	052
58	58.0	01.0	118	118.0	02.1	178	178.0	03.1	235	238.0	04.2	298	298.0	05.2
59	59.0	01.0	119	119.0	02.1	179	179.0	03.1	239	$2: 39.0$	04.2	299	299.0	05.2
60	60.0	01.0	120	120.0	02.1	150	180.0	03.1	$\because 40$	240.0	04.2	300	300.0	05.2
Dist.	Dep.	Lat.	Dist.!	Dep.	Lat.									
For 89 Derrees. $5^{\text {h }} \frac{86}{\text { m }}$ m.														

DIFFERENCE OF LATITUDE AND DEPARTURE FOR 2 DEGREES.
0h 8m

Liat.	Lat.	Dep.	Dist.	La	Dep.	Dist.	Lat.	Dep.	Dist.	L	Dep.	Dist.	Lat.	Dep.
1	01.0	00.0		61.0	02.1	121	120.9	04.2	18	180.9	06.3	241	240.9	08.4
の	02.0	00.1	62	62.0	02.2	122	121.9	04.3	182	181.9	06.4	242	241.9	08.4
3	03.0	00.1	63	63.0	02.2	123	122.9	04.3	183	18	06.	243	242.9	08.5
4	04.0	00.1	6	64.0	02.2	124	123.9	04.3	184	183.9	06.4	244	243.9	08.5
5	05.0	00.2	65	65.0	02.3	125	124.9	04.4	185	184.9	06.5	245	244.9	08.6
6	06.0	00.2	6	66.0	02.3	126	125	04	186	185	06	246	245.9	08.6
7	07.0	00.2	67	67.0	02	12	126.9	04.4	18	186.	06.5	247	246.8	6
8	08.0	00.3	68	68.0	02.4	128	127.9	04.5	188	187.9	06.6	248	247.8	08.7
9	09.0	00.3	6	0	02.	129	128	04.	189	188	06	249	248.8	08.7
10	10.0	00.3	70	70.0	02.	130	129.9	04	190	189.9	06.6	250	249.8	08.7
11	11.0	0. 4	71			131	130.9	d	191	130.3	06.7	251	250.8	\%
12	12.0	00.4	72	72.0	02.5	132	131.9	04.6	192	191.9	06.7	252	251.8	08.8
13	13.0	00.5	73	73.0	02.	13	132	04.6	1	19	06	253	252.8	8
1 '4	14.0	00.5	74	74.0	02.6	134	133.9	04.7	19	193.9	06.8	254	253.8	08.9
15	15.0	00.5	75	75.0	02.6	135	134.9	04.7	195	194.9	06.8	255	254.8	08.9
16	16.0	00.6	7	76.0	02.7	136	135.9	04	19	195.9	.	6	255.8	08.9
17	17.0	00.6	7	77.0	0	1	136.9	04.8	197	196.9	06.9	257	256.8	09.0
18	18.0	00.6	78	78.0	02.7	13	137.9	04.8	198	197.9	06.9	258	257.8	09.0
19	,	00.7	79	.	02.8	1	138.9	04.9	199	198		-	258.8	09.0
20	20	00	80	80.0	02	14	13	04.9	200	199	07.0	260	259.8	09.1
	21.0	00.7			02.8							2		1
2	22.0	00.8	82	82.0	0	1	141.9	05.0	2	20	07.0	262	261.8	1
2	23.0	00.8		82.	02			05.0	2	202	07.1	263	262.8	09.2
24	24.0	00.8	8	83.9	02.9	144	143.9	05.0	204	203.9	07.1	264	263.8	09.2
25	25.0	00.9	85	84.9	03.0	1	144.9	05.1	20	204	07.2	2	264.8	09.2
2	26.0	00.9	86	85.9	03.0	14	145.9	05.1	206	205.9	07.2	266	265.8	09.3
27	27.0	00.9	87	86.9	03.0	147	146.9	05.1	207	206.9	07.2	267	${ }^{2} 66.8$	09.3
28	28.0	01.0	8	87.9	03.1	148	147.9	05.2	208	207.	07.3	268	267.8	4
29	29.0	01.0	89	88.9	03.1	149	148.9	05.2	209	208.9	07.3	269	268.8	
30	30.0	01.0	90	89.9	03.1	150	149.9	05.2	210	209.9	07.3	270	269.8	09.4
	31	01.1		90.9	0		15	05.3	211	2	4		8	5
32	32.0	01.1	92	91.9	03.	1	151.9	05	2	211.9	07.4		271.8	09.5
33	33.0	01.2	93	92.9	03.2	153	152.9	05.3	213	212.9	07.4	273	272.8	09.5
	34.0	01.2	94	93.9	03.3	154	153.9	05.	214	213.9	07.5	274	273.8	09.6
35	35.0	01.2	95	94.8	03.3	155	154.9	05.4	215	214.9	07.5	275	274.8	09.6
36	36.0	01.3	96	95.9	03.4	156	155.9	05.4	216	215.9	07.5	276	275.8	09.6
37	37.0	01.3	97	96.9	03.4	157	156.9	05.5	217	216.9	07.6	277	276.8	09.7
38	38.0	01.3	98	97.9	03.4	158	157.9	05.5	218	217.9	07.6	278	277.8	09.7
39	39.0	01.4	99	98.9	03.5	159	158.9	05.5	219	218.9	07.6	279	278.8	09.7
40	40.0	01.4	100	99.9	03.5	160	159.9	05.6	220	219.9	07.7	280	279.8	09.8
	41.0	01.4	101							220.9	07.7			
42	42.0	01.5	102	101.9	03.6	162	161.9	05.7	222	221.9	07.7	282	281.8	09.8
43	43.0	01.5	103	102.9	03.6	163	162.9	05.7	223	222.9	07.8	283	282.8	09.9
5	44.0	01.5	104	103.9	03.6	164	163.9	05.7	224	223.9	07.8	284	283.8	09.9
45	45.0	01.6	105	104.9	03.7	165	164.9	05.8	225	224.9	07.9	285	284.8	09.9
46	46.0	01.6	106	105.9	03.7	166	165.9	05.8	226	225.9	07.9	286	285.8	10.0
47	47.0	01.6	107	106.9	03.7	167	166.9	05.8	227	226.9	07.9	287	286.8	10.0
48	48.0	01.7	108	107.9	03.8	168	167.9	05.9	228	227.9	08.0	288	287.8	10.1
49	49.0	01.7	109	108.9	03.8	169	168.9	05.9	229	228.9	08.0	289	288.8	10.1
50	50.0	01.7	110	109.9	03.8	170	169.9	05.9	230	229.9	08.0	290	289.8	10.1
51	51.0		11	110.9		171	170.9	06.0	231	230.9	08.1	2	2	2
52	52.0	01.8	112	111.9	03.9	172	171.9	06.0	232	231.9	08.1	292	291.8	10.2
53	53.0	01.8	113	112.9	03.9	173	172.9	06.0	233	232.9	08.1	293	292.8	10.2
$\bigcirc 4$	54.0	01.9	114	113.9	04.0	174	173.9	06.1	234	233.9	08.2	294	293.8	10.3
55	55.0	01.9	115	114.9	04.0	175	174.9	06.1	235	234.9	08.2	295	294.8	10.3
56	56.0	02.0	116	115.9	04.0	176	175.9	06.1	236	235.9	08.2	296	295.8	10.3
57	57.0	02.0	117	116.9	04.1	177	176.9	06.2	237	236.9	08.3	297	296.8	10.4
58	58.0	02.0	118	117.9	04.1	178	177.9	06.2	238	237.9	08.3	298	297.8	10.4
59	59.0	02.1	119	118.9	04.2	179	178.9	06.2	239	238.9	08.3	299	298.8	10.4
60	60.0	02.1	120	119.9	04.2	180	179.9	06.3	240	239.9	08.4	300	299.8	10.5
Dis	Dep	Lat.	Dis	Dep.	Lat.	Dist.	Dep.	Lat.	Dist.	Dep.	Lat.	Dist.	Dep.	Lat.
For 88 Degrees.														

DIFFERENCE OF LATITUDE AND DEPARTURE FOR 3 DEGREES. $0^{\mathrm{h}} \mathbf{1 2 \mathrm { m }}$.

Dist.	Lat.	Dep.	Dist.	Lat.	Dep.	Dis	Lat.	Dep.	Dist.	Lat.	Dep.	Dist.	Lat.	Dep.
1	01.0	00.1	61	9	03.2	121	120.8	06.3	181	180.8	09.5	241	240.7	12.6
2	02.0	00.1	62	61.9	03.2	122	121.8	06.4	152	181.8	09.5	242	241.7	12.7
3	03.0	00.2	63	62.9	03.3	123	122.8	06.4	183	182.7	09.6	243	242.7	12.7
4	04.0	00.2	64	63.9	03.3	$1: 4$	123.8	06.5	184	183.7	09.6	244	243.7	12.8
5	05.0	00.3	65	64.9	03.4	125	124.8	06.5	185	184.7	09.7	245	244.7	12.8
6	06.0	00.3	66	65.9	03.5	126	125.8	06.6	186	185.7	09.7	246	245.7	12.9
7	07.0	00.4	67	66.9	03.5	127	126.8	06.6	187	186.7	09.8	247	246.7	12.9
8	08.0	00.4	68	67.9	03.6	128	127.8	06.7	188	187.7	09.8	248	247.7	13.0
9	09.0	00.5	69	68.9	03.6	129	128.8	06.8	189	188.7	09.9	249	248.7	13.0
10	10.0	00.5	70	69.9	03.7	1:30	129.8	06.8	190	189.7	09.9	250	249.7	13.1
11	11.0	00.6	71	70.9	03.7	131	130.8	06.9	191	190.7	10.0	251	. 7	. 1
12	12.0	00.6	72	71.9	03.8	132	131.8	06.9	192	191.7	10.0	252	251.7	13.2
13	13.0	00.7	73	72.9	03.8	133	132.8	07.0	193	192.7	10.1	253	252.7	13.2
14	14.0	00.7	74	73.9	03.9	134	133.8	07.0	194	193.7	10.2	254	253.7	13.3
15	15.0	00.8	75	74.9	03.9	135	134.8	07.1	195	194.7	10.2	255	254.7	13.3
16	16.0	00.8	76	75.9	04.0	136	135.8	07.1	196	195.7	10.3	256	255.6	13.4
17	17.0	00.9	77	76.9	04.0	137	136.8	07.2	197	196.7	10.3	257	256.6	13.5
18	18.0	00.9	78	77.9	04.1	138	137.8	07.2	198	197.7	10.4	258	257.6	13.5
19	19.0	01.0	79	78.9	04.1	139	138.8	07.3	199	198.7	10.4	259	258.6	13.6
20	20.0	01.0	80	79.9	04.2	140	139.8	07.3	200	199.7	10.5	260	259.6	13.6
2	21.0	01.1	8	80.9	04.2	141	140.8	. 4	201	200.7	10.5	261	260.6	13.7
$2 \cdot$	22.0	01.2	8:	81.9	04.3	142	141.8	07.4	202	201.7	10.6	262	261.6	13.7
23	23.0	01.2	83	82.9	04.3	143	142.8	07.5	203	202.7	10.6	263	262.6	13.8
24	24.0	01.3	84	83.9	04.4	144	143.8	07.5	204	203.7	10.7	264	263.6	13.8
25	25.0	01.3	85	84.9	04.4	145	144.8	07.6	205	204.7	10.7	265	264.6	13.9
26	26.0	01.4	86	85.9	04.5	146	145.8	07.6	206	205.7	10.8	266	265.0	13.9
27	27.0	01.4	87	S6.9	04.6	147	146.8	07.7	207	206.7	10.8	267	266.6	14.0
28	28.0	01.5	88	87.9	04.6	148	147.8	07.7	208	207.7	10.9	268	267.	14.0
29	29.0	01.5	89	88.9	04.7	149	148.8	07.8	209	208.7	10.9	269	268.6	14.1
30	30.0	01.6	90	89.9	04.7	150	149.8	07.9	210	209.7	11.0	270	269.6	14.1
31	31.0	01.6	91	90.9	04.8	151	150.8	07.9	211	210.7	11.0	271	270.6	14.2
32	32.0	01.7	92	91.9	04.8	152	151.8	08.0	212	211.7	11.1	272	271.6	14.2
33	33.0	01.7	93	92.9	04.9	153	152.8	08.0	213	212.7	11.1	273	272.6	14.3
34	34.0	01.8	94	93.9	04.9	154	153.8	08.1	214	213.7	11.2	274	273.6	14.3
35	35.0	01.8	95	94.9	05.0	155	154.8	08.1	215	214.7	11.3	275	274.6	14.4
36	36.0	01.9	96	95.9	05.0	156	155.8	08.2	216	215.7	11.3	276	275.6	14.4
37	36.9	01.9	97	96.9	05.1	157	156.8	U8.2	217	216.7	11.4	277	276.6	14.5
38	37.9	02.0	98	97.9	05.1	158	157.8	08.3	218	217.7	11.4	278	277.6	14.5
39	38.9	02.0	99	98.9	05.2	159	158.8	08.3	219	218.7	11.5	279	278.6	14.6
40	39.9	02.1	100	99.9	05.2	160	159.8	08.4	220	219.7	11.5	280	279.6	14.7
41	40.9	02.1	101	100.9	05.3	161	160.8	08.4	221	220.7	11.6	281	280.6	14.7
42	41.9	02.2	102	101.9	05.3	162	161.8	08.5	222	221.7	11.6	282	281.6	14.8
43	42.9	02.3	103	102.9	05.4	163	162.8	08.5	223	222.7	11.7	283	282.6	14.8
44	43.9	02.3	104	103.9	05.4	164	163.8	08.6	224	223.7	11.7	284	283.6	14.9
45	44.9	02.4	105	104.9	05.5	165	164.8	08.6	225	224.7	11.8	285	284.6	14.9
46	45.9	02.4	106	105.9	05.5	166	165.8	08.7	226	225.7	11.8	286	285.6	15.0
47	46.9	02.5	107	106.9	05.6	167	166.8	08.7	227	226.7	11.9	287	286.6	' 15.0
48	47.9	02.5	108	107.9	05.7	168	167.8	08.8	$2: 8$	227.7	11.9	288	287.6	15.1
49	48.9	02.6	109	108.9	05.7	169	168.8	08.8	$22!$	228.7	12.0	289	288.6	15.1
50	49.9	02.6	110	109.8	05.8	170	169.8	08.9	230	229.7	12.0	290	289.6	15.2
51	50.9	02.7	111	110.8	05.8	171	170.8	08.9	231	230.7	12.1	291	290.6	15.2
52	51.9	02.7	112	111.8	05.9	172	171.8	09.0	232	231.7	12.1	292	291.6	15.3
53	52.9	02.8	113	112.8	05.9	173	172.8	09.1	233	232.7	12.2	293	292.6	15.3
54	53.9	02.8	114	113.8	06.0	174	173.8	09.1	234	233.7	12.2	294	293.6	15.4
55	54.9	02.9	115	114.8	06.0	175	174.8	09.2	235	234.7	12.3	295	294.6	15.4
56	55.9	02.9	116	115.8	06.1	176	175.8	09.2	236	235.7	12.4	296	295.6	15.5
57	56.9	03.0	117	116.8	06.1	177	176.8	$0 \% .3$	237	236.7	12.4	297	296.6	15.5
58	57.9	03.0	118	117.8	06.2	178	177.8	09.3	238	237.7	12.5	298	297.6	15.6
59	58.9	03.1	119	118.8	06.2	179	178.8	09.4	239	238.7	12.5	299	298.6	15.6
60	59.9	03.1	120	119.8	06.3	180	179.8	09.4	240	239.7	12.6	300	299.6	15.7
Dist	Dep.	Lat.	Dist.	Dep.	Lat.									
For 87 Deyrees.														

DIFFERENCE OF LATITUDE AND														
	Lat.	Dep.	D		Dep.	Dist		Dep.	Dis	Lat.	Dep.	Dist.	Lat	D
1	01.0	00.1	61	60.9	04.3	121	12	08.4	181	180.	12.6	241	240.4	16.8
	02.0	00.1	62	1.8	04.3	122	121.7	08.5	182	181.6	12.7	242	241.4	16.9
3	03.0	00.2	63	2.8	04.4	123	122.7	08.6	183	182.6	12.8	243	242.4	17.0
4	04.0	00.3	64	8	04.5	124	123.7	08.6	18	183.6	12.8	244	243.4	17.
5	05.0	00	65	64.8	04.5	125	124.7	08.7	185	184.5	12.9	245	244.4	17.
6	06.0	00	66	65.8	04	126	125	08.8	186	185	13.0	246	24	17.2
7	07.0	00	67	66.8	0	127	12	08.9	187	186	13.0	247	246.4	17.2
8	08.0	00	68	67.8	04.7	128	12	08.9	188	18	13.1	248	247.4	17.3
9	09.0	00.6	69	68.8	04.8	129	128.7	09.0	189	188.	13.2	249	248	17.4
10	10.0	00.7	70	69.8	04.9	130	12	09.1	190	18	13.3	250		
11	11.0	00	71	70.8	05.0	131	130.7	09.1	191		13.3	1		
12	12.0	00.8	72	71.8	05.0	132	13	9.2	2	191	. 4	252		
13	13.0	00.9	73	72.8	05.1	133	132.7	09.3	193	192	3.5	53	252.4	
14	14.0	01.0	74	73.8	05.2	134	133.7	09.3	194	193.	13.5	254	253	17.7
15	15.0	01.0	75	74.8	05.2	135	134.7	09.4	195	194.	13.6	255	254	17.8
16	16.0	01.1	76	75.	05.3	13	135.7	09.5	196	195	13.7	256	255	17.9
17	17.0	01.2	77	76.	05	13	136.7	09.6	197	196	13.7	257	256.4	7.9
18	18.0	01	78	77.8	05.4	13	137.7	09.6	198	197	13.8	258	257.4	0
19	19.0	01	79	78.8			138	09.7	199	198	13.9	259	258.4	18.1
20	20.0		80	79				09.8	20	19	14.	260	259.4	
21	20		81	80.8				09.8	1	200.5	14.0	1	260.4	
22	21.9	01	82	81.8			14	09.9	202	20	14.1	262	26	18.3
23	22.9	01.6	83	82.8			142	10.0	20	20	14.	263	26	18.3
24	.9	01.7	84	83.8	05.8	144	14	10.0	204	20	14	4	26	18.4
25	24.9	01.7	85	84.8		145	144	10.1	205	20	14.3	265	26	18.5
26	25.9	01.8	86	85.8	06.	146	145.	10.2	206	205		266	265	18.6
27	26.9	01.9	87	6.8	06.1	147	146.6	10.3	207	206	14.	267	266.3	18.6
28	27.9	02.0	88	87.8	06.1	148	147	10.3	08	207	14.	268	267	18.7
2	28.9	02.0	89	88.	06.2	149	148	10.4	209	208.	14.6	269	268	18.8
30	29.9	02.1	90	89.			149	10.5	210	209	14.	27	269	
31	30.9	02.2	91	90.8		151	150.	10.5	11	210.5		71	270.3	18.9
32	31.9	02.2	92	91.8	06.4	152	51	10.6	212	211	14.8	272	27	19.0
33	32.3	02.3	93	92.	06.	15	152	10.7	213	212.5	14.9	273	272.	19.
	33.	02.	94	93.	06.	154	153	10.7	214	213.5	14.	274	27	19.1
	34		95	94.8	06	155	154	10.8	215	214	15	275	274.3	19.2
	35		96	95.8	06.		155	10.9	216	215	15	276	275.3	
	36	02	97			157	156	11.0	217	216	15	277	27	19.3
			98			158	157.	11.0	21	217	15.2	278	277	
			99					11.1	219	21			278	. 5
40	39.9		100	99.8				11.2	220				279.3	
41	40.9		101	100.				11.2	1			1		
4	41.9	,	102	101.8	07.1	162	161.	11.3		221		282	281.3	
43	,	03.0	103	102.			162.6	11.4			,	283	282	19.7
44	43.9	03.1	104	103.7	07.3	164	163.6	11.4		223	15.	284	283	19.8
	44.9	03.1	105	104.7	07.3	165	164.6	11.5		22	15.7	285	284.	19.9
46	45.9	03.2	106	105.7	07.4	166	165.6	11.6	226	225.4	15.8	286	285.3	20.0
47	46.9	03.3	107	106.7	07.5	167	166.6	11.6	227	226.4	15.8	287	286.3	20.0
48	47.9	03.3	108	107.7	07.5	168	167.6	11.7	228	227.4	15.9	288	28	20.1
49	48.9	03.4	109	108.7	07.6	169	168.6	11.8	229	228.4	16.0	289	288.3	20.2
50	49.9		110	109.7			169	11.9		229		290		
51	50.9	03.6	111	110.7	07.7	171	170	11.9	231	230	16.1	291	290	20.3
52	51	03.6	112	111.7	07.8	172	171.	12.0	23	231.4	16.2	29	291	20.4
53	52.9	03.7	113	112.7	07.9	173	172	12.1	233	232.4	16.3	293	292	20.4
5	53.9	03.8	114	113.7	08.0	174	173	12.	234	233.4	16.3	294	29	
55	54.9	03	11	114.7	08.0	175	174	12	235	234	16.4	295	294	20.6
56	55.9	03.9	116	115.7	08.1	176	175	12	236	235	16.5	296	295	20.6
57	56	04.0	117	116.7	08.2	177	176.6	12.3	237	236	6.5	29	296	20.7
58	57.9	04.0	118	117.7	08.2		177.6	12.4	238	238	16.6	298	297	20.8
	58.9	04.1	119	118.7	08.3	179	178.6	12.5	239	238.4	18.7	299	298	20.9
60	59.8	04.2	120	119.7	08,	180	179.6	12.6	24	239	16.	300	299	20.9
Jis	Lep	Lat.	Dis	Dep		st.	Dep.	Lat.		De	Lat.		Dep.	Lat.
							For 86							

DIFFERENCE OF LATITUDE AND DEPARTURE FOR 5 DEIRRES. Oh 20 m .

	Lat.	Dep.	Dist.											p.
1	01.	0			05.8	121	120			18	15.8		240.1	21.0
2	02.	00.2	62	61.8	05.	122	12	10.	182	18	15.	24:		
3	0	00		62.8	05.	123	12	10.7	$18 \cdot 3$		15	243		
4	04.0	00.3	64	3.8	05.6	124	12	10		183.3			243	21.3
J	05.0	00.	65	64.5	05	125	124	10.9	185	184	16.1	45		21.4
	06.0	00.5	66	5	05.8	26	125.5	11.9	186	18	16.2	46	24	1
	07.0	00.6	67	66.7	05.			11.	18	186	16			21.5
8	08.0	00.7	68	67.7	05.9	128	127.5	11.	185	157.3	16.4	48		21.6
9	09.0	00.8	69		06			11		18	16.5	49	248.1	21.7
10	10.0	00.9	70					11.3		189.3	16.6	250		. 8
			72	71.7		13:	15	11.5	192					
$1:$		01.1	73	72.7	06		13	11.6	193	192.3	16.8	253	2520	22.1
15	13	1.2	74	73.7	06.4		133	11.7			16.9		253.0	22.1
10		01.3		\% 4	06.		134	11.8	19		17.			22.2
16	15.9	01.4	76	75.7	06.6	136	135.	11.9	19		17.	256	255.0	22.3
17	16	01	79		06.7			1		196	17.2		256.0	22.
18	17.9	01.6	7		06.8	138	13	12.	198		17			
19	18.9	01.7	79	8	06.9	139	138	12.	199	198.2			258.0	22.6
20	19	01.7	80	79.7	07.0	140	139.5	12.2	20	199.2	17.4	260	0	2.7
2														
2:	21	01.9	82							201	17			
23	22	02.0	83	82.	0		142.5		20	202.2	.		26.0	
24	23	02.1	84	S3.'	07		143.5		204	203	17		263.0	23.0
25	24.9	02		84.7	0					204.2	17			1
26	25.9	02	86	85	0			12.		205.2	18.0		265.0	23.2
2	26.9	02	87	86.7	07.6		14	12.8	207	206				23.3
28	27.9	02			0					207.2	18			3.4
29	28.9	02	89		0			13.0	209	208.2	18.5	26		
30	29.9		9						210		18.5			
31														23.6
32		02	92	91	08.0						18	27		
33		02		92	08.1									23.8
3	33	03.0	94	,	08.2		15	13.4		213.	18.7	274	27	23.9
35	34.9	03.1	95	94.	08.3		154	13.5		214.	18.	275	274.0	24
36		03.1	06		08.						18.			
3		0								21				24.1
38	37.9	03.3	98	97.6	08.5			13.8	218	217.		27		,
39	38.9	03	\ldots	98.6	08.6			13.9			19.		277.	24.3
40	39.8							13.9	22		19.2		2~8	
42	41		102	101.	08.9					221.			280	24.6
43	42.8	03.7	103	102.	09.0		162	14.2		22.2	9.		281.	24.
44	4:3.8	03.8	104	103.	09.1						9.5		282.9	24.8
45		0:3.9	105	104.						224			283.9	4.8
46	45.8	04.0	106	105.6	09.2		1654	14.	$2: 6$	225.	9.7	286	284	24.
47	46.8	04.1	107	106.	09.		166.4	14.6		6.	9.8	28	285.	5.0
4	47.8		108										-	
$4{ }^{2}$	48.5	04.3	109	108.6	0.5		168.4	14.7		.	20.0	280	28.9	25.
50			110									290	285.9	
	50.8													\%. 4
52	51.8	04		11			171.3						290.	5.
5	52.8	04.6	,	112.6	09.8		172.3	15.		232.	20.3	293	291	25.5
54	53.8	04.7	114	113.6	09.9	174	173.3	15.2	234	233.1	20.	2	292.9	25.6
55		04.8	115	114.6	10.0	175	1	15.	235	,	20.5	29	293.9	25.7
$5!$	55 S	04.9	116	115.6	10.1	176	175.3	15.3	236	235.	20.6	296	294	5.8
.	56.8	05.0	117	116.6	10.2	177	176.3	15.4	237	23.	20.7	297	295.9	25.9
58		05.1	118	117.6	10.3	178	177.3	15.5	238	23.	0.7	298	296.9	26.0
59		0.51	119	118.5	10.4	79	178.3	15.6	239	238.		239	297.9	26.
60		05.2	120				179.3	15.7	$\because 40$	239.	20.	300	298.9	¢6.1
Dist	Dep				Lat	Dist.	Dep.	Lat.	Dist	Dep.	Lat.	Dis	Dep.	Lat.
For 85 Degrees.														

differenc														
Dist.	Lat.	Dep.	Dist.	Lat.	ep.	Dist.	Lat.	Dep.	Dist.	Lat.	Dep.	Dist.	Lat.	
1	01.0	00.1	61		06.4	121	120.3	12.6	181	180.	18.9	41	239.7	
2	02.0	00.2	62	61.7	06.5	122	121.3	12.8	182	181.0	19.0	242	240.7	
3	03.0	00.3	63	62.7	06.6	123	122.3	12.9	183	182.0	19.1	243	241.7	
	04.0	00.4	64	63.6	06.7	124	123.3	13.0	184	183.0	19.2	244	242.7	
5	05.0	00.5	65	64.6	06.8	125	124.3	13.1	185	184.0	19.3	245	243.7	25.6
6	06.0	00	66	5.6	06.9	12	125.	13.2	186	185.0	19.4	246	244.7	25.7
7	07.0	00.7	67	5.6	7.0	127	126	13.	187	186.0	19.5	247	245.6	25.8
8	08.0	00.8	68	67.6	07.1	128	127.3	3.4	188	187.0	19	248	6	25.9
9	09.0	00.9	69	68.6	07.2	129	128	13.5	189	188.0	19	249	247.6	. 0
10	09.9	01.0	70	69.6	07.3	130	129	13.6	190	189.0	19.9	250	248.6	. 1
11	10	01.1	71	70.6		131	130.3		191	190.0	20.0	251		
12	11.9	01.3	72	71.6	07.5	132	131.	13.8	92	190				
13	12.9	01.4	73	2.6	7.6	133	132.3	3.9	03	191	0.			
14	13.9	01.5	74	73.6	07.7	34	33.	4.0	194	192.9	20.3		252.6	,
15	14.9	01.6	75	74.6	07.8	135	134.3	4.1	195	193.9	20.4	255	253.6	. 7
16	15.9	01.7	76	75.6	07.9	136	135.3	14.2	196	194.9	20.5	256	254.6	. 8
17	16.9	01.8	77	76.6	08.0	137	136.2	14.3	197	195.9	20.6	257	255.6	. 9
18	17.9	01.9	78	77.6	08.2	138	137.	14.	198	196.9	20.7		256.6	. 0
19	18.9	02.0	79	78.	. 3	139	138.	14	199	197.9	20.8		257.6	. 1
20	19.9		80				139.	14.6	200	198.9	20.9		258.6	
21	20.				08.5	141	140	14.7	201	19.	21.		6	
22	21.		82	81.6	08.6	142	141	14.8	202	200	21		260.6	27.4
			83	82.5	08.7	143	142	14	203	201.9	21.2		261.6	27.5
			84	83.5	08.8	144	143	15	204	202.9	21.3		262.6	27.6
	24.9	02.6	85	84.5	08.9	145	14	15	205	203.	21.4		263.5	27.7
26		02	86	85.5	09.0	146	145	15		204.9	21		264.5	
27	26	02.8	87	86.5	9. 1	47	146	15	207	205.9	21.6		26	27.9
28	27.8	02	88	. 5	9.2	48	14	15.5	20	206	21.7		266.5	28.0
29	28	03.0	89	88.5	9.3	149	148	15.6	209	207.8	21.		267.5	
30	29	03.1	90	89.5	9.4		149	15.			22.0		268.5	
31	30	03	91	90.5	09.5	151	150.2		11	20	22.1			
32	31	03.3	92	91.5	9.6	152	151	15.9	212	210.8	22.2	2\%	270.5	28.4
33	32.8	03.4	93	92.5	09.7	153	152	16.0	213	211.8	22.		7	28.5
3	33.8	03.	94	. 5	09.8	154	153	16.1	21	212.8	22.4	274	272	28
35	34.8	03.7	95	. 5	09.9	155	154	16.2	21	213.8	22.5	27	273.5	
3	35.8	03.8	96		10.0	156	155.1	16.	216	214.8	22.6		274.	
3	36.8	03.	97		10.1	157	156.1	16.4	217	215.8	22.7		275.5	
38	37.8	04.	88		10.2	158	157	16.5		216.8	22.8		276.5	
39	38.8		93		10.3		15	16.6	218	217.8	22.9		277.5	
40	38		100	99.5	10.5		159.1						.	
41	40.8		101	100.4		161	160	16.8	21	219	23.1			
42	41.		102	101.4	.	162	161.1	1.9		220.8	23.2		280.5	
43	42.8	04	103	102.4	1.8	163	162.1	17.0		221.8	23.3		281.4	
14	43.8	04.6	104	103.4	10.9	164	163.1	17.1		222.	20.		282	
15	44.8	04.7	105	104.4	11.0	165	164.1	17.2		223	23.5		28	29
46	45.7	04.8	106	105.4	11.1	166	165.1	17.4	22	224.8	23.6	286	284	29.
,	46.7	04.9	107	106.4	11.2	167	166.1	17.5	227	225.8	23.7	28	285	30.
45	47.7	05.0	108	107.4	11.3	168	167.1	17.6	228	226.8	23.8	28	286.	30.
49	48.7	05.1	109	108.4	11.	169	168.1	17.7	22	227.8	23.9	28	287.4	30.
50	49.7		110		11.5	170	169.1	17	230	228.7	24.0			
51	50		111	110.4	11.6	171	170	17.9	231	229.7	24.1	291	289.4	30.4
5	51.	05	112	111.4	11.7	172	171.1	18.0	23	230.7	24.3	29	290.4	30
53	52	05	113	112.4	11.8	173	172.	18.1	233	231.7	24.4	293	291.4	30.
	53		114	113.4	11.9	174	173	18.2	23	232	24.5	29	292.	. 7
	54	05	115	114.4	12.0	175	174	18.3	235	233	24.6	295	293	30.8
5	55	05	116	115.4	12.1	176	175.0	18.4	23	234	24.7	296	29	30.9
	56	-	117	116.4	12.2	177	176.	18.5	237	235	24.5	297		.
	57.7	0.1	18	117.4	12.3	178	177.0	18.6	2.		4.9		29.	31.1
	58.	06.2	119	118.3	12.4	179	178.0	18.7	23	237.7	25.0	29	297.	
GA	59	06.	120	119.3	12.5	18	179.0	18.8	24	238.7	25.1	300	298.4	31.4
Dist	Dep	La		Dep.		Dist.	Dep.	Lat.		Dep.	Lat.		Dep	Lat.
							9							

		D	Dis											
1	01.0	00						14.7			22.1	2	239.2	
2	02.0	00.2	62	61.5	0	122	121.1	,	182		22.2	242	240.2	
3	0	00		62.5	07	123	12	15.0	183	81.	22.3	243	241.2	29.6
4	04.0	00.5	64	63.5	07.8	124	123.1	15.	184	18	22.4	244	242.2	29.7
5	05.0	00.6	65	64.5	07.9	125	124.	15.	185	183	22.5	245	243.2	
6	06	00.7	66	65.5	08	126	1	15.4	186		62.7	1		30.0
7	06	00.9	67	66.5	08	127	12	15	87	185	22.8	247	245	30.1
8	07.9	01.0	68	67.	08.3	128	127.0	15.6	188	186	22.9	248	-	. 2
9	08	01.1			08.4		128.0	15.7				249		30.3
10	09	01.2	70	69.5	08	20	129.0	15.8	190	18	2	0	1	30.5
										189.6	23.3			
12	11.9	01.	72	71.	08.				92	19	93	252	250.1	. 7
	12.9	01.	73	72.	08.9		132.0			19	23.5			
14	13	01	74	73.	09	134	133.0	16.	19	19	23.6	254	252.1	31.0
15	14.9	01.8	75	74.	09.1	135	134.0	16.5	195	19	23.8	255	2	31
	15	01.9	76		09.3			16.6		19	23.9	256		
	16		77		09.	137	136.	16.	19		24.0			31.3
18	17	02.2	78	77	09.	138	137.0	16.8	198	19	24.1	258	256.1	31.4
1	18.9	02	79	78.	09.6					197.5	24.	259	2571	
20	19	02	80		09	140			200		24.4			
	21.	02.7	8.		10.		14	17.3	202	20	2	262		
	22.8	02.8	83	82. 4	10.1		141.	17.	203	20	2	263	26	32.1
	23	0	84		0.2		142.9	17	204	202.	24.9		262	32.2
	24	03.0	85	84.4	10.		14	17.	205	20	25.	265	263.0	32
2	25	03.2	86	85.	10.5	146	144.9	17.8	206	204	25.	266	264.0	32.4
2	26.	03	87	86	10.		145.9	17.9	207	205	25	267	265.0	32.5
	27.8	03	88		10.7		星	1	208	2	25.3	268	266.0	32.7
23	28.8	03.5	89	88.3	10.8		147.9	18.2	209	207	25	269	267.0	32
30	29.8	03	90				148.9	18.	0	208		270	268.0	32.9
	30													
	31.	03	92							210.4			270.0	
	32.8	04.	9	92.3	11.3		151.9	18.	213	211	26.0	273	271.0	33
	33.7	04.1	94	93.	11.		15	18.8		212.	26.1	274	272.0	33.4
	34.7	04.3	95	94	11.					21	26.	275	273.0	
	35.	04	96		11		15		216	21	26	276	273.9	33
	36.7	04.5	\%	6.	11.8		155.	19.1	217	215.	26.	27	274.9	
	37.7	04.	98	寿	11.9			19.3			.			
	38		99											4.0
40	39	04	100	99.3	12		15	19.5	22	218	26.8	28		4.1
														34.2
	41.7	05.1	10	101.	12		160.	19.		220.	27.	282	279.9	
	42.7	05.2	10	102.			161.	19.					280.9	
	43.7			103.			16	20.0		2	27	28	281.9	34.6
	44.7	05.5	105	104.2	12.8	165	163.8	20.1		223	27.	285	282.9	34
	45.7	05.6	106	105.			164.8	20.2		224.3	2\%.	286	3.9	
	46.	05.7		106				20.4		225.3	\%	287	284.9	35.0
48	47.6	05.8	108	107.2			166.7	20.5	228	226	27.8	288	285.9	35.1
43	48.6	06.0	109	108.2		169	167.7	20.6	229		27.9	289		35.2
50	49.6		110				168.7	20.7				290		
	51	06.3	112	111.2	.	172	170.7	21.0		230.	28.3	292	289.	. 6
	52.6	06.5	113	112.2	13.8	173	171.7	21.1		231.3	28.4	293	290	5.7
	53.6	06.6	114	113.2	13.9	174	172.7	21.2			28.	294	291	. 8
	54.6	06.7	11.	114.1	14.0	175	173.7	21.3	235	233.2	28.6	295	292.	36.0
	55.6	06.8	116	115.1	14.	176	174.7	21.	236	2	28.5	296	293	. 1
	56.6	06.9	117	116.1	14.3	177	175.	21.6	237	235.	28.9	297	294	36.2
58	57.6	07.1	118	117.1	14.4	178	176.7	21.7	238	236.2	29.0	298	295	36.3
	58.6	07.2	119	118.1	14	179	177.7	21.8	239	237.2	29.1	299	296.8	36.4
	59.6	07.3	120	119.1	14.6	80	178.7	21.9	24	238.	29.2	300	297.8	36.6
Dis	Dep.	Lat		Dep		Dist.	Dep.	Lat.	Dist.	Dep.	Lat.	Dist.	Dep.	Lat.
Fur 33 Derruees.														

DIFFERENCE OF LATITUDE AND DEPARTURE FOR 8 DEGREES. ${ }^{\text {a }}$ O 32 m .														
		D	Di			Dist.	Lat	Dep.	Dist	La	Dep.			Dep
	01.0	00	61		08.5	121	11	168	181	179.2	25.2	241		
2	02.0	00.3	62	61.4	08.6	122	120.	17.0	182	180.2	25.3	242	239.6	33.7
3	03.0	00.4	63	62.4	08.8	123	121.	17.1	183	181.2	25	43	240.6	33.8
4	04.0	00.6	64	. 4	08.9	124	122.8	17.3	184	182.2	25.6	44	241.6	340
5	05.0	00.7	65	. 4	. 0	125	123	17.4	185	183.2	25.7	45	242.6	1
6	05.9	008	66	65.4	09.2	126	12	17.	186	184.2	25.9	246	6	. 2
7	06	01.0	67	66.3	09.3	127	125.8	17	187	185.2	6.0	247	6	34.4
8	07.9	01.1	68		09.5	128	126.8	17.8		186.2	26.2	248		34.5
9		01.8	69		09.6		127.7	18.			26.3	249		. 7
10	09	01	70		09.7		12		90		26.4	250		4.8
11	10.9				09.9		129.			189.1	,			
12	11.9	01.7	72	71.3	. 0	32	130	8.4	,	190.1	26.7	252		
13	12.9	01.8	73	72.3	. 2	133	131.	8.5	93	191.1	26.9	253	250.5	35.2
41	13.9	01.9	74	3	10.3	134	132.7	18.6	194	192.1	27.0	254	251.5	35.3
15	14.9	02.1	75	4.3	10.4	135	133.7	18.8	195	193.	27.1	255	25	35.5
16	15.8	02.2	76	5.3	10.6	136	134.7	18.9	19	194.1	27.3	256	25	5
17	16.8	02	77	6.3	10.7	137	135.	19.1	197	195	27.4		254.5	35.8
18	17.8	02	78	\% 2	10.9		136	19.2	198	196	27.6		255.5	35.9
19	18.8	02.6	79	,	11.0		13	19.3		19	27	259	25	36.0
20	19.8	02.8	80					19			27.8	260		
21	20							19.6		199.0	28.0			
	21	03.1	82		11.4		14	19		20.	28.1	262	259.5	36.5
	22.	03.2	83	82.2	11.6		14	19		20	28.3	263	260.4	36.6
	23.	03.3					142.	20.		20	28.4	264	261.4	36.7
	24.8	03.5	85				14	20	205	20	28.5	265	262.4	36.9
	25	03.6					144.	20.3		20	28.7	266	263.4	37.0
	26.	03.8	8			147	145	20.5		205	28.8	267	264.4	37.2
		03.9	88			148	146	20.6		206	28.	268		37
29	28.7	04.0	89	88.1		149	147	20.7	209		29.	269	266.4	37.4
30	29.7		90								29.2		267.4	
3												271		
32	31.	04.5	92	91.1	12.8	152	150	21	212	20	29	272	269.4	37.9
33	32.	04.6	93	92.1	12.9	153	151	21.3	213	210	29.	273	270	-
3	33.7	04.7	94	.1	13.1	154	152	21.4	214	211	29.8	27	271	38.
35	34.7	04.9	95	4.1	13.2	155	153	21.6	15	212	29.9	275	272	38
3	35.6.	05.0	96	5.1	13.	156	154	21.7	16	213	30	276	273	384
	36.	05.	97	96.1	13.	15	155	21.9	217	214		27	27	
	37.	05	98	97.0	13.	158	156	22.0	218	215	.	278	275	
39	38.	-	99	98.0	13.8	159	157.	22.1	218	21	30.5	279		38.8
40	39.		100	99.										
11	40		101	100.			159		1	21				
42	41.	05.8	102	101.	14	162	160	22	22	21.	3.9	282		39.2
43	42.6		103	102.0	14.	163	16	2.	223	220	,		280.2	39.4
44	43.6	06.1	4	103	14.	164	162.	22.8	224	22			281	39
45	44.6	-	105	104.0	14	165	163	23.0	25	22.	31.3		282	39
		0.4	10	105	14	166	164	23.1	22		31.5		283	39
47	46	06.	107	106	14	16*	165	23	227		31.6	287	284	39
48		06.7	108		15	168	66	23.4			31.7	28	285.2	40.
4,	48.	06.8	109		15.2	169	167.4	23.5	22.	226.8	31.9	289	286.2	40.2
50	49	07.	110	10			108	23	230	227.	,		287.2	
			111	109.9		171	169.3	20.8	231	228	32.1	29	28. 2	40.5
		07.2	112	110.9	15.6	172	170	23.9	232	229.	32.3	2	288	40.6
.	-2..	07.4	113	111.9	15.7	173	171.3	24.1	233	230.7	32.4	29	290	40.8
	53	07.5	114	112.9	15.9	174	172.	24.2	234	231	32.6	29	291	40.9
	5.54 .5	07.7	115	113.9	16.0	175	173.	24.4	235	232	32.	295	29	41.1
56	5	07.8	116	114.9	16.1	176	174.	24.5	23	233	32	290	29	41
	756.4	07.9	117	115.9	16.3	177	175	24.	237	234	33.0	297	29	41.3
		08.1	118	116.9	16.4	178	176	24.8	238	23	33.1	298	295	41.5
	958.4	08.2	119	117.8	16.6	179	177	24.	239	236	33.3	29	296	41.6
60		08.4	120	118.8			178.3	25.1	240	23	33.4		29	41.8
$\overline{\text { Dis }}$	sti) D	Lat		Dep			Dep.	Lat.		Dep	Lat.		Dep.	Lat.
							For 82,							

	TABLE 11.difference of latitude and departure for 10 DEGREES. 0 (40 mm.													
Dist.	Lat.	Dep.												
1	01.0	00.2	61	60.1	10.6	121	119.2	21.0	181	178.3	31.4	241	2373	41.8
2	02.0	00.3	62	61.1	10.8	122	120.1	21.2	$1 \bigcirc 2$	-9.2	31.6	242	238.3	42.0
3	03.0	00.5	63	62.0	10.9	123	121.1	21.4	183	180.2	31.8	2431	239.3	42.2
4	03.9	00.7	64	63.0	11.1	124	122.1	21.5	184	181.2	32.0	244	240.3	12.4
5	04.9	00.9	65	64.0	11.3	125	123.1	21.7	185	182.2	32.1	245	241.31	42.5
6	05.9	01.0	66	65.0	11.5	126	124.1	21.9	186	183.2	32.3	246	242.3	42.7
7	06.9	01.2	67	66.0	11.6	127	125.1	22.1	187	184.2	32.5	247	243.2	42.9
8	07.9	01.4	68	67.0	11.8	128	126.1	22.2	188	185.1	32.6	248	244.2	43.1
9	08.9	01.6	69	68.0	12.0	129	127.0	22.4	189	186.1	32.8	249	245.2	43.2
10	09.8	01.7	70	68.9	12.2	130	128.0	22.6	190	187.1	33.0	250	246.2	
11	10.8	01.9	71	69.9	12.3	131	129.0	22.7	191	188.1	33.2	251	247.2	6
12	11.8	02.1	72	70.9	12.5	132	130.0	22.9	192	189.1	33.3	252	248.2	43.8
13	12.8	02.3	73	71.9	12.7	133	131.0	23.1	193	190.1	33.5	253	249.2	43.9
14	13.8	02.4	74	72.9	12.8	134	132.0	23.3	194	191.1	33.7	254	250.1	44.1
15	14.8	02.6	75	73.9	13.0	135	132.9	23.4	195	192.0	33.9	255	251.1	, 44.3
16	15.8	02.8	76	74.8	13.2	136	133.9	23.6	196	193.0	34.0	256	252.1	, 44.5
17	16.7	03.0	78	75.8	13.4	137	134.9	23.8	197	194.0	34.2	257	253.11	144.6
18	17.7	03.1	78	76.8	13.5	138	135.9	24.0	198	195.0	34.4	258	254.1	44.8
19	18.7	03.3	79	77.8	13.7	139	136.9	24.1	199	196.0	34.6	259	255.1	45.0
20	19.7	03.5	80	78.8	13.9	140	137.9	24.3	200	197.0	34	260	256.1	1
21	20.7	03	81	79.8	14.1	141	138.9	24.5	201	197.9	34.9	261	257.0	. 3
$2 \cdot$	21.7	03.8	$8:$	80.8	14.2	142	139.8	24.7	202	198.9	35.1	26	258.0	45.5
23	22.7	04.0	83	81.7	14.4	143	140.8	24.8	203	199.9	35.3	263	259.0	45.7
24	23.6	04.2	84	82.7	4.6	144	141.8	25.0	204	200.9	35.4	264	260.0	45.8
25	24.6	04.3	85	83.7	4.8	145	142.8	25.2	205	201.9	35.6	265	261.0	46.0
26	25.6	04.5	86	. 7	4.9	146	143.8	25.4	206	202.9	35.8	266	262.0	46.2
27	26.6	04.7	87	5.7	5.1	147	144.8	25.5	207	203.9	35.9	267	262.9	46.4
28	27.6	04.9	88	6.7	15.3	148	145.8	25.7	208	204.8	36.1	268	263.9	46.5
29	28.6	05.0	89	87.6	15.5	149	146.7	25.9	209	205.8	36.3	269	264.9	46.7
30	29.5	05.2	90	8. 6	15.6	150	147.7	26.0	210	206.8	36.5	270	265.9 \|	46.9
31	30	05.4	91	89.6	15.8	151	148.7	26.2	211	207.8	36.6	271	266.9\|	47.1
32	31.	05.6	92	90.6	16.0	152	149.7	26.4	212	208.8	36.8	272	267.9	47.2
33	32	05.7	93	91.6	16.1	153	150.7	26.6	213	209.8	37.0	273	268.9	47.4
34	33	05.9	94	92.6	16.3	154	151.7	26.7	214	210.7	37.2	274	269.8	47.6
35	34.5	06.1	95	93.6	16.5	155	152.6	26.9	215	211.7	37.3	275	270.8	47.8
36	35.5	06.3	96	94.5	16.7	156	153.6	27.1	216	212.7	37.5	276	\|271.8	47.9
37	36.4	06.4	97	95.5	16.8	157	154.6	27.3	217	213.7	37.7	277	272.8	48.1
38	37.4	06.6	98	96.5	17.0	158	155.6	27.4	218	214.7	37.9	278	273.8	48.3
39	38.4	06.8	99	97.5	17.2	159	156.6	27.6	219	215.7	38.0	279	274.8	48.4
40	39.4	06.9	100	98.5	17.4	160	157.6	27.8	22	216.7	38.2	280	275.	6
41	40.4	07.1	101	99.5	17.5	161	158.6	28.0	221	217.6	38.4	281	276.7	
42	41.4	07.3	102	100.5	17.7	162	159.5	28.1	222	218.6	38.5	282	277.7	49.0
43	42.3	07.5	103	101.4	17.9	163	160.5	28.3	223	219.6	38.7	283	278.7	49.1
44	43.3	07.6	104	102.4	18.1	164	161.5	28.5	224	220.6	38.9	284	279.7	49.3
45	44.3	07.8	105	103.4	18.2	165	162.5	28.7	225	221.6	39.1	285	280.7	49.5
46	45.3	08.0	106	104.4	18.4	166	163.5	28.8	226	222.6	39.2	286	281.7	49.7
47	46.3	08.2	107	105.4	18.6	167	164.5	29.0	227	223.6	39.4	287	282.6	49.8
48	47.3	08.3	108	106.4	18.8	168	165.4	29.2	2v8	224.5	39.6	288	283.6	50.0
49	48.3	08.5	109	107.3	18.9	169	166.4	29.3	229	225.5	39.8	289	284.6	50.2
50	49.2	08.7	111	10	19.1	170	167.4	29.5	230	226.5	39.9	290	285.6	50.4
51	50.2	08.9	111	109.3	19.3	171	168.4	29.7	231	227.5	40.1	291	286.6	50.5
52	51.2	09.0	112	110.3	19.4	172	169.4	29.9	232	228.5	40.3	292	287.6	, 50.7
53	52.2	09.2	113	111.3	19.6	173	170.4	30.0	233	229.5	40.5	293	288.5	50.9
54	53.2	09.4	114	112.3	19.8	174	171.4	30.2	234	230.4	40.6	294	289.5	511
55	54.2	09.6	115	113.3	20.0	175	172.3	30.4	235	231.4	40.8	295	290.5	512
56	55.1	09.7	116	114.2	20.1	176	173.3	30.6	236	232.4	41.0	296	291.5	51.4
57	56.1	09.9	117	115.2	20.3	177	174.3	30.7	237	233.4	41.2	297	292.5	51.6
58	57.1	10.1	118	116.2	20.5	178	175.3	30.9	238	234.4	41.3	298	293.5	51.7
59	58.1	10.2	119	117.2	20.7	179	176.3	31.1	239	235.4	41.5	299	294.5	51.9
60	59.1	10.4	120	118.2	20.8	180	177.3	31.3	240	236.4	41.7	300	295.4	1
Dist.	Dep.	Lat.												
							80	Degrees.						20 m .

Dist	Lat.	Dep.	Di	Lat.	Dep.	Dist.	Litt.	Dep.	Dist.	Lat.	p.	Dist.	Lat.	Dep.
1	01.0	00.2	61	59.9	1.6	21	11	23.1	181		34.5		236.6	46.0
2	02.0	00.4	62	60.9	11.8	122	11	23.3	182	17	34.7	24	2	46.2
3	02.9	00.6	63	61.8	12.0	123	120.7	23.5	183	179.6	34.9	243	23	46.4
4	03.9	00.8	64	62.8	12.2	124	121.7	23.7	184	180.6	35	244	23	46.6
5	04.9	0) 1.0	65	63.8	12.4	125	122.7	23.	185	18	35.3	245	40.5	. 7
6	05.9	01.1	66	64.8	12.6	126	123.7	24.0	186	182.6	35.5	246	241.5	46.9
-	06.9	01.3	67	65.8	12.8	127	124.7	24.2	187	183.6	35.7	7	242.5	47.1
S	07.9	01.	68	6.8	13.0	128	125.6	24.4	18	184	35.9	248	4	47.3
9	08.8	01.7	69	\%	13.2	129	126.6	24.6	189	18	36	249	244.4	. 5
10	09.8	01.9	70	68.7	13.4	130	127.6	24.8	190	186.5	36.3	250	245.4	. 7
	10		71											
12	11.8	02.3	72	70.	13.7	132	1	25	192		36.6	252		1
13	12.8	02.5	73	71.	13.9	133	130.	25	193	180	36.8	3	248.4	. 3
14	13.7	02.7	74	72.6	14.1	13	131.5	25.6	19	190	37.0	4	24	48.5
15	14.7	$0 \% .9$	75	73.6	4.3	135	132	25.8	195	191.4	37.2	255	250.3	. 7
16	15.7	03.1	76	74.6	14.5	136	133	26.0	196	19		6		. 8
17	16.7	03.2	77	75.6	14.7	137	134.5	26.1	197	19	37.6	257	25	49.0
18	17.7	03.4	78	76.6	14.9	138	135	26.3	198	19	37.8	258	253	49.2
19	18.7	03.6	79	77		139	13				38	259	2	. 4
\because	19	08	80	78.5	15	140	13	2	20	196.3	38	0		49.6
	20	04												
22	21.6	04.2	82	80.5	15	142	139	27	202	19	38	2	257.2	50.0
23	2.2	04.4	83	81.5	15	143	140.	27.3	20	19	38.7	3	258.2	50.2
24	23.	04.6	84	82.5	16		11.	27	204	20	38.9	264	25	50.4
25	24.5	04.8	85	83.	16.	145	142.3	27.7	20	20	39.	265	260	
26	25.5	05.0	86	84.	16.4	146	143.3	27.9	206	20	39.3	266	261	. 8
27	26.5	05.2	87	85.4	16	147	144	28.0	07	203	39.5	267	262.1	50.9
28	27.5	05.3	88	86	16	148	145.	28.2	20	20	39.7	268	20	51
29	28.5	05.5	89	7.4	17.0	149	146.3	28.4	209	205	39.9	269	264	51.3
30	29.4	05.7	90	88.3	17.2	150	147.2	28.6	210	206	40.1	270	265.0	51.5
$\overline{31}$														
	31	00	9	9		152		29.0	212	20	. 4	2	267.0	51.9
33	32.4	06.:	93	91.3	17.7	153	150.2	29.2	213	209	40.	3	268.0	52.1
34	33.4	06.5	94	92.3	17.9	154	151.2	29.4	21	210.1	40.8	4	269.0	52.3
35	34.4	06.7	95	93.		15	152.	29.6	215	211.0	41.0	275	269.9	52.5
36	35	06.9	9	94.2	18.3	156	153.1	29.8	216	212.0	41.2	276	270.9	52
37	36.3	07.1	97	95.2	18.5	157	154.1	30.0	217	213.0	41.4	277	271.9	52.9
38	37.3	07.3	98	96.2	18.7	15	155.1	30.1	218	214.0	41.6	278	272.9	53.0
3	38	07	99	97.2	18.9	159	156.	30.3	0	215	41.8	279	273.9	53.2
40	39	07	100	98.2	19	160		30.5	220	216	42.0	280	274.9	
4	40.2	07.8	101	39.1	19.	16	158.0	30.7		$2 i$	2.2		275.8	53.6
42	41.2	08.0	102	100.1	19.5	162	159.0	30.9		217.	42.	282	276.8	53.8
	42.2	08.2	103	101.1	19.7		160.0	31.1		218.9	42.	83	277.8	
44	43.2	08.4	104	102.1	19.8	10	161.0	31.3	22	219.9	42.7	284	278.8	
45	44.2	08.6	105	103.1	20.0	165	162.0	31.5	2	220.9	42.9	285	279.8	5
	45.2	08.8	106	104.1	20.2	166	163.0	31.7		221.8	43.1	286	280.7	
	46.		107	105.0	20.	167	163.	31.9	227	222.8	43.3	287	281.7	5
48	47.1	09.2	108	106.0	20.6	168	164.9	32.1	22	223.8	43.5	288	282.7	55.
49	48.1		109	107.0	20.8	1 (i9	165.9	32.2	209	224.8	43.7	289	283.7	55
50	49	09.5	110		21.0	170	166.9	32.4	230	225.8	43.9	290	284.7	
	50.1	0.9						32.6		20.8		291	285	
52	51.0	$0!.9$	112	109.9	21.4	172	168.8	32.8	232	227.7	44.3	292	286.	55.
53	52.0	10.1	113	110.9	21.6	173	169.8	33.0	233	228.7	44.5	293	287.6	55
$\bigcirc 4$	53.0	10.3	114	111.9	21.8	174	170.8	33.	234	299.7	44.6	294	288.6	5
55	54.0	10.5	115	112.9	21.9	175	171.8	33.4	235	230.7	44.8	295	289.6	56.3
56	55.0	10.7	116	113.9	22.1	176	172.8	33.6	236	231.7	45.0	296	290.6	56.5
	50.0	10.9	117	114.9	22.3	177	173.7	33.8	237	232, 6	45.2	297	291.5	56.
S	56.9	11.1	118	115.8	22.5	178	174.7	34.0	238	233.6	4.5. 4	298	292.5	56.9
59	57.9	11.3	119	116.8	22.7	179	175.7	34.2	239	234.6	45.6	299	293.5	57.1
60	58.9	11.4	120	117.8	22.9	180	176.7	34.3	240	235.6	45.8	300	294.5	57
Dis	Dep	Lat	D	Dep	Lat	Dist.	Dep.	Lat.	Dis	Dep.	Lat.	Dis	Dep.	Lat.
							r 79	re						

	28 difference of Latitude and departure for 12 Degrees. $0^{\text {h }} 48 \mathrm{~mm}$													
Dist.	Lat.	Dep.	Dist.	Lat.	Dep.	Dist.	Lat.	Dep.	Dist	Lat.	Dep.	Dist.	Lat.	Dep.
1	01.0	00	61	59.7	12.7	121	118.4	25.2	181	177.0	37.6	241	235.7	. 1
2	02.0	00.4	62	60.6	12.9	122	119.3	25.4	182	178.0	37.8	242	236.7	50.3
3	02.9	00.6	63	61.6	13.1	123	120.3	25.6	183	179.0	38.0	43	237.7	50.5
4	03.9	00.8	64	62.6	13.3	124	121.3	25.8	184	180.0	38.3	4	238.7	50.7
5	04.9	01.0	65	63.6	13.5	125	122.3'	26.0	185	181.0	38.5	45	239.6	50.9
6	05.9	01.2	66	64.6	13.7	126	123.2	26.2	186	181.9	38.7	246	240.6	1
7	06.8	01.5	67	65.5	13.9	127	124.2	26.4	187	182.9	38.9	247	241.6	51.4
8	07.8	01.7	68	66.5	14.1	128	125.2	26.6	188	183.9	39.1	248	242.6	51.6
9	08.8	01.9	69	67.5	14.3	129	126.2	26.8	189	184.9	39.3	249	243.6	51.8
10	09.8	02.1	70	68.5	14.6	30	127.2	27.0	190	185.8	39.5	250	244.5	52.0
11	10.8	02.3	71	69.4	14.8	131	128.1	27.2	191	186.8	39.7	251	245.5	2
12	11.7	02	72	70.4	15.0	32	129.1	27.4	192	187.8	39.9	252	246.5	52.4
13	12.7	02.7	73	71.4	15,2	33	130.1	27.7	193	188.8	40.1	253	247.5	52.6
14	13.7	02.9	74	72.4	15.4	134	131.1	27.9	194	189.8	40.3	254	248.4	52.8
15	14.7	03.1	75	73.4	15.6	135	132.0	28.1	195	190.7	40.5	255	249.4	53.0
16	15.7	03.3	76	74.3	15.8	136	133.0	28.3	196	191.7	40.8	256	250.4	53.2
17	16.6	03.5	77	75.3	16.0	137	134.0	28.5	197	192.7	41.0	257	251.4	53.4
18	17.6	03.7	78	76.3	16.2	138	135.0	28.7	198	193.7	41.2	25	252.4	53.6
19	18.6	04.0	79	77.3	16.4	139	136.0	28.9	199	194.7	41.4	259	253.3	53.8
20	19.6	04.2	80	78.3	16.6	140	136.9	29.1	200	195.6	41.6	260	254.3	
21	20.5	04.4	81	79.2	16.8	141	37.9	29.3	201	196.6	41.8	261	25	
22	21.5	04.6	82	80.2	17.0	142	138.9	29.5	202	197.6	42.0	262	256.	5
23	22.5	04.8	83	81.2	17.3	143	139.9	29.7	203	198.6	42.2	263	257	. 7
24	23.5	05.0	84	82.2	17.5	144	140.9	29.9	204	199.5	42.4	26	258.2	. 9
25	24.5	05.2	85	83.1	17.7	145	141.8	30.1	205	200.5	42.6	26	259.2	1
$\dot{2}$	25.4	05.4	86	84.1	17.9	146	142.8	30.4	206	201.5	42.8	266	260.2	3
27	26.4	05.6	87	85.1	18.1	147	143.8	30.6	207	202.5	43.0	267	261.	5
28	27.4	05.8	88	86.1	18.3	148	144.8	30.8	208	203.5	43.2			
29	28.4	06.0	89	87.1	18.5	149	145.7	31.0	209	204.4	43.5	269	263	. 9
30	29.3	06.2	90	88.0	18.7	150	146.7	31.2	210	205.4	43.7	270	264	56.1
31	30.3	06.4	91	89.0	18.9	151	147.7	31.4	211	206.4	43.9	271	265.1	
32	31.3	06.7	92	90.0	19.1	152	148.7	31.6	212	207.4	44.1	72	266.1	6
33	32.3	06.9	93	91.0	19.3	153	149.7	31.8	213	208.3	44.3	273	267.0	. 8
34	33.3	07.1	94	91.9	19.5	154	150.6	32.0	214	209.3	44.5	274	268.	. 0
35	34.2	07.3	95	92.9	19.8	155	151.6	32.2	215	210.3	44.7	275	269.	. 2
36	35.2	07.5	96	93.9	20.0	156	152.6	32.4	216	211.3	44.9	276	270.	. 4
37	36.2	07.7	97	94.9	20.2	157	153.6	32.6	217	212.3	45.1	277	270.9	. 6
38	37.2	07.9	98	95.9	20.4	158	154.5	32.9	218	213.2	45.3	278	271.9	
39	38.1	08.1	9	96.8	20.6	159	155.5	33.1	219	2142	45.5	279	272.9	
40	39.1	08.3	100	97.8	20.8	16	156.5	33.3	220	215.2	45.7	280	273.9	58.2
41	40.1	08.5	101	98.8	21.0	161	157.5	33.5	221	216.2	45.9	281	274.9	58.4
42	41.1	08.7	102	99.8	21.2	162	158.5	33.7	222	217.1	46.2	282	275	58.6
43	42.1	08.9	103	100.7	21.4	163	159.4	33.9	223	218.1	46.4	283	276	58.8
44	43.0	09.1	104	101.7	21.6	164	160.4	34.1	224	219.1	46.6	284	277.8	59.0
45	44.0	09.4	105	102.7	21.8	165	161.4	34.3	225	220.1	46.8	285	278.8	59.3
46	45.0	09.6	106	103.7	22.0	166	162.4	34.5	226	221.1	47.0	286	279.	59.5
47	46.0	09.8	107	104.7	22.2	167	163.4	34.7	227	222.0	47.2	287	280.7	59.7
48	47.0	10.0	108	105.7	22.5	168	164.3	34.9	228	223.0	47.4	288	281.7	59.9
49	47.9	10.2	109	106.6	22.7	169	165.3	35.1	229	224.0	47.6	289	282.7	60.1
50	48	10.4	110	107.6	22.9	170	166.3	35.3	230	225.	47.8	290	283.	3
	9.9	10.6	111	108.6	23.1	171	167.3	35.6	231	226.0	48.0	291	284.6	60.5
52	50.9	10.8	112	109.6	23.3	172	168.2	35.8	232	226.9	48.2	292	285.6	60.7
53	51.8	11.0	113	110.5	23.5	173	169.2	36.0	233	227.9	48.4	293	286.6	60.9
54	52.8	11.2	114	111.5	23.7	174	170.2	36.2	234	228.9	48.7	294	287.6	61.1
55	53.8	11.4	115	112.5	23.9	175	171.2	36.4	235	229.9	48.9	295	288.6	61.3
56	54.8	11.6	116	113.5	24.1	176	172.2	36.6	236	230.8	49.1	296	289.5	61.5
57	55.8	11.9	117	114.4	24.3	177	173.1	36.8	237	231.8	49.3	297	290.5	61.7
58	56.7	12.1	118	115.4	24.5	17	174.1	37.0	238	232.8	49.5	298	291.5	$\begin{aligned} & 62.0 \\ & 622 \end{aligned}$
59	57.7	12.3	119	116.4	24.7	179	175.1	37.2	239	233.8 234.8	49.7	299	292.5	2.2
60	58.7	12.5	120	117.4	24.9	180	176.1	37.4	24	234.8	49.9	300	293.	62.4
Dist	Dep	Lat.	Dis	Dep.	at.	Dist.	Dep.	Lat.	Dist.	Dep.	Lat.	Dis	Dep.	Lat.
							For 78	Degrees.					$5 \mathrm{bh}$	12m.

		DIFFERFNCE OF LATITUDE AND DEPARTURE FOR 13 DEGREES. 0 h 62 m												
		00.2											8	
$\stackrel{1}{\sim}$	01	00.4	62		13.9				182		40.9	242		. 4
3	02.9	00.7	63	61.4	14.2		11	2	183	178.3	41.2			\%
4	03.	00.9		,		124	120	27	184	17	41.4	244		54.9
	04.9	01.1	65		14.6	125	12		185			245	238	55.1
6	05.8	01.3	66	64.3	14.8	126	12	28.3	186	181.2				
7	06.8	01.6	67	65.3		127	12	28	1	18	42.1	247		
8	07.8	01.8	68	66.3	15.3	128	12		188		.	248		. 8
	08.8	02.0	69	67.2		129	12	29.0	190			249		
10	09.7	02.2	70	68.2	15.7	130	12	29	190	185.1	42.7	250	243.6	56.2
										186.1				
12	11		72	70.2		132		29	19	187.1	43.2	252		56.7
13	12.7	02.9	73	71.1			129					253	246.5	56.9
14	13.6	03.1	7	72.1	16	134	130	30.1	194					
15	14.6	03.4	75	73.1	16.9	135	13	30.	195	19	9	255	248.5	57.4
16	15.	03.6	76			136	13				44.1	6	24	. 6
17	16.6	03.8	77	75.0	17	13	13	30.8	197		44.3			
18	17.	0	78	76.0	17.5	138	134.5	31	198	192.9	44.5	258	251.4	
19	18		79					31.3	199		44.8	259	252.4	. 3
20	19	04	S0	77.9	18.0	140	136.4		200		45.0	0		. 5
21														
2	21.4	04.9	82											. 9
23	22.4	05.2	83	S0.9	18	143	13	32	203			26.		
24	23.4	05.4	84	S1.8	18.9	144	1	32	204	19	45.9	264	257.2	
25	24.4	05.6	85	2.8				3		19	46.1	265	258.2	59.6
2	25.3	05.8	86	83.	10.	146	14	3	20	20	4	266		
27	26.3	06.1	87	84.8	19.6			33.1	207	201		267		
2	27.3	06.3	8	.			14			2	46.8	8		60.3
29	28.3	06.5	89		20.0		145			20	47.0	2		
30	29	06	90								47.2	1		60.7
														61.0
32	31	07.2	92			152			212		47.7			61.2
33	32.2	07.4	93	0.6	20.	15					9		266.0	. 4
	33.1	07.6	94	,	21.			34	214	208.	48		26	61.
	34.1	07.9	95			155				209.	-48.		268	61.9
36	35.	08.1	96	93.5	21	15	152			21			268	62.1
	36.1	08.3	97	4.	21.8	157	153		217	21.	48.8	277	26	. 3
	37.0		98										21	62.5
39	38.0	08.8	99			159	15					279		628
40	39.0	09.0	100			160			22		5	280		63.0
4														
4	40.9	09.4	102	99	22	1		36.			49.9			
	41.9	09	1			163	15	36.7		21	50.		275.7	63.7
	42.9	09.9	10				159				50.			
45	43.8	10.1	105	102	23	165	160.8	37.1		219.2	50.6	285		,
4	44.8	10.3	106	10	23.8	166	16	37		220.	50.		278.7	64.3
4	45.8	10.6	10				16				51.			64.6
48	46.8	10.8	108	105		1	163.			22.2	51.3	288		8,
4	47.7	11.0	109		24.5	169	16	38.0	229	223.1	51.5	28	20	65.0
5	48.7	11.	11								51.7	290		
	4	11.	111									29		65.5
52	50.7	11.7	1	110.		1	167	38.			52.2	292	28	05.1
	51.6	11.9	113	110.	25.4	173	168.6	38.9	233	227.0		,	285	05.
	52	12	11	111.		17	169.5	39.1		225.	52.6	294		0.1
	53.6	12.4	115	112.	2	175	170.	39.4	2	229.	5:.9	295	287	66.4
	54.6	12.6	116	113.0	20	176	171.5	39.6	236	230.0	53.	296	285	66.6
57	55.5	12.8	117	114.0		177	172.5	39.8	237	230.			28.	66.8
5	56.5	13.0	118	11	2	178	173.4	40.0	238	23	53.5		290	67.0
59	57.5	13.3	11.	116.0	26.8	179	174.4	40.3	239	232.9	8	299	29	67.3
60	58	13.5	120	116.9	27.0	18	175.4	40.5	240	233.8	54.0	300	29	67.5
Di	Dep	t.	D		Lat.	st.	Dep.	Lat.	Dis	Dep.	Lat.		Dep.	Lat
							177							8m.

difference of latitude and dfrarture for 14 DEGREES. 0 品 66 m .														
Dis:-	Lat.	Dep.	Dist							Lat	De			
	01.0													
2			62		15.0	122	118.4	29.5	182			42		
3		00	63	61.1	15.2	123	119.3	29.8	183		44.3	243	235.8	58.8
4	03.9	01.0	64	62.1	15.5	124	120.3	30.0	184	17	44	44	236.8	. 0
5	04.9	01.2	65	63.1	15.7	125	121.3	30.2	185	179.	44.8	245	237.7	. 3
6	05.8	01.5	66	. 0	16.0	126	122.3	30.5	186	180.	45.0	46	238.7	. 5
7	06.8	01	6.	65.0	16.2	127	123.2	30.7	18	181.4	45.2	47	239.7	59.8
8	07.8	01.9	68	66.0	16.5	128	124.	31.0		182. 4	45.5		240.6	60.0
9	08.7	02	69	67.0	16.7	129	125	31		183.4	45.7		241	
10	09.7	02.4	70		16.9	130	12	31.4	190	184	46.0	250	24	
	10.7										6.2			
12	11.6	02.9	72	69.9			128	31.9	92	18	46.4	52		
13	12.6	03.1	73	70.8	17.		129	32.2		18	46	53	$245 . b$	61.2
14	13.6	03	74	71.8	17.	134	130.0	32.	194	18	46	54	46.5	61.4
	14.6	03.6	75	72.8		135	131.0		195	189	47.2	55	247.4	
16	15.5	03	76	73.7	18.	136	132.	32.9		190	47	256	248.4	
	16.5	04	7	74.7		137	132.2		197	19	47.7		249.4	(i2.2
		04.4	78				133			19	4.9	58		
19	18.4	04.6	79				134			193.1		259		
20	18		S0											
21												61		
							137		02	196	48.9	62		
							138			197	49.1			
							139				9.	64		
							140.			198	49.6	65		
							141	35.	0	198	49.8	266		
							142.	35.	207	00,	50.1	267	259	
		06.8			21.3	148	143	35.8	208	201	50.3	268	260	¢4.8
					. 1.5	149	144	36.0	20	202	50.6	269	26	
30			90	87.						203	50.8			
							146				51.0	271		
			92	89.3	22.3	152	147	66.8	21	20.	51.3	72	63	
	32.0		93	90.2	22.5	153	148	37.0	21	206.	51.5	,	26	
	33.0	08.2	94	91.2	2.7	154	149	37.3	21	207.	51.8	274	265	
	34.	08.5	95	92.2	3.0	155	150	\%	21	208	52.0	275		
	34.	08	96	93.1	23.2	156	151		21	209	5	276	267	
	35.	09	97	94.	23.5		152		21	210	5	277	268	
	36	09.2	98				153.3		21	211		278	268	
39	37	09.4	99				154.3			212			27	
40			100											
	40.8	10	102				157.2	39.2						
43	41.7	10.4	10.	99.9	24.9		158.2	39.4						
	42.7	10.6	104	100		164	159.1	39.7			5			88.
	43.7	10.9	105	101			160.1				54.			
	44.6	11.1	106	10			161	.		21	51.7		277	
	45.	11.	107	103.8			162.	40.4	227	220	54.9			
	46.6	11.6	108	104			163	.						
		11.9	109	10		169		4.9		22	55.4		280.4	
50														
														0.4
			112				168.	41.6	25	225	.	292	8.	0.
			1	109.			167	41.9	233	226.	56.4	293		70.9
		13.	114	110.6		174	168	42.1	234	227.	56.6	29	咗	71.
		13.3	115	111.6	,	175	169.	42.3	2	228.0	56.9	295	86	1.
		13.5	116	112.6	28.	176	170	42.6	236	229.0	57.	29		
		13.8	117	113.5	25.3	177	171	42	23	230.	57	297		
	56.3	14.0	118	114			17			230				72.1
	51.2	14.	119	115			173	43.3			57.8	29		72
60	58	14.5	120	116	29	180	174	43.5	240	232.9	58.1			72.6
Dish	Dep.	In					Dep	Lat.		Dep.			Dep.	Lat.

DIFFERENCE OF LATITUDE AND DEPARTURE FOR 15 DEGREES. 1 h 0 m .

Dist	Lat.	Dep.	Dist.	Lat.	Dep.	Dist.	Lat.	Dep.	Dist.	L2	Dep.	Dist.	Lat.	Dep.
,	01.0	00.3	61	58.9	15.8	121	116.9	31.3	181	174.8	46.8	241	232.8	62.4
2	01.9	00.5	62	59.9	16.0	122	117.8	31.6	182	175.8	47.1	242	233.8	62.6
3	02.9	00.8	63	60.9	16.3	123	118.8	31.8	183	176.8	47.4	243	234.7	62.9
4	03.9	01.0	64	61.8	16.6	124	119.8	32.1	184	177.7	47.6	244	235.7	63.2
5	04.8	01.3	65	62.8	16.8	125	120.7	32.4	185	178.7	47.9	245	236.7	63.4
6	05.8	01.6	66	63.8	17.1	126	121.7	32.6	186	179.7	48.1	246	237.6	63.7
7	06.8	01.8	67	64.7	17.3	127	122.7	32.9	187	180.6	48.4	247	238.6	63.9
S	07.7	02.1	68	65.7	17.6	128	123.6	33.1	188	181.6	48.7	248	239.5	64.2
9	08.7	02.3	69	66.6	17.9	129	124.6	33.4	189	182.6	48.9	249	240.5	64.4
10	09.7	02.6	70	67.6	18.1	130	125.6	33.6	190	183.5	49.2	250	241.5	64.7
11	10.6	02.8	71	68.6	18.4	131	126.5	33.9	191	184.5	49.4	251	242.4	0
12	11.6	03.1	72	69.5	18.6	132	127.5	34.2	192	185.5	49.7	252	243.4	65.2
13	12.6	03.4	73	70.5	18.9	133	128.5	34.4	193	186.4	50.0	253	244.4	65.5
14	13.5	03.6	74	71.5	19.2	134	129.4	34.7	194	187.4	50.2	254	245.3	65.7
15	14.5	03.9	75	72.4	19.4	135	130.4	34.9	195	188.4	50.5	255	246.3	66.0
16	15.5	04.1	76	73.4	19.7	136	131.4	35.2	196	189.3	50.7	256	247.3	66.3
17	16.4	04.4	77	74.4	19.9	137	132.3	35.5	197	190.3	51.0	257	248.2	66.5
18	17.4	04.7	78	75.3	20.2	135	133.3	35.7	198	191.3	51.2	258	249.2	66.8
19	18.4	04.9	79	76.3	20.4	139	134.3	36.0	199	192.2	51.5	259	250.2	67.0
20	19.3	05.2	80	77.3	20	140	135.2	36.2	200	19	51.8	260	251.1	67.3
2	20.3	05	81	2	21.0	1	136.2	36.5	201	1	52.0	261	252.1	67.6
22	21.3	05.7	82	79.2	21.2	142	137.2	36.8	202	195	52.3	262	253.1	67.8
23	22.2	06.0	83	80.2	21.5	143	138.1	37.0	203	196.1	52.5	263	254.0	68.1
24	23.2	06.2	S4	81.1	21.7	144	139.1	37.3	204	197.0	52.8	264	255.0	68.3
25	24.1	06.5	85	82.1	22.0	145	140.1	37.5	205	198.0	53.1	265	256.0	68.6
26	25.1	06.7	86	83.1	2 S .3	146	141.0	37.8	206	199.0	53.3	266	256.9	68.8
27	26.1	07.0	87	84.0	22.5	147	142.0	38.0	207	199.9	53.6	267	257.9	69.1
28	27.0	07.2	88	85.0	22.8	148	143.0	38.3	208	200.9	53.8	268	258.9	69.4
29	28.0	07.5	89	86.0	23.0	149	143.9	38.6	209	201.9	54.1	269	259.8	69.6
30	29.0	07.8	90	86.9	23.3	150	144.9	38.8	210	202.8	54.4	270	260.8	69.9
31	29.9	18.0	91		23	151	145.9	39.1	211	203.8		271	261.8	70.1
32	30.9	08.3	92	88.9	23.5	152	146.8	39.3	212	204.8	54.9	272	262.7	70.4
33	31.9	08.5	93	89.8	24.1	153	147.8	39.6	213	205.7	55.1	273	263.7	70.7
34	32.8	08.8	94	90.8	24.3	154	148.8	39.9	214	206.7	55.4	274	264.7	70.9
35	33.8	09.1	95	91.8	24.6	155	149.7	40.1	215	207.7	55.6	275	265.6	71.2
36	34.8	09.3	96	92.7	$\because 4.8$	156	150.7	40.4	216	208.6	55.9	276	266.6	71.4
37	35.7	09.6	97	93.7	25.1	157	151.7	40.6	217	209.6	56.2	277	267.6	71.7
38	36.7	09.8	98	94.7	25.4	158	152.6	40.9	218	210.6	56.4	278	268.5	72.0
39	37.7	10.1	99	95.6	25.6	159	153.6	41.2	$\stackrel{19}{ } 19$	211.5	56.7	279	269.5	72.2
40	35.6	10.4	100	96.6	25.9	160	154.5	41.4	220	212.5	56.9	280	270.5	72.5
41	39.6	10.6	101	97.6	26.1	161	155.5	41.7	221	213.5	57.2	281	271.4	72.7
42	40.6	10.9	102	98.5	26.4	162	156.5	41.9	222	214.4	57.5	282	272.4	73.0
43	41.5	11.1	103	99.5	26.7	163	157.4	42.2	223	215.4	57.7	283	273.4	73.2
44	42.5	11.4	104	100.5	26.9	164	158.4	42.4	224	216.4	58.0	284	274.3	73.5
45	43.5	11.6	105	101.4	27.2	165	159.4	42.7	225	217.3	58.2	285	275.3	73.8
46	44.4	11.9	106	102.4	27.4	166	160.3	43.0	226	218.3	58.5	286	276.3	74.0
47	45.4	12.2	107	103.4	27.7	167	161.3	43.2	227	219.3	58.8	287	277.2	74.3
48	46.4	12.4	108	104.3	28.0	168	162.3	43.5	228	220.2	59.0	288	278.2	74.5
49	47.3	12.7	109	105.3	28.2	169	163.2	43.7	229	221.2	59.3	289	279.2	74.8
50	48.3	12.9	110	106.3	28.5	170	164.2	44.0	230	222.2	59.5	290	280.1	75.1
	49.3	13.2	111	107.2	28.7	171	165.2	44.3	231	223.1	59.8	291	281.1	75.3
52	50.2	13.5	112	108.2	29.0	172	166.1	44.5	232	224.1	60.0	292	282.1	75.6
53	51.2	13.7	113	109.1	29.2	173	167.1	44.8	233	225.1	60.3	293	283.0	75.8
54	52.2	14.0	114	110.1	29.5	174	168.1	45.0	234	226.0	60.6	294	284.0	76.1
55	53.1	14.2	115	111.1	29.8	175	169.0	45.3	235	227.0	60.8	295	284.9	76.4
56	54.1	14.5	116	112.0	30.0	176	170.0	45.6	236	228.0	61.1	296	285.9	76.6
57	55.1	14.8	117	113.0	30.3	177	171.0	45.8	237	228.9	61.3	297	286.9	76.9
58	56.0	15.0	118	114.0	30.5	178	171.9	46.1	238	229.9	61.6	298	287.8	77.1
59	57.0	15.3	119	114.9	30.8	179	172.9	46.3	239	230.9	61.9	299	288.8	77.4
60	58.0	15.5	120	115.9	31.1	180	173.9	46.6	240	231.8	62.1	300	289.8	771.6\|
Dis	Dep.	Lat.	D	Dep.	Lat.	st.	Dep.	Lat.	Dist.	Dep.	Lat.	Dist.	Dep.	Lat.
Foir 75 Degrees.														

DIFFERENCE OF LATITUDE AND DEPARTURE FOR 17 DEGREES. 1 hm 8 m

1) ist.	Lat.	Dep.	Dist.	Lat.	Dep.	Dist	Lat.	Dep.	Dist.	Lat.	Dep.	Dist.	Lat.	ep.
1	01.0	00.3	61	58.3	17.8	121	115.7	35.4	181	173.1	52.9	241	230.5	. 5
2	01.9	00.6	62	59.3	18.1	122	116.7	35.7	182	174.0	. 53.2	242	231.4	. 8
3	02.9	00.9	63	60.2	18.4	123	117.6	36.0	183	175.0	53.5	243	232.4	71:0
4	03.8	01.2	64	61.2	18.7	12	118.6	36.3	184	176.0	53.8	244	233.3	71.3
5	04.8	01.5	65	62.2	19	125	119.5	36.5	18	176.9	54.1	245	234.3	71.6
6	05	01	66	63.1	19.3	126	120	36.8	186	177.9	54.4	246	235.3	71.9
7	00	02.0	67	4.1	19	12	12	37.1	187	178.8	54.7	247	236.2	72.2
8	07	02.3	68	65.0	19.9	12	12.	37.4	188	179	55.0	248	237.2	72.5
9	08.6	02	69	66.0	20	129	123.4	37.7	189	180.7	55.3	9	238.1	72.8
10	09.6	02.9	70	6.9	20.5	130	124.3	38.0	190	181.7	55.6	250	239.1	73.1
11	10	03.2	71	7.9	20	131	12	38.3	191	182.7	55.8	251	240.0	3.4
12	11.5	03	72	68.9	21	132	126.2	38.6	192	183.6	56.1	252	241.0	73.7
13	12.4	03	73	69.8	21.3	133	127.2	38.9	193	184.6	56.4	253	241.9	74.0
14	13	04.1	74	70.8	21.6	134	128.1	39.2	194	185.5	56.7	254	242.9	74.3
15	14.3	04.4	75	71.7	21.9	135	129.1	39.5	195	186.5	57.0	255	243.9	74.6
16	15.3	04.7	76	72.7	22.2	136	130.1	39.8	196	187.4	57.3	6	244.8	74.8
17	16.3	05.0	77	73.6	22.5	137	131.0	40.1	197	188.4	57.6	7	245.8	75.1
18	17.2	05.3	78	74.6	22.8	138	132.0	40.3	198	189.3	57.9	258	246.7	75.4
19	18	05.6	79	75.5	23.1	139	132.9	40.6	199	190.3	58.2	259	247.7	75.7
20	19.1	05.8	80	76.5	23.4	140	133.9	40.9	200	191.3	58.5	仡	248.6	76.0
21	20	06	81	77.5	23.7	141	134.8	41.2	1	192.2	58.8	1	249.6	. 3
22	21.0	06.	82	78.4	240	142	135	41.5	202	193.	59.1	62	250.6	. 6
23	22.0	06.7	83	79.4	24.3	43	136	41.8	203	194	59.4	263	251.5	. 9
24	23	07.0	84	. 3	24.6	144	137	42.1	204	195.1	59.6	264	252.5	. 2
25	23	07.3	85	1.3	24.9	145	138.7	42.4	205	196.0	59.9	265	253.4	. 5
26	24.9	07.6	86	. 2	25.1	146	139.6	42.7	206	197.0	60.2	266	254.4	. 8
27	25.8	07.9	87	. 2	25.4	47	140.6	43.0	207	198.0	60.5	267	255.3	. 1
28	26.8	08.2	88	84.2	25.7	148	141.5	43.	20	198.9	60.8	26	256.3	78.4
29	27.7	08.5	89	. 1	26.0	149	142.5	43.6	209	199.9	61.1	269	257.2	78.6
30	28.7	08.8	90	6.1	26	150	143.4	3.9	210	200.8	61.4		258.2	
31	29	09	91	87.0	26.6	151	14	44.1	211	201.8	61.7	271	$\because 59.2$. 2
32	30.6	09	92	88	26	152	14	44.4	212	202.	62.0	272	260.1	. 5
33	31.6	09	93	88	27	153	14	44.7	213	203.7	62.3	273	261.1	. 8
34	32.5	09	94	89	27	15	147	45.0	214	204.	62.6	274	262.0	. 1
35	33.5	10.2	95	0.8	27	155	148.2	45.3	215	205	62.9	275	263.0	80.4
36	34.4	10.5	96	1.8	28	156	149.2	45.6	21	206.	63.2	276	263.9	80.7
37	35.4	10.8	97	92.8	28	157	150.1	45.9	217	207.	63.4	277	264.9	81.0
38	36.3	11.1	98	.7	28	158	151.1	46.2	218	208.5	63.7	278	265.9	81.3
39	37.3	11.4	99	4.7	28.9	159	152.1	46.5	219	209.4	64.0	279	266.8	81.6
40	38	11.7	100	5.6	29.2	160	153.0	46.8	220	210.	64.	280	267.8	81.9
41	39.2	12.0	101	. 6	29.5	161	154.0	47.1	221	211.3	64.6	281	268.7	.
42	40.2	12.3	102	97.5	29.8	162	154.9	47.4	222	212.3	64.9	282	269.7	. 4
43	41.1	12.6	103	98.5	30.1	163	155.9	47.7	223	213.3	65.2	283	270.6	82.7
44	42.1	12.9	104	99.5	30.4	164	156.8	47.9	224	214.2	65.5	284	271.6	83.0
45	43.0	13.2	105	100.4	30.7	165	157.8	48.2	225	215.2	65.8	285	272.5	83.3
46	44.0	13.4	106	101.4	31.0	166	158.7	48.5	226	216.1	66.1	286	273.5	83.6
47	44.9	13.7	107	102.3	31.3	167	159.7	48.8	227	217.1	66.4	287	274.5	83.9
48	45.9	14.0	108	103.3	31.6	168	160.7	49.1	228	218.0	66.7	288	275.4	84.2
49	46.9	14.3	109	104.2	31.9	169	161.6	49.4	229	219.0	67.0	289	276.4	84.5
50	47.8	14.6	110	105.2	32.2	170	162.6	49.7	230	220.0	67	290	277.3	84.8
	148.8	14.9	111	106.1	32.5	171	163.5	50.0	231	220.9	67.5	291	278.3	85.1
52	49.7	15.2	112	107.1	32.7	172	164.5	50.3	23	221.9	67.8	292	279.2	85.4
53	50.7	15.5	113	108.1	33.0	173	165.4	50.6	28	222.8	68.1	293	280.2	85.7
54	51.6	15.8	114	109.0	33.3	174	166.4	50.9	234	223.8	68.4	294	281.2	86.0
55	52.6	16.1	115	110.0	33.6	175	167.4	51.2	235	224.7	68.7	295	282.1	86.2
56	53.6	16.4	116	110.9	33.9	176	168.3	51.5	236	225.7	69.0	296	283.1	86.5
57	54.5	16.7	117	111.9	34.2	177	169.3	51.7	237	226.6	¢¢ 3	297	284.0	86.8
58	55.5	17.0	118	112.8	34.5	178	170.2	52.0	238	227.6	69.0	298	285.0	87.
59	56.4	17.2	119	113.8	34.8	18	171.2	52.3	239	228.6	69.9	299	285.9	87.4
60	57.	17.	120	114.8	35	180	172.1	52.6	240	229.	70.2	300	286.9	87.7
Dist.	Dep. 1	Lat.	Dist.	Dep.	Lat.	Dist.	Dep.	Lat.	Dis	Dep.	Lat.	Dis	Dep.	Lat,
							r 73	rees.						52 m .

DIFFERENCE														
st.	Lat.	Dep.	Dist.	Lat.	Dep.	Dist.	- Lat.	Dep.	Di	Lat.	Dep.	Dist.	Lat.	Dep.
1	01	00	61	58.0	18.9	121	11	37.4	181			241	2	
2	01.9	00.6	62	59.0	19.2	122	116.0	37.7	182	173.1	56.2	:	230	. 8
3	02.9	00.9	63	59.9	19.5	123	117.0	38.0	183	174.0	56.6	243	231.1	75.1
4	03.8	01.2	64	60.9	19.8	124	117.9	38.3	184	175.0	56.9	244	232.1	75.4
5	04.8	01.5	65	61.8	20.1	125	118.9	38.6	185	175.9	57.2	245	233.0	75.7
6	05.7	01.9	66	62.8	20.4	126	119.8	38.9	186	176.9	57.5	246	234.0	76.0
7	06.7	02.2	67		20.7	127	120.8	39.2	18	177.8	57.8	247	234.9	76.3
8	07.6	02.5	68	64.7	21.0	128	121.7	39.6	188	178.8	58.1	248		76.6
9	08.6	02.8	69	65.6	21.3	129	122.7	39.9	189	179.7	58.4	249	236.8	「6.9
10	09.5	03	70	66	21.6	1:	12	40.2	190	180.7	58.7	250	237.8	77.3
11	10.5	03	71	67.5	21.9	131	12	.	191	1	59.0	1	7	. 6
12	11.4	03.7	72	68.5	22.2	132	125.5	40.8	192	182.6	59.3	252	239.7	77.9
13	12.4	04.0	73	69.4	22.6	133	126.5	41.1	193	183.6	59.6	253	240.6	78.2
14	13.3	04.3	74	70.4	'22.9	134	127.	41.4	194	184.5	59.9	254	211.	78.5
15	14.3	04.6	75	71.3	23.2	135	128.4	41.7	195	185.5	60.3	255	242.5	78.8
16	15.2	04.9	76	72.3	23.5	136	129.3	42.0	196	186.4	60.6	256	243.5	79.1
17	16.2	05.3	77	73.2	23.8	137	130.3	42.3	197	187.4	60.9	257	244.4	79.4
18	17.1	05.6	78	74.2	24.1	138	131.2	42.6	198	188.3	61.2	258	245.4	79.7
19	18.1	05.9	79	75.1	24.4	139	132.2	43.0	199	189.3	61.5	259	246.3	80.0
20	19.	06.2	80	76.1	24	1	13	43.3	200	190.2	61.8	260	247.3	80.3
2	20.0	06.5	81	7.0	25.0	141	13	43.6	201	191.2	62.1	,	2	80.7
2%	20.9	06.8	82	78.0	25.3	142	135.1	43.9	202	192.1	62.4	262	249.2	81.0
23	21.9	07.1	83	78.9	25.6	143	136.0	44.2	203	193.1	62.7	263	250.1	81.3
24	22.8	07.4	84	79.9	26.0	144	137.0	44.5	204	194.0	63.0	264	251.1	81.6
25	23.8	07.7	85	90.8	26.3	145	137.9	44.8	205	195.0	63.3	265	252.0	81.9
26	24.7	08.0	86	81.8	26.6	146	138.9	45.1	206	195.9	63.7	266	253.0	82.2
27	25.7	08.3	87	82.7	26.9	147	139.8	45.4	207	196.9	64.0	267	253.9	82.5
28	26.6	08.7	88	83.7	27.2	148	140.8	45.7	208	197.8	64.3	268	254.9	82.8
29	27.6	09.0	89	84.6	27.5	149	141.7	46.0	209	198.8	64.6	269	255.8	83.1
30	28.5	09.3	90	85.6	27.8	150	142.7	46.4	210	199.7	64.9	270	256.8	83.4
31	29	09.6	91	86.5	28.1	151	14	46.7	211	200	65.2	271	7	83.7
32	30.4	09.9	92	87.5	28.4	152	144.6	47.0	212	201.6	65.5	272	258.7	84.1
33	31.4	10.2	93	88.4	28.7	153	145.5	47.3	213	202.6	65.8	273	259.6	84.4
3	32.3	10.5	94	89.4	29.0	154	146.5	47.6	214	203.5	66.1	274	260.6	84.7
35	33.3	10.8	95	90.4	29.4	155	147.4	47.9	215	204.5	66.4	275	261.5	85.0
36	34.2	11.1	96	91.3	29.7	156	148.4	48.2	216	205.4	66.7	276	262.5	85.3
37	35.2	11.4	97	92.3	30.0	157	149.3	48.5	217	206.4	67.1	277	263.4	85.6
38	36.1	11.7	98	93.2	30.3	158	150.3	48.8	218	207.3	67.4	278	264.4	85.9
39	37.1	12.1	99	94.2	30.6	159	151.2	49.1	219	208.3	67.7	279	265.3	86.2
40	38.0	12.4	100	95.1	30.9	160	152.2	49.4	220 '	209.2	68.0	280	266.3	86.5
41	39.0	12.7		.	31.2			49.8	221		68.3		267.2	86.8
42	39.9	13.0	102	97.0	31.5	162	154.1	50.1	222	211.1	68.6	282	268.2	87.1
43	40.9	13.3	103	98.0	31.8	163	155.0	50.4	223	212.1	68.9	283	269.1	87.5
44	41.8	13.6	104	98.9	32.1	164	156.0	50.7	224	213.0	69.2	284	270.1	87.8
45	42.8	13.9	105	99.9	32.4	165	156.9	51.0	225	214.0	69.5	285	271.1	88.1
46	43.7	14.2	106	100.8	32.8	166	157.9	51.3	226	214.9	69.8	286	272.0	88.4
47	44.7	14.5	107	101.8	33.1	167	158.8	51.6	227	215.9	70.1	287	273.0	88.7
48	45.7	14.8	108	102.7	33.4	168	159.8	51.9	228	216.8	70.5	288	273.9	89.0
49	46.6	15.1	109	103.7	33.7	169	160.7	52.2	229	217.8	70.8	289	274.9	89.3
50	47.6	15.5	110	104.6	34.0	170	161.7	52.5	$\underline{230}$	218.7	71.1	290	275.8	89.6
51	48.5	15.8	111	105.6	34.3	171	16.	52.8	231	219.7	71.4	291	276	89.9
52	49.5	16.1	112	106.5	34.6	172	163.6	53.2	232	220.6	71.7	292	277.	90.2
53	50.4	16.4	113	107.5	34.9	173	164.5	53.5	233	221.6	72.0	293	278.7	90.5
54	51.4	16.7	114	108.4	35.2	174	165.5	53.8	234	222.5	72.3	294	279.6	90.9
55	52.3	17.0	115	109.4	35.5	175	166.4	54.1	235	223.5	72.6	295	280.6	91.2
56	53.3	17.3	116	110.3	35.8	176	167.4	54.4	236	224.4	72.9	296	281.5	1.5
57	54.2	17.6	117	111.3	36.2	177	168.3	54.7	237	225.4	73.2	297	282.5	91.8
58	55.2	17.9	118	112.2	36.5	178	169.3	55.0	238	226.4	73.5	298	283.4	92.1
59	56.1	18.2	119	113.2	36.8	179	170.2	55.3	239	227.3	73.9	299	284.4	92.4
60	57.1	18.5	120	114.1	37.1	180	171.2	55.6	$\because 40$	228.3	74.2	300	285.3	92.7
${ }^{\text {isist. }}$	Dep.	Lat.	Dist. 1	Dep.	Lat.	Dist.	Dep.	Lat.	Dist.	Dep.	Lat.	Dist.	Dep.	Lat.
							For 72	ees.					$4^{\text {h }}$	$48^{\text {in. }}$

DIFFERENCE 0														
Dist.	Lat.	Dep.	Di		Dep.			Dep.	D			D	Lat.	D
1	00	00.3			2	12	113.7	41	181	170.1			226.5	82.4
2	01.9	00.7	62	8.3	21.2	122	114.6	41.7	182	171.0	62	242	227.4	2.8
3	02.8	01.0	63	59.2	21.5	123	115.6	42.1	183	172.0	62.6	243		83.1
4	03.8	01.4	6	10.1	21.9	12	116.5	42.4	15	172.9	62	244	229.3	. 5
5	04	01.7	65	61.1	22.2	5	117.5	42.8	185	173.8	63	5	230.2	3.8
6	05.6	02.1	66	2.0	22.6	126	118.4	43.1	186	174.8	63.6	246	231.2	4.1
7	06	02	67	3.0	22	12	119	43	187	175.7		47	232.1	. 5
8	07	02.7	68	3.9	23.3	128	120.3	43.8	188	176.7	64.3	248	233.0	4.8
9	08.5	03.1	69	64.8	23.6	9	121.2	44.1	189	177.6	64.6	249	234.0	5.2
10	09	03	70	65.8	23	1:	12	44	19	5	65.0	0	9	5
11	10	03.8	71	66.7	24.3	131	123.1	44.8	191		65.3	251	235.9	8,
12	11.3	04.1	72	67.	24.6	132	124.0	45	192	18	65.	252	236.8	2
13	12.2	04.4	7	68.6	25.0		125.0	45.5	193	181.4	66.0	253	237.7	6.5
I	13	04.8	74	.	25	134	125.9	45	19	18		254		
15	14.1	05.1	75	70.5	25.7	135	126.9	46.2	195	183.2	66.7	255	23	87.2
16	15.0	05.5	76	71.4	26.0	36	127.8	46.5	196	184.2	67.0	256	240.6	87.6
17	16.	05	7	7	26		128.7	46	197	185.1	67	257	. 5	7.9
18	16.9	06.2	78	73.3	26.7	138	129.7	47.2	198	186.1	67.7	258	242.4	88.2
19	17.9	06.5	79	74.2	27.0	139	130.6	47.5	199	187.0	68.1	259	243.4	8.6
20	18	06	8	75			131.6	47.9	200		68	0	. 3	9
2		O	81	76.1					201		68.7			,
2	20.7	07.5	82	77.1	28.0	142	13	48.6	202	18	69	2	246.2	6
23	21.6	07.9	8	78.0	28.	3	134.	48.9	203	190	69.4	263	247.1	0.0
24	22.6	08.2	8	78.9	28		135.	49	20	191.	69		248.1	3
25	23.5	08.6	85	79.9	29.	45	136.3	49.6	205	192.	70.1	265	24	90.6
26	24.4	08.9	86	80.8	29.	46	137.2	49.9	206	193.6	70.5	266	250.0	91.0
	25.4	09.2	8	81.8	29.		138.	50.3	207	194.5	70	267		91.3
28	26.3	09.6	88	82.	30.	8	139.1	50.6	208	195.5	71.	268	25	91.7
29	27.3	09.9	89	83.6	30.	9	140.0	51.0	209	196.4	71.5	269	252.8	2.0
30	28	10	90				141.0	51.3	210	197.3	71.8	0		. 3
31														7
	30	10.9	92	86.5	31.		142.8	52	21	199.	72.	2	2	0
33	31.0	11.3	93	87.	31.	153	143.8	52.	213	200.	72.	27	256.5	3.4
	31.9	11.6	94	8	32.1	54	144.7	52.7	214	201.1	73.2	274	257.5	3.7
	32	12.0	95	81.	32.5	15	145.7	53.0	215	202.0	73.5	275	258.4	94.1
36	33.8	12.3	96	90.	32	156	146.6	53.4	216	203.0	73.9	276	259.4	4.4
37	34.8	12.7	97	1.2	33.	157	147.5	53.	217	203.9	74.2	277	260.3	7
3	35.7	13.0	98	2.	33.5	158	148.5	54	218	204.9	74.6	278	261.2	95.1
39	36.6	13.3	99	93.0	33.9	159	149.4	54.4	219	205.8	74.9	279	262.2	95.4
40	37.6	13.7	100	9	34.2	160		54.7	220	206.7	75.	8	263.1	8
													264.1	6.
42	39.5	14.4	102	95.	34	1	152.2	55.4	222	208.	75.9	28	265.	96.4
43	40.4	14.7	103	96.8	35.2	163	153.2	55.7	22	209.6	76.3	283	265.9	96.8
44	41.3	15.0	104	97.7	35		154.1	56.1	22	210.	76.6	4	266.9	97.1
45	42.3	15	105	98.	35.	165	155.0	56.4	22	211.	77.0	285	267.8	97.5
46	43.2	15.7	106	99.6	36.3	166	156.0	56.8	226	212.4	77.3	286	268.	97.8
47	44.2	16.1	107	100.5	36		156.9	57	2	213.3	77.6	28	269	98.2
48	45.1	16.4	108	101.5	36.		157.9	57.5	$2:$	214.2	78.0	28	270.6	98.5
49	46.0	16.8	109	102.4	37.3	169	158.8	57.8	229	215.2	78.3			98.8
50	47.0	17.1	110	10	37	170	159.7	58.1	2	216.1	78.7	29	27	99.2
51	4	17.	111						2	217.	.	201	273	9.5
52	48.9	17.8	112	105.2	38	172	161.6	58.8	232	218.0	79.3	292	274.4	99.9
53	49.8	18.1	113	106.2	38.6	173	162.6	59.2	233	218.9	79.7	293	275.3	100.2
5	50.7	18.5	114	107.1	39.0	174	163.5	59.5	234	219.9	80.0	294	276.3	100.6
55	51.7	18.8	115	108.1	39.3	175	164.4	59.9	235	220.8	80.4	295	$\stackrel{277.2}{ }$	100.9
56	52.6	19.2	116	109.0	39.7	176	165.4	60.2	236	221.8	80.7	296	278.1	101.2
57	53.6	19.5	117	109.9	40.0	177	166.2	60.5	237	222.7	81.1	29%	279.1	101.6
58	54.5	19.8	118	110.9	40.4	17*	167.3	60.9	238	223.6	81.4	298	280.	01.9
59	55.4	20.2	119	111.8	40.7	179	168.2	61.2	239	224.6	81.7	29	281.0	102.3
60	56.4	20.5	120	112.8	41.0	180	169.1	61.6	$\because 40$	225.	82.1	300	281.9	102.6
Dist	Dep	Lat.	Dist	Dep.		Dist.	Dep.	Lat.	Dist. 1	Dep.	Lat.	Dist.	Dep.	Lat.
							. 70	rees						40^{12}

		DIFFERENCE OF LATITUDE AND DEPARTURE FOR 93 DEGREES. 1 h 32 m .												
	Lat.	D	Di											
1	00													
2	01.8	00.8	62	57.	24.2	122	112.3	47.7	15			24:	จัค 8	6
S	02.	01	63	58.0	2	23	113.2	48.	183	168.5	71.5	243	223.7	9
4	03	01	64	58.9	25.0	124		48.5	18	16	71.9	24	224.6	. 3
5	04.6	02.0	65	59.8	25.4	125		48.8	185	17	72.3			5\%
6	05	0		60.8	25.	127	11	49.2	186	17				6.1
7	06	02	67	61.7	26.2	127	116	49.6	187	17	73.1	24	$2 \cdot 7$	96.5
8	07	03.	68	62.6	26.	128	117.8	50.0	185	17	73	248		96.9
0		0		63.5	27.0		118.7	50.4	189					7.3
10	09	03	70	64.4	27.4	130	119	50.8	190	17	74.2	250	2	7
	1	0												
12	11.0	04.7	72	66.3	28.1		12		192	17	75.0	252	2320	. 5
13	12.0	05	73	2	2		12			17	75.4			8.9
14	12.9	05	74	68.1	28.9	134	12	52	194	17	75	254	233.8	. 2
15	13.8	05.9	75	69.0	29.3	135	12	52.7	195	179	76.2	255	234.7	9.6
16	14.7	06	76	70.0	29.		125.2	5	196	180.4	\%6.6	56	235.6	0
17	15.	06.6	77	70.9	30.1	137	126.	53	19	181	77	257	236.6	100
18	16.6	07.0	78	71.8	30.5	138	127.0	53.9	198	18	77.4	5	237.5	0.8
19	17.5		79	72.7	30		128.0	54	199	18	7	59	238.4	2
20	18	07.8	80		31	140	12	5	20	18	78.1	260	239.3	101.6
21														
	20.3	08.	82	75	32	142	13	55	202	185.9	78.9	262	2	4
2	21.2	09.0	8	76.4	32		13	55.9	203	186	79.3		242.1	2.8
2	22	09	84	77.3	32		13	5	2	18	79		243.0	. 2
	23.0	09.8	85	78.2	33.2	145	133	56.7	205	188	80.	265	243.9	5
	23.9	10.2	86	79.2	33.	146	134	57.0	206	189	80.5	266	244.9	3.9
2	24.9	10.5	87	80.	34		13	57.4	207	190.5	80.9	267	245.8	. 3
28	25.8	10.9	88	81.0	34.		136.2	57.8	208	191.	81.3	268	24	104.7
,	26.7	11.3	89	81.9	34.		137.	5	209		81.7	$\because 69$	247	5.1
30	27.6	11.7	9	8	35	150	138.1	58.6	21	19	8.	270	2	105.5
	28													
	29	12	92	84.7	35.9		13	5	21	195	82.8	272	250.4	
	30.	12.9	9	85.	36.		140.	59	213	196	S	273	25	106.7
	31.	13	94	86.5	36		,	60	214	197.	83.6			107
	32.2			87.	3		142.	60.	215	197.	84.0	275		107.5
	33.1	14.		88.4	37.5	15	143.	61.0	216	198.8	84.4	276	254	107.8
	34.1	14.5	97	89.3	37.9		144	61.3	217	199.	84.8	277	255	108.
	35.0			2						200	85.2		95	108.6
-	35.9	15.2	99	91.1	38.7		146.	62.1	219	201.	85.6	279	256.8	109.0
40	36.8	15	100		39			62.5	220	202.	86.0	280	257.7	109.
	37.7			93.0										9
	38.7						149.1				86.7			0.2
	39.6			94.8	40		150.	63		205	87		260	
	40.5	17.2	104	95.7	40.6		151.0	64.	224	206.2	87.5	28	261	111.0
	41.4	17.6	105	7	41		151.9	64.	2	207.	87.8	285	262.3	111.4
	42	18		97.6	4		152.8	64	2	208.0			263	111.7
	43.3	18.4	107	8.5	41		153.	65.3	227	209.0	88.7	-	264.2	112.1
	44.2	18	108	9.4			154.6	65	2	209.9		288	265.	. 5
40	45.1	19	100	100.				66.0	22.9	210.8	89.5		266.0	2.9
50	46.0	18.	110					66.4		211		290	266	
	46.9		11					66.8		21	. 3	291		3.
52	47.9	20.3	11	103.1	43.	172	15	67.	232	213	90.6	292	268.8	4.1
	48.8	20.7	113	4.0	4	173	159.2	67.6	233	214	91.0	293	269.7	
	49.7	21.1	114	104.9	44.5	74	160.2	68.0	234	215.	91.4	294	270.	114.9
	50.6	21.5	115	105.9	44.9	175	161.1	68.4	235	216.	91.8	29	271.5	5.3
	51.5	21.9	116	106.	45.3	176	162.0	68.8	236	217.2	92.2	296	272	115.7
5	52.5	22.3	117	107.7	45.7	177	162.9	69.2	237	218.2	92.6	297	27	116.0
	53.4	22.7	118	108.6	46.1	175	163.8	69.6	\checkmark	219.1	93.0	298	27	116.4
	54.3	23.1	119	109.5	46.5	179	164.8	69.9	239	220.0	93.4	299		116.8
60	55.2	23.4	12	110.5	46.9	S0	165.7	70.3	$\because 40$	220.9	93.8	300	276.2	117.2
Dist	D	Lat.		ep.		st.	Dep.	Lat.	Dist.	Dep.	Lat.	Dis	Dep.	Lat.
							- 67	rees						28 m .

		DIFFERENCE OF LATITUDE AND DEPARTURE FOR 25 DEGREES. $1^{\mathrm{h}} 40 \mathrm{~m}$.												
D	Lat.	Dep.	Dist.	Lat.	Dep.	Dis	Lat.	Dep.	Dis	Lat.	Dep.	Dist.	Lat.	Dep.
1	00.9	00.	31	55.3	2	121	109.7	51		164.0	76.5	2	218.4	101.9
2	01.8	00.8	62	56.2	26.2	122	110.6	51.6	182	164.9	76.9	24:	219.3	102.3
3	02.7	01.3	$(33$	57.1	26.6	123	111.5	52.0	183	165.9	77.3	243	220.2	1027
4	03.6	01.7	64	58.0	27.0	124	112.4	52.4	184	166.8	77.8	244	221.1	103.1
5	04.5	02.1	65	58.9	27.5	125	113.3	52.8	185	167.7	78.2	245	222.0	103.5
6	05.4	02.5	66	59.8	27.9	126	114.2	53.2	186	168.6	78.6	246	223.0	104.0
7	06.3	03.0	67	60.7	28.3	127	115.1	53.7	187	169.5	79.0	247	223.9	104.4
8	07.3	03.4	68	61.6	28.7	128	116.0	54:1	188	170.4	79.5	248	224.8	1048
9	08.2	03.8	69	62.5	29.2	129	116.9	54.5	189	171.3	79.9	249	225.7	105.2
10	09.1	04.2	70	63.4	29.6	130	117.8	54.9	190	172.2	80.3	250	226.6	105.7
11	10.0	04.6	71	4.3	30.0	131	118.7	55.4	19	173.1	80.7	251	227.5	106.1
12	10.9	05.1	72	65.3	30.4	132	119.6	55.8	192	174.0	81.1	252	228.4	106.5
13	11.8	05.5	73	66.2	30.9	$1: 33$	120.5	56.2	193	174.9	81.6	253	229.3	106.9
14	12.7	05.9	74	67.1	31.3	134	121.4	56.6	194	175.8	82.0	254	230.2	107.3
15	13.6	06.3	75	68.0	31.7	135	122.4	57.1	195	176.7	82.4	255	231.1	107.8
16	14.5	06.8	76	68.9	32.1	136	123.3	57.5	196	177.6	82.8	256	232.0	108.2
17	15.4	07.2	77	69.8	32.5	137	124.2	57.9	197	178.5	83.3	257	232.9	108.6
18	16.3	07.6	78	70.7	33.0	138	125.1	58.3	198	179.4	83.7	258	233.8	109.0
19	17.2	08.0	79	71.6	33.4	139	126.0	58.7	199	180.4	84.1	259	234.7	109.5
20	18.1	08.5	80	72.5	33.8	140	126.9	59.2	200	181.3	84.5	260	235.6	109.9
2	19.0	08.9	1	73.4	34.2	141	127.8	59.6	201	182.2	84.9	2	236.5	110.3
22	19.9	09.3	82	74.3	34.7	142	128.7	60.0	202	183.1	85.4	262	237.5	110.7
23	20.8	09.7	83	75.2	35.1	143	129.6	60.4	203	184.0	85.8	263	238.4	111.1
24	21.8	10.1	84	76.1	35.5	144	130.5	60.9	204	184.9	86.2	264	239.3	111.6
25	22.7	10.6	85	77.0	35.9	145	131.4	61.3	205	185.8	86.6	265	240.2	112.0
26	23.6	11.0	86	77.9	36.3	146	132.3	61.7	206	186.7	87.1	266	241.1	112.4
27	24.5	11.4	87	78.8	36.8	147	133.2	62.1	207	187.6	$\times 7.5$	267	242.0	112.8
28	25.4	11.8	88	79.8	37.2	148	134.1	62.5	208	188.5	87.9	268	242.9	113.3
29	$\because 6.3$	12.3	89	80.7	37.6	149	135.0	63.0	209	189.4	88.3	269	243.8	113.7
30	27.2	12.	90	81.6	38.0	150	135.9	63.4	210	190.3	88.7	270	244.7	114.1
31	28.1	13.1	91	82. 5	38.5	151	136.9	63.8	211	191.2	89.2	271	245.6	114.5
32	29.0	13.5	92	83.4	38.9	152	137.8	64.2	212	192.1	89.6	272	246.5	115.0
33	29.9	13.9	93	84.3	39.3	153	138.7	64.7	213	193.0	90.0	273	247.4	115.4
34	30.8	14.4	94	85.2	39.7	154	139.6	65.1	214	193.9	90.4	274	248.3	115.8
35	31.7	14.8	95	86.1	40.1	155	140.5	65.5	215	194.9	90.9	275	249.2	116.2
36	32.6	15.2	96	87.0	40.6	156	141.4	65.9	216	195.8	91.3	276	250.1	116.6
37	33.5	15.6	97	87.9	41.0	157	142.3	66.4	217	196.7	91.7	277	251.0	117.1
38	34.4	16.1	98	88.8	41.4	158	143.2	66.8	218	197.6	92.1	278	252.0	117.5
39	35.3	16.5	99	89.7	41.8	159	144.1	67.2	219	198.5	92.6	279	252.9	117.9
40	36.3	16.9	100	90.6	42.3	160	145.0	67.6	220	199.4	93.0	280	253.8	118.3
41	37.2	17.3	101	91.5	42.7	161	145.9	68.0	221	200.3	93.4	281	254.7	118.8
42	38.1	17.7	102	92.4	43.1	162	146.8	68.5	222	201.2	93.8	282	255.6	119.2
43	39.0	18.2	103	93.3	43.5	163	147.7	68.9	223	202.1	94.2	283	256.5	119.6
44	39.9	18.6	104	94.3	44.0	164	148.6	69.3	224	203.0	94.7	284	257.4	120.0
45	40.8	19.0	105	95.2	44.4	165	149.5	69.7	225	203.9	95.1	285	258.3	120.4
46	41.7	19.4	106	96.1	44.8	166	150.4	70.2	226	204.8	95.5	286	259.2	120.0
47	42.6	19.9	107	97.0	45.2	167	151.4	70.6	227	205.7	95.9	287	260.1	121.3
48	43.5	20.3	108	97.9	45.6	168	152.3	71.0	2.28	206.6	96.4	288	261.0	121.7
49	44.4	20.7	109	98.8	46.1	169	153.2	71.4	229	207.5	96.8	289	261.9	122.1
50	45.3	21.1	110	99.7	46.5	170	154.1	71.8	230	208.5	97.2	290	262.8	122.6
51	46.2	21.6	111	100.6	46.9	171	155.0	72.3	231	209.4	97.6	291	263.7	123.0
52	47.1	22.0	112	101.5	47.3	172	155.9	72.7	232	210.3	98.0	292	264.6	123.4
53	48.0	22.4	113	102.4	47.8	173	156.8	73.1	233	211.2	98.5	293	265.5	123.8
54	48.9	22.8	114	103.3	48.2	174	157.7	73.5	234	212.1	98.9	294	266.5	124.2
55	49.8	2:3.2	115	104.2	48.6	175	158.6	74.0	235	213.0	99.3	295	267.4	124.7
56	50.8	23.7	116	105.1	49.0	176	159.5	74.4	236	213.9	99.7	296	268.3	125.1
57	51.7	24.1	117	106.0	49.4	177	160.4	74.8	237	214.8	100.2	297	269.2	125.5
58	52.6	24.5	118	106.9	49.9	17N	161.3	75.2	238	215.7	100.6	298	270.1	125.9
59	53.5	24.9	119	107.9	50.3	179	162.2	75.6	239	216.6	101.0	299	271.0	126.4
60	54.4	25.4	120	108.8	50.7	180	163.1	76.1	$\because 40$	217.5	101.4	300	271.9	126.8
Dist.	Dep.	Lat.												
							or 65 D	rees.						20 m .

DIFFERENCE														
Dist.	L	Dep.	D										Lat.	-
1		00.4			26.7		108.8							
2	01	00	62		27	2	10		182		79.8			
3	02.7	01.3	63	56.	27.6	123	110.6	53.9	183	16	80.2	243	218.4	5
4	03.6	01.8	64	57.5	28.1	124	111.5	54.4	184	165.4	80.7	24	219	107.0
5	04	02.2	¢	58.4	28	125	112.	54.8	185	166.3	81	245	220.2	10^{*}
6	05.	02.6	66	59.3	28.9	126	11	55.2	186	167.2	5	6	221	8
7	06.3	03.1	67	60.2	29.4	127	114.	55.7	187	168.1	2.0	247	22	8.3
8	07.2	03.5	68	61.1	29.	128	115		188	16	2.4	48	222.9	. 7
0	08	03.9	69	62	30.2	129	115.9	56.5	189	16	82.9	249	223.8	109.2
10	09.0	04.4	70	62.9	30.7	$1: 30$	116	57.0	190	170.8	83.3	250	224.7	109.6
	09.9	04.8	71		31.1						3.7			
12	10.	05	72	64.7	31	132	118		92	172	2	52	226	0.5
13	11.7	05	73	65.	32.0	$1:$	119.	58	193	173	84.6	253		.
14	12.6	06.1	74	66.5	32.4	134	120.	58.7	194	174	85.0	254	22	111.3
15	13.5	06.6	75	67.4	32	135	12	59.2	195	175.3	5	5	22.	111.8
16	14.	07.0	76	68.3	33.3	136	122.	59.	196	17	9	256	23	112.2
17	15.3	07.5	77	69.2	33.8	137	123.	60.1	197	177	86.4	257	23	112.7
18	16.2	07	78	70.	34.2	138	124.0	60.5	198	178.0	6.8	258	231.9	13.1
19	17.1	08.3	79	71.0	3	139	1	60.9	$1 .$.	178	7.2	259	232.8	5
20	18.0	08.8	80	71.9	35	14	12	61.4	200	179	87.7	260	233.7	0
21	18.9	0	81	72.8			126.7	. 8		180.7	88.1			4
$2 \cdot$	19.8	09	$8:$	73	35	142		62.2	202	181	88.6	262	235.5	4.9
2	20.7	10.1	83	74	3	143	128.5		2	18:	0	263	236	. 3
2	21.6	10.5	84	75.5	36.8	144	129.4	63.1	204	183	89.4	264	237	115.7
25	22.5	11.0	85	76.4	37.3	14	130.3	63.6	205	184	89.9	265	238	116.2
26	23.4	11.4	86	77.	37.7	1	131.2	64.0	206	185	90.3	266	239	116.6
27	24.3	11.8	87	78.2	38.	14	132.1	64.4	207	186.	90.7	267	240.	117.0
28	25.2	12.3	88	79.1	38.	148	133.0	64.9	208	186.	91.2	268	240.	117.5
29	26.1	12	89	80.0	39.0	9	13	65.3	209	1878	91.6	269	241	117.9
30	27.0	13.2	90	80	39.	150	13		0	1	92.1	270	242.7	4
31	27	13.6		81					21		2.5	2	2	118.8
32	28.8	14.0	92	82	40.3	15	13	6	212	190.	9	272	24	119.2
	29.7	14.5	93	83.	40.8	3	137.5	1	2	191.4	4	27	245	9.7
34	30.6	14.9	94	84.	41.2	15	138.	67.5	2	192.	93.8	274	246	120.1
35	31.5	15.3	95	85.	41.6	155	139.	67.9	215	193.2	94.2	275	247.2	12.6
36	32.4	15.8	96	86.3	42.1	15	14	68.4	216	194.1	94.7	276	248	121.0
37	33.3	16.2	97	87.2	42.5	15	14	68.	217	195.0	95.1	277	249.0	121.4
38	34.2	16.7	98	88.1	43.0	15	142.0	69.3	218	195.9	95.6	278	249.9	121.9
39	35.1	17.1	99	89.0	43.4	15		69.7	219	196.8	96.0	279	250.8	122.3
40	36.0		10	89.9	4.	16		70	220	197	96.4	280	251.7	
									,			281		
42	37.7	18.4	102	91.7	44.7	16	- 145.	71.0	222	199.5	3	282	253	123.6
43	38.6	18.8	103	92.6	45.2	163	146.5	71.5	223	200.4	97.8	- 3	®54	124.1
44	39.5	19.3	04	93.5			仡	71	224	201.3	98.2	284	255	124.5
45	40.4	19.7	105	94.4	46.0	165	148.	72.3	225	202.2	98.6	285	256.2	124.9
46	41.3	20.2	106	95.	46.5	166	149.	76	226	203.1	99.1	286	257.	125.4
47	42.2	20.6	107	96.2	46.9		150.	73.2	227	204.0	99.5	287	258.	125.8
48	43.1	21.0	108	97.1	47.3	168	151.0	73.6	$2: 8$	204.9	99.9	288	258.9	126.3
49	44.0	21.5	109	98.0	47.8	169	151.9	74	229	05.8	00.4	289	259.8	126.7
50	44.9	21.9	110	98.9	4	17			230	206.7	0.8	290		127.
51	40.8			90.8							101.3	291	261	27.6
52	46.7	22.8	112	100.7	49.1	172	154.6	75.4	232	208.5	101.7	292	262.4	128.0
53	47.6	23.2	113	101.6	49.5	173	155.5	75.8	233	209.4	102.1	293	263.	128.4
54	45.5	23.7	114	102.5	50.0	174	156.4	76.3	234	210.3	102.6	294	264.2	128.9
05	49.4	24.1	115	103.4	50.4	175	157.3	76.7	235	211.2	103.0	295	265.1	129.3
56	50.3	24.5	116	104.3	50.9	176	158.2	77.2	236	212.1	103.5	296	266.0	129.8
57	51.2	2.5 .0	117	105.2	51.3	177	159.1	77.6	237	213.0	103.9	297	266.9	130.2
58	52.1	25.4	118	106.1	51.7	17	160.0	78.0	238	213.9	104.3	298	267.8	130.6
59	53.0	25.9	1.9	107.0	52.2	179	160.9	78.5	239	214.8	104.8	299	268.7	131.1
60	53.9	26.3	120	107.9	52.6	180	161.8	78.9	$\because 40$	215.7	105.2	300	269.6	131
Dis	Dep	Lat	Dist.	Dep.		ist.	Dep.	Lat.	Dist.	Dep.	Lat.	Dis	Dep.	rat.
							64							16 m .

	DIFFERENCE OF				TABLE 11.									$\begin{array}{r} 48 \\ \text { lin } 48 \mathrm{~m} . \end{array}$
Dist.	Lat.	Dep	Dist.	La	Dep.	Dist.	Lat.	Dep.	Dist.	Lat.	Dep.	Dis	Lat.	Dep.
1									181	161.3	82.2	1	214.7	109.4
2	01	00	62	55	28.1	15	108	55.4	182	162.2	82.6	242	215.6	109.9
3	02.7	01.4	63	56.1	25.6	123	109.6	55.8	183	16	8	3	216.5	110.3
4	03.6	01.8	64	57.0	29.1	124	110.5	56.3	184	163.9	83.5	244	217.4	110.8
5	04.5	02.3	65	57.9	29.5	125	111.4	56.7	185	164.8	84.0	245	218.3	. 2
6	05.3	02.7	66	58.8	30.0	126	112	57.2	186	165	84	246	219.2	111.7
7	06.2	03.2	67	59.7	30.4	127	113.2	57.17	187	166.6	9	247	220.1	112.1
S	07.1	03.6	68	60.6	30.9	128	114.0	58.1	188	167.5	85.4	248	221.0	. 6
9	08.0	04.1	69	61	31.3		114.9	58.6	180	168.4	85.8	249	221.9	118.0
10	08.9	(14.5	70	6	$3 T .8$	130	115.8	59.0	190	16	3	0	222.8	113.5
11	09.8	05.0	71		3	131	116.7	59.5	101	1	86.7	251		
12	. 10.7	05.4	72	64.2	32.7	132	117.6	59.9	192	171	87.2	252	224.5	114.4
13	11.6	05.9	73	65.0	33.1	133	118.5	60.4	193	172.0	87.6	253	225.4	114.9
14	12.5	06.4	74	65.9	33.6	13	119.	60.8	194	172.9	88.1	254	226.3	115.3
15	13.4	06.8	75	66.8	34.0	13	120.	61.3	195	173.7	88.5	255	227.2	115.8
16	14.3	07.3	76	67.7	34.5	136	121.2	61.7	196	174.6	89.0	256	228.1	116.2
17	15	07.7	77	68.6	35.0	137	122.	62.2	197	175.5	89.4	257	229.0	116.7
18	16.0	08.2	78	69.5	35.4	138	123.0	62.7	198	176	89.9	258	22.9 .9	117.1
19	16.9	08.6	79	70.4	35.9	139	123. 5	63.1	199	177.3	90.3	259	230.8	117.6
20	17.8	09.1	80	71.3	3	140	124.7	63.6	$\underline{200}$	178.2	90.8	260	231.7	118.0
21	18.7	09.5	81	72.2	36.8	141	125.6	64.0	201		91.3	261	6	. 5
22	19.6	10.0	82	73.1	37.2	2	12	64.5	202	180.0	91.7	262	2	118.9
23	20.5	10.4	83	74.0	37.7	143	1	64.9	203	180.9	92.2	26	234.3	119.4
24	21.4	10.9	84	74.8	38.1	144	128.	65.4	204	181.8	92	26	235.2	119.9
2	22.3	11.3	85	75.7	38.6	145	129.2	65.8	205	182.7	93	265	236.1	120.3
2	23.2	11.8	86	76.6	39.0	146	130.	66.3	206	183.5	93.5	266	237.0	120.8
27	24.1	12.3	87	77.5	39.5	147	131.0	66.	207	184	94.0	26	237.9	121.2
28	24.9	12.7	88	78.4	40.0	148	131.9	67.2	208	185	94.4	268	238.8	121.7
29	25.8	13.2	89	79.3	40.4	149	132.8	67.6	209	186.2	94.9	269	239.7	122.1
30	26.	13	90	80.2	40.9	150	1	6	210	1	95.3	270	240.6	6
	27				41.3			68.6	211			271	5	. 0
32	28.5	14.5	92	82.0	41.8	152	135.	69.0	212	188.9	96.2	272	242.4	123.5
33	29.4	15.0	93	82.9	42.2	153	136.3	69.5	213	189.8	96.7	273	243.2	123.9
	30.3	15.4	94	83.8	42.7	154	137.2	69.9	214	190.7	97	27	244.1	124.4
35	31.2	15.9	95	84.6	43.1	155	138.	70.4	215	191.6	97.6	275	245.0	124.8
36	32.1	16.3	96	85.5	43.6	156	139.0	70.8	216	192.5	98.1	276	245.9	125.3
3	33.0	16.8	97	86.4	44.0	157	139.9	71.3	217	193.3	98.5	277	246.8	125.8
38	33.9	17.3	98	87.3	44.5	158	140.8	71.7	218	194.2	99.0	278	247	126.2
39	34.7	17.7	99	88.2	44.9	159	141.7	72.2	219	195.1	99.4	279	248.6	126.7
40	35.6	18.2	100	89.1	45.4	160	142.6	72.6	220	196.0	99.9	280	249.5	127.1
41	36.5	18.6	101	90.0	5. 3	161	4	73.1	221	196.9	100.3	281	250.4	.
42	37.4	19.1	102	90.9	46.3	162	44.3	73.5	222	197.8	100.8	,	251.3	128.0
4	38.3	19.5	103	91.8	46.8	163	145.2	74.0	223	198.7	101.2	283	2:2.2	128.5
44	39.2	$\because 0.0$	104	92.7	47.2	164	146.1	74.5	224	199.6	101.7	284	253.0	128.9
45	40.1	20.4	105	93.6	47.7	165	147.0	74.9	225	200.5	102.1	285	253.9	129.4
46	41.0	20.9	106	94.4	48.1	166	147.9	75.4	226	201.4	102.6	286	254.8	129.8
47	41.9	21.3	107	95.3	48.6	167	148.8	75.8	227	202.3	103.1	287	255.7	130.3
48	42.8	21.8	108	96.2	49.0	168	149.7	76.3	228	203.1	103.5	288	256.6	130.7
49	43.7	22.2	109	7.1	49.5	169	150.6	76.7	229	204.0	04.0	289	257.5	131.2
50	44.6	22.7	110	98.0	49.9	170	151.5	77.2	230	204.9	104.4	290	258.4	131.7
51	45.4	23.2	111	8.9	50.4	171		77.6	231	205.8	104.	291	259.3	132.1
52	46.3	23.6	112	99.8	50.8	172	153.3	78.1	232	206.7	105.	292	260.2	132.6
53	47.2	24.1	113	100.7	51.3	173	154.1	78.5	233	207.6	105.8	293	261.1	133.0
5	48.1	24.5	114	101.6	51.8	174	155.0	79.0	234	208.5	106.2	294	262.0	133.5
55	49.0	25.0	115	102.5	52.2	175	155.9	79.4	235	209.4	106.7	295	26.2	133.9
56	49.9	25.4	116	103.4	52.7	176	156.8	79.9	236	210.3	107.1	296	263.7	134.4
57	50.8	25.9	117	104.2	53.1	177	157.7	80.4	237	211.2	107.6	297	264.	134.8
58	51.7	26.3	118	105.1	53.6	178	158.6	80.8	238	212.1	108.0	298	265.5	135.3
59	52.6	26.8	119	106.0	54.0	179	159.5	81.3	239	213.0	108.5	299	2(66.4	135.7
60	5:3.5	27.2	120	106.9	54.5	180	160.4	81.7	240	213.8	109.0	300	267.3	136.2
Dis	Dep	Lat.		Dep.	Lat	Dist.	Dep.	Lat.		Dep.	Lat	Dis	Dep.	Lat.
For 83 Derrees.														

	44													
	DIFFERENCE OF				LATITUDE AND			DEP			R 28 DEGREE			52 m.
Dist	Lat.	Dep.	Dist				Lat.	Dep.	Dist.	La	Dep.	Dist.	Lat.	Dep
1	00	00.5			28.6		10	56.8		159.8	85.0	241	212.8	113.1
2	0	00	62	54.7	29	122	107.7	57.3	182	16	85.4	242	213.7	113.6
3	02.6	01.4	63	55.6	29.6	123	108.6	57.7	183	161.6	85.9	243	214.6	114.1
4	03.5	01.9	64	56.5	30.0	124	109.5	58.2	184	162.5	86.4	4	215.4	6
5	04	02	65	57	30	12	110.4	58.7	185	16	86.9	245	216	115.0
6	05.3	02.8	66	58.3	31.0	126	111.3	59.2	186	164.2	87.3	246	217.2	115.5
7	06.2	03.3	67	59.2	31.5	127	112.1	59.6	187	165	87.8	247	218.1	0
8	07.1	03	68	60.0	31	12	11	60.1	188	166	3	8	219.0	4
0	07.9	04.2	69	60.9	32.4	29	11	60.6	189	166.9	88.7	249	219.9	9
10	08.8	04.7	70	61.8	32.9	1:30		61.0	190	167.8	89.2	250	220.7	117.4
	09										89.7			
12	10.6	05	72	63.6			11	6	192	16	0.1	25.2	222.5	3
13	11.5	06.	73	64.5	34.3	1:	117.	62	193	170.4	90.6	253	223.4	8.8
14	12.4	06.6	74	65.3	34.7	134	11	62.9	194	171.3	91.1	254	224.3	. 2
15	13.2	07.0	75	66.2	35.2		119	63.4	195	179	91.5	255	225.2	. 7
16	14.	07.5	76	67.1	35.	136	120.	63.8	196	17	92.0	256	226.0	0.2
17	15.0	08.0	77	68.0	36.1	137	$1: 1.0$	6	19	173.	2.5	2.7	226.9	0.7
18	15.9	08.5	78	9	36	138	121.8		8	174	. 0	S	8	121.1
19	16.	08.9	79	69.8	37.	139	122.7	65	199	175.	93.4	259	228.7	121.6
20	17	09.4	80	70.6	37	140	1	65	200	17	9	20	229.6	
	18			71.5					201					
2	19.	10.	8:	72.4				6	202	17	4.8			
2	20.3	10.	83	73.3	39	143	126	67.	203	179	3	263	232.:	123.5
2	21.2	11.3	84	74.2	39.	144	12	67.6	204	180.	8	264	233.1	. 9
25	22.1	11.7	85	75	39.9	145	1	6	20	181.	6.2	265	234.0	
26	23.0	12	86	75.9	40.4	14	128.9	68.5	206	181	96.7	266	234.9	9
2	23.8	12.7	87	76.8	40.8	14	129.8	69.	$\because 07$	18:	97.2	26	235.7	. 3
28	24.7	13.	88	77.7	41	148	130.7	69	208	18:3.	77.7	268	236.6	
29	25.6	13.6	89	78.6	41.		131.	70	209	184	98.1	269	5	
30	:6.	14.1	90	79.5	42	150	1	70	210	18	6	270	4	126.8
3	27.	14.	91											
32	28.	15	92	81.2	4		1		2	18	93	272	240.2	. 7
	29.1	15	93	8:	43.7	15	135.	71.	2	188	100.0	27	241.0	128.2
34	30.0	16.0	94	83.0	44.1	154	136.0	72.3	21	189.0	100.5	274	241.9	128.6
35	30.9	16.4	95	83.9	44.6	155	$1:$	7	215	189.8	100.9	275	242.8	129.1
36	31.8	16.9	96	84.8	45.1	156	137.	73.2	21	190.7	101.4	276	243.7	129.6
3	32.7	17.4	97	85.6	45.5	157	138.6	73.7	217	191.6	101.9	27	244.6	130.0
38	33.6	17.8	98	86.5	46.0	158	139.5	7	21	192.5	102.3	27	245.5	. 5
39	34		99	87.4	46.	159	140.4	7	219	193.4	102.8	279	246.3	131.0
40	35.3	18	100	8		160	141.3	75.	220	194.2	103.3	280	247.2	1215
41					47.4	16	1	75	221	195.1	8	281	248.1	.
42	37.	19.7	102	0.1	47.9	16	14	76		196.0				132.4
43	38.0	20.2	103	. 9	48.4		143.	76	2	196.9	104		49.9	132.9
4	38.8	20.7	104	91.8	48.8	16	144.	77.0	22	197.8	105.2	28	250.8	3
45	39.7	21.1	105	92.7	49.3	165	145.7	77.5	22	198.	105.6	28	251.6	8
46	40.6	21.	106	93.6	49		,	77		191.5	106.	28	252.5	.
47	41.5	22.1	107	4.5	50		147.	78.4		200.	106.6	287	253.	134.7
48	42.4	22.5	108	5.	50.7	168	148.	78.	2.8	201	107.0	28	254	5.2
49	43.3	23	109	. 2		169	149.2			202	107.5	28	255.2	35.7
50	44.1	23	110	97.1		170				203	108.0	29	256.1	1
	45.0	23..		0	52		151.	80.3		20	108.4	291	256.9	6
52	45.9	24.4	112	98.9	52	172	151.9	80.7	23	204.8	10	292	~57.8	137
53	468	24.9	113	99.8	53.	173	152.	81.2	23	205.7	109.4	293	258.7	137.6
54	47.7	25.4	114	100.7	53.5	174	153.6	81.7	234	206.6	109.9	$\because 94$	259.6	138.0
55	48.6	25.8	115	101.5	54.0	175	154.5	82.2	235	207.5	110.3	295	260.5	138.5
56	49.4	26.3	116	102.4	54.5	176	155.4	82.6	236	208.4	110.8	296	261.4	139.0
57	50.3	26.8	117	10:3.3	54.9	177	1563	83.1	237	209.3	111.3	297	262.2	139.4
58	51.2	27.2	118	104.2	55	17	157.2	83.6	238	210.1	111.7	298	263	139.9
59	52.1	27.7	119	105.1	55.	179	158.0	84.0	239	211.0	112.2	299	264.0	140.4
60	53.	28.	20	106.0	56	180	158.9	84.5	$\because 40$	211.9	112.7	300	264.9	140.8
Dist	Dep	Lat.			Lat.	Dist.	Dep.	Lat.	Dist.	Dep.	Lat.	Dis	Dep.	Lat.
For 62 Degrees.														

DIFFERENCE OF LATITUDE AND DEPARTURE FOR 29 DEGREES. 1 h 56 m .

st.	Lat.	Dep.	Dist.	Lat.	Dep.									
1	00.9	00.5	61	4	29.6	121	105.8		181	158.3	87.8	24	210.8	116.8
2	01.7	01.0	62	54.2	30.1	12:	106.7	59.1	182	159.2	88.2	242	211.7	117.3
3	0\%.6	01.5	63	5.51	30.5	12:3	107.6	59.6	183	160.1	8.. 7	243	212.5	117.8
4	0.3 .5	01.9	64	56.0	31.0	124	108.5	60.1	184	160.9	89.2	244	213.4	118.3
5	04.4	02.4	65	56.9	$31 . .9$	125	109.3	60.6	185	161.8	89.7	24.)	214.3	118.8
6	05.2	02.9	66	57.7	32.0	126	110.2	61.1	186	162.7	90.2	246	215.2	119.3
7	06.1	03.4	67	58.6	32.5	127	111.1	61.6	187	163.6	90.7	247	216.0	119.7
8	07.0	03.9	68	59.5	33.0	128	112.0	62.1	188	164.4	91.1	248	216.9	120.2
9	07.9	04.4	69	60.3	33.5	129	112.8	(i2. 5	189	165.3	91.6	249	217.8	120.7
10	08.7	04.8	70	61.2	33.9	130	11:.7	630	190	166.2	92. 1	250	218.7	121.2
11	09.6	05.8	71	62.1	34.4	1	114.6	63.5	191	167.1	92.6	251	219.5	121.7
12	10.5	0.5 .8	72	63.0	34.9	132	115.4	64.0	192	167.9	93.1	252	220.4	122.2
13	11.4	06.3	73	63.8	35.4	133	116.3	64.5	193	168.8	9:3.6	253	221.3	122.7
14	12.2	06.8	74	64.7	35.9	134	117.2	65.0	194	169.7	94.1	254	222.2	123.1
15	13.1	07.3	75	65.6	36.4	135	118.1	65.4	195	170.6	94.5	255	223.0	123.6
16	14.0	07.8	76	(i6.5	36.8	136	118.9	65.9	196	171.4	95.0	256	223.9	124.1
17	14.9	0* 2	77	67.3	37.3	137	119.8	66.4	197	172.3	95.5	25%	224.8	124.6
18	15.7	08.7	78	68.2	37.8	138	120.7	66.9	198	173.2	96.0	258	225.7	125.1
19	16.6	09.2	79	69.1	38.3	139	121.6	67.4	199	174.0	96.5	259	226.5	125.6
$\because 0$	17.5	09.7	80	70.0	3 s .8	140	122.4	67.9	200	174.9	97.0	260	227.4	126.1
2	18	110.2	81	70	39	141	123.3	6-5. 4	201	175.8	97.4	61	228.3	126.5
22	19.2	10.7	82	71.7	39.8	142	124.2	68.8	202	176.7	97.9	262	229.2	127.0
23	$\because 0.1$	11.2	83	72.6	40.2	143	125.1	69.3	203	177.5	98.4	263	230.0	127.5
24	$\because 1.0$	11.6	84	73.5	40.7	144	125.9	69.8	204	178.4	98.9	264	230.9	128.0
25	21.9	12.1	85	74.3	41.2	145	126.8	70.3	205	179.3	99.4	265	231.8	128.5
26	2.2 .7	12.6	86	75.2	41.7	146	127.7	70.8	206	180.2	99.9	266	232.6	129.0
27	2:3.6	13.1	57	76.1	42.2	147	128.6	21.3	207	181.0	100.4	267	233.5	129.4
28	$\because 4.5$	18.6	88	77.0	42.7	148	129.4	71.8	208	181.9	100.8	268	234.4	129.9
29	$\because 5.4$	14.1	89	77.8	43.1	149	130.3	72.:	209	182.8	101.3	269	235.3	130.4
:30	26.2	14.5	90	78.7	43.6	150	131.2	72.7	210	183.7	101.8	270	236.1	130.9
31	27.1	15.0	91	79.6	44.1	151	132.1	73.2	211	184.5	102.3	271	237.0	131.4
32	$\because 8.0$	15.5	92	S0.5	44.6	152	132.9	73.7	212	185.4	102.8	272	287.9	131.9
33	28.9	16.0	98	81.3	45.1	153	133.8	74.2	213	186.3	103.3	273	238.8	132.4
34	29.7	16.5	94	82.2	45.6	154	134.7	74.7	214	187.2	103.7	274	239.6	132.8
35	30.6	17.0	95	83.1	46.1	155	135.6	75.1	215	188.0	104.2	275	240.5	133.3
36	:31.5	17.5	96	84.0	46.5	156	136.4	75.6	216	188.9	104.7	276	241.4	133.8
:3	32.4	17.9	97	84.8	47.0	157	137.3	76.1	217	189.8	105.2	277	242.3	134.3
38	:33.2	18.4	98	85.7	47.5	158	138.2	76.6	218	190.7	105.7	278	243.1	134.8
39	34.1	18.9	99	86.6	48.0	159	139.1	77.1	219	191.5	106.2	279	244.0	135.3
40	:35.0	19.4	100	87.5	48.5	160	139.9	77.6	220	192.4	106.7	280	244.9	135.7
41	35.9	19.9	101	88.3	49.0	161	140.8	78.1	221	193.3	107.1	281	245.8	136.2
42	36.7	20.4	102	89.2	49.5	162	141.7	78.5	222	194.2	107.6	282	246.6	136.7
43	37.6	20.8	103	90.1	49.9	163	142.6	79.0	223	195.0	108.1	283	247.5	137.2
44	38.5	21.3	104	91.0	50.4	164	143.4	79.5	224	195.9	10S.6	284	248.4	137.7
45	39.4	21.8	105	91.8	50.9	145	144.3	80.0	225	196.8	109.1	285	249.3	138.2
46	40.2	$\because 2.3$	106	92.7	51.4	166	145.2	80.5	226	197.7	109.6	286	250.1	138.7
47	+1.1	$2 \cdot .8$	107	93.6	51.9	167	146.1	81.0	227	198.5	110.1	287	251.0	139.1
48	42.0	23.3	108	94.5	52.4	168	146.9	81.4	228	199.4	110.5	288	251.9	139.6
49	$4 \because .9$	23.8	10.1	95.3	52.8	169	147.8	81.9	229	200.3	111.0	289	252.8	140.1
50	4:3.7	24.2	110	96.2	53.3	170	148.7	82.4	230	201.2	111.5	290	253.6	140.6
51	44.6	24.7	111	97.1	53.8	171	149.6	82.9	231	202.0	112.0	291	254.5	141.1
52	45.5	25.2	112	98.0	54.3	172	150.4	83.4	232	202.9	112.5	292	255.4	141.6
5:3	16.4	25.7	113	98.8	54.8	173	151.3	83.9	233	203.8	113.0	293	2.76.3	142.0
54	47.2	219.2	114	99.7	55.3	174	1.52 .2	84.4	234	204.7	113.4	294	257.1	142.5
55	45.1	26.7	115	100.6	55.8	175	153.1	84.8	235	205.5	113.9	295	258.0	143.0
56	49.0	$2 \% .1$	116	101.5	56.2	176	153.9	85.3	236	206.4	114.4	296	258.9	143.5
57	\| 49.9	27.6	117	102.3	56.7	177	-154.8	85.8	237	207.3	114.9	297	259.8	144.0
58	50.7	28.1	118	10:.2	57.2	178	155.7	86.3	238	208.2	115.4	298	260.6	144.5
59	51.6	28.6	119	104.1	57.7	179	156.6	86.8	239	209.0	115.9	299	261.5	145.0
60	5:2	29.1	120	10.5. 0	58.2	180	157.4	87.3	240	209.9	116.4	300	262.4	145.4
Dist.	Dep.	Lat.	Dist	Dep.	Lat.	Dist.	Dep.	1 Lat.	Dist.	Dep.	Lat.	Dist.	Dep.	Lat.
For 61 Degrees.														

40		DIFFERENCE O			TABLE II.					OR 30 DEGREE			$2^{\text {a }} 0$ min.				
Dist.	Lat.				Dep.	Dist.	Lat.	Dep.	D		Dep.	Di		.			-
1	00.9	00.5	61	52.8	30.5	121	104.8	60.5		15 ti. 8	90.5	24	. 7				
2	01.7	01.0	62	53.7	31.0	122	105	61.0	152	157.6	91.0	242	209.6				
3	02.6	01.5	63	5	31	123	10	61	18	158.5	91.5	243	10.				
4	03.5	02.0	64	55.4	32.0	124	107.4	62.0	184	159	92.0	24	11	22.0			
5	04.3	02.5	65	56.3	32.5	125	108.3	62.5	185	160.2	92.5	245	212				
6	05.2	03.	66	57.2	33.0	126	10	63.0	18	16	0	\bigcirc	13.0	0			
7	06.1	03.5	67	58.0	33.5	127	110.0	63.5	187	161.9	93.5	217	218.9	1235			
8	06.9	04.0	68	58.9	34.0	128	110.9	64.0	185	162.8	94.0	$\because 48$	214	. 0			
9	07.8	04	69	59.8	3	12	111.7	. 5	189	163.7	94.5	949	15.6	5			
10	08.7	05	70	60.6	35.0	130	112.6	65.0	190	164.5	95.0	250	. 5	. 0			
11	09.5	05.	71		35	1			19	16	5	251	4				
12	10.4	06.0	72	4	36	132	11	66.0	192	166	6.0	252	218.	. 0			
13	11.5	06.5	73	63.2	36.5	133	115.	66.5	193	167	96.5	253	219.1	. 5			
14	12.1	07.0	74	64.1	37.0	134	116.0	67.0	194	168.0	97.0	254	220.0	12\%.0			
15	13.0	07.5	75	65.0	37.5	135	116.	67.5	195	168.9	7.5	255	220.8	127.5			
16	13.9	08.	76	65.8	38.0	136	117.	68.0	196	169.	.	956	221.7	. 0			
17	14.7	08.5	77	66.7	38.5	137	118.6	68.5	197	170.6	98.5	257	222.6	128.5			
18	15.6	09.0	78	67.5	39.0	1	11	69.0	198	171.	99.0	258	223.4	9.0			
19	16.5	09.	79	68	39.5	139	12	69	199	172.3	.	259	224.3	. 5			
20	17	10	80	69	40.0	140	121.2	70.0	200	173.2	100.0	260	2	. 0			
21	18.2	10.	81	70.1	40.5	141	122.1	70.5	20		0.5	261	0	5			
22	19.1	11.0	82	71.0	41.0	142	12	71.0	202	174.9	101	262	$2 \cdot 6.9$	1.0			
23	19.9	11.5	83	71.9	41.5	143	123	71	203	175	101.5	26	227	131.5			
24	20.8	12.0	84	72.7	42.0	144	124.7	72.0	204	176.7	102.0	264	228	. 0			
2	21.7	12.5	85	73.6	42.5	145	125.6	72.5	205	177.5	102.5	265	229	2.5			
26	22.5	13.0	86	74.5	43.0	146	126	73.0	206	178.4	103.0	266	230.	133.0			
2	23.4	13.5	87	75.3	43.5	147	127.3	73.5	207	179.3	103.5	267	231.2	133.5			
28	24.2	14.0	88	76.2	44.0	148	128.2	74.0	208	180.	104.	268	232.1	134.0			
29	25.1	14.5	89	77	44.5	1	12	74.5	209	181.0	10	-6.	233.0	. 5			
30	26.0	15.0	90	77.9	45.0	15	12	75	210	181.9	105.0	270	233.8	,			
3	26.	15.5		7	45		130.8		2	18		\%	234.7				
32	27.7	16.0	92	79.7	46.0	152	13	76	2	183	106.0	272	235.6	6.0			
33	28.6	16.5	93	80	46.5	15	132.5	76	2	184.5	106.5	273	236.4	136.5			
34	29.4	17.0	94	81.4	47.0	154	133.4	77.0	214	185.3	107.0	274	237.3	137.0			
35	30.3	17.5	95	81.3	47.5	155	134.2	77.5	215	186.2	107.5	275	238.2	137.5			
36	31.2	18.0	96	83.	48.0	15	135.1	78.0	2	187.	108.0	276	239.0	138.0			
3	32.0	18.5	97	84.0	48.5	157	136.0	78.5	217	187.9	108.5	277	239.9	138.5			
38	32.9	19.0	98	84.9	49.0	158	136.8	79.0	218	188.8	109.0	278	240.8	9.0			
3	33.8	19.5	99	85	49.5	159	137.7	79.5	2	189.7	109.5	279	241.6	139.5			
40	34	20.0	100	86.6	50.0	160	13	80.0	220	190.5	110.0	280	242.5	140.0			
41	35	20.5	10	8	50	1	139.	80.	221	191.4	110.5	281	243.4	140.5			
42	36.4	21.0	102	88.3	51	162	140.	81.	29	192	111.0	282	4	141.0			
4	37.2	21.5	103	9.2	51.5	3	141.2	81.	223	193.	111.5	283	245	141.5			
4	38.1	22.0	104	90.1	52.0	164	142.0	82.0	224	194.0	112.0	284	246.0	142.0			
45	39.0	22.5	105	90.9	52.	165	142.9	82.5	22	194.9	112.5	285	246.8	142.5			
46	39.8	23.0	106	91.8	53	66	143.8	83.0	226	195.7	113.0	286	247.7	143.0			
47	40.7	23.5	10%	92.7	53.5	167	144.6	83.5	227	196.6	113.5	287	248.5	143.5			
48	41.6	$\stackrel{3}{2} 0$	108	93.5	54.0	168	145.5	84.0	2	197.	114.0	288	249.4	4.0			
49	42.4	24.5	109	4.4		69	146.4	84.5	229	198.3	114.5	289	250.	144.5			
50	4	25.0	110	5.3	55.0	170		85.0	230	19!.2	115.0	290	251.1	145.0			
	44.2	25.5	11	. 1		171	148.1	85.5	231	200.1	5	291	$25: 0$. 5			
5	45.0	26.0	112	97.0	5	172	149.0	86	23	200.9	116.	292	252.9	146.0			
53	459	26.5	113	7.9	56.5	173	149.8	86.5	233	201.8	116.5	293	253.7	146.5			
5	46.8	27.0	114	98.7	57.0	174	150.7	87.0	234	202.6	117.0	294	254.6	147.0			
55	47.6	27.5	115	99.6	57.5	175	151.6	87.5	235	203.5	117.5	295	255.5	17.5			
56	48.5	28.0	116	100.5	58.0	176	152.4	88.0	236	204.4	118.0	296	256.3	148.0			
57	49.4	28.5	117	101.3	58.5	17%	153.3	88.5	237	205.2	118.5	297	257.2	148.5			
58	50.2	29.0	118	102.2	59.0	178	154.2	89.0	238	206.1	119.0	$\because 98$	$\bigcirc 58.1$	149.0			
59	51.1	29.5	119	103.1	59.5	179	155.0	89.5	239	207.0	119.5	299	258.9	149.5			
60	52.0	30.0	120	103.9	60.0	180	155.9	90.0	$\because 40$	207.8	120.0	:300	259.8	150.0			
Dis	Dep	Lat.	Dist	Dep.	Lat	Dist.	Dep.	Lat.	Dist	Dep.	Lat.	Dist. 1	Dep.	Lat.			
							$1 \cdot 60$	grees.						0^{m}.			

DIFFERENCE OF LATITUDE AND DEPARTURE FOR 31 DEGREES. 2 h 4 m

Dist	at.	Dep.	Dist.	Lat.	Dep.			Dep.	Dis	La	Dep.			Dep.
1	00.9	00.5	61	52.3	31.4	121	10	. 3	181	155	93.2	241	206.6	124.1
	01.7	01.0	62	53.1	31.9	122	104.6	62.8	182	156.0	93.7	242	207.4	124.6
3	02.6	01.5	63	54.0	32.4	123	105.4	63.3	183	156.9	94.3	243	208.3	125
4	03.4	02.1	64	54.9	33.0	124	106.3	63.9	184	157.7	94.8	244	209.1	125.7
5	04.3	02.6	65	55.7	33.5	125	107.1	64.4	185	158.6	95.3	245	210.0	126.2
6	05.1	03.1	66	56.6	34.0	126	108.0	64.9	186	159.4	958	246	210.9	126.7
7	06.0	03.6	63	57.4	34.5	127	108.9	65.4	187	160.3	963	247	211.7	127.2
8	06.9	04.1	68	58.3	35.0	128	109.7	65.9	188	161.1	968	248	212.6	127.7
9	07.7	04.6	69	59.1	35.5	129	110.6	66.4	189	162.0	97.8	249	218.4	128.2
10	08.6	05.2	70	0.0	36.1	130	111.4	67.0	190	162.9	97.9	250	214.3	128.8
11	09.4	05.7	71	0.9	36.6	131	112.3	. 5	191	163.7	8.4	251	215.1	129.3
12	10.3	06.2	72	1.7	37.1	132	113.1	68.0	192	164.6	98.9	252	216.0	1298
13	11.1	06.7	73	. 6	37.6	133	114.0	68.5	193	165.4	99.4	253	216.9	130.3
14	12.0	07.2	74	63.4	38.1	134	114.9	69.0	194	166.3	99.9	254	21% \%	130.8
15	12.9	07.7	75	64.3	38.6	135	115.7	69.5	195	167.1	100.4	255	218.6	131.3
16	13.7	08.2	76	65.1	39.1	136	116.6	70.0	196	168.0	100.9	256	219.4	131.8
17	14.6	08.8	77	66.0	39.7	137	117.4	70.6	19	168.9	101.5	257	220.3	132.4
18	15.4	09.3	78	66.9	40.2	138	118.3	71.1	19	169.7	102.0	258	221.1	132.9
19	16.3	09.8	79	67.7	40.7	139	119.1	71.6	199	170.6	102.5	259	22.0	133.4
20	17.1	10.3	80	68.6	41.2	140	120.0	72.1	200	171	103.0	260	222.9	133.9
21		10.8	81	. 4	41.7	141	120.9	72.6	201	172.3	103.5	261	223.7	134.4
22	18.9	11.3	82	70.3	42.2	142	121.7	73.1	202	173.1	104.0	262	224.6	,
23	19.7	11.8	83	71.1	42.7	143	122.6	73.7	203	174.0	104.6	263	225.4	135.5
24	20.6	12.4	84	72.0	43.3	144	123.4	\%4.2	204	174.9	105.1	264	226.3	136.0
25	21.4	12.9	-85	72.9	43.8	145	124.3	74.7	205	175.7	105.6	265	227.1	36.5
26	22.3	13.4	86	73.7	44.3	146	125.1	75.2	206	176.6	106.1	266	228.0	137.0
27	23.1	13.9	87	74.6	44.8	147	126.0	75.7	207	177.4	106.6	26	228.9	137.5
28	24.0	14.4	88	75.4	45.3	148	126.9	76.2	208	178.3	107.1	20	229.7	138.0
29	$\because 4.9$	14.9	89	76.3	45.8	149	127.7	76.7	209	179.1	107.6	269	230.6	138.5
30	25.7	15.5	90	77.1	46.4	150	128.6	77.3	210	180.0	108.2	270	231.4	139.1
31	20	16.0	91	78.0	46.9	151	129.4	77.8	211	180.	108.7	271	232.3	139.6
32	27.4	. 5	92	78.9	7.4	152	130.3	78.3	212	181.7	109.2	272	233.1	140.1
33	28.3	17.0	93	79.7	47.9	153	131.1	78.8	213	182.6	109.7	273	234.0	140.6
34	29.1	17.5	94	80.6	48.4	154	132.0	79.3	214	183.4	110.2	274	234.9	141.1
35	30.0	18.0	95	81.4	48.9	155	132.9	79.8	215	184.3	110.7	275	235.7	141.6
36	30.9	18.5	96	82.3	49.4	156	133.7	80.3	216	185.1	111.2	276	236.6	142.2
37	31.7	19.1	97	83.1	50.0	157	134.6	80.9	217	186.0	111.8	277	237.4	142.7
38	32.6	19.6	98	84.0	50.5	158	135.4	81.4	218	186.9	112.3	27	238.3	143.2
39	33.4	20.1	99	84.9	51.0	159	136.3	81.9	219	187.7	112.8	279	239.1	143.7
40	34.3	20.6	100	85.7	51.5	160	137.1	82.4	220	188.6	113.	280	240.	,
41	35.1	21	101		52.0	161	138.0	2.9	221	189.4	113.8	281	240.9	144.7
42	36.0	21.6	102	. 4	. 5	162	138.9	83.4	222	190.3	114.3	2	241.	145.2
43	36.9	22.1	103	. 3	53.0	163	139.7	84.0	223	191.1	114.9	28	242.6	145.8
44	37.7	22.7	104	9.1	53.6	164	140.6	84.5	224	192.0	115.4	284	243.4	146.3
45	38.6	23.2	105	90.0	54.1	165	141.4	85.0	225	192.9	115.9	28	244.	146.8
46	39.4	23.7	106	90.9	54.6	166	142.3	85.5	226	193.7	116.4	28	245.1	147.3
47	40.3	24.2	107	91.7	55.1	167	143.1	86.0	227	194.6	116.9	287	246.0	147.8
48	41.1	24.7	108	92.6	55.6	168	144.0	86.5	228	195.4	117.4	28	246.9	148.3
49	42.0	25.2	109	93.4	56.1	169	144.9	87.0	229	196.3	117.9	28	247	148.8
50	42.9	25.8	110	94.3	56.7	170	145.7	87.6	230	197.	118.5	290	248	149.4
	43.7	26.3	111	5.1	7.2	171	146.6	88.1	231	198.0	119.0	291	249	149.9
52	44.6	26.8	112	6.0	57.7	172	147.4	88.6	232	198.9	119.5	292	250.3	150.4
53	45.4	27.3	113	96.9	58.2	173	148.3	89.1	233	199.7	120.0	293	251.2	150.9
54	46.3	27.8	114	97.7	58.7	174	149.1	89.6	234	200.6	120.5	29	252.0	151.4
55	47.1	28.3	115	98.6	59.2	175	150.0	90.1	235	201.4	121.0	295	252.9	151.9
56	48.0	23.8	116	99.4	59.7	176	150.9	90.6	236	202.3	121.5	29	253.7	152.5
57	48.9	29.4	117	100.3	60.3	177	151.7	91.2	237	203.1	122.1	297	254.6	153.0
5 S	49.7	29.9	118	101.1	60.8	178	152.6	91.7	238	204.0	122.6	29	255.4	153.5
59	50.6	30.4	119	102.0	61.3	179	153.4	92.2	239	204.9	123.1	299	256.	154.0
60	51.4	30.9	120	102.9	61.8	180	154.3	92.7	24	205.7	123.6	300	257	154.5
Dis	Dep	Lat		Dep.		Dist.	Dep.	Lat.		Dep.	La		Dep.	Lat.
							For 59							

difference of Latitude and deidarture for 33 degrees. ${ }^{\text {[Paye } 49 .} 12 \mathrm{~m}$.														
Dist.	Lat.	Dep	Dist.	Lat.	Dep.	Dist.	Lat.	Dep.	Dist.	Lat.	Dep.	Dis	Lat.	Dep.
1	00.8	00.5	61	51.2	33.2	121	101.5	65.9	181	151.8	98.6	241	202.1	131.3
2	01.7	01.1	62	52.0	33.8	122	102.3	66.4	182	152.6	99.1	242	203.0	131.8
3	02.5	01.6	63	52.8	34.3	123	103.2	67.0	183	153.5	99.7	243	203.8	132.3
4	03.4	02.2	64	53.7	34.9	124	104.0	67.5	184	154.3	100.2	244	204.6	13\%.9
5	04.2	02.7	65	54.5	35.4	125	104.8	68.1	185	155.2	100.8	245	205.5	133.4
6	05.0	03.3	68	55.4	35.9	126	105.7	68.6	186	156.0	101.3	246	206.3	134.0
7	05.9	03.8	67	56.2	36.6	127	106.5	69.2	187	156.8	101.8	247	207.2	134.5
8	06.7	04.4	68	57.0	37.0	128	107.3	69.7	188	157.7	102.4	248	208.0	135.1
9	07.5	04.9	69	57.9	37.6	129	108.2	70.3	189	158.5	102.9	249	208.8	185.6
10	08.4	05.4	70	58.7	38.1	130	109.0	70.8	190	159.3	103.5	0	209.7	136.2
11	09.2	06.0	71	59.5	38	131	109.9	71	191	160.2	104.0	251	210.5	136.7
12	10.1	06.5	72	60.4	39.2	132	110.7	71.9	192	161.0	104.6	252	211.3	137.2
13	10.9	07.1	73	61.2	39.8	133	111.5	72.4	193	161.9	105.1	25:3	212.2	137.8
14	11.7	07.6	74	62.1	40.3	134	112.4	73.0	194	162.7	105.7	254	213.0	138.3
15	12.6	08.2	75	62.9	40.8	185	113.2	73.5	195	163.5	106.2	255	213.9	138.9
16	13.4	08.7	76	63.7	41.4	136	114.1	74.1	196	164.4	106.7	256	214.7	139.4
17	14.3	09.3	77	64.6	41.9	137	114.9	74.6	197	165.2	107.3	257	215.5	140.0
18	15.1	09.8	78	65.4	42.5	138	115.7	75.2	198	166.1	107.8	258	216.4	140.5
19	15.9	10.3	79	66.3	43.0	139	116.6	75.7	199	166.9	108.4	25	217.2	141.1
20	16.8	10.9	80	67.1	43.6	140	117.4	76.2	200	167.7	108.9	260	218.1	141.6
21	17.6	11	81		44.1	141	118.3	76.8	201	16	109.5	261	218.9	. 2
22	18.5	12.0	82	68.8	.	12	119.1	77.3	02	169.4	110.0	262	219.7	142.7
23	19.3	12.5	83	69.6	5.2	43	119.9	77.9	203	170.3	110.6	26	220.6	143.2
24	20.1	13.1	84	70	45.7	144	120.8	78.4	204	171.1	111.1	26	221.4	143.8
25	21.0	13.6	85	71.3	46.3	145	121.6	79.0	205	171.9	111.7	26	222.2	144.3
26	21.8	14.2	86	72.1	46.8	46	122.4	79.5	206	172.8	112.2	266	223.1	144.9
27	22.6	14.7	87	73.0	47.4	147	123.3	80.1	207	173.6	112.7	26	223.9	145.4
28	23.5	15.2	88	73.8	47.9	148	124.1	80.6	208	174.4	113.3	268	224.	146.0
29	24.3	15.8	89	74.6	48.5	149	125.0	81.2	209	175.3	113.8	269	225.	146.5
30	25.2	16.3	90	75.5	49.0	150	125.8	81.7	210	176.1	114.4	270	226.4	147.1
31	26.0	16.9	91	76.3	49.6	151	126.6	82.2	211	177.0	114.9	271	227.3	1476
32	26.8	17.4	92	77.2	50.1	152	127.5	82.8	212	177.8	115.5	272	228.1	148.1
33	27.7	18.0	93	78.0	50.7	153	128.3	83.3	213	178.6	116.0	273	229.0	148.7
34	28.5	18.5	94	78.8	51.2	154	129.2	83.9	214	179.5	116.6	274	229.8	149.2
35	29.4	19.1	95	79.7	51.7	155	130.0	84.4	215	180.3	117.1	275	230.6	149.8
36	30.2	19.6	96	80.5	52.3	156	130.8	85.0	216	181.2	117.6	276	231.5	150.3
37	31.0	20.2	97	81.4	52.8	157	131.7	85.5	217	182.0	118.2	277	232.3	150.9
38	31.9	20.7	98	82.2	53.4	158	132.5	86.1	218	182.8	118.7	278	233.2	151.4
39	32.7	21.2	99	83.0	53.9	159	133.3	86.6	219	183.7	119.3	279	234.0	152.0
40	33.	21.8	100	83.9	54.5	160	134.2	S7.1	220	184.5	119.8	28	234	152.5
41	34.4	22.3	101	84.7	55.0	161	135.0	87.7	221	185.3	120.4	281	235.7	153.0
42	35.2	22.9	102	85.5	55.6	162	135.9	88.2	222	186.2	120.9	282	236.5	153.6
43	36.1	23.4	103	86.4	56.1	163	136.7	88.8	223	187.0	121.5	283	237.	154.1
44	36.9	24.0	104	87.2	56.6	164	137.5	89.3	224	187.9	122.0	284	238.	154.7
45	37.7	24.5	105	88.1	57.2	165	138.4	89.9	225	188.7	122.5	285	239.0	155.2
46	38.6	25.1	106	88.9	57.7	166	139.2	90.4	226	189.5	123.1	286	239.9	155.8
47	39.4	25.6	107	89.7	58.3	167	140.1	91.0	22	190.4	123.6	287	240.7	156.3
48	40.3	26.1	108	90.6	58.8	168	140.9	91.5	22	191.2	124.2		241	156.9
49	41.1	26.7	109	91.4	59.4	169	141.7	92.0	22	192.1	124.7	28	242	157.4
50	41.9	\%	110	92.3	59.9	170	142.6	92.6	230	182	125.3	290	243.2	157.9
51	42.8	27	111	93.1	. 5	171	143.4	93.1	231	193.7	125.8	291	244.1	158.5
52	43.6	28.3	112	93.9	61.0	172	144.3	93.7	232	194.6	126.4	292	244.9	159.0
53	44.4	28.9	113	94.8	61.5	173	145.1	94.2	233	195.4	126.9	293	245.7	159.6
54	45.3	29.4	114	95.6	62.1	174	145.9	94.8	234	196.2	127.4	29	246.	160.1
55	46.1	30.0	115	96.4	02.6	175	146.8	95.3	285	197.1	128.0	295	247	160.7
56	47.0	30.5	116	97.3	03.2	176	147.6	95.9	236	197.9	128.5	296	248	161.2
57	47.8	31.0	117	98.1	63.7	177	148.4	96.4	237	198.8	129.1	297	249.	161.8
58	48.6	31.6	118	99.0	64.3	178	149.3	96.9	238	199.6	129.6	298	249.9	162.3
59	49.5	32.1	119	99.8	64.8	179	150.1	97.5	239	200.4	130.2	299	250.8	162.8
60	50.3	32.7	120	100.6	65.	180	151.0	98.0	240	201.3	130.7	300	251.6	163.4
Dist	Dep.	Lat.	Dis	Dep.	Lat.	Dist.	Dep.	Lat.	Dist	Dep.	Lat.	Di	Dep.	Lat.

DIFFERENCE OF LATITUDE AND DEPARTURE FOR 34 DEGREES. ${ }^{2 \mathrm{~h}} 16 \mathrm{~mm}$.														
Dist	Lat.	Dep.	Dist	Lat	Dep.	Dist.	Lat.	Dep.	Dist.	Lat	Dep.	Dist.	Lat.	Der
1	00.8	00.6	6	50.6	34	121	100.3	67.7	18	150.1	101.2	241	199.8	134.8
2	01.7	01.1	62	51.4	34.7	122	101.1	68.2	182	150.9	101.8	242	200.6	135.3
3	02.5	01.7	63	52.2	35.2	123	102.0	68.8	183	151.7	102.3	243	201.5	185.9
4	03.3	02.2		53.1	35.8	124	102.8	69.3	184	152.5	102.9	244	202.3	136.4
5	04.1	02.8		53.9	36.3	125	103.6	69.9	185	153.4	103.5	245	203.1	137.0
6	05.0	03.4	66	54.7	36.9	126	104.5	70.5	186	154.2	104.0	246	203.9	137.6
7	05.8	03.9	67	55.5	37.5	127	105.3	71.0	187	155.0	104.6	247	204.8	138.1
8	06.6	04.5	68	56.4	38.0	128	106.1	71.6	188	155.9	105.1	248	205.6	138.7
9	07.5	05.0	69	57.2	38.6	129	106.9	72.1	189	156.7	105.7	249	206.4	139.2
10	08.3	05.6	70	58.0	39.1	130	107.8	72.7	190	157.5	106.2	250	207.3	139.8
11	09.1	06.2	71	58.9	39.7	131	108.6	73.3	191	158.3	106.8	251	208.1	. 4
12	09.9	06.7	72	59.7	40.3	132	109.4	73.8	192	159.2	107.4	252	208.9	140.9
13	10.8	07.3	73	60.5	40.8	133	110.3	74.4	193	160.0	107.9	253	209.7	141.5
14	11.6	07.8	74	61.3	41.4	134	111.1	74.9	194	160.8	108.5	254	210.6	142.0
15	12.4	08.4	75	62.2	41.9	135	111.9	75.5	195	161.7	109.0	255	211.4	142.6
16	13.3	08.9	76	63.0	42.5	136	112.7	76.1	196	162.5	109.6	256	212.2	143.2
17	14.1	09.5	77	63.8	43.1	137	113.6	76.6	197	163.3	110.2	257	213.1	1437
18	14.9	10.1	78	64.7	43.6	138	114.4	77.2	198	164.1	110.7	258	213.9	144.3
19	15.8	10.6	79	65.5	44.2	139	115.2	77.7	199	165.0	111.3	259	214.7	144.8
20	16.6	11.2	80	66.3	44.7	140	116.1	78.3	200	165.8	111.8	260	215.5	145.4
21	17	11.7	81	67.2	45.3	141	116.9	78.8	201	166.6	112.4	261	216.4	145.9
22	18.2	12.3	82	68.0	45.9	142	117.7	79.4	202	167.5	113.0	262	217.2	146.5
23	19.1	12.9	83	68.8	46.4	143	118.6	80.0	203	168.3	113.5	263	218.0	147.1
2	19.9	13.4	84	69.6	47.0	144	119.4	80.5	204	169.1	114.1	264	218.9	147.6
25	20.7	14.0	85	70.5	47.5	145	120.2	81.1	205	170.0	114.6	265	219.7	148.2
26	21.6	14.5	86	71.3	48.1	146	121.0	81.6	206	170.8	115.2	266	220.5	148.7
27	22.4	15.1	87	72.1	48.6	147	121.9	82.2	207	171.6	115.8	267	221.4	149.3
25	23.2	15.7	88	73.0	49.2	148	122.7	82.8	208	172.4	116.3	268	222.2	149.9
25	24.0	16.2	89	73.8	49.8	149	123.5	83.3	209	173.3	116.9	269	223.0	150.4
30	$\because 4.9$	16.8	90	74.6	50.3	150	124.4	83.9	210	174.1	17.4	270	223.8	15
31	25	17.3	91	75.4	50.9	151	125.2	. 4	211	174.9	118.0	271	224.7	
32	20	17.9	92	76.3	51.4		126.0	.	212	175.8	118.5	272	225.5	152.1
33	27.	18.5	93	77.1	52.0	153	126.8	. 6	213	176.6	119.1	273	226.3	152.7
34	28	19.0	94	77.9	52.6	154	127.7	86.1	214	177.4	119.7	274	227.2	153.2
35	29	19.6	95	78.8	53.1	155	128.5	86.7	215	178.2	120.2	275	228.0	153.8
36	29	20	96	79.6	53.7	156	129.3	87.2	216	179.1	120.8	276	228.8	154.3
37	30	20.7	97	80.4	54.2	157	130.2	87.8	217	179.9	121.3	277	229.6	154.9
	31.	21.2	98	81.2	8	158	131.0	88.4	218	180.7	121.9	278	230.5	155.5
39	32	21.8	99	82.1	55.4	159	131.8	88.9	219	181.6	122.5	279	231.3	156.0
40	33.2	22.4	100	82.9	55.9	160	132.6	89.5	220	182.4	123.0	280	232.1	156.6
	3	22.9	101	3.7	56.5	161	133.5	90.0	221	183.2	123.6	281	233.0	157.1
42	34	23.5	102	84.6	57.0	162	134.3	90.6	222	184.0	124.1	282	233.8	157.7
43	35.6	24.0	103	85.4	57.6	163	135.1	91.1	223	184.9	124.7	283	234.6	158.3
44	36.5	24.6	104	86.2	58.2	164	136.0	91.7	224	185.7	125.3	284	235.4	158.8
45	37.3	25.2	105	87.0	58.7	165	136.8	92.3	225	186.5	125.8	285	236.3	159.4
46	38.1	25.7	106	87.9	59.3	166	137.6	92.8	226	187.4	126.4	286	237.1	159.9
47	39.0	26.3	107	88.7	59.8	167	138.4	93.4	227	188.2	126.9	287	$23 \% .9$	160.5
48	39.8	26.8	108	89.5	60.4	16	139.3	93.9	228	189.0	127.5	288	238.8	161.0
49	40.6	27.4	109	90.4	. 0	169	140.1	94.5	229	189.8	128.1	289	239.6	161.6
50	41.5	28	10	91.2	61.5	170	140.9	95.1	230	190.7	12	290	240.4	162
51	42.3	28.5	111	92.0	62.1	171	141.8	95.6	231	191.5	129.2	291	241.2	162.7
52	43.1	29.1	112	92.9	62.6	172	142.6	96.2	232	192.3	129.7	29	242.1	163.3
53	43.9	29.6	113	93.7	63.2	173	143.4	96.7	230	193.2	130.3	293	242.9	163.8
54	44.8	30.2	114	94.5	63.7	174	144.3	97.8	234	194.0	130.9	294	243.7	164.4
55	45.6	30.8	115	95.3	64.3	175	145.1	97.9	235	194.8	131.4	295	244.6	165.0
56	46.4	31.3	116	96.2	64.9	176	145.9	98.4	236	195.7	132.0	296	245.4	165.5
57	47.3	31.9	117	97.0	65.4	177	146.7	99.0	237	196.5	132.5	297	246.2	166.1
58	48.1	32.4	118	97.8	66.0	178	147.6	99.5	238	197.3	133.1	298	247.1	166.6
59	48.9	33.0	119	98.7	66.5	179	148.4	100.1	239	198.1	133.6	299	247.9	167.2
60	49.7	33.6	120	99.5	67.1	180	149.2	100.7	240	199.0	134.2	300	248.7	167.8
Dist.	Dep.	Lat.	Dist.	Dep.	Lat.	Dist.	Dep.	Lat.	Dis	Dep.	Lat	Dis	Dep.	Lat.
							For 5	egrees.						${ }^{\text {h }} 4{ }^{\text {m }}$

		difference of latitude and departure foil 35 DEGREES. $2 \mathrm{~h} 02^{\mathrm{m}}$.												
Dist	La	Dep.	Dist	Lat.	Dep.	Dist.	Lat.	Dep.	Dist.	Lat.	Dep.	Dist.	Lat.	Dep.
1	00.8	00	61	50.0	35.0	121	99.1	69.4	181	148.3	103.8	241	197.4	. 2
2	01.6	01.1	62	50.8	35.6	122	99.9	70.0	182	149.1	104.4	242	198.2	1:8.8
3	02.5	01.7	63	51.6	36.1	123	100.8	70.5	183	149.9	105.0	243	199.1	139.4
4	03.3	02.3	64	52.4	36.7	124	101.6	71.1	184	150.7	105.5	244	199.9	140.0
5	04.1	02.9	65	53.2	37.3	125	102.4	71.7	185	151.5	106.1	245	200.7	140.5
6	04.9	03.4	66	54.1	37.9	126	103.2	72.3	186	152.4	106.7	246	201.5	141.1
7	05.7	04.0	67	54.9	38.4	127	104.0	72.8	187	153.2	107.3	247	202.3	141.7
8	06.6	04.6	68	55.7	39.0	128	104.9	73.4	188	154.0	107.8	248	203.1	142.2
9	07.4	05.2	69	56.5	39.6	129	105.7	74.0	189	154.8	108.4	249	204.0	142.8
10	08.2	05.7	70	57.3	40.2	130	106.5	74.6	190	155.6	109.0	250	204.8	143.4
11	09.0	06.3	71	58.2	40.7	131	107.3	75.1	191	156.5	109.6	251	205.6	144.0
12	09.8	06.9	72	59.0	41.3	132	108.1	75.7	192	157.3	110.1	252	206.4	144.5
13	10.6	07.5	73	59.8	41.9	133	108.9	76.3	193	158.1	110.7	253	207.2	145.1
14	11.5	08.0	74	60.6	42.4	134	109.8	76.9	194	158.9	111.3	254	208.1	145.7
15	12.3	08.6	75	61.4	43.0	135	110.6	77.4	195	159.7	111.8	255	208.9	146.3
16	13.1	09.2	76	62.3	43.6	136	111.4	78.0	196	160.6	112.4	256	209.7	146.8
17	13.9	09.8	77	63.1	44.2	137	112.2	78.6	197	161.4	113.0	257	210.5	147.4
18	14.7	10.3	78	63.9	44.7	138	113.0	79.2	198	162.2	113.6	258	211.3	148.0
19	15.6	10.9	79	64.7	45.3	139	113.9	79.7	199	163.0	114.1	259	212.2	148.6
20	16.4	11.5	80	65.5	. 9	140	114.7	80.3	200	163.8	114.7	260	213.0	149.1
21	17	12.0	81	66.4	46.5	141	115.5	80.9	201	164.6	115.3	1	213.8	149.7
22	18.0	12.6	82	67.2	47.0	142	116.3	81.4	202	165.5	115.9	2	214.6	150.3
23	18.8	13.2	83	68.0	47.6	143	117.1	82.0	203	166.3	116.4	263	215.4	150.9
24	19.7	13.8	84	68.8	48.2	144	118.0	82.6	204	167.1	117.0	264	216.3	151.4
25	20.5	14.3	85	69.6	48.8	145	118.8	83.2	205	167.9	117.6	265	217.1	152.0
26	21.3	14.9	86	70.4	49.3	46	119.6	83.7	206	168.7	118.2	26	217.9	152.6
27	22.1	15.5	87	71.3	49.9	147	120.4	84.3	207	169.6	118.7	267	218.7	153.1
28	22.9	16.1	88	72.1	50.5	148	121.2	84.9	208	170.4	119.3	268	219.5	153.7
	$\because 3.8$	16.6	89	72.9	51.0	149	122.1	85.5	209	171.2	119.9	269	220.4	154.3
30	24.6	17	90	73.7	51.6	150	122.9	86.0	210	172.0	120.5	270	221.2	154.9
31	25	17	91	74.5	52.2	151	123.7	86.6	211	172.8	121.0	271	222.0	155.4
32	26	18	92	75.4	52.8	152	124.5	87.2	212	173.7	121.6	272	222.8	156.0
33	27.0	18.9	93	76.2	53.3	153	125.3	87.8	213	174.5	122.2	27	223.6	156.6
34	27.9	19	94	77.0	5:3.9	154	126.1	88.3	214	175.3	122.7	27	224.4	157.2
35	28.7	20	95	77.8	54.5	155	127.0	88.9	215	176.1	123.3	275	225.3	157.7
3	29.	20.6	96	78.6	55.1	156	127.8	89.5	216	176.9	123.9	27	226.1	158.3
-	30.3	21.2	97	79.5	55.6	15	128.6	90.1	217	177.8	124.5	277	226.9	158.9
3	31.1	21.8	98	80.3	56.2	158	129.4	90.6	218	178.6	125.0	r8	227.7	159.5
39	31.9	22.4	99	81.1	56.8	15 ?	130.2	91.2	219	179.4	125.6	279	228.5	160.0
40	32	22.9	100	81	57	160	131.1	91.8	22	180.2	126.2	280	229	160.6
41	33.6	23.5	101	82.7	57.9	161	131.9	92.3	221.	181.0	126.8	281	230.2	161.2
42	34.4	24.1	102	83.6	58.5	162	182.7	92.9	222	181.9	127.3	282	231.0	161.7
43	35.2	24.7	103	84.4	59.1	163	133.5	93.5	223	182.7	127.9	283	231.8	162.3
44	36.0	25.2	104	85.2	59.7	164	134.3	94.1	224	183.5	128.5	284	232.6	162.9
45	36.9	25.8	105	86.0	60.2	165	185.2	94.6	225	184.3	129.1	28	233.	163.5
46	37.7	26.4	106	86.8	60.8	166	136.0	95.2	226	185.1	129.6	286	234	164.0
47	38.5	27.0	107	87.6	61.4	167	136.8	95.8	227	185.9	130.2	287	235.1	164.6
48	39.3	27.5	108	88.5	61.9	168	137.6	96.4	228	186.8	130.8	288	235.9	165.2
49	40.1	28.1	109	89.3	62.5	169	138.4	96.9	229	187.6	131.3	289	236.7	165.8
50	41.0	$\because 8.7$	110	90.1	63.1	170	139.3	97.	230	188.4	131.9		237.	166.3
51	41.8	29.3	111	90.9	63.7	171	140.1	98.1	231	189.2	132.5	291	238	166.9
52	42.6	29.8	112	91.7	64.2	172	140.9	98.7	232	190.0	133.1	292	239.2	167.5
53	43.4	30.4	113	92.6	64.8	173	141.7	99.2	233	190.9	133.6	293	240.0	168.1
54	44.2	31.0	114	93.4	65.4	174	142.5	99.8	234	191.7	134.2	294	240.8	168.6
55	45.1	31.5	115	94.2	66.0	175	143.4	100.4	235	192.5	134.8	295	241.6	169.2
56	45.9	32.1	116	95.0	66.5	176	144.2	100.9	236	193.3	135.4	296	242.5	169.8
57	46.7	32.7	117	95.8	67.1	177	145.0	101.5	237	194.1	135.9	297	243.3	170.4
58	47.5	33.3	118	96.7	67.7	178	145.8	102.1	238	195.0	136.5	298	244.1	170.9
59	48.3	33.8	119	97.5	68.3	179	146.6	102.7	239	195.8	137.1	299	244.9	171.5
60	49.1	34.4	120	98.3	68.8	180	147.4	103.2	240	196.6	137.7	300	245.7	172.1
Dis	Dep.	Lat.	Dis	Dep.	Lat.	Dist.	Dep.	Lat.	Dist.	Dep.	Lat.	Dist.	Dep.	Lat.
							For 5							${ }^{\text {h }} 40 \mathrm{~m}$.

DIFFERENCE OF LATITUDE AND DEPARTURE FOR 37 DEAREES. 2428 m .

Dist	Lat.	Dep.	Dist.	Lat	Dep.									
1	00.8	00.6	61	4	36.7	121	96.6	72.8	181	144.6	8.9	2		45.0
2	01.6	01.2	62	49.5	37.3	122	97.4	73.4	182	145.4	109.5	242	193.3	145.6
3	0.3. 4	01.8	63	50.3	37.9	123	98.2	74.0	183	146.2	110.1	243	194.1	146.2
4	03.2	02.4	64	51.1	35.5	124	99.0	74.6	184	146.9	110.7	244	194.9	146.8
5	04.0	03.0	65	51.9	39.1	125	99.8	75.2	185	147.7	111.3	245	195.7	147.4
6	04.8	03.6	66	52.7	39.7	126	100.6	75.8	186	148.5	111.9	246	196.5	148.0
7	05.6	04.2	67	53.5	40.3	127	101.4	76.4	187	149.3	112.5	247	197.3	148.6
S	06.4	04.8	68	54.3	40.9	128	102.2	77.0	188	150.1	113.1	248	1!S. 1	149.3
9	07.2	05.4	69	55. 1	41.5	129	103. 0	77.6	189	150.9	113.7	249	198.9	149.9
10	08.0	06.0	70	55.9	42.1	130	103.8	78.2	190	151.7	114.3	250	199.7	150.5
11	0	0	71	5	4	131	104.6	78.8	191	152.5	9	251	200.5	151.1
12	09.6	07.2	72	57.5	43.3	132	105.4	79.4	192	153.3	115.5	252	201.3	151.7
13	10.4	07.8	73	58.3	43.9	133	106.2	80.0	193	154.1	116.2	253	202.1	152.3
14	11.2	08.4	74	59.1	44.5	134	107.0	80.6	194	154.9	116.8	254	202.9	152.9
15	12.0	09.0	75	59.9	45.1	135	107.8	81.2	195	155.7	117.4	255	203.7	153.5
16	12.8	09.6	76	(0.7	45.7	136	108.6	81.8	196	156.5	118.0	256	204.5	154.1
17	13.6	10.2	77	61.5	46.3	137	109.4	82.4	197	157.3	118.6	257	205.2	154.7
18	14.4	10.8	78	62.3	46.9	138	110.2	83.1	198	158.1	119.2	258	206.0	155.3
19	15.2	11.4	79	63.1	47.5	139	111.0	83.7	199	158.9	119.8	259	206.8	155.9
20	16.0	12.0	80	63.9	48.1	140	111.8	84.3	200	159.7	120.4	260	207.6	156.5
21	16.8	12.6	81	64.7	48.7	14	112.6	84.9	201	16	121.0	261	208.4	. 1
22	17.6	13.2	82	65.5	49.3	142	113.4	85.5	202	161.3	121.6	262	209.2	157.7
23	18.4	13.8	83	66.3	50.0	143	114.2	86.1	203	162.1	122.2	263	210.0	158.3
24	19.2	14.4	84	67.1	50.6	144	115.0	86.7	204	162.9	122.8	264	210.8	158.9
25	20.0	15.0	85	67.9	51.2	145	115.8	87.3	205	163.7	123.4	265	211.6	159.5
26	20.8	15.6	86	68.7	51.8	146	116.6	87.9	206	164.5	124.0	266	212.4	160.1
27	21.6	16.2	87	69.5	52.4	147	117.4	88.5	207	165.3	124.6	267	213.2	160.7
28	22.4	16.9	88	70.3	53.0	148	118.2	89.1	208	166.1	125.2	268	214.0	161.3
29	$\because 3.2$	17.5	89	71.1	53.6	149	119.0	89.7	209	166.9	125.8	269	214.8	161.9
30	$\underline{24.0}$	18.1	90	71.9	54.2	150	119.8	90.3	210	167.7	126.4	270	215.6	162.5
31	$\because 4.8$	18.7	91	72.7	54.8	151	120.6	90.9	211	168.5	127.0	271	216.4	163.1
32	25.6	19.3	92	73.5	55.4	152	121.4	91.5	212	169.3	127.6	272	217.2	163.7
33	26.4	19.9	93	74.3	56.0	153	122.2	92.1	213	170.1	128.2	273	218.0	164.3
34	27.2	20.5	94	75.1	56.6	154	123.0	92.7	214	170.9	128.8	274	218.8	164.9
35	28.0	21.1	95	75.9	57.2	155	123.8	93.3	215	171.7	129.4	275	219.6	165.5
36	28.8	21.7	96	76.7	57.8	156	124.6	93.9	216	172.5	130.0	276	220.4	166.1
37	29.5	22.3	97	77.5	58.4	157	125.4	94.5	217	173.3	130.6	277	221.2	166.7
38	30.3	2:. 9	98	78.3	59.0	158	126.2	95.1	218	174.1	131.2	278	222.0	167.8
39	31.1	23.5	99	79.1	59.6	159	127.0	95.7	219	174.9	131.8	279	222.8	167.9
40	31.9	24.1	100	79.9	60.2	160	127.8	96.3	220	175.7	132.4	280	223.6	168.5
41	32.7	24.7	101	80.7	60.8	161	128.6	96.9	221	176.5	133.0	281	224.4	169.1
42	33.5	25.3	102	81.5	61.4	162	129.4	97.5	222	177.3	133.6	282	225.2	169.7
43	34.3	25.9	103	82.3	62.0	163	130.2	98.1	223	178.1	134.2	283	226.0	170.3
44	35.1	26.5	104	83.1	62.6	164	131.0	98.7	224	178.9	134.8	284	226.8	170.9
45	35.9	27.1	105	S3.9	63.2	165	131.8	99.3	225	179.7	135.4	285	227.6	171.5
46	36.7	27.7	106	84.7	63.8	166	132.6	94.9	226	180.5	136.0	286	228.4	172.1
47	37.5	28.3	107	85.5	64.4	167	133.4	100.5	227	181.3	136.6	287	229.2	172.7
48	38.3	28.9	108	86.3	65.0	168	134.2	101.1	228	182.1	137.2	288	230.0	173.3
49	39.1	29.5	109	87.1	65.6	169	135.0	101.7	229	182.9	137.8	289	230.8	173.9
50	39.9	30.1	110	57.8	66.2	170	135.8	102.3	230	183.7	138.4	290	231.6	174.5
5	40.7	30.7	111	88.6	66.8	171	136.6	102.9	231	184.5	139.0	291	232.4	175.1
52	41.5	31.3	112	89.4	67.4	172	137.4	103.5	232	185.3	139.6	29:	233.2	175.7
53	42.3	31.9	113	90.2	68.0	173	138.2	104.1	233	186.1	140.2	293	234.0	176.3
54	43.1	32.5	114	91.0	68.6	174	139.0	104.7	234	186.9	140.8	294	234.8	176.9
55	43.9	33.1	115	91.8	69.2	175	139.8	105.3	235	187.7	141.4	295	235.6	177.5
56	44.7	33.7	116	92.6	69.8	176	140.6	105.9	236	188.5	142.0	296	236.4	178.1
57	45.5	34.3	117	93.4	70.4	177	141.4	106.5	237	189.3	142.6	297	237.2	178.7
58	46.3	34.9	118	94.2	71.0	178	142.2	107.1	238	190.1	143.2	298	238.0	179.3
59	47.1	35.5	119	95.0	71.6	179	143.0	107.7	239	190.9	143.8	299	238.8	179.9
60	47.9	36.1	120	95.8	72.2	180	143.8	108.3	240	191.7	144.4	300	239.6	180.5
Dist.	Dep.	Lat.	Dist	Dep. 1	Lat.	Dist.	Dep.	Lat.	Dist.	Dep.	Lat.	Dist.	Dep.	Lat.
							For 53	egrees.						32 m .

DIFFERENCE OF LATITUDE AND DEPARTURE FOR 38 DEGREES. $2^{\mathrm{h}} 32 \mathrm{~m}$

Dist!	L Lat.	Dep.	Dist.	Lat.	Dep.									
1	00.8	00.6	61	48.1	37.6	121	95.3	74.5	181	142.6	111.4	241	189.9	148.4
2	01.6	01.2	62	48.9	38.2	122	96.1	75.1	182	143.4	112.1	242	190.7	149.0
3	02.4	01.8	63	49.6	38.8	123	96.9	75.7	183	144.2	112.7	243	191.5	6
4	03.2	02.5	64	50.4	39.4	1:4	97.7	76.3	184	145.0	113.3	244	192.3	150.2
5	03.9	03.1	65	51.2	40.0	125	98.5	77.0	185	145.s	113.9	245	193.1	150.8
6	04.7	03.7	66	52.0	40.6	126	99.3	77.6	186	146.6	114.5	246	193.9	. 5
7	05.5	04.3	67	52.8	41.2	127	100.1	78.2	187	147.4	115.1	247	194.6	152.1
8	06.3	04.9	68	53.6	41.9	128	100.9	78.8	188	148.1	115.7	248	195.4	2.7
9	07.1	05.5	69	54	42.5	129	101.	79.4	189	148.9	. 4	9	196	3
10	07.9	06.2	70	55.2	43.1	1:30	102.4	80.0	190	149	117.0	250	197.0	153.9
11	98.7	06.8	71	55.9	48.7	131	103.2	80.7	191	150.5	7.6	251	S	
12	09.5	07.4	72	56.7	44.3	132	104.0	81.3	192	151.3	118.2	252	198.6	. 1
13	10.2	08	73	57.5	44.9	1:3	104.8	81.9	193	152	118.8	253	199.4	155.8
14	11.0	08.6	74	58.3	45.6	134	105.6	82.5	194	152.9	119.4	254	200.2	156.4
15	11.8	09.2	75	59.1	46.2	135	106.4	83.1	195	153.7	120.1	255	200.9	157.0
16	12.6	09.9	76	59.9	46.8	136	107.2	83.7	196	154.5	120.7	256	201.7	157.6
17	13.4	10.5	77	60.7	47.4	137	108.0	84.3	197	155.2	121.3	257	202.	. 2
18	14.2	11.1	78	61.5	48.0	138	108.7	85.0	198	156.0	121.9	258	203.3	. 8
19	15.0	11.7	79	62.3	48.6	139	109.5	85.6	199	156.8	122.5	259	204.1	159.5
20	15.8	12.3	80	63.0	49.3	140	110.3	86.2	200	157.6	123.1	260	204.9	. 1
21	16.5	9	8	63.8	49.9		111.1	86.8	201				205.7	160.7
22	17.3	13.5	$8:$	64.6	50.5	142	111.9	7.4	202	159.2	12	20	206	161.3
23	18.1	14.2	83	65.4	51.1	143	112.7	88.0	203	160.0	125.0	26	207.2	161.9
24	18.9	14.8	84	66.2	51.7	144	113.5	88.7	204	160.8	125.6	2	208.0	162.5
25	19.7	15.4	85	67.0	52.3	.	114.3	89.3	205	161.5	126	265	208.8	163.2
26	20.5	16.0	86	67.8	52.9	146	115.0	89.9	206	162	126.	266	209.6	163.8
27	21.3	16.6	87	68.6	53.6	147	115.8	90.5	$\because 07$	163.1	127.4	267	210.4	164.4
28	22.1	17.2	88	69.3	54.2		116.6	91.1	208	163.9	128	268	211.2	165.0
29	22.9	17.9	89	70.1	54.8	149	117.4	91.7	209	164.7	128.7	269	212.0	165.6
30	23.6	18.5	90	70.9	55	15	118.2	92.3	210	165.5	12	270	8	
3	24	19.1		7			119.0	93.0	211	16	129.9	271	213.6	166.8
32	25.2	19.7	92	72.5	56.6	152	119.8	93.6	212	167.1	130.5	272	214.3	167.5
3	26.0	20.3	93	73.3	57.	153	120.6	94.	21	167.	131	273	215.1	168.1
34	26.8	20.9	94	74.1	57.9	154	121.4	94.	214	168.6	131.8	274	215.9	168.7
35	27.6	21.5	95	74.9	58.5	155	122.1	95.4	215	169.4	132.4	275	216.7	169.3
36	28.4	22.2	96	75.6	59.1	15	122.9	96.0	216	170.2	133.0	276	217.5	169.9
37	29.2	22.8	97	76.4	59.7	15	123.7	96.	217	171.0	133.6	277	218.3	170.5
38	29.9	23.4	98	77.2	60.3	158	124.5	97.3	218	171.8	134	278	219.1	171.2
39	30.7	24.0	99	78.0	61.0	15	125.3	97.9	219	172.6	134	279	219.9	171.8
40	31.5	24.6	100	78	61.6	160	126.1	98.5	220	173.4	135.4	280	220.6	172.4
41	32.3	25			62.2		126.9	99.1	221	174.2	136.1	281	221.4	173.0
42	33.1	25.9	102	80.4	62.8	162	127.7	99.7	222	174.9	136.7	282	22:2.2	173.6
43	33.9	26.5	10.3	81.2	63.4		123.4	100.4	22	175.7	137	28	223.0	174.2
44	34.7	27.1	104	82.0	64.0	164	129.2	101.0	224	176.5	137.9	284	223.8	174.8
45	35.5	27.7	105	82.7	64.6	165	130.0	101.6	225	177.3	138.5	285	224.6	175.5
46	36.2	28.3	106	83.5	65.3	166	130.8	102.2	226	178.1	139.1	286	225.4	176.1
47	37.0	28.9	107	84.3	65.9	167	131.6	102.8	227	178.9	139.8	287	226.2	176.7
48	37.8	29.6	108	85.1	66.5	168	132.4	103.4	228	$17!1.7$	140.4	288	226.9	177.3
49	38.6	30.2	109	85.9	67.	169	133.2	104.0	229	180.5	141.0	289		177.9
50	39.4	30.8	110	86.7	67	170	134.0	104.7	230	181.2	141.6	290		178.5
5	40.2	31.4	111	87.5	68.3	171	. 7	05.3	231	18.0	4.2	291	229.3	179.2
52	41.0	32.0	112	88.3	69.0	172	135.5	105.9	232	182.8	142.8	292	230.1	179.8
53	41.8	32.6	113	89.0	69.6	173	136.3	106.5	233	183.6	143.4	293	230.9	180.4
54	42.6	33.2	114	89.8	70.2	174	137.1	107.1	234	184.4	144.1	294	231.7	181.0
55	43.3	33.9	115	90.6	70.8	175	137.9	107.7	235	185.2	144.7	295	232.5	181.6
51	44.1	34.5	116	91.4	71.4	176	138.7	108.4	236	186.0	145.3	296	233.3	182.2
57	44.9	35.1	117	02.2	72.0	177	139.5	109.0	237	186.8	145.9	297	234.0	182.9
58	45.7	35.7	118	93.0	72.6	178	140.3	109.6	238	187.5	146.5	298	234.8	183.5
59	46.5	36.3	119	93.8	73.3	179	141.1	110.2	239	188.3	147.1	299	235.6	184.1
60	47.3	36.9	120	94.6	73.9	180	141.8	110.8	240	189.1	147.8	300	236.4	184.7
12 st .	Dep.	Lat.	Dist	Dep.	Lat.	Disti.	Dep.	Lat.	Dist.	Dep.	Lat.	Dist	Dep.	Lat.
							For 52	egree						28 m .

		TABLE 11.DIFFERENCE OF LATITUDE AND DEPARTURE FOR 39 DEGREES. $\quad 2 \mathrm{bs} 36 \mathrm{~m}$.												
												Dist.	Lat.	ep.
1		00.			38.4			76.1		140.7	113.9	241	3	7
2	01.6	01.3	62	48.2	39.0	122	94.8	76.8	182	141.4	114.5	242	. 1	. 3
3	02	01.9	63	49.0	39.6	123	5.6	77.4	183	142.2	115.2	213		
4	03	02.5	64	49.7	40.3	124	96.4	78.0	184	143.0	115.8	244	6	6
5	03.6	03.1	65	50.5	40.9	125	97.1	78.7	185	143.8	116.4	24	190.4	-
6	04	03.5	66	51	41.5	126	7.9	79.3	186		117.1	6	191.2	154.6
	05	04.4	67	52.	42.2	127	8.7	79.9	187	145.3	117.\%	247	192.0	
S	06.	0.5 .0	68	52.8	42	128	99.5	80.6	188	146	118.3	248	. 7	. 1
9	07.	05.7	69	53.6	43.		100.3	81.2	180	9		9	193.5	156.7
10	07.8	06.3	70	54.4	44.1	130	101.0	81.8	190	147.7	119.6	250	3	
	0S										2			
12	09.	07.6	72	56.0	4.	13	102.6	83.1	192	1	120.8	2	195.8	. 6
13	10.1	05.2	7.3	56			103.4					253	196.6	159.2
14	10.9	08.8	74	57.5	46.6	134	104.1	84.3	194	150	122	4	4	
15	11.7	0! 0.4	75	58.3	47.2	135	104.9	85.0	195	15	12:.7	255	19	. 5
16	12	10.1	76	59.1	47.	136	10	85.6	196	152.3	123.3	256	198.9	161.1
17	13	10.7	77	59.8	48.5	13	10	S6.2	197	15	124.0	2	199.7	161.7
18	14.0	11.3	78	60.6	49.1	1:	107.2	86.8	198	153.9	4.6	258	20	. 4
19	14.8		79	61	49		108.0	87.5	199	154.7	2	259	201.3	163.0
20	15.5	12	80	6	50	14	108.8	S	20		125.9	260	202.1	163.6
21			81								126.5			
22	17.1	13.8	82	63.7	51.6	14	11	S9.4	202		127.1	2	20	
23	17.9	14.5	83	64.5	52.2	143	111.1	90.0	203	15	127.8	3	20	5
2	18.7	15.1	84	65.3	52.9		11	90.6	204	158.5	128.4	4	20	166.1
25	19.4	15.7	85	66.1	53.5	145		91.3	20		12	265		. 8
26	20.2	16.4	86	6ชิ. 8	54	146	113.5	91.9	206	160	129.6	266	206	4
27	21.0	17.0	87	67.6	54	147	11	92.5	2	160.9	3	7	207.5	168.0
28	21.8	17.6	88	68.4	55.	148		03.1	208		130.9	268		
29	22.5	18.3	89	69.2	56.0	149	11	93.8	209	16	131.5	269	209.	169.3
30			90			15		9	21	163.2	2	0	209	169.9
31	24.1			\% 0.7					,		8	1		
32	24.9	20.1	92	71.5		15	118.1	95.7	212	16	13	2	21	. 2
33	25.6	20.8	93	72.3	5		118.9	96.	21	165	134.0	273	212	171.8
3	26.4	21.4	94	73.1	59.2		119.7	96.9	21	166	134.7	274	212.9	172.4
35	27.2	22.0	95	73.8	59.8	155	120.5	97.5	21	167	135.3	275	21	. 1
36	28.0	22.7	96	74.6	60.4	156	121.2	98.2	216	167	135.9	276	214	173.7
37	28.8	23.3	97	75	61.0		122.0	98.8	217	168	186.6	277	215	174.3
38	29.5	23.9	98	76.2	61.7	15	122	99.4	218	16.	137.2	27	216.0	
39	30.3	24.5	99	76.9	62.	15	123.6	100.1	219	170.2	137.8	279	216.8	175.6
40	31.		10	77.7		160		100.7	220		135.5	980	217.6	170.2
41														
42	32.6	26.4	10	79.3	64		125.	101.9	222		9.7	282		
43	33.4	27.1	103	80.0	64.8	16	126.7	102.6	22	178.3	140.:3	283	219.9	178.1
44	34.2	2	104	80.8			- 5	103.:		174.	11.0	284	220	178.7
45	35.0	28.3	105	81.6	66.1		128.2	103.8	22	174	141	285	221	179.4
46	35.7	23.9	06	82.4	66.7	166	129.0	104.5	226	175	142.2	286	222.3	180.0
47	36.5	29.1		83.2	67.3		129.8	105.1	227	176		2S	223.0	180.6
48	37.3	30.2	108	83.9	(i8.0	168	130.6	105.7	228	177.2	143.5	288	223	181.8
49	38.1	30.8	$10!$	84.7	68.6	169	131.3	106.4	229	178.0	144.1	289	224	181.9
50	38	31.5	110	85.5	69	17	132.1	107.0	230	178.7	144.7	290	225.4	182.5
5	39.6	3. 1					. 9	107.6		. 5		-91	22.1	15.). 1
52	40.4	32.7	112	87.0	70.5	172	1:33.7	108.2	232	180.3	6.0	292	$2 \cdot 26.9$	183.8
53	41.2	33.4	113	87.8	71.1	173	134.4	108.9	233	181.1	140.	293	227	184.4
0	42.0	34.0	114	88.6	71.7	174	135.2	109.5	23	181.9	14%	294	228	185.0
55	42.7	34.6	115	89.4	72.4	175	136.0	110.1	2 25	182.	147.	295	229	185.6
56	43.5	35.2	116	90.1	73.0	176	1:36.8	110.8	236	183.4	148.5	296	230.0	186.3
5	44.3	3.3.9	11 1	90.9	73.6	177	137.6	111.4	237	184.2	149.1	297	230.8	186.9
58	45.1	36.5	118	01.7	74.3	178	135.3	112.0	238	185.0	149.8	298	231.6	187.5
59	45.9	37.1	119	92.5	74.9	179	139.1	112.6	239	185.7	150.4	299	232.4	188.2
60	46.6	37.8	120	93.3	75.	180	139.9	113.3	240	186.5	151.0	300	233.1	188.8
Dis	Dep.	Lat.	Dis	Dep	Lat		Dep.	Lat.	Dist	Dep.	Lat.	Dis	Dep.	Lat.
							For 51	-						L

DIFFERENCE OF LATITUDE AND DEPARTURE FOR 41 DEGREES. 2 h 44 m .

Dist	Lat.	Dep.	Dist.	Lat.	Dep.									
1	00.8	00.7	61	46.0	40.0	121	91.3	79.4	181	136.6	118.7	241	181.9	158.1
2	01.5	01.3	62	46.8	40.7	122	92.1	80.0	182	137.4	119.4	242	182.6	158.8
3	02.3	02.0	63	47.5	41.3	123	92.8	80.7	183	138.1	120.1	243	183.4	159.4
4	03.0	02.6	64	48.3	42.0	124	93.6	81.4	184	138.9	120.7	244	184.1	160.1
5	03.8	03.3	65	49.1	42.6	125	94.3	8:. 0	185	139.6	121.4	245	184.9	160.7
6	04.5	03.9	66	49.8	43.3	126	$9 \overline{95} 1$	82.7	186	140.4	122.0	246	185.7	161.4
7	05.3	04.6	67	50.6	44.1	127	95.8	83.3	187	141.1	122.7	247	186.4	162.0
8	06.0	05.2	68	51.3	44.1i	128	96.6	84.0	188	141.9	123.3	248	187.2	162.7
9	06.8	05.9	69	52.1	45.3	129	97.4	84.6	189	142.6	124.0	249	187.9	163.4
10	07.5	06.6	70	52.8	45.9	130	98.1	8.5 .3	190	143.4	124.7	250	188.7	164.0
11	08.3	07.2	71	53.6	46.6	131	98.9	85.9	191	144.1	125.3	251	189.4	164.7
12	09.1	07.9	72	54.3	47.2	132	99.6	86.6	192	144.9	126.0	252	130.2	165.3
13	09.8	08.5	73	55.1	47.9	$1: 3$	100.4	87.3	193	145.7	126.6	2.3	190.9	166.0
14	10.6	09.2	74	55.8	48.5	134	i01.1	87.9	194	146.4	127.3	254	191.7	166.6
15	11.3	09.8	75	56.6	46.2	135	101.9	88.6	195	147.2	127.9	255	192.5	167.3
16	12.1	10.5	76	57.4	49.9	136	102.6	89.2	196	147.9	128.6	256	193.2	168.0
17	12.8	11.2	77	58.1	50.5	137	103.4	89.9	197	148.7	129.2	25%	194.0	168.6
18	13.6	11.8	78	58.9	51.2	138	104.1	90.5	198	149.4	129.9	258	194.7	169.3
19	14.3	12.5	79	59.6	51.8	139	104.9	91.2	199	150.2	130.6	259	195.5	169.9
20	15	13.1	80	60.4	52.5	140	105	91.8	200	150	131.2	260	196.2	170.6
2	15.8	13.8	81	61.1	5	1	106.4	92.5	2	15	131.9	261	197.0	171.2
22	16.6	14.4	82	61.9	53.8	142	107.2	93.2	202	152.5	132.5	262	197.7	171.9
23	17.4	15.1	83	62.6	54.5	143	107.9	93.8	203	153.2	133.2	263	198.5	172.5
24	18.1	15.7	84	63.4	55.1	144	108.7	94.5	204	154.0	133.8	264	199.2	173.2
25	18.9	16.4	85	64.2	55.8	145	109.4	95.1	205	154.7	134.5	265	200.0	173.9
26	19.6	17.1	86	64.9	56.4	146	110.2	95.8	206	155.5	135.1	266	200.8	174.5
27	20.4	17.7	87	65.7	57.1	147	110.9	96.4	207	156.2	135.8	267	201.5	175.2
28	21.1	18.4	88	66.4	57.7	148	111.7	97.1	208	157.0	136.5	268	202.3	175.8
29	$\because 1.9$	19.0	89	67.2	58.4	149	112.5	97.8	209	157.7	137.1	269	203.0	176.5
30	$\underset{\sim 2.6}{ }$	-19.7	90	67.9	59.0	150	113.2	98.4	210	158.5	137.8	270	203.8	1
3	23.4	20.3	91	68.7	59.7	15	114.0	. 1	211	159.2	138.4	271	204.5	177.8
32	24.2	21.0	92	69.4	60.4	152	114.7	99.7	212	160.0	139.1	272	205.3	178.4
33	24.9	21.6	93	70.2	61.0	153	115.5	100.4	213	160.8	139.7	273	206.0	179.1
34	25.7	22.3	94	70.9	61.7	154	116.2	101.0	214	161.5	140.4	274	206.8	179.8
35	26.4	23.0	95	71.7	62.3	155	117.0	101.7	215	162.3	141.1	275	207.5	180.4
36	27.2	23.6	96	72.5	63.0	156	117.7	102.3	216	163.0	141.7	276	208.3	181.1
37	27.9	24.3	97	73.2	63.6	157	118.5	103.0	217	163.8	142.4	277	209.1	181.7
38	28.7	24.9	98	74.0	64.3	158	119.2	103.7	218	164.5	143.0	278	209.8	182.4
39	29.4	25.6	99	74.7	64.9	159	120.0	104.3	219	165.3	143.7	279	210.6	183.0
40	30.2	26.2	100	75.5	65.6	160	120.8	10.7. 0	220	166.0	144.3	280	211.3	183.7
41	30.9	26.9	101	76.2	66.3		121.5	105.6	221	166.8	55.0	281	212.1	184.4
42	31.7	27.6	102	77.0	66.9	162	122.3	106.3	222	167.5	145.6	282	212.8	185.0
43	32.5	23.2	103	77.7	67.6	163	123.0	106.9	223	168.3	146.3	$28: 3$	213.6	185.7
44	33.2	28.9	104	78.5	(i8.2	164	123.8	107.6	224	169.1	147.0	284	214.3	186.3
45	34.0	29.5	105	79.2	65.9	165	124.5	108.2	225	169.8	147.6	285	215.1	187.0
46	34.7	30.2	106	80.0	69.5	166	125.3	108.9	226	170.6	148.3	286	215.8	187.6
47	35.5	30.8	107	80.8	70.2	167	126.0	109.6	227	171.3	148.9	287	216.6	188.3
48	36.2	31.5	108	81.5	70.9	168	126.8	110.2	228	172.1	149.6	288	217.4	188.9
49	37.0	32.1	109	82. 3	71.5	169	127.5	110.9	229	172.8	150.2	289	218.1	189.6
50	37.7	32.8	110	83.0	72.2	170	128.3	111.5	230	173.6	150.9	290	218.9	190.3
51	38.5	33.5	11	83.8	72	171	129.1	112.2	231	174.3	151.5	291	219.6	190.9
52	39.2	34.1	112	84.5	73.5	17:	129.8	112.8	232	175.1	152.2	292	220.4	191.6
53	40.0	34.8	113	85.3	74.1	173	130.6	113.5	233	175.8	152.9	293	221.1	192.2
54	40.8	:35.4	114	86.0	74.8	174	131.3	114.2	234	176.6	153.5	294	221.9	192.9
55	41.5	36.1	115	86.8	75.4	175	132.1	114.8	235	177.4	154.2	295	222.6	193.5
56	42.3	35.7	116	87.5	76.1	176	132.8	115.5	236	178.1	154.8	296	223.4	194.2
57	43.0	37.4	117	88.3	76.8	177	133.6	116.1	237	178.9	155.5	297	224.1	194.8
58	43.8	38.1	118	89.1	77.4	178	134.3	116.8	238	179.6	156.1	298	224.9	195.5
59	44.5	38.7	119	89.8	78.1	179	135.1	117.4	239	180.4	156.8	299	225.7	196.2
60	45.3	39.4	120	90.6	78.7	180	135.8	118.1	240	181.1	157.5	300	226.4	196.8
Dist.	Dep.	Lat.	Dist.	Dep. 1	Lat.	Dist.	Dep.	Lat.	Dist.	Dep.	Lat.	Dist.	Dep.	Lat.
							For 4	gre						$1{ }^{\text {m }}$

DIFFERENCE OF LATITUDE AND DEPARTURE FOR 42 DEGREES. $2^{\mathrm{h}} 48 \mathrm{~m}$.														
Dist.		D	Dis											Dep.
1	00.7	00.7			40.8						121.1			61
2			62		41.5	12	90.7		182		121.8	242		
3	02.2	02.0	63	46.8	42.2	12	91.4	82.3	183	13	122.5	243		
4	03.	02.7	64	47.6	42.8	124	92.1	3.0	184	136.7	123.1	244		
5	03.7	03.3	65	48.3	. 5	125	92.9	3.6	185	137.5	12	245	18	63.9
6	04	04.0	66	49.	44.2	126	93.6	4.3	186	138.2	12	24	18	
7	05	04.7	67	49.	44.8	127	4.	85.0	18	139.0	12	247	18	
8	05	05	68	50			95.1	85.6	188	139.7	125	248	18	65.9
	06.7						5.9		189	140.5	126	249	185.0	166.6
10	07.4		70						190	141.2	12	250		
11			71					8.7	191	141.9				
12			7						192			252		
13							98.8					253		
14							99.6			144		254		. 0
15			7				100.3					255	18	
16							101.1		196			256		
17							101.8	1.7	197	1				
18					52.2		102.6	2.3	198	14				
19			79	58.	52.9	139	103.3	3.0	199	147.9	133.2	55		73.3
20	14	13	80	59	53.5	140	104.		200	148.6	133.8	260		
21							104.		20					
2			82	60.		142	105.5	.	202	15.1		26		
23	17.1	15.4	83	61.7			106.	. 7	203	150.9	135.	26		
24	17	16.1	84	62.4			107.0	6.4	20	151.6	136	26	19	176.7
25	18.	16.7	85	63.2			107.	97.0	20	152.3	137		19	177.3
26	19.3	17.4	80	63			108	97.7	20	153.1	13	26	19	
27	20.1		87				109		20	153.	138.5	267	19	
28	20		88				110	99.0	208	15	139.2	268	199	
29	21		89				110	99.7	20	15		269		
30	22		90	66.9				10.	21					
31														
32								10						
33			93				113.7	10		158.3				
34			94				114.4	103.0						
35								10		15				
36							115.9	10		16				
37	27.5						116.7	105		16	145		20	185.3
38							117.4	10		162.0				186.0
39	29.0		99				8.2	10		162.7				186.7
40	29.7		100											
41														
			102			162	120.4	10	222	165	148.5	282	20	
43	32.0		103	76.	68.9	163	121.1	109	223	165.7	149.2	283	21	
44	32.7	29.4	104	77.	69.6	164	121.9	109.7	24	166.5	149	284	21	190
45	33.4	30.1	105	78	70		122.6	110.4	225	167.	150	285	211	190
46	34.2	30.8	106	78.	70		123.4	111	22	168.	151	286	212	19
47	34.9	31.4	107	79.	71		124.1	111.7	22	168.	151	28	21	192.0
48	35.7	32	108	80.3		168	124	11	22	169.4	15		21	19
49	36.4		109	81.		169	12	113.1	22	170.2	153.2	289	214	193
50	37		110											194.0
51	37		111											
5	38		112	83.2	74.9	172	127.8	11	232	172.4				195.4
5	30		113	84.0	75.6	173	128.6	115		173.2		29		196.1
54	40	36.1	114	84.7	76.8	174	129.3	116		17				196.7
55	40.9		115				130.1	117		175				10.4
			116				0.8	1		17.			20.	98.1
57	42.4		117				131.5	118.4					220	198.7
58	43		118				132.3	119.	23	176.9	159.3	2		29.4
	43.	39	18	88.4	79.		133.0	119.8	239	177.6	159	29	222	200.1
60	44	40	12	89	80		13	120	240				222	200
Dis	Dep.						Dep.	Lat.					Dep.	Lat

Dist	Lat.	Dep.	Dist.	Lat.	Dep.	Dist.	Lat.	Dep.	Dist.	Lat.	Dep.	Dist	Lat.	Dep.
1	00.7	00	61	44.6	41.6	121	88.5	82.5	181	132.4	123.4	41	176.3	164.4
2	01.5	01.4	62	45.3	42.3	122	89.2	83.2	182	133.1	124.1	242	177.0	165.0
,	02.2	02.0	63	46.1	43.0	123	90.0	83.9	183	133.8	124.8	43	177.7	165.7
4	02.9	02.7	64	46.8	43.6	124	90.7	84.6	184	134.6	125.5	44	178.5	166.4
5	03.7	03.4	65	47.5	44.3	125	91.4	85.2	185	135.3	126.2	245	179.	167.1
6	04.4	04.1	66	48.3	45.0	126	92.2	85.9	186	136.0	126.9	246	179.	167.8
-	05.1	04.8	67	49.0	45.7	127	92.9	86.6	187	136.8	127.5	247	180.6	168.5
8	05.9	05.5	68	49.7	46.4	128	93.6	87.3	188	137.5	128.2	248	181.4	169.1
	06.6	06.1	69	50.5	47.1	129	94.3	88.0	189	138.2	128.9	249	182.1	169.8
10	07.3	06.8	70	51.2	47.7	130	95.1	88.7	190	139.0	129.6	250	182.8	170.5
11	08.0	07.5	71	51.9	48.4	131	95.8	89.3	191	139.7	130.3	251	183.6	171.2
12	08.8	08.2	72	52.7	49.1	132	96.5	90.0	192	140.4	130.9	252	184.3	171.9
13	09.5	08.9	73	53.4	49.8	133	97.3	90.7	193	141.2	131.6	253	185.0	172.5
14	10.2	09.5	74	54.1	50.5	134	98.0	91.4	194	141.9	132.3	254	185.8	173.2
15	11.0	10.2	75	54.9	51.1	135	98.7	92.1	195	142.6	133.0	255	186.5	173.9
16	11.7	10.9	76	55.6	51.8	136	99.5	92.8	196	143.3	133.7	256	187.2	174.6
17	12.4	11.6	77	56.3	52.5	137	100.2	93.4	197	144.1	134.4	257	188.0	175.3
18	13.2	12.3	78	57.0	53.2	138	100.9	94.1	198	144.8	135.0	258	188.7	176.0
19	13.9	13.0	79	57.8	53.9	139	101.7	94.8	199	145.5	135.7	259	189.4	176.6
20	$\underline{14.6}$	13.6	80	58.5	54.6	140	102.4	95.5	200	146.3	136.4	260	190.2	177.3
21	15.4	14.3	81	59.2	55.2	141	103.1	96.2	201	147.0	137.1	261	190.9	178.0
22	16.1	15.0	82	60.0	55.9	142	103.9	96.8	202	147.7	137.8	262	191.6	178.7
23	16.8	15.7	83	60.7	56.6	43	104.6	97.5	203	148.5	138.4	263	192.3	179.4
24	17.6	16.4	84	61.4	57.3	144	105.3	98.2	204	149.2	139.1	264	193.1	180.0
25	18.3	17.0	85	62.2	58.0	145	106.0	98.9	205	149.9	139.8	265	193.8	180.7
26	19.0	17.7	86	62.9	58.7	146	106.8	99.6	206	150.7	140.5	266	194.5	181.4
27	19.7	18.4	87	63.6	59.3	147	107.5	100.3	207	151.4	141.2	267	195.3	182.1
28	20.5	19.1	88	64.4	60.0	148	108.2	100.9	208	152.1	141.9	268	196.0	182.8
29	21.2	19.8	89	65.1	60.7	149	109.0	101.6	209	152.9	142.5	269	196.7	183.5
30	21.9	20	90	65.8	61.4	150	109.7	102.3	210	153.6	143.2	270	197.5	184.1
31	22	21	91	66.6	62.1	151	110.4	103.0	211	154.3	143.9	271	198.2	184.8
32	23	21.8	92	67.3	62.7	152	111.2	103.7	212	155.0	144.6	272	198.9	185.5
33	24.1	22.5	93	68.0	63.4	153	111.9	104.3	213	155.8	145.3	27	199.7	186.2
34	24.9	23	94	68.7	64.1	154	112.6	105.0	214	156.5	145.9	27	200.4	186.9
35	25.6	23.9	95	69.5	64.8	155	113.4	105.7	215	157.2	146.6	275	201.1	187.5
36	26.3	24.6	96	70.2	65.5	156	114.1	106.4	216	158.0	147.3	276	201.9	188.2
37	27.1	25.2	97	70.9	66.2	157	114.8	107.1	217	158.7	148.0	277	202.6	188.9
38	27.8	25.9	98	71.7	66.8	158	115.6	107.8	218	159.4	148.7	278	203.3	189.6
39	28.5	26.6	99	72.4	67.5	159	116.3	108.4	219	160.2	149.4	279	204.0	190.3
40	29.3	27.3	100	73.1	68.2	160	117.0	109.1	220	160.9	150.0	280	204.8	191.0
41	30.0	28.0	101	73.9	68.9	161	117.7	109.8	221	161.6	150.7	281	205.5	191.6
42	30.7	28.6	102	74.6	69.6	162	118.5	110.5	222	162.4	151.4	282	206.2	192.3
43	31.4	29.3	103	75.3	70.2	163	119.2	111.2	223	163.1	152.1	283	207.0	193.0
44	32.2	30.0	104	76.1	70.9	164	119.9	111.8	224	163.8	152.8	284	207.7	193.7
45	32.9	30.7	105	76.8	71.6	165	120.7	112.5	225	164.6	153.4	285	208.4	194.4
46	33.6	31.4	106	77.5	72.3	166	121.4	113.2	226	165.3	154.1	286	209.2	195.1
47	34.4	32.1	107	78.3	73.0	167	122.1	113.9	227	166.0	154.8	287	209.9	195.7
48	35.1	32.7	108	79.0	73.7	168	122.9	114.6	228	166.7	155.5	288	210.6	196.4
49	35.8	33.4	109	79.7	74.3	169	123.6	115.3	229	167.5	156.2	289	211.4	197.1
50	36.6	34.1	110	80.4	75.0	170	124.3	115.9	230	168.2	156.9	29	212.1	197.8
51	37.3	34.8	111	81.2	75.7	171	125.1	116.6	231	168.9	157.5	291	212.8	198.5
52	38.0	35.5	112	81.9	76.4	172	125.8	117.3	232	169.7	158.2	292	213.6	199.1
53	38.8	36.1	113	82.6	77.1	173	126.5	118.0	233	170.4	158.9	293	214.3	199.8
54	39.5	36.8	114	83.4	77.7	174	127.3	118.7	234	171.1	159.6	294	215.0	200.5
55	40.2	37.5	115	84.1	78.4	175	128.0	119.3	235	171.9	160.3	295	215.7	201.2
56	41.0	38.2	116	84.8	79.1	176	128.7	120.0	236	172.6	161.0	296	216.5	201.9
57	41.7	38.9	117	85.6	79.8	177	129.4	120.7	237	173.3	161.6	297	217.2	202.6
58	42.4	39.6	118	86.3	80.5	178	130.2	121.4	238	174.1	162.3	298	217.9	203.2
59	43.1	40.2	119	87.0	81.2	179	130.9	122.1	239	174.8	163.0	299	218.7	203.9
60	43.9	40.9	120	87.8	81.8	180	131.6	122.8	240	175.5	163.7	300	219.4	204.6
Dis	Dep.	Lat.	Dist.	Der	Lat	Dist,	Dep.	Lat.	Dist	Dep.	Lat.	Dis	Dep.	Lat.
							For 47							$8{ }^{0}$

DIFFERENCE OF LATITUDE AND DEPARTURE FOR 44 DEGREES. $2^{2 \mathrm{~h}} 58$														
Dist.	Lat.	Dep.	Dist.	Lat.	Dep.	Dist.	at.	Dep.	Dist.	Lat	Dep.	Dist	Lat	Dep.
1	00.7	00.7	61	43	42.4	121	. 0	84.1	,	130.2	125.7	241	173.4	167.4
2	01.4	01.4	62	44.6	43.1	122	7.8	84.7	182	130.9	126.4	242	174.1	168.1
3	02.2	02.1	63	45.3	43.8	123	88.5	85.4	过	131.6	127.1	243	174.8	168.8
4	02.9	02.8	64	. 0	44.5	124	89.2	86.1	184	132.4	127.8	244	175.5	169.5
5	03.6	03.5	65	46.8	45.2	125	89.9	86.8	185	133.1	128.5	245	176.2	170.2
6	04.3	04.2	66	47.5	45.8	126	90.6	87.5	186	133.8	129.2	246	177.0	170.9
7	05.0	04.9	67	48.2	46.5	127	91.4	88.2	187	134.5	129.9	247	177.7	171.6
8	05.8	05.6	68	48.9	47.2	128	92.1	88.9	188	135.2	130.6	248	178.4	172.3
9	06.5	06.3	69	49.6	47.9	129	-92.8	89.6	189	136.0	131.3	249	179.1	173.0
10	07.2	06.9	70	50.4	48.6	130	93.5	90.3	190	136.7	132.0	250	179.8	173.7
11	07.9	07.6	71	51.1	49.3	131	94.2	91.0	191	137.4	132.7	251	180.6	174.4
12	08.6	08.3	72	51.8	50.0	132	95.0	91.7	192	138.1	133.4	252	181.3	175.1
13	09.4	09.0	73	52.5	50.7	133	95.7	92.4	193	138.8	134.1	253	182.0	175.7
14	10.1	09.7	74	53.2	51.4	134	96.4	93.1	194	139.6	134.8	254	182.7	176.4
15	10.8	10.4	75	54.0	52.1	135	97.1	93.8	195	140.3	135.5	255	183.4	177.1
16	11.5	11.1	76	54.7	52.8	136	97.8	94.5	196	141.0	136.2	256	184.2	177.8
17	12.2	11.8	77	55.4	53.5	137	98.5	95.2	197	141.7	136.8	257	184.9	178.5
18	12.9	12.5	78	56.1	54.2	138	99.3	95.9	198	142.4	137.5	25	185.6	179.2
19	13.7	13.2	79	56.8	54.9	139	100.0	96.6	199	143.1	138.2	25	186.	179.9
20	14.4	13.9	80	57.5	55.6	140	100.7	97.3	200	143.9	138.4	260	187.0	180.6
21	15	14.6	81	58	56.3	141	101.4	7.9	201	144.6	139.6	261	187.7	1.3
22	15.8	15	82	59.0	57.0	142	102.1	8.6	202	145.3	140	262	188.5	182.0
23	16.5	16.0	83	59.7	. 7	143	102.9	99.3	203	146.0	141.0	263	189.	182.7
24	17	16.7	84	60.4	58.4	144	103.6	100.0	204	146.7	141.7	264	189.	183.4
25	18.0	17.4	85	61.1	59.0	45	104.3	100.7	205	147.5	142.4	265	190.	184.1
26	18.7	18.1	86	61.9	59.7	146	105.0	101.4	206	148.2	143.1	266	191.3	184.8
27	19.4	18.8	87	62.6	60.4	147	105.7	102.1	207	148.9	143.8	267	192.1	185.5
28	20	19.5	88	63.3	61.1	148	106.5	102.8	208	149.6	144.5	268	192.8	186.2
29	20.9	20.1	89	64.0	61.8	149	107.2	103.5	209	150.3	145.2	269	193.5	186.9
30	21.6	20.8	90	64.7	62.5	150	107.9	104.2	210	151.1	145.9	270	94.	187.6
31	22.3	21.5	91	65.5	63.2	151	108.6	104.9	211	151.8	146.6	271	194.9	188.3
32	23.0	22.2	92	66.2	63.9	152	109.3	105.6	212	152.5	147.3	272	195.	188.9
33	23.7	22.9	93	66.9	64.6	153	110.1	106.3	213	153.2	148.0	273	196.4	189.6
34	24.5	23.6	94	67.6	65.3	154	110.8	107.0	214	153.9	148.7	274	197.1	190.3
35	25.2	24.3	95	68.3	66.0	155	111.5	107.7	215	154.7	149.4	275	197.8	191.0
36	25.9	25.0	96	69.1	66.7	156	112.2	108.4	216	155.4	150.0	276	198.5	191.7
37	26.6	25.7	97	69.8	67.4	157	112.9	109.1	217	156.1	150.7	277	199.3	192.4
38	27.3	26.4	98	70.5	68.1	158	113.7	109.8	218	156.8	151.4	278	200.0	193.1
39	28.1	27.1	98	71.2	8	159	114.4	110.5	219	157.5	152.1	279	200.7	193.8
40	28.8	27.8	100	71.9	69.5	160	115.1	11	220	158	152	280	201.4	194.5
41	29.5	28.5	101	72.7	70.2	161	115.8	111.8	221	159.0	153.5	281	202.1	195.2
42	30.2	29.2	102	73.4	70.9	102	116.5	112.5	222	159.7	154.2	282	202.9	195.9
43	30.9	29.9	103	74.1	71.5	163	117.3	113.2	223	160.4	154.9	283	203.6	196.6
44	31.7	30.6	104	74.8	72.2	164	118.0	113.9	224	161.1	155.6	284	204.3	197.3
45	32.4	31.3	105	75.5	7\%. 9	165	118.7	114.6	225	161.9	156.3	285	205.0	198.0
46	33.1	32.0	106	76.3	73.6	166	119.4	115.3	226	162.6	157.0	286	205.7	198.7
47	33.8	32.6	107	77.0	74.3	167	120.1	116.0	227	163.3	157.7	287	206.5	199.4
48	34.5	33.3	108	77.7	75.0	168	120.8	116.7	228	164.0	158.4	288	207.2	200.1
49	35.2	34.0	109	78.4	75.7	169	121.6	117.4	229	164.7	159.1	289	207.9	200.8
50	36.0	34.7	110	79.1	76.4	170	122.3	118.1	230	165.4	159.8	29	208.6	201.5
51	36.7	35.4	111	79.8	77.1	171	123.0	118.8	231	166.2	160.5	291	209.3	202.1
52	37.4	36.1	112	80.6	77.8	172	123.7	119.5	232	166.9	161.2	292	210.0	202.8
53	38.1	36.8	113	81.3	78.5	173	124.4	120.2	233	167.6	161.9	293	210.8	203.5
54	38.8	37.5	114	82.0	79.2	174	125.2	120.9	234	168.3	162.6	294	211.5	204.2
55	39.6	38.2	115	82.7	79.9	175	125.9	121.6	235	169.0	163.2	295	212.2	204.9
5	40.3	38.9	116	83.4	80.6	176	126.6	122.3	236	169.8	163.9	296	212.9	205.6
57	41.0	39.6	117	84.2	81.3	177	127.3	123.0	237	170.5	164.6	297	213.6	206.3
58	41.7	40.3	118	84.9	82.0	178	128.0	123.6	238	171.2	165.3	298	214.4	207.0
59	42.4	41.0	119	85.6	82.7	179	128.8	124.3	239	171.9	166.0	299	215.1	207.7
60	43.2	41.7	120	86.3	83.4	180	129.5	125.0	240	172.6	166.7	300	215.8	208.4
Dist	Dep.	Lat.	Dist.	Dep.	Lat.	Dist.	Dep.	Lat.	Dist.	Dep.	Lat.	Dist	Dep.	Lat.
							For 46	gr						$4^{\text {m }}$

		DIFFERENCE OF LATITUDE AND DEPARTURE FOR 45 DEGREES.												
		Dep.											Lat.	p.
1					43.1								. 4	4
2	01.4	01.4	62	43	43.8	122	\%		183	128.7				
3	$0 \cdot 1$	02.1	63	44.5	44.5	123	87.0	87.0	183	12	129.4	243		
	2.3	02.8		4	45.3	124	87.7	87.7	184	130	13	244	172.5	5
5	03.5	03.5	65	46.0	46.0	125	8.4	88.4	185	130.8	130.8		173.2	. 2
6	04.2	04.2	66	46.7	46.7	126	99	89.1	186	13	131.5	246		
	0	04.9		47.4	47	127	9.8	. 89.8		132.2	132.2	247	174.7	7
8	05.7	0 -	68	48.	48.1	128	90.5	90	188	132.9	13		175.4	175.4
9	06.4	06	69	48.	48.8	29	91.2	91.2	189	13		249		
10	0	0	70	49	49.5	1	91	91.9	190	134.4	134.4	250	176.8	176.8
11											135.1			
12	08.5	0	72		50.9	13						52	178.2	8.2
13	09.2	09.2	73	5	51.6	133	94.0	94.0	193	13				
14	09.9	09.9	74		52.	13	4.8	94.8	19	13	13	254		
15	10.6		75				95.5	95.5		137.9	137.9	255	18	. 3
16	11.3	11.3	76	5	53	13	96.2	96.2	196	138.6				1.
17	12.0	12.0	77	5	5	13	96.9	6	197	139.3	139.3	257		
18			78				97.6	97.6	198	140.0	140.0	8	182.4	4
19	13.4	13	79				98.3		199		,			
20	14	1	80	56.6	56.6	140	99.0	. 0	200	1				
22	15	15	82	5		142	100.	100.	20	142.8		262		
23	16.3	16.3		5			101.	101.1	203	143.5	143.5	3	186.0	
24	17.0	17.0		59.	59			10			144.2	264		186.7
25	17.7	17.7	85	60.1	60.	145	102.	10	205	14		265		
26	18.4	18.	86	60	60	14	103.2	103.2	206	145.7	145.7	6		
27	19.1	19.1	87	61	61		103	103	207	146.4	146.4	7		88.8
28	19.8	19.8	88	62	62		104		208					. 5
29	20.5	20.5	89	6		149	105.4	10	10					0.2
30	21.2	21.2	90					106.1	210	148.5	5			0.9
31	21	2												
32	22.	22.6	92						2		1	272		. 3
33	23.3	23.3		65							150	27	19	193.0
	24.0	24.0	94	66.5	6		108.	108.9		15				193.7
35	24.7	24.7	95	67.2	67.2	155	109.	109		15	152.0			194.5
36	25.5	25.5		67.9	67.9	156	110.3	110	216	15	152	276	195	195.2
	26.2	26.2			68.6	15								195.9
3	26.9	26.9	98	69.3	69.3	158	111.	11				278		196.6
39	27.6	27.6	99	70.0	70.0	159	112.4		219	154.9	154.	279	19	197.3
40	28.3		100			160			220					198.0
													108	198.7
42	29.7	29												199.4
43	30.4	30.4	103	72.8	7	16	115.3			157.	158	2	200	200
4	31.	31.		73.5		16	11	11		158	15	28	200	200.8
45	31.8	31.8		74		16	117	116.7		150			201	201.5
46	32.5	32.5	106	75	75.	166	117.	117		159.	150.		202	202.2
47	33.2	38	\%	75	75	167	118			160.	1	28	202	202.9
48	33.9	33.9					118.8			161.2				203.6
49	34.6	34.6	109		77	169	119.5	119.5	229	161.9	161.9	289	20	04.4
50	35	35	110			170			230	162.6		290	205.1	20
	36.			8.5		17				,	163.3	2	205.8	205.8
52	36.8	36.8	112		79.2	172	12.			164.0		29	206.	206.5
5	37.5	37.5	1	70.3	79.9	173	122.3	122.	23	164.8	1	293	207	207.2
54	38.2	38.:	14	S0.6	80.6	174	123.0	123.	2	165	16	294	207	207.9
5	38.9	38.9	115	81.3	81	175	123.7		23	166.2	16	29	208	208.6
50	39.6	39.6	116	82.0	8:. 0	176	124.5	124.	236	166.9	166.9	29	209.:	209.3
57	40.3	40.3	117	82	82.7	177	125.2		237	167.6		297	210.0	210.0
58	41.0	41.0	118	83.4	83.4	178	125.9		238	168.3	168	298	210.7	210.7
59	41.7	41.n	119	84.1	84.1	179	1:6.6	126.6	239	169.0	169.0	299	211.4	211.4
60	42.4	42.4	120	84.9	84.9	180	127.3	$1: 7.3$	240	169.7	169.7	300	21].1	212.1
Di	Dep.	Lat	Dis	Dep.	Lat	Dist.	Dep.	Lat.	Dis	Dep.	Lat.	Dis	Dep.	Lat.
							or 45							$3^{\text {¢ }} 0 \mathrm{~m}$.

MERIDIONAL PARTS

M.	0^{0}	$1{ }^{\circ}$	2°	3°	4°	5°	6°	70	8°	9°	10°	11^{0}	12°	13°	M.
0	0	60	120	180	240	300	361	421	482	542	603	664	725	787	0
1	1	61	121	181	241	301	362	422	483	543	604	665	726	788	1
2	2	62	122	182	242	302	363	423	484	544	605	666	727	789	2
3		63	123	183	243	303	364	424	485	545	606	667	728	790	3
4	4	64	124	184	244	304	365	425	486	546	607	668	729	791	4
5	5	65	125	185	245	305	366	426	487	547	608	669	730	792	5
6	6	66	126	186	246	306	367	427	488	548	609	670	731	793	6
7	7	67	127	187	247	307	368	$4: 8$	489	549	610	$6 \% 1$	732	794	7
8	8	68	128	188	248	308	369	429	490	550	611	672	734	795	8
9	9	69	129	189	249	309	370	430	491	551	612	673	735	796	9
10	10	70	130	190	250	310	371	431	492	552	613	674	736	797	10
11	11	71	131	191	251	311	372	432	493	553	614	675	737	798	11
12	12	72	132	192	252	312	373	433	494	554	615	676	738	799	12
13	13	73	133	193	253	313	374	$4: 3$	495	555	616	677	739	800	13
14	14	74	134	194	254	314	375	435	496	556	617	678	740	801	14
15	15	75	135	195	255	315	376	436	497	557	618	679	741	802	15
16	16	76	136	196	256	316	377	437	498	558	619	680	74:	803	16
17	17	77	137	197	257	317	378	438	499	559	620	681	743	804	17
18	18	78	138	198	258	318	379	439	500	560	621	682	744	805	18
19	19	79	139	199	259	319	380	440	501	561	622	683	745	806	19
20	20	80	140	200	260	320	381	441	$\overline{502}$	562	623	684	746	807	20
21	21	81	141	201	261	321	382	44:	503	564	624	685	747	808	21
22	22	82	142	202	262	3 ± 2	383	443	504	565	625	687	748	809	22
23	23	83	143	203	263	323	384	444	505	566	6:2	688	749	810	23
24	24	84	144	204	264	$3: 4$	385	445	506	567	627	689	750	811	24
25	25	85	145	205	265	325	386	446	507	568	628	690	751	812	25
26	26	86	146	206	266	$3 \because 6$	387	447	508	569	$6 \geqslant 9$	691	752	813	26
27	27	87	147	207	267	327	388	448	509	570	631	692	753	815	27
28	28	88	148	208	268	328	389	449	510	571	632	693	754	816	28
29	29	89	149	209	269	330	390	450	511	572	633	694	755	817	29
30	30	90	150	210	270	331	391	451	512	573	634	695	756	818	30
31	31	91	151	211	271	332	392	452	513	574	635	696	757	819	31
32	32	92	152	212	272	333	393	453	514	575	636	697	758	820	32
33	33	93	153	213	273	334	394	454	515	576	637	698	759	821	33
34	34	94	154	214	274	335	395	455	516	577	638	699	760	822	34
35	35	95	155	215	275	336	396	456	517	578	639	700	761	8:23	35
36	36	96	156	216	276	337	397	457	518	579	640	701	762	824	36
37	37	97	157	217	277	338	398	458	519	580	641	702	763	825	37
38	38	98	158	218	278	339	399	459	520	581	642	703	764	826	38
39	39	99	159	219	279	340	400	460	521	582	64.3	704	765	827	39
40	40	100	160	220	280	341	401	461	522	583	644	705	766	828	40
41	41	101	161	221	281	342	402	462	523	584	645	706	767	829	41
42	42	102	162	222	282	343	403	463	524	585	646	707	768	830	42
43	43	103	163	223	283	344	404	464	525	586	647	708	769	-31	43
44	44	104	164	224	284	345	405	465	526	587	648	709	770	832	44
45	45	105	165	225	285	346	406	466	527	588	649	710	771	833	45
46	46	108	166	226	286	347	407	467	528	589	650	711	772	834	46
47	47	107	167	227	287	348	408	468	529	590	651	71:	773	835	47
48	48	108	168	298	288	349	409	469	530	591	652	713	774	836	48
49	49	109	169	229	289	350	410	470	531	592	653	714	775	837	49
50	50	110	170	230	290	351	411	471	532	593	654	715	777	838	50
51	51	111	171	231	291	352	412	47:2	533	594	655	716	778	839	51
52	52	112	172	232	292	353	413	47%	534	595	656	717	779	840	52
53	53	113	173	233	293	354	414	474	535	596	657	718	780	841	53
54	54	114	174	234	294	355	415	476	536	597	658	719	781	842	54
55	55	115	175	235	295	356	416	477	537	598	659	720	782	843	55
56	56	116	176	236	$\because 96$	357	417	478	538	599	660	721	783	844	56
57	57	117	177	237	297	358	418	479	539	'600	661	722	784	845	57
58	58	118	178	238	298	359	419	480	540	601	662	723	785	846	58
59	59	119	179	239	299	360	420	481	541	602	663	724	786	S47	59
M.	0°	10	20	3°	4°	5°	6°	70	80	9°	10°	11°	12°	13°	M.

MERIDIONAL PARTS.

M.	14°	15°	16°	17°	18°	19°	20°	21°	220	23°	24°	25°	26°	27°	M.
0	848	910	973	1035	1098	1161	1225	1289	1354	1419	1484	1550	1616	1684	0
1	850	911	974	1036	1099	1163	1226	1290	1355	1420	1485	1551	1618	1685	,
2	851	913	975	10:37	1100	1164	1227	1291	1356	1421	1486	155:	1619	1686	2
3	852	914	976	1038	1101	1165	1228	1292	1357	1422	1487	1553	1620	1687	3
4	853	915	977	1039	1102	1166	1229	1293	1358	1423	1488	1554	1621	1688	4
5	854	91	978	1041	1103	1167	1230	1295	$135!$	1424	1490	15.6	1622	1689	5
6	855	917	979	1042	1105	1168	1232	1296	1360	1425	1491	1557	1623	1690	6
7	856	918	980	1043	1106	1169	1233	1297	1361	1426	1492	1558	1624	1691	7
8	857	919	981	1044	110	1170	1234	1298	1362	1427	1493	1559	1625	1693	8
9	858	920	982	1045	$110 \times$	1171	1235	1299	1363	1428	1494	1560	1626	1694	9
10	859	921	983	1046	1109	1172	1236	1300	1364	1430	1495	1561	1628	1695	10
11	860	922	984	$10+7$	1110	1173	$123 i$	1301	1366	1431	1496	1562	1629	1696	11
12	861	923	985	1048	1111	1174	1238	1302	1367	1432	1497	1563	1630	1697	12
13	862	924	996	1049	1112	1175	1239	1303	1368	1433	1498	1564	16.31	1698	13
14	863	925	987	1050	1113	1176	1240	1304	1369	1434	1499	1565	1632	1699	14
15	864	926	988	1051	1114	1178	1241	1305	1370	1435	$\overline{1500}$	1567	1633	1700	15
16	865	927	989	1052	1115	1178	1242	1306	1371	1436	1502	1568	1634	1701	16
17	866	928	990	1053	1116	1179	1243	1307	1372	1437	1503	1569	1635	1703	17
18	867	929	991	1054	1117	1181	1244	1308	1373	1438	1504	1570	$16: 37$	1704	18
19	868	930	993	1055	1118	1182	1245	1310	1374	$14: 3$	1505	1571	1638	1705	19
20	869	931	994	1056	1119	1183	1246	1311	1375	1440	15	1572	1639	1706	20
21	870	932	995	1057	1120	1184	1248	1312	1376	1441	1507	1573	1640	1707	21
22	871	933	996	1058	1121	1185	1249	1313	1377	1443	1508	1574	1641	1708	22
23	872	934	997	1059	1122	1186	1250	1314	1379	1444	1509	1575	1642	1709	23
24	873	935	998	1060	1123	1187	1251	1315	1380	1445	1510	1577	1643	1711	24
25	874	936	999	1061	1125	1188	1252	1316	1381	1446	151	1578		1712	25
26	875	987	1000	1063	1126	1189	1253	1317	1382	1447	1513	1579	645	1713	26
27	876	938	1001	1064	1127	1190	1254	1318	1383	1448	1514	1580	1647	1714	27
28	877	939	1002	1065	1128	1191	1255	1319	1384	1449	1515	1581	1648	1715	28
29	878	941	1003	1066	1129	1192	1256	1320	1385	1450	1516	1582	1649	1716	29
30	879	942	1004	$\overline{1067}$	1130	1193	1257	1321	1386	1451	1517	1583	1650	1717	30
31	880	943	1005	1068	1131	1194	1258	1322	1387	1452	1518	1584	1651	1718	31
32	882	944	1006	1069	1132	1195	1259	1324	1388	1453	1519	1585	1652	1720	32
33	883	945	1007	1070	1133	1196	1260	1325	1389	1455	1520	1586	$165: 3$	1721	33
34	884	946	1008	1071	1134	1198	1261	1326	1390	1456	1521	1588	1654	1722	34
35	885	947	1009	1072	1135	1199	1262	1327	1392	1457	152:	1589	1656	1723	35
36	886	948	1010	1073	1136	1200	1264	1328	1393	1458	1524	1590	1657	1724	36
37	887	949	1011	1074	1137	1201	1265	1329	1:394	1459	1525	1591	1658	1725	37
38	888	950	1012	1075	1138	1202	1266	1330	1395	1460	1520	1592	1659	1726	38
39	889	951	1013	1076	1139	1203	1267	1331	1396	1461	1527	1593	1660	1727	39
40	890	952	1014	1077	1140	1204	1268	138	397	1462	15:28	1594	1661	1729	40
41	891	953	1015	1078	1141	1205	1269	1333	1398	1463	15:9	1595	1662	1730	41
42	892	954	1016	1079	1142	1206	1270	1334	1399	1464	1530	1596	1663	1731	42
43	893	955	1018	1080	1144	1207	1271	1335	1400	1465	1531	1598	1664	1732	43
44	894	956	1019	1081	1145	1208	1272	1336	1401	1467	1532	1599	1666	1733	44
45	895	$\overline{957}$	1020	1082	1146	1209	1273	1338	1402	1468	1533	1600	1667	1734	45
46	896	958	1021	1084	1147	1210	1274	1339	1403	1469	1535	1601	1668	1735	46
47	897	959	1022	1085	1148	1211	1275	1340	1405	1470	1536	1602	1669	1736	47
48	898	960	1023	1086	1148	1212	1276	1341	1406	1471	1537	1603	1670	1738	48
49	899	!161	1024	1087	1150	1213	1277	1342	1407	1472	1538	1604	1671	1739	49
50	900	962	1025	1088	1151	1215	1278	1343	1408	1473	1539	1605	1672	1740	50
51	901	963	1026	1089	1152	1216	1280	1.344	1409	1474	1540	1606	1673	1741	51
52	902	964	1027	1090	1153	1217	1281	1345	1410	1475	1541	1608	1675	1742	52
53	903	965	1028	1091	1154	1218	1252	1346	1411	1476	1542	1609	1676	1743	53
54	904	966	1029	109:	1155	1219	1283	1347	1412	1477	$15+3$	1610	1677	1744	54
55	905	968	1030	1093	1156	1220	1284	1348	1413	1479	1544	1611	1678	1746	55
56	906	969	1031	1094	1157	1221	1285	1349	1414	1480	1546	1612	1679	1747	56
57	907	970	1032	1095	1158	1222	1286	1350	1415	1481	1547	1613	1680	1748	57
58	908	971	1033	1096	1159	122:3	1287	1352	1416	1482	1548	1614	1681	1749	58
59	909	972	1034	1097	1160	1224	1288	1353	1418	1483	1549	1615	1682	1750	59
M.	14°	1.50	16°	17°	18°	19°	20°	21°	22°	230	24°	25°	26°	27°	M.

TABLE III. MERIDIONAL PARTS.															
M.	$70^{\circ} 1710$	72017	$\left\|73^{\circ} 174^{\circ}\right\|$	75°	$176^{\circ} 1$	177°	78°	790	80°	81°	S2	83	II	1.	
0	\|5966/6146		6335 [65	65346746	6970	7210	7467	7745	S046	8375	[8739	9145	9606		0
1	969149	338	538749	974	214	472	749	051	381	745	153	614		1	
2	972152	341	541753	978	218	476	754	056	387	752	160	622		2	
3	975155	345	545757	982	222	481	759		393	758	167	631		3	
4	978158	348	548760	986	227	485	764	067	398	765	174	639		4	
5	59816161	4351	5552686	6990	7231	7490	7769		404	8771	182	9647		5	
6	98416	35	555768	394	235	494	774	077	410	788	189	655		6	
7	986167	358	558771	997	239	493	778	083	416	784	196	664		7	
8	989 170	361	562775	7001	243	503	783	088	422	791	203	672		8	
9	992173	364	$565 \quad 779$	005	247	507	788	093	427	797	211	680		9	
10	59956177	63676	65696782	7009	7252	7512	7793	8099	3433	8804	9218	9689		10	
11	998180	371	572786	013	256	516	795	104	439	810	225	697		11	
12	6001183	374	576790	017	260	521	803	109	445	817	233	706		12	
13	004186	377	579793	021	264	525	808	115	451	823	240	714		13	
14	007189	380	583797	025	268	530	813	120	457	830	248	723		14	
15	6010619	3884	65866801	7029	727	7535	7817	81	3463		255	9731		15	
16	013195	38%	590 804	033	277	539	822		469	843	262	740		16	
17		390	59:3 808	037	281	544	827	136	474	849	270	748		17	
18	019201	394	597812	041	285	548	832		480	856	277	757		18	
19	022205	397	600815	045	289	553	837	147	486		285	765		19	
20	60256208	6400	5636819	7048		7557	7842		3492	8869	292	9774		20	
21	028211	403	607823	052	298	562	847		498	876	300	783		21	
22	031 214	407	610 826	; 056	302	566	852		504	883	307	791		22	
23	034217	410	614830	060	306	571	857		510	889	315	800		23	
24	037220	413	617834	064	311	576	862		516	896	322	809		24	
25	6040	64176	66216838	7068	7315	7580	7867	8179	8522	8903	9330	9817		25	
26	043226	420	624 841	072	319	585	872		528	909	\| 337	826		26	
27	046230	423	$6: 8845$	076	323	589	877		534	916	345	835		27	
28	049233	427	631849	080	328	594	882	196	540	923	353	844		28	
29	052236	430	$6: 3585.3$	084	832	599	887	201	546		360	852		29	
30	6055 (6239	64336	66396856	7088		7603			8552			9861		30	
31	058242	437	642860			608	897		558			870		31	
32	061245	440	646864	096	345	612	902		565	950	383	879		32	
33	064 249 069 0.2	443	649868	100	349	617	907		571	957	391	88		33	
34	067252	447	653671	104	353	622	912	$2: 9$	577	96	399	897		34	
35	6070 6255	6450	66566875	710	7358	$\overline{7626}$	7917	3234	5583	$\stackrel{8970}{ }$	9407	9906		35	
36	073 258	453	660879	112	362	631	922		589	977	414	915		36	
37	076, 261	457	663 88:3	116	366	636	927	245	595	984		924		37	
38	079264	460	667886	120	371	640	932		601	991	430	$9: 3$		38	
39	082268	463	670890	124	375	645	937		607		438	帾		39	
40	60856271	6467	36746894	7128					8614			9951		40	
41	088274	470	677898			654	948		620		453	960		41	
42	091277	473	681901	136	388	659	953	273	626	018		968		42	
43	094280	477	685905	140	392	664	958		632	025		978		43	
44	097283	480	(i88 909	145	397	668			638	032		987		44	
45	61006287	648:3	6692691	7149	7401	7673	7908	8290	8644	9039	9485	9996		45	
46	103290	487	695917	153	406	678	973		651			10005		46	
47	106293	490	6991920	157	410	683	978	301	657	053	501	015		47	
48	$10: 296$	494	702924	161	414	687	983		663	060	509	024		48	
49	112299	497	706928	16.5	419	692	989	312	669	067	517	02		49	
50	61156303	6500	67106932	71199					3676	9074		0043		50	
51	118306	004	71: 936		427	702	999		682	081	533	052		51	
52	121309	007	717940	177	432	706	8004		688	088	541	061		2	
53	124.312	011	720943	181	436	711		335	695	096	549	071		53	
54	127315	014	724	185	441	716	014	341	701	103	557	080		54	
55	61306319	65176	67286951	7189	7445	\% 721	8020	8347	8707	9110	9565	$\overline{10059}$		55	
56	133322	521	731955	194	449	725		352	714	117	573	095		56	
57	1363	524	735959		454	730	030		720	124	581	108		57	
58	140.328	52	738963	20.2	458	735	035		726	131	589	118		58	
59	143332	531	742966	206	463	740			733	138	598	127		59	
M.	$70^{\circ} 771^{\circ}$	$72^{\circ} 7$	$73^{\circ} 74{ }^{\circ}$	75°	$76{ }^{\circ}$	770	780	790	80°	$81{ }^{\circ}$	82°	83°		M.	

68	TABLE IV. MEAN REFRACTION.								
$\overline{\text { App. Alt. }}$	Refrac.	App.AIt.	Refrac.	App. Alt.	Refrac.	App. Alt.	Refrac.	App. Alt	Refrac
\bigcirc		\bigcirc -	"	\bigcirc	, "	\bigcirc		\bigcirc	"
$0 \quad 0$	3417	$10 \quad 0$	520	$20 \quad 0$	239	$30 \quad 0$	141	$50 \quad 0$	049
10	3215	10	515	10	237	20	139	30	048
20	3023	20	510	20	236	40	138	510	047
30	2840	30	56	30	235	. 310	137	30	046
40	2727	40	51	40	233	20	135	520	045.
50	2541	50	456	50	232	40	134	30	044
10	2422	$1] 0$	452	210	231	32	133	53	044
10	$23 \quad 9$	10	448	10	229	20	132	30	043
20	$22 \quad 2$	20	444	20	228	40	131	540	042
30	210	30	440	30	227	330	130	30	041
40	$20 \quad 2$	40	436	40	226	20	128	550	040
50	$19 \quad 9$	50	432	50	225	40	127	30	040
20	1820	120	428	220	224	340	126	560	039
10	1734	10	425	10	222	20	125	30	039
20	1651	20	421	20	221	40	124	$57 \quad 0$	038
30	1611	30	418	30	220	350	123	30	038
40	1534	40	414	40	219	20	122	580	037
50	1459	50	411	50	218	40	121	30	036
30	1426	130	48	230	217	36	120	59	035
10	1355	10	45	10	215	20	119	30	034
20	1327	20	42	20	214	40	118	$60 \quad 0$	033
30	130	30	359	30	213	370	117	30	033
40	1234	42	356	40	212	20	116	610	032
50	1210	50	353	50	211	40	115	30	032
40	1147	140	350	240	210	380	114	620	031
10	1126	10	347	10	29	20	114	30	031
20	115	20	345	20	28	40	113	630	030
30	1046	30	342	30	27	$39 \quad 0$	112	30	029
40	1028	40	340	40	26	20	111	$64 \quad 0$	028
50	1010	50	337	50		40	110	30	028
50	954	150	335	250		$40 \quad 0$	9	650	027
10	938	10	332	10	24	20	19	30	027
20	923	20	330	20	23	40	18	$66 \quad 0$	026
30	$9 \quad 9$	30	328	30	22	410	17	30	025
40	855	40	325	40	21	20	17	$67 \quad 0$	024
50	842	50	323	50	20	40	16	30	024
60	830	160	321	260	159	420	15	680	023
10	818	10	319	10	158	20	14	30	022
20	86	20	317	20	157	40	13	$69 \quad 0$	021
30	756	30	315	30	156	430	12	$70 \quad 0$	020
40	745	40	313	40	156	20	12	710	019
50	735	50	311	50	155	40	1	720	018
70	725	$17 \quad 0$		270	154	$44 \quad 0$		730	017
10	716	10	37	10	153	20	10	740	016
20	77	20	35	20	152	40	059	750	015
30	659	30	$3 \quad 3$	30	151	450	058	$76 \quad 0$	014
40	650	40	31	40	151	20	058	$77 \quad 0$	013
50	642	50	259	50	150	40	057	780	012
80	635	180	258	280	149	$46 \quad 0$	056	790	$\overline{0} 11$
10	627	10	256	10	149	20	056	S0 0	010
20	620	20	254	20	148	40	055	810	09
30	613	30	253	30	147	$47 \quad 0$	054	820	08
40	06	40	251	40	147	20	054	830	07
50	60	50	250	50	146	40	053	$84 \quad 0$	
90	554	$19 \quad 0$	248	$29 \quad 0$	145	480	052	850	
10	548	10	247	10	145	20	052	86	04
20	542	20	245	20	144	40	051	870	03
30	536	30	244	30	143	$49 \quad 0$	050	88	0 2
40	531	40	242	40	143	20	050	89	01
50	525	50	240	50	142	40	049	$90 \quad 0$	$0 \quad 0$

TABLE V. dif or fre hobizon.					
$\begin{array}{\|c\|} \hline \text { Height } \\ \text { in } \\ \text { Feet. } \\ \hline \end{array}$	Dip. ${ }^{\text {H }}$	$\left.\begin{array}{\|c\|} \hline \text { Heigh1 } \\ \text { in } \\ \text { Feet. } \end{array} \right\rvert\,$	Dip.	$\begin{array}{\|c\|} \hline \text { Height } \\ \text { in } \\ \text { Feet. } \\ \hline \end{array}$	Dip.
	' "				, 11
1	0.58	28	5.10	125	10.56
2	1.22	30	5.21	130	11.9
3	1.40	32	5.31	135	11.22
4	1.55	34	5.40	140	11.35
5	2. 9	36	5.50	145	11.47
6	2.22	38	6.00	150	11.59
7	2.33	40	6.10	155	12.11
8	2.44	42	6.19	160	12.23
9	2.54	44	6.28	165	12.34
10	3.03	46	6.37	170	12.45
11	3.12	48	6.45	175	12.56
12	3.21	50	6.53	180	13. 7
13	3.29	55	7.11	185	13.18
14	3.37	60	7.29	190	13.29
15	3.45	65	7.47	195	13.40
16	3.53	70	8. 5	200	13.50
17	4. 1	75	8.23	210	14.10
18	4. 8	80	8.40	220	14.30
19	4.15	85	8.57	230	14.50
20	4.22	90	9.14	240	15. 9
21	4.28	95	9.30	250	15.27
22	4.34	100	9.46	260	15.44
23	4.40	105	10. 1	270	16. 0
24	4.46	110	10.16	280	16.16
25	4.52	115	10.30	290	16.31
26	4.58	120	10.43	300	16.46

TABLE VII. moos's augmentation.							
$\begin{gathered} \text { D's } \\ \text { App. } \\ \text { Alt. } \\ \hline \end{gathered}$	D's Semidiametilr by tie Nautical almanac.						
	$\left\|\frac{111}{14.40}\right\|$	$\begin{aligned} & 111 \\ & 15.00 \end{aligned}$	$\left\|\begin{array}{cc} \prime \prime \prime \\ 15.20 \end{array}\right\|$	$\left\|\begin{array}{cc} 1 & \prime \prime \\ 15.40 \end{array}\right\|$		$\left\lvert\, \begin{gathered} \prime \prime \prime \prime \\ 16.20 \end{gathered}\right.$	$\left\lvert\, \begin{array}{cc} 111 \\ 16.40 \end{array}\right.$
\bigcirc	"	"	"	"	"	"	"
0	0	0	0	0	0	0	0
3	1	1	1	1	1	1	1
6	2	2	2	2	2	2	2
9	2	2	3	3	3	3	3
12	3	3	3	3	4	4	4
15	4	4	4	4	4	5	5
18	4	5	5	5	5	5	6
21	5	5	6	6	6	6	7
24	6	6	6	7	7	7	7
27	6	7	7	7	8	8	8
30	7	7	8	8	8	9	9
33	8	8	8	8	9	9	10
36	8	8	9	9	10	10	11
39	9	9	10	10	11	11	11
42	9	10	10	11	11	12	12
45	10	10	11	11	12	12	13
48	10	11	11	12	12	13	13
51	11	12	12	12	13	13	14
54	11	12	12	13	13	14	14
57	12	13	13	13	14	14	15
60	12	13	13	14	14	15	16
65	13	14	14	15	15	16	16
70	13	14	14	15	16	16	17
75	14	14	15	15	16	16	17
80	14	14	15	16	16	17	18
90	14	15	15	16	17	17	18

TABLE VIII.
dIP OF THE HOBIZON-AT DIFFRRENT DISTANGRS FROM THE

ObSERVER.										
Distanceof Landin Miles.	hioht of the eye in faet.									
	5	10	15	20	25	30	35	40	45	50
M.	'	,	'	'		'				
0.1	28	56	84	112	140	169	197	225	252	280
0.2	14	28	42	56	70	85	99	113	126	140
0.3	9	19	28	37	4%	56	65	75	84	93
0.4	7	14	21	28	35	42	49	56	63	70
0.5	6	11	17	22	28	34	39	45	50	56
0.6	5	9	14	19	23	28	33	37	42	47
0.7	4	8	12	16	20	24	28	32	36	40
0.8	4	7	10	14	17	21	25	28	31	35
0.9	3	${ }^{\text {f }}$	9	12	15	19	22	25	28	31
1.0	3	6	8	11	14	17	20	23	25	27
1.2	3	5	7		12	14	16	19	21	23
1.4	3	4	6	-	10	12	14	16	18	20
1.6	3	4	5	7		11	13	14	16	18
1.8	2	3	5	6	8	10	12	13	14	16
2.0	2	3	5	6	7	9	11	12	13	15
2.2	2	3	5	6	7	8	10	11	12	14
2.4	2	3	5	6	7	8	9	11	12	13
2.6	2	3	4	5	6	8	9	10	11	!2
2.8	2	3	4	5	6	7	8	9	10	11
3.0	2	3	4	5	6	7	8	8		10
3.5	2	3	4	5	6		7	8	- 9	9
4.0	2	3	4	4			7	7	8	8
4.5	2	3	4	4	5	5	6	6	67	8
5.0	2	3	4	4	5	5	6	6	67	7
6.0	2	3	4	4	5		6	6	7	7
7.0	2	3	4	4	5	5	- 6	6	7	7

days.	J 4	FE	M	\triangle	MAY.	JUNE.	JULY.	AUGUST.	SEPT.		vov.	dec
				O	0	\bigcirc	\bigcirc	0				
1			7 35S	432 N	15 4N	22 3N	23 8N	18 4N	819 N	3108	$14 \quad 26 \mathrm{~S}$	2149 S
2	2256	1649	712	455	1522	2211	$23 \quad 4$	1748	757	333	1445	2158
3	2250	1631	649	518	1540	2219	2259	1733		356	154	227
4	2244	$16 \quad 13$	626	541	1557	$22 \quad 26$	2254	1717	713	420	$15 \quad 23$	$22 \quad 15$
5	22.38	1555	6	$6 \quad 4$	$16 \quad 14$	2233	2249	17	651	443	1541	$22 \quad 23$
6	2230	$15 \quad 37$	540	626	1631	2240	2243	1645		5	$15 \quad 59$	2231
7	2223	1518	517	649	1648	2246	2237	1628	66	529	$16 \quad 17$	2238
8	2215	1459	453	711	17	2251	2230	1611	544	552	1635	2244
9	22	1440	430	734	$17 \quad 21$	2256	2224	1554	521	615	1652	2250
10	2158	1421	7	756	1737	23	2216	1537	459	638	17	2256
11	2149	14	343	818	$17 \quad 52$	$23 \quad 6$	22	$15 \quad 19$	436	70	1726	23
12	2139	1341	19	840	18	2310	22	15	413	723	1742	$23 \quad 6$
13	2129	$13 \quad 21$	256	$9 \quad 2$	$18 \quad 22$	2313	2152	1443	350	745	$17 \quad 58$	2310
14	2119	131	232	924	1837	2317	2143	1425	327	88	1814	2314
15	21	1241	29	945	1851	2319	2134	14	3	830	1830	$23 \quad 17$
16	$20 \quad 57$	1220	45	106	195	$23 \quad 22$	2124	1347	241	852	1845	$23 \quad 20$
17	2045	1159	121	1028	1919	2324	2114	1328	217	814	190	$23 \quad 23$
18	2033	11138	057	1049	1933	2325	214	$13 \quad 9$	154	836	1914	$23 \quad 24$
19	$20 \quad 20$	1117	034	1119	1946	2326	$20 \quad 53$	1249	131	958	1928	$23 \quad 26$
20	$20 \quad 8$	1055	010 S	1130	1958	$23 \quad 27$	$20 \quad 42$	1230	1	1020	1942	$23 \quad 27$
21	1954	1034	014 N	1151	$20 \quad 11$	$23 \quad 28$	2031	1210	044	1041	1956	$23 \quad 28$
22	1941	$10 \quad 12$	037	1211	$20 \quad 23$	2327	$20 \quad 19$	1150	021 N	113	20	$23 \quad 28$
23	1927	950	11	1231	$20 \quad 34$	2327	$20 \quad 7$	1129	0 - 3 S	11124	2122	$23 \quad 27$
24	1913	928	25	1251	2046	2326	$19 \quad 55$	11	026	1145	2034	$23 \quad 26$
25	1858		48	1311	$20 \quad 57$	$23 \quad 25$	1942	1048	049	126	2046	$23 \quad 25$
26	1843	843	212	1330	21	$23 \quad 23$	1929	1027		1226	2057	$23 \quad 23$
27	1828	821	235	1349	2118	2321	1915	106	136	1247	$21 \quad 9$	2921
28	1812	758	259	148	2128	2318	$19 \quad 2$	945	20	137	2119	2318
29	1756		322	1427	2137	2315	1848		223	$13 \quad 27$	2130	2315
30	1740		345	1446	2146	$23 \quad 12$	1833	9	246	1347	2140	2311
31	1723				2155		1819	841		146		23

SUN'S DECLINATION FOR THE YEAR 1855.

Y8.	JAN.	FEb.	March	april	May.	Jo	JUly.	Aug.	PT.	ост.	Nov.	DEC.
	\bigcirc											01
1	$23 \quad 2 \mathrm{~S}$	17115	741 S	425 N	1459 N		23 9N	$18 \mathrm{8N}$	825 N	$3 \mathrm{3S}$	14215	2147 S
2	2257	1653	719	449	1517	$22 \quad 9$	23	1753	$8 \quad 3$	327	1440	2156
3	2252	1636	656	512	1535	$22 \quad 17$	22	$17 \quad 37$	742	350	1459	225
4	2246	$16 \quad 18$	633	535	$15 \quad 52$	$22 \quad 24$	2256	1721	719	413	1517	2213
5	2239	$16 \quad 0$	610	557	1610	2231	2250	17	657	436	$15 \quad 36$	$22 \quad 21$
6	2232	1542	546	620	1627	2238	$22 \quad 45$	$16 \quad 49$	635	459	1554	2229
7	2225	1523	523	643	1644	2244	2239	1633	613	523	1612	2236
8	2217	$15 \quad 5$		$7 \quad 5$	$17 \quad 0$	$2250{ }^{\prime}$	2232	1616	550	546	1630	$22 \quad 42$
9	22	1446	436	728	$17 \quad 16$	2255	2225	$15 \quad 59$	527	68	1646	2249
10	22	1426	413	750	$17 \quad 32$	23	2218	1541	5	631	17	2254
11	2151	147	349	812	1748	23	2210	$15 \quad 24$	442	654	$17 \quad 21$	23
12	2142	1347	326	834	18 3	23	22	$15 \quad 6$	419	717	1738	23
13	2132	1327	32	856	1818	$23 \quad 12$	2154	1448	356	739	1754	23
14	2122	$13 \quad 7$	239	918	1833	$23 \quad 16$	2145	1430	333	8	1810	$23 \quad 13$
15	$21 \quad 11$	1246	215	939	1847	2319	2136	1411	310	824	1825	2316
16	210	1225	151	10	19	$23 \quad 21$	2127	1352	247	846	1841	2319
17	$20 \quad 48$	$12 \quad 5$	128	1022	1915	$23 \quad 23$	2117	1333	224	98	1856	2322
18	2036	1144	14	1043	1929	$23 \quad 25$	21	1314	2	930	1910	$23 \quad 24$
19	2024	1122	040	11	1942	$23 \quad 26$	2056	1255	137	952	1924	2325
20	2011	11	017 S	1124	1955	$23 \quad 27$	2045	1235	114	1014	1938	$23 \quad 27$
21	1958	1039	$0 \quad 7 \mathrm{~N}$	1145	20	$23 \quad 27$	2034	1215	051	1035	1952	2328
22	1944	1018	031	$12 \quad 5$	$20 \quad 19$	$23 \quad 27$	2022	1155	027	1157	$20 \quad 5$	$23 \quad 27$
23	1931	956	054	1225	2031	$23 \quad 27$	2010	11135	$0 \quad 4 \mathrm{~N}$	1118	$20 \quad 18$	$23 \quad 27$
24	1916	934	118	1245	2043	2326	1958	1114	0 20S	1139	$20 \quad 30$	2326
25	$19 \quad 2$	912	142	13	2054	23 20	1945	1054	043	12	$20 \quad 42$	$23 \quad 25$
26	1847	849		1325	21	2323	1932	1033	16	$12 \quad 21$	$20 \quad 54$	23 23
27	$18 \quad 32$	827	229	1344	2115	2321	1919	$10 \quad 12$	130	1241	215	2321
28	1816		252	143	2125	2319	19	951	153	131	$21 \quad 16$	2319
29	18		316	1422	2134	2316	1851	930	217	1322	2127	2316
30	1744		339	1440	2144	2313	1837		240	1341	2137	2312
31	1727		42		2152		1823	847		14		238

This Table will answer very nearly for every four years afterwards, but if greater accuracy is roquired, a correction mast be

SUN'S DECLINATION FOR THE YEAR 1856 FOR APPARENT NOON AT GREENWICH.

DA	JAN.	FEb.	MARCH	APRIL.	MAY	JUNE.	JULY.		SEPT.	OCT.	Nov.	DEC.
		0	\bigcirc			\bigcirc	0	01	0	\bigcirc	0	\bigcirc
1	$23 \quad 3 \mathrm{~S}$	17 15S	7 25S	442 N	$15 \quad 12 \mathrm{~N}$	22 7N	23 6N	1757 N	8 9N	320 S	1435 S	21 53S
2	2259	1658	$7 \quad 2$	55	1530	2215	$23 \quad 2$	1741	747	344	1454	$22 \quad 2$
3	2253	1641	639	528	1548	$22 \quad 22$	-2 57	1726	725	47	1512	2211
4	2247	1623	616	551	$16 \quad 5$	$22 \quad 29$	$22 \quad 52$	1710	$7 \quad 3$	430	1531	2219
5	$22 \quad 41$	$16 \quad 5$	$5 \quad 53$	614	$16 \quad 22$	$22 \quad 36$	2246	$16 \quad 54$	641	453	1549	$22 \quad 27$
6	2234	$\begin{array}{ll}15 & 47\end{array}$	529	637	1639	2242	2240	$16 \quad 37$	619	516	16	2234
7	$22 \quad 27$	$15 \quad 28$	56	659	1656	$22 \quad 28$	$22 \quad 34$	$16 \quad 20$	656	539	$16 \quad 25$	2241
8	$22 \quad 19$	$15 \quad 10$	443	$7 \quad 22$	$17 \quad 12$	$22 \quad 53$	$22 \quad 27$	$16 \quad 3$	534	$6 \quad 2$	1642	2247
9	2211	1451	419	744	$17 \quad 28$	$22 \quad 59$	$22 \quad 20$	1546	511	625	170	2253
10	223	1431	356	$8 \quad 6$	1744	$23 \quad 3$	$22 \quad 13$	$15 \quad 28$	448	$6 \quad 48$	$17 \quad 17$	2258
11	2154	1412	332	828	$\begin{array}{ll}17 & 59\end{array}$	237	2205	11	425	7	$17 \quad 33$	2
12	2144	1352	39	850	$18 \quad 14$	2311	2156	$14 \quad 53$	42	733	1749	$23 \quad 8$
13	2135	$13 \quad 32$	245	912	$18 \quad 29$	2315	2148	1434	339	756	$18 \quad 5$	2312
14	2124	1312	221	933	1844	$23 \quad 18$	2139	1416	316	818	$18 \quad 21$	2315
15	2114	1252	158	955	1858	$23 \quad 20$	$21 \quad 29$	1357	253	840	$18 \quad 37$	2318
16	213	1231	34	1016	912	$23 \quad 23$	2120	38	230	902	1852	2321
17	2051	1210	10	1037	1925	$23 \quad 24$	219	1319	27	924	196	$23 \quad 23$
18	2039	1149	047	1058	1938	23.26	$20 \quad 59$	130	144	946	1921	$23 \quad 25$
19	2027	1128	023 S	1119	1951	$23^{*} 27$	2048	12.40	120	1008	1935	2326
20	$20 \quad 14$	117	0 1N	1139	204	$23 \quad 27$	$20 \quad 37$	12×20	057	1030	1948	$23 \quad 27$
21	201	1045	024	120	$20 \quad 16$	$23 \quad 27$	$20 \quad 25$	120	034	1051	$20 \quad 2$	$23 \quad 27$
22	1948	1023	048	1220	2028	$\begin{array}{lll}23 & 27\end{array}$	2013	1140	010 N	1112	2014	$23 \quad 27$
23	1934	102	112	1240	2040	$23 \quad 26$	201	1120	0 13S	1133	$20 \quad 27$	$23 \quad 27$
24	1920	940	135	130	$20 \quad 51$	$23 \quad 25$	1949	1059	037	1154	$20 \quad 39$	$23 \quad 25$
25	196	$9 \quad 17$	159	$\begin{array}{lll}13 & 19\end{array}$	21	$23 \quad 24$	1936	$10 \quad 39$	10	$12 \quad 15$	$20 \quad 51$	$23 \quad 24$
26	1851	855	222	13 39	$21 \quad 12$	$23 \quad 22$	19	$10 \quad 18$	123	1236	21 2	$23 \quad 22$
27	1836	833	246	1358	$21 \quad 22$	$23 \quad 20$	19	$9 \quad 57$	147	1256	$21 \quad 13$	2919
28	1820	810	$3 \quad 9$	1417	2132	$27 \quad 17$	1855	936	210	1316	2124	2316
29	185	748	333	1435	2141	$23 \quad 14$	1841	914	234	1336	2134	2313
30	1748		356	$14 \quad 54$	2150	$23 \quad 10$	$18 \quad 27$	853	257	1356	2144	$23 \quad 9$
31	1732		419		2159		1812	831		1415		23

SUN'S DECLINATION FOR THE YEAR 1857.

DAYS.	JAN.	FEB.	MARCH.	APRIL.	MAY.	June.	JULY.	AUG.	8EPT.	ост.	Nov.	DEC.
		1				-	0	O	$\bigcirc 1$	$\bigcirc 1$	\bigcirc	-
1	23 0S	17 2S	7 30S	437 N	15 8N	22 5N	23 7N	18 0N	815 N	315 S	1430 S	2151 S
2	2254	1645	$7 \quad 7$	50	1526	$22 \quad 13$	23	1745	753	338	1449	220
3	2249	$16 \quad 27$	644	523	1543	$22 \quad 20$	2258	1730	731	41	158	$22 \quad 9$
4	2243	$16 \quad 10$	621	546	$16 \quad 1$	$22 \quad 28$	2253	1714	$7 \quad 9$	424	$15 \quad 26$	2217
5	$22 \quad 36$	$15 \quad 51$	558	$6 \quad 8$	1618	$22 \quad 34$	2248	$16 \quad 58$	646	448	1545	$22 \quad 25$
6	$22 \quad 29$	1533	535	631	1635	2241	2242	1641	624	511	$16 \quad 3$	2232
7	2221	1514	512	654	1651	2247	2236	1624	$6 \quad 2$	534	1621	2239
8	2213	1455	448	$7 \quad 16$	178	$22 \quad 52$	$22 \quad 29$	168	539	557	1638	2245
9	225	1436	425	$7 \quad 38$	$17 \quad 24$	$22 \quad 57$	$22 \quad 22$	$15 \quad 50$	516	620	1656	2251
10	2156	1417	41	81	1740	$23 \quad 2$	2214	1533	454	642	$17 \quad 13$	2257
11	2147	$\begin{array}{ll}13 & 57\end{array}$	338	823	1755	236	227	1515	431	75	$17 \quad 29$	23
12	2137	$13 \quad 37$	314	845	$18 \quad 10$	$23 \quad 10$	2158	1457	48	$7 \quad 28$	1746	237
13	2127	1317	251	96	$18 \quad 25$	2314	$21 \quad 50$	$14 \quad 39$	345	750	$18 \quad 2$	2311
14	2116	1257	227	928	1840	2317	2141	1421	322	813	$18 \quad 17$	2314
15	215	1236	24	950	1854	$23 \quad 20$	$21 \quad 32$	142	259	835	1833	2318
16	2054	12 15	140	$10 \quad 11$	$19 \quad 8$	23 22	$21 \quad 22$	1343	236	857	1848	2321
17	2042	1154	116	1032	1922	$23 \quad 24$	$21 \quad 12$	1324	212	919	$19 \quad 3$	$23 \quad 23$
18	2030	1133	052	$10 \quad 53$	1935	$23 \quad 25$	$21 \quad 2$	135	149	941	1917	$23 \quad 25$
19	$20 \quad 18$	$11 \quad 12$	029	1114	1948	$23 \quad 26$	$20 \quad 51$	1245	126	10	1931	$23 \quad 26$
20	$20 \quad 5$	1050	$0 \quad 5 \mathrm{~S}$	11134	$20 \quad 1$	$\begin{array}{ll}23 & 27\end{array}$	$20 \quad 40$	$12 \quad 25$	13	$10 \quad 24$	1945	$\begin{array}{ll}23 & 27\end{array}$
21	1951	$10 \quad 29$	019 N	115	$20 \quad 13$	$23 \quad 27$	$20 \quad 28$	125	039	1046	1958	$\begin{array}{ll}23 & 27\end{array}$
22	1938	107	042	1215	$20 \quad 25$	$\begin{array}{ll}23 & 27\end{array}$	2016	1145	016 N	117	2011	$\begin{array}{ll}23 & 27\end{array}$
23	1924	945	16	1235	$20 \quad 37$	$\begin{array}{ll}23 & 27\end{array}$	204	1125	0 08S	1128	$20 \quad 24$	$\begin{array}{ll}23 & 27\end{array}$
24	199	923	130	1255	$20 \quad 48$	$23 \quad 26$	$19 \quad 52$	114	031	1149	2036	23 23
25	1855	$9 \quad 1$	153	$13 \quad 15$	$20 \quad 59$	$26 \quad 24$	$19 \quad 39$	1044	054	$12 \quad 10$	$20 \quad 48$	$23 \quad 24$
26	1840	838	217	$13 \quad 34$	$21 \quad 9$	$23 \quad 22$	$19 \quad 26$	$10 \quad 23$	118	1231	210	$23 \quad 22$
27	1824	816	240	$13 \quad 53$	12120	$23 \quad 20$	$19 \quad 12$	102	141	1251	2111	2320
28	188	753	34	1412	$21 \quad 29$	2318	$18 \quad 59$	941	25	1311	2121	$\begin{array}{ll}23 & 17\end{array}$
29	1752		327	1431	2139	2314	1845	919	228	$13 \quad 31$	2132	2314
30	$17 \quad 36$		350	1449	2148	2311	1830	858	251	1351	2142	$23 \quad 10$
31	$17 \quad 19$		414		$21 \quad 57$		1815	836		1411		836

[^24]| | deolination. | | | | | | | | | | | | | | | | | | | time
 FROM NOON. |
| :---: |
| \pm | 0 | $\stackrel{\circ}{2}$ | $\begin{aligned} & 0 \\ & 4 \end{aligned}$ | $\begin{aligned} & \circ \\ & \hline \end{aligned}$ | $\stackrel{\circ}{8}$ | 10 | $\stackrel{\circ}{12}$ | 14 | 16 | $\stackrel{\circ}{17}$ | 18 | $\stackrel{\circ}{19}$ | $\stackrel{0}{0}$ | $\stackrel{0}{21}$ | $\begin{gathered} \circ \\ 21 \frac{1}{2} \end{gathered}$ | $\begin{array}{r} \circ \\ 2 \end{array}$ | $\begin{array}{c\|} \hline 0 \\ 221 \\ \hline \end{array}$ | - 23 | $\left\lvert\, \begin{gathered} \circ \\ 23 \frac{1}{2} \end{gathered}\right.$ | |
| 0 | , | , | , | , | | , | | , | | | | , | | , | , | 1 | 1 | , | | |
| 0 | 0 . | $0 \cdot$ | 0 | $0{ }^{\circ}$ | 0 . | 0 | 0 | 0 | $0 \cdot$ | 0 | 0* | 0° | 0 | 0° | O | | | O | O | $0 \cdot 0$ |
| 10 | $0 \cdot 7$ | $0 \cdot 7$ | $0 \cdot 7$ | $0 \cdot 6$ | $0 \cdot 6$ | $0 \cdot 6$ | $0 \cdot 6$ | $0 \cdot 5$ | 0.5 | 0.5 | 0.4 | $0 \cdot 4$ | $0 \cdot 3$ | 0.3 | 0.3 | 0.2 | $0 \cdot 2$ | $0 \cdot 2$ | 0-1 | 0.4C |
| 20 | $1 \cdot 3$ | $1 \cdot 3$ | $1 \cdot 3$ | $1 \cdot 3$ | $1 \cdot 2$ | $1 \cdot 2$ | $1 \cdot 1$ | $1 \cdot 0$ | $1 \cdot 0$ | 0-9 | 0-9 | 0.8 | 0-7 | 0-6 | 0-6 | $0 \cdot 5$ | $0 \cdot 4$ | $0 \cdot 3$ | 13.2 | $1 \cdot 20$ |
| 30 | $2 \cdot 0$ | $2 \cdot 0$ | $1 \cdot 9$ | $1 \cdot 0$ | $1 \cdot 8$ | $1 \cdot 8$ | $1 \cdot 7$ | $1 \cdot 6$ | $1 \cdot 5$ | 1.4 | $1 \cdot 3$ | $1 \cdot 2$ | $1 \cdot 0$ | 0.9 | 0.8 | 0-7 | 0-6 | 0.4 | 0.3 | $2 \cdot 0$ |
| 40 | $2 \cdot 6$ | $2 \cdot 6$ | $2 \cdot 6$ | $2 \cdot 5$ | $2 \cdot 5$ | $2 \cdot 4$ | $2 \cdot 3$ | $2 \cdot 1$ | $2 \cdot 0$ | $1 \cdot 8$ | $1 \cdot 7$ | $1 \cdot 6$ | $1 \cdot 4$ | $1 \cdot 2$ | 1-0 | 0.9 | $0 \cdot 8$ | 0.5 | 0.4 | $2 \cdot 40$ |
| 50 | $3 \cdot 3$ | $3 \cdot 3$ | $3 \cdot 3$ | $3 \cdot 2$ | 3-1 | $3 \cdot 0$ | $2 \cdot 8$ | 2•7 | $2 \cdot 4$ | $2 \cdot 3$ | $2 \cdot 1$ | $2 \cdot 0$ | $1 \cdot 7$ | $1 \cdot 5$ | $1 \cdot 3$ | $1 \cdot 1$ | 1-0\| | 0 | 0.4 | $3 \cdot 20$ |
| 60 | $3 \cdot 9$ | 3-9 | 3-9 | $3 \cdot 8$ | $3 \cdot 7$ | $3 \cdot 6$ | $3 \cdot 4$ | $3 \cdot 2$ | 2-9 | 2 | \| ${ }^{\cdot 6}$ | 2 | $2 \cdot 1$ | - 8 | 1 | $1 \cdot 4$ | 2 | 0-8 | 0.5 | - 0 |
| 70 | 4-6 | 4-6 | $4 \cdot 5$ | $4 \cdot 5$ | $4 \cdot 3$ | $4 \cdot 2$ | $4 \cdot 0$ | $3 \cdot 7$ | $3 \cdot 4$ | $3 \cdot 2$ | $3 \cdot 0$ | $2 \cdot 8$ | $2 \cdot 4$ | $2 \cdot 1$ | $1 \cdot 8$ | $1 \cdot 6$ | $1 \cdot 4$ | 0.9 | 0.6 | 4.40 |
| 80 | $5 \cdot 2$ | $5 \cdot 2$ | $5 \cdot 1$ | $5 \cdot 1$ | $5 \cdot 0$ | $4 \cdot 8$ | $4 \cdot 5$ | 4-2 | 3-9 | 3-7 | 3.4 | 3-2 | 2-8 | $2 \cdot 4$ | $2 \cdot 1$ | $1 \cdot 9$ | $1 \cdot 6$ | 1.0 | 0.7 | 5.20 |
| 90 | $5 \cdot 9$ | $5 \cdot 9$ | $5 \cdot 8$ | $5 \cdot 7$ | $5 \cdot 6$ | $5 \cdot 4$ | $5 \cdot 1$ | $4 \cdot 8$ | $4 \cdot 4$ | 4-1 | $3 \cdot 9$ | $3 \cdot 6$ | 3-2 | $2 \cdot 7$ | $2 \cdot 4$ | $2 \cdot 1$ | $1 \cdot 8$ | 1. | 0.8 | 6. 0 |
| 100 | $6 \cdot 5$ | $6 \cdot 5$ | $6 \cdot 4$ | $6 \cdot 3$ | 6.2 | $6 \cdot 0$ | 5-7 | 5-3\| | $4 \cdot 8$ | $4 \cdot 6$ | $4 \cdot 3$ | $3 \cdot 9$ | 3-6 | $3 \cdot 0$ | $2 \cdot 7$ | $2 \cdot 3$ | $2 \cdot 0$ | 1 | 0.9 | . 40 |
| 10 | $7 \cdot$ | $7 \cdot 2$ | $7 \cdot 1$ | 7. | $6 \cdot 8$ | $6 \cdot 6$ | $6 \cdot 3$ | 9 | 5-3 | 5 | \| $4 \cdot 8$ | $4 \cdot 3$ | 3 | [3-3 | $3 \cdot 0$ | 2-5 | $2 \cdot$ | 1 | - | $7 \cdot 20$ |
| 120 | $7 \cdot 8$ | $7 \cdot 8$ | $7 \cdot 7$ | $7 \cdot 6$ | $7 \cdot 4$ | $7 \cdot 2$ | $6 \cdot 8$ | $6 \cdot 4$ | 5-8 | 5-5 | 5-2 | $4 \cdot 7$ | $4 \cdot 3$ | $3 \cdot 6$ | $3 \cdot 2$ | $2 \cdot 8$ | $2 \cdot 4$ | $1 \cdot 5$ | $1 \cdot 0$ | 8. 0 |
| 130 | $8 \cdot 5$ | 8-5 | 8-4 | 8-3 | $8 \cdot 0$ | $7 \cdot 8$ | $7 \cdot 4$ | $7 \cdot 0$ | 6-2 | 5-9 | 5-6 | 5-1 | $4 \cdot 6$ | 3-9 | 3-5 | 3-0 | 2-6 | 1-6 | $1 \cdot 1$ | $8 \cdot 40$ |
| 140 | 9-1 | 9-1 | 9.0 | 8-9 | $8 \cdot 7$ | $8 \cdot 3$ | $8 \cdot 0$ | $7 \cdot 5$ | 6-7 | 6-4 | $6 \cdot 0$ | $5 \cdot 5$ | $5 \cdot 0$ | $4 \cdot 2$ | 3.8 | $3 \cdot 3$ | $2 \cdot 8$ | 1-8 | $1 \cdot 2$ | 9. 20 |
| 150 | $9 \cdot 8$ | 9-8 | 9•7 | 9.5 | $9 \cdot 3$ | 9.0 | $8 \cdot 5$ | $8 \cdot 0$ | $7 \cdot 2$ | $6 \cdot 8$ | $6 \cdot 5$ | $5 \cdot 9$ | 5-3 | $4 \cdot 4$ | $4 \cdot 1$ | 3-5 | $3 \cdot 0$ | $1 \cdot 9$ | $1 \cdot 3$ | 0- 0 |
| 160 | $10 \cdot 5$ | - 4 | $0 \cdot 3$ | 10.2 | 9-9 | 9.6 | 9.1 | 8-6 | 7-7 | $7 \cdot 3$ | 6-9 | 6-3 | $5 \cdot 7$ | $4 \cdot 7$ | $4 \cdot 4$ | 3 | 3 | $2 \cdot$ | $1 \cdot 4$ | $10 \cdot 40$ |
| 170 | $11 \cdot 1$ | $11 \cdot 1$ | $11 \cdot 0$ | $10 \cdot 8$ | $10 \cdot 5$ | 10.2 | 9.7 | 9-1 | 8-2 | $7 \cdot 8$ | $7 \cdot 4$ | $6 \cdot 7$ | $6 \cdot 0$ | $5 \cdot 1$ | 4 6 | 4 | $3 \cdot 4$ | $2 \cdot 2$ | $1 \cdot 5$ | $11 \cdot 2)$ |
| 180 | $11 \cdot 8$ | $11 \cdot 7$ | $11 \cdot 6$ | $11 \cdot 4$ | $11 \cdot 1$ | 10.8 | 10.3 | 9-6\| | $8 \cdot 8$ | 8.3 | $7 \cdot 9$ | $7 \cdot 2$ | $6 \cdot 4$ | $5 \cdot 5$ | $4 \cdot 9$ | $4 \cdot 3$ | 3-6 | 2•3 | $1 \cdot 6$ | 12•0 |

IN west Lonartude.
When the Declina. is $\left\{\begin{array}{l}\text { Increasing, Add. } \\ \text { Decreasing, Subtract }\end{array}\right.$

TIME BEFORE NOON.
When the Declina. is $\left\{\begin{array}{l}\text { Increasing, Subtract } \\ \text { Decreasing, }\end{array}\right.$ Decreasing, Add.

IN EAST LONGITUDE
When the Declina. is $\{$ Increasing, Subtract. Decreasing, Add.
time afternoon.
When the Declina. is Increasing, Add.
Increasing, Add.
TABLE XII.
CORRECTION OF THE SUN'S DECLINATION IN TABLE X., AFTER THE YEARS FOLLOWING 1854. 1855. 1856, AND 1857.

1854	1858	1862	1866	1870	1874	1878	1854	1858	1862	1866	1870	1874	1878
1855	1859	1863	1867	1871	1875	1879	1855	1859	1863	1867	1871	1875	1879
1856	1860	1864	1868	1872	1876	1880	1856	1860	1864	1868	1872	1876	1880
1857	1861	1865	1869	1873	1877	1881	1857	1861	1865	1869	1873	1877	1881
January	8UB.	$\overline{\text { SUB. }}$	sub.	sub.		su		sub.		$\overline{\text { SUB }} \text {. }$	sub.	SUB.	
	0.1	$0 \cdot 3$	$0 \cdot 4$	$0 \cdot 6$	$0 \cdot 7$	$0 \cdot 9$	June 30	$0 \cdot 1$	$0 \cdot 3$	0.4	$0 \cdot 6$	$0 \cdot 7$	$0 \cdot 8$
	0.2	0.5	$0 \cdot 8$	$1 \cdot 0$	$1 \cdot 3$	$1 \cdot 6$	July 10	$0 \cdot 2$	$0 \cdot 5$	$0 \cdot 8$	$1 \cdot 0$	$1 \cdot 3$	$1 \cdot 6$
	0.4	$0 \cdot 7$	$1 \cdot 1$	$1 \cdot 4$	$1 \cdot 8$	$2 \cdot 2$	20	$0 \cdot 4$	$0 \cdot 7$	$1 \cdot 1$	1.4	1.8	$2 \cdot 2$
	0.5	$1 \cdot 0$	$1 \cdot 5$	$2 \cdot 0$	$2 \cdot 5$	$3 \cdot 0$	30	$0 \cdot 5$	$1 \cdot 0$	$1 \cdot 5$	$2 \cdot 0$	$2 \cdot 5$	$3 \cdot 0$
Fer'ry	$0 \cdot 6$	$1 \cdot 1$	$1 \cdot 6$	$2 \cdot 2$	$2 \cdot 8$	3.4	August 10	$0 \cdot 5$	$1 \cdot 1$	$1 \cdot 7$	$2 \cdot 3$	$2 \cdot 8$	$3 \cdot 4$
	0.6	1.2	$1 \cdot 9$	$2 \cdot 5$	$3 \cdot 1$	$3 \cdot 7$	20	$0 \cdot 6$	$1 \cdot 3$	$1 \cdot 9$	$2 \cdot 5$	$3 \cdot 2$	$3 \cdot 9$
	0.7	$1 \cdot 3$	$2 \cdot 0$	$2 \cdot 6$	$3 \cdot 3$	$4 \cdot 0$	30	$0 \cdot 7$	$1 \cdot 4$	$2 \cdot 0$	$2 \cdot 7$	$3 \cdot 4$	$4 \cdot 1$
March	$0 \cdot 7$	$1 \cdot 4$	$2 \cdot 1$	$2 \cdot 8$	$3 \cdot 5$	$4 \cdot 2$	SEpt. 10	$0 \cdot 7$	$1 \cdot 4$	$2 \cdot 1$	$2 \cdot 8$	$3 \cdot 5$	$4 \cdot 2$
	$0 \cdot 7$	$1 \cdot 4$	$2 \cdot 1$	$2 \cdot 8$	3.6	$4 \cdot 3$	20	0.7	$1 \cdot 4$	$2 \cdot 1$	$2 \cdot 9$	$3 \cdot 6$	$4 \cdot 3$
	ADD.	ADD.	ADd.	ado.	ADD.	Add.		ADD.	add.	ADD	ADD.	AD	DD.
	$0 \cdot 7$	1	2	$2 \cdot 8$	$3 \cdot 5$	$4 \cdot 2$	30	$0 \cdot 7$	$1 \cdot 4$	$2 \cdot 1$	$2 \cdot 8$	$3 \cdot 5$	$4 \cdot 2$
APRIL	0.7	1.4	$2 \cdot 1$	$2 \cdot 7$	$3 \cdot 4$	$4 \cdot 1$	Ост. 10	$0 \cdot 7$	$1 \cdot 4$	$2 \cdot 0$	$2 \cdot 7$	$3 \cdot 4$	$4 \cdot 1$
	$0 \cdot 6$	$1 \cdot 3$	$1 \cdot 9$	$2 \cdot 5$	$3 \cdot 2$	$3 \cdot 9$	20	$0 \cdot 6$	$1 \cdot 3$	$1 \cdot 9$	$2 \cdot 5$	$3 \cdot 2$	$3 \cdot 9$
	$0 \cdot 6$	$1 \cdot 1$	$1 \cdot 7$	$2 \cdot 3$	$2 \cdot 8$	$3 \cdot 4$	30	$0 \cdot 5$	$1 \cdot 1$	$1 \cdot 6$	$2 \cdot 2$	$2 \cdot 8$	$3 \cdot 4$
Map 10 20 30	0.5	$0 \cdot 9$	$1 \cdot 5$	$2 \cdot 0$	$2 \cdot 5$	$3 \cdot 0$	Nov. 10	$0 \cdot 5$	$1 \cdot 0$	$1 \cdot 4$	$1 \cdot 9$	$2 \cdot 4$	$2 \cdot 8$
	$0 \cdot 4$	$0 \cdot 8$	$1 \cdot 2$	1.	$1 \cdot 9$	$2 \cdot 3$	20	$0 \cdot 4$	$0 \cdot 8$	$1 \cdot 2$	$1 \cdot 5$	$2 \cdot 0$	$2 \cdot 5$
	$0 \cdot 3$	$0 \cdot 5$	$0 \cdot 8$	$1 \cdot 0$	$1 \cdot 4$	$1 \cdot 7$	30	$0 \cdot 2$	$0 \cdot 5$	$0 \cdot$	$1 \cdot 6$	$1 \cdot 3$	$1 \cdot 6$
June	$0 \cdot 2$	$0 \cdot 3$	$0 \cdot 4$	$0 \cdot 5$	$0 \cdot 7$	$0 \cdot 9$	$\overline{\text { Dec. } \quad 10}$	$0 \cdot 2$	0.3	$0 \cdot 4$	$0 \cdot 6$	$0 \cdot 7$	0.8
	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 1$	$0 \cdot 1$	n. 1	$0 \cdot 1$		$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 1$	$0 \cdot 1$	$0 \cdot 2$	$0 \cdot 3$
	sub.	sub.	sub.	sub.	sub.	sub.		SUb.	SUb.	sctb.	SUB.	SUB.	Sub.
	$0 \cdot 1$	$0 \cdot 3$	$0 \cdot 4$	$0 \cdot 6$	$0 \cdot 7$	$0 \cdot 8$	30	$0 \cdot 1$	$0 \cdot 3$	$0 \cdot 4$	$0 \cdot$	$0 \cdot 7$	$0 \cdot 9$

[^25] to one of the years for which the Declination is given in Table X., and take out the Declination for that year against the day of the month, and take out the Correction from Table XII., fonnd opposite the same day of the month, and ander the pro posed year, which is expressed In minntes and tenths; if the tenths are more than 5 increase the minutes by 1 , but if less, throw them away. This, appliod as directed in tho above Table, (add or subtract) to or from the Declination taken from Table X., will give tne correct Declination for the proposed year until the yoar 1881.

74		TABLE XIII.-SUN'S RIGHT ASCENSION.													
DLYs.	JAN.	Feb.	MARCH. ${ }^{\text {a }}$	APRIL.	MAY.	JUNE.			AUGUST	SEPT.	ост.	No		DEC.	
1	H. 18.47	H. ${ }^{\text {M }}$ 20.59	H. 22.49	H. M .	H. M. 2.33	H. M		$\begin{gathered} \text { H. м. } \\ 6.40 \end{gathered}$	H. \mathbf{M}. $\mathbf{8 . 4 5}$ 8.	H. M 10.41	$\begin{aligned} & \hline \text { H. } \quad \text { M. } \\ & 12.29 \end{aligned}$			$\begin{aligned} & \text { H. } \quad \text { M. } \\ & 16.29 \end{aligned}$	
2	18.52	21	22.52	0.46	2.37	4.40		6.44	8.49	10.45	12.33	314.2		16.34	
3	18.56	21.	22.56	0.49	2.41	4.44		6.49	8.53	10.48	12.37	714.3		16.38	
4	19. 0	21.12	23. 0	0.53	2.45	4.		6.53	8.57	10.52	12.40	014.3		16.42	
5	19. 5	21.1	23.3	0.57	2.49	4.5		6.57	9. 1	10.56	12.44	14		16.47	
6	19.9	21.	23.7	1.	2.53	4.		7.	9.	10.59	12.47	71		16.51	
7	19.13	21.24	23.11	1. 4	2.56	5.		7. 5	9. 8	11.	12.51	114.4		16.55	
8	19.18	21.28	23.15	1. 8	3. 0	5.		7. 9	9.12	11. 7	12.55	514.5	53	17. 0	
9	19.22	21.32	23.18	1.11	3. 4	5.		7.13	9.16	11.10	12	14		17. 4	
10	19.27	21.36	23.22	1.15	3.8	5.1		7.17	9.20	11.14	13. 2	15.		17. 9	
11	19.31	21.39	23.26	1.19	3.12	5.		7.21	9.23	11.17	13. 6	15		17.13	
12	19.35	21.43	23.29	1.22	3.16	5.21		7.25	9.27	11.21	13. 9	915.		17.17	
13	19.40	21.47	23.33	1.26	3.20	5.26		7.30	9.31	11.24	13.13	315.1		17.22	
14	19.44	21.51	23.37	1.30	3.24	5.		7.34	9.35	11.28	13.17	715		17.26	
15	19.48	21.55	23.40	1.33	3.28	5.3		7.38	9.39	11.32	13.21	15		17.31	
16	19.52	21.59	23.44	1.37	3.32	5.		7.42	9.42	11.35	13.2	15		17.35	
17	19.57	22. 3	23.48	1.41	3.36	5.		7.46	9.46	11.39	13.28	815	-	17.39	
18	20. 1	22.7	23.51	1.44	3.40	5.4		7.50	9.50	11.42	13.32	215		17.44	
19	20. 5	22.11	23.55	1.48	3.43	5.50		7.54	9.53	11.46	13.36	615.3	38	17.48	
20	20.10	22.14	23.58	1.52	3.47	5.55		7.58	9.57	11.50	13.39	915.	. 42	17.53	
21	20.14	22.18	0.2	1.56	8.51	5.		8.2	10.	11.53	13.43	15.		17.57	
22	20.18	22.22	0. 6	1.59	3.55	6.		8. 6	10. 5	11.57	13.47	15.	51	18. 2	
23	20.22	22.26	0. 9	2. 3	4. 0	6.7		8.10	10. 8	12. 0	13.51	115.		18. 6	
24	20.26	22.30	0.13	2. 7	4.4	6.11		8.14	10.12	12. 4	13.55	515.	59	18.11	
25	20.31	22.33	0.17	2.11	4. 8	6.15		8.18	10.16	12. 8	13.58	816.		18.15	
26	20.35	22.37	0.20	2.14	4.12	6.2		8.22	10.19	12.11	14.			18.19	
27	20.39	22.41	0.24	2.18	4.16	6.2		8.26	10.23	12.15	14. 6	616.		18.24	
28	20.43	22.45	0.28	2.22	4.20	6.28		8.30	10.27	12.18	14.10	016.	. 16	18.28	
29	20.47		0.31	2.26	4.24	6.32		8.33	10.30	12.22	14.14	416.	21	18.33	
30	20.51		. 35	2.30	. 28	6.36		8.37	10.34	12.26	14.18			18.37	
31	20.56		0.38		4.32			8.41	10.38		14			18.42	
The Right Ascension given in this Table is for the year 1854, and will nnswer approximately for several years afterwards, but where accuracy is required, it must be taken from the Nantical Almanac.															
TABLE XIV. EQUATION OF TIME FOR APPARENT NOON AT GREENWICH, FOR THE YEAR 1854, AND WILL ANSWER NEARLY FOR 1858, 1862, AND 1866.															
DAYs.	JAN.	FEB. ${ }^{\text {M }}$	MAR. ${ }^{\text {a }}$ ARIL.			June.		July.	Sug.		OCT.	Nov.	December.		
	AD			$\|$M. s. 4. 0 3.42 3.24 3. 6 2.48		$\begin{array}{\|rr\|} \hline \mathrm{m} . & \mathrm{s} . \\ 2.32 \\ 2.23 \\ 2.13 \\ 2 . & 4 \\ 1.53 \end{array}$			ADD	SUB.			M. 8		
$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	$\begin{array}{rr} \mathrm{m} . & \mathrm{s} .\left.\right\|_{\mathrm{M}} ^{3.51} \\ 4.20 \\ 4.28 \\ 4.48 \\ 5.15 & 1 \\ 5.42 \end{array}$	$\left\|\begin{array}{rr\|r\|} \text { M. } & \text { s. } & \text { s. } \\ 13 . & \text { s. } & 12.37 \end{array}\right\|$			$\left\lvert\, \begin{array}{\|cc\|} \hline \text { sub } \\ \text { H. } & \text { м. } \\ 3 . & 1 \\ 3 . & 9 \\ 3.16 \\ 3.22 \\ 3.28 \\ 3 . & 28 \end{array}\right.$			m. s.		$\begin{array}{\|rr\|rr\|r} \text { M. } & \text { s. } & \text { M. } & \text { s. } & \text { s. } \\ 0 . & 5 & 10.17 & 16.16 \end{array}$					
				3.26				6. 3							$\begin{array}{rr} \mathrm{m} . & 8 . \\ 10.47 \\ 10.25 \\ 10 . & 1 \\ 9.37 \\ 9.12 \end{array}$
		4. 21	2.25					3.38	6. 0	0.2410 .3616 .18					
		4. 91	2.12					3.49	95.55	0.43 10.5416 .18					
		4.151	1.59					4.00	005.50	0 1. 2111.1316 .17					
		4.20	1.46					4.11	15.45	1.22	11.31	16.16			
6	6.91	14.24 11.32			2.31	3.33	1.43		-4.21	11 5.38		11.49			$\begin{aligned} & 8.47 \\ & 8.22 \end{aligned}$
7	6.3514	14.27\|1	1.17	2.13	3.37	1.32		4.31	15.32	$\begin{aligned} & 1.42 \\ & 2.2 \end{aligned}$	12. 61	$\left\|\begin{array}{l} 16.14 \\ 16.11 \end{array}\right\|$			
8	7. 111	4.30	1. 2	1.56	3.42	:. 21		4.40	5.24	$\begin{aligned} & 2 \cdot \\ & 2.23 \end{aligned}$	12.2311	$\begin{aligned} & 16.11 \\ & 16.7 \end{aligned}$		8.22	
9	7.2614	4.311	0.47	1.39	3.45	1.10		4.50	5.16	2.43		$\left\|\begin{array}{ll} 16 . & 2 \\ 15.57 \end{array}\right\|$		$\begin{array}{r} 7.29 \\ 7.2 \\ \hline \end{array}$	
10	7.5014	14.32	0.32	1.22	3.48		, . $¢$	4.58	58.8	3.4	$\left\|\begin{array}{l} 12.39 \\ 12.55 \end{array}\right\|$				
11	8.1414 .3310 .16			1. 6	3.51		0.46	5.7	74.59	3.25	13.11	15.50		6.34	
12	8.3814 .32		9.59	0.50	3.52		0.34	5.14	14.49	3.45	13.261	15.43		6. 6	
13			9.43	0.34	3.54		0.22	5.22	2.4 .39	4. 6	13.401	15.35		5.38	
14			9.26	0.18	3.54		0.10	- 5.29	94.28	4.27	13.54	15.25		5. 9	
15	$\begin{aligned} & 9.22 \\ & 9.44 \end{aligned}$	14.29	9. 9	0.3	3.54	ADD. 0	0.3	5.35	5 4.17	4.50	14.81	15.16		4.40	
16	10.514 .22		8.51	0.12	3.53			5.41	114.5	5.1	14.21	15.5		4.11	
17			8.34	0.26	3.51		0.28 ,	$\bigcirc 5.47$	47.53	5.3	14.331	14.53		3.41	
18			8.16	0.40	3.49		0.41	5.52	22 3.40	5.52	14.441	14.41		3.11	
19	11. 214.7		7.58	0.54	3.46		0.54	5.56	56 3.27	6.13	14.551	14.27		2.42	
20	11.2014 .1		7.40	1. 7	3.43		1. 7	6. 0	03.13	6.34	$15 \quad 61$	14.13		2.12	
21	11.38 13.54		7.22	1.20	339			6.4	42.59	6.5	15.15	13.58		1.42	
22	11.541	13.46	7. 4	1.32	3.34		1.34	6.7	72.44	7.16	15.251	13.42		1.12	
23	12.101	13.38	6.45	1.44	3.29		1.47	6.9	92.29	736	15.331	13.26		0.41	
24	12.24	13.29	6.27	1.56	3.24		2. 0	6.11	12.14	757	15.41	13. 9		0.11	
25	12.39	13.20	6. 8	2. 7	3.18		2.12	6.12	121.58	8.18	15.48	12.51		0.19	
26	12.52	13.10	5.50	2.17	3.11		2.25	6.12	12 1.41	8.38	15.54	12.3 ?		0.49	
27	$\left\|\begin{array}{lll} 1 & 1 & 0 \end{array}\right\| 1$	13. 0	5.32	2.27	3. 4		2.38	6.12	121.25	8.58	16.0	12.12		1.18	
28		12.49	5.13	2.36	2.57		2.50	6.12	121.8	9.18	16.41	11.52		1.48	
29	$\left\|\begin{array}{l} 13.16 \\ 13.27 \end{array}\right\|$		4.55	2.45	2.49		3.3	6.11	110.50	9.38	16.91	11.31		2.17	
30	13.37		4.36	2.54	2.41		3.15	6. 9	90.32	9.57	16.12	11.10		2.46	
31	13.46		4.18					6. 6	$6 \longdiv { 0 . 1 4 }$		16.15			3.15	

GQUATION OF TLME FOR AIPARENT NOON AT GREENWICH, FOR THE YEAP 1855, AND WILL ANSWER NEARLY FOK 1859, 1863, AND 1867.

DAYs.	JAN.	Feb.	Mab.	APR	PIL.	May.		Ne.	JULY.	AUG.	sept.	ост.	xov.	decembrr.	
	ADD								ADD						
1	3.44	13.52	12.40	add.	4.	2.59	sub.	2.34	3.23	6. 3	0.0	10.12	16.15	804.	$\left\lvert\, \begin{array}{lr} \text { L. } \\ 10.52 \end{array}\right.$
2	4.12	14. 0	12.28		3.46	3. 7		2.25	3.34	6. 0	0.19	10.31	16.17		10.30
3	4.40	14. 7	12.15		3.28	3.14		2.16	3.46	5.56	0.38	10.49	16.17		10. 6
4	5. 8	14.13	12. 2		3.11	3.20		2. 6	3.57	5.51	0.57	11. 8	816.17		9.42
5	5.35	14.18	11.49		2.53	3.26		1.56	4. 8	5.46	1.17	11.26	16.16		9.18
6	6.2	4.23	11.35		2.35	3.31		1.46	4.18	5.40	1.37	11.44	16.14		8.53
7	6.28	14.26	11.21		2.18	3.36		1.35	4.28	5.33	1.57	12. 1	116.11		8.27
8	6.541	14.29	11. 6		2. 1	3.40		1.24	4.38	5.26	2.17	12.18	16.7		8. 1
9	7.20	14.31	10.51		1.44	3.44		1.13	4.47	5.18	2.38	12.35	16.3		7.35
10	7.44	14.32	10.36		1.27	3.47		1. 1	4.56	5.10	2.58	12.51	15.57		7. 8
11	8.8	14.33	10.20		1.10	3.49		0.49	5.4	5.1	3.19	13.6	615.51		6.40
12	8.32	14.32	10. 4		0.54	3.51		0.37	5.12	4.51	3.40	13.21	15.44		6.12
13	8.551	14.31	9.47		0.38	3.53		0.25	5.20	4.41	4. 1	13.36	\| 15.36		5.44
14	9.17	14.29	9.30		0.23	3.54		0.13	5.27	4.30	4.22	13.50	015.27		5.16
15	9.38	14.26	9.13		0. 7	3.54		0. 0	5.33	4.19	4.43	14.4	415.18		4.47
16	9.59	14.23	8.56	sub.	0.8	3.54	ADD.	0.12	5.39	4.8	5.4	44.17	715.7		4.18
17	10.20	14.19	8.39		0.22	3.53		0.25	5.45	3.55	5.26	14.29	14.56		3.48
18	10.39	14.14	8.21		0.36	3.51		0.38	5.50	3.43	5.47	14.41	114.44		3.19
19	10.58	14. 9	8. 3		0.50	3.49		0.51	5.54	3.30	6.8	14.52	214.30		2.49
20	11.16	14. 2	7.45		1. 4	3.47		1. 4	5.59	3.16	6.29	15.3	314.17		2.19
21	11.33	13.56	7.27		1.16	344		1.17	6. 2	3. 2	6.50	15.13	314.2		1.49
22	11.50	13.48	7. 8		1.29	3.40		1.30	6.5	2.47	7.11	115.22	213.46		1.19
23	12. 5	13.40	6.50		1.41	3.36		1.43	6. 7	2.32	7.31	115.31	113.30		0.49
24	12.20	13.31	6.32		1.53	3.31		1.56	6. 9	2.17	7.52	215.39	913.13		0.19
25	12.35	13.22	6.13		2. 4	3.25		2. 8	6.11	2. 1	8.12	15.46	6\|12.55	1	0.11
26	12.48	13.12	5.55		2.14	3.20		2.21	6.11	1.45	8.33	15.52	212.36		0.41
27	13. 1	13. 2	5.36		2.24	3.13		2.34	6.12	1.28	8.53	15.58	812.17		1.11
28	13.13	12.51	5.18		2.34	3. 6		2.46	6.11	1.11	9.13	16.3	311.57		1.41
29	13.24		4.59		2.43	2.59		2.59	6.10	0.54	9.33	16. 7	711.36		2.10
30	13.34		4.41		2.51	2.51		3.11	6. 8	0.36	9.52	216.11	111.14		2.40
31	13.43		4.23			2.43			6. 6	0.18		16.13			3.9

EQUATION OF TIME FOR THE YEAR 1856, AND WHICH WILL ANSWER NEARLY FOR 1860, 1864, AND 1868.

Days.	JAN.	FEb.	Mar.		PRIL	May.		one.	JULY.	AUG.	SEPT.	oct.	not. 1	DEC	cember.
													sub.		
1	3-36	M. $13 \cdot 50$		ADD.	3-51	4.8.8.	SUB.	$2 \cdot 28$	$3 \cdot 31$	$6 \cdot 0$	$0 \cdot 14$	(10.25	(16.16	sub.	$\left\lvert\, \begin{gathered} \text { M. } \\ 10 \cdot 36 \end{gathered}\right.$
2	$4 \cdot 4$	$13 \cdot 58$	$12 \cdot 19$		$3 \cdot 33$	$3 \cdot 12$		$2 \cdot 19$	$3 \cdot 42$	$5 \cdot 56$	$0 \cdot 33$	$10 \cdot 44$	$16 \cdot 17$		$30 \cdot 13$
3	$4 \cdot 33$	$14 \cdot 5$	12. 6		$3 \cdot 16$	$3 \cdot 19$		$2 \cdot 9$	$3 \cdot 53$	$5 \cdot 52$	$0 \cdot 52$	$11 \cdot 3$	16-17		$9 \cdot 49$
4	5.	$14 \cdot 11$	11.53		$2 \cdot 58$	$3 \cdot 25$		$1 \cdot 59$	4-4	$5 \cdot 47$	$1 \cdot 12$	$11 \cdot 21$	$16 \cdot 16$		9-24
5	$5 \cdot 28$	$14 \cdot 17$	11-39		$2 \cdot 40$	$3 \cdot 30$		$1 \cdot 49$	$4 \cdot 15$	$5 \cdot 41$	$1 \cdot 31$	$11 \cdot 38$	16.14		$8 \cdot 59$
6	$5 \cdot 55$	$14 \cdot 22$	11.25		$2 \cdot 23$	$3 \cdot 35$		$1 \cdot 38$	$4 \cdot 25$	$5 \cdot 35$	$1 \cdot 51$	$11 \cdot 56$	$16 \cdot 11$		$8 \cdot 34$
7	$6 \cdot 21$	$14 \cdot 26$	11-11		2-6	$3 \cdot 39$		1.27	$4 \cdot 35$	$5 \cdot 28$	$2 \cdot 11$	$12 \cdot 13$	16.8		8-8
8	$6 \cdot 47$	$14 \cdot 29$	$10 \cdot 56$		$1 \cdot 49$	$3 \cdot 43$		1.16	$4 \cdot 44$	$5 \cdot 20$	$2 \cdot 32$	$12 \cdot 30$	$16 \cdot 4$		$7 \cdot 42$
	$7 \cdot 13$	$14 \cdot 31$	$10 \cdot 40$		$1 \cdot 32$	$3 \cdot 46$		$1 \cdot 4$	$4 \cdot 53$	5-12	$2 \cdot 52$	$12 \cdot 46$	$15 \cdot 58$		$7 \cdot 15$
10	$7 \cdot 38$	$14 \cdot 33$	$10 \cdot 25$		$1 \cdot 15$	$3 \cdot 49$		$0 \cdot 53$	5.2	5-3	$3 \cdot 13$	13. 2	15-52		$6 \cdot 47$
11	8. 2	$\overline{14 \cdot 3}$	10.9		$0 \cdot 59$	$3 \cdot 51$		$0 \cdot 41$	5.10	4.54	3-31	13.17	$15 \cdot 46$		$6 \cdot 20$
12	$8 \cdot 26$	$14 \cdot 33$	9-52		$0 \cdot 43$	3. 52		$0 \cdot 29$	$5 \cdot 17$	$4 \cdot 44$	$3 \cdot 55$	$13 \cdot 32$	$15 \cdot 38$		5. 52
13	$8 \cdot 49$	$14 \cdot 32$	9-36		$0 \cdot 27$	$3 \cdot 53$		$0 \cdot 16$	$5 \cdot 25$	$4 \cdot 34$	$4 \cdot 16$	$13 \cdot 46$	$15 \cdot 30$		$5 \cdot 23$
14	9-11	$14 \cdot 31$	9-19		$0 \cdot 12$	3. 54		$0 \cdot 4$	$5 \cdot 31$	$4 \cdot 23$	$4 \cdot 37$	$14 \cdot 0$	15-20		$4 \cdot 55$
15	$9 \cdot 33$	$14 \cdot 28$	9-2	UB.	$0 \cdot 3$	3. 54	ADD.	0-9	$5 \cdot 38$	$4 \cdot 11$	$4 \cdot 58$	$14 \cdot 13$	$15 \cdot 10$		4.26
16	$9 \cdot 54$	14.25	$8 \cdot 44$		$0 \cdot 18$	$3 \cdot 53$		0.21	$5 \cdot 43$	$3 \cdot 59$	$5 \cdot 19$	$14 \cdot 26$	14-59		3.56
17	$10 \cdot 15$	$14 \cdot 21$	$8 \cdot 26$		$0 \cdot 32$	$3 \cdot 52$		$0 \cdot 34$	$5 \cdot 48$	$3 \cdot 46$	$5 \cdot 41$	$14 \cdot 38$	$14 \cdot 47$		$3 \cdot 27$
18	$10 \cdot 34$	$14 \cdot 16$	8-9		$0 \cdot 46$	$3 \cdot 50$		$0 \cdot 47$	$5 \cdot 53$	$3 \cdot 33$	$6 \cdot 2$	$14 \cdot 49$	$14 \cdot 34$		$2 \cdot 57$
19	$10 \cdot 53$	$14 \cdot 11$	$7 \cdot 51$		$0 \cdot 59$	$3 \cdot 47$		1 - 0	$5 \cdot 57$	$3 \cdot 20$	$6 \cdot 23$	$15^{\circ} 011$	14-21		2•37
20	$11 \cdot 12$	$14 \cdot 5$	7-32		$1 \cdot 13$	$3 \cdot 45$		$1 \cdot 13$	6. 1	3-6	$6 \cdot 44$	$15 \cdot 1011$	14.6		1.57
21	$11 \cdot 29$	13.58	$7 \cdot 14$		$1 \cdot 25$	3.41		$1 \cdot 26$	6^{-4}	$2 \cdot 51$	$7 \cdot 5$	$15 \cdot 20$	$13 \cdot 51$		1.27
22	$11 \cdot 46$	$13 \cdot 51$	$6 \cdot 56$		$1 \cdot 38$	3 37		$1 \cdot 39$	$6 \cdot 6$	$2 \cdot 36$	$7 \cdot 26$	$15 \cdot 29$	$13 \cdot 35$		$0 \cdot 57$
23	12. 2	$13 \cdot 43$	$6 \cdot 37$		$1 \cdot 49$	$3 \cdot 32$		$1 \cdot 52$	$6 \cdot 8$	$2 \cdot 21$	$7 \cdot 46$	$15 \cdot 37$	$13 \cdot 18$		$0 \cdot 27$
24	$12 \cdot 17$	$13 \cdot 35$	$6 \cdot 19$		$2 \cdot 1$	$3 \cdot 27$		$2 \cdot 4$	$6 \cdot 10$	$2 \cdot 5$	$8 \cdot 7$	$15 \cdot 44$	$13 \cdot 0$	AD	$0 \cdot 3$
25	$12 \cdot 31$	$13 \cdot 25$	$6 \cdot 0$		$2 \cdot 11$	3-22		$2 \cdot 17$	$6 \cdot 11$	$1 \cdot 49$	8.27	$15 \cdot 51$	$12 \cdot 42$		$0 \cdot 33$
26	$12 \cdot 45$	13-16	$5 \cdot 42$		$2 \cdot 22$	$3 \cdot 15$		$2 \cdot 30$	$6 \cdot 11$	$1 \cdot 33$	$8 \cdot 48$	$15 \cdot 57$	$12 \cdot 22$		$1 \cdot 3$
27	$12 \cdot 58$	13.5	$5 \cdot 23$		$2 \cdot 31$	3-9		$2 \cdot 42$	$6 \cdot 11$	1.16	$9 \cdot 8$	$16 \cdot 2$	12.2		$1 \cdot 33$
28	$13 \cdot 10$	$12 \cdot 55$	5. 5		$2 \cdot 41$	3. 2		$2 \cdot 55$	$6 \cdot 10$	$0 \cdot 58$	$9 \cdot 27$	$16 \quad 6$	11-42		$2 \cdot 2$
29	$13 \cdot 21$	14.43	$4 \cdot 46$		$2 \cdot 49$	$2 \cdot 54$		3. 7	$6 \cdot 8$	$0 \cdot 41$	$9 \cdot 47$	$16 \quad 1011$	11.20		$2 \cdot 32$
30	$13 \cdot 31$		$4 \cdot 28$		$2 \cdot 57$	$2 \cdot 46$		$3 \cdot 19$	6. 6	0.23	10•6	$16 \cdot 13$	$10 \cdot 58$		3. 1
31	$\mid 13 \cdot 41$		$4 \cdot 10$			$2 \cdot 37$			6.4	0.5		$16 \cdot 15$			3.29

TABLE FOR CORRECTING THE EQUATION OF TIME TAKEN FROM THE ABOVE TABLE FOR LONGITUDE AND FOR TIME.

Lome.	daily changr of the equation.																TIME FROM NOON.
	0	s. 2	$\begin{aligned} & \hline 8 . \\ & 4 \end{aligned}$	$\begin{aligned} & \hline \mathrm{s} . \\ & 6 \end{aligned}$	$\begin{aligned} & \hline 8 . \\ & 8 \end{aligned}$	$\begin{array}{r} \hline \text { s. } \\ 10 \end{array}$	$\begin{array}{\|c} \hline \mathbf{s} . \\ 12 \end{array}$	$\begin{gathered} \hline \text { s. } \\ 14 \end{gathered}$	$\begin{array}{r} \mathrm{s} . \\ 16 \end{array}$	$\begin{aligned} & \hline s . \\ & 18 \end{aligned}$	$\begin{aligned} & \mathbf{s .} \\ & 20 \end{aligned}$	$\begin{gathered} \text { s. } \\ 22 \end{gathered}$	$\begin{gathered} \hline \text { s. } \\ 24 \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{s .} \\ 26 \end{gathered}$	$\begin{aligned} & \text { s. } \\ & 28 \end{aligned}$	$\begin{gathered} 8 . \\ 30 \end{gathered}$	
$0 \bigcirc$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	$\begin{array}{lc} \hline \text { H. } & \text { M. } \\ 0 & 0 \end{array}$
		8.	s.	s.	8.	s.	s.	s.	s.	s.	8.	8.	8.	s.		s.	
10	0	$0 \cdot 1$	$0 \cdot 1$	$0 \cdot 2$	$0 \cdot 2$	$0 \cdot 3$	$0 \cdot 3$	$0 \cdot 4$	$0 \cdot 4$	$0 \cdot 5$	$0 \cdot 6$	$0 \cdot 6$	$0 \cdot 7$	$0 \cdot 7$	$0 \cdot 8$	$0 \cdot 8$	0.40
20	0	$0 \cdot 1$	$0 \cdot 2$	$0 \cdot 3$	$0 \cdot 4$	$0 \cdot 6$	$0 \cdot 7$	$0 \cdot 8$	$0 \cdot 9$	$1 \cdot 0$	$1 \cdot 1$	$1 \cdot 2$	1.3	$1 \cdot 4$	$1 \cdot 5$	$1 \cdot 7$	$1 \cdot 20$
30	0	$0 \cdot 2$	$0 \cdot 3$	$0 \cdot 5$	$0 \cdot 7$	$0 \cdot 8$	$1 \cdot 0$	$1 \cdot 2$	$1 \cdot 3$	$1 \cdot 5$	$1 \cdot 7$	$1 \cdot 8$	$2 \cdot 0$	$2 \cdot 2$	$2 \cdot 3$	$2 \cdot 5$	$2 \cdot 0$
40	0	$0 \cdot 2$	$0 \cdot 4$	$0 \cdot 7$	$0 \cdot 9$	$1 \cdot 1$	$1 \cdot 3$	$1 \cdot 6$	1.8	$2 \cdot 0$	$2 \cdot 2$	$2 \cdot 4$	$2 \cdot 7$	$2 \cdot 9$	3.1	$3 \cdot 3$	$2 \cdot 40$
50	0	$0 \cdot$	$0 \cdot 6$	$0 \cdot 8$	$1 \cdot 1$	- 4	$1 \cdot 7$	$1 \cdot 9$	$2 \cdot 2$	$2 \cdot 5$	$2 \cdot 8$	$3 \cdot 1$	$3 \cdot 3$	$3 \cdot 6$	$3 \cdot 9$	$4 \cdot 2$	$3 \cdot 20$
60	0	$0 \cdot 3$	$0 \cdot 7$	$1 \cdot 0$	$1 \cdot 3$	$1 \cdot 7$	$2 \cdot 0$	$2 \cdot 3$	$2 \cdot 7$	$3 \cdot 0$	$3 \cdot 3$	$3 \cdot 7$	$4 \cdot 0$	$4 \cdot 3$	4.7	$5 \cdot 0$	4. 0
70	0	$0 \cdot 4$	0	$1 \cdot 2$	1	$1 \cdot 9$	$2 \cdot 3$	$2 \cdot 7$	$3 \cdot 1$	$3 \cdot 5$	$3 \cdot 9$	$4 \cdot 3$	$4 \cdot 7$	5.1		$5 \cdot 8$	- 40
80	0	$0 \cdot$	$0 \cdot 9$	$1 \cdot 3$	$1 \cdot 8$	$2 \cdot 2$	2.7	$3 \cdot 1$	3.	40	$4 \cdot 4$	$4 \cdot 9$	$5 \cdot 3$	$5 \cdot 8$	6	$6 \cdot 7$	5-20
90	0	$0 \cdot 5$	$1 \cdot 0$	5	$2 \cdot 0$	$2 \cdot 5$	3-0	$3 \cdot 5$	$4 \cdot 0$	4	$5 \cdot 0$	$5 \cdot 5$	$6 \cdot 0$	$6 \cdot 5$	$7 \cdot 0$	$7 \cdot 4$	$6 \cdot 0$
100	0	0.	$1 \cdot 1$	$1 \cdot 7$	$2 \cdot 2$	$2 \cdot 8$	$3 \cdot 3$	$3 \cdot 9$	$4 \cdot 4$		j•6	$6 \cdot 1$	$6 \cdot 7$	$7 \cdot 2$	$7 \cdot 8$	$8 \cdot 3$	$6 \cdot 40$
110	0			$1 \cdot 8$	2.	3-1	$3 \cdot 7$		$4 \cdot 9$	$5 \cdot 5$	$6 \cdot 1$	$6 \cdot 7$	$7 \cdot 3$	$7 \cdot 9$	$8 \cdot$	9-2	$7 \cdot 20$
120	0	$0 \cdot 7$	1	$2 \cdot 0$	$2 \cdot$	$3 \cdot 3$	$4 \cdot 0$	$4 \cdot 7$	$5 \cdot 3$	$6 \cdot 0$	$6 \cdot 7$	7	$8 \cdot$	$8 \cdot 7$		$10 \cdot 0$	8. 0
130	0		$1 \cdot 4$	2	$2 \cdot 9$	$3 \cdot 6$	$4 \cdot 3$	5-1	$5 \cdot 8$	$6 \cdot 5$	$7 \cdot 2$	$7 \cdot 9$	$8 \cdot 7$	9•4	10.1	$10 \cdot 3$	$8 \cdot 40$
140	0	0.	$1 \cdot 6$	$2 \cdot 3$	$3 \cdot 1$	$3 \cdot 9$	$4 \cdot 7$	$5 \cdot 4$	$6 \cdot 2$	$7 \cdot 0$	$7 \cdot 8$	$8 \cdot 6$	$9 \cdot 3$	$10 \cdot 1$	$10 \cdot 9$	$11 \cdot 7$	$9 \cdot 20$
150	0	0.8	$1 \cdot 7$	$2 \cdot 5$	$3 \cdot 3$	$4 \cdot 2$	$5 \cdot 0$	$5 \cdot 8$	6. 7	$7 \cdot 5$	$8 \cdot 2$	$9 \cdot 2$	$10 \cdot 0$	$10 \cdot 8$	$11 \cdot 7$	$12 \cdot 5$	$10^{\circ} 0$
160	0	$0 \cdot 9$	$1 \cdot 8$	$2 \cdot 7$	$3 \cdot 6$	$4 \cdot 4$	$5 \cdot 3$	6. 2	$7 \cdot 1$	$8 \cdot 0$	$8 \cdot 9$	$9 \cdot 8$	$10 \cdot 7$	$11 \cdot 6$	12	$13 \cdot 3$	$10 \cdot 40$
170	0	$0 \cdot 9$	$1 \cdot 9$	$2 \cdot 8$	$3 \cdot 8$	$4 \cdot 7$	$5 \cdot 7$	6.6	$7 \cdot 6$	$8 \cdot 5$	9-4	10.4	$11 \cdot 3$	$12 \cdot 3$	$13 \cdot 2$	14.2	$11 \cdot 20$
180	0	$1 \cdot 0$	$2 \cdot 0$	$3 \cdot 0$	$4 \cdot 0$	$5 \cdot 0$	$6 \cdot 0$	$7 \cdot 0$	8.0	9•0	$10 \cdot 0$	$11 \cdot 0$	$12 \cdot 0$		14.0	$15 \cdot 0$	12.0

IN WEST LONGITUDE.
When the Eq'ia. is Increasing, Add.

TIME BEFORE NOON.

When the Equa. is $\{$ Increasing, Subtract. Decreasing, Add.

IN EAST LONGITUDE.
When the Equa. is $\left\{\begin{array}{l}\text { Increasing, Subtract. } \\ \text { Decreasing, }\end{array}\right.$ Decreasing, Add.

TIME AFTERNOON.

When the Equa. is

TABLE XV.-Part Firet.
LOGARITHM OF THE SUNS HOUR ANGLLE, OR THE TIME FROM NOON EXTENDING TO 64' $30^{\prime \prime}$.

	Log.		Log.		Log.		Log.	㖘	Log.		Log.
1.	4.677	7.40	6.446	14.20	6.990	21.	7.322	30. 20	7.641	45.	7.982
10	811	50	465	30	7.000	10	328		650		992
20	927	8.	483	40	010	20	335	31.	660	46.	8.001
30	5.030	10	501	50	019	30	342	20	669	30	010
40	121	20	519	15.	029	40	349	40	678	47.	020
50	204	30	36	10	039	50	355	32.	687	30	029
2.	279	40	553	20	048	22.	362	20	696	48.	038
10	349	50	569	30	058	10	368	40	705	30	047
20	414	9.	586	40	067	20	375	33.	714	49.	056
30	473	10	602	50	076	30	382	20	723	30	065
40	530	20	617	16.	085	40	388	40	731	50.	074
50	58	30	633	10	094	50	394	34.	740	30	082
3.	632	40	48	20	103	23.	400	20	748	51.	090
10	678	50	663	30	112	10	407	40	757	30	099
20	723	10.	77	40	121	20	413	35.	765	52.	107
30	766	10	692	50	130	30	419	20	77	30	116
40	806	20	706	17.	138	40	425	40	781	53.	124
50	845	30	720	10	147	50	431	36.	789	30	132
4.	881	40	734	20	155	24.	438	20	797	54.	140
10	917	50	747	30	163	10	444	40	805	30	148
20	951	11.	760	40	172	20	449	37.	813	55.	156
30	984	10	773	50	180	30	455	20	821	30	164
40	6.015	20	786	18.	188	40	461	40	829	56.	172
50	046	30	798	10	196	50	467	38.	836	30	179
5.	075	40	811	20	204	25.	473	20	844	57.	187
10	103	50	. 824	30	212	20	484	40	851	30	194
20	132	12.	836	40	219	40	496	39.	859	58.	202
30	158	10	848	50	227	26.	507	20	866	30	209
40	182	20	860	19.	235	20	518	40	873	59.	217
50	209	30	871	10	242	40	529	40.	881	30	224
6.	234	40	883	20	250	27.	540	20	888	60.	231
10	258	50	894	30	257	20	550	40	895	30	238
20	281	13.	905	40	264	40	561	41.	902	61.	246
30	303	10	916	50	272	28.	571	30	912	30	253
40	325	20	927	20.	279	20	582	42.	923	62.	259
50	347	30	938	10	286	40	592	30	933	30	267
7.	367	40	949	20	294	29.	602	43.	943	63.	274
10	388	50	959	30	301	20	612	30	953	30	280
20	408	14.	969	40	308	40	622	44.	963	64.	287
30	42	10	980	50	315	30.	631	30	973	30	294

	$\begin{gathered} 76 \\ \text { LOGAR1 } \end{gathered}$	RITHMS	$\leqslant \mathrm{OF} \mathrm{Tl}$	HE		$\begin{aligned} & \text { WE } \quad \\ & \text { E ANI } \\ & \text { SAD } \end{aligned}$	D DE DME N	INAT E.	ION	HEN	HEY	ARE	$\mathrm{F} \mathrm{TH}$	
declination.														
Lat.	0°	10	20	3°	4°	5°	6°	70	8°	9°	10°	11°	12°	at.
0						1.359								\bigcirc
1						1.359	1.279 358	1.212 278	211	1.101 152	1.055 100	. 53		1
2								357	277	209	151	098	+051	2
3									356	276	208	149	097	3
4										354	274	206	147	4
5	1.359										352	272	204	5
6	279	1.358										350	270	6
7	212	278	1.357										348	7
8	153	211	277	1.356										8
9	101	152	209	276	1.354									9
10	055	100	151	208	272	1.352								10
11	1.012	1.053	$\overline{1.098}$	1.149	. 206	1.272	. 350							11
12	0.974	011	051	097	147	204	270	1.348						12
13	938	0.972	009	051	094	145	201	267	1.345					13
14	904	936	0.970	007	047	092	142	199	264	1.342				14
15	873	902	934	0.967	004	045	089	139	196	261	1.339			15
16	844	871	900	931	0.965	00.2	042	086	136	193	258	1.336		16
17	816	841	868	897	928	0.962	0.999	039	083	133	189	254	1.332	17
18	789	813	839	866	895	925	959	0.995	035	080	129	185	250	18
19	764	787	811	836	863	891	922	956	0.992	032	076	125	181	19
20	740	761	784	807	833	859	888	919	952	0.988	028	072	121	20
21	0.717	0.737	$\overline{0.758}$	0.781	$\overline{0.804}$	0.829	0.856	$\overline{0.884}$	$\overline{0.915}$	0.948	$\overline{0.984}$	$\overline{1.023}$	1.067	21
22	695	714	734	755	777	801	825	852	880	911	944	0.980	019	22
23	673	691	710	730	752	773	807	821	848	876	906	939	0.975	23
24	652	670	688	707	727	747	769	793	817	844	871	902	934	24
25	632	649	666	684	703	723	743	765	788	813	839	867	897	25
26	613	629	645	662	680	699	718	739	760	783	808	834	861	26
27	594	609	625	641	658	676	694	714	734	756	778	803	828	27
28	575	590	605	620	637	653	671	689	709	729	750	773	797	28
29	557	571	586	600	616	632	649	666	684	703	724	745	767	29
30	540	553	567	581	596	611	627	643	661	679	698	718	739	30
31	0.522	0.535	$\overline{0.548}$	0.562	$\overline{0.576}$	0.591	$\overline{0.606}$	0.622	0.638	-0.655	0.673	0.692	0.712	31
32	505	518	530	543	557	571	585	600	616	632	649	667	686	32
33	489	500	513	525	538	551	565	580	594	610	626	643	661	33
34	472	483	495	507	519	532	546	559	574	588	604	620	636	34
35	456	467	478	489	501	514	526	540	553	567	582	597	612	35
36	440	450	461	472	484	495	508	520	533	548	560	575	590	36
37	424	434	445	455	466	478	489	501	514	526	540	553	568	37
38	408	418	428	438	449	460	471	482	494	507	519	532	546	38
39	393	402	412	422	432	442	453	464	475	487	499	512	525	39
40	377	386	396	405	415	425	435	447	457	468	480	492	504	40
41	0.362	0.371	0.380	0.389	0.398	0.408	$\overline{0.418}$	0.428	0.438	$\overline{0.449}$	$\widehat{0.460}$	$\overline{0.472}$	0.484	41
42	347	355	364	373	382	391	400	410	420	431	441	452	464	42
43	331	340	348	358	365	374	383	393	402	412	422	433	444	43
44	316	324	332	340	349	357	366	375	384	394	404	414	424	44
45	301	309	316	324	333	341	349	358	367	376	385	395	405	45
46	286	293	301	308	316	324	332	341	349	358	367	376	386	46
47	271	278	285	292	300	308	315	323	331	340	349	358	367	47
48	255	262	269	276	284	291	299	306	314	322	331	339	348	48
49	240	247	254	260	267	275	282	289	297	305	312	321	329	49
50	225	231	238	244	251	258	265	272	27 勺े	287	294	302	310	50
51	209	0.216	0.222	0.228	0.235	0.241	0.248	0.255	$\overline{0.262}$	0.269	0.276	0.284	0.291	51
52	194	200	206	212	218	225	231	238	244	251	258	265	273	52
53	178	184	190	196	202	208	214	220	227	233	240	247	254	53
54	162	168	173	179	185	191	197	203	209	215	222	228	235	54
55	146	152	157	162	168	174	179	185	191	197	204	210	216	55
56	130	135	140	146	151	156	162	168	173	179	185	191	197	56
57	-114	118	124	129	134	139	144	150	155	160	166	172	178	57
58	097	100	106	111	116	121	126	131	137	142	148	153	159	58
59	080	084	089	094	098	103	108	113	118	123	128	134	139	59
60	062	067	071	076	080	085	090	094	099	104	109	114	119	60

	$\begin{array}{r} 77 \\ \text { COGA } \end{array}$	ITHMS	OF TH	HE L	TAB IITUD				ION W	HEN	THEY	ARE	TH	
DECLINATION.														
Lat.	13°	14°	15°	16°	17°	18°	19°	20°	21°	22°	23°	24°	25°	Lat.
$\bar{\circ}$	0.938	0.904	0.873	0.814	0.816	0.789	0.764	0.740	0.717	0.695	0.673	0.652	0.632	\bigcirc
1	972	936	902	871	841	813	787	761	737	714	691	660	649	1
2	1.009	970	934	900	868	839	811	784	758	734	710	687	666	2
3	049	1.007	967	931	897	866	836	807	781	755	730	707	683	3
4	094	047	1.004	965	928	895	863	832	804	777	751	726	703	4
5	145	092	045	1.002	962	925	891	859	829	801	773	747	722	5
6	201	142	089	042	999	959	922	888	856	825	797	770	743	6
7	267	199	139	086	1.039	995	956	919	884	852	821	793	765	7
8	345	264	196	136	083	1.035	992	952	915	880	848	818	788	8
9		342	261	191	133	080	1.032	988	948	911	876	844	813	9
10			339	258	189	129	076	1.028	984	944	906	871	838	10
11				$\overline{1.336}$	$\overline{1.254}$	1.185	$\overline{1.125}$	1.072	$\overline{1.023}$	0.980	$\overline{0.939}$	$\overline{0.902}$	$\overline{0.866}$	11
12					332	250	181	121	067	1.019	975	934	896	12
13						328	246	177	116	063	1.014	970	929	13
14							323	242	172	112	058	1.009	964	14
15								319	237	167	106	053	1.003	15
16									314	232	162	101	047	16
17										308	226	157	095	17
18	1.828										303	221	150	18
19	246	1.323										298	215	19
20	177	242	1.319										291	20
21	$\overline{1.116}$	$\overline{1.172}$	1.237	$\overline{1.314}$										21
22	063	112	167	232	1.308									22
23	014	058	106	162	226	1.303								23
24	0.970	009	052	101	156	221	1.297							24
25	929	0.965	004	047	095	151	215	1.291						25
26	890	924	0.959	0.998	041	090	144	208	1.285					26
27	856	886	918	953	0.992	035	083	138	202	1.278				27
28	823	850	880	912	947	0.986	028	070	131	195	1.271			28
29	791	817	844	874	906	940	0.979	021	069	124	188	1.264		29
30	761	785	811	838	867	899	934	0.972	014	062	117	181	1.256	30
31	$\overline{0.733}$	0.755	0.779	$\overline{0.804}$	0.831	$\overline{0.860}$	0.892	$\overline{0.926}$	$\overline{0.965}$	1.007	1.055	$\underline{1.109}$	171	31
32	706	726	748	772	797	824	853	885	919	0.957	0.999	046	100	32
33	679	699	720	742	765	790	817	846	877	911	949	0.992	038	33
34	654	672	692	712	734	757	782	809	838	869	903	941	0.983	34
35	630	647	665	685	705	727	750	774	801	829	861	894	931	35
36	606	622	640	658	677	697	719	742	766	792	821	852	885	36
37	583	598	615	632	650	669	689	710	733	758	784	812	842	37
38	560	575	591	607	624	642	661	681	702	724	749	775	803	38
39	538	552	567	582	599	615	633	652	672	693	715	740	765	39
40	517	530	544	559	574	590	607	624	643	662	683	706	729	40
41	$\overline{0.496}$	\bigcirc	0.522	$\overline{0.536}$	0.550	$\overline{0.565}$	0.581	$\overline{0.597}$	$\overline{0.615}$	$\overline{0.633}$	0.653	$\overline{0.674}$	696	41
42	475	487	500	513	527	541	556	572	588	605	623	643	663	42
43	455	466	478	491	504	517	532	546	562	578	595	613	632	43
44	435	446	457	469	482	494	508	522	536	552	568	585	602	44
45	415	426	436	448	460	472	484	498	511	526	541	557	573	45
46	395	405	416	427	438	449	461	474	487	501	515	530	545	46
47	376	386	396	406	416	427	439	451	463	476	490	504	518	47
48	357	366	375	385	395	406	417	428	440	452	465	479	492	48
49	337	346	355	365	374	384	395	405	417	428	440	453	407	49
50	318	327	335	344	354	362	373	383	394	405	416	428	440	50
51	0.299	0.307	0.316	0.324	0.333	$\overline{0.342}$	0.351	0.361	0.371	0.381	0.392	0.404	0.415	51
52	280	288	296	304	312	321	330	339	349	359	369	379	390	52
53	261	269	276	284	292	300	309	317	326	336	346	355	365	53
54	242	249	257	264	271	279	287	296	304	313	322	332	341	54
55	223	230	236	244	251	258	266	274	282	291	299	309	318	55
56	204	210	217	223	230	237	245	252	260	268	277	286	294	56
57	184	190	197	203	210	216	223	231	238	246	254	262	270	57
58	164	170	176	183	189	195	202	209	216	223	231	238	246	58
59	145	150	156	162	168	174	180	187	194	201	208	215	222	59
60	125	130	135	141	147	153	159	165	171	178	185	192	198	60

			LOGARITHMS	IE LAT		TUDE AND DECLINATION CONTRARY NAMES.				WHEN THEY ARE OF				
declinatio														
Lat.	0	10	2	3°	4	$5{ }^{\circ}$	6°	70	80				12	
						1.359	1.279	1.212	1.153	1.101	1.055	2	0.979	0
1					1.360	280	213	154	102	056	014	0.975	931	1
2				1.360	281	213	155	103	057	015	0.976	941	907	
3			1.360	281	213	155	104	058	016	0.977	942	909	878	3
4		11.360	280	213	155	104	058	016	0.978	943	910	879	850	
5	1.359	280	213	155	104	058	016	0.978	943	910	880	851	824	
6	279	213	155	104	058	016	0.979	943	911	880	852	825	799	6
7	219	154	103	058	016	0.978	943	911	881	851	825	800	776	
8	153	102	057	016	0.978	943	911	881	852	825	800	776	753	
9	101	056	015	0.977	943	910	880	852	825	800	776	754	732	
10	055	014	0.976	942	910	880	852	825	800	776	754	732	711	0
11	1.012	0.975	0.941	$\overline{0.909}$	$\overline{0.879}$	0.851	$\overline{0.825}$	0.800	0.776	$\underline{0.754}$	0.732	0.71	0.692	11
12	0.974	939	907	878	850	824	799	775	753	732	711	692	673	12
13	938	906	876	849	823	798	775	752	731	711	691	672	654	13
14	904	875	847	822	797	774	751	730	710	691	678	654	636	
15	873	846	820	795	772	750	729	709	690	671	653	636	619	15
16	844	818	794	772	749	728	708	689	670	653	635	619	603	16
17	816	792	769	747	726	706	687	669	651	634	617	602	586	17
18	789	767	745	724	705	686	668	650	633	617	601	586	571	18
19	764	743	722	703	684	666	648	632	615	600	584	570	555	
20	740	720	700	682	664	646	630	614	598	583	568	554	540	20
21	$\overline{0.717}$	0.698	$\overline{0.679}$	$\overline{0.661}$	$\widehat{0.644}$	0.628	$\overline{0.612}$	0.596	0.581	0.567	0.553	0.539	0.5:5	21
22	695	676	659	642	625	609	594	579	565	551	537	524	511	22
23	673	656	639	623	607	592	577	563	549	535	522	509	497	
24	652	636	621	604	589	575	560	547	533	520	508	495	483	24
25	632	616	601	586	572	558	544	531	518	505	493	481	469	2
26	613	598	583	569	555	541	528	515	503	491	479	467	456	
27	594	579	565	551	538	525	512	500	488	476	465	454	442	
28	575	561	548	35	522	509	497	485	473	462	451	440	429	2
29	557	544	531	518	506	494	482	470	459	448	437	427	416	29
30	540	527	514	502	490	478	467	456	445	434	425	414	403	30
31	0.522	0.510	0.498	0.486	$\overline{0.474}$	0.463	0.452	0.442	0.431	0.421	0.411	0.401	0.391	31
32	505	493	452	470	459	448	438	427	417	407	397	388	378	
33	489	477	466	455	444	434	423	413	403	394	384	375	366	
34	472	461	450	440	429	419	409	399	390	380	371	362	353	
35	456	445	435	424	414	405	395	386	376	367	358	349	341	
36	440	429	419	410	400	390	381	372	363	354	345	337	328	
37	424	414	404	395	385	376	367	358	350	341	333	324	316	
38	408	399	389	380	371	362	353	345	336	328	320	312	304	38
39	393	384	374	365	57	348	340	331	323	315	307	299	291	
40	377	368	360	351	342	334	326	318	310	302	294	287	279	40
41	0.362	0.353	0.345	0.336	$\overline{0.328}$	0.320	$\overline{0.312}$	$\overline{0.304}$	0.297	0.289	$\overline{0.282}$	0.274	0.267	
42	347	338	3:30	322	314	306	299	291	284	276	269	262	255	
43	331	323	315	:308	300	292	285	278	270	263	256	249	24.	4
44	316	308	301	$2!3$	286	279	271	264	257	250	243	237	230	
45	301	294	286	279	272	265	258	251	244	237	231	224	217	
46	286	279	271	264	257	251	244	237	231	224	218	211	205	46
47	271	264	257	250	243	237	230	224	217	211	205	198	192	
48	255	249	242	235	229	223	216	210	204	198	191	185	179	48
49	240	234	227	221	215	208	202	196	190	184	178	172	167	49
50	225	219	212	206	200	194	188	182	176	171	165	159	154	50
51	0.209	0.203	0.197	0.191	0.185	0.180	0.174	0.168	0.163	0.157	0.151	0.145	$\overline{0.140}$	51
52	194	188	182	175	171	165	160	154	149	143	138	132	127	52
53	178	172	167	161	156	150	145	140	134	129	124	119	114	53
54	162	157	151	146	141	136	130	125	120	115	110	105	100	54
55	146	141	136	131	125	120	115	110	105	101	096	091	086	55
56	130	125	120	115	110	105	100	095	091	086	081	077	072	56
57	114	109	104	099	094	090	085	080	076	071	066	062	057	57
58	097	092	087	083	078	074	069	065	060	056	051	047	043	58
59	080	075	071	066	062	058	053	049	045	040	036	032	028	59
60	062	058	054	050	1045	041	037	033	029	024	020	016	012	60

	TABLE XV.-Part Third. LOGARITHMS OF THE LATITUDE AND DECLINATION WHEN THEY ARE OF CONTRARY NAMES.													
DECLINATION.														
L	13	14°	15°	16°	170	18°	19°	20°	21°	22°	23°	24°	25°	at
0	0.938	0.904	0.873	0.844	0.816	0.789	0.764	0.740	0.717	0.695	0.673	0.653	0.632	0
1	906	875	846	818	792	767	743	720	698	676	656	636	616	
2	876	847	820	794	769	745	722	700	679	659	639	620	604	2
3	849	821	795	771	747	724	703	682	661	642	623	604	586	3
4	823	797	772	749	726	705	684	- 664	(44	625	607	589	571	4
5	798	774	750	728	706	686	666	646	628	609	592	574	57	5
6	775	751	729	708	687	668	648	630	612	594	577	561	544	6
7	752	730	709	689	669	650	632	614	596	579	563	547	1	7
8	731	710	690	670	651	633	615	598	581	565	549	534	518	8
9	711	691	671	653	634	617	600	583	567	551	535	521	505	9
10	691	672	653	635	618	601	584	568	55.3	537	522	508	438	10
11	0.672	$\widehat{0.654}$	0.636	$\overline{0.619}$	0.602	$\overline{0.5 \triangle 6}$	$\overline{0.570}$	0.554	0.539	0.524	0.509	0.495	. 481	,
12	654	636	619	603	586	571	555	540	525	511	497	483	469	12
13	637	620	603	587	571	556	541	527	512	498	485	471	457	13
14	620	ti03	587	572	557	542	527	513	499	486	473	460	446	14
15	602	587	572	557	542	528	514	500	487	474	461	449	435	15
16	587	572	557	542	528	515	501	488	475	462	449	438	424	16
17	571	557	542	528	515	501	488	475	463	450	438	427	413	17
18	556	542	528	515	501	488	475	463	451	438	426	416	402	18
19	541	527	514	501	488	475	463	451	439	427	415	405	392	19
20	527	513	500	488	475	463	451	439	427	416	404	394	382	20
21	0.512	$\overline{0.499}$	0.487	0.475	0.462	0.451	$\overline{0.439}$	0.427	0.416	0.405	0.393	0.383	0.372	21
22	498	486	474	462	450	438	427	416	405	394	383	372	362	22
23	485	472	461	449	438	426	415	404	393	383	372	361	352	23
24	471	459	448	437	425	414	404	393	382	372	362	351	342	24
25	458	446	435	424	413	403	392	382	- 372	361	351	341	332	25
26	445	434	423	412	402	391	381	371	361	351	341	331	322	26
27	432	421	410	400	390	380	370	360	350	340	331	321	312	27
28	419	408	398	388	378	368	358	349	- 339	330	320	311	302	28
29	406	396	386	376	367	357	347	338	- 329	320	310	302	202	29
30	394	384	374	364	355	346	336	327	318	309	300	293	28:3	30
$\overline{31}$	0.381	0.372	$\overline{0.362}$	0.353	$\overline{0.344}$	$\overline{0.335}$	0.326	0.3	0.308	0.299	0.290	0.282	0.273	31
32	369	359	350	341	332	323	315	306	- 297	289	280	272	263	32
33	356	347	338	330	321	312	304	295	287	278	270	262	253	33
34	344	335	327	318	310	301	293	285	276	268	260	252	243	34
35	332	324	315	307	298	290	282	275	, 266	258	250	242	233	35
36	320	312	303	295	287	279	271	263	- 256	248	240	232	224	36
37	308	300	292	284	276	268	260	253	245	237	230	222	214	37
38	296	288	280	272	265	257	250	242	235	227	220	212	204	38
39	234	276	269	261	. 254	246	239	231	224	217	210	202	194	39
40	272	264	257	250	242	235	228	221	214	207	199	192	185	50
41	0.260	0.252	0.245	$\overline{0.238}$	0.231	$\overline{0.224}$	0.217	0.210	0.203	0.196	0.188	0.182	0.175	41
42	247	240	233	227	220	213	206	199	192	186	178	172	165	42
43	235	228	222	215	208	202	195	188	182	175	168	162	155	43
44	223	216	210	203	197	190	184	177	171	164	158	152	145	44
45	211	204	198	192	185	179	173	166	160	154	147	142	135	45
46	198	192	186	180	174	167	161	155	149	143	136	132	125	46
47	186	180	174	168	162	156	150	144	138	132	126	121	114	47
48	173	168	162	156	150	144	138	132	127	121	115	110	103	48
49	161	155	149	144	138	132	126	121	115	109	104	099	092	49
50	148	142	137	131	126	120	115	109	104	098	093	087	081	50
51	0.135	0.130	0.124	$\overline{0.119}$	0.113	$\overline{0.108}$	$\overline{0.103}$	$\overline{0.097}$	0.092	0.086	0.081.	0.076	$\overline{0.070}$	51
52	122	117	111	106	101	096	090	085	080	075	069	064	055	52
53	108	103	098	093	088	083	078	073	068	063	058	052	047	53
54	095	090	085	080	075	070	065	060	055	051	046	041	035	54
55	081	076	072	067	$06: 2$	057	0.52	048	043	038	033	029	024	55
56	067	063	058	053	049	044	039	0.35	030	025	021	017	011	56
57	053	048	044	039	035	030	026	021	017	012	008	004	9.998	57
58	038	034	030	025	021	017	013	008	003	0.999	9.995	9.990	985	58
59	023	019	015	011	007	002	9.998	9.494	9.990	985	981	977	972	59
60	008	004	000	9.996	9.992	9.988	984	980	\| 976	971	967	9631	959	60

TABLE XV.

oontaining the som of the two logs and the oorrection for altitude.					
\bigcirc		$\bigcirc \quad 1$		0	
0. 1	6.464	0.51	8.171	1.41	8.468
2	765	52	180	1.42	472
3	941	53	189	1.43	476
4	7.066	54	196	1.44	481
5	163	55	204	1.45	485
6	242	56	212	1.46	489
7	309	57	220	1.47	493
8	367	58	227	1.48	497
9	418	59	235	1.49	501
10	464	1. 0	242	1.50	505
11	505	1. 1	249	1.51	509
12	543	1. 2	256	1.52	513
13	578	1. 3	263	1.53	516
14	610	1. 4	270	1.54	521
15	640	1. 5	277	1.55	524
16	668	1. 6	283	1.56	528
17	694	1. 7	290	1.57	532
18	719	1. 8	296	1.58	536
19	742	1. 9	303	1.59	539
20	765	1.10	309	2. 0	543
21	786	1.11	315	2. 1	546
22	806	1.12	321	2. 2	549
23	825	1.13	327	2. 3	553
24	844	1.14	333	2. 4	557
25	862	1.15	339	2. 5	560
26	879	1.16	345	2. 6	564
27	895	1.17	350	2. 7	567
28	911	1.18	356	2. 8	571
29	926	1.19	361	2. 9	574
30	941	1.20	367	2.10	578
31	955	1.21	372	2.11	581
32	969	1.22	377	2.12	584
33	982	1.23	383	2.13	587
34	995	1.24	389	2.14	591
35	8.008	1.25	393	2.15	594
36	020	1.26	398	2.16	597
37	032	1.27	403	2.17	600
38	044	1.28	408	2.18	603
39	054	1.29	413	2.19	606
40	066	1.30	419	2.20	610
41	077	1.31	423	2.21	613
42	087	1.32	427	2.22	616
43	097	1.33	432	2.23	619
44	107	1.34	437	2.24	622
45	117	1.35	441	2.25	625
46	126	1.36	446	2.26	628
47	136	1.37	450	2.27	631
48	145	1.38	455	2.28	634
49	154	1.39	459	2.29	637
50	163	1.40	464	2.30	640

PART FIFTH.
CONTAININO THE LMMTS OF THE TTME FROM NOON AT WHICH THE OBSERVATION SHOOLD BE MADE.

deo. of tre same nami as the latitude						
Lat	0°	5°	10°	15°	20°	24°
\bigcirc	h m	h m	h m	m	h m	h m
0	0.0	0.4	0.6	0.9	0.12	0.15
5	3	1	4	6		12
10	6	4	1	5	7	10
15	9	7	4	2	4	8
20	12	10	7	5	2	5
25	16	13	10	8	5	2
30	19	16	13	12	9	6
35	24	21	18	15	13	10
40	28	25	22	20	17	15
44	32	29	26	24	21	20
48	36	33	30	30	27	25
52	44	41	36	36	34	32
56	55	47	44	42	38	36
60	58	54	52	50	46	44

	h m	h m	h m	b m	b m	hm
0	0.0	0.4	0. 7	0.10	0.13	0.16
5	3	7	9	13	16	18
10	7	10	13	17	19	21
15	10	13	17	20	21	24
20	13	16	19	23	25	28
25	18	20	23	26	28	31
30	21	23	26	30	32	35
35	25	27	30	34	36	39
40	30	32	33	38	40	43
44	34	37	38	43	46	48
48	38	42	45	48	51	53
52	44	48	52	55	58	1. 0
56	50	54	57	1. 0	1. 3	1. 5
60	58	57	1. 4	1. 6		1.12

APPARENT TIME OF THE SUNS RISING AND SETTING.

	declination of the same name as the latitude.													
	$0{ }^{\circ}$		2°		4^{0}		6°		8°		9°		10°	
	Ris.	Sett.	\%.	Sett.	Is.	Se	Ris.	Sett.	is.	Sett.	Ris.	Sett.	Ris	Sett.
	4. M.	H. m 6.0	H. M.	H. 4	7. M.		\%. ${ }^{\text {m. }} 0$	H.	${ }_{0}^{\mathrm{m}} 0$	0	0			
2	6.0	6.0	6.	6. 0	6. 0	6. 0	6. 0	6. 0	5.59	6. 1	5.59	6. 1	5.59	6. 1
4	6.0	6.0	6. 0	6. 9	5.59	6. 1	5.59	6. 1	5.58	6. 2	5.58	6. 2	5.57	6.3
6	6.0	6.0	6. 0	6. 9	5.58	6. 2	5.58	6. 2	5.57	6. 3	5.57	6. 3	5.56	6. 4
8	6.0	6.0	5.59	6. 1	5.58	6. 2	5.57	6. 3	5.56	6. 4	5.55	6. 5	5.55	6. 5
10	6.0	6.0	5.59	6. 1	5.57	6. 3	5.56	6. 4	5.54	6. 6	5.54	6. 6	5.53	6. 7
12	6.0	6.0	5.58	6. 2	5.57	6. 3	5.55	6. 5	5.53	6. 7	5.53	6. 7	5.52	6. 8
14	6.0	6.0	5.58	6. 2	5.56	6. 4	5.54	6. 6	5.52	6. 8	5.51	6. 9	5.51	6. 9
16	6.0	6.0	5.58	6. 2	5.55	6. 5	5.53	6. 7	5.51	6. 9	5.50	6.10	5.48	12
18	6.0	6.0	5.58	6. 2	5.55	6. 5	5.52	6. 8	5.50	6.10	5.48	6.12	5.47	6.13
20	6.0	6.0	5.57	6. 3	5.54	6. 6	5.51	6. 9	5.48	6.12	5.47	$\overline{6.13}$	5	
21	6.0	5.0	5.57	6. 3	5.54	6. 6	5.51	6. 9	5.48	6.12	5.46	6.14	5.44	6.16
22	6.0	5.0	5.57	6. 3	5.54	6. 6	5.50	6.10	5.47	6.13	5.45	6.15	5.44	6.16
23	6.0	6.0	5.57	6. 3	5.53	6. 7	5.50	6.10	5.46	6.14	5.44	6.16	5.43	6.17
24	6.0	6.0	5.57	6. 3	5.53	6. 7	5.49	6.11	5.46	6.14	5.43	6.17	5.42	6.18
25	6.0	6.0	5.56	6. 4	5.53	6. 7	5.49	6.11	5.45	6.15	5.42	6.18	5.41	6.19
26	6.0	6.0	5.56	6. 4	5.52	6. 8	5.48	6.12	5.44	6.16	5.41	6.19	5.40	6.20
27	6.0	6.0	5.56	6. 4	5.52	6. 8	5.48	6.12	5.44	6.16	5.41	6.19	5.39	6.21
28	6.0	6.0	5.56	6. 4	5.51	6. 9	5.47	6.13	5.43	6.17	5.40	6.20	5.38	6.22
29	6.0	6.0	5.56	6. 4	5.51	6. 9	5.47	6.13	5.42	6.18	5.39	6.21	5.38	6.22
30	6.	6.0	5.55	-5.5	5.5	6. 9	5.4	6.1	5.4	6.19	5.38	6.22	5.37	6.
31	6.0	6.0	5.55	¢. 5	5.50	6.10	5.46	6.14	5.41	6.19	5.37	6.23	5.36	6.24
32	6.0	6.0	5.55	5. 5	5.50	6.10	5.45	6.15	5.40	6.20	5.36	6.24	5.35	6.
33	6.0	6.0	5.55	6. 5	5.50	6.10	5.44	6.16	5.39	6.21	5.35	6.25	5.34	6.26
34	6.0	6.0	5.55	6. 5	5.49	6.11	5.44	6.16	5.38	6.22	5.35	6.25	5.33	6.27
35	6.0	6.0	5.55	6. 5	5.49	6.11	5.43	6.17	5.37	6.23	5.34	6.26	5.32	6.28
36	6.0	6.0	5.55	6. 5	5.48	6.12	5.42	6.18	5.37	6.23	5.33	6.27	5.31	6.29
37	6.0	6.0	5.55	6. 5	5.48	6.12	5.42	6.18	5.36	6.24	5.32	6.23	5.29	6.31
38	6.0	6.0	5.55	6. 5	5.47	6.13	5.41	6.19	5.35	6.25	5.31	6.29	5.28	6.32
39	6.0	c	5.55	6. 5	5.47	6.13	5.40	6.20	5.34	6.26	5.29	6.31	5.27	6.33
40	6.0	6.0	5.54	6. 6	5.47	6.13	5.40	6.20	5.33	6.27	5.28	6.32	5.26	6.34
41	6.0	6.0	5.54	6. 6	5.46	6.14	5.39	6.21	5.32	6.28	5.27	6.33	5.25	6.35
42	6.0	6.0	5.54	6. 6	5.46	6.14	5.38	6.22	5.31	6.29	5.26	6.34	5.23	6.37
43	6.0	6.0	5.53	6. 7	5.45	6.15	5.38	6.22	5.30	6.30	5.25	6.35	5.22	6.38
44	6.0	6.0	5.53	6. 7	5.45	6.15	5.37	6.23	5.29	6.31	5.24	6.36	5.21	6.39
45	6.0	6.0	5.52	6. 8	5.44	6.16	5.36	6.24	5.28	6.32	5.22	6.38	5.19	6.41
46	6.0	6.0	5.52	6. 8	5.43	6.17	5.35	6.25	5.27	6.33	5.21	6.39	5.18	6.42
47	6.0	6.0	5.51	6. 9	5.43	6.17	5.34	6.26	5.25	6.35	5.19	6.41	5.16	6.44
48	6.0	6.0	5.51	6. 9	5.42	6.18	5.33	6.27	5.24	6.36	5.18	6.42	5.15	6.45
49	6.0	6.0	5.51	6. 9	5.42	6.18	5.32	6.28	5.23	6.37	5.16	6.44	5.13	6.47
50	6.0	6.0	5.50	6.10	5	6.19	5.31	6.2	5.21	6.39	5.15	6.45	5.11	6.49
51	6.0	6.0	5.50	6.10	5.40	6.20	5.30	6.30	5.20	6.40	5.13	6.47	5.10	6.50
52	6.0	6.0	5.50	6.10	5.39	6.21	5.29	6.31	5.19	6.41	5.11	6.49	5. 8	6.52
53	6.0	6.0	5.49	6.11	5.39	6.21	5.28	6.32	5.17	6.43	5.10	6.50	5. 6	6.54
54	6.0	6.0	5.49	6.11	5.38	6.22	5.27	6.33	5.15	6.45	5. 8	6.52	5. 4	6.56
55	6.0	6.0	5.49	6.11	5.37	6.23	5.25	6.35	5.14	6.46	5. 6	6.54	5. 2	6.58
56	6.0	6.0	5.48	6.12	5.36	6.24	5.24	6.36	5.12	6.48	5. 5	6.55	4.59	7. 1
57	6.0	6.0	5.48	6.12	5.35	6.25	5.23	6.37	5.10	6.50	5. 4	6.56	4.57	7. 3
58	6.0	6.0	5.47	6.13	5.34	6.26	5.21	6.39	5. 8	6.52	5. 0	6.58	4.54	7. 6
59	6.0	6.0	5.47	6.13	5.33	6.27	5.20	6.40	5. 6	6.54	4.59	7. 1	4.52	7. 8
60	6.0	6.0	5.46	0.14	5.32	6.28	5.18	6.40	5. 4	6.56	4.56	7. 4	4.49	7.11
61	6.0	6.0	5.46	6.14	5.31	6.29	5.16	6.44	5. 1	6.59	4.54	7. 6	4.46	7.14
62	6.0	6.0	5.45	6.15	5.30	6.30	5.14	6.46	4.59	7. 1	4.51	7. 9	4.43	7.17
63	6.0	6.0	5.44	6.16	5.28	6.32	5.12	6.48	4.56	7. 4	4.48	7.12	4.39	7.21
64	6.0	6.0	5.44	6.16	5.27	6.33	5.10	6.50	4.53	7. 7	4.44	7.16	4.35	7.25
65	6.0	6.0	5.43	6.17	5.26	6.34	5. 8	6.5\%	4.50	7.10	4.41	7.19	4.31	7.29
66	6.0	6.0	5.42	6.18	5.24	6.35	5. 5	6.54	4.47	7.13	4.37	7.23	4.27	7.33
$66 \frac{1}{2}$	6.0	6.0	5.42	6.18	5.23	6.36	5. 4	6.56	4.44	7.16	4.34	7.26	4.24	7.36
Lat.	Sett.	Ris.	Sett.	Ris	Sett.	Rin.								
lattiode and declination of contraby names.														

APPARENT TIME OF THE SUN'S RISLNG AND SETTING.

	deolination of the sime name as the lati													
	11°		12°		13°		14°		15°		16°		17°	
	Ris.	Sett	Ris.	S	s.	Set	is.	S	Ris.	S		Se	Ria.	Sett
0	н													
	5.	6.	5.57	6.	5.56	6.	5.56		5.		5.			
6	5.56	6.	5.55	6. 5	5.55	6. 5	5.54	6. 6	5.54	6. 6	5.53	6. 7	5.53	
8	5.54	6. 6	. 5	6.	5.53	6. 7	5.5	6. 8	5.		5.51		5.50	
10	5.5	6. 8	5.52	-6. 8	5.51	6. 9	5.50	6.10	5.49	6.1	5.49	6.1	8	
12	5.5	6. 9	5.50	6.10	5.49	6.1	5.48	6.1	5.47	6.13	5.46	6.14	5.45	6.1
14	5.50	6.10	5.48	6.12	5.48	6	5.	6.	5.	6.	4	6	5.43	
16	5.	6.	5.46	6.	5.	6.15	5.	6.	5.42	6.	5.41	6.19	0	
18	5.46	6.14	5.44	6.1	5.43	6.17	5.4	6.1	5.40	6.20	5.39	6.21	7	6.23
20		6.16	5.42	6.18	5.41	6.19	5.39	6.21				6.24		
21	5.	6.17	5.41	6.19	5.40	6.20	5.3	6.22	5.	6.24	5.35	6.	5.33	
22	5.42	6.18	5.40	6.20	5.39	6.2	5.37	6.	5.35	6.	5.	6.	5.32	
23	5.41	6.19	5.39	6.21	5.	6.	5.			6.	5.32	6.	0	
24	5.40	6.20	5.38	6.2	5.36	6.2	5.3	6.2	5.3	6.27	5.	6.	5.29	6.31
25	5.39	6.21	5.37	6.23	5.35	6.25	5.33	6.2	5.31	6.29	5.29	6.	7	6 3
26	5.38	6.	5.36	6.	5.3	6.	5.3	6.	5.30	6.	5.28	6.	5.26	
27	5.37	6.23	5.35	6.25	5.33	6.2	5.3	6.2	5.	6.	5.26	6.	5.24	
28	5.36	6.24	5.34	6.26	5.32	6.2	5.30	6.30	5.2	6.3	5.25	6.	5.23	
29	5.35	6.	5.33	6.2	5.	6.	5.28	6.32	5.26	6.	5.23	6.	5.21	
30	5.3	6.	5.32	6.28	5.29	6.31	5.27	6.33	5.24	6.3	5.22	6.38	9	
31	5.33	6.2	5.3	6.29	5.28	6.32	5.26	6.3	5.	6.3	0	6.40	5.18	
32	5.32	6.28	5.29	6.31	5.	6.	5.2	6.3	5.	6.	5.19	6.41	5.16	
33	5.31	6.29	5.28	6.3	5.	6.3	5.	6.3	5.	6.	5.	6.	5.14	
34	5.30	6.3	5.27	6.3	5.	6.37	5.2	6.39	5.	6.42	5.15	6.	5.12	
35	5.29	6.	5.26	6.3	5.	6.39	5.2	6.	5.	6.4	5.14	6.	5.11	
36	5.28	6.32	5.24	6.36	5.	6.40	5.1	6.4	5.	6.	5.12	6.	5. 9	
37	5.26	6.3	5.25	6.37	5.	6.42	5.17	6.4	5.13	6.	5.10	6.	5. 7	
38	5.25	6.3	5.22	6.38	5.17	6.43	5.15	6.4	5.12	6.48	5. 8	6.5	55	
39	5.24	6.3	5.2	6. 10	5.1	6.	5.1	6.	5.10	6.50	5. 6	5	5, 3	
40	5	6.												
41	5.21	6.39	5.17	6.43	5.1	6.48	5.10	6.5	5. 6	6.5	5. 2	6.58	4.48	
42	5.20	6.40	5.16	6.4	5.10	6.50	5. 8	6	5. 4	6.5	5. 0	7. 0	4.56	
43	5.18	6.42	5.14	6.46	5. 8	6.52	5. 6		5. 2	6.58	4.48	7. 2	4.54	
44	5.17	6.43	5.13	6.47	5. 7	6.53	5. 4	6.5	5. 0	7. 0	4.56	7.	4.51	
45	5.15	6.45	5.11	6.49	5. 5	6.55	5. 2	6.58	4.58	7. 2	4.53	7.	4.49	
46	5.	6.	5. 9	6	5. 4	6		7. 0			4.51	7.	4.	
47	5.12	6.48	5. 7	6.53	5. 3	6.57	4.58	7. 2	4.53	7. 7	4.48	7.	4.43	
48	5.10	6.50	5. 5	6.55	5. 1	6.59	4.56	7. 4	4.5	7. 9	4.46		4.41	
49	5. 8	6.5	5. 3	6.57	4.58	7. 2	4.5	7. 7	4.48	7.12	4.43	7	8	
50	5. 6	6.	5. 1	6.59		7. 4		7. 9		7.1	0			
51	5. 4	¢.	4.59	7. 1		7. 6	4.5	7.12		7.1	4.37			
52	5. 2	6.58	4.57	7. 3		7. 9	4.46	7.14		7.20	4.34	7.2	4.	
53	5. 0	7. 0	4.54	7. 6	4.49	7.11	4.43	7.17	4.37	7.23	4.31	7.2	4.2	
54	4.58	7. 2	4.52	7. 8	4	7.14	4.4	7.20		7.27	4.27			
55	4.56	7. 4	4.49	7.11	4.43	7.17	4.37	7.23	4.30	7.30	4.23	7.	4.	
56	4.53	7. 7	4.47	7.1	4.40	7.20	4.33	7.27	4.	7.3	4.19	7.41	4.12	7.48
57	4.50	7.10	4.	7.1	4.37	7.23	4.	7.30	4.23	7.37	4.15		4.	
58	4.47	7.13	4.40	7.20	4.33	7.27	4.26	7.34	4.18	7.42	4.11	7.49	4. 3	7.5
59	4.	7.1	4.37	7		7.30		7.	4.14	7.46	4. 6	7.54	3.58	
	4.4	7.15		. 2						7.5	4.	7.59	3.	
61	4.38	7.22	4.30	7.30	4.22	7.38	4.13	7.7	4. 4	7.56	3.55	8. 5	3.46	
62	4.34	7.2	4.26	7.3	4.17	7.43	4. 8	7.52	3.59	8. 1	3.49	8.1	3.40	8. 2
63	4.30	7.30	4.21	7.39	4.12	7.48	4. 3	7.57	3.53	8. 7	3.43	8.17	3.33	
64	4.26	7.34	4.17	7.43	4. 7	7.53	3.57	8. 3	3.47	8.13	3.36	8.2	3.25	8.35
65	4.21	7.39	4.12	7.48	4. 1	7.59	3.51	8. 9	3.40	8.20	3.28	8.32	3.16	8.4
66	4.18	7.42	4. 6	7.54	3.55	8. 5	3.44	8.16	3.32	8.28	3.20	8.40	3. 7	8.53
$66 \frac{1}{2}$	4.14	7.46	4. 3	7.57	3.52	8. 8	3.40	8.20	3.28	8.32	3.15	8.45	3.	8.59
Lat	Set	R1s.	Seti.	Ris	Sett.	Ris.	Sett	Ris.	Sett	Ris.	Sett.	Ris	Set	Ris.

latitude and deolination of contrary names.

	TABLE XVI.												83	
	deolination of the same name as the latitude.													
	18°		19°		20°		21°		22°		23°		$23 \frac{1}{2}^{\circ}$	
	Ris.	Se	Ris.	S	Ris.		Ris.	Set	Ris.	S	is.	Sett.	Ris.	S
	H		B.				H. M.							
2	5.58	6.	5.58		5.5		5.5							
45	5.55	6. 5	5.55	6. 5	5.55	6. 5	5.54	6. 6	5.54	6. 6	5.53	6. 7	5.53	6. 7
6	5.52	6. 8	5.52	6. 8	5.52	6. 8	5.51	6. 9	5.51	6. 9	5.50	6.10	5.50	6.10
85	5.50	6.10	5.	6.	5.49	6.12	5.48	-6.12	5.47	6.12	5.47	6.13	5.46	6.14
10	5.47	6.13	5.46	6.14	5.46	6.15	5.45	6.16	5.44	6.16	5.43	6.17	5.43	6.17
12	5.44	6.16	5.44	6.17	5.43	6.18	5.42	6.19	5.41	6.20	5.40	6.20	5.39	6.21
14	5.41	6.19	5.40	6.20	5.39	6.21	5.38	6.22	5.37	6.23	5.36	6.24	5.35	6.25
16	5.39	6.21	5.37	6.23	5.36	6.24	5.35	6.25	5.33	6.27	5.32	6.28	5.31	6.29
18	5.36	6.24	5.34	6.26	5.33	6.27	5.31	6.29	5.30	6.30	5.28	6.32	5.28	6.32
2	5.	6.2	5.3	6.29	5.30	6.30	5.28	6.	5.	6.34	5.24	6	24	
21	5.31	6.29	5.30	6.30	5.28	6.32	5.26	6.34	5.24	6.36	5.22	6.38	5.22	6.38
22	5.30	6.30	5.28	6.3:	5.26	6.34	5.24	6.36	5.22	6.38	5.21	6.39	5.20	6.40
23	5.28	6.32	5.26	6.34	5.24	6.36	5.22	6.38	5.21	6.39	5.19	6.41	5.18	6.42
24	5.27	6.33	5.25	6.35	5.23	6.37	5.21	6.39	5.19	6.41	5.16	6.44	5.15	6.45
25	5.25	6.35	5.23	6.37	5.21	6.39	5.19	6.41	5.17	6.43	5.14	6.46	5.13	6.47
26	5.24	6.36	5.21	6.39	5.19	6.41	5.17	6.43	5.15	6.45	5.12	6.48	5.11	6.49
27	5.22	6.38	5.20	6.40	5.17	6.43	5.15	6.45	5.12	6.48	5.10	6.50	5. 9	6.51
28	5.20	6.40	5.18	6.42	5.15	6.45	5.13	6.47	5.10	6.50	5. 8	6.52	5. 7	6.53
29	5.18	6.42	5.16	6.44	5.13	6.47	5.11	6.49	5. 8	6.52	5. 6	6.54	5. 4	6.56
30	5.17	6.48	5.14	6.	5.11	6.	5. 9	6.5	5. 6	6.54	5. 3	6.57	5. 2	6.58
31	5.15	6.45	5.12	6.48	5. 9	6.51	5. 7	6.53	5. 4	6.56	5. 1	6.59	5. 0	7. 0
32	5.13	6.47	5.10	6.50	5. 7	6.53	5. 4	6.56	5. 2	6.58	4.59	7.	4.57	7. 3
33	5.11	6.49	5.8	6.52	5. 5	6.55	5. 2	6.58	4.59	7. 1	4.56	7. 4	4.55	7. 5
34	5. 9	6.51	5. 6	6.54	5. 3	6.57	5. 0	7. 0	4.57	7. 3	4.53	7. 7	4.52	7. 8
35	5.7	6.53	5. 4	6.56	5. 1	6.59	4.58	7. 2	4.54	7. 6	4.51	7. 9	4.49	7.11
36	5. 5	6.55	5. 2	6.58	4.59	7. 1	4.55	7. 5	4.52	7. 8	4.48	7.12	4.46	7.14
37	5. 3	6.5 s	5. 0	7. 0	4.56	7. 4	4.53	7. 7	4.49	7.11	4.45	7.15	4.44	7.16
38	5. 1	6.59	4.55	7. 2	4.53	7. 7	4.50	7.10	4.46	7.14	4.43	7.17	4.41	7.19
39	4.59	\%. 1	4.55	7. 5	4.51	7. 9	4.48	7.12	4.44	7.16	4.40	7.20	4.38	7.22
40	4.	7.	4.53	7.	4.49	7.11	4.45	7.1	4.41	7.19	4	7.23	4.	7.25
41	4.5	7. 6	4.50	7.10	4.46	7.14	4.42	7.18	4.38	7.22	4.33	7.27	4.31	7.29
42	4.52	7. 8	4.48	7.12	4.43	7.17	4.39	7.21	4.35	7.25	4.30	7.30	4.28	7.32
43	4.49	7.11	4.45	7.15	4.41	7.19	4.36	7.24	4.31	7.29	4.27	7.33	4.24	7.36
44	4.47	7.13	4.42	7.18	4.38	7.22	4.33	7.27	4.28	7.32	4.23	7.37	4.21	7.39
45	4.44	7.16	4.39	7.21	4.35	7.25	4.30	7.30	4.25	7.35	4.20	7.40	4.17	7.43
46	4.41	7.19	4.36	7.24	4.31	7.29	4.26	7.34	4.21	7.39	4.16	7.44	4.13	7.47
47	4.35	7.22	4.33	7.27	. 1.28	7.32	4.23	7.37	4.17	7.43	4.12	7.48	4. 9	7.51
48	4.35	7.25	4.30	7.30	4.25	7.35	4.19	7.41	4.13	7.47	4. 7	7.53	4. 5	7.55
49	4.32	7.28	4.27	7.33	4.21	7.39	4.15	7.45	4. 9	7.51	4. 3	7.57	4. 0	8. 0
50	4.29	7.31	4.23	7.37	4.17	7.43	4.11	7.49	4. 5	7.55	3.58	8. 2	3.55	8. 5
51	4.25	7.35	4.19	7.41	4.13	7.47	4.7	7.53	4. 0	8. 0	3.54	8. 6	3.50	8.10
52	4.22	7.38	4.15	7.45	4. 9	7.51	4. 2	7.58	3.55	8. 5	3.48	8.12	3.45	8.15
53	4.18	7.42	4.11	7.49	4. 4	7.56	3.58	8. 2	3.50	8.10	3.43	8.17	3.39	8.21
54	4.14	7.46	4. 7	7.53	4. 0	8. 0	3.52	8. 8	3.45	8.15	3.37	8.23	3.33	8.27
55	4. 9	7.51	4. 2	7.58	3.55	8. 5	3.47	8.13	3.39	8.21	3.31	8.29	3.27	S. 33
56	4. 5	7.55	3.57	8. 3	3.49	8.11	3.41	8.19	3.33	8.27	3.24	8.36	3.20	8.40
57	4. 0	8. 0	3.52	8. 8	3.44	8.16	3.35	8.25	3.26	8.34	3.17	8.43	3.12	8.18
58	3.55	8. 5	3.46	8.14	3.38	8.22	3.28	8.32	3.19	8.41	3. 9	8.51	3. 4	8.56
59	3.49	8.11	3.40	8.20	3.31	8.29	3.21	8.39	3.11	8.49	2. 0	9. 0	2.55	9. 5
60	3.43	8.17	3.34	. 26	3.24	8.36	3.13	8.47	3. ${ }^{\text {a }}$	8.58	2.51	9. 9	2.45	9.15
61	3.36	8.24	3.26	8.34	3.16	8.44	3. 5	8.55	2.53	9.7	2.40	9.20	2.34	9.26
62	3.29	8.31	3.18	8.42	3.7	8.53	2.55	9. 5	2.42	9.18	2.28	9.32	2.21	9.39
63	3.22	8.38	3.10	8.50	2.58	9. 2	2. 2.44	9.16	2.30	9.30	2.14	9.46	2. 6	9.54
64	3.13	8.47	3.0	9. 0	2.47	9.13	2.3:	9.28	2.16	9.44	1.58	10. 2	1.48	10.12
65	3. 3	8.57	2.50	9.10	2.35	9.25	2.18	9.42	2. 0	10. 0	1.38	10.22	1.26	10.34
66	2.53	9. 7	2.37	9.23	2.21	9.39	2. 2	$9.5 \bigcirc$	1.39	10.21	1.10	10.50	0.51	1. 9
$66 \frac{1}{2}$	$\frac{1}{2} 2.46$	9.14	2.30	9.30	2.12	9.48	1.51	10. 9	1.26	10.34	0.48	11.12	0. 0	12.

altitudes by which the apparent time may be found with the greatest accuracy.																					
Lat.	declination or the object, op tar game name as the latitude.																				
	20	4°	6°	8°	10°	${ }^{120} 1$	140	O 16°	${ }^{18} 18$	[20 ${ }^{\circ}$		$2{ }^{2} \mathrm{O}$									
0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\stackrel{\circ}{0}$	$\begin{aligned} & 8 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \end{aligned}$	$\begin{array}{\|c\|} \hline 0 \\ 0 \end{array}$	$\begin{aligned} & \circ \\ & 0 \end{aligned}$	$\begin{array}{\|c\|c\|} \hline & 8 \\ 0 & 0 \end{array}$	$\begin{array}{l\|l} 0 \\ 0 & 0 \\ 0 \end{array}$	$\begin{array}{\|c\|} \hline 8 \\ 0 \end{array}$		$\begin{array}{l\|l\|} \hline 5 \\ 0 & 0 \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \circ \\ & 0 \end{aligned}$	0	$\begin{aligned} & \circ \\ & 0 \end{aligned}$	5	$\begin{aligned} & \circ \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \circ \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	-
1	30	14	10	7	6	5			4	3	,		2	2	2	2	2	2	2		1
2	90	30	19	15	12	10	8	8	76	66	5	5	5	4	4	4	4	3	3	3	2
3	42	49	30	22	18	15	12	11	10	9	8	8.7	7	6	6	6	5	5	5	5	3
4	30	90	42	30	24	20	17	15	13	12	11	10	9	9	8		7	7	7	6	,
5	24	53	56	39	30	25	21	18	816	15	13	12	11	11	10	9	9	9			
6	20	42	90	49	37	30	26	62	20	18	16	615	14	13	12	11	11	10	10	9	6
7	17	35	59	61	45	36	30	26	623	21	19	17	16	15	14	13	13	12	11	11	7
8	15	30	49	90	53	42	35	50	027	724	22	20	19	17	16	15	14	14	13	13	8
9	12	26	42	63	64	49	40	034	430	27	25	53	21	20	18		16	15	15	14	9
10	11	24	37	53	90	57	46	6	9	43	28	825	$\overline{23}$	22	20	19	18	17	16	16	10
11	10	22	33	47	66	67	52	244	438	34	31	128	26	24	22	21	20	19	18	17	11
12	10	20	30	42	59	90	59	949	92	337	34	431	28	26	25	23	22	21	20	19	12
13	,	18	28	38	51	68	68	85	547	741	37	734	31	29	27	25	24	23	21	20	13
14	8	17	26	35	46	59	90	01	152	245	40	037	33	31	29	27	26	24	23	22	14
15	8	16	24	4	42	53	69	97	$\overline{0}$	7 49	44	$4{ }^{40}$	$\overline{36}$	34	31	29	28	26	5	24	15
16		15	22	30	-39	49	61	190	063	354	47	743	39	36	33	31	30	28	27	25	16
17	7	14	21	28	36	45	56	671	171	159	51	146	42	39	36	34	32	30	28	27	17
18	6	13	20	27	34	42	52	263	390	065	56	649	45	41	38	36	34	432	30	29	18
19	6	12	19	25	32	40	48	858	872	272	60	053	48	44	41	38	36	634	32	30	19
20	6	12	18	$\overline{24}$	41	37	45	5	4	59	66	6	51	47	43	40	38	36	34	32	20
21	6	11	17	1723	29	35	42	250	060	073	73	362	55	50	46		40) 38	36	34	1
22	5	11	16	622	28	34	40	047	756	666	90	067	59	53	49	45	42	40	38	36	22
23	5	10	16	621	126	32	38	845	5 52	261	73	374	63	57	51	48	44	42	39		23
24	5	10	15	520	25	31	36	643	349	957	67	790	68	60	54	50		74	41	39	24
25	5	9	14	4	24	$\frac{1}{29}$	$\overline{35}$	5	$1{ }^{47}$	$7 \overline{54}$		27	75	64	58	53	49		43		25
26	5	9	14	419	23	28	83	339	945	515	59	968	90	69	61	56	65	248	45		26
27	4	9	13	18	22	27	732	237	743	349	56	664	75	76	65	59	54	451	48	45	27
28	4	9	13	117	1722	26	631	136	641	147	53	3 60	69	90	70	62	57	5753	50		28
29	4	8	12	217	721	25	30	0 35	540	045	51	157	65	76	76	66	60	056	52	49	29
30	4	8	12	16	${ }^{6} \overline{20}$	$\stackrel{\square}{25}$	5	934	$4 \overline{38}$	8 43		${ }^{9} \stackrel{5}{54}$	61	70	90	71	164	45	54	1	0
31	4	8	12	216	620	24	428	833	3.37	742	47	752	58	66	76	77	767	761	57		31
32		8	11	115	519	23	27	732	$2 \cdot 36$	640	45	550	56	62	71	90	071	164	60		32
33		7	11	115	519	22	26	631	135	539	43	3348	54	60	67	77	777	7	62		33
34	4	7	11	114	418	22	26	630	3034	438		2247	52	57	63	72	290	0	65	61	34
35	3	7	10	$\overline{0} 14$	$4{ }^{18}$	$\overline{21}$	$1{ }^{25}$	55	99 3	$3 \overline{37}$		41	50	55	61	68	87	778	69	63	35
36	3	7	10	014	417	721	124	4.28	832	236		0044	48	53	58	65	572	290	73		36
37	3	7	10	013	317	720	24	427	731	135		3943	47	51	56	62	268	878	78	70	37
38	3	7	10	013	316	620	023	327	730	0 34		3841	45	50	54	54.	595	573	90	74	38
39	3	6	10	013	316	619	923	26	26	933		3740	44	48	53			26	78	78	39
40		6	6	9	- 16	6	9	25	55	9		36	43	47	51			0	73		40
42	3	6	69	912	215	518	821	124	428	831	34	3437	41	45	48		525	762	67		42
44		6	69	912	215	17	720	$0{ }^{2}$	23.2	6		3336	39	43	46	50	054	158	62		44
46	3	6	68	811	114	417	720	023	23	25	31	3134	38	41	44	48	851	155	59		46
48	3	5	5	811	114	416	619	922	22	427		30.33	36	39	42	46	649	952	56	60	48
50	3	5	8	810	0	-16	$1{ }^{6}$	821	21	$4{ }^{27}$		29	35	38	41	44	4	750	54	57	50
52	3	5	58	810	013	315	518	820	20	326		2831	34	37	39	42	245	548	51		52
54	2	5	57	710	012	215	517	720	022	225		28.30	33	36	38	41	143	346	49		54
56	2	5	57	710	012	215	517	719	922	22.24		27.29	32	35	37	40	042	2.45	48		56
58	2	5	57	7	912	214	417	1719	121	124		26	31		36	路	941	144	47		58
60	2		57	7	9	2	416	16	19	21.		26	30	-33	35	58	8	0	45	48	60
62	2	5	57	7	911	114	416	618	1820	223		25.27	30	032	35	537	739	942	44	47	62
64	2	4	47	7	911	113	316	618	1820	022		25.27	29	31	34	436	639	941	43	46	64
66	2	4	47	7	911	113	315	518	820	20		24.26	29	31	33	35	538	840	42	45	66
68	2	4	4	6	911	113	315	517	719	9122		24.26	28	30	33	35	537	39	42	44	68
$\overline{70}$	-2	4		6	911	$1{ }^{13}$	3	15	1719	9		23 26	28	30	32	34	43	$6{ }^{69}$	41	43	70
72	2		46	6	811	113	315	517	719	921		23.25	28	30	32	34	435	538	40	42	72
74	2		46	6	810	12	215	517	719	921		23.25	27	729	31	133	335	538	40	42	74
76	2		4.6	6	810	012	214	4.16	619	921		23.25	27	29	\|31	33	335	537	39	42	76
80	2	4	46	6	810	012	214	416	618	820		22.24	26	28	30	32	235	37		41	80
	2°	$4{ }^{\circ}$	$\frac{6}{60}$	0																	

FOR FINDING THE APPARENT TIME OF 24 OF THE PRINCIPAL STARS PASSING THE MERIDIAN THROUGHOUT THE YEAR.

J A N U A R Y.

NAMES.		3		9	12		18	21	24	27	$\begin{aligned} & \text { DAY. } \\ & 30 \end{aligned}$
	$\begin{aligned} & \text { H. M. } \\ & 6.20 \end{aligned}$	$\begin{gathered} \mathrm{M} \\ 12 \end{gathered}$						$\begin{aligned} & \text { E. M. } \\ & 4.54 \end{aligned}$	$\begin{aligned} & \text { H. } 2 \text {. } \\ & 4.41 \end{aligned}$	$\begin{aligned} & \text { H. M. } \\ & 4.29 \end{aligned}$	$\begin{aligned} & \text { 9. } \mathrm{N} . \\ & 4.16 \end{aligned}$
	,	6.35	6.24	6.11	5.58	5.45	5.3	5.20	5.7	4.55	. 42
	9.42	9.34	9.20	9.7	8.54	8.41	8.28	8.16	8. 3	7.51	7.38
	10.20	10.12	9.58	9.45	9.32	9.19	9.	8.54	8.41	8.29	8.16
	10	10	10. 0	9.47	9.34	9.21	9. 8	8.56	8.43		. 18
Betelguese,	11	10.53	10.39	10.26	10.13	10. 0	9.47	9.35	9.22	9.10	8.57
Can	11	11	11		10.47	10	10.	10.9			9.31
SIf	11.	11.4	11.8	11.18	11. 5	10.52	10.39	10.27	10.14	10. 2	9.49
	12.3	12.3	12.17	12. 4	11.51	11.38	11.25	11.13	11. 0	10.48	10.35
Pol	12.5	12.	12.28	12.15	12.02	11.49	11.36	11.2	11.11	10.59	10.
	14	1	14:3	13.50	13.37	13.24	13.11	12.59	12.46	12.34	13.2
Reaulus,	15	15.6	14.53	14	1	14.14	14.	13.49	36	13.24	
						15.8	14.	14			14. 5
Cross, foot Star.	17.3	17.25	17.11	16.5	16.45	16.32	16.19	16. 7	15.5	15.42	. 29
Spica,	18	18.2	18.9	17.5	17.4	17.30	17.17	17. 5	16.52	16.40	. 2
Arcturus	19.2	19.1	19.1	18.4	18.3	18.2	18. 9	17.57	17.44	17.32	17.19
Antar	21.34	21.25	21.12	20.59	20.46	20.33	20.20	20. 8	19.55	19.4	19.30
Vega,	23.46	23.37	23.24	23.11	22.58	22.45	22.32	22.20	22. 7	21.55	21.4
Alta	0.5		0.36		. 10	23.57	23.	23.32	23.19	23. 7	22.5
Pay	1.	1.19	1. 6	0.5	0.40	0.2	0.	0. 2	23.49	23.37	23.2
Cr	1.5	1.41	1.28	1.15	1. 2	0.49	0.36	0.24	0.11	23.59	23.4
Groi	3.1	3. 5	2.52	2.39	2.26	2.13	2. 0	1.48	1.35	1.23	1.10
Fors	4. 4	3.55	3.42	3.29	3.16	3. 3	2.50	2.38	2.25	2.13	2.
Pega	4.12	4. 3	3.50	3.37	3.24	3.11	2.58	2.46	2.33	2.21	2.

FEBRUARY.

names.	1	3	6	9	12	15	18	21	24	27	30
Polar Star,	$\begin{aligned} & \text { н. м. } \\ & 4.8 \end{aligned}$	$\begin{aligned} & \text { H. } \\ & 4 . \\ & 4 . \end{aligned}$	$\begin{aligned} & \text { н. } \mathrm{M} . \\ & 3.48 \end{aligned}$	$\begin{aligned} & \text { н. } \mathbf{M} . \\ & 3.36 \end{aligned}$	$\begin{aligned} & \hline \text { H. H. } \\ & 3.24 \end{aligned}$	$\begin{aligned} & \text { H. } \\ & 3.12 \end{aligned}$	$\begin{aligned} & \text { H. M. } \\ & 3 . \\ & 3 . \end{aligned}$	$\begin{aligned} & \text { H. } \\ & 2.49 \end{aligned}$	$\begin{aligned} & \text { 日. } \mathrm{N} . \\ & 2.38 \end{aligned}$	$\begin{aligned} & \text { H. } \\ & 2.26 \end{aligned}$	H. ${ }_{\text {H. }}^{\text {c. }}$
Achernar,	4.34	4.26	4.14	4. 2	3.50	3.38	3.27	3.15	3. 4	2.52	0. 0
Aldebaran,	7.30	7.22	7.10	6.58	6.46	6.34	6.23	6.11	6. 0	5.48	0. 0
Capella,	8. 8	8. 0	7.48	7.36	7.24	7.12	7. 1	6.49	6.38	6.26	
Rioml,	8.10	8. 2	7.50	7.38	7.26	7.14	7. 3	6.51	6.40	6.28	
Betelguese,	8.49	8.41	8.29	8.17	8. 5	7.53	7.42	7.30	7.19	7. 7	
Canopus,	9.23	9.15	9. 3	8.51	8.39	8.27	8.16	8. 4	7.53	7.41	
Sirios,	9.41	9.33	9.21	9. 9	8.57	8.45	8.34	8.22	8.11	7.59	
Castor,	10.27	10.19	10.7	9.55	9.43	9.31	9.20	9.8	8.57	8.45	
Pollux,	10.38	10.30	10.18	10. 6	9.54	9.42	9.31	9.19	9. 8	8.56	
Araus,	12.14	12. 6	11.54	11.42	11.30	11.18	11. 7	10.55	10.44	10.32	
Regulus,.	13. 3	12.55	12.43	12.31	12.19	12. 7	11.56	11.44	11.33	11.21	
Dubhe,	13.57	13.49	13.37	13.25	13.13	13. 1	12.50	12.38	12.27	12.15	
Cross, foot Star,	15.21	15.13	15.1	14.49	14.37	14.25	14.14	14. 2	13.51	1339	
Spica,	16.19	16.11	15.59	15.47	15.35	15.23	15. 12	15. 0	14.49	14.37	
Arcturus,	17.11	17. 3	16.51	16.39	16.27	16.15	16. 4	15.52	15.41	15.29	
Antares,	19.22	19.14	19.2	18.50	18.38	18.26	18.15	18.3	17.52	17.40	
Vega,	$21.3+$	21.26	21.14	21. 2	20.50	20.38	20.27	20.15	20.4	19.52	
Altair,	22.46	22.38	22.26	22.14	22.2	21.50	21.39	21.27	21.16	21.4	
Pavonis,	23.16	23. 8	22.56	22.44	23.32	22.20	22. 9	21.57	21.46	21.34	
Crani,	23.38	23.30	23.18	23. 6	22.54	22.42	22.31	22.19	22. 8	21.56	
Gruis,	1. 1	0.53	0.41	0.29	0.17	0.5	23.54	23.42	23.31	23.19	
Fomaliaut,	1.52	1.44	1.32	1.20	1. 8	0.56	0.45	0.33	0.22	0.10	
Pegabi,.	2. 0	1.52	1.40	1.28	1.14 ;	1. 4	0.53	0.41	0.30	0.18	

FOR FINDING THE APPARENT TIME OF 24 OF THE PRINCIPAL STáAS PASSING THE MERIDIAN THROUGHOUT THE YEAR.

MARCH.

NAMES.	day.	$\begin{aligned} & \text { DAF. } \\ & 3 \end{aligned}$	day. 6	day. 9	$\begin{aligned} & \text { DAY. } \\ & 12 \end{aligned}$	$\begin{aligned} & \text { DAY. } \\ & 15 \end{aligned}$	$\begin{aligned} & \text { DAY. } \\ & 18 \end{aligned}$	$\begin{aligned} & \text { DAY. } \\ & 21 \end{aligned}$	$\begin{aligned} & \text { DAY. } \\ & 24 \end{aligned}$	$\begin{aligned} & \text { DAY. } \\ & 27 \end{aligned}$	$\begin{gathered} \text { dat. } \\ 30 \end{gathered}$
Polar St	H. M 2.18	$\begin{aligned} & \text { H. M. } \\ & 2.10 \end{aligned}$	$\begin{gathered} \mathrm{H} . \overline{\mathrm{M}} \\ 1.59 \end{gathered}$	H. M. 1.48	н. M. 1.37	H. M.	H. M.	$\begin{array}{ll} \hline \text { п. } & \mathrm{M} . \\ 1 . & 4 \end{array}$	H. M.	$\begin{gathered} \text { н. м. } \\ 0.43 \end{gathered}$	$\begin{aligned} & \text { H. M. } \\ & 0.32 \end{aligned}$
Achern	2.44	2.36	2.25	2.14	2.3	1.52	1.41	1.30	1.19	1. 9	0.58
Aldebaran,	5.39	5.31	5.20	5. 9	4.58	4.47	4.36	4.25	4.14	4. 4	3.53
Capella,	6.17	6. 9	5.58	5.47	5.36	5.25	5.14	5. 3	4.52	4.42	4.31
Rigel,	. 19	6.11	6. 0	5.49	5.38	5.27	5.16	5. 5	4.54	4.44	4.33
Betelquese,	6.56	6.48	6.37	6.27	6.15	6. 4	5.53	5.42	5.31	5.21	5.10
Canopu	7.3	7.2	1	7. 1	6.49	6.38	6.27	6.16	6.5	5.55	5.44
Sirius,	7.48	7.40	7.29	7.19	7. 7	6.56	6.45	6.34	6.23	6.13	6. 2
Castor,	8.34	8.26	8.15	8. 4	7.53	7.42	7.31	7.20	7. 9	6.59	6.48
Pollux,	8.45	8.37	8.26	8.15	8. 4	7.53	7.42	7.31	7.20	7.10	6.59
Argus,	10.21	10.13	10.2	9.51	9.40	9.29	9.18	9. 7	8.56	8.46	8.35
Regulus,	11.13	11. 5	10.54	10.43	10.32	10.21	10.10	9.59	9.49	9.38	9.27
Dubhe,	12. 7	11.59	11.48	11.37	11.26	11.15	11. 4	10.53	10.42	10.3	21
Cross, foot Star,	13.31	13.23	13.12	13. 1	12.50	12.39	12.28	12.17	12.	11.56	11.45
Spica,	14.29	14.21	14.10	13.59	13.45	13.37	13.26	13.15	13. 4	12.54	12.43
Arcturus	15.21	15.13	15. 2	14.51	14.40	14.29	14.18	14. 7	13.56	13.46	13.35
Antares,	17.33	17.25	17.14	17. 3	16.52	16.41	16.30	16.19	16. 8	15.58	15.47
$\mathrm{V}_{\text {EGA, }}$.	19.45	19.37	19.26	19.15	19.4	18.53	18.42	18.31	18.20	18.10	17.59
Al	20.57	20.49	20.38	20.27	20.16	20.5	19.54	19.43	19.32	19.22	19.11
Pavonis	20.27	21.19	21. 8	20.57	20.46	20.35	20.24	20.13	20. 2	19.52	19.41
Cygni,	21.49	21.41	21.30	21.19	21. 8	20.57	20.46	20.35	20.24	20.14	20. 3
Gruis,	23.12	23. 4	22.53	22.42	22.31	22.20	22. 9	21.58	21.47	21.37	21.26
Fomalhaut,	0.3	23.55	23.44	23.33	23.22	23.11	23. 0	22.49	22.38	22.28	22.17
Pegasi, . .	0.11	0. 3	23.52	23.41	23.30	23.19	23. 8	22.57	22.46	22.36	22.25

A PRIL.

Names.	1	3	6	9	12	15	18	21	24	27	30
Polar Sta	$\begin{aligned} & \hline \text { H. } \mathrm{M} \\ & 0.24 \end{aligned}$	$\begin{gathered} \overline{\text { н. }} . \\ 0.17 \end{gathered}$	$$		$\begin{array}{\|c\|c\|} \hline \text { н. м } \\ 23.44 \end{array}$	$\begin{array}{r} \text { н. м } \\ 23.33 \end{array}$	$\begin{array}{r} \text { н. M. } \\ 23.22 \end{array}$	$\begin{gathered} \text { н. м } \\ 23.11 \end{gathered}$	$\begin{array}{r} \text { H. м. } \\ 23 . \\ \hline \end{array}$	9	:
	0.50	0.43	0.32	0.21	0.10	23.59	23.48	\| 23.37	23.26	23.14	23. 3
Aldebaram,	3.46	3.39	3.28	3.17	3. 6	2.55	2.44	2.33	2.22	2.10	1.59
Capella,	4.24	4.17	4. 6	3.55	3.44	3.33	3.22	3.11	3. 0	2.48	2.37
Rig	4.26	4.19	4. S	3.57	3.46	3.35	3.24	3.13	3. 2	2.50	2.39
Betelquese,	5. 5	4.58	4.47	4.36	4.25	4.14	4. 3	3.52	3.41	3.29	3.18
Canopu	5.3	5.32	5.21	5.10	4.59	4.48	4.37	4.26	4.15	4.3	3.52
Siriu	5.57	5.50	5.39	5.28	5.17	5. 6	4.55	4.44	4.33	4.21	4.10
Castor,	6.43	6.36	6.25	.6.14	6. 3	5.52	5.41	5.30	5.19	5. 7	5.56
Pollux,	6.54	6.47	6.36	6.25	6.14	6. 3	5.52	5.41	5.30	5.18	5. 7
Arg	8.30	8.23	8.12	8. 1	7.50	7.39	7.28	7.17	7. 6	6.54	6.43
Regulus	9.19	9.12	9.1	8.50	8.39	8.28	8.17	8. 6	7.55	7.43	7.32
Dubhe, .	10.13	10.6	9.55	9.44	9.33	9.22		9.0	49	8.37	8.26
Cross, foot Star,	11.37	11.30	11.19	11. 8	10.57	10.46	10.35	10.24	10.13	10.1	9.50
Spica,	12.35	12.28	12.17	12. 6	11.55	11.44	11.33	11.22	11.11	10.59	10.48
Arcturus	13.27	13.20	13.9	12.58	12.47	12.36	12.25	12.14	12.	11.51	11.40
Antares,	15.38	15.31	15.20	15.9	14.58	14.47	14.36	14.25	14.14	14. 2	13.51
Vega, .	17.50	17.43	17.32	17.21	17.10	16.59	16.48	16.37	16.26	16.14	16.3
Altair,	19		18.44	18.32	18.22	. 11	18.0	17.49	17.38	17.2	17.15
Pavonis,	19.32	19.25	19.14	19. 3	18.52	18.41	18.30	18.19	18.8 8	17.56	17.45
Crgni,	19.54	19.47	19.36	19.25	19.14	19.3	18.52	18.41	18.30	18.18	18. 7
Grois,	21.17	21.10	20.59	20.48	20.37	20.26	20.15	20. 4	19.53	19.41	19.30
Fomalhaut,	22. 7	22. 0	21.49	21.38	21.27	21.16	21. 5	20.54	20.43	20.31	20.20
Pegasi,	22.15	22. 8	21.57	21.46	21.35	21.24	21.13	21. 2	20.52	20.39	20.28

FOR FINDING THE APPARENT TIME OF 24 OF THE PRINOIPAL STARS PASSING THE MERIDIAN THROUGHOUT THE YEAR.

MAY.

NAMES								21		27	$\begin{aligned} & \text { DAY. } \\ & \text { DY. } \end{aligned}$
		$\begin{gathered} \hline \text { н. M, } \\ 22.2 \end{gathered}$		$\begin{aligned} & \text { H. м. } \\ & 22 . \end{aligned}$	$\begin{array}{\|c} \hline \text { н. } \mathbf{M} \\ 21.51 \end{array}$	$\begin{gathered} \hline \text { н. м. } \\ 21.39 \end{gathered}$	21.27	$\begin{gathered} \text { н. M. } \\ 21.15 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { н. } \\ \text { 21. } \\ \hline \end{array}$		$\begin{gathered} \hline \mathbf{H .} \mathbf{M .} \\ 20.39 \end{gathered}$
	22.59	22.52	22.40	22.28	2.217	22.05	21.53	21.41	21.29	21.17	21.05
	1.55	1.48	1.36	1.24	1.13	1.01	0.49	0.37	0.25	0.13	0.01
	2.33	2.26	2.1	2.	1.5	1.39	1.27	1.1	1.	0.51	0.39
Rig	35	2.28	2.1	2. 4	1.53	1.41	1.29	1.17	1. 5	0.53	41
Betelauese,	3.14	3. 7	2.5	2.43	2.32	2.20	2. 8	1.56	1.44	1.32	1.20
	3.48	3.41			3.		,				4
Sir	4.	3.5	3.4	3.3	3.24	3.	3. 0	2.58	2.46	2.34	2.22
Cas	4.5	4.4	4.3	4.2	4.1	3.58	3.46	2.	2.	2.10	1.58
Pol	5.	4.5	4.4	4.30	4.	4. 9	3.57	3.45	3.	3.21	3. 9
Arg	6.39	6.3	6.20	6. 8	5.	5.45	5.33	5	5.9	4.	4.45
Reg	7.28	7.21	7. 9	6.57	6.	6.34	6.22	6.	5.58	5	4
Dubhe,											.28
Cross,	0.	9.3	9.27		9.	8.52	8.40	8.28	8.	8.	. 52
Spica,	10.4	10.	10.25	10.13	10. 2	9.50	9.38	9.	9.14	9.	8.50
Arcturu	11.3	11.2	11.1	11.	10.54	10.42	10.30	10.18	10.6	9.5	9.42
Antares,	13.	13.4	13.28	13.1	15.	12.53	12.1	12.29	12.17	12. 5	11.53
Vega, .		15.52	15.4		15.17	15. 5	14.53	14.41	14.	14.17	14. 5
Al				16.		16	16. 5	15		15.29	15.
Pavo	17.4	17.	17.2	17.1	16.5	16.47	16.35	16.23	16.1	15.59	15.47
Crgar,	18.	17.5	17.34	17.2	17.1	16.59	16.4	16.35	16.2	16.11	15.59
Gruis,	19.2	19	19.7	18.5	18.4	18.32	18.20	18. 8	17.5	17.4	17.32
Fomaliaut,	20.1	20.1	19.58	19.4	19.35	19.23	19.11	18.59	18.4	18.3	18.23
Pegasi, .	20.2	20.1	20. 6	19.5	19.43	19.3	19.19	19. 7	18.55	18.43	18.31

J U N E.

NAMES.	1	3	6	9	12	15	18	21	24	27	30
Polar S	20.31	20.22	20.10	19	19.	19.33	19.20	19.	18.55	18.43	18.30
Aohernar,	20.57	20.48	20.36	20.24	20.11	19.59	19.46	19.34	19.21	19. 9	18.56
Al	23.53	23.44	$\because 3.32$	23.22	23. 9	22.57	22.44	22.32	22.19	22. 7	21.54
C_{A}	0.31	0.22	0.10	23.58	23.45	23.33	23.20	23. 8	22.55	22.43	22.30
	0.33	0.24	0.12	0.0	23.49	23.37	23.24	23.12	22.59	22.47	22.34
Betelauese,	1.12	1. 3	0.51	0.39	0.26	0.14	0.1	23.59	23.46	23.34	23.21
	1.	1.3	1.25	1.	1. 0	0.48	0.35	0.23	0.10	23.48	23.35
Sir	2. 4	1.55	1.43	1.31	1.18	1. 6	0.53	0.41	0.28	0.16	0.3
Casto	2.50	2.41	2.29	2.17	2. 4	1.52	1.39	1.27	1.14	1.	0.49
Poll	3.1	2.52	2.40	2.28	2.15	2. 3	1.5	1.38	1.25	,	1. 0
Argu	4.3	4.28	4.16	4. 4	3.51	3.39	3.	3.14	3.	2.49	2.36
Requlus,	5.	5.17	5. 5	4.53	4.40	4.28	4.15	4. 3	3.50	3.38	3.25
Dubie, .	6.20		,	5.							. 19
Cross, foot Star,	7.44	7.3	7.2	7.11	6.58	6.46	6.33	6.21	6.	6	. 43
Spica,	8.42	8.	8.2	8. 9	7.56	7.44	8	7.19	8		1
Arctur	9.34	9.2	9.13	9. 1	8.58	8.46	8.33	8.21	8.8		7.43
Antares,	11.4	11.36	11.2	11.12	10.59	10.47	10.34 12.46	10.22 12.34	10.10 12.21	9.57 12.9	9.44 11.56
Vega,	13	13.48	13		13.11	12.59	12.46	12.34	12.2]	12. 9	11.5
A						14	13	13.46	13.33	13.21	. 8
Pavon	15.	15.3	15.1	15. 6	14.5	14.41	14.28	14.16	14. 3	13.5	13.38
Crani,	16. 1	15.52	15.40	15.28	15.15	15.3	14.50	14.38	14.25	14.13	14.0
Grurs,	17.24	17.15	17.3	16.51	16.38	16.26	16.13	16. 1	15.48	15.36	15.23
Fomalhatt,	18.15	18. 6	17.54	17.42	17.29	17.17	17. 4	16.52	16.39	16.2	16.14
Peqast,	18.23	18.14	18.2	17.50	17.37	17.25	17.12	17.	16.47	16.35	16.22

FOR FINDING THE APPARENT TIME OF 24 OF THE PRINCIPAL STARS PASSING THE MERIDIAN THROUGHOUT THE YEAR.

J U L Y.											
NAMES.	day. 1	day. 3	dat. 6	day. 9	day. 12	$\begin{aligned} & \text { DAY. } \\ & 15 \end{aligned}$	$\begin{gathered} \text { DAX. } \\ 18 \end{gathered}$	$\begin{aligned} & \text { DAY. } \\ & 21 \end{aligned}$	$\begin{aligned} & \text { DAY. } \\ & 24 \end{aligned}$	$\begin{aligned} & \text { day. } \\ & 27, \end{aligned}$	$\begin{gathered} \mathrm{D} \Delta \mathrm{Y} . \\ 30 \end{gathered}$
Polar Star,	H. ${ }_{\text {H. }}^{\text {M. }}$	$\begin{array}{r} \text { H. Mr } \\ 18.18 \end{array}$	$\begin{array}{\|c} \text { H. } \\ 18 . \\ \hline \end{array}$	$\begin{gathered} \text { H. M. } \\ 17.53 \end{gathered}$	$\begin{array}{r} \text { H. M. } \\ 17.41 \end{array}$	$\begin{array}{r} \text { H. M. } \\ 17.29 . \end{array}$	$\left.\begin{array}{\|c} \text { H. м } \\ 17.17 \end{array} \right\rvert\,$	$\begin{array}{rr} \hline \text { H. } & \text {. } \\ 17 . & \end{array}$	$\begin{array}{r} \text { H. M. } \\ 16.53 \end{array}$	$\begin{gathered} \text { н. M. } \\ 16.41 \end{gathered}$	$\begin{array}{r} \text { н. м. } \\ 16.29 \end{array}$
Achernar,.	18.52	18.44	18.32	18.19	18. 7	17.55	17.43	17.31	17.19	17. 7	16.55
Aldebaran,	21.48	21.40	21.28	21.15	21. 3	20.51	20.39	20.27	20.15	20. 3	19.51
Capella,	22.26	22.18	22. 6	21.53	21.41	21.29	21.17	21.05	20.53	20.41	20.29
Rigel,	22.28	22.20	22. 8	2155	21.43	21.31	21.19	21. 7	20.55	20.43	20.31
Betelauese, .	23. 7	22.59	22.47	22.34	22.22	22.10	21.58	21.46	21.34	21.22	21.10
Canopu	23.41	23.33	23.21	23. 8	22.56	22.44	22.32	22.20	22. 8	21.56	21.44
Sirius,	23.59	23.51	23.39	23.26	23.14	23. 2	22.50	22.38	22.26	22.14	22. 2
Castor,	0.45	0.37	0.25	0.12	0. 0	23.48	23.36	23.24	23.12	23. 0	22.48
Pollux,	0.56	0.48	0.36	0.23	0.11	23.59	23.47	23.35	23.23	23.11	22.59
Argus, .	2.32	2.24	2.12	1.59	1.47	1.35	1.23	1.11	0.59	0.47	0.35
Regulus,	3.21	3.13	3. 1	2.48	2.36	2.24	2.12	2. 0	1.48	1.36	1.24
Dubhe,	4.17	4. 9	3.57	3.44	3.32	3.20	3. 8	2.56	2.44	2.32	2.20
Crose, foot Star,	5.39	5.31	5.19	5. 6	4.54	4.42	4.30	4.18	4. 6	3.54	3.42
Spica,	6.37	6.29	6.17	6. 4	5.52	5.40	5.28	5.16	5. 4	4.52	4.40
Arcturus,	7.29	7.21	7. 9	6.56	6.44	6.32	6.20	6. 8	5.56	5.44	5.32
Antares,	9.40	9.32	9.20	9.7	8.55	8.43	8.31	8.19	8. 7	7.55	7.43
Vega,	11.52	11.44	11.32	11.19	11. 7	10.55	10.43	10.31	10.19	10.7	9.55
Altair,	13. 4	12.56	12.44	12.31	12.19	12. 7	11.55	11.43	11.31	11.19	11.7
Pavonis	13.34	13.26	13.14	13. 1	12.49	12.37	12.25	12.13	12. 1	11.49	11.37
Crani,	13.56	13.48	13.36	13.23	13.11	12.59	12.47	12.35	12.23	12.11	11.59
Gruis, . . .	15.19	15.11	14.59	14.46	14.34	14.22	14.10	13.58	13.46	13.34	13.22
Fomaliaut,	16.10	16. 2	15.50	15.37	15.25	15.13	15. 1	14.49	14.37	14.25	14.13
Pegasi, .	16.18	16. 8	15.56	15.43	15.31	15.19	15.7	14.55	14.43	14.31	14.19

A U G UST.

NAMES.	1	3	6	9	12	15	18	21	24	27	30
Polar Star	$\left\|\begin{array}{\|c\|} \text { ㅍ. } \mathrm{Mr} \\ 16.21 \end{array}\right\|$	$\begin{array}{r} \text { H. M. } \\ 16.14 \end{array}$	$16 . .^{\text {L. }}$	15.51	$\begin{gathered} \text { H. M. M. } \\ 15.39 \end{gathered}$	$\begin{gathered} \text { H. M. } \\ 15.28 \end{gathered}$	$\left\|\begin{array}{r} \text { H. } \\ 15.17 \end{array}\right\|$	$\begin{array}{r} \text { н. M. } \\ 15.6 \end{array}$	$\begin{array}{r} \text { H. } .4 \\ 14.54 \end{array}$	$\begin{array}{r} \text { H. } 4.44 \\ 14 . \end{array}$	$\begin{aligned} & \text { ㅍ. M. } \\ & 14.34 \end{aligned}$
Acherna	16.47	16.40	16.28	16.17	16. 5	15.54	15.43	15.32	15.20	15. 9	14.59
Aldebaran,	19.43	19.36	19.24	19.13	19.01	18.50	18.39	18.28	18.16	18.05	17.54
Capella,	20.21	20.14	20. 2	19.51	19.39	19.28	19.17	19.6	18.54	18.44	18.34
Rigel,	20.23	20.16	20. 4	19.53	19.41	19.30	19.19	19.8	18.56	18.45	18.35
Betelguese,	21. 2	20.55	20.43	20.32	20.20	20.9	19.58	19.47	19.35	19.24	19.14
Canopu	21.36	21.29	21.17	21.6	20.54	20.43	20.32	20.21	20.9	19.58	19.48
Sirius,	21.54	21.47	21.35	21.24	21.12	21. 1	20.50	20.39	20.27	20.16	20. 6
Castor,	22.40	22.33	22.21	22.10	21.58	21.47	21.36	21.25	21.13	21. 2	20.52
Pollux,	22.51	22.44	22.32	22.21	22. 9	21.58	21.47	21.36	21.24	21.13	21. 3
Argus,	0.27	0.20	0. 8	23.57	2:3. 45	23.34	23.23	23.12	23. 0	22.49	22.39
Regulus,	1.16	1. 9	0.57	0.46	0.34	0.23	0.12	0. 1	23.49	23.38	23.28
Dubies,	2.1	2. 3	1.51	1.40	1.28	1.17	1. 6	0.55	0.43	0.32	0.22
Cross, foot Star,	3.34	3.27	3.15	3. 4	2.52	2.41	2.30	2.19	2.7	1.56	1.46
Spica,	4.32	4.25	4.13	4. 2	3.50	3.39	3.28	2.17	2. 5	1.54	1.44
Arcturus	5.24	5.17	5. 5	4.54	4.42	4.31	4.20	4. 9	3.57	3.46	3.36
Antares,	7.35	7.28	7.16	7. 5	6.53	6.42	6.31	6.20	6. 8	5.57	5.47
Vega,	9.47	9.40	9.28	9.17	9.5	8.54	8.43	8.32	8.20	8. 9	7.59
Altair,	10.59	10.52	10.40	10.29	10.17	10.6	9.55	9.44	9.32	9.21	9.11
Pavonis,	11.2	11.22	11.10	10.59	10.47	10.36	10.25	10.14	10. 2	9.51	9.41
Crgnt,	11.51	11.44	11.32	11.21	11. 9	10.58	10.47	10.36	10.24	10.13	10.3
Gruis,	13.14	13. 7	12.55	12.44	12.32	12.21	12.10	11.59	11.47	11.36	11.26
Fomalha	14. 5	13.58	13.46	13.35	13.23	13.12	13, 1	12.50	11.38	11.27	11.17
Pegasi,	14.13	14. 6	13.5	13.43	13.3	13.20	13. 9	12.58	12.46	12.35	12.25

FOR FINDING THE APPARENT TIME OF 24 OF THE PRINCIPAL STARS PASSING THE MERILIAN THROUGHOUT THE FEAR.

SEPTEMBER.

NAMES.									24	27	$\begin{aligned} & \text { day. } \\ & 30 \end{aligned}$
	1	14	14.33	14.2	14.12	14. 1	13.50	13.39	13.28	13.18	13. 7
	17.4	17	17.29	17.	17. 8	16.57	16.46	16.	16.24	16.14	16. 3
		18.18	18.	17.5	17.46	17.35	17.24	17.13	17. 2	. 52	41
Rig	18	18.20	18. 9	17.5	17	17.37	17.26	17.	17. 4	16.	16.43
Bet	19.	18	18.48	18	18.27	18.16	18. 5	17	17.43	17.33	17
Car						18					
Sir		19.	19	19	19.19	19.8	18	18.46	18.35	18.25	18.14
Cas	20.	20.3	20.26	20.	20.	19.54	19.43	19.32	19.	19.	19.0
Po	20.5	20.4	20.3	20.2	20.	20. 5	19.	19.	19.3	19	11
	22.32	22	22.13	22.	21.52	21.41	21.30	21.19	21.	20.58	20.47
Regulus,			23. 2	22	22		2	22.	21	21.47	
			23.56	23	23.	23.2	2	23. 2		22.41	
Cross	1.3	1.31			0.59	0.48	0.3	0.26		0. 5	23.5
Spica,	2.3	2.2	2.1	2.	1.5	1.4	1.	1.2	1.1	1.	0.52
	3.2	.	1	2.5	2.49	2.38	2.27	1	2. 5	1.5	. 44
An	5.3	5.3			5. 0	4.49	4.38		4.16		3.55
Vega,	7.51	7.	7	7.22	7.12	7.	6.50	6.39	6.28	6.1	6. 7
							8.				7.19
P	9.33	9.	9.	9.	8.	8.43	8.3	8.	8.	8.	¢. 49
CY	9.5	9.48	9.37	9.2	9.1	9. 5	8.54	8.43	8.3	8.2	. 1
Gruis,	11.18	11.11	11. 0	10.49	10.39	10.28	10.17	10.6	9.55	9.45	9.34
	11.	12. 2	11.51	11.40	11.30	11.19	11. 8	10.57	10.46	10.36	10.25
Peg	2.1	12.10	11.5 ?	11.48	11.38	11	11.16	11. 5	10.5	10.44	10.33

OCTOBER.

NAMES	1	3	6	9	12	15	18		24	27	30
Polar Sta	12.37	12.30	12.19	12. 8	11.57	11.46	11.35	11.23	11.12	11. 0	10.49
Aceerna	13. 3	12.56	12.45	12.34	12.23	12.12	12. 1	11.49	11.38	11.26	11.15
Aldebarar	15.59	15.52	15.41	15.30	15.19	15. 8	14.57	14.45	14.34	14.22	14.11
Capella,	16.37	16.3	16.19	16. 8	15.57	15.46	15.35	15.23	15.	15. 0	14.49
	16.3	16.3	16.21	16.10	15.59	15.48	15.37	15.25	15.14	15. 2	14.51
Bete	17	17	17. 0	16.49	16.38	16.27	16.16	16. 4	15.53	15.41	15.30
Can		17.45	17	17	17	17. 1	16.50	16	7		16. 4
Sirius,	18.1	18. 3	17.5	17.4	17.30	17.19	17. 8	16.	16.	16.33	16.22
Castor,	18.56	18.49	18.38	18.27	18.16	18. 5	17.54	17.42	17.31	17.19	17. 8
Pollux,	19. 7	19.0	18.49	18.38	18.27	18.16	18. 5	17.53	17.42	17.30	17.19
Argus	20.43	20.36	20.2	20.1	20. 3	19.52	19.41	19.29	19.18	19.6	18.55
Pegu	21.32	21.25	21.14	21.	20.52	20.41	20.30	20.18	20. 7	19.55	19.4
Dubie, .	2		22. 8	21.57	21.46	21.35	21.24	21.12	21. 1	9	20.38
Crose, foot Star,	23.50	23.43	23.32	23.21	23.10	22.59	22.48	22.36	22.25	22.13	22. 2
Spica,	0.4	0.41	0.3	0.19	0.8	23.57	23.46	23.34	23.2	23.11	23. 0
A_{1}	1.40	1.33	1.2	1.11	1. 0	0.49	0.38	0.26	0.1	0.3	23.52
Ant	3.51	3.44	3.3	3.22	3.11	3. 0	2.49	2.37	2.2	2.14	2. 3
Vega,	6.3	5.56	5.4	5.3	5.	5.12	5. 1	4.49	4.38	4.26	4.15
Alt	7.1	7.	6.5	.	6.35						5.27
P^{\prime}	7.45	7.38	7.27	7.16	7. 5	6.	6.	6.31	6.20	6.8	5.57
Crg	8. 7	8. 7	7.56	7.45	7.34	7.23	7.1	7. 0	6.49	6.37	6.26
Gruis,	9.30	9.23	9.12	9.1	8.50	8.39	8.28	8.16	8. 5	7.53	7.42
Fomal	10.21	10.14	10.3	9.52	9.41	9.30	9.19	9.7	8.56	8.44	8.33
Pegasi,	10.2	10.22	10.11	10.0	9.49	9.38	9.27	9.15	9. 4	8.52	8.41

FOR PLNDING THE APPARENT TIME OF 24 OF THE PRINCIPAL STARS PASSING THE MERIDIAN THROUGHOUT THE YEAR

NOVEMBER.

NAMES.	1			\boldsymbol{y}	12	15	$\begin{gathered} \text { DAY. } \\ 18 \end{gathered}$	$\begin{aligned} & \text { dAY. } \\ & 21 \end{aligned}$	24	$\begin{aligned} & \text { dAy. } \\ & 27 \end{aligned}$	$\begin{gathered} \text { day. } \\ 30 \end{gathered}$
	$\begin{gathered} \hline \text { ㅍ. } \mathrm{M} \\ 10.41 \end{gathered}$	$\begin{array}{r} \text { ㅍ. } \\ 10.3 \end{array}$	$\left\|\begin{array}{c} \text { ㅍ. } \\ 10.21 \end{array}\right\|$	$\begin{gathered} \text { ㅍ. } \\ 10 . \\ 10 . \end{gathered}$		$\begin{aligned} & \text { н. M. } \\ & 9.45 \\ & \hline \end{aligned}$	$\begin{gathered} \text { H. M. } \\ 9.32 \end{gathered}$	$\begin{gathered} \text { н. } \mathrm{M} . \\ 9.20 \end{gathered}$		$\begin{aligned} & \text { H. } \\ & 8.54 \end{aligned}$	$\begin{aligned} & \text { н. M. } \\ & 8.41 \end{aligned}$
	11. 7	10.59	10.47	10.35	10.23	10.11	9.58	9.46	9.33	9.20	9.7
	14. 3	13.55	13.43	13.31	13.19	13. 7	12.54	12.42	12.29	12.16	12. 3
	14.41	14.3	14.21	14.9	13.57	13.45	13.32	13.20	13. 7	12.5	2.41
Rigel,	14	14.3	14.23	14.11	13.59	13.47	13.34	13.22	13. 9	12.5	43
Betelau	15.22	15.14	15. 2	14.50	14.38	14.26	14.13	14. 1	13.48	13.35	13.22
Canopus		15	15	15	15	15.	47	14.35	14.22	14. 9	56
Sirius,	16.14	16.	15.5	15.42	15.3	15.18	15. 5	14.53	14.40	14.27	14.14
Castor	17. 0	16.52	16.40	16.28	16.16	16. 4	15.51	15.39	15.26	15.13	15. 0
Pollux,	17.11	17.3	16.51	16.39	16.27	16.15	16. 2	15.50	15.37	15	15.11
Argus,	18.47	18.39	18.27	18.15	18. 3	17.51	17.38	17.26	17.13	17. 0	16.47
Regulus	19.36	19.28	19	19.	18.52	18.40	18.27	18.15	18. 2	17.49	17.36
Dubi	20	20.22	20	19					18.56		18.30
Cross, foot Star,	21.54	21.46	21.34	21.22	21.10	20.58	20.4	20.33	20.20	20.07	19.54
Spica,	22.52	22.4	22.32	22.20	22. 8	21.56	21.43	21.31	21.15	21.5	20.52
Arc	23.44	23.36	23.24	23.12	23. 0	22.48	22.35	22.23	22.10	21.57	21.44
Antar	1.55	1.47	1.35	1.23	1.11	0.59	0.46	0.34	0.21	0. 8	23.55
Vega,	4. 7	3.59	3.47	3.35	3.23	3.11	2.58	2.46	2.33	2.20	2.
Al	5.19	5.11	4.59	4.47	4.3	4.	4.	3.58	3.45	.	3.19
Pavon	5.49	5.	5.2	5.17	5. 5	4.5	4.40	4.28	4.	4.	3.49
Cxg	6.11	6. 3	5.51	5.39	5.27	5.15	5. 2	4.50	4.37	4.2	4.1
Gruis,	7.34	7.26	7.14	7. 2	6.50	6.38	6.25	6.13	6. 0	5.47	. 3
Fomal	8.25	8.17	8.5	7.53	7.41	7.29	7.16	7. 4	6.51	6.38	6.25
Pegasi, .	8.33	8.25	8.13	8. 1	7.49	7.37	7.24	7.12	6.5	6.4	6.33

DECEMBER.

NAMES.	1	3	6	9	12	15	18	21	24	27	30
		29.	8.15	$\begin{gathered} \text { H. } \\ 8 . \\ \hline \end{gathered}$	$\begin{aligned} & \text { н. м. } \\ & 7.49 \end{aligned}$	$\begin{aligned} & \text { H. } \\ & 7.36 \end{aligned}$			$\begin{aligned} & \text { H. } \mathrm{M} . \\ & 6.56 \end{aligned}$	$\begin{aligned} & \text { H. } \\ & 6.43 \end{aligned}$	$\begin{gathered} \text { н. м. } \\ 6.29 \end{gathered}$
		8.55	8.41	8.28	8.15	8. 2	7.49	7.35	7.22	7. 9	6.55
	11.59	11.51	11.37	11.24	11.11	10.58	10.45	10.31	10.18	10. 5	9.51
	12.37	12.29	12.15	12. 2	11.49	11.36	11.23	11. 9	10.56	10.43	10.29
Rig	12.39	12.31	12.17	12. 4	11.51	11.38	11.25	11.11	10.58	10.45	10.31
Betelguese,	13.18	13.10	12.56	12.43	12.30	12.17	12. 4	11.50	11.37	11.24	11.10
	13.	13.44	13.30	13.17	13. 4	12.51	12.38	12.24	12.11	11.58	1.4
Siri	14.10	14. 2	13.48	13.35	13.22	13.9	12.56	12.42	12.29	12.16	12. 2
Castor,	14.56	14.48	14.34	14.21	14. 8	13.55	13.42	13.28	13.15	13. 2	12.48
Pollux,	15. 7	14.59	14.45	14.32	14.19	14. 6	13.53	13.39	13.26	13.13	12.59
Arg	16.43	16.35	16.21	16. 8	15.55	15.42	15.29	15.15	15. 2	14.49	14.35
Reg	17.32	17.24	17.10	16.57	16.44	16.31	16.18	16.	15.51	15.38	. 24
Dubie,.	18.	18.18	18. 4		17.38	17.25	17.12	17.00	16.46	16	16.20
Crose, foot Star,	19.50	19.42	19.28	19.15	19.2	18.49	18.36	18.22	18. 9	17.56	17.42
Spica,	20.48	20.40	20.26	20.13	20. 0	19.47	19.34	19.20	19.7	18.54	18.40
Ar	21.40	21.32	21.18	21. 5	20.52	20.39	20.26	20.12	19.59	19.46	19.32
Antar	23.51	23.43	23.29	23.16	23. 3	22.50	22.37	22.23	22.10	21.57	21.43
Vega,	2. 3	1.55	1.41	1.28	1.15	1. 2	0.49	0.35	0.22	0. 9	23.55
Alt	3.1	3.7	2.	2.40	2.	2.14	2. 1	1.47	1.34	1.21	1. 7
Pa_{4}	3.45	3.37	3.23	3.10	2.57	2.44	2.31	2.17	2. 4	1.51	1.37
Crg	4.7	3.59	3.45	3.32	3.19	3. 6	2.53	2.39	2.26	2.13	1.59
G_{R}	5.30	5.22	5.8	4.55	4.42	4.29	4.16	4. 2	3.49	3.36	3.22
Fomaliea	6.21	6.13	5.59	5.46	5.33	5.20	5. 7	4.53	4.40	4.27	4.13
Pegasi,	6.29	6.21	6. 7	5.54	5.41	5.28	5.15	5. 1	4.48	4.35	4.21

TABLEXIX.

PLACES OF 24 OF THE PRINCIPAL FIXED STARS, FOR THE YEAR 1854.

mag.	NAME.	bight ascension.	annoal tar.	declination.	annual far.
		I. ${ }^{\text {m. }}$	${ }^{8}$		
2	Pular Star,	$1 \begin{array}{lll}1 & 6 & 3\end{array}$	+17.83	8832 N .	+19.3
1	Achernar,	13215	$2 \cdot 23$	5759 S.	-18.5
1	Aldebaran,	42732	$3 \cdot 43$	1613 N .	+ $7 \cdot 9$
1	Capella, .	$5 \quad 5 \quad 55$	$4 \cdot 11$	45.51 N .	+ 4.8
1	Rigel,	$5 \quad 731$	$2 \cdot 8$	823 S .	- $4 \cdot 6$
1	Betelauese, .	$\begin{array}{llll}5 & 47 & 17\end{array}$	$3 \cdot 24$	722 N.	+ 12
1	Canopus,	62044	$1 \cdot 33$	5237 S .	$+1.8$
1	Sirius,	63843	$2 \cdot 65$	1631 S .	+ 4.5
1	Castor, .	72517	3•86	3212 N .	- $7 \cdot 2$
1	Pollux,	73621	$3 \cdot 68$	2822 N.	- 8.1
2	Argus,	$\begin{array}{llll}9 & 11 & 37\end{array}$	$0 \cdot 73$	69 4 S.	-14.8
1	Regulus,	$10 \quad 0 \quad 35$	$3 \cdot 22$	1241 N .	$-17 \cdot 4$
1	Dubhe,	105450	$3 \cdot 81$	6232 N.	$-19 \cdot 2$
1	Cross, foot Star,	121831	$3 \cdot 27$	6217 S .	+20.0
1	Spica,	131729	$3 \cdot 15$	1024 S.	+18.9
1	Arcturus,	$14 \quad 859$	2.73	1957 N .	-19.9
1	Antares,	162024	$3 \cdot 66$	266 S .	+ 8.5
1	Vega,.	183157	2.01	3839 N.	+ 2.8
1	Altair,	194337	2.93	829 N.	$+8.4$
1	Pavonis,	$20 \quad 14 \quad 0$	$4 \cdot 81$	5712 S .	$-11 \cdot 0$
2	Crani,	203627	$2 \cdot 04$	4446 N.	+12.6
1	Gruis,	21593	$3 \cdot 82$	4740 S .	$-17 \cdot 3$
1	Fomalhaut,	224932	$3 \cdot 31$	3025 S .	$-19 \cdot 1$
2	Pegasi, .	225730	$2 \cdot 98$	1425 N.	+193

TABLEXX.
CORRECTION TO BE SUBTRACTED FROM THE OBSERVED ALTITUDE OF A FIXED STAR, OR A PLANET, TO FIND THE TRUE ALTITUDE.

薬's	height of the eye above the sea in feet.														$\begin{aligned} & \text { 粪's } \\ & \text { Obs. } \\ & \text { Alt. } \end{aligned}$
Obs. Alt.	4	6	8	10	12	14	16	18	20	22	24	26	28	30	
\bigcirc	,	,	,	,						,					\bigcirc
5	11.8	12.2	12.6	12.9	13.2	13.5	13.7	14.0	14.2	14.4	14.6	14.8	15.0	15.1	5
6	10.4	10.8	11.2	11.5	11.8	12.1	12.3	12.6	12.8	13.0	13.2	13.4	13.6	13.7	6
7	9.3	9.7	10.1	10.4	10.7	11.0	11.2	11.5	11.7	11.9	12.1	12.3	12.5	12.6	7
8	8.4	8.8	9.2	9.5	9.8	10.1	10.3	10.6	10.8	11.0	11.2	11.4	11.6	11.7	8
9	7.7	8.1	8.5	8.8	9.1	9.4	9.6	9.9	10.1	10.3	10.5	10.7	10.9	11.0	9
10	7.2	7.6	8.0	8.3	8.6	8.9	9.1	9.4	9.6	9.8	10.0	10.2	$\overline{10.4}$	10.5	10
11	6.7	7.1	7.5	7.8	8.1	8.4	8.6	8.9	9.1	9.3	9.5	9.7	9.9	10.0	11
12	6.3	6.7	7.1	7.4	7.7	8.0	8.2	8.5	8.7	8.9	9.1	9.3	9.5	9.6	12
14	5.7	6.1	6.5	6.8	7.1	7.4	7.6	7.9	8.1	8.3	8.5	8.7	8.9	9.0	14
16	5.2	5.6	6.0	6.3	6.6	6.9	7.1	7.4	7.6	7.8	8.0	8.2	8.4	8.5	16
18	4.8	5.2	5.6	5.9	6.2	6.5	6.7	7.0	7.2	7.4	7.6	7.8	8.0	8.1	18
20	4.5	4.9	5.3	5.6	5.9	6.2	6.4	6.7	6.9	7.1	7.3	7.5	7.7	7.8	20
22	4.3	4.7	5.1	5.4	5.7	6.0	6.2	6.5	6.7	6.9	7.1	7.3	7.5	7.6	22
26	3.9	4.3	4.7	5.0	5.3	5.6	5.8	6.1	6.3	6.5	6.7	6.9	7.1	7.2	26
30	3.6	4.0	4.4	4.7	5.0	5.3	5.5	5.8	6.0	6.2	6.4	6.6	6.8	6.9	30
$\overline{35}$	3.3	3.7	4.1	4.4	4.7	5.0	5.2	5.5	5.7	5.9	6.1	6.3	6.5	6.6	35
40	3.1	3.5	3.9	4.2	4.5	4.8	5.0	5.3	5.5	5.7	5.9	6.1	6.3	6.4	40
45	2.9	3.3	3.7	4.0	4.3	4.6	4.8	5.1	5.3	5.5	5.7	5.9	6.1	6.3	45
50	2.7	3.1	3.5	3.8	4.1	4.4	4.6	4.9	5.1	5.3	5.5	5.7	5.9	6.1	50
55	2.6	3.0	3.4	3.7	4.0	4.3	4.5	4.8	5.0	5.2	5.4	5.6	5.8	6.0	55
60	2.5	2.9	3.3	3.6	3.9	. 4.2	4.4	4.7	4.0	5.1	5.3	5.5	5.7	5.9	60
65	2.4	2.8	3.2	3.5	3.8	4.1	4.3	4.6	4.8	5.0	5.2	5.4	5.6	5.8	65
70	2.3	2.7	3.1	3.4	3.7	4.0	4.2	4.5	4.7	4.9	5.1	5.3	5.5	5.7	70
80	2.1	2.5	2.9	3.2	3.6	3.8	4.0	4.3	4.5	4.7	4.9	5.1	5.3	5.5	80
90	1.9	2.3	2.7	3.0	3.3	3.6	3.8	4.1	4.3	4.5	4.7	4.9	5.1	5.3	90

TABLE XXI.

to find the latitude by an altitude of the polar star

When the Right Ascension of the Meridian is found in this column, the correction is Subtractive.		EXPLANATION OF THE TABLE, whioh is caluolated for the tear 1854. Enter the side column, with the Right Ascension of the Meridian and the Altitude of the Star at the top, and at the angle of meeting will be the required correction.						When the Right Ascension of the Meridian is found in this column, the correction is Additive.		
R. A. M.		apparent altitude of the polar star.						R. A. M.		
H. 1.	H. M.	10°	20°	30°	40°	50°	60°	ㅌ. м.	H. M.	sur
		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc,			
10	10	128	128	128	128	128	128	130	130	3
130	030	127	127	127	127	127	127	1230	1330	3
20	$24 \quad 0$	125	125	124	124	124	124	120	140	3
220	2340	123	123	123	122	122	122	1140	1420	3
240	2320	120	120	120	120	119	119	1120	1440	3
30	230	116	116	116	116	115	115	1110	150	3
310	2250	114	114	114	114	113	113	1050	1510	3
320	2240	112	112	112	112	111	110	1040	1520	3
330	2230	110	19	19	19	18	17	1030	1530	3
340	2220	18			18	17	15	1020	1540	2
350	2210	16	15	15	14	13	1	1010	1550	2
40	220	13	12	12	12	$1 \begin{array}{ll}1 & 1\end{array}$	$1 \begin{array}{ll}1 & 1\end{array}$	100	160	2
410	2150	10	10	10	10	10	059	950	1610	2
420	2140	057	057	057	057	056	055	940	1620	2
430	2130	054	054	054	054	053	052	930	1630	2
440	2120	051	051	051	051	050	049	920	1640	2
450	2110	048	048	048	048	047	046	910	1650	2
50	210	045	044	044	044	044	042	$9 \quad 0$	170	2
510	2050	041	041	040	040	040	039	850	1710	2
520	2040	$0 \quad 38$	037	037	037	037	035	- 840	1720	1
530	2030	035	034	034	033	033	031	830	1730	1
540	2020	031	030	030	029	029	027	820	1740	1
550	2010	027	026	026	025	025	024	810	1750	1
60	200	023	022	022	021	021	020	80	180	1
610	1950	019	018	018	017	017	016	750	1810	1
620	1940	015	014	014	013	013	012	740	1820	1
630	1930	012	011	011	010	010	0	730	1830	0
640	1920	08	07	07	06	06	$0 \quad 5$	720	1840	0
650	1910	04	0 O	$0 \quad 3$	02	$0 \quad 2$	0	710	1850	0
655	$19 \quad 5$	$0 \quad 1$	$0 \quad 2$	02	02	$0 \quad 3$	$0 \quad 4$	70	190	0

TABLE XXII.

CORrEOTION OF THE TTME OF THE MOONS MERIDIAN PASSAGE, OVER THE MERIDIAN OF GREENWICH, TO THE TIME OF HER PASSAGE OVER ANY OTHER MERIDIAN.

	daily variation of the moon's passing the meridian.													
	$\underset{40}{x}$	$\begin{array}{r} \mathbf{4} \\ 42 \end{array}$	$\underset{44}{4}$	$\begin{array}{r} \text { m. } \\ 46 \end{array}$	$\begin{array}{r} \text { u. } \\ 48 \end{array}$	$\begin{aligned} & \mathbf{u} \\ & 50 \end{aligned}$	$\begin{array}{r} \text { u. } \\ 52 \\ \hline \end{array}$	$\begin{aligned} & \text { m. } \\ & 54 \end{aligned}$	$\begin{gathered} \text { м. } \\ 56 \end{gathered}$	$\begin{aligned} & \mathbf{4 .} \\ & \mathbf{5 8} \end{aligned}$	$\begin{aligned} & \mathrm{m} . \\ & 60 \end{aligned}$	$\begin{gathered} \mathbf{M} \\ \mathbf{6} \end{gathered}$	$\frac{14}{64}$	$\begin{array}{r} 26 \\ \hline \end{array}$
0	M.	${ }_{0}^{3}$	${ }_{0}^{1}$	4	M.	M.	M.	м. 0	m.	\%	- 0	\%	4	$\stackrel{1}{4}$
10	1	1	1	1	1	1	1		1	2	2	2	2	2
20	2	2	2	2	3	3	3	3	3	3	3	3	3	4
30	3	3	4	4	4	4	4	4	4	5	5	5	5	5
40	4	4	5	5	5	5	6	6	6	6	6	7	7	7
50	5	6	6	6	6	7	7	7	7	8	8	8	9	9
60	6	7	7	7	8	8	8	9	9	9	10	10	10	11
70	7	8	8	9	9	9	10	10	10	11	11	12	12	12
80	9	9	10	10	10	11	11	12	12	12	13	13	14	14
90	10	10	11	11	12	12	13	13	13	14	14	15	15	16
100	11	12	12	12	13	13	14	14	15	15	16	17	17	18
110	12	13	13	14	14	15	15	16	16	17	18	18	19	19
120	13	14	14	15	15	16	17	17	18	19	19	20	20	21
130	14	15	15	16	17	17	18	19	19	20	21	21	22	23
140	15	16	17	17	18	19	20	20	21	22	22	23	24	25
150	16	17	18	19	19	20	21	22	22	23	24	25	26	26
160	17	18	19	20	21	21	22	23	24	25	26	26	27	28
170	18	19	20	21	22	23	24	25	25	26	27	28	29	30
180	19	20	21	22	23	24	25	26	27	28	29	30	31	32

The Sums taken from this Table must be added to the time of the Moon's Meridian Passage in the Nautical Almanac, in West Longitude, and subtracted in East, will give the Mean Time of her Meridian Passage at the Ship.

04														
FOR REDUOING THE MOONS DECLINATION TO THE GREENWICH TIME OF THEOBSERVATION.														
Diff. of Moon's Declina tion in 12 nours.	HOURS FROM NOON OR MIDNIGHT.											FOR ODD MINUTES.		
	1	2	3	4	5	6	7	8	9	10	11	M. ${ }^{\text {m }}$		m 48
$\bigcirc \quad 1$		\bigcirc	\bigcirc	$\overline{0}$	$\overline{0}$	$\overline{0}$	\bigcirc	$\overline{0}$	\bigcirc	\cdots	5	- ${ }^{\prime}$	'	
$0 \quad 5$	0	0 1	0	$0 \quad 2$	0	0 2	0	0	0	0	$0 \quad 5$	00	0	0
010		0	0 2	0	04	0	06	0	0	0	0	0	0	1
015		0	$0 \quad 4$	0	06	0	0	010	011	$0 \quad 12$	014	0	1	1
020	02	0	$0 \quad 5$	0	08	010	$0 \quad 12$	013	015	$0 \quad 17$	018	01	1	1
025	0 2	0	06	0	010	012	015	017	019	021	023	011	1	2
030	0	0	0	010	$0 \quad 12$	$0 \quad 15$	017	020	022	025	027	01	1	2
035	0	0	0	$0 \quad 12$	015	0	020	023	026	029	032	11	2	2
040	0	0	010	013	017	020	023	027	030	033	037	11	2	3
045	04	0	011	015	019	022	026	030	034	037	041	11	2	3
050	04	0	012	017	021	025	029	033	$0 \quad 37$	042	046	12	2	3
055	$0 \quad 5$		014	018	023	027	032	037	041	046	051	12	3	4
10	$0 \quad 5$	010	015	$0 \quad 20$	025	030	$0 \quad 35$	040	$0 \quad 45$	$0 \quad 50$	055	$1 \frac{2}{2}$	3	4
15	0	0	$0 \quad 16$	022	027	$0 \quad 32$	038	043	049	054	10	$\frac{1}{2}$	3	4
110	06	012	017	023	029	035	041	047	052	058		12	3	5
115	06	012	019	025	031	037	044	050	056	12	19	12	4	5
120	0	013	020	027	033	040	047	053	10	17	113	13	4	5
125		014	021	028	035	042	050	057	14	111	118	13	4	6
130	0	015	$0 \quad 22$	$0 \quad 30$	$0 \quad 37$	045	052	10	1	115	122	13	4	6
135	08	$0 \quad 16$	024	032	040	047	055	13	111	119	127	23	5	6
140	08	017	025	0	042	050	058	$1 \begin{array}{ll}1 & 7\end{array}$	115	123	132	23	5	7
145	$0 \quad 9$	017	026	035	044	052	$1 \begin{array}{ll}1 & 1\end{array}$	110	119	127	136	23	5	7
150	0	0	$0 \quad 27$	0	046	055	$1 \begin{array}{ll}1 & 4\end{array}$	113	122	$\begin{array}{ll}1 & 32\end{array}$	142	$2{ }^{2} 4$	5	7
155	0	019	029	0 088	048	057	17	117	126	136	145	24	6	8
20	$0 \quad 10$	020	030	040	050	10	110	120	130	140	150	24	6	8
25	$\bigcirc 10$	021	031	042	052	12	113	123	134	144	155	24	6	8
210	011	022	032	0	054	15	116	127	137	148	159	24	-	9
215	011	0 22	034	045	056	17	119	130	141	152	24	24	-	9
220	012	023	035	047	058	110	122	133	145	157	28	25	7	9
$2: 5$	012	0	036	048	10	112	125	137	149	2	213	2 5	7	10
230	$0 \quad 12$	$0 \quad 25$	$0 \quad 37$	$0 \quad 50$	1	115	127	140	152	$2 \quad 5$	217	25	7	10
235	013	026	039	052	15	117	130	143	156	2	222	35	8	10
240	013	027	040	053	17	120	133	147	2	213	227	35	8	11
245	014	027	041	055	19	122	136	150	2	2 17	231	35	8	11
250	014	028	042	057	111	125	139	153	27	222	236	36	8	11
255	015	029	044	058	113	127	142	157	211	226	240	36		12
30	015	030	$0 \quad 45$		115	130	$1 \quad 45$	2	215	230	245	36	9	12
$3 \quad 5$	0 15	031	$\bigcirc 46$	$1 \begin{array}{ll}1 & 2\end{array}$	117	132	148	2	219	234	250	36		12
310	016	032	047	13	119	135	151	$2 \begin{array}{ll}2 & 7\end{array}$	222	238	254	$3{ }^{3} 6$	9	13
315	016	$0 \quad 32$	049	15	121	137	154	210	226	242	259	36	10	13
320	$0 \quad 17$	033	050	17	123	140	157	213	1	247	3	$3{ }^{3} 7$	10	13
325	017	034	051	18	125	142	20	217	234	251	38	37	10	14
330	017	0	$0 \quad 52$	110	127	145	$2 \quad 2$	220	$\underline{237}$	255	$3 \quad 12$	37	10	14
335	$\underline{018}$	036	054	112	130	147	2	223	241	259	3 17		11	14
340	018	037	055	113	132	150	2	227	245	3	322		11	15
345	019	$\left\lvert\, \begin{array}{ll}0 & 37\end{array}\right.$	056	115	134	152	211	1239	249	3 3 7	326	47	11	15
Note.-This Table is sonstructed upon the following principle:-Rule. Say as 12 hours is to the difference or change in the Moon's Declination in 12 hours, so is the time past Greenwich Noon or Midnight to the Correction, which must be applied to the Declination at the preceding Noon or Midnight, according as it is increasing or decreasing.														

TABLE XXIV.

CORRECTION OF THE MOON'S SEMIDIAMETER, OR HORIZONTAL PARALLAX, FOR ANY GIVEN TIME BETWEEN NOON AND MIDNIGHT, OR OF THE SUN OR A PLANETS DECLINATION FOR A GIVEN TIME FROM THE PRECEDING NOON.

Note-Enter this Table with the Time from Greenwich Nown or Midnight in the eide column, and the difference or change in the Semidiameter and Horizontel Parallax in 12 hours at thatap, and at the angle of mecting, will be the correction; or, enter the right sids of the Table with the Time from Greenwich Noon, and the difference or change of the Sun or Planat's Ineclination, at the boitona and at the angle of meeting, will be the correction, to be applied accordng an that are inereasing or deonosing.

96																	
	CONTAINING THE CORRECTION FOR THE MOONS PARALLAX IN ALTITUDE, GIVEN IN MINUTES AND TENTHS, WHICH IS ALWAYS ADDITIVE TO THE APPARENT ALTITUDE.																
$\begin{aligned} & \text { D's.s. } \\ & \text { Ap. } \\ & \text { Alt. } \end{aligned}$	horizontal parallax.								$\begin{array}{\|c\|} \hline D_{1} \\ \text { Ap. } \\ \text { Alt. } \end{array}$	horizontal parallax.							
	54^{\prime}	55^{\prime}	56^{\prime}	57^{\prime}	58^{\prime}	59^{\prime}	60^{\prime}			54^{\prime}	55^{\prime}	56^{\prime}	57^{\prime}	58^{\prime}	59^{\prime}	60^{\prime}	61^{\prime}
\bigcirc																	
5	$43 \cdot 9$	$44 \cdot 9$	$45 \cdot 9$	$46 \cdot 9$	47.9	$48 \cdot 9$	$49 \cdot 9$	50.9	48	$35 \cdot 3$	$35 \cdot 9$	$36 \cdot 6$	$37 \cdot 3$	38.0	$38 \cdot 6$	39	
6	$45 \cdot 2$	$46 \cdot 2$	$47 \cdot 2$	$48 \cdot 2$	49•2	$50 \cdot 2$	$51 \cdot 2$	$52 \cdot 2$	49	$34 \cdot 6$	$35 \cdot 3$	$35 \cdot 9$	$36 \cdot 6$	$37 \cdot 2$	37.9	38-5	$39 \cdot 2$
7	46.2	47.2	$48 \cdot 2$	49	$50 \cdot 2$	$51 \cdot 2$	52.2	53.2	50	$33 \cdot 9$	34.6	$35 \cdot 2$	$35 \cdot 8$	36.	$37 \cdot 1$	36.8	$8 \cdot 4$
8	46.9	47.9	$48 \cdot 9$	49.9	$50 \cdot 9$	51.9	52.9	53.9	51	$33 \cdot 2$	$33 \cdot 8$	$34 \cdot 5$	$35 \cdot 1$	35	36.4	37 -	$7 \cdot 6$
9	$47 \cdot 6$	$48 \cdot 6$	$49 \cdot 6$	$50 \cdot 6$	$51 \cdot 6$	52.6	$53 \cdot 6$	$54 \cdot 6$	52	32.5	$33 \cdot 1$	$33 \cdot 7$	$34 \cdot 4$	35.0	$35 \cdot 6$	36	$6 \cdot 8$
10	47.9	$48 \cdot 9$	$49 \cdot 8$	50.8	51.8	52.8	$53 \cdot 8$	54.8	53	$31 \cdot 8$	$32 \cdot 4$	33.0	$33 \cdot 6$	$34 \cdot 2$	34.8		
11	$48 \cdot 2$	$49 \cdot 2$	$50 \cdot 1$	$51 \cdot 1$	52.1	$53 \cdot 1$	$54 \cdot 1$	55.0	54	31-1	$31 \cdot 6$	$32 \cdot 2$	$32 \cdot 8$	33	$34 \cdot 0$		-2
12	$48 \cdot 4$	$49 \cdot 4$	$50 \cdot 4$	$51 \cdot 3$	52.3	$53 \cdot 3$	54-2	$55 \cdot 2$	55	$30 \cdot 3$	$30 \cdot 9$	$31 \cdot 5$	$32 \cdot 0$	$32 \cdot 6$	63-2	$33 \cdot$	$34 \cdot 3$
13	$48 \cdot 5$	49.5	$50 \cdot 5$	$51 \cdot 4$	$52 \cdot 4$	$53 \cdot 4$	54-4	$55 \cdot 3$	56	$29 \cdot 6$	$30 \cdot 1$	$30 \cdot 7$	$31 \cdot 2$	31.8	32-4	'32.9	$33 \cdot 5$
14	$48 \cdot 6$	$49 \cdot 6$	50.5	$51 \cdot 5$	52.5	$53 \cdot 4$	54.4	$55 \cdot 4$	57	28.8	$29 \cdot 3$	$29 \cdot 9$	$30 \cdot 4$	31.0	31	32-1	$2 \cdot 6$
15	$48 \cdot 6$	$49 \cdot 6$	50.5	$51 \cdot 5$	5:2.5	53.4	$54 \cdot 4$	$55 \cdot 4$	58	28.0	$28 \cdot 6$	$29 \cdot 1$	29	$30 \cdot 1$	30	31	31.7
16	$48 \cdot 6$	$49 \cdot 5$	$50 \cdot 5$	51.5	$52 \cdot 4$	53.4	$54 \cdot 4$	$55 \cdot 3$	59	$27 \cdot 2$	$27 \cdot 8$	$28 \cdot 3$	$28 \cdot 6$	$29 \cdot 3$	29.		
17	$48 \cdot 5$	$49 \cdot 5$	$50 \cdot 4$	$51 \cdot 4$	52.3	53	54.3	55:2	60	26	27.0	27	$28 \cdot 0$	28	29.0		$30 \cdot 0$
18	48	49	50	$51 \cdot 3$	52\%2	53.2	$54 \cdot 1$	$55 \cdot 1$	61	$25 \cdot 7$	$26 \cdot 1$	$26 \cdot 6$	$27 \cdot 1$	$27 \cdot 6$	(28.1	$28 \cdot 6$	29•1
19	$48 \cdot 3$	$49 \cdot 2$	$50 \cdot 2$	$51 \cdot 1$	$52 \cdot 1$	53.0	$53 \cdot 9$	54.9	62	$24 \cdot 9$	25.3	$25 \cdot 6$	$26 \cdot 3$	26.7	27	$27 \cdot 7$	$28 \cdot 1$
20	$48 \cdot 1$	$49 \cdot 1$	$50 \cdot 0$	$50 \cdot 9$	51.9	$5 \% 8$	$53 \cdot 8$	51.7	63	24.0	24.5	24.9	25	25.9	26	26:8	27.2
21	47.9	$48 \cdot 9$	$49 \cdot 8$	50.7	51.7	52.6	53.5	54.6	64	232	23.7	$24 \cdot 1$	24	25.0	25	25.8	26.3
22	$47 \cdot 7$	$48 \cdot 6$	$49 \cdot 5$	50.5	$51 \cdot 4$	$52 \cdot 3$	53.3	54*2	65	$22 \cdot 4$	$22 \cdot 8$	23.	23.7	24^{\cdot}	24	24.9	
23	$47 \cdot 4$	$48 \cdot 4$	$49 \cdot 3$	50	$51 \cdot 1$	$52 \cdot 1$	53.0	53.9	66	21.5	$22 \cdot 0$	$22 \cdot 4$	8	2	$23 \cdot 6$		$24 \cdot 4$
24	47.2	$48 \cdot 1$	$49 \cdot 0$	$49 \cdot 9$	$50 \cdot 9$	$51 \cdot 8$	52.7	$53 \cdot 6$	67	20.7	$21 \cdot 1$	21.5	$21 \cdot 9$	22	$22 \cdot 7$	23.0	$23 \cdot 4$
25	$46 \cdot 9$	$47 \cdot 8$	$48 \cdot 7$	$49 \cdot 6$	50.5	$51 \cdot 4$	$52 \cdot 3$	52•2	68	$19 \cdot 9$	$20 \cdot 2$	20.6	21.0	21.	21.	$22 \cdot 1$	$22 \cdot 5$
26	$46 \cdot 6$	$47 \cdot 5$	$48 \cdot 4$	$49 \cdot 3$	50.2	$51 \cdot 1$	520	52.9	69	$19 \cdot 0$	$19 \cdot 4$	$19 \cdot 7$	$20 \cdot 1$	20.4	20.8	21.1	$20 \cdot 5$
27	$46 \cdot 2$	$47 \cdot 1$	$48 \cdot 0$	$48 \cdot 9$	$49 \cdot 8$	50.7	$51 \cdot 6$	52.5	70	$18 \cdot 1$	18.5	$18 \cdot 8$	19-2	$19 \cdot 5$	19	20.2	20.5
28	45.9	46.8	$47 \cdot 6$	$48 \cdot 5$	$49 \cdot 4$	$50 \cdot 3$	51.2	52.1	71	$17 \cdot 3$	176	$17 \cdot 9$	18.2	18	18.	19	19.5
29	$45 \cdot 5$	$46 \cdot 4$	$47 \cdot 3$	$48 \cdot 1$	$49 \cdot 0$	$49 \cdot 9$	50.8	51.6	72	$16 \cdot 4$	16.7	$17 \cdot 0$	$17 \cdot 3$	17	17.	182	18.5
30	$45 \cdot 1$	46.0	$46 \cdot 8$	$47 \cdot 7$	$48 \cdot 6$	$49 \cdot 4$	$50 \cdot 3$	$51 \sim$	73	$15 \cdot 5$	$15 \cdot 8$	$16 \cdot 1$	16.4	16.7	$17 \cdot 0$	$17 \cdot 3$	17.6
31	4 ± 7	$45 \cdot 6$	$46 \cdot 4$	$47 \cdot 3$	48.1	49°	$49 \cdot 9$	50.7	74	$14 \cdot 6$	14%	$15 \cdot 2$	$15 \cdot 4$	15.7	16.0	$16 \cdot 3$	16.5
32	$44 \cdot 3$	$45 \cdot 1$	$45 \cdot 9$	$46 \cdot 8$	47.7	$48 \cdot 5$	$49 \cdot 4$	50.2	75	$13 \cdot 7$	14.0	14.2	14.5	14.	$15 \cdot 0$	$15 \cdot 3$	15.5
33	$43 \cdot 8$	44.7	$45 \cdot 5$	$46 \cdot 3$	47.2	$45^{\circ} 0$	$48 \cdot 9$	49.7	76	$12 \cdot 8$	$13 \cdot 1$	$13 \cdot 3$	$13 \cdot 5$	$13 \cdot 8$	14.0	14:3	14.5
34	43.4	$44 \cdot 2$	45.0	$45 \cdot 8$	46.7	$47 \cdot 5$	$48 \cdot 3$	49-2	77	11.9	$12 \cdot 2$	12.4	$12 \cdot 6$	$12 \cdot 8$	$13 \cdot 1$	$13 \cdot 3$	13.5
35	$43 \cdot 0$	$43 \cdot 7$	44.5	$45 \cdot 3$	46.1	$46 \cdot 9$	$47 \cdot 8$	$48 \cdot 6$	78	$11 \cdot 0$	11.2	114	11.7	$11 \cdot 9$	$12 \cdot 1$	$12 \cdot 3$	$12 \cdot 5$
36	$42 \cdot 3$	43.2	$43 \cdot 9$	$44 \cdot 8$	$45 \cdot 6$	$46 \cdot 4$	47-2	48.0	79	$10 \cdot 1$	$10 \cdot 3$	$10 \cdot 5$	$10 \cdot 7$	$10 \cdot 9$	$11 \cdot 1$	11%	11.5
37	11.9	42.7	$43 \cdot 5$	$44 \cdot 3$	$45 \cdot 1$	45.9	$46 \cdot 8$	$47 \cdot 5$	S0	$9 \cdot 2$	$9 \cdot 4$	$9 \cdot 6$	9.7	9.9	$10 \cdot 1$	$10 \cdot 3$	$10 \cdot 4$
:38	$41 \cdot 3$	$42 \cdot 1$	$42 \cdot 9$	$43 \cdot 7$	$44 \cdot 5$	$45 \cdot 3$	$46 \cdot 1$	46.9	81	$8 \cdot 3$	8.5	$8 \cdot 6$	8.8	8.9	2-1	$9 \cdot 2$	
39	40.8	$41 \cdot 6$	$42 \cdot 3$	$43 \cdot 1$	$43 \cdot 9$	44.7	$45 \cdot 4$	46:2	82	$7 \cdot 4$	$7 \cdot 5$	7.7	7.8	$7 \cdot$	$8 \cdot 1$	$8 \cdot 2$	$8 \cdot 4$
40	$40 \cdot 2$	$41 \cdot 0$	$41 \cdot 8$	$42 \cdot 5$	$43 \cdot 3$	$44 \cdot 1$	44.8	$45 \cdot 6$	83	$6 \cdot 5$	$6 \cdot 6$	6.7	$6 \cdot 8$	6.9	$7 \cdot$	$7 \cdot 2$	3
41	34	$40 \cdot 4$	$41 \cdot 2$	$41 \cdot 8$	$42 \cdot 7$	$43 \cdot 4$	44:2	44.9	84	$5 \cdot 6$	5.7	$5 \cdot 8$	5.9	6	$6 \cdot 1$	62	$6 \cdot 3$
42	$39 \cdot 1$	$39 \cdot 8$	$40 \cdot 6$	$41 \cdot 3$	$42 \cdot 0$	$42 \cdot 8$	43.5	$44 \cdot 3$	85	$4 \cdot 6$	$4 \cdot 7$	$4 \cdot 8$	$4 \cdot 9$	$5 \cdot$	$5 \cdot 1$	$5 \cdot 2$	$5 \cdot 3$
43	38.5	$39 \cdot 2$	$39 \cdot 9$	40.7	$41 \cdot 4$	$42 \cdot 1$	$42 \cdot 9$	$43 \cdot 6$	86	37	$3 \cdot 8$	$3 \cdot 8$	$3 \cdot$	4	$4 \cdot 0$	$4 \cdot 1$	$4 \cdot 2$
44	37.9	$38 \cdot 6$	$39 \cdot 3$	$40 \cdot 1$	40.7	41.5	$42 \cdot 2$	$42 \cdot 9$	87	$2 \cdot 8$	$2 \cdot 8$	$2 \cdot 9$	$2 \cdot 9$	$3 \cdot$	$3 \cdot 0$	$3 \cdot 1$	$3 \cdot 1$
45	37.2	$37 \cdot 9$	$38 \cdot 6$	$39 \cdot 4$	$40 \cdot 1$	$40 \cdot 8$	$41 \cdot 5$	42.2	88	1.9	1.9	1.9	$2 \cdot 0$	$2 \cdot 0$	$2 \cdot 0$	$2 \cdot 1$	$2 \cdot 1$
46	$36 \cdot 6$	37.3	38.0	$38 \cdot 7$	$39 \cdot 4$	$40 \cdot 1$	$40 \cdot 8$	41.5	89	$0 \cdot 9$	$0 \cdot 9$	1.0	1.0	1.0	1.0	1.0	$1 \cdot 0$
47	$35 \cdot 9$	36	37-3	38	38	39.4	$40 \cdot 0$	40.7	90	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	0.0	0	$0 \cdot 0$	0.0	$0 \cdot 0$

[^26]TO TURN DEGREES INTO TIME, OR, TIME INTO DEGREES.

Degrees	Time.	Degrees.	Time.	Degrees.	Time.	$\left[\left.\begin{array}{c} \text { Minutes } \\ \text { of } \\ \text { Degrees. } \end{array} \right\rvert\,\right.$	Time.	$\left\lvert\, \begin{gathered} \text { Seconds } \\ \text { of } \\ \text { Degrees. } \end{gathered}\right.$	Time.
	H. M		H. \mathbf{M}.		н. м.		M. 8.		8. T .
1	0. 4	61	4. 4	121	8. 4	1	0. 4	1	0.4
2	0.8	62	4. 8	122	8. 8	2	0.8	2	0. 8
3	0.12	63	4.12	123	8.12	3	0.12	3	0.12
4	0.16	64	4.16	124	8.16	4	0.16	4	0.16
5	0.20	65	4.20	125	8.20	5	0.20	5	0.20
6	0.24	66	4.24	126	8.24	6	0.24	6	0.24
7	0.28	67	4.28	127	8.28	7	0.28	7	0.28
8	0.32	68	4.32	128	8.32	8	0.32	8	0.32
9	0.36	69	4.36	129	8.36	9	0.36	9	0.36
10	0.40	70	4.40	130	8.40	10	0.40	10	0.40
11	0.44	71	4.44	131	8.44	11	0.44	11	0.44
12	0.48	72	4.48	132	8.48	12	0.48	12	0.48
13	0.52	73	4.52	133	8.52	13	0.52	13	0.52
14	0.56	74	4.56	134	8.56	14	0.56	14	0.56
15	1. 0	75	5. 0	135	9.0	15	1. 0	15	1. 0
16	1. 4	76	5. 4	136	9. 4	16	1. 4	16	1. 4
17	1. 8	77	5.8	137	9. 8	17	1. 8	17	1. 8
18	1.12	78	5.12	138	9.12	18	1.12	18	1.12
19	1.16	79	5.16	139	9.16	19	1.16	19	1.16
20	1.20	80	5.20	140	9.20	20	1.20	20	1.20
21	1.24	81	5.24	141	9.24	21	1.24	21	1.24
22	1.28	82	5.28	142	9.28	22	1.28	22	1.28
23	1.32	83	5.32	143	9.32	23	1.32	23	1.32
24	1.36	84	5.36	144	9.36	24	1.36	24	1.36
25	1.40	85	5.40	145	9.40	25	1.40	25	1.40
26	1.44	86	5.44	146	9.44	26	1.44	26	1.44
27	1.48	87	5.48	147	9.48	27	1.48	27	1.48
28	1.52	83	5.52	148	9.52	28	1.52	28	1.52
29	1.56	89	5.56	149	9.56	29	1.56	29	1.56
30	2. 0	90	6. 0	150	10. 0	30	2. 0	30	2. 0
31	2. 4	91	6. 4	151	10. 4	31	2. 4	31	2. 4
32	2. 8	92	6. 8	152	10. 8	32	2. 8	32	2. 8
33	2.12	93	6.12	153	10.12	33	2.12	33	2.12
34	2.16	94	6.16	154	10.16	34	2.16	34	2.16
35	2.20	95	6.20	155	10.20	. 35	2.20	35	2.20
36	2.24	96	6.24	156	10.24	36	2.24	36	2.24
37	2.28	97	6.28	157°	10.28	37	2.28	37	2.28
38	2.32	98	6.32	158	10.32	38	2.32	38	2.32
39	2.36	99	6.36	159	10.36	39	2.36	39	2.36
40	2.40	100	6.40	160	10.40	40	2.40	40	2.40
41	2.44	101	6.44	161	10.44	41	2.44	41	2.44
42	2.48	102	6.48	162	10.48	42	2.48	42	2.48
43	2.52	103	6.52	163	10.52	43	2.52	43	2.52
44	2.56	104	6.56	164	10.56	44	2.56	44	2.56
45	3. 0	105	7. 0	165	11. 0	45	3. 0	45	3. 0
46	3.4	106	7. 4	166	11. 4	46	3. 4	46	3. 4
47	3. 8	107	7. 8	167	11. 8	47	3. 8	47	3. 8
48	3.12	108	7.12	168	11.12	48	3.12	48	3.12
49	3.16	109	7.16	169	11.16	49	3.16	49	3.16
50	3.20	110	7.20	170	11.20	50	3.20	50	3.20
51	3.24	111	7.24	171	11.24	51	3.24	51	3.24
52	3.28	112	7.28	172	11.28	52	3.28	52	3.28
53	3.32	113	7.32	173	11.32	53	3.32	53	3.32
54	3.36	114	7.36	174	11.36	54	3.36	54	3.36
55	3.40	115	7.40	175	11.40	55	3.40	55	3.40
56	3.44	116	7.44	176	11.44	56	3.44	56	3.44
57	3.48	117	7.48	177	11.48	57	3.48	57	3.48
58	3.52	118	7.52	178	11.52	58	3.52	58	3.52
59	3.56	119	7.56	179	11.56	59	3.56	59	3.56
60	4. 0	120	8. 0	180	12. 0	60	4. 0	60	4. 0

LOGARITHMS OF THE LATITUDE AND POLAR DISTANCE.
LATITUDR, OR POLAR DIBTANCE,
sECANT.

M.	0° or 90°	91	92	93	94	5 . 95	6 . 96	7.97	8 . 98	¢ . $99 \times$	
0	000000	00007	00026	00060	00106	00166	00239	00325	00425	00538	60
1	00000	00007	00027	00060	00107	00167	00240	00326	00426	00540	59
2	00000	00007	00027	00061	00108	00168	00241	00328	00428	00542	58
3	00000	00007	00028	00062	00108	00169	00243	00330	00430	00544	57
4	00000	00008	00028	00062	00109	00170	00244	00331	00432	00546	56
5	0.00000	0008	0029	00063	00110	00171	00245	00333	0434	00548	5
6	00000	00008	00029	00064	00111	00172	00247	00334	00435	00550	54
7	00000	00008	00030	00064	00112	00173	00248	00336	00437	00552	53
8	00000	00008	00030	00065	00113	00175	00249	00337	00439	00554	52
9	00000	00009	00031	00066	00114	00176	00251	00339	00441	00556	51
10	0.00000	00009	00031	00066	00115	00177	00252	00341	00443	00558	5
11	00000	00009	00032	00067	00116	00178	00253	00342	00444	00560	49
12	00000	00010	00032	00068	00117	00179	00255	00344	00446	00562	48
13	00000	00010	00033	00068	00118	00180	0025	00345	00448	00564	47
14	00000	00010	00033	00069	00119	0018	00258	00347	00450	00566	46
15	0.00000	00010	00033	0070	00120	00183	59	00349	00452	0568	45
16	00000	00011	00034	00071	00121	00	00260	00350	00454	00571	44
17	00001	00011	00034	00071	00121	00185	00262	00352	00455	00573	43
18	00001	00011	00035	00072	00122	00186	00263	00353	00457	00575	42
19	00001	00011	00030́	00073	00123	00187	00264	00355	00459	00577	41
20	0.00001	00012	00036	00074	S)124	00188	00266	00357	00461	00579	40
21	00001	00012	00037	00074	0.125	00190	00267	00358	00463	00581	39
22	00001	00012	00037	00075	00126	00191	0026	00360	00465	00583	38
23	00001	00013	00038	0076	00127	00192	00270	00362	00467	00585	37
24	00001	00013	00038	00077	00128	00193	00272	00363	00468	00587	36
25	0.00001	00013	39	00077	00129	00194	00273	00365	00470	0589	35
26	00001	00014	00039	00078	00130	00196	00274	00367	00472	00591	34
27	00001	00014	00040	00079	00131	00197	00276	00368	00474	00593	33
28	00001	00014	00040	00080	00132	00198	00277	00370	004	00596	32
29	00002	00015	00041	00080	00133	00199	00279	00371	00478	00598	31
30	0.00002	00015	0041	00081	00134	00200	00280	00373	0480	00600	30
31	00002	00015	00042	00082	00135	0202	0028	003	00482	00602	29
32	00002	00016	00042	00083	00136	00203	00283	00376	00483	006	28
33	00002	00016	00043	00083	00137	00204	00284	00378	00485	00606	27
34	00002	00016	00044	00084	00138	00205	00286	00380	00487	00608	26
35	0.00002	17	00044	00085	00139	00207	00287	00382	00489	00610	25
36	00002	00017	00045	00086	00140	00208	00289	00383	00491	00612	24
37	00003	00017	00045	00087	00141	00209	00290	0385	00493	00615	23
38	00003	00018	00046	00087	00142	00210	00292	00387	00495	00617	22
39	00003	00018	00046	00088	00143	00212	00293	00388	00497	00619	21
40	0.00003	00018	0047	00089	00144	00213	0295	0390	0499	21	20
41	00003	00019	00048	00090	00145	00214	00296	00392	00501	00623	19
42	00003	00019	00048	00091	00146	00215	00298	00393	00503	00625	18
43	00003	00019	00049	00091	00147	00217	00299	00395	00505	00628	17
44	00004	00020	00049	00092	00148	00218	00301	00397	00506	00630	16
45	0.00004	00020	00050	00093	00149	00219	00302	00399	00508	00632	15
46	00004	00021	00051	00094	00150	00220	00304	00400	00510	00634	14
47	00004	00021	00051	00095	00152	00222	00305	00402	00512	00636	13
48	00004	00021	00052	00096	00153	00223	00307	00404	00514	00638	12
49	00004	00022	00052	00096	00154	00224	00308	00405	00516	00641	11
50	0.00005	00022	00053	0097	00155	00225	00310	00407	00518	00643	0
51	00005	00023	00054	00098	00156	00227	00311	00409	00520	00645	9
52	00005	00023	00054	00099	00157	00228	00313	00411	00522	00647	8
53	00005	00023	00055	00100	00158	00229	00314	00412	00524	00649	7
54	00005	00024	00056	00101	00159	00231	00316	00414	00526	00652	6
55	000006	00024	00056	00102	00160	00232	00317	00416	00528	00654	5
56	00006	00025	00057	00102	00161	00233	00319	00418	00530	00656	4
57	00006	00025	(3058	00103	00162	00235	00320	00419	00532	00658	3
58	00006	00026	00050	00104	00163	00236	00322	00421	00534	$006 \mathrm{~b}^{\circ}$	2
59	00006	00026	00059	00105	00164	00237	00323	00423	00536	00663	1
60	00006	00026	00060	00106	00165	00239	00325	00425	00538	$0066{ }^{-}$	0
	89°	88°	87°	86°	85°	84°	83°	82°	81°	80°	N3
					AR	A				CO-SEC	

LOGARITHMS OF THE LATITUDE AND POLAR DISTANCE.
LATITUDE, OR POLAR DISTANCE.
SECANT.

M.	10° or 100	11.101	- $12.10{ }^{\circ}$	13.103	$\left\lvert\, \begin{array}{rr} \circ & \circ \\ 14.104 \end{array}\right.$	${ }^{\circ} \text { ㄷ. }{ }^{\circ}$	16.106	$\begin{array}{rr} \circ \\ 17.107 \end{array}$	$1{ }^{\circ} .10 \circ^{\circ}$	$\begin{array}{rr} \circ & 0 \\ 19.109 \end{array}$	
0	0.00665	00805	00960	01128	01310	01506	01716	01940	02179	02433	60
1	00667	00808	00962	01131	01313	01509	01719	01944	02183	02437	59
2	00669	00810	00965	01133	01316	01512	01723	01948	02188	02442	58
3	00672	00813	00968	01136	01319	01516	01727	01952	02192	02446	57
4	00674	00815	00970	01139	01322	01519	01730	01956	02196	02450	56
5	0.00676	00818	00973	01142	01325	01523	01734	01960	02200	02455	55
6	00678	00820	00976	01145	01329	01526	01738	01964	02204	02459	54
7	00681	00823	00978	01148	01332	01529	01741	01968	02208	02464	53
8	00683	00825	00981	01151	01335	01533	01745	01971	02212	02468	52
9	00685	00828	00984	01154	01338	01536	01748	01975	02216	02472	51
10	0.00687	0	00987	01157	01341	01540	01752	01979	02221	02477	50
11	00690	00833	00989	01160	01344	01543	01756	01983	02225	02481	49
12	00692	00835	00992	01163	01348	01547	01760	01987	02229	02485	48
13	00694	00838	00995	01166	01351	01550	01763	01991	02233	02490	47
14	00696	00840	00998	01169	01354	01553	01767	01995	02237	02494	46
15	0.00699	008	01000	01172	01357	01557	01771	01999	02241	02499	45
16	00701	00845	01003	01175	01360	01560	01774	02003	02246	02503	44
17	00703	00848	01006	01178	01364	01564	01778	02007	02250	02508	43
18	00706	00850	01009	01181	01367	01567	01782	02011	02254	02512	42
19	00708	00853	01011	01184	01370	01571	01785	02014	02258	02516	41
20	0.00710	00855	01014	01187	01373	01574	01789	02018	02262	02521	40
21	00712	00858	01017	01190	01377	01578	01793	02022	02266	02525	39
22	00715	00860	01020	01193	01380	01581	01796	02026	02271	02530	38
23	00717	00863	01022	01196	01383	01585	01800	02030	02275	02534	37
24	00719	00865	01025	01199	01386	01588	01804	02034	02279	02539	36
25	0.00722	00868	01028	01202	01390	01591	01808	02038	02283	02543	35
26	00724	00870	01031	01205	01393	01595	01811	02042	02287	02547	34
27	00726	00873	01033	01208	01396	01598	01815	02046	02292	02552	33
28	00729	00876	01036	01211	01399	01602	01819	02050	02296	02556	32
29	00731	00878	01039	01214	01403	01605	01823	02054	02300	02561	31
30	000733	00881	01042	01217	01406	01609	01826	02058	02304	02565	30
31	00736	00883	01045	01220	01409	01612	01830	02062	02309	02570	29
32	00738	00886	01047	01223	01412	01616	01834	02066	02313	02574	28
33	00740	00888	01050	01226	01416	01619	01838	02070	02317	02579	27
34	00743	00891	01053	01229	01419	01623	01841	02074	02321	02583	26
35	0.00745	00894	01056	01232	01422	01627	01845	02078	02326	02588	25
36	00748	00896	01059	01235	01426	01630	01849	02082	02330	02592	24
37	00750	00899	01062	01238	01429	01634	01853	02086	02334	02597	23
38	00752	00901	01064	01241	01432	01637	01856	02090	02338	02601	22
39	00755	00904	01067	01244	01435	01641	01860	02094	02343	02606	21
40	0.00757	00907	$0!070$	01247	01439	01644	01864	02098	02347	02610	20
41	00759	00909	01073	01250	01442	01648	01868	02102	02351	02615	19
42	00762	00912	01076	01254	01445	01651	01871	02106	02355	112619	18
43	00764	00914	01079	01257	01449	01655	01875	02110	02360	02624	17
44	00767	00917	01081	01260	01452	01658	01879	02114	02364	02628	16
45	0.00769	00920	01084	01263	01455	01662	01883	02118	02368	02633	15
46	00771	00922	01087	01266	01459	01666	01887	02122	02372	02637	14
47	00774	00925	01090	01269	01462	01669	01890	02126	02377	02642	13
48	00776	00928	01093	01272	01465	01673	01894	02130	02381	02647	12
49	00779	00930	01096	01275	01469	01676	01898	02134	02385	02651	11
50	0.00781	00933	01099	01278	01472	01680	01902	02139	02390	02656	10
51	00783	00936	01102	01281	01475	01683	01906	02143	02394	02660	9
52	00786	00938	01104	01285	01479	01687	01910	02147	02398	02665	8
53	00788	00941	01107	01288	01482	01691	01913	02151	02403	02669	7
54	00791	00944	01110	01291	01485	01694	01917	02155	02407	02674	6
55	000793	00946	01113	01294	01489	01698	01921	02159	02411	02678	5
56	00796	00949	01116	01297	01492	01701	01925	02163	02416	02683	4
57	00798	00952	01119	01300	01495	01705	01929	02167	02420	02688	3
58	00800	00954	01122	01303	01499	01709	01933	02171	02424	02692	2
59	00803	00957	01125	01306	01502	01712	01937	02175	02429	02697	1
60	00805	00960	01128	01310	01506	01716	01940	02179	02433	02701	0
	79°	78°	77°	76°	75^{3}	74°	73°	72°	71°	70°	M.
POLAR DISTANCE. CO-SECANT.											

LATITUDE, OR POLAR DISTANCE.
sECANT.

M.	$\begin{gathered} \circ \\ 20 \\ 0 \end{gathered}$	$\stackrel{\circ}{\circ} \stackrel{\circ}{\circ} .111$	$\begin{array}{\|r} \circ \\ 22.11 \stackrel{\circ}{2} \end{array}$	$\stackrel{\circ}{\circ} \stackrel{\circ}{23} .113$	$\text { (○. } \stackrel{\circ}{24.114}$	$\stackrel{\circ}{25.115}$	$\stackrel{\circ}{\circ} \mathrm{o}$	$\begin{array}{rr} \circ \\ \hline 27 & 117 \end{array}$	$\begin{gathered} \circ \\ 28.14 \\ \hline 8 \end{gathered}$	$\begin{gathered} \circ \\ 29.119 \end{gathered}$	
0	0.02701	02985	3283	03597	03927	04272	04634	05012	05407	05818	60
1	02706	02990	03289	03603	03933	04278	04640	05018	05413	05825	59
2	02711	02995	03294	03608	03938	04284	04646	05025	05420	05832	58
3	02715	02999	03299	03613	03944	04290	04652	05031	05427	05839	57
4	02720	03004	03304	03619	03950	04296	04659	05038	05433	05846	56
5	0.02724	3009	03309	03624	03955	04302	04665	05044	05440	05853	5
6	02729	3014	03314	3630	3961	4308	04671	05051	05447	5860	54
7	02734	03019	3319	03635	03966	04314	04677	05057	05454	05867	53
8	02738	03024	03324	03640	03972	04320	04683	05064	05460	05874	52
9	02743	03029	03330	03646	03978	04326	04690	05070	05467	05881	51
10	0.02748	03034	03335	51	03983	4332	4696	05077	74	88	\%
11	02752	03038	3340	03657	03989	04337	04702	05083	05481	05895	49
12	02757	03043	03345	03662	03995	04343	04708	05089	05487	05902	48
13	02762	03048	03350	03667	04000	04349	04714	05096	05494	05910	47
14	02766	03053	03355	03673	04006	04355	04721	05102	05501	05917	46
15	0.02771	3058	360	78	04012	43	4727	05109	5508	5924	45
16	02776	03063	3366	03684	04018	04367	04733	05115	5515	05931	44
17	02780	03068	33	03689	04023	04373	04739	05122	05521	05938	43
18	02785	30	03376	03695	04029	04379	04746	05129	05528	05945	42
19	02790	030	3381	03700	04	04385	04752	05135	05535	05952	41
20	0.02794	03083	03386	03706	04040	04391	04758	2	2	9	40
21	799	03088	03392	03711	04046	04397	04764	05148	05549	05966	39
22	02804	03093	03397	03716	04052	04403	04771	05155	05555	05973	38
23	02308	03097	2	03722	0405	04409	04777	05161	5562	980	37
24	02813	03102	03	03727	04063	04415	047	05168	05569	05988	36
25	0.02818	031	03412	03	4069	4421	04789	5174	05576	5995	35
26.	02822	03112	03418	03738	407	04427	04796	05181	83	002	34
27	02827	031	03423	4	408	04439	04802	05187	05590	06009	33
28	02832	03122	03428	03749	04086	04439	04808	05194	05596	06016	32
29	02837	03127	03433	03755	04092		048	05201	05603	06023	31
30	0.028	03132	03438	03760	04098	04451	04821	05207	56	30	30
31	02846	03137	0344	03766	04103	04457	04827	05214	05617	06037	29
32	02851	03142	03449	03771	04109	044	04833	5220	5624	6045	28
33	2855	031	0345	03	04115	04469	04840	05227	05631	052	27
34	02860	03152	034	03782	04121	044	048	05233	05638	06059	26
35	0.02865	3157	03465	03788	0412	04481	04852		5645	066	25
36	02870	03162	03470	03793	04132	04487	04859	05247	05651	06073	24
37	02874	03167	03475	03799	04138	04493	0486	05253	05658	06080	23
38	02879	03172	0348	03804	04144	04500	04871	05260	05665	06088	22
39	02884	03177	03486	03810	04150	04506	04878	05266	05672	06095	21
40	0.02889	03182	03491	03815	04156	04512	48	3	05679	6102	0
41	02893	03187	03496	03821	04161	04518	0489	5280	5686	06109	19
42	02898	03192	03502	03826	04167	04524	04897	$052{ }^{\circ}$	5693	06116	18
43	02903	03197	03507	03832	04173	04530	04903	05293	05700	06124	17
44	02908	03202	03512	03838	04179	045	04910	05300	05707	06131	16
45	0.02913	03207	03517	843	04185	4542	04916	5306	5714	6138	15
46	02917	03212	03523	03849	04190	04548	04922	05315	05721	06145	14
47	02922	03217	03528	03854	04196	04554	04929	05320	05727	06153	13
48	02927	03222	03533	03860	04202	04560	04935	05326	05734	06160	12
49	02932	03228	03539	03865	04208	04566	04941	05333	05741	06167	11
50	0.02937	032		03871	04214	4573	04948	5340	5748	6174	10
51	02941	03238	03549	03877	04220	04579	04954	05346	05755	06181	
52	02946	03243	03555	03882	04225	04585	04961	05353	05762	06189	8
53	02951	03248	03560	03888	04231	04591	04967	05360	05769	06196	7
54	02956	03253	03565	03893	04237	04597	04973	05366	05776	06203	6
55	0.02961	03258	03571	899	4243	04603	04980	5373	5783	6211	5
56	02965	03263	03576	03905	04249	04609	04986	05380	05796	06218	4
57	02970	03268	03581	03910	04255	04616	04993	05386	05797	06225	3
58	02975	03273	03587	03916	04261	04622	04999	05393	05804	06232	2
50	02980	03278	03592	03921	04267	04628	05005	05400	05811	06240	1
$6{ }^{6}$	02985	03283	03597	03927	04272	04634	05012	05407	05818	06247	0
	69°	68°	67°	66°	65	64°	63°	62°	61^{*}	60°	M.
polar distance.											

LOGARITHMS OF THE LATITUDE AND POLAR DISTANCE.
latitude, or polar distance.
secant

TABLE XXVII.
LOGARITHMS OF THE LATITUDE AND POLAR DISTANCE.
LATITUDE, OR POLAR DISTANCE.
SECANT.

M.	$\begin{array}{rr} \circ \\ 40 & \text { or } 130 \end{array}$	$\left\lvert\, \begin{array}{rr} \circ & 0 \\ 41.131 \end{array}\right.$	$\begin{array}{rr} \circ \\ 42.132 \end{array}$	$\begin{array}{r} \circ \\ 43.133 \end{array}$	$\begin{gathered} \circ \\ 44.13 \\ \hline \end{gathered}$	$\stackrel{\circ}{\circ} \mathrm{o}$	$\begin{gathered} \circ \\ 46.136 \end{gathered}$	$\begin{array}{r} \circ \\ 47.137 \\ \hline \end{array}$	$\begin{array}{r} \circ \\ 48.138 \end{array}$	$\begin{array}{rr} \circ \\ 49.139 \end{array}$	
0	0.11575	12222	12893	13587	14307	15051	15823	16622	17449	18306	60
1	11585	12233	12904	13599	14319	15064	15836	16635	17463	18320	59
2	11596	12244	12915	13611	14331	15077	15849	16649	17177	18335	5ε
3	11606	12255	12927	13623	14343	15089	15862	16662	17491	18349	57
4	11617	12266	12938	13634	14355	15102	15875	. 16676	17505	18364	56
5	0.11628	12277	12950	13646	14368	15115	15888	16689	17519	18378	55
6	11638	12288	12961	13658	14380	15127	15901	16703	17533	18393	54
8	11649	12299	12972	13670	14392	15140	15915	16717	17547	18408	53
8	11660	12310	12984	13682	14404	15153	15928	16730	17561	18422	52
9	11670	12321	12995	13694	14417	1.5165	15941	16744	17576	18437	51
10	0.11681	12332	13007	13705	14429	15178	15954	16758	17590	18451	50
11	11692	12343	13018	13717	14441	15191	15967	16771	17604	18466	49
12	11702	12354	13030	13729	14453	15204	15980	16785	17618	18481	48
13	11713	12365	13041	13741	14466	15216	15994	16798	17632	18495	47
14	11724	12376	13053	13753	14478	15229	16007	16812	17646	18510	46
15	0.11734	12387	13064	13765	14490	15242	16020	16826	17660	18525	45
16	11745	12399	13076	13777	14503	15255	16033	16839	17674	18539	44
17	11756	12410	13087	13789	14515	15267	16046	16853	17689	18554	43
18	11766	12421	13098	13800	14527	15280	16060	16867	17703	18569	42
19	11777	12432	13110	13812	14540	15293	16073	16880	17717	18583	41
20	0.11788	12443	13121	13824	14552	15306	16086	16894	17731	18598	40
21	11799	12454	13133	13836	14564	15318	16099	16908	17745	18613	39
22	11809	12465	13145	13848	14577	15331	16113	16922	17760	18628	38
23	11820	12476	13156	13860	14589	15344	16126	16935	17774	18642	37
24	11831	12487	13168	13872	14601	15357	16139	16949	17788	18657	36
25	0.11842	12499	13179	13884	14614	15370	16152	16963	17802	18672	35
26	11852	12510	13191	13896	14626	15382	16166	16977	17816	18686	34
27	11863	12521	13202	13908	14639	15395	16179	16990	17831	18701	33
28	11874	12532	13214	13920	14651	15408	16192	17004	17845	18716	32
29	11885	12543	13225	13932	14663	15421	16205	17018	17859	18731	31
30	0.11895	12554	13237	13944	14676	15434	16219	17032	17874	18746	30
31	11906	12566	13248	13956	14688	15447	16232	17045	17888	18760	29
32	11917	12577	13260	13968	14701	15460	16245	17059	17902	18775	28
33	11928	12588	13272	13980	14713	15472	16259	17073	17916	18790	27
34	11939	12599	13283	13992	14726	15485	16272	17087	17931	18805	26
35	0.11949	12610	13295	14004	14738	15498	16285	17101	17945	18820	25
36	11960	12622	13306	14016	14750	15511	16299	17115	17959	18834	24
37	11971	12633	13318	14028	14763	15524	16312	17128	17974	18849	23
38	11982	12644	13330	14040	14775	15537	16326	17142	17988	18864	22
39	11993	12655	13341	14052	14788	15550	16339	17156	18002	18879	21
40	0.12004	12666	13353	14064	14800	15563	16352	17170	18017	18894	20
41	12015	12678	13365	14076	14813	15576	16366	17184	18031	18909	19
42	12025	12689	13376	14088	14825	15589	16379	17198	18045	18924	18
43	12036	12700	13388	14100	14838	15602	16392	17212	18060	18939	17
44	12047	12712	13400	14112	14850	15615	16406	17225	18074	18954	16
45	0.12058	12723	13411	14124	14863	15627	16419	17239	18089	18968	15
46	12069	12734	13423	14136	14875	15640	16433	17253	18103	18983	14
47	12080	12745	13435	14149	14888	15653	16446	17267	18118	18998	13
48	12091	12757	13446	14161	14900	15666	16460	17281	18132	19013	12
49	12102	12768	13458	14173	14913	15679	16473	17295	18146	19028	11
50	0.12113	12779	13470	14185	14926	15692	16487	17309	18161	19043	10
51	12123	12791	13482	14197	14938	15705	16500	17323	18175	19058	9
52	12134	12802	13493	14209	14951	15718	16514	17337	18190	19073	8
53	12145	12813	13505	14221	14963	15731	16527	17351	18204	19088	7
54	12156	12825	13517	14234	14976	15745	16541	17365	18219	19103	6
55	0.12167	12836	13528	14246	14988	15758	16554	17379	18233	19118	5
56	12178	12847	13540	14258	15001	15771	16568	17393	18248	19133	4
57	12189	12859	13552	14270	15014	15784	16581	17407	18262	19148	3
58	12200	12870	13564	14282	15026	15797	16595	17421	18277	19163	2
59	12211	12881	13575	14294	15039	15810	16608	17435	18291	19178	1
60	12222	12893	13587	14307	15051	15823	16622	$17 \div 49$	18306	19193	0
	49°	48°	47°	46°	45°	44°	43°	42°	41°	40°	M.
polar distance.											

LOGARITHMS OF THE LATITUDE AND POLAR DISTANCE.
LATITUDE.
SRCANT.

M.	50°	51	52	$5{ }^{\circ}$	54	$5{ }^{\circ}$	56	$\begin{array}{r} \circ \\ 57 \\ \hline \end{array}$	58°	$\begin{array}{r} \circ \\ 59 \end{array}$	
0	0.19193	20113	21066	22054	23078	24141	25244	26389	27579	28816	60
1	19208	20128	21082	22070	23096	24159	25263	26409	27599	28837	59
2	19223	20144	21098	22087	23113	24177	25281	26428	27619	28858	58
	19238	20160	21114	22104	23130	24195	25300	26448	27640	28879	57
4	19254	20175	21131	22121	23148	24213	25319	26467	27660	28900	56
5	0.19269	20191	21147	22138	23165	24231	25338	26487	27680	28921	55
6	19284	20207	21163	22154	23183	24249	25356	26506	27701	28942	54
7	19299	20222	21179	22171	23200	24267	25375	26526	27721	28964	53
8	19314	20238	21195	22188	23218	24286	25394	26545	27741	28985	52
9	19329	20254	21212	22205	23235	24304	25413	26565	27762	29006	51
10	0.19344	20269	21228	22222	23253	24322	25432	26584	27782	29027	50
11	19359	20285	21244	22239	23270	24346	25451	26604	27802	29048	49
12	19374	20301	21261	22256	23288	24358	25469	26623	27823	29069	48
13	19390	20316	21277	22273	23305	24376	25488	26643	27843	29091	47
14	19405	20332	21293	22289	23323	24395	25507	26663	27863	$2911{ }^{2}$	46
15	0.19420	20348	21309	22306	23340	24413	25526	26682	27884	29133	45
16	19435	20364	21326	22323	23358	24431	25545	26702	27904	29154	44
17	19450	20379	21342	22340	23375	24449	25564	26722	27925	29176	43
18	19466	20395	21358	22357	23393	24467	25583	26741	27945	29197	42
19	19481	20411	21375	22374	23410	24486	25602	26761	27966	29218	41
20	0.19496	20427	21391	22391	23428	24504	25621	26781	27986	29239	40
21	19511	20442	21408	22408	23446	24522	25640	26800	28006	29261	39
22	19527	20458	21424	22425	23463	24541	25659	26820	28027	29282	38
23	19542	20474	21440	22442	23481	24559	25678	26840	28048	29303	37
24	19557	20490	21457	22459	23499	24577	25697	26860	28068	29325	36
25	0.19572	20506	21473	22476	23516	24595	25716	26879	28089	29346	35
26	1958	20522	21490	22493	3534	24614	25735	26899	28109	29367	34
27	19603	20537	21506	22510	23552	24632	25754	26919	28130	29389	33
28	19618	20553	21522	22257	23569	24650	25773	26939	28150	29410	32
29	19634	20569	21539	22544	23587	24669	25792	26959	28171	29432	31
30	0.19649	20585	21555	22561	23605	24687	25811	26978	28191	29453	30
31	19664	20601	21572	22578	23622	24706	25830	26998	28212	29475	29
32	19680	20617	21588	22595	23640	24724	25849	27018	28233	29496	28
33	19695	20633	21605	22613	23658	24742	25868	27038	28253	29518	27
34	19710	20649	21621	22630	23676	24761	25887	27058	28274	29539	26
35	0.19726	20665	21638	22647	23693	24779	25907	27078	28295	29561	25
36	19741	20681	21654	22664	23711	24798	25926	27098	28315	29582	24
37	19756	20696	21671	22681	23729	24816	25945	27117	28336	29604	23
38	19772	20712	21687	22698	23747	24835	25964	27137	28357	29625	22
39	19787	20728	21704	22715	23764	24853	25983	27157	28378	29647	21
40	0.19803	20744	21720	22732	23782	24872	26003	27177	28398	29668	20
41	19818	20760	21737	22750	23800	2489	26022	27197	28419	29690	19
42	19834	20776	21754	22767	23818	24909	26041	27217	28440	29712	18
43	19849	20792	21770	22784	23836	24927	26060	27237	28461	29733	17
44	19864	20808	21787	22801	23854	24946	26079	27257	28481	29755	16
45	0.19880	20824	21803	22819	23871	24964	26099	27277	28502	29776	15
46	19895	20840	21820	22836	23889	24983	26118	27297	28523	29798	14
47	19911	20856	21837	22853	23907	25001	26137	27317	28544	29820	13
48	19926	20872	21853	22870	23925	25020	26157	27337	28565	29841	12
49	19942	20889	21870	22888	23943	25039	26176	27350	28586	29863	11
50	0.19957	20905	21887	22905	23961	25057	26195	27378	28607	29885	10
51	19973	20921	21903	22922	23979	25076	26215	27398	28627	29907	9
52	19988	20937	21920	22939	23997	25094	26234	27418	28648	29928	8
53	20004	20953	21937	22957	24015	25113	26253	27438	28669	29950	7
54	20019	20969	21953	2974	24033	25132	26273	27458	28690	2997	6
55	0.20035	20985	21970	22991	24051	25150	26292	27478	28711	29994	5
56	20050	21001	21987	23009	24069	25169	26311	27498	28732	30016	
57	20066	21017	22003	23026	24087	25188	26331	27518	28753	30037	3
58	20082	21033	22020	23043	24105	25206	26350	27539	28774	30059	2
59	20097	21050	22037	23061	24123	25225	26370	27559	28795	30081	1
60	20113	21066	22054	23078	24141	25244	26389	27579	28816	30103	0
	39°	38°	37°	36°	35°	34°	33°	32°	31°	30°	M.
POLAR DISTANCE. CO-SECA											

LOGARITHMS OF THE LATITUDE AND POLAR DISTANOE.
LATITUDE.
SECANT.

M.	60°	61	62	63	64	65°	$6{ }^{\circ}$	67	68	$\begin{array}{r} \circ \\ 69 \\ \hline \end{array}$	
0	0.30103	31443	32839	34295	35816	37405	39069	40812	42642	44567	60
1	30125	31466	32863	34320	35842	37432	39097	40842	42674	44600	59
2	30147	31488	32887	34345	35868	37459	39125	40872	42705	44633	58
3	30169	31511	32910	34370	35894	37487	39154	40902	42736	44666	57
4	30191	31534	32934	34395	35920	37514	39182	40931	42768	44699	56
5	0.30213	31557	32958	34420	359	37	392	40961	42799	44732	55
6	30235	31580	32982	34444	35972	37568	39239	40991	42831	44765	54
7	30257	31603	33006	34469	35998	37595	39268	41021	42862	44798	53
8	30279	31626	33030	34494	36024	37623	39296	41051	42893	44831	52
9	30301	31649	33054	34519	36050	37650	39325	41081	42925	44864	51
10	0.30323	31672	33078	34544	6076	37677	354	41111	42956	44898	50
11	30345	31695	33101	34569	36102	37704	39382	41141	42988	44931	49
12	30367	31718	33125	34594	36128	37732	39411	41171	43020	44964	48
13	30389	31740	33149	34619	36154	37759	39439	41201	43051	44997	47
14	30411	31763	33173	34644	36180	37786	39468	41231	43083	45031	46
15	0.30433	31787	33197	34669	36206	37814	39497	41261	43114	45064	45
16	30455	31810	33221	34694	36233	37841	39526	41291	43146	45097	44
17	30477	31833	33245	34719	36259	37869	39554	41322	43178	45131	43
18	30499	31856	33269	34745	36285	37896	39583	41352	43210	45164	42
19	30521	31879	33294	34770	36311	37924	39612	41382	43241	45198	41
20	0.30544	31902	33318	34795	6338	7951	39641	41412	43273	45231	40
21	30566	31925	33342	34820	6364	37979	39669	41443	43305	45265	39
22	30588	31948	33366	34845	36390	38006	39698	41473	43337	45298	38
23	30610	31971	33390	34870	36417	38034	39727	41503	43369	45332	37
24	30632	31994	33414	34896	36443	38061	39756	41533	43401	45365	36
25	0.30655	32018	33438	21	36469	89	39785	4	43432	9	35
26	30677	32041	33463	34946	36496	38117	39814	41594	43464	45433	34
27	30699	32064	33487	34971	36522	38144	39843	41625	43496	45466	33
28	30721	32087	33511	34997	36549	38172	39872	41655	43528	45500	32
29	30744	32110	33535	35022	36575	38200	39901	41686	43560	45534	31
30	0.30766	32134	33559	35047	36602	38227	39930	41716	92	45567	30
31	30788	32157	33584	35073	6628	38255	39959	41747	43625	45601	29
32	30811	32180	33608	35098	36655	38283	39988	41777	43657	45635	28
33	30833	32204	33632	35123	36681	38311	40017	41808	43689	45669	27
34	30856	32227	33657	35149	36708	38338	40046	41838	43721	45703	26
35	0.30878	32250	33681	35174	36734	38366	40076	41869	43753	45737	25
36	30900	32274	33705	35200	36761	38394	40105	41899	43785	45771	24
37	30923	32297	33730	35225	36787	38422	40134	41930	43818	45805	23
38	30945	32320	33754	35251	36814	38450	40163	41961	43850	45839	22
39	30968	32344	33779	35276	36841	38478	40192	41992	43882	45873	21
40	0.30990	32367	33803	35302	36867	38506	40222	42022	5	45907	0
41	31013	32391	33827	35327	36894	38534	40251	42053	43947	45941	19
42	31035	32414	33852	35353	36921	38562	40280	42084	43979	45975	18
43	31058	32438	33876	35378	36948	38590	40310	42115	44012	46009	17
44	31080	32461	33901	35404	36974	38618	40339	42145	44044	46043	16
45	0.31103	32485	33925	35429	37001	8646	40368	42176	44077	46078	15
46	31125	32508	33950	35455	37028	38674	40398	42207	44109	46112	14
47	31148	32532	33975	35481	37055	38702	40427	42238	44142	46146	13
48	31171	32555	33999	35506	37082	38730	40457	42269	44174	46181	12
49	31193	32579	34024	35532	37108	38758	40486	42300	44207	46215	11
50	0.31216	32602	34048	35558	37135	38786	40516	42331	44239	46249	10
51	31238	32626	34073	35583	37162	38814	40545	42362	44272	46284	
52	31261	32650	34098	35609	37189	38842	40575	42393	44305	46318	8
53	31284	32673	34122	35635	37216	38871	40604	42424	44337	46353	7
54	31306	32697	34147	35661	37243	38899	40634	42455	44370	46387	6
55	0.31329	32720	34172	35687	37270	38927	40664	42486	44403	46422	5
56	31352	32744	34196	35712	37297	38955	40693	42518	44436	46456	5
57	31375	32768	34221	35738	37324	38984	40723	42549	44468	46491	3
58	31397	32792	34246	35764	37351	39012	40753	42580	44501	46525	2
59	31420	32815	34271	35790	37378	39040	40782	42611	44534	46560	1
60	31443	32839	34295.	35816	37405	39069	40812	42642	44567	46595	0
	29	28^{\prime}	27°	26°	$\underline{9} 5^{\circ}$	24	23°	22°	21°	20°	M.
POIAR DISTANCE.										CO-SECANT.	

LOGARITHMS O										SEGANT.	
M.	$7{ }^{\circ}$	71	$7{ }^{\circ}$	73	$7 \stackrel{\circ}{4}^{\circ}$	75	$\begin{array}{r} \circ \\ 76 \end{array}$	$7{ }^{\circ}$	$\begin{array}{r} \circ \\ 78 \end{array}$	79	
0	0.46595	48736	51002	53406	55966	58700	61632	64791	68212	71940	60
1	46630	48773	51041	53448	56010	58748	61683	64846	68272	72005	59
2	46664	48809	51080	53489	56054	58795	61734	64901	68331	7207 a	58
3	46699	48846	51119	53531	56099	58842	61785	64956	68391	72136	57
4	46734	48883	51158	53572	56143	58890	61836	65011	68451	72201	56
5	0.46769	48920	51197	53614	56187	58937	61887	65066	68510	72266	55
6	46804	48957	51236	53655	56231	58984	61938	65121	68570	72332	54
7	46839	48993	51275	53697	56276	59032	61989	65176	68630	72398	53
8	46874	-49030	51314	53738	56320	59079	62040	65231	68690	72463	52
9	46908	49067	51353	53780	56365	59127	62091	65287	68750	72529	51
10	0.46944	49104	51393	53822	56409	59175	62142	65342	68811	72595	50
11	46979	49142	51432	53864	56454	59222	62194	65398	68871	72661	49
12	47014	49179	51471	53905	56498	59270	62245	65453	68932	72727	48
13	47049	49216	51510	53947	56543	59318	62297	65509	68992	72794	47
14	47084	49253	51550	53989	56588	59366	62348	65564	69053	72860	46
15	0.47119	49290	51589	54031	56633	59414	62400	65620	69113	72927	45
16	47154	49327	51629	54073	56677	59462	62451	65676	69174	72993	44
17	47189	49365	51668	54115	56722	59510	62503	65732	69235	73060	43
18	47225	49402	51708	54157	56767	59558	62555	65788	69296	73127	42
19	47260	49439	51748	54199	56812	59606	62607	65844	69357	73194	41
20	0.47295	49477	51787	54242	56857	59654	62659	65900	69418	73261	40
21	47331	49514	51827	54284	56902	59703	62711	65957	69479	73328	39
22	47366	49551	51867	54326	56947	59751	62763	66013	69541	73395	38
23	47402	49589	51906	54368	56992	59800	62815	66069	69602	73462	37
24	47437	49626	51946	54411	57038	59848	62867	66126	69664	73530	36
25	0.47473	49664	51986	54453	57083	59897	62919	66182	69725	73597	35
26	47508	49702	52026	54496	57128	59945	62972	66239	69787	73665	34
27	47544	49739	52066	54538	57174	59994	63024	66296	69849	73733	33
28	47579	49777	52106	54581	57219	60042	63076	66353	69910	73801	32
29	47615	49815	52146	54623	57265	60091	63129	66409	69972	73869	31
30	0.47650	49852	52186	54666	57310	60140	63181	- 66466	70034	73937	30
31	47686	49890	52226	54708	57356	60189	63234	66523	70097	74005	29
32	47722	49928	52266	54751	57401	60238	63287	66580	70159	74073	28
33	47758	49966	52306	54794	57447	60287	63340	66638	70221	74142	27
34	47793	50004	52346	54837	57493	60336	63392	66695	70284	74210	26
35	0.47829	50042	52387	54880	57539	60385	63445	66752	70346	74279	25
36	47865	50080	52427	54923	57584	60434	63498	66810	70409	74348	24
37	47901	50118	52467	54965	57630	60483	63551	66867	70471	74417	23
38	47937	50156	52508	55008	57676	60533	63605	66925	70534	74486	22
39	47973	50194	52548	55052	57722	60582	63658	66982	70597	74555	21
40	0.48009	50232	52589	55095	57768	60631	63711	67040	70660	74624	20
41	48045	50270	52629	55138	57814	60681	63764	67098	70723	74693	19
42	48081	50308	52670	55181	57860	60730	63818	67156	70786	74763	18
43	48117	50346	52710	55224	57907	60780	63871	67214	70850	74832	17
44	48153	50385	52751	55267	57953	60830	63925	67272	70913	74902	16
45	0.48189	50423	52791	55311	57999	60879	63978	67330	70976	74972	15
4 K	48226	50461	52832	55354	58046	60929	64032	67388	71040	75042	14
47	48262	50500	52873	55398	68092	60979	64086	67447	71104	75112	13
48	48298	50538	52914	55441	58139	61029	64140	67 6u5	71167	75182	12
49	48334	50576	52955	55484	58185	61079	64194	67563	71231	75252	11
50	0.48371	50615	52995	55528	58232	61129	64248	67622	71295	75323	$: 0$
51	48407	50653	53036	55572	58278	61179	64302	67681	71359	75393	9
52	48443	50692	53077	55615	58325	61229	64356	67739	71423	75464	8
53	48480	50731	53118	55659	58372	61279	64410	67798	71488	75534	7
54	48516	50769	53159	55703	58418	61330	64464	67857	71552	75605	6
55	0.48553	50808	53200	55747	48465	61380	64519	67916	71616	75676	5
56	48589	50847	53242	55790	58512	61430	64573	67975	71681	75747	4
57	48626	50885	53283	55834	58559	61481	64627	68034	71746	75819	3
58	48662	50924	53324	55878	58606	61531	64682	68093	71810	75890	2
59	48699	50963	53365	55922	58653	61582	64737	68153	71875	75961	1
60	48736	51002	53406	55966	58700	61632	64791	68212	71940	76033	0
	19°	18°	17°	16°	15°	14°	13°	12°	11°	10°	M.
					Lar	tance.				O-SE	

LOGARITHMS OF THE LATITUDE AND POLAR DISTANOE

latitude.

SECANT.

LOGARITHMS OF THE HALF SUM AND DIFFERENCE.
HALF SUM.
CO-SINE.

M.	89	88°	87	80°	85	$8 \stackrel{\circ}{4}^{\circ}$	$8{ }^{\circ}$	8	81	80	
0	324186	3512823	3.718803	3.84358 3	3.940304	4.019234	4.08589	14356	19433	23967	60
1	23456	53919	71638	84177	93885	01803	08486	14266	19353	23895	59
2	22713	53553	71395	83996	93740	01682	08383	14175	19273	23823	58
3	21958	53183	71151	83813	93594	01561	08280	14085	19193	23752	57
4	21189	52810	70905	83630	93448	01.140	08176	13994	19113	23679	56
5	3.20407	. 524343	3.706583	3.83446	3.933014	4.013184	4.08072	13904	19033	23607	55
6	19610	52055	70409	83261	93154	01196	07968	13813	18952	23535	54
7	18799	51673	70159	83075	93007	01074	07863	13722	18871	23462	53
8	17971	51287	69907	82888	92859	00951	07758	13630	18790	23390	52
9	17128	50897	$\underline{69654}$	82701	92710	00828	07653	13539	18709	23317	51
10	3.16268	505053	3.694003	3.825133	3.925614	4.00704 4	4.07548	13447	18628	23244	50
11	15391	50108	69144	82324	92411	00581	07442	13355	18547	23171	49
12	14495	49708	68886	82134	92261	00456	07337	13263	18465	23098	48
13	13581	49304	68627	81944	92110	00332	07231	13171	18383	23025	47
14	12647	48896	68367	81752	91959	00207	07124	13078	18302	22952	46
15	3.11693	48485	3.681043	3.815603	3.918074	4.00082	4.07018	12985	18220	22878	45
16	10717	48069	67841	81367	91655	3.99956	06911	12892	18137	22805	44
17	09718	47650	67575	81173	91502	99830	06804	12799	18055	22731	43
18	08696	47226	67308	80978	91349	99704	06696	12706	17973	22657	42
19	07650	46799	67039	80782	91195	99577	06589	12612	17890	22583	41
20	3.06578	3.46367	3.667693	3.80585	3.91040	3.99450	4.06481	12519	17807	22509	40
21	05478	45930	66497	80388	90885	99322	06372	12425	17724	22435	39
22	04350	45489	66223	80189	90730	99194	06264	12331	17641	22361	38
23	03192	45044	65947	79990	90574	9	06155	12236	17558	22286	37
24	02002	44594	65670	79789	90417	98937	06046	12142	17474	22211	36
25	3.00779	3.44139	3.65391	3-79588	3.90260	3.98808	4.05937	12047	17391	22137	35
26	2.99520	43680	- 65110	79386	90102	98679	05827	11952	17307	22062	34
27	98223	43216	64827	79183	89943	98549	05717	11857	17223	21987	33
28	96887	42746	64543	78979	89784	98419	05607	11761	17139	21912	32
29	95508	42272	64256	78774	89625	98288	05497	11666	17055	21836	31
30	2.94084	3.41792	3.63968	3.78568	3.89464	3.98157	4.05386	11570	16970	21761	30
31	92612	41307	-63678	78361	89304	98026	05275	11474	16886	21685	29
32	91088	40816	63385	-78152	89142	97894	05164	11377	16801	21610	28
33	89509	40320	63091	17943	88980	97762	05052	11281	16716	21534	27
34	87870	39818	62795	577733	88817	97629	04940	11184	16631	21458	26
35	2.86166	3.39310	3.62497	3.77522	3.88654	3.97496	4.04828	11087	16545	21382	25
36	84393	38796	6 62196	677310	-88490	97363	04715	10990	16460	21306	24
37	82545	38276	6.61894	477097	88326	97229	04603	10893	16374	21229	23
38	80615	37750	61589	76883	88161	97095	04490	10795	16289	21153	22
39	78594	37217	761282	76667	87995	96960	04376	10697	16203	21076	21
40	2.76475	3.36678	83.60973	33.76451	13.87829	3.96825	4.04262	10599	16116	20999	20
41	74248	36132	260662	276234	487661	96689	04149	10501	16030	20922	19
42	71900	35578	860349	976015	587494	96553	04034	10402	15944	20845	18
43	69417	35018	860033	375796	687325	96417	03920	10304	15857	20768	17
44	66784	34450	- 59715	$5 \quad 75575$	587156	96280	03805	10205	15770	20691	16
45	2.63982	3.33875	$5 \longdiv { 3 . 5 9 3 9 5 }$	53.75353	3.86987	3.96143	4.03690	: 0106	15683	20613	15
46	60985	33292	259072	275130	- 86816	96005	03574	10006	15596	20535	14
47	57767	32702	258747	774906	6 86645	95867	03458	09907	15508	20458	13
48	54291	32103	358419	974680	- 86474	95728	こうड̄42	09807	15421	20330	12
49	50512	31495	5 58089	9 74454	$4-86301$	50589	-03226	09707	15333	20302	11
50	2.46373	3.30879	93.57757	73.74226	$6,3.86128$	3.95450	4.03109	09606	15245	20223	10
51	41797	30255	57421	173997	785955	95310	02992	09506	15157	20145	9
52	36682	29621	157084	$4 \quad 73767$	785780	95170	02874	09405	15069	20067	8
53	30882	28927	756743	$3 \quad 73535$	585605	95029	02757	09304	14980	19988	7
54	24188	28324	456400	0 7330.	- 85429	94887	02639	09202	14891	19909	6
55	2. 16270	3.27661	1.3 .56054	4.3 .73069	93.85252	$\widehat{3.94746}$	4.02520	09101	14803	19830	5
56	06579	26988	855705	572834	485075	94603	02402	08999	14714	19751	4
57	1.94085	26304	455354	472597	784897	94461	02283	08897	14624	19672	3
58	76476	- 25609	94999	972360	O 84718	94317	02163	08795	14535	19592	2
59	46373	24903	354642	272120	O 84539	94174	02043	08692	14445	19513	1
60	10000	24186	6 51282	$2 \quad 71880$	O 84358	94030	01923	08589	14356	19433	0
	0°	1°	2°	3°	4°	$5{ }^{\circ}$	$6^{\text {c }}$	7°	8°	9°	M.
DIFFERENCE.											

HALF SUM.

M.	79	78	$7{ }^{\circ}$	$7{ }^{\circ}$	$7{ }^{\circ}$	$\begin{array}{r} \circ \\ 74 \end{array}$	$\begin{array}{r} \circ \\ 73 \end{array}$	$7{ }_{2}^{\circ}$	71	$\begin{aligned} & \circ \\ & 70 \end{aligned}$	
0	4.28060	31788	35209	38368	41300	44034	46594	48998	51264	53405	50
1	27995	31728	35154	38317	41252	43990	46552	48959	51227	53370	59
2	27930	31669	35099	38266	41205	43946	46511	48920	51191	53336	58
3	27864	31609	35044	38215	41158	43901	46469	48881	51154	53301	57
4	27799	31549	34989	38164	41110	43857	46428	48842	51117	53266	56
5	4.27734	31490	34934	38113	41063	43813	46386	48803	51080	53231	55
6	27668	31430	34879	38062	41016	43769	46345	48764	51043	53196	54
7	27602	31370	34824	38011	40968	43724	46303	48725	51007	53161	53
8	27537	31310	34769	37960	40921	43680	46262	48686	50970	53126	52
9	27471	31250	34713	37909	40873	43635	46220	48647	50933	53092	51
10	4.27405	31189	34658	37858	40825	43591	46178	48607	50896	53056	50
11	27339	31129	34602	37806	40778	43546	46136	48568	50858	53021	49
12	27273	31068	34547	37755	40730	43502	46095	48529	50821	52986	48
13	27206	31008	34491	37703	40682	43457	46053	48490	50784	52951	47
14	27140	30947	34436	37652	40634	43412	46011	48450	50747	52916	46
15	4.27073	30887	34380	37600	40586	43367	45969	48411	50710	52881	45
16	27007	30826	34324	37549	40538	43323	45927	48371	50673	52846	44
17	26940	30765	34268	37497	40490	43278	45885	48332	50635	52811	43
18	26873	30704	34212	37445	40442	43233	45843	48292	50598	52775	42
19	26806	30643	34156	37393	40394	43188	45801	48252	50561	52740	41
20	4.26739	30582	00	37341	40346	43143	45758	8213	0523	52705	0
21	26672	30521	34043	37289	40297	43098	45716	48173	50486	52669	39
22	26605	30459	33987	37237	40249	43053	45674	48133	50449	52634	38
23	26538	30398	33931	37185	40200	43008	45632	48094	50411	52598	37
24	26470	30336	33874	37133	40152	42962	45589	48054	50374	52563	36
25	4.26403	30275	33818	37081	40103	42917	45547	48014	50336	52527	35
26	26335	30213	33761	37028	40055	42872	45504	47974	0298	52492	34
27	26267	30151	33704	36976	40006	42826	45462	47934	50261	52456	33
28	26199	30090	33647	36924	39958	42781	45419	47894	50223	52421	32
29	26131	30028	33591	36871	39909	42735	45377	47854	50185	52385	31
30	4.26063	29	33534	36	39860	42690	45334	47814	148	52350	30
31	25995	29903	33477	36766	39811	42644	45292	47574	50110	52314	29
32	25927	29841	33420	36713	39762	42599	45249	47734	50072	52278	28
33	25858	29779	33362	36660	39713	42553	45206	47694	034	52242	27
34	25790	29716	33305	36608	39664	42507	45163	47654	49996	52207	26
35	4.25721	29654	33248	36555	9615	42461	45120	61	9958	52171	25
36	25652	29591	33190	36502	39566	42416	45077	47573	49920	52135	24
37	25583	29529	33133	36449	39517	42370	45035	47533	49882	52099	23
38	25514	29466	33075	36395	39467	42324	44992	47492	49844	52063	22
39	25445	29403	33018	36342	39418	42278	44948	47452	49806	52027	21
40	4.25376	29340	32960	36289	39369	42232	44905	47411	49768	51991	20
41	25307	29277	32902	36236	39319	42186	44862	47371	49730	51955	19
42	25237	29214	32844	36182	39270	42140	44819	47330	49692	51919	18
43	9,5168	29150	32786	36129	39220	42093	44776	47290	49654	51883	17
44	25098	29087	32728	36075	39170	42047	44733	47249	49615	51847	16
45	4.25028	29024	32670	6022	9121	42001	44689	47209	49577	51.811	15
46	24958	28960	32612	35968	39071	41954	44646	47168	49539	51774	14
47	24888	28896	32553	35914	39021	41908	44602	47127	49500	51738	13
48	24818	28833	32495	35860	38971	41861	44559	47086	49462	51702	12
49	24748	28769	32437	35806	38921	41815	44516	47045	49424	51666	11
50	4.24677	28705	32378	35752	38871	41768	44472	47005	49385	51629	10
51	24607	28641	32319	35698	38821	41722	44428	46964	49347	51593	9
52	24536	28577	32261	35644	38771	41675	44385	46923	49308	51557	8
53	24466	28511	32202	35590	38721	41628	44341	46882	49269	51520	7
54	24395	23448	32143	35536	38670	41582	4429	46841	4923	5148	6
55	4.24324	28384	32084	35481	38620	41535	44253	46800	49192	51447	5
56	24253	28319	32025	35427	38570	41488	44210	46758	49153	51411	4
57	24181	28254	31966	35373	38519	41441	44166	46717	49115	51374	3
58	24110	28190	31907	35318	38469	41394	44122	46676	49076	51338	2
59	24039	28125	31847	35263	38418	41347	44078	46635	49037	51301	1
60	23967	28060	31789	35209	38368	41300	44034	46594	48998	51264	0
	10°	11°	12°	13°	14°	15°	16°	17°	18°	19°	M.
DIFFERENCE.											

	110	TABLE XXVIII. LOGARITHMS OF THE HALF SUM AND DIFFERENCE. half sum.								co-sine.	
M.	59°	$\begin{array}{r} \circ \\ 58 \end{array}$	57	56	$\begin{array}{r} \circ \\ 55 \end{array}$	54	$\begin{array}{r} \circ \\ 53 \end{array}$	52	51	50	
0	4.71184	72421	73611	74756	75859	76922	77946	78934	79887	80807	
1	71163	72401	73591	74737	75841	76904	77930	78918	79872	80792	59
2	71142	72381	73572	74719	75823	76887	77913	78902	79856	807×7	58
3	71121	72360	73552	74700	75805	76870	77896	78886	79840	80762	57
4	71100	72340	73533	74681	75787	76852	77879	78869	79825	90746	56
5	4.71079	72320	73513	74662	75769	76835	77862	78853	79809	80731	5
6	71058	72299	73494	74644	75751	76817	77846	78837	79793	80716	54
7	71036	72279	73474	74625	75733	76800	77829	78821	79778	80701	53
8	71015	72259	73455	74606	75714	76782	77812	78805	79762	80686	52
9	70994	72238	73435	74587	75696	76755	77795	78788	79746	80671	51
10	4.70973	72218	73416	74568	75678	76747	77778	78772	79731	80656	50
11	70952	72198	73396	74549	75660	76730	77761	78756	79715	80641	49
12	70931	72177	73377	74531	75642	76712	77744	78739	79699	80625	48
13	70909	72157	73357	74512	75624	76695	77727	78723	79684	80610	47
14	70888	72137	73337	74493	75605	76677	77711	78707	79668	80595	46
15	4.70867	72116	73318	74474	75587	76660	77694	78691	79652	80580	5
16	70846	72096	73298	74455	75569	76642	77677	78674	79636	80565	44
17	70824	72075	73278	74436	75551	76625	77660	78658	79621	80550	43
18	70803	72055	73259	74417	75533	76607	77643	78642	79605	80534	42
19	70782	72034	73239	74398	75514	76590	77626	78625	79589	80519	41
20	4.70761	72014	73219	74379	75496	76572	77609	78609	79573	805	40
21	70739	71994	7320)	74360	75478	76554	77592	78592	79558	80489	39
22	70718	71973	73180	74341	75459	76537	77575	78576	79542	80473	38
23	70697	71952	73160	74322	75441	76519	77558	78560	79526	80458	37
24	70675	71932	73140	74303	75423	76501	77541	78543	79510	80443	36
25	4.70654	71911	73121	74284	75405	76484	77524	78527	79494	80428	35
26	70633	71891	73101	74265	75386	76466	77507	78510	79478	80412	34
27	70611	71870	73081	74246	75368	76448	77490	78494	79463	80397	33
28	70590	71850	73061	74227	75350	76431	77473	78478	79447	80382	32
29	70568	71829	73041	74208	75331	76413	77456	78461	79431	80366	31
30	4.70547	71809	73022	74189	75313	76395	77439	78445	79415	80351	30
31	70525	71788	73002	74170	75294	76378	77422	78428	79399	80336	29
32	70504	71767	72982	74151	75276	76360	77405	78412	79383	80320	28
33	70482	71747	72962	74132	75258	76342	77387	78395	79367	80305	27
34	70461	71726	72942	74113	75239	76324	77370	78379	79351	80290	26
35	4.70439	71705	72922	74093	75221	76307	77353	78362	79335	80274	25
36	70418	71685	72902	74074	75202	76289	77336	78346	79319	80259	24
37	70396	71664	72883	74055	75184	76271	77319	78329	79304	80244	23
38	70375	71643	72863	74036	75165	76253	77302	78313	79288	80228	22
39	70353	71622	72843	74017	75147	76236	77285	78296	79272	80213	21
40	4.70332	71602	72823	73997	75128	76218	77268	78280	79256	80197	20
41	70210	71581	72803	73978	75110	76200	77250	78263	79240	80182	19
42	70288	71560	72783	73999	75091	76182	77233	78246	79224	80166	18
43	70267	71539	72763	73940	75073	76164	77216	78230	79208	80151	17
44	70245	71519	72743	73921	75054	76146	77199	78213	79192	80136	16
45	4.70224	71498	72723	73901	75036	76129	77181	78197	79176	80120	15
46	7.0202	71477	72703	73882	75017	76111	77164	78180	79160	80105	14
47	7180	71456	72683	73863	74999	76093	77147	78163	79144	80089	13
48	70159	71435	72663	73843	74980	76075	77130	78147	79128	80074	12
49	70137	71414	72643	73824	74961	76057	77112	78130	$7!111$	80058	1
50	4.70115	71393	72622	73805	74943	76039	77095	78113	79095	80043	0
51	70093	71373	72602	73785	74924	76021	77078	78097	79079	80027	9
52	70072	71352	72582	73766	74906	76003	77061	78080	79063	80012	8
53	70050	71331	72562	73747	74887	75985	77043	78063	79047	79996	7
54	70028	71310	72542	73727	74868	75967	77026	78047	79031	79981	6
55	4.70006	71289	72522	73708	74850	75949	77009	78030	79015	79965	5
56	69984	71268	72502	73689	74831	75931	76991	78013	78999	79950	4
57	69963	71247	72482	73669	74812	75913	76974	77997	78983	79934	3
58	69941	71226	72461	73650	74794	75895	76957	77980	78967	79918	2
59	69919	71205	72441	73630	74775	75877	76939	77963	78950	79903	1
60	69897	71184	72421	73611	74756	75859	76922	77946	78934	79887	0
	30°	31°	32°	33°	34°	35°	36°	37°	38°	39°	M.
DIFFERENCE.											

LOGARITHMS OF THE HALF SUM aND DIFFERENCE
HALF SUM.
FO-SINE.

M.	39	$3{ }^{\circ}$	37	$3{ }^{\circ}$	35	34°	$3 \stackrel{\circ}{4}^{\circ}$	32°	31°	30	
0	4.89050	89653	90235	$9079{ }^{\text {b }}$	91336	91857	92359	92842	93307	93753	60
1	89040	89643	90225	90787	91328	91849	92351	92834	93299	93746	59
2	89030	89633	90216	90777	91319	91840	92343	92826	93291	93738	58
3	89020	89624	90206	90768	91310	91832	92334	92818	93284	93731	57
4	89009	89614	90197	90759	91301	91823	92326	92810	93276	93724	56
5	4.88999	89604	90187	90750	91292	91815	92318	92803	93269	93717	5
6	88989	89594	90178	90741	91283	91806	92310	92795	93261	93709	54
7	88978	89584	90168	90731	91274	91798	92302	92787	93253	93702	53
8	88968	89574	90159	90722	91266	91789	92293	92779	93246	93695	52
9	88958	89564	90149	90713	91257	91781	92285	92771	93238	93687	51
10	4.88948	89554	90139	90704	91248	91772	9227 T	92763	93230	93680	50
11	88937	89544	90130	90694	91239	91763	92269	92755	93223	93673	49
12	88927	89534	90120	90685	91230	91755	92260	92747	93215	93665	48
13	88917	89524	90111	90676	91221	91746	92252	92739	93207	93658	47
14	88906	89514	90101	90667	91212	91738	92244	92731	93200	93650	46
1	4.8889	950	00	90	12	91729	92235	92723	93192	93643	45
16	88886	89495	90082	90648	91194	91720	92227	92715	93184	93636	44
17	88875	89485	90072	90639	91185	91712	92219	92707	93177	93628	43
18	88865	89475	90063	90630	91176	91703	92211	92699	93169	93621	42
19	88855	89465	90053	90620	91167	91695	92202	92691	93161	93614	41
20	4.88844	89	90043	90611	91	91686	21	2	31	93606	0
21	88834	89445	90034	90602	91149	91677	92186	92675	93146	93599	39
22	88824	89435	90024	90592	91141	91669	92177	92667	93138	93591	38
23	88813	89425	90014	90583	91132	91660	92169	92659	93131	93584	37
24	88803	89415	9000	90574	91123	91651	92161	92651	93123	93577	36
25	4.88793	89	89	905	91	916	92152	92643	93115	93560	35
26	88782	89395	89985	90555	91105	91634	92144	92635	93108	93.562	34
27	88772	89385	89976	90546	91096	91625	92136	92627	93100	93554	33
28	88761	89375	89966	90537	91087	91617	92127	92619	93092	93547	32
29	88751	89364	89956	90527	91078	91608	92119	92611	93084	93539	31
30	4.88741	89354	8994	0518	91069	91	92111	9260	93077	93532	30
31	88730	89344	89937	90509	91060	91591	92102	92595	93069	93525	29
32	88720	89334	89927	90499	91051	91582	92094	92587	93061	93517	28
33	88709	89324	89918	90490	91042	91573	92086	92579	93053	93510	27
34	88699	89314	89908	90480	91033	91565	92077	92571	93046	93502	26
35	4.88688	89304	89898	90471	91023	91556	92069	92563	93038	93495	25
36	88678	89294	89888	90462	91014	91547	92060	92555	93030	93487	24
37	88668	89284	89879	90452	91005	91538	92052	92546	93022	93480	23
38	88657	89274	89869	90443	90996	91530	92044	92538	93014	93472	22
39	88647	89264	89859	90434	90987	91521	92035	92530	93007	93465	21
40	4.88636	89254	8984	90424	0978	91512	92027	92522	92999	93457	20
41	88626	89244	89840	90415	90969	91504	92018	92514	92991	93450	19
42	88615	89233	89830	90405	90960	91495	92010	92506	92983	93442	18
43	88605	89223	89820	90396	90951	91486	92002	92498	92976	93435	17
44	88594	89213	89810	90386	90942	91477	91993	92490	92968	93427	16
45	4.88584	89203	89801	90377	0933	91469	91985	92482	92960	93420	15
46	88573	89193	89791	90368	90924	91460	91976	92473	92952	93412	14
47	88563	89183	89781	90358	90915	91451	91968	92465	92944	93405	13
± 8	88552	89173	89771	90349	90906	91442	91959	92457	92936	93397	12
49	88542	89162	89761	90339	90896	91433	91951	92449	92929	93390	11
50	4.88531	89152	89752	90330	90887	91425	91942	92441	92921°	93382	10
51	88521	89142	89742	90320	90878	91416	91934	92433	92913	93375	9
52	88510	89132	89732	90311	90869	91407	91925	92425	92905	93367	8
53	88499	89122	89722	90301	90860	91398	91917	92416	92897	93360	7
54	88489	89112	89712	90292	90851	91389	91908	92408	92889	93332	6
55	4.88478	89101	89702	90282	90842	91381	91900	92400	92881	93344	5
56	88468	89091	89693	90273	90832	91372	91891	92392	92874	93337	4
57	88457	89081	89683	90263	90823	91363	91883	92384	92866	93329	3
58	88447	89071	89673	90254	90814	91354	91874	92376	92858	93322	2
59	88436	89060	89663	90244	90805	91345	91866	92367	92850	93314	1
60	88425	89050	89653	90235	90796	91336	91857	92359	92842	93307	0
	50°	51°	52°	53°	54°	55°	56°	57°	58°	59°	M.
DIFFERENCE.											

HALF SUM.
CG-SINE.

M.	29°	28°	27°	26	${ }_{2}^{\circ}$	24	$2{ }^{\circ}$	$\begin{array}{r} \circ \\ 22 \end{array}$	$21{ }^{\circ}$	20	
0	4.94182	94593	94988	95366	95728	96073	96403	96717	97015	97299	60
1	94175	94587	94982	95360	95722	96067	96397	96711	97010	97294	59
2	94168	94580	94975	95354	95716	96062	96392	96706	97005	97289	58
3	94161	94573	94969	95348	95710	96056	96387	96701	97001	97285	57
4	94154	94567	94962	95341	95704	96050	96381	96696	96996	97280	56
5	4.94147	4560	94956	95335	95698	96045	96376	96691	96991	97276	55
6	94140	94553	94949	95329	95692	96039	96370	96686	96986	97271	54
7	94133	94546	94943	95323	95686	96034	96365	96681	96981	97266	53
8	94126	94540	94936	95317	95680	96028	96360	96676	96976	97262	52
9	94119	94533	94930	95310	95674	96022	96354	96670	96971	97257	51
10	4.94112	94526	94923	95304	956	96017	96349	96665	96966	97252	50
11	94105	94519	94917	95298	95663	96011	96343	96660	96962	97248	49
12	94098	94513	94911	95292	95657	96005	96338	96655	96957	97243	48
13	94090	94506	94904	95286	95651	96000	96333	96650	96952	97238	47
14	94083	94499	94898	95279	95645	95994	96327	96645	96947	97234	46
15	4.94076	94492	948	95273	95639	95988	6322	6640	96942	97229	45
10	94069	94485	94884	95267	95633	95982	96316	96634	96937	97224	44
17	94062	94479	94878	95261	95627	95977	96311	96629	96932	97220	43
18	94055	94472	94871	95254	95621	95.971	96305	96624	96927	97215	42
19	94048	94465	94865	95248	95615	95965	96300	96619	96922	97210	41
20	4.94041	94458	94858	952	95609	95960	96294	96614	969	97206	40
21	94034	94451	94852	95236	95603	95954	96289	96608	96912	97201	39
22	94027	94445	94845	95229	95597	95948	96284	96603	96907	97196	38
23	94020	94438	94839	95223	95591	95942	96278	96598	96903	97192	37
24	94012	94431	94832	95217	95585	95937	96273	96593	96898	97187	36
25	4.94005	94424	94826	95211	95579	9593	9	96588	96893	97182	35
26	93998	94417	94819	95204	95573	95925	96262	96582	96888	97178	34
27	93991	94410	94813	95198	95567	95920	96256	96577	96883	97173	33
28	93984	94404	94806	95192	95561	95914	96251	96572	96878	97168	32
29	93977	94397	94799	95	95555	95908	96245	96567	96873	97163	31
30	4.93970	943	947	95179	95549	95902	96240	6562	96868	97159	30
31	93963	94383	94786	95173	95543	95897	96234	96556	96863	97154	29
32	93955	94376	94780	95167	95537	95891	96229	96551	96858	97149	28
33	93948	94369	94773	95160	95531	95885	96223	96546	96853	97145	27
34	93941	94362	94767	95154	95525	95879	96218	96541	96848	97140	26
35	4.93934	94355	94760	95148	95519	958	96212	6535	6843	97135	25
36	93927	94349	94753	95141	95513	95868	96207	96530	96838	97130	24
37	93920	94342	94747	95135	95507	95862	96201	96525	96833	97126	23
38	93912	94335	94740	95129	95500	95856	96196	96520	96828	97121	22
39	93905	94328	94734	95122	95494	95850	96190	96514	96823	97116	21
40	4.93898	94321	94727	95116	95488	4	96185	96509	6818	97111	20
41	93891	94314	94720	95110	95482	95839	96179	96504	96813	97107	19
42	93884	94307	94714	95103	95476	95833	96174	96498	96808	97102	18
43	93876	94300	94707	95097	95470	95827	96168	96493	96803	97097	17
44	93869	94293	94700	95090	95464	95821	96162	96488	96798	97092	16
45	4.93862	94286	94694	95084	458	95815	6157	96483	96793	97087	15
46	93855	94279	94687	95078	95452	95810	96151	96477	96788	97083	14
47	93847	94273	94680	95071	95446	95804	96146	96472	96783	97078	13
48	93840	94266	94674	95065	95440	95798	96140	96467	96778	97073	12
49	93833	94259	94667	95059	95434	95792	96135	96461	96772	97068	11
50	4.93826	94252	94660	95052	95427	95786	96129	96456	96767	7063	10
51	93819	94245	94654	95046	95421	95780	96123	96451	96762	97059	9
52	93811	94238	94647	95039	95415	95775	96118	96445	96757	97054	8
53	93804	94231	94640	95033	95409	95769	96112	96440	96752	97049	7
54	93797	94224	94634	95027	95403	95763	96107	96435	96747	97044	6
55	4.93789	94217	94627	95020	95397	95757	96101	96429	96742	97039	5
56	93782	94210	94620	95014	95391	95751	96095	96424	96737	97035	4
57	93775	94203	94614	95007	95384	95745	96090	96419	96732	97030	3
58	93768	94196	94607	95001	95378	95739	96084	96413	96727	97025	2
59	93760	94189	$946) 0$	94995	95372	95733	96079	96408	96722	97020	1
60	93753	94182	94593	94988	95366	95728	96073	96403	96717	97015	0
	60°	61°	62°	63°	64°	65°	66°	67°	68°	69°	M
					DIFFER	NCE.					NE.

LOGARITHMS OF THE HALF SUM AND DIFFERENOR
HALF SUM.
co-mant

M.	$\begin{gathered} \circ \\ 19 \end{gathered}$	18	$\begin{array}{r} \circ \\ 17 \end{array}$	10°	10°	14	$\begin{array}{r} \circ \\ 13 \end{array}$	$\begin{array}{r} \circ \\ 12 \end{array}$	11	10°	
0	4.97567	97821	98060	98284	98494	98690	98872	99040	99195	99335	60
1	97563	97817	98056	98281	98491	98687	98869	99038	99192	99333	59
2	97558	97812	98052	98977	98488	98684	98867	99035	99190	99331	58
3	97554	97808	98048	98273	98484	98681	98864	99032	99187	99328	A7
4	97550	97804	98044	98270	98481	98678	98861	99030	99185	99326	. 56
5	4.97545	97800	98040	98266	98477	98675	98858	99027	99182	99324	55
6	97541	97796	98036	98262	98474	98671	98855	99024	99180	99322	54
7	97536	97792	98032	98259	98471	98668	98852	99022	99177	99319	53
8	97532	97788	98029	98255	98467	98665	98849	99019	99175	99317	52
9	97528	97784	98025	98251	98464	98662	98846	99016	99172	99315	51
10	4.97523	97779	98021	98248	98460	98659	98843	99013	99170	99313	50
11	97519	97775	98017	98244	98457	98656	98840	99011	99167	99310	49
12	97515	97771	98013	98240	98453	98652	98837	99008	99165	99308	48
13	97510	97767	98009	98237	98450	98649	98834	99005	99162	99306	47
14	97506	97763	98005	98233	98447	98646	98831	99002	99160	99304	46
15	4.97501	97759	98001	98229	98443	98643	98828	99000	99157	99301	45
16	97497	97754	97997	98226	98440	98640	98825	98997	99155	99299	44
17	97492	97750	97993	98222	98436	98636	98822	98994	99152	99297	43
18	97488	97746	97989	98218	98433	98633	98819	98991	99150	99294	42
19	97484	97742	97986	98215	98429	98630	98816	98989	99147	99292	41
20	4.97479	97738	97982	98211	98426	98627	98813	98986	99145	99290	40
21	97475	97734	97978	98207	98422	98623	98810	98983	99142	99288	39
22	97470	97729	97974	98204	98419	98620	98807	98980	99140	99285	38
23	97466	97725	97970	98200	98415	98617	98804	98978	99137	99283	37
24	97461	97721	97966	98196	98412	98614	98801	98975	99135	99281	36
25	4.97457	97717	97962	98192	98409	98610	98798	98972	99132	99278	35
26	97453	97713	97958	98189	98405	98607	98795	98969	99130	99276	34
27	97448	97708	97954	98185	98402	98604	98792	98967	99127	99274	33
28	97444	97704	97950	98181	98398	98601	98789	98964	99124	99271	32
29	97439	97700	97946	98177	98395	98597	98786	98961	99122	99269	31
30	4.97435	97696	97942	98174	98391	98594	98783	98958	99119	99267	30
31	97430	97691	97938	98170	98388	98591	98780	98955	99117	99264	29
32	97426	97687	97934	98166	98384	98588	98777	98953	99114	99262	28
33	97421	97683	97930	98162	98381	98584	98774	98950	99112	99260	27
34	97417	97679	97926	98159	98377	98581	98771	98947	99109	99257	26
35	4.97412	97674	97922	98155	98373	98578	98768	98944	99106	99255	25
36	97408	97670	97918	98151	98370	98574	98765	98941	99104	99252	24
37	97403	97666	97914	98147	98366	98571	98762	98938	99101	99250	23
38	97399	97663	97910	98144	98363	98568	98759	98936	99099	99248	22
39	97394	97657	. 97906	98140	98359	98565	98756	98933	99096	99245	21
40	4.97390	97853	97902	98136	98356	98561	98753	98930	99093	99243	20
41	97385	97649	97898	98132	98352	98558	98750	98927	99091	99241	19
. 42	97381	97645	97894	98129	98349	98555	98746	98924	99088	99238	18
43	97376	97640	97890	98125	98345	98551	98743	98921	99086	99236	17
44	97372	97636	97886	99121	98342	98548	98740	98919	99083	99233	16
45	4.97367	97632	97882	98117	98338	98545	98737	98916	99080	99231	15
46	97363	97627	97878	98113	98334	98541	98734	98913	99078	99229	14
47	97358	97623	97874	98110	98331	98538	98731	98910	99075	99226	13
48	97353	97619	97870	98106	98327	98535	98728	98907	99072	99224	12
49	97349	97615	97866	98102	98324	98531	98725	98904	99070	99221	11
50	4.97344	97610	97861	98098	98320	98528	98722	98901	99067	99219	10
51	97340	97606	97857	9マイ194	98317	98525	98719	98898	99064	99217	9
52	97335	97602	97853	98090	98313	98521	98715	98896	99062	99214	8
53	97331	97597	97849	98087	98309	98518	98712	98893	99059	99212	7
54	97326	97593	97845	98083	98306	98515	98709	98890	99056	99209	6
55	4.97322	97589	97841	98079	98302	98511	98706	98887	99054	99207	5
56	97317	97584	97837	98075	98299	98508	98703	98884	99051	99204	4
57	97312	97580	97833	98071	98295	98505	98700	98881	99048	99202	3
58	97308	97576	97829	98067	98291	98501	98697	98878	99046	99200	2
59	97303	97571	97825	98063	98288	98498	98694	98875	99043	99197	1
60	97299	97567	97821	98060	98284	98494	98690	98872	99040	99195	0
	70°	71°	72°	73°	74°	75°	76°	77°	78°	79°	M.
DIFFERENCE. SIN											

LOGARITHMS OF THE HALF SUM AND DIFFERENCE.
HALF SUM.
CO-SINE.

M.	$\stackrel{\circ}{9}$	$\stackrel{\circ}{8}$	\bigcirc	0	$\begin{aligned} & \circ \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \circ \\ & 4 \end{aligned}$	$\begin{aligned} & \circ \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & \circ \\ & 2 \end{aligned}$	$\begin{aligned} & \circ \\ & 1 \end{aligned}$	$\begin{aligned} & \circ \\ & 0 \end{aligned}$	
0	4.99462	99575	99675	99761	99834	99894	99940	99974	99993	00000	60
1	99460	99573	99674	99760	99833	99893	99940	99973	99993	00000	59
2	99458	99572	99672	99759	99832	99892	99939	99973	99993	00000	58
3	99456	99570	99670	99757	99831	99891	99938	99972	99993	00000	57
4	99454	99568	99669	99756	99830	99891	99938	99972	99992	00000	56
5	4.99452	99566	99667	99755	99829	99890	99937	99971	99992	00000	55
6	99450	99565	99666	99753	99828	99889	99936	99971	99992	00000	54
7	99448	99563	99664	99752	99827	99888	99936	99970	99992	00000	53
8	99446	99561	99663	99751	99825	99887	99935	99970	99992	00000	52
9	99444	99559	99661	99749	99824	99886	99934	99969	99991	00000	51
10	4.99442	99557	99	99748	99823	99885	99934	99969	99991	00000	50
11	99440	99556	99658	99747	99822	99884	99933	99968	99991	00000	49
12	99438	99554	99656	99745	99821	99883	99932	99968	99990	00000	48
13	99436	99552	99655	99744	99820	99882	99932	99967	99990	00000	47
14	99434	99550	99653	99742	99819	99881	99931	99967	99990	00000	46
15	4.99432	99548	99651	99741	99817	99880	99930	99967	99990	00000	45
16	99429	99546	99650	99740	99816	99879	99929	99966	99989	00000	44
17	99427	99545	99648	99738	99815	99879	99929	99966	99989	99999	43
18	99425	99543	99647	99737	99814	99878	99928	99965	99989	99999	42
19	99423	99541	99645	99736	99813	99877	99927	99964	99989	99999	41
20	4.99421	99539	99643	99734	99812	99876	999	99964	99988	99999	40
21	99419	99537	99642	99733	99810	99875	99926	99963	99988	99999	39
22	99417	99535	99640	99731	99809	99874	99925	99963	99988	99999	38
23	99415	99533	99638	99730	99808	99873	99924	99962	99987	99999	37
24	99413	99532	99637	99728	99807	99872	99923	99962	99987	99999	36
25	4.9941	995	996	99	99806	99	99923	99961	99987	99999	35
26	99409	99528	99633	99726	99804	99870	99922	99961	99986	99999	34
27	99407	99526	99632	99724	99803	99869	99921	99960	99986	99999	33
28	99404	99524	99630	99723	99802	99868	99920	99960	99986	99999	32
29	99402	99522	99629	99721	99801	99867	99920	99959	99985	99998	31
30	4.99400	99520	99627	99720	99800	99866	99919	99959	99985	99998	30
31	99398	99518	99625	99718	99798	99865	99918	99958	99985	99998	29
32	99396	99517	99624	99717	99797	99864	99917	99958	99984	99998	28
33	99394	99515	99622	99716	99796	99863	99917	99957	99984	99998	27
34	99392	99513	99620	99714	99795	99862	99916	99956	99984	99998	26
35	4.99390	99511	99618	99713	99793	99861	99915	99956	99983	99998	25
36	99388	99509	99617	99711	99792	99860	99914	99955	99983	99998	24
37	99385	99507	99615	99710	99791	99859	99913	99955	99983	99997	23
38	99383	99505	99613	99708	99790	99858	99913	99954	99982	99997	22
39	99381	99503	99612	99707	99788	99857	99912	99954	99982	99997	21
40	4.99379	99501	99610	99705	99787	99856	99911	99953	99982	99997	20
41	99377	99499	99608	99704	99786	99855	99910	99952	99981	99997	19
42	99375	99497	99607	99702	99785	99854	99909	99952	99981	99997	18
43	99372	99495	99605	99701	99783	99853	99909	99951	99981	99997	17
44	99370	99494	99603	99699	99782	99852	99908	99951	99980	99996	16
45	4.99368	99492	99601	99698	99781	99851	99907	99950	99980	99996	15
46	99366	99490	99600	99696	99780	99850	99906	99949	99979	99996	14
47	99364	99488	99598	99695	99778	99848	99905	99949	99979	99996	13
48	99362	99486	99596	99693	99777	99847	99904	99948	99979	99996	12
49	9.9359	99484	99595	99692	99776	99846	99904	99948	99978	99996	11
50	4.99357	99482	99593	99690	99775	99845	99903	99947	99978	99995	10
51	99355	99480	99591	99689	99773	99844	99902	99946	99977	99995	9
52	99353	99478	99589	99687	99772	99843	99901	99946	99977	99995	8
53	99351	99476	99588	99685	99771	99842	99900	99945	99977	99995	7
54	99348	99474	99586	99684	99769	99841	99899	99944	99976	99995	6
55	4.99346	99472	99584	99683	99768	99840	99898	99944	99976	99994	5
56	99344	99470	99582	99681	99767	99839	99898	99943	99975	99994	4
57	99342	99468	99581	99680	99765	99838	99897	99942	99975	99994	3
58	99340	99466	99579	99678	99764	99837	99896	99942	99974	99994	2
59	99337	99464	99577	99677	99763	99836	99895	99941	99974	99994	1
60	09335	99462	99575	99675	99761	99834	99894	99940	99974	99993	0
	80°	81°	82°	83°	84°	85°	86°	87°	88°	89°	M.
DIFFERENCE. SINE.											

LOGARITHMS OF THE APPARENT TIME, OR HOUR ANGLE.
HOUR ANGLE, 0 HOURS, OR APP. TIME P.M. | PROPORTIONAL PARTS TOR EECONDS.

 | 58600 | $6019+61759$ | 63296 | 64806 | 66291 | 67751 | 50 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

 $\underline{23483} 24241 \quad 24993 \quad 25738 \quad 26477$ 27210 $27936-40$

 43760 44361 44957 45549 461384672247302

93	187	280	373	467	560	653	746	840

$\begin{array}{llllllllllll}70 & 140 & 211 & 281 & 352 & 422 & 492 & 563 & 633\end{array}$

 $60179606766117061662621516663663120 \quad 30$

 | 49 | 98 | 147 | 195 | 244 | 293 | 342 | 392 | 441 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | $7.631206360064078 \quad 64553 \quad 65026 \quad 65496$

 | 85866 | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 86235 | | | | | |
| 86603 | 86969 | 87334 | 87697 | 88059 | 20 |

 $.9631596642-96968$ 97293 97617 97939 98260 $\overline{\frac{7}{8.98260}} \overline{98580} \overline{98899} \overline{99217} \overline{99534} \overline{99849} \overline{00163} \overline{14}$

8.07379076670795408240085250880909092

 $1403514302 \quad 14567|14832| 15096 \quad 15359 \mid 05621$
$\begin{array}{llllllllll}8.15621 & 15883 & 16144 & 16404 & 16663 & 16921 & 17179 & 4\end{array}$

18708	18961	19212	19463	19713	19963	20211	2

 21688 21932 22175 22417| $22658 \mid 2289923140 \quad 0$
$\begin{array}{llllllllll}47 & 95 & 142 & 189 & 236 & 284 & 331 & 378\end{array}$

 \begin{tabular}{l|l|l|l|l|l|l|l|l|}
41 \& 81 \& 122 \& 162 \& 203 \& 243 \& 284 \& 325 \& 366

40 \& 79 \& 118 \& 158 \& 197 \& 237 \& 277 \& 316 \& 356
\end{tabular}

| 36 | 71 | 106 | 142 | 178 | 213 | 249 | 284 | 321 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

 $-32-63-95-127-150 \quad 222$

28	57	85	114	142	171	200	228	257

27	55	82	110	138	165	193	220	248

 | 26 | 52 | 78 | 104 | 130 | 156 | 182 | 208 | 234 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 25 | 51 | 77 | 102 | 127 | 153 | 179 | 204 | 229 |

 \begin{tabular}{l|l|l|l|l|l|l|l|l}
24 \& 49 \& 73 \& 98 \& 123 \& 147 \& 172 \& 196 \& 220

24 \& 49 \& 73 \& 98 \& 123 \& 144 \& 172 \& 196 \& 220

24 \& 48 \& 72 \& 96 \& 120 \& 145 \& 169 \& 193 \& 217
\end{tabular}

I'JGARITHMS OF THE APPARENT TIME, OR HOUR ANGLE.

M.					40	$\begin{aligned} & 8 . \\ & 50 \end{aligned}$	$\begin{aligned} & \text { s. } \\ & 60 \end{aligned}$		i	2	$\begin{aligned} & \text { s. } \\ & 3 \end{aligned}$	4	$\begin{aligned} & s . \\ & 5 \end{aligned}$	6	$\left\lvert\, \begin{gathered} s . \\ 7 \end{gathered}\right.$	s.	s.
0	8.82599	82717	82835	82952	83069	83187	83303	59	12	23				70	82	3	105
1	83303	83	83537	83653	83769	83885	84001	58	12	23	35	46	58	0	81	93	05
2	4001	841	84233	84348	84		84694	57		23	35	46	57	69	80	92	104
3	84694	84808	84923	85037	8 8152	85266	85380	56	11	23	34	45	57	68	80	91	103
4	85380	85	85607	85721	85834	85947	86060	55	11	23	34	45	57	68	79	90	102
5	8.86			86		23		54		22	34	45	56		78		
6	867	86	86959	87	87182	93	87	53	11	22	33	45	56	67	78	89	00
7	87404	87	87	87736	87847	5	880	52	11	22	33	44	55	66	78	89	100
8	88068		88288	88397	8850		88	51	11	22	33	44	55	66	77	88	99
9	88726		88944	89053	89162	89270	8937	50	11	22	33	44	55	65	76	87	98
10	8.893	89	89	89	89	89918		49		22	32				76		97
11	900	90	902	903	90455	90562		48	11	21	32	43	54	64	75	86	96
12	90668	90	908	909	91094	91200	91	47	11	21	32	42	53	64	74	85	95
13	91306	91	915	91622	91	91833	91	46		21	32	42	53	63	73	84	95
14	91		92	92252	92			45	10	21	32	42	53	63	73	84	94
15	. 925	92	9	92	92980												93
16	93187	93	9	93	93599	93702	93	43	10	20	31	41	52	62	72	82	93
17	93804	93	94009	94	94213	94315	54	42	10	20	31	41	51	61	71	82	92
18	17	94519	94	94	94823	94924	95	41	10	20	30	40	51	61	71	81	91
19	95			95327	95	95	95	40	10	20	30	40	50	60	70	80	90
20	8.95			95		96128		39									4
21	96227	96326	9	96	96624			38					50	60	69	79	89
22	96821	96920	97	9	97215	97313	97	37	10	20	30	39	49	59	69	79	88
23	11	97509	97	97	97802	97899	97	36	,	19	29	39	49	59	68	78	87
24	97996	98						35	10	19	29	39	49	58	68		87
25	8.98	98674				99	99	34									86
26	991	99	99		99	9		33	10	19	29	38	48	57			86
27	${ }_{9}^{8} \cdot 9972$	9	99	00012	00106	00201	00	32		19			47				85
28	9.00	00390	00	00578	00672			1				38	47	56	66	5	85
29	00	00	010	01140	01234	01327		30	9	19	28	37	7	56		5	84
30	9.01	01513	01	01698				29									83
31	0197	02068	021	02	02345	02		28		18	28	37	46	5	64	74	83
32	寿		02		02894	- 02986		27		18	27	37	46	55	-		82
33	03077	03	0		03440	03531		26			27					73	82
34	03	03712	03	03892	03982			25	9	18	27	36					81
35	9.04		04	04431	04520	04											81
36	04699	04788	04	04966	05055	05144		23		18	27	3	45			71	80
37	05232	05321	05		05	05		22			26	5	4	53	62	71	9
38	05762	05	05		0			21				35		53	6		9
39	06	06	06462		06	06		20	9	17	26	35	43	52	61		78
40	9.06		06														78
41	07		07501	07	07673	07759	07	18		17			43	52		69	77
42			08016	08101	108	08271		17	9	17	26		43	51	60	68	77
43	08	08442	0852		108696			16		17			42	51	59	67	76
44		08949	09034	09118	092		093	15	8	17	25	34	42	51	59		
45	9.0937		09538					14									
46	0987	09	10039		5		103	13		1		33	42	50	58	66	75
47	1037	10	1053					12		16				50			74
48			11030					11		16		33	41	49	57	66	74
49								10	8	16	24	33	41	49	57		73
50	9.118		12009	12090													73
5	123	124	12494	12	12655	12			8	16	24	32	,	48	5	64	73
52	2815	12895	12975	13055	13135				8		2		40	48	56	64	72
53	95	13374	13	1						16	2		40	48	56		72
5	13771							5	8	16	24	32	40		5		71
55	9.14245	1432	14402	1448	14559												71
56	14715	1479	1487	1494	15027	15105	15183	3		15	23	31		47			70
5	15183	15260	15338	15415	15493	15570	15647	2	8	15	23	31	39	47		62	70
58	15647	15724	15802	15879	15955	16032	16109			15	23	31	38	46	54	62	69
59	6109	16186	16262	16339	16415	16492	16	0	8	15	23	31	38	46	54	61	69
	60 s .	50 s .	40 s .	30 s .	20s.	10s.		M	1 s	2	3 s	4 s	5	6 s .	7 s	8 s .	9 s
9 OR 21 HOURS, OR APP. TIME A. M.																	

LOGARITHMS OF THE APPARENT TIME, OR HOUR ANGLE.
HOUR ANGLE, 3 HOURS, OR APP. TIME P. M.
PROPORTIONAL PARTB FOR SECONDS.

M.	0	$\begin{aligned} & 8 . \\ & 10 \end{aligned}$	$\begin{aligned} & 8 \\ & 20 \end{aligned}$	$\begin{aligned} & 86 \\ & 30 \end{aligned}$	$\begin{aligned} & \text { s. } \\ & 40 \end{aligned}$	$\begin{aligned} & 8 . \\ & 50 \end{aligned}$	$\begin{aligned} & 8 . \\ & 60 \end{aligned}$		8. 1	8. 2	$\begin{gathered} \hline 8 \\ 3 \end{gathered}$	$\begin{aligned} & 8 \\ & 4 \end{aligned}$	$\begin{aligned} & \mathrm{s} \\ & 5 \end{aligned}$	$\begin{gathered} 8 . \\ 6 \end{gathered}$	$\begin{aligned} & 8 . \\ & 7 \end{aligned}$	$\begin{aligned} & \hline \text { s. } \\ & 8 \end{aligned}$	$\begin{aligned} & 8 . \\ & 9 \end{aligned}$
0	9.16568	16644	16720	16796	16872	16948	17024	59	8	15	23	30	38	46	53	61	68
1	17024	17100	17175	17251	17326	17402	17477	58	8	15	23	30	38	45	53	60	68
2	17477	17553	17628	17703	17778	17853	17928	57	7	15	22	30	37	45	52	60	67
3	17928	18003	18077	18152	18227	18301	18376	56	7	14	22	30	37	45	52	60	67
4	18376	18450	18524	18598	18673	18747	18821	, 55	7	14	22	30	37	44	52	59	67
5	9.18821	18895	18968	19042	19116	19190	19263	54	7	14	22	30	37	44	52	59	67
6	19263	19337	19410	19483	19557	19630	19703	53	7	14	22	29	37	44	51	59	66
7	19703	19776	19849	19922	19995	20067	20140	52	7	14	22	29	37	44	51	58	66
8	20140	20213	20285	20358	20430	20502	20574	51	7	14	22	29	36	44	51	58	65
9	20574	20647	20719	20791	20863	20935	21006	50	7	14	22	29	36	43	50	58	65

$\overline{10} \overline{9.21006} \overline{21078} \overline{21150} \overline{21221} \overline{21293} \overline{21364} \overline{21436} \overline{49}$

12
13
14
$\frac{14}{15} 9$
16
17
18
18
19
$\frac{19}{20}$

21	25595	25662	25729	25796	25864	25931	25998	38
22	25998	26065	26132	26198	26265	26332	26398	37
23	2639	26465	26532	26598	26664	26731	26797	36

$\overline{9.27193} \overline{27259} \overline{27325} \overline{27390} \overline{27561} \overline{27587} \overline{34}$

 28756288202888528949290132907729141 9.29141 29205 29269 29333 29397 29461 29524

29905	29969	30032	30095	30158	30221	30285	27
30285	30347	30410	30473	30536	30599	30661	26
021							

 $32516[32577$ 32638 $32699 \quad 32760 \quad 32820|32881| 20$ $\overline{9.32881}$ 32942 $\overline{33002}$ 33063 33123 | 33244 | 33304 | 33365 | 33425 | 33485 | 33545 | 33605 | 18 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 33605 | 33665 | 33725 | 33785 | 33845 | 33905 | 33965 | 17 |

 $\overline{9.34677}$ 34736 34795 34854 34913 34972 35031 14

 9.36427 $\overline{36485}$ 36542 $\overline{36599} \overline{36657}$ 36714 $\overline{36771}-9$

$-9.38132 \quad 38188$ 38244 38300 38356 38412 38468

 39465 39520 39575 39630 396843939393

60 s.	50 s.	40 s.	20 s.
20 s.	10 s.	0 s.	

7	14	21	29	36	43	50	57	64
7	14	21	28	36	43	50	57	64
7	14	21	28	35	42	49	56	63
7	14	21	28	35	42	49	56	63
7	14	21	28	35	42	49	56	63
7	14	21	28	35	42	49	56	63
7	14	21	28	35	41	48	55	62
7	14	21	28	35	41	48	55	62
7	14	21	27	34	41	48	55	62
7	14	20	27	34	41	48	54	61
7	14	20	27	34	41	47	54	61
7	13	20	27	34	40	47	54	60
7	13	20	27	34	40	47	54	60
7	13	20	27	33	40	47	53	60
7	13	20	26	33	40	46	53	59
7	13	20	26	33	40	46	53	59
7	13	20	26	33	39	46	52	59
6	13	20	26	32	39	46	52	59
6	13	20	26	32	39	46	52	59
6	13	19	26	32	39	45	52	58
6	13	19	26	32	38	45	51	58
6	13	19	25	32	38	45	51	57
6	13	19	25	32	38	44	51	57
6	13	19	25	32	38	44	50	57
6	12	19	25	31	38	44	50	56
6	12	19	25	31	37	43	50	56
6	12	19	25	31	37	43	50	56
6	12	18	25	31	37	43	49	55
6	12	18	24	31	37	43	49	55
6	12	18	24	31	37	43	49	55
6	12	18	24	30	86	42	48	55
6	12	18	24	30	36	42	48	54
6	12	18	24	30	36	42	48	54
6	12	18	24	30	36	42	48	54
6	12	18	24	30	36	41	47	53
6	12	18	24	30	35	41	47	53
6	12	18	24	30	35	41	47	53
6	12	18	23	29	35	41	47	53
6	12	17	23	29	35	41	46	52
6	12	17	23	29	35	41	46	52
6	11	17	23	29	35	40	46	52
6	11	17	23	29	34	40	46	51
6	11	17	23	29	34	40	46	51
6	11	17	23	28	34	40	45	51
6	11	17	22	28	34	39	45	51

LOGARITHMS OF THE APPARENT TIME, OR HOUR ANGLE.
HOUR ANGLE, 4 hours, or APP. TIME P. M.
PROPORTIONAL PARTS FOR SECONDS.

M.	0	10	20	30	40	50	$\begin{aligned} & \text { S. } \\ & 60 \\ & \hline \end{aligned}$		$\begin{aligned} & \text { s. } \\ & 1 \end{aligned}$	8.	$\begin{array}{\|l\|} \hline 8 . \\ 3 \end{array}$	$\begin{aligned} & \text { s. } \\ & 4 \\ & \hline \end{aligned}$	5	$\begin{aligned} & 8 . \\ & 6 \end{aligned}$	$\begin{aligned} & \mathrm{s} . \\ & 7 \end{aligned}$	$\overline{s .}$	$\begin{aligned} & \mathbf{8 .} \\ & 9 \end{aligned}$
0	9.39794	39849	39903	39958	40012	40067	40121	59		11	16	22	28	3	39	44	50
1	40121	40176	40230	40284	40339	40393	40447	58		11	16	22	27	33	38	44	49
2	40447	40501	40555	40609	40663	40717	40771	57	5	11	16	22	27	32	38	43	49
3	40771	40825	40879	40933	40986	41040	41094	56	5	11.	16	22	27	32	38	43	49
4	41094	41147	41201	41254	41308	41361	41415	55	5	11	16	21	27	32	37	43	48
5	9.41415	41468	41521	41575	41628	41681	41	54		11	16	21	27	32	37	3	48
6	41734	41787	41840	41893	41946	41999	42052	53	5	11	16	21	27	32	37	43	48
7	42052	42105	42157	42210	42263	42315	42368	52	5	10	16	21	26	31	37	42	47
8	36	42420	42473	42525	42578	42630	42682	51	5	10	16	21	26	31	37	42	47
9	42682	42735	42787	42839	42891	42943	42996	50	5	10	16	21	26	31	36	42	47
10	9.42996	43048	43100	43151	43203	43255	43	49		10	16	21	26	31		42	47
11	43307	43359	43411	43462	43514	43565	43617	48	5	10	15	21	26	31	36	41	46
12	43617	43669	43720	43771	43823	43874	43925	47	5	10	15	20	25	31	36	41	46
13	43925	43977	44028	44079	44130	44181	44232	46		10	15	20	25	31	36	41	46
14	44222	44283	44334	44385	44436	44487	44538	45	5	10	15	20	25	31	36	41	46
15	9.44538	44589	44639	44690	44741	44791	44	44		10	15	0	25		35	0	45
16	44842	44892	449	44993	45044	45094	45144	43		10	15	20	25	30	35	40	45
17	45144	45195	45245	$4{ }^{\text {r }} 295$	45345	45395	45446	42		10	15	20	25	30	35	40	45
18	45446	45496	45546	45595	45645	45695	4574	41		10	15	20	25	30	35	40	45
19	45745	45795	45845	45894	45944	45994	46043	40	5	10	15	20	25	30	35	40	45
20	9.46043	46093	46142	46192	46241	46291	46	39		1	15	20	25		35^{5}	40	45
21	46340	46389	46439	46488	46537	46586	46635	38		10	15	20	25	29	34	39	44
22	46635	46684	46733	46782	46831	46880	46929	37		10	15	20	24	29	34	39	44
23	46929	46978	47027	47076	47124	47173	47222	36		10	15	20	24	29	34	39	44
24	47222	47270	47319	47367	47416	47464	47513	35	5	10	15	19	24	29	34	39	44
25	9.47513	47561	47610	47658	47706	47754	478	34		1							4
26	47803	47851	47899	47947	47995	48043	48091	33		10	14	19	24	29	34	38	43
27	48091	48139	48187	48235	48282	48330	48378	32	5	10	14	19	24	29	34	38	43
28	48378	48425	48473	48521	48568	48616	48664	31	5	9	14	19	24	29	33	38	43
29	48664	48711	48758	48806	48853	48900	48948	30	5	9	14	19	24	28	33	38	42
30	$\mid 9.48948$	48995	49042	49089	49137	49	49231	29		9		19			33	38	2
31	49231	49278	49325	49372	49419	49465	49512	28	5	9	14	19	23	28	33	38	42
32	49512	49559	49606	49653	49699	49746	49793	27	5	9	14	19	23	28	33	37	42
33	49793	49839	49886	49932	49979	50025	50071	26	5	9	14	19	23	28	33	37	42
34	50071	50118	50164	50211	50257	50303	50349	25	5	9	14	19	23	28	33	37	42
35	9.50349	50395	50441	50488	50534	50580	50626	24		9			23		32		41
36	50626	5067	50717	5076	50809	50855	50901	23		9	,	18	23	28	32	37	41
37	901	509	50992	51038	51083	51129	51174	22	5	9	14	18	23	27	32	36	41
38	5117	51220	51265	51311	51356	51402	51	21	5	9	14	18	23	27	32	36	41
39	51447	51492	51538	51583	51628	51673	51718	20	4	,	13	18	22	27	31	36	40
40	9.51718	51763	51808	51853	51898	51943	5198	19		9	13	18	22	27			40
41	51988	52033	52078	52123	52168	52212	52257	18	4	9	13	18	22	27	31	36	40
42	52257	52302	52346	52391	52435	52480	52525	17	4	,	13	18	22	27	31	36	40
43	52525	52569	52613	52658	52702	52747	5279	16	4	9	13	18	22	27	31	36	40
44	$\dot{5} 2791$	52835	52879	52923	52968	53012	53056	15	4	9	13	18	22	27	31	35	40
45	9.53056	53100	53144	53188	53232	53276	53	14	4	9	13	18	22	2	31	35	40
46	- 53320	53364	53407	53451	53495	53539	53582	13	4	,	13	18	22	26	31	35	40
47	53582	53626	53670	53713	53757	53800	53844	12	4	9	13	17	22	26	30	35	39
48	53844	53887	53931	53974	54017	54061	54104	11	4	9	13	17	22	26	30	35	39
49	54104	54147	54190	54234	54277	54320	54363	10	4	9	13	17	22	26	30	5	39
50	954363	54406	54449	54492	54535	54578	54621	9	4	9	13	17	22	26	30		39
51	54621	54664	54707	54749	54792	54835	54878	8	4		13	17	22	26	30	34	39
52	54878	54920	54963	55005	55048	55091	55133	7	4	8	13	17	21	26	30	34	38
53	55133	55175	55218	55260	55303	55345	55387	6	4		13	17	21	26	30	34	38
54	55387	55430	55472	55514	55556	55598	55	5	4	8	13	17	21	25	29	34	38
55	9.55641	55683	55725	55767	55809	55851	55893	4	4		13	17	21	25	29	34	38
56	55893	55934	55976	56018	56060	56102	56144	3	4	8	13	17	21	25	29	34	38
57	56144	56185	56227	56269	56310	56352	56393	2	4	8	12	17	21	25	29	33	37
58	56393	56435	56476	56518	56559	56601	56642	1	4	8	12	17	21	25	29	33	37
59	56642	56683	56725	56766	56807	56848	56889	0	4	8	12	16	20	25	29	33	37
	60s.	50s.	40s.	30s.	20s.	10s.	0s	M.			3s.	4s.		6 s.			
7 OR 19 HOURS, OR APP. TIME A. M.								PROPORTIONAL PARTS FOR OECONDS.									

LOGARITHMS OF THE APPARENT TIME, OR HOUR ANGLE.
hour angle, 5 hours, or app. time p. m. PROPORTIONAL PARTS FOK BECONDS.

M.	${ }^{8}$	10	20	30	40	50	60		$\left\lvert\, \begin{aligned} & 8 . \\ & 1 \end{aligned}\right.$		$\begin{aligned} & 8 . \\ & 3 . \end{aligned}$	8	$\begin{aligned} & \text { B. } \\ & 0 \end{aligned}$	$\begin{aligned} & 8 . \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 6 . \\ & 7 \\ & \hline \end{aligned}$		9
0	9.56889	56931	56972	57013	57054	57095	57136	59	4	8	12	16	20	25	29	3	37
1	57136	571775	572185	57259	57299	57340	57381	58	4	8	12	16	20	25	29	33	37
2	57381	57422	57463	57503	57544	57585	57625	57	4	8	12	16	20	25	29	33	37
3	57625	57666	57706	57747	57787	57828	57868	56	4		12	16	20	24	28	32	36
4	57868	57909	57949	57990	58030	58070	58110	${ }^{5} 55$	4	8	12	16	20	24	28	32	36
${ }^{5}$	9.58110	58151	58191	58231	58271	58311	58351	54		8	12	16	20	24	28	32	36
6	58351	58391	584315	58471	58511	58551	58591	53	4	8	12	16	20	24	28	32	36
7	58591	58631	58671	58711	58750	58790	58830	\&	4	8	12	16	20	24	28	32	36
8	58830	58870	58909	58949	58988	59028	59068	51	4	8	12	16	20	24	28	32	36
9	59068	59107	59147	59186	59225	59265	59304	50	4	8	12	16	20	24	28	32	36
10	9.59304	59344	59383	59422	59461	59501	59.540	49	4	8	12	16	2	24	28	32	36
11	59540	59579	59618	59657	59696	59735	59774	48	4	8	12	16	20	23	27	31	35
12	59774	59813	59852	59891	59930	59969	60008	47	4	8	12	16	20	23	27	31	35
13	60	60047	60085	60124	60163	60202	60240	46	4	8	12	16	20	23	27	31	35
14	60240	60279	60318	60356	60395	60433	60472	45	4	8	12	16	20	23	27	31	35
15	9.60472	60510	60549	60587	60625	60664	60	44		8	12	15	19	23	27	31	35
16	60702	60740	60779	60817	60855	60893	60931	43		8	12	15	19	23	27	31	35
17	60931	60970	61008	61046	61084	61122	61160	42	4	8	11	15	19	23	27	30	34
18	61160	61198	61236	61274	61311	61349	61387	41		8	11	15	19	23	27	30	34
19	61387	61425	61463	61500	61538	61576	61613	40	4	8	11	15	19	23	27	30	34
20	9.61613	61651	61689	61726	61	61801	61	39			11			23	27		34
21	61839	61876	61914	61951	61988	62026	62063	38			11	15	19	22	26	30	34
22	62063	62100	62138	62175	62212	62249	62287	37			11	15	19	22	26	30	34
23	62	62324	62361	62398	62435	62472	62509	36			11	15	18	22	26	30	33
24	62509	62546	62583	62620	62657	62693	62730	35	4	7	11	15	18	22	26	30	33
25	9.62730	62767	62804	62841	62877	62914	62951	34									33
26	62951	62987	63024	63061	63097	63134	63170	33			11	15	18	22	26	29	33
27	63170	63207	63243	63279	63316	63352	63389	32			11	15	18	22	26	29	33
28	63389	63425	63461	63497	63534	63570	63606	31			11	14	18	22	25	29	32
29	63606	63642	63678	63715	63751	63787	63823	30	4	7	11	14	18	22	25	29	2
30	9.63823	63	63895	63931	63966	64002	64	29								29	32
31	64038	64074	64110	64146	64181	64217	64253	28		7	11	14	18	22	25	29	32
32	64253	64289	64324	64360	64395	64431	64467	27			11	14	18	21	25	28	32
33	4467	64502	64538	64573	64609	64644	64679	26		7	11	14	18	21	25	28	32
34	64679	64715	64750	64785	64821	64856	64891	25	4	7	1	14	18	21	25	28	32
35	9.64891	64926	64962	64997	65032	65067	65102	24								28	31
36	65102	65137	65172	65207	65242	65277	65312	23	3		1	14	18	21	25	28	31
37	65312	65347	65382	65417	65452	65486	65521	22			10	14	18	21	25	28	31
38	65521	65556	65591	65625	65660	65695	65729	21			10	14	18	21	25	28	31
39	65729	65764	65799	65834	65868	65902	65937	20	3	7	10	14	17	21	24	28	31
40	9.65937	65971	66006	66040	66074	66109	66143	19	3			14	17	21		28	31
41	6614	6617	66212	66246	66280	66314	66348	18			10	14	17	21	24	28	31
42	663	66383	66417	66451	166485	66519	66553	17		7	10	14	17	20	24	27	31
43	66553	66587	66621	66655	56689	66723	66757	16	3	7	10	14	17	20	24	27	30
44	66757	66791	66824	66858	66892	66926	66959	15	3	7	10	14	17	20	24	27	30
45	9.66959	66993	67027	67060	67094	67128	67161	14	3		10	14	1	2	2	27	30
46	67161	67195	67228	67262	27295	67329	67362	13	3	7	10	13	17	20	23	27	30
47	67362	67396	67429	67462	267496	-67529	67562	12	3	7	10	13	17	20	23	27	30
48	67562	67596	67629	67662	27695	567729	67762	11	3	7	10	13	17	20	23	27	30
49	67762	67795	567828	67861	167894	467927	67960	10	3	7	10	13	16	20	23	26	30
50	9.67960	67993	68026	68059	968092	26125	68158	9	3		10	13	16	20	23	26	30
51	68158	68190	68223	68256	668289	98322	68354	8	3	7	10	13	16	20	23	26	30
52	68354	46838	68420	68452	268485	568517	68550	7	3	7	10	13	16	19	23	26	29
53	68550	68583	68615	68648	68680	-68713	68745	6	3	3	10	13	16	19	23	26	29
54	68745	568777	68810	68842	268874	468907	68939	5	3	7	10	13	16	19	23	26	29
55	9.68939	68971	169004	69036	669068	69100	69132	4	3	6	10	13	16	19	22	2	29
56	¢9132	269164	469197	69229	969261	169293	69325	3	3	6	10	13	16	19	22	26	29
57	69325	569355	569389	69421	169453	69484	49516	2	3	6	10	13	16	19	22	26	29
58	69516	669548	69580	69612	269644	-69675	69707	1	3	6	10	13	16	19	22	26	29
59	69707	769739	69770	69¢02	269834	49866	69897	0	3	6	10	13	16	19	22	26	29

 6 OR 18 HOURS, OR APP. TIME A. M.

PROPORTIONAL PARTS FOR SECONDS.

TABLE XXIX

LOGARITHMS OF THE APPARENT TIME, OR HOUR ANGLE.
hour angle, 6 hours, or app. time p. m
PROPORTIONAL PARTS FOR SECONDS. M.

M.	0									
0	9.69									
1	70									
2	70									
3	70									
4	70									
5	9.70									
6	71									
7	71									
8	71									
9	71									
10	9.71									
11	71									
12	72									
13	72									
14	72		0	10	20	30	40	50	60	
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:			
9.69897	$\frac{69929}{}$	69960	69992	70023	70055	70086	59			
70086	70118	70149	70180	70211	70243	70274	58			
70274	70306	70337	70368	70399	7431	70462	57			
70462	70493	70524	70555	70586	$7 v 617$	70648	56			
70648	70680	70710	70741	70772	70803	70834	55	9.708347086		

 71569716007163071660716917172171751 | .71751 | 71781 | 71812 | 71842 | 71872 | 71902 | 71932 | 49 |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 71932 | 71962 | 71992 | 72022 | 72052 | 72082 | 72112 | 48 |

 724717250072530725607725897261972648

 73352733817734107343973468734977352

 \begin{tabular}{|c|c|c|c|c|c|c|c|c|}
73699 \& 73728 \& 73757 \& 73786 \& 73815 \& 73843 \& 73872 \& 38

73872 \& 73901 \& 73929 \& 73958 \& 73987 \& 74015 \& 74044 \& 37

74044 \& 74072 \& 74101 \& 74129 \& 74158 \& 74186 \& 74215 \& 36

74044 \& 74072 \& 74101 \& 74129 \& 74158 \& 74186 \& 74215 \& 36

74215 \& 74243 \& 74272 \& 74300 \& 74328 \& 74357 \& 74385 \& 35

\hline
\end{tabular} $25 \overline{9.74385} \overline{74413} \overline{74442} \overline{74470} \overline{74498} \overline{74526} \overline{74554}$

26	74554	74583	74611	74639	74667	74695	74723	33
27	74723	74751	74779	74807	74835	74863	74891	32

9.75225	75253	75280	75308	75336	75363	75391	29
75391	75418	75446	75474	75501	75528	75556	28

$\overline{9.76047} \overline{76074} \overline{76101} \overline{76128} \overline{76155} 76182 \overline{76209}$	76209	76236	76263	76290	76317	76344	76371	23
76371	76397	76424	76451	76478	76505	76531	22	
7	7651							

 76691

76851	76877	76904	76930	76957	76983	77	19	3		8	11	13	6	18	21	24
77009	77036	77062	77089	77115	77141	771	18	3	5	8	11	13	16	18	21.	24
77167	77194	77220	77246	77272	77298	77325	17	3	5	8	10	13	16	18	21	24
77325	77351	77377	77103	77429	77455	77481	16	3	5	8	10	13	16	18	21	24
77481	77507	77533	775	77585	77611	77637	15	3	5	8	10	13	16	18	21	23
9.77637	77663	77689	77715	77741	77766	77	14	3	5	8	10	13	15	18	1	23
77792	77818	77844	77870	77895	77921	77947	13	3			10	13	15	18	21	23
77947	77972	77998	78024	78049	78075	78101	12	3	5	8	10	13	15	18	21	23
78101	78126	8152	7817	78203	782	78	11	3	5	8	10	13	1.	18	20	23
78254	78279	78305	78330	78355	78381	78406	10	3	5	8	10	13	15	18	20	23
9.7840	7843	78	78	78507	78533			3								23
7855	78583	78608	78633	78659	78684	78709	8	3	5	7	10	13	15	17	20	23
78709	78734	78759	78784	78809	78834	78859	7	3	5	7	10	13	15	17	20	23
78859	78884	78909	78934	78959	78984	79009	6	3	5	7	10	13	15	17	20	23
79009	79034	79059	79084	79108	79133	79158	5	2	5	7	10	12	15	17	20	
9.79158	79183	79208	79232	79257	79282	79306	4	2	5		10	13		17	,	23
79306	79331	79356	79380	79405	79430	79454	3	2	5	7	10	13	15	17	20	22
79454	79479	79503	79528	79552	79577	79601	2	2	5	7	10	12	15	17	20	22
79601	79626	79650	79674	79699	79723	79747	1	2	5	7	10.	12	15	17	0	22
79747	79772	79796	79821	79845	79869	79893	0	2	5	7	10	12	15	17	20	

5 OR 17 HOURS, OR APP. TIME A. M.
PROPORTIONAL PARTS FOR BECONDS

LOGARITHMS OF THE APPARENT TIME, OR HOUR ANGLE.
hour angle, 7 hours, or app. time p. M.
PROPORTIONAL PARTS FOR SECONDS.

M.	$\begin{aligned} & \mathrm{a} \\ & 0 \end{aligned}$	$\begin{aligned} & 8 . \\ & 10 \end{aligned}$	$\begin{aligned} & \hline \mathbf{s .} \\ & 20 \end{aligned}$	$\begin{aligned} & 8 \\ & 30 \end{aligned}$	$\begin{aligned} & \hline \mathbf{s} . \\ & 40 \end{aligned}$	s. 50	$\begin{aligned} & \hline \text { s. } \\ & 60 \end{aligned}$		$\begin{gathered} \mathrm{s} . \\ 1 \end{gathered}$	8. 2		8. 4	8.	8. 6	8	s. 8	8.
0	9.79893	79918	79942	79966	79990	80014	80038	59	2	5	7	10	12	14	17	19	22
1	80038	80063	80087	80111	80135	80159	80183	58	2	5	7	10	12	14	17	9	22
2	80183	80207	80231	80255	80279	80303	80327	57	2	,	7	10	12	14	17	19	22
3	80327	80350	80374	80398	80422	80446	80470	56	2	5	7	10	12	14	17	19	22
4	80470	80494	80517	80541	80565	80588	80612	55	2	5	7	9	12	14	16	19	21
5	9.80612	80636	80660	80683	80707	80730	80	54		5	7	9		14		19	21
6	80754	80778	80801	80825	80848	80872	80895	53		5	7	9	12	14	16	19	21
7	80895	80919	80942	80966	80989	81012	81036	. 52	2	5	7	9	12	14	16	19	21
8	81036	81059	81082	81106	81129	81152	81176	51	2	5	7	9	11	14	16	18	21
9	81176	81199	81222	81245	81269	81292	81315	50	2	5	7	9	11	14	16	18	21
10	9.81315	81338	81361	81384	81407	81430	81454	49	2	5	7	9		14	16	8	21
11	81454	81477	81500	81523	81546	81569	81592	48	2	5	7		11	14	16	18	21
12	81592	81614	81637	81660	81683	81706	81729	47	2	5	7	9	11	4	16	18	21
13	81729	81752	81775	81797	81820	81843	81866	46	2	5		9	11	14	16	18	21
14	81866	81888	81911	81934	81956	81979	82002	45	2	5	7	9	11	14	16	18	20
15	9.82002	82024	82047	82070	82092	82115	82137	44	2	5		9		14	6	18	20
16	82137	82160	82182	82205	82227	82250	82272	43		5	7			14	16	18	20
17	82272	82294	82317	82339	82362	82384	82406	42	2			9		14	16	18	20
18	82406	82429	82451	82473	82495	82518	82540	41				9		14	16	18	20
19	82540	82562	82584	82606	82629	82651	82673	40	2	4	7	9	11	13	15	18	20
20	9.82673	82695	82717	82739	82761	82783	82805	39	2		7	9		13		18	0
21	82805	82827	82849	82871	82893	82915	82937	38	2		7	9		13	15	18	20
22	82937	82959	82981	83003	83025	83046	83068	37	2		7	9		13	15	18	20
23	83068	83090	83112	83134	83155	83177	83199	36	2		7	9		13	15	18	20
24	83199	83220	83242	83264	83285	83307	83329	35	2	4	6	9	11	13	15	17	19
25	9.83329	83350	83372	83393	83415	83436	83458	34	2	4	6				15	17	9
26	83458	83479	83501	83522	83544	83565	83	33	2	4	6			13	15	17	19
27	83	83608	83629	83651	83672	83694	837	32	2		6			13	15	17	19
28	83715	83736	83757	83779	83800	83821	183842	31	2	4				13	15	17	19
29	83842	83864	83885	83906	83927	83948	83969	30	2	4	-	8	11	13	15	17	19
30	9.83969	83990	84011	84033	84054	84075	8409	29	2		6			13	5	17	19
31	840	84117	841	84159	84179	84200	- 84	28	2			8		13	15	17	19
32	84221	84242	84263	84284	84305	84326	84346	27	2	4	6		11	13	15	17	19
33	84346	84367	84388	84409	84430	84.450	84471	26	2	4	6	8	11	13	15	17	19
34	84471	84492	84512	84533	84554	84574	484595	25	,	4	6		10	2	14	16	18
35	9.84595	84616	84636	84657	84677	84698	84	24	2		6		10			6	18
36	847	847	84759	84780	84800	84821	184841	23	2		6	8	10	12	14	16	18
37	84841	84861	84882	84902	84923	84943	84963	22	2		6		10		14	6	18
38	84963	84984	85004	85024	85044	85065	85085	21	2	4	6		10	12	14	16	18
39	85085	85105	85125	85145	85166	85186	85206	20	,		6	8	10	12	14	16	18
40	9.85206	85226	85246	85266	85286	85306	65	19	2		6		10	12		16	18
41	85326	85346	85366	85386	85406	85426	685446	18	2		6	8	10	12	14	16	18
42	85446	85466	85486	85506	85526	85546	85565	17	2	4	6		10		14	6	18
43	85565	85585	85605	55625	85645	85664	485684	16					10	12	14	6	18
44	85684	85704	85724	85743	85763	85783	85802	15	2		6	8	10	12		16	18
45	9.85802	85822	85841	85861	85881	85900	85920	14		4	4		1	12		6	18
46	85920	85939	85959	85978	85998	86017	786037	13	2		46	A	10	12	14	16	18
47	86037	86056	86076	6 86095	56114	46134	486153	12		4	-		10	12	14	16	18
48	86153	86172	86192	- 86211	86230	86250	0 86269	11	2		6	8	10	12	14	16	18
49	86269	862	86307	76327	86346	86365	586384	10	2	4	4.6	8	10	12	14	16	18
50	9.86384		86423	86442	86461	186480	086499	9	2	4	4.6			11	13	15	17
51	86499	86518	86537	78555	86575	586594	486613	8	2	4	6	8	9	11	13	15	17
52	86613	86632	86651	186670	\| 86689	986708	886727	7			6	8	9	11	13	15	17
53	86727	86746	86764	4 86783	86802	286821	186840				6			11	13	15	17
54	86840	86858	86877	786896	86915	58933	386952		2	4	4.6	8	8	11	13	15	17
55	9.86952	86971	86990	087008	87027	787045	587064	4	2		4.6		9	11		15	17
56	87064	87083	87101	187120	87138	87157	787175	5	2		6	7	9	11		15	17
57	87175	87194	47212	287231	187249	87268	887286		2		4.6	7	9	11	13	15	17
58	87286	87305	587323	387341	187360	- 87378	887396				4.6		9	11	13	15	7
59	87396	87415	87433	387451	187470) 87488	887506		2	4	6	7	9	11	13	15	17
	60s.	50 s .	40 s .	30 s .	20s.	10s.	0s	M	1 s		3s.	4s.				8 s .	9 s .
4 OR 16 HOURS, OR APP. TIME A. M.									PRO	POR	RTION	AL	Part	rs F	OR 8	SECO	

LOGARITHMS OF THE APPARENT TIME, OR HOUR ANGLE.

HOUR ANMER, 8 HOURS, OR APP. TIME P. M.
PROPORTIONAL PARTS FOR SECONDS.

M.	$\begin{aligned} & \mathrm{s} . \\ & 0 \end{aligned}$	$1 \mathrm{~J}$	20	30	$\begin{aligned} & 8 . \\ & 40 \end{aligned}$	50	$\begin{aligned} & \hline 8 . \\ & 60 \end{aligned}$		$8 .$	$\begin{aligned} & 8 . \\ & 2 . \end{aligned}$	$\begin{aligned} & \mathrm{B} . \\ & 3 \end{aligned}$	$\begin{aligned} & 8 . \\ & 4 \end{aligned}$	$\begin{gathered} \mathrm{B}_{1} \\ 5 \end{gathered}$	$\begin{gathered} 8 . \\ 6 \end{gathered}$	$\begin{aligned} & \mathrm{s.} \\ & 7 \end{aligned}$		$\begin{aligned} & 8 \\ & 9 \\ & \hline \end{aligned}$
0	9.87506	87524	87543	87561	87579	87597	87615	99	2	4			9	11	13	14	16
1	87615	87633	87652	87670	87688	87706	87724	58	2	4	5	7	9	11	13	14	16
2	87724	87742	87760	87778	87796	87814	87832	57	,	4	5	7	9	11	13	14	16
3	87832	87850	87868	87886	87904	87921	87939	56	2	4	5	7	9	11	13	14	16
4	87939	87957	87975	87993	88011	88028	88046	55	2	4	5	7	9	11	13	14	16
5	9.88046	88064	88082	88100	88117	88135	88153	54	2	4	5	7	9	11	13	14	16
6	88153	88170	88188	88206	88223	88241	88259	53	2	3	5	7	9.	11	12	14	16
	88259	88276	88294	88311	88329	88346	88364	52	2	3	5	7	9	11	12	14	16
8	88364	88381	88399	88416	88434	88451	88469	51	2	3	5	7	9	11.	12	14	16
9	88469	88486	88503	88521	88538	88556	88573	50	2	3	5	7	9	11	12	14	16
10	9.88573	88590	88607	88625	88642	88659	88677	49		3	5	7		10		4	15
11	88677	88694	88711	88728	88745	88763	88780	48	2	3	5	7	8	10	12	14	15
12	88780	88797	88814	88831	88848	88865	88882	47	2	3	5	7	8	10	12	14	15
13	88882	88899	88916	88933	88950	88967	88984	46	2	3	5	7	8	10	12	14	15
14	88984	89001	89018	89035	89052	89069	89086	45	2	3	5	7	8	10	12	14	15
15	9.89086	89103	89120	89137	89153	89170	89187	44	2	3	5	7		10		4	15
16	89187	89204	89221	89237	89254	89271	89287	43	2	3	5	7		10	12	14	15
17	89287	89304	89321	89338	89354	89371	89387	42	2	3	5	7	8	10	12	14	15
18	89387	89404	89421	89438	89454	89470	89487	41	2	3	5	7		10	12	13	15
19	89487	89503	89520	89536	89553	89569	89586	40	2	3	5	7	8	10	12	13	15
20	9.89586	89602	89619	89635	89651	89668	89684	39	2		5	7	8	16	12	13	15
21	89684	89701	89717	89733	89749	89766	89782	38	2	3	5	7	8	10	12	13	15
22	89782	89798	89815	89831	89847	89863	89879	37	2	3	5	7	8	10	12	13	15
23	89879	89896	89912	89928	89944	89960	89976	36	2	3	5	6	8	10	11	13	14
24	89976	89992	90008	90024	90040	90056	90072	35	2	3	5	6	8	10	11	13	14
25	9.90072	90088	90104	90120	90136	90152	90168	34	2		5	6		10	11	13	14
26	90168	90184	90200	90216	90232	90248	90263	33	2	3	5	6	8	10	11	13	14
27	90263	90279	90295	90311	90327	90342	90358	32	2	3	5	6	8	10	11	13	14
28	90358	90374	90390	90405	90421	90437	90452	31	2	3	5	6	8	10	11	13	14
29	90452	90468	90484	9 9999	90515	90531	90546	30	2	3	5	6	8	10	11	13	14
30	3.90546	90562	90577	90593	90608	90624	90639	29	2	3	5	6	8	9		2	14
31	90639	90655	90670	90686	90701	90717	90732	28	2	3	5	6	8	9	11	12	14
32	90732	90747	90763	90778	90794	90809	90824	27	2	3	5	6	8	9	11	12	14
33	90824	90840	90855	90870	90885	90901	90916	26	2	3	5	6	8		11	12	14
34	90916	90931	90946	90961	90977	90992	91007	25	2	3	5	6	8	9	11	12	14
35	9.91007	91022	91037	91052	91067	91083	91098	24	2	3	4	6				2	14
36	91098	91113	91128	91143	91158	91173	91188	23	2	3	4	6	\%	9	10	12	14
37	91188	91203	91218	91233	91248	91262	91277	22	2	3	4	6	7	9	10	12	14
38	91277	91292	91307	91322	91337	91352	91367	21	2	3	4	6	7	9	10	12	14
39	91367	91381	91396	91411	91426	91440	91455	20	2	3	4	6	7	9	10	12	14
40	9.91455	91470	91485	91499	91514	91529	91543	19	1	3	4	6		9	,	12	13
41	91543	91558	91573	91587	91602	91616	91631	18	1	3	4	6		9	10	12	13
42	91631	91645	91660	91674	91689	91703	91718	17	1	3	4	6		9	10	12	13
43	91718	91732	91747	91761	91776	91790	91805	16		3	4	-	7	9	10	12	13
44	91805	91819	91833	91848	91862	91876	91891	15	1	3	4	6	7	9	10	12	13
45	991891	91905	91919	91934	91948	91962	91976	14		3	4		7	8	10	11	13
46	91976	91991	92005	92019	92033	92047	92061	13	1	3	4	6	7	8	10	11	13
47	92061	92076	92090	92104	92118	92132	92146	12		3	4	6	7	8	10	1	13
48	92146	92160	92174	92188	92202	92216	92230	11		3	4	6	7	8	10	11	13
49	92230	92244	92258	92272	92286	92300	92314	10	1	3	4	6	7	8	10	11	13
50	9.92314	92328	92342	92355	92369	92383	92397	9		3	4	6	7	8	10	11	13
51	92397	92411	92425	92438	92452	92466	92480	8	1	3	4	6	7	8	10	11	13
52	92480	92493	92507	92521	92534	92548	92562	7	1	3	4	5	7	8	9	11	12
53	92562	92575	92589	92603	92616	92630	92643	6	1	3	4	5	7		9	11	12
54	92643	92657	92670	92684	92698	92711	92725	5	1	3	4	5	7	8	9	11	12
55	9.92725	92738	92751	92765	92778	92792	92805	4	1	3	4	5		8	9		12
56	92805	92819	92832	92845	92859	92872	92885	3	1	3	4	5	7	8	9	11	12
57	92885	- 92899	92912	92925	92939	92952	92965	2	1	3	4	5	7	8	9	11	12
58	92965	92978	92992	93005	93018	93031	93044	1	1	3	4	5	7	8	9	10	12
59	93044	93057	93071	430×4	93097	93110	93123	0	1	3	4	5	7	8	9	10	12
	60s.	50s.	40 s .	30s.	20s.	10s.	0s.	M.	1s.	2s.	3s.	4 s .	5 s	6s	78.	8s.	9s.
	3 OR 15 HOURS, OR APP. TIME A. M. \| PROPORTIUNAL PARTS FOR SECONDS.																

TABLE XXX.

FOR CORRECTING THE LONGITUDE BY CHRONOMETER FRJM THE EFFECT OF AN ERROR IN THE LATITUDE USED IN FINDING THE TIME.

TABLE A.
Enter this Table with the Latitude worked with at the Side, and the Hour Angle at the Top. (Bee explanation of thls Table at page 144.)

TABLE B.
Enter this Table with the Declination at the Side, and the Hour Angle at the Top.

Dec.			hour angle.	hour an.								
				$\begin{array}{ll\|ll\|} \hline \text { H. } & \text { н. } & \text { м. } \\ 4 & 0 & 4 & 30 \\ \hline \end{array}$	$$							
\bigcirc			$30 \cdot 3 \mid 0 \cdot 20$	0.20								
4	0.160 .140 .120 .1110 .100 .9	0. $800.8\|0.7\| 0.07\|0.7\|$	0.60.50.50. 5	0.50	4							
6	$0.250 .2100 .19 \mid 0.1650 .150 .14$	0.13 $0.120 .11\|0.10\| 0.10$	0. 90.80 .80 .8	-	7							
8	$0.320 .280 .25 \mid 0.220 .200 .18$	$0.170 .16\|0.14\| 0.14 \mid 0.13$	$0.120 .110^{0.11} 0.10$	0.100	9							
10	0.410 .350 .310 .280 .250 .23	. 2100.200 .190 .170.	50.140 .130	0.120 .11								
12	0.490 .430 .370 .3300 .300 .28	$\begin{array}{lllll}0.25 & 0.24 & 0.22 & 0.21 & 0.19\end{array}$	0.180 .17000	0.150 .14	0.							
14		0.30 $0.280 .26 \mid 0.250 .23$	$0.210 .20 \mid 0.1910 .181$	0.170 .16	0.15							
16		0.34\|0.32 $0.300 .280 .26 \mid$	0.250 .230 .220 .21	0.200 .19	0.18							
18		0.39 $0.360^{\prime} 0.34 \mid 0.320 .29$	0.280 .260 .250 .23	0.220 .210	0.20							
20	1.251 .131 .400 .570 .520 .47	0.440 .4100 .380 .360 .33	0.3100 .290 .280 .26	0.250 .23	0.22							
22	1.34 1.20 1.11 1.4 0.58 0.52	$\overline{0.49}$ 0.45 0.42 0.40 0.37	$\overline{0.34} 0.320 .310 .29$	0.280	0.25							
24	\|1.43	1.27	1.18	1.11	1.4	0.	540.490.46\|0.44	0.41	0	$0.37\|0.35\| 0.34\|0.32\| \mid$	0.31]0	0.28

LOGARITHMS OF THE APPARENT DISTANCE
APPARENT DISTANCE.

M.	18°		19°		20°		21°		22°		23°		M.
	1	Log. T.	L	Log. T.	Log.	1 log g . T.	Log	Log. T.		Log. T.	Log	Log. T.	
0	0.4900	0.5118	0.5126	0.5370	(1.5341	0.5611	0.5543	0.5842	0.5736	0.6064	0.59	. 6279	0
	4904	5122	5130	5374	5344	45615	5547	5846	5739	6068	59	6282	
2	4908	5126	134	5378	53	619	5550	5849	5742	6071	59	86	
3	4911	5131	5137	538\%	5351	5622	5553	5853	5745	6075	5928	6289	3
4	4915	135	5141	5386	5354	45626	5556	5857	5748	6079	5931	6293	
5	0.49190	0.5139	0.5145	0.5390	0.5358	0.5630	0.5560	0.5861	0.5751	0.6082	0.59	. 62	
6	4923	5143	5148	53	5361	634	5563	5864	5754	6086	593	00	6
7	4927	148	152	398	5365	638	5566	5868	5758	6090	5940	6303	7
8	4931	152	5156	5402	5368	642	5570	5872	5761	6093	5943	6307	
9	4935	5156	5159	5407	5372	5646	5573	5876	5764	6097	5945	6310	9
10	0.49390	0.5161	0.5163	0.5411	0.5375	50.5650	0.55	$\overline{0.5879}$	$\overline{0.5767}$	$\overline{0.6100}$	0.5948	$\overline{0.6314}$	0
11	4942	5165	5	5415	53	565	5	883	5770	6104	5951	6317	11
12	4946	5169	170	5419	5382	658	5583	88	5773	6108	5954	6321	12
13	4950	173	74	423	385	62	5586	891	5776	611	595	632	13
14	4954	5178	5177	5427	5389	5665	5589	5894	5779	6115	5960	632	14
15	0.4958	0.5182	0.5181	0.5431	0.5392	0.5669	0.559	0.5898	0.5782	0.61	0.59	0.6331	15
16	4962	518	5185	5435	5396	5673	55	5902	5785	6122	596	6334	16
17	4965	5190	88	5439	399	5677	5599	5906	89	61	5969	38	17
18	4969	5195	5192	443	402	681	62	5909	792	612	97	6341	18
19	4973	519	5196	54	5406	85	5605	5913	5795	6133	5975	6345	19
20	0.49770	0.520	0.519	0.5451	0.5409	0.5689	0.56	0.5917	0.5798	0.6136	0.59	0.6348	0
2	4981	5207	03	5	5413	35693	56	5921	5801	6140	598	6352	21
22	4984	5212	5206	5459	5416	5696	61	5924	5804	614	598	355	22
23	4988	5216	5210	5463	5420	700	618	928	807	14	598	359	23
24	4992	5220	5213	467	5423	35704	5621	932	5810	6151	599	6362	24
25	0.4996	0.522	- 0.5217	$\overline{0.5471}$	0.5426	0.5708	0.5625	0.5935	0.58	$\overline{0.6154}$	0.59	0.6366	5
26	5000	5228	5221	5475	5430	5712	5628	5939	5816	615	5995	6369	26
27	5003	5233	5224	5479	5433	716	5631	943	5819	616	599	37	27
28	7	37	5228	5483	5436	20	5634	5947	5822	616	6001	6	28
29	5011	5241	523	548	54	5724	5638	5950	5825	616	6004	6380	29
30	0.50150	0.5245	0.5235	0.5491	0.5443	30.5727	0.5641	0.5954	0.5828	0.61	0.6907	0.6383	30
31	5019	5249	5239	5496	5447	75731	5644	5958	5831	617	6010	6386	31
32	22	54	2	500	5450	05735	5647	591	583	6179	601	6190	32
33	5026	5258	6		5453	-	5650	- 5965	5838	618	6016	639	3
34	5030	5262	5249	950	54	5743	5654	45969	5841	61	6019	6397	34
35	0.5034	0.5266	0.5253	0.5512	0.5460	$\overline{0.5747}$	$\overline{0.5657}$	$7{ }^{0.5972}$	0.58	0.619	0.6022	0.6400	35
36	5037	5270	5256	6516	5	5750	5660	- 5976	58	619	6024	640	36
37	41	5275	5260	520	5467	5754	56	5980	5850	61	6027	07	37
38	5045	5279	5263	5524	547	5758	5666	6598	5853	620	6030	641	38
39	5049	5283	5267	5528	5474	5762	5670	5987	5856	620	603:	6414	39
40	0.5052 0	05287	0.5270	0.5531	0.5477	70.5766	0.5673	0.5991	0.5859	0.620	0.60	0.641	40
41	5056	5292	5274	4535	5480	05770	5676	5995	586	6211	60	6421	41
42	5060	5295	5278	5539	548	5773	5679	5998	586	621	604	642	42
43	5064	5299	5281	5543	54	5777	56	6002	5868	6219	604	642	43
44	5067		5285	5547	5490	5781	5685	6006	5871	6222	6047	6431	44
45	0.5071	$\overline{0.5308}$	0.5288	0.5551	0.5494	$\overline{0.5785}$	0.5689	$\overline{0.6009}$	0.587	0.622	0.605	0.643	45
46	5075	5312	5292	2555	540	5789	5692	6013	587	622	605	643	46
47	5078	5316	5295	5559	550	5792	5695	6017	5880	623	6056	6441	47
48	5082	5320	5299	5563	550	5796	5698	6020	5883	6236	6059	644	48
49	5086	5324	5302	5567	5507	5800	5701	6024	5886	6240	6062	6448	49
50	0.5090	0.5329	0.5306	0.5571	0.5510	0.5804	0.5704	0.6028	0.5889	0.6243	0.6065	0.6452	50
51	5093	5		5575	. 551	45808	5708	6031	5892	6247	606	6455	51
52	5097	5337	5313	5579	5517	5811	5711	6035	589	625	6070	6459	52
53	5101	5341	5316	5583	5520	5815	5714	6039	5898	625	6073	6462	53
54	5104	5345	5320	5587	5523	5819	5717	6042	5901	6257	6076	6465	54
55	0.5108	$\overline{0.5349}$	0.5323	0.5591	10.5527	0.5823	0. 5720	0.6046	0.5904	0.6261	0.607	0.6469	55
56	5112	5353	5327	5595	553	5827	5723	6050	5907	626	6082	6472	56
57	5115	5357	5330	5599	5533	5830	5726	6053	5910	6268	6085	6476	57
58	5119	5362	5334	5603	5537	5834	5730	6057	5913	6271	6087	6479	58
59	5123	5366	5337	5607	5540	5838	5733	6060	5916	627	6090	6482	59
60	5126	5370	5341	5611	5543	35842	5736	6064	5919	6279	6093	6486	60
M. $\frac{\text { Log. S. }}{18^{\circ}} \overline{\text { Log. T. }}$			Log.S. Log. T.		Log. S. $\overline{\text { Log. T. }}$		Log. S. ${ }_{\text {Log. T. }}$				Log. S. Log. T. M		
			20°	21°		22°		23°					

LOGARITHMS OF THE APPARENT DISTANCE.

APPARENT DISTANCE.

M.	$\text { Log. } \frac{24^{\circ}}{\text { Log. }}$		$\frac{25^{\circ}}{\log . S . \log . T .}$		$\frac{26^{\circ}}{\text { Log. S. } \log . T}$		$\begin{array}{\|c\|} \hline 27^{\circ} \\ \hline \log . \mathrm{S} . \\ \hline \log . \mathrm{T} . \\ \hline \end{array}$		$\begin{array}{\|c} 28^{\circ} \\ \hline \text { Log. S. }{ }^{\text {Log. T. }} \\ \hline \end{array}$		29^{*}		M.		
			Log. S.	Log. T											
0	0.	86			0.6259	0.6687	0.6418	10.6882	0.6570	0.	0.6716	0.7257	0.6856	0.7438	0
1	096	6489	262	6690	421	685	6573	7075	671	7260	685	7441	1		
2	6099	6493	6265	6693	424	6888	6575	7078	6721	7263	6860	7443	2		
3	6102	6496	6268	69	426	6891	65	7081	6723	7266	683	446	3		
4	6104	6499	270	70	429	895	65	7084	67	7269	68	7449			
5	0.610	0.6503	0.62	0.6703	0.6431	0.6898	0.65	0.70870	0.6	0.7272	0.	0.7	5		
6	110	506	276	6706	6434	6901	6585	7090	6730	7275	6869	7455			
7	13	6510	278	6710	437	904	㖪	093	67	7278	6872	74			
8	6116	651	81	6713	439	6907	6590	097	6735	7281	687	61			
9	19	6516	4	6716	644	911	65	7100	6737	84	6876	464	9		
10	0.6121	$\overline{0.6520}$	0.62	$\overline{0.6720}$	0.6444	0.6914	0.6595	0.710	0.6	0.7287	0.68	0.7467	0		
11	6124	6523	89	23	447	6917	6598	7106	67	7290	6881	7470	1		
12	6127	6527	92	6726	449	6920	6600	109	6744	293	688	7473	12		
13	6130	6530	5		52	6923	6603	112	6747	7296		7476	13		
14	6133	65	97	67	6455	6927	6605	711	67	7299	7	7479	14		
15	0.6135	0.6537	0.6300	0.6736	0.6457	0.6930	. 6607	0.7118	0.6752	0.7302	0.6890	0.74	15		
16	6138	6540	6303	¢	6460	693	6610	7121	675	7305	689	74	16		
17	6141	654	5	6743	6462	2936	6612	125		7308	6894		7		
18	6144	654	8	4	6465	6939	6615	7128	67	7311	6896	7491	8		
19	6147	655	6311	6749	6467	6942	66	7131	6761	731	6899	7494	19		
20	0.6149	0.6553	0.6313	0.6752	0.6470	0.6946	. 66	0.7134	0.676	0.7317	0.6901	0.7497	20		
2	6152	65	16		2		6622	7137		7320	6	7500	1		
22	6155	656	6319	675	475	56952	6625	7140	6768	7324	6905	7503	2		
23	158	656	21	6762		6955	62	7143	6770	7327	90	06	23		
24	161	6567	324	6765	0	0958	6629	7146	67	7330		7509	24		
25	0.6163	0.65	0.6327	0.6769	0.6483	0.6962	0.66	0.7149	0.67	0.7333	0.69	0.75			
2	6166	-	6329		6485	56965	6634	7152	67	7336	91	5	6		
27	69	6577	6332	6775	6488	6968	637	715	6780	7339	691	7518	27		
28	6172	658	6335		6490	-	639	159	678	7342	1-	181	8		
29	617	65	6337	67	64	3697	66	7162	67	7345	692	7523	29		
30	0.617	0.658	0.6340	0.6785	0.6495	50.6977	0.66	0.7165	0.6787	0.7348	0.69	0.7526	30		
31	6180	65	42	678	6498	86981	6646	7168	6789	7351	692	7529	31		
32		659		679		6984	6649	71	6791	735	692	7532	32		
33					-		665	717	67	735	6930		33		
34	618	6600		6798	6505	56	66	7177	67	736	6932	7538	34		
35	0.6191	0.6604	0.6353	$\overline{0.6801}$	0.6508	8.6993	0.6656	0.7180	0.679	0.7363	0.693	0.7541	5		
36			55	,	6510	6996		718	68	7366	6937	7544	36		
37	619	661	6358	6808	6513	6999		718		7369	6939	7547	37		
38	6199		61	6811	6515	00	6663	7189	68	737		755	38		
39	6202	6617	6364	6814	6518	8 7006	666	7192	6808	7375	694	7553	39		
40	0.6205	0.66	0.6366	0.6817	-6521	$\overline{0.7009}$	0.6668	80.7196	0.6810	0.7378	. 6	9.7556	40		
41				-	523	37012		7199	6812	7381		7559			
42	6210	6627	6371	6824	6526	70	6673	7202	68	738		75	42		
43	6213	6630	6374	6827	8	01	667	205	68	7387	695	7565	43		
44	6216	6634	637	68	65	70	66	7208	6819	7390	69	75	44		
45	0.6219	0.6637	0.6379	0.6834	0.6533	0.7025	0.66	0.7211	0.6821	0.7393	0.6957	0.7571	5		
46				6837	6536	67028		7214	6824	4396	6959	7573	46		
47	6224	6644	6385	6840	6538	7031		721	6826	7399	691		7		
48	6227	66	387	68	6541	1			6828	740	6963	579	48		
49	6230	665	63	6846	65	703		722		740	6966	7582	49		
50	0.6232	0.6654	0.639	0.6850	0.6546	60.7040	0.669	0.7226	0.6833	0.740	0.6968	0.75	50		
51	6235	657				87043		7229	6835	741	97		51		
52	6238	6660	6398	68	551	7047		7232	6837	741	6972	75	52		
53	624	666	6400	6859	6553	37050	67	7235	6840	7417	697	759	5		
54	6243		64	6863	6556	$6 \quad 7053$	6702	7238	6842	742	697	759	5		
55	0.624	0.6670	0.640	0.68	0.6558	80.70	0.6	0.7241	0.6844	0.7423	0.6979	0.760	55		
			4	686	6561	1705		7245	68	7426	-6981	76	56		
57	625	6677	411	6872	6563	7062	6709	7248	6849	7429	6983	7606	57		
58	6254	6680	6413	6875	566	7065	671	7251	6851	7432	6985	7609	58		
59	6257	6683	6416			7069		7254	6853	7435	6988	761	59		
60	6259	6687	6418	6882	6570	07072	671	$6 \quad 7257$	6856	7438	6990	7614	60		
M	Log. S.	Log. T.	Log. S. $\overline{\text { Log. T. }}$		Log. S. $\overline{\mathrm{Log} . ~ T . ~}$		Log. S. $\overline{\text { Log. T. }}$		$\overline{\text { Log. S. }} \overline{\text { Log. T. }}$		$\frac{\overline{\log . S .} \mid \overline{\log . T_{3}}}{29^{\circ}}$		M.		
		4°		5°	26°		27°		28°						

LO(XARITHMS OF THE APPARENT DISTANCE.

APPARENT DISTANCE.

TABLE XXXI. LOGARITHMS OF THE APPARENT DISTANCE. apparent distance.											131		
M.	48°		$\frac{49^{\circ}}{\log \cdot \mathrm{S} \cdot \log \cdot \mathrm{~T} .}$		$\log \cdot 5 \cdot \log \cdot T$		$\frac{51^{\circ}}{\log . \mathrm{S} .} \operatorname{L\operatorname {lng}.\mathrm {T}.}$		$\frac{52^{\circ}}{\log . S .}$		$\frac{53^{\circ}}{\log .}$		M.
	Log. S.	Log. T.											
0 1	0.8711 8712	1.0456 0458	0.8778 8779	1.0608 0611	0.8843	1.0762 0764	0.8905 8906	10916 0919	0.8965 8966	1.1072 1075	0.9023 9024	1.1229	0
2	8713	0461	780	613	8845	767	8907	0921	8967	1077	902	1234	2
3	8714	0463	8781	0616	8846	0770	8908	0924	8968	1080	9026	1237	3
4	8715	0466	8782	0619	8847	0772	$89 ¢ 9$	0927	8969	1082	9027	1239	4
5	0.8716	1.0468	0.8783	1.0621	0.8848	1.0775	0.8910	1.0929	0.8970	1.1085	. 902	. 1242	5
6	8718	0471	8784	0624	8849	0777	8911	0932	8971	1088	9029	1245	6
7	8719	0473	8755	$06 \geq 6$	8850	0780	8912	0934	8972	1090	9030	1247	7
8	8720	0476	8787	0629	8851	0782	8913	0937	8973	1093	9031	1250	8
9	8721	0479	8788	0631	8852	0785	8914	0940	8974	1095	9032	1253	9
10	0.8722	1.0481	$\overline{0.8789}$	1.0634	0.8853	1.0788	0.8915	1.0942	0.8975	1.1098	0.9033	1.1255	10
11	8723	0484	8790	0636	8854	0790	8916	0945	8976	1101	9034	1258	11
12	8724	0486	8791	0639	8855	0793	8917	0947	8977	1103	9035	1260	12
13	8725	0489	8792	0642	8856	0795	8918	0950	8978	1106	9036	1263	13
14	8727	0491	8793	0644	8857	0798	9619	0953	8979	1108	9037	1266	14
15	0.8728	1.0494	0.8794	1.0647	0.8858	1.0800	0.8920	1.0955	0.8980	1.1111	0.9038	. 1268	15
16	8729	0496	8795	0649	8859	0803	8421	0958	8981	1114	9039	1271	16
17	8730	0499	8796	0652	8860	0806	8922	0960	8982	1116	9040	1274	17
18	8731	0501	8797	0654	8862	0808	8923	0963	8983	1119	9041	1276	18
19	8732	0504	8799	0657	8863	0811	8924	0965	8984	1121	9041	1279	19
20	0.8733	1.0506	0.8800	1.0659	$\overline{0.8864}$	1.0813	0.8925	1.0968	0.8985	1.1124	0.9042	1.1282	20
21	8734	0509	8801	0662	8865	0816	8926	0971	8986	1127	9043	1284	21
22	8736	0512	8802	0665	8866	0818	8927	0973	8987	1129	9044	1287	22
23	8737	0514	8803	0667	8867	0821	8928	0976	8988	1132	9045	1289	23
24	8738	0517	8804	0670	8868	0824	8929	0978	8989	1135	9046	1292	24
25	0.8739	1.0519	0.8805	1.0672	0.8869	1.0826	0.8930	1.0981	0.8990	1.1137	0.9047	1.1295	25
26	8740	0522	8806	0675	8870	0829	8931	0984	8991	1140	9048	1297	26
27	8741	0524	8807	0677	8871	0831	8932	0986	8992	1142	9049	1300	27
28	8742	0527	8808	0680	8872	-0834	8933	0989	8993	1145	9050	1303	28
29	874:	0529	8809	0682	8873	30836	8934	0991	8994	1148	9051	1305	29
30	0.8745	1.0532	0.8810	1.0685	0.8874	1.0839	0.8935	1.0994	0.8995	1.1150	0.9052	1.1308	30
31	8746	0534	8812	0688	8875	50842	8936	60977	8996	1153	9053	1311	31
32	8747	0537	8813	0690	8876	- 0844	8937	0999	8997	1155	9054	1313	32
33	8748	0540	8814	0693	8877	- 0847	8938	1002	8998	1158	9055	1316	33
34	8749	0542	8815	0695	8878	0849	8939	1004	8999	1161	9056	1318	34
35	0.8750	1.0545	0.8816	1.0698	0.887	1.0852	0.8940	1.1007	0.9000	1.1163	0.9056	1.1321	35
36	8751	0547	8817	0700	8880	0854	8941	1010	9000	1166	9057	1324	36
37	8752	0550	8818	0703	8881	10857	8942	1012	9001	1169	9058	1326	37
38	8753	0552	8819	0705	8882	0860	8943	1015	9002	1171	9059	1329	38
39	8755	0555	8820	0708	8883	-0862	8944	1017	9003	1174	9060	1332	39
40	0.8756	1.0557	0.8821	1.0711	0.8884	4 1.0865	0.8945	1.1020	0.9004	1.1176	0.9061	1.1334	40
41	8757	0560	8822	0713	8885	0867	8946	1022	9005	1179	9062	1337	41
42	8758	0562	8823	0716	8887	0870	8947	1025	9006	1182	9063	1340	42
43	8759	0565	8824	0718	8888	8 0872	8948	1028	9007	1184	9064	1342	43
44	8760	0568	8825	0721	8889	0875	8949	1030	9008	1187	9065	1345	44
45	0.8761	1.0570	0.8827	1.0723	0.8890	0.0878	0.8950	1.1033	0.9009	1.1189	0.9066	1.1348	45
46	8762	0573	8828	0726	8891	10880	8951	1035	9010	1192	9067	1350	46
47	8763	0575	8829	0729	8892	$2 \mathrm{C883}$	8952	1038	9011	1195	9068	1353	47
48	8765	0578	8830	0731	8893	30885	8953	1041	9012	1197	9069	1356	48
49	8766	0580	8831	0734	8894	4.0888	8954	1043	9013	1200	9069	1358	49
50	0.8767	1.0583	0.8832	1.0736	0.8895	51.0890	0.8955	1.1046	0.9014	1.1203	0.9070	1.136	50
51	8768	0585	8833	0739	8896	60893	8956	1048	9015	1205	9071	1364	51
52	8769	0588	8834	0741	8897	70896	8957	1051	9016	1208	9072	1366	52
53	6770	0591	8835	0744	8898	80898	8958	8 1054	9017	1210	9073	1369	53
54	8771	0593	8836	0746	8899	90901	8959	1056	9018	1213	9074	1371	54
55	0.8772	1.0596	$\overline{0.8837}$	1.0749	0.8900	1.0903	0.8960	1.1059	0.9019	1.1216	0.9075	1.1374	55
56	8773	0598	8838	0752	8901	10906	8961	1061	9020	1218	9076	1377	56
57	8775	0601	8839	0754	8902	20909	8962	1064	9021	1221	9077	1379	57
58	8776	0603	8840	0757	8903	30911	8963	1067	9022	1224	9078	1382	58
59	8777	0606	8841	0759	8904	$4 \quad 0914$	8964	1069	9023	1226	9079	1385	59
60	8778	0608	8843	0762	8905	$5 \quad 1916$	8965	1072	9023	1229	9080	1387	60
M.	Log. S.	$\mathrm{LB}^{\circ} \mathrm{Log.T}$	$\begin{array}{\|r\|} \hline \text { Log. 8. } \\ 49 \end{array}$	$9^{\circ} \mathrm{Log}. \mathrm{T}$.	$\frac{\operatorname{Log.8.}}{50}$	L0 Log. T.	$\frac{\mathrm{Log.} \mathrm{S.}}{5}$	$1^{\circ} \mathrm{Log}. \mathrm{T}$.	$\frac{\mathrm{Log} \cdot \mathrm{S} \text {. }}{5}$	Liog. T.	$\frac{\log .8 .}{5}$	Log. T.	M.

[^27]
LOGARITHMS OF THE APPARENT DISTANCE.

APPARENT DISTANCE.

M.	54°		55°		56°		57°		58°		59°		M.
	Log. 8.	$\underline{\text { Log. T. }}$	Log. S.	Log. T.	Log. S.	Log. T .	Log. S.	Log. T.	Log.	Log. T.	Log. S.	Log. T.	
0	0.9080	1.1387	0.9134	1.1548	0.9186	1.1710	0.9236	1.1875	0.9284	1.2042	0.9331	1.2212	60
1	9080	1390	9135	1550	9187	1713	9237	1878	9285	2045	9331	2215	59
2	9081	1393	9135	1553	9187	1716	9238	1880	9286	2048	9332	2218	58
3	9082	1395	9136	1556	9188	1718	9238	1883	9287	2051	9333	2221	57
4	9083	1398	9137	1558	9189	1721	9239	1886	9287	2053	9334	2224	56
5	0.91784	1.1401	$\overline{0.9138}$	1.1561	0.9190	1.1724	0.9240	1.1889	0.9288	1.2056	0.9334	2227	55
6	9085	1403	9139	1564	9191	1726	9241	1891	9289	2059	9335	2229	54
7	9086	1406	9140	1567	9192	1729	9242	1894	9290	2062	9336	2232	53
8	9087	1409	9141	1569	9193	1732	9242	1897	9291	2065	9337	2235	52
9	9088	1411	9142	1572	9193	1735	9243	1900	9291	2067	9337	2238	51
10	0.9089	1.1414	0.9142	1.1575	0.9194	1.1737	$\overline{0.9244}$	$1.191) 3$	-0.9292	1.2070	0.9338	. 2241	50
11	9090	1417	9140	1577	9195	1740	9245	1915	9293	2073	9339	2244	49
12	9091	1419	9144	1580	9196	1743	9246	1908	9294	2076	9340	2247	48
13	9091	1422	9145	1583	9197	1746	9247	1911	9294	2079	9340	2250	47
14	9092	1425	9146	1585	9198	1748	9247	1914	9295	2082	9341	2252	46
15	0.9093	1.1427	0.9147	1.1588	0.9198	1.1751	0.9248	1.1916	0.9296	1.2084	0.9342	. 2255	45
16	9094	1430	9148	1591	9199	1754	9249	1919	9297	2087	9343	2258	44
17	9095	1433	9149	1594	9200	1757	9250	1922	9298	2090	9343	2261	43
18	9096	1435	9149	1596	9201	1759	9251	1925	9298	2093	9344	2264	42
19	9097	1438	9150	1599	9202	1762	9251	1928	9299	2096	9345	2267	41
20	0.9098	1.1441	0.9151	1.1602	0.9203	1.1765	0.9252	1.1930	0.9300	1.2098	0.9346	1.2270	40
21	9099	1443	9152	1604	9204	1767	9253	1933	9301	2101	9346	2873	30
22	9100	1446	9153	1607	9204	1770	9254	1936	9301	2104	9347	2275	38
23	9101	1449	9154	1610	9205	1773	9255	1939	9302	2107	9348	2278	37
24	9101	1451	9155	1612	9206	1776	9255	1941	9303	2110	9349	2281	36
25	0.9102	1.1454	$\overline{0.9156}$	1.1615	0.9207	1.1778	0.9256	1.1944	0.9304	1.2113	0.9349	1.2284	35
26	9103	1457	9156	1618	9208	1781	9257	1947	9305	2115	9350	2287	34
27	9104	1459	9157	1621	9209	1784	9258	1950	9305	2118	9351	2290	33
28	9105	1462	9158	1623	9209	1787	9259	1953	9306	2121	9352	2293	32
29	9106	1465	9159	1626	9210	1789	9259	1955	9307	2124	9352	2296	31
30	0.9107	1.1467	0.9160	1.1629	0.9211	1.1792	0.9260	1.1958	0.9308	1.2127	0.9353	1.2299	30
31	9108	1470	9161	1631	9212	1795	9261	1961	9308	2130	9354	2301	29
32	9109	1473	9162	1634	9213	1798	9262	1964	9309	2132	9355	2304	28
33	9110	1475	9163	1637	9214	1800	9263	1966	9310	2135	9355	2307	27
34	9110	1478	9163	1639	9214	1803	9264	1969	9311	2138	9356	2310	26
35	$\overline{0.9111}$	1.1481	$0 . \overline{9164}$	1.1642	$\overline{0.9215}$	1.1806	0.9264	1.1972	0.9312	1.2141	0.9357	1.2313	25
36	9112	1483	9165	1645	9216	1809	9265	1975	9312	2144	9358	2316	24
37	9113	1486	9166	1648	9217	1811	9266	1978	9313	2147	9358	2319	23
38	9114	1489	9167	1650	9218	1814	9267	1980	9314	2150	9359	2322	22
39	9115	1491	9168	1653	9219	1817	9268	1983	9315	2152	9360	2325	21
40	0.9116	1.1494	0.9169	$\underline{1.1656}$	0.9219	1.1820	0.9268	1.1986	0.9315	1.2155	0.9361	1.2327	20
41	9117	1497	9169	1658	9220	1822	9269	1989	9316	2158	9361	2330	19
42	9118	1499	9170	1661	9221	1825	9270	1992	9317	2161	9362	2333	18
43	9119	1502	9171	1664	9222	1828	9271	1994	9318	2164	9363	2336	17
44	9119	1505	9172	1667	9223	1831	9272	1997	9318	2167	9364	2339	16
45	0.9120	1.1507	$\widehat{0.9173}$	1.1669	0.9224	1.1833	$\overline{0.9272}$	1.2000	0.9319	1.2169	0.9364	1.2342	15
46	9121	1510	9174	1672	9224	1836	9273	2003	9320	- 2172	9365	2345	14
47	9122	1513	9175	1675	9225	1839	9274	2006	9321	2175	9366	2348	13
48	9123	1516	9175	1677	9226	1842	9275	2008	9322	2178	9367	2351	12
49	9124	1518	9176	1680	9227	1844	9275	2011	9322	2181	9367	2354	11
5	0.9125	1.1521	0.9177	1.1683	0.9228	1.1847	0.9276	1.2014	0.9323	1.2184	0.9368	1.2356	10
51	9126	¢ 1524	- 9178	1686	- 9229	1850	9277	2017	9324	2187	9369	2359	9
52	9127	1526	- 9179	1688	9229	1853	9278	2020	9325	2189	9369	2362	8
53	9127	7529	9180	1691	9230	1855	9279	2022	9325	2192	9370	2365	7
54	9128	1532	- 9181	1694	9231	1858	9279	2025	9326	2195	9371	2368	6
55	0.9129	1.1534	0.9181	1.1697	0.9232	1.1861	0.9280	1.2028	$\widehat{0.9327}$	1.2198	0.9372	1.2371	5
56	9130	1537	9182	1699	9233	1864	9281	2031	9328	2201	9372	2374	4
57	9131	1540	9183	1702	9233	1867	9282	2034	9328	2204	9373	2377	3
58	9132	1542	9184	1705	$9: 34$	1869	9283	2036	9329	2207	9374	2380	2
59	9133	1545	9185	1707	9235	1872	9283	2039	9330	2209	9375	2383	1
60	9134	1548	9186	1710	92.36	- 1875	9284	2042	9331	2212	9375	2386	0
M.	$\begin{array}{\|c\|} \hline \overline{\log . \text { S. }} \overline{\log . \mathrm{T} .} \\ 125^{\circ} \\ \hline \end{array}$		Log. S. Log. T.		Log. 8.		Log. S. ${ }_{\text {Log. T. }}$		$\overline{\text { Log. S. }}$ Log. T.		Log. 8. ${ }_{\text {Log. T. }}$		M.
				24°	123°		122°		121°		120°		

LOGARITHMS OF THE APPARENT DISTANCE.
APPARENT DISTANCE.

	66°		67°				69°		70°		71°		M.
M.	Log. S.	Log. T.	Log. S.	Log.	Log. S.	1							
0	0.9607	1.3514	0.9640	1.3721	0.9672	1.3936	0.9702	1.4158	0.9730	1.4389	97	4630	60
1	9608	3518	9641	25	9672	3940	9702	4162	9730	4393	97	1634	59
2	9608	3521	9641	3729	673	943	9702	166	9731	4397			58
3	9609	3524	9642	3732	9673	947	70		9731	440	975	64	57
4	9610	35	642	373	9674	3950	9703	41	97	4405	975	4647	56
56789	0.9610	1.3531	0.9643	1.3739	0.9674	1.3954	$\overline{0.9704}$. 4177	0.97	. 4409	- 0.97	4	55
	9611	3535	9643	3743	9675	3958	9704	4181	97	4413	9759	4655	54
	9611	3538	9644	3746	675	396	05	185	9733	41	976	4659	53
	9612	3541	9645	3750	67	96	9705	189		42	976	663	52
	9612	3545	9645	3753	9676	3969	9706	4192	97	4125	9761	4667	51
10 11 12 13 14 1	0.9613	1.354	0.9646	1.3757	$\overline{0.9677}$	1.3972	0.970	1.4196	0.97	1.4429	0.976	. 46	
	9613	3552	9646	3760	9677	3976	9707	4200	97	4433	976	46	49
	9614	3555	9647	3764	678	3980	07	4204	973	4	976	468	48
	9615	3559	9647	767	678	983	708	4208	97	4441	9762	4684	47
	9615	3562	9648	3771	9679	398	9708	4211	9736	4445	9763	4688	46
$\begin{aligned} & \hline 15 \\ & 16 \\ & 17 \\ & 18 \\ & 19 \\ & \hline \end{aligned}$	0.9616	1.3565	0.9648	. 377	. 9679	1.3991	$\overline{0.9709}$	1.4215	0.9737	1.4449	0.976	1.4692	45
	9616	3569	9649	3778	9680	3994	9709	4219	973	445	976	4696	44
	9617	3572	9649	3781	680	98	9710	4223	9738	4457	976	4700	43
	9617	576	550	3785	9681	4002	9710	4227	97	446	976	4705	42
	9618	3579	9650	378	9681	4005	9711	4230	9739	4465	9765	4709	41
$\begin{aligned} & 20 \\ & 21 \\ & 22 \\ & 23 \\ & 24 \end{aligned}$	0.9618	1.3583	0.9651	$1 \cdot 3792$	0.9682	$\overline{1.4009}$	0.9711	1.4234	-0.9739	1.4469	0.97	1.4713	40
	9619	35	96	3796	9682	4013	9712	4238	97	4473	97	4717	39
	9620	3589	652	3799	9683	4016	9712	4242	974	447	97	4721	38
	9620	3593	9652	3803	683	4020	9713	4246	974	448	976	4725	37
	9621	3596	9653	380	9684	40	9713	4250	974	44	97	4730	36
$\begin{array}{\|l\|} \hline 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ \hline \end{array}$	0.9621	1.36	0.9	1.3810	0.968	1.4028	0.9714	1.42	0.97	1.4488	0.97	1.4734	5
	9622	3603	65	813	9685	4031	9714	4257	974	4492	976	4738	34
	9622	3607	9655	3817	9685	4035	9714	4261	974	449	976	474	33
	9623	610	9655	21	9686	4039	9715	65	9743	00	析	-	32
	962	361	965	382	9686	4042	9715	426	9743	4504	9769	4751	31
$\begin{aligned} & \hline 30 \\ & 31 \\ & 32 \\ & 33 \\ & 34 \end{aligned}$	0.962	1.3617	0.9656].3828	0.9687	$\overline{1.4046}$	$\overline{0.9716}$	1.4273	0.9743	$\overline{1.4509}$	0.97	1.47	30
	962	3620	9657	3831	9687	4050	9716	4276	97	4513	977	-	29
	9625	3624	9657	3835	9688	4053	9717	4280	974	17	9770	4763	28
		36	9658	3838	968	4057	9717	4284	97	4521	9771	4767	27
	9626	36	96	-3842	9689	4061	9718	4288	9745	452	977	4772	26
$\begin{aligned} & \hline 35 \\ & 36 \\ & 37 \\ & 38 \\ & 39 \end{aligned}$	0.9627	1.3634	0.9659	1.3846	0.9689	1.4065	0.9718	1.4292	0.9746	1.4529	0.9772	1.4776	25
	9627	3638	659	3849	9690	4068	9719	4296	9746	4533	9772	4780	24
	9628	364	96	3853	9690	4072	9719	4300	9747	4537	977	4784	23
	9628	3645	9660	38	9691	4076	9720	4304	9747	154	977	4788	22
	96	3648	9661	3860	9691	4079	9720	4307	9747	4545	9773	479	21
$\begin{aligned} & 40 \\ & 41 \\ & 42 \\ & 43 \\ & 44 \\ & \hline \end{aligned}$	0.9629	1.3652	0.9661	1.3864	0.9692	1.4083	$\overline{0.9721}$	1.4311	0.97	1.4549	0.9774	1.4797	20
	9630	3655	9662	3867	9692	4087	9721	4315	97	4553	9774	4801	19
	9631	365	96	38	9693	4091	9722	4319	9749	4557	977	4805	18
	9631	3662	9663	874	9693	09	722	4323	9749	4561	977	4810	17
	9632	3666	9663	3878	9694	4098	9722	4327	9750	4565	977	4814	16
$\begin{aligned} & \hline 45 \\ & 46 \\ & 47 \\ & 48 \\ & 49 \end{aligned}$	0.9632	1.36	0.9664	11.3882	0.9694	1.4102	0.9723	1.4331	0.9750	1.4569	0.9776	1.4818	15
	96	3673	9664	388	9695	4106	9723	4335	9751	4573	9776	4822	14
	9633	3676	966	3889	695	4109	9724	4338	9751	4577	977	4827	13
	34	3679	665	3892	696	4113	9724	4342	9751	4581	77	4831	12
	963	3683	9666	6 3896	696	4117	9725	4346	9752	4585	9778	4835	11
5055253	0.9635	1.3686	0.9667	1.3900	0.9697	1.4121	0.9725	$\overline{1.4350}$	0.9752	1.4589	0.9778	1.4839	10
	963	3690	9667	3903	9697	4124	9726	4354	9753	4593	9778	4844	9
	9636	3693	9668	3907	9698	4128	9726	4358	975	4598	9779	484	8
	9636	3697	668	910	9698	4132	9727	4362	9754	4602	9779	485	7
	9637	3700	9669	3914	9699	4136	9727	4366	9754	4606	9780	485	6
55	0.9638	$\overline{1.3704}$. 9669	1.3918	0.9699	$\overline{1.4139}$	0.9728	1.4370	0.9755	1.4610	0.9780	1.4861	5
56	9638	3707	9670	3921	9700	4143	9728	4374	9755	4614	9780	4865	4
57	9639	3711	9670	3925	9700	4147	9728	4378	975	4618	9781	4869	3
58 59	9639	3714	9671	3929	9701	4151	9729	4381	9756	4622	9781	4874	2
59 60	9640	3718	9671	3932	9701	4154	9729	4385	9756	4626	9782	4878	1
60	9640	3721	9672	3936	9702	4158	9730	4389	9757	4630	9782	4882	-
M		Log.	Log. 8.	Og. T.	Log. 8.	Log. T.	L	Log. T.	. 8	Log. T.	Log. S.	Log.	M.
	1		11										
APPARENT DISTANCE.													

LOGARITHMS OF THE APPARENT DISTANCE.
APPARENT DISTANCE.

M.	72°		73°		74°		75°		76°		- 77°		M.
	Log. S.	Log. T.	Log. S	Log. T.	Log. S.	Log. T.							
0	6.9782	1.4882	0.9806	1.5147	0.9828	1.5425	0.9849	1.5719	0.9869	1.6032	0.9887	1.6366	60
1	9782	4887	9806	5151	9829	5430	9850	5725	9869	6038	9888	6372	59
2	9783	4891	9807	5156	9829	5435	9850	5730	9870	6043	9888	6378	58
3	9783	4895	9807	5160	9829	5439	9850	5735	9870	6048	9888	6384	57
4	9784	4899	9807	5165	9830	5444	9851	- 5740	9870	6054	9888	6389	56
5	0.9784	1.4904	0.9808	1.5169	0.9830	1.5449	0.9851	1.5745	0.9871	1.6059	$\bigcirc 0.9889$	$\overline{1.6395}$	55
6	9785	5908	9808	- 5174	9831	5454	9851	5750	9871	6065	9889	6401	54
7	9785	4912	9809	5178	9831	54 C (1)	9852	5755	9871	6070	988.9	6407	53
8	978	491	9809	. 5183	983	546%	9852	'5760	9872	6076	9890	6413	52
9	9786	6 4921	9809	5187	9832	546	9852	5765	9872	6081	9890	6419	51
10	0.9786	1.4925	0.9810	1.5192	0.9832	1.5473	0.9853	1.5770	0.9872	1.6086	0.9890	1.6424	50
11	9787	493	9810	5197	832	2478	853	5775	9872	6092	890	6430	49
12	9787	4934	9811	1	983	5483	9853	5780	9873	6097	891	6436	48
13	9787	4938	9811	15206	9833	5487	9854	5786	9873	6103	9891	6442	47
14	9788	4943	9811	15210	9833	5492	9854	5791	9873	6108	9891	6448	46
15	0.9788	1.4947	0.9812	1.5215	\bigcirc	1.5497	0.9854	1.5796	0.9874	1.6114	0.9892	1.6454	45
16	9789	4951	9812	2 5219	983	45502	9855	5801	9874	6119	9892	6459	44
17	9789	4956	9812	2224	983	5507	9855	5806	9874	6125	9892	6465	43
18	97	4960	9813	5229	983	5512	9855	5811	9875	6130	9892	6471	42
19	97	4965	$\underline{9813}$	- 5	983	5516	9856	5816	9875	6136	9893	7	41
20	0.979	1.4969	0.9814	4 1.5238	0.983	5521	0.9856	1.5822	0.9875	1.6141	0.9893	1.6483	0
21	97	14973	814	45242	983	5526	- 9856	5827	9876	6 6147	9893	6489	39
22	979	14978	9814	45247	83	5531	9857	5832	9876	6152	9894	6495	38
23	97	14982	9815	55252	98	5536	9857	5837	9876	6. 6158	9894	501	37
24	979	24986	- 9815	5 5256	98	5541	9857	5842	9876	-6163	9894	6507	36
25	0.979	1.4	0.9815	51.5261	0.983	1.5546	0.9858	1.5847	$\widehat{0.9877}$	1.6169	0.9894	1.6513	35
26	979	4995	5 9816	65265		5551	9858	- 5853	9877	6174	89	6519	34
27	979	3000	9816	65270	983	5555	9858	5858	9877	6180	89	525	33
28	9793	5004	49817	75275	983	8550	9859	- 5863	9878	8185	989	53	32
29	97	45008	9817	$7 \quad 5279$	983	5565	-9859	5868	9878	6191	9896	6536	31
30	0.9794	1.5013	0.9817	71.5284	0.983	1.5570	0.9859	1.5873	0.9878	1.6196	0.98	1.6	30
31	9795	55017	9818	85289	983	5575	9860	5879	9879	- 6202	- 989	6548	29
32	979	5022	- 9818	85293	98	5580	9860	5884	9879	-6208	989	6554	28
33	9795	5026	- 9818	85298	984	5585	9860	5889	9879	6213	9897	560	37
34	9	5030	- 9819	95303	98	5590	9861	5894	9880	6219	9897	6566	26
3	$\overline{0.9796}$	61.5035	$\overline{0.9819}$	1.5307	0.9	1.5595	0.9861	1.5900	0.9880	1.6224	0.9897	$\underline{1.6572}$	25
36	9797	75039	9820	05312	98	5600	9861	5905	9880	- 6230	- 9897	578	24
37	9797	75044	- 9820	- 5317	98	5605	9862	5910	9380	6236	9898	584	23
38	9797	75048	9820	- 5321	984	5610	9862	5915	9881	6241	9898	591	22
39	9798	85053	9821	15326	984	5614	9862	2921	9881	6247	9898	6597	21
40	0.9798	81.5057	0.9821	11.5331	0.9843	1.5619	0.9863	1.5926	0.9881	1.6252	$\widehat{0.9899}$	1.6603	20
41	9799	95061	19821	15335	- 984	35624	- 9863	-5931	9882	6258	9899	6609	19
42	9799	95066	- 9822	25340	984	5629	9863	5936	9882	W264	9899	6615	18
43	9799	95070	- 9822	25345	984	5634	9864	5942	9882	6269	9899	6621	17
44	9800	5075	$5 \quad 9823$	35350	98	5639	9864	5947	9883	6275	9900	6627	16
45	0.9800	1.5079	0.9823	1.5354	0.9	1.5644	0.9864	1.5952	0.9883	1.6281	0.9900	1.6633	15
46	9801	15084	49823	35359		5649	9865	5958	9883	6286	9900	6639	14
47	9801	15088	- 9824	45363	984	5654	- 9865	5963	9883	6292	9901	6645	13
48	9801	15092	2984	45368	9845	5.5659	9865	5968	9884	6298	9901	6651	12
49	9802	25097	7 9824	45373	9846	65664	9866	5973	9884	6303	9901	6657	11
50	0.9802	21.5102	09885	51.5378	0.984	1.5669	0.9866	$\overline{1.5979}$	0.9884	1.6309	0.9901	1.6664	10
51	9802	25106	6 9825	$5 \quad 5382$	984	5674	- 9866	5984	9885	6315	9902	6670	9
52	9803	3111	. 9826	65387	9847	5679	- 9867	5989	9885	6320	9902	6676	8
53	9803	3115	59826	65392	9847	5684	- 9867	5995	9885	6326	9902	6682	7
54	9804	45120	- 9826	65397	9847	5689	9867	6000	9885	6332	9902	6688	6
55	0.9804	41.5124	0.9827	71.5401	0.9848	1.5694	0.9868	1.6005	$\overline{0.9886}$	1.6338	0.9903	1.6694	5
56	9804	45129	9827	75406	9848	- 5699	9868	6011	9886	6343	990	6700	4
57	9805	5133	9827	75411	9848	5704	9868	6016	9886	6349	9903	6707	3
50	9805	55138	- 9828	85416	9849	5709	9868	6022	9887	6355	9904	6713	2
59	9806	65142	9838	8420	9849	5714	9869	6027	9887	6361	9904	6719	2
60	9806	6 5147	- 9828	5425	9849	5719	9869	6032	9887	6366	9904	6:25	0
M.	Log. S.	Log. ${ }^{\text {P }}$	Log. 8.	Log. T.	Log. S.	Log.T.	Log. S.	Log. T.	Log. S.	Log. T.	Log. S	Log. I	M.
				0°		05°		04°		103°		2°	

LOGARITHMS OF THE APPARENT DISTANCE.

APPARENT DISTANCE.

M.	78°		79°		80°		81°		82°		83°		M
	Log. S.	Log.	Log. S.	1 Log	S.	Log. T	Log. S.	Log	Log. S.	Log. T	Log	Log. T.	
0	0.9904	1.6725	0.9919	1.7113	0.9934	1.7537	0.9946	1.8003	0.9958	1.8522	0.99	1.9109	6 C
1	9904	673	9920	7120	9934	7544	9946	8011	9958	8531	9968	9119	59
2	9905	6738	9920	7127	9934	7552	9947	8019	9958	8540	9968	9129	58
3	9905	6744	9920	7134	9934	7559	9947	8027	9958	8550	9968	1140	57
4	9905	6750	9920	7141	9934	7566	9947	8036	9958	8559	9968	9151	56
5	0.99051	1.6756	0.9921	1.7147	0.9935	1.7574	0.9947	1.8044	- 0.9958	1.8568	0.9968	.9161	55
6	9906	676	9921	7154	9935	7581	9947	8052	9959	8575	9968	9172	54
7	9906	6769	9921	7161	9935	7589	9948	8060	9959	8587	9969	9182	53
8	9906	6775	9921	168	9935	7596	9948	069	$95 ?$	596	9969	193	52
9	9906	6781	9922	175	936	7604	9948	8077	9959	8605	1.9969	9204	51
10	0.99071	1.6	0.9922	1.7181	0.9936	1.7611	0.9	1.80	0.9959	1.8615	1.9969	1.92	0
11	9907	679	9922	\| 7188	9936	7619	9948	8094	9959	8624	9969	9225	49
12	9907	6800	9922	719	9936	7626	9949	8102	9960	8633	9969	9236	48
13	9907	07	923	02	936	634	9949	8110	960	8643	9969	9246	47
14	9908	6813	9923	09	937	7641	9949	8119	9960	8652	9970	9257	46
15	0.9908	1.681	0.9923	1.72	0.9937	1.7649	0.9949	1.8127	0.9960	1.8662	1.9970	1.92	45
16	9908	6826	9923	722	9937	7657	9949	8136	9960	8671	9970	9279	44
17	9908	6832	924	7230	937	64	9950	8144	960	8681	9970	290	43
18	9909	388	924	7236	9937	72	950	8152	961	8690	9970	1	42
19	9909	6845	24	7243	9938	79	9950	8161	9961	8700	9970	9312	41
20	0.9909	1.6851	0.9924	1.7250	0.993	1.768	0.9950	1.8170	0.9961	$\overline{1.8709}$	1.9971	1.93	40
21	9910	6858	9925	72	9938	7695	9950	8178	9961	8719	971	9333	39
22	9910	864	925	726	993	702	9951	8186	91	8728	97	9344	38
23	9910	6870	25	5		7710	951	8195	962	8738	1		37
24	9.910	$\underline{6877}$	9925	7278	9939	7718	9951	¢203	9962	87	9971	9367	36
25	0.9911	1.6883	$\overline{0.9925}$	1.7285	0.9939	1.7725	0.9951	1.8212	0.9962	1.8757	1.9971	1.93	
26	9911	6890	9926	7292	9939	7733	9951	8221	9962	8767	9971	9389	34
27	1	6896	9926	7299	9939	7741	951	229	2	8777	9972		33
28	9911	6902	26	7306	9940	7748	9952	S238	9962	878	9972	1	32
29	9912		9926		9940	7756	9952	8246	9963	8796	9972	9422	31
30	0.9912	1.6915	$\overline{0.9927}$	1.7320	0.9940	1.7764	0.9952	1.8255	$\overline{0.9963}$	1.8806	1.9972	1.94	30
31	9912	6922	9927	7327	9940	- 77	9952	1 8264	9963	, 881	997		29
32	9912	6928	9927	7334	9940	- 7779	9952	8272	9963	88	9972		8
33	13	35	27	734	99	17787	995	8281	9963	- 883	997	9467	27
34	991	69	9928	7349	9941	1779	9953	8290	9963	[8845	9973	9479	26
35	0.9913	16948	0.9928	1.7356	0.9941	1 1.7803	0.9953	1.8298	0.9964	1.8855	1.99	. 9490	25
36	9913	54	28	7363	9941	78	9953	8307	9964	8865	9973	9501	24
37	9914	6961	9928	737	94	7819	9953	8316	9964	88	9973	3	23
38	991	7	9929	-	9942	27826	9954	8325	9964	888	9973	4	22
39	9914		9929	$\underline{7384}$	994	7834	9954	$4 \quad 8333$	9964	8894	9973	9536	21
40	0.9914	1.6980	0.9929	1.7391	0.9942	$2 \overline{1.7842}$	0.9954	1.8342	0.9964	1.8904	1.9973	1.954 .7	20
41	9915	6987	9929	7399	9942	78	9954	48351		8914			19
42	9915	6994	9929	7406	4	78	9954	8360	9965	89	9974	9570	18
43	9915	7000	9930	- 741	9943	3786	9954	8369	96	89	9974	9582	17
44	9915	7007	9930	742	9943	$3 \quad 7874$	9955	8378	996	894	997	9593	16
45	0.9916	1.7013	0.9930	1.74	0.9343	31.7882	0.9955	51.8387	$\overline{0.9965}$	1.8955	1.9974	1.9605	15
46	9916	7020	9930	1743	9943	78	9955	8395	9965	8965	9974	9617	14
47	9916	7027	9931	174	9944	789	9955	8404	9965	8975	9974	9629	13
48	9916	7033	9931	17449	944	47906	955	413	9966	8985	997	9640	12
49	9917	7040	9931	17456	9944	$4 \quad 7914$	9956	8422	9966	8995	997	9652	11
50	0.9917	1.7047	0.9931	1.7464	0.9944	41.7922	0.9956	1.8431	0.9966	1.9005	1.9975	1.9664	10
51	9917	7053	9931	1741	促	7930	9956	8440	9966	9016	9975	9676	
52	9917	7060	9932	7478	945	793	9956	8449	9966	9026	9975	968	
53	9918	7066	9932	7485	945	794	析	8458	9966	9036	9975	970	
54	9918	7073	9932	7493	9945	5795	995	8467	9967	9046	9975	97	6
55	0.9918	1.7080	0.9932	1.7500	0.9945	51.7962	0.9957	$\overline{1.8476}$	0.9967	1.9057	1.9975	1.9723	5
56	9918	7087	9933	3507	9945	57970	9957	8485	9967	9067	9976	9735	4
57	9919	7093	9933	7515	9946	797	9957	8495	9967	9077	9976	9747	3
58	9919	7100	9933	7522	946	798	957	8504	9967	9088	997	976	
59	9919	7107	9933	7529	9946	67995	9957	8513	9967	9098	9976	9772	
60	9919	7113	9934	4537	9946	68003	9958	8522	9968	9109	9976	9784	0
M.	Log. S.	$\overline{\text { Log. } \mathrm{T} .}$	Log. S.	Log. T.	Log. S.	Log.'T.	Log. S.	Ling. T.	Log. S.	Log. T.	log. 8	og.	M
		11°		00°		99°		98					

LOGARITHMS OF THE APPAREN1 DISTANCE.
APPARENT DISTANCE.

M.	84°		85°				87°		88°		89°		M.
	Log. S.	Log. T.	Log. S.	Log. T.	L	Log.T.	Log.	g. T. L	Log. S.	Log. T.	I	g. T.	
0	0.99761	1.97840	0.9983	2.0580	0.9989	2.1554	0.9994	2.2806 0	0.9997	2.4569	0.99	2.7581	60
1	9976	9796	9984	595	989	1572	9994	2830	9997	4606	999	7654	59
2	9976	9808	984	610	990	1590	9994	2855	9997	4642	999	7728	58
3	9977	9820	984	0624	990	1608	9994	2879	9997	4679	999	7804	57
4	9977	9833	9984	0639	9990	1627	9994	2904	9998	4717	999	7880	56
5	$\overline{0.9977}$	1.9845	0.9984	2.0654	0.9990	2.1645	0.9994	2.29290	$\overline{0.9998}$	2.4754	0.99	. 7959	55
6	9977	9857	9984	0669	9990	1664	9994	2954	9998	4792	999	8038	54
7	9977	9870	9984	0684	9990	1683	9995	2979	9998	1830	99	8120	53
8	9977	9882.	9984	0698	9990	1701	9995	3004	9998	4869	. 99	8202	52
9	9977	9895	9984	0713	9990	1720	9995	3029	9998	4908	1.000	8287	51
10	$\overline{0.9977}$	1.9907	0.9985	2.0728	0.9990	2.1739	0.999	2.3055 0	0.9998	$\overline{2.4947}$	1.000	2.8373	0
11	9978	9920	9985	0744	9990	1758	999	3081	9998	4987	000	8460	49
12	9978	9932	985	0759	9990	1777	999	3106	9998	5027	000	8550	48
13	9978	9945	9985	77	9991	1796	999	3132	9998	5067	000	8641	47
14	9978	9957	9985	0789	9991	1815	9995	3158	9998	5108	000	8735	46
15	0.9978	1.9970	0.9985	2.0804	0.9991	2.1835	0.9995	2.31850	$\overline{0.9998}$	2.5149	1.00	. 8830	45
16	9978	9983	9985	0820	. 9991	1854	999	3211	9998	191	00	8928	44
17	9978	9995	9985	0835	99	1874	99	3238	9998	5233	00	9028	43
18	9978	2.0008	9985	0850	9991	1893	9995	3264	9998	5275	000	9130	42
19	9979	0021	9985	0866	9991	1913	999	3291	9998	5318	000	9235	41
20	0.9979	2.0034	0.9986	2.0882	0.9991	2.1933	0.99	2.33180	0.9998	2.5362	1.00	2.9342	0
21	997	004	9986	0897	9991	1952	99	3346	9998	5405	000	9452	39
22	997	0060	9986	0913	9991	1972	999	3373	9998	5449	00	9565	38
23	9979	0073	9986	0929	9991	1992	999	3401	9998	5494	00	9681	37
24	9979	0086	9986	0944	9991	12012	999	3429	9998	5539	00	9799	36
25	0.9979	2.0099	0.9986	2.0960	0.9991	12.2033	0.99	2.3456	0.9998	2.5584	1.00	2.9922	35
26	997	0112	- 9986	097	9992	2053	999	3485	9998	5630	00	3.0048	34
27	98	0125	9986	099?	999	2073	99	3513	9998	5677	00	0177	33
28	9980	0138	9986	1008	9992	22094	99	3541	9998	5724	00	0311	32
29	9980	0151	9986	$0 \div 4$	9992	2.2114	99	3570	9998	5771	00	0449	1
30	0.9980	2.0164	0.9987	2.1040	0.99	22.2135	0.99	$\overline{2.3599}$	0.9999	$\underline{2.5819}$	1.00	3.0591	30
31	9980	0178	9987	1056	- 9992	2156	99	3628	9999	5868	00	0739	29
32	9980	0191	9987	1073	- 9992	$2 \cdot 2177$	999	3657	9999	5917	00	0891	28
33	9980	0204	- 9987	7 1089	9992	22198	999	3687	9999	5967	1000	9	27
34	9980	0218	9987	1105	5992	22219	999	3717	9999	6017	0	1213	6
35	0.9981	12.0231	10.9987	2.1122	0.9992	22.2240	0.99	2.3746	0.9999	2.6068	1.00	3.1383	5
36	9981	10244	- 9987	71138	- 999	2261	- 999	3777	9999	6119	00	1561	24
37	98	10258	9987	115	5999	2283	99	3807	9999	6171	00	1745	23
38	9981	10271	19987	71171	1999	2304	99	3837	9999	6224	00	19	22
39	9981	$1 \quad 0285$	- 9987	71188	899	2326	6 99	3868	9999	6277	00	2140	21
40	0.9981	$1 \overline{2.0299}$	0.9988	2.1205	0.999	32.2348	0.99	2.3899	$\widehat{0.9999}$	2.6331	1.00	3.23	20
41	9981	1.0312	29988	81222	- 999	2369		3930	- 9999	-6386	- 00	25	19
42	9981	1.0326	6 9988	8123	- 9993	2391	199	3962	- 9999	6441	000	2810	18
43	9982	20340	- 9988	81255	59993	32413	399	3993	- 9999	6497	000	30	17
44	9982	$2 \quad 0354$	4998	1272	29993	3435	-999	4025	-9999	6554	000	3322	16
45	0.9982	2 2.0367	70.9988	82.1289	0.999	$\overline{2.2458}$	0.99	2.4057	0.9999	2.6611	1.	3.3602	15
46	9982	20381	1.9988	81306	6999	2480	999	4089	- 9999	-6670	000	3901	14
47	9982	20395	59988	$8 \quad 1324$	49993	2502	2999	4122	9999	-6729	00	4223	13
48	982	20409	99988	$8 \quad 1341$	1.999	2525	5999	4155	- 9999	-6789	00	4571	12
49	9982	20423	3.9988	81358	8 999	2548	8999	4188	- 9999	-6850	000	4949	1
50	0.9982	22.0437	70.9989	92.1376	60.999	2.2571	10.999	2.4221	10.9	$\widehat{2.6911}$	1.00	3.5363	10
51	9982	20451	19989	$9 \quad 1393$	3999	2594	4999	4255	59999	6974	000	5820	9
52	9983	30466	6 9989	91411	1999	2617	7999	4289	9999	77037	00	6332	8
53	9983	30480	- 9989	91428	8999	2640	0999	4323	- 9999	7101	00	6912	7
54	9983	$3 \quad 0494$	$4 \quad 9989$	$9 \quad 1446$	69994	$4 \quad 2663$	$3 \quad 999$	4357	9999	7167	00	7581	6
55	0.9983	2.0508	80.9989	92.1464	0.999	2.2687	70.99	2.4392	$\widehat{0.9999}$	$\underline{2.7233}$	1.000	3.8373	5
56	9983	30523	39989	91482	29994	2710	0999	4427	7 9999	7300		9342	4
57	9983	30537	79989	91499	99994	$4 \quad 2734$	4999	4462	2999	97369		4.0592	3
58	9983	30552	29989	91517	79994	2758	8999	4497	79999	7438	8	2352	2
59	9983	30566	69989	91535	59994	2782	2999	4533	- 9999	7509	00	5363	1
60	9983	30580	09989	91554	49994	2806	6999	4569	- 9999	97581	00		0
M	L.cg. S	Log. T.	Log. S.	Log. T.	Log.	Log. T.	Log.		Log. S.	Log. T.	Log	Log.	M
	$\bigcirc 95^{\circ}$		94°		93°		92°		91°		90°		

138		LOGARITHMS OF THE FIRST AND SECOND CORRFCTIONS.											
「Le First Correction is alvays to be taken from the Top, and also the Second, when the Apparent Distance is greater than get													
2 DEGREES.													
S	0^{\prime}	1	2	3				$7 \cdot$	8				
0	$\underline{1.0000}$	$\overline{1.0024}$	$\overline{1.0049}$	$\overline{1.0073}$	1.0098	1.0122	47	. 0172	1.0197	1.0	. 0248	. 0274	0
1	0000	0025	0049	0073	0098	0123	0148	0173	0198	0223	0249	027.4	59
2	01	25	049	074	0098	123	148	173	0198	02	0249	0275	
	001	0025	050	074	099	0124	0148	0174	0199	0224	0250	0275	57
4	0002	0026	050	0075	0099	0124	0149	0174	0199	02	0250		5
5	1.0002	1.0026	$\overline{1.0051}$	1.0075	1.0100	1.0124	$\overline{1.0149}$	1.0174	1.0200	. 02	. 0250	1.02	55
6	0002	0027	0051	0075	50100	0125	0150	0175	0200	022	0251	0276	54
7	3	0027	051	0076	0100	125	150	0175	0200	22	0251	0277	53
8	003	0027	0052	0076	0101	0126	0151	0176	0201	0226	0252	0277	52
9	0004	0028	0052	0077	0101	0126	0151	0176	0201	02	0252	0278	51
10	1.0004	1.0028	1.0053	1.0077	1.0102	1.0126	1.0151	1.0176	1.0202	0227	1.0252	1.02	50
11	4	0029	0053	0077	102	0127	0152	0177	0202	0227	0253	0279	49
12	0005	29		0078	103	127	152	0177	0202	0228	0253	0279	48
13	0005	29	054	0078	0103	128	0153	0178	02	0228	0253	02	47
14	00	0030	0054	0079	0103	0128	0153	0178	0203	0229	025	0280	46
15	1.0006	1.0030	1.0655	1.0079	1.0104	1.0129	0153	1.0179	1.0204	1.0229	1.0255	1.0280	45
16	0006	003		0080	104	0129	154	0179	0204	0230	0255	0281	44
17	0007	0031	5	0080	0105	129	0154	0179	02	0230	02	0281	43
18	0007	031	55	0080	105	0130	0155	0180	0205	023	0256	0282	42
19	0008	0032	0056	0081	0105	0130	0155	0180	0205	0231	0256	0282	41
20	1.0008	1.0032	1.0057	1.0081	1.0106	${ }^{-.0131}$	$\overline{1.0156}$	$\overline{1.0181}$	1.0206	1.0231	1.0257	1.0282	40
21	0008	0033	0057	82	2	31			07	32		0283	39
22	0009	0033	057	082	0107	131	1	0181	0207	0232	0258	0283	38
23	09	0034	0058	0082	0107	0132	0157	0182	020	023	0258	0284	37
24	0010	0034	0058	0083	0107	0132	0157	0182	0208	0233	0258	0284	36
25	1.00	1.0034	1.0059	1.0083	1.0108	1.0133	1.0158	1.0183	1.0208	1.0233	1.0259	1.0285	5
26	0010	0035	0059	龶	0108	3	0158	0183		4	4259		34
27	11	0035	0060	08	0109	0134	0158	0184	0209	0234	40259	02	33
28	011	003	0060	0084	0109	134	0159	0184	0209	235	5026	0286	32
29	0012	003	0060	0085	0110	0134	0159	0184	0210	0235	5 0260	0286	31
30	1.0012	1.0036	1.0061	1.0085	1.0110	1.0135	1.0160	1.0185	1.0210	1.0235	1.0261	1.0	30
31	0012	0037	0061	0086	6110	0135	0160	0185	0211	0236	6261	0287	29
32	13	0037	0062	08	011	136	61	0186	021	023	026	028	28
33	0013	38	0062	0087	11	36	161		0.11	7	2	0288	27
34	0014	0038	06	0087	0112	0136	0161	0187	0\%12	1237	0262	0288	6
35	1.0014	1.0038	1.0063	1.0087	1.0112	1.0137	1.0162	1.0187	1.0212	1.0238	1.0263	1.0289	25
36	0015	0039	0063	0088	0112	0137	0162	0187	0213	0238	80263	028	24
37	0015	39	0064	888	113	138	0163	01	213	023	026	029	23
38	0015	0040	0064	89	0113	38	0163	0188	213	0239	9264	0290	22
39	001	0040	006	0089	0114	0139	0163	0189	0214	0239	-0264	029	1
40	1.00	1.0040	1.0065	1.0089	1.0114	1.0139	1.0164	1.0189	$\overline{1.0214}$	1.0240	1.0265	1.02	20
41	0017	0041	0065	0090	0114	0139	01	0189	0215	0240	0266	029	19
42	0017	041	0066	0090	011	140	165	190	0215	0241	0266	02.92	18
43	0017	0042		0091	0115	0140	0165	0190	0216	0241	0267	0292	17
44	001	0042	006	0091	0116	0141	0166	0191	0216	024	026	029	6
45	1.0018	1.0042	1.0067	1.0091	1.0116	1.0141	1.0166	1.0191	1.021	1.0242	1.0267	1.0293	15
46	0019	043	0067	092	0117	141	166	0192	021	0242	0268	029	14
47	19	043	0068	092	0117	0142	0167	0192	0217	0243	0268	0294	
48	001	0044	0068	0093	0117	0142	0167	0192	0218	0243	0269	0294	12
49	00	0044	0068	0093	0118	0143	0168	0193	0218	024	0269	029	11
50	1.0020	1.0044	1.0069	1.0093	1.0118	1.0143	1.0168	$\overline{1.0193}$	$\overline{1.0219}$	1.02	1.0270	1.029	10
51	0021	0045	0069	094	0119	143	0169	0194	0219	024	0270	029	9
52	0021	00	0070	099	0119	0144	0169	0194	0219	0245	0270	j296	8
53	0021	0046	0070	0095	0119	0144	0169	0194	0220	0245	0271	0297	7
54	00	0046	0071	0095	0120	0145	0170	0195	0220	0246	0271	029	6
55	1.0022	1.0046	1.0071	1.0096	1.0120	1.0145	1.0170	1.0195	1.0221	1.0246	1. 1272	. 0297	5
56	0023	0047	0071	0096	0121	0146	0171	0196	0221	0247	0272	0298	4
57	$0{ }^{0}$	0047	0072	0096	0121	0146	0171	0196	0221	0247	0273	0298	
59	0023	0048	0072	0097	0122	0146	0171	0197	0222	0247	0273	0299	
59	0024	0048	0073	0097	0122	0147	0172	0197	0222	0248	0273	02.99	
60	0024	0049	0073	0098	0122	0147	0172	0197	0223	0248	0274	0200	0
	59	58	57	56	55	54°	53^{\prime}	52^{\prime}	51	50	49	! 48	S.
7 DEGREES.													

TABLE XXXII. LOGARITHMS OF THE FIRST AND SECOND CORRECTIONS.													
The First Correction is always to be taken from the Top, and also the Second, when tre Apparent Distance is greater than 900°													
2 DEGREES.													
S.	12'	13^{\prime}	14^{\prime}	15	16^{\prime}	17°	18^{\prime}	19	20°	21^{\prime}	22^{\prime}	23'	
0	1.03001	1.0326	1.0352	1.0378	1.0405	51.0431	1.0458	1.0484	1.0512	1.0539	1.0566	1.0594	60
1	0300	0326	0352	0378	0405	50432	0458	0485	0512	0539	0567	0594	59
2	0300	0326	0353	0379	0406	60432	0459	0485	0512	0540	0567	0595	58
3	0301	0327	0353	0379	0406	60433	0459	0486	0513	0540	0568	0595	57
4	0301	0327	0353	0380	0406	6433	0460	$\underline{0486}$	0513	-0541	0568	0596	56
5	1.03021	1.0328	1.0354	1.0380	1.0407	7 1.0434	1.0460	1.0487	1.0514	1.0541	1.0568	$\overline{1.0596}$	55
	0302	0328	0354	0381	0407	$7 \quad 0434$	0461	0487	0514	0541	0569	0596	54
7	0303	0329	0355	0381	0408	$8 \quad 0434$	0461	0488	0515	0542	0569	0597	53
8	0303	0329	0355	0381	0408	80435	0462	0488	0515	0542	0570	0597	52
9	0304	0329	0356	. 0382	0409	- 0435	0462	0489	0516	0543	0570	0598	51
10	1.0304	1.0330	1.0356	1.0382	1.0409	1.0436	1.0462	1.0489	1.0516	1.0543	1.0571	$\overline{1.0598}$	50
11	0304	0330	0356	0383	0409	9436	0463	0489	0517	0544	0571	0599	49
12	0305	0331	0357	0383	0410	0437	0463	0490	0517	0544	0572	0599	48
13	0305	0331	0358	0384	. 0410	0437	0464	0490	0517	0545	0572	0600	47
14	0306	0332	0358	0384	0410	0438	0464	0491	0518	0545	0573	0600	46
15	1.0306	1.0332	1.0359	1.0384	1.0411	1 1.0438	1.0465	1.0491	1.0518	1.0546	1.0573	1.0601	45
16	0307	0333	0359	0385	0411	$1{ }^{1} 0438$	0465	0492	0519	9546	0573	0601	44
17	0307	0333	0360	0385	0412	$2 \quad 0439$	0466	- 0492	0519	0546	0574	0602	43
18	0307	0333	0360	0386	0412	2439	0466	- 0493	0520	0547	0574	0602	42
19	0308	0334	0361	0386	0413	$3 \quad 0440$	0466	-0493	0520	0547	0575	0602	41
20	1.0308	1.0334	1.0361	1.0387	1.0413	3 1.0440	1.0467	1.0493	1.0521	1.0548	1.0575	1.0603	40
21	0309	0335	0361	0387	0414	$4 \quad 0440$	0467	0494	0521	10548	0576	6603	39
22	0309	0335	0362	0388	0414	$4{ }^{-141}$	0468	0494	0521	10549	0576	0604	38
23	0310	0336	0362	0388	0414	$4{ }^{4} 041$	0468	0495	0522	0549	0577	0604	37
24	0310	0336	0362	0388	0415	50442	0469	0495	0522	. 0550	0577	0605	36
25	1.0310	1.0336	1.0363	1.0389	1.0415	5 1.0442	1.0469	1.0496	1.0523	1.0550	1.0578	1.0605	35
26	0311	0337	0363	0389	0416	60442	0470	0496	6523	30551	0578	0606	34
27	0311	0337	0363	0390	0416	60443	0470	-0497	0524	40551	0579	0606	33
28	312	0338	0364	0390	0417	$7{ }^{-143}$	0470	0497	0524	40552	0579	0607	32
29	0312	0338	0364	0391	0417	$7 \quad 0444$	0471	10498	0525	- 0552	. 0579	$\underline{0607}$	31
30	1.0313	1.0339	1.0365	1.0391	1.0418	$\overline{1.0444}$	1.0471	$1{ }^{1.0498}$	1.0525	1.0552	1.0580	1.0608	30
31	0313	0339	0365	0392	2418	80445	- 0471	10498	0526	6553	0580	0608	29
32	03	0339	- 0366	0392	- 0418	80445	0472	20499	0526	0553	0581	0609	28
33	0314	0340	0366	0392	0419	$9 \quad 0446$	0472	20499	0526	6 0554	40581	0609	27
34	0314	0340	0366	0393	-0419	$9 \quad 0446$	0472	20500	0527	- 0554	- 0582	-0609	26
35	1.0315	1.0341	1.0367	1.0393	1.0420	0 1.0446	1.0473	1.0500	1.0527	1.0555	1.0582	1.0610	25
36	0315	0341	10367	0394	40420	0447	0474	$4{ }^{0501}$	0528	0555	0583	0610	24
37	0316	0342	0368	0394	0421	$1{ }^{1} 0447$	0474	40501	0528	8556	6. 0583	0611	23
38	0316	0342	0368	0395	0421	10448	0475	50502	0529	0556	0584	0611	22
39	0317	0342	0369	0395	50422	$2 \quad 0448$	0475	5 -0502	0529	- 0557	0584	0612	21
40	1.0317	1.0343	1.0369	1.0395	1.0422	$2 \overline{1.0449}$	1.0475	51.0502	1.0530	1.0557	1.0585	1.0612	20
41	0318	0343	- 0370	0396	6422	20449	0476	60503	0531	10.557	0585	0613	19
42	0318	0344	40370	0396	0423	30450	0476	6503	0531	0558	0585	5613	18
43	0318	0344	40370	0397	0423	30450	0477	70504	0531	10558	0586	- '614	17
44	0319	0345	5 0371	0397	0424	40450	0477	$7 \quad 0504$	0532	0559	0586	0614	16
45	$\overline{1.0319}$	1.0345	1.0371	1.0398	1.0424	4 1.0451	1.0478	1.0505	1.0532	1.0559	1.0587	1.0615	15
46	0319	0346	60372	0398	0425	50451	0478	0505	0532	0560	0587	0615	14
47	0320	0346	60372	0399	0425	50452	0479	9506	0533	0560	0588	0615	13
48	0320	0346	6 0373	0399	0426	60452	0479	9506	0533	0561	0588	0616	12
49	0321	0347	- 0373	0399	$\underline{0426}$	$6 \quad 0453$	0480	0507	0534	0561	0589	0616	11
50	1.0321	1.0347	$\overline{1.0374}$	1.0400	$\overline{1.0426}$	6 1.0453	1.0480	$\overline{1.0507}$	1.0534	1.0562	1.0589	1.0617	10
51	0322	0348	80374	0400	0427	70454	0480	0507	0535	50562	0590	0617	9
52	0322	0348	8 -0374	0401	0427	$7 \quad 0454$	0481	10508	0535	50562	0590	0619	8
53	0323	0349	9375	0401	10428	$8 \quad 0454$	0481	10508	0536	- 0563	0591	0618	7
54	0323	0349	0375	0402	0428	8 - 0455	0482	20509	0536	0563	0591	0619	6
55	1.0323	1.0349	$\overline{1.0376}$	1.0402	1.0429	91.0455	1.0482	1.0509	$\underline{1.0536}$	1.0564	1.0591	1.0619	5
56	0324	0350	0376	0403	. 0429	90456	0483	0510	0537	0!64	0592	3620	4
57	0324	0351	0377	0403	0430	0456	0483	30510	0537	$0 ¢ 65$	0592	0620	3
58	0325	0351	0377	0403	0430	0457	0484	$4{ }^{0511}$	0538	0565	0593	0621	2
59	0325	0351	10377	0404	0430	0457	0484	0511	0538	-0566	0593	0621	1
60	0326	0352	0378	0404	0431	10458	0484	0512	0539	0: 56	0594	0621	0
	47^{\prime}	46^{\prime}	45^{\prime}	44^{\prime}	43^{\prime}	42^{\prime}	41^{\prime}	40^{\prime}	39^{\prime}	38	37^{\prime}	36°	S.
7 Degrees.													

140		TABLE XXXII. LOGARITHMS OF THE FIRST AND SECOND CORRECTIONS.											
The First Correction is always to be taken from the 'Top, and also the Second, when the Apparent Distance is greater than $90{ }^{5}$.													
DEGR													
S.	24^{\prime}	25^{\prime}	26^{\prime}	27°	28'	29^{\prime}	30°	31^{\prime}	32°	33^{\prime}	34'	35^{\prime}	
0	1.0621	1.0649	1.0678	1.0706	1.0734	1.0763	$\overline{1.0792}$. 0821	1.0850	1.0880	1.0909	$\overline{1.0939}$	60
1	0622	0650	0678	0706	- 0735	0763	0792	0821	0851	0880	0910	0940	59
2	0622	0650	0678	0707	0735	0764	0793	0822	0851	0881	0910	0940	58
3	0623	0651	0679	0707	0736	0764	0793	0822	0852	0881	0911	0941	57
4	0623	0651	0679	0708	0736	0765	0794	0823	0852	0882	0911	0941	56
5	1.0624	1.0652	1.0680	1.0708	1.0737	$\overline{1.0765}$	1.0794	1.0823	1.0853	1.0882	1.0912	1.0942	55
6	0624	0652	0680	0709	0737	0766	0795	0824	0853	0883	0912	0942	54
7	0625	0653	0681	0709	0738	0766	0795	0824	0854	0883	0913	0943	53
8	0625	0653	0681	0710	- 0738	0767	0796	0825	0854	0883	0913	0943	52
9	0626	0654	0682	0710	0739	0767	0796	0825	0855	0884	0914	0944	51
10	1.0626	1.0654	1.0682	1.0711	1.0739	1.0768	1.0797	1.0826	1.0855	1.0884	1.0914	. 0944	50
11	0627	0655	0683	0711	0740	0768	0797	0826	0855	0885	0915	0945	49
12	0627	0655	0683	0711	0740	0769	0798	0827	0856	0885	0915	0945	48
13	0628	0655	0684	0712	0740	- 0769	0798	0827	0856	0886	0916	0946	47
14	0628	0656	0684	0712	- 0741	- 0770	0799	0828	0857	0886	0916	0946	46
15	1.0628	1.0656	1.0685	1.0713	1.0741	1.0770	1.0799	1.0828	1.0857	$\overline{1.0887}$	1.0917	1.0947	45
16	0629	0657	0685	0713	0742	0771	0800	0829	0858	0887	0917	0947	44
17	0629	0657	0686	0714	-0742	0771	0800	0829	0858	0888	0918	0948	43
18	0630	0658	0686	0714	0743	0772	0801	0830	0859	0888	0918	0948	42
19	0630	0658	0686	0715	0743	0772	0801	0830	0859	0889	0919	0949	41
20	1.0631	1.0659	1.0687	1.0715	$\overline{1.0744}$	1.0773	1.0801	1.0831	1.0860	1.0889	1.0919	$\overline{1.0949}$	40
21	0631	0659	0687	0716	6 0744	0773	0802	0831	0860	0890	0920	0950	39
22	0632	0660	0688	0716	6745	0774	0802	0832	0861	0890	0920	0950	38
23	0632	0660	0688	0717	0745	0774	0803	0832	0861	0891	0921	0951	37
24	0633	0661	0689	0717	0746	0774	0803	0833	0862	0891	0921	0951	36
25	1.0633	1.0661	1.0689	1.0718	1.0746	1.0775	1.0804	1.0833	1.0862	1.0892	1.0922	1.0952	35
26	0634	0662	0690	0718	. 0747	0775	50804	0834	0863	0893	0922	0952	34
27	0634	0662	0690	0719	-0747	0776	- 0805	0834	0863	0893	0923	0953	33
28	0634	0663	0691	0719	-0748	0776	0805	0834	0864	0894	0923	0953	32
29	0635	0663	0691	0720	$\underline{0748}$	0777	-0806	0835	0864	0894	0924	0954	31
30	1.0635	1.0663	1.0692	1.0720	$\overline{1.0749}$	1.0777	1.0806	1.0835	1.0865	1.0895	1.0924	1.0954	30
31	0636	0664	0692	0721	- 0749	0778	0807	0836	0865	0895	0925	0955	29
32	0636	0664	0693	0721	- 0750	0778	-0807	0836	0866	0896	0925	0955	28
33	0637	0665	0693	0721	10750	0779	0808	0837	0866	0896	0926	0956	27
34	0637	0665	0694	0722	- 0751	0779	0808	0837	0867	0897	0926	0956	26
35	1.0738	1.0666	1.0694	1.0722	1.0751	1.0780	1.0809	1.0838	1.0867	1.0897	1.0927	1.0957	25
36	0638	0666	0694	0723	30751	0780	0809	0838	0868	0898	0927	0957	24
37	0639	0667	0695	0723	- 0752	0781	0810	0839	0868	0898	0928	0958	23
38	0639	0667	0695	0724	40752	0781	0810	0839	0869	0899	0928	0958	22
39	0640	0668	0696	0724	-0753	0782	0811	0840	0869	0899	0929	0959	21
40	1.0640	1.0668	1.0696	1.0725	1.0753	1.0782	1.0811	1.0840	1.0870	1.0899	1.0929	1.0959	20
41	0641	0669	0697	0725	50754	0783	0812	0841	0870	0900	0930	0960	19
42	0641	0669	0697	0726	- 0754	0783	0812	0841	0871	0900	0930	0960	18
43	0641	0670	0698	0726	6755	0784	4 0813	0842	0871	0901	0931	0961	17
44	0642	0670	0698	0727	- 0755	-0784	-0813	0842	0872	0901	0931	0961	16
43	1.0642	1.0670	1.0699	$\overline{1.0727}$	1.0756	1.0785	1.0814	1.0843	1.0872	1.0902	1.0932	1.0962	15
46	0643	0671	10699	0728	80756	0785	50814	0843	0873	0902	0932	0962	14
47	0643	0671	0700	0728	0757	0786	60815	0844	0873	0903	0933	0963	13
48	0644	0672	0700	0729	- 0757	0786	60815	0844	0874	0903	0933	0963	12
49	0644	0672	0701	0729	0758	0787	7 0816	0845	0874	0904	0934	0964	11
50	1.0645	1.0673	$\overline{1.0701}$	1.0730	1.0758	1.0787	1.0816	1.0845	1.0875	1.0904	1.0934	1.0964	10
51	0645	0673	3702	0730	0759	0787	7 0816	0846	0875	0905	0935	0965	
52	0646	0674	- 0702	0730	- 0759	0788	$8{ }^{0817}$	0846	0876	0905	0935	0965	8
53	0646	0674	$4 \quad 0703$	0731	10760	0788	80817	0847	0876	0906	0936	0966	7
54	0647	0675	50703	0731	10760	$\underline{0789}$	-0818	0847	0877	0906	0936	096	6
55	1.0647	1.0675	$\overline{1.0703}$	1.0732	1.0761	$\overline{1.0789}$	1.0818	1.0848	1.0877	1.0907	1.0937	1.0967	5
56	0648	0676	60704	0732	2761	10790	0819	0848	0878	0907	0937	0967	
57	0648	0676	6704	0733	0762	0790	0819	0849	0878	0908	0938	0968	3
58	0648	0677	0705	0733	30762	0791	10820	0849	0879	0908	0938	0968	2
59	0649	0677	0705	0734	40762	0791	10820	0850	0879	0909	0939	096	1
60	0649	0678	0706	0734	4 0763	30792	- 0821	0850	0880	0909	0939	0969	0
	35°	34^{\prime}	33	32^{\prime}	31^{\prime}	30°	29^{\prime}	28^{\prime}	27°	26^{\prime}	25^{\prime}	24^{\prime}	S.
7 DEGREES.													

LOGARITHMS OF THE FIRST AND SECOND CORRECTIONS．
［he First Correction is always to be taken from the Top，and also the Second，when the Apparent Distance is greater than du ${ }^{\circ}$
3 DEGKEES．

S．	0^{\prime}	1^{\prime}	$2 '$	3^{\prime}	4^{\prime}	$5{ }^{\prime}$	6^{\prime}	$7{ }^{\prime}$	8	$9 \cdot$	10^{\prime}	11＇	
0	1． $1 ; \overline{61}$	$\underline{1.1797}$	1.1834	1.1871	1.1908	1.1946	1.1984	1.2022	1.2061	$\underline{1.2099}$	1．2139	$\underline{1.2178}$	60
1	1762	1798	1835	1871	1909	1946	1984	2023	2061	2100	2139	2179	59
2	1762	1798	1835	1872	1909	1947	1985	2023	2062	2101	2140	2180	58
3	1763	1799	1836	1873	1910	1948	1986	2024	2062	2101	2141	2180	57
4	1763	1800	1836	1873	1911	1948	1986	2025	2063	2102	2141	2181	56

$5 \overline{1.1764} \overline{1.1800} \overline{1.1837} \overline{1.1874} 1.1911 \overline{1.1949} \overline{1.1987} \overline{1.2025} 1.20641 .21031 .21421 .218255$

	64	1.1800	，	崖	硅	1949	仡						
6	1765	1801	1838	1875	1912	1950	1987	2026	2064	2103	2143	2182	54
7	1765	1802	1838	1875	1913	1950	1988	2026	2065	2104	2143	2183	53
8	1766	1802	1839	1876	1913	1951	1989	2027	2066	2100	2144	2184	52
9	1766	1803	1839	1876	1914	1951	1989	2028	2066	2105	2145	2184	51
10	$\overline{1.1767}$	1.1803	1.1840	1.1877	1.1914	1.1952	1.1990	1.2028	1.2067	1.2106	1.2145	1.2185	50
11	1768	1804	1841	1878	1915	1953	1991	2029	2068	2107.	2146	2186	49
12	1768	1805	1841	1878	1916	1953	1991	2030	2068	2107	2147	2186	48
13	1769	1805	1842	1879	1916	1954	1992	2030	2069	2108	2147	2187	47
14	1769	1806	1843	1880	1917	1955	1993	2031	2070	2109	2148	2188	46

16	1771	1807	1844	1881	1918	1956	1994	2032	2071	2110	2149	2189	44
17	1771	1808	1844	1881	1919	1956	1995	2033	2072	2111	2150	2190	43
18	1772	1808	1845	1882	1919	1957	1996	2033	2072	2111	2151	2190	42

21	1774	1810	1847	1884	1921	1960	1997	2035	2074	2113	2153
22	1774	1811	1847	1884	1922	1960	1998	2036	2075	2114	2153
2193	39										
23	1775	1811	1848	1885	1923	1961	1998	2037	2075	2115	2154
24	1775	1812	1849	1886	1923	1962	1999	2037	2076	2115	2155
2194	37										

$25 \overline{1.1776} \overline{1.1812} 1.18491 .18861 .19241 .19621 .20001 .20381 .20771 .21661 .21551 .219535$

27	1777	1814	1850	1888	1925	1963	2001	2039	2079	2117	2157	2196	33
28	1778	1814	1851	1888	1926	1964	2001	2040	2079	2118	2157	2197	32
29	1778	1815	1852	1889	1926	1964	2002	2041	2080	2118	2158	2198	31

31	1780	1816	1853	1890	1928	1965	2003	2042	2081	2120	2159	2199
32	1780	1817	1854	1891	1928	1966	2004	2042	2081	2120	2160	2200
33	1781	1817	1854	1891	1929	1967	2005	2043	2082	2121	2161	2200

$\frac{34}{35}\left|\frac{1781}{1.1782}\right| \frac{1818}{1.1819}\left|\frac{1855}{1.1856}-\frac{1892}{1.1893}\right| \frac{1929}{1.1930}\left|\frac{1967}{1.1968}\right| \frac{2005}{1.2006}\left|\frac{2044}{1.2044}\right| \frac{2083}{1.2083}\left|\frac{2122}{1.2122}\right| \frac{2161}{1.2162}\left|\frac{2201}{1.2202}\right| \frac{26}{25}$

		1819	1856					，					
36	1783	1819	1857	1893	1931	1968	2007	2045	2084	2123	2163	2202	24
	1783	1820	1857	1894	1931	1969	2007	2046	2085	2124	2163	2203	23
	1784	1820	1858	1894	1932	1970	2008	2046	2085	2124	2164	2204	22
	1785	1821	1858	1895	1933	1970	2009	2047	2086	2125	2165	2204	21

$40 \overline{1.1785} \overline{1.1822} \overline{1.1859} \overline{1.1896} \overline{1.1933} \overline{1.1971} \overline{1.2009} \overline{1.2048} \overline{1.2086} \overline{1.2126} \overline{1.2165} 1.2205-20$

42	1786	1823	1860	1897	1934	1972	2010	2049	2088	2127	2167	2206	18
43	1787	1823	1860	1898	1935	1973	2011	2050	2088	2128	2167	2207	17

43	1787	1823	1860	1898	1935	1973	2011	2050	2088	2128	2167	2207
44	1788	1824	1861	1898	1936	1974	2012	2050	2089	2128	2168	2208

$\overline{45} \overline{1.1788} \overline{1.1825} \overline{1.1862} \overline{1.1899} \overline{1.1936} \overline{1.1974} \overline{1.2012} \overline{1.2051} \overline{1.2090} \overline{1.2129} \overline{1.2169} \overline{1.2208} 15$

$\left.\frac{49}{50} \frac{179}{1.1791}\left|\frac{182}{1.1828}\right|-\frac{1864}{1.1865}\left|\frac{190}{1.1902}\right| \frac{1939}{1.1939} \frac{197}{1.1977} \right\rvert\, \frac{2015}{1.2016} \frac{2053}{1.2054} \frac{2092}{1.2093} \frac{2132}{1.2132} \frac{21}{1.2172} \frac{2}{1.2212}-\frac{10}{10}$

53	1793	1830	1867	1904	1941	1979	2017	2056	2095	2134	2174
54	1794	1830	1867	1904	1942	1980	2018	2057	2096	2135	2174
2214											

$551.17941 .1831 \overline{1.18681 .1905} 1.19421 .19811 .20191 .20571 .20961 .21361 .21751 .2215$

56
57
58
5
6

1794	． 1831	1.1868	1905	94	1981	2019	1.2057	1.2096	2136	2175	2215	
1795	1831	1868	1906	1943	1981	2019	2058	2097	2136	2176	2216	4
1795	1832	1869	1906	1944	1982	2020	2059	2098	2137	2176	2216	3
1796	1833	1870	1907	1944	1982	2021	2059	2098	2137	2177	2217	2
1797	1833	1870	1908	1945	1983	2021	2060	2099	2138	2178	2218	1
1797	1834	1871	1908	1946	1984	2022	2061	2099	2139	2178	2218	0
59°	58^{\prime}｜	57^{\prime}	－ $56{ }^{\prime}$	55^{\prime}	54＇	53＇	52＇	51^{\prime}	30°	49°	48^{\prime}	S．

When the Apparent Distance is less than 90° ，the Second Correction is to be taken from the Bottom．

TABLE XXXII. LOGARITHMS OF THE FIRST AND SECOND CORRECTIONS.													
The First Correotion is always to be taken from the Top, and also the Second, when the Apparent Distance is greater than 900 .													
3 DEGREES.													
S.	24^{\prime}	25^{\prime}		27 ${ }^{\prime}$	28^{\prime}	29^{\prime}	30^{\prime}	1.	32'	33^{\prime}	34^{\prime}	5^{\prime}	
0	$\underline{1.2730}$	1.2775	1.2821	1.2868	1.2915	1.2962	1.3010	1.3059	1.3108	1.3158	1.3208	1.3259	0
1	2731	2776	2822	2869	2916	6963	3011	3060	3109	3158	3209	3259	5.9
2	7232	2777	2823	2869	2916	2964	3012	3060	3110	3159	3209	3260	58
3	2732	2778	2824	2870	2917	2965	3013	3061	3110	3160	3210	3261	57
4	2733	2779	2825	2871	2918	2965	3014	3062	3111	3161	3211	3262	56
5	1.2734	$\underline{1.2779}$	1.28251	1.2872	1.2919	1.2966	1.3014	1.3063	1.3112	1.3162	1.3212	. 3263	55
6	2735	2780	2826	2873	2920	2967	3015	3064	3113	3163	3213	3264	54
7	2735	2781	2827	2873	2920	- 2968	3016	3065	3114	3163	3214	3265	53
8	2736	2782	2828	2874	2921	2969	3017	3065	3114	3164	3214	3265	52
9	2737	2782	2828	2875	2922	2969	3018	3066	3115	3165	3215	3266	51
10	1.2738	1.2783	1.28291	1.2876	1.2923	1.2970	1.3018	1.3067	1.3116	1.3166	1.3216	1.3267	50
11	2738	2784	2830	2876	2924	2971	3019	3068	3117	3167	3217	3268	49
12	2739	2785	28.31	2877	2924	42972	3020	3069	3118	3168	3218	3269	48
13	2740	2785	2831	2878	2925	52973	3021	3069	3119	3168	3219	3270	47
14	2741	2786	2832	2879	2926	6 2973	3022	3070	3119	3169	3220	3270	46
15	1.2741	1.2787	1.2833	1.2880	1.2927	1.2974	1.3022	1.3071	1.31201	1.3170	1.3220	1.3271	45
16	2742	2788	2834	2880	2927	2975	3023	3072	3121	3171	3221	3272	44
17	2743	2788	2835	2881	2928	8976	3024	3073	3122	3172	3222	3273	43
18	2744	2789	2835	2882	2929	2977	3025	3073	3123	3173	3223	3274	42
19	2744	279	2836	2883	2930	-2977	3026	3074	3124	3173	3224	327	41
20	1.2745	1.2791	1.2837	1.2883	1.2931	1.2978	1.3026	1.3075	1.3124	2.3174	1.32	1.3276	40
21	2746	2792	2838	2884	2931	12979	3027	3076	3125	3175	3225	3276	39
22	2747	2792	2838	2885	2932	2980	3028	3077	3126	3176	322	3277	38
23	2747	2793	2839	288	2933	2981	3029	3078	3127	3177	3227	3278	37
24	2748	2794	2840	2887	2934	42981	3030	3078	3128	3178	3228	3279	36
25	$\overline{1.2749}$	1.2795	1.2841	1.2887	1.2935	1.2982	1.3030	1.3079	1.3129	1.3178	1.3229	1.3280	35
26	2750	2795	2841	2888	2935	52983	3031	3080	3129	3179	3230	3281	34
27	2750	2796	2842	2889	2936	6 2984	3032	3081	3130	3180	3231	3282	33
28	2751	2797	2843	2890	2937	72985	3033	3082	3131	3181	3231	3282	32
29	2752	2798	2844	$\underline{2891}$	$1 \quad 2938$	2985	3034	3082	3132	3182	3232	3283	31
30	$\overline{1.2753}$	1.2798	1.2845	1.2891	1.2939	1.2986	1.3034	1.3083	1.3132	1.3183	1.3233	1.3284	30
31	2753	2799	2845	2892	2939	2987	3035	3084	4133	3183	3234	3285	29
32	2754	2800	2846	2893	2940	- 2988	3036	3085	3134	3184	3235	3286	28
33	2755	2801	847	2894	4941	12989	3037	3086	3135	3185	3236	3287	27
34	2756	2801	2848	2894	42942	22989	3038	3087	3136	3186	3236	3288	26
35	$\overline{1.2756}$	1.2802	1.2848	1.2895	51.2942	2 1.2990	1.3039	1.3087	1.3137	1.3187	1.3237	1.3288	25
36	2757	2803	2849	2896	62943	32991	13039	3088	3138	3188	3238	3289	S 4
37	275	2804	850	2897	2944	42992	3040	3089	3138	3188	323	3290	23
38	2759	2805	2851	2898	82945	52993	3041	3090	O 3139	3189	3240	3291	22
39	2760	2805	2852	2898	8946	62993	3042	3091	13140	3190	3241	3292	21
40	1.2760	1.2806	1.2852	1.2899	1.2946	61.2994	$4 \overline{1.3043}$	1.3091	1.3141	1.3191	1.3242	1.3293	20
41	2761	2807	2853	3900	O 2947	72995	53043	3092	23142	3192	3242	3294	19
42	2762	2808	2854	42901	12948	82996	6 3044	4 3093	3143	3193	3243	3294	18
43	2763	2808	2855	2901	$1{ }^{2949}$	9-2997	73045	5 3094	$4{ }^{+} 3143$	3193	3244	3295	17
44	2763	2809	2855	2902	2950	- 2987	$7 \quad 3046$	- 3095	5144	3194	4345	3296	16
+.)	$\overline{1.2764}$	1.2810	1.2856	1.2903	1.2950	01.2998	$8 \overline{1.3047}$	1.3096	6 $\overline{1.3145}$	1.3195	51.3246	1.3297	15
46	2765	2811	2857	2904	42951	12999	93047	3096	6146	3196	3247	3298	14
47	2766	2811	2858	2905	52952	23000	0 3048	3097	3147	3197	3247	3299	13
48	2766	2812	2859	2905	52953	3001	13049	3098	8 3148	3198	3248	3200	12
49	2767	2813	2859	2906	6954	43001	$1 \quad 3050$	3099	93148	3198	3249	3200	11
50	1.2768	1.2814	1.2860	1.2907	$7 \overline{1.2954}$	4 1.3002	2 1.3051	1.3100	1.3149	$\overline{1.3199}$	1.3250	1.3301	10
51	2769	2815	2861	12908	82955	53003	33052	3101	13150	3200	3251	3302	9
52	2769	2815	2862	2909	9 2956	63004	43052	3101	13151	3201	1 3252	3303	8
53	2770	2816	2862	2909	9 2957	73005	53053	3102	2152	3202	3253	3304	7
54	2771	2817	2863	2910	0 2958	83005	5 3054	3103	$3 \quad 3153$	3203	3253	3305	6
55	1.2772	1.2818	1.2864	1.2911	1 1.2958	$8 \longdiv { 1 . 3 0 0 6 }$	1.3055	1.3104	4 1.3153	1.3204	1.3254	1.3306	5
56	2772	2818	2865	2912	22959	93007	7 3056	6 3105	53154	3204	4 3255	3306	4
57	2773	3819	2866	2912	2960	O 3008	83056	3105	5155	3205	5256	3307	3
58	2774	2820	2866	2913	32961	13009	3057	3106	63156	- 3206	3257	3318	2
59	2775	2821	2867	2914	42962	23009	9 3058	3107	[3157	3207	T 3258	3209	1
60	2775	- 2821\|	2868	2915	52962	2010	- 3059	3108	8 3158	3208	325	331	0
	35^{\prime}	34^{\prime}	33^{\prime}	32^{\prime}	31	30^{\prime}	29^{\prime}	28^{\prime}	27^{\prime}	26°	25	24	S.
6 DEGREES.													

TABLE XXXII.
LOGARITHMS OF THE FIRST AND SECOND CORRECTIONS.
The Fin' Correction is always to be taken from the Top, and also the Second, when the Apparent Distance is greater than 90°
3 DEGREES.

S.	36°	37^{\prime}	38^{\prime}	39	40°	1	42	43'	4	45^{\prime}	46^{\prime}	47'	
0	3310	1.3362	1.3415	$\overline{1.3468}$	1.3522	. 3576	1.3632	. 3688	. 3745	1.3802	3860	1.3919	60
	3311	3363	3415	3469	3523	3577	3633	3689	3746	3803	3861	3920	59
2	3312	3364	16	3470	3524	578	634	690	3746	3804	862	921	58
3	3313	3365	3417	3471	3525	579	3635	3691	3747	3805	3863	922	57
4	3313	3365	3418	3471	3525	3580	3635	3692	3748	3806	3864	3923	56
5	1.3314	1.3366	$\overline{1.3419}$. 3472	1.3526	3581	. 3636	. 3693	. 3749	. 3807	. 3865	. 39	55
6	3315	3367	3420	3473	3527	3582	3637	3694	3750	3808	3866	925	54
7	3316	3368	421	474	528	583	3638	695	3751	3809	3867	926	53
8	3317	3369	3422	3475	3529	584	639	3695	3752	3810	3868	927	52
9	3318	3370	3423	3476	3530	3585	3640	3696	3753	3811	3869	3928	51
10	$\overline{1.3319}$	1.3371	1.3423	1.3477	1.3531	. 3586	. 3641	. 3697	$\overline{1.3754}$	1.3812	. 3870	3929	50
11	3319	3372	3424	78	3532	3587	3642	3698	3755	3813	387	930	49
12	3320	3372	425	3479	3533	3587	3643	3699	3756	3814	3872	931	48
13	3321	3373	426	480	3534	3588	3644	3700	3757	3815	387	932	47
14	332	3374	3427	3480	3535	3589	3645	3701	3758	3816	3874	3933	46
15	1.3323	1.3375	1.3428	$\overline{1.3481}$	1.3535	. 3590	. 3646	1.3702	1.3759	$\overline{1.3817}$	1.3875	. 393	45
16	3	3376	3429	34	6	3591	47	03	3760	3818	3876	35	44
17	3325	3377	3430	483	3537	3592	3648	704	3761	3819	3877	936	43
18	3325	3378	3431	3484	3538	3593	3649	3705	3762	3819	3878	3937	42
19	332	3379	3431	3485	3539	3594	3649	370	3763	3820	3879	3938	41
20	1.3	1.3	1.34	1.3486	1.3540	. 3	1.3650	1.37	. 3764	2.3821	. 3880	. 3	40
21	3328	3380	3433	487	41	596	3651	08	3765	3822	3881	3940	39
22	3329	3381	3434	488	3542	3597	652	3709	376	3823	388	941	38
23	3330	3382	3435	488	3543	3598	365	3709	767	82	388	94	37
24	33	3383	343	3489	354	3598	365	3710	376	82	38	394	36
25	1.33	1.3384	1.3437	1.3490	1.3545	. 3599	1.3655	1.3	1.3768	1.3826	1.38	1.3944	35
26	3332	3385	3438	3491	3545	3600	3656	3712	3769	3827	3886	94	34
27	3333	3386	438	3492	3546	3601	3657	3713	3770	3828	88	3946	33
28	3334	3386	-	93	47	602	658	3714	3771	829	88	947	32
29	333	3387	3440	349	3548	3603	3659	3715	3772	3830	3889	3948	31
30	1.3336	1.3388	1.3441	1.3495	. 3549	1.3604	1.3660	. 3716	1.3773	1.3831	1.3890	. 3949	30
31	3337	3389	3442	349	3550	3605	3661	3717	3774	383	3891	3950	29
32	3338	3390	3443	3497	551	60	366	718	3775	33	892	3951	28
33	3338	3391	3444	498	3552	607	3663	3719	3776	3834	3893	952	27
34	3333	3392	3445	3499	3553	360	36	3720	377	3835	3894	395	26
35	1.3340	1.3393	1.3446	1.3500	1.3554	1.3609	1.3664	. 3721	1.3778	1.3836	1.3895	39	25
36	3341	3393	3446	3501	3555	3610	3665	3722	3779	3837	3896	95	24
37	342	3394	447	02	55	3610	3666	723	3780	3838	3897	56	23
38	3343	3395	3448	35	35	3611	666	3724	3781	3839	3898	3957	2
39	3344	3396	3449	3504	3557	3612	36	3725	3782	3840	3899	39	21
40	1.3345	1.3397	1.3450	1.3505	1.3558	. 3613	1.3669	. 3726	. 3783	1.3841	1.3900	. 395	20
41	3345	3398	3451	5506	3559	3614	3670	3727	3784	3842	3901	3960	19
42	334	3399	3452	3506	3560	3615	3671	372	3785	3843	3902	3961	18
43	3347	3400	3453	3507	3561	3616	3672	3728	3786	3844	3903	96	17
44	3348	3400	3454	3508	3562	3617	3673	3729	3787	3845	3904	39	16
45	1.3349	1.3401	1.3454	. 3509	1.3563	1.3618	1.3674	. 3730	$\overline{1.3788}$	1.3846	1.3905	396	15
46	335	3402	345	3510	3564	3619	3675	373	3789	3847	3906	396	14
47	3351	3403	34.56	3511	3565	3620	3676	3732	3790	3848	3907	996	13
48	3351	$3404{ }^{\prime}$	3457	3512	3565	3621	3677	3733	3791	3849	3908	396	12
49	3352	3405	3458	3513	3566	3622	3677	3734	3792	3850	3909	3968	11

$50 \overline{1.3353} \overline{1.3406} \overline{1.3459} \overline{1.3513} \overline{1.3567} \overline{1.3623} \overline{1.3678} \overline{1.3735} \overline{1.3793} 1.38511 .39101 .396910$

52	3355	3408	3461	3515	3569	3624	3680	3737	3794	3853	3912
53	3356	3408	3462	3516	3570	3625	3681	3738	3795	3854	3913
3972											

$\frac{54}{55}\left|\frac{3357}{1.3358}\right| \frac{3409}{1.3410} \frac{3463}{1.3463}\left|\frac{3516}{1.3517}\right| \frac{3571}{1.3572}\left|\frac{3626}{1.3627}\right| \frac{3682}{1.3683}\left|\frac{3739}{1.3740}\right| \frac{3796}{1.3797}\left|\frac{3855}{1.3856}\right| \frac{3914}{1.3915} \frac{3973}{1.3974} \frac{6}{5}$

57	3359	3412	3465	3519	3574	3629	3685	3742	3799	3857	3917	3976
58												
58	3360	3413	3466	3520	3575	3630	3686	3743	3800	3858	3918	3977
59	3361	3414	3467	3521	3576	3631	3687	3744	3801	3859	3919	3978

6 DEGREES.

Whan the Apparent Distance is less than 90°, the Second Correction is to be taken from the Bottom.

3 DEGREES.													
S.	48^{\prime}	49^{\prime}	50	51^{\prime}	52^{\prime}	53^{\prime}	54'	55^{\prime}	56^{\prime}	57^{\prime}	58'	59^{\prime}	
0	1.3979	1.4040	1.4102	1.4164	1.4228	1.4292	1.4357	1.4424	1.4491	1.4559	. 4629	. 4699	60
1	3980	4041	4103	4165	4229	4293	4358	4425	4492	4560	4630	4701	59
2	3981	4042	4104	4166	4230	4294	4359	4426	4493	4562	4631	4702	58
3	3982	4043	4105	4167	4231	4295	4361	4427	4494	4563	4632	4703	57
4	3983	4044	4106	4168	4232	4296	4362	4428	4495	4564	4633	4704	56
5	1.3984	1.4045	1.4107	14169	1.4233	1.4297	1.4363	1.4429	1.4497	1.4565	1.4635	1.4705	55
6	3985	4046	4108	4171	4234	4298	4364	4430	4498	4566	4636	4707	54
7	3986	4047	4109	4172	4235	4300	4365	4431	4499	4567	4637	4708	53
8	3987	4048	4110	4173	4236	4301	4366	4433	4500	4569	4638	4709	52
	3988	4049	4111	4174	4237	4302	4367	4434	4501	4570	4639	4710	51
10	1.3989	1.4050	1.4112	1.41751	1.4238	1.4303	1.4368	1.4435	1.4502	1.4571	1.4640	1.4711	50
11	3990	4051	4113	4176	4239	4304	4369	4436	4503	4572	4642	4712	49
12	3991	4052	4114	4177	4240	4305	4370	4437	4504	4573	4643	4714	48
13	3992	4053	4115	4178	4241	4306	4372	4438	4506	4574	4644	4715	47
14	3993	4054	4116	4179	4243	4307	4373	4439	4507	4575	4645	4716	46
15	1.3995	1.4055	$\overline{1.4117}$	1.4180	1.4244	1.4308	1.4374	1.4440	1.4508	1.4577	1.4646	1.4717	45
16	3996	4056	4118	4181	4245	4309	4375	4441	4509	4578	4648	4718	44
17	3997	4058	4119	4182	4246	4310	4376	4443	4510	4579	4649	4720	43
18	3998	4059	4120	4183	4247	4311	4377	4444	4511	4580	4650	4721	42
19	3999	4060	4121	4184	4248	4313	4378	4445	4512	4581	4651	4722	41

$20-\overline{1.4000} 1.4061 \overline{1.4122} 1.41851 .42491 .43141 .43791 .44461 .45142 .45821 .46521 .472340$

22	4002	4063	4125	4187	4251	4316	4381	4448	4516	4585	4655	4726
23	4003	4064	4126	4188	4252	4317	4383	4449	4517	4586	4656	4727
37												

24

$251.4005 \overline{1.4066} \overline{1.4128} \overline{1.4191} \overline{1.4254} \overline{1.4319} \overline{1.4385} 1.44521 .45191 .45881 .46581 .472935$ $\begin{array}{llllllllllllllll}26 & 4006 & 4067 & 4129 & 4192 & 4255 & 4320 & 4386 & 4453 & 4520 & 4589 & 4659 & 4730 & 34\end{array}$ $\begin{array}{llllllllllllllll}27 & 4007 & 4068 & 4130 & 4193 & 4256 & 4321 & 4387 & 4454 & 4522 & 4590 & 4660 & 4732 & 33\end{array}$ | 28 | 4008 | 4069 | 4131 | 4194 | 4258 | 4322 | 4388 | 4455 | 4523 | 4592 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 29 | 4009 | 4070 | 4132 | 4195 | 4259 | 4323 | 4389 | 4456 | 4524 | 4593 |
| 4663 | 4733 | 32 | | | | | | | | |

$\overline{30} \overline{1.4010} \overline{1.4071} \overline{1.41331 .4196} \overline{1.4260} \overline{1.4325} \overline{1.4390} \overline{1.4457} \overline{1.4525} 1.45941 .46641 .473530$

 | 32 | 4012 | 4073 | 4135 | 4198 | 4262 | 4327 | 4393 | 4459 | 4527 | 4596 | 4666 | 4737 | 28 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 33 | 4013 | 4074 | 4136 | 4199 | 4263 | 4328 | 4394 | 4460 | 4528 | 4597 | 4668 | 4739 | 27 |
| 34 | 4014 | 4075 | 4137 | 4200 | 4264 | 4329 | 4395 | 4462 | 4530 | 4599 | 4669 | 4740 | 26 | $\overline{1.40151 .4076} \overline{1.4138} \overline{1.4201} \overline{1.4265} \overline{1.43301 .4396} \overline{1.4463} \overline{1.4531} 1.46001 .46701 .4741-25$

 $\overline{40} \overline{1.4020} \overline{1.4081} \overline{1.4143} 1.42061 .42701 .43351 .44011 .44681 .45361 .46061 .46761 .474720$

4022	4083	4145	4209	4273	4338	4404	4471	4539	4608	4678	4750
4023	4084	4146	4210	4274	4339	4405	4472	4540	4609	4679	4751
4024	4085	4147	4211	4275	4340	4406	4473	4541	4610	4680	4752

1.4030	1.4491	1.415	1.4	1.4281	1.4346	1.4412	1.4480	1.4548	1.4617	1.4688	1.4759	10
4031	4092	4155	4218	4282	4347	4414	4481	4549	4618	4689	4760	
4032	4093	4156	4219	4283	4349	4415	4482	4550	4619	4690	4762	
4033	4095	4157	4220	4284	4350	4416	4483	4551	4621	4691	763	
4034	4096	4158	4221	4285	4351	4417	4484	4552	4622	4692	4764	
1.4035	1.4097	$\overline{1.4159}$. 4222	1.4287	1.4352	1.4418	1.4485	1.4554	1.4623	1.4693	4765	
4036	4098	4160	4223	4288	4353	4419	4486	4555	4624	4695	4766	
37	4099	4161	4224	4289	4354	4420	4488	4556	4625	469	4768	
4038	4100	4162	4226	4290	4355	4421	4489	4557	4626	4697	4769	
4039	4101	4163	4227	4291	4356	4422	4490	4558	4628	4698	4770	
4040	4102	4164	4228	4292	4357	4424	4491	4559	4629	4699	4771	
11^{\prime}	10^{\prime}	9^{\prime}	8	\| 7^{\prime} \|	6^{\prime}	$5{ }^{\prime}$	4'	$3{ }^{\prime}$	2		$0{ }^{-}$	

6 UEGREES.
When the Apparent Distance is less than 90°, the Second Correction is to be taken from the Bottom

148		TABLE XXXII. LOGARITHMS OF THE FIRST AND SECOND CORRECTIONS.											
The Firrt Correotion is always to be taken from the Top, and also the Second, when the Apparent. Distance is greater than 90°.													
4 DEGREES.													
S.	0°	$1{ }^{\prime}$	2^{\prime}	3'	4^{\prime}	5^{\prime}	6^{\prime}	$7{ }^{\prime}$	$8{ }^{\circ}$	$9 \times$	10^{\prime}	11'	
1 1 2 3 4	1.4771	1.4844	1.4918	1.4994	1.5071	1.5149	1.5229	1.5310	1.5393	1.5477	1.5563	1.5651	60
	4772	4845	4920	4995	5072	5150	- 5230	5311	5394	4478	5564	5652	59
	4774	4847	4921	4997	5073	5152	5231	5313	5395	5480	5566	5654	58
	4775	4848	4922	4998	5075	5153	5233	5314	5397	5481	5567	5655	57
	4776	4849	4923	4999	5076	5154	5234	5315	5398	5483	5569	5657	56
6789	1.4777	1.4850	1.4925	1.5000	1.5077	1.5156	1.5235	1.5317	$\underline{1.5400}$	1.5484	1.5570	$\overline{1.5658}$	55
	4778	4852	4926	5002	5079	5157	5237	5318	5401	15486	5572	5660	54
	4780	4853	4927	5003	5080	5158	8. 5238	5320	5402	5487	5573	5661	53
	4781	4854	4928	5004	5081	5160	5240	5321	5404	- 5488	5575	5663	52
	4782	4855	4930	5005	5082	5161	5241	5322	5405	5490	5576	5664	51
10	1.4783	$\overline{1.4856}$	1.4931	$\overline{1.5007}$	1.5084	1.5162	1.5242	$\overline{1.5324}$	1.5407	1.5491	1.5578	1.5666	50
11	4785	4858	4932	5008	5085	5164	5244	5325	5408	8493	5579	5667	49
12	4786	4859	4933	5009	5086	5165	5245	5326	5409	5494	5580	5669	48
13	4787	4860	4935	5011	5088	5166	5246	5328	5411	5496	5582	5670	47
14	4788	4861	4936	5012	5089	5168	5248	5329	5412	5497	5583	5671	46
15	1.4789	1.4863	1.4937	1.5013	1.5090	1.5169	1.5249	1.5331	1.5414	1.5498	1.5585	1.5673	45
16	4791	4864	4938	5014	5092	5170	5250	- 5332	5415	5500	5586	5674	44
17	4792	4865	4940	5016	5093	5172	5252	5333	5416	5501	5588	5676	43
18	4793	4866	4941	5017	5094	5173	5253	5335	5418	5503	5589	5677	42
19	4794	4868	4942	5018	5095	5174	4254	5336	5419	5504	5591	5679	41
20	1.4795	1.4869	1.4943	1.5019	1.5097	$\underline{1.5175}$	1.5256	1.5337	1.5421	1.5506	1.5592	1.5680	40
21	4797	4870	4945	5021	5098	5177	5257	5339	5422	5507	5594	5682	39
22	4798	4871	4946	5022	5099	5178	5258	5340	5423	5508	5595	5683	38
23	4799	4873	4947	5023	5101	5179	5260	5341	5425	5510	5596	5685	37
	4800	4874	4949	5025	5102	5181	1 5261	5343	5426	5511	5598	5686	36
	1.4801	1.4875	1.4950	1.5026	1.5103	1.5182	1.5262	1.5344	1.5428	$\overline{1.5513}$	1.5599	1.5688	35
25	4803	4876	4951	5027	5105	5183	5264	4346	5429	5514	5601	5689	34
27	4804	4877	4952	5028	5106	5185	5265	5347	5430	5516	5602	5691	33
28	4805	4879	4954	5030	5107	5186	5266	5348	5432	5517	5604	5692	32
29	4806	4880	4955	5031	5108	5187	5268	5350	5433	5518	5605	5694	31
30	1.4808	1.4881	1.4956	1.5032	1.5110	1.5189	1.5269	1.5351	1.5435	1.5520	1.5607	1.5695	30
31	4809	4882	4957	5034	5111	5190	5271	5353	5436	5521	5608	5697	29
3	4810	4884	4959	5035	5112	5191	1 5272	5354	5437	5522	5610	5698	28
3	4811	4885	4960	5036	5114	5193	5273	5355	5439	5524	5611	5700	27
34	4812	4886	4961	5037	5115	5194	5275	5357	5440	5526	5613	5701	26
$\begin{aligned} & 35 \\ & 36 \\ & 37 \\ & 38 \\ & 39 \end{aligned}$	1.4814	1.4887	1.4962	1.5039	1.5116	1.5195	1.5276	1.5358	1.5442	1.5527	1.5614	1.5703	25
	4815	4889	4964	5040	5118	5197	5277	5359	5443	5528	5615	5704	24
	4816	4890	4965	5041	5119	5198	5279	5361	5445	5530	5617	5706	23
	4817	4891	4966	5043	5120	5199	5280	5362	5446	- 5531	5618	5707	22
	4819	4892	4967	5044	5122	5200	5281	5364	5447	5533	5620	5709	21
39	1.4820	1.4894	1.4969	1.5045	1.5123	1.5202	1.5283	1.5365	$\overline{1.5449}$	1.5534	1.5621	1.5710	20
	4821	4895	4970	5046	5124	5203	5284	5366	5450	- 5536	5623	5712	19
	4822	4896	4971	5048	5125	5205	5285	5368	5452	5537	5624	5713	18
	4823	4897	4972	5049	5127	5206	5287	5369	5453	5538	5626	5715	17
44	4825	4899	4974	5050	5128	5207	5288	5370	5454	5540	5627	5716	16
45	1.4826	1.4900	1.4975	1.5051	1.5129	$\overline{1.5209}$	1.5290	$\overline{1.5372}$	1.5456	1.5541	1.5629	1.5718	15
46	4827	4901	4976	5053	5131	5210	5291	5373	5457	5543	5630	5719	14
47	4828	4902	4977	5054	5132	5211	5292	5375	5459	5544	5632	5721	13
48	4830	4903	4979	5055	5133	5213	5294	5376	5460	5546	5633	5722	12
49	4831	4905	4980	5057	5135	5214	5295	5377	5461	5547	5635	5724	11
5 5 5 5 5	1.4832	1.4906	1.4981	1.5058	1.5136	1.5215	1. 5296	$\overline{1.5379}$	1.5463	$\overline{1.5549}$	1.5636	1.5725	10
	4833	4907	4983	5059	5137	5217	5298	5380	5464	5550	5637	5727	9
	4834	4908	4984	5061	5139	5218	5299	5382	5466	5551	5639	5728	8
	4836	4910	4985	5062	5140	5219	5300	5383	5467	5553	5640	5730	7
	4837	4911	4986	5063	5141	5221	5302	5384	5469	5554	5642	5731	6
5 5 5 5 5 5 6	1.4838	1.49 i 2	1.4988	1.5064	1.5143	1.5222	1.5303	1.5386	1.5470	1.5556	$\overline{1.5643}$	1.5733	5
	4839	4913	4989	5066	5144	5223	5305	5387	5471	5557	5645	5734	4
	4841	4915	4990	5067	5145	5225	5306	5389	5473	5559	5646	5736	3
	4842	4916	4991	5068	5146	5226	5307	5390	5474	5560	5648	5737	2
	4843	4917	4992	5070	5148	5227	5309	5391	5476	5562	5649	5739	1
	4844	4918	4994	5071	5149	5229	5310	5393	5477	5563	5651	5740	0
60	59°	58^{\prime}	57°	56^{\prime}	55°	54^{\prime}	53^{\prime}	52^{\prime}	51^{\prime}	50°	49'	48^{\prime}	S.
5 Degrees.													

LOGARITHMS OF THE FIRST AND SECOND CORRECTIONS.
Le First Correotion is always to be taken from the Top, and also the Second, when the Apparent Distance is greater than 90°
4 DEGREES.

\therefore.	12'	13^{\prime}	14^{\prime}	15^{\prime}	16^{\prime}	17^{\prime}	18^{\prime}	19^{\prime}	20^{\prime}	21°	22^{\prime}	23°	
U	1.5740	1.5832	. 5925	. 6021	.6118	. 6218	1.6320	1.6425	1.6532	1.6642	1.6755	1.6871	60
1	5742	. 5833	5927	6022	6120	6220	6322	6427	6534	6644	6757	6873	59
$\stackrel{\square}{2}$	5743	5835	5928	6024	6121	6221	6324	6428	6536	6646	6759	6875	58
3	5745	5836	5930	6025	6123	6223	6325	6430	6538	6648	6761	6877	57
4	5746	5838	5931	6027	6125	6225	6827	6432	6539	6650	6763	6879	56
5	$\overline{1.5748}$	1.5839	1.5933	1.6029	$\overline{1.6126}$	1.6226	1.6329	1.6434	1.6541	1.6651	1.6764	1.6881	55
6	5749	5841	5935	6030	6128	6228	6331	6435	6543	6653	6766	6882	54
7	5751	5843	5936	6032	6130	6230	6332	6437	6545	6655	6768	6884	53
8	5752	5844	5938	6033	6131	6232	6334	6439	6547	6657	6770	6886	52
9	5754	5846	5939	6035	6133	6233	6336	6441	6548	6659	6772	6888	51
10	1.5755	1.5847	1.5941	1.6037	1.6135	1.6235	1.6338	1.6443	1.6550	1.6661	1.6774	1.6890	50
11	5757	5849	5942	6038	6136	6237	6339	6444	6552	6663	6776	6892	49
12	5758	5850	5944	6040	6138	6238	6341	6446	6554	6664	6778	6894	48
13	5760	5852	5946	6042	6140	6240	6343	6448	6556	6666	6780	6896	47
14	5761	5853	5947	6043	6141	6242	6344	6450	6558	6668	6782	6898	46

$\overline{15} \overline{1.5763} \overline{1.5855} \overline{1.5949} \overline{1.6045} 1.61431 .62431 .63461 .64511 .65591 .66701 .67841 .690045$

17	5766	5858	5952	6048	6146	6247	6350	6455	6563	6674	6787	6904
18	5768	5860	5954	6050	6148	6248	6351	6457	6565	6676	6789	6906
12												

18	5768	5860	5954	6050	6148	6248	6351	6457	6565	6676	6789	6906	42
19	5769												

$\overline{20} \overline{1.5771} \overline{1.5863} \overline{1.5957} \overline{1.6053} \overline{1.6151} 1.6252 \overline{1.6355} 1.64601 .65681 .66791 .67931 .6910 \mid 40$

21	5772	5864	5958	6055	6153	6254	6357	6462	6570	6681
2.2795	6912	39								
22	5774	5866	5960	6056	6155	6255	6358	6464	6572	6683
2797	6914	38								

1.5778 $\overline{1.5870} 1.59651 .60611 .61601 .62601 .63641 .64691 .65781 .66891 .68031 .692035$

27	5781	5874	5968	6064	6163	6264	6367	6473	6581	6692	6807	6924	33
28	5783	5875	5969	6066	6165	6265	6369	6475	6583	6694	6809	6926	32

$\overline{30} \overline{1.5786} \overline{1.5878} \overline{1.5973} \overline{1.6069} \overline{1.6168} \overline{1.6269} \overline{1.6372} \overline{1.6478} 1.65871 .66981 .68121 .693030$

32	5789	5881	5976	6072	6171	6272	6376	6482	6590	6702	6816	6934
33	5790	5883	5977	6074	6173	6274	6377	6484	6592	6704	6818	6936
27												

$\overline{35} \overline{1.5793} \overline{1.5886} 1.5981 \quad 1.60771 .61761 .62771$

36	5795	5888	5982	6079	6178	6279	6383	6489	6598	6709	6824	6942
37	5796	5889	5984	6081	6179	6281	6384	6491	6600	6711	6826	6944
23												

$\overline{10} \overline{1.5801} \overline{1.5894}-1.59891 .60851 .61851 .62861 .63901 .64961 .66051 .67171 .68321 .695020$

12	5806	5898	5993	6090	6190	6291	6395	6501	6611	6723	6838	6956
13	585											

$45 \overline{1.5809} \overline{1.5902} \overline{1.5997} \overline{1.6094} \overline{1.6193} 1.62941 .63981 .65051 .66141 .67261 .68411 .696015$

46	5810	5903	5998	6095	6195	6296	6400	6507	6616	6728	6843	962	14
47	5812	5905	6000	6097	6196	6298	6402	6509	6618	6730	6845	6964	13
48	5813	5906	6001	6099	6198	6300	6404	6510	6620	6732	6847	6966	12
49	5815	5908	6003	6100	6200	6301	6406	6512	6622	6734	6849	6968	1 i
50	1.5916	1.5909	1.6005	1.6102	1.6201	1.6303	1.6407	1.6514	$\overline{1.6624}$	1.6736	1.6851	1.6970	10
51	5818	5911	6006	6103	6203	6305	6409	6516	6625	6738	6853	6972	9
52	5819	5913	6008	6105	6205	6306	6411	6518	6627	6740	6855	6974	8
53	58.1	5914	6009	6107	6206	6308	6413	6519	6629	6742	68.57	6976	7
54	5823	5916	6011	6108	6208	6310	6414	6521	6631	6743	6859	6978	6
55	1.5824	$\underline{1.5917}$	$\overline{1.6013}$	1.6110	1.6210	1.6312	1.6416	1.6523	1.6633	1.6745	1.68611	1. 6980	5
56	5826	5919	6014	6112	6211	6313	6418	6525	6635	6747	6863	6982	4
57	5827	5920	6016	6113	6213	6315	6420	6527	6637	6749	6865	6984	3
58	5829	5922	6017	6115	6215	6317	6421	6529	6638	6751	6867	6986	2
59	5830	5924	6019	6117	6216	6319	6423	6530	6640	6753	6869	6988	1
60	5832	5925	6021	6118	6218	6320	6425	6532	6642	6755	6871	6990	0
	47°	46^{\prime}	45^{\prime}	44^{\prime}	43^{\prime}	42^{\prime}	41^{\prime}	40^{\prime}	39°	38^{\prime}	37^{\prime}	36^{\prime}	S.

[^28]When the Apparent Distance is less than 90°, the Second Correction is to be taken from the Bottom.

150		TABLE XXXII. LOGARITHMS OF THE FIRST AND SECOND CORRECTIONS.											
Tke First Correction is alwous to be taken from the Top, and also the Second, when the Apparent Distance is greater than 9													
4 DEGREE													
011234	24								32		34^{\prime}	35^{\prime}	
	1.6990	7112	1	8	1	39	1.77821	1.79291	1				
	6992	7114	7240	7370	7503	7641	7784	931	8084	8242	406	8576	
	94	6	7242	7372	7506	7644	86	34	8086	44	409	8579	58
	6996	8	7244	7374	08	46	789	936	089	8247	8411	582	57
		7120	7246	376	510	7648	7791	7939	8091	8250	-8414	8583	56
6789	. 7000	$\overline{1.7122}$	$\overline{1.7249}$	$\overline{1.7379}$	1.7513	1.7651	$\overline{1.7794}$	1.7941	$\overline{1.8094}$	1.8253	1.8417	1.8588	55
	02	7124	7251	7381	7515	7653	7796	7944	8097	255	8420		54
	7004	7127	53	83	517	655	7798	7946	8099	258	8423	8594	53
	7006	29	255	7385	7519	658	7801	7949	8102	8261	8425	8597	52
	700	71	7257	7387	7522	7660	7803	7951	8104	- 8263	8428	8599	51
10	1.7010	$\overline{1.7133}$	$\overline{1.7259}$	$\overline{1.7390}$		1.7663	1.7806		1.8107		8431	8602	50
11	7012	7135	7261	7392		7665	7808	7956	11	8269	8434	5	49
12		7137	64	94	7528	667	7811	7959	8112	8271	8437	8	48
13	7016	7139	66	396	7531	7670	7813	7961	8115	8274	8439	8611	47
	701	7141	7268	7398	7533	7672	7815	7964	81	8277	84	8614	46
15	1.7020	1.7143	1.7270	1.7401	1.7	1.76	1.7818	1.7966	8120	. 8279	. 8	7	45
16	7022	714	7272	03	7538	8	7820	7969	8123	8282	84	0	44
17	702	7147	4	405	40	- 7679	7823	7971	812	8285	8451	8623	43
18	7026	7149	7276	407	42	7681		7974	128	88	845		42
19	7028	7152	7279	409	7544		7828	79	81	8290	8456	9	
20	1.70	1.7154	1.7281	1.7412	1.75	1.7686	1.78	1.79	1.81	82	. 8	. 8632	
21	7032	7156	7283	7414	549	7688	87832	7981	136	8296	462	635	39
22	703	7158	7285	7416	7551	17691	7835	98	8138	8298	46	8637	38
23	70	160			54	47693	837		8141	1	8467		37
24	7038	7162	7289	7421	7556	7696	6840	798	8144	8304	8470	8643	36
25	1.70	1.7164	1.729	1.7423	1.7558	1.7698	1.7842	1.7992	1.81	. 8307	. 8	1.8	35
26	7042	7166	7294	4725	7560	7700	7845	7994	8149	8309	847	-8649	
27	7044	168	729	7427	7563	7703	7847	7997	8152	8312	8479	865	
2829	7046	7170		8429	7565	7705	7850	7999	81	,	84		3
	7048	7172	7300	743	75	7707	7852	8002	81	8318	84	8658	
30	1.7	1.7175	1.7302	1.7434	1.757	1.7710	1.7855	1.8	. 81	. 8320	: 8487	1.86	30
31	705	7177	7304	7436	6	27712	27857	7	81	8323	8490	8664	29
32	7055	7179	7307	7438	7574	714	7859		8165	26	8493	8667	28
33	7057		309	7441		67717	7	8012	81	8328	849	8670	27
34	70	7183	731	7443	757	9 7719	9786	401	817	8331	84		
35	1.7061	1.7185	1.7313	1.7445	1.7581	11.7722	21.7867	1.801	. 817	. 83	. 85	867	
36	706	187	7315	7447		$3 \quad 7724$	47869	8020	81	8337	8504		24
37	706	7189		0		7726	67872	202	8178	839	85	8682	23
38	7	1	732	7452	7588	7729	9	80	818	34	851		22
39	70	7193	7322	7454	4590	$0 \quad 7731$	1 7877	802	818	834	851	8688	
40	1.7071	$\overline{1.7196}$	1.732	1.7456	1.7593	31.7734	$4 \overline{1.7879}$	9 1.8030	1.8186	1.8348	1.85	1.86	
41	7073	7198	7	7458	-7595	57736	6 7882	2032	21			894	19
42	7075	7200	7	7461	7597	7738	87884	80	819	835	85	8697	18
$\begin{aligned} & 43 \\ & 44 \end{aligned}$	7077	02	733	63	7600	- 7741	17887	78037	8194	8356	852	700	
	7079	7204	7333	7465	7602	27743	$3 \quad 7889$	98040	819	8359	852	870	
45	1.70	1.7206	1.73	51.7467	1.7604	4 1.7745	5 1.7891	1.8043	1.8199	1.8361	1.8530	1.8706	
46	7083	7208	7	7470	607	77748	87894	48045	820	8364	853	8709	
47	7085	7210	733	72	7609	97750	07896	68048	8204	8367	853	81	
$\begin{aligned} & 48 \\ & 49 \end{aligned}$	7087	7212	7341	74	11	17753	37899	98050	820	8370	8539	8715	
	7089	9	7	7476	7613	$3 \quad 7755$	$5 \quad 7901$	$1 \quad 8053$	8210	8372	85	871	
50	1.7091	1.7217	. 73	6-7479	1.7616	$6 \longdiv { 1 . 7 7 5 8 }$	$\underline{1.7904}$	1.8055	1.8212	1.8375	1.8544	$\overline{1.8721}$	10
51	7093	37219	7348	87481	7618	87760	0 7906	68058	821	8378	8547	8724	
52	7096	7221	7350	7483	7620	0.7762	27909	98061	8218	8381	8550	872	
53	7098	87223	7352	27485	57623	37765	7911	18063	8220	8384	855	873	
54	710	1.722	7354	$4 \quad 7488$	87625	5 -7767	$7 \quad 7914$	4 8066	-8223	8386	8556	8733	
55	1.7102		1.7357	$\overline{1.7490}$	1.7627	$7 \overline{1.7769}$	1.7916	1.8068	1.8226		$\overline{1.8559}$		
56	7104	47229	7359	97492	27630	0 7772	27919	98071	18228	88392	8562	-8739	
57	7106	7232	7361	17494	7632	2777	47921	1807	8231	8395	856	8742	
58	7108	8723	6363	37497	77634	47777	77924	48076	8234	8397	8568	8745	
59	7110	17236	7365	57499	9 7637	$7{ }^{7779}$	97926	$6{ }^{8079}$	8236	6400	8570	8748	
60	7112	$2{ }^{7} 7238$	7368	$8{ }^{7501}$	1 7639	9) 7782	27929	$9{ }^{8081}$	8239	$9{ }^{1} 8403$	8573	8751	
	35	'34	\| 331	32	\| 31'	30	1 $29^{\prime} 1$	28	127°	1 26^{\prime}	- 25		

5 DEGREES

When the Apparent Distance is less than $90{ }^{\circ}$, the Second Correction is to be taken from the Bottom.

LOGARITHMS OF THE FIRST AND SECOND CORRECTIONS.

The First Correotion is always to be taken from the Top, and also the Socond, when the Apparent Distance is greater than 90°.													
4 DEGREES.													
S.	36^{\prime}	37^{\prime}	38°	39^{\prime}	40^{\prime}	41^{\prime}	42^{\prime}	43^{\prime}	44'	45^{\prime}	46^{\prime}	4'	
0	1.8751	1.8935	1.9128	1.9331	1.9542	1.9765	2.0000	2.0248	2.0512	2.0792	2.1091	2.1	60
1	8754	8939	9132	9334	9546	6769	0004	0252	0516	0797	1097	1419	59
2	8757	8942	9135	9337	9550	- 9773	0008	0257	0521	0801	1102	1424	58
3	8760	8945	9138	9341	9553	9777	0012	0261	0525	0806	1107	1430	57
4	8763	8948	9142	9344	9557	9780	0016	0265	0530	0811	1112	1436	56
5	1.8766	1.8951	1.9145	1.9348	1.9561	1.9784	2.0020	2.0270	2.0534	$\underline{2.0816}$	2.1117	2.144 1	55
6	8769	8954	9148	9351	9564	4788	0024	0274	0539	0821	1123	1447	54
7	8772	8958	9152	9355	9568	9792	0028	0278	0543	0826	1128	1452	53
8	8775	8961	9155	9358	9571	9796	0032	0282	0548	0831	1133	1458	52
9	8778	8964	9158	9362	9575	9800	0036	0287	0552	0835	1138	1464	51
$\overline{10}$	1.8781	1.8967	1.9162	1.9365	1.9579	1.9803	2.0040	2.0291	2.0557	2.0840	$\underline{2.1143}$	$\underline{2.1469}$	50
11	8784	8970	9165	9369	9582	9807	0044	0295	0562	0845	1149	1475	49
12	8787	8973	9168	9372	9586	9811	0049	0300	0566	0850	1154	1481	48
13	8790	8977	9172	9376	9590	9815	0053	0304	0571	0855	1159	1486	47
14	8793	8980	9175	9379	9593	9819	0057	0308	0575	0860	1164	1492	46
15	1.8796	1.8983	1.9178	1.9383	1.9597	1.9823	2.0061	2.0313	2.0580	2.0865	2.1170	2.1498	45
16	8799	8986	9181	9386	9601	9827	0065	0317	0585	0870	1175	1503	44
17	8802	8989	9185	939.0	9604	9830	0069	0321	0589	0875	1180	1509	43
18	8805	8992	9188	9393	9608	9834	0073	0326	0594	0880	118	1515	42
19	8808	8996	9191	9397	9612	9838	0077	0330	0598	0884	1191	1520	41
20	1.8811	1.8999	1.9195	1.9400	1.9615	1.9842	2.0081	2.0334	2.0603	2.0889	2.1196	2.1526	40
21	8814	9002	9198	9404	9619	9846	0085	0339	0608	0894	1201	1532	39
22	8817	9005	9201	9407	9623	9850	0089	0343	0612	0899	1207	1538	38
23	8821	9008	9205	9411	9626	6854	0093	0347	0617	0904	1212	1543	37
24	8824	9012	9208	9414	9630	9858	0098	0352	0621	0909	1217	1549	36
25	1.8827	1.9015	$\overline{1.9212}$	1.9418	1.9634	1.9861	2.0102	2.0356	2.0626	2.0914	2.1223	2.1555	35
26	8830	9018	9215	9421	9638	9865	0106	0360	0631	0919	122	1561	34
27	8833	9021	9218	9425	9641	9869	0110	0365	0635	0924	1233	1566	33
28	8836	9024	9222	9428	9645	9873	0114	0369	0640	0929	1239	1572	32
29	8839	9028	9225	9432	9649	9877	0118	0374	0645	0934	1244	1578	31
30	1.8842	1.9031	1.9228	1.9435	1.9652	1.9881	2.0122	2.0378	2.0649	2.0939	2.1249	2.1584	30
31	8845	9034	9232	9439	9656	9885	0126	0382	0654	0944	1255	1589	29
32	8848	9037	9235	9442	9660	9889	0131	0387	0659	0949	1260	1595	28
33	8851	9041	9238	9446	9664	9893	0135	0391	0663	0954	1266	1601	27
34	8854	9044	9242	9449	9667	9897	0139	0395	0668	0959	1271	1607	26
35	1.8857	1.9047	1.9245	1.9453	1.9671	1.9901	2.0143	2.0400	2.0673	2.0964	2.1276	2.1613	25
36	8861	9050	9249	9456	9675	9905	0147	0404	0678	0969	1282	1619	24
37	8864	9053	9252	9460	9678	9908	0151	0409	0682	0974	128	1624	23
38	8867	9057	9255	9464	9682	9912	0156	0413	0687	0979	1292	1630	22
39	8870	9060	9259	9467	9686	9916	0160	0418	0692	0984	1298	1636	21
40	1.8873	1.9063	1.9262	1.9471	1.9690	1.9920	2.0164	2.0422	2.0696	2.0989	2.1303	2.1642	20
41	8876	9066	9266	9474	9693	9924	0168	0426	0701	0994	1309	1648	19
42	8879	9070	9269	9478	9697	9928	0172	0431	0706	0999	1314	1654	18
43	8882	9073	9272	9481	9701	9932	0176	0435	0711	1004	1320	1660	17
44	8885	9076	9276	9485	9705	9936	0181	0440	0715	1009	1325	1665	16
45	1.8888	1.9079	1.9279	1.9488	1.9708	1.9940	2.0185	2.0444	2.0720	2.1015	2.1331	2.1671	15
46	8892	9083	9283	9492	9712	9944	0189	0449	0725	1020	1336	1677	14
47	8895	9086	9286	9496	9716	9948	0193	0453	0730	1025	1342	1683	13
48	8898	9089	9289	9499	9720	9952	0197	0458	0734	1030	1347	1689	12
49	8901	9092	9293	9503	9723	9956	0202	0462	0739	1035	1352	1695	11
50	1.8904	1.9096	1.9296	1.9506	1.9727	1.9960	2.0206	2.0467	2.0744	2.1040	2.1358	2.1701	10
51	8907	9099	9300	9510	9731	9964	0210	0471	0749	1045	1363	1707	9
52	8910	9102	9303	9514	9735	9968	0214	0475	0753	1050	1369	1713	8
53	8913	9106	9306	9517	9739	9972	0219	0480	0758	1055	1374	1719	7
54	8917	9109	9310	9521	9742	9976	0223	0484	0763	1061	1380	1725	
55	1.8920	1.9112	$\overline{1.9313}$	1.9524	1.9746	1.9980	2.0227	$\overline{2.0489}$	2.0768	2.1066	2.13	2.1731	5
56	8923	9115	9317	9528	9750	9984	0231	0493	0773	1071	1391	1737	4
57	8926	9119	9320	9532	9754	9988	0235	0498	0777	1076	1397	1743	3
58	8929	9122	9324	9535	9758	9992	0240	0502	0782	1081	1402	1749	2
59	8932	9125	9327	9539	9761	9996	0244	0507	0787	1086	1408	1755	1
60	8935	9128	9331	9542	9765	2.0000	0248	0512	0792	1091	1413	1761	0
	23^{\prime}	22^{\prime}	21^{\prime}	20^{\prime}	19^{\prime}	18^{\prime}	17°	16^{\prime}	15	14^{\prime} \|	13^{\prime}	12^{\prime}	S.
						6 DEG	GREES.						

152		LOGARITHMS OF THE FIRST AND SECOND CORRECTIONS.											
The First Correotion is alvays to be taken from the Top, and also the Second, when the Apparent Distance is greater than 900													
4 DEGREES.													
S.	48^{\prime}	49°	50^{\prime}	51^{\prime}	52'	53°	54°	55°	56^{\prime}	57°	58'		
0	2.1761	2.2139	2.2553	2.3010	2.3522	2.4102	2.4771	2.5563	2.6532	2.7782	2.9542		
1	1767	2145	2560	3018	3531	4112	4783	5578	6550	7806	9579	26	5.9
2	1773	2152	567	026	3540	4122	4795	5592	6568	7830	9615	270	8
3	1779	2159	2574	3034	3549	4133	4808	5607	6587	7855	9652	277	
4	1785	2165	2582	3043	3558	4143	4820	5621	6605	78.9	9690	28	56
5	2.1791	2.2172	$\overline{2.2589}$	2.3051	2.3567	2.4154	2.4832	$\underline{2.5636}$	2.6624	2.7904	2.9	. 2	55
6	1797	2178	2596	3059	3576	4164	4844	5651	6642	7929	9765	3010	54
7	1803	2185	2604	3067	3586	4175	4856	5666	6661	7954	9803	309	53
8	1809	2192	2611	3075	3595	4185	4869	5680	6679	7979	984	31	
9	1816	2198	2618	3083	3604	4196	4881	5695	6698	8004	9881	3259	51
10	2.1822	2.2205	2.2626	2.3091	2.3613	2.4206	2.4894	2.5710	2.6717	2.8030	2.9920	3.3	50
11	1828	2212	2633	3100	3623	4217	4906	5725	6736	8055	9960	343	49
12	183	2218	2640	3108	3632	4228	4918	5740	6755	8081	3.0000	352	48
13	1840	2225	2648	3116	3641	4238	4931	5755	6774	8107	0040	361	
14	1846	2232	2655	8124	3650	4249	4943	5771	6793	8133	0081	3707	
15	2.1852	2.2239	2.2663	2.3133	2.3660	2.4260	2.4956	2.5786	2.6812	2.8159	3.0122	. 38	45
16	1859	2245	2670	3141	- 3669	4270	4969	5801	6832	8186	0164	3900	44
17	186	2252	267	3149	- 3678	4281	4981	5816	6851	8212	0206	400	43
18	1871	2259	2685	3158	3688	4292	4994	5832	6871	8239	024	41	42
19	1877	2266	2692	3166	3697	4303	5007	5847	6890	8266	0291	42	41
20	2.1883	2.2272	2.8700	2.3174	2.3707	2.4314	2.5019	2.5863	$\overline{2.6910}$	2.8293	3.03	. 43	40
21	1889	2279	2707	3183	- 3716	4325	5032	5878	6930	8320	0378	442	39
22	1896	2286	2715	3191	3726	4335	5045	5894	6950	8348	042	453	
23	1902	2293	2722	3199	3735	346	5058	5909	6970	8375	0467	4652	37
24	1908	2300	2730	3208	3745	4357	5071	5925	6990	8.403	0512	4771	36
25	2.1914	2.2307	$\overline{2.2738}$	2.3216	2.3754	2.4368	2.5084	2.5941	2.7010	2.8431	. 0557	3.48	35
26	1921	2313	2745	3225	3764	4379	5097	5957	7030	8459	0603	50	
27	1927	2320	2753	3233	3773	0	5110	5973	7050	8487	0649	5149	33
28	1933	2327	2760	3242	378.3	4401	5123	5989	7071	8516	0696	528	32
29	1939	2334	2768	3250	3792	4412	5136	6005	7091	8544	0744	5421	31
30	2.1946	2.2341	2.2775	2.3259	2.3802	2.4424	2.5149	2.6021	2.7112	2.8573	3.0792	. 555	30
31	1952	2348	2783	3267	3812	4435	5162	6037	7133	8602	0840	57	29
32	1958	2355	2791	3276	3821	4446	5175	6053	7154	8632	. 889	5863	28
33	1965	2362	2798	3284	3831	4457	5189	6069	7175	8661	0939	6021	27
34	197	2368	2806	3293	3841	4468	5202	6085	7196	8691	0989	6185	26
35	2.1977	2.2375	2.2814	2.3301	2.3851	2.4480	2.5215	2.6102	2.7217	2.8721	3.1040	3.63	,
36	1984	2382	2821	3310	3860	4491	5229	6118	7238	8751	1091	653	24
37	1990	2389	2829	3319	3870	4502	5242	6135	7259	8781	1143	6717	23
38	1996	2396	2837	3327	3880	4514	5256	6151	7281	8811	11	691	
39	2003	2403	2845	3336	-3890	4525	5269	6168	7302	8842	1249	711	1
40	2.2009	2.2410	2.2852	2.3345	2.3900	2.4536	2.5283	2.6185	$\overline{2.7324}$	2.8873	3.1303	3.7324	20
41	2016	2417	2860	3353	3910	4548	5296	6201	7346	8904	1358	7547	
42	2022	2424	2868	3362	3919	4559	5310	6218	7368	8935	1413	7782	18
43	2028	2431	2876	3371	3929	4571	5324	6235	7390	8967	1469	8030	17
44	2035	2438	2883	3379	3939	4582	5337	6252	7412	8999	1526	8293	16
45	2.2041	2.2445	2.2891	2.3388	2.3949	2.4594	2.5351	2.6269	2.7434	2.9031	3.1584	3.8573	5
46	2048	2453	2899	3397	3959	4606	5365	6286	7456	9063	1642	8873	,
47	2054	2460	2907	3406	3969	4617	5379	6303	7479	9096	1701	9195	3
48	2061	2467	2915	3415	3979	4629	5393	6320	7501	9128	1761	9542	12
49	2067	2474	2923	3423	3989	4640	5407	6338	7524	9162	1822	9920	1
50	2.2073	2.2481	$2 \cdot 2931$	2.3432	2.4000	2.4652	2.5421	$\underline{2.6355}$	2.7547	2.9195	3.1883	$\overline{4.0334}$	0
51	2080	2488	2939	3441	4010	4661	5435	6372	7570	9228	1946	0792	
52	2086	2495	2946	3450	4020	4676	5449	6390	7593	9262	2009	1303	
53	2093	2502	2954	3459	4030	4688	5463	6407	7616	9296	2073	1883	7
54	2099	2510	2962	3468	4040	4699	5477	6425	7639	9331	2139	2553	6
55	2.2106	2.2517	2.2970	2.3477	2.4050	2.4711	2.5491	2.6443	2.7663	2.9365	3.220	4.3345	5
56	2113	2524	2978	3486	4061	4723	5506	6460	7686	9400	2272	4314	4
57	2119	2531	2986	3495	4071	4735	5520	6478	7710	9435	2341	5563	3
58	2126	2538	2994	3504	4081	4747	5534	6496	7734	9471	2410	7324	2
59	2132	2545	3002	3513	4091	4759	5549	6514	7757	9506	2481	5.0334	
60	2139	2553	3010	3522	4102	4771	5563	6532	7782	9542	255		0
	11^{\prime}	10^{\prime}	9°	8		'			3'		1^{\prime}	0^{\prime}	S.
5 DEGREES.													

Enter this Table with the Latitude in, at the side, and opposite to which, in the body of the Table, find the approximate Azimuth or Sun's Angle from the Meridian in Degrees at the time of the observation. Then at the Top will be found the Sun's change of altitude in 1 minute of time.
This Table is useful to verify a set of Altitudes for Chronometer, taken when the Sun is not on the Prime Vertical, and for other purposes when precision is required.

Lat.	change of altitude in 1 mindte.															
		,	,	1	,	,		,	,	,	,	1	,	,	,	,
		1	\because		4	5	6	7	8	9	10	11	12	13	14	15
$\stackrel{ }{\circ}$	0	4	$\stackrel{\circ}{8}$	12	$\stackrel{1}{15}$	$\stackrel{\circ}{19}$	$\stackrel{\circ}{24}$	$\stackrel{\circ}{28}$	$\stackrel{\circ}{32}$	37	$\stackrel{\circ}{42}$	47	$\stackrel{\circ}{5}$	60	- 69	87
1	0	4	8	12	15	19	24	28	32	37	42	47	53	60	69	87
t	0	4	8	12	15	20	24	28	32	37	42	47	53	60	69	
6	0	4	8	12	16	20	24	28	32	37	42	48	54	61	70	
8	0	4	8	12	16	20	24	28	33	37	42	48	54	61	71	
10	0	4	8	12	16	20	24	28	33	38	43	48	54	62	71	
11	0	4	8	12	16	20	24	28	33	38	43	48	55	62	72	
12	0	4	8	12	16	20	24	28	33	38	43	49	55	62	73	
13	0	4	8	12	16	20	24	29	33	38	43	49	55	63	73	
14	0	4	8	12	16	20	24	29	33	38	43	49	56	63	74	
15	0	4	8	12	16	20	24	29	34	38	44	49	56	64	75	
16	0	4	8	12	16	20	25	29	34	39	44	50	56	64	76	
17	0	4	8	12	16	20	25	29	34	39	44	50	57	65	77	
18	0	4	3	12	16	21	25	29	34	39	44	50	57	66	79	
19	0	4	8	12	16	21	25	30	34	39	45	51	58	66	81	
20	0	4	8	12	16	21	25	30	35	40	45	51	58	67	83	
21	0	4	8	12	17	21	25	30	35	40	46	52	59	68	89	
22	0	4	8	12	17	21	26	30	35	40	46	52	60	69		
23	0	4	8	13	17	21	26	30	35	41	46	53	60	70		
24	0	4	8	13	17	21	26	31	36	41	47	53	61	72		
25	0	4	8	13	17	22	26	31	36	41	47	54	62	73		
26	0	4	9	13	17	22	26	31	36	42	48	55	63	75		
27	0	4	9	13	17	22	27	32	37	42	48	55	64	77		
28	0	4	9	13.	18	22	27	32	37	43	49	56	65	79		
29	0	4	9	13 .	18	22	27	32	37	43	50	57	66	82		
30	0	4	9	13	18	23	27	33	38	44	50	58	67			
31	0	4	9	13	18	23	28	33	38	44	51	59	69			
32	0	5	9	14	18	23	28	33	39	45	52	60	71			
33	0	5	9	14	19	23	28	34	39	46	53	61	73			
34	0	5	9	14	19	24	29	34	40	46	54	62	75			
35	0	3	9	14	19	24	29	35	41	47	54	64	78			
36	0	5	9	14	19	24	30	35	41	48	55	65	81			
37	0	5	10	14	19	25	30	36	42	49	57	67				
38	0	5	10	15	20	25	30	36	43	49	58	69				
39	0	5	10	15	20	25	31	37	43	51	59	71				
40	0	5	10	15	20	26	31	38	44	52	60	73				
41	0	5	10	15	21	26	32	38	45	53	62	76				
42	0	5	10	16	21	27	33	34	46	54	64	81				
43	0	5	10	16	21	27	33	40	47	55	66					
44	0	5	11	16	22	28	34	40	48	57	68					
45	0	5	11	16	22	28	34	41	49	58	71					
46	0	5	11	17	23	29	35	42	50	60	74					
47	0	6	11	17	23	29	36	43	51	62	78					
48	0	6	11	17	23	30	37	44	53	64	85					
49	0	6	12	18	24	31	38	45	54	66						
50	0	6	12	18	25	31	38	47	56	69						
51	0	6	12	19	25	32	39	48	58	72						
52	0	6	12	19	26	33	41	49	60	77						
53	0	6	13	19	26	34	42	51	62	85						
54	0	7	13	20	27	35	43	53	65							
55	0	7	13	20	28	36	44	54	68							
56	1	7	14	21	28	37	46	57	73							
57	0	7	14	22	29	38	47	59	78							
58	0	7	15	22	30	40	49	62								
59	0	7	15	23	31	40	51	65								
60	0	8	1.5	24	32	42	53	69								
61	0	8	16	24	33	43	56	74								
62	0	8	16	25	35	45	58	84								
63	0	8	17	26	36	47	62									
64	0	9	18	27	37	49	66									
65	0	9	18	28	39	52	70									
66	0	9	19	29	41	55	80									

THIRD CORREOTION, TO APPARENT DISTANCE 200.

THIRD CORRECTION, TO APPARENT DISTANCE 20°.

$\begin{gathered} \overline{D ' s} \\ \text { App. } \end{gathered}$	APPARENT Altitude								OF TI	E SUN, or star.							$=\left[\begin{array}{l} D \prime \mathrm{~s} \\ \mathrm{App} \\ \mathrm{~A}: \mathrm{t} \end{array}\right.$	
Alt.	12°	34°		38°	42°	46°	50°	54°	58°	62°	66°	70°	74°	78°	82°	8. 6°		
$\begin{array}{r} \circ \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ \hline \end{array}$	11					11	111	"	-	, "	, "	' 11	"	, "	, "1	, "	\circ 6 7 8 9 10	
11 12 13 14 15	(rr\|r	r1 16 1 52 8 32 2 16 2 3	(rrr2 38 2 21 2 7 1	213														$\begin{aligned} & 11 \\ & 12 \\ & 13 \\ & 14 \\ & 15 \end{aligned}$
16 17 18 19 20	1 53 1 44 1 37 1 33 1 30	1 56 1 46 1 39 1 34 1 30 1 2	1 59 1 48 1 40 1 34 1 29	1 51 1 41 1 34 1 28	126												$\begin{aligned} & 16 \\ & 17 \\ & 18 \\ & 19 \\ & 20 \end{aligned}$	
21	127	126	125	123	121													
22	124	123	122	120	$1 \begin{array}{ll}1 & 18\end{array}$												22	
23	$1 \begin{array}{ll}1 & 22\end{array}$	1.21	120	$1 \begin{array}{ll}1 & 18\end{array}$	115												23	
24	121	120	118	116	112	18											24	
25	119	118	116	114	$1 \quad 9$	$1 \quad 4$											25	
26	117	116	114	112	17	$\begin{array}{ll}1 & 1\end{array}$											26	
27	$1 \begin{array}{ll}1 & 17\end{array}$	115	113	$1 \begin{array}{lll}1 & 11\end{array}$	16	$1 \begin{array}{ll}1 & 0 \\ 0 & 5\end{array}$											27	
28	117	115	113	110		$0 \quad 57$	050										28	
29	117	116	114	111		058	050										29	
30	$1 \begin{array}{ll}1 & 18\end{array}$	117	115	112		0 59	050										30	
31	117	116	115	112	17	059	051										31	
32	117	116	114	112	$1-7$	$0 \quad 59$	051	042									32	
33	116	115	113	$1 \begin{array}{ll}1 & 12\end{array}$	18	11	052	043									33	
34	113	114	113	$1 \begin{array}{ll}1 & 11\end{array}$	18		053	0									34	
35	$1 \begin{array}{ll}1 & 14\end{array}$	113	112	111		11	053	044									35	
36	$1 \begin{array}{ll}1 & 13\end{array}$	112	111	110	17		054	045	\square								36	
37	112	111	110	$1 \begin{array}{ll}1 & 9\end{array}$	16	11	054	046	0 37								37	
38	$1 \begin{array}{lll}1 & 11\end{array}$	110	19	18	16	11	055	047	0 38								38	
39	$1 \begin{array}{ll}1 & 10\end{array}$	110	19	18	15	11	055	047	0 39								39	
40	1	19	18	$1 \quad 6$	$1 \quad 4$	10	055	048	$0 \quad 39$	032							40	
41		18	17	15	$1 \begin{array}{ll}1 & 3\end{array}$	10	055	048	039	032								
42		$1 \begin{array}{ll}1 & 7\end{array}$	16	1	$1 \quad 2$	$\begin{array}{lll}0 & 59\end{array}$	O 55	O 48	040	$\begin{array}{lll}0 & 33\end{array}$							42	
43	15	11	15	1	$1 \quad 2$	$1 \begin{array}{ll}0 & 59\end{array}$	O 55	548	040	033							44	
44	$1 \begin{array}{ll}1 & 4\end{array}$	$1 \begin{array}{ll}1 & 4\end{array}$	11	$1 \begin{array}{ll}1 & 3\end{array}$	$1 \begin{array}{ll}1 & 1\end{array}$	059	055	50	040	034	$0 \quad 29$						45	
46	11 0	12	12	$1 \quad 1$	$1 \quad 0$	058	054	048	041	035	$0 \quad 30$						46	
48	0 56	058	059	059	058	056	0	O 49	043	037	031	025					48	
50	052	0	055	056	055	0 54	$1 \begin{array}{ll}0 & 51\end{array}$	1048	0	038	0	027					50	
52	048	049	050	051	051	051	049	047	043	039	035	029	024				52	
54	044	043	045	046	047	048	047	0	$1 \begin{array}{ll}0 & 43\end{array}$	040	036	030	$0 \quad 25$				54	
56		038	040	$0 \quad 42$	044	045	045	044	O 42	040	035		$0 \quad 27$	022			56	
58			035	038	040	042	0. 43	0	$0 \quad 40$	038	\bigcirc	\bigcirc	$\bigcirc 27$	023			58	
60				034	036	$1 \begin{array}{ll}0 & 39\end{array}$	0 41	1041	0 39	036	033	029	026	023	021		60	
62					033	0 36	038	$1 \begin{array}{ll}0 & 39\end{array}$	1038	035	032	029	026	024	022		62	
64					030	033	035		037	035	032	029	027	025	022		64	
66						$0 \quad 30$	032	035	036	034	$\bigcirc 31$		027	025	023	021	66	
68						027	0 29 0	$1 \begin{array}{ll}0 & 32\end{array}$	$\begin{array}{ll}0 & 31 \\ 0\end{array}$	032	\bigcirc	028	026	025	023	021	68	
70							- $\begin{aligned} & 0 \\ & 0\end{aligned}$	10	032	031	0 29	027	026	0	022	020	70	
72							025	$1 \begin{array}{ll}0 & 27\end{array}$	$\begin{array}{ll}0 & 29\end{array}$	029	028	027	025	023	021	020	72	
74								0-25	1027	027	1027	026	024	022	021	020	74	
76								023	- 25	026	026	025	024	022	010		76	
78									0	024	$0 \quad 25$	024	023	021	$0 \quad 20$		78	
80									021	023	024	023	022	021	020		80	
82										022	023	0 0 0	021	$0 \quad 21$			82	
84										021	022	021	021				84	
86											021		$0 \quad 20$				86	
	32°	34°	36°	38°	42°	46°	50°	54°	58°	62°	66°	70°	74°	78°	82°	86°		

THIRD CORREOTION, TO APPARENT DISTANCE 24°.

D's	APPARENT AL						TITUDE O		THE	SUN,	OR	A Sta					${ }^{\text {D }}$'s
$\begin{aligned} & \text { app. } \\ & \text { Alt. } \end{aligned}$	6°	7°	8°	9°	10°	11°	12°	14°	16°	18°	20°	22°	24°	26°	28°	30°	Alt.
\bigcirc		111	, 11	111	111	, 1	' "1				111				"	, 11	\bigcirc
6	128	131	135	1421	1522	23	2162	246	316	347	419	450	520	550	620	650	6
7	135	127	130	1341	1391	146	154	215	238	$3{ }^{3} \quad 3$	329	355	420	446	$5 \quad 10$	534	7
8	145	132	126	128	1301	135	141	158	217	237	258	318	339	41	420	439	8
9	156	139	130	1251	1261	129	134	144	159	215	231	248	36	324	340	356	9
10	28	148	136	1291	1251	126	128	135	145	157	213	227	243	258	312	326	10
11	221	158	143	134	128	124	126	130	136	146	158	211	224	237	249	30	11
12	236	29	152	141	133	127	124	126	130	137	147	158	29	220	229	238	12
13	251	220	21	148	138	131	127	124	127	132	140	148	157	26	214	222	13
14	3 3	231	210	155	143	135	130	123	125	128	133	140	148	155	22	210	14
15	321	242	220	22	150	139	133	124	123	125	124	134	140	146	152	159	15
16		254	230		156	144	136	126	122	123	125	129	133	138	144	150	16
17	351	36	240	217	$2 \quad 2$	149	139	128	123	121	123	126	129	134	139	143	17
18		318	249	225	28	154	143	131	124	120	$1 \begin{array}{ll}1 & 21\end{array}$	123	126	130	134	137	18
19	421	330	259	233	214	159	147	133	125	121	120	122	124	127	130	132	19
20	435	342	3 9	241	221	$2 \quad 5$	152	136	127	122	119	120	122	124	126	128	20
21	450	354	319	250	228	211	156	139	$\begin{array}{ll}1 & 29\end{array}$	123	120	$\begin{array}{ll}1 & 19\end{array}$	120	121	123	125	21
22		46	3 28	258	235	217	21	142	131	124	120	$1 \begin{array}{ll}1 & 18\end{array}$	$1 \begin{array}{ll}1 & 19\end{array}$	119	120	122	22
23	519	418	318	36	243	223	26	146	133	125	121	118	118	118	118	119	23
24	533	429	348	314	251	229	$2{ }^{\circ} 12$	150	136	127	122	$1 \begin{array}{ll}1 & 19\end{array}$	$1 \begin{array}{ll}1 & 17\end{array}$	117	117	117	24
25	547	441	$3 \quad 57$	$3 \quad 22$	258	235	217	153	138	128	123	120	118	116	116	116	25
26	$6 \begin{array}{ll}6 & 1\end{array}$	452	4	3 30	3	241	222	157	${ }^{1} 141$	130	124	$1 \begin{array}{ll}1 & 20\end{array}$	0118	116	115		26
27	614	5 4	415	338	310	247	227		143	132	125	121	118	115	514	113	27
28	627	515	423	345	316	253	232	24	146	134	127	121	118	115	5113	112	28
29	638	526	432	353	322	258	238	28	149	136	128	122	118	115	5.113	111	29
30	650	536	441	$4 \quad 0$	328	33	244	212	152	138	129	123	119	115	5113	111	30
31		545	450		334	3	249	216	155	140	-1 30	124	$1 \begin{array}{ll}19\end{array}$	115	$1 \begin{aligned} & 113\end{aligned}$	111	31
32		553	458	414	340	$3 \begin{array}{ll}3 & 13\end{array}$		219	1.57	141	1131	124	119	115	5113	111	32
33			$5 \quad 5$	420	346	$1 \begin{aligned} & 3 \\ & 3\end{aligned} 18$	258	222	159	142	131	124	119	115	5113	111	33
34				425	351	322	31	224	21	143	3132	125	120	115	5113	111	34
35					356	326		226		145	133	125	120	115	5113	111	35
36						330		228	24	446	134	$1{ }^{1} \overline{2} 5$	120	115	5112	110	36
37								230	26	6147	135	125	120	115	5112	110	37
38								232	27	143	3135	125	120	115	5112	110	38
39								234	28	8149	135	125	119	115	5112	110	39
40										150	135	125	119	115	5111		40
41									210	150	135	125	5119	115	5111		41
42										151	1136	125	5 119	9114	41110	17	42
43										152	2136	125	118	8113	319	16	43
44											136	125	118	8113	318	15	44
46											136	125	117	1712			46
48												125	117	110		$1 \begin{array}{ll}1 & 1\end{array}$	48
50													117	118	81	059	50
52															$1{ }^{\prime} 3$	058	52
54																057	54
56																056	56
																	58
60																	60
62																	62
64																	$\begin{aligned} & 64 \\ & 66 \end{aligned}$
68																	68
70																	70
72																	72
74																	74
76																	76
78																	78
80																	80
82																	82
84																	84
86																	86
	6°	7°	8°	9°	10°	11°	12°	14°	16°	18°	20°	22°	24°	26°	28°	30°	

THIRD CORRECTION, TO APPARENT DISTANCE 24°.

	APPARENT A						altitude o		Of the sun, or			bTAR.					$\underbrace{\text { DTs }}_{\text {Alt }}$					
Alt.	32°	34°											74°	78°	82°	86°						
$\begin{array}{r} 0 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ \hline \end{array}$	$\left.\begin{array}{ll} 1 & 11 \\ & \\ 4 & 58 \\ 4 & 12 \\ 3 & 39 \end{array} \right\rvert\,$	111 351		, "	"		"	'	, .1	, "1			, "1				$\begin{array}{r} 6 \\ 7 \\ 8 \\ 9 \\ 10 \end{array}$					
$\begin{aligned} & 11 \\ & 12 \\ & 13 \\ & 14 \\ & 15 \end{aligned}$	3 11 2 48 2 30 2 16 2 4	3 21 2 56 2 37 2 22 2 9	3 30 3 5 2 44 2 27 2 14														$\begin{aligned} & 11 \\ & 12 \\ & 13 \\ & 14 \\ & 15 \end{aligned}$					
$\begin{aligned} & 16 \\ & 17 \\ & 18 \\ & 19 \\ & 20 \\ & \hline \end{aligned}$	$\begin{array}{ll} 1 & 54 \\ 1 & 46 \\ 1 & 40 \\ 1 & 35 \\ 1 & 30 \\ \hline \end{array}$	1 59 1 50 1 43 1 37 1 32	2 3 1 53 1 45 1 39 1 33 1	\|rr	$\begin{array}{r}2 \\ 1\end{array} 56$	$\begin{array}{rrr} 2 & 11 \\ 2 & 0 \\ 1 & 51 \\ 1 & 43 \\ 1 & 36 \\ \hline \end{array}$	138											$\begin{aligned} & 16 \\ & 17 \\ & 18 \\ & 19 \\ & 20 \\ & \hline \end{aligned}$				
$\begin{aligned} & 21 \\ & 22 \\ & 23 \\ & 24 \\ & 25 \end{aligned}$	$\begin{array}{ll\|} \hline 1 & 26 \\ 1 & 22 \\ 1 & 20 \\ 1 & 18 \\ 1 & 16 \\ \hline \end{array}$	1 27 1 23 1 20 1 18 1 16	1 28 1 24 1 21 1 19 1 17 1 1	1 29 1 24 1 21 1 19 1 17 1	1 30 1 25 1 21 1 18 1 16 1 1	1 31 1 25 1 21 1 17 1 14 1	$\begin{array}{\|l\|l\|l\|} \hline 1 & & \\ 5 & & \\ 1 & & \\ 7 & 1 & \\ \hline & 15 \\ 4 & 1 & 11 \\ \hline \end{array}$										$\begin{aligned} & 21 \\ & 22 \\ & 23 \\ & 24 \\ & 25 \\ & \hline \end{aligned}$					
$\begin{aligned} & 26 \\ & 27 \\ & 28 \\ & 29 \\ & 30 \\ & \hline \end{aligned}$	1 14 1 13 1 12 1 11 1 11	1 14 1 13 1 12 1 11 1 10 1	1 14 1 12 1 11 1 10 1 9	1 14 1 12 1 10 1 9 1 8	1 13 1 1 1 9 1 8 1 7 1	$\begin{array}{rr} 1 & 11 \\ 1 & 9 \\ 1 & 7 \\ 1 & 5 \\ 1 & 4 \\ \hline \end{array}$		8 1 1 1 0 59 0 57 									$\begin{aligned} & 26 \\ & 27 \\ & 28 \\ & 29 \\ & 30 \\ & \hline \end{aligned}$					
$\begin{aligned} & 31 \\ & 32 \\ & 33 \\ & 34 \\ & 35 \\ & \hline \end{aligned}$	$\begin{array}{\|rr\|} \hline 1 & 10 \\ 1 & 9 \\ 1 & 9 \\ 1 & 9 \\ 1 & 9 \\ \hline \end{array}$	1 9 1 9 1 8 1 7 1 7	1 8 1 8 1 7 1 6 1 6 1	1 8 1 7 1 6 1 5 1 5	1 6 1 5 1 4 1 3 1 2 1	1 2 1 1 1 1 1 0 1 0	10 58 0 58 0 57 0 57 0 57 0 56	1 55 0 55 0 54 0 53 0 53 0 52	$\begin{array}{ll} 1 & \begin{array}{ll} 0 & 51 \\ 0 & 50 \\ 0 & 50 \\ 0 & 49 \\ 0 & 48 \\ \hline \end{array} \\ \hline \end{array}$			1					$\begin{aligned} & 31 \\ & 32 \\ & 33 \\ & 34 \\ & 35 \\ & \hline \end{aligned}$					
$\begin{aligned} & 36 \\ & 37 \\ & 38 \\ & 39 \\ & 40 \\ & \hline \end{aligned}$	$\begin{array}{\|ll\|} \hline 1 & 8 \\ \mathbf{1} & 8 \\ 1 & 8 \\ 1 & 8 \\ 1 & 7 \\ \hline \end{array}$	1 7 1 6 1 6 1 6 1 5 1	1 6 1 5 1 5 1 4 1 4 1	1 4 1 3 1 3 1 2 1 2	1 2 1 1 1 0 0 59 0 59 0 58	1 0 0 58 0 57 0 56 0 55	0 56 0 55 0 554 0 54 0 52 0 51	0 51 0 51 0 50 0 48 0 47	\|l	l	l	l	l		0 44 0 43 0 43 0 42 0 41	-1-1						$\begin{aligned} & 36 \\ & 37 \\ & 38 \\ & 39 \\ & 40 \\ & \hline \end{aligned}$
$\begin{aligned} & 41 \\ & 42 \\ & 43 \\ & 44 \\ & 46 \\ & \hline \end{aligned}$	1 6 1 5 1 4 1 3 1 1 	1 4 1 4 1 3 1 2 1 0	1 3 1 3 1 2 1 1 0 59 0	1 1 1 1 1 0 0 59 0 58	-1 $\begin{aligned} & 0 \\ & 0\end{aligned} 58$	0 54 0 54 0 53 0 53 0 52 51	0 50 0 49		0 44 0 44 0 43 0 43 0 43	$\begin{array}{\|l\|l} 4 \\ 4 & 0 \\ 0 & 41 \\ 0 & 41 \\ 0 & 40 \\ 0 & 40 \\ 0 & 40 \\ 0 & 40 \end{array}$	0 38 0 38 0 37 0 37 0 37 3	(1)0 34 0 34 0 34	032				$\begin{aligned} & 41 \\ & 42 \\ & 43 \\ & 44 \\ & 46 \end{aligned}$					
$\begin{aligned} & 48 \\ & 50 \\ & 52 \\ & 54 \\ & 56 \\ & \hline \end{aligned}$	$\left.\begin{array}{ll} 0 & 59 \\ 0 & 57 \\ 0 & 55 \\ 0 & 54 \\ 0 & 53 \end{array} \right\rvert\,$	$\begin{array}{ll}0 & 59 \\ 0 & 57 \\ 0 & 54 \\ 0 & 52 \\ 0 & 51\end{array}$		Or $\begin{aligned} & 0 \\ & 0\end{aligned} 5751$	0 54 0 53 0 51 0 49 0 47 0	0 51 0 50 0 49 0 47 0 45		$\begin{array}{ll} 9 & 0 \\ 8 & 46 \\ 0 & 45 \\ 0 & 45 \\ 0 & 45 \\ \hline & 44 \\ 4 & 4 \end{array}$	0 43 0 43 0 43 0 42 0 41	0 40 0 40 0 40 0 39 0 38 	$\|$0 37 0 37 0 37 0 37 0 36 0		$\left(\begin{array}{ll} 0 & 32 \\ 0 & 32 \\ 0 & 32 \\ 0 & 32 \\ 0 & 31 \end{array}\right.$	$0 \begin{array}{ll} 0 & 30 \\ 0 & 30 \\ 0 & 29 \\ 0 & 29 \\ \hline \end{array}$			$\begin{aligned} & 48 \\ & 50 \\ & 52 \\ & 54 \\ & 56 \\ & \hline \end{aligned}$					
$\begin{aligned} & 58 \\ & 60 \\ & 62 \\ & 64 \\ & 66 \\ & \hline \end{aligned}$	052	$\left\|\begin{array}{ll} 0 & 49 \\ 0 & 47 \end{array}\right\|$	$\left\|\begin{array}{ll} 0 & 47 \\ 0 & 45 \\ 0 & 43 \end{array}\right\|$	$\left\|\begin{array}{ll} 0 & 46 \\ 0 & 44 \\ 0 & 43 \\ 0 & 42 \end{array}\right\|$	$\begin{array}{ll} 0 & 45 \\ 0 & 43 \\ 0 & 41 \\ 0 & 39 \\ 0 & 38 \end{array}$	$\begin{array}{ll} 0 & 44 \\ 0 & 42 \\ 0 & 40 \\ 0 & 38 \\ 0 & 37 \end{array}$	$\begin{array}{l\|ll} 4 & 0 & 43 \\ 2 & 0 & 41 \\ 0 & 0 & 39 \\ 8 & 0 & 38 \\ \hline & 0 & 37 \\ \hline \end{array}$	0 42 0 40 0 38 0 37 0 36	0 40 0 38 0 37 0 36 0 35 3	0 37 0 36 0 35 0 34 0 33	0 35 0 34 0 33 0 32 3 31	0 33 0 32 0 31 0 30 0 29 	0 31 0 30 0 29 0 29 0 28		0 27 0 27 0 27 0 27 0 26	O 26 0 26	58 60 62 64 66					
$\begin{aligned} & \hline 68 \\ & 70 \\ & 72 \\ & 74 \\ & 76 \\ & \hline \end{aligned}$					$0 \bigcirc 37$	$\begin{array}{ll} 0 & 35 \\ 0 & 34 \\ 0 & 33 \end{array}$	$\left.5 \begin{array}{ll} 0 & 35 \\ 4 & 3 \\ 0 & 34 \\ 0 & 33 \\ 0 & 32 \\ 0 & 32 \\ 0 & 31 \end{array} \right\rvert\,$	0 34 0 33 0 32 0 31 0 30	0 34 0 33 0 32 0 31 0 30	0 33 0 32 0 31 0 30 0 29	0 31 0 30 0 29 0 29 0 28	0 29 0 28 0 28 0 28 0 27	0 28 0 27 0 26 0 26 0 25	0 27 0 26 0 25 0 25 0 24	1 26 0 25 0 24 0 24 0 24	0 0 0 25	68 70 72 74 76					
$\begin{aligned} & 78 \\ & 80 \\ & 82 \\ & 84 \\ & 86 \end{aligned}$								$\begin{array}{ll} 10 & 29 \\ 0 & 28 \end{array}$	0 29 0 28 0 27 0 26	0 29 0 28 0 27 0 26 0 26	0 28 0 27 0 26 0 25 0 25	0 27 0 26 0 25 0 25 0 25	0 25 0 25 0 24 0 24 	$\left\lvert\, \begin{array}{ll} 0 & 24 \\ 0 & 24 \end{array}\right.$			$\begin{aligned} & 78 \\ & 80 \\ & 82 \\ & 84 \\ & 86 \end{aligned}$					
	32°	34°	36°	38°	42°	46°	50°	54°	58°	62°	66°	70°	74°	78°	82°	86°						

THIRD CORRECTION, TO APPARENT DISTANCE 28°.

THIRD CORRECTION, TO APPARENT DISTANCE 28°.

$\left.\begin{array}{\|c\|} D \text { 's } \\ \text { App. } \end{array} \right\rvert\,$	apparent																$\begin{aligned} & \text { Ts } \\ & \text { App } \\ & \text { Alt. } \end{aligned}$
Alt.	32°	34°	36°	38°	42°	46°	50°	54°	58°	62°	66°	70°	74°	78°	82°	96°	
$\begin{array}{\|r\|} \hline 0 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ \hline \end{array}$	$\left\lvert\, \begin{array}{ll}11 \\ 6 & 37 \\ 5 & 28 \\ 4 & 40 \\ 3 & 58 \\ 3 & 25\end{array}\right.$	1 $\prime \prime$ 7 4 5 49 4 57 4 13 3 38	1 $\prime \prime$ 6 8 5 1 4 26 3 50	4 38 4 2	' "	"	, 11	111	, 1	, "	"	'	11	, "		"	$\begin{array}{r}\circ \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ \hline\end{array}$
11	$\begin{array}{ll}3 & 0\end{array}$	312	323	333													11
12	240	250	259	37	322												12
13	224	233	241	248	$3{ }^{3} 0$												13
14	211	218	225	231	242												14
15	1159 15	$2 \quad 6$	212	217	227												15
16	150	156	21	26	214	221											16
17	143	148	152	156	$2 \begin{array}{ll}2 & 3\end{array}$	29											17
18	137	141	145	148	154	$\begin{array}{ll}1 & 59\end{array}$											18
19	131	135	138	141	146	150											19
20	126	129	132	134	138	142	145										20
21	122	125	127	129	132	136	$\begin{array}{ll}1 & 38\end{array}$										21
22	$1 \begin{array}{ll}1 & 19\end{array}$	121	123	125	128	130	$1 \begin{array}{ll}1 & 32\end{array}$										22
23	$1 \begin{array}{ll}1 & 17\end{array}$	118	120	122	124	126	127										23
24	115	116	117	118	120	122	123	124									24
25	$1 \begin{array}{ll}13\end{array}$	114	114	115	116	118	$1 \begin{array}{ll}1 & 19\end{array}$	$1 \begin{aligned} & 19\end{aligned}$									25
26	1111	112	112	113	$1 \begin{array}{ll}13\end{array}$	$1 \begin{array}{ll}1 & 14\end{array}$	115	115									26
27	110	111	111	111	$1 \begin{array}{lll}1 & 11\end{array}$	111	$1 \begin{array}{ll}1 & 12\end{array}$	$1 \quad 12$									27
28	110	110	110	110	110	11	$1 \quad 9$	$1 \begin{array}{ll}1 & 9\end{array}$	$1 \quad 9$								28
29	110	110	110	$1 \quad 9$	19	18	$1 \begin{array}{ll}1 & 7\end{array}$	16	$1 \begin{array}{ll}1 & 6\end{array}$								29
30	$1 \begin{array}{ll}1 & 9\end{array}$	$1 \quad 9$	19	18	18	17	1										30
31	1-8	18	1	17	16	15	1		11								31
32	$1 \begin{array}{ll}1 & 8\end{array}$	17	16	16	115	$1 \begin{array}{ll}1 & 4\end{array}$	$1 \begin{array}{ll}1 & 3\end{array}$	$1 \begin{array}{ll}1 & 1\end{array}$	$1 \begin{array}{ll}1 & 0\end{array}$	O 59							32
33		16	15	15	114	$1 \begin{array}{ll}1 & 3\end{array}$	12	10	058	056							33
34		15	14	14	$1 \quad 3$	$1 \quad 2$	111	059	057	054							34
35	$1 \begin{aligned} & 1 \\ & 1\end{aligned}$	$1 \quad 5$	1	$1 \quad 3$	$1 \quad 2$	1	10	$0 \quad 58$	055	053							35
36		15		1	1	10	058	056	054	052	051						
37	$1 \begin{array}{ll}1 & 6\end{array}$	1	11	12	$1 \begin{array}{ll}1 & 0\end{array}$	059	057	10	0 53	051	050						37
38	116	14	$1 \quad 3$	11	1059	058	056	0 54	052	050	049						38
39	$1 \begin{aligned} & 1 \\ & 1\end{aligned}$	14	12	10	059	057	$\bigcirc 55$	053	051	049	047						39
40	$1 \quad 6$	$1 \begin{array}{ll}1 & 4\end{array}$	12	10	058	057	$\bigcirc 55$	052	050	048	O 46	044					40
41		14		10	058	056	O 54	0	049	047	045	043					41
42		14	12	059	057	055	5053	0	0	046	044	042					42
43	$1 \begin{array}{ll}1 & 5\end{array}$	$1 \begin{array}{ll}1 & 3\end{array}$	$1 \quad 1$	$\begin{array}{ll}0 & 59\end{array}$	O 57	055	50	0	048	046	044	042	041				43
44	$1 \begin{array}{ll}1 & 5\end{array}$	$1 \begin{array}{ll}1 & 3\end{array}$	$1 \begin{array}{ll}1 & 1\end{array}$	059	056	054	O 52	$1 \begin{array}{ll}0 & 50 \\ 0\end{array}$	047	045	043	041	040				44
46		12	10	058	055	$\begin{array}{lll}0 & 53\end{array}$	O 51	049	047	044	042	040	039				46
48			059	057	054	052	050	048	046	043	041	039	038	037			48
50		$1 \begin{array}{ll}1 & 1\end{array}$	058	056	053	0	049	047	045	042	040	0	037	036			50
52		10	057	055	5052	$0 \quad 50$	048	046	044	0.42	040	038	036	035	O 34		52
54	12	059	056	054	4051	0 49	047	045	043	041	- 39	037	035	034	033		54
56		1058	055	053	050	048	046	044	042	040	038	036	035	034	033	032	56
58		057	054	052	049	047	045	0	041	1039	037	036	035	034	10	- 31	58
60	058	055	053	051	048	046	044	042	040	038	0	0 36	035	034	032	031	60
2	056	054	052	050	047	045	043	041	039	038	037	036	035	034	032	031	62
64		052	050	049	046	044	042	$0 \quad 40$	038	1037	036	035	034	033	0	030	64
66			048	048	045	1043	041	$0 \quad 39$	0	1$0 \quad 37$) 36	0 35	034	033	031	- 29	66
68				046	043	041	040	0	037	036	035	034	033	032	030	028	68
70					042	10	0 39	$1 \begin{array}{ll}0 & 38\end{array}$	0	${ }_{0}^{0} 36$	035	0 34	10	0 31	0-29		70
72					041	- 039	$0 \quad 38$	037	0 36	O 35	034	0	032	0	028		72
74						039	037	$1 \begin{aligned} & 0 \\ & 0\end{aligned}$	035	510	033	032	030	028			74
76						038	0 36	$0 \quad 35$	034	0	033	031	029	0 27			76
78							0 36	$\begin{array}{ll}0 & 34\end{array}$	0 0	$1 \begin{array}{ll}0 & 33\end{array}$	032	0	028				78
80							035	0 34	$1 \begin{aligned} & 0 \\ & 0\end{aligned}$	10 32	031	$0 \quad 30$	028				80
82								0-33	$l_{0}^{0} 32$	$1 \begin{array}{ll}0 & 31 \\ 0 & \end{array}$	0 3	$\begin{array}{ll}0 & 29\end{array}$.			82
84 86								032	032	${ }_{0}^{0} 31$	030	029					84
86									031	O 30	0 29						86
	32°	34°	36°	38°	42°	46°	50°	54°	58°	62°	66°	70°	74°	78°	82°	86°	

$\begin{gathered} \text { D's } \\ \text { App. } \\ \text { Alt. } \end{gathered}$	APPARENT AL						ltitude of		THE	SUN,	OR A	A STAF					
	6°	7°	8°		$\frac{10^{\circ}}{111}$		$\left.\left\|\frac{12^{\circ}}{111}\right\| \frac{14^{\circ}}{111} \right\rvert\,$		16°	18°	20°	122°	24°	$\left\|26^{\circ}\right\|$	28°	30°	$\left\lvert\, \begin{gathered} \text { App. } \\ \text { Alt. } \end{gathered}\right.$
\bigcirc	, 11	"	111						, "1		, "1			, 11			\bigcirc
6	1181	1211	1251	130	137	1471	159	223	248		339		430	455	520	545	6
7	1231	118	1211	124	1281	1331	142		218	23712	258	3203	342	44	425	446	7
8	1301	122	1181	120	1221	125	129	142	157	214	232	250	38	326	344	$4 \quad 2$	8
9	1381	127	120	118	119	121	123	131	144	158	212	226	241	256	311	326	
10	1471	133	1231	120	118	$1 \quad 19$	120	125	134	145	157	2 1	221	234	246	259	10
11	157	141	128	123	119	117	118	121	127	136	146	156		217	228	239	11
12	$1 \begin{array}{ll}1 & 9\end{array}$	150	134	127	122	$1 \begin{array}{ll}1 & 19\end{array}$	$1 \begin{array}{ll}1 & 17\end{array}$	$1 \begin{array}{ll}1 & 19\end{array}$	123	129	137	$1 \begin{array}{ll}1 & 46\end{array}$	155		213	223	12
13	221	1259	141	132	126	121	118	117	120	124	130	137	145	153	21	29	13
14	234	281	150	138	130	124	120	116	118	121	125	130	136	143	151	158	14
15	247	218	159	145	135	128	122	117	116	118	121	1 '25	130	135	142	149	15
16	259	228		152	141	132	125	119	115	116	118	121	125	129	135	141	16
17	312	238	216	159	147	136	128	121	116	115	116	$\begin{array}{ll}1 & 18\end{array}$	121	125	130	135	17
18	3 325	248	225	$\begin{array}{ll}2 & 7\end{array}$	152	141	132	123	117	114	115	$1 \begin{array}{ll}1 & 17\end{array}$	119	122	125	129	18
19	3 318	258	234	214	158	146	136	125	$1 \begin{array}{ll}1 & 18\end{array}$	115	114	$1 \begin{array}{ll}1 & 15\end{array}$	117	$1 \begin{array}{ll}1 & 19\end{array}$	122	125	19
20	350	33	243	221	$2 \quad 4$	151	140	127	120	116	113	114	115	117	119	121	20
21	43	$\begin{array}{ll}3 & 19\end{array}$	252	228	210	156	145	130	122	117	$1 \begin{array}{ll}1 & 14\end{array}$	$1 \begin{array}{ll}1 & 13\end{array}$	114	115	116	118	21
22	415	$3 \quad 30$	30	235	217	2	150	133	124	118	114	$1 \begin{array}{ll}11\end{array}$	112	$1 \begin{array}{ll}1 & 13\end{array}$	114	116	22
23	428	340	$\begin{array}{ll}3 & 9\end{array}$	242	224	$2 \begin{array}{ll}2 & 7\end{array}$	155	136	126	$\begin{array}{ll}1 & 19\end{array}$	115	$1 \begin{array}{ll}1 & 12\end{array}$	$1 \begin{array}{lll}1 & 11\end{array}$	$1 \begin{array}{ll}1 & 12\end{array}$	$1 \begin{array}{ll}1 & 13\end{array}$	114	23
24	440	351	317	250	230	213	159	139	128	121	116	$1 \quad 12$	$1 \begin{array}{ll}1 & 10\end{array}$	111	111	112	24
25	452	$4 \quad 1$	$3 \quad 36$	257	236	2 18	22 4	142	130	122	117	113	111	110	110	110	25
26	54	412	344	3	243	224	28	146	$\begin{array}{ll}1 & 32\end{array}$	$\begin{array}{ll}1 & 24\end{array}$	$1 \begin{array}{ll}1 & 18\end{array}$	$1 \begin{array}{ll}1 & 13\end{array}$	$\begin{array}{llll}1 & 11 \\ 1 & 11\end{array}$			$1 \begin{array}{ll}1 & 9\end{array}$	26
27	516	422	343	312	250	230	213	150	$1 \begin{array}{ll}1 & 34\end{array}$	$1 \begin{aligned} & 1 \\ & 1\end{aligned} 26$	$\begin{array}{ll}1 & 18 \\ 1 & 20\end{array}$	1 114	$1 \begin{array}{ll}1 & 11\end{array}$	19	1. 8	18	27
28	528	433	352	320	257	235	217	153	137	127	120	115	111	19	$1{ }^{\prime} 7$	18	28
29	541	444	41	1328	3	241	221	157	140	129	121	116	$1 \begin{array}{ll}1 & 12\end{array}$	110	18	17	29
30	553	454	410	335	$\begin{array}{lll}3 & 9\end{array}$	246	226	20	143	131	123	117	113	110	18	16	30
31		5	419	342	315	252	231		146	133	124	418	113	110			31
32	617	5 14	427	349	3 3 21	257	236	28	8149	$1 \begin{array}{ll}1 & 36\end{array}$	126	6119	$1 \begin{array}{ll}1 & 14\end{array}$	111	$1 \begin{aligned} & 1 \\ & 1\end{aligned}$	17	32
33	629	$5 \quad 23$	435	535	3 27	3	241	212	152	$1 \begin{aligned} & 1 \\ & 1\end{aligned}$	$1 \begin{aligned} & 1 \\ & 1\end{aligned} 27$	7120	$1 \begin{array}{ll}1 & 15\end{array}$	$1 \begin{array}{ll}1 & 11\end{array}$	11	17	33
34	640	532	443	43	$3 \quad 32$	$3 \quad 7$	246	215	155	140	129	9121	116	112	19	17	34
35	650	540	450	4	338	312	250	219	158	143	131	122	117	113	1		35
36	659	548	457	415	343	316	254	222		145	132	123	$1 \begin{array}{ll}1 & 18\end{array}$	113	110		36
37	$7 \quad 7$	556	54	4421	349	321	259	225	$2 \begin{array}{ll}2 & 4\end{array}$	147	134	4124	$1 \begin{array}{lll}1 & 19\end{array}$	114	110	17	37
38	715	6	3510	429	3 54	325	53	228	26	$\begin{array}{ll}1 & 49\end{array}$	135	5125	$\begin{array}{ll}1 & 19\end{array}$	114	110	17	38
39	722	${ }_{6} 610$	016	1433	3159	330	- 3	231	12 S	$\begin{array}{lll}1 & 51\end{array}$	136	6126	$1 \begin{aligned} & 1 \\ & 1\end{aligned} 20$	115	$\begin{array}{ll}1 & 10\end{array}$	$1 \begin{array}{ll}1 & 7\end{array}$	39
40		617	521	1438	4	434	4311	234	210	152	138	8127	120	115	111		40
41			526	643		838	3	236	213	154	$1 \begin{array}{ll}139\end{array}$	9128	121	116	112		41
42				447	412	342	218	1239	216	156	1141	1129	122	116	112	18	42
43					416	\| 346	${ }^{3} 21$	242	218	158	142	2130	122	116	112	18	43
44						350	$0 \mid 324$	245	220	20	143	3131	123	117	112	18	44
46							327	250	223	2	145	5132	124	117	112	8	46
								254	226		147	134	125	118	112		48
50									229	26	6149	9136	126	119	113	18	50
52							-				8151	1138	128	119	113	18	52
54											153	31139	129	120	114		54
56												140	130	121	114		56
58													130	121	14		58
60														121	114	18	60
52															114	18	62
64																	64
66																	66
68	\cdots																68
70																	70
72																	72
74																	74
76																	76
78																	78
80																	80
88																	82
84																	84
86																	86
	6°	7°	8°	9°	10°	11°	12°	14°	16°	18°	20°	22°	24°	26°	28°	30°	

THIRD CORRECTION, TO APPARENT DISTANCE 32°.

THIRD CORRECTION, TO APPARENT DISTANCE 36°.

THIRD CORRECTION, TO APPARENT DISTANCE 360.

D's	APPARENT																D's
Alt.	38°	34°	36°	38°	42°	46°	50°	54°	58°	62°	66°	70°	74°	78°	$82^{\text {n }}$	86°	Alt.
\bigcirc	' 11	, "1	' 11	' "'	"	"	' "					"					-
6	540	$6 \quad 1$	622	643	$7 \quad 24$												6
7	443	51	$5 \quad 19$	536	611												7
8	41	416	431	446	516	545											8
9	329	342	355	48	433	$4 \quad 58$											9
10		316	$3 \quad 27$	$3 \quad 38$	359	420											0
11	243	254		313	332	350											11
12	227	236	245	253	310	325	340										12
13	213	221	229	237	251	31	4316										13
14		29	216	223	236	247	257										14
15	153	159	2	211	223	233	242										15
16	145	150	156	$2 \begin{array}{ll}2 & 1\end{array}$	212	221	229	236									16
17	138	142	147	153	2	210	217	224									17
18	132	136	140	145	153	2 1	127	7213									18
19	127	130	134	138	145	152	158	23									19
20	123	126	129	133	138	144	149	1 154	158								20
21	120	122	125	128	133	138	143	317	$1 \begin{array}{ll}1 & 51\end{array}$								21
22	117	118	120	123	128	133	137	141	145								22
23	$1 \begin{array}{ll}1 & 14\end{array}$	115	117	$1 \begin{array}{ll}1 & 19\end{array}$	124	128	132	136	1 139								23
24	111	112	114	116	120	123	127	131	134	137							24
25	$1 \quad 9$	110	111	113	116	119	122	126	129	131							25
26	18	1	19	111	$1 \begin{array}{ll}1 & 13\end{array}$	$1 \begin{array}{ll}1 & 16\end{array}$	1 118	121	124	126							26
27		17			111	$1 \begin{array}{ll}1 & 13\end{array}$	115	5117	120	122							27
28		16	17		$1 \begin{aligned} & 1 \\ & 1\end{aligned}$	$1 \begin{array}{ll}1 & 11\end{array}$	112	114	116	$1 \begin{array}{ll}1 & 18\end{array}$	120						28
29		16	16	17	18	$1 \begin{array}{ll}1 & 9\end{array}$	110	111	113	114	116						29
30	15	$1 \begin{array}{ll}1 & 5\end{array}$	15	16	17	$1 \quad 7$	18	819	110	111	113						30
31		15	1	11	186	$1 \begin{array}{ll}1 & 6\end{array}$	$1 \begin{array}{ll}1 & 6\end{array}$	61	18	$1 \begin{array}{ll}1 & 9\end{array}$	110						31
32		1		11	$1 \begin{array}{ll}1 & 5\end{array}$	$1 \begin{array}{ll}1 & 5\end{array}$	$1 \begin{array}{ll}1 & 5\end{array}$	51			18						32
33		1	1	$1 \begin{array}{ll}1 & 4\end{array}$	1	1	1	14			15						33
34		$1 \quad 3$	$1 \begin{array}{ll}1 & 3\end{array}$	$1 \quad 3$	$1 \begin{aligned} & 1 \\ & 1\end{aligned}$	$1 \begin{array}{ll}1 & 3\end{array}$	1	13	$1 \quad 3$	13	13						34
35	1.4		11	13			$1 \quad 1$					1					35
36	1	1		1	$1 \begin{array}{ll}1 & 1\end{array}$	$1 \begin{array}{ll}1 & 0\end{array}$	10	$1 \begin{array}{ll}1 & 0\end{array}$		$1 \begin{array}{ll}1 & 0\end{array}$							36
37		$1 \begin{array}{ll}1 & 3\end{array}$	1		059	0	059	959	059	059	059	059	058				37
38		$1 \begin{array}{ll}1 & 3\end{array}$	$1 \begin{array}{ll}1 & 1\end{array}$		058	0	058	O 58	058	058	058	058	057				38
39	1	$1 \begin{array}{ll}1 & 3\end{array}$	1		058	10	058	O 58	057	057	1057	056	056				39
40	1	1 3		10	$0 \quad 58$	$0 \quad 57$	057	1057	057	056	056	055	054	053			40
41	16	$\begin{array}{ll}1 & 3\end{array}$	1	059	057	056	056	056	056	055	054	053	052	052			1
42	1	$1 \begin{array}{ll}1 & 3\end{array}$	1	1059	057	1056	055	5055	055	0	0	052	051	051			42
43	1	$1 \begin{array}{ll}1 & 3\end{array}$	1	059	056	055	054	4054	054	053	052	051	050	050	049		43
44	1	11	1	059	O 56	0 54	053	O 53	053	052	051	050	049	049	048		44
46	1	13	1	1059	056	0 0 54	053	0 52	$\bigcirc 51$	050	$\bigcirc 49$	048	048	047	$0 \quad 47$		46
48	1		1	059	056	054	052	0 51	049	$1 \begin{array}{ll}0 & 48\end{array}$	047	046	0 46	045	045	045	48
$\bigcirc 0$	1	$1 \begin{array}{ll}1 & 3\end{array}$	$1 \begin{array}{ll}1 & 1\end{array}$	059	056	0 53	O 51	1050	048	047	046	045	045	044	044	044	50
52	1	$1 \begin{array}{ll}1 & 3\end{array}$	$1 \begin{array}{ll}1 & 1\end{array}$	0 59	055	052	050	049	048	$0 \quad 47$	046	045	044	043	042	042	52
54	1	$1 \begin{array}{ll}1 & 3\end{array}$	111	059	055	0 52	050	048	047	046	045	044	$0 \quad 43$	042	0.41	041	54
56	1	11	10	058	055	$0 \quad 52$	049	0	$0 \quad 47$	046	045	044	$0 \quad 43$	042	0.41	$\bigcirc 40$	56
58	1			058	055	$1 \begin{array}{ll}0 & 52\end{array}$	049	$0 \begin{array}{ll}0 & 47\end{array}$	046	0	0 44	043	042	041	040	039	58
60	1	$1 \begin{array}{ll}1 & 3\end{array}$	10	058	055	0 51	048	846	045	0	043	042	041	040	039	038	60
62	1	$1 \begin{array}{ll}1 & 3\end{array}$	10	058	054	1051	048	046	044	$0 \quad 43$	042	041	040	039	038		62
64	1	$1 \begin{array}{ll}1 & 3\end{array}$		058	054	1051	048	046	044	$0 \quad 43$	042	040	0 0	038	037		64
66	1	1	10	057	054	$0 \quad 50$	047	O 45	043	$0 \quad 42$	$1{ }^{1}$	0 39	1038	037			66
68	18			057	054	10	047	045	043	042	040	039	038	037			68
70	1	$1 \begin{array}{ll}1 & 3\end{array}$	10	057	0	050	047	044	042	041	$0 \quad 40$	039	038				70
72			10	057	0	050	046	043	041	$0 \quad 40$	0 39	038					72
74				057	052	049	046	043	041	$0 \quad 40$	1039	038					74
76				057	052	048	045	043	041	1039	038	037					76
78					051	048	045	042	040	$0 \quad 39$	037						78
80					051	1047	044	042	040	$0 \quad 39$	037						80
82						047	044	041	040	038							82
84						047	044	041	$0 \quad 39$	038							84
86							044	041	0 39								86
	32°	34°	36°	38°	42°	46°	50°	54°	58°	62°	66°	70°	74°	78°	82°	86°	

THIRD CORRECTION, TO APPARENT DISTANCE 40°

THIRD CORRECTION, TO APPARENT DISTANCE 40°.

D's	APPARENT A						altitude o		OF T	SU	, OR	ST					$=\begin{aligned} & \text { Dis } \\ & \text { App } \\ & \text { Alt. } \end{aligned}$
Alt.	32°	34°	36°	38°	42°	46°	50°	54°	58°	62°	66°	70°	74°	78°		$\overline{86}{ }^{\circ}$	
\bigcirc	' 11	1 11	111			' "1											-
6	51919	539	559	$\begin{array}{lll}6 & 19\end{array}$	$\begin{array}{ll}6 & 57\end{array}$	733											6
7	427	444	511	518	551	6. 20											7
8	351	46	420	434	511	526	550										8
9	320	334	346	358	422	444	$5 \quad 5$										9
10	256		$\begin{array}{ll}3 & 19\end{array}$	$3 \quad 30$	$3 \quad 50$		427										10
11	237	247	257		325	342	358										11
12	222	230	239	248	35	320	333	346									12
13	210	217	225	232	247	$\begin{array}{ll}3 & 1\end{array}$	313	325									13
14	20	26	212	218	232	244	255	54									14
15	150	156	2 1	2	219	230	240	248									15
16	142	147	152	158	28	218	227	235	2 42								16
17	136	140	145	150	$1 \begin{array}{ll}1 & 59\end{array}$	28	216	223	3230								17
18	131	134	138	143	151	159	26	6212	2219								18
19	126	129	133	136	144	151	158	823	329								19
20	122	124	127	130	137	144	150	155		$2 \quad 5$							20
21	$1 \begin{array}{ll}1 & 18\end{array}$	120	123	126	132	138	144	1149	$1 \begin{array}{ll}1 & 53\end{array}$	157							21
22	$1 \begin{array}{ll}1 & 18\end{array}$	117	$1 \begin{array}{ll}1 & 19\end{array}$	122	128	133	138	143	3147	150							22
23	$1 \begin{array}{ll}1 & 13\end{array}$	114	116	$1 \begin{array}{ll}1 & 19\end{array}$	$1 \begin{aligned} & 1 \\ & 1\end{aligned}$	$1 \begin{array}{ll}1 & 29\end{array}$	133	$1 \begin{array}{ll}18\end{array}$	8142	145							23
24	$1 \begin{array}{ll}1 & 11\end{array}$	112	114	116	121	125	129	$1 \begin{aligned} & 133\end{aligned}$	$1 \begin{aligned} & 1 \\ & 1\end{aligned}$	140	143						24
25	110	111	112	114	118	121	125	1129 125	132	135	137						25
26	1	110	111	112	$1 \begin{array}{ll}1 & 15\end{array}$	$1 \begin{array}{ll}1 & 18\end{array}$	121	125	128	130	132						26
27		19	$1 \begin{array}{ll}1 & 9\end{array}$	110	$1 \begin{array}{ll}1 & 13\end{array}$	$1 \begin{array}{ll}1 & 15\end{array}$	118	121	$1 \begin{aligned} & 1 \\ & 1\end{aligned}$	126	127						27
28		1	18	11	1111	$1 \begin{array}{ll}1 & 13\end{array}$	116	¢ 118	1820	122	123	124					98
29		17	17	18	$\begin{array}{ll}1 & 9\end{array}$	111	113	$1 \begin{array}{llll}115\end{array}$	5116	118	119	120					29
30			$1 \quad 6$	17			111	112	113	115	116	$1 \quad 17$					30
31		16	$1 \begin{array}{ll}1 & 6\end{array}$	17	17	18	$1 \begin{array}{ll}1 & 9\end{array}$	110	0111	$1 \begin{array}{ll}1 & 13\end{array}$	114	115					31
32			16	16	$1 \begin{array}{ll}1 & 6\end{array}$	$1 \begin{array}{ll}1 & 6\end{array}$	17	$1 \begin{array}{ll}1 & 8\end{array}$	8119	110	111	112	113				32
33			15	15	$1 \begin{array}{ll}1 & 5\end{array}$		16	611	6.118	18	1	110					33
34			$1 \begin{aligned} & 1 \\ & 1\end{aligned}$	14	1	$1 \begin{aligned} & 1 \\ & 1\end{aligned}$	15	51	51	17	1	18	18				34
35			1	14		$1 \quad 4$			4	$1 \quad 5$							35
36		1	1	$1 \begin{array}{ll}1 & 3\end{array}$	$1 \begin{array}{ll}1 & 3\end{array}$	13	13	3113	311	1				1			36
37			$1 \begin{aligned} & 1 \\ & \\ & \\ & \end{aligned}$	$1 \begin{array}{ll}1 & 2\end{array}$	12	11	12	21		12	1						37
38		1	1	$1 \begin{array}{ll}1 & 1\end{array}$		1	11	110	110	10	10	11					38
39		1	$1 \quad 2$	$1 \begin{array}{ll}1 & 1\end{array}$		$1 \begin{array}{ll}1 & 0\end{array}$	10	050	O 59	$\begin{array}{lll}0 & 59\end{array}$	059	059	0	$\begin{array}{ll}0 & 59\end{array}$			39
40		14	1	1		$0 \quad 59$	059	$0 \quad 58$	O 58	0	$0 \quad 57$	0 57	057	057	057		40
41		1	1		$\begin{array}{ll}0 & 59\end{array}$	0	058	057	1057	\bigcirc	056	056	056	0	056		41
42		1	1	10	- 058	0 57	057	1056	6056	0	055	0 55	055	0 55	055		42
43		1	1	10	058	057	056	6055	5055	0 54	054	054	054	1054	0 54	054	43
44		1	1	10	058	056	055	5054	4054	053	053	0	053	053	053	053	44
46		1	12	10	$0 \quad 58$	056	054	053	1053	052	052	051	051	O 51	051	051	46
48					058	055	053	O 52	052	0	0 51	050	049	049	043		48
50		1	12	10	057	054	052	O 51	1051	050	049	048	048	048	048	C 48	50
52	$1 \quad 9$	1	11	10	057	0 54	052	20	050	049	048	047	047	046	046	046	52
54			$1 \quad 2$	10	057	0 54	051	1049	049	048	047	046	046	045	045	045	54
56	110	1	1	10	056	$1 \begin{array}{ll}0 & 53\end{array}$	051	049	048	047	046	045	045	0.44	044	044	56
58	110				056	1053	050	048	047	046	045	045	044	043	043		58
60	$\begin{array}{ll}1 & 10\end{array}$		11	11	056	052	050	048	047	045	044	044	043	042	042		60
62	$1 \begin{array}{llll}1 & 1 & 1\end{array}$	1	11	1	056	052	050	048	046	045	044	043	042	1042			62
64	$\begin{array}{llll}1 & 11\end{array}$		1	1	056	052	O 49	047	045	044	043	042	041	041			64
66	$1 \quad 12$		1	1	056	052	049	047	045	$\bigcirc 43$	$\bigcirc 42$	042	041				66
68	112	$1 \cdot 8$			056	052	\bigcirc	047	045	043	042	042	141				68
70	$1 \begin{array}{ll}1 & 12\end{array}$		14	$1 \begin{array}{ll}1 & 1\end{array}$	055	051	048	046	044	043	042	042					70
72	$1 \begin{array}{ll}1 & 13\end{array}$		14	111	055	051	1048	046	044	0	042	041					72
74	113		14	1	055	051	048	0 46	514	043	042						74
76			1	1	055	051	048	046	044	042	041						76
78				11	055	051	048	046	043	042							78
80					055	051	048	046	$0 \quad 43$	041							80
82					055	051	048	046	043								82
84					055	051	048	046	043								84
86						051	0 48	045									86
	32°	34°	36°	38°	42°	46°	50°	54°	58°	62°	66°	70°	74°	78°	82°	86°	

THIRD CORRECTION, TO APPARENT DISTANOE 440.

D's	APPARENT A						Altitude 0		OF THE	E SU	, OR	ST					D'8
Alt.	32°	34°	36°	38°	42°	46°	50°	54°	58°	62°	66°	70°	74°	78°	82°	86°	Alt.
-		, "															
6		522	541	559	636	710	740										
7	415	431	447	52	533	6	629										7
8	340	353	46	420	446	511	535	558									8
9	312	324	335	347	$4 \quad 10$	431	451	510									9
10	250	30	310	$3 \quad 20$	$3 \quad 39$	358	417	434									0
11	233	242	252		$\begin{array}{lll}3 & 17\end{array}$	333	348	4	3								11
12	219	227	236	244	259	$3 \begin{array}{ll}3 & 13\end{array}$	3326	$3 \begin{array}{ll}3 & 39\end{array}$									12
13	26	213	221	$2 \quad 29$	243	256	3 39	320	- 3129								13
14	155	$2 \quad 2$	$2 \begin{array}{ll}2 & 9\end{array}$	216	$2 \quad 29$	241	1253	32	$2 \begin{array}{ll}310\end{array}$								14
15	147	153	159		217	228	238	247	254								15
16	140	145	150	156		217	226	234	4241	247							16
17	134	138	143	148	$1 \begin{array}{ll}1 & 58\end{array}$	2 27	7215	222	229	235							17
18	129	133	137	142	151	$1 \begin{array}{ll}1 & 59\end{array}$	26	212	218	224							18
19	125	128	132	136	144	152	2159	24	429	214							19
20	122	125	128	131	138	146	152	157	22		6211						20
21	119	122	125	127	$1 \begin{array}{ll}1 & 33\end{array}$	140	146	151	155	159	92						21
22	117	119	122	124	$1 \begin{array}{ll}1 & 29\end{array}$	135	140	145	149	153	3155						22
23	115	117	$1 \begin{array}{ll}1 & 19\end{array}$	121	125	130	135	140	144	147	7149						23
24	114	115	116	118	122	126	130	135	5139	142	21144	146					24
25	112	113	114	116	119	122	126	130	134	137	7139	140					25
26	110	111	112	114	116	$1 \begin{array}{ll}1 & 19\end{array}$	122	126	11	132	2134	138					26
27		110	$1 \begin{array}{lll}1 & 11\end{array}$	$1 \begin{array}{lll}1 & 12\end{array}$	$1 \begin{array}{ll}1 & 14\end{array}$	$1 \begin{aligned} & 1 \\ & 1\end{aligned} 16$	119	$1 \begin{aligned} & 1 \\ & 1\end{aligned}$	126	128	8130	131					27
28	18	1	110	111	112	$1 \begin{array}{ll}1 & 14\end{array}$	4117	120	122	124	4126	127	128				28
29		18	18	$1 \begin{array}{ll}1 & 9\end{array}$	110	$1 \begin{aligned} & 1 \\ & 1\end{aligned} 12$	115	117	$1 \begin{array}{ll}1 & 19\end{array}$	121	1122	123	125				29
30				1		110	112	114	116	118	119	120	122				30
31						1	110	112	114	115	5117	118	$1 \begin{array}{ll}1 & 19\end{array}$				31
32					17	1	18	110	$1 \begin{array}{ll}1 & 12\end{array}$	113	3114	115	116	117			32
33				. $1 \quad 5$	16	1	17	18	819	110	01111	112	113	114			33
34			1	$1 \begin{array}{ll}1 & 4\end{array}$	15	1	16	16	617	18	819	110	111	112			34
35			1	1	14	1	15	15	51		6			110			35
36				$1 \begin{array}{ll}1 & 3\end{array}$,	4		5	6			$\left\lvert\, \begin{array}{ll} 1 & 9 \end{array}\right.$		36
37				12	1	1	1	13	31	14	4	15	1				37
38			1	111	1	1	12	12	12	13	3113		$1 \begin{array}{ll}1 & 4\end{array}$				38
39			12	$1 \begin{array}{ll}1 & 1\end{array}$	$1 \begin{array}{ll}1 & 0\end{array}$	110	011	$1 \quad 1$	1151		212		$1 \begin{array}{ll}1 & 3\end{array}$				39
40			1	1	10	10		11	1		1						40
41				$1 \begin{array}{ll}1 & 1\end{array}$	$1 \begin{array}{ll}1 & 0\end{array}$	$1 \begin{array}{ll}1 & 0\end{array}$	10	10	$1 \begin{array}{ll}1 & 0\end{array}$	10			10				41
42			1	-	1059	059	059	059	059	059	9059	059	059	059	059	059	42
43			1	1	1059	059	058	O 58	$1 \begin{array}{ll}0 & 58\end{array}$	058	8058	058	058	058	058	058	43
44		15	1	1	1059	058	057	057	057	057	7057	057	057	057	057		44
46	1 7	15	1	1	059	057	056	056	056	056	6055	055	055	055	055		46
48		1	1	12	059	0	055	0 55	055	054	4054	054	O 53	053	053		48
50			1	$1 \begin{aligned} & 1 \\ & 1\end{aligned}$	059	057	055	054	054	053	3053	053	052	052	052	052	50
52			1	12	$1 \begin{array}{ll}0 & 59\end{array}$	056	1054	4	$\begin{array}{lll}0 & 53\end{array}$	052	2052	051	051	051	050		52
54	$1 \begin{array}{ll}1 & 10\end{array}$		14	12	059	056	054	1053	052	051	1051	050	050	049			54
56	110		1	1	$0 \quad 59$	056	054	052	051	050	0050	049	049	048	047		56
58	1111		15	$1 \begin{aligned} & 1 \\ & 1\end{aligned}$	0	056	6053	0 51	050	049	9049	048	048	047			58
60	1111			$1 \begin{array}{ll}1 & 3\end{array}$	059	056	O 53	0 51	050	049	048	047	047	046			60
62	$1 \begin{array}{ll}1 & 12\end{array}$		6	3	059	056	053	0 51	1049	048	8047	047	046				62
64	$1 \begin{array}{ll}1 & 13\end{array}$		16	$1 \begin{array}{ll}1 & 3\end{array}$	059	1056	$\mathrm{C}_{0} 53$	0	1049	048	8047	046	045				64
66	114	110		1	059	056	O 53	$0 \quad 51$	$1 \begin{array}{ll}0 & 49\end{array}$	048	\bigcirc	046					66
68	115	111	17	$1 \begin{array}{ll}1 & 4\end{array}$	059	056	053	051	1049	047	046	045					68
70	116	111		$1 \begin{array}{ll}1 & 4\end{array}$	059	055	5053	0 51	1049	047	7046						70
72	116	112			059	1055	052	0	048	046	645						72
74	$1 \begin{array}{ll}1 & 16\end{array}$	112	18	14	$1 \begin{array}{ll}0 & 59\end{array}$	055	0	0	048	046							74
76	117	112		15	059	055	0 52	0 49	047	046							76
78	117	112	1	15	$0 \quad 59$	055	052	$0 \quad 49$	047								
80		112			059	055	052	0 49	047								80
82					0 59	055	0 52	$\begin{array}{ll}0 & 49\end{array}$									82
84				15	0 59	055	0	049									84
86					$0 \quad 59$	055	052										86
	32°	34°	36°	33°	42°	46°	50°	54°	58°	62°	66°	70°	74°	78°	82°	$86^{\text {c }}$	

THIRD CORRECTION, TO APPARENT DISTANOE 48°.

$D{ }^{\text {d }}$	APPARENT A						Altitude 0		OF THIE		STAR.					86°	
Alt.	320	34°	36°	38°	42°	46°	50°	54°	58°	62°	66°	70°	74°	78°	82°		
-																	
6	451	510	528	546	618	649	719	747									
7		421	436	451	519	545	611	635									7
8	334	318		414	438	51	522	542	2 61								8
9		319	$3 \quad 30$	341		424	443	50	0517								9
10	247	257		317	336	354	411	426	440								0
11	231	240	249	257	314	3130	344	3 57	410								11
12	8172	225	233	240	255	$\begin{array}{ll}3 & 9\end{array}$	322	34	4345	355							12
13	26	213	220	227	240	252	34	315	5325	332							13
14	157	24	210	216	227	238	249	259	938	315							14
15	149	155		$2 \quad 6$	216	226	235	244	253								15
16	1421	147	152	157	27	215	223	232	240	246	252						16
17	136	141	145	150	159	26	214	222	229	234	240						17
18	131	135	139	143	151	159	26	213	219	224	229						18
19	1271	131	134	138	145	152	158	$2 \begin{array}{ll}2 & 4\end{array}$	4210	215	219						19
20	1241	127	130	133	139	145	151	157	2		211	215					20
21	1221	124	127	129	134	140	145	151	$1 \begin{array}{ll}1 & 56\end{array}$								21
22	120	122	124	126	130	135	140	145	5150	154	4157	159					22
23	118	119	121	123	127	131	136	140	145	149	151	153					23
24	116	117	119	121	125	128	132	136	140	144	146	148	150				24
25	114	115	116	118	122	125	129	132	136	139	141	143	145				25
26	112	113	114	116	$\begin{array}{ll}1 & 19\end{array}$	123	126	129	132	134	136	138	140				26
27	111	112	113	114	$1 \begin{array}{lll}1 & 17\end{array}$	120	123	126	6128	130	132	134	136				27
28	110	111	112	113	$1 \begin{array}{ll}1 & 15\end{array}$	$1 \begin{array}{ll}1 & 18\end{array}$	120	123	125	127	128	130	132	134			28
29		110	111	112	$1 \begin{array}{ll}1 & 14\end{array}$	116	$1 \begin{array}{ll}1 & 18\end{array}$	120	$1 \begin{aligned} & 122\end{aligned}$	124	125	127	128	130			29
30		110	110	111	112	114	116	118	119	121	122	124	125	126			30
31				110	$1 \begin{array}{ll}1 & 11\end{array}$	$1 \begin{array}{ll}1 & 12\end{array}$	114	116	6117	119	120	121	122	123			31
32				19	110	111	113	114	4115	$1 \begin{array}{lll}17\end{array}$	118	$1 \begin{array}{ll}1 & 19\end{array}$	119	120	121		32
33			1	18	119	110	111	$1 \begin{array}{ll}1 & 12\end{array}$	(1)13	115	116	117	117	117	118		33
34			16	17	1	$1 \begin{array}{ll}1 & 9\end{array}$	110	1111	1112	113	114	114	115	115	116		34
35			15	16	1	18	19		9110	111	112	112	113				35
36					1	,					110	110	111	111	112	3	36
37				$1 \begin{array}{ll}1 & 4\end{array}$	1	,	16	16	6.17		1				110		37
38		17	1	$1 \quad 3$	1	1	15	$1 \begin{array}{ll}1 & 5\end{array}$	5116	616	617	17		8	18		38
39			15	$1 \begin{aligned} & 1 \\ & 1\end{aligned}$	1 13	1	14	$1 \begin{array}{ll}1 & 4\end{array}$	4115	515	16		1	17	17		39
40			5	13	$1 \quad 2$	$1 \begin{aligned} & 1 \\ & 1\end{aligned}$	13	13	314	41	1			6			40
41	$1 \begin{array}{ll}1 & 10\end{array}$		15	1	311		12	12	2	13	311		14				1
42	110		15	1	31				212	12	213				,		42
43	111		16	14	1		10		111	111	1	$1 \quad 2$					43
44	$1 \begin{array}{lll}1 & 12\end{array}$	19	16	1	1	$1 \begin{array}{ll}1 & 0\end{array}$	10	$1 \begin{array}{ll}1 & 0\end{array}$	11	0) 10	011	$1 \begin{array}{ll}1 & 1\end{array}$	$1 \begin{array}{ll}1 & 1\end{array}$				44
46	112		16	14	1	1059	059	$0 \quad 59$	059	059	059	059	059	059	- 59	0 59	46
48	$\begin{array}{ll}1 & 13\end{array}$	110	1	11	1	059	058	0	8058	058	057	057	057	057	057	057	48
50	$1 \begin{array}{ll}1 & 13\end{array}$	110	1	1	1	059	057	057	7057	057	7056	056	056	056	056		50
52	114	111	18	15	51	1059	0 57	1056	6056	656	6055	055	054	0 54	054		52
54	115	111	18	16	612	059	057	O 56	6055	5055	5054	054	053	$\begin{array}{ll}0 & 53\end{array}$			54
56	115	111	18	16	1	059	057	055	5054	054	4053	053	052	0 52			56
58	116	112	19	16	1	059	057	055	5054	053	052	052	051				
60	116	112	19	1	12	059	057	055	5053	052	2052	051	050				60
62	$1 \begin{array}{ll}1 & 17\end{array}$	$\begin{array}{ll}1 & 13\end{array}$	110	17	$1 \quad 2$	1059	1057	O 55	5053	O 52	2051	$1 \begin{array}{ll}0 & 51\end{array}$					62
64	$1 \begin{array}{ll}1 & 17\end{array}$	113	110	17	1	059	057	0 55	5053	052	2051	050					64
66	118 1	114	110	1	1	059	057	054	4052	051	$1)$						66
68	$1 \begin{array}{ll}1 & 18\end{array}$	114	110	17	1	059	056	054	4052	051	1050						68
70	$1 \begin{array}{ll}1 & 19\end{array}$	115	1111	18	81	- 059	056	054	4052	051							70
72	$\begin{array}{ll}1 & 19\end{array}$	115	111		113	- 59	056	054	4052	050							72
74	120	115	111	18	113	059	056	O 53	3051								74
76	120	116	112	18	1	\bigcirc	056	053	\bigcirc								76
78	121	116	112		14	059	056	053									78
80	121	116	112	$1 \begin{array}{ll}1 & 9\end{array}$	\| 1	1059	056	053									80
82	121	116	112	$1 \quad 9$	914	059	056										82
84		116	112		1	059	056										84
86			112			059											86
	32°	34°	36°	38°	42°	46°	50°	54°	58°	62°	66°	70°	74°	78°	82°	86°	

THIRD CORRECTION, TO APPARENT DISTANOE 62°.

D's	APPARENT A						altitude o		F THE	SON	OR	TAR.					$D T^{s}$
Alt.	6°	7°	8°	9°	10°	11°	12°	4°	16°	18°	20°	22°	24°	26°	23°	30	Alt.
\bigcirc	' 11	, 11															
6	118	19	121	124	1301	137	44		217	234	251	310	328	347		424	6
7	121	118	119	121	1241	129	1341	146	20	214	228	242	257	312	27	343	7
8	125	121	118	119	1211	124	127	136	147	158	211	223	236	250		316	8
	130	124	120	118	1191	121	123	129	137	147	157	28	219	231	242	253	9
10	137	128	123	120	118	119	121	125	130	138	146	156		216	226	236	10
11	145	134	128	123	120	118	119	122	126	132	139	147	156		213	222	11.
12	154	141	133	127	122	120	118	120	123	127	133	140	147	154		210	2
13	$2 \quad 2$	148	138	131	125	122	119	119	121	124	129	135	141	147	154		13
14	211	155	144	135	128	124	121	118	119	122	126	130	135	141	147	152	14
15	219	$2 \quad 2$	150	139	132	127	123	119	118	120	123	126	130	135	140	144	15
16	228	2	155	144	135	130	125	120	117	118	120	123	126	130	134	138	6
17	237	216		148	139	133	127	121	$1 \begin{array}{ll}1 & 18\end{array}$	117	1	20	123	126	130	133	17
18	246	223		153	143	136	130	123	$1 \begin{array}{ll}1 & 19\end{array}$	116	117	118	120	123	126	129	18
19	256	230	212	159	148	140	133	125	120	117	116	117	118	120	123	126	19
20	3	237	218	$2 \begin{array}{ll}2 & 4\end{array}$	152	144	137	127	122	118	$1 \begin{array}{ll}1 & 15\end{array}$	116	$1 \quad 17$	118	120	123	0
21	$\begin{array}{ll}3 & 14\end{array}$	244	224		157	148	140	129	123	$1 \begin{array}{ll}19\end{array}$	116	116	116	17		120	11
22	3 23	252	231	215	$2 \begin{array}{ll}2 & 1\end{array}$	152	144.	132	125	120	116	115	115	$1 \begin{array}{ll}1 & 16\end{array}$	117	118	22
23	332	259	238	220	26	156	147	134	126	121	$1 \begin{array}{ll}1 & 17\end{array}$	115	114	115	116	117	3
24	$3 \begin{array}{ll}3 & 41\end{array}$	33	244	226	211	20	151	$1 \begin{aligned} & 137\end{aligned}$	128	122	$1 \begin{array}{ll}1 & 18\end{array}$	115	114	$1 \begin{array}{ll}1 & 14\end{array}$	115	116	24
25	350	314	251	231	216		154	140	130	123	119	116	114	113	114	115	5
26	359	322	258	237	221		158	142	132	125	120	116	114				26
27		336		242	226	212	$2 \quad 2$	145	133	126	121	117	115	$1 \begin{array}{ll}1 & 14\end{array}$	113	113	27
28	417	338	312	248	231	216	26	148	135	128	122	$1 \begin{array}{ll}1 & 18\end{array}$	115	$1 \begin{array}{ll}14\end{array}$	113	113	28
29	426	345	31919	253	236	221	210	151	$1 \begin{array}{ll}1 & 37\end{array}$	129	123	$1 \begin{array}{ll}1 & 19\end{array}$	116	$1 \begin{array}{ll}1 \\ 1\end{array}$	113	112	29
30	434	$3 \quad 53$	$3 \quad 35$	259	241	$\underline{2} 25$	213	154	139	131	124	119	116	$1 \quad 14$	113	112	30
31	443	4	332		245	229	217	157	141	132	125	120	7				31
32	452	4	338	310	250	234	220	159	$1 \begin{array}{ll}1 & 43\end{array}$	134	127	121	$1 \begin{array}{ll}1 & 17\end{array}$	115	$1 \begin{array}{ll}1 & 13\end{array}$	$1 \quad 12$	32
33		415	344	316	255	238	224	2	145	136	$1 \begin{array}{ll}1 & 29\end{array}$	123	118	115	113	112	33
34		422	350	321	259	242	227		148	138	130	124	119	116	114	112	34
35	517	$4 \quad 29$	356	3 27	3	246	231		151	140	132	125	120	117	114	112	35
36	526	436		332	3	250	234	210		142	133	126	21	17		112	36
37	534	442		3 37	3 14	254	238	213	156	144	$1 \begin{array}{ll}1 & 34\end{array}$	127	122	118	115	113	37
38	542	449	413	342	318	258	242	216	158	146	136	128	122	118	$1 \begin{array}{ll}1 & 15\end{array}$	113	38
39	550	456	419	347	3 23	3	246	219	21	148	$1 \begin{array}{ll}1 & 38\end{array}$	130	123	118	115	113	9
40	558	$5 \quad 3$	424	352	327	3	249	222	2	150	139	131	125	$1 \quad 19$	116	$\underline{1} 14$	40
41		5	430	357	3 32	310	253	225		152	$1 \begin{array}{ll}1 & 41\end{array}$	$1 \begin{array}{ll}1 & 32\end{array}$	26				
42	614	515	- 35	4	3 36	3 14	256	228	28	154	142	134	127	121	117	115	42
43	621	521	441	$4 \quad 7$	340	318	30	231	211	156	144	135	128	122	118	115	43
44	628	527	446	412	344	322		234	213	158	145	$1 \begin{array}{ll}1 & 37\end{array}$	$1 \begin{array}{ll}1 & 29\end{array}$	$1 \begin{aligned} & 1 \\ & 1\end{aligned}$	119	116	44
46	642	5 39	456	421	352	$3 \quad 39$	$3 \quad 10$	$\underline{2} 39$	$\underline{218}$	$2 \quad 1$	148	1139	131	124	120	117	46
48	655	551		430	359	336	316	$2 \begin{array}{ll}2 & 44 \\ 2\end{array}$	222		$1 \begin{array}{ll}1 & 51\end{array}$	141	133	126	$\begin{array}{ll}1 & 21\end{array}$	$\begin{array}{ll}1 & 18\end{array}$	48
50		$6 \quad 2$	516	438	47	343	323	249	226	28	8154	143	135	1 127	122	$1 \begin{array}{ll}1 & 19\end{array}$	50
52	721	613	525	446	415	350	329	254	230	211	157	145	136	6 129	124	120	52
54	733	$6 \quad 23$	534	453	. 422	356	335	259	234	214		148	138	131	125	121	54
56	744	633	543	459	429		340		428	217		150	140		126	122	56
58	753	642	550		435		345		242	220		153	142	133	127		58
60	8	649	556	512	440	412	350	3 12	246	223	27	155	144	135	129	124	60
62				514	445	416	354	3 115	249	226	22	157	146	136	130	125	62
64					450	42	358	3 18	251	228	$2 \begin{array}{lll}2 & 11\end{array}$	159	148	$1 \begin{aligned} & 1 \\ & 1\end{aligned}$	131	126	64
66								320	253	$\underline{2} 30$	213		149	139	132	126	66
68								322	254	232	215		150	140	133	127	68
70									255	233	216		151	141	134	128	70
72										234	217	2	152	142	134	128	72
74											218		153	143	135	129	74
76													154	144	136	129	76
78													155	$1 \begin{array}{ll}1 & 44\end{array}$	136	30	78
80														145	137	130	80
82															138	130	82
84																131	84
86																	86
	6°	7°	8°	9°	10°	11°	12°	14°	16°	18°	20°	22	24°	26°	28°	30°	

THIRD CORRECTION, TO APPARENT DISTANCE 52°.

THIRD CORRECTION, TO APPARENT DISTANCE 56°.

D's	APPARENT A						Altitude o			E SUN							
Alt.	6°	7°	8°	9°	10°	11°	12°	14°	16	18	20°	22°	24°	26°	28°	30°	Alt.
-		, "1															
6	120	122	125	129	1351	141	148		218	235	252	310	327			420	6
7	123	120	122	124	1271	132	137	148		215	229	243	258	312	327	348	7
8	128	123	120	121	123	126	129	138	148		212	223	235	248		314	8
9	134	127	122	120	121	23	125	131	139	148	158	28	218	229	240	250	9
10	140	131	125	122	120	121	122	126	$1 \begin{array}{ll}1 & 32\end{array}$	139	148	156	2	215	224	233	10
11	147	130	129	125	122	120	121	123	127	133	40	147	155		212	220	11
12	154	142	133	128	124	121	120	121	124	128	134	140	147	55			12
13	$2 \quad 2$	148	138	131	126	123	121	120	122	125	130	135	141	147	154		13
14	210	154	143	135	129	125	122	119	120	123	127	131	136	141	147	152	14
15	218	2	148	139	133	128	124	121	119	121	124	127	132	136	141	146	5
16	227	2	53	143	136	131	126	122	119	119	121	24	28	32	36	40	16
17	235	215	159	147	140	134	129	123	120	$1 \begin{array}{lll}1 & 18\end{array}$	119	122	125	128	132	135	17
18	244	222	2	152	143	137	131	125	120	$1 \begin{array}{ll}1 & 17\end{array}$	118	20	22	125	128	131	18
19	253	229	210	157	147	140	134	126	121	$\begin{array}{ll}1 & 18\end{array}$	117	119	20	23	25	128	19
20	3	236	216	2	151	144	137	128	122	119	11 17	118	119	121	123	125	0
21	311	244	222		55	147	140	130	124	120	118	17	118		21	23	21
22	320	251	229	213	20	151	143	132	125	121	$1 \begin{array}{ll}1 & 18\end{array}$	116	117	118	119	121	22
23	329	258	235	218	2	155	146	35	127	122	$\begin{array}{ll}1 & 19\end{array}$	117	116	117	118	119	23
24	338	3	242	223	29	159	150	137	129	124	120	117	116	116	17	118	24
25	347	$3 \quad 13$	249	229	214	2	153	139	131	125	121	118	116	116	116	117	25
26	55	320	255	2	219		157	142	133	127	122	19	117	116			26
27		327		239	224	212		145	135	128	123	119	1 117	116	116	116	27
28	412	334	3	245	229	216		148	137	130	$1 \begin{array}{ll}1 & 24\end{array}$	120	-1 18	116	115	116	28
29	421	341	314	250	233	220		151	139	131	125	121	118	116	115	115	29
30	429	348	320	255	238	224	212	154	141	133	126	121	118	116	115	115	30
31	438	355	326		243	228	216	157	144	134	128	122		116		115	31
32	446	4	332	3	248	232	219		01146	136	129	123	3119	$1 \begin{array}{ll}1 & 17\end{array}$	116	$1 \begin{array}{ll}1 & 15\end{array}$	32
33	454	$4 \quad 9$	339	311	253	236	223		3149	138	131	125	120	0117	116	115	33
34		416	345	316	257	240	226		6151	140	132	126	(121	118	116	115	4
35	510	423	351	322	3	244	230		9 153	142	134	127	122	118	116	115	35
36	5	430	357	$\begin{array}{ll}3 & 27\end{array}$	3	248	233	212	$1 \begin{array}{ll}1 & 55\end{array}$		135	128	123	3119	1		36
37	526	437		322	310	252	237	215	5158	146	137	129	124	4120	$1 \begin{array}{ll}1 & 18\end{array}$	116	37
38	533	443		3 37	3 14	256	241	217	720) 148	8138	130	125	51121	$1 \begin{array}{ll}1 & 18\end{array}$	116	38
39	541	450	414	342	3 19	3	245	220	02	150	-1 39	131	125	5121	$1 \begin{array}{ll}1 & 18\end{array}$	116	39
40	548	456	419	347	323		248	$\underline{2} 23$	2	151	140	132	126	6122	119	116	40
41	555	$5 \quad 2$	425	352	328		251	225	526	6153	142	133	127	1123	120	$1 \begin{array}{ll}17\end{array}$	41
42		5	430	357	332	${ }_{3} 111$	254	228	829	155	143	134	4128	8124	120	$1 \begin{array}{ll}1 & 17\end{array}$	42
43		514	435	42	336	315	258	231	1212	157	144	135	5129	125	121	117	43
44	616	520	440	4	340	3 19		234	4214	159	146	137	131	1126	$1 \begin{aligned} & 1 \\ & 1\end{aligned} 2$	118	44
46	$6 \quad 29$	532	450	416	348	326		240	0		149	140	133	128	123	119	46
48	642	543	459	424	356	333	314	245	522		152	143	3136	1130	125	120	48
50	654	554		432	4	340	[319	250	0226	629	155	145) 138	8132	126	121	50
52		64	517	439	410	346	324	255	5230	- 212	158	148	140	0133	127		52
54	718	614	525	446	416	352	329	259	9234	4.215	20	150	142	2135	129	24	54
56	729	624	533	453	422	357	334		3237	219		152	143	136	130	125	56
58	740	633	541		428		339		7241	222		154		51137	131	126	58
60	750	641	548	5	434	4	343	311	1244	425	$2{ }^{2} 8$	156	147	(1)39	132	127	60
62	758	648	555	513	440	412	348	3 15	5247	228	211	158	148	8140	133	128	62
64	8	65		519	445	417	352	318	1850	230	213	120	-1 50	01141	134		64
66				524	450	421	356	$3 \quad 30$	253	232	215		151	$1{ }^{1} 42$	135	129	66
68					4	425		322	255	234	217	24	4152	143	136	130	68
70									457	236	218		153	144	137	131	70
72								326	259	237	219		154	145	$1 \begin{array}{ll}1 & 38\end{array}$	132	72
74										238	220		155	5146	$1 \begin{array}{ll}1 & 39\end{array}$	132	4
76										239	221		8156	147	1139 1	133	76
78											222		8157	148	140	133	78
80													158	148	140	134	80
82													158	148	140	134	8
84														149	141	134	84
86															141	134	86
	6^{0}	7°	8°	9°	10^{\prime}	11°	12°	14°	16°	18°	20	22	24°	26	28	30°	

THIRD CORRECTION, TO APPARENT DISTANOE 56°.

TABLE XXXIII.

THIRD CORRECTION, TO APPARENT DISTANCE 60°.

's	APPARENT A						altitude o										$D^{\prime} \mathrm{s}$
Alt.	6°			9°	10°		12°	14	16	18	20	22°	24	${ }^{26}{ }^{\circ}$		30°	t.
6	122		125	128	133	140	147		216	233	250		325		358		6
7	24	122	26	125	128	133	137	147	159	213	227	241	255	5	323	337	7
8	128	124	22	123	125	128	131	139	148	159	211	223	235	248	8	312	8
9	133	28	24	122	124	125	127	133	140	149	158		218	229	239	250	
0	140	133	27	124	123	124	125	29	134	141	149	157	26	6215	225	234	10
		38	31	1	124	123	124			136		49	157	25	$52^{2} 13$	221	
12	1	143	136		126	1	123	1	128	132	137	143	49	156	2	211	12
13		149	140		129	126	124	124	126	129	133	138	43	1149	155	-	13
14	210	155	145	138	132	128	125	123	125	127	130	134	138	143	149	154	14
15	218		150	142	13	131	127	124	123	125	127	130	134	4138	143	148	15
16	226		55	146	139	134	129	125	122	23	25	127	130	0134	$4 \begin{array}{ll}1 & 38\end{array}$	143	16
17	2	213	2	150	143	137	131	126	22	122	123	125	128	8131	$1 \begin{array}{llll}1 & 34\end{array}$	138	17
18		220	25	154	1	140	134	1	123	1	122	123	25	5128	131	1	18
19	250	227	211	159	150	143	136	129	124	22	121	122	3	126	128	131	19
20	259	234	217	2	154	146	139	131	125	122	120	121	122	124	126	128	20
21		241	223		58	1	42		126	123	21	120	,	1122			21
22	315	248	229	214		153	145	135	128	124	121	120	120	0121	122	123	22
23	3	255	235	2 19		157	148		1	125	122	120	120	0120	121	122	23
24	332		241	224	210		152			6	1		20	0120	120	1	4
25	341		247	$\underline{2} 29$	21.5		155	142	133	127	24	122	120	0119	1119 1	1	25
26	349	316	253	234	2		59		5	129		5122		0119			6
27	358	323	259	239	225	212		148	138	131	126	1123	121	$1{ }_{1}^{1} 19$	$1 \begin{array}{ll}1 & 19\end{array}$	119	27
28		330	35	244	229	216	27	151	140	132	127	123	121	1119	1 118	118	28
29	4	337	311	249	233	220	$2 \begin{array}{ll}2 & 11\end{array}$	153	142	134	128	124	121	1119	$1 \begin{aligned} & 1 \\ & 1\end{aligned}$	1	9
30	423	344	317	254	238	24	214	156	144	135	129	24	121	11 19	1 18	118	30
31	4	351	323	59	242	228	2		146	$1 \begin{array}{ll}1 & 37\end{array}$	30	11	2	2120			31
32	439	358	329		247	232	221		148	138	131	$1 \begin{array}{ll}1 & 26\end{array}$	122	20	0119	118	2
33	447		334	3	252	236	225		151	140	133	127	123	3120	0119	118	33
34	455	412	340	3 14	256	240	228		153	141	134	4128	124	4121	1119	118	4
35		418	346	$3 \quad 19$		$\underline{244}$	232	211	155	143	135	129	$1 \quad 15$	5122	120	118	
36		424	352	324		248	2	214	157	45)	31	126	6122	2120		6
37	518	431	358	329		252	2		159	147			127	7123	31121	$1 \begin{array}{lll}1 & 19\end{array}$	37
38	5 25	438		434	${ }_{3} 1212$	255	242	220	2	149		1133	128	8124	4121	119	38
39	532	445	410) 39	3 17	259	246	222	2	151	$1 \begin{aligned} & 1 \\ & 1\end{aligned} 2$	2135	129	9125	5122	120	39
40	539	451	415	344	$3 \quad 31$		249	225	2	153	143	$1 \begin{aligned} & 136 \\ & 1\end{aligned}$	130	0126	6122	12	40
41	5		421	349	326		725	$2 \begin{array}{ll}2 & 27\end{array}$		155	5 145	51137	131	1127	7123	120	
42	5		426	353	3	3 111	1255	5230	210	156	146	6138	132	2128	\| 124	121	42
43			431	358	335	3 115	258	232	213	158	148	140	13	4129	125	1	43
44		515	436	43	$\begin{array}{ll}3 & 39\end{array}$	$\begin{array}{ll}3 & 19\end{array}$		235	515		${ }_{0} 149$	9141	135	51130	0126	12	44
46	$6 \quad 21$	$5 \quad 26$	446	412	$3 \quad 37$	$3 \quad 26$		240	$\underline{2} 19$		152	143	137	1 1.31			6
48	634	537	455	420	354	$\begin{array}{ll}3 & 32\end{array}$	313	245	223		8156	146	139	$9{ }^{1} 133$	1 28	124	48
50	647	548	54	428	4	3137	319	250	- 227	211	$1 \begin{aligned} & 159\end{aligned}$	9148	141	11135	51129	125	50
52	$\begin{array}{lll}6 & 59\end{array}$	558	513	436		3	325	255	5231	$2 \begin{array}{ll}2 & 14\end{array}$	$4 \quad 2 \quad 2$	2151	143	31136	6131	127	52
54	711		522	444	415	349	330	259	235	218		153	145	5138	81133	1	54
56	$7 \quad 22$	617	530	451	421	355	335		238	221		1	147	7140	1134	1	56
58	731	625	537	458	427		340		241	$1 \begin{array}{ll}2 & 24\end{array}$		58	149	9141		30	58
60	740	632	545		432		6345	312	244	227			150	0142	2136	31	60
62	748	639	552	510	438	411	350	316	248	2 29	${ }^{2} 14$	$2 \quad 2$	152	2144	$4{ }_{1} 137$	132	62
64	756	646	558	515	443	415	355	319	251	231	216	24	153	3145	51138	133	4
66		65		520	447	419	359		254	233	218	2	155	5146	6139	13	66
68	810	6		524					256	235	219					13	68
70			610	527		426			258	236	220	2	157	1148	8141	135	70
72						429		328		238	221		158	8149	141	35	72
74								329		239	222	29	159	9150	142	136	74
76								$3 \quad 30$		241	223	2:0	159	150	142	13	76
78									$3 \quad 4$	242	224	211		0151	1143	37	78
										243	225	212		151	$1 \begin{aligned} & 1 \\ & 1\end{aligned}$	37	80
82											226	212		52	144	38	82
84												212		152	144	38	84
86														252		138	86
	6°	7°	8°	9°	10°	11°	12°	14°	16°	18	20°	22	24°	26	28°	30	

THIRD CORRECTION, TO APPARENT DISTANCE 60°.

THIRD CORRECTION, TO APPARENT DISTANCE 64°.

	APPARENT A						altitude O										
	6°	7°	8°	9°	10°			14°	16°	18°	20°	22	24°	26°	28°	30°	
6									219				24				6
7	28	126	127	129	132	135	140	151	2.3	215	228	242	256	3	322	336	
8	132	,	126	127	129	131	134	142	151	$2 \quad 2$	213	224	236	248		311	
9	137	131	128	126			1		43	52		210	20	231	41		
10	143	135	130	27	2	127	128	132	37	144	151	59		217	226	235	10
11	1	1	133	129	1	126	127		133	138			159			2	11
12	157	145	137	132	1	$1 \begin{array}{ll}1 & 27\end{array}$	126		130	134	138		51	158		212	2
13		150	141	35	131	129	127	127	8	131	134	138	44	150	157		13
14	212	156	146	139	134	131	129	126	127	129	131	134	39	144	50	155	14
15	220	2	151	143	137	133	130	127	126	127	129	131	135	140	144	149	5
16	2		1	147	141		132	128		26	27	129					16
17	2	214		1	145	1	134	129	126	1	1	${ }^{\circ} 28$	30	133	136		17
18	243	221		156	1	142	137	1	127		125		128	0			18
19	251	227	212	2	152	145	139	132	128	125	125	1	7	128			19
20	259	234	217		156	149	142	134	29	126	124	124	125	126	128	130	20
21		241	2	210			45		130	1							1
22	$\begin{array}{lll}3 & 15\end{array}$	248	229	215	2	155	148	8	131	127	125	123	3	124	125	26	22
23	323	255	235	220		159	151	0	133	1	125	123	33	24		1125	23
24	331		2	225	212		154						123	123			24
25	3 39	3	247	230	217		157	144	136	130	126	124	123	123	23	124	25
26	34	3	2	2	2	2				132				123			26
27	356	322	259	240	226	2		150		133	1		3	123			27
28		329		245	230	218		153	142	135	129	126	24	123	122	2122	28
29	412	3	311	250	235	222	211	155	144	136	130	127	25	123	1	122	29
30	420	342	317	255	239	226	215	158		138	132	128	25	124			30
31	4	3	3	30	243	2	218				1	129	6				31
32	4		3		248		2										32
33	444		3	310	252	2	226							4			33
34	452		339	315	256	241	$2 \begin{aligned} & 29\end{aligned}$		155	144	137	131	128	25		122	34
35		415	3	320		245	233	211	157		138	132	128			1	
36		421	351	325		249	236	214			1139	133		6			36
37	514	428	357	330		253	240	217		149	$1 \begin{aligned} & 1 \\ & 4\end{aligned}$	134		127			37
38	52	4		335	314	257	243	220		152				7			38
39	528			339	318		246	223		154		137		128	1		39
40	535	447	412	344	322		249	226		156	146	138		29	26		
41	542	4	4	349	3		252	229	211	158		140					1
42	549	459	422	353	330	3 111	255	231	$\begin{array}{lll}2 & 13\end{array}$		149	$1 \begin{array}{ll}1 & 41\end{array}$		30			42
43	556	5	4	358	334	315	259	234	215		151	142	136	31	1		43
44		511		4	338		3	236	216		152	144		132			44
46	615	521	442	411	345	326		241	222		155	147		134			46
48										10							48
50	640	542		427		3 38	320	250						137			50
52	652	552	510	435		344	325	255	$4 \begin{array}{ll}2 & 33\end{array}$	217		154		139			52
5		6	518	442	414	350	330	259	237	220		156	148	141			54
56	$7 \quad 14$	$6 \quad 10$	526	449	420	355	335		241	223		158	149	143	137		56
58				456		4	339		244	226	211		152				58
60	7	626		5		4	3 44	311	247	229	$2 \begin{aligned} & 2 \\ & 1\end{aligned}$	2	154	147			60
62	740	633	547	5	435	410	349	315	250				155	1			62
64	748	640	553	512	440	415	3 33	31919	252	234	219			149			64
66	75	647	$5 \quad 59$	517		419	$3 \quad 37$	$3 \quad 22$	254	236	221	28	157	150	143	138	66
68				522			4	324	256	238	22			151			68
70		659		526	453	426	4	326	258	240	223	210		152	145	139	70
72	812	7	611	530	456			328		241	224	211		153	146	139	72
			6	533	4	4		$3 \quad 30$		242	225	212		154	147		4
76								332	$3 \quad 4$	243	226	213		54	147		76
							410				227	214					78
80								3			228						80
											229	216		155	48		82
84										247	229	216		156	149		84
86											$\underline{29}$	$\underline{216}$					86
	6°	7°	8°	9	10°	11°	12°	14°	16°	18°	20°	22°	24	26	28	30°	

THIRD CORRECTION, TO APPARENT DISTANCE 64°.

THIRD CORRECTION, TO APPARENT DISTANCE 68°.

THIRD CORRECTION, TO APPARENT DISTANCE 68°.

THIRD CORRECTION, TO APPARENT DISTANCE 72 ${ }^{\circ}$

	APPARENT						Altitude o			E SUN	N, OR	STAR					$D ' s$
	6°	7°		9°	10°	11°	12	14°	16°	18°	20°	22°	24	26°	28°	30°	
。																	
6		135	37						223	238							6
7	135	1	34	136	139	143	147	156	28	221	234	247		312	325	$\begin{array}{ll}3 & 38\end{array}$	
8		135	1	1	1	1		148	158		219	230	241	252	31	314	8
9	1	38	135						50	158	27	217	,	235	44		9
10	150	142	137	134	133	134	35	133	144	150	158		214	222	230	239	10
		46	1	1		1			140					212	20		
12		151	144	139	136						6	52	1		211		2
13		56	148	142	139	136	134		135	138	142	147	152	158	2		3
14	2		153	146	142	139	136	133	134	136	139	143	147	152	157		4
15	223		158	15	145	41	138	1	133	134	136	139	143	1	151		15
	2	2	2						133		134		139		147		6
17		220	,		1	6			134		134	135	137	140	144		7
18	245	227	213		154	148	144		134	133	133	34		1	141	14	18
19	253	233	218		158	151	146	139	135	133	133	34	135	1	139	14	9
20		240	224	211		154	149	1	136	134	133	133	134	135	137	139	-
2		246	2	2		158	152	143	137	134		133	33				21
22		2	2		210	2	155	145	$\begin{array}{ll}1 & 39\end{array}$	1	133	32	3	1	34	1	2
23	3	259		2	2		58		140		1			133	3		3
24	333		246	230	218			150	142	137	134				133	13	24
25	341	312	251	235	$\underline{2} 23$	212		152	144	138	135	133	132	132	132	13	5
26	348	318	257	240	227	216		155		140	1						6
27	356	325	3	245	231	220	212	157	148	141	$1 \begin{array}{ll}1 & 37\end{array}$	34	22	1	31	131	7
28		331	3	249	2	224	215		150	143	1	134	32		30	1	28
29	411	337	$3 \begin{array}{ll}3 & 13\end{array}$	254	2	2	218		52	145	1		133				29
30	418	344		259	243	231	221		154	146	140	136	134	132	131		30
31	4	350	324		247	2											31
32	433	356	$\begin{array}{ll}3 & 29\end{array}$		251	238	227	211	158	150	143	38	5	1	132		32
33	4		335	3 14	256	242	230	214	2	151	144	139	135	$1 \begin{array}{ll}1 & 33\end{array}$	132	131	3.3
34			341	318		245	233	216		$1 \begin{array}{ll}1 & 53\end{array}$	$1 \begin{array}{ll}1 & 46\end{array}$	140	136	1	132	131	34
35	4	415	346	3 23		249	237	218	24	154	147	141	137	134	132		35
36		42	351	3			240	220									36
37		427	356	332	312	257	243			158	1				33		7
38	516	433	4	$\begin{array}{ll}3 & 37\end{array}$	316	3	247	226	$2 \begin{array}{ll}2 & 11\end{array}$		$1 \begin{array}{ll}1 & 52\end{array}$	145	140	137	134	13	38
39	523	439	4	341	320	3	250	2 28	213		$1 \begin{array}{ll}1 & 53\end{array}$	146	141	$1 \begin{aligned} & 1 \\ & 1\end{aligned}$	134	13	39
40	530	445	411	346	$3 \quad 34$		254	230	215		154	148	143	139	135		
		451	416	350	3	311	257	1232	218		1 56	149	144				1
42	5	457	421	354	3	315		2 235	220	$2{ }^{2} 8$	$1 \begin{array}{ll}1 & 58 \\ 1 & 5\end{array}$	150	145	1	37		2
43	5		426	359	336	318		2 37	222	210	159	151	146		38		3
44	557		430		340) 32		241	224	212		153	147	143	139		4
46		$5 \quad 17$	439	411	347	$3 \quad 29$	312	245	$\underline{2} 28$	215		155	149		140		46
48	621	527		419	354	335	318	250	232	218		58					8
50	632	$5 \quad 37$	457	426	4	341	323	255	235	221	$2 \begin{array}{ll}2 & 10\end{array}$	2	153	147	43	139	50
52	643	546	5	433	4	346	328	259	239	224	$1 \begin{array}{ll}2 & 12\end{array}$	2	155	149	44	14	52
54	654	555	514	440	413	352	333		243	227	215	25	157		45		
56			522	447	419	357	33		247	231	418			152	146		56
58	713	612	529	453	425	4			250	234	221				47		58
60	722	620	535	458	430	4	347	315	253	237	223	211		154	49		60
62	731	627	541		435	411	351	$\begin{array}{ll}3 & 19\end{array}$	256	239	225	213		156	150		62
64	739	$6 \quad 33$	547		440	415	355	532	259	241	227	215		157	151	146	4
66	74	$6 \quad 39$	553	513	44	419	359	$3 \quad 35$		243	$\underline{2} 29$	216			15		
68	75		558		448		4	328	3	245	230	218		159	52		88
70	758	$6 \quad 50$	6	522	452	4	$44^{4} 4$	330		247	231				5		
72		655	6	526	455	429		13		248	233	220			5		2
74		7	610	530	458	431		13	3	249	234	221	$2 \quad 10$		155		4
76	813		614	533		433	411	$3 \quad 35$	$3 \quad 11$	250	$\underline{235}$	222	211		156	149	76
78			617	536	5	435	412	$\begin{array}{lll}3 & 37\end{array}$	312	251	236	223	212		56		8
80	819	710	619	538		437	414	$3 \quad 38$	3 13	252	237	224	213	2	157		80
82			62	540		439	416	$\begin{array}{ll}3 & 39\end{array}$	$\begin{array}{ll}3 & 13\end{array}$	253					157		82
84						441	417	340	314	254	238	224	214				4
86							418	341	315	254	238	,	2				86
	6°	7°	8	9°	10°	11°	12°	14	16°	18°	20				28°	30°	

THIRD CORRECTION, TO APPARENT DISTANCE 72°.

D's	APPARENT A						altitude o		OF THE SUN, OR			Star.				86°	A's
Alt.	320	34°	36°	38°	42°	46°	50°	54°	58°	62°	66°	70°	74°	78°	82°		
-	"	"	"	"	'		' "	"									\bigcirc
6	4274	4414	4565	511	538		627	648		727	742	755		816			ϵ
7	3514	$4 \quad 34$	416	428	451	512	532	551		623	636	648	658	$7 \quad 7$			7
8	3253	3363	3473	358	418	436	454	511	526	539	551	$6 \quad 1$	$6 \quad 9$	616	622		8
9		3143	3243	333	351	48	423	437	450		511	520	528	535	541		9
10	2482	2573	36	314	329	344	$3 \quad 58$	410	422	433	442	450	457		5		10
11	235	243	251	258	311	325	337		359	49	417	424	430	435	439		11
12	2242	2312	238	245	257	31	320	331	341	349	357		48	412	416	420	12
13	215	2212	227	233	245	256	36	316	3 24	332	339	345	349	353	356	359	13
14	272	2132	218	224	234	244	254	3	$3 \quad 10$	318	324	329	333	336	$3 \begin{array}{ll}3 & 39\end{array}$	341	14
15		26	211	216	225	234	243	251	258	35	311	316	320		325	327	15
16	156	$2 \quad 12$	2		218	226	233	241	248	254	259	34	38	311	313	315	6
17	152	1561	159	23	211	219	225	232	239	245	250	254	257				17
18	$1{ }_{1} 48$	1511	154	158	26	213	219	225	231	237	242	246	248	250	252	254	18
19	144	1471	150	154	21		213	219	225	230	235	238	240	242	244	245	19
20	141	144	147	150	156	2	$2 \quad 7$	213	219	223	228	231	233	235	236	237	20
21	139	141	144	146	152	157	2		213	217	221	224	226	228	229	230	21
22	$1 \begin{array}{ll}1 & 37\end{array}$	139	141	143	148	153	158			211	215	218	220	222	223	224	22
23	136	137	139	141	145	150	$1 \begin{array}{ll}1 & 54\end{array}$	159	$2 \quad 2$	26	210	213	215	216	217	218	23
24	135	136	137	139	143	147	$1 \begin{array}{ll}1 & 51\end{array}$	155	158	$2 \quad 2$	25	28	210	211	212	213	24
25	134	135	136	138	141	144	148	151	154	158							25
26	133	134	135	136	139	142	145	$1 \begin{array}{ll}1 & 48\end{array}$	151	154	157	159					26
27	132	133	134	135	$1 \begin{array}{ll}137\end{array}$	140	143	145	148	151	154	156	157	158			27
28	132	132	133	134	135	138	141	143	146	148	151	153	154	155	156		28
29	131	132	132	133	134	136	139	141	144	146	148	150	152	153			29
30	131	131	132	132	133	135	137	139	142	144	146	147	149	150			30
31	130	131) 3,1	131	132	134	136	$1 \begin{array}{ll}1 & 38\end{array}$	140	142	144	145	146				31
32	129	135	130	130	131	$1 \begin{array}{ll}1 & 33\end{array}$	135	$1 \begin{array}{ll}1 & 36\end{array}$	138	140	142	143	144	145			32
33	$129 \mid$	129	129	130	131	132	$1 \begin{aligned} & 1 \\ & 1\end{aligned}$	1	136	138	140	141	142				33
34	$130 \mid$	129	1 29	129	130	131	132	$1 \begin{array}{ll}1 & 33\end{array}$	134	136	138	139	140				34
35	130	129	129	129	130	130	131	132	133	135	136	137	138				35
36	131	: 29	128	128	129	130	131	$1 \begin{array}{ll}1 & 32\end{array}$	133	134	135	136	136				3
37	131	130	128	128	$1 \begin{array}{ll}1 & 29\end{array}$	129	130	1 31	132	133	134	135					37
38	131	130	128	127	129	128	130	$1 \begin{aligned} & 1 \\ & 1\end{aligned}$	132	133	133	134					38
39	131	130	129	128	128	128	129	130	131	132	132	132					9
40	131	130	129	128	127	128	128	1129	130	130	130	130					40
41	131	130	129	128	127	127	127	128	128	129	129						
42	132	131	129	128	126	126	126	127	1127	128	128						42
43	132	131	129	128	126	126	126	126	126	127	127						43
44	133	131	130	128	126	126	6125	125	5125	126							44
46	134	132	130	129	127	125	125	125	125	125							46
48	135	132	130	129	127	125	124	124	124	124							48
50	136	133	131	130	127	125	124	123	123								50
52	137	134	131	130	127	125	123	122									52
54	137	$1 \begin{aligned} & 1 \\ & 1\end{aligned}$	$1 \begin{aligned} & 1 \\ & 1\end{aligned}$	$\begin{array}{ll}1 & 31\end{array}$	128	125	${ }_{1}^{1} 23$	$\begin{array}{ll}1 & 22\end{array}$									54
56	138	135	133	131	128	125	123	122									56
58	139	136	134	132	128	125	123										
60	139	$1 \begin{array}{ll}1 & 36\end{array}$	134	$1 \begin{array}{ll}1 & 32\end{array}$	128	125	123										
62	140	$1 \begin{array}{ll}1 & 37\end{array}$	135	132	128	125								did the	Numb		
64	141	$1 \begin{array}{ll}1 & 38\end{array}$	1 36 1 36	$\begin{array}{lll}1 & 33 \\ 1 & 33\end{array}$	1 28	1125								$\begin{aligned} & t a 3 r \\ & t r a t \end{aligned}$	rd Corr	rection, thers.	
66	142	138	136	133	1128 128										Appar	nt	
68	143	$\begin{array}{ll}1 & 39\end{array}$	136	$1 \begin{array}{ll}1 & 34\end{array}$	4129										203040	$50 \mid 60$	
70	143	$1 \begin{array}{ll}1 & 39\end{array}$	$1 \begin{array}{ll}1 & 36\end{array}$	1 34													\cdots
72	$\begin{array}{ll}1 & 44 \\ 1 & 44\end{array}$	$1 \begin{array}{ll}1 & 40 \\ 1 & 40\end{array}$	1136	$1 \begin{array}{ll}1 & 34\end{array}$									5	$\left[\left.\begin{array}{c} 11 \\ 1 \end{array} \right\rvert\,\right.$,
74	144	140	136										10	$\left.\|2\| \frac{1}{1} \right\rvert\,$	$\frac{1}{1}$	$1-$	
76	145	140												$\left[\left.\begin{array}{ll} \tilde{3} & 3 \\ 3 \end{array} \right\rvert\,\right.$	22	1	
78	145														${ }^{5}$	222	
80														${ }^{6}$	$5{ }_{5}^{5} 4$	$4{ }^{4} 4$	
$8{ }^{8}$														88	${ }^{6} 5$		
84														${ }^{8} 8$	8787		
86																	
	32°	34°	36°	38°	42°	46°	50°	54°	58°	62°	66°	70°					

TABLE XXXIII.

THIRD CORRECTION, TO APPARENT DISTANCE 76°.

	APPARENT																
Alt.	6	7°	8°	9	10	11°	12°	14°	16	18	20°		24°		28°	30°	
	, 11	111	17	111	11	111			111	111			111				
6		1		1				213	2	242	257	3					
7		137	1	140	143	147	151		$2 \quad 12$	224	237	250			328	340	
8		140	1	138	140	1	145	152		212	222	233	244			$\begin{array}{ll}3 & 16\end{array}$	8
9		143	1	137	138	1	141	146	154		211	220	230	239	248	258	9
10	1	146	1	139	i 37	138	139	142	148	155	$2 \quad 2$	210	218	226	234	243	10
		1	1	1	1	1	1	1				$2 \quad 2$			223		11
12		155	1	144	141	138	137	138			1				215	221	2
13	212	20	152	147	143	1	138	137			146		156	2		213	13
14	2	2	156	150	145	1	140	137	138		1			157	2		14
15	2	$2 \quad 12$	2	154	148	144	142	138	137	1	141	145	149	153	$1 \quad 57$		15
	2	21			1	1			13								16
17	2	22	211		1		146		138	137	139		143			152	7
18	2	23	21		158		148	1	139	136	138	139	141			149	8
19	2	2	222	210	2	1	150	1	140	137	137					1	19
2		2	2	2	26	15	152	149	141	138	136	137	138	139	141	143	20
		2	2	2	2												1
22	3	2	2	2	2		5158	149	1		1					139	22
23	3	3	2	2	218		2	151	145	1	1		135			1	23
	3		2	2	222	212	2	1	147	142	139	137				137	4
25	3	3	254	2	226	2	2	156	145	144	140	137	136	136		137	25
	3	3															6
27	$3 \quad 59$	3		249	2	223	2	$2 \quad 2$	1	147	2						27
28		3	3	2	2	227	7217	2	1	148	143		7				8
29	$4 \quad 13$	3	31	258	242	231	221	2	156	149	144						9
3	420	3	321	3	247	2	224	2	158	151	145	141	39	137		134	' 30
	4	3	3	3		238	2										31
	4	3	33	312	255	242	2	2	2	154							32
			3	31	259	245	5124	217	24	155	9						33
34	4	410	342	32	3	249	9	219	26	157	150		142				4
35	455	416	347	325	3	252	241	222	2	159	152	146	142	139	137	1	35
				3		256	24		1	2							36
		4	3	3	315	3	247	227	3	2	155						37
	5	4		3	319	3	250	229	5	2	156						38
39	5	4		343	323	3	71253	231		2	158				39	1	9
40	530	4	4	347	327	$3 \quad 10$	10.26	234	219	28	159	152	147	143	140	1	40
	5	4	4	3	31		259	2	622	2	20						41
42	5	455	4	3	334	3	$3 \quad 2$	239	224	212	21						42
		5	4	359	338	32	3	241	1226	2	4	1	150			1	43
44		5	4	4	341	3	38	244	4288	2	54	157	151			140	44
46	6	516	4	4	349	3	314	249	9232	218	2	159	153	148	144	141	46
		5			3	3	320	2	5			2				1	48
	6	5	4	4	43	3	325	2	239	2	2		157			1	0
52		5		4	410	3	3	3	243	2	216	2	159			1	52
5	6	5	5	4	417	3	5335	3	247	231	219	2	2			146	54
56		6	5	4	423	4	340	311	250	234	222	212	2		151	147	56
						4	345	3	253				5				8
	7	6		5	433	4	349	319	256	2	227		2			149	0
62	7	6		5	437	4	353	322	259	2	2	2	2	2		1	2
64	7	6	5	510	441	4	357	325	32	2	231	2				15	4
66	7	6	5	5	445	422	24	328	83	247	233	221	211	23	157	15	66
	7	6	55	5	449	4	-	3	28								68
	755	6	6	5	453	4	48	3	210		2			25		1 J.3	0
72	8	65	6	52	457	4	411	337	312	2	237		215	56	159		2
74	8	6	610	053	5	434	413	339	313	253	238	226	216	27	20	15	74
76	811	72	613	3533	5	436	6415	341	314	254	239	226	216	27		15	76
78	81	76	6	5	55		417		315						2		8
80	8	7	619	95	5	4	419	3	316		240						80
82	820	7	621	15	59	4	2420	3									82
84	822	713	6	5	510	443	321	345	51318		241	228					84
86			6	544	4511	444	4422	345	5318	258	242						86
		7^{0}		9 ${ }^{\circ}$	10	11	12°	14	16°	18°	20°	22°	24	26°	28°	30	

THIRD CORRECTION, TO APPARENT DISTANCE 76°

THIRD CORREOTION, TO APPARENT DISTANCE 80°.

THIRD CORRECTION, TO APPARENT DISTANCE 80°.

THIRD CORRECTION, TO APPARENT DISTANCE 84°.

THIRD CORRECTION, TO APPARENT DISTANCE 88°.

	APPARENT A						altitude o		F THE	E SUN	OR	Star.					
t.	6°	7°	8°	9°	10°	11°	12°	14°	16°	18°	20°	22°	24°	26	28°	30°	
6			156	59		10	216	228	242	256	211	26	341	56	11	425	6
7	1	153	154	156	159	$2 \quad 3$	2	216	227	239	251		316	328	340	352	7
8	158	5.5	153	154	156	159	2	2	217	227	237	248	259		319	330	
9		58	155	153	,	56	158		210	218	226	5	45	254		312	9
10			157	155	153	154	156			211	218	225	234	243	250	258	10
11	2132		2	57	5	53	154	157			212	218	225	232	239	247	11
12	2192	210	2	2	157	154	153	155	158			212	218	2242	230	237	2
13	226	215	2	2	159	156	154	154	156	159	2		212	218	223	229	13
14	2332	221	212	2	2	158	156	153	155	157				212	217	222	14
15	2402	226	216		24		157	154	154	55	158				213	217	15
16		232	220	213	2		9		153	154	1	158				213	16
17	2542	237	225	217	210		2	156	53	153	155	157	59				7
18		243	230	221	213		2	158	154	152	154	156	158				8
19	${ }_{3}^{3} 1010$	249	235	225	216	210	$2 \quad 5$	159	155	153	153	154	156	158			19
20	317	255	241	229	220	213			156	154	152	153	154	156	158		20
21	${ }_{3}^{3} 254$		246	2	2	2	211		58	55	153			55	157	159	21
22	$\begin{array}{llll}3 & 32\end{array}$		252	2	2	220	214		159	156	153	1	153	54	155	157	22
23	3403	315	257	243	232	224	217			157	154	1	152	53	54	1	23
24	3	321	3	248	236	227	220	2		158	155	153	152	152	153	154	24
25	355	327		252	240	231	223	211			156	153	152	152	153	15	25
26		333	213	257	244	235	227	214		21	157	154	3	52	52		26
27	410	3	3		248	238	230	217	28	$2 \quad 2$	158	155	153	52	52	152	27
28	417	345	323	36	2	2	233	219	210		159	1		52	52	152	28
29	424	351	328	311	256	246	237	222	212			1	1	152	2	1	29
30	43	357	334	315	3	249	240	224	214	$2 \quad 6$		157	154	153	152	152	30
31	4		340	320	3	253	243	227	216			58		153			31
32	4		3	325	38	256	246	$2 \quad 29$	218	2	$2 \begin{array}{ll}2 & 3\end{array}$	159	156	154	153	152	32
33	453	415	351	329	312		250	231	220	211		20	156	154	53	153	33
34		421	356	334	317		253	234	222	213			157	155	154		4
35		427		338	321		256	237	$\underline{24}$	215			158	156	154	1	35
36	513	433		343	325	311	259	240	226	217	210						6
37	520	439	411	348	3 29	315	3	243	228	$\begin{array}{ll}2 & 19\end{array}$	211			157	155		37
38	52	445	416	352	3 33	318	3	246	231	221	213	2		158	156	1	8
39	534	451	421	357	${ }^{3} 37$	322	38	249	233	222	214			158	156		39
40	540	456	426		341	325	311	251	235	224	216			159	157		40
41	547		431		345	3			238	226		210					41
42	553		436		$9{ }^{3} 49$	$3 \quad 32$	3 17	256	240	228	219	$2 \begin{array}{lll}2 & 11\end{array}$			158	15	2
43		$5 \quad 13$	441	414	$4{ }^{3} 53$	3 36	320	259	242	230	220	212			$1 \begin{array}{ll}1 & 59\end{array}$	157	43
44		$5 \quad 19$	446	418	837	$3 \begin{aligned} & 39\end{aligned}$	$3 \quad 23$		244	232	222	213			20	158	4
46	618	$5 \quad 29$	455	426	4	346	$3 \quad 29$		248	235	225	216				159	
48	62	539		434					252		228	218	$2 \begin{array}{ll}2 & 11\end{array}$				8
50	640	548	512	441	1417	358	341	315	256	242	31	221	$\begin{array}{lll}2 & 13\end{array}$				0
52	651	557	520	448	423	42	2347	3 19	259	245	234	124	2 16	210			52
54			528	455	5429	48	3 52	$1 \begin{array}{ll}3 & 23 \\ 3\end{array}$		248	236	$2 \quad 27$	218	212			54
56	710	615	535		435	414	357	$3 \quad 27$		251	239	229	220	214			6
	7	623						331	$\begin{array}{ll}3 & 10\end{array}$		42	231	222	16	211		58
60	728	631	548	512	2445		4	635	313		44	33	224	17	12		60
62	736	638	554	517	7450	4 29	410	${ }^{3} 38$	316	259	246	35	226	219	$2 \begin{array}{ll}2 & 13\end{array}$		62
64	744	645	6	522	2455	433	414	342	3 19		248	1237	2 28	2	$\begin{array}{lll}2 & 14 \\ 2 & 14\end{array}$		64
66	751	651		527	7	437	418	345	$3 \quad 22$		250	239	230	$\underline{22}$	215		
68	7	656		532	2		421	348	325		251	240	231	223			8
70			615		65	8 44	4	350	327		253	241	232				0
72	* 10		619	540	0511	447	4	352				2					2
74	- 15		623	543	$3{ }^{5} 14$	449	427	354	$3 \quad 30$	3 10							4
76	8.9	713	626	646	6517	451	429	9356	331	311							
78	822	716	629	549	$9 \begin{array}{lll}519\end{array}$	453	431	357	332								8
80	825	719	631	552	25121	455	433	358									0
82	828	722	633	554	4523	457	435										2
86	830) 724	4635	556	6515												84
86	832	726	66														6
	6°			9°	10°	11°	12°	14°	16°	18°	20°	22°	24	26	28°	30	

THIRD CORRECTION, TO APPARENT DISTANOE 88°

D's	APPARENT ALTITUDE OF TEE SUN, OR ST																	$\begin{aligned} & \text { D's } \\ & \text { App } \\ & \text { Alt. } \end{aligned}$
Alt.	32°	34°	36°	38°	42°	46°	50°	54°	58°	62°	66°	70°		74°	78°	82°	86^{3}	
\bigcirc	1"	111	' "1	1.11	1 11	' 11	, "	' 11	' 11		, "'							\bigcirc
6	440	454	58	522	548	613	636	657	716	734	749				821	827	832	6
7	444	416	428	440	5	525	545	64	621	636	649		07	9	716	722	727	7
8	3413	352	43	413	433	452	$5 \quad 10$	526	540	553	65	6	56	23	629	634	637	8
9	3223	331	341	350	48	424	439	453	5	516	526	5	55	43	549	554		9
10	36	314	322	330	346	4	415	427	438	449	458		5	14	519	523		10
11	254	32	39	316	330	343	356	4	417	427	436	4		49	453	457		11
12	244	251	258	34	316	328	340	350	$4 \quad 0$	48	416	4	3	28	432	436		12
13	235	241	247	253	$3{ }^{3}$	315	3 26	335	344	352	359		514	10	413			13
14	227	233	238	244	254	34	314	322	$3 \quad 30$	337	344	35		54	357			14
15	222	227	232	236	246	255	$3 \quad 4$	311	318	325	331	3	73	41	344			15
16	217	221	226	230	239	247	255	3	3	315	321	3		330	333			16
17	212	216	221	225	233	240	247	254	3	36	312	3	63	19				17
18	28	212	216	220	227	234	241	247	253	258	23	3	3	10				18
19	$2 \begin{array}{ll}2 & 5\end{array}$	28	212	216	222	229	235	241	247	252	256	25	59	2				19
20	$2 \begin{array}{ll}2 & 3\end{array}$	$2 \quad 6$	29	212	218	224	$\underline{2} 30$	235	241	246	249	25	22	54				20
21	2	2	2	28	214	219	225	230	235	240	243	2	6					21
22	159	$2 \begin{array}{ll}2 & 1\end{array}$	23	25	210	215	220	225	230	235	238	2						22
23	157	159	21	$2 \begin{array}{ll}2 & 3\end{array}$	27	212	216	221	226	230	233	2						23
24	156	157	159	$2 \begin{array}{ll}2 & 1\end{array}$	22	29	213	$\begin{array}{ll}2 & 17\end{array}$	222	226	229	2						24
25	155	156	157	159	23	26	210	214	218	222	225							25
26	154	155	156	158		2	28	212	215	218	221							26
27	153	154	155	157	20	23	26	210	213	215	217							27
28	153	154	155	156	158	21	24	28	211	213	214							28
29	152	153	154	155	157	20	23	26	28	210								29
30	152	153	153	154	156	159	22	$2 \quad 4$	$2 \quad 6$	28								30
31	152	152	152	153	155	158	20	$2 \quad 2$		25								31
32	151	152	152	153	155	157	159	21	$2 \quad 2$	23								32
33	152	151	151	152	154	156	158	159	$2 \begin{array}{ll} & 0\end{array}$									33
34	152	151	151	152	153	155	157	158	159									34
35	152	151	151	151	152	154	156	157	157									35
36	153	152	151	151	152	153	155	156	156									36
37	153	152	151	151	151	152	154	155										37
38	153	152	151	150	151	152	153	154										38
39	154	152	$\begin{array}{ll}1 & 51\end{array}$	$1 \begin{aligned} & 1 \\ & 1\end{aligned}$	151	152	152	153										39
40	154	153	152	151	150	151	152	152										40
41	154	$1 \begin{array}{ll}1 & 53\end{array}$	152	151	150	151	151											41
42	154	153	152	151	150	151	151											42
43	155	154	153	152	151	151	151											43
44	156	154	153	152	151	150	150											44
46	157	155	153	152	151	150												46
48	158	156	154	$1 \begin{array}{ll}1 & 53\end{array}$	151	150												48
${ }^{\circ} 50$	159	$1 \begin{array}{ll}1 & 57\end{array}$	155	153	151													50
52	20	$1 \begin{array}{ll}1 & 58\end{array}$	155	$1 \begin{array}{ll}1 & 53\end{array}$	1152										sct 0			52 54
54	21	158	156	154												促		54
56	$2 \quad 2$	159	156	154														56
58		$\begin{array}{ll}1 & 59\end{array}$	156															58
60		159												Sun's	Appare	nt Alti		60
62														510120	30140 5	50160770	80\|90	62
64														"	"	"		64
66															1.1			66
68													5	2	2	22		68
70													$\begin{gathered} 0 \\ 55 \\ \hline \end{gathered}$		4	3 $\begin{aligned} & 3 \\ & 4 \\ & 4\end{aligned}$		70
72													$30{ }^{3} 4$	$4{ }_{4}^{4}$	4 4 4 4	${ }^{4} 4{ }_{4}{ }_{4}{ }_{4}{ }^{4}$		72
74													15	$5{ }_{5}^{5} 5$	5	55		74
76															6			76
78													5	7 7 7 7	7			78
80													30	88	8			80
82													${ }_{0}{ }^{5}$		1			82
84													$5{ }^{9}$	${ }^{9} 9$				84
86																		86
	32°	34°	36°	38°	42°	46°	50°	54°	58°	62°	66°							

THIRD CORRECTION, TO APPARENT DISTANCE 92°.

's	APPARENT A																s
t.	6°	7°	8°	$9{ }^{\circ}$	10°	11°	12°	14°	16°	18°	20°	22°	24°	26°	28°	30°	tit.
-		,															
6	$1{ }^{1} 3$	2		2	210	215	221	234	248		318	$\begin{array}{ll}3 & 33\end{array}$	348		418		6
7		159	21	2	2	2	213	222	233	245	258	311	324	$3 \quad 36$	348		7
8		2	159	20	2	2	27	214	223	233	244	255	$\begin{array}{ll}3 & 5\end{array}$	316	326	3 37	8
9				159	20	2		29	216	224	233	242	251		310	319	9
10	213	2		2	159	2			211	217	224	232	240	248	257		10
1	219	211		2	2	159				212	218	224	231	239	246	254	11
12	225	216	210	2	-		159			28	213	218	224	231	237	244	12
13	232	2 2!	214	29	2	2		20		2	29	214	219	224	230	236	13
14	239	227	218	212	27	2		159		$2 \begin{array}{ll}2 & 3\end{array}$	¢	210	214	$\begin{array}{ll}2 & 19\end{array}$	224	229	14
15	246	232	222	215	210	2			2	2	24	27	210	215	219	224	15
16	253	238	227	219	213				159		2			211	215	219	16
17		244	232	223	216	211				159	2			28	212	215	17
18		250	237	227	$1 \begin{array}{ll}2 & 19\end{array}$	214				159	2					212	18
19	$\begin{array}{ll}3 & 16\end{array}$	256	242	231	222	216	211			20	20		2			210	19
20	$3 \begin{array}{ll}3 & 23\end{array}$		248	236	$\underline{2} 26$	219	214			2	159						20
21	331		254	241	230	223	217	210		2	159	159					21
22	338	315	259	245	234	226	220	212	26	2	2	159	20				22
23	346	322		250	238	230	223	214		2	-	159	$1 \begin{array}{ll}1 & 59\end{array}$	2			23
24	353	328		254	242	234	227	216			2		-1 159	$1 \begin{array}{ll}1 & 59\end{array}$			24
25		$3 \quad 34$	315	259	246	237	230	219	211				159	159			25
26		340	$\begin{array}{ll}3 & 20\end{array}$		250	241	$\begin{array}{ll}2 & 33\end{array}$	222	213				159	$\begin{array}{ll}1 & 59\end{array}$	$1 \begin{array}{ll}1 & 59\end{array}$		26
27	417	346	$\begin{array}{ll}3 & 26\end{array}$	38	255	245	236	224	215	$2 \begin{array}{ll}2 & 9\end{array}$	2	52	20	159	159		27
28	424	352	331	313	259	248	239	227	217	211	2	22	20	159	159	159	28
29	431	358	3136	318	3	252	243	229	219	212	2			20	159	159	29
30	438		$3 \quad 41$	$3 \quad 22$	3	256	246	232	221	213	2				159	159	30
31	446	410	347	327	$\begin{array}{ll}3 & 12\end{array}$		250	235	223	215					159	159	31
32	$4 \quad 53$	416	352	332	${ }^{3} 16$	3	253	237	225	216	211		23		20	159	32
33		422	358	337	320	38	257	240	227	218	212					159	33
34		428	4	341	$3 \quad 24$	3111		242	229	220	214	2	$2 \quad 5$				34
35	514	434		346	3 28	315		245	231	222	215	210	2$2 \quad 6$ 20				35
36	521	440	413	350	3 32	$\begin{array}{ll}3 & 18\end{array}$		247	233	224	217	211					36
37	528	446	418	355	3 36	322		250	1236	225	218	212		2			37
38	$5 \quad 34$	452	423	4	340	325	3121	253	238	227	220	214	29				38
39	541	458	428	4	344	$3 \quad 29$	$\begin{array}{lll}3 & 15\end{array}$	255	240	229	221	215	2 10				39
40	547		433	4	348	$3 \quad 32$	318	258	242	231	222	216	211		2		40
41	5 54		438	412	352	335	3121		245	$2 \begin{array}{ll}23\end{array}$	224	4	212				41
42		514	443	416	1355	$\begin{array}{ll}3 & 39\end{array}$	3 24		247	234	225	518	1813				42
43		$5 \quad 20$	448	421	13	342			549	236	227	220	2 14	210			43
44	$6 \quad 13$	525	453	425	4	346	3 30		251	238	228	1221	215	211			44
45	$6 \quad 19$	531	458	429	4	$3 \quad 49$	$\begin{array}{ll}3 & 33\end{array}$	$\begin{array}{lll}3 & 11\end{array}$	253	240	230	222	216	212	2		45
46	625	536		433	$4 \begin{array}{ll}4 & 10\end{array}$	352	3 36	[13	255	242	231	124	218	$2 \begin{array}{ll}2 & 13\end{array}$			6
47	631	541		437	413	355	3 39	3 16	257	244	233	2 25	4219	214	210		47
48	637	546	511	441	417	$\begin{array}{ll}3 & 59\end{array}$	342	318	\| 259	246	235	227	220	215	211		48
50	647	556	$5 \quad 19$	448	424		348	322	34	249	237	229	222	216	212		50
52	$6 \quad 57$		$5 \quad 57$	455	430	411	353	$3 \quad 36$		253	241	232	224	218	213	210	52
54		614	535	5	436	416	358	3 30) 311	256	244	234	226	220	215	211	54
56	$7 \quad 17$	623	542	5	9442	$1 \begin{array}{ll}4 & 21\end{array}$		3 34	43	259	247	237	2 29	222	216	212	56
58	727	631	549	515	547	426		388	817		249	239	231	224	218	213	58
10	736	639	556	521	1453	431	413	342	320		252	241	232	225	220	214	60
62	745	646		526	458	436	417	346	3 23		254	$\underline{243}$	234	226	221		6
64	753	653		531		441	421	350	326	310	256	244	$4 \begin{aligned} & 2 \\ & 2\end{aligned}$	227			64
66		659	613	536	65	445	425	3 53	3 329	312	257	245	2 37				66
68			518	541	1512	449	428	3 56	332	314	258	246					68
70	814	710	623	545	5516	452	431	358		3 15	259						70
72	820	715	628	5 59	519	455	433		335	315							72
74	825	719	631	553	322	457			336								74
76	829	723	634	556	625	459	437										76
78	832	726	637	558	8527	5	439										78
8	834	428	639		529												80
82	836	$7{ }^{7} 3$	641														82
	6°	7°	0^{\prime}	9°	10°	11°	12°	14°	16°	18°	20°	22°	24°	26°	28°	30°	

D's	APPARENT																$D \cdot s$
t.	6°	7°	8°	9°	10°	11	2°	14°	16°	18°	20°	22°	24	26	28°	30°	
\bigcirc		1. 11 ,	' 11														
6		288	2102	213	2172		228	241	255	310		341	356	411	426		6
7		$2 \quad 62$	282	210	212	216	220	229	240	252		318	331	343	356	$\left\lvert\, \begin{array}{ll} 4 & 8 \end{array}\right.$	7
8	2122	2812	26	2	2	212	215	222	231	240	251		313	324	335	345	8
9	2162	2112	2	2		29	212	217	224	231	240	249	259		318	327	9
10	2202	2142	210	2	2	2		213	218	224	232	240	248	256		312	10
	2262	2182	213	210	272	26	27	210	214	219	225	232	239	246	253		11
2	2322	2232	2172	213	$2{ }^{2} 9$	27	26	28	2111	215	220	226	232	238	245	252	2
13	2392	2282	221	216	212					212	216	221	226	232	238	244	3
14	2.462	2332	225	219	214	211				210	213	218	222	227	232	237	14
15	2532	2392	229	222	217	214	211				211	215	219	223	228	232	5
16	$\begin{array}{llll}3 & 1 & 2\end{array}$	2452	234	226	220	216	213				210	213	216	220	224	228	16
17		2512	239	230	223	219	215	2	2	2		211	214	217	221	224	17
18	3 1515	2572	244	234	226	221	217	211	2	2		210	212	215	218	221	18
19	3233	$3 \quad 3$	249	238	230	224	219	213					210	213	215	218	19
20	$\begin{array}{ll}3 & 30\end{array}$	3 9	254	243	234	227	222	215	211	2				211	213	215	20
21	3383	316		248	237	230	225	217	12								21
22	346	3223	3	252	241	233	228	219	214	210					210	212	22
23	354	3283	311	257	245	237	231	221	215	2111				2		211	23
24		$3{ }^{3} 343$	316	3	249	241	235	223	217	212	2			$2 \begin{array}{ll}2 & 7\end{array}$		210	24
25		3413	$3 \quad 22$	3	253	245	238	226	219	214	211						25
26	416	347	3	3	257	2	241	229	221	216	212						26
27	4243	3533	333	315		252	244	231	223	2 17	213	$2 \begin{array}{lll}2 & 10\end{array}$					27
28	4 $31 / 4$	403	318	320		255	247	234	124	218	214	211					28
29	439	4	344	325	$3 \quad 10$	259	250	236	226	220	215	212	210	2			29
30	446	412	349	329	314		253	238	228	221	216	213	210	28			30
31	4	41	355	234	3188		257	241	230	223	218	214	$2 \begin{array}{ll}2 & 11\end{array}$				31
32		424	4	$3 \quad 39$	323	$\begin{array}{lll}3 & 11\end{array}$		244	232	225	219	2	12	,			32
33		4304	45	344	327	315		246	624	226	220	216	$2 \begin{array}{ll}2 & 13\end{array}$	210			33
34	514	43 C	411	349	312	319	37	248	236	228	221	217	214	211			34
35	521	442	416	354	$3 \quad 36$	$3 \quad 23$	311	251	238	230	$\underline{2} 23$	218	215	212	210		5
36	5	448	4	359	340	326	3 14	254	240	232	225	220	216	213	211		36
37	535	454	426	4	344	$\begin{array}{ll}3 & 29\end{array}$	$\mid l l l_{3} 17$	257	243	2 33	226	221	$1 \begin{array}{lll}2 & 17\end{array}$	214	211	2	37
38	5425	50	431	48	348	333	320	259	245	235	227	222	218	215	212	210	38
39	549	56	436	412	$3 \quad 52$	336	323		247	237	229	223	$\begin{array}{lll}2 & 19\end{array}$	216	213	211	39
40	555	512	441	416	$3 \quad 56$	340	3 26		250	239	230	$\underline{24}$	$\underline{2} 20$	216	213	211	40
41		518	446	420		344	330		252	241	232	225	221	217	214	212	41
42		523	451	424		347	3 33	3×10	254	243	234	427	$2 \begin{aligned} & 2 \\ & 2\end{aligned}$	218	215	213	42
43	614	529	456	429		351	336	313	255	245	235	228	$2 \begin{array}{ll}2 & 23\end{array}$	219	216	213	43
4	620	534	5	433	411	354	339	316	659	247	237	429	224	220	$2 \quad 17$	214	44
45	626	539		437	414	357	342	319	3	248	238	230	225	221	217	214	
46	632	544	510	441	418		345	321		250	239	231	226	222	218	215	46
47	638	5 49	515	445	422		348	324	4	252	241	1233	$\begin{array}{ll}2 & 27\end{array}$	223	$\begin{array}{ll}2 & 19\end{array}$	216	47
48	644	554	$\begin{array}{ll}5 & 19\end{array}$	449	425		351	326	4	253	242	$2 \begin{aligned} & 24 \\ & 2\end{aligned}$	228	224	$2 \quad 20$	216	48
49	650	559	523	453	429	410	$1{ }^{3} 54$	328	83	255	244	$4 \begin{aligned} & 2 \\ & 26\end{aligned}$	429	225	221	217	49
50	655	6	527	457	432	413	357	$3 \quad 30$	311	256	245	237	231	226	$2 \quad 21$	217	50
		$6 \quad 9$	53		436	416		332	2313	258		238	$2 \begin{array}{ll}2 & 32\end{array}$	227	222	218	51
52		5614	535		439	419		34	315	3	248	\|2 39	233	228	223	218	52
54	715	563	543	511	445	425		338	$8{ }^{3} 19$		251	242	235	229	224	219	54
56	725	531	551	518	451	430	013	342	2322	3	254	245	2 37	230	225	219	56
58	735	639	558	524	456	435	417	346	6 326		257	$2 \cdot 47$	239	231	225		58
60	745	546		530	0	439	421	350	00	312	259	249	241	232			0
62	754	465	610	535		444	4425	354	4332	2315	3	250	242				62
64		27	616	6540	0511	448	429	358	335			251					64
66	810	17	621	1545	$5 \begin{aligned} & 516\end{aligned}$	452	433		338	319							66
68	817	77	626	655	0521	456	436		340	$3 \quad 31$							68
70	824	4718	631	554	4525		439		342								0
72	829	9723	636	6558	8528	5	441										2
74	833	3727	640	- 6	531		443										74
76	837	7721	1643	6	534												
7	840	7	646														78
	6^{2}	7°	8°	9°	10°	11°	12°	14°	16°	18°	20°	22	24	26	28°	30°	

THIRD CORRECTION, TO APPARENT DISTANCE 96°.

THIRD CORRECTION, TO APPARENT DISTANCE 100°.

$\overline{\text { D's }}$					PPARE	ENT	ALTITU	Or	OF	E SUN	, OR	STAR.					$\begin{aligned} & \text { D's } \\ & \text { App } \\ & \text { Alt. } \end{aligned}$
Alt.	6°	7°	8°	9°	10°	11°	12°	14°	16°	18°	20°	22°	24°	26°	28°	30°	
\bigcirc																	-
6	213	215	2182	221	225	231	237	249		318	333	348		419	34	49	6
7	2162	213	215	217	220	224	229	238	249		313	325	338	350		416	7
8	2192	215	2132	214	216	219	223	231	239	249	259	310	321	332	343	354	8
9	2232	218	215	213	214	216	219	225	232	240	248	258	37	316	326	335	9
10	2282	222	218	215	213	214	216	221	226	233	240	248	256		313	21	10
11	2332	226	221	217	215	213	214	218	222	227	233	240	247	254		10	11
12	2402	230	2242	220	217	$2{ }^{2} 14$	213	216	2 19	223	228	234	240	246	253		12
13	2472	235	228	223	219	216	214	214	$\begin{array}{ll}2 & 17\end{array}$	220	224	229	234	240	245	251	13
14	2542	240	2322	226	221	218	216	213	215	218	221	225	230	235	239	244	14
15		246	2362	$\underline{2} 29$	224	$2 \quad 21$	218	214	214	216	219	222	226	230	234	239	15
16		252	2412	233	227	222	220	216	$2 \quad 13$	215	217	220	223	226	230	235	16.
17	315	258	246	237	230	225	222	217	214	214	216	218	221	224	227	231	17
18	3233	34	2512	241	233	228	224	219	215	213	215	217	219	222	225	228	18
19	330	311	2562	245	237	231	226	220	216	214	214	216	217	220	222	225	19
20		317	3	250	241	234	229	222	218	215	213	215	216	218	220	223	20
21	345	324	38	254	245	238	232	224	2 19	216	214	$1 \begin{array}{ll}1 & 14\end{array}$	215	217	219	221	21
22	353	330	313	259	249	241	235	226	221	218	215	113	214	210	218	22	22
23		336	$\begin{array}{lllll}3 & 19\end{array}$	3	253	245	238	228	23	219	216	113	213	215	217	219	23
24		342	$3{ }^{3} 24$	3	258	249	242	231	24	220	217	214	213	214	216	218	24
25	416	349	330	314		253	245	233	226	221	218	215	214	214	215	217	25
26	424	355	$3 \quad 35$	319		256	248	236	2 28	223	$2 \begin{array}{ll}2 & 19\end{array}$	216	214	214	215	216	26
27	431	4	3413	324	311		251	238	230	224	220	$2 \begin{array}{ll}2 & 17\end{array}$	215	214	214	215	27
28	439	,	346	328	315		254	240	232	225	221	218	216	215	21	21	28
29	446	414	352	333	319		258	243	234	226	222	2 19	$1 \begin{aligned} & 217\end{aligned}$	215	214	21	29
30	454	420	357	$3 \quad 38$	$3 \quad 23$	311		245	236	228	224	221	$\underline{218}$	216	215	214	0
31		426		342	$\begin{array}{ll}3 & 27\end{array}$	$\begin{array}{ll}3 & 15\end{array}$	3	248	1238	230	225	222	$2 \begin{array}{ll}2 & 19\end{array}$	217	215	214	31
32		433	8	347	$\begin{array}{ll}3 & 31\end{array}$	318		251	240	232	227	$2 \begin{aligned} & 2 \\ & 2\end{aligned}$	220	217	216	215	32
33	516	439	414	352	336	322	311	254	242	233	228	$2 \begin{aligned} & 24\end{aligned}$	221	218	216	21	33
34	523	445	419	357	340	326	315	256	244	235	229	225	222	219	217	216	34
35	530	451	424		344	$3 \quad 30$	318	259	246	$\underline{237}$	231	$\underline{2} 26$	$\underline{2} 23$	220	218	216	5
36	537	457	429		348	$\begin{array}{ll}3 & 34\end{array}$	322	$3 \quad 2$	$2 \begin{array}{ll}2 & 49\end{array}$	239	232	228	224	220	218	217	36
37	544		435	412	352	318	325	35	5121	241	234	$2 \begin{aligned} & 29\end{aligned}$	225	221	219	218	37
38	551		440	416	356	341	328	3	1254	243	236	230	226	222	220	2	38
39	558	515	445	421		345	331	311	256	245	237	231	227	223	221	219	39
40		521	450	425		348	$3 \quad 34$	314	258	247	238	232	228	224	222	220	40
41	611	527	455	429		352	338	317	3	249	240	234	229	225	222	220	1
42	618	533	5	433	412	355	341	319	$3{ }^{3} 3$	251	241	235	230	226	223	221	42
43	624	538	5	438	416	359	344	322	36	$4 \begin{array}{ll}2 & 53\end{array}$	243	2 36	231	227	224	222	43
44	630	544	59	442	420		347	$1 \begin{aligned} & 3 \\ & 3\end{aligned}$	38	255	245	2 38	232	228	225	22	44
45	636	549	514	446	424	4	350	327	310	257	247	$2 \quad 39$	233	229	226	223	45
46	642	554	518	450	427		353	329	312	259	248	241	235	230	227	224	46
47	648	$5 \quad 59$	523	454	431	412	356	332	314	3	250	242	236	231	228	225	47
48	654		527	458	434	415	$5 \begin{array}{ll}3 & 59\end{array}$	334	316		251	243	$\begin{array}{ll}2 & 37\end{array}$	232	228	22	48
49			532	$5 \quad 2$	438	418	4	337	318	3	253	245	$2 \begin{array}{ll}2 & 38\end{array}$	233	229	22	49
50		614	536		441	481		$3 \quad 39$	320		254	246	$2 \quad 39$	234	230	22	5
51	711	$6 \quad 19$	541	510	445	424		342	322		255	247	240	235	231	227	51
52	716	$6 \quad 24$	545	514	448	427	411	344	4324	39	257	249	242	236	231	22	52
53	721	$6 \quad 29$	549	${ }_{5}^{5} 17$	452	430	414	346	326	311	259	250	243	237	232		53
54	726	634	553	521	455	433	416	348	328	312		- 251	244	237	232		54
55	731	639	557	524	458	436	419	$3 \quad 50$	3 30	3 14		252	245	238			5
56	736	643	6	527	5	439	422	352	332	316		253	246	239			56
58	746	651	67	533		444	426	356	636	4319		255	2				8
60	756	658	614	539	512	449	431		$0{ }^{3} 39$	${ }^{3} 22$		257					60
62		57	5610	545	517	454	436		4342	324	310						62
64	813	$7 \quad 72$	626	551	522	459	440	$4 \quad 7$	$3{ }^{3} 45$	$\xrightarrow{3} 26$							64
66	821	719	632	5 57	527		443	410	347								6
68	828	725	5638	6	532		445	413									68
70	835	7730	0643	6	536	511	4										70
72	840) 735	5647	611	540												72
74	84	470	651														74
	6°	7°	8°	$9{ }^{\circ}$	10°	11°	12°	14°	16°	18°	20°	22°	24°	26°	28°	30°	

THIRD CORRECTION, TO APPARENT DISTANCE 100°.

D's ${ }^{\text {A }}$ Ap.	APPARENT AL																$\left\lvert\, \begin{gathered} \text { D's } \\ \text { Apl } \\ \text { Alt. } \end{gathered}\right.$
Alt.	320	34°	36°	38°	40°	42°	44°	46°	48°	50°	54°	58°	62°	66°	70°	74°	
\bigcirc	, 11	111	111	' 11	, 11	111	111	, 11	111	111	111	111	1	111	111	11	--
6	$5 \quad 4$	519	534	548	$6 \quad 2$	$6 \quad 15$	$6 \quad 28$	641	653	$7 \quad 4$	725	746	85	820	833	844	H
7	429	441	454	56	518	530	541	$5 \quad 52$	$6 \quad 3$	613	632	650	76	$7 \quad 19$	$7 \quad 30$	740	7
8	45	416	427	438	448	458	58	517	526	535	552	$6 \quad 7$	620	632	643	$7 \quad 52$	8
9	345	355	$4 \quad 5$	415	424	432	441	449	457	54	519	533	545	556	67		9
10	$3 \quad 30$	$3 \quad 39$	347	355	43	411	419	426	433	440	454	56	516	526	536		10
11	318	326	$3 \quad 33$	340	347	354	$4 \begin{array}{ll}4 & 1\end{array}$	48	415	421	433	444	454	$5 \quad 3$	$5 \quad 12$		11
12	37	314	321	$3 \quad 27$	3134	340	347	$3 \quad 53$	359	$4 \quad 4$	415	425	434	443	452		12
13	258	34	310	$\begin{array}{lll}3 & 16\end{array}$	$3 \quad 22$	328	$3 \quad 34$	340	346	351	40	49	417	425			13
14	250	256	21	$3 \quad 7$	$3 \quad 12$	318	$3 \quad 23$	$\begin{array}{ll}3 & 29\end{array}$	$3 \quad 34$	$3 \quad 39$	348	356	$4 \quad 4$	410			14
15	244	249	254	259	$3 \quad 4$	3	$\begin{array}{ll}3 & 14\end{array}$	$\begin{array}{lll}3 & 19\end{array}$	324	328	$\begin{array}{lll}3 & 37\end{array}$	345	352	359			15
16	239	244	248	252	257	$3 \quad 2$	37	$\begin{array}{ll}3 & 11\end{array}$	315	319	327	$\begin{array}{ll}3 & 35\end{array}$	342	349			16
17	235	239	243	247	251	256	30	34	38	312	$\begin{array}{ll}3 & 19\end{array}$	326	333				17
18	231	235	238	242	246	250	254	258	31	$3 \quad 5$	312	318	324				18
19	228	231	234	238	242	245	249	252	255	259	35	311	316				19
20	225	228	231	235	238	241	244	247	250	254	3	$3 \quad 5$	310				20
21	223	226	229	232	235	238	240	243	246	249	255	30					21
22	222	224	227	$2 \quad 29$	232	235	237	240	243	245	250	255					22
23	221	223	225	227	229	232	234	237	240	242	246	250					23
24	220	222	223	225	227	229	232	235	237	239	243	246					24
25	219	220	221	223	225	227	230	232	234	236	240						25
26	218	219	220	221	223	225	228	230	232	234	237						26
27	217	218	219	220	222	224	226	228	230	232	234						27
28	216	$2 \begin{array}{ll}2 & 17\end{array}$	218	219	221	$2 \quad 23$	224	226	228	230	231						28
29	215	216	217	218	220	222	223	225	226	228							29
30	215	$2 \quad 16$	217	218	219	221	222	224	$2 \quad 25$	226							30
31	214	215	216	217	218	220	221	222	223	224							31
32	214	215	216	217	218	219	220	221	222	823							32
33	215	215	215	216	217	218	219	220	221								33
34	215	215	215	216	217	$2 \quad 18$	219	219	220								34
35	215	215	215	215	216	217	$2 \quad 18$	218									35
36	216	215	215	215	216	217	217	$2 \quad 18$									36
37	217	216	215	215	216	216	217										37
38	217	216	215	215	216	216	217										38
39	218	217	216	616	, 216	216											39
40	218	217	216	216	216	216											40
41	219	218	217	216	216												41
42	219	218	217	216	216												42
43	220	218	217	216													43
44	220	219	217	216													44
45	221	219	217														45
46	221	219	217														46
47	222	219															47
48	222	219															48
49	223												I P. TF	Fracto			49
50	223												E P.	cro	mun	AR.	50
51													be sub Third	beracted Corre	from etion.		51
52																	52
53													Sun's	Appare	at Altit	tade.	53
54													$5{ }^{5} 10{ }^{20}$	0 $30\|40\|$	5060770	75880	54
55													" \quad "	" $"$	" "	- -	55
56													1 1 1 2 2 2	$\begin{array}{llll}1 & 2 & 2 \\ 2 & \\ 2 & \end{array}$	2 2 2 3 3 3		56
58													$\begin{array}{lllll}2 & 3 & 3 \\ 3 & 3\end{array}$	3 3	$4{ }^{4} 4$		58
60													3 3 4 4 4 4 4	4 4 5 5	4 4 5 5		60
62													[4	5. 5	5		62
64													5 5 6 6 6 8	6 6 7 7	6		64
66													7 7 7 7 7	7			66
68													888	78			68
70													8 8 8 8 8	-			70
72													8 9 9 9				72
74														1			74
	32°	34°	36°	38°	40°	42°	44°	46°	48°	50°	54°						

THIRD CORRECTION, TO APPARENT DISTANOE 104°

	APPARENT A						altitude o				, OR	STAR.					D's
Alt.	6°	7°	8°	9°	10°	11	12°	14°	16°	18°	20°		24°	26	28°	30°	
-																	
6	2	222	225		233	239			13	328			15	5430			6
7	223	220	222	225	228	232	236	246	257	310	323	336	348	8	414		7
8	226	222	220	222	224	227	230	238	247	257	$\begin{array}{ll}3 & 8\end{array}$	320	331	1342	353		8
9	2	2	222	221	222	224	226	232	239	248	257	3	317	7326	336		9
10	236	229	225	222	221	222	224	228	234	241	248	256		5314	323	331	10
11	2	234	228	22	222	221	222	2	230	235	241	2	255	5			11
12	248	239	232	227	224	222	221	223	227	231	236	242	248	8256			12
13	255	244	236	230	226	224	222	222	225	228	$2{ }_{2} 3$	238	243	349	255		13
14		249	240	233	229	226	224	222	223	226	230	234	239	9243	248	254	14
15		2. 54	245	237	232	228	226	223	222	225	228	231	235	5239	243		15
16	3		250	241	235	231	228	224	222	24	226	229	232	235	239		16
17	3		255	245	238	233	230	226	223	223	225	227	230	0233	236	240	7
18	331	313		249	241	236	233	$2 \begin{aligned} & 27\end{aligned}$	224	422	224	226	228	8231	234	237	18
19	338	319		253	245	239	235	229	225	223	223	224	226	629	231	234	19
20	346	325	311	258	$\underline{249}$	243	238	231	227	224	222	223	225	527	229	232	20
21	354	332	316		253	246	241	233	228	225	223	122	224	426	228	230	21
22		338	322	38	257	250	244	235	230	226	224	122	223	325	227		22
23	410	345	327	313		254	247	238	232	228	225	$1 \begin{aligned} & 1 \\ & 23\end{aligned}$	222	224	226	228	23
24	418	351	333	318		257	250	240	233	229	226	24	222	223	225	227	24
25	426	358	$3 \quad 39$	$3 \quad 22$	310		254	242	235	230	227	2 24	223	$3{ }_{2}^{2} 23$	224	226	25
26	433		344	327	$\begin{array}{ll}3 & 15\end{array}$		257	244	236	231	228	225	224	423	224	226	26
27	441	411	350	332	3 19	3	$3 \quad 0$	247	238	232	229	226	224	423	224	225	27
28	449	418	356	337	323	312		249	240	234	230	227	225	524		2	28
29	457	424		342	3 28	316		252	242	235	2 31	228	226	625	224	225	29
30		430		347	$3 \quad 32$	$3 \quad 20$	310	255	244	237	233	230	227	7225	224	224	30
31	512	437	413	352	$\begin{array}{lll}3 & 36\end{array}$	324	$\begin{array}{ll}3 & 14\end{array}$	258	246	239	234	231	228	826	225	224	31
32	519	444	419	357	341	3 28	317		249	241	236	232	229	9227	226	225	32
33	527	451	425	4	346	332	321	3	251	243	237	233	230	01228	226	225	33
34	5	458	430		350	336	324		254	4245	239	234	231	r 229	227		34
35	542		436	412	355	340	$3 \quad 37$		256	247	240	235	232	2230	228		35
36	54	$5 \quad 10$	441	417	$\begin{array}{ll}3 & 59\end{array}$	3	331	311		249	1242	237	233	3230			36
37	556	516	446	421		347	335	314		251	1243	238	234	4231	229		37
38		522	451	426		$\begin{array}{ll}3 & 51\end{array}$	3 38	317\|		253	245	5 239	235	5232	230	228	38
39	$6 \quad 10$	528	456	431	411	355	341	$3 \quad 20$		255	247	241	236	6233	231	229	39
40	616	533		436	415	$\begin{array}{ll}3 & 59\end{array}$	345	323		257	249	242	237	7234	232	230	40
41	62	539		440	$4 \begin{array}{ll}4 & 19\end{array}$			326		259	251	244	239	935	232		41
42	630	544	511	444	4		353	329	313		252	245	240	0236	233	231	42
43	637	550	516	449	427	410	356		315		254	4247	241	1237	234	231	43
44	643	555	521	453	431	413	$\begin{array}{ll}3 & 59\end{array}$	335	318		255	548	242	238	235	232	44
45	650		526	458	435	417		338	320		257	250	244	4239	235	232	45
46	656		531			420		340	322		258	251	245	5240	236	233	46
47		612	536		443	424		343	324	4310	- 30	0252	246	6241	237		47
48		617	540	$5 \quad 10$	446	427	411	345	326	6312		1253	248	8242	238		48
49	714	623	545	514	450	430	414	347	328	8314	43	325	549	9243	238		49
50	$7 \quad 20$	$6 \quad 28$	549	518	453	433	417	$3 \quad 50$	$3 \quad 30$	3 316		4256	250	0244	239		
51	726	633	553	522	457	436	420	352	332	218		¢ 258	251	1245			1
52	732	638	557	526		439	423	354	334	4320	- 38	8259	252	2245			5
5	737	643		529		442	426	356	336	6322	23	930	2 52				53
54	742	648	6	533		445	4 29	358	338	8323	$3{ }^{3} 10$		25				54
55	747	653	610	536	55	448	432		340	$0{ }^{3} 25$	5312						55
56	752	657	614	540	513	451			342	236							5
57	757	7	618	544	516	454	437		344	4328	814						7
58			622	547	519	457	439		346	$6{ }^{6} 29$	315						58
59			626	550	522		441										53
60	810	$7 \quad 13$	630	553	525		443	411	350	01332							60
62	819	719	636	559	530		447	15	3								
64	827	$7 \quad 26$	642	6	535	510	$4 \begin{aligned} & 4 \\ & 4\end{aligned}$										4
66	835	$7 \begin{aligned} & 73\end{aligned}$	${ }^{6} 47$	$6 \quad 9$	540	5 14	454										66
68	843	739	652	614													68
70	849	745	657														70
	6°	7°	8°	9°	10°	11°	12°	14°	16°	18	20°	22°	$24{ }^{-}$	26	28	30	

THIRD CORREOTION, TO APPARENT DISTAN゚OE 104°.

THIRD CORRECTION, TO APPARENT DISTANCE 108°.

$\begin{aligned} & \text { D's } \\ & \text { App. } \\ & \text { Alt. } \end{aligned}$	APPARENT																$\begin{aligned} & D^{D} \mathrm{~s} \\ & \text { App. } \\ & \text { Alt. } \end{aligned}$
	6°	7^{0}	8°	9°	10°	11°	12°	14°	16°	18°	20°	22°	24°	26°	28°	30°	
\bigcirc	"	, "	' "			1 11											\bigcirc
6	2301	- 32	235	239	244	250				339	355	411		443		515	6
7	2332	230	232	235	239	243	248	258	310	322	335	348	$4 \quad 2$	415	428	441	7
8	2362	232	2302	232	235	238	242	249	258	$3 \quad 9$	320	331	342	354		417	8
9	2402	235	232	231	233	235	238	243	250	258	38	318	328	338	348	358	9
10	246	239	235	233	231	233	235	239	244	251	259	37	316	325	334	343	0
11	252	244	238	235	233	232	233	237	241	246	253		3	315	323	330	11
12	2592	249	242	238	235	233	232	235	239	243	248	254	3		314	320	12
13	36	254	246	241	237	235	233	234	237	240	244	249	254			312	13
14		259	254	244	240	$1 \begin{array}{ll}2 & 37\end{array}$	235	233	235	238	241	245	249	254	259		14
15	3203	35	256	248	243	239	237	234	234	236	239	242	246	250	254	259	15
16	328	311	3	252	246	242	239	235	233	235	237	240	243	246	250	254	16
17	3353	317	36	256	249	245	242	237	234	234	235	238	240	243	247	250	17
18	3433	324	311	$3 \quad 0$	253	248	244	239	235	233	234	236	238	241	244	247	18
19	$3 \quad 503$	331	317		257	251	246	240	236	234	233	235	237	239	242	245	19
20	358	337	322	310		254	249	242	238	235	233	234	236	238	240	243	20
21	46	344	328	314	3	257	252	244	239	236	234	234	235	237	239	241	21
22	4143	351	331	319		$3 \quad 0$	255	246	241	237	235	234	235	236	238	240	22
23	4223	358	340	324	312	3	258	248	242	238	236	234	234	235	237	239	23
24	4304	44	346	329	3171	$\begin{array}{ll}3 & 8\end{array}$	3	250	244	240	237	235	234	235	236	238	24
25	438	411	351	334	322	$\begin{array}{ll}3 & 12\end{array}$	3	253	246	241	238	236	234	234	235	237	25
26	446	418	357	339	3 26	316	3	255	248	243	239	237	235	234	235	236	2
27	4544	425	4	344	3131	$3 \quad 20$	${ }^{3} 111$	258	250	244	240	238	236	235	234	235	27
28	5	431	49	349	335	3 24	315		252	246	242	239	237	235	234	235	28
29	5104	437	415	354	340	3 28	318	3	254	247	243	240	238	236	235	235	29
30	518	444	421	359	344	332	322		256	249	245	241	238	236	235	235	-
31	526	451	427		318	3 36	325		258	250	246	242	239	237	236	235	31
32	5331	458	433		352	340	328	311		252	247	243	240	238	237	236	32
33	5415	$5 \quad 5$	438	414	357	344	332	3 14		254	248	244	241	239	237	236	33
34	15485	511	443	419	411	3 47	336	$\left.\right\|_{3} 17$		256	250	245	242	240	238	237	34
35	556	518	449	424		351	3 39	$3 \quad 30$		258	251	246	243	241	239	237	35
36		524	455	429	410	355	342	3 23		30	253	248	244	242	240	238	35
37	6105	530		434	414	359	346	3 26	312		255	249	245	242	240	238	37
38	${ }_{6}^{6} 17 \mid 5$	536	5	439	419		350	3 39	315	3	257	251	246	243	241	239	38
39	6245	542	510	444	424	47	3 54	3132	$2 \begin{array}{ll}3 & 17\end{array}$		258	252	247	244	242	240	39
40	6315	548	515	449	428	411	1357	335	$3 \quad 30$	3		254	249	245	243	240	
41	6385	554	520	454	433	415	4	$1 \begin{array}{ll}3 & 38\end{array}$	322	310	3	255	250	246	243	241	41
42	6455	$5 \quad 59$	525	458	437	418	45	5311	1324	312	3	256	251	247	244	241	42
43	6526	65	530		441	422	49		327	314	35	258	252	248	245	242	43
44	6596	611	536		445	426	412	347	329	316	3	259	253	249	246	243	44
45		$6 \quad 17$	541	$5 \quad 12$	449	430	416	350	331	318			255	250	247		45
46	7126	622	546	516	453	434	419	352	333	320	210		256	251	247		46
47	7186	627	551	520	457	437	422	355	(3 36	322	312	34	258	252			47
48	724	632	556	524	50	-4 41	1425	357	338	324	313		259	253			48
49	7306	637		528	5	444	428) 341	326	315						49
50	736	642		532	5	447	431		343	328	317						50
51	742	647	610	536	411	450	434		345	33	318						51
52	7476	652	614	540	5	453	337		347	332	319	310					52
53	7536	$\begin{array}{ll}6 & 57\end{array}$	618	543	518	1456	6439	410	349	334	320						53
54	758	7	622	547	521	459	442	412	351	335	3 21						54
55	8	7	626	551	524		445	414	353	336							$5{ }^{5}$
56		711	630	554	527		5447	416	355	338							56
57	814	716	634	558	530	58	8450	418	357								57
58	819	720	638	61	533	511	1452	420	358								58
59	824	725	642		536	6514	454	$4 \begin{aligned} & 4 \\ & 4 \\ & 4\end{aligned}$									59
60	828	729	645		539	516	456	424									60
fi	833	733	648	611	542	$5 \quad 19$	458										61
62	837	737	651	614	545	521	50										68
63	841	740	6. 54	$6 \quad 17$	548	523											63
64	845	743	$\begin{array}{ll}6 & 57\end{array}$	620													64
66	853	746															66
	6°	7°	8°	9°	10°	11°	12°	14°	16°	18°	20°	22°	24°	26°	28°	30°	

THIRD CORRECTION, TO APPARENT DISTANCE 108°.

D's	APPARENT A						altitude o		OF TIIE		, OR	STAR.					D's	
Alt.	6°	7°	8°	9°	10°	11°	12°	14°	16°	18°	20°	22°	24°	26°	28°	30°	$1 \mathrm{lt} \text {. }$	
-																		
6	240	242	243	245	251		3-7		$\begin{array}{ll}3 & 36\end{array}$	$3 \quad 52$		424	440	456	512	528		
7	242	240	242	242	249	253	258	38	320	$3 \quad 33$	346	359	413	426	440	454		
8	246	242	2412	243	245	248	252	3 3	319	319	331	342	354	46	418	430		
9	2512	245	243	241	243	245	248	254	$\left\lvert\, \begin{array}{ll}3 & 1\end{array}\right.$	$\left\lvert\, \begin{array}{ll}3 & 9\end{array}\right.$	319	329	340	350		411	9	
10	257	249	245	243	242	243	245	249	255	3	310	$\begin{array}{ll}3 & 19\end{array}$	328	337	346	356	0	
11		254	248	245	243	242	243	246	250	256		11	319	327	335	344	11	
12		259	252	248	245	243	242	244	247	252	258		312	319	326	334	12	
13	316	34	256	251	247	245	243	243	245	249	254			312	318	325	13	
14	323	310	$3{ }^{3} 0$	254	250	247	245	243	244	247	251	256		3	312	317	14	
15	331	316	$3 \cdot 52$	258	253	249	247	244	244	246	249	253	257			311		
16	$3 \quad 39$	322	310	3	256	251	248	245	243	245	247	250	254	257		36	16	
17	347	329	3153	3	259	254	250	246	244	244	246	248	251	254	258		17	
18	355	335	3203	310		257	253	248	245	244	245	247	249	252	255	259	18	
19		341	3263	315			256	250	246	245	244	246	248	250	253	256	19	
20	411	448	$3 \quad 32$	320	$3 \quad 10$		258	252	248	245	244	245	247	249	251	254	20	
21	419	354	338	325	315		$3 \begin{array}{ll}3 & 1\end{array}$	254	249	246	244	244	246	248	250	252	21	
22	427	4	344	330	320	3111		256	251	247	245	244	245	247	249	251	22	
23	435	48	3503	335	324	315		258	252	248	246	245	244	246	248	250	23	
24	443	415	356	340	328	319	311	3	254	249	247	245	244	245	247	249	24	
25	452	422		346	$3 \quad 33$	$3 \quad 33$	315		255	251	248	246	245	244	246	248	25	
26		429	$4{ }^{4} 9$	351	338	$\begin{array}{ll}3 & 27\end{array}$	318	$\begin{array}{ll}3 & 5\end{array}$	257	252	249	247	245	244	245	247	26	
27		437	415	356	342	3131	322	3	259	254	251	248	245	245	245	246	27	
28	516	444	421	$4 \quad 2$	347	$\begin{array}{ll}3 & 36\end{array}$	326	3111	3	256	252	249	246	246	245	246	28	
29	524	451	427	47	352	340	331	$\begin{array}{lll}3 & 14\end{array}$	3	258	253	250	246	246	245	346	29	
30	$5 \quad 32$	457	433	412	$3 \quad 57$	345	335	$3 \quad 3$			255	$\underline{2} 52$	247	$\underline{247}$	246	346		
31	540		439	417		349	$3 \quad 39$	320			257	253	249	248	247	246	31	
32	548	$5 \quad 10$	445	422		354	343	323	3 12	3	258	254	251	249	247	246	32	
33	556	517	5151	428	412	358	346	3 26	3 14			255	252	250	248	247	33	
34		524	556	433	416		350	$\begin{array}{ll}3 & 29\end{array}$	$\\|_{3} 17$			257	253	251	249	248	34	
35	$6 \quad 11$	531	5	438	421		$3 \quad 53$	$3 \quad 32$	$3 \quad 19$	$3 \quad 10$		259	255	252	$2 \quad 50$	249	5	
36	619	537		443	425	410	357	$3 \quad 35$	321	312			256	253	251	249	36	
37	626	544	513	448	429	414		3138	324	3141	3	3	257	254	252	250	8	
38	633	$5 \quad 50$	518	453	433	417		341	326	316			253	255	253	251	38	
39	641	556	524	458	437	421		344	$3 \quad 29$	$\begin{array}{ll}3 & 18\end{array}$	310		259	256	254	252	39	
40	648	$6 \quad 2$	529		441	425	411	$3 \quad 47$	$3 \quad 32$	320	312			257	255	253		
41	655	6	535		445	428	415	350	335	322	313	37		258	255		41	
42		614	540	$5 \quad 13$	449	432	418	$1 \begin{array}{lll}3 & 53\end{array}$	388	325	315	38		259	256		2	
43		620	546	518	453	436	422	356	340	327	317	310					43	
44	$7 \quad 15$	626	551	523	458	440	425	$\begin{array}{ll}3 & 59\end{array}$	342	$3 \quad 29$	319	312					44	
45	$7 \quad 22$	632	556	$5 \quad 28$		444	428	4	345	3 31	321	314						
46	728	638	6	533		447	431	45	534	333	323	315	$\left\lvert\, \begin{array}{ll} 3 & 9 \end{array}\right.$				46	
47	735	514	6	$5 \quad 37$	512	451	434	48	8350	3 36	325	516					47	
48	742	$6 \quad 49$	612	541	516	455	438	$4 \begin{array}{ll}4 & 11\end{array}$	352	$3 \quad 38$	326	6317					48	
49	$7 \quad 48$	$\begin{array}{ll}6 & 54\end{array}$	616	545	520	458	441	414	355	340	328						40	
50	755	$6 \quad 59$	621	549	523	5	444	417	357	342	329							
51		74	625	$5 \quad 53$	527		447	419	359	344							51	
52		$7 \quad 9$	629	$5 \quad 57$	530	5	450	422	4	346							2	
53	813	7 14	634	6	534	4512	453	424	4								53	
54	819	719	$6 \quad 38$	6	537	515	456	426	4								4	
55	825	$7 \quad 73$	$6 \quad 42$		541	5	459	428									5	
56	830	77	$6 \quad 47$	\square	544	5		430									56	
57	835) 733	$6 \quad 51$	615	547	524											57	
58	840	1738	- 655	[619	550	${ }^{5} 527$											58	
59	845	574	6 69	622	553	5 29											59	
60	850	748	7	625	556												60	
61	854	47		628													61	
62	858	756	7														62	
63		7 79															63	
64																	64	
	6°	7°	8°	9°	10°	11°	12°	140	16°	18°	20°	22°	24°	26°	28°	30°		

THIRD CORRECTION, TO APPARENT DISTANCE 112°.

$D D^{\prime}$	APPARENT ALTITUDE OF THE SUN, OR STA																$\begin{aligned} & \text { D's } \\ & \text { App } \\ & \text { Alt. } \end{aligned}$
Alt.	320	34°	36°	38°	40°	42°	44°	46°	48°	50°	52°	54°	56°	58°	60°	62°	
6	1 "1	'1"	111 6 16	-1 11	71 11	'111	1 7 7 14	'1711	1, 11	11 7 7	1 1 8	1 11 8 18	$1{ }^{\prime \prime}$	' 11	' 11		\bigcirc
6	5446	$6{ }^{6}$	616	631			714		740			$8 \quad 18$	830	841	850	858	6
7	$\begin{array}{llll}5 & 7\end{array}$	5215	534	547	6	613	625	637	649	$7 \quad 0$	710	720	730	739	747	755	7
8	4424	4545	$5 \quad 5$	516	527	538	549	$6{ }^{6}$	610	$6 \quad 20$	629	638	647	655	72	78	
9	421	432	442	452	511	511	521	531	540	548	556	64	611	6186	624		9
10	$4 \quad 5$	414	423	432	440	449	458	$5 \quad 7$	$5 \quad 15$	523	531	538	544	550	555		10
11	352	$4 \quad 0$	48	416	423	431	439	447	455	52	5	514	519	524			11
12	$3{ }^{3} 411$	348	355	4	$4 \quad 9$	416	424	431	438	444	450	456	51	$5 \quad 5$			12
13	3113	388	344	350	357	$4 \quad 4$	$4 \quad 10$	417	423	429	435	440	445				13
14	323	329	335	341	347	353	359	46	412	417	422	426	430				14
15	316	321	327	$3 \quad 33$	$3 \quad 38$	344	$3 \quad 50$	356	$4 \quad 1$	46	410	414					15.
16	310	315	321	326	3131	337	342	347	352	357							16
17	36	3111	316	320	325	$3 \quad 30$	$3 \begin{aligned} & 35\end{aligned}$	340	345	349	353						17
18	$3{ }^{3}$	37	312	316	$3 \quad 20$	325	$3 \quad 29$	334	$3 \begin{array}{ll}3 & 38\end{array}$	342	346						18
19	3 3 0	34	38	312	$\begin{array}{ll}3 & 16\end{array}$	320	324	328	312	335							19
20	257	$3 \quad 1$	3	38	$3 \quad 12$	316	$3 \quad 30$	$3 \quad 33$	$3 \quad 36$	329							20
21	255	258	32	3	39	312	316	$3 \quad 19$	322								21
22	253	256	3	3	3	319	312	315	$\begin{array}{ll}3 & 18\end{array}$								22
23	252	255	258	$3 \begin{array}{ll}3 & 1\end{array}$	3	36	3	312									23
24	251	253	256	259	31	$3{ }^{3} 4$	$3{ }^{3} 7$										24
25	250	252	254	257	259	$3 \quad 1$	33 4										25
26	249	251	253	255	257	259	$3 \quad 1$										26
27	248	250	252	254	256	257											27
28	247	249	251	253	255	256											28
29	247	248	250	252	254												29
30	247	248	249	251	253												30
31	247	248	249	250													31
32	247	248	249	250													32
33	247	248	249														33
34	248	248	249														34
35	248	248															35
36	249	248															36
37	249																37
38	250																38
39																	39
40																	40
41																	41
42																	42
43																	43
44																	44
45																	45
46																	46
47																	47
48																	48
49																	49
50												ras	P. EF	Fbict	aun'		50
51													be subi	btracted	from		51
52													Third	Correc	ion.		52
53																	53
54													Sun's	Apparen	nt Altit	nde.	54
55													511020	O30 40150	601658		55
56													-	\cdots	${ }^{\prime \prime} 1010$	"'	56
57													(1) $\begin{array}{lll}1 & 2 \\ 2 & 2 \\ 2 & 3 \\ 3\end{array}$	2 3	$5{ }_{5}^{4} 5$		57
58														44.55	$5{ }^{5}$		58
59																	59
60													4 5 5 5 5 6	6 8 7 7			60
61													${ }_{7}{ }_{7}^{6}$	${ }_{7} 7_{8}^{7}$			61
62													$8{ }^{8} 8$	8			62
63																	63
64													${ }_{9}^{9} 9$				64
65																	65
	32°	34°	36°	38°	40°	42°	44°	46°	48°	50°	52°						

THIRD CORREOTION, TO APPARENT DISTANCE 116°

THIRD CORREOTION, TO APPARENT DISTANCE 116°

D's	APPARENT ALTITUDE OF THE SUN, OR STAR.																App
Alt.	28°	30°	32°	34°	36°	38°	40°	42°	44°	46°	48°	50°	52°	54°	56°	58°	
\bigcirc	, 11	, 11		11	11	, 11	' "1	, 11	, 11	, "	, 11	${ }^{\circ} 11$	111	111			\bigcirc
6	530	546	$6 \quad 3$	$6 \quad 19$	636	652	$7 \quad 7$	$7 \quad 22$		751	85	$8 \quad 18$	830	842			6
7	456	510	525	540	555	$6 \quad 9$	$6 \quad 22$	$6 \quad 34$	646	658	$7 \quad 9$	$7 \quad 20$	$7 \quad 31$	742	$7 \quad 52$		7
8	433	445	458	511	524	536	547	$5 \quad 58$	68	$\begin{array}{lll}6 & 18\end{array}$	628	638	648	658	78		8
9	415	426	437	447	458	58	519	$5 \quad 29$	$5 \quad 39$	549	$5 \quad 59$	68	616	6 24			9
10	40	$4 \quad 10$	420	429	439	448	$4 \quad 58$	$5 \quad 7$	516	$5 \quad 25$	533	541	549	556			10
11	348	357	46	415	423	432	441	449	457	$\begin{array}{ll}5 & 5\end{array}$	512	519	525				11
12	338	346	354	42	410	418	426	434	441	448	454	51	57				12
13	330	337	344	352	40	$4 \quad 7$	414	421	427	433	439	445					13
14	324	$3 \quad 30$	337	344	351	357	$4 \quad 4$	410	416	421	427	433					14
15	$\begin{array}{ll}3 & 19\end{array}$	$3 \quad 25$	$\begin{array}{ll}3 & 31\end{array}$	3 37	343	$3 \quad 49$	$3 \quad 55$	$4 \quad 1$	$4 \quad 6$	411	417						15
16	315	320	326	$3 \quad 31$	$3 \quad 37$	342	347	353	358	42	48						16
17	312	316	321	326	331	$3 \quad 36$	311	346	351	355							17
18	39	$\begin{array}{lll}3 & 13\end{array}$	$\begin{array}{ll}3 & 17\end{array}$	322	326	331	$3 \quad 36$	340	345	349							18
19	37	310	314	318	322	$3 \quad 27$	$\begin{array}{lll}3 & 31\end{array}$	$3 \quad 35$	$\begin{array}{ll}3 & 39\end{array}$			\llcorner					19
20	$3 \quad 5$	3	$\begin{array}{ll}3 & 11\end{array}$	315	$3 \quad 19$	$3 \quad 23$	$3 \quad 37$	$3 \begin{aligned} & 3 \\ & 3\end{aligned}$	$3 \quad 34$								20
21	34	36	39	$\begin{array}{ll}3 & 12\end{array}$	316	320	323	$3 \quad 27$									21
22	$3 \quad 3$	35	37	310	314	317	320	$3 \quad 23$									22
23	32	34	36	$3 \begin{array}{ll}3 & 9\end{array}$	312	315	$\begin{array}{ll}3 & 18\end{array}$										23
24	31	33	35	38	310	$\begin{array}{ll}3 & 13\end{array}$	316										24
25	30	$3 \quad 2$	34	37	$3 \quad 9$	$\begin{array}{ll}3 & 11\end{array}$											25
26	30	32	34	36	37	3 3 9											26
27	30	31	3	35	36												27
28	259	30	32	$3 \quad 4$	$3 \quad 5$												28
29	259	30	31	$3 \quad 3$													29
30	30	$3 \quad 0$	31	3													30
31	31		31														31
32	32	31	32														32
33	32	31															33
34		32															34
35	34																35
36	$3 \quad 5$																36
37													.				37
38								\cdots									38
39																	39
40																	40
41																	41
42																	42
43																	43
44																	44
45																	45
46																	46
47																	47
48																	48
49						\bullet											49
50													P. $\mathrm{sfr}^{\text {r }}$				50
51				-													51
52													be subt	cracted	from		52
53													Third	Corres	tion.		53
54																	54
55													Snn'a	Apparen	nt Altit	ndo.	\% 5
56 57														".10 ${ }^{40}$	\% ${ }^{60}$	" 110	56
57												5	"101010	1 $\prime \prime$ 3 4 4	"110	" $"$	57
58												$\begin{array}{r} 5 \\ 10 \end{array}$	2 $2{ }^{2}$	3 4 5 4 5 5	$5{ }^{5}$,	58
59												15	$\left.\begin{array}{\|l\|l\|l\|} 3 & 3 & 4 \\ 4 & 4 & 5 \end{array} \right\rvert\,$	5 5 6 6 6	6	,	59
60												25	5 5	 6 7 7			60
61												$\begin{aligned} & 30 \\ & 35 \end{aligned}$	5 6 6 6 6 7 7	7			61
62												40	7 7 8 7 8 8	-			62
63												45	7 8 8 8 8	,	-		63
64												55	9	,	-	,	64
65													9	11	11		65
	28°	30°	32°	34°	36°	38°	40°	42°	44°	46°	48°						

THIRD CORRECTION, TO APPARENT DISTANCE 120°.

$\bar{D} \text { 's }$	APPARENT 1						ILTITUDE		F THE SUN, OR			star.				20°		$\begin{aligned} & \text { App } \\ & \text { Alt. } \\ & \hline \end{aligned}$
Alt.	$6^{\circ}{ }^{7}$	7^{70}	8°	9°	10°	11°	12°	13°	14°	15°	16°	17°		18°	19°			
63	1 111	11 1 3	1 1111	1 11 3 11	$\begin{array}{ll}1 \\ 3 & 17\end{array}$	11 11 3 1	11 \prime 3 32	$\begin{array}{ll}11 & 11 \\ 3 & 39\end{array}$	$\begin{array}{ll}111 \\ 3 & 47\end{array}$	111	'111			1 11		1 $\prime \prime$ 3	117 4 17	6
${ }_{6}^{6} 3$	13	$\begin{array}{llll}3 & 3 & 3 \\ 3\end{array}$	3 6 3	3 11 3												$\begin{array}{ll}3 & 39\end{array}$	447	6
73	3 3 3	$3 \quad 23$	3 4	$3{ }^{3} 73$	311							35	54			415	430	7
$8{ }^{3}$	$\begin{array}{llll}3 & 7 & 3\end{array}$	3 4 3	3 3 3	3513	38	3113	315	320	325	329	335	34	40	346	352	359	412	8
$9{ }^{9} 3$	3123	$\begin{array}{ll}3 & 8\end{array}$	$\begin{array}{ll}3 & 5 \\ \end{array}$	$\begin{array}{ll}3 & 4 \\ 3\end{array}$	36	383	3113	314	318	322	326	33	31	336	341	347	358	9
10	318	3123		$3 \quad 6$	$3 \quad 5$	$3 \quad 63$	$3 \quad 8$	310	314	317	320	32	24	328	333	$3 \quad 38$	347	10
11	25	3173	3123	$3 \quad 83$	3		3	38	311	313	316	31		322	326	$3 \quad 30$	338	11
12.3	333	3233	3 16	$\begin{array}{llll}3 & 11 & 3\end{array}$	38	3 6	35	$\begin{array}{ll}3 & 7\end{array}$	39	311	313		15	318	321	$3 \quad 24$	331	12
13 3	3413	3283	3203		311	38	36	363	38	39	311		13	315	$\begin{array}{ll}3 & 17\end{array}$	320	326	13
143	3493	$3{ }^{3} 13$	3253	3193	314	3113	38	$3 \quad 73$					11	312	314	317		14
15	3573	3413	3303	323	318	314		$3 \quad 9$	8				,	311	312	314	318	15
16	$4 \quad 6$	3483	$\begin{array}{ll}3 & 36\end{array}$	3283	322	3173	313	311	9				9	310	311	312	316	6
17	4143	3553	3423	3323	325	3203	315	312	310	$3 \quad 9$					310	311	314	17
18	4234	$4 \quad 33$	3483	3373	329	323	318	314	312	311	$3 \quad 10$		9	319	310	311	313	18
19	4324	4103	3543	3423	333	3263	321	3 17	315	313	311	3	10	310	39	310	312	19
20	4404	4174	4 1	3483	338	330	324	320	317	315	313		12	$3 \quad 11$	310	310	312	20
21	4494	4244	473	353	342	334	328	323	319	317	315		13	312	311	310	311	1
22	4584	4314	4143	358	347	339	$3 \quad 32$	326	322	319	316		14	313	312	311	311	22
23		4394	4214	4 4	352	343	336	330	325	321	318		16	314	313	312	312	23
24		4464	427	4103	357	347	$\begin{array}{ll}3 & 39\end{array}$	333	328	323	320		18	316	315	314	313	24
25	5254	453	433	415		351	343	3 36	331	3 26	$3 \quad 23$		20	318	317	315	314	25
26	5345	$\begin{array}{lll}5 & 1\end{array}$	440	420	4	356	347	339	$\begin{array}{ll}3 & 34\end{array}$	329	325		22	320	318	316	315	26
27	5425	581	447	425	412		351	343	$\begin{array}{ll}3 & 37\end{array}$	312	328		25	322	320	318	316	27
28	$\begin{array}{lllll}5 & 51 & 5\end{array}$	5164	453	431	417	$4 \quad 5$	3 55	347	340	335	330		27	324	4 22	320	317	28
29		524.5	50	437	422	410	$3 \quad 59$	350	343	$\begin{array}{ll}3 & 37\end{array}$	333		29	326	323	321	318	29
30		531.5	$5 \quad 6$	443	427	415	4	354	346	340	336		32	$3 \quad 28$	325	323	319	30
31	617 5	5395	512	448	432	419	47	357	349	343	338		34	330	327	325	320	31
32	6255	5465	518	454	437	423	411	41	352	346	341			332	329	327	322	32
33	6345	5545	525	50	442	427	415	45	356	349	344		39	335	532	329	32	33
34	6436	$6 \quad 25$	531	$5 \quad 6$	447	432	419	49	359	352	347		42	337	734	331	32	34
35	6516	$6 \quad 9$	$5 \quad 38$	512	452	437	424	412		355	350		45	340	-3 3	33	328	35
36	659	616	544	518	457	442	428	415	45	358	353		47	342	338	335	330	36
37		623	550	523	$5 \quad 2$	446	432	419	49	$4 \quad 2$	356			345	541	$1{ }^{3} 37$	33	37
38	7166	630	556	528	57	450) 436	423	413	45	359		53	347	73	339	33	38
39	7246	637	$6 \quad 2$	534	512	455	440	${ }_{4} 427$	416	48	4		55	350	$0{ }^{3} 45$	541		39
40	732	$6 \quad 44$	$6 \quad 8$	$5 \quad 39$	517	459	444	431	420	411			58	352	2347	73		40
41	740	650	614	544	522		448	435	424	415				355				41
42	7476	656	$6 \begin{array}{ll}6 & 19\end{array}$	550	5 27	58	452	439	428	418				357				42
43	755	$7 \quad 2$	625	555	532	$2 \begin{array}{ll}5 & 13\end{array}$	456	442	431	421	413							43
44	$8 \quad 3$	$7 \quad 9$	631	$6 \quad 0$	537	517	50	446	434	424	416							44
45	811	715	636	$6 \quad 5$	542	222		449	437	427								45
46	818	721	641	610	546	526	58	453	440									46
47	825	727	646	615	551	1530	511	456										47
48	832	733	652	620	555	5534	4514											48
49	$\begin{array}{lll}8 & 39\end{array}$	${ }^{7} \quad 39$	${ }^{6} 57$	6	559	9 37												49
50	845	745	57	$6 \quad 60$	6													50
51	851	17	7 8	634														
52	857	775	7713												ird Corr	from		51 53 53
53	9	38													ird Corr	ertion.		53
54														Sun'	Appar	ent 1 lti	tude.	54
55														$5{ }^{10} 2$	2030			55
E6														$=$		- \quad-1		56 57
57														$\left.\left\|\begin{array}{l} 2 \\ 2 \end{array}\right\| \frac{1}{2} \right\rvert\,$	$\begin{array}{lllll}3 & 3 & 4 \\ 3\end{array}$	5	\|'"	57 58
58													$\begin{aligned} & 10 \\ & 15 \end{aligned}$	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|} 2 \\ 3 & 3 \\ 4 \end{array}$	$\begin{array}{\|l\|l\|} \hline & 4 \\ 4 & 5 \\ 4 & 5 \\ 5 & 6 \end{array}$	$\left\|\begin{array}{l} 6 \\ 6 \\ 7 \end{array}\right\|^{3}$		58 59
59														4	$5{ }_{5} 6$			59 60
60														${ }^{5} 5$	${ }_{7}^{6} 78$			-61
61													$\begin{aligned} & 30 \\ & 35 \\ & 40 \end{aligned}$		$\left.\left\lvert\, \begin{array}{\|c\|} 8 \\ 8 \\ 8 \end{array}\right.\right]^{8}$			61
62													45	8				62
63																		64
65																		65
	6°	70	8°	9°	10°	11°	12°	13°	14°	15°	16°							

THIRD CORRECTION, TO APPARENT DISTANOE 120°.

D's	APPARENT A						Altitude O		OF	SU	, OR	STAR					$\begin{aligned} & \text { D's } \\ & \text { App. } \\ & \text { Alt. } \end{aligned}$
Alt.	24°	26°	28°	30°	32°	34°	36°	38°	40°	42°	44°	46°	48°	50 ${ }^{\circ}$	52°	54°	
-		, "	, "		, "	, "1	, "1	' 11	' 11	, "1	, "1	, "					\bigcirc
6		532	549		$6 \quad 23$	641	658	714	$7 \quad 30$	746		817	8318	844	$8 \quad 57$		6
7	445	50	515	530	545	6 0	615	629	643	656	78	721	733	745	757		
8	425	438	451	54	517	530	543	556	68	620	631	642	653	$7 \begin{aligned} & 7\end{aligned}$	713		8
9	$4 \quad 9$	420	431	443	455	57	518	528	538	549	$6 \quad 0$	610	620				
10	357	$4 \quad 7$	417	427	437	447	457	57	517	527	537	546	555	$6 \quad 3$			10
11	347	356	4	414	423	432	442	451	459	58	517	525	533				11
12	339	347	355	4	411	419	428	436	444	452	50	57	514				12
13	332	339	346	353	$4 \quad 0$	48	416	424	431	438	446	453					13
14	327	$\begin{array}{ll}3 & 33\end{array}$	339	346	352	359	46	413	420	427	434	440					14
15	3 23	329	334	340	346	352	358	44	411	418	424						15
16	3 20	325	330	336	341	346	352	358	4	410	416						
17	318	322	327	332	336	341	347	352	358	43							17
18	316	320	324	328	3132	$\begin{array}{ll}3 & 37\end{array}$	342	347	352	357							18
19	315	318	321	325	3 29	$3 \begin{array}{ll}3 & 33\end{array}$	3 38	343	347								19
20	314	316	319	323	$3 \quad 37$	331	$3 \quad 35$	$3 \quad 39$	343								20
21	313	315	317	321	324	328	3	336									21
22	31212	314	316	319	$1 \begin{array}{ll}3 & 22\end{array}$	326	$3 \quad 29$	333									22
23	312	313	315	318	321	324	3 27										23
24	312	313	315	317	320	323	326										24
25	$3 \quad 12$	3 13	315	317	319	$3 \quad 31$											25
26	$\begin{array}{lll}3 & 13\end{array}$	314	315	$\begin{array}{ll}3 & 16\end{array}$	$\begin{array}{llll}3 & 18\end{array}$	320											26
27	${ }^{3} 14$	314	315	316	$\begin{array}{lll}3 & 18\end{array}$												27
28	315	314	315	316	$\begin{array}{ll}3 & 18\end{array}$												28
29	316	315	315	316													29
30	317	316	316	316													30
31	3188	317	317														31
32	31919	318	318														32
33	${ }_{3} 211$	319															33
34	3 22	320															34
35	$3 \quad 34$																35
	326																36
37																	37
38																	38
39																	39
40																	40
41																	1
42																	42
43																	43
44																	44
45																	45
46																	46
47																	47
48																	48
49																	49
50																	50
51																	51
52																	52
53																	53
54																	54
55																	55
56																	56
57																	57
58																	58
59																	59
60																	60
61																	61
62				.													62
63																	63
64																	64
65																	65
	24°	260	29°	30°	32°	34°	$3 n^{\circ}$	380	40°	42°	44°	46°	48°	50°	52°	54°	

TABLE XXXIV.

PROPORTIONAL LOGARITHMS.

TABLE XXXIV.

PROPORTIONAL LOGARITHMS

9.		$\left\|\begin{array}{ll}\text { h. } & \text { m. } \\ 0 & 11\end{array}\right\|$	$\left\|\begin{array}{ll} \text { h. } & m \\ 0 & 12 \end{array}\right\|^{\circ}$	$\left\lvert\,$$\circ$ h. m. 0 13 $0^{\circ}\right.$	$\begin{array}{ll} 0 & \\ \text { h. } & \text { m. } \\ 0 & 14 \end{array}$	$\left\|\begin{array}{ll} 0 & \\ \mathrm{~h} . & \mathrm{m} . \\ 0 & 15 \end{array}\right\|$	$\left\|\begin{array}{ll} \mathrm{h} . & \\ 0 & 16 \end{array}\right\|$	$\left\lvert\, \begin{array}{ll} 0 & \\ \mathrm{~h} . & \mathrm{ma} . \\ 0 & 17 \end{array}\right.$	$\left\|\begin{array}{ll} 0 \\ \mathrm{~h} . & \mathrm{m} . \\ 0 & 18 \end{array}\right\|$	$\left\|\begin{array}{ll} 0 & \\ \mathrm{~h} . & m \\ 0 & 19 \end{array}\right\|$	*	
0	\|1.2553	1	1.2139	$\|1.1761\|^{1}$	$\left.1.1413\right\|^{1}$	1.1091	\|1.0792	1.0512	1.0248	1.0000	0.9765	0
1	2545	2132	1755	1408	1086	0787	0507	0244	0.9996	9761	1	
2	2538	2126	1749	1402	1081	0782	0502	0240	9992	9758	2	
3	2531	2119	1743	1397	1076	0777	0498	0235	9988	9754	3	
4	2524	2113	1737	1391	1071	0773	0493	0231	9984	9750	4	
5	1.2517	1.2106	1.1731	1.1386	$\underline{1.1066}$	1.0768	1.0489	1.0227	0.9980	0.9746	5	
6	2510	2099	1725	1380	1061	0763	0484	0223	9976	9742	6	
7	2502	2093	1719	1374	1055	0758	0480	0219	9972	9739	7	
8	2495	2086	1713	1369	1050	0753	0475	0214	9968	9735	8	
9	2488	2080	1707	1363	1045	0749	0471	0210	9964	9731	9	
10	1.2481	1.2073	1.1701	1.1358	1.1040	1.0744	1.0467	1.0206	0.9960	0.9727	10	
11	2474	2067	1695	1352	1035	0739	0462	0202	9956	9723	11	
12	2467	2061	1689	1347	1030	0734	0458	0197	9952	9720	12	
13	2460	2054	1683	1342	1025	0730	0453	0193	9948	9716	13	
14	2453	2048	1677	1336	1020	0725	0449	0189	9944	9712	14	
15	1.2445	1.2041	1.1671	1.1331	1.1015	1.0720	1.0444	1.0185	0.9940	0.9708	15	
16	2438	2035	1665	1325	1009	0715	0440	0181	9936	9705	16	
17	2431	2028	1660	1320	1004	0711	0435	0176	9932	9701	17	
18	2424	2022	1654	1314	0999	0706	0431	0172	9928	9697	18	
19	2417	2016	1648	1309	0994	0701	0426	0168	9924	9693	19	
20	1.2410	1.2009	1.1642	1.1303	1.0989	1.0696	1.0422	1.0164	0.9920	0.9690	20	
21	2403	2003	1636	1298	0984	0692	0418	0160	9916	9686	21	
22	2396	1996	1630	1292	0979	0687	0413	0156	9912	9682	22	
23	2389	1990	1624	1287	0974	0682	0409	0151	9908	9678	23	
24	2382	1984	1619	1282	0969	0678	0404	0147	9905	9675	24	
25	1.2375	1.1977	1.1613	1.1276	1.0964	1.0673	1.0400	1.0143	0.9901	0.9671	25	
26	2368	1971	1607	1271	0959	0668	0395	0139	9897	9667	26	
27	2362	1965	1601	1266	0954	0663	0391	0135	9893	9664	27	
28	2355	1958	1595	1260	0949	0659	0387	0131	9889	9660	28	
29	2348	1952	1589	1255	0944	. 0654	0382	0126	9885	9656	29	
30	1.2341	1.1946	1.1584	1.1249	1.0939	1.0649	$\overline{1.0378}$	1.0122	0.9881	0.9652	30	
31	2334	1939	1578	1244	0934	0645	0374	0118	9877	9649	31	
32	2327	1933	1572	1239	0929	0640	0369	0114	9873	9645	32	
33	2320	1927	1566	1233	- 0924	0635	0365	0110	9869	9641	33	
34	2313	1921	1561	1228	0919	0631	0360	0106	9865	9638	34	
35	1.2307	1.1914	1.1555	1.1223	1.0914	1.0626	1.0356	1.0102	0.9861	0.9634	35	
36	2300	1908	1549	1217	0909	0621	0352	0098	9858	9630	36	
37	2293	1902	1543	1212	0904	0617	0347	0093	9854	9626	37	
38	2286	1896	1538	1207	0899	0612	0343	0089	9850	9623	38	
39	2279	1889	1532	1201	0894	0608	0339	0085	9846	9619	39	
40	1.2272	1.1883	1.1526	1.1196	1.0889	1.0603	1.0334	1.0081	0.9842	0.9615	40	
41	2266	1877	1520	1191	0884	0598	0330	0077	9838	9612	41	
42	2259	1871	1515	1186	0880	0594	0326	0073	9834	9608	42	
43	2252	1865	1509	1180	0875	0589	0321	0069	9830	9604	43	
44	2245	1859	1503	1175	0870	0585	0317	0065	9827	9601	44	
45	1.2239	1.1852	1.1498	1.1170	1.0865	1.0580	1.0313	1.0061	0.9823	0.9597	45	
46	2232	1846	1492	1164	0860	0575	0308	0057	9819	9593	46	
47	¢225	1840	1486	1159	0855	0571	0304	0053	9815	9590	47	
48	2218	1834	1481	1154	0850	0566	0300	0049	9811	9586	48	
49	2212	1.1828	1475	1149	0845	0562	0295	0044	9807	9582	49	
50	1.2205	1.1822	1.1469	1.1143	1.0840	1.0527	1.0291	1.0040	0.9803	0.9579	50	
51	2198	1816	1464	1138	0835	0552	0287	0036	9800	9575	51	
52	2192	1809	1458	1133	0831	0548	0282	0032	9796	9571	52	
53	2185	1803	1452	1128	0826	0543	0278	0028	9792	9568	53	
54	2178	1797	1447	1123	0821	0539	0274	0024	9788	9564	54	
55	1.2172	1.1791	1.1441	1.1117	1.0816	1.0534	1.0270	1.0020	0.9784	0.9561	55	
56	2165	1785	1436	1112	0811	0530	0265	0016	9780	9557	56	
57	2159	1779	1430	1107	0806	0525	0261	0012	9777	9553	57	
58	2152	1773	1424	1102	0801	0521	0257	0008	9773	9550	58	
59	2145	1767	1419	1097	0797	0516	0252	0004	9769	9546	59	
	$0 \quad 10$	011	10	013	$0 \quad 14$	400	0 16	$0 \quad 17$	018	\bigcirc		

208													
TABLE XXXIV.													
PROPORTIONAL LOGARITHMS.													
\because													
0	0.9542	9331	9128	8935	8751	8573	8403	8239	8081	7929	7782	7639	0
1	9539	9327	9125	8932	8748	8570	8400	8236	8079	7926	7779	7637	1
2	9535	9324	9122	8929	8745	8568	8397	8234	8076	7924	7777	7634	2
3	9532	9320	9119	8926	8742	8565	8395	8231	8073	7921	7774	7632	3
4	9528	9317	9115	8923	8739	8562	8392	8228	8071	7919	7772	7630	4
5	0.9524	9313	9112	8920	8736	8559	8389	8226	8068	7916	7769	7627	5
6	9521	9310	9109	8917	8733	8556	8386	8223	8066	7914	7767	7625	6
7	9517	9306	9106	8913	8730	8253	8384	8220	8063	7911	7765	7623	7
8	9514	9303	9102	8910	8727	8550	8381	8218	8061	7909	7762	7620	8
9	9510	9300	9099	8907	8724	8547	8378	8215	8058	7906	7760	7618	9
10	0.9506	9296	9096	8904	8721	8544	8375	8212	8055	7904	7757	7616	10
11	9503	9293	9092	8901	8718	8542	8372	8210	8053	7901	7755	7613	11
12	9499	9289	9089	8898	8715	8539	8370	8207	8050	7899	7753	7611	12
13	9496	9286	9086	8895	8712	8536	8367	8204	8048	7896	7750	7609	13
14	9492	9283	9083	8892	8709	8533	8364	8202	8045	7894	7748	7607	14
15	0.9488	9279	9079	8888	8706	8530	8361	8199	8043	7891	7745	7604	15
16	9485	9276	9076	8885	8703	8527	8359	8196	8040	7889	7743	7602	16
17	9481	9272	9073	8882	8700	8524	8356	8194	8037	7887	7741	7600	17
18	9478	9269	9070	8879	8697	8522	8353	8191	8035	7884	7738	7597	18
19	9474	9266	9066	8876	8694	8519	8350	8188	8032	7882	7736	7595	19
20	0.9471	9262	9063	8873	8691	8516	8348	8186	8030	7879	7734	7593	20
21	9467	9259	9060	8870	8688	8513	8345	8183	8027	7877	7731	7590	21
22	9464	9255	9057	8867	8685	8510	8342	8181	8025	7874	7729	7588	22
23	9460	9252	9053	8864	8682	8507	8339	8178	8022	7872	7726	7586	23
24	9456	9249	9050	8861	8679	8504	8337	8175	8020	7869	7724	7583	24
25	0.9453	9245	9047	8857	8676	8502	8334	8173	8017	7867	7722	7581	25
26	9449	9242	9044	8854	8673	8499	8331	8170	8014	7864	7719	7579	26
27	9446	9238	9041	8851	8670	8496	8328	8167	8012	7862	7717	7577	27
28	9442	9235	9037	8848	8667	8493	8326	8165	8009	7859	7714	7574	28
29	9439	9232	9034	8845	8664	8490	8323	8162	8007	7857	7712	7572	29
30	0.9435	9228	9031	8842	8661	8487	8320	8159	8004	7855	7710	7570	30
31	9432	9225	9028	8839	8658	8484	8318	8157	8002	7852	7707	7567	31
32	9428	9222	9024	8836	8655	8482	8315	8154	7999	7850	7705	7565	32
33	9425	9218	9021	8833	8652	8479	8312	8152	7997	7847	7703	7563	33
34	9421	9215	9018	8830	8649	8476	8309	8149	7994	7845	7700	7560	34
35	0	9212	9015	8827	8646	8473	8307	8146	7992	7842	7698	7558	35
36	6914	9208	9012	8824	8643	8470	8304	8144	7989	7840	7696	7556	36
37	9411	9205	9008	8821	8640	8467	8301	8141	7987	7837	7693	7554	37
38	8407	9201	9005	8817	8637	8465	8298	8138	7984	7835	7691	7551	38
39	9404	9198	9002	8814	8635	8462	8296	8136	7981	7832	7688	7549	39
40	0.9400	9195	8999	8811	8632	8459	8293	8133	7979	7830	7686	7547	40
41	$1{ }^{1} 9397$	9191	8996	8808	8629	8456	8290	8131	7976	7828	7684	7544	41
42	29393	9188	8992	8805	8626	8453	8288	8128	7974	7825	7681	7542	42
43	9390	9185	8989	8802	8623	8451	8285	8125	7971	7823	7679	7540	43
44	4	9181	8986	8799	8620	8448	8282	8123	7969	7820	7677	7538	44
45	50.9383	9178	8983	8796	8617	8445	8279	8120	7966	7818	7674	7535	45
46	69379	9175	8980	8793	8614	8442	8277	8117	7964	7815	7672	7533	46
47	78376	9172	8977	8790	8611	8439	8274	8115	7961	7813	7670	7531	47
48	89372	9168	8973	8787	8608	8437	8271	8112	7959	7811	7667	7528	48
49	9369	9165	8970	8784	8605	8434	8269	8110	7956	7808	7665	7526	49
50	0	9162	8967	8781	8602	8431	8266	8107	7954	7806	7663	7524	50
51	19936	9158	8964	8778	8599	8428	8263	8104	7951	7803	7660	7522	51
52	29358	9155	8961	8775	8597	8425	8261	8102	7949	7801	7658	7519	52
53	33955	9152	8958	8772	8594	8423	8258	8099	7946	7798	7655	7517	53
54	4	9148	8954	8769	8591	8420	8255	8097	7944	7796	7653	7515	54
55	50.9348	9145	8951	8766	8588	8417	8253	8094	7941	7794	7651	7513	55
56	69344	9142	8948	8763	8585	8414	8250	8091	7939	7791	7648	7510	56
57	79341	9138	8945	8760	8582	8411	8247	8089	7936	7789	7646	7508	57
58	89337	9135	8942	8757	8579	8409	8244	8086	7934	7786	7644	7506	58
59	99334	9132	8939	8754	8576	8406	8242	8084	7931	7784	7641	7503	59

PROPORTIONAL LOGARITHMS.													
$\begin{aligned} & \mathrm{h} . \\ & 0 \end{aligned}$		331	$\left\lvert\, \begin{array}{ll} 0_{0}^{+} & \text {m. } \\ 0 \end{array}\right.$	3510	360	37	$\cdot 3$	39	400	$\begin{aligned} & \mathrm{m} \\ & 41 \end{aligned}$	42	43	\%
0	0.7501	7368	7238	7112	6990	6871	6755	6642	6532	6425	6320	6218	0
1	7499	7365	7236	7110	6988	6869	6753	6640	6530	6423	6319	6216	1
2	7497	7363	7234	7108	6986	6867	6751	6638	6529	6421	6317	6215	2
3	7494	7361	7232	7106	6984	6865	6749	6637	6527	6420	6315	6213	3
4	7492	7359	7229	7104	6982	6863	6747	6635	6525	6418	6313	6211	4
5	0.7490	7357	7227	7102	6980	6861	6745	6633	6523	6416	6312	6210	5
6	7488	7354	7225	7100	6978	6859	6743	6631	6521	6414	6310	6208	6
7	7485	7352	7223	7098	6976	6857	6742	6629	6519	6413	6308	6206	7
8	7483	7350	7221	7096	6974	6855	6740	6627	6518	6411	6306	6205	8
9	7481	7348	7219	7093	6972	6853	6738	6625	6516	6409	6305	6203	9
10	0.7479	7346	7217	7091	6970	6851	6736	6624	6514	6407	6303	6201	10
. 11	7476	7344	7215	7089	6968	6849	6734	6622	6612	6406	6301	6200	11
12	7474	7341	7212	7087	6966	6847	6732	6620	6510	6404	6300	6198	12
13	7472	7339	7210	7085	6964	6845	6730	6618	6509	6402	6298	6196	13
14	7470	7337	7208	7083	6962	6843	6728	6616	6507	6400	6296	6195	14
15	0.7467	7335	7206	7081	6960	6841	6726	6614	6505	6398	6294	6193	15
16	7465	7333	7204	7079	6958	6840	6725	6612	6503	6397	6293	6191	16
17	7463	7330	7202	7077	6956	6838	6723	6611	6501	6395	6291	6190	17
18	7461	7328	7200	7075	6954	6836	6721	6609	6500	6393	6289	6188	18
19	7458	7326	7198	7073	6952	6834	6719	6607	6498	6391	6288	6186	19
20	0.7456	7324	7196	7071	6950	6832	6717	6605	7496	6390	6286	6185	20
21	7454	7322	7193	7069	6948	6830	6715	6603	6494	6388	6284	6183	21
22	7452	7320	7191	7067	6946	6828	6713	6601	6492	6386	6282	6181	22
23	7450	7317	7189	7065	6944	6826	6711	6600	6491	6384	6281	6179	23
24	7447	7315	7187	7063	6942	6824	6709	6598	6489	6383	6279	6178	24
25	0.7445	7313	7185	7061	6940	6822	6708	6596	6487	6381	6277	6176	25
26	7443	7311	7183	7059	6938	6820	6706	6594	6485	6379	6276	6174	26
27	7441	7309	7181	7057	6936	6818	6704	6592	6484	6377	6274	6173	27
28	7438	7307	7179	7055	6934	6816	6702	6590	6482	6376	6272	6171	28
29	7436	7304	7177	7052	6932	6814	6700	6589	6480	6374	6271	6169	29
30	0.7434	7302	7175	7050	6930	6812	6698	6587	6478	6372	6269	6168	30
31	7432	7300	7172	7048	6928	6810	6696	6585	6476	6371	6267	6166	31
32	7429	7298	7170	7046	6926	6809	6694	6583	6475	6369	6265	6165	32
33	7427	7296	7168	7044	6924	6807	6692	6581	6473	6367	6264	6163	33
34	7425	7294	7166	7042	6922	6805	6691	6579	6471	6365	6262	6161	34
35	$\overline{0.7423}$	7291	7164	7040	6920	6803	6689	6578	6469	6364	6260	6160	35
36	7421	7289	7162	7038	6918	6801	6687	6576	6467	6362	6259	6158	36
37	7418	7287	7160	7036	6916	6799	6685	6574	6466	6360	6257	6156	37
38	7416	7285	7158	7034	6914	6797	6683	6572	6464	6358	6255	6155	38
39	7414	7283	7156	7032	6912	6795	6681	6570	6462	6357	6354	6153	39
40	0.7412	7281	7154	7030	6910	6793	6679	6568	6460	6355	6252	6151	40
41	7409	7279	7152	7028	6908	6791	6677	6567	6459	6353	6250	6150	41
42	- 7407	7276	7149	7026	6906	6789	6676	6565	6457	6351	6248	6148	42
43	7405	7274	7147	7024	6904	6787	6674	6563	6455	6350	6247	6146	43
44	7403	7272	7145	7022	6902	6785	6672	6561	6453	6348	6245	6145	44
45	0.7401	7270	7143	7020	6900	6784	6670	6559	6451	6346	6243	6143	45
46	- 7398	7268	7141	7018	6898	6782	6668	6558	6450	6344	6242	6141	46
47	7396	7266	7139	7016	6896	6780	6666	6556	6448	6343	6240	6140	47
48	- 7394	7264	7137	7014	6894	6778	6664	6554	6446	6341	6238	6138	48
49	-7392	7261	7135	7012	6892	6776	6663	6552	6444	6339	6237	6136	49
50	0.7390	7259	7133	7010	6890	6774	6661	6550	6443	6338	6235	6135	50
51	17387	7257	7131	7008	6888	6772	6659	6548	6441	6336	6233	6133	51
52	7385	7255	7129	7006	6886	6770	6657	6547	6439	6334	6232	6131	52
53	7383	7253	7127	7004	6884	6768	6655	6545	6437	6332	6230	6130	53
54	$4{ }^{7381}$	7251	7124	7002	6882	6766	6653	6543	6435	6331	6228	6128	54
55	50.7379	7249	7122	7000	6881	6764	6651	6541	6434	6329	6226	6126	55
56	5 7376	7246	7120	6998	6879	6763	6650	6539	6432	6327	6225	6125	56
57	7374	7244	7118	6996	6877	6761	6648	6538	6430	6325	6223	6123	57
58	87372	7242	7116	6994	6875	6759	6646	6536	6428	6324	6221	6121	58
59	97370	7240	7114	6992	6873	6757	6644	6534	6427	6322	6220	6120	59

TABLE XXXIV.

PROPORTIONAL LOGARITHMS.

\%	$10 \quad 44$	$\begin{array}{r} 15 \\ 45 \end{array}$	$0 \quad 46$	10	4	$4!$	50	$\begin{aligned} & \mathrm{m} . \\ & 51 \end{aligned}$		5310		m.	!.
010	0.6118	6021	5925	5832	5740	5651	5563	5477	5393	5310	5229	5149	0
1	6117	6019	5924	5830	5739	5649	5562	5476	5391	5309	5227	5148	1
2	6115	6917	5922	5829	5737	5648	5560	5474	5390	5307	5226	5146	2
3	6113	6016	5920	5827	5736	5646	5559	5473	5389	5306	5225	5145	3
4	6112	6014	5919	5826	5734	5645	5557	5471	5387	5305	5223	5144	4
5	$0 \cdot 6110$	6013	5917	5824	5733	5643	5556	5470	5386	5303	5222	5143	5
6	6108	6011	5916	5823	5731	5642	5554	5469	5384	5302	5221	5141	6
7	6107	6009	5914	5821	5730	5640	5553	5467	5383	5300	5219	5140	7
8	6105	6008	5913	5819	5728	5639	5551	5466	5382	5299	5218	5139	8
9	6103	6006	5911	5818	5727	5637	5550	5464	5380	5298	5217	5137	9
10	0.6102	6005	5909	5816	5725	5636	5549	5463	5379	5296	5215	5136	10
11	6100	6003	5908	5815	5724	5635	5547	5461	5377	5295	5214	5135	11
12	6099	6001	5906	5813	5722	6633	5546	5460	5376	5294	5213	5133	12
13	6097	6000	5905	5812	5721	5632	5544	5459	5375	5292	5211	5132	13
14	6095	5998	5903	5810	5719	5630	5543	5457	5373	5291	5210	5131	14
15	0.6094	5997	5902	5809	5718	5629	5541	5456	5372	5290	5209	5129	15
16	6092	5995	5900	5807	5716	5627	5540	5454	5370	5288	5207	5128	16
17	6090	5993	5898	5806	5715	5626	5538	5453	5369	5287	5206	5127	17
18	6089	5992	5897	5804	5713	5624	5537	5452	5368	5285	5205	5125	18
19	6087	5990	5895	5803	5712	5623	5536	5450	5366	5284	5203	5124	19
20	0.6085	5989	5894	5801	5710	5621	5534	5449	5365	5283	5202	5123	20
21	6084	5987	5892	5800	5709	5620	5533	5447	5364	5281	5201	5122	21
22	6082	5985	5891	5798	5707	5618	5531	5446	5362	5280	5199	5120	22
23	6081	5984	5889	5796	5706	5617	5530)	5445	5361	5279	5198	5119	23
24	6079	5982	5888	5795	5704	5615	5528	5443	5359	5277	5197	5118	24
25	0.6077	5981	5886	5793	5703	5614	5527	5442	5358	5276	5195	5116	25
26	6076	5979	5884	5792	5701	5613	5526	5440	5357	5275	5194	5115	26
27	6074	5977	5883	5790	5700	5611	5524	5439	5355	5273	5193	5114	27
28	6072	5976	5881	5789	5698	5610	5522	5437	5354	5272	5191	5112	28
29	6071	5974	5880	5787	5697	5608	5521	5436	5353	5271	5190	5111	29
30	0.6069	5973	5878	5786	5	5607	5520	5435	51	5269	5189	5110	30
31	6067	5971	5877	5784	5694	5605	5518	5433	5350	5268	5187	5108	31
32	6066	5969	5875	5783	5692	5604	5517	5432	5348	5266	5186	5107	32
33	6064	5968	5874	5781	5691	5602	5518	5430	5347	5265	5185	5106	33
34	6063	5966	5872	5780	5689	5601	5514	5429	5346	5264	5183	5105	34
35	0.6061	5965	5870	5778	5688	5599	5513	5428	5344	5262	5182	5103	35
36	6059	5963	5869	5777	5686	5598	5511	5426	5343	5261	5181	5102	36
37	6058	5961	5867	5775	5685	5596	5510	5425	5341	5260	5179	5101	37
38	6056	5960	5866	5774	5683	5595	5508	5423	5340	5258	5178	5099	38
39	6055	5958	5864	5772	5682	5594	5507	5422	5339	5257	5177	5098	39
40	0.6053	5957	5863	5771	5680	5592	5506	5421	5337	5256	5175	5097	40
41	6051	5955	5861	5769	5679	5591	5504	5419	5336	5254	5174	5095	41
42	6050	5954	5860	5768	5677	5589	5503	5418	5335	5253	5173	5094	42
43	6048	5952	5858	5766	5676	5588	5501	5416	5333	5252	5172	5093	43
44	6046	5950	5856	5765	5674	5586	5500	5415	5332	5250	5170	5092	44
45	0.6045	5949	5855	5763	5673	5585	5498	5414	5331	5249	5169	5090	45
46	6043	5947	5853	5761	5671	5583	5497	5412	5329	5248	5168	5089	46
47	6042	5946	5852	5760	5670	5582	5496	5411	5328	5246	5166	5088	47
48	6040	5944	5850	5758	5669	5580	5494	5409	5326	5245	5165	5086	48
49	6038	5942	5849	5757	5667	5579	5493	5408	5325	5244	5164	5085	49
50	0.6037	5941	5847	5755	5666	5578	5491	5407	5324	5242	5162	5084	50
51	6035	5939	5846	5754	5664	5576	5490	5405	5322	5241	5161	5082	51
52	6033	5938	5844	5752	5663	5575	5488	5404	5321	5240	5160	5081	52
53	6032	5936	5843	5751	5661	5573	5487	5402	5320	5238	5158	5080	53
54	6030	5935	5841	5749	5660	5572	5486	5401	5318	5237	5157	5079	54
$\overline{55}$	0.6029	5933	5839	5748	5658	5570	5484	5400	5317	5235	5156	5077	55
56	6027	5931	5838	5746	5657	5569	5483	5398	5315	5234	5154	5076	56
57	6025	5930	5836	5745	5655	5567	5481	5397	5314	5233	5153	5075	57
58	6024	5928	5835	5743	5654	5566	5480	5395	5313	5231	5152	5073	58
59	6022	5927	5833	5742	5652	5564	5478	5394	5311	5230	5150	5072	59

PROPORTIONAL LOGARITHMS.													
	$\left.\right\|^{\mathrm{h}} \mathrm{~h} .$	$\begin{array}{ll} 2 & \text { m. } \\ 0 & 57 \\ \hline \end{array}$	58	$\begin{array}{r} \mathrm{m} .0 \\ 59 \end{array}$	0		2	3		5		7 m 7	"
0	0.5071	4994	4918	4844	4771	4699	4629	4559	4491	4424	4357	4292	0
1	5070	4993	4917	4843	4770	4698	4628	4558	4490	4422	4356	4291	1
2	5068	4991	4916	4842	4769	4697	4626	4557	4489	4421	4355	4290	2
3	5067	4990	4915	4841	4768	4696	4625	4556	4488	4420	4354	4289	3
4	5066	4989	4913	4839	4766	4695	4624	4555	4486	4419	4353	4288	4
5	0.5064	4988	4912	4838	4765	4693	4623	4554	4485	4418	4352	4287	5
6	5063	4986	4911	4837	4764	4692	4622	4552	4484	4417	4351	4285	6
7	5062	4985	4910	4836	4763	4691	4621	4551	4483	4416	4350	4284	7
8	5061	4984	4908	4834	4762	4690	4619	4550	4482	4415	4349	4283	8
9	5059	4983	4907	4833	4760	4689	4618	4549	4481	4414	4347	4282	9
10	0.5058	4981	4906	4832	4759	4688	4617	4548	4480	4412	4346	4281	10
11	5057	4980	4905	4831	4758	4686	4616	4547	4479	4411	4345	4280	11
12	5055	4979	4903	4830	4757	4685	4615	4546	4477	4410	4344	4279	12
13	5054	4977	4902	4828	4756	4684	4614	4544	4476	4409	4343	4278	13
14	5053	4976	4901	4827	4754	4683	4612	4543	4475	4408	4342	4277	14
15	0.5051	4975	4900	4826	4753	4682	4611	4542	4474	4407	4341	4276	15
16	5050	4974	4899	4825	4752	4680	4610	4541	4473	4406	4340	4275	16
17	5049	4972	4897	4823	4751	4679	4609	4540	4472	4405	4339	4274	17
18	5048	4971	4896	4822	4750	4678	4608	4539	4471	4404	4338	4273	18
19	5046	4970	4895	4821	4748	4677	4607	4538	4469	4402	4336	4271	19
20	0.5045	4969	4894	4820	4747	4676	4606	4536	4468	4401	4335	4270	20
21	5044	4967	4892	4819	4746	4675	4604	4535	4467	4400	4334	4269	21
22	5043	4966	4891	4817	4745	4673	4603	4534	4466	4399	4333	4268	22
23	5041	4965	4890	4816	4744	4672	4602	4533	4465	4398	4332	4267	23
24	5040	4964	4889	4815	4742	4671	4601	4532	4464	4397	4331	4266	24
25	0.5039	4962	4887	4814	4741	4670	4600	4531	4463	4396	4330	4265	25
26	5037	4961	4886	4812	4740	4669	4599	4530	4462	4395	4329	4264	26
27	5036	4960	4885	4811	4739	4668	4597	4528	4460	4394	4328	4263	27
28	5035	4959	4884	4810	4738	4666	4596	4527	4459	4393	4327	4262	28
29	5034	4957	4882	4809	4736	4665	4595	4526	4458	4391	4326	4261	29
30	0.5032	4956	4881	4808	4735	4664	4594	4525	4457	4390	4325	4260	30
31	5031	4955	4880	4806	4734	4663	4593	4524	4456	4389	4323	4259	31
32	5030	4954	4879	4805	4733	4662	4592	4523	4455	4388	4322	4258	32
33	5028	4952	4877	4804	4732	4660	4590	4522	4454	4387	4321	4256	33
34	5027	4951	4876	4803	4730	4659	4589	4520	4453	4386	4320	4255	34
35	0.5026	4950	4875	4801	4729	4658	4588	4519	4452	4385	4319	4254	35
36	5025	4949	4874	4800	4728	4657	4587	4518	4450	4384	4318	4253	36
37	5023	4947	4873	4799	4727	4656	4586	4517	4449	4383	4317	4252	37
38	5022	4946	4871	4798	4726	4655	4585	4516	4448	4381	4316	4251	38
39	5021	4945	4870	4797	4724	4653	4584	4515	4447	4380	4315	4250	39
40	0.5019	4943	4869	4795	4723	4652	4582	4514	4446	4379	4314	4249	40
41	5018	4942	4868	4794	4722	4651	4581	4512	4445	4378	4313	4248	41
42	2017	4941	4866	4793	4721	4650	4580	4511	4444	4377	4311	4247	42
43	- 5016	4940	4865	4792	4720	4649	4579	4510	4443	4376	4310	4246	43
44	- 5014	4938	4864	4791	4718	4648	4578	4509	4441	4375	4309	4245	44
45	0	4937	4863	4789	4717	4646	4577	4508	4440	4374	4308	4244	45
46	5012	4936	4861	4788	4716	4645	4 \% 7.5	4507	4439	4373	4307	4243	46
47	5011	4935	4860	4787	4715	4644	4574	4506	4438	4372	4306	4241	47
48	5009	4933	4859	4786	4714	4643	4573	4505	4437	4370	4305	4240	48
49	- 5008	4932	4858	4785	4712	4642	4572	4503	4436	4369	4304	4239	49
50	-0.5007	4931	4856	4783	4711	4640	4571	4502	4435	4368	4303	4238	50
51	15005	4930	4855	4782	4710	4639	4570	4501	4434	4367	4302	4237	51
52	5004	4928	4854	4781	4709	4638	4569	4500	4433	4366	4301	4236	52
53	5003	4927	4853	4780	4708	4637	4567	4499	4431	4365	4300	4235	53
54	45002	4926	4852	4778	4707	4636	4566	4498	4430	4364	4298	4234	54
55	50	4925	4850	4777	4705	4635	4565	4497	4429	4363	4297	4233	55
56	64999	4923	4849	4776	4704	4633	4564	4495	4428	4362	4896	4232	56
57	74998	4922	4848	4775	4703	4632	4563	4494	4427	4361	4295	4231	57
58	84997	4921	4847	4774	4702	4631	4562	4493	4426	4359	4294	4230	58
59	4995	4920	4845	4772	4701	4630	4560	4492	4425	4358	4293	4229	59

TABLE XXXIV.

PROPORTIONAL LOGARITHMS.

- ${ }^{\prime \prime}$			$\begin{gathered} 1 \\ m_{9} .{ }_{9}^{\mathrm{h}}{ }_{1} . \end{gathered}$	$\left.\begin{aligned} & 1 \\ & m_{10}^{0} \\ & 10 \end{aligned}\right\|_{1} ^{\mathrm{h}} .$	$\begin{aligned} & 1 \\ & \mathrm{~mm} . \mathrm{h}_{\mathrm{h}}^{\mathrm{h}} \\ & 11 \end{aligned}$	$\begin{aligned} & 1 \\ & m_{1}^{0} \\ & \left.m_{2}\right\|_{1} \end{aligned}$	$\begin{aligned} & 1 \\ & m .\left.\right\|^{o} \\ & 13 \\ & 13 \end{aligned}$	$\begin{aligned} & 1 \\ & m .\left.\right\|^{o} \\ & \left.14\right\|_{1} ^{\text {h. }} \end{aligned}$	$\begin{gathered} 1 \\ \mathrm{~m} . \mathrm{C}^{\mathrm{h}} \\ \mathbf{1 5} \end{gathered}$	$\begin{aligned} & 1 \\ & m_{1}^{\prime} \\ & 16 \end{aligned}$	$\left.\begin{aligned} & 1 \\ & m . \\ & 17 \end{aligned}\right\|_{1} ^{\mathrm{h}}$	$\begin{aligned} & -\sqrt{n \prime} \\ & m . \mid h . \\ & 18 / 1 \end{aligned}$		\%
0			4164	4102	4040	3979	3919	3860	3802	3745	3688	3632	3576	0
1		4227	4163	4101	4039	3978	3919	3859	3801	3744	3687	3631	3576	1
2		4226	4162	4100	4038	3977	3918	3858	3800	3743	3686	3630	3575	2
3		4224	4161	4099	4037	3976	3917	3857	3799	3742	3685	3629	3574	3
4		4223	4160	4098	4036	3975	3916	3856	3798	3741	3684	3628	3573	4
5	0.4	4222	4159	4097	4035	3974	3915	3856	3797	3740	3683	3627	72	5
6		4221	4158	4096	4034	3973	3914	3855	3796	3739	3682	3626	3571	6
7		4220	4157	4095	4033	3972	3913	3854	3795	3738	3681	3625	3570	7
8		4219	4156	4093	4032	3971	3912	3853	3794	3737	3680	3624	3569	8
9		4218	4155	4092	4031	3970	3911	3852	3793	3736	3679	3623	3568	9
10	0.4	4217	4154	4091	4030	3969	3910	3851	3792	3735	3678	3623	3567	10
11		4216	4153	4090	4029	3968	3909	3850	3792	3734	3677	3622	3566	11
12		4215	4152	4089	4028	3967	3908	3849	3791	3733	3677	3621	3565	12
13		4214	4151	4088	4027	3966	3907	3848	3790	3732	3676	3620	3565	13
14		4213	4150	4087	4026	3965	3906	3847	3789	3731	3675	3619	3564	14
15	0.4	4212	4149	4086	4025	3964	3905	3846	3788	3730	3674	3618	63	15
16		4211	4147	4085	4024	3963	3904	3845	3787	3729	3673	3617	3562	16
17		4210	4146	4084	4023	3962	3903	3844	3786	3728	3672	3616	3561	17
18		4209	4145	4083	4022	3961	3902	3843	3785	3727	3671	3615	3560	18
19		4207	4144	4082	4021	3960	3901	3842	3784	3727	3670	3614	3559	19
20	0.	4206	4143	4081	4020	3959	3900	3841	3783	3726	3669	3613	3558	20
21		4205	4142	4080	4019	3958	3899	3840	3782	3725	3668	3612	3557	21
22		4204	4141	4079	4018	3957	3898	3839	3781	3724	3667	3611	3556	22
23		4203	4140	4078	4017	3956	3897	3838	3780	3723	3666	3610	3555	23
24		4202	4139	4077	4016	3955	3896	3837	3779	3722	3665	3610	3555	24
25		. 4201	4138	4076	4015	3954	3895	3836	3778	3721	3664	3609	3554	25
26		4200	4137	4075	14	3953	3894	3835	3777	3720	3663	3608	3553	26
27		4199	4136	4074	4013	3952	3893	3834	3776	3719	3663	3607	3552	27
28		4198	4135	4073	4012	3951	3892	3833	3775	3718	3662	3606	3551	28
29		4197	4134	4072	4011	3950	3891	3832	3774	3717	3661	3605	3550	29
30	0.	. 4196	41	4071	4010	3949	3890	3831	37	3716	3660	04	49	30
31		4195	4132	4070	4009	3948	3889	3830	3772	3715	3659	3603	3548	31
32		4194	4131	4069	4008	3947	3888	3829	3771	3714	3658	3602	3547	32
33		4193	4130	4068	4007	3946	3887	3828	3770	3713	3657	3601	3546	33
34		4192	4129	4067	4006	3945	3886	3827	3769	3712	3656	3600	3545	34
35	0.4	. 4191	4128	4066	4005	3944	3885	3826	3768	3711	3655	9	3545	35
36		4189	4127	4065	4004	3943	3884	3825	3768	3710	3654	3598	3544	36
37		4188	4126	4064	4003	3942	3883	3824	3767	3709	3653	3598	3543	37
38		4187	4125	4063	4002	3941	3882	3823	3766	3709	3652	3597	3542	38
39		4186	4124	4062	4001	3940	3881	3822	3765	3708	3651	3596	3541	39
40	0.	. 4185	4122	4061	4000	3939	3880	3821	3764	3707	3650	3595	3540	40
41		4184	4121	4060	3999	3938	3879	3820	3763	3706	3649	3594	3539	41
42		4183	4120	4059	3998	3937	3878	3820	3762	3705	3649	3593	3538	42
43	3	4182	4119	4058	3997	3936	3877	3819	3761	3704	3648	3592	3537	43
44		4181	4118	4056	3996	3935	3876	3818	3760	3703	3647	3591	3536	44
45	50.	. 4180	4117	4055	3995	3934	3875	3817	3759	3702	3646	3590	3535	45
46		4179	4116	4054	3993	3933	3874	3816	3758	3701	3645	3589	3535	46
47		4178	4115	4053	3992	3932	3873	3815	3757	3700	3644	3588	3534	47
48	8	4177	4114	4052	3991	3931	3872	3814	3756	3699	3643	3587	3533	48
49	9	4176	4113	4051	3990	3930	3871	3813	3755	3698	3642	3587	3532	49
50	00	0.4175	4112	4050	3989	3929	3870	3812	3754	3697	3641	3586	3531	50
51		4174	4111	4049	3988	3928	3869	3811	3753	3696	3640	3585	3530	51
52		4173	4110	4048	3987	3927	3868	3810	3752	3695	3639	3584	3529	52
53	3	4172	4109	4047	3986	3926	3867	3809	3751	3694	3638	3583	3528	53
54	4	4171	4108	4046	3985	3925	3866	3808	3750	3693	3637	3582	3527	54
55	50	0.4169	4107	4045	3984	3924	3865	3807	3749	3693	3636	3581	3526	55
56	56	4168	4106	4044	3983	3923	3864	3806	3748	3692	3635	3580	3525	56
57		4167	4105	4043	3982	3923	3863	3805	3747	3691	3635	3579	3525	57
58	8	4166	4104	4042	3981	3921	3862	3804	3746	3690	3634	3578	3524	58
59	59	4165	4103	4041	3980	3920	3861	3803	3746	3689	3633	3577	3523	59
	-												1	

TABLE XXXIV.

PRGPORTIONAL LOGARITHMS.

0	0.3522	3.468	3415	3362	3310	3259	3208	3158	3108	3059	3010	2962	0
1	3521	3467	3414	3361	3309	3258	3207	3157	3107	3058	3009	2062	1
2	3520	3466	3413	3360	3308	3257	3206	3156	3106	3057	3009	2961	2
,	3519	3465	3412	3359	3307	3256	3205	3155	3105	3056	3008	2960	3
4	3518	3464	3411	3358	3306	3255	3204	3154	3105	3056	3007	2959	4
5	0.3517	3463	3410	3358	3306	3254	3204	3153	3104	3055	3006	2958	5
6	3516	3463	3409	3357	3305	3253	3203	3153	3103	3054	3005	2958	6
7	3515	3462	3408	3356	3304	3253	3202	3152	3102	3053	3005	2957	7
8	3514	3461	3408	3355	3303	3252	3201	3151	3101	3052	3004	2956	8
9	3514	3460	3407	3354	3302	3251	3200	3150	3101	3052	3003	2955	9
10	0.3513	3459	3406	3353	3301	3250.	3199	3149	3100	30.51	3002	2954	10
11	3512	3458	3405	3352	3300	3249	3198	3148	3099	3050	3001	2954	11
12	3511	3457	3404	3351	3300	3248	3198	3148	3098	3049	3001	2953	12
13	3510	3456	3403	3351	3299	3247	3197	3147	3097	3048	3000	2952	13
14	3509	3455	3402	335.	3298	3247	3196	3146	3096	3047	2999	2951	14
15	0.3508	3454	3401	3349	3297	3246	3195	3145	3096	3047	2998	2950	15
16	3507	3454	3400	3348	3296	3245	3194	3144	3095	3046	2997	2950	16
17	3506	3453	3400	3347	3295	3244	3193	3143	3094	3045	2997	2949	17
18	3506	3452	3399	3346	3294	3243	3193	3143	3093	3044	2996	2948	18
19	3505	3451	3398	3345	3294	3242	3192	3142	3092	3043	2995	2947	19
20	0.3504	3450	3397	3345	3293	3242	3191	3141	3091	3043	2994	2946	20
21	3503	3449	3396	3344	3292	3241	3190	3140	3091	3042	2993	2946	21
22	. 3502	3448	3395	3343	3291	3240	3189	3139	3090	3041	2993	2945	22
23	3501	3447	3394	3342	3290	3239	3188	3138	3089	3040	2992	2944	23
24	3500	3446	3393	3341	3289	3238	3188	3138	3088	3039	2991	2943	24^{\prime}
25	0.3499	3446	3393	3340	3288	3237	3187	3137	3087	3039	2990	2942	25
26	3498	3445	3392	3339	3288	3236	3186	3136	3087	3038	2989	2942	26
27	3497	3444	3391	3338	3287	3236	3185	3135	3086	3037	2989	2941	27
28	3497	3443	3390	3338	3286	3235	3184	3134	3085	3036	2988	2940	28
29	3496	3442	3389	3337	3285	3234	3183	3133	3084	3035	2987	2939	29
30	0.3495	3441	88	3336	3284	3233	3183	3133	3083	3034	2986	2939	30
31	3494	3440	3387	3335	3283	3232	3182	3132	3082	303	2985	2938	31
32	3493	3439	3386	3334	3282	3231	3181	3131	3082	3033	2985	2937	32
33	3492	3438	3386	3333	3282	3231	3180	3130	3081	3032	2984	2936	33
34	3491	3438	3385	3332	3281	3230	3179	3129	3080	3031	2983	2935	34
35	0.3490	3437	3384	3332	3280	3229	3178	3129	3079	3030	2988	2935	35
36	3489	3436	3383	3331	3279	3228	3178	3128	3078	3030	2981	2934	36
37	3488	3435	3382	3330	3278	3227	3177	3127	3078	3029	2981	2933	37
38	3488	3434	3381	3329	3277	3226	3176	3126	3077	3028	2980	2932	38
39	3487	3433	3380	3328	3276	3225	3175	3125	3076	3027	2979	2931	39
40	0.3486	3432	3379	3327	3276	3225	3174	3124	3075	3026	2978	2931	40
41	3485	3431	3379	3326	3275	3224	3173	3124	3074	3026	2977	2930	41
42	3484	3431	3378	3325	3274	3223	3173	3123	3073	3025	2977	2929	42
43	3483	3430	3377	3325	3273	3222	3172	3122	3073	3024	2976	2928	43
44	3482	3429	3376	3324	3272	3221	3171	3121	3072	3023	2975	2927	44
45	0.3481	3428	3375	3323	3271	3220	3170	3120	071	3022	2974	2927	45
46	3480	3427	3374	3322	3270	3220	3169	3119	3070	3022	2973	2926	46
47	3480	3426	3373	3321	3270	3219	3168	3119	3069	3021	2973	2925	47
48	3479	3425	3372	3320	3269	3218	3168	3118	3069	3020	2972	2924	48
49	3478	3424	3372	3319	3268	3217	3167	3117	3068	3019	2971	2924	49
50	0.3477	3423	3371	33	3267	3216	3166	3116	3067	3018	2970	2923	50
51	3476	3423	3370	3318	3266	3215	3165	3115	3066	3018	2969	2922	51
52	3475	3422	3369	3317	3265	3214	3164	3114	3065	3017	2969	2921	52
53	3474	3421	3368	3316	3265	3214	3163	3114	3065	3016	2968	2920	53
54	3473	3420	3367	3315	3264	3213	3163	3113	3064	3015	2967	2920	54
55	0.3472	3419	3366	3314	3263	3212	3162	3112	3063	3014	2966	2919	55
56	3471	3418	3365	3313	3262	3211	3161	3111	3062	3014	2965	2918	56
57	3471	3417	3365	3313	3261	3210	3160	3110	3061	3013	2965	2917	57
58	3470	3416	3364	3312	3260	3209	3159	3110	3060	3012	2964	2916	58
59	3469	3415	3363	3311	3259	3209	3158	3109	3060	3011	2963	2916	59

214 .													
PROPORTIONAL LOGARITHMS.													
0	0.2915	2868	2821	2775	2730	2685	2640	2596	2553	2510	2467	2424	0
1	2914	2867	2821	2775	2729	2684	2640	2596	2352	2509	2466	2424	1
2	2913	2866	2821)	2774	2729	2684	2639	2595	2551	2508	2465	2423	2
3	2912	2866	2819	2773	2728	2683	2638	2594	2551	2507	2465	2422	3
4	2912	2865	2818	2772	2727	2682	2638	2593	2550	2507	2464	2422	4
5	0.2911	2864	2818	2772	2726	2681	2637	2593	2549	2506	2463	2421	5
6	2910	2863	2817	2771	2725	2681	2636	2592	2548	2505	2462	2420	6
7	2909	2862	2816	2770	2725	2680	2635	2591	2548	2504	2462	2419	7
8	2909	2862	2815	2769	2724	2679	2635	2591	2547	2504	2461	2419	8
9	2908	2861	2815	2769	2723	2678	2634	2590	2546	2503	2460	2418	9
10	0.2907	2860	2814	2768	2722	2678	2633	2589	2545	2502	2460	2417	10
11	2906	2859	2813	2767	2722	2677	2632	2588	2545	2502	2459	2417	11
12	2905	2859	2812	2766	2721	2676	2632	2588	2544	2501	2458	2416	12
13	2905	2858	2811	2766	2720	2675	2631	2587	2543	2500	2458	2415	13
14	2904	2857	2811	2765	2719	2675	2630	2586	2543	2499	2457	2415	14
15	0.2903	2856	2810	2764	2719	2674	2629	2585	2542	2499	2456	2414	15
16	2902	2855	2809	2763	2718	2673	2629	2585	2541	2498	2455	2413	16
17	2901	2855	2808	2763	2717	2672	2628	2584	2540	2497	2455	2412	17
18	2901	2854	2808	2762	2716	2672	2627	2583	2540	2497	2454	2412	18
19	2900	2853	2807	2761	2716	2671	2626	2583	2539	2496	2453	2411	19
20	0.2899	2852	2806	2760	2715	2670	2626	2582	2538	2495	2453	2410	20
21	2898	2852	2805	2760	2714	2669	2625	2581	2538	2494	2452	2410	21
22	2898	2851	2805	2759	2713	2669	2624	2580	2537	2494	2451	2409	22
23	2897	2850	2804	2758	2713	2668	2624	2580	2536	2493	2450	2408	23
24	2896	2849	2803	2757	2712	2667	2623	2579	2535	2492	2450	2408	24
25	$\overline{0.2895}$	2848	2802	2756	2711	2666	2622	2578	2535	2492	2449	2407	25
26	2894	2848	2801	2756	2710	2666	2621	2577	2534	2491	2448	2406	26
27	2894	2847	2801	2755	2710	2665	2621	2577	2533	2490	2448	2405	27
28	2893	2846	2800	2754	2709	2664	2620	2576	2533	2489	2447	2405	28
29	2892	2845	2799	2753	2708	2663	2619	2575	2532	2489	2446	2404	29
30	-0.2891	2845	2798	2753	2707	2663	2618	2574	2531	2488	2445	2403	30
31	2891	2844	2798	2752	2707	2662	2618	2574	2530	2487	2445	2403	31
32	2890	2843	2797	2751	2706	2661	2617	2573	2530	2487	2444	2402	32
33	2889	2842	2796	2750	2705	2660	2616	2572	2529	2486	2443	2401	33
34	2888	2842	2795	2750	2704	2660	2615	2572	2528	2485	2443	2401	34
35	0.2888	2841	2795	2749	2704	2659	2615	2571	2527	2485	2442	2400	35
36	6 2887	2840	2794	2748	2703	2658	2614	2570	2527	2484	2441	2399	36
37	2886	2839	2793	2747	2702	2657	2613	2569	2526	2483	2441	2398	37
38	2885	2838	2792	2747	2701	2657	2612	2569	2525	2482	2440	2398	38
39	- 2884	2838	2792	2746	2701	2656	2612	2568	2525	2482	2439	2397	39
40	0.2883	2837	2791	2745	2700	2655	2611	2567	2524	2481	2438	2396	40
41	1 2883	2836	2790	2744	2699	2655	2610	2566	2523	2480	2438	2396	41
42	\| 2882	2835	2789	2744	2698	2654	2610	2566	2522	2480	2437	2395	42
43	3881	2835	2788	2743	2698	2653	2609	2565	2522	2479	2436	2394	43
44	42880	2834	2788	2742	2697	2652	2608	2564	2521	2478	2436	2394	44
45	50.2880	2833	2787	2741	2696	2652	2607	2564	2520	2477	2435	2393	45
46	62879	2832	2786	2741	2695	2651	2607	2563	2520	2477	2434	2392	46
47	7 2878	2831	2785	2740	2695	2650	2606	2562	2519	2476	2433	2391	47
48	82877	2831	2785	2739	2694	2649	2605	2561	2518	2475	2433	2391	48
49	92876	2830	2784	2738	2693	2649	2604	2561	2517	2475	2432	2390	49
50	00.	2829	2783	2738	2692	2648	2604	2560	2517	2474	2431	2389	50
51	12875	2828	2782	2737	2692	2647	2603	2559	2516	2473	2431	2389	51
52	22874	2828	2782	2736	2691	2646	2602	2559	2515	2472	2430	2388	52
53	32873	2827	2781	2735	2690	2646	2601	2558	2515	2472	2429	2387	53
54	42873	2826	2780	2735	2689	2645	2601	2557	2514	2471	2429	2387	54
55	50.2872	2825	2779	2734	2689	2644	2600	2556	2513	2470	2428	2386	55
56	62871	2825	2779	2733	2688	2643	2599	2556	2512	2470	2427	2385	56
57	7, 2870	2824	2778	2732	2687	2643	2599	2555	2512	2469	2426	2384	57
58	882869	2823	2777	2732	2687	2642	2598	2554	2511	2468	2426	2384	58
59	92869	2822	2776	2731	2686	2641	2597	2553	2510	2467	2425	2383	59

TABLE XXXIV.

PROPORTIONAL LOGARITHMS.

-		451	46	$1 \quad 47$	481	149	$\begin{aligned} & \mathrm{m} . \\ & 50 \end{aligned}$	$\left\|\begin{array}{ll} 0 \\ \mathrm{~h} . & \mathrm{m} . \\ 1 & 51 \end{array}\right\|$	$\left\lvert\, \begin{array}{ll} \mathrm{h} . & \mathrm{m} . \\ 1 & 52 \end{array}\right.$	53		m. 55	"
0	10.2382	2341	2300	2259	2218	2178	2139	2099	2061	2022	1984	1946	0
1	2382	2340	2299	2258	2218	2178	2138	2099	2000	2021	1983	1945	1
2	2381	2339	2298	2258	2217	2177	2137^{\prime}	2098	2059	2021	1982	1944	2
3	2380	2339	2298	2257	2216	2176	2137	2098	2059	2020	1982	1944	3
4	2380	2338	2297	2256	2216	2176	2136	2097	2058	2019	1981	1943	4
5	0.2379	2337	2296	2256	2215	2175	2136	2096	2057	2019	1981	43	5
\bigcirc	2378	2337	2296	2255	2214	2174	2135	2096	2057	2018	1980	1942	6
7	2378	2336	2295	2254	2214	2174	2134	2095	2056	2017	1979	1941	
8	2377	2335	2294	2253	2213	2173	2134	2094	2055	2017	1979	1941	8
9	2376	2335	2294	2253	2212	2172	2133	2094	2055	2016	1978	1940	9
-10	0.2375	2334	2293	2252	2212	2172	2132	2093	2054	2016	1977	1939	10
11	2375	2333	2292	2251	2211	2171	2132	2092	2053	2015	1977	1939	11
12	2374	2333	2291	2251	2210	2170	2131	2092	2053	2014	1966	1938	12
13	2373	2332	2231	2250	$2 \because 10$	2170	2130	2091	2052	2014	1975	1938	13
14	2373	2331	2290	2.49	2:09	2169	2130	2090	2052	2013	1975	1937	14
15	0.2372	2331	2289	2249	2208	2169	2129	2090	2051	2012	1974	1936	5
16	2371	2330	2289	2248	2208	2168	2128	2089	2050	2012	1974	1936	16
17	2371	2329	2288	2247	2207	2167	2128	2088	2050	2011	1973	1935	17
18	2370	2328	2287	2247	2206	2167	2127	2088	2049	2010	1972	1934	18
19	2369	2328	2287	2246	2206	2166	2126	2087	2048	2010	1972	1934	19
20	0.2368	2327	2286	2245	22	2165	2126	2086	2048	2009	1971	1933	20
21	2368	2326	2285	2245	2204	2165	2125	2086	2047	2009	1970	1933	21
22	2367	2326	2285	2244	2204	2164	2124	2085	2046	2008	1970	1932	22
23	2366	2325	2284	2243	2203	2163	2124	2085	2046	2007	1969	1931	23
24	2366	2324	2283	2243	2202	2163	2123	2084	2045	2007	1968	1931	24
25	0.2365	2324	2283	2242	2202	2162	2122	2033	2044	2006	1968	1930	25
26	2364	2323	2282	2241	2201	2161	2122	083	2044	2005	1967	929	6
27	2364	2322	2281	2241	2200	2161	2121	2982	2043	2005	1967	1929	27
28	2363	2322	2281	2240	2200	2160	2120	$20 こ 1$	2042	2004	1966	1928	28
29	2362	2321	2280	2239	2199	2159	2140	2081	2042	2003	1965	1928	29
30	0.2362	2320	2	223	2198	59	2119	80	41	2003	1965	1927	30
31	2361	2320	2279	2238	2198	2158	2118	2179	2041	2002	1964	1926	31
32	2360	2319	2278	2237	2197	2157	2118	21179	2040	2001	1963	1926	32
33	2359	2318	2277	2237	2196	2157	2117	2078	2039	2001	1963	1925	33
34	2359	2317	2277	2236	2196	2156	2116	2077	2039	2000	1962	1924	34
-35	0.2358	2317	2276	2235	2195	2155	2116	2075	2038	2000	1962	1924	35
36	2357	2316	2275	2235	2194	2155	2115	2076	2037	1999	1961	1923	36
37	2357	2315	2274	2234	2194	2154	2115	2075	2037	1998	1960	1923	37
38	2356	2315	2274	2233	2193	2153	2114	2073	2036	1998	1960	1922	38
39	2355	2314	2273	2233	2192	2153	2113	2074	2035	19.97	1959	1921	39
40	0.2355	2313	2272	2232	2192	2152	2113	2073	2035	1996	1958	1921	40
41	2354	2313	2272	2231	2191	2151	2112	2073	2034	1996	1958	1920	41
42	2353	2312	2271	2231	2190	2151	2111	2074	2033	1995	1957	1919	42
43	2353	2311	2270	2230	2190	2150	2111	2072	2033	1994	1956	1919	43
44	2352	2311	2270	2229	2189	2149	2110	2071	2032	1994	195	1918	4.4
45	0.2351	2310	2269	2229	2188	2149	2109	2070	2032	1993	1955	1918	45
46	2350	2309	2268	2228	2188	2148	2109	2070	2031	1993	1955	1917	46
47	2350	2309	2268	2227	2187	2147	2108	2069	2030	1992	1954	1916	47
48	2349	2308	2267	2227	2186	2147	2107	2068	2030	1991	1953	1916	48
49	2348	2307	2266	2226	2186	2146	2107	2068	2029	1991	1953	1915	49
50	0.2348	2307	2266	2225	2185	2145	2106	2067	2028	1990	1952	1914	50
51	2347	2306	2265	2225	2184	2145	2105	2066	2028	1989	1951	1914	51
52	2346	6305	2264	2224	2184	2144	2105	2066	2027	1989	1951	1913	52
53	2346	2304	2264	2223	2183	2143	2104	2065	2026	1988	1950	1913	53
54	2345	2304	2263	2223	2182	2143	2103	2064	2026	1987	1950	1912	54
55	0.2344	2303	2262	2222	2182	2142	2103	2064	2025	1987	1949	1911	55
56	2344	2302	2262	2221	2181	2141	2102	2063	2025	1986	1948	1911	56
57	2343	2302	2261	2220	2180	2141	2101	2062	2024	1986	1948	1910	57
58	2342	2301	2260	2220	2180	2140	2101	2062	2023	1985	1947	1909	58
59	2342	2300	2260	2219	2179	2139	2100	2061	2023	1984	1946	1909	59

TABLE XXXIV.

PROPORTIONAL LOGARITHMS.

$\left(\begin{array}{l} 0 \\ \mathrm{~h} \\ 1 \end{array}\right.$	$\left\|\begin{array}{ll}0 & \\ \text { h. } & m . \\ 1 & 56\end{array}\right\|$	$\begin{aligned} & \text { m. } \\ & 57 \\ & \hline \end{aligned}$	$\begin{gathered} 1 \\ \mathrm{~m} .0 \\ 58.1 \\ 58.1 \end{gathered}$	$\begin{gathered} 1 \mathrm{c} \\ \mathrm{~m} . \mathrm{h} \\ 59.2 \end{gathered}$	$\left.{ }^{1} \int_{0}^{0}\right\|_{2} ^{\mathrm{h}}$		$\begin{array}{r} 1 \\ \mathrm{~m} . \mathrm{h}_{\mathrm{h}} \\ 2{ }_{2} \\ \hline \end{array}$	$\begin{array}{r} 1 \\ \mathrm{~m} . \\ 3 \end{array}$	$\left.\begin{array}{\|cc} 0 & 1 \\ h . & m . \\ 2 & 4 \end{array} \right\rvert\,$				2
	0.1908	1871	1834	1797	1761	1725	1689	1654	1619	1584	154	1515	0
1	1908	1870	1833	1797	60	1724	16	1653	1618	1583	1548	1514	
2	1907	1870	1833	1796	1760	1724	1688	1652	1617	1582	1548	14	
3	1906	186.4	1832	1795	1759	1723	1687	1652	1617	1582	1547	1513	
4	1906	1868	1831	1795	1759	1722	1687	1651	1616	1581	1547	1512	
5	0.1905	1868	1831	1794	1758	1722	1686	1651	1616	1581	1546	1512	
6	1904	1867	30	17	1757	1721	1686	50	1615	580	46	1511	
7	1904	1867	1830	1793	1757	1721	1685	1650	1614	1580	1545	1511	
	1903	1866	1829	1792	1756	1720	1684	1649	1614	1579	1544	1510	
9	1903	1865	1828	1792	1755	1719	1684	1648	1613	1578	1544	1510	
10	0.1902	1865	1828	1791	17	17	1683	48	1613	1578	1543	09	10
11	1901	1864	1827	1791	1754	1718	1683	1647	1612	1577	1543	1508	11
12	1901	1863	1827	1790	1754	1718	1682	1647	1612	1577	1542	1508	12
13	1900	1863	1826	1789	1753	1717	1681	1646	1611	1576	1542	1507	13
14	1899	1862	1825	1789	1752	1717	1681	1645	1610	1576	1541	1507	14
15	0.1899	1862	1825	1788	1752	1716	1680	1645	1610	1575	1540	06	15
16	1898	1861	1824	1788	1751	1715	1680	16	1609	1574	1540	1506	16
17	1898	1860	1823	1787	1751	1715	1679	164	09	1574	1539	1505	17
18	1897	1860	1823	1786	1750	1714	1678	1643	08	1573	1539	1504	18
19	1896	1859	1822	1786	1749	1714	1678	1643	1607	1573	1538	1504	19
20	0.1896	18	1822	1785	1749	1713	1677	1642	1607	1572	38	03	
21	1895	1858	1821	1785	17	1712	1677	1641	16	1571	1537	1503	
22	1894	1857	20	1784	1748	12	1676	1641	06	1571	153	02	
23	1894	1857	1820	1783	47	1711	1676	1640	1605	70	1536	1502	
24	1893	1856	1819	1783	1746	1711	1675	1640	1605	1570	1535	1501	
45	0.1893	1855	1819	1782	1746	1710	1675	1639	604	1569	1535	500	
26	189	18	1818	1	1745	09	1674	38	1603	69	534	00	
27	1891	1854	1818	1781	1745	1709	1673	1638	1603	1568	34	1499	
28	1891	1854	1817	1780	1744	1708	1673	1637	1602	1567	1533	1499	
29	1890	1853	816	1780	1743	08	1672	1637	1602	1567	1532	1498	
30	0.188			1779		1707	1671	1636	1601	1566	1532	498	
31	1889	1852	1815	1778	1742	1706	1671	1635	1600	1566	1	1497	
32	1888	1851	1814	1778	1742	1706	1670	1635	1600	1565	1531	1496	
33	1888	1850	1814	7	41	1705	1670	1634	1599	1565	1530	1496	
34	1887	1850	1813	1777	1740	1705	1669	1634	1599	1564	1530	1495	
35	$\overline{0.1886}$	1849	1812	17	-	1704		1633	8	1563	1529	5	
36	1886	49	1812	177	1739	1703	1668	1633	1598	1563	1528	1494	
37	1885	48	1811	5	1739	1703	1667	1632	1597	1562	1528	149	
38	1884	1847	1811	1774	1738	1702	1667	1631	1596	1562	1527	1493	
39	1884	1847	1810	1774	1737	1702	1666	1631	1596	1561	1527	1493	
40	0.1883		1809	1773	1737	17	665	1630		561	1526	1492	
41	1883	1846	1809	72	1736	1700	1665	1630	1595	1560	1526	1491	
42	1882	1845	1808	1772	1736	1700	1664	1629	1594	1559	1525	1491	
43	1881	1844	1808	1771	1735	1699	1664	1628	1593	1559	1524	1490	
44	1881	18	1807	1771	1734	1699	1663	1628	1593	1558	1524	1490	
45	0.1980	4				1698	663	1627	1592	1558	1523	1489	
46	1980	1843	1806	1769	1733	1697	1662	1627	1592	1557	1523	1489	
47	1879	1842	1805	1769	1733	1697	1661	1626	1591	1556	1522	1488	
48	- 1878	1841	1805	1768	1732	1696	1661	1626	1591	1556	1522	1487	
49	1878	1841	1804	1768	1731	1696	1660	1625	1590	15	1521	148	
50	$\overline{0.1877}$	1840	1803	67	1731	695	1660	1624	1589	1555	1520	1486	
51	1876	1839	1803	1766	1730	1694	1659	1624	1589	1554	1520	1486	
52	1876	1839	1802	1766	1730	1694	1658	1623	1588	1554	1519	1485	5
53	31875	1838	1802	1765	1729	1693	1658	1623	1588	1553	1519	1485	
54	41875	1838	1801	1765	1728	1693	1657	1622	1587	1552	1518	1484	
55	50.1874	1837	1800	1764	1728	1692	1657	1621	1587	1552	1518	1483	
56	6. 1873	1836	1800	1763	1727	1692	1656	1621	1586	1551	1517	1483	
57	71873	1836	1799	1763	1727	1691	1655	1620	1585	1551	1516	1482	57
58	81872	1835	1798	1762	1726	1690	1655	1620	1585	1550	1516	1482	
59	91871	1835	1798	1762	1725	1690	1654	1619	1584	1550	1515	1481	59

TABLE XXXIV.

PROPORTIONAL LOGARITHMS.

0	. 1481	1447	1413	1380	1347	1314	1282	1249	1217	11.	115	112	1091		
	1480	1446	1413	1379	1346	1314	1281	1249	1217	118	1153	1122	1091	1	
2	147	14	1412	1379	1346	1313	1281	1248	1216	1184	115	1122	10	2	
3	1479	1445	1412	1378	1345	1313	1280	1248	1216	1184	115	1121	109	3	
4	1478	1445	1411	1378	1345	1312	1280	1247	1215	1183	1152	1120	108	4	
5	0.1478	144	$1+11$	377	1344	1311	1279	1247	1215	1183	1151	1120	1089	5	
6	1477	1443	1410	1377	1344	1311	1278	1246	1:14	1182	1151	1119	10	6	
7	147	1443	1409	1376	1343	1310	1278	1246	1214	1182	1150	1119	10	7	
8	1476	1442	1409	1376	1343	1310	1277	1245	1213	1181	1150	1118	1087	8	
9	1476	1442	1408	1375	1342	1309	1277	1245	1213	1181	1149	111	108	9	
10	0.1475	1441	14	1374	13	1309	12	12	1212	11	11	11	1086	10	
11	1474	1441	1407	1374	1341	1308	1276	1243	1211	1180	1148	1117	10	11	
12	1474	1440	1407	1373	1340	130	1275	1243	1211	1179	1148	1116	108	12	
13	1473	1440	1406	1373	1340	130	1275	1242	1210	1179	1147	1116	108	13	
14	73	1439	1406	1372	1339	1307	1274	1242	1210	1178	1147	1115	1084	14	
15	. 147	143	1405	37	1339	1306	12	1241	12	11	1146	1115	1084	15	
16	147	1438	1404	1371	1338	13	1273	1241	1209	117	1146	1114	10	16	
17	1471	1437	1404	1371	133	130	1273	1240	1208	1177	1145	111	10	17	
18	1470	1437	1403	1370	133	1304	1272	1240	1208	117	1145	1113	10	18	
19	70	1436	1403	1370	1337	1304	1271	1239	1207	1175	1144	1113	108	19	
20	0.146	1436	1402	1369	1336	1303	12	1239	12	11		11	1081	20	
21	14	1435	1402	668	1335	1303	1270	1238	1206	1174	1143	1112	10	21	
22	1468	1435	1401	1368	1335	1302	1270	1238	1206	1174	1142	1111	10		
23	1468	1434	1401	1367	1334	1302	1269	1237	1205	1173	1142	1111	1080	23	
24	1467	1433	1400	13	1334	1301	269	1237	1205	1173	1141	1110	107	24	
25	0.146	1433		1366	13	1301	1268	1236	12	1172	11	1110	1079	25	
26	146	1432	1399	366	333	1300	1268	1235	1204	172	11	11		26	
27	1465	1432	1398	1365	1332	1300	1267	1235	1203	1171	1140	1109	107	27	
28	1465	1431	1398	1365	1332	1299	1267	1234	1202	1171	1139	1108	10	28	
29	1464	31	1397	1364	1331	1298	1266	1234	1202	1170	1139	1108	107	29	
30	0.1464	14	1397	1363	1331	1298	1266	1233	1201	1170	1138	1107	107	30	
31	1463	1429	1396	1363	1330	129	1265	1233	1201	1169					
32	14	1429	1396	1362	1329	1297	1264	1232	1200	1169	1137	1106	107	22	
33	14	1428	1395	1362	1329	1296	1264	1232	1200	1168	1137	1105	107	33	
34	1461	1	94	13	1328	129	1263	1231	1199	1168	1136	1105	107	34	
35	0.1461	1427	1394	1361	1328	1295	1263	12	119	1167	1136	1104		35	
36	1460	$1+27$	1393	1360	1327	1295	1262	1230	119	116	113	11	107		
37	$1+60$	1426	1393	1360	1327	1294	1262	1230	119	1166	1135	1103	107	37	
38		1426	1392	1359	1326	1294	1261	1229	1197	1165	1134		107	38	
39	1459	1425	1392	1359	1326	1293	1261	1229	1197	1165	1134	1102	107	39	
40	0.1458	1424	1391	1358	25	1292	12	12		11				40	
41	1458	1424	1391	1357	1325	1292	1260	1227	119	1164	1132	1101	107	41	
42	1457	1423	1390	1357	1324	1291	1259	1227	1195	1163	1132	1101	107	42	
43		1423	1389	1356	1323	1291	1259	1226	1195	1163	1131			43	
44	1456	1422	1389	1356	1323	1290	1258	1226	1194	1162	1131	1100	106	44	
45	0.1455	142	138	35	1322	1290	12	122	119	11	11			45	
46	1455	1421	1388	1355	1322	1289	1257	1225	119	1161	1130	1099	106	46	
47	1454	1421	1387	1354	1321	1289	1256	1224	1192	1161	1129	1098	106	47	
48	1454	1420	1387	135.	1321	1288	1256	1124	1192	1160	1129	1098		48	
49	1453	1419	1386	1353	1320	1288	1255	1223	1191	116	1128	1097	1066	49	
50	0.1452	419	138	1352	1320	1287	12	122	119	1159	112			50	
51	1452	1418	1385	1352	1319	1287	1254	1222	1190	1159	1127	1096	106	51	
52	1451	1418	1384	1351	1319	1286	1254	1222	1190	1158	1127	1096	106	52	
53	1451	1417	1384	1351	1318	1285	1253	1221	1189	1158	1126	1095	106	53	
54	1450	1417	1383	1350	1317	1285	1253	1221	1189	1157	1126	1095	1064	54	
55	0.1450	16	138	135	1317	1284	1252	1220	18	115	1125	109	1063	55	
56	1449	1416	1382	1349	1316	1281	1252	1219	118	1156	1125	1094	1063	56	
57	449	1415	1382	1349	1316	1283	1251	1219	1187	1156	1124	1093	1062	57	
	1448	1414	1381	1348	1315	1283	1250	1218	1187	1155	1124	1092	1062	58	
59	1447	1414	1381	1348	1315	1282	1250	1218		1154	1123	1092	1061	59	
				211	212						$2 \quad 28$	1219	20		

TABLE XXXIV

PROPORTIONAL LOGARITHMS.

s.	$\left.\right\|_{0} ^{0} \quad 1.0$		$\begin{array}{rr\|r} \text { m. } \\ 2 & 23 \\ \hline \end{array}$			$\begin{array}{cc} 0 & 1 \\ h . & \text { m. } \\ 2 & 26 \\ 2 \end{array}$	$\begin{array}{ll} n_{1} & \text { m. } \\ 2 & 27 \\ \hline \end{array}$	$\left\lvert\, \begin{array}{ll} \text { h. } & \text { m. } \\ 2 & 28 \end{array}\right.$	$\begin{aligned} & \mathrm{m} . \\ & 29 \end{aligned}$	3012	$\left.31\right\|_{2}$	32	$\begin{aligned} & \mathrm{m} . \\ & 33 \end{aligned}$	
0	10.1061	1030	0999	0969	0939	0909	0880	0850	0821	0792	0763	0734	0706	0
1	1060	1029	0999	0969	0939	0909	0879	0850	0820	0791	0762	0734	0705	1
2	1060	1029	0998	0968	0938	0908	0879	0849	0820	0791	0762	0733	0705	2
3	1059	1028	0998	0968	0938	0908	0878	0849	0819	0790	0762	0733	0704	1
4	1058	1028	0997	0967	0937	0907	0878	0848	0819	0790	0761	0732	0704	4
5	0.1058	1027	0997	0967	0937	0907	0877	0848	0818	0789	0761	0732	07	5
6	1057	1027	0996	0966	0936	0906	0877	0847	0818	0789	0760	0731	0703	6
7	1057	1026	0996	0966	0936	0906	0876	0847	4817	0788	0760	0731	0703	7
8	1056	1026	0995	0965	0935	0905	0876	0846	0817	0788	0759	0730	0702	8
9	1056	1025	0995	0965	0935	0905	0875	0846	0816	0787	0759	0730	0702	9
10	0.1055	1025	0994	0964	0934	904	0875	0845	0816	0787	0758	0730	070	10
11	1055	1024	0994	0964	0934	0904	0874	0845	0816	0787	0758	0729	0701	11
12	1054	1024	0993	0963	0933	0903	0874	0844	0815	0786	0757	0729	0700	12
13	1054	1023	0993	0963	0933	0903	0873	0844	0815	0786	0757	0728	0700	13
14	1053	1023	0992	0962	0932	0902	0873	0843	0814	0785	0756	0728	0699	14
15	0.1053	1022	0992	0962	0932	0902	0872	0843	0814	0785	0756	0727	0699	15
16	1052	1022	0991	0961	0931	0901	0872	0842	0813	0784	0755	0727	0698	16
17	1052	1021	0991	0961	0931	0901	0871	0842	0813	0784	0755	0726	0698	17
18	1051	1021	0990	0960	0930	0900	1871	0841	0812	0783	0754	0726	0697	18
19	1051	1020	0990	0960	0930	0900	0870	0841	0812	0783	0754	0725	0697	19
20	0.1050	1020	0	0959	09	0899	0870	0840	081	0782	0753	0725	0696	20
21	1050	1019	0989	0959	0929	0899	0869	0840	0811	0782	0753	0724	0696	21
22	1049	1019	0988	0958	0928	0898	0869	0839	0810	0781	0752	0724	0695	22
23	1049	1018	0988	0958	0928	0898	0868	0839	0810	0781	0752	0723	0695	23
24	1048	1018	0987	0957	0927	0897	0868	0838	0809	0780	0751	0723	0694	24
25	0.1048	1017	09	57	0927	08	08	0838	0809	0780	1	2		25
26	1047	1017	0986	0956	0926	0896	0867	0837	0808	0779	0751	0722	0694	26
27	1047	1016	0986	0956	0926	0896	0866	0837	0808	0779	0750	0721	0693	27
28	046	1016	0985	0955	0925	0895	0866	0836	0807	0778	0750	0721	0693	28
29	1046	1015	0985	0955	0925	0895	0865	0836	0807	0778	0749	0721	0692	29
30	0.1045	1015	0984	0954	0924	0894	0865	0835	0806	0777	0749	0720	0692	30
31	1045	1014	0984	0954	0924	0894	0864	0835	0806	0777	0748	0720	0691	31
32	1044	1014	0983	0953	0923	0893	0864	0834	0805	0776	0748	0719	0691	32
33	1044	1013	0983	0953	0923	0893	0863	0834	0805	0776	0747	0719	0690	33
34	1043	1013	0982	0952	0922	0892	0863	083.1	0804	0775	0747	0718	0690	34
35	0.1043	1012	0982	0952	0922	0892	0862	0833	0804	0775	0746	0718	0689	35
36	1042	1012	0981	0951	0921	0891	0862	0833	0803	0774	0746	0717	0689	36
37	1042	1011	0981	0951	0921	0891	0861	0832	0803	0774	0745	0717	0688	37
38	1041	1011	0980	0950	0920	0890	0861	0832	0802	0774	0745	0716	0688	38
39	1041	1010	0980	0950	0920	0890	0860	0831	0802	0773	0744	0716	0687	39
40	0.1040	1009	0979	0949	0919	0889	0860	0831	0801	0773	0744	0715	0687	40
41	1040	1009	0979	0949	0919	0889	0859	0830	0801	0772	0743	0715	0686	41
42	1039	1008	0978	0948	0918	0888	0859	0830	0801	0772	0743	0714	0686	42
43	1039	1008	0978	0948	0918	0888	0858	0829	0800	0771	0742	0714	0686	43
44	1038	1007	0977	0947	0917	0887	0858	0829	0800	0771	0742	0713	068	44
45	0.1037	1007	0977	0947	0917	0887	0857	0828	0799	0770	0741	0713	0685	45
46	1037	1006	0976	0.946	0916	0886	0857	0828	0799	0770	0741	0712	068	46
47	103	1006	0976	0946	0916	0886	0856	0827	0798	0769	0740	0712	0684	47
48	1036	1005	0975	0945	0915	0885	0856	0827	0798	0769	0740	0711	0683	48
49	1035	1005	0975	0945	0915	0885	0855	0826	0797	0768	0740	0711	0683	49
50	0.1035	1004	0974	0944	0914	0884	0855	0826	0797	0768	0739	0711	068	50
51	1034	100	0974	0944	0914	0884	0855	0825	0796	0767	0739	0710	0682	51
52	103	1003	0973	0943	0913	0883	0854	0825	0796	0767	0738	0710	0681	52
53	1033	1003	0973	0943	0913	0883	0854	0824	0795	0766	0738	0709	0681	53
54	1033	1002	0972	0942	0912	0883	0853	0824	0795	0766	0737	0709	0680	54
55	0.1032	1002	0972	0942	0912	0882	0853	0823	0794	0765	0737	0708	0680	55
56	1032	1001	0971	0941	0911	0882	0852	0823	0794	0765	0736	3708	0679	56
57	1031	1001	0971	0941	0911	0881	0852	0822	0793	0764	0736	0707	0679	57
58	1031	1000	0970	0940	0910	0881	0851	0822	0793	0764	0735	0707	0678	58
59	1030	1000	0970	0940	0910	0880	0851	0821	0792	0763	0735	0706	0678	59

PROPORTIONAL LOGARITHMS.														
	$\left\|\begin{array}{cc}0 & 1 \\ \mathrm{~h} . & \mathrm{m} \\ 2 & 34\end{array}\right\|_{2}^{\mathrm{h}}$.	$\begin{aligned} & 10 \\ & \mathrm{~m} . \mathrm{h} . \\ & 352_{2}^{0} \end{aligned}$	$\begin{array}{ll} 1 \\ \hline \end{array}$	$\begin{array}{cc} \hline 0 & \prime \\ \text { h. } & \text { m. } \\ 2 & 37 \\ \hline \end{array}$		$\begin{array}{lc} 0 & 1 \\ \text { h. } & \text { r. } \\ 2 & 39 \end{array}$	$\left[\begin{array}{cc} 0 & 1 \\ \mathrm{~h} & \mathrm{~m} . \\ 2 & 40 \end{array}\right.$	$\begin{array}{ll}0 & \prime \\ \text { h. } & \text { m. } \\ 2 & 41\end{array}$	0 1 h. m. 2 42 2	$\begin{array}{r} 1 \\ \text { m. } \\ 43 \end{array}$	$\begin{array}{lc} 0 & 1 \\ \text { h. } & 1 \\ 2 & 4 . \\ 2 & 4 \end{array}$	$\begin{array}{cc\|cc\|} \hline & \prime & 1 \\ 0 & \prime \\ \text { h. } & \text { m. } & \text { h. } & \text { m. } \\ 2 & 45 & 2 & 46 \end{array}$		
0	[0.0678\|	0649	0621	0594	0566	0539	0512	0484	0458	0431	0404	0378	0352	0
1	0677	0649	0621	0593	0566	0538	051.1	0484	0457	0430	0404	0377	0351	1
2	0677	0648	0621	0593	0565	0538	0511	0484	0457	0430	0403	0377	0351	2
3	0676	0648	0620	0592	0565	0537	0510	0483	0456	0430	0403	0377	0350	3
4	0676	0648	0620	0592	0564	0537	0510	0483	0456	0429	0403	0376	0350	4
5	0.0675	0647	0619	0591	0564	0536	0509	0482	0455	0429	0402	0376	0349	5
6	0675	0647	0619	0591	0563	0536	0509	0482	0455	0428	0402	0375	0349	6
7	0674	0646	0618	0591	0563	0536	0508	0481	0454	0428	0401	0375	0349	7
8	0674	0646	0618	0590	0562	0535	0508	0481	0454	0427	0401	0374	0348	8
9	0673	0645	0617	0590	0562	0535	0507	0480	0454	0427	0400	0374	0348	9
10	0.0673	0645	0617	0589	0562	0534	0507	0480	0453	0426	0400	0374	0347	10
11	0672	0644	0616	0589	0561	0534	0507	0480	0453	0426	0399	0373	0347	11
12	0672	0644	0616	0588	0561	0533	0506	0479	0452	0426	0399	0373	0346	12
13	0671	0643	0615	0588	0560	0533	0506	0479	0452	0425	0399	0372	0346	13
14	0671	0643	0615	0587	0560	0532	0505	0478	0351	0425	0398	0372	0346	14
15	0.0670	0642	0615	0587	0559	0532	0505	0478	0451	0424	0398	0371	0345	15
16	0670	0642	0614	0586.	0559	0531	0504	0477	0450	0424	0397	0371	0345	16
17	0670	0641	0614	0586	0558	0531	0504	0477	0450	0423	0397	0370	0344	17
18	0669	0641	0613	0585	0558	0531	0503	0476	0450	0423	0396	0370	0344	18
19	0669	0641	0613	0585	0557	0530	0503	0476	0449	0422	0396	0370	0343	19
20	0.0668	0640	0612	0585	0557	0530	0502	0475	0449	0422	0395	0369	0343	20
21	0668	0640	0612	0584	0557	0529	0502	0475	0488	0422	0395	0369	0342	21
22	0667	0639	9611	0584	0556	0529	0502	0475	0448	0421	0395	0368	0342	22
23	0667	0639	0611	0583	0556	0528	0501	0474	0447	0421	0394	0368	0342	23
24	0666	0638	0610	0583	0555	0528	0501	0474	0447	0420	0394	0367	0341	24
25	0.0666	0638	0610	0582	0555	0527	0500	0473	0446	0420	0393	0367	0341	25
26	0665	0637	0609	0582	0554	0527	0500	0473	0246	0419	0393	0366	0340	26
27	0665	0637	0609	0581	0554	0526	0499	0472	0446	0419	0392	0366	0340	27
28	0664	0636	0609	0581	0553	0526	0499	0472	0445	0418	0392	0366	0339	28
29	0664	0636	0608	0580	0553	0526	0498	0471	0445	0418	0392	0365	0339	29
30	0.0663	0635	0608	0580	0552	0525	0498	0471	0444	0418	0391	0365	0339	30
31	0663	0635	0607	0579	0552	0525	0498	0471	0444	0417	0391	0364	0338	31
32	0663	0634	0607	0579	0552	0524	0497	0470	0443	0417	0390	0364	0338	32
33	0662	0634	0606	0579	0551	0524	0497	0470	0443	0416	0390	0363	0337	33
34	0662	0634	0606	0578	0551	0523	0496	0469	0442	0416	0389	0363	0337	34
35	0.0661	0633	0605	0578	0550	0523	0496	0469	0442	0415	0389	0363	0336	35
36	0661	0633	0605	0577	0550	0522	0495	0468	0442	0415	0388	0362	0336	36
37	0660	0632	0604	0577	0549	0522	0495	0468	0441	0414	0388	0362	0336	37
38	0660	0632	0604	0576	. 0549	0521	0494	0467	0441	0414	0388	0361	0335	38
39	0659	0631	0603	0576	6 0548	0521	0494	0467	0440	0414	0387	0361	0335	39
40	0.0659	0631	0603	0575	50548	0521	0493	0466	0440	0413	0387	0360	0334	40
41	0658	0630	0602	0575	50547	0520	0493	0466	0439	0413	0386	0360	0334	41
42	0658	0630	0602	0574	40547	0520	0493	0466	0439	0412	0386	0359	0333	42
43	0657	0629	0602	0574	4 0546	0519	0492	0465	0438	0412	0385	0359	0333	43
44	0657	0629	0601	0573	3546	0519	0492	0465	0438	0411	0385	0359	0333	44
45	0.0656	0628	0601	0573	0546	0518	0491	0464	0438	0411	0384	0358	0332	45
46	0656	0628	0600	0573	30545	0518	0491	0464	0437	0410	0384	0358	0332	46
47	0655	0628	0600	0572	20545	0517	0490	0463	0437	0410	0384	0357	0331	17
48	0655	0627	0599	0572	20544	0517	0490	0463	0436	0410	0383	0357	0331	48
49	0655	0627	0599	0571	10544	0517	0489	0462	0436	0409	0383	0356	0330	49
50	0.0654	0626	0598	0571	1 -0543	0516	0489	0462	0435	0409	0382	0356	-330	50
51	0654	0626	0598	0570	0543	0516	0489	0462	0435	0408	0382	0356	0329	51
52	0653	0625	0597	0570	0542	0515	0488	0461	0434	0408	0381	0355	0329	52
53	0653	0625	0597	0569	90542	0515	0488	0461	0434	0407	0381	0355	0329	53
54	0652	0624	0596	0569	9541	0514	0387	0460	0434	0407	0381	0354	0328	54
55	00652	0624	0596	0568	80541	0514	0487	0460	0433	0406	0380	0354	0328	55
56	0651	0623	0596	0568	80541	0513	0486	0459	0433	0406	0380	0353	0327	56
57	0651	0623	0595	0568	80540	0513	0486	0459	0432	0406	0379	0353	0327	57
58	0650	0622	0595	0567	70540	0512	0485	0458	0432	0405	0379	0353	0326	58
59	0650	0622	0594	0567	70539	0512	0485	0458	0431	0405	0378	0352	0326	59
		235	236	12	$7 \longdiv { 2 8 }$	$2 \quad 39$	2	241	242	2	244	245	246	

TABLE XXXIV.

PROPORTIONAL LOGARITHMS.

" 8	$\left.\right\|_{0} ^{0} \quad 1.0$	${ }^{1} \mathrm{O}_{1}^{0}$	$\begin{aligned} & 1 \\ & m_{1}^{o} \\ & 49 \\ & 49 \end{aligned}$				$\begin{array}{ll} 0 & 1 \\ \mathrm{~h}^{\prime} & \mathrm{m} . \mathrm{h} \\ 2 & 53 \\ 2 \end{array}$			${ }_{2}^{\prime}{ }^{2} .$	$\begin{array}{cc} 0 & 1 \\ \text { h. } & \text { m. } \\ 2 & 57 \end{array}$	$\begin{aligned} & 1 \\ & n_{1}^{\prime} . h^{n} \\ & 58 \end{aligned}$	$\begin{array}{\|cc\|} \hline & \prime \\ \text { h. } & \text { m. } \\ 2 & 59 \end{array}$	s.
0	10.0326	0300	0274	0248	0223	0197	0172	0147	0122	0098	0073	0049	0024	0
1	0325	0299	0273	0248	0222	0197	0172	0147	0122	0097	0073	0048	0024	1
2	0325	0299	0273	0247	0222	0197	0171	0146	0122	0097	0072	0048	0023	2
3	0324	0298	0273	0247	0221	0196	0171	0146	0121	0096	0072	0047	0023	3
4	0324	0298	0272	0247	0221	0196	0171	0146	0121	0096	0071	0047	0023	4
5	0.0323	0297	0272	0246	0221	0195	0170	0145	0120	0096	0071	0046	0022	5
6	0323	0297	0271	0246	0220	0195	0170	0145	0120	0095	0071	0046	0022	6
7	0323	0297	0271	0245	0220	0194	0169	0144	0119	0095	0070	0046	0021	7
8	0322	02.96	0270	0245	0219	0194	0169	0144	0119	0094	0070	0045	0021	8
9	0322	0296	0270	0244	0219	0194	0169	0143	0119	0094	0069	0045	0021	9
10	\bigcirc	0295	0270	0244	0219	01.93	0168	0143	0118	0093	0069	0044	0020	10
11	0321	0295	0269	0244	0218	0193	0168	0143	0118	0093	0068	0044	0020	11
12	0320	0294	0269	0243	0218	0192	0167	0142	0117	0093	0068	0044	0019	12
13	0320	0294	0268	0243	0217	0192	0167	0142	0117	0092	0068	0043	0019	13
14	0319	0294	0268	0242	0217	0192	0166	0141	0117	0092	0067	0043	0019	14
15	$\overline{0.0319}$	0293	0267	0242	. 0216	0191	0166	0141	0116	0091	0067	0042	0018	15
16	0319	0293	0267	0241	0216	0191	0166	0141	0116	0091	0066	0042	0018	16
17	0318	0292	0267	0241	0316	0190	0165	0140	0115	0091	0066	0042	0017	17
18	0318	0292	0266	0241	0215	0190	0165	0140	0115	0090	0066	0041	0017	18
19	0317	0291	0266	0240	0215	0189	0164	-0139	0114	0090	0065	0041	0017	19
20	$\overline{0.0317}$	0291	0265	0240	0214	0189	0164	0139	0114	C089	0065	0040	0016	20
21	0316	0291	0265	0239	0214	0189	0163	0139	0114	0089	0064	0040	0016	21
22	0316	0290	0264	0239	0213	0188	0163	0138	0113	0089	0064	0040	0015	22
23	0316	0290	0264	0238	0213	0188	0163	0138	0113	0088	0064	0039	0015	23
24	0315	0289	0264	0238	2013	0187	0162	0137	0112	0088	0063	0039	0015	24
25	0.0315	0289	0263	0238	0212	0187	0162	0137	0112	0087	0063	0038	0014	25
26	0314	0288	0263	0237	0212	0187	0161	0136	0112	0087	0062	0038	0014	26
27	0314	0288	0262	0237	0211	0186	0161	0136	0111	0087	0062	0038	0013	27
28	0313	0288	0262	0236	0211	0186	0161	0136	0111	0086	0062	0037	0013	28
29	0313	0287	0261	0236	0211	0185	0160	0135	0110	0086	0061	0037	0012	29
30	$\overline{0.0313}$	0287	0261	0235	0210	0185	0160	0135	0110	0085	0061	0036	0012	30
31	0312	0286	0261	0235	0210	0184	0159	0134	0110	0085	0060	0036	0012	31
32	0312	0286	0260	0235	0209	0184	0159	0134	0109	0084	0060	0036	0011	32
33	0311	0285	0260	0234	0209	0184	0158	0134	0109	0084	0060	0035	0011	33
34	0311	0285	0259	0234	0208	0183	0158	0133	0108	0084	0059	0035	0010	34
35	0.0310	0285	0259	0233	0208	0183	0158	0133	0108	0083	0059	0034	0010	35
36	0310	0284	0258	0233	0208	0182	0157	0132	0107	0083	0058	0034	0010	36
37	0310	0284	0258	0233	0207	0182	0157	0132	0107	0082	0058	0034	0009	37
38	0309	0283	0258	0232	0207	0181	0156	0131	0107	0082	0057	0033	0009	38
39	0309	0283	0257	0232	0206	0181	0156	0131	0106	0082	0057	0033	0008	39
40	0.0308	0282	0257	0231	0206	0181	0156	0131	0106	0081	0057	0032	0008	40
41	0308	0282	0256	0231	0205	0180	0155	0130	0105	0081	0056	0032	0008	41
42	0307	0282	0256	0230	0205	0180	0155	0130	0105	0080	0056	0031	0007	42
43	0307	0281	0255	0230	0205	0179	0154	0129	0105	0080	0055	0031	0007	43
44	0307	0281	0255	0230	0204	0179	0154	6129	0104	0080	0055	0031	0006	44
45	0.0306	0280	0255	0229	0204	0179	0153	0129	0104	0079	0055	0030	0006	45
46	0306	0280	0254	0229	0203	0178	0153	0128	0103	0079	0054	0030	0006	46
47	0305	0279	0254	0228	0203	0178	0153	0128	0103	0078	0054	0029	0005	47
48	0305	0279	0253	0228	0202	0177	0152	0127	0103	0078	0053	0029	0005	48
49	0304	0279	0253	0227	0202	0177	0152	0127	0102	0077	0053	0029	0004	49
50	$\overline{0.0304}$	0278	0252	0227	0202	0176	0151	0126	010?	0077	0053	0028	0004	50
51	0304	0278	0252	0227	0201	0176	0151	0126	0101	0077	0052	0028	0004	51
52	0303	0277	0252	0226	0201	0176	0151	0126	0101	0076	0052	0027	0003	52
53	0303	0277	0251	0226	0200	0175	0150	0125	0100	0076	0051	0027	0003	53
54	0302	0276	0251	0225	0200	0175	0150	0125	0100	0075	0051	0027	0002	54
55	0.0302	0276	0250	0225	0200	0174	0149	0124	0100	0075	0051	0026	0002	55
56	0301	0276	0250	0224	0199	0174	0149	0124	0099	0075	0050	0026	0002	56
57	0301	0275	0250	0224	0199	0174	0148	0124	0099	0674	0050	0025	0001	57
58	0300	0275	0249	0224	0198	0173	0148	0123	0098	0074	0049	0025	0001	58
59	0300	0274	0249	0223	0198	0173	0148	0123	0098	0073	0049	0025	0000	59

							TABL AMP	E X PLITU	$X X X V .$ JES.							$22!$
declination.																
Lat.	00	10	20	3°	4°	50	6°	70	8°	9°	10°	110	12°	13°	14°	15°
\bigcirc	-	\bigcirc														
0	0	1.0	$2 \cdot 0$	3.0	$4 \cdot 0$	$5 \cdot 0$	$6 \cdot 0$	$7 \cdot 0$	8.0	$9 \cdot 0$	$10 \cdot 0$	11.0	12.0	$13 \cdot 0$	$14 \cdot 0$	$15 \cdot 0$
10	0	$1 \cdot 0$	$2 \cdot 0$	$3 \cdot 0$	$4 \cdot 1$	$5 \cdot 1$	6.]	$7 \cdot 0$	$8 \cdot 1$	$9 \cdot 1$	$10 \cdot 1$	$11 \cdot 2$	12.	$13 \cdots$	$14 \cdots$	$15 \cdot$
15	0	$1 \cdot 0$	$2 \cdot 1$	$3 \cdot 1$	$4 \cdot 2$	$5 \cdot 2$	6.2	$7 \cdot 2$	$8 \cdot 3$	$9 \cdot 3$	$10 \cdot 4$	$11 \cdot 4$	$12 \cdot 5$	135	$14 \cdot 5$	$15 \cdot 6$
20	0	$1 \cdot 1$	$2 \cdot 1$	$3 \cdot 2$	$4 \cdot 3$	$5 \cdot 3$	$6 \cdot 4$	$7 \cdot 5$	$8 \cdot 5$	$9 \cdot 6$	$10 \cdot 6$	$11 \cdot 7$	12.8	$13 \cdot 8$	$14 \cdot 9$	$16 \cdot 0$
25	0	$1 \cdot 1$	$2 \cdot 2$:3.3	$4 \cdot 4$	$5 \cdot 5$	$6 \cdot 6$	7.7	8.8	$9 \cdot 9$	$11 \cdot 1$	$12 \cdot 4$	$13 \cdot 3$	$14 \cdot 4$	$15 \cdot 5$	$16 \cdot 6$
30	0	1.2	$2 \cdot 3$	$3 \cdot 4$	$4 \cdot 6$	$5 \cdot 8$	$6 \cdot 9$	8.1	$9 \cdot 3$	$10 \cdot 3$	$11 \cdot 6$	$12 \cdot 7$	13.9	$15 \cdot 0$	$16 \cdot 2$	$17 \cdot 4$
32	0	12	$2 \cdot 4$	$3 \cdot 5$	$4 \cdot 7$	$5 \cdot 9$	$7 \cdot 1$	$8 \cdot 3$	$9 \cdot 5$	$10 \cdot 6$	$11 \cdot 8$	$13 \cdot 0$	$14 \cdot 2$	$15 \cdot 4$	$16 \cdot 6$	$17 \cdot 8$
34	0	$1 \cdot 2$	$2 \cdot 4$	$3 \cdot 6$	$4 \cdot 8$	$6 \cdot 0$	7-2	$8 \cdot 4$	$9 \cdot 7$	$10 \cdot 8$	$12 \cdot 1$	$13 \cdot 3$	14.5	$15 \cdot 9$	$17 \cdot 0$	18.2
35	0	1.2	$2 \cdot 4$	$3 \cdot 7$	$4 \cdot 9$	$6 \cdot 1$	$7 \cdot 3$	8.5	$9 \cdot 8$	$11 \cdot 0$	$12 \cdot 2$	$13 \cdot 5$	$14 \cdot 7$	15.9	$17 \cdot 2$	18.4
36	0	$1 \cdot 2$	$2 \cdot 5$	$3 \cdot 7$	$4 \cdot 9$	$6 \cdot 2$	$7 \cdot 4$	$8 \cdot 7$	$9 \cdot 9$	$11 \cdot 1$	$12 \cdot 4$	$13 \cdot 6$	149	$16 \cdot 1$	$17 \cdot 4$	18.7
37	0	$1 \stackrel{2}{2}$	$2 \cdot 5$	$3 \cdot 7$	$5 \cdot 0$	$6 \cdot 3$	7.5	$8 \cdot 8$	$10 \cdot 0$	$11 \cdot 3$	12•6	13.8	$15 \cdot 1$	$16 \cdot 4$	$17 \cdot 6$	$18 \cdot 9$
38	0	$1 \cdot 3$	$2 \cdot 5$	$3 \cdot 8$	$5 \cdot 1$	$6 \cdot 3$	$7 \cdot 6$	$8 \cdot 9$	10%	11.4	$12 \cdot 7$	$14 \cdot 0$	$15 \cdot 3$	$16 \cdot 1$	17.9	19.2
39	0	$1 \cdot 3$	$2 \cdot 6$	$3 \cdot 8$	$5 \cdot 1$	$6 \cdot 4$	$7 \cdot 7$	$9 \cdot 0$	10%	$11 \cdot 6$	$1: 9$	14.2	$15 \cdot 5$	$16 \cdot 8$	$18 \cdot 1$	194
40	0	$1 \cdot 3$	$2 \cdot 6$	$3 \cdot 9$	$5 \cdot 2$	6.5	$7 \cdot 8$	$9 \cdot 1$	10.5	11.8	$13 \cdot 1$	$14 \cdot 4$	$15 \cdot 7$	$17 \cdot 1$	$18 \cdot 4$	$19 \cdot 7$
41	0	$1 \cdot 3$	$2 \cdot 6$	$4 \cdot 0$	$5 \cdot 3$	$6 \cdot 6$	$8 \cdot 0$	$9 \cdot 3$	$10 \cdot 6$	$1 \therefore 0$	$13 \cdot 3$	$14 \cdot 6$	$16 \cdot 0$	17:3	$18 \cdot 7$	$20 \cdot 0$
42	0	$1 \cdot 4$	$2 \cdot 7$	$4 \cdot 0$	$5 \cdot 4$	$6 \cdot 7$	$8 \cdot 1$	$9 \cdot 4$	$10 \cdot 8$	$12 \cdot 1$	$13 \cdot 5$	$14 \cdot 8$	16.2	$17 \cdot 6$	$19 \cdot 0$	$20 \cdot 4$
43	0	$1 \cdot 4$	$2 \cdot 7$	$4 \cdot 1$	$5 \cdot 5$	6.8	8.2	$9 \cdot 6$	$11 \cdot 0$	$12 \cdot 3$	13.7	$15 \cdot 1$	$16 \cdot 5$	$17 \cdot 9$	$19 \cdot 3$	20.7
44	0	$1 \cdot 4$	$2 \cdot 8$	$4 \cdot 2$	$5 \cdot 6$	$7 \cdot 0$	$8 \cdot 3$	$9 \cdot 7$	$11 \cdot 1$	$12 \cdot 6$	$14 \cdot 0$	$15 \cdot 4$	$16 \cdot 8$	$18 \cdot 2$	$19 \cdot 6$	$21 \cdot 1$
45	0	$1 \cdot 4$	$2 \cdot 8$	$4 \cdot 2$	$5 \cdot 7$	$7 \cdot 1$	8.5	$9 \cdot 9$	$11 \cdot 3$	$12 \cdot 8$	$14 * 2$	$15 \cdot 6$	$17 \cdot 1$	18.5	$20 \cdot 0$	215
46	0	$1 \cdot 4$	$2 \cdot 9$	$4 \cdot 3$	$5 \cdot 8$	$7 \cdot 2$	$8 \cdot 6$	$10 \cdot 1$	$11 \cdot 5$	$13 \cdot 0$	14.5	$15 \cdot 9$	$17 \cdot 4$	18.9	$20 \cdot 4$	21.9
47	0	15	$2 \cdot 9$	$4 \cdot 4$	$5 \cdot 8$	$7 \cdot 3$	$8 \cdot 8$	$10 \cdot 3$	$11 \cdot 8$	$13 \cdot 3$	$14 \cdot 7$	16.2	$17 \cdot 7$	$19 \cdot 3$	$20 \cdot 8$	22.3
48	0	15	$3 \cdot 0$	45	$6 \cdot 0$	$7 \cdot 5$	$9 \cdot 0$	$10 \cdot 5$	12.0	$13 \cdot 5$	$15 \cdot 0$	$16 \cdot 6$	$18 \cdot 1$	$19 \cdot 5$	$21 \cdot 2$	22.7
49	0	15	$3 \cdot 0$	$4 \cdot 6$	$6 \cdot 1$	$7 \cdot 6$	$9 \cdot 2$	$10 \cdot 7$	$12 \cdot 2$	$13 \cdot 8$	$15 \cdot 3$	$16 \cdot 9$	$18 \cdot 5$	20.0	$21 \cdot 6$	23.2
50	0	$1 \cdot 6$	$3 \cdot 1$	$4 \cdot 7$	$6 \cdot 2$	8.8	$9 \cdot 3$	$10 \cdot 9$	12.5	$14 \cdot 1$	$15 \cdot 7$	$17 \cdot 3$	$18 \cdot 9$	20.5	$2 \cdot 1$	$23 \cdot 7$
51	0	$1 \cdot 6$	$3 \cdot 2$	$4 \cdot 8$	$6 \cdot 4$	$8 \cdot 0$	$9 \cdot 6$	112	$12 \cdot 8$	$14 \cdot 4$	$16 \cdot 0$	$17 \cdot 6$	$19 \cdot 3$	$20 \cdot 9$	$22 \cdot 6$	24.3
52	0	$1 \cdot 6$	$3 \cdot 3$	$4 \cdot 9$	$6 \cdot 5$	8.1	$9 \cdot 7$	$11 \cdot 4$	13.]	$14 \cdot 7$	$16 \cdot 4$	$18 \cdot 0$	$19 \cdot 7$	21.4	$23 \cdot 1$	24.9
53	0	$1 \cdot 7$	$3 \cdot 3$	$5 \cdot 0$	6.7	$8 \cdot 3$	$10 \cdot 0$	11.7	$13 \cdot 4$	$15 \cdot 1$	$16 \cdot 8$	$18 \cdot 5$	$20 \cdot 2$	21.9	$23 \cdot 7$	$25 \cdot 5$
54	0	1.7	$3 \cdot 4$	$5 \cdot 1$	$6 \cdot 8$	$8 \cdot 5$	$10 \cdot 2$	12.0	$13 \cdot 7$	$15 \cdot 4$	$17 \cdot 2$	18.9	20.7	22.5	$24 \cdot 3$	$26 \cdot 1$
55	0	1.8	$3 \cdot 5$	$5 \cdot 2$	$7 \cdot 0$	$8 \cdot 7$	$10 \cdot 5$	$12 \cdot 3$	14.0	15.8	$17 \cdot 6$	$19 \cdot 4$	21.2	$23 \cdot 1$	24.9	26.8
56	0	1.8	$3 \cdot 6$	$5 \cdot 4$	7×2	$9 \cdot 0$	$10 \cdot 7$	126	$14 \cdot 4$	$16 \cdot 2$	$18 \cdot 1$	$19 \cdot 9$	21.8	$23 \cdot 7$	$25 \cdot 6$	$27 \cdot 6$
57	0	$1 \cdot 9$	$3 \cdot 7$	$5 \cdot 5$	$7 \cdot 4$	$9 \cdot 2$	$11 \cdot 1$	$12 \cdot 9$	$14 \cdot 8$	$16 \cdot 7$	$18 \cdot 3$	20.5	$22 \cdot 4$	$24 \cdot 4$	$26 \cdot 4$	$28 \cdot 4$
58	0	$1 \cdot 9$	$3 \cdot 8$	$5 \cdot 7$	76	$9 \cdot 5$	$11 \cdot 4$	$13 \cdot 3$	15:2	$17 \times$	$19 \cdot 1$	$21 \cdot 1$	$23 \cdot 1$	$25 \cdot 1$	27.2	292
59	0	$1 \cdot 9$	$3 \cdot 8$	$5 \cdot 8$	$7 \cdot 8$	$9 \cdot 7$	$12 \cdot 0$	$13 \cdot 7$	$15 \cdot 7$	$17 \cdot 7$	$19 \cdot 7$	$21 \cdot 7$	$23 \cdot 8$	$25 \cdot 9$	$28 \cdot 0$	$30 \cdot 2$
60	0	$2 \cdot 0$	$4 \cdot 0$	$6 \cdot 0$	8.0	$10 \cdot 0$	$1: 1$	$14 \cdot 1$	$16 \cdot 2$	$18 \cdots$	$20 \cdot 3$	$22 \cdot 4$	24.6	$26 \cdot 7$	$28 \cdot 9$	$31: 2$
61	0	$2 \cdot 1$	$4 \cdot 1$	$6 \cdot 2$	$8 \cdot 3$	$10 \cdot 3$	$12 \cdot 5$	$14 \cdot 6$	$16 \cdot 7$	18.8	$21 \cdot 0$	$23 \cdot 1$	$25 \cdot 4$	$27 \cdot 6$	$29 \cdot 0$	$3: 2$
62	0	$2 \cdot 1$	4%	$6 \cdot 4$	8.5	$10 \cdot 7$	129	$15 \cdot 1$	$17 \cdot 3$	$19 \cdot 4$	$21 \cdot 9$	23.9	$\because 6 \cdot 3$	28.5	31.0	$33 \cdot 4$
63	0	2 2	$4 \cdot 5$	$6 \cdot 7$	$8 \cdot 8$	11.1	$13 \cdot 4$	$15 \cdot 6$	$17 \cdot 9$	$20 \cdot 1$	22-5	24.8	$27 \cdot 3$	$29 \cdot 6$	$32 \cdot 3$	$34 \cdot 7$
64	0	2•3	$4 \cdot 6$	$6 \cdot 9$	$9 \cdot 1$	$11 \cdot 5$	13.9	16.2	$18 \cdot 5$	$20 \cdot 9$	$23 \cdot 3$	$25 \cdot 7$	$\because 8.3$	$30 \cdot 9$	33.5	$36 \cdot 2$
65	0	$\xrightarrow{2} 4$	$4 \cdot 8$	$7 \cdot 1$	95	11.9	$14 \cdot 4$	$16 \cdot 8$	$19 \cdot 3$	21.7	$24 \cdot 2$	$26 \cdot 8$	$29 \cdot 5$	32.5	34.9	87.8

Note-The Amplitudes in this Table are expressed in degrees and tenth parts of degrees and to turn those teaths into minntes, we multiply them by six, which will give their value in min tes.

222																
TABLE XXXV. AMPLITUDES.																
declination.																
Lat.	16°	1612 ${ }^{\circ}$	170	17120 ${ }^{\circ}$	18°	182 ${ }^{1}$ O	19°	$19 \frac{1}{2}^{\circ}$	20°	$20 \frac{1}{2}$ O	21°	$21 \frac{1}{2}^{\circ}$		$22 \frac{1}{2}^{\circ}$	230	$23 \frac{1}{2}^{\circ}$
-	\bigcirc	${ }^{\circ}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc		-	-	-		\bigcirc	\bigcirc
0	16.0	$16 \cdot 6$	$17 \cdot 0$	$17 \cdot 5$	$18 \cdot 0$	$18 \cdot 5$	$19 \cdot 0$	$19 \cdot 5$	$20 \cdot 0$	$20 \cdot 5$	$21 \cdot 0$	21.5	$22 \cdot 0$	$22 \cdot 5$	23.0	23.5
10	16:2	$16 \cdot 7$	$17 \cdot 3$	$17 \cdot 8$	$18 \cdot 3$	$18 \cdot 8$	$19 \cdot 3$	$19 \cdot 9$	$20 \cdot 3$	$20 \cdot 8$	$21 \cdot 3$	21.8	$22 \cdot 3$	22.9	$23 \cdot 4$	23.9
15	$16 \cdot 6$	$17 \cdot 1$	17.7	$18 \cdot 1$	18.7	$19 \cdot 2$	19.7	$20 \cdot 2$	$20 \cdot 8$	$21 \cdot 3$	$21 \cdot 8$	$22 \cdot 3$	$22 \cdot 8$	23.3	23.9	24.3
20	$17 \cdot 1$	$17 \cdot 6$	$18 \cdot 1$	$18 \cdot 7$	$19 \cdot 2$	$19 \cdot 7$	$20 \cdot 3$	$20 \cdot 8$	$21 \cdot 3$	21.9	$22 \cdot 4$	$22 \cdot 9$	23.5	24.0	$24 \cdot 6$	$25 \cdot 1$
25	17.7	$18 \cdot 3$	$18 \cdot 8$	$19 \cdot 4$	$19 \cdot 9$	20.5	21.0	$21 \cdot 6$	22.5	22.7	$23 \cdot 3$	$23 \cdot 8$	$24 \cdot 4$	$24 \cdot 6$	25.5	26•1
30	$18 \cdot 6$	$19 \cdot 1$	$19 \cdot 7$	$20 \cdot 3$	$20 \cdot 9$	$21 \cdot 5$	$22 \cdot 1$	22.7	$23 \cdot 3$	$23 \cdot 8$	$24 \cdot 4$	$25 \cdot 0$	$25 \cdot 6$	26×2	26.8	$27 \cdot 4$
32	19.0	19.6	$20 \cdot 2$	$20 \cdot 8$	$21 \cdot 4$	$22 \cdot 0$	$22 \cdot 6$	23.2	$23 \cdot 8$	$24 \cdot 4$	$25 \cdot 0$	$25 \cdot 6$	$26 \cdot$	26.8	$27 \cdot 4$	$28 \cdot 0$
34	$19 \cdot 4$	$20 \cdot 0$	$20 \cdot 6$	$21 \cdot 3$	21.9	$22 \cdot 5$	$23 \cdot 1$	23.7	$24 \cdot 4$	$25 \cdot 0$	$25 \cdot 6$	26-2	$26 \cdot 8$	27.5	$28 \cdot 1$	28.7
35	$19 \cdot 6$	$20 \cdot 3$	$20 \cdot 9$	21.5	$22 \cdot 2$	$22 \cdot 8$	$23 \cdot 4$	24.0	24.7	$25 \cdot 3$	$25 \cdot 9$	$26 \cdot 6$	$27 \cdot 2$	27.8	$28 \cdot 5$	29•1
36	$19 \cdot 9$	20.5	21.2	$2 \mathrm{i} \cdot 8$	$22 \cdot 4$	$23 \cdot 1$	23.7	$24 \cdot 4$	$25 \cdot 0$	$25 \cdot 6$	$26 \cdot 3$	26.9	$27 \cdot 6$	28.2	$28 \cdot 9$	$29 \cdot 5$
37	20'2	20.8	$21 \cdot 5$	$22 \cdot 1$	$22 \cdot 8$	$23 \cdot 4$	24.0	$24 \cdot 7$	$25 \cdot 3$	$26 \cdot 0$	26.7	$27 \cdot 3$	$28 \cdot 0$	$28 \cdot 6$	$29 \cdot 3$	$29 \cdot 9$
38	$20 \cdot 5$	$21 \cdot 1$	21.8	$22 \cdot 4$	$23 \cdot 1$	23.7	$24 \cdot 4$	$25 \cdot 1$	$25 \cdot 7$	$26 \cdot 4$	$27 \cdot 0$	27.7	$28 \cdot 4$	$29 \cdot 0$	$29 \cdot 7$	$30 \cdot 3$
39	$20 \cdot 8$	21.4	$22 \cdot 1$	$22 \cdot 8$	23.4	$24 \cdot 1$	24.8	25.4	$26 \cdot 1$	$26 \cdot 8$	$27 \cdot 5$	$28 \cdot 1$	$28 \cdot 8$	$29 \cdot 5$	$30 \cdot 2$	$30 \cdot 8$
40	$21 \cdot 1$	21.8	$22 \cdot 4$	$23 \cdot 1$	23.8	24.5	$25 \cdot 1$	$25 \cdot 8$	$26 \cdot 5$	$27 \cdot 2$	$27 \cdot 9$	$28 \cdot 6$	$29 \cdot 3$	$30 \cdot 0$	$30 \cdot 7$	$31 \cdot 3$
41	$21 \cdot 4$	$22 \cdot 1$	$22 \cdot 8$	23.5	$24 \cdot 2$	$24 \cdot 8$	$25 \cdot 5$	26.2	$26 \cdot 9$	$27 \cdot 6$	$28 \cdot 3$	29.0	$29 \cdot 8$	$30 \cdot 5$	$31 \cdot 2$	$31 \cdot 8$
42	21.8	$22 \cdot 5$	$23 \cdot 2$	$23 \cdot 8$	$24 \cdot 6$	$25 \cdot 3$	$26 \cdot 0$	26.7			$28 \cdot 8$	29.5	$30 \cdot 3$	31.0	31.7	$32 \cdot 4$
43	$22 \cdot 1$	22.8	$\because 3 \cdot 6$	$24 \cdot 3$	25.0	$25 \cdot 7$	$26 \cdot 4$	27.1	$27 \cdot 8$	$28 \cdot 6$	$29 \cdot 3$	$30 \cdot 1$	$30 \cdot$	31.5	32.3	$33 \cdot 0$
44	$22 \cdot 5$	$23 \cdot 2$	24.0	24.7	$25 \cdot 6$	26.2	26.9	$27 \cdot 6$	$28 \cdot 4$	$29 \cdot 1$	$29 \cdot 8$	$30 \cdot 6$	31.4	$32 \cdot 1$	$32 \cdot 9$	$33 \cdot 6$
45	$22 \cdot 9$	$23 \cdot 7$	$24 \cdot 4$	$25 \cdot 2$	25.9	26.7	$27 \cdot 4$	$28 \cdot 2$	$28 \cdot 9$	$29 \cdot 7$	$30 \cdot 4$	31.2	32.0	$32 \cdot 8$	$33 \cdot 5$	34.3
46	$23 \cdot 4$	$24 \cdot 1$	24.8	$25 \cdot 6$	26.4	27.2	$27 \cdot 9$	28.7	29.5	$30 \cdot 3$	31.0	31-8	$32 \cdot 6$	$33 \cdot 4$	34.2	35.0
47	23.8	$24 \cdot 6$	$25 \cdot 4$	26.2	26.9	27.7	28.5	$29 \cdot 3$	30•1	$30 \cdot 9$	31.7	32.5	$33 \cdot 3$	34•1	$34 \cdot 9$	$35 \cdot 7$
48	$24 \cdot 3$	$25 \cdot 1$	$25 \cdot 9$	26.7	27.5	$28 \cdot 3$	$29 \cdot 1$	29.9	30.7	$31 \cdot 6$	$32 \cdot 4$	33-2	$34 \cdot 3$	34.8	35.7	36.5
49	24.8	$25 \cdot 6$	26.5	$27 \cdot 3$	$28 \cdot 1$	$28 \cdot 9$	$29 \cdot 7$	$30 \cdot 6$	31.4	$32 \cdot 3$	$33 \cdot 1$	$33 \cdot 9$	$34 \cdot 8$	$35 \cdot 7$	36.5	37-4
50	$25 \cdot 4$	$26 \cdot 2$	$27 \cdot 0$	27.8	28.7	$29 \cdot 6$	$30 \cdot 4$	$31 \cdot 3$	$32 \cdot 1$	33.0	$33 \cdot 9$	$34 \cdot 8$	$35 \cdot 6$	36.5	$37 \cdot 4$	38-3
51	$26 \cdot 0$	$26 \cdot 8$	27.7	$28 \cdot 5$	$29 \cdot 4$	$30 \cdot 3$	$31 \cdot 1$	32.0	$32 \cdot 9$	$33 \cdot 8$	$34 \cdot 7$	$35 \cdot 6$	36.5	$37 \cdot 5$	$38 \cdot 4$	$39 \cdot 3$
52	26.6	$27 \cdot 5$	$28 \cdot 3$	29•2	30.1	31.0	31.9	32.8	33.7	34.7	$35 \cdot 6$	36.5	$37 \cdot 5$	$38 \cdot 4$	$39 \cdot 4$	$40 \cdot 3$
53	27.3	$28 \cdot 2$	$29 \cdot 1$	$30 \cdot 0$	$30 \cdot 9$	31.8	32.7	33.7	$34 \cdot 6$	$35 \cdot 6$	36.5	37.5	$38 \cdot 5$	$39 \cdot 5$	$40 \cdot 5$	$41 \cdot 4$
54	28.0	$28 \cdot 9$	$29 \cdot 8$	$30 \cdot 8$	31.7	32.7	33.6	$34 \cdot 6$	$35 \cdot 6$	$36 \cdot 6$	$37 \cdot 6$	$38 \cdot 6$	$39 \cdot 6$	$40 \cdot 6$	41.7	42.6
55	$28 \cdot 7$	$29 \cdot 7$	$30 \cdot 6$	$31 \cdot 6$	$32 \cdot 6$	$33 \cdot 6$	$34 \cdot 6$	$35 \cdot 6$	36.6	$37 \cdot 6$	$38 \cdot 7$	$39 \cdot 7$	$40 \cdot 8$	41.8	42.9	44.0
56	$29 \cdot 5$	$30 \cdot 5$	31.5	32.5	33.5	$34 \cdot 6$	$35 \cdot 6$	$36 \cdot 6$	37.7	$38 \cdot 8$	$39 \cdot 8$	$40 \cdot 9$	$42 \cdot 1$	$43 \cdot 2$	$44 \cdot 3$	$45 \cdot 4$
57	$30 \cdot 4$	$31 \cdot 4$	32:5	$33 \cdot 5$	34.5	$35 \cdot 6$	36.7	37.8	$38 \cdot 9$	$40 \cdot 0$	$41 \cdot 1$	$42 \cdot 3$	$43 \cdot 4$	$44 \cdot 6$	$45 \cdot 8$	47.0
58	$31 \cdot 3$	$32 \cdot 4$	33.5	$34 \cdot 6$	$35 \cdot 7$	$36 \cdot 8$	37.9	39.0	$40 \cdot 2$	41.7	42-5	43.8	$45 \cdot 0$	$46 \cdot 2$	47.5	48.7
59	$32 \cdot 3$	$33 \cdot 5$	$34 \cdot 6$	$35 \cdot 7$	$36 \cdot 8$	38.0	$39 \cdot 2$	$40 \cdot 4$	$41 \cdot 6$	$42 \cdot 8$	$44 \cdot 1$	$45 \cdot 4$	46.7	$48 \cdot 0$	$49 \cdot 3$	$50 \cdot 6$
60	$33 \cdot 4$	$34 \cdot 6$	$35 \cdot 8$	$37 \cdot 0$	$38 \cdot 2$	$39 \cdot 4$	$40 \cdot 6$	41.9	$43 \cdot 2$	$44 \cdot 5$	$45 \cdot 8$	$47 \cdot 1$	48.5	$49 \cdot 9$	$51 \cdot 4$	52.8
61	$34 \cdot 6$	35-8	$37 \cdot 1$	$38 \cdot 3$	$39 \cdot 6$	$40 \cdot 8$	$42 \cdot 2$	43.5	$44 \cdot 8$	46.2	$47 \cdot 7$	$49 \cdot 1$	$50 \cdot 6$	$52 \cdot 1$	53.7	55.2
62	35.9	372	38.5	39•8	41/2	42.5	43.9	-453	46•8	$48 \cdot 2$	$49 \cdot 8$	51.3	$52 \cdot$	$54 \cdot 6$	$56 \cdot 3$	58.0
63	$37 \cdot 4$	$38 \cdot 7$	$40 \cdot 1$	41.5	$42 \cdot 9$	44.3	$45 \cdot 8$	$47 \cdot 3$	$48 \cdot 8$	50.5	$52 \cdot 1$	$53 \cdot 8$	$55 \cdot 6$	57-4	$59 \cdot 4$	$61 \cdot 3$
64	$39 \cdot 0$	$40 \cdot 4$	$41 \cdot 8$	$43 \cdot 3$	$44 \cdot 8$	$46 \cdot 4$	48.0	$49 \cdot 6$	$51 \cdot 3$	53.0	$54 \cdot 8$	$56 \cdot 7$	58	$60 \cdot 8$	63.0	$65 \cdot 3$
65	40.7)	42.21	$43 \cdot 8$	$45 \cdot 4$	$47 \cdot 0$	48.7	50.4	52.2	54.0	56.0	58.0	$60 \cdot 1$	$62 \cdot 4$	$64 \cdot 9$	$67 \cdot 6$	$70 \cdot 4$

the following table contains extracts from the nautical almanac FOR THE YEAR 1854, FOR THE PURPOSE OF WORKING OUT THE EXAMPLE GIVEN IN THIS WORK TO SUIT THOSE WHO may not have an almanad at hand.								
tee sun's right ascension, deolination, \&c.								
Day of Month.		Ap. R. Ascen	Dif. 1 Hr	App.Declination.	Dif. 1 Hr.	Semid.	Equa of Time.	Dif. 1 Hr:
Jan. "6 "6 "	20 21 25 26	н. M. s.	8.	¢0cccl\|	33 33.9 37.5 38	$\begin{array}{rr} 1 & \prime \prime \\ 16 & 17 \\ 16 & 17 \end{array}$	м. 8.	
Fib.	$\begin{array}{r}7 \\ 8 \\ 9 \\ 10 \\ 11 \\ \hline\end{array}$	21 23 36 21 27 35 21 31 34 21 35 32 21 39 28	10 10 10 10 10				$\begin{array}{r} +1427.32 \\ +1429.87 \\ +1431.61 \\ +1432.55 \\ +1432.70 \\ \hline \end{array}$	$\begin{array}{r} \hline 0.106 \\ 072 \\ 039 \\ 006 \\ 025 \\ \hline \end{array}$
Maroi""""""""""				14 S	58		+ 1145.76	584
	6			$5{ }_{5}^{40} 1018$.	58	168	+ 1131.74	602
	10	232153	9	4630 S .	59		+ 1031.55	665
	11	$23 \quad 2533$	9	34259 S .	59		+ 1015.58	679
	23	$0 \quad 922$	9	1054 N .	59		+ 645.27	766
	24	0130	9	12432 N .	59		+ 626.88	767.
	25			1487 N.	59		+ 68.46	768
	26			21140 N .	58.9		+ 550.02	768
	27			23511 N .	58.6		+ 531.56	768
	30			34522 N .	58.2		+ 436.36	763
	31			$4 \quad 8$ \% 8 N.	58		+ 418.06	759
April""""""""				43135 N .	58		+ 359.84	755
	2	04543	9	45455 N .	58		+ 341.71	750
	3	04921	9	51756 N.	57		+ 323.70	745
	6	1018	9				+ 230.50	725
	7	1357	9				+ 213.11	716
	16						- 011.87	603
	17						- 026.33	586
	21			115036 N .	51		- 120.06	514
	22			121053 N .	50		- 132.39	494
	30			144532 N .	46		- 253.58	328
$\begin{gathered} \text { MAY } \\ \text { " } \\ " \\ " \\ ، \end{gathered}$	1			$\begin{array}{llll}15 & 3 & 49 \mathrm{~N} .\end{array}$	45		- 31.44	306
	12	31550	10	$\begin{array}{llll}18 & 7 & 27 & \mathrm{~N} .\end{array}$	37.4		- 352.34	053
	13	31945	10	182225 N.	36.7		- 353.60	028
	19			194536 N.	32		- 348.94	116
	20			195819 N .	31		- 346.15	140
$\begin{aligned} & \text { JUNE } \\ & 66 \\ & 6 \\ & 6 \\ & 6 \end{aligned}$	1			22323 N.	20		- 231.92	380
	2			221123 N.	19		- 222.80	395
	3	44413	10	22190 N.	18	1548	- 213.33	410
	4	65241	10	222613 N .	17	1548	-	
	21			$23 \quad 2732 \mathrm{~N}$.	0			
Juty	3	64834	10				+ 349.25	455
		65241	10				+ 40.18	441
	12			$22 \quad 0 \quad 19 \mathrm{~N}$.	21		+ 514.40	308
	19			205310 N.	27		+ 556.28	165
	20			20428 N .	28		+ 60.25	141
Avo. " 66 46 66 66 66 -				$1717 \quad 7 \mathrm{~N}$.	40		+ 550.21	233
	5			$\begin{array}{llll}17 & 1 & 2 & \mathrm{~N} .\end{array}$	41		+ 544.64	258
	14	93448	9	142430 N.	46		+ 428.11	469
	15	93834	9	$14 \quad 553 \mathrm{~N}$.	47		+ 416.86	490
	21	$10 \quad 0 \quad 54$	9				+ 258.97	610
	22	$\begin{array}{llll}10 & 4 & 36\end{array}$	9				+ 244.34	628
	31			8410 N.	54			

CONTAINING THE TIDE HOURS, OR THE TIMES OF HIGH WATER,
At the Full and Change of the Moon, (usually called the Establishment of the Port,) at the principal Ports and Harbors of the World, with the Vertical Rise of the Tide in Feet, in both Spring and Neap Range. The first two numbers, connected thus - in the Range column, denotes the Spring Range, the second the Neap Range

Laces. Ti	time.	Range	Places.	TIME.	range	PLACES.	time.	RaNGE	places.	TID	SANGE
	$\left\|\begin{array}{cc} \text { н. } \\ 8 & \text { м. } \\ 1 \end{array}\right\|$	$\begin{gathered} \text { FT. } \\ 3 \end{gathered}$	Barfle	$\left\|\begin{array}{c\|} \text { н. м. } \\ 8 \\ 8 \end{array}\right\|$	F.	Cantin	$\left\lvert\, \begin{array}{cc} \text { н. м. } \\ 10 & 0 \end{array}\right.$	FT.	Dauphin,	$\begin{gathered} \text { н. м. } \\ 4 \\ 4 \end{gathered}$	${ }_{1}{ }^{\text {FT, }}$
Abdl Kon	430	8	Barnstable . . 1	110	9	Canton.	240		Delagoa	440	13
A berdeen	112	19-14	Barren Is	445	12	Capricorn	80	7	Delaware R.C		
Aterystwyth.	731	13-6	Bas Is	515	27	Cargados Gar.	2	4	Hen.	80	4-3
A brolhos.....	448	6	Basseen. 1	1230	17	Cardiff	$6 \quad 59$		Delgado	1230	7
A capuleo	36	$1 \frac{1}{7}$	Batan		4	Carlingfor	110	18-12	- C .	40	16
A chen.	$9 \quad 0$	7	Bat		6	Carlos St.	1145	19	Delhi,	40	8
Adelai	544	6	Bate......... 1	120	14	Carrickfergus.	1030	8	Demera	430	9
Ade	70		Bathur	810	7	Cartaret.		6	Desire	1245	21
Adenara		8	Bay of	916	6	Castlereagh C.	250	4	Devonport	5431	15-7
Agoad	1030	9-	Bayonue.	315	16	Catherine St.	240	6-	Diamond	1030	8
A	40	8	Beachy Hd. . 11	$11 \quad 0$	21	Catoche, C.		1	Diego Ga	130	
Akyab	945	$9-$	Beaumaris ... 1	1032	21-11	Cayenne	345	6	- Ram.	40	6
Albema	715		Beaufort	652	7	Cayeux.		27-16	- St. C.	430	10
Alderney	646	17-8	Belfast.	1048	9-6	Ceuta	155		Dieppe	1118	27-15
Amboyn	033	7	Bell Sound	856	3	Chaguaramus.	330	4	Discover	230	7
Amoy.. 1	12 s0	18-17	Belle Isle	1130	7	Champion B...	910	1	Dislocati	140	4
Amsterda	30	18	Bambatook	430	16	Charles, C.	745	5	Diu 1.	20	6
- I., I. Oe..		8	Bembridge	1140		Charlesto	710	8	Div		5
Andamans N .			Bencool	0		Chatham	054		Dougl		2-11
Ha	10	9	Benin	415	7	Cbatte	12	13	Dover	. 1112	20
Andrava B.	330	5	Berbi	430	11	Chaussey	69	30	Dragon's	. 30	4
Andrews, St... 1	1045	25	Bergen	130		Cheduba	1130	8	Dublin Poo	. 1030	18-7
Angra, Azores. 1	1232	$4 \frac{1}{3}$	Bergen op 2	330		Chepstow	730	70 ?	Dunbar	20	
- Pequenha..	230	8	Bermuda.	7 or 8	5	Cherbour	749	17-8	Duncans	100	9
Ann, Az..	11 59	18	Berwick on			Chester.	1030	- 26	Dundee	231	15-7
- St. I., Sejech.	. 530	${ }^{6}$	Tweed	218	16	Chichester	.1145	14	Dunkirk	128	17-10
Annapolis, U.S.	. 438	$2 \frac{1}{2}$	Bilboa	253	291	Chignecto.	. 110	32	Dunmor	645	16
- Nov. Scot. . 11		30	Bi	630	14	Chimmo B	1225	16	Durnford.	445	12
Anticosta, W.			Blanco	1146		Chin-chew	1225	17-	Durien, Strai	-	10
	330	11	Blewf	150	2	Chin-Hae	1210	10			
Antongil B.	40	5	Blyth	248	14-10	Chittagon	130	15-10	Easter I.	20	
Antonio, Cuba.	930	13	Bodeg	1130	7	Chosan	730	4	Edgar, Port	715	6
Port	1040	30-18	Bojador	120		Christm	100		Egg Harbor.	710	
Antwe:p	425	14	Bombay	1110	15-11	Chusan	110	12-6		120	12
Aor Pul		5	Bimacca	90	17 $\frac{1}{2}$	Circular	12	-	Elena	40	17
Arbroath	140	14-8	Bouny	50	9	Clara, Sta	40	$7-$	Embden	120	
A palachicola...		7	Bordeaux	655	14-11	Coast, C.	445	7	Eudeavor	80	
Arcachon	437	12-7	Buston, U. S...	1131	12	Cobija...	954	4	English Rd.	730	
Arcas	120	$1 \frac{1}{2}$	Botany B	803	7 or 4	Cochin.			Essington Pt	.. 324	13
Archang	718	2	Buw I.	240	3	Cockbu	415	12	Evaugelists .	10	
Ardglas	1030	19	Boyanna	430	15	Cod C.	1130	13	Exmouth	629	14-8
Ardros	1154	10-8	Brava	430	8	Colorad	340		E	720	
Ari		5	Bray H	1045	12-7	Columbia	1215				
Ar		10	Brehat	527	37	Comoro	430		Fairweath. C	90	
Arthur	752		Brest	348	19-9	Condore	30		Falmouth.	530	18
A rundel	1115	16	Bridgewater. .	650	35-18	Copiapó	830		Famine.	07	
Ascension	530		Brielle	30	14	Coquet	545	15-8	Fayal.	1130	$4 \frac{1}{2}$
Auckland......	615	10	Brighto	106	16	Coquimbo	98		Fear, C.	70	
Augustine B...	430	13	Bristol.	715	40	Cordova	337	14-7	Fervando No	. 40	6-5
- U. S.	$8{ }^{8} 4$	$4{ }^{6 \frac{1}{2}}$	Brit	40	97	Coring	9	0^{5-3}	Ferrol	229	
A wate	3 30	${ }^{6 \frac{1}{2}} 8$	Bruny..	91	$\stackrel{9}{9}$	Coris	5		Finister	$\begin{array}{lll}3 & 0 \\ 9 & 1\end{array}$	
Ayr....	1210	8-5	Buenos Ayres. Bulama I. . .	0 0	0 var.	Cork	5		Flamenco. Fleetwood	$\begin{array}{rc} 9 & 10 \\ 10 & 5 \end{array}$	5
Bab el mandeb			Bulama Buucran	.4 7 7 54	15 17	Corunn	3 1130		Fleetwood	$\begin{array}{r} 1053 \\ 1 \end{array}$	\|28-21
- I. 1130	-	Bushire		6	Coy Inlet			Flushing		
13	330	8	Bussora	120		Cracatoa	. 7		Forelaud, N.	1115	17
Malad	630		Button I	650		Crome	. 7	015-7	Fowey..	530	16
Balaso	945	10-				Crooke	7		Francisco, St		8-2
Halbrig	. 1040	11	Cadiz	2	12-8	Crookhave	40	0.12-8	Funchal.	1215	0
Bully	1230	11	Caerna	933	14-8	Curieuse.....			Fundy		60
Balta	945	6-3	Cajeli.	10	0	Curtis, Port,					
Bultimor	423	12	Calcutta	30		Austr.	- $8 \frac{1}{3}$	10-6	Gaboon, R.. .	60	8
Bumanas	815	5	Calebar, New.	50	09	Cutch, G.	. 11 tol	15	Gallant, Port	93	
Bancoot	110	- 12	Callao........	547	4	Cuxhav			Gallegos, R.	850	
Banda.	$\begin{array}{lr}4 & 0 \\ 0 & 40\end{array}$		Cameroons R..	60	- 7				Galveston		
Banff..........	040	211-6	Camiguin ${ }_{\text {Campbell }}^{\text {I. }}$. $r_{12} 12$	- 43 ?	Dalrymple .. Damaun Bar	$\begin{array}{rrr}12 & 5 \\ 1 & 30\end{array}$	5 10 17	Galivay ${ }_{\text {Gambia, }} \mathrm{Bat}$		
Bantam.		5	Campbelton.. .			Dampier Stra			Gambia,		
Bantry	847	$710-5$	Campobello ..	. 1119	91-16	Dartmouth..	. 65	5 19-11	Gambier Is		3
Bar!ara1115	56	Cambing. .	noon	,	Darnley I.	930		Gaspé B.		5
Barbe	60	0 6-	Canso, Grt	830	0	Darwin, Port.	. 530	\|24-17	Gry Hd.	737	,

CONTAINING THE TIDE HOURS, OR THE TIMES OF HIGH WATER.

Places ${ }^{\text {P/ TIME }}$ R	Range	Places.	TIME.	Range	PLac'es.	TIME.	dange	Places.	TIME.	bange
I. M.	FT.		H. M.	FT		H. M.	FT.		M.	FT.
Geby	$5-$	John's, St. N.B.	$\left\|\begin{array}{ll} 11 & 23 \end{array}\right\|$	23-17	Malaga.	120	3	New London.	930	j-2
Georige, S^-sh. 1030	7	Joseph, S	50	8	Maldiv			Newport.	745	6-3
(reorgetown .. 70	4	Juau, St. P	820	$1 \frac{1}{2}$	Malo, St.	65	35-17	N. Provideuce	730	4-3
(iheriah	6	- Per	510	3	Malpelo	40	10	N. York City .	837	6
(iibraltar 220		-		5	Manilit	irr.	3	Nicholson.	416	6
(ilasgow 1225		Julian	1045	30	Man-of-			Nicoya.	256	10
Gloucester . . 11130	5				Cay	810	4	Nivepin I	100	5
(rot 1145	5	Karakakoa B...	349		Manuk	930	12	Noirmoustier.	$3 \quad 2$	17-16
(rood Hope, C. 30		Katwyk	230	5	Maranhaı	70	18	Nore Lig	1230	14
Groul Success . 433	9	Kedgere	1130		Marblehead	1130	12	Norfolk I	745	7
(roree 748	4	Keeliu	$4 \quad 0$	5	Marcouf, S	955	20	Nuss Bey	50	15
Gracias, C. . . 1030	2	Kelun	1030	3	Marosse	40	5	Neuva G	710	10
Graud, Po	$1 \frac{1}{2}$	Kildu	7	12	Martaban	220	21			
Granville 613	37-17	Kilrush	442	16	Martin, Co	350	8	Ocrac	$9 \quad 0$	
Greenock . . . 128	10-6	Killibeg	645		Martin Vas	345		Old Pt. Comft.	827	4
Guasco 8830	5	King G's	irr.	3	Mary, St. C.			- Providence		1 ?
Guatulco. . . . 1130	5	King's I.	irr.	12	Scotia.	930	16	Olero	350	19
Guaymes...... 803	6-	Kingston	1110	11-6	Matheson H	1230	17	Oporto	230	10-
Guerusey 630	35	Kiusale.	443	11-7	Massowa	10	3	Orange	330	5
Gun Cay. . . . ${ }^{\text {7 }}$	3	Kish Lt.	1030	10	May, C..	819	6-4	Osteud	020	19-15
Guayaquil.... 70	11-	Kishm		12	Mayotta	545	11	Otag	320	9
		Krac	$\begin{array}{lr}7 & 0 \\ 8 & \end{array}$	4	Mazatlan	940	31	Otah	noon	1
$9 \quad 0$			820	6	Maze	1048	5	Otway,	noon	6
Hague....... 745	21	Kykduin		12	Meichow		$17-$			
Hakluyts Hd.. 130	4				Melinda	415	11	Pad	440	22-16
Halifax. 7739	8		$4 \quad 0$	6	Mergui	1130	21-	Palmas C.	630	6
Hamburgh ... 50		- Portu	27	13	Merjee	110	7	Palmiras P	930	11-7
Hammerfest. . 110	9	Lambeyeque..	40	3	Miatau		7	Pana	3 l	
Hardy, Port . 80	12		46	11	Michael,	1230	6	Papos	940	5
Hartlcpool . . . 328	15-8	Lathe	$4 \quad 0$	10	Michel.			Para.	120	13
Harwich.. ... 006	$11-7$	Leith	217	16-7	Milfurd Hav	545	5 22	- E	100	
Hastings, St.M. 1040	13-	Lerwic	945	8	Mindanao, S	70) 6	Passan	1130	25
Hatteras, C. . . 90	-5	Leübu R	1080	5	Mingan	130	7	Pas	50	10
Hav	3	Limeri	753	17	Min R.	1015	19-	Pat	430	10
Havre 951	22-12	Lindy	430	12	Minow I	50	- 15	Payt	320	3
Haytien, C.... 60	3	Lintin	120	8	Mira por	930	8	Pearl Ca	20	2
Heligoland ... 110	9	Lisb	40		Mississippi . .		119	Peiho R.	330	7
Helena, St. B.. 230		Liscom		7-4	Mobile		$2-$	Pelew		6
- 1........ 3811	3	Liver	1116	25-14	Mocha		4	Pemba	415	12
Henlopen, C. . 88	4-3	Loav	430	6	Mogarl		10	Pembro	612	21-10
Henry, C. . . . 740	4	Lobi	220	5	Molucea		3	Peua	215	8
Heradura,.... 98	5	Lohei:	130	3	Mombaza	40	11	Peñas	642	12
Hillsboro' Inlet 7830	5	Loire,	345	19	Monganui	750	8	Peniche	154	
Hubarton . . . 80	4	Loma	819	5	Monon	1130	6	Pemmarc'l	316	
Hokianga . . . 930	9	Lombock		7	Monter	730		Pensacola		2
Holrnes' Hole. 1148	2-1	London Bridge	27	18-	Monte	irr.		Pentlaud Sker	850	8-3
Holy I. 230	15	Loo Choo, Nap	$9 \quad 0$	9	Montro	130	13-	Pernambuco .	423	6
Holyhead 1026	16-8	Lopez, C. . . .	430				- 12	Peros Bauhos.	.. 130	5
Hunduras Bay.	1	L'Ori	341	20	Morebat	90	0	Pescadore	. 1030	9-4
Honfleur 930	13	Los Is. d	635	17-13	Moreno.	100) 4	Peterhead.	048	11-6
Hong Ko.	9	Louis, Po	12	2	Morlaix		24-12	Philadelph	122	7-4
Houtman's Ab. 1130	2	- Fa	50	7	Mossel B.	30	- 6	Philip	020	3
Hınoruru irr.	2	Low,	040	7	Mount Des	1110	13	Pichidanque	920	5
Horu, C. 440	9	Lowes	951	8-4	Mourandov	445	12	Pillar C. ...	10	6
Howe, C...... 980	6	Lucas	920	9	Mozambiqu	415	512	Pisco	450	4
Huacho. 4444	3	Lundy	515	27-13	Mugeres	930	1-1	Placentia	915	8
Hull 6129	22-13				Musa.		5	Pletteuhurg	- 310	1
Hunter, Port. 1045	6		952	8				Plymouth, U.S	S 1130	11
		Maco	1230	2			3	Pomba.	40	5-7
Ilfracombe . . 545	32-13	Mach	110	12	Nan	915	5	Poole.	930	5-2
Indus....... . irr.	12-4	Hacq	780	3	Nangas	752	9-1	Portland,	1110	12
Inhambana.... 415	510	Madam	40	5	Nanka...		12	Porto Ric	830	1
Inveruess 1212	12-7	Madeira	1248	7	Nantucket	1044		Port Royal	546	6
Iquique.	5	Madr	734	8	Napakeang	630	7	Portsmouth,	1141	2-6
Islay.......... 8853	7	Magadoxa	430	8	Nareenda	430	15	- U.S.	1130	10
Ives, St. 444	21-10	Magalhaen E entr..	8	45	Nassau	$\begin{array}{rr} 7 & 30 \\ 10 & 0 \end{array}$	4-3	Post Off. B. Pouinipet	$\begin{array}{rrr}2 & 10 \\ 6 & 0\end{array}$	6 $4 \frac{1}{2}$
Jacinto 630) 6	Mahé I.	8 3	6	Negapatam	508	8	Pouinip	0 0	5
Jask B....... 60	- 6		937	6-4	Negro R..		14	Puget Sound.	60	18
Jericodcoard. . 1130	12	Magnetic	310	12	Nelson	90	11	Pulicat Shoals	925	3
Jersey. 6 80	33-14	Majambo .	430	16	New Bedford.	755	$5-4$			
Jervis 6.645	6	Mugdalena B..		6	Newburyport.	1115	10		40	5
Jiddah. irr.	$\stackrel{2}{8}$	Magdalen Is..	820	3	New Calebar..	530	8	Quebec	630	17
	8	Makumba	445	17	Nerrharen	$11 \quad 9$	19-14	Quentin St.	95	5
Juhn's, St. N. Ff 730	7	Malacea	915	8-	- U.S.	1116	6-5	Quilca.	80	6

TABLE XXXVIII.
CONTAINING THE TIDE HOURS, OR THE TIMES OF HIGH WATER

PLAORS.	TIME	dang	Placts.	TIME.	EA	Plators.	TIME.	bange	Plades	71.2.	R
	H. M.	FT.		H. M.	FT.		H. M.	FT.		H. $\mathrm{M}^{\text {. }}$	FT.
Quillima	415	16	Sta. Maria Is. .	1020	6	Surat	415	30	Ushant.	3.32	19-8
Qailoa	445	12	Superualı B...		6	Surinam		6			
			Saugor I.		12	Swan R	850	2	Valdivia	1035	5
Rachado	530	13-	Savannah	715	81	Swanse	5 56	30-15	Valentia	3405	17-7
Ragged I..	810	3-	Santander	330		Sydue	736	6	Valparaiso	932	5
- Pt., Born		7	Scarborougl	412	18-10	- Bret	90	6	Vera Cruz.	irr.	3
Raine I.	80	10-	Searbet I.	130	10				Verd 0.	745	3
Rajahpoo	10	12	Sea Bear B	1245	20	Table	230	5	Versarah	1215	16
Rangoon	530	20-14	Sebast.	20	4	Tae-Cho	100	15	Vincent, Port	810	5
Ras el Khyma	10	7	Second B	irr.	7	Talcu	1014	5	Vingorla	1030	6
Realejo	36	11-	Sein I.	321	17-7	Tam	35	5	Virgin's	850	38
Rendezrous L.		8	Selsea Harb	1145	14-5	Tarnare	720	8			
Resolution Bay			Senegal	1030		Tamata	418	8	Wahaay	6 0	3
Marq.	230	4	Serra		2	Tang-ta	430	6	Walwich	154	6
Rio Janeir	20	6	Serra	irr.	2	Tanna	535	3	Wangaroa....	815	7
Rochefort	348	20	Shelburt	830	8	Tarber	457	15-10	Waterford...	6 6	13-7
Rochelle.	389		Sheerness	037	16-11	Tarifa	11 15?	8	Welseley Is.	8 -	12
Rodriguez	185	6	Sherbro'	60	11	Tavo	$10 \quad 0$	17	Western, Port	110	8
Roque, O. Stu.		10-6	Shields..	330	15-11	Teignm	6	13-7	Westport	457	13-6
Kotterdam ...	345		Sierra Leone	750	11	Tenerif	130	7	Wexford	680	5-3
Royal L.	745	81 $\frac{1}{8}$	Simons B.	230	5	Texel.	645	6	Weymouth . .	630	7
Rush, Port	550	7-4	Singap	90	9	Tien Pal	120	8	Whitby	345	13
			Sisal		2	Thomas, St. I. .	325	4	Whitehav	1114	23-12
Sable	80	9	Sitl	084		Three Pts. C. .	80	5	Wicklow..	1030	9-5
- In, N, side.	1030	7	Sofala.		21-	Timoan..		7	Wilson's Pro	20	10
- Ditto S.side	830	7	Spain, Port ...	3 0	4	Ting-Hae, Chu-			Woosung ..	180	16
Saintes	645		Spurn Pt.	520	23-14	硡		12-6			
Salcomb	550	19-11	Staten I.,	430	8	Tobago	irr.	$3 \frac{1}{2}$	Yang-tze-ke-		
Saldanha		6	Stephens			Tongata Torbay	$\begin{array}{rrr}6 & 50 \\ 6 & 0\end{array}$	4	ang.		$15-10$ $7-2$
Salem.	1115	11	Falk.	7 45	7	Torbay ...	60	20	Yarmout	910	7-2
San Blas	945	7-	- Austr.	$\begin{array}{ll}9 & 15\end{array}$	8	Torres Strait .		6	Yellab	710	10
Sandalwood B.	60	6-1	Stirrup Cay...	$7 \begin{array}{ll}7 & 0 \\ 1 & 17\end{array}$	4	Triangles....		$1 \frac{1}{2}$	Ylo	820	6
San Carlos			Stonehaven... Stockton	$\begin{array}{ll}1 & 17 \\ 4 & 30\end{array}$	14-8	Trincomalee...	818	2 8	York .	1115	14-10
Falk.......		8	Stockton	430	18	Tristan d'Ao..		8	Youghal.		12-8
Sandy Hook, 0 .	729	6-4	Stornoway	646	15-11	Tynemouth...	250	18		40	
Sanguir I.		6	Suez	0	${ }^{6}$				Zinzibar.....	420	10
San Josef	100	80-20	Sunderla	828	14-8	Union B. . -	810	$\sqrt{12-6}$			
Stan Orus	980	40-18	Supd.	450	8	Upetart 0. ..	. 80	6			

CON'I AINING THE TRUE POSITIONS OF THE MOST PROMINENT AND CONSPICUOUS CLACES IN THE WORLD.

Selected on account of their height (which is given in this Table) or other remarkable appearance, with the view of their being readily identified by the Navigator when in sight, for the purpose of verifying or Rating his Chronometer, from time to time during the voyage. (See method of doing this at page 155).
The Longitudes are reckoued from the Meridian of Greenwich. The fractional parts of Mnates of Latitude and Longitude are given in tenths, which multiplied by six, will produce Secouds.

TABLE XXXIX.							233
mes of plades. Lat. $^{\text {d }}$	- ${ }^{\text {a }}$, W.	Coast of	Wal		or place	Lat. N.	LON. E
Old Head........ 58443	$255 \cdot 5$		Lat. N.	N. W	Beachy Head Light	$5044 \cdot 4$	-7
Ruckal, ceutre..... 5736	1341	names of places.		,	Dungeness Light. .	5055	058
St. Kilda, pk. 1220 ft . 5749	$834{ }^{\circ}$	Great Orme's Head			Dover Castle Ligh	5178	1195
Flanueu Is'ld, N. W. extremity		sigual staff.	5320	351.2	S. Foreland Lights.	5188	122.5
extremity. Rona Island, S. E.	787	Point Lynas Light	5325	114.2	S. Saud Hol. Lt. ves		
onia lsland, S. E.) summit, 360 feet, 597	548	Skerries Light	$53.25 \cdot 8$	436.5	sel Goodwin s	5110	28.2
Hebrides.		S. Stack Light.	53	4	N.	5119	3.5
		Caernarvor	$53 \quad 8.5$	$424 \cdot 7$	Ramsgat	5122.5	
Butt of Lexis.... 5831	614	Bardsey Island Lt..	5245	448	N. Foreland Lig	$5122 \cdot 5$	126.7
Storna way Lt. liouse 5811.5	$622 \cdot 2$	Suowdon, 3580 feet	5315	44.5	Margate Light.	5123.4	123.2
Shiant lel'ds, N. W.		Cardigan Isl'd sum-			Nore Light vesse	5129	048
oue............. . 5733	624		$\begin{array}{lll}52 & 7 \cdot 9\end{array}$	441.5	Chatham Dockya	$5123 \cdot 8$	035
Glass Isiaud Light. 5752	633	th Bishop Light.	51 $51 \cdot 4$	524.5	Sheerness flag sta	5126.8	044.7
S. Uist, East Point. 5713	711	Small's Rocks light. Pembroke Dockyard	5143.3	540	Greenwich Observ		
Barra Hd. Lt. 680 ft . $5647 \cdot 1$ Pentl'ud Skerries Its. $5841 \cdot 2$	739.2 255	Pembroke Dockyard N. W. corner. . .		457.2	London, St. Paul	5128.6	$0 \quad 0.0$
		ilford Chur	$5142 \cdot 7$	51.5	Catheri	513	0
North Coast of Scotland.		St. Anu's Lights. Caldy Isl'd, S. pt. lt. Worms Head.....	5141 $5137 \cdot 9$	510.5 441	East Coast of England.		
Duucausby Head.. 5889	31		5134	420			
Dunuit hd. It. 346 ft . $5840 \cdot 4$	3 21.2	Swansea Pier Light	5137	356	Mouse Light vesse	5131	E.
Thurso......... 5833	331	Mumbles Light.	5134	358.2	Swis Middle Lt. v	5139	1
Cape Wrath Light,		Cardiff Custom H..	5128.6	310	Sunk Light vessel	$5146 \cdot 7$	198.2
400 feet........ 5837.5	459	Newport, Usk Light	$5132 \cdot 4$	2597	Kentish Kuock.	51397	$1: 9.5$
Point of Aird..... 5739	618	Bristol Cathedral.	5126.8	$235 \cdot 5$	Shipwash Lt. ve	$52 \quad 1.5$	137.7
Canna Islaud, W. Pt. 574	634	Flatholm Isl'd light	$5122 \cdot 6$	37	Galloper Lt. vess	5145	155.7
Rum Island, S. Pt.. 5656	¢ 23	Bideford or Braun-			Harwich Lights.	5156.6	155% 117.5
Muck Island, W. end 5649	619	ton Lights.	514.5	412	Orfordness Light	5248	1 1 134.2
Tirey Island, S. end 5727	656	Lundy Isl'd Ligh	$5110 \cdot 1$	$440 \cdot 2$	Aldborough Steep	52 52	136
Skerryvore Lt. 100		Padstow Church	$5032 \cdot 5$	456	Pakefield Light. .	52 26.2	136 $143 \cdot{ }^{\text {E }}$ 1
feet............ 56164	765	Trevose Head lights	5033	5	Lowestoft Lig	$5229 \cdot 3$	145.8
Beu More, 3138 feet. 5625.5	$6 \quad 0.7$	St. Ives Steeple.	$5012 \cdot 8$	526.5	Yarmouth Spir	$5236 \cdot 8$	$143 \cdot 7$
$\begin{array}{\|} \text { Isle of Mall, Xi. W. } \\ \text { end. } \end{array}$		Cape Cornwal	$50 \quad 7 \cdot 7$	542.5	Wintarton Ligh	5243	141
West Coast of Scotland.		Scilly Islands.			Hasborough Li Cromer Light.	52 49.4	119
		St. Mary's flag staff. 49 55 Saint Martin's Day		619	Cromer Light..... Leman and Owen Light vessel...	52557	
Yer ${ }^{\text {- }}$ - - is 1368 feet 5648	50					$\begin{array}{ll}53 & 8.5\end{array}$	21%
Fort William...... 5648	55	Mark...........	4958	616	Dudgeon light vesse	$5315 \cdot 2$	056.2
Liomore Isl. Lt. 96 ft 5627	536	St. Agnes Light.... $4953.6 \mid 6207$			Spuru Light	5334	013.5
Oban Free Church.. 56259	$531 \cdot 7$	South Coast of England.			Spura Ligh	5334.7	$\begin{array}{ll} 0 & 7 \cdot 2 \\ \mathrm{~W} \end{array}$
Rhinus of Isla Light 5540	633 549						${ }_{0} 0^{\mathrm{W} .}$
Mull of Cautire Lt.. 5520	$\begin{array}{ll}5 & 49 \\ 5 & 35 \\ \text { 5 }\end{array}$	Seven vessel. Stones light 50 3 6 7			Flamborough He.it	5344.6 54 7	020 $0 \quad 5$
Campbelton Light.. 5525	5 5 4 4	Longships Light	$\begin{array}{ll}50 & 3 \\ 50 & 4 \cdot 1\end{array}$	6 7 5 4	Scarborough Light.		$\begin{array}{lc} 0 & 5 \\ 0 & 23 \cdot 5 \end{array}$
Glasgow N. Bridge. 55 109	416	Longships Light. . Wolf Rock Lt. to be	50 50 49 56 56	544.7 548 5	Scarborough Li	5417 5429.7	$\begin{array}{ll} 0 & 23 \cdot 5 \\ 0 & 36.7 \end{array}$
Greeuock Spire.... 5556.9	$445 \cdot 2$	Wolf Rock Lt. to be Penzance Lt. Pier.	$\begin{array}{\|cr\|}49 & 56.7 \\ 50 & 7 \cdot 1\end{array}$		Whitby Li	54 54 54	$\begin{array}{rrrr}0 & 36.7 \\ 1 & 3.5\end{array}$
Curubræ Light.... 5504.6	4597	Penzance Lt. Pier. . Lizard Lishts	$\begin{array}{\|cc\|}50 & 7 \cdot 1 \\ 49 & 57 \cdot 7\end{array}$	531.5 512	Redcar Church. . ${ }^{\text {R }}$	$5436 \cdot 9$ 5441.8	$\begin{array}{cc}1 & 3.5 \\ 1 & 10.7\end{array}$
Ardrussan Lights.. 5538.7	450.5	Lizard Lights.... Falmouth, Penden nis Castle...... St. Anthony ligh	$4957 \cdot 7$	512	Hartlepool Pier lt's 54 41.8		110.7
Pladda Lights..... 55256 Ailsa Crair summit	57		50 88	$\begin{array}{lll}5 & 2.7\end{array}$	Sunderland, N. Pie Light.		
Ailsa Craig summit $1098 \mathrm{ft..........}$. 5515.2					Newc'stle Bridge, ${ }^{\text {Lig. }}$. 5454.5		122
Corsewall Pt. Light $55 \quad 0.5$	$5 \begin{array}{ll}5 & 9.5\end{array}$	Deadman sum., 379			end...........	54587	135.5
Mull of Galloway Lt 3438.1	$451 \cdot 1$	feet.	5013	448	Tynemouth Light.	$55 \quad 13$	125
Mary Port, S. Pier. 5443	$330 \cdot 5$	Rame Head.	5019	418	Coquet Islaud Light	5 20.1	132.2
Workiugtun Lights. 5438.9	3345	Plymouth Breakwa-			Cheviot Hill, 2658	5529	29
Whitehaven Lights. 5433.2	$335 \cdot 7$	ter, W. end Light	5020.3	$4 \quad 9 \cdot 5$	Longstune Light.	5538.7	136.5
St. Bees Head light,		Bult Head flag staff	$5013 \cdot 2$	$348 \cdot 7$	Farue lshand Lights	6537	$139 \cdot 2$
333 feet. 5430	338	Start Point Light. .	$5013 \cdot 4$	338	Holy Island Castle.	$5540 \cdot 2$	147
Isle of Man.		Dartmouth Light.	5021	333		546	
		Berry Hd. flag staff Torquay. Portland Lights....	5024 5028 $5031 \cdot 4$	3 3 3 3	East Coast of Scotland.		
Peel Light......... 54136	442			$226 \cdot 7$			
N. Pt. Ayr Pt. light 5425	422	St. Albans Head. . .	$\left\lvert\, \begin{array}{ll} 50 & 31 \cdot 4 \\ 50 & 35 \end{array}\right.$	$\begin{array}{cc} 2 & 26 \cdot 7 \\ 2 & 3 \end{array}$	St. Abb's Head, nal staff. . . .	5555	
Douglas Light. 549 Calf of Mau Lights. 54	428 450				Dunbar Church.	[55 59.9	$\begin{array}{lll}28 \\ 2 & 81\end{array}$
	450				Bass Rock, centre.	56	238.2
W. Coast of England.		Needles Light. St. Catherine's pt. lt Cowes Castle.....	$\begin{aligned} & 5034 \cdot 5 \\ & 5046 \end{aligned}$	134		Edinburgh Observa-	
Black Comb, $1919 \mathrm{ft}$.	319.5			$\begin{array}{ll} 118 \\ 117.7 \end{array}$	tory...	5557.4	311
Waluey Isl. S. pt. lt. 542.9	3105				Leith Pier Lights.	5558.9	310.5
Crosby Light 5331	34	Hurst Lights.	$5042 \cdot 4$	132.7	May Island Light.	$5611 \cdot 1$	$233 \cdot 2$
Liverpool Observa- tory............. $5324 \cdot 8$		Soutampton, Saint				5626	223
Bell Beacon........ . . ${ }^{\text {a }} 31.2$	$\begin{array}{cc}3 & 0.0 \\ 3 & 15.5\end{array}$	Michael's Spire. N .	054	124.2	Dundee Lights...	$5627 \cdot 6$ 56 $28 \cdot 1$	$257 \cdot 7$
Formby Light. . .. 5331	3 P -5	College.....	5048	16.2	Montrose Lights. .	$5642 \cdot 5$	245 288
N. W. Light vessel. 53 27.4	317.7	Ower's Light vesse	5040	040	Girdleness Lights	578	23.0
Point of Air Light... 53	319	Brighton Pier Lig	5049	081	A berdeen Lights.	5789	$2 \quad 5 \cdot 7$

AMES Of PLAOES.	Inat. N.	LON. W.
Buchanness Light.	5728	146
Pet'rh'ad, Keith Inch	$5730 \cdot 1$	146
Kinnaird's Head Lt.	$5741 \cdot 7$	21.5
Burgh Island.	$5742 \cdot 1$	330
Cromarty Point Lt	5741	42
Turbetness Light.	5750.9	348.5
Noss Head Light.	5828	34
Shores of the North Sea.		

Dunkirk Light..... $\left.\begin{array}{lll\|ll}51 & 3.1 & 2 & 22 \\ \hline\end{array}\right)$.

Ostend Lights..... $5114.1 \left\lvert\, \begin{array}{ll}5 & 55\end{array}\right.$

| Antwerp Cathedral | 51 | $13 \cdot 2$ | 424.2 |
| :--- | :--- | :--- | :--- | :--- | Brielle Chureh.... Rotterdan Church. $5155 \cdot 3 \quad 429.5$ Hague, S. James Cb. $\begin{array}{rlrl}52 & 4.3 & 4 & 18.7\end{array}$ Texel Islaud W. Pt 53 Haarlem, Great Ch.

tower. 5222.9
Helgoland Isl'd Lt. 5410.8
438.5
753 Elbe, outer Lt. vessell $54 \quad 0 \quad 818$

Denmark.

Cuxhaven Light...	55	$53 \cdot 7$	843
Altona Observatory	53	$32 \cdot 7$	956.7

Light. . .	56443	$1139 \cdot 2$
Elsineur, Kronborg		
Light.	$56 \quad 22$	1237.5
C.rpenhagen Obser tory \qquad		

Shores of the Baltic.

Meen Isl'd, E. Pt. Lt.				54	57	12	33
Kiel Observatory.							
54							

Wismar, St. Mary's
Church..
Rostock............
Rugan Island, E.
t.
Swinemünde Light.
Stettin.
Dantzig Observat'ry
Pillau Light.
Memel Light.
Lyserort.
Domesuess Lights. .
Riga Lights.
Pernau, German Ch.
Dagerort Light. .
Nargen Island Light
Revel, two Lights. .
Ekholm Light. . . .
Rothskar Island Lt.
Hogland, two Lights Tolbouklin Light.. Kronstadt Cath.... St. Petersburg Observatory.... ...
Wiborg. . . .
Sommers Isl'd Le.'s. Sommers Isl'd Lt's.
Helsing fors Obs'rva tory.
Sveaborg..........
Ronskar Light....
Lagskar.
Stochholm Observa-
tory.............
Grönskär Light....
Gothland, S. Point.
Oland, N. Hd. Light
Carlscrona.

| Eartholms, N. | Pt. Lt. | 55 | 19 | 15 | 12 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Names or places,	Lat. N.	Lon. E.
Bornbolm, N. Pt. Lt	$5517 \cdot 7$	1446
S. Point.	5459	15
Falsterbo Light.	5523	12 49.2
Helsingborg Lt..	$56 \quad 27$	1242.2
Warberg Castle	$57 \quad 6.4$	1214.5
Niddiagen two ${ }^{\circ} \mathrm{Lt}$'s	5718.2	1.1543

Coast of Norway.

Gottenburg......... $5741 \cdot 311$ 54.5
Christiauia, New Ob-
servatory.......
Flekkero Island...
Naze Light.
$5954 \cdot 71043 \cdot 5$

Fuglöe.
.......... 6
58 757

Bergen.
Christiansund Light 6024
Rost Is Light $63 \quad 7$

| |
| :--- | :--- | :--- | :--- | :--- |

$\begin{array}{llll}\text { Hammerfest Church } & 7040 & 23 & 42\end{array}$
N. Cape of Europe., $7110.3 \mid 2546$

White Sea.

$\overline{\text { Orlovsk Light.....; }} 67$ 11.5 ${ }^{41} 222$
Onega, St. Michael's Church. Archangel, Trinity Church........... $6432 \cdot 14033.5$ Moudiuga Isl'd, left
entr'uce R. Dviua $6455 \cdot 8 \mid 4016.2$

West Coast of Ireland.

Cape Clear Light. . 5126
Fastnet Rk. lt. to be 5123.3
Mizen Head...... 5127
Bear Island, summit 5137.5
Roanharrick Isl'd lt. $5139 \cdot 2$
Skellig's Lights. ... 5146
Brea Head....... 5133 13 1025

| Valentia Fort Light | 51 | 55 | 8 | 10 | 19 |
| :--- | :--- | :--- | :--- | :--- | :--- | | Great Blaskett N. pt. | 52 | 6 | $10 \% 1$ |
| :--- | :--- | :--- | :--- | :--- |

Kerry Head, River
Shannon.
Tarbert Light..... 5223
Loup Head Light... 5234
S. Arran Isl'd, sum-

mit of Ilanmore lt.	53	7.6

Black Head.......	53	9	9	17

Galway Mutton Isl'd
Light............
Slyve Head Lights.
Newport.
$5315 \cdot 2$

Eagle Island Lights 5417
Downpatrick Head 5420

N. W. Coast of Ireland.	
Sligo Bridge...... Tillen Head 1415 ft	
16	

Sigo Bridge.
Tillen Head 1415 ft .
summit........ 5420
Bloody Farl'nd 1059
feet.............
Farn Point Liglt. 55165 Fannet Point Light. 5516.6 Innistrahul Light. . 55259

Iunishowen Hd. lt's.	55

N. E. Coast of Ireland.

Loudonder ${ }^{\prime}$ y Bridge	54	59.6	7

| Port Rush Pier.... | 55 | $12 \cdot 4$ | 6 | $39 \cdot 7$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Giant's Causeway pt. | 55 | 147 | 6 | 3077 |

Giant's Cause way pt. 5514.7
Rachliu Isl'd lt. to be 5517.6
Kuocklayd Mt. 1690
feet.
$\begin{array}{ll}-55 & 97\end{array}$

Names of places.	Lat. N.	Lon. ${ }^{\text {W }}$,
Divis Mt. 1800 feet.	5436.7	6
Copeland Lights.	54417	$531 \cdot 2$
Slieve Donard 2796 feet.	$5410 \cdot 8$	555.2
Lambay Islaud sum.	5329.6	$6 \quad 1 \cdot 0$

E. Coast of Ireland.

Howth Bailey light.	53	21.7	6

| Kish Light vessel.. | 5319 | 556.5 |
| :--- | :--- | :--- | Great Sugar Loaf

1651 feet....... 539.2
Wicklow Hd. Lights 5257.9
Arklow Light vessel 5242
W'xford, Rosslare pt. $5210 \cdot 9$ 6 $22 \cdot 2$

$\begin{array}{llllll}\text { Saltees Light vessel } & 52 & 23 & 640\end{array}$
Hook Light....... $59 \quad 7 \cdot 4 \quad 6557$

Waterford Bridge. .	5216	7

S. E. Coast of Ireland.

$\overline{\text { Duncannon Fort lt's } 5217.7} \begin{aligned} & 656.5\end{aligned}$

| Roche Point Light. | 51 | 47.5 | 8 | $15 \cdot 2$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Cork Custom House | 51 | 53.8 | 8 | 27.7 |

Barry Head....... $5142 \cdot 1 \quad 823 \cdot 2$
Kinsale, Old Head

832.2

N. W. Coast of France.

W. Coast of France.

Cape Carteret Light $49224 \mid 148.2$

St. Malo Light. ..	48	39	2
15			

$\left.\begin{aligned} & \text { Cape Frehel sum. It. } \\ & 48 \\ & 41 \cdot 1\end{aligned} \right\rvert\, \begin{aligned} & 19\end{aligned}$
Morlaix Lights.. ... 48382353

$\begin{array}{lllll}\text { Brest Observatory. } & 48 & 23.6 & 4 & 29.2\end{array}$

Penmare'h Rocks Lt	47	47.9
	$42 \cdot 2$	

L'Orient tower.
47447
Port Navalo Pt. Lt. $4732 \cdot 255$
Port Saint Nazaire,
Mole Light..... 47163
Rochelle Lt. Tower. $46 \quad 9 \cdot 4$
Rochford Hospital. 4556.6

Coast of Naples.

NAMES OF Places.	Lat. N.	Lon. EL
O. Spartivento	3756	164
C. St. Vito Lt.	4024	1713
C. Otranto. (E. Pt of Italy).	$40 \quad 8 \cdot 6$	$1829 \cdot 7$

W. Coast of the Adriatic.

Mt. St. Angelo..... 14143	1557
Tremiti Isl'ds Mid.	
Castle.. 42 7•3	$1530 \cdot 5$
Colonella sm. 1080 ft . 4252.3	1352
Ancona Lt. 43377	1330.5
San Marino, $2460 \mathrm{ft}$.	1229
Venice, St Mark. 45 ± 5.9	$1220{ }^{0}$
Triente Liuht Castle. 4588.6	1346

E. Coast of the Adriatic.

 - Vella Strazza

1070 feet. 4359 St. Audrea in Pelago $1000 \mathrm{ft}$. Meleda Isl'd W. Pt. $4247 \quad 1718$ Molouta Isl'd sum. . 422991823.6 Vetergnach, $3960 \mathrm{ft} .4219 \quad 1852$ C. Rudoni, 400 feet.. $|4137.6| 1928.2$

Coast of Albania.

C. Linguetta, $2290 \mathrm{ft} |$| 40 | 267 | 1917.7 |
| :--- | :--- | :--- | Mt. Cica, 6300 ft. . . $4015 \quad 1935$

Ionian Islands.
Fano Isl'd S.W. sum. 39 50.2|19 20
Corfu Citadel Lt... $3937 \mid 1955.5$ M. St. Giorgio, 1326
feet............. 3936.51948
Paxo Isl'd N. W. Pt

\qquad | Antipaxo Isld. E. | | | | |
| :--- | :--- | :--- | :--- | :--- |
| Pt. | 39 | 8.7 | 20 | 5.7 | Mt . Nomali, $3750 \mathrm{ft} . |$| 38 | $41 \cdot 6$ | 20 | $37 \cdot 7$ |
| :--- | :--- | :--- | :--- | :--- | Cephalonia; N. extr. 38 28.5 2033 Mt. Elato sum. 5246 . 88 8.5

"Mt.Skopo, $1439 \mathrm{ft} \mathrm{St}_{37} 44^{\circ} 6$

W. Coast of Greece.

Oxia 1s. Pk. 1257 ft .3818 .7 Lepanto cn. Minaret 3823.4 Morea Castle, centre 3818.5 C. Katakolo. 3737.7 Stamfaues Isl'd Lt.. 3715.3 Navarino Mosque. . 3654.6 Mt. St. Nicolo, 1627 feet............. Mt. Makrino, 7900 ft
C. Matapan. C. St. Angelo.. . . . Cerigo Isl'd N. Pt. S. Pt. Ovo Island, $550 \mathrm{ft} . . \left\lvert\, \begin{array}{ll}36 & 5.5\end{array}\right.$ Cerigotto sm. 1230 ft Mt. Krithina, 2600 ft . Kravi Island. $3646 \cdot 1$ Falconera Isl'd sum. 3650.9

Coast of Greece.

Piræus, 2 Lts...... 37 56.2|23 38.0

Islands in the Archipelago.

	Lat. N.	
Hydlai Island sum. 1939 ft..........	3719.5	2328
St. George S.E. sum $1085 \mathrm{ft}$.	3728	23 б6
Zea Isl'd, Mount St. 'Elias.	$3737 \cdot 3$	
"Port St. Nicolao it	$37{ }^{3} 39 \cdot 4$	
Hermia Islaud sum. 966 feet........	3726.2	24237
Milo, Mlt. St. Elais on		
S. W. P	. $3640 \cdot 5$	24235
" Port W. Pt. Point Vami.	3645.3	
Paros Island, Mt. St. Elias, mid. 2530 ft .	$37 \quad 27$	
Syra Island sum. E. side, $1415 \mathrm{ft} . .$.	3728.9	24557
Andrus Island, Mit. Kovari, 3200 ft.	$3750 \cdot 1$	24 60.5
C. Dora, islet off.	38 9.4	2436.3
Mt. Delphi, 5730 ft .	$3837 \cdot 4$	2350.7
Skyros Isl'd, N. end sum..	3849.7	$2437 \cdot 2$
Grand Po	3845	2437
$\begin{array}{r} \text { Mt. Pelion (Patras), } \\ 5310 \mathrm{ft} . . . \mathrm{C} . . . \end{array}$, 3926.5	23
Mt. Ossa (Kessova)	3948	2242
t. Olympus, 9754 ft	t $40 \quad 47$	2222
Salouika	$4038 \cdot 8$	2257.2
C. Cassandr	$3956 \cdot 7$	2322.0
Mt. Athos sum. 6349	$940 \quad 9.5$	2420
Lemnos, W. P	3958.7	25
S.	394	2521.5

Turkey.	
Dardanelles, Asia Cs $40 \quad 9$	2624.5
Gallipoli Lt....... ${ }^{\text {a }} 4024$	26397
Marmora Isl'd S. W. sum............. 4036.5	2735
Coustantinople, St. Suphia.......... 41 0.3	28 5922
Papa, or Kalolimno Isld N. sunl.... 033	2832
$\left\lvert\, \begin{gathered} \text { Buyuk Dereh, N. } \\ \text { Ninaret.......... } \end{gathered}{ }^{41} 10 \cdot 1\right.$	
Bosphorus, Europe lt 4114	29

Black Sea.

Varna Mosque, mid. 4312
Danube R. Soulineh
Mo. Lt..........
Serpent Island Lt. .
C. Fontane Lt. . . .

Odessa Cath......
Tendra Isl'd N. end.
C. Khersones Lt.. .

Sevastopol Ch.
Mt. Tchatirdag S.W sum.
K
Kafta, or Theodosia
Cape Takli Lt... Kertch Ch.......
Yenikaleh Lt.... Taganrog Ch..... Azov Cath. Anapa, E. Ch..... High Summit, 4 ml's inland. C. Batoum Mosque Trebizonde, E. extr. Sinope Castle.... $\begin{array}{lll}\text { Cape Baba } & \ldots & 202\end{array}$ Cape Baba.

Coast of Asia Minor.

MES Of Places.	Lat. N.	Lon. ${ }_{\text {L }}$
Tenedos Isl'd N. W. sum.	3950.2	26
Mt. Ida, 5750 fe	3942	$2650 \cdot 5$
Mitylene, E. Pt..	$39 \quad 07$	26377
Suyyrua Mill, on Daragaz Pt.....	3826.5	$27 \quad 9 \cdot 7$
Samos, W. sum	3743 8	$2638 \cdot 5$
" M. Kerki, 4725 ft .	3748.7	2638
Niearia Beacon 3390 feet.	$3732 \cdot 2$	$26 \quad 47$
Patmos, S. Pt.	3716	26847
Mt. Samsoun, 4130 ft	37 39•8	27
Kos, Mlt. Christos, 2760 ft.	3650	2714.2
Rhodes Lt.	3626.9	2816
W. Pt.	$\begin{array}{ll}36 & 8.7\end{array}$	$2743 \cdot 2$

Candia.

Candia, Minaret Lt. .	3521	$25 \quad 8.2$
" E. extr. C. Salo-		
mau	$35 \quad 9.2$	2619.5
Mt. Ida	$3513 \cdot 3$	2447
Gozza Isl'd W. Pt. .	3452	$\begin{array}{ll}24 & 2.2\end{array}$
Boudroom Castle..	372	2727.5
Marmorice Cape.	$3643 \cdot 9$	$2820 \cdot 7$
Highest sum. 5980 ft .	$3631 \cdot 8$	2914

Coast of Karamania.

Mt. 'Takbtalu 7800 ft .	36317	3028
C. Anamour, S. Pt.		
of Asia M....	$36 \quad 0.8$	3249
Alexandretta Con-	3635.3	
C. Khynzyr, 5550 ft .	3616	3552

Syria.

Bairout, Brit. Cou . . $\left.{ }^{33} 54.5\right\|^{35}$		
Tyr	3317	3512.7
St. John d'Acre, Bastion, Marine gate.	3255	
Island of Cyprus.		
West extr. C. Epi- phanius.......... 35 6.3		
N. and E. extr.C.St.		34
S. and E. extr. C.		
Gatto	$3432 \cdot 8$	32

Gatto.
Egypt.

Rosetta, Engl. Cous.	31	$24 \cdot 3$	30	28
Aboukir Castle	31	$20 \cdot 5$	30	$5 \cdot 7$

Alexandria Pt. Eu-

\qquad | 31 | $11 \cdot 5$ | 29 | $51 \cdot 5$ |
| :--- | :--- | :--- | :--- |
| 30 | $57 \cdot 7$ | 29 | $33 \cdot 2$ |

Arabs Tower...... $3257 \mid 213$

Barbary.

Jebel Zawan, 3917 feet.	3623	10
Tripoli, Pasha's Cas.	3253.9	18110
Jebel Thelj, N. E sum.	3425	95
Kuryah Isl'ds, N. E. Pt sum	48	118

Shores of the S. Atlantic Ocean
-W. Coast of Africa.

	S.	
Cape Lopez	036	843
Loango River ent...	439.5	1145
Congo River, S. ent.	64.6	1215

'I'ABLE XXX										
Coast of Africa (Continued.)						names of places. Rangoon city, Dagon Pagoda.....	Lat. N	Los. E.		
names of plaes. Mt Triuidade 1200 ft Zanzibar Isl'd S. Pt. Waseeu Peaks, mid dle oue...... . . . Mt. Gibbous.	Lat. S 104 6277	Lon. E.					9610			
		$\left\lvert\, \begin{aligned} & 3944 \\ & 3933 \end{aligned}\right.$					1632	9735		
							1630	9737		
	$\begin{array}{rl} 430 \\ 1 & 12 \cdot 2 \\ & \mathrm{~N} \end{array}$	$\begin{aligned} & 3922 \\ & 4128 \\ & \text { E. } \end{aligned}$					Amherst	$\begin{array}{ll}16 & 5 \\ 16 & 1\end{array}$	9733 9735	
			St. Joseph Island. . 527 E.			Mit.s	16	9735 9824		
								+		
Murot Hill. E. extrelu. of Africa Ras Hafoon 600 ft . East Point.	$1026 \cdot 8$	4617.2	Seychelle Archipelago.			Junkseil		9818		
		5122	Frigate Isl'd, E. extry 550 feet,......... $435 \cdot 2$ 56 1.2 Foquet Isl'd, S. extr. 527 7146			Pu	5	98 б6		
C. Guardafui, N. E.	10268	5122				$\begin{array}{r} \text { Pcuang } \\ 2713 \end{array}$	525			
	1150	51				Corn	52	1001		
			Chagos Groupp.			Pulo D	4	10035		
W.			arcia	1726			320	10122		
Kattanie		5332	Cargado			Par	252	10125		
Ras Fel	12	5051				C. Rachad	226	10150		
S. Coast of Arabia.			边		9	Mt. Moar	159	10		
C. St. Antony 2772 feet \qquad	1241	4410	Islands in the Indian Dcean.			Mount Formu Pulo Kissang	149 128	10254 10313		
			Rodrigue......... 1941 19325			Singapore B	117	10350		
C. Aden, sum. 1776 feet.	1245	45	Round Isl'd, 1049 ft Mauritius, Peter Botte, 2600 ft . . . " Port, L. Cooper" Island.	1950	5750	Pedra Branca, or Horsburgh Lt. . . .	124	10411		
					6.					
	14	4732				Biutang hill, 1200	15	10426		
Jebel Jin jeri 1300 ft .	17	5453		2097	5731%	Preparis Isl'd Cow \& Calf, N. end.	1456	9338		
Kuria Muria Islands,	1727.2	5595	Bourbon Isl'd, ©. ${ }^{\text {S. ex }}$	2124	5540					
Mussendom, $\mathrm{N} . \mathrm{pt}$	2624	5833		5356	530	ble	1334	3		
Great Quoiu 300 ft .	2630	5633	Prince Edward's Is. N. Pt.		3718	de rim, visible	1310			
Assea Ears 5m.inl'd	2829	5114	Marion and Crozet' Island.			Narcondam vis. 151.	1336			
Hummocks of Kena,				$46 \quad 9$	5028	Little Nicobar N. Pt.	726	93		
	284	5141	Kerguelen's Land, N Pt..............			G. Nicub	6	93		
High Clay Pk	2593	6230		4841	$\begin{array}{lr} 69 & 6 \\ 70 & 10 \end{array}$	S. W. Coast of Sumatra.				
Conical Hill.	2057	7118	C. St. George....	. 4954						
Cambay flag sta	2217	7235.5	St. Paul	3843.8	7738	Golden, or Queen's				
St. John's High Terrpore Point.	$20 \quad 2$	7243	Amster				522	9545		
Terrpore Point.. ... Bombay Obs'rvat'ry	1962	7240		52	7735	Achen Hea	536	9511		
Bombay Obs'rvat'ry " Lighthouse	18517	7247.7	Keeling Island, S Gronp, S. Pt.. .		05	Goonung				
Rajapour Harbor or				12126	9654		347	15		
	181615283	730					215 144	9746 97 97		
Goa, St. Ann's light. Barsalore Pk. 4452 feet. \qquad		$\|7351.2\|$						9957		
	1350	74.51	Coromandel Coast.			Padang head fl. st. .	${ }_{0}{ }_{0} 56$	$10020^{\text {E. }}$		
	122	7511				Padang head fl. st. . Bencoolen, Ft. Marlborough..		100		
Calicut Lt. fiag staff		7545.5	Coromandel Coast.				347.6	10219		
C. Comorin Point, S	$\begin{array}{ll} 8 & 5 \\ 8 & 23 \cdot 2 \end{array}$	773077305	Negapatam flag st. $1045 \cdot 6$ 79 $50 \cdot 5$ Five White pagodas 1049 79 50			Rajah Bassa, 1600 f	549	1054		
a extremity of India										
			Pondicherry Lt. . . . Madras Observ. . . Light Ft. St. Geo	$\begin{array}{ll} 10 & 49 \\ 11 & 55 \cdot 7 \end{array}$	$\begin{aligned} & 7950 \\ & 7949 \cdot 2 \end{aligned}$			$\left\lvert\, \begin{array}{ll} 105 & 29 \\ 105 & 57 \end{array}\right.$		
Island of Ceylon.					8014	Anjer fiag staff....	$6 \quad 3 \cdot 2$	105.57		
Cal peatya Furt....					8212	Bauca, Parmesang	238	10553		
Colombo Light	$656 \cdot 1$	7949	Coringa, town Lt. . Jugurnaut Pagodas large..			"Monopin h. 1640 f.	20	10512		
Pt. de Galli fl. st. lt.	6 1 1	8011		1950	8556	" Goonur h 2600 f	236	10649		
Adam's Pk., 7000 ft .	652555	8029	Black Pagoda. False Pt. Lt.	$\begin{array}{ll}19 & 52 \\ 2019\end{array}$	8686864	Coast of Java.				
S. extr. Doudra H		8034								
Elephant Rk.	6248132		False Pt. Lt. Mypurra Isl'd, S. Pt Pt. Palmiras.	20 2041	877	Java Head.......	6471105131			
Friar's Hood.	$\begin{aligned} & 729 \\ & 833 \cdot 7 \end{aligned}$	$\begin{array}{ll} 8140 \\ 81 & 14 \cdot 7 \end{array}$			87 88 88 8	Bautam flag staff. . Mt. Karang, 6000 ft .	$\begin{array}{lll}6 & 1 \\ 6 & 16\end{array}$	106107		
Trincomalee Light			Pt. Palmiras.......	2041 $21 \quad 3$				1065		
Palmyra Poin	$\begin{aligned} & 833 \cdot 7 \\ & 949 \\ & \hline \end{aligned}$	$\left\lvert\, \begin{array}{ll} 81 & 14 \\ 80 & 14 \end{array}\right.$	Upper floatg It. ves Kedgeree Lí.....	2126	884	Batavia Obser.....	666 8	10650		
Islands in the Arabian Sea.-Lacadive Islands.				21503	8755.7	$7 \mathrm{Mt}$. Gede, 9380 feet.		1070		
			Kedgeree Lit..... Saugor Island Lt tripod. Calcutta, Fort Wm	$2137 \cdot 2$		Mt. Chermair P $9730 \mathrm{ft}. . . .$.	655			
Ancutta, mid....... 10 51 72 10 Kittan, S. Pt....... 11 25 73 0				$2233 \cdot 5$2222	8819.2	Mt. Fegal, 11000 ft .	714	10915		
			Calcutta, For't Wn Chittagong flag staf		9147.7	Mt. Soumbing 10.700feet				
Maldives. Containing 19 Atolls, or Groups.			Akyab harb. fi. st. . Great Savage Lt. .	$\begin{array}{ll} 21 & 9 \\ 20 & 8 \cdot 4 \\ 20 & 5 \cdot 2 \end{array}$	92239254		7216757	1104		
			Samarang flag slatf.			11027				
			$\begin{array}{ll} 20 & 5 \cdot 2 \\ 19 & 48 \end{array}$	92 93 93	C. Sedano Pt. 4480	749	11430			
				Kenain kuwn pk... Cheduba Isl'd, S. pk.			Semiru Mt. 12.000 ft		11414	
	624.5	7240		1700 ft	1840	9341	Arjuno Mit. 11.930 ft	748	11287	
Powell's Is'lds N. one	529	17254	Elephant Pt. Pago	628	9621	Lomboek P. 11.400 f .	826	111625		

Coast of China.		Names of places. Bald Head vis. 121. S. Point.	$\left\lvert\, \begin{array}{cc} \text { Lat. N. } \\ 35 & 7 \end{array}\right.$	$\left\|\begin{array}{cc} \text { Lon. } & \text { E. } \\ 118 & 1 \end{array}\right\|$	Anstralia (Continuea.)		
	Lon. E.				NAMES O	Lat. S.	Lon. E.
Great Lema, E. Pt. 225	K	King George's Sound			Cap	4	620
Lantao Pk. $3050 \mathrm{ft} . \|$2 16	113		$35 \quad 2.2$	117 53.7 M			
Macao flag staff. ... 22 11.4	11332 B	Bald Island summit	34551	11827	$15 \mathrm{l} \text { N. Pt. }$	3616	15013
Canton Eug. factory $23 \quad 6.9 \mid 1$	11315 P	Port Hood	3424	11934 J			
Hong Kong summit, ${ }_{\text {N. W. Pt. } 1825 \mathrm{ft}}{ }^{2} 215$	11422		S.	E.	cular, 650 ft	356	512
A high sum. 2810 ft (2231	111432	sperance B. W. pt. Island.	3356	12146		340	15116
Table Hill, 1767 ft .2339	117	Mondrain Island, S.			Pt. Jackson Lt. 350 f	$33 \quad 512$	15118.2
Amoy citadel..... $24 \quad 2481$	118		3410	12214	Sydaey, Fort Mac-		
Mt. Keu-sau pagoda 760 feet. 2443	11838	Mid	348	1238	quarrie..........	33 3 33 $1 \cdot 7$	$\begin{array}{lll}151 & 14 \\ 151 & 1\end{array}$
Double Peak					Pt. Hunter, Court ho	3255.8	$15148 \cdot 7$
W. Pk. 1190 feet. 2636	12011.		3356	12328	C. Hawke.	3214	15235
Montague Isl'd, E. pt		Hd. of Gre			C. Byron, E. Pt. Aus.	2838	15340
740 feet........ 29	1225		3128	1317	A Hig	2620	15256
Chusan Isl'd S. extr. 2936	1228	Island of St. Peter			Round Hill	2415	15155
*Chookea 1170 ft .2954	12225		32		C. Keppel	27	1517
Formosa.		C.	33	13415	Peaked Is	2240	1510
		Pearson's Is	3357	13413	Pt. Bowen,	2229	$15048 \cdot 6$
Formosa S. Point. . 2154	12				Long Hill, 2333 feet	2134	14920
Table Hill, 360 feet 2453.5	12059				C. Hillsborough sum		
Sum. Eastw'rd 2800 ${ }_{\text {feet. }}$	12131	Beagle Island, small Thistle Island, vis. 12	3449	13449	$\begin{aligned} & 966 \text { feet. } \\ & \text { Cumberland Island, } \end{aligned}$	2054	1496
E. extr. of Formosa. 25	$122 \quad 2$		36	13611	Shaw's pk. N. Pt		
Mt. Morrison, 10,800		High Isl'ds	3522	1368	1601 feet..	2028	$149 \quad 7$
feet. 23	120	C. Donning	3443	13557	M. Dryander, 4566 ft	2014	14831
Double Pk., 3m. in-		Mt. Brown, 3000 ft .	3230	1381	Mt. A bbott, 3460 ft .	$20 \quad 3$	14748
d, vis. 17 leag.\| 2250	1218	Tron	35	13741	Mt . Eliot,	1933	14659
Borneo.			34	13	ount Hitchinbrook, $3500 \mathrm{ft}$	1822	7
Mt. Tatau, 1900 feet ${ }^{\text {a }}$ - 2		Mt. Lofty, 2200 feet	$3458 \cdot 5$	$13843 \cdot 7$	Fitz Roy		
Mt. Silungun 1500 ft . ${ }^{\text {a }} 50$	11349	Gle	$3458 \cdot 5$	138327		1655	0
Mt. Mulu 8000 feet. 47	11510		4550	13638		164	
Borneo City, 450	11458	t. Gambie	3752	14042	C. Flattery,	$16 \quad 4$	14526
Labuan Isl'd, W. pt. $515 \cdot 5$	1157	C. Otway Lt. 303 ft	. 3851	14333	855	1452	1
	116	Port Philip, Pt. Ne-			Lizard I. sm, 1200 ft	$1441 \cdot 4$	$14528 \cdot 5$
Kini Balu Mountain, 13,700 feet. 68	11636	pean	$3818 \cdot 5$	144 42.7	C. Bowen. C. Weymouth, Re	1434	14441
Mindora.			$\begin{array}{ll}37 & 48 \cdot 6 \\ 39 & 8\end{array}$		storation Isl'd pk 360 ft . W. Pt.	$7 \cdot 5$	
High Mt'u 3126 feet 1323	12048	Mt. Wilson, 2350 ft	t. 394	14624	Forbes I. sm. 340 ft .	1216	14327
Mt. Calavite $2000 \mathrm{ft} \mid 1328$	12034	C. Wickham, N. Pt			Orfordness, Pudding		
Philippines.			. 39		pan hil, 854 feet.	1119	
		Bl'k. Pyramid, 240 ft	ft 4028	14421	Mt. Adolphus, 548	t 1037	14241
	120	Curtis Isl'd 1			Mt. Bremer, 420 ft .	1041	14235
Manilla Cath. and Lt 1436	1210	R	39		N. extr. of Australia		
Coast of New Guinea.							
	,	Munro 2300	4023	1486	700 feet.	956.5	5
		Van Dieman's Land.			Balls Pyramid v. 121		15920
$\begin{array}{r\|r} \text { ape sapey, summit } \\ \mathbf{8 0 2 0} \text { feet....... } & \mathbf{3 8 7} \end{array}$					Lord Howe I. 250	ff 3187	15914
Island C. Katomun summit 8940 feet		Mt. de Witt, vis. 12			N. E nt		
summit 8940 feet			9	14548	Hill, $4 \overline{3} 0$ feet.	1057	14218
W. sum. 3225 ft . 346	1843		t. 4328.7	$7 \mid 147 \quad 8$			
Lakahia Mt. 4564 ft .413	13452	Hobarton Fort Mul			Orr	raits.	
A high sum. 9000 ft .49	13533		. 42585	6147 21.5	5 Booby I. 30 ft. P		
Mt. Cornwallis visi- ble 9 leagues. 927		Port Arthur, Sema	- ${ }^{-18}$		Office. Darnley I hill 580	$\begin{array}{r} 1036 \cdot 7 \\ 935 \cdot 3 \end{array}$	$\left\lvert\, \begin{array}{ll} 141 & 56 \\ 148 & 49 \end{array}\right.$
ble 9 leagues. .. . 927	14235	phore..........	-43 9	$14750 \cdot 7$	7 Darnley I, hill 580 f Turtle Backed Isl'd	t 935	14849
Aird Hill, 1260 feet 7 28 Mt. Victoria 10 l. in 8 9	14650	Maria I. sum. 3500 f Mt. Cameron 8 l in	ft 4235	1488	Turtle Back	954	14248
C. Rodney,S. E. extr. 1015	14830	Mand	. 4059		Mt. Ernest, 807 feet	t. 1016	14231
W. Coast of Anstralia.		Cape Portland.	. 4044	14757	Mt. Augustus, 181	$10 \quad 9$	14221
		Mt. Arthur 5			Gulf of Carpentaria.		
- N.		land, $4300 \mathrm{ft} . .$.	. 4116	14717			
Steep pt. W. extrem		Port Dalrymple L	t. $41 \quad 3 \cdot 4$	$414648 \cdot 2$			
ity of Australia.. $26 \quad 5$	11257	" Georgetown fl. st	st. $41 \quad 6 \cdot 3$	3146502	2 Island Inspection		
Mt. Fairfax, 582 feet -845.4	$411441 \cdot 7$	7 Valentine pk. $71 . \mathrm{in}$			Hill, 105 feet.	$17 \quad 8 \cdot 2$	18941
Wizard Peak 640 ft .2829 .7	711447	land, 4000 ft ..	. 4122	14545	C. Shield.	1820	13628
Mt. Peron, 3. l. inl'd 307	1159	Rocky Cape sum.			Mt. Caledon	1253	13683
Swan R. Scott's jetty $32 \quad 3 \cdot 3$	$811545 \cdot 5$	5 m. inland, 1000 ft	t. 4053	14529	C. Arnheim.	1217	137
* Perth Gov. House $3157 \cdot 4$	$411552 \cdot 7$	7 Albatross Is. 125			C. Wilberfor	1158	13634
O. Chatham, vis. 10 l.\|35 2	11628	sum........	4022	14439	Pt Dale..	1136	186

XXXIX											
nam		7931.2	H			St. Pedro Isl'd 1700					
	33	77 29.6					957	845			
							56				
1296	30	78	C. Tres Montes 2000 feet Pt. . . . \therefore. . .	0							
Peru.				4659	7528	2000 ft. S. Pt. . . .	856	13933			
			Port Otway, S. ent. summit.			Nukahiva, 3600 feet.	856				
		W		4649.5	7518.2	Robert's Isl'd 2000 f .	80	14048			
C. Passado C. St. Loreuzo. Guayaquil Arsenal. Saddle of Payta, 1300 feet.		80	me of St. Pauls,	4636	75	Pitt, 2000 ft..... Verraders Isl'd 2006	2858	76			
		8057	Port Sta. Barbara W. Head.								
	2124	79527		48	7530	feet.............	1554	7348			
			C. Montague W.cli		7537	Manua Isl'd, 2500 ft . summit.					
	512	8110		5052525			1415				
Eten Hill 640 feet a mark. \qquad	655	79			74487474	summit. Apolima Isl'd 472 ft	1349	$\left\lvert\, \begin{array}{ll} 172 & 3 \\ 178 & 18 \end{array}\right.$			
			Westminster Hall. C. Deseado.	$\left\lvert\, \begin{array}{ll} 52 & 8 \\ 52 & 37 \end{array}\right.$		A polima Isl'd 472 ft Horne Isl'ds, 2500 ft	1418				
17 m . 10	7	7921		. 5255	7438	Pylslaart Isl'd 700	2334	1764			
uxillo $\mathrm{Cb}_{\text {, }}$, $1 \frac{1}{\mathrm{~m}} \mathrm{~m}$.			C. Noir, 600 ft . S. p C. Desolation Pks.p York Minster	5430	$\begin{array}{ll} 73 & 6 \\ 71 & 37 \end{array}$	Eoa Isl'd 600 ft . mid	2124	17457			
and	87.5			t 5446		Tofona Isl'd, 2800 ft .	1942	1750			
añape	827	$\begin{array}{ll} 79 & 4.2 \\ 78 & 67 \end{array}$	York Minster.... Diego Ramirez Isl' middle	55	70		1849	175			
Di		7867		56	44			7435			
1880	9		middle. Ildefousa Isl'd 100 f			ft. mid,.	14	17851			
t. Mongon summit,			middle \qquad	5552	$\begin{array}{\|rr} 69 & 19 \\ 68 & 6 \end{array}$	Niau I. seen 15 1. sm. 1759		1792			
	988	$\begin{aligned} & 7822 \\ & 77 \\ & 50 \end{aligned}$				Fejee Islands.					
arwin	1030										
	1147	$\left\lvert\, \begin{array}{cc} 77 & 20 \\ 77 & 6 \\ 77 & 13.7 \end{array}\right.$	Orange Bay, Brunt 50 Island....... ... 55 308 68 2			Vauua Levou I. 2070					
-	128						168	17955			
Calla Ars	124		Islands in S. Pacific Ocean.			"Dauas Peak.....$\mathrm{s} . \mathrm{Pt}_{\mathrm{t}} .$	1646	17849			
San Lorenzo Island, \quad E. E											
				Bishop and Clerk. Macquarrie Isl'd, N Point	S.		${ }_{15856}^{\text {E. }}$	1841	17953		
C. St. Loren			. 5515		Mitre Isl'd, vis. 41.			1155	$\left\lvert\, \begin{array}{rr} 170 & 9 \\ 168 & 48 \end{array}\right.$		
Ohincha Isl'ds N	1388	7628				Ticopia, vis. 10 leags	1221				
Mt. Quemado 2070	1420	7611	5419		158	New Caledonia.					
Mt. Camana (like a				Campbell Isl'd, 1500 feet S. harbor, N							
	1637	7245	$5234 \cdot 4$		169 12'7	New Caledonia, E. p C. Colnett. " W. extr. Pt. Tonnerre..	$\begin{aligned} & \quad \mathrm{S} \\ & 2216 \\ & 2029 \\ & 2024 \end{aligned}$	$\left\lvert\, \begin{array}{ll} 166 & \bar{E} \\ 164 & 44 \\ 164 & 0 \end{array}\right.$			
				feet S. harbor, N Head Auckland Islands, S .							
aipa Custom H. ro of Sama, 3890	170	7210.5	. 5056								
	1759	7056	W. ex	5050	16555						
ica	1828	7024	Mt. Eden, 1325 fee Enderby Isl'd E. pt	5035	16610						
Carrasco Mt. 4 m . inland	$\begin{array}{l\|l} 2058 \cdot 5 \\ 2232 \end{array}$				166	New Hebrides.					
Cobija Pk. 3330 feet		$\left\lvert\, \begin{aligned} & 7010 \\ & 7018 \end{aligned}\right.$	Peuantipode Island small.	4932	$\left\|\begin{array}{cc} 179 & 42 \\ 179 & 7 \\ & W . \end{array}\right\|$	Tanna Isl'd, Cook's					
Mt. Mexillones 2560	$\begin{array}{ll} 23 & 6.5 \end{array}$	7035	Bounty Islands ...				1930.9	28			
Mt. Moreno 4160 ft .	2328.5	$\left\lvert\, \begin{array}{ll} 7035 \\ 7038 \cdot 5 \end{array}\right.$	Chatham Islands, S. Isle, like a Pyra mid. \qquad				1931	16984			
					1764	Sandwich Isl'd S. W.					
ort Caldera,	273	7056.2	Juan Fernandez 1sl'd			Pentacote Isl'd S. pt.	1569	16819			
Copiapo(la	$\begin{array}{ll} 27 & 19 \cdot 5 \\ 28 \quad 6 \end{array}$	$\left\lvert\, \begin{array}{ll} 71 & 2 \\ 71 & 16 \end{array}\right.$	N. side Cumberland B. Fort.		7853	Vanikoro Isl'd, sum.					
Herra				33 87.6		3081 ft.		$\begin{array}{r} 16649 \\ 16549 \\ \hline \end{array}$			
Guasco port. 28	2827	7119	" S. Pt. Sta Clara Island.	3845	792	olcano	10				
CoquimboSignal hill						Solomon Islands.					
Mt. Edward's Ho.	$\begin{array}{ll} 29 & 54 \cdot 2 \\ 30 & 51 \end{array}$	$\begin{array}{ll} 71 & 19 \\ 7142 \end{array}$	St. Ambrose, vis. 10 leagues W. Pt. . .		8010						
Mt. Talinay, 2300 ft .						Solomon Islands.					
Valparaiso Lt, on N .			-			uada					
W. Ptor fort St. Artonio		7141.5	Pitcairn Island 2500		10917	"M	950 950	$\left\lvert\, \begin{array}{ll} 160 & 54 \\ 160 & 20 \end{array}\right.$			
Aconeagua 23				25886	130	Isabel Isl'd, S. Pt. C.					
25 leagues inland			Gambier's Isl'd			Prie	834	15954			
ell of Quillota 6200				238	13455	"M. Marescot, 3801					
ft. 7 leagues inl'nd	32		Encarn	2445	13640		814	15938			
Talcahuano, Fort			St.	2120	14850	Eddystone Rk. 1036	818	156			
Concepcion City mid	3649.6	$78 \quad 5.5$		1550	14811	Bongainville Isl'd Mt					
Paps of Bio Bio, 800			Otahei		14929	Balbi, 10.062 ft. δ L. inland.	556	15429			
Mocha Isl'd			Summit 7000 fee	1739	14930	N. Pt. C.l'Aver	530	1557			
1250 feet	3828	7859	Papeta Harb. fl.	17 32-1	14934	Bouka Isl'd,	51	15440			
Valdivia City mid.	3949	7319	Eimeo			Sum	518	15439			
Chayapiran Vo			ted Pk. 4041 feet	1730	14947	Garret Denys, 3200					
8000 feet. Corcobado V	4248	7234.7	Marquesas E. e								
$\begin{aligned} & \text { Corcobado } \nabla \\ & 7500 \text { feet. } \end{aligned}$	$4311 \cdot 3$	7249	Ariadne Rk. 10	1021	13829	$\begin{gathered} \text { these Islands.... } \\ \text { Gardner's Isl'd, } 2000 \end{gathered}$		15234			
hiloe Island,	4317	7426	3700 feet S.	1031	13848		234	8184			

New Ireland.			Galapagos Islands.				AT. N.	Lon. W.
of oflaces.	LAT. S.	$\text { Lon. } \mathrm{F}_{\mathrm{L}}$	L	Lat. S.	Lon. W.	Morotoi Isl'd, E. Pt. ${ }_{\text {W }}$	219 21	15651 157 154
New Ireland, E. Pt.			Chatham Isl'd, 1650			Woahoo Isl'd, E. Pt.	2120	15737
C. St. Mary.	$4 \quad 2$	15318	ft. E. Pt. Mt. Pitt,			"S. or Diamond pt. 2	2115	15748
${ }^{*}$ Cape St. George.	451	15255	800 feet	044	8920	" Honoruru Fort.	$2118 \cdot 2$	15755
New Britain			place.	$056 \cdot 4$	$8983 \bigcirc$	* W. Pt.. 2	2117 2136	$\begin{array}{lll}158 & 7 \\ 158 & 15\end{array}$
N. Pt, C. Stephens..	412	1520	Charles Isl'd 1780 ft Post-Office on N.			" N. Pt.i. ${ }_{\text {A }}$ (tor Isl'd,	2143 228	15758 15920
S. E. Pi. C. Orford,			Post-Oftice on N. W. side, Daylight			Atoor Isald, E. Pt. . ${ }^{\text {a }}$ Hanala, B. Brit.	228	5920
Pt. Roebuck	615	15033		$115 \cdot 4$	$9031 \cdot 7$	Cons. EL side.	2214	15932 !
C. Gloucester, 2 p 'ks	528	14823	duer $181 \times \mathrm{d}, 760 \mathrm{ft}$.	$1 \cdot 21$	923	" N.	2216	15931
Lotteu Isl'd, above			fomarle Is. 3780 ft. Iguana Cove,			Oneehow Pt....		
3000 ft Volcano, above 4000	520	14736	fr S. W. side......	059	$9132 \cdot 5$	Pt	$\begin{array}{rr}22 & 0 \\ 21 & 45\end{array}$	$\left\lvert\, \begin{array}{cc} 160 & 5 \\ 160 & 18 \end{array}\right.$
$\begin{aligned} & \text { olcano, above } 4000 \\ & \text { feet. } \end{aligned}$	32	14817	Isl'ds in the N. Pacific Ocean.			Necker Island, 300 feet.	2334	16487
Dischamps pk. 3 m . inland.						Rica de Oro Rk. or Lot's wife, 35 ft .	2334 2951	
N. Coast of New Guinea.			R	014	9140	Volcanoes, 3 Sulph'r Islands	2448	
Cape Rodn	102	14830	E. P...........	021	$90 \quad 0$	" N. Isl'd San Ales-		
Cape King William $13000 \mathrm{ft}$.	616	14740	Abingdon Isl'd S. pt. mid. 1930 ft .		9049	" sandro....... ...	2514	14118
Dampier Is'l 5000 ft .	440	14558	Wenman Isl'd, 830 ft	123	9154	nisio, 396 feet.	2422	14128
Vulcan Isl'd, conical	46	1451	Culpepper I. 550 ft .	140	924	Forfana Islan	2584	1480
Garnot Isl'd, conical	330	14435	Malpelo Island sum.			Rota Isl'd, $800 \mathrm{ft}$. E.		
D'Urville Isl'd pk. near W. end....	$320 \cdot 1$	$14331 \cdot 2$	1200 ft	40	8152	Pt.............	$\begin{array}{rrr}14 & 9 \\ 19 & 41\end{array}$	$\begin{array}{ll} 145 & 18 \\ 145 & 27 \end{array}$
Mt. Julian, 2 l.inla'd	4	14426		1848	11052	2026 ft..		
Eyries Mt. very high sum. 3 l. inland. .	250	14115	Benedicito Isl'd 1100 feet mid.	19	11035	Guam Isl'd, N. Pt. . Oalan Island, Mt.	1389	14453
Cyolops Mit. vis. 20 i. E. sum.	281	14030	Guadalupe Isi’ds, \mathbf{W}.			Crozer about 2000 feet.	519	163 4.7
Lesson Isl'd, a bigh conз.	27	18927	Sandw	Islands		Mac Ask S. one.	813	16047
Jobie lisl'd, vis, 201						Pouinipet Isl'd		
E. Pt...........	148	13650	Owhybee Isl'd, S. pt.	$19 \quad 5$	15549	2881 ft........	- 652	15824
Arfak Mts. S. one, 9520 ft.........	18.9	13354	" Mowna Rou Mt. 13.175 feet......	1928	15538	The highest land yet discovered is Mt .		
- N. one, 8610 feet	16.1	18354	" East P	1984	15455	Erebus, which is		
Bee-hive Mt...	044	13325	"West	1942	1566	12.400 ft . above		
Mt. Diceras, 8 m . in-			Mowee Isl'd, E. Pt.	2044	15558	the sea, and is an	S	\%
land..	032	13215	" W. sum. 6126 ft .	2043	15614	active volcano in.	. 7788	16658

TABLE XL.
CONTAINING THE POSITIONS OF PLACES (OMITTED IN TABLE XXXIX.) ON THE COAST OF THE UNITED STATES OF AMERICA AND WEST INDIES, TAKEN FROM THE LATEST SURVEYS.

Great Boar's Head. 4255

Massachusetts.

NewburyportLight
on Plumb. Isl'd. . 4249
Annis Squam Lt...
Cape Ann.
Gloucester Hr. Lt.
Baker's Island Lt. .
Nahant, east pt. of Boston Harbor. .
Scituate Har. Light
Brant Point.......
Gurnet Pt. Lt., ent. to Plymouth.... 4200
Beach Pt. Lt., ent. tol
Barnstable Bay . 4144 Race Point Light. . 4204
Nausette Light... .
Chatham Hr. Light 4140
Great Point Light. 4124
Sankaty Hd. Light. 4117
Smith's Point.....
Cape Poge Light. .
No Man's Land...
Gay Head Light.
Cuttyhunk IsL Lt.
Sangkornet Point.
Nantucket Shoals.
McBlair's Shoal . Old South Shoal.
Davis' Sho. Lt. Ship 40

George's Shoala

S. E. Point.
W. Point.

North Shoal \qquad
Third Shoal.
East Shoal.

Rhode Island

Brenton's Reef.... 4126
Beaver Tail Point.
Watch Hill Pt. Lt.
Block Isl. S. E. Pt..

New York and Connecticut.

| Montauk Pt. Light. | 4104 |
| :--- | :--- | Fire Island Light. . 4038

Nero Jersey and Pennsylvania.	Lat. N.	W.	Jamaica		
Barnegat Light	3946	746	Portla	1744	7710
Little Egg Hr., or			S. Negril	1816	7825
Tucker's Isl. Lt. .	3930	7417	Morant K	1726	7557
Chincoteague Lt. .	3755	7521	Portlan R		$77 \quad 27$
Georgia			Pedra Shoals, N. Pt. South Rocks, above	$\left\lvert\, \begin{array}{ll}17 & 40 \\ 16 & 50\end{array}\right.$	7854
Currituck I	3623	7555	Camanbrack, E. Pt $^{\text {a }}$	1945	79
Boddy's Isl'd Light	3547	7532	Swan Isl.,	1725	8350
Ocracock Light.	357	7558			
Doboy Bar	3120	8122	ub		
Amelia Isl'd Light.	3040	8136	Trinida	2143	
			Jardines, S. E. Key.	2140	8112
			Cape Antonia Lt.	2151	8457
St. John's	3020	8133	Pt. Hyecos Lt	2311	
Carysfort Rf. Lt. Sh.	2513	8013	French Cay, N. Pt.	2250	7930
Sand Key Lt. Bea.	2427	8152	Neuvitas	2140	7715
Cape Romano	2551	8156	Pt. de MI	2110	7555
Carlos Bay Ent	2632	8215	Baraº	2021	7430
Tampa Bay Ent. Lt.	2735	8247	Cape Mai	20 105	74
Dog Island Light. .	2946	8448	Cumberland	1955	7515
Cape St. Blas Lt. .	2940	8528	St. Jaco de Cu	1957	76
Islands in the West Indies.			ks and Caicos Islands.		
Barbado	1319	5945	Baho de Navidad.	2013	6852
Martinico S. E. Pt.	1430	6050	Silver Key Bank,		
Mariegalanta S. Pt.	1552	6124	-S. W.	2018	6358
Saintes Isl'd W. Pt.	1552	6145	N	2055	6952
Guadaloupe, Petite			N. E.	2035	6918
Terre Ligh	1610		Square Hand		
St. Austatia, N	1732		S W	2052	7055
Saba,	1789	6319	N.		7025
Aves or Bir			Grand 'Tur	2131	715
N. Pt.	1541	6337	Salt Ke	2119	7110
Berbuda, N. en	1743	6152	Sand Ke	2114	7111
St. Bartholom's, N.	1754	6248	Philips	2143	7120
St. Martin's, S. E Pt.		63	N. W. Cay	2152	7216
Anguilla Custom H.	1813	634	West Cay	2137	7227
Dog \& Prickly Pear	1817	6317	South Cay	21	7145
Sombrero	1836	6328			
Virgin Gorda, E. Pt.	1830	6414			
Santa Cruz, E =rd.	1745	6434	Gt. Inagua, S. W.		
Frenchman's Cap.	1814	6452		$20 \quad 55$	7389
Sail Rock	1816	658	Hogsties,	2140	7351
Crab Isl., E. en		6518	Mayaguana, E. end.	2223	7242
Porto Rico, Saint			S. W. en	2221	
Juan Lt	1829		French Key, E Pt.	2235	7328
Pt. Brugen, or N .			Aclin's Isl., N.E. end	2245	7350
W. Pt.	1832		Bird Rock, N. W.		
Cape Ro	1756	6710	end of Crooked Is.	2251	7422
Monico	189	6756	Miraporvos, S.E end	2200	7428
Zecheo	1824	6728	Castle Is		7420
Islana			Atwood's Keys, E.		7387
Saona Isl.,	1812	6831		24	25
Beata Islan	1737	7132	Conception Isl., S.		
Altovela.	1728	7140			
Cape Jaq	1813	7233	Long Isl., N	L3 42	7518
Isle a Vache, E. end.	186	7331	Eluethera Isl'd, S.'		
Navassa Isl.,	1825		Pt., -Ship Chan'l	2437	
Jeremie	1840	$74 \quad 5$	Harbor Isl., N. end.	2535	7645
C. Nichola,	1949	7327	Gt. Abaco, N. E.		
Tortuga, E	$20 \quad 1$	7236	Pt. (keys off.)	2638	
Port Paix	1956	7246	Mantanilla Reef		
Pt. Picole	1947	7212	Memory Roc	2655	79
Grange Pt.	1956	7142	Gt. Bahama, S. E.		
Port de Plat	1946	7046	Pt.		
Old Cape Fra	1942	6955	Stirrup Key		
Cape Samana	1918	69	Berry lsil, E.	2528	7742
Cape Raphael.	19	6850	Orange Keys N.	2456	7¢ 9

NEW TIME TABLES

HICH FLIRNISH THE SHORTEST METHOD OF FINDING THE TIME AT SHIP (AND THEN(J. THE LONGITUDE BY CHRONOMETER), AT ABOUT 8 O'CLOCK IN THE MORNING, OR 4 O'CLOCK IN THE AFTERNOON.

By James H. Brownlow, Teacher of Practical Navigation and Nautical Astronomy, 92 Madison Street, New York.

EXPLANATION AND USE OF THE TABLES.

Table A, in Two Parts.

The first part contains the True Altitude of the Sun's centre, at the instant it is 8 hours, A. M., or 1 hours, P. M., apparent time, when the Latitude and Declination are of the same name. The second part contains the same, when the Latitude and Declination are of different names. These tables are ontered with the degree of Declination at the top, and the degree of Latitude at the side, and the angls of meeting gives the True Altitude required. If there are miles of Latitude and Declination, two proportions are necessary, which may be made either mentaiiy, or by the aid of Table B.

Table B,

Tor finding the proportion of Altitude for the miles \therefore Latitude and Declination, as follown: Enter thus table with the difference of Altitude for 1° of Lativ.ide at the top, and the miles of Latitude at the side and the angle of meeting gives the proportion of Altitude required, in miles and tenths, which must be added to the Altitude taken from Table A, if the Altitude was increasing with the Latitude ; or abbtracted, if decreasing. Again, enter this table with the difference of Altitude for 1° of Declination at the top, and the miles of Declination at the side, and take out the proportion of Altitude, to be added to the Altitude taken from Table A, if it was increasing with the Declination, or subtracted if decreasing, will give the true Altitude of the Sun's centre, from which subtract the joint correction for Semidiameter, Dip, \&o., (which is usually taken at 10^{\prime}) to obtain the Observed Altitude of the Sun's lower limb: now ot the Quadrant to this Altitude, and when the Sun arrives at it, note the time by Chronometer, to Wrich spply the error, if any, and you have the Mean Time at Greenwich, and Apparent Time at Ship, which is either 8 hours, A. M., or 4 hours P. M. To the Apparent Time at Ship apply the Equation of Time, which will give the Mean Time at Ship, the difference between which and the Mean Time at Greenwioh the Longitude in time, turned into space at the rate of 15° to the hour, or 1^{\prime} to 4 seconds of time.

EXAMPLE

September 10 th, 1857 , in Latitude $30^{\circ} 29^{\prime}$ N., and Longitude by D. R. $60^{\circ} \mathrm{W}$. , the height of the eye being 18 feet, required the Altitude at which to set my Quadrant, so as to observe the Altitude of the Sun's lower limb at 8 o'clock in the morning, Apparent Time, and by noting the time by Chronometer, find the Longitude.

The Sun's Declination on September 10 th , is $4^{\circ} 52^{\prime} \mathrm{N}$., and Latitude $30^{\circ} 29^{\prime} \mathrm{N}$., being of the same ame, I enter first part of Table A with 4° of Declination and 30° of Latitude, which gives the Altitude $87^{\circ} 50^{\prime}$, and under the same degree of Declination, but opposite 31° of Latitude, the Altitude is $27^{\circ} 37^{\prime}$, Which gives the Difference of Altitude for 1° of Latitude to be 13^{\prime} decreasing. Again, entering Table A, with 5° of Declination and 30° of Latitude, gives the Altitude $28^{\circ} 21^{\prime}$, which gives the Difference of Altitude for 1° of Declination to be 31^{\prime} increasing. Now enter Table B, with 13^{\prime} at top, and 29^{\prime} of Latitude at the side, and take out the proportion of Altitude for 29^{\prime} of Latitude, which is $6^{\prime} 3$ tenths, to be subtracted from Altitude $27^{\circ} 50^{\prime}$. Again enter Table B, with 31^{\prime} at top, and 52^{\prime} of Declination at the side, and take out the proportion of Altitude for 52^{\prime} of Declination, which is $26^{\prime} 9$ tenths, to be added to Altitade $27^{\circ} 50^{\prime}$. As the greater of these two proportions is additive, and the lesser one subtractive, eare the difference hetween them, whioh is $20^{\prime} 6$ tenths (or 21^{\prime}), and add it to $27^{\circ} 50^{\prime}$, will give the trou

Altitude of the Sun's centre $28^{\circ} 11^{\prime}$, from which subtract: 0^{\prime} for Semidiameter, Dip, \&ec., gives the Observed A!titude of the Sun's lower limb $28^{\circ} 1^{\prime}$, to which I set my Quadrant, and when the Sum arrives at that Altitude, note the time by Chronometer; which suppose to be 11 hrs .58 m .10 seo ., A. M., Mean Time at Greenwich, the Longitude is found as follows.

Rxmari.-As the above method of setting the Quadrant to the Altitude, and waiting until the Sur arrives to that Altitude, may be considered somewhat inconvenient, Table C has been constructed in obviate that necessity.

Table C, in Two Parts.

The first part of this table is used when the Latitude and Declination are of the same name; the second part, when they are of different names. They are entered with the Declination at top, and Latitude at the side, and the angle of meeting gives the time (in seconds and hundredth parts of a second) corresponding to a change of the Sun's Altitude of one mile at 8 hrs ., A. M., or 4hrs., P. M. The Declination is given only for every other degree, as the change for 1° is small, and the proportion for the intermediate degree of Declination, or for miles of Latitude and Declination, can be made either mentally or by Table B, in the same manner as the proportion of Altitude is found for miles of Lat. and Dec.

By Table C, then, we obtain the time corresponding to a change of Altitude of one mile at 8 hrs ., A. M., or 4 hrs ., P. M. Now, if we observe the Sun's Altitude witlin a few minutes of those times, say within 10 minates of them, either before or after, note the time by Chronometer; and, after correcting the Observed Altitude, as usual to obtain the True Altitude, take the difference in mles between it and the Altitude taken from Table A, and multiply this difference of Altitudes by the time corresponding to one mile, taken from Table C, and we have the time either before or after 8 hrs., A. M., or 4 hrs., P. M., according ar the Altitude observed is greater or less than the Altitude taken from Table A. In the morning, if the Altitude observed (after correcting it) is greater than the one taken from Table A, the time corres. ponding to the difference of Altitude must be added to 8 hrs . ; but if the Altitude observed be less, the time must be subtracted from 8 hrs . In the afternoon, if the Altitude observed be greater than the one from Table A, the time must be subtracted from 4hrs.; bat if the Altitude observed be less, the time must be added to 4 hrs

Suppose, in the preceding example, the Sun's Altitude had been observed a few minutes after 8 o'clock to be $30^{\circ} 1^{\prime}$, and the time by Chronometer 12 hrs .7 m . 39 sec ., A. M., the work to find the Longitude would ∞ as follows :

Note.-If the difference of Altitude does not exceed 50 or 60 miles, it is enough, to take out the time from Table C for the nearest degree of Declination and Latitude.

The time corresponding to a change of Alt. of one mile, at $8 \mathrm{hrs.}$, from Table C...... 4.74
Difference of Altitude.

$$
\text { } 120
$$

$6 0 \longdiv { 5 6 8 . 5 \emptyset } (9 \mathrm { m } . 2 8 \mathrm { s }$
540
28
Note - Multiply the 4 sec . and 74 hundredths by 120 miles, cut off the two right hand figures, and the remaining figures are seconds.

Time for Diff. of Alts.	9 m .28 sec.			
App. Time from Table A	8h	0		A. M.
App Time at Ship.	8	9		A. M
Equation of Time, sult		3	10	
Mean Time at Ship.	8	6		A. M.
Mean Time at Greenwic	12	7		A. M.
Longitude in Time.			21	or 60°

Kemark. - When the Ship is on the Equator, and the Sun is also on the Equator, that is, when his Declination is 0 , the Sun rises and sets vertically. In this case, the Sun's change of Altitude is uniformly 1 mile in 4 seconds of time, throughout the entire day. But, under any other circumstances, the time corresponding to a change of the Sun's Altitude of 1 mile, is more than 4 seconds.

When the Lat. and Dec. are under 3°, the time from Table C may be assumed the same for 2 hrs .

6	6	6	6	10°	6	6	16	16	*	4	1 hr . 40 minutea	
6	6	6	*	20°	66	66	6	66	6	6		
When the	Lat. is	under	6	30°	6	${ }_{6} 6$	6	6	6	66	15	66
"	${ }_{6}$	${ }^{6}$	6	50^{*}	66	6	6	16	c 6	16	10	6
"	"	6	-	60°	*	*	6	6	u	66	7	6

This Table shows the True Altitude of the Sun's Centre at the instant it is 8 o'Clock in the Morning, or 4 o'Clock in the Afternoon, Apparent Time, for more readily finding the Longitude by Chronometer.
declination and Latitude of The same name

Lat.	13°	14°	${ }^{\circ} 15$	${ }^{\circ} 16$	17°	18°	19'	20°	21°	22°	23°	24°
												- ,
0		29	2853	2844	2834	2824	2813	28	$27 \quad 50$	$27 \quad 37$	2724	2711
1	2925	$29 \quad 18$	2910	$29 \quad 2$	$28 \quad 54$	2844	2835	$28 \quad 24$	$28 \quad 14$	28 2	$27 \quad 50$	$27 \quad 38$
2	2939	2933	2927	2920	$29 \quad 13$	295	2856	2847	$28 \quad 37$	$28 \quad 27$	2816	$28 \quad 5$
3	2953	2949	2943	2938	2931	2925	2917	$29 \quad 9$	$29 \quad 0$	2851	2841	2831
4	30	$30 \quad 3$	$29 \quad 59$	2955	$29 \quad 50$	2944	2937	2931	$29 \quad 23$	$29 \quad 15$	$29 \quad 6$	$28 \quad 57$
5	$30 \quad 20$	$30 \quad 17$	$30 \quad 15$	3011	30	$30 \quad 3$	29 57	2952	2945	2938	2931	$29 \quad 22$
6	3032	3031	3029	3027	$30 \quad 24$	3021	$30 \quad 17$	$30 \quad 12$	$30 \quad 7$	30	2954	2947
7	3044	3044	3043	3042	3041	3038	$30 \quad 35$	3032	$30 \quad 28$	3023	$30 \quad 18$	3018
8	3055	3056	3057	3057	$30 \quad 57$	$30 \quad 55$	$30 \quad 55$	3051	3048	3045	$30 \quad 40$	$30 \quad 36$
9	$31 \quad 5$	318	$30 \quad 10$	$31 \quad 11$	$31 \quad 12$	3112	$31 \quad 11$	3110	31	316	31	3059
10	3115	31 19	$31 \quad 22$	3125	3127	3128	31 28	3128	3128	3126	3124	3122
11	3125	3130	3134	3138	3141	3143	3145	3146	3147	3146	3146	3144
12	3133	3139	3145	3150	3154	3158	32	$\begin{array}{ll}32 & 3\end{array}$	32	32 6	326	326
13	3141	3149	3155	$32 \quad 2$	32	3212	3216	$32 \quad 20$	$32 \quad 22$	$32 \quad 25$	3226	$32 \quad 27$
14	3149	3157	32	$32 \quad 13$	$32 \quad 19$	$32 \quad 25$	3231	$32 \quad 35$	3239	$32 \quad 43$	3246	3248
15	3155	$32 \quad 5$	3214	$32 \quad 23$	3231	3238	3245	3251	3256	33	33	$33 \quad 7$
16	$\begin{array}{ll}32 & 2\end{array}$	3213	3223	3233	3242	3250	3258	33	3312	3317	$33 \quad 23$	$33 \quad 27$
17	327	$\begin{array}{ll}32 & 19\end{array}$	3231	3242	3252	$33 \quad 2$	3311	3319	$33 \quad 27$	3314	3340	3346
18	3212	3225	3238	3250	33	3313	3323	$33 \quad 32$	3341	$33 \quad 50$	3357	$34 \quad 4$
19	3216	3231	3245	3258	3311	3323	$33 \quad 34$	3345	3355	$34 \quad 5$	3413	3421
20	3220	3235	3251	335	3319	$33 \quad 32$	3345	3357	34	$34 \quad 19$	3429	3438
21	3222	3239	3256	3312	$\begin{array}{ll}33 & 27\end{array}$	3341	3355	348	3421	3433	3444	3454
22	3225	3243	330	3317	3334	3350	345	3419	3433	3446	3458	3510
23	3226	3246	33	3323	3340	3357	3413	$34 \quad 29$	3444	3458	3512	$35 \quad 24$
24	3227	3248	33	$33 \quad 27$	$33 \quad 46$	34	3421	3438	3454	$35 \quad 10$	$35 \quad 24$	3539
25	3227	3249	$33 \quad 10$	$33 \quad 31$	3351	3410	3429	3447	$\begin{array}{ll}35 & 4\end{array}$	$35 \quad 21$	$35 \quad 37$	3552
26	3227	3250	$33 \quad 12$	$33 \quad 34$	3355	3415	3435	3454	$35 \quad 13$	$35 \quad 31$	3548	$36 \quad 5$
27	3226	3250	3313	$33 \quad 36$	33 58	3420	3441	35	3521	3540	$35 \quad 59$	3616
28	3224	3249	3314	$\begin{array}{lll}33 & 38\end{array}$	34	3424	3446	35	$35 \quad 29$	3549	36	3628
29	3221	3248	3313	$33 \quad 39$	34	3427	3451	$\begin{array}{lll}35 & 13\end{array}$	$35 \quad 35$	$35 \quad 57$	$36 \quad 18$	3638
30	3218	3246	3312	$33 \quad 39$	34	3430	3454	$35 \quad 18$	3542	36	3626	3648
31	3214	3243	3311	$33 \quad 38$	$34 \quad 5$	3432	3457	$35 \quad 22$	3547	36111	$36 \quad 34$	$36 \quad 57$
32	3210	3240	$33 \quad 9$	$33 \quad 37$	34	3433	3459	$35 \quad 26$	$35 \quad 51$	36 16	3641	37
33	$\begin{array}{lll}32 & 5\end{array}$	3235	336	$33 \quad 35$	344	3433	35	$35 \quad 28$	$35 \quad 55$	3621	$36 \quad 47$	3712
34	3159	3231	$33 \quad 2$	$33 \quad 33$	34	3433	35	$35 \quad 30$	$35 \quad 58$	3626	3652	3719
35	3153	3225	$32 \quad 58$	$33 \quad 29$	34	3432	35	35 31	36	3629	3657	3724
36	3146	3219	3253	3326	$33 \quad 58$	3430	35	$35 \quad 32$	36	3632	37	3729
37	3138	3213	3247	$33 \quad 21$	3354	3427	350	$35 \quad 32$	36	$36 \quad 34$	374	3734
38	3129	$32 \quad 5$	3241	3316	3350	3424	3458	$35 \quad 30$	$36 \quad 3$	$36 \quad 35$	37	3737
39	3121	3157	3234	3310	3345	3420	3455	3529	36	3635	37	3740
40	3111	3149	3226	$33 \quad 3$	$33 \quad 39$	3415	3451	$35 \quad 26$	36	3635	$37 \quad 8$	3741
41	$31 \begin{array}{ll}31 & 1\end{array}$	3140	$32 \quad 18$	3256	$33 \quad 33$	3410	3447	35 23	$35 \quad 58$	3634	378	3742
42	3050	3130	329	3248	$33 \quad 26$	34	3442	35 19	$35 \quad 55$	3632	37	3742
43	$30 \quad 39$	3119	$31 \quad 59$	$32 \quad 39$	3318	$33 \quad 57$	3436	3514	3551	3629	37	3742
44	$30 \quad 27$	318	3149	3230	3310	3350	3429	35	3547	3625	37	3740
45	3014	3056	3138	3220	331	$33 \quad 42$	3422	$35 \quad 2$	3541	3621	$37 \quad 0$	3738
46	$30-1$	$30 \quad 44$	3127	$32 \quad 9$	3251	$33 \quad 33$	3414	3455	35136	3616	3656	$37 \quad 35$
47	2947	$30 \quad 31$	3115	3158	3241	3323	346	3447	$\begin{array}{lll}35 & 29\end{array}$	$36 \quad 10$	$36 \quad 51$	3731
48	2933	3018	312	3146	3230	$33 \quad 13$	3356	3439	$35 \quad 21$	36	3645	3787
49	2918	30	$30 \quad 49$	3133	3218	33	3346	3430	3513	$35 \quad 56$	$36 \quad 39$	$37 \quad 21$
50	293	2949	3035	3120	$32 \quad 6$	3251	$33 \quad 36$	$\overline{34 \quad 20}$	35 4	3548		
51	2847	2934	$30 \quad 20$	$\begin{array}{ll}31 & 7\end{array}$	3153	3239	3324	3410	3455	$35 \quad 39$	3623	$37 \quad 7$
52	2830	2918	$30 \quad 5$	$30 \quad 52$	3139	3226	3312	3358	3444	3530	$36 \quad 15$	370
53	2813	291	2950	$30 \quad 37$	3125	$32 \quad 12$	330	3346	3433	3519	$36 \quad 5$	3651
54	2756	2845	2933	$30 \quad 22$	3110	3158	3246	3334	3421	35	$35 \quad 55$	3648
55	$\overline{27} 38$	$28 \quad 27$	29 17	$30 \quad 6$	3055	3144	3232	3321	$\begin{array}{ll}34 & 9\end{array}$	3457	354	3632
56	2719	$28 \quad 9$	$28 \quad 59$	2949	$30 \quad 39$	3128	3218	33	3356	3444	3533	3621
57	270	2751	2842	2932	3022	$\begin{array}{lll}31 & 13\end{array}$	32	3252	3342	3431	3520	$36 \quad 9$
58	2641	2732	2823	2914	$30 \quad 5$	3056	3147	3237	$33 \quad 27$	3417	357	$35 \quad 57$
59	2621	$27 \quad 13$	$28 \quad 4$	$28 \quad 56$	2948	$30 \quad 39$	3130	3221	33 12	$\begin{array}{lll}34 & 3\end{array}$	3453	3544
60	26	2653	2745	2837	$29 \quad 29$	$30 \quad 21$	3113	32 5	3256	3348	3439	3530

This Table shows the True Alcitude of the Sun's Centre at the instant it is 80^{\prime} 'Clock in the Morning, or 4 o'Clock in the Afternoon, Apparent Time, for more readily finding the Longitude by Chronometer.

DEOLINATION AND LATITUDE OF DIFFERENT NAMES.

Lat	0°	1°	2°	$3{ }^{\circ}$	4°	5	6	7	$8{ }^{\circ}$	9°	10°	11°	12°
0	30	30	2959	2957	29	2952	29	45	2941	2936	2930	2924	2917
1	30	2958	2956	2953	2950	2946	2942	2936	2931	2925	2918	2910	$29 \quad 2$
2	2959	2956	2953	2949	2944	2939	2934	2927	2920	2913	29	2856	2847
3	2957	2953	2949	2944	2938	2932	2925	2917	29	29	2851	2842	2831
4	2955	2950	2944	2938	2931	2924	2916	29	2858	2848	2838	2827	$28 \quad 15$
5	$29 \quad 52$	2946	2939	2932	2924	2915	29	2856	2846	$28 \quad 35$	$28 \quad 23$	2811	2759
6	2949	2942	2934	2925	2916	29	2855	2844	2833	$28 \quad 21$	$28 \quad 8$	2755	2741
7	2945	2936	$29 \quad 27$	2917	29	2856	2844	2832	2820	$28 \quad 6$	$27 \quad 53$	2738	2724
8	2941	2931	2920	29	2858	2846	2833	2820	28	2751	$27 \quad 37$	2721	27
9	2936	2925	2913	29	2848	2835	2821	28	2751	2736	$27 \quad 20$	27	$26 \quad 47$
10	2930	2918	29	2851	$28 \quad 38$	$28 \quad 23$	28	2753	2737	2720	27	2645	2627
11	2924	2910	2856	2842	2827	2811	$27 \quad 55$	2738	2721	27	2645	2627	268
12	2917	29	2847	2831	2815	2759	2741	2724	27	2647	$26 \quad 27$	268	2548
13	299	2854	2837	$28 \quad 21$	28	2745	2727	27	2649	$26 \quad 29$	26	2548	$25 \quad 27$
14	29	2845	2827	28	$27 \quad 51$	2732	$27 \quad 12$	2653	2632	2611	2550	$25 \quad 28$	25
15	2853	2835	2816	$27 \quad 57$	2738	$27 \quad 18$	2657	2636	2615	$25 \quad 53$	2531	$25 \quad 8$	2445
16	2844	2824	28	2745	2724	27	2641	2619	2557	2534	2511	2447	2423
17	2834	2814	2753	$27 \quad 32$	2710	2648	2625	26	2539	2515	2451	2426	24
18	2824	28	2740	2718	2655	2632	26	2545	2520	2455	2430	24	$23 \quad 38$
19	2813	$27 \quad 50$	2728	$27 \quad 4$	2640	2616	2551	$25 \quad 26$	25	2435	24	$23 \quad 42$	$23 \quad 15$
20	28	2738	$27 \quad 14$	2650	2625	26	2534	258	2441	2414	2347	$23 \quad 19$	2252
21	2750	2725	27	2635	26	2542	2516	$24 \quad 49$	2421	2353	$23 \quad 25$	2257	2228
22	2737	2712	2646	2619	$25 \quad 52$	2525	2457	2429	24	$23 \quad 32$	23	2233	22
83	2724	2658	2631	$26 \quad 3$	2535	257	2438	24	2340	2310	2240	2210	2139
24	$27 \quad 11$	2643	2615	2547	2518	2449	2419	2349	2319	2248	2217	2146	$21 \quad 14$
25	2657	2628	$25 \quad 59$	2530	25	2430	$23 \quad 59$	2328	2257	2225	2153	2121	2049
26	2642	2613	2543	$25 \quad 12$	$2+41$	$24 \quad 10$	$23 \quad 39$	23	2235	22	2130	2057	2024
27	2627	57	2526	2454	2423	2351	2318	2246	2213	2139	21	2032	1958
28	2612	2540	25	2436	24	2330	2257	2224	2150	2116	2041	206	1932
29	2556	$25 \quad 23$	2451	$24 \quad 17$	2344	2310	2236	22	2127	2052	2016	1941	19
30	$\overline{25 \quad 40}$	25	2432	2358	$23 \quad 24$	2249	2214	2139	21	$20 \quad 27$	1951	19 -.	838
3	2523	2448	4	2339	23	2228	2152	2116	2039	$20 \quad 3$	1926	1848	1811
32	$25 \quad 5$	2430	$23 \quad 55$	2319	2242	$22 \quad 6$	2129	2052	2015	1938	19	1822	1744
33	2448	2412	$23 \quad 35$	2258	2221	2144	21	$20 \quad 29$	1951	$19 \quad 12$	1834	1755	1716
34	$24 \quad 29$	$23 \quad 52$	2315	2237	22	2122	2043	20	1926	18	18	1728	1649
35	24	2333	2255	2216	2138	2059	$20 \quad 20$	1940	19	1821	1741	17	$16 \quad 20$
36	2352	$23 \quad 13$	2234	2155	2115	2036	1956	1916	1835	1755	$17 \quad 14$	1633	1552
37	$23 \quad 32$	2253	2213	2133	2053	2012	1932	1851	1810	$17 \quad 28$	1647	$16 \quad 5$	1524
38	2312	2232	2151	2111	2030	1948	19	1825	1744	17	1620	1537	1455
39	2252	2211	2130	2048	$20 \quad 6$	1924	1842	18	1717	1635	15	15	1426
40	2231	2150	21	2025	1943	$19 \quad 0$		$17 \quad 34$	1651	168	1524	1441	$13 \quad 57$
41	2210	2128	2045	20	$19 \quad 19$	1835	1752	17	1624	1540	1456	1412	$13 \quad 27$
48	2149	21	2022	1938	$18 \quad 54$	1810	1726	1642	1557	$15 \quad 12$	1428	1343	1258
43	2127	2043	1959	1914	1830	1745	17	1615	1530	1445	1359	1314	1228
44	21	$20 \quad 20$	1935	1850	18	$17 \quad 19$		1548	15	14	$13 \quad 30$	1244	1158
45	2042	1957	1911	$18 \quad 26$	1740	1654	167	1521	1435	1348	$13 \quad 2$	1215	1128
46	2019	1933	1847	18	1714	1627	1541	1454	14	1320	1232	1145	1058
47	1956	1910	1823	$17 \quad 36$	1648	16	1514	1426	1339	1251	12	1115	1027
48	1933	1845	1758	$17 \quad 10$	1622	1535	1447	1359	1310	1222	1134	1045	957
49	19	1821	1733	1645	15	15	1419	$13 \quad 31$	1242	11	11		26
50	1845	1756	17	$16 \quad 19$	1530	1441	1352	13	1213	1124	1034	945	855
51	1820	1731	1642	$15 \quad 53$	15	1414	1324	1234	1144	1054	10	91	824
52	1756	176	1616	1526	1436	1346	1256	12	1115	1025	34	844	53
53	$17 \quad 31$	1641	1550	15	$14 \quad 9$	1318	1228	1137	1046	955	94	813	722
54	17	1615	$15 \quad 24$	1433	1342	1251	1159	11	10	5	34	742	
55	1640	1549	1457	146	1314	1222	1131	1039			84		620
56	1614	1522	1430	$13 \quad 38$	1246	1154	11	1010	918	825	33	641	548
57	1548	1456	143	1311	1218	1126	1033	941	848	755	$7 \quad 2$	6	517
58	1522	1429	1336	1243	1150	1057	10	911	818	725	32	538	445
59	1455	14	$13 \quad 9$	$12 \quad 15$	1122	1029		842	748	654	,	5	414
60	1489	1335	1241	1147	1054	10	96	812	718	624	530	436	

This Table shows the True Altitude of the Sun's Centre at the instant it is $8 o^{\prime}$ Clock in the Morning, or 4 o'Clock in the Afternoon, Apparent Time, for more readily finding the Longitude by Chronometer.

DECLINATION AND LATITUDE OF DIFFERENT NAMES,

Lat.	13°	14°	15°	16°	17°	18°	19°	20°	21°	22°	23°	94*
	- '	- ${ }^{\text {, }}$	- '	- 1		- ,						
0	29 9	29	$28 \quad 53$	2844	2834		2813	$28 \quad 1$	2750	2737	2784	2711
1	2854	2845	$28 \quad 35$	$28 \quad 24$	2814	28 8	2750	$27 \quad 38$	2725	2712	26	2643
8	$28 \quad 37$	2827	2816	$28 \quad 5$	2753	2740	2728	$27 \quad 14$	$27 \quad 0$	2646	$26 \quad 31$	2615
3	2821	$28 \quad 9$	$27 \quad 57$	2745	2732	$27 \quad 18$	274	2650	$26 \quad 35$	2619	26	2547
4	$28 \quad 3$	2751	$27 \quad 38$	$27 \quad 24$	$27 \quad 10$	2655	2640	$26 \quad 25$	$26 \quad 9$	$25 \quad 52$	$25 \quad 35$	2518
5	2745	2732	$\overline{27 \quad 18}$	27 3	2648	2632	2616	260	2542	2525	$\begin{array}{ll}25 & 7\end{array}$	2449
6	2727	2712	2657	2641	$26 \quad 25$	$26 \quad 9$	$25 \quad 51$	$25 \quad 34$	2516	2457	2438	2419
7	278	2653	2636	$26 \quad 19$	$26 \quad 2$	2545	2526	258	2449	$24 \quad 29$	$24 \quad 9$	2349
8	2649	2632	2615	$25 \quad 57$	$25 \quad 39$	2520	251	2441	2421	24	$23 \quad 40$	2319
9	$26 \quad 29$	2611	2553	2534	$25 \quad 15$	2455	2435	2414	2353	23132	2310	2248
10	$26 \quad 9$	2550	2531	$25 \quad 11$	2451	2430	$24 \quad 9$	2347	$23 \quad 25$	$23 \quad 3$	2240	2217
11	2548	2528	258	2447	2426	24	$23 \quad 42$	2319	2257	2233	2210	2146
12	2527	256	2445	2423	241	2338	2315	2252	2228	224	2139	2114
13	$25 \quad 6$	2444	2421	$23 \quad 58$	2315	2312	2248	2223	$\begin{array}{lll}21 & 59\end{array}$	2133	218	2042
14	2444	2421	2357	$23 \quad 33$	$23 \quad 9$	2245	2220	2155	2129	$21 \quad 3$	2037	$20 \quad 10$
15	2421	2357	$23 \quad 33$	238	2243	$22 \quad 17$	2152	2126	2059	2032	$20 \quad 5$	1938
16	2358	2333	238	2242	2216	2150	2123	2056	2029	$20 \quad 1$	1933	$19 \quad 5$
17	2335	239	2243	2216	2150	2122	2055	$20 \quad 27$	1959	1930	191	1832
18	2312	2245	2217	2150	2122	2054	2026	1957	1928	1858	1829	1759
19	2248	2220	2152	2123	2055	$20 \quad 26$	1956	1927	1857	1827	1756	1726
20	2223	2155	21 26	2056	2027	1957	$19 \quad 27$	1856	1826	1755	1723	1658
21	2159	2129	$20 \quad 59$	2029	1959	1928	1857	1826	$17 \quad 54$	1722	1650	1618
22	2133	213	2032	201	1930	1858	1827	1755	1722	1650	1617	1544
83	218	2037	$20 \quad 5$	1933	191	1829	1756	$17 \quad 23$	1650	$16 \quad 17$	1543	1510
84	2042	$20 \quad 10$	1939	$19 \quad 5$	$18 \quad 32$	$17 \quad 59$	17 2¢	1652	1618	1544	1510	1435
25	2016	1943	$19 \quad 10$	1837	$18 \quad 3$	1729	1655	$16 \quad 20$	1546	1511	1436	141
26	1950	1916	1842	188	1733	1658	1623	1548	1513	1437	14	$13 \quad 26$
27	1923	1849	1814	$17 \quad 39$	$17 \quad 3$	1628	1552	1516	1440	$14 \quad 4$	$13 \quad 27$	1251
28	1856	1821	1745	179	1633	1557	1521	1444	$14 \quad 7$	1330	1253	1216
29	$18 \quad 29$	1753	1716	1640	16	1526	1449	1411	1334	1256	1218	1140
30	$18 \quad 2$	1725	1647	1610	1532	1455	1417	$13 \quad 39$	130	1222	1144	115
31	1734	1656	1618	1540	$15 \quad 2$	1423	1345	136	$12 \quad 27$	1148	118	1029
32	176	1627	1549	1510	1431	1351	1312	1233	1153	1113	1034	954
33	1637	1558	1519	1439	1359	1320	1240	120	1119	1039	958	918
34	169	1529	1449	$14 \quad 9$	1328	1248	$12 \quad 7$	1126	1.045	$10 \quad 4$	923	842
35	1540	1459	1419	1338	1257	1215	1134	1053	1011	929	848	
36	1511	1430	1348	$13 \quad 7$	1225	1143	111	1019	937	855	812	730
37	1442	140	1318	1235	1153	1110	1028	945	92	820	737	654
38	1412	1330	1247	124	1121	1038	955	911	828	744	71	617
39	1343	1259	1216	1132	$10 \quad 49$	$10 \quad 5$	921	837	753	79	625	541
40	1313	1229	1145	111		932				634	549	$5 \quad 5$
41	1243	1158	1114	1029	944	859	814	729	644	559	513	428
42	1213	1128	1042	957	911	826	740	655	$6 \quad 9$	523	437	352
43	1142	1057	1011	925	839	75	76	620	534	448		315
44	1112	1025	939	852		719	632	546	459	412	325	238
45	1041	954		820		646	558	511	424	336	249	
46	1010	923	835	748	70	612	524	437	349	31	213	125
47	939	851	83	715	627	539	450	42	314	225	137	048
48	98	820	731	642	554	55	416	327	238	149	11	012
49	837	748	659	610	520	431	342	252	23	114	024	
50		716	626	537	447	357		218		038		
51	734	644	554	54	414	323	233	143	052			
52	73	612	522	431	340	249	159	18	017			
53	631	540	449	358	37	215	124	033				
54	559	58	416	325	233	141	050					
55	528	436	344	252	20	17	015					
56	456	43	311	218	126	033						
57	424	331	238	145	052							
58	352	259	25	112	019							
59	320	226	132	039								
60	248	154	10	06								

		TABLE B.-Sexagesimal Proportional Table												For finding the proportion of Altitude for Miles of Latitude and Declination, to be applied to the Altitude taken from Table A.
$\begin{gathered} \text { Miles } \\ \text { of } \end{gathered}$	DIFFERENOE OF ALTITUDE FOR 1° OF LATITUDE OR DECLINATION.													
Decli.	$1{ }^{\prime}$	3^{\prime}	5^{\prime}	$7{ }^{\prime}$	$9{ }^{\prime}$	11^{\prime}	13^{\prime}	15^{\prime}	17^{\prime}	19^{\prime}	21^{\prime}	23^{\prime}	25'	27^{\prime}
	,		,											
1	0.0	0.1	0.1	0.1	0.2	0.2	0.2	0.3	0.3	0.3	0.4	0.4	0.4	0.5
2	0.0	0.1	0.2	0.2	0.3	0.4	0.4	0.5	0.6	0.6	0.7	0.8	0.8	0.9
3	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.1	1.2	1.3	1.4
4	0.1	0.2	0.3	0.5	0.6	0.7	0.9	1.0	1.1	1.3	1.4	1.5	1.7	1.8
5	0.1	0.3	0.4	0.6	0.8	0.9	1.1	1.3	1.4	1.6	1.8	$1 \cdot 9$	8.1	$2 \cdot 3$
6	0.1	0.3	0.5	0.7	0.9	1.1	1.3	1.5	1.7	1.9	2.1	2.3	2.5	2.7
7	0.1	0.4	0.6	0.8	1.1	1.3	1.5	1.8	2.0	2.2	2.5	2.7	2.9	3.2
8	0.1	0.4	0.7	0.9	1.2	1.5	1.7	2.0	2.3	2.5	2.8	3.1	3.3	3.6
9	0.2	0.5	0.8	1.1	1.4	1.7	2.0	2.3	2.6	2.9	3.2	3.5	3.8	4.1
10	0.2	0.5	0.8	1.2	1.5	1.8	2.2	2.5	2.8	3.2	3.5	3.8	4.2	4.5
11	0.2	0.6	0.9	1.3	1.7	2.0	2.4	2.8	3.1	3.5	3.9	4.2	4.6	5.0
12	0.2	0.6	1.0	1.4	1.8	2.2	2.6	3.0	3.4	3.8	4.2	4.6	5.0	5.4
13	0.2	0.7	1.1	1.5	2.0	2.4	2.8	3.3	3.7	4.1	4.6	5.0	5.4	5.8
14	0.2	0.7	1.2	1.6	2.1	2.6	3.0	3.5	4.0	4.4	4.9	5.4	5.8	6.3
15	0.3	0.8	1.3	1.8	2.3	2.8	3.3	3.8	4.3	4.8	5.3	5.8	6.3	6.8
16	0.3	0.8	1.3	1.9	2.4	2.9	3.5	4.0	4.5	5.1	5.6	6.1	6.7	7.2
17	0.3	0.9	1.4	2.0	2.6	3.1	3.7	4.3	4.8	5.4	6.0	6.5	7.1	7.7
18	0.3	0.9	1.5	2.1	2.7	3.3	3.9	4.5	5.1	5.7	6.3	6.9	7.5	8.1
19	0.3	1.0	1.6	2.2	2.9	3.5	4.1	4.8	5.4	6.0	6.7	7.3	7.9	8.6
20	0.3	1.0	1.7	2.3	3.0	3.7	4.3	5.0	5.7	6.3	7.0	7.7	8.3	9.0
21	0.4	1.1	1.8	2.5	3.2	3.9	4.6	5.3	6.0	6.7	7.4	8.1	8.8	9.5
22	0.4	1.1	1.8	2.6	3.3	4.0	4.8	5.5	6.2	7.0	7.7	8.4	9.2	9.9
23	0.4	1.2	1.9	2.7	3.5	4.2	5.0	5.8	6.5	7.3	8.1	8.8	9.6	10.4
24	9.4	1.2	2.0	2.8	3.6	4.4	5.2	6.0	6.8	7.6	8.4	9.2	10.0	10.8
25	0.4	1.3	2.1	2.9	3.8	4.6	5.4	6.3	7.1	7.9	8.8	9.6	10.4	11.3
26	0.4	1.3	2.2	3.0	3.9	4.8	5.6	6.5	7.4	8.2	9.1	10.0	10.8	11.7
27	0.5	1.4	2.3	3.2	4.1	5.0	5.9	6.8	7.7	8.6	9.5	10.4	11.3	12.2
28	0.5	1.4	2.3	3.3	4.2	5.1	6.1	7.0	7.9	8.9	9.8	10.7	11.7	12.6
29	0.5	1.5	2.4	3.4	4.4	5.3	6.3	7.3	8.2	9.2	10.2	11.1	12.1	13.1
30	0.5	1.5	2.5	3.5	4.5	5.5	6.5	7.5	8.5	9.5	10.5	11.5	12.5	13.5
31	0.5	1.6	2.6	3.6	4.7	5.7	6.7	7.8	8.8	9.8	10.9	11.9	12.9	14.0
32	0.5	1.6	2.7	3.7	4.8	5.9	6.9	8.0	9.1	10.1	11.2	12.3	13.3	14.4
33	0.6	1.7	2.8	3.9	5.0	6.1	7.2	8.3	9.4	10.5	11.6	12.7	13.8	14.9
34	0.6	1.7	2.8	4.0	5.1	6.2	7.4	8.5	9.6	10.8	11.9	13.0	14.2	15.3
35	0.6	1.8	2.9	4.1	5.3	6.4	7.6	8.8	9.9	11.1	12.3	13.4	14.6	15.8
36	0.6	1.8	3.0	4.2	5.4	6.6	7.8	. 0	10.2	11.4	12.6	13.8	15.0	16.2
37	0.6	1.9	3.1	4.3	5.6	6.8	8.0	9.3	10.5	11.7	13.0	14.2	15.4	16.7
38	0.6	1.. 9	3.2	4.4	5.7	7.0	8.2	9.5	10.8	12.0	13.3	14.6	15.8	17.1
39	0.7	2.0	3.3	4.6	5.9	7.2	8.5	9.8	11.1	12.4	13.7	15.0	16.3	17.6
40	0.7	2.0	3.3	4.7	6.0	7.3	8.7	10.0	11.3	12.7	. 14.0	15.3	16.7	18.0
41	0.7	2.1	3.4	4.8	6.2	7.5	8.9	10.3	11.6	13.0	14.4	15.7	17.1	18.5
42	0.7	2.1	3.5	4.9	6.3	7.7	9.1	10.5	11.9	13.3	14.7	16.1	17.5	18.9
43	0.7	2.2	3.6	5.0	6.5	7.9	9.3	10.8	12.2	13.6	15.1	16.5	17.9	19.4
44	0.7	2.2	3.7	5.1	6.6	8.1	9.5	11.0	12.5	13.9	15.4	16.9	18.3	19.8
45	0.8	2.3	3.8	5.3	6.8	8.3	9.8	11.3	12.8	14.3	15.8	17.3	18.8	20.3
46	0.8	2.3	3.8	5.4	6.9	8.4	10.0	11.5	13.0	14.6	16.1	17.6	19.2	20.7
47	0.8	2.4	3.9	5.5	7.1	8.6	10.2	11.8	13.3	14.9	16.5	18.0	19.6	21.2
48	0.8	2.4	4.0	5.6	7.2	8.8	10.4	12.0	13.6	15.2	16.8	18.4	20.0	21.6
49	0.8	2.5	4.1	5.7	7.4	9.0	10.6	12.3	13.9	15.5	17.2	18.8	20.4	22.1
50	0.8	2.5	4.2	5.8	7.5	9.2	10.8	12.5	14.2	15.8	17.5	19.2	20.8	22.5
51	0.9	2.6	4.3	6.0	7.7	9.4	11.1	12.8	14.5	16.2	17.9	19.6	21.3	23.0
52	0.9	2.6	4.3	6.1	7.8	9.5	11.3	13.0	14.7	16.5	18.2	19.9	21.7	23.4
53	0.9	2.7	4.4	6.2	9.0	9.7	11.5	13.3	15.0	16.8	18.6	20.3	22.1	23.9
54	0.9	2.7	4.5	6.3	9.1	9.9	11.7	13.5	15.3	17.1	18.9	20.7	22.5	24.3
55	0.9	2.8	4.6	6.4	9.3	10.1	11.9	13.8	15.6	17.4	19.3	21.1	22.9	24.8
56	0.9	2.8	4.7	6.5	9.4	10.3	12.1	14.0	15.9	17.7	19.6	21.5	23.3	25.2
57	1.0	2.9	4.8	6.7	9.6	10.5	12.4	14.3	16.2	18.1	20.0	21.9	23.8	25.7
58	1.0	2.9	4.8	6.8	9.7	10.6	12.6	14.5	16.4	18.4	20.3	22.2	24.2	26.1
59	1.0	3.0	4.9	6.9	9.9	10.8	12.8	14.8	16.7	18.7	20.7	22.6	24.6	86.6
60	1.0	3.0	5.0	7.0	9.0	11.0	13.0	15.0	17.0	19.0	21.0	23.0	25.0	27.0

For finding the proportion of Altitude for Miles of Latitude and Declination, to be applied to the Altitudo taken from Table A.

$\left\lvert\, \begin{gathered} \text { Milso } \\ \text { of } \end{gathered}\right.$	DIFFERENCE OF													
Dor ${ }_{\text {or }}^{\text {or }}$ (29^{\prime}	31^{\prime}	33^{\prime}	35^{\prime}	37^{\prime}	39^{\prime}	41^{\prime}	43^{\prime}	45'	47^{\prime}	49^{\prime}	51'	53'	55^{\prime}
	,		,	,										
1	0.5	0.5	0.6	0.6	0.6	0.7	0.7	0.7	0.8	0.8	0.8	0.9	0.9	0.9
2	1.0	1.0	1.1	1.2	1.2	1.3	1.4	1.4	1.5	1.6	1.6	1.7	1.8	1.8
3	1.5	1.6	1.7	1.8	1.9	2.0	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8
4	1.9	2.1	2.2	2.3	2.5	2.6	2:7	2.9	3.0	3.1	3.3	3.4	3.5	3.7
5	2.4	2.6	2.8	2.9	3.1	3.3	3.4	3.6	3.8	3.9	4.1	$4 \cdot 3$	4.4	4.6
6	2.9	3.1	3.3	3.5	3.7	3.9	4.1	4.3	4.5	4.7	4.9	5.1	5.3	5.5
7	3.4	3.6	3.9	4.1	4.3	4.6	4.8	5.0	5.3	5.5	5.7	6.0	6.2	6.4
8	3.9	4.1	4.4	4.7	4.9	5.2	5.5	5.7	6.0	6.3	6.5	6.8	7.1	7.3
9	4.4	4.7	5.0	5.3	5.6	5.9	6.2	6.5	6.8	7.1	7.4	7.7	8.0	8.3
10	4.8	5.2	5.5	5.8	6.2	6.5	6.8	7.2	7.5	7.8	8.2	8.5	8.8	9.8
11	5.3	5.7	6.1	6.4	6.8	7.2	7.5	7.9	8.3	8.6	9.0	9.4	97	10.1
12	5.8	6.2	6.6	7.0	7.4	7.8	8.2	8.6	9.0	9.4	9.8	10.2	106	11.0
13	6.3	6.7	7.2	7.6	8.0	8.5	8.9	9.3	9.8	10.2	10.6	11.1	11.5	11.9
14	6.8	7.2	7.7	8.2	8.6	9.1	9.6	10.0	10.5	11.0	11.4	11.9	12.4	12.8
15	7.3	7.8	8.3	8.8	9.3	9.8	10.3	10.8	11.3	11.8	12.3	12.8	13.3	13.8
16	7.7	8.3	8.8	9.3	9.9	10.4	10.9	11.5	12.0	12.5	13.1	13.6	14.1	14.7
17	8.2	8.8	9.4	9.9	10.5	11.1	11.6	12.2	12.8	13.3	13.9	14.5	15.0	15.6
18	8.7	9.3	9.9	10.5	11.1	11.7	12.3	12.9	13.5	14.1	14.7	15.3	15.9	16.5
19	9.2	9.8	10.5	11.1	11.7	12.4	13.0	13.6	14.3	14.9	15.5	16.2	16.8	17.4
20	9.7	10.3	11.0	11.7	12.3	13.0	13.7	14.3	15.0	15.7	16.3	17.0	17.7	18.3
21	10.2	10.9	11.6	$\overline{12.3}$	13.0	13.7	14.4	15.1	15.8	16.5	17.2	17.9	18.6	19.3
22	10.6	11.4	12.1	12.8	13.6	14.3	15.0	15.8	16.5	17.2	18.0	18.7	19.4	20.2
23	11.1	11.9	12.7	13.4	14.2	15.0	15.7	16.5	17.3	18.0	18.8	19.6	20.3	21.1
24	11.6	12.4	13.2	14.0	14.8	15.6	16.4	17.2	18.0	18.8	19.6	20.4	21.2	22.0
25	12.1	12.9	$\underline{13.8}$	14.6	15.4	16.3	17.1	17.9	18.8	19.6	20.4	21.3	22.1	22.9
26	12.6	13.4	:4.3	15.2	16.0	16.9	17.8	18.6	19.5	20.4	21.2	22.1	23.0	23.8
27	13.1	14.0	14.9	15.8	16.7	17.6	18.5	19.4	20.3	21.2	22.1	23.0	23.9	24.8
28	13.5	14.5	$1!3.4$	16.3	17.3	18.2	19.1	20.1	21.0	21.9	22.9	23.8	24.7	25.7
29	14.0	15.0	16.0	16.9	17.9	18.9	19.8	20.8	21.8	22.7	23.7	24.7	25.6	26.6
30	14.5	15.5	16.5	17.5	18.5	19.5	20.5	21.5	22.5	23.5	24.5	25.5	26.5	27.5
31	15 j	16.0	17.1	18.1	19.1	20.2	21.2	22.2	23.3	24.3	25.3	26.4	27.4	28.4
32	15.5	16.5	17.6	18.7	19.7	20.8	21.9	22.9	24.0	25.1	26.1	27.2	28.3	29.3
33	16.0	17.1	18.2	19.3	20.4	21.5	22.6	23.7	24.8	25.9	27.0	28.1	29.2	30.3
34	16.4	17.6	18.7	19.8	21.0	22.1	23.2	24.4	25.5	26.6	27.8	28.9	30.0	31.2
35	16.9	18.1	19.3	20.4	21.6	22.8	23.9	25.1	26.3	27.4	28.6	29.8	30.9	32.1
36	17.4	18.6	19.8	21.0	22.2	23.4	24.6	25.8	27.0	28.2	29.4	30.6	31.8	33.0
37	17.9	19.1	20.4	21.6	22.8	24.1	25.3	26.5	27.8	29.0	30.2	31.5	32.7	33.9
38	18.4	19.6	20.9	22.2	23.4	24.7	26.0	27.2	28.5	29.8	31.0	32.3	33.6	34.8
39	18.9	20.2	21.5	22.8	24.1	25.4	26.7	28.0	29.3	30.6	31.9	33.2	34.5	35.8
40	19.3	20.7	22.0	23.3	24.7	26.0	27.3	28.7.	30.0	31.3	32.7	34.0	35.3	36.7
41	19.8	21.2	22.6	23.9	25.3	26.7	28.0	29.4	30.8	32.1	33.5	34.9	36.2	37.6
42	20.3	21.7	23.1	24.5	25.9	27.3	28.7	30.1	31.5	32.9	34.3	35.7	37.1	38.5
43	20.8	22.2	23.7	25.1	26.5	28.0	29.4	30.8	32.3	33.7	35.1	36.6	38.0	39.4
44	21.3	22.7	24.2	25.7	27.1	28.6	30.1	31.5	33.0	34.5	35.9	37.4	38.9	40.3
45	21.8	23.3	24.8	26.3	27.8	29.3	30.8	32.3	33.8	35.3	36.8	38.3	39.8	41.3
46	22.2	23.8	25.3	26.8	28.4	29.9	31.4	33.0	34.5	36.0	37.6	39.1	40.6	42.2
47	22.7	24.3	25.9	27.4	29.0	30.6	32.1	33.7	35.3	36.8	38.4	40.0	41.5	43.1
48	23.2	24.8	26.4	28.0	29.6	31.2	32.8	34.4	36.0	37.6	39.2	40.8	42.4	44.0
49	23.7	25.3	27.0	28.6	30.2	31.9	33.5	35.1	36.8	38.4	40.0	41.7	43.3	44.9
50	24.2	25.8	27.5	29.2	30.8	32.5	34.2	35.8	37.5	39.2	40.8	42.5	44.2	45.8
51	24.7	26.4	28.1	29.8	31.5	33.2	34.9	36.6	38.3	40.0	41.7	43.4	45.1	46.8
52	25.1	26.9	28.6	30.3	32.1	33.8	35.5	37.3	39.0	40.7	42.5	44.2	45.9	47.7
53	25.6	27.4	29.2	30.9	32.7	34.5	36.2	38.0	39.8	41.5	43.3	45.1	46.8	48.6
54	26.1	27.9	29.7	31.5	33.5	35.1	36.9	38.7	40.5	42.3	44.1	45.9	47.7	49.5
55	26.6	28.4	30.3	32.1	33.9	35.8	37.6	39.4	41.3	43.1	44.9	46.8	48.6	50.4
56	27.1	28.9	30.8	32.7	34.5	36.4	38.3	40.1	42.0	43.9	45.7	47.6	49.5	51.3
57	27.6	29.5	31.4	33.3	35.2	37.1	39.0	40.9	42.8	44.7	46.6	48.5	50.4	52.3
58	28.0	30.0	31.9	33.8	35.8	37.7	39.6	41.6	43.5	45.4	47.4	49.3	51.2	53.2
59	88.5	30.5	32.5	34.4	36.4	38.4	40.3	42.3	44.3	46.2	48.2	50.2	52.1	54.1
60	29.0	31.0	33.0	35.0	37.0	39.0	41.0	43.0	45.0	47.0	49.0	51.C	53.0	55.0

TABLE C.-Firat Part.
The Time (in seconds and hundredth parts of seconds) corresponding to a change of the Sun's Altitude of 1 mile, at 8 o'clock, A. M., or 4 o'clock, P. M., and which may be assumed the same for 20 minutes; that is, 10 minutes either before or after 8, A. M., or 4, P. M. (See Remark at bottom of page 247•)

DECLINATION AND LATITUDE OF THE SAME NAME

Lat.	$0{ }^{\circ}$	$2{ }^{\circ}$.	4°	6°	8°	10°	12°	14°	16°	18°	20°	22°	24°
-	s.	s.	s.	s.	s.	5.	s.	s.		s.	s.		s.
0	4.00	4.00	4.01	4.03	4.05	4.08	4.12	4.16	4.22	4.28	4.34	4.42	4.50
1	. 00	. 00	. 01	. 03	. 05	. 08	. 11	. 15	. 21	. 27	. 33	. 40	. 48
2	. 00	. 00	. 01	. 02	. 04	. 07	. 10	. 14	. 18	. 25	. 31	. 38	. 46
3	. 00	. 01	. 01	. 02	. 04	. 06	. 10	. 14	. 18	. 24	. 30	. 38	. 45
4	. 01	. 01	. 01	. 02	. 04	. 06	. 09	. 13	. 17	. 23	. 29	$\cdot 35$. 44
5	4.02	4.02	4.02	4.03	4.04	4.06	479	4.13	4.17	4.22	4.28	4.34	4.43
6	. 03	. 02	. 02	. 03	. 04	. 06	. 09	. 12	. 16	. 21	. 27	. 34	. 42
7	. 04	. 03	. 03	. 04	. 05	. 06	. 09	.12	. 16	. 21	. 27	. 33	. 41
8	. 05	. 04	. 04	. 04	. 05	. 07	. 09	. 12	. 16	. 20	. 26	. 32	. 40
9	. 07	. 06	. 05	. 05	. 06	. 08	. 10	. 12	. 16	. 20	. 26	. 32	. 39
10	4.08	4.07	4.06	4.06	4.07	4.08	4.10	4.13	4.17	4.21	4.26	4.32	4.38
11	. 10	. 08	. 07	. 07	. 08	. 09	. 11	. 13	. 17	. 21	. 26	. 32	. 38
12	. 12	. . 10	. 09	. 09	. 09	. 10	. 12	. 14	. 18	. 22	. 26	. 32	. 38
13	. 14	. 12	. 11	. 10	. 10	. 11	. 13	. 15	. 18	. 22	. 26	. 32	. 38
14	. 16	. 14	. 13	. 12	. 12	. 13	. 14	. 16	. 19	. 23	. 27	. 32	. 38
15	4.19	4.17	4.15	4.14	4.14	4.15	4.16	4.18	4.20	4.24	4.28	4.32	4.38
16	. 22	. 19	. 17	. 16	. 16	. 17	. 18	. 19	. 22	. 25	. 29	. 33	. 39
17	. 25	. 22	. 20	. 18	. 18	. 19	. 20	. 21	. 24	. 27	. 30	. 34	. 40
18	. 28	. 25	. 23	. 21	. 20	. 21	. 22	. 23	. 25	. 28	. 31	. 35	. 41
19	. 31	. 28	. 26	. 24	. 23	. 23	. 24	. 25	. 27	. 30	. 33	. 36	. 42
20	4.34	4.31	4.29	4.27	4.26	4.26	4.26	4.27	4.29	4.31	4.34	4.38	4.43
21	. 38	. 34	. 32	. 30	. 29	. 29	. 29	. 30	. 31	. 33	. 36	. 40	. 44
22	. 42	. 38	. 35	. 34	. 32	. 32	. 32	. 32	. 33	. 35	. 38	. 42	. 46
23	. 46	. 42	. 39	. 37	. 36	. 35	. 35	. 35	. 36	. 38	. 40	. 44	. 48
24	. 50	. 46	. 44	. 42	. 40	. 38	. 38	. 38	. 39	. 41	. 43	. 46	. 50
25	4.55	4.51	4.48	4.46	4.44	4.42	4.42	4.42	4.42	4.44	4.46	4.48	4.52
26	. 60	. 56	. 52	. 50	. 48	. 46	. 46	. 46	. 46	. 47	. 49	. 51	. 55
27	. 65	. 61	. 57	. 54	. 52	. 50	. 50	. 50	. 50	. 50	. 52	. 54	. 58
28	. 70	. 66	. 62	. 59	. 57	. 55	. 54	. 54	. 54	. 54	. 55	. 57	. 61
29	. 75	. 71	. 67	. 64	. 62	. 60	. 58	. 58	. 58	. 58	. 59	. 61	. 64
30	4.81	4.77	4.73	4.69	4.67	4.65	4.63	4.63	4.63	4.63	4.63	4.65	4.68
31	. 87	. 83	. 79	. 75	. 72	. 70	. 68	. 68	. 68	. 68	. 68	. 70	. 72
32	. 93	. 89	. 85	. 81	. 78	. 76	. 74	. 73	. 73	. 73	. 73	. 74	. 76
33	5.00	. 95	. 91	. 87	. 84	. 82	. 80	. 78	. 78	. 78	. 78	. 78	. 80
34	. 07	5.02	. 98	. 94	. 90	. 88	. 86	. 84	. 83	. 83	. 83	. 84	. 85
35	5.14	5.09	5.05	5.01	4.97	. 95	493	4.91	4.90	4.89	4.89	4.89	4.90
36	. 22	. 17	. 13	. 09	5.05	5.02	5.00	. 98	. 96	. 95	. 95	. 95	. 96
37	. 30	. 25	. 21	. 17	. 13	. 10	. 07	5.05	5.03	5.01	5.01	5.01	5.02
38	. 39	. 33	. 29	. 25	. 21	. 18	. 14	. 12	. 10	. 08	. 08	. 08	. 08
39	. 48	. 42	. 38	. 34	. 31	. 26	. 22	. 20	. 18	. 16	. 15	. 15	. 15
40	5.58	5.52	5.47	5.43	5.39	5.35	5.31	5.28	5.26	5.24	5.23	5.23	5.23
41	. 68	. 62	. 57	. 52	. 48	. 44	. 40	. 37	. 35	. 33	. 31	. 30	. 30
42	. 78	. 72	. 67	. 62	. 58	. 54	. 50	. 46	. 44	. 42	. 40	. 38	. 38
43	. 89	. 83	. 77	. 72	. 68	. 64	. 60	. 56	. 53	. 51	. 49	. 47	. 47
44	6.00	. 94	. 88	. 83	. 78	. 74	. 70	. 66	. 63	. 61	. 59	. 58	. 56
45	6.12	6.06	6.00	5.94	5.89	5.85	5.81	5.77	5.74	5.71	5.69	5.67	5.66
46	. 25	. 18	. 12	6.06	6.01	. 97	. 93	. 89	. 86	. 82	. 80	. 78	. 77
47	. 38	. 31	. 25	. 19	. 14	6.10	6.06	5.02	. 98	. 94	. 92	. 90	. 88
48	. 52	. 45	. 39	. 33	. 27	. 23	. 19	. 15	6.11	6.07	6.05	6.03	6.01
49	. 66	. 60	. 54	. 48	. 42	. 36	. 32	28	. 24	. 21	. 18	. 15	. 13
50	6.81	6.75	6.69	6.63	6.59	6.51	6.46	6.42	6.38	6.34	6.32	6.29	6.27
51	. 97	. 91	. 85	. 79	. 73	. 67	. 61	. 57	. 53	. 49	. 47	. 44	. 42
52	7.14	7.08	7.02	. 96	. 90	. 84	. 78	. 73	. 69	. 65	. 63	. 60	. 58
53	. 33	. 26	. 20	7.14	7.08	7.02	. 96	. 91	. 87	. 83	. 80	. 76	. 74
54	. 53	. 45	. 39	. 33	. 27	. 22	7.15	7.10	7.06	7.02	. 98	. 94	. 91
55	7.74	7.66	7.59	7.53	7.47	7.41	7.35	7.29	7.25	7.21	7.17	7.13	7.09
56	. 96	. 88	. 81	. 74	. 68	. 62	. 56	. 50	. 45	. 41	. 37	. 33	. 29
57	8.19	8.11	8.04	. 98	. 92	. 86	. 80	. 74	. 18	. 62	. 58	. 54	. 73
58	. 44	. 36	. 28	8.22	8.16	8.10	8.14	. 98	. 92	. 86	.81 8.06	8.77	. 73
59	. 70	. 62	. 54	. 47	. 41	. 35	. 29	8.23	8.17	8.11 .38	8.06 .33	8.02 .29	8.98
60	. 98	. 90	. 82	. 75	. 69	63	57	51	. 45	. 38	. 33	. 29	8.25

> TABLE C.-SEcond Part.

The Time (in seconds and hundredth parts of seconds) corresponding to a change of the Sun's Altitude of 1 mile, at 8 o'clock, A. M., or 4 o'clock. P. M., and which may be assumed the same for 20 minutes : that is, 10 minutes either before or after 8, A. M., or 4, P. M. (See Remark at bottom of page 247).

DECLINATION AND LATITUDE OF DIFFERENT NAMES.

Lat.	$1 *$	3°	5°	7°	9°	11°	13°	15°	17°	19°	21°	23°	84°
	s.	s.	s.	s.	3.	8.	s.	5.	s.	s.	s.	3.	8.
1	4.00	4.01	4.03	4.05	4.08	4.11	4.15	4.20	4.26	4.32	4.39	4.47	458
2	. 00	. 02	. 04	. 06	. 09	. 12	. 16	. 82	. 28	. 34	. 41	. 49	. 54
3	. 01	. 03	. 05	. 07	. 10	. 13	. 18	. 24	. 30	. 36	. 43	. 51	. 56
4	. 02	. 04	. 06	. 08	.11	. 14	. 19	. 26	. 32	. 38	. 45	. 54	. 59
5	. 03	. 05	. 07	. 09	. 12	. 16	. 21	. 28	. 34	. 40	. 47	- 56	61
6	4.04	4.06	4.08	4.11	4.14	4.18	4.23	4.30	4.36	4.42	4.50	4.59	4.64
7	. 05	. 07	. 09	. 13	. 16	. 20	. 25	. 32	. 38	. 44	. 52	. 61	. 66
8	. 06	. 08	. 11	. 15	. 18	. 22	. 27	. 34	. 40	. 47	. 55	. 64	. 69
9	. 08	. 10	. 12	. 16	. 20	. 24	. 29	. 36	. 42	. 50	. 58	. 67	. 72
10	. 09	. 11	. 14	. 18	. 22	. 26	. 32	. 38	. 45	. 53	. 61	. 70	. 75
11	4.11	4.13	4.16	4.20	4.24	4.29	4.35	4.41	4.48	4.56	4.64	4.74	4.79
12	. 13	. 15	. 18	. 22	. 26	. 32	. 38	. 44	. 51	. 59	. 67	. 77	. 82
13	. 15	. 18	. 21	. 25	. 29	. 35	. 41	.47	. 54	. 62	. 70	. 80	. 85
14	. 17	. 21	. 24	. 28	. 33	. 39	. 45	. 51	. 58	. 66	. 74	. 84	. 89
15	. 20	. 24	. 28	. 32	. 36	. 41	. 47	. 54	. 61	. 69	. 78	. 87	. 93
16	4.23	4.37	4.31	4.35	4.39	4.44	4.50	4.57	4.65	4.73	4.82	4.92	4.97
17	. 26	. 30	. 34	. 38	. 42	. 48	. 54	. 61	. 69	. 77	. 86	. 96	5.01
18	. 29	. 33	. 37	. 41	. 46	. 52	. 58	. 65	. 73	. 81	. 90	5.00	. 05
19	. 32	. 36	. 40	. 44	. 50	. 56	. 62	. 69	. 77	. 85	. 95	. 05	. 10
20	. 35	. 39	. 43	. 48	. 54	. 60	. 66	. 74	. 82	. 90	5.00	. 10	. 15
21	4.39	4.43	4.47	4.52	4.58	4.64	4.70	4.78	4.86	4.95	5.05	5.15	5.20
22	. 43	. 47	. 51	. 56	. 62	. 69	. 75	83	. 91	5.00	. 10	. 20	. 25
23	. 47	. 51	. 56	. 61	. 67	. 74	. 80	. 88	. 96	. 05	. 15	. 25	. 30
24	. 52	. 56	. 61	. 66	. 72	. 79	. 85	. 93	5.01	. 10	. 20	. 30	. 36
25	. 57	. 61	. 66	. 71	. 77	. 84	. 91	4.99	. 07	. 16	. 26	. 36	. 48
26	4.62	4.66	4.71	4.76	4.82	4.89	4.97	5.05	5.13	5.22	5.32	5.42	5.48
27	. 67	. 71	. 76	. 82	. 88	. 95	5.03	. 11	. 19	. 28	. 38	. 48	. 54
28	. 72	. 76	. 81	. 87	. 94	5.01	. 09	. 17	. 25	. 34	. 44	. 54	. 60
29	. 77	. 82	. 87	. 93	5.00	. 07	. 15	. 23	. 31	. 41	. 51	. 61	. 67
30	. 83	. 88	. 93	. 99	. 07	. 14	. 22	. 30	. 38	. 48	. 58	. 68	. 74
31	4.89	4.95	5.00	5.06	5.14	5.21	5.29	5.37	5.45	5.55	5.65	5.75	5.81
32	. 96	5.02	. 07	. 13	. 21	. 28	. 36	. 44	. 52	. 62	. 72	. 82	. 88
33	5.03	. 09	. 14	. 20	. 28	. 35	. 43	. 51	. 59	. 69	. 79	. 90	. 96
34	. 10	. 16	. 21	. 27	. 35	. 42	. 50	. 58	. 67	. 77	. 87	. 98	6.04
35	. 17	. 24	. 29	. 35	. 43	. 50	. 58	. 66	. 75	. 85	. 95	6.07	. 13
36	5.25	5.32	5.37	5.43	5.51	5.58	5.66	5.74	5.83	5.93	6.03	6.15	6.28
37	. 33	. 40	. 45	.52	. 60	. 67	. 75	. 83	. 92	6.02	. 12	. 24	. 31
38	. 42	. 48	. 54	. 61	. 69	. 76	. 84	. 92	6.01	. 11	. 21	. 33	. 40
39	. 51	. 57	. 63	. 70	. 78	. 85	. 93	6.02	. 11	. 21	. 31	. 43	. 49
40	. 61	. 67	. 73	. 80	. 88	. 95	6.03	. 12	. 21	. 31	. 41	. 53	. 59
41	5.71	5.77	5.83	5.90	5.98	6.05	6.13	6.23	6.32	6.42	6.52	6.63	6.69
42	81	. 87	. 93	6.01	6.09	. 16	. 24	. 34	. 43	. 53	. 63	. 74	. 80
43	. 92	. 98	6.04	. 12	. 20	. 27	. 35	. 45	. 54	. 64	. 74	. 85	. 91
44	6.03	6.09	. 16	. 23	. 31	. 39	. 47	. 57	. 66	. 76	. 86	. 97	7.03
45	. 15	. 22	. 29	. 37	. 45	. 53	. 61	. 71	. 88	. 93	. 98	7.09	. 15
46	6.28	6.35	6.42	6.50	6.58	6.66	6.74	6.84					
47	. 41	. 48	. 55	. 63	. 71	. 79	. 87	7.97					
48	. 55	. 62	. 69	. 78	. 85	. 93	7.01	. 11					
49	. 69	. 76	. 83	. 91	. 99	7.07	. 15	. 25					
50	. 84	. 91	. 99	7.07	7.15	. 23							
51	7.00	7.07	7.15	7.23	7.31	7.39							
52	. 17	. 24	. 32	. 40	. 49	. 57							
53	. 36	. 43	. 51	. 59	. 68	. 76							
54	. 56	. 63	. 71	. 79	. 87	. 95							
55	. 77	. 84	. 92	8.00									
86	7.99	8.06	8.14	8.22									
57	8.22	. 30	. 38	. 46									
58	. 47	. 55	. 63	. 71									
59	. 73	. 81	. 89	97									
60	. 01	. 09	. 18	. 25									

EXTRACTS FROM NAUTICAL ALMANAC, FOR 1854.
TO WORK EXAMPLES OF LATITUDE BY TEE MDON, ON PAGES 102, 103.

Date.	Somid.		Hor. Par.		Declination.		Equation of Time.	Meridian.
	Noon.	Mid.	Noon.	Mid.	Noon.	Mid.		
$\begin{array}{ccc}\text { July } & 11 \\ 66\end{array}$		$\begin{array}{cc} \hline 11 \\ 16 & 0 \end{array}$		$\begin{array}{ll} 1 \prime \prime \\ 60 & 0 \end{array}$	$199 \mathrm{~S} .$	$\begin{array}{ll} \hline 0 & \prime \\ 21 & 21 \mathrm{~S} . \end{array}$	- 5 m .	$\begin{array}{ll}\text { h. } & \text { m. } \\ 13 & 58 \\ 14 & 56\end{array}$
April 66 6		160	1	$\begin{array}{cc} 1 & \prime \prime \\ 57 & 0 \end{array}$	22 N .	051 S.	$+2 \mathrm{~m}$	$\begin{array}{ll} 21 & 59 \\ 22 & 43 \end{array}$
April 66	$\begin{array}{rr} 11 \\ 150 \end{array}$		$\begin{array}{ll} 111 \\ 54 & 0 \end{array}$		260 1	2613 N.	- 3 m.	$\begin{array}{ll}5 & 30 \\ 6 & 21\end{array}$
April 1	150		550		1846 N.	2036 N.	- 4 m .	$\begin{array}{rr}3 & 3 \\ 3 & 51\end{array}$
April 6 12		160		590	727 S .	425 S .	- 1 m .	$\begin{aligned} & 1153 \\ & 1242 \end{aligned}$

FROM LARGE NAUTICAL ALMANAC.
TO WORK SAME EXAMPLES AS ABOVE.

TO WORK EXAMPLES OF LATITUDE BY PLANETS, ON PAGE 105.

Date.	Names.	Meridian Passage.	Declination.	Equation.
January 1 4	$\underset{\text { Venus. }}{\text { Ven }}$	$\begin{array}{r\|r} \hline \text { h. } & \mathrm{m} . \\ 3 & 15 \end{array}$	$\begin{array}{lr} 13 & 5 \\ 12 & \mathrm{~S} . \\ \mathrm{S} \end{array}$	m $-\quad 4$
$\begin{array}{r}\text { June } \\ 66 \\ \hline 6\end{array}$	Mars.	62	$\begin{array}{lll} 7 & 25 & \mathrm{~N} . \\ 7 & 13 & \mathrm{~N} . \end{array}$	$+2$
April 13 $6 \quad 14$	Jupiter.	1824	$\begin{array}{lll} 21 & 7 & \mathrm{~S} . \\ 21 & 6 & \mathrm{~S} . \end{array}$	- 1
	Saturn. "	646	$\begin{array}{ll} 17 & 4 \\ 17 & 4 \\ \mathrm{~N} . \\ \hline \end{array}$	- 14

TO WORK EXAMPLES OF LATITUDE BY STARS, PAGES 107, 108.

TO WORK LATITUDE BY POLAR STAR, PAGE 109.

Date.	Meridian Passage.	Right Asconsion.	Decilination.	Equation.
July 1	$\begin{array}{ll} \hline \text { h. } & \text { m. } \\ 18 & 26 \end{array}$	h. m.	$88 \quad 32 \mathrm{~N} .$	
July 20	$17 \quad 9$		8832 N	
January 20		$20 \quad 9$		
February 10		2136		$\begin{array}{r} \mathrm{m} \\ -\quad 15 \\ \hline \end{array}$

TO WORK EXAMPLES OF TIME BY MOON, PAGE 133.

Data	$\begin{array}{\|c} \text { Somit } \\ \text { Dinam } \\ \hline \end{array}$	$\begin{aligned} & \text { Her } \\ & \hline \end{aligned}$	ght		ell		$\begin{aligned} & \text { Equation of } \\ & \text { Time. } \end{aligned}$		an'u RIght Asconslon.		L B
			Noon.	M1d	on.	MId		1 h .			
			h. m. s.	h. m. s.			m. \quad.			h. m .	
Mar.	15	55	81221	83826	2414 N.	234 N .	1031.55	. 665		232153	

TO WORK EXAMPLES OF TIME BY PLANETS, PAGE 135

Data	Right Ascen.	Decilination.	Equation.	Diff. 1 h.	Sun's R. A.	Dific i h
April 6	$\begin{array}{lll} \hline \text { h. } & \text { m. } & \text { s. } \\ 22 & 27 & 28 \\ 22 & 29 & 44 \end{array}$	$67 \mathrm{~S} .$	$\begin{gathered} \mathrm{m} . \\ 20.50 \end{gathered}$	$\begin{gathered} 8 . \\ .725 \end{gathered}$	$\begin{array}{lll} \text { h. } & \text { m. } & 8 \\ 1 & 0 & 18 \end{array}$	s.
December 5	$\begin{array}{rrrr}19 & 57 & 13 \\ 19 & 58 & 4\end{array}$	2115 S .	912.43	1.049	164636	11

TO WORK EXAMPLES OF TIME BY STARS, ON PAGE 137.

Data	Right Ascen.	Deolination.	Equation.	Dific. 1 h .	Sin's R. A.	Dific. 1 h
February 9	$\begin{array}{rrr} \hline \text { h. } & \mathrm{m} . & \mathrm{s} . \\ 6 & 38 & 43 \end{array}$	$1631 \mathrm{~S} .$	$\begin{array}{cc} \mathrm{m} & \text { s. } \\ 14 & 31.61 \end{array}$. 39	$\begin{array}{ccc} \hline \text { h. } & \text { m. } & \text { 8. } \\ 21 & 31 & 34 \end{array}$	$\begin{aligned} & \text { S. } \\ & 10 \end{aligned}$
May 12	$16 \quad 2024$	266 S.	352.34	. 53	$\begin{array}{rrr} \hline \mathrm{h} . & \mathrm{m} . & \mathrm{s.} \\ 3 & 15 & 50 \end{array}$	10

The following are a fero from among the many recommenciations of the work aived by the Publishers:-

New York, April 5 1856.
Mr. Shaw,-Dear Sir,-Haring used the new treatise on the Practice of Navigation at Sea, by Captain William Thoms, during ten passages across the Atlantic, I am or opinion that it is the most clear, simple, and practical work on the subject I have yet seen, containing all that is requisite to the navigator, without being encumbered with pages of useless matter.

For the learner I consider it most especially desirable, for everything necessary for tinding a ship's place on the Ocean is so simply and clearly explained, and illustra ted by diagrams, that it must clear the mist and doubts that so often hang over him.

I am fully of opinion that this work will, in time, be duly appreciated, and generally adopted by our sea-faring community. Very respectfully,
P. E. Le Fevre, Master Steamship Ariel

Mr. R. L. Shaw,-Dear Sir,-Captain Eldridge, of the Steamship Pacific, in conversation with me, after having used Thoms' Practical Navigation, said: "The book recommends itself, publish it, it is sure to go."

Jas. H. Brownlow, Teacher of Navigation.

New York, Appil 5, 1856.
Mr. Shaw,-Dear Sir,-Having used the work on Navigation published by Captain William Thoms, I can cheerfully recommend it to all those interested in narigation, in being the most simple and easy method of calculations. Yours, Thos. D. Ewan, Master of Steamship Southerner.

Mr. R. L. Shaw,-I have used Thoms' Navigator for several voyages, and profer it to any other I have had before, and recommend it to all classes of navimators, veing more explicit, and best adapted to the general practice of navigation at sea.
J. Westervelt, Master of Schooner Pearl.

New York, March 12, 1856.

New York, April $\because, 1856$.
Mr. R. L. Seaw,-Dear Sir,-I have used Thoms' Navigation for three voyago s2d prefer it to any others I have seen.

John Hardy, Master of Schooner D. Dcmidron

OPINION OF THE WORK,

From Men of Experience.

We, the nndersigned, Captains of Ships, and others, having examined the Manuscript of a new Treatise on the Practice of Navigation, and Nautical Astronomy, by Capt. Wm. Thoms, are of opinion that it is the most simple and practical work on the subject we have yet seen, especially for the learner, who will be greatly assisted in obtaining a knowledge of the Science by the numerous Diagrams which illustrate the subject, and is particularly adapted for Seamen, as it treats on those subjects only which have reference to the Ship's Place on the Ocean, (or Navigation proper.) Many new problems have also been introduced, which will be found of much practical valne to many Captains of Ships, who may not have had an opportunity of previously becoming aequainted with them.

We are therefore of opinion, that if the work is published in its present style, it will be duly appreciated by our seafaring community, and would in time be extensively used by them throughout this large maritime conntry.

Names.	Vessels Attached to.	Names.	Vessels Attached ta
S. McKA	Great Republio.	J. WILSON COMBY,	Calhoun.
OMAS DIXON	Fidelia.	WILLIAM HOWARD,	Lucy Watis
W ARD MURRAY,	Balanc	VICTOR VIEROUS,	H. T. L.
WM. BRAGDON	Blon.	CHARLES LIDBECK,	Abrasia.
JOHN 'I. FRENC	Corn	WILLIAM DALY	Gazelle.
JOHN STRAKER,	Tele	JAMES NEWBER	Jasper.
J. H. CASWELL,	S. Austin	THUMAS McLEAVY	Mary Morria.
ISAAC LYNCH,	S. B. Stro	C. FERD. BROWN,	E. Bulklet.
WILLIAM P. J	Kens	G. DOUGH	Anstiss.
GUNDER KRAB	C'hief Mate.	JOS. G. WOOD	Contest.
FRANCIS PATTERS		FRED. WIEL	Vulture.
JOHN W HOLMES,	R. Del	JOSEPH D. HUGHES,	Uranus.
CHIS. ANDERSON,	Mar. Vineyar	EDWARD MOORE,	Augusta.
JAMES SAFFOR	H	RUFUS BROWN,	Mongolia.
JOHN KIRKPATRI	Mate.	B. F. TAYLOR,	Anna Tift.
AND. ARMSTRONG,	Cora Linn,	LEWIS E. JACKSON	Hollander.
C. E. LUCAS,	Mate.	WM. L. KEMPTON,	St. Joseph.
A. B. CLAUSSE	Sword Fish.	B. FRANCIS,	Cataract.
RICHARD LLOYD,	Gloucester, Mass.	ZACHEUS KEMPTON,	Horatio.
A. P. FOSTER,	Adela Swift.	J. H. ROGERS,	S. B. Strong.
JAMES W. TAYLOR,	D. B. Warner.	WILLIAM LYDDON,	J. N. Cooper.
J. W. JEROLOMON,	Alexander	CHAS. E. MERRY,	Skylark.
ALF. B. LOWBER,	S. S. Ericsso	G. RICE,	B. N. Haweins.
JOHN R. CAVARL	Am. Eagle.	J. R. McDOUGALL,	John Stroud.
JOSEPH C. DOWD,	Wm. Rathbone	JOSHUA E. SMITH,	Ann Elizabetr.
RICH'D. B. MORSE,	George Rafner.	M. NICHOLAS,	Unattached.
HENRY W. DODGE,	T. \& P.Wood-	JOHN MOONEY	Governor Br
W. R. FOREMAN,	Ohio. [Ward.	PETER WIX	North Win
MARTIN ALLEN,	Rapid	EDW ARD ABEEL	Isamo Wright.
PET. BORGESTUNE,	H. W. Mostourr.	CHAS. ANDERSON,	Statira Modr

THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW

AN INITIAL FINE OF 25 CENTS
WILL be Assessed for failure to return THIS BOOK ON THE DATE DUE. THE PENALTY WILL INCREASE TO 50 CENTS ON THE FOURTH DAY AND TO $\$ 1.00$ ON THE SEVENTH DAY OVERDUE.

U.C. BERKELEY LIBRARIES

 COOb256353

[^0]: - An error in the reckoning is frequently caused by local attraction affecting the Ship's Compass, and aistaked for a Carrent, where none exists. (See page 120.)

[^1]: Role.-Add together the Epact of the Year, the Epact of the Month, and the Day of the Month. The Sum, if t does not exceed 30 , is the Monn's Age; if the Sum exceeds 30 , subtract 30 from it, and the remainler will be the Moon's Age on that day of the month reguired.

[^2]: * Ships on leaving the Gulf of Gainea, or the Bight of Biafra, bound to the Westward, consequently have to teat to Findward between the Princes Islands and the main land of Africa, where they find a favorable current running to the Sonthward, until they have crossed the Equator, when, by then standing to the Westward, they fall in with the regalar Equatoria. Current running Wast. Thereby avoiding the Guinea Curent whish runs in a contrary direction to un Northwasd of the Eouator.

[^3]: Required the Bearing and Distance of St. Mary, one of the Western Islands, from St. Antonio, one of the Cape Vorde Islands, both Island being on the same Meridians.

 Answer.-The True Bearing is North, and 2 pointe Westerly variation allowed to the Right hand give the Bearing by Compass N. N. E. The extent of their Distance in the dividers, and applied to the Scale of Latitude from the parallel of $17^{\circ} 12^{\prime} \mathrm{N}$. to $36^{\circ} 59^{\prime} \mathrm{N}$., contains $19^{\circ} 47^{\prime}$, which multiplied by 60 gives the True Distance 1187 miles.

[^4]: A Ship, to the Parallel of Latitude of Noveraink by obsorvation, $10^{\circ} 28^{\prime} \mathrm{K}_{\text {, }}$, Sounded in 20 faturms water Required bor Longitude in and Distance ofi:

[^5]: By setting back the Indcx 1^{\prime}, the Star will appear to overlap the Moon's Limb. Watch for the contact as before, and in the same manner as the last. By this means the Moon is made to measure her own distance, and all that is required to be done is to note the time of the contact

 For further remarks on measuring the Lunar Distanee, see page 163

[^6]: Nore.-In correcting the Declination, the Civil Time is used in the above Examples; that is, the Noon of the Civil day corresponding to the Beginning of the Astronomical day. 'The Latitude found in this manner' is more correotly obtained than by the Sea Horizon.

[^7]: Note.-In Example 3d, the Lesser Altitude having been obscrved on the Prime Vertical, an error in the Latitude does not affect the Hour Angle.
 In Example 4th, an error of 10^{\prime} in the Latitnde would prodnce an error of 29 nec in working the Honr Angle bnt which has little or no effect on the correction for Altitude

[^8]: *This Correction is found by adding 2 minntes of Time for every 15° of Longitude which the Ship is to the Westward of Greenwich, to the time of her pasage in the Nautical Almanac, or subtracting the same in East Longitade, will give the Mean Time of her passage at the Ship.

[^9]: On the 1st of May, by Table XVIII, Vega passes the Meridian at 15 h 59 m , or time by Watch at 3 h 59 mA A. M. Latitude by Dead Reck. $20^{\circ} 0^{\prime} \mathrm{N}$.
 Subtract from $\frac{90}{70^{\circ}} \frac{0}{0^{\prime}} \mathrm{N}$.
 Co-Latitude.
 Declination, Table XIX. 3839 N .
 Subtract from. $100^{\circ} \quad 180^{39^{\prime}}$
 Comprited Altitude.... $\overline{71^{\circ}} \overline{21^{\prime}}$ towards the North.

[^10]: Nore.-When the Star's Declination Subtractive is greater than the Co-Latitude, the Star is nut above the Hormoo N the observer.

[^11]: ＊＇s Observed Altitude．．．．．． $71^{\circ} 26^{\prime}$ N．
 Corr．，Table XX．．．．．．．．．．．．．．．
 True Altitude．．．．．．．．．．．．．．．．．$\overline{.71^{\circ} 21^{\prime}}$
 Zenith Distance．．．．．．．．．．．．．．． $18^{\circ} 39^{\prime} \mathrm{S}$ ．
 Declination，Table XIX．．．．．．． 8839 N．
 Latutult Obeerved．．．．．．．．．．．$\cdot 2^{2^{n^{\circ}}} 0^{\prime}$ N．at 3 h 59 m A．M．

[^12]: Norv．－The 1st Example given above is not a good case，as the time from the Meridian passage exceeds the limite of the Part 5th，and an error in the time will considerably affect the result．

 When there is a choice of Stars，take the one whose Declination is of a oontrary name to the Latitude of the place， and which has a low Altitude，becanse it can be observed farthest from the Meridian，and an error in the time affect it the least．In this case an error of 1 minnte in the time would produce an error of 4 minutes in the correction for Altitude；and on reversing the case，that is，obverving the Cross on the Meridian，and finding the correction for the Altitude of Spica，an error of 1 minute in time would produce an error of 3 minutes in the correction for Alsisnde

[^13]: Questron.-August 9th, 1854. Sea Time. In Latitude, by Dead Reckonng about $56^{\circ} 0^{\prime}$ North, Longi tude $75^{\circ} 30^{\prime}$ West, the observed Altitude of the Moon's ${ }^{\top}$ 'pper Limb was $14^{\circ} 41^{\prime}$ South, (about 1 hour paat the Meridian.) The Greenwich Time by Chronometer being, August 8th, 18 h .52 m . 30s. (Height of the eye, io feet.) Required the Latitude.

 Answer.-Latitude $56^{\circ} 10^{\prime}$ North. The Apparent Time of observation at Ship was 13 h .45 m .6 s . The Apparent Time of the Moon's Meridian Passage. 12 r .45 m .6 s ., the Moon was 1 hour past the Meridian, and the Correction for Altitude, $1^{\circ} 6^{\prime}$, and Meridian Altitude $15^{\circ} 47^{\prime}$ South.

[^14]: Nore.-When the Sights are taken in the Morning, we look for the smm of the 4 Logarithma in Table XXIX, and take the time from the bottom of the page, and if the figures are found exactly, the Bours are found at the bottom, the Minater at the right side oppesite the Logarithm, and the Seconds in the same column at the bottom of the Table.
 But if the Sum of the 4 Logarithms cannot be fonnd exactly, take the pearest lese Logarithm, and find the difference between it and the given Logarithm, with which enter the adjoining proportional colnmns, and take out the corresporiding Seconds of Time, which must be subtracted from the Seconds found at the bottom of the columu froms wnenee the cearest less Logarithm was taken, which will be the Apparent Time from the preceding Noon or Midnight.

 When the Sigbts are taken in the Afternoon, the time is taken from the top of the Table. And in like manner, we mat look for tine nearest less Logarithm, and find the difference between it and the given one, nnd the proportional parts for Seconds, fonnd in the adjoining column, muat be added to the Seconds found at the top of the colnmn, from whence the nearest less Logarithin was taken.

 All Hous Anglen are taken from the tcp of the page, and which ia also the Apparent Time past Noon by the Ban.

[^15]: - The Proportional Logs., Table XXXIV, are very nsefnl for the purpose of performing Rule of three questions; bat to make the terms all additive we must subtract the Pro. Log. of the first term from 10.0000 . It is then called the Arithmetical Cumplement.
 But as this Table only extends to 8 hours, we must enter it, (when they exceed that quantity, with the hours as minntes and the minutes as seconds, \&c., \&ce., as in the above Examplc, which will be found a mach more correot oote than when taken from Tables which are generally constructed for that purpose.

[^16]: Note.-Bat when she makes mach Northing or Southing in the interval, it is evident that the sume Altitudes will no conger give the correot middle time at Apparent Noon. The Error in the Altitude will be equal to the Difference of Latitede the Ship has made in the interval. For instance, a Ship Sailing South in North Latitude, the 1. M. Altilade would be too small, and Sailing North the P. M. Altitude would be too great by the Amount of the Difference of Latitude made in the interval, therefore the Rule is, when Sailing towards the Sun, we must increase the A. M. Altitude which is on the Quadrant by advaucing the Index of the Instrument equal to the Difference of Latitude made in the interval. But in Sailing from the Sun we dccrease the A. M. Altitnde by screwing back the Index equal to the Difference of Latitude made in the interval, and when the Sun falls to that Altitnde in the Afternoon, and the time noted by Watch or Chronometer, the correct middle time is found at Apparent Noou as before. But as this method is mada osed at Sea ic its present form, because of its extreme simplicity and indopendence of both Latitude and Declination and whieh, w.th ordinary eaution, it is well adapted for the use of Seamen in detecting any very gross error in the mane regalar mod: a working out the 'Time at Sea.

[^17]: Notx.-Observations for Rating Chronometers at Sea should he all taken in the morning, or else all in the afternoes becanse of the irregalarity in the time deduced from the morning Altitades when compared with those taken in the cremoon. (See the Note at page 141.)

[^18]: Fm.--IL ascertaining the Ship's position by this method, it is necessary to find the oxact amount of Magnetio Vian 1.w die th the flace, and the Local attraction (if any) due to the Ship (See page 121) previons to the Sighte being -u for Chs rometer, so that the proper Variation may be allowed on the Compass bearing, for the purpose of iudieal'og tha tine at which the Ubject bears True North or South.

 1 I erron of this kind will cause an error in the Longitude so dednced, that is, the Ship will not be on the same Mam dias. or in the Longitude of that place, and the greater the Distance from the Object the greater will be the error wed, and the naarer to the Object the less will be the error from that camse.

[^19]: - This Correction is simply the Difference between the Semidiameters taken at 16^{\prime}, and the Dip of the Horizon, taked 4 4. to be added when the Lower Limbs are taken.

[^20]: - The Moon's Semidiametor and the Horizontal Parallax are taken ont fo: ste nearest Noon or Midnight, and their Difference in 12 hours found, with which we enter Table XXIV at the Top, and the Greenwich Time from Noon or Mid night at the side, aud at the angle of meeting is the cor-antion to be Added or Subtracted, according an they are inermo or deareasing

[^21]: *To find this correction, say as 360° is to the daily variation of the Moon's passing the Meridian, so is the givens longitude in, to a portion of Tine to be added to the Tine of her Meridian Passage, in the N. A., in West Longituda or subtracted from it in East, will give the Mean Time of her Meridian Passage at the Ship.

[^22]: When a Ship leayes a Port outward bound, the crew are divided into two Watches, termed the Starboard and Larboard Watches, and who do duty 4 hours alternately, except between 4 and 8 o'clock in the evening, when each Watch does duty 2 hours only. Thesc are called the Dog Watches, and are for the purpose of changing the Night Watches, so that the same party will not be on duty at the same interval 0_{1} time or two following nights; and it is the custom or rule for the Second Officer, who keeps the Captain's, or Starboard Watch, to take the first Watch, (which is from 8 o'slock in the evening until midnight.) on leaving Port outward bound; and the First Officer, who keeps the Larooard Watch to take the first Watcb on leaving Port, homeward bound.

[^23]: Again: Suppose that the Course steered could be depended on, and the Distance run uncertain. The Latitnd observed yesterday was $35^{\circ} 42^{\prime} \mathrm{N}$., and to-day $38^{\circ} 40^{\prime}$, the Difference of Latitude between the Observations beng 178 miles. Then, with the Course N. W., and the True Difference of Latitude 178, the True Distance run is found to be 252 miles, and the Departure 178. The Middle Latitude 37°, taken again as a Course, and the Departurs 178, in the Latitude column, gives the correct Difference of Longitude made 223, in the Distance column, or $9^{\circ} 43^{\prime}$ This, added to the Longitude in jesterday, $51^{\circ} 2^{\prime}$ W., gives the Jommitude in by Dead Reckoning to day $54^{\circ} 45^{\prime}$, and -hich agrees with that given by Chronometer, vearly.

[^24]: Thin Table will anuwer very nearly for overy four years afterwards, but if greater acouraoy is required, a oorreotiom must be

[^25]: To apply the Correction in Table XII Reduce the proposed year by Subtraoting any namber of Fours until it corresponds

[^26]: Enter this Table with the Apparent Altitude at the side, and the Horizontal Parallax at the top, and at the angle of meeting will be the required correction; and if Seconds be required, multiply the Tenths by 6 will give Seconds.

[^27]: APPARENT DISTANCE.

[^28]: 5 DEGREES.

